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Abstract 

 

Histones are subject to a wide range of modifications, which are differentially regulated across 

cell types to modulate gene expression. The simultaneous presence of different sets of histone 

modifications in a genomic location is correlated with the function of the DNA wrapped around 

such histones.  This information is especially relevant to understanding the role of non-coding 

regions of the genome, such as enhancers, which modulate the expression of target genes in 

specific conditions and a cell type-specific manner. Questions have been raised about the 

potential role of enhancers in the modulation of genes involved in complex immune-mediated 

diseases because most genetic variants associated with such diseases lie in non-coding regions. 

However, the exact localisation of enhancers in haematopoietic cell types is unclear. Different 

groups of researchers have made inconsistent efforts to annotate the epigenome of focused 

subgroups of cell types, making the comparison among genomic locations of enhancers across 

multiple haematopoietic cell types unfeasible. I produced the most complete collection of 

epigenomic annotations of haematopoietic cell types based on the presence of six different 

histone modifications across the epigenome of 107 samples from 31 different cell types of 

healthy individuals. I also identified around 200 diseases with associated non-coding genetic 

variants colocalising regions annotated as enhancers in different subsets of haematopoietic cell 

types, thus providing an invaluable resource for the interpretation of non-coding variants 

associated with complex diseases. I used Inflammatory Bowel disease and cardiovascular 

disease as examples to showcase our dataset's leverage for identifying complex diseases causing 

genes.  
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Chapter 1. Introduction 

 

1.1. Genotype, phenotype and epigenetic mechanisms.  

All the potential traits that an organism may display throughout its life are encoded as a precise 

sequence of nucleotide bases in its DNA—The genome, which is inherited from the ancestors 

of the organism (Makałowski, 2001; Goldman & Landweber, 2016). Inside the nucleus, the 

genome is packaged in compact and dense structures —the chromosomes. These are composed 

of a mixture of DNA, RNA, and proteins, together forming the structure known as chromatin 

(Gilbert et al., 2004).  

The chromatin is organised in a dynamic and hierarchical three-dimensional (3D) structure 

(Lanctôt et al., 2007), which defines the activity of different elements of the genome by 

controlling their accessibility. Very compacted regions of chromatin (heterochromatin) render 

genes inaccessible, effectively silencing their expression. Conversely, in open chromatin 

(euchromatin), genes become readily accessible for transcription, enabling their expression 

swiftly in response to environmental cues (Grandi et al., 2022; Klemm et al., 2019a) (Fig. 1.1.).  

Multicellular organisms are composed of numerous types of cells that rise during development 

when pluripotent cells differentiate into distinct lineages, eventually forming various tissues 

and organs (Arendt et al., 2016; A. G. Fisher, 2002). These specialised cell types present 

different observable characteristics (phenotype), such as shape, size, and specific functions, and 

play several important roles that are crucial to the organism’s fitness. Despite phenotypic 

differences, all cells within the same organism share the same genetic information (genotype), 

and their diversity is due to variations in gene expression patterns among them, which result 

from the selective activation or repression of specific sets of genes (Briggs et al., 2018; Cao et 

al., 2019).  

In a given organism with a specific genotype, cell type- and context-specific gene expression is 

regulated by epigenetic mechanisms (Carter & Zhao, 2020). These include, among others, 

chemical modifications made to the chromatin (e.g., histone modifications) or the genome (e.g., 

DNA methylation), chromatin conformational and compositional changes (e.g. looping and 

nucleosome enrichment/depletion), and binding of transcription factors (TFs) to non-coding 

regulatory DNA sequences (e.g., promoters and enhancers) (Carter & Zhao, 2020; 

Schwartzman & Tanay, 2015; Fazzari & Greally, 2004). Epigenetic mechanisms are influenced  



 

Figure 1. 1. Spatial organisation of the genome within the nucleus. The genome is 

distributed within chromosomes, each occupying delimited spaces within the nucleus known as 

chromosomal territories. Within chromosomes, DNA is wrapped around nucleosomes. Each 

nucleosome contains two copies of four core histones: H2A, H2B, H3, and H4. An additional 

linker histone (H1) can attach to the nucleosome, forming a chromatosome. These linker 

histones can form dimers, facilitating the formation of clutches, which are groups of 

chromatosomes. Together, this complex of DNA and proteins is referred to as chromatin. 

Chromatin exhibits a three-dimensional architecture characterised by chromatin loops. 

Condensed regions are characterised by transcriptional inactivity, while nucleosome-depleted 

areas allow accessibility for transcriptional processes.  (Fyodorov et al., 2018). 

 

by environmental cues such as nutrition, the composition of the microbiota, exposure to 

environmental toxicants, temperature changes, infections and other stresses (Wu et al., 2023; 

Rothschild et al., 2018; Gibson, 2008; Sanna et al., 2019) (Fig. 1.2). 

The term “epigenome” refers to the complete set of epigenetic modifications across the genome 

of a cell type (Holtzman & Gersbach, 2018; Fazzari & Greally, 2004). Epigenomics is a field 

of study that seeks to define the location and nature of the genomic sequences that are 

epigenetically modified and their potential impact on gene regulation and cellular function 

(Schwartzman & Tanay, 2015; Stricker et al., 2016). 
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Figure 1. 2. Epigenetic mechanisms regulate the phenotype. The phenotype of a cell is 

influenced by the interplay between its genotype and exposure to external cues, such as 

toxicants, microorganisms (pathogens and microbiota), diet, etc. Epigenetic mechanisms 

mediate this influence by regulating gene expression required for an appropriate response to 

these exposures. The environment can also modify the genotype and the microbiota, for 

instance, through toxicants causing DNA damage. Additionally, diet and genotype influence the 

microbiota's composition: Abbreviations: Single Nucleotide Polymorphism (SNP), Copy 

Number Variant (CNV). 

 

 

1.2. Histone post-translational modifications  

The first level of DNA package and recurring structural unit of the chromatin is the nucleosome, 

which consists of 147 bp of DNA wrapped around a histone octamer (two copies each of the 

core histones H2A, H2B, H3, and H4) (Fyodorov et al., 2018; Gilbert et al., 2004). The next 

structural unit of DNA packaging is the chromatosome, which is formed by the binding of the 

linker histone (H1)  to a nucleosome. By forming dimers, H1 facilitates the formation of higher-

order structures, such as tetra nucleosome units, which are arranged in groups of heterogeneous 

sizes called “clutches”. Increased levels of H1 and denser clutches are found in regions with 

higher chromatin compaction. Therefore, H1 is thought to be an important modulator of 

heterochromatin dynamics and chromatin silencing. (Fyodorov et al., 2018; Zhou et al., 2015; 

Hizume et al., 2005).  



The N-terminal amino acid tails of histone proteins protruding from nucleosomes and 

chromatosomes can be modified by the covalent binding of chemical groups such as 

methylation, acetylation, phosphorylation, deamination/citrullination and ubiquitination. These 

modifications are called histone marks. (Rando, 2012; Gates et al., 2017) (Fig. 1.3.A). These 

posttranslational modifications are reversible, being added by enzymes called “writers” (e.g. 

MLL/set1 family of histone lysine methyltransferases, CBP/300 histone acetyltransferase) or 

removed by other enzymes called “erasers” (e.g. H3K4 demethylase  LSD1) (Hyun et al., 2017; 

Kouzarides, 2007).  

The localisation and number of chemical groups added to histone tails influence the likelihood 

of the DNA wrapped around them being involved in different cellular processes (Kouzarides, 

2007). This influence can be exerted by histone modifications affecting DNA accessibility 

(Bannister & Kouzarides, 2011; Tropberger & Schneider, 2013) or by proteins known as 

‘readers’, which recognise and bind particular histone modifications and recruit different 

proteins involved in specific biological processes (Tafessu & Banaszynski, 2020a; Hyun et al., 

2017).  

For instance, some histone marks influence transcriptional activity. Histone acetylation can 

influence the opening of the chromatin, making genes and non-coding regulatory DNA 

sequences more accessible for TFs and RNA polymerases (Bauer et al., 1994; Rando, 2012). 

Additionally,  acetylated lysines are recognised by bromodomains present in a diverse array of 

transcriptional coactivators, such as CBP/300, which act as scaffolding to recruit additional 

transcriptional machinery (Tafessu & Banaszynski, 2020a). Moreover, methylation of the 27th 

lysine of histone 3 (H3K27me3) is implicated in the formation of facultative heterochromatin, 

which preserves cell-type identity by silencing alternative lineage genes and plays a role in 

dosage compensation between the sexes by inactivating one of the X chromosomes in female 

mammals (Allshire & Madhani, 2018; Wutz, 2011)  

Histone marks can also influence the likelihood of DNA sequences participating in processes 

such as repair, recombination, and cell-cycle control. Methylation in the lysine 9 of histone 3 

(H3K9me3) is implicated in the formation of constitutive heterochromatin (Boros et al., 2014a), 

mainly in telomeres and pericentromeric regions with repetitive sequences like satellite repeats 

and transposable elements (Allshire & Madhani, 2018; Nair et al., 2017). By suppressing these 

sequences' activity, constitutive heterochromatin decreases the chance of these regions 

participating in recombination or chromosomal rearrangements, hence maintaining genome 

stability. Additionally, constitutive heterochromatin at centromeric regions is important for the 

proper chromosome segregation during cell division by facilitating kinetochore assembly  
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Figure 1. 3. Antibody-based identification of histone modifications. Illustration of a 

nucleosome showing positions of various histone modifications in the aminoacidic tail of the 

histone 3 (H3). (B) Diagram showing how the ChIP-seq assays work. Specific antibodies are 

used to identify histone modifications of interest (depicted in grey). Subsequently, the genome 

is fragmented, the targeted regions are isolated, and DNA is purified and sequenced. (C) 

Simplified illustration of the occupancy of histone modifications as determined by ChIP-seq. 

Coloured regions represent a typical ChIP-Seq signal for specific histone modifications at a 

given region: teal (H3K27ac), purple (H3K4me1), light blue (H3K36me3), green (H3K4me3), 

yellow (H3K27me3), red (H3K9me3). (D) At the top of the image is a schematic representation 

of a genome section, delineating the positions of various genomic elements. Directly beneath 



are signals depicting the occupancy of four distinct histone modifications associated with these 

genomic elements. Further below, the figure presents a graphical representation of chromatin 

states. These states serve as annotations for genetic elements, organised in 200-base pair bins 

across the entire genome. The chromatin states are defined based on the combinatorial presence 

of the specified histone marks, providing a comprehensive view of the functional annotation of 

the genome. Figures A and B are adapted from (Abcam plc., 2023), and Figure C is adapted 

from (Gates et al., 2017). 

 

(Allshire & Madhani, 2018; Ishii et al., 2008). This type of heterochromatin remains condensed 

and inactive throughout the cell cycle and across different cell types, in contrast with facultative 

heterochromatin, which can undergo reversible changes and become active in response to 

cellular signals and developmental cues (Allshire & Madhani, 2018; Trojer & Reinberg, 2007).  

The position of histone modifications across the genome of individual cell types can be 

determined by using different methodologies, each with its own strengths and limitations. 

Chromatin immunoprecipitation (ChIP) followed by DNA sequencing (ChIP-Seq) (Robertson 

et al., 2007; Johnson et al., 2007) is the standard and most used method for chromatin profiling 

of histone marks, and it has been employed for profiling the epigenome of diverse samples as 

part of the ROADMAP (Roadmap Epigenomics Consortium et al., 2015), Encyclopedia of 

DNA Elements (ENCODE) (The ENCODE Project Consortium et al., 2012) and BLUEPRINT 

(Adams et al., 2012) epigenome consortia.   

In the ChIP-Seq protocols, cells are first cross-linked or “fixed” using formaldehyde to stabilise 

the association of chromatin-bound proteins. The cells are lysed, and the whole free chromatin 

is fragmented into pieces. Target-specific antibodies are employed, and this binds preferentially 

to the fragments with the target histone mark. The antibody-bound chromatin is isolated from 

bulk chromatin using a magnet, and this is followed by a series of stringent washes with buffers 

that strip away off-target proteins. Immunoprecipitated DNA is then purified, sequenced, and 

mapped to the reference genome to determine the target histone mark’s genomic location (Landt 

et al., 2012) (Fig. 1.3.B). 

Specific steps in the ChIP-Seq protocol present inherent limitations that can result in low signals 

(low enrichment of target sequence reads) and high backgrounds (many reads of off-target 

sequences) (Landt et al., 2012; Park, 2009). For instance, the cross-linking of proteins to DNA 

can lead to epitope masking, where the epitope recognised by the antibody used for 

immunoprecipitation is inaccessible due to the cross-linked proteins. This can result in 

underrepresentation or failure to detect certain binding events (Landt et al., 2012; Park, 2009).  
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Fragmentation requires thorough optimisation, with a desired size range from 150-300 bp 

because long chromatin pieces (>600-700 bp) make it difficult to identify exactly where the 

histone mark is located, thus lowering resolution. In the immunoprecipitation step magnetic 

beads may pull down off-target fragments along with the chromatin containing the target (Landt 

et al., 2012; Park, 2009). Besides, immunoprecipitation also requires highly stringent washes, 

which can result in sample loss. Due to all the above, large numbers of cells (a minimum of 

500,000 cells; however, in practice, most researchers use millions of cells per ChIP) and very 

deep sequencing (~20 million or more sequencing reads per reaction) are required to detect 

signal enrichment over background (Landt et al., 2012; Park, 2009) 

More recent techniques have been developed to overcome some of these limitations, such as 

the Cleavage Under Targets & Release Using Nuclease (CUT & RUN) technique (Skene & 

Henikoff, 2017). In the CUT & RUN protocol, unfixed permeabilised cells are incubated with 

the target-specific antibody, then a protein A-Micrococcal Nuclease (MNase) fusion protein is 

bound via antibodies and selectively cleaves DNA near regions bound by the target protein, 

facilitating subsequent DNA release and purification for library preparation and sequencing 

(Skene & Henikoff, 2017). This method reduces the time and cost of the experiments by 

eliminating several steps from the protocol, such as cross-linking, cell lysis, fragmentation, and 

immunoprecipitation. Additionally, since the chromatin fragments released from the cell and 

available for sequencing are only those near the antibodies, the background levels are reduced, 

the resolution is significantly improved, and the starting number of cells for the experiment and 

the necessary sequencing depth to identify the binding events is reduced significantly.  

Although CUT&RUN can produce high-quality data from as few as 100–1000 cells, it needs 

an additional step for adapter ligation prior to library preparation, thus increasing the time and 

effort required for the overall procedure. Additionally, the release of MNase-cleaved fragments 

into the supernatant complicates the adaptation of CUT&RUN to single-cell applications. A 

more recently developed technique, Cleavage Under Targets and Tagmentation (CUT&Tag) 

addresses these limitations (Kaya-Okur et al., 2019). In this method, an A-Tn5 transposase 

fusion protein, tethered to target chromatin proteins by antibodies, is employed. Instead of 

cleaving DNA, the Tn5 transposase inserts sequencing adapters directly into DNA at the sites 

bound by the target protein, eliminating the need for subsequent DNA release. With a starting 

point as low as 60 live cells, this technique generates amplified sequence-ready libraries within 

a day, thereby reducing experimental time and costs (Kaya-Okur et al., 2019). 

In addition to the above-mentioned techniques, others have been developed, including 

chromatin integration labelling followed by sequencing (ChIL-seq) (Harada et al., 2019), 



chromatin immunocleavage sequencing (ChIC-seq) (Ku et al., 2019), antibody-guided 

chromatin tagmentation sequencing (ACT-seq) (Carter et al., 2019) and in situ ChIP (Q. Wang 

et al., 2019). Each method has its merits and limitations, and the choice often depends on the 

specific research question, desired resolution, and available resources. However, since these 

methods are relatively new and the computational processing of their outputs differs from the 

used in ChIP-seq, comparing the results from these new methodologies to those from ChIP-seq 

experiments, which account for the vast majority of available epigenomic data, is challenging 

(Hu et al., 2023). 

The International Human Epigenome Consortium (IHEC) (Stunnenberg et al., 2016a) describes 

the epigenome of a sample in practical and experimentally feasible terms as the collection of 

its methylome obtained by Whole Genome Bisulfite Sequencing (WGBS), transcriptome by 

RNA sequencing (RNA-Seq) or messenger RNA sequencing (mRNA-Seq), and the ChIP-Seq 

profiling of 6 histone marks  (Fig. 1.3.C), whose associations with different functional elements 

of the genome was defined previously by the Roadmap Epigenomics Consortium (2015) as:  

- H3K4me3: trimethylation of lysine 4 on histone H3, associated with promoter regions.  

- H3K4me1: H3 lysine 4 monomethylation, associated with enhancer regions.  

- H3K36me3: H3 lysine 36 trimethylation, associated with transcribed regions.  

- H3K27ac:  H3 lysine 27 acetylation, associated with active enhancer and promoter 

regions.  

- H3K9me3: H3 lysine 9 trimethylation, a mark of constitutive heterochromatin, 

associated with compact and transcriptionally silent regions. This mark guides the 

anchorage of HP1 proteins, which are responsible for the packaging of the chromatin in 

this condensed state. 

- H3K27me3: H3 lysine 27 trimethylation, associated with repression of genes associated 

with alternative cell lineages by Polycomb repressor complex (facultative 

heterochromatin), can also be associated with constitutive heterochromatin since it 

contributes to HP1α stability through PRC2-mediated regulation (Boros et al., 2014b). 

ChIP-Seq information can be summarised by building chromatin state models, which are 

statistical models that help us classify regions as functional elements of the genome based on 

the probability of the combinatorial patterns of histone modifications at each fixed window size 

across the genome (Ernst & Kellis, 2015). Using the combinatorial presence of these six 

reference histone marks, it is possible to infer the chromatin states describing the main 

functional elements of the genome, such as promoters, enhancers, transcribed regions, 

polycomb repressed regions, and heterochromatin (Fig. 1.3.D). 
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1.3. The enhancers  

The level and timing of expression of a gene in a cell depends on its function. Housekeeping 

genes that are essential for metabolism and maintenance of other fundamental processes in all 

cells are ubiquitously expressed in all cells and conditions (Eisenberg & Levanon, 2013; Zhu 

et al., 2008). The expression of these genes is regulated by interactions between the promoters 

of gene sets involved in the same biological processes. These genes often cluster in proximal 

regions of the genome, and this spatial proximity promotes a 3D spatial conformation that 

facilitates interactions between promoters (Dejosez et al., 2023). Genes that define cell type 

identity or that are important for an adequate response to environmental cues (external stimuli) 

are regulated by several epigenetic mechanisms (Jaenisch & Bird, 2003), and there are several 

actors involved in this regulation (Spitz & Furlong, 2012), but here I will be focusing on the 

enhancers. 

Transcriptional enhancers are non-coding sequences of DNA which regulate which genes are 

expressed in a cell, the timing of their expression, and their expression levels in response to a 

variety of intrinsic and external signals (Karnuta & Scacheri, 2018). Approximately 1 million 

enhancer elements with gene regulatory potential have been identified in mammalian genomes 

(The ENCODE Project Consortium et al., 2012). They can overlap with gene open reading 

frames but are typically located in non-coding regions, particularly enriched in intronic areas 

(Rigau et al., 2019).  

Enhancers may or may not be regulating their nearest genes; they can even be situated 

thousands to hundreds of thousands of bases away from their gene targets (Medina-Rivera et 

al., 2018; Benabdallah et al., 2019; Friman et al., 2023). Chromatin folding and genome 

accessibility allow the interaction among distal enhancers and promoters of potentially 

transcribed genes in decondensed areas of the genome (Popay & Dixon, 2022) (Fig. 1.4.). This 

spatial arrangement can either enhance or repress gene expression, providing precision to 

cellular context-dependent responses (Feuerborn & Cook, 2015; Kolovos et al., 2012).  

TFs mediate the interaction between enhancers and promoters through a process involving 

chromatin-remodelling complexes, coactivators, and RNA Polymerase II (Pol II) (Tafessu & 

Banaszynski, 2020; Karnuta & Scacheri, 2018). Enhancers contain a cluster of binding sites for 

sequence-specific transcription factors, thereby acting as a scaffold to recruit the elements 

necessary for the assembly of active transcriptional machinery at target core promoters (Fig. 

1.4.) (Karnuta & Scacheri, 2018; Spitz & Furlong, 2012). 



 

 

Figure 1. 4. Enhancer function and location in the chromatin context. The figure illustrates 

an example of a non-coding enhancer modulating the expression of a distal gene. (A) Enhancers 

and genes may be far apart in linear chromatin. (B) An enhancer located in a non-coding region 

serves as a recruiter of TFs with high affinity for its specific DNA sequence. These TFs recruit 

co-activators, creating a concentrated environment of transcription facilitators around the 

enhancer. (C) A 3D interaction between the enhancer and a distal promoter is mediated by 

chromatin looping and TFs. This interaction brings the cloud of co-activators and TFs recruited 

by the enhancer into proximity with the gene, increasing its transcription levels. 

 

Chromatin structure determines whether enhancers and gene promoters are active in specific 

cell types (Lanctôt et al., 2007).  Active enhancers are found in open chromatin regions and 

generally show bidirectional transcription, producing short-lived enhancer RNAs (eRNAs) (de 

Santa et al., 2010). Active enhancers are typically found surrounded by histone H3, which is 

covalently modified with monomethylation of lysine 4 (H3K4me1). Another important histone 

mark to identify enhancers is H3K4me3, which is generally used to detect active promoters (F. 

Cao et al., 2017; Thibodeau et al., 2017; Sharifi-Zarchi et al., 2017) but can also be found in 

hyperactive enhancers (Q. L. Li et al., 2019). H3K27ac histone mark is also present at active 

promoters (Tafessu & Banaszynski, 2020b). 

Enhancers can exist in various states, including decommissioned (no histone 

modifications/inactive), poised (H3K4me1 and H3K27me3) (inactive, suppressed by the 

polycomb complex), primed (H3K4me1) (inactive, lacks H3K27ac), or active (H3K4me1 and 

H3K27ac) (Maurya, 2021). During development and cell differentiation, enhancers can switch 

between these states, correlating with changes in target gene expression and cell identity (Choi 

et al., 2021). Another type of enhancers, referred to in this dissertation as 'elongating enhancers,' 
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in addition to the typical enhancer mark (H3K4me1), possess the H3K36me3 mark associated 

with transcriptional elongation (Soldi et al., 2017). Some studies suggest that H3K36me3 is 

added to decommissioned enhancers that need to become active in response to environmental 

stimuli, and their transcription works as a priming signal that guides H3K4me1 deposition 

(Zentner et al., 2011; de Santa et al., 2010). 

Enhancers play a crucial role in fine-tuning cell type-specific cellular phenotypes, and one gene 

can be regulated by multiple enhancers whose usage is differential in space and time throughout 

development (Kvon et al., 2021; Maurya, 2021; Osterwalder et al., 2018).  Choi et al. (2021) 

found that most redundant enhancers cooperate in an additive way to regulate the transcription 

of assigned target genes. However, transcription of cell type-specific genes depends 

exponentially on the activity of its enhancers, indicating that these enhancers cooperate 

synergistically.  Enhancer synergy appears to depend on cell type-specific transcription factors, 

suggesting that enhancer synergy contributes to cell fate determination (Choi et al., 2021). 

 

1.4. Enhancers and disease.  

1.4.1. Genetic factors underlying disease expression.  
 

Some genetic differences among individuals (variants in their DNA) increase their likelihood 

of developing different diseases. For these diseases, we say there is genetic susceptibility. 

Genetic variants conferring susceptibility to complex diseases, whether inherited from parents 

or occurring spontaneously during gametogenesis, are typically found in the germinal DNA. 

However, susceptibility variants can also arise during early embryonic development or 

somatically throughout an individual's lifetime. These variants may not be found in the germinal 

DNA but in the DNA of specific affected tissues. 

When the likelihood of developing the disease given that the individual possesses a specific 

genetic variant is very high, we say that the effect of the variant on the phenotype is 

deterministic (Strohman, 2002) (e.g.,  a recent study of Familial Aortic Disease showed that 

100% of carriers of ACTA2 missense mutation R118Q developed aortic disease above age 50 

(Bobba et al., 2023), we call these variants penetrant mutations where penetrance refers to the 

percentage of carriers of the causative allele that develop the disease (Riordan & Nadeau, 2017; 

Cooper et al., 2013).  



In some instances, a specific variant may confer susceptibility to the disease, but the likelihood 

of developing the disease will depend on the genetic background and other factors such as 

lifestyle and environmental exposures (Dipple & McCabe, 2000a). In those cases, we say the 

effect of the variant on phenotype is probabilistic (Strohman, 2002) and that its penetrance is 

reduced or incomplete (Cooper et al., 2013). For example, a study performed on family 

members carrying the p.V654L mutation in exon 19 of the RB1 gene showed that the penetrance 

of this mutation was incomplete, with only 36% of the individuals developing unilateral 

retinoblastoma (Hung et al., 2011). 

Genetic variants or environmental variables that affect the expression of the phenotype are 

called modifiers (Dipple & McCabe, 2000a; Riordan & Nadeau, 2017). Specifically, a genetic 

modifier is a locus where DNA variation can influence the expression of a phenotype primarily 

affected by variation at an independent locus. They can act non-additively and often do not 

affect the phenotype in absence of the primary genetic variant (Riordan & Nadeau, 2017; 

Cooper et al., 2013).  

For instance, by studying multiple families with Hirschsprung disease, researchers 

demonstrated that although the presence of RET mutations is sufficient to explain susceptibility 

inheritance, specific alleles at a locus on 9q-31 are also required to cause the disease. This locus 

is a modifier of Hirschsprung disease penetrance (Bolk et al., 2000)) 

Besides assessing the penetrance of a given susceptibility allele, it is also important to study the 

effects of this allele on the severity of the symptoms once disease is manifested, as this directly 

affects the individual's quality of life. When a phenotype caused by an underlying genetic 

variant displays interindividual differences in severity (Dipple & McCabe, 2000a), we say it 

has different expressivity (Dipple & McCabe, 2000; Riordan & Nadeau, 2017; Cooper et al., 

2013). The term variable penetrance can be used as a joint description of both variable 

expressivity (severity of phenotype) and penetrance (proportion of carriers with phenotype), 

and some factors underlying variable penetrance may be, for instance, environmental or genetic 

modifiers (Castel et al., 2018). For example, mutations in CFTR predispose to cystic fibrosis. 

However, a high degree of variability in the pulmonary phenotype has been observed between 

individuals with identical CFTR mutations, even within the same family. At least 11 different 

modifier loci have been described that alter the clinical phenotype (Paranjapye et al., 2020). 

 

1.4.2. Disease risk and genetic variants at enhancers.   
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In some cases, germinal DNA mutations within enhancers can lead to significantly altered 

phenotypes and cause diseases. For example, certain congenital defects in humans can be 

attributed to mutations in enhancers associated with developmental genes, leading to conditions 

such as organ malformations or intellectual disabilities (Benko et al., 2009; De Vas et al., 2019; 

Smemo et al., 2012; Weedon et al., 2013). In some types of cancer, enhancers play a role in the 

overexpression of proto-oncogenes due to focal amplification or chromosomal translocations 

that result in the juxtaposition of proto-oncogenes and super-enhancers, a situation that is 

referred to as enhancer hijacking or due (Mikulasova et al., 2020; Kent et al., 2023). It's worth 

noting, however, that loss of function mutations in enhancers typically exhibit reduced 

penetrance, i.e., the probability of these mutations resulting in pronounced phenotypic effects 

is low (Osterwalder et al., 2018).  

Variable penetrance of enhancer mutations could be partially explained by the fact that a single 

gene can be regulated by anywhere from zero to over a hundred enhancers (Schmidt et al., 

2021). Hence, if the only enhancer of a non-functionally redundant gene has a loss-of-function 

mutation, there is a high probability that the phenotype associated with the gene function is 

altered (highly penetrant mutation). Conversely, if several enhancers regulate the expression of 

a gene, and one of them is affected, other redundant enhancers can still regulate the expression 

of the gene. (Kvon et al., 2021; X. Wang & Goldstein, 2020) (Fig. 1.5.).  

 

  

Figure 1. 5. Enhancer redundancy. The reason why mutations in coding regions are more 

likely to lead to disease than those in the non-coding areas is that the former can result in 

defective proteins, posing a greater chance of disrupting biological processes (high penetrance). 

This scenario also applies to mutations that affect TF binding sites in enhancers of genes 



regulated by only one enhancer (panel A). However, most of the human genes are regulated by 

multiple enhancers (panel B). In these cases, if the connection between only one of the 

enhancers and the gene promoter is disrupted, the regulatory control can still be maintained by 

other redundant enhancers, and therefore, the phenotype will remain unaltered (low 

penetrance). 

 

The prevailing model explaining the mechanism by which point mutations in enhancer 

sequences result in altered gene expression suggests that the mutations can modulate TF 

affinity, interfering with the normal formation of 3D loops that connect enhancers to their target 

genes/promoters (Karnuta & Scacheri, 2018). Various examples support this model; for 

instance, a specific enhancer indel can increase the affinity of RECQL, leading to increased 

PARP1 expression, which in turn raises the risk for melanoma (Choi et al., 2017). Similarly, an 

SNP associated with prostate cancer risk can increase RFX6 expression by enhancing HOXB13 

binding at the RFX6 enhancer (Huang et al., 2014). Additionally, SNPs in the BLC11A enhancer 

can affect foetal haemoglobin levels in human erythroblasts by modulating GATA1 and TAL1 

binding(Bauer et al., 2013) (Fig. 1.6). 

 

 

 



15 

 

Figure 1. 6. Enhancers' role in disease. One prevalent hypothesis regarding the involvement 

of enhancers in disease development suggests that different alleles in TF binding sites may 

exhibit varying TF affinity. This variation can impact communication between enhancers and 

genes, resulting in altered gene expression, phenotype, and, in some instances, disease. The 

figure illustrates an example wherein the presence of the 'C' genotype at an SNP within an 

enhancer leads to the inability to recruit TFs, disrupting the enhancer's communication with its 

target gene. 

 

1.4.3. Complex disease risk: SNPs in enhancers and other genetic 

contributors. 

Common complex diseases are those that develop as a consequence of the interplay between an 

inherited genetic liability and exposure to certain environmental factors (Mitchell, 2012). Some 

examples of common complex diseases are bipolar disorder, coronary artery disease, Crohn’s 

disease, hypertension, rheumatoid arthritis, and diabetes (Burton et al., 2007). 

Genetic variants conferring susceptibility to complex diseases, whether inherited from parents 

or occurring spontaneously during gametogenesis, are typically found in the germinal DNA. 

However, susceptibility variants can also arise during early embryonic development or 

somatically throughout an individual's lifetime. These variants may not be found in the germinal 

DNA but in the DNA of specific affected tissues. 

Aiming to uncover the genetic susceptibility to these diseases, researchers employed Genome-

Wide Association Studies (GWAS) (Buniello et al., 2019; Visscher et al., 2017). GWAS follow 

a simple design: compare allele frequencies for hundreds of thousands of common SNP variants 

spread across the germline genome between large samples of disease cases and controls 

(Hirschhorn & Daly, 2005). Peripheral blood samples are commonly used for genotyping in 

GWAS due to their easy accessibility and high DNA yield after extraction (Abraham et al., 

2012; Corvin et al., 2010) (Fig. 1.7.) 

 



 

Figure 1. 7. Overview of Genome-Wide Association Studies (GWAS). The figure illustrates 

the general principles of GWAS analyses, where a control group is contrasted with a group of 

individuals with a given medical condition. At the top, two DNA sequences represent a genomic 

region with a single SNP highlighted in red. In this hypothetical example, all genomes of two 

distinct groups, each comprising 1000 unrelated individuals, are genotyped. One group 

comprises cases with a particular trait of interest, while the other serves as the control. For 

individuals in both case and control groups, the frequency of the genotype at each SNP is 

assessed within specific genomic regions. Statistical analysis determines whether specific 

genotypes are significantly overrepresented in the case group. The bottom of the figure 

illustrates the outcomes of the GWAS represented in a Manhattan plot; the x-axis shows the 

location of SNPs across the entire genome, while the significance of associations is represented 

on the y-axis. A green line represents the significance threshold. Notably, in the context of 

complex traits, numerous variants achieve significance. Once significant SNPs are identified, 

the next step is to examine their location in either coding or non-coding regions to gain insights. 
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GWAS assume that the genetic risk for common diseases will often be more prevalent in 

affected rather than in healthy individuals of the general population. The justification for using 

this study design has been founded on two observations: the non-mendelian segregation of the 

traits and their high prevalence (Becker, 2004; Mitchell, 2012). Since the inheritance of 

common complex traits aggregates in families but does not segregate in ways consistent with 

Mendelian inheritance, researchers assumed that these complex traits were polygenic in nature; 

that is, they arise due to the combined effects of the large number of genetic variants associated 

with the disease (Mitchell, 2012). As these diseases are common, researchers proposed the 

common disease/common variant (CD/CV) hypothesis, which states that susceptibility alleles, 

which are necessary but not sufficient to cause disease, should be found in the population at 

relatively high frequencies (>1%) (Becker, 2004). 

Results of GWAS studies show that complex traits are associated with multiple variants with 

small effect sizes (Buniello et al., 2019) and that most of the variants associated with common 

complex diseases are not within genes but located in non-coding regions of the genome (X. 

Wang & Goldstein, 2020). From these observations, two concerns were raised: first, how can 

the functional impact of the non-coding variants be interpreted? and second, do GWAS results 

recover all genetic factors accounting for genetic susceptibility? 

 

Regarding the first concern, researchers have shifted their focus to enhancers (Karnuta & 

Scacheri, 2018; Maurya, 2021; Claringbould & Zaugg, 2021).  This interest is rooted in the fact 

that non-coding disease-associated variants exhibit a significant co-localization with enhancer 

features in epigenomic annotations (Javierre et al., 2016; Mumbach et al., 2017; J. Nasser et al., 

2020, 2021). However, connecting enhancers to disease mechanisms is a complex task. This is 

because enhancers play a role in cell-type-specific and sometimes even condition-specific 

regulatory circuits. Therefore, it is essential to have enhancer maps for as many cell types and 

conditions as possible to interpret the effects of non-coding variants in disease. 

 

The second concern was whether GWAS results recovered all genetic factors accounting for 

disease susceptibility. In this regard, it seems that, although GWAS results offered many robust 

and interesting associations, several other genetic sources of disease susceptibility are likely 

missed from this analysis. There are many possibilities about where to find the missed genetic 

factors behind disease predisposition (Trerotola et al., 2015; Eichler et al., 2010; López-

Cortegano & Caballero, 2019),  but here I would like to highlight three of them:   

 



1. Due to the GWAS study's design, which focuses on common SNPs, rare single 

nucleotide variants (SNVs) and other genetic variants different from SNPs would be 

missed. For instance, structural variants (SVs), including deletions, mobile-element 

insertions, inversions, and copy-number variants, have been identified as contributors 

to a number of common diseases (Porubsky et al., 2022; Gonzalez et al., 2005; 

McCarroll & Altshuler, 2007; Yang et al., 2007; Antonacci et al., 2014; Mefford & 

Eichler, 2009; Büki et al., 2023; Girirajan et al., 2011; Billingsley et al., 2023) and are 

generally presumed to act through their effects on gene expression (Weischenfeldt et al., 

2013).  Since SVs are inherently more prone to mutations and rearrangements, the 

genotyping of these regions has been a challenge during the generation of reference 

genome assemblies. Additionally, the proportion of SNPs in linkage disequilibrium 

(LD) with SVs highly depends on the SV class, with duplications being currently under-

ascertained for disease associations using tag-SNP-based approaches (Sudmant et al., 

2015). Recent studies have shown that SVs are a major source of gene expression 

variation among humans and that their impact on gene expression may be larger than 

that of SNVs and indels (Chiang et al., 2017; Scott et al., 2021). Additionally, these 

studies suggest that most expression-altering SVs are noncoding and enriched at 

enhancers and other regulatory elements. 

 

2. GWAS typically treat alleles inherited from the mother and the father as equivalent. 

However, identical inherited DNA sequences can have different effects based on the 

parental origin. Parent-of-origin effects (POEs) occur when the phenotypic effect of an 

allele depends on whether it is inherited from the mother or the father (Skaar et al., 

2012). Recent evidence suggests that POEs can be important contributors to complex 

trait variation (Beaumont et al., 2023; Granot-Hershkovitz et al., 2020; Hofmeister et 

al., 2022; Hochner et al., 2015).  A recent study performing a parent-of-origin GWAS 

for 21 quantitative phenotypes in a large Hutterite pedigree identified POEs with 11 

phenotypes, including risk factors for cardiovascular disease (Mozaffari et al., 2019). 

Taking into account POE, they found twice as many genome-wide significant loci 

overall compared to standard GWAS of the same phenotypes in the same individuals 

(Mozaffari et al., 2019)  

 

Several phenomena can cause POEs, but the best characterised is genomic imprinting. 

Imprinted genes are a subset of genes that exhibit monoallelic expression controlled by 

parental-specific epigenetic marks established in gametogenesis and early embryonic 
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development and persisting in all somatic cells throughout life. These epigenetic marks 

include DNA methylation and histone modifications that regulate monoallelic 

expression by affecting promoter accessibility, chromatin structure, and chromatin 

configuration (Skaar et al., 2012).  

 

Genetic defects that affect the monoallelic and parent-of-origin-specific expression of 

imprinted genes are the cause of several rare disorders (Eggermann et al., 2023). More 

recently, it has been suggested that some POEs associated with complex traits may be 

due to imprinting (Y. Zeng et al., 2019). Although previous studies estimated the number 

of imprinted expressed genes in the human genome at around 100 (Bartolomei & 

Ferguson-Smith, 2011), these imprinted regions also contain regulatory variants, and 

POEs can be spread to their genomic targets (Partida et al., 2018; Wolf et al., 2008). As 

such, imprinting-caused POEs on DNA methylation may have downstream effects on 

complex traits.  

 

A recent study examined the entire genome of 5,101 individuals, focusing on CpG sites 

where methylation could be affected by POEs. They identified specific SNPs that act as 

modifiers of DNA methylation at these POE-influenced CpG sites, termed POE-mQTL 

SNPs. The study found that for 586 CpG sites, these POE-mQTL SNPs were located in 

regions of the genome known to be imprinted, providing strong evidence for the 

influence of imprinting on these CpG sites. Additionally, they discovered associations 

between some of these POE-influenced CpG sites and various traits, such as 

cardiovascular disease risk factors (Y. Zeng et al., 2019). 

 

3. Linear models are commonly employed in GWAS, which assume an additive genetic 

architecture. In these models, the effects of individual genetic variants are assumed to 

act independently and additively (Hivert et al., 2021; Hill et al., 2008), overlooking the 

potential of these variants interacting synergistically due to epistatic effects. Although 

epistasis is difficult to identify in population studies (Wei et al., 2014), it is likely to be 

part of the genetic architecture of many traits, including complex diseases. Research 

using chromosome substitution strains in mice and rats to study the genetic architecture 

of blood, bone, and metabolic traits found that these complex traits tend to be highly 

polygenic and strong epistasis was found among the individual chromosomes (Shao et 

al., 2008). Additionally, “simple traits”, traditionally thought to be mendelian and 

monogenic, can transform into complex traits with variable penetrance due to the action 



of modifiers (Dipple & McCabe, 2000a, 2000b). In traditional GWAS, the effect size of 

some variants with epistatic effects in an individual would be underestimated or missed 

if, individually, the effect size of each variant is not high enough to achieve significance. 

Even in models accounting for epistasis, although the individual variants interacting 

could be common, the combination of them may be rare in the population (Eichler et 

al., 2010; Wei et al., 2014). More recently, new statistical models have been developed, 

and upon their application, they have found that epistasis is present in several common 

traits (Sheppard et al., 2021). Also, research has shown that enhancers regulating 

disease-associated genes may act on their targets in synergistic ways (Lin et al., 2022). 

 

1.5. Enhancer maps and enhancer-target gene links 

Identifying enhancers, determining their activity in different cell types, and pinpointing their 

target genes are critical steps in unravelling the genetic basis of complex diseases and 

phenotypic variation, as well as understanding how enhancer function can be disrupted by 

genetic variants. Therefore, to study the dynamics of enhancer gene expression regulation, we 

must overcome three challenges: first, we need to identify the localisation of enhancers across 

the linear genome; second, we need to know in which cell types these enhancers are active; and 

third, we need to determine which genes they are regulating. 

To address the first and second challenges, epigenomic data from several cell types obtained 

from ChIP-Seq experiments (Roadmap Epigenomics Consortium et al., 2015; Nakato & Sakata, 

2021), cap analysis of gene expression (CAGE) (Andersson et al., 2014; Melgar et al., 2011), 

or accessibility assays of chromatin - like DNase I hypersensitive site (DHSs) sequencing 

(DNase-seq) and Assay for transposase-accessible chromatin using sequencing (ATAC-seq) 

(Grandi et al., 2022; Klemm et al., 2019a; Thurman et al., 2012) - can be employed (Fig.1.8.A).  

Various methodologies can be employed for inferring enhancer-gene regulatory interactions, 

including the utilisation of data on chromatin 3D contacts (Karbalayghareh et al., 2022; Avsec 

et al., 2021; Whalen et al., 2016), correlations between DNA accessibility and gene expression 

(Boix et al., 2021; Thurman et al., 2012; Sheffield et al., 2013), and the use of eQTL data (Y. 

Liu et al., 2017). Predictive models that combine multiple types of information and CRISPRi-

based enhancer experimental data result in higher precision predictions than strategies relying 

solely on one type of information (Fulco et al., 2019; Luo et al., 2023). 
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For the third challenge, high-throughput chromosome conformation capture (Hi-C) from 

(Lieberman-Aiden et al., 2009) data (Fig. 1.8.B) and Expression Quantitative Trait Loci 

(eQTLs) data (Cano-Gamez & Trynka, 2020) (Fig. 1.8.C) can be utilised. Hi-C enables 

mapping of physical interactions between distant genome regions within the cell nucleus, 

providing insights into spatial proximity (Lieberman-Aiden et al., 2009), which is a key aspect 

of enhancer-gene communication (see section 1.1.). eQTL analyses associate genomic variants 

with variations in gene expression levels across a population of individuals from the same 

species, revealing genetic determinants of gene expression variation (Cano-Gamez & Trynka, 

2020). 

Javierre et al. (2016) used promoter capture Hi-C to pinpoint genomic regions interacting with 

31,253 gene promoters across 17 different human primary haematopoietic cell types, revealing 

the specificity of the interactions to the respective cell types and enrichment in connections 

between active promoters and enhancers (Javierre et al., 2016). Ongen et al. (2017) established 

the connection between noncoding genome regions to genes across multiple tissues from the 

GTEx project, enriching the interpretation of GWAS results by revealing specific tissues 

causally linked to given genetic associations (Ongen et al., 2017).  

Other studies have provided landscapes of enhancer-promoter interactions in different cell 

contexts using the above-mentioned data types. For example, Mumbach et al. (2017) studied 

chromatin interactions centred on enhancers of primary human T cells using ATAC-seq and 

HiChip data for the H3K27ac histone mark, producing enhancer-promoter connectivity maps 

and chromatin accessibility maps across the genome of naïve T cells, regulatory T cells, and T 

helper cells at different differentiation steps (Mumbach et al., 2017). 



 

Figure 1. 8.  verview of enhancer target gene identification techniques. This figure outlines 

three standard experimental methods for elucidating enhancer target genes. (A) Outline of 

Chromatin accessibility profiling employing DNase-seq and ATAC-seq. These techniques 

identify open chromatin regions associated with regulatory elements like enhancers – reprinted 

from (Klemm et al., 2019) (B) The three-dimensional structure of the human genome using the 

Hi-C technique, revealing spatial interactions between genomic regions - reprinted from 

(Lieberman-Aiden et al., 2009) (C) Outline of the Analysis of eQTLs to identify genetic variants 

linked to changes in gene expression, providing insights into enhancer-target gene associations 

– reprinted from (Cano-Gamez & Trynka, 2020) 

 

In another study, Engreitz et al. (2019) introduced the "Activity-by-Contact (ABC) model," a 

computational approach designed to predict gene targets of enhancers within human immune 



23 

 

cells. This innovative model identifies cell type-specific enhancers using data from chromatin 

accessibility measurements and histone modifications. It associates enhancer-gene pairs based 

on the proximity of enhancers to the transcription start site (TSS) of genes and the contact 

frequency derived from Hi-C matrices specific to each cell type (Fulco et al., 2019). 

The ENCODE project Consortium  (Abascal et al., 2020; The ENCODE Project Consortium 

2012), The Roadmap Epigenomics Consortium (Roadmap Epigenomics Consortium et al., 

2015; Bernstein et al., 2010), and The EPIMAP (Boix et al., 2021), FANTOM (Andersson et 

al., 2014) and BLUEPRINT (Adams et al., 2012) projects, have collectively contributed 

extensive data of the above-mentioned types for various cell types and tissues, significantly 

advancing our understanding of gene regulation and epigenetic mechanisms in human biology. 

However, considering the numerous cell types in humans (Regev et al., 2017), and given the 

cell-type and context-specific nature of epigenomic elements, the generation of data for a 

diverse range of cell types remains crucial, as current epigenomic landscapes are far from 

complete. 

Moreover, considering the impact that genetic variation among individuals may have on the 

epigenome is also crucial. Some studies have found that the epigenomic changes are strongly 

influenced by genetic variability among European individuals (Hou et al., 2023; Chen et al., 

2016; Bell et al., 2018). For instance, a study analysing regulatory elements with H3K27ac 

peaks that overlap with promoter or enhancer annotations in samples from brain, heart, muscle, 

and lung tissues found that a subset of them were genetically influenced by alleles at hundreds 

of genetic variants across tissues; these are termed “histone acetylation quantitative trait loci” 

(haQTLs). This result shows that SNVs can influence the activity of enhancers and promoters 

and, therefore, contribute to differential regulation of gene expression in various tissues across 

different genotypes (Hou et al., 2023). 

Furthermore, another study analysing DNA methylation levels in regions in strong LD with 

GWAS SNPs, identified risk haplotype-specific DNA methylation (HSM) peaks, where 

methylation levels were influenced by the allelic count of the SNPs within haplotype blocks 

(Bell et al., 2018). These HSM peaks overlap with common non-coding SNPs in CpGs with the 

potential to affect CpG density and transcription factor binding sites. These HSM peaks also 

overlap with other common genetic variants such as CNVs, indels, short tandem repeats (STRs), 

Long Terminal Repeats (LTRs), and Alu repeats, of which a large proportion were functionally 

annotated as enhancers, open chromatin regions, or CTCF DNA motifs, suggesting their 

potential roles in gene expression regulation (Bell et al., 2018).  



These studies serve as evidence that the epigenomic landscape can vary in the European 

population as a result of interindividual genetic variability. This suggests that genetic-driven 

epigenomic variability may be even more drastic among individuals with different ancestry. For 

that reason, acknowledging ancestry information when annotating and interpreting GWAS loci 

across diverse population backgrounds would also be crucial, as it has the potential to expedite 

research into disease risk factors and health disparities across populations with distinct genetic 

backgrounds.  

As suggested by the analysis of Breeze et al. (2022) on the publicly available data from the 

International Human Epigenome Consortium (IHEC), current reference epigenome maps lack 

population diversity with significant discrepancies in the representation of various populations. 

Data from European populations is predominant, followed by a big disparity by that of African 

American populations, while the rest of the ancestries are notably underrepresented. This result 

emphasises the imperative need for further exploration to assess the diversity of epigenomic 

profiles within and between populations from different ancestry (Breeze, Beck, et al., 2022).  

Recent studies suggested that the activity of enhancers varies across ancestries. Pettie et al. 

(2024) analysed the activity of regulatory regions, including enhancers and promoters 

(identified by ATAC-Seq and H3K27ac peaks) and the effect on gene expression of their target 

genes (identified by integrating HiC data in the ABC model) in lymphoblastoid cell lines from 

individuals across populations of African and European ancestries. They found that 

differentially expressed genes between ancestries were predicted by differential activity of 

enhancers rather than promoters and that the differential affinity of TF binding to these 

enhancers, given the allelic variability among the ancestries, was a contributor to these results 

(Pettie et al., 2024).   

Another research study explored the relationship between genetic variation, DNA methylation, 

and gene expression from lymphoblastoid cell lines across individuals from five diverse human 

populations, including Yakut, Cambodian, Pathan, Mozabite and Mayan (Carja et al., 2017). 

They found a strong correlation between population-specific patterns of DNA methylation, 

gene expression, and genetic variation. Specifically, their results indicate a stronger genetic 

influence on DNA methylation than in gene expression patterns (Carja et al., 2017). 

Similarly, a study that investigated the role of genetic variants in modulating genome-wide 

DNA methylation levels across the genome of individuals from various ancestries, including 

European, American, African, East Asian, and South Asian, identified polymorphic STRs 

associated with DNA methylation levels in several CpGs, termed “mSTRs” (Martin-Trujillo et 
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al., 2023). These mSTRs were enriched within introns, coding regions, enhancers and 

promoters compared with all STRs. To determine whether these STRs independently regulate 

DNA methylation or if they were in LD with other causal variants, they performed fine mapping 

analysis. Further analysis revealed that a subset of the fine-mapped mSTRs was well-tagged by 

nearby SNVs and showed potential associations with various health-related traits and diseases. 

Integration of gene expression data also indicated that some of these mSTRs modulate 

expression levels of nearby genes, highlighting their regulatory potential (Martin-Trujillo et al., 

2023). 

Therefore, considering how population genetic variability and ancestry influence the causal 

effect sizes (that is, the magnitude of change in phenotype per allele substitution) of disease 

risk variants, as well as the generating epigenome reference maps from diverse genetic 

backgrounds, would be of foremost importance when interpreting genetic variants associated 

with disease and is critical for the transferability of genetic risk knowledge across populations. 

 

1.6. Haematopoietic cells 

 

One of the best-studied collections of cell types in terms of their epigenome are those from the 

haematopoietic lineage (Adams et al., 2012; Astle et al., 2016a; Clien et al., 2014; Lara-Astiaso 

et al., 2014), comprising the lymphoid (e.g. T-cell and B-cells) and myeloid (e.g. neutrophils 

and macrophages) lineages. This is due to their ease of accessibility by blood sampling and ease 

of separation into different pure cell types (Vasquez et al., 2016). Besides, haematopoiesis is 

one of the best-characterised paradigms of cellular differentiation (Orkin & Zon, 2008).  In 

addition to being relatively easier to study, haematopoietic lineage cell types are also associated 

with numerous complex diseases (Bao et al., 2019). 

Haematopoietic cells, originating from the bone marrow's haematopoietic stem cells, play 

crucial roles in numerous essential bodily functions such as oxygen transport, immune 

surveillance, and haemostasis (Orkin & Zon, 2008). These cells can be categorised into two 

main groups: lymphoid and myeloid cells, each with distinct functions in both innate and 

adaptive immunity, as well as some  non-immune roles (A. G. Fisher, 2002; Orkin & Zon, 

2008).  

Myeloid cells are primarily involved in innate immunity, offering rapid, non-specific defence 

against infections (Q. Zhang & Cao, 2019). Among them: 



- Neutrophils respond quickly to bacterial and fungal threats. In addition to recruiting and 

activating other cells of the immune system (Vignali et al., 2008), neutrophils directly 

attack pathogens by ingestion (phagocytosis),  release of soluble anti-microbials 

(degranulation), and generation and release of neutrophil extracellular traps (NETs) 

(Mayadas et al., 2014). NETs are web-like structures composed of chromatin and serine 

proteases, with a high local concentration of antimicrobial components that trap and kill 

extracellular microbes independent of phagocytic uptake (Papayannopoulos, 2018).  

 

- Monocytes, with the ability to differentiate into tissue-resident macrophages, bridge the 

gap between innate and adaptive immunity by engaging in processes like phagocytosis 

and antigen presentation (Coillard & Segura, 2019; Patel et al., 2017; Zhao et al., 2018). 

 

- Macrophages play critical roles in both the induction and resolution of sterile (damage-

induced) and infection-induced inflammation. They exhibit considerable plasticity, 

showcasing a pro-inflammatory phenotype for immune activation and an anti-

inflammatory reparative phenotype for tissue resolution (G. Y. Chen & Nuñez, 2010; E. 

A. Ross et al., 2021). 

 

- Dendritic cells play a vital role in adaptive immunity by capturing, processing, and 

presenting antigens to T cells (Cabeza-Cabrerizo et al., 2021; Macri et al., 2018). 

 

- Eosinophils and basophils participate in allergic responses and immune responses 

against parasitic infections (Iype & Fux, 2021; Obata-Ninomiya et al., 2020). Basophils 

also release histamine, which enhances blood flow, promotes healing, and facilitates the 

migration of other immune cells to infection sites. Basophils also release heparin which 

prevents blood clotting (Stone et al., 2010). 

 

Additionally, some non-immune haematopoietic cells are also part of the myeloid lineage, such 

as:  

- Erythroblasts are precursors of erythrocytes (red blood cells), which are essential for 

oxygen transport throughout the body (Helms et al., 2018; Moras et al., 2017). 

 

- Megakaryocytes are responsible for giving rise to platelets (thrombocytes), which play 

a vital role in haemostasis, preventing excessive bleeding upon vascular injury (Jenne 

et al., 2013). 

 

https://en.wikipedia.org/wiki/Phagocytosis
https://en.wikipedia.org/wiki/Degranulation
https://en.wikipedia.org/wiki/Neutrophil_extracellular_traps
https://en.wikipedia.org/wiki/Chromatin
https://en.wikipedia.org/wiki/Serine_protease
https://en.wikipedia.org/wiki/Serine_protease
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- Osteoclasts, which adhere to the bone matrix, secreting acid and lytic enzymes that 

degrade old or damaged bone tissue. This process, in collaboration with the synthesis 

and deposition of new bone by osteoblasts, a non-haematopoietic cell type, ensures the 

continuous renewal and adaptation of the skeletal structure (Boyle et al., 2003) 

 

In adaptive immunity, lymphoid cells take central stage. Lymphocytes include, among others:  

- T cells, which recognise and eliminate infected or cancer cells after priming by antigen-

presenting cells.  

 

- B cells, which produce antibodies that target pathogens and foreign substances.  

 

Some lymphoid cells, such as natural killer cells and innate lymphoid cells, are also involved 

in innate immunity (Sonnenberg & Hepworth, 2019). Briefly:  

 

- Natural killer cells can swiftly identify and destroy virus-infected or cancer cells (Vivier 

et al., 2008).  

 

- Innate lymphoid cells, which include three types, ILC1, ILC2 and ILC3, are involved in 

elimination of intracellular pathogens,activation of macrophage (ILC1), elimination of 

parasites, recruitment of eosinophils and basophils (ILC2), elimination of extracellular 

bacteria and fungi, and recruitment of neutrophils (ILC3) (Eberl et al., 2015). 

 

In summary, these diverse haematopoietic cell types work collaboratively to maintain overall 

health, responding to various challenges through engagement in both innate and adaptive 

responses. Dysfunction in this interplay is implicated in multiple diseases. 

 

1.7. Monocyte lineage. 

Monocyte lineage are innate immune cells with immuno-modulatory, inflammatory, and tissue-

repairing capabilities. Monocytes originate from haematopoietic stem cells (HSCs) in the adult 

bone marrow and from bone marrow-derived progenitor cells in the spleen. From there they are 

released to circulate into the peripheral blood (Gordon & Taylor, 2005) (Fig. 1. 9.). 



 

Figure 1. 9. Monocytes’ role in inflammation and tissue homeostasis. Monocytes are derived 

from HSC in the bone marrow and progenitor cells in the spleen. They are then released to 

peripheral blood from where they can be recruited to inflamed tissues to differentiate into 

proinflammatory macrophages and DCs. Once inflammation is resolved, they differentiate into 

anti-inflammatory, pro-healing macrophages. Monocytes can also be recruited to peripheral 

tissues to replenish tissue-resident macrophages. 

 

Monocytes can differentiate into macrophages, dendritic cells and osteoclasts (Coillard & 

Segura, 2019) (Fig. 1. 10. A.). Although tissue-resident cell types may have a different 

developmental origin (Varol et al., 2015), during infection, monocytes rapidly migrate to 

inflamed tissues and differentiate into inflammatory DCs and inflammatory or anti-

inflammatory macrophages, serving as the source of alternatives to tissue-resident macrophages 

(Italiani & Boraschi, 2015) (Fig. 1.9.). 

Macrophages are highly plastic innate immune cells that rapidly respond to diverse tissue-

derived or environmental stimuli. They are involved in every stage of the acute immune 

response, as well as in the regulation of tissue homeostasis and in the orchestration of tissue 

repair processes. As phagocytes, they detect, engulf, and digest particles, microbes, and 

apoptotic cell debris. (Jain et al., 2019).  
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Figure 1. 10. In vitro models of monocyte differentiation. (A) Monocytes can undergo 

stepwise differentiation into osteoclasts, DCs, and macrophages. This process can be artificially 

induced in vitro by stimulating blood-derived monocytes with specific factors. (B) The figure 

depicts the stepwise differentiation process employed by the BLUEPRINT Consortium to 

generate in vitro models of macrophages, DCs, and osteoclasts (Adams et al., 2012).  

 

The broad spectrum of macrophage functions depends on both the heterogeneity and plasticity 

of these cells (Remmerie & Scott, 2018; Viola et al., 2019). Macrophages are found in almost 

every tissue of the body, and monocyte-derived macrophages are quickly recruited to tissues 

upon loss of homeostasis (Gordon & Taylor, 2005) (Fig. 1.9.). Macrophage phenotype and 

function are inherently tied to metabolic signals derived from their tissue environment (Buck et 

al., 2017; Van den Bossche et al., 2017). As a result, there are many different types of tissue-

resident macrophages, such as osteoclasts (bone), alveolar macrophages (lung), microglial cells 

(brain), histiocytes (connective tissue), Kupffer cells (liver), Langerhans cells (LC) (skin), 

which are highly specialised  in relevant functions to their particular tissue microenvironments 

(Italiani & Boraschi, 2015) (Fig. 1.9.). 

 

1.7.1. Classical M1/M2 macrophage in vitro model. 

Although it is clear that macrophage phenotypes are difficult to categorise and should be seen 

as plastic and adaptable, the study of in vivo-generated macrophages is often difficult with 

laborious and cell-changing isolation procedures. (Luque-Martin et al., 2021). 

The in vitro models using extreme macrophage phenotypes simplify their complexity and offer 

reproducible and robust platforms for studying human macrophages in health and 



disease  (Luque-Martin et al., 2021). The most extensively employed in vitro model of 

macrophage biology is based on the differentiation of primary blood monocytes into resting 

macrophages (M0) using colony-stimulating factor (M-CSF). This is followed by the 

subsequent stimuli-specific differentiation of M0 macrophages into two extreme phenotypes: 

M1 (pro-inflammatory) at one  extreme and M2  (alternatively activated) at the other (Wculek 

et al., 2022) (Fig. 1. 10. B). The vitro models using M1/M2 classification of extreme 

macrophage phenotypes simplify macrophage functions, providing a useful guide for 

reductionist approaches and standardisation in experiments.  

Based on this definition, M1 equivalent macrophages in vivo,  are  those able to start and sustain 

inflammatory responses, secreting pro-inflammatory cytokines, activating endothelial cells, and 

inducing the recruitment of other immune cells into the inflamed tissue; on the other hand, in 

vivo macrophages equivalent to M2 are those that promote the resolution of inflammation, 

phagocytose apoptotic cells, drive collagen deposition, coordinate tissue integrity, and release 

anti-inflammatory mediators (Remmerie & Scott, 2018; Viola et al., 2019) 

Current knowledge shows that the in vivo situation is more complex, and a wide range of 

molecules in the tissue microenvironment promote and impact monocyte to macrophage 

differentiation as well as activation. (Luque-Martin et al., 2021; Remmerie & Scott, 2018). 

Therefore, the most important limitation of the M1/M2 may not accurately represent 

macrophage behaviour in vivo (Nahrendorf & Swirski, 2016). 

 

1.8. Aims of my project. 

 

1.8.1. General aim. 

Given that most of the genetic variants associated with complex diseases are non-coding, the 

functional annotation of non-coding regions in the genome becomes imperative for deciphering 

the mechanisms through which these variants modulate susceptibility to complex diseases. 

The first assumption guiding my research is that susceptibility to these diseases arises from the 

dysregulation of gene expression in specific biological processes and tissues. This dysregulation 

is attributed to non-coding variants associated with the disease, impacting the function of 

regulatory regions that govern the expression of relevant genes. 

Beyond the influence of genetic factors, the onset of complex diseases is profoundly shaped by 

environmental factors. Immune cells emerge as central players in this intricate interplay, serving 
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as primary sensors and responders to external stimuli. Their significance lies in their unique 

ability to act as both resident and circulating cell types, thereby extending their impact across 

all organs and tissues of the body. Given this pivotal role, my second assumption is that many 

complex diseases manifest as a result of defects in the phenotype of immune cells.  

Prior research consistently underscores the enrichment of disease-associated non-coding 

variants in enhancers compared to other genomic elements. Furthermore, active enhancers play 

a pivotal role in controlling the context-dependent expression of genes, serving as a crucial link 

between genetic factors and the impact of environmental conditions on disease development. 

Consequently, my hypothesis posits that connecting haematopoietic enhancers with complex 

traits would significantly contribute to understanding susceptibility to complex diseases. 

In light of these hypotheses, the primary aim of this project is to propose connections 

between complex diseases and transcriptional enhancers active in haematopoietic cell 

types. This connection will provide valuable hypotheses guiding future experimental research 

and enhancing our understanding of disease mechanisms.  

To achieve this general aim, I proposed the following specific objectives:  

 

1.8.2. Specific aims.  

1. My first aim is to generate the largest and most comprehensive collection of 

haematopoietic epigenomes, including the most common cell types of myeloid and 

lymphoid cells at various stages of differentiation.  

This objective is motivated by the BLUEPRINT Consortium's foundational effort, 

which has generated the largest collection of profiles of histone marks for human 

haematopoietic primary cells so far. However, independent research groups have 

generated annotations for subsets of these cell types, employing diverse methodologies, 

thereby hindering direct comparability. In Chapter 3, I address this issue, building upon 

this dataset to generate a unified annotation of active enhancers across 107 samples from 

31 different cell types.  

 

2. My second aim is to propose sets of haematopoietic cell types involved in 

susceptibility to complex traits. 

 

Identifying the cell types impacted by defects in active enhancers is crucial to 

understanding the disease mechanism, designing or improving drugs to treat the disease 



and understanding the response to treatment. In Chapter 4, I address this challenge by 

performing statistical analysis to test whether disease-associated loci were enriched with 

enhancers active in specific sets of haematopoietic cell types.     

 

3. My third aim is to suggest biological pathways potentially impacted by gene 

expression dysregulation due to disrupting enhancer activity in the context of  

Cardiovascular Disease. 

 

Not only is it important to identify the cell types affected by genetic defects in enhancers 

(specific aim 2), but also the specific genes whose expression is being dysregulated in 

those cell types. This improves our knowledge of the biological processes being directly 

affected and provides a refined starting point to design experimental models that could 

be useful to understand the disease mechanism.  

 

Cardiovascular disease is the leading cause of death globally, and in Chapter 5, I used 

it as an example to showcase that by identifying genes whose regulation could be 

affected by disease-associated enhancers, we can generate information on the relevant 

pathways affected and propose disease mechanisms that guide the design of future 

experimental models. I focused on a set of complex traits, including diseases and risk 

factors related to cardiovascular risk, which in Chapter 4 were found to be 

predominantly associated with enhancers active in various types of macrophages. I 

investigated the gene targets of these enhancers and found them to be key players in all 

three lipid metabolism pathways. These genes are expressed in tissue-resident 

macrophages in different organs of the body, and these macrophages are known key 

actors in this process. 
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Chapter 2. Materials and methods 

 

2.1. Sources for ChIP-Seq data acquisition. 

The dataset utilised throughout the development of this PhD is sourced from public data. 

Specifically, the ChIP-Seq and RNA-Seq data employed in this study were generated by The 

Blueprint Consortium. The Blueprint Consortium was a five-year European project that ran 

between 2011 and 2016, aiming to advance our knowledge of gene expression regulation in 

healthy and diseased human blood cells (Adams et al., 2012). Data generated by the consortium 

is available in the European Genome-phenome Archive (EGA) (EGA Archive) (Freeberg et al., 

2022). 

EGA is a database that securely stores “personally identifiable” genetic and phenotypic 

information obtained from biomedical research projects. This means that the information in 

EGA can be traced back to specific individuals. Therefore, data within EGA is not readily 

accessible due to permission requirements that ensure the safeguarding, privacy and 

confidentiality of this sensitive data. Additionally, the datasets lack consistent identification 

matching the original donor and sample IDs assigned by BLUEPRINT and other contributing 

consortia. To address these challenges, a standardised and accessible resource known as The 

Epigenome Reference Registry (EpiRR) (EBI-EpiRR) was created. 

EpiRR compiles references to raw data archived in public sequence repositories, such as EGA, 

ensuring both accessibility and traceability. EpiRR was created by The International Human 

Epigenome Consortium (IHEC) (Stunnenberg et al., 2016b). EpiRR serves as a centralised 

repository for cataloguing epigenomic datasets and relevant metadata generated by researchers 

from BLUEPRINT, The Canadian Epigenetics, Environment and Health Research Consortium 

(CEEHRC), The German Epigenome Programme (DEEP), The Encyclopedia of DNA Elements 

(ENCODE), The Korea Epigenome Project (KNIH), The NIH Roadmap Epigenomics, and The 

Japanese Agency for Medical Research in Development (AMED) in conjunction with The 

Strategic Basic Research Program of the Japanese Agency for Science and Technology 

(CREST) (AMED-CREST). 

IHEC is a collaborative effort involving researchers from over ten countries and aims to provide 

high-quality reference epigenomic datasets for global research. Currently, IHEC is in the 

process of re-processing all available epigenomic data from various consortia. This 

https://web2.ega-archive.org/about/introduction
https://www.ebi.ac.uk/epirr/


reprocessing adheres to standardised pipelines and quality control metrics established by IHEC 

based on the current understanding of epigenomic regulation in human cells and the state of 

epigenomic mapping technologies (IHEC Standards). 

 

2.2. ChIP-Seq data and alignments.  

For this PhD project, we did not use ChIP-Seq data fastq files; instead, we used the alignments 

of the fastq files against the human reference genome (assembly hg38/GRCh38), which were 

generated by the Data Analysis Centre (DAC) of the BLUEPRINT Consortium (Adams et al., 

2012) and are available in EGA (study accession: EGAS00001000326) (EGA Archive). 

Alignments of 642 ChIP-Seq experiments and 107 whole-cell extract sequenced controls 

(inputs) were retrieved from EGA as BAM files and converted to BED files. These alignments 

were performed by The Blueprint Consortium as described in (BLUEPRINT ChiP-Seq Analysis 

protocol). Briefly, alignments were performed using bwa 0.7.7 (H. Li & Durbin, 2009), Picard 

v2.8.1 (https://broadinstitute.github.io/picard/), and samtools v1.3.1 (Danecek et al., 2021). 

Duplicated reads were removed for all the experiments, and to assess the quality of the data, 

wiggle plots were generated using PhantomPeakQualTools (Kharchenko et al., 2008). 

The dataset includes the whole-genome profiling of six histone marks (H3K4me1, H3K4me3, 

H3K27me3, H3K36me3, H3K9me3, H3K27ac), as well as corresponding inputs/controls, for 

107 human samples from 31 different blood-derived cell types belonging to the main 

haematopoietic lineages: myeloid (15 cell types) and lymphoid (12 cell types). These datasets 

also include endothelial (2 cell types) and bone marrow mesenchymal cells (2 cell types) (Fig. 

2.1.A-C). Sample metadata, such as sex, tissue, biomaterial type (primary or primary derived), 

cell type, and EpiRR accessions, are included in (Appendix Table A.1). Data from most of the 

samples here included (78 out of 107) are part of the reference epigenomes that IHEC will 

release, and they conducted an extensive quality check. This information is expected to be 

published as part of the IHEC EpiAtlas paper in May 2024. 

 

https://ihec-epigenomes.org/research/reference-epigenome-standards/
https://web2.ega-archive.org/about/introduction
http://ftp.ebi.ac.uk/pub/databases/blueprint/protocols/Analysis_protocols/README_chipseq_analysis_ebi
http://ftp.ebi.ac.uk/pub/databases/blueprint/protocols/Analysis_protocols/README_chipseq_analysis_ebi
https://broadinstitute.github.io/picard/
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Figure 2. 1. Dataset description. (A) The cell types of the haematopoietic lineage included in 

the analysis. (B) The tissues from which the cells were sampled. (C) The total number of 

samples of each cell type and the number of samples per tissue and sex. (D) A simplified 

diagram describing the data used to produce the 107 epigenomes, including ChiP-Seq of 6 

histone modifications and control for each sample generated by the BLUEPRINT Consortium. 

(E) A heatmap in the left panel displays the emission probability signals from ChromHMM for 

our 12-states model. The middle panel describes the states based on literature and genomic 

annotation enrichments. Finally, the right panel shows the genomic annotation enrichment in 

each state after collapsing the 12 states model into seven interpretable states. Abbreviations: 

TSS (transcription start site) and TES (transcription end site). 

Here we used the human reference genome assembly, hg38/GRCh38, which has limitations in 

accurately mapping repetitive regions such as those found in centromeres and telomeres. In 

2022, a new reference assembly, the T2T-CHM13 assembly, was introduced to address these 

shortcomings (Nurk et al., 2022). The T2T-CHM13 assembly resolves gaps and corrects 

misassembled or patched regions present in GRCh38 in approximately 225 Mbp of genomic 

sequence, including entire acrocentric chromosome short arms, expansions of gene families, 

and a diverse array of repeat classes (Nurk et al., 2022). 

This improvement has profound implications for epigenome annotation. A recent study aligning 

ChIP-Seq from ENCODE to the T2T-CHM13 demonstrates enhancement of the mapping of 

several histone marks, particularly those associated with constitutive heterochromatin such as 

H3K9me3 (19.4% more reads mapped compared to GRCh38) and facultative heterochromatin 

mark H3K27me3 (15.2% more reads mapped compared to GRCh38) (Gershman et al., 2022). 

Additionally, unresolved genes from high-copy-number gene families, such as GOLGA, NPIP, 

ZNF, and TBC1D3, in the hg38 assembly can now be accurately mapped using the new T2T-

CHM13 reference assembly; in particular, precise localisation of H3K4me3 and H3K27ac 

peaks in 57 these regions previously unresolved genes was possible, and these include loci that 

have been associated with diseases such as cancer, autism and spinal muscular atrophy 

(Gershman et al., 2022). 

Unfortunately, our project could not leverage the benefits of the new T2T-CHM13 assembly 

due to several reasons. Firstly, it was released after the initiation of our project (2020). 

Additionally, accessing the raw data required for the realignment posed challenges due to 

privacy concerns and access permissions. Furthermore, this reanalysis would have demanded 

significant computational resources and time, exceeding the constraints of our project. 

Therefore, our version of BLUEPRINT epigenomes may not reflect the most up-to-date 

mapping of heterochromatin and repetitive regions, including genes in high-copy-number gene 
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families. However, the accuracy of other functional annotations outside repetitive regions, 

including enhancers, remains high.  

 

2.3. Learning the haematopoietic chromatin state maps.  

2.3.1. Authors contribution. 

Different chromatin state maps generated and published by The BLUEPRINT Consortium are 

not comparable; this is because partial sets of the samples and different computational 

methodologies and/or reference genomes were used for their generation. Several research 

groups from BLUEPRINT generated ChromHMM models using ChIP-seq data aligned to the 

previous version of the human genome (GRCh37). For instance, a ChromHMM model (11 

states) trained by Carrillo-de-Santa-Pau et al. (2017) with several cell types was applied to 

generate chromatin state maps for monocytes, neutrophils, CD4+ T-cells (Astle et al., 2016b; 

L. Chen et al., 2016; Ecker et al., 2017) and T-cell lineage (Cieslak et al., 2020). Javierre et al. 

(2016) used a different ChromHMM model for the epigenomic landscaping of a subset of 

samples from megakaryocytes, erythroblasts, neutrophils, monocytes, macrophages, 

endothelial precursors, B-cells, and T-cells (Javierre et al., 2016).Petersen et al. (2017) used a 

different software – IDEAS, instead of ChromHMM -to generate the chromatin state maps of 

megakaryocytes and erythroblasts (Petersen et al., 2017). 

My supervisor, Dr. Daniel Rico, was a member of a research group associated with 

BLUEPRINT, led by Alfonso Valencia in Barcelona, Spain. In collaboration with Enrique 

Carrillo de Santa Pau and David Juan, who were also members of the group, they tackled the 

challenge of generating comparable chromatin state maps for BLUEPRINT samples. 

They trained and applied a 12 states chromatin states model to a collection of 642 ChIP-Seq 

alignments to generate the 107 epigenomic maps described in section 2.3.3. This model has 

been applied in two published research papers to generate chromatin state maps of B-cell 

lineage (Beekman et al., 2018b) and neutrophil lineage (Grassi et al., 2018). However, 

chromatin state maps of the rest of BLUEPRINT cell types generated by applying this model 

have not been published yet. They will be included for the first time in the research paper that 

we plan to publish along with my dissertation results. 

My contributions to this effort (section 2) were: to write a detailed description of the 

methodology implemented by my supervisor and collaborators (sections 2.3. and 2.4); generate 

figures to accompany the description of the methodology; perform additional analysis to 



justify/validate their chosen parameters, such as the number of states and the assignment of 

labels to the chromatin states; organise the data in a format that could be easy to use for the 

research community; and create a repository with the data to make it accessible to the research 

community. The work in the rest of the sections of this dissertation has been done by me, with 

the guidance  

of supervisors and colleagues. 

 

2.3.2. Building the chromatin-states model. 

The ChromHMM software developed by Ernst and Kellis (2012) and based on multivariate 

Hidden Markov Models (HMM), facilitates the creation of chromatin state maps by generating 

models that capture the intricate combinatorial interactions between various chromatin marks 

across the genome of different samples (Ernst & Kellis, 2012). 

In this study, ChromHMM version 1.10 was employed to generate a 12-state chromatin model 

(Fig. 2.1.E). This model was trained on ChIP-Seq alignments for the core set of six histone 

modifications: H3K4me1, H3K4me3, H3K27me3, H3K36me3, H3K9me3, H3K27ac—as well 

as a corresponding input/control, recommended by IHEC guidelines, as described in section 

2.2. The modelling process adhered to the guidelines recommended by ChromHMM 

developers, which included configuring prior parameters for training, such as the number of 

states.  

Subsequently, the trained model was utilised to calculate the posterior probability of each state 

for every genomic bin within the epigenome of the 107 BLUEPRINT samples (Fig. 2.1.D). The 

genomic regions were then annotated by assigning the state with the maximum posterior 

probability to each bin, providing a comprehensive characterisation of the chromatin landscape. 

Other ChromHMM models based on similar datasets to ours, that is, the same set of histone 

modifications and a similar number of samples but with different numbers of states, have been 

published before. Some examples are the 18-state and 15-state models by Roadmap Consortium 

(Roadmap Epigenomics Consortium et al., 2015) and the 11-state model by Carrillo et al.  

(Carrillo-de-Santa-Pau et al., 2017) (Fig. 2.2.A). 
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Figure 2. 2. Correlation between the emission probabilities of our model (12 states) with 

those of corresponding states from our previously published models. The left panel shows 

the emission probabilities of the 11-states model from Carrillo et al. (2017), while those from 

the 18 and 15-state models from Roadmap are presented in the middle and right panels, 

respectively. The figure displays the abbreviations of the chromatin state names used in the 

original papers; refer to Appendix Tables A.1 and A2 for full names. (B) Heatmap displaying 

the coefficient values from the Pearson Correlation between our model and the 11-states model 

by Carrillo et al. (2017), as well as the 18-states and 15-states models by ROADMAP. 

 

The choice of the number of states in a chromatin state model involves a trade-off between 

computational efficiency and interpretability. Simpler models have advantages in terms of 

interpretability and computational efficiency, but they may not capture all the complexity of 

chromatin dynamics. The previously published 11-state model (Carrillo-de-Santa-Pau et al., 

2017) was obtained using an interim subset of the BLUEPRINT dataset and encapsulates key 

biologically interpretable states consistent with the larger 18-states and 15-state Roadmap 

models. It encompasses five primary regulatory states: active promoter, bivalent promoter, 

enhancer, elongation, and heterochromatin/low signal, with no functionally ambiguous 

chromatin states included. However, this model did not include the genic enhancer state 

previously described by Roadmap models (Fig. 2.2.A). Hence, our decision to employ a 12-

state model, as the additional state revealed this type of elongated enhancers. 

 



2.3.3. State labels, interpretation, and mnemonics.   

To assign biologically meaningful mnemonics to the states of my 12-state chromatin model, we 

followed the methodology of Carrillo et al. (2017). I cross-correlated the emission probabilities 

of the states of our model with those from the 11 sates model by (Carrillo-de-Santa-Pau et al., 

2017) (see Appendix Table A.2) and Roadmap models (with 18 states and 15 states) (see 

Appendix Table A.3) (Fig 2.2.B). I assessed which states from the 18 states and 11 states 

models exhibited correlation coefficients higher than 0.75 with the 12 states trained in our 

model (Table 2.1.). The 12 states model captures most of the states that were found in the larger 

models except by Flanking TSS Downstream, Weak Enhancer, Bivalent/Poised TSS, and 

Bivalent Enhancer.  

 

Table 2. 1.Best match (correlation coefficient > 0.75) between each state in our 12 states-

model states from Carrillo et al. (2017) and Roadmap (2015) models. 

State from 

our model 

Best match* from 

Carrillo et al. (2017) 

11 states-model 

Best match from 

Roadmap et al. (2015)  

18 states-model 

Best match from 

Roadmap et al. (2015) 15 

states-model 

1_Polycomb 7_Repressed 

Polycomb Promoter 

"" 11_BivFlnk, 12_EnhBiv 

2_Polycomb 11_ Active TSS 12_ZNF/Rpts, 13_Het, 

18_Quies 

13_ReprPC, 

14_ReprPCWk 

3_HetChrom "" 18_Quies 15_Quies 

4_HetChrom 3_Heterochromatin 

High H3K9me3, 

4_Low signal 

16_ReprPC, 

17_ReprPCWk 

8_ZNF/Rpts, 9_Het, 

15_Quies 

5_TransElo "" 2_TssFlnk 4_Tx, 5_TxWk 

6_TransElo "" 2_TssFlnk 4_Tx, 5_TxWk 

7_AeloE "" 1_TssA, 2_TssFlnk, 

3_TssFlnkU 

5_TxWk, 6_EnhG 

8_PoisE 5_Heterochromatin 

High H3K27me3, 

6_Heterochromatin 

Low H3K27me3 

10_EnhA2 7_Enh 

9_AconE "" 8_EnhG2, 9_EnhA1, 

10_EnhA2 

7_Enh 

10_AconE "" 7_EnhG1, 8_EnhG2 2_TssAFlnk 

11_Aprom 8_Active TSS 5_Tx, 6_TxWk, 7_EnhG1 1_TssA, 2_TssAFlnk 

12_Aprom "" 6_TxWk, 7_EnhG1 1_TssA 

*States with a coefficient value above 0.75  based on Pearson correlation between each state 

from our model and those from Roadmap et al. (2015) 15— and 18—states model.  
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Additionally, following Carrillo et al. (2017) methodology, I merged the labels of the 12-state 

model into seven interpretable labels, annotated using literature and genomic annotation 

enrichments (gene structures, CpG islands) (Fig. 2.1.E). This posterior collapse into seven 

chromatin states facilitates the functional interpretation of regulatory elements. Polycomb 

(states 1-2), Heterochromatin (HetChrom, states 3-4), Transcriptional Elongation (TransElo, 

states 5-6), Elongating Active Enhancer (AleloE, state 7), Poised Enhancer (PoiseE, state 8), 

Conventional Active Enhancer (AconE, states 9-10) and Active Promoter (Aprom, states 11-

12) (Fig. 2.1.E). The a posteriori collapse of chromatin states for ease of interpretability is a 

methodology used in other published research such as (Carrillo-de-Santa-Pau et al., 2017; 

Cieslak et al., 2020; Ecker et al., 2017; Grassi et al., 2018). 

To compare chromatin states between epigenomes, the genome coordinates were binned every 

200bp, and the 23 chromosomes were concatenated into a single sequence. Then, I built a matrix 

with the bins as rows and samples as columns. The entries of the matrix are the chromatin state 

annotation at each sample for each bin. The matrix dimensions are 14,374,996 bins * 107 

samples. 

 

2.4. Cell type consensus epigenomes. 

Previous studies, such as the work by Grassi et al. (2018) and Ecker et al. (2017), have defined 

cell-type consensus states by condensing annotations from individual samples. Grassi et al. 

(2018) defined consensus states for each region of the genome based on the consistent 

identification of such states in three replicates of the same cell type (Grassi et al., 2018). Ecker 

et al. (2017) adopted a similar approach but required a minimum of five biological replicates 

per cell type. In addition to this, they introduced the term "variable chromatin state" to indicate 

regions where annotations were not consistent in at least 80% of the biological replicates (Ecker 

et al., 2017).  

Taking inspiration from these approaches, I defined consensus states for all cell types in our 

dataset with at least two biological replicates. I labelled bins as a "conserved state" if their 

annotation was consistent in at least 75% of the available biological replicates. When the 

annotation of a bin did not meet this level of conservation, I designated it as a "non-conserved 

state." (Fig. 2.3.A). 

The decision to set a 75% conservation threshold aimed to strike a balance between accurately 

capturing chromatin states across diverse cell types and accommodating variations in sample 



sizes. This approach ensures that most samples contribute to defining the chromatin state, 

avoiding unfair penalties for cell types with fewer replicates. In contrast, a 100% conservation 

threshold, while theoretically ideal in uniform sample conditions, would disproportionately 

penalise cell types with more samples. This could lead to the exclusion of valuable information 

and result in a biased representation of chromatin states in those tissues.  

 

 

Figure 2. 3. Consensus epigenomes and enhancer groups by activity profiles. The figure 

shows hypothetical chromatin state annotations in a genome fragment, each rectangle 

represents one bin (200 bp) annotated using the chromatin states model. (A) For each cell type, 

I generated the consensus epigenome by assigning to each bin the states conserved in at least 

75% of the samples available for that cell type. (B) For each enhancer bin across the genome, I 

assigned an activity profile, this is given by the set of cell types in which such enhancer is 

annotated as active enhancer. (C) I assigned enhancers to groups according to their activity 

profile. Some groups have more enhancers than others because the activity profiles are more 

common. 

 

2.5. Enhancer activity profiles. 

Epigenomic states are cell type-specific (See sections 1.1 and 1.2), which means that the same 

bin of the genome can be annotated as an active enhancer state in a specific cell type (or group 

of cell types) while having a completely different epigenomic annotation in the other cell types 

(Carrillo-de-Santa-Pau et al., 2017). To provide insights into the dynamics and specificity of 
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enhancer activity across different cell types, Ernst et al. (2011) defined “multicell activity 

profiles” by systematically analysing maps of chromatin histone marks associated with 

promoters and enhancers across nine cell types (Ernst et al., 2011). Taking their foundational 

work as a reference, I defined Active Enhancers (AE) bins (1bin = 200bp) as the collection of 

bins labelled with AeloE or AconE states in at least 2 out of the 107 epigenomes in our dataset 

(Total identified AE = 1,526,184 bins).  

By defining AE bins based on individual epigenomes rather than using cell-type consensus 

epigenomes, my approach acknowledges variability in enhancer usage among cell types and 

different biological contexts. This individualised definition highlights functional elements that 

may be specific to certain epigenomic contexts.  

I next defined the activity profile of an AE bin as the set of cell types in which that bin has been 

labelled as “conserved AE” in the consensus cell type annotations. Based on this definition and 

using the previously generated consensus epigenomes (section 2.4) for the 31 BLUEPRINT 

cell types, I found the activity profiles of each AE bin across the genome (Fig. 2.3.B). 

Considering all the possible combinations of cell types in which the enhancer can be active, I 

grouped AE bins with the same activity profile, no matter where in the genome they were 

located or if they were not consecutive. Distinct groups of enhancers were identified (107, 562). 

The groups based on enhancer activity pattern varied widely in number of enhancers (Fig. 

2.3.C), ranging from 1 to 75,814. Despite this broad range, most groups predominantly had 

fewer enhancer bins, with a mean of 10.5 bins (Q1 = 1 bin, Q3 = 2 bins), indicating a tight 

clustering of enhancer bin counts towards the lower end. 

 

2.6. GWAS enrichment analysis. 

To improve our understanding of the function of non-coding trait-associated variants, I 

combined information from two sources: data from the GWAS catalogue (Buniello et al., 2019), 

which is a database of genetic variants associated with complex traits, and the sets of AE bins 

identified in our dataset.  

As we are interested in understanding non-coding regulatory regions, I excluded the SNPs 

whose genomic contexts were annotated in the GWAS catalog  as "missense", "STOP-GAIN", 

and "frameshift", and kept only those annotated as ”intergenic", "", "ncRNA", "cds-synon", 

"intron", "UTR-5", "UTR-3", "splice-3", "nearGene-”, “nearGene-5”, or “splice-5". I restricted 



the set of studies to those with more than 2000 individuals and the set of traits to those with 

more than 6 SNPs. This resulted in 11060 SNPs, 518 traits, and 985 PUBMED IDs.  

I defined “trait-associated regions” across the genome as 10kb regions of the genome centred 

in GWAS SNPs (5 Kb on each side). To streamline the analysis, I focussed on enhancers with 

activity profiles among the top 100 most common across the 31 BLUEPRINT cell types, the 

frequency of these profiles ranged between 900 bins, up to 75,814 bins. 

I found the overlaps between trait-associated regions and the sets of AE bins with the most 

common activity profiles. We wanted to test if there were significant enrichments of enhancers 

with specific activity profiles within the trait-associated regions of each GWAS study and trait. 

To that end, for each of the GWAS studies and each of the AE sets with specific activity profiles, 

I followed the step-by-step process described below (Fig. 2.4.). 

1. Define the GWAS study of interest. 

2. Define the specific enhancer activity profile of interest. 

3. Identify the list of AE bins exhibiting this specific enhancer activity profile as the "test 

set." 

4. Identify the list of AE bins with enhancer activity profiles different from the specific 

one under investigation. Designate this list as the "background set." 

5. Conduct a Fisher test to assess the significance of the association between the identified 

AE bins (both test and background sets) and trait-associated regions. 

­ Null Hypothesis (H0): There is no enrichment of enhancers with the activity profile 

of interest within the regions associated with the trait of interest.  

­ Alternative Hypothesis (H1): There is a significant enrichment of enhancers with 

the activity profile of interest within the regions associated with the trait of interest.  

6. Determine the number of overlaps between AE bins in both the test set and background 

set with the trait-associated regions. 

7. Calculate raw p-values from the Fisher test. 

8. Correct for multiple testing using the Bonferroni method to control the familywise error 

rate (adjusted p-value < 0.0001). 
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Figure 2. 4. GWAS enrichment analysis. The flow diagram illustrates the steps of the 

methodological approach employed to identify trait-associated regions enriched with active 

enhancer bins having activity profiles among the top 100 most common in our dataset. 

 

2.7. Identifying target genes of enhancers associated with GWAS traits. 

Once the significant enrichment of enhancers with specific activity profiles was identified for 

a certain trait following the methodology described in section 2.6., I identified sets of genes 

whose expression could be regulated by trait-associated enhancers. The general process 

outlined below was used to identify target genes of macrophage enhancers associated with 

cardiovascular disease risk (Chapter 5.) and of neutrophil enhancers associated with Ulcerative 

Colitis (section 4.2.5) 

Find overlaps between SNP regions and Enhancer bins

 on-coding S Ps 

GWAS catalogue (518 traits)
Top 100 most common activity 

profiles

1.526.184 Enhancers

Active Enhancers

Enrichment of enhancers in SNP centred regions

(Fisher Test) P <0.0001

FDR correction (Bonferroni method )

Studies/traits with disease associated 

regions enriched in active enhancers 

with specific activity profile

                              

       

       

       

         
 

P value

 

 

 

 

   

Significant 

Not significant



1. I selected AE bins within the trait-associated regions exhibiting that activity profile. 

 

2. I used eQTL data, which as mentioned in Chapter 1. 1.5. Enhancer maps and 

enhancer-target gene links is useful to identify target genes potentially regulated by 

those enhancer regions. Briefly,  

 

a. eQTL data assayed on relevant cell types/tissues matching the activity profiles 

of the enhancers, was obtained from the Genotype-Tissue Expression project 

(GTEx) (Lonsdale et al., 2013) and data available in the eQTL Catalogue 

(Kerimov et al., 2021a).  

b. I examined if the trait-associated SNPs in the enhancer regions also functioned 

as eQTLs in those tissues. 

 

3. I assessed whether the expression patterns of the genes with expression levels correlated 

with the eQTLs (eGenes) matched the activity profiles of the enhancers. Briefly,  

a. I used RNA-seq data generated by the BLUEPRINT project to evaluate the mean 

expression of the eGenes across the 31 cell types in our dataset. 

b. I consulted the Human Protein Atlas database (Thul & Lindskog, 2018) to gain 

insights into the predominant cell types and tissues where these genes are active. 

 

2.8. Software used for data analysis. 

 

All scripts generated to perform the analysis described in this dissertation were written and ex

ecuted in R version 3.6.3 (2020-02-29) (R Core Team, 2020). The scripts are available in a Git

Hub repository (https://github.com/juearcilaga/Unmasking-disease-risk-in-haematopoietic-enh

ancers), and supplementary files to run the codes are available on Figshare (https://doi.org/10.

6084/m9.figshare.25601301.v1 ). A detailed list of the R packages utilised is presented below i

n the format (package, version, reference) 

 

 

 

https://github.com/juearcilaga/Unmasking-disease-risk-in-haematopoietic-enhancers
https://github.com/juearcilaga/Unmasking-disease-risk-in-haematopoietic-enhancers
https://doi.org/10.6084/m9.figshare.25601301.v1
https://doi.org/10.6084/m9.figshare.25601301.v1
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• dplyr 1.0.8  (Wickham et al., 2021) 

• edgeR 3.28.1 (MD et al., 2010) 

• forcats 0.5.1 (Wickham, 2022) 

• ggpubr 0.4.0 (Kassambara, 2020) 

• gridExtra 2.3 (Murrell, 2017) 

• gtools 3.9.4 (Warnes, 2021) 

• gwascat 2.18.0 (Magno & Corty, 2022) 

• pheatmap 1.0.12 (Kolde, 2019) 

• rtracklayer 1.46.0 (Lawrence, 2022) 

• scales 1.2.1 (Wickham, 2020) 

• superheat 1.0.0 (Tierney, 2019) 

• tidyverse 1.3.1 (Wickham & Henry, 2021) 

• treemap 2.4-3 (Tennekes, 2020) 

• biomaRt 2.42.1 (Durinck & Huber, 2021) 

• GenomicRanges 1.38.0 (Lawrence & Obenchain, 2022) 

• ggplot2 3.3.6 (Villanueva et al., 2016) 

• GO.db 3.10.0 (Bioconductor, 2021) 

• plyr 1.8.6 (Package & Wickham, 2021) 

• plyranges 1.6.10 (Shepherd & Lawrence, 2022) 

• RColorBrewer 1.1-3 (Neuwirth, 2014) 



Chapter 3. A resource of reference epigenomes of human 

haematopoietic cells 

 

My main interest is to understand the role of enhancers in complex diseases, and for that, I need 

cell type-specific epigenomic maps. As the onset of these diseases is profoundly shaped by 

environmental factors, and immune cells are the first sensors and main responders to 

environmental stimuli in the human body, I hypothesise that they are an ideal set to focus on. 

Leveraging the BLUEPRINT Consortium's collection of profiles of histone marks for human 

primary haematopoietic cells, we trained a chromatin state model to learn the patterns of histone 

mark combinations across the genome and associate them with functional transcriptional states. 

With this model, we have generated the largest and most comprehensive collection of 

haematopoietic epigenomes to date. Additionally, we described the enhancer repertory of 

haematopoietic cells, characterised enhancers’ activity profiles, and identified those that were 

more commonly observed in the dataset. 

 

3.1. Introduction.  

The human haematopoietic cells are descendants of a common progenitor and play vital roles 

in diverse processes such as immune defence, oxygen transport, and blood clotting (Clien et al., 

2014; Jenne et al., 2013; Jensen, 2009; Varol et al., 2015). Haematopoietic cell differentiation 

is accompanied by dynamic changes in chromatin structure (Cedar & Bergman, 2011; Lara-

Astiaso et al., 2014), involving stepwise modifications of histone marks at lineage-specific 

enhancers (Lara-Astiaso et al., 2014) and changes in chromatin interactions between enhancers 

and promoters (Javierre et al., 2016).  

Epigenetic mechanisms not only play crucial roles during haematopoiesis but also orchestrate 

the rapid and reversible activation of specific genes essential for sterile inflammatory responses, 

as well as immune cell recruitment and pathogen elimination (Kondilis-Mangum & Wade, 

2013; Medzhitov & Horng, 2009; Natoli & Ostuni, 2019; Q. Zhang & Cao, 2019). Histone 

modifications at enhancers exhibit dynamic changes between primed and activated states, and 

even de novo activation of non-primed enhancers is possible (Ghisletti et al., 2010; Kaikkonen 

et al., 2013a; Sciumè et al., 2020) demonstrating the immune system's adaptability to diverse 

challenges. Inadequate regulation of gene expression in haematopoietic cells can lead to or 

contribute to disease development and progression (Q. Zhang & Cao, 2019). 
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Following the US-funded efforts of the NIH Epigenomics Roadmap (Bernstein et al., 2010; 

Roadmap Epigenomics Consortium et al., 2015) and ENCODE consortia (Abascal et al., 2020; 

The ENCODE Project Consortium 2012), The EU-funded BLUEPRINT Consortium (Adams 

et al., 2012) generated one of the largest collections of histone mark profiles for human primary 

cells, including all six histone marks (H3K36me3, H3K4me1, H3K27ac, H3K4me3, 

H3K27me3 and H3K9me3) necessary for defining reference epigenomes according to IHEC 

guidelines (Stunnenberg et al., 2016b). Although the other consortia contributed data for a 

broader spectrum of cell types of the human body, they included a reduced number of primary 

haematopoietic cell types. In contrast, BLUEPRINT generated a comprehensive dataset for 

most main haematopoietic lineages, comprising cell types at several differentiation steps. The 

reference epigenomes provided by ENCODE and Roadmap were generated by compiling 

histone marks from multiple donors, and there are no biological replicates for each cell type 

(Abascal et al., 2020; Roadmap Epigenomics Consortium et al., 2015). In contrast, 

BLUEPRINT generated all six histone marks for the same donor for each cell type, and most 

cell types included multiple donors (between 1 and 12 donors per cell type, median = 3). 

While BLUEPRINT Consortium has produced the most comprehensive dataset of histone 

modification maps for haematopoietic cells, there is currently a lack of comparable chromatin 

state maps available for comparing the epigenomes of the different haematopoietic cell types. 

This is because different groups of The BLUEPRINT Consortium have generated independent 

chromatin state models using partial sets of samples and different computational 

methodologies. Beekman et al. (2018) generated chromatin states only for the B-cell lineage 

using ChIP-seq aligned to genome version GRCh38 (Beekman et al., 2018a), while Grassi et 

al. (2018) generated a different ChromHMM (Ernst & Kellis, 2012) model exclusively for the 

neutrophil lineage, using GRCh38 too (Grassi et al., 2018). In contrast, Cieslak et al. (2020) 

segmented the ChIP-seq data of the T-cell lineage aligned to GRCh37 (Cieslak et al., 2020) 

using the previous ChromHMM model trained by Carrillo et al. 2017 with several cell types 

(Carrillo-de-Santa-Pau et al., 2017). Additional different ChromHMM models were generated 

with samples aligned to GRCh37 for some cell types with promoter-capture HiC data (Javierre 

et al., 2016) and for the annotation of regions of interest in population-based studies using 

monocytes, neutrophils and CD4 T-cells (Astle et al., 2016a; L. Chen et al., 2016; Ecker et al., 

2017). Finally, Petersen et al. (2017) generated chromatin states for megakaryocytes (MKs) and 

erythroblasts (EBs) (Petersen et al., 2017) using the segmentation method IDEAS (Y. Zhang et 

al., 2016) instead of ChromHMM.  Moreover, the chromatin states of some cell types with the 

complete set of six histone marks (and input control) have never been generated and described 



before. These include natural killer (NK) cells, monocyte-derived mature and immature 

dendritic cells (DCs), monocyte-derived osteoclasts and eosinophils. 

Using the BLUEPRINT Consortium dataset, here we provide the most complete collection of 

human haematopoietic epigenomes. We trained and applied a chromatin state model for 

generating 107 chromatin state maps spanning 31 cell types, including the most important 

mature cell types of the haematopoietic lineage. Each epigenome consists of a whole-genome 

annotation of 7 chromatin states representing the most relevant functional elements of the 

genome, including expressed regions and regulatory regions and their subclasses. I assessed the 

quantity of each type of enhancer, characterised their activity profiles, and identified the most 

frequently occurring profiles among enhancers. 

 

3.2. Results. 

3.2.1. The largest dataset of chromatin state maps for individual primary 

haematopoietic samples. 

We built and applied a chromatin states model for generating epigenomes for 107 human 

primary human samples from 31 different cell types, including 27 haematopoietic, three 

endothelial and one bone marrow mesenchymal stem ceThe methodologylogy for building the 

model is outlined in sections 2.1 and 2.3. Samples were obtained by the BLUEPRINT 

Consortium (Adams et al., 2012) from healthy donors, encompassing both men and women. 

For detailed specifications on the samples, refer to Fig. 2.1.  

The chromatin states model was trained on ChIP-Seq data generated by the BLUEPRINT 

Consortium, consisting of whole-genome maps for six histone marks: H3K36me3, H3K4me1, 

H3K27ac, H3K4me3, H3K27me3, and H3K9me3 for each sample. A detailed introduction to 

these histone marks is available in section 1.3. 

The generated epigenomes encompass annotations for each 200 base pair segment across the 

entire genome (bin), classifying them into seven distinct chromatin states based on their 

transcriptional functions. These chromatin states comprise Polycomb, Heterochromatin 

(HetChrom), Transcriptional Elongation (TransElo), Active Elongating Enhancer (AleloE), 

Poised Enhancer (PoiseE), Conventional Active Enhancer (AconE), and Active Promoter 

(Aprom). A detailed introduction to these epigenomic elements is available in section 1.3. 



51 

 

As a first step in the characterisation of the 107 epigenomes, I calculated the proportion of the 

genome annotated with each chromatin state (Fig 3.1.A). As expected, I found that the 

HetChrom state covers most of the epigenome of all samples, followed by TransElo, while 

Polycomb, Aprom, and the three enhancer sub-groups (AconE, AeloE and PoisE) cover a small 

proportion of the epigenomes (Fig. 3.1.A). When focusing on the three types of enhancers, 

PoisE, AconE and AeloE (see section 1.3 for a detailed description of these enhancer types), I 

found that PoisE (H3K4me1 without H3K27ac) is the most abundant type of enhancer in most 

of the samples, followed by AconE (H3K4me1 plus H3K27ac) (Fig. 3.1.B)  

 

 

Figure 3. 1. Epigenomic profile of haematopoietic cell types from the BLUEPRINT 

Consortium. For each of the 107 haematopoietic epigenomes generated by us, the bar plots 

represent:  The proportion of the epigenome length covered by each chromatin state (Top 

panel). The number of bins (1 bin = 200bp) annotated as each of the three types of enhancers 

(Bottom panel). 
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3.2.2. A collection of consensus epigenomes for haematopoietic cell types.  

To facilitate the comparison of epigenomes across cell types, I generated a consensus 

epigenome per cell type for those cell types with at least two replicates (27 out of the 31 cell 

types). This was achieved by preserving states consistently annotated in the replicates; see the 

full method in section 2.4. In addition to the seven chromatin states defined in section 3.2.1., I 

introduced a new state called 'non-conserved state' for bins that lacked consistent annotation 

across replicates (see Fig. 2.3.A). 

When comparing the entire consensus epigenome across different cell types, I observed that 

46% of the bins across the genome have been consistently labelled with the same chromatin 

state across all cell types. Among these bins with conserved state, 93% are identified as 

HetChrom, comprising 43% of the genome. This indicates that 64% of the genome exhibits 

variable epigenomic annotations across the studied haematopoietic cell type. Using these 

consensus epigenomes, it is possible to analyse for any genomic region of interest, the dynamics 

of the epigenome across different cell types at a scale of 200bp. To illustrate the utility of this 

data, I present the epigenomic landscape of the NR1H3 (Fig. 3.2.) and ARID5B  (Fig. A2) 

genes.  

NR1H3 encodes a transcription factor known as liver X receptor alpha, or LXRα, which plays 

a critical role in coordinating lipid metabolism and immune responses (Repa & Mangelsdorf, 

2000). The 5' region of NR1H3 is proximal to the 3' region of ACP2, which codes for an enzyme 

involved in the degradation of glycolipids, glycoproteins, and sphingolipids in the lysosome 

(Thul & Lindskog, 2018). The NR1H3 3’ region is proximal to the MADD 5’ region, which 

encodes for an adaptor protein that plays a role in the regulation of TNFα-induced apoptosis by 

interacting with TNFα to activate MAPK pathway in response to apoptotic signals (Thul & 

Lindskog, 2018). 

It can be observed from Fig. 3.2. B.  that the genomic region overlapping NR1H3 is in the 

TransElo state in most BLUEPRINT cell types, suggesting gene expression. I identified three 

active promoter regions in this epigenomic landscape: Promoter 1 (P1) on the 5’ end, Promoter 

2 (P2) in the middle, and Promoter 3 (P3) on the 3’ end. P1, P2 and P3 overlap with the start of 

the transcript isoforms of NR1H3, and MADD (Fig. 3.2.A) reported in ENSEMBL release 111 

(Martin et al., 2023).  Additionally, we can learn from Fig. 3.2. B that P1 and P3 exhibit activity 

across all 31 cell types, whereas P2 is exclusive to mature DCs (mDC), immature DCs (imDC), 

and the three macrophage types, unstimulated macrophages (M0), anti-inflammatory  
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Figure 3. 2. Using chromatin states to study the epigenomic landscape of NR1H3. (A) 

Shows the annotation of the NR1H3 transcripts as reported in ENSEMBL (Martin et al., 2023), 

based on the annotation from GENCODE release 44 (Frankish et al., 2021).  (B) NR1H3 gene 

region shows a complex expression regulatory pattern, with multiple promoters (P1, P2, P3) 

annotated as AProm state (pink colour) in different sets of cell types, and the presence of an 

intronic enhancer (E1) with a specific chromatin activity (AconE state in orange colour) in 

monocyte descendant cell types. Black arrows indicate the genome locations of NR1H3 and its 

two neighbour genes, ACP2 and MADD. Each row represents the conserved chromatin states 

in each of the 31 haematopoietic cell types. Promoter regions are indicated by dotted rectangles. 

In yellow, the box indicates the macrophage and dendritic cell subtypes that show activity of 

the alternative promoter P2. (C)  P2 region overlaps the TSS of the shorter isoforms (highlighted 

in red) of NR1H3, from these shorter isoforms ENST00000467728 (indicated by a black arrow) 

is the transcript that shows the higher expression levels in the set of cell types that have P2 

active. A zoomable version of the figure is available here.   

 

macrophages (M2) and pro-inflammatory macrophages (M1). Data from the EpiMap repository 

(https://compbio.mit.edu/epimap/) (Boix et al., 2021) support these findings, where we can 

confirm that regions overlapping P1, and P3 are annotated as Active TSS state and Flanking 

TSS in most samples, while P2 displays these annotation only in a subset of the samples (Fig. 

A1).  

Consequently, P2 emerges as a distinct alternative promoter for NR1H3, specific to 

macrophages and dendritic cells. P2 region overlaps the TSS of the shorter isoforms of NR1H3 

(Fig. 3.2.A). I explored the transcript expression data from BLUEPRINT to analyse the 

expression patterns of the different transcripts across the haematopoietic cell types and found 

that one of the shorter isoforms, ENST00000467728 is the transcript that shows the higher 

expression levels in the set of cell types that have P2 active (Fig. 3.2.C). 

This information hints at the possibility that the shorter isoforms of NR1H3 may exhibit specific 

expression in macrophages, although experimental verification is pending. Furthermore, the 

potential implications of this expression pattern in the regulation of lipid metabolism within 

macrophages, in comparison to other cell types, remain an intriguing avenue for further 

exploration. 

Similar to the case of NRIH3, by analysing the BLUEPRINT dataset, I found support for two 

alternative promoters of a macrophage-relevant gene studied by McErlean et al. (2021). 

McErlean et al. investigated methylation patterns in airway macrophages (AM), which play a 

role in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a fatal respiratory disease 

without a cure(McErlean et al., 2021). They discovered that ARID5B, a transcriptional cofactor 

regulating glucose metabolism (Okuno et al., 2013), exhibited differential methylation across 6 

https://srv2.zoomable.ca/viewer.php?i=img81f1afc50f351d68_Figure.3.2
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CpGs and showed chromatin enhancer signatures, specifically H3K4me1, in myeloid-derived 

macrophages. 

McErlean et al. noted that the short isoform of ARID5B was more highly methylated in AMs 

from healthy controls, less in monocyte-derived macrophages, and displayed an intermediate 

methylation level in IPF AMs (McErlean et al., 2021). Additionally, they found that this gene 

was expressed at higher levels in M1 macrophages compared to M0 and M2, and its expression 

was elevated in IPF patients compared to healthy donors. 

In my exploration of the epigenomic landscape surrounding ARID5B, I found evidence 

supporting the presence of an active promoter for the short isoform in M1 (Fig. A1). This 

promoter sequence is longer than those found in M2 and M0. No active promoter annotation 

was found in monocytes or other hematopoietic cells in my dataset, except in endothelial, 

mesenchymal, and class-switched B cells. Furthermore, the same region is annotated as a poised 

enhancer in some hematopoietic cells and as an active enhancer in others (Fig. A1). These 

findings align with the gene expression patterns described in McErlean et al. (2021), where the 

cell types with the longest promoter display higher expression levels (McErlean et al., 2021). 

 

3.2.3. Enhancer maps for haematopoietic cells 

I identified 1,526,184 total AE bins (AE =AeloE +AconE) in our dataset using the individual 

epigenomes described in section 3.2.1. and following the criteria described in section 2.5. This 

total count of AEs encompasses active enhancers operating in two distinct scenarios. Firstly, 

there are those conserved in at least 1 out of the 27 consensus epigenomes, constituting 

1,128,959 AE bins, equivalent to 74% of all AE. Secondly, there are enhancers present solely 

in specific individual epigenomes from the dataset, totalling 397,225 AE bins, which represents 

26% of all AE.  

These results suggest that the majority of identified AE bins (74%) consistently activated in one 

or more cell types could be lineage-specific enhancers (Lara-Astiaso et al., 2014). However, it 

is also noteworthy that a subset of enhancers (26%) may function as stimuli-responsive 

elements, operating in a context-dependent fashion, for example, in response to environmental 

changes or pathogens (Ghisletti et al., 2010; Kaikkonen et al., 2013a; Sciumè et al., 2020). 

To provide further information on the regulatory landscape of different cell types, I analysed 

the total number of AE bins per cell type. I found that the cell type with the largest number of 



AE bins is germinal centre B-cells (germcenterB, 313,787 bins), followed by imDCs (285,986 

bins) and neutrophilic metamyelocytes (neutmetmyelo, 252,185 bins) (Fig. 3.3.A). 

Interestingly, CD4+ T-cells (CD4T, 15,268 bins) and mature eosinophils (meos, 17,626) had a 

much lower number of active enhancer regions than any other cell type in our dataset.  

 

 

Figure 3. 3. Number and specificity of consensus AE per cell type. (A) Bar plot representing 

the number of AE bins (left y-axis) in each cell type consensus epigenome. The red colour 

represents cell type-specific enhancers, and the blue colour represents enhancers shared with 

other cell types. Lollipops represent the number of biological replicates (right y-axis) for each 

cell type (B) The frequency plot shows in the y-axis the number of AE bins that are unique to 

a single cell type x=1 or shared among two or more cell types, 2≤x≤27. (C) The graph represents 

in the Y axis the cumulative count of AE bins alongside the equivalent percentage from the 

total consensus AE that are unique to a single cell type x=1 or shared among two or more cell 

types, 2≤x≤27. 

 

To assess the potential influence of variability in the number of replicates on the number of 

consensus enhancer regions detected, I evaluated the correlations between the number of 

consensus enhancer bins by cell type, and number of replicates per cell type. I found a weak 

correlation between these two variables (Pearson coefficient = 0.3), but a strong correlation 
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between the number of consensus enhancers and the mean number of enhancers per cell type 

(Pearson coefficient = 0.82). This suggests that the reduced number of enhancers in eosinophils 

and CD4+ T cells is not solely attributable to variability in the number of replicates. 

 

3.2.4. Enhancer activity profiles across haematopoietic cell types. 

Chromatin states are cell type-specific, which means that the same region of the genome can be 

in an active enhancer state in a specific cell type or group of cell types while having a 

completely different epigenomic annotation in the other cell types (Carrillo-de-Santa-Pau et al., 

2017).  

For instance, for the NR1H3 gene shown in Fig 3.2.B, there is an enhancer region (E1) located 

5´ upstream of P1, with an AeloE state (shown in purple) in M0, M1, M2, imDC and mDC cell 

types.  There is a second enhancer (E2) in the AconE state (shown in orange) located between 

P1 and P2 that is specific to monocyte descendant cell types and only in M0 and M1 extends 

its length until P2. And there is a third enhancer (E3) in the AeloE state that is active only in 

macrophages (M0, M1, M2) (Fig 3.2.B).  

Keeping this in mind, I defined chromatin activity profiles for active enhancer regions across 

the genome. These profiles are identified as the set of cell types in whose consensus epigenome 

the region has a conserved active enhancer state - refer to section 2.4 and Fig. 2.3.B for 

methods. 

Using this definition, the chromatin activity profiles of E1, E2, and E3 in the example described 

above would be M0|M1|M2|imDC|DC, M0|M1|M2|imDC|DC|oseo, and M0|M1|M2, 

respectively. However, to ensure comparability, since these regions vary in size across cell 

types, the activity profile definition is given for each 200 base pairs.  

After distinguishing the consensus AE bins per cell type based on their activity profiles, I 

observed that in each cell type, only a small percentage of consensus AEs are cell type-specific, 

and most consensus AE are shared between two or more cell types (Fig. 3.3.A). For example, 

76% of germcenterB AEs are shared with at least another cell type. On average, only 10% of 

active enhancer regions are specific to a single cell type (Fig. 3.3.A). Yet, looking at it 

collectively, when I sum the number of cell-type-specific AE bins across all cell types, it 

constitutes 40% of the overall count of haematopoietic enhancers (Fig. 3.3.A-B). 



I assessed the number of distinct activity profiles (combinations of cell types) observed in the 

total consensus AEs and identified 107,562 unique combinations. Assessing the distribution of 

the frequency of each unique activity profile across all AE bins, I observed frequencies ranging 

from 1 to 75,814 bins, and the distribution was heavily left-skewed, with a mean of 10.5 bins 

(Q1 = 1 bin, Q3 = 2 bins) (Fig. 3.4.A). Remarkably, including enhancers in the first 1,856 most 

frequent activity profiles is sufficient to cover 80% of consensus AE bins (Fig. 3.4.B). 

The four most frequently observed activity profiles across the AE bins were cell type-specific 

for germcenterB (75814 bins), endothelial progenitors (endprog, 43080 bins), immature DCs 

(imDC, 36598 bins) and mesenchymal cells (mesenBM, 30462 bins) (Fig.3.4.C). 

Unsurprisingly, none of the top 100  most commonly observed enhancer activity profile patterns 

included CD4+ T-cells (514 bins) or mature eosinophils (514 bins), as they, in general, have a 

very low number of active enhancer regions compared to the other studied cell types (Fig. 

3.3.A). 

Among the top 100 most common activity profiles, the one including the maximum number of 

cell types corresponds to enhancers shared by seven myeloid cell types: monocytes (mono), 

osteoclasts (osteo), mature neutrophils (mneut) and the four neutrophil progenitors 

(segneutBM, neutmyelo, bfneut and neutmyelo) and there are 1025 genomic bins with this 

profile. I also found 2045 bins with enhancer activity in the five stages of B-cell differentiation, 

as well as 1228 bins with enhancer activity among natural killer (NK) cells, CD8+ (CD8T) and 

CD8+ effector memory T-cells (effmemCD8T) (Fig. 3.4.C). 

In general, enhancer activity profiles, including two or more haematopoietic cell types, tended 

to group into lymphoid or myeloid cells. The only exceptions to this general pattern correspond 

to sets of enhancers active in both germcenterB cells and some myeloid cells (some neutrophil 

progenitors, monocyte-derived DCs, osteoclasts, megakaryocytes and erythroblasts). This 

could be partially explained by the fact that germcenterB cells have the consensus epigenome 

with the highest number of active enhancer regions. 
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Figure 3. 4. Enhancer Activity profiles in haematopoietic cells. (A) The graph illustrates the 

frequency distribution of activity profiles within the entire set of active enhancers (AEs) 

identified across haematopoietic cells. The distribution is notably left-skewed, with the number 

of AE bins associated with each activity profile ranging from 1 to 75,814. The lower quantile 



is 1, and the upper quantile is 2. The enclosed red dotted rectangle delineates the top 100 most 

frequent profiles, offering a closer view of their distribution. (B) The graph showcases the 

cumulative frequency of activity profiles, emphasising that the foremost 100 profiles, among 

the more than 100,000 total profiles, collectively represent 60% of the total AE bins. 

Intriguingly, a mere 1,856 profiles are required to encapsulate 80% of the total active enhancers. 

This highlights the concentrated nature of the most prevalent activity profiles and underscores 

their significant contribution to the overall enhancer landscape. (C) Top 100 most frequently 

observed active enhancer activity profiles. 

 

 

3.3. Discussion. 

The BLUEPRINT Consortium's epigenomic dataset has been pivotal in understanding 

epigenetics in haematopoietic differentiation (Cieslak et al., 2020; Grassi et al., 2018), 

differences between mature cell types (L. Chen et al., 2016; Javierre et al., 2016; Petersen et 

al., 2017), response to environmental stimuli (Ecker et al., 2017)  and in complex diseases (Astle 

et al., 2016a; Beekman et al., 2018a).  However, a gap in knowledge existed due to previous 

chromatin state analyses focusing on subsets of BLUEPRINT data and utilising different 

models, leading to non-comparable results.  

Addressing prior limitations, I generated a comprehensive collection of epigenomic landscapes 

of human haematopoietic cells by training a chromatin states model with the entire 

BLUEPRINT dataset. This dataset consists of chromatin state maps for 107 individual primary 

haematopoietic samples, encompassing 31 cell types, with up to 12 replicates per cell type.  

The chromatin state maps generated in this PhD project facilitate in-depth analysis of the 

epigenomic landscape of haematopoietic cells, providing accurate (200bp) localisation of 

repressed regions, heterochromatin, active genes, and promoters, as well as active and poised 

enhancers across the genome. To enable a standardised comparison of epigenomic features 

across diverse haematopoietic cell types, I also generated consensus epigenomes per cell type, 

for those with at least two biological replicates. This dataset offers an invaluable resource for 

researchers delving into the role of gene regulation in cell differentiation and disease.   

Furthermore, there are different sets of cell types in our dataset whose chromatin state-based 

epigenomes have not been published yet and would be interesting to study—for example, 

eosinophils and erythroblasts, cord and adult endothelial cells and mesenchymal cells. In 

addition to studying the difference in the epigenomes between cell types, differences in 

epigenomes of the same cell type by sex or by sampled tissue could be studied, given the 
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availability of samples from men and women and some cell types being sampled from different 

tissues. 

In this study, I observed a reduced number of enhancers in eosinophils and CD4+ T cells 

compared to other hematopoietic cell types. This observation could be attributed to both 

technical and biological factors. Technical challenges associated with performing ChIP-seq on 

these specific cell types might limit the accurate detection of enhancers. Eosinophils are 

relatively rare in peripheral blood (Kim & Jung, 2020), making their isolation and enrichment 

more challenging. This rarity could lead to lower input material for ChIP-seq and potentially 

hinder enhancer identification. Unfortunately, the BLUEPRINT Consortium did not make this 

information available. 

One biological reason for these results could be the activation state of these cell types in blood. 

Eosinophils in blood are not typically activated by external stimuli stimuli (Gurtner et al., 2023; 

Barnig et al., 2015), which could be accompanied by a more quiescent chromatin state with 

fewer active enhancers. This idea is further supported by the fact that eosinophils at different 

activation states exhibit distinct transcriptional profiles (Gurtner et al., 2023). 

Similarly, most circulating CD4+ T cells are in a resting state, meaning they are not actively 

proliferating or responding to antigens (Subbannayya et al., 2021). These resting T cells have a 

distinct epigenomic profile characterised by limited expression of gene sets associated with 

more differentiated states (Rose et al., 2023). Additionally, CD4+ T cells are known for their 

high heterogeneity due to various activation states and subsets (Subbannayya et al., 2021; Rose 

et al., 2023), which might contribute to the variability in active enhancer sets among replicates 

and a reduced number of consensus enhancers. 

Lastly, it is important to note that the reported number of enhancer regions in this study does 

not necessarily reflect the count of distinct functional enhancer units. Instead, they indicate the 

overall extension of the epigenome covered by enhancers. A higher count of AE bins could 

imply either a greater number of individual enhancers or larger enhancer regions within the cell 

type's epigenome. Future analysis would be necessary to identify which of the two scenarios 

prevail. For instance, we could segment the genome into 5Kb windows and assess enhancer 

density within these windows. This approach could reveal whether enhancers are 

predominantly clustered in a few large regions or scattered across multiple smaller ones. 

Quantifying AE bins revealed that a substantial majority (74%) are consensus AE in at least 

one cell type, indicating lineage-associated rather than stimuli-responsive enhancers (26%), 

which may be operating in a context-dependent manner. I also observed that from the set of 



enhancers active in each cell type, on average, only 10% are cell type-specific. This low 

percentage of difference might be attributed to their close evolutionary relationship, as they 

share a common ancestor and embryological origin in the lateral plate mesoderm (Menegatti et 

al., 2019), therefore highlighting for future studies the importance of considering that defects 

in enhancers, even if discovered in a single haematopoietic cell type, may be affecting 

additional haematopoietic cell types as well.  

While it is simpler to assess the impact of cell type-specific enhancers, shared elements present 

a more complex scenario. Investigating whether these enhancers act on the same target genes 

in different cell types would be invaluable. This idea is supported by Javierre et al., who 

demonstrated consistent connections between enhancers and gene promoters across 

haematopoietic lineages. However, experimental validation is essential to confirm these 

connections (Javierre et al., 2016).  

Our contribution to this scientific question was performing detailed enhancer dynamics analysis 

and providing a comprehensive annotation for each active AE bin in the dataset, specifying the 

cell types where it exhibits an active chromatin state. I also examined the distribution of unique 

activity profiles across enhancers, highlighting that a relatively small subset covers a significant 

proportion (80%) of consensus AE bins. My analysis of enhancer dynamics establishes a solid 

groundwork for subsequent exploration and experimentation. 

  



63 

 

Chapter 4. Linking haematopoietic enhancers to complex disease 

genetic risk. 
 

A vast collection of associations between genetic variants and complex diseases is available 

today. However, interpreting them is challenging due to the implication of non-coding regions 

in most cases. Only a handful of them have been experimentally validated. In an effort to 

contribute to more testable hypotheses, I integrated data from approximately 900 GWAS studies 

with our previously generated catalogue of haematopoietic enhancer annotations. I identified 

enhancer sets with specific activity profiles enriched in the disease-associated loci of 300 

complex traits. These results provide a valuable collection of disease-enhancer-cell type 

associations that have the potential to guide the design of future experimental validations and 

contribute to the understanding of complex disease mechanisms. 

 

4.1. Introduction.  

The development of complex diseases depends on a combination of genetic, environmental, 

and lifestyle factors.  (Jonkers & Wijmenga, 2017; Smith et al., 2005). Thanks to GWAS studies, 

many genomic loci have been associated with complex diseases, and it has been discovered that 

susceptibility to complex traits generally involves multiple genomic regions, each contributing 

a small effect (Visscher et al., 2017). A large collection of GWAS results has been compiled 

through the years and is available in prominent databases (Buniello et al., 2019; Watanabe et 

al., 2019).  

The majority of the identified disease-associated variants are non-coding (Claringbould & 

Zaugg, 2021) with potential regulatory functions (Farh et al., 2015; Maurano et al., 2012; X. 

Wang & Goldstein, 2020), which complicates the assessment of the impact that genetic 

variation has in the phenotypes.  A handful of these GWAS loci have already been validated as 

causal variants with direct insight into the underlying disease biology (Alsheikh et al., 2022). 

These validated non-coding disease variants are mostly within enhancers and at a distance of 

less than 10 Kb from the GWAS lead variant (Alsheikh et al., 2022).  

To perform experimental validations, it is necessary to have information not only on the 

potentially relevant disease-associated loci but also on the specific cell type that would be 

relevant for the assays (Calderon et al., 2017). This is because complex diseases predominantly 

affect specific organs or tissues, as commonly observed through the signs and symptoms 

presented by patients; for instance, neurodegenerative disorders, cardiovascular diseases, 



autoimmune diseases and systolic blood pressure (Hekselman & Yeger-Lotem, 2020). Once cell 

types are identified, they will likely be excellent candidates for cell type-specific functional 

investigations, including assays that will guide enhancer-gene linking or identification of active 

transcription factor–binding sites inside the trait-associated enhancers (Trynka et al., 2012). 

A simple mechanism for tissue-specific susceptibility is the exclusive or preferential expression 

of the causal gene in susceptible tissues - that is, its overexpression relative to its levels in 

unaffected tissues (Hekselman & Yeger-Lotem, 2020). Variants that influence cell-type-specific 

gene regulation are indeed major contributors to common disease risk, and these variants tend 

to be enriched inside enhancer clusters (Corradin et al., 2014; Corradin & Scacheri, 2014; Hnisz 

et al., 2013; Parker et al., 2013; Whyte et al., 2013). Therefore, examining the activity of the 

enhancers enriched in GWAS variants is a common methodology used to identify relevant 

tissues for the disease (Boix et al., 2021; Dimas et al., 2009; Ernst et al., 2011; Markunas et al., 

2017; Maurano et al., 2012; J. Nasser et al., 2021; Roadmap Epigenomics Consortium et al., 

2015; Ward & Kellis, 2012). 

All of these findings highlight the benefits of integrating enhancer maps with GWAS data to 

identify disease-relevant enhancers and employ their activity profiles to identify disease-

relevant cell types. Therefore, I would leverage the unexplored haematopoietic enhancers map 

generated in Chapter 3, which includes activity profiles across 31 different cell types, to 

interpret the functional effect of non-coding variants associated with five hundred traits from 

the GWAS Catalog. I will present the results of an enrichment analysis of enhancers with 

specific activity profiles across the trait-associated GWAS loci, revealing several potential 

disease-relevant enhancers and cell types that can guide future experimental validation. 

 

4.2. Results. 

4.2.1. Prioritising high-impact enhancers by focusing on the most common 

haematopoietic activity profiles. 

To understand how genetic variants within enhancers affect different cell types and their 

potential involvement in diseases, I will analyse the enrichment of AE bins with specific activity 

profiles in genomic regions associated with complex traits.  

In the previous chapter (section 3.2.4), I discovered more than a hundred thousand unique 

activity profiles for consensus haematopoietic AE bins, and testing such a large number of 

groups is unfeasible in terms of computational time and resources.  However, I also found that 
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by including enhancers in the first 1,856 most frequent activity profiles, I could cover 80% of 

consensus AE bins, which is still a significant number but approximately 55 times smaller. 

Moreover, I found that by including just the top 100 most common profiles, I include 60% of 

the total consensus, which is a significant proportion. Therefore, I narrowed down the focus to 

the top 100 most prevalent activity profiles within the AE set, which offer a representative and 

resource-efficient subset for further analysis. 

Each of these top 100 AE activity profiles was observed across the genome in at least 900 AE 

bins and up to 75,814 bins. These profiles include cell type-specific AEs for most of the 

haematopoietic cell types in our dataset (23 out of the 27 cell types with consensus epigenomes), 

excluding only CD38- B-cells (CD38negB), mature eosinophil (meos), M0, and CD4T-specific 

AEs (Fig. 4.1).  

 

4.2.2. GWAS traits are linked to haematopoietic enhancers with specific 

activity profiles. 

In this section, my objective was to establish connections between haematopoietic enhancers 

and the non-coding genetic architecture of complex traits. I focused on AE bins, where AE 

represents bins annotated as either AeloE or AconE. Specifically, my attention was directed 

towards sets of AE bins displaying activity profiles within the top 100 most commonly observed 

in haematopoietic cells, as described in the previous section (section 4.2.1). I systematically 

assessed the enrichment of each set (100 sets) within 10 Kb windows centred on non-coding 

SNPs (11,060 SNPs) associated with complex traits (518 traits), 985 studies from the GWAS 

Catalogue (Buniello et al., 2019) were employed. Enrichment analyses were based on Fisher 

tests, and p-values were corrected for multiple testing using the Bonferroni method (adjusted 

p-value < 0.0001). For detailed methodology, please refer to section 2.6. 

This analysis uncovered 1,113 significant activity profile-trait associations. Specifically, 172 

out of 518 tested traits displayed significant associations with at least one and up to 15 different 

activity profiles. Most traits exhibited connections to numerous enhancer bins, showcasing 

multiple activity profiles across various cell types—typically up to 8 profiles involving up to 

12 cell types (Fig.4.2.). 

This analysis sheds light on the intricate relationship between diverse enhancer activity profiles 

and complex traits, emphasising the widespread and cell type-specific regulatory roles within 

the non-coding genetic architecture of complex phenotypes. 
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Figure 4. 1. The 100 activity profiles most frequently observed in hematopoietic AE. The 

heatmap displays the cell types involved in each profile, while the bar plots illustrate the number 

of AE bins in which each profile was identified. Profiles shown in blue represent AE active in 

multiple cell types, whereas those in red are cell type-specific AE. 

 

 

Figure 4. 2. Interplay between genetic susceptibility, enhancer dynamics, and cellular 

contexts in complex diseases. The figure illustrates that a single trait can be associated with 

numerous enhancers, each exhibiting unique activity profiles across various cell types. Density 

plots depict the distribution of different features linked to GWAS traits: (A) the number of 

activity profiles, (B) active enhancer bins, and  (C) cell types. (D) Displays the cell types in AE 

activity profiles associated with the top 5% GWAS traits from the analysis on panel C. The red 

dotted line indicates the density point until 95% of the traits are covered. The number of traits 

within the upper 10% is highlighted in bold red font, emphasising a subset of 5 traits with the 

most extreme values, denoted in bold blue font. 

 

4.2.3. Activity profiles of enhancers match with relevant cell types in complex 

traits aetiology. 

With the aim of understanding how distinct cell types may be involved in the genetic regulation 

of specific complex traits, I analysed the cell types involved in the activity patterns of enhancers 



enriched in genomic regions associated with different classes of traits, categorised based on 

their biological implications. Results are summarised in Table 4.1. The group of traits 

associated with autoimmune diseases and inflammation stands out by displaying the largest 

median value for AE bins and cell types associated with them. 

 

Table 4. 1. Summary of results from the enrichment analysis. The table outlines the 

characteristics of traits across different groups. The table includes details such as the number of 

traits with significant results, the number of studies per trait demonstrating significance, the 

count of activity profiles exhibiting substantial enrichment, the number of enhancers within 

those profiles overlapping with loci associated with traits, and the total count of cell types 

involved in the activity profiles significantly associated with traits. 

Abbreviations:  number (num.). * values separated by a comma represent the minimum, 

maximum and median of the number of associated entities.  

Figure 4.3 illustrates three representative trait groups—cardiovascular disease, cancer, and 

autoimmune diseases—depicting the cell types where enhancers associated with each trait are 

active. In cardiovascular disease, macrophages and DCs play a predominant role, with 

additional involvement of endothelial and mesenchymal cells (Fig. 4.3.A). Various stages of B 

cell differentiation, DCs, and effector memory CD8 T cells (effmemCD8T) exhibit a prevalent 

role in autoimmune conditions (Fig. 4.3.B). Interestingly, traits associated with inflammatory 

bowel diseases, such as ulcerative colitis and Crohn's disease, which are highly related 

conditions, do not exhibit clustering based on enhancer activity profiles (Fig. 4.3.B). 

Trait group  um. 

GWAS traits 

GWAS 

studies* 

Activity 

profiles* 

AE bins* Cell 

types* 

Anthropometric measures 25 1, 5, 1 1, 9, 2 5, 89, 19 2, 12, 3 

Biochemical measures 22 1, 3, 1 1, 7, 2 8, 93, 30 2, 15, 4 

Cancer and related traits 39 1, 8, 1 1, 10, 2 5, 193, 18 1, 12, 4 

Cardiovascular/Glycaemic 25 1, 5, 1 1, 8, 2 5, 175, 33 2, 11, 4 

Neuro-cognitive traits 48 1, 8, 1 1, 17, 1 4, 162, 15 2, 15, 3 

Eye related traits 13 1, 2, 1 1, 4, 2 7, 52, 20 2, 10, 4 

Haematological traits 18 1, 5, 1 1, 5, 2 6, 169, 44 2, 12, 4 

Immune and Inflammatory 30 1, 12, 1 1, 18, 3 4, 635, 56 2, 18, 7 

Lipids related traits  16 1, 2, 1 1, 5, 2 8, 132, 22 2, 7, 4 

Cardiovascular  Risk traits 23 1, 11, 2 1, 14, 4 5, 431, 48 2, 14, 6 

Other traits 20 1, 3, 1 1, 5, 2 5, 69, 22 2, 13, 3 

Other Medical Conditions 54 1, 7, 1 1, 10, 2 6, 162, 18 1, 13, 4 

Substance use/dependence 7 1, 3, 1 1, 3, 1 3, 40, 13 1, 5, 2  
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Enhancer-linked cell types in cardiovascular traits
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Enhancer-linked cell types in inflammation traits
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Enhancer-linked cell types in cancer traits
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Figure 4. 3. Example of cell types associated with three groups of complex diseases. The 

heatmap illustrates the various cell types participating in the activity profiles of AE associated 

with groups of GWAS traits related to specific pathological conditions, including (A) 

cardiovascular disease, (B) cancer, and (C) autoimmune diseases. A zoomable version of the 

figure is available here. 

A substantial group of traits such as prostate, testicular germ cell, breast, cervical, pancreatic 

and bladder cancer and some leukaemias and lymphomas indicate the involvement of different 

stages of B cell differentiation in enhancer-mediated susceptibility. Endothelial and 

mesenchymal cells seem to play a role in another set of cancer traits, among them melanoma, 

ovarian, epithelial ovarian, thyroid and lung cancer. Only a limited number of cancer traits are 

associated with myeloid cells,  

such as  acute lymphoblastic leukaemia, colorectal cancer and diffuse large B cell lymphoma. 

Enhancers linked to adverse responses to chemotherapy exhibit different activity profiles, with 

anti-microtubule drugs being associated with neutrophils, paclitaxel and paclitaxel + 

carboplatin with monocyte lineage cells, and carboplatin with endothelial cells (Fig. 4.3.C). 

4.2.4. Non-coding SNPs in adaptive immune cells increase Crohn's disease risk, 

while those in innate immune cells increase the risk of ulcerative colitis. 

Inflammatory Bowel Disease (IBD) is a complex and chronic inflammatory condition of the 

gastrointestinal tract, encompassing two major forms: Ulcerative Colitis (UC) and Crohn's 

Disease (CD). IBD presents a formidable challenge in clinical differentiation due to overlapping 

clinical presentations such as abdominal pain, diarrhoea, and fatigue, and shared inflammatory 

characteristics within the digestive system (Colombel et al., 2019). UC typically presents with 

inflammation limited to the colon, spreading proximally from the rectum in a continuous 

fashion, whereas CD often spares the rectum and can affect any part of the gastrointestinal tract 

from the mouth to the anus (Yu & Rodriguez, 2017). Diagnostic tests like endoscopy, imaging, 

and biopsies are often necessary to differentiate them, but often, these may not be definitive 

(Colombel et al., 2019). 

The interplay of host genetics, immune dysregulation, and environmental factors contribute to 

the aetiology of these conditions (T.-C. Liu & Stappenbeck, 2016). The genetic complexity of 

IBD  becomes evident when considering that 250 loci comprising both common and rare 

variants have been associated with the disease, and most identified susceptibility alleles are 

common variants located in the non-coding regions with modest effects in disease development 

(Anderson et al., 2011; De Lange et al., 2017; Ellinghaus et al., 2016; Hong et al., 2018; Julià 

https://srv2.zoomable.ca/viewer.php?i=img6fc2059db43dc08c_Figure.4.5#zoom=0.74300&x=0.50909&y=0.26590
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et al., 2014; Kakuta et al., 2018; Kenny et al., 2012; J. Z. Liu et al., 2015; Parkes et al., 2007; 

Yamazaki et al., 2013; Yang et al., 2014).  

Since genetic factors contribute to the risk of developing IBD and are mostly non-coding 

variants (T.-C. Liu & Stappenbeck, 2016), understanding the molecular underpinnings of UC 

and CD requires exploration of the epigenomic landscape in these loci, especially the enhancer 

regions. Therefore, I investigated enhancer activity profiles associated with non-coding SNPs 

linked to IBD traits. 

Our results revealed distinctions between UC and CD. Notably, enhancers associated with UC 

displayed activity in myeloid cell lineages, such as monocytes and neutrophils, as well as 

endothelial and mesenchymal cells and B cell lineage. On the other hand, enhancers linked to 

CD exhibited activity in lymphoid cell types, including effememCD8T cells and germcenterB 

and naïve B cells. Enrichment of enhancers active in DCs was found in loci associated with 

both diseases (Fig. 4.4.).  

 

Figure 4. 4. Exploring Enhancer Enrichment in IBD-associated loci. The dot plot shows the 

activity profiles of enhancers enriched in associated loci associated with three IBD-related 

traits.  Each dot intersecting a trait indicates that there is at least one significant p-adjusted 

value supporting the enrichment. The colour of the dot represents the number of enhancer bins 

in the enriched activity profile. 

 



4.2.5. Ulcerative colitis-associated enhancers potentially target key players in 

NETosis. 

Delving into the specific immune responses associated with UC and CD, it is crucial to consider 

the role of neutrophils in the disease mechanism. In the context of IBD, neutrophil infiltration 

in the intestine correlates strongly with disease activity, particularly in UC (Akpinar et al., 2018; 

Therrien et al., 2019; Zhou et al., 2018). This phenomenon is a reliable component of UC 

disease scoring systems (Jairath et al., 2019).  

In a healthy intestine, damage to the intestinal barrier and bacteria-derived molecules triggers 

the recruitment of neutrophils from the circulation to the inflamed tissue (Drury et al., 2021; 

Ley et al., 2007). Recruited neutrophils participate in the elimination of microorganisms 

through phagocytosis, degranulation, reactive oxygen species (ROS) generation, and the release 

of neutrophil extracellular traps (NETs) (Mutua & Gershwin, 2020). Once their functions are 

completed in healthy tissues, neutrophils undergo apoptosis and efferocytosis, facilitating the 

resolution of inflammation, tissue repair, and a return to normal tissue homeostasis (McCracken 

& Allen, 2014; Scannell et al., 2007). 

NETosis is a form of programmed cell death involving the release of DNA and antimicrobial 

proteins. Notably, increased NETs have been identified in the inflamed gut mucosa, stool, and 

blood of UC patients (M. Cao et al., 2017; Dinallo et al., 2019; He et al., 2016), and their 

accumulation in the colon is associated with tissue damage and inflammation (T. Li et al., 2020). 

Accumulation of NETs in the inflamed gut also boosts the production of neutrophil activation 

cytokines by macrophages, contributing to an amplification loop.  

Here, I have discovered that UC-associated enhancers play a crucial role in regulating 

neutrophil activity. For instance, I have identified neutrophil enhancers in UC risk loci in gene-

depleted regions containing SNPs rs11676348 and rs2310173 (Fig. 4.5).  Using data from 

EpiMap (Boix et al., 2021), I found that these regions are annotated with the chromatin state 

associated with ZNF genes & repeats in most samples (Fig. A3.A). This data is compatible with 

our findings because in our epigenomic maps, the enhancer is specific to neutrophils, a cell type 

not included in EpiMap. Similarly, the EpiMap data supports our finding of the regions 

overlapping with the enhancer on the right side of rs2310173. In their annotations, this region 

appears as a quiescent/low state in nearly half of the samples and as a weak enhancer (yellow) 

or active enhancer annotation in the rest (Fig. A3. A). This also fits with our findings, as the 

enhancer I identified is active in other BLUEPRINT myeloid cell types (such as dendritic cells,  
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Figure 4. 5. The epigenomic landscape of UC-associated genomic region enriched with 

enhancers. Neutrophil enhancers enriched in a region associated with UC SNP rs11676348 in 

panel A and myeloid enhancers enriched in a region containing UC SNP (rs2310173) in panel 

B. Both regions are intergenic but the SNPs are eQTLs of genes (indicated with arrows) related 

to NETosis (see text for details). The SNP rs11676348 is an eQTL of CXCR1 and CXCR2, while 

rs2310173 is an eQTL of ILR1 and ILR2.  

 

monocytes, and osteoclast), and the EpiMap included several samples of monocytes and 

dendritic cells. 

By using eQTL data from the eQTL Catalogue (Kerimov et al., 2021b), I identified that the 

SNP rs11676348 is an eQTL in neutrophils of chemokine (CXCL-8) receptor genes CXCR1 

(study: CEDAR, p value:1.0 e-8, effect size: -0.123, distance to TSS: 21,539 bp) and CXCR2 

(study: BLUEPRINT, p value:1.1 e-8, effect size: -0.063, distance to TSS: 20,134) (Fig. 4.5.A). 

Furthermore, using eQTL data from The GTEX Consortium (Aguet et al., 2020), I have found 

that the SNP rs2310173, located upstream enhancers active in myeloid cells, including 

neutrophils (Fig 4.5.B), is an eQTL of two genes encoding for IL-1β receptors. These genes are 

IL1R1 (study: GTEX, tissue: skin-sun-exposed, p-value: 5.3 e-5, variant effect in expression: 

increase, distance to TSS: 17,377 bp) and IL1R2 (study: GTEX, tissue: cultured fibroblasts, p-

value: 9.1 e-6, variant effect in expression: increase, distance to TSS: 55,207 bp). More details 

of the genomic context of these GTEX eQTLs, including genomic context and expression 

effects are presented in Fig. A4. 

I also explored chromatin long-range interaction data for neutrophils generated by Javierre et 

al. (2016). However, there was no evidence of interaction between the gene promoters and any 

fragment containing the risk variants in any of the haematopoietic cell types included in their 

study. This could be due to the distance between the genes and the variants being lower than 

the typical resolution of Hi-C and PC Hi-C experiments. For instance, Javierre et al. reported a 

median linear distance of 331 Kb between promoters and their interacting regions in their study 

(Javierre et al., 2016). To the best of my knowledge, there is currently no high-resolution Hi-C 

dataset available specifically generated for neutrophils. 

These results are significant because CXCL-8 and IL-1β are key cytokines and chemokines 

known to induce NETosis (Abrams et al., 2019; Gillot et al., 2021; Meher et al., 2018; Mitroulis 

et al., 2011) and CXCR1 and CXCR2 are the receptors for CXCL-8 (Baggiolini, 2000; Ishimoto 

et al., 2023; M. W. Nasser et al., 2009) while IL1R1 and IL1R2 receptors recognise IL-1β 

(Boraschi, 2022; Boraschi & Tagliabue, 2013). The specificity of these enhancers highlights the 

importance of neutrophils in the modulation of immune responses associated with UC. This 



75 

 

functional connection suggests that these enhancers play a role in the dysregulation of 

neutrophil activities, including the release of NETs. This contributes to the inflammatory 

processes observed in UC. 

 

4.3. Discussion. 

Complex diseases result from a combination of genetic, environmental, and lifestyle factors. 

Thanks to GWAS, many genomic loci have been associated with complex diseases, and it has 

been discovered that genetic associations with complex diseases generally involve multiple 

non-coding regions, each contributing a small effect (Jonkers & Wijmenga, 2017). 

I leveraged information on non-coding GWAS variants from the GWAS Catalog (Buniello et 

al., 2019) to understand the potential involvement of enhancers in dysregulating the gene 

expression of disease-relevant genes, and identify the cell types in which those enhancers can 

induce a phenotypic change. To that end, I focused on the comprehensive catalogue of 

haematopoietic enhancers and enhancer activity profiles generated in Chapter 3. I narrowed 

down my analysis to the top 100 most commonly observed activity profiles among 

haematopoietic enhancers, prioritising the probability of relevance of phenotypic effects on 

disease variants and ensuring computational resource efficiency.  

Our enrichment analysis of enhancers with specific activity profiles in proximity to non-coding 

SNPs associated with complex traits uncovered 1,113 significant activity profile-trait 

associations. I also provided quantification of the complexity of these diseases in terms of the 

number of enhancer bins potentially affected by enhancer dysfunction in specific sets of cell 

types. In particular, autoimmune diseases and inflammation-related traits stand out, with 

associations with multiple enhancer activity profiles. 

Other researchers have integrated enhancer maps for various cell types and GWAS data to 

investigate whether disease-associated variants are more prevalent in enhancer regions 

compared to other genetic variants (Markunas et al., 2017; J. Nasser et al., 2021; Roadmap 

Epigenomics Consortium et al., 2015). Their focus is on the total set of enhancers active in a 

given cell type, without acknowledging the potential for enhancers to be either cell type-specific 

or active across multiple cell types. Additionally, their analysis requires fine mapping of 

variants, aiming to identify specific point mutations within enhancers with potential phenotypic 

effects.  



In contrast, my enrichment analysis takes an enhancer-centric approach exploring whether 

enhancer bins of 200bp accumulate within a fixed-size window centred on disease-associated 

variants. I believe that enhancer-centric approaches, pinpointing the whole functionally relevant 

regions and considering their multicellular activity profiles, could be more appropriate for 

understanding disease mechanisms than variant-centric approaches aiming to identify specific 

point mutations within enhancers. This is because disease-associated tag variants may be 

located on clusters of multiple enhancers or longer enhancers, both of which are known to have 

greater impacts on gene expression than single or shorter enhancers (Li & Wunderlich, 2017; 

Khan et al., 2018; Quang et al., 2015; Parker et al., 2013; Joseph W. Blayney et al., 2023). 

Besides, they are more enriched in transcription factor binding sites than their counterparts and, 

therefore may contain multiple causal variants (Michida et al., 2020; Parker et al., 2013; 

Grosveld et al., 2021), whether already fine-mapped or yet to be discovered. Recently, Engritz 

et al., observed that the proximity between enhancers is associated with the size of their impact 

on gene expression, close by enhancers have a super-additive effect on gene expression changes 

and of one enhancer in the cluster can impact the function of other enhancers in its vicinity 

(Gschwind et al., 2023).  

A recent study supports the idea that, although some specific points inside an enhancer may 

have a higher impact on gene expression, the whole region is important to achieve the 

enhancer's full physiological potential (Joseph W Blayney et al., 2023). Blayney et al. (2023) 

conducted a combinatorial reconstruction of the well-characterised mouse a-globin super-

enhancer (SE), shedding light on the cooperative mechanisms among its constituent elements 

to impact target gene expression. All five SE components (R1, R2, R3, Rm, and R4) share 

enhancer chromatin signatures, but only two of them (R1 and R2) act as classical enhancers, 

synergistically increasing target gene expression by 450-fold when combined, while 

individually, they only increase it by 100-fold each. These additional elements (R3, Rm, and 

R4), termed "facilitators," enhance the activity of R1 and R2, but they do not increase target 

gene expression by themselves (Joseph W Blayney et al., 2023). Results from other studies 

suggest that this phenomenon is present in other enhancers across the genome (Hnisz et al., 

2015; Sahu et al., 2022; Song et al., 2019).  

It's worth noting that activity profiles may be incomplete, as enhancers could be active in 

additional cell types not included in our dataset. Despite this, the significance of my results is 

noteworthy. I utilised the most comprehensive set of enhancers for immune cells generated to 

date. These findings establish connections between more than 300 complex traits, including 

those related to cardiovascular disease, neurocognitive function, cancer, autoimmune disease, 



77 

 

and other diseases, with regions enriched in enhancers exhibiting specific activity profiles 

across haematopoietic cell types. This compilation serves as a valuable resource, offering 

insights for the design of future experiments to validate the phenotypic effects of enhancer 

disruption on disease risk. m 

To exemplify the potential utility of my results, I used IBD as a prototypic example, highlighting 

the distinctions between activity profiles associated with UC and CD. Particularly, I found that 

UC is more associated with enhancers in myeloid cell types and CD with enhancers in lymphoid 

cell types.  My findings also suggest that DC enhancers are associated with both UC and CD, 

corroborating previously published findings on the role of DC enhancers in IBD (Nasser et al., 

2021). Another study which examined the enrichment of GWAS SNPs in DNase I hotspots 

using data from the Roadmap Epigenomics consortium discovered an enrichment of CD risk 

SNPs in DNase I hotspots of B and T cells, whereas UC risk SNPs where enriched in DNase I 

hotspots of monocytes (Breeze, Haugen, et al., 2022). These findings support our own results. 

However, Breeze et al. also observed that CD-associated GWAS SNPs were enriched in DNase 

I hotspots of NK and B cells, which we did not find in our analysis. This discrepancy might be 

due to DNase I hotspots encompassing other regions besides the active enhancers considered 

in our study. 

I focused on neutrophil enhancers associated with UC and went one step further in identifying 

their potential gene targets, which appear to regulate key genes encoding proteins that play a 

role in NETosis (Abrams et al., 2019; Gillot et al., 2021; Meher et al., 2018; Mitroulis et al., 

2011): specifically, CXCR1 and CXCR2 receptors of CXCL-8, and IL1R1 and IL1R2 receptors 

of IL-1β. Therefore, I proposed that some neutrophil enhancers are involved in the regulation 

of NETosis in UC. Previous studies have implicated these genes in UC (De Lange et al., 2017; 

Jostins et al., 2012), but have not shown the mapping of enhancers in the region.  

A recent meta-analysis of GWAS data, which included IBD genetic associations for individuals 

of European and East Asian ancestry, found that genetic effects are generally consistent across 

ancestries (Liu et al., 2023). The analysis indicated that genetics underlying CD appear to be 

more ancestry-dependent than those for UC (Liu et al., 2023). It is worth noting that these 

interesting genetic associations were not included in my dissertation because they were not 

available in the GWAS Catalog at the time I performed my analysis. 

Among their results on chromosome 2, they identified CXCR1 as a gene associated with the 

IBD risk variant rs11669031. However, CXCR2, IL1R1, and IL1R2 were not mentioned. 

According to information available on the Open Targets database (Mountjoy et al., 2021; 



Ghoussaini et al., 2021), this rs11669031 is an eQTL and an sQTL (splicing Quantitative Trait 

Locus) for CXCR2, which is located 27,450 bp away. Additionally, Liu et al. reported an IBD 

risk variant within the intron of the IL18R1 gene. IL18R1 encodes a component of the IL18 

receptor complex and is located upstream of IL1R2 and IL1R1(Liu et al., 2023). I believe these 

gene associations could also support the hypothesis of non-coding variants regulating NETosis 

in UC. Some experimental evidence suggests that the expression of another component of the 

IL18 receptor complex, IL18RAP, is elevated in neutrophils of patients with Lupus 

erythematosus (Ma et al., 2021). These neutrophils showed enhanced IL18-mediated 

production of ROS species. The authors discuss that this may be attributed to high levels of IFN 

in serum, which have been shown to prime neutrophils to undergo NETosis (Ma et al., 2021). 

In my study, I found that the distance between the NETosis-related SNP variants in the enhancer 

regions associated with UC and their potential enhancer gene targets (eGenes) ranges between 

17,000 bp and 55,000 bp. These distances are in the expected range according to previous 

studies that, by using the ABC model (Fulco et al., 2019), identified target genes of IBD-

associated enhancers in cell types different from neutrophils (Nasser et al., 2021). They found 

that the median distance between the SNPs associated with IBD in the enhancer regions and the 

TSS of the target genes is 18, 848 bp (IQR: 57,170 bp, MEAN: 60,781 bp) (Nasser et al., 2021).  

These examples showcase the utility of our dataset for proposing links between enhancers and 

disease-related genes, information that could guide future experiments and contribute to our 

understanding of disease mechanisms.  
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Chapter 5. Macrophage enhancers are associated with 

cardiovascular disease risk by regulating the expression of key 

genes in lipid metabolism.  

 

Building on the identification of cell types affected by genetic defects in enhancers (Chapter 

4), it is equally crucial to pinpoint the specific genes whose expression is dysregulated in those 

cell types. This enhances our understanding of the directly affected biological processes and 

provides a refined starting point for designing experimental models crucial to understanding 

the disease mechanism. In Chapter 4, I identified enhancers associated with cardiovascular 

disease, the leading cause of death globally, which were predominantly active in macrophage 

subtypes. In this chapter, I investigated the genes targeted by those enhancers and mapped their 

functions to specific steps in the three distinct lipid metabolism pathways.  

 

5.1. Introduction. 

Cardiovascular disease (CVD) is a broad term used to describe a class of diseases that affect 

the heart (cardio) or blood vessels (vascular). CVDs cause around a quarter (27 %) of all deaths 

in the UK, more than 170000 deaths a year (British Heart Foundation, 2024). They are a major 

global health issue and a leading cause of morbidity and mortality worldwide (World Health 

Organization, 2021). As in other complex diseases, the development of CVDs is influenced by 

genetic predisposition, lifestyle, and environmental factors (Tada et al., 2022; Watkins & 

Farrall, 2006; Mozaffarian et al., 2008).  

The underlying cause of several CVDs, including coronary artery disease, carotid artery 

disease, and peripheral artery disease, is atherosclerosis (Gisterå & Hansson, 2017).  The 

development of atherosclerosis is influenced by factors such as sex, age, family history, 

hypertension, smoking, dyslipidemia, metabolic syndrome (Fruchart et al., 2004), obesity and 

type 2 diabetes (Lechner et al., 2020). 

 

5.1.1. Atherosclerosis. 

Atherosclerosis is a progressive inflammatory and lipid disorder. According to our current 

understanding of the pathology, it arises due to the accumulation of cholesterol-carrying low-

density lipoproteins (LDLs) along the endothelial lining of blood vessels. Various 

modifications of the retained LDL, such as oxidation, mimic damage-associated molecular 



patterns (DAMPs) and trigger an inflammatory response. This response leads to the activation 

of endothelial and vascular smooth muscle cells (SMCs) and the recruitment of immunocytes 

such as monocyte-derived macrophages, T cells, B cells, dendritic cells, and mast cells (Tabas 

et al., 2015). Immunocytes contribute to the local build-up and amplification loop of the 

inflammatory response. This build-up is called the “atherosclerotic plaque” and results in the 

narrowing of the area of the vessel for blood. Plaque formation at sites of vascular curvature 

and bifurcation makes them susceptible to rupture (Williams & Tabas, 1995; Skålén et al., 

2002).  

 

5.1.2. Dyslipidaemia. 

Dyslipidaemia is defined as an abnormally high concentration of triglycerides and/or 

cholesterol in the blood (Stein et al., 2019). Lipids are transported through the bloodstream by 

lipoproteins such as the High-Density Lipoprotein (HDL), the Very Low-Density Lipoprotein 

(VLDL) and LDL; measuring their levels in plasma is used to assess dyslipidaemia and serves 

as established biomarkers for atherosclerotic CVD (Schunkert et al., 2011; Kathiresan & 

Srivastava, 2012; Tada et al., 2022). Researchers have explored genetic determinants of lipid 

blood levels in an effort to comprehend susceptibility to CVD. 

 

It has been discovered that monogenic and oligogenic mutations inside the protein-coding genes 

cause severe cases of dyslipidaemia. For instance, familial hypercholesterolemia (FH), 

characterised by extremely elevated levels of cholesterol in plasma, is caused by mutations 

inside genes such as LDLR, APOB and PCSK9 (Trinder et al., 2020). Disease manifestation in 

Europeans is mainly attributed (over 70% of instances) to mutations in the LDLR gene. ApoB 

gene mutations contribute to 2-5% of FH cases, while PCSK9 gene mutations account for less 

than 1% (Henderson et al., 2016; Singh & Bittner, 2015; Vallejo-Vaz & Ray, 2018). About 15% 

of FH cases result from either polygenic factors or specific mutations like those in the APOE 

gene, but their prevalence remains unknown (Henderson et al., 2016). The prevalence of FH is 

typically 1 in 200–250, but in certain populations with founder effects, the prevalence is higher. 

For instance, in Ashkenazi Jews, it is as high as 1 in 67 (Henderson et al., 2016).   

 

Severe cases of hypertriglyceridemia (extremely elevated levels of triglycerides in plasma) are 

caused by rare mutations in genes such as LPL, APOC2, APOA5, LMF1, GPIHBP1, and GPD1  

(Connelly et al., 1987; Dorfmeister et al., 2008; Emi et al., 1990; R. M. Fisher et al., 1995; Hata 

et al., 1990; Hegele et al., 2014; Henderson et al., 1991; Ishimura-Oka et al., 1992; Ma et al., 
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1991; Mailly et al., 1995; Reymer et al., 1995; C. J. D. Ross et al., 2005; J. Wang et al., 2007, 

2007, 2007). Finally, dyslipidaemia of HDL cholesterol levels can be presented when HDL 

levels are lower than the normal range or when they are extremely high (Rohatgi et al., 2021). 

Bi-allelic loss-of-function mutations in APOA1 cause HDL deficiency (Zanoni & Von 

Eckardstein, 2020), while hyperalphalipoproteinaemia (extremely elevated levels of HDL in 

plasma) is caused by mutations in CETP,  LIPC, and APOC3 (Giammanco et al., 2021).  These 

severe forms of dyslipidaemias confer a high risk of CVD and the development of premature 

atherosclerosis. Their study has contributed to the understanding of the pathways of lipid 

metabolism as well as the design of current treatments available for dyslipidaemia (Endo, 

2010).  

 

Most cases of atherosclerotic CVD develop in people without those underlying penetrant 

mutations; hence, understanding genetic susceptibility in these common cases remains an 

ongoing task. GWAS in multi-ethnic populations have identified numerous variants associated 

with plasma levels of HDL, LDL and triglycerides. For instance, the levels of HDL cholesterol 

(HDL‑ C) are associated with non-coding variants in loci containing  ABCA1, APOA1, APOE, 

LIPC, and STARD3 genes (Teslovich et al., 2010; Willer et al., 2013; Do et al., 2013); plasma 

triglycerides levels are associated with non-coding variants in loci containing APOB, APOE, 

LPL and PLTP (Keebler et al., 2010, 2009; Lanktree et al., 2009; Teslovich et al., 2010; 

Johansen et al., 2011); and LDL cholesterol levels are associated with non-coding variants in 

loci containing APOA1, APOC1, APOB, LDLR, CYP7A1, VLDLR, LPA loci (Do et al., 2013; 

Willer et al., 2013). 

According to Alsheikh et al. (2022), who conducted a systematic review of the landscape of 

functionally validated non-coding GWAS variants across 130 human traits, only four non-

coding GWAS variants associated with CVD-related lipid traits have been experimentally 

validated (Alsheikh et al., 2022). These include two cis-regulatory variants targeting the gene 

GALNT2, which are associated with HDL levels (Roman et al., 2015), one variant associated 

with total cholesterol levels in coronary artery disease that affects the function of miRNA 

targeting the GOSR2 gene (Ghanbari et al., 2014), and a variant in the promoter of LDLR 

associated with hypercholesterolemia (De Castro-Orós et al., 2014).  

While there is no evidence of the functional validation of the link between most non-coding 

GWAS variants and the plasma lipid levels, the fact that mutations inside some of the genes 

near those variants cause severe tryglyceridemia (e.g. LPL), hypercholesterolemia (e.g. LDLR, 

APOB) and hyperalphalipoproteinemia (e.g. LIPC) supports the hypothesis that GWAS non-



coding variants associated with plasma lipid levels could be inside regulatory elements 

controlling the expression of lipid metabolism genes.  

 

5.1.3. Macrophages’ role in atherosclerosis. 

Macrophage phenotype and function are inherently tied to metabolic signals derived from their 

tissue environment (Buck et al., 2017; Van den Bossche et al., 2017). For example, 

Macrophages possess an efficient lipid-handling machinery; they can actively sense, engulf, 

store, export and burn lipids, and in lipid-rich tissues, they can process substantial lipid amounts 

(Yan & Horng, 2020; Remmerie & Scott, 2018; Vogel et al., 2022) 

Lipid-dense macrophages, termed ‘foam cells’, are the most abundant type of cells in 

atherosclerotic plaques (Vogel et al., 2022; Bobryshev et al., 2017; Robbins et al., 2013). At 

the initiation of atherosclerosis, monocytes attracted to the affected area will differentiate into 

tissue macrophages capable of taking up modified lipoproteins in an attempt to clear the 

neointima of hazardous material (Vogel et al., 2022; Remmerie & Scott, 2018). 

Lipid metabolism by macrophages is marked by three different processes: cholesterol uptake, 

esterification and efflux. Uncontrolled uptake of oxidised low-density lipoprotein (ox-LDL), 

excessive cholesterol esterification and/or impaired cholesterol release result in the 

accumulation of cholesterol ester stored as cytoplasmic lipid droplets and subsequently trigger 

the formation of foam cells(Yu et al., 2013; Maguire et al., 2019). Over the course of 

atherosclerosis, these cells accumulate within the arterial lining and will become apparent along 

the arterial wall in early atherosclerotic lesions (Yu et al., 2013; Wculek et al., 2022) (Fig. 5.1.) 

 

5.1.4. Preliminary results link macrophage enhancers to CVD risk. 

All the evidence mentioned above suggests that the accumulation of lipids in blood vessels, the 

transformation of macrophages into lipid-engulfing foam cells, and the accumulation of 

immunocytes that amplify the inflammation loop contribute to the development of common 

cases of atherosclerosis. However, it also highlights that the explicit functional role of genetic 

regions conferring susceptibility to these events remains elusive. 

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/cholesterol-esterification
https://www.sciencedirect.com/topics/medicine-and-dentistry/fat-droplet
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Figure 5. 1. Macrophages' role in atherosclerosis. Atherosclerosis is the main underlying 

cause of CVD and is characterised by the formation of plaques in arterial walls. Foam cells are 

the most abundant cells present in plaques. Accumulated foam cells in the plaques area actually 

lipid-laden macrophages that have ingested oxLDLs accumulated in the arterial walls. Figure 

adapted from (Eshghjoo et al., 2021)   

 

 

In the previous chapter, I discovered that GWAS loci associated with plasma levels of HDL, 

LDL, and triglycerides, as well as those associated with metabolic syndrome and other risk 

factors for CVD, are enriched in enhancers. Moreover, these enhancers are selectively activated 

in subsets of haematopoietic cell types, with the majority of them being specific to M1 and/or 

M2 macrophages. Refer to section 1.7 for a description of the M1/M2 macrophage in vitro 

model. 

In this chapter, I investigated those macrophage enhancers (M1 and M2) associated with CVD 

risk traits, identified their potential gene targets, and explored their respective functions in the 

search for overlapping biological processes that could help us understand how the aggregate 

contribution of non-coding variants predisposes to CVD. 

 

5.2. Results. 

5.2.1. Exploring enhancer activity in cardiovascular disease risk. 

In my GWAS enrichment analysis (section 4.2.3.), I made a noteworthy discovery regarding 

the relationship between non-coding SNPs associated with cardiovascular disease risk and 



enhancers specifically active in macrophages. These CVD-associated traits encompassed levels 

of LDL cholesterol, HDL cholesterol and triglycerides in the blood, metabolic syndrome, 

coronary artery disease, waist-hip ratio, and various other lipid-related characteristics (Fig. 5. 

2). I observed a significant enrichment of enhancers displaying distinct activity patterns across 

different haematopoietic cells, totalling 18 specific enhancer activity profiles (Fig. 5. 2).  

 

 
 

Figure 5. 2. Enhancer activity profiles associated with CVD risk. (A) The dot plot illustrates 

the activity profiles of enhancers enriched in loci associated with CVD risk-related traits. Each 

dot at the intersection of a trait and an activity profile indicates the presence of at least one 

GWAS study with a significant p-value (padj < 0.0001), supporting the enrichment for a trait. 

The colour of each dot corresponds to the minimum number of AE bins overlapping trait-

associated loci among GWAS studies for that trait. The size of the dot reflects the level of 

significance (max padj among the GWAS studies). Macrophage-specific enhancers are 

highlighted in blue boxes, highlighting their higher significance and number of enhancers 

compared to other profiles. Notably, I observed that macrophage enhancer bins are 

overrepresented (52%) among loci associated with CVD. (B) Schematic representation of the 

developmental hierarchy of macrophages.  

 

I  identified 133 loci containing active enhancer (AE) bins with activity profiles associated with 

CVD traits. Notably, a substantial portion (69 loci, 52 %) was associated with macrophage 

activity profiles, including M1, M2, M0, and various combinations thereof. These macrophage-

enriched enhancer regions spanned across 14 different chromosomes, as detailed in Table 5.1.  

I  merged trait-associated regions that overlapped or were at a distance of less than 10 Kb,  

A 

B 
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Table 5. 1.Genomic regions associated with CVD Risk and enriched in macrophage 

enhancers. Overview of chromosomal locations, region sizes, trait-associated SNPs and their 

corresponding eQTL genes in 17 genomic regions associated with CVD risk that contain 

macrophage enhancers with activity profiles showing significance in the enrichment analysis.

  chr Size 

(bp)  

SNPs Trait Activity 

Profile 

eGenes 

1 chr1 10000 rs17114036 Coronary artery 

disease 

M2 PLPP3 

2 chr2 10400 rs10211524 Metabolite levels M1|M0, M1 -- 

3 chr2 10000 rs895636 Metabolite levels M1|M0 SRBD1, PPM1B, 

PREPL, SIX3, 

LRPPRC, 

CAMKMT, 

PRKCE 

4 chr5 10000 rs6861681 Waist-hip ratio M2 CPEB4 

5 chr6 12200 rs1294410, rs1294421 Waist-hip ratio M2 RP1-80N2.2 

6 chr8 11900 rs1441756, rs2083637 Metabolic syndrome 

(bivariate traits), 

HDL cholesterol 

M1, M1|M0 PSD3, LPL 

7 chr8 26200 rs295, rs301, rs264, 

rs326, rs331, rs325, 

rs1059611, rs15285, 

rs13702, rs2197089, 

rs10096633, rs10105606, 

rs17482753 

Metabolic syndrome, 

Metabolic syndrome 

(bivariate traits), 

Coronary artery 

disease, HDL 

cholesterol, 

Triglycerides, Lipid 

metabolism 

phenotypes, 

Triglycerides-Blood 

Pressure (TG-BP), 

HDL Cholesterol - 

Triglycerides 

(HDLC-TG) 

M2, 

M2|M1, 

M2|M1|M0, 

M1,  

M1|M0 

LPL 

8 chr9 12900 rs4149310, rs2515629 Metabolite levels, 

HDL cholesterol 

M1, M1|M0 ABCA1 

9 chr1

0 

10000 rs7081678 Waist-hip ratio M1 MACORIS 

10 chr1

1 

19700 rs10838681, rs7120118 Metabolic syndrome, 

HDL cholesterol 

M1|M0, 

M2|M0, M2 

NR1H3,  MADD 

11 chr1

2 

10000 rs718314 Waist-hip ratio M1 SSPN, RP11-

283G6.4 

12 chr1

5 

12400 rs10468017, rs2043085, 

rs1532085 

Metabolic syndrome 

(bivariate traits), 

Metabolite levels 

M1 ALDH1A2 

13 chr1

5 

12700 rs2306786 Metabolite levels M1, M1|M0 MYO1E 

14 chr1

9 

34600 rs157580, rs157582, 

rs439401, rs445925, 

rs12721054 

HDL cholesterol, 

Metabolic syndrome, 

HDL Cholesterol - 

Triglycerides 

(HDLC-TG), 

Triglycerides, 

Metabolite levels 

M1|M0, 

M2|M0, 

M1, M2|M1 

TOMM40, APOE, 

APOC1 

15 chr2

0 

11200 rs4810479 Metabolite levels M1 PLTP 

16 chr2

2 

10000 rs12483959 Metabolite levels M2 PNPLA3 

17 chrX 10000 rs5031002 LDL cholesterol M1 OPHN1, STARD8, 

YIPF6 



 

resulting in 17 regions. Some of these regions contain full or partial open reading frames Table 

5.1.  Detailed methodology is in section 2.7. 

 

5.2.2 Using eQTL data to identify the target genes of CVD-associated 

enhancers. 

As previously explained in section 1.5., eQTL (expression quantitative trait loci) analysis is a 

method used to identify genetic variants associated with gene expression levels. When applied 

to study enhancers, eQTL analysis can help identify genetic variants that influence the 

expression of genes targeted by enhancers. The genes (eGenes) whose expression is correlated 

with the genotype of CVD-associated non-coding SNPs (eQTLs) are the potential enhancer 

targets. 

Using naïve macrophages eQTL data from Alasoo (2018) and Nedelec (2016), reprocessed by 

the eQTL Catalogue (Alasoo et al., 2018; Kerimov et al., 2021b; Nédélec et al., 2016), I 

discovered that 50 out of the 89 CVD-associated SNPs localised in macrophage-specific 

enhancer rich areas are eQTLs in macrophages. I confirmed that 28 of the genes that overlap 

with the 17 enhancer regions listed in Table 5.1. are eGenes of at least one of these eQTLs. 

eGenes are reported in Table 5.1. For instance, all GWAS SNPs at a region in chromosome 8, 

which is enriched with macrophage-specific active enhancers, are also eQTLs in macrophages, 

and their genotype is correlated with the expression of LPL gene (Fig. 5.3, Table 5.2). 
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Figure 5. 3. Example of the LPL region enriched in macrophage enhancers and eQTLs. 

The figure displays the consensus chromatin states across 31 BLUEPRINT cell types (upper 

panel) and the individual biological replicates for macrophages (bottom panel) at a region on 

chromosome 8. This region contains 12 SNPs associated with lipid metabolism-related traits 

(see Table 5.2.), all of which overlap with active enhancers specific to macrophages (coloured 

orange or purple). The enhancer-rich region partially overlaps with LPL, and all GWAS SNPs 

are also eQTLs of LPL in macrophages. 

 

 

 

 

 



Table 5. 2. GWAS traits associated with non-coding SNPs in a region enriched with 

macrophage enhancers and overlapping LPL gene. 

rsID* Variant GWAS trait 

rs264 chr8_19955669_G_A Coronary artery disease 

rs295 chr8_19958727_A_C Metabolic syndrome 

rs301 chr8_19959423_T_C Metabolic syndrome (bivariate traits) 

rs325 chr8_19961817_T_C HDL cholesterol 

rs326 chr8_19961928_A_G HDL cholesterol, Triglycerides 

rs331 chr8_19962894_G_A Lipid metabolism phenotypes 

rs13702 chr8_19966981_T_C HDL Cholesterol - Triglycerides (HDLC-TG) 

rs1059611 chr8_19967052_T_C Lipid metabolism phenotypes 

rs15285 chr8_19967156_C_T Triglycerides-Blood Pressure (TG-BP) 

rs2197089 chr8_19968862_G_A Metabolic syndrome (bivariate traits) 

rs10105606 chr8_19970337_C_A Triglycerides 

rs10096633 chr8_19973410_C_T HDL cholesterol, Metabolic traits, Triglycerides 

rs17482753 chr8_19975135_G_T HDL cholesterol 

rs2083637 chr8_20007664_A_G HDL cholesterol 

rs1441756 chr8_20010875_A_C Metabolic syndrome (bivariate traits) 

 

 

5.2.3 Expression patterns of enhancer’s target genes.  

In the previous sections, I found regions associated with CVD risk enriched in macrophage 

enhancers, and I used eQTL data to find their potential gene targets. In this section, I wanted to 

see if the expression of these genes was relevant in macrophages alone or in other cell types as 

well.  Therefore, I used RNAseq data from BLUEPRINT (Adams et al., 2012) to analyse the 

expression patterns of these genes in the 31 haematopoietic cell types considered in our dataset. 

I identified a group of genes (ABCA1, NR1H3, PNPLA3, ALDH1A2, STARD8, APOE, APOC1 

and LPL) with higher expression in macrophages compared to other haematopoietic lineage cell 

types (Fig. 5.4). And a set of genes that show a high expression in macrophages but exhibit a 

higher expression in  other cell types,  such as CPEB4 in M2 and erythroblasts (eryth) and PLTP 

in M1 and osteoclasts (osteo) and PLP3P3 in mesenchymal cells. 

I consulted the Human Protein Atlas (Thul & Lindskog, 2018) to corroborate the analysis of 

the expression patterns of eGenes associated with CVD risk-associated eQTL SNPs in regions 

containing macrophage enhancers. NR1H3, APOE, APOC1, LPL, PLTP, STARD8 and ABCA1 

are prominently expressed in various types of macrophages, including blood and tissue 

residents such as Hoffbauer cells, Langerhans cells, and Kupffer cells. These genes exhibit 

robust expression in blood, adipose tissue or liver. PNPLA3, PLPP3, CPEB4 and ALDH1A2 

are expressed in various tissue-resident macrophages. However, their expression in other cell 
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Figure 5. 4.Expression patterns in haematopoietic cells of the potential gene targets of 

macrophage enhancers associated with CVD risk. Heatmap shows the average of the 

expected counts among the cell type replicates for the 31 haematopoietic cell types from 

BLUEPRINT Consortium.  

 

types surpasses the levels of expression observed in macrophages. PNPLA3 is notably 

expressed in the liver whereas PLPP3 expression is particularly associated with connective 

tissue, Leydig cells and fibroblasts, ALDH1A2 is more highly expressed in tissues such as 

endometrium and fallopian tube, particularly in endometrial stromal cells and CPEB4 is highly 

expressed in muscle tissues and liver (Table A4). 

In summary, my results emphasise that the potential target genes regulated by macrophage 

enhancers associated with CVD are expressed in relevant tissue and cell types such as 



macrophages, different types of tissue-resident macrophages such as Hoffbauer cells, 

Langerhans cells, and Kupffer cells and in liver and adipose tissue. 

 

5.3. Discussion 

Lipid metabolism plays a fundamental role in maintaining the energy balance and providing 

essential structural components for various biological functions within the human body. There 

is an intricate choreography of genes, cell types and organs involved in each pathway of lipid 

metabolism, and genetic defects in key genes result in highly penetrant lipid disorders and high 

risk of developing premature atherosclerosis (Remmerie & Scott, 2018; Stein et al., 2019; 

Kathiresan & Srivastava, 2012; Tada et al., 2022). There is also evidence that common variants 

in non-coding regions of the genome are associated with risk factors of CVD, such as 

dyslipidaemia and metabolic syndrome (Teslovich et al., 2010; Keebler et al., 2010; Willer et 

al., 2013; Heller et al., 1993; Lanktree et al., 2009; Keebler et al., 2009) However the function 

of such variants remains elusive.  

Our results from connecting enhancer activity profiles with susceptibility to complex traits 

(Chapter 4) revealed that non-coding genetic variants associated with CVD risk are enriched 

in enhancer regions active in macrophages. Leveraging macrophage eQTL and gene expression 

data, in this chapter, I identified genes that could be acting as potential targets of these enhancers 

(APOE, APOC1, LPL, ABCA1, PLTP, NR1H3, STARD8, CPEB4, PLPP3, PNPLA3, and 

ALDH1A2), by performing a literature review on the functions of all the genes identified in 

sections 5.2.1 and 5.2.2 as potential enhancer targets in macrophages. I found that a set of them 

(APOE, APOC1, LPL, ABCA1, PLTP, NR1H3) encode well-known players in three pathways 

of lipid metabolism: ApoE and LPL play roles in the exogenous pathway, which manages the 

absorption and transport of dietary lipids; ApoC1 and LPL participate in the endogenous 

pathway, responsible for the synthesis and transport of liver-produced lipids; PLTP and ABCA1 

are involved in the reverse cholesterol transport pathway (RCT), which facilitates the removal 

of excess cholesterol from peripheral tissues, returning it to the liver for recycling and clearance, 

and ultimately excreting the excess through faeces (Remmerie & Scott, 2018). Additionally, 

NR1H3 is a transcription factor regulating the expression of all these five genes. The proteins 

encoded by NR1H3, LPL, ABCA1, PLTP, APOE, and APOC1 have established associations 

with CVD pathogenesis (Rouland et al., 2022; Marais, 2019; Endo-Umeda et al., 2022; Babaev 

et al., 1999; Shao et al., 2014; Lee-Rueckert et al., 2006). 
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The LPL gene encodes the lipoprotein lipase (LPL), a crucial enzyme responsible for breaking 

down triglycerides into fatty acids and glycerol, primarily within microvasculature walls 

(Remmerie & Scott, 2018; Merkel et al., 2002; Mead et al., 2002). To ensure a balanced 

distribution of lipids across the body, lipoprotein particles such as chylomicrons (exogenous 

pathway) and VLDL (endogenous pathway) travel through the bloodstream. Once they reach 

their target tissues, LPL hydrolyses their content, facilitating lipid uptake for storage or energy 

production (Remmerie & Scott, 2018; Mead et al., 2002). This step is crucial since 

chylomicrons and VLDL are too large to cross the capillary endothelium in most tissues (Mead 

et al., 2002; Remmerie & Scott, 2018) (Fig. 5.5. A-B) 

The APOE and APOC1 genes, encode for apolipoproteins A (ApoA) and C1 (ApoC1), which 

facilitate the transport of lipids through the bloodstream, aid lipid metabolism enzymes, and 

interact with cell receptors (Linton et al., 1998; Curtiss, 2000; Jong et al., 1999; Remmerie & 

Scott, 2018).  In the bloodstream, chylomicrons (exogenous pathway) and VLDL particles 

(endogenous pathway) acquire ApoE and APOC1 apolipoproteins, respectively, among others.  

In the exogenous pathway, chylomicrons become smaller remnants after lipolysis by LPL. 

ApoE on the surface of these remnants is recognised and cleared from the bloodstream by liver 

cells through ApoE receptors (Remmerie & Scott, 2018; Linton et al., 1998) (Fig.5.5. A).  In 

the endogenous pathway, ApoC1 acts as an inhibitor of LPL enzyme activity, slowing down 

the breakdown of triglycerides and allowing for their transport to peripheral tissues (Verine et 

al., 1989; Remmerie & Scott, 2018)(Fig.5.5. B).   

The PLTP gene encodes the Phospholipid Transfer Protein (PLTP). PLTP transfers 

phospholipids between different lipoproteins and HDL particles in the bloodstream (Huuskonen 

et al., 2001; X. C. Jiang et al., 2012). In the RCT, excess cholesterol is effluxed from cells, 

primarily by macrophages, with HDL serving as their physiological receptors (Hutchins & 

Heinecke, 2015).  

 



 

Figure 5. 5. Mapping macrophage enhancers target genes to specific steps in lipid 

metabolism. This figure shows a simplified version of the lipid metabolism pathways, 

highlighting the role of the proteins encoded by the genes potentially regulated by macrophage 

enhancers associated with CVD risk. (A) Exogenous Pathway: In the intestine, ingested lipids 

are packed into chylomicrons by enterocytes (Step 1). As these particles reach the bloodstream, 

they acquire ApoE (Step 2). Upon reaching target tissues, LPL hydrolyses their content, 

facilitating tissue uptake for storage or energy production (Step 3). Post lipolysis, chylomicrons 

become chylomicron remnants (CR) (Step 4). These remnants are recognised by hepatocytes 

via an ApoE receptor and cleared from the bloodstream (Step 5). (B) Endogenous Pathway: 

Triggered by excessive caloric intake, insulin concentration in the blood increases; this pathway 

begins with insulin signalling the liver to start lipogenesis (Step 1). Liver-synthesized lipids are 

packaged into VLDL (Step 2), which, in circulation, can undergo lipolysis in target tissues by 

LPL (Step 3) or acquire APOC1, inhibiting LPL and allowing VLDL to travel further to 

peripheral tissues (Step 4). (C). Reverse Cholesterol (RCT) Pathway: ApoAI synthesised by 
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the liver acquires phospholipids from macrophages via ABCA1 and PLTP (Step 1). Remodelled 

particles become preHDL, acquiring more phospholipids from other lipoproteins in circulation 

and increasing their size (Step 2). Phospholipids from PreHDL particles sequester cholesterol 

effluxed from macrophages via SRB1 (Step 3) and, after collecting cholesterol, become mature 

HDL particles that are cleared from the bloodstream by the liver (Step 4). D. Master Regulator 

of Lipid Metabolism: NHR1H3, also known as LXR alpha is the master regulator's role in 

orchestrating these pathways, this TF controls the transcription of ABCA1, APOE, LPL, 

APOC1, PLTP and other several genes that are key players in lipid metabolism. 

 

 

The addition of phospholipids to HDL by PLTP in circulation results in the formation of large 

particles that can efficiently accept and transport more cholesterol from peripheral tissues, and 

that are preferentially taken up by the liver (Mulya et al., 2008) (Fig.5.5. C).   

PLTP also plays a crucial role in the formation of Pre-β HDLs, which are precursors to mature 

HDL particles. This process involves an initial interaction between apoA-I and the cellular 

ATP-binding cassette transporter A1 (ABCA1) (Mulya et al., 2008). ABCA1, acting as a 

phospholipid translocase, facilitates the efflux of phospholipids from the cell (Mulya et al., 

2008; Wang et al., 2001). PLTP and apoA-I bind to ABCA1 at closely related sites, and PLTP 

transports phospholipids from the cell membrane to apoA-I (Oram et al., 2003). The addition 

of phospholipids to apoA-I results in the formation of functional pre-β HDL particles capable 

of removing excess cholesterol from cells (Mulya et al., 2008). Phospholipids trap cholesterol 

released from the plasma membrane, and the transport of cholesterol from cells to HDL 

phospholipids is facilitated by a cell surface receptor called scavenger receptor B1 (Jian et al., 

1998) (Fig.5.5. C).   

Finally, the NR1H3 gene encodes the transcription factor liver X receptor alpha (LXRα), which 

operates in a heterodimeric partnership with retinoid X receptor (RXR), to regulate the 

expression of genes related to lipid metabolism (Repa et al., 2000). LXRα is activated by 

oxysterols, which are endogenous metabolites of cholesterol (Janowski et al., 1996). All of the 

genes described above (ABCA1, APOE, LPL,  APOC1, PLTP) are targets of LXRα (G. Cao et 

al., 2002; Mak et al., 2002) (Fig.5.5. D). LXRα also regulates the expression of other genes that 

are crucial to lipid metabolism, such as ABCG1, fatty acid synthase and ApoC2 (Mak et al., 

2002) and cholesteryl ester transfer protein (G. Cao et al., 2002). Besides regulating lipid 

metabolism, LXRα also plays a role in immunity regulation, exhibiting anti-inflammatory 

effects (Endo-Umeda et al., 2022; Matalonga et al., 2017). LXRα also acts as an important 

regulator of adrenal cholesterol homeostasis through its ability to modulate the transcription of 

genes that govern the three major pathways of adrenal cholesterol utilisation. These pathways 



include cholesterol efflux (ABCA1, ABCG1), storage (apoE, SREBP-1c), and conversion to 

steroid hormones (Steroidogenic Acute Regulatory protein, StAR) (Cummins et al., 2006). 

Despite their significant roles, the enhancers regulating the expression of these genes and their 

activity patterns are unknown. Here, I identified a specific set of regions that hold the potential 

to function as enhancers for these genes, specifically in macrophages.  Further validation 

through experimental testing in cell cultures and animal models is essential to confirm the 

influence of these regions on the expression of these genes, and to explore the potential effects 

of enhancer dysfunction in lipid metabolism. However, my contribution serves as the initial 

stepping stone in the crucial investigative process of unravelling the regulatory mechanisms 

governing these key players in cardiovascular health. 

Our analysis also identified a set of genes (PNPLA3, PLPP3, CPEB4 and ALDH1A2, STARD8) 

that have not been directly linked with macrophage metabolism; they could be involved in CVD 

as indirect actors in lipid metabolism or as modulators of inflammation, but their specific roles 

are unclear.  

The PNPLA3 gene encodes an enzyme that converts TG into fatty acids in liver cells and is 

tightly associated with membranes and lipid droplets (Bruschi et al., 2017). A mutant of this 

protein (PNPLA3 I148M) reduces cholesterol efflux in human hepatic stellate cells (Bruschi et 

al., 2019) and increases inflammatory responses in M1 macrophages derived from primary 

cultures of human monocytes (Dixon et al., 2023). These effects are associated with 

compromised signalling of PPARγ and LXRα, leading to the downregulation of ABCA1 

(Bruschi et al., 2019). 

The STARD8 gene encodes the protein Deleted in Liver Cancer 3 (DLC3), a Rho-specific 

GTPase-activating protein involved in the coordination of endocytic vesicle trafficking by 

associating with the small GTPase Rab8 (Braun et al., 2015). This protein has been implicated 

in gonadal dysgenesis and steroidogenesis (Sotillos et al., 2022; Ilaslan et al., 2018). STARD8 

shows the highest homology (82% protein sequence similarity) with StAR, also known as 

STARD1. STARD1 controls intracellular cholesterol movement from the outer to the inner 

mitochondrial membranes (Christenson & Strauss, 2000; Stocco, 2000), a crucial step in the 

synthesis of pregnenolone and oxysterols(Larsen et al., 2020). STARD1 is a target of LXRα 

(Cummins et al., 2006). Dramatic accumulation of cholesterol in lipid droplets has been 

identified after STARD1 deletion (Ishii et al., 2002) 

The ALDH1A2 gene encodes the enzyme retinaldehyde dehydrogenase 2 (RALDH2) that 

catalyses the oxidation of retinaldehyde to all-trans-retinoic acid (ATRA) (Kedishvili, 2016). 
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ATRA functions as a ligand for the retinoic acid receptor (RAR) (Allenby et al., 1993). RAR, 

in heterodimeric partnership with RXR, can activate the ABCA1 in human macrophages via 

the same promoter element as LXR/RXR (Costet et al., 2003). In THP1 cells and primary 

monocytes, ATRA induces the increased expression of scavenger receptor CD36, mediated by 

RAR signalling (Wuttge et al., 2001). Oral administration of ATRA significantly decreased 

serum total cholesterol, LDL-cholesterol levels and the size of atherosclerotic plaques in a 

rabbit model of fat-induced atherosclerosis (Zarei et al., 2018).  

The PLPP3 gene codifies the membrane protein Lipid Phosphate Phosphatase (LPP3) enzyme 

(Mueller et al., 2019). Among its substrates is lysophosphatidic acid (LPA); LPP3 transforms 

LPA into monoglycerides (L. Chen et al., 2017; Pyne et al., 2004). A study using porcine and 

murine experimental models of atherosclerosis showed that LPP3 levels were increased in 

atherosclerosis and LPP3 absence in smooth muscle cells heightened plaque formation, 

inflammation, and LPA levels in atheroma (Mueller et al., 2019). Another study showed that 

treatment with LPA of human primary monocytes and mice monocytes from the spleen and 

bone marrow induces differentiation into macrophages with a more proinflammatory phenotype 

upon exposure to LPS than MCSF-induced macrophages (Ray & Rai, 2017). Chen et al. (2017) 

revealed that LPA treatment of the murine macrophage cell line increased the uptake of ox-

LDL by upregulating the scavenger receptor A, which, in turn, promoted the formation of foam 

cells. Moreover, LPA treatment led to the downregulation of scavenger receptor class B type I 

(SRBI), a protein essential for cholesterol efflux (L. Chen et al., 2017) 

Finally, the CPEB4 gene encodes an mRNA-binding protein that controls the translation of 

several mRNAs via binding to their mRNA and stabilising them in the cytoplasm (Pell et al., 

2021; Cui et al., 2020). Suñer et al. (2022) showed that CPEB4 is involved in the temporal 

control of inflammation by helping to stabilise anti-inflammatory transcripts, allowing for their 

sustained expression in late times following macrophage LPS stimulation. They also showed 

that CPEB4 depletion in the sepsis model impairs the inflammation resolution of macrophages 

(Suñer et al., 2022). 

In my study, I utilised eQTL data to establish a link between genes and GWAS variants located 

in enhancers, a strategy that led to the identification of relevant and meaningful target genes. 

However, it is crucial to note that while my findings are significant, the use of eQTL data may 

not always be the most appropriate approach. There are alternative methods for enhancer-gene 

linking, which I discuss in detail in Section 6.2.1. 



According to a recent study by Mostafavi et al. (2023), only 43% of GWAS hits are colocalised 

with eQTLs. The authors discussed that the remaining GWAS hits may act as eQTLs only in 

specific contexts or may act on different mechanisms than gene expression regulation, such as 

splicing and polyadenylation. For GWAS SNPs potentially impacting gene regulation that are 

not detected by eQTL analysis, they investigated the differences between eQTLs and GWAS 

nearest genes. They found that eQTLs predominantly (43%) cluster within a median distance 

of 13 kb to the nearest TSS, while GWAS SNPs often (78%) lie at greater distances from TSSs 

(36 kb). In terms of enhancer regions, GWAS loci overlap with longer enhancer regions than 

eQTLs loci. Moreover, GWAS-proximal  genes use more alternative TSS across different cell 

types, averaging 6.4 TSSs per gene, compared to 4.4 for eQTL genes (Mostafavi et al., 2023). 

In my study, I chose to focus on macrophages because their enhancers represent a substantial 

proportion (52%) of the haematopoietic enhancers that I found associated with CVD. While 

macrophages are clearly relevant, it is essential to broaden our investigation to other cell types. 

For example, we observed that endothelial cells are implicated in several other enhancer activity 

profiles and these genomic regions warrant further exploration to understand the genetic 

associations with CVD fully. Additionally, other cells not included in BLUEPRINT, such as 

vascular smooth muscle cells, may also be worth exploring  (more details on their role can be 

found in section 6.2.2) . 

In a recent study, Schnitzler et al. employed a variant-to-gene-to-program (V2G2P) approach 

to link non-coding, non-lipid-related GWAS variants associated with coronary artery disease 

(CAD) to relevant biological pathways (Schnitzler et al., 2024). They utilised bulk RNA-seq, 

ATAC-seq, and H3K27ac ChIP-seq to identify active genes and candidate enhancers in 

endothelial cells (ECs) with CAD variants. They used the ABC model (Fulco et al., 2019) to 

identify the target genes of the EC enhancers. Subsequently, they employed a CRISPRi-based 

method to systematically silence the ABC-identified candidate genes, using single-cell RNA 

sequencing as a readout (Perturbseq). Furthermore, they used unsupervised machine learning 

to identify disease-associated gene 'programs' or coexpressed gene modules. Using this 

comprehensive approach, the study identified 41 CAD-associated genes in ECs that participate 

in five gene 'programmes' related to extracellular matrix organisation, cell migration, and 

angiogenesis, among other functions. Notably, the PLPP3 gene, previously identified in your 

analysis as a cardiovascular risk gene targeted by macrophage enhancers, is among these 41 

CAD-associated genes and participates in two of the five identified programs in the study 

(Schnitzler et al., 2024). 
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In conclusion, by providing a comprehensive set of enhancer regions associated with CVD risk, 

my work establishes a foundation for hypothesis testing, which is necessary to advance our 

understanding of the regulatory mechanisms governing the expression of genes involved in 

cardiovascular health. 



Chapter 6. Project contributions and future perspectives 

 

6.1. A synopsis of project outcomes and scientific contributions. 

This thesis offers novel insights into the connections between complex traits and transcriptional 

enhancers active in specific sets of haematopoietic cell types. Building upon the foundational 

effort of the BLUEPRINT Consortium, which generated the largest collection of profiles of 

histone marks for human haematopoietic primary cells to date (Adams et al., 2012), I have 

produced the largest and most comprehensive collection of haematopoietic epigenomes, 

including the most common cell types of myeloid and lymphoid lineages at various stages of 

differentiation. This dataset will facilitate the exploration of epigenomic differences during 

differentiation and can be used to complement other types of information for the study of the 

relationship between regulatory elements across the genome and specific biological processes 

in health and disease.  

Using these epigenomic maps and the extensive information connecting genetic variants with 

complex traits from the GWAS catalogue, I identified sets of cell types potentially affected by 

defects in enhancer activity associated with around 175 complex traits. Analysed traits include 

cardiometabolic, vascular, immune-related traits, and cancers, among others. These results 

serve as a stepping stone for understanding the role of enhancers in disease by providing useful 

information to guide the selection of cell types to test hypotheses of disease mechanisms 

experimentally.  

Our results pointed out a set of traits, including cardiovascular-associated diseases and risk 

factors, that were predominantly associated with enhancers active in macrophages. I 

investigated the gene targets of these enhancers and revealed a meaningful biological 

relationship between these genetic risk factors and specific steps in the three distinct lipid 

metabolism pathways. I investigated the cell types' expression of these genes and found that, in 

agreement with my results,  the genes are expressed in tissue-resident macrophages across 

different tissues that participate in the lipid metabolism pathways. This example showcases how 

identifying specific cell types and genes affected by genetic defects in enhancers could improve 

our understanding of the biological processes underlying the disease, providing a refined 

starting point for designing experimental models crucial to understanding disease mechanisms. 

Our findings deepen our comprehension of the role of enhancers in susceptibility to complex 

diseases by guiding the selection of cell types in experimental model design. However, there is 

ample room for future improvement. In this chapter, I will discuss our limitations and propose 
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future research that could build upon our findings to elevate their impact, with the ultimate goal 

of translating these insights into potential cures or treatments for complex diseases. 

 

6.2. Future perspectives. 

6.2.1. Finding gene targets for all the identified disease-associated enhancers.  

In Chapter 4, I identified cell types enriched in enhancers in genome regions associated with 

several complex traits. In the final section of Chapter 4 and in Chapter 5, I used cell type-

specific eQTL data to identify potential target genes regulated by enhancers active in 

neutrophils and macrophages associated with UC and CVD risk, respectively. However, I did 

not search for the gene targets of the rest of the enhancers associated with the diseases. The 

logical progression following the outcomes elucidated in this PhD project would be the 

identification of potential genes regulated by all disease-associated enhancers in the relevant 

cell types pinpointed by my analysis. 

Various methodologies can be employed for inferring enhancer-gene regulatory interactions, 

including the utilisation of data on chromatin 3D contacts (Avsec et al., 2021; Karbalayghareh 

et al., 2022; Whalen et al., 2016), correlations between DNA accessibility and gene expression 

(Boix et al., 2021; Sheffield et al., 2013; Thurman et al., 2012), and the use of eQTL data (Y. 

Liu et al., 2017). Predictive models that combine multiple types of information and CRISPRi-

based enhancer experimental data result in higher precision predictions than strategies relying 

solely on one type of information (Fulco et al., 2019; Luo et al., 2023). 

The "Activity by Contact" (ABC) model, a highly precise machine learning model trained on 

CRISPRi-based enhancer screening data and designed to infer enhancer-gene regulatory links, 

has identified two essential features crucial for accurate predictions: the strength of activating 

chromatin marks at an element, also known as 'enhancer activity,' detected through DNase-seq 

experiments; and the frequency at which an enhancer establishes physical contact with a 

promoter, referred to as '3D interaction frequency.' This frequency is determined through Hi-C 

experiments (Fulco et al., 2019). These methods assume that enhancers have additive effects on 

gene expression and that their distance to genes doesn't significantly impact these effects.  

More recently, Engreitz et al. (2023) introduced the ENCODE-rE2G models, which are also 

supervised machine learning models trained on large-scale genetic perturbation experiments. 

These models challenge the assumptions made by the ABC model by revealing that, in addition 

to 'enhancer activity' and '3D interaction frequency', factors such as promoter class and 



enhancer-enhancer synergy play crucial roles in determining the impact of enhancers on the 

expression of their target genes (Gschwind et al., 2023). Concerning promoter class, they found 

that promoters of genes that are expressed ubiquitously tend to be less responsive to distal 

enhancers. They also observed that the proximity between enhancers is associated with the size 

of their impact on gene expression. Enhancers located within 5 Kb of each other have a super-

additive effect on gene expression. Moreover, changes in the activity of one enhancer can 

impact the activity of other enhancers in its vicinity (Gschwind et al., 2023). 

Engritz et al.’s findings align seamlessly with my strategy of identifying trait-related regions 

enriched in enhancer regions rather than focusing on regions enriched in GWAS variants. This 

approach is grounded in the idea that if enhancer regions act super-additively, collectively 

impacting gene expression, disruptions in enhancer-rich regions could indeed have more 

profound effects on phenotype changes.  

Applying Engreitz et al.'s models to the haematopoietic cell types in the BLUEPRINT dataset 

could significantly contribute to uncovering the target genes of the disease-associated enhancers 

identified. However, as the ENCODE dataset, where the ENCODE-rE2G model was applied, 

does not cover the primary immune cell types studied by the BLUEPRINT Consortium, the 

absence of DNase-seq data poses an obstacle, hindering the immediate replication of the 

ENCODE-rE2G model in this specific context. The future generation of this data for the cell 

types in the BLUEPRINT dataset could address this challenge. 

 

6.2.2. Enriching the dataset with other relevant cell types. 

In this PhD project, my focus was on studying the epigenomes of haematopoietic cells to gain 

insights into the sets of cell types associated with complex diseases such as cardiometabolic, 

vascular, immune-related, neurocognitive, and cancers. However, it is crucial to acknowledge 

that many of these diseases exhibit pathogenic phenotypes in cell types that are not represented 

in our dataset. Thus, while haematopoietic cells may contribute to the development of these 

diseases, it is possible that in other cell types, biological processes equally or even more critical 

than those occurring in haematopoietic cell types may take place. 

For instance, in Chapter 4, I identified neutrophil enhancers associated with UC and my results 

highlighted the involvement of their target genes in NETosis—a process extensively associated 

with UC—underscoring the significance of my findings. Nevertheless, it is imperative to 

acknowledge that prior studies have also unequivocally indicated the involvement of other cell 

types in UC aetiology, such as intestinal innate lymphoid type 3 cells (ILC3) (Malysheva et al., 
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2022; B. Zeng et al., 2019) and intestinal epithelial cells (Kong et al., 2023; van Unen et al., 

2022), which are not included in our dataset. 

In Chapter 5, I discussed another example—CVD. My investigation into enhancers associated 

with Cardiovascular risk emphasised their predominant activity in macrophages, a cell type that 

has been previously implicated in both the progression and regression of atherosclerosis—the 

main underlying cause of CVDs (Gisterå & Hansson, 2017). Additionally, I mapped the 

function of the target genes for these enhancers to specific steps in the three different lipid 

metabolism pathways. My findings contribute valuable information within the context of the 

included cell types. However, it is worth noting that other critical cell types in the development 

of atherosclerosis, such as vascular smooth muscle cells (VSMC) (Harman & Jørgensen, 2019; 

Xue et al., 2022), are not included in our dataset, emphasising the need for future studies to 

encompass a broader range of cellular contributors for a comprehensive understanding of 

complex disease pathogenesis. 

Integrating into my analysis the chromatin state profiles of VSMCs from aortic tissue, as well 

as ILC3 and epithelial cells from intestinal tissue, may uncover the potential roles of their 

enhancers in the aetiology of CVDs and IBD respectively. However, performing additional 

ChIP-Seq experiments on these cell types is difficult in practice. Obtaining samples from aortic 

and intestinal tissues requires invasive procedures, and both tissues are composed of 

heterogeneous cell populations, making it challenging to isolate specific cell types. Moreover, 

ILC3 is a rare population (Malysheva et al., 2022), as is the VSMC clone directly linked to 

atherosclerosis progression (Dobnikar et al., 2018). The scarcity of these cell types poses a 

significant hurdle in obtaining a sufficient number of cells for ChIP-Seq assays. In light of these 

complexities, employing single-cell methodologies (Grosselin et al., 2019) and developing 

novel analysis strategies may become necessary for this type of research.  

Meanwhile, many published histone mark profiles exist for tissues relevant to complex 

diseases. The most straightforward next step in my research would be to extend my strategy to 

identify disease-associated enhancers in those cell types and tissues. 

In the coming year, the IHEC consortium (Stunnenberg et al., 2016b) aims to provide the 

research community with a comprehensive set of reference epigenomes, that will be called the 

EpiAtlas. This initiative involves collecting data originally published by independent 

epigenomic consortiums worldwide and reprocessing these data using unified pipelines to 

ensure the highest quality standards in the processing steps and facilitate data comparability. 



Within IHEC, our laboratory is part of the Integrative Analysis Group, contributing to the 

EpiAtlas collaborative effort. 

We anticipate the IHEC Consortium's release of a comprehensive collection of chromatin state 

maps as part of the EpiAtlas, holding great potential for enhancing my analyses. For instance, 

they are reprocessing ChIP-Seq data from a range of tissues highly relevant to studying the 

aetiology of UC, such as colon epithelial cells, mucosa in the rectum, large intestine, and 

duodenum, as well as tissues from the small and large intestine, sigmoid, ascending, and 

transversal colon, colonic muscle layer, rectal smooth muscle tissue, and Peyer's patch tissue 

from healthy individuals. Additionally, the consortium will release data on smooth muscle cells, 

hepatocytes, and tissues from the liver, thoracic aorta, right lobe of the liver, tibial artery, and 

ascending aorta—tissues highly relevant to lipid metabolism and, consequently, CVD. 

The implications of extending my research strategy to these alternative cellular contexts are 

monumental. This approach has the potential to reveal genes and regulatory mechanisms 

underlying complex diseases in cell types that may be more relevant to the aetiology, and we 

may even discover crucial cell types for disease pathogenesis that were previously obscured. 

 

6.2.3. Experimental validation of genetic susceptibility. 

The findings of this PhD project provide valuable insights into potential enhancer activity 

profiles associated with various complex diseases. This aids in unravelling disease mechanisms 

by guiding the selection of relevant cell types for experimentation. For instance, in Chapter 5, 

I discovered that enhancers linked to cardiovascular risk are predominantly active in 

macrophages. Consequently, conducting experiments in this specific cell type will be essential 

to validate the role of these enhancers in the aetiology of CVD. 

To that end, in vitro experiments in cell cultures offer a convenient starting point before 

progressing to more complex models. For instance, macrophages derived from THP1, a human 

leukaemia monocytic cell line, or macrophages derived from primary monocytes isolated from 

the blood of human donors, could be used. The advantage of using cell lines is that they have 

acquired the non-physiological ability to proliferate indefinitely due to accumulated genetic 

mutations. However, experimental results may be misleading since the cell line does not reflect 

entirely the original physiological properties of the cell type. Alternatively, primary cells better 

resemble the natural state of the cell type in the organism; they maintain their biological identity 

and can only propagate for a few generations in vitro (Arango et al., 2013; Kaur & Dufour, 

2012).  
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In addition to identifying that macrophage enhancers were associated with cardiovascular CVD 

risk, I took an extra step by identifying their potential gene targets and establishing their links 

with the disease based on information from the existing literature (See sections 5.2.4 and 5.2.5). 

Existing literature supports a relationship to CVD for a subset of these enhancer target genes, 

namely, APOE, APOC1, LPL, ABCA1, PLTP, and NR1H3.  

For genes with unclear roles in CVD, such as PNPLA3, PLPP3, CPEB4, ALDH1A2, and 

STARD8, assessing phenotypic changes when their function is directly disrupted could provide 

insights into their roles in CVD. Techniques such as CRISPR/Cas9 or the use of inhibitors 

targeting the encoded enzyme could be employed for this purpose (H. Li et al., 2020; Tsai et 

al., 2022; H. X. Wang et al., 2017). 

For the identified genes with well-known links to CVD, disrupting the function of enhancers 

that potentially influence their expression might offer more informative insights. This can be 

accomplished, for instance, by using CRISPR/Cas9 technology to target TF binding sites within 

enhancers or by deleting entire enhancer regions with guide RNAs that target specific sequences 

on both ends of the enhancer (T. Jiang et al., 2021; Osterwalder et al., 2018; Spicuglia et al., 

2017). 

Editing primary cells is feasible, but it can be rather challenging, especially in macrophages, 

since they have an innate mechanism to resist foreign genetic material (perceived as signs of 

infection). The resulting degradation of CRISPR components can result in low editing 

efficiencies. Maintaining cell viability and function during genetic manipulations is also a 

challenge, as they are freshly isolated from donor tissue and stressed during this process,  and 

are highly sensitive to any changes in their growth conditions. Lastly, the limited availability of 

samples from donors may restrict the number of attempts to perform genetic manipulations 

(Distler et al., 2005; Dudek & Porteus, 2021; Freund et al., 2020) 

Further validation in more physiologically relevant tissues, such as macrophages from arterial 

walls, gut, liver, and adipose tissues, is imperative for comprehending the tissue-specific effects 

of macrophage enhancer activity in atherosclerosis, but obtaining tissue-resident macrophages 

from relevant organs is challenging in humans.   

Mouse models could be employed to investigate the in vivo effects of enhancer disruption, 

enabling the assessment of tissue-specific responses and observation of systemic effects on the 

immune system and overall health (Bhatia et al., 2021; Hollingsworth et al., 2023), thereby 

enhancing the translational relevance of the findings. However, these experiments will require 



a previous step for identifying the orthologues of the human enhancers in the  model species; 

fortunately, there are already catalogues of mice macrophage enhancers that could be explored 

to that end (Denisenko et al., 2017).  

In summary, the findings presented in this dissertation hold therapeutic potential, as the 

feasibility of targeting identified enhancers or their target genes for therapeutic interventions 

could lead to novel treatment strategies. However, verifying if these enhancers, cell types, and 

genes play a sufficiently important role in CVD development or progression is an essential early 

step towards translation.  

6.2.4. Considering the influence of genetic-environmental interactions 

Throughout this PhD project, my primary focus has been uncovering genetic susceptibility to 

diseases within haematopoietic enhancers. Nevertheless, I must acknowledge that the 

development of complex diseases is not solely dependent on genetic factors. 

Numerous environmental factors encountered in daily life, such as the microbiome, pollutants, 

viral infections, and climate change, have been associated with disease risk (Virolainen et al., 

2022). For instance, risk factors for CVDs, such as blood levels of lipoproteins and 

apolipoproteins, are influenced by various lifestyle factors, including diet (fish oil, saturated 

fatty acids, waist-hip ratio), physical activity (frequency, duration, and intensity), and alcohol 

consumption (Hartiala et al., 2021; Laville et al., 2022; Lee et al., 2011). Mode of birth, diet, 

childhood antibiotic use, and alterations in gut microbiota are closely associated with the 

initiation or progression of IBD (Ananthakrishnan et al., 2017; A. Z. Yang & Jostins-Dean, 

2022). Smoking (both current and previous) elevates the risk for CD, while a previous 

appendectomy provides protection against UC (Alan Z Yang, 2022). 

The combined effect of genetic factors and environmental influences is often more significant 

than either factor alone in the development of complex diseases (Hunter, 2005). Hence, further 

research into the influence of environmental factors on susceptibility to diseases mediated by 

enhancers is necessary for devising effective strategies for prevention and treatment. In the 

subsequent sections, I will outline two key initiatives that could enhance our understanding of 

this critical question. 
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6.2.4.1. Identification of enhancers that may contribute to disease susceptibility 

only upon exposure to environmental triggers.  

As immune cells mediate the body's response to environmental stimuli, our dataset is invaluable 

for studying the intricate interplay between genetics and the environment. When immune cells 

are exposed to external stimuli (environmental factors), extensive gene expression changes take 

place. Transcriptional states differ between unstimulated and stimulated cells, with some sets 

of genes being expressed transiently at specific time points. These changes shape the functional 

properties of cells that are necessary for an adequate response to the stimuli. (Margraf & 

Perretti, 2022; Soskic et al., 2022; X. Zhang et al., 2004).  

The dynamic expression of specific genes in particular contexts (e.g cells under different 

external stimuli) is regulated by enhancers. In this PhD project, I studied the relationship 

between 'active enhancers' and complex diseases. However, since our dataset mainly consists 

of unstimulated cell types, with the exception of anti-inflammatory and pro-inflammatory 

macrophages, it's essential to recognise that other types of enhancers that will become active 

only upon environmental stimuli, referred to as 'stimulation-responsive enhancers,' escape my 

analysis. 

These enhancers could potentially serve as crucial mediators in disease development by 

regulating appropriate gene expression in contexts yet to be determined. Consequently, they 

might harbour susceptibility that becomes apparent only when the organism is exposed to 

environmental factors triggering the disease (Kaikkonen et al., 2013b; Maurya, 2021)  

Our research should advance to investigate stimuli-responsive enhancers in disease. Our dataset 

includes annotations of poised enhancers, holding characteristic histone mark profiles with 

repressive marks that are erased and replaced by activation marks in response to specific 

stimuli; these are one type of stimulation-responsive enhancers (Maurya, 2021). It would be 

straightforward to extend the same approach used to link active enhancers to cell types and 

complex traits to this poised enhancer type. 

However, environmental exposure can reshape the pre-existing enhancer repertoire in 

differentiated cells. Some enhancers, known as "latent enhancers", lack TF binding and 

enhancer-specific marks in terminally differentiated cells. However, when the cells are exposed 

to environmental stimuli, sequential TF binding occurs, leading to the acquisition of enhancer-

specific marks. These epigenetic signatures may persist even after the stimulation has ended 

and result in a faster and more robust response during subsequent environmental challenges 



(Ostuni et al., 2013). Since latent enhancers lack typical enhancer marks in unstimulated cells, 

they are absent from our epigenomic annotations, and I would require additional experimental 

data for their identification. 

For this purpose, previous methodologies could be leveraged. For example, Calderon et al. 

(2019) conducted ATAC-seq and RNA sequencing across various cell types before and after 

exposure to different stimuli, mapping stimulation-responsive elements based on the 

correlations between gene expression dynamics and remodelling of chromatin accessibility 

(Calderon et al., 2019). Additionally, Simeonov et al. (2017) developed a CRISPRa-based 

platform that artificially recruits potent transcriptional activators to genomic regions without 

enhancer marks, aiming to discover stimulation-responsive immune enhancers capable of 

driving target gene expression independently of actual stimulus exposure (Simeonov et al., 

2017) 

In summary, expanding my research to explore the effects of genetic variation on enhancer 

dynamics during stimulation can provide a more comprehensive understanding of the genetic 

susceptibility to complex diseases, bridging the gap between genetics and environmental 

influences. 

 

6.2.4.2. Using epidemiological studies to identify the Environmental factors 

influencing disease development. 

Epidemiological studies play a crucial role in understanding how environmental exposures 

impact disease risk, providing actionable information for public health strategies and 

personalised interventions. This is particularly important since modifying environmental 

exposures is more feasible than altering the genome itself (Virolainen et al., 2022). 

To identify environmental factors influencing disease development, understanding gene–

environment interactions in complex diseases is essential. This requires a comprehensive 

examination of both genetic and environmental components. Therefore, collecting high-quality 

information on environmental factors and lifestyles, along with genetic data in association 

studies, is imperative to explore the interactions between these elements (Hunter, 2005). 

Identifying gene-environment effects in disease is challenging, partly due to the unknown or 

difficult-to-record nature of many environmental exposures (i.e., microbiome composition), the 

expected small effect sizes of these exposures, the polygenic nature of most human traits, and 
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the considerable multiple hypothesis burden, requiring correspondingly large sample sizes (Di 

Scipio et al., 2023; H. Wang et al., 2019) 

Using case-only studies as an alternative to the classic case–control studies will benefit studies 

of gene–environment interactions, as inclusion criteria limit sample selection to individuals 

with the outcome of interest. A limitation of the case-only design is that a priori knowledge of 

causal regions of the genome is required (Flowers et al., 2012). However, if we integrate 

findings from previously proposed experiments in cellular and animal models, this could be 

feasible. 

Epigenome-Wide Association Studies (EWAS) conducted on large populations offer a powerful 

and cost-effective tool for assessing the environmental influence on genetic regulation. Given 

the stability of DNA methylation marks and their reliable detection in blood samples, DNA 

methylation-based EWAS are particularly well-suited for large-scale studies (Yousefi et al., 

2022). These studies allow for comprehensive analysis of DNA methylation across the genome 

of blood cells (Battram et al., 2022). Integrating the findings from methylation-based EWAS 

with reference epigenomes can enhance our understanding of epigenome–environment 

interactions. For instance, focusing on DNA methylation patterns at promoters and enhancers, 

EWAS can indicate whether these regulatory regions are activated or silenced in blood cells in 

response to environmental exposures.  

Histone Acetylation Genome-Wide studies (HAWAS) are another type of EWAS based on 

ChIP-seq analysis of H3K27ac (Sun et al., 2016) that allow more acurate detection of 

differential promoter and enhancer activity r than methylation-based EWAS but are more 

technically challenging. However, recent technological advances in profiling chromatin marks, 

such as those described in section 1.2.,  or single-cell approaches, like single-cell ATAC-seq 

(Lareau et al., 2019), are opening new opportunities for chromatin-based EWAS studies in the 

future that could help us better understand environmental-genetic interactions mediated by the 

epigenome. 

 

6.3. Conclusion.  

The outcomes of this PhD project advance our understanding of the intricate relationship 

between active enhancers and complex diseases. I successfully identified potential enhancers 

and haematopoietic cell types linked to many complex traits, as well as target genes for 

macrophage enhancers associated with CVD. Future efforts, such as extending my analysis to 



include other disease-relevant cell types and tissues, identifying potential gene targets for all 

disease-related enhancers, and performing experimental validation in physiologically relevant 

tissues and animal models, will deepen our insights for potential therapeutic interventions. 

Furthermore, I emphasise the importance of considering genetic-environmental interactions in 

complex diseases by exploring enhancers responsive to environmental stimuli and utilising 

epidemiological data to identify environmental factors influencing disease development. 
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Appendix 

 

Table A. 1. Sample metadata. 

BIO-

MATERIAL 

TYPE 

SAMPLE 

NAME 

CELL 

TYPE 

TISSUE 

TYPE 

DONOR 

SEX 

DONOR 

ID 

EPIRR 

Primary Cell 

Culture 

S00622H1 alternatively 

activated 

macrophage 

venous 

blood 

Male S00622 IHECRE00000129.3 

Primary Cell 

Culture 

S006VIH1 alternatively 

activated 

macrophage 

venous 

blood 

Male S006VI IHECRE00000059.3 

Primary Cell 

Culture 

S00BS4H1 alternatively 

activated 

macrophage 

venous 

blood 

Female S00BS4 IHECRE00000013.3 

Primary Cell 

Culture 

S00C1HH1 alternatively 

activated 

macrophage 

cord 

blood 

Female S00C1H IHECRE00000055.3 

Primary Cell 

Culture 

S00FTNH1 alternatively 

activated 

macrophage 

venous 

blood 

Female S00FTN IHECRE00000071.3 

Primary Cell 

Culture 

S00T2LH1 alternatively 

activated 

macrophage 

cord 

blood 

Male S00T2L IHECRE00000269.2 

Primary Cell 

Culture 

S01FW9H2 alternatively 

activated 

macrophage 

venous 

blood 

Male S01FW9 IHECRE00001391.1 

Primary Cell 

Culture 

S004BTH2 CD34-

negative, 

CD41-

positive, 

CD42-

positive 

megakaryoc

yte cell 

cord 

blood 

Female S004BT IHECRE00000105.3 

Primary Cell 

Culture 

S00VHKH1 CD34-

negative, 

CD41-

positive, 

CD42-

positive 

megakaryoc

yte cell 

cord 

blood 

Male S00VHK IHECRE00000257.2 

Primary Cell 

Culture 

S00BJMH1 endothelial 

cell of 

umbilical 

vein 

(proliferatin

g) 

cord 

blood 

Male S00BJM IHECRE00000184.3 

Primary Cell 

Culture 

S00DCSH1 endothelial 

cell of 

umbilical 

vein 

(proliferatin

g) 

cord 

blood 

Female S00DCS IHECRE00000126.3 

Primary Cell 

Culture 

S00BJMH2 endothelial 

cell of 

umbilical 

cord 

blood 

Male S00BJM IHECRE00000099.3 



vein 

(resting) 

Primary Cell 

Culture 

S002R5H1 erythroblast cord 

blood 

Male S002R5 IHECRE00000193.3 

Primary Cell 

Culture 

S002S3H1 erythroblast cord 

blood 

Female S002S3 IHECRE00000112.3 

Primary Cell 

Culture 

S00TU2H1 immature 

conventional 

dendritic cell 

venous 

blood 

Male B270 IHECRE00001548.1 

Primary Cell 

Culture 

S00TV0H1 immature 

conventional 

dendritic cell 

venous 

blood 

Male B271 IHECRE00001457.1 

Primary Cell 

Culture 

S00TWZH1 immature 

conventional 

dendritic cell 

venous 

blood 

Male B272 IHECRE00001387.1 

Primary Cell 

Culture 

S001MJH1 inflammator

y 

macrophage 

venous 

blood 

Male S001MJ IHECRE00000174.3 

Primary Cell 

Culture 

S001S7H2 inflammator

y 

macrophage 

venous 

blood 

Female S001S7 IHECRE00000043.3 

Primary Cell 

Culture 

S0022IH2 inflammator

y 

macrophage 

venous 

blood 

Female S0022I IHECRE00000161.3 

Primary Cell 

Culture 

S007SKH1 inflammator

y 

macrophage 

cord 

blood 

Male S007SK IHECRE00000195.3 

Primary Cell 

Culture 

S00H6OH2 inflammator

y 

macrophage 

venous 

blood 

Male S00H6O IHECRE00000318.2 

Primary Cell 

Culture 

S01F8KH2 inflammator

y 

macrophage 

venous 

blood 

Male S01F8K IHECRE00001293.1 

Primary Cell 

Culture 

S01H5IH1 inflammator

y 

macrophage 

cord 

blood 

Female S01H5I IHECRE00001289.1 

Primary Cell 

Culture 

S001S7H1 macrophage venous 

blood 

Female S001S7 IHECRE00000084.3 

Primary Cell 

Culture 

S0022IH1 macrophage venous 

blood 

Female S0022I IHECRE00000177.3 

Primary Cell 

Culture 

S00390H1 macrophage venous 

blood 

Male S00390 IHECRE00000008.3 

Primary Cell 

Culture 

S00BHQH1 macrophage cord 

blood 

Female S00BHQ IHECRE00000121.3 

Primary Cell 

Culture 

S00DVRH1 macrophage cord 

blood 

Male S00DVR IHECRE00000060.3 

Primary Cell 

Culture 

S01F8KH1 macrophage venous 

blood 

Male S01F8K IHECRE00001398.1 

Primary Cell 

Culture 

C005VGH1 macrophage venous 

blood 

Male C005VG 
 

Primary Cell 

Culture 

S00TYVH1 mature 

conventional 

dendritic cell 

venous 

blood 

Male B271 IHECRE00001546.1 

Primary Cell 

Culture 

S00U0LH1 mature 

conventional 

dendritic cell 

venous 

blood 

Male B272 IHECRE00001490.1 

Primary Cell 

Culture 

S01GKTH1 osteoclast venous 

blood 

Male BC2_0 IHECRE00001249.1 

Primary Cell 

Culture 

S01GMPH1 osteoclast venous 

blood 

Male BC2_10 IHECRE00001471.1 

Primary Cell S00UJKH1 adult 

endothelial 

venous 

blood 

Female S00UJK IHECRE00000303.2 
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progenitor 

cell 

Primary Cell S013GFH1 adult 

endothelial 

progenitor 

cell 

venous 

blood 

Female S013GF IHECRE00001510.1 

Primary Cell S00VEQH1 band form 

neutrophil 

bone 

marrow 

Female BM060814 IHECRE00000285.2 

Primary Cell S00G11H1 band form 

neutrophil 

bone 

marrow 

Male BM220513 
 

Primary Cell S00JGXH1 band form 

neutrophil 

bone 

marrow 

Male BM030613 
 

Primary Cell C000S5H2 CD14-

positive, 

CD16-

negative 

classical 

monocyte 

venous 

blood 

Male C000S5 IHECRE00000027.3 

Primary Cell C00264H1 CD14-

positive, 

CD16-

negative 

classical 

monocyte 

cord 

blood 

Male C00264 IHECRE00000135.3 

Primary Cell C004SQH1 CD14-

positive, 

CD16-

negative 

classical 

monocyte 

venous 

blood 

Female C004SQ IHECRE00000101.3 

Primary Cell C005PSH2 CD14-

positive, 

CD16-

negative 

classical 

monocyte 

cord 

blood 

Female C005PS IHECRE00000155.3 

Primary Cell S000RDH2 CD14-

positive, 

CD16-

negative 

classical 

monocyte 

cord 

blood 

Male S000RD IHECRE00000048.3 

Primary Cell S004KBH1 CD38-

negative 

naive B cell 

venous 

blood 

Male S004KB IHECRE00000125.3 

Primary Cell C005QQH1 CD38-

negative 

naive B cell 

cord 

blood 

Female C005QQ 
 

Primary Cell S0033CH0 CD38-

negative 

naive B cell 

venous 

blood 

Male C003JB,C003RW,C003N3,C003Q

Y 

Primary Cell C00280H1 CD4-

positive, 

alpha-beta T 

cell 

cord 

blood 

Female C00280 IHECRE00001251.1 

Primary Cell C002Q1H1 CD4-

positive, 

alpha-beta T 

cell 

venous 

blood 

Male C002Q1 IHECRE00000009.3 

Primary Cell C002TWH1 CD4-

positive, 

venous 

blood 

Male C002TW IHECRE00000075.3 



alpha-beta T 

cell 

Primary Cell S000RDH1 CD4-

positive, 

alpha-beta T 

cell 

cord 

blood 

Male S000RD IHECRE00000140.3 

Primary Cell S0018AH1 CD4-

positive, 

alpha-beta T 

cell 

cord 

blood 

Female S0018A IHECRE00000191.3 

Primary Cell S008H1H1 CD4-

positive, 

alpha-beta T 

cell 

venous 

blood 

Male S008H1 IHECRE00000160.3 

Primary Cell S009W4H1 CD4-

positive, 

alpha-beta T 

cell 

venous 

blood 

Female S009W4 IHECRE00000194.3 

Primary Cell S007DDH2 CD4-

positive, 

alpha-beta T 

cell 

venous 

blood 

Female S007DD 
 

Primary Cell S007G7H4 CD4-

positive, 

alpha-beta T 

cell 

venous 

blood 

Male S007G7 
 

Primary Cell C002YMH1 CD8-

positive, 

alpha-beta T 

cell 

cord 

blood 

Female C002YM IHECRE00000035.3 

Primary Cell C0066PH1 CD8-

positive, 

alpha-beta T 

cell 

cord 

blood 

Female C0066P IHECRE00000076.3 

Primary Cell S00C2FH1 CD8-

positive, 

alpha-beta T 

cell 

cord 

blood 

Male S00C2F IHECRE00000022.3 

Primary Cell S014WGH1 CD8-

positive, 

alpha-beta T 

cell 

venous 

blood 

Female S014WG 
 

Primary Cell C002TWH2 central 

memory 

CD4-

positive, 

alpha-beta T 

cell 

venous 

blood 

Male C002TW IHECRE00000102.3 

Primary Cell S0155TH1 central 

memory 

CD8-

positive, 

alpha-beta T 

cell 

venous 

blood 

Male S0155T 
 

Primary Cell S00YPTH1 class 

switched 

memory B 

cell 

venous 

blood 

Male S00YPT IHECRE00001540.1 

Primary Cell S015BHH1 class 

switched 

memory B 

cell 

venous 

blood 

Male csMBC 

pool 2 

IHECRE00001255.1 



 

 

113 

 

Primary Cell S015CFH1 class 

switched 

memory B 

cell 

venous 

blood 

Female csMBC 

pool 8 

 

Primary Cell S005YGH1 cytotoxic 

CD56-dim 

natural killer 

cell 

cord 

blood 

Male S005YG IHECRE00000049.3 

Primary Cell C00504H1 cytotoxic 

CD56-dim 

natural killer 

cell 

venous 

blood 

Female C00504 
 

Primary Cell S01E4WH0 cytotoxic 

CD56-dim 

natural killer 

cell 

cord 

blood 

Female S01DWH,S01DWH,S01DWH,S01

DWH,S01DWH 

Primary Cell C003UQH1 effector 

memory 

CD8-

positive, 

alpha-beta T 

cell 

venous 

blood 

Male C003UQ IHECRE00000010.3 

Primary Cell C0054XH3 effector 

memory 

CD8-

positive, 

alpha-beta T 

cell 

venous 

blood 

Female C0054X IHECRE00000017.3 

Primary Cell S00Y9OH1 germinal 

center B cell 

tonsil Female T14_10 IHECRE00000332.2 

Primary Cell S013ARH1 germinal 

center B cell 

tonsil Male T14_11 IHECRE00001375.1 

Primary Cell S00W0DH1 germinal 

center B cell 

tonsil Female T14_5 
 

Primary Cell S00BKKH1 mature 

eosinophil 

venous 

blood 

Female S00BKK IHECRE00000114.3 

Primary Cell S006XEH2 mature 

eosinophil 

venous 

blood 

Male S006XE 
 

Primary Cell C000S5H1 mature 

neutrophil 

venous 

blood 

Male C000S5 IHECRE00000109.3 

Primary Cell C0010KH2 mature 

neutrophil 

venous 

blood 

Female C0010K IHECRE00000004.3 

Primary Cell C0011IH2 mature 

neutrophil 

venous 

blood 

Female C0011I IHECRE00000159.3 

Primary Cell C00184H2 mature 

neutrophil 

cord 

blood 

Male C00184 IHECRE00000095.3 

Primary Cell C001UYH1 mature 

neutrophil 

venous 

blood 

Male C001UY IHECRE00000094.3 

Primary Cell C004GDH1 mature 

neutrophil 

cord 

blood 

Female C004GD IHECRE00000124.3 

Primary Cell C12012H1 mature 

neutrophil 

venous 

blood 

Male C12012 IHECRE00000178.3 

Primary Cell S00FWHH1 mature 

neutrophil 

venous 

blood 

Male PB130513 
 

Primary Cell S00FXFH1 mature 

neutrophil 

venous 

blood 

Male PB130513 
 

Primary Cell S00K5EH1 mature 

neutrophil 

venous 

blood 

Male PB100713 
 

Primary Cell S00K6CH1 mature 

neutrophil 

venous 

blood 

Male PB100713 
 

Primary Cell S00K7AH1 mature 

neutrophil 

venous 

blood 

Male PB270313 
 



Primary Cell S00K88H1 mature 

neutrophil 

venous 

blood 

Male PB270313 
 

Primary Cell S00W8YH2 mesenchyma

l stem cell of 

the bone 

marrow 

venous 

blood 

Unknow

n 

S00W8Y IHECRE00001335.1 

Primary Cell S00YAMH1 mesenchyma

l stem cell of 

the bone 

marrow 

venous 

blood 

Unknow

n 

S00YAM IHECRE00000250.2 

Primary Cell S00X9SH1 naive B cell venous 

blood 

Male NC14_42 IHECRE00000280.2 

Primary Cell S00XAQH1 naive B cell venous 

blood 

Male NC14_47 IHECRE00000258.2 

Primary Cell S00W1BH1 naive B cell venous 

blood 

Male NC14_5 
 

Primary Cell S0159LH1 naive B cell venous 

blood 

Female B15_50 
 

Primary Cell S00G03H1 neutrophilic 

metamyeloc

yte 

bone 

marrow 

Male BM220513 IHECRE00000262.2 

Primary Cell S00VDSH1 neutrophilic 

metamyeloc

yte 

bone 

marrow 

Female BM060814 IHECRE00000248.2 

Primary Cell S00JFZH1 neutrophilic 

metamyeloc

yte 

bone 

marrow 

Male BM030613 
 

Primary Cell S00VCUH1 neutrophilic 

myelocyte 

bone 

marrow 

Female BM060814 IHECRE00000330.2 

Primary Cell S00FYDH1 neutrophilic 

myelocyte 

bone 

marrow 

Male BM220513 
 

Primary Cell S00JE0H1 neutrophilic 

myelocyte 

bone 

marrow 

Male BM030613 
 

Primary Cell S00Y8QH1 plasma cell tonsil Female T14_10 IHECRE00000347.2 

Primary Cell S00VKEH1 plasma cell tonsil Female T14_5 
 

Primary Cell S00VFOH1 segmented 

neutrophil of 

bone 

marrow 

bone 

marrow 

Female BM060814 IHECRE00000317.2 

Primary Cell S00G3YH1 segmented 

neutrophil of 

bone 

marrow 

bone 

marrow 

Male BM220513 
 

Primary Cell S00JHVH1 segmented 

neutrophil of 

bone 

marrow 

bone 

marrow 

Male BM030613 
 

Primary Cell S015DDH1 unswitched 

memory B 

cell 

venous 

blood 

Male Pool_9 
 

* Rows highlighted in yellow indicate samples that have not been included in the EPIRR.

 

 

 

 

Table A. 2. Correlations of emission probabilities between Carrillo et al. (2027) model and 

ours. 
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*Top value for the Pearson correlation coefficient between each state (11 states) in  Carrillo et al. 

(2027) model and our model (12 states). States with correlation coefficients below 0.75 are 

highlighted in red. 

 

 

 

 

 

 

 

 

Table A. 3. Correlation of emission probabilities between the  IH Epigenomic Roadmap 

(2015) model and ours. 

State from   

Carrillo et.al 

(2017) 

State mnemonic       

(as in the original 

paper) 

State label description                          

(as in the original paper) 

Best match* 

(correlation 

coefficient) 

Best 

match*                  

(state from 

our model) 

1 Transcription Transcription Low Signal 

H3K36me3 

0.74 12 

2 Transcription Transcription High Signal 

H3K36me3 

0.63 9 

3 Heterochromatin Heterochromatin High 

Signal H3K9me3 

1 4 

4 Heterochromatin Low signal 0.95 4 

5 Heterochromatin Heterochromatin High 

Signal H3K27me3 

1 8 

6 Heterochromatin Heterochromatin Low 

Signal H3K27me3 

1 8 

7 Repressed Promoter Repressed Polycomb 

Promoter High Signal 

H3K4me3, H3K4me1 and 

H3K27me3 

0.89 1 

8 Enhancer Enhancer High Signal 

H3K4me1 

0.85 11 

9 Enhancer Active Enhancer High 

Signal H3K4me1 & 

H3K27Ac 

0.62 5 

10 Active Promoter Distal Active Promoter 

(2Kb) High Signal 

H3K4me3 & H3K27Ac & 

H3K4me1 

0.54 2 

11 Active Promoter Active TSS High Signal 

H3K4me3 & H3K27Ac 

0.76 2 



State from   

Roadmap 

(2015) 

State mnemonic      

(as in original 

paper) 

State label description                          

(as in original paper) 

Sest match* 

(correlation 

coefficient) 

Best match*                  

(state from 

our model) 

1 TssA Active TSS 0.94 7 

2 TssFlnk Flanking TSS 1 6 

3 TssFlnkU Flanking TSS 

Upstream 

0.89 7 

4 TssFlnkD Flanking TSS 

Downstream 

0.69 6 

5 Tx Strong transcription 0.87 11 

6 TxWk Weak transcription 0.86 11 

7 EnhG1 Genic enhancer1 0.94 12 

8 EnhG2 Genic enhancer2 0.97 10 

9 EnhA1 Active Enhancer 1 1 9 

10 EnhA2 Active Enhancer 2 0.97 8 

11 EnhWk Weak Enhancer 0.68 9 

12 ZNF/Rpts ZNF genes & repeats 0.99 2 

13 Het Heterochromatin 1 2 

14 TssBiv Bivalent/Poised TSS 0.63 5 

15 EnhBiv Bivalent Enhancer 0.63 4 

16 ReprPC Repressed PolyComb 1 4 

17 ReprPCWk Weak Repressed 

PolyComb 

1 4 

18 Quies Quiescent/Low 0.88 3 

*Top value for the Pearson correlation coefficient between each state (18 states) in the NIH 

Epigenomic Roadmap model and our model (12 states). States with correlation coefficients below 

0.75 are highlighted in red. 
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Table A. 4. Expression patterns of potential enhancer gene targets enriched in CVD-

associated regions according to the Human Protein Atlas database. 

Gene Tissue expression 

cluster 

R A tissue cell type 

enrichment 

R A single cell type specific 

nTPM 

PLPP3 Cluster 89: 

Fibroblasts - ECM 

organization 

Kidney - Endothelial cells, 

Prostate - Fibroblasts, Skin - 

Fibroblast_2, Thyroid - Thyroid 

glandular cells 

Astrocytes: 362.5; Fibroblasts: 

403.1; Leydig cells: 881.4; 

Peritubular cells: 311.7 

LPL Cluster 82: 

Adipose tissue - 

ECM organization 

Adipose subcutaneous - 

Adipocytes (Subcutaneous), 

Adipose visceral - Adipocytes 

(Visceral), Breast - Adipocytes 

(Breast), Skin - Adipocytes 

(Skin), Testis - Endothelial cells 

Adipocytes: 409.8; 

Cardiomyocytes: 664.2; 

Granulosa cells: 513.8; 

Schwann cells: 156.9 

NR1H3 Cluster 64: 

Macrophages - 

Immune response 

Breast - Adipocytes (Breast), 

Testis - Early spermatids, Testis 

- Late spermatids 

Hepatocytes: 58.9; Hofbauer 

cells: 47.6; Late spermatids: 

48.2; Proximal enterocytes: 

68.3 

PLTP Cluster 82: 

Adipose tissue - 

ECM organization 

Adipose subcutaneous - 

Macrophages, Adipose 

visceral - Macrophages, 

Colon - Macrophages, Lung - 

Fibroblast_2, Prostate - 

Fibroblasts, Skeletal muscle - 

Macrophages, Thyroid - 

Macrophages 

Hofbauer cells: 1473.5 

APOC1 Cluster 62: Liver - 

Hemostasis 

Liver - Hepatocytes, Lung - 

Macrophages, Skin - 

Sebaceous gland cells 

Hepatocytes: 34731.7 

ALDH1A2 Cluster 89: 

Fibroblasts - ECM 

organization 

Adipose visceral - Mesothelial 

cells, Heart muscle - 

Fibroblasts, Skeletal muscle - 

Fibroblasts, Testis - Early 

spermatids 

Early spermatids: 122.1; 

Endometrial stromal cells: 

137.8; Late spermatids: 46.6; 

Microglial cells: 41.0; 

Spermatocytes: 62.2; Thymic 

epithelial cells: 82.1 

ABCA1 Cluster 15: Liver - 

Metabolism 

Breast - Adipocytes (Breast) granulocytes: 120.9; 

Hepatocytes: 136.6; 

Langerhans cells: 127.5; 

Macrophages: 110.5 

PNPLA3 Cluster 85: Liver - 

Metabolism 

Adipose visceral - Adipocytes 

(Visceral), Kidney - Proximal 

tubular cells, Kidney - Proximal 

tubular cells, Skin - 

Keratinocyte (granular) 

Bipolar cells: 33.8; 

Hepatocytes: 36.1; Rod 

photoreceptor cells: 35.9 

APOE Cluster 15: Liver - 

Metabolism 

Heart muscle - Fibroblasts, 

Kidney - Proximal tubular cells, 

Kidney - Proximal tubular cells, 

Liver - Hepatocytes, Lung - 

Macrophages, Pancreas - 

Macrophages, Skeletal muscle 

- Fibroblasts 

Hepatocytes: 8379.2; 

Hofbauer cells: 5636.7; 

Leydig cells: 2655.2; 

Melanocytes: 3312.6; Muller 

glia cells: 8525.9; Peritubular 

cells: 4801.9; Proximal tubular 

cells: 6176.1; Theca cells: 

8535.1 

STARD8 Cluster 7: Adipose 

tissue - Mixed 

function 

Breast - Endothelial cells, 

Testis - Endothelial cells 

Adipocytes: 23.9; Endothelial 

cells: 24.8; Kupffer cells: 

10.2; Langerhans cells: 17.0; 



Macrophages: 14.6; 

monocytes: 29.5; Schwann 

cells: 17.6 

CPEB4 Cluster 56: Non-

specific - 

Unknown function 

NA Oligodendrocyte precursor 

cells: 302.3 
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Figure A. 1. Epigenomic landscape of the ACP2, NR1H3 and MADD region from EpiMap. 

Epilogos visualisation of ChromHMM chromatin states from the immune cells included in 

EpiMap analysis (Boix et al., 2021), according to the 18-states model described in section 2.3.2.  

Regions overlapping P1 and P3 are annotated as Active TSS state (Red) and Flanking TSS 

(Orange red) in most samples, while P2 displays that annotation only in a subset of them. These 

regions are surrounded by weak enhancer states (yellow), and the gene bodies show strong 

transcription annotation (green) in most samples. 
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Figure A. 2. Using BLUEPRI T chromatin states to study the epigenomic landscape of 

ARID5B. (A) Annotation of the ARID5B transcripts as reported in ENSEMBL release 111 

(Martin et al., 2023), based on the annotation from GENCODE release 44 (Frankish et al., 

2021).  (B) ARID5B gene region presents two promoters annotated as AProm state (pink colour) 

in different sets of cell types. The promoter of the larger isoforms is consistently active across 

the cell types, while the promoter of the shorter isoforms is present at macrophages, endothelial, 

mesenchymal and class-switched B cells and displays enhancer annotations in the rest of the 

cell types (AconE state in orange colour and PoisE in teal colours).  

 



 
Figure A. 3. Visualisation of the GTEX eQTL data for risk variants in UC-associated 

genomic region enriched with myeloid enhancers. (A) rs11676348 SNP eQTL in blood of 
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CXCR1 and CXCR2. (B) rs2310173 SNP eQTL of ILR1 in cultured fibroblasts and of ILR2 in 

sun-exposed skin from the lower leg. The figure displays the genomic context of eQTL variants 

in the x-axis and the  –log (p-value) from the eQTL analysis in the y-axis. Points corresponding 

to UC risk variants are highlighted as red and blue dots, and the eQTL violin plots adjacent to 

them show the gene expression levels for the three genotypes. These figures are customised 

screenshots taken from the GTEX Portal (https://gtexportal.org). 

  

https://gtexportal.org/
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Figure A. 4. Epigenomic landscape of the UC-associated genomic regions enriched with 

neutrophil and myeloid enhancers in EpiMap (that lacks neutrophil data). This figure 

shows the ChromHMM state visualisation from Epilogos for the immune cells included in 

EpiMap analysis (Boix et al., 2021), according to the 18-states model described in section 

2.3.2. (A) Regions overlapping rs11676348, are annotated as ZNF genes & repeats state 

(medium aquamarine) surrounded by heterochromatin (pale turquoise) in most samples. (B) 

Regions overlapping with the enhancer on the right side of rs2310173 display quiescent/low 

state (white) annotation in nearly half of the samples and weak enhancer (yellow) or active 

enhancer (orange) annotation in the rest. In the samples where the enhancer annotation is 

present, the region extending on the flanking sides appears annotated as weak transcription 

annotation (dark green).  
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