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Abstract

For a simple, simply connected algebraic group G over an algebraically closed field k of

characteristic p > 0, consider a a surjective endomorphism σ : G → G such that the

fixed-point set G(σ) is a Suzuki or Ree group. Further, write Gσ to denote the scheme-

theoretic kernel of σ. Then, by utitlizing results of Jantzen and Bendel–Nakano–Pillen, we

are able to compute the first cohomology for the Frobenius kernels with coefficients in the

induced modules, H1(Gσ,H
0(λ)), and extensions Ext1Gσ

(L(λ), L(µ)) between the simple

modules. When G(σ) is a Ree group of type F4, these results can be used to improve

the known bounds for identifying extensions of simple modules in defining characteristic

Ext1G(σ)(L(λ), L(µ)) with those for the algebraic group.
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Chapter 1

Introduction

Let G be a simple, simply connected algebraic group over an algebraically closed field k

of characteristic p > 0. Then, for a strict endomorphism σ : G → G, the fixed point set

of the points, G(σ) := G(k)σ, is a finite group. Moreover, the scheme-theoretic kernel of

σ is an infinitesimal subgroup of G and we denote it by Gσ. The study of cohomology of

finite groups of Lie type has been of great interest throughout the years, as it encapsulates

crucial information regarding the category of kG(σ)-modules.

The groundbreaking work of Cline, Parshall, Scott and van der Kallen (CPS75; CPSvdK77)

relates rational cohomology to the cohomology of finite groups. Further work by Andersen

(And87) then provides a general approach for Chevalley groups, with restrictions on the

minimal bound on the characteristic p. However, since the cases of small values of p could

not be tackled using this construction, a mixture of techniques arose, characterised by the

fact that they relied on specific information concerning the groups and root systems. (See

(Hum06, Chapter 12) for a literature review.)

In a series of papers (Sin92; Sin93; Sin94a; Sin94b), the 1-cohomology for the Suzuki-Ree

groups was considered. In particular, in (Sin94a; Sin94b), Sin computed the 1-cohomology

for the algebraic group of type F4 in characteristic 2.

The authors Bendel, Nakano and Pillen have taken a different approach, in which ex-

tensions for the finite group are compared to extensions for the ambient algebraic group

by analysing the structure of the infinite dimensional module IndGG(σ) k. See (BNP06) or

(BNP+15), for example.

We describe our results. For G with root system Φ, in cases (Φ, p) = (C2, 2), (G2, 3)

or (F4, 2), there exists a fixed purely inseparable isogeny τ : G → G whose square is

1



Chapter 1. Introduction

the Frobenius map F on G. Following (BT73, 3.3) we refer to a map σ = τ r = F r/2

as an exceptional isogeny. This thesis has two main aims: first, to provide the explicit

description of the 1-cohomology H1(Gσ, V ), where Gσ is the scheme-theoretic kernel of σ

and V is an induced module or simple module; second, to apply these results in the case

Φ = F4 to improve the known bounds for identifying extensions of simple modules for the

Ree groups G(σ) in defining characteristic with those for G.

The thesis develops the author’s own work in (Rad22).

In Chapter 2 we fix some notation and remind the reader of certain facts regarding the

structure of the Suzuki and Ree groups. Then the strict endomorphism σ is given by

σ = τ r = F r/2, for an odd positive integer r. In these cases, following (BT73, 3.3), we

shall to refer to σ as an exceptional isogeny. Thus the fixed point set under σ becomes a

Suzuki–Ree group and we denote the scheme-theoretic kernel Gσ by Gr/2. To differentiate

it from the classical case, we call this infinitesimal subgroup ofG an exotic or half Frobenius

kernel.

In Section 3.1 we compute the 1-cohomology for the exotic Frobenius kernels with coef-

ficients in the induced modules, H1(Gr/2,H
0(λ)), for the Suzuki groups (Subsection 3.2),

the Ree groups of type G2 (Subsection 3.3) and of type F4 (Subsection 3.4). Moreover,

we calculate the extensions between simple modules for the classical and for the exotic

Frobenius kernels.

Then in Chapter 4, we focus on the Ree groups of type F4. We consider a certain truncation

of IndGG(σ) k and relate the finite group cohomology to the algebraic group cohomology. In

Section 4.1, we precisely bound the weights in our truncated category (see Lemma 4.1.3),

performing many spectral sequence computations involving half Frobenius kernels, instead

of the classical ones. Thus, we ensure the sharpness of our bound on the size of the finite

group using these methods. We observe, rather surprisingly, that the Ree groups of type

F4 exhibit very different behaviour compared to the other finite groups of Lie type (be it

Chevalley, twisted or, indeed, Suzuki or Ree groups of type G2).

In order to see this, first recall some of the terminology used in (BNP04), (BNP+15)

and (PSS13). Let Ct be the full subcategory of all finite-dimensional G-modules whose

composition factors L(ν) have highest weights in the set πt = {ν ∈ X+ : ⟨ν, α∨
0 ⟩ < t}. The

weight ν ∈ πt is (t− 1)-small.

Now, let σ denote the appropriate strict endomorphism, as discussed above. In Remark

4.1.4(a), we observe that in the case G = F4, p = 2, σ = F r/2 for r odd, the non-vanishing

of Ext1Gσ
(L(λ)⊗ V (ν)(σ), L(µ)⊗ H0(ν))(−σ) implies that the weights ν are (h+ 4)-small.

This is in contrast to (BNP06, Lemma 5.2), (BNP+15, Theorem 2.3.1) and an analogous

2



Chapter 1. Introduction

argument for Suzuki-Ree groups, where for all (G, p, σ) aside from the case we consider,

one has that the non-vanishing of Ext1Gσ
(L(λ) ⊗ V (ν)(σ), L(µ) ⊗ H0(ν))(−σ) implies that

the weights ν are (h − 1)-small. This comes as a surprise, given the fact that similar

methods were used.

In Section 4.2, we turn our attention to finite group extensions. We find that self-extensions

between simple kG(σ)-modules vanish, provided r ≥ 13. (Theorem 4.2.4). Finally, in

Theorem 4.2.5, we conclude that, for r ≥ 13, the Ext1 group between simple kG(σ)-

modules is isomorphic to the Ext1 group between a specific pair of σ-restricted simple

G-modules (which depends on the pair of kG(σ)-modules).

3



Chapter 2

Background

2.1 Categories

We begin with a brief discussion of notions in category theory necessary for our setup and

following chapters. We direct the reader to (ML98) and (Kra22) for more details, with

the aim to establish the nomenclature assumed in (Mil17, Appendix A) and (Jan03).

Definition 2.1.1. A category C is a triple C = (Ob C,Hom C, ◦) consisting of the following:

the class of objects in C, Ob C, the class of morphisms Hom C, which is the union of the

sets HomC(A,B) and ◦ is a partial binary operation on Hom C. The triple C satisfies the

following conditions:

(a) To each pair A,B ∈ ObC, we associate the set of morphisms from A to B, denoted

by HomC(A,B), so that if (A,B) ̸= (C,D), then the intersection HomC(A,B) ∩
HomC(C,D) = ∅.

(b) The operation ◦ is a well-defined associative unital composition. That is, for each

A,B,C ∈ Ob C the operation

◦ : HomC(B,C)×HomC(A,B) → HomC(A,C), given by (β, α) 7→ β ◦ α

is well-defined and satisfies associativity and existence of the identity morphism.

The category C is said to be small if Ob C is a set.

Definition 2.1.2. Let k be a field. A category C is said to be a k-linear category if for

each pair of objects A,B in C, the set HomC(A,B) is equipped with a k-vector space

structure such that the composition of morphisms in C is a k-bilinear map.

4



Chapter 2. Background

Definition 2.1.3. A preadditive category is a category in which all Hom-sets are abelian

groups and composition of morphisms is bilinear. An additive category is a preadditive

category that admits finite direct sums.

Definition 2.1.4. A category C is an additive category if the following conditions are

satisfied.

(a) For any finite set of objects A1, A2, . . . , An in C, there exists a direct sumA1 ⊕A2⊕
· · · ⊕An.

(b) For each pair of objects A,B in C, the set HomC(A,B) is equipped with an abelian

group structure.

(c) For each triple A,B,C in C, the composition

◦ : HomA(B,C)×HomA(A,B) → HomA(A,C)

is bilinear.

(d) There exists an object 0 in C, called the zero object, such that 10 is the zero element

of the abelian group HomC(0, 0).

Example 2.1.5. (Module Categories) Let k be a field and A be a finite-dimensional

associative k-algebra; we assume that A-modules of any k-algebra A are left A-modules

unless otherwise specified.

(a) Left (respectively right) A-modules together with their module morphisms form

a category, denoted by ModA (respectively ModAop). Moreover, the category of

finitely generated left A-modules is denoted by modA and the one of finitely gener-

ated right A-modules is denoted by modAop.

(b) Let M be a left A-module and note that for any left A-module N , we have that

the set of morphisms from M to N , denoted by HomA(M,N) is a k-vector space

and ModA is a k-linear category. It may be shown that HomA(M,−) is a covariant

functor, and that HomA(−,M) is a contravariant functor.

Definition 2.1.6.

An additive functor between additive categories A and B is a functor F : A → B such

that the maps

F
(
A,A′) : HomA

(
A,A′) → HomB

(
F (A), F

(
A′))

5



Chapter 2. Background

are group homomorphisms for all pairs of objects A and A′ of A. Additive categories can

be thought of as a generalization of rings for which we can define the notions of ideals and

quotient categories.

Definition 2.1.7. An ideal (of morphisms) I in A is a collection of subgroups I(A,B) ⊆
HomA(A,B), for every pair of objects A and B of A, that is stable under composition.

More specifically, this means that b ◦ f ◦ a ∈ I (A′, B′) for all a ∈ HomA (A′, A) , b ∈
HomA (B,B′) and f ∈ I(A,B).

Definition 2.1.8. Let I be an ideal of morphisms in A. The quotient category A/I has

the same objects as A and Hom-sets

HomA/I(A,B) := HomA(A,B)/I(A,B).

Composition of morphisms in A/I is induced by the composition law in A. Note that

the composition of morphisms in the quotient category is well-defined because I is stable

under composition. It is straightforward to check that A/I is an additive category and

that the quotient functor A → A/I is additive.

Definition 2.1.9. A Krull-Schmidt category is an additive category where every object

is isomorphic to a finite direct sum of objects having local endomorphism rings.

Note that Krull-Schmidt categories are well-behaved with respect to taking quotients by

ideals of morphisms.

Lemma 2.1.10. Let A be a Krull-Schmidt category and let I be an ideal of morphisms

in A. Then A/I is a Krull-Schmidt category.

Definition 2.1.11. Let A and B be categories and F,G : A → B be functors; we may

assume both are covariant without loss of generality. Let η = {ηA}A∈ObA be a family of

morphisms in B such that for each A ∈ ObA, we have that ηA ∈ HomB(F (A), G(A)). We

say that η is a natural transformation if for each A,A′ ∈ ObA and each α ∈ HomA (A,A′)

the following diagram commutes

F (A) G(A)

F (A′) G(A′)

ηA

F (α) G(α)

ηA′

We say that η is a natural equivalence if in addition ηA is an isomorphism for each A ∈
ObA.

6



Chapter 2. Background

A functor is said to be an equivalence of categories if it is fully faithful and essentially

surjective. A sufficiently strong version of the axiom of global choice then implies the exis-

tence of a quasi-inverse to the functor. A natural transformation of functors is sometimes

known as a map of functors.

Definition 2.1.12. Given categories A and I, the functors F : I → A form the ob-

jects of the functor category AI , and the morphisms in AI from F to G are the natural

transformations η : F → G.

Lastly, we present an example that appears in the following section.

Example 2.1.13. The Yoneda embedding is the functor h : I → Set
op

given by hi(j) =

HomI(j, i), which is a fully faithful functor.

2.2 Algebraic Group Schemes

In this section we follow (Mil17) and (Jan03).

2.2.1 Algebraic schemes

First we establish some notational conventions from (Mil17). Let Alg0k denote the category

of finitely generated k-algebras. The objects of Alg0k form a set, and so Alg0k is small. We

call the objects of Alg0k small.

The inclusion functor Alg0k ↪→ Algk is an equivalence of categories. Choosing a quasi-

inverse amounts to choosing an ordered set of generators for each finitely generated k-

algebra. Once a quasi-inverse has been chosen, every functor on Alg0k has a well-defined

extension to Algk.

We define a k-functor to be any functor Alg0k → Set. For example, if A is a k-algebra,

then we get a k-functor hA : R → Hom(A,R).

Definition 2.2.1. For any k-algebraR, we can define a k-functor SpmkR through (SpmkR) (A) =

Homk-alg(R,A) for all A and

(SpmkR) (φ) : Homk -alg(R,A) → Homk -alg

(
R,A′) , α 7→ φ ◦ φ

for all homomorphisms φ : A → A′. We say that SpmkR is the spectrum of R.

Definition 2.2.2. Let k be a field and let R be any k-algebra. We define an affine scheme

over k to be any k functor isomorphic to SpmkR.

7



Chapter 2. Background

Abstractly, we may define an affine scheme over k to be a representable functor from

finitely generated commutative k-algebras to sets.

Definition 2.2.3. An affine scheme X over k is algebraic if the coordinate algebra k[X]

is isomorphic to a k-algebra of the form k[T1, . . . , Tn]/I, for some n ∈ N and some finitely

generated ideal I of the polynomial ring k[T1, . . . , Tn].

We say it is reduced if k[X] contains no nilpotent elements apart from 0.

2.2.2 Algebraic Group Schemes

A k-group functor is a functor from the category of all k-algebras to the category of groups.

Any k-group functor may be regarded as a k-functor by composing it with the forgetful

functor from Grp to Set.

Let G,H be two group functors. Denote by Mor(G,H) the set of natural transformations

from G to H considered as k-functors. and by Hom(G,H) the set of all morphisms from G

to H considered as k-group functors. So Hom(G,H) consists of all those f ∈ Mor(G,H)

with f(A) a group homomorphism for each k-algebra A.

These elements are called homomorphisms from G to H. Let Aut(G) be the group of all

automorphisms of the k-group functor G.

An affine k-group scheme is a k-group functor that is an affine scheme over k when

considered as a k-functor.

In this thesis we will use the term algebraic group only to refer to an affine k-group scheme

of finite type over a field k. This means that it is a k-group functor. An algebraic k-group

is a k-group scheme that is algebraic as an affine scheme. A k-group scheme is called

reduced if it is so as an affine scheme.

2.2.3 Properties

Let A be a k-algebra and let G be a k-group functor.

A subgroup functor of G is a subfunctor H of G such that each H(A) is a subgroup of

G(A). The intersection of subgroup functors is again a subgroup functor. The inverse

image of a subgroup functor under a homomorphism is again one. A direct product of

k-group functors is again a k-group functor.

8



Chapter 2. Background

A subgroup functor H of G is called normal if each H(A) is a normal subgroup of G(A).

Again, normality is preserved under taking intersections and inverse images under homo-

morphisms. The kernel kerφ of a homomorphism φ : G → G′ is always a normal subgroup

functor.

2.3 Restricted Lie Algebras

Definition 2.3.1. A Lie algebra g over k is a vector space equipped with a binary oper-

ation [−,−] : g⊗ g → g satisfying [x, x] = 0 for all x ∈ g and the Jacobi identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0, ∀x, y, z ∈ g

Definition 2.3.2. Let g be a finite-dimensional modular Lie algebra over k. Following

[J], a map [p] : g → g, g 7→ g[p] is called a p-structure of g and we call g a restricted Lie

algebra if

(i) adg[p] = (adg)
p for all g ∈ g;

(ii) (αg)[p] = αpg[p] for all g ∈ g and α ∈ k;

(iii) (g + h)[p] = g[p] + h[p] +
∑

1≤i≤p−1 si(g, h), where the si(g, h) can be obtained from

(adλg+h)
p−1 (g) =

∑
1≤i≤p−1 isi(g, h)λ

i−1,

In fact, conditions (ii) and (iii) are redundant due to the following result:

Theorem 2.3.3. (SF88, 2.2.3) Let (ej)j∈J be a basis of a Lie algebra g such that there

exist yj ∈ g with (ad ej)
p = ad yj . Then there is a unique p-mapping [p] : g −→ g such

that

e
[p]
j = yj

for all j ∈ J .

Let A be an associative algebra over k. We call a derivation of A a k-linear mapD : A → A

such that, for all f, g ∈ A, we have D(fg) = fD(g) +D(f)g. We denote by Derk(A) the

space of all derivations of A. Note that Derk(A) may be made into a Lie algebra using

the Lie bracket [D1, D2] = D1 ◦D2 −D2 ◦D1.

Now suppose G is an algebraic k-group, with k[G] its coordinate algebra. Given g ∈ G,

we define λg : k[G] → k[G] by (λg · f)(x) = f(g−1x), for all f ∈ k[G] and x ∈ G.

9



Chapter 2. Background

Then, the Lie algebra of G is defined as

Lie(G) := {D ∈ Derk(k[G]) | Dλg = λgD,∀g ∈ G}.

It follows that Lie(G) is a Lie algebra of the same dimension of G, and G acts on it via

the adjoint action.

By (Jan04, A.2), for an algebraic k-group G, the Lie algebra Lie(G) has a natural structure

as a restricted Lie algebra.

2.4 Reductive groups, Roots and Notation

We fix an algebraically closed field k of characteristic p > 0.

2.4.1 Reductive groups and Roots

We define a torus T to be an algebraic group over k that is isomorphic to a finite number

of copies of Gm. Since k is algebraically closed, all tori considered are split. We have that

split tori are smooth, connected diagonalisable algebraic groups.

By (Mil17, 17.10), maximal tori in algebraic groups are all conjugate by an element of

G(k).

Since T is a torus, T is diagonalisable in every representation (cf. (Mil17, 12.12)); that is,

every representation (M, r) of T admits a weight space decomposition:

M =
⊕
λ∈X

Mλ.

The characters χ of T such that the eigenspaces Mλ ̸= 0 are called weights of T on M

and the non-zero eigenspaces are called weight spaces.

An algebraic group G over k is unipotent if every non-zero representation of G has a

non-zero fixed vector. This is equivalent to saying its only irreducible representations are

vector spaces equipped with a trivial action on G.

There is a maximal smooth connected normal unipotent subgroup of G called the unipotent

radical of G, denoted by Ru(G). Similarly, there is a maximal smooth connected normal

solvable subgroup of G, denoted by R(G).

10
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An algebraic group G is reductive if it is a connected algebraic k-group whose unipotent

radical is trivial, Ru(G) = e. G is semisimple if it is a connected algebraic k-group whose

radical is trivial, R(G) = e.

An algebraic group G is simple if it is a connected non-trivial semisimple algebraic k-group

with no proper normal subgroup.

Note that a simple algebraic group is reductive, since it has no non-trivial normal subgroup

and, hence, has no normal unipotent subgroup (ie. Ru(G) = e).

A Borel subgroup B of G is a maximal smooth, connected solvable subgroup of G. By

(Bor66, 4.2), B = U⋊T , where T is a maximal torus and U is its unipotent radical. Every

weight λ ∈ X ∼= X(T ) gives rise to a one-dimensional B-module kλ, where T acts via λ

and U acts trivially.

Let (G,T ) be a split reductive group over k, and Ad : G → GLg the adjoint representation.

Since T acts on Lie(G) and T is diaogalisable, we have a weight space decomposition of g

g = g0 ⊕
⊕

λ∈X(T )

gλ,

where g0 = gT and gλ denotes the subspace on which T acts through α ∈ X(T ), a

non-trivial character. Note that g0 = Lie(T ).

We call the characters α of T in the above decomposition the roots of (G,T ) and they

form a finite subset Φ(G,T ) of X(T ), called the root system of G with respect to T . (cf.

(Mil17, 21.a)) We use Bourbaki’s conventions.

Let B be a Borel subgroup containing T a maximal torus and denote by Φ(B) the roots

corresponding to B. We follow (Bor91, 13.18) and have

Lie(B) = b = bT ⊕
⊕

λ∈Φ(B)

bλ,

where bT = gT , and if λ ∈ Φ(B), then bα = gα. Thus,

Lie(B) = gT ⊕
⊕

λ∈Φ(B)

gλ,

and it follows that Lie(B) contains the roots associated to B. By (Bor91, Theorem

13.8(5a)), Φ is the disjoint union of Φ(B) and −Φ(B).

We conclude that Lie(B) contains exactly half of the roots, Φ(B), and the other half are

11
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their negatives. For the purpose of induction etc., it is convenient to assert that Lie(B)

consists of the negative roots (cf. (Jan03, II, 1.7)).

Thus, we have Φ(G,T )− := Φ(B) and Φ(G,T )+ := −Φ(B) and Φ(G,T ) = Φ(G,T )+ ⊔
Φ(G,T )−, a decomposition of Φ into positive roots and negative roots, respectively.

By (Mil17, 21.41), such a decomposition corresponds bijectively to a set of simple roots

Π and to a choice of a Borel subgroup containing the fixed maximal torus T .

An algebraic group is simply-connected if the character group of a maximal torus equals

the full weight lattice (cf. (Hum75, 31.1)).

2.4.2 Notation

We fix notation. Now and for the remainder of this thesis, we fix an algebraically closed

field k of characteristic p > 0 and denote by G a simply-connected simple algebraic group

scheme over k.

We denote by T a maximal split torus in G and let Φ be the corresponding root system; let

Π = {α1, ..., αn} be the set of simple roots in the Bourbaki ordering (Bou82, Planches) and

α0 the maximal short root. Let B denote a Borel subgroup containing T, corresponding

to the negative roots, and let U denote its unipotent radical. For our choice of σ, all these

subgroups can be chosen to be σ-invariant.

Let ⟨·, ·⟩ be the standard inner product on the Euclidean space E := ZΦ⊗Z R. Then, let

α∨ = 2α
⟨α,α⟩ be the coroot of α ∈ Φ and let h be the Coxeter number of the root system.

We have the weight lattice X(T ) = X =
⊕

Zωi, for ωi the fundamental dominant weights

satisfying ⟨ωi, α
∨
j ⟩ = δij , for αj a simple root. ThenX+ = {λ ∈ X(T ) | ⟨λ, α∨⟩ ≥ 0, λ ∈ Π}

is the cone of dominant weights.

Let W be the Weyl group of Φ, generated by the set of simple reflections {sβ | β ∈ Π}.
For α ∈ Φ, sα : E → E is the orthogonal reflection in the hyperplane Hα ⊂ E of vectors

orthogonal to α. Write ℓ : W → N for the standard length function on W : for w ∈ W ,

ℓ(w) is the minimum number of simple reflections required to write w as a product of

simple reflections. Moreover, note that W acts naturally on X(T ) via the dot action. (cf.

(Jan03, II.1.5))

12
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2.5 Strict Endomorphisms, Finite Groups of Lie Type and

Frobenius Kernels

For the remainder of this thesis, we let G be a simple, simply-connected algebraic group

over a field k of characteristic p > 0.

2.5.1 Strict Endomorphisms

Definition 2.5.1. (BNP+15) We call a surjective endomorphism σ : G → G strict if the

group G(σ) of σ-fixed points is finite.

Definition 2.5.2. (GLS98, Definition 1.15.1) Let G be an algebraic group over k. Then

(a) Aut0(G) is the group of all automorphisms of G as an algebraic group. Moreover,

Aut(G) is the group of all automorphisms of G as an abstract group.

(b) Aut1(G) is the set of all σ ∈ Aut(G) such that either σ or σ−1 is an endomorphism

of G; note that Aut1(G) is a group.

Theorem 2.5.3. ((GLS98, Theorem 1.15.6)) Let G be a simple algebraic group over

k. Then, the following hold: if σ is an endomorphism of algebraic groups, then either

σ ∈ Aut0(G) or σ is a strict endomorphism.

An isogeny is a surjective morphism of algebraic groups with finite kernel.

Theorem 2.5.4. ((GLS98, Theorem 2.1.6)) Let G be a connected algebraic group over

k and let σ be an endomorphism of G. Then there exist a maximal torus T and a Borel

subgroup B of G, with B containing T , which are σ-invariant.

Now we fix some notation. Since G is simply-connected, we may also call it universal. Let

Uα (or Xα) denote the 1-parameter unipotent subgroup of G corresponding to root α in

Φ. Note that Uα is unipotent and that there exists an isomorphism as algebraic groups

xα : k → Uα. Then, we have txα(c)t
−1 = xα(α(t)c), for all t ∈ T , α ∈ Φ and c ∈ k.

Next, we discuss graph automorphisms of the Dynkin Diagram corresponding to Φ.

Suppose G is a simple algebraic group over k. Then, for any isometry ρ of the set of simple

roots Π, there exists exactly one (since G is simply-connected) automorphism of G as an

algebraic group, denoted by γρ, such that γρ(xα(t)) = xαρ(t), for all α ∈ ±Π and t ∈ k

(cf. (GLS98, 1.15.2)).

13
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The non-trivial isometries are as follows. For root systems of type An, Dn and E6, there

exists a reflection, which acts in the following way: αi 7→ αn+1−i for An, as αn − 1 7→ αn

and αi 7→ αi otherwise for Dn for An and α1 7→ α5, α2 7→ α4 for E6.

In addition, for D4 there exists a triality, a rotation of order 3 sending α2 7→ α2, α1 7→ α3

and α4 7→ α1.

For all other choices of Φ, there exist only trivial graph automorphisms. Since G is simply-

connected, the set of all automorphisms γρ, denoted by Γ0, is isomorphic to Aut(π). Note

that in the cases An, Dn and E6, we have Aut(π) ∼= Z2 and the order of ρ is 2.

Now, let us consider strict endomorphisms one may encounter. Let G be a simple algebraic

group over k, with root system Φ and a set of simple roots Π. Then, with respect to some

set of Chevalley generators of G, the following hold:

(a) For each power q = pr of p with r ∈ Z, there is a unique strict endomorphism F r

such that F r(xα(t)) = xα(t
q), for all α ∈ Π and t ∈ k.

(b) Suppose (Φ, p) = (C2, 2), (F4, 2), (G2, 3). In these cases, the root system is isomor-

phic to its dual root system, Φ ∼= Φ∨ and the Dynkin diagram contains an edge of

multiplicity p. That is, there exist long and short roots, for which the ratio of lengths

squared equals p. Then there exists unique angle preserving and length changing

bijection and a unique strict endomorphism, a special isogeny denoted τ = F 1/2 :

G → G, such that it maps xα(c) 7→ xα∨(c) when α is long and xα(c) 7→ xα∨ (cp)

when α is short. Note that its square, the composite τ2 = τ ◦ τ : G → G is just the

standard Frobenius map relative to p, since G is generated by its root subgroups.

When τ is restricted to a map of maximal tori T → T ′, the comorphism τ∗ : X (T ′) →
X(T ) sends α∨ 7→ α when α is long and sends α∨ 7→ pα when α is short. Corre-

sponding fundamental weights are mapped similarly.

We introduce some more notation, (cf. (Hum06, 5.3)). We denote the set of weights

λ with ⟨λ, α∨⟩ = 0 for α short by X(T )L. Similarly, we denote the set of weights

λ with ⟨λ, α∨⟩ = 0 for α long by X(T )L. A weight λ ∈ X(T )L is expressed as a

Z-linear combination of fundamental dominant weights corresponding to long simple

roots and we say that it has long support. Similarly, we say λ ∈ X(T )S has short

support.

Therefore, τ∗ sends weights with short support to corresponding weights with long

support. Furthermore, τ∗ sends weights with long support to p times the corre-

sponding weights with short support.

Then, by (GLS98, Theorem 1.15.7, Theorem 2.2.3), we obtain all of the possible forms of

14
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a strict endomorphism σ of G.

Theorem 2.5.5. Let G be a simple, simply-connected algebraic group over k and assume

the notation above. Then a strict endomorphism σ : G → G has the following forms (up

to conjugation by an inner automorphism of G):

(a) Let ρ ∈ Aut(Π) of order d and let q = pr, for r a positive power of p. Then

σ = γρ ◦ F r.

(b) Suppose (Φ, p) = (C2, 2), (F4, 2), (G2, 3). Then σ = τ ◦ F r = τ2r+1, where q = pr.

2.5.2 Finite Groups of Lie Type

Let G be a simple, simply-connected algebraic group over an algebraically closed field k

of characteristic p > 0. Then, for a strict endomorphism σ : G → G, the fixed point

set of the points, G(σ) := G(k)σ, is a finite group of Lie type. There are three cases to

consider (see (GLS98, Chapter 2) and (BNP+15)). Now we follow (BNP+15) and direct

the interested reader to their discussion for more details.

I. The Finite Chevalley Groups

For a positive integer r, let q = pr. In these cases, there are only trivial graph automor-

phisms, so σ = F r, the standard Frobenius map relative to q. Set G (F r) = G (Fq), the

group of F r-fixed points. Note that The resulting finite group of fixed points coincides

with the group of rational points G (Fq).

II. The Twisted Steinberg Groups

Let ρ ∈ Aut(Π) be an isometry of order d > 1 and let γρ be a nontrivial graph automor-

phism of G stabilizing B and T . That is, we are in the cases Aℓ (with ℓ > 1), Dℓ (for

ℓ ≥ 4), and E6. For a positive integer r, set σ = F r ◦ γρ = γρ ◦ F r : G → G. We say

that σ is twisted. Then let G(σ) := dΦ(q2) be the finite group of σ-fixed points. Thus,

G(σ) = 2An

(
q2
)
, 2Dn

(
q2
)
, 3D4

(
q3
)
, or 2E6

(
q2
)
. The group of fixed points is isomorphic

to the group of rational points over Fq of a quasi-split but non-split group of the same

type as G.
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III. The Suzuki Groups and Ree Groups

Suppose (Φ, p) = (C2, 2), (F4, 2), (G2, 3). Let τ := F 1/2 : G → G be a fixed purely

inseparable isogeny satisfying
(
F 1/2

)2
= F . For an odd positive integer r, set σ = F r/2 =(

F 1/2
)r
. Thus, G(σ) = 2C2

(
2

2m+1
2

)
, 2F4

(
2

2m+1
2

)
, or, 2G2

(
3

2m+1
2

)
.

2.5.3 Frobenius Kernels

Let σ be a strict endomorphism. Then, by (GLS98, Theorem 2.1.2), it follows that ker(σ)

is a finite subgroup of G.

In all the above cases, the group scheme-theoretic kernel Gσ of σ plays an important role.

In case I, where σ = F r, this kernel is commonly denoted Gr, and it is called the r-th

classical Frobenius kernel. In case II, with σ = F r ◦ θ, θ is an automorphism so that

Gσ = Gr.

Classical Frobenius Kernels

We follow (Jan03, I.9). Let G be a k-group functor and G(r) is also a k-group functor,

with σ : G → G(r) a homomorphism of k-group functors.

The kernel, denoted Gr is a normal subgropup functor of G, known as the r-th Frobenius

kernel of G. By (Jan03, I.9.4), here exists an ascending chain of normal subgroup functors

of G

G1 ⊂ G2 ⊂ G3 ⊂ . . .

Moreover, given H a subgroup functor of G, it follows that H(r) is a subgroup functor of

G(r) and we have Hr = H ∩Gr (cf. (Jan03, I.9.4(2))).

By (Jan03, Proposition 9.5), if G is a reduced k-group, then each F r
G induces the isomor-

phism G/Gr
∼= G(r). Finally, each Frobenius kernel Gr is an infinitesimal k-group (cf.

(Jan03, I.9.6(1))).

In case III, we have σ = F r/2 =
(
F 1/2

)r
, for r an odd positive integer. Denote the kernels

Gσ by Gr/2 and we call them exceptional/exotic Frobenius kernels.
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Exotic Frobenius Kernels

First, consider the exceptional isogeny τ : G → G. Let Gτ = kerτ and let gτ = Lie(Gτ ).

By (Sin94b, 1.2), we have that Gτ is an infinitesimal group scheme of height one and,

hence, its representation theory is equivalent to the representation theory of gτ .

Moreover, the coordinate algebra of Gτ , k[Gτ ], is the dual of the restricted enveloping

algebra of the subalgebra of the Lie algebra of G generated by the short simple roots (cf.

(BNP+15, 2.2)).

By (CGP15, 7.16), we have that Gτ is normal in G, and Gτ is the unique minimal non-

central normal k-subgroup scheme of G. We further discuss Gτ and its Lie algebra in

Chapter 3, Section 3.1.

Now let Gσ = Gr/2, for an odd positive integer r. Using (Bor91, Proposition 17.9), it may

be shown that we get an ascending chain of normal subgroup functors of G:

Gτ ⊂ Gτ2 = G1 ⊂ Gτ3 ⊂ Gτ4 = G2 . . .

Furthermore, each exotic Frobenius kernel Gr/2 is an infinitesimal k-group. For details,

we direct the reader to (BT73, Section 3) and (Bor91, Section 17).

We have G/Gr/2
∼= G(r/2), where G(r/2) has coordinate algebra k[G](r/2) (cf. (BNP+15,

Remark 2.2.1(a))).

The Frobenius kernels Gr play a central role in the representation theory of G. These

results are all available in cases I or II. In case III, for Gr/2, many of these results hold as

well. We discuss various results concerning infinitesimal representation theory in Section

2.7.

2.6 Module Categories

Throughout this thesis, whenever we discuss modules over a group scheme or an algebra,

they are assumed to be possibly infinite-dimensional, unless stated otherwise.

This section follows (Jan03, I.2). We denote the category of (finite-dimensional) modules

over a k-group scheme H by Mod(H).

Definition 2.6.1 (G-Module). A vector space V is said to be a G-module if it acts linearly

on the associated vector group Va; i.e. there is a natural transformation α : G× Va → Va

such that for any k-algebra A, the map G(A)× Va(A) → Va(A) is an action of the group
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G(A) on Va(A) = V ⊗k A satisfying g(a.v) = ag(v).

For G an algebraic group with a corresponding maximal split torus T , there exists an

isomorphism between the weight lattice X and the character group X(T ) of T (that is,

the group of k-group scheme homomorphisms from T to the multiplicative group scheme).

Every T -module M admits a weight space decomposition, since T is a diagonalisable group

scheme:

M =
⊕
λ∈X

Mλ.

Recalling B = U ⋊ T , every weight λ ∈ X(T ) gives rise to a one-dimensional B-module

kλ, where T acts via λ and U acts trivially.

We refer to the objects of Mod(G) as G-modules; we write HomG(M,N) and ExtiG(M,N)

for the space of homomorphisms and the Ext-groups between G-modules M and N , re-

spectively. A G-module is completely reducible if it is isomorphic to a direct sum of simple

G-modules, and the socle socGM is the largest completely reducible G-submodule of M .

Moreover, given a simple G-module E, the sum of all simple G-submodules of M isomor-

phic to E is called the E-isotypic component of socGM and we denote it by (socGM)E .

The radical radGM is defined to be the smallest G-submodule of M such that M/ radGM

is completely reducible, and hdGM := M/ radGM is known as the head of M . We say

that a G-module is uniserial if it has a unique composition series. Recall that every

G-module M has a weight space decomposition

M =
⊕
λ∈X

Mλ;

λ ∈ X is called a weight of M if Mλ ̸= 0. The character of M is defined as the element

chM =
∑
λ∈X

dim (Mλ) · eλ

of the group ring Z[X]. It has a basis consisting of formal exponentials
{
eλ | λ ∈ X

}
,

where eλ · eµ = eλ+µ for λ, µ ∈ X.

Use W to denote NG(T )/CG(T ), which acts on X(T ); the standard action of W on

X induces an action of W on Z[X(T )] by ring automorphisms. It turns out that the

characters of all G-modules belong to the ring Z[X(T )]W of W -fixed points in Z[X(T )].

For G-modules M and N , the tensor product M ⊗N (over k) has a canonical G-module

structure, defined in the usual way. The dual space M∗ = Homk(M,k) of a G-module M

also carries a natural G-module structure, defined again in the obvious way.
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Taking duals is a contravariant autoequivalence of Mod(G), and we have

chM∗ =
∑
λ∈X

dim (Mλ) · e−λ.

The natural evaluation map and coevaluation map

evM : M ⊗M∗ −→ k and coevM : k −→ M∗ ⊗M

are homomorphisms of G-modules, where k denotes the trivial G-module. For G-modules

N andN ′, there are natural isomorphisms (M⊗N)∗ ∼= N∗⊗M∗ and HomG (N ⊗M,N ′) ∼=
HomG (N,N ′ ⊗M∗). There exists a second duality on Mod(G) called the contravariant

duality and denoted by M 7→ M τ (cf. (Jan03, II.2.13).

On the level of characters, we have chM = chM τ , and we call a G-module M contravari-

antly self-dual if M ∼= M τ . For G-modules M and N , there are natural isomorphisms

(M ⊗N)τ ∼= N τ ⊗M τ and HomG(M,N) ∼= HomG (N τ ,M τ ).

Next we follow (Jan03, I.3, II.2) and consider some important G-modules. Let G be a

k-group and H a subgroup functor of G. By (Jan03, I.3.1), every G-module M is viewed

as an H-module in a natural way: for each k-algebra A, restrict the action of G(A) to

H(A). The restriction functor obtained is exact.

According to (Jan03, I.3.2), we define the right adjoint functor IndGH as follows:

IndGH = {f ∈ Mor(G,Ma) | f(gh) = h−1f(g), ∀g ∈ G(A), h ∈ H(A), k-algebra A}

We may also define the induced module of M from H to G by observing the natural

(G × H)-module structure on M ⊗ k[G]. We let G act trivially on M and act by the

left regular representation on k[G]; then, let H act as on M and by the right regular

representation on k[G] (cf. (Jan03, I.3.2)). Note that (M ⊗ k[G])H is a G-submodule of

M ⊗ k[G] and write IndGH M := (M ⊗ k[G])H .

Next, one may prove that Ind is the associated right adjoint functor to the restriction

functor Res using the following important result, Frobenius reciprocity.

Proposition 2.6.2. (Frobenius Reciprocity, (Jan03, 3.4)) Let H be a flat subgroup

scheme of G andM anH-module. Then, for any G-moduleN , there exists an isomorphism

HomG(N, IndGBM) ∼= HomH(ResGHN,M).
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Now, let H = B. To the restriction functor

ResGB : Mod(G) −→ Mod(B)

is associated a right adjoint induction functor

IndGB : Mod(B) −→ Mod(G).

The induction of a simple B-module kλ is non-zero if and only if λ is dominant. For

λ ∈ X+, we call

H0(λ) := IndGB (kλ)

the induced module of highest weight λ. Since the weight spaces H0(λ)µ are zero unless

µ ≤ λ, and dimH0(λ)λ = 1, we can say that there is a highest weight. The characters

χ(λ) := chH0(λ) of the induced modules are given by Weyl’s character formula:

χ(λ) =

∑
w∈W det(w) · ew(λ+ρ)∑

w∈W det(w) · ewρ
,

and they form a basis of Z[X]W . The formula above can be used to define χ(λ) ∈ Z[X]W

for any λ ∈ X (and not just for dominant weights). It is readily verifiable that χ(w · λ) =
det(w) ·χ(λ) for all λ ∈ X and w ∈ W , and that χ(λ) = 0 if ⟨λ, α∨⟩ = −1 for some α ∈ Π.

The induced module H0(λ) has a unique simple submodule

L(λ) := socGH0(λ).

We have that the simple G-modules L(λ) with λ ∈ X(T )+ form a set of representatives

for the isomorphism classes of simple objects in Mod(G) (cf. (Jan03, II.2.3)). Every

finite-dimensional G-module M has a finite composition series, and we write [M : L(λ)]

for the multiplicity of the simple module L(λ) as a composition factor of M . Observe that

Mod(G) is a Krull-Schmidt category, by the existence of finite composition series. For a

G-module M and an indecomposable G-module N , we write [M : N ]⊕ for the multiplicity

of N in a Krull-Schmidt decomposition of M . The dual of a simple G-module is simple,

and as chL(λ)∗ =
∑

µ∈X dim (L(λ)µ) · e−µ and −w0λ is the unique dominant weight in

the W -orbit of −λ, for all λ ∈ X+, we have L(λ)∗ ∼= L (−w0λ).

The Weyl module of highest weight λ is

V(λ) := H (−w0λ)
∗ ∼= H0(λ)τ ,

and has a unique maximal submodule radGV(λ) and V(λ)/ radGV(λ) ∼= L(λ).
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Remark 2.6.3 (Ext-Vanishing Property). (Jan03, II.4.13) The Weyl modules and in-

duced modules satisfy the following Ext-vanishing property:

ExtiG(V(λ),H0(µ)) ∼=

k if i = 0 and λ = µ

0 otherwise.

We can now prove the following well-known universal property:

Lemma 2.6.4. Let λ ∈ X+and let M be a G-module with hdGM ∼= L(λ) and such

that λ is maximal among the weights of M . Then there is a surjective homomorphism

V(λ) → M .

Proof. Since λ is maximal among the weights of M , we have

Ext1G (V(λ), radGM) ∼= Ext1G
(
(radGM)∗ ,H0(λ)

)
= 0,

by the Ext-Vanishing Property. We have a short exact sequence

0 −→ radGM −→ M −→ L(λ) −→ 0

and, since the covariant functor HomG(V (λ),−) is left exact, we have the following short

exact sequence

0 → HomG (V(λ), radGM) → HomG(V(λ),M) → HomG(V(λ), L(λ)) → 0.

Therefore, there is a homomorphism φ : V(λ) → M such that the composition of φ with

the epimorphism M → L(λ) with kernel radGM is non-zero. Then, the image of φ is

not contained in radGM , the unique maximal submodule of M . We conclude that φ is

surjective.

The Linkage Principle

We follow (Jan03, II.6). The upshot is that the linkage principle describes the decompo-

sition of Mod(G) into linkage classes that arise from a certain action of the affine Weyl

group on X, which we shall define. The translation principle relates the different linkage

classes via translation functors. Before recalling these results, we need to introduce some

more notation, describing the alcove geometry with respect to the dot action.

Let sβ,r for β ∈ Φ and r ∈ Z denote the affine reflection on X(T ) or XR := X(T ) ⊗Z R
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and we have

sβ,r(λ) = λ− (⟨λ, β∨⟩ − r)β = sβ(λ) + rβ,

for all λ. Then, the group generated by all such sβ,mp for m ∈ Z is called the affine Weyl

group, and it is denoted by Wp. It follows that Wp
∼= pZΦ⋊W , where pZΦ is the group

acting by translations on X(T ) and W is the Weyl group (cf. (Jan03, II.6.1)).

We consider the dot action, w.λ = w(λ+ ρ)− ρ, of Wp on X(T ) and XR.

The set of fixed points of a reflection s = sβ,m with respect to the dot action is the affine

hyperplane

Hp
s = Hp

β,m :=
{
x ∈ XR | ⟨x+ ρ, β∨⟩ = pm

}
,

and the p-alcoves are the connected components of XR\
⋃

β,mHp
β,m. A weight λ ∈ X is

called p-singular if it lies on at least one of the hyperplanes Hp
β,m, and p-regular if it lies

in a p-alcove. Recall that we write Hβ,m for the hyperplane of fixed points of the affine

reflection sβ,m with respect to the standard action. We call

Cstand := p ·Astand − ρ =
{
x ∈ XR | 0 < ⟨x+ ρ, β∨⟩ < p for all β ∈ Φ+

}
the standard p-alcove; its closure is a fundamental domain for the dot action of Wp on

XR (cf. (Jan03, II.6.2 (6))). By (Jan03, II.6.2), a p-alcove C ⊆ XR is determined by a

collection of integers nβ(C), for β ∈ Φ+, such that

C =
{
x ∈ XR | nβ(C) · p < ⟨x+ ρ, β∨⟩ < (nβ(C) + 1) · p for all β ∈ Φ+

}
,

and we set d(C) :=
∑

β nβ(C). For all λ ∈ X and β ∈ Φ+, we can choose nβ(λ) ∈ Z such

that

nβ(λ) · p ≤ ⟨λ+ ρ, β∨⟩ < (nβ(λ) + 1) · p,

and we set d(λ) :=
∑

β nβ(λ). The linkage order ↑p on X is the reflexive and transitive

closure of the relation given by µ ↑p λ if µ ≤ λ and there exists a reflection s ∈ Wp with

λ = s · µ (cf. (Jan03, II.6.4)).

Proposition 2.6.5 (The Strong Linkage Principle). (Jan03, II.6.13) Let λ ∈ X(T ) such

that ⟨λ+ ρ, β∨⟩ ≥ 0 for all λ ∈ Φ+ and let µ ∈ X(T )+. If L(µ) is a composition factor of

some Hi(w.λ) with w ∈ W and i ∈ N, then µ ↑p λ.

Corollary 2.6.6 (The Weak Linkage Principle). (Jan03, II.6.17) If λ, µ ∈ X(T )+such

that

ExtiG(L(λ), L(µ)) ̸= 0

for some i ≥ 0 then µ ∈ Wp · λ.
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Therefore, we have the following result:

Proposition 2.6.7. (Jan03, II.6.20) If λ, µ ∈ X(T )+and i ≥ 0 such that

ExtiG(L(λ),H
0(µ)) ̸= 0 or ExtiG(H

0(λ),H0(µ)) ̸= 0

then µ ↑p λ and i ≤ d(λ)− d(µ).

2.7 Infinitesimal Representation Theory

Recall that the group scheme G admits a strict endomorphism σ : G → G that fixes the

Borel subgroup B and the maximal torus T . Moreover, recall the cases I-III discussed

in Section 2.5.3. The Frobenius kernels Gσ := ker (σ) are infinitesimal subgroup schemes

(cf. (Jan03, I.8.1)) and play an important role in the representation theory of G. In this

section, we discuss some results concerning the representation theory of these subgroup

schemes Gσ. Note that the results in cases I and II are available in (Jan03, II.3) and that

many results hold in case III.

We follow (Jan03, II.3) and (BNP+15, Remark 2.2.1). In cases I and II, we have Gσ = Gr.

By (Jan03, I.9.10), given the strict endomorphism σ and a G-module M , let M (r) denote

the twist of the module obtained by precomposing the action map with F r. We may also

define the untwist, M (−r), if Gr acts trivially on M .

Now suppose we are in case III, so let r = 2s + 1 be an odd positive integer and set

σ = τ r = F r/2. For a G-module M , let M (σ) = M (r/2) denote the module obtained by

making G act on M through σ. Moreover, if M is of the form N (r/2) for some G-module

N , put M (−σ) = M (−r/2) = N .

Note the following useful results concerning the exotic Frobenius kernels. We haveG/Gr/2
∼=

G(r/2), where G(r/2) has coordinate algebra k[G](r/2). When G is identified with G, the

G/Gr/2-module Hj(Gr/2,M) is identified with Hj(Gr/2,M)(−r/2).

In cases I and II, Gr is a normal, infinitesimal, subgroup scheme of G and one may use

various Lyndon-Hochschild-Serre spectral sequences. In case III, and Gr/2 is a normal

subgroup scheme of G, so we may use Lyndon-Hochschild-Serre spectral sequences as well

(cf. (BNP+15, Remark 2.2.1(a))).

In all cases, let Mod (Gσ) denote the category of Gσ-modules, and HomGσ(M,N) for the

space of homomorphisms between Gσ-modules M and N . Since Gσ is a normal subgroup

scheme of G, there is a natural restriction functor ResGGσ
: Mod(G) → Mod (Gσ), and for
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every G-module M , the Gσ-fixed points MGσ form a G-submodule of M . Simlarly, for

G-modules M,N , the isomorphisms HomGr/2
(M,N) ∼= (N ⊗M∗)Gσ yields a G-module

structure on HomGr/2
(M,N).

Now, we must introduce the notion of σ-restricted weights; we denote by Xσ the set of all

such weights. In cases I and II, the pr-restricted weights are the dominant weights λ such

that ⟨λ, α∨⟩ < pr for all α ∈ Π. We also have that λ ∈ X+ may be uniquely expressed as

λ = λ0 + prλ1, with λ0 ∈ Xr and λ1 ∈ X+.

In case III, for r = 2s + 1 an odd positive integer, a dominant weight λ ∈ X+ is called

σ-restricted provided it satisfies the following conditions: ⟨λ, α∨⟩ < ps+1, for α a short

simple root, or ⟨λ, α∨⟩ < ps, for α a long simple root.

Note that the irreducible G(σ)-modules are the restriction to G(σ) of the irreducible G-

modules L(σ), for λ ∈ Xσ, a σ-restricted weight.

In addition, the set of σ-restricted weights, Xσ indexes the irreducible modules for the

infinitesimal subgroup schemes Gσ; these irreducible modules are the restrictions to Gσ of

the corresponding irreducible G-modules. That is, for λ ∈ Xσ, the modules L(λ) form a

set of representatives for the isomorphism classes of simple Gσ-modules.

Following (Jan03, II.3.16) and recalling the G-module structure on HomGσ(M,N) in all

cases I-III, we obtain that the Gσ-socle of a G-module M , denoted by socGσ M , is a

G-submodule of M , and there is an isomorphism of G-modules

socGσ M
∼=

⊕
λ∈Xσ

L(λ)⊗HomGσ(L(λ),M).

In particular, if M is a simple G-module, then socGσ M = M . Hence any semisimple

G-module is semisimple for Gσ. We apply these observations to a simple G-module, say

M = L(µ) for some λ ∈ X+. Observe that a composition factor of HomGσ(L(λ), L(µ))

must be of the form L(θ)(σ) and follow the proof in (Jan03, II.3.16); we obtain the following

important result:

Theorem 2.7.1. (Steinberg’s tensor product theorem) Let σ : G → G denote a strict en-

domorphism and let σ∗ : X(T ) → X(T ) denote the restriction to X(T ) of the comorphism

σ∗ of σ. Let λ ∈ X+ and write λ = λ0 + σλ1 with λ0 ∈ Xσ and λ1 ∈ X+. Then

L(λ) ∼= L(λ0)⊗ L(λ1)
(σ).

We discuss the Steinberg Tensor Product Theorem in all of our cases, I-III. In case I, we

have σ = F r and we may express λ ∈ X+ uniquely as λ = λ0 + prλ1, for λ0 ∈ Xr and
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λ1 ∈ X+. The Steinberg Tensor Product Theorem states that L(λ) ∼= L(λ0)⊗ L(λ1)
(r).

In case II, we have σ = F r ◦ γ and σ∗ as described above. Then, we have λ = λ0 + σ∗λ1,

for λ0 ∈ Xr and λ1 ∈ X+. Note that σ∗ = prγ, where γ denotes the automorphism of X

induced by the graph automorphism. Therefore, the Steinberg Tensor Product Theorem

states that L(λ) ∼= L(λ0)⊗ L(γλ1)
(r).

For the purposes of this thesis we need an extension of this theorem in case III. Suppose

τ = F 1/2 is a square root of the Frobenius morphism. Then we may similarly define

the subsets of dominant weights X1/2 and Xr/2 and for λ ∈ X+ a unique decomposition

λ = λ0 + (τ∗)rλ1, for λ0 ∈ Xr/2 and λ1 ∈ X+. Then a refined version of the Steinberg

Tensor Product Theorem gives L(λ) ∼= L(λ0)⊗ L(λ1)
(τr).

2.8 Cohomology

The main results of this thesis are statements about various cohomology groups of interest

and in this section we provide an introduction to cohomology and different aspects of ho-

mological algebra. We direct the reader to (Wei94), (Kra22) for a more detailed discussion

of these topics.

We begin with the definition of an abelian category (cf. (Wei94, Definition 1.2.2)).

Definition 2.8.1. An additive category A is abelian if for every morphism ϕ : X →
Y there exists a kernel and cokernel and if the canonical factorisation of ϕ induces an

isomorphism ϕ̃.

Let A be an additive category. A cochain complex A = (A•, d•A) in A is a sequence of

objects
(
Ai

)
i∈Z of A with morphisms diA ∈ HomA

(
Ai, Ai+1

)
· · · −→ Ai−1 di−1

−→ Ai di−→ Ai+1 −→ · · ·

such that di ◦ di−1 = 0 for all i ∈ Z. We think of a complex A as a graded object with Ai

the term in cohomological degree i and diA the i-th differential of A.

We denote by C(A) the category of complexes, where a morphism ϕ : X → Y between

complexes consists of morphisms ϕi : Ai → Bi with diB ◦ ϕi = ϕi+1 ◦ diA for all i ∈ Z.

For a complex A over A, the condition that diA ◦ di−1
A = 0 means that the image of di−1

A is

contained in the kernel of diA, and we define the i-th cohomology of A as

H i(A) := ker
(
diA

)
/ im

(
di−1
A

)
.
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A complex is called exact in degree i if its i-th cohomology is zero and exact if it is exact

in all degrees. We also say exact sequence for a bounded exact complex and short exact

sequence for an exact sequence with at most three non-zero terms. A chain map f : A → B

induces homomorphisms

H i(f) : H i(A) → H i(B)

for all i ∈ Z, and we call f a quasi-isomorphism if all H i(f) are isomorphisms.

Let A and B be two abelian categories and F : A → B be a covariant, additive functor. By

(Wei94, Definition 1.6.6), we say that F is left exact (respectively right exact) if for every

short exact sequence 0 → A
α→ B

β→ C → 0, the sequence 0 → F (A)
F (α)−→ F (B)

F (β)−→ F (C)

(respectively F (A)
F (α)−→ F (B)

F (β)−→ F (C) → 0 ) is exact.

Similarly if F : A → B is a contravariant functor, F is left exact (respectively right exact)

if for every short exact sequence 0 → A
α→ B

β→ C → 0, the sequence 0 → F (C)
F (β)−→

F (B)
F (α)−→ F (A) (respectively F (C)

F (β)−→ F (B)
F (α)−→ F (A) → 0 ) is exact.

A covariant or contravariant functor which is both left and right exact is called an exact

functor.

Example 2.8.2. ((Wei94, Corollary 1.6.9)) Let A be an abelian category. Then for

any object A in A, the covariant functor HomA(A,−) and the contravariant functor

HomA(−, A) are left exact.

An object I inA is injective if every admissible monomorphismX → Y induces a surjective

map HomA(Y, I) → HomA(X, I) (cf. (Wei94, 2.3.4)). That is, I is an injective object if

the contravariant functor HomA(−, I) is exact. The full subcategory of injective objects

in A is denoted by InjA.

According to (Kra22, 2.1),the category A has enough injective objects if for every object

X ∈ A there is an admissible monomorphism X → I such that I is injective.

An injective presentation of an object A in A, is a short exact sequence in A of the form

0 → A → I0 → I1, where each Ii is an injective object in A (cf. (Kra22, 2.1.14)).

Equivalently, we say A has enough injectives if for every object A ∈ A there is an injective

presentation.

Let A be an object in an abelian category A. By (Wei94, Definition 2.3.5), an injective

resolution of A is a cochain complex I, with Ii = 0, for i < 0 and each object Ii is injective,

and a map A → I0 such that the complex

0 → A → I0 → I1 → I2 → . . .
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is exact. If A has enough injectives, then every object in A has an injective resolution (cf.

(Wei94, Lemma 2.3.6)).

Let F : A → B be a left exact functor between two abelian categories. If A has enough

injectives, we can construct the right derived functors Ri F (i ≥ 0) of F as follows. If A is

an object of A, choose an injective resolution A → I and define

Ri F (A) = H i(F (I)).

By (Wei94, 2.5.1), note that since 0 → F (A) → F
(
I0
)
→ F

(
I1
)
is exact, we always have

R0F (A) ∼= F (A).

Next, we introduce Ext-functors:

Definition 2.8.3. Let A be an abelian category with enough injectives, with A an object

in A. For i ≥ 1, we define ExtiA(A,−) := RiHomA(A,−), that is the right derived functors

of the covariant, left exact, additive functor HomA(A,−), using injective resolutions.

Spectral Sequences

We recall some of the key facts about spectral sequences, for the unfamiliar reader. (See

(McC01) or (Jan03) for an exhaustive treatment.) Let C be an abelian category; then, a

spectral sequence (of cohomological type) consists of a family of bigraded objects En =⊕
i,j∈ZE

i,j
n of C and differentials of bidegree (n,−n + 1), dn : Ei,j

n → Ei+n,j−n+1
n and

dn : Ei−n,j+n−1
n → Ei,j

n , which satisfy dn ◦ dn = 0. The r-th stage of such an object is

called its Er-term (or Er-page). We require

Ei,j
n+1

∼= H(Ei,j
n ) ∼=

ker(dn : Ei,j
n → Ei+n,j−n+1

n )

im(dn : Ei−n,j+n−1
n → Ei,j

n )
.

The collections (Ei,j
n )i,j for fixed n are known as the pages of the spectral sequence, and

we move to the next one by taking cohomology, using the isomorphism above.

A spectral sequence for which Ei,j
n = 0 whenever i < 0 or j < 0 is called a first quadrant

spectral sequence.

For a given i and j, consider Ei,j
n , where n > max(i, j + 1); then, the differentials dn are

trivial. Since j + 1 − n < 0, we have Ei+n,j−n+1
n = 0 and dn : Ei,j

n → Ei+n,j−n+1
n = 0

has kerdn = Ei,j
n . Then, i − n < 0 implies Ei−n,j+n−1

n = 0, so dn : Ei−n,j+n−1
n → Ei,j

n

has imdn = 0. Hence, Ei,j
n+1

∼= Ei,j
n and iterating this calculation yields Ei,j

n+k = Ei,j
n , for

k ≥ 0. We denote this value by Ei,j
∞ .
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An n-th stage spectral sequence converges to groups Hm, (Ei,j
n ⇒ Hi+j=m), if there is a

filtration

H i+j = F 0H i+j ⊆ F 1H i+j ⊆ · · · ⊆ F i+j+1H i+j = 0,

such that Ei,m−i
inf

∼= F iHm/F i+1Hm. The spectral sequence has stable values Ei,j
∞ (abut-

ments). It follows that the stable values Ei,j
∞ on the diagonal i+ j = m are the succesive

quotients in the filtrations of Hm.

Next, we discuss edge maps and trangressions (cf (Ben91, 3.2)). First, put j = 0 and

observe that each Ei,0
n is a quotient of Ei,0

2 and that Ei,0
inf is contained in Hi. Hence, there

are maps

Ei,0
2 ↠ Ei,0

3 ↠ · · · ↠ Ei,0
inf ↪−→ Hi,

and the composite map Ei,0
2 → Hi is called the horizontal edge map.

Similarly, setting i = 0, we obtain maps

Hj ↠ E0,j
∞ ↪−→ . . . ↪−→ E0,j

3 ↪−→ E0,j
2 ,

where the composite map Hj → E0,j
2 is called the vertical edge map. Furthermore, we call

the differential dn : E0,n−1
n → En,0

n the transgression.

In this thesis, we make extensive use of second stage first quadrant spectral sequences.

Set n = 2 and we have the following important result (cf. (Bou07, Section 2, Exerc 15c),

(Ben91, Proposition 3.2.10)).

Lemma 2.8.4. Let (En, dn) be a second stage first quadrant spectral sequence of coho-

mological type converging to the graded vector space H∗ and we have F i+k Hi = 0, for all

k > 0. Then, E0,0
∞ = H0 and we have a five-term exact sequence

0 → E1,0
2 = E1,0

∞ → H1 → E0,1
2 → E2,0

2 → H2 .

Proof. Notice that E1,0
2 has no maps into it or from it from the first quadrant. Thus, it

injects to H1; that is, we have 0 → E1,0 → H1 = E1
∞.

Consider E0,1
3 = H(E0,1

2 ). We have

E0,1
3 =

ker(d2 : E
0,1
2 → E2,0

2 )

im(d2 : E
−2,2
2 → E0,1

2 )
= ker(d2 : E

0,1
2 → E2,0

2 ).

Note that there is a differential d2 : E
0,1
2 → E2,0

2 .

Similarly, there are no maps in or out of E0,1
3 from the first quadrant, so H1 is E1,0

2 ⊕E0,1
3 .
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The latter, E0,1
3 , is the cohomology of the sequence 0 → E0,1

2 → E2,0
2 . So that explains

0 → E1,0
2 → H1 → E0,1

2 → E2,0
2 .

Finally the cokernel of the map d2 : E0,1
2 → E2,0

2 is E2,0
3 and this has no maps in or out,

so it injects into H2 . This concludes the proof.

2.9 Inducing from the fixed point subgroup of a reductive

group

Recall that σ is a strict endomorphism of G. In this section we follow (oGVAG12, Section

2) and adapt the results for all cases of Gσ.

We consider the exact induction functor Gσ(−) = IndGG(σ)(−) from the category of kG (σ))-

modules to the category of G-modules. Set Gσ(−) = IndGG(σ)(−). Let ι : k → Gσ(k) be the

homomorphism induced by Frobenius reciprocity from the identity map id : k → k, and

set N = coker(ι). Then there exists a short exact sequence of G-modules

0 → k
ι→ Gσ(k) → N → 0. (2.9.1)

Let M be a G-module. By the tensor identity (Jan03, I.3.6), M ⊗ Gσ(k) ∼= Gσ(M). Then

applying the exact functor M ⊗− to the sequence above, one obtains the new short exact

sequence

0 → M → Gσ(M) → M ⊗N → 0, (2.9.2)

and hence the associated long exact sequence in cohomology

0 −→ HomG(k,M) −→ HomG (k,Gσ(M)) −→ HomG(k,M ⊗N)

−→ Ext1G(k,M) −→ Ext1G (k,Gσ(M)) −→ Ext1G(k,M ⊗N)

−→ Ext2G(k,M) −→ Ext2G (k,Gσ(M)) −→ Ext2G(k,M ⊗N) −→ . . .
(2.9.3)

Since G/G(σ) is affine, the induction functor is exact (cf. (Jan03, I.5.13)). Then, there

exists an isomorphism for all i ≥ 0, by generalized Frobenius reciprocity (Jan03, I.4.6),

ExtiG (k,Gσ(M)) ∼= ExtiG(σ)(k,M). (2.9.4)

The isomorphism is realised by the composition of the maps

ExtiG (k,Gσ(M))
φ1→ ExtG(σ)i (k,Gσ(M))

φ2→ ExtiG(σ)(k,M),
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where φ1 is the restriction map induced by the inclusion G (σ) ⊂ G, and φ2 is induced

by the evaluation homomorphism ev : Gσ(M) → M , a homomorphism of G (σ)-modules.

Since the map M → Gσ(M) is induced by Frobenius reciprocity from the identity id :

M → M , we have isomorphisms ExtiG (k,Gσ(M)) ∼= ExtiG(σ)(k,M). Then, the maps

in the long exact sequence, Ext1G(k,M) → Ext1G (k,Gσ(M)) become the cohomological

restriction maps Res : ExtiG(k,M) → ExtiG(σ)(k,M).

Therefore, we may rewrite the long exact sequence in the following way:

0 −→ HomG(k,M)
Res−→ HomG(σ) (k,M) −→ HomG(k,M ⊗N)

−→ Ext1G(k,M)
Res−→ Ext1G(σ) (k,M) −→ Ext1G(k,M ⊗N)

−→ Ext2G(k,M)
Res−→ Ext2G(σ) (k,M) −→ Ext2G(k,M ⊗N) −→ . . .

(2.9.5)

It follows from the long exact sequence (2.9.5) that whenever both Exti−1
G (k,M ⊗ N) =

0 and ExtiG(k,M ⊗ N) = 0, we have that the restriction maps Res : ExtiG(k,M) →
ExtiG(Fq)

(k,M) are isomorphisms.

Now, we follow (BNP+15, 3.1). The coordinate algebra k[G] is naturally a G×G-module

via the left and right regular actions, respectively. The action of G × G on k[G] is given

by ((x, σ(y)) ∗ f)(g) = (x · f · σ(y)−1)(g) := f(σ(y)−1gx).

Let k[G](1×σ) = k[G]σ be the coordinate algebra viwewd as a G-module, where x ∈ G acts

as follows:

(x ∗ f)(g) := (x · f · σ(x)−1)(g) = f(σ(x)−1gx),

for f ∈ k[G] and g ∈ G. Then, by (BNP+15, 3.12), IndGG(σ)k
∼= k[G]σ, and it has a

G-filtration with sections H0(λ)⊗H0(λ∗)(σ), λ ∈ X(T )+ appearing only once.

Therefore ExtiG(k,M ⊗N) = 0 if

ExtiG

(
k,M ⊗H0(µ)⊗H0 (µ∗)(σ)

)
= 0 for all 0 ̸= µ ∈ X(T )+.

We expand upon this in Chapter 4.
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First Cohomology for the Kernels

of Exceptional Isogenies

In this chapter we compute the 1-cohomology for the Frobenius kernels of the induced

modules for the Suzuki and Ree groups and the extensions for the Frobenius kernels

between simple modules for the Suzuki and Ree groups. Thus in this section G is a

simply-connected algebraic group of type C2 (3.2), G2 (3.3) and F4 (3.4).

We fix now and for the remainder of the thesis a positive odd integer r = 2s + 1, and

define σ = τ r. Then, we take the kernel of σ, Gσ = G(r/2) = kerσ : G → G, with a view

to calculating invariants of Gσ.

3.1 Preliminaries

We adapt methods of Jantzen (Jan91) in order to compute the Bτ -cohomology. Then,

based on an argument in (BNP04), we extend the results from Bτ to Br/2; using an

analogue of (Jan03, II.12.2(2)) for exotic Frobenius kernels, we obtain H1(Gr/2,H
0(λ)).

Moreover, we extend the G1-cohomology results which were computed in (Sin94b) to

calculate Ext1Gs
(L(λ), L(µ)), for a positive integer s and λ, µ ∈ Xs(T ) and for r an odd

positive integer, Ext1Gr/2
(L(λ), L(µ)), for λ, µ ∈ Xr/2(T ).

Since G is simply-connected, there exists a Chevalley basis for the Lie algebra gZ, which

may be reduced modulo p to obtain the restricted Lie algebra g = Lie(G). We write

g = gZ ⊗Z k, where gZ = {Xα, α ∈ Φ | Hα = [Xα, X−α], α ∈ Π}. Hence, suppose that

α, β are roots with α+ β also a root, with the associated root vectors Xα, Xβ and Xα+β,
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respectively, in gZ. It follows that the commutator [Xα, Xβ] = NαβXα+β, for some integer

Nαβ (with possible values 0,±1,±2,±3).

Abusing notation, we shall also denote the element Xα ⊗ 1 of g by Xα. Moreover, upon

reduction modulo p, whenever we have α, β two short roots whose sum is a long root, the

structure constant Nα,β will vanish.

Recall (Φ, p) is special, and therefore there exists a special isogeny τ , satisfying τ2 = F ,

the Frobenius map. This interacts with the root system in the following way. There is a

subsystem of short roots denoted Φs. In case (G, p) = (C2, 2), (G2, 3) and (F4, 2) respec-

tively, Φs is of type A1 × A1, A2 and D4, respectively. Degeneracies in the commutator

relations in our specific characteristics guarantee Lie subalgebras gs wih root system Φs

which are generated by the root vectors corresponding to the elements of Φs, and maximal

rank subgroups of G whose root system is Φs. The kernel of dτ is gs, hence we write gτ

for this ideal. The kernel Gτ of τ is an infinitesimal group scheme of height one, whose

representation theory is equivalent to the one of the restricted Lie algebra gτ . Since U

is τ -stable, we get also a kernel Uτ , whose Lie algebra uτ is the ideal in u generated by

negative short roots. We obtain an analogue of (Jan91, Lemma 2.1), noting that the proof

follows analogously from Jantzen’s proof:

Lemma 3.1.1. We have an isomorphism of B-modules

H1(Uτ , k) ∼= H1(uτ , k) ∼= (uτ/ [uτ , uτ ])
∗,

where uτ = Lie(Uτ ) = ⟨Xβ : β ∈ Φ−
s ⟩.

Here, Φ−
s denotes the set of the negative roots of Φs, the subsystem generated by the short

roots.

Analogously to (Jan91, Prop 2.2) we have:

Lemma 3.1.2. Let βi be a set of simple roots of Φs. Then,

H1(Uτ , k) ∼=
⊕
i

kβi
.

Proof. The subalgebra [uτ , uτ ] is spanned by all commutators [Xα, Xβ] = Nα,βXα,β, for

α, β negative short roots. Moreover, Nα,β ̸= 0 if and only if α + β is a short root. Using

this, one checks [uτ , uτ ] is spanned by root vectors corresponding to non-simple roots.

Thus uτ/ [uτ , uτ ] has a basis with elements the classes of X−βi
, being the weight vectors

for Tτ for weights −βi. The result follows by dualising.
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Note that Bτ acts trivially on the weight module kτ(λ) ∼= kτλ. Then we obtain:

Lemma 3.1.3. For λ ∈ Xr/2 and βi simple roots of Φs, there exist the following isomor-

phisms

H1(Bτ , λ) ∼=
[
H1(Uτ , k)⊗ kλ

]Tτ

∼=

[⊕
i

kβi+λ

]Tτ

.

Since any weight λ can be uniquely written as λ = λ0 + τ(λ1), for λ0 ∈ Xτ (T ) and

λ1 ∈ X(T ), we have H1(Bτ , λ) ∼= H1(Bτ , λ0) ⊗ τ(λ1). In particular, when λ is r/2-

restricted, we have λ = λ0 + τ(λ1), for λ0 ∈ Xτ (T ) and λ1 ∈ Xs(T ). Thus, it suffices to

compute H1(Bτ , λ0), for λ0 ∈ Xτ (T ).

Considered as a T -module, H1(Uτ , k) ⊗ λ0 is the direct sum of certain kβi+λ0 , for βi, as

previously defined. Such a summand yields a non-zero contribution to H1(Bτ , λ0) if and

only if βi+λ0 ∈ τX(T ). Hence, the problem boils down to checking which of these weights

belong to τX(T ).

Once we have established the appropriate Br/2-cohomology, the next result yields the

Gr/2-cohomology with coefficients in the induced modules.

Lemma 3.1.4. Let λ ∈ X(T )+. Then

H1(Gr/2,H
0(λ))(−r/2) ∼= IndGB(H

1(Br/2, λ)
(−r/2)). (3.1.1)

Proof. By (BNP+15, Remark 2.2.1, (2.2.3)), there exists a spectral sequence

Ei,j
2 = Ri IndGB Hj(Br/2, λ)

(−r/2) ⇒ Hi+j=n(Gr/2,H
0(λ))(−r/2),

for λ ∈ X+ viewed as a one-dimensional B-module. First, note that the Ri are only defined

for i ≥ 0 and that the Hj(Br/2, λ) are only defined for j ≥ 0; this is a first quadrant spectral

sequence and, hence, converges. It rise to the corresponding five-term exact sequence

0 → E1,0
2 → E1

∞ → E0,1
2

d2−→ E2,0
2 → E2

∞.

Following the programme in (Jan03, II.12.2), we firstly suppose that λ /∈ τ rX(T ). Then

H0(Br/2, λ) = 0, forcing En,0
2 = 0 and E1

∞
∼= E0,1

2 . Otherwise, λ ∈ τ rX(T ) and so we may

write λ = τ rλ′ for some λ′ ∈ X(T )+. Then

En,0
2 = Rn IndGB H0(Br/2, λ)

(−r/2) ∼= Rn IndGB λ′ = 0,
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for n > 0, by Kempf’s vanishing theorem (cf. (Jan03, II.4.5)). Therefore, E1
∞

∼= E0,1
2 , as

required.

By Kempf’s vanishing theorem, H0(λ) = IndGB λ is zero unless λ is dominant. For

λ ∈ X(T )+, one may use the preceding computations of Br/2-cohomology to compute

H1
(
Gr/2,H

0(λ)
)
thanks to the isomorphism in (3.1.1).

Moreover, one can make use of the G1-cohomology with coefficients in simple modules,

computed in (Sin94b, Proposition 2.3, 3.5, 4.11), to calculate Ext1Gs
(L(λ), L(µ)), for a

positive integer s and λ, µ ∈ Xs(T ). Having established the Gs-cohomology, applying

the Lyndon-Hochschild-Serre spectral sequence corresponding to Gs ◁ Gr/2 to compute

Ext1Gr/2
(L(λ), L(µ)), for λ, µ ∈ Xr/2(T ), completes the objectives set out for this section.

In the remaining sections we consider each case of (Φ, p) separately, and we compute the

Br/2-cohomology and Gr/2-cohomology explicitly.

3.2 C2 in Characteristic 2

Let G be simply-connected of type C2 over k of characteristic 2. Following (Bou82, Planche

III), let Φ = {±2ϵ1,±2ϵ2,±ϵ1 ± ϵ2} be the roots of a system of type C2. Writing ϵ1 =

(1, 0) and ϵ2 = (0, 1), a base of simple roots is Π := {α1, α2}, with α1 = (1,−1) short,

and α2 = (0, 2) long; furthermore, the corresponding fundamental dominant weights are

ω1 = (1, 0), ω2 = (1, 1). One checks that a set of simple roots of Φs is Πs := {α1, α1 + α2}.
We shall denote these simple roots by β1 = α1 = (1,−1), β2 = α1 + α2 = (1, 1). The

special isogeny induces a Z-linear map τ∗ : X(T ) → X(T ), under which ω1 7→ ω2 7→ 2ω1.

From now on, we abuse notation, writing τ instead of τ∗. Thus, the τ -restricted weights

are 0 and ω1.

Bτ -Cohomology

Let λ ∈ Xr/2 be written as λ = λ0 + τ(λ1), for some λ1 ∈ Xs(T ), such that H1(Bτ , λ) ∼=
H1(Bτ , λ0)⊗ τ(λ1). Thus, it suffices to compute H1(Bτ , λ0), for λ0 ∈ Xτ (T ).

Theorem 3.2.1. Let λ0 ∈ Xτ (T ). Then

H1 (Bτ , λ0) ∼=

 k
(τ)
ω2−ω1

⊕ k
(τ)
ω1 if λ0 = k

0 else.
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Proof. By Lemma 3.1.2, considered as a T -module, H1(Uτ , k) ⊗ λ0 is the direct sum of

certain kβi+λ0 , for βi ∈ Πs. By Lemma 3.1.3, such a summand yields a non-zero contribu-

tion to H1(Bτ , λ0) if and only if βi + λ0 ∈ τX(T ). We now directly verify which of these

weights belong to τX(T ).

First, suppose λ0 = 0. Then, we have

β1 + 0 = α1 = 2ω1 − ω2 = τ(ω2 − ω1).

β2 + 0 = α1 + α2 = ω2 = τ(ω1).

Hence, H1(Bτ , k) ∼= [
⊕

i kβi+0]
Tτ ∼=

[
kτ(ω2−ω1) ⊕ kτω1

]Tτ ∼= k
(τ)
ω2−ω1

⊕ k
(τ)
ω1 .

Now, suppose λ0 = ω1 and we obtain

β1 + ω1 = 3ω1 − ω2 /∈ τX(T ).

β2 + ω1 = ω2 + ω1 /∈ τX(T ).

Then, H1(Bτ , ω1) ∼= [
⊕

i kβi+ω1 ]
Tτ = 0, as neither belongs to τX(T ).

Br/2-Cohomology

In this subsection, we extend the calculations of the previous section in order to compute

H1(Br/2, λ), for λ ∈ Xr/2(T ).

First, we note that in this case, the calculation of H1(Br/2, λ) requires, among other

things, knowledge of the second Bs-cohomology with coefficients in a ps-restricted weight;

this was computed in (Wri11, Appendix C.2.6). For the reader’s convenience, we list these

cohomology groups here, with data extracted specifically for the underlying root system

of G of type C2.

Lemma 3.2.2. Assume the underlying root system of G is of type C2. Let s be a positive
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integer, p = 2 with λ′ ∈ Xs(T ) and w ∈ W . Then

H2(Bs, λ
′) ∼=



H2(B1, w · 0 + 2ν)(s) if λ′ = 2s−1(w · 0 + 2ν), ℓ(w) = 0, 2

ν(s) if λ′ = 2sν + 2lw · 0, ℓ(w) = 0, 2;

and 0 ≤ l < s− 1

ν(s) if λ′ = 2sν − 2lα, α ∈ Π, 0 ≤ l ≤ s− 1;

and l ̸= s− 1 if α = α2

ν(s) if λ′ = 2sν − 2tβ − 2lα, α, β ∈ Π, 0 ≤ l < t < s

ν(s) if λ′ = 2sν − 2l(α1 + α2), 0 ≤ l < s− 1

M (s) ⊗ ν(s) if λ′ = 2sν − 2s−1α2 − 2lα, α ∈ Π, 0 ≤ l < s− 1

M (s) ⊗ ν(s) if λ′ = 2sν − 2s−1α, α ∈ Π

H1(Bs−1,M
(−1) ⊗ λ1) if λ′ = 2λ1, for some λ1 ∈ X(T ), s > 1

⊕H2(Bs−1, λ1)

0 else.

Here M denotes an indecomposable B-module with head kα1 and socle k (cf. (Wri11,

Appendix C.2.5)). Note that it is implicit in the statement of the lemma that s ≥ 1 or

s ≥ 2, depending on the case.

If r = 1, we refer the reader to Theorem 3.2.1.

Theorem 3.2.3. Suppose r = 2s + 1 > 1 and let λ ∈ Xr/2(T ). Then, for 0 ≤ i ≤ s − 2,

we have

H1
(
Br/2, λ

) ∼=



k
(r/2)
ω1 if λ = (2s − 1)ω2 = τ rω1 − β2

k
(r/2)
ω2 if λ = (2s+1 − 2)ω1 + ω2 = τ rω2 − β1

k
(r/2)
ω1 if λ = 2sω1 = τ rω1 − τ2s−1α1

M
(r/2)
C2

if λ = 0 = τ r(ω2 − ω1)− τ2s−1α2

k
(r/2)
ω1 if λ = (2s − 2i+1)ω2 + 2i+1ω1 = τ rω1 − τ2i+1α1

k
(r/2)
ω2 if λ = 2i+1ω2 + (2s+1 − 2i+2)ω1 = τ rω2 − τ2i+1α2

0 else.

Here MC2 denotes the 2-dimensional indecomposable B-module with head kω1 and socle

kω2−ω1 (cf. (BNP04, 2.2)).
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We underline that the last two non-zero instances only occur when s ≥ 2 (or r ≥ 5).

Proof. The second equality in each case identifying two forms of λ is straightforward,

recalling τ(ω1) = ω2, β1 = (1,−1) = 2ω1 −ω2 and β2 = (1, 1) = ω2. For instance, suppose

λ = τ rω1 − β2. Then, λ may be expressed as λ = 2sτω1 −ω2 = (2s − 1)ω2. Hence we now

prove that λ must be equal to one of the weights given by the first equality in each case.

We consider the Lyndon-Hochschild-Serre spectral sequence

Ei,j
2 = Hi(Br/2/Bτ ,H

j(Bτ , λ)) ⇒ Hi+j(Br/2, λ)

and the corresponding five-term exact sequence

0 → E1,0
2 → E1

∞ → E0,1
2 → E2,0

2 → E2
∞.

We will identify E1
∞ with either E0,1

2 or E1,0
2 and compute all of the non-zero cases in

this way. First, we fix some notation. Since λ ∈ Xr/2(T ), it may be uniquely expressed

as λ =
∑r−1

i=0 τ
iλi, where λi are τ -restricted weights. Then, we write λ = λ0 + τ(λ′), for

λ′ =
∑r−1

j=1 τ
j−1λj . Suppose E0,1

2 ̸= 0 and consider the E0,1
2 -term.

We have
E0,1

2 = HomBr/2/Bτ
(k,H1(Bτ , λ))

∼= HomBr/2/Bτ
(k,H1(Bτ , λ0)⊗ τ(λ′)).

There is only one τ -restricted weight for which H1(Bτ , λ0) ̸= 0, namely λ0 = 0. In this

case

H1(Bτ , k) ∼= k
(τ)
ω2−ω1

⊕ k(τ)ω1
.

Hence
E0,1

2 = HomBr/2/Bτ
(k, (k(τ)ω1

⊕ k
(τ)
ω2−ω1

)⊗ τ(λ′))

∼= HomB(r−1)/2
(k, (k(τ)ω1

⊕ k
(τ)
ω2−ω1

)⊗ k
(τ)
λ′ )

∼= HomB(r−1)/2
(k, k

(τ)
ω1+λ′ ⊕ k

(τ)
ω2−ω1+λ′).

Now HomB(r−1)/2
(k, k

(τ)
ω1+λ′⊕k

(τ)
ω2−ω1+λ′) is non-zero if at least one of ω1+λ′ or ω2−ω1+λ′ ∈

τ r−1X(T ). In fact, HomB(r−1)/2
(k, k

(τ)
ω1+λ′ ⊕ k

(τ)
ω2−ω1+λ′) is at most one-dimensional: since

ω2 − 2ω1 ̸∈ τ r−1X(T ), at most one of ω1 + λ′ and ω2 − ω1 + λ′ is in τ r−1X(T ). We take

each case in turn.

First, suppose ω1 + λ′ ∈ τ r−1X(T ). As p = 2, we have λ′ = (a2s − 1)ω1 + b2sω2 ∈ Xs. It

immediately follows b = 0 and a = 1, giving λ = λ0 + τ(λ′) = (2s − 1)ω2 and

E0,1
2 = HomBr/2/Bτ

(k, kτ(ω1+λ′) ⊕ kτ(ω2−ω1+λ′)).
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The first term in the target of the Hom is kω2+(2s−1)ω2
= k2sω2 . Thus E0,1 ∼= k2sω2 =

(kω1)
(r/2).

In the case ω2 − ω1 + λ′ ∈ τ r−1X(T ), a similar argument leads us to conclude that

E0,1
2 = k

(r/2)
ω2 and λ = ω2 + (2s+1 − 2)ω1. To conclude, for λ ∈ Xr/2(T ),

E0,1
2

∼=


k
(r/2)
ω1 if λ = (2s − 1)ω2

k
(r/2)
ω2 if λ = (2s+1 − 2)ω1 + ω2

0 else.

Now suppose E1,0
2 ̸= 0. We have

E1,0
2 = H1(Br/2/Bτ ,HomBτ (k, λ)),

= H1(Br/2/Bτ ,HomBτ (k, λ0)⊗ τ(λ′))

so λ0 = 0 and λ = τ(λ′). Thus E1,0
2

∼= H1(Bs, λ
′(τ)) ∼= H1(Bs, λ

′)(τ) for λ = τλ′. Notice

that since r − 1 = 2s > 0, B(r−1)/2 = Bs is a classical Frobenius kernel and H1(Bs, λ
′) is

the Bs-cohomology for λ′ ∈ Xs(T ) computed in (BNP04, Theorem 2.7). We have

H1(Bs, λ
′) ∼=



k
(s)
ω1 if λ′ = 2sω1 − 2s−1α1

M
(s)
C2

if λ′ = 0 = 2s(ω2 − ω1)− 2s−1α2

k
(s)
ωj if λ′ = 2sωα − 2iα, α ∈ Π, 0 ≤ i ≤ s− 2

0 else.

with MC2 having the structure as claimed in the statement of the theorem. We note the

implicit constraints on s in the different cases. Hence,

E1,0
2

∼= H1
(
Bs, λ

′)(τ) ∼=


k
(r/2)
ω1 if λ′ = 2sω1 − 2s−1α1

M
(r/2)
C2

if λ′ = 0 = 2s(ω2 − ω1)− 2s−1α2

k
(r/2)
ωj if λ′ = 2sωα − 2iα, α ∈ Π, 0 ≤ i ≤ s− 2

0 else.

One can recover λ from λ′, recalling α1 = 2ω1 − ω2 and α2 = 2ω2 − 2ω1. For example if

λ′ = 2sω1 − 2s−1α1 = 2s−1ω2, then λ = τλ′ = 2sω1. The other cases are similar.

In light of the above, observe that there is no choice of λ for which E1,0
2 and E0,1

2 are both

non-zero. Hence if E1,0
2 ̸= 0, then E0,12 = 0, implying that E1

∞
∼= E1,0

2 . Alternatively,
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suppose that E0,1
2 ̸= 0, so E1,0

2 = 0. It remains to check whether the differential d2 :

E0,1
2 → E2,0

2 is the zero map. Assume E2,0
2 ̸= 0 and we have

E2,0
2 = H2(Br/2/Bτ ,HomBτ (k, λ))

∼= H2(B(r−1)/2,HomBτ (k, λ)
(−τ))(τ)

∼= H2(Bs, λ
′(τ)) ∼= H2(Bs, λ

′)(τ)

for λ = τλ′. As before, B(r−1)/2 = Bs is a classical Frobenius kernel and H2(Bs, λ
′) is the

second Bs-cohomology for λ′ ∈ Xs(T ) computed in Lemma 3.2.2.

Since E0,1
2 ̸= 0, λ′ = 2sω1−ω1 or 2sω2+ω1−ω2. In each case the coefficient of ω1 in λ′ is

odd, so λ′ is not in the root lattice; however, since E2,0
2 ̸= 0, we see from Lemma 3.2.2 that

λ′ is in the root lattice—a contradiction. It follows that the differential d2 : E0,1
2 → E2,0

2

is the zero map. Therefore, if E0,1
2 ̸= 0, we have E1

∞
∼= E0,1

2 .

For a general λ ∈ X(T ), not necessarily lying in Xr/2, we proceed as in (BNP04, 2.8).

Corollary 3.2.4. Let λ ∈ X(T ) and r = 2s+ 1 > 1. Then H1(Br/2, λ) ̸= 0 if and only if

λ = τ rω− τ iα, for some weight ω ∈ X(T ), and α ∈ Π with 0 ≤ i ≤ 2s− 1 or λ = τ rω−β,

for some weight ω ∈ X(T ), and β ∈ Πs.

Proof. Suppose H1(Br/2, λ) ̸= 0. Then we may uniquely write λ = λ0 + τ rλ1, for λ0 ∈
Xr/2(T ) and λ1 ∈ X(T ). It follows that H1(Br/2, λ) ∼= H1(Br/2, λ0) ⊗ τ rλ1. Thus, by

Theorem 3.2.3, H1(Br/2, λ0) ̸= 0 if and only if λ0 = τ rω′−τ iα for α ∈ Π and 0 ≤ i ≤ 2s−1,

or λ0 = τ rω′ − β for β ∈ Πs, with ω′ the specific weight in the theorem. In the first case,

we may then write λ = λ0 + τ rλ1 = τ rω′ − τ iα + τ rλ1 = τ r(ω′ + λ1)− τ iα = τ rω − τ iα.

Secondly, we have λ = λ0 + τ rλ1 = τ rω′ − β + τ rλ1 = τ r(ω′ + λ1)− β = τ rω− β. In both

cases, we obtain the required form.

Conversely, suppose we are given any weight λ = τ rω−τ iα, with α ∈ Π and 0 ≤ i ≤ 2s−1

or λ = τ rω−β, for β ∈ Πs. In either case, one can always express ω as ω = ω′+λ1, for the

required weight ω′ in Theorem 3.2.3 and some weight λ1 ∈ X(T ). Hence, H1(Br/2, λ) ̸= 0

for all such λ, as non-vanishing is independent of the choice of λ1.

Suppose H1(Br/2, λ) ̸= 0 and let (ζ, j) denote the appropriate pair, (α, i) or (β, 1), as

defined in the previous corollary. Now, given λ = τ rω − τ jζ, we may write λ = τ rω′ −
τ jζ + τ rλ1, where ω′ is chosen as per the list in Theorem 3.2.3, and so it follows that λ1

is ω − ω′. Hence
H1(Br/2, λ) ∼= H1(Br/2, λ0)⊗ k

(r/2)
λ1

∼= H1(Br/2, τ
rω′ − τ jζ)⊗ k

(r/2)
ω−ω′ .

39



Chapter 3. First Cohomology

Direct verification, substituting the answers from Theorem 3.2.3, yields the following result

Theorem 3.2.5. Let λ ∈ X(T ). Then, for 0 ≤ i ≤ s− 2, we have

H1
(
Br/2, λ

) ∼=



k
(r/2)
ω if λ = τ rω − βi, ω ∈ X(T ), βi ∈ Πs

k
(r/2)
ω if λ = τ rω − τ2s−1α1, ω ∈ X(T )

M
(r/2)
C2

⊗ k
(r/2)
ω+ω1−ω2

if λ = τ rω − τ2s−1α2, ω ∈ X(T )

k
(r/2)
ω if λ = τ rω − τ2i+1αj , ω ∈ X(T ), αj ∈ Π

0 else.

Gr/2-Cohomology of Induced Modules

By Kempf’s vanishing theorem, H0(λ) = IndGB λ is zero unless λ is dominant. For

λ ∈ X(T )+, one may use Theorem 3.2.1 and Theorem 3.2.3, respectively, to compute

H1(Gr/2, H
0(λ)) with the aid of the isomorphism (3.1.1). Finally, we note that, by (BNP04,

3.1. Theorem (C)), IndGB(MC2) = H0(ω1).

In case r = 1, we obtain (Sin94b, Lemma 2.1):

Theorem 3.2.6. Let λ ∈ Xτ (T ). Then

H1
(
Gτ ,H

0(λ)
)(−τ) ∼=

 H0(ω1) ∼= L(ω1) if λ = 0

0 else.

Otherwise, we have:

Theorem 3.2.7. Let r = 2s+ 1 > 1, λ ∈ Xr/2(T ) and 0 ≤ i ≤ s− 2. Then

H1(Gr/2,H
0(λ))(−r/2) ∼=



H0(ω1) if λ = (2s − 1)ω2 = τ rω1 − β2

H0(ω2) if λ = (2s+1 − 2)ω1 + ω2 = τ rω2 − β1

H0(ω1) if λ = 2sω1 = τ rω1 − τ2s−1α1

H0(ω1) if λ = 0 = τ r(ω2 − ω1)− τ2s−1α2

H0(ω1) if λ = (2s − 2i+1)ω2 + 2i+1ω1 = τ rω1 − τ2i+1α1

H0(ω2) if λ = 2i+1ω2 + (2s+1 − 2i+2)ω1 = τ rω2 − τ2i+1α2

0 else.
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Next, one can make use of Theorem 3.2.5 to compute H1(Gr/2,H
0(λ)) in terms of induced

modules for all dominant weights λ, by applying the induction functor IndGB. The only

non-obvious case is dealt with in the remark below.

Remark 3.2.8. Let τ rω − τ2s−1α2 ∈ X(T )+. Then ⟨ω, α∨
1 ⟩ ≥ −1 and ⟨ω, α∨

2 ⟩ ≥ 1. In

this case, by (BNP04, Proposition 3.4 (B)(c)), IndGB(MC2 ⊗kω+ω1−ω2) has a filtration with

factors satisfying the following short exact sequence

0 → H0(ω) → IndGB(MC2 ⊗ kω+ω1−ω2) → H0(ω + 2ω1 − ω2) → 0.

(Observe that H0(ω+2ω1−ω2) is always present, but H
0(ω) appears as a factor if ⟨ω, α∨

1 ⟩ ≥
0.)

Gr/2 Extensions Between Simple Modules

In this subsection, we make use of the G1-cohomology with coefficients in simple modules,

computed in (Sin94b, Proposition 2.3), to calculate Ext1Gs
(L(λ), L(µ))(−s), for a positive

integer s and λ, µ ∈ Xs(T ).

We begin with a result due to (HS53, Section 4).

Lemma 3.2.9. Let (En, dn) be a second stage first quadrant spectral sequence of coho-

mological type converging to the graded vector space H∗ and assume Ei,1
2 = 0 for all i ≥ 0.

Then, we have a five-term exact sequence

0 → E2,0
3 = E2,0

∞ → H2 → E0,2
3 → E3,0

3 → H3 .

Proof. Note that the j = 1 row vanishes; that is Ei,1
2 = 0. Since every Ei,1

r is a subquotient

of Ei,1
2 , then Ei,1

r = 0, for all r.

Note that, assuming Ei,1
2 = 0, the five-term exact sequence discussed in Lemma 2.8.4

becomes an isomorphism E1,0
2

∼= E1
∞ = H1 and E2,0

2 ↪−→ E2
∞ = H2; E2,0

2 injects in E2
∞ = H2,

so we have 0 → E2,0
2 → E2

∞ = H2. Since Ei,1
2 = 0, we have H2 = E2

∞ = E2,0
∞ ⊕ E0,2

2 .

Consider E0,2
2 and take the cohomology

H(E0,2
2 ) =

ker(d2 : E
0,2
2 → E2,1

2 = 0)

im(d2 : E
−2,3
2 → E0,2

2 )
= E0,2

2 .
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Hence, E0,2
3

∼= E0,2
2 . There is also a differential d3 : E

0,2
3 → E3,0

3 . Now, consider H(E0,2
3 ):

H(E0,2
4 ) =

ker(d3 : E
0,2
3 → E3,0

3 )

im(d3 : E
−3,4
3 → E0,2

3 )
= ker(d3 : E

0,2
3 → E3,0

3 ).

Therefore, E0,2
4 is the cohomology of the sequence 0 → E0,2

3 → E3,0
3 and this explains

0 → E2,0
3 → E2

∞ = H2 → E0,2
3

d2−→ E3,0
3 .

Finally, the cokernel of the map d3 : E0,2
3 → E3,0

3 is E3,0
2 /im(d3 : E0,2

3 → E3,0
3 ) and notice

that it equals E3,0
4 . Observe that E3,0

4 has no maps in or out of the first quadrant, so it

injects into E3
∞ = H3.

First, we underline that in this case, the calculation of Ext1Gs
(L(λ), L(µ))(−s) requires

knowledge of the following cohomology group.

Lemma 3.2.10. Let G be of type C2 and p = 2. Then H2(G1, L(ω1)) = 0.

Proof. We run the Lyndon-Hochschild-Serre spectral sequence corresponding to Gτ ◁G1.

The E2-page is given by

Ei,j
2 = Hi(Gτ ,H

j(Gτ , L(ω1))
(−τ))(τ).

By Theorem 3.2.6, H1(Gτ , L(ω1)) = 0, so Ei,1
2 = 0. It follows that we obtain the following

five-term exact sequence from Lemma 3.2.9

0 → E2,0
3 → E2

∞ → E0,2
3 → E3,0

3 → E3
∞.

First, note that the E2,0
3 -term vanishes, since HomGτ (k, L(ω1)) = 0. Moreover, L(ω1) is

an injective module for Gτ , so H2(Gτ , L(ω1)) = 0. Therefore, E0,2
3 also vanishes, so we

conclude that E2
∞ = H2(G1, L(ω1)) = 0.

Theorem 3.2.11. Let s be a positive integer, λ, µ ∈ Xs(T ) and 1 ≤ i ≤ s− 1. We write

λ = λ0 + 2s−1λ1, for λ0 =
∑s−2

i=0 p
iλ0,i ∈ Xs−1 and λ1 ∈ X1; we take a similar expression
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for µ. Then

Ext1Gs
(L(λ), L(µ))(−s) ∼=



L(ω1) if λ = µ and λ1 = µ1 ∈ {0, ω1}

k if λ− µ = ±2s−1ω2, (λ0,s−1, µ0,s−1) = (0, ω2)

k if λ− µ = ±2i−1ω2, (λ0,i−1, µ0,i−1) = (0, ω2)

k if λ− µ = ±2iω1, (λ0,i, µ0,i) ∈ {(0, ω1), (ω2, ω1 + ω2)}

and λ0,i−1 = µ0,i−1 ∈ {0, ω1}

0 else.

Note that it is implicit in the statement of the theorem that s ≥ 1 or s ≥ 2, depending on

the case.

Proof. We proceed inductively. When s = 1, we refer the reader to (Sin94b, Proposi-

tion 2.3). Suppose s > 1 and consider the Lyndon-Hochschild-Serre spectral sequence

corresponding to Gs−1 ◁Gs. The E2-page is given by

Ei,j
2 := ExtiG1

(L(λ1),Ext
j
Gs−1

(L(λ0), L(λ0))
(−s+1) ⊗ L(µ1))

(s−1).

First, consider the E1,0
2 -term. We have

E1,0
2 = Ext1G1

(L(λ1),HomGs−1(L(λ0), L(µ0))
(−s+1) ⊗ L(µ1))

(s−1).

Note that E1,0
2 ̸= 0 if and only if λ0 = µ0, in which case we obtain

E1,0
2 = H1(G1, L(λ1))

(s−1) ∼=


L(ω1)

(s) if λ1 = µ1 ∈ {0, ω1}

k if (λ1, µ1) = (0, ω2)

0 else.

(cf. (Sin94b, Proposition 2.3)). Therefore, recalling that λ = λ0 + 2s−1λ1 and µ =

µ0 + 2s−1µ1, we may conclude that for λ, µ ∈ Xs,

E1,0
2

∼=


L(ω1)

(s) if λ = µ, λ1 = µ1 ∈ {0, ω1}

k if λ− µ = ±2s−1ω2, (λ1, µ1) = (0, ω2)

0 else.
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Now consider the E0,1
2 -term. We have

E0,1
2 = HomG1(L(λ1),Ext

1
Gs−1

(L(λ0), L(µ0))
(−s+1) ⊗ L(µ1))

(s−1).

We take each non-zero instance of Ext1Gs−1
(L(λ0), L(µ0)) in turn. By the induction hy-

pothesis, if λ0 = µ0, with λ0,s−2 = µ0,s−2 ∈ {0, ω1}, then we have

E0,1
2 = HomG1(L(λ1), L(ω1)⊗ L(µ1))

(s−1)

∼= HomGτ (L(λ1,1),HomGτ (L(λ1,0), L(µ1,0)⊗ L(ω1))
(−τ) ⊗ L(µ1,1))

(s−1/2),

where λ1 = λ1,0 + τλ1,1 and µ1 is expressed similarly. By (Sin94b, Proposition 2.2(c)(i)),

HomGτ (L(λ1,0), L(µ1,0)⊗ L(ω1)) ̸= 0 if and only if (λ1,0, µ1,0) = (0, ω1). Thus E
0,1
2 ̸= 0 if

and only if λ1,1 = µ1,1; it follows that E
0,1
2

∼= k if λ−µ = ±2s−1ω1. The other cases follow

similarly and we obtain, for 1 ≤ i ≤ s− 1

E0,1
2

∼=



k if λ− µ = ±2i−1ω2, (λ0,i−1, µ0,i−1) = (0, ω2)

k if λ− µ = ±2iω1, (λ0,i, µ0,i) ∈ {(0, ω1), (ω2, ω1 + ω2)}

and λ0,i−1 = µ0,i−1 ∈ {0, ω1}

0 else.

Notice that there are no choices of λ and µ for which E1,0
2 and E0,1

2 are both non-zero.

Hence if E1,0
2 ̸= 0, then E0,1

2 = 0, implying that E1
∞

∼= E1,0
2 . Alternatively, suppose that

E0,1
2 ̸= 0, so E1,0

2 = 0. It remains to check whether the differential d2 : E
0,1
2 → E2,0

2 is the

zero map. The E2,0
2 -term is

E2,0
2 = Ext2G1

(L(λ1),HomGs−1(L(λ0), L(µ0))
(−s+1) ⊗ L(µ1))

(s−1).

We consider each choice of (λ, µ) for which E0,1
2 ̸= 0. If λ−µ = ±2i−1ω2 or λ−µ = ±2iω1,

we obtain HomGs−1(L(λ0), L(µ0)) = 0, so E2,0
2 = 0.

It remains to verify the case λ − µ = ±2s−1ω1. Then E2,0
2 = H2(G1, L(ω1))

(s−1), which

vanishes by Lemma 3.2.10. It follows that d2 : E0,1
2 → E2,0

2 is the zero map and we reach

our conclusion.

Next, making use of the previous theorem concerning the cohomology for classical Frobe-

nius kernels, we compute Ext1Gr/2
(L(λ), L(µ)) for r an odd positive integer and λ, µ ∈ Xr/2.

If r = 1, we refer the reader to (Sin94b, 2.1). Otherwise, we obtain

Theorem 3.2.12. Let s be a positive integer, λ, µ ∈ Xr/2(T ) and 1 ≤ i ≤ s−1. We write
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λ = λ0+2sλ1, for λ0 =
∑s−1

i=0 p
iλ0,i ∈ Xs and λ1 ∈ Xτ ; we take a similar expression for µ.

Then

Ext1Gr/2
(L(λ), L(µ))(−r/2) ∼=



L(ω1) if λ = µ = λ0 ∈ Xs

k if λ− µ = ±2sω1, λ0,s−1 = µ0,s−1 ∈ {0, ω1}

k if λ− µ = ±2s−1ω2, (λ0,s−1, µ0,s−1) = (0, ω2)

k if λ− µ = ±2i−1ω2, (λ0,i−1, µ0,i−1) = (0, ω2)

k if λ− µ = ±2iω1, (λ0,i, µ0,i) ∈ {(0, ω1), (ω2, ω1 + ω2)}

and λ0,i−1 = µ0,i−1 ∈ {0, ω1}

0 else.

Note that it is implicit in the statement of the theorem that s ≥ 1 or s ≥ 2, depending

on the case.

Proof. Consider the Lyndon-Hochschild-Serre spectral sequence corresponding to Gs ◁

Gr/2. The E2-page is given by

Ei,j
2 := ExtiGτ

(L(λ1),Ext
j
Gs

(L(λ0), L(µ0))
(−s) ⊗ L(µ1))

(s).

First, consider the E1,0
2 -term. We have

E1,0
2 = Ext1Gτ

(L(λ1),HomGs(L(λ0), L(µ0))
(−s) ⊗ L(µ1))

(s).

Note that E1,0
2 ̸= 0 if and only if λ0 = µ0, in which case we obtain

E1,0
2 = Ext1Gτ

(L(λ1), L(µ1))
(s). ∼=

 L(ω1)
(r/2) if λ1 = µ1

0 else.

(cf. Theorem 3.2.6 and (Sin94b, Lemma 2.1)). Thus, recalling λ = λ0 + 2sλ1 and µ =

µ0 + 2sµ1, we have E1,0
2 = k if λ = µ = λ0 ∈ Xs and vanishes otherwise. Next, consider

the E0,1
2 -term:

E0,1
2 = HomGτ (L(λ1),Ext

1
Gs

(L(λ0), L(µ0))
(−s) ⊗ L(µ1))

(s).

We take each non-zero instance of Ext1Gs
(L(λ0), L(µ0))

(−s) from Theorem 3.2.11 in turn.

If λ0 = µ0 and λ0,s−1 = µ0,s−1 ∈ {0, ω1}, then

E0,1
2 = HomGτ (L(λ1), L(µ1)⊗ L(ω1))

(s),

which is non-zero if and only if λ1 − µ1 = ±ω1, by (Sin94b, Proposition 2.2(c)(i)); we
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obtain E0,1
2

∼= k for λ − µ = ±2sω1 and λ0,s−1 = µ0,s−1 ∈ {0, ω1}. The other cases are

similar. Moreover, we can recover λ and µ, recalling λ = λ0 + 2sλ1 and µ = µ0 + 2sµ1.

We get, for 1 ≤ i ≤ s− 1

E0,1
2

∼=



k if λ− µ = ±2sω1, λ0,s−1 = µ0,s−1 ∈ {0, ω1}

k if λ− µ = ±2s−1ω2, (λ0,s−1, µ0,s−1) = (0, ω2)

k if λ− µ = ±2i−1ω2, (λ0,i−1, µ0,i−1) = (0, ω2)

k if λ− µ = ±2iω1, (λ0,i, µ0,i) ∈ {(0, ω1), (ω2, ω1 + ω2)}

and λ0,i−1 = µ0,i−1 ∈ {0, ω1}

0 else.

Observe that there are no choices of λ and µ for which E1,0
2 and E0,1

2 are both non-zero.

Hence if E1,0
2 ̸= 0, then E0,1

2 = 0, implying that E1
∞

∼= E1,0
2 . Alternatively, suppose that

E0,1
2 ̸= 0, so E1,0

2 = 0. We must also investigate whether the differential d2 : E0,1
2 → E2,0

2

is the zero map. The E2,0
2 -term is

E2,0
2 = Ext2Gτ

(L(λ1),HomGs(L(λ0), L(µ0))
(−s) ⊗ L(µ1))

(s).

We consider each choice of (λ, µ) for which E0,1
2 ̸= 0 in turn.

First, if λ− µ = ±2sω1, λ0,s−1 = µ0,s−1 ∈ {0, ω1}, it follows that

E2,0
2 = Ext2Gτ

(k,HomGs(L(λ0), L(µ0))
(−s) ⊗ L(ω1))

(s)

∼= Ext2Gτ
(k, L(ω1))

(s) = 0,

since L(ω1) is an injective module for Gτ . In all of the other cases, we have λ0 ̸= µ0, so

HomGs(L(λ0), L(µ0)) = 0, which forces E2,0
2 = 0. We conclude that d2 is the zero map.

Therefore, E0,1
2 ̸= 0 implies E1

∞
∼= E0,1

2 .

3.3 G2 in Characteristic 3

LetG be simply-connected of typeG2 over k of characteristic 3. Following (Bou82, Planche

IX), let Φ = {±(ϵ1 − ϵ2),±(ϵ1 − ϵ3),±(ϵ2 − ϵ3),±(2ϵ1 − ϵ2 − ϵ3),±(2ϵ2 − ϵ1 − ϵ3),±(2ϵ3 −
ϵ1− ϵ2)} be the roots of a system of type G2. Writing ϵ1 = (1, 0, 0), ϵ2 = (0, 1, 0) and ϵ3 =

(0, 0, 1), we may take a base of simple roots to be Π := {α1, α2}, with α1 = (1,−1, 0) short,

and α2 = (−2, 1, 1) long; moreover, the corresponding fundamental dominant weights are

ω1 = (0,−1, 1) and ω2 = (−1,−1, 2). We may check that a set of simple roots of Φs
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is Πs := {α1, α1 + α2}. We shall denote these simple roots by β1 = α1 = (1,−1, 0),

β2 = α1+α2 = (−1, 0, 1). The special isogeny induces a Z-linear map τ∗ : X(T ) → X(T ),

under which ω1 7→ ω2 7→ 3ω1. From this point onwards, we abuse notation, writing τ

instead of τ∗. Thus, the τ -restricted weights are 0, ω1 and 2ω1.

Bτ -Cohomology

Let λ ∈ Xr/2 be expressed as λ = λ0 + τ(λ1), for λ0 ∈ Xτ (T ) and λ1 ∈ Xs(T ), such that

H1(Bτ , λ) ∼= H1(Bτ , λ0)⊗ τ(λ1). Thus, it suffices to compute H1(Bτ , λ0), for λ0 ∈ Xτ (T ).

Theorem 3.3.1. Let λ0 ∈ Xτ (T ). Then

H1 (Bτ , λ0) ∼=

 k
(τ)
ω2−ω1

⊕ k
(τ)
ω1 if λ0 = ω1

0 else.

Proof. Once again, Lemma 3.1.2 tells us that, regarded as a T -module, H1(Uτ , k) ⊗ λ0

is the direct sum of certain kβi+λ0 , for βi ∈ Πs, as previously defined. Such a summand

yields a non-zero contribution to H1(Bτ , λ0) if and only if βi + λ0 ∈ τX(T ), by Lemma

3.1.3. Hence, we need only check which of these weights belong to τX(T ).

First, suppose λ0 = 0. It is readily checked that we have no non-zero contribution. We

conclude that H1(Bτ , 0) = 0.

Then, let λ0 = ω1 and we have

β1 + ω1 = 2ω1 − ω2 + ω1 = 3ω1 − ω2 = τ(ω2 − ω1).

β2 + ω1 = ω2 − ω1 + ω1 = ω2 = τ(ω1).

Then, H1(Bτ , ω1) ∼= [
⊕

i kβi+ω1 ]
Tτ ∼=

[
kτ(ω2−ω1) ⊕ kτω1

]Tτ ∼= k
(τ)
ω2−ω1

⊕ k
(τ)
ω1 .

Lastly, suppose λ0 = 2ω1. We obtain

β1 + 2ω1 = 2ω1 − ω2 + 2ω1 = 4ω1 − ω2 /∈ τX(T ).

β2 + 2ω1 = ω2 − ω1 + 2ω1 = ω1 + ω2 /∈ τX(T ).

Then, H1(Bτ , 2ω1) ∼= [
⊕

i kβi+ω1 ]
Tτ = 0, since none of them lie in τX(T ).
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Br/2-Cohomology

In this subsection, we extend the results of the previous section to calculate H1(Br/2, λ),

for λ ∈ Xr/2(T ).

First, when r = 1, we direct the reader to Theorem 3.3.1. Otherwise, we obtain

Theorem 3.3.2. Suppose r = 2s + 1 > 1 and let λ ∈ Xr/2(T ). Then, for 0 ≤ i ≤ s − 2,

we have

H1
(
Br/2, λ

) ∼=



k
(r/2)
ω1 if λ = ω1 + (3s − 1)ω2 = τ rω1 − β2

k
(r/2)
ω2 if λ = (3s+1 − 2)ω1 + ω2 = τ rω2 − β1

k
(r/2)
ω1 if λ = 3sω1 + 3s−1ω2 = τ rω1 − τ2s−1α1

M
(r/2)
G2

if λ = 3sω1 = τ r(ω2 − ω1)− τ2s−1α2

k
(r/2)
ω1 if λ = (3s − 3i · 2)ω2 + 3i+1ω12 = τ rω1 − τ2i+1α1

k
(r/2)
ω2 if λ = 3i+1ω2 + (3s+1 − 3i+1 · 2)ω1 = τ rω2 − τ2i+1α2

0 else.

Here MG2 denotes the 2-dimensional indecomposable B-module with head kω1 and socle

kω2−ω1 (cf. (BNP04, 2.2)). Moreover, the last two non-zero instances only occur for s ≥ 2

(or r ≥ 5).

Proof. The second equality in each case identifying two forms of λ is readily verifiable,

recalling τ(ω1) = ω2, β1 = (1,−1, 0) = 2ω1−ω2 and β2 = −ω1+ω2. For instance, suppose

λ = τ rω1 − β2. Then, λ may be expressed as λ = 3sτω1 − (−ω1 + ω2) = ω1 + (3s − 1)ω2.

Thus, we focus on proving that λ must be equal to one of the weights given by the first

equality in each case. We consider the Lyndon-Hochschild-Serre spectral sequence

Ei,j
2 = Hi(Br/2/Bτ ,H

j(Bτ , λ)) ⇒ Hi+j(Br/2, λ)

and the corresponding five-term exact sequence

0 → E1,0
2 → E1

∞ → E0,1
2

d2−→ E2,0
2 → E2

∞.

As before, we will identify E1
∞ with either E0,1

2 or E1,0
2 and we calculate all of the non-

zero cases in this way. We begin by fixing some notation. Since λ ∈ Xr/2(T ), it has a

unique τ -adic expansion and we write λ =
∑r−1

i=0 τ
iλi, with λi τ -restricted weights. Then,

λ = λ0 + τ(λ′), for λ′ =
∑r−1

j=1 τ
j−1λj . Suppose E0,1

2 ̸= 0 and consider the E0,1
2 -term. We
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have
E0,1

2 = HomBr/2/Bτ
(k,H1(Bτ , λ))

∼= HomBr/2/Bτ
(k,H1(Bτ , λ0)⊗ τ(λ′)).

There is only one τ -restricted weight for which H1(Bτ , λ0) ̸= 0, namely λ0 = ω1. In this

case, we obtain

H1(Bτ , ω1) ∼= k
(τ)
ω2−ω1

⊕ k(τ)ω1
.

Hence
E0,1

2 = HomBr/2/Bτ
(k, (k(τ)ω1

⊕ k
(τ)
ω2−ω1

)⊗ τ(λ′))

∼= HomB(r−1)/2
(k, (k(τ)ω1

⊕ k
(τ)
ω2−ω1

)⊗ k
(τ)
λ′ )

∼= HomB(r−1)/2
(k, k

(τ)
ω1+λ′ ⊕ k

(τ)
ω2−ω1+λ′).

Similarly to the proof of Theorem 3.2.3, HomB(r−1)/2
(k, k

(τ)
ω1+λ′ ⊕ k

(τ)
ω2−ω1+λ′) is non-zero if

at least one of ω1 + λ′ and ω2 − ω1 + λ′ belongs to τ r−1X(T ).

Moreover, HomB(r−1)/2
(k, k

(τ)
ω1+λ′ ⊕k

(τ)
ω2−ω1+λ′) is at most one-dimensional: since ω2−2ω1 /∈

τ r−1X(T ), at most one of ω1+λ′ and ω2−ω1+λ′ lies in τ r−1X(T ). Thus, we consider both

cases in turn to determine the possible values of λ and E0,1
2 . First, suppose ω2−ω1+λ′ ∈

τ r−1X(T ). Since p = 3, we have λ′ = (a3s + 1)ω1 + (b3s − 1)ω2 ∈ Xs(T ). It immediately

follows that we must have a = 0, b = 1, in which case λ′ = ω1 + (3s − 1)ω2, giving

λ = (3s+1 − 2)ω1 + ω2 and

E0,1
2 = HomBr/2/Bτ

(k, kτ(ω1+λ′) ⊕ kτ(ω2−ω1+λ′)).

The second term in the target of the Hom is kτ(ω2−ω1+ω1+(3s−1)ω2) = k3sτ(ω2). Thus

E0,1
2

∼= k3sτ(ω2) = (kω2)
(r/2).

In the case ω1+λ′ ∈ τ r−1X(T ), a similar argument leads us to conclude that E0,1
2 = k

(r/2)
ω1

for λ = ω1 + (3s − 1)ω2.

To conclude, for λ ∈ Xr/2(T ),

E0,1
2

∼=


k
(r/2)
ω1 if λ = ω1 + (3s − 1)ω2

k
(r/2)
ω2 if λ = (3s+1 − 2)ω1 + ω2

0 else.
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Now suppose E1,0
2 ̸= 0. We have

E1,0 = H1(Br/2/Bτ ,HomBτ (k, λ)),

= H1(Br/2/Bτ ,HomBτ (k, λ0)⊗ τ(λ′))

so λ0 = 0 and λ = τ(λ′). Thus E1,0 ∼= H1(Bs, λ
′(τ)) ∼= H1(Bs, λ

′)(τ) for λ = τλ′. Notice

that since r − 1 = 2s > 0, B(r−1)/2 = Bs is a classical Frobenius kernel and H1(Bs, λ
′) is

the Bs-cohomology for λ′ ∈ Xs(T ) computed in (BNP04, Theorem 2.7). We have

H1(Bs, λ
′) ∼=



k
(s)
ω1 if λ′ = 3s−1(ω1 + ω2)

M
(s)
G2

if λ′ = 3s−1ω2

k
(s)
ωj if λ′ = 3sωj − 3iαj , j ∈ {1, 2} , 0 ≤ i ≤ s− 2

0 else.

where MG2 has the structure as claimed in the statement of the theorem. We note the

implicit constraints on s in the different cases. Thus,

E1,0
2

∼= H1(Bs, λ
′)(τ) ∼=



k
(r/2)
ω1 if λ′ = 3s−1(ω1 + ω2)

M
(r/2)
G2

if λ′ = 3s−1ω2

k
(r/2)
ωj if λ′ = 3sωj − 3iαj , j ∈ {1, 2} , 0 ≤ i ≤ s− 2

0 else.

We can recover λ from λ′, recalling α1 = 2ω1 − ω2 and α2 = −3ω1 + 2ω2. For instance,

if λ′ = 3s−1(ω1 + ω2), then λ = τλ′ = 3sω1 + 3s−1ω2. Note that the other cases follow

similarly.

Finally, note that there is no choice of λ for which E0,1
2 and E1,0

2 are simultaneously non-

zero. Hence, if E1,0
2 ̸= 0, then E0,1

2 = 0 so E1
∞

∼= E1,0
2 . Alternatively, if E0,1

2 ̸= 0, then

λ = ω1+(3s−1)ω2 or λ = (3s+1−2)ω1+ω2, according to the earlier discussion. Note that

in either case, λ /∈ τX(T ), pushing HomBτ (k, λ) = 0. Hence E1,0
2 = E2,0

2 = 0, meaning

that E1
∞

∼= E0,1
2 .

Now, for completeness, for a general λ ∈ X(T ), not necessarily lying in Xr/2, we proceed

as in (BNP04, 2.8). First, we make the following observation and we note that the proof

is identical to the proof of Corollary 3.2.4.

Corollary 3.3.3. Let λ ∈ X(T ). Then H1(Br/2, λ) ̸= 0 if and only if λ = τ rω − τ iα, for

some weight ω ∈ X(T ), and α ∈ Π with 0 ≤ i ≤ 2s − 1 or λ = τ rω − β, for some weight
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ω ∈ X(T ), and β ∈ Πs.

Now, we denote by (ζ, j) the pair (α, i) or (β, 1), respectively, as defined in the previous

corollary. Now, we write λ = τ rω′ − τ jζ + τ rλ1, for a given λ = τ rω − τ jζ. Supposing

the Br/2-cohomology does not vanish on λ, then ω′ is as given in Theorem 3.3.2 and

λ1 ∈ X(T ). Then, set λ1 = ω − ω′ and we obtain

H1(Br/2, λ) ∼= H1(Br/2, λ0)⊗ k
(r/2)
λ1

∼= H1(Br/2, τ
rω′ − τ jζ)⊗ k

(r/2)
ω−ω′ .

One then substitutes the results from Theorem 3.3.2. We omit the details for brevity and

obtain

Theorem 3.3.4. Let λ ∈ X(T ) and 0 ≤ i ≤ s− 2. Then

H1
(
Br/2, λ

) ∼=


k
(r/2)
ω if λ = τ rω − τ2s−1α1, ω ∈ X(T )

M
(r/2)
G2

⊗ k
(r/2)
ω+ω1−ω2

if λ = τ rω − τ2s−1α2, ω ∈ X(T )

k
(r/2)
ω if λ = τ rω − τ2i+1αj , ω ∈ X(T ), αj ∈ Π

0 else.

Gr/2-Cohomology of Induced Modules

Using Kempf’s vanishing theorem, Theorem 3.3.1, Theorem 3.3.2 and (3.1.1), we compute

H1(Gr/2,H
0(λ)) for λ ∈ Xr/2. Furthermore, we note that, by (BNP04, 3.1, Theorem (B)),

IndGB(MG2) = H0(ω1).

In case r = 1, we obtain (Sin94b, Lemma 3.2):

Theorem 3.3.5. Let λ ∈ Xτ (T ). Then

H1
(
Gτ ,H

0(λ)
)(−τ) ∼=

 H0(ω1) if λ = ω1

0 else.

Now, assume r > 1.
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Theorem 3.3.6. Let λ ∈ Xr/2(T ) and 0 ≤ i ≤ s− 2. Then

H1(Gr/2,H
0(λ))(−r/2) ∼=



H0(ω1) if λ = ω1 + (3s − 1)ω2 = τ rω1 − β2

H0(ω2) if λ = (3s+1 − 2)ω1 + ω2 = τ rω2 − β1

H0(ω1) if λ = 3sω1 + 3s−1ω2 = τ rω1 − τ2s−1α1

H0(ω1) if λ = 3sω1 = τ r(ω2 − ω1)− τ2s−1α2

H0(ω1) if λ = (3s+1 − 3i · 2)ω2 + 3i+1ω1 = τ rω1 − τ2i+1α1

H0(ω2) if λ = 3i+1ω2 + (3s+1 − 3i+1 · 2)ω1 = τ rω2 − τ2i+1α2

0 else.

Lastly, based on Theorem 3.3.4, one may calculate H1(Gr/2,H
0(λ)) in terms of induced

modules for all dominant weights λ, by applying the induction functor IndGB. We handle

the only non-obvious case in the following remark.

Remark 3.3.7. Let τ rω − τ2s−1α2 ∈ X(T )+. Then ⟨ω, α∨
1 ⟩ ≥ −1 and ⟨ω, α∨

2 ⟩ ≥ 1. In

this case, by (BNP04, Proposition 3.4 (A)), we note that

(i) if ⟨ω, α∨
1 ⟩ ≥ 0, then IndGB(MG2 ⊗ kω+ω1−ω2) has a filtration with factors satisfying

the following short exact sequence

0 → H0(ω) → IndGB(MC2 ⊗ kω+ω1−ω2) → H0(ω + 2ω1 − ω2) → 0.

(ii) if ⟨ω, α∨
1 ⟩ = −1, then IndGB(MG2 ⊗ kω+ω1−ω2)

∼= H0(ω + 2ω1 − ω2).

Gr/2 Extensions Between Simple Modules

In this subsection, we make use of the G1-cohomology with coefficients in simple modules,

computed in (Sin94b, Proposition 3.5), to calculate Ext1Gs
(L(λ), L(µ))(−s), for a positive

integer s and λ, µ ∈ Xs(T ).

Theorem 3.3.8. Let s be a positive integer, with λ =
∑s−1

i=0 p
iλi and µ =

∑s−1
i=0 p

iµi ∈
Xs(T ). Put d := min{i|λi ̸= µi}. Then write λ = λ′ + pdλ′′, for λ′ =

∑d−1
i=0 piλi ∈ Xd and

λ′′ =
∑s−1

i=d p
i−dλi ∈ Xs−d; we take a similar expression for µ. We may express any digit

λi = λi,0 + τλi,1, with λi,j ∈ Xτ . Let n1n2 := n1ω1 + n2ω2 ∈ X1. Then, we denote by

A := {(00, 11), (01, 10), (01, 11), (01, 12), (02, 11), (02, 12)} and

B := {(00, 01), (10, 11), (20, 21)},
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(a) Suppose d = s− 1. Then we have

Ext1Gs
(L(λ), L(µ))(−s) ∼=


k if (λs−1, µs−1) ∈ A

L(ω1) if (λs−1, µs−1) ∈ B

0 else.

(b) Suppose d ̸= s− 1. Then we have

Ext1Gs
(L(λ), L(µ))(−s) ∼=



k if (λd, µd) ∈ A and λ′′ = µ′′

k if (λd, µd) ∈ B

(λ′′
0, µ

′′
0) ∈ {(2ω1, ω1), (ω1, ω1), (2ω1, 2ω1)}

and λ′′
1 = µ′′

1

0 else.

Note that it is implicit in the statement of the theorem that s ≥ 1 or s ≥ 2, depending on

the case.

Proof. We apply the Lyndon-Hochschild-Serre spectral sequence corresponding to Gd◁Gs

and we have

Ei,j
2 := ExtiGs−d

(L(λ′′),ExtjGd
(L(λ′), L(µ′))(−d) ⊗ L(µ′′))(d).

By definition, λ′ = µ′, so E0,1
2 = 0, which forces E1

∞
∼= E1,0

2 = Ext1Gs−d
(L(λ′′), L(µ′′))(d).

(a) First, suppose s−d = 1. Then E1
∞

∼= E1,0
2 = Ext1G1

(L(λs−1), L(µs−1))
(s−1), which was

computed in (Sin94b, Table III). We obtain

E1,0
2

∼=


k if (λs−1, µs−1) ∈ A

L(ω1)
(s) if (λs−1, µs−1) ∈ B

0 else.

(b) Now suppose s−d ̸= 1, so we may apply the Lyndon-Hochscild-Serre spectral sequence

corresponding to G1 ◁ Gs−d to M = Ext1Gs−d
(L(λ′′), L(µ′′)). Write λ′′ = λd + pλ′′′, for

λd ∈ X1 and λ′′′ ∈ Xs−d−1 and we express µ′′ similarly. The E2-page is given by

Ei,j
2 := ExtiGs−d−1

(L(λ′′′),ExtjG1
(L(λd), L(µd))

(−1) ⊗ L(µ′′′))(1).

Since, by definition, λd ̸= µd, it follows that E
i,0
2 = 0 for i > 0, so we obtain M ∼= E0,1

2 =
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HomGs−d−1
(L(λ′′′),Ext1G1

(L(λd), L(µd))
(−1) ⊗ L(µ′′′))(1).

Now put W := Ext1G1
(L(λd), L(µd))

(−1). Then, by (Sin94b, Table III), depending on the

pair (λd, µd), W ∈ {k, L(ω1)}. We consider each value of W in turn.

Case I: W = k, which occurs when (λd, µd) ∈ A

In this case we have

M ∼= HomGs−d−1
(L(λ′′′), L(µ′′′))(1) ∼= k,

if and only if λ′′′ = µ′′′ and vanishes otherwise.

Case II: W = L(ω1), which occurs when (λd, µd) ∈ B

In this case, we obtain

M ∼= HomGs−d−1
(L(λ′′′), L(µ′′′)⊗ L(ω1))

(1)

∼= HomGs−d−3/2
(L(λ′′′

1 ),HomGτ (L(λ
′′′
0 ), L(µ

′′′
0 )⊗ L(ω1))

(−τ) ⊗ L(µ′′′
1 ))

(3/2),

for λ′′′ = λ′′′
0 + τλ′′′

1 , λ
′′′
0 = λd+1,0 ∈ Xτ and λ′′′

1 ∈ Xs−d−3/2 and µ′′′ expressed similarly.

Thus, M ̸= 0 if and only if λ′′′
1 = µ′′′

1 and, by (Sin94b, Lemma 3.3), we have

M ∼=


k if (λd, µd) ∈ B, (λd+1,0, µd+1,0) = (2ω1, ω1)

k if (λd, µd) ∈ B, λd+1,0 = µd+1,0 ∈ {ω1, 2ω1}

0 else.

Next, we compute Ext1Gr/2
(L(λ), L(µ))(−r/2) for r an odd positive integer and λ, µ ∈ Xr/2,

making use of the previous theorem concerning the cohomology for classical Frobenius

kernels.

If r = 1, we refer the reader to (Sin94b, Lemma 3.2). Otherwise we obtain

Theorem 3.3.9. Suppose r = 2s+1 > 1 and let λ, µ ∈ Xr/2(T ). Write λ = λ0 + τλ′, for

λ0 ∈ Xτ and λ′ =
∑2s−1

i=0 τ iλ1,i ∈ Xs. Moreover, we write λi+1 := λ1,2i + τλ1,2i+1 ∈ X1

for i ≥ 0 and we take similar expressions for µ. Put d := min{i ≥ 1|λi ̸= µi}. Recall A,B
from Theorem 3.3.8.
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(a) Suppose λ0 = µ0. Then we have

Ext1Gr/2
(L(λ), L(µ))(−r/2) ∼=



k if (λs, µs) ∈ A

L(ω1) if (λs, µs) ∈ B

k if (λd+1, µd+1) ∈ A

k ⊕ k if (λd+1, µd+1) ∈ B

k if (λd+1, µd+1) ∈ B;

(λ1,2d+2, µ1,2d+2) ∈ {(2ω1, ω1), (ω1, ω1), (2ω1, 2ω1)}

0 else.

(b) Suppose λ0 ̸= µ0. Then we have

Ext1Gr/2
(L(λ), L(µ))(−r/2) ∼=



k if λ− µ = ±ω1 ± τω1

k if λ− µ = ±ω1

and λ1,0 = µ1,0 ∈ {2ω1, ω1}

0 else.

Proof. We consider the Lyndon-Hochschild-Serre spectral sequence corresponding to Gτ ◁

Gr/2. The E2-page is given by

Ei,j
2 := ExtiGs

(L(λ′),ExtjGτ
(L(λ0), L(µ0))

(−τ) ⊗ L(µ′))(τ).

First, suppose λ0 = µ0. Then E0,1
2 = 0, so E1

∞
∼= E1,0

2 and E1,0
2 := Ext1Gs

(L(λ′), L(µ′))(τ),

which was computed in Theorem 3.3.8.

Now suppose λ0 ̸= µ0. Then Ei,0
2 = 0 for i > 0, so E1

∞
∼= E0,1

2 and we obtain

E0,1
2 := HomGs(L(λ

′),Ext1Gτ
(L(λ0), L(µ0))

(−τ) ⊗ L(µ′))(τ).

By (Sin94b, Lemma 3.2), this vanishes unless (λ0, µ0) = (ω1, 0). In this case we obtain

E1
∞

∼= HomGs(L(λ
′), L(µ′)⊗ L(ω1))

(τ)

∼= HomGs−1/2
(L(λ′′),HomGτ (L(λ1,0), L(µ1,0)⊗ L(ω1))

(−τ) ⊗ L(µ′′))(1),

where τλ′′ = λ− (λ0 + τλ1,0) and µ′′ is expressed similarly. Then, E0,1
2 ̸= 0 if and only if
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λ′′ = µ′′, and using (Sin94b, Lemma 3.3), we obtain

E1
∞

∼=


k if (λ1,0, µ1,0) = (2ω1, ω1)

k if λ1,0 = µ1,0 ∈ {ω1, 2ω1}

0 else.

3.4 F4 in Characteristic 2

Let G be simply-connected of type F4 over k of characteristic 2. Following (Bou82, Planche

VIII), let Φ = {±ϵi,±ϵi ± ϵj ,
1
2(±ϵ1 ± ϵ2 ± ϵ3 ± ϵ4)} be the roots of a system of type F4.

Writing ϵ1 = (1, 0, 0, 0), ϵ2 = (0, 1, 0, 0), ϵ3 = (0, 0, 1, 0) and ϵ4 = (0, 0, 0, 1), a base of simple

roots is Π := {α1, α2, α3, α4} with α1 = (0, 1,−1, 0), α2 = (0, 0, 1,−1), α3 = (0, 0, 0, 1) and

α4 =
1
2(1,−1,−1,−1); furthermore, the corresponding fundamental dominant weights are

ω1 = (1, 1, 0, 0), ω2 = (2, 1, 1, 0), ω3 = 1
2(3, 1, 1, 1) and ω4 = (1, 0, 0, 0). Then one can

check that a set of simple roots of Φs is Πs := {α3, α4, α2 + α3, α1 + α2 + α3}, with α4

being the central node in the Dynkin Diagram. We shall denote these simple roots by

β1 = α3 = (0, 0, 0, 1), β2 = α4 = 1
2(1,−1,−1,−1), β3 = α2 + α3 = (0, 0, 1, 0) and

β4 = α1 + α2 + α3 = (0, 1, 0, 0). The special isogeny induces a Z-linear map τ∗ as before,

under which ω4 7→ ω1 7→ 2ω4 and ω3 7→ ω2 7→ 2ω3. We henceforth abuse notation, writing

τ instead of τ∗. Consequently, the τ -restricted weights are 0, ω3, ω4 and ω3 + ω4.

Bτ -Cohomology

For a given λ ∈ Xr/2, we write λ = λ0 + τ(λ1), for λ0 ∈ Xτ (T ) and λ1 ∈ Xs(T ), such that

H1(Bτ , λ) ∼= H1(Bτ , λ0)⊗ τ(λ1). Thus, it suffices to compute H1(Bτ , λ0), for λ0 ∈ Xτ (T ).

Theorem 3.4.1. Let λ0 ∈ Xτ (T ). Then

H1(Bτ , λ0) ∼=


k
(τ)
ω4 ⊕ k

(τ)
ω2−ω3

⊕ k
(τ)
ω3−ω4

if λ0 = ω4

k
(τ)
ω1 if λ0 = ω3

0 else.

Proof. Much like in the other cases, regarded as a T -module, H1(Uτ , k)⊗ λ0 is the direct

sum of certain kβi+λ0 , for βi ∈ Πs. Given the fact that such a summand yields a non-zero

contribution to H1(Bτ , λ0) if and only if βi + λ0 ∈ τX(T ), we now inspect which of these

weights belong to τX(T ).
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To begin with, suppose λ0 = 0. It is readily verified that we have no non-zero contribution.

Therefore, H1(Bτ , k) = 0.

Then, suppose λ0 = ω4. We have

β1 + ω4 = (1, 0, 0, 1) = −ω2 + 2ω3 = τ(ω2 − ω3).

β2 + ω4 =
1

2
(3,−1,−1,−1) = −ω3 + 3ω4 /∈ τX(T ).

β3 + ω4 = (1, 0, 1, 0) = −ω1 + ω2 = τ(ω3 − ω4).

β4 + ω4 = (1, 1, 0, 0) = ω1 = τ(ω4).

Hence,

H1(Bτ , ω4) ∼=

[⊕
i

kβi+ω1

]Tτ

∼=
[
kτ(ω4) ⊕ kτ(ω2−ω3) ⊕ kτ(ω3−ω4)

]Tτ

∼= k(τ)ω4
⊕ k

(τ)
ω2−ω3

⊕ k
(τ)
ω3−ω4

.

Now let λ0 = ω3 and we obtain

β1 + ω3 =
1

2
(3, 1, 1, 3) = −ω2 + 3ω3 − ω4 /∈ τX(T ).

β2 + ω3 = (2, 0, 0, 0) = 2ω4 = τ(ω1).

β3 + ω3 =
1

2
(3, 1, 3, 1) = −ω1 + ω2 + ω3 − ω4 /∈ τX(T ).

β4 + ω3 =
1

2
(3, 3, 1, 1) = ω1 + ω3 − ω4 /∈ τX(T ).

Then, H1(Bτ , ω3) ∼= k
(τ)
ω1 .

Finally, for λ0 = ω3 + ω4, we get

β1 + ω3 + ω4 =
1

2
(5, 1, 1, 3) = −ω2 + 3ω3 /∈ τX(T ).

β2 + ω3 + ω4 = (3, 0, 0, 0) = 3ω4 /∈ τX(T ).

β3 + ω3 + ω4 =
1

2
(5, 1, 3, 1) = −ω1 + ω2 + ω3 /∈ τX(T ).

β4 + ω3 + ω4 =
1

2
(5, 3, 1, 1) = ω1 + ω3 /∈ τX(T ).

Then, H1(Bτ , ω3 + ω4) = 0.
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Br/2-Cohomology

In this subsection, we extend the results of the previous section to calculate H1(Br/2, λ),

for λ ∈ Xr/2(T ).

If r = 1, we direct the reader to Theorem 3.4.1.

Theorem 3.4.2. Suppose r = 2s + 1 > 1 and let λ ∈ Xr/2(T ). Then, for 0 ≤ i ≤ s − 2,

we have

H1
(
Br/2, λ

) ∼=



k
(r/2)
ω1 if λ = ω3 + 2(2s − 1)ω4 = τ rω1 − β2

k
(r/2)
ω2 if λ = ω4 + ω2 + 2(2s − 1)ω3 = τ rω2 − β1

k
(r/2)
ω3 if λ = ω4 + ω1 + (2s − 1)ω2 = τ rω3 − β3

k
(r/2)
ω4 if λ = ω4 + (2s − 1)ω1 = τ rω4 − β4

k
(r/2)
ω1 if λ = 2sω3 = τ rω1 − τ2s−1α1

k
(r/2)
ω3 if λ = 2sω3 + 2s−1ω1 = τ rω3 − τ2s−1α3

k
(r/2)
ω4 if λ = 2s−1ω2 = τ rω4 − τ2s−1α4

M
(r/2)
F4

if λ = 2sω4 = τ r(ω2 − ω3)− τ2s−1α2

k
(r/2)
ω1 if λ = (2s+1 − 2i+2)ω4 + 2i+1ω3 = τ rω1 − τ2i+1α1

k
(r/2)
ω2 if λ = 2i+1ω2 + (2s+1 − 2i+2)ω3 + 2i+1ω4 = τ rω2 − τ2i+1α2

k
(r/2)
ω3 if λ = 2iω1 + (2s − 2i+1)ω2 + 2i+1ω3 = τ rω2 − τ2i+1α2

k
(r/2)
ω4 if λ = (2s − 2i+1)ω1 + 2iω2 = τ rω4 − τ2i+1α4

0 else.

Here MF4 denotes the 3-dimensional indecomposable B-module with the following factors:

head kω4 , kω3−ω4 and socle kω2−ω3 (cf. (BNP04, 2.2)). We underline that the last four

non-zero instances only occur when s ≥ 2 (or r ≥ 5).

Proof. The second equality in each case identifying two forms of λ follows immediately,

recalling τ(ω4) = ω1 and τ(ω3) = ω2, β1 = −ω2 + 2ω3 − ω4, β2 = −ω3 + 2ω4, β3 =

−ω1 + ω2 − ω4 and β4 = ω1 − ω4 . For instance, suppose λ = τ rω1 − β2. Then, λ may

be expressed as λ = 2sτω1 − (−ω3 + 2ω4) = ω3 + 2(2s − 1)ω4.We thus show that λ must

be equal to one of the weights given by the first equality in each case. We consider the

Lyndon-Hochschild-Serre spectral sequence

Ei,j
2 = Hi(Br/2/Bτ ,H

j(Bτ , λ)) ⇒ Hi+j(Br/2, λ)
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and the corresponding five-term exact sequence

0 → E1,0
2 → E1

∞ → E0,1
2

d2−→ E2,0
2 → E2

∞.

Much like in the previous subsections, we shall identify E1
∞ with either E0,1

2 or E1,0
2 , in

order to determine all of the non-zero cases. We must first fix some notation. Since

λ ∈ Xr/2(T ), we may uniquely write λ =
∑r−1

i=0 τ
iλi, where λi are τ -restricted. Then,

λ = λ0 + τ(λ′), for λ′ =
∑r−1

j=1 τ
j−1λj . Suppose E0,1

2 ̸= 0 and we have We have

E0,1
2 = HomBr/2/Bτ

(k,H1(Bτ , λ))

∼= HomBr/2/Bτ
(k,H1(Bτ , λ0)⊗ τ(λ′)).

There are two τ -restricted weights for which H1(Bτ , λ0) ̸= 0, namely ω4 and ω3, and we

consider each case in turn.

First, suppose λ0 = ω4 and we have H1(Bτ , ω4) = k
(τ)
ω4 ⊕ k

(τ)
ω2−ω3

⊕ k
(τ)
ω3−ω4

. Hence

E0,1
2 = HomBr/2/Bτ

(k, (k(τ)ω4
⊕ k

(τ)
ω2−ω3

⊕ k
(τ)
ω3−ω4

)⊗ τ(λ′))

∼= HomB(r−1)/2
(k, (k(τ)ω4

⊕ k
(τ)
ω2−ω3

⊕ k
(τ)
ω3−ω4

)⊗ k
(τ)
λ′ )

∼= HomB(r−1)/2
(k, k

(τ)
ω4+λ′ ⊕ k

(τ)
ω2−ω3+λ′ ⊕ k

(τ)
ω3−ω4+λ′).

Notice that HomB(r−1)/2
(k, k

(τ)
ω4+λ′⊕k

(τ)
ω2−ω3+λ′⊕k

(τ)
ω3−ω4+λ′) is either zero or one-dimensional:

at most one of ω4 + λ′, ω2 − ω3 + λ′ or ω3 − ω4 + λ′ ∈ τ r−1X(T ).

First, suppose ω4 + λ′ ∈ τ r−1X(T ). As p = 2, we obtain λ′ = a2sω1 + b2sω2 + c2sω3 +

(d2s − 1)ω4 ∈ Xs(T ). It follows that we must have a = b = c = 0 and d = 1, pushing

λ = λ0 + τ(λ′) = ω4 + (2s − 1)ω1 and

E0,1
2 = HomBr/2/Bτ

(k, kτ(ω4+λ′) ⊕ kτ(ω2−ω3+λ′) ⊕ kτ(ω3−ω4+λ′)).

The first term in the target of the Hom is kω1+(2s−1)ω1
= k2sω1 . Thus E

0,1
2

∼= k2sω1 = k
(r/2)
ω4 .

Now assume ω2 − ω3 + λ′ ∈ τ r−1X(T ) and a similar argument leads us to conclude that

E0,1
2 = k

(r/2)
ω2 for λ = ω2 + 2(2s − 1)ω3 + ω4.

Lastly, suppose ω3 − ω4 + λ′ ∈ τ r−1X(T ), and we obtain E0,1
2 = k

(r/2)
ω3 for λ = ω1 + (2s −

1)ω2 + ω4.

Analogously, the case where λ0 = ω3 leads to E0,1
2

∼= k
(r/2)
ω1 , when λ = ω3 + 2(2s − 1)ω4.
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Overall, we conclude that for λ ∈ Xr/2(T ),

E0,1
2

∼=



k
(r/2)
ω1 if λ = ω3 + 2(2s − 1)ω4

k
(r/2)
ω2 if λ = ω4 + ω2 + 2(2s − 1)ω3

k
(r/2)
ω3 if λ = ω4 + ω1 + (2s − 1)ω2

k
(r/2)
ω4 if λ = ω4 + (2s − 1)ω1

0 else.

Now suppose E1,0
2 ̸= 0. We have

E1,0
2 = H1(Br/2/Bτ ,HomBτ (k, λ)),

= H1(Br/2/Bτ ,HomBτ (k, λ0)⊗ τ(λ′))

so λ0 = 0 and λ = τ(λ′). Thus E1,0
2

∼= H1(Bs, λ
′(τ)) ∼= H1(Bs, λ

′)(τ) for λ = τλ′. Notice

that since r − 1 = 2s > 0, B(r−1)/2 = Bs is a classical Frobenius kernel and H1(Bs, λ
′) is

the Bs-cohomology for λ′ ∈ Xs(T ) computed in (BNP04, Theorem 2.7). We have

H1(Bs, λ
′) ∼=



k
(s)
ωj if λ′ = 2sωj − 2s−1αj , j ∈ {1, 3, 4}

M
(s)
F4

if λ′ = 2s−1ω1

k
(s)
ωα if λ′ = 2sωα − 2iα, α ∈ Π, 0 ≤ i ≤ s− 2

0 else.

with MF4 having the structure as claimed in the statement of the theorem. We note the

implicit constraints on s in the different cases. Thus,

E1,0
2

∼= H1(Bs, λ
′)(τ) ∼=



k
(r/2)
ωj if λ′ = 2sωj − 2s−1αj , j ∈ {1, 3, 4}

M
(r/2)
F4

if λ′ = 2s−1ω1

k
(r/2)
ωα if λ′ = 2sωα − 2iα, α ∈ Π, 0 ≤ i ≤ s− 2

0 else.

Lastly, one may recover λ from λ′, recalling α1 = 2ω1 − ω2, α2 = −ω1 + 2ω2 − 2ω3,

α3 = −ω2 + 2ω3 − ω4 and α4 = −ω3 + 2ω4.

For example, when λ′ = 2sω1 − 2s−1α1, then λ = τλ′ = 2sω4 − 2s−1τ(2ω1 − ω2) = 2sω3.

The other cases follow similarly.
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By the discussion above, notice that there is no λ for which E0,1
2 and E1,0

2 are both non-zero.

Thus, if E0,1
2 = 0, then E1

∞
∼= E1,0

2 . Alternatively, if E0,1
2 ̸= 0, then λ must be one of the

following: either λ = ω3+2(2s−1)ω4, λ = ω4+ω2+2(2s−1)ω3, λ = ω4+ω1+(2s−1)ω2 or

λ = ω4+(2s−1)ω1. Clearly, in all of these cases, λ /∈ τX(T ), thus forcing HomBτ (k, λ) = 0.

Hence E1,0
2 = E2,0

2 = 0, implying that E1
∞

∼= E0,1
2 .

For a general λ ∈ X(T ), not necessarily lying in Xr/2, we proceed as in (BNP04, 2.8).

First, we make the following observation, whose proof is identical to the proof of Corollary

3.2.4:

Corollary 3.4.3. Let λ ∈ X(T ). Then H1(Br/2, λ) ̸= 0 if and only if λ = τ rω − τ iα, for

some weight ω ∈ X(T ), and α ∈ Π with 0 ≤ i ≤ 2s − 1 or λ = τ rω − β, for some weight

ω ∈ X(T ), and β ∈ Πs.

Like in the previous cases, let (ζ, j) denote the appropriate pair, (α, i) or (β, 1), defined

in the previous corollary. Given λ = τ rω − τ jζ, we may write λ = τ rω′ − τ jζ + τ rλ1.

The non-vanishing of H1(Br/2, λ) is solely dependent on the choice of λ0, so ω′ is as given

in Theorem 3.4.2 for some λ1 ∈ X(T ). Then, set λ1 = ω − ω′ and we get H1(Br/2, λ) ∼=
H1(Br/2, τ

rω′ − τ jζ)⊗ k
(r/2)
ω−ω′ .

Substituting the results from Theorem 3.4.2 leads to the the following result

Theorem 3.4.4. Let λ ∈ X(T ). and 0 ≤ i ≤ s− 2. Then

H1
(
Br/2, λ

) ∼=



k
(r/2)
ω if λ = τ rω − β, ω ∈ X(T ), β ∈ Πs

k
(r/2)
ω if λ = τ rω − τ2s−1αj , ω ∈ X(T ),

αj ∈ Π, j ∈ {1, 3, 4}

M
(r/2)
F4

⊗ k
(r/2)
ω+ω3−ω2

if λ = τ rω − τ2s−1α2, ω ∈ X(T )

k
(r/2)
ω if λ = τ rω − τ2i+1αj , ω ∈ X(T ), αj ∈ Π

0 else.

Gr/2-Cohomology of Induced Modules

Using Kempf’s vanishing theorem, Theorem 3.4.1, Theorem 3.4.2 and (3.1.1), we compute

H1(Gr/2,H
0(λ)) for λ ∈ Xr/2. Finally, we note that, by (BNP04, 3.1, Theorem (C)),

IndGB(MF4) = H0(ω4).

In case r = 1, we obtain (Sin94b, Lemma 4.5):
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Theorem 3.4.5. Let λ ∈ Xτ (T ). Then

H1(Gτ ,H
0(λ))(−τ) ∼=


H0(ω4) if λ = ω4

H0(ω1) if λ = ω3

0 else.

Now, let r > 1.

Theorem 3.4.6. Let λ ∈ Xr/2(T ) and 0 ≤ i ≤ s− 2. Then

H1(Gr/2,H
0(λ))(−r/2) ∼=



H0(ω1) if λ = ω3 + 2(2s − 1)ω4 = τ rω1 − β2

H0(ω2) if λ = ω4 + ω2 + 2(2s − 1)ω3 = τ rω2 − β1

H0(ω3) if λ = ω4 + ω1 + (2s − 1)ω2 = τ rω3 − β3

H0(ω4) if λ = ω4 + (2s − 1)ω1 = τ rω4 − β4

H0(ω1) if λ = 2sω3 = τ rω1 − τ2s−1α1

H0(ω3) if λ = 2sω3 + 2s−1ω1 = τ rω3 − τ2s−1α3

H0(ω4) if λ = 2s−1ω2 = τ rω4 − τ2s−1α4

H0(ω4) if λ = 2sω4 = τ r(ω2 − ω3)− τ2s−1α2

H0(ω1) if λ = (2s+1 − 2i+2)ω4 + 2i+1ω3 = τ rω1 − τ2i+1α1

H0(ω2) if λ = 2i+1ω2 + (2s+1 − 2i+2)ω3 + 2i+1ω4

= τ rω2 − τ2i+1α2

H0(ω3) if λ = 2iω1 + (2s − 2i+1)ω2 + 2i+1ω3

= τ rω3 − τ2i+1α3

H0(ω4) if λ = (2s − 2i+1)ω1 + 2iω2 = τ rω4 − τ2i+1α4,

0 else.

One can use Theorem 3.4.4 to determine H1(Gr/2,H
0(λ)) in terms of induced modules for

all dominant weights λ, by applying the induction functor IndGB. The remark below deals

with the only non-obvious case.

Remark 3.4.7. Let τ rω−τ2s−1α2 ∈ X(T )+. Then ⟨ω, α∨
1 ⟩ ≥ 0, ⟨ω, α∨

2 ⟩ ≥ 1, ⟨ω, α∨
3 ⟩ ≥ −1

and ⟨ω, α∨
4 ⟩ ≥ 0.

By (BNP04, Proposition 3.4 (B)(d)), IndGB(MF4 ⊗ kω+ω3−ω2) has a filtration with the
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following factors, from top to bottom: H0(ω + ω3 + ω4 − ω2), H
0(ω + 2ω3 − ω4 − ω2) and

H0(ω). Furthermore, observe that:

(i) H0(ω + ω3 + ω4 − ω2) is always present.

(ii) H0(ω+2ω3−ω4−ω2) appears as a factor if ⟨ω, α∨
4 ⟩ ≥ 1 and does not if ⟨ω, α∨

4 ⟩ = 0.

(iii) H0(ω) is present if ⟨ω, α∨
3 ⟩ ≥ 0 and is not present if ⟨ω, α∨

3 ⟩ = −1.

Gr/2 Extensions Between Simple Modules

In this subsection, we make use of the G1-extensions between simple modules, computed

in (Sin94b, Proposition 4.11), to calculate Ext1Gs
(L(λ), L(µ))(−s), for a positive integer s

and λ, µ ∈ Xs(T ).

Theorem 3.4.8. Let s be a positive integer, with λ =
∑s−1

i=0 p
iλi and µ =

∑s−1
i=0 p

iµi ∈
Xs(T ). Put d := min{i|λi ̸= µi}. Then write λ = λ′ + pdλ′′, for λ′ =

∑d−1
i=0 piλi ∈ Xd and

λ′′ =
∑s−1

i=d p
i−dλi ∈ Xs−d; we take a similar expression for µ. We may express any digit

λi = λi,0 + τλi,1, with λi,j ∈ Xτ . We assume some notation from (Sin94b, Proposition

4.11), for brevity. Let the symbol a ∈ {0, 3, 4, ρ̄} correspond to some τ -restricted weight

(eg. ρ̄ stands for ω3+ω4). Then, the symbols ab denote α+τβ, the appropriate p-restricted

weight, where a and b correspond to α and β, respectively. (For instance, the symbol 0ρ̄

stands for 0 + τ(ω3 + ω4) = ω1 + ω2.). Then, we denote by

A := {(00, 44), (04, 03), (04, 40), (04, 44), (03, 43), (03, 4ρ̄), (0ρ̄, 4ρ̄),

(40, 30), (44, 43), (44, 34), (43, 33), (4ρ̄, 3ρ̄), (34, 33), (ρ̄4, ρ̄3)} and

B := {(0ρ̄, 4ρ̄)},

C := {(00, 04), (40, 44), (30, 34), (ρ̄0, ρ̄4)},

D := {(00, 30), (04, 34), (03, 33), (0ρ̄, 3ρ̄)},

E := {(00, 03), (40, 43), (30, 33), (ρ̄0, ρ̄3)}
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(a) Suppose d = s− 1. Then we have

Ext1Gs
(L(λ), L(µ))(−s) ∼=



k if (λs−1, µs−1) ∈ A

k ⊕ k if (λs−1, µs−1) ∈ B

L(ω4) if (λs−1, µs−1) ∈ C

k ⊕ L(ω4) if (λs−1, µs−1) ∈ D

k ⊕ L(ω1) if (λs−1, µs−1) ∈ E

0 else.

(b) Suppose d ̸= s− 1. Then we have

Ext1Gs
(L(λ), L(µ))(−s) ∼=



k if (λd, µd) ∈ A and λ′′ = µ′′

k ⊕ k if (λd, µd) ∈ B and λ′′ = µ′′

k if (λd, µd) ∈ C

and (λd+1,0, µd+1,0) ∈ {(0, 4), (3, ρ̄), (4, 4), (3, 3)}

k ⊕ k if (λd, µd) ∈ C, λd+1,0 = µd+1,0 = ρ̄

k ⊕ k ⊕ k if (λd, µd) ∈ D,λd+1,0 = µd+1,0 = ρ̄

k ⊕ k if (λd, µd) ∈ D,λd+1,0 = µd+1,0 ∈ {ω4, ω3}

k if (λd, µd) ∈ D,λd+1,0 = µd+1,0 = 0

k if (λd, µd) ∈ D, (λd+1,0, µd+1,0) ∈ {(0, 4), (3, ρ̄)}

k ⊕ k ⊕ k if (λd, µd) ∈ E, λd+1,1 = µd+1,1 = ρ̄

k ⊕ k if (λd, µd) ∈ E, λd+1,1 = µd+1,1 ∈ {ω4, ω3}

k if (λd, µd) ∈ E, λd+1,1 = µd+1,1 ∈ {ω4, ω3}

k if (λd, µd) ∈ E, (λd+1,1, µd+1,1) ∈ {(0, 4), (3, ρ̄)}

k if (λd, µd) ∈ E, λd+1,1 = µd+1,1 = 0

0 else.

Note that it is implicit in the statement of the theorem that s ≥ 1 or s ≥ 2, depending

on the case.

Proof. We apply the Lyndon-Hochschild-Serre spectral sequence corresponding to Gd◁Gs

and we have

Ei,j
2 := ExtiGs−d

(L(λ′′),ExtjGd
(L(λ′), L(µ′))(−d) ⊗ L(µ′′))(d).

By definition, λ′ = µ′, so E0,1
2 = 0, which forces E1

∞
∼= E1,0

2 = Ext1Gs−d
(L(λ′′), L(µ′′))(d).
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(a) First, suppose s−d = 1. Then E1
∞

∼= E1,0
2 = Ext1G1

(L(λs−1), L(µs−1))
(s−1), which was

computed in (Sin94b, Table VI). We obtain

E1,0 ∼=



k if (λs−1, µs−1) ∈ A

k ⊕ k if (λs−1, µs−1) ∈ B

L(ω4)
(s) if (λs−1, µs−1) ∈ C

k ⊕ L(ω4)
(s) if (λs−1, µs−1) ∈ D

k ⊕ L(ω1)
(s) if (λs−1, µs−1) ∈ E

0 else.

(b) Now suppose s−d ̸= 1, so we may apply the Lyndon-Hochschild-Serre spectral sequence

corresponding to G1 ◁ Gs−d to M = Ext1Gs−d
(L(λ′′), L(µ′′)). Write λ′′ = λd + pλ′′′, for

λd ∈ X1 and λ′′′ ∈ Xs−d−1 and we express µ′′ similarly. The E2-page is given by

Ei,j
2 := ExtiGs−d−1

(L(λ′′′),ExtjG1
(L(λd), L(µd))

(−1) ⊗ L(µ′′′))(1).

Since, by definition, λd ̸= µd, it follows that E
i,0
2 = 0 for i > 0, so we obtain

M ∼= E0,1
2

∼= HomGs−d−1
(L(λ′′′),Ext1G1

(L(λd), L(µd))
(−1) ⊗ L(µ′′′))(1).

Put W := Ext1G1
(L(λd), L(µd))

(−1). Then, by (Sin94b, Table VI), depending on the pair

(λd, µd), W ∈ {k, k⊕k, k⊕L(ω1), k⊕L(ω4), L(ω4)}. We consider each value of W in turn.

Case I: W = k, which occurs when (λd, µd) ∈ A

In this case we have

M ∼= HomGs−d−1
(L(λ′′′), L(µ′′′))(1) ∼= k,

if and only if λ′′′ = µ′′′ and vanishes otherwise.

Case II: W = k ⊕ k, which occurs when (λd, µd) ∈ B

Then, it follows that

M ∼=
⊕
2

HomGs−d−1
(L(λ′′′), L(µ′′′))(1) ∼= k ⊕ k,

if and only if λ′′′ = µ′′′ and vanishes otherwise.

Case III: W = L(ω4), which occurs when (λd, µd) ∈ C
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In this case, we obtain

M ∼= HomGs−d−1
(L(λ′′′), L(µ′′′)⊗ L(ω4))

(1)

∼= HomGs−d−3/2
(L(λ′′′

1 ),HomGτ (L(λ
′′′
0 ), L(µ

′′′
0 )⊗ L(ω4))

(−τ) ⊗ L(µ′′′
1 ))

(3/2),

for λ′′′ = λ′′′
0 + τλ′′′

1 , λ
′′′
0 = λd+1,0 ∈ Xτ and λ′′′

1 ∈ Xs−d−3/2 and µ′′′ expressed similarly.

Thus, M ̸= 0 if and we have

M ∼=


k if (λd, µd) ∈ C, (λd+1,0, µd+1,0) ∈ {(0, 4), (3, ρ̄), (4, 4), (3, 3)}

k ⊕ k if (λd, µd) ∈ C, λd+1,0 = µd+1,0 = ρ̄

0 else.

Case IV: W = k ⊕ L(ω4), which occurs when (λd, µd) ∈ D

It follows that
M ∼=HomGs−d−1

(L(λ′′′), L(µ′′′))(1)⊕

HomGs−d−1
(L(λ′′′), L(µ′′′)⊗ L(ω4))

(1).

Using Case III above, a similar calculation yields

M ∼=



k ⊕ k ⊕ k if (λd, µd) ∈ D,λd+1,0 = µd+1,0 = ρ̄

k ⊕ k if (λd, µd) ∈ D,λd+1,0 = µd+1,0 ∈ {ω4, ω3}

k if (λd, µd) ∈ D,λd+1,0 = µd+1,0 = 0

k if (λd, µd) ∈ D, (λd+1,0, µd+1,0) ∈ {(0, 4), (3, ρ̄)}

0 else.

Case V: W = k ⊕ L(ω1), which occurs when (λd, µd) ∈ E

It follows that

M ∼= HomGs−d−1
(L(λ′′′), L(µ′′′))(1) ⊕HomGs−d−1

(L(λ′′′), L(µ′′′)⊗ L(ω1))
(1).

We have

M1 :=HomGs−d−1
(L(λ′′′), L(µ′′′)⊗ L(ω1))

(1)

∼= HomGs−d−3/2
(L(λ′′′

1 ),HomGτ (L(λ
′′′
0 ), L(µ

′′′
0 ))

(−τ) ⊗ L(ω4)⊗ L(µ′′′
1 ))

(3/2).

66



Chapter 3. First Cohomology

This in non-zero if and only if λ′′′
0 = µ′′′

0 , in which case we obtain

M1 = HomGs−d−3/2
(L(λ′′′

1 ), L(µ
′′′
1 )⊗ L(ω4))

(3/2).

Using (Sin94b, Table IV), we obtain

M1
∼=


k ⊕ k if (λd, µd) ∈ E, λd+1,1 = µd+1,1 = ρ̄

k if (λd, µd) ∈ E, (λd+1,1, µd+1,1) ∈ {(0, 4), (3, ρ̄), (4, 4), (3, 3)}

0 else.

Lastly, we recover the answer recalling M = M1 ⊕HomGs−d−3/2
(L(λ′′′

1 ), L(µ
′′′
1 ))

(3/2).

Next, with the aid of the previous theorem concerning the cohomology for classical Frobe-

nius kernels, we compute Ext1Gr/2
(L(λ), L(µ)) for r an odd positive integer and λ, µ ∈ Xr/2.

If r = 1, we refer the reader to (Sin94b, Lemma 4.5(a),4.6,4.9). First, we underline that

in this case, the calculation of Ext1Gr/2
(L(λ), L(µ)) relies on the following remark.

Remark 3.4.9. In the literature, there is a discrepancy between results and we discuss

it for the benefit of the reader.

(a) In (BNP+15, Remark 2.3.2(b)), the authors claim that, by (Sin94b, Lemma 4.6),

H1(Gτ , L(ω3))
(τ−1) ∼= k ⊕ L(2ω4).

(b) However, by (Sin94b, Lemma 4.6), we have H1(Gτ , L(ω3)) ∼= k ⊕ L(2ω4), so that

H1(Gτ , L(ω3))
(τ−1) ∼= k ⊕ L(ω1). This is consistent with its proof; moreover, it is

easily verifiable that it is consistent with the computation of the G1-extensions. (cf.

(Sin94b, Lemma 4.11))

If r > 1, we get:

Theorem 3.4.10. Suppose r = 2s + 1 > 1 and let λ, µ ∈ Xr/2(T ). Write λ = λ0 + τλ′,

for λ0 ∈ Xτ and λ′ =
∑2s−1

i=0 τ iλ1,i ∈ Xs. Let λi+1 := λ1,2i + τλ1,2i+1 ∈ X1, and we

take similar expressions for µ. Put d := min{i ≥ 1|λi ̸= µi}. Recall A,B,C,D,E from

Theorem 3.4.8.
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(a) Suppose λ0 = µ0. Then we have

Ext1Gr/2
(L(λ), L(µ))(−r/2) ∼=



k if (λs, µs) ∈ A

k ⊕ k if (λs, µs) ∈ B

L(ω4) if (λs, µs) ∈ C

k ⊕ L(ω4) if (λs, µs) ∈ D

k ⊕ L(ω1) if (λs, µs) ∈ E

k if (λd+1, µd+1) ∈ A

k ⊕ k if (λd+1, µd+1) ∈ B

k if (λd+1, µd+1) ∈ C

and (λ1,2d+2, µ1,2d+2) ∈ {(0, 4), (3, ρ̄), (4, 4), (3, 3)}

k ⊕ k if (λd+1, µd+1) ∈ C, λ1,2d+2 = µ1,2d+2 = ρ̄

k ⊕ k ⊕ k if (λd+1, µd+1) ∈ D,λ1,2d+2 = µ1,2d+2 = ρ̄

k ⊕ k if (λd+1, µd+1) ∈ D,λ1,2d+2 = µ1,2d+2 ∈ {ω4, ω3}

k if (λd+1, µd+1) ∈ D,λ1,2d+2 = µ1,2d+2 = 0

k if (λd+1, µd+1) ∈ D

and (λ1,2d+2, µ1,2d+2) ∈ {(0, 4), (3, ρ̄)}

k ⊕ k ⊕ k if (λd+1, µd+1) ∈ E, λ1,2d+3 = µ1,2d+3 = ρ̄

k ⊕ k if (λd+1, µd+1) ∈ E, λ1,2d+3 = µ1,2d+3 ∈ {ω4, ω3}

k if (λd+1, µd+1) ∈ E, λ1,2d+3 = µ1,2d+3 ∈ {ω4, ω3}

k if (λd+1, µd+1) ∈ E

and (λ1,2d+3, µ1,2d+3) ∈ {(0, 4), (3, ρ̄)}

k if (λd+1, µd+1) ∈ E, λ1,2d+3 = µ1,2d+3 = 0

0 else.
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(b) Suppose λ0 ̸= µ0. Then we have

Ext1Gr/2
(L(λ), L(µ))(−r/2) ∼=



k if (λ0, µ0) = (0, ω4)

and (λ1,0, µ1,0) ∈ {(0, 4), (3, ρ̄), (4, 4), (3, 3)}

k ⊕ k if (λ0, µ0) = (0, ω4) and λ1,0 = µ1,0 = ρ̄

k ⊕ k ⊕ k if (λ0, µ0) = (0, ω3) and λ1,1 = µ1,1 = ρ̄

k ⊕ k if (λ0, µ0) = (0, ω3)

and λ1,1 = µ1,1 ∈ {ω4, ω3}

k if (λ0, µ0) = (0, ω3)

and (λ1,1, µ1,1) ∈ {(0, 4), (3, ρ̄)}

k if (λ0, µ0) = (0, ω3)

and λ1,1 = µ1,1 = 0

k if (λ0, µ0) = (ω4, ω3)

0 else.

Proof. We consider the Lyndon-Hochschild-Serre spectral sequence corresponding to Gτ ◁

Gr/2. The E2-page is given by

Ei,j
2 := ExtiGs

(L(λ′),ExtjGτ
(L(λ0), L(µ0))

(−τ) ⊗ L(µ′))(τ).

First, suppose λ0 = µ0. Then E0,1
2 = 0, so E1

∞
∼= E1,0

2 and we have

E1,0
2 := Ext1Gs

(L(λ′), L(µ′))(τ),

which was computed in Theorem 3.4.8.

Now suppose λ0 ̸= µ0. Then Ei,0
2 = 0 for i > 0, so E1

∞
∼= E0,1

2 and we obtain

E0,1
2 := HomGs(L(λ

′),Ext1Gτ
(L(λ0), L(µ0))

(−τ) ⊗ L(µ′))(τ).

By (Sin94b, 4.5(a), 4.6, 4.9), this vanishes unless (λ0, µ0) ∈ {(0, ω4), (0, ω3), (ω4, ω3)}. We

consider each case in turn.

Case I: (λ0, µ0) = (0, ω4)

In this case we obtain

E1
∞

∼= HomGs(L(λ
′), L(µ′)⊗ L(ω4))

(τ)

∼= HomGs−1/2
(L(λ′′),HomGτ (L(λ1,0), L(µ1,0)⊗ L(ω4))

(−τ) ⊗ L(µ′′))(1),

69



Chapter 3. First Cohomology

where τλ′′ = λ− (λ0 + τλ1,0) and µ′′ is expressed similarly. Then, by (Sin94b, Table IV),

we obtain for λ′′ = µ′′

E1
∞

∼=


k if (λ1,0, µ1,0) ∈ {(0, 4), (3, ρ̃), (4, 4), (3, 3)}

k ⊕ k if λ1,0 = µ1,0 = ρ̃

0 else.

Case II: (λ0, µ0) = (0, ω3) It follows that

E0,1
2

∼= HomGs(L(λ
′), L(µ′))(τ) ⊕HomGs(L(λ

′), L(µ′)⊗ L(ω1))
(τ).

We turn our attention to M := HomGs(L(λ
′), L(µ′)⊗ L(ω1))

(τ) and we have

M ∼= HomGs−1/2
(L(λ′′),HomGτ (L(λ1,0), L(µ1,0))

(−τ) ⊗ L(ω4)⊗ L(µ))(τ),

where τλ′′ = λ − (λ0 + τλ1,0) and µ′′ is expressed similarly. This is non-zero if and only

if λ1,0 = µ1,0, in which case

M ∼= HomGs−1/2
(L(λ′′), L(µ′′)⊗ L(ω4))

(1)

∼= HomGs−1(L(λ
′′′),HomGτ (L(λ1,1), L(µ1,1)⊗ L(ω4))

(−τ) ⊗ L(µ′′′))(3/2),

where τλ′′′ = λ − (λ0 + τλ1,0 + 2λ1,1) and µ′′′ is expressed similarly. Then, by (Sin94b,

Table IV), we obtain for λ′′′ = µ′′′

M ∼=


k if (λ1,1, µ1,1) ∈ {(0, 4), (3, ρ̃), (4, 4), (3, 3)}

k ⊕ k if λ1,1 = µ1,1 = ρ̃

0 else.

Then, recalling E0,1
2 = M ⊕HomGs(L(λ

′), L(µ′))(τ), we obtain

E0,1
2

∼=



k ⊕ k ⊕ k if λ1,1 = µ1,1 = ρ̃

k ⊕ k if λ1,1 = µ1,1 ∈ {ω3, ω4}

k if (λ1,1, µ1,1) ∈ {(0, 4), (3, ρ̃)}

k if λ1,1 = µ1,1 = 0

0 else.

Case III: (λ0, µ0) = (ω4, ω3)
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It follows that E0,1
2

∼= HomGs(L(λ
′), L(µ′))(τ) ∼= k if and only if λ′ = µ′ and vanishes

otherwise.

Corollary 3.4.11. Suppose r = 2s + 1 > 1 and let λ ∈ Xr/2(T ), 0 ≤ i ≤ s − 1 and

0 ≤ j ≤ s− 2. Then

H1(Gr/2, L(λ))
(−r/2) ∼=



L(ω4) if λ = 2sω4

k ⊕ L(ω1) if λ = 2sω3

k ⊕ L(ω4) if λ = 2s−1ω2

k if λ = 2i(ω1 + 2ω4)

k if λ = 2iω2

k if λ = 2i(ω1 + ω4)

k if λ = 2i(ω2 + ω3)

k if λ = 2i(ω2 + ω3 + 2ω4)

k if λ = 2j(ω2 + 2ω1)

0 else.
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Bounding Cohomology for the Ree

Groups of Type F4

In this section we turn our attention to the extensions between simple modules for the

Ree groups of type F4, for which we aim to prove results using the (BNP06) approach.

To begin with, we briefly discuss the motivation behind the (BNP06) framework. Their

method relies on the use of a certain truncated category of G-modules. In such a category,

the weights of the G-modules have a suitable upper bound, and it is a highest weight

category (see (CPS88, Definition 3.1) for a definition). We refer the reader to (BNP01,

4.2 and 4.5), or (Don86, S. 1), for a more general treatment of truncated categories.

In Subsection 4.1, we provide precise definitions and results on which we base our con-

struction.

4.1 Filtering IndGG(σ) k

We begin by fixing some notation and introducing some terminology. For the trivial

module k, set G(k) := IndGG(σ) k; it is an infinite-dimensional module since the coset space

G/G(σ) is affine. Then for any finite set of dominant weights π ⊆ X(T )+, we define Gπ(k)

to be the maximal G-submodule of G(k) having composition factors with weights in π.

Now, observe the following result from (BNP+15) concerning the structure of G(k).

Theorem 4.1.1. ((BNP+15, Prop 3.1.2)) The G-module G(k) has a filtration with factors

of the form H0(ν)⊗H0(ν∗)(σ), one for each ν ∈ X(T )+ and occurring in an order compatible
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with the dominance order on X+.

Since G/G(σ) is affine, the induction functor is exact (cf. (Jan03, I.5.13)). Then, by

generalised Frobenius reciprocity (cf. (Jan03, I.4.6)), there exists an isomorphism for each

n ≥ 0 and any two G-modules V , W :

ExtnG(σ)(V,W ) ∼= ExtnG(V,W ⊗ G(k)). (4.1.1)

In view of Theorem 4.1.1, in order to apply (4.1.1) and study Ext1G(σ)(L(λ), L(µ)) for

λ, µ ∈ Xσ, we must investigate the Ext-groups

Ext1G(L(λ), L(µ)⊗H0(ν)⊗H0(ν∗)(r/2)) ∼= Ext1G(L(λ)⊗ V (ν)(r/2), L(µ)⊗H0(ν)),

for all ν ̸= 0, ν ∈ X+. First, we provide a way to identify homomorphisms over Gr/2 with

homomorphisms over G, under a certain condition. This holds for the Suzuki groups and

the Ree groups.

Lemma 4.1.2. Let r ∈ N and set s = ⌊r/2⌋. Let λ, µ ∈ Xr/2 and ν ∈ X+. We have:

(a) If ⟨ν, α∨
0 ⟩ < ps, then the G-module HomGr/2

(L(λ), L(µ) ⊗ H0(ν)) has trivial G-

structure, meaning that it is isomorphic to HomG(L(λ), L(µ)⊗H0(ν)).

(b) If τ rθ is a weight of HomGr/2
(L(λ), L(µ)⊗H0(ν)), then ⟨τ rθ, α∨

0 ⟩ ≤ ⟨ν, α∨
0 ⟩.

Proof. (a) This is (BNP06, Proposition 3.1) when r is even. When r is odd, we use the

same argument. Without loss of generality, we may assume ⟨µ, α∨
0 ⟩ ≤ ⟨λ, α∨

0 ⟩. Since all

G-composition factors of HomGr/2
(L(λ), L(µ) ⊗ H0(ν)) are Gr/2-trivial, they must be of

the form L(θ)(r/2), for some θ ∈ X(T ). Let L(θ)(r/2) be such a factor and then a weight

of L(µ)⊗H0(ν) will be λ+ τ rθ; we obtain

〈
λ+ τ rθ, α∨

0

〉
≤

〈
µ+ ν, α∨

0

〉
≤

〈
λ+ ν, α∨

0

〉
(with the last inequality following from the assumption). Thus

ps
〈
θ, α∨

0

〉
≤ ps

〈
τθ, α∨

0

〉
≤

〈
ν, α∨

0

〉
< ps,

(with the last inequality following from the hypothesis), pushing θ = 0, and thus proving

the claim.

Part (b) follows immediately from the proof of part (a).
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From this point onwards, unless stated otherwise, we let G be of type F4 and p = 2. Next

we prove a result in the flavour of (BNP06, Lemma 5.2).

Lemma 4.1.3. Let λ, µ ∈ Xr/2(T ) and ν ∈ X(T )+. Assume further that 2s > 4. If

Ext1G(L(λ)⊗V (ν)(r/2), L(µ)⊗H0(ν)) ̸= 0, then ⟨ν, α∨
0 ⟩ < 17 = h+5. Furthermore, except

for possibly one dominant weight, namely ν = 8ω4, the non-vanishing implies ⟨ν, α∨
0 ⟩ < 16.

Proof. Consider the Lyndon-Hochschild-Serre spectral sequence

Ei,j
2 = ExtiG/Gr/2

(V (ν)(r/2),ExtjGr/2
(L(λ), L(µ)⊗H0(ν)))

⇒ Exti+j
G (L(λ)⊗ V (ν)(r/2), L(µ)⊗H0(ν)).

Consider the Ei,0
2 -term:

Ei,0
2 = ExtiG/Gr/2

(V (ν)(r/2),HomGr/2
(L(λ), L(µ)⊗H0(ν)).

It follows from Lemma 4.1.2 (b) that any weight θ of HomGr/2
(L(λ), L(µ)⊗ H0(ν))(−r/2)

satisfies ⟨θ, α∨
0 ⟩ ≤ 1

ps ⟨ν, α
∨
0 ⟩ < ⟨ν, α∨

0 ⟩. Since V (ν) is projective in the category of modules

with weights β so that ⟨β, α∨
0 ⟩ < ⟨ν, α∨

0 ⟩, we may conclude that the Ei,0
2 terms vanish.

Therefore

E1
∞

∼= E0,1
2

∼= HomG/Gr/2
(V (ν)(r/2),Ext1Gr/2

(L(λ), L(µ)⊗H0(ν))).

Let τ rγ be a weight of a composition factor of Ext1Gr/2
(L(λ), L(µ) ⊗ H0(ν)). We claim

that 〈
τ rγ, α∨

0

〉
≤

〈
λ+ µ+ ν, α∨

0

〉
+ 2s. (4.1.2)

In order to show this, first consider H1(Gr/2, L(λ)⊗L(µ)⊗H0(ν)). Let L(σ0)⊗L(σ1)
(r/2)

be a composition factor of L(λ)⊗L(µ)⊗H0(ν), for some σ0 ∈ Xr/2 and σ1 ∈ X+. Hence,

in order to bound the weights of H1(Gr/2, L(λ) ⊗ L(µ) ⊗ H0(ν)), we must evaluate the

weights of H1(Gr/2, L(σ0))⊗ L(σ1)
(r/2).

Observe that H1(Gr/2, L(σ0))
(−r/2) for σ0 ∈ Xr/2 was computed in Theorem 3.4.11. Let

τ rθ denote a weight of H1(Gr/2, L(σ0)). We claim that it must satisfy

〈
τ rθ, α∨

0

〉
≤

〈
σ0, α

∨
0

〉
+ 2s. (4.1.3)

We consider each non-zero instance in the theorem in turn. We present the explicit

computation of the case σ0 = 2sω3, for which H1(Gr/2, L(σ0))
(−r/2) ∼= k ⊕ L(ω1). Since
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0 ≤ ω1, we may assume θ = ω1. We obtain

〈
τ rω1, α

∨
0

〉
= 2s · 4 ≤ 2s · 3 + 2s.

Similar calculations for all of the other choices of (σ0, θ) lead us to conclude that the

inequality (4.1.3) holds and this proves the claim.

Thus, if τ rγ is a weight of H1(Gr/2, L(λ)⊗L(µ)⊗H0(ν)), we have ⟨τ rγ, α∨
0 ⟩ ≤ ⟨τ rθ, α∨

0 ⟩+
⟨τ rσ1, α∨

0 ⟩, for L(σ0) ⊗ L(σ1)
(r/2) a composition factor of L(λ) ⊗ L(µ) ⊗ H0(ν) and θ a

weight of H1(Gr/2, L(σ0))
(−r/2). Using (4.1.3), we obtain

〈
τ rγ, α∨

0

〉
≤

〈
τ rθ, α∨

0

〉
+
〈
τ rσ1, α

∨
0

〉
≤

〈
σ0, α

∨
0

〉
+ 2s +

〈
τ rσ1, α

∨
0

〉
≤

〈
λ+ µ+ ν, α∨

0

〉
+ 2s.

This verifies (4.1.2).

Consider the short exact sequence

0 → L(µ) → Str/2 ⊗ L
(
(2s − 1)(ω1 + ω2) + (2s+1 − 1)(ω3 + ω4) + w0µ

)
→ R → 0.

Using the long exact sequence of cohomology, along with the fact that Str/2 is injective as

a Gr/2-module, one obtains a surjection

HomGr/2
(L(λ), R⊗H0(ν)) ↠ Ext1Gr/2

(L(λ), L(µ)⊗H0(ν)).

Hence, any weight τ rγ of Ext1Gr/2
(L(λ), L(µ)⊗H0(ν)) also satisfies

〈
τ rγ, α∨

0

〉
≤ 2(2s − 1)

〈
τ(ω3 + ω4), α

∨
0

〉
+ 2(2s+1 − 1)

〈
ω3 + ω4, α

∨
0

〉
−
〈
λ, α∨

0

〉
−
〈
µ, α∨

0

〉
+
〈
ν, α∨

0

〉
.

(4.1.4)

Adding (4.1.2) and (4.1.4) and dividing by two yields〈
τ rγ, α∨

0

〉
≤ (2s − 1)

〈
τ(ω3 + ω4), α

∨
0

〉
+ (2s+1 − 1)

〈
ω3 + ω4, α

∨
0

〉
+
〈
ν, α∨

0

〉
+ 2s−1.〈

τ rγ, α∨
0

〉
≤ (2s − 1) · 6 + (2s+1 − 1) · 5 + 2s−1 +

〈
ν, α∨

0

〉
.

(4.1.5)

Since we assume E0,1
2 ̸= 0, we may assume τ rν is a weight of Ext1Gr/2

(L(λ), L(µ)⊗H0(ν)).

Therefore, put γ = ν to get

〈
τ rν, α∨

0

〉
≤ (2s − 1) · 6 + (2s+1 − 1) · 5 + 2s−1 +

〈
ν, α∨

0

〉
. (4.1.6)
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Then, we have

⟨τ rν, α∨
0 ⟩ − ⟨ν, α∨

0 ⟩ ≤ (2s − 1) · 6 + (2s+1 − 1) · 5 + 2s−1. (4.1.7)

Therefore, to finish the proof, we must investigate the link between ⟨ν, α∨
0 ⟩ and ⟨τ rν, α∨

0 ⟩ .

Since ν ∈ X(T )+, we may write ν = aω1+ bω2+ cω3+dω4, for some non-negative integers

a, b, c, d. Then, τν = 2aω4 + 2bω3 + cω2 + dω1.

Furthermore, recalling ⟨ω4, α
∨
0 ⟩ = 2, ⟨ω3, α

∨
0 ⟩ = 3, ⟨ω2, α

∨
0 ⟩ = 4, ⟨ω1, α

∨
0 ⟩ = 2, we have

⟨τν, α∨
0 ⟩ = ⟨ν, α∨

0 ⟩+ 2a+ 2b+ c. Since ⟨τν, α∨
0 ⟩ ≥ ⟨ν, α∨

0 ⟩, inequality (4.1.7) yields

⟨τ rν, α∨
0 ⟩ − ⟨τν, α∨

0 ⟩ ≤ ⟨τ rν, α∨
0 ⟩ − ⟨ν, α∨

0 ⟩ ≤ (2s − 1) · 6 + (2s+1 − 1) · 5 + 2s−1,

giving

⟨τν, α∨
0 ⟩ ≤ 6 +

2s+1 − 1

2s − 1
· 5 + 2s−1

2s − 1
. (4.1.8)

Notice that, if s ≥ 3, ⟨τν, α∨
0 ⟩ < 18 and if s ≥ 4, ⟨τν, α∨

0 ⟩ < 17. Recall that ⟨τν, α∨
0 ⟩ =

⟨ν, α∨
0 ⟩+ 2a+ 2b+ c, with a, b, c ≥ 0. First, they are equal only when a = b = c = 0 and

thus we get ⟨ν, α∨
0 ⟩ = 2d < 18. Since d is a non-negative integer, we must have d ≤ 8, in

which case ⟨ν, α∨
0 ⟩ ≤ 16 (with equality only for d = 8 and ν = 8ω4).

It remains to investigate the case ⟨τν, α∨
0 ⟩ ̸= ⟨ν, α∨

0 ⟩, for which 2a + 2b + c > 0. It is

readily verifiable that 2a + 2b + c ≥ 2 implies ⟨ν, α∨
0 ⟩ < 16. Otherwise, 2a + 2b + c = 1

and it immediately follows that c = 1 and a = b = 0. Therefore ν = ω3 + dω4, with

⟨ν, α∨
0 ⟩ = 3 + 2d < 17. This inequality forces d ≤ 6, in which case, ⟨ν, α∨

0 ⟩ ≤ 15 < 16, as

claimed.

Remark 4.1.4. (a) Suppose (Φ, p) = (F4, 2) and σ = τ r, for r = 2s+1. Then, Lemma

4.1.3 shows that for λ, µ ∈ Xσ and

Ext1G(L(λ)⊗ V (ν)(r/2), L(µ)⊗H0(ν)) ̸= 0,

then ⟨ν, α∨
0 ⟩ ≤ h+ 4.

(b) Let σ : G → G denote the appropriate strict endomorphism so that G(σ) is a

finite group of Lie type and Gσ the associated scheme-theoretic kernel. Then by

(BNP06, Lemma 5.2), (BNP+15, Theorem 2.3.1) and a similar argument for Suzuki-

Ree groups, for all (G, p, σ) aside from the case where G = F4, p = 2 and σ is an

exceptional isogeny, Ext1G(L(λ)⊗V (ν)(σ), L(µ)⊗H0(ν)) ̸= 0 implies that ν is (h−1)-

small. This implies that the situation in case (a) differs significantly from all of the

situations discussed in (b).
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By Lemma 4.1.3, we know that Ext1G(L(λ)⊗V (ν)(r/2), L(µ)⊗H0(ν)) ̸= 0 implies ⟨ν, α∨
0 ⟩ <

17. Thus, let us define Γ ⊆ X+ to be the following set of dominant weights:

Γ = {ν ∈ X(T )+ | ⟨ν, α∨
0 ⟩ < 17},

and let GΓ(k) be the finite-dimensional truncated submodule of G(k) with composition

factors with highest weights in Γ.

We obtain for λ, µ ∈ Xσ,

Ext1G(σ)(L(λ), L(µ))
∼= Ext1G(L(λ), L(µ)⊗ GΓ(k)). (4.1.9)

4.2 Finite Group Extensions

Next, we make use of (4.1.9) and Theorem 4.1.1 to deduce some information concerning

Ext1G(σ)(L(λ), L(µ)), under some conditions on the size of the finite group, 2F 4(2
2s+1) –

the conditions will therefore be imposed on the value of s and hence r = 2s+ 1.

First, by (BNP06, (5.3.1)), we have for W a G-module with a filtration 0 = W0 ⊂ W1 ⊂
W2 ⊂ . . . ⊂ Wl = W , for all G-modules V ,

dimExt1G(V,W ) ≤
l∑

n=1

dimExt1G(V,Wn/Wn−1). (4.2.1)

We begin with an auxiliary result.

Lemma 4.2.1. Let t = 2k + 1 be a positive integer, λ, µ ∈ Xt/2. Then

(a) Ext1Gt/2
(L(λ), L(µ)⊗ L(ω4))

(−t/2) has weights that are 6-small.

(b) Ext1Gt/2
(L(λ), L(µ)⊗ L(ω1))

(−t/2) has weights that are 12-small.

In particular, L(8ω4) cannot be a composition factor of Ext1Gt/2
(L(λ), L(µ)⊗ L(γ))(−t/2),

for γ ∈ {ω1, ω4}.

Proof. (a) First, consider the case γ = ω4. We apply the Lyndon-Hochschild-Serre spectral

sequence corresponding to Gτ ◁Gt/2 and obtain

Ei,j
2 := ExtiGk

(L(λ1),Ext
j
Gτ

(L(λ0), L(µ0)⊗ L(ω4))
(−τ) ⊗ L(µ1))

(τ),
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with the associated five-term exact sequence.

Then, for each pair (λ0, µ0), we consider the E0,1
2 and E1,0

2 terms. We have

E1,0
2 = Ext1Gk

(L(λ1),HomGτ (L(λ0), L(µ0)⊗ L(ω4))
(−τ) ⊗ L(µ1))

(τ)

E0,1
2 = HomGk

(L(λ1),Ext
1
Gτ

(L(λ0), L(µ0)⊗ L(ω4))
(−τ) ⊗ L(µ1))

(τ).

In particular, we need to consider the weights of HomGτ (L(λ0), L(µ0)⊗L(ω4))
(−τ) (found

in the E1,0
2 term) and Ext1Gτ

(L(λ0), L(µ0)⊗L(ω4))
(−τ) (found in the E0,1 term) and note

the cases where there is a potential overlap.

First, notice that the Gτ -multiplicities [L(µ0)⊗L(ω4) : L(λ0)]Gτ (from (Sin94a, Table 2))

are smaller than the dimension of the smallest nontrivial G-module, so

HomGτ (L(λ0), L(µ0)⊗ L(ω4))
(−τ) ∼= HomGτ (L(λ0), L(µ0)⊗ L(ω4)).

This was computed in the proof of (Sin94b, Lemma 4.7) and (Sin94b, Table IV) and we

reproduce it for the reader’s convenience.

HomGτ (L(λ0), L(µ0)⊗ L(ω4))
(−τ) 0 ω4 ω3 ω3 + ω4

0 0 k 0 0

ω4 k k 0 0

ω3 0 0 k k

ω3 + ω4 0 0 k k ⊕ k

Table 4.1: (cf. (Sin94b, Table IV))

Then, notice that any weight of Ext1Gτ
(L(λ0), L(µ0)⊗L(ω4))

(−τ), for λ0, µ0 ∈ Xτ must be

no higher than any weight of H1(Gτ , L(θ))
(−τ), for L(θ) a composition factor of L(λ0) ⊗

L(µ0)⊗ L(ω4).

Note that when at least one of the weights λ0, µ0 is zero, the answer is given by (Sin94b,

Lemma 4.5 (a)). When one of the weights λ0, µ0 is ω3 + ω4, then Ext1Gτ
(L(λ0), L(µ0) ⊗

L(ω4))
(−τ) = 0, as L(ω3 + ω4) is an injective module for Gτ . Thus, suppose λ0, µ0 /∈

{0, ω3 + ω4}.

First, let λ0 = µ0 = ω4. By inspection of (Sin94a, Table 2), L(ω4) ⊗ L(ω4) ⊗ L(ω4) has

composition factors L(θ), with θ ∈ {0, ω4, ω1, ω3, 2ω4, ω1+ω4, ω2, ω3+ω4}. Now, we need
to consider each choice of θ in turn and bound the possible weights of H1(Gτ , L(θ))

(−τ).

For θ ∈ Xτ , H
1(Gτ , L(θ))

(−τ) was computed in (Sin94b, Lemma 4.5) and its weights are 2-
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small. Then, for θ ∈ {ω1, 2ω4, ω2}, since θ ∈ τX(T ), it follows that H1(Gτ , L(θ))
(−τ) = 0.

Lastly, when θ = ω1 + ω4, we obtain H1(Gτ , L(θ))
(−τ) ∼= H1(Gτ , L(ω4))

(−τ) ⊗ L(ω4) ∼=
L(ω4)⊗L(ω4), which has weights that are 4-small. We conclude that Ext1Gτ

(L(ω4), L(ω4)⊗
L(ω4))

(−τ) must have weights that are 4-small.

Then, suppose (λ0, µ0) ∈ (ω3, ω4). Again, by inspection of (Sin94a, Table 2), L(ω3) ⊗
L(ω4) ⊗ L(ω4) has composition factors L(θ), with θ ∈ {0, ω4, ω1, ω3, 2ω4, ω1 + ω4, ω2,

ω3 + ω4, 3ω4, 2ω1, ω1 + ω3, ω1 + 2ω4, ω2 + ω4, 2ω3, ω3 + 2ω4}. Now, we need to consider

each choice of θ in turn and bound the possible weights of H1(Gτ , L(θ))
(−τ).

Suppose θ = ω2 + ω4 and we obtain H1(Gτ , L(θ))
(−τ) ∼= H1(Gτ , L(ω4))

(−τ) ⊗ L(ω3) ∼=
L(ω4)⊗L(ω3), which has weights that are 5-small. All of the other cases follow analogously

and yield weights that are at most 4-small. Then Ext1Gτ
(L(ω3), L(ω4) ⊗ L(ω4))

(−τ) must

have weights that are 5-small.

Lastly, let λ0 = µ0 = ω3. Again, by inspection of (Sin94a, Table 2), L(ω3)⊗L(ω4)⊗L(ω4)

has composition factors L(θ), with θ ∈ {0, ω4, ω1, ω3, 2ω4, ω1 + ω4, ω2, ω3 + ω4, 3ω4,

2ω1, ω1 + ω3, ω1 + 2ω4, ω2 + ω4, 2ω3, ω3 + 2ω4, ω1 + ω2, ω1 + ω3 + ω4, 2ω1 + ω4, ω2 + ω3,

4ω4, 2ω3 + ω4, ω1 + 3ω4}. A similar calculation shows that H1(Gτ , L(θ))
(−τ) has weights

that are 6-small. Therefore, Ext1Gτ
(L(ω3), L(ω3)⊗ L(ω4))

(−τ) must have weights that are

6-small.

We record the potential weights found above in the following table, noting that {4, 5, 6}
denote the fact that the weights of Ext1Gτ

(L(λ0), L(µ0) ⊗ L(ω4))
(−τ) are 4-small, 5-small

or 6-small, respectively. Now, we need to compute the E0,1
2 and Ei,0

2 -terms in the spectral

Ext1Gτ
(L(λ0), L(µ0)⊗ L(ω4))

(−τ) k L(ω4) L(ω3) L(ω3 + ω4)

k L(ω4) 0 k 0

L(ω4) 0 4 5 0

L(ω3) k 5 6 0

L(ω3 + ω4) 0 0 0 0

Table 4.2

sequence. First, we turn our attention to the cases where HomGτ (L(λ0), L(µ0)⊗L(ω4))
(−τ)

(found in the Ei,0
2 term) and Ext1Gτ

(L(λ0), L(µ0) ⊗ L(ω4))
(−τ) (found in the E0,1

2 term)

are not both non-zero.

Suppose λ0 = µ0 = 0. We obtain

Ei,0
2 = ExtiGk

(L(λ1),HomGτ (k, L(ω4))
(−τ) ⊗ L(µ1))

(τ) = 0,
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and then
E1

∞
∼= E0,1

2 = HomGk
(L(λ1),Ext

1
Gτ

(k, L(ω4))
(−τ) ⊗ L(µ1))

(τ)

∼= HomGk
(L(λ1), L(ω4)⊗ L(µ1))

(τ).

Note that any weight 2kγ of HomGk
(L(λ1), L(ω4)⊗ L(µ1)) must satisfy ⟨λ1 + 2kγ, α∨

0 ⟩ ≤
⟨µ1 + ω4, α

∨
0 ⟩. Without loss of generality, we may assume ⟨λ1, α

∨
0 ⟩ ≤ ⟨µ1, α

∨
0 ⟩ and we get

⟨γ, α∨
0 ⟩ ≤ 21−k. Thus, since k ≥ 1, we necessarily have ⟨γ, α∨

0 ⟩ = 0. Then E1
∞

∼= E0,1
2 ,

which has trivial G-structure.

Similarly, in the case (λ0, µ0) = (0, ω3), we have E1
∞

∼= E0,1
2 = HomGk

(L(λ1), L(µ1)) = k

if λ1 = µ1 and vanishes otherwise.

An analogous calculation for (λ0, µ0) = (ω3, ω4) yields E
1
∞

∼= E0,1
2 = HomGk

(L(λ1), L(µ1)⊗
L(θ))(τ)k, where ⟨θ, α∨

0 ⟩ ≤ 5. Then, any weight γ of HomGk
(L(λ1), L(θ)⊗L(µ1))

(−k) must

satisfy ⟨γ, α∨
0 ⟩ ≤ 5

2k
≤ 2.

It remains to consider the cases λ0 = µ0 = ω4 and λ0 = µ0 = ω3. Suppose λ0 = µ0 =

λ4. By Table 4.1, we have HomGτ (L(ω4), L(ω4) ⊗ L(ω4))
(−τ) = k and, by Table 4.2,

Ext1Gτ
(L(ω4), L(ω4) ⊗ L(ω4))

(−τ) has weights that are 4-small. Thus, we have Ei,0
2 =

ExtiGk
(L(λ1), L(µ1))

(τ) and E0,1 = HomGk
(L(λ1), L(µ1)⊗ L(θ))(τ), with ⟨θ, α∨

0 ⟩ ≤ 4.

Note that any weight of E1
∞ is no higher than any weight of E1,0

2 and E0,1
2 . By Theorem

3.4.8, any weight of Ext1Gk
(L(λ1), L(µ1))

(−k) is 2-small. A similar argument as the ones

above shows that HomGk
(L(λ1), L(µ1)⊗ L(θ)) has weights that are 2-small.

Finally, a similar calculation in the case λ0 = µ0 = ω3 shows that the weights of

Ext1Gt/2
(L(λ), L(µ)⊗ L(ω4))

(−t/2) must be 3-small.

(b) Now consider Ext1Gt/2
(L(λ), L(µ)⊗ L(ω1))

(−t/2). We run the Lydon-Hochschild-Serre

spectral sequence corresponding to Gτ ◁Gr/2. The E2-page is given by

Ei,j
2 := ExtiGk

(L(λ1),Ext
j
Gτ

(L(λ0), L(µ0))
(−τ) ⊗ L(ω4)⊗ L(µ1))

(τ),

First, supposing λ0 = µ0, we obtain

E0,1
2 = HomGk

(L(λ1),Ext
1
Gτ

(L(λ0), L(λ0))
(−τ) ⊗ L(ω4)⊗ L(µ1))

(τ) = 0,

since Ext1Gτ
(L(λ0), L(λ0))

(−τ) = 0. Then,

E1
∞

∼= E1,0
2 = Ext1Gk

(L(λ1), L(ω4)⊗ L(µ1))
(τ).

Since L(ω4) ∼= H0(ω4), for our purposes, it suffices to invoke (BNP06, (5.2.4)) to conclude
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that E1,0
2 has weights that are 12-small.

Then, suppose λ0 ̸= µ0. It immediately follows that Ei,0
2 = 0 for i > 0. Thus,

E1
∞

∼= E0,1
2 = HomGk

(L(λ1),Ext
1
Gτ

(L(λ0), L(µ0))
(−τ) ⊗ L(ω4)⊗ L(µ1))

(τ).

Note that E0,1 ̸= 0 if and only if Ext1Gτ
(L(λ0), L(µ0))

(−τ) ̸= 0. Thus, it remains to consider

the cases (λ0, µ0) ∈ {(0, ω4), (0, ω3), (ω4, ω3)}.

Let (λ0, µ0) = (0, ω4). Then E1
∞

∼= E0,1
2 = HomGk

(L(λ1)⊗L(ω4), L(ω4)⊗L(µ1))
(τ), which

has trivial G-structure.

When (λ0, µ0) = (0, ω3), we obtain

E1
∞

∼= E0,1
2 = HomGk

(L(λ1), L(µ1))
(τ) ⊕HomGk

(L(λ1), L(µ1)⊗ L(ω1))
(τ),

which has trivial G-structure.

Lastly, (λ0, µ0) = (ω4, ω3) gives E
1
∞

∼= E0,1
2 = HomGk

(L(λ1), L(µ1))
(τ) = k if λ1 = µ1 and

zero otherwise. Thus, our claim follows.

Proposition 4.2.2. Let s ≥ 6, such that r ≥ 13. Let λ, µ ∈ Xr/2 and Γ′ = Γ \ {0}. Then,
the following hold:

(a) We have

dimExt1G(σ)(L(λ), L(µ)) ≤ dimExt1G(L(λ), L(µ)) + dimR,

where
R ∼=

⊕
ν∈Γ′

Ext1G(L(λ)⊗ V (ν)(r/2), L(µ)⊗H0(ν))

∼=
⊕
ν∈Γ′

HomG/Gr/2
(V (ν)(r/2),Ext1Gr/2

(L(λ), L(µ)⊗H0(ν))).

(b) Let 7
2 ≤ t

2 ≤ 2s−7
2 . Set λ = λ0 + τ tλ1 and µ = µ0 + τ tµ1 with λ0, µ0 ∈ Xt/2 and

λ1, µ1 ∈ X r−t
2
. Then we may re-identify R as

R ∼=
⊕
ν∈Γ′

Ext1G(L (λ1)⊗ V (ν)(
r−t
2

), L (µ1))⊗HomG(L(λ0), L(µ0)⊗H0(ν))

∼=
⊕
ν∈Γ′

HomG(V (ν)(
r−t
2

),Ext1G r−t
2

(L(λ1), L(µ1)))⊗HomG(L(λ0), L(µ0)⊗H0(ν)).

Proof. (a) Note that by the previous discussion and Theorem 4.1.1, GΓ(k) has a filtration

with factors of the form H0(ν)⊗H0(ν∗)(r/2), exactly one for each ν ∈ Γ.
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Now, by (4.1.9) and (4.2.1), we obtain

dimExt1G(σ)(L(λ), L(µ)) = dimExt1G(L(λ), L(µ)⊗ GΓ(k))

≤
∑
ν∈Γ

dimExt1G(L(λ)⊗ V (ν)(r/2), L(µ)⊗H0(ν))

= dimExt1G(L(λ), L(µ))+∑
ν∈Γ′

dimExt1G(L(λ)⊗ V (ν)(r/2), L(µ)⊗H0(ν)).

The first isomorphism is an immediate consequence of (4.1.9) and the properties of GΓ′(k).

For the other isomorphism, note that since 2s ≥ 25 > 17, we may apply Lemma 4.1.2 (a)

to conclude that HomGr/2
(L(λ), L(µ)⊗H0(ν)) has trivial G-structure.

Now, let M := Ext1G(L(λ)⊗ V (ν)(r/2), L(µ)⊗H0(ν)) and we run the Lyndon-Hochschild-

Serre spectral sequence corresponding to Gr/2◁G. First, we investigate the Ei,0
2 -term and

we get

Ei,0
2

∼= ExtiG/Gr/2
(V (ν)(r/2),HomGr/2

(L(λ), L(µ)⊗H0(ν)))

∼= ExtiG(V (ν), k)⊗HomGr/2
(L(λ), L(µ)⊗H0(ν)).

By (Jan03, II.4.13), ExtiG(V (ν), k) = 0 for i > 0, so we conclude that the Ei,0
2 -terms all

vanish. Hence M ∼= E0,1
2 , giving

R ∼=
⊕
ν∈Γ′

HomG/Gr/2
(V (ν)(r/2),Ext1Gr/2

(L(λ), L(µ)⊗H0(ν))),

the desired result.

For (b), let λ and µ be expressed as suggested. We apply the Lyndon-Hochschild-Serre

spectral sequence corresponding to Gt/2 ◁G to the terms in the first expression for R in

part (a). The E2-page is given by

Ei,j
2 := ExtiG/Gt

(L(λ1)
(t/2) ⊗ V (ν)(r/2),ExtjGt/2

(L(λ0), L(µ0)⊗H0(ν))⊗ L(µ1)
(t/2)).

First we consider the E0,1
2 -term.

E0,1
2

∼= HomG/Gt/2
(L(λ1)

(t/2) ⊗ V (ν)(r/2),Ext1Gt/2
(L(λ0), L(µ0)⊗H0(ν))⊗ L(µ1)

(t/2))

∼= HomG(L(λ1)⊗ V (ν)(
r−t
2

),Ext1Gt/2
(L(λ0), L(µ0)⊗H0(ν))(−t/2) ⊗ L(µ1)).

We consider the cases t = 2k even and t = 2k + 1 odd in turn. We begin with t = 2k.
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We have

E0,1
2

∼= HomG(L(λ1)⊗ V (ν)(s−k+1/2),Ext1Gk
(L(λ0), L(µ0)⊗H0(ν))(−k) ⊗ L(µ1)).

By (BNP06, (5.2.4)), any weight γ of Ext1Gk
(L(λ0), L(µ0)⊗H0(ν))(−k) satisfies ⟨γ, α∨

0 ⟩ ≤
2k−1
2k

(h − 1) +
⟨ν,α∨

0 ⟩
2k

+ 3
4 < h = 12. Assume without loss of generality that ⟨µ1, α

∨
0 ⟩ ≤

⟨λ1, α
∨
0 ⟩. Therefore, E0,1

2 vanishes unless ⟨τ r−tν, α∨
0 ⟩ ≤ ⟨γ, α∨

0 ⟩. We obtain ⟨τ r−tν, α∨
0 ⟩ =

2s−k⟨τν, α∨
0 ⟩ ≤ ⟨γ, α∨

0 ⟩ < 12. Assuming ν ̸= 0, we have ⟨τν, α∨
0 ⟩ ≥ 2, so E0,1

2 = 0, since

s− k ≥ 3. Thus, we have E1
∞

∼= E1,0
2 .

Then, suppose t = 2k + 1. We have

E0,1
2

∼= HomG(L(λ1)⊗ V (ν)(s−k),Ext1Gt/2
(L(λ0), L(µ0)⊗H0(ν))(−t/2) ⊗ L(µ1)). (4.2.2)

By (4.1.8), any weight γ of Ext1Gt/2
(L(λ0), L(µ0) ⊗ H0(ν))(−t/2) satisfies ⟨γ, α∨

0 ⟩ ≤ 6 +

2k+1−1
2k−1

· 5+ 2k−1

2k−1
≤ 16. Assume without loss of generality that ⟨µ1, α

∨
0 ⟩ ≤ ⟨λ1, α

∨
0 ⟩. There-

fore, E0,1
2 vanishes unless 2s−k⟨ν, α∨

0 ⟩ ≤ ⟨γ, α∨
0 ⟩ ≤ 16. We obtain ⟨ν, α∨

0 ⟩ ≤ ⟨γ,α∨
0 ⟩

2s−k ≤ 2.

Assuming ν ̸= 0, we have ⟨τν, α∨
0 ⟩ ≥ 2, so E0,1

2 = 0, unless γ = 8ω4 and ν ∈ {ω1, ω4}.

By Lemma 4.2.1, L(8ω4) is not a composition factor of

Ext1Gt/2
(L(λ0), L(µ0)⊗H0(ν))(−t/2),

for ν ∈ {ω1, ω4}, meaning that in (4.2.2), E0,1
2 = 0. Otherwise, if ⟨ν, α∨

0 ⟩ ≥ 3, E0,1
2 also

vanishes. Thus E1
∞

∼= E1,0
2 .

It remains to compute the E1,0
2 -term. We have

E1,0
2

∼= Ext1G/Gt/2
(L(λ1)

(t/2) ⊗ V (ν)(r/2),HomGt/2
(L(λ0), L(µ0)⊗H0(ν))⊗ L(µ1)

(t/2)).

By Lemma 4.1.2 (b), any weight γ of HomGt/2
(L(λ0), L(µ0)⊗H0(ν))(−t/2) satisfies ⟨τ tγ, α∨

0 ⟩ ≤
⟨ν, α∨

0 ⟩ ≤ 16.

In either case, t = 2k or t = 2k + 1, γ can only be non-trivial when ν = 8ω4; then

γ ∈ {0, ω1, ω4} for t = 2k or γ ∈ {0, ω4} for t = 2k + 1. Therefore, suppose ν = 8ω4 and

we apply the Lyndon-Hochschild-Serre spectral sequence corresponding to G r−t
2

◁ G to

Ext1G(L(λ1)⊗ V (8ω4)
( r−t

2
), L(γ)⊗ L(µ1)). The E2-page is given by

Ei,j
2 := ExtiG(V (8ω4),Ext

j
G r−t

2

(L(λ1), L(γ)⊗ L(µ1))).

Note that since s − k ≥ 3, HomG r−t
2

(L(λ1), L(γ) ⊗ L(µ1)) has trivial G-structure, so the
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Ei,0
2 -term vanishes. Thus, we get E1

∞
∼= E0,1

2 = HomG(V (8ω4),Ext
1
G r−t

2

(L(λ1), L(γ) ⊗

L(µ1))). By Lemma 4.2.1, this also vanishes.

Therefore, we may assume ⟨ν, α∨
0 ⟩ ≤ 15. Thus, any weight of HomGt/2

(L(λ0), L(µ0) ⊗
H0(ν)) must satisfy ⟨τ tγ, α∨

0 ⟩ ≤ ⟨ν, α∨
0 ⟩ ≤ 15. It follows that in either case, ⟨γ, α∨

0 ⟩ ≤
⟨ν,α∨

0 ⟩
2 ≤ 15

8 < 2, so necessarily γ = 0.

We may conclude that

E1,0
2

∼= Ext1G/Gt/2
(L(λ1)

(t/2) ⊗ V (ν)(r/2), L(µ1)
(t/2))⊗HomGt/2

(L(λ0), L(µ0)⊗H0(ν))

∼= Ext1G(L(λ1)⊗ V (ν)(
r−t
2

), L(µ1))⊗HomG(L(λ0), L(µ0)⊗H0(ν)).

This is the first re-identification. Now, consider Ext1G(L(λ1) ⊗ V (ν)(
r−t
2

), L(µ1)) and we

apply the Lyndon-Hochschild-Serre spectral sequence corresponding to G r−t
2

◁ G. First,

consider the Ei,0
2 -term, for i > 0. We obtain

Ei,0
2

∼= ExtiG/G r−t
2

(V (ν)(
r−t
2

),HomG r−t
2

(L(λ1), L(µ1))).

Then, there are two possibilities – either λ1 = µ1 or not. If they are not equal, it follows

that HomG r−t
2

(L(λ1), L(µ1)) automatically vanishes, so E1,0
2 = E2,0

2 = 0. If they are equal,

HomG r−t
2

(L(λ1), L(λ1)) has trivial G-structure, and, once again E1,0
2 and E2,0

2 vanish, as

ExtiG(V (ν), k) = 0, i > 0 (cf. (Jan03, II.4.13)). We may now conclude that

Ext1G(L(λ1)⊗ V (ν)(
r−t
2

), L(µ1)) ∼= HomG/G r−t
2

(V (ν)(
r−t
2

),Ext1G r−t
2

(L(λ1), L(µ1))),

and this completes the proof.

Corollary 4.2.3. With the hypothesis of the previous proposition, there exists an iso-

morphism Ext1G(σ)(L(λ), L(µ))
∼= Ext1G(L(λ), L(µ)) if either of the following hold:

(i) Ext1G r−t
2

(L(λ1), L(µ1)) = 0

(ii) HomG(L(λ0), L(µ0)⊗H0(ν)) = 0, for all ν ∈ Γ′.

Next, we provide an analogue of (BNP06, Theorem 5.4) showing that generically, for the

Ree groups of type F4, self-extensions between simple modules vanish.

Theorem 4.2.4. Let r = 2s+ 1 be odd with s ≥ 6. Then

Ext1G(σ)(L(λ), L(λ)) = 0,
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for all λ ∈ Xσ.

Proof. We know that self-extensions for classical Frobenius kernels vanish, as G is not of

type Cn (cf. (Jan03, II.12.9)); hence Ext1Gs
(L(λ), L(λ)) = 0 for any λ ∈ Xs.

We aim to extend this result by replacing s with r/2. When r = 1 the result follows from

(Sin94b, 1.7(1)(2),4.5). Suppose r ̸= 1 and let λ = λ0+ τ r−1λ1 = λ0+2sλ1 with λ1 ∈ Xτ .

We apply the Lyndon-Hochschild-Serre spectral sequence corresponding to Gs◁Gr/2. The

E2-page is given by

Ei,j
2 = ExtiGr/2/Gs

(L(λ1)
(s),ExtjGs

(L(λ0), L(λ0))⊗ L(λ1)
(s)).

First consider the E1,0
2 -term:

E1,0
2 = Ext1Gτ

(L(λ1),HomGs(L(λ0), L(λ0))
(−s) ⊗ L(λ1))

∼= Ext1Gτ
(L(λ1), L(λ1))

(s) = 0,

by the discussion above. Now, we turn our attention to the E0,1
2 -term, which is isomorphic

to

HomGτ (L(λ1),Ext
1
Gs

(L(λ0), L(λ0))
(−s) ⊗ L(λ1))

(s) = 0,

by (Jan03, II.12.9). Therefore, Ext1Gr/2
(L(λ), L(λ)) = 0, for any λ ∈ Xr/2.

Having evaluated the self-extensions for Gr/2, we now express λ as λ = λ0 + τ tλ1, with

λ0 ∈ Xt/2 and λ1 ∈ X r−t
2
. Then, since s ≥ 6 and Ext1G r−t

2

(L(λ1), L(λ1)) = 0, we may

apply Corollary 4.2.3(i) and the claim follows.

Finally, the following theorem relates extensions between simple kG(σ)-modules and ex-

tensions between simple G-modules.

Theorem 4.2.5. Assume r = 2s+ 1 with s ≥ 6. Given λ, µ ∈ Xσ, let

λ =

r−1∑
i=0

τ iλi/2

= λ0 + τλ1/2 + 2λ1 + τ3λ3/2 + · · ·+ 2sλ(r−1)/2

be the τ -adic expansion of λ, and take a similar expression for µ. Then there exists an

integer 0 ≤ n < r such that

Ext1G(σ)(L(λ), L(µ))
∼= Ext1G(L(λ̃), L(µ̃))
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where

λ̃ =

n−1∑
i=0

τ iλ i+r−n
2

+

r−1∑
i=n

τ iλ i−n
2
.

Proof. We express λ and λ̃ in this way, motivated by the fact that V (r/2) ∼=G(σ) V for

any G(σ)-module V . Hence, applying Steinberg’s Tensor Product Theorem leads to the

isomorphism L(λ̃) ∼=G(σ) L(λ)
(n/2).

By (Sin94a, 2.1(c)) there is an injection Ext1G(L(λ̃), L(µ̃)) ↪→ Ext1G(σ)(L(λ̃), L(µ̃)) and

since τ is an automorphism of G(σ), we have Ext1G(σ)(L(λ̃), L(µ̃))
∼= Ext1G(σ)(L(λ), L(µ)).

Thus it suffices to show (by dimensions) that there is also an injection

Ext1G(σ)(L(λ̃), L(µ̃)) ↪→ Ext1G(L(λ̃), L(µ̃)).

First, suppose λ = µ and the claim follows from Theorem 4.2.4 with n = 0. Now assume

λ ̸= µ. Then there exists 0 ≤ i ≤ r such that λi/2 ̸= µi/2. Due to the discussion above, we

may choose the integer n such that the differing digits in the τ -adic expansion of λ̃ and µ̃

are in a certain position, namely λ̃ 2s−8
2

̸= µ̃ 2s−8
2

. Thus, put n = 2s − 8 − i if i ≤ 2s − 8

and n = r+2s− 8− i if i ≥ 2s− 8. Therefore, we write λ̃ = λ′ + τ2s−8λ′′ + τ2s−7λ′′′ with

λ′ ∈ Xs−4, λ
′′ = λ̃ 2s−8

2
and λ′′′ ∈ X4, and take a similar expression for µ.

Then, we apply Proposition 4.2.2(b) with t
2 = 2s−7

2 . Thus

dimExt1G(σ)(L(λ̃), L(µ̃)) ≤ dimExt1G(L(λ̃), L(µ̃)) + dimR,

where R is isomorphic to⊕
ν∈Γ′

Ext1G(L(λ
′′′)⊗ V (ν)(4), L(µ′′′))⊗HomG(L(λ

′ + 2s−4λ′′), L(µ′ + 2s−4µ′′)⊗H0(ν)).

We turn our attention to HomG(L(λ
′ + 2s−4λ′′), L(µ′ + 2s−4µ′′)⊗H0(ν)). We have

HomG(L(λ
′)⊗ L(λ′′)(s−4), L(µ′)⊗ L(µ′′)(s−4) ⊗H0(ν))

∼= HomG/Gs−4
(L(λ′′)(s−4),HomGs−4(L(λ

′), L(µ′)⊗H0(ν))⊗ L(µ′′)(s−4)).

Consider 2s−4θ a weight of HomGs−4(L(λ
′), L(µ′) ⊗ H0(ν)) and by Lemma 4.1.2 (b), it

follows that
〈
2s−4θ, α∨

0

〉
≤ ⟨ν, α∨

0 ⟩. Thus ⟨θ, α∨
0 ⟩ ≤

⟨ν,α∨
0 ⟩

2s−4 ≤ 16
22

≤ 4. However, note that

the proof of Lemma 4.1.3 implies ⟨ν, α∨
0 ⟩ ≤ 15. Therefore, ⟨θ, α∨

0 ⟩ ≤ 15
22
, so ⟨θ, α∨

0 ⟩ ≤ 3.

Thus, θ ∈ {0, ω1, ω3, ω4}.
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First, suppose HomGs−4(L(λ
′), L(µ′)⊗H0(ν)) has trivial G-structure, and we may write

HomG(L(λ
′)⊗ L(λ′′)(s−4), L(µ′)⊗ L(µ′′)(s−4) ⊗H0(ν))

∼= HomG/Gs−4
(L(λ′′)(s−4),HomGs−4(L(λ

′), L(µ′)⊗H0(ν))⊗ L(µ′′)(s−4))

∼= HomG(L(λ
′′), L(µ′′))⊗HomG(L(λ

′), L(µ′)⊗H0(ν)).

Since λ′′ = λ̃ 2s−8
2

̸= µ̃ 2s−8
2

= µ′′, all of the corresponding summands of R vanish.

It remains to consider the case in which 2s−4θ is a potential non-zero weight of

HomGs−4(L(λ
′), L(µ′)⊗H0(ν)). We obtain

HomG(L(λ
′)⊗ L(λ′′)(s−4), L(µ′)⊗ L(µ′′)(s−4) ⊗H0(ν))

∼= HomG/Gs−4
(L(λ′′)(s−4),HomGs−4(L(λ

′), L(µ′)⊗H0(ν))⊗ L(µ′′)(s−4))

∼= HomG(L(λ
′′), L(θ)⊗ L(µ′′)).

Moreover, we know that λ′′ = λ̃ 2s−8
2

̸= µ̃ 2s−8
2

= µ′′ ∈ Xτ . Then, careful consideration using

(Sin94b, Table V) shows that there exist λ′′, µ′′ such that HomG(L(λ
′′), L(θ)⊗L(µ′′)) ̸= 0,

for θ ∈ {0, ω1, ω3, ω4}.

Thus, since we cannot yet conclude that the summand of R corresponding to the afore-

mentioned cases vanishes, we must turn our attention to Ext1G(L(λ
′′′) ⊗ V (ν)(4), L(µ′′′)),

for λ′′′, µ′′′ ∈ X4. We run the Lyndon-Hochschild-Serre spectral sequence corresponding

to G4 ◁G. First, consider the Ei,0
2 -term for i > 0:

Ei,0
2 := Ext1G/G4

(V (ν)(4),HomG4(L(λ
′′′), L(µ′′′))).

Since HomG4(L(λ
′′′), L(µ′′′)) is either zero or has trivial G-structure, it follows that E1,0

2 =

E2,0
2 = 0, so we have E1

∞
∼= E0,1

2 . Thus

Ext1G(L(λ
′′′)⊗ V (ν)(4), L(µ′′′))

∼= HomG(V (ν),Ext1G4
(L(λ′′′), L(µ′′′))(−4)).

Then, notice that by Lemma 3.4.8, any weight ζ of Ext1G4
(L(λ′′′), L(µ′′′))(−4) must satisfy

⟨ζ, α∨
0 ⟩ ≤ 2. Recall that we needed to consider the cases for which

⟨ν,α∨
0 ⟩

2s−4 ̸= 0, so when

⟨ν, α∨
0 ⟩ ≥ 2 · 22 = 8. Hence, note that HomG(V (ν),Ext1G4

(L(λ′′′), L(µ′′′))(−4)) = 0, so we

conclude that Ext1G(L(λ
′′′) ⊗ V (ν)(4), L(µ′′′)) = 0. Thus, all of the summands vanish,

giving R = 0 and the claim follows.
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