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Abstract

In this thesis, several challenges in the verification of cyber-physical systems are considered.
First, verification methods are generally not scalable, i.e. they suffer when performed
on high-dimensional systems and require sometimes unreasonable computational time.
Verification of hybrid systems, in addition, involves the computation of complex operations.
Next, nonlinear systems are harder to reason as opposed to linear systems. Also, there is a
pressing need to reason about safety in a limited time or even instantly. Thus, the following
solutions are presented to address scalability and performance issues in verification.

To begin with, we leverage the structure of systems when safety properties are defined
only in low dimensions. In particular, an algorithm is proposed to exploit decomposition
in the reachability analysis of linear hybrid systems. It allows to verify systems with up
to thousands of state variables without additional approximation error for linear hybrid
systems with a low number of constraints.

Next, a data-driven framework to handle nonlinear, even black-box, systems is pro-
vided. It is based on Koopman operator and Fourier Features, well-known approximation
techniques which, in some cases, could exactly represent the original system. Then, two
options are offered to handle nonlinear initial sets created by such linearization: (i) utilize
interval arithmetics along with refinement steps and calls to the SMT solver and (ii)
combine polynomial zonotopes with efficient set operations to obtain a tight approximation
for nonlinear reachable sets. This enables an extremely fast verification in comparison
with state-of-the-art tools for nonlinear systems as it shown on several nonlinear system
benchmarks.

Finally, we developed an algorithm which verifies the system on-the-fly. It generates
reachable regions by simulations, which are enclosed by barrier certificates to provide
formal guarantees. These barrier certificates are produced by neural networks and verified
by SMT solvers. Although the algorithm is currently restricted by scalability of FOSSIL,
it already demonstrate promising results in verification both for nonlinear models and in
online settings.
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Chapter 1

Introduction

1.1 Motivation

Cyber-physical systems [33] are usually defined as systems where software components
interact with the environment. One of the core features of such systems is that they
can independently adjust their dynamics and behaviour. Examples of such systems are
self-flying drones, autonomous cars, traffic and transport management systems, etc. Cyber-
physical systems play a crucial role in safety-critical situations, especially where human
control is either impossible or might be dangerous. These areas include military or defence
systems [6], nuclear stations [5], etc. Cyber-physical systems become more complex and
cover more functunality [145]. Unreliable systems might lead to dangerous situations [163].
Cyber-physical systems are already widely used in daily life and current predictions [110]
say that the role of autonomous systems will increase in future and more of such devices
will be around.

System safety is usually referred to as the management of the risks or strategy of
identifying potential issues, hazards and the possible ways of handling them. Fault
tolerance and fault avoidance are some of the ways to address safety concerns, while in
some cases one can debate to allow potentially ‘dangerous’ behaviour of the system. On
the other hand, faulty behavior could cost life or leads to very expensive losses.

Thus, it is of utmost importance to provide safety guarantees, i.e. that the system with
the provided initial state cannot reach any specified set of unwanted or unsafe states. These
states could include dangerous states of the system which are very expensive to recover
from and states where system are not expected to operate so its behavior is unpredictable.
The safety of cyber-physical systems has attracted much attention recently both from
academical [80] and industrial worlds [50]. This corresponds to verification process in a
technical standard ISO/IEC15288, so the system meets requirements and specifications
and that it fulfills its intended purpose.

Model-based design [23, 121] has attracted considerable interest as an approach to
design novel systems. This approach comprises of three main steps. First, a formal
mathematical model of the desired system is designed, along with the elements of its
environment. Secondly, a designer utilizes one of the state-of-the-art approaches to verify
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the constructed system. For this purpose, safety properties, i.e. constraints which must be
satisfied to deem a system safe. If the system is unsafe, then a designer redefines a model
or refines the settings and runs the verification again. Lastly, once the model is verified, it
is ready for deployment out of the model-based design framework and being actually built.
Since we do not consider the actual implementation of the system, in the following, we
refer to a formal model of a system just as a system for simplicity. Model-based design
lies on the edge between mathematics, engineering, and computer science [113], where
each step is a ground for further deep research for a better design of complex embedded
systems.

Hybrid systems [24] is a commonly-used formalism to model cyber-physical systems,
which exchibit mixed discrete-continuous dynamics. A simple example of a hybrid system
is a thermostat model with two nodes: heating and cooling (see Figure 1.1). These
nodes contain continuous dynamics, i.e. differential equations describing temperature
dynamics. Nodes are linked with each other via transitions. In this case, the transitions
define constraints on the maximal and minimal temperatures, respectively. Thus, if the
temperature reaches some threshold, a jump to another mode occurs.

Heating
T ≤ 25 & c ≤ 5

c′ = 1
T ′ = 2

Cooling
T ≥ 8 & c ≤ 10

c′ = 1
T ′ = −1

T ≥ 25 & c ≥ 5

T ≤ 8 & c ≥ 10

c = 0

c = 0

Fig. 1.1. Example of thermostat hybrid system. There are two nodes heating and cooling.
Each has its own dynamics and invariants, constraints on the state variables at the corresponding
location. Transitions represent discrete jumps between locations. Each transition contains guards,
i.e. constraints which once satisfied enable jumps. In addition, there is an assignment, where
discrete dynamics is defined.

Interestingly, there are systems whose dynamics is unknown or undefined upon mod-
elling. Such systems are called black-box systems [158]. Since their dynamics can be
obtained by data (e.g., simulations), these dynamical systems prevail especially in data-
driven testing environments.

1.2 Verification of cyber-physical systems

The main idea of safety verification is to provide guarantees that the system under
consideration with the provided initial state cannot violate a given safety property. There
are several state-of-the-art approaches to verify the safety of the system. In this thesis, we
combine the provided approaches in the developed algorithms.

Commercial companies usually utilize simulations to verify the safety of their sys-
tems [135]. Monte Carlo simulations [130] is a common way to test the designed models.
ANSYS [138], Simulink/Stateflow MATLAB libraries [173] and COMSOL [93] are the
main tools to run such simulations. However, the drawback of this approach is an inability
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to cover all possible trajectories, especially in systems with large initial sets or high
uncertainty. Thus, there is a chance that some trajectory or even trajectories are not
covered and the system is actually unsafe (see Figure 1.2).

Unsafe Set

Initial Set

missed simulationy

x

Fig. 1.2. Illustration of the missed trajectory in simulation approach. Green region is an
initial set, red figure corresponds to the set of forbidden states and black curves are simulation
trajectories from the initial region. The red curve represents a trajectory which intersects the set
of bad states but is missed by a numerical simulation.

Simulation-Guided Analysis is a different approach which aims to tackle the highlighted
issue of missed trajectories. The idea is to obtain simulation trajectories, and bloat them
in a way that for each state from the set of initial states there is a trajectory in a bloated
simulation. The main challenge in this technique is the calculation of a discrepancy function.
A discrepancy function provides a mechanism for bounding the distance between adjacent
trajectories as a function of the distance between the initial states for the trajectories [74].
[77] presents a systematic approach to compute such a function. A practical use of such
algorithms is restricted, since most of the heuristics to compute discrepancy functions
address only very specific models or problems [198].

While many methods strive to verify that the system is safe, another approach, namely
falsification, provides evidence that the system is unsafe and is a great ground for test
cases. Hylaa (HYbrid Linear Automata Analyzer) [34] is an example of such a verification
tool which can scale to systems with hundreds of thousands of state variables. However,
the main drawback of this approach is if counterexample, i.e. a trace leading to a set of
unsafe states, is not found, then the result is inconclusive and one cannot reason about
the safety of the system.

Formal verification techniques [23, 103] received more consideration of scientific com-
munity and emerged to address the issues of simulation-based methods [69, 87, 78].

Safety analysis can be done using flowpipe based reachability analysis [101, 137]. It
aims at identifying states reachable by a system within a given time horizon (see Figure 1.3).
Reachability analysis performs verification of hybrid systems by exploring all possible
reachable states from the set of initial states and then checks the intersection with the
unsafe region. If the intersection is not empty, then the system is unsafe [152]. Complexity
of computing discrete jumps and interesections in particular, restrict current algorithms
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Unsafe Sety

x

Initial Set

Fig. 1.3. Illustration of reachability analysis. Green region is an initial set, red region
corresponds to the set of unsafe states and black curves are simulation trajectories. Blue set is
an exact reachable set.

to support systems with up to dozens of state variables and, in some cases, hunderds.
However, additional dimensions could provide system designers a venue for more descriptive
models and take into account more environment dynamics.

Reachability analysis is implemented in several tools. These tools compute reachable
state space by efficiently manipulating region space represented in terms of support
functions [95], zonotopes [128] and Taylor models [64]. SpaceEx [84] is the most mature
tool for linear hybrid systems with support for up to hundreds of state variables. CORA [19]
is a toolbox which combines algorithms for verification of linear and nonlinear systems. In
particular, for nonlinear systems techniques based on linearization and polynomialization
are proposed. Flow* [65] is a tool for reachability analysis of hybrid nonlinear system
based on Taylor model approximation. Although these tools are mature and demonstrate
the best computational time in the field according to results from ARCH competition [21],
it still takes more time to perform reachability on nonlinear systems in comparison with
computing reachable sets for similar size linear models by several orders of magnitude.
JuliaReach [53] emerged as a promising toolbox to handle both linear and nonlinear
systems. The toolbox contains its own new efficient techniques, such as decompositional
reachability for purely continous linear systems, and several algorithms from other tools,
such as SpaceEx and Flow*, reimplemented. Currently, the toolbox perform similar to the
original tools [112, 20] for nonlinear systems and for hybrid systems, however, outperform
competitors in verification of purely continous linear systems. A wholly symbolic approach
to hybrid systems verification (and more) is presented in [159], although it is hard to
mechanise and it is based on quantifier elimination algorithms that have exceedingly high
complexity. Given a linear switching system with a hyperplanar state-space partition, one
approach computes ellipsoidal approximations of the reach set on the partition borders,
without computing the full reach set [104].

A different approach to perform verification of hybrid systems relies on using constraint
solvers [68] and checking whether proposed logical formulas are satisfiable. Reachability
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properties [168, 169] and barrier certificates [192] can be verified via Satisfiability Modulo
Theory (SMT) [90, 72, 46, 48] solvers.SMT solvers answer the question of whether a hybrid
system runs into a set of unsafe states, but does not compute an actual reachable set. These
techniques can be informative when a counterexample, i.e. a trace which leads to unsafe
set, is required. This class of methods is usually divided into unbounded and bounded
SMT algorithms. The former theoretically can always terminate, but might produce an
unknown result in some cases. The latter produces only explicit results, however, given
the unbounded problem is undecidable, algorithms might time out.

Additionally, barrier certificates have been introduced [161] to reason about the safety
of the system without computing actual reachable sets explicitly. It is a function of the
system state whose zero-level set separates the “unsafe” region from the system trajectories
that start from a given initial set (see Figure 1.4). The existence of a barrier certificate
entails that the system is safe. Multiple techniques have been introduced to compute
barrier certificates. They mainly consist of (i) refinement loops where barrier certificate
candidates are generated and (ii) verification using SMT solvers.

Approaches involving sum of squares programming are successful in computing barrier
certificates for polynomial vector fields [157, 160]. Notably, these approaches rely on
convex optimisation and hence can often result in solutions which are numerically sensitive
and unsound. Numerically-robust inductive rules for both stability and safety of general
dynamical systems have been presented in [91]. A recent approach aims at synthesising
weaker barrier certificates using bilinear matrix inequalities [193], while [25] aims at
including performance requirements in barrier certificates.

Early formal approaches for synthesis of barrier certificates include [116], which uses
linear programs guided by simulation traces to generate candidate Lyapunov functions and
barrier certificates. These candidates are then certified by an SMT-solver to guarantee
the validity of the found solution, or provide a counter-example where the candidate
is invalid. Usage of counter-examples and, more specifically, counter-example guided
inductive synthesis (CEGIS) is a powerful and common approach for synthesising barrier
certificates [9, 8, 107, 167]. Using neural networks to synthesise barrier certificates is treated
in, e.g., [114, 200–202]. However, these approaches are either unsound [114], or limited
to the usage of ReLU-based activation functions within the network. The paper [183] is
restricted only to support vector machines for synthesising barrier certificates for a specific
class of systems (affine control robotic systems).

As it stated above there are multiple challenges and issues in applying formal verification
to the real-world systems [177, 63, 22]. Despite recent advances, systems described by
nonlinear ordinary differential equations are still hard to analyze, control, and verify.
Hybrid dynamics creates additional complexity for formal techniques. Although it is
possible to verify linear hybrid systems with up to 200 state variables the increased
complexity and size of the models make the verification even harder. Thus, formal
verification methods are not ready to be deployed on real-time systems for verification,
while scalability issues prevent fully using these techniques in model-based design. There
is a growing need for frameworks being capable to verify real-life systems, particularly
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Unsafe Sety

x

Initial Set

B(x) = 0

Fig. 1.4. Verification using a barrier certificate (green curve), which separates forbidden states
(red) and initial set (green) with possible trajectories (black) from it. Green region is an initial
set and red figure corresponds to the set of forbidden states.

high-dimensional. Verification on-the-fly instantly or in a short time is yet another relevant
venue for formal techniques as more systems perform in autonomous scenarios.

1.3 Contribution

In this thesis, we present novel techniques for online and offline verification of cyber-physical
systems. All the presented techniques and algorithms are compared with state-of-the-art
tools on commonly used benchmarks. In the following we summarize the contribution
presented in this thesis.

Contribution 1. Decompositional analysis of linear high-dimensional hybrid
systems. Verification of systems with mixed discrete-continous dynamics is time consum-
ing as it requires computing expensive intersection operations. Verification time grows even
more rapidly for high-dimensional systems. There are approaches [52] to efficiently reason
about purely continuous high-dimensional systems. To extend these methods for systems
with mixed discrete-continous dynamics, we leveraged the specific structure of hybrid
systems. In particular, we developed an algorithm for verification of high-dimensional
hybrid systems with the extensive use of projections and decomposition. The advantages
of the presented approach are:

(i) It allows us to compute reachable images of all state variables only in the specific
time intervals, which are relevant for discrete jumps and only in their low-dimensional
sub-spaces.

(ii) Any other computations are made only for the required state variables, thus, avoiding
any unnecessary expensive computations.
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(iii) The computational time for reachability analysis of linear hybrid systems is consid-
erably reduced, in many cases without introducing additional approximation error,
and systems with thousands of dimensions are supported.

Contribution 2. Verification of nonlinear systems via model transformation.
Nonlinear systems is a major challenge in the verification community [63]. Many tech-
niques have been presented to verify nonlinear systems [17, 62, 61, 19]. Most of these
techniques rely on the approximation of nonlinear systems and representing them in
simpler dynamics, e.g., linear. Typically, these verification algorithms suffer from complex
and high-dimensional systems or necessity to consider long time intervals for reliable
conclusions. Such abstraction techniques require either a coarse overappoximation or
a very small time step to reason about the original system which eventually leads to
excessive verification times. In this thesis, we propose to utilize Koopman operator [127]
and random Fourier features [73] for approximation purposes. These approaches are widely
used in different fields to analyse nonlinear systems. Moreover, extended dynamic mode
decomposition [197] is applied to traces of the original system to obtain the best approxi-
mation. Given that simulation trajectories can be obtained for black-box systems, a model
of the original system is not necessarily required. However, generated approximations
cannot automatically be applied in reachability analysis as such transformations initialize
new state variables where initial values are connected to the original state variables via
nonlinear functions. For this purpose, we present two options to verify linearized systems
with nonlinear initial sets:

(i) interval approximation with the refinement algorithm and calls to a SMT solver to
verify the linearized system.

(ii) polynomial zonotopes approximation, which provides a tighter approximation of the
non-convex initial set. This set representation can be efficiently propagated forward
to compute the reachable set.

This algorithm computes reachable sets for the linearized system with nonlinear
observables fast and outperforms the nonlinear solver. However, safe guarantees are
provided only on the linearized system, while the approximation error currently can be
calculated just statistically, which, in the provided evaluations, is relatively small and
allows to verify safety properties.

Contribution 3. Online verification of autonomous systems. Verification of real-
time systems has received much attention recently with some frameworks developed to
tackle this problem [14, 186]. However, these approaches have their restrictions, for
example, they work only with systems without uncertainty [31] or unsound [103]. Similarly,
commercial companies deliver their autonomous systems and claim they are safe, although
no formal guarantees on their safety [187] are provided. Companies utilize machine learning
techniques to generate “safe control” while giving room for unsafe cases. In this work,
various verification techniques are combined to provide safety guarantees. In particular,
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we verify such systems by utilizing simulations of ODEs and neural networks along with
formal verification by generating barrier certificates. We explore how barrier certificate
formulations can be adapted for real-time reachable set computations. The key part of the
framework is a neural network which is trained to generate barrier functions out of initial
and unsafe sets. These barrier functions are then verified with the SMT solvers on-the-fly.
The main features of the developed framework are:

(i) We verify both linear and nonlinear systems.

(ii) We obtain valid overapproximations of the reachable sets without explicitly solving
the system dynamics.

(iii) The output of the algorithm provides guarantees on the safety of the autonomous
system.

iiii The evaluation results of generated barrier certificate candidates from MetaNN
demonstrate that the technique can be used for verification on-the-fly.

The above three contributions have been previously published in [54, 44, 43] and are
in the process of preparing for submission to publication [7]. All the co-authors were
notified and provided consent that these contributions as well as publications will be
used as a basis for this thesis. The author of the thesis is the main developer of all the
proposed algorithms, as well as responsible for all the evaluations and their interpretation.
Additional proofs, evaluation results and content were added where possible for a more
detailed and full description of the proposed approaches and challenges they address.

1.4 Structure

The thesis is structured as follows:

1. Chapter 2 provides a more detailed discussion of verification techniques and related
works.

2. The discussion of the proposed decompositional approach is presented in Chapter 3.

3. We discuss the linearization techniques and the proposed reachability algorithms to
handle nonlinear initial sets in Chapter 4.

4. Chapter 5 contains a description of how neural network can be used to produce safe
barrier certificates and its use in a real-time case study of autonomous car. The
chapter is based on the results published in [37] and [44].

5. We summarize the results presented in this thesis and outline future work in Chap-
ter 6.



Chapter 2

Background

Verifying safe behaviour of cyber-physical systems is an important, timely topic and is
receiving much attention from the research community [80]. The number of verification
tools grow recently and friendly competitions such as International Competition on
Verifying Continuous and Hybrid Systems(ARCH) [21] become more popular. These
events gather participants with the wide range of tools, which can reason about linear and
nonlinear systems, systems with continous and hybrid dynamics, etc.

In this chapter, we introduce notation and related verification techniques to use
throughout the thesis. The structure of the chapter is the following:

1. Section 2.1 introduces notation to use throughout the thesis.

2. Section 2.2 defines the safety problem.

3. Section 2.3 provides an overview of reachability analysis and different ways of
computing and storing reach sets.

4. Section 2.4 describes a verification technique based on using barrier certificates.

2.1 Notations

The real numbers are denoted by R. The origin in Rn is written 0n. Sets are denoted
by calligraphic letters, matrices by uppercase letters, vectors by lowercase letters, and
lists by bold uppercase letters. Let Cn ⊆ 2Rn be the set of n-dimensional compact convex
sets. Given a vector b ∈ Rn, b(i) refers to the i-th entry. Given a matrix A ∈ Rn×m,
A(i,·) represents the i-th matrix row, A(·,j) the j-th column, and A(i,j) the j-th entry of
matrix row i. Given a discrete set of positive integer indices H = {h1, . . . , hw} with
1 ≤ hi ≤ m ∀i ∈ {1, . . . , w}, A(·,H) is used for [A(·,h1) . . . A(·,hw)], where [C D] denotes
the concatenation of two matrices C and D. The symbols 0 and 1 represent matrices of
zeros and ones of proper dimension, the empty matrix is denoted by [ ], and In ∈ Rn×n is
the identity matrix. Given an ordered list L = (l1, . . . , ln), L(i) = li refers to the i-th entry
and |L| = n denotes the number of elements in the list. Moreover, the concatenation of



10 Background

two lists L1 and L2 is denoted by (L1, L2). We further introduce an n-dimensional interval
as I = [l, u], ∀i l(i) ≤ u(i), l, u ∈ Rn.

Given two vectors x, y ∈ Rn, their dot product is ⟨x, y⟩ := ∑n
i=1 xi · yi. For p ≥ 1,

the p-norm of a matrix A ∈ Rn×n is denoted ∥A∥p. The diameter of a set X ⊆ Rn is
∆p(X ) := supx,y∈X∥x− y∥p. The n-dimensional unit ball of the p-norm is Bn

p := {x ∈ Rn |
1 ≥∥x∥p}.

Given sets X ⊆ Rn and Y ⊆ Rm, scalar λ ∈ R, matrix A ∈ Rn×n, and vector
b ∈ Rn, we use the following operations on sets: scaling λX := {λx | x ∈ X}, linear
map AX := {Ax | x ∈ X}, Minkowski sum X ⊕ Y := {x + y | x ∈ X and y ∈ Y}
(if n = m), affine map (A, b) ⊙ X := AX ⊕ {b}, Cartesian product X × Y := {(x, y) |
x ∈ X , y ∈ Y}, intersection X ∩ Y := {z | z ∈ X , z ∈ Y} (if n = m), and convex hull
CH(X ) := {λ · x + (1− λ) · y | x, y ∈ X , 0 ≤ λ ≤ 1}.

Given two sets X ,Y ⊆ Rn, the Hausdorff distance is

dp
H

Ä
X ,Y

ä
:= inf

ε∈R

¶
Y ⊆ X ⊕ εBn

p and X ⊆ Y ⊕ εBn
p

©
.

2.2 Safety

First of all, we define the safety problem.

Definition 1. Safe system. Given an initial set X0 ⊆ X and an unsafe set Xu ⊆ X ,
the system is called safe if all trajectories starting from any initial state x0 ∈ X0 do not
enter the unsafe set Xu.

In addition, we formally define hybrid systems, a popular formalism to model systems
with mixed discrete-continuous dynamics.

Definition 2. Hybrid System [12, 102, 133, 24, 109]. An n-dimensional hybrid system
is a tuple, which is defined as follows:

H = (δ, Loc, Flow, Inv, Grd, Asgn) (2.1)

where:
- δ = {x1, ..., xn} is a finite set of variables;
- Loc = {l1, ..., ld} is a finite set of locations;
- Flow is a mapping of the locations to ordinary differential equations of the form:

d

dt
x(t) = f(x(t)), t ≥ 0, (2.2)

with system variables δ and vector field f : X → Rn. The differential equation (2.2) has a
unique, continuous solution from any initial state x(0) = x0 ∈ X under standard Lipschitz
continuity of the vector field f(·).
- Inv : Loc → 2Rn is an invariant. It restricts the values that x can possibly take while
remaining in the location;
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- Grd : Loc× Loc→ 2Rn associates to each transition a guard which should be satisfied for
a transition to be taken;
- Asgn : Loc×Loc→ Rn×n ×Rn maps each transition to an assignment which takes effect
when a transition is taken.

If Grd(ℓ, ℓ′) ̸= ∅, we call (ℓ, ℓ′) a (discrete) transition.

In the following, we provide a discussion of the verification techniques which are
fundamental for this thesis. In addition, a discussion of recent developments and works in
the addressing related challenges is provided.

2.3 Reachability analysis

Reachability analysis works by iteratively applying continuous and discrete post operators
to compute states reachable according to continuous and discrete dynamics, respectively.
In the following we discuss different building blocks of reachability analysis algorithms.

2.3.1 Overview of reachability algorithms

Definition 3. Continuous-Post operator. Continuous-post operator, PostC , computes
the set of reachable states for a set of initial states X0 ∈ Cn and all input signals u over U :

PostC (U ,X0) := {ξx0,u(t) | t ≥ 0, x0 ∈ X0, u(s) ∈ U for all s}.

where ξx0,u(t) is the unique solution to eq. 2.2.

This can be used to define continuous-post operator for specific types of systems,
e.g.,linear time-invariant systems. An n-dimensional linear time-invariant (LTI system
(A, B,U)), with matrices A ∈ Rn×n, B ∈ Rn×m, and input domain U ∈ Cm, is a system of
ODEs of the form

ẋ(t) = Ax(t) + Bu(t), u(t) ∈ U . (2.3)

We denote the set of all n-dimensional LTI systems by Ln. From now on, a vector
x ∈ Rn is also called a (continuous) state. Given an initial state x0 ∈ Rn and an input signal
u such that u(t) ∈ U for all t, a trajectory of (2.3) is the unique solution ξx0,u : R≥0 → Rn

with
ξx0,u(t) = eAtx0 +

∫ t

0
eA(t−s)Bu(s) ds.

The continuous-post operator for a given LTI system (A, B,U) and a set X0 ∈ Cn of
initial states is defined as follows:

PostC ((A, B,U),X0) :=
{ξx0,u(t) | t ≥ 0, x0 ∈ X0, u(s) ∈ U for all s}.

A (symbolic) state of H is a pair (ℓ,X ) ∈ Loc × 2Rn .
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Definition 4. Discrete-Post operator. The discrete-post operator, PostD, maps a
symbolic state to a set of symbolic states by means of discrete transitions:

PostD(ℓ,X ) :=
⋃

ℓ′∈Loc

{(ℓ′, Asgn(ℓ, ℓ′)⊙ (2.4)

(X ∩ Inv(ℓ) ∩Grd(ℓ, ℓ′)) ∩ Inv(ℓ′))}

The reach set of H from a set of initial symbolic states R0 of H is the smallest set R
of symbolic states such that

R0 ∪
⋃

(ℓ,X )∈R
PostD(ℓ, PostC (Flow(ℓ),X )) ⊆ R. (2.5)

Reachability is in general undecidable except for a restricted class of linear dynamical
models [24, 108]. Furthermore, algorithmic solutions for sound relaxations of the prob-
lem [82] typically suffer from either the “curse of dimensionality” (exceeding time/space
complexity with respect to system size) or limited practical utility (very coarse over-
approximations returning too many “false alarms”), or from both issues. One reason
is because many reachability techniques require the explicit computation of the system
dynamics, which most often entails integrating ordinary differential equations (ODEs).
Symbolic integration is restricted to limited cases of ODEs, and in general numerical
integration is hard – solving Lipschitz continuous ODEs over compact domains is a
PSPACE-complete problem [117].

Unsafe Sety

x

Initial Set

Fig. 2.1. Reachable set with box overapproximation. Green region is an initial set, red figure
corresponds to the set of forbidden states and black curves are true trajectories from the initial
region. The blue figure represents a reachable set, which covers all possible trajectories. Blue
boxes correspond to overapproximation of the reachable set with some time interval.

2.3.2 Set Representations

Flowpipe based reachability analysis is known to be computationally expensive even
for linear hybrid systems [136]. Thus, multiple approximation techniques have been
introduced [94, 131, 29, 66, 47, 181] (see Figure 2.1). These set representations and
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approximation techniques are the foundation of reachability algorithms [189, 136]. In this
section, we define some commonly used set representations, which have been successfully
used for different approximation techniques in reachability analysis [136] and are the basis
for the techniques presented in this thesis.

x2

x1x1 x1

x2

x2

Fig. 2.2. Interval hull approximation of the non-convex sets.

Interval hull has emerged as one of the most popular approximating schemes [147] to
approximate high-dimensional sets, because of its simplicity.

Definition 5. Interval Hull [136]. A multidimensional interval hull �(S) is a set:

�(S) = [x1; x1]× . . .× [xn; xn], (2.6)

where for all i, xi = inf{xi : x ∈ S} and xi = sup{xi : x ∈ S}.

Although an approach to approximate the set with an interval hull is simple and
scalable, the drawback is that it introduces a coarse approximation.

One of the popular techniques to mitigate the limitations of the approach is to represent
a set in a half-space representation, i.e., as an intersection of half-spaces. An n-dimensional
half-space is the set {⟨a, x⟩ ≤ b | x ∈ Rn} parameterized by a ∈ Rn, b ∈ R. A polyhedron
is an intersection of finitely many half-spaces, and a polytope is a bounded polyhedron.

Definition 6. Polytope. Given a matrix H ∈ Rs×n and vector d ∈ Rs, the halfspace
representation of a polytope P ⊂ Rn is defined as

P := {x ∈ Rn | H x ≤ d}.

We use the shorthand P = ⟨H, d⟩P .

A halfspace H ⊂ Rn is a special case of a polytope consisting of a single inequality
constraint hT x ≤ d with h ∈ Rn, d ∈ R. We use the shorthand H = ⟨h, d⟩H .
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x2

x1

Fig. 2.3. H-Representation of the green polytope P, which is an overapproximation of the set
S.

However, each set can be approximated by H-representation in infinite different ways.
Support-function representation is a systematic way to overapproximate a set. It can be
used to represent a flowpipe (a sequence of sets that covers the behaviors of a system)
symbolically [95].

Definition 7. Support Functions [136]. The support function of a set S is defined by:

ρS : Rn → R ∪ {−∞,∞},
ℓ 7→ sup

x∈S
x · ℓ (2.7)

where x is a point and ℓ is a vector. A point x∗, such that ⟨x∗, ℓ⟩ = ρS(ℓ) is called a
support vector of S in direction ℓ. ρS(ℓ) provides a value to correctly place a hyperplane
Hp orthogonal to ℓ, so that it touches S as in Figure 2.4. This hyperplane is referred to
as a supporting hyperplane.

x2

x1

l

Fig. 2.4. Demonstration of the support hyperplane in the directions ℓ.
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Support function can be used only to compute a convex hull of S:

CH(S) =
⋂

ℓ∈Rn

{x : x · ℓ ≤ ρS(ℓ)} (2.8)

The Hausdorff distance of two sets X ,Y ∈ Cn with X ⊆ Y can also be expressed in
terms of the support function as

dp
H(X ,Y) = max

∥d∥p≤1
ρY(d)− ρX (d).

Support function representation supports lazy calculations, e.g., computing the set
operations on request. This can be very useful for efficient reachability analysis of hybrid
systems, which contains operations suchs linear maps, intersections, Minkowski sums and
convex hulls. Lazy operations allow only sets that are of interest, e.g., those that intersect
with a linear constraint, to be then approximated [83].

ρAX (ℓ) = ρX (A⊤ℓ) (2.9)
ρλX (ℓ) = ρX (λℓ) = λρX (ℓ) (2.10)

ρX ⊕Y(ℓ) = ρX (ℓ) + ρY(ℓ) (2.11)
ρCH(X ∩Y)(ℓ) = max(ρX (ℓ), ρY(ℓ)) (2.12)

Another special type of polytopes are zonotopes, which can be defined using a center
vector and generators:

Definition 8. Zonotope. Given a center vector c ∈ Rn and a generator matrix G ∈ Rn×p,
a zonotope Z ⊂ Rn is defined as

Z :=
®

c +
p∑

i=1
αi G(·,i)

∣∣∣∣∣ αi ∈ [−1, 1]
´

,

where the scalars αi are called factors. We use the shorthand Z = ⟨c, G⟩Z.

Lazy calculations can be applied in analyses based on zonotopes [94, 96, 18, 15].
Appoximations using approaches defined above are restricted to represent only convex

sets, while reachability analysis sometimes require to provide close approximations of
non-convex sets. Taylor model arithmetic [142] can be utilized to compute tight non-convex
enclosures for the image through a nonlinear function. It is based on a set representation
called Taylor models:

Definition 9. Taylor Model. Given a polynomial function p : Rs → Rn, an interval
domain D ⊂ Rs, and an interval remainder Y ⊂ Rn, a Taylor model T (x) is defined as

∀x ∈ D : T (x) :=
¶

p(x) + y
∣∣∣ y ∈ Y

©
.



16 Background

x2

x1
Fig. 2.5. Approximation of the set S by zonotope

The Taylor order κ ∈ N defines an upper bound for the polynomial degree of the polynomial
p(x). The set defined by a Taylor model is¶

T (x)
∣∣∣ x ∈ D

©
=
¶

p(x) + y
∣∣∣ x ∈ D, y ∈ Y

©
.

For a concise notation we use the shorthand T (x) = ⟨p(x),Y ,D⟩T .

The general concept of Taylor model arithmetic is to define rules on how to perform the
arithmetic operations +, −, ·, and / as well as elementary functions such as sin(x) or

√
x

on Taylor models [142, Sec. 2]. Since every nonlinear function represents a composition of
arithmetic operations and elementary functions, the image through the function can then
be computed by successively evaluating those rules. Given two one-dimensional Taylor
models T1(x) = ⟨p1(x),Y1,D⟩T and T2(x) = ⟨p2(x),Y2,D⟩T the rules for addition and
multiplication are for example given as

T1(x) + T2(x) :=
¨
p1(x) + p2(x),Y1 + Y2,D

∂
T

T1(x) · T2(x) :=
¨
p1(x) · p2(x),Y1 · Y2 + I1 · Y2 + Y1 · I2,D

∂
T
,

where I1 = {p1(x) | x ∈ D} and I2 = {p2(x) | x ∈ D}. The rules for elementary functions
are obtained using a finite Taylor series expansion, where the order of the Taylor series is
equal to the Taylor order κ. For sin(x) we for example obtain with κ = 2 the rule

sin
Ä
T1(x)

ä
:=
¨

sin(c) + cos(c) (p1(x)− c)− 0.5 sin(c) (p1(x)− c)2,Y ,D
∂

T
,

where the expansion point c is chosen as c = p1(cd) with cd being the center of the domain
D, and the interval Y computed according to [142, Sec. 2] encloses the remainder of the
Taylor series. Due to the finite Taylor series approximation, Taylor model arithmetic
yields a tight enclosure rather than the exact image. The accuracy of the enclosure can be
improved by choosing a larger Taylor order.
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Polynomial zonotopes are a novel non-convex set representation that has been orig-
inally introduced for reachability analysis of nonlinear systems [10]. We use the sparse
representation of polynomial zonotopes [124]1:

Definition 10. Polynomial Zonotope. Given a constant offset c ∈ Rn, a generator
matrix of dependent generators G ∈ Rn×h, a generator matrix of independent generators
GI ∈ Rn×q, and an exponent matrix E ∈ Np×h

0 , a polynomial zonotope PZ ⊂ Rn is defined
as

PZ :=
®

c +
h∑

i=1

Ç
p∏

k=1
α

E(k,i)
k

å
G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣∣ αk, βj ∈ [−1, 1]
´

.

The scalars αk are called dependent factors since a change in their value affects multi-
plication with multiple generators. Consequently, the scalars βj are called independent
factors because they only affect multiplication with one generator. We use the shorthand
PZ = ⟨c, G, GI , E⟩P Z.

Using polynomial zonotopes for verification has two main advantages:

1. Due to the similarity with Taylor models the set defined by a Taylor model can be
equivalently represented as a polynomial zonotope [124, Prop. 4].

2. Due to the similarity with zonotopes tight enclosing zonotopes can be computed
efficiently for polynomial zonotopes [124, Prop. 5].

2.3.3 Reachability analysis techniques for different types of sys-
tems

Reachability analysis of linear systems generally scales better than algorithms for nonlinear
systems. There are several techniques to improve efficiency of the algorithm for reachability
analysis of linear systems. Linear hybrid systems can be explored efficiently in a symbolic
way, e.g., using bounded model checking [57]. There are approaches which utilize a
decomposition in the continuous state space. Schupp et al. perform such a decomposition
by syntactic independence [179], which corresponds to dynamics with block-diagonal
matrices (whereas our decomposition is generally applicable). For purely continuous
systems there exist various decomposition approaches. For instance, an approach presented
in [52], which decomposes the system into blocks and exploits the linear dynamics to
avoid the wrapping effect, i.e. accumulation of approximation error over time. Other
approaches for LTI systems are based on Krylov subspace approximations [105], time-scale
decomposition [76, 98], similarity transformations [118, 119], projectahedra [100, 199], and
sub-polyhedra abstract domains [180].

Flowpipe computation techniques for computing reachable set using Taylor Models [65],
polynomial Zonotopes [13], sample trajectories [79], and SMT solvers [126] have all been

1In contrast to [124, Def. 1], we explicitly do not integrate the constant offset c in G. Moreover, we
omit the identifier vector used in the original work [124] for simplicity.
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investigated as potential techniques for nonlinear systems verification. These methods
work directly on the nonlinear differential equations, which create scalability challenges.

There are approaches for nonlinear systems are based on projections with differential
inclusions [28] and Hamilton-Jacobi methods [153, 60].

Domain contraction, the practice of narrowing the domain of possible solutions, has
been used in solving constraint satisfaction over nonlinear real arithmetic [49, 81, 89, 99].
The same technique has been used in hybrid systems safety verification [169] and checking
for intersection of flowpipes with guard sets for discrete transitions [16, 64].

Several techniques have been presented to shift from nonlinear differential equations to
linear. Transforming a nonlinear ODE into a linear ODE by performing change of variables
has been previously investigated [174]. The main goal is to a) search for the change of
variables transformation such that nonlinear dynamical and hybrid systems become linear
dynamical and hybrid systems and b) synthesize invariants for the linear system to prove
safety. The process of approximating a nonlinear dynamical system as a piecewise linear
system with uncertain inputs is called hybridization [30, 32, 71, 106, 39, 140, 62]. The
inputs overapproximate the divergence between the linear and nonlinear dynamics in a
subspace defined by the invariant of each mode in the hybrid system.

The first challenge in performing safety verification using hybridization is that the
number of modes in the hybrid system might be prohibitively large.

Secondly, it requires computing intersections of flowpipes with the guards for discrete
transitions, which might become expensive [96].

2.3.4 Intersection as part of reachability analysis

Computing intersections is a major challenge in reachability analysis of hybrid systems
because it usually requires a conversion from efficient set representations (like zonotopes,
support function, or Taylor models) to polytopes and back, often entailing additional
approximation. Some methods to avoid computing these intersections have been investi-
gated [16, 39].

A coarse approximation of an intersection of a set X and another set Y can be obtained
by only detecting a nonempty intersection (which is generally easier to do) and then
taking the original set X as overapproximation [155]. In general, the intersection between
a polytope and polyhedral constraints (invariants and guards) can be computed exactly,
but such an approach is not scalable [67]. Girard and Le Guernic consider hyperplanar
constraints where reachable states are either zonotopes, in which case they work in a two-
dimensional projection [96], or general polytopes [101, 136]. The tool SpaceEx approximates
the intersection of polytopes and general polyhedra using template directions [84]. Frehse
and Ray propose an optimization scheme for the intersection of a compact convex set
X , represented by its support function, and a polyhedron Y, and this scheme is exact
if X is a polytope [83]. The problem of performing intersections can also be cast in
terms of finding separating hyperplanes [86, 51]. Althoff et al. approximate zonotopes by
parallelotopes before considering the intersection [18]. For must semantics, Althoff and
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Krogh use constant-dynamics approximation and obtain a nonlinear mapping [16]. Under
certain conditions, Bak et al. apply a model transformation by replacing guard constraints
by time-triggered constraints, for which intersection is easy [40].

Performing intersections in low dimensions allows for efficient computations that are
not possible in high dimensions. For example, checking for emptiness of a polyhedron in
constraint representation is a feasibility linear program, which can be solved in weakly
polynomial time, but solutions in strongly polynomial time are only known in two dimen-
sions [111].

2.4 Verification via barrier certificates

Barrier certificates, first introduced in [160], can be used to certify safety of dynamical
systems.

Definition 11. Barrier Certificate. Given an initial set X0 and unsafe set Xu, a
function B : X → R is called a barrier certificate for the system (2.2) if it satisfies

B(x) ≤ 0 ∀x ∈ X0 and B(x) > 0 ∀x ∈ Xu, (2.13)
∂B(x)

∂x
f(x) < 0, ∀x ∈ X s.t. B(x) = 0.

Theorem 1 ([161, 162]). Given the initial set X0 and unsafe set Xu, the system is safe if
there exists a barrier certificate B(·) satisfying the conditions (2.2).

The characterisation of a barrier certificate B relies on its Lie derivative, which enters
the last requirement in (2.13). The Lie derivative of a continuously differentiable scalar
function B with respect to a vector field f is

Ḃ(x) = ∇B(x) · f(x) =
n∑

i=1

∂B

∂xi

fi(x), (2.14)

where xi is the ith element of the state: x = (x1, x2, . . . , xn). The Lie derivative describes
how the value of the barrier certificate varies along with the flow of f , namely along
trajectories of the model. Indeed, if we consider a trajectory x(t), with x(0) ∈ X0, and the
value of B(x) along this trajectory, the first condition ensures B(x(0)) ≤ 0. The condition
on the Lie derivative then guarantees that the evolution of x(t) cannot make B(x) become
positive, and hence x(t) cannot enter XU (where B(x) is positive). The concept of barrier
certificates can be applied to both linear and nonlinear systems [161, 70].





Chapter 3

Reachability analysis of linear hybrid
systems via block decomposition

Due to the computational complexity of reachability analysis of hybrid systems, tools are
usually limited to systems with a small number of state variables. The state-of-the-art
tools, such as SpaceEx, support systems with 200 state variables [84], while most of
the other tools are restricted to dozens of state variables [177]. Some simulation-based
approaches exist to support systems with up to billion dimensions [42], however, such
approaches do not support hybrid setting and require a lot of constraints on the system
under consideration and its settings. Therefore, an algorithm to perform reachability
analysis on systems with mixed discrete-continuous dynamics and thousands of variables
would provide a step forward to address a scalability issue in verification.

3.1 Chapter overview and structure

In this chapter, we describe a new reachability algorithm for linear hybrid systems, i.e., ,
hybrid systems with dynamics given by linear differential equations and invariants and
guards given by linear inequalities. We enhance both continuous and discrete operators
and make sure that the involved costly computations, such as intersections, are performed
in low-dimensional state space.

In particular, we improve the continuous-post operator by performing computations in
high-dimensional state space only for time intervals relevant for the subsequent application
of the discrete-post operator. To this end, we integrate (and modify) a recent reachability
algorithm for (purely continuous) LTI systems [52], which we call Post�C in the following,
in a new algorithm for linear hybrid systems.

Furthermore, the new discrete-post operator performs low-dimensional computations
by leveraging the structure of the guard and assignment of a considered transition.

The Post�C algorithm decomposes the calculation of the reachable states into calculations
in subspaces (called blocks). This decomposition has two benefits. The first benefit is that
computations in lower dimensions are generally more efficient and thus the algorithm is
highly scalable, i.e. enabling to reason about the systems with hunderds of state variables.
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The second benefit is that the analysis for different subspaces is decoupled; hence one can
effectively skip the computations for dimensions that are of no interest (e.g., for a safety
property).

Conceptually, reachability analysis for hybrid systems is performed in a “hybrid loop”
that interleaves a continuous-post algorithm and a discrete-post algorithm. If we consider
Post�C as a black box, we can plug it into this hybrid loop, which we refer to as PostH .
However, there are two shortcomings of such a naive integration. First, PostH does not
utilize the features from decoupling of Post�C at all. It results into a second flaw, that all
operations besides Post�C are still performed in high dimensions, making PostH still suffer
from scalability issues.

We demonstrate that, unlike in PostH , it is possible to perform all computations in
low dimensions. For this purpose, we modify Post�C as well as PostH . Since most of the
models involve guards and invariants where constraints are only in several dimensions,
in common cases, our algorithm does not introduce an additional approximation error.
Furthermore, our algorithm makes proper use of the second benefit of Post�C by computing
the reachable states only in specific dimensions whenever possible.

We implemented the algorithm in JuliaReach, a toolbox for reachability analysis [53, 2],
and we evaluate the algorithm on several benchmark problems, including a 1024-dimensional
hybrid system (see Section 3.4 ). Our algorithm outperforms the naïve PostH and other
state-of-the-art algorithms by several orders of magnitude. This chapter consist of the
results which are basis of our paper [54].

In short, the contributions of this chapter can be described as follows:

• We show how to modify the decomposed reachability algorithm for LTI systems
from [52] in order to integrate it efficiently into a new, decomposed reachability
algorithm for linear hybrid systems.

• We exploit the decomposed structure of the algorithm to perform all operations of
hybrid reachability analyisis in low dimensions.

• We only compute the reachable states in specific dimensions whenever possible.

The chapter is structured as follows:

• We recapitulate PostH in Section 3.2.

• We show how to modify the decomposed reachability algorithm for LTI systems Post�C
in order to efficiently integrate it into a new, decomposed reachability algorithm for
linear hybrid systems in Section 3.3.

• Finally, the evaluation of the proposed approach is presented in Section 3.4.

3.2 Reachability analysis of linear hybrid systems

Our reachability algorithm for linear hybrid systems is centered around the algorithm
from [52], called Post�C for convenience, which implements PostC for LTI systems in a
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compositional way. In this section, we first recall the Post�C algorithm. Two important
properties of Post�C are that (1) the output is a sequence of decomposed sets and that
(2) this sequence is computed efficiently in low dimensions.

After explaining the algorithm Post�C , we incorporate it in a standard reachability
algorithm for linear hybrid systems. However, this standard reachability algorithm will not
make use of the above-mentioned properties. This motivates our new algorithm (presented
in Section 3.3), which is a modification of both this standard reachability algorithm and
Post�C to make optimal use of these properties.

3.2.1 Decomposed reachability analysis of LTI systems

The decomposition-based approach [52] follows a flowpipe-construction scheme using time
discretization, which we briefly recall here. Given an LTI system (A, B,U) and a set of
initial (continuous) states X0, by fixing a time step δ we first compute a set X (0) that
overapproximates the reach set up to time δ, a matrix Φ = eAδ that captures the dynamics of
duration δ, and a set V that overapproximates the effect of the inputs up to time δ. We use β

to denote the number of blocks in a partition. Let {πj}β
j=1 be a set of (contiguous) projection

matrices that partition a vector x ∈ Rn into x = [π1x, . . . , πβx]. Given a set X and
projection matrices {πj}β

j=1, we call πjX a block of X and×j
πjX = π1X × · · · × πβX the

Cartesian decomposition with the block structure induced by projections πj . We write “X to
indicate a decomposed set (i.e., a Cartesian product of lower-dimensional sets). For instance,
given a nonempty set X ∈ Cn, its box approximation is the Cartesian decomposition into
intervals (i.e., one-dimensional blocks). We can bound the approximation error by the
radius of X .

Proposition 1. Let X ∈ Cn be nonempty, p =∞, rp
X be the radius of the box approximation

of X , and let πj be appropriate projection matrices. Then dp
H(X ,×j

πjX ) ≤
∥∥∥rp

X

∥∥∥
p
.

We obtain an overapproximation of the reach set in time interval [kδ, (k + 1)δ], for step
k > 0, with

X (k) := ΦX (k − 1)⊕ V = ΦkX (0)⊕⊕k−1
j=0ΦjV .

Algorithm Post�C decomposes this scheme. Fixing some block structure, let “X (0) :=
X1(0)× · · · × Xβ(0) be the corresponding Cartesian decomposition of X (0). We compute
a sequence “X (k) := X1(k) × · · · × Xβ(k) such that X (k) ⊆ “X (k) for every k. Each
low-dimensional set Xi(k) is computed as

Xi(k) := ⊕β
j=1(Φk)ijXj(0)⊕⊕k−1

j=0 [(Φj)i1 · · · (Φj)iβ]V .

The above sequences X (k) resp. “X (k) are called flowpipes.
Safety properties can be given as a set of symbolic error states that should be avoided

and be encoded as the guard of a transition to a new error location. In our implementation
we can also check inclusion in the safe states (the complement) and do not require an
encoding with additional transitions.
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Fig. 3.1. Starting from the set of initial states X0 (blue set), we first compute the set X (0) by
time discretization (green set), then decompose the set into intervals and obtain “X (0) (orange box
around X (0)), and finally compute the (decomposed) flowpipe “X (1), . . . , “X (4) by propagating
each of the intervals (other orange sets).

Fig. 3.2. The flowpipe from Figure 3.1 together with a guard (red).

Example We illustrate the algorithms with a running example throughout the chapter.
For illustration purposes, the example is two-dimensional (and hence we decompose into
one-dimensional blocks, but we emphasize that the approach also generalizes to higher-
dimensional decomposition) and we consider a hybrid system with only a single location
and one transition (a self-loop). Figure 3.1 depicts the flowpipe construction for the
example.

3.2.2 Reachability analysis of linear hybrid systems

We now discuss a standard reachability algorithm for hybrid systems. Essentially, this
algorithm interleaves the operators PostC and PostD following (2.5) until it finds a fixpoint.
Here we use Post�C as the continuous-post operator.

We first compute a flowpipe “X = “X (0), . . . , “X (N) using Post�C as described above.
Then we use PostD to take a discrete transition. According to (2.4), we want to compute
((A, b)⊙ (“X ∩ I1 ∩ G)) ∩ I2, where (A, b) is a deterministic affine map I1 and I2 are the
source and target invariant, and G is the guard. Frehse and Ray showed that for such
maps the term can be simplified to

(A, b)⊙ (“X ∩ G∗) (3.1)

where the set G∗ can be statically precomputed [83], which is usually easy because the
sets I1, G, and I2 are given as polyhedra in constraint representation (also called H-
representation, as opposed to the (vertex) V-representation). Hence we ignore invariants
in the rest of the presentation for simplicity.
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Fig. 3.3. The assignment shifts the intersection of the flowpipe and the guard from Figure 3.2
(cyan) to the green sets, which are both contained in the first set of the original flowpipe.

Fig. 3.4. Approximation of the union of the green sets from Figure 3.3 using the convex hull
(purple) and the decomposed convex hull (red).

Example We continue with the flowpipe from Figure 3.2. The guard G is a half-space
that is constrained in dimension x1 and unconstrained in dimension x2. Only the last
two sets in the flowpipe intersect with the guard. The assignment here is a translation in
dimension x1. The resulting intersection, before and after the translation, is depicted in
Figure 3.3.

Finally, the algorithm checks for a fixpoint, i.e., for inclusion of the symbolic states we
computed with PostD in previously-seen symbolic states.

Example The green set in Figure 3.3 shows that the two sets we obtained from PostD

are contained in “X (0) computed before. (Recall that in this example we only consider a
single location; hence the inclusion of the sets implies inclusion of the symbolic states.)

The steps outlined above describe one iteration of the standard reachability algorithm.
Each symbolic state for which the fixpoint check was negative spawns a new flowpipe.
Since this can lead to a combinatorial explosion, one typically applies a technique called
clustering (cf. [84]), where symbolic states are merged after the application of PostD. Here
we consider clustering with a convex hull.

Example Assume that the fixpoint check above was negative for both sets that we
tested. In Figure 3.4 we show the convex hull of the sets in purple.

Up to now, we have seen a standard incorporation of an algorithm for the continuous-
post operator PostC (for which we used Post�C) into a reachability algorithm for hybrid
systems. Observe that PostC was used as a black box. Consequently, we could not make
use of the properties of the specific algorithm Post�C . In particular, apart from Post�C , we
performed all computations in high dimensions. In the next section, we describe a new
algorithm that instead performs all computations in low dimensions.
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Algorithm 1 Function reach
Require: D = (Φ,V(·),X (0)): discrete system

N : total number of steps
blocks: list of constrained block indices
other_blocks: list of unconstrained block indices
constraints: linear constraints of the outgoing transitions

1: all_blocks ← blocks ∪ other_blocks
2: “X (0) ← decompose(X (0), all_blocks)
3: P ← identity(dim(Φ))
4: Q ← Φ
5: V̂tmp ← []
6: for bi ∈ blocks do
7: V̂tmp[bi] ←
8: {0dim(bi)}
9: end for

10: for k = 1 to N − 1 do
11: “Xtmp ← []
12: for bj ∈ all_blocks do
13: V̂tmp[bi] ←
14: V̂tmp[bi]⊕ P [bi, :]⊙ V
15: end for
16: “Xtmp = reach_blocks(“X (0), “Xtmp, Q, V̂tmp, blocks, all_blocks)
17: if !isdisjoint(“Xtmp, constraints) then ◃ compute high-dimensional sets only if intersection with

guards is nonempty
18: “Xtmp = reach_blocks(“X (0), “Xtmp, Q, V̂tmp, other_blocks, all_blocks)
19: end if
20: “X (k) ← “Xtmp
21: P ← Q
22: Q ← Q · Φ
23: end for
24: return [“X (0), “X (1), ..., “X (N − 1)]

25: function reach_blocks(“X (0), “Xtmp, Q, V̂tmp, blocks, all_blocks)
26: for bi ∈ blocks do
27: “Xtmp[bi] ← {0dim(bi)}
28: for bj ∈ all_blocks do
29: “Xtmp[bi] ← “Xtmp[bi]⊕Q[bi, bj ]⊙ “X (0)[bj ]
30: end for
31: “Xtmp[bi] ← “Xtmp[bi]⊕ V̂tmp[bi]
32: end for return return “Xtmp
33: end function

3.3 Decomposed reachability analysis

We now present a new, decomposed reachability algorithm for linear hybrid systems. The
algorithm uses a modified version of Post�C for computing flowpipes and has two major
performance improvements over the algorithm seen before.

Recall that Post�C computes flowpipes consisting of decomposed sets. The first improve-
ment is to exploit the decomposed structure to perform all other operations (intersection,
affine map, inclusion check, and convex hull) in low dimensions.

The second improvement is to compute flowpipes in a sparse way. Roughly speaking,
we are only interested in those dimensions of a flowpipe that are relevant to determine an
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intersection with a guard. We only need to compute the other dimensions of the flowpipe
if we detect such an intersection.

The algorithm starts as before: given an initial (symbolic) state, we compute X (0)
(discretization) and decompose the set to obtain “X (0). Next we want to compute a
flowpipe, and this is where we deviate from the previous algorithm.

3.3.1 Computing a sparse flowpipe

We modify Post�C in order to control the dimensions of the flowpipe. Recall that the black-
box version of Post�C computed the flowpipe “X (k) = X1(k)× · · · ×Xβ(k) for k = 1, . . . , N ,
i.e., in all dimensions. This is usually not necessary for detecting an intersection with a
guard. We will discuss this formally below, but want to establish some intuition first. Recall
the running example from Section 3.2.1. The guard was only constrained in dimension
x1. This means that the bounds of the sets “X (k) = X1(k) × X2(k) in dimension x2 are
irrelevant. Consequently, we do not need to compute the sets X2(k) at all (at least for the
moment). We only compute those dimensions of a flowpipe that are necessary to determine
intersection with the guards. Identifying these dimensions and projecting the guards
accordingly has to be performed only once per transition and is often just a syntactic
procedure.

In particular, Algorithm 1 describes the new implementation of Post�C to compute
a sparse flowpipe. The algorithm starts the same way as the original algorithm in [52]
with a decomposed set in line 2 and iteratively computes a sparse flowpipe only for the
dimensions of interest (line 16). However, if we detect an intersection with a guard
constraint (line 17), we compute the full-dimensional flowpipe for the corresponding time
frame. The computation of the inputs V̂tmp remains the same as in the original algorithm.

Example As discussed, we only compute the flowpipe X1(1), . . . ,X1(4) for the first
block (in dimension x1), i.e., a sequence of intervals, which is depicted in Figure 3.5(a).
Projecting the guard to x1, we obtain a ray G1. As expected, we observe an intersection
with the guard for the same time steps as before (namely steps k = 3 and k = 4).

3.3.2 Decomposing an intersection

Computing the intersection of two n-dimensional sets X and G in low dimensions is
generally beneficial for performance; yet it is particularly interesting if one of the sets
is a polytope that is not represented by its linear constraints. Common cases are the
V-representation or zonotopes represented by their generators, which are used in several
approaches [94, 96, 18, 15]. To compute the (exact) intersection of such a polytope X
with a polyhedron G in H-representation, X needs to be converted to H-representation
first. A polytope with m vertices can have O

Ä(
m−n/2
m−n

)ä
linear constraints [146]. (For two

polytopes in V-representation in general position there is a polynomial-time intersection
algorithm [88], but this assumption is not practical.) A zonotope with m generators can
have O

Ä
m
(

m
n−1
)ä

linear constraints [18]. If G is a polytope in H-representation, checking
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(a) The flowpipe from Figure 3.1 in dimension x1 only consists of intervals (blue). The linear
constraint G1 (red) is the guard G projected to x1. For better visibility, we draw the sets thicker
and add a slight offset to some of the intervals.

(b) Illustration of the effective flowpipe computation from Figure 3.1. Only the first set “X (0)
and the sets that intersect with the guard (“X (3) and “X (4)) are computed in high dimensions.

Fig. 3.5. Illustration of the mixed sparse and high-dimensional flowpipe construction.

disjointness of X and G can also be solved more efficiently in low dimensions, e.g., for m

linear constraints in O(m) for n ≤ 3 [45].
Next we discuss how to apply low-dimensional reasoning to the intersection “X ∩ G of a

decomposed set “X and a polyhedron G, or respectively detect emptiness of the intersection“X ∩ G (which can often be achieved more efficiently). The key idea is to exploit that “X is
decomposed. For ease of discussion, we consider the case of two blocks (i.e., “X = X1×X2).
Below we discuss the two cases that G is decomposed or not.

Intersection of two decomposed sets We first consider the case that G is also
decomposed and agrees with “X on the block structure, i.e., G = Ĝ = G1 × G2 and
X1,G1 ⊆ Rn1 for some n1. Clearly“X ∩ Ĝ = (X1 ×X2) ∩ (G1 × G2) = (X1 ∩ G1)× (X2 ∩ G2)

because the Cartesian product and intersection distribute; thus“X ∩ Ĝ = ∅ ⇐⇒ (X1 ∩ G1 = ∅) ∨ (X2 ∩ G2 = ∅). (3.2)

Now consider the second disjunct in (3.2) and assume that G2 is universal. We get
X2 ∩ G2 = ∅ ⇐⇒ X2 = ∅. In our context, “X (and hence X2) is nonempty by construction.
Hence (3.2) simplifies to “X ∩ Ĝ = ∅ ⇐⇒ X1 ∩ G1 = ∅,

so we never need to compute X2 to determine whether the intersection is empty. In
practice, the set G∗ from (3.1) takes the role of Ĝ and is often only constrained in some
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a) High-dimensional intersection

c) Medium-dimensional intersection

b) Low-dimensional intersection

Task:

Fig. 3.6. Illustration of the different intersection algorithms. The task (top row) is to compute
the intersection of a decomposed set “X with a guard G that is constrained in blocks 1 and 3
(marked in orange). We write X̃ for the new set after an intersection operation with set X . a)
The traditional high-dimensional intersection does not make use of the decomposed structure
of “X . b) The low-dimensional intersection projects the guard to each block, computes the
block-wise intersection, and embeds the result in high dimensions. c) The medium-dimensional
intersection projects the guard to the constrained dimensions, computes the intersection with
the Cartesian product of the corresponding sets (here: X1 and X3), projects the result to the
original block structure, and finally embeds this result in high dimensions.

dimensions (and hence decomposed and universal in all other dimensions). We illustrate
this algorithm in Figure 3.6 b).

Intersection of a decomposed and a non-decomposed set If G is not decomposed
in the same block structure as X , we can still decompose it at the cost of an approximation
error. Let π1 and π2 be suitable projection matrices. Then“X ∩ G ⊆ (X1 ∩ π1G)× (X2 ∩ π2G)

and hence “X ∩ G = ∅ ⇐= (X1 ∩ π1G = ∅) ∨ (X2 ∩ π2G = ∅)
⇐= X1 ∩ π1G = ∅.

(3.3)

From (3.3) we obtain 1) a sufficient test for emptiness of “X ∩ G in terms of only X1

and 2) a more precise sufficient test in terms of X1 and X2 in low dimensions. If both
tests fail, we can either fall back to the (exact) test in high dimensions or conservatively
assume that the intersection is nonempty.
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Fig. 3.7. Example of performing the different intersection algorithms. We intersect a three-
dimensional hyperrectangle with the ranges 1 ≤ x1 ≤ 5, 1 ≤ x2 ≤ 5, 1 ≤ x3 ≤ 5 and a polyhedral
guard with the linear constraints x1 + x2 ≤ 4 and x1 ≤ 1.5 (observe that dimension x3 is
unconstrained). The exact intersection is the purple set, obtained using the high-dimensional
intersection. The red set corresponds to the medium-dimensional intersection. The orange set
corresponds to low-dimensional intersection.

The precision of the above scheme depends highly on the structure of “X and G. If several
(but not all) blocks of G are constrained, instead of decomposing G into the low-dimensional
block structure, one can alternatively compute the intersection for medium-dimensional
sets to avoid an approximation error; we apply this strategy in the evaluation (Section 3.4).
If G is compact, the following proposition shows that the approximation error is bounded
by the maximal entry in the diameters of “X and G, and this bound is tight. This strategy
is illustrated in Figure 3.6 c).

Proposition 2. Let “X =×j
Xj ∈ Cn, G ∈ Cn, “X ∩ G ≠ ∅, Ĝ :=×j

πjG for appropriate
projection matrices πj corresponding to Xj, and p =∞. Then

dp
H(“X ∩ G, “X ∩ Ĝ) ≤ max

j
min(

∥∥∥∆p(Xj)
∥∥∥

p
,
∥∥∥∆p(πjG)

∥∥∥
p
).

Example Consider Figure 3.5(b). We have already identified the intersection with the
flowpipe for time steps k = 3 and k = 4. The resulting sets are “X (k)∩G = X1(k)∩G1×X2(k),
where G1 was the projection of G to x1. We emphasize that we compute the intersections
in low dimensions, that we need not compute X2(1) and X2(2) at all, and that in this
example all computations are exact (i.e., we obtain the same sets as in Figure 3.3).

Now consider the case that G is not decomposed in the same structure as “X , e.g.,
the hyperplane x1 = x2. One option is to decompose G to the blocks of “X , i.e., G1 :=
π1G, G2 := π2G and compute the block-wise intersection (X1(k) ∩ G1) × (X2(k) ∩ G2).
Here G1 and G2 are universal, so we obtain a coarse approximation of the intersection
(namely “X (k) itself). Alternatively, computing the intersection “X (k) ∩ G is exact but
computationally more demanding. If we assume that the system has higher dimension,
e.g., 10, then computing the intersection in two dimensions (i.e., with a 2D projection
(X1(k)× X2(k)) ∩ πG) is still exact and yet cheaper than computing the intersection in
full dimensions (i.e., “X (k) ∩ G).

We exemplify the possible difference between the intersection algorithms in Figure 3.7.
There we compare the three algorithms visualized in Figure 3.6. The high-dimensional
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intersection is the most precise as expected because it does not suffer from a projection error.
However, the result is a high-dimensional set instead of a decomposed high-dimensional
set. In addition, this algorithm intersects the sets in three dimensions (including x3)
while the other algorithms ignore the unconstrained dimensions. The medium-dimensional
intersection corresponds to the box approximation of the true intersection. We observe that
if we cannot decompose the polyhedron to the same block structure as the decomposed set
without a projection error (e.g., projecting x1 + x2 ≤ 4 onto x1 and x2 individually results
in one-dimensional universes), then the low-dimensional intersection can produce a large
approximation error. Thanks to the second linear constraint x1 ≤ 1.5 and the fact that we
treat each half-space separately, we are still able to compute a nontrivial intersection.

3.3.3 Decomposing an affine map

The next step after computing the intersection with the guard is the application of the
assignment. We consider an affine map A“X ⊕ {b} with A ∈ Rn×n and b ∈ Rn. Affine-map
decomposition has already been presented as part of the operator Post�C [52]:

A“X ⊕ {b} ⊆×i

⊕
jAijXj ⊕ {bi}

where Aij is the block in the i-th block row and the j-th block column. We recall an error
estimation.

Proposition 3. [52, Prop. 3] Let X =×β

j=1Xj ∈ Cn be nonempty, A ∈ Rn×n, qj :=
arg maxi

∥∥∥Aij

∥∥∥
p

(the index of the block with the largest matrix norm in the j-th block

column) so that αj := maxi ̸=qj

∥∥∥Aij

∥∥∥
p

is the second largest matrix norm in the j-th block
column. Let αmax := maxj αj and ∆sum := ∑

j ∆∞(Xj). Then

dp
H(AX ,×i

⊕
jAijXj)

= max
∥d∥p≤1

∑
i,jρXj

(AT
ijdi)− ρXj

Ä∑
kAT

kjdk

ä
≤ (β − 1)∑

jαj∆∞(Xj) ≤
n

2 αmax∆sum.

In particular, if only one block per block column of matrix A is nonzero, the approx-
imation is exact [52]. For example, consider a two-block scenario and a block-diagonal
matrix A, i.e., A12 = A21 = 0. Then(

A11 0
0 A22

)
X1 ×X2 ⊕ {b1} × {b2}

= (A11X1 ⊕ {b1})× (A22X2 ⊕ {b2}).

In practice, affine maps with such a structure are unrealistic for the Post�C operator
but typical for assignments. Prominent cases include resets, translations, and scalings, for
which A is even diagonal and hence block diagonal for any block structure.
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Example Recall that, after computing the intersections, we ended up with the same
sets as in Figure 3.3. In our example, the assignment is a translation in dimension x1.
Hence, as mentioned above, the application of the decomposed assignment is also exact. In
particular, the translation only affects X1(k) and we obtain the same result as in Figure 3.3.

3.3.4 Inclusion check for decomposed sets

Our algorithm is now fully able to take transitions. Observe that all sets ever occurring
in scheme (2.5) using the algorithm are decomposed. The following proposition gives an
exact low-dimensional fixpoint check under this condition.

Proposition 4. Let “X =×j
Xj ∈ Cn, Ĝ =×j

Gj ∈ Cn be nonempty sets with identical
block structure. Then “X ⊆ Ĝ ⇐⇒ ∧

jXj ⊆ Gj.

3.3.5 Decomposing a convex hull

As the last part of the algorithm, we decompose the computation of the convex hull. We
exploit that all sets in the same flowpipe share the same block structure.

Proposition 5. Let “X =×j
Xj ∈ Cn, Ĝ =×j

Gj ∈ Cn be nonempty sets with identical
block structure. Then

CH(“X ∪ Ĝ) ⊆×j
CH(Xj ∪ Gj).

For the decomposition operations proposed before (intersection, affine map, and
inclusion), there are common cases where the approximations were exact. In these
cases it is always beneficial to perform the decomposed operations instead of the high-
dimensional counterparts. The decomposition of the convex hull, however, always incurs
an approximation error, which we can bound by the radius of the box approximation and
by the block-wise difference in bounds.

Proposition 6. Let “X =×j
Xj ∈ Cn, Ĝ =×j

Gj ∈ Cn be nonempty sets with identical
block structure and let r∞ be the radius of the box approximation of CH(“X ∪ Ĝ). Then

dp
H(CH(“X ∪ Ĝ),×j

CH(Xj ∪ Gj))

≤ min
Ç
∥r∞∥∞ , max

∥d∥p≤1

∑
j|ρXj

(dj)− ρGj
(dj)|
å

.

Example Figure 3.4 shows the decomposed convex hull of the sets “X (3)∩G and “X (4)∩G
after applying the translation. Since each block is one-dimensional in our example, we
obtain the box approximation.
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3.3.6 Discussion

The combination of the decomposed set operations outlined above results in a reachability
algorithm that is sound. This immediately follows from the fact that all operations
compute an overapproximation.

Proposition 7 (Soundness). The analysis using Algorithm 1 and the aforementioned
procedures to apply the decomposed set operations (intersection, affine map, inclusion
check, and convex hull) results in an overapproximation of the reach set.

When using the above algorithm, the question about the choice of the decomposition
arises. Unfortunately, there is generally no automatic way to find the “best” decomposition.

Regarding LTI systems, different decompositions generally result in different flow-
pipes [52]. Unless the LTI system consists of fully decoupled sub-components (which is
usually not the case), the only “best” decomposition is the degenerate case of a single big
block.

Regarding hybrid systems given a fixed decomposition of the LTI systems, there is
indeed a unique “best” decomposition: a single block for all constrained dimensions.
Finding this “best” decomposition is trivial. However, this block may be too big in terms
of computational cost.

We can generally say that a finer partition in the decomposition (i.e., using more
and smaller blocks) only ever degrades precision. However, while lower-dimensional set
operations have lower computational cost, a decrease in precision may actually affect the
rest of the algorithm in a negative way. For instance, we may not be able to prove that a
transition cannot be taken. Thus statements about computational cost are generally not
possible in the case of hybrid systems.

In the next section we shall see that in practical use cases the decomposition is always
beneficial and that using the block size of the constrained dimensions is a good heuristic.

Our reachability algorithm benefits greatly from a low number of constrained dimensions,
especially in high-dimensional models. High-dimensional models are scarcely available,
but those models that we found supported the hypothesis that this number is typically
low. In particular, the ARCH-COMP competition [84] represents the state of the art in
reachability analysis and considers a scalable model of a powertrain from [16] where only
one dimension is constrained. In the next section we consider another scalable model with
just three constrained dimensions.

3.4 Evaluation

We implemented the ideas presented in Section 3.3 in JuliaReach [2, 53]. JuliaReach
comprises two main software libraries: LazySets.jl and Reachability.jl. The former addresses
set-based computations, while the latter contains set-based algorithms for reachability.
The decomposed operations presented in Section 3.3 is a new addition to LazySets.jl for
the purpose of this evaluation, and it is of independent interest. On the other hand, a
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hybrid reachability scheme using decomposed sets in the discrete post-operator has been
added to Reachability.jl. All the code is freely available online [1]. We performed the
evaluation presented in this section on a Mac notebook with an Intel i5 CPU@3.1 GHz
and 16 GB RAM.

3.4.1 Benchmark descriptions

In order to provide a fair and complete comparison, we select commonly used benchmarks
in the reachability field from the HyPro models repository [4]. In addition, we evaluate our
implementation on a number of models taken from the ARCH-COMP 2019 competition [21],
which is a friendly competition and provides a landscape of the current capabilities of
verification tools. Finally, we benchmark a scalable model from [84] to compare results
for systems with up to 1024 dimensions. To demonstrate the qualitative performance
of our approach, we verify a safety property for each benchmark, which requires precise
approximations in each step of the algorithm. We briefly describe the benchmarks below.

Linear switching system. This five-dimensional model taken from [4] is a linear hybrid
system with five locations of different controlled, randomly-generated continuous dynamics
stabilized by an LQR controller. The discrete structure has a ring topology with transitions
determined heuristically from simulations. The safety property for this system is x1 > −1.2.

Spacecraft rendezvous. This model with five dimensions represents a spacecraft steering
toward a passive target in space [59]. We use a linearized version of this model with three
locations. We consider two scenarios, one where the spacecraft successfully approaches
the target and another one where a mission abort occurs at t = 120 min. For the safety
properties we refer to [21].

Platooning. This ten-dimensional model with two locations represents a platoon of
three vehicles with communication loss at deterministic times [141]. The safety property
enforces a minimum distance d between the vehicles: ∧

x∈{x1,x4,x7} x ≥ −d. We consider
both a time-bounded setting with d = 42 and a time-unbounded setting with d = 50; note
that in the latter setting a fixpoint must be found.

Filtered oscillator. This scalable model consists of a two-dimensional switched oscillator
(dimensions x and y) and a parametric number of filters (here: 64–1024) which smooth
x [84]. We fixed the maximum number of transitions to five by adding a new variable.
The safety property is y < 0.5.

3.4.2 Tool descriptions

We compare our implementation in JuliaReach to two other algorithms available in the
same tool. All three algorithms use the same decomposition-based continuous-post operator
Post�C [53], so the main difference between these algorithms is the intersection operation
with discrete jumps, which allows for a direct comparison of the approach presented in
this work. The existing implementations can be seen as instances of the algorithm in
Section 3.2. Furthermore, we compare the implementation to two algorithms available in
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Table 3.1. For each benchmark we report the number of dimensions and the number of constrained
dimensions (Dim. (constr.)), the step size of the time discretization (Step) and the run time of the
different algorithms as described in Section 3.4.2 (e.g., “Deco” refers to the decomposed algorithm
presented in this chapter) in seconds (where the fastest solution is marked in bold face). For benchmark
instances with parenthesized computation time, the safety property could not be proven because the
overapproximation was too coarse, in which case the computation terminated as soon as the violation
was detected. “TO” and “OOM” indicate a timeout of 5 × 104 seconds and an out-of-memory error,
respectively.

Benchmark Dim.
(constr.) Step Deco LazySupp LazyOptim SpaceEx

(LGG)
SpaceEx
(STC)

linear
(switching) 5 (1) 0.0001 2.50× 100 1.27× 101 2.81× 101 2.60× 101 2.30× 101

spacecraft
(noabort) 5 (4) 0.04 5.30× 100 3.42× 100 2.19× 102 1.18× 100 3.50× 10−1

spacecraft
(120) 5 (5) 0.04 5.30× 100 2.10× 100 4.30× 101 1.91× 100 8.10× 10−1

platoon
(bounded) 10 (4) 0.01 1.30× 10−1 1.60× 10−1 5.69× 100 5.55× 100 1.60× 100

platoon
(unbounded) 10 (4) 0.03 1.08× 100 1.16× 100 4.96× 101 3.46× 101 6.50× 101

filtered
(osc64) 67 (3) 0.01 2.81× 100 (7.43× 100)† 5.63× 102 2.04× 101 3.25× 101

filtered
(osc128) 131 (3) 0.01 7.95× 100 (4.29× 101)† 1.79× 103 1.69× 102 4.67× 103

filtered
(osc256) 259 (3) 0.01 2.80× 101 (9.19× 101)† 9.99× 104 8.70× 103 OOM

filtered
(osc512) 515 (3) 0.01 1.13× 102 (4.73× 102)† TO TO TO

filtered
(osc1024) 1027 (3) 0.01 5.09× 102 (5.11× 103)† TO TO TO

†The safety property could not be proven by this tool because the overapproximation was too
coarse.

SpaceEx [84], which is an efficient and mature verification tool for linear hybrid systems.
We summarize the different approaches below.

Deco. This algorithm implements the decomposed approach presented in this thesis.
To compute the (low-dimensional) intersections, we use a polyhedra library [139].

LazySupp. This algorithm uses a (lazy) support-function-based approximation of
the intersection operation using the simple heuristic ρX∩Y (ℓ) ≤ min(ρX(ℓ), ρY (ℓ)). This
heuristic is fast but not precise enough to verify the safety property of the filtered oscillator
model.

LazyOptim. In contrast to the coarse intersection in LazySupp, this algorithm uses a
more precise implementation of the intersection operation based on line search [83].

SpaceEx LGG. This is an efficient implementation of the algorithm by Le Guernic and
Girard [101]. The algorithm uses a support-function representation and can hence check
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Table 3.2. Evaluation for different time steps on the filtered oscillator model with 64 filters
(“filtered_osc64” in Table 3.1) and all algorithms (see Section 3.4.2) that allow varying the time
step. The last row shows the relative change of the fourth row over the first row as base line.

Step Deco LazySupp LazyOptim SpaceEx LGG

0.01 2.8× 100 7.4× 100 5.6× 102 2.0× 101

0.005 4.1× 100 1.3× 101 9.5× 102 3.6× 101

0.001 1.7× 101 6.5× 101 4.7× 103 1.6× 102

0.0005 3.2× 101 1.3× 102 8.4× 103 3.2× 102

×20.0 ×11.4 ×17.5 ×15.0 ×16.0

low-dimensional conditions efficiently, but operations such as intersections work in high
dimensions.

SpaceEx STC. The STC algorithm is an extension of the LGG algorithm with automatic
time-step adaptation [85].

All tools use a support-function representation of sets. We use template polyhedra
with box constraints to overapproximate these sets, which roughly corresponds to a
decomposition into one-dimensional blocks. This approximation is fast.

For the algorithms implemented in JuliaReach, we use one-dimensional block structures
for all models. For SpaceEx we use the options given in the benchmark sources. For
algorithms that use a fixed time step, we fix this parameter to the same value for each
benchmark. The SpaceEx STC algorithm does not have such a parameter, so we instead
fix the parameter “flowpipe tolerance,” which controls the approximation error, to the
following values: Linear switching system: 0.01, Spacecraft rendezvous: 0.2, Platooning: 1,
Filtered oscillator : 0.05.

3.4.3 Evaluation results

The results are presented in Table 3.1. We generally observe a performance boost of the
Deco algorithm for models with more than five dimensions, and only a minor overhead
for “small” models. This demonstrates the general scalability improvement by performing
operations, especially the intersection, in low dimensions. Since all models have a small
number of constrained dimensions in their guards and invariants, choosing an appropriate
block structure results in very low-dimensional sets for computing the intersections, for
which concrete polyhedral computations are very efficient and most precise. We note
that such an intersection computation does not scale with the dimension, and so other
algorithms must resort to approximation techniques.

Moreover, we found that our approach scales more favorably compared to the high-
dimensional approaches when decreasing the time step δ (cf. Section 3.2.1). We demonstrate
this observation for the filtered oscillator model in Table 3.2 and explain it as follows.
Recall that we only compute those sets in the flowpipe in high dimensions for which we
have detected an intersection in low dimensions. With a smaller time step, the total
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Fig. 3.8. Four flowpipes for the model filtered oscillator using a time step of 0.01. The dark blue
flowpipe (low-dimensional intersection algorithm) and the orange flowpipe (medium-dimensional
intersection algorithm) are obtained for a one-dimensional block structure. The light blue
flowpipe is obtained for a two-dimensional block structure and octagon approximation. The red
flowpipe is obtained by the tool SpaceEx (which uses high-dimensional analysis). The dashed
line corresponds to the safety property y < 0.5.

number of sets increases and hence the savings due to our approach become more dominant.
To give an example, for the filtered oscillator with time step 0.0005, out of the 9,661 sets
in total we only computed 1,400 sets in high dimensions. Consequently, making the time
step 20 times smaller only makes the run time 11.4 times slower for our algorithm as
opposed to at least 15 times slower for other algorithms.

Furthermore, while in general our algorithm may induce an additional approximation
error with the block structure, in the evaluation it was always precise enough to prove
the safety properties. In Table 3.1 we report the total amount of constrained dimensions
in guards, invariants, and safety properties for each benchmark instance. These are the
dimensions that determine our low-dimensional flowpipes. For some of the models, the
constrained dimensions differ between the invariants/guards and the safety property, but
a one-dimensional block structure was still sufficient. Note that we need to compute
intersections only with invariants and guards; for safety properties we just need to check
inclusion.

In the linear switching model, only one dimension is constrained, so our algorithm,
together with one-dimensional block structure, is appropriate, especially because a small
time step is required to prove the property. In the platooning model, the safety property
constrains three dimensions but the invariants and guards constrain just one dimension.

The invariants and guards of the models spacecraft and filtered oscillator constrain
two dimensions, so the natural choice for the decomposition is to keep these dimensions
in the same block. However, we chose to decompose into one-dimensional blocks for
better run-time comparison in Table 3.1. In the implementation, we follow the strategy to
perform the intersection in two dimensions and then project back to one dimension (cf.
Section 3.3.2). If instead we decide to employ a two-dimensional block structure, we can
further gain precision by using different template polyhedra, e.g., with octagon constraints.
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Fig. 3.9. Scaling the number of constrained dimensions k for an intersection X ∩ G where X is
a hypercube and G is a half-space.

In Figure 3.8 we visualize this alternative for the filtered oscillator. As expected, the one-
dimensional analysis is less precise as it corresponds to a box approximation. However, we
note that a one-dimensional block structure also inherently reduces the precision of Post�C ,
so the additional approximation error does not only stem from the handling of discrete
transitions by to our approach. In addition, one can observe that the approximation using
a one-dimensional block structure with low-dimensional intersection is coarser compared
with the medium-dimensional strategy and we cannot prove the safety property anymore.

3.4.4 Scaling the number of constrained dimensions

We now investigate the effect of increasing the number of constrained dimensions in two
tests.

In the first evaluation we focus on the intersection operation. We fix a hypercube X of
dimension 1,024, of radius 4 and centered in the origin, and a half-space G x1 + · · ·+xk ≤ 2
for parameter k that controls the number of constrained dimensions. The half-space
properly cuts the hypercube for any k. In Figure 3.9 we show the run times for different
intersection algorithms. We note that these algorithms compute different approximations
of the true intersection: the “DecoLow” and “DecoMedium” algorithms implement the
respective ideas from Figure 3.6; the “LazySupp” and “LazyOptim” algorithms use the
ideas as in the reachability algorithms of the same name (described in Section 3.4.2);
the “Concrete” algorithm uses a polyhedra library (note that the H-representation of a
hypercube of dimension n has only 2n constraints). We can see that the high-dimensional
intersection algorithms are not affected by the number of constrained dimensions k whereas
the decomposition-based algorithms scale gracefully with k.

In the second evaluation we consider the full reachability setting. For that we modify
the filtered oscillator benchmark with 128 filters (filtered_osc128 in Table 3.1) by adding
small nonzero entries to k previously unconstrained dimensions in the invariants and
guards. We consider all the reachability algorithms that are precise enough to verify the
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Fig. 3.10. Scaling the number of constrained dimensions k for the modified filtered_osc128
benchmark.

safety property (which is still satisfied in our modified benchmark instances), i.e., all the
algorithms from Table 3.1 except for LazySupp. Note that for SpaceEx algorithms we
extrapolate the results we report for this benchmark instance in Table 3.1 to a range
of values of parameter k as the reachability algorithms implemented in SpaceEx do not
depend on the number of constrained dimensions. The run times are plotted in Figure 3.10
as a function of k. Again the high-dimensional algorithms are not affected by the number
k whereas the decomposition-based algorithm scales well with k (note the log scale). For
k ≈ 120 (close to n = 131) we see a cross-over with the SpaceEx LGG run time, which is
expected due to the overhead of the decomposition.

3.5 Summary

We have presented a schema that integrates a reachability algorithm based on decompo-
sition for LTI systems in the analysis loop for linear hybrid systems. The key insight is
that intersections with polyhedral constraints can be efficiently detected and computed
(approximately or often even exactly) in low dimensions. This enables the systematic focus
on appropriate subspaces and the potential for bypassing large amounts of flowpipe com-
putations. Moreover, working with sets in low dimensions allows to use precise polyhedral
computations that are infeasible in high dimensions. An essential step in our algorithm is
the fast computation of a low-dimensional flowpipe for the detection of intersections.

In the presented algorithm, we recompute the flowpipe for the relevant time frames in
high dimensions using the same decomposed algorithm with the same time step. However,
this is not necessary. We could achieve higher precision by using different algorithmic
parameters or even a different, possibly non-decomposed, algorithm (e.g., one that features
arbitrary precision [97]). This is particularly promising for LTI systems because one can
avoid recomputing the homogeneous (state-based) part of the flowpipe [83].
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The algorithm will also benefit from a refinement loop to rearrange the block structure.
Currently, we merge different blocks to maintain the precision for hybrid systems where
different locations have different contrain dimensions. This results into longer computa-
tional time or splitting into original blocks which comes with additional approximation
error. Thus, creating heuristics to automatically maintain and change structure between
different locations could improve the overall performance of the algorithm.



Chapter 4

Reachability of Linearized Systems
and Zonotope Refinements

Reachability analysis for nonlinear systems is challenging, and is often the bottleneck for
formal cyber-physical systems (CPS) analysis methods. Despite recent advances, systems
described by nonlinear ordinary differential equations are still hard to analyze, control,
and verify. On the other hand, a powerful body of methods and theories exists for linear
systems making analysis, control, and verification much easier, even for high-dimensional
systems.

4.1 Chapter overview and structure

In this work we investigate nonlinear reachability approaches based on Koopman operator
linearization [144]. Koopman operator linearization is a process where a nonlinear system
can be approximated as a linear system with a large number of so-called observable
variables, each of which can be a nonlinear function of the original state variables. Koopman
operator techniques are also well-suited for data-driven approaches since the Koopman
linearized system can be directly created from measurements, bypassing a potentially
complex modeling step. The Koopman framework has been successfully applied to many
applications, including control [143, 156] and state estimation [170]. This linear system can
be computed either symbolically from differential equations or—importantly for black-box
systems—from data derived from real-world system executions or simulations [132]. The
efficiency of techniques related to reachability analysis for linear systems [94, 52, 36]
motivates the use of Koopman operator linearization. However, directly applying existing
reachability algorithms is not possible, as Koopman operator linearization approximates
nonlinear systems of differential equations with higher-dimensional linear systems. For
formal verification using reachability analysis, this is an attractive conversion, as highly
scalable methods exist to compute reachable sets for linear systems. However, linear
reachability analysis methods must be modified to support nonlinear initial state sets.

In this chapter, we present several algorithms to perform reachability analysis algorithms
on Koopman linearized systems. We first show the problem can be solved using a nonlinear
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satisfiability modulo theory (SMT) solver to enforce the initial state constraints. This Direct
Encoding Algorithm is correct but may be slow in practice and even undecidable in theory.
We improve analysis efficiency through zonotope overapproximations of the nonlinear
initial sets constructed using interval arithmetic, as well as two abstraction-refinement
techniques: (i) Hyperplane Backpropagation and (ii) Zonotope Domain Splitting. Then,
we propose combining Taylor models with polynomial zonotope refinement to reason over
non-convex initial sets.

The approximation must be also sufficiently accurate for the result to be meaning-
ful, which is controlled by the choice of observable functions during Koopman operator
linearization. Ad hoc approach to choose appropriate observable variables can be time-
consuming. In addition, it is difficult to reason about accuracy of such approximation.
Random Fourier [165] features can be used as observable functions, to make the process
more systematic and provide a higher-accuracy approximation. In contrast with an ad
hoc, finite-dimensional feature space, random Fourier features leverage the powerful kernel
trick from machine learning [176, 184] to generate a computationally tractable mapping
over an infinite-dimensional feature space.

We provide a comparison of algorithms on the well-known nonlinear system benchmarks
to showcase applicability and efficiency of the presented techniques. This chapter is based
on the results published in [37] and [44].

The contributions of this chapter are:

• We propose using Koopman operator to shift from nonlinear dynamics to linear.

• We improve the accuracy of the finite Koopman linearization by employing random
Fourier features in Section.

• We demonstrate different approaches to to analyse systems with non-convex initial
sets.

– First, we propose the basic direct encoding algorithm.

– Secondly, we provide an algorithm based on interval arithmetic and numerous
refinements to improve efficiency of the algorithm.

– Finally, we further improve the efficiency of the algorithm by employing Taylor
model arithmetic and polinomial zonotopes to handle non-linear initial sets.

The chapter is structured as follows:

• We first desribe the linerization via Koopman operator in Sec. 4.2.

• Then, a systematic way to generate observables using random Fourier features is
presented in Sec. 4.3

• We propose new verification algorithms which work with non-convex initial sets in
Sec. 4.4
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• We demonstrate the superior performance of using Koopman operator and Ran-
dom Fourier feature observables along with the adjusted reachability algorithm in
comparison with existing techniques on various benchmark systems in Sec. 4.5.

4.2 Koopman Operator Linearization

The modern study of dynamical systems is driven by Poincaré’s state space view of
the underlying system. By considering the evolution of points in a state space, this
view enables intuitive tools for analyzing, designing, controlling, and verifying dynamical
systems. However, it can be ill-suited for certain classes of problems such as uncertain
systems [58, 92] and systems without explicit equations describing their evolution (data-
driven or black-box models) [115].

An alternative to this state space view is Koopman’s observable space view of dynam-
ical systems. In contrast to the state space view, the observable space view considers
the evolution of observables, or functions, of the given state space [58] instead of the
states themselves. This alternative view leads to the notion of the so-called Koopman
operator [127]. For dynamical system S : Ω→ Ω and observable g : Ω→ R, the Koopman
operator K is defined by

Kg = g ◦ S, ∀g ∈ L∞ (4.1)

As such, the Koopman operator is an infinite-dimensional linear operator on the space
of scalar-valued functions of the state space [127]. The spectral properties of this linear
operator describe the evolutionary properties of the underlying dynamical system S, similar
to finite-dimensional linear state space models (e.g., eigen decomposition of a state matrix).
However, unlike a finite-dimensional linear state matrix which describes the evolution of
system states, the Koopman operator describes the evolution of scalar-valued functions as
driven by the dynamics of the underlying system [154].

As Eq. 4.1 is equally valid for linear and nonlinear systems, the observable space view
enables the linear treatment of full nonlinear dynamics via the Koopman operator. Thus,
the Koopman operator has the potential to bridge nonlinear systems and existing linear
tools for analysis, design, control, and verification [56, 132] without sacrificing information,
like with traditional linearization techniques [58]. Unfortunately, this theory comes with
a practical cost because the Koopman operator is infinite-dimensional. In theory, one
can equivalently switch between representations of a dynamical system that are nonlinear
finite-dimension (state space) or linear infinite-dimensional (observable space). In other
words, one can lift the nonlinear dynamics into a higher-, possibly infinite-, dimensional
space where its dynamics are linear [129].

For certain classes of systems, it is possible to obtain a finite-dimensional Koopman
operator that describes the evolution of a system. In particular, these systems posses
Koopman-invariant subspaces containing the system state [56].
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For example, consider the following continuous-time dynamical system:

dx

dt
=
[

µx1

λ
(
x2 − x4

1
)] (4.2)

where x⊤ = [x1, x2]. If we consider the observables g1 (x) = x1, g2 (x) = x2, g3 (x) = x4
1,

the state can be lifted into a three-dimensional space where the system evolves linearly.
Using the relationships in Eq. 4.2, the derivatives of the observables are linear, and can be
written as

d
dt

g (x) =

µ 0 0
0 λ −λ

0 0 4


︸ ︷︷ ︸

K̃

g (x) (4.3)

where g⊤ = [g1, g2, g3] and K̃ is the infinitesimal Koopman operator [134]. The solution to
this linear ordinary differential equation is then

g (xt) = eK̃tg (x0)
= Ktg (x0) (4.4)

where Kt = eK̃t is the Koopman operator as parameterized by t.
As the system states are contained in the set of observables (g1 and g2) the states can

be recovered from Eq. 4.4 linearly as

xt =
[

1 0 0
0 1 0

]
Ktg (x) (4.5)

Unfortunately, identifying the observables that form a Koopman-invariant subspace of
a system is a difficult problem and an active area of research. However, simple algorithms
exist for computing finite approximations of the Koopman operator given time-series
data. These algorithms are primarily based on the Dynamic Mode Decomposition (DMD)
algorithm [175], which performs regression of data to derive linear dynamics [132].

To fit a discrete-time linear system to data, the DMD algorithm starts by concatenating
temporal snapshots of the system states x as columns of two data matrices, X and X ′.
Given m time instances of an n-dimensional system, these two n ×m − 1 matrices are
formed as

X =
î
x1 x2 . . . xm−1

ó
(4.6)

X ′ =
î
x2 x3 . . . xm

ó
(4.7)
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where xk indicates the kth temporal snapshot of x. The best-fit least squares state transition
matrix A such that X ′ ≈ AX is then given by

A = X ′X† (4.8)

where X† is the Moore-Penrose pseudoinverse of X. Because the DMD algorithm assumes
linear dynamics, one can naturally extend this algorithm to approximate the linear
Koopman operator from data by lifting the states in Eqs. 4.6 and 4.7 using a finite set
of observables called a dictionary. In other words, given some dictionary of ℓ pre-defined
observables, where g (x) =

[
g1 (x) , g2 (x) , . . . , gℓ (x)

]⊤, lift Eqs. 4.6 and 4.7 as

G =
î
g (x1) g (x2) . . . g (xm−1)

ó
(4.9)

G′ =
î
g (x2) g (x3) . . . g (xm)

ó
(4.10)

and solve in the same manner as with DMD, leading to an approximation of the Koopman
operator [197].

Similarly, one can approximate the infinitesimal Koopman operator by substituting
data matrix G′ by d

dt
G. Depending on the application at hand, these derivatives may

be directly available via rate sensors or be computable when synthetic data is leveraged.
Alternatively, finite difference methods may be used.

In practice it may be impractical to solve Eq. 4.8 as presented, as the data matrices can
be large and/or the data may be noisy. In such cases, one can adjust the algorithm to use
low-rank approximations of the data matrix G. This is typically achieved by truncating
the non-dominant modes of the singular value decomposition (SVD) of G. Koopman
operator linearization for analysis and control are active areas of research in the applied
mathematics community [143, 132].

We strive to use the Koopman observable space view to perform reachability analysis
for nonlinear systems.

4.3 Linearization via Fourier Features

We now present the automated generation of observables using random Fourier features [73].
Let us first motivate why Fourier features are a good choice for observables. For Koopman
linearization, the observables g(x) define a transformation to a high-dimensional space.
One commonly used approach to handle such high-dimensional spaces efficiently is the
kernel trick. In many algorithms the data points x, y ∈ Rn only appear in the form of inner
products g(x)T g(y). In this case it suffices to define a kernel function k(x, y) that represents
the similarity measure g(x)T g(y) between data points in the high-dimensional feature space,
rather than explicitly defining a transformation g(x) to this space. Kernel functions can also
represent more general features that are not vectors and even infinite dimensional features,
which motivates their application in the Koopman framework. The kernel trick is mainly
applied for machine learning techniques [176], such as regression [184], clustering [122], and
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classification [191]. However, the extended dynamic mode decomposition algorithm [195]
can also be formulated in terms of inner-products [196], so that the kernel trick can be
applied for Koopman linearization. Rather than explicitly choosing observables g(x) we
can therefore select a kernel function instead, which implicitly defines the observable
function g(x) through the kernel’s relation to an inner product space. Commonly used
kernels are radial basis function kernels, polynomial kernels, and spline kernels.

The kernel trick cannot be applied directly to our reachability technique since we
require an explicit formulation of the observables g(x). We therefore first select a kernel
function k(x, y), and then determine observables g(x) that yield a good approximation of
the kernel function k(x, y) ≈ g(x)T g(y). Random Fourier features are a common technique
to approximate kernel functions [165, 73]. They are based on Bochner’s theorem [172],
which links a weakly stationary kernel function to a Fourier transform:

k(x, y) =
∫
Rn

e j ωT (x−y) dµ(ω) = Eω

Ä
e j ωT x e j ωT y

ä
, (4.11)

where the function µ : Rn → [0, 1] defines a probability distribution, Eω(·) denotes the
expected value with respect to ω, j is the imaginary unit, and a denotes the complex
conjugate for a complex number a ∈ C. The distribution µ(ω) associated with a specific
kernel can be obtained by taking the inverse Fourier transform of k(x, y) [165]. We can
collect m samples from the distribution µ(ω) to approximate the expected value in (4.11),
which finally yields

k(x, y) = Eω

Ä
e j ωT x e j ωT y

ä
≈ 1

m

m∑
i=1

e j ωT
i x︸ ︷︷ ︸

gi(x)

e j ωT
i y︸ ︷︷ ︸

gi(y)

.

The random Fourier features are the resulting observables gi(x) that approximate the
kernel function. Note that we can omit the constant factor 1

m
since extended dynamic

mode decomposition will automatically scale the observables accordingly. We consider
real-valued kernels only, so we use Euler’s formula ej x = cos(x) + j sin(x) to simplify the
random Fourier features to

gi(x) =
√

2 cos
Ä
ωT

i x + bi

ä
, i = 1, . . . , m, (4.12)

where the shift bi is selected uniformly from the interval [0, 2π] and ωi is drawn randomly
from the probability distribution µ(ω) corresponding to the kernel that is used. While
this random selection might appear to be a disadvantage at first sight, it is guaranteed
that the random Fourier feature approximation converges to the exact kernel function
when increasing the number of observables [165]. Moreover, we observed from our tests
that changes in the values for bi and ωi do not significantly influence the accuracy of the
resulting linear approximation.

In summary, the random Fourier features presented above represent a systematic method
for selecting a finite set of accurate observables which requires only few hyperparameters.
These hyperparameters include the type of kernel that is used, the kernel parameters, and
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the number of observables. In this thesis, for the evaluation we use a radial basis function
kernel

k(x, y) = e−
∥x−y∥2

2
2 ℓ2 ,

which contains the lengthscale ℓ as the only parameter. The probability distribution
µ(ω) for this kernel is the multivariate normal distribution with covariance matrix ℓ2 · In

centered at the origin [165].

4.4 Reachability analysis of linear systems with non-
linear initial sets

Koopman operator linearization creates approximations to nonlinear, possibly black-
box, systems. The resulting systems have linear dynamics in the space of observables.
Reachability analysis of linear systems is a well-studied topic, and existing methods are
efficient even with thousands or more state variables [41]. However, the initial and unsafe
constraints in the original problem are defined on the original system variables, not on
the nonlinear observable variables. This nonlinear relationship creates two additional
tasks: (1) projection of initial set from state space variables to the space of observables,
and (2) projection of reachable set in the space of observables back into the state space.
Problem (2) can be resolved by including the original state variables within the dictionary
used during Koopman linearization. This means that the projection from the space of
observables to the original state variable can be written as a simple linear transformation,
x = Mg(x). Problem (1), however, is more difficult to handle, and the main focus of the
rest of this section.

For simplicity we assume that the specification we aim to verify is described by a single
unsafe set Xu, but the extension to multiple unsafe sets is straightforward.

4.4.1 Reachability analysis using zonotope refinements

4.4.1.1 Direct Encoding of Nonlinear Constraints with SMT Solvers

Let the state space of the system to be x and the observables be g(x). Furthermore, the
evolution of observables is determined by a linear differential equations, g(xt) = Kg(x0).
The state after time t, denoted as xt is Mg(xt). Given an initial set X0, and unsafe set Xu,
the safety verification can be formulated as satisfiability of constraints in Equation 4.13.

x0 ∈ X0, y = g(x0),
yt = Kty, (4.13)

xt = Myt, xt ∈ Xu.

Given step size h > 0, for each time instant t = i×h, an SMT solver can be invoked with
the constraints in Equation 4.13. Often, the initial set X0 and unsafe set Xu are specified
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as conjunctions of linear constraints. For such cases, observe that the only nonlinear
constraint in Equation 4.13 is y = g(x0). The complexity of finding an assignment of
variables that satisfies these linear constaints depend on the number and functions used
for the observables.

For example, if observables in the dictionary are polynomials, SMT solvers can use
algorithms like cylindrical algebraic decomposition [27] that are theoretically guaranteed
to terminate with a correct result.

In practice, this algorithm is doubly exponential in the number of variables, so a result
may not be produced in a reasonable time.

If the dictionary includes transcendental functions like sin or cos, the problem in general
may not even be decidable.

In our implementation, we use the δ-decidability SMT solver dReal [75, 55, 90], which
theoretically always terminates but may produce an unknown result if the constraints are
on the boundary of satisfiability (within a tolerance δ), which we can then still flag as
potentially unsafe.

Although the direct encoding works, for the reasons stated above it can be slow, so we
next focus on optimizations and efficiency improvements.

4.4.1.2 Overapproximating Nonlinear Constraints with Intervals

Suppose that the initial set X0 is given as hyperrectangles, as is often the case. That is,
I = [X 1

0 ;X 1
0 ]× . . .× [X n

0 ;X n
0 ]. Over such a domain, it is possible to compute conservative

approximation of y = g(X0) where X0 ∈ I using interval arithmetic. Alternatively, when
X0 is defined with linear constraints, we can compute upper and lower bounds on each of
the variables using linear programming (LP) to construct box bounds, and then use those
to construct the conservative approximation of y = g(X0). Let the bounds we obtain on y

be such that y ∈ [y1, y1]× . . .× [yk, yk]. Substituting these in Equation 4.13 results in the
following constraints.

y ∈ [y11
, y1]× . . .× [y1k

, y1k],
yt = Kty, (4.14)

xt = Myt, xt ∈ Xu.

This set of constraints can be solved efficiently using LP, as is done in linear systems
reachability analysis using zonotopes [94] or linear star sets [35].

While this method can be very efficient, the overapproximation of g(x) using interval
arithmetic might yield a very coarse overapproximation. This would mean that spurious
unsafe executions of the system may be found, due to the overapproximation. To overcome
this the Interval Encoding Algorithm uses a hybrid approach, where an LP is first solved
at each step according to Equation 4.14, and only if the LP is feasible will we then call
the dReal SMT solver with the nonlinear constraints from Equation 4.13.
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4.4.1.3 Hyperplane Backpropagation

One of the building blocks that helps us improve efficiency is the notion of hyperplane
backpropagation. Consider the unsafe set given as Xu = [X 1

u ;X 1
u ] × . . . × [X n

u ;X n
u ],

observables g(x), and x = Mg(x). Since we assumed the Koopman dictionary contained
the original state variables, we can directly encode Xu as constraints in the observable
space, which we write as g(Xu). If qT y ≤ r is a halfplane constraint in g(Xu), then the
corresponding constraint for propagating this constraint back by time t is obtained by
(KT q)T y ≤ r. We perform hyperplane backpropagation for all the constraints in g(Xu).
In the Koopman linerization literature, this operation is called pull-back operation [148].
Any state that satisfies all the constraints obtained by performing the hyperplane back-
propagation will end up in g(Xu) after time t. We label these constraints as PropCons(Xu).
While we have explicitly specified this only for unsafe sets that are intervals, this can be
easily extended to unsafe sets specified as conjunction of half-spaces. In the remainder of
this section, we present two main enhancements, namely, domain contraction, and interval
refinement that use constraint propagation.

We use the above process to backpropagate each of the unsafe set constraints into the
initial set, i.e., PropCons(Xu). We then compute the overlap between the projection of
initial set into the observables (g(X0)) and compute its overlap with propagated constraints,
i.e., g(X0) ∩ PropCons(Xu), using interval arithmetic. We then project this set back into
the initial set as M(g(X0) ∩ PropCons(U)). If this projected set I ′ is a strict subset of
initial set I, then, one can specify the possible violation of safety with higher precision.
We then repeat the process with the new set I ′. If, during this process I ′ is empty, then,
none of the trajectories go into the unsafe set; we can declare the system to be safe. If
I ′ is same as the set I, then this approach does not further improve precision. In this
case, the Hyperplane Backpropagation Algorithm would invoke dReal and instantiate the
constraints given in Equation 4.13 with I ′ instead of I. The pseudocode of the core step
of the algorithm is provided in Algorithm 2.

Algorithm 2 Hyperplane Backpropagation Algorithm
function Backpropagate(X0,Xu, t, x, g(x),K)

Output: A smaller initial set X ′
0 after backpropagation, or ∅ if safe.

Xuo = g(Xu)
PropCons = K−1Xuo

Io = g(X0)
I ′ = M(Io ∩ PropCons)
while I ′ ⊂ I do

if I ′ = ∅ then
return safe.

end if
I = g(I ′)
I ′ = M(Io ∩ PropCons)

end while
return I ′

end function
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4.4.1.4 Zonotope Domain Splitting

The reachable states at each time step encoded by Equation 4.14 can be represented
using a zonotope (see Definition 8), where the box domain of the zonotope is the initial
set [y1, y1] × . . . × [yk, yk]. The accuracy of this zonotope overapproximation can be
improved by splitting each dimension’s interval domain into several smaller subintervals
and computing the new interval overapproximation in each of the subintervals.

For the proposed Zonotope Domain Splitting Algorithm, we use a heuristic that always
splits the variable with the maximum range. After splitting, we then perform hyperplane
backpropagation on each of the smaller intervals. This process can be repeated until either
the overapproximation is safe for the current step, or some predetermined upperLimit is
reached on the number of splits. Upon reaching the limit, we then invoke dReal using
the nonlinear constraints from Equation 4.13. As a result, dReal is invoked with smaller
initial sets, thus helping the numerical procedure to terminate faster. However, as we
show later in the evaluation, performing refinement too often can harm the performance
of the verification procedure, as splitting can increase the number of queries needed. The
pseudocode for the core of the zonotope domain splitting algorithm is given in Algorithm 3

Algorithm 3 Zonotope Domain Splitting Algorithm
function ZonoSplitting(X0,Xu, x, g(x),Kt, level)

if level ≤ max_level then
X0l,X0r = split(X0)
X ′

0l = Backpropagate(X0l,Xu, x, g(x),Kt)
X ′

0r = Backpropagate(X0r,Xu, x, g(x),Kt)
safe1 = (X ′

0l = ∅) or ZonoSplitting(X ′
0l,Xu, x, g(x),Kt, level + 1)

safe2 = (X ′
0r = ∅) or ZonoSplitting(X ′

0r,Xu, x, g(x),Kt, level + 1)
if safe1 and safe2 then

return UNSAT
else

return SAT
end if

else
return dReal(X0,Xu, x, g(x),Kt)

end if
end function

Notice that the order of applying hyperplane backpropagation and zonotope domain
contraction can alter the performance of the verification procedure. While we prefer
performing hyperplane backpropagation at each iteration, delaying the process until the
interval under consideration becomes smaller could be a useful heuristic for some examples.
In our evaluation, we consider various possible combinations of these two methods. In our
experience, invoking dReal with the smaller initial sets succeeds to either prove safety or
generate counterexample quicker than larger initial sets.

Whole algorithm Finally, we combine all the ideas presented above into one full
algorithm. First, we apply back refinement. Then, once we cannot further refine we call
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Algorithm 4 Verification of Koopman linearized systems
Require: Koopman linearized system ġ(x) = A g(x), initial set X0, final time tF ,
specification given as an unsafe set Xu, time step size ∆t, initial Taylor order κ0.
Ensure: System is safe (res = ⊥) or unsafe (res = ⊥).

1: res ←⊥, κ← κ0 (initialization)
2: repeat
3: T (x)← {g(x) | x ∈ X0} (comp. using Taylor model arithmetic with order κ)
4: PZ ← T (x) (convert Taylor model to polynomial zonotope, see [124])
5: R0, . . . ,RtF /∆t ← reachability analysis of ġ(x) = A g(x) for initial set PZ
6: L← (R0, . . . ,RtF /∆t) (initialize queue of not yet verified sets)
7: repeat
8: PZ ← L(1), L← (L(2), . . . , L(|L|)) (pop first element from queue)
9: Z ← zonotope enclosure of PZ (see [124])

10: if Z ∩ Xu ̸= ∅ then (check if specification is satisfied, see (4.15) and (4.16))
11: x0, t← most critical initial state and corresponding time
12: if [In 0] eAtg(x0) ∈ Xu then
13: return (specification falsified ⇒ system is unsafe)
14: else
15: PZ1,PZ2 ← split PZ (see Prop. 8 and (4.19))
16: L← (L,PZ1,PZ2) (add new sets to queue)
17: end if
18: end if
19: until L = ( ) or splitting does not yield any further improvement
20: κ← κ + 1 (increase Taylor order)
21: until L = ( ) (queue empty ⇒ no intersection with Xu)
22: res ← ⊥ (if this line is reached no reach. set intersects Xu ⇒ system is safe)

binary refinement up to defined max_level. If even after binary refinement we cannot
verify whether the system is safe, we call the nonlinear SMT solver (dReal in our case).

4.4.2 Reachability analysis using polynomial zonotope refine-
ment

We now present a polynomial zonotope based verification algorithm for Koopman linearized
systems, which is summarized in Alg. 4. We first apply Taylor model arithmetic (see
Definition 9) to compute a tight non-convex enclosure for the image of the initial set X0

through the observable function g(x) in Line 3. Since it simplifies the computation of the
zonotope enclosures required later on, we then convert the resulting Taylor model to a
polynomial zonotope in Line 4. This polynomial zonotope is used as the initial set for
the computation of the reachable set for the Koopman linearized system as performed in
Line 5, for which we can use any reachability algorithm for linear systems. For simplicity
we assume here that the obtained reachable sets are exact. In the general case where
the exact reachable set cannot be computed one can for example incorporate the error
measures from [84] and [194] into the verification algorithm.

The problem we are facing now is that the reachable sets R0, . . . ,RtF /∆t are represented
by polynomial zonotopes, a set representation for which exact collision checks with the
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unsafe set Xu are computationally demanding. We resolve this issue by applying a novel
polynomial zonotope refinement procedure in lines 6-19, where we recursively split the
polynomial zonotopes until we can either verify or falsify the specification using zonotope
enclosures of the split sets. In particular, we first enclose each polynomial zonotope in
the queue L with a zonotope in Line 9. For a zonotope Z = ⟨c, G⟩Z collision checks with
an unsafe set as performed in Line 10 are very efficient: If the unsafe set is a halfspace
Xu = ⟨h, d⟩H , we have according to [94]

(Z ∩ Xu ̸= ∅)⇔
Ç

hT c−
p∑

i=1
|hT G(·,i))| ≤ d

å
(4.15)

For general polytopes Xu = ⟨H, d⟩P collision checks can be realized using linear program-
ming:

(Z ∩ Xu ̸= ∅)⇔ (δ = 0), (4.16)

where
δ = min

α,x
∥c + Gα− x∥1 s.t. α ∈ [−1, 1], Hx ≤ d. (4.17)

If the specification cannot be verified, we next try to falsify it in lines 11-13 by extracting
the initial point x0 that is expected to violate the specification the most from Z. For a
halfspace Xu = ⟨h, d⟩H the vector of zonotope factors α = [α1 . . . αp]T resulting in the
largest violation is given as α = −sign(hT G), where the signum function is interpreted
elementwise. Since the factors α of the zonotope enclosure are related to the dependent
factors of the original polynomial zonotope and since polynomial zonotopes preserve
dependencies during reachability analysis [125], we can then directly extract the initial
point x0 corresponding to α from the polynomial zonotope. For general polytopes we can
use the optimal α from the linear program in (4.17) to estimate the most critical initial
point. If we can neither verify nor falsify the specification we have a so called spurious
counterexample that arises due to the over-approximation introduced by the zonotope
enclosure. We therefore split the polynomial zonotope in this case in Line 15 since splitting
reduces the over-approximation in the zonotope enclosure (see Fig. 4.1). The split sets are
then added to the queue in Line 16, where we use a first-in, first-out scheme for the queue
to detect easy falsifications fast before excessively splitting the sets.

One remaining issue we are facing is that Taylor model arithmetic is not exact. Due
to the over-approximation in the initial set it can therefore happen that we can neither
verify nor falsify the specification by splitting the polynomial zonotope. To solve this
issue we embed our whole algorithm into a repeat-until-loop that iteratively increases the
order κ used for Taylor model arithmetic (see Line 20). Since Taylor model arithmetic
converges to the exact result if the order goes to infinity, we obtain a complete algorithm
that is guaranteed to terminate. In practice we can often prevent computational expensive
iterations of the outer loop by choosing the initial order κ0 large enough. It remains to
decide when to stop splitting the polynomial zonotopes and increase the Taylor order
instead (see Line 19). The simplest method is to just use an upper bound for the number
of recursive splits that are performed. A more sophisticated approach is to abort splitting
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Fig. 4.1. Reachable set for the Roessler system (see Sec. 4.5.1) at time t = 2.95, where
polynomial zonotopes are depicted by solid lines, the corresponding zonotope enclosures are
depicted by dashed lines, and the unsafe set is shown in orange. While the zonotope enclosure of
the original polynomial zonotope is too conservative to verify the specification (left), splitting
the polynomial zonotope once reduces the over-approximation enough for verification to succeed
(right).

if the distance between the most critical point [In 0] eAtg(x0) and the unsafe set Xu is
smaller than the over-approximation in the polynomial zonotope PZ, which is given by
the independent generators.

Finally, we provide a closed-form expression for splitting a polynomial zonotope since
this operation is not specified in the original work [124]:

Proposition 8. (Split) Given a polynomial zonotope PZ = ⟨c, G, GI , E⟩P Z ⊂ Rn and
the index r ∈ {1, . . . , p} of one dependent factor, the operation split(PZ, r) returns two
polynomial zonotopes PZ1,PZ2 satisfying PZ1 ∪ PZ2 = PZ:

PZ1 =
〈

c,
î
Ĝ

(1)
1 . . . Ĝ

(1)
h

ó
, GI ,

î“E1 . . . “Eh

ó〉
P Z

PZ2 =
〈

c,
î
Ĝ

(2)
1 . . . Ĝ

(2)
h

ó
, GI ,

î“E1 . . . “Eh

ó〉
P Z

with “Ei =

E({1,...,r−1},i) E({1,...,r−1},i) . . . E({1,...,r−1},i) E({1,...,r−1},i)

0 1 . . . E(r,i) − 1 E(r,i)

E({r+1,...,p},i) E({r+1,...,p},i) . . . E({r+1,...,p},i) E({r+1,...,p},i)

 ,

Ĝ
(k)
i =

î
b

(k)
i,0 ·G(·,i) . . . b

(k)
i,E(r,i)

·G(·,i)
ó

,

b
(1)
i,j = 0.5E(r,i)

Ç
E(r,i)

j

å
, b

(2)
i,j = −0.5E(r,i)

Ä
2(E(r,i) mod 2)− 1

äÇE(r,i)

j

å
,

where x mod y, x, y ∈ N0 is the modulo operation and
(

w
z

)
, w, z ∈ N0 denotes the binomial

coefficient. To remove redundancies we subsequently apply the compact operation as defined
in [124] to PZ1 and PZ2.
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Proof. The split operation is based on the substitution of the selected dependent factor
αr with two new dependent factors αr,1 and αr,2:¶

αr | αr ∈ [−1, 1]
©

=
¶

0.5(1 + αr,1)− 0.5(1 + αr,2) | αr,1, αr,2 ∈ [−1, 1]
©¶

0.5(1 + αr,1) | αr,1 ∈ [−1, 1]
©
∪
¶
− 0.5(1 + αr,2) | αr,2 ∈ [−1, 1]

©
.

(4.18)

Inserting this substitution into the definition of polynomial zonotopes in Def. 10 yields

PZ =
®

c +
h∑

i=1

Ç
p∏

k=1
α

E(k,i)
k

å
G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣∣ αk, βj ∈ [91, 1]
´

(4.18)=®
c+

h∑
i=1

Ç
p∏

k=1
k ̸=r

α
E(k,i)
k

å(1 + αr,1

2

)E(r,i)
G(·,i)+

q∑
j=1

βjGI(·,j)

∣∣∣∣∣ αk, βj, αr,1 ∈ [91, 1]
´

︸ ︷︷ ︸
=PZ1

∪
®

c+
h∑

i=1

Ç
p∏

k=1
k ̸=r

α
E(k,i)
k

å(1 + αr,2

−2

)E(r,i)
G(·,i)+

q∑
j=1

βjGI(·,j)

∣∣∣∣∣αk, βj, αr,2 ∈ [91, 1]
´

︸ ︷︷ ︸
=PZ2

.

Finally, with (1 + αr,1

2

)E(r,i)
= b

(1)
i,0 + b

(1)
i,1 αr,1 + b

(1)
i,2 α2

r,1 + · · ·+ b
(1)
i,E(r,i)

α
E(r,i)
r,1(1 + αr,2

−2

)E(r,i)
= b

(2)
i,0 + b

(2)
i,1 αr,2 + b

(2)
i,2 α2

r,2 + · · ·+ b
(2)
i,E(r,i)

α
E(r,i)
r,2

we obtain the equations above.

The split operation for polynomial zonotopes is not exact, meaning that the resulting
sets usually overlap (see Fig. 4.1). To minimize the size of the overlapping region we split
the dependent factor with index r that maximizes the following heuristic:

max
r∈{1,...,p}

h∑
i=1

E(r,i)>1

Ä
1− 0.5E(r,i)

ä
∥G(·,i)∥2, (4.19)

where G ∈ Rn×h and E ∈ Np×h
0 are the generator and exponent matrix of the polynomial

zonotope. Moreover, since the goal of splitting in Alg. 4 is to verify a certain specification,
it is advisable to first project the polynomial zonotope onto the halfspace normal directions
of the unsafe set Xu before evaluating the heuristic (4.19) in order to direct the splitting
process towards directions that are beneficial for verification.

Note that the polynomial zonotope refinement technique presented in this section is
not restricted to verification of Koopman linearized systems, but can equally be applied for
collision checks of polynomial zonotopes or Taylor models with halfspaces and polytopes in
general. Moreover, by inverting the inequality constraints polynomial zonotope refinement
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can also be applied to check if a Taylor model or polynomial zonotope is contained in a
halfspace or polytope.

4.5 Evaluation Results

In this section, we present evaluation results of using the Koopman operator and random
Fourier feature observables in reachability analysis. We implemented our algorithms in
Julia, using the LazySets package of JuliaReach [53], the package TaylorModels.jl1 for
Taylor model arithmetic, the PyCall.jl2 package to call dReal [90], the DataDrivenDiffEq.jl3

package for Koopman operator linearization via Extended DMD and the DifferentialEqua-
tions.jl [164] package to generate numerical simulations. A Sobol sequence in the set of
initial conditions is used to determine the initial conditions for the simulations. The result-
ing data matrices for each simulation are then combined via column-wise concatenation as
in [190].

For each system, the dictionary of observables for Koopman linearization included
multivariate polynomial basis functions up to a fixed order for the original state variables,
sin t and cos t, and combinations of these (e.g., x sina t cosb t). Lastly, SVD truncation was
performed as described in [132] to remove any non-dominant modes.

Note that although we know the nonlinear differential equations for each system, we
only used simulation data to perform Koopman linearization, treating each system as a
black box.

4.5.1 Benchmarks

We evaluate our algorithms on four benchmark nonlinear systems: roessler model, biological
model, steam model and coupled Van der Pol oscillator. This set of benchmarks contains
models from 3 to 7-dimensional systems. In addition, some systems are considered more
complex in terms of nonlinearity, which allows us to evaluate performance of both the
linearization and reachability algorithms. As our algorithms are sensitive to the distance
between the reachable set and the unsafe region, we consider parameterized unsafe regions,
where a parameter i controls the distance of the reachable set to the unsafe region (if the
value of i is big enough then the system is unsafe). The nonlinear differential equations
for each system are available on HyPro [178] benchmark website [3].

Roessler attractor: The dynamic equations for the Roessler attractor [171] are

ẋ1 = −x2 − x3

ẋ2 = x1 + 0.2 x2

ẋ3 = 0.2 + x3 (x1 − 5.7),

1https://github.com/JuliaIntervals/TaylorModels.jl
2https://github.com/JuliaPy/PyCall.jl
3https://datadriven.sciml.ai/

https://github.com/JuliaIntervals/TaylorModels.jl
https://github.com/JuliaPy/PyCall.jl
https://datadriven.sciml.ai/
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and we consider the initial set X0 = [−0.05, 0.05]× [−8.45,−8.35]× [−0.05, 0.05], the final
time tF = 6, and the unsafe region x2 ≥ 6.375− 0.025 · i parameterized by i ∈ [0, 20].

Steam governor: The dynamic equations for the steam governor [182] are

ẋ1 = x2

ẋ2 = x2
3 sin(x1) cos(x1)− sin(x1)− 3 x2

ẋ3 = cos(x1)− 1,

and we consider the initial set X0 = [0.95, 1.05]× [−0.05, 0.05]× [0.95, 1.05], the final time
tF = 3, and the unsafe set x2 ≤ −0.25 + 0.01 · i parameterized by i ∈ [0, 10].

Coupled Van-der-Pol oscillator: The dynamic equations for the coupled Van-der-Pol
oscillator [166] are

ẋ1 = x2 ẋ3 = x4

ẋ2 = (1− x2
1) x2 − x1 + (x3 − x1) ẋ4 = (1− x2

3) x4 − x3 + (x1 − x3),

and we consider the initial set X0 = [−0.025, 0.025] × [0.475, 0.525] × [−0.025, 0.025] ×
[0.475, 0.525], the final time tF = 2, and the unsafe set x1 ≥ 1.25− 0.05 · i parameterized
by i ∈ [1, 16].

Biological system: The dynamic equations for the biological system [123] are

ẋ1 = −0.4 x1 + 5 x3 x4 ẋ5 = −5 x5 x6 + 5 x3 x4

ẋ2 = 0.4 x1 − x2 ẋ6 = 0.5 x7 − 5 x5 x6

ẋ3 = x2 − 5 x3 x4 ẋ7 = −0.5 x7 + 5 x5 x6,

ẋ4 = 5 x5 x6 − 5 x3 x4

and we consider the initial set X0 = [0.99, 1.01]× · · · × [0.99, 1.01], the final time tF = 2,
and the unsafe set x4 ≤ 0.883 + 0.002 · i parameterized by i ∈ [1, 10].

4.5.2 Approximation Error

We first investigate the accuracy of the Koopman linearized system with respect to the
original nonlinear dynamics, where we compare the random Fourier feature observables
against the ad hoc observables. These ad hoc observables consist of multi-variate poly-
nomials of the system state x up to a fixed order, trigonometric functions of the time t,
and combinations of these (e.g., x1 x2 sin2(t) cos(t)). To obtain the data traces required
for extended dynamic mode decomposition we simulate the original nonlinear systems for
500 points sampled from the corresponding initial set, where a Sobol sequence is used for
sampling. For the generation of the random Fourier feature observables according to (4.12)
we use the parameter ℓ = 0.3 and m = 71 for the Roessler attractor, ℓ = 1.62 and m = 72
for the steam governor, ℓ = 1.24 and m = 132 for the coupled Van-der-Pol oscillator, and
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Fig. 4.2. Relative simulation error between Koopman linearized systems and the original
nonlinear system in percent.

ℓ = 1.81 and m = 105 for the biological system, where ℓ is the lengthscale parameter of the
kernel and the number of observables m is chosen identical to the one used for the ad hoc
observables [37]. As a measure for the accuracy we use the Euclidean distance between
simulated trajectories for the original nonlinear system and the Koopman linearized system.
The initial points for these trajectories are the center and the vertices of the initial set.
According to Fig. 4.2 random Fourier feature observables are for the steam governor and
the Roessler attractor more accurate than than the ad hoc observables. Moreover, while
for the short time horizons considered in Fig.4.2 it seems that the ad hoc observables are
more precise for the coupled Van-der-Pol oscillator and the biological system, over longer
time horizons the error of the ad hoc observables is exploding. This is visualized in Fig. 4.3,
where the trajectory corresponding to the ad hoc observables progresses into a completely
different direction than the original system, while random Fourier features stay accurate.
In this way, random Fourier features are not only a more systematic approach for choosing
observables, but also improve the precision of the resulting Koopman linearized system.

4.5.3 Verification using Reachability Analysis

We now compare novel verification algorithms for Koopman linearized systems against each
other, as well as different sets of observables. This evaluation highlights advantages and
disadvantages of both verification methods, as well as different linearization techniques for
various dynamical systems and unsafe regions. In addition, we compare against verification
of the original nonlinear system using Flow* [61], a state-of-the-art tool for reachability
analysis of nonlinear systems which consistently demonstrates one of the best results in
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Fig. 4.3. Comparison of simulations for Koopman linearized systems with the ground truth
from the original nonlinear system for a time horizon of tF = 10, where the biological system is
shown on the left and the coupled Van-der-Pol oscillator is shown on the right.

ARCH competition for wide set of models. In this work, we consider only discrete-time
safety. Note that for discrete-time safety the reachable set computation in Line 5 of
Alg. 4 simplifies to Ri = [In 0] eAi∆tX0, i = 0, . . . , tF /∆t. We consider both, the ad hoc
observables as well as the random Fourier feature observables.

The resulting computation times for verification are summarized in Tab. 4.2.

4.5.3.1 Performance of Hyperplane Backpropagation

We compare the performance of the Hyperplane Backpropagation (Section 4.4.1.3) against
the basic Interval Encoding algorithm (Section 4.4.1.2). We show in Figure 4.4 a comparison
only on the Roessler model, while similar observation can be observed on the rest of the
models as well. We observe that the algorithm with backpropagation is around two times
faster than the Interval Encoding algorithm for all problem instances. In addition, the
computational time gets smaller as i is increased. The main reason can be that we have
a smaller time horizon when i is large, because an unsafe state is reachable. We need
to compute up to t = 2.93 for i = 1 and up to t = 2.81 for i = 21. We also call dReal
less when i is large for the same reason. For i = 1, with the Interval Encoding Algorithm
we call dReal 14 times, and only 8 times for Hyperplane Backpropagation. For the last
instance, i = 21, we call dReal 7 and 3 times for the two algorithms respectively, which
leads to performance improvement.

4.5.3.2 Performance of Zonotope Domain Splitting

We next evaluate Zonotope Domain Splitting on the Coupled Van der Pol oscillator to
analyse the effect of different unsafe regions. We demonstrate the performance of the
algorithm on two instances of the model: a safe case where i = 4 and an unsafe case where
i = 12. We further evaluate using different values of max_level. We can observe that when
the system is safe, Zonotope Domain Splitting with a large value of max_level generally
benefits performance, whereas for i = 12 we see the opposite. The explanation is that for
the safe instance we can save calls to dReal with backpropagation and splitting together.
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Fig. 4.4. Evaluation results of Interval Encoding and Hyperplane Backpropagation algorithms
for the Roessler model for different values of i. Hyperplane Backpropagation is generally twice
as fast for this problem.

Table 4.1. Evaluation results of the Zonotope Domain Splitting algorithm for the Coupled
Van der Pol oscillator with max_level ∈ [0, 5]. Safe corresponds to the i = 4 case and unsafe to
the i = 12 case.

max_level 0 1 2 3 4 5
Safe 190.56 200.94 136.78 135.29 133.68 117.24
Unsafe 37.77 49.45 50.73 54.69 62.16 74.34

For i = 12, on the other hand, the system is unsafe and there are fewer steps where we can
avoid calls to dReal. Performing splitting in this case is futile, as the overapproximation
cannot prove safety of the system.

Yet another observation is that direct encoding and zonotope domain splitting are not
able to verify or falsify the high-dimensional biological model at all if random Fourier
feature observables are used. Both techniques eventually fallback to SMT solvers when
symbolically safe guarantees cannot be provided. SMT solvers, in turn, usually are not
well-suited for handling the trigonometric functions as well as the high coupling between
variables used for random Fourier feature observables. Similarly to the previous comparison
in Section 4.5.3.1, the results are consistent across different models and therefore evaded
in this work.

4.5.3.3 Performance of Polynomial Zonotopes based algorithm

For all benchmark instances the verification algorithm based on polynomial zonotopes
has the lowest computation time, and is often even magnitudes faster than the other
verification approaches. The main reason for this is that with the polynomial refinement
strategy we can completely avoid the computationally expensive calls to SMT solvers used
by the other methods. Moreover, while the computation time for the other approaches
often depends on how difficult it is to verify or falsify the specification, this algorithm
exhibits roughly equal runtimes for all specifications. The explanation for this is that the
polynomial zonotope refinement approach that we use for the collision checks with unsafe



60 Reachability of Linearized Systems and Zonotope Refinements

Table 4.2. Computation time in seconds for verification or falsification of the benchmark
systems from Sec. 4.5.1 using different approaches, where the symbol − indicates that the
computation timed-out after 2 hours. The parameter i specified in the second column changes
the specification, and the third column shows weather the specification can be verified or falsified.

i Safe? Flow* Direct Enc. Zono. Split. Poly. Zono.
ad hoc fourier ad hoc fourier ad hoc fourier

1 X 251 788 398 0.57 171 0.20 3.00
Coupled VP 8 × 497 680 120 53 232 0.79 3.77

16 × 1665 557 373 18 38 0.20 2.99
1 X 260 470 − 0.59 − 0.44 1.95

Biological 5 X 250 426 − 49 − 0.44 1.73
10 X 238 427 − 179 − 0.46 1.76
0 X 61 197 149 182 42 0.12 0.25

Steam 5 × 285 59 40 37 38 0.38 0.56
10 × 77 29 20 18 27 0.12 0.26
0 X 55 181 291 9.53 117 0.55 0.35

Roessler 10 × 78 177 385 5.01 241 0.22 0.75
20 × 55 174 158 3.5 86 0.21 0.34

sets is very efficient, so that the majority of the runtime is spent on the computation of
the image through the observable function using Taylor model arithmetic, a task which is
independent from the specification. Interestingly, using random Fourier features instead of
ad hoc observables can either prolong or accelerate the verification process, depending
on the benchmark instance and verification approach used. The reasoning behind this is
that random Fourier features provide a better approximation to the original system which
could lead to rather straightforward verification of the safety property in some cases, but
additional complexity of observables, on the other hand, require higher computational
time. It should be noted, even if Fourier features prolong the time required for verification
in some cases, the usage of random Fourier feature observables can be justified by their
superior accuracy demonstrated in Sec. 4.5.2.

4.6 Summary

Accurate reachability and verification of nonlinear dynamical systems is a grand challenge.
Many methods have been proposed for this problem, and this work has provided a new
avenue to verification based on Koopman operator linearization. This process outputs a
system of linear dynamics with nonlinear constraints on the initial state set.

As demonstrated on several nonlinear system benchmarks, the combination of these
two techniques is both extremely accurate and extremely fast.

The main trade-off with Koopman linearized systems is that the guarantees are on
the system approximation, not the original system, which is the main limitation of the
proposed approach. Note, that if the bounds of the approximation error can be computed,
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then this restriction can be dropped, as polynomial zonotopes can take the error into
consideration during the analysis without any substantial changes to the whole algorithm
or its performance. Despite this, we believe the method could still be useful for verification
in systems engineering, where the goal is to produce evidence that the system meets its
requirements. Koopman linearization process uses data to create linear approximations in
the space of observable functions. Thus, we can compute reachable states for black-box
systems, while most traditional reachability methods cannot be applied to this class of
systems.

It could also be effective for finding unsafe counterexamples—falsification—or to analyze
systems where only simulation code is provided, or even real-world systems where sensor
measurements could be used to create a Koopman linearized model for analysis.





Chapter 5

Online Reachability Analysis using
Barrier Certificates

Inductive methods for reachability offer an alternative approach in which one looks for a
so-called barrier certificate [188, 161], a function of the system state whose zero-level set
separates the “unsafe” region from the system trajectories that start from a given initial
set. The existence of a barrier certificate entails that the system is safe. Three advantages
of barrier certificates are that they can establish safety: 1) over infinite time horizons, 2)
for systems with nonlinear dynamics, and 3) uncertain inputs or parameters. Reachability
methods that offer some or all of these advantages do exist, but are usually computationally
expensive. Checking that a candidate function is indeed a barrier certificate can be done
in many cases efficiently and automatically. However, finding barrier certificates is much
harder, and this is a disadvantage of the approach.

5.1 Chapter overview and structure

In this chapter, we present a novel technique for online safety verification of autonomous
systems which performs bounded/unbounded horizon reachability analysis efficiently by
neural barrier certificates. In particular, we provide a novel approach to synthesise, via
barrier certificates, sound over-approximations of reach sets for dynamical systems, whether
linear or nonlinear, possibly under control inputs. We go beyond establishing safety by
computing valid over-approximations without explicitly solving the system dynamics.

We interpret the search of such over-approximations as a synthesis of barrier certificates,
which we tackle with a sound algorithm. We devise a two-level technique which utilises
neural networks as efficient emulators of both the system dynamics and barrier certificates.
Since barrier certificate candidates are efficiently generated via neural networks, our
approach enables online computation of reach sets after appropriate offline training. Key
to our approach is a MetaNN that acts as a generalisation of example barrier certificates
that depend on initial and unsafe sets. We use FOSSIL [8] as the underlying generator of
example barrier certificates with correctness guarantees. The FOSSIL tool can formally
synthesise neural network-based barrier certificates. FOSSIL is attractive for this work due
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to its ability to provide training data (i.e., example barrier certificates) with correctness
guarantees. Furthermore, neural network templates allow for the generation of barrier
certificates (and consequently reach sets) that are more general in structure and shape,
which are especially useful for handling nonlinear, non-polynomial vector fields. We
note that FOSSIL does not scale to on-the-fly use due to the intrinsic complexity of the
algorithms implemented – this motivates the introduction of our meta-neural network.
The overall soundness of our approach is guaranteed by utilising SMT solvers for checking
candidate barrier certificates.

Our approach uses barrier certificates given by parameterised neural networks that
depend on a given initial set, on unsafe sets, and on the time horizon – when these
parameters are fixed, the networks generate (putative) barrier certificates for the system.
Such networks are trained efficiently offline using system simulations over sampled regions
of the state space. A meta-neural network (MetaNN) is then employed to generalise the
barrier certificates to state space regions beyond the training set. These certificates are
generated and validated on-the-fly as sound over-approximations of the reachable states,
thus either ensuring system safety or activating appropriate alternative actions in unsafe
scenarios. Finally, we demonstrate our technique on case studies from linear models to
nonlinear control-dependent models for autonomous driving.

We show that our approach successfully generates sound over-approximations of reach
sets of linear and nonlinear systems. The efficiency of reach-sets generation is demonstrated
in an autonomous driving scenario. Our approach not only extends the capabilities of barrier
certificate verification to the synthesis of parameterised controllers, but also increases the
success rate of online barrier certificate generation from 78% to 99% compared to direct
application of the underlying barrier generator FOSSIL (at a cost of 10 hours of offline
training on a standard laptop).

To summarise, the contributions of this work are:

• We show that level sets of barrier certificates over-approximate reach sets.

• Founded on continuity properties of system dynamics, we consider barrier certificates
as functions of initial and unsafe sets and use them for reach set computations.

• We provide a computational framework that fixes parameterised templates for initial
and unsafe sets and computes a MetaNN as parameterised barrier certificates.

• We employ offline training and fast online validation and execution that increase the
success rate of generating barrier certificates for safe autonomous driving.

The chapter is structured as follows:

• Section 5.2 elaborates on how we plan to use barrier certificates for computations of
reachable sets.

• Section 5.3 describes the main algorithm proposed in the work, detailing the training
of a neural network that generalises the construction of reach sets.
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• Finally, evaluation results using the proposed methodology are presented in Section
5.4; the concept is demonstrated using some toy case studies, before its efficacy is
demonstrated using an online vehicle path planning case study.

Our proposed framework is applicable to any tool that generates certified barrier
certificates. This chapter serves as a basis for our paper, which is currently being prepared
for a submission [7].

5.2 Barrier Certificates for Reach Sets

Barrier certificate theory and the third condition of Eq. (2.13) leverages Nagumo’s theo-
rem [26] to demonstrate the existence of an invariant set in the vector field f . Meanwhile
the first two conditions ensure that our initial set lies within this invariant set and that
our unsafe set does not. Notably, any invariant set containing our initial set must be a
true reachable set from the initial set. This is our first contribution and is stated formally
next as a corollary of Theorem 1.

Corollary 1.1. Define R to be the set of states reachable from the initial set X0 under
the dynamics Eq. (2.2). Assume there is barrier certificate B(x) satisfying the conditions
of Definition 11. Then, the set Ro = {x ∈ X |B(x) ≤ 0} gives an over-approximation of
R, i.e., R ⊆ Ro.

The intuition behind this over-approximation is the fact that the trajectories starting
from X0 cannot escape the set Ro since B(x(·)) : R≥0 → R does not change the sign and
is always non-positive for trajectories starting from x0 ∈ X0.
Proof of Corollary 1.1 Take any trajectory x(t) that starts at some x0 ∈ X0, and
consider the evolution of B(x(t)) along this trajectory. The first condition in (2.13) implies
B(x0) ≤ 0. Together with the third condition in (2.13) we get that the flow of the system
B(x(t)) cannot become positive. Consequently, the set Ro = {x ∈ X |B(x) ≤ 0} contains
the flow of the system and over-approximates the reach set R.

Barrier certificates can also be used to study the safety of dynamical systems when
their trajectories are restricted to a subset of the state space. This is formally stated in
the next theorem and will be relevant in our case study on safe autonomy.

Theorem 2. Consider a working region Xb ⊆ X , the initial set X0 ⊆ Xb, and unsafe set
Xu ⊆ X . If a function B : X → R satisfies the following conditions:

B(x) ≤ 0 ∀x ∈ X0, B(x) > 0 ∀x ∈ Xu ∩ Xb,

∂B(x)
∂x

f(x) < 0, ∀x ∈ Xb s.t. B(x) = 0, (5.1)

then the trajectories of Eq. (2.2) evolve inside Rb := {x ∈ Xb |B(x) ≤ 0} before leaving
the working region Xb.

Theorem 2 means that we can use Rb as an over-approximation of the reach set when
trajectories are restricted to Xb.
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Proof of Theorem 2. Define τ ∗(x0) as the first time a trajectory leaves Xb when the
trajectory starts from the initial state x0 ∈ X0. Note that τ ∗ ∈ R≥0 ∪ {+∞}, where
τ ∗ = +∞ indicates that the trajectory remains inside Xb for all t ≥ 0. Let us define the
partition X0 = X01 ∪ X02, where

X01 = {x0 ∈ X0 | τ ∗(x0) = +∞},
X02 = {x0 ∈ X0 | τ ∗(x0) < +∞}.

For the initial set X01, we simply restrict the space of the system to Xb and the result hold
by applying Corollary 1.1 to the initial set X01 and unsafe set Xu∩Xb. For the initial set X02,
the trajectory x(t) satisfies both conditions B(x(t)) ≤ 0 and ∂B(x)

∂x
f(x(t)) < 0, ∀x(t) ∈ Xb

with B(x) = 0 before leaving Xb. This implies that B(x(t)) is non-positive for all t before
x(t) leaving Xb. This proves that Rb is an over-approximation of the reachable states of
trajectories before the trajectory leaves Xb.

5.3 Computation of Safe Reach Sets

This work utilises several neural networks throughout. Here, we formalise the notation
used when referring to these networks. Feed-forward neural networks are such as that
depicted in Fig. 5.1. Consider a network N with h0 input neurons, k hidden layers each
with h1, . . . , hk neurons and an output layer of hk+1 neurons. We consider each layer to be
fully connected and denote the corresponding weight matrix for the i-th layer as Wi and

x1

x2

σ1

σ1

σ1

N (x)

Fig. 5.1. A feed-forward neural network with two input neurons, one hidden layer and a single
output neuron.

bias vector as bi for i = 0, . . . , k + 1, where i = 0 denotes the input layer and i = k + 1 the
output layer. Each hidden layer has a corresponding activation function σi : R→ R such
that the output of the i-th layer is given by zi = σi(Wizi−1 + bi).

5.3.1 High-level overview of the framework for online verifica-
tion

We now describe the first key contribution of this work: a methodology to produce sound
reachable sets for dynamical systems, through the synthesis of sound barrier certificates.
However, verification using barrier certificates can be limited by performance issues that
are intrinsic to the use of SMT solvers and gradient descent based synthesis approaches,
with procedures either being slow to return solutions or not returning one at all (in view
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of incompleteness – see [185] for several results on soundness and relative completeness
of inductive verification techniques). This can be particularly restrictive in practical
settings or in applications where on-the-fly verification is required, as we shall see later.
We alleviate this issue by generalising over the space of barrier certificates for some fixed
problem settings.

Learner Verifier

counter-example

Candidate
valid

Fig. 5.2. The Counter-Example Guided Inductive Synthesis (CEGIS) loop.

Our proposed framework is applicable to any tool that generates sound barrier certifi-
cates. We employ FOSSIL [8], which uses internally a CEGIS loop. The CEGIS procedure
is represented in Figure 5.2, which illustrates the two fundamental complementary com-
ponents: the learner and the verifier. The learner is a neural network. The structure
and characteristics of the neural network (i.e., layers and activation functions) can be
selected freely within the tool. This includes structure of the network, i.e., the number of
hidden layers and the number of neurons within these layers, and secondly the activation
functions present within these layers. The selected activation functions may be simple
polynomial functions, resulting in polynomial-based barrier certificates, or may be other
nonlinear activation functions used in machine learning. This flexibility allows for the
construction of reach sets of varying structural complexity.

We utilise machine learning techniques and barrier certificate properties to efficiently
compute sound reachable set for the system modelled by Eq. (2.2). Given an initial
region X0 as an input we seek a barrier certificate as an output. This barrier certificate
either covers the reachable set R or along with working region Xb result into an over-
approximation Ro of R.

The verifier is an SMT-solver that can check the satisfiability of formulae over the real
numbers. Its role is to provide correctness guarantees of the candidate barrier certificates
proposed by the learner, or alternatively return to the learner counter-examples of points
within the state space where the candidate barrier certificate is invalid. This is achieved
by checking the satisfiability of the negation of the conditions in Eq. (2.13). FOSSIL
leverages two choices of SMT-solver: Z3 [72] and dReal [90]. Z3 is limited to reasoning over
polynomial functions, whereas dReal can handle any nonlinear function. However, dReal
may return spurious counter-examples, since checking satisfiability of general nonlinear
formulae is an undecidable problem.

We present schematically our algorithm in Fig. 5.3. Our approach has two main
phases. During the first (offline) phase we generate a collection of initial sets X0, which
are used by the simulation engine to build working regions Xb for the system. Then we
feed the initial sets and their corresponding working regions to FOSSIL to generate barrier
certificates for the reachable sets. We use the initial sets, the working regions, and the
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Fig. 5.3. The proposed framework has two phases: (i) an offline phase (top) where the training
data is prepared and the MetaNN is trained; and (ii) an online phase (bottom) where sound
reach sets are generated via neural barrier certificates. X0 = initial set; Xu = unsafe set; Xb =
working region; BC= barrier certificate.

barrier certificates to train MetaNN, whose task is to generalise the computation of barrier
certificates. Essentially, MetaNN is an (efficient) emulator of FOSSIL.

We now illustrate phase two (online phase) of our approach. We pass an initial set
X0 to both the simulation engine and MetaNN to compute a working region Xb and a
barrier certificate candidate, respectively. Next, the validity of the candidate with respect
to X0,Xu and Xb is checked by an SMT solver. If the candidate barrier certificate is valid,
then we have attained our aim of computing a safe reach set. Otherwise, we can use the
counter-example generated by the SMT solver to refine the training of MetaNN.

Remark 2.1. The framework presented in Fig. 5.3 is founded on continuity properties of
the system trajectories with respect to its initial state. The barrier certificate can be seen
not only as a function of state x but also a function of a parametrisation of the initial
set X0. The aim of MetaNN is to give such a parameterised barrier certificate, and it is
obtained by training MetaNN on a dataset of barrier certificates.

Online safe planning Our approach can be easily adapted to implement online, safe
planning over bounded time horizons, as depicted in Fig. 5.4. Briefly, the online phase of
our approach is embedded in a loop that provides control inputs and iteratively checks
for system safety. The loop uses two controllers: a ‘base’ controller for normal use and a
‘backup’ controller which takes over in emergency situations. The idea is that the base
controller provides inputs to control the system over a short time horizon; such inputs and
the current system state are passed to the simulation engine and to MetaNN to compute
the next working region and a candidate barrier certificate (reach set), respectively. These
are in turn passed to the SMT solver, which decides whether the system is safe (for the
current time horizon), i.e., that the computed reach set/barrier certificate and the unsafe
set do not intersect. If the SMT solver cannot guarantee an empty intersection, then the
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Fig. 5.4. Structure of our online safe planning approach. The base controller (yellow) operates
in normal conditions, while the backup controller (purple) is activated to avoid unsafe regions in
case of potential collision. The MetaNN has been already trained. Verifier checks the barrier
certificate (BC) candidate and calls backup controller in case the result is unsafe. Then the
process of generating a BC candidate and running the simulation engine repeats and new BC
candidate is checked. If the system is unsafe or the MetaNN does not generate valid BC within
the time bound, then the system stops.

backup controller is activated to divert from unsafe set and will provide input controls for
the current time horizon. However, if the verifier cannot guarantee the system is safe even
for the input from the backup controller, then the system stops. Otherwise, the inputs
provided by the base controller are applied to the actual system, and the loop repeats for
the next time horizon. In the current implementation, to generate an initial set for the
next time horizon we use a center trajectory as the dynamics of the system. In reality any
trajectory can be used instead and it does not affect the soundness of the algorithm. In
addition, we bloat around the last state of the trajectory to account for sensing errors (e.g.
time lag or silent errors) of real-world models.

We now discuss each part of our framework in more detail.

5.3.2 Simulation Engine

Given an initial set X0 (an hyperbox), the simulation engine generates a working region
for it. For this purpose we run simulations from the vertices of the initial set and a
random sample of points inside of it. Then we take the convex hull of the generated
trajectories. This set allows us to compute a working region Xb for the system starting in
X0, which is basically a box over-approximation of the generated convex hull. Note that
for stable systems we can use unbounded sets as working regions. Then, we also generate
an octagonal over-approximation of the convex hull. The resulting set can encompass the
unsafe region, if one is not provided. In this case the unsafe set Xu is the complement of
the octagonal over-approximation of the convex hull. However, the approximation could
be tight thus making it harder for FOSSIL to find a valid barrier certificate. Thus, if after
a specified number of CEGIS loops FOSSIL cannot provide a certificate, then we bloat
this over-approximation, i.e., push back the unsafe region.
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(a) Step 1.
Running simulations from the initial set X0.

(b) Step 2.
Construction of a working region Xb and
octagonal over-approximation.

(c) Step 3.
Bloating of the octagonal over-
approximation.

(d) Step 4.
Computation of reachable set Rb as an inter-
section of a constructed barrier certificate
(purple ellipsoid) and bloated octagonal

Fig. 5.5. Four-step construction of a Safe Reach Set Rb.

5.3.3 Training MetaNN

Let X0 denote initial sets represented as parameterised boxes and a ∈ Rd the coefficients
of a barrier certificate for a given template with d terms. For each initial set, we compute
a corresponding unsafe set Xu as described previously, which represents the non-reachable
region of the state space. We seek to learn a mapping from X0 to a, i.e., MetaNN should
be able to generate barrier certificates that represent the reach sets of the system.

Computation of Safe Reach Sets We demonstrate how to compute safe reachable
region Rb: this is done in four separate steps. Figure 5.5(a) illustrates the first step: here
we run multiple simulations from the initial set X0. Figure 5.5(b) shows how we construct
from simulation traces the working region Xb and octagon approximation. Then, we bloat
the octagon region by a factor ε, and pass its complement Xu to FOSSIL, along with X0.
Once we obtain a valid barrier certificate from FOSSIL, we intersect it with the working
region Xb. Whenever FOSSIL cannot produce a valid barrier certificate for the provided
Xb, we further bloat the working region and call FOSSIL again. We repeat this until a
certificate is found or until a specified maximal bloating level is reached, in which case the
system is deemed unsafe.

Training Data Generation The first step is to generate sample data on which MetaNN
can be trained. The procedure for this is as follows. We start by generating with FOSSIL
a barrier certificate B(a, ·) for each pair (X0,Xu), and by storing the coefficients a of the
barrier certificate, which will be our training data. Once trained, MetaNN should map an
initial set to a set of coefficients for which the barrier certificate results in a set R0 such
that R ⊆ R0, i.e., an over-approximation of the true reach set.

The barrier certificate generation in FOSSIL uses neural network templates. FOSSIL
initialises weights and biases of the neural network template randomly, which are then
guided to a solution using gradient descent. However, since the training can be done by
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sequentially moving the initial set gradually and iteratively through the state space, we
can utilise this to find more useful training data. Specifically, we ‘seed’ the parameters of
the next initialisation using the parameters of the most recent solution. In other words,
we begin searching for the next barrier certificate from the previous one. The advantage of
this seeding is twofold. First, it reduces the amount of computation required to generate
the training data by improving the performance of FOSSIL since we start closer to a
valid certificate. Second, it allows us to take advantage of potential continuity results
when generalising over a function space. Many barrier certificates may exist for a given
initial set and template. While the resulting functions may be structurally similar, the
corresponding coefficients may not be, making generalisation more difficult. This seeding
approach should allow for more-similar barrier certificates representations a which in turn
should enhance the ability of MetaNN to generalise without over-fitting. Note that if at
any point we fail to find a barrier certificate for a given initial set, we simply use the most
recent solution to ‘seed’ the next attempt.

For a given data point consisting of an initial set X0 and a barrier certificate represen-
tation a, it is reasonable to assume that other valid barrier certificate representations exist
near (in the Euclidean sense) to a. Thus, we can generate additional data points for a
fixed initial set by perturbing the representation a with multiplicative noise as ã = a · c,
where c ∼ N(1, σ2) and N is the normal distribution with unit mean and variance σ2.
Then, we can check via FOSSIL the new barrier certificate constructed from ã to verify
whether it is also a valid barrier certificate for the given initial set and corresponding
unsafe (unreachable) region. If so, the generated barrier certificate can be added to the
training dataset as a new data point. If σ is sufficiently large this will provide meaningful
additional data to the training procedure.

Loss function and Network Structure. MetaNN is trained using gradient descent
using an L1 loss function, which for nd data points can be expressed as

L = 1
nd

nd∑
i=i

|ai −N (X0i
)|, (5.2)

where | · | denotes the absolute value, X0 are input sets and a is the output of the network
representing the barrier certificate coefficients. ReLUs are used as activation functions
during the training phase. The output of MetaNN are coefficients of the barrier certificate
for a given barrier template. We use second-order polynomial functions throughout our
tests, however alternative templates are also supported.

5.3.4 Validation of MetaNN

Before deploying MetaNN we validate its reliability at generating safe reach sets for a
separate test dataset. As for training, the test dataset is composed of input-output pairs
(X0, a), where X0 are input sets and a are the coefficients of a barrier certificate for a
candidate reach set. The validation consists in certifying whether the set R0 constructed
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Fig. 5.6. Safe reach set for the linear system with with real eigenvalues. The red traces are
simulation trajectories. The inner and outer octagons are, respectively, the convex hull of the
generated trajectories, and its over-approximation. The yellow rectangle is a bounding box. The
black ellipsoid is the zero level-set of the validated barrier certificate.

using the candidate certificate computed by MetaNN is in fact a sound over-approximation
of the true reach set R.

Consider the barrier certificate B(a, ·) constructed from the MetaNN output a for a
given initial set X0. Let the corresponding unsafe set Xu be the empty set, Xu = ∅. We
obtain the working region set Xb as described above. Let the certificate conditions in
Eq. (5.1) be F(x). Using the SMT solver dReal [90], we seek a witness to ¬F(x). If no
witness is found, we have certified the function B(a, ·) as a barrier certificate for a given
initial set and working region, with no unsafe set. The set Ro = {x ∈ X |B(a, x) ≤ 0}
is an invariant set containing the initial set, and hence is a sound over-approximation of
the true reach set R. We count this as a successful or valid output of MetaNN, and our
validation consists of finding the percentage of valid outputs obtained over the test inputs.

In practice, this validation is performed over a large number of data points to obtain a
statistical estimate of the reliability of the network’s outputs as safe reach sets.

To validate a barrier certificate candidate, we pass computed in MetaNN coefficients
with the barrier certificate template into SMT solver to test its properties. We substitute
X0 with the θI , Xu with the θU .Since our barrier certificate candidates over-approximate
reachable sets, then we need to prove the following : Reach (θI) ⊆ {x|Barrier(θI , θU ) ≤ 0}.

5.4 Evaluation Results

In this section, we first apply our framework for the computation of safe reach sets on a
number of linear and nonlinear autonomous models. Then, we present the application in
an autonomous driving setup. We have implemented our algorithms in Julia, using the
LazySets package of JuliaReach [53] for set operations and the DifferentialEquations.jl
package [164] to perform simulations, the PyCall.jl1 package to call FOSSIL and dReal.
We utilise PyTorch with CUDA support to train the MetaNN.
Stable linear system with real eigenvalues. Consider the dynamics:

1https://github.com/JuliaPy/PyCall.jl

https://github.com/JuliaPy/PyCall.jl
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 d
dt

x(t) = −x, x(0) = x0

d
dt

y(t) = −2 · y, y(0) = y0.

We have generated valid barrier certificates for different initial sets with a fixed size
within a specified domain, and used them to train the MetaNN. A sample of barrier
certificates generated for this model is shown in Fig. 5.6. The input to the MetaNN is the
initial set, represented as coefficients of its support vectors. We have tested the MetaNN
over different initial sets of different size, but within the same specified domain. The
correctness of the output of the MetaNN, i.e., the validity of the barrier certificates, is
99.3% over 1000 randomly sampled initial sets of random size.
Stable linear system with complex eigenvalues. Consider the dynamics: d

dt
x(t) = y, x(0) = x0

d
dt

y(t) = −0.2 · x− 0.2 · y, y(0) = y0.

A sample of barrier certificates generated for this model is shown in Fig. 5.7. Similarly
to the previous model, we have trained the MetaNN, and the correctness of the obtained
neural barrier certificates is 99.2% over 1000 randomly sampled initial sets of random size.
Nonlinear jet engine system. The model of a jet engine taken from the HyPro [178]
benchmark repository is d

dt
x(t) = −y − 1.5 · x2 − 0.5 · x3 − 0.5, x(0) = x0

d
dt

y(t) = 3 · x− y, y(0) = y0.

A sample of barrier certificates generated for this model is shown in Fig. 5.8. As the
dynamics of this system is qualitatively similar the previous one, we did not train and test
the meta-neural network.

Fig. 5.7. Safe reach set for linear system with spiralling stable dynamics. The red traces are
simulation trajectories. The inner and outer octagons are, respectively, the convex hull of the
trajectories and its over-approximation. The yellow rectangle is a bounding box. The black
ellipsoid is the zero level-set of the validated barrier certificate.
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Fig. 5.8. Safe reach set for the nonlinear model of a jet engine system. The red traces are
simulation trajectories. The inner and outer octagons are, respectively, the convex hull of the
trajectories and its over-approximation. The yellow rectangle is a bounding box. The black
ellipsoid is the zero level-set of the validated barrier certificate.

Online safe path planning for vehicle dynamics. Consider the dynamics:
d
dt

x(t) = v cos θ(t), x(0) = x0

d
dt

y(t) = v sin θ(t), y(0) = y0

d
dt

θ(t) = ω, θ(0) = θ0,

(5.3)

where (x, y) indicate the location in two-dimensional space and θ is an angle describing
the orientation of the car. We assume that the velocity v and the rotational speed ω are
inputs that are selected by a feedback controller.

The goal is to design v and ω such that the car starting from an initial location will
reach a target region Xr, while avoiding obstacles that are present over the (x, y) domain.
The obstacles considered in this case study are static boxes, however the implementation of
our approach can in principle also handle dynamically-changing obstacles. We emphasise
that the control inputs ought to be executed in a provably safe manner, with sound
certificates.

The literature in path planning is mature but it generally neglects the dynamics of the
vehicle, and most often does not come with formal safety guarantees. We show that we
can first neglect the obstacles and design a baseline controller for steering the dynamics
from the initial set to the target region Xr. We then show how the scheme presented in
Sec. 5.3 can be used to provide sound safety guarantees on the executed control inputs.

We have designed the following baseline controller for reaching the target:
v(t) = α1

Ä
1− exp

(
−α2∥(x(t)− xr, y(t)− yr)∥2

)ä
ω(t) = α3(θr(t)− θ(t))
θr(t) := arctan

Ä
y(t)−yr

x(t)−xr

ä
,

(5.4)

where (xr, yr) ∈ Xr is a reference point within the target region and θr(t) is the relative
angle between current and target location. The angular speed ω(t) is designed to steer the
car from the current orientation towards the reference angle. The speed is also proportional
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to the distance from the reference point passed trough an exponentially decaying function,
thus slowing down the vehicle when approaching the reference point. Note that this simple
controller can be replaced with any path planning algorithm that can be synthesised over
Eq. (5.3).

The controller in Eq. (5.4) does not consider obstacles and does not come with any
safety guarantees. These desirable extensions can be addressed by our safe reach set
approach. First, let us note that the dynamics in Eq. (5.3) admit two structural properties
that are useful in the computation of barrier certificates. While these properties are not
specifically required by our approach, they can be utilised to reduce the computational
burden of our technique.

Property 1. The dynamics are shift invariant with respect to location (x, y) for fixed
control inputs (v, ω): if (x(t), y(t), θ(t)) is a solution from an initial condition (x0, y0, θ0),
then (x(t)− x′, y(t)− y′, θ(t)) is a solution from the initial condition (x0 − x′, y0 − y′, θ0).
This means the computation of barrier certificate can always be done for initial sets that
are centred at the origin (0, 0).

Proof of Property 1. The proof is by direct substitution. Since the vector field in the
right-hand side of (5.3) is independent of the location variables (x, y), then adding any
constant value to these variables also results in a valid solution for these set of differential
equations.

Remark 2.2. If B(x, y, θ; v, ω) is a barrier certificate parameterised with (v, ω) for initial
and unsafe sets X0,Xu, then B(x,−y,−θ; v,−ω) is a barrier certificate for initial and
unsafe sets X̄0, X̄u, where

X̄0 := {(x,−y,−θ) | (x, y, θ) ∈ X0}, and
X̄u := {(x,−y,−θ) | (x, y, θ) ∈ Xu}.

Property 2. The dynamics are symmetric with respect to the x-axis. More precisely, if
(x(t), y(t), θ(t)) is a solution from an initial condition (x0, y0, θ0) with fixed control inputs
(v, ω), then (x(t),−y(t),−θ(t)) is a solution from the initial condition (x0,−y0,−θ0) with
fixed control inputs (v,−ω). This means that the computation of barrier certificates may
be restricted to ω ≥ 0.
Proof of Property 2 and Remark 2.2. Here we show that if B(x, y, θ; v, ω) is
a barrier certificate parameterised with (v, ω) for initial and unsafe sets X0,Xu, then
B(x,−y,−θ; v,−ω) is a barrier certificate for initial and unsafe sets X̄0, X̄u, where

X̄0 := {(x,−y,−θ) | (x, y, θ) ∈ X0},
X̄u := {(x,−y,−θ) | (x, y, θ) ∈ Xu}.

The proof is by direct substitution. We write down the conditions for barrier certificate
B(x, y, θ; v, ω) for dynamics (5.3) with parameters (θ, ω). We then substitute y with −y
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(a) Reachable sets for a total time horizon T = 20 along
with unsafe occurrences at step 2 and step 7; the car starts
in the top-right corner.

(b) Original control (top) along with
the backup control (bottom) for step
2.

(c) Original control (top) along with
the backup control (bottom) for step
7.

Fig. 5.9. Plot of the trajectory of the autonomous driving case study for T = 20. Each block
corresponds to Tr = 2. Red traces correspond to trajectories which lead to unsafe region. Green
trajectories are safe. Red sets represent unsafe regions. Black curves are zero-level set of barrier
certificates.

and ω with −ω in all the conditions and use the symmetric properties of the dynamics of
the system to retrieve the conditions for the barrier certificate B(x,−y,−θ; v,−ω).

We choose the following values for the baseline controller: α1 = 0.2, α2 = 3.54, and
α3 = 0.06. We train MetaNN over the domain v ∈ [1.5; 10], ω ∈ [0; 0.125] and θ ∈ [0; 6.5]
by generating 5414 valid barrier certificates. The trained MetaNN gives correctness of
99.5% over 1000 randomly sampled initial sets of random size. It takes 20 minutes to train
the model with CUDA (NVIDIA GeForce RTX 3060 Laptop GPU) for 750000 epochs.
Fig. 5.9(a) shows the trajectories of the autonomous car over a time horizon T = 20 in
which safe reachability is computed every Tr = 2, thus corresponding to ten iterations of
the procedure presented in Fig. 5.4.
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Online Certification of Safe Reach Sets. We now study online correctness guarantees
for the safe reach sets constructed by the procedure. We wish to provide a guarantee that
for a chosen control action, the vehicle does not collide with an obstacle over some fixed
horizon. Note that, as per Theorem 2, any such guarantee is conditional on the vehicle
remaining within the working region Xb, and we emphasise that if the vehicle leaves this
region within the time horizon the safe action is to stop.

This certification check is equivalent to asserting that the function constructed from
the output of MetaNN, which we denote as B(x), is a valid barrier certificate. Define
the unsafe set Xu as the union of all box-shaped obstacles. The initial set X0 is a box
containing the vehicle’s true location. The size of this initial set has been selected to
account for the uncertainty in the location of obstacles, and to take care of the change in
location of the vehicle that occurs during the computation time allocated to the generation
of the safe reach sets: this vouches for the online implementation of our scheme. Finally,
the working region Xb is computed as in Sec. 5.2. Due to the trigonometric terms present
in the system dynamics Eq. (5.3), dReal is again a suitable choice of SMT solver for
checking the validity of the candidate barrier certificates produced by MetaNN.

In Figs. 5.9(b)–5.9(c) we report two examples of control action that would result in
unsafe behaviour, and their resolution. Specifically, for cases when the dynamics leads
to the unsafe region we use the same controller to avoid obstacles. For this purpose, we
exploit the unsafe state as the target region and take a complement of the output angular
speed to steer away. We note that each iteration of the algorithm (see Fig. 5.4) takes
about 0.03 seconds to execute on a standard laptop for a step Tr = 2.

Finally, we note that if dReal is unable to find a counter-example, then we have certified
our barrier certificate and hence reach set as being a safe over-approximation of the true
reach set, and can safely proceed with the control action over the time horizon. Meanwhile,
the existence of a counter-example does not imply that our control action is inherently
dangerous, rather just that we cannot assert that it is safe. Our immediate response, as
depicted in Figs. 5.9(b)–5.9(c), is to select a different control input to attempt to steer the
car safely. However, we could also seek to refine our candidate barrier certificate offline to
certify that it is indeed safe. This refinement could be used as feedback to MetaNN for
further training.

Comparison with Direct Online Certification of Safe Reach Sets. As demon-
strated with the car model case study, our proposed MetaNN enables us to perform
controller synthesis together with the online certification. In order to compare the per-
formance of MetaNN vs. FOSSIL, we take the same controller synthesised by MetaNN
and give it directly to FOSSIL for online certification. Fig. 5.10 demonstrates cumulative
distribution of the computational time taken to synthesise 100 barrier certificates directly
by FOSSIL. Note, that for the car model under consideration we utilise Tr = 2, which
means if the barrier certificate is not computed within 2 seconds, online certification is
not possible and an auxiliary controller should be employed. We report that only 78%
of instances are verified on time. In addition, three cases reach time-out (200 seconds),
which means FOSSIL cannot generate certified barrier certificates with the provided
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Fig. 5.10. Cumulative distribution of time taken to directly generate barrier certificates via
FOSSIL without using MetaNN. The red vertical line shows that FOSSIL synthesised valid
barrier certificates only for 78% of instances in the acceptable time bound for the car model (2
seconds).

specifications of the model. In Table 5.1 we report the statistics of the computational
times for the certification process directly from FOSSIL. We can observe that FOSSIL
demonstrate divergence in computational time for different instances of the model, e.g.,
maximal computational time for one instance is 160s, while minimal and average just 0.11s
and 7.11s respectively.

The computational time for our proposed MetaNN remains constant for each instance.
It takes less than 0.7s to extract a barrier certificate from the neural network and verify it
in dReal. In addition, we were able to obtain valid barrier certificates for the instances
where FOSSIL timed out. Therefore, using MetaNN and offline training, we not only
extend the capabilities of barrier certificate verification to synthesis of parameterised
controllers, but also increases the success rate of online barrier certificate generation from
78% to 99%. This is at the cost of offline training of MetaNN that takes 10 hours.

All (s) Valid (s)
Total 1290.43 690.43
Avg 12.90 7.11
min 0.11 0.11
max 200 160.63

Table 5.1. Statistics of the computational time to synthesise valid barrier certificates for 100
instances on the car model. FOSSIL was not able to find a barrier certificate in 3 instances
within the fixed time bound (200s). These three timeout exceptions are excluded in the Valid
column.
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5.5 Summary

We developed a novel approach for sound computation of reach sets of dynamical systems
using level sets of barrier certificates. We developed a MetaNN that is trained offline
on samples of barrier certificates and is used online integrated with an SMT solver for
ensuring safety. We demonstrate our approach on case studies and an autonomous driving
scenario.

In the provided tests we demonstrate the applicability of the presented approach on
a wide range of the models. The success rate of using MetaNN for these models is high
enough to use in online settings. Online certification of the vehicle dynamics clearly outline
the strengths and the potential of using MetaNN in comparison with utilizing FOSSIL
directly. We did not compared our framework with other reachability tools as we do not
know any publicly available existing tools for online setting.

The algorithm is independent of the selection of controllers or planning algorithm and
provide guarantees on the safety of the system. The algorithm is restricted only by (i)
scalability of FOSSIL and (ii) training process. In the first case, if FOSSIL can handle
larger systems with complex barrier certificates templates, then the presented approach
will be stronger too. In the second, it is the utmost importance to learn the MetaNN, so
the amount of spurious barrier certificates in online setting will be minimal. Although,
such barrier certificates will not lead to unsafe regions due to safety check via SMT-solver,
they might increase the time horizon of the dynamics due to use of additional backup or
even safe controllers and additional planning.

We showed that the new approach not only extends the capabilities of barrier certificate
verification to synthesis of parameterised controllers, but also increases the success rate of
online barrier certificate generation from 78% to 99% at the cost of offline training.





Chapter 6

Conclusion

There are multiple challenges in verification of cyber-physical systems. Real-world models
require scalable techniques to handle complex non-linearity. In addition, switching between
different modes of the system introduces discrete jumps and costly set operations. Such
systems may operate in time-constrained settings, thus we need to reason about the safety
of such systems in a reasonable time, sometimes instantly. In this thesis, new scalable
verification techniques for cyber-physical systems are presented.

6.1 Contribution and current limitations

To begin with, we demonstrated how decompositional reachability can be extended to
linear hybrid systems. In addition, we showcased that set operations can be efficiently
computed in low dimensions for high-dimensional systems. Decomposed reachability
analysis allows us to focus on appropriate subspaces and perform reachability analysis for
systems with thousands of variables. The hybrid system should follow a specific structure
to get the most out of the proposed decompositional algorithm. In particular, constraints
must be defined in low dimensions or be loosely coupled to avoid additional errors due
to the wrapping effect. Additionally, the block structure of the system is defined at the
very beginning of the hybrid loop algorithm, while for some systems it can be beneficial to
change decoupling on-the-fly. The block structure is also defined manually, which means
that it is up to the model designer to find the most efficient structure for the analysis.

Next, a new approach to perform reachability analysis of nonlinear systems was
presented by utilizing the Koopman operator. It transforms nonlinear models into linear
with a systematic way, namely random Fourier features, to generate approximative linear
system dynamics. It opened a way to perform reachability analysis on linear systems
instead, which is substantially faster. However, due to non-linear observables which are
used for a tighter approximation, nonlinear initial sets are introduced. Interval and Taylor
model arithmetics as part of zonotope and polynomial zonotope approximation respectively
were utilized to efficiently handle nonlinear initial sets created by such linearization. Since
some systems can be linearized using Koopman and Fourier without any additional
approximation error, it creates a foundation for fast analysis of nonlinear systems. Note,
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that the use of SMT solver is a main drawback of this approach, particularly, for systems
linearized with Fourier observables due to high nonlinearity. It should be noted that
approximation error for such linearization cannot yet be bounded analytically, which
means that only statistical safe guarantees on the original system can be provided.

Finally, an algorithm to compute on-the-fly sound reachable sets using barrier cer-
tificates was presented. It utilizes two neural networks to produce barrier certificates.
These neural networks are connected to SMT solver to produce formal guarantees on the
generated zero-level sets. Since the algorithm is independent of the selection of barrier
certificates generators for the offline training step, the only restriction is the capabilities of
FOSSIL, a toolbox chosen in this work. The online section of the framework relies on a
well-trained neural network, which in turn requires sufficient data for the training process.
Currently, FOSSIL supports only a limited class of dynamical systems which restricts the
class of models our framework supports. In addition, we support only purely continuous
systems as discrete jumps bring additional complexity in online settings.

The presented techniques are evaluated on a number of benchmarks and case studies,
which are commonly-used for benchmarking in the field. In addition, some of the models
are from ARCH competition, since it reports contains results for other tools, so we can
pick the best competitors to compare the results against the presented techniques. Thus,
we demonstrate the efficiency of the proposed algorithms against state-of-the-art tools.

To sum up, the presented techniques allow verification of wide class of dynamical
systems faster in comparison with existing methods. However, each of these methods aims
to address a particular subset of systems, while there are systems where other tools might
perform better. Thus, the proposed techniques were developed in JuliaReach as it provides
all the building pieces for reachability analysis as well as an implementation of multiple
state-of-the-art algorithms accessible via a single interface. This could help researchers
to easily add or modify these algorithms and evaluate possible improvements, as well as
simply run and compare different techniques to analyse the model under consideration,
since a single commonly-used framework is yet to be developed for efficient verification of
a wide range of dynamical systems. Note, that since ideas presented in this thesis rely on
the performance of underlying tools, e.g. SMT solvers and barrier certificate generators.
Therefore, improvements to the mentioned tools could significantly improve results for the
described techniques.

6.2 Future work

Although the techniques and algorithms presented in this thesis already outperform state-
of-the-art tools on a given set of benchmarks, they can be a good basis for future research
directions.

For instance, in the benchmarks considered in the evaluation for the decompositional
algorithm, it was not necessary to change the block structure when switching between
locations. In general, different locations may constrain different dimensions, so tracking
the “right” dimensions may be necessary to maintain precision. While it is easy to merge
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different blocks, subsequent computations would become more expensive. Hence one may
also want to split blocks again for optimal performance. Since this comes with a loss in
precision, heuristics for rearranging the block structure, possibly in a refinement loop, are
needed. Parallel computations should be considered for the cases when multiple blocks
must be computed, as it can result in a faster computing in comparison with the current
imperative algorithm.

In addition, we plan to further optimize the reachability analysis algorithm using model
transformation via Koopman operator, as well as to create a user-friendly tool in order to
participate in the annual nonlinear reachability competition, such as ARCH. Moreover,
research is required on how to reduce approximation error and how to measure that error
to take it into account during reachability analysis. This will enable the algorithm to
provide formal guarantees on the original system. Another interesting direction is how
to linearize hybrid systems and how to preserve the mapping between the original and
liniarized system in different modes.

We also plan to consider a wider applicability of the approach to generate barrier
certificates on-the-fly, particularly in real-time and safety-critical contexts. Additionally,
there is a need to test different tools to generate barrier certificates in offline settings to
train neural network on more challenging benchmarks. Currently, FOSSIL is the only tool
we use in an offline setting and it restricts us, as it does not yet handle a wide range of
benchmarks, especially with non-trivial settings. An interesting research direction is to
apply this algorithm to the hybrid setting and find an efficient way to perform discrete
jumps and interesction with the barrier certificates. This would help to utilize more
complex planning and control over the system, which, in turn, will provide more options
for model designers. Furthermore, there are more areas of research which are not covered
in this thesis. For instance, when we discuss real-life systems we should remember that the
industry usually utilizes tools such as MATLAB Simulink/Stateflow to model their systems.
Model transformation is required to prepare models to be analyzed via formal verification
tools. Currently, researchers from the formal verification field manually transform models
to perform formal verification, however, automatic transformation enables everyone with
the original, e.g. MATLAB model, to test verification techniques. There are tools,
such as SL2SX [151, 121], which could model the basic Simulink system into SpaceEx
hybrid automaton representation, however, they lack Stateflow support. An instrument
to transform models from industrial tools to verification would boost the use of formal
techniques and open new ways of utilizing algorithms with safe guarantees on real-life
systems.

Semantically, one of the main differences between industrial modelling tools and formal
verification tools, is that the former incorporate “must” semantics, while the latter reason
about systems with “may” semantics. In other words, simulation models are deterministic
and their transitions must be taken as soon as guard constraints are satisfied, while
verification models are nondeterministic and allow the dynamics to flow even with satisfied
guard constraints. The problem has been studied in [149] and [150], however, the proposed
approach suffer from wrapping effect and could be very convervative in overapproximation.
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A promising approach presented in [120] relies on the formulation of Lie derivative and
the generation of temporary modes to replicate “must” semantics. However, complex
invariants could create a large number of additional modes, which consequently leads to
the accumulation of error and increased complexity of the system.

Finally, all the verification methods must be benchmarked. Although HyPro benchmark
repository [3] and ARCH competitions [11] are the current main sources of the benchmarks,
and Hyst [38] allows to transform models between different verification tools, there is
still a lack of a unified suite of models. Given current challenges in verification, such as
scalability, verification of non-linear systems, etc., each of the models should clearly outline
what each particular model tests and how it is related to real-life problems. Reasonable
time frames to perform analysis, as well as safety properties, must be provided to each
system.
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