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Abstract

Graphs/networks are fundamental mathematical constructs that play a crucial role in representing
and analysing diverse real-world phenomena across various disciplines. However, rapidly
increasing quantities of data pose significant challenges for informed decision-making. Visual
clutter increases proportionately with the graph’s size and complexity, obscuring semantic
relationships and limiting human comprehension. Additionally, graph visualisation research has
primarily focused on depicting graphs based on their primary values without considering the
uncertainty inherent in the data. This could yield visual representations that lead to overlooking
unrevealed trends and patterns or misinterpretations of the underlying data by human viewers.
Consequently, there is an increasing need for methodologies that assist end users in understanding
their data and its inherent structure, thereby facilitating an effective analysis and better decision-
making procedure under uncertainty.

This thesis outlines two research objectives:

• Addressing graph summarisation challenges through proposing a summarisation algorithm.

The first objective is to understand the network data pertaining to links and nodes, with less
emphasis on the network’s structure and connectivity. Users require simplified visualisations that
clearly convey the relationship between network structure and associated data. We developed an
algorithm to summarise graph-based data by extracting the maximum information in readable
and informative forms of the original graph to end-users.

• Exploring the development of a novel visualisation approach to aid the design, implemen-
tation, and operation of visual search tasks on node-link diagrams.

The second objective is to identify and address existing approaches’ limitations and challenges.
This research introduces a node-link visualisation model designed for visually representing and
analysing bivariate networks. We demonstrate it effectively addresses the challenges associated
with these approaches. The major contributions of the thesis are as follows:

1. We present a novel node-link visual model — visual entropy (Vizent) graph — to effec-
tively represent both primary and secondary values, such as uncertainty, on the edges
simultaneously.

2. We present the novel Vizent edge design and empirically demonstrate (in collaboration
with Lucy McLaughlin) that different edge glyphs have a perceived order through pairwise
testing.



x

3. We perform two task-based usability studies to demonstrate the efficiency and effectiveness
of our approach for visualising bivariate networks using static node-link diagrams.

4. We compare the Vizent design against three visual encodings selected from the literature
on various graphs ranging in complexity from 5 to 25 edges for three different tasks.

Keywords: Information Visualisation, Graph Visualisation, Graph Summarisation, Node-Link
Diagram, Edge Visualisation
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2 Introduction

1.1 Information Visualisation

“Data visualisation is not your creative outlet;
data visualisation is making data understandable.”

— OpenVis Conf

Throughout history, visual representations have played a significant role in facilitating human
reasoning and enhancing communication. Since ancient times, humans have employed various
visual mediums, such as drawings and carvings, to communicate information and ideas. The
visualisation field underwent a significant transformation in the late 20th century due to the
advent of computer technology. In recognition of this burgeoning discipline, the first IEEE
Visualisation Conference (IEEE VIS) was organised in 1990. Subsequently, visualisation
techniques have persistently broadened in both academic and industrial domains, resulting in
significant advancements and influence. In the last thirty years, visualisation has established
itself as a progressively influential interdisciplinary domain, benefiting from contributions from
various fields such as computer science, cognitive psychology, graphic design, statistics, and
other related disciplines.

Information visualisation has emerged as an influential approach for transforming large, com-
plex data into intelligible graphical representations, facilitating user insight and understanding of
the underlying information [177]. A key functional role of information visualisation is enabling
efficient and effective "visual information seeking" [172], allowing users to navigate and analyse
the information space. As pioneering computer scientist Ben Shneiderman noted, "The purpose
of visualisation is insight, not pictures." Put differently, the fundamental objective of visualisation
is to facilitate comprehension and exploration rather than solely producing visually pleasing
images.

Visualisation refers to the graphical depiction of data or concepts [101] while supporting
various cognitive processes [31, 102, 162]. Nowadays, even end-users expect to be able to
explore and understand the results. Visualisations can serve multiple purposes. These purposes
include conducting exploratory analysis to identify patterns or anomalies, validating hypotheses
through either a data exploration process or quantitative analysis, and effectively communicating
the analysis findings to an audience.

• Exploratory analysis. The end user lacks specific and well-defined objectives or questions
when engaging with the visual representation. In contrast, open-ended data exploration
aims to identify new patterns, trends, outliers, and other discoveries within the information
space. [57, 185]. The objective is to gain an understanding of the data, extract pertinent
information, and formulate hypotheses.

• Confirmative analysis. The end user holds predefined hypotheses or questions to be
confirmed by examining the data. The purpose of visualisation is to validate or invalidate
hypotheses that may have been derived from data exploration or models that are linked to
the data. [57, 102].
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• Descriptive or Presentation. The end users already possess an understanding of the key
phenomena and relationships within the data. However, they require effective visual repre-
sentations and metaphors to convey these results and insights yielded by an exploratory
analysis or analytical analysis process to others. This may include decision-makers, domain
experts, or the general public, among other potential audiences. [185].

During the process of visualisation development, researchers analyse the dataset at hand
while considering the desired objectives of end-users, intending to communicate information
effectively through the visual display. Current research in data visualisation employs analytical
methods based on computer graphics to produce visual depictions of information. Through
transforming raw data into visual representations, visualisation techniques empower the rapid
identification of patterns, relationships, and anomalies that might be challenging to perceive in
the original, unprocessed data. This approach facilitates the acquisition of valuable insights and
supports decision-making processes based on data analysis.

Figure 1.1 illustrates the visualisation reference pipeline commonly adopted in most informa-
tion visualization systems as a base. The data model consists of four successive phases: data
source, data tables, visual abstraction and views.

Figure 1.1 The information visualisation reference pipeline [33]. (Source: [209], p. 99)

Data transformation involves the initial stage of converting raw data into a format suitable
for analysis through methods such as data aggregation or data filtering.

Visual mapping involves mapping transformed data into visual structures through encoding
channels, such as colour and shape. This phase is of significant interest to designers, as it pre-
dominantly establishes the level of expressiveness and effectiveness of the resulting visualisation.

View transformation involves the generation of a visual output that incorporates the encoded
data and presents it in the form of images or animations on a display monitor. The meticulous
choice of rendering techniques is of utmost importance in the creation of significant final
visual representations. In general, this sequential procedure offers a structure for converting
unprocessed data into informative visual representations customised to meet the requirements of
the intended audience.
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As illustrated in Figure 1.1, a widely used framework facilitates the transformation of tabular
datasets into visualisations through a series of sequential processing stages. The pipeline ap-
proach discussed is applicable and frequently used with simple formatting data (see Figure 1.2 for
the different types of datasets). However, in practical situations, datasets tend to be complex and
diverse, exhibiting non-linear structures. For example, transportation networks or organisational
hierarchies demonstrate specific and important characteristics, which have a connection and
containment between them by their nature.

Figure 1.2 The four basic dataset types by Munzner [133]: Tables, Networks, Fields, Geometry
(Spatial).

Figure 1.3 The attribute types by Munzner [133].
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In the context of Information Visualisation (InfoVis), the objects within the network are
commonly referred to as nodes or vertices, and the relationships between the objects are denoted
as links or edges. The network itself is typically referred to as a graph. Additionally, the data
associated with the objects and connections are commonly referred to as attributes, features,
dimensions, or properties [104]. Data attributes are commonly categorised into different types,
and multiple categorisation taxonomies can be found in visualisation literature. An attribute
denotes a particular characteristic that is amenable to quantification, observation, or logging [133].
As shown in Figure 1.3, the main distinction of attributes is between categorical and ordered [34,
133], and the ordered classification is further subdivided into ordinal and quantitative categories.
Additionally, the quantitative category is subdivided into interval and ratio data.

It should be noted that graphs can be designated, whereby both nodes and edges can have
a set of associated attributes, which can be either quantitative or qualitative variables. For
example, in an urban transit network, the fundamental objects consist of bus stops and train
stations, which can be regarded as nodes, interconnected by routes, which can be considered as
links. The dataset also encompasses information on the travel time between two stops or train
stations and estimates of latency periods, distance, and number of people, all of which can be
represented as attributes within the graph. The characteristics of such data types are paramount
in understanding how the dataset is structured and often constitute the most vital elements that
need to be communicated through visual depictions. The predominant visual representation of
these relational data sets is node-link diagrams (graphs or networks), in which nodes symbolise
specific elements (or objects), and links symbolise various interconnections or relations between
these elements. Graphs convey the inherent characteristics of relationships (or connections) and
enclosure properties, whereas tabular representations do not offer the same clarity or accessibility
in conveying such information.

1.1.1 Understanding Uncertainty in Data

Uncertainty is a common issue when dealing with data; it simply means we are not always
completely certain about the information at hand. Consider a weather forecast as an example.
Even though it predicts when and where it might rain, there is still a degree of uncertainty.
Similarly, when we look at graphs illustrating average travel times between train stations, it
is important to recognise that these times can vary. Therefore, uncertainty value should be
taken into account when analysing and communicating visual data. This can be achieved by
simultaneously displaying the data value we possess and the degree of uncertainty.

1.1.2 Challenges of Visualising Uncertainty

Graph visualisation faces a significant challenge due to the inherent uncertainty in data, which
arises from measurement errors, accuracy, missing values, or ambiguous definitions. This uncer-
tainty can seriously mislead the interpretation of these visualisations. For example, illustrating
only average travel times without considering the uncertainty through traditional methods may
lead people to perceive these times as constant. However, factors like traffic, weather, or unfore-
seen delays can affect travel times, adding variability to the dataset. By incorporating uncertainty
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data, the visual representations strive to provide a more accurate and comprehensive view of the
underlying data structures.

Because of their limited capacity to accurately represent uncertainty data, current methods
for visualising uncertainty often fail to facilitate decision-making processes. Therefore, this
thesis aims to provide novel methods for effectively handling and visualising data value and
its uncertainty within graph visualisations. This enhancement makes the visualisations more
interpretable and supports better decision-making by recognising the variability of the data.

The following sections will present a general understanding of graph drawing and graph
visualisations without delving into more details. (Section 1.2) and focus on the crucial role of
representing uncertainties to facilitate well-informed decision-making (Section 1.3).

1.2 Graph Drawing and Graph Visualisations

In the era of big data, graphs (also known as networks) have become pervasive in diverse
domains, including social networks, intelligence analysis, and network traffic. The terms graph
and network are used interchangeably throughout the thesis. Graphs are a versatile tool for
representing and analysing various complex systems that exist in our environment. These
systems encompass a wide range of domains, including but not limited to internet networks,
telecommunication networks, road networks, chemical compounds, social networks, genetic
information, and power grids. Graphs facilitate the exploration of relationships among entities,
hence enabling the acquisition of useful insights into the systems under investigation.

Graph Visualisation and Graph Drawing are reliant on the visual representation of graphs
and have become frequently studied disciplines of research [197, 19]. Graph Drawing pertains
to the study of graph readability, with specific emphasis on the presentation of node-link
diagrams. In such contexts, the readability challenges are articulated through aesthetic criteria,
which can be defined as aesthetic optimisation objectives for (static) drawing graphs [148]. To
ensure the readability of graph drawings, the most common and significant aesthetic criteria
include minimising edge crossings, uniform edge lengths, even node distribution, edge bend
minimisation, avoiding node overlap, symmetry, and drawing area [203]. While these criteria
are widely acknowledged, they do not hold equivalent significance. For example, Purchase et
al. [148] demonstrate that “reducing the crossings is by far the most important aesthetic while
the impact of minimising the number of bends and maximising symmetry is comparatively less
significant”. Additionally, they do possess certain limitations. For example, these criteria cannot
be met in the context of large graphs.

Graph structure evolving over time, where nodes and edges are added or deleted, is called
a dynamic graph or time-evolving graph in contrast to static graphs. Time-dependent changes
may affect the attributes of nodes and edges (such as the weights of the edges change), the graph
structure itself (through adding or removing nodes and edges), or both. This type of network
is typically represented as a sequence of single depictions, each corresponding to a certain
timestamp. Many approaches use animated diagrams to show the changes, for example [60].

Beck et al. [18] conducted a study that built upon prior research by examining both static
and dynamic graphs, regardless of their graphical representations. This includes matrix repre-
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sentations as well as node-link diagrams. The researchers examined three categories of criteria:
general scalability, dynamic scalability, and aesthetic scalability. The general criteria encompass
reducing visual clutter, mitigation of spatial misunderstanding arising from close proximity,
optimisation of spatial alignment for navigating paths, and maximising the efficient use of space.
In the context of dynamic graphs, the dynamic criteria include maximising the stability of the
displayed information between different time points, reducing the cognitive burden required
for examining temporal dynamics, and minimising temporal aliases that may arise due to the
positioning of multiple nodes in the same location across two distinct time periods. The aesthetic
scalability criteria pertain to the readability of graphs when dealing with larger graphs. This
includes scalability regarding the number of vertices, edges, and graphs, particularly as the
number of time steps for which graph data is provided increases. All these criteria are important,
but it is not possible to optimise them at the same time. Furthermore, these factors alone may not
suffice in determining an appropriate layout design, as it is typically dependent on the specific
task and data being utilised [197].

The discipline of Graph Visualisation, which is a sub-field of Information Visualisation, is
primarily concerned with the challenge of scalability [78]. There are three types of limitations
in this discipline [133]: computational capacity, human perceptual and cognitive capacity, and
display hardware capacity. One example of limited computational capacity occurs when computer
memory is insufficient to accommodate large datasets. Perceptual and cognitive capacity stems
from the restricted capacity of visual working memory for information storage. Insufficient
screen resolution due to display technology restrictions poses challenges in conveying all desired
information simultaneously.

(a) Node-link diagram (b) Adjacency matrix

Figure 1.4 Two visual representations of the same network.

Graph drawing primarily emphasises the aesthetic criteria of node-link diagrams, but graph
visualisation encompasses other visual metaphors that enhance its usefulness for the purpose
of network exploration tasks. Our scope does not fall within the graph drawing research areas;
this thesis focuses on graph visualisation approaches, which are more common in information
visualisation.

The procedures and techniques employed to transform a graph into its corresponding ge-
ometric representation are commonly referred to as graph drawings [182]. The advancement
of computer technology has facilitated the automated generation of graphs, hence fostering the
progress of graph drawing. The node-link diagram is a widely used visual representation in
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which vertices are displayed as points, and the connections between them are represented as
lines [194], see Figure 1.4a.

In addition to utilising node-link diagrams for graph representation, an alternative approach
involves implementing a more concise visualisation method known as the adjacency matrix A,
which can be binary. This matrix employs individual cells to denote the presence (represented
by “1”) or absence (represented by “0”) of connections between nodes, with rows and columns
serving as identifiers for the relevant nodes, see Figure 1.4b. The concept of this representation
was initially proposed by Bertin [23] and subsequently gained popularity through the work of
Becker et al. [21]. However, one limitation of this technique is its inability to describe graph
structure, hence hindering the ability to perform path-related tasks [104, 137].

It bears noting that both node-link diagrams and adjacency matrices (or matrix represen-
tations) have distinct advantages and disadvantages. The selection of a visual representation
relies on the specific characteristics of the network, the viewer, and the intended purpose of the
visualisation. Careful selection of visual encoding that effectively communicates information
while considering the cognitive limitations of human perception is crucial. For instance, a graph
may employ misleading or ill-considered visual encoding techniques, such as assigning the same
colour hue to nodes with different characteristics or utilising non-uniform sizes for nodes and
edges to convey the importance of nodes and edges.

The motivation for this research is continued in the following section. It describes the primary
issues that this thesis addresses.

1.3 Motivation and Research Questions

The volume of data generated on a daily basis around the globe is a significant obstacle in com-
prehending and deriving meaningful insights from it. Relational nature characterises numerous
real-world data sets, including but not limited to transportation systems, computer security, and
social networks. The data sets can be conventionally represented as graphs, whereby nodes
symbolise entities, and edges symbolise the connections between them. On the other hand,
alternative metaphors for graph representation, such as matrix representations, might be em-
ployed. The primary focus of this study revolves around node-link diagrams, as they offer a
distinctive approach to comprehending relational data. Through the utilisation of human vision,
it becomes possible to discern the underlying structure of the data, a task that would otherwise
pose challenges in comprehension.

Visualisation serves as a fundamental method for conducting exploratory graph analysis.
The process encompasses the creation of appropriate visual representations, such as adjacency
matrices, node-link diagrams, or a combination thereof [77]. Additionally, it involves the
effective arrangement of graph elements on the display and the efficient mapping of visual
attributes [197]. We deliberately set the scope to node-link diagrams because they are the most
common network visual representation for relational data in the field of graph visualisation [30].

Visualisations can be reproduced on physical media, such as printed on large-scale paper
printouts, or shown in three-dimensional settings [132], (such as through virtual reality se-
tups [42]), or projected onto displays, such as computers or laptops. Nevertheless, mapping
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data in a three-dimensional environment can introduce complexities in perception. One such
issue is that we can only project 3D scenes to a 2D display. Challenges such as occlusion and
perspective arise, requiring the viewer to navigate several viewpoints (moving and rotating the
object) in order to effectively comprehend the relationships among various data items [3]. It
is more difficult to navigate in three-dimensional (3D) space because most input devices are
designed with 2D in mind. Ware et al. [201] present a comprehensive examination of the 3D
visualisation problems. They suggest that employing 2D or 2.5D solutions yields better results.
Our research focuses on two-dimensional static representations, which can be effectively utilised
in printed publications.

Uncertainty is omnipresent in our daily existence. It emerges whenever we are faced with
choices or apprehensive about the future. Uncertainty visualisation is a subfield within the
domain of information visualisation that primarily focuses on the presentation of visualised data
in conjunction with additional information such as accuracy, error, and other characteristics
related to the origin of the data that impact the comprehension and interpretation of the visualised
information. [90].

On the other hand, graph visualisation primarily focuses on the representation of graphs using
the main value of the input data, sometimes neglecting the consideration of its corresponding
value uncertainty [197]. A considerable number of visualisations that we encounter fail to
depict uncertainty [58]. One potential explanation for the absence of uncertainty representation
in various visualisation scenarios, such as business reporting, media, and scientific contexts,
could be attributed to the relative simplicity of presenting value in visualisations that do not
incorporate uncertainty, as opposed to the considerably more complex task of demonstrating
value in uncertainty visualisation [87]. Therefore, we require novel visualisation approaches to
effectively communicate the uncertainty in the data to the general public.

The motivation for the research presented in this thesis is two-fold:

1. How can the most “important” edges of a large graph be identified so that it can be
summarised and visualised efficiently? Given a large graph, how can the significance of
a set of chosen subgraphs be measured? The first objective of this research is to identify
short summaries for large graphs, with the aim of enhancing comprehension regarding the
characteristics of the most “important” edges.

• From a cognitive point of view, it is important to note the constraints imposed by
human perception and its impact on the interpretation and comprehension of data [59].
For example, Miller’s ‘seven plus or minus two’ [130] is widely acknowledged in
the field of cognitive psychology as a criterion that describes the capacity constraints
of individuals’ working memory. Working memory can be considered as one of
the ‘cognitive ceilings’ that may impact individuals’ capacity to reason about large
networks. As a result, human working memory is limited, leading to challenges
in processing and comprehending information when confronted with an excessive
amount, resulting in cognitive overload and hindered sense-making abilities [120, 86].

2. How can we visualise graphs with additional data attached to the network edges and nodes
in the form of a node-link diagram? The second objective of this research is to develop
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novel visualisation techniques that represent both primary and secondary values, such as
the uncertainty present in the data, while maintaining accurate communication.

• Research conducted in Psychology [96, 150, 158] has demonstrated that individuals
exhibit a preference for receiving knowledge pertaining to uncertainty and make bet-
ter decisions when such information is effectively presented. Moreover, appropriately
conveying uncertainty establishes trust in various contexts. Despite the development
of network visualisation tools and techniques, certain core challenges remain in-
sufficiently addressed. Consequently, there is a growing need for practitioners and
researchers in graph visualisation to explore novel concepts and develop effective
approaches that can address the challenges posed by representing uncertainty. These
techniques should facilitate users in effectively expressing uncertainty alongside
primary value in a comprehensible manner.

In particular, this dissertation project aims at investigating the following research question:

• RQ1: Exploring a scalable approach for visualising complex graph-based data, including
measures and variance of measures?

• RQ2: How to design a novel entropy-based bivariate representation of networks?

• RQ3: How do entropy-based representation networks compare in visual search perfor-
mances to existing approaches?

1.4 Contributions

A novel approach for the visualisation of bivariate networks and a graph summarisation method
is presented. The research adopts an interdisciplinary framework that integrates several method-
ologies from diverse fields. The methodologies employed in this study are tailored to the specific
situation in which the research is conducted and the specific needs of the investigation. However,
the essential concept underlying this node-link visual model is its general applicability to any
bivariate network, irrespective of the specific domain of application.

To summarise, the main novel contributions of the thesis are:

❍ We present a novel node-link visual model — visual entropy (Vizent) graph — to effec-
tively represent both primary and secondary values, such as uncertainty, on the edges
simultaneously, see Chapter 4.

❍ We present the concept of the novel Vizent edge design and empirically demonstrate (in
collaboration with Lucy McLaughlin) that different edge glyphs have a perceived order
through pairwise testing, see Chapter 4.

❍ We perform two task-based usability studies to demonstrate the efficiency and effectiveness
of our approach for visualising bivariate networks in the context of static node-link
diagrams, see Chapter 5.
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❍ We compare the Vizent design against three visual encodings selected from the literature
on various graphs ranging in complexity from 5 to 25 edges for three different tasks, see
Chapter 5.

1.5 Outline

The motivation behind this work, the goals of the thesis, and the criteria and methodology to
achieve these goals have been described so far. This section provides an outline of the thesis
alongside a brief overview of each chapter. The rest of this thesis is organised as follows:

Chapter 2 (Background ) presents a contextual review of the literature with a discussion of
the related work, beginning with the graph visualisation methods and issues of the graph sum-
marisation methods, node-link visualisations, complex network data, uncertainty visualisation,
and current research in graph summarisation.

Chapter 3 (Graph Summarisation Method) presents the proposed graph summarisation
method to address information overload. It covers concepts of variance in edge weights, informa-
tion theory and Shannon entropy, the entropy-based graph summarisation algorithm, testing with
Facebook network data, limitations, and directions for future work.

Chapter 4 (Introduction Vizent Edges) focuses on how bivariate graphs can be visually
represented within the node-link diagrams, specifically in the context of edge uncertainty.
Furthermore, it introduces a novel visual encoding approach and presents the results of an
empirical evaluation.

Chapter 5 (A novel node-link visual model – visual entropy (Vizent) graph) describes
research comprising usability studies evaluating bivariate network visualisation techniques and
discusses the results of two conclusive evaluations conducted to examine the novel node-link
visual model presented in this thesis. It details the study design, tasks, data, results, and
conclusions.

Chapter 6 (Conclusion) provides a summary of the key findings, including results of the
quantitative and qualitative evaluations across the user studies. In addition, it summarises the
thesis contributions and highlights promising directions for further research.

1.6 Related Publication

The majority of Chapter 4 and Chapter 5 are derived from the following published article, with
each contribution being previously published in the Visual Informatics journal:

[1] Osman Akbulut, Lucy McLaughlin, Tong Xin, Matthew Forshaw, and Nicolas Steven
Holliman, (2023). Visualizing ordered bivariate data on node-link diagrams. Visual Informatics,
7(3):22–36.

Abstract

Node-link visual representation is a widely used tool that allows decision-makers to see details
about a network through the appropriate choice of visual metaphor. However, existing visu-
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alisation methods are not always effective and efficient in representing bivariate graph-based
data. This study proposes a novel node-link visual model — visual entropy (Vizent) graph —
to effectively represent both primary and secondary values, such as uncertainty, on the edges
simultaneously. We performed two user studies to demonstrate the efficiency and effectiveness
of our approach in the context of static node-link diagrams. In the first experiment, we evaluated
the performance of the Vizent design to determine if it performed equally well or better than
existing alternatives in terms of response time and accuracy. Three static visual encodings
that use two visual cues were selected from the literature for comparison: Width−Lightness,
Saturation−Transparency, and Numerical values. We compared the Vizent design to the se-
lected visual encodings on various graphs ranging in complexity from 5 to 25 edges for three
different tasks. The participants achieved higher accuracy of their responses using Vizent and
Numerical values; however, both Width−Lightness and Saturation−Transparency did not show
equal performance for all tasks. Our results suggest that increasing graph size has no impact on
Vizent in terms of response time and accuracy. The performance of the Vizent graph was then
compared to the Numerical values visualization. The Wilcoxon signed-rank test revealed that
mean response time in seconds was significantly less when the Vizent graphs were presented,
while no significant difference in accuracy was found. The results from the experiments are
encouraging and we believe justify using the Vizent graph as a good alternative to traditional
methods for representing bivariate data in the context of node-link diagrams.
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The objective of this thesis is to describe a novel graph visualisation approach to representing
bivariate data through a node-link diagram and suggest a summarisation algorithm for large
networks. First, we start summarising the core concepts of cognitive and perceptual principles
and demonstrate how these principles were utilised for supporting effective graph visualisation
in Section 2.1. After, we introduce key graph terminology and properties in Section 2.2.1 and
Section 2.2.2. Next, we briefly discuss related work in the context of graph visualisations
and graph layouts in Section 2.2.3 and Section 2.2.4, followed by an analysis of node-link
visualisations more closely aligned with our research objectives in Section 2.3. Furthermore,
given that the design of Vizent Edge was specifically developed to depict additional data on edges,
such as uncertainty present in the data, we present a concise overview of the term uncertainty and
uncertainty visualisations in Section 2.4. Moreover, our other objective is simplifying complex
relational data; thus, we gather a comprehensive survey of graph summarisation techniques in
Section 2.5.

2.1 Human Perception

The human visual system encompasses the eyes, optic nerves, and specialised visual cortex within
the brain. This intricate system processes and interprets visual stimuli, enabling perception and
comprehension of our surroundings. Information visualisation leverages human visual-cognitive
capacities for data analysis, exploiting its high-bandwidth “channel” communicating around
8.75 megabits per second of data to the brain [109]. With millions of photoreceptors and rapid
parallel processing capacities, human vision can recognise patterns and scenes instantly [201].
This impressive visual bandwidth facilitates efficient data transfer from digital resources into the
human mind. Nevertheless, a more significant advantage beyond mere data transmission is the
human capacity for visual reasoning and extracting higher-level insights from data [33]. This
ability allows individuals to construct mental models of the real phenomena embedded within
datasets. According to Ware [201], the efficacy of visual perception in recognising shapes and
features can be primarily elucidated through two psychological theories: Pre-attentive processing
theory [188] and Gestalt theory [110].

The application of pre-attentive processing theory at a lower level pertains to the crucial matter
of distinguishing one data object from another. Ware [201] presents an extensive compilation
of pre-attentive properties (visual encodings), including line orientation, colour hue, curvature,
basic shape, and size, that are pre-attentive processed, see Figure 2.1. Certain shapes and colours,
for instance, appear to pop out against their surroundings; see Figure 2.2. The significance of
such processes becomes highly pronounced in situations where the primary objective is visual
search.

Gestalt theory, operating at a higher cognitive level, delineates the fundamental principles
of the brain that underlie the understanding of visual images. [201]. The process of visual
perception is widely recognised as a multifaceted phenomenon in which individuals have a
tendency to perceive basic geometric forms. This implies that the structure constituting a visual
presentation holds greater significance than the individual components, a concept encapsulated
by the phrase "the whole is greater than the sum of its parts." Gestalt theory proposes a set of
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Figure 2.1 In the study by Ware [201] provided a comprehensive list of pre-attentive examples
with a broad explanation, yet some of the pre-attentive features were given.

(a) The red circle "pops out" from a set of black
circles.

(b) The red circle also pops out of a set of red
squares.

Figure 2.2 Two examples of pre-attentive processing: spotting a red object from a set of black
ones and spotting one circle from a set of red squares.
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principles (or laws) that can enhance the intuitive comprehension and analytical reasoning of
visual representations.

Gestalt principles encompass a set of guidelines governing the perceptual organisation of
scenes. The concept of their introduction originated in the domain of philosophy and psychology
during the 19th century. Subsequently, these principles were employed to establish fundamental
principles of human perception in the early 20th century. The principles of Gestalt, derived from
the German word for "form", encompass several key concepts. These principles (see Figure 2.3)
include [108]:

• Proximity, which pertains to the grouping of closely positioned objects.

• Similarity, which pertains to the grouping of objects with similar shapes or colours.

• Continuation, which refers to the grouping of objects that create continuous patterns.

• Symmetry, which entails the grouping of objects that form symmetrical patterns.

Figure 2.3 The figure represents a subset of Gestalt Laws (or Principles) [110].

The principles of Gestalt have found widespread application in the fields of user interface
design, graphic design, and information visualisation. These principles provide a valuable
framework for improving visual representations’ effectiveness and aesthetic appeal in different
domains. According to House et al. [85], “perception provides a sensible order to what we see
whereas aesthetics govern our receptiveness to our perceptions.” Ware et al. [202] conducted
experimental studies that the utilisation of pre-attentive principles for encoding graph properties
can facilitate rapid differentiation of these aspects in node-link diagrams.

In brief, while pre-attentive theory focuses on fundamental visual discrimination, Gestalt
theory examines complex cognitive processes involved in conceptualising and integrating visual
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information at a systemic level. These two serve as complementary lenses for enhancing the
innate visual intelligence of humans, operating at distinct levels of abstraction.

Such perceptual organisation affects performance at visual search and other visual tasks.
Comprehending these perceptual theories has been instrumental in shaping the Vizent approach.
This study enhances the clarity and perceptibility of the primary value and its uncertainty in
graph visualisations by implementing principles from Gestalt theory and pre-attentive processing.
The development of the Vizent approach specifically targets the rapid recognition of data patterns
within graphs, offering a significant improvement over traditional visualisation techniques that
may overlook such perceptual optimisation.

2.2 Graph

2.2.1 Main Graph Definitions

“Your first discipline is your vocabulary;”
— Robert Frost

The term "vertices" is commonly referred to as "nodes", and "edges" are commonly referred
to as "links" in academic literature. In this thesis, the interchangeability of these two terms is
seen. A collection of fundamental terminologies pertaining to graphs was introduced as follows:

• A node j is referred to as a neighbour of node i if, and only if, there exists a connection
between node i and node j.

• Degree: The number of edges that are linked to a certain node. The degree of node i is
commonly denoted as deg(i).

• Walk: A compilation of edges that are interconnected in a sequential manner to establish
an uninterrupted route within a network.

• Path: A traversal that does not pass through any node (and, consequently, edge) more than
once.

• Cycle: A walk that begins and finishes at the same node, without traversing any node more
than once throughout its traversal.

• A subgraph is a subset of a larger graph that contains a subset of the nodes and edges of
the original graph.

• A connected graph is a graph in which there is a path consisting of distinct edges that
connect every pair of nodes.

• A complete graph that exhibits connectivity between every pair of nodes. In other words,
a complete graph is a graph in which every node is connected to every other node by a
single edge. Thus, it can be concluded that all complete graphs are connected; however,
not all connected graphs are complete, see Figure 2.4.
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Figure 2.4 An example of different types of graphs.

• A regular graph is a type of graph where each node has the same number of adjacent
nodes or the same degree.

• Bipartite (n-partite) graph is a graph wherein its nodes can be partitioned into two (or n)
distinct groups, such that no edge exists between nodes within the same group.

• A planar graph is a type of graph that can be embedded in a two-dimensional plane
without any of its edges crossing each other.

• An undirected edge refers to a connection between two nodes in a graph that does not have
a specific direction or orientation. An undirected graph refers to a graphical representation
consisting of undirected edges. The symmetry property holds for the adjacency matrix of
an undirected graph.

• A directed edge consists of an ordered pair of nodes representing a relationship between
two nodes. A graph consisting of directed edges is commonly called a directed graph.
The adjacency matrix of a directed graph typically exhibits asymmetry.

• An unweighted edge refers to a type of edge in a graph that does not have an associated
weight value. In a network with unweighted edges, the relationship between a pair of
nodes can be categorised into two distinct possibilities: the presence of an edge connecting
them or the absence of such an edge. The adjacency matrix of this network consists solely
of binary values, specifically 0’s and 1’s.

• A weighted edge refers to an edge in a graph that has an associated numerical value or
weight. This weight generally represents a certain attribute, which is a non-negative real
number.
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• Multiple edges are defined as connections between two nodes that occur more than once.

• A self-loop refers to an edge that connects a node to itself. A graph with an edge that
originates and terminates at the same node is called a Pseudograph.

• A simple graph is a graph that lacks directed, weighted, multiple, or self-looping edges.
Traditional graph theory is predominantly concerned with simple graphs.

• A multigraph is a graph with multiple edges. In the field of graph theory, it is possible for
multigraphs to include self-loops. Multigraphs can be undirected or directed.

• A dense graph can be defined as a graph where the number of edges increases by the
square of the number of nodes, while a sparse graph has a lower rate of edge growth.

Graph theory is a field that involves a range of network properties, such as density, diameter,
and clustering coefficient. However, graph theory is not the subject of this thesis.

2.2.2 What is a Graph?

Graphs are generally suitable for representing entities where a network structure is to be rep-
resented [30]. Graphs serve as a unifying theme within the field of computer science since
they provide an abstract depiction of the structural arrangement of various systems, including
transportation systems, human interactions, and telecommunication networks [174]. In order to
facilitate the understanding of the graph-based data structure, it is necessary to know its basic
structure.

Figure 2.5 A visual representation of the graph G.

Formally, a plain (simple) graph ‘G‘ := (V,E) or network is an abstract data type consisting
of a finite set of vertices (or nodes) V and a set of edges (or links) E ⊆ {(u,v)|u,v ∈ V ; u ̸= v}.
The latter eu,v = (u,v) ∈ E connects a pair of nodes u,v, denoting that these nodes are directly
related in a meaningful manner. If E is not a multiple set and does not contain self-loops, then
the graph is simple, see Figure 2.5. For example, an edge (u,v) is a self-loop if u = v; see green
edges in Figure 2.6. If node pairs can have multiple links between them, then the graph is
multigraph, see Figure 2.6.
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Figure 2.6 An example of a multigraph with multiple orange-coloured edges. [26]

As seen in Figure 2.5, The set V consists of the elements {a,b,c,d,e, f ,g,h}, whereas the set
E is comprised of the following pairs: {{a,d},{a,e},{b,c},{b,e},{b,g},{c, f},{d, f},{d,g},
{g,h}}. The graph G is formed by the combination of vertices V and edge E. The number of
nodes and links present within a graph can be counted. As an illustration, the graph depicted in
Figure 2.5 consists of a total of eight nodes and nine edges. The graph size is equivalent to the
total number of nodes within the graph.

Graphs are commonly categorised into two main types: directed graphs and undirected
graphs. If each edge is represented by an unordered (ordered) pair of vertices, then the graph is
undirected (directed). It should be noted that while the ordered pair (v1,v2) is distinct from the
pair of (v2,v1) in a directed graph, they are inferred as the same relationship in an undirected
graph. In an undirected graph, (v1,v2) and (v2,v1) are the same edge, and only one pair is enough
to represent. A graph with both directed and undirected edges is referred to as a mixed graph.

In the context of an undirected network, relationships are regarded as bidirectional, such
as friendships. In the context of a directed graph, it is important to note that relationships
between nodes possess a distinct directionality. Relationships directed towards a specific node are
commonly known as in-links, whereas relationships originating from a node are referred to as out-
links. The inclusion of direction introduces an additional dimension of information. Relationships
of the same nature but with opposite directions possess distinct semantic connotations, signifying
either a state of dependency or a directional movement.

Graphs can also exhibit bipartite characteristics, meaning they consist of two separate sets of
nodes, U and V, representing various entities. In such networks, each relation that connects a
node from set U to a node from set V is called bipartite graph, as seen in Figure 2.7.

Cycles refer to the paths traversed inside a network of interconnected nodes and relationships,
wherein the journey commences and concludes at the identical node. An acyclic graph is
characterised by the absence of cycles. In classic graph theory, a tree (a special case of a graph)
is defined as a type of linked undirected graph that does not contain any cycles. In the field
of computer science, it is worth noting that trees can also possess a directed nature. A more
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Figure 2.7 Illustrating a bipartite graph that has two node types. [26]

comprehensive characterization may be posited as a network in which a singular path exclusively
facilitates the connection between any two nodes.

A tree T is considered rooted when a specific vertex r is designated as the root node, see
Fig 2.8. This can be denoted as ‘T ‘ := (V,E,r). These trees are commonly seen as hierarchies,
in which the level of a vertex in the hierarchy is determined by the length of the path to the root.
In a formal context, it is important to note that a hierarchy is defined as a directed acyclic graph.
Consequently, inside a formal hierarchy, it is possible for a node to possess many pathways
leading to the root node. Tree visualisation, also known as hierarchy visualisation, is a subfield
of information visualisation that focuses on the graphical depiction of connected, acyclic graphs
— trees.

Figure 2.8 Illustrating the representation of a rooted tree utilising the TreeLayout algorithm [37].
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2.2.3 Graph Visualisation

Graphs have been commonly employed as a means of representing relationships between entities
for several purposes. Some examples of graphs include telecommunication networks, social
network analysis, traffic networks, computer networks, co-authorship networks [115], protein-
protein interaction networks [92], and functional or structural brain connectomes, among various
others. Therefore, graph visualisation has been thoroughly researched within the literature and
remains an active research area. This section surveys relevant efforts in graph visualisation.

Historical Development

Node-link diagrams have a historical origin in the 18th century, specifically in the context of
the "seven bridges of Königsberg" problem. This problem was initially formulated by Leonhard
Euler, who employed nodes to represent distinct regions inside the city and links to represent
the bridges connecting these regions. In 1736, Euler released his famous paper on the city of
Königsberg. He addressed the path-tracing problem by employing a graph structure consisting
of interconnected nodes and edges. Euler’s primary objective was to address the inquiry of
whether it is feasible to get from one island to another while visiting each bridge just once. This
milestone signifies the shift from early graph representations to contemporary graph visualisation
techniques. Nevertheless, the graph proposed by Euler exhibits characteristics that resemble a
visual representation rather than a formal mathematical network (see Figure 2.9a).

(a) Euler’s drawing [54]

(b) Ball’s abstract drawing [14]

Figure 2.9 Node-link graph drawings of Königsberg problem
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The initial manifestation of an abstract graph drawing may be traced back to Ball’s publication
on mathematical recreations [14] when he presented a revised depiction of the Königsberg
problem through the use of node-link diagrams (see Figure 2.9b). This significant development
occurred in the year 1892, more than a century and a half after the original challenge emerged.

Figure 2.10 Bertin [23] proposed various visual encodings for representing graphs.

Bertin [23] categorises a total of twenty-two visual encodings, classifying them into two
distinct categories: network and diagrams, see Figure 2.10 above. Bertin’s conceptualisation
of networks refers to visual depictions wherein each vertex and edge is singularly portrayed,
such as in traditionally used node-link diagrams. In contrast, Bertin provides a definition of a
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diagram as a visual depiction wherein every node is depicted twice, serving as the two endpoints
of an edge. Examples of such diagrams include matrices and parallel alignments, which are also
denoted as bipartite layouts. An exemplification of a bipartite layout can be seen in Figure 2.11.

Figure 2.11 The diagram illustrates the procedure for converting a pseudograph into a graph
employing a bipartite layout, which involves duplicating the vertices and arranging them equidis-
tantly along one axis of two parallel vertical axes. The edges are then represented as straight
links connecting the vertices on the two axes. [20]

Bertin’s classification of networks differentiates between planar variables and retinal variables.
Planar variables encompass the “implantations” and “impositions” (see Figure 2.10). The term
“implantation” (which means instantiation) refers to classifying geometrical primitives (or
symbols), namely points, lines, and areas. On the other hand, “imposition” refer to the spatial
arrangements of these geometrical primitives, such as different types of layouts.

Based on Bertin’s analysis, there are four distinct graphical representations for graphs. The
first type involves the utilisation of points to depict vertices and lines to symbolise edges. The
second type reverses this approach, where points represent edges and lines represent vertices. The
third form exclusively employs lines to represent edges without explicitly visualising the vertices.
Lastly, the fourth alternative utilises areas to represent both edges and vertices simultaneously.
Bertin’s retinal variables encompass six basic additional characteristics (visual channels) of
“implantations”: size, colour hue, value, orientation, texture, and shape.

Regarding the use of the planar dimensions, Bertin classifies them as rectilinear, circular,
irregular, regular, and perspective drawings. It is imperative to recognise that not all graph
visualisations are appropriate for every graph category. Specific visualisations, such as area
inclusions (also known as enclosure or containment) or space-filling approaches, have been
developed for particular graph types, especially for the purpose of visualising hierarchies and
other tree structures.
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Space-Filling Approaches

In the literature, various different graph representation metaphors for space-filling layouts of trees
have been employed [201], such as Treemaps [195], Radial trees, Icicle plots, Sunburst [179],
Circular treemaps and BeamTree [193] methods, see Figure 2.12.

Figure 2.12 Traditional tree-based visualisation techniques for hierarchical data in which colour
encodes to univariate categorical data. Treemaps (a), radial trees (b), icicle plots (c), sunburst
charts (d), and circular treemaps (e). [213]

One of the most notable instances is the utilisation of Treemaps, a hierarchical visualisation
technique that was introduced by Johnson and Shneiderman [94]. Treemaps involve using
rectangular shapes that are recursively subdivided inside a display area based on the underlying
hierarchy, as shown in Figure 2.13. Furthermore, there are different versions of Treemap
algorithms that can either implicitly encode only inner nodes through node arrangement or
generate a boundary outline for inner nodes [135]. One possible method of encoding a secondary
attribute is using colour hue or value/saturation. However, it is important to note that alternative
encodings, such as glyphs [189] or approximate positioning [175], can also be employed.
However, we will not provide further explanations on space-filling alternatives, as this thesis
primarily focuses on the node-link metaphor.

Figure 2.13 Illustration of a Treemap layout that depicts housing data pertaining to several
boroughs of London. Attributes are represented by the encoding of size, colour, labels, and an
approximation of position. [175].
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Node-Link and Matrix Representation

The domain of graph visualisation encompasses a wide range of surveys conducted on various
forms of graph data, indicating its extensive scope. Von Landesberger et al. [197] present a
taxonomy of visual representations based on their dependence and structural characteristics.
Additionally, the authors conducted surveys that examine diverse methodologies employed in the
visual analysis of large graphs, focusing on their ability to manage scalability challenges. The
study encompasses various aspects, including visual graph representations (static and dynamic),
user interaction (such as panning and zooming), visual graph analysis, and future challenges
(such as edge visualisation).

The categorisation of static graph visualisations commonly involves distinguishing between
node-link and matrix representations, see Figure 2.14. Node-link diagram is recognised as the
most prominent and extensively employed approach for graph visualisation [191]. They are
intuitive and effective in facilitating the perception of relationships between objects and solving
path-related tasks. This is mostly due to their ability to leverage the concepts of closure and good
continuation, as outlined in Gestalt psychology [110]. Therefore, node-link diagrams are mostly
suitable presentation of relational data for human perception to enhance understanding of the
features and relationships of graphs [19].

Figure 2.14 Example of the different visual representations of static graphs. All representations
show the same dataset [19]. Left three images: node-link diagrams. Right: Adjacency matrices
(matrix).

As an alternative to node-link diagrams, matrix-based representations are also utilised [68,
136]. These representations may address certain challenges encountered in node-link diagrams,
particularly when dealing with large and complex networks. These include node occlusion and
edge crossings [173]. Conversely, the perception of spatial characteristics may be compromised,
resulting in increased difficulty in tasks such as locating nodes along a path and discerning
clusters. In addition, novice users may encounter challenges when understanding matrices [164].
Moreover, the readability of matrices deteriorates significantly when the number of nodes
increases substantially, resulting in excessively small rows and columns.

Numerous studies have conducted comparisons of node-link diagrams utilising certain graph
layouts and adjacency matrices visualisations across a diverse range of tasks [68, 67, 103, 137].
The findings demonstrate that the effectiveness of the visualisation is significantly influenced by
the characteristics of the provided dataset and the assigned tasks. A study conducted by Ghoniem
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(a) (b)

Figure 2.15 Evaluation of node-link diagrams and adjacency matrix visualisations [67].

et al. [68] demonstrated that the effectiveness of the two visualisations in facilitating particular
tasks is contingent upon the size and density of the graph.

Hybrid Graph visualisation

The literature also contains methodologies that combine the strengths of the two previous
approaches. [76, 77]. One study [77], for instance, incorporates both representations in a single
view, wherein node-link diagrams are employed to depict the overall graph structure of the
network, while adjacency matrices are utilised to visualise the communities inside the network,
see Figure 2.16. Additionally, adjacency lists can be used for graph visualisation, although they
are more commonly used as a space-efficient data structure for handling graph data [79].

Figure 2.16 Hybrid graph visualisation combining node-link diagrams with adjacency matri-
ces [77].
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2.2.4 Graph Layout

As presented by Bertin’s work [23], one of the conventional methods of representing objects
involves using dots to symbolise each object, with lines drawn between objects to indicate
connections. Graph layout refers to the process of determining the spatial arrangement of
nodes to provide an aesthetically pleasing representation and enhance the comprehension of the
underlying information for end-users. Graph layout methods can provide 2D or 3D placements
to the nodes within a particular graph [117]. The selection and implementation of specific
graph layout algorithms can provide valuable insights into the topological characteristics of
a graph. Node-link diagrams possess a noteworthy benefit in terms of conserving the local
characteristics of a network, hence facilitating the identification of its neighbours to a given node
and enabling the tracking of paths within the network. However, if these algorithms are not
chosen or implemented appropriately, they may obscure the inherent nature of the network’s
structure.

Battista et al. [17] and Eades et al. [51] examined different methodologies employed in graph
drawing and provided aesthetic principles for making drawings better. Additionally, Herman et
al. [78] conducted a comprehensive examination of graph visualisation and analysed it within
the information visualisation framework. In addition to incorporating a broader range of visual
representations than node-link diagrams, this study examined and compared conventional graph
layouts, such as tree-based, hyperbolic-based layouts, and 3D.

Optimising display space utilisation is thoroughly explored within the Graph Drawing
community. Considerable effort is devoted to the computation of two-dimensional layouts for
node-link diagrams while taking aesthetic criteria into account to enhance the readability of
these diagrams [197]. Common criteria for graph layout often involve ensuring non-overlapping
nodes, minimising the number of edge crossings, maintaining uniform edge lengths, maximising
symmetry and facilitating the easy recognition of graph substructures. Concerning the previously
described aesthetic objectives and limitations, the objective of the graph drawing community is
to identify algorithms that use the display area effectively and thus generate acceptable solutions.

Numerous layout methods have been presented to generate a visual arrangement of nodes
and edges in a network within the Graph Drawing community, serving as important aspects in
graph visualisations, such as radial, circular, and force-directed layouts [61]. These algorithms
mostly rely on node-link diagrams. Utilising various layouts of the same dataset can significantly
influence our perception of the relationships among data objects.

The random layout algorithm allocates a random x and y position to each node while ensuring
these positions fall inside the specified display areas, see Figure 2.17 below. The speed of the
generated layout is fast, and although the underlying network structure remains unidentifiable,
the visual representation of the network’s nodes and edges might provide a first assessment of its
size and density. In graph user studies, random layouts are occasionally employed to establish a
benchmark for evaluating the performance of more advanced layout algorithms. [30].

The circular layout algorithm uses a circular reference system to determine the positioning
of nodes. All nodes are exclusively positioned on the circumference of the circle. The node
sequence in a network can be determined by several criteria, such as alphabetical arrangement,
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Figure 2.17 Random layout [160]

sorting based on node degree, node similarity, or network clustering. Circular layouts that have
node sequences of significance can provide valuable information [26]. Employing a circular
layout in which nodes are sequenced according to their relative number of connections (node
degree) can be one example of this scenario. This arrangement aids in the identification and
understanding of the overall interconnectedness present within a network.

(a) (b)

Figure 2.18 a) Circular layout employing edge-length minimising order. b) Circular layout
employing exterior routing with edge clustering algorithm [65].

In their study, Gansner and Koren propose an improved circular layout algorithm that routes
edges along either the outer or inner face of the circle. The edges that are routed inside the circle
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are drawn using an edge bundling technique that aims to improve the utilisation of the available
area, see Figure 2.18b.

Force-directed approaches have been the predominant focus in the literature on network
layout [36], mostly due to their simplicity, ease of implementation and ability to generate
reasonable link visibility [173]. This approach involves calculating attractive and repulsive
forces between pairs of nodes in order to identify their optimal proximity in the resulting graph
visualisation. These forces are incrementally exerted upon the nodes until a state of stability
is achieved. These methods can be applied to various types of graphs without requiring prior
knowledge about the underlying structure of the graphs. One advantage of this strategy lies in
its simplicity, as a basic iteration can be effortlessly executed. Holten et al. [83] introduced a
force-directed algorithm in which links are modelled as flexible springs that can attract each
other while keeping node locations unchanges. As illustrated in Figure 2.19, the traditional
node-link diagram employs a force-directed layout that incorporates size encoding to represent
edge and node attributes.

(a) (b)

Figure 2.19 a) Illustration of a force-directed layout algorithm applied to a graph consisting of 75
nodes. The layout incorporates size encoding to represent edge properties. b) A larger network
where the node size encodes node attributes.

Relational data sets that incorporate actual reference systems, such as geographic maps, can
utilise network overlays that employ the geographic location of nodes to establish their spatial
locations, see Figure 2.20. One prevalent method for representing geo-located graphs is through
a map that exhibits a portion or the entirety of the earth, where nodes and edges are accurately
positioned based on their geospatial locations [28].

Extensive research has been conducted on various graph layouts for a long time. Several
earlier studies investigated how individuals visually interpret these visualisations and assessed
which visualisation methods are more effective in supporting particular tasks and datasets within
node-link diagrams. For example, a study conducted by Purchase et al. [146, 148] examined the
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Figure 2.20 Illustration of a graph visualisation on a map with geographic location [28].

impact of different graph layouts on the readability of visualised data in the node-link diagrams.
Ware et al. [203] investigated the impacts of various layout characteristics on response time for a
shortest-path finding task involving node-link diagrams.

Selecting a graph layout method is a critical step in implementing any network visualisation
environment. Traditionally, an adequate layout technique would effectively depict the underlying
graph structure and mitigate the scalability issue, which is a persistent concern faced by the
broader information visualisation community. The undertaking of building an effective graph
drawing algorithm is frequently complex and requires a significant investment of time. Conse-
quently, there exists a variety of open-source packages, such as Cytoscape [168], Gephi [15], and
Graphviz [53], among others, that address the matter of graph layout concerns. In the majority of
instances, while managing small-scale networks, the available resources are typically considered
satisfactory.

Conventional methodologies prioritise identifying graph structures, specifically topological
characteristics while facilitating interactive exploration [7]. Moreover, numerous graph analysis
tools heavily depend on statistical techniques to investigate various graph structure properties,
such as distances and node degrees. Nevertheless, the provided tools have limited functionality
in expressing node and edge attributes.

Considerable efforts have been made to compute optimal two-dimensional layouts for node-
link diagrams. These layouts aim to communicate the graph topology effectively while incor-
porating aesthetic criteria to enhance legibility [17]. The domain of graph layout research is
vast, and conducting comprehensive research on all proposed methodologies is beyond the scope
of this dissertation. Our research does not focus on graph drawing algorithms. Instead, we
concentrate on the visual design of node-link diagrams to assist in exploring the graph. A crucial
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aspect to consider in designing node-link diagrams is effectively employing an appropriate visual
mapping of nodes and edges to convey associated attributes.

2.3 Visualisation of multivariate network

Graphs generally include additional information. An attribute encompasses information pertain-
ing to the characteristics or properties of a network data instance. In addition, attributes can be
attached to nodes (ai ∈ Anodes) and edges ( a j ∈ Aedges) in order to indicate various metrics, such
as their type, size, or other information relating to its application. Edges frequently signify a
relationship’s weight (such as its strength and significance) as well as its direction. Conversely,
attributes can also be derived by computing topological properties, such as node degree and node
centrality [135].

A multivariate network is formally represented as G := (N, E, ρ), wherein N denotes a
set of nodes, E = (E

′
1, E

′
2, ..., E

′
k) : E

′
j denotes a set of all edges with jth attribute value A

j ∈ {1, 2, ..., k}, and ρ signifies a function that maps each node to its corresponding attribute
vector n ∈ N.

According to Kerren et al. [104], in the simplest form, the concept of multivariate networks
encompasses an underlying graph G, along with k additional attributes that are associated with
either nodes, edges, or both. Multivariate network visualisation involves enhancing traditional
network visualisation methods by incorporating supplementary variables linked to the graph’s
nodes and/or edges. The most difficult aspect of visualising multivariate networks lies in
the simultaneous representation of both the inherent network topology and its corresponding
attributes [135].

Multivariate data is commonly observed in real-world graphs pertaining to nodes and links.
Enhancing the representation of a system provided by a graph can be achieved through the
incorporation of additional attributes to the nodes and edges. This augmentation aims to unveil
additional properties inherent to the system under evaluation [30].

Datasets containing a single dimension are commonly referred to as univariate, while
datasets having two dimensions are known as bivariate. On the other hand, the term multivariate
is generally used to describe datasets encompassing three or more variables. In the context of
node-link diagrams, the prevailing approach involves utilising a single data variable to visually
encode graphic symbols, specifically nodes and edges. This type of symbol encoding is referred
to as "univariate". However, many traditional graph visualisation techniques fail to account
for the presence of additional attributes associated with each graph item, which are crucial for
effective representation [152].

Bertin’s seminal work proposed seven visual variables: location, size, colour hue, colour
value, texture, orientation, and shape [23]. Mapping data to visual variables, such as size, and
colour, allows end-users to discern unseen patterns and derive valuable insights from the data [98].
Numerous studies have explored visual channels, such as fuzziness and colour saturation, for
depiction [98].

The visualisation of edge directionality is frequently represented using arrows positioned at
the ends of the edges. However, alternative methods such as tapering or gradients can also be
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employed. [82]. Text labels are commonly employed for visually representing nodes and edges
attributes; nonetheless, visual channels, including colour hue, node size, varying edge thickness,
and shape, are also utilised [104]. For example, Bach et al. [11] exclusively employed node size
as a means to visually signify node degree in the exploration of network evolution.

Karim et al. [98] conducted research to examine the effects of colour coding in the context
of node-link diagrams. The researchers examined the impact of four distinct colourmaps, both
single- and multi-hue colourmaps, namely Blue, Viridis, RdYlBu and Jet, on the representation of
quantitative node properties inside a node-link diagram. In the experiment, a node-link diagram
with three emphasised nodes was provided to the participants. The circle-shaped node served as
a reference point, while the two square-shaped nodes were those to be compared, see Figure 2.21.
Their investigation revealed that Blue colour maps and Viridis demonstrated notably enhanced
performance, yielding reduced error rates.

Figure 2.21 The evaluation of colour encoding on nodes was conducted in node-link dia-
grams [98].

In their work, Ghani and Elmqvist [66] examined the efficiency of different visual channels
used for node mappings concerning revisitation tasks. The researchers conducted a comparative
analysis of three distinct visual mapping techniques for representing nodes: size, colour hue, and
a combination of size and colour, see Figure 2.22. The study results indicated that incorporating
spatial location into node size and colour yields better outcomes than using either size or colour
alone as node encoding techniques.

A further node-link diagram example encodes attributes on nodes and edges through colour
and size visual channels [2]. Each node denotes a scientific article with colour indicating the
publication year and size representing global citation counts. Edges represent bibliographic
coupling relationships, with colour interpolating from the nodes’ colour, as can be seen in
Figure 2.23.
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Figure 2.22 Three different visual mappings were evaluated on nodes in the context of node-link
diagrams [66].

Figure 2.23 A example of node-link diagram maps attributes on nodes and edges using colour
and size visual channels [2].
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On the other hand, small visualisation glyphs, multivariate glyphs or radial plots are employed
as substitutes for node representations to visually depict data associated with nodes. [200, 197,
104], while motif glyphs are employed to facilitate the understanding of network structure [50].
For example, Dunne and Shneiderman [50] employ cliques and fans glyphs as a means to replace
common links and subgraphs, representing topological patterns within the network, but these are
beyond the scope of our research. The research by Becker et al. [21] represents an early instance
of employing the glyph approach. In their study, the thickness and colour were utilised on edges
to visually represent the volume of incoming and outgoing telephone communication to provide
a high-level view of network traffic across various significant cities in the United States, see
Figure 2.24.

Figure 2.24 A node-link representation where nodes were placed according to their natural
geographic location. Thickness and colour of edges encode to visualise network traffic [98].

In the context of matrix representations, it is possible to utilise colour coding or substitute
cells with small icons to visually convey edge properties. Similarly, node attributes can be
depicted by employing coloured node labels [104]. Nobre et al. [136] examined the use of
on-node encoding in node-link layout and assessed the advantages and limitations of adjacency
matrices and node-link diagrams in relation to various tasks performed on multivariate networks.
Two variations of node-attribute visual encodings were developed based on the number of
attributes, see Figure 2.25. For 1-2 attributes, the size of a circle and colour mappings are
utilised for representing numerical and categorical values, respectively. To incorporate more
attributes, nested bar charts and coloured glyphs were employed. Edge attributes were depicted
through colour and thickness for categorical(specifically, edge type, which consisted of just two
categories) and quantitative data (specifically, edge weights ranging from 1 to 5), respectively.
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(a) Encoding two attributes on nodes and edges
through two distinct visual mappings.

(b) Visually presenting multivariate data on nested
bar chats as nodes and coloured glyphs.

Figure 2.25 a) Node size and colour were used to visually represent a categorical and a quantita-
tive attribute, respectively. b) Multivariate data on nodes is represented by nested bar charts for
numerical values, and coloured glyphs were used for categorical values [136].

Their decision to select visual mapping on nodes is based on the existing literature [133].
However, the authors did not present any design rationale for the selection of edge encoding.

The utilisation of bar charts overlaid on the edges [161] has been employed to encode multiple
attributes in the context of node-link diagrams. Another approach is to employ multicoloured
segments with varying line widths to depict different numerical properties of links [107].

Figure 2.26 Several numerical attributes are encoded by the width of the coloured segments [107].

Ko et al. [107] proposed a new visualisation method called multiple threads for representing
multiple numerical attributes of links. The approach employed in this study utilises multiple
parallel links that consist of coloured segments with different thicknesses [107]. As shown
in Figure 2.26, each link in the graph comprises multiple parallel threads, with the width



2.3 Visualisation of multivariate network 37

of each thread being adjusted proportionally to the value of a corresponding link variable.
Nonetheless, challenges arise due to potential difficulties in colour discrimination, and this
approach’s scalability is limited.

Schöffel et al. [161] conducted a study on a methodology for representing multivariate
data on graph edges ( see Figure 2.27). Different sorts of bar charts were exhibited at the
intersections of nodes. A study was done with a sample size of 89 participants to assess the
impact of different types of bar charts on response time and accuracy in graph interpretation
tasks. The study results indicated no statistically significant differences were observed in either
response time or accuracy across the various types of bar charts evaluated. The subjective
preference ratings revealed a preference for bars positioned on the edges rather than being
centred around the edges. Additionally, bars of equal size were favoured over bars sized based
on edge length. Furthermore, bars oriented orthogonally to the edges were favoured over their
parallel counterparts. Nonetheless, it should be noted that the study did not provide statistical
analyses to validate the discerned trends.

Figure 2.27 Link using coloured bars for encoding four quantitative edge attributes. This
approach involves assigning specific colours to each attribute and representing their values
through the length or height of the corresponding coloured bar. [161].

The existing corpus of literature regarding network visualisation methodologies is substantial
and continuously growing. Numerous surveys and taxonomies have been conducted on diverse
variations of multivariate graphs and their visualisation methodologies [104]. For instance,
temporal graph visualisation design space [104] and multivariate graph visualisation [135]
have been subject to thorough investigation. Numerous methodologies have been suggested to
investigate the multiple attributes within a temporal multivariate network.

In a dynamic context, both the network topology and the values of attributes have the potential
to change over time. Archambault et al. [6] provide a formalisation of multivariate temporal
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networks, focusing on integrating time with other dimensions in the visual representations.
The authors highlight three temporal aspects in their study, namely structure, behaviour, and
evolution. Structure refers to the topology of the underlying network at a specific point in time,
while behaviour pertains to changes in attributes. Lastly, evolution encompasses changes in the
network’s structure over time. Additionally, their model incorporates the concept of influence,
which refers to a functional relationship between network elements and characteristics. For
instance, an attribute denotes a graph-theory property that is obtained from the structure of the
network.

In their study, Saraiya et al. [159] investigated the visualisation of multivariate networks by
focusing on the representation of graphs connected with time series data. The authors explored
different methods for indicating changes in the graph data at specific points along the timeline.
The experiment involved the examination of a singular attribute, which was visually represented
by utilising node colour. This representation employed a colour spectrum that spanned from green
to yellow to red. Furthermore, the researchers conducted an investigation into multiple attributes
by utilising nested views that incorporated heat maps and line charts as time series glyphs. These
visualisations were employed to depict temporal patterns of nodes that are embedded within a
static network structure.

Besides encoding attributes on data entities, in the literature, attribute-driven layouts consider
including network attributes to calculate the layout, even if these attributes may not be explicitly
visually represented explicitly [135]. For example, determining node placements in the graph
layout can be achieved by calculating attribute similarity. Alternatively, nodes exhibiting similar
attributes may be clustered together to diminish the overall size of the network.

As an example of the attribute-driven layouts, PivotGraph, as proposed by Wattenberg [204],
presents a consolidated perspective of a multivariate graph. The approach involves combining
nodes and edges that possess identical values for the designated categorical attribute value,
such as node type, and afterwards utilising colour and size as visual representations of this
information within a 2D grid-like node-link layout. The sizes of the points in the visualisation
are directly proportional to the number of individuals who possess the corresponding value. The
links between the points are represented by varying widths, which are also proportional to the
number of edges linking the points.

An alternative illustration was found in the GraphDice system [24] in which multiple non-
spatial attributes were encoded in two dimensions. Multivariate data was used directly define
a layout by using a scatterplot for the nodes and superimposing edges onto this, and nodes are
positioned according to nonspatial attributes. However, such specialisations are not in the scope
of this study.

The prevalence of attributed graphs is on the rise, and a significant issue in attribute en-
coding is the effective representation of characteristics linked to nodes and/or edges inside the
network [104]. Therefore, the illustration of node-link diagrams necessitates incorporating
appropriate design elements for fundamental drawing primitives for both edges and nodes [197].

The analysis of the characteristics of node-link diagrams yields valuable insights that can
enhance their comprehensibility in practical applications. However, incorporating additional
information, such as detailed attributes of nodes and edges, poses a significant challenge in the



2.4 Uncertainty Visualisation 39

context of multivariate graphs. Employing multiple visual variables or multivariate symbols (or
glyphs) is required to encode multiple attributes, which introduce an additional layer of visual
complexity, imposing a considerable cognitive load when attempting to identify patterns and
comprehend the visualised information.

Nobre et al. [135] focused on examining multivariate network visualisations. Two distinct
encodings are distinguished in node-link diagrams: on-node encoding and on-edge encoding.
While on-node encoding was found to be a favourable performance in graphs comprising diverse
sorts of node attributes. They indicated that limited research had investigated the visualisation of
edge attributes. They stated a lack of appropriate visualisation methods for this encoding type of
bivariate or more attributes, presenting a novel avenue for future research.

Visualising edges in node-link diagrams has greater challenges than representing nodes,
mostly due to the intrinsic constraints imposed by the narrow profile of the edge primitive. This
limitation results in a reduced drawing space for edges, in contrast to the relatively larger space
available for nodes. Therefore, it is an open question to employ efficient visualisation methods to
facilitate the examination and analysis of both the network structure and the associated bivariate
properties on its edges.

2.4 Uncertainty Visualisation

Existing techniques for visualising uncertainty frequently fail to effectively facilitate decision-
making processes because they are restricted in their ability to depict uncertainty data accurately.
Numerous studies examined in this section have underscored this constraint, thereby emphasising
its significance and the practical need for enhanced visualisation methodologies for more reliable
and comprehensible visual representation in the decision-making process.

2.4.1 Uncertainty

In its most basic definition, uncertainty is a result of a lack of information [89]. Uncertainty is
frequently quantitatively represented by scalar values like probability, error, percentage, distance
(e.g. from the true value), variance or standard deviation [69, 123] alongside the primary
data or as an intrinsic part of the data, deduced from the data’s description. Researchers have
distinguished two types of uncertainty: aleatoric and epistemic [178]. While aleatoric uncertainty
results from randomness, such as findings by chance, which are entirely objective in which
outcomes vary each time an experiment is repeated. Epistemic uncertainty refers to a lack of
knowledge, or in principle, the potential to lessen with further information, but this is generally
not possible in practice.

Uncertainty can be present in various data sources utilised for information visualisation and
visual analytics [23], and diverse forms of uncertainty are present in all facets of life. Weather
uncertainties arise from an absence of accurate forecasts [95], network connection uncertainties
arise from a lack of bandwidth reliability, and sensor data uncertainties arise from a lack of
accurate or complete data [97]. Data uncertainty can have a significant impact on the analysis of
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the data and the following decision-making process. Consequently, uncertainty should be taken
into account when analysing and communicating visual data.

The concept of uncertainty is thoroughly established in several areas that engage with
measured data. As an example, error bars are commonly employed to represent the uncertainty
associated with measurements, demonstrating the standard mean of error or related descriptions
of variability or uncertainty [138]. Nevertheless, comprehending the most standard forms
of uncertain communication poses a significant difficulty for novices and experts alike [22].
This challenge arises, at least in part, from the abstract nature of uncertainty and ineffective
communication approaches. It is crucial to acknowledge that the visualisation of uncertainty
is a dual challenge, encompassing both technical and cognitive aspects. It requires a deeper
understanding of the data and relationships within the graph and the ability to communicate and
interpret the uncertainty to the user effectively. One prominent concern is developing visual
metaphors that effectively build an intuitive cognitive connection between uncertainties and the
data. This connection aims to enhance the user’s understanding of the relationship and reduce
the likelihood of overlooking important information. [69].

Uncertainty poses a significant challenge that cannot be disregarded, as failure to address
it adequately may result in incorrect or imprecise decision-making [97]. It is a demanding and
complicated notion, and its representation through visual means has become indispensable within
the field of data science and analytics [122]. Given that the error is inherent to the data analysis
process, a simple depiction of the data will not fulfil the intended objective. [97]. Therefore, it
is imperative to employ effective visualisation techniques to satisfy the demands of the growing
representation of primary data and its associated uncertainty, such as confidence and variance.

2.4.2 Uncertainty Visualisation

The challenge of uncertainty visualisation has been recognised as a prominent area of research
in the field of visualisation. Over the years, hundreds of studies have been conducted in the
visualisation community on this emerging topic [91]. Numerous survey papers have been pub-
lished, offering comprehensive coverage of uncertainty visualisation from various angles. Pang et
al. [141] present an influential work that applies a general taxonomy of visualisation techniques
to the domain of uncertainty visualisation. Their framework classifies based on: input data values
and associated value uncertainty; the data’s position and its positional uncertainty; extent specifi-
cations for location and value; discrete versus continuous visual encoding; and axis mappings.
This taxonomic approach brings valuable coherence for cataloguing the extensive array of general
and uncertainty-focused visualisation approaches. The categories also assist technique selection
based on data characteristics. Nevertheless, these taxonomies have limitations in elucidating how
uncertainty visualisations function and guiding novel technique conception. Hence, the authors
also classify uncertainty visualisation methods based on the subsequent categories: inclusion
of glyphs, geometry addition, geometry modification, attributes modification, employment of
animation, utilisation of sonification, and implementation of psycho-visual approaches.

A recent survey by Kamal et al. [97] categorised uncertainty visualisations, which is com-
parable to the classification approach by Pang et al. [141]. These categories include geometry,
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attributes, animation (blinking, motion), visual variables, traditional graphical approaches (such
as box plots, scatter plots, and histograms), and glyphs. Additionally, the authors provide
a concise overview of the theoretical underpinnings of uncertainty visualisation and sources
and models of uncertainty. They also discuss several methodologies for evaluating uncertainty
visualisation techniques and provide future research directions in this field.

Graphical representations play a crucial role in effectively communicating facts and ideas
across several domains. When examining uncertainty within the information visualisation
framework, it becomes evident that it manifests itself at each level of the visualisation process. In
accordance with the work of Brodlie et al. [29], a distinction can be made between visualisation
of uncertainty and uncertainty of visualisation. When addressing uncertainty visualisation, the
primary emphasis is typically placed on demonstrating the presence of uncertainty inherent in the
data. The latter term refers to the further uncertainty that arises from visualisation, in addition to
the uncertainty already present in the data. To be more specific, the uncertainty of visualisation
refers to the uncertainty that arises during the stages after the data acquisition in the visualisation
pipeline [29] (as shown in Figure 2.28). It is obvious that the uncertainty of visualisation is
undesirable and is outside the scope of this thesis. Our research is centred on the initial notion,
visualisation of uncertainty.

Figure 2.28 The visualisation pipeline can be extended to incorporate considering uncertainty at
each stage. (Source: [205], p. 3))

Hullmann [88] focuses on the examination of existing uncertainty visualisations and high-
lights that varying designs have a significant impact on the outcomes. It has been observed that
uncertainty visualisation can be susceptible to errors, particularly when incorrect inferences are
drawn due to inadequate communication on the underlying statistical model. For instance, there
may be confusion between standard deviation and variance.

A wide range of applications involve the utilisation of uncertain data, which may arise from
several sources, such as inaccuracies, incompleteness, and inference. However, most graph
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visualisation methods that have been presented focus just on visualising the graph itself, without
incorporating the related uncertainty data [197]. In their study, Brodlie et al. [29] examined
uncertainty-related challenges. They identified several key issues, including the complexity of
uncertainty, the diverse ways in which uncertainty information is presented, the propagation
of uncertainty, the introduction of an additional dimension to visualisations, the tendency for
uncertainty to overshadow certainty, and the interdisciplinary nature of uncertainty.

Several visual variables have been proposed for representing uncertainty, including "Bertin’s
retinal variables" [23], blur, and transparency [121]. MacEachren et al. [122] examined the
intuitiveness and performance of different visual variables, such as fuzziness, location, and
saturation, in representing uncertainty for single objects during map reading tasks. In contrast
to our study, they evaluated using point symbols rather than lines. The participants were
asked to evaluate the level of intuitiveness of a predetermined group of visual variables, see
Figure 2.29. Nevertheless, it should be noted that not all visual variables are effective for
illustrating uncertainty regarding their intuitiveness. Participants favoured fuzziness and location,
whereas saturation received a very low ranking. [122]. They also evaluated iconic symbolisation
for representing uncertainty. The theory of visual semiotics of uncertainty [122] has significantly
influenced the development of many uncertainty visualisation applications. Guo et al. [71] refine
these visual variables regarding graph edges.

Figure 2.29 Eleven visual channels have been examined for representing uncertainty on point
symbols [122].
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2.4.3 Uncertainty Visualisation in Graphs

Graph data displays three distinct forms of uncertainty [100, 197]. Initially, a node’s existence
may be subject to uncertainty. Additionally, uncertainty may be present in the links between
nodes. Furthermore, the attributes associated with both nodes and links can also be subject to
uncertainty. However, it is important to note that the placement of visualised nodes is not an
inherent uncertainty, except for geographic map layout nodes, which have location uncertainty
in the real world since the graph description or a graph-drawing technique determines it. Our
research focuses on representing uncertainty attributes on both nodes and edges. In this context,
the term uncertainty refers to quantified uncertainty that can be represented visually.

The incorporation of graph visualisation with uncertainty has attracted considerable attention
in recent years. Uncertainty is commonly represented as a visual variable [71, 122]. This visual
variable is then applied to a specified graph layout.

Within node-link diagrams, lines serve as ubiquitous graphical elements. Information can
be encoded using these lines through the modulation of a distinct attribute, such as grayscale,
in accordance with its quantitative or qualitative value. Incorporating uncertainty information
into visualisations through lines introduces an augmented avenue of communication. As an
illustration, uncertainty could be represented by lighter lines, whereas darker lines could denote
certainty. Opacity, wavelength, blur, colour, width, and sketchiness are examples of attributes
assigned to lines that are found in the literature.

Boukhelifa et al. [27] conducted a study to assess the level of intuitiveness associated with
the line attributes of sketchiness as a new visual variable in the context of visualising uncertainty.
Grayscale, blurred, and dashed lines have been compared to sketchy lines, see Figure 2.30. The
term "sketchiness" pertains to deviations observed in a line that imitate the characteristics of
hand-drawn lines. These deviations exhibit a higher level of irregularity compared to wave-like
patterns. As the magnitude of deviations increases, so does the level of sketchiness. While
the design of sketchiness may be considered unprofessional, it has been found that accurately
perceiving the degree of blur and grayscale is also challenging.

Figure 2.30 To determine which visual designs individuals preferred concerning uncertainty
encoding, they requested that participants choose one of four possible options [27].

The study conducted by Guo et al. [71] focused on the utilisation of various combinations of
visual variables in order to represent the uncertainty associated with graph edges, see Figure 2.31.
The researchers assessed the user’s perception of undirected edges that represented two charac-
teristics simultaneously, namely, strength and certainty. Various combinations of visual variables
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were evaluated for distinct tasks. The researchers chose to utilise width, hue, and saturation as
visual representations of the strength (primary value) edge attribute. Additionally, to encode the
uncertainty attribute, they selected lightness, grain, fuzziness, and transparency. It was found
that the perceptual distinction between lightness and saturation is significantly greater than that
between lightness and hue. The findings of their study suggest that the combination of brightness
and hue does not yield favourable outcomes, while the integration of fuzziness and width is not
advisable.

Figure 2.31 Guo et al. [71] conducted a user study of paired visual variables to visualise
uncertainty as an additional dimension in conjunction with the primary attribute of the edge.

In their empirical study, Bae et al. [13] examine several visual encodings pertaining to
causality, strength, and uncertainty. The objective of their research is to identify the most
effective representations and offer recommendations for the design of causal diagrams, see
Figure 2.32. The focus lies in the empirical evaluation of several attributes pertaining to the
visualisation of causality. The visual cues that were assessed encompassed the use of arrows
versus tapered lines to indicate the direction of causality, the utilisation of width versus hue to
represent the strength of causality, and the consideration of brightness versus fuzziness versus
granularity to convey the level of uncertainty. The researchers reached the conclusion that the
indication of causality direction can be achieved by employing arrows or tapered lines. The
visual attributes of width, brightness, and fuzziness are suggested for representing strength and
uncertainty. They stated that visual representations employing width and brightness demonstrate
comparable performance to representations utilising tapered-number-number depictions.
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Figure 2.32 Eight different combinations of visual variables used in their experiment [13].

2.4.4 Summary

Uncertainty visualisation approaches can help highlight the uncertainty, facilitating a compre-
hensive portrayal of the investigated data. [138]. It is essential to recognise that a universally
applicable approach to uncertainty visualisation, capable of enhancing decision-making across all
domains, does not exist. Furthermore, there are no assurances that the presentation of uncertainty
to readers will invariably lead to improved judgements or increased trust [139]. Hence, it is im-
perative for visualisation designers to exercise meticulous consideration for every design option
they make, as failure to do so may increase the complexity of the decision-making process.

When it comes to depicting uncertainty on edges, the visual encoding channels are employed
to determine the visual attributes of line marks, including colour, size, and transparency [133].
Encoding channels offer the advantage of modifying an existing mark, such as increasing
its transparency when there is significant uncertainty. Hybrid techniques can be devised by
combining marks and encodings to convey uncertainty. Nevertheless, a constraint exists regarding
the number of visual channels that can be utilised to depict bivariate data on edges. It is
worth mentioning that many colour channels, including hue and saturation, possess perceptual
integration, hence complicating their use in bivariate data analysis [43].

In this subsection, various methods for uncertainty visualisation have been explored in
the context of node-link diagrams. Throughout discussions on uncertainty visualisation, it
is clear that many state-of-the-art methods focus on presenting uncertainty in isolation or
without proper integration with primary data attributes. This thesis introduces the Vizent edge
design as a novel solution, which provides a dual-encoded approach to visual representation
by embedding uncertainty directly into the visual representation of network edges. Unlike
traditional methods that often separate uncertainty from primary data values, the Vizent edge
design seamlessly combines these elements, thereby enhancing the graph’s interpretative value.
This approach addresses a critical gap identified in the literature, where visualisation techniques
fail to adequately convey the relationship between primary data attributes and their underlying
uncertainty. These advancements are designed to improve decision-making processes, allowing
users to make more informed decisions based on a comprehensive view of the data presented.
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Comparative analysis with traditional methods has demonstrated that the Vizent design not only
increases the accuracy of data interpretation but also enhances user understanding, as validated
by the usability studies detailed in Chapter 5.

2.5 Graph Summarisation

Network data is everywhere, encompassing various forms such as e-mail traffic between indi-
viduals, telecommunication networks, transportation networks, and financial networks [197].
Although graph visualisations predominantly try to offer insight into diverse patterns underlying
the connections among complex and large data elements and their distinct attributes, it is unfor-
tunate that they suffer from a lack of scalability. As the number of nodes and edges grows, the
complexity of the graph increases while legibility diminishes. [126, 112].

Node-link diagrams frequently suffer from visual clutter [117, 181, 52] when drawing
datasets of a large scale [67], which can negatively impact usability, aesthetics, and the inter-
pretation of data. Furthermore, overlapping between nodes, edges, and node-edge contributes
significantly to the visual clutter [144]. According to Rosenholtz et al. [156], the presence of
visual clutter in data visualisation can be identified in the following manner:

“Clutter is the state in which excess items, or their representation or organisation, lead to a
degradation of performance at some task.”

The task of representing large graphs through node-link diagrams poses significant challenges
within the domain of information visualisation and graph drawing communities. The techniques
that are considered most effective for automatically drawing graphs are primarily designed to
provide aesthetically readable layouts tailored for moderately sized and sparsely interconnected
graphs. Despite the considerable research conducted in graph visualisation, conventional node-
link diagrams only effectively display graphs with a restricted number of nodes, often ranging
up to a few hundred.

Users could closely examine and analyse specific local aspects within the displayed content
through the use of interactions like zooming and panning. Nevertheless, it is important to
note that this particular method of interaction exhibits several inherent constraints, including
inadequate navigation patterns and potential user disorientation [84].

Focus+context, a well-known interaction strategy, can be implemented as an alternative
category of interaction methods to allow observers to simultaneously obtain an overview of the
entire network and view parts of the main interest shown in full detail. However, well-known
examples of focus+context techniques for investigating large graphs, such as traditional fisheye
views [62], impose significant distortions that frequently result in diminished legibility of paths
and other noteworthy structures [199].

Numerous graph reduction methods have been suggested to reduce the graph size so that
important structures can be perceived easily, including clustering [16], edge filtering [93], and
sampling [208, 214]. Edge-bundling algorithms [64, 184] (see Figure 2.33), and advanced
layouts [8, 215] were developed to enhance the spatial arrangement of nodes and edges in
order to minimise visual clutter. Despite the graph’s manageable size in terms of screen space,
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effectively conveying the required information to users remains a challenge due to the limitations
of human perceptual abilities, which often favour smaller graph sizes.

Figure 2.33 The layout of the Internet graph (top) has a total of 149661 edges. After implementing
the edge bundling method, the resulting image is at the bottom; however, the result is still a
hairball cluttered with edges. [64].

Graph bundling is a prominent visualisation technique that primarily emphasises graph edges
in order to manage large and dense graphs. One approach to mitigate the issue of edge clutter
in network visualisations is using edge bundling techniques. Edge bundling is a technique that
groups links inside a graph based on predetermined criteria. These techniques, as illustrated
in Figure 2.33, aim to aggregate groups of edges or portions of edges (i.e. their pixels), either
implicitly or explicitly [198]. Through this process, they enable the visualisation of higher-level
flow patterns within the network that would otherwise remain obscured. In the initial iteration of
these algorithms [184, 83, 64], without accounting for their integration with other methodologies,
the primary advantage was limited to the reduction of visible items. They tried to reduce the
space dedicated to the links, increasing the possibility of making nodes visible. As opposed, the
aggregation of links in a traditional way led to a more ambiguous visualisation [12].

The scale of graphs has been expanding as a result of the ongoing accumulation of data.
As a consequence, it becomes progressively more challenging to extract valuable and easily
understandable insights from large-scale graphs. Although data summarisation approaches have
been researched comprehensively, only recently has summarising interconnected data, or graphs,
gained attention [119]. Graph summarisation is a technique that is gaining prominence as a
potential solution to address this particular issue.

Graph summarisation can generally serve to eliminate the noise and identify underlying
patterns within the data, even though the concept of graph summarisation lacks a precise
definition [119]. Graph summarisation is a technique used to create smaller graphs that use
significantly less storage space while retaining the distinct characteristics of the original, large-
scale graphs [119]. This particular representation exhibits a reduced scale, hence facilitating
the comprehension process for observers. Graph summarisation studies can be classified into
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summarisation of static [105, 151], dynamic [165, 183], weighted [118, 73], or attributed
graphs [212, 106]. However, most summarisation algorithms function on static networks,
utilising the structure of the graph and, if available, the properties of the nodes and edges.

The process of graph summarisation enhances the efficiency of graph analysis by generating
a compact representation of the graph that may result in some loss of information but facilitates a
more streamlined analysis [151]. The literature has extensively examined a diverse range of strate-
gies, each characterised by a distinct approach. Among the techniques utilised by researchers
are grouping or aggregation-based methods, simplification-based methods, compression-based
methods and influence-based methods [119].

Figure 2.34 The example of graph-structure summarisation [114] is centred on graph topologies
and does not incorporate attribute values.

One of the most utilised grouping-based methods, such as edge-grouping or node-grouping,
is generating a supergraph. A supergraph is a graph in which nodes are iteratively combined into
supernodes (a set of vertices), and edges are aggregated into superedges (each superedge holds
information about how many original edges it represents) [114], see Figure 2.34.

Simplification-based graph summarisation involves eliminating nodes or edges deemed
less "important" in the graph, leading to the creation of sparsified graph. When comparing
supergraphs, it is observed that a summary is comprised of a subset of the original set of nodes
and edges, for instance, see Figure 2.35. Similarly, a concept, known as backbone identification,
serves the purpose of discerning the most important edges inside a network and eliminating all
other edges [26]. Backbone identification is particularly valuable when dealing with networks
that are very dense, for example, where individual nodes and edges can no longer be seen, and
the layout resembles a big hairball [26]. There are different approaches to identifying backbones.
The simplest approach is to use node and/or edge properties to delete links that are less relevant.
For example, DrL [125] layout algorithm manages to layout large and dense networks by only
keeping the top n highest weight edges per node.

Link reduction is a straightforward method that involves selectively displaying edges that
have weights exceeding a specified threshold or that meet particular criteria. Thus, solely those
boundaries that the user may find interesting are illustrated. A further extremely straightforward
solution could be to remove every node or every link. Although the decision to display nodes or
edges exclusively may be subjective and yield debatable outcomes, there exist more advanced
techniques that offer well-defined justifications for minimising visual complexity.



2.5 Graph Summarisation 49

Figure 2.35 a) The original network is visualised using the node degree information. b) The graph
is simplified through the removal of structural information, namely by eliminating one-degree
nodes in order to reduce the visual complexity. [169].

Previous research [75, 187, 55] has also explored the issue of compressing large graphs, with
a particular focus on compression techniques for WWW (Web) graphs. However, the primary
objective of these graph compression methods is to achieve compact graph representations that are
simple to store and manipulate by implementing encoding techniques like bitmap compression,
and reference encoding, whereas graph summarisation methods [111, 186] concentrate on
generating concise and comprehensible summaries.

Bit compression-based methods compress the original graph into a smaller, more manageable
summary by employing techniques from data mining. In order to generate the summary or model,
the number of bits necessary to represent the original graph is minimised. As a consequence,
the summary produced is significantly more compact than the original graph; however, it still
contains essential information that facilitates a more comprehensive comprehension of the
original graph’s structure, including network structural patterns such as bipartite subgraphs.

There is a small number of influence-based summarising approaches. By utilising structural
and node attribute similarities, the influence or diffusion process in a large-scale network can be
summarised. [170].

There is still some disagreement within the literature over the appropriate structure and
format of a graph summary. It is always application-dependent and can accomplish a wide range
of tasks, including preserving the responses to graph queries, discovering new graph structures,
merging nodes into supernodes, and merging edges into superedges, among countless other
purposes. Nonetheless, the challenges encountered by individuals involved in the creation of
graph summaries are commonly experienced throughout various fields [119]:
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• The complexity of splitting or merging edges and nodes in a graph increases as the number
of properties associated with the graph increases. This can lead to complications as
real-world domain networks often exhibit an increasing heterogeneity of nodes [119].

• Graph summarisation’s primary objective is to minimise the complexity of the input graph
in order to facilitate subsequent analysis. Nevertheless, methods employed to accomplish
this face the obstacle of processing substantial amounts of data.

• The primary outcome of a graph summarisation procedure is to retrieve the most interesting
observations presented in a graph. However, determining what is deemed as interesting is
frequently a matter of subjectivity, contingent upon particular objectives of the analysis.

• Determining the threshold of "sufficiently many results" will remain a challenge even
after a successful elucidation of the criteria for defining what is of interest during graph
summarisation. One example of a compression technique is examining the extent to which
the size of a graph has been decreased in terms of raw bits. As an additional illustration, a
simplification technique will examine the disparity in the total number of nodes and edges
prior to and subsequent to the process of summarisation.

Generally, each technique is characterised by a distinct set of criteria that govern the determi-
nation of successful outcomes. Furthermore, it is worth noting that the absence of a ground-truth
answer typically challenges each technique. In conclusion, it is advisable to try various ap-
proaches, evaluate their outcomes, and ultimately choose the most suitable one since there is no
one-size-fits-all method.

2.5.1 Summary

This subsection briefly presented the graph summarisation techniques in the context of infor-
mation visualisations. We discussed some graph reduction methods, interaction techniques,
and simplification-based graph summarisation methods related to the work presented in this
thesis. There are several methods for summarising graphs, each with advantages and limitations.
However, selecting the suitable summarisation method depends on the application’s specific
requirements and requires a good understanding of the characteristics of the data and the desired
level of detail in the summary.

In summary, graph summarisation is crucial for condensing large networks into more compact
representations while preserving both structural and attribute information. However, existing
approaches often focus more on reducing the visual complexity of graphs without fully ad-
dressing the retention of “more important” information pertinent to the user’s particular needs.
To overcome this, Chapter 3 presents an entropy-based graph summarisation algorithm that
effectively balances complexity reduction with the preservation of important information. This
algorithm applies information-theoretic principles to selectively prioritise and display graph
elements based on their informational value, ensuring that key insights remain visible even in
significantly reduced formats. Unlike traditional methods that may rely on heuristic or arbitrary
criteria, our proposed algorithm utilises Shannon entropy to ensure that the most informative
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subset of edges is maintained in the summarised outputs while accounting for the inherent
uncertainties arising from the variability or unpredictability of edge information in the graph.
Additionally, the algorithm’s capability to dynamically adjust to user-defined parameters allows
for customised summarisations, making it highly adaptable for various specific analytical needs
and scenarios. The implementation and efficacy of this summarisation approach are thoroughly
explored in Chapter 3, demonstrating the practical benefits and efficiency of the algorithm in
real-world scenarios.
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Overview

Representation of all data is not possible due to the limitations of the canvas size, the cluttering,
or the impossibility of interpreting the data by the user. Moreover, when the number of presented
nodes and edges increases, the user performance decreases, and end-users take more time to
distinguish visualised nodes or edges since the cognitive demands of such visualisations surpass
the capabilities of the average human brain.

This chapter introduces a method designed to simplify complex graphs by applying real
Facebook traffic patterns; however, this approach can be applied to various network datasets.
Consider a network to be a complex system of roads, with traffic flowing at varying speeds and
volumes. Similar to how traffic analysts seek to identify roads with the most fluctuating traffic
patterns to improve flow and reduce congestion, our method identifies the most variable connec-
tions in the network by providing a simplified yet insightful view without getting overwhelmed
by graph complexity.

3.1 Introduction

Graphs are commonly employed as a means of representing and analysing real-world entities and
their interconnections. Graphs in numerous applications sometimes exhibit a substantial scale,
characterised by an extensive number of nodes and edges, reaching into the thousands or even
millions [186]. While visualising small, static networks is relatively easy, encoding a large or
complex data set into a single visual representation might result in a cluttered and overcrowded
display that prevents the user from fully comprehending its structure and contents [196].

Real-world graphs of ever-increasing size contain additional information, known as labels
or attributes, beyond just the connections between nodes. This additional information can
provide valuable insights into the underlying structure of the graph. In practical applications,
visualising networks, even those of moderate size, can provide challenges due to issues such
as overlapping elements and information loss. Moreover, incorporating additional variables
into these visualisations can further complicate the task [197]. Clearly, making sense of all this
information visually to facilitate comprehension poses a distinct problem.

End users generally find themselves immersed in vast information while facing constraints
regarding their cognitive capacity and temporal resources for assimilating new information.
The issue commonly referred to as "information overload" is a prevalent challenge observed
in diverse fields. The phenomenon can lead to a state of information paralysis. There is a
growing abundance of information available, yet there is a noticeable decline in the quality of
the information being disseminated. Consequently, users encounter difficulty in discerning the
relevant information. For example, individuals engaging in visualisations typically interpret just
a limited portion of the available information at any one moment. Cognitive load, as seen in the
field of cognitive psychology, is derived from the limited capacity of human short-term memory,
which is commonly known to be able to retain a relatively small amount of knowledge, often
around seven plus or minus two pieces of information [130]. Hence, it is crucial to minimise the
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relevant information shown at any given moment to ensure ease of comprehension regarding the
primary attributes of data characteristics.

Finding a solution to the issue of information overload necessitates the acquisition of atten-
tion, the provision of ways for more effective summarisation and filtration, the exploration of
potentially relevant information, and the enhancement of information quality. In order to effec-
tively mitigate the occurrence of misunderstandings, misinterpretations, and the inappropriate
utilisation of information, it is crucial to take appropriate measures. One effective strategy for
mitigating visual overload is to limit the amount of information that can be presented simultane-
ously. While maintaining a perceptible and comprehensible simplified depiction of the large and
complex data set, the observer does not experience a sense of being overpowered by the entirety
of the data.

3.2 Motivation

Visual analysis of large and complex networks has garnered increasing attention, not only among
many research communities (beyond those solely focused on graph theory) but also among the
wider public. Visual search tasks are frequently encountered in graph visualisations, where the
objective is to identify specific edges or nodes. One primary reason for this interest lies in the
pursuit of objective insights regarding network connections, aiming to monitor and comprehend
them and subsequently implement measures to enhance or optimise their use. Nevertheless, it is
worth noting that node-link diagrams have limitations when it comes to accommodating a large
number of nodes and links, often resulting in hairball-like visualisations. The large network
visualisations might be daunting and perplexing for experts and non-expert users. The presence
of hairball-like visualisations hinders the ability to explore or analyse networks effectively,
resulting in a lack of insights or, in certain cases, the formation of erroneous conclusions due to
visual clutter. Therefore, users require a concise visualisation that effectively communicates the
relationship between the structure of a network and its associated attributes.

Much work has been done on developing visualisation techniques that try to scale to gen-
erate visual representations of large graphs [30]. Most approaches aim to provide users with a
comprehensive perspective of the complete graph. This commonly entails the utilisation of effi-
cient layouts, multiscale clustering methodologies or matrix-based network visualisations [192].
While the objective of offering a comprehensive outline of the graph is a laudable goal, there are
numerous situations where the user’s focus is not on obtaining a holistic perspective of the entire
graph but rather on addressing a specific task or problem associated with the graph.

Exploration of the visualised large and complex graph-based data through existing visu-
alisation schemes in a short period becomes quite challenging due to exceeding the limits of
short-term memory. Moreover, our ability to comprehend those graphs remains constrained, and
we fail to absorb all the information as decision-makers’ time is limited. In these cases, even with
dynamic deployment, understanding and communication of these graphs without implementing
a suitable data reduction method would impose a significant cognitive load on the viewer to
understand the most critical aspects of the graphs due to the limited capacity of the human brain.
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These challenges can be addressed by leveraging the user’s pre-existing knowledge of the tasks
and selecting an appropriate summarisation technique.

Graph summarisation can be understood as a process of reducing the complexity of a graph
while preserving important information. Our motivation is to identify the most informative fea-
tures and patterns in graph-based systems in order to address information overload. Information
theory has been applied to determine the relevant data to be displayed. One way to achieve this
is by using entropy-based methods, such as Shannon entropy, which can quantify the amount
of information in a graph. As a result, information theory can be valuable in highlighting the
intended insights while hiding less “interesting” features in this pursuit. These insights, in turn,
can be leveraged to develop more effective and efficient visualisations for human perception.

3.3 Facebook Datacentre Topology

Facebook is one of the leading web services providers in the world, and its network is made
up of different datacentre regions with a WAN backbone connecting these regions [129, 56].
Facebook caters to a monthly user base of 2.23 billion people and has twelve datacentres spread
across different locations. These datacentres employ various generations of datacentre network
design [129]. Each region consists of at least one datacentre building, which is referred to as a
datacentre. Facebook utilises two different intra-datacentre network designs on its backbone
network: cluster-based design (older) and the state-of-the-art fabric design [5], as discussed in
Section 3.3.1.

Figure 3.1 Fabric network design of Facebook data centre, which accommodates a large number
of interconnected devices and a more complex topology [5].
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3.3.1 Facebook’s Fabric Network Design

This section provides an overview of the Facebook data centre and its connectivity, see Figure 3.1.
An examination of the anatomy of the Facebook fabric design, as depicted in Figure 3.1,
reveals four independent "planes" of spine switches, each of which can accommodate up to 48
independent devices per plane. The spine plane is responsible for managing inter-cluster traffic
within the data centre. Each pod is served by a set of four devices known as fabric switches. Four
fabric switches handle inter-rack traffic within the cluster, known as pod, and traffic incoming
or leaving the cluster. Each pod consists of only 48 server racks (top-of-rack switches, TOR),
and this form factor is always the same for all pods, see Figure 3.2. Each rack has only one
top-of-rack switch with 10-Gbps Ethernet downlinks in which server machines are organised
into the rack. Each fabric switch of each pod connects to each spine switch within its local plane.
The combination of pods and planes creates a modular network topology that supports hundreds
of thousands of 10G-connected servers.

Figure 3.2 Illustration of a Server Pod which has only 48 server racks (Top-of-rack Switches) [5].

One major difference between cluster-based design and fabric design is that although con-
tiguous rack switches are placed physically in the cluster, rack switches within the same pod are
built with no hard physical limitations within a datacentre.

3.3.2 Traffic pattern inside Facebook’s datacentre network

This study involves applying real Facebook traffic patterns, which are based upon the data
collected from the fabric network design (a state-of-the-art) of the Facebook data centre, see
Figure 3.1. The Facebook data was sourced from the Github repository. The accessed data
consists of raw Facebook traffic patterns from three of Facebook’s clusters running different
applicants – Frontend, Hadoop and Database over a period of 24 hours. Nevertheless, the
proposed method also would be valid to a diverse range of network data sets and scenarios.
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We focused on an individual “Database cluster” within their massive collection of network
traffic. The Facebook network flow data includes both the inbound and outbound traffic (packet
traces). Each record in the Facebook data comprises “sampled flow” information, which contains
packet header information as well as some metadata such as locality and packet length. When
extracted, the Database cluster’s data size exceeds 50 gigabytes and contains around 316 million
packets.

We visualise the Facebook data set with a node-link diagram to explore what is on a network
through a visualisation tool in Power BI. The network (see Figure 3.3) is shown as a graph with
servers being nodes and the packet length being flows on edges. This graph represents how
the server-level data communicate with each other within the Database cluster over a period of
24 hours. The simplicity and beauty of node-link diagrams turn into clutter and confusion as
the graph of the Facebook real-world dataset is so massive. When the standard force-directed
method was applied, the resulting graph resulted in a hairball drawing.

Figure 3.3 “force-directed” layout algorithm is used within the visualisation tool for representing
245349 distinct source IPs (server machine) and 116152 distinct destination IPs. The graph was
zoomed in on a particular section of a larger graph. (Source: Author’s own)
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Network traffic visualisation can be employed to detect abnormally high network activity
and promptly locate server machines that send or receive a substantial number of packets. The
utilisation of conventional techniques to depict complex and large graphs, as demonstrated in
Figure 3.3, results in a more challenging task for humans to interpret and comprehend the visual
representation of such graphs. Consequently, this leads to a failure to identify intriguing patterns
that are not easily detectable using existing graph visualisation methods.

We present an algorithm to simplify the input graph prior to visualisation, with the aim of
producing simplified subgraphs. This enhances the graph’s readability by lowering the displayed
edges on the graph and prioritising “interesting” relationships before visualisation. In our
research, the interestingness is determined by edge variance.

3.4 Concept of the Variance in edge weights

In this thesis, to reduce the complexity, the primary emphasis is placed on comprehending the
data connected with the edges and nodes, rather than the graph structure and connectivity aspects,
such as graph clustering, which are of lesser significance. Thus, we focus on the simplification
technique that does not prioritise the demonstration of the overall graph structure.

Summarisation involves revealing “interesting” nodes and edges. A common strategy is to
represent only the relevant information, much as the irrelevant information is hidden. However,
the definition of "interesting" is subjective and usually requires domain knowledge and user
preferences to be taken into account. For example, in some applications, the most interesting
information may be the edges with the highest weight, while in other applications, the most
interesting information may be the edges that form the largest connected component. In our
research, our metric focuses on edge variance. This research holds importance in enhancing the
comprehension of the intrinsic aspects of network elements rather than solely focusing on their
observable properties or the overall data structure.

3.4.1 Edge Variance

Variance and standard deviation are fundamental statistical measures that enable us to compre-
hend how flat or insightful the data is. Both variance and standard deviation provide a quantitative
measure of uncertainty in data. These measures are essential for understanding the degree of
uncertainty and variability in data. Thus, to show uncertainty in the output, the uncertainty in the
user input has to be quantified.

The variance is a statistical measure used to quantify the degree of spread or dispersion
within a given data set. The variance for a population, denoted by σ2 is defined as follows:

σ
2 =

N

∑
i=1

(xi−µ)2

N
(3.1)
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Where xi represents each value in the dataset, µ is the mean of the data, and ‘N’ is the total
number of observations in the dataset. However, for a sample variance, the variance σ2 is slightly
different, using ‘N-1’ (degrees of freedom) instead of ‘N’.

The emphasis of our metric is edge weight variance. Thus, we study edge variance to have
an idea of the edge weight homogeneity or heterogeneity present in the graph-based data. The
edge variance concept aims to provide end-users with visual representations that incorporate and
reflect the variance of the information to aid in informed decision-making and more efficient data
analysis. The variance in edge weights, denoted by Var(E), which is a measure of how much the
weights of the edges between a pair of distinct nodes deviate from their mean value, is defined to
be :

Var(E) =

n

∑
i=1

(wi−µ)2

N
(3.2)

Where wi refers to edge weight, µ is the mean of the measure values, and ‘N’ refers to the total
number of edges between a pair of distinct vertices.

3.4.2 Applying Edge Variance Concept to Facebook Traffic Patterns

Figure 3.4 The network was shown as a graph with server racks being nodes and the variance of
bandwidth being flows on edges. (Source: Author’s own)

The network depicted in Figure 3.4 illustrates a graph with server racks being nodes and
the variance of bandwidth being flows on edges. This represents how the rack-level data
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communicate with each other, and bi-directional links, as in real networks, illustrate the variance
of the bandwidth with the direction. The mathematical formula, defined in 3.2, was used to
quantify the variance of bandwidth from source rack to destination rack traffic per link.

As a result, in a graph, edges with high variance in their weights may indicate that the weight
of the edge is not stable, and the edge may not be reliable. In contrast, edges with low variance in
their weights may indicate that the weight of the edge is stable and the edge is likely to be reliable.
For example, variance in edge weights can be helpful in identifying patterns in the graph, such as
edges that represent outliers or deviations, which may be important for certain applications, such
as cyber security, in which a large variance could potentially signal the presence of an attack or
vulnerability. In a nutshell, measuring and comprehension of the variance in edge weights can
contribute to a more complete comprehension of network dynamics.

In a summary graph, when the number of edges to be shown is limited, the proposed approach
not only decreases the size of the graph but also discerns edges that contain the most useful
information from an information-theoretic perspective.

3.5 Information Theory

Information theory can be defined as “the science of quantification, coding and communication
of information” [190]. It is commonly agreed that the field of information theory was introduced,
and most of its underlying problems were solved by Claude Shannon in his pioneering work
of “A Mathematical Theory of Communication” in 1948 [166]. At its core, information theory
focuses on the quantification of the amount of information contained in a message, known as the
entropy of the message [167].

Various information-theoretic measures, such as Shannon’s information measures (entropy,
conditional entropy, mutual information [44]) for discrete and continuous random variables,
and relative entropy (or Kullback-Leibler divergence) [46], have been applied to solve various
problems [44].

3.5.1 Shannon Entropy

Entropy, a concept rooted in statistical physics, is a fascinating and complex notion that en-
compasses a multitude of definitions and a wide range of contexts [70]. Shannon directed his
attention towards the issue of effectively encoding the information intended for transmission by
a sender, ultimately formulating the concept of information entropy as a metric for quantifying
the level of uncertainty present inside a given message.

The concept of entropy, first used by Shannon to study communication channels, can be
used to quantify the degree of uncertainty, randomness, or disorder in a graph [131]. This is
because both communication channels and graphs can be seen as sources of information with a
certain probability distribution, and entropy provides a measure of the amount of uncertainty or
information content in that distribution [166].

A singular and definitive definition of graph entropy does not exist [70]. It is plausible that no
definitive or exemplary solution exists, as the effectiveness of a particular approach in one context
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may not be applicable or advantageous in another. Hence, an alternative conceptualisation of
probability could result in distinct formulations for the graph entropies.

The concept of entropy in a graph could be understood as quantifying the graph’s structural
information (e.g., numbers of vertices, edges, node degrees, and distances), hence functioning
as a metric for complexity measure. Different graph entropies have been widely employed to
characterise the structural properties of networks across diverse disciplines [48, 49]. However,
it is important to note that our attention is not directed towards particular structural features
of a graph. In other words, our objective is not to assess the level of structural complexity to
identify the specific type of structural information being measured by these metrics. Here, the
term "entropy of a graph" refers to an information-theoretic measure that is applied to a graph
with a discrete probability distribution on its edge weight set.

We first discuss some notions regarding the Shannon information content and Shannon
entropy. The notion that clarifies how to calculate the information content of a random variable
is formally characterised as follows:

Let X be a triple containing x, AX , PrX parameters, in which the outcome of x is the discrete
random variable, that holds a finite number of values Ax = {x1,x2, . . . ,xm}, having probabilities
PX = {p1, p2, . . . , pm} with a probability p(xi). And, let p be a probability mass function of X
and is defined as p(xi) = P(X = xi), p(xi)≥ 0. Our definitions for Shannon information content
employ only discrete probability distributions over finite sets AX . The following two lemmas
enable us to work with a discrete probability distribution p(xi).

Lemma 3.5.1.

∑
xi ∈ AX

p(x = xi) = 1

Lemma 3.5.2. Entropy is additive for independent random variables. If X and Y are two
independent random variables, then the entropy of the joint random variable H(X ,Y ) is equal
to:

H(X ,Y ) = H(X)+H(Y ) i f f P(x,y) = P(x)P(y)

The information content of an outcome, x, whose probability is p(xi), is defined as follows:

h(x = xi)≡ log2
1

p(xi)
(3.3)

The mean entropy of any set of probabilities is formalised to define the average Shannon
information content of an outcome [166]:

H(X) := ∑
xi ∈ AX

p(xi) log2
1

p(xi)
(3.4)

Throughout the work, Logarithm log function is taken to the base two, being log2 to represent
the information content. Thus, the entropy is expressed and measured in bits.

The binary entropy, as depicted in Figure 3.5, refers to the measure uncertainty associated
with a random variable x that has an alphabet consisting of two elements, namely {x1,x2}.
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Figure 3.5 Plot of binary entropy used by Shannon in [166].

The probability distribution of this random variable is denoted by {p,1− p}. The formula for
calculating the binary entropy is given by

H(X) =−plogp− (1− p)log(1− p) (3.5)

A discrete random variable is applicable in describing the outcome of a fair coin flip. In this
case, the alphabet represents the possible outcome, which is AX = {head, tail}. The probability
distribution indicates that each option has an equal likelihood of occurring, with a probability
PX = {1/2,1/2}. The binary entropy reaches its maximum value of 1 bit at a time when
p = 1/2, because the results are independent. Thus, the entropy of a fair coin flip is given by
H(X) = −(1/2)log(1/2)− (1/2)log(1/2) = log2 = 1 bit. However, when the coin deviates
from being fair, the situation becomes intriguing. When the coin is not equitable, such as a
single event predominates, as in skewed probability distribution, there is a reduced level of
surprise/uncertainty, resulting in a lower entropy within the distribution.

If we transition from a distribution with skewed probabilities to one with equal probabilities,
it can be anticipated that the entropy will exhibit a pattern of initially being low and subsequently
increasing. More specifically, the entropy will start at its minimum value of 0 for events that
have an impossibility and certainty ( with probabilities of 0 and 1, respectively) and will reach
its maximum value of 1 for events with equal probabilities. Consequently, in scenarios where
no event holds dominance over another, such as when the probability distribution is equal or
approximately equal, we anticipate a maximum entropy, see Figure 3.5.



64 Graph Summarisation Method

A further exemplification can be provided by considering the scenario of rolling a fair
six-sided dice. In the context of a fair dice toss, denoted by the alphabet AX = {1,2,3,4,5,6}
and the probability distribution assigns equal probabilities of 1/6 to each outcome, defined as
PX = {1/6,1/6,1/6,1/6,1/6,1/6}. The entropy of the random variable X , denoted by H(X),
is calculated as log6, which is approximately equal to 2.58 bits. To summarise, the entropy of
probability distribution is bounded between 0 and log2(N), where N represents the overall count
of events within the distribution.

• When the probability distribution is skewed, entropy will be low.

• When the probability distribution is balanced, entropy will be high.

The key to successfully incorporating the notion of entropy into visualisation problems relies
on properly specifying the random variable X and constructing the probability function p(x).
Consider a graph G = (V,E), where V represents the set of vertices and E represents a set of
edges. The edge variance between a pair of nodes within a given edge set forms a discrete
probability distribution by treating the graph as a discrete random variable. The entropy of
the graph G is calculated by computing the probability of each distinct edge in the graph. The
mathematical expression for the entropy, denoted by H(G), is as follows:

H(G) =
n

∑
i=1

Pr(ei) I(ei) or −
n

∑
i=1

Pr(ei) log2 Pr(ei) (3.6)

Which probability distribution on graphs should we choose? The maximum entropy principle
is the crucial determinant in finding the answer. A graph with a higher entropy value would
signify a higher degree of randomness or uncertainty in the distribution of edges, while a graph
with a lower entropy value would imply a lower degree of randomness or uncertainty in the
distribution of edges. In this study, we propose a summary algorithm that forms a subgraph
that seeks to maximise its entropy based on information theory [63, 166]. The entropy of the
edge weights (variance) distribution of the summarised graph is maximised amongst all possible
aggregations of a given edge size in terms of Shannon entropy.

3.6 Entropy-Based Graph Summarisation Algorithm

3.6.1 Overview

The proposed summarisation method in this chapter is inspired by Maximum Entropy Summary
Trees, studied by Karloff and Shirley [99]. We propose a method similar to their work in that
both methods summarise the relational data while maximising Shannon’s entropy. Our approach
deals with non-hierarchical graph-based data to determine which information is more relevant to
be displayed while they focus on node-weighted rooted trees (hierarchical graphs).

According to Karloff and Shirley [99], the optimal selection from a set of summary trees
with a predetermined number of nodes is the one that maximises the entropy of the probability
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distribution linked to the summary tree. They define the concept of entropy, where the normalised
weight of each tree node gives the probability density function.

Figure 3.6 A screenshot from the study of Karloff and Shirley showing the 56-node summary
tree of the math genealogy, utilising the maximum entropy approach. The colours of nodes are
determined by their depth-1 ancestor, while the sizes of nodes are proportional to their weights
in the summary tree. [99]

The above Figure 3.6 depicts an instance of a maximum entropy summary tree within the
context of a mathematical genealogy tree [99]. Certain nodes are depicted in their original
structure, taking the form of ellipses. Conversely, other nodes are utilised to represent subtrees
and are depicted as rectangular shapes featuring a name and a weight. Additionally, there are
nodes that symbolise the aggregation of sibling subtrees, taking the form of rectangular shapes,
but with a other label and the associated weight.

We introduce how to summarise (non-hierarchical) graph-based data by extracting the
maximum information in readable and informative forms of the original graph to end-users.
This study focuses on (directed or undirected) weighted multigraphs with non-negative edge
weights. In this study, the Shannon entropy function is adopted as the primary metric in order
to measure information of non-hierarchical graphs from an information-theoretic perspective.
The core idea of the proposed algorithm is to merge several “less interesting” edges into one
edge called superedge and uncovers high-level “more interesting” edge patterns, resulting in
a subgraph having a set of unique edges collected during the procedure. Our main concern is
maximum information retrieval; consequently, the proposed method proposes a rule for selecting
a distribution which maximises Shannon’s entropy of the summarised graph of a given length of
the edge.

3.6.2 Implementation

Our algorithm works on a weighted directed or undirected multigraph G with each edge e
having an associated real-valued (non-negative) number w(e), called its weight. The inclusion of
weights on a graph is a valuable source of supplementary data that should be taken into account
during the analysis. This study proposes an algorithm for finding a summary graph based on the
specified edge length. The algorithm generates output in the JSON-formatted data, consisting of



66 Graph Summarisation Method

multiple summary graphs that begin with two edges and increase to a specified number of edges.
This feature enables end-users to observe the inclusion of edges during each iteration through
interactive means.

Finding distinct edges

The algorithm starts by computing a new graph G′ = (e,w,Pr) from the input multigraph G,
which is the first step in the decomposition of the multigraph into a graph G′ having a set of
multiple distinct edges with their weights (variance) as well as its probabilities. The newly
constructed graph G′ has at least three parameters: e represents a set of distinct edges, w
represents the variance of the weight of the distinct edges, and Pr represents the edge probability
distribution. The edge probability distribution Pr is calculated by dividing each edge’s weight by
the sum of all edge weights, which forms a probability list of distinct edges. The important steps
of the procedure are described as follows:

1. Let G = (V,E,W ) be a non-empty, finite directed or undirected, weighted non-hierarchical
multigraph where weights are nonnegative and assume V = {v1,v2, ...,vn} and E =

{e1,e2, ...,em}.

2. Form an G′ = (e,w,Pr), has at least three parameters and denotes the number of distinct
edges by d = |e| with d ≥ 3.

• Let ei = u,v be a distinct edge (ei ⊆ E).

• Let each edge ei has weight wi, denoting the variance of the distinct edge e ∈ E.
The weight wi of the distinct edge ei = u,v is computed as the variance of the
corresponding weights over all edges between a vertex u and a vertex v.

• Pr represents an edge probability distribution, and each of these distinct edges holds
a non-negative probability from 0 to 1.

3. Let Pri := wi
∑

d
i=1 wi

, denotes the probability distribution of each distinct edges.

Forming summary graphs

The second step is forming summary graphs (S) that capture the most "interesting" edges from
the graph G′ having distinct edges, and viewers can choose the n desired number of edges to be
shown. This means end-users wish to see a summary graph comprising (n-1) selected distinct
edges and one superedge. The "superedge" results from the rest of the edges merging into an
edge. The probability of the "superedge" is set to 1 minus the sum of the probabilities of the
selected edges. This step is important as it helps to reduce the number of edges in the summary
graph S while maintaining the overall probability distribution of the graph G′. By applying
Shannon’s Eq. ( 3.6) with the probability distribution, we obtain a numerical value that indexes
the maximum information content. Figure 3.7 provides a flowchart showing the step-by-step
process by which the algorithm functions on graph G′.
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Figure 3.7 The flowchart outlines the formation of separate edges, commencing from a minimum
of two edges and continues until the desired number, as specified by the user, is reached.
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Shannon entropy function applies for a distinct edge probability distribution. The concept of
“equal probability, maximum entropy” lies at the core of the construction of probability function
algorithm design. The idea behind our algorithm is to adopt this supporting argument so that the
entropy of the summarised graph is maximised amongst all possible combinations of a given
edge size. It should be emphasised that entropy is convex and maximised when Pr(i) values are
uniform. When the probability of selected edges is uniform, the Shannon entropy will be higher,
indicating that the resulting summary graph captures most of the information of the original
graph in the summary graph. The detailed whole graph summarisation algorithm is described in
Algorithm 1 as follows:

Algorithm 1: Graph Summarisation Algorithm for a directed or undirected Graphs
Data: Graph G′ = (V,E,W ), n = desired number of edges in the summary graph
Result: S = (V,E)
c← 0 ; /* iteration counter */
S = (V,E)← 0 ; /* empty summary graph */
while c < n−1 do

G′ = (e,w,Pr) ; /* list of distinct edges */
for j = 0; j <= c; j++ do

pi← 1
j+2 ; /* Calculate probability of interest */

nearest_edge← f ind_nearest_edge(pi,Pr);
Sc.append(nearest_edge) ; /* Add edge to summary graph */
remove_edge(nearest_edge, G′) ; /* Remove edge from G′ */

end
superedge← merge_edges(G′);
superedge.Pr← 1−Sum(Pr);
Sc.append(superedge);
calculate entropy H(Sc) ; /* based on the Algorithm 3.6 */
c++ ; /* increase the iteration counter */

end

For example, summarising a graph with two edges ensures that it contains one unique edge
selected from all available edges and one superedge. Superedge consists of two distinct nodes:
meta-source and meta-destination. The meta-source node merges all other source nodes, while
the meta-destination node merges all other destination nodes. Consider a scenario where an edge
with a probability of 0.1 is chosen, forming a superedge with a probability of 0.9, leading to an
entropy value of 0.47. Conversely, choosing an edge that is closest or equal to 0.5 will yield the
maximum entropy for the specified summary graph. The maximum entropy approach searches
for edge distributions having properties we desire in the most informative way.

The generated JSON-formatted array includes the probabilities of edge variance, source
nodes, destination nodes, and entropy of the graph for each summarised graph, starting from
edge number 2 up to the edge number defined by the user. The array also contains statistical data
for the edges, including mean, variance, minimum, and maximum values. See an example of
Figure 3.8 of the returned JSON-formatted 4-edged summarised graph.
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(a) 2-edged summary graph (b) 3-edged summary graph (c) 4-edged summary graph

Figure 3.8 A screenshot of the 4-edged graph summary, which the proposed algorithm generates
results in JSON (Source: Author’s own figure)

3.7 Testing with Facebook network data

We tested our approach to simplify the analysis of network traffic inside of Facebook servers [5].
The real dataset used for testing consists of Facebook traffic patterns from a weighted directed
network. We measured the execution time (in seconds) and memory consumption of the proposed
algorithm on a laptop. The test was executed using a 64-bit Windows operation system with an
AMD Ryzen 7 2.9 GHz CPU and 8 GB memory. We ran the algorithm around ten times to find a
100-edge summary graph, and used the mean execution time as a result.

The efficiency of summarisation algorithms is a crucial concern due to the abundance of data
on real networks. The computational complexity of an algorithm refers to the estimation of the
resources, such as how much time or memory it uses, that are necessary for the algorithm to
execute a given task. Typically, the scalability of such demands is indicated by their correlation
with the scale of the system under investigation. When considering a graph, its size is commonly
denoted by the count of vertices n and/or the count of edges m.
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In complexity theory, linear growth is denoted as O(N), signifying that the runtime of a
process increases according to the number of elements involved. As seen in Figure 3.9, a graph
with up to 1500 distinct edges finishes in under 10 seconds and requires about 5 seconds for a
graph with 1000 distinct edges. Resulting in the algorithm preserving linear execution time. As
a result, the approach exhibits favourable scalability as the graph size increases.

(a) Test result displays the execution time (in seconds) and memory usage (in MiB)
of the summary algorithm applied to a dataset of 1500 distinct edges.

(b) Test result displays the execution time (in seconds) and memory usage (in MiB)
of the summary algorithm applied to a dataset of 1000 distinct edges.

Figure 3.9 Figures present the relationship between execution time and memory usage of the
algorithm when processing Facebook network data with differing complexities—1500 edges in
(a) and 1000 edges in (b).

Note that the edge list is sorted in the previous step when we find the distinct edges from the
multigraph. In conclusion, the algorithm works linearly if the edges are sorted. However, if the
list needs sorting, the best sorting method will be O(N log N).

Overall. In general, our approach enables identifying patterns and trends within network
traffic data, such as which servers handle the most traffic and which traffic is the most important
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in edge variance. This information can, therefore, be used to make informed decisions about
optimising the performance of the servers and the network.

Our algorithm is divided into two parts: locating distinct edges and generating summary
graphs. The former focused on the concept of edge variance while creating distinct edges;
however, here, other measures, such as standard deviation and confidence intervals on edges,
could be applied rather than variance, depending on the context.

Furthermore, we only considered the use of the proposed summary approach in a single
application: network traffic patterns inside Facebook servers. Whether it’s transportation net-
works, social networks, or any domain that involves analysing weighted interconnected data,
our algorithm can be customised to meet specific needs to summarise information, thereby
addressing the challenge of information overload.

Figure 3.10 below visualise the Facebook network data as a graph with servers being nodes
and the variance of packet length being flows on edges before implementing the proposed
summary approach.

Figure 3.10 Before implementing the proposed approach, the Facebook network data was
visualised as a graph with servers being nodes and the variance of packet length being flows on
edges (Source: Author’s own)

See Figure 3.11, which displays summarised subgraphs depicted using a circular layout
within a two-dimensional setting.
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(a) 2-edge summary graph (b) 3-edge summary graph

(c) 4-edge summary graph (d) 5-edge summary graph

(e) 6-edge summary graph (f) 7-edge summary graph

(g) 8-edge summary graph (h) 9-edge summary graph

(i) 10-edge summary graph

Figure 3.11 For a given number of n = 10 edges, the resulting summary graph S = (V,E) consists
of the collection of sets of distinct edges comprising (n− 1) selected distinct edges and one
superedge. Each generated summary subgraph exhibits maximum information given the same
number of edges from an information theoretical point of view.
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As an illustration, the summarisation algorithm could be used to provide simplified summaries
of the transportation networks. The edge weights may represent factors such as passenger volume
or traffic patterns. For example, traffic on a given road or ridership between two locations varies
at different times of day. Variations in ridership or traffic patterns throughout the day are
incorporated into the algorithm, potentially serving as a key variable of interest. The proposed
algorithm may help identify roads with significant fluctuations in traffic count, indicating high
traffic variability. Additionally, it might identify routes with significant fluctuations in passenger
counts.

3.8 Limitations

One limitation of Shannon entropy is that it is only applicable for discrete random variables. In
other words, it can only be used to calculate the amount of information in a finite set of discrete
outcomes or events. If the input multigraph has continuous variables or edges with continuous
weights, this algorithm would not be able to use Shannon entropy to calculate the amount of
information captured in the summary graph. In such cases, other measures of information or
uncertainty, such as differential entropy or Rényi entropy, should be used instead. It should be
noted that while these methods can help overcome the limitation of Shannon entropy, they also
come with their own limitations and trade-offs. Therefore, choosing the right method to use
would depend on the specific characteristics of the input multigraph and the goal of the analysis.

The function “ f ind_nearest_edge” in the Algorithm 1 is designed to identify the probability
value that is closest to the desired probability of interest. This is done by searching through the
list that contains all the probabilities associated with each distinct edge in G′ and subsequently
selecting the nearest match from the list. However, in the case of multiple identical values for
the nearest edge, the process was intentionally designated to follow a first-come, first-served
methodology.

The proposed algorithm does not consider that some nodes may be more interesting than
others, and it does not consider the weight of the nodes; these factors may lead to the summary
graph missing some important information that was represented by the original graph. So, it can
be said that the algorithm tries to capture the most interesting edges based on maximum entropy.
Still, considering the variability of nodes, it is not guaranteed that the resulting summary graph
will have the most information from the original graph.

3.9 Future work

As we focused on the concept of the variance in edge weights, particularly edge uncertainty, the
resultant summary allows the user to focus on more “interesting” edges, defined in terms of edge
variance. As future work, we could implement a threshold value for edge variance in the graph
summarisation approach. Instead of taking into account all edges in the graph G′, this threshold
would eliminate edges with variance lower than a predetermined value. This methodology can
improve efficiency by prioritising edges with more significant variations in characteristics within
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the graph, which may reduce computational complexity. Further exploration is required to
determine suitable threshold selection methods and assess the practical advantages across diverse
applications.

In graph analysis, the significance of edges may extend beyond mere variability, and certain
edges, albeit displaying low variability, can still assume crucial roles. The proposed algorithm
holds promise for future extensions, especially when considering incorporating a weighting factor
for edges. Currently, the method assigns equal weight to all edges in relation to their variance,
which may not fully capture the significance of specific edges. Edges of high importance, but
having low variance, might not be readily observed within the present context, hence potentially
hiding key insights. Incorporating a weighting factor into the algorithm allows for a more
sophisticated approach, as it prioritises edges based on their variance and weighting factor. This,
in turn, may facilitate a graph summarising process that is more context-aware and produces a
more precise outcome. This improvement aligns with the algorithm’s adaptability and offers the
potential for a more comprehensive and insightful analysis of relational datasets.

In situations where understanding both nodes and edges is crucial for decision-making and
analysis, integrating the concept of node variability could be a potential future improvement
to the graph summarisation algorithm, which adeptly addresses edge variability. To effectively
implement this adjustment, the algorithm could include a variance calculation for each node,
measuring the variability in data attributes. For example, in a telecommunications network,
while edge variability might capture the fluctuation in data flow between nodes, node variability
can reflect the differences in data handling capacities or traffic frequencies of individual nodes.
By integrating this dual approach, the algorithm would distinguish interesting edge patterns
and ensure that such interesting nodes are also included in the network summary. As another
example, in healthcare networks, nodes representing hospitals might have weights based on
patient intake and treatment success rates, while edges might have patient referral volumes. By
adapting the algorithm to prioritise nodes with higher variability, such as those hospitals with
variable patient intake, the summary graph would more accurately reflect critical aspects of the
healthcare network. This enhanced approach could improve the algorithm’s applicability and
effectiveness in real-world scenarios.

3.10 Summary

This chapter introduces an entropy-based graph summarisation algorithm to highlight "inter-
esting" patterns within large, complex networks. This approach fundamentally diverges from
traditional methods, which typically prioritise structural simplification or sheer reduction in size
without considering the underlying information content. Unlike traditional methods that may
overlook the interplay of edge characteristics within the graph, this approach utilises Shannon
entropy and uses edge weight variance as a metric to ensure that the most informative edges are
retained in the summarised output. By focusing on high-variance edges, the method ensures that
the essential characteristics of the original graph are not only preserved but are also made more
discernible.
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This technique marks a significant advancement over existing summarisation methods by
providing a more data-driven, information-theoretic foundation for graph reduction, which
enhances our understanding of what features of the graph are most critical to retain during the
summarisation process. This method can provide a more effective means of analysing large
graphs, which is particularly valuable in domains such as social network analysis, bioinformatics,
and network security, where understanding the most interesting connections can lead to significant
discoveries.

The effectiveness of the approach is showcased through JSON-formatted output and visual
representations of each summarised graph, as illustrated in Figure 3.11 and Figure 3.8, respec-
tively. However, the incorporation of supplementary edge variables, including primary value
(e.g., mean value) and secondary value (e.g., variance), into the visual representation of the
summary graph will greatly assist users in understanding the properties of the subset of edges
selected from the original graph. Additionally, visualising these features is most likely useful
for expedited graph analysis, the rapid comprehension of crucial information, the immediate
recognition of data patterns, and other related benefits. These motivations inspired the work
discussed in the next chapter, which will introduce a novel edge design that enhances the process
of mapping bivariate data encompassing both quantitative and qualitative features in the context
of node-link diagrams.
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Overview

This chapter contains materials previously published by Akbulut et al. [1], and it introduces the
concept of the novel Vizent edge, designed based on established design principles and inspired
by the previous study proposed by Holliman et al. [80]. Vizent edge design was designed for
representing ordinal categorical or numerical values on a discrete scale. We employed the
empirical study, and the intention is to establish if the reported order of the glyphs followed the
frequency complexity of the pattern. The empirical results of the Vizent edge design showed that
the edge glyph in variations of pattern frequency can convey the ordered data. We also conclude
that the linear Vizent edge glyphs are highly distinguishable in order by pattern complexity in
pairwise testing. The main contributions of this study are:

• Presenting the concept of the novel Vizent edge design;

• Empirically validating (in collaboration with Lucy McLaughlin) that different edge glyphs
have a perceived order through pairwise testing.

4.1 Introduction

Node-link diagrams, the most prominent visual encoding idiom, represent network data due to
their simplicity and intuitiveness [207]. Network data attributes can be directly labelled over the
links (or edges) and nodes, such as textual value, or mapped to them through encoding channels.
Shape, colour, size, texture, and value are a few examples of such visual channels adapted from
Bertin [23]. Numerous methods exist for visually representing node attributes. However, few
studies exist for effectively encoding edge data attributes on edges in node-link diagrams [135].
Moreover, there are only a limited number of visual variables to visually display bivariate (two
attributes) information on edges simultaneously [154]. Even though there are chances to combine
these variables, their practical range of values is also somewhat restricted [154]. For example,
visual variables that affect the overall visibility of a line mark may not always be robust in the
inclusion of another visual variable (e.g., fuzziness and width), resulting in interference with
accurate visual perception [71].

4.2 Motivation

Node-link visualisations enable users to analyse, evaluate, and explore networks while also
facilitating a deeper understanding of interesting aspects of the data using the proper visual
channels [50]. In addition, it is worth noting that node-link diagrams offer enhanced readability
and familiarity, presenting the benefit of a relatively shorter learning curve for effective utilisation
compared to alternative types of representation, such as matrix representations, for graphs of
smaller sizes [67].

Communication networks are primarily concerned with the information flow amongst people
or devices such as server machines [135], and what matters most is the size of the flows
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and how they change over time for decision-makers. Network traffic visualisations can help
analysts detect unusually large amounts of packets [171]. It is also interesting to monitor the
variability of this traffic to recognise network anomalies. It is crucial that decision-makers
should be aware of the uncertainty that may be present; otherwise, the visual analysis might
not draw accurate and precise conclusions and comprehend the nuances of relational datasets,
making visual analysis imperfect and error-prone [97]. However, one fundamental problem
arises regarding how to provide additional uncertainty values alongside the data value while
maintaining comprehension [29].

4.3 Related Works

In this section, we summarise studies on edge visualisation for representing uncertainty informa-
tion. We limit the scope to static graph representations that can be printed on paper or visualised
on an electronic display.

Uncertainty has emerged as an active research area within the field of visualisation due to
requirements on dependability and interpretability in data analysis. Visualisation of uncertainty is
regarded as one of the five major technical challenges in visualisation [117]. Various visualisation
methodologies have been used to visualise uncertainty across various disciplines [97]. However,
the visualisation of uncertainty in graphs is an important and emerging subject of research that
has gained much interest in recent years [206].

The values of graph properties with uncertainty are visualised through two distinct visual
channels, and the edge is a significant visual primitive that encodes graph attributes. The
visual appearance of the edges can be modified to depict uncertainty regarding edge existence,
location, or attribute values [196]. However, node-link diagrams have not been employed to
visualise edge attributes until recently [163]. Generally, graph practitioners focus on the edge
shape (e.g., curved, tapered) [82, 210], the performance of graph layouts [147, 145] clutter
reduction techniques (edge bundling) [128, 81]. For example, Holten et al. [82] evaluated edge
shape representation with different approaches such as tapered and glyph patterns for edge
directionality.

MacEachren et al. [122] proposed the theory of visual semiotics of uncertainty. They
evaluated the intuitiveness of various visual variables, such as fuzziness and brightness, in
representing uncertainty through the participants’ judgements.

Boukhelifa et al. [27] presented sketchiness as a visual variable for displaying univariate
(one attribute) uncertainty value on edges and compared its efficiency to other visual variables
such as dashes, blurring, and grayscale. Additionally, Schwank et al. [163] evaluated four visual
approaches for representing uncertainty on edges: dashes, waves, stripes, and blurring. They
concluded that dashes and blurring appear to be particularly effective amongst other options at
representing edge uncertainty [27, 163]. However, blurring and transparency have portability
issues if the monitors they are used on are not calibrated to have the same output luminance
given the same input value. Adjustable gamma curves can affect this directly.

Guo et al. [71] experimentally evaluated several visual encodings used for representing
bivariate edge attributes, main value, and uncertainty, to determine which pair of visual encodings
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performs better in node-link diagrams. It was found that fuzziness strongly interfered with the
perception of an edge when paired with width, and that width and fuzziness had an adverse effect
on accuracy.

Bae et al. [13] also examined how different visual encodings affect the interpretation of
bivariate variables on directed edges. They found that visualisations utilising numbers and
visualisations with width and brightness performed more accurately than those with hue and
granularity. However, their evaluations in [71, 13] did not address the challenges that needed
participants to search for dual visual attributes on edges simultaneously. Also, they experimented
with one fixed graph size of 18 nodes and 25 edges.

Several studies have already addressed the depiction of univariate uncertainty in node and
edge attributes. However, incorporating uncertainty into graph attributes remains an outstanding
issue. Existing works displaying uncertainty about edge attributes need to be strengthened to
visualise two or more edge attributes effectively [196].

4.4 Glyph-based Visual Design

Glyph-based visualisation [25] is a widely used visual design form in which variables of different
data types, both categorical and numerical, are encoded by pre-defined visual metaphors known
as glyphs. Bertin [23] introduced retinal variables that can be employed to depict information,
offering options for encoding data in glyph designs, such as shape, size, or value. With this
in mind, we present the concept of the novel Vizent edge design that employs a combination
of colour and variations in stripe pattern, which we call edge glyph. The definition of a glyph
that we adhere to, as proposed by Borgo et al. [25], is described as follows: “A glyph is a small
independent visual object that depicts attributes of a data record; glyphs are discretely placed in
a display space; and glyphs are a type of visual sign but differ from other types of signs such as
icons, indices and symbols.”

The prevalence of these visualisations in modern life is due to their effective utilisation
of the human ability to interpret abstract and metaphorical depictions, hence facilitating rapid
recognition and comprehension of information. Glyphs are commonly employed in diverse
contexts, including node-link diagrams, treemaps, and geographic maps, owing to their space-
efficient graphical appearance. Glyphs encode one or more data values of their appearance (also
called visual channels).

Chen and Floridi [35] devised a taxonomy method to categorise more than 30 visual channels.
Among the numerous options available for visual channels, the prevalent approach in multivariate
visualisation is utilising multiple visual channels. These are classified into the following channel
categories: Geometric channels, such as orientation and shape; Optical channels, such as hue
and texture; Topological and Relational channels; and, lastly, Semantic channels, as can be seen
in Figure 4.1 below. Visual channels for conveying information can be effectively utilised within
the domain of glyph design.

There have been abundant glyph design guidelines proposed in the literature. The guidelines
concern various levels of glyph design: variable encoding, inter-channel interaction, and holistic
glyph design. At the variable encoding, Bertin [23] introduced a framework for classifying
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Figure 4.1 A Various Range of Visual Channels [35]. (Source: [25])

semantic relevance, which may be used to assess the appropriateness of various channels for
representing specific categories of information. Cleveland and McGill [40] identified the accuracy
of human perception in various visual variables and gave recommendations on the choices of
visual channels for different tasks and purposes of visualisation. At the levels of inter-channel
interactions and holistic glyph design, guidelines were proposed for the typedness, channel
capacity, visual orderability, integration and separability of channels, searchability, learnability
of glyph designs, attention balance, and focus and context [38].

The foundations and design guidelines of glyphs were examined by Borgo et al. [25]. It
has been suggested that glyphs can attract more attention and elicit higher levels of cognitive
activity during visualisation compared to other types of visual design. In their study, Maguire
et al. [124] proposed a series of design principles for visual encoding. These principles were
derived from the psychology literature on perception and visual search areas. The guidelines
encompass considerations related to semantic relevance, channel composition, pop-out effects
(also known as visual pre-attentiveness), and visual hierarchy. As a result, they suggested the
effective design of glyphs should incorporate multiple retinal variables that are separable and do
not conflict with each other in terms of channel composition.

4.5 Introduction To Vizent Edge Design

Design is a crucial factor in node-link visualisations. In graph design, studies on edge visualisa-
tion have shown that edge design influences graph reading [197, 135]. The initial design choice
that must be made when addressing the visualisation of graphs pertains to the visual representa-
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tions of entities and relationships, namely their mapping to two-dimensional geometric shapes,
also known as planar primitives. Given the limitations of manipulating mapping information in a
static context, it becomes necessary to encode it in a manner that enhances understanding for the
observer. A well-designed visual representation of graph attributes in the node-link graph can
facilitate effective and timely visual search and pattern identification.

Glyph-based visual design often encounters challenges when visually representing multiple
data properties. One notable problem pertains to perception, namely the level of ease associated
with comprehending and accurately interpreting visualisations of this nature. The act of encoding
data into various visual attributes of a glyph in a simplistic manner does not inherently result in a
well-designed outcome. In fact, it has the potential to perplex viewers or even result in incorrect
interpretations in the most unfavourable scenarios. The size of glyphs also imposes limitations
on their design when compared to a whole visualisation. For instance, smaller glyphs have
different design considerations compared to larger glyphs. This constraint affects the number of
variables that can be physically encoded and presented on a screen without compromising the
information’s integrity.

The core of information visualisation comprises two features: a mark, in our case, which is
a planar primitive and a visual channel, which determines the appearance of marks [23, 133].
Using these two aspects of visual encoding should comply with the following two principles:
expressiveness and effectiveness. It is essential to consider the possible interactions of visual
channels when using more than one in visual encoding. Using independent separable channels
results in practical visuals instead of inevitably joined integral channels. For example, a glyph
is likely composed of a set of visual variables, and hence, the composition of these channels
may exert an influence on the manner in which individual channels are apprehended. Therefore,
we integrate suitable visual channels in a pre-attentive way to achieve effective visual channel
composition.

Holliman et al. [80] defined the visual entropy of shape to be a measure of its complexity as
perceived by a human viewer. They provided a novel set of glyphs for displaying the uncertainty
of a measure alongside its mean value in both 2D and 3D visualisation environments, as seen in
Figure 4.2. Motivated by this, we propose the notion of visual entropy (Vizent) edges to address
the research gap and advance the field of graph visualisations for representing bivariate variables
on edges in node-link diagrams.

Figure 4.2 Holliman et al. [80] proposed a novel set of visual entropy glyphs. The value increases
from left to right proportionally to the complexity (frequency) of the shape.
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4.5.1 Visual Entropy (Vizent) Edge Design

Vizent edges represent ordinal categorical or numerical interval values on a discrete scale. Fig. 4.3
illustrates an example presenting how bivariate edge variables are mapped to the Vizent design.
For the two-variable challenge, our design solution is static and 2D. This design employs a
combination of colour and central stripe patterns on edges in node-link diagrams. Edge colour,
related to data value, can be set on a predefined colour scale. In contrast, the second value
is encoded into a stripe pattern as an edge glyph and displayed in the centre of the edges.
The method consists of a carefully designed 7-step sequence of stripe patterns that shows an
uncertainty value as a second value and a colour sequence. As with the original glyphs [80], the
pattern frequency is doubled to make them highly distinguishable.

Figure 4.3 An example of a new node-link visual model. Visual Entropy (Vizent) edge design
combining colour and stripe pattern.

4.5.2 Null Case Representation

The Vizent edge design depicted in Figure 4.3 can visually represent the two-variable challenge,
such as displaying data value and a second value. However, it is also important to develop a
glyph design that accurately conveys the scenario in which there is an absence of data concerning
the second value. To be exemplified, this pertains to situations wherein we possess data value
(such as a variable’s mean value) that requires representation, although we lack any knowledge
regarding its corresponding level of uncertainty. Figure 4.4 depicts the Vizent edge representing
the scenario where uncertainty measures and/or data values are absent.
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Figure 4.4 This edge glyph design is developed for cases where the dataset exhibits instances of
missing uncertainty value.

4.5.3 Experimental Process of the Edge Glyph

Establishing an order in which objects are perceived becomes readily achievable when a visual
channel is ordered. A key idea in our approach to constructing Vizent edge glyphs is that they
can be ordered visually.

The primary purpose of the experiment is to empirically examine the hypothesis that a
perceived rank ordering exists among the visual entropy edge glyphs depicted in Figure 4.5
below. We employed a “two-alternative forced choice” (2AFC) [74] methodology involving the
comparison of edge glyph image pairs to assess the existence of a rank ordering between the
patterns. Each participant was presented with all possible combinations of paired permutations
from the set of glyphs, excluding pairs with identical pattern frequency. Subsequently, the
participants were required to select one of the presented pairs.

To confirm the perceptual effectiveness of the Vizent edge glyphs, we adapted our experi-
mental design for the original Vizent glyphs to the linear glyphs. This asked participants: “Each
image in the pair represents a value using a repeated pattern of bars. If more complex repeated
patterns of bars represent higher values, then please choose which image represents the higher
value to you.” The intention is to establish if the reported order of the glyphs followed the
frequency complexity of the pattern.

PsychoPy toolbox [142] was used to implement the presentation of the stimulus [142]. The
participants exclusively utilised the keyboard as a means of response in order to minimise any
potential delays caused by cursor movement. In addition to capturing the time taken to input their
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(a) A (b) B (c) C (d) D (e) E (f) F (g) G

Figure 4.5 The novel design of the Visual Entropy (Vizent) edge glyphs. In the experiment, every
pair of a set of seven edge glyphs were shown for comparison.
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responses, the participants’ answers for each pair comparison were recorded by registering the
left or right arrow key-press. Each participant was exposed to a different and random sequence
of pairs, which was determined using PsychoPy’s random number generator. The instructions
each participant read before the trial are shown in Figure 4.6 below.

Figure 4.6 The figure shows the instructions that were presented to each participant prior to the
commencement of the trial.

Figure 4.7 An example of a pairwise comparison image used in the trial.

We specifically obtained very limited personal details, inquiring about participants’ visual
acuity status (normal or corrected to normal) and whether they were conscious of any colour
impairment in their visual capabilities. Although it is unlikely that colour deficiency had an
impact on the frequency complexity of the edge glyph comparison experiment, we made note of
this possibility to consider its potential influence on the saliency of the coloured edge design.
No data was recorded on demographic differences, such as age, gender, and relevant expertise
factors, as we had no expectation there would be differences. Newcastle University provided an
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ethical review and approval of the experiment. Participants permitted their data to be used and
began the trial.

We recruited participants on Prolific [140], a crowdsourcing online platform with a research
focus. A total of 29 participants were shown every pair of a set of seven of the edge glyphs
assigned as A to G, as shown in Fig. 4.5, using PschoPy [142] and Prolific [140] to present
the experiment. The participants were provided with a total of 42 ("7× 6 = 42") pairwise
permutations of the edge glyph in Fig 4.5, which included reversed order image pairs. An
example of such a pair presented in the experiment can be seen in Figure 4.7 above.

4.6 Results

We ensured the integrity of the data by implementing statistical outlier detection. We specifically
applied z-score analysis to identify participants whose response times were unusually long or
short (z-scores greater than 3 or less than -3). The results were screened for outliers. Following
applying a threshold of three standard deviations from the mean to the results, two of the 29
participants were excluded, leaving 27 participants’ data for further analysis.

All participants reported normal or corrected to normal vision. The independent variable
is each glyph type (A, B, C, D, E, F, G), and the dependent variable is the proportion of
correct choices made regarding the order of each glyph in the pairwise comparisons with the
remaining six other edge glyphs. With n = 27 participants, the total number of trials per glyph is
"27×6 = 162". This value represents the maximum achievable correct score for each glyph.

Table 4.1 The table illustrates the edge glyph pairwise order comparisons alongside the outcomes
of the exact binomial test for each individual glyph.

Glyph Correct Trials p-value probability CI low CI high

A 161 162 0.0056 0.994 0.966 1.
B 162 162 < 0.001 1. 0.977 1.
C 161 162 0.0056 0.994 0.966 1.
D 161 162 0.0056 0.994 0.966 1.
E 162 162 < 0.001 1. 0.977 1.
F 162 162 < 0.001 1. 0.977 1.
G 161 162 0.0056 0.994 0.966 1.

The accuracy rates of the participants, those in agreement with the prediction that the higher
frequency would be rated as more complex, were analysed using a G-Test for Goodness of Fit,
as recommended in [180]. This tested the null hypothesis that there was no difference in the
response accuracy scores between the glyphs. Each glyph was expected to have 1/7 of the total
correct decisions. The alternative hypothesis is that there is a statistically significant difference
in the proportions of correct answers for some of the glyphs. The result was (G = 0.0106,
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p < 0.999, d f = 6) and since p≫ α = 0.05 we could not discard the null hypothesis, and there
is no evidence of a significant difference in the accuracy scores between the glyphs.

Given that the outcomes represent a count of categorical selections, we apply an exact
binomial test, as suggested in [127], for each glyph tested whether the accuracy was higher than
the threshold performance. We set the threshold to be at the standard psychometric level of 75%.
Therefore, the null hypothesis is that performance should be no different to the 75% level. For all
glyphs, the performance was significantly higher than this (p < 0.001) and was also higher than
a 95% threshold (p < 0.01). Therefore, participant accuracy is significantly different (better)
than the null hypothesis. The outcomes of the binomial tests are shown in Table 4.1 and depicted
in Figure 4.8.

Figure 4.8 The results show the probability of correct response with 95% confidence intervals
for each glyph, (n=27).

We collected response time data for each comparison and found no overall difference between
the glyphs in a one-way ANOVA (F = 0.267, d f = 6, p < 0.963), see Fig. 4.9. Therefore, no
post hoc tests were justified for response time.

4.6.1 Effect Size

Effect sizes and confidence intervals (CI) provide an indication of the magnitude of the observed
differences across experimental conditions. This process facilitates a deeper comprehension
of the underlying factors supporting our hypothesis and concepts, enabling us to enhance and
fine-tune our ideas and forecasts in subsequent research endeavours [32]. One methodology
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Figure 4.9 Mean response time for each glyph, (n=27).

commonly used to estimate effect size for binomial tests, as suggested in [143], is the calculation
of Cohen’s g [41]. This technique can be employed to estimate the effect size specifically for
probabilities compared to a chance result of 50% correct responses.

As illustrated in Table 4.2, Cohen’s g is categorised into four distinct classifications. Regard-
ing effect size, a value of g below 0.05 is regarded as negligible, whereas a value below 0.15 is
categorised as small. Furthermore, a value less than 0.25 is classified as medium, and any value
equal to or greater than 0.25 is considered as large. Cohen’s g effect sizes are calculated for each
glyph as shown in Table 4.3. These results suggest that the effect size for all the glyphs is large
(g > 0.25).

Table 4.2 Interpretation of Cohen’s g effect size.

range effect size

0.00 <= g < 0.05 Negligible
0.05 <= g < 0.15 Small
0.15 <= g < 0.25 Medium
g >= 0.25 Large

The practical significance of effect size is contingent upon the specific situation, as elaborated
extensively in [32]. Based on the considerable probability of users accurately selecting the
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Table 4.3 Effect Size Estimate Using Cohen’s g For Each Of The Edge Glyph Binomial Tests

glyph probability g effect

A 0.994 0.494 Large
B 1. 0.5 Large
C 0.994 0.494 Large
D 0.994 0.494 Large
E 1. 0.5 Large
F 1. 0.5 Large
G 0.994 0.494 Large

appropriate sequence, it is justifiable to infer that the practical effect size is strong. In fact, almost
every user judges the order of the edge glyphs according to their suggested order.

4.7 Summary

Bertin [23] introduced a framework consisting of four semantic categories to determine the
appropriateness of various visual channels, known as retinal variables, for conveying specific
types of information. These semantic criteria are associative, selective, ordered and quantitative.
Bertin [23] stated that the texture channel, meaning patterns such these, could be ordered.
However, he did not present any evidence to support the ordered perception of the texture. Our
results verify Bertin’s proposed hypothesis that the texture variation in linear representation
can convey the ordered data. We also conclude that the linear Vizent edge glyphs are highly
distinguishable in order by complexity in pairwise testing and show no significant variation in
response time by complexity. This supports our choice to compare the Vizent edge representation
in detail with previous proposals for displaying bivariate edge data to determine if they are as
good or better than existing alternatives.
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Overview

This chapter presents and evaluates our proposed node-link visual model through user studies.
Most of the work in this chapter was previously published in [1]. Here, we present two experi-
ments that evaluated the performance of our proposed method compared to existing methods.
The first experiment discusses (see section 5.2) the methodology and the results of a task-based
usability study for comparing four different bivariate network visualisation approaches. The
second experiment (see section 5.3) evaluated the usability of the Vizent edge design with the
Vizent glyphs proposed by Holliman et al. [80]. Lastly, we discuss the results and limits of the
research study and a roadmap for future research in this area.

In summary, the main contributions of this study are:

• Presenting a novel node-link visual model – visual entropy (Vizent) graph – to effec-
tively represent both primary and secondary values, such as uncertainty, on the edges
simultaneously.

• Performing two task-based usability studies to demonstrate the efficiency and effectiveness
of our approach for visualising bivariate networks using static node-link diagrams.

• Comparing the Vizent design against three visual encodings selected from the literature on
various graphs ranging in complexity from 5 to 25 edges for three different tasks.

5.1 Introduction

Networks (or graphs) have become ubiquitous in diverse fields, such as social, communication,
and transportation networks [197]. Given networks increasing size and complexity, network
visualisation goals are shifting to the challenge of readability and the rapid extraction of valuable
insights from networks [30]. However, a challenge in visualising network data is developing
an accurate mental model of what is happening in a network so that appropriate actions can be
taken quickly.

Visual network analysis has received growing interest due to data availability across all
application domains. Many tasks involve examining the characteristics of the nodes and edges
that can be subject to uncertainty. This uncertainty can take several forms, depending on the
context. It can be quantified with a single scalar value and described as variability, probability,
confidence, or other measures. Introducing uncertainty, even as a simple scale scalar value, could
complicate the representation. The difficulty of utilising existing methods, increasing visual
complexity, and the absence of effective visualisation techniques complicate the visualisation
of uncertainty. Interactive visualisation approaches and user interaction might address these
concerns [97]; however, interactivity is not a solution in many situations, such as print and books,
and is only applicable in limited circumstances. Incorporating uncertainty information into
existing visual channels explicitly as an additional channel in statically depicted graphs might
present a readability issue.

The main goal of this study is to examine and enhance the limitations of the existing visual
encodings by developing a novel approach of a node-link visual model — visual entropy (Vizent)
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graph. All research problems motivated us to provide a solution to be effective and simple to
interpret on (static) node-link diagrams. We test the hypothesis that Vizent performs equally or
better against three visual encodings selected from the literature based on the performance of the
predefined user tasks. Therefore, we formulated the following research question:

1. Does the Vizent design perform equally well or better against the three visual encodings
for all tasks in terms of response time and accuracy?

In most cases, investigating the limitations of scalability may not be the main focus of
experimental studies. Instead, researchers may ignore scalability by selecting a size range within
which they are comfortable conducting their study [211]. Unlike literature, we are also interested
in evaluating whether the performance of each visual encoding varies with graph complexity and
task complexity. This prompted us to perform a user study including graphs of varying sizes
and tasks of varying degrees of difficulty. As a result, we examined two secondary research
questions:

1. Does the varying number of graph edges significantly influence the performance of each
visual encoding?

2. Does the type of task (Single or Dual target visual search) significantly impact the perfor-
mance of each visual encoding?

5.2 Experiment 1: Edge Performance Experiment

This section describes the control group of visual encodings, tasks, hypotheses tested, the
experimental procedure that we employed to conduct the user study, and results.

5.2.1 Usability Study of Bivariate Network Visualisation Approaches

Vizent edge design and three different visual encodings were employed for comparison in our
first experiment, see Figure 5.1. This experiment involves synthetically generated network traffic
patterns with a node-link diagram. Each edge has two values labeled as “Network traffic” and
“Variability”. Network traffic was presented as the primary value, and the uncertainty information
was presented under a variability level as a secondary value to highlight the use and potential
of our proposed design for analyzing communication networks. Nevertheless, the proposed
node-link visual model also would be valid for a diverse range of networks.

Network traffic ranges in value between 20 and 80 in increments of 20, and the variability
ranges in value between 1 and 3. Four encoding levels were assigned to network traffic, while
three were assigned to its variability. Each edge represents one of the combinations of a network
traffic level and its variability level. In the experiment, each displayed graph has just one edge
with the desired value, which all the participants are required to locate. For the remaining
edges, the values of each edge were always selected from a discrete uniform distribution; values
were drawn from 20,40,60,80 for the network traffic, and values were drawn from 1,2,3 for its
variability.
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5.2.2 Control Group of Visual Encodings

This section summarises three pairs of visual encodings selected for comparison. We replicated
the following visual encodings from Guo et al. [71] and Bae et al. [13] that were found to be
effective: Width−Lightness, Numerical values, and Saturation−Transparency. The following
abbreviations are therefore used throughout the remainder of this study to refer to the visual
encodings: Width−Lightness = Wid−Lig, Numerical values = Num, Saturation−Transparency =
Sat−Tra.
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80.0

Variability

1.0

2.0

3.0

(a) Vizent
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Network Traffic -> 20,40,60,80
Variability -> 1,2,3

(b) Numerical Values — Num
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(c) Width−Lightness — Wid−Lig

Network Traffic \ Variability 

 20 \ 1

 20 \ 2
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 80 \ 3

(d) Saturation−Transparency — Sat−Tra

Figure 5.1 Illustrating practice examples of node-link visualisations used in the practice trial.
Vizent design (a) and three different visual encodings, (b), (c), and (d), were employed for
comparison in our experiment. The graphs provided above have two attributes, each of which is
mapped to different visual attributes.

For the control group of visual encodings, see Figure 5.1, width, saturation, and numerical
values were encoded as a visual cue for displaying the network traffic attribute, while lightness,
transparency, and numerical values were encoded for displaying the variability attribute on
the edges of the graph. Each visual encoding was implemented with the shell layout using
NetworkX [72] library and saved in PNG format with a resolution of 1280 x 720 pixels, and
included a legend showing the meaning of bivariate channels. We employed a white background
colour for each stimulus and explicitly designed the graph layout that did not include crossing or
overlapping edges for better readability.

We replicated certain visual variables from Guo et al. [71] and Bae et al. [13] to ensure
our results could be directly compared with these established findings. We aimed to maintain
consistency in both the experimental configuration and the presentation of data. See Figure 5.2
for the default edge visual variables.
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Figure 5.2 Default Edge Visual Variables of the Experiment.

The colour hue of the Vizent was defined in the HSL (hue-saturation-lightness) colour space.
The range of hue was restricted between 170 to 216 (cyan and cyan blue), as in Guo et al. [71].
The variability value was encoded into the striped pattern. The frequency level of the pattern
varies with the increasing level of variability in the network data; see Figure 5.3.
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3.0

Figure 5.3 A 10-edges graph used as stimuli of Vizent

For Num, see Figure 5.4, numerical values were directly used to represent the network traffic
value and its variability.

For Wid−Lig, the width of edges was varied between 3 pixels to 9 pixels, with thinner edges
appearing on lower levels. The lightness number range lies between 0 and 100. In our case, the
lightness value ranged from 50 and 90. The hue of the lower-level edges (90) is lighter than that
of the higher-level edges (50), see Figure 5.5.

Saturation is defined as a percentage ranging from 0 to 100 (pure colour). For Sat−Tra,
the saturation level ranged from fully saturated cyan blue (100) to fully desaturated cyan blue
(1), which appears grey. The range of transparency values is 0 to 1. While 0 corresponds to a
completely transparent fill and 1 to a solid fill. However, in our case, the level of transparency
was adjusted between 0.1 (the lowest level) and 1 so that the edge lines are visible, see Figure 5.6.

The experiment provided participants with various visual representations, such as static,
undirected, and weighted graphs. Each participant completed 60 trials with different graph
layouts: 4 visual encodings x 3 tasks x 5 graph complexity (edge number). The number of edges
in the created graphs varied from 5 edges to 25 edges in increments of 5. For each graph size, one
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Figure 5.4 A 10-edges graph used as stimuli of Num
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Figure 5.5 A 10-edges graph used as stimuli of Wid−Lig
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Figure 5.6 A 10-edges graph used as stimuli of Sat−Tra
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Figure 5.7 The node-link diagram shows an example of a 25-edges graph used as stimuli of
Sat−Tra.
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trial was shown to the participants. A maximum graph size of 25-edges is reasonably depicted
on a standard-size screen without zooming or panning, see Figure 5.7. Examples of 15-edges,
20-edges, and 25-edges graphs used as stimuli of all visual encodings in the experiment can be
seen in Appendix A.

5.2.3 Tasks

The experiment consisted of three tasks. All participants were required to complete three different
tasks for four visual encodings. The order of tasks was randomised to reduce the learning effect,
so each subject performed a different shuffled order of tasks. Participants were not informed
about how Vizent design works or which strategy we proposed to avoid inadvertently influencing
them. As a result, we are purposefully vague: we just asked them to “find the targeted edge in
the context of given visual encoding”.

Lee et al. [113] provide a comprehensive summary of graph exploration tasks and differentiate
between topology-based tasks, attribute-based tasks, and browsing and overview tasks. Attribute-
based tasks include the identification of nodes or links with certain labels. The browsing tasks
encompass several topological operations, including examining adjacency relationships between
nodes, determining the shortest path between nodes, and the identification of clusters within
the graph. On the other hand, the overview task focuses on examining the network’s general
attributes, such as estimating its overall size. The topology-based tasks hold greater significance
in navigating a graph’s structure. However, in our experiment, we do not place emphasis on the
graph’s topology.

For this experiment, attribute-based tasks were chosen and inspired by our detailed inquiry
into the issues surrounding server interconnections and their functionality and use cases. Real
Facebook traffic patterns [5] were explored to understand important questions about the network
data, features, and relationships between entities, including the size of the flows and bandwidth
variations through time. These high-level tasks typically involve performing several low-level
tasks [113].

Table 5.1 List of experimental questions used in this study.

Attribute-based tasks Task Type Target Visual Variable

Task 1) Find the edge with
the lowest variability
in the graph.

A single visual
attribute Single Variability

Task 2) Find the edge with
the highest network traffic
in the graph.

A single visual
attribute Single Network Traffic

Task 3) Find the edge with
the highest network traffic
and lowest variability.

Two visual
attributes Dual

Network traffic
and Variability
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Our tasks represent a variety of realistic network tasks while covering the basic perceptual
operations of distinguishing high-level “interesting” edge patterns between relational nodes and
identifying a targeted edge having an extremum value. All formed tasks were carefully chosen
to satisfy both Lee et al.’s graph task taxonomy [113] and Amar et al.’s taxonomy of low-level
visualisation tasks [4]. All experimental questions were described in Table 5.1.

Two separate target types were created for the tasks: Single and Dual. For Single target,
subjects are asked to identify the one visual variable on edge: network traffic or the variation in
that traffic. However, for Dual target (Task 3), they ought to search the target features on the
edges by considering the two variables of the graph edge: network traffic and its variability.

After generating the datasets, each one was thoroughly examined to verify that it included
only one specific data needed for its designated task. By taking this measure, it was guaranteed
that each task would have only one correct answer, thereby preserving the integrity of the
task-specific data utilised in the experimental design and guaranteeing the correctness of the
experiment.

5.2.4 Hypotheses

In this experiment, we devise and analyse the following null hypotheses:
H1 There is no statistically significant difference in response time (efficiency) and accuracy
(effectiveness) between Vizent and the control group of visual encodings when completing Task
1.
H2 There is no statistically significant difference in response time and accuracy between Vizent
and the control group of visual encodings when completing Task 2.
H3 There is no statistically significant difference in response time and accuracy between Vizent
and the control group of visual encodings when completing Task 3.

The null hypotheses (H1, H2, H3) were defined, and they do not specify whether Vizent
performs better or worse than the control group of visual encodings across the tasks. The
principal rationale behind this approach is to ensure objectivity in our experimental analysis. By
establishing our hypotheses in this manner, we do not imply that Vizent is superior or inferior
to alternative encoding methods. On the contrary, our objective is to determine whether Vizent
performs equivalently in terms of response time (efficiency) and accuracy (effectiveness) to
existing visual encoding. Moreover, employing this null hypothesis approach aids in mitigating
bias in interpreting the results since it places the burden of proof on demonstrating a difference
rather than assuming it initially. A statistically significant difference would be indicated if
evidence were to support the rejection of these null hypotheses, thus implying that Vizent either
enhances or diminishes performance in comparison control groups.

5.2.5 Experimental Procedure

Python 3.9 and PschoPy version 2021 [142] were used to design the experiment. We conducted
a within-subject experiment to eliminate the influence of personal interests and abilities through
the Prolific [140] online experiment tool. For the study, 50 participants with normal or corrected
vision were recruited. This experiment did not consider the demographic data (gender, age,
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educational background). All the participants were native English speakers and paid 2.50 pounds
to complete the experiment (intended to take less than 20 min). We did not impose a time limit
on the tasks, but we advised participants to complete the tasks as quickly and accurately as
possible without assigning any priority between the two performance metrics.

Participants were required to use a laptop or desktop computer with a resolution of at least
1366 x 768 pixels available screen space to take part in the experiment. All participants agreed to
a Newcastle University-approved consent form and, after that, read the learning task instructions
carefully.

A brief short trial session was implemented for each of the four visual encodings in the
experiment. Thus, participants performed only two practice trials for each visual encoding before
conducting a full experiment. During trial sessions, the evaluation software did not gather the
data; rather, it displayed the correct answer upon completion of each task. Immediate results
were displayed, showing whether the result was correct or not after each trial.

5.2.6 Edge Performance Experiment Results

Participants’ accuracy and response time were recorded during each trial, enabling the evaluation
of two different performance measures. Two dependent variables, the response time (in seconds)
and accuracy, were used to evaluate the effectiveness of each visual encoding. There was only
one correct response for each trial, and the task accuracy was measured as the proportion of the
number of correct replies to the number of stimuli within each task.

Before analysis, we applied a data quality check separately to the response time and accuracy
of the four visual encodings: Vizent, Num, Wid−Lig, and Sat−Tra. The z-score was calculated
specifically for each participant’s average accuracy across all visual encodings and tasks, and
these scores were compared to a threshold of -3 to +3 standard deviations from the mean. We
identified and removed one participant whose average accuracy was close to chance, indicating
potential misunderstanding of the tasks or random clicking. The response time check revealed
that some users took unusually long to finish tasks. After reviewing the results of each task for
all visual encodings, we concluded that they spent this time locating the specified edge.

Following the quality checks, we analysed the data of participants’ response time and
accuracy separately. A Shapiro-Wilk method with a significance level of α = 0.05 was run on
each visual encoding to determine whether or not the data was normally distributed. In addition,
we plotted the distributions of the data to examine normality. The Shapiro-Wilk test indicated
violations of the assumptions of normality for response time and accuracy.

We analyse the results by treating each task as a separate experiment. For the non-normally
distributed accuracy and response time, we applied a Friedman non-parametric analysis with a
significance level of α = 0.05 to determine if there was a significant difference between the four
visual encodings within each Task. This was followed by a post hoc analysis using a Wilcoxon
signed-rank test with Bonferroni correction for pairwise comparison.

The Bonferroni correction is an adjustment made to the p-value in order to reduce the chances
of obtaining false-positive outcomes (protects from Type I errors) in the context of multiple
pairwise tests conducted on a singular dataset [134]. The Bonferroni correction involves a
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reduction of the individual significance level (p-value) to “p/n” (where n represents the number
of comparisons being conducted). Post hoc pairwise comparisons with the Bonferroni correction
(at an adjusted p = 0.0125) were performed to determine significant differences between pairs
of visual encodings regarding response time and accuracy.

The results of the experiment are presented according to the three tasks evaluated. Table 5.2
below represents the post hoc (z−, p− values) pairwise analyses for each task with significant
differences in accuracy and response time highlighted in bold using p = 0.0125 following
Bonferroni correction. If statistically significant differences were found between pairs of visual
encodings, we additionally calculated r− value (effect size) (r = Z/

√
Npairs), recommended

in [157], as shown in Table 5.2. The effect size (r) is categorized into three groups using
Cohen [41] criteria: 0.1 < r < 0.3 being a small effect, 0.30 < r < 0.50 being a medium effect,
and finally r >= 0.50 being a large effect.

Table 5.2 Post hoc analysis results with Wilcoxon signed rank tests for each Task. Significant
differences between pairs of visual encodings are highlighted in bold using p < 0.0125.

Vizent vs
Num

Vizent vs
Wid−Lig

Vizent vs
Sat−Tra

Num vs
Wid−Lig

Num vs
Sat−Tra

Wid−Lig vs
Sat−Tra

Task 1

Accuracy
z -0.683 0.517 2.134 1.239 2.646 1.935
p 0.494 0.605 0.033 0.215 0.008 0.053
r - - - - 0.27 -

Response
Time

z -3.049 4.461 -0.761 5.237 1.219 -4.034
p 0.002 0.000 0.447 0.000 0.223 0.000
r 0.31 0.45 - 0.53 - 0.41

Task 2

Accuracy
z -0.121 5.418 5.853 5.53 5.904 3.41
p 0.904 0.000 0.000 0.000 0.001 0.001
r - 0.55 0.59 0.55 0.60 0.34

Response
Time

z -4.571 -1.915 -3.059 3.288 1.616 -2.333
p 0.000 0.056 0.002 0.001 0.106 0.020*
r 0.46 - 0.31 0.33 - -

Task 3

Accuracy
z -2.483 2.473 0.782 4.553 3.432 -1.43
p 0.013* 0.013* 0.043 0.000 0.001 0.153
r - - - 0.46 0.35 -

Response
Time

z -0.642 3.974 3.815 3.994 4.541 -1.149
p 0.521 0.000 0.000 0.000 0.000 0.251
r - 0.40 0.38 0.40 0.46 -

* indicates a p-value close to the significance threshold (0.0125), which could be influenced by the strictness of the Bonferroni correction [10].

Figure 5.8 illustrates time and accuracy by all visual encodings, grouped by Task; boxplots
represent response time with the lower, median, and upper quartiles, while accuracy is represented
by bars (mean) and error bars (95 confidence intervals). The black lines that connect pairs of
visual encodings indicate statistically significant differences across visual encodings.

T1 (Variability) — For the first experimental question: Find the edge with the lowest
variability in the displayed graph.
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Figure 5.8 Response times in seconds (upper side, as box plots) and accuracy (bottom side, as
bars representing mean values and error bars representing 95% confidence intervals) classified
by Vizent, Num, Wid−Lig, Sat−Tra, respectively grouped by Task. The black lines highlight
significance between visual encodings.

The Friedman test revealed significant differences in response time among the four visual
encodings (X2 = 47.180, d f = 3, p < 0.001). Following a post hoc analysis, it was revealed
that the Wid−Lig was significantly faster than Vizent, Num, and Sat−Tra (p < 0.001). Also, a
significant difference was found between Vizent and Num in favour of Vizent (p < 0.01).

Regarding accuracy, we also find a significant difference among the four visual encodings
(X2 = 19.813, d f = 3, p < 0.001). The post hoc analysis revealed that Num is significantly more
accurate than Sat−Tra (z = 2.646, p < 0.001) with a small effect size (r = 0.27). However,
there was no significant difference found between the following pairings: Vizent/Wid−Lig;
Vizent/Num; Vizent/Sat−Tra; Num/Wid−Lig; Wid−Lig/Sat−Tra.

Key findings: The resulting data suggest that our first hypothesis H1 holds in terms of accuracy;
however, it does not hold in terms of response time as Wid−Lig produced quicker response time
than Vizent, and the subjects answered significantly faster with Vizent than in Num for Task 1.

Task 1 discussion: In general, the results of Task 1 indicate that participants responded more
quickly to Wid−Lig than the other visualisation approaches. Our findings are not surprising for
Vizent, considering we presented a novel edge design to participants for the first time, requiring
additional training. As a result, it is reasonable that they spent more time locating the targeted
edge with Vizent than with Wid−Lig. Additionally, Vizent produced a quicker response time
than both Num and Sat−Tra. The medians indicated that while the shortest response time was
spent with the Wid−Lig (x̃ = 3.01 sec.), the longest time was spent with Num (x̃ = 5.22 sec.).
A shorter time was spent with Vizent (x̃ = 4.16 sec.) than with Sat−Tra (x̃ = 4.72 sec.), see
Table 5.3.
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Table 5.3 The mean and median response times in seconds are grouped by visual encoding and
Task. The lowest mean response time of the visual encodings is highlighted in bold for each Task.
The terms Single and Dual target visual search are also displayed.

Visual Encodings

Vizent Num Wid−Lig Sat−Tra

Task 1 Single
Mean 5.03 5.76 4.07 5.25
Median 4.16 5.22 3.01 4.72

Task 2 Single
Mean 4.63 6 4.79 5.74
Median 3.35 4.91 4.59 4.55

Task 3 Dual
Mean 6.31 5.64 4.35 4.41
Median 4.55 4.91 3.39 3.64

In terms of accuracy, a post hoc analysis revealed a significant difference between Num and
Sat−Tra in favour of Num (p = 0.008), indicating that participants’ accuracy was significantly
lowered with Sat−Tra when answering Task 1. In particular, the difference between the accuracy
of Num and Sat−Tra is about 15%. However, there was no significant difference found between
the remaining pairs.

T2 (Network Traffic) — For the second experimental question: Find the edge with the
highest network traffic in the displayed graph.

The Friedman test revealed significant differences among the four visual encodings in
terms of response time (X2 = 39.588, d f = 3, p < 0.001) and accuracy (X2 = 91.349, d f = 3,
p < 0.001). The post hoc analysis revealed that Vizent is significantly faster than Num and
Sat−Tra regarding the response time (p < 0.001) with medium effect size, shown in Table 5.2.
Additionally, we found that Wid−Lig is significantly faster than Num.

Regarding accuracy, the post hoc analysis revealed that Vizent is significantly more accurate
than Wid−Lig and Sat−Tra (p < 0.001) with a large effect size (r > 0.5). Similarly, Num is
significantly more accurate than Wid−Lig and Sat−Tra visualisations (p < 0.001) with a large
effect size (r > 0.5). We also found that Wid−Lig is significantly more accurate than Sat−Tra.
Key findings: Vizent produced both more accurate and quicker performance than both Wid−Lig
and Sat−Tra, and significantly faster response time than Num. Therefore, these results falsified
the second hypothesis H2 on both accounts: response time and accuracy.

Task 2 discussion: In general, we found a discrepancy in the findings between Num and
Wid−Lig (Wid−Lig is faster than Num yet Num is significantly more accurate than Wid−Lig).
For this reason, a correlation analysis was conducted response between time and accuracy for
Wid−Lig, and the analysis result was positive but not statistically significant. As a result, we
might conclude that faster responses do not necessarily result in lower accuracy for Wid−Lig.

Vizent showed better task performance than other visual encodings in Task 2. Participants
answered more accurately and spent less time when working with Vizent than both Wid−Lig and
Sat−Tra, and produced quicker response time than Num. Regarding accuracy, Vizent and Num
performed similarly well in Task 2 with the same accuracy of about 83%; however, the medians
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revealed that Num (x̃ = 4.91 sec.) took the longest response time, while Vizent produced the
quickest performance (x̃ = 3.53 sec.).

Wid−Lig and Sat−Tra underperformed on this task, with Sat−Tra performing the lowest.
Lightness and transparency may interfere with accurate visual perception, as demonstrated by
the intriguing finding. Particularly, we may deduce that transparency strongly interacts with
saturation, reducing the ability of the respondents to distinguish the fully saturated edge, and
should not be used in conjunction with it.

T3 (Network Traffic and Variability) — For the third experimental question: Find the edge
with the highest network traffic and lowest variability in the displayed graph.

The Friedman test revealed significant differences in response time among the four visual
encodings (X2 = 42.233, d f = 3, p < 0.001). The post hoc analysis revealed that Wid−Lig is
significantly faster than Vizent and Num. Similarly, Sat−Tra is significantly faster than Vizent
and Num.

We also find significant differences in accuracy (X2 = 32.341, d f = 3, p < 0.001). Four
pairwise comparisons revealed that Num is significantly more accurate than Wid−Lig (p <

0.001) and Sat+Tra (p < 0.001) with medium effect size. However, no significant differences
were found between the following pairings: Vizent/Wid−Lig; Vizent/Num; Vizent/Sat−Tra;
Wid−Lig/Sat−Tra. On the other hand, the results of Vizent versus Num (p = 0.013), and Vizent
versus Wid−Lig (p = 0.013) are close to the significance level, which could be indicative of a
type-2 error resulting from Bonferroni adjustment being too strict [10].
Key findings: The analysis results for confirming the third hypothesis H3 were similar to those
reported in Task 1. We reject the H3 for response time as the response time differed significantly
with the exception of Vizent versus Num. Again, no significant difference in accuracy was found
between Vizent and the other visual encodings; therefore, we fail to reject the H3 concerning
accuracy.

Table 5.4 The mean and median accuracy (%) are grouped by visual encoding and Task. The
highest mean accuracy percentage of the visual encodings is highlighted in bold for each Task.
The terms Single and Dual target visual search are also displayed.

Visual Encodings

Vizent Num Wid−Lig Sat−Tra

Task 1 Single
Mean 82.04 84.08 80 71.42
Median 100 100 100 80

Task 2 Single
Mean 83.26 83.26 36.32 21.22
Median 100 100 40 20

Task 3 Dual
Mean 76.32 88.97 65.71 72.65
Median 100 100 80 80

Task 3 discussion: Regarding the response time, the post hoc analysis revealed that both
Wid−Lig and Sat−Tra are significantly faster than Num and Vizent. However, due to the discrep-
ancy in the findings for Num and both the Wid−Lig and Sat−Tra (Wid−Lig and Sat−Tra are
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faster than Num, yet Num produces significantly more accurate performance than Wid−Lig and
Sat−Tra), we conducted a correlation analysis between time and accuracy for both the Wid−Lig
and Sat−Tra. The outcomes were negative and statistically significant for both visualisation
methods. This revealed that faster responses did not result in lower accuracy.

In terms of accuracy, Num had a better accuracy of approximately 90%. When working with
Vizent, the participants achieved a second higher level of accuracy of around 77%, compared to
Wid−Lig (around 66%) and Sat−Tra (around 73%), see Table 5.4 above. It is worth noting that
no significance was found between Vizent and Num following the Bonferroni correction.

5.2.7 Graph Size

As varying graph size is another interest of this study, we formulated the following secondary re-
search question “Does the varying number of graph edges significantly influence the performance
of each visual encoding?”. The participants were provided with various graphs ranging in com-
plexity from 5 to 25 edges in increments of 5 to observe how increasing the size of graphs affects
each visual encoding regarding performance measures. In this case, the Bonferroni-corrected
p− value was found by dividing the p-value by the number of the graph sizes (0.05/5 = 0.01),
and then we applied (p = 0.01) to our results as the significance level.

We summarised the effects of graph complexity in edge size within the provided task in terms
of response time and accuracy. It should be noted that the graph size at its largest is not huge and
that this corresponds to other works in [71, 13] rather than an upper limit of the possible.

Figure 5.9 Response times in seconds (upper side, as box plots) and accuracy (bottom side, as
bars representing means and error bars representing 95% confidence intervals) classified by edge
number, respectively grouped by Task within Vizent.

Within Vizent: The obtained results are illustrated in Figure 5.9 for each Task separately.
For Task 1, we found significant differences in terms of response time (X2 = 21.94, d f = 4,
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p < 0.001), however, no significant difference was found in terms of accuracy (p = 0.43)
between the five various levels of graph edges. Post hoc analysis revealed that participants only
responded significantly faster to the 10-edges than to the 15-edges.

For Task 2, we found significant differences in terms of response time (X2 = 29.56, d f = 4,
p < 0.001), and accuracy (X2 = 9.57, d f = 4, p < 0.05) between the five various levels of
graph edges. Post hoc analysis revealed that participants responded significantly faster to the
10-edges, 20-edges, and 25-edges than to the 5-edges. Also, they responded significantly faster
to the 25-edges than to the 15-edges. Regarding accuracy, we observed no statistically significant
difference following the Bonferroni correction.

For Task 3, we found significant differences in terms of response time (X2 = 19.88, d f = 4,
p < 0.01), however, no significant difference was found in terms of accuracy (p = 0.33) between
the five various levels of graph edges. Post hoc analysis revealed that participants responded
significantly faster to the 10-edges and 25-edges than to the 5-edges.
Key findings: For all tasks, we found no notable significant evidence that increasing the graph
size has a discernible influence on response time and accuracy within Vizent.

Within Num: The obtained results are illustrated in Figure 5.10 for each Task separately.
For Task 1, we found significant differences in terms of response time (X2 = 24.01, d f = 4,
p < 0.001), however, no significant difference was found in terms of accuracy (p = 0.83)
between the five various levels of graph edges. Post hoc analysis revealed that participants spent
significantly more time on 20- and 25-edges than on up to 15-edges when looking for the target.

Figure 5.10 Response times in seconds (upper side, as box plots) and accuracy (bottom side, as
bars representing means and error bars representing 95% confidence intervals) classified by edge
number, respectively grouped by Task within Num.

For Task 2, we found significant differences in terms of response time (X2 = 28.90, d f = 4,
p < 0.001), however, no significant difference was found in terms of accuracy (p = 0.33)
between the five various levels of graph edges. Post hoc analysis revealed that participants spent
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significantly more time on 20- and 25-edges than on up to 15-edges, except for a slight difference
between 5- and 25-edges.

For Task 3, we found significant differences in terms of response time (X2 = 36.27, d f = 4,
p < 0.01), however, no significant difference was found in terms of accuracy (p = 0.07) between
the five various levels of graph edges. Post hoc analysis revealed that participants only spent
significantly more time on 25-edges than on up to 20-edges, but there were no statistically
significant differences between the remaining edges.

Key findings: Our results are intriguing in that participants’ response time significantly increases
when the graph size exceeds 15-edges or 20-edges depending on the task type. For Task 1 and
Task 2, we found that increasing graph size beyond 15-edges significantly affected response time.
However, for Task 3, participants’ response time significantly increases when the graph size
reaches 25. As a result, it is possible to infer that locating the desired edge in Num will require
participants to spend more time hunting around the entire graph design as edge size increases
beyond 15.

Within Wid−Lig: The obtained results are illustrated in Figure 5.11 for each Task separately.

Figure 5.11 Response times in seconds (upper side, as box plots) and accuracy (bottom side, as
bars representing means and error bars representing 95% confidence intervals) classified by edge
number, respectively grouped by Task within Wid−Lig.

For Task 1, we found significant differences in terms of response time (X2 = 76.52, d f = 4,
p < 0.001), and accuracy (X2 = 32.51, d f = 4, p < 0.01) between the five various levels of
graph edges. Participants significantly spent more time on the 5- and 20-edges than on the
remaining edges during this task. Also, their accuracy dropped significantly to 60% when the
edge number was 20 compared to the remaining edges. However, according to the post hoc
analysis, no significant difference in accuracy was found between 5-edge and 20-edge. The
decrease in accuracy when the graph size was 20 could be due to the primary encoding value,
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where network traffic was lowest, so the target edge was marked as a thin line, limiting the
discriminability of the lightness of the visual channel for the target edge.

For Task 2, we found no significant differences in terms of response time (p = 0.19).
However, significant differences in accuracy were found (X2 = 61.50, d f = 4, p < 0.001).
We discovered that beyond 10-edges, participants’ accuracy fell significantly to around 20%.
They responded with an average accuracy of 60% within 5- and 10-edges, which is still poor
performance. After a thorough analysis of the results, it is worth noting that a significant fall in
accuracy could imply that second visual encoding (varying lightness level) might influence the
saliency of the targeted edge in Task 2.

For Task 3, we found significant differences in terms of response time (X2 = 12.53, d f = 4,
p < 0.05), and accuracy (X2 = 62.42, d f = 4, p < 0.01). The participants’ accuracy decreased
significantly to around 30% within 25-edges; however, no significant differences were found
across the remaining edges.
Key findings: For all tasks, no clear evidence of a diminishing or increasing tendency in response
time was found for different graph sizes. It is not possible to generalize that the complexity of
the graph influences the participant’s accuracy for all tasks; however, for Task 3, participants’
accuracy decreases dramatically beyond 20-edges. Regarding accuracy, we can conclude that
width and lightness do not work well together as lightness level, to some degree, visually interfere
with the width of the edge for Task 2.

Within Sat−Tra: The obtained results are illustrated in Figure 5.12 for each Task separately.

Figure 5.12 Response times in seconds (upper side, as box plots) and accuracy (bottom side, as
bars representing means and error bars representing 95% confidence intervals) classified by edge
number, respectively grouped by Task within Sat−Tra.

For Task 1, we found significant differences in terms of response time (X2 = 27.83, d f = 4,
p < 0.001), and accuracy (X2 = 26.57, d f = 4, p < 0.001) between the five various levels of
graph edges. By contrast, these statistically significant results did not conclusively establish that
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increasing the size of the edge affects the outcomes. Nonetheless, the difference is noteworthy,
so we decided to perform additional investigations. As shown in Figure 5.12, when the edge
size was 10 or 25, the participants’ accuracy declined to 55%. Additionally, participants spent
significantly less time on the 15- and 20-edges than on the remaining edges. We discovered that
the value of network traffic was a significant factor in achieving higher accuracy and quicker
response time. In other words, when the network value of the target edges was at its lowest
or highest (fully desaturated or fully saturated), the participants located the edge with higher
accuracy and in less time; otherwise, their accuracy dropped, and they required more time.

For Task 2, we found significant differences in terms of response time (X2 = 12.53, d f = 4,
p < 0.001), and accuracy (X2 = 57.91, d f = 4, p < 0.001) between the five various levels of
graph edges. The post hoc analysis revealed that participants responded significantly faster
to the 20-edges than to the 25-edges. Also, they provided significantly higher responses to
the 20-edges with an accuracy of 60% than the remaining edges. This significant difference
indicates that variations in the transparency level had a statistically significant negative effect
on accuracy when finding the most network value. More interestingly, they provided a more
accurate response when the variability value of the targeted edge was the lowest (the highest
transparency); otherwise, they reached only about 20% accuracy.

For Task 3, we found significant differences in terms of response time (X2 = 28.53, d f = 4,
p < 0.001), and accuracy (X2 = 19.37, d f = 4, p < 0.01) between the graph sizes. The post
hoc analysis revealed that participants spent significantly more time on the 5-edges than on the
10- and 15-edges. However, no significant difference in response time was found amongst the
remaining pairs following a Bonferroni correction.

Key findings: The increased graph complexity in size does not consistently appear to influence
the response time and accuracy significantly; however, we noticed that this visual encoding
significantly affected the outcomes for Task 1 and Task 2.

5.2.8 Task Type

We used two different target types in our research: Single and Dual, and formulated the following
secondary research question: “Does the performance of each visual encoding vary with the type
of visual search task (Single or Dual target visual search)?” We evaluated whether the task type
also has a significant effect on the performance of the visual encodings.

For Vizent, when the task target was Single, no significant difference was found between Task
1 and Task 2 regarding response time (p = 0.106) and accuracy (p = 0.806). Not surprisingly,
compared to Single target tasks, a significant effect of Dual target on response time was found
(X2 = 12.53, d f = 2, p < 0.01), with the post hoc analysis revealing that a faster response time
for Single target.

For Num, when the task target was Single, no significant difference in performance was found
between Task 1 and Task 2. Also, no significant effect of Dual target was found in response time
(p = 0.31) and accuracy (p = 0.19) compared to Single target tasks.

For Wid−Lig and Sat−Tra, we could not investigate differences between Single and Dual
targets since significant differences in accuracy were found even among Single target tasks. We
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found that their performance on Task 2 significantly decreased. This could be in large part due to
the transparency level having an adverse effect on the saturation level when Sat−Tra was used.
Additionally, the lightness level of the edge that interferes with the edge width’s appearance
could negatively impact the performance of Wid−Lig.

5.3 Experiment 2: Node and Edge Performance Experiment

Figure 5.13 Visual entropy glyphs encode hourly mean temperature values using the Met Office
colour scale and the variance of those values in the urban digital twin application context [80].

Following the analysis of the initial experiment results, it was determined that our Vizent
edge design showed better performance than the visual encodings previously identified from
the literature for all tasks, with the exception of the Num. Notably, no statistically significant
difference was found between the approaches (Vizent vs Num) regarding their effectiveness.
Consequently, we proceeded to incorporate Visual entropy (Vizent) glyph shapes (see Figure 5.13)
as node embeddings. This integration was seamlessly achieved without disrupting the graph
layout, as nodes are typically represented as circular entities. The main idea of our approach is
to embed Vizent glyph shapes into graph nodes to visualise node-oriented data (bivariate node
attributes). The motivation behind our research is the recognition that both nodes and edges can
be influenced by uncertainty. By incorporating the representation of uncertainty alongside the
primary value, we aim to provide end-users with the ability to make well-informed and efficient
decisions.
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We evaluated the usability of the Vizent edge design with the Vizent glyphs that were proposed
in the study by Holliman et al. [80]. The Vizent glyphs that replace the node representations
were used to show bivariate data attached to nodes, as can be seen in Figure 5.14.
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Figure 5.14 Example of the Vizent graph design. Node variables are mapped to Vizent glyph
shapes.

A follow-up online experiment with a task-oriented approach was employed following a
similar approach to the initial study. The Vizent graph design, see Figure 5.15, was compared
against the numerical values (Num) visualisation, see Figure 5.16, that had better accuracy than
the control group of visual encodings in the first study.

For encoding the edge colour of the Vizent graph, we chose a set of colours that we believed
were easy to search for and screened participants for colour vision. There is a lot of literature
on colour choice, and in practice, users may choose from many alternative encodings, for
example, [153, 45].

Before the experiment, the participants in the online test environment were asked to provide
informed consent. The users were informed about the aim of the study before being given the
instructions to read. We requested participants use a screen resolution of at least 1920 x 1080
pixels.

We have designed a practice session for each visual graph method to evaluate participant
attention to the task. Participants’ results were disregarded if respondents did not provide at least
one correct answer for each visual approach presented. We deemed these likely to be random
responses by the participants as we had no control over the study environment, thus increasing
the result’s reliability. Additionally, we were careful not to coach participants until they could do
the task, and the practice trials were not intended to provide comprehensive training on graph
visualisation. Furthermore, to maintain the validity of the experimental design and eliminate
the possibility of any prior experience with Vizent approaches, participants who participated in
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Figure 5.15 Illustration of the Vizent graph design. Four encoding levels for network traffic value
and its variability were assigned to Vizent edges and Vizent glyphs [80]. Each edge and node
represent the combinations of a network traffic level (20 to 80) and its variability level (2 to 8).

Figure 5.16 Illustration of Num visualisation. Four encoding levels for network traffic value
and its variability were represented by numerical values. Each edge and node represent the
combinations of a network traffic level (20 to 80) and its variability level (2 to 8).
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experiment 1 were intentionally prevented from participating in experiment 2 using the Prolific
system.

This study makes use of graph visualisation of randomly created datasets with 18 nodes and
25 edges, as in [71, 13]. We utilise graphs without edge crossing to improve the readability of
both representations. Each visualisation approach comprises ten distinct graph representations,
each with its own layout, see Appendix B. Each participant was instructed to perform a predefined
task on both Num and the Vizent graphs. They are required to identify the edge with the highest
network traffic value while also having the lowest variability in that traffic, the same as Task
3 in the initial study. Participants only click on the middle of the edge if they discover the
targeted edge. Each session lasted around twelve minutes. Although we requested participants to
complete the task as quickly as possible, we did not put time constraints on the task. We recorded
response times and the correctness of the answer for each of the 20 trials in the experiment.

5.3.1 Hypotheses

We hypothesised that two graph visualisations are equally effective, and that participants would
perform comparably well in terms of response time and accuracy when completing the predefined
task. The following null hypotheses were therefore tested:
H1 There is no difference in the mean response time between the two visualisation approaches
when completing the task.
H2 The Vizent graph design performs equally well compared to Num in terms of accuracy.

We formulated hypotheses about the performance of each graph representation and compared
them to the user study’s findings.

5.3.2 Experimental Results

We discovered that neither accuracy nor response time was normally distributed following the
Shapiro-Wilk test with a significant level of α = 0.05. Thus, we conducted a Wilcoxon signed
rank test with a significance level set p < 0.05 to compare response times and accuracy in the
Vizent graphs with Num for our not normally distributed data.

The Wilcoxon signed-rank test revealed that mean response time in seconds was significantly
less when the Vizent graphs were used (x̃ = 3.415, n = 24) compared to Num (x̃ = 7.192,
n = 24), Z =−5.15, p < 0.001, with a large effect size (r = .74). These results rejected the first
hypothesis H1, which claimed that there would be no significance between approaches in terms
of response time.

Regarding accuracy, following the test, we can conclude that there is no statistical evidence
to imply that the numerical values and the Vizent graphs lead to significantly different correct
responses (Z =−1.365, p= 0.172). The mean score for the accuracy percentage of the numerical
values is 87.9 compared to 90.8 for the Vizent graphs. Since the two-tailed p-value (p = 0.172)
is bigger than 0.05, the accuracy performance of the participants on the two graph visualisations
is identical and cannot be rejected at the 5 percent significance level, proving that the second
hypothesis H2 holds.
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Figure 5.17 Showing the follow-up experiment results. Mean response times in seconds (left side,
as box plots) and accuracy (right side, as bars representing means and error bars 95% confidence
intervals) classified by Vizent and Num graph representations, (n=24).

As demonstrated in Figure 5.17, participants spent a significant amount of time looking for
numbers. In comparison to Num, which took an average of 84.08 seconds to complete all trials
with an overall accuracy of 87.9 percent, the Vizent graphs took an average of 49.29 seconds
to complete all trials with an overall accuracy of 90.8 percent. This allowed the participants
to quickly gain an accurate visual comprehension of the ordered bivariate values that may be
difficult to discern using traditional methods.

Compared to the Vizent graphs, participants took longer to locate the correct answer for
numerical values visualisations, which can be explained by addressing established theories in
perception and cognition, as proposed by Bertin [23]. Numerical representations necessitate
sequential processing, where each value must be read and interpreted individually, which
demands high cognitive effort and time. Moreover, the human eye has limited resolution, and
when numerical values become too small, densely packed, or complex, they challenge the
viewer’s ability to discern them quickly. On the other hand, Vizent design uses visual variables,
specifically colour and texture, to encode information, taking advantage of the brain’s capacity to
process visual information simultaneously. This method utilises pre-attentive processing, where
certain visual cues are instantly recognised without requiring conscious attention. The rapid
processing enables users to comprehend information quickly and effectively, hence reducing
the time needed for comprehension. As a result, the Vizent graph should be considered for
developing a time-critical bivariate node-link visualisation. We believe the Vizent graph design
is superior and will become more common because of its ease of understanding and information
presentation.
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5.3.3 Participants’ comments on the experiment

At the end of the experiment, we asked participants to share their thoughts on the experiment,
especially if any of the representations they saw seemed particularly easy or hard to understand.
Some of the participants provided their thoughts regarding the experiment as follows:

• Once I got the hang of it, I felt the coloured lines and thickness of the black/white lines
helped the time needed to search for the correct line.

• Once I worked out what to do, that was fun! It was easier to find the pattern/colour-coded
edges, I think.

• I probably found the numbers took slightly longer to find because the visual colours stood
out more.

• I thought the experiment was interesting and engaging. No issues.

• It was odd how quickly the concept became clear because it seemed very obtuse to start.

• Coloured representations appeared easier.

• The representation of nodes and lines in colours and coloured schemes was easier to
understand.

• The experiment was tricky, especially at first, but it all went well after the trial.

• The traffic light-coloured ones were easier.

• At first, I found it quite hard to understand where to click, but once I got the hang of it, it
was relatively straightforward.

In general, the feedback on the experiment was positive. While the experiment seemed
interesting but difficult at first, participants were positively engaged and able to complete the
experimental task successfully after overcoming the initial phase of the trial. The participants
found the numbers version slightly more difficult and required more time. The consensus was
that the Vizent graph stood out more and facilitated faster search times, thus superior to the
numerical values representations. The comments suggest the experiment offered a compelling
test of visual search skills, with participants finding the Vizent graph provided easier pattern
recognition and understanding.

5.4 Discussion and Conclusion

This chapter explored the development of a novel visualisation approach to facilitate the visuali-
sation of bivariate network design and the operation of visual search tasks on node-link diagrams.
We conducted two task-based usability experiments to evaluate the performances of our proposed
new node-link model, named visual entropy (Vizent) graph. For the initial study, the Vizent
design was compared to the three effective visual encodings (Num, Wid−Lig, and Sat−Tra) in
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the literature to depict bivariate variables of undirected graphs. This included graphs of varying
sizes and tasks of varying degrees of difficulty. For the second experiment, the Vizent graph was
evaluated against Num, which had better accuracy than the control group of visual encodings in
the first study.

We found that the efficiency and effectiveness of the visual encodings evaluated vary depend-
ing on the task complexity and graph complexity in edge size. The participants achieved higher
accuracy of their responses using Vizent and Num; however, both Wid−Lig and Sat−Tra did not
show equal performance for all tasks. Moreover, our experiment results show that varying graph
size did not affect Vizent; conversely, participants’ response time increased significantly on Num
when the graph size exceeds 15. Furthermore, it does not appear that the size variation had a
major effect on the response time and accuracy of Wid−Lig and Sat−Tra.

Many studies evaluating the efficacy of visual channels have been published in the literature
of perceptual studies; the majority agree that pop-out effects aid users in locating information;
it is also important to note that the strength of colour in an optical channel relative to the other
channels (e.g., width, number) is typically much more noticeable to represent the ordering of
value [149, 155]. Additionally, while visual channels selected to encode uncertainty information
(e.g. lightness, transparency) introduced additional complexity in the visual representation, the
design of the Vizent edge glyph assisted the participants in making an accurate judgment.

Visual channels employing hue and granularity for representing bivariate data have some
potential weaknesses which the Vizent design aims to address. They combine hue and granularity
within the same region, and the levels of granularity change the shape of the marks, which could
affect colour perception. Additionally, any use of excessively light colours, or colours which
otherwise lack contrast with the background, could impact the viewer’s ability to perceive the
granularity correctly [176]. On the contrary, in the Vizent design, the coloured regions maintain
a uniform shape and width, while the striped regions maintain a high level of contrast by using
black and white stripes.

The experiment results demonstrate that Vizent consistently performs well across various
tasks and graph complexities regarding edge size, indicating its robustness and scalability. The
performance of Vizent’s design could be attributed to its adherence to Gestalt principles in
visualisation. These principles enable faster and more accurate interpretation by exploiting
the capabilities of human visual processing. Munzner’s research [133] demonstrates that the
expressiveness principle greatly improves cognitive understanding by organising information in
a way that can be easily perceived rather than relying on memory. This also helps users to focus
on the most relevant data aspects. The design of the Vizent model aligns with these concepts by
emphasising visual order and reducing mental effort, resulting in noticeable enhancements in
user task performance.

Our results are promising for the general applicability of the Vizent model to graphs of
various sizes and types in domains where it is challenging to handle the volume and complexity
of data using traditional visualisation tools. While the results demonstrate potential, further
investigation is necessary to ascertain whether they can be implemented in real-world scenarios
involving complex and large graphs. Furthermore, it is crucial to acknowledge that although
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Vizent exhibited better performance in controlled environments, practical implementations might
introduce factors that were not considered in the specified parameters.

In conclusion, this study introduced a novel node-link visual model designed for representing
bivariate data to add to the choice of representations available to end users. We believe our
findings are sufficiently encouraging to support using the Vizent graphs for implementation.

5.5 Limitations

The results of this experiment need to be evaluated in the context of the experiment’s parameters.
Although we attempted to be as diverse as possible in our selection of participants, graph sizes,
and tasks, it is hard to account for every possibility.

The chosen colour scale was not evaluated for colour-blind users in the follow-up experiment
because none of our test subjects with a colour vision deficiency. On the other hand, the tested
colour scheme is not suited for colour-blind users; any colour combinations involving red, green,
or any shades in between can create disorientation for those with this condition. However, it is
easy to choose an alternative scheme for colour-deficient viewers matched to their deficiency
type.

The produced graphs were limited to scale-free graphs, and a specific layout approach (shell
layout) was employed. Other graph layouts, such as a force-directed layout, may influence the
effectiveness of task performance. While we expect our findings to be applicable to all node-link
diagrams, additional research might be necessary to confirm this.

Due to time and access constraints, we were able to conduct online experiments with
participants to test the performance of our proposed node-link approaches because of the
pandemic restrictions. The utilisation of crowd-sourced evaluation offers the advantage of
substantial sample numbers, although it is not without its associated challenges [9]. In order to
enhance the reliability of our findings, we established our filtering criteria by considering the
replies deemed successful in the attention checks administered prior to the study. The results of
participants were excluded from the analysis if they failed to offer at least one accurate response
for each visual approach provided. For the second experiment, 50 distinct individuals were
initially recruited to participate in our online experiment. However, only 48 of them completed
the experiment. Nevertheless, it is noteworthy that 50% of the participants met the predetermined
criteria for inclusion in our analysis.

5.6 Future Works

The usability studies have shown convincing results; however, as mentioned earlier, the sizes of
the tested graph are not excessively enormous, which aligns with findings reported in existing
research [71, 13]. Additionally, we selected an edge size of 25 since it was deemed to be the
most equitable choice for all visual encodings, taking into account the absence of interactivity in
the experiment. We believe, on the basis of our experience, that the results of the experiment
would be applicable even when considering network sizes above 25. Nevertheless, it remains
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an open question how each visual encoding tested would scale when the graph size is beyond
this threshold. In future work, it would be valuable to conduct a more detailed evaluation to
investigate the impact of different graph sizes, specifically those with 50, 75, and 100 edges, on
the scalability and efficiency of our proposed visual model within a predetermined experimental
setting. This work will provide valuable insights into the performance of visual models under
varying edge conditions.

The proposed approaches have not been tested on multigraphs, and future studies will focus
on conducting empirical research on employing Vizent graphs on curved edges. In real-world
case scenarios, certain nodes may have more than one edge and curved edges could be employed
to prevent edge crossings. Additionally, it might be insufficient for single-line connections to
capture the complex information inside a network existing in the physical world. We noted it for
future work, and it would need to be verified experimentally to see how well our design works on
curved edges. Therefore, it is part of our future agenda to conduct contextual research to observe
how effectively the Vizent graph functions in more realistic environments of the target users.

Although the primary focus of our research has been to develop effective static two-
dimensional visual representations for representing bivariate data, extending our novel design
into dynamic 3D environments and incorporating multivariate data would be an interesting
direction for future work. Initially, the Vizent graph could be improved to effectively represent
multivariate data, hence expanding its applicability. This could involve implementing visual en-
coding methods, such as varying edge thickness, to encode additional variables without cluttering
the visualisation. Moreover, future research could focus on transitioning from static 2D visual
representation to dynamic virtual reality (VR) or augmented reality (AR) settings for handling
large multivariate graphs in real-world scenarios. Due to the graph’s manageable size in terms of
screen space and the limited graphical space of the edges in a 2D visualisation, integrating the
Vizent graph with interactive technologies could improve multivariate graph visualisation. This
could allow users to explore graph structures from multiple angles and interpret the multivariate
information represented in the Vizent graph when projecting onto 3D.
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This final chapter discusses the thesis results, including the main findings and contributions
from the preceding chapters (see Section 6.1). It also provides concise responses to the research
questions proposed (see Section 6.2), thereby integrating the key results and insights acquired
throughout the development of this research. Finally, we discuss possible directions for future
work (see Section 6.3).

We present the concept of edge variance in the context of edge uncertainty and a summarisa-
tion approach to how to get the maximum information while summarising large non-hierarchical
multi(di)graphs with non-negative edge weights in Chapter 3. Given the limitation on the number
of user-defined edges, the approach reduces the graph size by merging multiple edges into a
single representative edge called a superedge while retaining concise summaries highlighting the
most variable and information-rich connections. The resulting summary allows the end-users
to focus on more “interesting” edges, defined in terms of edge variance while displaying much
more information given the same number of edges from an information theoretical point of view.

Our summary algorithm currently does not consider the possibility that certain nodes may
be more interesting than others; this was acknowledged as a limitation, and future work will
concentrate on the variability of both edges and nodes in real-world scenarios where ignoring
node variables may result in the omission of interesting patterns. An additional limitation
is that the dataset we evaluated encompassed a maximum of 1500 distinct edges; additional
investigation is also required to ascertain the scalability of our algorithm.

Despite the pervasive nature of uncertainty, it is frequently not well conveyed to the user or —
potentially much more problematic — disregarded during the initial phases of the visualisation
pipeline. On the other hand, various visual channels are available to represent two values
simultaneously in the context of node-link diagrams. However, these approaches are not generally
effective in reflecting an uncertainty value due to the inference between visual channels. These
visualisations, in turn, may lead to flawed decision-making by end-users when reading bivariate
graph visualisations due to the potential for misinterpretation if they are not meticulously
developed. This challenge is nontrivial due to the limitations of edges, including their size and
the restricted capacity of individual channels.

As previously discussed in the thesis, this thesis is primarily concerned with the issue of
representing uncertainty in (static) node-link diagrams inside a two-dimensional visual space
to enhance comprehension for the general public. We developed novel node-link visualisation
techniques — Visual entropy graphs while overcoming some of the challenges of bivariate graph
visualisation approaches. Furthermore, it is important to note that the datasets may contain
missing uncertainty values, which must be managed cautiously. Therefore, we meticulously
devised a distinct design to represent missing values visually.

Visual search-based tasks are an essential activity in the real world. In our research ques-
tions, we explore how well the visual encodings perform the judgement of min and max val-
ues. This type of visual search task is common for numerous visualisation objectives, such
as anomalies and outlier detection. To evaluate our visualisation method, we conducted two
empirical task-based usability studies that compared how effective and efficient the Vizent ap-
proach is with respect to the existing bivariate attribute visualisations, namely Width−Lightness,
Saturation−Transparency, as well as Numerical values.
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The first usability study yielded the following results: Participants demonstrated increased
response accuracy when utilising Vizent and Num. However, it should be noted that Wid−Lig
and Sat−Tra did not exhibit consistent performance across all tasks. Additionally, the variation
in graph size did not have a discernible impact on the effectiveness and efficiency of Vizent. No
significant difference was observed in the performance of Vizent across different graph sizes,
ranging from 5 to 25 edges. The study also examines the potential complexity of task targets,
namely Single and Dual targets. In the case of Vizent, when the task aim was set to Single,
there was no statistically significant difference between Task 1 and Task 2 regarding response
time (p = 0.106) and accuracy (p = 0.806). Consistent with expectations, the present study
observed a notable impact of Dual target conditions on response time (X2 = 12.53, d f = 2,
p < 0.01). Further analysis indicated that Single-target conditions resulted in a comparatively
quicker response time for Vizent design.

Literature has shown, parallel to our findings, that the user’s performance is enhanced by
visual channels that are perceptually orderable concerning our new edge design [39]. Moreover,
the colour (hue), encoded to represent the network traffic for Vizent, provided a method for
quickly determining the targeted edge compared to the control group of visual encodings. In
contrast, lightness and transparency likely harmed the performance, significantly reducing the
effectiveness (accuracy) of the visual encodings. For Wid−Lig, the lightness could reduce the
discriminability of the edge mark (width level). For Sat−Tra, using saturation with varying
levels of transparency may have added distracting complexity to the visualisation due to the
interference and interplay between the two distinct visual variables.

Consistent with previous research, the outcomes of Experiment 1 (Section 5.2) demonstrated
that effective visualisation of bivariate attributes on edges within the framework of node-link
diagrams is not straightforward. A greater understanding of the interplay between multiple
channels is necessary to facilitate effective visualisation [176]. The findings presented in the first
experiment proved that our design can be reliably utilised to understand the intended values. Our
design facilitates a correct perception of differences through a sequence of Vizent edges that are
visually ordered and designed so that each sequence member of Vizent edge is distinct from the
previous one in a doubled pattern frequency.

In the second experiment, based on the quantitative results and qualitative feedback, it can
be concluded that our novel node-link visual approach efficiently facilitates the simultaneous
comparison of dual attributes through a static representation. We also concluded that the Vizent
graph provides an efficient and effective approach for communicating bivariate data, especially
when users need to quickly comprehend the uncertainty of the data to make crucial judgements
under tight time constraints. Our proposed visual graph reduces the necessity of learning and
memorising the coding scheme linked to the Vizent glyphs.

Our study results provide practical guidance for researchers seeking an effective visualisation
approach to encode bivariate edge information, particularly data value and uncertainty infor-
mation, in the context of node-link diagrams. Drawing from the findings of our experiments,
researchers can explore the performance of the alternative visual encodings tested in our user
studies and how Vizent design works well against them for bivariate representations. By adapt-
ing our Vizent graph design, experts and/or the general public can create visualisations that
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maintain consistent perceptual differences between visual cues, enabling effective information
communication. In conclusion, we believe that our studies can serve as a basis for more informed
information, particularly uncertainty encoding on bivariate edge attributes.

6.1 Summary of Contributions

Each novel contribution was published in the Visual Informatics journal, under the title: Vi-
sualizing ordered bivariate data on node-link diagrams [1]. The most significant research
contributions made by this thesis are as follows:

❍ A novel edge design for effectively representing both primary and secondary values, such as
uncertainty, on the edges simultaneously in the context of node-link diagrams. Empirically
demonstrating that different edge glyphs have a perceived order through pairwise testing.

As previously discussed, most existing visualisation methods are not specifically designed
to handle abstract data. Moreover, their primary focus revolves around the representation
of a single value or uncertainty value. In relationships, methods for communicating un-
certainty are lacking. Relationships within the data hold significant value in numerous
decision-making scenarios. Thus, it is needed to carefully and accurately exhibit uncer-
tainty in relationships. One overarching difficulty is the creation of visual metaphors that
establish an intuitive cognitive connection between uncertainties and the associated data,
ensuring that users do not fail to perceive this relationship [69].

Chapter 4 presents the novel edge design to represent ordered categorical information or
quantised numerical data on interval values and the evaluation of the proposed glyphs to
confirm the perceptual effectiveness of the Vizent edge glyphs. Vizent edges are designed
so that the user can reliably understand the desired ordered values. This is achieved by a
visually ordered sequence of Vizent edges, where each sequence member is distinct from
the previous one regarding doubling pattern frequency. Our empirical evidence suggests
that the participants perceive the visual entropy edge glyphs in an order. Because of this
perceptual effect, the dependence on legends that show encoding meanings is greatly
diminished, often leading to a substantial improvement in overall performance [116].

❍ Performing two task-based usability studies to demonstrate the efficiency and effectiveness
of our approach for visualising bivariate networks in the context of static node-link
diagrams.

User studies are of great significance as they aid the visualisation community in selecting
appropriate techniques for their tasks and are instrumental in assessing the effectiveness
of various uncertainty visualisation techniques [97]. We presented two experiments
investigating the efficiency and effectiveness of Vizent design in the context graphs drawn
as node-link diagrams in Chapter 5.

❍ Comparing the Vizent design against three visual encodings selected from the literature on
various graphs ranging in complexity from 5 to 25 edges for three different tasks.
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We formulated the following research question: “Does the Vizent design perform equally
well or better against the three visual encodings for all tasks in terms of response time
and accuracy?” as well as two secondary questions with respect to task complexity and
graph complexity. To address these questions, we conducted a controlled experiment
through Prolific in which participants were asked to complete graph-related tasks. We
tested two task types and five different edge size levels. Our study findings show that the
performance of each task varies significantly depending on the choice of visual encoding
tested. Additionally, we observed that the complexity of the graph does not significantly
affect the performance of each visual encoding, with the exception of Numerical values
(Num) visualisation.

❍ A novel node-link visual model for effectively representing both primary and secondary
values, such as uncertainty, on the edges simultaneously.

Finally, this thesis presents the Vizent graph, which helps with the general-purpose visuali-
sation of bivariate data for graph exploration and complete consideration of the uncertainty
linkage of edges and/or nodes through the effective graphical metaphors of the proposed
2D node-link visual model. This allows viewers to acquire an intuitive sense of the
secondary value of the underlying data. Furthermore, it can serve as a valuable tool for
enhancing existing visualisation methods and functioning as a stand-alone visualisation
approach.

6.2 Answers to research questions

Upon reviewing succinct explanations of our research contributions, including the design process,
integration of novel methodologies, and validation through user studies, we are now able to delve
into the research questions that guided our investigation and furnish well-grounded and empirical
responses:

• Q: Exploring a scalable approach for visualising complex graph-based data, including
measures and variance of measures?

A: The first research question focuses on a scalable approach integrating their variances
as a measure of uncertainty into the summarisation process. We define the concept of
edge variance, which measures the extent of variability or uncertainty in the weights or
attributes associated with edges of a graph. We proposed a maximum entropy-based graph
summarisation approach that identifies edges with the most informative relationships given
the user-defined number of edges.

• Q: How to design a novel entropy-based bivariate representation of networks?

A: The second research question focuses on developing a novel 2D bivariate visualisation
method to provide users with an alternate static representation that is easily understandable
in addition to the conventional node-link diagrams to assist users in making improved
and well-informed judgements. Therefore, we introduced — a Visual Entropy (Vizent)
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graph — that enhances conventional node-link diagrams. A set of criteria facilitated
the concentration of our research efforts on addressing tangible issues that contribute to
attaining the objectives. We showed how they can be utilised to represent bivariate data
(see Section 4.5.1). We provided practical impacts for real-world challenges involving two
variables in the context of uncertainty.

• Q: How do entropy-based representation networks compare in visual search performances
to existing approaches?

A: We designed our user studies as a quantitative controlled task-based evaluation involving
two observed dependent variables: response time and accuracy, where participants perform
visual search tasks while ensuring that tasks represent real-world scenarios.

The initial experiment compared the Vizent approach with several visualisation encod-
ings, while the second experiment focused on comparing it with the numerical values
visualisations. The purpose of this empirical evaluation was to evaluate the effectiveness
and efficiency of these encodings in tasks related to visual search on bivariate graphs.
Our evaluation showed that the Vizent design produced promising results empirically for
given tasks. Furthermore, our qualitative and quantitative observations from the second
experiment indicated that the Vizent graph effectively represents the features of bivariate
data and improves response time and accuracy.

In summary, this thesis provides greater insight into understanding and representing
bivariate graphs. It opens up new possibilities for applying these data representations
to real-world scenarios. The novel methodologies and insights presented in this study
advance the field and lay the groundwork for future research in information and graph
visualisation. The findings of this thesis point toward some intriguing future directions.

6.3 Future Work

This research has several possible future research directions. Graph summarisation approaches
have been widely utilised in several domains, such as traffic, social, and citation networks. On
the other hand, the application of graph summarisation techniques in intelligent military and
defence systems has been limited despite its potential as a valuable tool in this field. A node-link
diagram could be used to show this idea using graph-structured data from Internet of Things
(IoT) devices [47], such as security cameras and motion sensors, based on the generated network
traffic. Despite this, the large amount of data makes it hard for commanders to find critical
information about possible anomalies and changes in the communication network caused by
IoT devices while also staying aware of what is happening. Therefore, applying the proposed
graph summary approach could address these challenges and help uncover hidden patterns and
detect anomalies. Since commanders often lack expertise in interpreting variance measures and
require prompt decision-making, our research aims to support them by integrating the suggested
graph summarisation algorithm with our novel graph visualisation design. This combination
could facilitate gaining profound insights and allow for a quick overview of the information.
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This future work will contribute to advancing graph-based data analysis and developing robust
solutions for practical application.

6.3.1 Generalisation

In modern times, where the emphasis on data-driven decision-making is of utmost importance,
not only do data representation and uncertainty play a crucial role, but also making data accessible
and understandable to the general public is an important task. Our approach introduces a novel
and effective solution that outperforms traditional techniques of visualising bivariate data in
the presence of uncertainty. While initially developed for the specific domain of uncertainty
visualisation, this research can be successfully expanded and generalised in various directions
involving two dependent data variables because of its visual simplicity and adaptability.

Graph drawing and cartography intersect when the visualisation of geometric networks,
which consist of elements with geographic locations or geospatial aspects, is required [182].
These networks include street layouts, underground metro, river, and cable networks. Our
visualisation method can demonstrate how well it performs at the intersection of graph drawing
and cartography for the visual analysis of bivariate geometric networks.

Our visualisation approach is applicable to a diverse range of network data sets and any
network scenarios. Geometric networks are integral to many real-world scenarios. For example,
in the context of a city street map, the objective is to delineate traffic congestion and air quality
at various urban locations by adopting bivariate data visualisation techniques. Vizent design can
be employed to convey both traffic congestion and air quality data. With the Vizent edge glyphs
depicting traffic congestion levels, the colour hue can represent different air quality levels along
the road segments, which could offer users a clear understanding of the environmental conditions
across the city’s road network.

An additional illustration of the potential application of our novel visualisation approach
involves interacting with Transport for London (TfL) rail data in the context of the London
Underground map. For instance, we could enhance metro stations by introducing Vizent glyphs
on nodes to convey passenger traffic and its variation at each station. Furthermore, the lines
could incorporate Vizent edges, in which colour hue represents train capacity occupancy and the
Vizent edge glyphs represent the time-dependent variations in train frequency, train intervals or
service disruptions. This has the potential to assist individuals in organising their journeys more
efficiently and adapting to changing conditions.

Generalising the Vizent graph for health data systems could improve the visualisation and
interpretation of bivariate data, particularly in the context of uncertainty visualisation. Due to
its ability to encode bivariate data, the Vizent graph design would be applicable in visualising
the spread of contagious diseases and their uncertainties across various geographic locations
or populations. Our design could map the transmission of diseases in a way that highlights the
intensity of outbreaks and the uncertainties in transmission rates, making it a valuable tool in
public health management. Through the Vizent graphs, health authorities may be able to rapidly
identify areas where the transmission rate is high and highly variable, thereby locating the areas
where potentially more hazardous and unpredictability of the disease’s spread. This strategy
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could support ongoing monitoring and management of disease spread and assist in immediate
response efforts when additional research is required to determine the underlying causes of
disease spread variability. Moreover, the Vizent design’s ability to display these complex data
relationships in a clear and intuitive format makes it an invaluable tool for communicating the
dynamic and often uncertain nature of disease outbreaks to non-expert stakeholders, thereby
enhancing community engagement and compliance with health measures.
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Appendix A

Experiment 1

Stimuli of Vizent and the control group of visual encodings

Task 1 aims to identify which edge in the display graph has the lowest variability, regardless of
its network traffic value.

Task 2 aims to identify which edge in the display graph has the highest network traffic,
regardless of its variation.

Task 3 aims to identify which edge in the display graph has the highest network traffic value
while also having the lowest variability in that traffic.

Figure A.1 A 15-edges graph used as stimuli of Num for Task 1
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Figure A.2 A 15-edges graph used as stimuli of Vizent for Task 1

Figure A.3 A 15-edges graph used as stimuli of Wid−Lig for Task 1
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Figure A.4 A 15-edges graph used as stimuli of Sat−Tra for Task 1

Figure A.5 A 20-edges graph used as stimuli of Num for Task 2
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Figure A.6 A 20-edges graph used as stimuli of Vizent for Task 2

Figure A.7 A 20-edges graph used as stimuli of Wid−Lig for Task 2
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Figure A.8 A 20-edges graph used as stimuli of Sat−Tra for Task 2

Figure A.9 A 25-edges graph used as stimuli of Num for Task 3
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Figure A.10 A 25-edges graph used as stimuli of Vizent for Task 3

Figure A.11 A 25-edges graph used as stimuli of Wid−Lig for Task 3
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Figure A.12 A 25-edges graph used as stimuli of Sat−Tra for Task 3





Appendix B

Experiment-2

Stimuli of Vizent Graph and Numerical Values Visualisation

Figure B.1 An example of the Numerical values visualisation used as a stimulus in the experiment.



150 Experiment-2

Figure B.2 An example of the Numerical values visualisation used as a stimulus in the experiment.

Figure B.3 An example of the Numerical values visualisation used as a stimulus in the experiment.
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Figure B.4 An example of the Numerical values visualisation used as a stimulus in the experiment.

Figure B.5 An example of the Numerical values visualisation used as a stimulus in the experiment.
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Figure B.6 An example of the Vizent graph used as a stimulus in the experiment.

Figure B.7 An example of the Vizent graph used as a stimulus in the experiment.
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Figure B.8 An example of the Vizent graph used as a stimulus in the experiment.

Figure B.9 An example of the Vizent graph used as a stimulus in the experiment.
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Figure B.10 An example of the Vizent graph used as a stimulus in the experiment.
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