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Abstract 
Introduction 
Ophthalmology incurs an increasing number of NHS hospital outpatient appointments, more 
than any other specialty. Neovascular age-related macular degeneration (nAMD) makes the 
third largest contribution to ophthalmology appointments. A sight-threatening imbalance 
between demand and capacity for these macular appointments could be addressed by a 
well-validated artificial intelligence (AI) technology, yet to be prospectively applied in NHS 
research or practice. 

This thesis aims to explore the factors which limit clinical AI implementation and develop 
actionable solutions for the implementation of AI-enabled macula services in the NHS. 

Methods 
The thesis applies a pragmatist approach, draws on the disciplinary field of implementation 
science, and uses mixed methods. Qualitative evidence synthesis, qualitative interviewing, a 
retrospective diagnostic accuracy study and theoretically informed analyses are performed. 

Findings 
Five distinct stakeholder groups illuminate the interdependent factors that influence clinical 
AI implementation. AI-enabled macula services offer broad value recognised by most 
stakeholders who prioritise evidence that implementation will not lead to sight loss. A 
simulated AI-enabled medical device used a candidate AI technology to independently make 
nAMD treatment decisions with less undertreatment and less overtreatment than 
consultant-led-care. The AI-enabled intervention to operationalise this medical device 
should delegate treatment planning decisions away from ophthalmologists and partly apply 
freed resources to improve patient-clinician communication quality. Healthcare pathway 
analysis proposed AI use and training to optimise the safety, effectiveness, and fairness of 
AI-enabled macula services. 

Conclusions 
The novelty of clinical AI and limited connectivity between its stakeholders sustain the 
implementation gap observed generally and within macula services. The problem of 
mismatched demand and capacity in macula services is real for all key stakeholders and an 
AI solution appears able to offer value to each. NHS organisations are free to locally 
implement AI-enabled macula services and this thesis provides evidence to inform if and 
how they choose to proceed. 
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Chapter 1: Introduction 
This introductory chapter aims to equip readers with the necessary foundations in clinical 
context, technology, and the disciplinary field of implementation science. 

Clinical context: Ophthalmology is the busiest hospital outpatient specialty, with just 24% of 
departments reporting adequate consultant capacity to meet clinical demand in 2022. 
Around 17% of all these ophthalmology outpatient appointments relate to the management 
of age-related macular degeneration, only the neovascular form (nAMD) of which is 
treatable with 3-8 intravitreal injections (IVI) per year, often for more than a decade. Once a 
diagnosis of nAMD has been made, the major demand for clinician input comes from 
repeated decisions about when sequential IVIs should be planned for each patient. These 
decisions are largely made from optical coherence tomography (OCT) imaging of the 
macula. If the requirement for clinician involvement in this single repeated decision-making 
process could be reduced, then there could be significant relief to the sight-threatening 
imbalance between capacity and demand in UK Ophthalmology. 

Technology: Conceived more than 70 years ago, artificial intelligence (AI) is receiving 
increasing attention and investment from government, industry and academia in healthcare 
and other sectors. This most recent revival of interest in the field came from a high-profile 
step change in the performance of a subtype of AI technologies in 2012, known as deep 
learning. Despite the optimism for deep learning enabled healthcare interventions, there 
are few examples of their real-world implementation and even fewer with clear evidence of 
positive outcomes. This persistent translational gap has become known as the “AI chasm”. 
As a clinical specialty that is relatively dependent on image interpretation, particularly in the 
management of nAMD, ophthalmology is a priority specialty for AI innovation. However, 
there are no known investigations of AI-enabled macula services. 

Implementation science: Implementation science is a relatively young disciplinary field 
drawing on diverse epistemological approaches and disciplines across a spectrum of 
research and practice. Its pragmatic goal of bridging know-do gaps to improve real-world 
healthcare necessitates this multi-disciplinary approach. Implementation research focuses 
on shaping and evaluating healthcare interventions and implementation strategies. A key 
aspect of implementation science is the application of theories, models or frameworks 
(TMF) to inform or interpret implementation efforts and outcomes in a particular healthcare 
context. 

Aim: This thesis aims to explore the factors which sustain the AI chasm in healthcare 
generally and develop actionable solutions for the implementation of AI-enabled macula 
services in the National Health Service (NHS).  
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1.1 Service Demands on UK Ophthalmology 
A threat to the efficacy of United Kingdom (UK) National Health Service (NHS) 
ophthalmology services is posed by insufficient ophthalmologist availability, in the face of a 
growing clinical need .[1] A 2022 workforce census found that only 25% of hospital eye units 
report an adequate consultant workforce for current service demands, and 25% of 
consultant ophthalmologists plan to leave the NHS in the next 5 years. Strategic adaptions 
to meet the national shortfall have included a small increase to speciality training capacity, 
extending the roles of allied health professionals and revising accreditation pathways 
besides specialty training.[2-4] The impact of these interventions so far appears inadequate 
as ophthalmology continue to incur more clinic appointments, having overtaken 
orthopaedics as the busiest hospital outpatient speciality in 2017/18 (Figure 1).[5] In the 
short to mid-term, this capacity-demand mismatch has been exacerbated by the suspension 
of many ophthalmology services during Covid-19, producing lists of over 600,000 awaiting 
hospital ophthalmology appointments.[6, 7] Ordered by size, the three largest disease 
contributors to ophthalmology service demands are cataract, glaucoma and age-related 
macular degeneration (AMD). All these disproportionately affect older populations who 
were encouraged to defer non-urgent care episodes due to their greater risk from Covid-
19.[5] In the long-term, the context of an ageing population also means that demand for 
ophthalmology services can be expected to continue rising and so sustainable solutions are 
required to meet these needs.[8] 

 
Figure 1. Outpatient appointments from NHS England in ophthalmology (full line) and orthopaedics (dashed line).[5] 

1.1.1 Age-related macular degeneration 
The clinical coding method to establish disease-linked clinic demands within the NHS is 
retrospective and performed by non-clinical staff, but the resulting data suggest a 
contribution of 17.0% of all ophthalmology outpatient appointments in 2022/23.[5] 
Consequently, AMD services present a potentially impactful exemplar in which to rebalance 
clinical capacity and demand. AMD is the leading cause for certification of visual impairment 
in the UK and affects just over a quarter of Europeans aged over 60 to some extent.[9, 10] 
AMD affects the macula, which is the part of the retina which facilitates high detail central 
vision and which structures toward the front of the eye focus light toward (Figure 2). 
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Figure 2. Ultra-wide field enface photograph of a healthy right retina with the macula marked by a dotted black circle. 

Like all the retina, the macula converts light that enters the eye into electrical impulses 
which travel to the visual cortex in the brain and are experienced as vision. AMD is a 
progressive disease, but it often affects people towards the end of their lives and progresses 
slowly. Consequently, most people with AMD die from unrelated causes before their 
symptoms pose any substantial limit on their quality of life. In terms of the appearance of 
the retina, all stages are characterised by drusen. Drusen are lipid deposits within the 
basement membrane of the retina that appear as yellow-coloured dots of varying size 
(Figure 3). 
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Figure 3. Right macula (greatly magnified compared to figure 2) with large drusen and small spots of pigmentary change 
centrally; an example of intermediate age-related macular degeneration. 

Whilst early stages of AMD are the most prevalent, the more severe stages of the disease 
can remove the central vision of one or both eyes completely. A classification system of 
early, intermediate and late is used to characterise individuals’ disease and also the 
likelihood of them progressing to late AMD in the near future (Table 1).[11] 

Table 1. Clinical classification of age-related macular degeneration (AMD) proposed by the Beckman Initiative for Macular 
Research Classification Committee.[11] 

AMD stage 
Normal 
ageing 

changes 
Early AMD Intermediate 

AMD 

Late AMD 

Neovascular Geographic 
atrophy 

Clinical 
feature 

Small drusen 
(<63 µm) 

Medium 
drusen (63-
125 µm) 

Medium 
drusen and 
pigmentary 
change or 

Intra or sub-
retinal fluid 
+/- 
haemorrhage 

Patchy 
atrophy of 
the retinal 
pigment 
epithelium 
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large drusen 
(>125 µm) 

and outer 
retina 

Unfortunately, there are no well-evidenced treatments for most stages of the disease. 
Management often focuses on lifestyle advice to lower the risk or rate of progression and 
low visual aid prescription and social support to help individuals to make the most of the 
vision they retain.[12] Most risk factors for AMD are non-modifiable but changes to diet, 
smoking cessation and exercise may lower the risk and rate of disease progression (Figure 
4). 

 
Figure 4. Risk factors for Age-related Macular Degeneration (AMD), with modifiable factors in bold type.[13] 

The patchy loss, or atrophy, of retinal tissue that can occur in late AMD causes a 
corresponding loss of central visual field which can also contain the perception of 
scintillating light, particularly notable in dim ambient light conditions (Figure 5).  

 

• Older age 
• Presence of AMD in the other eye 
• Family history of AMD 
• Smoking 
• Hypertension 
• Body mass index of 30Kg/m2 or higher 
• Diet low in omega 3 and 6, vitamins, carotenoid and minerals 
• Diet high in fat 
• Lack of exercise 
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Figure 5. Annotated water colour painting volunteered by interview participant from chapter 4 to depict their central visual 
field and experience of scintillation. LED = Light Emitting Diode 

1.1.1.1 AMD complicated by macular neovascularisation 
A notable exception to the absence of disease modifying treatment for AMD is neovascular 
AMD (nAMD). The rapidly blinding prognosis of nAMD was transformed in 2008 by the 
introduction of regular injections into the eye (intravitreal injections or IVI) of anti-vascular 
endothelial growth factor (anti-VEGF). nAMD is thought to affect 1.4% of Europeans aged 
over 60.[9] It involves the pathological growth of blood vessels from the blood-rich choroid, 
a tissue which lies between the retina and the externally visible white sclera. The choroid 
usually provides oxygen and nutrients to the outer most third of the retina by diffusion 
alone, whilst the inner two thirds of the retina receive blood from the retinal artery, the 
branches of which are macroscopically visible lying ‘on top’ of the retina (Figure 2). The 
pathological choroidal vessels which characterise nAMD, grow through the normal ‘blood-
retina-barrier’ and underneath or into the retina itself, where they leak fluid and/or blood. 
This can cause rapid sight loss in contrast with other forms of AMD which typically progress 
in a timescale of months or years. The swelling of the retina associated with this fluid 
leakage also leads patients’ vision to become distorted and blurred, such that lines that 
ought to be straight are not perceived as such (Figure 6). 
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Figure 6. Annotated pencil sketch volunteered by interview participant from chapter 4 demonstrating visual distortion from 
their right eye, contrasting with normal perception of a stain glass window from their left eye. 

1.1.1.2 nAMD treatment 
Early treatment paradigms in the 1980s involved focal laser photocoagulation of the retina. 
This treatment damages the retina, but when this laser damage is not in the very centre of 
the retina, in an area known as the fovea, its visual impact is relatively mild. As a result, laser 
treatment for nAMD was only recommended in the minority of cases where 
neovascularisation occurs away from the fovea.[14] In 2004 a prospective clinical trial 
demonstrated that a course of anti-VEGF IVIs reduced clinical signs of nAMD and also 
improved vision without incurring the retinal trauma associated with laser treatment.[15] In 
the UK, two anti-VEGF agents were approved for clinical use in the NHS in 2008, 
ranibizumab and pegaptanib. This was followed by a third approved in 2013, aflibercept, 
and a fourth in 2021, brolicizumab.[16-18] Controversially, an unpatented and less costly 
first-generation anti-VEGF agent, bevacizumab, remains unlicenced for the treatment of 
nAMD by the Medicines and Healthcare products Regulatory Agency (MHRA). Consequently, 
a minority of NHS centres use it routinely despite a successful legal challenge.[19] There are 
hopes that some of the concerns around excessive influence and benefit from 
pharmaceutical stakeholders will be resolved by the on-going introduction of generic bio-
similars to the second generation anti-VEGF ranibizumab following MHRA approval in 
2022.[20, 21] 

The major risk of intravitreal treatment (IVT) is the rare but blinding complication of 
infection inside the treated eye, endophthalmitis, which occurs around 1 in 2000 
procedures.[22] The other disincentives to overtreatment are provider resource costs and 
patient inconvenience. Courses of Anti-VEGF IVIs have remained the standard of care for 
nAMD since their introduction in 2008. Treatment protocols to guide their use, linking the 
frequency of IVT to vision and imaging signs, are well established (Figure 7).[23] The 
continuing nature of these treatment protocols, improvements in nAMD diagnosis and an 
aging population have all contributed to a more than 10-fold rise in the number of IVIs over 
the last decade. A further doubling of nAMD IVT requirement is forecast for the decade to 
come and new long-term IVT regimens to treat the other form of late AMD, geographic 
atrophy, are expected to be approved by the National Institute for Health and Care 
Excellence (NICE) in 2024.[24, 25] This poses significant challenges to the limited human and 
financial resources available in the NHS which already struggle to meet current treatment 
needs.[26, 27] Real-world data from an NHS centre showed that even before the impact of 
the Covid-19 pandemic, delay in delivering planned treatments for nAMD was common and 
associated with sight loss for the patients concerned.[28] This same NHS centre had recently 
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displayed nAMD visual outcomes better than the mean of 12 large UK centres.[29] Given 
that large-scale real world evidence links a failure to deliver timely treatment to poorer 
visual outcomes, this suggests that such delays are widespread across the UK.[30] Since 
these observations, the Covid-19 pandemic has introduced additional nAMD treatment 
delays and avoidable sight loss, further developing the urgent need to augment clinical 
capacity for nAMD treatment.[31] 

 
Figure 7. Figure reproduced from Ross et al, 'The recommended aflibercept T&E pathway for the treatment of patients with 
nAMD. IVT = Intravitreal treatment, VA = Visual Acuity, OCT = Optical Coherence Tomography, T&E = Treat and Extend, 
ETDRS = Early Treatment of Diabetic Retinopathy Study, nAMD = neovascular Age Related Macular Degeneration.[23] 
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1.1.2 Optical Coherence tomography in AMD diagnosis 
Optical coherence tomography (OCT) is a non-contact imaging technique based on analysing 
interference patterns in emitted and reflected coherent infra-red light.[32] It is well 
tolerated by patients as positioning requirements are minimal, the examination takes 
seconds and no eye drops are required. For clinicians OCT provides micron-resolution cross-
sectional imaging of the retina which can exceed the resolution required to diagnose and 
monitor eye diseases, even in the context of some ocular media opacity such as cataract or 
corneal disease. Another valuable feature is the incorporation of software which locks on to 
landmarks in an individual’s unique retinal vasculature, ensuring that the location of imaging 
is reproducible over time.[33] Drusen are the key feature on OCT imaging which support the 
diagnosis of AMD and intraretinal fluid (IRF), subretinal fluid (SRF) and subretinal hyper-
reflective material (SHRM) can all indicate the additional presence of choroidal 
neovascularisation, indicative of nAMD. These same features can be used to track treatment 
response and disease activity in nAMD over time (Figure 7). More ambiguous or complex 
diagnoses can be supported by other imaging modalities including OCT angiography, which 
can take around 10s rather than the 2s required by standard OCT. Fundus fluorescein 
angiography is another relevant imaging modality which requires intravenous injection of a 
fluorescent dye during sequential imaging.[34] 

1.1.2.1 OCT in the care pathway 
OCT has become a core diagnostic test in ophthalmology hospital services, particularly in 
retina, glaucoma and neuro-ophthalmology services.[35] Imaging equipment has become 
prevalent in community optometrists in recent years too, though there is no clear NHS 
healthcare pathway in which it sits. At present members of the public can pay a fee (usually 
less than £40) to have OCT imaging added into their community optometry appointment. 
Not all optometrists are experienced with OCT interpretation and incidental findings can 
lead to unnecessary referrals to hospital ophthalmology services.[36] Trials expected to 
report in 2024 are exploring a more established role for community-based OCT in the 
future, aiming to reduce the demands on hospital services and improve convenience for 
patients.[36-38] There are several efforts to miniaturise and cost-cut OCT imaging 
equipment so that private ownership and home OCT at scale become tenable.[39-41] 

1.1.3 Treatment pathways for nAMD 
Patient journeys with nAMD in the UK are variable but can be split into four main 
components (Figure 8). 

 
Figure 8. Stages of the patient journey for neovascular Age-related Macular Degeneration (nAMD) and their typical 
location.  
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1.1.3.1 Biennial screening in optometry services 
First presentations of nAMD are common through contact with a primary care optometrist. 
This is either through routine eye examinations, which should take place at least biennially 
for all adults, or an additional patient-initiated appointment.[42] Depending on the local 
context, these optometrists can then request for the patient’s registered general 
practitioner to make an urgent referral to the hospital ophthalmology service, typically the 
medical retina or emergency eye department services. The AMD NICE clinical guideline, 
updated in 2018, requires that these referrals are made within one day of presentation.[13] 

Patients can also self-refer with nAMD-related visual symptoms to hospital ophthalmology 
services through eye emergency departments. This can also be facilitated through public 
facing NHS triage services, such as the 111 service, which patients may contact in the first 
instance. As with general emergency departments in the UK, NHS providers are incentivised 
to ensure patients do not wait longer than four hours to be seen.[43] Whilst it is not cost 
effective for hospital eye services, emergency eye department presentation often 
represents the quickest route to hospital ophthalmology services for members of the public.  

1.1.3.2 Diagnosis and initial planning in ophthalmology services 
The AMD NICE guideline requires ophthalmology services to make a diagnosis of nAMD and 
offer anti-VEGF treatment within 14 days of receiving a referral.[13] In addition to referrals 
from the community, there is also a referral contribution from other ophthalmology sub-
specialty services who incidentally diagnose nAMD during the course of managing other eye 
conditions. The relatively high incidence of nAMD and short time scales demanded by the 
pathology and guideline require that hospital ophthalmology services commit significant 
clinical resources toward maintaining capacity to diagnose nAMD. This typically requires a 
consultation with the patient, retinal OCT, visual acuity (VA) assessment and slit lamp 
examination. When the diagnosis of nAMD is confirmed, the consultation needs to contain 
an explanation of the diagnosis, prognosis, potential lifestyle modification opportunities to 
lower the risk of fellow eye involvement and an informed consent regarding anti-VEGF 
treatment (Figure 7). 

1.1.3.3 nAMD treatment delivery and monitoring 
Depending on the length of diagnosis, whether the diagnosis is unilateral or bilateral and 
activity of nAMD in an eye, the interval between patients’ treatment and monitoring 
appointments can vary from 4 – 16 weeks.[23] Pathways, staffing and the settings for the 
delivery of these appointments vary considerably between providers with the shortest 
involving IVT of anti-VEGF only and the longest also incorporating VA assessment, OCT 
imaging, consultation and clinical examination. NHS providers offer these services through 
consultant ophthalmologist led clinics, with appointments delivered by the consultants 
themselves, ophthalmologists at various stages of training and suitably qualified and trained 
allied health professionals, most commonly nurse specialists, optometrists and 
orthoptists.[44] All aspects are most commonly delivered face-to-face (F2F) by clinicians in a 
hospital setting, but increasingly pathways making use of telemedical approaches, outreach 
clinics and community-based IVT delivery are reported.[45] Apart from managing the 
interval between IVIs, this disease monitoring stage of the patient journey must also 
continually check the indication for treatment is still valid, screen for ocular co-morbidities 
and continually consider social care support interventions. These include identifying VA 
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below legal driving standards and initiating registration for partial or severe sight 
impairment. 

1.1.3.4 Treatment cessation and outpatient discharge 
There are no firm criteria for treatment cessation, but the joint decision is made between 
the clinician and patient when the remaining vision available for preservation seems 
disproportionate to the clinical risk, cost and inconvenience of on-going treatment. This 
typically occurs after AMD has caused substantial anatomical damage to the macula or 
when no disease activity has been noted from nAMD after periods with no IVIs, or low 
frequency IVIs.[13, 23] In the case where severe anatomical damage precludes the value of 
future IVTs, patients may be discharged from ophthalmology services immediately assuming 
the patient understands the rationale and the need for self-monitoring or community 
monitoring of the fellow eye. Where disease activity appears to have ended, an unspecified 
period of decreasingly frequent clinic visits without treatment are typically observed prior to 
discharge to the community for self-monitoring or community optometry monitoring for 
disease reactivation.[37] 

1.1.3.5 Targeting the nAMD pathway to address the imbalance of capacity and demand 
To identify where the clinical pathway for nAMD could most impactfully be targeted to 
redress the growing imbalance between demand and clinical capacity in the NHS, the scale, 
feasibility and alternatives of any innovation should be considered. Given its cyclical nature 
and high requirements on hospital ophthalmology service capacity, the treatment and 
monitoring stage of the patient journey (Figure 8) clearly represents the greatest scale of 
potential resource saving for the NHS. It is also true that within this stage, where sensitive 
discussions around diagnosis, prognosis and consent for treatment have already taken 
place, the decision-making process that is the main demand for clinicians’ time is based on 
simple objective rules (Figure 7). Consequently, the treatment and monitoring stage of the 
patient journey seems a feasible target for some degree of automation through OCT-based 
clinical decision support (CDS). Such a strategy for addressing demand-capacity imbalance in 
retina care more broadly has also been proposed through an international Delphi 
process.[46] Artificial intelligence (AI)-enabled examples of such CDS have already been 
designed and well validated in pre-clinical settings.[47] Considering alternative clinical 
pathway targets, AI is already being evaluated as a non-interventional arm in prospective 
clinical trials to reduce the burden on hospital ophthalmology services in both the diagnosis 
and treatment cessation steps.[36, 37] To our knowledge, no research is published 
evaluating AI-enabled macula services. Therapeutics innovations aiming to extend the 
efficacy of each IVT are also in various stages of development and clinical evaluation but 
would add rather than detract value to CDS innovations.[17, 48] This is because, whilst the 
average treatment interval demanded by nAMD pathophysiology appears to increase there 
is still marked heterogeneity in treatment response between eyes. This enhances the value 
proposition for any low resource means of individualising treatment regimens and maintain 
individual safety across a population. 

1.2 Artificial Intelligence 
AI has been established for more than 70 years, over which time the language, science and 
interest has evolved.[49] At present there are many overlapping but varied definitions for AI 
in use by national and international authorities. According to the Organization for Economic 
Cooperation and Development (OECD):[50] 
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‘An AI system is a machine-based system that is capable of influencing the 
environment by making recommendations, predictions or decisions for a given set 
of objectives. It uses machine and/or human-based inputs/data to: i) perceive 
environments; ii) abstract these perceptions into models; and iii) interpret the 
models to formulate options for outcomes.  AI systems are designed to operate 
with varying levels of autonomy.’ 

 
Figure 9.  Screengrab from paperswithcode.com showing the percentage accuracy of state-of-the-art image classification 
models over time in the ImageNet Large Scale Visual Recognition Challenge. 

Advances made in this field in the last decade have received a great deal of attention across 
society which was instigated by advances in a subset of AI techniques known as neural 
networks. This was exemplified by the leap in performance (Figure 9) demonstrated by a 
neural network known as AlexNet in a high-profile image classification competition, the 
ImageNet Large Scale Visual Recognition Challenge.[51] 

1.2.1 Subtypes of artificial intelligence 
There are several ways in which AI techniques, as set out by the OECD definition above, can 
be categorised. Neural networks represent a subset of AI techniques known as deep 
learning (Figure 10).  
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Figure 10. Venn diagram to illustrate the overlapping scope of the terms artificial intelligence, machine learning and deep 
learning. 

1.2.1.1 Deep learning 
The word ‘neural’ is applied to make an analogy between the mechanisms common to the 
computational architecture applied to deep learning technologies and the anatomy and 
physiology of neurones in biology. In biology each neuron is a cell which can precipitate 
action by maintaining a certain electrical state of polarisation or generating a wave of 
depolarisation which travels down cellular extensions, called axons, to another neurone or 
an effector tissue, like muscle.[52] This wave of depolarisation is generated when the sum 
of various electrical stimuli, commonly from neighbouring neurones, cross a certain 
threshold. In deep learning, neurones are similarly connected, with the precise number of 
connections, known as parameters, and layout of these connections, known as architecture, 
at the discretion of the computer scientist building the model (Figure 11).[53] 

Artificial intelligence 

Machine learning 

Deep 
learning 
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Figure 11. Schematic of neural networks showing the flow of numerical values from and input layer, through hidden layers 
and to an output layer. 

Each neuron receives inputs from several different connections and produces a numerical 
value which is passed in a certain direction down its connections to neighbouring neurons. 
As the numerical value is passed along each of these connections that numerical value is 
changed by a mathematical function, known as a weight, which is specific to that 
connection.[53] Along with all the other numbers received as inputs to the neighbouring 
neuron, this numerical value is combined with those from other incoming connections to 
produce a new numerical value. This process of transforming and passing on numerical 
values continues until all the connections of the network converge on a single neuron which 
holds the output of the network. The learning of the network then takes place as that 
output is compared to a desired output through various different mechanisms. The 
observed disparity between the observed and desired output, known as the loss function, is 
used to repeatedly alter the weights of the parameters across the network with the goal of 
iteratively reducing the observed loss function. This mathematical process of using the loss 
function to iteratively improve the performance of the neural network is known as 
backpropagation.[53] The word ‘deep’ in deep learning indicates that the number of hidden 
layers of neurons between the input and output layers of the network is greater than one 
(Figure 11). 

1.2.1.2 Machine learning 
Similarly to the definition of AI overall, the precise demarcation of the subcategory of 
machine learning (ML) is disputed. ML contains all the techniques referred to as deep 
learning along with additional, generally less computationally demanding techniques. The 
mechanisms of these additional techniques also tend to be more explainable than deep 
learning techniques, i.e. the output can be more readily explained in terms of the way in 
which the input was analysed. These attributes of lower computational resource demands 
and greater explainability of outputs are appealing for high-risk complex applications like 
those in healthcare, but in certain tasks it can result in compromises in performance.[54] An 
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intuitive distinction can be drawn between AI techniques that do and do not satisfy the 
criteria for ML (and/or deep learning) by considering whether the mechanism by which 
inputs are processed is based on a-priori rules, derived from human knowledge, or the data 
itself.  These tools could be distinguished as techniques that are rules or knowledge-based 
(AI which is not ML) or techniques which are not rules or knowledge-based (AI which is also 
ML).[55]  These data-led ML technologies can be further categorised by the nature of the 
outputs they produce (i.e. categorical classifiers or continuous regressors) and the inputs 
which they analyse (imaging, textual, audio, tabular or multi-modal). 

1.2.2 Clinical AI 
AI has been applied to healthcare for several decades and has similarly been subjected to 
varying definitions and terms through this time.[56] These terms include Medical Expert 
Systems, Best Practice Alerts, Health Information Systems, CDS, Digital Health Tools, 
Software as a Medical Device (SaMD) and Clinical AI.[57] Applications have been made for 
varied purposes which can mainly be categorised as CDS, with a minority of applications 
forming clinical treatments in their own right, e.g. therapeutic chatbots, and more 
autonomous CDS which could be perceived as decision automation rather than support. This 
distinction between decision support and automation is both subjective and evocative. As 
CDS in varying forms has been prevalent in clinical practice for decades, most of the tools 
responsible for the on-going surge in clinical AI interest and investment could be more 
specifically described as deep learning enabled CDS. This term acknowledges that some 
elements of a deep learning enabled-CDS may depend on rule-based forms of AI, e.g. the 
decision to recommend antibiotics or not based upon a neural network’s output regarding 
the probability of pneumonia from a chest x-ray. 

1.2.2.1 Use cases in Ophthalmology 
In part due to the prominence of diagnostic imaging in the diagnosis and management of 
ophthalmic disease, it is one of the most prominent medical specialties in AI applications to 
diagnostic imaging.[58] When considering the most recent 12 months of data on the 155 AI 
medical devices approved by the United States Food and Drug Administration (FDA) in from 
August 1st 2022 to July 30th 2023, it is clear that radiology and cardiology products dominate 
real-world clinical AI use, though ophthalmology is ranked fourth (Table 2).[59] 

Table 2. Artificial intelligence-enabled medical devices granted approval by the United States Food and Drug Administration 
between August 1st 2022 and July 30th 2023, by clinical specialty for intended use. 

Specialty n (%) 

Radiology 126 (81.3%) 

Cardiovascular 12 (7.7%) 

Gastroenterology 4 (2.6%) 

Ophthalmology 2 (1.3%) 

Neurology 6 (3.9%) 

Anaesthetics 2 (1.3%) 
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Urology 1 (0.6%) 

The absolute rate of academic publications on AI applications to ophthalmology is also rising 
exponentially, alongside a less smooth but equally striking increase in the rate of publication 
relative to all academic publishing.[60, 61] 

 
Figure 12. Growth of literature related to artificial intelligence in ophthalmology (annual number per 100,000 articles in 
PubMed and total number) – replicated from [60] 

Disease applications within ophthalmology vary but focus on retinal disease and glaucoma, 
the management of which depend heavily on OCT and enface imaging modalities in 
standard clinical practice. Within retinal disease, AMD, other diseases affecting the macula, 
diabetic retinopathy and retinopathy of prematurity are the most common.[62]  Strikingly, 
these applications tend to focus on diagnostic tasks rather than the monitoring and 
treatment of established chronic diseases such as glaucoma and AMD which constitute the 
major clinical burden on ophthalmology services (Figure 8).[5] Screening for diabetic 
retinopathy in enface retinal imaging is the most developed application, with fully scaled 
deep learning-enabled screening pathways in clinical use internationally.[63-65] Other 
clinical applications in diseases affecting the anterior parts of the eye include cataract, iris 
tumours, infectious keratitis, angle closure and keratoconus.[66] 

1.2.2.2 The AI Chasm 
Following the step-change in performance of AI demonstrated by AlexNet in 2012 (Figure 9),  
a renewed surge in policy, industry and academic interest began around deep learning-
enabled CDS, which has not yet subsided.[51, 61, 67, 68] Despite this broad optimism, there 
are only a handful of examples of application in real-world NHS care, which reflects a know-
do gap referred to as the ‘AI chasm’.[69, 70] As such, despite promising pre-clinical 
performance, many implementations have proved operationally infeasible whilst others 
have found the new technology to detract from the current standard of care.[71] 
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To resolve this disconnect between the expectations assigned to deep learning-enabled CDS 
and the reality for real-world care, key stakeholders must share their own perspectives and 
understand others’ on the factors which sustain this AI-chasm. Many factors have been well 
characterised in prior syntheses regarding CDS use, but there appear to be novel factors 
which specifically influence the implementation of deep learning enabled CDS.[56, 57] These 
factors are in part inherent to the technology itself, but also arise from how potential 
adopters perceive it and the wider organisational, social and cultural contexts in which it 
must be implemented.[72] Examples include: 

• the regulatory landscape in which AI implementation must take place is evolving fast 
relative to the years it takes to develop a potential AI use case into a product ready 
to me implemented. This is exemplified by the recently published AI Act from the 
European Parliament.[73] 

• Workforce readiness is another factor which challenges the implementation of AI. 
This has been identified in NHS policy documents for at least 5 years, but still 
remains an active concern with few clear solutions.[74,75] 

• The evidence needs for adoption are largely unclear or unmet. Chief among these is 
economic evidence, which is critical for Health Technology Assessment agencies like 
NICE, but also decision makers within potential adopting organisations reviewing 
business cases. The economic evidence available so far across clinical AI appears 
patchy with differing conclusions across use cases.[76,77] 

The literature describing these distinguishing factors for deep learning enabled CDS is 
relatively scarce and often contains little scientific rigour. However, informative empirical 
investigations are beginning to be published from a handful of deep learning enabled CDS 
use cases, providing valuable insights for proponents of their successful implementation.[64, 
78] This literature is developing slowly and represents heterogeneous tools, adopters and 
contexts across distinct implementation use cases. It will therefore be important to 
understand if, when and how learnings for specific use cases can be leveraged to support 
the implementation of different deep learning enabled CDS to different healthcare niches.  

1.3 Implementation science 
Implementation science is a relatively young disciplinary field which focuses on how and 
why interventions work, rather than testing whether they work or not.[79] It achieves this 
through the application of theoretically-informed and empirical research (Figure 13).[80] 
Whilst the schematic below suggests that implementation research follows on sequentially 
from effectiveness research, it is often hybridised with effectiveness research to increase 
the efficiency through which research can translate interventions into practice.[81] At one 
extreme this can take the form of research primarily focused on evidencing the 
effectiveness of an intervention, but accompanied by non-interventional data collection and 
analysis to understand factors that could influence implementation. At the other, an 
intervention with clear evidence of effectiveness can undergo a clinical trial where the 
difference between intervention and comparator arms is simply the implementation 
strategies which are deployed around the intervention. 
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Figure 13. Schematic of research pipeline and the positioning of implementation research within it reproduced from [80]  

To close ‘know-do gaps’ in healthcare, such as the ‘AI-chasm’ a multi-disciplinary approach 
and across a spectrum of research and practice is required.[70, 82] To ensure scalable value, 
the research involved must also create insights that are relevant across varied innovations 
and contexts, which requires a degree of abstraction. Increasing abstraction helps to make 
insights from one setting at least partly generalisable to others. Decreasing abstraction, 
helps to transform these high-level insights into practical and actionable knowledge for a 
specific situation. This process of abstraction, analogous to the underpinnings of abstract 
art, necessitates an ability to remove or add detail whilst minimising the loss of meaning 
(Figure 14). Ensuring the validity of these abstractions, which can be thought of as the 
process of theorizing, has attracted input from various academic disciplines and their 
accompanying breadth of research paradigms. Attempts to reconcile or promote differing 
perspectives from these paradigms has been a persistent source of agitation within the field 
of implementation science. This agitation may progress the science itself, but often 
threatens the desired accessibility of the field.[83, 84] This is well demonstrated by the 113 
distinct theories, models or frameworks (TMFs) catalogued in a single peer-reviewed library, 
which is merely a fraction of published TMFs relevant to implementation science which have 
been prioritised for peer-review and curation.[85] 
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Figure 14. ‘Bull’, 1945; a series of 11 lithographs by Pablo Picasso. As in the process of theorising, the essence of a 
phenomenon (in this case the bull) is accurately represented with varying degrees of abstraction.[86] 

1.3.1 Theory and implementation science 
Unlike its interface with adjacent and overlapping fields, the importance of TMFs within 
implementation science is uncontested and a good starting point in characterising the field. 
Despite that, the meaning attributed to language applied to TMFs is not standardised, but 
throughout this thesis the acronym TMF will be used as an umbrella term to refer to 
theories and/or frameworks and/or models. TMFs are directly lifted or adapted from diverse 
fields of research including psychology, public health, social science, healthcare, business, 
organisational theory and political science.[85] They are also developed anew from 
empirical observations of implementation. Given the open forum for dialogue between 
disciplines and the realms of theory and practice which implementation seeks to provide, 
classifying TMFs by their academic origins may be possible but seems 
counterproductive.[87] Such disciplinary distinctions also do little to inform any given TMF’s 
application. Per Nilsen’s taxonomy of TMFs used in implementation science (Figure 15) 
represents a more useful and emollient classification system as a way to guide the 
application of particular TMFs in a given context.[88] Other than this prominent example of 
categorisation by purpose, another helpful system by which to categorise TMFs by is the 
scope of their relevance. 

1.3.1.1 TMFs by purpose 
Nilsen categorises theoretical application in implementation science into 3 purposes (Figure 
15): 

1 To illuminate the process and mechanisms by which research is translated into 
practice – the ‘physiology’ of implementation 
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2 To understand the factors and interdependencies which may influence 
implementation – the ‘anatomy’ of implementation 

3 To structure the evaluation of implementation endeavours that are past or planned – 
an implementation scorecard 

TMFs in the first category are termed process models and are particularly useful in 
understanding why aspects of an implementation exercise may or did produce certain 
results, e.g. the Technology Acceptance Model (TAM).[89] A particularly practical sub-type 
of the process model aims to prescribe actions for the actors in a certain implementation 
exercise, and are known as action models. 

The second category is subdivided into three; determinant frameworks (2a), classic theories 
(2b) and implementation theories (2c). Determinant frameworks seek to identify the factors 
that may influence the successful implementation of an intervention. This supports 
comparison across different implementation settings without risking false assumptions 
about the importance or mechanisms of influence of a given factor.  Classic theories are 
from fields which would broadly be considered as distinct from implementation science but 
are judged to hold value for the process of implementation., e.g. Rogers’ Theory of 
diffusion.[90] Implementation theories are TMFs which have been consciously adapted or 
developed for application within the field of implementation science, e.g. the Consolidated 
Framework for Implementation Research.[91] Deciding whether a TMF was specifically 
developed for application within the disciplinary field of implementation science is no less 
contentious than the definition of implementation science itself. Certain TMF contributors 
would nevertheless identify with this approach to categorisation. 

The final category of TMF purposes is that of evaluation frameworks. The TMFs here are 
likely to co-exist in one of the other categories but are defined by their use to assess 
planned or executed implementation strategies. 
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Figure 15. A Direct reproduction of Per Nilsen’s 2015 taxonomy of theoretical approaches used in implementation science, 
divided into three distinct purposes of a theoretical approach and five named categories.[88] 

There are some criticisms to be made of Nilsen’s taxonomy, most notably that there is little 
consensus over which disciplines lie within and without implementation science yet the 
distinction between categories 2b and 2c depends upon it.[92] Any given TMF could also be 
attributed to several of the categories depending on how it is being applied. However, this 
context specific classification could be considered a strength rather than a limitation as it 
better reflects the versatility of TMFs within implementation science. More prescriptive and 
granular categorisations of the purposes to which TMFs are applied in implementation 
science have also been published.[93] 

1.3.1.2 TMFs by scope of relevance 
TMFs represent an abstraction of empirical observations which permit greater 
generalisability and accessibility of the value within those observations (Figure 14). TMFs 
could be defined as “an ordered set of assertions about a generic behaviour or structure 
assumed to hold throughout a significantly broad range of specific instances”.[94] In 
considering this definition, the question of ‘how broad is significantly broad?’ seems 
unavoidable and the answer must vary with the desired application of a TMF (Figure 16). On 
one extreme, high degrees of abstraction can be applied to observations to produce 
assertions that appear valid over a large range of instances but are incapable of illuminating 
factors and interactions which are highly specific to a given context. At the other extreme, 
lower degrees of abstraction can be applied to observations, which compromises the 
generalisability of a TMF but increases the detail of the insights which may be offered to the 
instances which lie within its scope. This spectrum of abstraction has been arbitrarily sliced 
into three categories of programme, mid-range and grand TMFs (referred to as programme 
theory, mid-range theory and grand theory by authors).[95] The complementary values of 
taking broad insights from diverse contexts and more specific insights from contexts similar 
to the instance of interest, is part of what has incentivised the great number of published 
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TMFs. TMFs which facilitate theoretically informed practice within implementation science 
often fall within the loose category of ‘mid-range’. This prevents the extent of TMFs 
catalogued in the literature from becoming too overwhelming but maintains clear relevance 
between published TMFs and various applications. 

 
Figure 16. Theorising in implementation science, adapted from [95] 

Through application a TMF will often be adapted using empirical observations from a 
particular context, perspectives from relevant stakeholders and other relevant pre-existent 
TMFs. Researchers can then reflect on the value of the adaptions they made to pre-existent 
mid-range TMFs within their programme theory and share these insights through 
publication. This process of adaption produces another characteristic of implementation 
science, not just to be theoretically informed, but also to be theoretically informative.[95] In 
reality, this iterative refinement and evolution of TMFs is often disrupted by the 
unavoidably limited oversight that researchers and practitioners have of all available TMFs. 
Alongside the genuine value of diverse TMFs for diverse implementation challenges, these 
shortcomings help to explain the proliferation of TMFs. 

1.3.2 Implementation practice 
As a field of research, implementation science is the final stage on the translation pathway, 
yet there is still some distinction between the individuals and activities associated with its 
research and practice.[96, 97] For implementation science research, there is greater focus 
on TMFs, theorising and an understanding of various research methods which have been 
described above and in the methods sections across this thesis. In implementation practice, 
there is a greater focus on the strategies which help to translate understanding and theory 
into action, the measurement of outcomes to allow an agile and responsive approach to 
implementation and the ability to identify and engage stakeholders in the process.[97] 

1.3.2.1 Implementation strategies 
Stakeholders engaged more closely with the world of clinical practice rather than academia 
often respond with some synonym of ‘so what!?’ when presented with even the most 
rigorous and accessible analyses of empirical qualitative data. One of the means of bridging 
this disconnect between research and practice is through the application of implementation 
strategies. Implementation strategies aim to translate knowledge about factors that 
influence implementation into pragmatic actions which increase practitioners’ probability of 
achieving their context specific definitions of success. In 2015 a multi-institutional collection 
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of North-American implementation experts participated in a rigorous consensus exercise 
aiming to produce an exhaustive list of distinct strategies, relevant across innovations and 
contexts.[98] This produced a list of 73 strategies with accompanying definitions, which 
were subsequently grouped into 9 categories and rated for relative importance and 
feasibility in the Expert Recommendations for Implementing Change (ERIC) study.[98] 
Similarly to the process of abstraction described above relating to TMFs (Figure 14), these 
strategies are described in such a way that makes them generalisable and accessible to a 
wide range of contexts and stakeholders. 

 
Figure 17. Nine categories of 73 implementation strategies synthesised from the literature then consolidated and 
categorised through expert consensus.[98] 

The intention for practitioners is not to seek to leverage all 73 strategies to improve their 
chances in each implementation endeavour, but rather to treat it as a library to consult with 
their own practical and theoretical insights to prioritise approaches they wish to take.[99] 

1.3.2.2 Measurement of implementation outcomes and mechanisms 
In recent decades the focus in biomedical research has shifted away from establishing the 
efficacy on innovations, ‘does it work?’, to questions surrounding effectiveness, ‘does it 
work here and now?’.[79] Sequential iterations of the UK Medical Research Council’s 
framework for the evaluation of complex interventions have taken this further toward 
measuring the mechanisms by which an innovation is or is not effective and also the 
influences it exerts over the host system.[79] This demands the collection of highly varied 
datapoints, often in parallel to an active implementation process. Ideally, these datapoints 
would meaningfully reflect factors that are expected to be influential or implementation 
strategies which have been selected. This accommodating and adaptive approach has been 
coined as a fourth research paradigm, with the preceding stages of quantitative, qualitative 
and mixed-methods research.[100] Here research takes place in real-time and in partnership 
between those ‘conducting’ and ‘participating’ in the research with no sense of 
methodological superiority or inferiority, simply the fit between method, context and 
actors. 

As with other aspects of implementation science, the prospect of such flexibility and 
context-focused research is exciting, but a little intimidating for any individual charged with 
the responsibility of making sense and value in such complexity. To complement 
aforementioned libraries of TMFs and implementation strategies, there are also searchable 
tools and scales to measure various outcomes and mechanisms that are established within 
implementation science.[101] Whilst these methodological shortcuts pose some risk of 

1 Engage consumers 
2 Use evaluative and iterative strategies 
3 Change infrastructure 
4 Adapt and tailor to the context 
5 Develop stakeholder interrelationships 
6 Utilise financial strategies 
7 Support clinicians 
8 Provide interactive assistance 
9 Train and educate stakeholders 
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misapplication and misinterpretation through inadequate training and experience of users, 
they have the pragmatic aim of making implementation research more accessible to 
communities of practitioners. 

1.3.3 Applying implementation science to AI-enabled macula services 
An analysis of abstracts accepted by the Royal College of Ophthalmologists for presentation 
at their annual congress shows just 11.3% contain qualitative methods of any form, only 
1.5% of which represent interview, focus group or observation.[102] Recent qualitative 
evidence syntheses suggest a similarly limited qualitative representation in the clinical AI 
literature.[103, 104] The combination of these two limitations means that very few insights 
into the complexity surrounding innovations related to AI-enabled macula services are 
available.[105] Whilst such directly relevant evidence would be useful, its absence 
emphasises the value of implementation science in abstracting insights from differing 
contexts to pragmatically inform implementation efforts for AI-enabled macula services. 

The evidence and regulatory foundations required to optimise AI-enabled macula services 
has not yet been established. Most notably, current research is non-interventional 
effectiveness research. This necessitates a more exploratory tone to implementation 
research, which will be hybridised with effectiveness research. Considering the ImpRes 
toolkit, a rigorously curated set of implementation research methods, this should include 
stakeholder involvement, identifying determinants of implementation, and measures for 
both implementation and clinical outcomes.[106] This holistic evidence generation will 
establish if the investment necessitated by an interventional evaluation of AI-enabled 
macula services is justified together with the design of the intervention which seems most 
likely to deliver success for the NHS and its patients. 
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Figure 18. Schematic of the ImpRes toolkit reproduced from [106] 

1.4 Statement of the problem 
This thesis aims to explore the factors which sustain the AI chasm in healthcare generally 
and in AI-enabled macula services in the NHS. Recommendations to support resolution of 
the AI chasm for research and practice will be made from this exploration of healthcare as a 
whole. For AI-enabled macula services, where feasible evidence will be generated to 
support the resolution of the barriers to implementation that are identified. The thesis will 
achieve these aims by addressing five distinct evidence gaps across chapters 3 - 7: 

1. A meaningful qualitative evidence synthesis of clinical AI implementation research is 
not available to inform implementation research and practice (chapter 3). 

2. The factors that could influence the implementation of an AI technology within 
nAMD clinical pathways have not been explored (chapter 4). 

3. The ability of AI as a medical device (AIaMD) to meet nAMD service stakeholders’ 
minimum requirements for acceptance is untested (chapter 5). 
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4. A healthcare intervention to deliver the AIaMD into macula services has not been 
designed to align with the factors likely to influence implementation (chapter 6). 

5. A systematic consideration of risks that an AI-intervention for treatment monitoring 
may pose across the nAMD care pathway, and their potential mitigation, has not 
been performed (chapter 7). 

Whilst economic evidence is likely to support the implementation of AI-enabled macula 
services it is not considered in scope for this thesis as it depends upon an as yet undefined 
intervention and substantial additional time and expertise. The thesis will however propose 
an intervention suitable for economic evaluation and further refinement if it should appear 
advantageous. Even without economic evaluation, delivering a programme of work to 
address the evidence gaps outlined above will require the application of multiple research 
methods. To maximise the transparency of its findings and the coherence of the methods 
chosen, chapter 2 will establish an overarching approach to guide its design and conduct. 

1.5 Structure of the thesis 
Beyond this introduction there are 7 further chapters. Chapter 2 discusses the over-arching 
philosophical approach for the thesis. Chapter 3 systematically synthesises qualitative 
research of clinical AI to characterise key stakeholder groups, determinants of 
implementation and TMF applications. These insights inform the design of a primary 
qualitative study in chapter 4, recruiting key stakeholders of a macula service to identify 
what could influence the implementation of AI-enabled macula services and why. These 
stakeholders prioritise vision preservation, and so chapter 5 tests the non-inferiority of AI-
enabled assessments of nAMD activity against consultant-led-care (CLC) by simulating a 
potential medical device in which the AI technology could be embedded. The positive result 
of chapter 5 signals potential acceptability of such a medical device, but highlights the need 
for an understanding of how to conduct the implementation of AI-enabled macula services. 
Chapter 6 performs a theory-informed secondary analysis of data from chapter 4, to design 
an actionable and evidence-based AI-enabled intervention. This proposed intervention 
permits an evaluation of a full hypothetical AI-enabled healthcare pathway in chapter 7, 
using methods familiar to key decision makers in clinical AI implementation. Besides 
producing evidence in a meaningful format to relevant practitioners, this enables 
recommendations to further improve service and implementation outcomes. Chapter 8 
discusses the thesis’ findings in the wider research and practice context and summarises its 
conclusions. 

1.6 Statement on ethics 
A protocol for the work contained within this thesis and associated documentation was 
submitted for ethical review through the Integrated Research Application System portal 
(IRAS project ID 280448). Newcastle upon Tyne Hospitals NHS Foundation Trust was the 
sponsor for the research. The project received initial approval from the North West – 
Greater Manchester South Research Ethics Committee on 12th May 2021 (REC reference 
21/NW/0138). Initial approval was received from the NHS Health Research Authority and 
Health and Care Research Wales on 17th May 2021. Subsequently two amendments were 
submitted and came to be approval by the sponsor, Research Ethics Committee and Health 
Research Authority. The first (non-substantial) amendment permitted separate consent 
forms for patient and carer participants rather than a shared form for both. The second 
(substantial) amendment permitted the use of a more operationally convenient approach to 
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data egress between Newcastle upon Tyne Hospitals and Moorfields Eye Hospital NHS 
Foundation Trusts. 
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Chapter 2: Methodology 
This chapter begins with personal reflections from the thesis author, to transparently share 
the experiences and perspectives which shaped the design and conduct of the research 
presented within this thesis. Relevant philosophical characteristics are then derived from 
these reflections and used to identify an established philosophical approach underlying this 
thesis. Finally, the influence of this theoretical approach over the methods selected 
throughout the thesis is discussed. 

This chapter is intended both as an educational exercise for the author and an aid to 
interpretation of the thesis for its readers. 

“While the drawing of boundaries between qualitative and quantitative is often self-
protective or self-serving and unhelpful to the development of understanding, the 
deeper distinction between approaches to knowledge is a powerful one, and very 
important for seeing that there are different ways of grasping reality, or salvaging 
something from it.”[1]  
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2.1 Personal background 
As a piece of research, this thesis has a practice-oriented aim to inform change to macula 
service delivery in the near future. The thesis’ success and motivations may therefore  be 
considered in terms of the utility assigned to it by the decision makers who initiate or 
influence such change. 

Both the aim of this thesis and its success criteria are heavily influenced by the professional 
background of the lead researcher. At the outset of this research in 2021, the lead 
researcher had worked for 7 years as a junior hospital doctor, the most recent 5 within the 
specialty of ophthalmology. A key training component throughout this time was learning 
how to use scientific evidence to support healthcare decisions made with and for individuals 
in varied and complex situations. This often presented a mismatch between the relative 
simplicity of available evidence (e.g. for disease X, patients tend to have a better result in 
outcome Y with treatment Z) and the relative complexity of the reality that people 
experience (e.g. treatment Z requires that a specific patient spends 1 day per month away 
from home which, based on their understanding, is perceived as a greater cost than a 
poorer result in outcome Y). 

This time also facilitated close observation of many senior medical and surgical colleagues at 
the same hospital. With similar expertise, awareness of evidence and situational awareness 
of clinical problems, these expert colleagues would intentionally and openly prefer (usually 
subtly, though not always) different management approaches. This case-based variation 
from clinical decision makers also applied to organisation-based variation from operational 
decision makers, which became apparent whilst working around different regional hospitals 
and hearing experiences of colleagues from more distant hospitals. It appeared that 
between organisations, approaches to service provision for identical clinical problems also 
varied greatly, even where high quality evidence might suggest better clinical or cost 
effectiveness from different approaches. These variations appeared largely due to factors 
which appeared non-clinical in nature (e.g. layout of hospital premises or leadership 
priorities) or were unclear. 

Time spent as a practicing ophthalmologist also facilitated a close and authentic sense of the 
problems experienced by different stakeholders in the service. From this experience one of 
the largest scale and impact problems appeared to be the resource requirement of macula 
service provision. The challenge of meeting this resource requirement appeared to affect 
not just the macula service and its patients, but the whole ophthalmology service.  

These personal experiences supported the development of 3 perspectives which motivated 
this thesis’ aim, methods, and approach: 

• The value of evidence is heavily influenced by the context in which it is interpreted 
• Expert practitioners are led to different actions by apparently identical evidence and 

context 
• The scientific quality of evidence does not independently determine its utility and 

impact for relevant stakeholders 
• Improving the efficiency of macula services as soon as possible could be expected to 

deliver large-scale benefit to patients and services 
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The lead researcher also had 5 years of experience as a pre-doctoral researcher at the 
beginning of this research in 2021. This focused almost exclusively on quantitative methods 
in real-world evidence and had led to modest academic success by common measures of a 
junior career stage, but no perceptible influence on clinical practice or impact for the real-
world patients which the evidence generated aimed to serve. This perspective served as a 
personal source of dissatisfaction and a motivation to understand better what forms of 
evidence are valued by stakeholders in healthcare and why and how evidence may come to 
support change. This motivated a selection of a wider variety of methods for the present 
thesis and in interest in the field of implementation science, with its focus on closing ‘know-
do gaps’.[2] These choices aimed to improve the chances of satisfying the aforementioned 
success criteria for the thesis and to deliver an educational experience for the lead 
researcher to improve the impact of their current and future work. 

To facilitate the transparent translation of these personal experiences and perspectives into 
an overarching scientific approach for this thesis, they are explored in this chapter using 
high-level concepts from research philosophy. 

2.2 Rationale 
To support accurate and full interpretation of research evidence, it is widely considered 
good practice for researchers to explicitly share their perspectives regarding the nature of 
evidence and its means of generation.[3, 4] By understanding these perspectives, decision 
makers using the evidence generated by research can more fully interpret it, understanding 
and accommodating the limitations of its relevance for the particular decision they are 
trying to make. These decision makers hold various formal and informal roles with varied 
scope of influence. They include policy makers, healthcare managers or leaders, clinicians or 
even patients and other advisors they engage to make about their own care. The researcher 
themselves, and indeed other researchers, may also act as decision makers, e.g. deciding 
who to target with evidence they generate and what the nature of that evidence should be. 
For the researcher, the process of explicitly considering and stating their own perspectives 
can be a valuable reflective and educational process, ultimately improving the quality of 
present and future work. 

This chapter does not seek to engage with the nuance of research philosophy or its 
taxonomy, as doing so may distract from the empirical research presented in this thesis, 
rather than improve its transparency and accessibility. Instead, a simple, and largely 
descriptive, approach has been taken to setting out underlying philosophical perspectives. 
This also intends to avoid what Williamson described as the increasingly “impoverished, 
desiccated and confined” way that social science research demands a researcher to: 

“dig a hole, stick the name of this discipline or a method on it, get into it, and talk 
only to those who want to get into the hole with us; and they are only allowed in 
once they have learned the methodological rules.”[1] 

2.3 Aim 
This chapter aims to concisely describe the lead researcher’s philosophical perspectives on 
the nature of truth (ontology), how it can be understood (epistemology) and how 
individuals’ values can influence the research itself (axiology). An overarching approach for 
this constellation of philosophical perspectives will then be proposed and related back to 
the thesis. 
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2.4 Ontology 
Ontology is the study of the nature of reality and truth.[5] This research assumes that for 
the phenomena under study, no truth is entirely universal. Even if this assumption is 
incorrect, this research assumes it to be of limited consequence as such truth is not held by 
any or many of the decision makers it aims to serve. It is these decision makers’ perception 
of truth (and how that perception was, and continues to be, formed) that this research 
prioritises as it can inform the intentional influence of the phenomena under study.  

Whilst this research does not assume that truth is valid for all individuals across all contexts, 
it does assume that many ‘truths’, particularly at a higher level of abstraction, can remain 
valid across a wide range of contexts. Therefore, although truth is assumed to be subjective, 
it is also assumed that many effectively identical truths are commonly held among different 
individuals, contexts, and times. Such sustained beliefs can be used as a proxy for objective 
truth.[6] 

2.5 Epistemology 
Epistemology is the study of how understanding of reality and truth can be gained.[5] This 
research assigns greatest value to evidence which the decision makers seeking to use it find 
useful and dependable for the decisions they are trying to make, e.g. if and how to 
implement AI-enabled macula services. It assumes that biasing evidence (i.e. the influence 
of the researcher on a phenomenon as they study it) is an unavoidable part of generating it, 
though this bias can and should be actively mitigated against through research design. The 
researcher should also actively seek to identify and highlight the (likely significant) residual 
bias in the evidence generated and acknowledge that they will at least partly fail to identify 
it all. 

This research assigns greater value to the utility of the evidence it produces (as perceived by 
the decision makers it seeks to serve) than the minimisation of bias, though both are 
desirable. These assumptions motivated regular input from study advisory and reference 
groups throughout the research, to help mitigate against a broad scope of biases and to 
continually consider whether the value of evidence produced could be improved through 
changes to research design. Examples include jointly interpreting synthesised findings in 
chapter 3 with various stakeholder representations and separately in chapter 4 with 
reference group members directing the purposive sampling of an additional charity 
professional participant. 

2.6 Axiology 
Axiology is the study of the influence of the values held by researchers over the research 
process.[5] This research assumes that the researchers’ own values, research participants’ 
values and values held by decision makers using the evidence created, will all influence its 
interpretation and impact. The degree of this influence is assumed to be variable depending 
upon the type of evidence generated. This variability in the scope for differing 
interpretations of a piece of evidence is seen as desirable rather than problematic. Deciding 
upon the type of evidence to generate and the breadth of meaning which it may carry for 
different individuals is assumed to be a responsibility of the researcher. The skill in 
discharging this responsibility is in aligning the nature of the evidence they generate with 
the aim of the research they are designing and conducting. 
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2.7 Philosophical approach 
The perspectives and aims underlying the design and conduct of the research within this 
thesis cannot be satisfied by fixed extreme approaches such as positivism or 
interpretivism.[5] Instead, they require an approach which accommodates flexibility in its 
view of truth and how best to come to understand it. This flexibility is applied to maximise 
the dependability and the utility of the evidence generated as perceived by the decision 
makers who seek to use it. The pragmatist approach satisfies these requirements, freeing 
the researcher from prescriptive definitions of truth or how it should be evidenced and 
enabling them to do what works.[6, 7] 

It has been proposed that many clinician researchers would identify as pragmatists, both in 
the conversational sense of the word and as a philosophical approach.[8] Crucially, to be a 
pragmatist is not to ignore epistemology and ontology in order to get research done.[9] In 
ontological terms, pragmatists do not believe in universal truth nor that it is required. They 
measure the value of truth or evidence by its utility in addressing practical questions to 
enable action.[8] Dewey illustrated the flexible epistemological perspectives of pragmatism 
with his statement that, “the ultimate end and test of all inquiry is the transformation of a 
problematic situation (which involves confusion and conflict) into a unified one”.[9] In 
axiological terms, this prioritisation of utility not only acknowledges that values held by the 
researcher and others could influence the research process, but demands it, as utility 
requires a value-based definition. Pragmatism therefore places great importance in 
characterising problems for research to target. As these problems are viewed as socially 
situated, their characterisation requires engagement with, not just the study of, the 
community who know the problem.[9] “The integration of particular nonexpert experience, 
fostered by the establishment of interaction and discussion, enables the community to 
better us the insights”.[10] 

2.8 Pragmatist influence over thesis methods 
Pragmatism’s focus on characterising a socially situated problem is reflected in chapters 3 
and 4. In chapter 3, evidence synthesis methods and a TMF are used to identify the relevant 
stakeholder community and abstract the perspectives they hold about clinical AI across 
clinical settings. Primary qualitative methods then draw on these foundations to explore the 
problems experienced by macula service stakeholders and what they perceive will influence 
the implementation of AI-enabled macula services and why. 

Pragmatism is often associated with mixed methods research, which is distinguished from 
multi-methods research by a synergistic, rather than purely additive, interaction of 
quantitative and qualitative methods applied to the same problem.[11] This characteristic of 
mixed methods research is demonstrated in the pivot to quantitative methods in chapter 5, 
which seeks to test the clinical non-inferiority of AI-enabled treatment monitoring for 
nAMD. In this chapter, the limitations of such forms of evidence which imply a universal 
truth (e.g. that there is a single ‘correct’ treatment decision for a given case) are put aside to 
permit the generation of evidence which addresses the problem described by stakeholders 
in chapter 4. 

Chapters 6 and 7 attempt to address the response of ‘so what?’ that may be expected from 
the pragmatist. Prior chapters may evidence the potential for safe AI-enabled nAMD 
treatment monitoring and the factors that could influence its implementation, but their 
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utility is limited without understanding how that implementation might be conducted to 
address the problems characterised. This prompts a secondary analysis of qualitative data in 
chapter 6 using a separate TMF selected for its suitability to support the design of an 
actionable AI-enabled intervention. This analysis draws on the understanding of what could 
influence implementation and why, gained in chapter 4. Chapter 7 represents a further 
mixed methods analysis to create further evidence of how an AI-enabled care pathway for 
nAMD may be operationalised whilst identifying and proposing mitigations for risks. This 
evidence is in a form which is particularly useful to stakeholders with high influence over AI-
enabled macula service implementation, e.g. regulatory Intended Use Statements (IUS). 
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Chapter 3: Stakeholder perspectives of clinical artificial intelligence 
implementation: systematic review of qualitative evidence 
Problem: A meaningful qualitative evidence synthesis to inform the implementation of 
clinical AI has not been performed. For the present thesis, this risks research waste from 
duplicating unidentified work. It also limits the understanding of the stakeholder groups and 
perspectives which have been previously described, knowledge of which could enhance the 
quality of this thesis. 

Objectives: This qualitative systematic review aimed to identify key stakeholders, 
consolidate their perspectives on clinical AI implementation and characterise theories, 
models and frameworks (TMFs) used in clinical artificial intelligence (AI) research. 

Methods: Five databases were searched for primary qualitative studies on individuals’ 
perspectives on any application of clinical AI worldwide (January 2014-April 2021). The 
language of the reports was not an exclusion criterion. Two independent reviewers 
performed title, abstract, and full-text screening with a third arbiter of disagreement. Two 
reviewers assigned the Joanna Briggs Institute (JBI) 10-point checklist for qualitative 
research scores for each. A single reviewer extracted free-text data relevant to clinical AI 
implementation, noting the stakeholders contributing to each excerpt. The best-fit 
framework synthesis used the Non-adoption, Abandonment, Scale-up, Spread, and 
Sustainability (NASSS) framework. To validate the data and improve accessibility, individuals 
representing each emergent stakeholder group codeveloped summaries of the factors most 
relevant to their respective groups. For the identification of TMFs the search was repeated 
up until October 2022. Each instance of TMF application and the way in which the TMFs 
were used in eligible studies was characterised. 

Findings: The initial search yielded 4437 deduplicated articles, with 111 (2.5%) eligible for 
inclusion (median JBI 10-point checklist for qualitative research score, 8/10). Five distinct 
stakeholder groups emerged from the data: healthcare professionals (HCPs), patients, carers 
and other members of the public, developers, healthcare managers and leaders, and 
regulators or policy makers. All stakeholder groups independently identified a breadth of 
implementation factors, with each producing data that were mapped between 17 and 24 of 
the 27 adapted NASSS subdomains. Of 202 eligible studies in the updated search, 70 (34.7%) 
applied a TMF. Of the 50 TMFs applied, 40 (80%) were only applied once, with the 
Technology Acceptance Model applied most frequently (n=9). A minority of studies justified 
TMF application (n=51,58.6%). 

Conclusions: Clinical AI implementation is influenced by many interdependent factors, 
which are in turn influenced by at least 5 distinct stakeholder groups. It appears that non-
HCP stakeholder groups are currently under-represented and that TMFs are commonly not 
used. Future research should not only widen the representation of tools and contexts in 
qualitative research but also specifically investigate the perspectives of all stakeholder HCPs 
and emerging aspects of ML-based clinical AI implementation. 

Relevance to future chapters: These data will form the basis for recruitment and data 
collection strategies in chapters 4. Similarly, the TMFs used in chapters 4 and 6 will be 
drawn from this rigorously derived library of prior approaches in clinical AI research and will 
be selected with a clear rationale.  
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3.1 Background 
Clinical AI is a growing focus in academia, industry, and governments.[1-3] However, 
patients have benefited only in a few real-world contexts, reflecting a know-do gap called 
the “AI chasm”.[4, 5] There is already evidence of tasks where healthcare professional (HCP) 
performance has been surpassed.[6] Reporting practices concerning quantitative measures 
of efficacy are also improving against evolving standards.[7] The rate-limiting step to patient 
benefit from clinical AI now seems to be real-world implementation.[8] This necessitates an 
understanding of how in real-world settings, each technology may interact with the various 
configurations of policy-, organizational-, and practice-level factors.[9, 10] Qualitative 
methods are best suited to produce evidence-based guidance to anticipate and manage 
implementation challenges; however, they remain rare in the clinical AI literature.[1, 11, 12] 

Qualitative clinical AI literature has been broadly synthesized until 2013.[13] Despite 
accommodating the eligibility criteria, the study synthesized 16% (9/56) of qualitative 
studies that were eligible, prioritizing only higher-quality articles for data extraction. All the 
9 studied tools were based on electronic healthcare records to support various aspects of 
prescribing. All except 1 of the studies were set in the United States, and all applied rule-
based decision logic pre-programmed by human experts. The main findings included 
usability concerns for HCPs, poor integration of the data used by tools with the workflows 
and platforms in which they were placed, the technical immaturity of tools and their host 
systems, and the fact that adopters had a variable perception of the AI tools’ value 
depending on their own experience.[13] Much of the subsequent clinical AI literature refers 
to ML-enabled tools, which differ from rule-based tools in ways that may limit the 
understanding of the clinical, social, and ethical implications of their implementation.[2] An 
example of such a tool is a classification algorithm that distinguishes retinal photographs 
containing signs of diabetic retinopathy from those that do not.[14] The tool “learned” to do 
this in a relatively unexplainable fashion through exposure to a great quantity of retinal 
imaging data accompanied by human-expert labels of whether diabetic retinopathy was 
present. These ML-based tools promise broader applicability and higher performance than 
rule-based tools that automate established human clinical reasoning methods.[2] An 
example of a rule-based tool is one that applies an a priori decision tree determined by 
human clinical experts to produce individualized management recommendations for 
patients.[15] Despite the differences in their mechanisms, both tool groups satisfy the 
OECD’s definition of AI.[16] 

3.2 Problem 
It is unclear whether findings from the limited qualitative clinical AI evidence base is 
relevant to the modern focus on ML-based clinical AI.[17] Although primary qualitative 
research on ML-based clinical AI is growing, its pace remains relatively slow. If the impact of 
this important work is to be maximized, clarity is required regarding which perspectives and 
factors that influence implementation remain inadequately explored.[1] Insights into which 
stakeholder groups have and have not been represented to date and the TMFs that have 
been used are also needed to maximise the impact of future qualitative research.[18, 19] 
This is exemplified by the current thesis’ need to plan an effective primary qualitative 
research study to understand what factors could influence the implementation of AI 
technology into macula services and why (chapter 4). 
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2.3 Rationale 
Just 4 primary qualitative studies were identified across 2 recent syntheses of ML-based 
tools, and so it appears that broader eligibility criteria than previously used will be required 
to synthesize a meaningful volume of research at present.[11, 12] To deliver this, the 
present qualitative evidence synthesis has been designed to identify research of rule-based 
and ML-based clinical AI in any context or language. To maximise the value of the work, 
qualitative data will then be synthesised into findings regarding the factors that influence 
clinical AI implementation aiming to support future qualitative research of clinical AI in all 
contexts. To guide the design of future primary qualitative research, an abstracted list of 
stakeholder groups from existent qualitative clinical AI research and the TMFs that are 
applied will also be outputs of the synthesis. 

3.4 Aim 
This qualitative evidence synthesis aimed to identify key stakeholder groups in clinical AI 
implementation, consolidate their published perspectives and curate the TMFs that have 
explicitly been used in this field of research. This process of synthesising perspectives aimed 
to maximize the accessibility and utility of published data for practitioners to support their 
efforts to implement various clinical AI tools and to complement their insight into the 
unique context that they target (Figure 19). As a secondary aim, this synthesis aimed to 
improve the impact of future qualitative investigations of clinical AI implementation by 
recommending evidence-based research priorities and curating lists of participating 
stakeholder groups and TMFs from prior research.

 
Figure 19 The research question, eligibility criteria informing a search strategy, and research databases that the search 
strategy was applied to on April 30, 2021 (Appendix 1). 

3.5 Methods 
This qualitative evidence synthesis adhered to an a priori protocol, the Joanna Briggs 
Institute (JBI) guidance for conduct and ENTREQ (Enhancing Transparency in Reporting the 
Synthesis of Qualitative research) reporting guidance.[20-22] The best-fit framework 
synthesis method was selected using the RETREAT (Review question-Epistemology-Time or 
Timescale-Resources-Expertise-Audience and Purpose-Type of data) criteria.[23, 24] 

• Research question 
o What are the perspectives of stakeholders in clinical artificial intelligence 

(AI) and how can they inform its implementation? 
• Participants 

o Humans participating in primary research reporting free-text qualitative 
data 

• Phenomena of interest  
o Individuals' perspectives of rule-based or ML-based clinical AI 

implementation 
• Context 

o Research from any real-world, simulated, or hypothetical healthcare 
setting worldwide, published between January 1, 2014, and April 30, 2021, 
in any language 

• Databases searched 
o Ovid-MEDLINE, EBSCO-CINAHL, ACM Digital Library, Science Citation 

Index-Web of Science, and Scopus 
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Following a review of implementation frameworks, the Nonadoption, Abandonment, Scale-
up, Spread, and Sustainability (NASSS) framework was selected to accommodate the 
interacting complexity of factors and related stakeholders, which shape the implementation 
of healthcare technologies at the policy, organizational, and practice level.[10] The NASSS 
framework consists of seven domains, which categorize the factors that can influence 
implementation: (1) Condition, (2) Technology, (3) Value proposition, (4) Adopters, (5) 
Organization, (6) Wider context, (7) Embedding and adaptation over time.[10] In addition to 
its focus on technological innovations and its value in considering implementation factors 
between policy and practice levels, NASSS can be used as a determinant or evaluation 
framework rather than a process model, and it applies a relatively high level of theoretical 
abstraction.[25] This means that NASSS can readily accommodate perspectives from various 
stakeholders, contexts, and tools without enforcing excessive assumptions about the 
mechanisms of implementation, which is well-suited to the heterogeneous literature to be 
synthesized.[26] 

3.5.1 Search strategy and selection criteria 
The research question and eligibility criteria informed a pre-planned search strategy 
(available for all databases in the appendix) that is designed with an experienced 
information specialist (FRB), informed by published qualitative and clinical AI search 
strategies and executed in 5 databases (Figure 19).[6, 11, 13, 27, 28] The search strings were 
designed in Ovid-MEDLINE and translated into EBSCO-CINAHL, ACM Digital Library, Science 
Citation Index-Web of Science, and Scopus. The exact terms used are available in the 
appendix, but each string combined the same 3 distinct concepts of qualitative research, AI, 
and healthcare with AND Boolean operator terms. Differing thesaurus terms and search 
mechanisms between the databases demanded adaptation of the original search string, but 
each translation was aimed to reflect the original Ovid-MEDLINE version as closely as 
possible and was checked for sensitivity and specificity through pilot searches before the 
final execution. Studies concerning AI as a treatment, such as chatbots to provide talking 
therapies for mental health conditions, were not eligible as they represent an emerging 
minority of clinical AI applications.[29] They also evoke social and technological phenomena 
that are distinct from AI, providing clinical decision support, and therefore, risk diluting 
synthesized findings with nongeneralizable perspectives. The search strategy was reported 
in line with the PRISMA-S (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses literature search extension).[30] Search results were pooled in Endnote (version 
9.3.3; Clarivate Analytics) for deduplication and uploaded to Rayyan.[31] The references of 
any review or protocol studies returned were manually searched before exclusion along 
with all eligible study references. Potentially relevant missing data identified in the full-text 
reviews were pursued with up to 3 emails to the corresponding authors. Examples of such 
data included eligible protocols published ≥1 year previously without a follow-up report of 
the study itself or multimethod studies that appeared to report only quantitative data. Title, 
abstract, and full-text screening were fully duplicated by 2 independent reviewers (MA and 
JH) with a third arbiter of disagreement (GM). Eligible articles without full text in English 
were translated using an automated digital translation service between May and June 2021 
(Google Translate). The validity of this approach in systematic reviews has been tested 
empirically and is applied routinely in quantitative and qualitative syntheses.[32, 33] 
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3.5.2 Data Analysis 
Characteristics and an overall JBI 10-point checklist for qualitative research score was 
assigned for each study and discussed by 2 reviewers (MA and JH) for 9.9% (11/111) of 
eligible studies.[22] The remaining 90.1% (100/111) were equally divided for the 
independent extraction of characteristics and assignment of the JBI 10-point checklist for 
qualitative research scores. These characteristics included the year and type of publication, 
source field and impact factor, implementation context studied, TMF application, study 
methods and study participant type and number. For each study referring to a TMF in the 
body text, the stage of the research at which it had contributed and any justification for its 
selection was noted. The index article for the TMFs applied in eligible reports were sourced 
to facilitate characterization by a single reviewer (JH) following consensus exercises with a 
senior implementation researcher (GM). Nilsen’s 5-part taxonomy of TMF types (process 
models, determinant frameworks, classic theories, implementation theories and evaluation 
frameworks) and Liberati’s taxonomy of TMFs’ disciplinary roots (usability, technology 
acceptance, organizational theories and practice theories) were applied to characterize each 
TMF along with its year of publication.[25, 34] 

Free-text data extraction using NVivo (Release 1.2; QSR International) was performed by a 
single reviewer (JH) following consensus exercises with 3 other authors (MA, GM, and FRB). 
Data were extracted in individual excerpts, which were determined to be continuous 
illustrations of a stakeholder’s perspective on clinical AI. A single reviewer (JH) assigned each 
excerpt a JBI 3-tiered level of credibility (Figure 20) to complement the global appraisal of 
each study provided by the JBI 10-point checklist for qualitative research.[22] 

 

Figure 20. Three-tiered Joanna Briggs Institute (JBI) credibility rating applied to each data excerpt, as 
described in the JBI Reviewers’ Manual The systematic review of qualitative data.[22] 

All perspectives relating to the phenomena of interest (Figure 19) arising from participant 
quotations or authors’ narratives were extracted verbatim from the results and discussion 
sections. Each excerpt was attributed to the voice of an emergent stakeholder group and a 
single NASSS subdomain.[10] When the researcher (JH) extracting data felt that perspectives 
fell outside the NASSS subdomains, a draft subdomain was added to the framework to be 
later reviewed and reiterated with authors with varied perspectives as per the best-fit 
framework synthesis method.[28] A similar approach was applied to validate the 
stakeholder groupings which emerged. To permit greater granularity and meaning from the 
synthesis of such a large volume of data, inductive themes were also created within each 
NASSS subdomain. The initial data-led titles for these inductive themes were generated by 

• Unequivocal 
o Findings accompanied by an illustration that is beyond reasonable doubt 

and, therefore, not open to challenge 
• Credible 

o Findings accompanied by an illustration lacking clear association with it 
and, therefore, open to challenge 

• Not supported 
o When neither 1 nor 2 apply and when most notably findings are not 

supported by the data 

 



63 
 

the researcher extracting the data, making initial revisions as the data extraction proceeded. 
This was followed by several rounds of discussion with the thesis’ study advisory group to 
review and reiterate the inductive themes alongside their associated primary data to 
consolidate themes when appropriate and to maximize the accessibility and accuracy of 
their titles. 

NASSS allows researchers to operationalize theory to find coherent sense in large and highly 
heterogeneous data such as those in this study. However, this may limit the accessibility of 
the analysis for some stakeholders, as it demands some familiarity with theoretical 
approaches.[35] To remove this barrier, the key implementation factors arising from the 
NASSS best-fit framework synthesis were delineated by their relevance for the 5 stakeholder 
groups that arose from the data. Individuals with lived experience of each emergent 
stakeholder role were then invited to coproduce a narrative summary of the factors most 
relevant to their role. The initial step in this process was the provision of a longer draft of 
findings relating to each stakeholder group’s perspective by the lead reviewer (JH) before 
the review and initial discussion with each stakeholder representative. This included a 
senior consultant ophthalmologist delivering and leading local services (SJT), a senior clinical 
academic working in clinical AI regulation and sitting on a committee advising the national 
government on regulatory reform (AKD), a clinical scientist working for an international 
MedTech company (CJK), the founder and managing director of The Healthcare Leadership 
Academy (JM), and a panel of 4 members of the public experienced in supporting research 
(reference group). In these 5 separate co-production streams, the lead reviewer (JH) 
facilitated discussions with each stakeholder representative (AKD, CJK, JM, SJT, and 
reference group), who gave feedback to prioritize and validate the data discussed. The lead 
reviewer then redrafted the section for further rounds of review and feedback until an 
agreement was reached. This second analytical step validated the findings, increased their 
accessibility, and aimed to support different stakeholders’ empathy for one another. 

To preserve methodological rigor while pursuing broad accessibility, the results were 
presented for 3 levels of engagement. First, we used 5 stakeholder group narratives. 
Second, 63 inductive themes were distributed across the 27 subdomains of the adapted 
NASSS framework. The final most granular level of presentation used an internal referencing 
system within the Results section to link each assertion of the stakeholder group narratives 
with its supporting primary data and inductive theme. Notably, insights relevant to a given 
stakeholder group’s perspective were often contributed by study participants from different 
stakeholder groups (Figure 21). This is demonstrated by the selected excerpts contained 
within the 5 stakeholder group narratives, which are all followed by a brief description of 
the stakeholders who contributed to the excerpt. 
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Figure 21 Sankey diagram illustrating the proportion of 1721 primary study excerpts derived from the voice of each of 5 
emergent stakeholder groups and how each excerpt relates to each domain and subdomain of an adapted Non-adoption, 
Abandonment, Scale-up, Spread 

3.6 Results 
From an initial 4437 unique articles, 111 (2.5%) were found to be eligible in which 2 (1.8%) 
were written in languages other than English and the corresponding authors for 3 (2.7%) 
further studies, containing potentially relevant data, were not successfully contacted (Figure 
22).[36-40] 
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Figure 22. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) style flowchart of search and 
eligibility check executions [30] 

Specific exclusion criteria were recorded for each excluded article at the full-text review 
stage, with most exclusions (4105/4326, 94.89%) made at the title and abstract screening 
stage. The absence of qualitative research methods was the most common cause of these 
exclusions. In the 111 eligible studies, there were 1721 excerpts. In assigning a JBI credibility 
score to each of these 1721 excerpts, 1155 (67.11%) were classified as unequivocal, 373 
(21.67%) as equivocal, and 193 (11.21%) as unsupported.[22] The excerpts were categorized 
within the 27 subdomains of the adapted NASSS framework (Table 3) Inductive themes from 
within each NASSS subdomain are also listed along with the reference code applied 
throughout the results section and additional materials and the number of eligible primary 
studies which contributed. 

Table 3. Subdomains of the Nonadoption, Abandonment, Scale-up, Spread, and Sustainability (NASSS) framework used for 
data analysis with 2 data-led additions to the original subdomain list.[10] 

NASSS subdomain and codes Inductive theme Papers, n 
(%) 
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1a. Nature of condition or illness  

 1a.1 Type or format of care needs 11 (9.9) 

 1a.2 Ambiguous, complicated, or rare 
decisions 

23 (20.7) 

 1a.3 Quality of current care 18 (16.2) 

 1a.4 Decision urgency and impact 11 (9.9) 

1b. Comorbidities  

 1b.1 Other associated health problems 5 (4.5) 

 1b.2 Aligning patient and health priorities 6 (5.4) 

1c Sociocultural factors No subthemes 13 (11.7) 

2a. Material properties 

 2a.1 Usability of the tool 28 (25.2) 

 2a.2 Lack of emotion 12 (10.8) 

 2a.3 Large amounts of changing data 14 (12.6) 

2b. Knowledge to use it 

 2b.1 Knowledge required of patients 24 (21.6) 

 2b.2 Enabling users to evaluate tools 20 (18) 

 2b.3 Agreeing the scope of use 19 (17.1) 

2c. Knowledge generated by it  

 2c.1 Communicate meaning effectively 45 (40.5) 

 2c.2 Target a clinical need 23 (20.7) 

 2c.3 Recommend clear action 25 (22.5) 

2d. Supply model  

 2d.1 Equipment and network requirements 23 (20.7) 

 2d.2 Working across multiple health data 
systems 

25 (22.5) 

 2d.3 Quality of the health data and guidelines 
used 

33 (29.7) 
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2e. Who owns the intellectual 
property? 

No subthemes 14 (12.6) 

2f. Care pathway positioninga  

 2f.1 Extent of tools’ independence 23 (20.7) 

 2f.2 When and to whom the tool responds 21 (18.9) 

 2f.3 How and where the tool responds 20 (18) 

3a. Supply-side value (to 
developer) 

No subthemes 7 (6.3) 

3b. Demand-side value (to patient) 

 3b.1 Time required for service provision 27 (24.3) 

 3b.2 Patient-centered care 22 (19.8) 

 3b.3 Cost of healthcare 17 (15.3) 

 3b.4 Impact on outcomes for patients 28 (25.2) 

 3b.5 Educating and prompting HCPsb 41 (36.9) 

 3b.6 Consistency and authority of care 33 (29.7) 

4a. Staff (role and identity) 

 4a.1 Appetite and needs differ between staff 
groups 

33 (29.7) 

 4a.2 Tools redefine staff roles 33 (29.7) 

 4a.3 Aligning with staff values 28 (25.2) 

4b. Patient (simple vs complex input) 

 4b.1 Inconvenience for patients 10 (9.0) 

 4b.2 Patients’ control over their care 14 (12.6) 

 4b.3 Aligning patients’ agendas with tool use 11 (9.9) 

4c. Carers No subthemes 4 (3.6) 

4d. Relationshipsa  

 4d.1 Patients’ relationships with their HCPs 30 (27) 

 4d.2 Users’ relationships with tools 13 (11.7) 
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 4d.3 Relationships between health 
professionals 

21 (18.9) 

5a. Capacity to innovate in general  

 5a.1 Resources needed to deliver the 
benefits 

29 (26.1) 

 5a.2 Leadership 26 (23.4) 

5b. Readiness for this technology 

 5b.1 Pressure to find a way of improving 
things 

9 (8.1) 

 5b.2 Suitability of hosts’ premises and 
technology 

15 (13.5) 

5c. Nature of adoption or funding 
decision 

No subthemes 7 (6.3) 

5d. Extent of change needed to organizational routines  

 5d.1 Fitting the tool within current practices 14 (12.6) 

 5d.2 Change to intensity of work for staff 22 (19.8) 

5e. Work needed to plan, implement, and monitor change  

 5e.1 Training requirements 17 (15.3) 

 5e.2 Effort and resources for tool launch 23 (20.7) 

6a. Political or policy context  

 6a.1 Different ways to incentivize providers 10 (9) 

 6a.2 Importance of government strategy 8 (7.2) 

 6a.3 Policy and practice influence each other 
more 

15 (13.5) 

6b. Regulatory and legal issues  

 6b.1 Impact on patient groups 19 (17.1) 

 6b.2 Product assurance 14 (12.6) 

 6b.3 Deciding who is responsible 8 (7.2) 

6c. Professional bodies  

 6c.1 Resistance from professional culture 20 (18) 
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 6c.2 Lack of understanding between 
professional groups 

9 (8.1) 

6d. Sociocultural context  

 6d.1 Culture’s effect on tool acceptability 17 (15.3) 

 6d.2 Public reaction to tools varies 10 (9) 

6e. Interorganizational 
networking 

No subthemes 14 (12.6) 

7a. Scope for adaptation over time 

 7a.1 Normalization of technology and 
decreased resistance 

15 (13.5) 

 7a.2 Improvement of technology and its 
implementation 

11 (9.9) 

7b. Organizational resilience No subthemes 3 (2.7) 

aIndicates a subdomain added to the original NASSS framework through application of the best-fit framework synthesis 
method.[24]  

bHCP: healthcare professional. 

Five distinct stakeholder groups emerged through the analysis, each contributing excerpts 
related to 17 to 24 of the 27 subdomains (Figure 21). Eligible studies (Table 4) represented 
23 nations, with the United States, the United Kingdom, Canada, and Australia as the most 
common host nations, and 25 clinical specialties, with a clear dominant contribution from 
primary care. Although there was some representation from resource-limited nations, 
88.2% (90/102) of the studies focusing on a single nation were in countries meeting the 
United Nations Development Programme’s definition of “very high human development” 
with a human development index between 0.8 and the upper limit of 1.0.[41] The median 
human development index of the host nations for these 101 studies was 0.929 (interquartile 
range (IQR) 0.926-0.944). The JBI 10-point checklist for qualitative research scores assigned 
to each study had a median of 8 (IQR 7-8).[22] 

Table 4. Characteristics of 111 eligible studies and the clinical artificial intelligence (AI) studied. 

Characteristic Studies, n (%) 

Clinical AI application 

 Hypothetical 31 (27.9) 

 Simulated 24 (21.6) 

 Clinical 56 (50.5) 

Clinical AI nature 
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 Rule based 66 (59.5) 

 ML based 41 (36.9) 

 NSa 4 (3.6) 

Clinical AI audience 

 Public 5 (4.5) 

 Primary care 45 (40.5) 

 Secondary care 43 (38.7) 

 Mixed 3 (2.7) 

 NS 15 (13.5) 

Clinical AI input 

 Numerical or categorical 83 (74.8) 

 Imaging 9 (8.1) 

 Mixed 1 (0.9) 

Clinical AI task 

 Triage 15 (13.5) 

 Diagnosis 15 (13.5) 

 Prognosis 10 (9) 

 Management 46 (41.4) 

 NS 24 (21.6) 

Research method 

 Interviews 54 (48.6) 

 Focus groups 19 (17.1) 

 Surveys 12 (10.8) 

 Think aloud exercises 1 (0.9) 

 Observation 1 (0.9) 

 Mixed 24 (21.6) 

aNS: not specified. 
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3.6.1 Developers 
The developers of clinical AI required both technical and clinical expertise alongside 
effective interaction within the multiple professional cultures that stakeholders inhabit (6e 
and 6c.2). This made cross-disciplinary work a priority, but it was challenged by the 
immediate demands of clinical duties that limited HCPs’ engagement (5a.1). State incentive 
systems for cross-disciplinary work had the potential to make this collaboration more 
attractive for developers (6a.2); nevertheless, those who independently prioritized 
multidisciplinary teams appeared to increase their innovations’ chances of real-world utility 
(2c.2). The instances when HCP time had been funded by industry or academia were highly 
valued (4a.3): 

 

...she [an IT person with a clinical background] really bridges that gap...when IT folks 
talk directly to the front line, sometimes there’s just the language barrier there. 
[Unspecified professional] [38] 

 

To safeguard clinical AI utility, developers sometimes built flexibility in the intended use of 
their clinical AI tool, to accommodate variable host contexts (2a.3). This flexibility was 
beneficial both in terms of the clinical “reasoning” a tool applied and where and how it 
could be applied within different organizations’ or individuals’ practice (2e and 5d.1). The 
usability and accessibility of clinical AI often have a greater impact on adopter perceptions 
than their performance (2a.1 and 2b.1). There were many examples of clinical AI 
abandonment from adopters who had not fully understood a tool (2b.3 and 5e.1) or 
organizations that lacked the capacity or experience to effectively implement it (5e.2). 
Vendors who invested in training, troubleshooting, and implementation consultancy were 
often better received: 

 

I’ve learned...that this closing the loop is what makes the sale...sometimes, we’re 
handed a package with the implementation science done. [Healthcare manager] [39] 

 

The poor interoperability of different systems has inhibited clinical AI scale-up (2d.2), but it 
has seemed to benefit electronic healthcare record providers, whose market dominance has 
driven the uptake of their own clinical AI tools (3a.1). Clinical AI developed inhouse, or by 
third parties, seemed to be at a competitive disadvantage (2d.1). Increasing market 
competition and political attention may lead to software or regulatory developments that 
indiscriminately enhance interoperability and disrupt this strategic issue (3a.1 and 7a). 
Developers were also affected by defensive attitudes from healthcare organizations and 
patients, many of whom distrust industry with access to the data on which clinical AI’s 
training depends (2d.3 and 2e): 
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For example, Alibaba is entering the health industry. But hospitals only allow Alibaba 
to access data of outpatients, not data of inpatients. They [the IT firms] cannot get 
the core data [continuous data of inpatients] from hospitals. [Policy maker] [40] 

 

3.6.2 Healthcare Professionals 
The HCPs’ perspectives on clinical AI varied greatly (4a.1), but they commonly perceived 
value from clinical AI that facilitated clinical training (3b.5), reduced simple or repetitive 
tasks (3b.1 and 3b.2), improved patient outcomes (3b.4), or widened individuals’ scope of 
practice (4a.2). Despite these incentives, HCP adoption was often hampered by inadequate 
time to embed clinical AI in practice (5d.1), scepticism about its ability to inform clinical 
decisions (6c.1 and 2c.2), and uncertainty around its mechanics (2b.2). The “black box” 
effect associated with clinical ML prompted varied responses, with the burden of 
improvement placed on either the HCP to educate themselves or developers to produce 
more familiar metrics of efficacy and interpretability (2c.1 and 2b.2): 

 

“When I bring on a test, I usually know what method it is. You tell me AI, and I have 
conceptually no idea.”... As a result, pathologists wanted to get a basic crash course 
in using AI... [HCP] [42] 

 

The HCP culture could be very influential in local clinical AI implementation (6c.1). 
Professional hierarchies were exposed and challenged through the interplay of clinical AI 
and professional roles and relationships (4d.3). Some experienced this as a “levelling-up” 
opportunity, favoring evidence over eminence-based medicine and nurturing more 
collaborative working environments (2d.3 and 3b.6). Others felt that their capabilities were 
being undervalued and even feared redundancy on occasion (4a.2): 

 

The second benefit was the potential to use the deep learning system’s result to 
prove their own readings to on-site doctors. Several nurses expressed frustration with 
their assessments being undervalued or dismissed by physicians. [Authors’ 
representation of HCPs] [14] 

 

In some studies, HCPs felt that care provision improved both in terms of quality and reach 
(3b.1 and 3b.4). A virtuous cycle of engagement and value perception could develop, 
depending on where HCPs saw value and need in a given context (2c.2 and 2b.3). This was 
often when clinical AI aligned with familiar ways of working (5d.1), prompting or actioning 
things that HCPs knew but easily forgot (3b.5), and where the transfer of responsibility was 
gradual and HCP led (2f.1): 
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...to the physician, the algorithmic sorting constituted an extension of her own, and 
her experienced colleagues’ expertise...“I consider it a clinical judgement, which we 
made when we decided upon the thresholds”... [HCP] [43]  

3.6.3 Healthcare Managers and Leaders 
Strong leadership at any level within healthcare organizations supported successful 
implementation (5a.2). Competing clinical demands and the scale of projects had the 
potential to disincentivize initial resource investments and jeopardize the implementation of 
clinical AI (5e.2). Resources committed to the clinical AI implementation held more than 
their intrinsic value, as they signalled to adopters that implementation was a priority and 
encouraged a positive workforce attitude (5b.2). A careful selection of clinical AI tools that 
seem likely to ultimately relieve workforce pressure may help managers to protect 
investment and adopter buy-in despite excessive clinical burdens (3b.1 and 5b.1). Stepwise 
or cyclical implementation of clinical AI were also advocated as a means of smoothing 
workflow changes and minimizing distractions from active projects: 

 

I think that if you keep it simple, and maybe in a structured way if you could layer it, 
so that you know, for 2012 we are focusing on these five issues and in 2013 we’re 
focusing on these...over time you would introduce better prescribing. [Primary care 
leader] [44] 

 

The significant commitment required for effective implementation underlined the 
importance of judicious clinical AI selection and where, how, and for whom it would be 
applied (2f and 1a.3). A heuristic approach from managers’ knowledge of their staff 
characteristics (e.g., age, training, and contract length) roughly informed a context-specific 
implementation strategy (4a.1). However, co-design with the adopters themselves better 
supported the alignment of local clinical AI values, staff priorities, and patient needs (4b.3 
and 5d.1). There were examples of this process being rushed and heavy investments 
achieving little owing to misalignment of these aspects (2b.3 and 5a): 

 

...due to shortage of capacity and resources in hospitals, business cases were often 
developed too quickly and procurements were made without adequate 
understanding of the problems needing to be addressed [Authors’ representation of 
healthcare managers] [45] 

 

HCPs sometimes developed negative relationships with clinical AI, which limited 
sustainability if issues were not identified or addressed (4d.2 and 4a.1). Just as clinical AI 
with the flexibility to be applied to different local workflows appeared to be better received 
by adopters, an influential factor for implementation was healthcare managers who were 
prepared to be flexible about which part of workflow was targeted (2f). Clinical AI 
implementation often revealed pre-existent gaps between ideal and real-world care. 
Managers framed this as not only a problematic creation of necessary work but also helpful 
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evidence to justify greater resourcing from policymakers or higher leadership (6a.3 and 
5a.1). The need to consider staff well-being by managers was also illustrated, as clinical AI 
sometimes absorbed simple aspects of clinical work, increasing the concentration of 
intellectually or emotionally strenuous tasks within clinician workflows (2a.2, 1a.2, and 
5d.2): 

 

The problem with implementing digital technologies is that all too often, we fail to 
recognise or support the human effort necessary to bring them into use and keep 
them in use. [Authors’ representation of HCPs] [46] 

 

3.6.4 Patients, Carers, and the Public 
Concerns about the impact of clinical AI on HCP-patient interactions mainly came from the 
fear of HCP substitution (4d.1). These concerns seemed strongest within mental health and 
social care contexts, which were felt to demand a “human touch” (1a.1, 1c, and 2a.2). 
Patient-facing clinical AI, such as chronic disease self-management tools, was well received 
if they operated under close HCP oversight (2f.1 and 2f.2). The use of clinical AI as an 
adjunct for narrow and simplistic tasks was more prevalent (2f.1 and 1a.2), aiming to 
liberate HCPs’ attention to improve care quality or reach (3b.2). There were also examples 
of patient-facing clinical AI that appeared to better align patients and HCP agendas ahead of 
consultations, empowering patients to represent their wishes more effectively (4b.2 and 
4c): 

 

...It is an advantage when reliable information can be sent to the patient, because 
GPs [General Practitioners] often have to use time to reassure patients that have 
read inappropriate information from unreliable sources. [HCP] [47] 

 

There was little evidence of research into carers’ perspectives. Available perspectives 
suggested that clinical AI could make healthcare decisions more transparent, helping carers 
to advocate for patients (4c). This could help anticipate and mitigate some of the reported 
patient inconveniences and anxieties associated with clinical AI (2b.1 and 4b.1): 

 

One participant stated that the intervention needed to be “patient-centred”. 
“Including patients in the design phase” and “conducting focus groups for patients” 
were suggested to improve implementation of the eHealth intervention. [Unspecified 
participants] [48] 

 

Public perception of clinical AI was extremely variable, and with little personal experience, it 
was common to draw on hesitancy (6d.2 and 6d.1): 
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...many women, who had a negative or mixed view of the effect of AI in society, were 
unsure of why they felt this way... [Authors’ representation of public] [49] 

 

Popular media were often felt to play a key role in informing the public and to encourage 
expectations far removed from real-world healthcare (6d.1) However, in cases where clinical 
AI was endorsed by trusted HCPs overseeing their care, these issues did not appear 
problematic (6b.2). 

3.6.5 Regulators and Policy Makers 
There was a perceived need for ongoing regulation of clinical AI and the contexts in which 
they are applied. This was both in terms of how tools are deployed to new sites (2b.3 and 
5f.2) and how they may evolve through everyday practice (2a.3 and 7a.2). To make this 
evolution safe, stakeholders identified the need for long-term multistakeholder 
collaboration (6e). However, the data highlighted disincentives for this way of working, 
suggesting that there may be a need to enforce it (6a.2 and 6c.2). Stakeholders also raised 
issues around generalizability and bias for the populations they served, which were context 
specific and could evolve over time (6b.1). Otherwise, practitioners could gradually apply 
clinical AI to specific settings for which it was not appropriately trained or validated (2b.3). 
This “use case creep” described in the data further supported the perceived need for 
continual monitoring and evaluation of adopters’ interaction with clinical AI (6b): 

 

...they reported use of the e-algo only when they were confused or had more difficult 
cases. They did not feel the time required to use the e-algo warranted its use in the 
cases they perceived as routine or simple. [Authors’ representation of HCPs] [15] 

 

Stakeholders often felt that clinical AI increased the speed and strength of policy and 
practice’s influence over one another (6a.3). Many appreciated its improvement of care 
consistency across contexts and alignment of practices with guidelines (3b.6 and 2d.3). 
Others criticized it as an oversimplification (6c.1). An opportunity was seen for policy 
development to become more dynamic and evidence based (3b.4). Some envisaged this as 
an automated quality improvement cycle, whereas others anticipated complete overhauls 
of treatment paradigms (2f.1). 

 

I could easily see us going to that payer and saying, “Well, our risk model...shows 
your patient population is higher risk. We need to do more intervention, so we need 
more money.” [Healthcare manager] [39] 

 

Anxiety over who would hold legal responsibility if clinical AI became dominant was 
common (6b.3). The litigative threat was even felt by individuals who avoided clinical AI use, 
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as HCPs feared allegations of negligence for not using clinical AI (6b.3). Neither industry nor 
clinical professionals felt well placed to take on legal responsibility for clinical AI outcomes 
because they felt they only understood part of the whole (2b.2 and 6e). This was mainly 
presented as an educational issue rather than a consequence of transparency and 
explainability concerns (2b.2). Such high-stakes uncertainties appeared likely to perpetuate 
resistance from stakeholders (6c.1) although some data suggested that legislation could 
prompt adaptation to commercial and clinical practices that would reassure individual 
adopters (6b.2): 

 

...physicians stated that they were not prepared (would not agree?) to be held 
criminally responsible if a medical error was made by an AI tool. [Authors’ 
representation of HCPs] [50] 

 

...content vendors clearly state that they do not practice medicine and therefore 
should not be liable... [Authors’ representation of developer] [51] 

3.6.6 Theories models and frameworks 
Due to the priority assigned to the synthesis of qualitative data and the time that it 
required, the search strategy was updated prior to the analysis of TMFs. Updating the 
search across all 5 databases up to October 2022 increased the overall number of de-
duplicated potential eligible articles to 6,653, with 202 eligible following screening. 

3.6.6.1 TMF characteristics 
Seventy eligible reports (34.7%) applied at least one of 50 distinct TMFs in the main text 
(Table 5), 7 (14.0%) of these were new TMFs developed within the eligible article itself. 
Theory application was increasingly prevalent as studies focused closer toward real-world 
use, with studies of hypothetical, simulated or active clinical use cases applying TMFs in 
26.9%, 34.8% and 42.3% of studies respectively. There was no significant difference 
between the frequency of TMF application before and after the start of 2021, the median 
year of publication (Chi squared test, p=0.17). Twelve (17.1%) of the 70 reports drawing on a 
TMF applied more than one (maximum 5 [52]). Of the 87 instances that a TMF was applied it 
originated from the fields of technology acceptance (n=36, 41.4%), practice theory (n=21, 
24.1%), organizational theory (n=19, 21.8%) or usability (n=11, 12.6%) according to Liberati’s 
taxonomy.[34] Similarly, under Nilsen’s taxonomy of TMFs the purpose of each TMF applied 
could be classified as determinant framework (n=49, 56.3%), process model (n=18, 20.7%), 
classic theory (n=10, 11.5%), evaluation framework (n=9, 10.3%) or implementation theory 
(n=1, 1.1%).[25] 

Table 5. Theories, models and frameworks applied by eligible reports. AI= Artificial Intelligence, GP = General Practitioners, 
PESTLE = Political, Economic, Sociological, Technological, Legal and Environmental 

Theory, model or framework 
Year of 
index 

publication 

Liberati 
classification 

[34] 

Nilsen 
classification[25] 

Frequency 
of use 

Awareness-to-Adherence 
Model[53] 1996 Practice theory Process model 1 
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Behaviour change technique 
taxonomy[54] 2013 Technology 

acceptance 
Evaluation 
framework 1 

Behaviour change theory[55] 1977 Technology 
acceptance Classic theory 1 

Behaviour change wheel[56] 2011 Technology 
acceptance 

Determinant 
framework 5 

Biography of Artefact[57] 2010 Practice theory Classic theory 1 
Consolidated Framework for 
Implementation Research[58] 2009 Organizational 

theory 
Determinant 
framework 7 

Clinical adoption meta-
model[59] 2014 Technology 

acceptance 
Evaluation 
framework 1 

Clinical performance feedback 
intervention theory[60] 2019 Technology 

acceptance 
Determinant 
framework 1 

Disruptive innovation 
theory[61] 1995 Organizational 

theory Classic theory 1 

Dual process model of 
reasoning[62] 2009 Technology 

acceptance Classic theory 1 

Expectancy-value theory[63] 2000 Technology 
acceptance Classic theory 1 

Fit Between Individuals Task 
and Technology[64] 2006 Technology 

acceptance 
Evaluation 
framework 1 

Flottorp framework[65] 2013 Practice theory Determinant 
framework 1 

Framework for designing user-
centred displays of 
explanation[66] 

2020 Usability Determinant 
framework 2 

Framework of patient 
orientation to applications of 
AI in healthcare[67] 

2022 Practice theory Process model 1 

Goal directed design[68] 1995 Usability Process model 1 

Heuristic evaluation[69] 1990 Usability Determinant 
framework 2 

Human-computer trust 
conceptual framework[70] 2000 Usability Process model 1 

Innovation-decision process 
framework[71] 2013 Organizational 

theory Classic theory 1 

Intention to use AI Model[72] 2020 Technology 
acceptance 

Determinant 
framework 1 

Iterative, collaborative 
development and 
implementation 
framework[73] 

2021 Organizational 
theory Process model 1 

Kano model of satisfaction[74] 1984 Usability Determinant 
framework 1 

Methontology[75] 1997 Usability Process model 1 
Machine learning maturity 
model[76] 2021 Technology 

acceptance 
Determinant 
framework 1 

GPs’ determinants of attitude 
towards AI-enabled 
systems[77] 

2022 Technology 
acceptance Process model 1 
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Non-adoption, Abandonment, 
Scale-up, Spread and 
Sustainability[10] 

2017 Organizational 
theory 

Determinant 
framework 2 

Normalisation process 
model[78] 2007 Practice theory Process model 1 

Normalisation process 
theory[79] 2009 Practice theory Mixed 4 

Occupational therapy 
intervention process 
model[80] 

1998 Practice theory Process model 1 

PESTLE framework[81] 1967 Organizational 
theory 

Evaluation 
framework 1 

Positions of perceived 
control[37] 2015 Practice theory Evaluation 

framework 1 

Process-oriented model of 
implementation pathways[82] 2020 Technology 

acceptance Process model 1 

Programme sustainability 
assessment tool[83] 2014 Practice theory Determinant 

framework 1 

Rasmussen behaviour 
model[84] 1983 Usability Classic theory 1 

Rogers' Theory of 
Diffusion[85] 1962 Practice theory Classic theory 1 

Shackel model[86] 1991 Usability Determinant 
framework 1 

Sittig and Singh sociotechnical  
framework[87] 2010 Practice theory Determinant 

framework 6 

Strong structuration 
theory[88] 2007 Organizational 

theory 
Determinant 
framework 1 

Systems engineering for 
patient safety 3.0[89] 2020 Organizational 

theory 
Determinant 
framework 1 

Systems-Theoretic Accident 
and Process Analysis[90] 2011 Organizational 

theory 
Evaluation 
framework 1 

Technology acceptance 
model[91] 1989 Technology 

acceptance 
Determinant 
framework 9 

Theoretical domains 
framework[92] 2005 Technology 

acceptance Mixed 3 

Theoretical framing theory[93] 1999 Organizational 
theory Classic theory 1 

Theory of meaningful human 
control[94] 2018 Practice theory Classic theory 1 

Theory of planned 
behavior[95] 1991 Technology 

acceptance 
Determinant 
framework 1 

Two component model of 
attitude[96] 1961 Technology 

acceptance Process model 1 

Unified Theory of Acceptance 
and Use of Technology[97] 2003 Technology 

acceptance 
Determinant 
framework 7 

Usabilty criteria of Scapin and 
Bastien[98] 1997 Usability Determinant 

framework 1 

User-driven co-development 
of AI model[99] 2021 Practice theory Process model 1 
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Work as done[100] 2015 Organizational 
theory Classic theory 1 

3.6.6.2 Justification and application of TMFs 
TAM was the most frequent choice when a TMF was applied (n=9, 12.9%), but 40 (80.0%) of 
the TMFs were only applied once across all eligible reports. Across the 87 instances of 
reports explicitly applying a TMF, 4 different modes of application emerged; to inform the 
study or intervention design (n=9, 10.3%), to inform data collection (n=29, 33.3%), to inform 
data analysis (n=44, 50.6%) and to relate or disseminate findings to the literature (n=25, 
28.7%). Most instances in which a report applied a TMF carried no explanation or 
justification (n=51, 58.6%). Five (5.7%) reports made isolated endorsement of the TMF’s 
popularity or quality, e.g. “The sociotechnical approach has been applied widely ...”[101] 
Thirty-one (35.6%) outlined the alignment of the TMF and the present research question, 
e.g. “our findings are consistent with disruptive innovation theory…”[102] Eleven (12.6%) 
reports discussed the disadvantages and alternatives that had been considered, e.g. 
“Because this model does not consider the unique characteristics of the clinical setting… we 
further adopted qualitative research techniques based on the CFIR [Consolidated 
Framework for Implementation Research] to further identify barriers and facilitators of the 
AI-based CDSS [Clinical Decision Support System].”[103] 

3.7 Discussion 
These data highlight the breadth of the interdependent factors that influence the 
implementation of clinical AI. They also highlight the influence of at least 5 distinct 
stakeholder groups over each factor (Figure 21): developers, HCPs, healthcare managers and 
leaders, public stakeholders, and regulators and policy makers. It should be emphasized that 
most individuals belong to more than one stakeholder group simultaneously, and the clinical 
AI tool and context under consideration will transform the influence of any given 
implementation factor; thus, robust boundaries and weightings between different 
stakeholders are inevitably artificial. However, to provide a simplified overview, the 
common factors related to each stakeholder group’s perspective are summarized in Table 6. 

Table 6. A summary of common factors influencing clinical artificial intelligence (AI) implementation from 5 different 
stakeholder perspectives. 

Stakeholder group Common factors influencing clinical AI implementation 

Developers • Understanding clinical needs 

• Producing clinical AI tools capable of adapting to clinical 
and organizational changes 

• Safeguarding value in a dynamic and uncertain market 

Healthcare 
professionals 

• Feeling able to make sense of clinical AI tools in the 
context of their own practice 

• Accounting for changes to patient and professional 
relationships 

• Managing disruption to current care pathways 
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Healthcare managers 
and leaders 

• Anticipating the resources required to enable 
implementation 

• Engaging all adopters early in implementation 

• Remaining reflexive and reactive throughout 
implementation 

Patients, carers, and 
the public 

• Understanding what clinical AI will mean for access to 
healthcare professionals 

• Gaining access into clinical decision-making 

• Reconciling varied perceptions and experiences of clinical 
AI 

Regulators and policy 
makers 

• Establishing mechanisms for the longitudinal monitoring 
of the clinical AI tool and implementation context 

• Strengthening the bidirectional influence of policy and 
practice 

• Achieving clarity over clinical and technical accountability 

The strong representation of HCPs’ perspectives in the literature is an asset. However, the 
30.04% (517/1721) of the excerpts from all other stakeholder perspectives clearly hold 
important but underexplored insights across all implementation factors (Figure 21), which 
should be prioritized in future research. The underrepresentation of certain stakeholders is 
partly masked by the need to group together the least represented stakeholders to permit 
meaningful synthesis, exemplified by the total of 0.35% (6/1721) of excerpts, which is 
related to the carer perspective. Failure to reform this clinician-centricity will limit the 
understanding and management of the inherent multistakeholder process of 
implementation. 

Whilst the relationship between TMF application and quality in qualitative research is not 
established, rationalised TMF usage is widely accepted as one of the core components of 
high quality implementation research.[22] As such, the finding that most eligible studies did 
not apply a TMF and that among those the majority shared no explanation for TMF selection 
suggests that future primary qualitative research of clinical AI could improve in this regard. 
The consolidated list of TMFs used and the goals and rationale for their use should support 
the design of future high quality implementation research. 
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Figure 23 Sankey plot describing the relative frequency with which excerpts from eligible studies of rule-based and non-rule-
based clinical artificial intelligence (CAI) relate to the various sub-domains of an adapted Non-adoption, Abandonment, 
Scale-up, Spread and Sustainability (NASSS) framework. 

Encouragingly, the frequency at which specific factors arose in studies of rule-based and ML-
based tools seemed largely comparable in Figure 23 and Table 7. This supports the use of 
the wider general clinical AI evidence base to inform ML-based tool implementation. 
Findings and methods from this evidence base have been curated and characterized here to 
support future technology and context-specific implementation efforts in anticipating and 
managing a unique constellation of factors and stakeholders. This is caveated in more 
dominant areas of discussion for ML-based tools, such as intellectual property, regulation, 
and sociocultural attitudes, where further research specific to ML-based clinical AI is 
required. 



82 
 

Table 7 The relative frequency with which excerpts from eligible studies of rule-based and Machine learning (ML)-based 
clinical artificial intelligence (CAI) relate to the various sub-domains of an adapted Non-adoption, Abandonment Scale-up, 
Spread and Sustainability (NASSS) framework. 

NASSS domain NASSS sub-domain 

Excerpts by NASSS sub-
domain 

ML-based 
CAI 

Rule-
based CAI 

1. Condition 

1a Nature of condition or illness 21.6% 78.4% 

1b Comorbidities 30.8% 69.2% 

1c Sociocultural factors 36.8% 63.2% 

2. Technology 

2a Material properties 40.6% 59.4% 

2b Knowledge to use it 56.6% 43.4% 

2c Knowledge generated by it 44.1% 55.9% 

2d Supply model 47.2% 52.8% 

2e Who owns the intellectual property? 87.0% 13.0% 

2f Care pathway positioning 45.6% 54.4% 

3. Value 
proposition 

3a Supply-side value (to developer) 88.9% 11.1% 

3b Demand-side value (to patient) 15.0% 85.0% 

4. Adopters 

4a Staff (role, identity) 38.1% 61.9% 

4b Patient (simple v complex input) 38.5% 61.5% 

4c Carers  16.7% 83.3% 

4d Relationships 35.5% 64.5% 

5. Organisation 

5a Capacity to innovate in general 43.3% 56.7% 

5b Readiness for this technology 47.1% 52.9% 

5c Nature of adoption and/or funding 
decision 66.7% 33.3% 

5d Extent of change needed to 
organisational routines 34.8% 65.2% 

5e Work needed to plan, implement and 
monitor change 35.2% 64.8% 

6a Political/policy context 47.9% 52.1% 
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6. Wider 
system 

6b Regulatory/legal issues 71.4% 28.6% 

6c Professional bodies 51.6% 48.4% 

6d Socio-cultural context 67.3% 32.7% 

6e Interorganisational networking 57.7% 42.3% 

7. Embedding 
and adaption 

over time 

7a Scope for adaption over time 46.7% 53.3% 

7b Organisational resilience 50.0% 50.0% 

 

3.7.1 Comparison with Prior Work 
This qualitative evidence synthesis has demonstrated that many implementation factors 
concerning early rule-based clinical AI tools continue to be influential.[104] However, the 
analysis and presentation of this work has prioritized enabling a varied readership to 
interpret data within their own context and experience rather than prescribing factors to be 
considered for a narrow range of clinical AI tools and contexts.[26, 35] As a result, this study 
has consolidated a wider scope of research than previous work to synthesize findings that 
can support future implementation practice and research, considering a wide range of 
clinical AI tools and contexts. This approach may compromise the depth of support offered 
by this study relative to other syntheses for particular clinical specialties, clinical AI types, or 
stakeholder groups.[11, 12] To maintain rigor while acknowledging the subjective value of 
eligible data, a systematic, transparent, and empirical approach has been adopted. This 
contrasts with narrative reviews in the literature, which provide valuable insights that draw 
more directly on the expertise of particular groups and collaborations but may not be easily 
generalized to diverse clinical AI tools.[8, 105] 

3.7.2 Limitations 
First, some of this study’s findings are limited by the low representation of certain groups’ 
perspectives in eligible studies, which necessitated highly abstracted definitions of key 
stakeholders to facilitate meaningful synthesis. In addition to the example of carers 
mentioned previously, employees of academic and commercial institutions were both 
termed “developers.” A related second limitation of this study was the use of databases that 
focused on peer-reviewed literature. This search strategy is likely to have contributed to the 
low representation of non-HCP stakeholder groups, as peer-reviewed publications are a 
resource-intensive approach to dissemination that does not reward other stakeholders as 
closely as it does HCPs. Potential mitigation steps included the addition of social media or 
policy documents, but they were thought to be unfeasible for this study, given the extensive 
eligible literature returned by the broad search strategy applied.[106] Instead, a co-
development step was added to the analysis process to reinforce the limited stakeholder 
perspectives that did arise from the search strategy with the stakeholder representatives’ 
lived experience. This was also valuable because it helped mitigate a further source of bias 
from factors relevant to given stakeholders that were often being described in the primary 
data by participants from different stakeholder groups. This is reflected in the sources of the 
sample excerpts interspersing the results section and by the 61 excerpts attributed to the 
patient (4b) or carer (4c) NASSS subdomains, 57% (35/61) were sourced from stakeholders 
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outside the public, patients, and carer stakeholder group. In addition to mitigating these 
limitations, the co-development step of analysis was also intended to help improve the 
accessibility of implementation science within clinical AI, where theory-focused emphasis 
(dogma) often obscures the value for practitioners.[35, 107] A third limitation is the likely 
underrepresentation of non-English language reports of studies, despite the English 
language limits only being applied through database indexing. Search strings devised in 
other languages or searches deployed in databases that focus on non-English literature 
could examine this potential limitation. Finally, without clear incentives for authors to 
report the perceived impact, mode, or rationale of TMF application, a lack of information 
regarding TMF use in eligible articles does not exclude a theoretical foundation. This risk of 
over-interpreting negative findings is not unique to the present study but is a further 
limitation to hold in mind.[108] 

3.7.3 Future Directions 
For clinical AI implementation research in general, the relatively short list of eligible 
qualitative studies derived from such broad eligibility criteria emphasizes the need for more 
primary qualitative research to explore the growing breadth of clinical AI tools and 
implementation contexts. Future primary qualitative studies should prioritize the 
perspectives of non-HCP stakeholders. Researchers may wish to couple the relevant data 
curated here and a rationally selected theoretical approach to develop their sampling and 
data collection strategies.[109, 110] Further exploration of implementation factors more 
pertinent to ML-based tools, such as intellectual property, regulation, and sociocultural 
attitudes, may also improve the literature’s contemporary relevance. 

Findings from this chapter informed the study design of the primary research conducted in 
this thesis. Chapter 4 aims to explore what could influence the implementation of AI 
technology in macula services and why. The abstracted stakeholder groups derived from the 
present synthesis were used to inform participant recruitment. This chapter’s synthesised 
findings have informed data collection through the design of topic guides and the NASSS 
framework, adjusted here specifically for clinical AI, will be used to support data analysis.  

3.8 Conclusions 
This study has consolidated multistakeholder perspectives of clinical AI implementation in 
an accessible format that can inform clinical AI development and implementation strategies 
involving varied tools and contexts. It also demonstrates the need for more qualitative 
research on clinical AI, which more adequately represents the perspectives of the many 
stakeholders who influence its implementation and the emerging aspects of ML-based 
clinical AI implementation. These findings supported the design of the recruitment, data 
collection and analysis strategies in a primary qualitative investigation of what could 
influence the implementation of AI technology to macula services, and why. 

3.9 Appendix 
3.9.1 Search strategy across five databases – Executed 30th April 2021 
3.9.1.1 MEDLINE (OVID) 
1 (ethnological research or ethnograph* or life stor* or women* stor* or social 
construct* or postmodern* or post-structural* or post structural* or poststructural* or post 
modern* or post-modern* or feminis* or interpretative or interpretive action research or 
cooperative inquir* or co operative inquir* or co-operative inquir* or existential or 
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unstructured or openended or open ended or life world or life-world or conversation 
analys?s or personal experience* or theoretical saturation or cluster sampl* or glaser* or 
participant observ* or human science or biographical method or heidegger* or colaizzi* or 
spiegelberg* or husserl* or foucault* or mixed method* or mixed-method*).ab,kf,kw,ti. 

2 (corbin* adj2 strauss*).ab,kf,kw,ti. 

3 (field adj (study or studies or research)).ab,kf,kw,ti. 

4 (data adj1 saturat*).ab,kf,kw,ti. 

5 ((discourse* or discurs*) adj1 analys?s).ab,kf,kw,ti. 

6 (van adj (manen* or kaam*)).ab,kf,kw,ti. 

7 (merleau adj ponty*).ab,kf,kw,ti. 

8 ((interpretative or interpretive) adj (approach or research or data or method* or 
paradigm)).ab,kf,kw,ti. 

9 (experiential adj (qualitative or knowledge or method*)).ab,kf,kw,ti. 

10 ((lived or life) adj experience*).ab,kf,kw,ti. 

11 ((theme* or thematic) adj1 (analys?s or data or synthesis or research)).ab,kf,kw,ti. 

12 (account* adj1 (participant or patient* or clinician* or user* or professional* or 
carer* or family or stakeholder or open-ended or unstructured)).ab,kf,kw,ti. 

13 (ethnonursing or phenomenol* or theoretical sampl* or observational method* or 
content analysis or emic or etic or hermeneutic* or semiotic*).af. 

14 (narrative* adj (analys?s or synthes?s or data or research or methods or inquiry)).af. 

15 (constant adj (comparative or comparison)).af. 

16 (grounded adj (theor* or study or studies or research or analys?s)).af. 

17 (purpos* adj sampl*).af. 

18 (focus adj group*).af. 

19 (qualitative adj1 (research or method* or data or study or studies or paradig* or 
analy*)).af. 

20 Qualitative Research/ or Interview/ or Nursing Methodology Research/ or exp 
Diffusion of Innovation/ 

21 (Artificial intelligence or Boltzmann machine* or Long short-term memory or Gated 
recurrent unit or Rectified linear unit or Autoencoder or Backpropagation or Multilayer 
perceptron or Convnet or Support vector machine or Random forest or Lasso or Kernel or 
Elastic net* or Bayesian or Naive bayes or Genetic algorithm).ab,kf,kw,ti. 

22 ((deep or convolutional or bayesian or neural or elastic) adj1 net*).ab,kf,kw,ti. 
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23 ((machine or deep or reinforcement or ensemble or convolutional) adj1 
learning).ab,kf,kw,ti. 

24 Big data/ or Decision support system, clinical/ or exp Algorithms/ 

25 ((algorithm* or computeri* or computer-based or computer based or machine-based 
or machine based or Computer assisted or Computer-assisted or Computer aided or 
Computer-aided or integrat* or technolog* or digital or electron*) adj3 (decision support or 
decision-support or decision aid or decision-aid)).ab,kf,kw,ti. 

26 exp Health Occupations/ or exp Health Personnel/ or exp Persons/ 

27 (Perspective* adj1 (patient* or carer* or clinician* or doctor* or stakeholder* or 
nurse*)).ab,kf,kw,ti. 

28 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 
or 18 or 19 or 20 or 27 

29 21 or 22 or 23 or 24 or 25 

30 26 and 28 and 29 

31 limit 30 to (humans and yr="2014 -Current") 

  



87 
 

3.9.1.2 CINAHL (EBSCO) 
 
MH ( Audiorecording or Interviews+ or “Grounded theory” or “Qualitative Studies” or 
“Research, Nursing” or “Focus Groups” or “Discourse Analysis” or “Content Analysis” or 
“Ethnographic Research” or “Ethnological Research” or “Ethnonursing Research” or 
“Constant Comparative Method” or Phenomenology or “Phenomenological Research” or 
“Implementation science” or “Usability study” ) OR TI ( Ethnonursing or ethnograph* or “life 
stor*” or “women’s stor*” or emic or etic or hermeneutic* or semiotic* or “participant 
observ*” or “social construct*” or postmodern* or post-structural* or “post structural*” or 
poststructural* or “post modern*” or post-modern* or feminis* or ((interpretative or 
interpretive) N1 (approach or research or data or method* or paradigm)) or “action 
research” or “cooperative inquir*” or “co operative inquir*” or “co-operative inquir*” or 
existential or experiential N1 (qualitative or knowledge or method*) or “human science” or 
“biographical method” or “theoretical sampl*” or glaser* or unstructured or open-ended or 
“open ended” or narrative* N1 (analys?s or synthes?s or data or research or method* or 
inquiry) or “life world” or life-world or “conversation analys?s” or “personal experience*” or 
“theoretical saturation” or “lived experience*” or “life experience*” or “cluster sampl*” or 
“observational method*” or “content analysis” or Heidegger* or Colaizzi* or Spiegelberg* or 
husserl* or Foucault* or van N1 manen* or van N1 kaam* or merleau N1 ponty* or Corbin* 
N2 strauss* or grounded N1 (theor* or study or studies or research or analys?s) strauss* N2 
corbin* or data N1 saturat* or “field stud*” or “field research” or purpos* N1 sampl* or 
focus N1 group* or discourse* N1 analys?s or discurs* N1 analys?s or constant N1 
comparative or constant N1 comparison or account* N1 (participant or patient* or 
clinician* or user* or professional* or carer* or family or stakeholder or open-ended or 
unstructured) paradigm* N1 qualitative (theme* or thematic) N1 (analys?s or data or 
synthesis or research) Perspective* N1 (patient* or carer* or clinician* or doctor* or 
stakeholder* or nurse*) or “mixed methods” or “mixed-methods” ) OR AB ( Ethnonursing or 
ethnograph* or “life stor*” or “women’s stor*” or emic or etic or hermeneutic* or semiotic* 
or “participant observ*” or “social construct*” or postmodern* or post-structural* or “post 
structural*” or poststructural* or “post modern*” or post-modern* or feminis* or 
((interpretative or interpretive) N1 (approach or research or data or method* or paradigm)) 
or “action research” or “cooperative inquir*” or “co operative inquir*” or “co-operative 
inquir*” or existential or experiential N1 (qualitative or knowledge or method*) or “human 
science” or “biographical method” or “theoretical sampl*” or glaser* or unstructured or 
open-ended or “open ended” or narrative* N1 (analys?s or synthes?s or data or research or 
method* or inquiry) or “life world” or life-world or “conversation analys?s” or “personal 
experience*” or “theoretical saturation” or “lived experience*” or “life experience*” or 
“cluster sampl*” or “observational method*” or “content analysis” or Heidegger* or 
Colaizzi* or Spiegelberg* or husserl* or Foucault* or van N1 manen* or van N1 kaam* or 
merleau N1 ponty* or Corbin* N2 strauss* or grounded N1 (theor* or study or studies or 
research or analys?s) strauss* N2 corbin* or data N1 saturat* or “field stud*” or “field 
research” or purpos* N1 sampl* or focus N1 group* or discourse* N1 analys?s or discurs* 
N1 analys?s or constant N1 comparative or constant N1 comparison or account* N1 
(participant or patient* or clinician* or user* or professional* or carer* or family or 
stakeholder or open-ended or unstructured) paradigm* N1 qualitative (theme* or thematic) 
N1 (analys?s or data or synthesis or research) Perspective* N1 (patient* or carer* or 
clinician* or doctor* or stakeholder* or nurse*) or “mixed methods” or “mixed-methods” ) 
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AND 

 
MH “Decision making, computer assisted+” OR TI ( “Artificial intelligence” or “Boltzmann 
machine*” or “Long short-term memory” or “Gated recurrent unit” or “Rectified linear unit” 
or Autoencoder or Backpropagation or “Multilayer perceptron” or Convnet or “Support 
vector machine” or “Random forest” or Lasso or Kernel or Elastic net* or Bayesian or “Naive 
bayes” or “Genetic algorithm” or or (deep or convolutional or bayesian or neural or elastic) 
N3 net* or (machine or deep or reinforcement or ensemble or convolutional) N1 learning or 
(algorithm* or computeri* or computer-based or “computer based” or machine-based or 
“machine based” or “Computer assisted” or Computer-assisted” or “Computer aided” or 
Computer-aided or technol* or digital or electron*) N3 (“decision support” or decision-
support or “decision aid” or decision-aid) ) OR AB ( “Artificial intelligence” or “Boltzmann 
machine*” or “Long short-term memory” or “Gated recurrent unit” or “Rectified linear unit” 
or Autoencoder or Backpropagation or “Multilayer perceptron” or Convnet or “Support 
vector machine” or “Random forest” or Lasso or Kernel or Elastic net* or Bayesian or “Naive 
bayes” or “Genetic algorithm” or or (deep or convolutional or bayesian or neural or elastic) 
N3 net* or (machine or deep or reinforcement or ensemble or convolutional) N1 learning or 
(algorithm* or computeri* or computer-based or “computer based” or machine-based or 
“machine based” or “Computer assisted” or Computer-assisted” or “Computer aided” or 
Computer-aided or technol* or digital or electron*) N3 (“decision support” or decision-
support or “decision aid” or decision-aid) ) 

AND 

MH ( “Health personnel+” or Patients+ or Caregivers or Family+ or “Health Manpower+” ) 
OR SB ( Biomedical or Nursing or “Allied Health” or “Health Services Administration” or 
“Core nursing” ) 
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3.9.1.3 ACM Digital Library 
(Title:(“Primary care” “Secondary care” “Tertiary care” Nurs* Carer* Caregiver* Health 
Healthcare Doctor* Nurse* Radiology Radiologist* Hospital* “General practice” Midwif* 
Surgery Surgeon* Ophthalm* Dermatol* Medic* Clinic* Pharma* Oncolog* Disease* “life 
sciences” Geriatri* Gerontol* Microbiolog* P*diatr* Rehabilitat* “social work” “social 
worker” “social workers” Psychiatry* Orthop* An*sthes* Patholog* Obstetric* Gyn*colog* 
Otorhinolaryngolog* Rheumatolog* H*matolog* Cardio* Audiolog* Urolog* 
Gastroenterolog* Physiotherap*) 

OR 

Abstract:(“Primary care” “Secondary care” “Tertiary care” Nurs* Carer* Caregiver* Health 
Healthcare Doctor* Nurse* Radiology Radiologist* Hospital* “General practice” Midwif* 
Surgery Surgeon* Ophthalm* Dermatol* Medic* Clinic* Pharma* Oncolog* Disease* “life 
sciences” Geriatri* Gerontol* Microbiolog* P*diatr* Rehabilitat* “social work” “social 
worker” “social workers” Psychiatry* Orthop* An*sthes* Patholog* Obstetric* Gyn*colog* 
Otorhinolaryngolog* Rheumatolog* H*matolog* Cardio* Audiolog* Urolog* 
Gastroenterolog* Physiotherap*)) 

AND 

(Title:(“Artificial intelligence” “Boltzmann machine” “Long short-term memory” “Gated 
recurrent unit” “Rectified linear unit” Autoencoder Backpropagation “Multilayer 
perceptron” Convnet “Support vector machine” “Random forest” Lasso Kernel Bayesian 
“Naive bayes” “Genetic algorithm” “deep net” “deep network” “convolutional net” 
“convolutional network” “neural net” “neural network” “elastic net” “elastic network” 
“machine learning” “deep learning” “reinforcement learning” “ensemble learning” 
“convolutional learning” “computerised clinical decision support” “computerized clinical 
decision support” “computerised decision support” “computerized decision support”) 

OR 

Abstract:(“Artificial intelligence” “Boltzmann machine” “Long short-term memory” “Gated 
recurrent unit” “Rectified linear unit” Autoencoder Backpropagation “Multilayer 
perceptron” Convnet “Support vector machine” “Random forest” Lasso Kernel Bayesian 
“Naive bayes” “Genetic algorithm” “deep net” “deep network” “convolutional net” 
“convolutional network” “neural net” “neural network” “elastic net” “elastic network” 
“machine learning” “deep learning” “reinforcement learning” “ensemble learning” 
“convolutional learning” “computerised clinical decision support” “computerized clinical 
decision support” “computerised decision support” “computerized decision support”)) 

AND 

(Title:(interview* thematic qualitative “nursing research methodology” Ethno* grounded 
“life story” hermeneutic semiotic “data saturation” “participant observation” “action 
research” “co-operative inquiry” existential “field study” “field studies” “field research” 
“biographical method” “Narrative inquiry” “Narrative analysis” “Narrative synthesis” “life 
world” “conversation analysis” “theoretical saturation” “lived experience” “life experience” 
“content analysis” “constant comparative” “discourse analysis” “discursive analysis” 
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heidegger* “Implementation research” “Implementation study” “Usability study” “usability 
research”) 

OR 

Abstract:(interview* thematic qualitative “nursing research methodology” Ethno* grounded 
“life story” hermeneutic semiotic “data saturation” “participant observation” “action 
research” “co-operative inquiry” existential “field study” “field studies” “field research” 
“biographical method” “Narrative inquiry” “Narrative analysis” “Narrative synthesis” “life 
world” “conversation analysis” “theoretical saturation” “lived experience” “life experience” 
“content analysis” “constant comparative” “discourse analysis” “discursive analysis” 
heidegger* “Implementation research” “Implementation study” “Usability study” “usability 
research”))  
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3.9.1.4 Scopus 
( TITLE-ABS ( interview*  OR  ( ( theme  OR  thematic )  W/1  ( analys?s  OR  data  OR  
synthesis  OR  research ) )  OR  ( qualitative  W/1  ( research  OR  method*  OR  data  OR  
study  OR  studies  OR  paradig*  OR  analys*  OR  result* ) )  OR  nursing-research-
methodology  OR  ethnograph*  OR  ethnonursing  OR  ethnological-research  OR  grounded-
theor*  OR  grounded-stud*  OR  grounded-research  OR  grounded-analys?s  OR  life-stor*  
OR  women's-stor*  OR  emic  OR  etic  OR  hermeneutic  OR  semiotic  OR  data-saturat*  OR  
participant-observ*  OR  postmodern*  OR  post-structural*  OR  feminis*  OR  ( ( 
interpretative  OR  interpretive )  W/1  ( approach  OR  research  OR  data  OR  method*  OR  
paradigm ) )  OR  action-research  OR  co-operative-inquir*  OR  existential  OR  ( experiential  
W/1  ( qualitative  OR  knowledge  OR  method* ) )  OR  field-stud*  OR  field-research  OR  
human-science  OR  biographical-method*  OR  theoretical-sampl*  OR  purposive-sampl*  
OR  ( account*  W/1  ( participant  OR  patient*  OR  clinician*  OR  user*  OR  professional*  
OR  carer*  OR  family  OR  stakeholder  OR  open-ended  OR  unstructured ) )  OR  ( 
narrative*  W/1  ( analys?s  OR  synthes?s  OR  data  OR  research  OR  methods  OR  inquiry 
) )  OR  life-world  OR  conversation-analys?s  OR  theoretical-saturation  OR  lived-
experience*  OR  life-experience*  OR  cluster-sampl*  OR  observational-method*  OR  
content-analysis  OR  constant-comparative  OR  discourse-analys?s  OR  discurs*-analys?s  
OR  heidegger*  OR  colaizzi*  OR  spiegelberg*  OR  van-manen*  OR  van-kaam*  OR  
merleau-ponty*  OR  husserl*  OR  foucault*  OR  corbin*  OR  strauss*  OR  glaser*  OR  ( 
implementation  W/0  ( science  OR  study  OR  research ) )  OR  ( usability  W/0  ( study  OR  
research ) )  OR  mixed-methods  OR  ( perspectiv*  W/1  ( patien*  OR  care*  OR  clinicia*  
OR  docto*  OR  stakeholde*  OR  nurs* ) ) )  OR  AUTHKEY ( interview*  OR  ( ( theme  OR  
thematic )  W/1  ( analys?s  OR  data  OR  synthesis  OR  research ) )  OR  ( qualitative  W/1  ( 
research  OR  method*  OR  data  OR  study  OR  studies  OR  paradig*  OR  analys*  OR  
result* ) )  OR  nursing-research-methodology  OR  ethnograph*  OR  ethnonursing  OR  
ethnological-research  OR  grounded-theor*  OR  grounded-stud*  OR  grounded-research  
OR  grounded-analys?s  OR  life-stor*  OR  women's-stor*  OR  emic  OR  etic  OR  
hermeneutic  OR  semiotic  OR  data-saturat*  OR  participant-observ*  OR  postmodern*  
OR  post-structural*  OR  feminis*  OR  ( ( interpretative  OR  interpretive )  W/1  ( approach  
OR  research  OR  data  OR  method*  OR  paradigm ) )  OR  action-research  OR  co-
operative-inquir*  OR  existential  OR  ( experiential  W/1  ( qualitative  OR  knowledge  OR  
method* ) )  OR  field-stud*  OR  field-research  OR  human-science  OR  biographical-
method*  OR  theoretical-sampl*  OR  purposive-sampl*  OR  ( account*  W/1  ( participant  
OR  patient*  OR  clinician*  OR  user*  OR  professional*  OR  carer*  OR  family  OR  
stakeholder  OR  open-ended  OR  unstructured ) )  OR  ( narrative*  W/1  ( analys?s  OR  
synthes?s  OR  data  OR  research  OR  methods  OR  inquiry ) )  OR  life-world  OR  
conversation-analys?s  OR  theoretical-saturation  OR  lived-experience*  OR  life-
experience*  OR  cluster-sampl*  OR  observational-method*  OR  content-analysis  OR  
constant-comparative  OR  discourse-analys?s  OR  discurs*-analys?s  OR  heidegger*  OR  
colaizzi*  OR  spiegelberg*  OR  van-manen*  OR  van-kaam*  OR  merleau-ponty*  OR  
husserl*  OR  foucault*  OR  corbin*  OR  strauss*  OR  glaser*  OR  ( implementation  W/0  ( 
science  OR  study  OR  research ) )  OR  ( usability  W/0  ( study  OR  research ) )  OR  mixed-
methods  OR  ( perspectiv*  W/1  ( patien*  OR  care*  OR  clinicia*  OR  docto*  OR  
stakeholde*  OR  nurs* ) ) ) )  

AND  
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( TITLE-ABS ( artificial-intelligence  OR  boltzmann-machine*  OR  long-short-term-memory  
OR  gated-recurrent-unit  OR  rectified-linear-unit  OR  autoencoder  OR  backpropagation  
OR  multilayer-perceptron  OR  convnet  OR  support-vector-machine  OR  random-forest  
OR  lasso  OR  kernel  OR  elastic-net*  OR  bayesian  OR  naïve-bayes  OR  genetic-algorithm  
OR  ( ( deep  OR  convolutional  OR  bayesian  OR  neural  OR  elastic )  W/1  net* )  OR  ( ( 
machine  OR  deep  OR  reinforcement  OR  ensemble  OR  convolutional )  W/1  learning )  
OR  ( ( algorithm*  OR  computeri*  OR  computer-based  OR  machine-based  OR  computer-
assisted  OR  computer-aided  OR  technol*  OR  digital  OR  electron* )  W/3  ( decision-
support  OR  decision-support  OR  decision-aid ) ) )  OR  AUTHKEY ( artificial-intelligence  OR  
boltzmann-machine*  OR  long-short-term-memory  OR  gated-recurrent-unit  OR  rectified-
linear-unit  OR  autoencoder  OR  backpropagation  OR  multilayer-perceptron  OR  convnet  
OR  support-vector-machine  OR  random-forest  OR  lasso  OR  kernel  OR  elastic-net*  OR  
bayesian  OR  naïve-bayes  OR  genetic-algorithm  OR  ( ( deep  OR  convolutional  OR  
bayesian  OR  neural  OR  elastic )  W/1  net* )  OR  ( ( machine  OR  deep  OR  reinforcement  
OR  ensemble  OR  convolutional )  W/1  learning )  OR  ( ( algorithm*  OR  computeri*  OR  
computer-based  OR  machine-based  OR  computer-assisted  OR  computer-aided  OR  
technol*  OR  digital  OR  electron* )  W/3  ( decision-support  OR  decision-support  OR  
decision-aid ) ) ) ) 

AND 

( LIMIT-TO ( PUBYEAR ,  2021 )  OR  LIMIT-TO ( PUBYEAR ,  2020 )  OR  LIMIT-TO ( PUBYEAR ,  
2019 )  OR  LIMIT-TO ( PUBYEAR ,  2018 )  OR  LIMIT-TO ( PUBYEAR ,  2017 )  OR  LIMIT-TO ( 
PUBYEAR ,  2016 )  OR  LIMIT-TO ( PUBYEAR ,  2015 )  OR  LIMIT-TO ( PUBYEAR ,  2014 ) )  
AND  ( LIMIT-TO ( SUBJAREA ,  "MEDI" )  OR  LIMIT-TO ( SUBJAREA ,  "HEAL" )  OR  LIMIT-TO ( 
SUBJAREA ,  "NURS" )  OR  LIMIT-TO ( SUBJAREA ,  "PHAR" )  OR  LIMIT-TO ( SUBJAREA ,  
"IMMU" )  OR  LIMIT-TO ( SUBJAREA ,  "DENT" )  OR  LIMIT-TO ( SUBJAREA ,  "Undefined" ) ) 
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3.9.1.5 Science Citation Index (Web of Science) 
TS=(“Artificial intelligence” or “Boltzmann machine*” or “Long short-term memory” or 
“Gated recurrent unit” or “Rectified linear unit” or Autoencoder or Backpropagation or 
“Multilayer perceptron” or Convnet or “Support vector machine” or “Random forest” or 
Lasso or Kernel or “Elastic net*” or Bayesian or “Naive bayes” or “Genetic algorithm” or 
((deep or convolutional or bayesian or neural or elastic) NEAR/1 net*) or ((machine or deep 
or reinforcement or ensemble or convolutional) NEAR/1 learning) or ((algorithm* or 
computeri* or computer-based or “computer based” or machine-based or “machine based” 
or “Computer assisted” or Computer-assisted or “Computer aided” or Computer-aided or 
technol* or digital or electron*) NEAR/3 (“decision support” or decision-support or 
“decision aid” or decision-aid))) 

AND 

TS=(interview* or ((theme or thematic) NEAR/1 (analys?s or data or synthesis or research)) 
or (qualitative NEAR/1 (research or method* or data or study or studies or paradig* or 
analys* or result*)) or “nursing research methodology” or ethnograph* or ethnonursing or 
“ethnological research” or “grounded theor*” or “grounded stud*” or “grounded research” 
or “grounded analys?s” or “life stor*” or “women’s stor*” or emic OR etic OR hermeneutic 
OR semiotic OR “data saturat*” OR “participant observ*” or postmodern* OR “post 
structural*” OR feminis* OR ((interpretative or interpretive) NEAR/1 (approach or research 
or data or method* or paradigm)) or “action research” OR “co-operative inquir*” or 
existential OR (experiential NEAR/1 (qualitative or knowledge or metho*)) OR “field stud*” 
OR “field research” or “human science” or “biographical method*” or “theoretical sampl*” 
or “purposive sampl*” or (account* NEAR/1 (participant or patient* or clinician* or user* or 
professional* or carer* or family or stakeholder or “open ended” or unstructured) or 
(narrative* NEAR/1 (analys?s or synthes?s or data or research or methods or inquiry)) OR 
“life world” OR “conversation analys?s” OR “theoretical saturation” or “lived experience*” 
OR “life experience*” or “cluster sampl*” or “observational metho*” or “content analysis” 
or “constant comparative” or “discourse analys?s” or “discurs* analys?s” or heidegger* or 
colaizzi* or spiegelberg* or “van manen*” or “van kaam*” or “merleau ponty*” or husserl* 
or foucault* or corbin* or strauss* or glaser* or (Implementation NEAR/0 (science or study 
or research)) or (Usability NEAR/0 (study or research)) or (Perspectiv* NEAR/1 (patien* or 
care* or clinicia* or docto* or stakeholde* or nurs*)) or Mixed-methods or “mixed 
methods”)) 

Results were then limited by ‘Research Areas’ to: 

Medical Informatics OR Health Care Sciences Services OR Public, environmental, 
occupational health OR Neurosciences Neurology OR Psychiatry OR General Internal 
Medicine OR Radiology Nuclear Medicine Medical Imaging OR Pharmacology Pharmacy OR 
Mathematical Computational OR Biology OR Nursing OR Research Experimental Medicine 
OR Oncology OR Infectious Diseases OR Life Sciences Biomedicine and Other Topics OR 
Genetics Heredity OR Biotechnology/Applied OR Microbiology OR Rehabilitation OR 
Behavioural Sciences OR Surgery OR Substance Abuse OR Geriatrics Gerontology OR 
Pediatrics OR Microbiology OR Biomedical Social Sciences OR Parasitology OR Tropical 
Medicine OR Cardiovascular System Cardiology OR Endocrinology Metabolism OR Nutrition 
Dietetics OR Sport Sciences OR Toxicology OR Immunology OR Orthopedics OR 
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Anaesthesiology OR Emergency Medicine OR Obstetric Gynecology OR Respiratory System 
OR Gastroenterology Hepatology OR Pathology OR Physiology OR Social Work OR Urology 
Nephrology OR Womens Studies OR Audiology Speech Language OR Dentistry Oral Surgery 
Medicine OR Ophthalmology OR Otorhinolaryngology OR Anatomy Morphology OR 
Integrative Complementary Medicine OR Rheumatology OR Virology OR Allergy OR 
Dermatology OR Family Studies OR Medical Laboratory Technology OR Mycology OR 
Transplantation OR Hematology OR Reproductive Biology 

3.9.2 Note on contributions 
Two researchers accessed each of the excerpts comprising the data for this study (Jeffry 
Hogg (JH) and Mohaimen Al-Zubaidy (MA)). JH, Gregory Maniatopoulos (GM), Fiona Beyer 
(FRB), Dawn Teare (DT), and Pearse Keane (PAK) designed the study. JH, FRB, GM, and PAK 
developed the search strategy. JH, MA, GM, and FRB conducted the screening process. JH 
and MA extracted the study characteristics, and JH extracted excerpts. JH, James Talks (SJT), 
Alastair Denniston (AKD), Chris Kelly (CJK), and Johan Malawana (JM) and the study 
reference group analysed the data. 
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Chapter 4: Exploring stakeholder perspectives on AI-enabled macula 
services 
Problem: AI-enabled nAMD care has not been clinically deployed or silently trialled 
anywhere before and qualitative ophthalmic AI research is yet to consider any aspect of 
nAMD care. When considering prior qualitative research in ophthalmic AI or nAMD care, 
only perspectives from patient and clinician stakeholder groups are published. 

Objectives: This primary qualitative research seeks to explore perspectives from the full 
network of stakeholders in potential AI-enabled macula services to understand what is likely 
to affect its implementation into clinical practice and why. These insights will inform 
subsequent investigations to form recommendations on how (chapter 6) implementation 
should be conducted. 

Methods: Thirty-six participants completed semi-structured interviews with a single 
interviewer. Participants included patients, carers, clinicians, industry, commissioners, 
managers, policy, charity sector and regulatory professionals. Data analysis was informed by 
a large multidisciplinary team including lay representatives and made use of NASSS. The 
version of the framework used also had minor adjustments made from the systematic 
review. 

Findings: Through NASSS, determinants were categorised in 7 distinct domains. Condition: 
visual outcomes are broadly accepted as the key measure of success in nAMD care. 
Comorbidities are common within the nAMD population and must continue to be 
accommodated in nAMD care provision. Technology: the viability of the AI-enabled 
intervention will rely on complimentary technologies to enable interoperability with the 
host digital infrastructure and clinical pathways. Value proposition: the value proposition for 
users of the tool is broad. The financial value will primarily be experienced by the AI vendor 
and the macula service provider Adopters; few if any of the adopters are familiar with AI 
technologies and will be made more receptive if permitted the time and information 
required to build trust with the technology Organisation: Improving capacity for nAMD care 
at local, regional and national levels is a priority and clinical champions will be particularly 
influential of if and how that is achieved. Some key aspects of organisational readiness 
appear low at present.  Wider system: There is limited communication and between 
relevant stakeholder groups which may adversely affect intervention design and 
implementation. Embedding and adaption over time: the need to improve capacity within 
nAMD care appears likely to be sustained or expanding. The context is currently also very 
supportive of AI innovation, but this may not be sustained. 

Conclusions: There are many enablers for AI-enabled macula services and beyond proof of 
performance few of the remaining barriers depend on the AI technology itself. Successful 
implementation will depend on aligning and addressing the values of key stakeholders 
through a multi-faceted intervention. 

Relevance to future chapters: Chapter 5 will test the ability of a candidate AI technology to 
meet stakeholders’ minimum requirements to maintain visual outcomes in nAMD care. To 
build on the present chapter’s insights into what could influence the implementation of AI-
enabled macula services and why, chapter 6 will apply a TMF to data collected here to 
propose an evidence-based AI-enabled intervention for nAMD treatment monitoring.  
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4.1 Background 
In chapter 3 multi-stakeholder perspectives across clinical AI and use cases were 
synthesised. This highlighted the importance of early and broad stakeholder involvement in 
the development of clinical AI products, interventions and clinical pathways. Unfortunately, 
it also highlighted the paucity of published stakeholder perspectives on AI-enabled 
ophthalmology. These examples either look across ophthalmology generally or at narrow 
use cases in diabetic retinopathy, distinct from the nAMD context.[1-4] In line with general 
weaknesses in the literature, all 4 of these studies drew exclusively on the perspectives of 
clinicians. Nevertheless, perspectives were raised which highlight factors likely to influence 
the implementation of AI-enabled treatment pathways for nAMD: 

• Retinal imaging taken in the real-world setting, introducing previously imaging 
artefacts previously unencountered by the AI.[1] 

• The general receptivity of ophthalmologists for AI-enabled innovation in their 
practice.[3, 4] 

• The challenges of inter-professional communication and shared responsibility that 
will arise if clinical AI is used as a vehicle to decentralise care.[1, 2] 

Considering the perspectives of stakeholders in nAMD care generally, there is an ample 
body of qualitative research, some of which draws on data from the UK .[5-7] The focus here 
is on patient perspectives, though clinician and carer perspectives also have some 
representation.[5-7] Qualitative research of perspectives from other stakeholder groups in 
nAMD care was not readily identifiable. This is understandable but does present some 
limitations to the interpretation of patient perspectives. These qualitative studies highlight 
other factors likely to influence the implementation of AI-enabled macula services: 

• Patients’ willingness to accept various inconveniences and compromises to optimise 
their visual outcomes.[6] 

• The suboptimal state of current consultation quality with clinicians.[5, 8] 
• The financial, social and logistical challenges posed by long distances to centralised 

ophthalmology units.[9] 

The methods that have been used to construct meaning from these perspectives are also 
extremely variable. The challenge posed by the kind of multi-stakeholder study which 
chapter 3 recommends is distilling meaningful findings from a large and diverse dataset. As 
discussed in chapter 1, as in other fields, implementation science places an emphasis on the 
use of TMFs to produce actionable meaning from complex data.[10] As we have seen in 
chapter 3, there is little consensus over what TMFs should be used and for what purpose. It 
is clear however, that an approach to TMF selection which is firmly based in the study’s aim 
and considers a wide range of TMFs rather than a sample restricted by convenience is most 
likely to capture the value of theory-informed research.[11] It is also clear from expert 
opinion and case studies that limiting oneself to a single TMF within a study may also limit 
the value on offer.  

4.2 Problem 
The relevance of qualitative data to a particular implementation effort is variable. Ideally, 
the implementation effort under consideration and the phenomena that participants are 
asked about would fall directly within their scope of experience.[12] A full anticipation of 
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the factors that influence a particular implementation effort is also more likely when a full 
breadth of stakeholders to that implementation niche are engaged.[13] 

For the present effort to implement AI-enabled macula services in the NHS this presents 
several problems: 

• AI-enabled macula services have not been clinically deployed or silently trialled 
anywhere before.[14] 

• Qualitative ophthalmic AI research is yet to consider any aspect of nAMD care.  
• Prior research in ophthalmic AI and nAMD care has engaged only patient, carer and 

clinician stakeholder groups. 

4.3 Rationale 
Given the pragmatist approach of this thesis (chapter 2) aiming to understand how best to 
implement AI-enabled macula services, the absence of closely relevant data to characterise 
what could influence its implementation and why must be addressed.[12] As we have seen 
from chapter 3 and the limited range of stakeholder groups engaged in adjacent fields of 
qualitative research, the primary qualitative research necessitated is likely to be most 
successful if it recruits a full range of stakeholder groups.[13] The impossibility of recruiting 
participants with lived experience of AI-enabled macula services is an inevitability of the 
translation stage of this innovation. Gaining insights from stakeholder perspectives remains 
an established and valuable form of implementation research even at this translational 
stage and the authenticity of participants’ insights can be maximised through indirectly 
relevant experience.[12, 15] The lack of prior research in this specific implementation niche 
also demands explorative research methods, which allow a deep exploration of participants’ 
insights and do not prescribe or restrict the nature of the data they may offer. Given the 
breadth of data that such an explorative, multi-stakeholder study of a hypothetical and 
complex care pathway is likely to yield, a TMF which helps to make sense of the resulting 
complexity is likely to support this thesis’ pragmatic aim. This TMF should accommodate the 
full breadth of individual, organisational and system levels and would benefit from specific 
relevance to digital health or, if possible, clinical AI. 

With these considerations in mind, this chapter will focus purely on exploring what may 
influence the implementation of AI-enabled macula services and why. In turn this will 
facilitate the design and application of further analysis of how implementation should be 
conducted. Semi-structured interviews were used to collect data from all the stakeholder 
groups of clinical AI implementation identified in chapter 3. Purposive sampling maximised 
the closeness of these stakeholder group representatives to future AI-enabled macula 
services. Data from chapter 3 informed the development of the topic guides on which semi-
structured interviews were based. As a determinant framework spanning individual to 
system level factors, the NASSS framework (adapted specifically to clinical AI through the 
best-fit framework analysis of chapter 3) was selected to analyse the resulting data.[13, 16, 
17] 

4.4 Aim 
To explore the perspectives of stakeholders of AI-enabled macula services to understand 
what is likely to affect its implementation into clinical practice and why. These insights will 
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inform subsequent investigations to form recommendations on how implementation should 
be conducted.  

4.5 Methods 
4.5.1 Participant sampling 
Chapter 3 abstracted 5 stakeholder groups from the literature: 

• Clinicians 
• Public/patients/carers 
• Healthcare managers/leaders 
• regulators/policy makers 
• industry professionals 

For this qualitative study, purposive sampling aimed to represent each of these 5 
stakeholder groups, understanding their high level of abstraction and pursuing 
opportunities to expand the granularity of each stakeholder group where it appeared 
valuable and feasible. Beside the lead researcher’s own clinical and academic experience, 
the purposive sampling was also informed by study participants, who were each asked to 
suggest other important informants at the close of their interview. Sampling was also 
informed by the study’s advisory and reference groups, which hold a range of public, 
patient, carer, clinician and academic perspectives (see appendix). These groups imparted a 
drive to maximise the diversity of participants. Besides satisfying this requirement for 
diverse representation, the cessation of novel insights arising from sequential interviews 
(i.e. data saturation) was used as a signal to conclude data collection.[17] 

4.5.2 Data collection 
Semi-structured interviews were selected over a survey tool as the evidence gap around AI 
macula services meant that too little was known about what questions would be important 
to adopt this more prescriptive approach to questioning.[18] This was felt to outweigh the 
potential for more generalisable findings from a larger scale of recruitment. Semi-structured 
interviews were also preferred over focus groups to allow more in depth and convenient 
explorations for participants.[19] It was also anticipated that eligible individuals may either 
be relatively frail and be disincentivised to engage in research away from home, or in very 
busy senior roles where social and political forces may influence the perspectives they 
wished to share in a group setting. These considerations also pointed to a 1:1 interview 
approach. This preference for interviews over focus groups reduced the likely scale of study 
recruitment and the nature of the data, which was free from direct peer influences. To some 
extent, these consequences have been balanced by a concluding public engagement event 
to this research programme discussed further in chapter 6. 

For these semi-structured interviews, a choice of F2F discussion in the participants home or 
place of work, or videoconferencing was offered to participants. Participants were also 
asked if they consented for the interviews to be recorded. If so, recordings were sent to a 
professional transcription service where human technicians performed transcription, or an 
online AI-enabled transcription (Otter.ai, Mountain View, CA, USA) service where the 
researcher directly reviewed and corrected each transcript against the recording. These 
transcripts were treated confidentially and pseudonymised prior to analysis. Where 
participants refused for the interview to be recorded (one patient and one carer only), the 
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interviewer took brief notes through the interview itself and then made a voice recording in 
private immediately after the interview to capture the insights as fully as possible. 

The questions posed in these semi-structured interviews drew on the contributions of the 
participants, but also on pre-prepared topic guides (see appendix). The initial topic guide 
was informed by the findings and theoretical framework of the systematic review of 
qualitative evidence (chapter 3). The lead researcher and study advisory group’s 
preconceptions and descriptions of the implementation niche also contributed to this initial 
topic guide. Subsequently, the topic guide was re-iterated prior to each interview to take 
account of insights from emerging data and the stakeholder group which the next 
participant came from. This iterative approach to structuring qualitative interviews 
borrowed from that of realist evaluations, where understanding of the phenomena under 
study and the questions that are posed to participants are developed in tandem over the 
course of a study.[20] Following each interview, a reflective diary (see appendix) was added 
to, noting overall impressions of the interview and any factors perceived by the interviewer 
to impact the value or bias of the data, e.g. prior relationships with participants, rapport 
formation.[21] 

4.5.3 Data analysis 
The domains, subdomains and subthemes resulting from the adaption of the NASSS 
framework through the best-fit framework synthesis of chapter 3 was used to place the data 
directly into one of 63 codes.[13] It remained possible to further adapt the framework if the 
data appeared to demand it and there was no obligation to fill each subdomain. Data were 
not double coded, i.e. they were assigned to the single most relevant subtheme even when 
they could be related to multiple. This focused approach to coding aimed to mitigate against 
the scale and variation of the dataset.[22] 

An iterative and participatory approach was taken to analysis, over the course of several 
meetings with the study’s reference and advisory groups (see appendix). The primary 
researcher would independently review coded data, to provide narrative summaries of 
factors likely to influence the implementation of AI-enabled macula services. The primary 
researcher would then present these factors at these various meetings alongside supporting 
data to facilitate discussion and revision of their interpretation. 

Once the narrative had been conversationally agreed, summaries of what might influence 
implementation and why were written for each of the 63 codes, accompanied by illustrative 
quotes (see appendix). With the aim of informing subsequent investigations to inform how 
implementation ought to be conducted, insights into factors appeared amenable to 
stakeholder actions we prioritised as key findings to be expressed within each of the 7 top-
level NASSS domains. Implementation factors where tension appeared to exist between 
stakeholder groups, or voices in the study and reference advisory groups, were also 
prioritised for these findings. 

4.6 Results 
Thirty-six individuals consented to take part in 35 semi-structured interviews, with 1 of the 
interviews being conducted with both a patient and carer present (Table 1). Six of the 
participants were patients (Table 9). 
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Table 8. Characteristics of non-patient participants by stakeholder group. * Did not consent to interview recording. ICB = 
Integrated Care Board. 

Stakeholder 
group 

Number of 
participants 

Characteristics 

Carers 2 1 son* and 1 daughter of 2 separate patients; 1 
cohabiting, 1 living nearby 

Charity 
professionals 

2 1 regional manager, 1 national director 

Clinicians 13 1 retinal consultant, 2 registrar ophthalmologists, 2 
advanced nurse practitioners, 2 hospital/community 
optometrists, 2 community optometrists, 1 GP partner, 
2 ophthalmic photographers, 1 social work liaison 

Commissioners 2 1 ICB clinical commissioning lead for ophthalmology, 1 
ICB commissioning project manager 

Industry 
professionals 

4 2 imaging manufacturer representatives with national 
and international roles, 2 software manufacturer 
representatives with national and international roles 

Managers 5 1 directorate manager, 1 outpatient clinical manager, 1 
independent sector provider manager, 1 macula 
service administrator, 1 service innovation manager 

Policy makers 1 National level policy maker 

Regulatory 
professional 

1 Senior regulatory consultant 

26 interviews were conducted F2F, with 7 at the participants’ homes, 18 at the participants’ 
place of work and 1 at a public café. Nine interviews were conducted by videoconferencing 
software. Five individuals, two consultant ophthalmologists, a NHS trust head of IT, a 
professional carer and a patient’s daughter who also happened to be a care home manager 
were invited to participate but were unable to find time or declined to do so. Fourteen 
patient participants consented to participate, but on further contact to set an interview date 
declined to participate. Notably two of these patients represented the only patients 
screened from non-white ethnic groups, one of whom did not speak English. The median 
length of interviews was 47 minutes with a range of 27 – 01:24. Findings are reported below 
within the 7 major domains of the NASSS framework; Condition, Technology, Value 
proposition, Adopters, Organisation, Wider system and Embedding and adaption over time. 

Table 9. Characteristics of patient participants. *Did not consent to interview recording 

ID Gender Ethnicity Age Miles from 
hospital 

Professional 
status 
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1 Male White 
British 

70s 31 Retired 
business 
chairman 

2 Female White 
British 

60s 5 Factory 
worker 

3 Male White 
British 

80s 5 Retired 
teacher 

4* Female White 
British 

90s 13 Retired 

5 Male White 
British 

90s 21 Retired 
teacher 

6 Female White 
British 

80s 3 Retired 
cleaner 

4.6.1 Condition 
As a condition, hospital eye clinicians found nAMD relatively simple to treat and expressed 
frustrations over the amount of input it required from them. Despite this apparent 
simplicity, its management was indisputably seen as a specialist concern and primary care 
participants, were clear that ophthalmologists’ held sole responsibility for it.  

“Our relation to eyes is almost similar to our relation to teeth, we’re better than no 
one, but we’re not the guy.” [GP] 

This was mirrored by optometrists exclusively working in primary care, for whom nAMD still 
presented a small minority of the presentations they dealt with. Many participants from 
different stakeholder groups alluded to the ownership of nAMD management by hospital 
eye services as a missed opportunity to free up ophthalmology capacity and make better 
use of a larger decentralised workforce of nurses and optometrists. Various participants felt 
some extension of consultant ophthalmologists’ responsibility to the community could 
enable task-shifting to the community in nAMD care without challenging this perspective. 
Another incentive for participants to propose decentralisation was that frailty and co-
morbidity are common among people with nAMD.  

“They’re old these people, and they’ve got sight difficulties. So, it’s going to be quite 
daunting, getting on a bus and getting from the Haymarket bus station up to the RVI 
[hospital].” [Community optometrist] 

This participant alludes to the burden of travel for nAMD patients due to these broader 
elements of their health condition. Patients and hospital clinicians also mentioned 
challenges experienced in clinic where patients must navigate various rooms, chairs and 
couches. Hospital clinicians were also mindful of ocular comorbidities. They saw common 
incidental diagnoses of cataract or glaucoma in nAMD consultations as time-consuming yet 
valuable by-products of the current pathway. For patients, vision preservation was their 
priority, and this seemed to readily motivate them to overcome barriers to receiving 
treatment. 
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“…if anything [nAMD] did happen, and that [injections] was the only option, then I 
would just have to put that [fear of injections] way to the back of my mind, and just 
get on with it. Because to be perfectly truthful, the thought of not being able to see 
at all, would just be….really, really scary, really, really scary, yes.” [Carer] 

This participant was the daughter of a patient and so was very mindful of her personal risk 
of nAMD, but no stakeholder group challenged visual outcome as the primary indicator of 
successful nAMD care.  

4.6.2 Technology 
All potential users of the AI technology held relatively abstract perceptions of its nature and 
role in their work. At a high-level, certain characteristics of the technology were consistently 
reported, e.g. an inability for dialogue, high performance in medical imaging interpretation 
and ability to improve clinical workflow efficiency. 

“It’s nice to see a person, you know? If you had this machine and then it would print 
out “She doesn’t need any more,” or, “She does.” It’s not like asking the doctor” 
[Patient] 

“It’s no different to when you say, “Oh he needs an injection in four weeks”, and 
when you show it to the consultant they say, “No, no, leave him.” The only difference 
is that you can have a conversation with the consultant.” [Ophthalmology trainee] 

When talking in greater detail about the AI technology, participants would commonly 
conflate different uses or types of AI within a single conversation, e.g. AI to detect other 
ocular and systemic diseases or AI that continues to learn from data it analyses rather than 
maintaining a fixed analytical process. The regulatory participant pointed out that such 
flexibility in an AI medical device would not be permissible within the approval for use it had 
been granted. This does highlight a risk of use case-drift from clinicians and misplaced fears 
and expectations from patients about AI-enabled macula services. Several participants 
suggested a phased implementation to address this to allow them to explore the intended 
use of the AI for themselves and the practical considerations they need to take when 
working with it. This time spend seeing the strengths and weaknesses of the AI for 
themselves was also expected to build trust. 

“…as long as you’re just aware of the artifacts and the errors, and all of the other 
things… it [AI] would be really, really useful.” [Nurse practitioner] 

As this clinician who conducts consultations and injections within the service explains, this 
trust was not dependent on perfect performance from the AI, but their direct observation of 
its performance and the type and frequency of errors users could expect. Both clinicians and 
patients appeared more accepting of AI if they felt personally enabled to evaluate or 
challenge its outputs. There was a range of expectation over how much autonomy would be 
assigned to the tool, but by building this trust most participants seemed accepting of 
eventually allowing independent AI decisions to be made for at least a proportion of 
treatment monitoring episodes. 

“…say that this AI technology is good enough to reliably, and with a very good true 
positive and very low false positive result, say that, “This patient needs to be seen. 
This patient could be seen in eight weeks. This patient can have injections deferred 
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now.” I think that would be favourably looked upon [by commissioners].” 
[Commissioner] 

As this commissioning lead suggests, for many participants the business case for AI-enabled 
macula services appeared to depend on the acceptability of relatively high AI autonomy. 
Industry participants also highlighted that the business case would also depend on AI 
interoperability with an adopting organisations digital infrastructure due to the financial, 
technical, and clinical implications of changing these elements. 

“If you're a site where you go, “you know what we're really bored of these Canon 
machines, they're not working out for us anymore. Let's move to Zeiss.” It's very 
difficult to do that. Because you've got to break the legacy of your data and almost 
start all over again.” [Industry professional] 

4.6.3 Value proposition 
Participants described a broad potential value proposition, which went beyond simple gains 
in clinical effectiveness and efficiency to encompass financial, clinical and inter-
organisational advantages. 

One commissioning participant explained that payments made to providers of nAMD care 
do not respond to the way in which that care is provided. This meant that financial 
incentives in the current commissioning system lay with providers using AI to make 
efficiency savings on the staff and premises required for billable services (review 
appointments and injection administration), rather than expecting a higher tariff for AI-
enabled care.  

“On Saturdays you could have four consultants instead of one consultant and then 
juniors. So, because we just need to get the patients through, it potentially could be 
really expensive. But the Trust are happy to keep on going, because obviously we 
can’t put the patients at risk.” [Manager] 

This clinical manager felt the financial value proposition of improving clinic efficiency was 
particularly strong in the current context of paying costly staff overtime to control 
appointment waiting lists. Representing the organisation that stood to benefit financially, 
e.g. NHS Foundation Trusts, senior managers also felt that their teams would hold 
responsibility for AI procurement and implementation decisions for nAMD care, rather than 
regional commissioners. This could be challenged if a new provider, e.g. independent sector, 
were to make an AI-enabled proposal for newly commissioned nAMD services. 

AI systems are conventionally described as ‘black-boxes’, indicating limited clinical 
explainability of their outputs.[23] However, participants most commonly attributed this 
characteristic to clinician-led decisions and saw AI as an opportunity to actually improve 
their experience of explainability. This came from patient, carers and clinician participants 
who shared examples of occasions when they were not clear on the current state of their 
disease or the rationale for certain treatment decisions. 

“So being aware of what's going on and why and being able to discuss it is important. So 
what should happen when I go to the NHS is that they should do what the optician does, 
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say 'Well, here it is Mr.XXX. This is  what has occurred, how it's changed’ and so on.” 
[Patient] 

In addition, this patient went on to illustrate the value they assigned to the explainability of 
clinical decisions made about him, through his choice to pay for imaging and consultation 
with his local optometrist prior to his hospital treatment appointment. He did this to ensure 
he had a clear understanding of the current state of his nAMD prior to his hospital 
appointments where he felt he could not be confident of the same degree of explainability. 
Clinicians performing injection-only clinics also reported frustrations where ambiguous 
documentation from colleagues disrupted their workflow, causing them to seek direct 
clarification from colleagues. Whilst faults were acknowledged, clinician, patient and carer 
participants expressed hope that AI-enabled treatment decisions could improve 
explainability in current management plans and also standardise the rationale underpinning 
those plans. 

This standardisation held additional value for care pathways that required inter-organisation 
collaboration from community optometrists and hospital specialists. 

“the four glaucoma consultants are not absolutely happy with the level of expertise that 
is available in the Sunderland area to make safe discharge into the community of their 
glaucoma patients... If you take away the diagnostic capability from the community 
optometrist but use them only as technicians and the diagnostic capability is handed 
over to an artificial intelligence system which has been tested and validated, then I think 
that would be something different.” [Commissioner] 

Here a commissioning participant explains how reservations from ophthalmologists about 
the care quality and consistency in community optometry has prevented glaucoma service 
decentralisation. However, a consultant retina specialist emphasised elsewhere, that the 
value of this consistency relies on credible high levels of performance or monitoring 
procedures for the AI. 

4.6.4 Adopters 
For patients, the distinction between AI and other technologies from everyday life and 
elsewhere in healthcare was not clear. For some, there was a reluctance to engage with the 
detail of exactly what the AI technology was. This came from their own sense of low 
technology literacy and interest.  

It wasn't that she felt like – ‘oh, this is completely a game changer and I need to 
know lots of new things or wouldn't feel comfortable about it [AI]’.  She was fairly 
ambivalent towards its introduction, essentially. [Field note from unrecorded patient 
interview] 

This reluctance only translated into an expectation to reject an AI-enabled service if there 
were expectations for them to engage with technologies directly. There was also a broad 
sense that the service’s ‘human touch’ would not foreseeably be displaced by technology 
due to the requirement that a clinician (usually a nurse) gave the injection itself. A more 
unifying factor influencing acceptance across patient participants was the of 
accommodating frequent clinic attendance.  
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“So, I think that is probably the most stressful thing. It [phoning to check 
appointment booking] is just something that I need to do. I have found almost every 
time the last 10 or 11 [clinic appointments].” [Patient] 

There was clear hope from patients that an AI-enabled service could lessen this burden, not 
only through decentralisation as previously mentioned, but by facilitating shorter more 
predictable appointment lengths and increased appointment availability. A son and 
daughter of two separate patients were interviewed to represent carer perspectives. They 
did not appear to feel deeply involved with their parent’s care which was in part attributed 
to a lack of access to accurate information and logistical challenges in attending clinics. 

“But he [carer’s brother] does ring my mum, so maybe, if my mum said, “Oh, there’s 
this technology and you can see what I’m going through,” then, he may go, “Oh, 
lovely, I’d love to see that. I’d love to be kept in the loop a bit.” But I think, just being 
so far away is quite difficult.” [Carer] 

For carers it seems that, with patients’ consent, the opportunity to independently access AI 
technology outputs could enable them to feel more empowered as patient advocates. 

Ophthalmologists appeared welcoming of the prospect of AI reducing the time they spent 
interpreting OCT rather than fearing professional displacement from it. They viewed it as a 
low complexity task in which they did not require much exposure to achieve and maintain 
clinical competence. Nursing and optometry staff also appeared broadly positive as they felt 
it would reduce their dependence on ophthalmology colleagues. There were some concerns 
that highly automated AI uses might displace them from their nAMD decision making role. 
This role was hard earned with additional training or competitive interviewing and offered 
an improvement in the variety and payment associated with their role. 

“But, I suppose with AI, that the good thing is at least there is some research backing the 
fact that we have worked out what the specificity and the sensitivity of all these things 
are for certain conditions. However, we have trained them [junior clinicians] up by 
looking at a set of images and going through them together, and then we have given 
them feedback. But we have not actually measured how well they perform.” – 
[Consultant retina specialist] 

This consultant’s reflection on their personal risk from assuming responsibility for the 
unquantified quality of junior colleagues’ decisions lends some legitimacy to the 
professional threat that allied health professionals alluded to. Surprisingly, administrative 
(appointments manager) and technician (photographer) staff, whose roles are likely to 
expand or become more important in AI-enabled services, expressed a fear that it might “do 
away with my job” [Manager] most clearly. 

4.6.5 Organisation 
Although operational staff (e.g. managers and IT professionals) within an adopting 
organisation appear set to strongly influence or make decisions around AI implementation, 
they (and other stakeholders) look to senior clinicians to inform these decisions. This was 
despite ophthalmologist participants reporting a low familiarity with the technology and 
limited competency in evaluating it. One industry participant highlighted that the strong 
influence of consultants’ views can be problematic in organisations as pre-existent personal 
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or political issues relating to individual consultants can have disproportionate impact on 
implementation efforts. 

“People distrust things and, let’s face it, consultants can be a bit, “Nobody can do this 
as well as me.” I love them dearly but…”- [Manager] 

This manager of a small team of ophthalmology consultants in an independent sector 
practice highlighted the challenges of trying to innovate a service without the support of 
consultants. Several professional stakeholders also pointed to the availability of adequately 
trained IT professionals as a key enabler for an organisation to manage the risks and 
technical challenges associated with providing AI-enabled care. Unfortunately, such NHS 
professionals were often felt to be absent or inaccessible to other professional groups in the 
NHS. 

“…you end up with a couple of groups of people in NHS IT. You end up with people who 
are very passionate… [and] you find people who might apply on the regular for job 
openings at, let's say, Cerner or Deloitte, but not quite making the cut. That workforce 
mix doesn't always lend itself to being the most efficient at implementing the types of 
things we've been talking about” [Industry professional] 

This was echoed by another industry participant who presumed that third party 
management consultants would be required if NHS organisations were to successfully 
implement AI-enabled care. The costs required to overcome this limiting aspect of 
organisational readiness would be a clear disincentive, but managers and commissioners all 
pointed to improving the productivity of individual clinicians and nAMD services as a 
strategic priority. 

“I think if any Trust anywhere in the country says that they are managing it [nAMD care] 
successfully they are not telling the truth, because almost all of them are firefighting…” 
[Commissioner] 

This commissioner also volunteered an overlapping strategic priority to move services to 
primary care, to reduce hospital footfall and improve the carbon footprint and capacity of 
the care pathway. The GP participant gave several examples in which their practice had 
hosted non-ophthalmic specialist outreach services. Primary care optometrists were also 
open to this form of decentralisation but held reservations due to their experience with 
several prior stalled or failed initiatives to do so for other clinical services. 

4.6.6 Wider system 
At the time of data collection, it was already common across all stakeholder groups for 
negative associations with other forms of AI (and often robotics) to be volunteered from 
public media and science fiction sources. Even following further explanation of the 
technology on which this study focused, these associations often resurfaced within 
discussions and appeared likely to colour peoples’ perceptions of AI-enabled care. 

“I think rightly so we should be frightened of it [AI]. You know, we've all watched films 
like ‘Number 9’ and all those kinds of really spooky... And I think we do need to be very 
respectful of that. And of people's fears of it as well. You know, look at the response to 
vaccination and the amount of distrust that it uncovered.” [Manager] 
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This senior leader within the hospital emphasised that these perceptions should be 
accommodated in any AI implementation plans as they have serious consequences, even if 
their evidence base is unclear. Patient and charity participants offered some suggestions on 
how patients may be enabled to shape or build trust in any potential clinical AI 
interventions. Charity professionals self-identified their role as surfacing the patient voice 
and advocating for it across various stakeholder groups who drive health service innovation. 
It also appeared that they had stronger connections to national regulatory and 
commissioning gatekeepers than many hospital clinicians and managers. 

“We're quite involved in policy and some regulatory discussions as well. So we do work 
quite closely with NICE and we are engaging more with different parts of the NHS and 
some of the strategy development around these pathways being designed. Having a 
clearer sight of what's on the horizon and what's being developed and how it works and 
what it means for our patients” [Charity professional] 

This perspective from the charity’s senior leadership was echoed by a regional 
representative who wanted to find ways to strengthen this bridging and advocacy role at a 
local level. This came with the acknowledged shortcoming in engaging with “anyone who’s 
not a relatively wealthy, middle class, white lady”, addressing which was a firm priority for 
the charity. Community optometrist participants also raised concerns that different groups 
of patients may find it more challenging to access nAMD services. These groups were mainly 
people for whom repeated journeys to hospital were particularly challenging (more 
comorbidities, social isolation, rurality or financial pressures). For that reason, greater 
decentralisation of nAMD care, whether facilitated by AI implementation or not, was seen 
as a likely means to improve service equity. 

“…in an affluent area you may well get three hubs within a small [area] fully staffed, and 
somewhere where perhaps there are not as many staff. You may well have the set up, 
you may well have the go ahead, but you don't have the staff members to roll it out.” – 
[GP] 

This participant highlighted that the backdrop of staff shortages still threatened service 
equity in a decentralised model, as clinicians may choose to take jobs closer to the affluent 
areas in which they tend to live. Several participants highlighted that improving healthcare 
equity was another key priority at national and regional levels for the NHS and so suggesting 
or evidencing its delivery with AI-enabled nAMD care could be influential in gaining support 
from leadership. 

4.6.7 Embedding and adaption over time 
Most participants highlighted a sustained need to improve NHS capacity for nAMD care. It 
was expected this need would increase over time. Similarly with AI, industry and NHS 
professional participants all felt that the context in which they were working was currently 
highly supportive of AI-enabled healthcare innovation. 

“I would say that ministerially and in other aspects, there is a need to get something [an 
AI-enabled care pathway] out because there are short-term objectives of political will.” 
[Policy maker] 
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This national policy lead explained the political drive to achieve some widely recognised 
examples of successful clinical AI implementation. It was also emphasised that these 
examples were likely to be achieved in clinical areas with pre-existing high digital maturity 
or need for change. The scale of the short-term impact was therefore thought to be limited 
as a majority of clinical settings had more fundamental digital issues (e.g. electronic 
healthcare record implementation) before clinical AI implementation would become a 
realistic priority. Alongside other perspectives from industry and commissioners, these 
questions over the scalability of AI benefit across the NHS suggested that the future of the 
specific strategic emphasis on AI as a solution type may be relatively fragile and that its 
sustainment should not be assumed. Uncertainty about future directions could also 
influence the scale and ease of investment made in clinical AI development. As clinical AI 
begins to be implemented, a practical understanding of the challenges of delivering 
commercial and clinical benefit are becoming clearer. 

We often as consultants feel a bit like bereavement counsellors. Because we have very 
excited people come in, with some great research, with great potential, but the reality is 
that this [AI medical devices] is a very heavily regulated space, time consuming and 
expensive” [Regulatory professional] 

This regulatory consultant also imparted that most clinical AI product development is 
performed by independent small young companies who most commonly use external 
investment to absorb the associated risk and expense. This was mirrored by industry 
participants, all of whom were employed by large companies invested in clinical AI 
strategies. These strategies seemed to be oriented more toward system solutions (e.g. cloud 
platforms and interoperable electronic healthcare records) capable of aggregating the 
success of a range of AI products. 

“You need to work with the existing system that you have, which is massive, 
convoluted, complicated, and is regulated both by government and other bodies. And 
introducing changes to such an organism is not easy at all. So, we will see it [AI 
implementation] as an iterative process in my mind.” [Industry professional] 

This international strategic lead for a MedTech company shared their appreciation for the 
complexity of implementing AI and suggested that better informed strategies would 
become possible as the fate of the current wave of interest in AI emerges over time. 

4.7 Discussion 
Besides the data it elicited, this chapter served to validate the adaptions to the NASSS 
framework made in the qualitative evidence synthesis of chapter 3 and the stakeholder 
groups which were abstracted. The data presented are supportive of these outputs from 
chapter 3, as insights from different stakeholder groups recruited were unique in at least 
some regards and no new framework subthemes were deemed necessary through the 
analysis process. Furthermore, the interdependence of factors that could influence the 
implementation of AI-enabled nAMD treatment monitoring was well illustrated by the 
recurrence of themes across several NASSS domains. This is well illustrated by the potential 
shift of nAMD care to primary care, which related to most if not all the seven domains. 

There appear to be many factors which are likely to positively influence efforts to 
implement AI-enabled nAMD treatment monitoring, including: 
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• trust that AI-enabled care will not reduce visual outcomes 
• strategic priorities of decision makers (capacity increases, decentralisation, equity, 

sustainability etc,)  
• ophthalmologists’ and patients’ drive to reduce the volume of consultation episodes 

The qualitative interview findings also revealed challenges, including: 

• regulatory hurdles that products and manufacturers are required to clear and the 
limited awareness of them from most stakeholders 

• current digital infrastructure and expertise of potential NHS adopter organisations 
• cultural scepticism for AI in general terms 

This rich dataset helps to understand what factors could influence the implementation of 
AI-enabled nAMD care and why. In particular it is clear that much of the value proposition 
depends upon the performance of AI in relatively autonomous monitoring of nAMD 
treatment. If this evidence cannot be produced it seems that research investments would 
be best placed in further developing the technology rather than the intervention in which it 
should sit. Gaining practical value from insights on what could influence implementation 
and why, to inform how AI-enabled nAMD care should be implemented, will then become 
an important next step. 

4.7.1 Comparison with prior work 
The central influence of consultant ophthalmologists over other stakeholders was clear 
throughout the interviews, even though they hold relatively little direct decision-making 
power regarding adoption. As such it was interesting that the two consultant 
ophthalmologists interviewed (1 retina specialist and 1 commissioning lead) framed the AI 
as a means for consultants to extend the scope and consistency of a consultant’s approach 
to practice, rather than disrupting it. This logic of extension, as opposed to the more 
commonly perceived logic of disruption, has been clearly described in a Norwegian primary 
qualitative study of a rule-based clinical AI system for oncology.[24] Here, the clinical 
participants embraced the tool because they felt it deployed the same decision-making 
mechanisms that they did in their personal practice and welcomed the opportunity to 
extend their scope of application. This contrasts with US histopathologists’ perceptions of an 
AI-enabled diagnostic aid with relatively low transparency or explainability. Whilst the 
clinicians were impressed with the performance of the model, they found it hard to trust 
because they couldn’t relate to the process by which outputs were generated.[25] 

There were also concerns raised about the readiness of NHS digital infrastructure, but also 
the clinical and technical NHS workforce to enable AI implementation. The concerns have 
been long-anticipated and have been the focus of high-profile policy documents 
commissioned by the UK government.[26-28] The most recent of these focuses on 5 
different roles or ‘archetypes’ that NHS staff will fall into in their interactions with clinical AI 
and 3 categories of competencies, or learning outcomes that they may require; general 
digital health competencies, foundational understanding of AI technologies and 
competencies specific to a particular clinical AI product.[27] In the NHS staff involved and 
discussed in the present chapter it seems that both general AI understanding (e.g. how to 
evaluate an AI product) and specific competencies relating to the specific AIaMD embedded 
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within an AI-enabled macula service (e.g. understanding what applications are within its 
regulated intended use) will be important elements of any intervention. 

Many stakeholders expressed a need for clarity on who would be accountable for AI-
enabled clinical decisions. The clinical AI literature mainly focuses on product development 
and validation, leaving this relatively unexplored. There are very occasional academic or 
policy publications around procurement practice and very little about long term monitoring 
or lifecycle management of clinical AI.[29] This has recently improved with the publication 
of a British Standard for healthcare providers evaluating AI products and an 8-step process 
from problem identification to clinical AI decommissioning drawing on the organically 
developing practices of US academic medical centres.[30, 31] There is very little precedent 
for clinical AI adoption in the UK and therefore how these processes will play out in practice 
remain unclear. One leading centre, University Hospitals Birmingham NHS Foundation Trust, 
uses the medical algorithmic audit (MAA) as a framework to adopt a systematic approach to 
clinical AI monitoring to inform decisions around its use.[32] This same framework will be 
used to examine the processes that providers may need to adopt if they are to safely 
implement AI-enabled nAMD care in chapter 7. 

Tailored evaluations of the nAMD monitoring tool, were clearly valued by potential 
adopters. Value was ascribed to a close relationship between the contexts in which the 
evaluation took place and which the adopters routinely experience. For example, one 
patient participant even said they would want to see AI outputs for their own prior 
consultations before they would trust it. This preference aligns with literature elsewhere, 
including the aforementioned 8-step process where the 5th step, immediately prior to 
clinical integration, involves local non-interventional evaluation.[30] This is mirrored in 
several different studies which describe months of ‘silent trials’ for AI products before they 
‘go live’.[14] These silent trials are not simply trust-building exercises. They have practical 
value in facilitating the identification of real-world problems. These problems could cause 
patient harm if the ‘go live’ phase had started without their identification and 
mitigation.[14] Similar small-scale or simulated workflows can also help to check 
assumptions. For instance, many stakeholders assumed efficiency to be part of the value 
proposition of AI-enabled care, but this assumption is yet to be evidenced. This practice of 
‘silent trials’, or a similar approach, is certainly desirable in the UK, but may be challenged to 
some extent by cultural, legal and technical barriers between AI vendors and healthcare 
providers. 

4.7.2 Limitations 
A major limitation of this study was its failure to recruit any patients or carers from an 
ethnic group besides ‘White British’. Two patients of Chinese and Indian ethnic backgrounds 
respectively were consented to participate (in one case with the support of a Cantonese 
interpreter) but both declined to arrange an interview on subsequent follow-up. Upon 
searching the available records at the host site, this represented the only current nAMD 
patient with an interpreter booked for their appointments and 2 of the 8 patients who had 
been treated for nAMD in recent years with an ethnicity other than ‘White British’ or ‘Not 
Specified’ on the electronic medical record (EMR). Following discussion with the reference 
and study advisory groups, a mitigation strategy was deployed to recruit charity 
professionals and community optometrists serving more ethnically diverse localities, hoping 
that they could advocate for any patient perspectives which may be influenced by ethnicity. 
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nAMD affects older patients and the study recruited from the Newcastle and Northumbria 
wards which returned recent census data suggesting the populations aged over 65 
suggesting are 95.3% and 99.3% White British respectively.[33] This skewed representation 
also has a biological drive as nAMD is a quarter and third as prevalent in Black and Asian 
ethnic groups respectively.[34] These factors mean that the low ethnic diversity of nAMD 
patients is not in itself evidence of inequities in access and/or uptake of nAMD services by 
ethnicity. However, this finding motivated, and informed the design of, a local quality 
improvement project to improve the completeness of ethnicity recording on the EMR (see 
appendix). 

Another key limitation to the relevance of this work is its focus on clinician, manager, 
patient and carer stakeholders at a single macula service. There was some hint at the high 
degree of variability in service design between different macula services from participants 
who drew on regional, national or even international experiences. This was an intentional 
choice to facilitate a deep exploration of a single implementation context, rather than an 
inevitably more superficial yet generalisable exploration across multiple UK centres. This 
choice to focus on a tangible implementation site also aimed to avoid highly abstract and 
unactionable findings, which can result from qualitative explorations of hypothetical 
innovations such as the one under study.[12] To mitigate against the resulting limit to 
generalisability, NASSS was also used to abstract the study’s findings to make them more 
relevant to implementation efforts outside of Newcastle upon Tyne Hospitals NHS 
Foundation Trust (NuTH).[12] 

As demonstrated by chapter 3, this primary qualitative study represents the most 
comprehensive sampling of stakeholder groups to AI implementation in any single 
study.[13] Despite that, there were stakeholders who proved to be infeasible to recruit that 
may well have added to the study’s findings. Individuals who were pursued for participation 
but, a suitable contact couldn’t be identified, did not reply or declined included; senior IT 
staff, senior clinical informatics staff, an Integrated Care Board (ICB) digital health 
representative and a representative of the Care Quality Commission. Even within 
stakeholder groups some limitations will be derived from a sub-optimal diversity in 
representation, e.g. both carer participants were children of patients. Individuals who were 
successfully recruited helped mitigate against these limitations by contributing their partly 
overlapping perspectives, but the study findings are likely to fail to draw on at least some 
relevant perspectives or insights. 

4.7.3 Future directions 
4.7.3.1 Within scope of this thesis 
The present chapter has identified what can be expected to influence the implementation of 
AI-enabled nAMD treatment monitoring and why. The analysis process has allowed these 
implementation determinants to be distilled from nearly 29 hours of interviews from 36 
varied participants. However, this list of determinants offers little assurance that candidate 
AI technologies can meet minimum requirements for stakeholder acceptance. Foremost 
among these is a requirement that introducing AI should not compromise the visual 
outcomes that patients can currently expect. Testing if a potential AIaMD could meet this 
requirement with real-world clinical data will form the aim of chapter 5. 
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The determinants surfaced within this chapter offer little practical detail of how AI-enabled 
nAMD treatment monitoring should be implemented. Designing an AI-enabled intervention 
which aligns with the determinants discussed in the present chapter would help to answer 
this question of how the technology should be implemented. A TMF with a practical focus 
on healthcare interventions will be used in chapter 6 to propose an evidence-based 
intervention to carry the AIaMD (to be validated in chapter 5) into clinical practice.[35] 

4.7.3.2 Outside scope of this thesis 
Whilst nAMD is the major single disease contributing to demand in NHS macula services, 
there are other retinal diseases which make major contributions and are likely to be 
amenable. The factors that influence implementation relating to the condition and adopters 
are at least partly distinct however, and so additional qualitative research would hold value. 
These diseases include diabetic macula oedema, retinal vein occlusion, myopic macular 
degeneration and geographic atrophy in AMD. Designing an AI-enabled intervention to 
support the treatment of all of these diseases (or variant interventions for each) would 
increase the potential impact of the technology under study. 

To support the generalisability of this chapter’s findings across the NHS, it would be 
beneficial to vary the context from which participants are recruited in further work. This 
could prioritise macula service representation from across the four UK nations, independent 
sector services and small rural and large urban services. To maximise the scope of such work 
it may be valuable to conduct interviews or focus groups with sites and services different to 
NuTH and then test the range of determinants in a national survey. Given the widespread 
concerns about differential performance across ethnic groups, it would also be helpful to 
collect data from services that serve a more ethnically diverse population.[36] 

4.8 Conclusions 
There are many determinants of implementation success for AI-enabled nAMD treatment 
monitoring. The potential value proposition for AI in this context extends far beyond the 
motivating opportunity to improve capacity in nAMD services. It includes improvements to 
patient and clinician experience, healthcare equity, carbon footprint, care quality and care 
consistency. There are also many different stakeholder groups who could influence 
implementation, but consultant retina specialists are of central importance, with many 
other stakeholders looking to them to help form their own opinion. All stakeholder groups 
see the preservation of visual outcomes in nAMD as a minimum requirement for AI 
technologies to be implemented. The absence of such evidence currently represents a 
barrier to implementation. Whilst this chapter’s findings offer insights on what could 
influence AI-enabled nAMD treatment monitoring and why, the details of how 
implementation should be conducted remains unclear.  

4.9 Appendix 
4.9.1 Example topic guide (patient) 
Current pathway 

1. What parts of the current service do you like most? 
2. What changes would you like to see in the current service? 
3. In the current service you meet lots of team members for different parts of your 

care. Which bits of face-to-face or written contact do you find most valuable? 
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4. Have you had any ‘injection only’ or virtual clinic visits, where a consultation isn’t 
part of the visit? If so, how do you find them? 

Initial impressions of clinical AI 

1. As you know, I’m interested in the idea of technology in healthcare. What are your 
first thoughts and feelings when I mention artificial intelligence in healthcare? 

2. When I’m talking about AI here, I mean a type of technology designed to take in 
some information and make a decision about it on its own. Specifically, I’m talking 
about a kind of AI we have, which can look at your eye photos on its own and see 
when your eye next needs an injection without help from a nurse or doctor. What 
use could you imagine for AI like that? 

3. What kind of down-sides or difficulties do you think there might be in using that kind 
of AI in the clinic? 

Pathway placement 

1. Who do you think the best person to be responsible for the AI would be? 
2. What kind of interactions would you like to have with doctors if artificial intelligence 

is brought in? 
3. Where would you like to have your eye photos taken?  
4. Where would you like to have your injections given? 

Relationships with the tool and others 

1. Some people might feel a bit uncomfortable about letting AI take some of the 
responsibility for their treatment planning. What kind of things might help you trust  
AI like this? 

2. With this kind of AI, you might be able to see how and why it makes its treatment 
decisions for you. How would you feel about that? 

3. How might it change the way friends and family support you in managing your eye 
disease? 

4. Who would you want to be able to access the AI’s decision making? 
5. How do you think bringing this AI into the service would affect your relationships 

with different members of the care team? 

Closing 

1. Thanks very much for so many helpful insights. Is there anything else we haven’t 
talked about that seems important about using AI in macular degeneration clinics? 

2. We’re planning on talking to hospital doctors and nurses, opticians and managers 
but do you think there are other people’s perspectives we should be hearing? 

4.9.2 Example reflective journal 
“This is just a quick reflective diary after the interview with patient three, which felt like it 
went well. I think I did a better job of letting them speak… certainly consciously. There were 
a few times where I wanted to jump in, but I didn't. And actually, a lot of what I wanted to 
be said was said, in a way. So that's good. And just coming back to the kind of demographic, 
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I think it's, it's well highlighted by the fact that two out of my three patient members I’ve 
recruited so far play croquet. I think that probably points to a fair bit of bias towards 
wealthier patients that’s emerging in the sampling. I don’t want that, but in a way it’s 
helpful because they're quite empowered patients and good advocates for their own 
perspectives and people around them as well. So it's not all bad, but it's probably not 
representative of the full population. So that's something we need to address. I don't think 
there's any other major issues. I guess that patient three had obviously done quite a lot of 
research into AI himself, both to actual kind of formal research and discussion with family 
members. So that may well have limited the representativeness of his perspectives, but 
there were some interesting points in that as it kind of flags this idea that the general public 
needs to come around to the idea, read more about it themselves and understand the 
issues themselves. So that was interesting. And the other thing that came up before the 
recording started was that we discussed his appointments at the beginning, he was talking 
about how he has just been chasing his appointment so that was a good example of how 
service capacity is key. He can't get the appointment that he needs right now. So it's a nice 
illustration.” 
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4.9.3 Study reference and advisory group handbook 
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Background  

Using UK taxpayer money, the National Institute for Health and Care Research are funding a 
3-year research project called ‘A mixed methods validation of Technology Enhanced Macula 
services’. Eye care is the largest contributor to NHS hospital clinic appointments and in turn 
the largest contributor to these appointments is age-related macular degeneration (AMD). 
The amount of people needing treatment for this disease is rising and the resources that the 
NHS have are already failing to meet these needs. If a solution is not found then treatment 
will be delayed and people will lose vision that could have been saved. 

 

This research project aims to see if a type of artificial intelligence, which has been developed 
by a separate team, could solve this imbalance of supply and capacity in services for people 
with the type of AMD we can treat, exudative AMD. We aim to do this in 3 steps. Firstly, we 
will summarise all the published evidence on how people involved in all sorts of healthcare 
services felt when they used technologies that support clinical decisions. Second, we will 
interview patients and healthcare professionals involved in AMD clinics. Finally, we will use 
photos from past AMD clinics to see what treatment artificial intelligence would have 
suggested and compare that to the decisions made by NHS staff. 

 

Purpose of the Reference Group 

This research is funded by the public and hopes to make meaningful improvements to the 
services we can all access. The purpose of the Reference Group is to support this goal, by 
preventing the project being driven purely from the perspective of researchers and 
clinicians. The intention is to discuss upcoming steps of the project and ensure that plans 
and interpretation align with public values as much as possible. Ideas generated in these 
discussions will feed directly into the management of the project, either directly or with 
additional input from the Study Advisory Group.  

 

Objectives  

To ask research questions that will help to develop AMD services that are both convenient 
and effective for members of the public. 

To help to interpret the meaning of interviews and research data without academic or 
professional bias. 

To inform ways of communicating research findings to the public in an accessible and 
engaging way. 
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Study oversight 

Before work started a detailed proposal for the TEMS research study was put together with 
input from members of the public and topic experts and was approved by the funder, the 
National Institute for Health and Care Research. During the three years of proposed 
research, guidance will be provided by two separate groups to maintain the public value and 
the scientific quality of the project. The first of these is the Reference Group, consisting of 
four members of the public experienced in supporting health and care research in other 
contexts. The second is the Study Advisory Group, where the membership have varied 
clinical, academic and lived experience related to this specific research project. Each group 
will aim to meet twice yearly to discuss the project, with flexible communication between 
these points. 

Study lead 

Jeff Hogg 

 

 

I am a junior doctor specialising in ophthalmology who is taking time out 
from clinical practice to study for a PhD at Newcastle University’s 
Population Health Science Institute. I have lived and worked in 
Newcastle for more than ten years and gained experience in 
observational and diagnostic research. 

 

Supported by the team listed in this document and others, I formed the 
proposal for this study in response to the rising volume of appointments 
associated with the macula service for the NHS, clinicians and patients. 
Whilst artificial intelligence that could streamline these services for all 
stakeholders is relatively mature, my passion lies in understanding how 
to bring it into practice in a way that works for everyone. 

 

Reference Group members 

Rashmi Kumar I am now a fulltime Carer for an elderly mother suffering from 
Long term multiple illness. This experience has helped me to 
better understand and appreciate some of the health, 
psychological and social challenges patients (and their 
families) face in their lives every day. Crucially, it has helped 
me understand how better support could significantly 
improve their health and wellbeing.  

 

I am from BAME culture and a Trustee of large Patients 
Participation Group (PPGs) Network in South London which 
has very diverse and extensive BAME communities, with 
many experiencing significant health and social care 
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deprivation. I am actively engaging with many Primary Care 
Networks, GP Federations and the South East London CCG. 

 

I am also a member of Cicely Saunders Institute of Palliative 
Care, Policy and Rehabilitation, which focuses on research on 
improving health and social care services for patients, their 
families and support networks, on management of Palliative 
Care and EoL support services. 

Coming across this study on the Technology Enhanced Macula 
services, particularly on the potential determination of the 
Age-related Macular Degenerations (AMD), I feel this could 
be a useful study to explore and develop potential 
improvements on health and wellbeing of some communities 
which may not be receiving optimum level of care and 
support they deserve. 

Christine Sinnett 

 

 

I have now retired after working in administration since the age 
of 16. I completed a BA in Sociology followed by an MA in 
Contemporary Sociology at Durham University, geared towards 
research, which was awarded in 2002.  
 
I am a member in VOICE Newcastle and have participated in 
many research projects such as the current TEMS Project which 
is proving to be extremely interesting.  

 

My interest in this research was driven by family occurrences of 
MD.  My uncle with wet AMD had to travel a long way from 
Brampton for some treatment.  My cousin currently developed a 
hole in her macular which thankfully appears to have receded, 
but she has had a lot of imaging at the RVI.  Anything that can be 
done to alleviate the logistical problems of having to travel and 
wait for treatment can only be a good thing. 

 

Rosemary Nicholls 

 

I was delighted to hear that my application to join the Reference 
Group had been successful, as I have found my experience as a 
member of the North-East Research Design Services Consumer 
Panel very rewarding and would like to make this further 
contribution to health research. In my younger days, I took 
several courses in Social Research Methods and have been able 
to use what I learned then, as a lay person considering project 
summaries. 
 
Although I enjoy very good health, with no experience of eye 
disease, I know others who are regularly checked for glaucoma 
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and macular degeneration. I’m very conscious of the important 
role sight plays in ensuring my independence and keen to 
support this promising research project. 
 

Angela Quilley 

 

I had a career in education, at all levels, enabling me to 
specialise in several areas including developmental 
psychology, specific learning difficulties and community 
education.  I have trained nursery nurses to work in hospitals, 
schools, nurseries and care settings. Most recently I taught 
children with a diversity of special needs and disabilities. I 
worked on the compilation of pupils’ Education Health and 
Care plans and psychometric testing to enable students’ 
equality of access to the curriculum and public examinations. 
This person centred approach enabled me to realise the 
significance and importance of Public Patient Participation in 
HealthCare and Health research, which I have embraced for 
several years. I am part of a multidisciplinary co-production 
called “Hearing Birdsong” which has developed a user 
friendly, patient centred way to access help with hearing loss. 
As a member of the Public Partners Advisory Panel for the 
NIHR Applied Research Collaboration North West London, I 
am able to engage in a variety of aspects of research.  

 

 

Study advisory group 

Fiona Beyer 

 

Fiona leads the information programme at Newcastle University’s 
Population Health Science Institute. She has worked on systematic 
reviews for over ten years both as an information specialist and a 
systematic reviewer. 

Katie Brittain Katie is professor of applied health research and ageing at Newcastle 
University’s Population Health Science Institute. Her recent work has 
focused around how aspects of the physical, social and technological 
environment pose challenges and opportunities for older people and 
their wider community. 
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Pearse Keane 

 

Pearse is a consultant ophthalmologist at Moorfields’ Eye Hospital in 
London where he specialises in the medical treatment of retinal 
disease. He is also professor of artificial medical intelligence at 
University College London’s Institute of Ophthalmology. 

Trevor Lunn Trevor is a retired general practitioner who worked and continues to 
live in the North-East. He has several years of experience of the local 
macula service as a patient and is a member of the Macular Society. 

Janet Lunn Janet is a retired nurse who worked and continues to live in the North-
East. Through her husband Trevor she has substantial experience of the 
local macula service and supporting someone with macular 
degeneration. 

Gregory 
Maniatopoulos 

Greg is an assistant professor in healthcare innovation at Northumbria 
University. His research interests lie primarily in the broad area of 
health systems, implementation and change, in particular exploring 
how organisational, technological and policy factors shape processes of 
appropriation of innovations in healthcare practice. 

James Talks 

 

James is a consultant ophthalmologist at Newcastle upon Tyne 
Hospitals where he leads the medical retina service and macula service. 

Dawn Teare Dawn is professor of biostatistics at Newcastle University’s Population 
Health Science Institute. Nationally she co-leads the NIHR statistics 
group and is experienced in biomedical research, clinical trials and 
research integrity. 
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4.9.4 Exemplar codebook summaries 
4.9.4.1 Type or format of care need 
Patients, clinicians and commissioners perceived a very high personal and economic burden 
from nAMD treatment. This comes from both the frequency of injections and the serious 
consequence of irreversible sight loss if that frequent need is not met. Coupled with the 
high prevalence of the condition, nAMD treatment was a high strategic priority for 
commissioners and hospital managers. There is also a sense that treatment would be 
improved if the act of scheduling and administering the treatment did not have to displace 
more patient-centred social, psychological and broader clinical considerations. At present, 
most of clinicians’ attention is diverted toward the relatively simplistic decision-making 
around when treatment is required for patients with established diagnoses: 

“…the two decisions that you need to make are, do they need an injection, and when do they 
need the next one?... You just look at the picture and say it’s dry, and they’ve had 10 weeks, 
let’s try 12 weeks… It’s as simple as that. So, you don’t need a person.” [HCP4] 

Here an ophthalmology trainee shares their frustration over the amount their time spent on 
producing these decisions around treatment timing, later stating “my daughter can tell you 
that”. Similarly, patients, clinicians and mangers felt that the delivery of the injections 
themselves is an inefficient use of ophthalmologists time. Both patients and HCPs expressed 
a preference to prioritise this time for consultations around diagnosis, screening for ocular 
co-morbidities and changes to the management plan (e.g. cessation of injections). 

4.9.4.2 Tools redefine staff roles 
Most participants felt that AI-enabled nAMD treatment monitoring would change both the 
nature of work required and the staff groups best-suited to the work. 

“If you are deskilling them in a role that's no longer needed, well, that's not a problem. We 
no longer need the person who looks after leeches. That's not a big deal.“ [HCP 11] 

This GP hints at the extreme end of this spectrum with potential redundancy for eye 
specialists to be involved in nAMD treatment monitoring. Some participants felt an unfair 
professional threat for themselves or others, given the personal investments HCPs had 
made to achieve their competencies. Patients felt these shifting roles could assign greater 
priority to discussion and empathy from their clinicians. Most HCPs expected the potential 
for role expansion through AI-enabled care to increase the value they could contribute to 
patient care. Commissioners voiced things more pragmatically but seemed to welcome the 
opportunity to reduce staffing requirements for care provision. Most participants caveated 
their contributions, recognising that the exact implications of AI adoption would depend 
upon the detail of the use case.  

4.9.5 Quality improvement project 
Ethnicity recording rates in the Royal Victoria Infirmary Macula Service (reported and led by 
Dr Samy El Omda, supervised by Dr Jeffry Hogg) 

Introduction and background: 

COVID-19 shone a harsh light on some of the health and wider inequalities that persist in 
our society. NHS England responded to this with an initial 8 urgent actions for tackling 
health inequalities, which was later refined to 5 key priority areas. Priority 3 states: “Ensure 
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datasets are complete and timely – Systems are asked to continue to improve the collection 
and recording of ethnicity data across primary care, outpatients, A&E, mental health, 
community services, and specialised commissioning”.  

This is further supported by the NHS 10-year long term plan in which strategic plan 2 is 
“Preventing illness and tackling health inequalities. 

Aims and objectives: 

We aim to see what percentage of patients at our Age Related Macular Degeneration (AMD) 
clinics have their ethnicities recorded and how we can improve this data if we are not 
meeting the standards. 

For Audit: 

Title of standard document: 2021/22 priorities and operational planning guidance: 
Implementation guidance 25 March 2021  

Specific defined standards to be measured: Percentage of patients with ethnicity recorded. 

Methods: 

Data was collected via Medisoft from AMD + injection clinics up to December 2022. Patients 
MRN and ethnicity were extracted. We then analysed the percentage of each ethnicity 
category recorded. 

Results: 

90.4% of all patients had their ethnicity recorded with 9.56% currently being not stated. 

Conclusion: 

Currently although we are achieving good ethnicity recording rates, especially in comparison 
to the trust average of 80% of all patients having their ethnicity recorded, there is still room 
to improve. This is of particular importance given Newcastle’s ethnicity breakdown in the 
65+ age group (where the majority of patients with AMD fall into) as with 97% of this 
population being identifying as “White” it is important we have very accurate ethnicity data 
if we are to do any statistically significant analysis on how well we are reaching the other 3% 
of Newcastle’s Population. 

Recommendations for the future: 

We need to identify the current barriers to 100% ethnicity recording. 

Action taken to disseminate QI/audit findings: 

Presented findings at the Receptionist meetings – Identified issues they had with recording 
ethnicity. 1) Patients not understanding why ethnicity is being asked and hence being 
apprehensive around answering this question. 2) Clinics being very busy and there not being 
time for this without delaying the clinic. 

Actions to address areas of development: 
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Following this advice, we discussed with one of the ethnicity leads at the RVI and created an 
information sheet with a questionnaire that explains the importance of ethnicity recording 
and allows the patient to tick what ethnicity they identify with and hand this back to the 
desk to be recorded at a later time. 

Intervention started 16th October 2023 

Re-audited 31st October 2023 

As our macula clinics run every day, we re-audited this after 2 weeks for preliminary results 
and to see if the reception team identified any issues. Although we were informed that most 
patients in these clinics had their ethnicity recorded already, the intervention worked 
successfully achieving 100% ethnicity recording tin these two weeks.  
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Chapter 5: A retrospective non-inferiority study of an AI-enabled tool 
for nAMD treatment monitoring versus consultant-led-care 
Problem: There are no examples of clinical AI technology being used to make treatment 
plans for nAMD that are non-inferior to current clinical practice. Chapter 3 identified this as 
a minimum requirement for many stakeholders and without establishing whether it has 
been satisfied it is unclear if further investment to improve the technology and design or 
evaluate the intervention in which it will sit are warranted. 

Objectives: To test the non-inferiority of a potential AI medical device for nAMD treatment 
monitoring against consultant-led care at NuTH. 

Methods: Single-centre retrospective imaging and clinical data were collected from 262 
nAMD clinic visits at NuTH, including judgements of nAMD disease stability or activity made 
in real-world consultant-led-care. Outputs from an AI-enabled retinal segmentation tool 
were processed by a rule-based decision tree to independently analyse imaging data to 
report nAMD stability or activity for each of the 262 clinic visits. Independently, an external 
reading centre received both clinical and imaging data to generate an enhanced reference 
standard for each clinic visit. The non-inferiority of the relative negative predictive value 
(NPV) of AI-enabled reports on disease activity relative to consultant-led-care (CLC) 
judgements were then tested. A relative clinical non-inferiority margin of 10% was applied. 

Findings: Analysis of a pilot dataset enabled the identification of a rule-based decision tree 
which considered any increase in intraretinal fluid (IRF) as evidence of disease activity. The 
NPV of the AI-enabled reports were 85.5% (95% CI 77.0%-94.0%) which was higher than that 
of consultant-led care at 80.8% (95% CI 71.3%-90.4%). This gave a relative NPV (rNPV) of 
1.06 (95% CI 0.99 – 1.13), clear of the clinical non-inferiority margin of 0.9. The rNPV was 
accompanied by a relative positive predictive value (rPPV) of 1.05 (95% CI 0.84 – 1.32) 
indicating that the AI would not be expected to introduce additional over-treatment for 
patients. Secondary analyses showed that the clinical non-inferiority of AI-enabled reports 
appeared robust to comparisons across different professional groups enacting CLC. It also 
showed that largely through a reduction in false negatives the injection burden for patients 
and services associated with AI-enabled care was likely to be higher. Retrospective error 
analysis of the AI-enabled reports identified a number of opportunities to improve 
performance. With further refinement, a rule set which considered only increases of 10% or 
more in IRF or SRF to indicate disease activity achieved a rNPV of 1.18 (1.09-1.27) and a 
rPPV of 1.00 (0.82-1.23). 

Conclusions: Reports of disease activity in nAMD based on an example clinical AI technology 
could offer superior treatment monitoring than CLC without any evidence that over-
treatment would increase for patients. To support translation of this technology into 
practice, an intervention which will optimise the likelihood of successful implementation 
needs to be designed prior to prospective evaluation. 

Relevance to future chapters: The positive result of this evaluation comfortably satisfies the 
minimum performance standards expressed by stakeholders. This warrants further 
qualitative analysis to design an intervention to optimise the likelihood of successful 
implementation of AI-enabled nAMD treatment monitoring.  
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5.1 Background 
The clinical component of chapter 1, described the growing mismatch between demand and 
capacity in NHS ophthalmology services and the significant role nAMD treatment monitoring 
plays in contributing to that demand. This demand is also set to greatly expand. Firstly, our 
population continues to age and therefore the prevalence of nAMD will increase. Secondly, 
series of injections for geographic atrophy secondary to AMD were approved for use by the 
FDA on 17th February 2023 and will come to the UK market in 2024 further expanding the 
proportion of late AMD which can be treated.[1, 2]  

Chapter 4 provided evidence that stakeholders in nAMD care would be accepting of 
additional service capacity to balance demand. Participants expressed uncertainty over the 
degree of human oversight that should be applied to AI-enabled treatment monitoring but 
acknowledged that this would strongly influence the ability of any intervention to enhance 
clinic capacity. These findings mirror discussions elsewhere in the literature that seek to find 
use-case specific trade-offs between the increasing efficiency saving and risk of clinical harm 
thought to accompany increasing degrees of autonomy.[3, 4] This means that if AI-enabled 
nAMD treatment monitoring is to meaningfully enhance clinic capacity, then it must assume 
at least a moderate level of autonomy and so a high level of independent performance from 
the AI technology will be required. Evidence of this high level of performance is not just 
important for decision makers, such as regulators and commissioners, but also for clinical 
and public end-users who are often sceptical of clinical AI with little or no prior experience 
to build trust upon.[4] Public and professional conversations around clinical AI, rightly place 
emphasis on its risk to reinforce or augment pre-existent inequities in healthcare provision 
too.[5] To build trust with stakeholders and support the implementation of AI-enabled 
nAMD treatment monitoring, evidence should not just demonstrate high levels of safety for 
the NHS clinic population as a whole, but demonstrate robust performance in various 
subgroups. This will help satisfy the need to innovate services in a way that is safe for 
everyone, not just safe on average. 

5.2 Problem 
For NHS patients and real-world services to begin to experience benefit from AI-enabled 
nAMD treatment monitoring, a prospective evaluation producing convincing evidence of its 
safety and effectiveness is required.[6] The resources and patient risk associated with such a 
prospective evaluation are not justifiable without supportive evidence from retrospective 
evaluation. Whilst the analytical validity of various tools to segment retinal OCT is secure, 
research designed to support the clinical validity of AI-enabled treatment monitoring for 
nAMD, is yet to be reported.[7, 8] The primary requirement of this evidence is to provide 
assurances that AI technology with an adequate level of autonomy to enhance clinic 
capacity, would not compromise patients and other stakeholders’ priority to preserve 
vision. 

5.3 Rationale 
In a non-interventional study such as the one proposed, it is not possible to directly measure 
the visual outcomes of AI-enabled nAMD treatment monitoring. In practice, the interval 
with which anti-VEGF IVIs are given to patients is the main influence on visual outcomes that 
clinicians can control. Whilst the definitions of disease activity informing anti-VEGF 
treatment for nAMD are relatively well established, significant variations remain in 
approaches to service delivery and IVT interval decisions across the NHS (chapter 4).[9] To 
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maximise the relevance of the present study, a design which holds relevance across these 
varied services is desirable. 

As previously mentioned, avoiding any compromise on visual outcome consistently arises as 
stakeholders’ priority for nAMD care. In the proposed study design, sight loss is threatened 
by undertreatment and hence the failure to recognise nAMD disease activity. The present 
study design aims to reflect this priority in its primary outcome, but identifying sight-
threatening ‘failures’ to recognise disease activity is challenged by the retrospective setting 
of the study. An enhanced reference standard, with broad credibility among stakeholders 
will be required to evaluate and compare CLC and AI-enabled assessments of disease 
activity. Moorfields reading centre was selected as such an enhanced reference standard, in 
light of its track record in ophthalmic research, its reputation among ophthalmology 
patients and professionals and also regulators acceptance of established reading centres as 
performance benchmarks.[10] Selecting a level of safety that is good enough is challenged 
by the novelty of this use case, but assuming that a real-world example of CLC represents 
acceptable performance a non-inferiority design seems to provide the most relevant 
evidence.[11] 

5.4 Aim 
This retrospective study aims to test the non-inferiority of an AI-enabled OCT analysis tool 
relative to real-world CLC in distinguishing between the presence or absence of nAMD 
disease activity. 

5.5 Methods 
5.5.1 Justification of study design and sample size 
An enhanced reference standard is required to facilitate comparison between a potential AI-
enabled nAMD service and the real-world gold standard, CLC. Moorfields Reading Centre 
has an international reputation and track record in meeting this need for prior studies and 
will receive imaging and clinical data for each case in the present study to generate an 
enhanced reference standard.[12, 13, 16] Reading centre judgements are also accepted by 
medical device regulators in their process of evaluating products for market, lending 
pragmatic relevance to this approach. The binary decision under examination for each 
included visit is whether the data suggest nAMD disease stability or activity. This 
simplification of the scalar number of weeks between treatments or the three-option 
decision regarding treatment interval maintenance, extension or reduction is more broadly 
relevant to real-world practice where clinician and patient preferences about how 
treatment intervals should be altered on account of disease activity vary.[9] It also lowers 
the risk of inappropriately labelling a decision made in CLC with subtle influences from 
patient or clinician preference as ‘incorrect’. Whether binary judgements of disease activity 
(positives) or stability (negatives) from CLC and the AI-enabled decision tool are labelled as 
true or false was decided by the independent judgement of the Moorfields Reading Centre 
(Table 10). 

Table 10. Template confusion matrix showing the different possible classification of Artificial Intelligence (AI)-
enabled reports of disease activity and judgements from consultant-led-care (CLC) for each eligible case. 

 Moorfields Reading Centre 
identifies disease stability 

Moorfields Reading Centre 
identifies disease activity 
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(negative) (positive) 

AI identifies disease stability 
(negative) AI True negative AI False negative 

AI identifies disease activity 
(positive) AI False positive AI True positive 

CLC identifies disease 
stability (negative) CLC True negative CLC False negative 

CLC identifies disease 
activity (positive) CLC False positive CLC True positive 

Treatment decision data provide good estimates of the design parameters for this novel use 
case. Considering a different use case, OCTane has demonstrated equivalent or superior 
retinal diagnostic performance to consultant specialists. Relative to final real-world clinical 
diagnoses it produced an area under the receiver operator characteristic (AUROC) curve of 
99% for retinal diseases including nAMD.[13] This performance was dependent on the same 
intermediate anatomical segmentation step that will form the basis for the OCTane-based 
tool for nAMD treatment proposed here. This has supported the feasibility of the current 
study but does not provide the level of certainty required to perform a robust power 
calculation, which requires sufficiently accurate estimates of the NPV of both judgements 
from CLC and AI-enabled reports from paired data.[17] Therefore, the pilot dataset collected 
was sent for independent processing by Moorfields Reading Centre and the AI-enabled 
decision tool to supply these estimates. Prior work has established that for binary outcomes 
such as the one under study, little improvement is seen in estimate precision or bias by 
increasing the size of the pilot dataset above 100 and so a size between 60 and 100 is 
recommended.[18] To forecasts the number of cases required, an initial pragmatic estimate 
of the prevalence of disease activity was made from a focused review of CLC assessments of 
nAMD activity at 100 NuTH clinic visits under loading or TEX treatment protocols. This found 
that 79 reported disease stability and would be classed as negative cases, which could 
contribute to estimating NPV alongside the reference standard. Given that about 79% of 
eligible visits are classed as negative the randomly sampled pilot dataset required to accrue 
100 negative cases was expected to be around 127 cases (100 / 0.79). To try and ensure that 
the actual pilot dataset contained the necessary 100 negative cases, sampling for the pilot 
dataset continued until 100 visits with negative CLC judgements had been curated, meaning 
the pilot dataset size was not fixed until curation was complete. The estimated NPV of AI-
enabled reports and judgements from CLC was derived from this pilot dataset and was input 
to a power calculation. This power calculation first required the categorisation of different 
types of agreement and disagreement between AI-enabled reports, CLC reports and 
Moorfields Reading Centre reports (Figure 24).  
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Figure 24. Categorisation (in abstract) of agreements and disagreements between AI-enabled reports (X1), CLC reports (X2) 
and Moorfields Reading Centre reports (D) of disease activity (1) or stability (0).[17] 

The number of cases assigned to each of the 8 potential categories of agreement and 
disagreement was then converted into a proportion of the whole pilot dataset where p = 
n/N. With this information, and values for α (accepted risk of type 1 error), β (accepted risk 
of type 2 error), δ (clinical non-inferiority margin), γ (clinical superiority margin) and the NPV 
estimate for CLC judgements (X2), the sample size can then be derived.[17] 

Sample size =  [(z1-α + z1-β)2 / ln(γ/δ)]2 x 1/[(p2 + p4) (p3 + p4)] 

x [-2(p4 + p8)γNPVX22 + (-p3 + p4 - γ(p2 - p4))NPVX2 + p2 + p3] 

From this, the number of eligible cases required, in addition to the pilot dataset, was 
established. These additional cases were sent for processing by Moorfields Reading Centre 
and the AI-enabled decision tool to test the non-inferiority of AI-enabled report NPV relative 
to the NPV of judgements from CLC.[17] This power calculation includes a significance level 
α = 0.05, a power β = 0.10 and a relative non-inferiority margin of δ = 0.90. Proving clinical 
superiority did not appear to be crucial to potential users of the tool in chapter 4 and so to 
avoid excessive data use the superiority margin was set to γ  = 1.00. Although this non-
inferiority margin is relative, due to the high NPV anticipated for CLC it will be similar and no 
larger than an absolute equivalent. This formed the rationale for the application of 10% non-
inferiority margins applied in comparable studies using absolute rather than relative 
outcome measures.[12, 19] In evaluating this non-inferiority margin it is helpful to 
remember that the least desirable outcome of a false negative (FN) would yield a two or 
four week delay for the next planned treatment rather than treatment cessation and that 
22% of patients are estimated to experience more than four weeks of delay to treatment in 
a year in current consultant-led care.[14] As such the null hypothesis (of inferiority) will be 
rejected if the lower confidence limit for the relative NPV of AI-enabled reports compared to 
CLC reports is greater than 0.90.[17] This will be visually presented with 2-sided 95% 
confidence interval (CI) (Figure 25). 
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Figure 25.Forest plot template for the relative negative predictive value (NPV) of artificial intelligence (AI)-enabled reports 
of neovascular age-related macular degeneration (nAMD) disease activity versus judgements from consultant-led-care 
relative to an enhanced reference standard from Moorfields Reading Centre. The clinical non-inferiority and superiority 
margins are marked by dashed vertical lines on a logarithmic scale at 0.90 and 1.11 respectively. Potential outcomes for the 
non-inferiority test include scenario (a) AI-enabled reports are inferior to judgements from consultant-led-care; (b) Non-
inferiority of AI-enabled reports to judgements from consultant-led-care is not demonstrated; (c) AI-enabled reports are 
non-inferior to judgements from consultant-led-care; (d) AI-enabled reports are non-inferior to judgements from consultant-
led-care but not superior; (e) AI-enabled reports are superior to judgements from consultant-led-care. 

Whilst the dataset will offer other important exploratory insights, the potential impact of 
the primary outcome on the translation of this AI-enabled decision tool and threat to the 
study’s feasibility from ambitions outside this scope, has prevented any plans to proactively 
power the sample size for secondary outcomes. 

5.5.2 Sampling method 
The EMR at NuTH was searched to identify clinic visits where individuals received anti-VEGF 
IVT to treat nAMD. Patients at NuTH are treated under three different regimens dependent 
upon the length of their diagnosis and joint decisions between clinicians and patients: 
loading, treat-and-extend and pro-re-nata (Table 11). The planned treatment intervals vary 
between 4 and 16 weeks. During the period through which data were collected aflibercept 
and ranibizumab were the anti-VEGF treatments in use for nAMD. 
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Table 11 Summary of neovascular age-related macular degeneration (nAMD) treatment at Newcastle upon Tyne Hospitals 
NHS Foundation Trust. IVI=Intravitreal Injection, VEGF = Vascular Endothelial Growth Factor 

 

From the dataset of potentially eligible visits (N=70,884), computer-generated randomised 
numbers were assigned to list patient EMR files to screen against eligibility criteria (Table 
12). These criteria exclude clinical visits that took place outside current treatment and OCT 
imaging protocols and after treatment decisions may have been influenced by the Covid-19 
pandemic. They also exclude visits conducted under the pro re nata (PRN) treatment 
protocol. This is because all visits on the PRN protocol meeting the inclusion criterion for a 
same day anti-VEGF IVT must have been judged by the clinician to show disease activity and 
would therefore not be representative of PRN clinic visits generally. To maximise their 
relevance to the research question alongside feasibility and rigour within a complex real-
world dataset, the eligibility criteria  (Table 13) and systematic screening approach through 
which they will be applied was iteratively designed and trialled by collaborators with clinical, 
operational and statistical expertise inside and outside of NuTH. 

Table 12. AMD = Age-related macular degeneration, IVT = Intravitreal Treatment, VEGF = Vascular Endothelial Growth 
Factor, nAMD = neovascular Age-related macular degeneration, TEX = Treat and Extend, VA = Visual Acuity, OCT = Optical 
Coherence Tomography 

Step Question 
Action if… 

Yes No 

1 
Does this eye have no retinal 
diagnosis beside AMD or is it 
enrolled in a study? 

Go to 
step 2 

Reject this patient 

2 Is this visit more than 10 weeks 
after the eye’s first IVT? 

Go to 
step 3 

Switch to the next visit, go to step 2 

Loading protocol: Starts at diagnosis of nAMD and consists of three anti-VEGF IVIs 
at four-week intervals (visits two and three do not include consultation or 
imaging), followed by IVIs at eight-week intervals, or less if signs of disease activity 
persist, for the remainder of the year. 

Treat-and-extend (TEX) protocol: Starts one year after treatment initiation and 
dictates that the interval of anti-VEGF IVIs is increased in two-week increments 
until evidence of disease activity is noted at which point the treatment interval is 
reduced. If extension beyond a certain interval is noted to result in observable 
disease activity a (unspecified) number of times, then that interval ceases to be 
modified. 

Pro re nata (PRN) protocol: Initiated as a joint decision for patients who appear to 
have little or no disease activity having been on one of the other two protocols. 
Here it is not assumed that an IVT will be given at each review, but only if 
evidence of disease activity is noted. The observation of returning disease activity 
may also lead to the return to one of the other two protocols. 
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3 Does this visit involve anti-VEGF 
treatment for nAMD? 

Go to 
step 4 

Switch to the next visit, go to step 2 

4 Is this visit conducted under the 
loading or TEX protocols? 

Go to 
step 5 Switch to the next visit, go to step 2 

5 
Are the VAs of interest free from 
the influence of other 
interventions? 

Go to 
step 6 

Switch to the next visit, go to step 2 

6 
Does this visit have an 
accompanying consultation 
recorded? 

Go to 
step 7 

Switch to the next visit, go to step 2 

7 Is the treatment interval stated? 
Go to 
step 8 

Switch to the next visit, go to step 2 

8 Is there a VA available for this visit 
and the prior? 

Go to 
step 9 

Switch to the next visit, go to step 2 

9 
Are there co-located 25 slice 
fovea-centred OCTs available for 
this visit and the prior? 

Collect 
data 

Switch to the next visit, go to step 2 

 

Having reached consensus on the eligibility criteria and the screening approach, a single 
researcher with 9 years of clinical experience at NuTH (JH) performed data collection, to 
support a consistent recruitment approach grounded in fluency with local clinical and digital 
practices. 

Table 13. Eligibility criteria for patients (in bold) and clinic visits. nAMD = Neovascular age-related macular degeneration, 
IVT = Intravitreal Treatment, NuTH = Newcastle upon Tyne Hospitals, OCT = Optical coherence tomography 
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5.5.3 Data collection and processing 
For each included clinic visit the following data was recorded in the NuTH computer 
environment to characterise the dataset: 

• Anonym for the individual 

• Eye laterality 

• Sex 

• Self-reported ethnicity 

• Home address postal code 

• Individual’s age at that visit 

The following was recorded to send anonymised to Moorfields Reading Centre, to produce a 
report of disease stability or activity to act as an enhanced reference standard for each visit. 
This information also facilitated more meaningful post-hoc error analysis to explore the 
mechanisms of failure which the AI-enabled tool may exhibit. The findings from these 
analyses are a secondary outcome of the study and will help to delineate any groups of 

Inclusion criteria 

• Eye diagnosed with nAMD 

• One or more prior anti-VEGF IVT at NuTH 

• Co-located 25 slice, fovea centred OCT imaging available for both the 

included and prior visits 

• Clinic visit note states intended IVT interval 

• Clinic visit included same-day IVI 

Exclusion criteria 

• Retinal diagnosis other than nAMD in included eye 

• Visit before 2016 

• Visit during or after March 2020 

• Visits conducted under the pro-re-nata treatment protocol 
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cases for which the tool’s performance needs to be monitored and improved in further 
work, or for which only clinician judgements should be applied. This list was developed 
through additions to a proforma from a recent exemplar protocol:[12] 

• OCT and VA for that visit and the prior 

• Type of VA (best corrected, pin hole or unaided) 

• Presence or absence of evolving macular haemorrhage being recorded 

The following data was recorded from each CLC visit to assess the primary and secondary 
outcomes and will not be sent to Moorfields Reading Centre: 

• Judgement of disease activity or stability 

• Planned interval to next IVI 

• Professional group conducting the consultation 

• Treatment protocol the visit was conducted under (Table 11) 

• VA for the fellow eye at that visit 

• Time since first nAMD treatment at that visit 

• Total IVIs for nAMD in that eye up until that visit 

• Observed interval since that eye’s last IVI 

• Time since increasing disease activity was last observed 

• Treatment interval associated with that observation 

• Mention of shared decision making in EMR entry 

Separately, the present and prior pairs of OCT images relating to the same clinic visits will be 
transferred to Moorfields Eye Hospital NHS Foundation Trust for AI-enabled retinal 
segmentation.[13] The differences in retinal tissue volumes will be used in a rule-based 
decision tree to produce an AI-enabled binary report of disease activity or stability for each 
included visit. 

5.5.4 AI-enabled decision tool 
The intervention to be tested on retrospective OCT imaging data is a deep learning tool with 
a U-net architecture, called OCTane, with previously published details of training and 
validation.[13] OCTane can produce volume quantification for the neurosensory retina, 
retinal pigment epithelium, fibrovascular pigment epithelium detachment, drusenoid 
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pigment epithelium detachment, SRHM, SRF, IRF, posterior hyaloid, epiretinal membrane 
and serous pigment epithelium detachment. At the time of writing OCTane is not regulated 
as SaMD and so this functionality is only available in a research setting. Notably, these scalar 
outputs of various tissue volumes are not directly actionable as judgements of disease 
activity or management recommendation. To add this functionality, an initial decision tree 
will report disease activity when the volumes of SRF and/or IRF increase between the 
current and prior visit OCTs.  This decision logic is based on a recent consensus from UK 
medical retina experts on treat-and-extend protocols for nAMD.[9] The exact tissue group 
contributors and decision thresholds for inter-visit changes in each of these tissue groups 
will be iterated upon using an embedded pilot dataset described further below.  This binary 
output was preferred over a scalar recommendation of treatment interval to preserve the 
tools’ value across different treatment protocols and therefore clinical contexts (Table 11). 

5.5.5 Outcomes measures 
Over-treatment marginally increases the cumulative risk of IVT complications and the cost 
to the provider, but justifiably the main concern of patients and carer participants in chapter 
4 and elsewhere in the literature was sight loss through under-treatment.[14, 15] 
Consequently, the probability of AI-enabled reports of disease stability being correct relative 
to judgements made in real-world consultant-led care has been taken as the most clinically 
relevant measure of diagnostic accuracy. This has led to a non-inferiority design with the 
relative negative predictive value (NPV) as the primary outcome. 

Secondary outcomes will be: 

1. A comparison of other standard diagnostic accuracy metrics between AI-enabled 

reports of disease activity (across various thresholds) and judgements from CLC 

accompanied by confusion matrices (Table 10) 

2. A comparison of the diagnostic accuracy of the five healthcare professional groups 

conducting consultations in CLC (nurses, optometrists, ophthalmology specialty 

trainees, medical retina sub-specialty fellows, medical retina sub-specialty 

consultants) 

3. A comparison of the treatment intervals recommended in real-world consultant-led 

care and the treatment intervals that would be derived from AI-enabled reports of 

disease activity given the treatment protocol 

4. A case-by-case exploration of false-positive and false-negative reports of disease 

activity from the AI-enabled decision tool and consultant-led care 
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5.5.6 Data analysis 
The relative NPV of AI-enabled reports / judgements from CLC will be calculated with 95% 
CIs to see if the inferiority, non-inferiority or superiority of AI-enabled reports of disease 
activity can be established (Figure 25). A similar calculation will also be applied to relative 
positive predictive value (PPV) to aid in the interpretation of the primary outcomes. Both of 
these calculations depend on the derivation of σ2N from the proportions of different 
categories of agreement and disagreement between the AI-enabled reports, CLC 
judgements and Moorfields Reading Centre judgements and the estimates of NPV for the AI-
enabled reports and CLC judgements.[17] 

σ2N = 1 / [(p2 + p4) (p3 + p4)] x [NPVX2(-p3 + p4 -2(p4 + p8) NPVX1) + (p2 + p3) - NPVX1(p2 - p4)] 

σ2P = 1 / [(p5 + p7) (p5 + p6)] x [p6(1 - PPVX2) + p5(PPVX2 – PPVX1) + 2(p7 + p3)PPVX1 x PPVX2 + 
p7(1 - 3PPVX1)] 

This can then be applied with the value of α (0.05) and the size of the final dataset (N) to 
derive the CIs for both the estimates of relative NPV (rNPV) and relative PPV (rPPV).[17] 

rNPV ± 95% CI = e^[ln rNPV ± z1-α √(σ2N/N)] 

rPPV ± 95% CI = e^[ln rPPV ± z1-α √(σ2P/N)] 

For secondary outcomes, diagnostic accuracy statistics (presented as a proportion, p, 
estimated from a sample of size N) for each group will be reported descriptively with 95% 
CIs for each group, along with confusion matrices. These CIs will be derived by the Clopper-
Pearson method.[20] This was selected over the simple normal approximation (Wald 
interval) as many of the estimates approach 100% which would lead to implausible upper 
CIs being calculated in excess of 100% with the Wald interval. The Clopper-Pearson method 
also provides reliably conservative CIs, minimising the risk of type 1 error in interpreting the 
findings which is thought to be a greater risk with the Wald interval.[21] 

Lower CI = [1 + 3.247×((1-p) + 1/N)/p]−1 

Upper CI = [1 + ((1-p)/((1/N + p) x 2.2882)]-1 

Clinical and imaging data from cases of false positives (FPs) and FNs of the AI-enabled 
reports were reviewed by clinical members of the team, supported by the AI development 
team where necessary, to try to understand the mechanisms of AI-enabled decision tool 
failures. 

5.6 Results 
5.6.1 Pilot dataset and power calculation 
Applying the systematic sampling strategy (Table 12) to sequentially randomly select cases 
from the NuTH dataset of 70,884 clinic visits produced by an EMR search presented a lower 
prevalence of disease stability (negatives) in clinic appointments than the initial estimate of 
79%. Consequently, random sampling continued beyond the initially forecast 127 cases to 
acquire 135 eligible cases, 102 of which (75.6%) were judged to demonstrate disease 
stability by CLC. These cases were then processed by Moorfields Reading Centre where 104 
of the 135 cases (77.0%) were judged to demonstrate disease stability (Table 14). 
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Table 14. Judgements of disease activity from consultant-led-care (CLC) and Moorfields Reading Centre (MRC) in the pilot 
dataset of 135 clinic visits. TP = True Positive, FP = False Positive, TN = True Negative, FN = False Negative 

 MRC +ve MRC -ve Totals 

CLC +ve TP 14 FP 19 33 

CLC -ve FN 17 TN 85 102 

Totals 31 104 135 

These data provided the estimate of NPV for CLC (X2) required for the power calculation and 
the PPV for balanced interpretation; NPV = 83.3% (95% CI 70.8-95.9), PPV = 42.4% (95% CI 
34.1-50.7). OCT scans for the same cases were then analysed by OCTane to produce scalar 
outputs for tissue volumes in each OCT scan in the pilot dataset. These absolute tissue 
volumes were then converted into changes in tissue volume between the study visit and the 
prior visit by simple subtraction. Three different rule sets, reflecting a range of clinical 
rationales applied in current practice, were then applied to these scalar outputs to produce 
binary judgements of disease activity and NPV and PPV estimates were then derived for 
each. All 3 rule sets provided estimates of NPV that were greater than that of CLC and so the 
rule set which did not appear to confer a reduction in PPV relative to CLC was selected for 
the power calculation. This aimed to demonstrate non-inferiority for an AI-enabled decision 
tool with regard to under-treatment without having to tolerate more over-treatment in a 
potential service. Taking D as the Moorfields Reading Centre Judgment, X1 as the AI-enabled 
judgement, X2 as the CLC care judgement, 1 to represent a judgement of disease activity and 
0 to represent a judgment of disease activity this returned the following 8 disagreement 
types quantified in Table 15. 

Table 15. Types of disagreement between judgements of disease activity in the pilot dataset made by Moorfields Reading 
Centre (D), rule set 1 overlaid on OCTane outputs (X1) and consultant-led-care (X2). Disagreements are expressed across 8 
categories as integers (n) and proportions (p). 

 
D = 0 (104 cases) D = 1 (31 cases) 

X2 = 1 X2 = 0 X2 = 1 X2 = 0 

X1 = 1 
n1 = 5 

p1 = 0.04 

n2 = 25 

p2 = 0.19 

n5 = 11 

p5 = 0.08 

n6 = 12 

p6 = 0.09 

X1 = 0 
n3 = 14 

p3 = 0.10 

n4 = 60 

p4 = 0.44 

n7 = 3 

p7 = 0.02 

n8 = 5 

p8 = 0.04 
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Proportions for each of these different types of disagreement could be carried forward with 
the estimate of 83.3% for the NPV of CLC and the predetermined values for α, β, γ and δ to 
apply the sample size calculation for non-inferiority. Rounding to the nearest integer this 
returned a recommended sample size of 262 cases to test the non-inferiority of the rNPV of 
AI-enabled judgements of disease activity compared to CLC. Using the same sampling 
approach, a further 127 cases were then extracted and processed by Moorfields Reading 
Centre and OCTane to combine with the initial 135 cases. 

5.6.2 Final dataset 
Prior to anonymising and exporting the final dataset, a final round of data cleaning was 
performed against the EMR. This led to the alteration of some of the data held in initial 
export of the pilot dataset. This included the primary outcome measure in a handful of 
cases. This was largely due to comparing treatment interval recommendations from CLC 
with the actual observed interval since the last treatment, rather than the interval that was 
recommended at the prior visit. Discrepancies here were because of the frequency of 
appointment delays in real-world care. This is quantified and discussed further below. 

5.6.2.1 Dataset characteristics 
In applying the systematic sampling strategy to identify 262 eligible visits, 159 were 
assessed as ineligible and for 84 of eyes which the initially identified visits focused on, it was 
not possible to identify an eligible visit. The frequency of the different reasons for these 
ineligibilities is detailed in Table 16. 

Table 16. Type and frequency of visit exclusions during screening; IVT = intravitreal treatment, nAMD = neovascular age-
related macular degeneration, VA = visual acuity, OCT = optical coherence tomography 

Step 
number 

Exclusion criteria Ineligibilities for 
initially identified 
clinic visit n=159 (%) 

No eligible case 
available for eye 
n=82 (%) 

1 The visit is less than 10 weeks after 
the eye’s first IVI 

1 (0.6) 0 (0.0) 

2 The eye has a retinal diagnosis 
beside nAMD or is enrolled in a 
study 

44 (27.7) 42 (51.2) 

3 The visit does not involve anti-VEGF 
treatment for nAMD 

1 (0.6) 1 (1.2) 

4 The VA measurements of interest 
are likely influenced by other 
interventions 

3 (1.9) 1 (1.2) 

5 There is no consultation at this visit 52 (32.7) 15 (18.3) 

6 The clinician does not state the 
treatment interval they intend 

1 (0.6) 0 (0.0) 
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7 VA measurements for the visit and 
the prior one are unavailable 

0 (0.0) 0 (0.0) 

8 Co-located 25 slice fovea-centred 
OCTs are not available for the visit 
and the prior one 

29 (18.2) 9 (11.0) 

9 The visit is under the PRN protocol 28 (17.6) 14 (17.1) 

The 262 eligible visits related to 238 distinct individuals, with 24 individuals contributing two 
eligible visits to the dataset. Of the data extracted for the eligible visits age, sex, ethnicity, 
drug used for IVI, VA at diagnosis and income deprivation affecting older people index 
(IDAOPI) decile were available for the full dataset. Scalar variable (Table 17) means were 
compared for visits that were sampled (n=262) and not (n=30557) with two-sided 
independent t-tests and were found to be statistically different but clinically equivocal for 
age (79.8 (95% CI 78.9 – 80.7) vs 78.5 (78.4 – 78.5), p=0.005) and statistically equivocal for 
baseline VA (60.1 (58.4 – 61.7) vs 59.7 (59.5 – 59.8)) and IDAOPI decile (5.2 (4.8 – 5.5) vs 5.3 
(5.3 - 5.4)). Categorical variable (Table 18) proportions were compared using Chi-squared 
tests and were found to be equivocal for sex (37.7% male (37.1 – 38.2) vs 38.7% (32.8 – 
44.6), p=0.74), ethnicity (90.1% recorded as white (89.8 – 90.4) vs 92.7% (89.6 – 95.9), 
p=0.69) and drug (95.3% aflibercept (95.0 – 95.5) vs 98.5% (97.0 – 100.0), p=0.114). 

Table 17. Categorical data characterising the final dataset of 262 eligible clinic visits. SAS = Specialty doctors and Associate 
Specialists, TEX = Treat and Extend 

Characteristic Categories n (N=262) % 

Concurrent bilateral 
treatment 

Yes 77 70.6 

No 185 29.4 

Sex Male 101 38.5 

Female 161 61.5 

Ethnicity British 243 92.7 

Pakistani 1 0.4 

Not stated 18 6.9 

Study eye laterality Left 122 46.6 

Right 140 53.4 

Treatment drug Aflibercept 238 90.8 

Ranibizumab 24 9.2 

Diabetic status Not diabetic 154 58.5 

Type 2 45 17.2 
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Diabetic – type 
unknown 

4 1.5 

Status unknown 59 22.5 

Consulting clinician Nurse practitioner 78 29.8 

Optometrist/orthoptist 19 7.3 

Ophthalmology trainee 15 5.7 

Ophthalmology fellow 77 29.4 

Ophthalmology 
consultant/SAS 

73 27.9 

Protocol Loading 53 20.2 

TEX 209 79.8 

These characteristics (most notably ethnicity and diabetic status) depended on the quality 
of data recording in the EMR, but beside entries of ‘unknown’ there was no missing data. 
Although it was not possible to clarify the ethnicity of the 18 patients with ‘not stated’ 
recorded, other personal data such as name and religion did not suggest that the ethnic 
make-up of this sub-cohort was different to the other 244 cases. 

Table 18.Scalar or ordinal data characterising the final dataset of 262 eligible clinic visits. VA= visual acuity, nAMD = 
neovascular age-related macular degeneration, IVT = intravitreal treatment, IQR = Interquartile Range 

Characteristic Median IQR 

Deprivation Affecting Older People Index national decile 5 3-7 

Age at visit 81 76-85 

Study eye VA at nAMD diagnosis 62 51-70 

Number of prior IVT to study eye 11 7-17 

Observed interval since prior visit 8 7-10 

Interval planned at prior visit 8 6-8 

Study eye VA at visit 67 55-74 

Contralateral eye VA at visit 69 44-77 

5.6.2.2 Primary outcome 
In the 262 clinic visits, Moorfields Reading Centre identified 71 cases of disease activity, 
estimating a prevalence in the clinic population of 27.1%. Relative to this reference 
standard, CLC exhibited a NPV of 80.8% (95% CI 71.3-90.4) and a PPV of 42.2% (95% CI 
30.03-54.2) (Table 19). This included 33 sight-threatening ‘false negatives’ where CLC 
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recommended maintenance or reduction of the treatment interval whilst the reference 
standard suggested that shortening of the treatment interval would have been appropriate. 

Table 19. 2x2 table for consultant led care (CLC) judgements of disease activity compared to the reference standard 
provided by Moorfields Reading Centre (MRC) for the final dataset. TP = True Positive, FP = False Positive, TN = True 
Negative, FN = False Negative 

 MRC +ve MRC -ve Totals 

CLC +ve TP 38 FP 52 90 

CLC -ve FN 33 TN 139 172 

Totals 71 191 262 

Applying rule set 1 to OCTane segmentation outputs, which supported the power 
calculation and only regarded any increase of IRF as evidence of disease activity, produced 
an NPV estimate of 85.5% (77.0-94.0) for AI-enabled judgements of disease activity and a 
PPV estimate of 44.5% (95% CI 32.5-56.6) (Table 20). This included 22 sight-threatening 
‘false negatives’ where rule set 1 recommended maintenance or reduction of the treatment 
interval whilst the reference standard suggested that shortening of the treatment interval 
would have been appropriate. This estimate gave a rNPV of 1.06 (0.855/0.808) and a rPPV of 
1.05 (0.445/0.422). 

Table 20. 2x2 table for AI-enabled judgements of disease activity using rule set 1 (R1) compared to the reference standard 
provided by Moorfields Reading Centre (MRC) for the final dataset. TP = True Positive, FP = False Positive, TN = True 
Negative, FN = False Negative 

 MRC +ve MRC -ve Totals 

R1 +ve TP 49 FP 61 110 

R1 -ve FN 22 TN 130 152 

Totals 71 191 262 

To calculate the 95% CIs and complete the non-inferiority test the formula listed in 4.5.6 
was used.[17] Taking D as the Moorfields Reading Centre judgment, X1 as the AI-enabled 
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judgement under rule set 1, X2 as the CLC care judgement, 1 to represent a judgement of 
disease activity and 0 to represent a judgment of disease activity this returned the 
disagreement types quantified in Table 21. 

Table 21. Types of disagreement between judgements of disease activity in the final dataset made by Moorfields Reading 
Centre (D), rule set 1 applied to OCTane outputs (X1) and consultant-led-care (X2). Disagreements are expressed across 8 
categories as integers (n) and proportions (p). 

 
D = 0 (191 cases) D = 1 (71 cases) 

X2 = 1 X2 = 0 X2 = 1 X2 = 0 

X1 = 1 
n1 = 14 

p1 = 0.05 

n2 = 47 

p2 = 0.18 

n5 = 30 

p5 = 0.11 

n6 = 19 

p6 = 0.07 

X1 = 0 
n3 = 38 

p3 = 0.15 

n4 = 92 

p4 = 0.35 

n7 = 8 

p7 = 0.03 

n8 =14 

p8 = 0.05 

A 95% CI for rNPV of 0.99 – 1.13 was derived, the lower bound of which is greater than the 
pre-determined clinical margin for non-inferiority (δ) of 0.9. It is therefore possible to reject 
the null hypothesis and accept that these AI-enabled judgements of disease activity are non-
inferior to judgements from CLC with regard to NPV (i.e. sight-threatening undertreatment). 
The 95% CI for rPPV was broader at 0.84 – 1.32 but suggests that a lower PPV should not be 
expected from these AI-enabled judgements (i.e. costly overtreatment) should they be 
implemented. 

5.6.2.3 Secondary outcomes 
5.6.2.3.1 Diagnostic accuracy statistics across various rule sets 
Given the pragmatic goal of this study and the closeness with which the dataset represents 
real-world practice, NPV and PPV were selected as clinically intuitive outcome measures. 
However, sensitivity, specificity and likelihood ratios are common measures of diagnostic 
accuracy which add other nuances for interpretation. Similarly, to respect the a-priori 
protocol of the study, few rule sets were explored and the one which appeared to perform 
most favourably on the pilot dataset was carried through to the power calculation and 
primary outcome test. Given the novelty of designing treatment rationales on objective 
continuous outputs of tissue volumes, rather than the subjective impression of clinicians, it 
may well be that other decision thresholds offer greater performance. To address both of 
these opportunities a wider range of diagnostic accuracy statistics were calculated (Table 
23) for a total of seven different rule sets (Table 22). 

Table 22. Rule sets overlaid on OCTane outputs to derive AI-enabled judgements of disease activity. IRF = intraretinal fluid, 
SRF =subretinal fluid, SHRM = subretinal hyper-reflective material 

Rule set Disease activity if… 

1 any increase in IRF 

2 any increase in IRF or SRF 

3 any increase in IRF, SRF or SRHM 
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4 >1% increase in neurosensory retina 

5 >10% increase in IRF 

6 >10% increase in IRF or SRF 

7 >10% increase in IRF, SRF or SRHM 

Each of these rule sets remains rooted in the rationale applied in clinical decision making.[9] 

Table 23. Diagnostic accuracy statistics with 95% confidence intervals for consultant-led-care (CLC) and 7 different rulesets 
(Table 22). LR+ = Positive likelihood ratio, LR- = Negative likelihood ratio, NPV = negative predictive value, PPV = positive 
predictive value 

Rule set NPV PPV Sensitivity Specificity LR+ LR- 

CLC 80.8% 

55.7-90.7 

42.2% 

18.1-63.2 

53.5% 

25.6-73.0 

72.8% 

44.7-86.0 

1.97 0.64 

1 85.5% 

63.5-93.2 

44.5% 

19.6-65.2 

69.0% 

39.6-83.9 

68.1% 

39.2-83.1 

2.16 0.46 

2 94.9% 

82.7-97.7 

40.2% 

17.0-61.0 

93.0% 

77.2-96.8 

48.7% 

22.4-68.7 

1.81 0.14 

3 95.9% 

84.5-98.2 

36.2% 

14.8-56.8 

95.8% 

84.0-98.1 

37.2% 

15.3-57.9 

1.52 0.11 

4 80.7% 

55.6-90.6 

56.4% 

27.6-75.3 

43.7% 

18.9-64.7 

87.4% 

67.3-94.1 

3.47 0.64 

5 86.0% 

64.4-93.4 

46.7% 

20.9-67.1 

69.0% 

39.6-83.9 

70.7% 

42.2-84.7 

2.35 0.44 

6 95.3% 

83.8-97.9 

42.3% 

18.3-63.0 

93.0% 

77.2-96.8 

52.9% 

25.5-72.2 

1.97 0.13 

7 96.3% 

85.7-98.4 

37.6% 

15.5-58.3 

95.8% 

84.0-98.1 

40.8% 

17.4-61.5 

1.62 0.10 

Comparing the primary outcome of NPV across the rule sets, the only option which appears 
to offer further gains in NPV whilst not compromising on the PPV of CLC is rule set 6 (Figure 
26). If binary decisions from rule set 6 are analysed across the dataset, the rNPV against CLC 
is 1.18 (1.09-1.27) whilst the rPPV is 1.00 (0.82-1.23). This appears to represent AI-enabled 
decisions which have a NPV that is statistically (though perhaps not clinically) superior to 
CLC, without suggestion that PPV would be lowered. 
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Figure 26. Forest plot comparing the negative predictive value of judgements of disease activity made by applying rule sets 
1 - 7 (R1 – R7) to OCTane outputs with consultant-led care (CLC). Error bars display 95% confidence intervals calculated 
using the Clopper-Pearson method.[20] 

5.6.2.3.2 Diagnostic accuracy across professional groups 
The professional group which conducted the consultations in CLC was recorded for each 
visit (Table 17). These groups still hold a reasonable degree of heterogeneity within them 
but mirror the ways in which staff are categorised in clinical practice. The most 
heterogenous group was that of fellows, who conducted 77 (29.4%) of the consultations. 
This group includes doctors yet to specialise with as little as 2 years of experience in clinical 
practice, UK trained ophthalmologists with consultant level experience and 
ophthalmologists trained abroad with widely varied experience and future career 
intentions. Due to small sample sizes some of these CIs are very wide (Table 17). 

Table 24. Negative predictive value (NPV) and positive predictive value (PPV) of consultant-led-care judgements of disease 
activity by professional group. SAS = Specialty and Associate Specialist doctors, CI = confidence interval 

 n NPV 95% CI PPV 95% CI 

Rule set 6 262 95.3% 83.8 – 97.9 42.3% 18.3 – 63.0 

Consultants/SAS 73 88.2% 66.4 – 94.6 50.0% 22.0 – 71.4 

Nurse 
practitioners 

78 85.2% 61.2 – 93.1 58.3% 28.2 – 77.4 

Ophthalmology 
trainees 

15 83.3% 50.7 – 92.6 100.0% 48.0 – 100.0 

Retina fellows 77 71.1% 41.3 – 85.3 18.8% 6.4 – 38.1 

Optometrists/ 
orthoptists 

19 60.0% 27.0 – 80.0 44.4% 17.0 – 69.6 
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As a further subgroup analysis, the rNPV and rPPV was recalculated for rule set 6 compared 
to F2F decisions made by consultants or specialty doctor and associate specialist (SAS) 
doctors (n=73). This returned a rNPV of 1.07 (95% CI 1.01 – 1.13) and a rPPV of 0.77 (95% CI 
0.63 – 0.93). 

5.6.2.3.3 Comparison of treatment burden from CLC and AI-enabled decisions 
Both the cost of service provision and patient satisfaction are related to the frequency of 
IVIs required by an individual. Diagnostic accuracy data and treatment protocols were used 
to model the consequences of different approaches to clinical decision making on IVT 
frequency. Judgements of disease activity were translated into recommended treatment 
intervals, knowing what the observed prior treatment interval had been and whether the 
patient was on the TEX or loading protocol (Figure 27Figure 27. Approach to convert 
judgements of disease activity into recommended treatment intervals.). To make these data 
more meaningful representatives of treatment burden they were converted to an annual 
IVT rate by dividing the recommended treatment interval in weeks by 52. 

 
Figure 27. Approach to convert judgements of disease activity into recommended treatment intervals. 

To validate this approach of simulating real-world care, the observed treatment interval 
recommendations from CLC were compared to those derived from the binary judgements of 
disease activity applied to Figure 27. The mean annual IVT rate observed from CLC was 6.98 
IVIs/year (95% CI 6.73 – 7.23) which appeared equivocal to the mean rate of 7.08 IVIs/year 
(95% CI 6.76 – 7.39) derived using Figure 27. This equivalence on aggregate may be driven 
by patients on the TEX protocol however as the IVT rates from CLC judgements of disease 
activity for patients on the loading protocol appear to be greater, when derived from Figure 
27, than they were observed to be from real-world recommendations. 
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Figure 28. Intravitreal Injection (IVI) treatment rates from observed treatment interval recommendations and from binary 
judgements of disease activity from consultant led care (CLC), Moorfields Reading Centre (RC), and rule sets (R) 2,4 and 6. 

Relative to the observed rate of IVIs in real-world clinics, those derived from Moorfield 
Reading Centre judgements of disease activity appeared equivocal. The IVT rates derived 
from rule sets 2 and 6 appeared 0.1 IVIs/year (95% CI 0.0-0.3) and 0.4 IVIs/year greater (95% 
CI 0.2-0.5) respectively, whilst the IVT rates from rule set 4 appeared 0.2 IVIs/year lower 
(95% CI 0.1-0.3). 

5.6.2.3.4 Error analysis 
In accordance with the study design, the enhanced reference standard from Moorfields 
Reading Centre is taken as the ground truth. As with any subjective clinical decision this is 
open to challenge. To evaluate the reference standard, CLC judgements of nAMD disease 
activity at the visit which followed the study visit and changes in VA at that subsequent visit 
were also recorded. For the 260 visits where a subsequent visit was available in the EMR, 
there was no significant difference (judged by 95% CIs) in the rates of subsequent disease 
stability (78.8% (64.6, 93.0) vs 79.7% (74.4, 85.1)) or VA change (-1.6 (-4.4,1.2) letters Vs -0.6 
(-1.5, 0.43) letters) between study visits with false negative (FN) CLC judgements (n=33) and 
the other study visits (n=227) respectively. Across all 262 cases, CLC judgements were 67.6% 
accurate with 33 FNs and 52 FPs and judgements derived from rule set 6 were 64.1% 
accurate with 5 FNs and 89 FPs. 

Independent t-tests and chi-squared tests were used to screen for any scalar or categorical 
variables which may be associated with FP or FN errors from CLC or R6 (see appendix). This 
screening exercise involved 60 statistical tests, so the p values should be interpreted with 
caution, however very few suggested potential unequal performance. For CLC, there was a 
weak suggestion that FPs may be more common in patients being treated at a lower 
frequency or on TEX rather than loading protocols (these characteristics overlap 
considerably clinically). It also aligns with observations from practice and EMR interrogation 
(JH) where clinicians’ often exercise caution on the TEX protocol rather than aggressively 
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seeking treatment extension. For R6 there was no suggestion of unequal distribution of FNs 
between different groups, but as only 5 of 262 visits were R6 FNs this cannot provide strong 
assurance of equal performance. For FPs there was a very weak suggestion that R6 may be 
more likely to produce FPs for cases which have more recently demonstrated a recurrence 
of disease activity. This p value of 0.05 may well be a chance occurrence, but it may reflect 
the clinical rationale that OCT scans and the differences between them can be more 
challenging to interpret in the context of recent disease activity. 

Imaging and segmentations were reviewed for either five randomly sampled cases or 
comprehensive sampling of cases from each of the six categories of disagreement between 
judgements of disease activity from Moorfields Reading Centre, CLC and rule set 6 (Table 
25). Qualitative descriptions of the original OCT images and the OCTane segmentations in 
these cases are summarised in the sections below. 

Table 25. The distribution of 262 cases across the eight different categories of disagreement. Red highlights errors by both 
rule-set 6 (R6) and consultant-led-care (CLC), yellow highlights an error by one of CLC or R6 and green highlights correct 
judgements from CLC and R6. MRC = Moorfields reading centre 

 
MRC -ve (191 cases) MRC +ve (71 cases) 

CLC +ve CLC -ve CLC +ve CLC -ve 

R6 +ve 24 66 36 30 

R6 -ve 28 73 2 3 

5.6.2.3.4.1 FPs for both CLC and R6 (n=24) 
Of the 5 cases interrogated, 1 was clinically ambiguous. For CLC, the cause of FPs was not 
always clear, but sometimes appeared to be related to small drops in patient VA or 
apparent failure to appreciate the difference between the actual and intended prior 
treatment interval, e.g. recommending an 8 week interval because that was recommended 
last time although there was still disease stability after a delayed 10-week appointment. For 
R6 it seemed that it was susceptible to FPs when very small increases in SRF occurred on a 
baseline of little or no SRF on the prior scan. This readily crossed the 10% threshold of R6 
even though such increases hold little clinical significance and were sometimes simply the 
result of minor segmentation errors. Suboptimal image quality often led to segmentation 
errors which could easily trigger a FP if it involved overestimation of IRF on the study scan or 
underestimation on the prior scan (Figure 29). The false attribution of outer retinal 
tubulation as SRF by both clinicians and OCTane also appears to have played a role in one 
case. 
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Figure 29. False positive from ruleset 6 where a mirror artefact (left-side) and low illumination (right-side) are associated 
with segmentation errors, including the false identification of intraretinal fluid (light blue). 

5.6.2.3.4.2 True negatives for CLC and FPs for R6 (n=66) 
All 5 of the cases sampled here appeared to share the same mechanism for the R6 FP, whilst 
CLC correctly identified disease stability. This was because of the proportional R6 threshold 
for disease activity regarding SRF. If a prior scan had little or no SRF, then even tiny volumes 
of isolated SRF (<1,000,000um3) on the subsequent study scan would be enough to trigger a 
FP (Figure 30). This was particularly problematic because minor segmentation errors from 
OCTane where very small volumes are incorrectly assigned as SRF do not appear to be 
uncommon. Because OCTane was designed to process 50 B-scan volumes and NuTH 
captures 25 B-scan volumes routinely, a duplication step was part of pre-processing 
meaning that each B-scan was segmented twice. Interestingly, the erroneous attribution of 
SRF was often not repeated on the duplicate scan which may be indicative of low confidence 
from the segmentation model. 

 
Figure 30. Small volumes of subretinal fluid (royal blue) segmented accurately or inaccurately by OCTane can lead to false 
positives. 
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5.6.2.3.4.3 FPs for CLC and true negatives for R6 (n=28) 
FPs from CLC appeared to be most related to circumstances where clinicians perceived 
disease stability and sought to maintain the prior treatment plan (e.g. 8 weeks). The issue 
arose because they failed to account for a delay in the current visit which meant that the 
disease stability they were observing had followed a longer interval (e.g. 10 weeks). This 
meant that by maintaining the prior treatment interval (e.g. 8 weeks) they were in fact 
behaving as though they had observed disease activity. There were also some instances 
where there were subtle shifts in fluid volumes between scans which could easily be 
interpreted as greater or lesser without an objective tool. 

 
Figure 31. Accurate segmentation from OCTane despite a complex image involving traction between the posterior hyaloid 
(cyan) and the neurosensory retina (green), fibrovascular pigment epithelial detachment (red), subretinal hyper-reflective 
material (brown) and subretinal fluid (royal blue). Despite this accurate segmentation, if the intraretinal fluid associated 
with the VMT has increased between visits, neovascular age-related macular degeneration activity would have been 
inappropriately identified by rule set 6. 

5.6.2.3.4.4 FNs for CLC and true positives for R6 (n=30) 
Similarly to the CLC FPs above, some of the CLC FNs arose from cases where there were 
subtle shifts in fluid volumes. On one case reviewed, clear new SRF was not commented on 
or acted on in the treatment plan. This may have been an oversight, or may be reflective of 
some of the variation in approach between clinicians in the significance they place upon 
isolated SRF change. There were also examples where R6 had arrived at the correct 
outcome despite bad segmentation errors involving the false segmentation of large volumes 
of IRF at the study visit. This was a case with a large element of fibrovascular pigment 
epithelium detachment which also had genuine new IRF at the study visit (Figure 32). Had 
the segmentation error happened to have occur at the prior visit R6 would also have 
produced a sight-threatening FN. 
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Figure 32. OCTane segmentation error, attributing a large cross-sectional area of fibrovascular pigment epithelial 
detachment as intraretinal fluid. 

5.6.2.3.4.5 True positives for CLC and FNs for R6 (n=2) 
There were only 2 instances of cases where R6 produced a FN whilst CLC produced a true 
positive. One appears to be from a VA drop of 7 early treatment of diabetic retinopathy 
study (ETDRS) letters with stable OCT appearance and the other due to large volumes of IRF 
being identified on a prior poor-quality scan, numerically concealing the actual trend of 
increasing IRF between visits (Figure 33). 

 
Figure 33. Poor quality B-scan at prior visit leading to a false negative for ruleset 6. 

4.6.2.3.4.6 FNs for both CLC and R6 (n=3) 
Of these 3 cases it seems 2 were clinically ambiguous. The final one was a data curation 
error which involved OCTane processing identical OCT scans rather than ones from 
sequential visits. 
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5.7 Discussion 
The potential for a non-inferior, or even superior safety profile from AI-enabled nAMD 
treatment decisions compared to CLC is evident. This finding is important because it meets 
the need that many stakeholders expressed in chapter 4 to see evidence that an AI-enabled 
intervention would not compromise on current levels of safety and visual outcomes for 
patients. It also broadens the value proposition of the AI-enabled intervention from pure 
efficiency gain assumed by stakeholders interviewed in chapter 4 with additional 
opportunities to improve care quality. This additional value proposition seems at least in 
part because the quantitative measures of CLC decision safety and accuracy we have 
derived are lower than would be intuitive for most stakeholders. This was particularly 
evidenced by the 33 clinic visits (12.6%) where patients had disease activity which was not 
recognised by CLC. 

The relative performance of the AI-enabled decisions depends on which staff groups within 
CLC they were compared to and which ruleset was applied to derive decisions of nAMD 
activity. Despite these differences however, the primary outcome of clinically and 
statistically significant non-inferior rNPV appears to be very robust. This success in avoiding 
undertreatment looks likely to translate to some increased costs in service provision, as 
whilst the rPPV of AI-enabled decisions may be close to 1, its greater sensitivity in 
identifying disease activity means that more intensive treatment intervals would 
(appropriately) be recommended (Figure 28). This particularly seems to be the case in the 
loading protocol applied at NuTH over the first year of nAMD treatment. Although this 
finding cannot evaluate stakeholders’ assumptions that AI would improve the efficiency of 
individual appointments, it seems to suggest that the resource need across a service would 
increase as a given nAMD population would receive more treatment. Given that each 
additional treatment requires time contributions from multiple members of staff, patient 
travel and expensive drug administration even a small increased treatment burden across a 
service could counteract any efficiency gains that may be made in clinical decision making at 
the OCT interpretation stage. From the error analysis however, there do appear to be a 
number of opportunities to improve the rPPV and reduce or reverse these potential 
additional treatment costs. This could take place through placing a human in the loop to 
identify gross segmentation errors (“AI interrogation practices”) or changing the decision 
thresholds on SRF to absolute volumes rather than proportional change.[22] 

5.7.1 Comparison with prior work 
The primary outcome of this work aligns with applied experimental work with OCTane in an 
adjacent use case to triage referrals for hospital eye service review on the basis of OCT 
imaging alone. When OCTane categorised OCT images for urgent referral it did so with 
similar performance to clinicians working off OCT and clinical information.[13] A similar 
clinician-equivocal performance was demonstrated when an OCTane-based tool was tasked 
with predicting conversion from AMD to nAMD within 6 months.[23] Notably, both of these 
prior studies benefited from less disputable reference standards than the present study. For 
the triage use case, this was a future final diagnosis, whilst for the nAMD prediction use case 
it was a future observation of nAMD. In the present use case of repeated assessments of 
disease activity for a known diagnosis of nAMD, such a robust reference standard is 
unavailable due to the more stochastic way in which disease activity and treatment effect 
interact over time. It may well be that an ‘incorrect’ decision at a single clinic visit does not 
translate to even small amounts of irreversible sight loss for a patient, even though we 



162 
 

know at a population level delayed treatment is associated with greater vision loss in 
nAMD.[15] Whilst this characteristic of the proposed use case challenges evaluation of the 
AI in a retrospective setting, it is a great advantage to its implementation, as AI errors in 
judging disease activity would not often translate into harm. 

The nature and frequency of the errors made by OCTane are also consistent with a prior 
published qualitative assessment of the tool’s segmentations.[7] This paper also touched 
upon the challenging situation where an AI tool is perceived to perform a specialist clinical 
task to a higher quality than a clinical expert. Clinicians often appear capable of deflecting 
any professional threats from AI unless it outperforms them on tasks which compose part of 
their own sense of identity or worth. This is well demonstrated by a qualitative exploration 
of radiologist and radiographer perspectives of AI-enabled tools.[24] Radiographers 
appeared to experience a greater threat because the AI threatened a more foundational 
aspect of their role, whereas radiologists felt that their core value lay elsewhere. From data 
in chapter 4, it seems that this is mirrored in the present use case as ophthalmologists 
almost begrudge the amount of their time which is currently spent on what they perceive as 
the simple and repetitive task of OCT interpretation with an established diagnosis of nAMD. 
Like the radiographers however, staff with lower positions in the traditional clinical 
hierarchy do appear to be more wary of the changes that AI may come to impose.[24] 
Patients may also feel uncomfortable with evidence of AI providing superior clinical 
decisions for their care. Again, data in chapter 4 demonstrated the esteem in which 
consultant ophthalmologists are held and AI with apparently superior performance in any 
regard may feel incongruous and lead patients to hold protective sentiments for their 
clinicians. The high value which AMD patients assign to ophthalmologist opinion is reported 
elsewhere as is a cultural scepticism toward the ability of clinical AI from patients and the 
public. [25-27] This tension was also anticipated by this study’s public reference group which 
spontaneously raised the delicacy of the framing of comparisons between AI and clinician 
performance when interpreting the results. They recommended a discussion of equivalent 
performance in narrow tasks and an emphasis on the opportunity for clinician time to be 
diverted to the more valuable inter-personal elements of care. 

5.7.2 Limitations 
The retrospective and observational nature of this study poses a significant limitation on the 
conclusions that can be drawn. However, it is necessary because without such a 
retrospective evaluation it would be dangerous and wasteful to commit resources to a 
prospective interventional study and is a recognised step on the translational pathway for 
clinical AI.[28] The retrospective data do mean that the rationale for CLC decisions is 
relatively opaque and it is hard to assess whether ‘errors’, as defined in the study method, 
should truly be considered as such. For example, a clinician may have verbally 
acknowledged a patient’s aversion for injections and agreed to maintain a treatment 
interval though they felt the interval should have been reduced. Many stakeholders would 
consider such shared decision making to represent higher quality care, yet our study 
method would record such an episode as a sight-threatening FN. During data collection EMR 
entries were examined for any documented suggestion of shared decision making. Only four 
such entries were noted across the dataset, the CLC assessment was graded as FP in three of 
these instances and TN in one. This suggests that shared decision making is uncommonly 
documented, quite possibly because it uncommonly impacts treatment decisions. However, 
it does support the limitation described above as it seems these instances are often graded 
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as ‘errors’ in the retrospective method applied in this chapter. It is also noteworthy that 
telemedical models of care for nAMD treatment monitoring and the management of other 
chronic retinal conditions are becoming more prevalent across NHS ophthalmology services, 
though NuTH operates a face-to-face consultation approach. As such the opportunity for 
shared decision making in standard care is increasingly not present and so should not 
necessarily be considered a short coming of the technology itself. 

The generalisability of findings from this study are also challenged by their origin from a 
single site. To justify prospective evaluation in the NHS, replication of the findings will be 
necessary at other UK sites. 

As mentioned in comparisons with prior work, the reference standard of Moorfields Reading 
Centre judgements is another limitation. It still appears as the closest proxy for a biological 
ground truth that could be assigned, but by its design it cannot hope to reflect the kind of 
patient-centred decision making that most clinicians aspire to provide. Even within the 
confines of its design and aims, the Moorfields Reading Centre process is also subject to 
human error. However, subsequent presentation and discussion of these data with 
independent ophthalmologists around the UK has been supportive of the study design, with 
no suggestions for preferable reference standards advanced in this retrospective setting. 

The impact of the present study is also limited by its focus on a non-regulated medical 
device. Whilst the evidence generated is supportive of any future versions of this device, or 
analogous regulated devices, it cannot inform any real-world decisions to pursue real-world 
implementation of such a device. This limitation is a reflection of good practices in clinical AI 
evidence generation, but is also legally enforceable, due to regulatory frameworks.[29, 30] 
The use case tested in the present study was also fully automated, rather than the decision 
support role which is likely to be closer to initial implementation efforts.[31, 32] Whilst this 
limits the translation of the present study’s findings to potential real-world interventions, it 
simplifies evaluation of the AI technology itself by avoiding the complex influence that 
human computer interactions will have on real-world outcomes.[3] 

5.7.3 Future directions 
The different rule sets and treatment protocols examined in the secondary outcomes have 
shown that non-inferiority can be achieved over rNPV in a number of different ways with 
variable trade-offs in the cost, safety and acceptability of the resulting AI-enabled service. 
Characterising and quantifying these trade-offs whilst exploring others yet to be identified 
would be a valuable step toward optimising the AI-enabled intervention which would best 
carry this technology into practice. Some of this is outside of the present scope of work, but 
a more directed analysis of qualitative data elicited in chapter 4 would be a valuable first 
step toward crafting an intervention for future prospective evaluation. Such an analysis will 
form the basis of chapter 6. 

Replications of the present non-inferiority study using data from different NHS sites would 
be another valuable step to take prior to prospective evaluation of the AI-enabled 
intervention. Ideally this would include clinics that serve varied populations, e.g. ethnicity, 
use different technical infrastructure, e.g. OCT equipment manufacturers, and draw on 
different AI-enabled segmentation tools, e.g. a regulated medical device. These replication 
and health economic aspects are outside of the scope of this thesis. 
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5.8 Conclusions 
This retrospective study provides evidence that AI-enabled nAMD treatment monitoring can 
be at least as safe as NHS CLC, with clinically insignificant trade-offs in overtreatment for 
patients. This finding is robust across several different clinical interpretations of OCT 
segmentation outputs and all the staff groups involved in current nAMD treatment 
monitoring. It also appears from error analysis that there are further opportunities to 
improve the performance. These improvements could be realised through adjustments to 
the AI technology itself, the way the technology’s outputs are interpreted within a medical 
device, the positioning of that device within an AI-enabled intervention or the wider nAMD 
pathway in which that intervention will sit. 

5.9 Appendix 
5.9.1 Screening for case characteristics associated with CLC FNs 
Table 26. Screening for unequal performance of consultant led care (CLC) between clinic visits with different categorical 
characteristics using descriptives of the absolute number of false negatives (FN) and the overall false negative rates (FNR) in 
between different groups. Chi-squared tests are used to derive p values.T2DM = Type 2 Diabetes Mellitus, TEX = Treat-and-
Extend. 

 N=262   not FN FN FNR p value 

Number of 
eyes treated 

Unilateral treatment 165 20 12.1% 
0.18 

Ongoing bilateral treatment 64 13 20.3% 

Sex 
Female 139 22 15.8% 

0.51 
Male 90 11 12.2% 

Ethnicity 

British 212 31 14.6% 

0.91 Pakistani 1 0 0.0% 

Not stated 16 2 12.5% 

Laterality 
Left 107 15 14.0% 

0.89 
Right 122 18 14.8% 

Drug 
Aflibercept 207 31 15.0% 

0.51 
Ranibizumab 22 2 9.1% 

Diabetic status 

Not diabetic 134 20 14.9% 

0.86 
T2DM 40 5 12.5% 

Diabetic - unknown type 4 0 0.0% 

Status unknown 51 8 15.7% 

Protocol 
Loading 44 9 20.5% 

0.28 
TEX 185 24 13.0% 
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Table 27. Screening for unequal performance of consultant led care (CLC) across clinic visits with different continuous 
characteristics using descriptives of the mean and 95% confidence intervals (CI) of visits which were and were not assigned 
a false negative (FN) assessment of disease activity by CLC. Independent t- tests are used to derive p values comparing the 
difference of the means between visits which were and were not assigned a FN assessment. IDAOPI = Income Deprivation 
Affecting Older People Index, VA = Visual Acuity, nAMD = neovascular Age-relate Macular Degeneration 

N=262 (unless 
otherwise 
stated 

IDAO
PI 

Years of age 

Baseline VA (letters) 

Prior treatm
ent interval 

Prior injections 

Visit VA (letters) 

Contralateral VA (letters) 

m
ost recent nAM

D 
activity (w

eeks) N
 = 176 

not 
CLC 
FN 

n=229 

Mean 5.2 80.3 59.6 8.9 12.9 62.8 56.8 26.5 

upper 
CI 

5.6 81.3 61.3 9.3 14.0 64.7 60.5 30.3 

lower 
CI 

4.9 79.4 57.8 8.5 11.8 60.8 53.2 22.8 

CLC 
FN 

n=33 

Mean 5.3 80.5 63.3 8.1 11.6 64.6 57.7 25.8 

upper 
CI 

6.3 83.3 68.5 8.9 14.7 69.8 67.0 33.4 

lower 
CI 

4.4 77.7 58.2 7.3 8.6 59.4 48.3 18.2 

 p 
value 

0.81 0.90 0.18 0.08 0.45 0.52 0.87 0.86 

 

5.9.2 Screening for case characteristics associated with CLC FPs 
Table 28. Screening for unequal performance of consultant led care (CLC) between clinic visits with different categorical 
characteristics using descriptives of the absolute number of false positives (FP) and the overall false positive rates (FPR) in 
between different groups. Chi-squared tests are used to derive p values.T2DM = Type 2 Diabetes Mellitus, TEX = Treat-and-
Extend. 

N=262  not FP FP FPR p value 

Number of 
eyes treated 

Unilateral treatment 150 35 23.3% 0.56 

Ongoing bilateral treatment 60 17 28.3% 

Sex 
Female 130 31 23.8% 0.76 

Male 80 21 26.3% 
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Ethnicity 

British 192 51 26.6% 0.25 

Pakistani 1 0 0.0% 

Not stated 17 1 5.9% 

Laterality 
Left 96 26 27.1% 0.58 

Right 114 26 22.8% 

Drug 
Aflibercept 193 45 23.3% 0.23 

Ranibizumab 17 7 41.2% 

Diabetic status 

Not diabetic 124 30 24.2% 0.78 

T2DM 36 9 25.0% 

Diabetic - unknown type 4 0 0.0% 

Status unknown 46 13 28.3% 

Protocol 
Loading 48 5 10.4% 0.03 

TEX 162 47 29.0% 

 

Table 29. Screening for unequal performance of consultant led care (CLC) across clinic visits with different continuous 
characteristics using descriptives of the mean and 95% confidence intervals (CI) of visits which were and were not assigned 
a false positive (FP) assessment of disease activity by CLC. Independent t- tests are used to derive p values comparing the 
difference of the means between visits which were and were not assigned a FP assessment. IDAOPI = Income Deprivation 
Affecting Older People Index, VA = Visual Acuity, nAMD = neovascular Age-relate Macular Degeneration 

N=262 (unless 
otherwise 
stated 

IDAO
P 

Years of age 

Baseline VA (letters) 

Prior treatm
ent interval 

Prior injections 

Visit VA (letters) 

Contralateral VA (letters) 

m
ost recent nAM

D 
activity (w

eeks) N
 = 176 

not 
CLC 
FP 

n=210 

Mean 5.3 80.5 59.7 8.5 12.5 63.1 57.0 26.8 

upper 
CI 

5.7 81.5 61.5 8.8 13.6 65.0 60.8 30.8 

lower 
CI 

4.9 79.5 57.8 8.1 11.3 61.2 53.2 22.7 

CLC Mean 4.9 79.7 61.6 10.0 13.7 62.6 56.8 25.4 
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FP 
n=52 

upper 
CI 

5.7 81.9 65.6 11.0 16.1 67.2 64.6 31.2 

lower 
CI 

4.1 77.6 57.7 9.0 11.4 58.0 49.1 19.6 

 p 
value 

0.36 0.52 0.38 0.01 0.36 0.84 0.98 0.71 

 

5.9.3 Screening for case characteristics associated with R6 FNs 
Table 30. Screening for unequal performance of OCTane outputs interpreted by rule set 6 (R6) between clinic visits with 
different categorical characteristics using descriptives of the absolute number of false negatives (FN) and the overall false 
negative rates (FNR) in between different groups. Chi-squared tests are used to derive p values.T2DM = Type 2 Diabetes 
Mellitus, TEX = Treat-and-Extend. 

N=262  not FN FN FNR p value 

Number of 
eyes treated 

Unilateral treatment 182 3 1.6% 
0.60 

Ongoing bilateral treatment 75 2 2.7% 

Sex 
Female 157 4 2.5% 

0.39 
Male 100 1 1.0% 

Ethnicity 

British 238 5 2.1% 

0.82 Pakistani 1 0 0.0% 

Not stated 18 0 0.0% 

Laterality 
Left 118 4 3.4% 

0.13 
Right 139 1 0.7% 

Drug 
Aflibercept 234 4 1.7% 

0.40 
Ranibizumab 23 1 4.3% 

Diabetic 
status 

Not diabetic 150 4 2.7% 

0.65 
T2DM 44 1 2.3% 

Diabetic - unknown type 4 0 0.0% 

Status unknown 59 0 0.0% 

Protocol 
Loading 53 0 0.0% 

0.26 
TEX 204 5 2.5% 
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Table 31. Screening for unequal performance of OCTane outputs interpreted by rule set 6 (R6) across clinic visits with 
different continuous characteristics using descriptives of the mean and 95% confidence intervals (CI) of visits which were 
and were not assigned a false negative (FN) assessment of disease activity by CLC. Independent t- tests are used to derive p 
values comparing the difference of the means between visits which were and were not assigned a FN assessment. IDAOPI = 
Income Deprivation Affecting Older People Index, VA = Visual Acuity, nAMD = neovascular Age-relate Macular Degeneration 

N=262 (unless 
otherwise 
stated 

IDAO
P 

Years of age 

Baseline VA (letters) 

Prior treatm
ent interval 

Prior injections 

Visit VA (letters) 

Contralateral VA (letters) 

m
ost recent nAM

D 
activity (w

eeks) N
 = 176 

not 
R6 FN 
n=257 

Mean 5.2 80.4 60.2 8.7 12.7 63.0 56.8 26.0 

upper 
CI 

5.6 81.3 61.9 9.1 13.7 64.9 60.3 29.4 

lower 
CI 

4.9 79.4 58.6 8.4 11.6 61.2 53.4 22.7 

R6 FN 
n=5 

Mean 4.8 81.0 51.4 10.0 15.6 61.2 63.4 40.6 

upper 
CI 

6.4 85.1 62.7 17.5 22.3 74.5 87.1 73.5 

lower 
CI 

3.2 76.9 40.1 2.5 8.9 47.9 39.7 7.7 

 p 
value 

0.62 0.78 0.20 0.76 0.44 0.80 0.62 0.44 

5.9.4 Screening for case characteristics associated with R6 FPs 
Table 32. Screening for unequal performance of OCTane outputs interpreted by rule set 6 (R6) between clinic visits with 
different categorical characteristics using descriptives of the absolute number of false positives (FP) and the overall false 
negative rates (FPR) in between different groups. Chi-squared tests are used to derive p values.T2DM = Type 2 Diabetes 
Mellitus, TEX = Treat-and-Extend. 

N=262  not FP FP FPR p value 

Number of 
eyes treated 

Unilateral treatment 124 61 49.2% 
0.47 

Ongoing bilateral treatment 48 29 60.4% 

Sex 
Female 107 54 50.5% 

0.73 
Male 65 36 55.4% 

Ethnicity 
British 160 83 51.9% 

0.38 
Pakistani 0 1 100.0% 
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Not stated 12 6 50.0% 

Laterality 
Left 82 40 48.8% 

0.25 
Right 90 50 55.6% 

Drug 
Aflibercept 159 79 49.7% 

0.21 
Ranibizumab 13 11 84.6% 

Diabetic status 

Not diabetic 106 48 45.3% 

0.59 
T2DM 28 17 60.7% 

Diabetic - unknown type 2 2 100.0% 

Status unknown 36 23 63.9% 

Protocol 
Loading 32 21 65.6% 

0.82 
TEX 140 69 49.3% 

 

Table 33. Screening for unequal performance of OCTane outputs interpreted by rule set 6 (R6) across clinic visits with 
different continuous characteristics using descriptives of the mean and 95% confidence intervals (CI) of visits which were 
and were not assigned a false positive (FP) assessment of disease activity by CLC. Independent t- tests are used to derive p 
values comparing the difference of the means between visits which were and were not assigned a FN assessment. IDAOPI = 
Income Deprivation Affecting Older People Index, VA = Visual Acuity, nAMD = neovascular Age-relate Macular Degeneration 

N=262 (unless 
otherwise 
stated 

IDAO
P 

Years of age 

Baseline VA (letters) 

Prior treatm
ent interval 

Prior injections 

Visit VA (letters) 

Contralateral VA (letters) 

m
ost recent nAM

D 
activity (w

eeks) N
 = 176 

not 
R6 FP 
n=172 

Mean 5.3 80.7 60.9 8.7 13.2 63.6 57.6 24.1 

upper 
CI 

5.7 81.8 62.9 9.1 14.6 65.8 61.8 27.8 

lower 
CI 

4.9 79.6 58.9 8.3 11.9 61.5 53.3 20.3 

R6 FP 
n=90 

Mean 5.1 79.7 58.4 9.0 11.8 61.8 55.8 32.1 

upper 
CI 

5.7 81.3 61.3 9.6 13.4 65.0 61.5 39.1 
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lower 
CI 

4.5 78.1 55.5 8.3 10.2 58.6 50.1 25.2 

 p 
value 

0.71 0.31 0.16 0.44 0.18 0.35 0.63 0.05 

 

5.10 References 
1. The United States Food and Drug Administration, FDA Approved Drugs: New Drug 
Application (NDA): 217171. 2023. 

2. The Medicines and Healthcare products Regulatory Agency, MHRA announces new 
recognition routes to facilitate safe access to new medicines with seven international 
partners. 2023. 

3. Cabitza, F., et al., Rams, hounds and white boxes: Investigating human–AI 
collaboration protocols in medical diagnosis. Artificial Intelligence in Medicine, 2023. 138: p. 
102506. 

4. Hogg, H.D.J., et al., Stakeholder Perspectives of Clinical Artificial Intelligence 
Implementation: Systematic Review of Qualitative Evidence. J Med Internet Res, 2023. 25: p. 
e39742. 

5. Suresh, H. and J. Guttag, A Framework for Understanding Sources of Harm 
throughout the Machine Learning Life Cycle, in Proceedings of the 1st ACM Conference on 
Equity and Access in Algorithms, Mechanisms, and Optimization. 2021, Association for 
Computing Machinery: --, NY, USA. p. Article 17. 

6. Software as a Medical Device Working Group, Software as a Medical Device (SaMD): 
Clinical Evaluation - IMDRF/SaMD WG/N41FINAL:2017, I.M.D.R. Forum, Editor. 2017. 

7. Wilson, M., et al., Validation and Clinical Applicability of Whole-Volume Automated 
Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning. 
JAMA Ophthalmology, 2021. 139(9): p. 964-973. 

8. Russell-Puleri, S., et al., Comparison of a Deep Learning based OCT image 
segmentation algorithm to manual segmentation by a traditional reading center for patients 
with wet AMD. Investigative Ophthalmology & Visual Science, 2023. 64(8): p. 316-316. 

9. Ross, A.H., et al., Recommendations by a UK expert panel on an aflibercept treat-
and-extend pathway for the treatment of neovascular age-related macular degeneration. 
Eye, 2020. 34(10): p. 1825-1834. 

10. Moorfields Eye Hospital NHS Foundation Trust, Moorfields Eye Hospital Ophthalmic 
Reading Centre and Clinical AI Lab. 2023; Available from: https://readingcentre.org/. 

11. Walker, E. and A.S. Nowacki, Understanding equivalence and noninferiority testing. J 
Gen Intern Med, 2011. 26(2): p. 192-6. 

https://readingcentre.org/


171 
 

12. Annastazia, E.L., et al., FENETRE study: quality-assured follow-up of quiescent 
neovascular age-related macular degeneration by non-medical practitioners: study protocol 
and statistical analysis plan for a randomised controlled trial. BMJ Open, 2021. 11(5): p. 
e049411. 

13. De Fauw, J., et al., Clinically applicable deep learning for diagnosis and referral in 
retinal disease. Nat Med, 2018. 24(9): p. 1342-1350. 

14. Hogg, J. The prevalence and impact of treatment delays in exudative age-related 
macular degeneration. 2021. Investigative Ophthalmology & Visual Science. 

15. Fu, D.J., et al., Insights From Survival Analyses During 12 Years of Anti–Vascular 
Endothelial Growth Factor Therapy for Neovascular Age-Related Macular Degeneration. 
JAMA Ophthalmology, 2021. 139(1): p. 57-67. 

16. Ji Eun Diana, H., et al., Teleophthalmology-enabled and artificial intelligence-ready 
referral pathway for community optometry referrals of retinal disease (HERMES): a Cluster 
Randomised Superiority Trial with a linked Diagnostic Accuracy Study—HERMES study 
report 1—study protocol. BMJ Open, 2022. 12(2): p. e055845. 

17. Moskowitz, C.S. and M.S. Pepe, Comparing the predictive values of diagnostic tests: 
sample size and analysis for paired study designs. Clin Trials, 2006. 3(3): p. 272-9. 

18. Teare, M.D., et al., Sample size requirements to estimate key design parameters 
from external pilot randomised controlled trials: a simulation study. Trials, 2014. 15(1): p. 
264. 

19. Barnaby, C.R., et al., Effectiveness of Community versus Hospital Eye Service follow-
up for patients with neovascular age-related macular degeneration with quiescent disease 
(ECHoES): a virtual non-inferiority trial. BMJ Open, 2016. 6(7): p. e010685. 

20. CLOPPER, C.J. and E.S. PEARSON, THE USE OF CONFIDENCE OR FIDUCIAL LIMITS 
ILLUSTRATED IN THE CASE OF THE BINOMIAL. Biometrika, 1934. 26(4): p. 404-413. 

21. Andersson, P.G., The Wald Confidence Interval for a Binomial p as an Illuminating 
“Bad” Example. The American Statistician, 2023. 77(4): p. 443-448. 

22. Lebovitz, S., et al, To Engage or Not to Engage with AI for Critical Judgments: How 
Professionals Deal with Opacity When Using AI for Medical Diagnosis. Organization Science, 
2022. 33(1): p. 126-148. 

23. Yim, J., et al., Predicting conversion to wet age-related macular degeneration using 
deep learning. Nature Medicine, 2020. 26(6): p. 892-899. 

24. Chen, Y., et al., Professionals’ responses to the introduction of AI innovations in 
radiology and their implications for future adoption: a qualitative study. BMC Health 
Services Research, 2021. 21(1): p. 813. 

25. Boyle, J., et al., Experiences of patients undergoing anti-VEGF treatment for 
neovascular age-related macular degeneration: a systematic review. Psychol Health Med, 
2015. 20(3): p. 296-310. 



172 
 

26. Jelin, E., et al., Development and testing of a patient-derived questionnaire for 
treatment of neovascular age-related macular degeneration: dimensions of importance in 
treatment of neovascular age-related macular degeneration. Acta Ophthalmol, 2018. 96(8): 
p. 804-811. 

27. The Accelerated Access Collaborative, Public perceptions and attitudes to Artificial 
Intelligence (AI) in healthcare. An exploratory study. 2022. 

28. Vasey, B., et al., Reporting guideline for the early-stage clinical evaluation of decision 
support systems driven by artificial intelligence: DECIDE-AI. Nature Medicine, 2022. 28(5): p. 
924-933. 

29. Liu, X., et al., Reporting guidelines for clinical trial reports for interventions involving 
artificial intelligence: the CONSORT-AI extension. Nat Med, 2020. 26(9): p. 1364-1374. 

30. The Medicines and Healthcare products Regulatory Agency, Crafting an intended 
purpose in the context of Software as a Medical Device (SaMD). 2023. 

31. Holz, F.G., et al., Does real-time artificial intelligence-based visual pathology 
enhancement of three-dimensional optical coherence tomography scans optimise 
treatment decision in patients with nAMD? Rationale and design of the RAZORBILL study. Br 
J Ophthalmol, 2023. 107(1): p. 96-101. 

32. Coulibaly, L.M., et al., Personalized treatment supported by automated quantitative 
fluid analysis in active neovascular age-related macular degeneration (nAMD)—a phase III, 
prospective, multicentre, randomized study: design and methods. Eye, 2023. 37(7): p. 1464-
1469. 

 

  



173 
 

Chapter 6: Proposing a specific AI-enabled intervention for nAMD 
treatment monitoring 
Problem: Prior chapters have outlined an AI-enabled device for nAMD treatment monitoring 
which appears acceptable to stakeholders. To integrate with patient care, such a device 
must be carried within a healthcare intervention, defining who will interact with the device, 
how and when. To promote successful implementation, the various facets of such an 
intervention should be designed to align with the determinants of implementation surfaced 
in chapter 3. However, the evaluative framework used to produce these determinants does 
not readily derive an intervention and so a secondary, more goal-focused analysis is 
required. 

Objectives: This secondary analysis of the data and implementation determinants derived in 
chapter 3 aims to recommend an evidence-based AI-enabled intervention for nAMD 
treatment monitoring, optimised for implementation success. 

Methods: Drawing on the TMFs used in qualitative clinical AI research curated in chapter 3, 
a tripartite process model, the Fit between Individual, Technology and Task (FITT) 
Framework, was identified to support intervention design. The intervention underwent 
formative iterative review by patient, public and multidisciplinary professional members of 
the Study Reference and Advisory Groups. 

Findings: Considering the task domain, nAMD treatment should be initiated at F2F 
appointments with clinicians who recommend year-long periods of autonomous AI-enabled 
scheduling of treatments. Lines of communication for emerging patient concerns about 
symptoms or treatment plans will be maintained and at least one high-quality F2F 
consultation will take place annually. Considering the individual domain, appropriately 
trained photographers should take on the additional roles of inputting retinal imaging into 
the AI device and overseeing its communication to clinical and administrative colleagues. 
Ophthalmologists would be responsible for clinical oversight, annual F2F consultations and 
handling patient or photographer concerns arising across the year of AI-enabled treatment 
monitoring. Considering the technology domain, interoperability to facilitate this 
intervention would best be served by imaging equipment that can send images to the cloud 
securely for analysis by AI tools. Picture Archiving and Communication Software (PACS) 
should have the capability to output directly into the EMR used by clinical and 
administrative staff. 

Conclusions: This secondary theory-informed analysis has proposed an AI-enabled 
intervention which can facilitate prospective evaluation and consideration of a full 
hypothetical AI-enabled care pathway. 

Relevance to future chapters: The proposed AI-enabled intervention for nAMD treatment 
monitoring forms the basis for a formal Intended Use Statement, which will ultimately be 
required for regulatory approval and clinical use. The additional level of detail also facilitates 
the early identification and mitigation of risks that may emerge indirectly from the AI 
technology at distant points in the healthcare pathway. A medical algorithmic audit will be 
performed in chapter 7 to deliver both elements. 
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6.1 Background 
A health technology intervention is a sociotechnical vehicle for the implementation of 
health technologies such as AI. These interventions hold various specifications about how, 
when and where the technology should be used, by who, for who and for what purpose.[1] 
There is a great range of potential detail that can be specified for each of these aspects and 
anything that is not specified in advance must be determined by the individuals interacting 
with the technology.[2] To minimise the variability in health technology usage, and the risks 
associated with such variability, regulators incentivise manufacturers to set objective 
intended uses for SaMD.[1] These requirements mean that even identical technologies are 
considered as distinct SaMD when their intended use is changed. The associated need for 
renewed regulatory approvals conveys significant disincentives to vendors who seek to 
dramatically alter the intervention after they have achieved an initial regulatory approval. 
Other key decision makers such as Health Technology Assessment bodies, commissioners 
and healthcare managers also exert their own overlapping disincentives on shifting the 
scope of health technology interventions that they have endorsed. 

Despite these regulatory and contractual restrictions, the design of an AI-enabled 
healthcare intervention is one of the most modifiable yet influential determinants of 
implementation success.[3] This is demonstrated by the NASSS framework itself, but also 
cross-specialty clinical AI research (Chapter 3) and the qualitative data elicited from 
stakeholders in potential AI-enabled nAMD treatment monitoring (Chapter 4).[4] A 
qualitative study of US academic medical centres using clinical AI, also illustrated a strong 
preference from leaders in AI implementation to align AI-enabled interventions with current 
ways of working, rather than vice versa.[5] When returning to the residual pragmatic 
question from chapter 4 of how AI-enabled nAMD treatment monitoring should be enacted, 
intervention design is therefore fundamental.  

One of the most mature AI-enabled interventions in monitoring retinal disease is for 
diabetic retinopathy grading, with many live AI-enabled healthcare pathways 
internationally.[6] There are more than 20 separate regulated AI medical devices that could 
be used for such an intervention in various jurisdictions across the globe.[7] Some 
investigators have considered the implications of these differing implementation contexts 
when designing the intervention in which their AI technology sits. This is simply illustrated 
by the extremely different thresholds of sensitivity and specificity selected by the same 
manufacturer for two pivotal trials which target distinct contexts in the US and UK.[8, 9] The 
UK has had a high-performing diabetic retinopathy screening service for many years and so 
any potentially valuable intervention must demonstrate extremely high sensitivity (missing 
an extremely low proportion of disease positive individuals). This aspect of implementation 
context explains the selection of a diagnostic threshold with 100% (95% CI 98.7%, 100%) 
sensitivity and 54% (95% CI 53.4%, 54.5%) specificity for the UK-based trial.[8] Contrastingly, 
the US has a more fragmented and less comprehensive service with a higher cost to payors 
and patients from unnecessary referrals. As such, the value proposition is not so dependent 
on high sensitivity, permitting greater prioritisation of specificity. This is demonstrated by 
the threshold with 95.5% (95% CI 92.4%, 98.5%) sensitivity and 85.0% (95% CI 82.6%, 87.4%) 
specificity selected for the same technology in the US-based trial.[9] Even with these 
considerations and substantial investment by healthcare decision makers, the high clinical 
and cost-effectiveness requirements of established NHS systems have prevented the 
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implementation of AI-enabled diabetic retinopathy screening in England (limited use in 
Scotland).[10] 

Guidelines for the design and evaluation of complex healthcare interventions, such as those 
involving AI, are already established.[11] The methods applied within the disciplinary field of 
implementation science address many of these guidelines. In particular, the value of 
carefully selected TMFs in harnessing data for evidence-based intervention evaluation and 
design.[12, 13] Despite broad consensus on the importance of TMF-informed intervention 
design and evaluation, which TMFs to use and how to use them remain as decisions to be 
made on a case-by-case basis by researchers. There are a great number of TMFs available to 
choose from with great variation in their selection, even within the narrow confines of 
clinical AI research (chapter 3).[14] 

6.2 Problem 
Chapter 4 identified what is likely to influence the implementation of AI-enabled nAMD 
treatment monitoring and why. It also identified what stakeholders would perceive as 
successful change in nAMD care. What remains unclear is how the design of an AI-enabled 
intervention can best operationalise these insights into implementation determinants and 
success criteria to deliver value to stakeholders in nAMD care. 

Failure of healthcare interventions is the norm.[15] If the absence of an evidence-based AI-
enabled intervention for nAMD treatment monitoring persists, any potential 
implementation efforts seem unlikely to escape this expectation of delay or failure .[16, 17] 
Any such failures may damage stakeholders’ perspective of the health technology, further 
lowering the long-term chances of implementation.[18] 

The determinants of implementation success vary over time and between target 
contexts.[4] If it is to remain effective, any evidence-based intervention should be adaptable 
to these changes and so the evidence and rationale that guided prior iterations of the 
intervention needs to be clear and transparent. 

6.3 Rationale 
To optimise the chance of implementation success for AI-enabled nAMD treatment 
monitoring, this chapter adopts best practices from implementation science (Figure 18).[12] 
Stakeholder groups to clinical AI implementation have been rigorously identified (Chapter 
3), their perspectives on AI-enabled nAMD treatment monitoring have been analysed to 
identify determinants of implementation (Chapter 4) and hypothetical patient outcomes 
have been investigated (chapter 5). Now, a carefully selected TMF will be used to harness 
these insights to shape the intervention in which the AI technology should sit. Because of 
the practical goal to determine how AI-enabled nAMD treatment monitoring should be 
implemented, the TMF should be an action-oriented process model.[19] It should expose 
the sociotechnical mechanisms by which various elements of an intervention are expected 
to influence its implementation. The TMF should also only concern domains which are 
modifiable through intervention design, helping to focus the data on the task at hand and 
maintain meaningful transparency to varied stakeholders of the intervention. 

The rationale in completing and disseminating this work prior to NHS adoption of an AIaMD 
for nAMD treatment monitoring, is to inform and improve the design of future relevant 
AIaMD from all potential manufacturers. This should at least partially mitigate the 
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disconnect between different stakeholder groups in clinical AI design and development, 
which has so often limited implementation efforts elsewhere in the literature.[3] The style 
of writing in the results section is consciously distinct from that of chapter 4 to make the 
evidence more accessible, and therefore useful, to the practice-orientated decision makers 
for who it is intended (chapter 2).[20] The TMF will also act as a record of the evidence and 
rationale that guided the proposed intervention, permitting later re-iterations as the 
sociotechnical context which it targets evolves.[4] 

6.4 Aim 
This secondary analysis of data and findings from chapter 3 aims to begin to answer how AI-
enabled nAMD treatment monitoring should be implemented. Due to its relatively high 
modifiability and influence, this is achieved through a focus on the design of the AI-enabled 
intervention that should carry the technology into practice. 

6.5 Methods 
All TMFs identified through the systematic search of primary qualitative research into 
clinical AI were reviewed for relevance to this chapter’s aim.[14] The Fit between 
Individuals, Technology and Task Framework was identified as a relatively simplistic, action-
oriented model, focused upon elements of an intervention which are modifiable.[21] Two 
leading alternatives were Davis’ TAM and Sittig and Singh’s Sociotechnical model.[22, 23] 

 
Figure 34. Technology Acceptance Model schematic.[22] 

Both are well suited to facilitating thoughtful intervention design as they promote 
consideration of different facets of an intervention and highlight consequences of those 
design choices that are likely to influence implementation.[24, 25] However, TAM (Figure 
34) focuses more heavily on individual attributes such as the behavioural and psychological 
responses to interventions by adopters, which can only be indirectly influenced by 
intervention design choices. Meanwhile, the Sociotechnical Model (Figure 35) highlights 
numerous and diverse aspects of intervention characteristics and their implementation 
context. This is helpful in more fully understanding the aspects of an intervention that may 
influence its implementation but risks distraction with non-modifiable aspects of an 
intervention or the target context. 
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Figure 35. Schematic of Sittig and Singh’s Sociotechnical Model.[23] 

Following re-familiarisation with the primary data and analysis from chapter 4, each of the 
three domains of Individuals, Task and Technology were then reviewed (Figure 36). 
Determinants which appeared related to one of the domains were used to shape an aspect 
of the intervention, with notes made to document the rationale of that design consideration 
(see appendix 6). When determinants relevant to a single aspect of the intervention were 
poorly aligned, an initial judgement was made by the lead researcher to compromise or 
prioritise between determinants. This process was completed independently by the lead 
researcher until a draft intervention was complete. This draft was then discussed with the 
study Reference and Advisory Groups (see appendix 4) to gain additional perspectives on 
intervention design and to support further iterations of the intervention. The aspects of the 
intervention which were based on conflicting data were made a particular focus for these 
discussions. Following this analysis, the proposed intervention was then presented and 
validated through parallel roundtable discussions at a F2F public engagement event in 
Newcastle on 4th October 2023. This event was attended by 34 members of the public, 
ophthalmology patients, eye charity professionals, academics and clinicians (see appendix). 
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Figure 36. The Fit between Individual, Technology and Task (FITT) framework.[21] 

6.6 Results 
6.6.1 FITT framework – Task 
The data analysis indicates that the AI technology should focus on treatment monitoring for 
patients with an established diagnosis of nAMD and should incrementally assume relatively 
autonomous decision making roles (rather than purely supportive) for at least clinical 
decisions. 

Points in the care pathway that deal with clinical and interpersonal complexity such as 
diagnosis, screening for ocular comorbidities and alterations to management plans were 
seen to require specialist clinician in input. One patient emphasised that he “wouldn’t like to 
go straight from AI diagnosis to treatment” but did value the prospect of extra clinician time 
being focused on diagnostic consultations, “I mean, no one spoke about this. They just said, 
oh, you’ve had a [macula] haemorrhage”. AI should instead target the high volume and low 
complexity situations in nAMD care which one ophthalmology trainee described as “when 
we are comfortable with the diagnosis and they are on a treatment” and “we just need 
something that can crunch [data]”. Due to existing treatment protocols, the risk of patients 
losing vision from automating a proportion of such decisions was seen as low. With 
adequate signposting and safety netting from clinicians, patients appeared very accepting of 
dropping consultations from most of their treatment appointments, “that wouldn't bother 
me if they thought I didn't need to see them all the time” [Patient]. The firm upper limit for 
periods of automated monitoring was not explored but no participants was supportive of 
periods of automated monitoring longer than 12 months. There was also a clear expectation 
from clinicians and patients that these residual face-to-face appointments would facilitate 
higher quality discussions and more holistic clinical considerations, e.g. checking for ocular 
co-morbidities, visual driving standard compliance and sight loss registration. 

Setting the AI this relatively independent task would help to clarify the productivity value 
proposition of AI-enabled treatment monitoring. Making such a clear value proposition 
would strongly incentivise payors, with one commissioner explaining that “any innovation 
that would reduce your backlog by 50%, by 25%, they would just commission it”. Given the 
mean 6.98 injections per year observed for nAMD patients in chapter 5, most of which were 
accompanied by distinct consultations, delivering these productivity gains would appear 
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readily achievable with even minimal frequencies of decision automation. Whilst this level 
of automation should be the end-goal for an AI-enabled intervention, it is important that it 
is reached iteratively in partnership with patients, clinicians and managers. All patients 
should feel able to access evidence of AI safety, though many will not feel the need to see 
that evidence if their clinical team appears supportive. One patient with a scientific 
background said they would want to see that AI decisions on their own prior imaging agreed 
with their clinician’s and only then would permit autonomous AI decisions “for the next two 
or three [treatments] and then I will come down and” have another consultation. Clinicians 
echoed this need for personal evaluation of technology and a gradual trust-building process. 
A manager reflected on the positive influence of a local evaluation on subsequent treatment 
innovation, anticipating that both for patients and staff, such a transparent evaluation of AI-
enabled nAMD monitoring would, “give you that sense of pride and ownership”. 

5.6.2 FITT framework – Individuals 
The data analysis suggests that consultant ophthalmologists should remain accountable and 
contactable, whilst reducing their contribution to conducting injections and consultations. A 
larger pool of nursing staff should be recruited to less intensive injection duties. Medical 
photographers should be responsible for operational aspects of AI use. 

An AI-enabled intervention should enable managers’ broader goals “to diversify our 
workforce, so we have lower qualified and non-qualified staff” [NHS hospital directorate 
manager] to take monitoring tasks away from scarce and expensive ophthalmologists (Table 
34). A GP warned this should not compromise patients’ sense of connection with 
consultants as their patients already report low satisfaction from seeing trainees, “if it’s, “I 
was only seen by the algorithm,” I can imagine that being an even lower drop” [GP]. Ideally 
this would be addressed by prioritising consultants’ time for initial diagnostic appointments 
as patients enter the service and through their oversight of asynchronous lines of 
communication, laid on for patients’ concerns or questions. The direct management of 
these communications should be delegated across clinical and administrative colleagues. 
The relative auditability of AI seemed to help consultants to accept this more distant role 
with one retina specialist consultant reflecting that they are already accountable for the 
decisions of junior colleagues though he had “not actually measured how well they 
perform”. The intervention should also free up highly qualified allied health professionals 
and trainee ophthalmologists to spend more time communicating with patients and using 
their wider competencies. “I don’t see it as a good use of my time after my 10 years of 
training to look at an OCT for someone who’s already got a diagnosis.... I mean, why?” 
[ophthalmology trainee]. Freeing up clinicians would deliver value across the ophthalmology 
service, with one senior manager remarking that whilst macula services were a pain point, 
its strong leadership meant they “don't lose sleep over it like [they] do in other areas of 
ophthalmology” [NHS hospital directorate manager].  

Interoperability issues within and between the various health technologies involved require 
a staff group to take responsibility for applying the AI and documenting its outputs. Within 
the hospital setting, hospital photographers represent an accepted and accepting group for 
this task. One ophthalmic photographer shared the favourite part of their current role was 
“when you help diagnose something” whilst a separate ophthalmic photography lead felt his 
staff would be very happy to take responsibility for AI on as “it fixes you very firmly in a 
critical role”. When asked who they thought should take responsibility for the AI one patient 
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answered, “I think it should be the people that do the photographs now”. Whilst most 
patients wanted overall responsibility for the AI to be held by a consultant ophthalmologist, 
none required that relaying or explaining AI outputs involved ophthalmologists and many 
preferred it not to.  

Having a member of the team dedicated to absorbing the technical complexity of AI 
integration also maximises the productivity of clinicians focused on delivering injections. 
This is because for injection staff, “I'm not in the role of a [Band] 7 where I'm reviewing 
patients. I'm interested in what the diagnosis is, bang, bang, bang, what, what drug, what 
eye, when to bring them back” [Advanced nurse practitioner]. The AI output that 
photographers add to the electronic record should reflect these practical requirements from 
injectors should also take account of other stakeholders needs as concisely as possible (see 
appendix). One injector anticipated that with standardised AI documentation they “wouldn't 
need to go and ask for as much help” [Advanced nurse practitioner], which involves 
physically finding a colleague elsewhere in the department to clarify ambiguous 
documentation, also disrupting their workflow. Whilst injection sessions were welcomed by 
nurse and optometrist participants in moderation, it was felt important to keep a good 
“balance of the injections so you’re not all stuck on injections all day” [Hospital optometrist]. 
Along with considerations for clinician satisfaction, taking large amounts of time of band 7 
staff to perform duties within the scope of band 6 staff is not cost effective (Table 34). The 
clinic manager shared a prior solution to this where “all of the Band 5 nurses, they had the 
opportunity to inject in the department. And they would be paid as a Band 6 sessional” 
[Clinic charge nurse]. This means the band 5 nurses take on better paid work, increase the 
variety in their job plan, gain exposure to greater clinical responsibility and improve their 
prospects of career progression. Meanwhile, the relatively small pool of band 7 nurses does 
not find themselves burdened with a job plan consisting mainly of injection clinics and make 
use of their examination and consultation skills. 

Table 34. Professional groups, roles and lowest associated pay scale for Artificial Intelligence (AI)-enabled neovascular age-
related macular degeneration (nAMD) monitoring intervention. AFC = Agenda for Change, OCT = Optical Coherence 
Tomography, ST = Specialty Training year, F2F = Face-to-Face. [26, 27] 

Task Individual Pay scale Starting salary 

Checking patients 
in/out and booking 
appointments 

Receptionist AFC – band 2 £22,383 

OCT capture and AI 
input/output 

Medical 
photographer 

AFC – band 5 £28,407 

Injection delivery Band 5 clinic staff 
nurses 

AFC – pro rata band 
6 rate 

£35,392 

Injection assistance Healthcare assistants AFC – band 3 £22,816 

Visual acuity 
measurement 

Healthcare assistants AFC – band 3 £22,816 
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F2F consultations 
and managing 
additional patient 
messages 

Advanced nurse 
practitioners/Hospital 
optometrists 

AFC – band 7 £43,742 

F2F consultations 
and managing 
additional patient 
messages 

Junior 
ophthalmologists 

Junior doctor ST1-2 £43,923 

Monitoring service 
performance and 
providing advice to 
colleagues 

Consultant 
ophthalmologists 

Consultant £93,666 

5.6.3 FITT framework – Technology 
The data suggest that the commercial risk of trying to lead competitors in product 
development mean that initial AIaMD products are likely to come from a small commercial 
vendor. The AIaMD will need to be compatible with the cloud platform, Picture Archiving 
and Communication System (PACS), EMR and imaging file formats in the adopter’s 
established digital infrastructure. AIaMD outputs will ideally be smoothly integrated into 
clinical, administrative and other professionals’ workflows. 

Although AI for nAMD decision support from OCT analysis could be supplied to providers as 
a stand-alone software to be integrated onsite, “there will be a lot of work on the hospital 
side to do that integration” [Medtech industry professional]. Such an approach with AI was 
also described as risky as subtle changes in input data “could impact the result in ways that 
are unintended, so the software needs constant monitoring” [Medtech industry 
professional]. Industry participants were sceptical of most NHS organisations’ capacity or 
capability to undertake that kind of integration and monitoring work. Consequently, the 
AIaMD should access provider data on the cloud, as “having a cloud-based solution lets the 
vendor be involved in the ongoing surveillance of the performance of their product” 
[Medtech industry professional]. For large MedTech companies, cloud-based platforms and 
other digital infrastructures are one of the secure requirements for AI-enabled healthcare, 
and so this perception of low commercial risk had motivated significant resource has been 
committed to developing them. These larger companies appear to be avoiding developing 
the AIaMD themselves, because it is a risker investment and because such a company 
“doesn't want to be burdened with all the regulations and all the issues of developing and 
clearing such products” [Medtech industry professional]. This means that the 
interoperability issues between imaging format, PACS, cloud platform and AIaMD will have 
been addressed by the larger established companies. This is particularly positive for 
scalability as like its competitors, the ophthalmic imaging company we spoke to “have a 
really great installed base of diagnostic imaging systems and PAC systems and EMR in the 
case of the UK” (Table 35). 

Table 35. Technological components of the artificial intelligence (AI)-enabled intervention, with descriptions of their role 
and the proposed vendor for Newcastle upon Tyne Hospitals NHS Foundation Trust (NuTH). OCT = Optical Coherence 
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Tomography PACS = Picture Archiving and Communication System), nAMD = neovascular age-related macular 
degeneration, EMR = Electronic Medical Record 

Technological 
component 

Purpose Proposed vendor and 
rational for NuTH 

Anticipated 
additional cost 

OCT equipment To capture OCT 
imaging for 
clinician and AI 
review 

Heidelberg Engineering™; 
NuTH currently exclusively 
owns Heidelberg OCT 
equipment and their outputs 
are compatible with other 
relevant technologies 

None 

PACS To access, store, 
send and receive 
OCT imaging for 
clinicians and other 
information 
systems 

Heidelberg Engineering™; 
NuTH currently uses a 
Heidelberg PACS (Heyex 2.6) 
and it is compatible with 
other relevant technologies 

None 

EMR To access, store, 
send and receive 
clinical and 
administrative 
information for 
clinicians and other 
information 
systems 

No clear rationale; NuTH has 
recently procured Medisite™ 
which is owned by 
Heidelberg Engineering™ 

None 

Cloud-based 
platform 

To facilitate OCT 
imaging input from 
PACS for AI medical 
devices and output 
to EMR 

Appway™; As a Heidelberg 
product interoperability with 
a version of their PACS 
(Heyex 2.6.3) is assured and 
they have already contract 
two separate OCT 
segmentation AI products 

None 

AI medical 
device 

To analyse OCT 
imaging and output 
interval 
recommendation 
for next nAMD 
treatment 

No clear rationale; RetinAI™ 
and RetinSight™ are both 
companies with regulated AI 
products for OCT 
segmentation contracted to 
Appway™, but neither 
currently offer treatment 
interval recommendation 

Closest products 
currently charge 
€5 (£4.30) per 
application with 
no current 
precedent for a 
NHS customer 

The AIaMD remains a foundational part of the intervention however, and the manufacturer 
“needs to be a legally registered entity and take legal responsibility for the ownership, 
distribution, sale and eventual killing of the device” [Regulatory professional]. The regulatory 
participant participating in the study was not aware of any NHS organisation acting as 
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manufacturer for AIaMD to date. Industry participants pointed to a handful of small 
companies who they are collaborating with to supply AIaMD to their cloud platform. The 
nature of this arrangement adds some complexity “where the site that uses it would have to 
sign a contract” [Medtech industry professional] in addition to its procurement of the cloud 
platform from the larger MedTech company. The unfamiliarity of these companies is also 
complicated by all of the ones mentioned being based outside of the UK, potentially 
necessitating the egress of sensitive data abroad, which could cause concerns over data 
governance. At least some mitigations to this as the vendor of one such cloud platform 
explained that as the data is egressed it “is completely anonymized and stripped away of any 
patient information” [Medtech industry professional]. 

Ideally, the digital infrastructure which the AIaMD interacts with should allow smooth 
integration of its outputs with the workflow of different professional groups. Clinicians want 
some sense of “how happy it is with the answer it’s given you” and “would definitely prefer 
to know exactly why the machine comes up with” [ophthalmology trainee] a given 
recommendation. Integration with appointment scheduling facets of the EMR, which have 
not been interoperable with clinical components of the EMR, should also be pursued. One 
NHS administrative manager thought that an AI-enabled workflow could improve the safety 
and efficiency of the service’s work as they thought “it could do away with a lot of having to 
monitor the appointments” and anticipated more accurate forecasts and better use of 
clinical capacity. There may also be opportunities to improve more holistic aspects of nAMD 
care if AIaMD outputs could be integrated with the social service liaison team. A 
representative reported significant opportunities to make sure “referrals are done 
appropriately and at a relevant time and that the people who do need support are getting 
the opportunity to access it” [Social care liaison officer]. Alerts to motivate these referrals 
and other more holistic considerations (e.g. certification of visual impairment) could be 
embedded within an AI-enabled workflow to improve, rather than inhibit, the human-touch 
of nAMD services. 

  
Figure 37. Schematic of proposed AI-enabled intervention for nAMD treatment monitoring. 
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6.7 Discussion 
The multiple elements of a complex healthcare intervention, such as AI-enabled nAMD 
treatment monitoring, provide many mechanisms which could influence its implementation. 
Analysing determinants of implementation from chapter 3 with the FITT framework has 
offered insights into how an AI-enabled intervention for nAMD care might exploit these 
mechanisms to deliver value to key stakeholders.[21] The theory-informed analysis has also 
produced a transparent evidence base for each element, which can be iterated upon as the 
determinants underlying the rationale for intervention design vary over time and between 
implementation settings. This transparency lends resilience and generalisability to the value 
of the proposed intervention as the feasibility of design re-iteration by others with expertise 
in distinct implementation settings is improved. Given the strong influence context appears 
to have on implementation outcomes, and the lack of precedent for AI-enabled nAMD care, 
this potential for responsive re-iteration is likely to safeguard the proposed modifications to 
impact real-world care.  

6.7.1 Comparison with prior work 
Much of the published research to support clinical AI intervention design and evaluation 
falls within the overlapping fields of usability, ergonomics or human computer 
interaction.[3] These fields are also identified as producing a distinct group of TMFs 
according to one taxonomy.[28]  Primary studies here often focus on potential users’ 
interaction and experience with a clinical AI prototype.[3] It is also noteworthy that much of 
this work is done by vendors developing AIaMD and is not in the public domain, due to the 
resource demands of publication and the commercial sensitivity of its content. Prototype 
evaluation provides a close simulation of what the product might feel like and so qualitative 
data collected from study participants has a high degree of authenticity.[29] There are some 
disadvantages however, as these simulated usability studies often have a narrow focus on 
the AIaMD, rather than the intervention as a whole.[21] When they are not informed by 
prior explorative research, they can be indicative of a solution-first approach to innovation, 
rather than a problem-first approach.[5] This risks developers failing to anticipate certain 
demands of the AIaMD’s target users or implementation context and limiting the 
effectiveness of the resources they commit to prototype development. Even if developers 
are willing and able to enact major changes to better align a prototype with these demands, 
it is likely to represent an inefficient development process. This solution-first approach is 
exemplified in a usability study of a virtual nasal surgery decision support tool which 
presents a relatively mature prototype to potential users and asks what task it could be used 
for.[30] Contrastingly, a separate investigation of an asthma decision support tool explored 
clinicians experience and need across the healthcare pathway using a TMF to help inform 
subsequent prototype development and evaluation (Figure 38).[31] 
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Figure 38. The universal double diamond framework, a two-stage design-framework focusing first on what kind of 
intervention is needed and then what form that intervention should take. HMW =How-Might-We questions[32] 

Though outside of scope for the present study, greater authenticity in evaluating AI-enabled 
interventions is possible following their integration into live clinical workflows. This work 
remains uncommon, though is becoming more prevalent. With the present research, 
findings are highly practical as they are based on real-world experiences and events with 
clinical AI. One example of the value of such practical findings comes from the employment 
of nurse specialists to communicate outputs from an AI tool to end-user emergency 
department physicians.[33] Here the addition of a human interface for AI resulted in a 
relatively positive experience and high acceptance from end-users. These studies of live AI-
enabled interventions can also highlight unanticipated risks which require mitigation. An 
example here was the observation of nurse specialists in a Thai community diabetic 
screening service making ad-hoc decisions to re-image patients if they disagreed with a 
decision for onward referral in an AI-enabled intervention.[34] This helped to surface 
training needs for end-users and other considerations about the suitability of 
implementation contexts. In the present study, the data on which the intervention design 
are based come from participants who have a hypothetical understanding of it. This was 
necessitated by the absence of a prototype at the time the study was developed, but also 
has the advantage of anticipating a proportion of these insights whilst there is still 
significant flexibility in prototype and intervention design. 

A major strength of this work is the multi-stakeholder insights it draws on and the process of 
exploring compromises or alternate scenarios where conflict arises between those. This 
need to iteratively refine AI-enabled interventions through multi-stakeholder input was also 
well demonstrated in a qualitative study of stakeholders in a live integration of hospital bed 
occupancy predictive AIaMD in the US.[2] The data from this study were abstracted into a 
process model for iterative, collaborative development and implementation of clinical AI 
tools (Figure 39). 
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Figure 39. Iterative, collaborative development and implementation of machine learning-based clinical decision support 
tools.[2] 

Similar sentiments were presented and abstracted in a primary qualitative study supporting 
the design of a AIaMD to consolidate unstructured data in patient records for nursing staff 
(Figure 40).[35] Both process models suggest that the work presented in chapter 4 and the 
present one will prove most successful as the initial stage of an on-going iterative co-
development process. 

 
Figure 40. User-driven co-development of artificial intelligence model.[35] 
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6.7.2 Limitations 
As discussed in the previous section, stakeholders’ perspectives contributed to intervention 
design despite their lack of direct experience of that intervention. As a result, the 
authenticity of their insights are limited and they may experience the intervention 
differently once they are interacting with it in real-world care.[29] This is an inevitable 
limitation of this early stage hybrid research where the need to establish effectiveness must 
be prioritised over interventional implementation research.[13] Nevertheless, the 
observational form of implementation research here remains important to maximise the 
efficiency of further iterations on the intervention through simulation and interventional 
research (Figure 39 and Figure 40).[36] 

Some of the decisions made through the FITT framework analysis were informed loosely by 
costs associated with the salaries of various staff members (Table 34).[21, 26, 27] To explore 
this more rigorously a formal health economic evaluation with sensitivity analysis should be 
performed.[12] This is outside the scope of the present work, but will be valuable in shaping 
the intervention and expressing the value proposition to adoption decision makers. There is 
another economic assumption which threatens the legitimacy of the proposed intervention. 
This relates to the ‘time to care’ value proposition, which is often assigned to AI by its 
advocates, suggesting that efficiency savings from AI will mean that clinicians have time to 
deliver higher quality encounters with patients when they do occur. This is reflected in the 
intervention proposed by the assumption that with fewer demands for face-to-face 
consultations in AI-enabled macula services clinicians will invest more time in each 
individual consultation. This helps to address concerns from clinicians described in chapter 4 
that their consultations in macular services also allow them to make new diagnoses (e.g. 
cataract or glaucoma) or make more holistic interventions (e.g. arranging a low vision aid 
assessment or discussing visual driving standards). In reality, the capacity pressure that 
managers and clinicians are under may mean that any clinician time that is freed up is 
immediately assigned to the provision of more service, rather than enhancing the quality of 
service that is already provided. This can be mitigated against through implementation 
strategies, but the real-world delivery of ‘time to care’ should be monitored in any 
implementation efforts. 

Another limitation of the theory-based design of the intervention is that it does not provide 
the level of specification required by some stakeholder groups in some regards. This limits 
the practical application of its current state. For example, regulators would require technical 
specifications of the type of OCT imaging that would be used as inputs into the AI device.[1] 
Prior to any implementation effort it will be necessary to establish these details, but the 
advantage of the present approach is the broad accessibility of the output it has generated 
from complex qualitative data. This provides a useful starting point to engage stakeholders 
in subsequent refinement of the intervention for specific settings. 

Given the national, or international, scope of regulators of SaMD the local focus of data 
collection to support intervention design is another limitation. This is of particular concern 
given the low ethnic diversity in the locality studied (Northeast of England) and the well-
placed concerns over potentially biased impacts of AI interventions across demographic 
groups.[37, 38] The local focus of this tool helped to provide common experiences of nAMD 
care. In so doing, it provided an opportunity for participants to draw on their lived-
experiences when reflecting on the potential implementation and use of the AI-enabled 



188 
 

intervention. In further work however, the findings of the study must be critically evaluated 
with insights from a more diverse sample of patients, carers and clinicians. 

6.7.3 Future directions 
To support regulatory approval of an intervention such as the one outlined in the present 
chapter, further specification is required within the framework used by regulators and other 
decision makers. Chapter 7 will address this by applying the formal structure of an IUS, 
which is central to regulatory submissions for SaMD in most global jurisdictions and helps to 
provide practical clarification of the form of an intervention.[1] 

To address the systems perspective recommended in the Medical Research Council’s 
framework for evaluating complex interventions, it is also necessary to consider the 
proposed healthcare pathway in which the proposed AI-enabled intervention will sit.[11] 
This will be addressed through a MAA in chapter 7. This involves mapping a hypothetical AI-
enabled healthcare pathway and evaluating the risks that may present at each stage.[39] A 
further error analysis will be performed as part of this too, to explore what mitigations may 
be available across the full care pathway, rather than just from the AI technology, AIaMD or 
AI-enabled intervention. This process will be used to make recommendations on 
opportunities to improve the safety and effectiveness of the proposed AI-enabled care 
pathway further. 

Addressing other limitations described in the prior section is outside of the scope of this 
thesis. However, the associated evidence will be needed by regulators and health 
technology assessors in their stop-go decisions about implementation in the UK and/or NHS. 
This includes formal health economic evaluation, qualitative research to explore 
perspectives from stakeholder at other sites across the UK and AIaMD prototype 
development and evaluation. Findings from these work streams will also help to evaluate 
and refine the intervention further and to prepare for implementation. 

6.8 Conclusions 
Drawing on the FITT Framework, this chapter has proposed a testable intervention with a 
transparent evidence-base. This takes the form of an alteration from the current nAMD 
treatment pathway to reduce the number and increase the quality of F2F consultations 
between clinicians and patients. This can be expected to improve patient and clinician 
experience whilst also increasing service efficiency. This acts as a starting point for review of 
a full AI-enabled healthcare pathway and its further refinement to improve the safety and 
effectiveness than can be expected from AI-enabled nAMD treatment monitoring. 
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6.9 Appendix 
6.9.1 FITT drafting process 
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6.9.2 Potential patient leaflet 

New technology in your macular degeneration clinic 
We have been testing new technology against specialist consultants here and at 
Moorfields Eye Hospital to try and improve your experience at clinic. This new 
technology looks at the photos we take to check on your wet macular degeneration 
and carefully plan when your next treatment should be. 

How do I know it is safe? 
This technology has been developed by teams in the NHS, UK universities and 
companies over the last 7 years. Like the other technologies we use in your care it 
has been approved for use by the UK regulator, the Medicines and Healthcare 
products Regulatory Agency (MHRA). With the rest of the team, our consultants have 
also been making their own checks before using the technology in clinic. We also 
want to show you the treatment plans it makes at your appointments here at the 
clinic, so you can see it at work for yourself. 

How can this technology benefit me? 
At Newcastle Eye Centre we have shown that our patients can already expect better 
vision with wet AMD than the average for the UK. In checking this technology on our 
own medical records, we found that we could make this even better. The technology 
could make us better at catching wet macular degeneration getting worse and 
finding more opportunities to give injections less often without losing vision. 

Most of the time spent waiting in clinic is for your team to look through your photos, 
so by bringing this technology in we expect you to spend less time waiting. This 
technology can also make use of photos taken in some community health centres 
too, so we are hoping to make it easier for you to get to places that we can give you 
care. 

What if I think there is a problem with the technology? 
Your safety and the safety of your vision is extremely important to us. We believe 
this technology will benefit the people with wet macular degeneration we care for, 
but we also understand that this is new and that you often know first when you need 
to be seen. To help we have also introduced a new phoneline for the wet macular 
degeneration clinic so that you can raise any concerns you have. A member of the 
team will call you back to discuss the concern, check your records and arrange an 
extra appointment if it would improve your treatment. This is in addition to our other 
services. 
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6.9.3 nAMD documentation quality improvement project 
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6.9.4 Photos from public engagement event 
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Chapter 7: Evaluating a proposed AI-enabled intervention for nAMD 
treatment monitoring 
Problem: The risks and potential mitigations for a real-world AI-enabled nAMD treatment 
pathway are yet to be systematically explored. This increases the chances of unanticipated 
harm from the AI-enabled intervention following its implementation, but also the chances 
of research waste if regulators or other decision makers identify unanticipated risks and halt 
the implementation process. 

Objectives: Apply the “Medical Algorithmic Audit” (MAA) to the AI-enabled pathway that 
would result from the intervention described in chapter 5, supported by the qualitative and 
quantitative data and findings of chapters 3 and 4. Use the findings of the MAA to refine the 
likely safety profile of the proposed AI-enabled intervention. 

Methods: As far as possible, the six stages of the MAA will be completed for the proposed 
AI-enabled intervention in its current state of maturity (i.e. disjointed deep learning-enabled 
tissue segmentation with rule-based decision tree overlay). This will allow the data from 
chapters 5 and 6 to directly inform the Scoping, Mapping, Artifact collection, Testing, 
Reflection and Post audit stages of the audit. 

Findings: The AI-enabled intervention is described in an Intended Use Statement in the form 
recommended by the MHRA. Further adjustments to the rule set applied to OCTane outputs 
can be applied to improve its NPV from 95.3% to 96.5% and PPV from 42.3% to 55.5%. Of 
the remaining 53 false positives, 24 (45.3%) are associated with major segmentation errors 
and of those 24, 22 (91.7%) are associated with suboptimal OCT quality. These observations 
could inform the design of user training, to minimise the risk of errors from low quality 
imaging and to increase the proportion of errors identified and averted by clinicians. 
Patients with certain ocular characteristics (myopic fundus, large pigment epithelial 
detachment or ocular media opacification) may experience lower diagnostic accuracy of AI-
enabled decisions and further investigation of these sub-groups is warranted. 

Conclusions: The MAA has facilitated the identification of risks and mitigations across a 
hypothetical AI-enabled nAMD treatment pathway. This process has helped to further 
optimise an AI-enabled intervention for prospective evaluation in nAMD treatment 
monitoring  
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7.1 Background 
In chapter 4 we found that both the performance of AI technology and the manner in which 
it is applied to nAMD treatment monitoring will be two key determinants of implementation 
outcomes. We also learnt that both factors were relatively modifiable compared to other 
influential factors. Chapter 5 suggested that the AI technology under study would satisfy 
most stakeholder’s expectations of performance when combined with certain knowledge-
based rules within an AIaMD. Chapter 6 explored other aspects of that AIaMD and how the 
intervention to carry it could best align with determinants of implementation. So far then, 
we have considered the AI technology, the device which it may sit within and the 
intervention which might carry it into patient care. 

This chapter will take another step out into the target context by considering its place within 
the wider hypothetical AI-enabled healthcare pathway. The intervention for AI-enabled 
nAMD treatment monitoring involves many different interdependent factors (e.g. adopters, 
technology, organisations, policy etc.) which influence one another in a non-linear or partly 
stochastic fashion. Such influences characterise complexity, as opposed to complicatedness 
(many factors influencing each other in a predictable way) or simplicity (few factors 
influencing each other in a predictable way).[1] The Medical Research Council has recently 
updated its framework for the evaluation of complex healthcare interventions to move 
beyond efficacy (performance in ideal settings) and effectiveness (performance in real-
world settings). It now emphasises the value of evaluating the mechanism through which 
interventions achieve their real-world outcomes and the wider impact they have across the 
system they act within. Considering the interaction of the proposed AI-enabled intervention 
with the target healthcare pathway will improve the identification and accommodation of 
the diverse sociotechnical factors which will shape the outcome of implementation.[2, 3] 

For individuals, organisations and systems across healthcare, the risk of causing harm to 
patients is the central constraint for clinical AI implementation. In some regards, this 
constraint is a self-perpetuating one as without real-world clinical AI implementation we can 
only estimate these risks and harms. Even in cases where clinical AI has made it to real-
world use, the detection and reporting of risk and realisation of harms is minimal.[4] Even if 
purely technical failures of AIaMD are considered, a diagnostic device with a sensitivity of 
80% (e.g. ProstatID™) should be expected to miss at least 20% of cases in practice.[5] The 
discord between the expected and reported degrees of risk and harm is not surprising, but it 
does highlight the limitation of current reporting practices in AIaMD post market 
surveillance.[6] A recent synthesis from post market surveillance reports submitted to the 
FDA suggested that most harms seem to be derived from the interactions that users have 
with AIaMD, rather than failures of either the users or products in isolation.[4] This 
emphasises the importance of approaches to risk assessment that consider AI-enabled 
healthcare as holistically as possible. 

7.2 Problem 
There is a widespread cultural scepticism about clinical AI across healthcare and from many 
stakeholders in nAMD treatment monitoring.[1, 7] To satisfy adopters, clinical AI must 
match and preferably exceed the effectiveness and safety of current service provision. 
Stakeholders’ definitions of ‘effectiveness’ and ‘safety’ are multi-dimensional and can only 
be fully measured with varied quantitative and qualitative data. There are also no real-world 
instances of AI-enabled nAMD monitoring in the NHS, so approaches to evaluating 
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effectiveness and safety in the present work need to retain value even in hypothetical 
applications. 

Many systematic or theory-informed approaches for hypothetical safety evaluation exist, 
but they are often at a high level of abstraction.[8-10] This makes it difficult to distil 
actionable findings for a specific application such as nAMD treatment monitoring. There are 
also instances of approaches which are focused enough on an application to produce 
actionable findings, but hold little intuitive relevance for clinical AI, limiting their value.[11] 
This lack of domain focus is problematic given the relative distinctions of AI against other 
health technologies of relatively opaque mechanisms of action and the potential to make 
complex decisions with high levels of independence. 

To evaluate an AI-enabled healthcare pathway in a way that is meaningful for stakeholders 
and supports actionable recommendations a multi-method, clinic AI-specific approach is 
required. 

7.3 Rationale 
The MAA is a systematic approach to monitoring and safety evaluation which has been 
specifically designed for AIaMD following their integration into clinical practice.[12] As such 
it includes steps which specifically address some of the distinctions of AIaMD; subgroup and 
adversarial testing to compensate for the opacity of operating mechanisms, rigorous IUS for 
clarity on the contributions the AIaMD will make to care. It requires consideration of the full 
healthcare pathway, including elements which do not directly involve the AIaMD, to identify 
and mitigate risks arising from both the AIaMD and the wider context in which it will sit.[4] It 
also demands varied quantitative and qualitative inputs to holistically describe the 
performance of an AI-enabled intervention. 

Although MAA was designed with longitudinal monitoring of AIaMD already incorporated 
into healthcare pathways, there is also precedent for it being used in formative evaluations 
of AIaMD prior to clinical integration.[12] Here it produced actionable recommendations to 
guide a potential AI-enabled healthcare pathway for diagnosing neck of femur fractures on 
plain radiographs. Consequently, MAA addresses the problems which this chapter aims to 
address. 

7.4 Aim 
To conduct a MAA of the proposed AI-enabled nAMD treatment monitoring pathway to 
systematically identify clinical risks and potential means for their mitigation. 

7.5 Methods 
The MAA was conducted in line with the steps outlined in the index publication.[12] A prior 
published example and an internal example used in governance processes at an NHS 
foundation trust were used as exemplars.[13] Not all steps of the MAA are possible, or 
require adaption, for an AIaMD which is yet to be integrated into practice such as the one 
proposed. These adaptions or omissions are explicitly called out in the relevant part of the 
results section below. 
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7.6 Results 
7.6.1 Scoping 
Because of the UK implementation context under consideration, the scoping stage draws on 
chapters 3 and 4 and guidance from the MHRA on the form and content of IUS.[14] 

7.6.1.1 Structure and function of the device 
This SaMD aims to support treatment monitoring for patients with an established diagnosis 
of nAMD. It achieves this by assessing whether signs of nAMD disease activity are present or 
not to inform the interval at which a suitably qualified clinician (e.g. ophthalmologist, 
optometrist or nurse practitioner) plans further anti-VEGF treatment. 

The SaMD has 3 components; an application programming interface (API), a cloud-based 
deep learning algorithm (OCTane) and a rule-based algorithm. 

Inputs to the SaMD are ipsilateral pairs of temporally sequential, topographically-matched, 
fovea-centred 6mm x 6mm OCT scans composed of 25 or 50 horizontally orientated, equally 
spaced B-scans. Prior to SaMD use, patients’ OCT scans are stored by the data controller 
organisation in their PACS as DICOM files. To apply the SaMD, a pair of DICOM files from a 
patient are exported by a suitably qualified operator (e.g. medical photographer) to a cloud-
based platform. Prior to this export the DICOM files are pseudonymised and encrypted 
within the data controller’s digital environment. From the cloud-based platform, an 
application programming interface (API) within the SaMD strips all fields of the DICOM files 
besides the imaging itself prior to analysis by OCTane. OCTane has a three-dimensional U-
Net architecture and segments full OCT volume scans into 15 different tissue groups, 
including IRF and SRF, assigning a total volume to each in µm3. A rule-based algorithm then 
applies simple logic to differences in IRF and SRF volumes between the paired OCT scans, 
determined by OCTane. If either SRF or IRF volumes increase by more than 1,000,000 µm3 
from the earlier scan to the later scan, then this confers an output of disease activity for that 
patient episode. If neither IRF or SRF volumes increase by 1,000,000 µm3 or more, an output 
of disease stability is assigned for that patient episode. 

Alongside this binary assessment of nAMD disease activity, the original raw OCT scans, 
graphical representations of the OCTane scan segmentations and the scalar volumes of IRF 
and SRF assigned to each are written to a DICOM file. This DICOM file is returned to the 
cloud platform by the API. These outputs are then exported back to the data controller’s 
PACS where the encryption and pseudonymisation is reversed prior to storage in the 
relevant patient file, time and date stamped. The outputs can be accessed directly from the 
PACS or an interoperable EMR in the data controller’s digital environment to support 
suitably qualified clinicians in deciding when they or a colleague should administer further 
anti-VEGF treatment to the patient. The raw OCT images, OCTane segmentations and 
numerical trends in IRF and SRF are presented alongside the binary assessment of disease 
activity to provide explainability. 

7.6.1.2 Intended population 
This SaMD is intended to be used for patients with an established diagnosis of nAMD who 
have given informed consent for a course of anti-VEGF treatment to the affected eye(s). 
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7.6.1.3 Intended user 
There are a number of different users of the SaMD; the clinician conducting F2F 
consultations with patients, the clinician exporting OCTs for SaMD analysis, the clinician 
making nAMD treatment decisions and the patient. 

The clinician conducting F2F consultations with patients is responsible for explaining the 
SaMD-enabled care pathway to patients with known nAMD. They should also address ad 
hoc communications from patients or colleagues who raise concerns about SaMD 
performance. On a regular basis (e.g. annually) they should conduct consultations with 
patients to ensure appropriate SaMD performance between consultations and check 
patients’ understanding of diagnosis and consent for the on-going management plan. These 
consultations also allow the clinician to elicit patient concerns, screen for ocular 
comorbidities, social and functional consequences and answer any relevant questions that 
patients have. 

The clinician exporting OCT images is responsible for checking that the patient has an active 
assignment to AI-enabled treatment monitoring for nAMD from a suitably qualified clinician. 
They are also responsible for ensuring that the correct pair of OCT images are uploaded and 
a technical quality check of the raw OCT images, as segmentation and decision support 
errors are more prevalent in low quality OCTs. After they export the OCT images they should 
check that the outputs are returned to the PACS as intended. 

The clinician making nAMD treatment decisions also holds responsibility for checking that 
the SaMD outputs they access relate to the intended patient and imaging episodes. They 
alone are responsible for checking that the graphical displays of the segmentation appear 
accurate and that the numerical trends in IRF and SRF are also congruent with the raw and 
segmented OCTs. Assuming each of those checks is satisfactory they can then apply the 
binary assessment of disease activity output from the SaMD to local treatment protocols. 
This also requires knowledge of when the patient’s last anti-VEGF injection was and 
potentially how long they have been treated for. They should also synchronously or 
asynchronously communicate their SaMD supported assessment of nAMD disease activity to 
the patient. This should be accompanied by the planned interval to their next treatment and 
a reminder of means by which patients can contact the clinical team with concerns 
regarding treatment. They should complete any prescribing or administrative tasks which 
enable the timely administrating of the next planned anti-VEGF treatment. 

The patient has no responsibilities, but they are enabled to raise concerns about the 
treatment decisions or their symptoms directly to clinicians they interact with or through 
specified communication channels with the clinical team. 

7.6.1.4 Intended use environment 
 The digital environment for SaMD analysis is a cloud platform. A PACS system, potentially 
accessed via an interoperable EMR, within the data controller’s own computer environment 
is intended for the storage and access of SaMD outputs. 

F2F consultations with patients are intended to be conducted within a clinical setting 
allowing for confidential discussion and ophthalmic examination. This could be in a primary 
or secondary care setting. The exporting of OCTs to the cloud environment for SaMD 
analysis and the accessing of outputs and clinical decision making could happen in the same 
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setting, or an office setting. This office could also be on site at the primary or secondary care 
premises or via secure remote access depending upon the data controller’s digital 
infrastructure and information governance policies. 

7.6.1.5 Intended impact 
This intervention is intended to reduce the amount of clinician time required for nAMD 
treatment monitoring. It is intended to preserve or improve visual outcomes form nAMD 
patients undergoing treatment, without increasing the number of annual injections required 
by a patient. The intervention should also facilitate longer F2F appointments for nAMD 
diagnosis discussion and annual review consultations, with the expectation of improving 
patient and clinicians’ experience.  

7.6.2 Mapping 
Given the pre-implementation stage of the intervention this mapping process is necessarily 
hypothetical. However, the stakeholders and data from chapter 3 help to inform this. 

7.6.2.1 Personnel and resources necessary for audit 
From NuTH, various different staff groups are required. A senior ophthalmologist is required 
to evaluate the OCTane segmentations and clinical decisions that were based upon those 
segmentations. An administrative staff member is required to curate data on patient 
appointment bookings, the rate of attendance and delay and capacity to provide different 
appointment types. A technical member of staff is required to evaluate the performance of 
the digital infrastructure on which the pathway depends. Following implementation, a 
sample of patient and professional end-users would also be surveyed or interviewed to 
understand their experience. 

External staff from the SaMD vendor are required to provide insight into data flow and 
processing through the pathway. Assuming there is a different vendor for the cloud 
platform, PACS and imaging equipment, input will also be required from their teams. 
Independent benchmarking of the clinical cases to be examined in the ‘testing’ section can 
also be supported by an external reading centre or recognised specialist centre. 

7.6.2.2 Risks and known vulnerabilities 
7.6.2.2.1 Mapping of the AI system 
The first dependency of the AI system is the capture of fovea-centred OCT imaging with 
equipment and imaging protocols that are interoperable with OCTane. This can also be 
affected by clinical factors, e.g. patient co-operation or optical media opacity, that affect the 
quality of the imaging obtained. Because the interpretation of the AI system’s outputs is 
temporally dependent, the accurate time stamping of images in the PACS is also important. 

Once the imaging has been stored in the PACS, the operator needs to select the appropriate 
AI tool and initiate its application (Figure 41). This is followed by image pseudonymisation 
and encryption prior to export to the cloud platform. Export depends on intact cloud 
infrastructure within the data controller’s computer environment. AI analysis within the 
cloud environment takes place next and is dependent upon the interoperability of the 
imaging file format (DICOM). 

The first stage of AI analysis is segmentation of the pair of OCT volume scans. The accuracy 
of this segmentation appears to be dependent on the quality of the imaging captured, but 
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may also vary across clinical groups, e.g. high myopes or individuals with extensive pigment 
epithelial detachment. Following segmentation, the differences between volumes of IRF and 
SRF between the paired scans is then derived by subtraction. If there has been an interval 
increase in either IRF or SRF volume over 1,000,000 µm3 then an output of nAMD disease 
activity is assigned, otherwise an output of nAMD disease stability is assigned. 

These outputs of visualisations of the segmentations, numerical assessments of IRF and SRF 
and the binary assessment of nAMD disease activity are then returned to the cloud 
environment and on to NuTH’s PACS where the pseudonym key is reversed to return patient 
identifiers to the outputs. Clinicians can then access these outputs when making decisions 
about the relevant nAMD patient’s treatment to integrate the AI outputs into the care 
pathway. 

 
Figure 41. Diagram provided by Heidelberg Engineering™ to demonstrate data flows through Appway™, an example cloud-
based platform to interface between imaging data archived in a Picture Archive and Communications System (PACS) and 
the AI tool. 

7.6.2.2.2 Mapping of the health-care task 
The task which the AI tool supports is determining the time at which patients with a known 
diagnosis of nAMD should receive their next anti-VEGF IVI. In the proposed AI-enabled 
pathway there are two appointment types; annual F2F review appointments and injection 
only appointments (see appendix). Due to the frequency of IVT treatment (Table 18), 
patients could expect to have 5 injection only appointments and 1 F2F review appointment 
over a year. 

The annual review appointment would be very similar to the current pathway, refracted VA 
by an optometrist would be a routine part of the visit. There would also be more time 
afforded to the F2F consultation to ensure that patients have time to raise any questions or 
concerns and that clinicians have time to ensure understanding about diagnosis, 
management and prognosis. Another addition throughout treatment is an established 
channel for patients to raise concerns from home through administrative staff, to be 
forwarded to clinicians for asynchronous reply as needed. 

In the injection only appointments patients will receive an OCT and an injection and then go 
home expecting to receive a letter commenting on the stability or progression of their 
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disease and a time for their next appointment. Separately from the patient’s journey, the 
photographer will apply the AI tool to the OCT imaging and ensure the AI outputs are 
recorded within the PACS and EMR. In virtual clinics, clinicians will then review the EMR and 
PACS of nAMD patients who have attended to screen the AI segmentations and IRF/SRF 
quantifications for plausibility. They will then interpret the AI-enabled binary assessment (or 
their own independent assessment where AI errors are suspected) of disease activity into a 
recommendation for when the next IVT should be given. This will be forwarded to 
administrative staff who will book this as a F2F or injection only appointment. The nature of 
the appointment will depend on the time since their last F2F review, and a letter reflecting 
this will be sent to the patient. 

7.6.2.2.3 Risk mapping 
Risks are attributable to each element of the healthcare task and AI system above. To assign 
a relative priority to these risks to pursue mitigation a tripartite scoring system was applied 
(Table 36). Four of the risks with the highest priority score (>6) were pre-existent 
components of the nAMD treatment pathway and three related to the AI system (see 
appendix). The highest risk priority score to be attributed was ten, which was only 
attributed to the risk associated with poor quality imaging. This was assigned a severity 
score of 3, was demonstrably common from chapter 4 (assigned a 4 for occurrence) and 
requires thorough examination to detect on a single B-scan (assigned a 3 for detection). 

Table 36. Risk priority scoring system 

Score component Numerical 
range 

Practical definition 

Severity 

(severity of failure effects) 

1 

2 

3 

4 

No harm or anxiety/inconvenience 

>1 clinically unnecessary injections/year 

Vision loss with sequential occurrence 

Vision loss with one-off recurrence 

Occurrence 

(likelihood of occurrence) 

1 

2 

3 

4 

< 0.1% patient years 

0.1% - 1% patient years 

1% – 10% patient years 

> 10% of patient years 

Detection 

(effectiveness of error 
detection mechanisms) 

1 

2 

3 

4 

1 or more dependable detection mechanism 

50% of errors expected to be detected 

10 – 50% of errors expected to be detected 

<10% of errors expected to be detected 
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7.6.3 Artefact collection 
Proxies for many of the necessary artefacts for an algorithmic audit are available (Table 37). 
For audits of live AI-enabled care pathways, documents which more directly represent the 
desired artefacts will be necessary. 

Table 37. Artefact checklist for algorithmic audit. IUS = Intended Use Statement, SaMD = Software as a Medical Device, 
FMEA = Failure Modes and Effects Analysis, PACS = Picture Archiving and Communication System 

Artefact Present availability Desired availability 

IUS Proposed IUS based in 
chapters 4 and 5 

IUS against which SaMD regulatory 
approval was given 

Intended impact 
statement 

Value proposition derived 
from chapter 3 

Local impact statement collectively 
established and revised by clinical, 
operational, technical and patient 
community leads 

FMEA clinical 
pathway 
mapping 

Swimlane diagram of proposed 
workflow derived from 
chapter 4 

Swimlane diagram of workflow 
observed in real-world AI-enabled 
pathway  

FMEA risk 
priority number 
document 

Assigned by auditors on mix of 
empirical and anecdotal 
evidence 

Local clinical, operational, technical 
and community leads to assign 
scoring framework and observed 
empirical basis for each score 

Datasets Training and validation 
datasets for OCTane are not 
available 

Rule-based decision tree is 
clinically based and validation 
dataset is available 

Training and validation datasets for 
OCTane 

Multi-centre validation dataset for 
rule-based decision tree 

Data description Descriptives for training and 
validation datasets for OCTane 
are published [15] 

Descriptive for the rule-based 
decision tree validation is 
available 

Descriptives for training and 
validation datasets for OCTane 

Descriptives of a multi-centre 
validation dataset for rule-based 
decision tree 

Data and 
associated 
SaMD outputs 
for direct 
assessment 

Retrospective, local, randomly 
sampled dataset available with 
all outputs available 

Prospective, contemporary local 
dataset with all outputs available and 
oversampling of ‘edge cases’ 
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Data flow 
diagram 

Low detail data flow figure 
from potential PACS vendor 

Detailed and granular dataflow 
diagram reflecting the reality of local 
digital infrastructure 

AI model code Not available for OCTane 

Rules for decision tree and 
alternatives are fully available 

Availability for SaMD is unlikely as it 
will be commercially sensitive 
assuming that the vendor is distinct 
from the provider 

Rules for decision tree and 
alternatives 

Model summary OCTane architecture available 
in a research publication [15] 

Rules for decision tree and 
alternatives are fully available 

Structured documentation of key 
model components [16] 

Previous 
evaluation 
materials, 
performance 
testing and user 
experience 

Chapter 3 and 5 represent 
qualitative and quantitative 
evaluations of a potential 
intervention 

Evaluations conducted during 
model development and 
internal validation have also 
been published 

Reports from prior audits conducted 
at the local institution and other 
healthcare providers (redacted where 
necessary) to include survey, focus 
group or interview feedback from 
users 

7.6.4 Testing 
7.6.4.1 Exploratory error analysis 
Following error analysis in chapter 5, four new rule-sets were iteratively explored, R8 – R12, 
using absolute thresholds for IRF and SRF as opposed to proportional threshold. These 
thresholds were increased stepwise in 1,000,000 µm3 increments until an increase in the 
number of FNs was observed. The number of FNs (N=262) increased from 5 to 7 when the 
IRF threshold was lifted to 2,000,000µm3 and from 5 to 6 when the SRF threshold was lifted 
to 3,000,000µm3. With each elevation the number of FPs decreased and so rule set 10 (IRF 
threshold of 1,000,000µm3 and SRF threshold of 2,000,000µm3) appeared to offer the best 
performance (Table 38). 

Table 38. Comparison of diagnostic accuracy statics between consultant-led care (CLC) and rule sets (R) derived from the 
pilot dataset, initial exploration of the full dataset and subsequent exploration informed by error analysis. NPV = Negative 
Predictive Value, PPV = Positive Predictive Value, CI = Confidence Interval 

 NPV (95% CI) PPV (95% CI) Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

CLC 80.8% (71.3-
90.4) 

42.2% (30.3-
54.2) 

53.5% (41.4-
65.6) 

72.8% (62.0-
83.6) 
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R2 85.5% (77.0-
94.0) 

44.5% (32.5-
56.6) 

69.0% (57.8-
80.2) 

68.1% (56.8-
79.4) 

R6 95.3% (90.1-
100.4) 

42.3% (30.3-
54.3) 

93.0% (86.8-
99.2) 

52.9% (40.8-
65.0) 

R10 96.5% (92.1-
101.0) 

55.5% (43.4-
67.5) 

93.0% (86.8-
99.2) 

72.3% (61.4-
83.1) 

In applying R10 to the dataset of 262 cases there were 5 FNs which were the same cases 
that R6 assessed as FN discussed in detail in chapter 5. R10 also made 53 FPs in assessing 
the 262 cases, which compares favourably to the 90 FPs made by R6. Only 50 FPs were 
common cases between the two rule sets, R10 made 3 FPs for which R6 produced true 
negatives and R6 made 40 FPs for which R10 produced true negatives. Examining each of 
the 53 FPs made by R10 they appeared to fall into 3 causative groups; major segmentation 
errors, minor segmentation errors and clinically ambiguous cases (Table 39). Major 
segmentation errors were immediately apparent on glancing through the cartoon 
segmentations (Figure 32). On the majority of these cases (22/24, 91.7%) it could also have 
been apparent to the photographer that the quality of the image was suboptimal. Minor 
errors would not be apparent on such brief reviews of cartoon segmentations, but a 
proportion may be detectable by photographers reviewing the quality of images taken for AI 
analysis (8/9, 88.9%). CLC delivered true negatives (19/24, 79.2%) with a much higher 
frequency in the cases receiving R10 FPs due to the distinct mechanisms of failure between 
CLC and R10 (Table 39). This would suggest that any adaption to the intervention which 
signalled to clinicians that they should make independent decisions in cases of poor image 
quality or major segmentation error could improve the PPV. 

Table 39. Categories and frequencies of error modes in false positives from rule-set 10. CLC = consultant-led-care 

False positive error 
mode (n=53) 

n (%) n CLC true negative 
(row %) 

low image quality 
(cropping, 
luminence or 
noise) n (row %) 

Major segmentation 
error 

24 (45.3%) 19 (79.2%) 22 (91.7%) 

Minor segmentation 
error 

9 (17.0%) 8 (88.9%) 8 (88.9%) 

Clinically ambiguous 20 (37.7%) 8 (40.0%) 3 (15.0%) 

It was notable that there were two examples of clearly myopic fundi among the 53 FPs. It is 
hard to assess if this is what would be expected from errors being made at random between 
patients with myopic and non-myopic fundi, but may warrant further investigation into 
performance within a myopic subgroup. Similarly, 7 of the 24 major segmentation error FP 
cases (29.2%) with major segmentation errors involved retinae with large domed pigment 
epithelial detachments, whilst just 2 of the 20 clinically ambiguous FP cases (10%) had this 
feature. Also relevant for further analysis, the OCTane tool was designed to analyse volume 
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scans made of 50 b-scans and consequently performs a pre-processing step on the 25 b-scan 
NuTH scans to double each b-scan. For the b-scans where major segmentation errors were 
made, there is a large amount of variation between the two attempts, whereas they are 
very similar in examples of good quality segmentation.  

7.6.4.2 Subgroup testing 
Subgroup analyses in all known demographic and clinical characteristic groups were 
performed to check for unequal distribution of FPs and FNs by R10 (see appendix). 
Alongside descriptive statistics, for categorical variables Chi-squared tests were applied to 
check for significantly different error distributions, whilst for continuous variables, 
independent two-sided t-tests were used. Whilst this represented significant multiple 
testing (32 statistical tests) there was no suggestion of unequal performance from R10 
across the groups represented in the test dataset. Of particular note, prior discussion with 
clinicians and patients identified concerns of different error profiles among patients with 
macular haemorrhage. Of the 6 clinic visits where CLC included the documentation of a new 
or evolving macular haemorrhage, R10 correctly identified disease activity or stability in all 
cases. 

7.6.4.3 Adversarial testing 

Adversarial testing was outside of the scope of the present evaluation but would be 
recommended. Drawing on the exploratory analysis and clinical insights it would be useful 
to examine performance on a dataset enriched for patients with ocular media opacity (e.g. 
cataract or posterior capsule opacification), myopic fundi and neovascular disease (e.g. 
myopic macular degeneration) or patients with large domed pigment epithelial 
detachments as these features seem to promote major segmentation and disease activity 
assessment errors. Poor quality OCT imaging with low luminance or poor stability between 
B-scans would also be of interest, but harder to search for retrospectively. 

7.6.3 Reflection 
The retrospective evaluation of the initially proposed AI-enabled treatment monitoring 
device (with R6) demonstrated a NPV and PPV non-inferior to consultant-led care and 
perhaps superior when fully automated. This MAA has qualitatively highlighted that wider 
risks in an AI-enabled nAMD care pathway are largely comparable to those in the current 
pathway, but there are risk foci across the pathway which may be mitigated through 
developer and clinician actions. 

7.6.3.1 Developer actions 
In the final interface of the AIaMD containing this technology it would be valuable if a 
scrollable presentation of the cartoon segmentation was presented to clinicians. This could 
help them rapidly assess if there were major segmentation errors and whether or not the 
outputs were trustworthy. From the apparent lower precision of segmentation outputs on 
B-scans that cause errors, there may be a function by which the AIaMD could flag 
segmentations which clinicians ought to be suspicious of. This could be by performing 
multiple segmentations on each b-scan and seeing if the volumes of IRF and SRF returned 
demonstrate low or high precision. This may introduce disadvantages in the compute and 
time required for the AIaMD to return results. It may also risk that clinicians will cease to 
make their own assessment and just look at the automated assessment of segmentation 
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precision. The impact of such an additional feature would require evaluation before it was 
incorporated into the AIaMD. 

7.6.3.2 Clinician actions 
If adversarial testing identifies lower performance in some patient groups, such as 
individuals with high myopia or cataract, then clinicians should be mindful to establish 
patients’ status with respect to these characteristics and exclude them from AIaMD use 
appropriately. There are three other skills that would be important for users to acquire. For 
photographers, a practical sense of what level and type of OCT imaging imperfections 
introduce a significant risk of segmentation error and warrant repeat imaging or exclusion 
from AIaMD analysis. For clinicians consulting with patients, it is important they understand 
the mechanism and performance of the AIaMD so they can effectively explain the 
intervention to patients, answer questions and facilitate informed consent. For clinicians 
making treatment decisions, it is also important that training includes why and how 
segmentations are inspected to decide when the AIaMD assessment of disease activity 
should be actioned or ignored. In our test set, CLC provided true negatives in 91.7% of the 
cases of major segmentation error precipitating 45.3% of R10 FPs. This shows a valuable 
opportunity for clinician monitoring of segmentation quality to improve the overall 
performance of the treatment pathway beyond the performance of clinicians or AI 
independently. 

7.7 Discussion 
Consideration of a full potential AI-enabled healthcare pathway has been facilitated by the 
MAA, spanning the explanation given to patients at their diagnosis of nAMD to the 
appointment letters they receive to maintain follow-up (see appendix). The value of this is 
well demonstrated as the clinical task which was attributed the highest risk score (OCT 
capture) does not itself involve the AIaMD at all and could easily fall outside isolated 
analysis of the intervention. Some of the other highest risk scores across the pathway are 
also attributed by interpersonal or pathophysiological mechanisms quite separate from the 
AI. 

Beyond this more holistic observation of the AI-enabled healthcare pathway, the MAA has 
also led to actionable recommendations which can help to mitigate against risks and 
improve clinical outcomes. This includes technical actions, i.e., the thresholds applied to 
continuous outputs of IRF and SRF, but also operational and clinical actions. These include 
the importance of training photographers to understand the kind of OCT imperfections 
which can increase the risk of AI errors and the role clinicians can play in checking the 
quality of AIaMD outputs and explaining the process to patients. 

7.7.1 Comparison with prior work 
The MAA was designed to support healthcare providers in systematically monitoring the 
safety of AIaMD live within a healthcare pathway, but the value demonstrated in this 
chapter suggests it could be useful in developing AIaMD also.[12] This has been 
demonstrated in a prior published application of a MAA for an AI tool in a pre-
implementation stage which diagnoses fractured necks of femurs on plain radiographs.[13] 
Similarly in that report, certain groups of patients (with Paget’s disease) were identified as 
being at risk of systematically poorer treatment from an AI-enabled healthcare pathway. 
These insights seem important to gather prior to implementation to avoid realising these 
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potential harms. This value of pre-implementation place-based evaluation of AIaMD is also 
emphasised by a growing literature around ‘silent trials’.[17, 18] This approach is 
increasingly recommended and aims to mitigate against the misaligned incentives of AIaMD 
vendors and adopters and the instability of AIaMD performance in new sociotechnical 
contexts.[17] The risk of being misled by vendors or unanticipated drops in performance 
vary between AIaMD and implementation contexts, but there is clear advantage to a 
systematic safeguard prior to implementation. 

While place-based evaluations of AIaMD before and after implementation have been 
highlighted as good practice in clinical AI use, the nature and frequency of monitoring 
episodes remains challenging to establish. There are published perspectives from 
practitioners that these approaches to monitoring should be determined on a case-by-case 
basis from by a multi-disciplinary team containing operational, technical and clinical 
expertise.[18] In some academic medical centres this has been facilitated by bespoke 
organisational structure and committees which bring these teams together and channel any 
clinical AI endeavours toward their attention. Interestingly, despite their lack of 
communication and collaboration, very similar organisational structures seem to have 
developed organically with similar titles; AI centre of excellence, Clinical Intelligence 
Committee etc. One example from the UK is University Hospitals Birmingham NHS 
Foundation Trust, with a ‘Digital Transformation Team’ with an organisation-wide remit. In 
the absence of such organisational structures, engaging multiple stakeholders at an 
organisation remains an important step in defining what should be monitored. 

The potential for MAA outputs to inform training needs for practitioners also seems highly 
noteworthy. This is because of the competing demands upon healthcare professionals’ time, 
but also because of the high level of abstraction which clinical AI training guidance and 
literature has acted so far.[19] A recent report from Health Education England and the AI 
Lab acknowledged that beyond broad foundations in digital health and some AIaMD-specific 
concerns, clinicians main training needs would be product specific.[20] In the present case 
the MAA seems to provide a clear rationale for AIaMD learning outcomes for clinicians in 
different roles in the healthcare pathway. This seems likely to support the success of such 
training efforts as the need and value can be made clear to the clinicians receiving the 
training and less impactful learning outcomes could be avoided. 

Another approach to more rigorously surface mitigations to address the risks identified by 
the MAA may be to conduct more in-depth explorations of clinical steps assigned a high 
relative risk score (Table 36). The Bow-Tie analysis, used commonly in aviation and other 
industries could facilitate this. Here, a particular risk is singled out, e.g. clinicians acting on a 
FN, and a deeper multi-disciplinary exploration of all the potential contributing mechanisms 
and means of mitigation is performed. The consequences of the risks and means of 
diminishing each of those are also explored.[21] A MAA enhanced with several Bow-Tie 
analyses of important risk may also offer greater insight into how workforce training could 
improve outcomes in an AI-enabled healthcare pathway. 

7.7.2 Limitations 
A major limitation is the indirect or absent engagement from stakeholders in the various 
stages of the MAA. The process was informed by the data collected through the qualitative 
research interviews described in chapter 3, but the topic guides and their use did not target 
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the MAA. At the present developmental stage of this AIaMD, this seems proportionate, but 
if the process it to be repeated nearer the time of real-world implementation place-based 
stakeholders should be identified and engaged to improve the rigor of risk identification and 
characterisation. 

The numerous rule sets trialled with segmentation outputs, risk giving an inflated sense of 
the potential diagnostic accuracy of the tool by over-fitting to the single dataset used. The 
apparent advantage of R10 over the other 11 rule sets tested through this chapter and 
chapter 5 requires validation in other distinct datasets. Given the varying practices and 
perspectives of ophthalmologists across the country however, it is likely to be advantageous 
for implementation if an AIaMD does not dictate a given rule set with which clinicians must 
interpret trends in IRF or SRF. Conversely, adoption by clinicians may be enhanced if an 
AIaMD permits service leads to establish rule sets which make sense to them within their 
local instance of the AIaMD. It may also be that such rule sets are better held within 
departmental protocols (as they are in conventional approaches to care) rather than coded 
into the AIaMD, where they will incur additional regulatory demands on manufacturers. 

As highlighted in the results section, adversarial testing was not completed but appears to 
be important to inform end-user training or contraindications to AIaMD use. Examination of 
major segmentation errors seems to suggest that the tool may perform less well on patients 
with myopic fundi, opacification of ocular media or large central pigment epithelial 
detachments. This would best be performed on real patient imaging selected for the 
presence of these features, but could also be facilitated at larger scale by synthetic images 
produced by a diffusion model or generative adversarial network trained to output scans 
with these characteristics.[22] 

The test dataset was randomly selected from clinical visits of patients with nAMD made in a 
Newcastle clinic, which also serves Northumberland. As a result, there is almost no ethnic 
diversity within the dataset as census data in Newcastle suggest that 95.3% of individuals 
over the age of 65 are white, whilst 99.3% are white in Northumberland.[23] Given that the 
prevalence of nAMD among Asian and African ethnic groups is reported to be 30% and 24% 
of that among white ethnic groups respectively, it is not surprising that just 1 of the 262 
clinic visits came from an individual with a recorded ethnicity other than white.[24] Whilst 
there is no mechanistic reason to expect differential performance of the AIaMD across 
ethnic groups, the subgroup testing in the present MAA was extremely limited in this regard 
which was a concern of the lay Study Reference Group. 

The risk scores attributed with the failure mode and effect analysis of MAA are intended to 
be approximate and relative measures, but nevertheless there are opportunities to improve 
beyond the present chapter. Firstly, discreet choice experiments with patients and other 
stakeholders could help to inform how different risks should be weighted comparatively. 
Secondly, empirical observations of each risk’s frequency and detection could be made. This 
would help to make the relative risk scores more rigorous to prioritise monitoring resources, 
but also support an empirical derivation of the ideal frequency at which each risk should be 
monitored for.[25] Whilst it is likely that these ideal monitoring frequencies would be 
prohibitively costly, actionable monitoring processes could be established with a clear sense 
of what compromises were being made between cost and safety. 
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7.7.3 Future directions 
To build a firmer empirical basis for contraindications to clinical use or training materials for 
end-users it would be beneficial to complete the adversarial testing step which has been 
omitted from this iteration of the MAA. This would require the curation of a dataset 
enriched for patients with large central pigment epithelial detachments, myopic fundi and 
ocular media opacification and an evaluation of the potential AIaMD’s performance. To 
ensure the insights that this and the rest of the MAA has granted are actionable, amenable 
opportunities for risk mitigation should be captured within a set of learning outcomes and 
training materials for end-users. This need-based approaching to training material design 
aligns well with the tripartite AI education framework laid out recently by NHS Health 
Education England and the AI lab; educational groundwork, foundational and advanced AI 
education and Product-specific training.[20] 

Evaluation of the effectiveness of the proposed mitigation for major segmentation error 
through photographer and clinician training is also required. This is because the suggestion 
that 91.7% of major segmentation errors could be identified by suitably trained clinicians 
assumes that all such errors would be identified and that there are not TP and TN decisions 
from R10 that did not also involve inconsequential segmentation errors. It would also be 
valuable to understand the time impact for clinicians in requiring them to undertake such a 
quality assurance step. 

The next step in evaluating the proposed AIaMD is to test it prospectively. Such evaluations 
are costly and to ensure such investments are efficient it would first be best to establish if 
any AIaMD with the necessary functionality have already been granted market access by a 
relevant regulator. A systematic scoping review of regulatory databases will be required to 
establish this robustly as there are no reliable or accessible registries of such candidate 
AIaMD.[26] Prior to the conduct of such prospective evaluation, it will also be valuable to 
conduct a deeper analysis of the risks and potential mitigations of risks that have been 
identified as more serious; i.e. suboptimal quality OCT acquisition and FPs from the AIaMD. 
This could be delivered by a Bow-Tie analysis, or similar method, which would help to 
inform risk mitigation strategies and secondary outcome measures which should be 
collected in a prospective evaluation.[21] Such outcome measures would also facilitate 
empirically derived frequencies at which different safety monitoring episodes should occur. 
This process would rely on principles from control engineering (Shannon-Nyquist theory), 
dictating that any impactful monitoring system must sample a process at least twice as 
frequently as the rate of occurrence of the error of interest and pragmatically ten times as 
frequently.[25] Where compromise is necessitated between safety and cost it would also 
allow decision makers to make those compromises in an informed way, minimising the 
number of assumptions that are required and permitting trust-promoting transparency with 
stakeholders. 

7.8 Conclusions 
Across the proposed AI-enabled clinical pathway the most important risks appear to be the 
capture of suboptimal quality OCT imaging and the AIaMD falsely advising of increasing 
nAMD disease activity. This is possible to mitigate against at the technology, product and 
intervention level with retraining of the AI model on a training set enriched for poor quality 
OCTs and targeted clinical phenotypes, adjustment to the rule-based logic applied to AI-
enabled OCT segmentation and training for end-users. With these mitigations it seems likely 
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that the overall performance of the AI-enabled intervention will be superior to either 
clinicians or the AIaMD acting in isolation. This superiority is in regard to the risk of both 
under-treatment and over-treatment, meaning that both the quality and cost of healthcare 
provision could be expected to improve. Prospective evaluation of this AI-enabled 
healthcare pathway will be required to test this assumption, but these data appear to justify 
the investment required. 

7.9 Appendix 
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7.9.1 Failure Modes and Effects Analysis – Risk Mapping 
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7.9.2 Clinic swim lane diagrams 
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7.9.3 Screening for case characteristics associated with R10 FNs 
Table 40. Screening for unequal performance of OCTane outputs interpreted by rule set 10 (R10) between clinic visits with 
different categorical characteristics using descriptives of the absolute number of false negatives (FN) and the overall false 
negative rates (FNR) in between different groups. Chi-squared tests are used to derive p values.T2DM = Type 2 Diabetes 
Mellitus, TEX = Treat-and-Extend. 

  not FN FN FNR p value 

Number of eyes 
treated 

Unilateral treatment 182 3 1.6% 

0.6 Ongoing bilateral treatment 75 2 2.6% 

Sex Female 157 4 2.5% 

0.39 Male 100 1 1.0% 

Ethnicity British 238 5 2.1% 

0.82 

Pakistani 1 0 0.0% 

Not stated 18 0 0.0% 

Laterality Left 118 4 3.3% 

0.13 Right 139 1 0.7% 

Drug Aflibercept 234 4 1.7% 

0.4 Ranibizumab 23 1 4.2% 

Diabetic status Not diabetic 150 4 2.6% 

0.65 

T2DM 44 1 2.2% 

Diabetic - unknown type 4 0 0.0% 

Status unknown 59 0 0.0% 

Protocol Loading 53 0 0.0% 

0.26 TEX 204 5 2.4% 

Macular 
haemorrhage 

no 251 5 2.0% 
0.73 

yes 6 0 0.0% 
 

Table 41. Screening for unequal performance of OCTane outputs interpreted by rule set 10 (R10) across clinic visits with 
different continuous characteristics using descriptives of the mean and 95% confidence intervals (CI) of visits which were 
and were not assigned a false negative (FN) assessment of disease activity by CLC. Independent t- tests are used to derive p 
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values comparing the difference of the means between visits which were and were not assigned a FN assessment. IDAOPI = 
Income Deprivation Affecting Older People Index, VA = Visual Acuity, nAMD = neovascular Age-relate Macular Degeneration 

N=262 (unless 
otherwise 
stated 

IDAO
PI 

Years of age 

Baseline VA (letters) 

Prior treatm
ent interval 

Prior injections 

Visit VA (letters) 

Contralateral VA (letters) 

m
ost recent nAM

D 
activity (w

eeks) N
 = 176 

not 
R10 
FN 

n=257 
 

Mean 5.2 80.4 60.2 8.7 12.7 63.0 56.8 26.0 

upper 
CI 

5.6 81.3 61.9 9.1 13.7 64.9 60.3 29.4 

lower 
CI 

4.9 79.4 58.6 8.4 11.6 61.2 53.4 22.7 

R10 
FN 
n=5 

 

Mean 4.8 81.0 51.4 10.0 15.6 61.2 63.4 40.6 

upper 
CI 

6.4 85.1 62.7 17.5 22.3 74.5 87.1 73.5 

lower 
CI 

3.2 76.9 40.1 2.5 8.9 47.9 39.7 7.7 

p value 0.62 0.78 0.20 0.76 0.44 0.80 0.62 0.44 

 

7.9.4 Screening for case characteristics associated with R10 FPs 
Table 42. Screening for unequal performance of OCTane outputs interpreted by rule set 10 (R10) between clinic visits with 
different categorical characteristics using descriptives of the absolute number of false positives (FP) and the overall false 
negative rates (FPR) in between different groups. Chi-squared tests are used to derive p values.T2DM = Type 2 Diabetes 
Mellitus, TEX = Treat-and-Extend. 

  not FP FP FPR p value 

Number of 
eyes treated 

Unilateral treatment 150 35 18.9% 

0.41 Ongoing bilateral treatment 59 18 23.4% 

Sex Female 128 33 20.5% 

0.89 Male 81 20 19.8% 

Ethnicity British 193 50 20.6% 

0.81 Pakistani 1 0 0.0% 
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Not stated 15 3 16.7% 

Laterality Left 95 27 22.1% 

0.47 Right 114 26 18.6% 

Drug Aflibercept 190 48 20.2% 

0.94 Ranibizumab 19 5 20.8% 

Diabetic status Not diabetic 124 30 19.5% 

0.65 

T2DM 33 12 26.7% 

Diabetic - unknown type 3 1 25.0% 

Status unknown 49 10 16.9% 

Protocol Loading 40 13 24.5% 

0.38 TEX 169 40 19.1% 

Macular 
haemorrhage 

no 203 53 20.7% 
0.21 

yes 6 0 0.0% 
 

Table 43. Screening for unequal performance of OCTane outputs interpreted by rule set 10 (R10) across clinic visits with 
different continuous characteristics using descriptives of the mean and 95% confidence intervals (CI) of visits which were 
and were not assigned a false positive (FP) assessment of disease activity by CLC. Independent t- tests are used to derive p 
values comparing the difference of the means between visits which were and were not assigned a FP assessment. IDAOPI = 
Income Deprivation Affecting Older People Index, VA = Visual Acuity, nAMD = neovascular Age-relate Macular Degeneration 

N=262 (unless 
otherwise 
stated 

IDAO
PI 

Years of age 

Baseline VA (letters) 

Prior treatm
ent interval 

Prior injections 

Visit VA (letters) 

Contralateral VA (letters) 

m
ost recent nAM

D 
activity (w

eeks) N
 = 176 

not 
R10 

n=209 
FP 

 

Mean 5.2 80.7 60.1 8.8 13.2 63.5 56.8 25.4 

upper 
CI 

5.6 81.7 61.9 9.1 14.4 65.5 60.6 29.0 

lower 
CI 

4.9 79.7 58.3 8.4 12.0 61.5 52.9 21.7 

Mean 5.2 79.1 59.9 8.8 10.9 61.0 57.6 32.1 
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R10 
FP 

n=53 
 

upper 
CI 

6.0 81.4 63.8 9.6 12.8 65.4 64.7 40.7 

lower 
CI 

4.4 76.9 55.9 8.1 9.0 56.6 50.5 23.6 

p value 0.88 0.22 0.92 0.86 0.05 0.31 0.84 0.16 
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Chapter 8: Thesis discussion 
This chapter begins by recalling the thesis’ stated aim and summarising the findings of 
chapters 3 – 7 in its pursuit. These findings are then interpreted together to answer the 
central questions of what factors sustain the AI chasm generally, and in the specific case of 
AI-enabled macula services. The chapter concludes with actionable solutions for the 
implementation of AI-enabled macula services, recommendations for researchers, 
recommendations for practitioners and concluding remarks for the thesis.  
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8.1 Summary of findings 
This thesis aimed to explore the factors which sustain the AI chasm in healthcare generally 
and develop actionable solutions for the implementation of AI-enabled macula services in 
the NHS. This was achieved through a programme of research which established suitable 
methods for qualitative research of clinical AI generally and then applied them within the 
target context to evaluate a potential AI technology, the AIaMD in which it might be 
embedded, the intervention in which that AIaMD might be embedded, and finally the 
healthcare pathway in which that intervention might be embedded (Figure 42). Relevant 
publications and presentations made at the time of writing are referenced in the passage 
below. 

 
Figure 42. Schematic of the relationships between a deep learning (DL) technology such as OCTane, the artificial intelligence 
(AI) medical device in which it sits, the AI-enabled intervention in which that sits and the AI-enabled healthcare pathway in 
which the intervention sits. 

The qualitative evidence synthesis of chapter 3 helped to characterise 5 highly abstracted 
stakeholder groups in clinical AI implementation.[1, 2] Each of these groups showed the 
potential to influence implementation outcomes but tended to have distinct means and 
motives to do so. It was also noteworthy that these stakeholders, and the factors that they 
highlighted, exert their influence on implementation outcomes in an interdependent 
manner. This means that the successful implementation of any given AI-enabled 
intervention can be expected to depend on many stakeholders and interrelated factors.[3] 
Unfortunately for practitioners seeking to implement clinical AI, insights into the 
perspectives of all these stakeholder groups, besides clinicians, are scarce in the 
literature.[4, 5] Another challenge for clinical AI implementation researchers, in making 
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sense of the data they elicit, is the variation of TMFs applied across the literature, often 
selected without an explicit rationale. Chapter 3 helped to address these limitations by 
consolidating factors that implementation practitioners and researchers can consider 
exploiting in their own work and curating a list of TMFs previously used in clinical AI 
research to choose from.[6] 

These foundations, intended to be relevant across clinical AI implementation, were used to 
design the method applied in chapter 4.[7] They informed the stakeholder groups recruited, 
the topic guides used to collect data and the TMF taken to data analysis. A key finding was 
that stakeholders in nAMD generally welcome the prospect of AI technology, with a broad 
potential value proposition envisaged including service efficiency, patient and clinician 
experience, care consistency, clinical outcomes, care transparency, equity of access and 
environmental impact.[5] However, consultant ophthalmologist perspectives are likely to be 
particularly influential over implementation outcomes and an AI-enabled macula service 
would not be accepted if it compromised patients’ visual outcomes. 

Chapter 5 took this minimum requirement from stakeholders as the non-inferiority 
endpoint for an observational study of the NPV of AI-led assessments of nAMD activity or 
stability compared to real-world clinical assessments.[7] As the AI technology evaluated 
does not provide this necessary simple binary output, different AIaMDs were simulated by 
applying clinically inspired rule-sets to the OCT segmentation outputs that the technology 
generates. The sample size for the non-inferiority test was calculated from a pilot data set 
and a simple rule that any increase in IRF between sequential clinic visits signalled nAMD 
activity was applied to AI segmentations of OCTs. This simple initial AIaMD design to blend 
deep learning and rule-based AI components clearly satisfied the clinical and statistical 
thresholds for non-inferiority with a rNPV of 1.06 and a 95% CI of 0.99 – 1.13 (rPPV 1.05, 
95% CI 0.84 – 1.32). Exploration of a few additional clinically intuitive rule sets helped to 
improve on this performance with a more complex definition of nAMD activity being 
signalled by a 10% or higher increase in IRF or SRF producing a statistically superior rNPV of 
1.18 and a 95% CI of 1.09 – 1.27 (rPPV 1.00, 95% CI 0.82 – 1.23).[8] 

This established that existent AI technology could be situated within an AIaMD and be 
expected to improve clinical decisions rather than maintain or worsen them. The focus of 
the thesis then shifted to the intervention in which the AIaMD should be embedded. 
Chapter 6 aimed to align this AI-enabled intervention with stakeholder values and the 
factors likely to influence implementation. This practical goal was supported by the data 
elicited in chapter 4 and a choice of TMF for their analysis that focused on digital health 
innovation and accommodated factors at the individual, organisational and policy levels. 
This TMF was selected from the systematically curated list of TMFs in chapter 3. Despite 
future opportunities to expand value with greater autonomy of the AIaMD and 
decentralisation of nAMD care pathways an initial intervention was proposed to balance the 
risk of abandonment against the value proposition. This entailed an AIaMD acting on OCT 
data hosted on a cloud platform, interoperable with NHS provider’s PACS and EMR. A 
decision support application of the AIaMD on treatment monitoring episodes interspersed 
within annual F2F consultations for patients with a known nAMD diagnosis was 
recommended. Task-shifting of nAMD monitoring consultations away from consultant 
ophthalmologists, with greater involvement of more junior nursing staff in injection delivery 
and photographers in the operational facets of AIaMD application was also 
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recommended.[5] Given that the balance of different stakeholder and factor influence over 
implementation outcomes will vary between settings and over time, another key 
characteristic of this analysis was its transparency. This transparency ought to enable future 
re-iterations of the proposed intervention to tailor it to specific implementation efforts.[9] 

With a clearer sense of the AI-enabled intervention in mind it became possible to specify an 
IUS for a hypothetical SaMD that developers could aim to achieve regulatory approval for. It 
also became possible to project the care pathway in which the intervention would be 
delivered, to anticipate risks and their mitigation, using a MAA approach in chapter 7. The 
insights gained suggested that further revision of the rule-based component of the AIaMD 
could improve performance further. Taking increases in IRF over 1,000,000 µm3 or increases 
in SRF over 2,000,000 µm3 to signal nAMD activity and comparing to CLC decisions from 
chapter 5 estimated rNPV at 1.19 with a 95% CI of 1.11 – 1.28 (rPPV 1.31, 95% CI 1.06 – 
1.60). These statistics suggest a wider potential value proposition for AI-enabled macula 
services, with a statistically significant lower rate of wasteful over-treatment (described by 
rPPV) and statistically and clinically significant superiority for avoiding sight-threatening 
under-treatment (described by rNPV). Recommendations for further improvements on the 
outcomes of AI-enabled macula services were also made. For developers, attempting to 
improve the performance of the deep learning technology on myopic fundi or those with 
large pigment epithelial detachments would be beneficial. Means of integrating some form 
of output uncertainty indicator were also proposed. For developers, roles for clinicians 
acting as human-in-the-loop were proposed that maintained the efficiency and task-shifting 
value proposition of AI-enabled macula services whilst improving safety and effectiveness. 
Learning outcomes for photographers and clinicians were also proposed for user training. 

8.2 Interpretation of findings 
This thesis studies a clinical AI technology for which a rigorous external validation was 
published in a high impact academic journal (Nature Medicine) more than 5 years ago.[10] 
The factors that have supported the persistence of the “AI chasm” for this technology are 
clearly not purely technological.[10, 11] Instead, they mainly relate to the breadth of 
stakeholder groups involved in the implementation of clinical AI and the social factors that 
limit their mutual understanding and co-operation.[1] Contemporaneous examples of this 
are manifold: 

• policy makers restrict AI investment to specific clinical specialties [12] 
• regulators have not delivered transparency over the intended use and observed risks 

of SaMD [13, 14] 
• developers prioritise global markets besides the NHS for their greater return on 

investment [15] 
• managers prioritise scaling up familiar approaches to create capacity gains [16] 

This challenge is not unique in healthcare innovation, even within the more specific scope of 
digital health of CDS.[17, 18] It may however be more pronounced within clinical AI, by the 
widely perceived novelty and complexity of the technical, operational and clinical 
considerations it requires.[1, 19] These challenges must be accommodated within any plans 
to implement AI-enabled macula services. This thesis’ findings should inform and motivate, 
rather than discourage, efforts to overcome the challenges which sustain this instance of 
the “AI chasm”. 
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A systematic review of 4 global regulatory databases has already highlighted 2 approved 
SaMD (since 2022) that would appear to facilitate the decision support on which an NHS AI-
enabled macula service could be based.[20] This as-yet unpublished systematic review also 
highlighted that the only other regulated clinical use cases for AI-enabled ophthalmic 
imaging analysis were diabetic retinopathy screening, optic neuropathy screening and 
cardiovascular risk prediction. There is no precedent for the implementation of the 2 AIaMD 
relevant to this thesis within the NHS at the time of writing. However, several NHS trusts 
considering AI-enabled macula services are in pre-procurement local validation stages with 
one or both AIaMD. Some stakeholders will find it concerning that these implementation 
decisions are being entered into without a rigorous prospective evaluation or formal health 
technology assessment from NICE. However, this is becoming established as the norm as 
NICE has approved only a fraction of the AIaMD on market and hundreds of NHS trusts use 
AIaMD that NICE has explicitly said it cannot yet endorse.[21, 22] An expectancy of NICE 
approval for AIaMD has not been routinely held for physical medical devices adopted into 
practice. However, limited or misaligned understanding of AI technologies and what their 
closest established comparator is has led many to expect levels of evidence and assurance 
associated with the implementation of new drugs.[23] The observational, low-resource and 
pragmatic methods and findings of this thesis could form a template for setting-specific 
evidence generation to inform local decision makers in the absence of NICE approvals. Such 
place-based evaluations are central to guidelines on the practice of AI implementation, but 
also on the scientific requirement for the replicability of research findings.[24, 25] They 
could also help to identify and meet local stakeholders’ needs for evidence that closely 
relates to their experience of nAMD care and may still be able to contribute to NICE’s new 
Early Value Assessment approach for digital health innovations.[5, 26] 

In designing the AI-enabled intervention for nAMD treatment monitoring, an important 
question over the specific contribution that AI makes to the value proposition. This is 
because much of the type and scale of value proposed could be achieved through a highly 
centralised telemedical model of care for nAMD monitoring.[27, 28] The closest example to 
this potential centralised telemedical monitoring service is the long-established NHS 
diabetic retinopathy screening service. Notably, this service continues under sustained 
pressure to improve efficiency through AI-enablement, despite several failed attempts to 
reach the threshold of evidence demanded by the relevant decision makers.[29] Taken 
alongside the present thesis, this observation suggests a perception by senior leadership 
that AI-enabled models of care can offer greater value than telemedical models of care 
within the NHS, even when the evidence base is not yet adequate to inform 
implementation. Perhaps even more pertinent than the potential impotence of AI to 
meaningfully exceed the value proposition of telemedical nAMD treatment monitoring, is 
the question of why examples of telemedical models of nAMD monitoring have failed to 
spread. There are established telemedical models of care at some NHS trusts (e.g. University 
Hospitals Birmingham and York and Scarborough Teaching Hospitals NHS Foundation Trusts) 
whilst others (e.g. NuTH NHS Foundation Trust) continue with F2F consultations distinct 
from treatment administration (usually at the same hospital visit). This suggests that the 
value proposition of AI-enabled macula services may in practice be inadequate to motivate 
early adoption, or that its value proposition will need to prove more compelling than that of 
a telemedical alternative (perhaps through decision automation). For macula services yet to 
adopt either telemedical or AI-enabled models of care, the current national policy backdrop 
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set on driving clinical AI innovation may limit the need for AI cost-effectiveness to motivate 
instances of early adoption.[12] In the absence of interventional evidence of clinical and 
cost-effectiveness, sustainment of AI-enabled macula services beyond the current policy 
context, will be less certain. A significant mitigation for NHS services is that much of the 
digital infrastructure required for AI-enabled macula services is also needed for telemedical 
services. Even if investments in AI-enabled macula services prove to be misplaced then, they 
will also enable telemedical services as a contingency. 

8.3 Residual barriers to AI-enabled macula services 
8.3.1 Regulatory barriers 
At present there are no SaMD regulated for autonomous clinical decisions based on OCT 
analysis.[20] Class IIa, under which the CE marks were attributed to the two SaMD described 
above, accommodates SaMD to be used to ‘inform’ or ‘drive’ clinical management in 
‘serious’ healthcare conditions such as that posed by nAMD.[30] The precise AI-enabled 
workflows which can be conducted in line with these descriptions is open to interpretation, 
but are likely to include some form of viable AI-enabled macula service. In its current state 
however, the responsibility for interpreting this ambiguity will lie with clinical risk teams in 
adopting organisations for whom clinical AI most commonly represents unfamiliar territory. 
Unless the risk appetite and competencies of these teams can accommodate the ambiguity 
of the current available IUS, even low-autonomy AI-enabled macula services will fail to be 
adopted. Even where adoption proves successful, restrictions on the autonomy of the SaMD 
may also limit the value proposition that the hosting AI-enabled macula service can offer 
stakeholders. As such, it would be advantageous if regulatory approval could be sought for a 
class IIb use case to ‘treat or diagnose’ nAMD, either by the manufacturer of one of these 
existent SaMDs or an additional manufacturer.[30] Initiating evidence generation for this is 
particularly urgent given that 71% of SaMD regulatory submissions to European Notified 
Body (NB) took 13 months or longer from submission to certificate and market access in a 
recent survey.[31] 

 
Figure 43. Histogram showing time to certification from submission for quality management systems (QMS) or QMS and 
medical device products among European notified bodies (NB). Reproduced from a 2023 survey of 39 NBs.[31] 
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8.3.2 Operational barriers 
A further limit to the value proposition and hence implementation of AI-enabled macula 
services comes from the current dependency of NHS services on centralised injection 
facilities. The nature of nAMD treatment dictates that patients regularly receive 
injections.[32] If this must be on hospital sites then there is little incentive to re-distribute 
imaging and decision-making tasks to the community, preventing the fuller value 
proposition of decentralised nAMD care. This dependence on centralised injection 
administration could be partially mitigated by achieving the service capacity required by 
PRN treatment regimens. If PRN regimens become more prevalent across the NHS, a 
reduction in the proportion of AMD patients actively receiving injections might be 
expected.[33, 34] This could enable greater task-shifting to community optometry led 
monitoring of quiescent nAMD, in turn lowering the burden on hospital eye services.[35] A 
greater impact would be made if the infrastructure required for injections could be shifted 
to the community, either through purpose-built community satellite clinics for NHS trusts, 
hosting of nAMD treatment clinics in established primary care premises or upscaling of 
mobile injection room initiatives.[27] 

8.3.3 Evidence limitations 
The evidence generated within this thesis has clear limitations which further research can 
improve on. Seeking to replicate the observational non-inferiority studies with data sets 
from distinct NHS services is the first requirement. This will help to check the robustness of 
the finding of superior NPV and PPV from this work and the risks and mitigations proposed 
through the algorithmic audit.[25, 36] Similarly, qualitative data collection should also be 
extended across diverse NHS sites to test the validity of the assumptions that underly the 
proposed AI-enabled intervention design and seek to broaden the scope of its relevance. 
Qualitative findings were not just biased by their narrow geographical focus, but also their 
means of collection and analysis. As a trainee ophthalmologist and colleague of many 
participants, the lead researcher (JH) brought their own personal bias to study design, data 
collection and data analysis. The interviewer made no effort to actively disclose their clinical 
role to participants, but it was often asked about in conversation and all questions were 
answered honestly. To allow readers to critically appraise the work, this bias has been 
candidly reported and mitigation was sought through input from the study reference and 
advisory groups and reflective journalling after each of the interviews. One such example 
was the suggestion from the lead researcher and supervisors that recruitment was 
complete, which was then challenged by a member of the reference group, leading to the 
recruitment of a further charity sector representative. 

Resource preservation is the key value proposition for many stakeholders and so the 
absence of methods, e.g. AI-enabled workflow simulation, to measure resource impact is 
another important limitation. Along with other data, simulated workflow observations can 
facilitate an economic evaluation to compare AI-enabled macula services to 
contemporaneous models of nAMD care in the NHS. Assuming these investigations do not 
refute the value proposition of AI-enabled macula services, an interventional evaluation of 
one, but preferably several, AIaMD should be conducted. This evaluation should pivot from 
the diagnostic accuracy outcomes used in this thesis’ observational work to real-world 
outcome measures such as VA, injection frequency and adverse event reporting.[23, 37] To 
maximise its utility, such an evaluation should ideally collect additional data seeking to test 
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and validate the wider value proposition explored in this thesis; patient and clinician 
experience, service equity and environmental impact. 

8.4 Recommendations 
Research is the systematic process used to generate new knowledge or evidence if AI-
enabled macula services are to be accepted by decision makers at local, regional or national 
levels. Though this is often attributed to ‘researchers’, e.g. university academics and 
industry professionals, ‘practitioners’, e.g. NHS clinicians, managers and technologists, 
produce their own forms of evidence to inform a range of decisions though typically at a 
local scale. To maximise the productivity and synergy of both, it is important to consider the 
distinction between researchers and practitioners and their relative strengths in generating 
evidence. Besides their role in evidence generation, practitioners also play an important role 
of interpreting evidence in the context of their practice and executing innovation. 

8.4.1 Recommendations for researchers 
Research is constrained by the long timescales of applying for funding, rigorous processes in 
conducting the research and peer-review publication. It often aims to generate knowledge 
because of its intellectual or societal value, rather than short term commercial or practical 
value. This confers a distinct advantage in the scope of aims which it can attract investment 
to, allowing for the investigation of problems experienced by stakeholders that may 
otherwise be overlooked of solutions offering less immediate or guaranteed value back. The 
systematic methods and reporting standards expected of researchers can also lend the 
evidence they generate a high degree of credibility and so influence decision makers with 
large jurisdictions. The MHRA or NICE are examples of such decision makers who have the 
potential to define or even obligate the use of AIaMD across the NHS. 

Within the setting of the present thesis and current efforts by NHS adopters to implement 
AI-enabled macula services, it seems that motivating early adoption in the NHS is no longer 
a valuable target for new research. The time constraints described above suggest that 
evidence that researchers begin planning the generation of now will come to fruition in the 
midterm (e.g. 2027-2030). At this time it seems likely that testing the relative benefits of the 
AI-enabled macula services that early adopters have developed and their suitability for 
scaling and spread across the NHS will be of greatest value.[23] Consequently, researchers 
should prioritise generating high quality evidence of safety, clinical and cost effectiveness 
for the uses of AIaMD in nAMD treatment monitoring that emerge from practitioners’ early-
adoption experiences. This evidence should aim to support decisions by entities such as 
NICE and the MHRA which will enable the scaling of these models of AI-enabled nAMD care. 
Researchers should also exercise their freedom to pursue non-financial value to refine and 
evaluate interventions that maximise improvements in AMD service equity, environmental 
impact, user training and safety monitoring processes. Beyond the adoption of these initial 
interventions, researchers can then lift their focus from hybrid effectiveness-
implementation research to focus on the evaluation and refinement of implementation 
strategies rather than the intervention itself.[38] This may employ more traditional 
approaches which aim to identify the ‘right’ approach, e.g. randomised controlled trials of 
implementation strategies, or approaches that embrace complexity and aim to answer what 
works for who, why and under what circumstances, e.g. critical realism.[39, 40] 
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8.4.2 Recommendations for practitioners 
The implementation of AI-enabled macula services, like clinical AI more generally, will 
depend upon varied teams with a breadth of clinical, technical and operational expertise. 
There is relatively little precedent for this within the NHS, but in the US, early-adopter 
medical centres have independently developed organisational structures and 
multidisciplinary committees which enable and standardise these collaborative efforts.[24] 
Establishing these within NHS trusts is likely to be supportive of AI implementation efforts 
inside and outside of ophthalmology. It is also very common for these organisations to 
benefit from individuals who hold relatively superficial expertise across a breadth of 
relevant clinical, operational and technical domains. The need for such individuals has been 
called for in various UK policy documents since 2019.[41] So far in the NHS, it has largely 
been met by the provision of additional roles and training for a handful of clinicians, but 
more recent policy suggests that roles dedicated to this multi-disciplinary coordination 
function may be funded.[42-44] The continuation of this growing recognition of a distinct 
role and skillset within the NHS workforce is likely to support successful AI implementation 
and reduce NHS expenditure on third part consultancy. 

With or without these AI-specialised staff or organisational structures, NHS trusts looking to 
adopt AI-enabled workflows will need to identify and bring together key stakeholders within 
their organisation. Without such collaborations it will be challenging for trusts to convene 
the perspectives and expertise necessary to account for the sociotechnical complexity of 
evaluating the suitability of available AIaMD for locally defined problems. These 
collaborations will include senior leadership representation, informatics and or information 
technology specialists, information governance specialists, legal specialists, relevant 
clinicians, procurement specialists and patient representatives.[24] This is critical to allow 
full characterisation of the problems that individual NHS trusts aim to address, and the 
nature of the evidence these local stakeholders require to trust and use AIaMD. This is likely 
to require evidence generation within the NHS trust environment and so internal or external 
funds to enable a tailored local evaluation and business case development will be 
important. The results of these evaluations must be made accessible to stakeholders to 
build trust and motivate adoption.[45] Connecting teams leading AI implementation across 
separate NHS trusts will also be valuable to enable the sharing of practical and credible 
insights between organisations to guide local expectations and investments. 

8.6 Concluding remarks 
The sight-threatening imbalance between demand and capacity in macula services is a 
persistent and broadly recognised problem for stakeholders in nAMD care. AI-enabled 
macula services are accepted by many as a potential solution and may deliver a variety of 
additional benefits. For now, it seems that the relative novelty of relevant AIaMD and the 
absence of evidence to inform and guide implementation strategies at the local level are the 
main factors that have prevented implementation. The outcomes of future implementation 
efforts will be strongly influenced by various stakeholder groups, many of whom have 
limited insight or contact with the others. Fortunately, considered design AIaMD, 
interventions and care pathways for nAMD appear able to mitigate, at least partially, against 
this complexity and disconnect between stakeholders. Such considered design seems able 
to offer a value proposition that satisfies all stakeholder groups.  
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The present thesis should not directly inform local efforts to implement AI-enabled macula 
services. However, it provides a blueprint for the design and conduct of local evaluations 
that can and justifies the investment they will require. It should also support policy makers 
as they consider which of their strategic priorities in ophthalmology are most amenable to 
AI innovation. It seems that the immediate next steps for implementation lie with early-
adopter provider organisations such as NHS trusts. Their experiences, and the evidence that 
they generate and disseminate, will shape the future of AI-enabled macula services across 
the NHS. 
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