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Abstract

Research indicates that populations in Low and Middle-Income Countries (LMICs) could

benefit from clinical trials due to their high disease burden. Yet, they are underrepre-

sented in clinical research. This is because the advancement of clinical research in LMICs

is hindered by several obstacles, among which insufficient funding has been identified as a

key barrier. One notable innovation, that holds promise for increasing the number of trials

conducted in LMICs, is the utilisation of adaptive designs as they can increase the value

derived from limited resources. Considering that adaptive designs are not always bene-

ficial, the methods presented in this thesis determine instances where adaptations could

provide greater utility within the context of individually (IRTs) and cluster randomised

trials (CRTs) with continuous outcomes. The thesis begins by proposing a seamless MAMS

framework where a cheaper (intermediate) endpoint is used at an interim analysis. With

adaptive designs heavily reliant on the quality and quantity of available information at

interim analyses for decision-making, this study proposes an optimal timing for conduct-

ing the interim analysis to avert wrongly dropping a relevant arm at the interim analysis.

To offer a contextual foundation for the subsequent chapters on CRT methodologies, the

thesis next presents the results of a comprehensive review undertaken to explore various

strategies for specifying the intra-cluster correlation coefficient (ICC) and other essential

sample size parameters. The review highlighted that many HTA trials neither reported

the uncertainty around the assumed ICC nor justified their selected values, which could

affect the trial’s validity. Based on the review, I then evaluated how uncertainty in the

ICC impacts whether a parallel-group or stepped-wedge CRT design is more efficient in

terms of the required sample size. Here, the uncertainty was captured by placing indepen-

dent priors on key parameters and averaging over the possible range of values. The results

indicated that in many cases, when there is uncertainty regarding the ICC, a stepped-

wedge CRT design tends to be more efficient compared to a parallel-group CRT design. A

limitation of the above approach is that its utility can be highly dependent on the choice

of prior. Thus, I next introduce an adaptive design where pre-trial knowledge about the

ICC is captured by placing a prior on it, which is then updated at an interim analysis

using the study data to form a posterior that allows reestimation of the sample size. It was

clearly demonstrated in the results that when there is low-quality evidence available to

guide the choice of prior, this approach to sample size reestimation provides greater utility

than previously proposed frequentist methods. Results show the proposed methodologies

are both robust and cost-effective. Therefore, I conclude by discussing how the adoption

of these methods could enhance LMICs’ capacities to conduct high-quality research.
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Chapter 1

Introduction

This chapter introduces the fundamental concepts that form the focus of this thesis. It

begins by discussing the concepts of individual and cluster-level randomisation in clinical

trials, as well as adaptive designs (ADs) and their rationale. The associated methodologi-

cal implications of these concepts are also explored. Additionally, the chapter provides an

overview of clinical trials conducted in low and middle-income countries (LMICs), high-

lighting the opportunities and challenges they present. This background sets the stage for

the innovative methods proposed in subsequent chapters, which aim to address particular

barriers to executing (adaptive) clinical trials in LMICs.

1.1 Clinical trials

Clinical trials are research studies that evaluate the safety and efficacy of treatments and

interventions (Friedman et al., 2015; Crowley & Hoering, 2012). They play a vital role in

advancing medical knowledge and improving healthcare outcomes. Since the introduction

of randomised controlled trials (RCTs) in 1946 (Bhatt, 2010), many medical intervention

programs, diagnostic tools, and drugs have been evaluated using RCTs. They continue to

be the “gold” standard for evaluating current innovations in medical practice. Simultane-

ously, they also spur questions for new research that lead to further discoveries over time,

helping us to, e.g., better understand diseases (Pocock, 2013; Friedman et al., 2015; Haeus-

sler & Assmus, 2021). Hence, their significant contribution to the health and well-being

of the general population cannot be overemphasised.

Clinical trials typically belong to several distinct phases, each serving a specific purpose

in the development and evaluation of a new intervention. These phases progressively move

from assessing safety and dosage to evaluating efficacy and confirming previous findings,

ultimately leading to regulatory approval and post-marketing monitoring. The commonly

recognised phases as summarised by the American Cancer Society (2020) are:

1



Chapter 1. Introduction

• Phase 0 (Exploratory): Phase 0 trials involve a small number of participants and

are designed to gather preliminary data on how a new drug or treatment interacts

with the body. These trials are exploratory and may involve micro-dosing or exposing

participants to very low doses of the intervention.

• Phase 1 (Safety): Phase 1 trials assess the safety and dosage range of the in-

tervention. These trials usually involve a small number of healthy volunteers or

individuals with the target condition. The focus is primarily on determining the

treatment’s safety, identifying potential side effects, and establishing appropriate

dosage levels.

• Phase 2 (Efficacy): Phase 2 trials aim to evaluate the efficacy of the intervention in

treating the target condition. These trials involve a larger number of participants and

are typically randomised controlled studies. The focus is on gathering preliminary

evidence of the treatment’s effectiveness, optimal dosages, and potential adverse

effects.

• Phase 3 (Confirmation): Phase 3 trials involve a larger number of participants

and are designed to confirm the effectiveness of the intervention demonstrated in

Phase 2. These trials often include a control group and employ rigorous randomi-

sation and blinding techniques. Phase 3 trials provide more comprehensive data on

the benefits, risks, and potential side effects of the treatment.

• Phase 4 (Post-Marketing Surveillance): Phase 4 trials are conducted after the

regulatory approval of the intervention and its release to the market. These trials aim

to gather additional information about the long-term safety, efficacy, and optimal use

of the treatment in larger and more diverse patient populations. Phase 4 trials can

identify rare side effects, assess the intervention’s performance in real-world settings,

and compare it to other treatment options.

A fundamental principle in the majority of clinical trials is randomisation. Through

the random allocation of patients to treatment groups, any patient-specific factors, often

referred to as confounding variables, that could have influenced the treatment outcome are

expected to be evenly distributed between the arms. In turn, any observed difference in

outcomes between the arms can be attributed to the effects of the treatment under inves-

tigation. Thus, randomisation supports causal inference, reduces bias, enhances statistical

validity, and ensures ethical treatment allocation leading to more reliable conclusions about

the effectiveness and safety of treatments (Lim & In, 2019).

Evans et al. (2011) catalogues several instances where treatment effects derived from

observational data were initially considered beneficial, but when randomised studies were

conducted, they were found to be potentially harmful. One notable case is the Women’s

2



Chapter 1. Introduction

Health Initiative Trial (Prentice et al., 1998), in which a hormone replacement therapy

initially seemed to lower the risk of heart disease in women. However, upon closer evalu-

ation through randomisation, it was revealed to slightly elevate the risk. This empirical

evidence highlights the importance of randomisation in determining the true effects of

treatments. I elaborate on individual and cluster-level randomisation in Section 1.1.1, as

the methods proposed in this thesis will consider both types of trial design, but refer the

reader to Chow & Liu (2014) for other characteristics of clinical trials such as blinding.

The benefits of evaluation through clinical trials notwithstanding, there are unfortu-

nately several drawbacks to clinical trials that must be recognised. Firstly, lengthy phases

of clinical development are needed for evaluating a novel treatment (Friedman et al., 2015).

The duration required for testing and approving a drug is not standardised, but it can typ-

ically range from 10 to 15 years to complete all phases of clinical research before reaching

the licensing stage (Cancer Research UK, 2022). As a result, evaluating long-term ef-

fects may also require a significant amount of time, delaying the availability of results and

potential therapeutic benefits. In some conditions, e.g., in chronic diseases, keeping par-

ticipants on a placebo arm for a very long duration may be especially difficult. Therefore,

many trials only assess the short-term benefit of an intervention (Siderowf, 2004).

Another major issue with clinical trials is that they are very expensive to conduct (Mar-

tin et al., 2017). Studies have shown that it costs an average of $2.6 billion to successfully

develop a new drug (Mullard, 2014; DiMasi et al., 2016), of which a high proportion is

due to the clinical trials required for evaluating efficacy and safety. Specifically, a report

from 2014 indicated that the average cost of a phase 3 trial was approximately $20 mil-

lion (ASPE, 2014). Critically, despite these substantial financial investments, the clinical

research process carries considerable risks of financial losses as 70% of Phase 2 trials and

50% of Phase 3 trials do not succeed due to various factors (Fogel, 2018). Here, a trial is

defined as unsuccessful if it fails to demonstrate efficacy or safety for reasons, including,

but not limited to, under-recruitment, flawed study design, and inappropriate endpoints.

Nonetheless, it is important to acknowledge that even trials that do not demonstrate ef-

ficacy contribute valuable insights to the body of knowledge. Amongst the reasons for

the failure of phase 3 trials, Hwang et al. (2016) posit that 22% is due to lack of funding.

Thus, the high cost of running the trial and the notably low success rate make the trial

process considerably expensive.

A big challenge to many clinical trials is choosing a suitable sample size. Indeed, the

ability of the trial to detect a true effect if it exists, often referred to as statistical power,

is a critical consideration when designing a trial (Rothwell et al., 2018). Given that the

power is a function of the sample size, it is imperative to carefully and adequately justify

the sample size selection. Although best practices require that the sample size is calculated

before commencing the trial, key parameters for estimating the sample size may be subject
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to substantial uncertainty at the design stage of the trial (Bauer & Kohne, 1994). Even in

situations where estimates of these parameters may be available from a pilot or previous

relevant study, their inherent uncertainty is often not quantified and incorporated in the

sample size calculation. Thus, the likelihood of erroneously specifying the required sample

size becomes high, impacting the internal validity of the trial (Teare et al., 2014).

For instance, under-estimated nuisance parameters (such as the variance for a normally

distributed outcome) can lead to small sample sizes and can result in a trial lacking

sufficient power to draw clear conclusions, even if a true effect is present (Altman, 1980;

Grayling et al., 2018). Conversely, over-estimated nuisance parameters may lead to an

excessively large sample size that increases the trial cost, raises ethical concerns such

as needlessly exposing individuals to potentially inferior or harmful treatments, and also

delays the study’s outcome (Altman, 1980; Grayling et al., 2018). It is worth noting that

studies that have investigated the factors associated with the high cost of trials have cited

sample size (Martin et al., 2017; Bentley et al., 2019; Nevens et al., 2019), consistently

showing that increasing the sample size leads to higher trial costs (Faber & Fonseca, 2014;

Bacchetti et al., 2008; Schie & Moerbeek, 2014; Baio et al., 2015; Rutterford et al., 2015).

Finally, the lack of generalisability, also known as external validity, is another drawback

often associated with clinical trials (Siderowf, 2004; Chow & Liu, 2014). Generalisability

refers to the extent to which trial results can be correctly applied to other situations or

populations. Research carried out in the field of Parkinson’s disease, for example, revealed

that the cumulative incidence of the condition was greater among black individuals when

compared to whites and Hispanics (Mayeux et al., 1995). Nonetheless, trials focusing on

Parkinson’s disease generally include a very small proportion of black participants, often

less than 5% (Di Luca et al., 2023; Parkinson Study Group, 2000; Adler et al., 1998). This

pattern of under-representation is similarly observed in trials related to multiple sclerosis

(Hogancamp et al., 1997). Such limitations affect the external validity of the trial and

underscore the necessity for a framework that incorporates under-served populations in

clinical trials, thereby enhancing the clinical relevance and overall utility of the trial results

(Witham et al., 2020).

Addressing the above challenges requires careful planning, collaboration amongst stake-

holders, as well as developing novel methods that strike the right balance for conducting

an effective and ethically sound trial. Before discussing potentially useful novel methods,

I proceed by presenting an overview of the two types of trial design that will be focused

upon in this thesis.

1.1.1 Individually randomised vs. cluster randomised trials

The two types of trial designs that are widely used in practice are individually randomised

trials (IRTs) and cluster randomised trials (CRTs). The primary distinction between
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them lies in the unit of randomisation. Therefore, many trial designs encountered in

the IRT domain (crossover, two-arm superiority, equivalence and non-inferiority trials,

etc.) have a CRT equivalent. In IRTs, individual participants are randomly assigned to

different treatment groups (Elley et al., 2004) and outcomes are measured at the individual

level. Consequently, this type of trial design is commonly used in clinical research to

evaluate the efficacy and safety of interventions on individual patients (Torgerson, 2001).

An underpinning assumption that participant outcomes are independent leads to simple

statistical analyses being employed to determine whether the intervention was effective.

The advantages of IRT designs include simplicity and the provision for precise estimates

of treatment effects at the individual level. The design can also allow for better control of

confounding variables.

However, when investigating the impact of an intervention delivered in group settings,

it can pose greater challenges to randomise at the individual level. A CRT, therefore,

is essentially a trial which randomises groups (clusters) of individuals rather than the

individuals themselves (Eldridge & Kerry, 2012). In practice, these pre-existing groups

or randomisation units may comprise for example participants in GP practices (Coventry

et al., 2015), health-facilities (Coronado et al., 2014; Cundill et al., 2015; Menya et al.,

2015), nursing homes (Gravenstein et al., 2016; Mor et al., 2017), schools (He et al.,

2015; Hankonen et al., 2016; Jukes et al., 2017), or communities (Roca et al., 2011; Prud-

homme O’Meara et al., 2018). Although randomisation takes place at the cluster level,

outcomes are typically measured on individuals within each cluster. The CRT design has

a wide utility in health services research, especially where the intervention seeks to influ-

ence behavioural and organisational change (Rahman et al., 2008; Kumakech et al., 2009;

Butler et al., 2013; Harris et al., 2018), evaluate an infectious disease prevention program

(Khan et al., 2012; Perriat et al., 2018), or implement some low-risk intervention within

whole communities (O’Brien et al., 2018).

CRTs date back to the 1940s when classroom units were utilised to evaluate an in-

tervention in the educational field (Lindquist, 1940). The methodological difficulties en-

countered by researchers conducting cluster (community) intervention trials were first

published by Cornfield in 1978 (Cornfield, 1978). Since then, the CRT design has become

widely accepted and reported in medical research (Moberg & Kramer, 2015), necessitating

continued development of its design (Murray et al., 2004; Campbell et al., 2007), analysis

(Kerry & Bland, 1998; Hussey & Hughes, 2007), and reporting methodology (Campbell

et al., 2012).

An important factor to note about CRTs is that outcomes from individuals within

a cluster are expected to be correlated. The degree of correlation is typically quantified

by the intra-cluster correlation (ICC) coefficient, which becomes an essential parameter

during sample size determination. An extended review of the ICC and its impact on CRTs

5



Chapter 1. Introduction

is presented in Chapter 3. Given the non-independence of clustered data, the sample size

of a CRT must be inflated. That is why, when compared to IRTs, CRTs necessitate a larger

sample size to achieve the same level of power (Hemming et al., 2015; Lewis & Julious,

2021). Also, due to the correlated outcomes in CRTs, conventional statistical analyses that

assume independence become inappropriate. Specifically, using such methods of analysis

may result in the inflation of the type I error rate, incorrect confidence interval coverage,

and spurious p-values. CRTs also introduce several other challenges, e.g., they are often

unblinded, which introduces a chance for recruitment bias. Together, these issues add

an additional layer of complexity to CRTs, meaning careful consideration must be given

before opting for a CRT over an IRT.

Notwithstanding the complexities associated with cluster-level randomisation, there

are several pragmatic reasons why a CRT may be preferred over a standard IRT. Eldridge

& Kerry (2012), as well as Campbell & Walters (2014), provide some advantages and

justification for adopting a CRT. A commonly cited reason for the use of CRTs is to

prevent contamination between the intervention and control groups. For example, it would

be unlikely that residents in a community assigned to the control arm would not notice

an education program broadcast on television that was targeted solely at the intervention

arm. Thus, individual randomisation may not be appropriate for such an intervention, as

the control group would have access to information designated for the intervention group

(Hauck et al., 1991; Eldridge et al., 2004). It is important to add that contamination can

also occur among those delivering the intervention. For instance, a surgeon who has been

trained on a new surgical procedure may find it extremely difficult to alternate between

the new and old surgical procedures on different patients. In such a situation, employing

randomisation at the level of the individuals responsible for delivering the intervention

can also help prevent this possible contamination.

Another reason to use a CRT design is that it may be cost-effective and more convenient

to administer the intervention to a group, e.g., if the intervention involves an expensive

piece of equipment with high-level training. In some cases, the intervention may also

specifically be targeted at clusters with the aim of influencing the knowledge, attitude, or

practices of the whole group. Sometimes, ethical reasons may require the use of a CRT

since it may be unethical to withhold certain types of intervention from people within the

same cluster. For example, it would be unethical to withhold a vaccine intervention from

some members within the cluster knowing its life-saving benefits. Instances where this

concept is relevant could include large trials conducted in LMICs, where it becomes more

feasible for fieldworkers to sequentially roll-out the same intervention among villages.

In sum, the choice between an IRT and a CRT depends on various factors, such as

the nature of the intervention, the research question, available resources, logistical con-

siderations, and the level at which the intervention can be applied. Careful consideration

6



Chapter 1. Introduction

of these factors is necessary to select the most appropriate trial design for specific study

objectives.

In what follows, I present a comprehensive overview of both fixed and ADs to establish

a contextual foundation for the application of ADs in LMICs.

1.1.2 Fixed designs vs. adaptive designs

Fixed trial designs have long been the common approach for evaluating the safety and

efficacy of new treatments since the inception of clinical research. Fixed designs follow

a structured process that includes designing the trial, conducting it as per the predeter-

mined protocol, and analysing the data according to the pre-specified plan. They are still

prevalent and relevant in clinical research, despite the growing interest in innovative trial

methodologies. Though they are simpler to design and conduct, fixed designs offer little

flexibility to make potentially desirable or necessary changes to the trial’s design features.

Hence, some ethical issues can arise in traditional fixed trials due to the unresponsive

nature of their design (Bothwell & Kesselheim, 2017).

Figure 1.1: Schematic of a traditional clinical trial design with fixed sample size, and an AD with
pre-specified review(s) and adaptation(s). Figure adapted from Pallmann et al. (2018).

While fixed designs have been the backbone of clinical trials for decades and have

contributed significantly to medical advancements, there is growing recognition of the

potential benefits of utilising ADs and novel statistical methodologies to enhance trial

efficiency and address complex research questions. ADs are a broad class of approaches

that aim to provide a more cost-effective, efficient, and ethical trial compared to classical

fixed alternatives (Pallmann et al., 2018). They allow the investigator to make pre-specified
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changes during the trial based on one or more interim analyses of the accumulating data

while maintaining the integrity and validity of the trial. Design features that could be

modified include the sample size (via sample size re-estimation), the allocation ratios to

the trial arms (via outcome adaptive randomisation), which treatments are present (via

dropping of arms), and the considered dosages (via dose-finding/ranging).

By making adjustments in response to emerging data, ADs can improve the probability

of a successful trial. These adaptations make ADs more efficient compared to traditional

fixed designs. For example, by dropping ineffective treatment arms early in the trial, ADs

have the potential to optimise resource utilisation by reducing the number of participants

needed. This efficiency can lead to cost savings, making better use of limited resources.

Moreover, the ability to make interim decisions in ADs accelerates the drug development

process. Thus, researchers can identify successful treatments more quickly, potentially

speeding up the time it takes for new therapies to reach patients. Furthermore, early

stopping rules in ADs can be incorporated to protect patient safety. For instance, if there

is clear evidence of harm or benefit, the trial can be stopped early to prevent unnecessary

exposure to ineffective or unsafe treatments. ADs have other advantages, particularly in

situations where there is uncertainty about the most effective treatment or intervention

(Sampson & Sill, 2005; Chow & Chang, 2008). They are also applicable to all phases of

clinical research and are becoming more widespread in their use (Pocock, 2013; Friedman

et al., 2015; Pallmann et al., 2018; Haeussler & Assmus, 2021).

While ADs offer several advantages, they also come with certain disadvantages. They

are inherently more complex and may require more sophisticated statistical methods to

handle the dynamic nature of the trial than traditional fixed designs. The need for pre-

specified adaptation rules and the potential for multiple interim analyses can make the

trial design, conduct, and analysis more intricate, requiring specialised expertise. Besides,

the flexibility in adapting the trial may increase the probability of making a Type I error

(incorrectly concluding that there is a treatment effect when there isn’t). Therefore,

appropriate adjustments and control mechanisms are necessary to mitigate this risk. Given

the complexities associated with ADs, Wason et al. (2019) assert that they are not always

beneficial and provide some considerations around their utility. These include:

• Number of interim analyses: According to the authors, having more than two

interim analyses during a trial is rarely justified, as the additional benefit gained is

not significant enough to outweigh the burden involved, unless the trial spans an

extended period or involves the addition of new treatment arms as it progresses.

• Limitation due to early stopping: Although early stopping is a benefit of ADs

(allowing for quick decisions on effective treatments and saving patients from inef-

fective ones), it also has its drawbacks. Ending the trial quickly also means missing
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out on valuable information about secondary outcomes, safety assessments, and ef-

ficacy within subgroups. Besides, there is a concern that the estimated treatment

effect might not be as accurate with a smaller sample size due to the early stopping

decision. This poses a challenge when attempting to implement changes in clinical

practice based on such limited evidence.

• Long term outcomes: The efficiency of an AD is derived from the valuable infor-

mation available at interim analysis, which allows for more accurate predictions of

the trial’s eventual outcomes if it were to continue to completion. However, realising

these benefits heavily relies on making reliable decisions during the interim analysis.

Therefore, the outcome information used for adapting the trial must be observed

rapidly enough compared to the planned recruitment period of the trial. If this con-

dition is not met, the trial might conclude recruitment before enough outcomes are

observed to be able to reliably modify the trial’s course.

• Limitation due to additional administrative and logistical complexity:

A well-established infrastructure and significant resource investment is needed for

prompt and accurate interim analysis. Therefore, the lack of logistics to facilitate

timely data return, rigorous data cleaning, and effective communication can diminish

the efficiency benefits of ADs.

Additional non-methodological barriers to ADs include the absence of readily available,

well-documented, and user-friendly software, insufficient funding structures, a shortage of

experts in ADs, the considerable time needed for trial design with ADs, and concerns

about potential operational biases arising from their implementation (Chow & Corey,

2011; Kairalla et al., 2012; Dimairo et al., 2015; Grayling & Wheeler, 2020). Despite these

challenges, ADs remain a valuable tool in clinical research when appropriately planned and

executed. Given the benefits and challenges associated with both fixed and ADs, their

appropriateness depends on the specific research question and context. It is therefore

essential to strike a balance between the advantages of well-established traditional designs

and the opportunities offered by more flexible and adaptive approaches to ensure the

advancement of medical knowledge and the improvement of patient outcomes.

In this thesis, particular attention is given to the drop-the-loser design discussed in

Section 1.1.3 and the seamless phase II/III design, covered in Chapter 2. I refer the reader

to Pallmann et al. (2018) for an extensive overview of the different types of ADs in clinical

trials.

1.1.3 Drop the loser adaptive design

In the drug development process, it can be of great importance to evaluate multiple treat-

ments or doses alongside a control group. This evaluation allows for the option to eliminate

9



Chapter 1. Introduction

less effective treatments or advance more promising ones at specified stages of the trial.

Such adaptive trial design is broadly referred to as the multi-arm multi-stage (MAMS)

design. When the primary interest of the trial lies in dropping less effective treatment

arms at the end of the first stage, based on some pre-specified ranking criteria, this vari-

ant of the MAMS design is referred to as the drop-the-loser (or sometimes referred to as

pick-the-winner) design.

A drop-the-losers design can be particularly beneficial during phase II or early clinical

development, especially in situations where uncertainties exist concerning varied treat-

ments or dose levels (Bauer & Kieser, 1999; Posch et al., 2005). This is because the design

allows for the selection of one superior treatment (or dose) in the first stage and a confir-

mation of the selected treatment’s efficacy in the second stage under a single trial protocol

(Sampson & Sill, 2005). An important characteristic of the design is a shared control arm

and the use of data from both stages of the trial for the final analysis.

In practice, such trials are typically designed to achieve a specified power at the com-

pletion of the second stage. Thus, there might be no statistical power constraint for the

analysis at the end of the initial stage, for the purpose of eliminating ineffective treatments

(Chow & Chang, 2008). In such instances, a common approach is to eliminate less suc-

cessful treatments based on the estimated treatment means. Specifically, if the primary

endpoint represents a measure where higher values signify a more favourable treatment

response, the treatment exhibiting the highest average response during the first stage will

be chosen for further exploration.

The characteristics of the design, such as the avenue for multiple treatment evaluation,

the shared control, the simplicity of the selection criteria, and the combination of two trial

phases into a single trial protocol offer competitive advantages over traditional designs.

The main benefits include a reduced need for sample size by employing a shared control

group instead of individual control groups for each treatment with the added benefit of

direct comparison between the experimental treatments (Wason et al., 2017). Also, the use

of a single protocol can greatly shorten the drug development timeline, possibly eliminating

completely the delays between the phases.

Another primary advantage of the drop-the-loser design is the potential for resource

savings by concentrating resources on treatments that show the most potential and are

more likely to produce meaningful results. It is well established that the clinical trial

paradigm can be resource-intensive and time-consuming. Therefore, by discontinuing arms

that show little promise, researchers can direct their resources more efficiently toward

arms that demonstrate better outcomes. This not only leads to cost savings but also

expedites the trial process, ultimately benefiting patients and improving the speed at

which promising treatments can reach the market.

In addition, the drop-the-loser design addresses some ethical considerations. In fixed
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designs, for example, maintaining ineffective arms throughout the study raises ethical

concerns, as it involves exposing more patients to treatment arms with limited potential

benefits. By promptly discontinuing these arms, the drop-the-loser design prioritises pa-

tient welfare and ensures that participants are not unnecessarily subjected to ineffective

treatments.

Despite the advantages of the drop-the-loser design, it is important to note that it is

not suitable for all clinical trials. As indicated earlier, it is most commonly applied in

early-phase trials, where a range of treatment arms are initially explored to identify the

most promising options. As a result, this methodology may not be as appropriate for

later-phase trials, where a treatment’s efficacy and safety profile are better established.

Additionally, conventional approaches employed for making inferences using data from

both stages may result in tests with significance levels higher than desired due to issues

with multiple testing. Some approaches to correct these issues are discussed in detail in

Chapter 2. Furthermore, by empirically selecting the “optimal” treatment, it is important

to acknowledge that this choice might not represent the best treatment from a population

perspective (Sampson & Sill, 2005). This is due to the fact that dose or treatment groups

that are excluded may hold valuable information concerning the dose-response of the

treatment being investigated (Chow & Chang, 2008).

It is worth noting that some fixed designs also allow for multiple treatment arms to

be included with an equal allocation of resources and participants to each arm in most

cases. In such settings, the allocations remain unchanged throughout the trial’s duration,

regardless of emerging data indicating the performance of individual arms. In contrast,

the drop-the-loser design allows for real-time data analysis, and as results accumulate,

ineffective or less promising arms are discontinued. By doing so, this design significantly

improves the efficiency of the trial relative to the multiple comparisons in fixed designs.

While the AD drop-the-loser design is not a one-size-fits-all solution, it addresses some of

the key limitations of fixed trial designs. It also holds great promise for improving the

efficiency of clinical trials, making it a valuable tool in the quest for new and effective

medical treatments.

Having established the usefulness and complexities of ADs, the next section discusses

trials in LMICs, highlighting the challenges associated with clinical research in those set-

tings and exploring how ADs may offer potential solutions to overcome these barriers.

1.2 Trials in low and middle-income countries

According to the World Bank, LMICs are economies with a gross national income per

capita between $1,136 and $4,465 (The World Bank, 2022). Therefore, these countries

are typically characterised by their relatively lower economic development and income
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levels compared to high-income countries (HICs). LMICs often face significant challenges

in terms of infrastructure, healthcare systems, education, and access to resources. It is

important to note that the classification of countries into income groups is not static and

can change over time as countries undergo economic development and experience shifts

in their socio-economic status. Therefore, at the time of submitting this thesis, there are

134 LMICs, which together represent the majority of the global population (The World

Bank, 2022; UNCTAD, 2022).

Collectively, LMICs carry approximately 90% of the global disease burden, primarily

consisting of preventable infectious diseases (Global Forum for Health, 2002). Moreover,

there is a growing prevalence of non-communicable diseases in these nations (Marshall,

2004; Alemayehu et al., 2018), a transition which places an additional burden on their

already strained resources (Alwan, 2011). Although studies suggest that populations in

LMICs stand to benefit from clinical trials because of the greater health burden in such

settings (Mbuagbaw et al., 2011; Grover et al., 2017; Rosala-Hallas et al., 2018), they are

under-represented in health research (Mbuagbaw et al., 2011). A study conducted in 2018

revealed that there was a significant disparity in the distribution of clinical trial sites, with

approximately 83% of trials taking place in 25 HICs, while less than 5% were conducted

across 91 LMICs (Drain et al., 2018). A similar phenomenon was found in pediatric health,

where only 25% of pediatric trials were conducted in LMICs although 98% of the global

disease burden is carried by children who reside in those regions (Nor Aripin et al., 2010).

While certain clinical research priorities might appear relevant to both LMICs and

HICs, variations in the specific needs of these two regions still exist. In the UK, for exam-

ple, a strong emphasis is placed on recruitment and retention which is in contrast to the top

10 most critically important priorities for LMIC researchers (Rosala-Hallas et al., 2018).

Therefore, addressing questions that are specific to the particular context is essential for

designing interventions that effectively enhance equitable health outcomes (Barreto, 2009).

It is against this background that the World Health Organisation encourages countries to

become independent producers and consumers of health research due to the distinctive

health needs and unique challenges in individual countries (WHO, 2013).

Despite the WHO’s advocacy for bespoke trials, substantial progress within LMICs

has not been achieved. This is because the advancement of clinical research in LMICs

is hindered by several significant obstacles including limited financial resources, unneces-

sarily lengthy delays in ethical approval procedures, and regulatory and administrative

challenges (Joseph et al., 2016; Alemayehu et al., 2018). Among these challenges, Ale-

mayehu and colleagues identified insufficient funding as a key barrier, highlighting that

the majority of clinical trial funding originates from HICs or pharmaceutical companies

based in those regions. In terms of global health, only 10% of global health research funds

are allocated towards addressing medical conditions in LMICs, even though they have the
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highest disease burden (Global Forum for Health, 2002). Also, developing nations typi-

cally allocate minimal funds for research and overall healthcare, thereby exacerbating the

funding constraints faced in clinical research. This evidence suggests that despite the high

disease burden in LMICs, most of these countries lack the necessary resources to close the

under-representation gap (Khoja et al., 2019).

Given the scarce resources in LMICs, ADs may be advantageous in bridging the under-

representation gap as they make better use of resources. The flexibility of ADs could

enable researchers to allocate resources where they are most likely to yield meaningful

results. For example, by reallocating resources to promising treatment arms through

adaptive randomisation, AD could increase the likelihood that limited resources are used

effectively. Likewise, if the observed effect size is larger than anticipated based on interim

data analysis, the trial might be stopped earlier, conserving resources while still achieving

meaningful results. Owing to this, over 95% of researchers and methodologists working

on trials in LMICs regarded research topics on ADs as important, while 67% (210/314)

saw it to be critically important (Rosala-Hallas et al., 2018). More so, the use of ADs in

global health is highly encouraged (Lang, 2011; Rosala-Hallas et al., 2018), and the advent

of the COVID-19 pandemic has enhanced such calls (Stallard et al., 2020).

Bridging the under-representation gap in LMICs through cost-effective clinical trials

presents several opportunities and potential benefits. Firstly, including LMICs in clini-

cal research allows for a more diverse study population, ensuring the generalisability of

research findings and the applicability of interventions across different ethnicities and ge-

ographical regions. This diversity contributes to a more comprehensive understanding of

treatments and interventions’ efficacy and safety profiles. Moreover, conducting trials in

LMICs can enhance access to innovative therapies and interventions for local populations.

In some cases, trial participants may gain early access to potentially life-saving treatments

that are not yet available in their countries through regular healthcare channels. This can

bring significant benefits to patients who may otherwise face limited treatment options

due to economic constraints or underdeveloped healthcare systems. Additionally, clinical

trials in LMICs contribute to capacity building and research infrastructure development.

It is worth noting that, both IRTs and CRTs designs are commonly used in develop-

ing countries. However, CRTs are particularly appealing for evaluating interventions in

LMICs, especially in regions such as sub-Saharan Africa (Isaakidis & Ioannidis, 2003), and

the usage of CRTs in this context dates back to the early 1970s (Eldridge & Kerry, 2012).

Despite the widespread use of CRTs in LMICs, though, empirical evidence suggests that

there is still a lack of extensive recognition regarding the methodological challenges asso-

ciated with CRTs in research conducted within the region (Isaakidis & Ioannidis, 2003).

The authors further noted that there was a lack of consideration and proper reporting of

the prerequisite design and analysis aspects of cluster randomisation in the majority of the
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trials they reviewed. Specifically, the ICC and design effect which are essential to sample

size calculation were rarely reported. These methodological issues have implications for

the validity of trials and highlight the urgent requirement for conducting research aimed

at identifying robust, cost-effective, and efficient methodologies for trialists operating in

resource-constrained settings (Franzen et al., 2017; Grover et al., 2017).

Considering the wide context in which ADs in LMICs are situated, I now move forward

by establishing the scope of this study. This scope is mainly determined by factors such

as relevance and the practicality of achieving results within a reasonable academic time

frame. These predefined boundaries and constraints of the research are anticipated to

guide the central focus of the thesis, provide a premise for the research objectives, and

provide a context for the novelty within the thesis.

1.3 Scope of the thesis

A recent study investigating the participation of LMICs in randomised clinical trials con-

ducted by HICs discovered that the majority of such trials were predominantly conducted

in India and Ukraine. In fact, a substantial 96% of the total trials conducted in LMICs were

in these two countries (Rubagumya et al., 2022). This finding suggests that African popu-

lations are underrepresented in these trials, raising concerns about the generalisability and

applicability of the research findings to diverse global populations, particularly those from

African regions. In 2005, the WHO highlighted the global importance of creating African-

owned research centres with the capability to conduct independent clinical trials (Matsoso

et al., 2005). However, the advancement of this initiative has been constrained(Cardoso

et al., 2015; Zegers-Hochschild, 2011). It is also important to acknowledge that, although

LMICs typically have common resource limitations, specific nations may have distinct is-

sues (Rosala-Hallas et al., 2018). For example, LMICs such as Brazil, Ukraine, and China

are more resourced than the LMICs in Africa.

Therefore, while the methods espoused in this thesis are envisaged to have a wider

utility, even among HICs, the focus of the thesis is to empower LMICs in Africa with

cost-effective methodologies that can improve their participation in clinical research and

bridge the existing under-representation gap in clinical trials. This approach seeks to

promote equitable access to innovative trial designs and ensure that research findings are

more representative and applicable to diverse global populations, ultimately advancing

healthcare outcomes for all. Thus, reference to LMICs in the thesis shall connote LMICs

in Africa.

Although a plethora of issues have been highlighted as barriers to using ADs in LMICs,

this thesis will focus on proposing methodologies that are both robust and cost-effective.

Specifically, the efficiency espoused in this thesis shall be related to sample size for the
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following key reasons:

1. Improve internal validity of trials: If LMICs are to adhere to the call by the

WHO urging for self-reliance in generating and utilising health research, it is essen-

tial that trials conducted in these countries possess internal validity. As previously

noted, trials might lack internal validity due to the dependence of sample size on pa-

rameters that are difficult to accurately determine at the commencement of the trial;

whereas inaccurately specifying these parameters can undermine the internal valid-

ity of the trial. In essence, an accurate sample size determination is a cornerstone

of a well-designed clinical trial, ensuring that the study produces valid, reliable, and

generalisable results that can inform medical practice and decision-making.

2. Resource optimisation: Determining the optimal sample size helps avoid unnec-

essary resource wastage, as recruiting and managing more participants than needed

can be costly and time-consuming. Due to the relationship between sample size and

cost, developing cost-effective and efficient sample size methodologies maximises the

limited resources in LMICs and enhances their capacity to conduct high-quality

research.

It is imperative to add that sample size determination was among the top 10 most

critical items listed in both the priority rankings for LMICs and HICs (Rosala-Hallas

et al., 2018). While the primary focus or scope remains on these methodological issues, I

comment on non-methodological issues in the discussion presented in Chapter 6.

1.4 Aims and objectives

The research aims to develop novel methodologies that address barriers to conducting

clinical trials in LMICs, with a particular focus on ADs. To achieve this aim, the research

was guided by the following specific objectives:

• To develop a general framework for the optimal drop-the-loser trials when an inter-

mediate endpoint is used for interim selection.

• To develop a hybrid approach to designing parallel-group and stepped-wedge cluster

randomised trial designs when there is uncertainty in the intra-cluster correlation.

• To develop methods that facilitate sample size re-estimation in cluster randomised

trials.
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1.5 Novel contributions within this thesis

According to Munos (2009), the escalating costs associated with drug development have

led to a greater demand for faster and more cost-effective trial results. Consequently, there

has been a conscious effort to optimise methodological research into the design, conduct,

analysis and reporting of trials (Rosala-Hallas et al., 2018). Nonetheless, there is still

considerable scope for further improvement, particularly in LMICs. Therefore, the novel

contribution in this thesis constitutes an advancement in the methodological literature

by 1) addressing gaps in existing proposals and, 2) introducing innovative perspectives

and methodologies that extend the current boundaries of knowledge and pave the way for

future research endeavours.

Since LMICs are less likely to undertake expensive data collection methods due to

resource constraints, studies could benefit from identifying which treatments might work

before they commit to using expensive data collection methods. Therefore, the first objec-

tive proposes a framework extending the drop-the-losers design to be more amenable to a

seamless phase II/III setting. Specifically, this design allows for the simultaneous compar-

ison of multiple treatments with a shared control in the phase II stage to identify the most

promising treatment. Subsequently, a selected treatment is then seamlessly advanced to

the phase III stage for confirmatory testing. Owing to the limited resources within LMICs,

an intermediate endpoint is assumed in phase II to identify the most promising treatment.

Therefore, I stipulated that early patients in the trial will only need their intermediate

outcomes to have been measured for the interim analysis, facilitating a cheaper and more

efficient method of data collection and lower trial cost. This concept revolves around the

notion that the adaptation occurs before most patients experience a definitive outcome.

I.e. there is no need to measure the definitive outcome for the arm that is removed from

the trial. Thus, the interim analysis informs which arm to drop and which one to collect

more expensive data on for the remainder of the trial.

The optimal timing of interim analysis has not been extensively considered for such

designs, and will be given specific attention. This is significant because the adaptations

and decisions within ADs heavily rely on the quality and amount of information available

at the interim analysis. Previous studies that have investigated the optimal timing for

interim analysis have predominantly focused on discrete intervals (Wason et al., 2017)

or examined the relationship between the optimal timing and the expected sample size

relative to its standard deviation (Grayling & Mander, 2021). In this study, I examine the

optimal timing for interim analysis as a continuous variable and determine the percentage

reduction in sample size compared to alternative timings. Subsequently, I investigate the

combinations of values for both the intermediate and definitive outcomes, along with their

correlation, that maximises the family-wise error rate (FWER).
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Having established from the literature that CRTs are widely employed in LMICs, the

next objective provides a possible solution to the issues around specifying the ICC (or

other design parameters), known as the ‘hybrid’ (sometimes called ‘Bayesian-frequentist’)

approach. By considering the impact of the ICC prior, the aim is to gain a deeper un-

derstanding of which CRT design is more efficient under varying ICC scenarios, providing

valuable insights for the selection of an appropriate CRT design. While hybrid methods

have been extensively studied in IRTs, they have received limited attention in the context

of CRTs (see, e.g., Kunzmann et al., 2021). The most pertinent study related to CRTs

designed within the hybrid framework is that of Lewis & Julious (2021). They utilised

confidence intervals to define a plausible range for the ICC and incorporated this uncer-

tainty into the sample size calculation. However, they did not associate a specific prior

density with each potential ICC value. In this study, I assign parametric prior distribu-

tions to the ICC, total variance, as well as the target effect at which the trial is powered.

Considering that the success of a clinical trial relies heavily on accurately determining the

required sample size, which also impacts the trial’s cost, the methods advocated in this

research aim to improve the likelihood of a successful CRT. This likelihood is quantified

using the ‘probability of success’, which typically takes the place of the frequentist power

in the hybrid literature.

Building on the previous work, the final objective considers an AD in the form of

sample size reestimation (SSRE) in CRTs within a hybrid framework. This allows for

adjustments to the final sample size, taking into account the information gained from

the interim data. By leveraging an adaptive approach, this objective aims to enhance

the accuracy of the final sample size, thereby improving the validity and efficiency of

the overall trial design. To the best of my knowledge, previous work on SSRE in CRTs

has been conducted in purely frequentist (see, e.g., Lake et al., 2002; Schie & Moerbeek,

2014; Grayling et al., 2018) and Bayesian frameworks (see, e.g., Wang, 2007; Brakenhoff

et al., 2019; Zhong et al., 2013), leaving avenue for research within the hybrid framework.

Specifically, the prior distribution for an ICC is updated based on interim data, utilising the

posterior to determine the final sample size. The results from the hybrid SSRE procedure

are compared to frequentist SSRE, using frequentist operating characteristics such as the

type I error rate. I then ascertain instances where the hybrid SSRE framework offers a

distinct advantage over the frequentist approach, in particular assessing when the hybrid

SSRE approach overcomes known challenges of the large variation in the final sample size

that is associated with the frequentist approach. It is worth noting that this is the first

study to examine the use of Mean Squared Error (MSE) as an evaluation metric for a

CRT SSRE approach, and this approach is attractive compared to the typical practice of

separately comparing power and sample size summaries, which is the conventional method.
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1.6 Organisation of the thesis

Chapter 2 provides an overview of seamless phase II/III trial designs, discussing their

advantages and exploring statistical issues in recent studies. It identifies a gap in the

literature concerning the use of intermediate endpoints within seamless designs. It then

proceeds to explore the statistical methods utilised in such trial designs, focusing on the

drop-the-loser design. Particular attention is given to developing a methodology for de-

termining the optimal time for interim analysis. The subsequent section of the chapter

presents results obtained from the selected motivating example, namely the TAILoR trial.

Finally, the chapter concludes with a comprehensive discussion of the results and their

implications.

Chapter 3 reviews various approaches used in practice for specifying the ICC and

other CRT design parameters. This review serves as motivation for the development of

the proposed methods in Chapter 4 and Chapter 5. The methodology section of the

chapter captures the data sources used and the review strategy employed, the inclusion

and exclusion criteria, as well as the data extraction and synthesis. The evidence from the

review is then summarised using descriptive statistics, frequency distribution tables, and

graphs. A discussion of the results also notes potentially useful methods for specifying the

ICC that appear to have been sparsely utilised to date.

In Chapter 4, a sample size estimation approach is introduced, which addresses the

uncertainty in sample size parameters by employing parametric distributions for the key

sample size parameters. The chapter begins by defining the parallel group (PG) and

stepped wedge (SW) CRT designs considered within the study along with their statistical

principles and assumptions underpinning both designs. The introduction section further

highlights some possible approaches to account for uncertainty in the sample size parame-

ters and argues for the preferred hybrid approach. Subsequently, these hybrid quantities,

the analysis models of the CRT designs, motivating examples for the study, and the choice

of priors are extensively discussed with notations in the methodology sections. Thereafter,

a comprehensive assessment of how incorporating a prior on the ICC affects the efficiency

comparison between a PG and a SW CRT design is conducted in the results section. The

chapter concludes with a discussion of the results, the limitations of the study, and the

implications of the findings on CRT designs.

Chapter 5 begins by identifying gaps in the hybrid literature and proposes how incor-

porating an AD element could address the limitations of the proposed method presented

in Chapter 4. In the introductory section, the SSRE concept, along with its advantages

and drawbacks, is elucidated in detail. The methodology section provides a high-level

overview of how SSRE is performed both in the frequentist and hybrid frameworks. The

section further captures the simulation study, the Bias and MSE formulae, as well as the
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plot of the selected priors. In the results section, I evaluate, among other factors, whether

the hybrid SSRE technique effectively addresses the well-known challenges associated with

frequentist SSRE in CRTs. I also assess the bias, MSE, and power trade-off based on the

informativeness of the prior. The final section of the chapter discusses the results, ac-

knowledges the limitations of the study, and makes practical recommendations for the use

of this method.

In each chapter, wherever possible, real examples from clinical trials are incorporated

to illustrate the practical application of clinical and statistical concepts. These motivating

examples serve to elucidate the relationships and interactions between these concepts,

providing a tangible context for readers.

In Chapter 6, the thesis concludes with a discussion of its primary contributions. The

main findings, innovative approaches, and valuable insights identified in the previous chap-

ters are summarised, highlighting their significance in the context of LMICs. Additionally,

it discusses the potential benefits and challenges specific to these settings and how ADs can

be tailored to address the unique healthcare landscape and resource constraints in LMICs.

Likewise, the chapter explores directions for further work in the area of ADs in LMICs. It

presents potential research opportunities and avenues for advancing the implementation

and understanding of adaptive methodologies in these regions.
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Optimal drop-the-loser trials when

an intermediate endpoint is used

for interim selection

In this chapter, a general framework for the design of multi-arm two-stage drop-the-loser

trials is proposed for when an intermediate outcome variable is used at the interim analyses.

The optimal timing of this interim analysis, to minimise the required study sample size,

is also described. Finally, an evaluation is conducted regarding the performance of the

proposed methodology in comparison to more traditional design approaches.

2.1 Introduction

As highlighted in the preceding chapter, in clinical development multiple experimental

treatments are often under consideration for evaluation in phase II, with one promising

experimental treatment then selected for a confirmatory phase III trial. Quan et al. (2020)

suggest if everything runs smoothly then it typically takes around 9 months (the “white

gap”) between the analysis of such phase II data and the recruitment of patients for the

phase III trial, owing to the development of hypotheses and receiving of study protocol

approval from regulatory boards for the phase III trial. This is one example, amongst

many, of the ways in which significant challenges are faced in drug development because

of the extensive time and resources required to discover, develop, and demonstrate the

advantages of a new drug (Maca, 2006).

To overcome this challenge, considerable effort has been directed towards finding ways

to expedite and enhance the efficiency of drug development, while maintaining the integrity

and validity of the process. One such approach is to combine within a single trial the

objectives that have conventionally been handled in separate phase II and phase III trials,
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using a seamless phase II/III design (Jenkins et al., 2011; Stallard & Todd, 2011; Hampson

& Jennison, 2015; Friede et al., 2020). Seamless phase II/III designs remove the white gap

that would have existed between conducting the phase II and phase III trials separately,

and could also potentially offer additional efficiencies in terms of the total required sample

size (Bretz et al., 2006; Wason et al., 2017). An illustrative schematic of a seamless design,

where a decision is taken at an interim analysis regarding the experimental treatment arm

that will proceed to the confirmatory stage is presented in Figure 2.1.

Principally, two categories of seamless phase II/III design exist. The inferentially

seamless design, which shall be explored methodologically in this chapter, incorporates

data from patients enrolled both before and after the adaptation process (i.e., the phase II

and the phase III data) in the final analysis. Whereas, the operationally seamless design

only includes data from the phase III portion of the trial in the final analysis (Bretz

et al., 2006; Maca, 2006; Quan et al., 2020). For the inferentially seamless approach, a

major statistical challenge arises from combining data from the two stages: control of the

family-wise error rate (FWER) (Friede et al., 2020).

Fortunately, some methods now exist to combine data from the two stages of a seam-

less phase II/III design while appropriately controlling the FWER. The majority of such

proposed methods can be categorised into two groups. The first group builds on the

group-sequential methodology developed by Thall et al. (1988, 1989), and requires that

there is only a single treatment and control that continue beyond the first stage (Stallard

& Todd, 2003), or that the number of treatments at each stage is predetermined (Stallard

& Friede, 2008). The combination test approach developed by Bauer & Kohne (1994)

serves as the foundation for the second group of methodologies. While these methods

offer more adaptability (see, for example, Bauer & Kieser, 1999; Posch et al., 2005; Bretz

et al., 2006), they might be less powerful in certain scenarios (Friede et al., 2011).

Magirr et al. (2012) introduced a group-sequential method that permits entirely flexible

treatment selection. I.e., the number of treatment arms within any stage need not be

prespecified. However, this flexibility might come at the expense of being conservative

and consequently experiencing a decrease in power. The Dunnett test (Dunnett, 1955)

has also been extended by Koenig et al. (2008) to a two-stage design with adjustable

treatment selection using the conditional error principle of Müller & Schäfer (2001). It

has been demonstrated that this strategy outperforms alternative approaches in terms of

power (Stallard & Friede, 2008). Stallard & Todd (2011) have since effectively highlighted

the similarities and differences amongst available data combination methods. However, it

is still not clear how to select an optimal data combination method for all trial settings

(Hampson & Jennison, 2015). In essence, the optimal method for combining data may

vary depending on the specific characteristics of the clinical trial design and questions of

interest.
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Figure 2.1: Schematic of a seamless phase II/III design where a treatment arm is dropped at an
interim analysis and the remining promising treatment arm proceeds to a confirmatory stage.

Given these complexities, the FDA has indicated that seamless designs should be used

with caution, as the design is not well-understood and the statistical methods underpinning

the design are not well-established (FDA, 2010; Gallo et al., 2010). The use of extensive

simulations to evaluate the operating characteristics of these complex designs at the trial

design stage has also therefore been encouraged (Friede et al., 2010; Benda et al., 2010).

It is important to note that not all clinical development programs may be suitable

candidates for a seamless phase II/III design approach (Maca, 2006). For example, an

adaptive seamless design would probably not be suitable for a phase II program in a novel

disease area if the objective is to establish the primary endpoint to be used in phase

III. Maca (2006) discusses other criteria that determines the feasibility and merits of a
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interim analysis and the remaining promising treatment arm proceeds to a confirmatory stage.
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22



Chapter 2. Optimal drop-the-loser trials when an intermediate endpoint is used for
interim selection

seamless approach. In all, while seamless designs offer the potential for improved efficiency

and faster development timelines, they also carry certain limitations and challenges. In

turn, significant effort is therefore needed to carefully plan their execution and ensure the

validity of the proposed analysis (Hampson & Jennison, 2015).

In this chapter, the focus will be on facilitating such careful design of a specific type

of seamless design: one in which an intermediate endpoint is used to select which of two

experimental treatments to bring forward to the confirmatory stage. Therefore, I next

discuss the various types of endpoints typically employed in clinical trials.

2.1.1 Clinical endpoints

Selecting appropriate and relevant endpoints is critical in the design of a clinical trial as

it is ultimately the results for these endpoints that determine trial success and the abil-

ity to have established meaningful results that support regulatory approval and clinical

decision-making. In general, an endpoint is an event or outcome that can be objectively

or subjectively measured to determine the benefits of a studied intervention (Chow &

Liu, 2014; Friedman et al., 2015). There are principally two types of endpoint, namely,

primary and secondary endpoints. The primary endpoint is the main outcome that the

study is designed to assess. Almost always it is used to determine the treatment’s efficacy

and/or safety features. The success or failure of the intervention is often very clearly de-

termined by whether it achieves a predefined level of significance for the primary endpoint.

Therefore, the primary endpoint plays a crucial role in providing the basis for regulatory

actions (Food and Drug Administration, 2017). Conversely, secondary endpoints provide

supplementary information about the intervention’s effects and can help researchers gain

a broader understanding of its impact on patients (FDA-NIH Biomarker Working Group,

2021). Unlike the primary endpoint, trials are not always powered to detect differences in

secondary endpoints.

Endpoints can take many measurement forms, depending on the nature of the trial

and the medical condition being studied. We broadly categorise these various types of

measures as either definitive or intermediate.

Definitive endpoints are direct measures of patient health or disease status, such as

survival rates, symptom improvement, disease progression, or relapse rates. While direct

objective measures of how a patient feels, performs, or survives have impacted clinical

practice and are often considered optimal, they typically take a long time to observe and

require large sample sizes with increased cost (Wittes et al., 1989). In cancer trials, for

example, overall survival is a common endpoint but can take an extended period to assess

(Huang et al., 2009; Bratton et al., 2016). This issue is exacerbated in settings where a

study of the definitive endpoint may be impossible due to low prevalence, or where it may

be less frequently possible to use expensive direct measures throughout the trial due to
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low resources.

Intermediate endpoints, on the other hand, are indirect measures that are used as a sub-

stitute for a definitive endpoint when the definitive endpoint is difficult or time-consuming

to measure (Wittes et al., 1989; Dafni & Tsiatis, 1998). Through validation, intermedi-

ate outcomes could become surrogate outcomes. However, the process of establishing an

intermediate outcome as a surrogate endpoint is complex and requires a multidisciplinary

approach involving clinical, statistical, and regulatory expertise. According to Lagakos &

Hoth (1992), the AIDS epidemic stimulated a growing interest in utilising intermediate

endpoints as a foundation for assessing treatment efficacy. Thereafter, the use of inter-

mediate outcomes has gained increasing popularity and has established a wide utility in

practice. Examples of intermediate outcomes include biomarkers, physiological measures,

imaging results, laboratory test results, or specific biological indicators that can be mea-

sured in the body and may provide insights into the intervention’s mechanism of action

or treatment response (DeMets et al., 2020).

intermediate endpoints hold immense potential in drug development, offering the op-

portunity to significantly enhance efficiency and cost-effectiveness (Dafni & Tsiatis, 1998).

Specifically, using an intermediate endpoint which is usually cheaper and measured early

can offer a reduced required sample size compared to a trial involving a definitive endpoint

(Wittes et al., 1989; Friedman et al., 2015; Benjamin et al., 2016). Moreover, the quick

observation of intermediate endpoints plays a crucial role in accelerating the trial process,

ensuring swift access to a successful drug for patients who depend on it. This expedited

approach is not only efficient but also holds ethical significance in promptly addressing

the needs of patients awaiting effective treatments. It is important to note that several

drugs have now received FDA approval using intermediate endpoints (FDA, 2018).

Despite their advantages, intermediate endpoints are not always a simple or reliable

tool for evaluating the benefit-to-risk ratio of interventions, as the relationship between

them, definitive endpoints, and the specific intervention under evaluation might be com-

plex (Temple, 1999; Frangakis & Rubin, 2002; Fleming & Powers, 2012). For example,

the correlation between intermediate and definitive endpoints may not always be per-

fect and changes in intermediate endpoints may not reliably predict changes in definitive

endpoints. In particular, intermediate endpoints may show short-term benefits, but the

long-term impact on definitive endpoints may differ. Moreover, interventions may have

unintended effects on intermediate endpoints that do not necessarily translate into mean-

ingful clinical benefits. Furthermore, the relationship between intermediate and definitive

endpoints may vary among different subgroups in diverse patient populations.

As a result of this complex relationship between intermediate and definitive endpoints,

there are several instances where inappropriate intermediate endpoints have provided mis-

leading information (Echt et al., 1991; International Chronic Granulomatous Disease Co-
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operative Study Group, 1991). An instance of this is the Normal Hematocrit trial, which

involved patients with end-stage renal disease who also have cardiac conditions. These pa-

tients often experience anemia (low hematocrit) due to erythropoietin deficiency. In this

trial, the intermediate intervention of normalising the hematocrit levels using erythro-

poietin stimulating agent adversely impacted the overall survival and, in some instances,

increased the risk of myocardial infarction. (Besarab et al., 1998). A similar phenomenon

was observed in a type 2 diabetes mellitus trial where an intermediate endpoint of a thera-

peutic strategy providing an absolute 1% reduction in HbA1c led to elevated mortality rate

along with an increased risk of hypoglycemia (The Action to Control Cardiovascular Risk

in Diabetes Study Group, 2017). Thus, incorrectly designating an intermediate endpoint

as a reliable intermediate could result in endorsing an ineffective drug, steering patients

away from potentially more beneficial alternatives. Therefore, accurately distinguishing an

intermediate endpoint as a valid or invalid intermediate for definitive outcomes is essential.

A good intermediate endpoint must possess certain qualities that make it a reliable and

valid substitute for a definitive endpoint in a clinical trial. Validity, in this context, means

that the intermediate should accurately capture the treatment’s impact on the definitive

endpoint. It should be a valid representation of the underlying disease or condition being

studied (Ciani et al., 2021). In fact, changes in the intermediate endpoint should precede

or coincide with changes in the definitive endpoint. This temporal relationship ensures

that the intermediate provides early indications of treatment efficacy. Key attributes that

have been proposed for a good intermediate endpoint are:

• Strong correlation: A high correlation between the intermediate endpoint and

the definitive endpoint is important. The intermediate should reliably predict the

treatment effect on the definitive outcome. This is a commonly held belief among

some medical researchers, including Prentice (1989). According to Kunz et al. (2017)

and Liu et al. (2019), it is more beneficial to use short-term intermediate information

at an interim analysis if the correlation between the intermediate and definitive

endpoint is strong.

• Biological plausibility: Chataway et al. (2011) defined the concept of a “bio-

logically plausible” outcome as an indicator that provides insight into whether the

mechanism of action of a test treatment is operating as expected. In effect, there

should be a clear and understood biological rationale explaining the relationship be-

tween the intermediate and definitive endpoints. This ensures that changes in the

intermediate endpoint are likely to reflect changes in the definitive outcome. Hence,

the intermediate endpoint should possess the capability to function as a causal path-

way to the definitive endpoint (Bratton et al., 2016; Kunz et al., 2017).

• Clinical relevance: An intermediate endpoint does not necessarily have to be clin-
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ically relevant itself, but it should be closely associated with a clinically relevant

outcome. However, in certain instances where the intermediate endpoint becomes a

valid surrogate and has a direct impact on the patient’s condition, it becomes clini-

cally relevant (Buyse & Molenberghs, 1998). Therefore, the important question that

arises is whether we can ascertain that any small observed effect on the intermediate

endpoint is meaningful and likely to translate into clinically relevant outcomes (Moll

et al., 2006).

• Measurability: According to Zhuang & Chen (2020), a quantifiable and well-

defined relationship should exist between the intermediate and definitive outcomes.

Thus, the intermediate endpoint should be easily measurable and quantifiable. Re-

liable and consistent measurement methods are essential for the intermediate to be

practical in a clinical trial setting.

• Generalisability: The relationship between the intermediate and definitive end-

points should be consistent across different patient populations, varying disease

stages, and treatment modalities. This means that, following adjustment for the

treatment’s impact on the intermediate endpoint, the relationship between a time-

varying covariate (such as medication dosage which could be adjusted at specific

time points based on the participant’s health status, response to treatment, or other

clinical considerations) and the definitive outcome should remain consistent across

different treatment groups (Dafni & Tsiatis, 1998). This makes the intermediate

more widely applicable.

• Regulatory acceptance: Regulatory agencies often play a role in determining

the acceptability of an intermediate endpoint. Endpoints that are recognised and

accepted by regulatory authorities enhance the likelihood of successful trial out-

comes. In recent times, regulatory bodies such as the European Medicines Agency

(EMA) and the US Food and Drug Administration (FDA) have increasingly granted

approvals based on intermediate endpoints (Darrow et al., 2020; FDA, 2018). There-

fore, the selection of an intermediate should ideally be conducted in a manner that

ensures its validity and enhances the likelihood of regulatory approval. This consid-

eration holds significance primarily within regulated settings; many trials conducted

in LMICs, for example, may not necessarily seek regulatory approval for their inter-

ventions or outcomes.

• Ethical considerations: The use of intermediate endpoints should align with eth-

ical standards, ensuring that the substitution does not compromise patient safety or

well-being.

When selecting treatments at interim analysis, the definitive outcome could serve as a
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guide if it can be measured quickly. Alternatively, if this is not feasible, an intermediate

outcome could be considered. This intermediate outcome doesn’t need to meet all the

criteria of surrogacy; less stringent conditions might suffice (Burzykowski et al., 2005).

Particularly, the aim is to prevent instances in which the intermediate outcome demon-

strates a negative effect while the definitive outcome would have indicated a positive effect.

Such occurrences could result in the erroneous exclusion of a relevant arm from consider-

ation. In terms of the operational characteristics of the seamless phase II/III design, both

the correlation between the intermediate and definitive outcomes at an individual patient

level and the treatment effects at a population level are important factors to consider

(Friede et al., 2020).

2.1.2 Proposed design

In Chapter 1, I described how the drop-the-losers design can be a very sample-size-efficient

approach to evaluating multiple experimental interventions. Wason et al. (2017) provide

very helpful results for designing such trials, including a simple method for strongly con-

trolling the type I FWER. This method is specific though to the case where a single

endpoint is used throughout the trial. This limits the potential application of this ap-

proach in a seamless phase II/III setting, where it would be more likely an intermediate

outcome is to be used for faster treatment selection.

Therefore, in this chapter, I extend the drop-the-losers design described by Wason

et al. (2017) to make it more suitable to a seamless setting by allowing for the use of an

intermediate endpoint for treatment selection. More specifically, I consider a trial design

that integrates Phase II and phase III into a single, uninterrupted study with an interim

analysis. In the phase II component, patients will be randomised to two treatment arms

as well as a control arm. At the interim analysis, one of these treatment arms will then

be selected to continue to the phase III component, for formal powered comparison to the

control arm. The choice between the treatment arms will be based on evidence regarding

efficacy using an intermediate outcome. The final phase III analysis will then be based on

comparative efficacy established using a definitive outcome.

Expanding the methodology in Wason et al. (2017), my proposals accommodate vary-

ing treatment effects across the intermediate and definitive endpoints and account for the

correlation between them. Sub-cases will address situations in which this correlation is

treated as known or unknown. Furthermore, given that the decision to drop an arm is

heavily dependent on the quality and quantity of available information at the interim

analysis, I explore the optimal timing for conducting the interim analysis to minimise the

total required sample size.

The remainder of the chapter is organised as follows. In the next section, I introduce the

methodology underpinning the drop-the-loser design. Section 2.2.2 then covers the FWER
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and power of the considered design. In Section 2.2.3, I provide information relating to a

motivating example. The results and subsequent discussion are then detailed in Section 2.3

and Section 2.4 respectively.

2.2 Methodology

This section presents the methodology underpinning the drop-the-loser design considered

in this chapter. It explains the setting, high-level design assumptions, and the criteria for

decision-making. Additionally, it provides detailed information about the distributional

assumptions regarding the test statistics, the approach to FWER control, and the example

used in the Results.

2.2.1 Notation, hypotheses, and test statistics

Consider a trial involving a control and two experimental treatments, with two stages. I

explore the scenario where an intermediate outcome may be utilised in the first stage and

a definitive outcome in the second stage of the trial. For simplicity, both endpoints are

assumed to be normally distributed, though extension to alternative distributional forms

follows easily using asymptotic results (Jaki & Magirr, 2013). The design incorporates a

fixed sample size in each stage, while also assuming equal allocation between the present

arms in both stages. It is further assumed that subjects from both phases are used in the

final decision-making process.

To facilitate these assumptions, assume that at the end of stage j there are Nj patients,

indexed i ∈ {1, . . . , Nj}, with data on treatment arm k. Let k = 0 denote the control

arm and k ∈ {1, 2} denote the experimental arms. We assume patients i ∈ {1, . . . , N1},
from stage j = 1, provide outcomes YikI and YikD for the intermediate and definitive

outcomes respectively. By contrast, patients i ∈ {N1 + 1, . . . , N2}, from stage j = 2, need

only provide outcome YikD as the intermediate outcome is not used in the final analysis.

Additionally, we assume Yiko ∼ N(µko, σ
2
o) for o ∈ {I,D}, with σI and σD treated as

known. To account for the correlation between outcomes from the same patient on the

two outcomes in what follows, we set Corr(YikI , YikD) = ρ.

The null hypotheses are then defined as Hk : δkD = µkD − µ0D ≤ 0, for k ∈ {1, 2}.
Subsequently, I will refer to the situation where the set of k treatment effects δ1D =

δ2D = δ1I = δ2I = 0 as the global null hypothesis, HG, for the FWER control. One

logical approach to weak FWER control is when you are at the boundary of all of the null

hypotheses, which is 0. Therefore, it stands to reason that as you approach 0, the FWER

should increase or be maximised. To select a treatment arm at the interim analysis, and

to test the null hypotheses, we employ Wald test statistics:
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Zjko =
δ̂jko√

Var(δ̂jko)
=

1
Nj

∑Nj

i=1 Yiko −
1
Nj

∑Nj

i=1 Yi0o√
2σ2

o
Nj

.

Extending Wason et al. (2017), evaluating the operating characteristics of the proposed

design then depends on knowing the joint distribution of Z = (Z11I , Z12I , Z21D, Z22D)
⊤.

As demonstrated by Law et al. (2020), this is
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2.2.2 Family-wise error rate and power

When performing multiple statistical tests (e.g., comparing multiple treatment arms), the

probability of making at least one type I error, referred to as the FWER, will increase

unless a statistical adjustment is applied. In a seamless design setting, it will often be

the case that the FWER must be controlled to some nominal α level, to limit the chance

of spuriously recommending an ineffective experimental treatment. Before describing the

approach that was therefore taken in this chapter to control the FWER, I first describe

some alternative multiple correction methods that were considered for this study.

The first, and most common, approach to FWER control is Bonferroni’s correction,

where the significance threshold for each individual test is adjusted to be more stringent

by dividing the desired overall significance level (e.g., α = 0.05) by the number of tests

being conducted (α∗ = α/K). Bonferroni’s correction is simply to apply but is known to

in many instances be conservative. To reduce this conservatism, alternative methods do

exist that require limited, if any, additional assumptions. These include the Bonferroni-

Holm and Šidák’s corrections. None of these methods though leverage known correlations

between test statistics; in the case of the considered drop-the-loser design, the correlation

between the test statistics has a known distributional form. To attempt to leverage this,

I considered FWER control using a generalised version of Dunnett’s correction.

To understand the treatment effect scenarios for which FWER control is considered

in this work, we first define a general power function for the probability that H1 or H2

is rejected. To specify this power function, we must nominate our rules for treatment

selection and hypothesis rejection. We assume that treatment arm k ∈ {1, 2} is selected

for continuation to stage 2 of the trial if Z1kI > Z1k′I for k′ ̸= k. That is, in this study, we

assume the experimental arm with the highest test statistic for the intermediate outcome
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is selected at the interim analysis. Then, Hk is subsequently rejected if Z2kD > c, for

critical rejection threshold c. The probability of H1 being rejected is thus given by

P1(δ1I , δ2I , δ1D, δ2D, ρ,N1, N2, c) = P(Z11I > Z12I , Z21D > c | δ1I , δ2I , δ1D, δ2D, ρ,N1, N2, c).

Note that here, for brevity, we have written this probability conditional only on the pa-

rameters that will be used in describing how the FWER is controlled; the probability is

also conditional on σI and σD.

We can compute this probability using an affine transformation approach, as described

by Wason et al. (2017). Specifically, let

A1 =

(
1 −1 0 0

0 0 1 0

)
.

Then, Y = (Y1, Y2)
⊤ = AZ ∼ MVN{A1E(Z), A1Cov(Z)A

⊤
1 }, where Y1 is the difference

between the interim test statistics and Y2 is the test statistic in the second stage and

P(Z11I > Z12I , Z21D > c | δ1I , δ2I , δ1D, δ2D, ρ,N1, N2, c)

= P(Y1 > 0, Y2 > c | δ1I , δ2I , δ1D, δ2D, ρ,N1, N2, c).

Thus, we have

P1(δ1I , δ2I , δ1D, δ2D, ρ,N1, N2, c) = P(Y1 > 0, Y2 > c | δ1I , δ2I , δ1D, δ2D, ρ,N1, N2, c),

=

∫ ∞

0

∫ ∞

c
ϕ{(y1, y2)⊤, A1E(Z), A1Cov(Z)A

⊤
1 } dy2dy1.

Here, ϕ(y, µ,Σ) is the probability density function of anMVN(µ,Σ) distribution evalauted

at y. Defining

A2 =

(
−1 1 0 0

0 0 0 1

)
,

we similarly have

P2(δ1I , δ2I , δ1D, δ2D, ρ,N1, N2, c) = P(Reject H2 | δ1I , δ2I , δ1D, δ2D, ρ,N1, N2, c),

=

∫ ∞

0

∫ ∞

c
ϕ{(y1, y2)⊤, A2E(Z), A2Cov(Z)A

⊤
2 } dy2dy1.

Note that the case where the definitive outcome is used at the interim analysis, as in

Wason et al. (2017), can be recovered in the above by simply setting I = D and ρ = 1.
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Family-wise error rate control

Note that using the above, and the fact that only one null hypothesis is ever tested in

stage 2, we can compute the family-wise error rate for any set of treatment effects as

FWER(δ1I , δ2I , δ1D, δ2D, ρ,N1, N2, c) = I(δ1D ≤ 0)P1(δ1I , δ2I , δ1D, δ2D, ρ,N1, N2, c)+

I(δ2D ≤ 0)P2(δ1I , δ2I , δ1D, δ2D, ρ,N1, N2, c).

In general, for particular choices of N1 and N2, one then might wish to choose the

rejection parameter c to achieve strong control of the FWER, i.e., control of the FWER

to some level α regardless of the values of the parameters δ1I , δ2I , δ1D, δ2D, and ρ. Or, in

equation form, choosing c such that

max
δ1I∈R, δ2I∈R, δ1D∈R, δ2D∈R, ρ∈[0,1]

FWER(δ1I , δ2I , δ1D, δ2D, ρ,N1, N2, c) ≤ α.

For the case where the definitive outcome is used for treatment selection (i.e., where I = D

and ρ = 1), Wason et al. (2017) demonstrate this can be achieved by ensuring

FWER(0, 0, 0, 0, 1, N1, N2, c) ≤ α.

In the case where an intermediate outcome is used for treatment selection, we have not

been able to formally prove which combinations of values of δ1I , δ2I , δ1D, δ2D, and ρ

maximise the FWER. However, our observations (see, e.g., Bratton et al., 2016) indicate

it may be when δ1D = δ2D = 0 and ρ = 1, with the values of δ1I and δ2I immaterial as

both treatments are then ineffective for the definitive outcome as so it does not matter

which is brought forward. We explore this hypothesis later.

Alternatively, strong control of the FWER might be considered to be an unnecessarily

strict requirement. This may be particularly true for non-regulated trials, or when the

relationship between the intermediate and definitive outcomes is better understood. Fol-

lowing this logic, we consider design under two weaker sets of scenarios for FWER control:

each assumes the global null hypothesis HG is true. They then vary in how they treat ρ

• ρ treated as known: If the relationship between the endpoints is well-understood,

one might opt to choose c as the minimal value such that

FWER(0, 0, 0, 0, ρ,N1, N2, c) ≤ α,

for a particular assumed value of ρ.

• ρ treated as unknown: To ensure FWER control across possible values of ρ
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under HG, we can alternatively choose c such that

max
ρ∈[0,1]

FWER(0, 0, 0, 0, ρ,N1, N2, c) ≤ α.

In our explorations (see, e.g., Jennison & Turnbull, 2006; Magirr et al., 2012; Jaki

& Magirr, 2013; Wason et al., 2017), this has been observed to be found equivalent

to requiring

FWER(0, 0, 0, 0, 1, N1, N2, c) ≤ α,

which relates to our hypothesis above that ρ = 1 for the scenario in which the FWER

is maximised.

Power

A primary objective of this chapter is to identify the optimal timing of the interim analysis

to minimise the required sample size and thus reduce resource burden while controlling

power to a desired level.

To achieve this, we assume that N1 = Nθ/3 and N2 = N1+N(1−θ)/2, such that there

are Nθ patients in stage 1 and then N(1 − θ) patients in stage 2, giving N as the total

sample size for both stages. Thus, the timing of the interim is reflected in the parameter

θ. Note that θ = 0.5 would reflect equal sample sizes in the two stages, while θ = 0.6

reflects equal sample sizes per (present) arm in each stage.

Observe that under the global null hypothesis HG, the distribution of the test statistics

depends on N1 and N2 only through their ratio, N1/N2. Based on the above restrictions,

this ratio depends only on θ and not on N . Thus, for any given θ, we may first find the

value c = c(θ) that controls the FWER according to the particular requirements stipulated

in the previous subsection. We then choose N as the minimal value such that

P1(τI1, τI0, τD1, τD0, ρ,Nθ/3, Nθ/3 +N(1− θ)/2, c) ≥ 1− β,

for some nominated value of ρ, and where τs1 > τs0 for s ∈ {I,D}. Here, τs1 and τs0

represent the interesting and the uninteresting assumed treatment effects respectively.

That is, we choose N to control the probability of rejecting H1, assuming treatment 1

has a stronger effect on both the intermediate and definitive outcomes. We do not require

power control over all ρ, as we assume this would be considered too conservative in practice.

Thus a fixed ρ will always be assumed for the power calculation in designing the trials

below, but this fixed ρ may or may not be leveraged in the FWER control requirement.
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2.2.3 Motivating example

The TAILoR trial is utilised as a practical example to illustrate the research findings.

However, certain adjustments were made to align it with the framework of a seamless

phase II/III design. The trial originally aimed to assess the effects of four different doses

of Telmisartan, which is believed to mitigate insulin resistance in individuals with HIV

in combination with antiretroviral therapy. The primary goal of the trial was to measure

the reduction in insulin resistance in the groups receiving Telmisartan compared to the

control group, at the 24-week mark. The design strategy controlled the FWER to the

α = 0.05 level, while ensuring 90% power (β = 0.1) for τD1 = 0.545, τD0 = 0.178, and

σD = 1. These parameter values are assumed for computing all designs below.

No assumptions were made by TAILoR regarding an intermediate selection outcome,

as an intermediate outcome was not used in this way. Nonetheless, we assume fasting

glucose levels were employed as the intermediate outcome since elevated levels within the

normal range can be associated with insulin resistance. For simplicity, we focus on the

case where δI1 = δD1 and δI0 = δD0, though we explore the impact of the values of the

means for the intermediate outcomes more generally.

2.3 Results

The results are presented in four sections, in the following order: the impact of the cor-

relation ρ on the required sample size, the optimal timing of the interim analysis, an

evaluation of the influence of the treatment effects on the FWER, and the efficiency gain

of the seamless design in comparison to a simpler non-adaptive approach to trial design

in this three-arm setting.

2.3.1 Impact of ρ on required sample size

A key question in practice when considering the use of the explored design might be the

impact of the value of ρ assumed in the power (and also potentially the FWER) calculation.

Sensitivity to this ρ may cause concern, as it may imply a heightened risk of an over- or

under-powered trial. Therefore, in this section, I evaluate the impact of the assumed ρ

on the required sample size. This is done for the two considered requirements for FWER

control (treating ρ as known or unknown), in the situation where θ = 0.6. The results are

presented in Figure 2.2.

The results show an inverse relationship between the level of correlation and the re-

quired sample size when ρ is treated as unknown in the FWER control requirement. Specif-

ically, as the level of correlation between the intermediate and the definitive increases, the

sample size required decreases. This finding is consistent with previous literature that has
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asserted that when there is a perfect correlation between these two endpoints, it often

leads to a reduction in the required sample size.

On the contrary, if the correlation is assumed to be known in the FWER control

requirement, the critical threshold c increases in this assumed value of ρ. This results in

a larger required sample size for increased ρ. I.e., the power gain (for any fixed rejection

rule) from larger ρ is outweighed by the power loss caused by the increase in c for larger

ρ. Observe though that assuming a known ρ in the FWER control requirement always

results in a lower required sample size than assuming ρ is unknown in the FWER control

requirement, for any given value of ρ assumed in the power calculation.

Note also that across both lines in Figure 2.2, we can see that the variation in the

required sample size is relatively low, even when ρ is altered from 0 to 1. I return to this

point in the Discussion.

2.3.2 Optimal timing of the interim analysis

Given that the reliability of the decision to discontinue a treatment arm is strongly influ-

enced by the quality and quantity of information at the interim analysis, I now proceed to

vary the timing of the interim analysis and assess the impact on the required sample size.

In particular, this evaluation aimed to identify the optimal timing that yields the smallest

required sample size for a specified power. To do this, I explored a wide range of interim

analysis timings, defined by θ ∈ [0.25, 1), considering four cases where the correlation be-

tween the intermediate and definitive endpoints was given by ρ ∈ {0.25, 0.5, 0.75, 1}. Once

again, I considered cases where this ρ is treated as known or unknown for the purposes of

controlling the FWER. The results are presented in Figure 2.3.

In general, the plots exhibit approximately U-shaped curves, suggesting that the lowest

sample size is observed somewhere in the middle of the considered range of θ. This should

not be surprising, as with a very small sample before the interim analysis, the interim may

not reliably capture information for an effective selection, leading to a loss in efficiency.

Contrarily, with a very long interval before the selection, the trial may lose out on the

opportunity to effectively direct resources towards a much better-performing arm, again

affecting efficiency. Thus, the approximately U-shaped curve indicates that there is a spot

(optimal time for the interim analysis) where the trial benefits most from reliably adapting

the design.

When the correlation between the two endpoints ρ is treated as unknown in the FWER

control requirement, the optimal time for the interim analysis appears to be when approx-

imately 65% (θ = 0.65) of patients have been allocated. This is true across the considered

values of ρ. By contrast, when the correlation ρ is assumed known in the FWER control

requirement, the optimal timing of the interim analysis depends on the specific assumed

value of ρ. Specifically, the larger the assumed value of ρ the earlier the optimal timing of
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Figure 2.2: Shows the required sample size as a function of the assumed value of ρ in the power
calculation. The blue line is the case where ρ is treated as unknown in the FWER requirement and
the red line is the case where it is, like in the power requirement, treated as known in the FWER
requirement. Equal allocation of sample size to each arm in both stages is assumed (θ = 0.6).

the interim analysis (i.e., smaller θ becomes optimal). Observe from Figure 2.3 that when

ρ = 0.25, the optimal timing of the interim analysis occurs at θ = 0.75, and for ρ = 1, the

optimal timing of the interim analysis occurs at θ = 0.65.

2.3.3 Family-wise error rate control

In this section, I explore the effect of the values of δ1I , δ2I , δ1D, δ2D, and ρ on the

FWER. It is logical based on much previous research to expect that the FWER will be

maximised when δ1D = δ2D = 0. I therefore focus on varying the values of δ1I , δ2I ,

and ρ. Understanding the influence of ρ on the FWER may be anticipated to be critical

based on the common belief that the correlation between the intermediate and definitive
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Figure 2.3: Impact of the timing of the interim analysis (as defined by θ) on the required sample
size, for varying correlations ρ between the intermediate and definitive outcomes for cases where ρ
is treated as known and unknown in the FWER control requirement.

outcomes plays a crucial role in the context of a seamless design; values of ρ were selected

to represent cases where the correlation between the intermediate and definitive endpoint

was weak through perfect, namely ρ ∈ {0.25, 0.5, 0.75, 1}. I then explore the grid with

(δ1I , δ2I ∈ [−2τD1, 2τD1] = [−2(0.545), 2(0.545)]. As the principal interest lies in whether

modification of the values of δ1I , δ2I , and ρ causes an increase or decrease to the FWER,

I simply fix c = Φ−1(0.975), θ = 0.6, and N = 200, with N chosen to reflect the values

observed in Figure 2.2. The results are presented in Figure 2.4.

Generally, the results show that for given values of δ1I and δ2I , as the correlation

between the intermediate and definitive endpoints strengthens, the FWER increases. This

is because a weak correlation between the two endpoints means that they are less aligned,

and thus, the interim analysis may yield results that do not strongly predict the results of

the final analysis. More formally, using properties of the multivariate normal distribution,

conditional on the observed value of Z1kI , the expectation of Z2kD increases as a function
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of ρ. Thus, larger ρ is associated with an increased likelihood of committing a family-wise

error.

Note that for a given value of ρ the FWER is largest when δ1I = δ2I . This is un-

surprising, because of the assumption that δ1D = δ2D = 0: as both definitive endpoint

means are assumed to be zero, the situation in which δ1I = δ2I maximises the ability to

select whichever of the two experimental treatments is experiencing a random high, to the

knock-on effect of an increased FWER.

ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 1

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

δ1I

δ 2
I

0.030 0.035 0.040
FWER

Figure 2.4: Shows the FWER as a function of the assumed value of ρ ∈ {0.25, 0.5, 0.75, 1} and
δ1I , δ2I ∈ [−2τD1, 2τD1] = [−2(0.545), 2(0.545)]

. Here, N = 200 and equal allocation of sample size to each arm in both stages is
assumed (θ = 0.6).

2.3.4 Comparison of adaptive and non-adaptive sample sizes

It has been established in the literature that a primary advantage of the seamless phase

II/III design is an efficiency gain through a reduction in the required sample size. In this

section, I quantify one such type of efficiency gain by evaluating the percentage decrease

in the required sample size using the seamless phase II/III design when compared against
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a standard three-arm trial without an interim analysis. This comparison is an important

one, as this non-adaptive approach could be considered a viable alternative in practice

if the seamless design does not provide a strong efficiency gain, owing to its increased

simplicity. The definitive outcome assumptions, τD1 = 0.545, τD0 = 0.178, and σD = 1,

from the motivating example, were utilised in the multiarm developed by Grayling &

Wason (2020) to compute the sample size required by the non-adaptive three-arm design.

A significance level of α = 0.05 was used, in combination with Dunnett’s correction,

assuming 1:1:1 randomisation. The identified design was found to require a sample size of

207.

With regards to the seamless design, θ = 0.75 was assumed as an efficient option when

ρ is treated as known, and θ = 0.65 was assumed as an efficient option when ρ is treated

as unknown in the FWER control requirement, as discussed in section 2.3.2. Furthermore,

ρ = 0.5 was assumed as a suitably conservative value that may reflect realistic trial design

scenarios.

The results in Table 2.1 show a 7.8% and 3.5% reduction in the required sample size

for the seamless phase II/III designs compared to the non-adaptive approach when the

correlation between the intermediate and the definitive endpoints is treated as known and

unknown respectively in the FWER control requirement. Generally, the seamless design

results in a relatively small reduction in the required sample size, but they significantly

decrease the number of patients for whom the definitive outcome needs to be measured.

Depending on the nature of the trial, these reductions may reflect a sizeable benefit in

terms of reduced required resources, particularly because patients in the dropped arm

do not require the measurement of the definitive outcome. To quantify this, a separate

calculation is needed to determine the precise extent of the reduction.

Note though that part of this observed efficiency gain arises from the inherent nature of

the drop-the-loser design, which is limited in its ability to identify only one effective arm,

irrespective of the effectiveness of both arms. By contrast, the non-adaptive three-arm

design can reject both null hypotheses.

Non-adaptive sample size Seamless design when ρ is known Seamless design when ρ is unknown

Sample Size Percentage reduction (%) Sample Size Percentage reduction (%)

207 192 7.8 200 3.5

Table 2.1: Comparison of the seamless design and the single-stage multi-arm trial for α = 0.05,
β = 0.1, τD1 = 0.545, τD0 = 0.178, τI1 = 0.545, τI0 = 0.178, ρ = 0.5, and σI = σD = 1.
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2.4 Discussion

In this study, a framework for the design of a seamless phase II/III drop-the-loser de-

sign was proposed. This framework may help expedite the drug development process by

eliminating the time-lag that would exist if separate phase II and phase III trials were

conducted, with it focused on the situation where one of two treatment arms is to be

selected for further testing at an interim analysis based on an intermediate outcome mea-

sure. Another notable advantage of this design, as evidenced in both the results and

existing literature, is the reduced fixed required sample size compared to a traditional

multi-arm trial. The fixed sample size inherent in this design also addresses the uncer-

tainties associated with the variable sample size required by other designs, such as group

sequential multi-arm multi-stage designs. This reduction in uncertainty contributes to

easing challenges related to securing funding and managing the logistical aspects of the

trial.

Despite the advantages of the proposed design, it has some practical issues. First,

adhering to the requirement of dropping a treatment at the end of the first stage may be

challenging in practice. For instance, if both experimental treatments demonstrate strong

performance compared to the control, it might be considered inappropriate to drop an

arm.

Second, the drop-the-loser design, like other adaptive designs, faces the limitation

of outcome delay. Since adaptation requires a measurable parameter, delayed responses

result in fewer observations at interim analyses, lowering the probability of identifying

optimal treatments. This limitation has the potential to compromise the trial’s efficiency

by recruiting patients into arms that are later dropped before assessing their responses.

According to Wason et al. (2017), the extent of efficiency loss depends on the trial’s

recruitment rate and the timing of the endpoint measurement(s). The incorporation of an

intermediate outcome into this proposed design, which inherently assumes the presence of

a quickly measurable factor for adaptation, addresses the limitation of outcome delay to a

large extent. This assertion is backed up by Hampson & Jennison (2013), who argued that

the efficiency loss due to outcome delays can be mitigated by leveraging data on correlated

short-term endpoints. I have not here though evaluated how fast the intermediate outcome

needs to be measured for the proposed design to be useful.

It was observed from the results that the change in required sample size from no cor-

relation (ρ = 0) to perfect correlation (ρ = 1) between the intermediate and the definitive

endpoint was small. This underscores a crucial point that precise knowledge of the corre-

lation is not essential. Further, it highlights that a large value of ρ does not imply that

an effect on the intermediate endpoint will be accompanied by an effect on the definitive

endpoint. This assertion is emphasised by Baker & Kramer (2003) who demonstrated that
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having a perfect correlation between a potential intermediate and an unobserved defini-

tive outcome does not guarantee accurate inference based on this potential intermediate

endpoint. This is because ρ does not indicate the relationship between the means of the

two endpoints. Hence, from a design perspective, the quality of available data to inform

assumptions about ρ may not significantly impact the design.

While we acknowledge that achieving a perfect correlation between the intermediate

and definitive treatment effects is rare due to various influencing factors, I present a hy-

pothetical scenario where such a correlation may exist. Consider a clinical trial evaluating

a new medication’s efficacy in reducing blood pressure. The intermediate endpoint may

be the reduction in systolic blood pressure (SBP) after one month of treatment, while the

definitive endpoint could be the SBP reduction after six months. If the new medication

consistently and perfectly lowers SBP after one month, it is probable that it will also lower

SBP after six months, resulting in a perfect correlation between the reductions at these

time points.

The results also demonstrated that conducting an interim analysis when 65% (θ =

0.65) of patients have been allocated for cases where ρ is treated as unknown in the

FWER control requirement is highly efficient, often even optimal. The closely related work

regarding the optimal timing of the interim analysis is that of Walter et al. (2020), whose

systematic review revealed that the majority of trials scheduled their interim analysis

around the midpoint of the data collection. Although the trials analysed by Walter and

colleagues did not specifically target seamless or drop-the-loser designs, their findings

still hold statistical and non-statistical significance in this context. This is because such

strategic practice of conducting an interim analysis around the midpoint of a trial offers

other advantages in terms of relatively early identification of issues with the study. By

contrast, conducting an interim analysis too early or too late in a clinical trial can have

various disadvantages. According to Thorlund et al. (2018), conducting an interim analysis

too early can be problematic because limited data are prone to increased type I error rates,

unreliable results, ineffective adaptations, and ethical concerns. This can consequently

result in premature termination of an arm without sufficient evidence. On the other

hand, delaying the interim analyses diminishes the trial’s efficiency (Huang, 2016) due

to missed opportunities for adaptation, prolonged trial timelines, increased costs, and

potential patient exposure to ineffective treatments. Thus, conducting an interim analysis

around the midpoint of a trial may in general be recommended as an effective approach

on statistical and non-statistical grounds.

We observed that, at least for the considered design scenario, the FWER appeared to

be maximised when δ1I = δ2I and ρ = 1. This is a useful finding, as it means the rejec-

tion threshold computed for the case where the definitive outcome is used for treatment

selection, provided by Wason et al. (2017), may still provide strong control of the FWER
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in the case where an intermediate outcome is used. However, we note we have not for-

mally proved this to be the case, and if guaranteed strong FWER control is required, this

would currently necessitate shifting towards an approach involving p-value combination

or a similar methodology.

Finally, note that the methodology detailed in this chapter relied on a normal approx-

imation. Future research could focus on exploring joint distributions for different types

of outcome data. For instance, the intermediate outcome could take a binary form, in-

dicating response or non-response, with then fully specified distributions given for the

definitive outcome, conditional on the value of the intermediate outcome. While a normal

approximation may work well in general, a higher level of precision of the true operat-

ing characteristics may well be achievable through the adoption of a more sophisticated

modelling framework.
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Chapter 3

A review of approaches to

specifying the intra-cluster

correlation and other design

parameters

In the clinical trial process, sample size plays a critical role in determining how many par-

ticipants are required to adequately power the trial. Although it is regarded as best practice

to calculate the sample size at the beginning of the trial, this estimation requires knowledge

of certain key parameters that are unknown at the design stage. These parameters include

the SD, the effect size, and the ICC when estimating the sample size for a CRT. In this

chapter, we review the approaches to specifying these parameters used in CRT reports in

the HTA journal. We further highlight the justifications underscored by the researchers for

their adopted approaches.

3.1 Introduction

As indicated in Chapter 1, CRTs are frequently employed in primary care research, and

outcomes from a cluster tend to be more similar (Killip et al., 2004; Campbell & Walters,

2014). To illustrate the factors that account for the similarities between outcomes from

individuals within a cluster, let us consider a cluster such as a GP practice. Firstly, people

living in the geographical location of the GP practice may have similar socioeconomic

characteristics. Therefore, a socioeconomic factor such as deprivation, for example, which

is known to impact health outcomes (Theocharidou & Mulvey, 2018; Hawkins et al., 2012)

may contribute to the similar disease conditions presented at the GP practice. Moreover,

since these patients are likely to be treated by the same health professionals within the
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practice, their method of treating a particular disease condition may also result in similar

recovery rates or outcomes among patients. As a result of these factors, some homogeneity

in health outcomes within the cluster is expected.

The two levels of clustering that are commonly encountered in CRTs are one-level

clustering and nested clustering. In one-level clustering, the data is grouped into clusters

at a single level. Each observation belongs to one and only one cluster, and there is no

hierarchical structure beyond this single level. A study where individuals within different

households are the units of analysis, and the households are considered as clusters is a

case of one-level clustering. Here, each individual belongs to one household, and there is

only one level of clustering. Nested clustering, on the other hand, involves multiple levels

of grouping or clustering. Observations are nested within higher-level clusters, and these

higher-level clusters, in turn, may be nested within even higher-level clusters, forming

a hierarchical structure. Consider a study examining students within classrooms within

schools. Students are nested within classrooms, and classrooms are nested within schools.

This hierarchical structure constitutes nested clustering. Each student is in one classroom,

and each classroom is in one school. For brevity, I shall restrict my attention to one-level

clustering throughout this thesis.

The intra-cluster correlation coefficient (ICC) is the primary measure used for the

homogeneity between the outcomes from individuals in a cluster. While the definition and

interpretation of the ICC may be expressed in a different number of ways depending on

the outcome measure, modelling approach, or when dealing with covariates, it is usually

the same quantity measured in different contexts (Eldridge & Kerry, 2012; Eldridge et al.,

2009). When determining the sample size for a CRT, the ICC becomes an important

parameter to prevent erroneous conclusions (Killip et al., 2004), and also becomes useful

in the interpretation of the primary outcome (Eldridge & Kerry, 2012). Although other

measures of cluster homogeneity exist (e.g., coefficient of variation), the ICC is widely

utilised in health services research.

Let us consider a two-arm parallel-group CRT with a continuous outcome, denoted as

Yij , for each participant i in cluster j. A commonly assumed linear mixed-effect model for

the outcomes is

Yij = θ +Xjµ+ cj + eij , (3.1)

where

• θ is an intercept term,

• Xj = 1 if cluster j is allocated to the experimental arm and Xj = 0 otherwise,

• cj ∼ N(0, σ2c ) is a random effect for cluster j, and

• eij ∼ N(0, σ2e) is the individual-level error.
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Here, the ICC (ρ) is defined as the ratio of the variation due to the clusters (σ2c ) and

the total (between and within cluster) variation (σ2); mathematically expressed as

ρ =
σ2c

(σ2c + σ2e)
=
σ2c
σ2
.

Considering the ICC formula above, in a study where the within-cluster variance is

zero (σ2e = 0), then individual outcomes within the cluster are identical (ρ = 1) while

no similarities exist between the outcomes when σ2c or ρ = 0. Thus, the value of the

ICC typically ranges between 0 and 1, where values closer to unity indicate a strong

correlation between the outcomes within a cluster. Researchers have extensively outlined

other methods of calculating the ICC for binary and other outcome types (Ridout et al.,

1999; Campbell & Walters, 2014; Eldridge et al., 2009); these are considered beyond the

scope of this thesis.

While it is rare to observe negative ICCs, it sometimes occurs in practice (see, e.g.,

Heller et al., 2014). There are some theoretical assumptions or reasons associated with

observing a negative ICC. In the study by Heller and colleagues, which sought to improve

type 1 diabetes management using dose adjustment for normal eating, the negative ICC

could have arisen through uneven dose adjustment among patients. This is a widely held

theory among researchers, who believe that negative ICCs can be observed when resources

or logistics are limited and unevenly distributed among the clusters (Campbell & Walters,

2014). Ukoumunne (2002) also attributes the plausibility of a negative ICC to sampling

error, while Eldridge & Kerry (2012) associates such phenomenon to chance.

Analytically, there are various methods of estimating the ICC. Some of these methods

include the one-way ANOVA, Generalised Estimating Equations (GEE), and the linear

mixed effect model (Equation 3.1, sometimes referred to as hierarchical models or random

effect models). However, these methods of estimating the ICC require observed data, which

are typically unavailable at the design stage of the trial for sample size determination. As

a result of this difficulty, trialists have adopted some approaches to specifying values for

the ICC to assume at the beginning of the trial. In what follows, we discuss three of the

most common approaches

• Published trial reports: Published trial reports are a valuable source of docu-

mentation to obtain ICC values and serve as a useful guide for researchers who might

conduct similar trials in the future. According to several studies (Rutterford et al.,

2015; Ring et al., 2018), this is a widely adopted method of obtaining ICCs.

• Pilot and feasibility studies: This method provides an estimate for the ICC using

a small amount of trial data in the setting under consideration. This small study

may be internal or external to the main trial. The advantage of this method is that

if the pilot trial is conducted in an identical setting to the main trial, it is reasonable
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to assume the ICC estimate from it will be better than that from any other available

source. However, given that a small amount of data is used to estimate the ICC, the

variability around this estimate is often large (Eldridge et al., 2016). Additionally,

such pilot evaluations need to be conducted in an often prohibitively timely fashion

to allow the result to feed into the main trial.

• ICC databases or lists: Some databases exist that have collated ICCs from

publication lists of varied interventions and outcomes. Amongst the list include

ICCs calculated for schools, hospitals, GP practices, and other organisations. This

wealth of ICCs obtained from relevant trials within these databases is sometimes

combined through the application of the Bayesian hierarchical model to gener-

ate an ICC coefficient estimate for a planned CRT (see, e.g., Tishkovskaya et al.,

2023). One such online database is hosted by the University of Aberdeen (https:

//www.abdn.ac.uk/hsru/what-we-do/tools/index.php#panel177.

Other important parameters in sample size calculation are the effect size (or target

difference) and the SD. Although the terms target difference and effect size are sometimes

used interchangeably, a subtle difference exists between them. The effect size quantifies

the magnitude of the difference observed between the treatment groups by providing a

standardised measure of the treatment’s impact on the outcome of interest. It is typically

calculated by taking the difference in means (or other appropriate statistics) between the

groups and dividing it by a measure of the variability, such as the SD. Therefore, the effect

size becomes useful when interpreting the study results and helps determine the clinical

significance of the intervention.

By contrast, the target difference is the predefined difference in outcomes between

the treatment groups that researchers aim to detect. It is defined based on the primary

objective of the clinical trial and helps guide the sample size calculation to ensure the

study has adequate power to detect a meaningful difference if it truly exists. The success

of a clinical trial is often assessed based on whether the observed results meet or exceed

the predefined target effect and warrant the adoption of a new treatment or intervention

over the standard of care. Throughout this thesis, we shall use the effect size.

Similarly to the ICC, obtaining parameters for the effect size and SD can sometimes be

problematic. As a result, Cook et al. (2018) proposed seven guidance points in choosing

the effect size for sample size calculations in RCTs. Their proposed approaches, which

included evidence from previous trials and pilot studies, were similar to the approaches

for specifying an ICC discussed above. Based on Cook’s work, Rothwell et al. (2018)

conducted a review of trials reported in the HTA journal and found that the most common

method of effect size specification was the review of evidence and the use of previous similar

studies. This finding has been observed to hold for the SD at which trials are powered as

45

https://www.abdn.ac.uk/hsru/what-we-do/tools/index.php#panel177
https://www.abdn.ac.uk/hsru/what-we-do/tools/index.php#panel177


Chapter 3. A review of approaches to specifying the intra-cluster correlation and other
design parameters

well (Julious & Owen, 2011).

Previous authors have performed similar evaluations regarding how the effect size was

set in great depth (Cook et al., 2018; Rothwell et al., 2018). However, their reviews were

within the IRT context. Thus, we are unable to ascertain if those findings hold in the

context of CRTs. Within the CRT context, reviews have focused on either the statistical

analysis of CRTs (Offorha et al., 2022) or the adherence to the CONSORT extension for

CRTs (Han et al., 2019). We are unaware of any study that has extended its scope to

review the justifications for the assumed ICC value. Therefore, the role of this review is

to effectively demonstrate a specific point: whether high-quality publications in the HTA

journal often omit justification for their ICC and other sample size parameters.

Our selection of the HTA journal was premised on the fact that it is the largest pro-

gramme within the National Institute of Health Research (NIHR), which also happens

to be the major funder of health research in the UK (National Institute for Health and

Care Reseearch, 2023). Moreover, the HTA bases funding for commissioned and health-

related research on a wide range of considerations, but one essential requirement is that

researchers provide a detailed report that is published in the HTA journal regardless of the

statistical significance of the findings. Therefore, the lack of publication bias (both statis-

tically significant and non-significant findings are published) in the HTA journal makes it

ideal for reviews (Rothwell et al., 2018).

In Section 3.2, I describe the methodology for the review which includes the data

sources and strategy, inclusion and exclusion criteria, as well as data extraction and syn-

thesis. Descriptive statistics outlining the characteristics of the trials that met the eligi-

bility criteria, and plots showing the impact of the CONSORT statement on ICC review

is presented in Section 3.3. In Section 3.4, I discuss the findings of the review, highlight-

ing how the current findings relate to existing knowledge in the field and offer thoughtful

reflections on the broader implications of the findings of the review.

3.2 Methodology

This section outlines the search strategy for identifying publications relating to CRTs,

including the inclusion and exclusion criteria for the review.

3.2.1 Data sources and review strategy

The following search was run on PubMed on 08/01/21: (((“Health technology assess-

ment” [Journal]) OR (“Health technology assessment reports” [Journal])) OR (“Health

technology assessment (Winchester, England)” [Journal])) AND (“cluster”).

Fifty-four returned articles were equally allocated between three reviewers (myself,

Michael Grayling and James Wason) to determine inclusion in the data extraction. Specif-
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ically, articles were included if they related to the report of a completed CRT. Here, we

defined a completed CRT as a trial (i.e., not an observational study) with an appropriate

power calculation (i.e., one that should indicate our target parameters had been set val-

ues). For included articles, information was then extracted on the values and justification

given for the assumed ICC, observed ICC, effect size, and the SD. In cases where an article

was unclear in regards to the value/justification for one or more of these parameters, a

discussion between the three reviewers was undertaken to resolve the extraction.

Following the completion of data extraction by the three reviewers, I synthesised the

extracted data into a unified dataset. I then performed descriptive analyses of the values

typically assumed for the ICC in the trial reports, as well as other relevant characteristics

which are detailed in the results section of this chapter.

3.2.2 Inclusion and exclusion criteria

The search was principally interested in CRT reports published in English with no re-

striction on the trial publication date. The publication date of the trial was disregarded

for the following reasons: (i) to enable extraction from a larger number of studies for the

review, since only one Journal was searched, and (ii) to assess adherence to the CONSORT

extension for CRTs pre and post the publication of this reporting guideline. As indicated

above, only studies that met the above definition of a completed CRT were included in

the review.

Studies that did not meet the eligibility criteria were mainly IRTs that recommended

the use of CRTs in future trials. For example, the study by Bonell et al. (2015) was a

pilot IRT that advocated for the adoption of a CRT design in the definite phase III trial

to examine the effectiveness and cost-effectiveness of the intervention. In some cases, the

studies retrieved were small feasibility studies (e.g., Koffman et al. (2019)), systematic

reviews (e.g., Liu et al. (2006)), or did not include a formal sample size calculation (eg.,

Wright et al. (2016)). These studies were part of the total returned articles because the

search keyword “cluster” was present. In total, 20 (37%) articles were excluded from the

review.

3.2.3 Data extraction and synthesis

The required information was extracted using a predefined extraction form after the cluster

trial reports from the HTA journal had been selected for inclusion. Of the 34 (63%) articles

that met the eligibility criteria, data for further analysis was extracted and stored using

an Excel template which all three reviewers could securely access from a shared location.

In cases where the desired information could not be located in the report, it was noted

with “Not given” to indicate that the author(s) did not explicitly state the information of
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interest or that it could not be inferred.

The information extracted was captured under three key thematic areas: (i) the char-

acteristics of the trial, (ii) the values of the assumed parameters that were utilised for

the sample size calculation, and (iii) the justification provided for the selected assumed

parameters. To answer a specific question regarding the difference between the assumed

and observed ICC, information on the observed ICC was also extracted, while an addi-

tional column was added to note interesting findings, such as consideration of sample size

reestimation or making allowance for uncertainty in the assumed values.

3.3 Results

This section presents the findings and analysis of the review guided by the key thematic

areas outlined above in the form of frequency distribution tables, descriptive statistics,

and graphs. The section concludes with an assessment of the impact of the CONSORT

statement on ICC reporting.

3.3.1 Characteristics of the trials

Fifty-four reports were extracted from the HTA journal on 08/01/21, of which 34 met

the inclusion criteria. These 34 trials represent a wide range of study settings and are

reflective of true practice. Therefore, as a first step in the analysis, I present a general

overview of the reviewed trials in the form of frequencies and percentages for all categorical

levels of the trial characteristics. Categorical levels with counts of one were recorded under

“Others” for brevity. It is worth noting that all of the reviewed trials had standard two-

arm parallel group CRT designs. None of the trials were, e.g., stepped-wedge, factorial,

or cross-over CRTs. A PRISMA diagram detailing the number of eligible and ineligible

studies is presented in Figure 3.1.

A summary of the trial characteristics in Table 3.1 shows that the majority of the trials

had continuous primary outcomes (25/34, 74%) or binary outcomes (7/34, 20%), while

two trials had other primary outcomes (e.g., time-to-event or composite outcomes). With

regards to the trial setting, GP practices constituted the majority (10/34, 29%), followed

by schools (3/34, 9%), while nursing homes, communities, and families accounted for 6%

of studies each. Moreover, 15 trials, representing 44% of the sample, were conducted in

settings other than the aforementioned. In terms of the clinical area, it is unsurprising

that primary care recorded the same frequency as GP settings (10/34, 29%), owing to

the fact that primary care is generally administered in GP practices. Other clinical areas

included mental health (4/34, 12%), public health (3/34, 9%), sexual health (2/34, 6%),

and emergency care (2/34, 6%). Concerning the type of intervention, 10 interventions

representing 29% of the sample were medical training programs, 2 (6%) were non-medical

48



Chapter 3. A review of approaches to specifying the intra-cluster correlation and other
design parameters

training programs, 2 (6%) assessed the effectiveness of health technology, while 20 (59%)

interventions were made up of other therapies such as drugs, etc. On the issue of blinding,

the majority of the trials were unblinded (25/34, 73%). Regarding the number of clusters,

2 (6%) of the trials had less than ten clusters, 7 (21%) had 10-30 clusters, 4 (12%) had

31-60 clusters, 2 (6%) had 61-90 clusters, 4 (12%) had more than 90 clusters, while 15

(43%) did not state the number of clusters utilised in the trial. With respect to cluster

sizes, 3 (9%) of the trials had an average of less than ten participants per cluster, 9 (26%)

had an average of 10-30 samples, 2 (6%) trials had an average of 31-60, similarly, 2 (6%)

trials had an average of 61-90, and 2 (6%) trials had an average of more than 90 cluster

sizes each, while 16 (47%) did not state the average number of cluster size utilised in the

trial.
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Figure 3.1: PRISMA flow-diagram of articles selected and included in the review.
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3.3.2 Descriptive statistics and distribution of the target parameters

Summary statistics on the target parameters are presented in this section. Data is de-

scribed using measures of central tendency and spread. An emphasis is placed on the

difference between the assumed and observed ICC, due to the sensitivity of power to the

ICC and the implications of discrepancies on the trial. In addition to summary statistics

in Table 3.2, the distribution of the assumed effect size is also displayed in this section

through a histogram in Figure 3.2. This was particularly emphasised as the effect size is

the sole standardised parameter, while the remaining target parameters were assessed on

distinct scales across each trial.

According to Table 3.2, all 34 (100%) eligible trials reported an assumed ICC with a

mean and variance of 0.0729 and 0.0111 respectively. The assumed values for the ICC

were positively skewed on the range [0.002, 0.5] with a median of 0.05. In terms of the

observed ICC for the analysed primary outcome, 26 trials (77%) reported this, with a

mean of 0.0445 and a variance of 0.0027. Although the observed ICC was also positively

skewed, it was skewed on [0.001, 0.24], with a median of 0.0285. The higher mean and

median values of the assumed ICC in comparison to the observed ICC suggest that many

of the trials were potentially overpowered. I highlight the implications of an overpowered

trial in the discussion section.

Eighteen studies (53%) clearly reported the effect size for which the trial was powered.

The mean effect size was 0.33, with a variance of 0.0289. It also had a range of 0.565

[0.005, 0.57], with a median of 0.32. The 16 trials (47%) that reported an SD recorded a

mean and variance of 2.30 and 6.46 respectively. The SD was also positively skewed on

[0.01, 7.5] with a median of 1.25.

Even trials that utilised pilot studies to calculate the ICC for the main trial acknowl-

edged the estimated ICC from the pilot will be very imprecise (see, e.g., Froggatt et al.,

2020). Yet, none of the reviewed trials incorporated uncertainty around the value of the

ICC by assuming a prior distribution for this parameter. In addition, few stated the power

for a selection of point ICC values (see, e.g., (Campbell et al., 2015)). This is particularly

surprising given the frequency with which the ICC was not well understood at the design

stage.

3.3.3 Justification for the target parameters

Having presented an overview of the eligible trials with some summary statistics of the tar-

get parameters, I now explore the rationale for the selected values of the target parameters

in sample size calculations in this section.

Results presented in Table 3.3 reveal that 12 trials (35%) selected the value for the

assumed ICC based on previous similar studies. In the absence of a previous study, a value
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Characteristics Frequency (n) Percentage

Primary Outcome
Continuous 25 74
Binary 7 20
Others 2 6

Setting
GP practice 10 29
Nursing or care homes 2 6
Schools 3 9
Community 2 6
Families 2 6
Others 15 44

Clinical area
Primary care 10 29
Mental health 4 12
Sexual health 2 6
Emergency care 2 6
Public health 3 9
Others 12 35

Type of intervention
Medical training program 10 29
Non-medical training program 2 6
Health technology 2 6
Others 20 59

Blinding
Blinded 9 27
Unblinded 25 73

Number of clusters
< 10 2 6
10 - 30 7 21
31 - 60 4 12
61 - 90 2 6
> 90 4 12
Not given 15 43

Average cluster size
< 10 3 9
10 - 30 9 26
31 - 60 2 6
61 - 90 2 6
> 90 2 6
Not given 16 47

Table 3.1: Characteristics of the 34 CRTs under review.
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Variable N Mean Variance Median Min Max

Assumed ICC 34 0.0729 0.0111 0.0500 0.0020 0.5000
Observed ICC 26 0.0445 0.0027 0.0285 0.0001 0.2400
Effect size 18 0.3300 0.0289 0.3200 0.0050 0.5700
SD 16 2.3000 6.4600 1.2500 0.0100 7.5000

Table 3.2: Descriptive statistics of the variables of interest and effect size.
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Figure 3.2: A histogram showing the distribution of the effect size.

assumed to be sufficiently conservative to power the trial was most often selected (7/34,

20%), while some studies obtained their ICC values from pilot studies (3/34, 9%). Other

sources (4/34, 12%) of obtaining the ICC included ICC databases, audit, or survey data.

Eight studies (24%) provided no justification for the selected value of their ICC. This is

an indication of the difficulty many trials face in estimating or assuming a suitable value

for the ICC during sample size calculation. A case in point is the AMBER care feasibility

CRT where the researchers were ultimately unable to estimate the ICC due to a small

number of clusters (Koffman et al., 2019).

Similar to the ICC, the most common reason stated by trialists for the selected value of

the effect size was that it was based on a review of evidence from previous studies (10/18,

56%), followed by a pilot study (3/18, 16%). Five studies (28%) offered no rationale for
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their assumed effect size.

Concerning the assumed SD, 7 studies (44%) did not justify the selected SD. However,

some trials obtained their selected values from a previous study (6/16, 38%), while the

remaining studies extracted the SD from a pilot study (3/16, 18%).

Parameter Justification n Percentage

Assumed ICC (N = 34)
Previous study 12 35
Conservative value 7 20
Pilot Study 3 9
Others 4 12
Not given 8 24

Assumed effect size (N = 18)
Previous study 10 56
Pilot study 3 16
Not given 5 28

Assumed SD (N = 16)
Previous Study 6 38
Pilot Study 3 18
Not given 7 44

Table 3.3: Justifications for the assumed ICC, effect size and the SD.

3.3.4 Impact of the CONSORT guideline on ICC reporting

The consequences of failing to report the ICC are serious, as the ICC is a key parameter

in designing and planning future CRTs. It is also important in the interpretation of trial

results. As a result, a CONSORT extension was developed and published in 2012 to guide

authors on CRT reporting. In this section, I assess the impact of the CONSORT exten-

sion to CRTs on ICC reporting; particularly interest is given to whether the CONSORT

reporting guideline is followed. The results are presented in Figure 3.3.

Surprisingly, there seems to be low adherence to the CONSORT statement following

its publication in relation to both the assumed and observed ICC being reported. In the

case of the assumed ICC, all the trials that predated the publication of the CONSORT

statement reported their assumed ICC. Conversely, some trials post-publication of the

guideline did not publish their assumed ICC. In terms of the observed ICC, all the trials

except one conducted pre-publication of the CONSORT statement reported an observed

ICC. However, only 2014 and 2015 were the years in which a 100% adherence rate was

achieved for reporting an observed ICC post-publication of the CONSORT extension.

The results from Figure 3.3 suggest that reporting of the assumed and observed ICC

has become less frequent in practice. This highlights one of the major difficulties in
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specifying the ICC at the design stage of a trial, given that previous studies are the most

common sources of obtaining suitable values. It is, however, worth noting that there

are considerably more trials included in the review from post the CONSORT extension’s

publication, and this increase could potentially contribute to difficulty in achieving a 100%

reporting rate for the ICCs. Nonetheless, the ICC should always be reported owing to its

relevance to CRTs, and we would have especially expected its presence in reports within

the HTA Journal.

Figure 3.3: Plot comparing trends in ICC reporting pre and post the publication of the CONSORT
extension for CRTs.
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3.4 Discussion

For any CRT design, an issue in practice is obtaining relevant and accurate estimates

for the ICC to assume at the trial design stage for sample size estimation. This issue is

exacerbated by the fact that estimates of the ICC from pilot studies are often inaccurate

due to the smaller sample sizes employed in such studies and how precision of estimation

of ICCs scales in the number of clusters and sample size per cluster (Eldridge et al., 2016).

A similar statement also holds, though arguably to a smaller degree, regarding the SD

and effect size at which the trial is powered.

Owing to this, we have conducted a review of the values typically utilised during

sample size calculations and the justifications associated with the selected values based

on studies reported in the HTA journal. Our selection of the HTA journal (reports within

which are typically more extensive and longer than a clinical journal article) was premised

on the fact that it generally serves as a basis for policy implications/recommendations,

evidence reviews, and technology acquisition, and should arguably represent the upper-end

of quality of trial reports (Carlos & Goeree, 2009).

Therefore, the poor reporting of ICCs and other key design parameters was a disap-

pointing finding. This finding is consistent with a recent review of publicly funded trials

in the UK which found that 42% of ICCs for the analysed primary outcomes were not

reported, while 12% of the studies did not report an ICC at all (Offorha et al., 2022).

Similarly, a systematic review of ICC reporting by Han et al. (2019) corroborated this

finding, with only 26% of the 281 CRTs analysed reporting estimated values of the ICC.

Although the CONSORT extension for CRTs encourages the reporting of ICC values, the

low adherence to this guideline as revealed in our findings contributes to the lack of rele-

vant available estimates of ICCs for future trials. In the LIFELAX trial, for example, the

authors stated that “no data currently exist from which a relevant intracluster correlation

coefficient (ICC) for this trial can be calculated” (Speed et al., 2010). Similarly, Pallan

et al. (2019) bemoaned the lack of ICC for their study and had to rely on patterns of ICCs

from other sources to inform their calculation. This phenomenon may lead to problems in

practice, as many CRT trials rely on previously reported estimates for their sample size

determination.

Even when there are relevant historical trials with ICC values available, how to effec-

tively combine them to reflect their varying degrees of relevance to the planned trial is

often an issue. Although Turner et al. (2004) proposed a method for assigning weights

to each of the ICCs from relevant historical trials, their approach was purely subjective

within a Bayesian design. Moreover, an overview of the reviewed trials indicated that

many criteria, such as the number of clusters, average cluster size, subjects, setting, strat-

ification, and outcomes that need to be considered to establish if the ICC is useful for
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the study being designed were often not reported, as was also found in Chakraborty et al.

(2009).

Given the above, the ICC is likely to be imprecisely specified at the design stage (Lewis

& Julious, 2021). However, of the trials that reported ICC values, the imprecision inherent

in the ICC was often not quantified and reported for use in future trials. The dominant

use of point estimates from the reviewed trials neglects any consideration of uncertainty

around the assumed parameter value. Misspecification of the nuisance parameters as a

result of failing to account for uncertainty around the estimates may impact the trial’s

validity and power (Grayling et al., 2018).

The results of this study revealed a considerable difference between the assumed and

actual ICC, with the assumed values frequently higher than the observed values. Thus,

many of the trials may have been overpowered. This could lead to research waste (Alonzo

& Pepe, 2007). Moreover, an overpowered trial might show a statistically significant

difference but no clinically relevant change (Bhardwaj et al., 2014). Given that the safety

and efficacy of an intervention are not fully known and documented pre-trial, some studies

have also discussed the ethical implications of overpowered trials, especially for human and

animal subjects (Altman, 1980; Faber & Fonseca, 2014; Rothwell et al., 2018). Conversely,

there is a loss in statistical power to detect a true effect if the sample size is small as a

result of underspecified parameter estimates. Therefore, the importance of accuracy in

these parameter estimates cannot be overemphasised.

We highlight a few HTA trials (Campbell et al., 2015; Adab et al., 2018) that did

provide good justification for the assumed ICC. In particular, Campbell et al. (2015)

utilised a 95% CI for the ICC based on estimates from a pilot study. This provides a

range of plausible values for which the true ICC could lie with some degree of certainty.

It is also worth noting in the case of Gates et al. (2017) that the ICC was monitored at

interim analyses for sample size re-estimation. I discuss this adaptive design in detail in

Chapter 5.

In conclusion, the discussed key design parameters have an impact on both the sam-

ple size and the interpretation of the primary outcome of a CRT. The statistical issues

unearthed from the review, coupled with the fact that CRT sample sizes can be highly

sensitive to variations in the ICC or the choice of the SD or effect size heightens the need

for accuracy in these parameters. The significance of using precise estimates of the ICC

during sample size computation is further discussed by Ukoumunne et al. (1999), and

amplified in the CONSORT extension to CRTs (Campbell et al., 2012). These statistical

issues, if not addressed, may have implications on the validity of trials. Some methods to

account for uncertainty regarding the ICC are proposed in Chapters 4 and 5.
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Chapter 4

A hybrid (Bayesian-frequentist)

approach to designing

parallel-group and stepped-wedge

cluster randomised trials

As discussed in Chapter 1, the design of a CRT requires consideration of the fact that

individuals within a cluster may have similarities that need to be accounted for during

sample size calculation. The difficulties in obtaining precise estimates of the degree of such

similarities (ICC), and the associated statistical issues, were outlined in Chapter 3. This

chapter provides a possible solution to such difficulties by making explicit allowance for

the uncertainty around the ICC. In addition to the uncertainty in the ICC, I also evaluate

how uncertainty in other key parameters (e.g., the treatment effect and SD) impact the

required sample size in hybrid design.

4.1 Introduction

The increasing popularity of CRTs has seen the emergence of more established and com-

monly used designs that have had associated strong methodological development in recent

times. One example is the SW-CRT design, which is relatively new, at least compared

to the more standard PG-CRT design that has now long stood as the most commonly

used CRT design. With interest in SW-CRTs ever expanding, the work in this chapter is

restricted to comparing PG-CRT and SW-CRT designs, to contribute to the literature on

when a SW-CRT may be preferable. As a reminder, Figure 4.1 provides a brief schematic

of the functionality of PG-CRT and SW-CRT designs.

Expanding on the above, in a PG-CRT, clusters are randomised to either control or
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Figure 4.1: Schematic of the parallel group (PG) and stepped-wedge (SW) cluster randomised trial
designs. The example PG-CRT comprises 8 total clusters where 4 clusters are randomised to the
control and intervention respectively. The example stepped-wedge design also comprises 8 clusters
where 2 clusters are randomly allocated to each of the 4 sequences and measurements were taken
over 5 time periods in 4 steps.

the intervention and stay in this condition throughout the trial. This conventional design

has regularly been used for CRTs, with wide application in health services and sometimes

animal research. A recent review of CRTs by Offorha et al. (2022) found that 85% (73/86)

of included studies had used a two-arm PG design, which is consistent with the results of

an earlier review by Eldridge et al. (2004).

A key justification for PG-CRT usage is the simplicity of the design, which amongst

other advantages, reduces the complexity of data analysis. In particular, as is discussed by
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Hemming & Taljaard (2020), PG-CRTs are not susceptible to time-varying confounding,

since outcomes from individuals are collected in both arms on the same follow-up schedule.

Additionally, contamination across arms in a PG-CRT is less likely to occur if cluster units

are selected appropriately (Hemming & Taljaard, 2020). Given that the intervention is

withheld from a proportion of the total clusters in the PG design, robust evidence can be

generated if randomisation is justified and clinical equipoise holds (Hemming & Taljaard,

2020). Typically, it is also more logistically and practically simple to conduct a CRT trial

with a PG design.

As CRTs typically seek approval from decision-makers like GP managers for cluster

involvement (Edwards et al., 1999; Taljaard et al., 2013), these key stakeholders are often

hesitant to join the trial unless they are assured the chance of receiving the intervention

(Prost et al., 2015; Hargreaves et al., 2015). Considering the fact that CRTs are mostly

unblinded, this may diminish participation or pose difficulties in recruitment in the PG

design when clusters become aware that they might not receive the intervention. Although

time-varying confounding is unlikely to occur in a PG-CRT, there is an increased risk of

uneven distribution of confounding variables between the treatment arms if only a small

number of clusters are available for randomisation. These imbalances in both known and

unknown prognostic characteristics could pose challenges in attributing outcome differ-

ences to the treatment. This may have consequences on the internal validity of the trial.

However, such issues can often be corrected with matching or stratification to increase

balance across the treatment arms on likely confounders (Donner & Klar, 2000; Campbell

& Walters, 2014).

In a SW-CRT, all clusters typically start in the control condition and switch in one

direction to the intervention at different time points (steps). This is, at prespecified time

intervals, one or more clusters move to the intervention condition. Therefore, randomi-

sation in this design pertains to when cluster(s) begin to receive the intervention. The

number of clusters that switch to the intervention at each time point is often the same.

This trial design can be likened to a cluster randomised cross-over design where each clus-

ter receives an intervention for a specified duration, followed by a washout period, and

subsequently receives the alternative intervention. The similarity in both designs is that

the clusters can act as their own control. In the case of SW-CRTs, however, clusters

cannot revert to being in a control condition once the intervention has been administered;

this is the principal difference compared to a cluster-randomised crossover trial.

The Gambia Hepatitis Study, which sought to assess the incidence of chronic liver

disease and liver cancer over a period of 30 to 40 years following the administration of

the hepatitis B vaccine, is likely the earliest SW-CRT and a well-discussed example (Hall

et al., 1987). In this trial, researchers divided the entire country into 17 areas and a

vaccination team was assigned to each area. The hepatitis B vaccine was administered
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to all newborns and infants in an area by a randomly selected team every three months,

and after four years the entire country had been vaccinated. The factors that generally

account for the adoption of a SW-CRT design, and in particular applied to the Gambia

Hepatitis Study, include

• Ethical reasons: SW-CRTs have been argued to be useful in situations where

it is unethical to withhold the intervention or treatment from a cluster (Hemming

& Taljaard, 2020). For example, the safety and importance of vaccines to public

health have been well documented by the WHO and NHS (World Health Organisa-

tion, 2022; NHS, 2019). Hence, it may be deemed unethical to withhold a vaccine

believed/known to be more beneficial than harmful from a cluster. Although some

rebuttals have been offered by authors against this justification, on the basis of

clinical equipoise and the time lags in administering a supposed beneficial interven-

tion (Prost et al., 2015; Binik, 2019), it remains the main rationale for adopting a

SW-CRT in the literature (Grayling et al., 2017; Eichner et al., 2019).

• Logistical reasons: The authors noted that the high cost of the vaccines and

their limited supply precluded an immediate universal rollout. Therefore, using a

stepped wedge design to administer the vaccine in batches was the most efficient

way to ensure the universal rollout of the intervention at the end of the study. Here,

individual randomisation in such a large trial with sizable immunization teams would

have posed severe logistical challenges.

• Availability of comparison groups from the same period: Another justifica-

tion for the adoption of the stepped wedge design is the desire to have comparison

groups from the same time period. This becomes a rich source of information for

the researchers by using between- and within-cluster comparisons to estimate the

treatment effect. In settings where the entire population does not form the scope

of the intervention rollout, this can result in a lower required sample size for high

statistical power since clusters act as their own control.

Regardless of the advantages of the SW-CRT design outlined above, it does have limita-

tions. First, the unidirectional aspect of treatment crossover does complicate the requisite

data analysis since the treatment effect must typically be estimated using both within-

and between-cluster comparisons (Campbell & Walters, 2014). Second, the staggered im-

plementation may introduce temporal trends or other confounding factors that need to be

carefully considered in the analysis. There is also a greater risk of bias in SW-CRTs when

the secular trends are misspecified at the analysis stage (Hemming & Taljaard, 2020).

Given the respective advantages and disadvantages of PG-CRT and SW-CRT designs,

previous works have sought to compare them to outline the potential conditions under
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which a particular design may be the preferred choice (Hemming & Taljaard, 2020). In

this chapter, I seek to contribute to this literature by comparing the efficiency of PG-

CRT and SW-CRT designs, as related to their required sample size under a particular

design framework. Principally, such sample size comparisons have been conducted by

previous authors (Woertman et al., 2013; Baio et al., 2015; Hemming et al., 2015), but in

a frequentist framework that did not account for uncertainty in key parameters required

for sample size calculation.

In the frequentist framework, the sample size for both the PG and SW designs is

typically calculated conservatively by assuming a higher ICC or variability within clusters.

This ensures that the calculated sample size is sufficient to achieve the desired power

even in scenarios where the ICC or variability is higher than anticipated. Additionally,

conservative assumptions may be made regarding other parameters such as effect size or

dropout rates to ensure that the calculated sample size provides adequate power under

various scenarios.

Therefore, these previous works determined the sample sizes for each CRT design by

utilising the standard frequentist approach of calculating an IRT sample size and inflating

it by their respective CRT design effect to account for clustering. By fixing the number

of clusters and time-period for each value of the ICC, they evaluated how the magnitude

of each design effect under the varied ICC impacted the CRT sample size. The varied

ICC values in their studies were point estimates, which neglected any consideration of

uncertainty inherent in the parameter. Considering the sensitivity of the ICC in CRT

sample size determination, methods that fail to take into account uncertainty in the ICC

may lead to trials that are either underpowered or overpowered (Grayling et al., 2017).

Therefore, particular focus is given to the uncertainty regarding the value of the ICC.

This is accounted for using a hybrid design framework, a perspective which has received

little attention in a CRT context. In the hybrid framework, the uncertainty in the ICC

is expressed through a parametric prior distribution. This allows researchers to simply

and directly account for any uncertainty in key design parameters in their sample size

calculation. The most relevant work to CRTs designed within the hybrid framework is

that of Lewis & Julious (2021) who, based on results from Ukoumunne (2002), leveraged

confidence intervals characterising a plausible range for the ICC to incorporate uncertainty

in its value into the sample size calculation. This is similar to a hybrid approach but does

not associate a particular prior density to each possible ICC value.

This chapter describes how to determine the minimal sample size required to achieve

a desired Expected Power (EP), one of the quantities primarily controlled in the hybrid

literature (Kunzmann et al., 2021). This is done for a setting in which a prior is placed

not only on the ICC but also on the treatment effect and SD, for which there may also be

substantial uncertainty at the design stage. Furthermore, case studies of the PG and SW
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CRTs which assumed ‘conservative’ values for the ICC in their sample size determination

are presented; the required sample sizes from the conventional frequentist approach are

compared against the sample sizes obtained when uncertainty in the ICC is accounted for

through prior specification. Specifically, I select priors with hyperparameters whose mean

is equivalent to the point estimate of the PG or SW CRTs’ frequentist counterpart. This

selection enables an examination of how varying levels of variability, as captured by the

SD on the prior mean, affect the required sample size. Subsequently, I provide a critical

evaluation of how placing a prior on the ICC, where both the PG and SW CRT priors

assume the same values for the prior means and SDs impacts whether a PG- or SW-CRT

design is more efficient, extending previous comparisons under a fixed ICC, such as those

by previous authors.

I now proceed by briefly discussing some possible approaches to account for uncertainty

in the ICC before arguing for the method that will be developed later in this chapter.

4.1.1 Possible approaches to account for uncertainty in the ICC

As stipulated above, failing to formally account for uncertainty in sensitive parameter

estimates such as the ICC increases the likelihood of parameter misspecification. This

could have implications for the sample size, the statistical power, and the validity of the

trial. To guard against these implications, some studies have established the usefulness

of allowing for the impression in the ICC within the sample size calculation (Ukoumunne

et al., 1999; Campbell et al., 2012). Such methods characterise likely values of the nuisance

parameter(s) in the form of a range or a parametric distribution, hoping to provide an

improvement over a point estimate assumption or being conservative. I first describe a

few such methods in this section.

The confidence interval (CI) method provides a plausible range of values within which

the ‘true’ value of the ICC, ρ, may lie with some degree of probability. Constructing a

confidence interval for ρ typically requires knowledge of its variance and by extension,

standard error. Some analytical formulae to estimate the variance of the ICC exist in the

literature (Swiger et al., 1964; Fisher, 1970; Searle, 1971). A few studies have employed

these techniques; prominent among them is Pagel et al. (2011), who utilised Fisher’s for-

mula to construct a 95% confidence interval for the ICC when assessing perinatal outcomes

from five randomised-controlled trials in LMICs. Donner & Wells (1986), and Ukoumunne

(2002), further provide a comprehensive coverage of these formulae and compare their

performance with simulated clustered data.

A common limitation of these formulae is that they are approximate and depend on

knowledge of the total sample size, the number of clusters, cluster size(s), and also the

‘true’ ICC, which is fundamentally unknown. Hence, erroneously specifying the ‘true’ ICC

in the formulae may give investigators a false sense of confidence. Another limitation is
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that although the 95% CI provides a range of values for the ICC, the upper limit value is

often used in practice to be sufficiently conservative. This may substantially diminish the

estimate of power for a fixed sample size (Campbell et al., 2004; Copas & Malley, 2008). As

a result, some authors have argued against the use of such methods for planning purposes

(Turner et al., 2004; Campbell et al., 2007).

Alternatively, employing a Bayesian approach improves upon the upper limit of the

confidence interval method as it accounts for the entire assumed distribution of the ICC.

This approach provides a favourable alternative for the imprecision in the ICC to be

naturally incorporated. In the Bayesian setting, a prior distribution is placed on the ICC

(and/or other key design parameters such as the standard deviation or the treatment

effect). Through prior specification, the relative likelihood of parameter values is captured

which leads to a distribution of the projected power (posterior distribution).

In CRTs, previous work on incorporating uncertainty about the ICC in a Bayesian

framework has focused on how to formally quantify uncertainty based on estimates from

past studies, compute an associated power distribution, and use an informative prior for

the ICC in a trial’s analysis (Turner et al., 2004, 2005). Building upon Turner’s work,

Tishkovskaya et al. (2023) recently estimated an ICC using the same methodology for

a planned CRT. Gary (2022) also utilised information borrowing from historical data to

construct power priors for sample size calculation in the context of CRTs. Application of

Bayesian methods to the design and analysis of CRTs has further been reviewed by Jones

et al. (2021).

In spite of the methodological advancement within the Bayesian paradigm, there are

still some limitations. First, issues such as the subjectivity of Bayesian priors make this

approach less appealing to a proportion of the research community. The primary concern

arises when employing an informative prior for the analysis. Some studies differentiate

between a design prior utilised for determining the sample size and an analysis prior used

for the actual analysis. In most cases, the former can more reasonably incorporate an

informative prior. Additionally, it becomes conceptually and computationally intensive if

a closed-form posterior distribution (conjugacy) is not achieved. In a regulated setting, it

also remains the case that regulatory agencies tend to favour trials designed and analysed

within a frequentist framework over those with a Bayesian paradigm although CRTs are

rarely within a regulated setting.

4.1.2 Proposed solution to sample size calculation under parameter un-

certainty: Hybrid design

The hybrid approach involves the use of Bayesian techniques for sample size estimation,

while always retaining an assumption of a purely frequentist analysis. Spiegelhalter &

Freedman (1986) first proposed this concept, before it was later referred to as a hybrid
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Bayesian-frequentist approach (Spiegelhalter et al., 2004). Theoretically, using a hybrid

approach, we can incorporate uncertainty in particular parameters within the trial de-

sign, mitigate the risk of overly optimistic power calculations, and satisfy most regulatory

agency guidelines (as well as standard trials community preferences) by maintaining a

frequentist framework for the final analysis (Ciarleglio et al., 2016).

In the hybrid literature, the quantities typically controlled for sample size determi-

nation are the probability of success (PoS), expected power (EP), and assurance. The

relationship between these quantities is highly dependent on the definition of a successful

trial, how uncertainty in the unknown parameter(s) is utilised in sample size calculation,

and which parameter(s) uncertainty is accounted for. To better understand and appreciate

the subtle differences between these quantities, let us first consider a traditional two-arm

individually randomised superiority trial where the efficacy of a new drug is compared with

a placebo. Here, we may define ‘success’ as correctly rejecting the null hypothesis (H0). If

the null hypothesis suggests no positive treatment effect (H0 ≤ δ), then the conventional

frequentist power may be defined as the probability of rejecting the null hypothesis given

some assumed parameters such as the particular positive treatment effect, variance, etc.

Based on the above definition of success, the traditional frequentist power can be thought

of as similar to the PoS. However, the traditional frequentist power is conditioned on

assumed values of unknown parameters which may be imprecise.

The PoS on the other hand is an unconditional probability of correctly rejecting H0. In

the early 2000s, O’Hagan and colleagues referred to this concept as assurance and defined

it as the unconditional probability of a trial showing a positive outcome (O’Hagan &

Stevens, 2001; O’Hagan et al., 2005). The unconditional probability is obtained by placing

a (prior) distribution on the unknown parameter(s) and integrating over the conditional

(traditional) frequentist power with a weighting factor given by the prior density. Because

of the averaging over the parameter space of the unknown parameter(s), several authors

have referred to this concept as a weighted average or expected power (Gillett, 1994;

Spiegelhalter et al., 1994; O’Hagan et al., 2005; Chuang-Stein, 2006).

In a recent work by Kunzmann et al. (2021), a high-level definition of PoS was proposed

that encompasses unconditional rejection of the null hypothesis and a relevant underlying

effect. Thus, they considered a fixed assumed treatment effect as a minimal clinically

important difference (say δMCID = 0.3), and selected a prior for the treatment effect

which is truncated to only consider cases where the treatment effect is greater than the

assumed MCID. Based on their definition of success, the EP was expressed as the quotient

of the PoS and the truncated prior for the treatment effect. In the Methods section below,

I elaborate on these quantities with notations.

Observe that while the PoS and assurance proposed by previous authors provide an

unconditional value that requires just a positive treatment effect (δ > 0 or δMCID > 0),
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Kunzmann’s PoS provides an unconditional value that guarantees that the treatment effect

will be greater than some MCID (δ > δMCID). Hence, the key difference between these

quantities is how success is defined in terms of the a priori likelihood of the treatment effect.

Therefore, if our interest lies in accounting for the uncertainty in another parameter (for

example, the ICC) instead of the treatment effect, then these hybrid quantities become

equivalent. In such a scenario they can be used interchangeably. Kunzmann further defines

other scenarios in which these quantities become equivalent in the presence of uncertainty

in the treatment effect.

For consistency throughout the thesis, I shall utilise the definition of success set forth

by Kunzmann and colleagues and adopt the EP quantity for the sample size determination.

This is because the EP quantity is known to typically take values more compared to the

frequentist power. This will produce some degree of fair comparison between the hybrid

and frequentist frameworks in the results.

4.2 Methods

To assess the effectiveness of an intervention in a CRT, we typically need to determine the

number of participants required by the trial for a certain level of power. Thus, we now

proceed to describe how sample size calculation for a PG- or SW-CRT can be performed

in both the frequentist and hybrid frameworks. For brevity as indicated in Chapter 3, the

methodology is limited to the setting with one-level clustering and not nested clustering.

I also restrict my attention throughout to the case where the outcome data is assumed

to be normally distributed. Additionally, when addressing SW-CRTs, I focus solely on

‘cross-sectional’ design. I will, however, return to comment later on extensions to our

work.

4.2.1 Analysis models

We consider the comparison of a control (indexed P , for placebo even though this need

not a placebo arm, to avoid confusion with the number of clusters, C) and experimental

intervention (indexed E). For PG-CRTs, the following linear-mixed model is assumed to

be used for the analysis

Yij = µP +Xjµ+ cj + eij .

Here, Yij is the outcome from patient i = 1, . . . , N (thus we assume N participants per

cluster) in cluster j = 1, . . . , C (thus we assume C clusters); µP is an intercept term (or the

mean outcome of the control group); Xj = 1 if cluster j is allocated to the intervention

arm and Xj = 0 otherwise; µ is the effect of the intervention relative to the control;
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cj ∼ N(0, σ2c ) is a random effect for cluster j, which allows for a non-zero correlation

between outcomes from participants within the same cluster; and eij ∼ N(0, σ2e) is the

individual-level error.

As proposed by Hussey & Hughes (2007), we extend this for SW-CRTs to

Yijk = µP + βj +Xjkµ+ cj + eijk.

Here, Yijk is the outcome from patient i = 1, . . . , n (thus we assume n participants

per cluster-period) in cluster j = 1, . . . , C, in time period k = 1, . . . , T (thus we assume T

time periods; which means there are N = nT measurements per cluster in total); Xjk = 1

if cluster j is allocated to the experimental arm in time period k and Xjk = 0 otherwise;

and βj is a fixed effect for period j (i.e., due to the sequential rollout of the intervention,

the model adjusts for the time period of collection, setting β1 = 0 for identifiability). All

other parameters are interpreted as above.

Note that the sample sizes of the PG- and SW-CRT designs are both then given by

NC, with N = nT in the SW-CRT case. Furthermore, in both instances, the ICC is

defined as ρ = σ2c/(σ
2
c + σ2e) = σ2c/σ

2. This is the ratio between the variation between

clusters (σ2c ) and the total (between and within cluster) variation (σ2).

4.2.2 Power and sample size calculation within the frequentist frame-

work

Recall that sample size determination in a CRT amounts to calculating the sample size

for a standard IRT and multiplying it by a design effect (DE) to account for the particular

CRT design used. Therefore, we first consider an IRT where individuals are randomised to

either a control (P ) or experimental intervention (E), with data yij gathered for individual

i = 1, . . . , NIRT and arm j = P,E. For simplicity and practical relevance, we further

assume that Yij ∼ N(µj , σ
2), and that the null hypothesis is

H0 : µ = µE − µP ≤ 0. (4.1)

I.e., we assume our interest lies in assessing whether there is a positive treatment effect

in the intervention arm.

We perform a test for H0 using the test statistic

z =
µ̂√

V ar(µ̂)
=

1
NIRT

∑NIRT
i=1 yiE − 1

NIRT

∑NIRT
i=1 yiP√

2σ2

NIRT

. (4.2)

It can be shown that Z ∼ N(µ
√
NIRT /(2σ2), 1), and thus to control the type-I error-

rate to level α, we can reject H0 when z > Φ−1(1 − α). In turn, this gives that the
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probability H0 is rejected for a particular value of µ is

P (µ) = P(Reject H0|µ) = Φ

{
µ

√
NIRT

2σ2
− Φ−1(1− α)

}
.

Thus, if we require power of 1 − β when µ = δ > 0 (i.e., require P (δ) = 1 − β), this

results in the following sample size calculation formula:

NIRT =
2{Φ−1(1− α) + Φ−1(1− β)}2σ2

δ2
.

Given the above IRT formula, all that is then required to compute the sample size

required by the considered types of PG- and SW-CRT is their respective DEs (Woertman

et al., 2013; Hemming & Taljaard, 2016). These are, for the analysis models specified in

the previous subsection, as follows

DEPG−CRT = 1 + (N − 1)ρ,

DESW−CRT =
(1 + ρ(nT + n− 1)

(1 + ρ(nT2 + n− 1))
× 3(1− ρ)

2(T − 1
T )
.

For complete clarity, the total sample size (SS) required by frequentist PG- and SW-

CRT designs are respectively given by

SSPG−CRT = 2NIRTDEPG−CRT ,

SSSW−CRT = 2NIRTDESW−CRT .

Here, the factor of 2 arises as NIRT is the sample size required per arm in an IRT.

In the CRT case, the hypothesis in Equation 4.1 is again the one of interest and the

test statistic used is still

z =
µ̂√

V ar(µ̂)
.

For both the PG-CRT and SW-CRT designs, under our given model assumptions we

have that E(µ̂) = µ. Specifying a general formula for the frequentist power thus depends

on knowledge of V ar(µ̂) for a given CRT design, which can be directly related to the above

design effects. Specifically, in the PG-CRT case, assuming 1:1 cluster-level allocation to

the two arms, it can be shown that (Turner et al., 2005):

V ar(µ̂) =
4{1 + (N − 1)ρ}σ2

CN
.
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Thus, the probability H0 is rejected for a PG-CRT design (i.e., the frequentist power)

is

Φ

[
µ

√
CN

4{1 + (N − 1)ρ}σ2
− Φ−1(1− α)

]
.

Similarly, it can be shown for a SW-CRT, under the analysis model given earlier, that

(Hussey & Hughes, 2007; Lawrie et al., 2015)

V ar(µ̂) =
Cσ2(1− ρ)[1 + ρ(nT − 1)]

n{[1− ρ(nT − 1)](CU −W ) + nρ(U2 − CV )}
,

where

U =

C∑
j=1

T∑
k=1

Xjk,

W =
T∑

k=1

 C∑
j=1

Xjk

2

,

V =
C∑

j=1

(
T∑

k=1

Xjk

)2

.

Thus, frequentist power for a SW-CRT is

Φ

[
µ

√
n{[1 + ρ(nT − 1)](CU −W ) + nρ(U2 − CV )}

Cσ2(1− ρ)[1 + ρ(nT − 1)]
− Φ−1(1− α)

]
.

We will denote the probability of rejecting H0 for both designs by P (µ,N,X, α, σ, ρ).

The parameter X is the matrix of binary treatment indicators; C × 1 in the case of a

PG-CRT and C × T for a SW-CRT. For SW-CRTs, it is also implicitly assumed that

n = N/T , with T given through X.

In the frequentist framework, a target difference µ = δ > 0 is allocated and the study is

designed to ensure power is at least 100(1−β)% in this instance, i.e., P (δ,N,X, α, σ, ρ) ≥
1 − β. Here, β is the nominated type-II error-rate. Thus, in a conventional frequentist

power calculation, the parameters δ, ρ, and σ take fixed specified values. As discussed,

this negates consideration of any uncertainty around their nominated values. This can be

addressed in a hybrid framework by placing priors on these parameters which I describe

in the next section.
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4.2.3 Sample size calculation within the hybrid framework

Priors on the treatment effect µ, SD, and the ICC ρ, may be used to allow us to capture

uncertainty in their values. We will denote these respectively by ψMu(δ|θMu), ψSD(σ|θSD),
ψICC(ρ|θICC). Here, θMu, θSD, and θICC give parameters that describe the shape of the

prior densities (e.g., its mean value and variance around this). We discuss specific choices

for these priors later. Note that the use of the word ‘prior’ here may cause some confusion;

ψMu, ψSD, and ψICC capture the (prior beliefs about the) relative likelihood of different

values of µ, σ, and ρ. They are not ‘priors’ in the fully Bayesian sense of the word (i.e.,

they will not be updated to posterior distributions).

Furthermore, in the hybrid framework, the usual frequentist power requirement is

replaced by consideration of the value of the EP. We consider three scenarios: (i) when

priors are placed on the treatment effect and the ICC, (ii) when priors are placed on the

ICC and the SD, and (iii) when a prior is placed only on the ICC. In all three scenarios,

we explicitly list the EP as functions of N and C to reflect the fact that sample size

calculation is often performed for CRTs by varying one or both of the parameters N

and C. Computing a sample size in the hybrid framework will then amount to ensuring

EP (N,C) ≥ 1− γ, by suitable choice of N and/or C through a numerical search. Here, γ

need not be equal to the value of β in the traditional frequentist framework, though this

is a pragmatic and often assumed approach in the hybrid literature; we will therefore set

γ = β throughout this chapter.

Priors on the treatment effect and the intra-cluster correlation

In this case, we have

EP (N,C) =

∫ 1

0

∫ ∞

δMCID

P (µ,N,X, α, σ, ρ)ψMu(µ|θMu, µ ≥ δMCID)ψICC(ρ|θICC) dµdρ.

Note that the extra condition in ψMu(µ | θMu, µ ≥ δMCID) means that the prior is

truncated to only consider cases where µ ≥ δMCID. This is defined in terms of the original

ψMu(µ | θMu) as

ψMu(µ|θMu, µ ≥ δMCID) =
1{µ ≥ δMCID}ψMu(µ|θMu)∫∞

δMCID
ψMu(µ|θMu) dµ

,

where 1{X} is an indicator function on event X.

This formula introduces the parameter δMCID, which represents a minimal clinically

important difference (MCID) that needs to be observed between the arms for the inter-

vention to be considered better. This may or may not be equal to the value of δ assumed

in the standard frequentist sample size calculation above.
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As a proof of concept, I have introduced the prior on the treatment effect in a simplified

manner drawing from Kunzmann’s definition of the prior. However, it is important to

exercise greater caution when considering a prior on the treatment effect in practice. I

later elaborate on this in the Discussion.

Observe that in the above, σ takes a fixed value, as in the frequentist sample size

calculation.

Priors on the standard deviation and intra-cluster correlation

In this case, we instead have

EP (N,C) =

∫ ∞

0

∫ 1

0
P (δ,N,X, α, σ, ρ)ψSD(σ|θSD)ψICC(ρ|θICC) dσdρ.

Here, we assume µ takes the fixed value δ, as in the frequentist sample size calculation.

Prior on the intra-cluster correlation only

Finally, to address a specific question of interest later, we consider the scenario in which

a prior is placed only on the ICC. In this case, the EP reduces to

EP ICC(N,C) =

∫ 1

0
P (δ,N,X, α, σ, ρ)ψICC(ρ|θICC) dρ.

As above, we here assume µ takes the fixed value δ, while the standard deviation takes

a fixed value σ.

4.2.4 Choice of priors

What remains to be explained is logical choices for the priors ψDelta, ψSD, and ψICC . We

highlight that as these are not priors in the usual Bayesian sense of the word, there are

less logical restrictions on the distributional form of the priors to adopt (i.e., we need not

concern ourselves with conjugacy).

For the ICC, we may reasonably choose any distribution with support [0, 1] and for the

SD and treatment effect, any distributions with support (0,∞) and (−∞,∞) respectively.

If two distinct priors have similar values across the range of ρ, the resultant EPs should

also be similar. For this reason, our choices below are not unique ones, nor should they

be considered best practice; the best distribution for a particular trial will be one that

results in prior densities most accurately reflecting beliefs about that parameter.

We explore normal and non-normal priors for the ICC and assess how they impact

design. As in Turner et al. (2004), we first assume a Truncated normal distribution is

used for the ICC, truncated on [0, 1]. If we denote the prior mean and its SD as m and s

respectively, then the PDF is given as:
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ψICC{ρ|(m, s)} =
ϕ(ρ−m

s )

s{Φ(u)− Φ(l)}
,

where l = (0−m)/s and u = (1−m)/s. Note that the mean of ψICC is then

m+ s
ϕ(u)− ϕ(l)

Φ(u)− Φ(l)
,

while its variance is

s2

{
1 +

lϕ(l)− uϕ(u)

Φ(u)− Φ(l)
− ϕ(l)− ϕ(u)

Φ(u)− Φ(l)

2
}
.

Corollary, the truncated normal distribution is expressed as TN(0, 1,m, s). In practice,

the values of m and s could either be formed using methodology such as that provided by

Turner et al. (2004) or elicited based on expert opinion.

Next, we assume a beta prior for the ICC, since its support [0, 1] is consistent with the

range of the ICC. If we denote the prior by Beta(a, b), then

ψICC{ρ|(a, b)} =
xa−1(x− 1)(b−1)

B(a, b)
, a, b > 0,

where B is the Beta function. This prior has mean a/(a+ b) and variance

ab

(a+ b)2(a+ b+ 1)
.

Regarding the prior for the SD, ψSD, a convenient form in practice may be a Gamma

distribution since this has support (0,∞). If we denote this by Gamma(k, θ), we have

ψSD{σ|(k, θ)} =
θk

Γ(k)
σk−1e−θσ, k, θ ≥ 0,

which has mean k/θ and variance k/θ2.

Finally, for the prior on the treatment effect, ψMu, a convenient form in practice may

be a normal distribution, as the familiarity of this distribution may make expert elicitation

more feasible. Thus, using an N(m, s2) distribution, we set

ψMu{µ|(m, s)} = ϕ

(
µ−m

s

)
.

4.2.5 Motivating examples

We motivate assumed parameters for PG-CRT examples based on Surr et al. (2020), a PG-

CRT that sought to use Dementia Care Mapping to reduce agitation in care home residents

with dementia. Hence, agitation at 16 months was the primary outcome, measured by
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the Cohen-Mansfield Agitation Inventory. This study was powered at 90% (β = 0.1) with

a 2.5% one-sided significance level (α = 0.025) to detect a clinically important difference

of 3 points (δ = 3) with a SD of 7.5 points (σ = 7.5). An ICC of ρ = 0.1 was assumed,

leading to 50 care homes (C = 50) being recruited with n = 11 participants per cluster.

We use O’Grady et al. (2021) as motivation for assumed parameter values in SW-CRT

examples. This SW-CRT aimed to implement a model that would improve outpatient sub-

stance use disorder treatment outcomes. The design had T = 7 time periods, randomising

5 clinics to begin the intervention in each of time periods 2 through 7 (i.e., C = 30). The

assumption was that there would be n = 132 participants per clinic per time period. The

study was powered at 80% (β = 0.2) for α = 0.005 and a clinically important difference

of δ = 0.0278. It assumed ρ = 0.2 and σ = 0.426.

These motivating examples were selected because they are recent trials which may offer

insights into emerging trends or issues that could impact the design and interpretation of

the study. Additionally, they provided clear reporting of the parameters required for

calculating the sample size.

4.3 Results

4.3.1 Example trials designed within the hybrid framework

First, I provide a simple example of how the EP varies in the hybrid framework as a

function of the number of clusters (Figure 4.2). This relationship is illustrated under

three scenarios: (a) when priors are placed on both the ICC and the treatment effect,

while holding all other parameters from the motivating examples fixed; (b) when priors

are placed on both the ICC and the SD, while holding all other parameters from the

motivating examples fixed; and (c) when a prior is placed only on the ICC, while holding

all other parameters from the motivating examples fixed.

Parameters for the priors were selected such that the mode of the prior is always equal

to the point estimate assumed in the motivating example. In what follows, we term priors

whose mode matches the corresponding frequentist assumptions as ‘correctly centrally

specified priors’. In this case, I used for the PG-CRT example

ψMu ∼ N(3, 0.01),

ψICC ∼ TN(0, 1, 0.1, 0.01),

ψSD ∼ Gamma(75, 10).

While, for the SW-CRT example, I utilised
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ψMu ∼ N(0.028, 0.01),

ψICC ∼ TN(0, 1, 0.2, 0.01),

ψSD ∼ Gamma(17.32, 40).

PG−CRT SW−CRT

25 50 75 100 25 50 75 100

0.25

0.50

0.75

1.00

C

E
P

(C
)

Prior on ρ only   Priors on ρ & δ   Priors on ρ & σ

Figure 4.2: Plot of the Expected Power as a function of the total number of clusters (C) based on
the above priors for the PG-CRT and SW-CRT examples. The fixed parameter assumptions for
both designs were drawn from their respective motivating examples.

Similar to the classical frequentist power, the EP increases as the number of clusters

increases, including to 1 as the number of clusters is made very large. As a result of

the small SD on the priors making them highly informative, no significant distinction is

observed between the prior lines in all three scenarios, particularly in the case of the PG-

CRT. Thus, like in a traditional sample size calculation, trials designed within the hybrid

framework would simply require the determination of the minimal number of clusters

required to achieve the desired EP.

For both designs, having priors on the treatment effect and ICC means the EP curve

increases to 1 more quickly. This is a consequence of the prior on the treatment effect being
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truncated to only consider cases of effects greater than the MCID. I.e., effects larger than

that assumed in the traditional frequentist approach are captured in the hybrid approach,

thus resulting in a higher EP.

Equally, versus including priors on the ICC and SD, a prior only on the ICC expedites

the convergence of EP towards 1. This is because including a prior on the SD incorporates

consideration of power for large values of σ, which will be low.

All of the above implies that the EP of a design, and hence the required sample size,

may be highly dependent on the robustness with which a design (PG-CRT vs. SW-CRT)

handles the prior weights. This is made clear in subsequent sections, where I investigate the

impact on EP by incrementally modifying the values of the prior parameters, transitioning

from highly informative to non-informative settings.

4.3.2 Comparison between the frequentist and hybrid approaches

Next, to expand on the above, we compare the two approaches (frequentist and hybrid) to

sample size determination in CRTs in more depth, discussing the implications of choosing

(a) a particular framework and (b) particular priors in the trials designed within the

hybrid framework. For a fairer comparison, we compute required sample sizes based on

control of the EP to the same level as that in the frequentist framework (i.e., γ = β) and

employ correctly centrally specified priors. This then leaves free choice of the SD of the

priors. I, therefore, demonstrate how a ‘small’ (highly-informative), ‘moderate’ (weakly

informative), or ‘large’ (non-informative) prior SD affects the sample size required to

achieve a desired EP for each design. A plot of all utilised priors is given in Figure 4.3.

Accounting for uncertainty in the ICC and SD

Required sample sizes in the frequentist and hybrid frameworks for a selection of possible

priors are presented in this section. In considering Beta and Truncated normal priors for

the ICC, matching SDs are selected, so that a fairer comparison can be made between

utilising a Beta or Truncated normal distribution. For the comparison in this Chapter,

the ‘true sample size’ is defined as the sample size that would have been selected in the

frequentist framework if all assumed parameters were accurate or true, amounting to 550

and 3960 in the PG and SW-CRT respectively.

Observe from Table 4.1 that when priors are correctly centrally specified for both the

ICC and the SD, the number of participants required to achieve the desired EP is often

higher than when a prior is correctly centrally specified to only the ICC. As discussed

above in relation to Figure 4.2, the magnitude of the increase or decrease is determined

by the SD of the prior. In particular, Table 4.1 shows that small prior SD for Truncated

normal and Gamma priors are the only considered scenarios where the sample size under
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Figure 4.3: Plot of the Gamma, Truncated normal, Beta, and normal correctly centrally specified
priors

used in Table 4.1

the hybrid approach is smaller than the frequentist approach for the PG-CRT design. It is

worth noting that while large prior SD on the PG-CRT designs requires more participants

to achieve the desired EP compared to the frequentist framework, the SW-CRT design

required fewer participants due to its capacity to handle large variance as noted above.

These findings highlight the sensitivity of the PG-CRT to variability in the ICC and the

SW-CRT design’s known efficiency for higher ICC values. Specifically, a high ICC means

that the clusters themselves are responsible for most of the outcome variance, hence the

within-cluster comparisons facilitated by a SW-CRT become a rich source of information.

A consequence is that, perhaps counterintuitively, incorporating larger uncertainty in the

ICC can lower the required sample size for a SW-CRT compared to a frequentist approach.

The choice of prior distribution and the level of uncertainty arising from its weightings

are critical in the hybrid framework. For example, the uniform prior (Be(1, 1)), increases

the sample size under the PG-CRT relative to the SW-CRT. I later discuss the implica-

tions of such priors. Unsurprisingly, when a Beta or Truncated normal distribution with

similar densities are used as the prior, the resultant required sample size is similar. Dif-
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ferences arise when the desire for a small prior mode results in a Beta distribution with

an undefined density at zero. In some settings, it may be the case that an extremely

small ICC is a reasonable assumption. In general, though, it is for this reason (along with

non-statisticians greater familiarity with the normal distribution) that I prefer the use of

a Truncated normal prior for the ICC. In subsequent comparisons, therefore, I shall utilise

the Truncated normal prior for the ICC in all instances, and not consider Beta priors

further.
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Frequentist Hybrid

Parameters Sample size Parameters ΨICC only Sample size Parameters ΨICC ΨSD Sample size

PG− CRT
(Surr et al) α = 0.025 α = 0.025 Be(0.80, 7.20) 539 α = 0.025 Be(0.80, 7.20) Gamma(75, 10) 561

β = 0.1 EP = 0.9 Be(0.10, 0.90) 517 EP = 0.9 Be(0.10, 0.90) Gamma(30, 4) 550
N = 0.1 σ = 7.5 Be(1.00, 1.00) 1738 N = 11 Be(1.00, 1.00) Gamma(7.5, 1) 2046
σ = 7.5 550 N = 11 TN(0, 1, 0.1, 0.01) 517 δ = 3 TN(0, 1, 0.1, 0.01) Gamma(75, 10) 539
ρ = 0.1 δ = 3 TN(0, 1, 0.1, 0.05) 539 TN(0, 1, 0.1, 0.05) Gamma(30, 4) 572
δ = 3 TN(0, 1, 0.1, 1.00) 1650 TN(0, 1, 0.1, 1.00) Gamma(7.5, 1) 1936

SW − CRT
(O’Grady et al) α = 0.005 α = 0.005 Be(3.00, 12.00) 3930 α = 0.005 Be(3.00, 12.00) Gamma(17.32, 40) 4230

σ = 0.426 EP = 0.8 Be(0.40, 1.60) 3750 EP = 0.8 Be(0.40, 1.60) Gamma(4.33, 10) 4380
δ = 0.028 σ = 7.5 Be(1.00, 1.00) 2550 N = 11 Be(1.00, 1.00) Gamma(0.0173, 0.4) 1290
β = 0.2 3960 N = 11 TN(0, 1, 0.2, 0.01) 3930 δ = 3 TN(0, 1, 0.2, 0.01) Gamma(17.32, 40) 4230
ρ = 0.2 δ = 3 TN(0, 1, 0.2, 0.05) 3930 TN(0, 1, 0.2, 0.05) Gamma(4.33, 10) 4710
T = 7 TN(0, 1, 0.2, 1.00) 2730 TN(0, 1, 0.2, 1.00) Gamma(0.173, 0.4) 1410

Table 4.1: Comparison between the frequentist and hybrid approaches for example parameters motivated by Surr et al. (PG-CRT) and O’Grady
et al. (SW-CRT); priors correctly centrally specified. Here, priors are placed on the ICC only, and the ICC-and-SD only.
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Accounting for uncertainty in the treatment effect and the ICC

In what follows, I compare the required sample sizes in the frequentist and hybrid frame-

works when priors are placed on the treatment effect and the ICC.

Observe from 4.2 that as the SD on the treatment effect prior increases, the minimal

number of clusters needed to achieve the desired EP in the hybrid approach becomes

smaller than in the frequentist approach. Recall that the prior densities on the treatment

effect are conditioned on there being a sufficiently large effect (categorised as values greater

than the MCID). Here, we set the MCID to be equal to the assumed target effect in the

frequentist framework. Thus, when the prior variance is large, the distribution flattens,

extending the likely values of µ. Therefore, effects larger than those assumed in the

frequentist approach are taken into consideration in the sample size calculation. In turn,

fewer clusters are needed to achieve the desired EP compared to that required to achieve

the traditional frequentist power. This is consistent with the plot in the Figure 4.2 and

echoes the findings for IRTs by Kunzmann and colleagues (Kunzmann et al., 2021).
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Frequentist Hybrid

Parameters Sample size Parameters Ψµ Ψρ Sample size

PG− CRT
(Surr et al) α = 0.025 α = 0.025 N(3, 0.01) TN(0, 1, 0.1, 0.01) 517

β = 0.1 EP = 0.9 N(3, 0.01) TN(0, 1, 0.1, 0.05) 539
N = 11 σ = 7.5 N(3, 0.01) TN(0, 1, 0.1, 1.00) 1639
σ = 7.5 550 N = 11 N(3, 0.05) TN(0, 1, 0.1, 0.01) 506
ρ = 0.1 δMCID = 3 N(3, 0.05) TN(0, 1, 0.1, 0.05) 528
δ = 3 N(3, 0.05) TN(0, 1, 0.1, 1.00) 1606

δMCID = 3 N(3, 1.00) TN(0, 1, 0.1, 0.01) 352
N(3, 1.00) TN(0, 1, 0.1, 0.05) 363
N(3, 1.00) TN(0, 1, 0.1, 1.00) 1111

SW − CRT
(O’Grady et al) α = 0.005 α = 0.005 N(0.028, 0.01) TN(0, 1, 0.1, 0.01) 2610

β = 0.2 EP = 0.80 N(0.028, 0.01) TN(0, 1, 0.1, 0.05) 2610
C = 30 σ = 0.433 N(0.028, 0.01) TN(0, 1, 0.1, 1.00) 1770
T = 7.0 3960 C = 30 N(0.028, 0.05) TN(0, 1, 0.1, 0.01) 1140
ρ = 0.2 T = 7.0 N(0.028, 0.05) TN(0, 1, 0.1, 0.05) 1140

σ = 0.433 δMCID = 3 N(0.028, 0.05) TN(0, 1, 0.1, 1.00) 720
δ = 0.028 N(0.028, 1.00) TN(0, 1, 0.1, 0.01) 30

δMCID = 0.028 N(0.028, 1.00) TN(0, 1, 0.1, 0.05) 30
N(0.028, 1.00) TN(0, 1, 0.1, 1.00) 30

Table 4.2: Comparison between the frequentist and hybrid approaches for example parameters motivated by Surr et al. (PG-CRT) and O’Grady
et al. (SW-CRT); priors correctly centrally specified. Here, priors are placed on the treatment effect and the ICC.
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4.3.3 Sensitivity analysis: Robustness of trials designed within the fre-

quentist and hybrid frameworks to prior misspecification

A major motivation for this work was the dearth of available ICC values and their possible

misspecification in practice. Hence, a sensitivity analysis is conducted to assess how mis-

specification of the assumed frequentist ICC and hybrid prior at the design stage impacts

the sample sizes in both frameworks. To illustrate this, I first assume that the parameters

from our motivating examples are the ‘true’ values of the ICC (PG-CRT: ρ = 0.1, SW-

CRT: ρ = 0.2). I then assess how frequentist and hybrid framework-designed trials fare if

the assumed ICC (prior modal ICC in the hybrid case) is greater/less than the true value.

The Truncated normal distribution will be used in the hybrid framework to easily

enable the ICC prior mode to take on values that are equivalent to the frequentist’s

misspecified values. In terms of the prior SD, we employ a quantile approach such that (a)

all the distribution of the misspecified prior is above/below the true ICC value (Q4), (b)

75% of the distribution is above/below the true ICC value (Q3), (c) 50% of the distribution

is above/below the true ICC value (Q2), and (d) 25% of the distribution is above/below

the true ICC value (Q1). Here, our emphasis is on the prior for the ICC, since the SD

can more often be obtained through a pilot trial. This sensitivity analysis is presented in

Table 4.3 and show a plot of the assumed priors in Figure 4.4.

For the PG-CRT, when the prior is misspecified such that all of the distribution is

either above or below the true ICC, the hybrid framework requires a smaller sample size

than the frequentist framework. This may be advantageous when the prior mode is larger

than the true ICC, but would likely result in greater power loss when the prior mode is

smaller than the true ICC compared to the frequentist framework. For the remaining

hybrid priors, the magnitude of the increase or decrease in sample size compared to the

frequentist approach is highly dependent on the percentage of the distribution that is

above or below the true ICC. For example, for a misspecified ICC prior with a mode of

0.05, 506 participants are required when 75% of the distribution is below the true ICC,

whereas 1056 participants are required to achieve the same desired EP when 25% of the

prior is below the true ICC. The key message from this is that choosing the SD of the

prior for the ICC in the case of a PG-CRT would be critical; it could rescue significant

power compared to misspecification in the frequentist setting, or result in an even larger

waste of resources.

With respect to the SW-CRT, the value of the SD is seemingly less critical, and

provided a large SD is avoided (Q1) the study sample size would not be far from that

truly required. Again, this is a consequence of the SW-CRT design’s robustness across

possible values of the ICC.
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Figure 4.4: Truncated normal prior showing the spread of the assumed ICC misspecifications from
the true ICC values.
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Frequentist Hybrid

Parameters Assumption Sample size Parameters Ψρ Sample size

PG− CRT
(Surr et al) α = 0.025 ρ = 0.05 396 α = 0.025 TN(0, 1, 0.1, 0.052) 528

β = 0.1 EP = 0.9 TN(0, 1, 0.1, 0.052) 429
N = 0.1 σ = 7.5 TN(0, 1, 0.1, 0.052) 363
σ = 7.5 ρ = 0.15 660 N = 11 TN(0, 1, 0.1, 0.12) 605
ρ = 0.1 δ = 3 TN(0, 1, 0.1, 0.12) 550
δ = 3 TN(0, 1, 0.1, 0.12) 418

SW − CRT α = 0.005
(O’Grady et al) σ = 0.426 ρ = 0.25 3696 α = 0.005 TN(0, 1, 0.2, 0.052) 2610

δ = 0.028 EP = 0.8 TN(0, 1, 0.2, 0.052) 1980
n = 132 σ = 7.5 TN(0, 1, 0.2, 0.052) 1590
β = 0.2 ρ = 0.15 3960 δ = 3 TN(0, 1, 0.2, 0.12) 2580
ρ = 0.2 n = 132 TN(0, 1, 0.2, 0.12) 1950
T = 7 TN(0, 1, 0.2, 0.12) 1590

Table 4.3: Sensitivity analysis of priors for example parameters motivated by Surr et al. (PG-CRT) and O’Grady et al. (SW-CRT); parameter
misspecifications. Recall that the true required sample size for the PG-CRT example is 550 participants, while for the SW-CRT it is 3960
participants.
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4.3.4 Comparison of the Expected Power provided by PG-CRT and SW-

CRT designs

To conclude, I include an important comparison of the EP provided by PG-CRT and SW-

CRT designs when a prior is placed only on the ICC. This then serves to extend previous

comparisons of which design is more efficient to the case where there is uncertainty in the

ICC’s value.

The EP is, in this case, dependent on: the number of clusters (C); the number of

measurements per cluster (N and nT for the PG-CRT and SW-CRT designs respectively);

the number of time periods in the SW-CRT design (T ); the standardised effect size (δ/σ);

and the prior parameters m and s.

To make the comparison fair, I assume each cluster provides a common number of

measurements, setting n = N/T in the SW-CRT designs for specified N . I then provide

a comparison of the EP for various combinations of the design parameters C, N , T , δ/σ,

m, and s. Figure 4.7 assumes C = 50; results, shown to be similar, for other values of C

are given in Figures 4.5, 4.6, and 4.8. A black curve is added to each sub-panel to indicate

the (m, s)-contour across which the two designs (PG-CRT and SW-CRT) have equal EP.

It is observed that the PG-CRT has larger EP only for very small m and very small

s. The maximal values of m and s at which the PG-CRT has larger EP across Figure 4.7

are m = 0.105 and s = 0.163; both occurring when N = 30 and T = 3. As the SD of

the prior (s) increases, the prior places a larger likelihood on a high ICC, which leads to

a SW-CRT design becoming more efficient, even when m ≈ 0. Of 34 reviewed HTA trials

that reported assumed ICC values (see Chapter 3), 90% of these trials assumed an ICC

below 0.105. Thus, whether a PG-CRT design would be more efficient than a SW-CRT

in practice would have heavily depended on the uncertainty around the ICC’s value.

Observe also that the results are sensitive to the values of N and T . Specifically, the

region in which the SW-CRT has larger EP increases in size as (i) N is increased for fixed

T and δ/σ, or (ii) T is increased for fixed N and δ/σ. The pattern as δ/σ is increased

for fixed N and T is more complex, though most often increasing the standardised effect

size leads to more comparable performance between the two designs, as both transitions

towards a very high EP.

While the SW-CRT design might be more powerful in cases of very high ICC compared

to the PG-CRT design, it could face significant challenges if certain sequences lack clusters

that contribute substantially to treatment effect estimation. This is because the basic SW

assumes that all clusters must be randomised simultaneously. On the other hand, the PG-

CRT design is easier to salvage such situations, as it allows for balancing through later

randomisation. Considering these practical strengths and weaknesses of the PG and SW

designs, I comment in the Discussion on how limiting the choice of a CRT design to only

a sample size requirement oversimplifies the process of choosing an optimal CRT design.
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Figure 4.5: Comparison of the Expected Power (EP) provided by PG-CRT and SW-CRT designs
for different values of the Truncated normal prior parameters m and s, faceted by the assumed
effect size (δ/σ) and assumed values of N (number of participants per cluster) and T (number of
time periods in the SW-CRT design). The black curves indicate the point at which the EP is equal
for the two designs. Sub-plots without a black curve indicate negative values within the entire
region. All results here assume that C = 10.

4.4 Discussion

The significance of the ICC to sample size determination and the challenges associated with

pre-specification at the design stage have long been discussed in literature (Hade et al.,

2010; Korendijk et al., 2010; Pagel et al., 2011). Motivated by this problem, we, therefore,

presented the detailed calculations required to take a hybrid approach to sample size

calculation that allows for direct incorporation of uncertainty in the ICC, the target effect,
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Figure 4.6: Comparison of the Expected Power (EP) provided by PG-CRT and SW-CRT designs
for different values of the truncated normal prior parameters m and s, faceted by the assumed
effect size (δ/σ) and assumed values of N (number of participants per cluster) and T (number of
time periods in the SW-CRT design). The black curves indicate the point at which the EP is equal
for the two designs. Sub-plots without a black curve indicate negative values within the entire
region. All results here assume that C=25.

and/or the SD. This approach may be advantageous in circumstances where obtaining an

accurate ICC estimate during the design stage is problematic, and is more consistent with

CONSORT guidance on accounting for ICC uncertainty.

To assess the efficiency of our proposed framework, a sensitivity analysis was per-

formed to show how a high degree of ICC misspecification had less impact on the EP and

sample size in the hybrid framework. Conversely, various priors indicating varied levels of

uncertainty were also presented to demonstrate when a frequentist approach may also be

optimal. Thus, in a real-world trial, a simulation study can be utilised to determine when

a hybrid approach may be desirable for a given set of assumptions.
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Figure 4.7: Comparison of the Expected Power (EP) provided by PG-CRT and SW-CRT designs
for different values of the truncated normal prior parameters m and s, faceted by the assumed
effect size (δ/σ) and assumed values of N (number of participants per cluster) and T (number of
time periods in the SW-CRT design). The black curves indicate the point at which the EP is equal
for the two designs. Sub-plots without a black curve indicate negative values within the entire
region. All results here assume that C=50.

An attempt was made to clarify the ambiguity associated with the hybrid quantities

(PoS and EP) for sample size determination and scenarios concerning when they can be

used interchangeably were proposed. Considering the cost, time consumption, and the

high failure rate of trials, robust statistical methods such as those espoused in this study

are critical for trial success. This can be more practical when tighter definitions of the

probability of success with commensurate formulae are selected by funders and the trial

team.
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Figure 4.8: Comparison of the Expected Power (EP) provided by PG-CRT and SW-CRT designs
for different values of the truncated normal prior parameters m and s, faceted by the assumed
effect size (δ/σ) and assumed values of N (number of participants per cluster) and T (number of
time periods in the SW-CRT design). The black curves indicate the point at which the EP is equal
for the two designs. Sub-plots without a black curve indicate negative values within the entire
region. All results here assume that C=100.

Like Kunzmann et al. (2021), we argue for the control of the EP in designing and

determining the sample size of a trial under the hybrid framework since it typically takes

values more comparable to the frequentist power. As others have identified in an IRT

setting (Lan & Wittes, 2012; Chen & Ho, 2017), we demonstrated the monotonic relation-

ship between the number of clusters (sample size) and the EP; thus, an increase in sample

size increases the EP, and sample size calculation under a hybrid framework for a CRT

functions very similarly to the more familiar frequentist approach.
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Additionally, it was observed that the EP may lead to lower required sample sizes

in certain cases, particularly when a prior is introduced on the treatment effect. Con-

sequently, this could be deemed an efficient and cost-effective tool for trial design, given

the routine high costs associated with CRTs. This may have a considerable implication,

especially for trials in LMICs, if they have more limited resources. While this is a positive

finding, greater caution must be exercised when introducing a prior on the treatment effect

as stated earlier. If one chooses to do this in practice, consulting the Cook Report (Cook

et al., 2018) for guidance on selecting the effect size could serve as a first step. Also, if a

second study is initiated based on promising results from a first study to inform the design

of the second study, there could be a risk of bias in the impression of the effect size, which

must be taken into account (Rothwell et al., 2022). Given that all these factors were not

taken into account when defining the prior on our treatment effect, considering them in

future may lead to sample sizes that deviate from those observed in the Results.

A critical consideration of the hybrid method, however, is the choice of prior. In

this context, expert opinion could be used to develop appropriate priors, or methodology

such as that presented by Turner et al. (2004) could be used to form an informative

prior distribution. We discourage the use of uninformative priors such as the uniform

distribution since they can be informative in some settings. Having observed from our

review of HTA trials in Chapter 3, as was also found by Offorha et al. (2022), that

ICCs in health services research are typically small (≤ 0.1), a uniform prior that places

equal weight on all values of the ICC might not be ideal. A corollary to this is that all

priors are inherently subjective and possible misspecification cannot be overlooked. Of

course, parameter misspecification is also a problem in frequentist design, and effective

prior construction may be reasonably anticipated to mitigate the problem of under- or

over-powering on average compared to choosing specific parameter values to assume.

When incorporating uncertainty in the ICC, the SW-CRT appears to almost always

be a more efficient design relative to the PG-CRT. Specifically, this study showed that the

SW-CRT is more efficient when there is higher uncertainty in the ICC (s ≤ 0.16), even

for a small modal ICC assumption (m ≤ 0.1). This is because a SW-CRT is typically

less sensitive (i.e., more efficient, with a lower design effect) for higher values of the ICC,

owing to the clusters acting as their own control and its ability to leverage both within

and between cluster comparisons. However, it is notable that the region in which the

performance between the designs was similar, in terms of the value of m, does correspond

for certain N and T to more commonly assumed values for the ICC. Thus, the uncertainty

in the ICC, as captured by s, could be a key determinant of which design is more efficient

in practice when using a hybrid approach.

Although a comparison between PG-CRT and SW-CRTs when using the hybrid ap-

proach is presented in this study, we agree with Hemming & Girling (2013) that one design
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cannot be a panacea to all of the issues and complexities of CRTs. While sample size, the

measure of efficiency in this paper, is a key determinant of the probability of detecting a

significant effect (Van Breukelen & Candel, 2012; Kunzmann et al., 2021), the choice of

design to use in a particular context must take into consideration a wide array of factors.

In this sense, this study’s focus on the efficiency of a CRT design through the required

sample size is a simplification of choosing an optimal design in practice.

However, we believe that the implications of an erroneous sample size on statistical

power provide reasonable justification for focusing solely on sample size in this study. As

cost is also typically a function of sample size, this further key consideration in design

choice is arguably also well captured by our focus on sample size (Baio et al., 2015). Thus,

the significance of our comparison of PG-CRT and SW-CRT under uncertainty should not

be downplayed.

The motivating examples used in this study had continuous outcomes and as such

our conclusions cannot be directly extended to settings with binary outcomes. Nonethe-

less, we do not foresee any theoretical reason that would make the results with a binary

outcome (e.g., placing a prior on the control arm response rate) considerably different

from the continuous outcome in this study. The standard Hussey and Hughes model was

also assumed, and we limited our focus to cross-sectional SW-CRT. Therefore, conclu-

sions cannot be made on closed-cohort SW-CRT designs or for more complex modelling

strategies based on our findings. Nonetheless, our approach could be readily extended for

such design/analysis scenarios by placing priors on the additional parameters required for

closed cohort SW-CRT designs or on, e.g., the autoregressive parameter of a more complex

correlation structure (Hooper et al., 2016; Kasza et al., 2019).

Some researchers argue that not all trials require consideration of the ICC during

the planning stages, particularly when analysing at the cluster level. An example is a

village survey (see, e.g., Mosha et al., 2022), where the ICC was not specified by the

researchers during the design stage but later analysed for the outcome data. Whether this

approach constitutes best practice is debatable since the CONSORT extension for CRTs

and other authors emphasise the importance of considering the ICC in both the sample

size calculation and analysis for all trials (Ivers et al., 2011; Campbell et al., 2012). In

my opinion, failure to clearly report the ICC at the planning and analysis stages raises

questions about the validity of the findings. Hence, the methods proposed here could be

employed in situations where it is challenging to obtain precise values of the ICC during

the planning of a specific survey, as they may offer some utility.
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Chapter 5

A hybrid approach to sample size

reestimation in cluster randomised

trials

In Chapter 4, the usefulness of allowing for uncertainty in the ICC within sample size

calculations for CRTs was established. Nonetheless, a limitation with approaches of the

discussed kind is that their utility can be highly dependent on the choice of prior. To

address this limitation, an adaptive design is introduced in this chapter where pre-trial

knowledge about the ICC is captured by placing a prior upon it, which is then updated at

an interim analysis using the study data to reestimate the sample size.

5.1 Introduction

As discussed in the previous chapters, desired precision of information on key design

parameters may not always be available at the planning stage of a trial. Evidence of

the gravity of this issue can be seen through a review of trials which revealed significant

disparities between values utilised in determining the sample size at the planning stage

and the estimates obtained from the trial itself (Charles et al., 2009). This suggests that a

significant number of trials may either have excessive statistical power or lack the required

power.

In CRTs, one critical nuisance parameter that has been much discussed in this thesis is

the ICC. Numerous authors have discussed the difficulty in obtaining reliable estimates of

the ICC (Campbell et al., 2004; Ip et al., 2011), and the implications of its misspecification

on the statistical power of a trial (Murray et al., 2004; Wu et al., 2012). To mitigate against

misspecification of the ICC, I established the usefulness of allowing for uncertainty in its

value within the sample size calculation in Chapter 4. I discussed in detail the application
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of frequentist and Bayesian methods to address uncertainty, highlighted their respective

drawbacks, and advocated for a hybrid method as the preferred approach. However, it

is important to note that the hybrid approach also has some drawbacks. A particular

limitation of note is that their utility can be highly dependent on the choice of prior, with

the possibility always present that it may poorly reflect the data from the intended trial

(Lan & Wittes, 2012).

Owing to this, a potentially appealing solution is to conduct a pilot study, i.e., a

preliminary or small-scale investigation could be conducted before a full-scale clinical trial

in order to inform the prior (Friedman et al., 2015). Although pilot studies are primarily

designed to assess the feasibility, safety, and potential efficacy, they can additionally be

used to calculate nuisance parameters to inform the planning and design of the larger trial

(Hawk, 2013; Shanyinde et al., 2011). As pilot studies utilise real data from an initial phase

of a trial, they may be expected to provide a better estimate of parameter values than

any pre-trial guess, even guesses that account for uncertainty such as those represented

through a prior in a hybrid approach (Lake et al., 2002).

There are two types of pilot study, internal and external. External pilot studies are

independent studies that are specifically planned and executed separately from the main

study (Lancaster et al., 2004). As participants from an external pilot are not incorporated

into the main study, the overall cost can increase significantly. Considering the added

expense and the routine ethical concerns of medical trials, it might not be reasonable to

conduct a large pilot study without incorporating its data into the ultimate inferential

process (Bauer & Kohne, 1994). An internal pilot study is integrated into the overall

design of the trial (Lancaster et al., 2004). Thus, the final analysis of the results includes

all data, without distinguishing that some of the data originated from the internal pilot

study.

A key challenge in inference is to then evaluate how any sample size modifications

emanating from the internal pilot affect the statistical analysis. The impact of changes in

sample size depends on the inference approach, Bayesian or frequentist. If the sample size

is adapted based on a data-driven method, this would not raise concerns in a Bayesian

analysis. However, to a frequentist, the impact on the statistical analysis would hinge

on the specific rule employed for the adjustment. For example, if the variability within

groups is used for the sample size modification, then it will have little impact on the type

I error rate, with a likely benefit in power, whereas the type I error rate may be inflated if

the difference between treatment means is utilised for the sample size adjustment (Wittes

& Brittain, 1990; Bauer & Kohne, 1994).

In the context of adaptive design, sample size reestimation (SSRE) can be likened to

a trial with an internal pilot. The study uses data gathered during the trial to reestimate

sample size parameter(s) at an interim analysis. It is worth noting that there are blinded
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and unblinded approaches to SSRE (Grayling et al., 2018). Unblinding of an ongoing trial

can carry considerable risk of introducing subsequent biases. Therefore, it is essential to

take specific measures, such as establishing an independent data monitoring committee, to

mitigate this risk (Kieser & Friede, 2000). Issues in data monitoring and interim analysis

of trials are discussed in detail by Grant et al. (2005).

Previous work has investigated the potential of SSRE within the context of CRTs, in

the parallel-group (PG) (Lake et al., 2002; Schie & Moerbeek, 2014) and stepped-wedge

domains (Grayling et al., 2018). Methods proposed in these publications reestimated the

total outcome variance, the ICC, the target effect powered for, or some subset of these

parameters. The investigations used interim point estimates of the nuisance parameters

to update the required sample size, as is typical in the frequentist literature. Though the

methods performed well on average, the variability in their reestimated required sample

size could undermine their utility in practice (Hemming et al., 2021). This is a consequence

of challenges with precision of estimation in CRTs, particularly in relation to estimating

the ICC, which can be difficult to estimate even on completion of a large trial. That is,

existing frequentist methods for SSRE in CRTs neglect any uncertainty in the interim

point estimates of the nuisance parameters. I demonstrated in Chapter 4 that the hybrid

approach may provide utility at the design stage of a CRT. Thus, a natural question of

interest is whether a hybrid approach could also be useful for SSRE.

Consequently, in this chapter, I develop a hybrid approach to SSRE for PG-CRTs.

This is achieved by assuming a prior for the ICC at the design stage of the trial. This

prior is then updated at an interim analysis, to a posterior, based on available data.

The posterior is then used in determining the reestimated required sample size to control

the EP to a desired level. Following accrual of the reestimated sample size, the final

analysis uses all available data in a conventional frequentist analysis to determine whether

the null hypothesis can be rejected. Such a hybrid approach to SSRE seems intuitively

appealing, as it may directly account for uncertainty in the ICC through both a pre-trial

prior and also by considering the variability of the interim ICC estimate. To ascertain

whether this approach is useful in practice, we explore both blinded and unblinded SSRE

methods. A blinded procedure in this context implies that the treatment status of an

observation is undisclosed, but there is awareness of which observations belong to the

same cluster while treatment allocation is known in unblinded procedure (Grayling et al.,

2018). Subsequently, I perform a comparison between the existing frequentist and our

proposed hybrid approach.

In the next section, the methodology underpinning the SSRE in CRT design is intro-

duced by initially describing the setting, along with the notations and the analysis model.

Section 5.2.2 offers a high-level summary of how SSRE is performed in both the frequent

and Hybrid paradigms. Following that, Section 5.2.5 outlines the simulation study, detail-
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ing the parameters derived from the motivating example that will serve as the foundation

for the results. The outcomes of the simulations, comparing the hybrid and frequentist

SSRE, are presented in Sections 5.3, with a comprehensive discussion of the results in

Section 5.4.

5.2 Methods

First, we describe how SSRE can be performed in both the frequentist and hybrid frame-

works. As increasing the number of clusters typically has a bigger impact on power than

increasing the cluster size does (Campbell et al., 2012), we focus on interim updating of the

required number of clusters throughout. Updating the required cluster size, or updating

both the cluster size and number of clusters, could be treated similarly.

5.2.1 Setting and notation

We consider the case of a PG-CRT where clusters are randomised to receive an experimen-

tal or a control treatment in a 1:1 manner. We assume the primary outcome is continuous

and normally distributed with variance σ2. While we acknowledge that sample sizes can

vary between clusters, we restrict our attention to assume the same number of participants

are present in each cluster. Accordingly, let Yij be the outcome from patient i = 1, . . . , n

in cluster j = 1, . . . , C. Then, due to non-independence in the data, we fit a linear mixed

model to the data at both interim and final analyses. At the final analysis, and at the

interim analysis in unblinded SSRE procedures, the model is given by

Yij = θ +Xjµ+ cj + eij . (5.1)

Here, θ is an intercept term (here, the mean in the control arm), Xj = 1 if cluster j is

allocated to the experimental arm and Xj = 0 otherwise, cj ∼ N(0, σ2c ) is a random effect

for cluster j, and eij ∼ N(0, σ2e) is the individual-level error. Note that σ2 = σ2c + σ2e , and

that the ICC ρ = σ2c/σ
2. Then, µ is the treatment effect of interest and we specify our

one-sided null hypothesis as H0 : µ ≤ 0. The test statistic for H0 is

t =
µ̂√

V ar(µ̂)
,

which can be computed using, e.g., REML estimation. The degrees of freedom for the

test statistic will be assumed to be that in a corresponding balanced ANOVA analysis.

That is, df = nC−C−1. We note that in the case where C is small, alternative degrees of

freedom specifications may be needed. For a target type I error of α, H0 will be rejected

if t is greater than the (1− α)-quantile of a tdf (0) distribution.
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At the interim analysis in blinded SSRE procedures, where cluster assignment is un-

known, the model fitted is instead (with parameters interpreted above):

Yij = θ + cj + eij .

In either case, the interim analysis results in estimates that we denote by σ̂2c,int and

σ̂2e,int, which can be combined into an interim estimate of the ICC ρ̂int = σ̂2c,int/(σ̂
2
c,int + σ̂2e,int).

5.2.2 Sample size reestimation procedure

A high-level summary of how SSRE functions (independent of which statistical framework

it is conducted in) is as follows.

First, a sample size is chosen for when the interim analysis will occur. As we assume

n is fixed, this corresponds to selecting a certain number of clusters, Cint, from which

data will have been collected at the interim analysis. This could be achieved by utilising

some proportion of an initially calculated sample size based on assumed values for required

parameters. Alternatively, a pragmatic sample size could be selected, e.g., based on the

number of clusters required to achieve a sufficiently precise estimate of the ICC.

The trial is then conducted until the interim required sample size is achieved and

the ICC estimated (i.e., ρ̂int is computed). Given the value of ρ̂int (and using other

selected design parameters, e.g., the target type I error rate), the required sample size is

re-estimated. That is, a value for the final target number of clusters, Creest is computed.

It is the interim estimation of ρ (blinded or unblinded) and the method of utilising ρ̂int to

compute Creest (frequentist or hybrid) that will differ between the compared methods.

Next, if Creest ≤ Cint, the study terminates and the final analysis is conducted. Oth-

erwise, the trial continues until data from Creest clusters has been accrued, with the final

analysis then conducted using data from both stages. This final analysis is conducted us-

ing the approach outlined above (i.e., without adjustment for the inclusion of the interim

analysis); thus consideration of the potential for type I error inflation will be important.

5.2.3 Sample size reestimation in the frequentist framework

The classical method of sample size estimation for a PG-CRT in the frequentist framework

is to first calculate the sample size required for a corresponding IRT, and then multiply

it by a ‘design effect’ (or ‘variance inflation factor’) to account for clustering. The sample

size for the IRT (NIRT ), assuming power of 1− β is desired when µ = δ > 0, is obtained

as

NIRT =
4(z1−α + z1−β)

2σ2

δ2
.
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Then, the design effect for the considered type of PG-CRT is given by

DE(ρ) = 1 + (n− 1)ρ. (5.2)

Hence, if there are n measurements per cluster, the required number of clusters is, for

a particular value of ρ

C(ρ) = NIRTDE(ρ)/n (5.3)

In SSRE within the frequentist framework, the interim estimated ICC (ρ̂int) is simply

inserted into Equation 5.3. That is, the method sets Creest = C(ρ̂int).

5.2.4 Sample size reestimation in the hybrid framework

Sample size calculation in the hybrid framework amounts to averaging the frequentist

power over any uncertainty in nuisance parameters by placing priors on these parameters.

In this framework, two quantities are commonly used for sample size determination: the

EP and the PoS. In this work, where a prior is placed only on the ICC, the standard

definitions of the PoS and EP become equivalent (as demonstrated in Chapter 4) and can

be expressed as:

EP (ψ, µ,C) =

∫ 1

0
P (µ, n,C, α, σ, ρ)ψICC(ρ|θ) dρ,

where P (µ, n,C, α, σ, ρ) is the probability of rejecting H0 under a PG-CRT design,

given by

P (µ, n,C, α, σ, ρ) = Φ

{
µ

√
Cn

4{1 + (n− 1)ρ}σ2
− Φ−1(1− α)

}
,

and ψ(ρ|θ) is the prior density for an ICC of ρ, which is dependent on parameters

θ. Assuming an EP of 1 − γ is then desired when µ = δ > 0, sample size calculation is

performed by numerically searching for the minimal C such that EP (ψ, δ, C) ≥ 1− γ. In

practice, γ is often set to be equal to the value of β from the frequentist framework.

Since the ICC (typically) ranges between 0 and 1, we select a prior distribution with

support on [0, 1]. Note that for simplicity and efficiency, a conjugate prior distribution may

be desirable. However, conjugacy cannot be achieved in this study since the likelihood for

the ICC is complex: this requires approximation using JAGS to make sampling from the

non-conjugate posterior distribution possible. We achieve this through the rjags package

in R Plummer (2021). We select a truncated normal distribution, truncated on [0, 1],

as the prior for this study. We acknowledge that other distributions, such as the Beta

distribution, could similarly be used. Nonetheless, an evaluation of alternative priors in

Chapter 4 revealed no significant sensitivity to the exact choice of prior, given they held
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(approximately) the same mean and variance. Therefore, for simplicity, we consider only

a truncated normal prior and denote the choice by TN(0, 1,m, s), where m and s are the

mean and SD parameters of the normal distribution before truncation.

For normally distributed outcome data, Ukoumunne (2002) proposed an approximation

for the variance of an ICC estimate using Fisher (1970). Using this, it is assumed that:

ρ̂ ∼ N

{
ρ,

2(1− ρ)2[(1 + (n− 1)ρ]2

n(n− 1)C

}
.

Adopting this as the likelihood, the posterior for ρ can be determined at the interim

analysis. Consequently, on calculating ρ̂int at the interim analysis, the prior TN(0, 1,m, s)

can then be updated to a posterior that is a function of ρ̂int, n, Cint, m, and s, which

we denote for brevity as ψ(ρ|m, s, ρ̂int). The posterior is then substituted into the EP to

update the sample size. That is, the method sets Creest as the minimal value such that

EP{ψ(ρ|m, s, ρ̂int), δ, Creest} ≥ 1− γ.

5.2.5 Simulation study

The parameters for our simulation study are based on the study by Hankonen et al. (2016)

which sought to reduce adolescent sedentary behaviour by improving physical activity. The

study assumed no ICC at the beginning of the trial. At an interim analysis, they calculated

the ICC to be ρ̂int = 0.059 and specified the sample size using frequentist methodology.

An internal pilot of 25 clusters with an average cluster size of 17 was used to estimate the

ICC at the interim analysis. Accordingly, we set Cint = 26 (to allow equal allocation of

clusters to the control and experimental treatments) and n = 17. The study desired 80%

power (β = 0.2) to detect a difference of δ = 0.3 for an SD of σ = 1.3 and α = 0.025.

To evaluate the performance of the SSRE techniques, we conducted a thorough simu-

lation study. Specifically, we wanted to evaluate how varied values of the prior parameters

m and s impacted the operating characteristics. We consider m = 0.01, 0.059, 0.1 to give a

range of possible concordances of the prior densities in relation to ρ̂int = 0.059. The value

of the standard deviations s were selected as s = 0.01, 0.1, 1, such that the priors were

highly informative, weakly informative, and approximately non-informative respectively.

These priors are shown in Figure 5.1.

We consider the performance of the hybrid approach for these m and s, alongside

the performance of the frequentist method, for both blinded and unblinded SSRE, for a

range of possible values of ρ. We also complete this work under the null (τ = 0) and the

alternative (τ = δ), in order to empirically estimate the type I error rate and power of the

various SSRE procedures. For simplicity, we follow previous works in setting γ = β.

For each combination of assumed parameters and particular SSRE approach, we em-

pirically compute three measures to assess performance, based on the results of 10,000
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Figure 5.1: Plot of utilised truncated normal prior distributions. Plots are faceted by the use of
m = 0.01, 0.059, 0.1 and all combinations of s = 0.01, 0.10, 1 are considered.

simulation runs. Firstly, the probability of rejecting H0 is estimated. Our other two met-

rics relate to the ability of the SSRE procedures to reliably specify the ‘correct’ required

number of clusters. That is, we think of the goal of each SSRE procedure being to ‘esti-

mate’ the sample size that would have been used if the true values of the design parameters

were known. Thus we consider the re-estimated sample size as an estimator, with the tar-

get estimand being the ‘oracle’ sample size that would have been chosen in the frequentist

framework if all parameters were known. Natural measures of the performance of these

estimators are then its bias and mean square error (MSE); it is these we also compute.

A SSRE that performs well will have a bias close to 0 and a low MSE. The selection of

the MSE as a metric is based on its ability to penalise designs with both incorrect mean

sample sizes and larger variances in sample sizes. If the values of the re-estimated required

number of clusters from the simulation replicates are Creest,1 . . . Creest,10000, the empirical

bias and MSE are given by:
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Bias =
1

10000

10000∑
n=1

Creest,i − C(ρ),

MSE =
1

10000

10000∑
n=1

[Creest,i − C(ρ)]2.

Here, C(ρ) is the ‘oracle’ required number of clusters for the particular value of ρ

assumed in the simulations that generated C(reest,1) . . . C(reest,10000).

5.3 Results

To provide some intuition on how the choice of prior can influence the reestimated required

number of clusters in the hybrid framework, we present a plot of posterior modes in

Figure 5.2. I.e., modal values of ψ(ρ|m, s, ρ̂int), over ρ ∈ [0, 1], are given as a function of

m, s, and ρ̂int.

Figure 5.2 shows an interplay between ρ̂int and the posterior mode, given the prior

mean and SD. Generally, as the interim estimate of the ICC increases ( ˆρint > 0.13), a

monotonic relationship between the variables is observed where large prior mean and SD

values result in a large posterior mode and vice versa. While the rate of increase appears

constant, the impact of the SD on the posterior mode diminishes as the SD becomes large.

We note how the lines for the posterior mode practically merge into a single line when

the prior is non-informative (s = 1), in contrast to the multiple lines that are clearly

visible when the prior is highly informative (s = 0.01). This implies that the final sample

size determination is not heavily dependent on the prior mean when the prior is non-

informative and vice versa. That is, an inaccurate prior mean will have less impact on

the final sample size if the prior is non-informative. Although the posterior mode lines for

the ‘weakly’ informative prior (s = 0.1) appear somewhat distinct, they are not as widely

separated as for the informative priors.

5.3.1 Reestimated sample size, power, and type I error rates for cor-

rectly specified priors

Next, we evaluate the distribution of the reestimated required number of clusters, the

power, and the type I error rate, for selected priors in the hybrid framework. Specifically,

we assume that ρ = 0.059, and that the priors are ‘correctly specified’ (i.e., m = ρ).

Then, we explore how on average, a highly informative prior, a weakly informative prior,

and a non-informative prior impact the performance of the SSRE procedure in the hybrid

framework. Our results are stratified by the use of blinded or unblinded SSRE, and are also
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Figure 5.2: Plot of the posterior mode as a function of ρ̂int, given the prior mean and SD for all
combinations of m = 0.010, 0.059, 0.100 and s = 0.01, 0.10, 1.00.

compared to the performance of the frequentist approach. A summary of the performance

measures for the SSRE procedures is given in Table 5.1, while the distribution of the re-

estimated required number of clusters is presented in more detail in Figure 5.3. Note that

for the parameters from the motivating example, when ρ = 0.059, 68 clusters are required

for a frequentist power of approximately 80%.

On average, both the hybrid and frequentist approaches can mitigate against the im-

plications of misspecifying the ICC at the trial’s design stage, as indicated by their mean

interim estimates of ρ. As the SSRE techniques leverage the interim estimate of the ICC

to make a final determination of the sample size, the likelihood of obtaining an accurate

sample size is dependent on the closeness of the interim estimate to the truth. However,

unlike the frequentist approach whose final sample size is dependent only on ρint, the

final sample size in the hybrid framework is a function of the mean interim estimates and

other parameters which include the prior SD. Thus, although the frequentist and hybrid

approaches yield the same mean interim ICC estimates, their final average reestimated

required number of clusters sample sizes may differ, as seen in Table 5.1.

As a result of the monotonic relationship in Figure 5.2, the required sample size in
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the hybrid framework increases as s increases. For s = 1, the difference in sample sizes

between the hybrid and frequentist frameworks is relatively small, with this phenomenon

expected based on results from Chapter 4. Explicitly, a maximum increase of 10% in

sample size is observed between the frequentist approach and the use of a non-informative

prior. In this setting, this small increase in sample size may be considered beneficial if it

translates into power being more reliably above the desired level.

Of importance in the SSRE procedure is the control of the type I error rate. There is

some evidence to suggest in Table 5.1 that this is better controlled in the hybrid framework,

for both the blinded and unblinded models, though the differences are small when allowing

for the simulation error.

In both frameworks, the interim ICC estimates from the blinded model are biased when

there is a non-zero treatment effect (i.e., where τ = δ). Thus, the model overestimates the

interim ICC on average and reestimates a larger required number of clusters. Although

regulatory agencies prefer blinded models (Friede & Kieser, 2013; FDA, 2019), this may

be less necessary in CRTs as cluster allocations are not always blinded.
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Interim Model Framework Assumed Prior ψ Mean of ˆρint Mean of Creest Power Type I error rate

τ = 0 τ = δ τ = 0 τ = δ

Blinded Frequentist N/A 0.0583 0.0711 68 75 0.80 0.029
Blinded Hybrid TN(0, 1, 0.059, 0.012) 0.0583 0.0711 68 69 0.80 0.026
Blinded Hybrid TN(0, 1, 0.059, 0.102) 0.0583 0.0711 73 79 0.83 0.026
Blinded Hybrid TN(0, 1, 0.059, 1.002) 0.0583 0.0711 75 82 0.84 0.026

Unblinded Frequentist N/A 0.0583 0.0583 68 68 0.80 0.033
Unblinded Hybrid TN(0, 1, 0.059, 0.012) 0.0583 0.0583 68 68 0.80 0.027
Unblinded Hybrid TN(0, 1, 0.059, 0.102) 0.0583 0.0583 73 73 0.83 0.031
Unblinded Hybrid TN(0, 1, 0.059, 1.002) 0.0583 0.0583 75 75 0.84 0.030

Table 5.1: A summary of the performance of several sample size reestimation procedures is shown for the case where m = ρ = 0.059.
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Having demonstrated from Table 5.1 that there is no considerable difference in the

average value of Creest for both frameworks, we next examine the variability in this quan-

tity. Particularly, our interest lies in whether the hybrid framework has lower variability

than the frequentist framework, which is known to have high variability in terms of the

reestimated required sample size. Concerning the hybrid framework, we again evaluate

how the selected prior SD impacts the performance. Our findings are shown in Figure 5.3.

In comparison to the hybrid approach, the frequentist approach results in a higher

variability in the reestimated required number of clusters. This is evidenced by the lower

variance and lower interquartile ranges recorded in the hybrid framework compared to

the frequentist. Furthermore, the variability is significantly lower for a highly informative

prior, with variance increasing as the prior becomes less informative. However, despite

the relative variability increase that results from a large prior SD, the variability in these

scenarios is still lower than in the corresponding frequentist approach.

Figure 5.3: Violin and boxplots showing the variability in the reestimated sample sizes (Creest) for
the frequentist and hybrid methods (s = 0.01, 0.1, 1), with the respective variances (V ar(Creest))
also displayed. Results are faceted by the use of blinded vs. unblinded sample size reestimation
and the value of the treatment effect. In all cases, m = ρ = 0.059 is assumed.
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5.3.2 Impact of prior misspecification on SSRE performance

The results above correspond to when m = ρ. In practice, this is unlikely to be the

case as SSRE is specifically utilised in scenarios where the ICC is subject to considerable

uncertainty. Accordingly, in what follows, we evaluate the performance of a range of

SSRE methods across possible values of the ICC, specifically ρ ∈ [0.01, 0.2]. We present

our findings in Figures 5.4-5.6.

The frequentist framework seems relatively stable in terms of the performance measures

across the considered values of ρ. As expected, the final sample sizes in the frequentist

approach are unbiased for the unblinded model, and subject only to small bias for the

blinded model.

For highly informative priors, the hybrid approach is only approximately unbiased

in terms of the reestimated sample size when the prior mean is equal to ρ, for both

blinded and unblinded models. The final sample size in the hybrid SSRE is considerably

underestimated when the value of the ICC is larger than the prior mean. Given that an

underestimated sample size results in an underpowered trial and vice versa, the negative

relationship between the bias and ICC is also observed in the power. When compared to

the frequentist method, the hybrid techniques offer a lower MSE if the ICC is within a

specific range, with the range dependent on the values of m. For example, when m = 0.01,

the hybrid method has lower MSE if the ICC is less than 0.05 for both blinded and

unblinded models. Whereas, when m = 0.059, a lower MSE is observed in the hybrid

framework if ρ ∈ [0.03, 0.12] in the blinded model and if ρ ∈ [0.03, 0.1] in the unblinded

model. When m = 0.1, the hybrid method can reduce the MSE if ρ ∈ [0.06, 0.17] in the

blinded model and if ρ ∈ [0.06, 0.15] in the unblinded model.

When using weakly informative priors, the interplay between bias and power is also

exhibited in the same way as when using highly informative priors. However, the power

curves for weakly informative priors are not too steep unless the ICC is very small. As

a result, there is a maximum 5% loss or gain in power compared to the desired power

over a wide range of ICCs, specifically, when ρ ∈ [0.025, 0.2]. In terms of the MSE, when

m = 0.01, the hybrid framework performs better when the ICC is greater than 0.03 in

the blinded model and greater than 0.025 in the unblinded model. With m = 0.059, the

hybrid framework is better than the frequentist in terms of MSE when the ICC is greater

than 0.05 in the blinded model and greater than 0.03 in the unblinded model. When a

larger prior mean is selected (m = 0.1), the hybrid method becomes more powerful when

the ICC is greater than 0.07 in the blinded model and greater than 0.05 in the unblinded

model.

For completely non-informative priors, the MSE is slightly better in the unblinded

model and slightly worse in the blinded model for hybrid designs when compared to the

frequentist approach. Observed gains over the frequentist approach in terms of power are
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a result of an increased positive bias in the hybrid approach.
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Figure 5.4: The bias, mean square error (MSE), and power of the frequentist and hybrid methods
is shown as a function of the intra-cluster correlation (ρ). Results are faceted by the use of
blinded vs. unblinded sample size re-estimation. For the hybrid approach, all combinations of
m = 0.01, 0.059, 0.1 and s = 0.01 are considered.
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Figure 5.5: The bias, mean square error (MSE), and power of the frequentist and hybrid methods
is shown as a function of the intra-cluster correlation (ρ). Results are faceted by the use of
blinded vs. unblinded sample size re-estimation. For the hybrid approach all combinations of
m = 0.01, 0.059, 0.1 and s = 0.1 are considered.
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Figure 5.6: The bias, mean square error (MSE), and power of the frequentist and hybrid methods
is shown as a function of the intra-cluster correlation (ρ). Results are faceted by the use of
blinded vs. unblinded sample size re-estimation. For the hybrid approach, all combinations of
m = 0.01, 0.059, 0.1 and s = 1 are considered.
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5.4 Discussion

SSRE using a frequentist approach mostly abates the difficulties of obtaining precise esti-

mates of the ICC during the trial design stage; yet, it has some practical issues. Notable

among these issues is a large variation in the reestimated sample size, a consequence of

uncertainty around the reestimated ICC (Hemming et al., 2021). In this chapter, we have

demonstrated how a hybrid approach to SSRE could address this known limitation within

the frequentist framework whilst effectively controlling the type I error rate. We have also

demonstrated when a hybrid approach may be useful in comparison to the frequentist.

Regarding the impact of prior on the final sample size, the hybrid framework is notably

more efficient in terms of MSE and power when the prior is weakly informative, and

substantially more efficient when a highly informative prior has a mean close to the true

ICC. The finding that a weakly informative prior effectively facilitates the SSRE process is

a highlight-worthy benefit of the hybrid technique, given that some information in the form

of routinely gathered data or expert opinion may exist in practice for prior construction.

Furthermore, a recent review of ICCs in health services research revealed that the median

ICC for sample size calculation at the planning stage is typically 0.05 whereas the observed

ICC for analysed primary outcome had an IQR of (0.001, 0.060) (Offorha et al., 2022). This

evidence further indicates the utility of the proposed hybrid methods in practice since a

weakly informative prior when m = 0.01, for example, offered a MSE below the frequentist

design while retaining a higher power when ρ ∈ [0.026, 0.9].

Results from this study are consistent with the widely held assertion that blinded SSRE

is generally better because there is a small positive bias in the estimate of the variances

and that translates into a slightly higher power (Kieser & Friede, 2003; Grayling et al.,

2018). However, higher power isn’t necessarily optimal since there is often a cost in terms

of the MSE. This relationship was mostly evident in non-informative priors where higher

power was mostly observed but at the cost of a large positive bias and MSE. This indicates

that the method is overpowering the study, which is not desirable. Nonetheless, there are

some specific ICC ranges for which there is no trade-off between the MSE and power as

shown in the example above. Thus, it is imperative to determine through simulation an

acceptable trade-off or the optimality of the hybrid design in future trials.

Though some studies have defined SSRE in the context of updating cluster sizes (Hem-

ming et al., 2021), we have updated the number of clusters instead, as this generally has

a higher impact on power. This is consistent with studies which sought increases in power

through increasing the number of clusters rather than cluster size (Koepsell et al., 1992;

Thompson et al., 1997; Van Breukelen & Candel, 2012). Hemming et al. (2017) further

discusses diminishing returns in power and precision of a CRT as cluster size increases. We

acknowledge that due to some logistical constraints and funding, it may be more difficult
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to add more clusters than to increase the number of participants per cluster (Van Breuke-

len & Candel, 2012). In such scenarios, the methods proposed here could be extended

accordingly.

A practical consideration for SSRE designs is the choice of sample size for the interim

analysis. Studies have shown that estimates from pilot studies, which typically employ

small sample sizes are frequently imprecise (Ip et al., 2011; Eldridge et al., 2016). To

some researchers, 40 clusters seem inadequate to yield precise estimates of the ICC in the

frequentist framework (Leyrat et al., 2018). Therefore, when there is such uncertainty

around the assumed ICC, the hybrid approach might be preferred over the frequentist if

SSRE is to be performed. This is because even if the best guess estimate (m) based on

an existing data is inaccurate, a weakly informative prior may still be advantageous since

the performance does not depend heavily on the accuracy of the prior mean.

We note that this study has some limitations. First, we limited the choice of a prior

distribution. While we believe that an extension of this approach to different priors and

outcome data might yield similar results, future studies detailing the results and complex-

ities of such models could be helpful. Another limitation was the consideration of only

one CRT design (the parallel group). Hence, inferences from this study cannot be used

to generalise to other CRT designs. For example. re-estimating the number of clusters

in a stepped-wedge CRT might be more difficult if the original roll-out was planned in a

particular way.

In conclusion, the hybrid approach is similar to the frequentist approach when using

a completely uninformative prior, whereas a highly informative prior does better if the

prior is correct (and is poor otherwise). utilising a weakly informative prior performs well,

demonstrating robustness in terms of the MSE over a wide range of ICC values seen in

practice. Owing to the range of ICC for which one can achieve a low MSE and higher

power, a simulation study can be useful to assess when a hybrid approach may offer utility

in terms of low MSE and higher power as well as help overcome known issues with the

frequentist approach.
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Chapter 6

Discussion and Conclusions

This chapter offers an overview of the thesis, highlighting the innovative methodologies

introduced within it, and discusses the practical implications of their application. It also

outlines the advantages and limitations of the proposed approaches and explores potential

avenues for further advancement in the research area.

6.1 Motivation and overview of the thesis

Over the years, there have been prominent calls for global action, notably by the WHO,

emphasising the importance of all nations being both producers and consumers of health

research (WHO, 2013). Within this period, the number of countries partaking in pivotal

trials filed to permit medication registration has almost doubled, yet the diversity of

clinical trial populations has not increased significantly (Gross et al., 2022). Despite

some advancements (Jones et al., 2007; Ijsselmuiden et al., 2012), the majority of clinical

research is still spearheaded by HICs, and many LMICs lack the capacity to independently

conduct clinical research and implement findings into policy (Drain et al., 2018). The lack

of progress in health research capacity by LMICs may be attributed to a plethora of

issues. Hence, an initial search was conducted to unearth the key barriers contributing

to the low number of bespoke trials in LMICs. The majority of the studies cited funding

or the high cost of running trials as the main barrier to conducting more trials in LMICs

(Aboulghar, 2011; Schlaff, 2011; Franzen et al., 2013b; Seruga et al., 2014; Cardoso et al.,

2015). Subsequently, a relationship between sample size and the cost of trials was also

uncovered in the above literature.

Given that ADs are recognised for their ability to generate clinical evidence regarding

the most effective and cost-efficient interventions while maximising the use of limited re-

sources, there is the need to empower LMICs to utilise such methodologies (McMichael

et al., 2005; Rosala-Hallas et al., 2018). Nonetheless, there are barriers and complexities to
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using ADs. Motivated by this background, the thesis sought to develop methods for over-

coming the barriers to using ADs in LMICs. To address the sample size component of the

overall cost of trials, the study in particular focused on the development of methods that

provide robust and cost-effective sample sizes for both IRT and CRT designs. Although

these methods were developed with LMICs in mind, their application is anticipated to

extend to HICs as well.

In the subsequent sections, I summarise each segment of work presented in the thesis,

emphasising the underlying motivation, employed methodologies, implications of the find-

ings on trials in LMICs, as well as the general strengths and limitations. Subsequently, I

conclude by making some remarks on non-methodological barriers and delve into potential

future directions for methodological research in this area.

6.1.1 Chapter 2: Optimal drop-the-loser trials when an intermediate

endpoint is used for interim selection

The first objective proposed an integration of seamless phase II/III and drop-the-loser

designs into one framework. Within this design, two treatments were compared to a

shared control in phase II and the least effective arm was dropped from the subsequent

phase III stage. The primary aim of the design was to speed up the drug development

process, by combining two trials traditionally conducted independently. To make good

use of limited resources, an intermediate endpoint, envisioned to be cheaper and faster to

use, was utilised at the first stage of the trial to inform adaptations before the definitive

outcome was evaluated in the second stage. The methodology by Wason et al. (2017)

was extended to accommodate the intermediate and definitive endpoints at the first and

second stages respectively. Normal outcomes were assumed in both stages. Consequently,

if a researcher intends to utilise a binary outcome for one of the endpoints, they must

employ a normal approximation to align it with the established framework.

Considering that ADs rely on data available at the interim analysis to inform adapta-

tions, an optimal timing for the interim analysis was proposed. The key finding was that

conducting the interim analysis when 65% (θ = 0.65) of the data had been collected was

optimal for cases where the correlation between the endpoints is treated as unknown in

the FWER control requirement. Conversely, the optimal timing of the interim analysis

reduced from θ = 0.75 when ρ = 0.25 to θ = 0.65 when ρ = 1 in the case of treating the

correlation as known for the FWER control requirement. Thus, the larger the assumed

value of ρ, the earlier the optimal timing of the interim analysis. It was also established

that a strong correlation between the intermediate and definitive outcome translated into

a reduced required sample size. Furthermore, the results indicated that having precise

knowledge of the assumed correlation was not really essential, as the variation in sample

size from assuming no correlation to assuming a perfect correlation was minimal.
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These findings have some implications for trials in LMICs, and by extension HICs.

First, the impact of the limitation related to delayed outcomes in ADs is mitigated because

the intermediate endpoint offers a quick measure to guide adaptations in the definitive

endpoint. This feature of the proposed design, combined with the integration of two trial

phases into a single trial, will accelerate the conduct of regulated trials within the region.

The second benefit stems from its cost-effectiveness. While the seamless design results

in a relatively small reduction in the required sample size, they significantly decrease the

number of patients for whom the definitive endpoint needs to be measured. Thus, if the

definitive endpoint involves an expensive piece of equipment, even the smallest reduction

in sample size could lead to substantial cost savings, particularly for a large-scale trial

conducted in an LMIC where resources are limited. Therefore, the reduced sample size in

comparison to traditional non-ADs, and the use of a less expensive endpoint to identify

the treatment arm for subsequent data collection make the design more cost-effective.

Whether this is true, of course, depends on whether it is considered acceptable to collect

the definitive endpoint only for those patients on the control and selected treatment arms.

6.1.2 Chapter 3: A review of approaches to specifying the intra-cluster

correlation and other design parameters

To motivate the subsequent chapters’ development of CRT methodologies, this chapter ex-

amined various approaches to specifying the ICC and other parameters influencing sample

size. The key objectives included: i) unveiling the complexities related to the selection

and justification of the assumed values for sample size estimation, ii) identifying the values

commonly observed in the analysed primary outcomes, and iii) evaluating adherence to the

CONSORT extension in terms of reporting. Trials reported in the HTA journal were used

for this review based on the comprehensive nature of such reports and their lack of pub-

lication bias. Of the 54 articles that were identified from a search of PubMed, 34 of them

met the eligibility criteria. Specifically, we (myself, James Wason, and Michael Grayling)

were interested in trials that performed power calculations for which the parameters of

interest could be extracted.

Contrary to expectations from the HTA journal, the ICC and other design parameters

were poorly reported. Many HTA reports did not adhere to the CONSORT guideline of in-

dicating the uncertainty around the assumed ICC, while others did not justify the assumed

ICC or SD. Of those that reported the ICC, the study’s findings highlighted a significant

disparity between assumed and observed ICCs, with assumed values often surpassing ob-

served values. The indication that many trials may have been overpowered raises concerns

about potential research waste and ethical considerations, particularly concerning human

subjects. While trialists generally favour an overpowered trial over an underpowered one,

the extent of overestimation plays a critical role in this preference. However, there was no
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standardised method identified in the review for inflating the required sample size to ad-

dress the risk of being underpowered or to accommodate patient dropouts. Some studies

allow for a 10% increase in the estimated sample size, while others adjust more or less.

These informal approaches may inflate the sample size unnecessarily and could potentially

expose patients to drugs whose full efficacy and safety profiles are not fully understood

before the trial commences. These findings underscored the importance of using accurate

parameter estimates for sample size calculations and laid the foundation for the methods

developed in the subsequent chapters where uncertainty in the sample size parameters is

formally captured using a prior distribution to estimate the required sample size.

6.1.3 Chapter 4: A hybrid approach to designing parallel-group and

stepped-wedge cluster randomised trials

The review in Chapter 3 led to an evaluation of the impact of uncertainty in the ICC on

the efficiency of sample size requirements for both parallel-group and stepped-wedge CRT

designs. These two CRT designs have wide utility in practice, therefore methods developed

around them could be useful in practice. To enable uncertainty at the design stage to be

incorporated into the design specification, I described how sample size calculation can be

performed for both types of CRT design in the ‘hybrid’ framework, which places priors on

design parameters and controls the expected power in place of the conventional frequentist

power. A comparison of the PG-CRT and SW-CRT designs was conducted by placing Beta

or truncated normal priors on the ICC, and a Gamma prior on the standard deviation.

The findings suggested that, in instances where the mean ICC is greater than 0.1

and the uncertainty regarding the ICC captured by the SD is greater than 0.16, a SW-

CRT design tends to be more efficient than a PG-CRT design. Even for a prior ICC

distribution with a small mode, moderate prior densities on high ICC values can lead to a

SW-CRT being more efficient because of the degree to which a SW-CRT is more efficient

for high ICCs. Moreover, with careful specification of the priors, the designs in the hybrid

framework can become more robust to, for example, an unexpectedly large value of the

outcome variance. Therefore, when there is difficulty obtaining a reliable value for the ICC

to assume at the design stage, the proposed methodology offers an appealing approach to

sample size calculation.

In the context of disease epidemics prevalent in LMICs such as ebola, HIV, tuberculosis,

and others, vaccine trials are crucial for developing effective remedies. In the case of

vaccine trials in LMICs, where the burden of infectious diseases is high, the SW-CRT

design emerges as a pragmatic choice. That is, the SW-CRT design’s efficiency in sample

size and its flexible, gradual implementation make it a potentially advantageous choice for

trials in LMICs. It also aligns with the practical constraints and ethical considerations

often encountered in these settings, contributing to the feasibility and success of trials
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aimed at improving health outcomes. Thus the aforementioned findings could be useful

ones. Nonetheless, we note again that its design and analysis are complex relative to the

PG-CRT. Therefore, although the required sample size is an important consideration in

selecting a trial design, the right balance must be struck based on the objectives and other

considerations of the trial before selecting a CRT design.

6.1.4 Chapter 5: A hybrid approach to sample size reestimation in clus-

ter randomised trials

An inherent limitation of the approach in Chapter 4 is its reliance on the choice of prior at

the design stage. The design provides no opportunity to evaluate whether the selected prior

correctly reflects the data from the intended trial until the trial reaches completion. To

mitigate against this limitation, an AD was next introduced wherein pre-trial knowledge

about the ICC is captured by placing a prior on it and updated at an interim analysis

using study data. In this chapter, only the PG-CRT design was considered since it is more

responsive to variations in the ICC compared to the SW-CRT design.

In the proposed methodology, I began by describing how SSRE can be performed in

both the frequentist and hybrid frameworks. As increasing the number of clusters typically

has a bigger impact on power than increasing the cluster size does, I focused on interim

updating of the required number of clusters throughout. The primary outcome of the

motivating example was continuous and normally distributed with known variance σ2.

The analysis utilised a linear mixed model. A truncated normal distribution was selected

for the prior placed on the ICC. Given the prior, constructing the posterior for the ICC

required knowledge of the likelihood; Fisher’s approximation for the variance component

of the ICC was used as the likelihood, with MCMC methods then employed to sample from

the posterior. Here, the SSRE design can be conceptualised as an attempt to determine

the sample size required under the assumption that the true parameters are known. The

metrics used to evaluate the performance of the SSRE ‘estimators’ were thus their bias

and MSE in the final re-estimated required sample size. A well-performing SSRE method

was expected to exhibit a bias close to 0 and a low MSE.

On average, both the hybrid and frequentist approaches mitigated against the im-

plications of misspecifying the ICC during the trial’s design stage. Furthermore, both

frameworks yielded SSRE designs with approximate control of the type I error rate to

the desired level. The study clearly illustrated how the hybrid approach can minimise

the significant variability in the reestimated sample size observed within the frequentist

framework, contingent on the informativeness of the prior. This implies that the hybrid

approach could provide benefits for CRTs employing SSRE, especially when there is avail-

able data or expert opinion to guide the choice of ICC prior. It was further shown in the

results that the greatest utility of the hybrid approach is likely observed in scenarios with
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low-quality evidence available for informing the choice of prior, as SSRE is less likely to

be utilised when substantial data are available.

These findings also have notable implications for trials in LMICs. Most prominently,

given that LMICs face challenges in routinely collecting high-quality data due to limited

infrastructure and resources, an approach that proves beneficial in scenarios of low-quality

data becomes particularly valuable.

Similarly, this study also had some limitations. First, the consideration of only the PG-

CRT design restricts the generalisability of the findings to other CRT designs; different

CRT designs may exhibit distinct characteristics, rendering the results not universally

applicable. For example, the SW-CRT design is robust against variations in the ICC.

Consequently, changes in the prior following the interim analysis may not have a significant

impact on a SW-CRT design when compared to a PG-CRT. Secondly, the study focused on

normal outcomes, which might not capture the diversity of outcome data types encountered

in various research settings. Future studies could enhance their scope by exploring different

types of outcome data with varied prior distributions. This would contribute to a more

comprehensive understanding of the proposed methods across a broader range of scenarios.

6.2 Non-methodological recommendations

In addition to the methodological issues considered in this thesis, I recognise that other

non-methodological issues need to be addressed to obtain a holistic solution to the barriers

to conducting trials in LMICs. In what follows, I comment on a few of these issues. They

include:

• Capacity building: LMICs need to provide training and education for researchers,

healthcare professionals, and ethics committees to enhance their understanding of

AD methodologies, ethics, and regulatory requirements. It often happens that trials

conducted within LMICs lack locally-led professionals such as PIs, data managers,

lead statisticians, etc. (Pai, 2011; Zegers-Hochschild, 2011; Franzen et al., 2013b,a).

• Building of research infrastructure: Despite the WHO statement in 2005 em-

phasising the international priority of establishing African-owned research centres

capable of conducting their own clinical trials (Matsoso et al., 2005), progress has

been limited due to a lack of infrastructure (Cardoso et al., 2015; Zegers-Hochschild,

2011). Therefore, LMICs should invest in building and strengthening research in-

frastructure, including research centres, laboratories, and data management systems.

This can improve the capacity to conduct high-quality research.

• Ethical oversight and regulatory framework: Another major setback to con-

ducting trials in LMICs is the delay and complex ethical approval by regulatory
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bodies (Seruga et al., 2014; Pai, 2011; L. Gómez et al., 2015; Sulthan, 2015; Aboul-

ghar, 2011). Hence, it is vital to strengthen ethical review processes to ensure they

are swift and conform to international standards while addressing cultural sensi-

tivities and community engagement. In addition, clear and transparent regulatory

frameworks for research that ensure patient safety and data integrity while facilitat-

ing efficient research processes should be established.

• Disease-specific research: Given that LMICs do not have the needed infrastruc-

tural capacity for all trials, it is important that they focus on research areas that

are relevant to their specific health challenges, such as diseases disproportionately

affecting these regions.

Additionally, researchers within LMICs should advocate for government support and

funding for research, increase public awareness about clinical research, and foster inter-

national collaborations between LMIC institutions, HICs, and research organisations for

technical expertise and knowledge sharing. By implementing these strategies and working

collaboratively, LMICs can create an environment conducive to conducting impactful and

ethically sound clinical research that addresses their unique healthcare challenges.

6.3 Areas for future work

Measurement error is a challenge that could negatively affect the validity and reliability

of results. Hence, the ability to minimise its impact contributes to the overall success of

the trial. It is anticipated that measurement error may be more common in an LMIC

setting since cheaper data collection and measurement methods may be employed due to

limited resources. A possible approach to handling this challenge is to develop an internal

pilot design where an intermediate and definitive endpoint is measured at the first stage.

During the interim analysis, the measurement error between them is quantified to enable

the trialists to choose the sample size for the remainder of the trial. Since we compute

measurement error at the interim analysis, we can subsequently not measure the more

expensive definitive outcome in the second stage, having controlled the measurement error

quantified at the interim analysis. Consequently, the intermediate endpoint is measured

during the second stage for the remainder of the trial. This technique could build upon

methodology for a single outcome trial (Wason et al., 2014) where the difference between

a standard and a biomarker-direct treatment group is quantified, and for a multi-outcome

trial (Law et al., 2020) where endpoints are selected at an interim analysis. To the best of

my knowledge, there is no study on the impact of measurement error in adaptive trials or

how its impact can be mitigated. This research gap leaves numerous avenues for research

in this area. Therefore, future work could explore measurement errors within the drop-
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the-loser design. Specifically, we could investigate the case where the evaluation of the

Type I error rate would depend on the result of quantifying the measurement error and

then subsequently testing the intermediate outcome at the final analysis.

Also, an extension to the drop-the-loser design in Chapter 2 could focus on exploring

joint distributions for different types of outcome data, such as binary and time-to-event.

The importance of these two endpoints in clinical trials lies in their ability to provide

clear interpretable outcomes and dynamic time-related information respectively. Together,

they contribute to a thorough understanding of intervention effects and patient outcomes.

Although a normal approximation could work in this instance, further studies could employ

conditional distributions between the two endpoints, such as methods proposed by Stallard

(2010), for a higher level of precision. The MIDFUT trial, as documented by Brown et al.

(2020), could serve as a motivating example for such methods. This was a seamless phase

II/III, open, parallel-group, MAMS design of patients with hard-to-heal diabetic foot

ulcers. The trial utilised a binary endpoint in phase II (at least 50% reduction in index

ulcer area at 4 weeks post-randomisation or otherwise) and a time-to-event endpoint in

phase III (time to healing of the index ulcer). Additionally, it will be important to assess

whether the methodology regarding the FWER control in this work remains applicable in

this particular context.

A notable extension to the most basic PG-CRT design emerges in settings where tri-

alists are interested in assessing the effect of an intervention relative to some baseline

measurement; this design is sometimes referred to as a CRT with before and after obser-

vations (CRT-BA) (Eldridge & Kerry, 2012; Hemming & Taljaard, 2016). This design,

in some cases, can be highly efficient and increasingly becoming widespread in their use.

For brevity, however, the thesis did not consider this design. In this regard, future stud-

ies could incorporate the hybrid approach into this CRT design and assess its properties

relative to the more classical ones which were considered in this study. Considering the

similarities between the cluster crossover trial and the SW-CRT designs, the comparison in

Chapter 4 could be extended to the cluster crossover trial and the CRT-BA designs. This

comparison would aim to evaluate how uncertainty in the ICC influences the determination

of efficiency in terms of sample size between the two designs.

Lastly, the use of Bayesian assurance in sample size determination has been gaining

popularity recently. Therefore, studies that compare the hybrid and fully Bayesian assur-

ance can add to the existing literature and provide options for clinical researchers.

6.4 Conclusions

The importance of locally-led clinical research, particularly in populations within LMICs is

widely acknowledged. This is deemed crucial for accurately identifying problems, propos-
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ing culturally appropriate and cost-effective interventions, investigating implementation

strategies, and overcoming obstacles to the adoption of recommended approaches. To

contribute to the international priority set by the WHO for bespoke trials, the specific

focus was on developing methods that address the major challenge of funding in trials,

aiming to optimise limited resources. The methods proposed in this thesis are robust,

cost-effective, and expedite trials. The hope is that these methods will therefore find

utility within LMICs, helping bridge the research gap between LMICs and HICs.
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Appendix A

A.1 Software

Code to reproduce the results in each chapter is available from https://github.com/

sks2023/article_codes.
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