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ABSTRACT 

 
Species distribution models are used increasingly in both applied and 

theoretical research to predict how species are distributed and to understand 

attributes of species’ environmental requirements. This thesis aims to explore the 

application of tree-based methods  to species distribution modelling. Although 

these methods have been widely used in other fields of science they have received 

relatively little exposure in Biogeography and Conservation Biology. The 

techniques applied include CART, Bagging, Random Forests and Boosted 

Regression Trees. These were used with four different biodiversity databases to 

answer different a variety of research questions aimed at: (i) understanding how 

landscape structure and climate affect species distributions (ii) predicting the 

potential impacts of climate change on species distributions (iii) to identify areas 

important for biodiversity conservation. Additionally, the performance of each 

method was compared with the aim (iv) of making suggestions for the optimal 

models which should be used by future researchers.  

In chapter 2 Boosted Regression Trees were used to quantify the 

importance of wetland size and weather patterns for waterbird distribution in 

Britain. As well as revealing the importance of wetland size for waterbirds, , the 

models proved to be reasonably robust when validated. In chapter 3  this basic 

form of modelling was expanded, using a database containing amphibian 

occurrence records for Italy. Random Forests was used to quantify species-climate 

relationship and to predict amphibian distribution in relation to current and future 

climate conditions. The results revealed how amphibian distribution is largely 

controlled by temperature-related variables and highlighted a negative response to 

future climate changes in most species. In chapter 4 Bagging was used to identify 

areas important for biodiversity conservation. Specifically, Bagging  was used 

predict the distribution of 232 species of Butterflies in Italy. The predicted 

surfaces were then used in combination with a species multispecies prioritization 

tool in order to identify important areas for butterfly conservation. The results 
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showed that the most areas important for butterfly are located within the Alps, the 

mountains of central Italy and the island of Sardinia.  Finally, in Chapter 5, the 

predictive accuracy of four modelling techniques based classification trees was 

compared. This was done using large scale bird distribution data from Italian 

Common Bird Census. The results showed that Random Forests and Boosted 

Regression Trees were the best performing techniques and that model 

performance was highly influenced by species ecological characteristics as well as 

by the modelling method. 

The results of this thesis have shown how tree-based modelling methods 

can be used for exploring and testing hypotheses about the factors that are 

important in determining species distribution and making predictions of species 

distribution for use in conservation contexts. The methods used represent a useful 

way to visualize and understand relationships between environmental parameters 

and species distributions and to predict species distributions with high accuracy. 

Whilst it is true that some tree-based methods can be used instead of statistical 

modelling techniques others expand the analytical opportunities by enabling 

analyses that are impossible or very difficult with statistical methods. Hopefully 

this thesis will serve a source of inspiration for ecologists willing to move away 

from statistical inference and the P-value dogma and concentrate on 

understanding the data, and using alternative techniques to predict species 

distribution with high accuracy.  
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1 INTRODUCTION 
 

1.1 Species distribution models  

One of the main goals of ecology is the study of species distributional patterns, 

both spatially and temporally, and the determination of the underlying 

environmental factors related to these distributional patterns (Brown & Lomolino, 

1998). In most cases, however, the distribution of a species is not completely 

known. Because of the high costs associated with sampling over large regions, 

species distribution models have been frequently used in ecology and 

conservation since the 70s (Guisan & Thuiller 2005). Species distribution models 

are empirical models relating field observations to environmental predictor 

variables, based on statistically or theoretically derived response surfaces (Guisan 

and Thuiller 2005). These models serve two important purposes: (1) they are used 

to formulate and test hypotheses about the factors and processes that are important 

to organisms, and (2) they can be used to make predictions of species distributions 

and abundances for use in management decisions.  

1.2 The niche concept  
 

The fundamental ecological principle on which species distribution models 

are based is the concept of niche (Guisan and Zimmerman 2000, Pullian 2002), 

and here I will give an overview of the concept. The first definition of niche was 

given by Grinnell (1917), who defined the species niche as the ‘environmental 

requirements of the species’ and considered it as an ‘ultimate distributional unit of 

the species’. Later, Elton (1927) defined the niche as ‘the role of the species in the 
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community’, which integrates its interactions with other species. Both of 

Grinnell’s and Elton’s definitions of niche are conceptually vague (Whittaker et 

al. 1973, Heglund 2002) but were later rigorously combined by Hutchinson 

(1957), who describe the niche by ‘the coordinates of the species with n-

dimensional resource axes’. Hutchinson defined the niche as a ‘hypervolume’ 

situated in n-dimensional ‘hyperspace’; this hypervolume encloses ‘conditions 

that allow the species to exist indefinitely’ (‘fundamental’ niche). However, 

because of interspecific interactions, the species may be excluded from some parts 

of its fundamental niche, reducing the hypervolume (‘realized’ niche). In the real 

world, the fundamental niche is unlikely to be observed and researchers normally 

focus on describing the realized niche (Scott et al. 2002, Guisan and Thuiller 

2005). All the definitions of niche are highly conceptual and rely on assumptions 

that could be violated, and several authors have recently criticised or revised the 

niche concept (Chase and Leibold 2003). However, Hutchinson was the first to 

provide a formalization of the niche concept and the Hutchsonian niche definition 

has since become the foundation of much ecological theory and reasoning 

(Morrison et al. 1998, Pulliam 2000, Scott et al. 2002).  

Species distribution models are based on the Hutchsonian definition of the 

realized niche (Guisan and Zimmermann 2000, Guisan and and Thuiller 2005, 

Araujo and Guisan 2006). This is because existing species distribution represents 

the realized rather than the fundamental niche. Species distribution models cannot 

predict patterns of species distributions based on the fundamental niche, because 

the fundamental niche is a theoretical abstract concept that cannot be observed in 
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real world phenomena. Being empirical models, species distribution models can 

only describe phenomena that are observable in the real world.  

1.3 Species distribution modelling methods 

A huge number of techniques and tools have become available for 

modelling species distributions (Guisan and Zimmerman 2000, Guisan et al. 2003, 

Elith et al. 2006). Classical methods include statistical techniques like Generalized 

Linear Models (GLM) (McCullagh and Nelder 1989) or Generalized Additive 

models (GAM) (Hastie and Tibshirani 1990).  These methods rely on the use of 

presence and absence data, but can also incorporate abundance data. More 

recently, methods of modelling that use presence-only data have been developed, 

such as ecological niche factor analysis-E.N.F.A. (Hirzel et al. 2002), BIOCLIM 

(Busby, 1991) DOMAIN (Carpenter et al., 1993). Such methods rely on the 

definition of environmental envelopes around locations where species occur, 

which are then compared to the environmental conditions of background areas 

(Hirzel et al. 2002). 

While the benefits of using regression and envelope methods are 

numerous, including predicting changes in species’ distribution from climate 

change (eg. Hilbert et al. 2004, Raimo et al. 2008, Meynecke 2004) and 

identifying areas important for biodiversity conservation (eg. Milne et al. 2006, 

Lehmann et al. 2002), species distribution modelling is complicated by technical 

difficulties and by data limitations (Guisan & Thuiller 2005). 

In recent years, the introduction of machine-learning techniques has 

opened new avenues to the analyses of ecological data (Fielding 1999). These 
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methods can be used to solve problems, which derive from assumptions about the 

statistical distribution of data or restrictive assumptions of parametric modelling 

methods (Fielding 1999) . Machine learning methods are often more powerful, 

flexible, and efficient for exploratory analysis than are statistical techniques. 

Machine learning methods (e.g., Hastie et al. 2001) can be characterized as an 

analysis of data 1) which automatically makes accurate predictions from data, 2) 

with the ability to screen a large number of predictor variables and identify the 

most important predictors, 3) very often they do not require the user to make 

many assumptions about the forms of relationships between predictor variables 

and the response variable. There are a variety of modelling methods that have 

been have been developed within the machine learning community. These include 

neural networks, rule based classifiers, genetic algorithms and maximum entropy 

modelling approaches.  

Among the most common machine learning methods, classification trees 

represent an efficient tool, that has been applied in several studies in ecology and 

conservation biology (e.g. Moisen et al. 2006, Edwards et al. 2006, Thuiller et al. 

2003). This type of models are built using brute-force computer algorithms. 

Classification trees, often known as CART (Classification and Regression Tree), 

aim to explain the variation in a single response variable with respect to one or 

more explanatory variables. They work by partitioning the data recursively into 

smaller homogenous groups with respect to the response variable. Conceptually, a 

classification tree treats species as if they were constrained to live within certain 

variable ranges. Every split within the tree marks either a lower or upper bound of 
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the range for a particular habitat variable. Usually, only one end of the range is 

recorded into the tree. For example, a classification tree model identifies a series 

of habitat ranges, the pieces of the tree are conceptually very similar to a 

quantitative version of Hutchinson’s (1957) n-dimensional niche- the habitat 

space in which a species is able to maintain a population. In addition the baseline 

methodology of classification trees includes several novel methods which have 

also been developed. These methods use iterative or bootstrapping procedures to 

combine several hundreds or thousands of trees together with the aim of 

improving model accuracy. Although these so far these techniques have been 

applied in a few studies they have shown a great promise by outperforming most 

of the traditional modelling methods (Garzon et al. 2006, Elith et al. 2006, Guisan 

et al. 2007a, Graham et al. 2008, Wisz et al. 2008) . 

 

1.4 Applications of species distribution models 

Species distribution models are currently recognised as helpful tools for 

providing valuable and quantitative information by revealing the most important 

resources required by a species (Guisan and Thuiller 2005). Models can 

efficiently guide decision makers and wildlife managers in processes of 

protection, management or conservation planning (e.g. . Ortega-Huerta and 

Peterson, 2004; Pawar et al. 2007; Moilanen et al. 2007) or can be used to develop 

environmental impact assessment programs (e.g. Seiler 2005, Tuck et al. 2001). 

Furthermore, if coupled with geographic information systems (GIS) technology, 

species distribution models can be used for producing maps that display the 
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spatial configuration of the suitable habitats, which enables protection, 

management and restoration strategies to be implemented within a spatial context 

(e.g. Rayner et al. 2007, Martinez et al. 2006, Santos et al. 2006). Besides 

revealing habitat selection patterns, the application of species distribution models 

to areas where environmental conditions are known but where species 

distributions are unknown yields habitat suitability maps (Buermann et al. 2008). 

Predicting to new areas where species distributions are unknown can be very 

important for the identification of biodiversity hotsposts (Thuiller et. al. 2006) or 

locations of species of conservation concern (Thomaes et al. 2008). Newly 

identified hotspots or important areas for species of conservation concern can be 

the subject of more intensive study. Species distribution models are also useful for 

predicting areas of suitable habitat that may not be currently used by wildlife 

species, serving as an aid to species re- introduction or prediction of the spread of 

an introduced species (Klar et al. 2008, Metzger et al. 2007). Another very 

important application of species distribution modelling is the prediction of the 

potential impacts of environmental change on species distributions. In particular 

models can be used to investigate how different species respond differently to 

environmental influences and to explore the unique reactions of different species 

to different environmental change scenarios. In conjunction with the recent surge 

of interest in the potential effects of climate change, species distribution models 

have been widely used in both understanding climate-species relationships and 

predicting how species distribution patterns will change in response to climate 

change. Numerous studies have extrapolated the likely impacts of global change 
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on species distribution(e.g. Araujo et al. 2006, Luoto & Heikkinen 2008, Thuiller 

et. al. 2005, Thomas et al. 2004).  

 

1.5 Outline of the thesis  

 
The thesis follows two major aims, a technical and an ecological one. The former 

one focuses on the application of various tree-based modelling methods to species 

distribution modelling.  While regression based methods have been widely 

applied to species distribution modelling, this thesis deals with the application of 

some novel modelling techniques based on classification trees (Chapter 2, Chapter 

3, Chapter 4). The methods applied include Random Forests, Bagging and 

Boosted Regression Trees, three techniques which were introduced in ecology 

very recently (Leathwick et al. 2006, Prasad et al. 2006, Cutler et al. 2007) . 

Additionally the thesis compares the predictive performance of the four tree-based 

methods for modelling species distributions (Chapter 5). The ecological aim of the 

thesis is concerned with solving three different large scale ecological problems: (i) 

understand the major determinants of species distribution and develop some 

highly predictive models (Chapter 2); (ii) analyse and predict species distribution 

in relation to present and future climate (Chapter 3); (iii) identify areas important 

for biodiversity conservation (Chapter 4). Chapter 2 focuses on the application of 

Boosted Regression Trees to the identification of what factors determine 

waterbird occurrence in Britain. In Chapter 3 I use another tree based technique 

named Random Forests to analyses species-climate relationships in amphibians 

occurring in Italy and to predict their response to climate change. In Chapter 4 I 

use Bagging predictors in combination with a multispecies conservation planning 
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tool to predict important areas for butterfly conservation in Italy. In chapter 5 I 

compare the performance of four tree-based modelling methods for predicting 

species distributions using large scale breeding bird distribution data. The final 

chapter 6 of this thesis is a general discussion and brings together the findings of 

the thesis into an overall synthesis of state-of-the-art species distribution 

modelling in ecology. 

 

1.6 Specific objectives 

The thesis addresses the following specific objectives: 

 

Chapter 2: (1) To develop robust models capable of predicting waterbird 

distribution in Britain and (2) to assess the importance of habitat and landscape 

structure, climatic and geographic variables in determining waterfowl occurrence.  

 

Chapter 3: To (1) to assess the importance of current climate in determining 

amphibian occurrence in Italy; (2) to examine the potential changes in the 

distribution of amphibians under a 2xCO2 future climate scenario. 

 

Chapter 4 (1) To identify areas important areas for butterflies across the Italian 

peninsula; (2) to identify important areas for species of conservation concern; (3) 

to identify potential ‘management landscapes’ based on the similarity in species 

composition among sites.   
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Chapter 5 (1) To compare the predictive performance of four different modelling 

techniques based on decision trees (2) to establish whether model performance is 

affected by the species’ environmental and geographical distributions. 
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2 DISTRIBUTION PATTERNS OF WATERFOWL 

WINTERING IN BRITAIN: THE ROLE OF 

GEOGRAPHY, CLIMATE AND HABITAT 

 

2.1 Introduction 

 

One of the main goals of Ecology is the study of species distributional 

patterns, both spatially and temporally, and the determination of the underlying 

environmental factors related to these distributional patterns (Brown & Lomolino, 

1998). Understanding how the distribution of species and communities are 

affected by these factors is needed in many contexts, for example, for applied 

conservation purposes or for assessing the potential impacts of large scale 

ecosystem changes such as those brought about by global climatic change. 

Modelling species-environment relationships at large scale has become very 

popular during the last decade and examples in ecology and conservation include 

many types of taxa (e.g. Virkkala et al., 2005; Luoto et al., 2006; Suarez-Seoane 

et al., 2002; Coops & Catling, 2002; Milne et al., 2006).   

Waterfowl are probably one of the best surveyed groups of vertebrates in 

Europe, and several long-term monitoring schemes have been underway since the 

1960s. The high gregariousness and relative ease with which most species can be 

monitored during the nonbreeding season has enabled ecologists to gather a 

considerable amount of data about their distribution. Despite the great availability 

of waterfowl count data there have been very few attempts to understand the 
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factors affecting their distributional patterns on their wintering grounds (Tuite et 

al. 1984 Paracuellos and Telleria 2004; Santoul 2004).  

In this chapter I examine the relationships affecting the distribution of 

thirteeen waterfowl species regularly wintering in Britain. The importance of 

Britain for wintering waterfowl is well known and every year millions of 

individuals migrate from high artic areas to spend their winter in British inland 

wetlands and estuaries (Kershaw and Cranswick 2003; Ravenscroft et al. 2003). 

In Britain, waterfowl have been the subject of monitoring since the 1960s as part 

of the Wetland Bird Survey, the UK’s national monitoring scheme for 

nonbreeding waterfowl. Up to date, the main output of this monitoring scheme has 

been aimed at establishing population trends (eg. Kirby et al. 1995; Atkinson et al. 

2006), with no attempt to quantify distributional patterns of waterfowl at the 

national scale.  

I use a machine learning method, boosted regression trees (Friedman 

2001), to model species-environment relationships. This technique is a 

development of decision trees and has shown to be very promising for both 

analysing ecological datasets and predicting species’ occurrence (Elith et al. 2006, 

De’ath 2007). As well as having a superior predictive performance, Boosted 

regression trees have other advantages over traditional modelling methods, which 

make it very desirable. These include being insensitive to extreme outliers and the 

ability to handle interactions between predictors. Up to date boosted regression 

trees have found many applications in a variety of fields like medicine, genetics, 
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remote sensing and epidemiology, but there have been very few applications in 

ecology (Guisan et al. 2007, Elith et al. 2006, Thuiller et al. 2006). 

The specific aims of this research were twofold: 1) to develop robust 

models capable of predicting waterfowl distribution in Britain 2) to assess the 

importance of habitat, weather patterns and geography in determining in 

determining waterfowl occurrence.  

2.2 Methods 

2.2.1 Waterfowl and environmental data 

The data were derived from the results of the Wetland Bird Survey (WeBs). The 

Wetland Bird Survey is the UK’s national monitoring scheme for nonbreeding 

waterbirds. The scheme has been underway since 1965 and is administered and 

funded by the British Trust for Ornithology (BTO), the Wildfowl and Wetlands 

Trust (WWT), the Royal Society for the Protection of Birds (RSPB) and the Joint 

Nature Conservation Committee (JNCC). In brief it consists of synchronised 

counts which are carried out every month in collaboration with experienced 

volunteer ornithologists. A detailed description of the sampling procedure has 

been described by Kirby (1995) and Cranswick et al. (1997). For the present 

analysis I used a set of 438 sites surveyed from 1996 to 2000 during the month of 

January. I decided to convert the counts for each into a binary matrix of presences 

and absences as my intent was to study species’ distribution and not to examine 

species spatio-temporal patterns of abundance. Therefore if a species was 

recorded at a site it was considered to be present. The distribution of the sites is 

shown in Fig. 2.1. 
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Figure 2.1. The distribution of the 438 sites surveyed as part of the Wetland Bird 

Survey from 1993 to 2001 

 

 

 

Two geographic and six environmental variables were used for the analysis: 

location of each site identified as Latitude and Longitude, surface area of each 

water body (variable area) calculated for each site calculated from a file provided 

by the British Trust for Ornithology, mean temperature (ºC) and total amount of 
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precipitation (mm) of January, and area (m2) of 3 different land-cover types 

(variables Grassland, Swamp, Urban) within a 500m buffer surrounding each site. 

These latter variables were derived from a 25m resolution land-cover map of the 

UK (Fuller et al. 2005).   

2.2.2 Analyses 

Boosted regression trees are a development of regression trees which 

combine the regression tree methodology together with the boosting algorithm 

(Friedman 2001; Friedman and Meulman 2003). A regression tree differs from 

conventional regression methods by using a rule partitioning method to classify 

the data. The tree is built by repeatedly splitting the calibration data, according to 

a simple rule based on a single explanatory variable (Breiman 1984). At each 

split, the data are partitioned into two exclusive groups, each of which is as 

homogeneous as possible in terms of the response variable. The boosting 

algorithm is a very general method that attempts to “boost” the accuracy of any 

given learning algorithm by fitting a series of models each having a poor error rate 

and then combining them to give an ensemble that may perform very well. In a 

boosted regression tree a series of very simple regression trees is fit and combined 

to obtain a final model. The model is developed by progressively adding trees in a 

forward stagewise fashion. At each stage of the fitting sequence, each case of the 

response variable is classified from the current sequence of trees. These 

classifications are used as weights (i.e. pseudo-residuals) for fitting the next 

sequence of trees. The fitting procedure is then continued until all the data have 

been explained (Friedman 2001).  
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Although boosted regression trees can be a powerful tool to analyse 

complex data sets they are also prone to over-fitting (i.e. trees can be added until 

eventually all the data will be explained). As a consequence of this, the 

performance of the final model will degrade when applied to new data. In order to 

overcome this problem procedures like k-fold cross-validation have to be used to 

identify the optimal number of trees. In this case I used a 10-fold cross validation 

procedure to identify the optimal number of trees, following the procedure 

described in Elith et al. (2008). I also assessed the relative influence of each 

variable in determining species’ occurrence. In a single tree the importance of 

each variable is determined by the reduction of the impurity (i.e. deviance) when 

that variable is split on.  In a boosted regression tree the importance of a variable 

is simply determined by averaging the importance of that variable across all trees 

used to construct the final model. I also selected a simple interaction term for the 

trees, allowing for a two-way interaction. This is done by specifying the size of 

each individual tree. In The case I specified a tree size of two allowing for two 

way simple interaction . All the analyses were carried out using the gbm package 

(http://www.i-pensieri.com/gregr/gbm.shtml) for R (Ihaca and Gentleman 1996) 

developed by Greg Ridgeway. 

 

2.2.3 Model evaluation 

In order to evaluate The models, the original data set were randomly 

divided into model training (70%) and model evaluation data sets (30%). The 

discrimination ability of the models was assessed using receiver operating 
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characteristic (ROC) plot analysis. This technique measures the association 

between the presence and absence records by using and calculating the area under 

the curve (AUC) (Fielding & Bell, 1997). AUC relates relative proportions of 

correctly classified (true positive proportion) and incorrectly classified (false 

positive proportion) cells over a wide and continuous range of threshold levels, 

which makes it a threshold-independent measure (Fielding & Bell, 1997). The 

AUC values range from <0.5 for models with no discrimination ability to 1 for 

models with perfect discrimination. 

2.3 Results 

The results of the models are summarized in Tables 2.1 and Table 2.2. 

Table 2.1 shows the AUC values obtained from model evaluation using the data 

from the evaluation sites. The AUC values ranged from 0.84 to 0.63, with the 

Goldeneye and the Mute Swan models performing the best and the Mallard model 

having the lowest performance. With exception of the Mallard and the Goosander 

the AUC values were all higher than 0.70.  There was not any taxonomic 

ecological similarity in species having similar AUC values. 

The importance of each variable varied amongst the species (Table 2.2), 

but the most important variables were generally related to climate, geography and 

size of the water body. Temperature and rain ranked as the most important 

variables for eight species and were also the second and third most important 

variable for a further five species. For two species, the Goldeneye, and Goosander 

temperature and rain were unimportant important ranking seventh and eighth, 

respectively.  
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Table 2.1. Area Under the ROC curve (AUC) for each of the thirteen species of 

waterfowl. 

 

 

Species  AUC Species  AUC 

Canada Goose 

 0.83 Pochard 0.79 

Gadwall 

 0.80 Ruddy Duck 0.83 

Goldeneye 

 0.84 Shoveler 0.78 

Goosander 

 0.66 Teal  0.76 

Mallard 

 0.61 Tufted Duck 0.77 

Mute Swan 

 0.84 Wigeon  0.76 

Pintail 

 0.73   
 

   

 

 

 

Both Latitude and Longitude were very important for the Canada Goose, 

the Goldeneye. Latitude was also important for species like the Gadwall and the 

Mallard, whereas Longitude turned out to be the third most important variable for 

the Tufted Duck. The grassland variable was particularly important for species 
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like the Pintail, the Teal, the Wigeon and the Goosander. For the other species, 

this variable ranked from medium importance (Goldeneye, Shoveler) to 

unimportant (Canada Goose, Mute Swan, Pochard, Ruddy Duck, Gadwall, Tufted 

Duck). The urban variable was generally unimportant, ranking very low for more 

than half of the species, but it was the third most important variable for the 

Shoveler, the Mute Swan and the Ruddy Duck. Lake area was the most important 

variable for three species (Goldeneye, Goosander, Ruddy Duck) and was the 

second most important variable for the Wigeon, the Teal and the Pochard. For one 

species, the Mallard lake area was the most unimportant variable. Lastly, the area 

of swamp surrounding each site was unimportant for the majority of the species.  

For one species, the Mallard, this variable turned out to be the third most 

important variable and for another species, the Pintail it had a medium 

importance, ranking as the fourth most important variable.  
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Table 2.2. Importance of the environmental and geographic variables in 

determining the distribution of each of the thirteen waterbird species, as obtained 

from the Boosted Regression Tree models. 

 

 

Longitude 

 

Latitude 

 

Rain 

 

Swamp 

 

Temp 

 

Urban 

 

Grass 

 

Area 

 

Canada 

Goose 

 12.18 56.24 12.54 0.01 7.66 9.78 1.19 0.39 

Gadwall 

 10.57 22.48 31.08 0.01 15.01 5.13 0.86 14.88 

Goldeneye 

 12.76 19.55 1.00 0.06 0.89 3.01 8.20 54.53 

Goosander 

 6.69 3.25 2.64 1.13 21.35 8.18 18.60 38.16 

Mallard 

 7.03 24.52 25.35 13.76 11.07 8.31 5.67 4.29 

Mute Swan 

 4.62 6.86 30.74 0.01 48.17 7.63 1.18 0.78 

Pochard 

 8.87 11.99 16.35 0.03 31.40 6.07 1.22 24.07 

Ruddy Duck 

 0.67 4.66 35.85 0.02 8.45 8.97 3.20 38.18 

Shoveler 

 0.10 6.35 32.97 0.01 36.97 16.71 5.31 1.58 

Teal 

 1.58 7.01 27.47 0.08 17.37 2.42 20.25 23.82 

Tufted Duck 

 28.48 1.95 8.10 0.19 51.48 5.55 2.00 2.25 

Wigeon 

 1.61 3.32 35.11 0.20 12.54 0.67 13.36 33.19 

Pintail 

 3.62 2.79 25.68 14.87 16.15 2.93 27.05 6.91 

Mean  

 

7.60 13.15 21.91 2.34 21.42 6.57 8.31 18.69 
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2.4 Discussion 

This is the first study that has examined distribution patterns of wintering 

waterfowl across the whole of Great Britain. The results demonstrate the 

particular importance of weather patterns in determining waterfowl  distribution. 

Previous studies have also found weather to have profound effects on waterfowl 

distribution (Ridgill and Fox 1990; Mallory et al. 2003). Temperature and rainfall 

can affect animal ecology in many ways; they can either influence a species’ 

distribution directly through physiological effects or indirectly through its 

influence on resource distribution (Mallory et al. 2003). Indeed variables like 

temperature and rainfall are important for waterfowl, which are very sensitive to 

changes in weather conditions. Changes in weather conditions can trigger large 

scale movements in many species (Ridgill and Fox 1990) and can cause drops in 

the population size of many species (Newton 2007).   

Not surprisingly larger water bodies were associated with occurrence of a 

number of species. This is in agreement with earlier studies which have shown 

that water body surface area is an important factor in determining waterfowl 

abundance and distribution (Tuite et al. 1984; Elmberg et al. 1994; Paracuellos & 

Telleria 2004, McKinney 2006). It is likely that bigger areas provide birds with 

more food supply and also tend to reduce edge effects which can increase 

competition and predation rates (Crozier & Niemi 2003).   

The two geographic variables varied in their importance according to each 

species. The variation in species’ occurrence explained by geography is normally 

considered to be a reflection of spatial dynamics and/or historical patterns of 
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dispersal in producing distributional patterns. This probably is probably the case 

for most The study species although it is also likely that the two geographic 

variables might have reflected the variation in habitat factors which were not 

considered here.  

The interpretation of the effects of the landscape variables is less clear. 

These were generally unimportant in comparison to geography and climate and 

size of the water body suggesting landscape composition play a minor role in 

affecting waterfowl distribution. This finding is differs from the results of 

McKinney et al. (2006), who found that landscape composition play an important 

role in determining waterfowl distribution in winter. However McKinney’s study 

was conducted at local scale, where landscape composition is more likely play an 

important role determining species distribution.  The results demonstrate that at a 

larger scale climatic factors have an overriding influence on waterfowl 

distribution.  

The majority of the models had an AUC value above 0.70 for most species, 

indicating that they were reasonably robust. The approach used here has been 

shown to be amongst the most accurate classifiers (Elith et al. 2006; Leathwick et 

al. 2006; Guisan et al. 2007 Baker et al. 2006; Bricklemyer et al. 2007; Cappo et 

al. 2005; Moisen et al. 2006).  Despite this, only five out of The thirteen species 

models showed an above-average performance, so I may ask: why was this the 

case? I believe that this might be due to the lack of important predictors rather 

than model inadequacy. Rushton (2004) stated that successful species’ distribution 

modelling depends on selecting of a suitable set of environmental variables. 
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Whilst there is no doubt that the variables selected for this study are relevant to 

waterfowl, there are also other factors which could have affected their 

distribution, including hunting pressure, water depth and wetland trophic status 

(Suter 1994; Holme and Clausen 2006). Unfortunately, none of these variables 

were available in a digital format for the whole of Great Britain at the time of this 

study.  

The decline of many waterfowl species across the world, has led to a call for 

these animals to be used to monitor changes in wetland biodiversity (Green 1995; 

Gibbs 2000). Many studies have demonstrated how wetland loss and habitat 

modifications have caused declines in waterfowl populations (Fox et al. 1994; 

Duncan et al. 1999; Long et al. 2007).  Despite the coarse nature of The analysis I 

believe that with some refinement (e.g. including other ecological factors that 

affect the distribution of these species) The models could be used to predict future 

changes in the distribution of waterfowl populations in Britain. Moreover The 

results highlight the importance of rainfall and temperature which suggests that 

long-term waterfowl monitoring data could be used to assess responses to 

projected climatic changes.  
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3 MODELS OF THE CLIMATE ASSOCIATIONS AND 

DISTRIBUTIONS OF AMPHIBIANS IN ITALY 

 

3.1 Introduction 

Analyzing the relationships between the distribution of animal species and 

climatic variables is not only important for understanding what factors govern 

species distribution, but also for improving The ability to predict future ecological 

responses to climate change (Donnelly, 1998; Teixeira & Arntzen, 2002; Thuiller 

et al., 2004; Parra-Olea et al., 2005; Araujo et al., 2006; Piha et al.,  2007). 

Species distribution models have become an increasingly common method for 

describing the influence of current and future climate on the distribution of all 

vertebrate species (e.g. Guisan & Hofer, 2003; Peterson et al., 2002; Araujo et al., 

2006; Peterson, 2003; Harrison et al., 2006; Levinsky et al., 2007). By 

parameterizing a model on current species distributions and climatic variables, it 

is possible to use the model to make predictions of future changes in distributions 

under various climatic scenarios (Hannah et al., 2002; Thuiller, 2003). These 

models can reveal species-specific responses to changes in climatic factors and 

increase The understanding of the processes controlling current and future species 

distributions. 

In the context of global climate change, amphibians are of particular 

interest because of their extreme sensitivity to environmental stressors (Alford & 

Richards, 1999; Carey & Alexander 2003; Baillie et al., 2004; Stuart et al., 2004; 

Wake, 2007). Several studies have documented the impacts of climate change on 
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amphibians, including the impacts on their breeding phenology (Blaustein et al., 

2001), disease induced mortality (Pounds et al., 2006), and long term population 

declines (Whitfield et al., 2007). However, whilst most of these studies have 

focussed on quantifying the impacts of climate change amphibian life history 

processes, there is a need to consider where the impacts will be greatest and where 

changes are likely occur.  

Italy is a highly diverse country, with several climatic zones, geological 

substrates and vegetation regions. Few countries in Europe have as rich a 

herpetofauna as that of Italy, both in terms of the overall number of species and 

endemic species and in terms of biogeographical composition (Sindaco et al., 

2006). However, up to date no empirical modelling analyses have been carried out 

on the distribution of amphibians in Italy. The only study where amphibian 

distribution has been  modelled at the national scale was that of  Maiorano et. al. 

(2006), using deductive models. Here I use a relatively novel modelling 

technique, Random forests (Breiman 2001), to model the distribution of 

amphibian occurrence in Italy in relation to climate. The specific aim of The study 

were: 1) to assess the importance of current climate in determining amphibian 

occurrence 2) to examine the potential changes  in the distribution of amphibians 

under a 2xCO2 future climate scenario. 

3.2 Methods 

3.2.1. Species and climatic data 

The CKmap (Check-list and distribution of the Italian Fauna) database provided 

the basis for the analysis presented in this paper (Ruffo & Stoch, 2005). The 
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CKmap project has been developed through an agreement between the Italian 

Ministry of Environment and the Natural History Museum of Verona and is aimed 

at bringing together and computerizing distributional data on all the species of the 

Italian fauna. The data regarding the distribution of amphibians contained within 

the database were originally provided to the Ministry of Environment by the 

Italian Herpetological Society (SHI). These consist of presence records for all 

thirty five amphibian species from 1705 10 x 10 km UTM squares. The data 

originate from a variety of sources including regional mapping projects, museum 

records, and a national survey conducted by the Italian Herpetological Society 

from 1994 to 2004 (Sindaco et al., 2006). For the purpose of the present analysis  

I used data for seventeen species for which there were at least 30 records. Because 

the species’ records were not coming from a systematic survey, I assumed 

pseudo-absences i.e. if a species was not recorded in a square it was considered to 

be absent. I only used occurrence data collected from the 1980s onwards and I 

selected squares where a minimum collection effort was made (i.e. squares which 

had at least 3 species records). I deliberately excluded species that are cave-

dwelling, exotic, or confined to small islands.  

Climatic data were obtained from WORLDCLIM (version 1.3, 

http://www.worldclim.org) which is explained in detail in Hijmans et al., 2005. 

WORLCLIM contains climate data at a spatial resolution of 30 arc seconds (~1x1 

km resolution) obtained by interpolation of climate station records from 1950–

2000. A future climate scenario was also obtain from WORLDCLIM 

(http://www.worldclim.org/future.htm). This dataset, which comprise the same set 
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of variables available for the present climate data layers, is a downscaled version 

of the predictions of the CCM3 global climate model run under a 2 x CO2 scenario 

(Govindasamy et al., 2003). For each of the variables, I used the mean value of all 

the pixels contained within each 10x10km square. A full list of the climatic 

variables used in the analyses is provided in Table 3.1. 

 

Table 3.1. Characterization of the climatic variables used for the analyses. 

 
Acronym Variable 

Clim1  Annual Mean Temperature 

Clim2  Mean Diurnal Range  

Clim3  Temperature Seasonality (standard deviation *100) 

Clim4  Max Temperature of Warmest Month 

Clim5  Min Temperature of Coldest Month 

Clim6  Temperature Annual Range (P5-P6) 

Clim7  Mean Temperature of Wettest Quarter  

Clim8  Mean Temperature of Driest Quarter 

Clim9  Mean Temperature of Warmest Quarter 

Clim10  Mean Temperature of Coldest Quarter 

Clim11  Annual Precipitation 

Clim12  Precipitation of Wettest Month 

Clim13  Precipitation of Driest Month 

Clim14  Precipitation Seasonality (Coefficient of Variation) 

Clim15  Precipitation of Wettest Quarter 

Clim16  Precipitation of Driest Quarter 

Clim17  Precipitation of Warmest Quarter 

Clim18  Precipitation of Coldest Quarter 
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3.2.2 Analyses  

The random forests algorithm Breiman (2001) is a new entry in the field of data 

mining and is designed to produce accurate predictions that do not overfit the 

data. The algorithm is based on the well known methodology of classification 

trees (Breiman 1984). In brief, a classification tree is a rule partitioning algorithm, 

which classifies the data by recursively splitting the dataset into subsets which are 

as homogenous as possible in terms of the response variable (Breiman 1984). The 

use of such procedure is very desirable, as classification trees are non-parametric, 

able to handle non linear relationships and can deal easily with complex 

interactions. Random forests uses a collection (termed ensemble) of classification 

trees for prediction. This is achieved by  constructing the model using a 

particularly efficient strategy aimed at increasing the diversity between the trees 

of the forest.   

Random Forests is built using randomly selected subsets of the 

observations and a random subset of the predictor variables. Firstly, many 

samples of the same size as the original dataset are drawn with replacement from 

the data.  These are called bootstrap samples.  In each of these bootstrap samples 

about 2/3 of the observations in the original dataset occur one or more times.  The 

remaining 1/3 or so of the observations in the original dataset that do not occur in 

the bootstrap sample are called out-of-bag (OOB) for that bootstrap sample.  

Classification trees are then fit to each bootstrap sample.  At each node in each 

classification tree, only a small number (the default is the square root of the 

number of observations) of variables are available to be split on.  This random 
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selection of variables at the different nodes ensures that there is a lot of diversity 

in the fitted trees, which is needed to obtain high classification accuracy.  Each 

fitted tree is then used to predict for all observations that are out-of-bag for that 

tree.  The final predicted class for an observation is obtained by majority vote of 

all the predictions from the trees for which the observation is out-of-bag. Several 

characteristics of random forests make it ideal for data sets that are noisy and 

highly dimensional datasets. These include its remarkable resistance to overfitting 

and its immunity to multicollinearity among predictors.   

The output of random forests depends primarily on the number of 

predictors selected randomly for the construction of each tree. After trying several 

values  I decided to use the default number suggested by Breiman for 

classification problems. I made this choice as  did not notice any decrease in the 

out of bag error estimate after trying several values.  In order to measure the 

importance of each variable in  used measure of importance provided by Random 

Forests, based on the mean decrease in the prediction accuracy Breiman (2001). 

The mean decrease in the prediction accuracy is calculated as follows: Random 

Forests determines the importance of a predictor variable by calculating the 

increase in prediction error when the OOB observations for that variable undergo 

permutation while all other predictor variables are unchanged (Liaw & Wiener, 

2002).  The importance of all the variables of the model is obtained when the 

aforementioned process is carried out for each predictor variable. All the analyses 

were carried out using the randomForest package in R (Liaw and Wiener 2002). 
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3.2.3 Model  evaluation and predictions 

In order to evaluate the models, the original data set were randomly split 

into model training (70%) and model evaluation data sets (30%). The training 

dataset was used for the construction of the model whereas the evaluation data set 

was used to test the predictive abilities of The models. The discrimination ability 

of the models was assessed using receiver operating characteristic (ROC) plot 

analysis. This technique measures the association between the presence and 

pseudo-absence records by using and calculating the area under the curve (AUC) 

(Fielding & Bell, 1997). AUC relates relative proportions of correctly classified 

(true positive proportion) and incorrectly classified (false positive proportion) 

cells over a wide and continuous range of threshold levels, which makes it a 

threshold-independent measure (Fielding and Bell, 1997). The AUC values range 

from <0.5 for models with no discrimination ability to 1 for models with perfect 

discrimination. An approximate for classifying the accuracy of the AUC is that 

proposed by Swets (1988):0.90-1.00 = excellent; 0.80-0.90= good; 0.70-0.80=fair; 

0.60-0.70=poor; 0.50-0.60=fail. In The case, if a model had an AUC value of at 

least 0.70 it was considered to be validated. 

 When predicting species future distributions  considered two different 

dispersal scenarios. Firstly,  assumed unlimited dispersal, such that the future 

distribution is the entire area predicted by the model; secondly,  assumed no 

dispersal, whereby the future distribution is the overlap between current and 

future predicted distributions.  quantified changes in the occupancy of a species 

under present and future climate conditions, by transforming the probability of 
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occurrence from models into presence-absence.  did this using the probability 

threshold that maximised model performance as measured by Cohen’s kappa 

(Manel et. al 2001). finally calculated the gains in the number of species under 

unlimited dispersal scenario and losses in the number of species under a no 

dispersal scenario.  

3.3 Results 

All the models performed quite well when tested again the validation data 

(see Table 3.2). I  considered three classes of model accuracy based on those 

proposed by Swets (1988). The fair accuracy class (0.70 < AUC < 0.80) included 

two species, Rana dalmatina (0.76) and Hyla intermedia  (0.77). The good 

accuracy  (0.70 < AUC < 0.80)  high (0.9 < AUC < 1) classes  included five 

included eleven species, respectively. The three best modelled species were 

Salamadra atra, Discoglossus pictus and Hyla sarda. 

Table 3.3 shows the five most important predictor variables, as obtained 

from the mean decrease in accuracy permutation procedure. The most influential 

predictors were related to temperature, which were of primary importance to 

eleven species (Bombina variegata, Bufo viridis, Hyla intermedia, Rana 

esculenta,Rana italica, Rana latastei, Rana temporaria, Salamandra atra, 

Salamandra salamandra, Salamandrina terdigitata, Triturus alpestris). 

Precipitation variables, on the other hand, were quite important for seven species 

(Discoglossus pictus, Discoglossus sardus, Hyla sarda, Rana dalmatina, 

Pelobates fuscus, Triturus italicus, Triturus vulgaris). The temperature related 

variables that more frequently selected among the top five variables maximum 
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temperature of the warmest month (Clim4), mean temperature of wettest quarter 

(Clim7) and mean temperature of driest quarter (Clim8).  The precipitation 

variables which more frequently selected among the top five variables were 

precipitation of the warmest quarter (Clim17), precipitation of the driest quarter 

(Clim16), precipitation seasonality (Clim14) and precipitation of the coldest 

quarter (Clim18).  

 

Table 3.2 Results of model validation and predictions for present climate and future 

climate scenarios. The results show the AUC value for each species and the number 

occupied grid cells by each species for present and future climate conditions under 

the assumptions of both unlimited and no dispersal. 

 

Species 

 

 

AUC 

 

Predicted 

occupancy-Present 

 

Occupancy-future no 

dispersal 

 

Occupancy-future 

unlimited dispersal 

 

Bombina variegata 0.88 573 102 204 

Bufo viridis 0.83 1448 1302 2301 

Discoglossus pictus 0.99 216 212 282 

Discoglossus sardus 0.98 178 39 60 

Pelobates fuscus 0.91 32 0 0 

Hyla intermedia 0.77 1374 1252 2420 

Hyla sarda 0.99 162 25 32 

Rana  dalmatina 0.76 1169 650 1181 

Rana esculenta 0.84 2481 845 2893 

Rana italica 0.91 904 399 507 

Rana latastei 0.96 252 104 238 

Rana temporaria 0.98 630 440 453 

Salamandra atra 0.98 184 123 151 

Salamandra salamandra 0.91 890 497 606 

Salamandrina terdigitata 0.87 360 27 65 

Triturus alpestris 0.95 547 347 480 

Triturus italicus 0.94 663 439 529 

Triturus vulgaris 0.84 1149 1032 1625 
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Table 3.3.   Five most important predictor variables for each species. The  names of the variables are listed in decreasing order of 

importance (for acronyms see Table 1) . The number between the brackets indicates  (eg. 1.17) the mean decrease in accuracy, which 

represents the overall percentage mean decrease in the prediction error of the model when one particular variable is permuted while all 

the other variables are held constant. Higher values of mean decrease in accuracy indicate variables that are more important in  

determining a species’ distribution. 

Bombina variegata Bufo viridis Discoglossus pictus Discoglossus sardus Hyla intermedia Hyla sarda 

Clim7 (1.17) Clim6 (1.12) Clim16 (0.99) Clim13 (0.71) Clim8 (1.08) Clim7 (0.71) 

Clim17 (1.11) Clim9 (1.12) Clim17 (0.81) Clim7 (0.65) Clim17 (1.08) Clim13 (0.63) 

Clim16 (1.09) Clim17 (1.1) Clim14 (0.74) Clim18 (0.63) Clim4 (1.06) Clim14 (0.59) 

Clim9 (1.08) Clim4 (1.09) Clim13 (0.74) Clim16 (0.58) Clim9 (1.06) Clim16 (0.54) 

Clim4 (1.03) Clim3 (1.09) Clim18 (0.71) Clim14 (0.56) Clim3 (1.05) Clim18 (0.52) 

      

Pelobates fuscus Rana dalmatina Rana esculenta Rana italica Rana latastei Rana temporaria 

Clim3 (0.78) Clim12 (1.09) Clim4 (1.15) Clim7 (1.26) Clim8 (0.93) Clim7 (1.06) 

Clim18 (0.78) Clim17 (1.08) Clim9 (1.14) Clim18 (1.07) Clim13 (0.93) Clim17 (1.05) 

Clim12 (0.77) Clim11 (1.07) Clim10 (1.07) Clim17 (1.05) Clim7 (0.9) Clim4 (1.05) 

Clim11 (0.76) Clim15 (1.05) Clim1 (1.05) Clim8 (0.98) Clim3 (0.9) Clim8 (1.03) 

Clim16 (0.75) Clim16 (1.03) Clim7 (1.03) Clim3 (0.97) Clim6 (0.9) Clim9 (1.01) 

      

Salamandra atra Salamandra salamandra Salamandrina terdigitata Triturus alpestris Triturus italicus Triturus vulgaris 

Clim5 (0.79) Clim4 (1.15) Clim7 (0.86) Clim7 (1.14) Clim17 (1.01) Clim6 (1.09) 

Clim8 (0.77) Clim9 (1.12) Clim17 (0.85) Clim8 (1.06) Clim18 (0.99) Clim14 (1.05) 

Clim10 (0.71) Clim1 (1.08) Clim3 (0.84) Clim9 (1.05) Clim7 (0.97) Clim16 (1.05) 

Clim11 (0.61) Clim17 (1.06) Clim9 (0.82) Clim4 (1.04) Clim11 (0.95) Clim17 (1.03) 

Clim1  (0.60) Clim8 (1.03) Clim8 (0.8) Clim14 (1.01) Clim13 (0.94) Clim4 (1.01) 
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Projection of niche models onto predicted future climate scenario showed a 

moderate to extreme spatial decrease in amphibian distribution. Table 2 shows the 

number of occupied cells, in relation current and future climate, under the two 

dispersal scenarios (unlimited dispersal or no dispersal). All species showed a 

decrease in their distribution under a scenario of no dispersal and twelve species 

out eighteen showed a decrease in their distribution under an unlimited dispersal 

scenario. Six species showed an increase in their distribution under the unlimited 

dispersal scenario. One species, Pelobates fuscus, was predicted to loose 100% of 

its range under both scenarios of unlimited  and no dispersal.   

An example of the present and future  bioclimatic profiles for three species 

species is shown in Fig 3.1.   The future projections consider the two dispersal 

scenarios of unlimited and no dispersal. The maps show the observed and 

predicted distributions for Bombina variegata, a toad distributed in the Alps and 

Appenines, Rana latastei, a frog species occurring the Po Valley in Northern 

Italy, and Salamandrina terdigitata an endemic Salamander species occuring in 

the Appennines in central and Southern Italy. The future projections show that 

under both unlimited and no dispersal there could be a contraction in the 

distributions of  the three species. Fig 3.2. shows species losses and under the 

assumption of no dispersal and species gains under the assumption of unlimited 

dispersal . Most species losses are predict to occur in Southern Italy and Central 

Italy. In contrast the Alps show a lower species loss together with Northern Italy. 

With regard to species gains, most them gains were predicted  to occur in the 

Appenines in central Italy and the Northermost parts of the Alps. Moderate 
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species gains were also predicted to occur along near coastal areas of Eastern 

Italy. 

 

Figure 3.1. Examples of the projected potential ranges for three amphibian species 

(Bombina variegata, Rana latastei, Salamandrina terdigitata):  (a) current, (b) 

projected future with unlimited dispersal, and (c) projected future without 

dispersal.   
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Figure 3.2. Projected amphibian species losses (with no dispersal) and gains (with 

unlimited dispersal) 

 

 

 

 

 

 

 

3.4 Discussion 

Climate has profound effects on species distribution and The results show 

that this also applies to the amphibian species considered in this study. Their 

current distribution seems to be largely determined by temperature related factors, 

which are indicators of physiological requirements for survival and availability of 

suitable habitat. Precipitation related variables played a major role in determining 
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the distribution of species living in Mediterrean areas (eg. Hyla sarda, 

Discloglossus spp.), indicating that for these latter species “water availability” 

may be a major of a limiting factor. However,  it should be noted that, the climatic 

data are inherently spatially autocorrelated and it is therefore difficult to interpret 

the importance of each variable separately. It is instead more likely that groups of 

variables are acting together to influence the presence or absence of each species.  

The projected bioclimatic response under the 2xCO2 climate scenario 

showed considerable effects on the distribution of amphibians. The results showed 

that the all of the species could potentially undergo large range reductions. In 

particular predictions for mountain (Bombina variegata, Rana temporaria, 

Salamandra salamandra, Salamandrina terdigitata, Salamandra atra, Triturus 

vulgaris, Rana italica) and Mediterranean species (Discoglossus sardus, Hyla 

sarda, Triturus italicus) showed that distributions of these species could 

potentially decrease, regardless the possibility for these species to occupy new 

suitable areas. This finding is not too surprising, as mountainous and 

Mediterranean areas host a number of highly specialized species with narrow 

climatic tolerances and any changes in temperatures could have detrimental 

effects on the distribution of these species. This result consistent with evidence 

from similar studies on other taxa, which have shown that climate change could 

have some severe effects on the biodiversity of mountainous and Mediterranean 

areas (Thuiller et. al, 2005; Levinsky et. al. 2007).  

The models predicted noticeable changes in amphibian species richness. 

As a result of shifts in species ranges, future species-rich areas are predicted to 
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become relegated to mountain areas of northern and central Italy.  contrasted two 

simple assumptions about changes in species richness of no dispersal or unlimited 

dispersal. However, the ability of species to occupy new sites will depend on the 

as well as on the existence of pathways for dispersal. The assumption of no 

dispersal is likely to be more realistic for amphibians, which are known to be poor 

dispersers (Smith & Green 2005). This would therefore support the hypothesis 

that climate change could have some serious negative effects on the amphibian 

distributions in Italy. 

Although the results provide some clear evidence that climate change 

could have a negative effect on the distribution of amphibians, there are some 

sources of uncertainty which need considered in order to verify the accuracy of 

any conclusions generated by this study. This is one example of ecological niche-

based modelling that is subject to a well documented number range of 

assumptions and caveats, as other authors have emphasized (Davis et al., 1998; 

Thuiller 2004; Araujo et al., 2005; Heikkinen et al., 2006; Hijmans & Graham 

2006; Pearson et al., 2006). The results of the future predictions of niche based 

models cannot be taken as precise forecasts because of the uncertainties present in 

climate change scenarios and in the modelling techniques used. Model predictions 

rely not only on the accuracy of the bioclimatic models but also on the ability of 

the future scenario to depict the accumulation of the cumulative effects of CO2 on 

climate. Furthermore the models do not take into account important factors like 

biotic interactions, which are important in determining the distribution of species 

under present and future climate conditions(Davis et al., 1998;Araujo & Luoto 
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2007; Brooker et al., 2007). Despite uncertainties, The findings provide 

illustration of the potential importance and the likely direction of climate effects 

on amphibian distributions in Italy. 

 The decline of many amphibian species throughout the world has led for a 

call for these animals to be used for monitoring environmental quality and change 

(Carey et al., 2001;Hopkins, 2007).Many studies have demonstrated the 

importance of the effects of climate and habitat changes in the decline of 

amphibian populations (Carey et al., 2001; Whitfield, 2007; Johnson et al., 2007; 

Nystrom, 2007, Boone et al. 2007). The study, emphasises the potential severity 

of climate change,  which should be taken into account in conservation planning.  

Amphibian distributions are predicted to change quite dramatically and new areas 

may need to be protected in order to ensure the persistence of Italian amphibians. 

The results of this study provide some useful information, indicating if future 

conservation priorities for some species should be enhanced.  Management 

options include the maintenance of a network of suitable habitats as well as the 

facilitation of the migration of amphibians to new climatically suitable areas. 

Detailed guidelines for conservation at the local scale should, however, be based 

on finer scale analyses. Ideally models for these finer scale analyses should 

incorporate factors like local population dynamics, landscape characteristics and 

human interference. However, the level of detail necessary to parameterise such  

models is so time-consuming and difficult to collect that it may prohibit such 

approaches.  
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4 USING BAGGING PREDICTORS AND LANDSCAPE 

ZONATION TO IDENTIFY IMPORTANT AREAS FOR 

BUTTERFLY CONSERVATION IN ITALY 

 
4.1 Introduction 

 One of the most important aspects of any conservation strategy is the 

identification of high-value sites on the basis of their biodiversity content (Kati et 

al. 2004; Kelley et al. 2002; Margules and Pressey 2000; Margules et al. 1988). 

Site prioritization is useful for selecting reserve networks or devising management 

strategies based on the species composition of a set of sites. However, the limited 

amount of resources allocated for systematic data collection, makes it very 

difficult to obtain maximal representation of the overall biodiversity of a region. 

This is especially true for Mediterranean countries, for which information on the 

distribution of many species is often incomplete and data are lacking for many 

regions (Hortal et al. 2004; Ramos et al. 2001). Alternative methods for the 

identification of important sites for biodiversity conservation, which can have 

utility in the context of sparse data, are needed. In the last few years the 

combination of species distribution modelling and complementarity-based site 

selection algorithms has shown great promise towards achieving this goal (e.g. 

Ortega-Huerta and Peterson, 2004; Pawar et al. 2007; Moilanen et al. 2007).   

Species distribution modelling aims at predicting species geographical 

distribution from occurrence records and environmental data layers (Guisan and 

Zimmermann 2000; Guisan and Thuiller 2005; Rushton et al. 2004). 
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Complementarity-based algorithms (Moilanen et al. 2005; Moilanen 2007) aim to 

find an optimal set of areas that are jointly as valuable as possible, by taking into 

account differences, similarities and connectivity between candidate sites.  

 The present study combines the use of species distribution modelling with 

a complementarity-based method to identify areas important for butterfly 

conservation in Italy. More specifically  use two relatively novel techniques: 

bagging predictors and Zonation. Bagging predictors (Breiman 1996) belong to a 

general class of methods, based on classification trees. This class of methods, 

termed ensemble, include other techniques like Boosted Regression Trees 

(Friedman 2001) and Random Forest (Breiman 2001). Ensemble modelling 

(Araujo and New 2007) differs fundamentally from conventional techniques as it 

does not seek the single most parsimonious model, but aims to fit large number of 

models which are then combined together to make accurate predictions. Bagging 

has been shown to be a very promising technique in many areas of science where 

predictive modelling is required. (Carreiras et al. 2006; Lawrence et al. 2004; 

Myles et al. 2004; Radivojac et al. 2004; Rizzoli et al. 2002; Shah et al. 2007)  

However, up to date, bagging has been used only in one other ecological study 

(Prasad et al. 2006).  Zonation is a site prioritization method introduced by 

Moilanen et al. (2005). This method produces a hierarchical prioritisation of a 

landscape based on the biological value of sites. The landscape is thus zoned 

according to its conservation potential and different degrees of protection can be 

applied to different zones. Zonation has been used successfully for the 

identification of conservation priorities in British Butterflies (Moilanen et al. 
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2005; Early and Thomas 2005) and the identification of important areas for fish in 

New Zealand (Moilanen et al. 2008) 

Butterflies are an important component of biodiversity, and their 

sensitivity to environmental changes makes most species vulnerable to extinction 

(Thomas et al. 2006; Thomas et al. 2006; Roy et al. 2001; Maes & Van Dyck 

2001; Menendez et al. 2007; Franco et al. 2006; Hill et al. 2002). Additionally 

several studies have demonstrated how the populations of a number of species 

have declined in many parts of Europe in relation to direct habitat modifications 

(e.g. van Swaay et al. 2006; van Swaay and Warren 1999; Thomas 1995; Wenzel 

el al 2006; Polus et al. 2007; Aviron et al. 2007). Given the importance of 

butterflies as indicators of the health of the whole ecosystem (Thomas 2005; 

Thomas and Clarke 2004) and their higher sensitivity to habitat changes in 

comparison to other popular bioindicator groups, (Thomas et al. 2004) there is an 

urgent need for the establishment of conservation priorities for butterflies in those 

areas which have the highest concentration of butterfly diversity.   

Italy is of outstanding importance for butterflies as there are few countries 

in Western Europe which have as rich a butterfly fauna, both in terms of the 

overall number of species and the number of endemic species (Balletto and 

Kudrna 1985; Balletto 1992; Balletto et al. 2005a). The importance of Italian 

butterflies for the conservation of European butterfly fauna is probably best 

expressed by the fact that one from every two species native to Europe lives in 

Italy (Balletto and Kudrna 1985). Italy has thus both national and international 

obligations to conserve these species and the habitats upon which they rely.  
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Here,  I constructed species-environment models using butterfly 

occurrence data derived from a national biodiversity database and used the results 

of the models to select areas of conservation importance. The specific objectives 

of The research were: (i) to identify areas important areas for butterflies across the 

Italian peninsula, (ii) to identify important areas by taking into account species of 

conservation concern (iii) to identify some possible management landscapes based 

on the similarity in species composition among sites.   

 Methods 

4.2.1 Species data and environmental predictors  

The Check-list and distribution of the Italian Fauna (CKmap) database 

provided the basis for the analysis of this research. The CKmap project has been 

developed through an agreement between the Italian Ministry of Environment and 

the Natural History Museum of Verona and is aimed at bringing together and 

computerizing distributional data on all the species of the Italian fauna. The data 

regarding butterflies used for these analyses consist of 59130 presence records for 

272 species of butterflies (in sensu Balletto et al. 2005b). For the purpose of the 

present analysis  only considered those species which were also listed Red Data 

Book of European Butterflies (Swaay and Warren 1999).   only used occurrence 

data collected from the 1980s onwards. Species with less than 5 records were 

discarded and  selected squares where a minimum collection effort was made (i.e. 

squares which had at least 20 species records). The final database that was used 

for the analyses comprised occurrence records for 232 species distributed across 

670 10x10km squares. Theses squares make up about 20% of the total number of 
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squares of the grid used to map the species distributions (3356 squares). A full list 

of the species names is given in APPENDIX 1. Because the species records were 

not coming from a systematic survey,  assumed pseudo-absences i.e. if a species 

was not recorded in a square it was considered to be absent.   

Nineteen environmental were used for the analyses (Table 4.1). Annual 

mean temperature and total precipitation data were obtained from Agency for 

Environmental Protection and Technical Services (APAT, http://www.apat.it/). 

National climate maps were created using smoothing splines (Hutchinson 1991). 

Three altitude and one slope variable were derived from a digital elevation model 

(DEM) (http://srtm.csi.cgiar.org/). Nine land cover types were derived from a 

digital CORINE data base (EEA 2000). The baseline resolution of all the 

environmental layers was 100 m (the lowest possible resolution for the CORINE 

Land Cover map, which was the layer with the coarser spatial resolution). The 

DEM, which had an original resolution of 90m, was resampled to obtain a pixel 

size of 100m. All the environmental layers were aggregated to match the 

resolution of the species data (10x10km). For each 10km square  therefore 

calculated: the mean value of all the pixels for each of the climatic, slope and 

altitude variables, the minimum and maximum value of all the pixels for the 

altitude variable, and the area (ha) of each the nine land cover types. 
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Table 4.1. Characterization of environmental and climatic variables used in the 

analyses. 

 

 

Variable description 

 

Yearly total amount of precipitation (mm) 

Total amount of precitation for January (mm) 

Total amount of precitation for July (mm) 

Mean slope of each square (º) 

Mean annual temperature (ºC) 

Mean temperature of January (ºC) 

Mean temperature of July (ºC) 

Maximum altitude (m.a.s.l.) 

Minimum altitude (m.a.s.l.) 

Mean altitude (m.a.s.l.) 

Area of urban development (ha) 

Area of arable land (ha) 

Area of broad leaved forest (ha) 

Area of coniferous forest (ha) 

Area of sparse vegetation (ha) 

Area of grassland and pastures (ha) 

Area of moorland (ha) 

Area of marshes and bogs (ha) 

Agricultural areas with a significant portion of natural vegetation (ha) 

 

 

4.2.2 Species distribution modelling and model evaluation 

I constructed species-environment models using tree-based classification 

models with bootstrap aggregation or bagging. Classification trees (Breiman et al., 

1984) consist of recursive partitions of the dimensional space defined by the 



 

 

 

Chapter 4-Using bagging predictors and landscape zonation to identify important areas for butterflies in Italy 

 

 

 45 

predictors into groups that are as homogeneous as possible in terms of the 

response. The tree is built by repeatedly splitting the data into two exclusive 

groups, defined by a simple rule based on a single explanatory variable at each 

step. Bagging uses an ensemble (i.e. a collection) of classification trees for 

prediction (Breiman 1996). The idea underlying bagging is the recognition that 

part of the output error in a single regression tree is due to the specific choice of 

the training data set. Therefore, if several similar data sets are created by 

resampling with replacement (i.e. bootstrapping) and classification trees are 

grown without pruning and averaged, the variance component of the output error 

is reduced (Breiman 1996). When a bootstrap resample is drawn, about 37% of 

the data is excluded from the sample, but other data are replicated to bring the 

sample to full size. The portion of the data drawn into the sample in a replication 

is known as the ‘‘in-bag’’ data, whereas the portion not drawn is the ‘‘out-of-

bag’’ data. The major advantage in using bagging is that the final model will 

always have an improved predictive performance.  

The most important tuning parameter for bagging trees is the number of 

bootstrap replicates, hence the number of trees. Breiman (1996) suggested that a 

number of trees higher than 25 tend not to produce a significant test set error 

reduction. In The case, when constructing The bagging models  combined 50 

trees. All the analyses were carried out using the ipred package (Peters et al. 2002) 

for R (Ihaca and Gentleman 1996).  

In order to evaluate the performance of models the original data set was 

randomly divided into model training (70%) and model evaluation data sets 
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(30%). The discrimination ability of the models was assessed using receiver 

operating characteristic (ROC) plot analysis (Fielding and Bell 1997). This 

technique measures the association between the presence and pseudo-absence 

records by using and calculating the area under the curve (AUC). AUC relates 

relative proportions of correctly classified (sensitivity) and incorrectly classified 

(specificity) cases over a wide and continuous range of threshold levels, which 

makes it a threshold-independent measure. The AUC values range from <0.5 for 

models with no discrimination ability to 1 for models with perfect discrimination. 

An approximate for classifying the accuracy of the AUC is that proposed by 

Swets (1988): 0.90-1.00 = excellent; 0.80-0.90= good; 0.70-0.80=fair; 0.60-

0.70=poor; 0.50-0.60=fail. Models with an AUC value of at least 0.70 were 

considered to be sufficiently accurate to be used in further analyses 

 

4.2.3 Zonation and management landscapes 

The results of all the models which showed a positive validation were 

subsequently used for the Zonation.  also ran the Zonation with the results from 

all the models, irrespective of their accuracy. The aim of this analysis was to 

explore the effect of eliminating potentially important species from the final 

solution. 

A Zonation analysis produces a hierarchical prioritisation of the landscape 

based on the biological value of sites (Moilanen et al. 2005; Moilanen 2007). The 

algorithm proceeds by removing least valuable cells (here 10x10 km) in a 

landscape while minimizing the loss rate of biodiversity and connectivity. The 
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order of cell removal gives a landscape zoning with most important areas 

remaining last. The output of the Zonation analysis is the ranking of each site, 

allowing for the identification of the most important areas for species persistence 

when a certain proportion of the land surface remains. Landscape Zonation can be 

initialized using different removal rules, depending on the conservation planning 

goals.  used the area-core Zonation removal rule which aims to minimize 

biological loss by trying to retain the core areas of each species until the end of 

cell removal.  regarded this removal rule as more appropriate because The aim 

was to establish important areas for conservation for all species and emphasising 

the locations with the highest occurrence levels of species, rather than focussing 

on species rich areas.  

An important aspect that needs to be taken into consideration when 

planning any conservation strategy is that not all species are of equal value in 

terms of their conservation importance. Zonation can take this into account by 

using a species weighting procedure, which stresses the selection of high-value 

cells towards species of conservation concern (Arponen  et al. 2004).  used a 

weighting scheme similar to the one used by Early and Thomas (2007), based on 

the threat categories listed in the European Red Data Book of Butterflies (van 

Swaay and Warren 1999).  assigned a weight of 1 to species not classified at risk, 

a weight of 2 to classified as  lower risk species, a weight of 3 to species classified 

as vulnerable, a weight of 4 to species classified as  endangered, and a weight of 5 

to species classified as critically endangered. After carrying out the baseline 

analyses  compared all the weighted and the unweighted solutions and determined 
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the degree of overlap in the top 10% fraction of the cells selected by each 

solution.  

 used the top 10% fraction for both weighted and non-weighted solutions 

to classify spatially separate clusters of 10x10km squares into different 

management landscapes. This method allows for the identification of management 

landscapes based on the distance and similarity in species composition between 

sites (Moilanen et al. 2005). The identification of landscapes requires the 

specification of: 1) the maximum distance allowed between cells that are included 

in the same landscape 2) the maximum difference in species composition between 

two cells to be joined in the same landscape, and 3) an inclusion minimum which 

determines how highly ranked cells must be included in each of the management 

landscapes. Previous studies for which high resolution data (1km2) were available, 

used a maximum distance between cells of 10km, based on the assumption the 

maximum colonization distance of intermediate mobile species is less than 10km 

(Moilanen et al. 2005; Early and Thomas 2007). Because the coarse resolution of 

The dataset,  decided to set the maximum distance between cells to a value of 

30km (i.e. 3 cells).  

  specified maximum difference in species composition of 0.3. This 

indicates that at the most three species out of the out of ten will not be included in 

those cells (Moilanen et al. 2005). Finally  defined as an inclusion minimum of 2 

indicating that a management landscape could only be retained in the final 

solution if it contained one or more cells that were in the top-ranked 2% of cells. 



 

 

 

Chapter 4-Using bagging predictors and landscape zonation to identify important areas for butterflies in Italy 

 

 

 49 

All of the analyses were carried out using the Zonation software version 1.0 

(http://www.helsinki.fi/bioscience/consplan/). 

 

4.3  Results 

Models for 182 species were sufficiently accurate (AUC ≥ 0.70) to be used in the 

zonation analyses. The graph shown in Fig. 4.1. relates model performance with 

the log of the total number of records for each species and the AUC of each 

model. Model performance showed a negative correlation with total the number of 

records for each species (R2=0.10  P < 0.001). Models with a poor performance 

were generally related to species with a high number of records.  

 

Figure 4.1. Relationship between model performance (AUC) and the number of 

species records  records (R2 0.10). Each point represents a species.  

 

http://www.helsinki.fi/bioscience/consplan/
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Figure 4.2. shows the results of the basic Zonation, with no species 

weighting, using the results of the 182 models which were sufficiently accurate 

(AUC ≥ 0.70). This solution highlighted how both Eastern (A) and Western (B) 

Alps are the two areas with the highest biological value. These were followed by 

the central Appennines (C) the Apulia region  (D) and Sardinia (E). Figure 4.3. 

shows the results of the weighted Zonation using the species weighting scheme.   

The main difference in the weighted and non-weighted solutions was in 

the selection high-value cells within the Alps (A) in Calabria (B) and in Sicily 

(C). These three areas were particularly important in the weighted solution when 

compared with the non-weighted solution. When compared with the top 10% 

fraction of the non-weighted and weighted solutions (Fig. 4.4) there was an 

overlap of 60% of the squares selected.  

Figure 4.5 shows performance curves for both non-weighted and weighted 

solutions.  The curves clearly show that when weighing was applied the average 

protection for species of conservation concern was increased. When comparing 

the top 10% fraction of the solutions using the 182 models which were 

successfully validated and the solutions using all 232 models,  obtained an overlap 

of 76% of 86% for the non-weighted and weighted solutions, respectively.  
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Figure 4.2. Results of the basic Zonation, without species weightings. Map shows the 

results of the ranking for each cell, which varies from 0 to 1.  Values closer to 1 are 

shown in red and represent the cells with a higher biological value, whereas cells 

with a value closer to 0 are shown in green and have a lower biological value. 

Arrows indicate: A (Western Alps) B(Eastern Alps) C (Central Appennines) D 

(Apulia) E (Sardinia). 
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Figure 4.3. Results of the Zonation when species weighting was applied. Arrows 

indicate: Alps (A), Calabria (B) and Sicily (C). 
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Figure 4.4. Comparison of the top 10% fraction of cells selected by the two, non-

weighted and weighted solutions. The green squares indicate the cells which were 

selected in both solutions, the orange ones those selected only in the non-weighted 

solution, and the red ones the ones selected only in the weighted solution.    
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Figure 4.5. Average proportion of the original distribution retained for the species of 

conservation concern as a function of proportion of landscape remaining as lower 

priority zones. The two different lines show the average of the proportions for the 

non-weighted (solid line) and weighted solutions (dashed line).  

 

 

 

 

 

Fig. 4.6 shows the management landscapes selected using the landscape 

identification procedure for both non-weighted (A) and weighted (B) solutions. 

Forty four landscapes for the non-weighted solution and thirty four landscapes 

were identified for the weighted solution. Both of the solutions identified similar 

landscapes based on species composition. These can be broadly characterized into 
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Alpine landscapes in the eastern and Western Alps, landscapes occurring in 

central Italy and the Appennines and Southern Italy .  

 

Figure 4.6 Priority landscapes derived from both the non-weighted (A) and weighted 

(B) solutions.  The landscapes were selected using the top 10% fraction of cells 

selected by the Zonation. Each landscape (shown by a colour) contains blocks of 

land that are close together, similar in species composition, and contain a core area 

present late in the cell removal process.  

 

  

 

 

 

4.2  Discussion 

This study represents the first analysis aimed at identifying important areas for 

butterfly conservation in Italy. Previous research (Balletto and Kudrna 1985; 

Balletto 1992) focussed on assessing the conservation status of butterflies either 

regionally or nationally, but never aimed at setting conservation priorities for this 



 

 

 

Chapter 4-Using bagging predictors and landscape zonation to identify important areas for butterflies in Italy 

 

 

 56 

group in a spatially explicit context.   produced a hierarchy of priorities using 

probabilities of occurrence derived from niche models. Despite the fact that not all 

species were included in the analysis, The results clearly demonstrate the strength 

of combining species distribution modelling and Zonation for the exploration of 

realistic scenarios for biodiversity protection over an extensive geographic area.   

The results of the basic Zonation analyses (without species weights) 

showed that the most important areas for butterflies are the Alps, the central 

Appennines, the Apulia region, and  the island of Sardinia. The high species 

diversity and the number of species with a restricted distribution occurring in 

these areas make up for the majority of Italian butterfly species. The Alps are a 

well known hotspot, hosting 106 species, more than thirty eight percent of the 

total number of species occurring in Italy (Tontini et al. 2003). The Alps also host 

the majority of species of conservation concern, with fifteen out of the thirty 

species of conservation concern included in this study. Amongst these, ten species 

are vulnerable and one is considered endangered. The Appennines are also a 

stronghold for many species, hosting a total 64 species (Tontini et al. 2003). 

Sardinia  is also important. Because of its isolation and geological history, this 

island hosts a significant number of species of conservation concern and species 

with a narrow distribution (Dapporto and Dennis 2007).  

 The introduction of species weights into the Zonation analyses altered  the 

spatial distribution of a fair proportion of the high value sites. More specifically, 

the weighted solution highlighted again the importance the Alps together with the 

Calabria region  and Sicily. This finding, thus confirms that these areas are 
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important for the majority of species of conservation concern. The Alps, for 

instance, host eleven out of the twenty six species of conservation concern 

included in this study. Moreover the inclusion of weights for species typical 

southern species like Anthocharis damone, placed a greater emphasis in the 

selection of high value cells in Sicily and Calabria (see Fig 3).  Species weighting 

was thus beneficial for identification of important areas for species of 

conservation concern.   

The selection of the management landscapes identified a series of 

landscapes on the basis of the similarity of species composition. As highlighted by 

Moilanen et al. (2005) the main purpose of this analysis is not to propose a reserve 

structure but to identify landscapes that could be subjected to more detailed 

planning. However The results could be important within the context of butterfly 

management in different parts of the Italian peninsula. The procedure identified 

sites that provide protection for a full range of species, including Alpine and 

Appenninic and Mediterranean species. Unfortunately, the resolution of the 

species data did not allow us to make any comparison with the existing network of 

protected areas or introduce any aggregation between the cells. The design of any 

networks of protected areas would require a detailed analysis using high 

resolution data which goes beyond the one presented here. 

Not all species were included in the Zonation analysis because of the 

relatively poor performance the models. However, a comparison of the solutions 

with all the 232 species and the 182 species for which model validation was 

adequate showed that the top 10% fraction of the cells selected by the two 
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solutions agreed in 76% and 86% for the non-weighted and weighted solutions, 

respectively. This result suggests that even with the exclusion of 50 species, The 

results were still robust, thus supporting the generality of The analyses. Whilst  

acknowledge that excluding a proportion of the species from the analyses might 

have been a serious limitation of The approach, it must also be borne in mind that 

conservation decisions cannot be delayed until biodiversity complete surveys are 

available, as this will greatly diminish the efficacy of any conservation strategies 

(Maiorano et al. 2006; Margules and Pressey 2000) The approach used here is far 

from being the ultimate solution, but  believe that the problem of rare species 

could be taken into account by integrating it with other methods like deductive 

modelling, (eg. Maiorano et al. 2006; Romero-Calcerrada and Luque 2006; 

Rondinini et al. 2005; Dayton and Fitzgerald 2006).    

Significant changes have occurred to the Italian landscape in the last forty years, 

as a consequence of the abandonment of agricultural land, changes in forestry 

policy, urban development processes, causing a profound effect on the territorial 

mosaic (Falcucci et al. 2007). These changes in landscape heterogeneity have had 

a significant effect on the biodiversity (Falcucci et al. 2007), including butterflies 

(Balletto 1992).  

Many species of butterflies are highly dependent on man made biotopes 

such as dry grassland and meadows, which are typically, maintained by traditional 

forms of farming management such as livestock grazing and hay-making (Tontini 

et al. 2003; Van Swaay et al. 2006). The abandonment of traditional farming 

practices and livestock overgrazing are potential threats for many butterfly species 
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in the Alps and the Appennines. The loss of suitable habitats threatens the 

populations of many hygrophilous species living in the Padano Venetian plains. 

Moreover the development of tourist resorts along the Mediterranean coastline 

could have affected several species in the Mediterranean part of Italy. A wide 

range of factors threaten important habitats for butterflies, and the future 

conservation of many populations will depend on the conservation of these 

habitats (van Swaay and Warren 1999; van Swaay 2006; van Swaay and Warren 

2006).  

Unfortunately there is currently no monitoring scheme for butterflies in 

Italy and it is therefore difficult to relate any population changes to the potentially 

important habitat changes discussed above. Although the decline of some species 

seems to mirror what is happening to other populations in Europe (van Swaay and 

Warren 1999), it cannot be established whether any of these population changes 

reflect changes in habitat quality or composition. Given the tremendous 

importance of Italy for butterflies, there is an urgent need to assess how current 

and future habitat changes are likely to influence the Italian butterfly fauna.  

believe that The results could be considered as an initial assessment upon which 

to monitoring schemes should be implemented. These schemes should be 

concentrated in those areas judged as important from The results. Additionally the 

identification of management landscapes on the basis of species composition will 

hopefully serve as a basis of devise any regional conservation plans for the 

establishment of conservation priorities in these areas. 
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In conclusion  have identified important areas for butterfly conservation by 

combining two approaches of species distribution modelling and Zonation. Italy is 

of unique importance for butterflies in Europe and an important area for several 

populations of threatened species.  believe that information presented here can 

potentially allow efforts to be focused on areas of high biological value and those 

important for species of conservation concern.  
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5 A COMPARISON OF TREE-BASED METHODS FOR 

MODELLING SPECIES DISTRIBUTIONS 
 

5.1 Introduction 

Accurate knowledge about the distributional patterns of species is an 

essential prerequisite for biodiversity conservation and management. However, 

the limited amount of resources allocated for data collection, makes it very 

difficult to obtain complete information about the distribution of one or more 

species over large regions. As a consequence of this, both researchers and 

decision makers have to rely on predictive modelling to estimate patterns of 

species distribution (Guisan & Thuiller 2005). In niche or species distribution 

modelling species occurrence data are combined with environmental variables to 

infer the ecological requirements of a species. The geographic distribution of a 

species is then predicted by mapping the area where these environmental 

requirements are met (Guisan and Zimmermann 2000; Guisan and Thuiller 2005). 

Classical methods used in species distribution modelling include statistical 

techniques like Generalized Linear Models (GLM) (McCullagh and Nelder 1989) 

or Generalized Additive models (GAM) (Hastie and Tibshirani 1990).  While the 

benefits of using these techniques are numerous, including predicting changes in 

species’ distribution from climate change (eg. Hilbert et al. 2004, Raimo et al. 

2008) and identifying areas important for biodiversity conservation (eg. Milne et 

al. 2006, Lehmann et al. 2002), species distribution modelling is complicated by 

technical difficulties and by data limitations (Guisan & Thuiller 2005). Recent 
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advances in machine-learning techniques might be used to solve these problems, 

which generally derive from assumptions about the statistical distribution of data 

or restrictive assumptions of parametric modelling methods. Machine learning 

methods make fewer assumptions about the relationships between the variables.   

 Among the numerous machine learning methods available for species 

distribution modelling, classification trees represent an efficient tool, that has been 

applied in several species distribution modelling studies (e.g. Moisen et al. 2006, 

Edwards et al. 2006, Thuiller et al. 2003). Classification trees (Breiman et al. 

1984), often known as CART, explain the variation in a single response variable 

with respect to one or more explanatory variables. They work by partitioning the 

data recursively into smaller and more homogenous groups with respect to the 

response variable. In addition the baseline methodology of classification trees 

includes several novel methods which have also been developed. These methods 

use iterative or bootstrapping procedures to combine several hundreds or 

thousands of trees together with the aim of improving model accuracy. Although 

these methods have been widely used in bioinformatics they have received 

relatively little exposure in ecology (Garzon et al. 2006, Leathwick 2006; Prasad 

et al. 2006).  In this study I compare the predictive accuracy of four techniques 

based on classification trees, using large scale bird distribution data, with the aim 

of testing the performance of these four techniques to make suggestions for the 

optimal models which should be used by future researchers.  

Although numerous studies have compared the predictive accuracy of 

different species distribution modelling techniques with respect to the type of 
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algorithm used (Elith et al. 2006, Prasad et. al. 2007, Garzon et al. 2006), fewer 

studies have investigated systematically how variation in species geographical and 

environmental distributions affect model’ performance. (Segurado and Araujo 

2004, Tsoar et al. 2007, Brotons et al. 2004, Luoto et al. 2007). Because this latter 

aspect is thought to particularly important as it could provide researchers the 

means to use theoretical or expert knowledge to predict which species are suitable 

for modelling, I decided to examine how species ecological characteristics could 

influence the predictive accuracy of the four techniques compared here. The 

specific aims of this study were: (i) to compare the predictive performance of four 

different modelling techniques based on decision trees (ii) to establish whether 

model performance is affected by the species’ environmental and geographical 

distributions.  

5.2 Methods 

5.2.1 Species data 

The data were derived from the results of the Italian Breeding Bird 

Monitoring Programme (M.I.T.O.). The M.I.T.O. started in 2000 and is 

administered by Italian Centre for Ornithology (CISO), the University of Milano 

Bicocca, the University of Calabria and the Association Faunaviva. Volunteer 

ornithologists carried out point counts during the breeding season; each observer 

recorded every species present in and out of a 100m radius circle. For a detailed 

description of the methodology see Fornasari and de Carli (2002).  Two types of 

survey are carried out within the MITO monitoring programme (Fornasari and de 

Carli 2002): 1) a survey based on randomly selected point counts distributed 
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throughout the country and 2) a stratified survey of point counts in Special 

Protection Areas (SPAs) and Special Areas of Conservation (SACs). For the 

purpose of the present analysis I used data derived from the random surveys 

carried out between April and July 2000. These data comprise 6019 point counts 

inside 448 10x10km UTM squares. Although the original data were collected 

using a point count methodology, the data available to us consisted of 

presence/absence breeding records at the spatial resolution of 10x10km. For the 

analyses I used occurrence data for 104 species of birds. Species selection 

included a set of bird species with different extent in their distributions and 

ecological characteristics. A full list of the species is shown in APPENDIX 2. 

5.2.2 Environmental variables 

Thirteen environmental variables were used for the analyses (Table 5.1). 

Annual mean temperature and total precipitation data were obtained from the 

Agency for Environmental Protection and Technical Services (APAT, 

http://www.apat.it/). National climate maps were created using smoothing splines 

(Hutchinson 1991). One altitude and one slope variable were derived from a 

digital elevation model (DEM) (http://srtm.csi.cgiar.org/). Nine land cover types 

were derived from a digital CORINE data base (EEA 2000). The baseline 

resolution of all the environmental layers was 100 m (the lowest possible 

resolution for the CORINE Land Cover map, which was the layer with the coarser 

spatial resolution). The DEM, which had an original resolution of 90m, was 

resampled to obtain a pixel size of 100m. All the environmental layers were 

aggregated to match the resolution of the species data (10x10km). For each 10km 
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square I therefore calculated: the mean value of all the pixels for each of the 

climatic, slope and altitude variables, the minimum and maximum value of all the 

pixels for the altitude variable, and the area (ha) of each the nine land cover types. 

     

          

Table 5.1: Predictor variables used for the modelling of bird species using the 4 

predictive techniques 

 

Variable description 

 

Yearly total amount of precipitation (mm) 

Mean slope of each square (º) 

Mean annual temperature (ºC) 

Mean altitude (m.a.s.l.) 

Area of urban development (ha) 

Area of arable land (ha) 

Area of broad leaved forest (ha) 

Area of coniferous forest (ha) 

Area of sparse vegetation (ha) 

Area of grassland and pastures (ha) 

Area of moorland (ha) 

Area of marshes and bogs (ha) 

Agricultural areas with a significant portion of natural vegetation (ha) 

 

 

 

5.2.3 Analyses 

The modelling methodologies compared included the following: CART 

(Classification and Regression Tree), Bagging, Random Forests, and Boosted 

Regression Trees. The simplest method, CART, uses a single classification tree 

for prediction. Random Forests, Bagging and Boosting use a combination of trees 
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for prediction. This group of techniques, known as ensemble methods, differ from 

CART, as they do not seek the single most parsimonious model, but aim to fit 

large numbers of simple models which are then combined together to obtain 

accurate predictions (Araujo and New 2007).  

CART 

CART or classification tree and regression trees, were originally 

introduced by Breiman et al. (1984). In brief a classification tree divides the 

dimensional space defined by the predictors into groups that are as homogeneous 

as possible in terms of the response. The procedure begins with the entire data set, 

also called the root node, and formulates split defining conditions for each 

possible value of the explanatory variables to create candidate splits. Next, the 

algorithm selects the candidate split that minimises the misclassification rate and 

uses it to partition the data set into two subgroups. The algorithm continues 

recursively until all the data will be completely explained. Because of this model 

fitting procedure classification trees are usually overfitted.  Tree pruning is thus 

required to reduce the model to an optimal size. In order to select the optimal size 

of each of the tree models I ran a series of 50 10-fold cross-validations and then 

selected the most frequently occurring tree size using the 1-SE rule (De'ath and 

Fabricius 2000). This procedure favours the largest tree for which the cross-

validated error falls within 1 SE of the minimum relative error determined by 

cross-validation. Analyses for CART were carried out using the rpart package for 

R (Ihaka & Gentleman 1996). 

Bagging  
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One major problem with classification trees is their high variance i.e. even 

a small change in the data can result in large changes in the resulting model. 

Bagging (Breiman, 1996) is an effective technique for reducing model variance. 

Instead of calculating the prediction for a single regression tree, bagging averages 

it over a collection of trees fitted on series bootstrap samples drawn from the 

original data set, improving thereby the prediction accuracy. When a bootstrap 

resample is drawn, about 37% of the data is excluded from the sample, but other 

data are replicated to bring the sample to full size. The portion of the data drawn 

into the sample in a replication is known as the ‘‘in-bag’’ data, whereas the 

portion not drawn is the ‘‘out-of-bag’’ data. In bagging all the classification trees 

are grown without pruning (Breiman 1996). The most important tuning parameter 

for bagging trees is the number of bootstrap replicates, hence the number of trees. 

Breiman (1996) suggested that a number of trees higher than 25 tend not to 

produce a significant test set error reduction. In the present case, when 

constructing bagging models I combined 50 trees. The analyses for Bagging were 

carried out using the ipred package (Peters et al. 2002) for R. 

Random Forests 

The Random Forests algorithm (Breiman 2001, Cutler et al. 2007) is a 

relatively novel machine learning technique and is designed to produce accurate 

predictions that do not overfit the data. Similarly to Bagging, Random Forests 

aims at reducing model variance. However, in Random Forests, two types of 

randomness are introduced: the first type is similar to Bagging (i.e. randomly 

sample with replacement n observations); The tree is then constructed using two 
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thirds of the data from the bootstrap replicate. The second source of randomness is 

introduced in the model by selecting randomly (without replacement) a number of 

predictors when constructing each tree. This approach yields a highly diverse 

ensemble of trees (i.e. the forest) that have both low bias and low variance. The 

output of random forests depends primarily on the number of predictors selected 

randomly for the construction of each tree. In order to establish the optimal 

number of predictors for each species I used a search grid containing values 

ranging from three to ten. I chose the models which had the lowest out bag error 

estimates.  The analyses for random Forests were carried out using the Random 

Forests package in R (Liaw and Wiener 2002). 

Boosted regression Trees 

Boosted regression trees combine the algorithms of classification trees 

together with the boosting algorithm (Friedman 2001, 2002). The boosting 

algorithm is a very general method that attempts to “boost” the accuracy of any 

given learning algorithm by fitting a series of models each having a poor error rate 

and then combining them to give an ensemble that improves performance (Elith et 

al. 2008). In a boosted regression tree a series of very simple regression trees are 

fit by progressively adding trees in a forward stagewise fashion. At each stage of 

the fitting sequence, each case of the response variable is classified from the 

current sequence of trees. These classifications are used as weights (i.e. pseudo-

residuals) for fitting the next sequence of trees. The fitting procedure is then 

continued until all the data have been explained (Friedman 2001). Although 

boosted regression trees can be a powerful tool to analyse complex data sets they 
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are also prone to over-fitting (i.e. trees can be added until eventually all the data 

will be explained). As a consequence of this, the performance of the final model 

will degrade when applied to new data. Optimising boosted regression trees for 

prediction involves the choice of the optimal number of trees, which maximise 

prediction accuracy.  I used 10-fold cross validation procedure similar to the one 

adopted by Leathwick et al. (2006) to identify the optimal number of trees. I 

specified a tree size of 2 for individual trees, allowing for the inclusion of simple 

two terms interactions between variables. The analyses for Boosted Regression 

Trees were carried out using the gbm package (http://www.i-

pensieri.com/gregr/gbm.shtml) for R.  

5.2.4 Model evaluation 

In order to evaluate the models, the original data set were randomly split 

into model training (70%) and model evaluation data sets (30%). The training 

dataset was used for the construction of the model whereas the evaluation data set 

was used to test the predictive abilities of the models. Model performance was 

tested using the area under the curve (AUC) of receiver-operating characteristic 

plot (ROC). ROC plot analysis measures the association between the presence and 

absence records by using and calculating the area under the curve (AUC) 

(Fielding & Bell, 1997). AUC relates relative proportions of correctly classified 

(true positive proportion) and incorrectly classified (false positive proportion) 

cells over a wide and continuous range of threshold levels, which makes it a 

threshold-independent measure (Fielding and Bell, 1997). The AUC values range 

from <0.5 for models with no discrimination ability to 1 for models with perfect 
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discrimination. AUC is not an absolute measure of model performance and it was 

recently criticised (Lobo et. al 2008). As long as a model can predict species 

absences quite well, it is easy to obtain high AUC scores if the evaluation data 

contain absence points selected from a very large geographical area (Lobo et al. 

2008). Despite this major disadvantage, AUC can still provide a useful measure of 

relative model performance between models. As the choice of the evaluation 

metrics may influence the results, I also tested model predictions with a second 

measure, the maximised kappa. Because max-kappa provided similar results I 

present only the AUC results here. 

5.2.5 Analysis of model performance 

 I tested for a difference in the performance of the four methods using a 

repeated measure anova. To assess whether some techniques were better than 

others, I used an approach similar to the one used by Guisan et al. (2007b), which 

consisted in finding the best performing technique for each species. For each 

technique I compared its performance across all the species to the vector of best 

performance using a Wilcoxon test and plotted the corresponding P values, which 

provide an index of the deviation form the best performance.  

 In order to examine how ecological characteristics could explain model 

performance I calculated three measures to describe the species' geographical and 

environmental distributions. The species geographical distribution was described 

using prevalence, that is the ratio of presence squares to the total sample. The 

environmental distributions were described with two measures: (1) marginality (or 

niche position), which reflects how far the species optimum is from the mean 
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environmental conditions in the study area; and (2) tolerance (or niche breath), 

which describes how variable the species association to environmental factors is 

with reference to the available range in the study area. 2001). Marginality and 

tolerance were calculated using E.N.F.A. (Ecological Niche Factor Analysis) 

(Hirzel et al. 2002).   

 I examined how model type and species ecological characteristics 

influence model performance using a linear mixed-effect model. Because of the 

high intercorrelation between prevalence, marginality and tolerance, I used 

Principal Component Analysis (PCA) to summarize the major patterns of 

variations of the four variables (Brotons et al. 2004).  I obtained two independent 

components: 1) a marginality component positively associated to species 

marginality (r=0.97) and 2) a prevalence component negatively correlated with 

prevalence (r=0.80). I modelled the AUC scores as a function of the following 

fixed effects: prevalence marginality components, and their two-way interaction 

with model type. Species were included as a random effect. 

 

5.3 Results 

  Ranking of overall model performance was: 1) Random Forests (RF) 2) 

Boosted Regression Trees (BRT), 3) Bagging (BAG), and  CART (Fig 5.1 and 

Fig. 5.2). 
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Figure 5.1: Mean performance (AUC) for each of the four modelling methods 

(Abbreviations: BAG, Bagging predictors; BRT, Boosted regression trees; CART, 

Classification tree; RF, Random Forests). Error bars represent mean ± 1 standard 

error.  
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Figure 5.2: Histograms showing the P -value of difference (as obtained from 

Wilcoxon tests) from the best performing vector. Higher P-values indicate a better 

performance. Techniques are ranked in order of performance. 

 

 

 

 

 

The repeated measure ANOVA indicated that differences among model type were 

highly significant (P <.0001). According to the classification by Swets (1988) no 

technique had a performance that was consistently above chance  for all of the 

species  i.e. not all the AUC values were all above 0.69 (Fig 5.1 and APPENDIX 

2).  In addition to overall differences in model performance I found that variance 

in the AUC values for each differed considerably across techniques. Ideally 
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algorithms should yield predictions with high AUC values and low variability 

across species.  Random Forests was the technique which  Random Forests which 

had the highest mean AUC value (0.81) and the lowest variance (0.006), followed 

by Boosted Regression Trees which performed was only slightly performed less 

well (0.80) and had a similar variance (0.007). Bagging was the third technique in 

order of mean AUC performance (0.78) and variance (0.006). Finally CART was 

the was which had the lowest mean AUC value (0.69) and the highest variance 

(0.008). The linear mixed effect model indicated a strong response of model 

performance to species marginality and prevalence (Table 2).   

 

Table 5.2. Results of the linear mixed effect model investigating the determinants of 

area under the curve (AUC) scores. AUC score were modelled as a function of the 

main fixed effects and model and their two way interactions. Each unique species 

was treated as a random effect. 

 

 Degrees  

of freedom 

 

 

F-value 

 

P-value 

Intercept 1 20952.20 

 

<.0001 

 

Model 3 99.80 

 

<.0001 

 

Marginality Component 1 33.38 

 

<.0001 

 

Prevalence Component 1 16.13 

 

0.0001 

 

Model x Prevalence Component 3 0.39 

 

0.7577 

 

Model x Marginality Component 3 396.66 

 

<.0001 
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The two way interaction between model type and the marginality component was 

also significant. Graphical representation of the relationship between the species’ 

marginality and prevalence component and AUC are presented in Fig 5.3. Species 

with higher prevalence values were generally more difficult to model (Fig. 5.3A), 

and generally had lower AUC values. On the contrary, as marginality increased 

model predictive accuracy decreased (Fig. 5.3B).  

 

 

Figure 5.3: Mean AUC (over all methods) vs. prevalence (A) and marginality (B) 

components. The prevalence component describes a gradient from abundant to 

scarce species (i.e. from left to right). Marginality is an index which describes how 

far the species optimum is from the mean environmental profile in the study area. 

Higher values of the marginality component indicate more marginal species  

 

A 
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B 

 
 

5.4 Discussion 

The results demonstrated that Random Forests and Boosted regression 

trees have a distinctive advantage over CART and Bagging when predicting 

species distributions. Specifically, Random Forests had slightly superior 

performance to Boosted regression trees. This latter technique has been the 

subject of comparison in a number of studies (Elith et al. 2006,  Guisan et al. 

2007a, Graham et al 2008, Wisz et al. 2008, Leathwick et al. 2006). These have 

all shown that Boosted Regression Trees are one of the best methods currently 

available for species distribution modelling. However, this is the first time that the 

predictive performance of Boosted Regression Trees was compared with Random 

Forests. The results indicate that Random Forests might be better suited than 

Boosted regression trees for predicting species distributions.  
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The third best performing technique was Bagging. Bagging is similar to 

Random Forests, as it uses bootstrapping to reduce the variance of the model. 

However, in Random Forests predictors are also selected randomly, which 

introduces another source of diversity into the ensemble of trees. To my 

knowledge there is only one other study where Bagging was used within an 

ecological context (Prasad et. al. 2006). The authors found that that the predictive 

accuracy of Bagging was slightly lower than Random Forests. As well as being 

concordant with Prasad’s et. al (2006) findings, the results showed that Bagging 

had lower performance in comparison to Boosted Regression Trees.  During the 

analyses I found that CART performed poorly in comparison to the other three 

methods. This confirms the lower predictive ability of CART, in comparison to 

ensemble methods (Prasad et al. 2006, Garzon et. al 2006). Although I employed 

cross-validation to find an optimal tree structure, this method does not seem to be 

practical for selecting the best model, which maximise predictive accuracy 

(Friedman 2001).   

Similarly to previous studies I found that species’ ecological 

characteristics affect model predictive accuracy (Poyry et al. 2008 Tsoar et al. 

2007, McPherson et al. 2007, Segurado and Araujo 2004, Seoane et al. 2005, 

Hernandez et al. 2006). Species with higher prevalence values were generally 

more difficult model. Several studies have examined the effects of prevalence on 

model performance, and an important role of prevalence on the predictive 

accuracy of species distribution models (Manel et al. 2001, Luoto et al. 2005, 

Berg et al. 2004, Stockwell and Peterson 2002). The results support the hypothesis 
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that species widespread in geographic space are generally more difficult to model 

than species with a more restricted spatial distribution. On one hand, this finding 

coincides with the observations made by other studies (e.g. Luoto et al. 2005; 

Stockwell and Peterson 2002; Segurado and Araujo 2004), who reported that 

model performance degraded with species which have a wider distribution. On the 

other hand, it contrasts with two other studies, which showed that accuracy of 

species distribution models was better at an intermediate level of prevalence 

(McPherson et al. 2004) or was independent of prevalence (Manel et al. 2001). As 

stressed Brotons et al. (2004), an evaluation of the effects of prevalence on model 

performance is difficult, as prevalence is likely to vary both with species 

ecological characteristics and relative sampling effort. Species with specialized 

ecological requirements will tend to have a restricted range and therefore fewer 

records will be available for these than generalist species.  Low sampling effort 

and bias in data collection could also influence species prevalence.   

I found that marginality was also very important in determining model 

predictive accuracy. Specifically, species with a higher marginality were better 

modelled than those with a lower marginality. This result, suggests that species 

with a restricted niche are generally well predicted, whereas widespread species 

are modelled less accurately. Other studies have shown that species marginality 

can have a profound influence on model predictive accuracy (Tsoar et. al. 2007, 

Brotons et al. 2002, Stockwell and Peterson 2002).  Two main explanations have 

been proposed to explain the effects of marginality on model predictive accuracy: 

Brotons  et al. (2004) suggested that species inhabiting a wide range of habitats in 
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a certain area might not be limited by any of the environmental variables 

measured at the scale at which the models are fitted. However, it also possible that 

widespread species will show regional differences in their ecological niche, as a 

result of local adaptations. Modelling all of these populations together would 

overestimate the ecological breadth of species and thus decrease model accuracy 

(Stockwell and  Peterson 2002). 

Overall in spite of the similarity of the four techniques examined, I found a 

significant difference in their performance. On the basis of the results it is possible 

to point some of trends in the performance which should be verified or disproved 

by further research. Among these trends are the following:  Random Forests and 

Boosted Regression Trees are the best methods, and using these two methods will 

allow one to reach either the best or close the best performance with relatively 

easy parameter tuning. On the contrary, Bagging and CART do not seem to be 

particularly competitive in their performance. However, it should be borne in 

mind that the choice of an appropriate modelling method will depend on the 

species being modelled and the goals of the modelling exercise (Segurado and 

Araujo 2004). Machine learning methods should be considered as the analysis tool 

when little prior knowledge exists of an ecological system or when accurate 

predictions are the desired product from an analysis. Both of these conditions are 

often met in reality, and I believe that and ecologists should make more use of 

these techniques. When used appropriately, machine learning methods are not 

data dredging and their strengths in exploratory data analysis make them a logical 

component, or even end product, of a thorough analysis of data.  
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Conclusion 

This study has provide a first evaluation of the performance of four tree 

based classifiers within an ecological context.  The results show that Random 

Forests and Boosted regression Trees, are the best tree based modelling methods 

for predicting species distributions.  The potential applications of these techniques 

are many, ranging from the identification of important areas for species of 

conservation concern to the prediction of species distributions in relation to 

climate change. Further research should be aimed comparing the techniques 

applied in this study with a broader range of modelling techniques. I believe that a 

comparison with a broader range of modelling techniques would prove useful 

especially for ensemble methods which have been introduced very recently in 

ecology. As emphasised by the results, future comparisons should not only 

examine the predictive accuracy of a modelling techniques with the respect to 

algorithm used, but, should also take into account species ecological 

characteristics. Taking species ecological characteristics into account will allow 

researchers to predict what species are more suitable for species distribution 

modelling.  
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6 GENERAL DISCUSSION 

 
The effectiveness of conservation actions is strongly dependent on the 

quality and the amount of ecological knowledge regarding the species or 

ecosystem under study. Therefore, it is of prime importance that ecologists, 

conservation biologists and landscape managers use appropriate methodological 

approaches to tackle specific conservation problems. This thesis has shown how 

tree-based modelling methods can be used for exploring and testing hypotheses 

about the factors that are important in determining species distribution and 

making predictions of species distribution for use in conservation contexts. I have 

employed four different modelling techniques to: understand how landscape 

structure and climate affect species distributions (Chapter 2 and 3), develop robust 

models capable of predicting species distributions under both present and future 

environmental conditions (Chapter 3), identify areas important for biodiversity 

conservation (Chapter 4), and to compare the relative performance of each 

modelling method in order to make recommendations to future researchers 

(Chapter 5).  

In Chapter 1 Boosted Regression Trees were used to quantify the 

importance of wetland size and weather patterns for waterbirds  wintering in 

Britain. As well as revealing a major role of weather patterns in determining 

waterbird occurrence, the models proved to be reasonably robust when validated. 

In chapter 3  this basic form of modelling was expanded, using a database 

containing amphibian occurrence records. Random Forests was used to quantify 
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species-climate relationship and to predict amphibian distribution in relation to 

current and future climate conditions. The results revealed how amphibian 

distribution is largely controlled by temperature-related variables and highlighted 

a negative response to future climate changes in most species. In Chapter 4 

Bagging were used within an applied conservation context. Specifically, Bagging  

was used predict the distribution of 232 species of Butterflies in Italy. The 

predicted surfaces were then used in combination with a species multispecies 

prioritization tool in order to identify important areas for butterfly conservation. 

The results showed that the most areas important for butterfly are located within 

the Alps, the mountains of central Italy and the island of Sardinia.  Finally, in 

Chapter 5,  I compared the predictive accuracy of four modelling techniques 

based classification trees with the aim of making suggestions for the optimal 

models which should be used by future researchers. This was done using large 

scale bird distribution data from Italian Common Bird Census. The results showed 

that Random Forests and Boosted Regression Trees were the best performing 

techniques and that model performance was highly influenced by species 

ecological characteristics as well as by the modelling method.  

Although the modelling techniques used herein have proved to be a 

flexible tool which can be used for a variety purposes, they are subject to a 

number of limitations which should be taken into consideration when interpreting 

the results. The first part of the discussion will therefore be aimed at discussing 

possible limitations of the modelling approach used . The second part of the 
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discussion will focus on the role of tree-based modelling methods in ecology and 

how researchers could benefit from their use.  

6.1 Species distribution models-a challenge plagued by 

uncertainty 

Several issues can contribute to uncertainty in model predictions and can hamper 

attempts to identify plausible relationships between species distributions and 

environmental variables. Not surprisingly these issues have received considerable 

attention in the ecological literature (e.g. Araujo and Guisan 2006, Heikkinen et 

al. 2006, Pearson et al. 2006) . Here I discuss two some issues which could have 

affected the models developed in this thesis.  

Effects of species ecological characteristics  

An important finding, that has emerged in all the chapters, is that a 

species’ geographical distribution has important effect on model predictive 

accuracy.  Models with high performance were those obtained for species with a 

narrower geographical distribution. Conversely, models with low predictive 

accuracy were obtained for species with a wider geographical distribution. This 

pattern was consistent across all the different species groups (British Waterbirds, 

Italian Amphibians, Butterflies and terrestrial birds). Several studies have stressed 

the importance of a species geographical distribution on the predictive accuracy of 

species distribution models (Poyry et al. 2008, McPherson et al. 2007, Segurado 

and Araujo 2004, Hernandez et al. 2006 , Luoto et al. 2005, Stockwell and 

Peterson 2002). The  results of this thesis do indeed support the hypothesis that 

species  geographical attributes widespread in geographic space are generally 
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more difficult to model than species with a more restricted spatial distribution. 

This is particularly evident in Chapter 5 where four different modelling 

techniques were applied to the same dataset. All the techniques showed a poor 

performance when applied to species with a wider geographical distribution. 

Stockwell and Peterson (2002) proposed as a biological explanation, suggesting 

that  widespread species often show local or regional differences in ecological 

characteristics. Therefore, the more widespread a species is, the more likely it is 

use different habitats thus increasing the likelihood that more factors determine its 

distribution. However, it also possible the scale of the analysis could have affected 

the results. In general the degree to which environmental factors affect patterns of 

species distribution may be influenced by two aspects of scale: the spatial extent 

of the area considered and the spatial resolution at which patterns are examined, 

which is defined the smallest unit of area where any given attribute of interest can 

no longer be broken down into constituent parts. Species with a wider 

geographical distribution might not be limited by any environmental factors at the 

scale which models were fitted. In other words the scale of the analyses did not 

capture the full species niche, thus leading to a poor model performance. 

Unfortunately, due to sampling limitations one cannot have species occurrence 

data at scale as broad as full species niche and at a fine enough resolution that 

could be useful for applied conservation purposes. Consequently, some ecological 

processes are necessarily not captured or reflected in the results of the models 

because the independent variables were collected or represented at too coarse of a 

resolution to accurately depict all the complex relationships between species and 
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their environment. Species distribution patterns reflected in the results could  

therefore be misleading. A possible solution this problem would be the use of 

hierarchical modelling approach (Pearson et al. 2004). By taking advantage of the 

hierarchical nature of the drivers of species distributions, a hierarchical modelling 

approach would allow one to capture the full species niche by including those 

factors that are relevant at coarse scale and factors that are more relevant at local 

scale. Hierarchical models could be used to predict species distribution at a local 

scale while capturing the full species’ niche. This approach could, however, be 

very time-consuming when carrying out comprehensive biodiversity assessments 

which include hundreds of species. 

Effects of  species data and model type and  evaluation  metrics  

A possible source of uncertainty in model prediction might have been 

derived from the quality of the species data. In chapter 2 and 5 data from two 

monitoring schemes were used, whereas in chapters 3 and 4 presence data only 

were used. Since the modelling methods applied here require both presence and 

absence data pseudo absences I had to assume pseudo-absences for the Butterfly 

and Amphibian datasets in chapter 3 and 4. Intuitively, one would expect the use 

of pseudo absence bias would lead to inaccurate predictions, as several authors 

have cautiously said (). Yet, several previous studies have shown that species 

distribution models may still perform reasonably well, even if pseudo absences 

were chosen. However in both chapter 3 and 4 contained the validation data 

contained pseudo absence data, so it is unknown whether the discriminatory 

power of models as tested using ROC plots. 
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 As demonstrated in Chapter 5 modelling technique can have a 

considerable impact on the predictive accuracy of the model. On the basis of the 

results it is possible to point some of trends in the performance which should be 

verified or disproved by further research. Among these trends are the following. 

Random Forests and Boosted Regression Trees are better suited for predicting 

species distributions than other methods. These methods will allow one to reach 

either the best or close the best performance with relatively easy parameter tuning. 

However, the choice of the method will be dictated have to be based on the goals 

of the study and the computational resources available. For example, Random 

Forest requires less tuning, than  in Boosted Regression Trees which require at 

least the identification of the optimal number of trees used for prediction.  On the 

other hand  with on large data sets, Random Forests (i.e. more than 3000 samples) 

training requires very significant computing resources and in some cases the use 

of this technique may be prohibitively time consuming. To this end Boosting can 

provide a valuable alternative, especially when the size of each tree be set to a 

small value.  

Finally another factor which could affect the interpretation of model 

results is the method used for evaluating model predictive accuracy (i.e. AUC). 

Although the AUC is regarded as best currently available method for evaluating 

the performance of species  distribution models it was recently criticised (Lobo et 

al 2008) . According to Lobo et. al (2008) the AUC could be a misleading 

measure of model performance as the total extent to which models are carried out 

highly influences the rate of well predicted absences an the AUC scores. This 
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means that  as long as a model can predict species absences quite well, it is easy to 

obtain high AUC scores if the evaluation data contain absence points selected 

from a very large geographical area (Lobo et al. 2008). This is a serious drawback 

of this evaluation metric and there does not seem to be a valid alternative to AUC 

yet (Lobo et al. 2008).  

 

6.2 Putting tree based modelling methods within a wider context 

 Analyzing large amounts species distribution data have become an issue 

of keen interest and elucidating  species distributions patterns has become a vital 

important in many conservation programmes. The results presented this thesis 

show that tree-based methods can be useful tool in both theoretical and applied 

research. Whilst the focus of thesis was on modelling species occurrence, the 

modelling techniques applied herein can be used with types of ecological data 

such as abundance or density data. Tree-based methods are flexible and a useful 

way to visualize and understand relationships between environmental parameters 

and species distributions and future studies could expand upon the analyses 

carried out in this thesis by using these methods to test more specific ecological 

and biogeographical hypotheses. Most importantly, however, tree-based methods 

can be used to predict species distributions with high accuracy. This thesis did not 

compare their predictive performance with traditional statistical modelling 

techniques, though a number of studies have shown how some of the ensemble 

methods based on classification trees (Elith et al. 2006, Wisz et al. 2008, Graham 

et al. 2008) consistently outperform regression-based techniques like GLM and 
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GAM. Although statistical modelling techniques can be very useful in many of 

situations, tree-based modelling methods can efficiently discover the most 

important information from the complex and noisy ecological data. Hopefully the 

results of this thesis will also serve a source of inspiration for ecologists willing to 

move away from the p-value dogma (Fielding 1999) and will allow them to 

concentrate on understanding the data and using these techniques to predict 

species distributions with a higher accuracy. Tree-based methods will never be a 

panacea for all the problems with ecological data. However, they are another set 

of tools that ecologists should be aware of (Fielding 1999). Whilst it is true that 

some  statistical modelling techniques can be used instead of tree-based methods 

others expand the analytical opportunities by enabling analyses that are 

impossible or very difficult with statistical methods. This set of methods 

constitute an important and flexible tool that should be added to the ecologist’s 

toolbox. It should, however, be borne in mind that the choice of the appropriate 

modelling method will primarily depend on the goals of the study, and every 

ecologist  should be fully aware of the  limitations of the techniques being used. 

Species distribution models can only depict a picture of this should be understood 

by the modeller and the end user. The goal of modelling is not to reflect the full 

reality but to construct models which make biological sense, approximate this 

reality and constitute useful tools (Burnham and Anderson 1998). It is realistic to 

believe that a ‘true’ model will perfectly explain the biological data we observed 

(Hastie et al. 2001). Ecological systems are the results of many small effects, 

individual heterogeneity or interactions at multiple spatial and temporal scales and 
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models are simply low dimensional abstractions of infinite-dimensional forces 

acting on individuals. The way this abstraction is achieved mainly determines the 

usefulness of the models. As Box (1976) stated ‘all models are wrong, but some 

are useful’ and Burnham and Anderson (1998) stated that ‘increased sample size 

allows to chase full reality, but never to catch it’. 
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APPENDIX 1 

List of butterfly species studied in chapter 4, model performance and threat status (LR(nt)=Lower Risk nearly threatened, 

VU=Vulnerable,EN=Endangered, CR=Critically Endangered) 

Species 

 

AUC 

 

Threat 

status 

Species 

 

AUC 

 

 

Threat 

status 

Species 

 

AUC 

 

 

Threat 

status 

Aglais urticae 0.70  Brintesia circe 0.83  Erebia aethiopella 0.89  

Anthocharis cardamines 0.67  Cacyreus marshalli 0.62  Erebia aethiops 0.86 LR(nt) 

Anthocharis damone 0.86 VU Callophrys rubi 0.72  Erebia alberganus 0.83  

Anthocharis euphenoides 0.83  Carcharodus alceae 0.75  Erebia cassioides 0.93  

Apatura ilia 0.85  Carcharodus floccifera 0.58  Erebia epiphron 0.91  

Apatura iris 0.80  Carcharodus lavatherae 0.57  Erebia eriphyle 0.78  

Aphantopus hyperantus 0.90  Carterocephalus palaemon 0.89  Erebia euryale 0.93  

Aporia crataegi 0.57  Celastrina argiolus 0.75  Erebia gorge 0.92  

Arethusana arethusa 0.81  Charaxes jasius 0.85  Erebia ligea 0.86  

Argynnis adippe 0.73  Chazara briseis 0.78  Erebia manto 0.86  

Argynnis aglaja 0.78  Coenonympha arcania 0.74  Erebia medusa 0.91 VU 

Argynnis elisa 1.00  Coenonympha corinna 0.99  Erebia melampus 0.90  

Argynnis niobe 0.81  Coenonympha darwiniana 0.90  Erebia meolans 0.91  

Argynnis pandora 0.68  Coenonympha dorus 0.59  Erebia mnestra 0.96  

Argynnis paphia 0.72  Coenonympha elbana 0.96  Erebia montana 0.87  

Aricia agestis 0.77  Coenonympha gardetta 0.97  Erebia neoridas 0.78  

Aricia artaxerxes 0.91  Coenonympha glycerion 0.99  Erebia oeme 1.00  

Aricia cramera 0.99  Coenonympha oedippus 0.82 CR Erebia pandrose 0.91  

Aricia eumedon 0.83  Coenonympha pamphilus 0.70  Erebia pharte 0.94  
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Aricia nicias 0.98  Coenonympha rhodopensis 0.87  Erebia pluto 0.92  

Boloria dia 0.75  Colias alfacariensis 0.7  Erebia pronoe 0.97  

Boloria euphrosyne 0.66  Colias croceus 0.75  Erebia stirius 0.96  

Boloria napaea 0.91  Colias hyale 0.78  Erebia styx 0.97  

Boloria pales 0.92  Colias palaeno 0.89 LR(nt) Erebia triaria 0.88  

Boloria selene 0.88  Colias phicomone 0.95  Erebia tyndarus 0.84  

Boloria thore 0.81 VU Cupido alcetas 0.86  Euchloe ausonia 0.78  

Boloria titania 0.92 VU Cupido argiades 0.79  Euchloe crameri 0.89  

Brenthis daphne 0.64  Cupido minimus 0.68  Euchloe insularis 0.97  

Brenthis hecate 0.66  Cupido osiris 0.68  Euchloe simplonia 0.98 EN 

Brenthis ino 0.94  Danaus chrysippus 0.88  Euphydryas aurinia 0.68 VU 

Euphydryas cynthia 0.93  Libythea celtis 0.66  Melitaea trivia 0.74  

Euphydryas intermedia 0.97 EN Limenitis camilla 0.85  Melitaea varia 0.94  

Gegenes nostrodamus 0.65  Limenitis populi 0.83  Minois dryas 0.89  

Gegenes pumilio 0.83 LR(nt) Limenitis reducta 0.78  Muschampia proto 0.7  

Glaucopsyche alexis 0.75 VU Lycaena alciphron 0.73  Neozephyrus quercus 0.65  

Glaucopsyche melanops 0.73  Lycaena dispar 0.91  Neptis rivularis 0.91  

Gonepteryx cleopatra 0.82  Lycaena hippothoe 0.86 LR(nt) Neptis sappho 1.00 LR(nt) 

Gonepteryx rhamni 0.59  Lycaena phlaeas 0.74  Nymphalis antiopa 0.74  

Hamearis lucina 0.7 LR(nt) Lycaena thersamon 0.82  Nymphalis polychloros 0.64  

Hesperia comma 0.69  Lycaena tityrus 0.83  Ochlodes venata 0.74  

Heteropterus morpheus 0.88  Lycaena virgaureae 0.87 LR(nt) Oeneis glacialis 0.92  

Hipparchia aristaeus 0.98  Maculinea alcon 0.75 VU Papilio alexanor 0.68  

Hipparchia fagi 0.7  Maculinea arion 0.72 EN Papilio hospiton 0.98  

Hipparchia fidia 0.61  Maculinea rebeli 0.72  Papilio machaon 0.79  

Hipparchia neomiris 0.99  Maculinea teleius 0.99 VU Pararge aegeria 0.75  

Hipparchia semele 0.67  Maniola jurtina 0.74  Parnassius apollo 0.95 VU 

Hipparchia statilinus 0.71  Maniola nurag 0.77  Parnassius mnemosyne 0.83  

Hyponephele lupinus 0.78  Melanargia arge 0.91  Parnassius phoebus 0.97 VU 

Hyponephele lycaon 0.86  Melanargia galathea 0.68  Pieris brassicae 0.65  

Inachis io 0.66  Melanargia occitanica 0.77  Pieris bryoniae 0.90  
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Iolana iolas 0.87  Melanargia russiae 0.91  Pieris ergane 0.84  

Iphiclides podalirius 0.79  Melitaea athalia 0.64  Pieris mannii 0.69  

Issoria lathonia 0.56  Melitaea aurelia 0.79 VU Pieris napi 0.65  

Lampides boeticus 0.72  Melitaea britomartis 0.62  Pieris rapae 0.70  

Lasiommata maera 0.71  Melitaea cinxia 0.70  Plebeius argus 0.79  

Lasiommata megera 0.78  Melitaea deione 0.75  Plebeius argyrognomon 0.72  

Lasiommata paramegera 0.92  Melitaea diamina 0.87  Plebeius glandon 0.92  

Lasiommata petropolitana 0.90  Melitaea didyma 0.73  Plebeius idas 0.85  

Leptidea sinapis 0.63  Melitaea parthenoides 0.68  Plebeius optilete 0.95  

Leptotes pirithous 0.85  Melitaea phoebe 0.60  Plebeius orbitulus 0.97  

Plebeius trappi 0.65  Pontia daplidice 0.74  Satyrium ilicis 0.82  

Polygonia c-album 0.75  Pseudophilotes baton 0.69  Satyrium pruni 0.84  

Polygonia egea 0.76  Pseudophilotes vicrama 0.79  Satyrium spini 0.74  

Polyommatus amandus 0.75  Pyrgus alveus 0.9  Satyrium w-album 0.55  

Polyommatus bellargus 0.74  Pyrgus andromedae 0.94  Satyrus actaea 0.53  

Polyommatus coridon 0.79  Pyrgus armoricanus 0.68  Satyrus ferula 0.79  

Polyommatus damon 0.89 LR(nt) Pyrgus bellieri 0.66  Scolitantides orion 0.86 VU 

Polyommatus daphnis 0.73  Pyrgus cacaliae 0.94  Spialia orbifer 0.6  

Polyommatus dolus 0.73  Pyrgus carlinae 0.92  Spialia sertorius 0.67  

Polyommatus dorylas 0.74  Pyrgus carthami 0.81  Thecla betulae 0.57  

Polyommatus eros 0.91 LR(nt) Pyrgus malvae 0.54  Thymelicus acteon 0.77 VU 

Polyommatus escheri 0.72  Pyrgus onopordi 0.58  Thymelicus lineola 0.67  

Polyommatus hispana 0.8  Pyrgus serratulae 0.85  Thymelicus sylvestris 0.63  

Polyommatus icarus 0.65  Pyrgus sidae 0.88  Vanessa atalanta 0.62  

Polyommatus ripartii 0.5  Pyronia cecilia 0.86  Vanessa cardui 0.67  

Polyommatus semiargus 0.78  Pyronia tithonus 0.76  Zerynthia polyxena 0.74  

Polyommatus thersites 0.78  Satyrium acaciae 0.73     

Pontia callidice 0.91  Satyrium esculi 0.93     
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APPENDIX 2 

List of bird species studied in chapter 5 and model performance, as measured by the AUC.  

Species 

 

BAG 

 

BRT 

 

CART 

 

RF 

  

Species 

 

BAG 

 

BRT 

 

CART 

 

RF 

 

Acrocephalus arundinaceus 0.85 0.88 0.71 0.87  Emberiza cia 0.79 0.81 0.60 0.82 

Acrocephalus palustris 0.91 0.88 0.54 0.92  Emberiza cirlus 0.83 0.86 0.74 0.86 

Acrocephalus scirpaceus 0.84 0.85 0.71 0.84  Emberiza citrinella 0.79 0.80 0.62 0.82 

Aegithalos caudatus 0.65 0.64 0.64 0.64  Erithacus rubecula 0.84 0.86 0.82 0.86 

Alauda arvensis 0.69 0.68 0.61 0.69  Falco tinnunculus 0.63 0.72 0.62 0.69 

Alcedo atthis 0.73 0.78 0.60 0.77  Fringilla coelebs 0.80 0.82 0.77 0.82 

Anas platyrhynchos 0.81 0.83 0.73 0.84  Fulica atra 0.79 0.87 0.54 0.84 

Anthus trivialis 0.89 0.92 0.82 0.92  Galerida cristata 0.85 0.85 0.78 0.87 

Apus apus 0.68 0.67 0.62 0.68  Gallinula chloropus 0.83 0.85 0.70 0.84 

Ardea cinerea 0.84 0.84 0.76 0.86  Garrulus glandarius 0.67 0.69 0.61 0.69 

Ardea purpurea 0.88 0.91 0.71 0.91  Himantopus himantopus 0.79 0.83 0.74 0.84 

Buteo buteo 0.73 0.76 0.73 0.76  Hippolais polyglotta 0.83 0.78 0.64 0.81 

Calandrella brachydactyla 0.87 0.89 0.81 0.88  Hirundo rustica 0.72 0.73 0.66 0.73 

Carduelis carduelis 0.74 0.75 0.61 0.75  Ixobrychus minutus 0.82 0.88 0.71 0.84 

Carduelis chloris 0.71 0.70 0.63 0.74  Jynx torquilla 0.59 0.56 0.50 0.63 

Certhia brachydactyla 0.75 0.77 0.78 0.77  Lanius collurio 0.65 0.62 0.59 0.66 

Certhia familiaris 0.79 0.89 0.85 0.89  Larus cachinnans 0.82 0.81 0.74 0.82 

Cettia cetti 0.78 0.80 0.71 0.81  Larus ridibundus 0.78 0.82 0.70 0.83 

Charadrius dubius 0.69 0.78 0.63 0.77  Loxia curvirostra 0.91 0.94 0.60 0.95 

Circus aeruginosus 0.82 0.87 0.66 0.84  Luscinia megarhynchos 0.81 0.83 0.79 0.82 

Cisticola juncidis 0.84 0.86 0.73 0.85  Melanocorypha calandra 0.65 0.89 0.89 0.83 

Columba palumbus 0.76 0.76 0.62 0.80  Merops apiaster 0.76 0.81 0.73 0.81 

Corvus corax 0.86 0.89 0.75 0.87  Miliaria calandra 0.79 0.78 0.74 0.80 
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Corvus corone cornix 0.73 0.77 0.67 0.74  Milvus migrans 0.60 0.58 0.52 0.67 

Corvus corone corone 0.74 0.81 0.72 0.79  Motacilla alba 0.65 0.66 0.61 0.68 

Corvus monedula 0.65 0.65 0.58 0.66  Motacilla cinerea 0.81 0.82 0.61 0.81 

Coturnix coturnix 0.68 0.69 0.64 0.74  Motacilla flava 0.85 0.86 0.78 0.87 

Cuculus canorus 0.75 0.76 0.68 0.77  Muscicapa striata 0.62 0.62 0.56 0.64 

Delichon urbica 0.72 0.67 0.57 0.71  Nycticorax nycticorax 0.86 0.89 0.80 0.93 

Dryocopus martius 0.91 0.95 0.79 0.92  Oenanthe oenanthe 0.76 0.77 0.62 0.79 

Egretta garzetta 0.88 0.91 0.82 0.90  Oriolus oriolus 0.75 0.76 0.70 0.76 

Parus ater 0.89 0.91 0.83 0.90  Pyrrhula pyrrhula 0.88 0.86 0.73 0.90 

Parus caeruleus 0.74 0.76 0.74 0.76  Regulus ignicapillus 0.77 0.81 0.68 0.80 

Parus cristatus 0.87 0.89 0.76 0.91  Regulus regulus 0.90 0.92 0.76 0.94 

Parus major 0.61 0.66 0.52 0.65  Remiz pendulinus 0.85 0.84 0.69 0.86 

Parus montanus 0.96 0.97 0.93 0.97  Saxicola rubetra 0.86 0.79 0.57 0.83 

Parus palustris 0.81 0.83 0.78 0.82  Serinus serinus 0.75 0.77 0.69 0.77 

Passer italiae 0.76 0.74 0.68 0.76  Sitta europaea 0.74 0.77 0.68 0.77 

Passer montanus 0.75 0.74 0.70 0.75  Streptopelia decaocto 0.75 0.76 0.69 0.77 

Pernis apivorus 0.56 0.64 0.55 0.66  Streptopelia turtur 0.83 0.83 0.75 0.85 

Phalacrocorax carbo 0.80 0.85 0.57 0.86  Sturnus vulgaris 0.79 0.81 0.72 0.80 

Phasianus colchicus 0.84 0.84 0.70 0.85  Sylvia atricapilla 0.81 0.86 0.68 0.88 

Phoenicurus ochrurus 0.84 0.85 0.75 0.84  Sylvia cantillans 0.87 0.89 0.61 0.92 

Phoenicurus phoenicurus 0.77 0.79 0.76 0.80  Sylvia communis 0.84 0.84 0.83 0.85 

Phylloscopus bonelli 0.84 0.82 0.75 0.85  Sylvia melanocephala 0.89 0.93 0.90 0.92 

Phylloscopus collybita 0.87 0.87 0.77 0.88  Tachybaptus ruficollis 0.90 0.91 0.78 0.90 

Pica pica 0.73 0.73 0.70 0.75  Troglodytes troglodytes 0.84 0.90 0.64 0.85 

Picoides major 0.76 0.74 0.65 0.76  Turdus merula 0.79 0.78 0.75 0.82 

Picus viridis 0.80 0.78 0.72 0.82  Turdus philomelos 0.77 0.77 0.65 0.77 

Podiceps cristatus 0.78 0.81 0.52 0.83  Turdus pilaris 0.85 0.85 0.79 0.86 

Ptyonoprogne rupestris 0.81 0.83 0.59 0.82  Turdus viscivorus 0.87 0.97 0.57 0.96 

Upupa epops 0.80 0.86 0.61 0.82  Vanellus vanellus 0.69 0.69 0.58 0.71 
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