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Abstract

Data-centric engineering is drastically impacting all areas of engineering and industry.

The goal of data-centric engineering is to make data science, mathematics, statistics, and

machine learning fundamental to engineering practice, leading to engineered products

that are more intelligently designed, monitored and maintained, more reliable, more cost

e�cient, and safer to use.

Reliability and maintenance optimisation are two important research areas being impacted

by data-centric engineering. The large amounts of dynamic data being collected by data-

driven technology has the potential to provide accurate real-time information about the

state of products, allowing for the health (or reliability) of products to be continuously

monitored. The continuous monitoring of the reliability of products allows us to more

accurately plan maintenance, reducing costs and increasing safety.

This thesis has two main contributions. One is in the �eld of reliability for hard-disk

drives with automatic data-collecting devices and one is in the �eld of condition-based

maintenance for complex continuously monitored multi-component systems with

dependencies.

In Part I of this thesis, we propose a novel way to model the survival probabilities and

failure times of hard drives, using data collected by SMART (an automatic data-collecting

device). We de�ne critical states for hard drives using data collected by SMART and model

hard drive failure times using multi-state models. Using the proposed multi-state models,

we seek to concretely de�ne the impact of critical attributes on the failure time of a hard

drive.

In Part II of this thesis, we propose a novel condition-based maintenance policy for

continuously monitored multi-component systems subject to economic and stochastic

dependence. More speci�cally, we propose a novel loss-based utility function, that is

incorporated in a Bayesian sequential decision framework, to decide which components

are to be maintained at maintenance opportunities for continuously monitored

multi-component systems that are subject to economic and stochastic dependence.
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Chapter 1

Introduction

This thesis is concerned with reliability and maintenance optimisation in the age of

data-centric engineering. Data-driven technology is impacting all aspects of engineering

and industry. Modern technological developments, such as smart chips, sensors, and

monitoring systems, have changed data-collection processes. More and more products are

being produced with automatic data-collecting devices that track how and under which

environments the products are being used. There is a tremendous amount of dynamic

data being collected and hence enormous potential for such data to provide more

accurate information about the state of products and systems. More accurate

information has the potential to improve safety and to reduce costs. For these reasons,

the �eld of data-centric engineering is a pioneering area for research and is shaping all

aspects of engineering and technology.

Reliability and maintenance optimisation are two important research areas being

impacted by data-centric engineering. Reliability is de�ned as the probability that an

item, product, or system can perform a required function, under given environmental and

operating conditions, for a speci�ed period of time (Hamada et al., 2008; Meeker et al.,

2022). Maintenance is concerned with the process of preventively repairing or correctively

replacing a system, or a subset of a system, in order for the system to be able to perform

a required function, under given environmental and operating conditions, for a speci�ed

period of time (Ben-Daya et al., 2016). Maintenance decision making consists of deciding

the times to perform maintenance and deciding which parts of a system to repair or

replace (Keizer et al., 2017; de Jonge and Scarf, 2019). These decisions depend on the

reliability of the components of the system and the dependencies between components

(Keizer et al., 2017; de Jonge and Scarf, 2019).

Maintenance costs are a major part of the total operating costs for all manufacturing or

production plants (Zio and Compare, 2013). Mobley (2002) states that maintenance costs

can represent between 15 and 60 percent of the cost of goods produced, and that up to
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a third of these costs may be due to unnecessary or poorly executed maintenance. In

both the process industry and the chemical industry over a quarter of the total workforce

deal with maintenance operations (Waeyenbergh and Pintelon, 2002). The operations

and maintenance costs for o�shore wind farms contribute a quarter of the life-cycle costs,

making maintenance one of the largest cost components for o�shore wind farms (Snyder and

Kaiser, 2009; Irawan et al., 2017). Hard disk drives (HDDs) are a key driving factor behind

enabling the use of the large amounts of data collected by data-driven technology. However,

HDDs are not only the most frequently replaced hardware components of a data centre,

they are also the main reason behind server failures (Vishwanath and Nagappan, 2010),

which can result in large amounts of data loss; making accurate maintenance planning a

major concern for data centres.

For these reasons, research in the �eld of maintenance planning is of critical importance

and has been extensively studied over the past decades. Reviews of maintenance strategies

have been written by McCall (1965), Wang (2002), Van Horenbeek et al. (2013), Keizer

et al. (2017), and de Jonge and Scarf (2019). Research in the �eld of reliability is of

equal importance, since maintenance optimisation depends crucially on the reliability of

the system being studied.

Continuous monitoring of a system's health, using data collected by sensors or monitoring

systems, is playing an increasingly important role in the �elds of reliability and maintenance

optimisation. The advances in sensor technologies have greatly accelerated the use of

real-time monitoring and condition assessment for manufacturing and production systems.

Condition-based maintenance (CBM) has been shown to be an e�ective way to minimise

maintenance costs, improve operational safety and reduce the frequency and severity of

in-service system failures (de Jonge and Scarf, 2019). Prognostic methods based on sensor

information for reliability or remaining useful life (RUL) prediction have been extensively

studied in recent years (Pang et al., 2021; Zhang et al., 2021; Li et al., 2021). It has been

shown that incorporating prognostic reliability information in maintenance planning can

help make more informed maintenance decisions for single-component systems (Zhou et al.,

2007; You et al., 2010; Fauriat and Zio, 2020; Zheng et al., 2020). On the other hand, CBM

for complex multi-component systems with dependencies is an underexplored area. Modern

systems are becoming more and more complex and their operational environments are often

dynamic. Many complex systems consist of a large number of interconnected components

with dependencies.

This thesis makes two main contributions. One is in the �eld of reliability for HDDs

with automatic data-collecting devices and one is in the �eld of CBM for complex multi-

component systems with dependencies. The �rst contribution, described in detail in Part

I, provides a novel way to model the survival probabilities and failure times of hard drives

using dynamic data collected by the drives. The methodology allows us to specify the
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impact of critical attributes on the failure time of a hard drive. The work described in

Part I has been accepted for part of a special issue on degradation and maintenance,

modelling and analysis in Applied Stochastic Models in Business and Industry (ASMBI).

The second contribution, described in detail in Part II, provides a novel loss-based utility

(or reward) function, that is incorporated in a Bayesian sequential decision framework, to

decide which components are to be maintained at maintenance opportunities for

continuously monitored multi-component systems that are subject to economic and

stochastic dependence. The work described in Part II was published in January 2022 as

part of a special issue on maintenance planning in Reliability Engineering & System

Safety (Oakley et al., 2022).

1.1 Part I

In Part I, we propose a coherent and novel way to model the survival probabilities and

failure times of hard drives, which allows us to examine the impact of critical attributes

on hard drive survival probabilities and failure times.

A recent study based on data from Microsoft reports that 76−95% of all failed components

in data centres are hard drives (Manousakis et al., 2016). HDDs are the main reason

behind server failures (Vishwanath and Nagappan, 2010). Consequently, research in hard

drive failure prediction is critically important and has been extensively studied over the

past decades. Predicting drive failures before they occur can inform us to take action in

advance.

Most HDDs are equipped with a monitoring system named SMART (Self-Monitoring,

Analysis, and Reporting Technology). The primary function of SMART is to detect and

report various indicators of drive reliability, with the intention of anticipating imminent

hardware failures. At present, SMART is implemented inside most modern hard drives.

However, as Murray et al. (2005) and Lu et al. (2020) reported, SMART alone does not

lead to accurate predictions of failures. Moreover, in addition to whole-drive failures that

make an entire drive unusable, modern drives can exhibit latent sector errors, reallocated

sector counts, and many other read/write errors. The e�ect of such errors on the failure

rates of hard drives is poorly understood (Ma et al., 2015). Empirical observations show

that the failure rates of hard drives increase after their �rst scan error (Pinheiro et al.,

2007). First errors in reallocations and probational counts are also strongly correlated

to higher failure probabilities (Pinheiro et al., 2007). Pinheiro et al. (2007) discuss, but

do not present, predictive models using SMART attributes; concluding that it is unlikely

that SMART data alone can be e�ectively used to build models that predict failures of

individual drives. We seek to provide a novel way of modelling the survival probability of a
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hard drive using data collected by SMART and to use these predictive models to concretely

provide a measure of how much critical SMART attributes weaken a drive. For example,

how is the survival probability of a hard drive, over a forecast horizon of interest, impacted

when a hard drive records a reallocated sector count, or multiple reallocated sector counts?

We seek to provide predictive models to answer these questions.

Statistical and machine learning models have been proposed based on SMART attributes

to improve failure prediction accuracy. Most papers approach hard drive failure prediction

from a classi�cation point of view, classifying drives as failed or not failed within a speci�c

time horizon. Moreover, as mentioned by Lu et al. (2020), most papers classify hard drive

failures using a prediction horizon of a few hours, days, or weeks. It could be of value

to provide accurate models that can predict hard drive failure over longer time intervals.

It would be valuable to provide estimates, with uncertainty, of the survival probabilities

and RUL of drives. Lu et al. (2020) compare the prediction quality of machine learning

models with di�erent groups of SMART, performance and location features. The machine

learning models classify hard drive failures 2-15 days in advance. Chhetri et al. (2022) use

machine learning methods and knowledge graphs to predict hard drive failures. Drives are

classi�ed one day in advance. Botezatu et al. (2016) use regularised greedy forest classi�ers

to predict hard drive failures 10-15 days in advance. Shen et al. (2018) use part-voting

random forests to predict hard drive failures. They compare part-voting random forests to

classi�cation trees and recurrent neural networks. The classi�cations are made one week

in advance.

Far fewer papers approach hard drive failure prediction from a probabilistic or RUL point

of view. Mittman et al. (2019) propose a hierarchical model to obtain the lifetime

distributions of hard drives from di�erent brands. Their approach borrows strength

across brands with many observed failures to help make inferences for those brands with

few failures. Their approach does not incorporate the (covariate) attributes collected by

SMART. Chaves et al. (2018) obtain the RUL estimates of HDDs using SMART

attributes and a Bayesian Network. dos Santos Lima et al. (2017) present a RUL

estimation approach for hard drives using Long Short-Term Memory (LSTM) networks.

Our goal is to propose a novel way to model the survival probabilities and failure times of

hard drives, using data collected by SMART, and to concretely de�ne the impact of

critical attributes on hard drive failure times. Probabilistic models are advantageous in

answering the question �How much do critical attributes weaken drives?� as we will be

able to directly compare probabilities of survival/failure of drives, over forecast horizons

of interest, to concretely answer this question. In addition, when multiple hard drives fail

simultaneously, a RAID (multiple hard drives grouped together to decrease the risk of

data loss) may lose data (Ma et al., 2015). Probabilistic models can provide the

probability of data loss, which would be of value to data centres. Even if a classi�cation
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model predicts that no individual drive is going to fail over a chosen forecast horizon, the

probability of data loss may still be alarming to data centres.

As mentioned by Lu et al. (2020), SMART attributes do not always have strong predictive

capabilities for hard drive failures over longer prediction horizons (i.e., predicting drive

failure several weeks or months before the actual failure instead of a few hours or days

in advance). This is primarily because the values of SMART attributes do not change

frequently enough during the period leading up to the failure, and the change is often

noticeable only a few hours before the actual failure, especially in hard-to-predict cases.

In Part I, we de�ne critical attributes and critical states for hard drives using SMART

attributes. We utilise the probabilities of changes in critical attributes and the age of a

hard drive to predict the probability of drive failure over time. We treat changes in critical

attributes as drives entering critical states. Using the age of the drive and the state of

the drive allows us to identify drives at risk of failure, even when the values of SMART

attributes have been stationary for a long time. Part I presents a general framework for

modelling reliability �eld data collected from SMART for a population of hard drives,

treating changes in critical attributes as drives entering critical (non-terminal) states. In

this setting, the data collected by SMART can be considered semi-competing risks data.

Semi-competing risks refers to the setting where interest lies in the time-to-event for some

terminal event, the observation of which may be subject to some non-terminal event(s)

(Fine et al., 2001). In contrast to competing risks, where each of the outcomes under

consideration is typically terminal, in the semi-competing risks setting, it is possible to

observe multiple events in the same study unit, providing at least partial information on

the joint distribution (Fine et al., 2001; Xu et al., 2010). Towards the analysis of semi-

competing risks data, the statistical literature has focused on three broad frameworks

that seek to exploit the joint information on the times to the non-terminal and terminal

events (Varadhan et al., 2014). Those based on copulas (Fine et al., 2001; Peng and Fine,

2007; Hsieh et al., 2008; Lakhal et al., 2008); those framed from the perspective of causal

inference (Egleston et al., 2007; Tchetgen Tchetgen, 2014); and, those based on the illness-

death model (Xu et al., 2010; Liu et al., 2004; Putter et al., 2007; Lee et al., 2015, 2020,

2021). In Part I, we focus on the last of these approaches, for which the underpinning idea

is that drives begin in some initial (healthy) state and may transition into the non-terminal

(critical) state(s) and/or the terminal (failed) state. Analyses typically proceed through

the development of models for transition-speci�c hazard functions, which dictate the rate

at which units experience the respective events.

In the analysis of time-to-event outcomes, data are subject to left-truncation, or delayed

entry, when units are enrolled into a study. In addition, units are subject to right-censoring.

Left-truncation is common in large populations of units where units are required to be in

a working state at an enrollment time in order to be included in a study. In this setting,
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sampling is biased since units are only included in the study if they are in a working state on

entry. The analysis of left-truncated time-to-event data should apply statistical methods

that account for this bias. Moreover, right-censoring is common in reliability studies when,

due to advancements in technology, units are retired and replaced by newer technology, or

because many units simply will not have failed at the end of the study. Not accounting for

right-censoring will also produce biased estimates.

The contributions of Part I are as follows. We de�ne critical attributes and transient states,

named critical states, for hard drives using data collected by SMART. We model the semi-

competing risks data (entry to the critical state(s) and failure) using multi-state models.

The proposed multi-state models provide a coherent and novel way to model the failure

times of hard drives and allow us to statistically examine the impact of critical attributes

on hard drive failure times. The multi-state models utilise the probability of a change in

critical attributes, the age and the state of a hard drive to predict the probability of drive

failure over time. Using the age of the drive and the state of the drive allows us to identify

drives at risk of failure, even when the values of critical attributes have been stationary for

a long time. We illustrate how multi-state models can be used to obtain distributions of

remaining life (DRLs) for hard drives using the age and state of a drive and compare our

results to previous work by Mittman et al. (2019). The DRLs play an important role in

health monitoring and making maintenance decisions. Our motivating example concerns

a large dataset of hard drives, from data backup company Backblaze (Backblaze, 2022a),

that is subject to left-truncation and right-censoring.

The structure of Part I is as follows. In Chapter 2, we introduce reliability concepts. We

de�ne commonly used functions to describe the reliability of a product and provide

examples of reliability data. Moreover, we introduce censoring and truncation in the

context of reliability and describe the likelihood contributions for censored observations

and the likelihood adjustments for truncated observations. We conclude the chapter by

introducing Bayesian inference and Bayesian computation. In Chapter 3, we introduce

multi-state models and extend the standard reliability methodology described in Chapter

2. We present the general form of left-truncated and right-censored data and derive the

likelihood and the DRLs for three multi-state models. In Chapter 4, we present

discrimination and calibration measures to assess model performance. In Chapter 5, we

provide a novel way to model the reliability of hard drives, utilising data collected by

SMART, based on the methodology presented in Chapter 3. The proposed methodology

enables us to identify the impact of critical attributes on hard drive failure times. We

compare our results to previous work by Mittman et al. (2019) using the methods

presented in Chapter 4. Appendix A.1 provides supplementary material for Part I.
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1.2 Part II

In Part II, we propose a novel CBM policy for continuously monitored multi-component

systems subject to economic and stochastic dependence. More speci�cally, we propose a

novel loss-based utility (or reward) function, that is incorporated in a Bayesian sequential

decision framework, to decide which components are to be maintained at maintenance

opportunities for continuously monitored multi-component systems that are subject to

economic and stochastic dependence.

Traditionally, three types of dependence between units are distinguished in the

maintenance literature. Namely, economic dependence, stochastic dependence and

structural dependence (Thomas, 1986; Laggoune et al., 2010). Economic dependence

exists when the cost of maintaining or inspecting multiple units simultaneously is

di�erent from the sum of the costs of maintaining or inspecting these units separately, for

instance due to a �xed set-up cost. Economic dependence has been well-studied and

substantial cost savings can be made by grouping maintenance activities to reduce overall

cost.

Martinod et al. (2018) implement an opportunistic maintenance policy in

multi-component systems with economic dependence. A stochastic optimisation model is

used to reduce the long-term total maintenance cost of complex systems. Do and

Bérenguer (2020) de�ne an importance measure of a group of components as its ability to

improve the system reliability during a mission given the current conditions (states or

degradation levels) of the components. An extension of the proposed importance measure

is investigated to incorporate economic dependence. Liu et al. (2017) develop a

maintenance policy for multi-component systems subject to hidden failures. Components

are assumed to su�er from hidden failures, which can only be detected at inspection. A

common cost is incurred at each inspection time, which can be shared when multiple

inspections are carried out simultaneously. Arts and Basten (2018) study a periodic

maintenance policy and a CBM policy in which the scheduled maintenance downtime can

be coordinated between components. Liu et al. (2021) analyse a �nite-horizon CBM

policy for a two-unit system with dependent degradation processes. A set-up cost is

incurred whenever maintenance is performed. The set-up cost can be shared when

multiple maintenance actions are carried out simultaneously.

Stochastic dependence arises when the state of a component in�uences the deterioration

processes or lifetime distributions of other components or when components are subjected

to common-cause failures. This is often observed for redundant mechanical systems where

the degradation of a component leads to internal force redistribution, which can overload

other components. Component failures in load-sharing systems increase the workload on

the remaining components, and consequently the failure-rates of these components also
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increase. Keizer et al. (2018) consider a parallel system that is subject to both stochastic

dependence through load sharing and economic dependence through maintenance set-up

costs. The parallel system is formulated as a Markov decision process, and the optimal

replacement decisions that minimise the long-run average cost per unit time are obtained.

Brown et al. (2022) develop and evaluate a load-sharing system with spatial dependence

and proximity e�ects. If a component fails, its load is taken up by its working spatial

neighbours in close proximity. Liu et al. (2016) develop two reliability models for

assessing the reliability of load-sharing systems with continuously degrading components.

The proposed models are used to formulate preventive maintenance policies. The system

load is distributed equally between all working components. Component failures increase

the load on the remaining working components, and consequently the degradation rates

of these components also increase. Zhang et al. (2018) consider two versions of a

two-component system with failure interactions. Failure of the �rst component either

causes a random amount of damage to the other component, or it results in failure of the

other component with a certain probability. Three preventive maintenance policies are

analysed numerically. Common-mode stochastic dependence is considered by Liu et al.

(2020). Components in systems subject to common-mode stochastic dependence follow

similar deterioration or failure patterns when operating in a common environment. An

increase in the degradation of one component is usually accompanied with a degradation

increase in the other components. Liu et al. (2020) present a life cycle cost model for

systems subject to multiple dependent degradation processes and environmental

in�uence. The degradation dependence between components is modelled using copulas.

Keizer et al. (2017) make a distinction between structural dependence from a technical

point of view and structural dependence from a performance point of view. Structural

dependence from a technical point of view exists, for instance, if maintenance of a unit

requires other units or subsystems to be dismantled as well. This may induce deterioration

or failure of these other units. Nguyen et al. (2015) propose a predictive maintenance policy

with multi-level decision making for multi-component systems with complex structures.

Selecting optimal components is based on a cost-based improvement factor taking into

account the predictive reliability of the components, the economic dependence, and the

location of the components in the system. A failure of one or several components can

cause other components to transition to an idle state.

Structural dependence from a performance point of view exits when the performance of a

system depends on the con�guration of its units, and when it is not just the sum of the

performance of the individual units. Components are dependent through the physical

structure of the system. Wu et al. (2016) consider structural dependence from a

performance point of view. Systems with an arbitrary structure are considered, and an

importance measure is introduced to determine which units should be preventively

maintained when a unit fails. Heuristic decision rules are optimised based on simulation.
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Keizer et al. (2017) identify resource dependence as a fourth type of dependence that can

exist. This type of dependence exists, for example, if limited repair workers are

responsible for the maintenance activities of various units or systems, if a single, �nite

stock of spare parts is used for the replacement of multiple units, or if time windows

during which maintenance can be carried out have limited lengths. Rasmekomen and

Parlikad (2013) use simulation-based optimisation to analyse a system consisting of a

number of parallel machines. A single maintenance crew can only maintain one machine

at a time. Liu et al. (2014) propose a value-based preventive maintenance policy for

multi-component systems with continuously degrading components. Only one

maintenance crew is available and only one component can be maintained at a time. A

yield-cost importance measure is proposed to determine which component should be

maintained when the system reliability reaches a reliability threshold. Diallo et al. (2018)

develop a two-stage heuristic algorithm to select components for maintenance, and to

determine the degrees of repair for serial k-out-of-n systems that operate for consecutive

missions interspersed with �nite breaks during which only a selected set of component

repairs or replacements can be carried out due to limited time.

As a result of these dependencies, maintenance optimisation for multi-component systems

is a challenging problem. It combines the dependent failure processes of components, the

resource dependence and the structural dependence with the combinatorial optimisation

problem regarding the grouping of maintenance activities.

The research in Part II is motivated by gaps in the maintenance literature. There are only a

small number of papers in the literature that consider stochastic dependence (Keizer et al.,

2017; de Jonge and Scarf, 2019). The majority of studies on multi-component systems

consider a single type of dependence, implying that ample research opportunities exist

that incorporate multiple dependencies (de Jonge and Scarf, 2019). Moreover, as noted by

de Jonge and Scarf (2019), only a limited number of studies take parameter uncertainty

into account. We contribute to all of these areas in Part II of this thesis. Furthermore, we

highlight the bene�ts of sequential maintenance decisions over one-step ahead decisions.

It is common in the maintenance literature to make maintenance decisions (scheduling

maintenance times and deciding which components to repair or replace at scheduled times)

by minimising the cost per unit time. In Part II of this thesis we propose a loss-based utility

(or reward) function, Λ, for multi-component systems with economic dependence (through

a �xed set-up cost) and stochastic dependence (through failure-based load sharing). The

utility, Λ, is a combination of interpretable penalties that encapsulate the costs of economic

and stochastic dependence.

There are potential bene�ts to using a loss-based utility function in practice. First, writing

the loss of each type of dependence separately shows the cost of each type of dependence.

It could be bene�cial, in terms of design or maintenance planning, to understand which
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dependence is the most expensive. For example, if we �nd that the cost of load-sharing is

magnitudes larger than other costs, it may prompt us to add more redundancy to a system

or to a particular subsystem; or if the cost of resource dependence is magnitudes larger

than other costs, it may allow us to schedule more workers or to buy more spare parts in

advance. The above insights may not be as clearly drawn when using the cost-per-unit-time

utility. Separating the costs of each form of dependence may be of value to the maintenance

literature, especially for large complex systems with multiple dependencies. Second, we

will see that the rewards and losses of a sequence of maintenance actions are more easily

de�ned and calculated using a loss-based utility function compared to the cost-per-unity

time utility.

In Part II, we de�ne penalties for systems with economic dependence (through a �xed

set-up cost) and failure-based load sharing dependence (a form of stochastic dependence).

The ideas proposed in Part II could be used to extended loss-based utility functions to

systems with resource and structural dependence. In addition, the losses due to each type

of dependence can be tailored to application. Through simulation studies we will compare

Λ to the cost per unit time utility. We will compare a random-threshold approach to a

�xed-threshold approach and an expected failure time approach to highlight the importance

of incorporating all uncertainty when making maintenance decisions.

The structure of Part II is as follows. Chapter 6 provides the reliability and maintenance

concepts required for the subsequent chapters. Chapter 6 introduces system reliability for

multi-component systems and de�nes economic and stochastic dependence in the context

of maintenance. Chapter 6 also introduces degradation processes and degradation

thresholds. In Chapter 7, we illustrate the penalties incurred by multi-component

systems as a result of economic dependence, through a �xed set-up cost, and stochastic

dependence, through failure-based load sharing. We then propose a novel CBM policy

that incorporates a loss-based utility function, which is a combination of interpretable

penalties that encapsulate the costs of economic and stochastic dependence, in a

sequential Bayesian decision framework. In Chapter 8, we implement the CBM policy

proposed in Chapter 7. The CBM policy is compared to alternative policies, using

simulation studies, to highlight the advantages of our sequential CBM policy. Appendix

A.2 provides supplementary material for Part II.
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Chapter 2

Bayesian Reliability Analysis

In this chapter we introduce concepts of reliability. We begin by de�ning reliability and

provide reasons to collect reliability data. Next, we introduce the probability density

function, the cumulative distribution function, the reliability or survival function, and the

hazard function. We then provide examples of reliability data: including pass/fail, failure

count, failure age, and degradation data. We describe censoring and truncation in the

context of reliability. We present the likelihood contributions for censored observations

and the likelihood adjustments for truncated observations. We conclude the chapter by

introducing Bayesian inference and Bayesian computation.

2.1 Introduction

2.1.1 Quality and reliability

Rapid advances in technology, development of highly sophisticated products, intense

global competition, and increasing customer expectations have put new pressures on

manufacturers to produce high-quality products (Meeker et al., 2022). Customers expect

products to be reliable and safe. Systems, vehicles, machines, devices, and so on should,

with high probability, perform their intended function under usual operating conditions,

over an extended period of time (Meeker et al., 2022).

The International Organization for Standardization (ISO) de�nes reliability as �the

ability of an item to perform a required function, under given environmental and

operating conditions and for a stated period of time� (Hamada et al., 2008; Meeker et al.,

2022). Assessing, or improving, the reliability of products requires methods for predicting

and assessing various aspects of product reliability. In most cases this will involve the

collection of reliability data from studies, such as laboratory tests or designed

experiments, of materials, devices, items and components, tests on early prototype units,

monitoring of units in the �eld, or analysis of warranty data (Meeker et al., 2022).
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2.1.2 Reasons for collecting reliability data

There are many reasons for collecting reliability data. Examples include:

1. Assessing characteristics of items over a warranty period or the product's lifetime.

2. Predicting product reliability.

3. Predicting product warranty costs.

4. To aid with the design of a system or to assess the e�ect of a proposed design change.

5. Tracking the product in real-time to provide information on causes of failure and

methods of improving product reliability.

6. Tracking the product in real-time to inform maintenance decisions.

7. Tracking the product in real-time to assess how di�erent environmental and operating

conditions impact product lifetime.

In Part I of this thesis we will be concerned with predicting hard drive reliability and

assessing the impact of critical attributes on the failure times of drives, that is, bullet

points 2 and 7 above.

2.2 Failure-time distribution functions

Much of reliability analysis focuses on modelling the failure time distribution of an item;

which involves a random variable, say T . For example, if we make use of a hard drive to

store data until the hard drive fails, the age of the drive at failure, T , is a random variable,

taking positive real values.

We can specify the properties of a random variable using di�erent representations, all of

which contain equivalent information. Each representation is useful in speci�c contexts.

These representations include the probability density function (PDF), the reliability or

survival function, the cumulative distribution function (CDF), and the hazard function.

For a positive continuous random variable, T , taking values on the positive real line, the

PDF is a function, f(t), that satis�es

f(t) ≥ 0, 0 ≤ t <∞, (2.2.1)
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and

∫ ∞
0

f(t)dt = 1. (2.2.2)

We can de�ne the survival function of T , also known as the reliability function. The

survival function is de�ned as

S(t) = Pr(T > t) =

∫ ∞
t

f(x)dx, (2.2.3)

where f(t) is the PDF. The survival function takes values in the interval [0, 1].

The CDF of T is de�ned as

F (t) = Pr(T ≤ t) =

∫ t

0
f(x)dx. (2.2.4)

The CDF is the complement of the survival function.

Another way to specify the properties of a random variable is the hazard function, also

called the instantaneous failure rate function. Suppose that we are interested in the

probability that an item will fail in the time interval [t, t + ∆t], given that the item is

working at time t; from probability theory, we can write this as

Pr(t < T ≤ t+ ∆t | T > t) =
Pr(t < T ≤ t+ ∆t)

Pr(T > t)
=
F (t+ ∆t)− F (t)

S(t)
. (2.2.5)

If we want to know the instantaneous failure rate, we divide by the length of the interval,

∆t, and let ∆t→ 0. This gives

λ(t) = lim
∆t→0

Pr(t < T ≤ t+ ∆t | T > t)

∆t
. (2.2.6)

We call λ(t) the hazard function. The hazard function can be thought of as an item's

propensity to fail in the next short interval of time, given that the item has survived to

time t.

For positive random variables, Table 2.1 summarises the mathematical relationships

between the PDF, f(t), the CDF, F (t), the survival function, S(t), and the hazard

function, λ(t).

15



Chapter 2

f(t) F (t) S(t) λ(t)

f(t) f(t) d
dtF (t) − d

dtS(t) λ(t) exp
[
−
∫ t

0 λ(s)ds
]

F (t)
∫ t

0 f(s)ds F (t) 1− S(t) 1− exp
[
−
∫ t

0 λ(s)ds
]

S(t)
∫∞
t f(s)ds 1− F (t) S(t) exp

[
−
∫ t

0 λ(s)ds
]

λ(t) f(t)/
∫∞
t f(s)ds d

dtF (t)/[1− F (t)] − d
dt logS(t) λ(t)

Table 2.1: Relationships between the PDF, f(t), the CDF, F (t), the survival function,
S(t), and the hazard function, λ(t), assuming f(t) = 0 for t < 0.

2.3 Examples of reliability data

This section describes examples, and data sets, that illustrate the wide range of applications

and characteristics of reliability data. These include pass/fail, failure count, failure age,

and degradation data.

2.3.1 Bernoulli success/failure data

The simplest form of reliability data is �pass/fail� or Bernoulli trial data. This data arises

from simple �pass/fail� testing. Table 2.2 contains outcomes from a set of Bernoulli trials.

These data are the launch outcomes of new aerospace vehicles conducted by companies

during the period between 1980 and 2002. A total of 11 launches occurred; 3 were successes

and 8 were failures. Reliability in this case is the probability of a successful launch. The

data is provided by Johnson et al. (2005). The data is also discussed in Hamada et al.

(2008).

Vehicle Outcome

Pegasus Success
Percheron Failure
AMROC Failure

Conestoga Failure
Ariane 1 Success

India SLV-3 Failure
India ASLV Failure
India PSLV Failure

Shavit Success
Taepodong Failure
Brazil VLS Failure

Table 2.2: New launch vehicle outcomes (Johnson et al., 2005).
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2.3.2 Failure count data

Bernoulli data can also be recorded as a function of time. Failure count data represent

the number of failures that occur over a period of time. For example, Table 2.3 provides

data on the number of pump failures, xi, observed in ti thousand operating hours for

10 di�erent systems at the Farley 1 United States commercial nuclear power plant. The

random variable is the number of pump failures, Xi, and the reliability is the probability

that no pump failures occur in a given period of time. The data is provided by Gaver and

O'Muircheartaigh (1987). The data is also discussed in Hamada et al. (2008).

xi ti
System (failures) (thousand hours)

1 5 94.320
2 1 15.720
3 5 62.880
4 14 125.760
5 3 5.240
6 19 31.440
7 1 1.048
8 1 1.048
9 4 2.096
10 22 10.480

Table 2.3: Pump failure count data from the Farley 1 United States commercial nuclear
power plant (number of pump failures, xi, observed in ti thousand operating hours) (Gaver
and O'Muircheartaigh, 1987).

2.3.3 Lifetime or failure age data

Hard drive dataset

Table 2.4 presents an example of failure age data for hard drives from data backup company

Backblaze. Backblaze is a company that o�ers cloud backup storage to protect against

data loss. Since 2013, it has been collecting daily operational data on all of the hard

drives operating at its facility. Some drives have been running since 2013 or before, while

others were added at a later date. In other words, some drives have a history prior to data

collection. Drives that failed prior to the start of data collection are not included in the

dataset. Every quarter Backblaze makes its hard drive data publicly available through its

website (Backblaze, 2022a).

Figure 2.1 provides a schematic representation of two possible life histories of the Backblaze

hard drives and an example hard drive not included in the dataset. Drive 1 was in a failed
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Start age End age
Drive (operating hours) (operating hours) Failure indicator

1 9369 15211 1
2 9314 21692 1
3 9524 21977 1
4 8853 17850 1
5 9541 10110 0
6 9647 21749 0
7 9 11550 0
8 9587 21530 0
9 9524 21978 0
10 9743 22671 0

Table 2.4: Failure age data for hard drives from data backup company Backblaze
(Backblaze, 2022a).

state prior to the start of the study and was not included in the dataset. Drive 2 is right-

censored (still in a working state) at the end of the study. Drive 3 failed prior to the end

of the study. We de�ne the failure age of a hard drive to be the age of the drive at failure.

For example, the failure age for drive 3 is Y3. We de�ne calendar time to be the time since

the study commenced. Under this terminology, the failure time for drive 3 is Ỹ3.

Ỹ3

Y3Beginning of
study

End of study

� Failure

� Right-censored

Figure 2.1: Two possible life histories and an example drive not included in the dataset.

Table 2.4 presents failure age data for ten example hard drives. Table 2.4 provides failure

ages, for drives that are observed to fail before the end of the study, and right-censoring

ages, for drives that are still in a working state at the end of the study. In addition, the

dataset provides the age at the start of the study, and an indicator for each hard drive

to indicate if the drive has failed (1) or not (0). From Table 2.4 we can see that the �rst

four drives failed after working for 15211, 21692, 21977, and 17850 hours, respectively;

and the �nal six drives were still in a working state after working for 10110, 21749, 11550,

21530, 21978, and 22671 hours, respectively. The random variable is the age of the drive

at failure, and the reliability is the probability that the drive has not failed by a given age.
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Warranty data

End age
Drive (operating hours) Failure indicator

1 1521 1
2 2162 1
3 2077 1
4 1750 1
5 500 1
6 749 1
7 510 1
8 1530 1
9 978 1
10 671 1

Table 2.5: Warranty data with limited information for units that did not fail.

Table 2.5 illustrates an example warranty dataset. A particular item, after purchase, may

be used regularly, sporadically, or not at all. The percentage of units put into regular use

is unknown. During a particular production period, an incorrect component was installed

in all of the units that were produced. When failures occur among the units, the units

are returned to the manufacturer for repair or replacement under a long-term warranty

program. The manufacturer learns about failures from this group of units only if the unit

is put into service and if the unit fails before the analysis time. If a customer does not

use the unit until failure (prior to the analysis time), the data will not be available to the

manufacturer.

Figure 2.2 provides a schematic representation of three possible life histories and an example

unit not included in the dataset. The �rst three units failed prior to the analysis time and

were included in the dataset. The �nal item was not returned prior to analysis and hence

the information about this item was not included in the dataset. The random variable is

the age of the unit at failure, and the reliability is the probability that the unit has not

failed by a given age.

2.3.4 Degradation data

In some applications it is useful to measure the degradation of an item rather than, or

in addition to, its failure age. Degradation modelling is split into two categories: soft

failure degradation modelling, where items fail when their degradation level reaches a �xed

threshold; and hard failure degradation modelling, where items fail when their degradation

level reaches a random threshold. The latter is used when degradation data and failure

age data are both available. The former is used when failure age data is not available.
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First sold
faulty item

Last sold
faulty item

Analysis Time

� Failure

Figure 2.2: Three possible life histories and an example unit not included in the dataset.

2.3.4.1 Soft failures: fixed degradation level

For some items there is a gradual loss of performance over time. For example, decreasing

light output from a �uorescent light bulb. We may de�ne the light bulb to have failed

when the light output is α% of its initial output. This is an example of a soft failure. The

light bulb is still in a working condition, but is not functioning at the required performance

level. In this example, the degradation, D(t), is the light output, as a percentage of the

initial output, at age t.

A �xed value of Df is used to denote the critical level for the degradation path. The failure

age, T , is de�ned as the age when the degradation path crosses the �xed degradation level

Df .

Table 2.6 shows degradation measurements of four organic coating specimens. The data

shown in Table 2.6 is part of an outdoor weathering dataset from a study conducted by

scientists at the National Institute of Standards and Technology (NIST). The data were

collected in a study of the service life of organic coatings in outdoor environments. The

degradation measurement of the organic coatings was recorded periodically (at intervals of

several days) for each specimen using Fourier transform infrared spectroscopy (FTIR).

Generally, the degradation failure threshold is chosen to be the level of degradation at

which the performance of the coating would not be acceptable (e.g., the level at which

there would be customer-perceivable loss of gloss or colour). Hong et al. (2015) study the

outdoor weathering dataset and choose the failure threshold to be Df = −0.4.

Figure 2.3 illustrates the degradation paths for the four specimens in Table 2.6. Using

the failure threshold from Hong et al. (2015) we can see that specimens one, two, three,

and four are considered failed after 72.08, 69.68, 70.52, and 70.19 days, respectively. The

random variable is the age of the coating at failure, and the reliability is the probability

that the coating has not failed by a given age.
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Specimen Number
Time (days)

0 3 7 10 . . . 84

1 -0.008 -0.026 -0.044 -0.046 . . . -0.431

2 -0.011 -0.032 -0.050 -0.052 . . . -0.454

3 -0.002 -0.014 -0.034 -0.051 . . . -0.459

4 -0.001 -0.014 -0.035 -0.054 . . . -0.475

Table 2.6: Degradation data of organic coatings in outdoor environments obtained using
Fourier transform infrared spectroscopy (FTIR) (Hong et al., 2015).
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Figure 2.3: Plot of four representative degradation paths of organic coatings in outdoor
environments.
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2.3.4.2 Hard failures: random degradation level

For some products, the de�nition of failure is clear: the product stops working. These are

called �hard failures�. With hard failures, failure ages will not, in general, correspond with

a �xed level of degradation. Instead, the level of degradation at which failure occurs will

be random.

Hong and Meeker (2013b) model the failure ages of Product D2. Product D2 is similar

to a high-end copying machine connected to the Internet and installed with a smart chip

to record the number of pages that have been printed, as a function of time. Hong and

Meeker (2013b) model the failure ages of Product D2 using the use-rate (cycles per week)

as a dynamic covariate. In addition to the dynamic use-rate data, failure ages for failed

units, and right-censored ages for units that did not fail, are also available.

Hong and Meeker (2013b) model the failure ages of Product D2 using the cumulative

exposure or cumulative damage model. Given the entire covariate history, the cumulative

exposure, u(t), by age t is de�ned as

u(t) = u(t, β,x(t)) =

∫ t

0
exp[βx(s)]ds, (2.3.1)

where β is a parameter that controls the rate at which exposure accrues as a function of

the covariate values, x(t) = {x(s) : 0 < s ≤ t} is the covariate history up to age t, and

x(s) is the covariate value at age s. Each unit accumulates an unobservable amount of

the cumulative exposure, that depends on the dynamic covariate, x(t). The unit fails at

age T when the amount of cumulative exposure reaches a random threshold U . That is,

U = u(T ) and T is de�ned as the failure age of the unit. Thus, the relationship between

cumulative exposure U and failure age T is

U = u(T ) =

∫ T

0
exp[βx(s)]ds. (2.3.2)

The cumulative exposure threshold U has a CDF, F (u;θ), where θ is a vector of model

parameters. Figure 2.4 illustrates the cumulative exposure model for three example

covariate processes (i.e., three example use-rate processes). Figure 2.4 (left) depicts the

cumulative exposure or the cumulative damage for three example covariate processes.

The cumulative exposure can be thought of as a degradation path. The degradation path

of a unit increases until the degradation reaches a random threshold U . Figure 2.4 (right)

depicts the cumulative exposure CDF. From Figure 2.4 (right) we can see that the

probability of failure increases as the cumulative exposure, u(t), increases. Each level of

exposure (or each level of degradation) has an associated probability of failure. This is in
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Figure 2.4: Illustration of the cumulative exposure model for three example covariate
processes.

contrast to soft failures which use a �xed threshold, all units are assumed to fail when the

degradation path reaches a �xed threshold, Df . We see from Figure 2.4, that the

degradation level at failure varies from unit to unit.

2.4 Censoring

One common feature of reliability data is the presence of censoring. Failure age observations

are censored when the exact failure age for a speci�c item is unknown. There are several

types of censoring, including left, right, and interval censoring.

Left-censoring occurs when an item fails before the �rst inspection. For example, suppose

than an experiment tests the failure age of a new hard drive. A set of 100 drives are

inspected at 5 p.m. every day for two years to determine if the drive has failed. Suppose

the drives are put in service at 5pm on the �rst day of the study. The failure age for any

drive that fails before 5 p.m. on the second day is left-censored. Right-censoring occurs
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when an item has not failed by the last inspection. Consider our drive example. The

failure age for any drive that has not failed after two years is right-censored.

Both left-censoring and right-censoring are special cases of interval-censoring. Interval-

censoring occurs when an item's failure age is only known to be in an interval, (ti, ti+1).

If an observation is left-censored at t, its failure age is in (0, t). If an observation is

right-censored at t, its failure age is in (t,∞). In our drive example, the failure ages are

interval-censored because they can only be determined to fail within a 24-hour interval.

We usually assume that the censoring and failure ages are independent. This is known

as independent-censoring or noninformative-censoring. This implies that censoring ages of

units provide no information about the failure age distribution. Using future events (or

indicators of future events) to stop observing a unit could introduce bias.

Hard drives record many types of error over their lifespan. Modern drives can exhibit

latent sector errors, reallocated sector counts, and many other read/write errors. Such

errors weaken drives, but drives can still function as intended with such errors. The

noninformative-censoring assumption would be violated, for example, if hard drives were

removed from the study before actual failure, but in response to the drive recording drive

errors. This type of censoring is informative, because the drive was removed after an event

that is expected to increase the failure rate of the drive. Removing these drives would

introduce bias to a standard reliability analysis.

2.5 Truncation

Another common feature of reliability data is the presence of truncation. It is important to

distinguish between truncated observations and censored observations. Censoring occurs

when there is a bound on an observation. Truncation, however, arises when even the

existence of a potential observation would be unknown if its value were to lie in a certain

range. Usually truncation occurs to the left of a speci�ed point, τL, referred to as left-

truncation, or to the right of a speci�ed point, τR, referred to as right-truncation.

The hard drive dataset discussed in Section 2.3.3 is an example of left-truncated data.

Drives that failed prior to the start of data collection are not included in the dataset. In

other words, drives that failed before calendar time τ = 0 are not observed. Consequently,

the remaining observations are from a left-truncated distribution. Not incorporating the

information provided by the left-truncated drives can introduce bias.

The warranty dataset discussed in Section 2.3.3 is an example of right-truncated data.

Units that failed after the analysis time, τR, are not included in the dataset. In other words,

units that failed after the analysis time are not observed. Consequently, the remaining

observations are from a right-truncated distribution. Not incorporating the information

provided by the right-truncated units can introduce bias.
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Warranty data revisited

Suppose that all faulty units were sold to one buyer. For example, a data backup company

buying hard drives in bulk. Moreover, suppose the manufacturer alerted the buyer of the

faulty drives and hence the full batch of units were returned. In this scenario we observe

the data presented in Table 2.7.

End age
Drive (operating hours) Failure indicator

1 1521 1
2 2162 1
3 2077 1
4 1750 1
5 500 1
6 749 1
7 510 1
8 1530 1
9 978 1
10 671 1
11 500 0
12 1500 0
13 2100 0
14 1207 0
15 1785 0

Table 2.7: Warranty data with information for units that did not fail.

More speci�cally, we observe data on the failed units and the units that did not fail prior

to analysis. This dataset is an example of right-censored data, since we have information

about the units that did not fail. More speci�cally, we know the number of units that did

not fail and we know a lower bound for the failure age for each unit that did not fail. In

the warranty dataset discussed in Section 2.3.3, the units that did not fail prior to analysis

were unknown.

2.6 Likelihood

Truncation and censoring are common in large populations of units. For example, left-

truncation is common when units are required to be in a working state at the study start

time. In this setting, sampling is biased towards longer unit failure ages since units are

only included in the study if they are in a working state on entry. The analysis of truncated

reliability data should apply statistical methods that account for this bias. Moreover, right-

censoring is common in reliability studies when, due to advancements in technology, units

are retired and replaced by newer technology, or because units simply will not have failed
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by the end of the study. Not accounting for censoring will also produce biased estimates.

These biases can be accounted for through the likelihood function, for parametric methods

for inferring the failure ages of units.

The full likelihood can be written as the joint probability of the observations as a function

of the parameters of the chosen statistical model. Assuming n independent observations,

the sample likelihood is

L(θ) = L(θ;X) =

n∏
i=1

Li(θ;xi), (2.6.1)

where Li(θ;xi) is the likelihood contribution from observation i, xi is observation i,

X = (x1, . . . , xn) is the vector of observations for all units, and θ is the vector of model

parameters to be estimated.

In this section, we provide the likelihood contributions for censored observations and the

likelihood adjustments for truncated observations.

2.6.1 Likelihood contributions for censored observations

Figure 2.5 illustrates the intervals where the observations may lie for left-censored, interval-

censored, and right-censored observations. The likelihood contribution for each of these

cases, shown in Table 2.8, is the probability of failing in the corresponding interval.

Type of observation Failure age Contribution

Interval-censored ti−1 < T < ti F (ti)− F (ti−1)
Left-censored T ≤ ti F (ti)

Right-censored T > ti 1− F (ti)
Uncensored T = ti f(ti)

Table 2.8: Likelihood contributions for an interval-censored, left-censored, right-censored,
and uncensored observation.

Interval-censored observations

If a unit's failure age is known to have occurred between ages ti−1 and ti, the likelihood

contribution of the observation is

Li(θ) =

∫ ti

ti−1

f(t)dt = F (ti)− F (ti−1). (2.6.2)
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Figure 2.5: Likelihood contributions for di�erent kinds of censoring.

27



Chapter 2

Most data arising from observation of a time/age process can be thought of as having

occurred in intervals similar to (ti−1, ti). Most modern products collect data using sensors

or monitoring systems. Data may be collected every second, for example, and the failure

ages of these products are interval-censored between (ti−1, ti) seconds, where unit i is

observed to have failed by age ti and was in a working state at age ti−1. It is common to

ignore interval-censoring if the failure age of a product is relatively much larger than the

time between inspections. The following special cases warrant separate consideration.

Left-censored observations

Left-censored observations occur in life test applications when a unit has failed by the �rst

inspection; all that is known is that the unit failed before the �rst inspection. If there

is an upper bound ti for the ith failure age, causing it to be left-censored, the likelihood

contribution of the observation is

Li(θ) =

∫ ti

0
f(t)dt = F (ti)− F (0) = F (ti). (2.6.3)

Right-censored observations

Right-censoring is common in reliability data analysis. It is uncommon for all units to have

failed during a reliability study. Right-censored observations occur in life test applications

when a unit has not failed by the �nal inspection; all that is known is that the unit will

fail after the �nal inspection. If there is a lower bound ti for the ith failure age, the failure

age is somewhere in the interval (ti,∞). The likelihood contribution of the observation is

Li(θ) =

∫ ∞
ti

f(t)dt = F (∞)− F (ti) = 1− F (ti). (2.6.4)

Uncensored observations

A failure age is considered uncensored if the failure is observed �exactly� at age ti. The

term exact is used loosely, since sensors and monitoring systems can only record data every

t time units. Even if t is in�nitesimally small, the failure ages will be interval-censored.

However, as mentioned above, it is common to ignore interval-censoring if the failure age

of a product is relatively much larger than the time between inspections. The likelihood

contribution of an uncensored observation is

Li(θ) = f(ti). (2.6.5)
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2.6.2 Likelihood adjustments for truncated observations

In this section we provide the likelihood adjustments for left-truncated observations, right-

truncated observations, and observations that are both left-truncated and right-truncated.

We assume that we do not have any knowledge about the truncation distribution.

Likelihood with left-truncation

If a random variable Ti is truncated on the left at τLi , then the likelihood of an observation

in the interval (ti−1, ti] is the conditional probability

Li(θ) = Pr(ti−1 < Ti ≤ ti | Ti > τLi ) =
F (ti;θ)− F (ti−1;θ)

1− F (τLi ;θ)
, τLi < ti−1 < ti. (2.6.6)

For an observation reported as an exact failure at age ti, the corresponding likelihood

contribution is

Li(θ) =
f(ti;θ)

1− F (τLi ;θ)
, τLi < ti. (2.6.7)

It is possible to have censored observations when sampling from a left-truncated

distribution. The recorded censored age(s) will exceed τLi . To obtain Li(θ) for a censored

observation, we replace the numerator in Equation (2.6.7) by F (ti;θ) − F (τLi ;θ) for an

observation that is left-censored at ti > τLi and by 1 − F (ti;θ) for an observation that is

right-censored at ti > τLi . Equation (2.6.6) provides the likelihood contribution for an

observation that is interval-censored in (ti−1, ti).

Likelihood with right-truncation

If a random variable Ti is truncated on the right at τ
R
i , then the likelihood of an observation

in the interval (ti−1, ti] is the conditional probability

Li(θ) = Pr(ti−1 < Ti ≤ ti | Ti < τRi ) =
F (ti;θ)− F (ti−1;θ)

F (τRi ;θ)
, 0 < ti−1 < ti < τRi . (2.6.8)

For an observation reported as an exact failure at age ti, the corresponding likelihood

contribution is
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Li(θ) =
f(ti;θ)

F (τRi ;θ)
, ti < τRi . (2.6.9)

As with left-truncation, it is possible to have censored observations when sampling from a

right-truncated distribution. The recorded censored age(s) will not exceed τRi . To obtain

Li(θ) for a censored observation, we replace the numerator in Equation (2.6.9) by F (ti;θ)

for an observation that is left-censored at 0 < ti < τRi and by F (τRi ;θ) − F (ti;θ) for an

observation that is right-censored at ti < τRi . Equation (2.6.8) provides the likelihood

contribution for an observation that is interval-censored in (ti−1, ti).

Likelihood with left-truncation and right-truncation

If a random variable Ti is truncated on the left at τLi and on the right at τRi , then the

likelihood of an observation in the interval (ti−1, ti] is the conditional probability

Li(θ) = Pr(ti−1 < Ti ≤ ti | τLi < Ti < τRi ) =
F (ti;θ)− F (ti−1;θ)

F (τRi ;θ)− F (τLi ;θ)
, τLi < ti−1 < ti < τRi .

(2.6.10)

For an observation reported as an exact failure at age ti, the corresponding likelihood

contribution is

Li(θ) =
f(ti;θ)

F (τRi ;θ)− F (τLi ;θ)
, τLi < ti < τRi . (2.6.11)

As with left-truncation or right-truncation, it is possible to have censored observations

when sampling from a distribution that is left-truncated and right-truncated. The

recorded censored age(s) exceed τLi and do not exceed τRi . To obtain Li(θ) for a censored

observation, we replace the numerator in Equation (2.6.11) by F (ti;θ) − F (τLi ;θ) for an

observation that is left-censored at τLi < ti < τRi and by F (τRi ;θ) − F (ti;θ) for an

observation that is right-censored at ti < τRi . Equation (2.6.10) provides the likelihood

contribution for an observation that is interval-censored in (ti−1, ti).
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2.7 Introduction to Bayesian inference and Bayesian

computation

Statistical inference is the process of learning from data. The idea behind Bayesian

inference is that we express our uncertainty about the values of unknown quantities by

giving these quantities probability distributions. The probability distributions express

our degree of belief in the quantity taking each possible subset of values.

Beliefs about quantities before we see the data are called prior beliefs. These are

represented by prior distributions. When we observe data we use the information in the

data to update our prior beliefs to posterior beliefs. These are represented by posterior

distributions. Prior beliefs are updated to posterior beliefs using Bayes' theorem.

Suppose there is an unknown parameter θ and that our prior beliefs about θ are represented

by a probability distribution with PDF π(θ). Suppose that we will observe a continuous

quantity Y and that if we knew θ we could summarise our beliefs about Y through a

conditional distribution of Y given θ with PDF p(y | θ). Now suppose we observe Y = y.

Then Bayes' theorem allows us to compute the PDF of the posterior distribution for θ

through

π(θ | y) =
π(θ)p(y | θ)

p(y)
, (2.7.1)

where

p(y) =

∫
Θ
π(θ)p(y | θ)dθ, (2.7.2)

is a normalising constant which ensures that
∫

Θ π(θ | y)dθ = 1, and Θ is the parameter

space for θ. The posterior distribution of θ is the conditional distribution for θ given the

observed data, y. We call p(y | θ), treated as a function of θ, the likelihood function. It

is sometimes denoted L(θ;y) and contains the information from the data about θ. The

normalising constant, p(y), is sometimes called the marginal likelihood or the evidence.

In general, evaluation of the normalising constant, p(y), is analytically intractable. In

addition, rather than representing a univariate unknown quantity, θ is often a vector

θ = (θ1, θ2, . . . , θn)> containing many unknowns, making numerical approximation of the

integral computationally demanding. This was a major obstacle to Bayesian inference in

complicated models until the 1990s when Markov chain Monte Carlo (MCMC) methods

were adopted into widespread use. There are several software programs available that
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implement MCMC algorithms, such as BUGS (Lunn et al., 2000), JAGS (Plummer et al.,

2003), and Stan (Carpenter et al., 2017). In this thesis we use Stan, which implements

the Hamiltonian Monte Carlo algorithm, to evaluate posterior distributions for complex

statistical models. Detailed guides on implementing statistical models in Stan are

provided by the Stan development team (Stan, 2022). A conceptual overview of

Hamiltonian Monte Carlo is provided by Betancourt (2017).

2.7.1 Posterior predictive simulation

Often the unknown quantities that we are interested in are future or hypothetical values of

the data Y conditional on historical data ỹ. Averaging over the uncertainty in the other

unknowns, θ, the posterior predictive distribution can be written as

p(y | ỹ) =

∫
Θ
p(y | ỹ,θ)π(θ | ỹ)dθ. (2.7.3)

Often, if we know θ (typically the model parameters), then knowing about the historical

data ỹ provides no further information about the distribution of Y . In this scenario, we

say that Y and Ỹ are conditionally independent given θ and Equation (2.7.3) simpli�es

to

p(y | ỹ) =

∫
Θ
p(y | θ)π(θ | ỹ)dθ. (2.7.4)

We can sample from the posterior predictive distribution of Y using samples from the

posterior distribution for θ, say θj , for j = 1, . . . , B, by setting the parameters, θ, equal

to θj and sampling from p(y | θj), for j = 1, . . . , B. This yields a sample from the

posterior predictive distribution, yj , for j = 1, . . . , B. The posterior predictive sample can

be used to generate draws from the posterior predictive distribution of any summary of

Y of interest, say g(Y ), by evaluating the function g at each sampled value to give g(yj),

for j = 1, . . . , B. Gelman et al. (1995) provide a detailed coverage of posterior predictive

simulation and other aspects of Bayesian data analysis.

In Part I we are interested in the posterior predictive failure age distribution. This can be

written as

p(t | X ) =

∫
Θ
p(t | θ)π(θ | X )dθ, (2.7.5)

where X is the failure age data and additional information collected by SMART (critical

attributes), θ is a vector of model parameters, and π(θ | X ) is the posterior distribution

for θ conditional on the observed data X .

32



Bayesian Reliability Analysis

2.8 Conclusions

In this chapter we introduced and described the relationships between the PDF, the

CDF, the survival (or reliability) function, and the hazard function; four commonly used

functions in the �eld of reliability. We provided examples of reliability data: including

pass/fail, failure count, failure age, and degradation data. We introduced left, right, and

interval-censoring and left and right-truncation. We illustrated how censoring and

truncation can arise in practice. We showed how censored observations contribute to the

likelihood function and described the likelihood adjustments for truncated observations.

We concluded the chapter by introducing Bayesian inference and Bayesian computation.
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Multi State Models

In this chapter we extend the standard reliability methodology presented in Chapter 2. We

introduce three multi-state models: the two-state model, the illness-death model, and the

four-state multi-state model, referred to as the multi-state model. The two-state model

is a simple multi-state model with two states and one transition between those states.

The two-state model describes standard failure age data, introduced in Chapter 2, where

units begin in a working state and eventually transition to a terminal (failed) state. The

illness-death model is a multi-state model with three states and describes semi-competing

risks data, an extension of standard failure age data, where units begin in a working state

and are subject to a nonterminal event and a terminal event. The multi-state model is a

multi-state model with four states and describes semi-competing risks data, where units

begin in a working state and are subject to two nonterminal events and a terminal event.

In this chapter we take the terminal event to be failure. We present the general form of

left-truncated and right-censored data and derive the likelihood and the DRLs under each

model. In Chapter 5, we model the failure ages and survival probabilities of hard drives

using the two-state model, the illness-death model, and the multi-state model. The DRLs

obtained under the multi-state model are used to examine the impact of critical attributes

on hard drive failure ages and survival probabilities.

3.1 Introduction

A multi-state model is used to model a process where units transition from one state to

the next. For instance, a standard survival or reliability analysis can be thought of as a

simple multi-state model with two states (working and failed) and one transition between

those two states. A diagram illustrating this process is shown in Figure 3.1. In these types

of diagrams, each box is a state and each arrow is a possible transition. In Figure 3.1

units start in a working state (state 0) and eventually transition to a failed state (state 1).
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Figure 3.3 depicts a classic semi-competing risks analysis with three states. Units begin

in a working state (state 0) and are subject to a nonterminal event (state 1) and failure

(state 2). Figure 3.5 depicts a semi-competing risks analysis with four states. Units begin

in a working state (state 0) and are subject to two nonterminal events (states 1 and 2) and

failure (state 3).

3.2 Two-state model

A standard survival or reliability analysis can be thought of as a two-state model, where

units start in a working state (state 0) and eventually transition to a failed state (state 1).

Let T denote the failure age. We assume a two-state model for each individual unit of the

form shown in Figure 3.1. The two-state model is characterised by the transition hazard

λ(t | θ) = lim
∆→0

Pr(T ∈ [t, t+ ∆) | T ≥ t,θ)

∆
, for t > 0, (3.2.1)

where λ is the hazard rate (transition intensity) of the 0 → 1 transition, θ is a vector

of model parameters associated with λ, and states 0 and 1 are starting and failed states,

respectively.

0 1
λ(·)

Figure 3.1: A two-state model.

3.2.1 Observed data under the two-state model

Let Ti denote the true failure age for unit i and let Li and Ci > Li denote the left-truncation

age and right-censoring age for unit i, respectively, which we assume are independent of

Ti. Moreover, let Yi = min(Ti, Ci) denote the observed failure age for unit i, with failure

indicator δi = I{Ti ≤ Ci}, where I(·) is an indicator function, which is equal to 1 if

Ti ≤ Ci and 0 otherwise. Data are left-truncated and satisfy the recruitment criterion

Li < Yi; that is, units that failed before the study commenced are not included in the

dataset. The observed data for the ith unit is Di = {li, yi, δi}. In words, for unit i, we

observe the age at study entry, li; an indicator function, δi, which is equal to 1 if unit i

failed and is equal to 0 if unit i is right-censored (has not failed); and the observed failure

age, yi. If unit i failed we observe the true failure age, and if unit i is right-censored, we

observe the right-censoring age (a lower bound on the true failure age).
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Ỹ3

Y3Beginning of
study

End of study

� Failure

� Right-censored

Figure 3.2: Two possible life histories under the two-state model and an example unit not
included in the dataset.

Figure 3.2 provides a schematic representation of two possible life histories observed under

the two-state model with left-truncation and right-censoring, and a description of a unit

that is not included in the dataset since it did not satisfy the recruitment criterion, Li < Yi.

We illustrate the di�erence between the failure age and the failure time using scenario 3

in Figure 3.2. The failure age of unit 3 is denoted Y3 and the failure time is denoted Ỹ3.

Unit 1 failed prior to the start of the study and was not included in the dataset. Unit 2 is

right-censored at the end of the study. Unit 3 failed prior to the end of the study.

3.2.2 Likelihood under the two-state model

The observed data take the form Dn = {li, yi, δi; i = 1, . . . , n}. Assuming the ages of

the units are independent, the censoring process is non-informative about T (Vakulenko-

Lagun and Mandel, 2016), and that we do not have any knowledge about the truncation

distribution (Vakulenko-Lagun and Mandel, 2016), the likelihood for the data, Dn, can be

written as

L(θ;Dn) =
n∏
i=1

S(yi | θ)λδi(yi | θ)

S(li | θ)
, (3.2.2)

as provided by Mittman et al. (2019), where S(yi | θ) = exp
(
−
∫ yi

0 λ(u | θ)du
)
is the

probability that unit i does not transition from 0→ 1 by age yi.

3.2.3 Posterior predictive survival distribution under the

two-state model

Under the two-state model, the posterior predictive survival distribution is given by:
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Pr(T ≥ γ + s | T > γ,Dn) =

∫
Pr(T ≥ γ + s | T > γ,θ)p(θ | Dn)dθ, (3.2.3)

where

Pr(T ≥ γ + s | T > γ,θ) = S(γ + s | γ,θ). (3.2.4)

In this thesis a Markov model is assumed for λ(·). Thus, S(γ+s | γ,θ) = exp
(
−
∫ γ+s
γ λ(u |

θ)du
)
. Therefore, we obtain

Pr(T ≥ γ + s | T > γ,θ) =
S(γ + s | θ)

S(γ | θ)
, (3.2.5)

In addition,

p(θ | Dn) (3.2.6)

is the posterior distribution of the two-state model parameters given the observed data,

Dn.

3.3 Illness-death model

0 1

2

λ01(·)

λ02(·)
λ12(·)

Figure 3.3: An illness-death model for semi-competing risks data.

This section focuses on modelling semi-competing risks data using the illness-death model.

Let T1 and T2 denote the state 1 age and the failure age, respectively; where the stage 1 age

is de�ned as the age a unit enters state 1, and the failure age is de�ned as the age a unit

fails (or the age a unit enters state 2). We assume the convention of Xu et al. (2010) and

Lee et al. (2021), by setting T1 =∞ for units which fail in the absence of the nonterminal
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event. We assume an illness-death model for each individual unit of the form shown in

Figure 3.3. The illness-death model is characterised by the transition hazards:

λ01(t1 | θ01) = lim
∆→0

Pr(T1 ∈ [t1, t1 + ∆) | T1 ≥ t1, T2 ≥ t1,θ01)

∆
, for t1 > 0

(3.3.1)

λ02(t2 | θ02) = lim
∆→0

Pr(T2 ∈ [t2, t2 + ∆) | T1 ≥ t2, T2 ≥ t2,θ02)

∆
, for t2 > 0

(3.3.2)

λ12(t2 | T1 = t1,θ12) = lim
∆→0

Pr(T2 ∈ [t2, t2 + ∆) | T1 = t1, T2 ≥ t2,θ12)

∆
, for 0 < t1 < t2,

(3.3.3)

where λij is the hazard rate (transition intensity) of the i→ j transition, θij is a vector of

model parameters associated with λij , and states 0, 1, and 2 correspond to the starting,

state 1, and failed states, respectively. From Figures 3.1 and 3.3 we can see that the

illness-death model is an extension of the two-state model. Removing state 1 from Figure

3.3 and relabeling state 2 to state 1 recovers the two-state model.

3.3.1 Observed data under the illness-death model

Let Ti1 and Ti2 denote the true state 1 age and failure age for unit i, respectively, and let

Li and Ci > Li denote the left-truncation age and right-censoring age for unit i,

respectively, which we assume are independent of Ti1 and Ti2. Moreover, let

Yi1 = min(Ti1, Ti2, Ci) denote the observed state 1 age for unit i, with state 1 indicator

δi1 = I{Ti1 ≤ min(Ti2, Ci)}, and let Yi2 = min(Ti2, Ci) denote the observed failure age for

unit i, with failure indicator δi2 = I{Ti2 ≤ Ci}.

Under the illness-death model there are multiple scenarios for left-truncation. For example,

a study with a recruitment criterion that units must not have experienced the state 1 event

prior to study entry or a study with a recruitment criterion that units must not have failed

prior to study entry. In our application of interest, units must not have failed prior to

study entry. Data are left-truncated and satisfy the recruitment criterion Li < Yi2; that is,

units that failed before the study commenced are not included in the dataset. From herein,

when we refer to left-truncation, under the illness-death model, we refer to the recruitment

criterion Li < Yi2. The observed data for the ith unit is Di = {li, yi1, δi1, yi2, δi2}.

Figure 3.4 provides a schematic representation of the six possible life histories observed

under the illness-death model with left-truncation and right-censoring, alongside two

descriptions of units that are not included in the dataset since they do not satisfy the
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Ỹ42

Y42

Ỹ61

Y61

Beginning of
study

End of study

� Failure

� State 1 event

� Right-censored

Figure 3.4: Six possible life histories under the illness-death model and two example units
not included in the dataset.

recruitment criterion, Li < Yi2. We illustrate the di�erence between event ages and event

times using scenarios 4 and 6 in Figure 3.4. The failure age of unit 4 is denoted Y42 and

the failure time is denoted Ỹ42. The state 1 age of unit 6 is denoted Y61 and the state 1

time is denoted Ỹ61. Units 1 and 2 failed before the study began (Y12 < L1, Y22 < L2)

and were not included in the dataset. Scenarios 3 − 8 provide the six scenarios

encountered under the illness-death model with left-truncation and right-censoring. Unit

3 was sampled in state 0 (L3 < Y31, Y32) and remained in state 0 until the end of the

study. Unit 3 is right-censored since it did not fail by the end of the study. Unit 4 was

sampled in state 0 (L4 < Y41, Y42) and remained in state 0 until failure (T41 =∞). Unit 5

was sampled in state 0 (L5 < Y51, Y52) and transitioned to state 1 prior to the end of the

study (Y51 < Y52). Unit 5 is right-censored since the study ended prior to the failure of

this unit. Unit 6 was sampled in state 0 (L6 < Y61, Y62) and transitioned to state 1 prior

to failure (Y61 < Y62). Units 7 and 8 were sampled in state 1 (Y71 ≤ L7 < Y72,

Y81 ≤ L8 < Y82). Unit 7 is right-censored at the end of the study and unit 8 failed prior

to the end of the study.

3.3.2 Likelihood under the illness-death model

In this case the observed data take the form Dn = {li, yi1, δi1, yi2, δi2; i = 1, . . . , n}.
Assuming the ages of the units are independent, the censoring process is non-informative
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about T1 and T2, and that we do not have any knowledge about the truncation

distribution, the likelihood for the data, Dn, can be written as

L(θ;Dn) =
L0(θ;Dn)× L1(θ;Dn)

LTruncation(θ;Dn)
, (3.3.4)

derived in Vakulenko-Lagun and Mandel (2016); where θ = (θ01,θ02,θ12) is a vector of

model parameters,

L0(θ;Dn) =
∏

i:li<yi1,yi2

[
S01(yi2 | θ01)S02(yi2 | θ02)λδi202 (yi2 | θ02)

]1−δi1

×
[
S01(yi1 | θ01)S02(yi1 | θ02)λ01(yi1 | θ01)S12(yi2 | yi1,θ12)λδi212 (yi2 | yi1,θ12)

]δi1
,

(3.3.5)

is the contribution to the likelihood from units sampled in state 0,

L1(θ;Dn) =
∏

i:yi1≤li<yi2

∫ li

0
S01(t | θ01)S02(t | θ02)λ01(t | θ01)

× S12(yi2 | t,θ12)λδi212 (yi2 | t,θ12)dt,

(3.3.6)

is the contribution to the likelihood from units sampled in state 1, and

LTruncation(θ;Dn) =
∏
i

{
S01(li | θ01)S02(li | θ02)

+

∫ li

0
S01(t | θ01)S02(t | θ02)λ01(t | θ01)S12(li | t,θ12)dt

}
,

(3.3.7)

is the likelihood of survival up to the sampling age. In addition, S0k(t | θ0k) = exp
(
−∫ t

0 λ0k(u | θ0k)du
)
, for k = 1, 2, is the probability that unit i does not transition from

0 → k by age t; and S12(t2 | t1,θ12) = exp
(
−
∫ t2
t1
λ12(u | θ12)du

)
is the probability that

unit i does not transition from 1→ 2 by age t2 given that unit i is in state 1 at age t1.

The �rst term in Equation (3.3.5) is the likelihood contribution from a unit that is sampled

in state 0 and does not transition to state 1 prior to the end of the study or failure (see

scenarios 3 and 4 in Figure 3.4). In other words, this contribution is the likelihood of

staying in state 0 up until age yi2, for right-censored units, and then moving from state
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0 to state 2, at age yi2, for units that failed. The second term in Equation (3.3.5) is the

likelihood contribution from a unit that is sampled in state 0 and transitions to state 1

prior to the end of the study or failure (see scenarios 5 and 6 in Figure 3.4). In other words,

this contribution is the likelihood of staying in state 0 up until age yi1, transitioning to

state 1 at yi1, and remaining in state 1 until age yi2, for right-censored units, and moving

from state 1 to state 2, at age yi2, for units that failed.

Equation (3.3.6) is the likelihood contribution from units that are sampled in state 1 (see

scenarios 7 and 8 in Figure 3.4). For these units, we know they transitioned to state 1

at age yi1 ≤ li < yi2 and remained in state 1 until the end of the study if right-censored,

or until failure for units that failed. The integrand is identical to the second term in

Equation (3.3.5), however, for units sampled in state 1, we need to integrate over all

possible transition ages.

Equation (3.3.7) is the likelihood of survival up to the sampling age. We need to calculate

the probability of survival up to the sampling age, li, for each unit. This probability is a

sum of two terms: the probability of being sampled in state 0 (term 1), and the probability

of being sampled in state 1 (term 2).

3.3.2.1 Posterior predictive survival distributions under the

illness-death model

Let zi(γ) represent the state of drive i at age γ. Drive i is either in the healthy state, {0},
the critical state, {1}, or the failed state, {2}. Under the illness-death model, the posterior

predictive survival distributions are given by:

Pr(T2 ≥ γ+s | T2 > γ, z(γ),Dn) =

∫
Pr(T2 ≥ γ+s | T2 > γ, z(γ),θ)p(θ | Dn)dθ, (3.3.8)

for zi(γ) = 0, 1, where

Pr(T2 ≥ γ + s |T2 > γ, z(γ) = 0,θ01,θ02,θ12) =
1

S01(γ | θ01)S02(γ | θ02)

{
S01(γ + s | θ01)S02(γ + s | θ02)+∫ γ+s

γ
S01(ν | θ01)S02(ν | θ02)λ01(ν | θ01)S12(γ + s | ν,θ12)dν

}
,

(3.3.9)

for drives in the healthy state at age γ, and
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Pr(T2 ≥ γ + s | T2 > γ, z(γ) = 1,θ12) = S12(γ + s | γ,θ12), (3.3.10)

for drives in the critical state at age γ. In Equation (3.3.9), the �rst term represents the

probability the drive remained in the healthy state from age γ to γ + s, and the second

term is the probability the drive transitioned from the healthy state to the critical state at

age ν ∈ (γ, γ + s) and then remained in the critical state from age ν to γ + s, integrated

over ν.

In addition,

p(θ | Dn) (3.3.11)

is the posterior distribution of the illness-death model parameters given the observed data,

Dn.

3.4 Multi-state model

0 1

32

λ01(·)

λ03(·)
λ13(·)λ02(·)

λ23(·)

λ12(·)

Figure 3.5: A multi-state model with four states.

Figure 3.5 depicts a multi-state model with four states: namely, the starting state (state

0), two nonterminal states (state 1 and state 2) and the failed state (state 3).

Let T1, T2, and T3 denote state 1, state 2, and failure ages, respectively; where the state j

age, for j = 1, 2, is de�ned as the age a unit enters state j, and the failure age is de�ned

as the age a unit fails (or the age a unit enters state 3). We assume T1 = T2 =∞ for units
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which fail in the absence of the nonterminal events. We assume a multi-state model for

each individual unit of the form shown in Figure 3.5. Following the approach from Section

3.3, the multi-state model is characterised by the transition hazards:

λ01(t1 | θ01) = lim
∆→0

Pr(T1 ∈ [t1, t1 + ∆) | T1 ≥ t1, T2 ≥ t1, T3 ≥ t1,θ01)

∆
, (3.4.1)

for t1 > 0

λ02(t2 | θ02) = lim
∆→0

Pr(T2 ∈ [t2, t2 + ∆) | T1 ≥ t2, T2 ≥ t2, T3 ≥ t2,θ02)

∆
, (3.4.2)

for t2 > 0

λ03(t3 | θ03) = lim
∆→0

Pr(T3 ∈ [t3, t3 + ∆) | T1 ≥ t3, T2 ≥ t3, T3 ≥ t3,θ03)

∆
, (3.4.3)

for t3 > 0

λ12(t2 | T1 = t1,θ12) = lim
∆→0

Pr(T2 ∈ [t2, t2 + ∆) | T1 = t1, T2 ≥ t2, T3 ≥ t2,θ12)

∆
, (3.4.4)

for 0 < t1 < t2

λ13(t3 | T1 = t1,θ13) = lim
∆→0

Pr(T3 ∈ [t3, t3 + ∆) | T1 = t1, T2 ≥ t3, T3 ≥ t3,θ13)

∆
, (3.4.5)

for 0 < t1 < t3

λ23(t3 | T2 = t2,θ23) = lim
∆→0

Pr(T3 ∈ [t3, t3 + ∆) | T2 = t2, T3 ≥ t3,θ23)

∆
, (3.4.6)

for 0 < t2 < t3,

where λij is the hazard rate (transition intensity) of the i→ j transition, θij is a vector of

model parameters associated with λij , and states 0, 1, 2, and 3 correspond to the starting,

state 1, state 2, and failed states, respectively. From Figures 3.3 and 3.5 we can see that

the multi-state model is an extension of the illness-death model. Removing state 2 from

Figure 3.5 and relabeling state 3 to state 2 recovers the illness-death model.

3.4.1 Observed data under the multi-state model

Let Ti1, Ti2, and Ti3 denote the true state 1, state 2, and failure ages for unit i, respectively,

and let Li and Ci > Li denote the left-truncation age and right-censoring age for unit i,

respectively, which we assume are independent of Ti1, Ti2, and Ti3. Moreover, let Yi1 =

min(Ti1, Ti2, Ti3, Ci) denote the observed state 1 age for unit i, with state 1 indicator

δi1 = I{Ti1 ≤ min(Ti2, Ti3, Ci)}, let Yi2 = min(Ti2, Ti3, Ci) denote the observed state 2 age

for unit i, with state 2 indicator δi2 = I{Ti2 ≤ min(Ti3, Ci)}, and let Yi3 = min(Ti3, Ci)

denote the observed failure age for unit i, with failure indicator δi3 = I{Ti3 ≤ Ci}.
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Ỹ63

Y63

Ỹ81

Y81

Ỹ10,2

Y10,2

Beginning of
study

End of study

� Failure

� State 1 event

� State 2 event

� Right-censored

Figure 3.6: Sixteen possible life histories under the multi-state model and four example
units not included in the dataset.
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Under the multi-state model there are multiple scenarios for left-truncation. In our

application of interest, units must not have failed prior to study entry. Data are

left-truncated and satisfy the recruitment criterion Li < Yi3; that is, units that failed

before the study commenced are not included in the dataset. From herein, when we refer

to left-truncation, under the multi-state model, we refer to the recruitment criterion

Li < Yi3. The observed data for the ith unit is Di = {li, yi1, δi1, yi2, δi2, yi3, δi3}.

Figure 3.6 provides a schematic representation of the sixteen possible life histories

observed under the multi-state model with left-truncation and right-censoring, alongside

four descriptions of units that are not included in the dataset since they do not satisfy

the recruitment criterion, Li < Yi3. We illustrate the di�erence between event ages and

event times using scenarios 6, 8 and 10 in Figure 3.6. The failure age of unit 6 is denoted

Y63 and the failure time is denoted Ỹ63. The state 1 age of unit 8 is denoted Y81 and the

state 1 time is denoted Ỹ81. The state 2 age of unit 10 is denoted Y10,2 and the state 2

time is denoted Ỹ10,2. Units 1 − 4 failed before the study began (Yi3 < Li, for

i = 1, . . . , 4) and were not included in the dataset.

Scenarios 5−20 provide the sixteen scenarios encountered under the multi-state model with

left-truncation and right-censoring. Units 5−12 were sampled in state 0 (Li < Yi1, Yi2, Yi3,

for i = 5, . . . , 12). Unit 5 remained in state 0 until the end of the study. This unit is right-

censored since it did not fail prior to the end of the study. Unit 6 remained in state 0 until

failure. Units 7, 9, and 11 are right-censored at the end of the study; unit 7 entered state

1 (but not state 2) prior to the end of the study; unit 9 entered state 2 (but not state 1)

prior to the end of the study; and unit 11 entered state 1 and state 2 prior to the end of

the study. Units 8, 10, and 12 failed prior to the end of the study; unit 8 entered state 1

(but not state 2) prior to failure; unit 10 entered state 2 (but not state 1) prior to failure;

and unit 12 entered state 1 and state 2 prior to failure. Units 13 − 16 were sampled in

state 1 (Yi1 ≤ Li < Yi2, Yi3, for i = 13, . . . , 16). Units 13 and 15 are right-censored at

the end of the study; unit 13 remained in state 1 until the end of the study; and unit 15

entered state 2 prior to the end of the study. Units 14 and 16 failed prior to the end of the

study; unit 14 remained in state 1 until failure and unit 16 entered state 2 prior to failure.

Units 17 and 18 entered state 1 and state 2 prior to the start of the study; and hence were

sampled in state 2 (Yi1, Yi2 ≤ Li < Yi3, for i = 17, 18). Unit 17 is right-censored at the

end of the study and unit 18 failed prior to the end of the study. Units 19 and 20 entered

state 2, but not state 1, prior to the start of the study; and hence were sampled in state 2

(Yi2 ≤ Li < Yi3, Ti1 =∞, for i = 19, 20). Unit 19 is right-censored at the end of the study

and unit 20 failed prior to the end of the study.

For units sampled in state 2, we do not know whether the unit transitioned from state 0

to state 1, and then to state 2 prior to the start of the study (see scenarios 17 and 18 in

Figure 3.6), or if the unit transitioned from state 0 directly to state 2, without entering
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state 1, prior to the start of the study (see scenarios 19 and 20 in Figure 3.6). We only

observe that these units are in state 2 upon study entry.

3.4.2 Likelihood under the multi-state model

In this case the observed data take the form Dn = {li, yi1, δi1, yi2, δi2, yi3, δi3; i = 1, . . . , n}.
Assuming the ages of the units are independent, the censoring process is non-informative

about T1, T2, and T3, and that we do not have any knowledge about the truncation

distribution, the likelihood for the data, Dn, can be written as

L(θ;Dn) =
L0(θ;Dn)× L1(θ;Dn)× L2(θ;Dn)

LTruncation(θ;Dn)
, (3.4.7)

derived in Vakulenko-Lagun and Mandel (2016); where θ = (θ01,θ02,θ03,θ12,θ13,θ23) is

a vector of model parameters, and

L0(θ;Dn) =
∏

i:li<yi1,yi2,yi3[
S01(yi3 | θ01)S02(yi3 | θ02)S03(yi3 | θ03)λδi303 (yi3 | θ03)

](1−δi1)(1−δi2)

×[
S01(yi1 | θ01)S02(yi1 | θ02)S03(yi1 | θ03)λ01(yi1 | θ01)

× S12(yi3 | yi1,θ12)S13(yi3 | yi1,θ13)λδi313 (yi3 | yi1,θ13)

]δi1(1−δi2)

×[
S01(yi2 | θ01)S02(yi2 | θ02)S03(yi2 | θ03)λ02(yi2 | θ02)

S23(yi3 | yi2,θ23)λδi323 (yi3 | yi2,θ23)

](1−δi1)δi2

[
S01(yi1 | θ01)S02(yi1 | θ02)S03(yi1 | θ03)λ01(yi1 | θ01)S12(yi2 | yi1,θ12)

S13(yi2 | yi1,θ13)λ12(yi2 | yi1,θ12)S23(yi3 | yi2,θ23)λδi323 (yi3 | yi2,θ23)

]δi1δi2
,

(3.4.8)

is the contribution to the likelihood from units sampled in state 0,
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L1(θ;Dn) =
∏

i:yi1≤li<yi2,yi3

∫ li

0

[
S01(ν | θ01)S02(ν | θ02)S03(ν | θ03)λ01(ν | θ01)

× S12(yi3 | ν,θ12)S13(yi3 | ν,θ13)λδi313 (yi3 | ν,θ13)

]δi1(1−δi2)

×
[
S01(ν | θ01)S02(ν | θ02)S03(ν | θ03)λ01(ν | θ01)S12(yi2 | ν,θ12)S13(yi2 | ν,θ13)

× λ12(yi2 | ν,θ12)S23(yi3 | yi2,θ23)λδi323 (yi3 | yi2,θ23)

]δi1δi2
dν,

(3.4.9)

is the contribution to the likelihood from units sampled in state 1, and

L2(θ;Dn) =
∏

i:yi2≤li<yi3,ti1=∞∫ li

0
w(ν | θ01,θ02)

[
S01(ν | θ01)S02(ν | θ02)S03(ν | θ03)λ01(ν | θ01)

×
∫ li

ν
S12(ξ | ν,θ12)S13(ξ | ν,θ13)λ12(ξ | ν,θ12)S23(yi3 | ξ,θ23)λδi323 (yi3 | ξ,θ23)

]
dξdν,

+
∏

i:yi1,yi2≤li<yi3

∫ li

0
[1− w(ν | θ01,θ02)]

[
S01(ν | θ01)S02(ν | θ02)S03(ν | θ03)

× λ02(ν | θ02)S23(yi3 | ν,θ23)λδi323 (yi3 | ν,θ23)

]
dν

(3.4.10)

where

w(ν | θ01,θ02) =
λ01(ν | θ01)

λ01(ν | θ01) + λ02(ν | θ02)
(3.4.11)

and

1−w(ν | θ01,θ02) = 1− λ01(ν | θ01)

λ01(ν | θ01) + λ02(ν | θ02)
=

λ02(ν | θ02)

λ01(ν | θ01) + λ02(ν | θ02)
, (3.4.12)

is the contribution to the likelihood from units sampled in state 2. In addition,
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LTruncation(θ;Dn) =
∏
i

{
S01(li | θ01)S02(li | θ02)S03(li | θ03)

+

∫ li

0
S01(ν | θ01)S02(ν | θ02)S03(ν | θ03)λ01(ν | θ01)S12(li | ν,θ12)S13(li | ν,θ13)dν

+

∫ li

0
S01(ν | θ01)S02(ν | θ02)S03(ν | θ03)λ01(ν | θ01)

×
∫ li

ν
S12(ξ | ν,θ12)S13(ξ | ν,θ13)λ12(ξ | ν,θ12)S23(li | ξ,θ23)dξdν

+

∫ li

0
S01(ν | θ01)S02(ν | θ02)S03(ν | θ03)λ02(ν | θ01)S23(li | ν,θ12)dν

}
,

(3.4.13)

is the likelihood of survival up to the sampling age, S0k(ν | θ0k) = exp
(
−
∫ ν

0 λ0k(u |

θ0k)du
)
, for k = 1, 2, 3, is the probability that unit i does not transition from 0 → k by

age ν; S1k(ξ | ν,θ1k) = exp
(
−
∫ ξ
ν λ1k(u | θ1k)du

)
, for k = 2, 3, is the probability that

unit i does not transition from 1 → k by age ξ given that unit i is in state 1 at age ν;

and S23(ξ | ν,θ23) = exp
(
−
∫ ξ
ν λ23(u | θ23)du

)
is the probability that unit i does not

transition from 2→ 3 by age ξ given that unit i is in state 2 at age ν.

Equation (3.4.8) is the likelihood contribution from units that are sampled in state 0. The

�rst term in Equation (3.4.8) is the likelihood contribution from a unit that is sampled in

state 0 and does not transition to any intermediate state prior to the end of the study, if

the unit is right-censored, or prior to failure, if the unit failed (see scenarios 5 and 6 in

Figure 3.6). The second term is the likelihood contribution from a unit that is sampled in

state 0 and transitions to state 1 (but does not enter state 2) prior to the end of the study,

if the unit is right-censored, or prior to failure, if the unit failed (see scenarios 7 and 8 in

Figure 3.6). The third term is the likelihood contribution from a unit that is sampled in

state 0 and transitions to state 2 (but does not enter state 1) prior to the end of the study,

if the unit is right-censored, or prior to failure, if the unit failed (see scenarios 9 and 10

in Figure 3.6). The fourth term is the likelihood contribution from a unit that is sampled

in state 0 and transitions to state 1 and then to state 2 prior to the end of the study, if

the unit is right-censored, or prior to failure, if the unit failed (see scenarios 11 and 12 in

Figure 3.6).

Equation (3.4.9) is the likelihood contribution from units that are sampled in state 1. The

�rst term is the likelihood contribution from a unit that is sampled in state 1 and does not

transition to state 2 prior to the end of the study, if the unit is right-censored, or prior to

failure, if the unit failed (see scenarios 13 and 14 in Figure 3.6). The second term is the

likelihood contribution from a unit that is sampled in state 1 and transitions to state 2
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prior to the end of the study, if the unit is right-censored, or prior to failure, if the unit

failed (see scenarios 15 and 16 in Figure 3.6).

Equation (3.4.10) is the likelihood contribution from units that are sampled in state 2. For

units sampled in state 2, we do not know whether these units transitioned from state 0

to state 1, and then to state 2 prior to the start of the study (see scenarios 17 and 18 in

Figure 3.6), or if these units transitioned from state 0 directly to state 2, without entering

state 1, prior to the start of the study (see scenarios 19 and 20 in Figure 3.6). Therefore,

the contribution to the likelihood for these units is a weighted average of both possibilities.

In other words, the �rst term in Equation (3.4.10) is the likelihood contribution of a unit

that stays in state 0 until age ν, transitions to state 1 at age ν, remains in state 1 until

age ξ, transitions to state 2 at age ξ, and remains in state 2 until age yi3, if the unit

is right-censored, or moves from state 2 to the failed state, at age yi3, if the unit failed,

weighted by the probability of the unit moving to state 1 at age ν conditional on the unit

moving to either state 1 or state 2 at age ν, integrated over ξ and ν. The second term is

the likelihood contribution of a unit that stays in state 0 until age ν, transitions to state 2

at age ν, and remains in state 2 until age yi3, if the unit is right-censored, or moves from

state 2 to the failed state, at age yi3, if the unit failed, weighted by the probability of the

unit moving to state 2 at age ν conditional on the unit moving to either state 1 or state 2

at age ν, integrated over ν.

Equation (3.4.13) is the likelihood of survival up to the sampling age. We need to calculate

the probability of survival up to the sampling age, li, for each unit. This probability is a

sum of four terms: the probability of being sampled in state 0 (term 1), the probability of

being sampled in state 1 (term 2), the probability of being sampled in state 2 after entering

state 1 (term 3), and the probability of being sampled in state 2 without entering state 1

(term 4).

3.4.3 Posterior predictive survival distributions under the

multi-state model

Let zi(γ) represent the state of drive i at age γ. Drive i is either in the healthy state,

{0}, the critical 1 state, {1}, the critical 2 state, {2}, or the failed state, {3}. Under the
multi-state model, the posterior predictive survival distributions are given by:

Pr(T3 ≥ γ + s | T3 > γ, z(γ),Dn) =

∫
Pr(T3 ≥ γ + s | T3 > γ, z(γ),θ)p(θ | Dn)dθ,

(3.4.14)
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for zi(γ) = 0, 1, where

Pr(T3 ≥ γ + s | T3 > γ, z(γ) = 0,θ01,θ02,θ03,θ12,θ13,θ23) =
1

S01(γ | θ01)S02(γ | θ02)S03(γ | θ03)

{
S01(γ + s | θ01)S02(γ + s | θ02)S03(γ + s | θ03)

+

∫ γ+s

γ
S01(ν | θ01)S02(ν | θ02)S03(ν | θ03)λ01(ν | θ01)S12(γ + s | ν,θ12)S13(γ + s | ν,θ13)dν

+

∫ γ+s

γ
S01(ν | θ01)S02(ν | θ02)S03(ν | θ03)λ01(ν | θ01)

×
∫ γ+s

ν
S12(ξ | ν,θ12)S13(ξ | ν,θ13)λ12(ξ | θ12)S23(γ + s | ξ,θ23)dξdν

+

∫ γ+s

γ
S01(ν | θ01)S02(ν | θ02)S03(ν | θ03)λ02(ν | θ02)S23(γ + s | ν,θ23)dν

}
,

(3.4.15)

for drives in the healthy state at age γ,

Pr(T3 ≥ γ + s | T3 > γ, z(γ) = 1,θ12,θ13,θ23) =
1

S12(γ | θ12)S13(γ | θ13)

{
S12(γ + s | θ12)S13(γ + s | θ13) +

∫ γ+s

γ
S12(ν | θ12)S13(ν | θ13)λ12(ν | θ12)S23(γ + s | ν,θ23)dν

}
,

(3.4.16)

for drives in the critical 1 state at age γ, and

Pr(T3 ≥ γ + s | T3 > γ, z(γ) = 2,θ23) = S23(γ + s | γ,θ23), (3.4.17)

for drives in the critical 2 state at age γ. In Equation (3.4.15), the �rst term represents

the probability the drive remained in the healthy state from age γ to γ + s; the second

term is the probability the drive transitioned from the healthy state to the critical 1 state

at age ν ∈ (γ, γ + s) and remained in the critical 1 state from age ν to γ + s, integrated

over ν; the third term is the probability the drive transitioned from the healthy state to

the critical 1 state at age ν ∈ (γ, γ + s), then transitioned from the critical 1 state to the

critical 2 state at age ξ ∈ (ν, γ+ s) and remained in the critical 2 state from age ξ to γ+ s,

integrated over ξ and ν; and the fourth term is the probability the drive transitioned from

the healthy state to the critical 2 state at age ν ∈ (γ, γ + s) and remained in the critical 2

state from age ν to γ + s, integrated over ν.

In Equation (3.4.16), the �rst term represents the probability the drive remained in the

critical 1 state from age γ to γ + s, and the second term is the probability the drive
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transitioned from the critical 1 state to the critical 2 state at age ν ∈ (γ, γ + s) and

remained in the critical 2 state from age ν to γ + s, integrated over ν.

In addition,

p(θ | Dn) (3.4.18)

is the posterior distribution of the multi-state model parameters given the observed data,

Dn.

3.5 Conclusions

In this chapter we extended the standard reliability methodology presented in Chapter 2.

We presented the general form of left-truncated and right-censored data under the two-

state model. The two-state model is a simple multi-state model with two states and one

transition between those states. The two-state model describes standard failure age data,

introduced in Chapter 2, where units start in a working state and eventually transition

to a terminal (failed) state. We then derived the likelihood and the DRLs under the two-

state model. Next, we introduced the illness-death model, an extension of the two-state

model. The illness-death model is a multi-state model with three states and describes

semi-competing risks data with two competing risks, an extension of standard failure age

data, where units begin in a working state and are subject to a nonterminal event and a

terminal event (failure). We presented the general form of left-truncated and right-censored

data and derived the likelihood and the DRLs under the illness-death model. Finally, we

introduced a four-state multi-state model, an extension of the illness-death model. The

multi-state model describes semi-competing risks data with three competing risks, where

units begin in a working state and are subject to two nonterminal events and a terminal

event (failure). We presented the general form of left-truncated and right-censored data

and derived the likelihood and the DRLs under the multi-state model. In Chapter 5, we

model the failure ages and survival probabilities of hard drives using the two-state model,

the illness-death model, and the multi-state model. The DRLs obtained under the multi-

state model are used to examine the impact of critical attributes on hard drive failure ages

and survival probabilities.
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Measuring predictive

performance

The assessment of the predictive performance of time-to-event models has received a lot

of attention in the statistical literature. In general, the developed methodology has

focused on calibration, i.e., how well the model predicts the observed data (Schemper and

Henderson, 2000; Gerds and Schumacher, 2006), or discrimination, i.e., how well the

model can discriminate between units that had the event of interest and units that did

not (Harrell Jr et al., 1996; Proust-Lima and Taylor, 2009). In this chapter we present

discrimination and calibration measures, in the presence of right-censoring, to assess

model performance, where the event of interest is the terminal event (failure). In Chapter

5, we use the calibration and discrimination measures presented in this chapter to

compare how well the two-state model, the illness-death model, and the multi-state

model, presented in Chapter 3, can predict hard drive failure ages, and how well each

model can discriminate between drives that fail and drives that do not fail, within a

forecast horizon of interest. Our motivating example concerns a large dataset of hard

drives, from data backup company Backblaze (Backblaze, 2022a), that is subject to

left-truncation and right-censoring.

4.1 Introduction

To assess the performance of dynamic predictions, we use the time-dependent area under

the receiver operating characteristic curve (AUC) (Rizopoulos et al., 2017), as a

discriminative measure, to compare how well the two-state model, the illness-death

model, and the multi-state model can discriminate between drives that fail and drives

that do not fail; and the expected prediction error (PE) (Henderson et al., 2002;

Rizopoulos et al., 2017), as a measure of model calibration, to compare how well each

model can predict hard drive failure ages.
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In this chapter, we �rst describe the AUC and the PE under the illness-death model. Then,

we provide adaptions for the two-state model and the multi-state model. We assume an

illness-death model for each individual unit of the form shown in Figure 4.1.

0 1

2

λ01(·)

λ02(·)
λ12(·)

Figure 4.1: An illness-death model for semi-competing risks data.

De�ne the survival probability

ρi(τi + s | τi, z(τi),Dn) =



Pr(Ti2 ≥ τi + s | Ti2 > τi, z(τi) = 0,Dn),

if unit i is in the healthy state at age τi,

Pr(Ti2 ≥ τi + s | Ti2 > τi, z(τi) = 1,Dn),

if unit i is in the critical state at age τi,

(4.1.1)

where τi is the age of unit i at time τ , τ ≥ 0 is the time elapsed since the beginning of the

study, z(τi) is the state of unit i at age τi, s > 0 is the forecast horizon of interest, Ti2 is the

true failure age of unit i, Dn is the observed data used to obtain the posterior distribution

of the illness-death model parameters, and the relevant expressions are given in Equations

(3.3.9) and (3.3.10), respectively. The time elapsed since the beginning of the study, τ ,

will be referred to as the calendar time from herein. The quantity ρi(τi + s | τi, z(τi),Dn)

is the probability that unit i does not fail by age τi + s conditional on being in state z(τi)

at age τi. In other words, the quantity ρi(τi + s | τi, z(τi),Dn) is the probability that unit

i does not fail by calendar time τ + s conditional on being in state z(τi) at time τ .

4.2 Time-dependent area under the receiver

operating characteristic curve (AUC)

The AUC is a measure of discrimination of a model. At calendar time τ , unit i is de�ned

as a case if T̃i2 ∈ (τ, τ + s] and a control if T̃i2 > τ + s, where T̃i2 is the true failure time

of unit i. In other words, unit i is a case if it fails within the forecast horizon (τ, τ + s]

and a control if it survives the forecast horizon. The AUC measures our model's ability to

54



Measuring predictive performance

distinguish between a case and a control. Following Rizopoulos et al. (2017), consider at

calendar time τ a pair of randomly chosen units, (i, j), for which unit i is a case and unit

j is a control. The AUC is given by

AUC(τ, s) = Pr
[
ρi(τi + s | τi, z(τi),Dn) < ρj(τj + s | τj , z(τj),Dn)

| {T̃i2 ∈ (τ, τ + s]} ∩ {T̃j2 > τ + s}
]
,

(4.2.1)

where T̃i2 and T̃j2 are the failure times for units i and j, respectively, and Ti2 and Tj2 are

the failure ages for units i and j, respectively.

If unit i fails within the forecast horizon and unit j is in a working state after the forecast

horizon, we would expect the assumed model to provide a higher probability of surviving

the forecast horizon to the unit that survives (unit j) compared to the unit that fails (unit

i).

If there are no right-censored failure ages within the forecast horizon, the AUC can be

estimated by

ˆAUC(τ, s) =
1

nfail(τ)nsurv(τ)

nfail(τ)∑
i=1

nsurv(τ)∑
j=1

Eρi(·),ρj(·)

[
I
{
ρi(τi + s | τi, z(τi),Dn) <

ρj(τj + s | τj , z(τj),Dn)
}]
,

(4.2.2)

where nfail(τ) is the number of units that fail within the forecast horizon (τ, τ + s] and

nsurv(τ) is the number of units that survive the forecast horizon and the expectation is

taken with respect to the posterior predictive distributions of ρi(τi + s | τi, z(τi),Dn) and

ρj(τj+s | τj , z(τj),Dn). If ˆAUC(τ, s) = 1, then our model always gives a higher probability

of surviving to units that survive compared to units that fail.

Since many unit failure ages are right-censored within the forecast horizon, estimation of

the AUC is based on counting the concordant pairs of units by appropriately distinguishing

between the comparable and the �partially-comparable� (due to censoring) pairs of units

at calendar time τ . More speci�cally, the pairs of units that are comparable are given by

the set

Ω
(1)
ij (τ, s) =

[
{Ỹi2 ∈ (τ, τ + s]} ∩ {δi2 = 1}

]
∩ {Ỹj2 > τ + s}, (4.2.3)
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for i, j = 1, . . . , n(τ), with i 6= j, n(τ) is the number of units in a working state at calendar

time τ , and Ỹi2 and Ỹj2 are the observed failure times for units i and j, respectively. In

words, Ω
(1)
ij (τ, s), for i, j = 1, . . . , n(τ), with i 6= j, is the set of all pairs of units, such

that unit i is observed to fail within the forecast horizon (a case), and unit j is observed

to survive the forecast horizon (a control). The remaining pairs of units which, due to

censoring, cannot be directly compared, are given by the following sets:

Ω
(2)
ij (τ, s) =

[
{Ỹi2 ∈ (τ, τ + s]} ∩ {δi2 = 0}

]
∩ {Ỹj2 > τ + s},

Ω
(3)
ij (τ, s) =

[
{Ỹi2 ∈ (τ, τ + s]} ∩ {δi2 = 1}

]
∩
[
{Ỹi2 < Ỹj2 ≤ τ + s} ∩ {δj2 = 0}

]
,

Ω
(4)
ij (τ, s) =

[
{Ỹi2 ∈ (τ, τ + s]} ∩ {δi2 = 0}

]
∩
[
{Ỹi2 < Ỹj2 ≤ τ + s} ∩ {δj2 = 0}

]
.

(4.2.4)

In order for a pair of units (i, j) to be directly comparable, unit i must be observed to fail

within the forecast horizon and unit j must be observed to survive the forecast horizon;

we need a case and a control.

The observed failure time of unit i in Ω
(2)
ij (τ, s) is right-censored. Since the true failure time

of unit i is not observed, we do not know if unit i fails within the forecast horizon or not.

Thus, units in Ω
(2)
ij (τ, s) are not directly comparable since we cannot directly identify a case

and a control. Similarly, the observed failure time for unit j in Ω
(3)
ij (τ, s) is right-censored

such that Ỹi2 < Ỹj2 ≤ τ + s. Therefore, we do not know if unit j survives the forecast

horizon. Thus, units in Ω
(3)
ij (τ, s) are not directly comparable. Finally, the observed failure

times of both units in Ω
(4)
ij (τ, s) are right-censored, such that Ỹi2 < Ỹj2 ≤ τ + s. Thus,

units in Ω
(4)
ij (τ, s) are not directly comparable.

The partially-comparable units contribute to the overall AUC after being appropriately

weighted with the probability of being comparable

ν
(2)
i (τ, s | Yi2, z(Yi2),Dn) = 1− ρi(τi + s | Yi2, z(Yi2),Dn),

ν
(3)
j (τ, s | Yj2, z(Yj2),Dn) = ρj(τj + s | Yj2, z(Yj2),Dn),

ν
(4)
ij (τ, s | Yi2, z(Yi2), Yj2, z(Yj2),Dn) =

(
1− ρi(τi + s | Yi2, z(Yi2),Dn)

)
× ρj(τj + s | Yj2, z(Yj2),Dn),

(4.2.5)

where Yi2 and Yj2 are the observed failure ages for units i and j, respectively. In words,

ν
(2)
i (τ, s | Yi2, z(Yi2),Dn) is the probability unit i fails within the forecast horizon,

conditional on surviving until age Yi2. In other words, ν
(2)
i (τ, s | Yi2, z(Yi2),Dn) is the

probability that a pair of units in Ω
(2)
ij (τ, s) is comparable. Similarly,

ν
(3)
j (τ, s | Yj2, z(Yj2),Dn) is the probability that unit j survives the forecast horizon,
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conditional on surviving until age Yj2. In other words, ν
(3)
j (τ, s | Yj2, z(Yj2),Dn) is the

probability that a pair of units in Ω
(3)
ij (τ, s) is comparable. Finally,

ν
(4)
ij (τ, s | Yi2, z(Yi2), Yj2, z(Yj2),Dn) is the probability that unit i fails within the forecast

horizon, conditional on surviving until age Yi2, and unit j survives the forecast horizon,

conditional on surviving until age Yj2. In other words,

ν
(4)
ij (τ, s | Yi2, z(Yi2), Yj2, z(Yj2),Dn) is the probability that a pair of units in Ω

(4)
ij (τ, s) is

comparable.

The time-dependent area under the receiver operating characteristic curve at time τ , as

proposed by Rizopoulos et al. (2017), is given by

ˆAUC(τ, s) =
κ1(τ, s) + κ2(τ, s) + κ3(τ, s) + κ4(τ, s)

ζ1(τ, s) + ζ2(τ, s) + ζ3(τ, s) + ζ4(τ, s)
, (4.2.6)

where

κ1(τ, s) =

n(τ)∑
i=1

n(τ)∑
j=1,j 6=i

Eρi(·),ρj(·)

[
I
{
ρi(τi + s | τi, z(τi),Dn) < ρj(τj + s | τj , z(τj),Dn)

}]
× I{Ω(1)

ij (τ, s)},

κ2(τ, s) =

n(τ)∑
i=1

n(τ)∑
j=1,j 6=i

Eρi(·),ρj(·)

[
I
{
ρi(τi + s | τi, z(τi),Dn) < ρj(τj + s | τj , z(τj),Dn)

}]
× I{Ω(2)

ij (τ, s)}ν(2)
i ,

κ3(τ, s) =

n(τ)∑
i=1

n(τ)∑
j=1,j 6=i

Eρi(·),ρj(·)

[
I
{
ρi(τi + s | τi, z(τi),Dn) < ρj(τj + s | τj , z(τj),Dn)

}]
× I{Ω(3)

ij (τ, s)}ν(3)
j ,

κ4(τ, s) =

n(τ)∑
i=1

n(τ)∑
j=1,j 6=i

Eρi(·),ρj(·)

[
I
{
ρi(τi + s | τi, z(τi),Dn) < ρj(τj + s | τj , z(τj),Dn)

}]
× I{Ω(4)

ij (τ, s)}ν(4)
ij ,

(4.2.7)

and
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ζ1(τ, s) =

n(τ)∑
i=1

n(τ)∑
j=1,j 6=i

I{Ω(1)
ij (τ, s)},

ζ2(τ, s) =

n(τ)∑
i=1

n(τ)∑
j=1,j 6=i

I{Ω(2)
ij (τ, s)}ν(2)

i ,

ζ3(τ, s) =

n(τ)∑
i=1

n(τ)∑
j=1,j 6=i

I{Ω(3)
ij (τ, s)}ν(3)

j ,

ζ4(τ, s) =

n(τ)∑
i=1

n(τ)∑
j=1,j 6=i

I{Ω(4)
ij (τ, s)}ν(4)

ij .

(4.2.8)

In addition, IA is an indicator function, which is equal to 1 if event A occurs and 0

otherwise.

For all pairs of units (i, j) in the set Ω
(1)
ij (τ, s), κ1(τ, s) is the number of times the

illness-death model gives the control a higher probability of surviving the forecast horizon

compared to the case. Moreover, ζ1(τ, s) is the number of pairs of units in the set

Ω
(1)
ij (τ, s). If all pairs of units were comparable, i.e., if all pairs of units were contained in

the set Ω
(1)
ij (τ, s), then Equation (4.2.6) reduces to

ˆAUC(τ, s) =
κ1(τ, s)∑n(τ)

i=1

∑n(τ)
j=1,j 6=i I{Ω

(1)
ij (τ, s)}

, (4.2.9)

which is equivalent to Equation (4.2.2).

Similar de�nitions can be made for κl(τ, s) and ζl(τ, s), for l = 2, 3, 4, but each term in

κl(τ, s) and ζl(τ, s), for l = 2, 3, 4, is weighted by the probability of the pair of units, (i, j),

being comparable, i.e., the probability that unit i fails within the forecast horizon and

unit j survives the forecast horizon. ˆAUC(τ, s), given by Equation (4.2.6), accounts for

right-censored observations in the forecast horizon, and is interpreted as the probability the

illness-death model gives the control a higher probability of surviving the forecast horizon

compared to the case.

Illustration of the AUC in the presence of right-censoring

There are four sets to consider, in the presence of right-censoring, when calculating the

AUC. The AUC assesses whether a model can distinguish between units that fail and units

that survive a forecast horizon of interest. For a pair of units to be directly comparable,

unit i needs to fail within the forecast horizon and unit j needs to survive the forecast

horizon. We need a case and a control.

58



Measuring predictive performance

τ τ + s

{Ỹi2, δi2 = 1} Ỹj2

Figure 4.2: A pair of comparable units in Ω
(1)
ij (τ, s). Unit i failed within the forecast

horizon and unit j survived the forecast horizon.

Figure 4.2 depicts an example pair of comparable units in the set Ω
(1)
ij (τ, s). Pairs of units

in the set Ω
(1)
ij (τ, s) are directly comparable under the de�nition of the AUC.

τ τ + s

{Ỹi2, δi2 = 0} Ỹj2

Figure 4.3: A pair of �partially comparable� units in Ω
(2)
ij (τ, s). Unit i is right-censored in

the forecast horizon and unit j survived the forecast horizon.

Figure 4.3 depicts an example pair of �partially comparable� units in the set Ω
(2)
ij (τ, s).

In this scenario, unit j survives the forecast horizon, but unit i is right-censored within

the forecast horizon at τ < Ỹi2 ≤ τ + s. If we observed unit i until failure, we would

know if unit i failed within the forecast horizon or if unit i survived the forecast horizon.

In the former case, the pair (i, j) would be comparable under the de�nition of the AUC,

whereas in the latter case, the pair (i, j) would not be comparable. The contribution of

this pair of units is weighted by the probability that the pair is comparable, which is the

probability that unit i fails within the forecast horizon conditional on surviving until age

Yi2, 1− ρi(τi + s | Yi2, z(Yi2),Dn).

In the limit that 1−ρi(τi+s | Yi2, z(Yi2),Dn) tends to 0, the pair (i, j) does not contribute

to the AUC; in this limit, the probability of unit i failing within the forecast horizon is zero,

and hence the pair of units is not comparable. In the limit that 1−ρi(τi+s | Yi2, z(Yi2),Dn)

tends to 1, the pair (i, j) contributes to the AUC analogously to a directly comparable pair

of units; in this limit, the probability of unit i failing within the forecast horizon is one,

and hence the pair of units is directly comparable.

τ τ + s

{Ỹi2, δi2 = 1} {Ỹj2, δj2 = 0}

Figure 4.4: A pair of �partially comparable� units in Ω
(3)
ij (τ, s). Unit i failed within the

forecast horizon and unit j is right-censored in the forecast horizon, such that τ < Ỹi2 <
Ỹj2 ≤ τ + s.

Figure 4.4 depicts an example pair of �partially comparable� units in the set Ω
(3)
ij (τ, s). In

this scenario, unit i fails within the forecast horizon, but unit j is right-censored within the

59



Chapter 4

forecast horizon at τ < Ỹi2 < Ỹj2 ≤ τ+s. The contribution of this pair of units is weighted

by the probability that the pair is comparable, which is the probability that unit j survives

the forecast horizon conditional on surviving until age Yj2, ρj(τj + s | Yj2, z(Yj2),Dn).

τ τ + s

{Ỹi2, δi2 = 0} {Ỹj2, δj2 = 0}

Figure 4.5: A pair of �partially comparable� units in Ω
(4)
ij (τ, s). Units i and j are both

right-censored in the forecast horizon, such that τ < Ỹi2 < Ỹj2 ≤ τ + s.

Figure 4.5 depicts an example pair of �partially comparable� units in the set Ω
(4)
ij (τ, s).

In this scenario, units i and j are both right-censored within the forecast horizon, such

that τ < Ỹi2 < Ỹj2 ≤ τ + s. The contribution of this pair of units is weighted by the

probability that the pair is comparable, which is the probability that unit i fails within the

forecast horizon, conditional on surviving until age Yi2, and unit j survives the forecast

horizon, conditional on surviving until age Yj2,
(
1−ρi(τi+ s | Yi2, z(Yi2),Dn)

)
×ρj(τj + s |

Yj2, z(Yj2),Dn).

We note that in the set Ω
(3)
ij (τ, s) we require τ < Ỹi2 < Ỹj2 ≤ τ + s. In other words, the

right-censoring time for unit j must be larger than the failure time for unit i. Consider

the example depicted in Figure 4.6, where unit i fails within the forecast horizon and unit

j is right-censored, such that τ < Ỹj2 < Ỹi2 ≤ τ + s. One could ask, should this pair be

considered and the contribution for this pair weighted by the probability that unit j survives

the forecast horizon conditional on surviving until age Yj2, ρj(τj+s | Yj2, z(Yj2),Dn)? After

all, if unit j survives the forecast horizon, then we have a comparable pair (one unit failing

within the forecast horizon and one unit surviving the forecast horizon).

τ τ + s

{Ỹi2, δi2 = 1}{Ỹj2, δj2 = 0}

Figure 4.6: A forecast horizon with a pair of units (i, j). Unit i failed within the forecast
horizon and unit j is right-censored in the forecast horizon, such that τ < Ỹj2 < Ỹi2 ≤ τ+s.

The restriction that the right-censoring time for unit j must be larger than the failure

time for unit i is in place to prevent pairs of units from switching the �failed� unit to the

�survived� unit over time. The AUC is de�ned for all time points τ . To assess the

performance of a model over time, the AUC should be calculated at times

τ = 0, τ1, τ2, . . . , τn. Now, suppose we ignore this restriction and consider the example

depicted in Figure 4.7.

Figure 4.7 depicts a possible scenario when we remove the restriction that τ < Ỹi2 < Ỹj2 ≤
τ + s. The top plot in Figure 4.7 depicts the forecast horizon at calendar time τ1 < τ2 and
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the bottom plot in Figure 4.7 depicts the forecast horizon at calendar time τ2. From the

point of view of τ1, unit j survives the forecast horizon and unit i is right-censored within

the forecast horizon, hence this pair is comparable if unit i fails within the forecast horizon,

conditional on surviving until age Yi2. Hence, we are trying to discriminate between unit

j, a unit that survived the horizon, and unit i, a unit that will potentially fail within the

forecast horizon. From the point of view of τ2, unit j fails within the forecast horizon and

unit i is right-censored within the forecast horizon, hence this pair is comparable if unit i

survives the forecast horizon, conditional on surviving until age Yi2. Hence, we are trying

to discriminate between unit j, a unit that failed and unit i, a unit that will potentially

survive the forecast horizon.

We see that removing the restriction that τ < Ỹi2 < Ỹj2 ≤ τ + s results in the switching

of de�nitions of �survived� and �failed� units over time for the same pair of units. At time

τ1, the AUC is �rewarded� by the contribution 1 − ρi(τi + s | Yi2, z(Yi2),Dn) (assuming

ρi(τi + s | τi, z(τi),Dn) < ρj(τj + s | τj , z(τj),Dn)). At time τ2, the AUC is �rewarded� by

the contribution ρi(τi + s | Yi2, z(Yi2),Dn) (assuming ρj(τj + s | τj , z(τj),Dn) < ρi(τi + s |
τi, z(τi),Dn)). In other words, at τ1 the AUC is larger if ρi(τi+s | τi, z(τi),Dn) < ρj(τj+s |
τj , z(τj),Dn) and at τ2 the AUC is larger if ρi(τi+s | τi, z(τi),Dn) > ρj(τj+s | τj , z(τj),Dn).

Consequently, we require that τ < Ỹi2 < Ỹj2 ≤ τ + s to prevent this unintuitive rewarding

of models. Similar arguments hold for the restriction for the set Ω
(4)
ij (τ, s).

τ2 τ2 + s

{Ỹj2, δj2 = 1}{Ỹi2, δi2 = 0}

τ1 τ1 + s

{Ỹj2, δj2 = 1}{Ỹi2, δi2 = 0}

Figure 4.7: Two consecutive forecast horizons with a pair of units (i, j).

4.3 Time-dependent expected predicted error (PE)

The expected predicted error in predicting future failures can be used to assess the accuracy

of dynamic predictions Rizopoulos et al. (2017). As for the AUC we focus our interest in

predicting failures that occur by calendar time τ + s > τ given the information available

up to calendar time τ . The expected predicted error for a working unit at time τ is given

by

PE(τ + s | τ) = Eρi(·)
[
ETi2

[
L{Ni(τ + s)− ρi(τi + s | τi, z(τi),Dn)}

]]
, (4.3.1)
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where Ni(τ + s) = I(Ti2 > τi + s) = I(T̃i2 > τ + s) denotes the survival status of unit

i at calendar time τ + s, where Ni(τ + s) = 1 if unit i survives the forecast horizon and

Ni(τ + s) = 0 if unit i fails within the forecast horizon; L(·) denotes a loss function,

such as the absolute or square loss; the inner expectation is taken with respect to the

posterior predictive distribution of Ti2 and the outer expectation is taken with respect to

the posterior predictive distribution of ρi(τi + s | τi, z(τi),Dn).

The PE is a calibration measure that measures how well a model predicts failures. The

smaller the value of Ni(τ + s) − ρi(τi + s | τi, z(τi),Dn), the smaller the PE, or the more

accurate the model is. That is, for units that survive, the closer ρi(τi+s | τi, z(τi),Dn) is to

1 (i.e., the higher the probability of survival), the smaller Ni(τ+s)−ρi(τi+s | τi, z(τi),Dn)

will be. We want our model to give a high probability of surviving the forecast horizon

of interest to units that survive. In contrast, we want our model to give a low probability

of surviving the forecast horizon to units that fail within the forecast horizon. For units

that fail, the closer ρi(τi + s | τi, z(τi),Dn) is to 0 (i.e., the lower the survival probability),

the smaller Ni(τ + s) − ρi(τi + s | τi, z(τi),Dn) will be. An accurate model will give high

probabilities of surviving to units that survive and low probabilities of surviving to units

that fail.

An estimate of PE(τ + s | τ) that accounts for censoring has been proposed by Henderson

et al. (2002) and is given by

P̂E(τ + s | τ) =
1

n(τ)

n(τ)∑
i=1

P̂Ei(τ + s | τ) =

1

n(τ)

n(τ)∑
i=1

I{Ỹi2 > τ + s}Eρi(·)
[
L(1− ρi(τi + s | τi, z(τi),Dn))

]
+ δiI{Ỹi2 < τ + s}Eρi(·)

[
L(0− ρi(τi + s | τi, z(τi),Dn))

]
+ (1− δi)I{Ỹi2 < τ + s}

{
Eρi(·)

[
ρi(τi + s | Yi2, z(Yi2),Dn)

]
× Eρi(·)

[
L(1− ρi(τi + s | τi, z(τi),Dn))

]
+
(

1− Eρi(·)
[
ρi(τi + s | Yi2, z(Yi2),Dn)

])
Eρi(·)

[
L(0− ρi(τi + s | τi, z(τi),Dn))

]}
,

(4.3.2)

where n(τ) denotes the number of units that are in a working state at calendar time τ .

The �rst term in Equation (4.3.2) is the contribution from a unit that is in a working state

after time τ + s, in other words, the contribution from a unit that survives the forecast

horizon; the second term is the contribution from a unit that fails within the forecast

horizon; the third and fourth terms are the contributions from a unit that is censored in
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the forecast horizon (τ, τ + s). Using the information up to time τ , PE(τ + s | τ) measures

the predictive accuracy at calendar time τ .

4.4 Adaptions for the two-state model and the multi-

state model

0 1
λ(·)

Figure 4.8: A two-state model.

In this chapter we have described the AUC and the PE under the illness-death model shown

in Figure 4.1. The de�nitions of the AUC and the PE can be adapted for the two-state

model shown in Figure 4.8 and the multi-state model shown in Figure 4.9.

0 1

32

λ01(·)

λ03(·)
λ13(·)λ02(·)

λ23(·)

λ12(·)

Figure 4.9: A multi-state model with four states.

Under the two-state model we de�ne

ρi(τi + s | τi,Dn) = Pr(Ti ≥ τi + s | Ti > τi,Dn), (4.4.1)

where τi is the age of unit i at time τ , Ti is the true failure age of unit i, Dn is the

observed data used to obtain the posterior distribution of the two-state model parameters,

and the relevant expression is given in Equation (3.2.3). Under the two-state model, in the

de�nitions of the AUC and the PE, given in Sections 4.2 and 4.3, respectively, we replace

the {i2} and {j2} subscripts with {i} and {j} subscripts, respectively. For example, under

the two-state model, we replace Ỹi2 and Ỹj2 with Ỹi and Ỹj , respectively.
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Similarly, under the multi-state model, we de�ne

ρi(τi + s | τi, z(τi),Dn) =



Pr(Ti3 ≥ τi + s | Ti3 > τi, z(τi) = 0,Dn),

if unit i is in the healthy state at age τi,

Pr(Ti3 ≥ τi + s | Ti3 > τi, z(τi) = 1,Dn),

if unit i is in the critical 1 state at age τi,

Pr(Ti3 ≥ τi + s | Ti3 > τi, z(τi) = 2,Dn),

if unit i is in the critical 2 state at age τi,

(4.4.2)

where τi is the age of unit i at time τ , z(τi) is the state of unit i at age τi, Ti3 is the true

failure age of unit i, Dn is the observed data used to obtain the posterior distribution of the

multi-state model parameters, and the relevant expressions are given in Equations (3.4.15)

- (3.4.17), respectively. Under the multi-state model, in the de�nitions of the AUC and

the PE, given in Sections 4.2 and 4.3, respectively, we replace the {i2} and {j2} subscripts
with {i3} and {j3} subscripts, respectively. For example, under the multi-state model, we

replace Ỹi2 and Ỹj2 with Ỹi3 and Ỹj3, respectively.

4.5 Conclusions

In this chapter we presented discrimination and calibration measures, in the presence of

right-censoring, to assess model performance, where the event of interest is the terminal

event (failure). We introduced the time-dependent area under the receiver operating

characteristic curve (AUC) to assess the discriminative ability of a statistical model over

time. We described the comparable and �partially comparable� (due to censoring) pairs

of units and described how the standard AUC measure is adjusted in the presence of

right-censoring. We then introduced the expected predicted error (PE) to assess the

accuracy of predicting future failures. In Chapter 5, we use the calibration and

discrimination measures presented in this chapter to compare how well the two-state

model, the illness-death model, and the multi-state model, presented in Chapter 3, can

predict hard drive failure ages, and how well each model can discriminate between drives

that fail and drives that do not fail, within a forecast horizon of interest. Our motivating

example concerns a large dataset of hard drives, from data backup company Backblaze

(Backblaze, 2022a), that is subject to left-truncation and right-censoring.
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Multi-state models for

left-truncated and

right-censored data

In this chapter, we provide a novel way to model the failure ages of hard drives using data

collected by SMART. The proposed models enable us to speci�cally identify the impact of

critical attributes on hard drive survival probabilities and failure ages.

We apply the three multi-state models described in Chapter 3 to a large dataset of hard

drives, from data backup company Backblaze, that is subject to left-truncation and right-

censoring. We propose transient states, named the critical states, for hard drives using

data collected by SMART and model the resulting semi-competing risks data using multi-

state models. The proposed multi-state models provide a coherent and novel way to model

failure ages of hard drives and allow us to statistically examine the impact of critical

attributes on hard drive failure ages. We illustrate how multi-state models can be used to

obtain the DRLs for hard drives using the current state of a drive, and compare our results

to previous work by Mittman et al. (2019) using the methods presented in Chapter 4.

5.1 Multi-state models

In this section, we de�ne critical attributes and critical states for hard drives using data

collected by SMART. We �rst remind the reader of the Backblaze hard drive dataset.
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5.1.1 Backblaze hard drive data

Backblaze is a company that o�ers cloud backup storage to protect against data loss.

Since 2013, it has been collecting daily operational data, using SMART, on all of the hard

drives operating at its facility. Every quarter Backblaze makes its hard drive data publicly

available through its website (Backblaze, 2022a).

As of the �rst quarter of 2022, Backblaze was collecting and reporting data on 150 di�erent

drive models. Some drive models have been running since 2013 or before, while others were

added at a later date. The number of drives and the number of failed drives vary by drive

model; some models have no recorded failures.

Each day SMART takes a snapshot of each operational drive at Backblaze. This snapshot

includes basic drive information, along with the SMART attributes reported by that drive.

Consequently, for each drive, we have a time series for each recorded attribute. Each day,

for each operational drive at Backblaze, SMART records: the date, the drive serial number,

the drive model, the capacity of the drive in bytes, an indicator denoting if the drive failed

that day, and multiple SMART attributes.

Over time, the reporting technology is upgraded, and as a result, the number of recorded

attributes changes over time. For example, between 2013 and 2014, SMART provided 80

columns of data per day, alongside basic drive information, for each hard drive. These

columns correspond to the raw and normalised values of 40 di�erent SMART attributes.

From 2018 onwards, SMART provided 124 columns of data per day, alongside basic drive

information, for each drive (corresponding to the raw and normalised values of 62 di�erent

SMART attributes).

The Backblaze hard drive failure ages are left-truncated and right-censored. When an

observation is left-truncated, it would not have been observed if it had occurred prior to a

particular time. Many Backblaze hard drives have a history prior to data collection, and

hard drives that were in a failed state when data collection commenced are not included

in the dataset. Hence, the ages of Backblaze hard drives at failure are left-truncated. In

addition, it is rare that all drives in a study are observed until failure. If a drive has not

failed when the study ends, it is considered right-censored. Right-censoring puts a lower

bound on the failure age. Left-truncation and right-censoring must both be incorporated

to avoid biased estimates.

In this chapter, we extend the methods proposed by Mittman et al. (2019) to incorporate

the attributes collected by SMART. We compare our results to the results presented in

Section 4.2 of Mittman et al. (2019) using the methods presented in Chapter 4. More

speci�cally, to illustrate the multi-state models proposed in this chapter, we present an

analysis of drive model 14. Drive model 14 was a hard drive used by Backblaze up to
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(and including) the last quarter of 2015. Between 2013 and 2016, Backblaze deployed 4707

model 14 drives.

5.1.2 The critical states

5.1.2.1 Attribute selection

Backblaze uses �ve SMART attributes as a means of helping determine if a drive is going

to fail (Rincón et al., 2017; Backblaze, 2022b). Namely, SMART 5, the reallocated sectors

count; SMART 187, the reported uncorrectable errors; SMART 188, command timeout;

SMART 197, the current pending sector count; and SMART 198, the uncorrectable sector

count. When the raw value for at least one of these �ve attributes is greater than zero,

Backblaze has a reason to investigate (Rincón et al., 2017; Backblaze, 2022b).

Rincón et al. (2017) investigated three di�erent machine learning models using Backblaze

data. They performed a statistical analysis to reduce the number of SMART attributes

to consider and to eliminate irrelevant variables (variables without any relationship to

drive failure). Their trend test identi�ed six attributes to be used in the machine learning

models. Namely, SMART 196, the reallocation event count, and the �ve attributes used

by Backblaze.

Ma et al. (2015) designed RAIDSHIELD, consisting of PLATE and ARMOR. PLATE

monitors individual drive health by tracking the number of reallocated sector counts

(SMART 5) and proactively detecting unstable drives. ARMOR utilises joint failure

probabilities to quantify and predict how likely a RAID group (multiple hard drives

grouped together to decrease the risk of data loss) is to face multiple simultaneous drive

failures. The joint failure probabilities depend on the number of reallocated sector counts

(SMART 5). Their results show that the accumulation of reallocated sectors is correlated

with a higher probability of failure.

Following from Ma et al. (2015), Rincón et al. (2017), and Backblaze (2022b) we consider

SMART attributes 5, 187, 188, 197, and 198. From herein these SMART attributes are

referred to as critical attributes. We note that SMART 196 is missing for all hard drives

in our dataset.

5.1.2.2 Model for critical attributes

A parametric model for each critical attribute process is needed for the purpose of

prediction. Figure 5.1 (left) depicts the longitudinal pro�le of the reallocated sector count

(SMART 5) for �ve example hard drives. Figure 5.1 (right) depicts the longitudinal
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Figure 5.1: Figure (left) depicts the longitudinal pro�le of the reallocated sector count
(SMART 5) for �ve example hard drives. Figure (right) depicts the longitudinal pro�le of
the reported uncorrectable errors (SMART 187) for �ve example hard drives.

pro�le of the reported uncorrectable errors (SMART 187) for �ve example hard drives.

From Figure 5.1, we can see that there is no clear trend in the reallocated sector count

over time, nor in the reported uncorrectable errors over time (other than both being

non-decreasing).

Table 5.1 provides summary statistics for the �ve critical attributes for model 14 hard

drives. More speci�cally, Table 5.1 provides, for each critical attribute, quantiles of the

time between jumps (nonzero increases), in hours (for hard drives with at least two nonzero

values); quantiles of the size of the �rst nonzero jump (for hard drives with at least one

nonzero value); and quantiles of the number of nonzero jumps (for hard drives with at least

one nonzero value). The quantiles were obtained using the empirical distributions for each

critical attribute.

For drive model 14, the central 99% empirical interval for the time between jumps in

reallocated sector count, for hard drives that experience at least two jumps, is (23, 1360)

hours with a median of 24 hours; the central 99% empirical interval for the size of the �rst

jump in reallocated sector count, for drives with at least one nonzero jump, is (8, 34200)
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with a median of 72; and the central 99% empirical interval for the number of nonzero

jumps in reallocated sector count, for drives that experienced at least one jump, is (1, 176)

with a median of 22 jumps.

Many hard drives do not experience a nonzero jump in reallocated sector count during their

lifespan. More speci�cally, 75% of model 14 hard drives in our dataset do not experience

a nonzero jump in reallocated sector count. For hard drives that experience a nonzero

jump in reallocated sector count: some hard drives do not exhibit further jumps, some

drives have frequent sporadic jumps thereafter, some of the subsequent jumps could be

within days or thousands of hours later, and the size of the jumps vary drastically in size.

Similar conclusions can be drawn from the other critical attributes. The erratic nature of

these poorly understood processes makes it di�cult to predict their values over time (with

a �reasonable� amount of certainty that the predictions could be useful in a predictive

model).

We utilise the probabilities of changes in critical attributes and the age of a hard drive to

predict the probability of drive failure over time. We treat changes in critical attributes

as drives entering critical states. In this setting, the data collected by SMART can be

considered semi-competing risks data. Under this de�nition of the critical states, we do

not need to forecast the process for any critical attribute. Instead, we must forecast the

probability of entering the critical states. It is di�cult to predict the value of the critical

attributes over time, but it is more manageable to obtain the probability of entering the

critical states. In Sections 5.2.5 and 5.2.6, we model the semi-competing risks data more

formally using the illness-death model and the multi-state model.

5.2 Application to the Backblaze hard drives

In this section, we present an analysis of drive model 14. This drive model is chosen to

illustrate how multi-state models can be used to obtain survival probabilities and DRLs

for hard drives using the age and state of a drive. We illustrate how the survival

probabilities and DRLs allow us to de�ne the impact of critical attributes on hard drive

survival probabilities and failure ages. In addition, we assess the performance of the

two-state model, the illness-death model, and the multi-state model through a simulation

study using the discrimination (AUC) and calibration (PE) measures presented in

Chapter 4. First, we introduce a useful alternative parameterisation of the Weibull

distribution and propose the generalised limited failure population model.
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5.2.1 Weibull distribution and reparameterisation

The Weibull CDF is

Pr(T ≤ t | α, β) = F (t | α, β) = 1− exp

[
−
(
t

α

)β]
, t > 0, (5.2.1)

where β > 0 is the Weibull shape parameter and α > 0 is the scale parameter. Because

log(T ) has a smallest extreme value distribution, a member of the location-scale family of

distributions (Meeker et al., 2022), the Weibull CDF can also be written as

Pr(T ≤ t | µ, σ) = F (t | µ, σ) = ΦSEV

[
log(t)− µ

σ

]
, t > 0, (5.2.2)

where ΦSEV(z) = 1 − exp[− exp(z)] is the standard smallest extreme value distribution

CDF and µ = log(α) and σ = 1/β are, respectively, location and scale parameters for the

distribution of log(T ).

Following Mittman et al. (2019), we use an alternative parameterisation where the usual

scale parameter α is replaced by the p quantile tp = α[− log(1− p)]σ (which is also a scale

parameter). The p quantile, tp, is de�ned as Pr(T ≤ tp) = p. Replacing α in Equation

(5.2.1) with tp/[− log(1− p)]σ and β with 1/σ gives

F (t | tp, σ) = 1− exp

[
log(1− p)

(
t

tp

)1/σ]
, t > 0. (5.2.3)

The Weibull PDF is

f(t | tp, σ) = − log(1− p)
σtp

(
t

tp

)1/σ−1

exp

[
log(1− p)

(
t

tp

)1/σ]
, t > 0. (5.2.4)

The Weibull hazard function is

λ(t | tp, σ) =
f(t | tp, σ)

1− F (t | tp, σ)
= − log(1− p)

σtp

(
t

tp

)1/σ−1

, t > 0. (5.2.5)

There are good reasons for using this parameterisation.
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1. Especially with a highly-reliable product, it will be easier to elicit prior information

about a quantile (tp) in the lower tail of the distribution than it will be to elicit

prior information about α (approximately the 0.63 quantile). In addition, there is

generally available information about the shape parameter, σ, for a given failure

mechanism. For example, if the failure is due to a wearout mechanism, then it is

known that σ < 1 (Mittman et al., 2019).

2. Because of heavy censoring in reliability data, the parameters µ and σ will

generally be highly correlated and the speci�cation of independent marginal prior

distributions would be inappropriate (Mittman et al., 2019). However, tp and σ, for

some appropriately chosen value of p, will be approximately independent, allowing

the easier elicitation and speci�cation of independent marginal prior distributions.

For example, if a dataset has 10% of units entering a particular state (e.g., the

failure state), then choosing t0.05 would work well (Mittman et al., 2019).

3. Bayesian MCMC estimation will be better behaved due to reduced correlation

between tp and σ (relative to α and σ or µ and σ) (Mittman et al., 2019).

5.2.2 Generalised limited failure population model

Let F1 and F2 be the CDFs of Weibull distributions with parameters (tp1 , σ1) and (tp2 , σ2),

respectively. The GLFP model of Chan and Meeker (1999) is de�ned as follows. Let

T ∼ GLFP(π, tp1 , σ1, tp2 , σ2). Then

Pr(T ≤ t | θ) = F (t | θ) = 1− (1− πF1(t | θ1))(1− F2(t | θ2)), t > 0, 0 < π < 1, (5.2.6)

where θ = (π, tp1 , σ1, tp2 , σ2), θ1 = (tp1 , σ1), and θ2 = (tp2 , σ2).

The GLFP model can be understood as a mixture model with a binary latent variable,

ζi ∼ Bernoulli(π). ζi is an indicator for whether drive i is defective or not (i.e., susceptible

to an early failure), and π is the probability that drive i is defective. Here F1(t) is the CDF

for the early failures, and F2(t) is the CDF for the wear-out failures. Expressed conditional

on ζi,

Pr(T ≤ t | ζi = 1,θ1,θ2) = 1− (1− F1(t | θ1))(1− F2(t | θ2)),

Pr(T ≤ t | ζi = 0,θ2) = F2(t | θ2).
(5.2.7)

The parameter π represents the proportion of drives susceptible to early failure, and hence

susceptible to both failure modes.
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The GLFP PDF is

f(t | θ) = πf1(t | θ1)(1− F2(t | θ2)) + f2(t | θ2)(1− πF1(t | θ1)). (5.2.8)

Furthermore, the GLFP hazard function at t is given by

λ(t | θ) =
f(t | θ)

1− F (t | θ)
, (5.2.9)

where f(t) is given by Equation (5.2.8) and F (t) is given by Equation (5.2.6).

Hard drives, like other engineered products, have a relatively high rate of early failure

due to manufacturing defects. After this �burn-in� period, failure rates stabilise, once the

majority of defective units have failed. Finally, after prolonged use, rates of failure increase

due to wear-out. The GLFP model is used to capture both failure modes of hard drives.

5.2.3 Drive model 14

Backblaze deployed 4707 model 14 drives. Three of these drives had only one observation

and were removed from the dataset. This leaves 4704 hard drives. By the end of 2015,

1707 of these drives had failed. Consequently, 2997 drives are right-censored.

Figure 5.3 depicts the illness-death model used to model hard drive failure ages, with the

inclusion of critical attributes through the critical state; where the critical event is de�ned

as at least one critical attribute being nonzero. The critical age is the age a unit enters

the critical state. We assume an illness-death model for each individual unit of the form

shown in Figure 5.3. Under the illness-death model, 4341 (92%) hard drives entered the

critical state (see Figure 5.3) at some point in their lifetime. Although not shown, this

model performed poorly. From this model we observed that as hard drives got older,

the probability of failure within a forecast horizon of interest was higher for drives in the

healthy state compared to drives in the critical state. This indicated that we misspeci�ed

the de�nition of the critical state. Upon further investigation, we found that 3950 (84%)

hard drives experienced at least one nonzero jump in command timeout (SMART 188).

Consequently, we removed SMART 188 from the set of critical attributes.

From herein, SMART 5, SMART 187, SMART 197, and SMART 198 are considered critical

attributes. Under the illness-death model, with this set of critical attributes, 2428 (52%)

hard drives entered the critical state, 283 drives transitioned from the healthy state to the

failed state, and 1424 drives transitioned from the critical state to the failed state.
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Figure 5.4 depicts the multi-state model used to model hard drive failure ages, with the

inclusion of critical attributes through the critical 1 and critical 2 states; where the critical

1 and critical 2 events are de�ned as one critical attribute being nonzero, and at least two

critical attributes being nonzero, respectively. The critical 1 age is the age a unit enters

the critical 1 state. The critical 2 age is the age a unit enters the critical 2 state. Under

the multi-state model, 2009 drives transitioned from the healthy state to the critical 1

state (see Figure 5.4), 1316 drives transitioned from the critical 1 state to the critical 2

state (see Figure 5.4), and 419 drives transitioned from the healthy state to the critical 2

state (without transitioning to the critical 1 state). In total 1707 drives failed; 283 drives

transitioned from the healthy state to the failed state, 288 hard drives transitioned from

the critical 1 state to the failed state, and 1136 drives transitioned from the critical 2 state

to the failed state.

We model the failure ages of hard drives using the two-state model (depicted by Figure 5.2),

the illness-death model (depicted by Figure 5.3), and the multi-state model (depicted by

Figure 5.4). We specify the two-state model, the illness-death model, and the multi-state

model more formally in the next sections.

5.2.4 Two-state model specifications

In this section we present the two-state model proposed by Mittman et al. (2019). Figure

5.2 depicts the two-state model used to model hard drive failure ages without the inclusion

of critical attributes. We assume a two-state model for each individual unit of the form

shown in Figure 5.2. The two-state model is characterised by the transition hazard:

λ(t | θ) = lim
∆→0

Pr(T ∈ [t, t+ ∆) | T ≥ t,θ)

∆
, for t > 0, (5.2.10)

where λ is the hazard rate (transition intensity) of the 0 → 1 transition, θ is a vector of

model parameters associated with λ, T is the failure age, and states 0 and 1 are the healthy

and failed states, respectively.

Healthy Failed
λ(·)

Figure 5.2: A two-state model without the inclusion of critical attributes.

A GLFP hazard is used to describe the transition rate for hard drives in the healthy state;

i.e., a GLFP hazard is used to describe the 0→ 1 transition, where state 0 is the healthy

state and state 1 is the failed state. This model describes the early failure mode and the

wear-out failure mode of hard drives. More speci�cally,
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T ∼ GLFP(π, tp1 , σ1, tp2 , σ2), (5.2.11)

where T is the failure age of a hard drive. The transition hazard is obtained using Equations

(5.2.3), (5.2.4), (5.2.6), (5.2.8), and (5.2.9), and is given by

λ(t | θ) =

−t1/σ1−1π log(1− p1)σ−1
1 t
−1/σ1
p1 exp

[(
t
tp1

)1/σ1

log(1− p1)

]
1− π

(
1− exp

[(
t
tp1

)1/σ1

log(1− p1)

])
− log(1− p2)

σ2tp2

(
t

tp2

)1/σ2−1

,

(5.2.12)

where θ = (π, tp1 , σ1, tp2 , σ2). To infer the parameters of the two-state model, we use a

Bayesian approach, selecting proper, but generally di�use, prior distributions to improve

the identi�cation of the model parameters. Following Mittman et al. (2019) we use the

0.50 quantile for the early failure mode (p1 = 0.5) and the 0.2 quantile for the wear-out

failure mode (p2 = 0.2).

The prior distributions used in our analysis are

σ1
ind.∼ LogNormal(0, 1),

σ2
ind.∼ LogNormal(0, 1) Tr(0, 1),

tp1
ind.∼ LogNormal(7, 1),

tp2
ind.∼ LogNormal(10, 1),

π
ind.∼ LogitNormal(−3, 2),

(5.2.13)

where p1 = 0.5 and p2 = 0.2. We truncate the distribution of σ2 at 1 (indicated by Tr(0, 1)),

restricting the wear-out failure mode to have an increasing hazard function. The two-state

model is �t using RStan, the R interface to Stan (Carpenter et al., 2017; Stan, 2022).

We run one chain with 4000 iterations (2000 warm-up samples and 2000 post warm-up

samples).

5.2.5 Illness-death model specifications

The illness-death model is characterised by the transition hazards:
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λ01(t1 | θ01) = lim
∆→0

Pr(T1 ∈ [t1, t1 + ∆) | T1 ≥ t1, T2 ≥ t1,θ01)

∆
, for t1 > 0

(5.2.14)

λ02(t2 | θ02) = lim
∆→0

Pr(T2 ∈ [t2, t2 + ∆) | T1 ≥ t2, T2 ≥ t2,θ02)

∆
, for t2 > 0

(5.2.15)

λ12(t2 | T1 = t1,θ12) = lim
∆→0

Pr(T2 ∈ [t2, t2 + ∆) | T1 = t1, T2 ≥ t2,θ12)

∆
, for 0 < t1 < t2,

(5.2.16)

where λij is the hazard rate (transition intensity) of the i → j transition, θij is a vector

of model parameters associated with λij , T1 and T2 denote the critical and failure ages,

respectively, and states 0, 1, and 2 correspond to the healthy, critical, and failed states,

respectively.

Healthy Critical

Failed

λ01(·)

λ02(·)
λ12(·)

Figure 5.3: An illness-death model where the critical state is de�ned as at least one critical
attribute being nonzero.

A GLFP hazard is used to describe the 0→ 2 transition and Weibull hazards are used to

describe the 0 → 1 and 1 → 2 transitions, where state 0 is the healthy state, state 1 is

the critical state, and state 2 is the failed state (see Figure 5.3). The hard drives in our

dataset enter the critical state after the �early failure� phase and hence hard drives in the

critical state are not expected to su�er from the early failure mode. More speci�cally, the

hazard rate for the 0→ 1 transition is given by

λ01(t | θ01) = − log(1− p01)

σ01tp01

(
t

tp01

)1/σ01−1

, (5.2.17)

where θ01 = (tp01 , σ01) and p01 = 0.5, the hazard rate for the 0→ 2 transition is given by
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λ02(t | θ02) =

−t1/σ1,02−1π log(1− p1,02)σ−1
1,02t

−1/σ1,02
p1,02 exp

[(
t

tp1,02

)1/σ1,02

log(1− p1,02)

]
1− π

(
1− exp

[(
t

tp1,02

)1/σ1,02

log(1− p1,02)

])
− log(1− p2,02)

σ2,02tp2,02

(
t

tp2,02

)1/σ2,02−1

,

(5.2.18)

where θ02 = (π, tp1,02 , σ1,02, tp2,02 , σ2,02), p1,02 = 0.5, and p2,02 = 0.2, and the hazard rate

for the 1→ 2 transition is given by

λ12(t | θ12) = − log(1− p12)

σ12tp12

(
t

tp12

)1/σ12−1

, (5.2.19)

where θ12 = (tp12 , σ12) and p12 = 0.1.

To infer the parameters of the illness-death model, we use a Bayesian approach, selecting

proper, but generally di�use, prior distributions to improve the identi�cation of the model

parameters. The prior distributions for the healthy to failed transition parameters, θ02,

are de�ned in Section 5.2.4. The remaining prior distributions used in our analysis are

tp01
ind.∼ LogNormal(10, 1),

tp12
ind.∼ LogNormal(9, 1),

σ01, σ12
ind.∼ LogNormal(0, 1) Tr(0, 1).

(5.2.20)

We truncate the distributions of σ01, σ2,02 and σ12 at 1, restricting the associated failure

modes to have increasing hazard functions. The illness-death model is �t using RStan.

We run one chain with 4000 iterations (2000 warm-up samples and 2000 post warm-up

samples).

The likelihood for the illness-death model is given by Equations (3.3.4) - (3.3.7). The

de�nite integrals in the likelihood in Equations (3.3.6) and (3.3.7) are evaluated using the

composite Simpson's rule with M = 100 equal subdivisions. More speci�cally, for the

integral of the general function f(x | θ) over the interval [0, li], the evaluation takes the

form

∫ li

0
f(x | θ)dx =

h

3

{
f(x0 | θ) + 4

M/2∑
j=1

f(x2j−1 | θ) + 2

M/2−1∑
j=1

f(x2j | θ) + f(xM | θ)

}
,

(5.2.21)
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where xj = jh, for j = 0, 1, . . . ,M , with h = li/M ; in particular, x0 = 0 and xM = li.

5.2.6 Multi-state model specifications

The multi-state model is characterised by the transition hazards:

λ01(t1 | θ01) = lim
∆→0

Pr(T1 ∈ [t1, t1 + ∆) | T1 ≥ t1, T2 ≥ t1, T3 ≥ t1,θ01)

∆
, (5.2.22)

for t1 > 0

λ02(t2 | θ02) = lim
∆→0

Pr(T2 ∈ [t2, t2 + ∆) | T1 ≥ t2, T2 ≥ t2, T3 ≥ t2,θ02)

∆
, (5.2.23)

for t2 > 0

λ03(t3 | θ03) = lim
∆→0

Pr(T3 ∈ [t3, t3 + ∆) | T1 ≥ t3, T2 ≥ t3, T3 ≥ t3,θ03)

∆
, (5.2.24)

for t3 > 0

λ12(t2 | T1 = t1,θ12) = lim
∆→0

Pr(T2 ∈ [t2, t2 + ∆) | T1 = t1, T2 ≥ t2, T3 ≥ t2,θ12)

∆
, (5.2.25)

for 0 < t1 < t2

λ13(t3 | T1 = t1,θ13) = lim
∆→0

Pr(T3 ∈ [t3, t3 + ∆) | T1 = t1, T2 ≥ t3, T3 ≥ t3,θ13)

∆
, (5.2.26)

for 0 < t1 < t3

λ23(t3 | T2 = t2,θ23) = lim
∆→0

Pr(T3 ∈ [t3, t3 + ∆) | T2 = t2, T3 ≥ t3,θ23)

∆
, (5.2.27)

for 0 < t2 < t3,

where λij is the hazard rate (transition intensity) of the i→ j transition, θij is a vector of

model parameters associated with λij , T1, T2, and T3 are critical 1, critical 2, and failure

ages, respectively, and states 0, 1, 2, and 3 correspond to the healthy, critical 1, critical 2,

and failed states, respectively.

A GLFP hazard is used to describe the 0 → 3 transition, where state 0 is the healthy

state and state 3 is the failed state, and Weibull hazards are used to describe all other

transitions. More speci�cally, the hazard rate for the i→ j transition is given by

λij(t | θij) = − log(1− pij)
σijtpij

(
t

tpij

)1/σij−1

, (5.2.28)

where θij = (tpij , σij), for i = 0 and j = 1, 2, for i = 1 and j = 2, 3, and for i = 2 and

j = 3, and p01 = 0.5, p02 = 0.05, p12 = 0.3, p13 = 0.1, and p23 = 0.25. In addition, the

hazard rate for the 0→ 3 transition is given by
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Healthy Critical 1

FailedCritical 2

λ01(·)

λ03(·)
λ13(·)λ02(·)

λ23(·)

λ12(·)

Figure 5.4: A multi-state model where the critical 1 state is de�ned as one critical attribute
being nonzero and the critical 2 state is de�ned as at least two critical attributes being
nonzero.

λ03(t | θ03) =

−t1/σ1,03−1π log(1− p1,03)σ−1
1,03t

−1/σ1,03
p1,03 exp

[(
t

tp1,03

)1/σ1,03

log(1− p1,03)

]
1− π

(
1− exp

[(
t

tp1,03

)1/σ1,03

log(1− p1,03)

])
− log(1− p2,03)

σ2,03tp2,03

(
t

tp2,03

)1/σ2,03−1

,

(5.2.29)

where θ03 = (π, tp1,03 , σ1,03, tp2,03 , σ2,03), p1,03 = 0.5, and p2,03 = 0.2.

To infer the parameters of the multi-state model, we use a Bayesian approach, selecting

proper, but generally di�use, prior distributions to improve the identi�cation of the model

parameters. The prior distributions for the healthy to failed transition parameters, θ03, are

de�ned in Section 5.2.4; and the prior distributions for the healthy to critical 1 transition

parameters, θ01, and the critical 1 to failed transition parameters, θ13, are de�ned in

Section 5.2.5. The remaining prior distributions used in our analysis are

tp02
ind.∼ LogNormal(9, 1),

tp12
ind.∼ LogNormal(9.5, 1),

tp23
ind.∼ LogNormal(9.25, 1),

σ02, σ12, σ23
ind.∼ LogNormal(0, 1) Tr(0, 1).

(5.2.30)
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We truncate the distributions of σ01, σ02, σ2,03, σ12, σ13 and σ23 at 1, restricting the

associated failure modes to have increasing hazard functions. The multi-state model is �t

using RStan. The multi-state model is �t using RStan. We run one chain with 4000

iterations (2000 warm-up samples and 2000 post warm-up samples).

5.2.7 Results

5.2.7.1 Survival probabilities and remaining useful life prediction

Figure 5.5 illustrates dynamic predictions of conditional survival probabilities over time

for hard drives in the healthy state and hard drives in the critical states, obtained under

the multi-state model using the parameter posterior distributions summarised in Table A.3

in Appendix A.1, conditional on surviving until age τi = 5000, 10000, 15000, 20000 hours.

The multi-state model allows us to coherently examine the impact of critical attributes

on the survival probability of hard drives. The posterior predictive survival distributions

can be used to compare the probabilities of failure, within a forecast horizon of interest, of

drives in the healthy state to drives in the critical states and to compare the probabilities

of failure of drives in the critical 1 state to drives in the critical 2 state. This allows us to

concretely de�ne the impact of a single critical attribute, and the impact of multiple critical

attributes, on the survival probability of hard drives; which in turn allows us to examine

the impact of a single critical attribute and the impact of multiple critical attributes on

the RUL distributions of hard drives.

In addition, Figure 5.5 illustrates dynamic predictions of conditional survival

probabilities over time obtained under the two-state model, using the parameter posterior

distributions summarised in Table A.1 in Appendix A.1, conditional on surviving until

age τi = 5000, 10000, 15000, 20000 hours. From Figure 5.5, it appears that the survival

probabilities, conditional on surviving until age τi, for τi = 5000, 10000, 15000, 20000,

obtained under the two-state model are a weighted mixture of the three survival curves

(corresponding to the survival curves for drives in the healthy, critical 1 and critical 2

states) obtained under the multi-state model, conditional on surviving until age τi, for

τi = 5000, 10000, 15000, 20000. The two-state model may underestimate the survival

probability of drives in the healthy state and overestimate the survival probability of

drives in the critical states.

Table 5.2 provides the posterior median and central posterior 95% prediction intervals of

the probability of surviving an 84 day (2016 hour) forecast horizon under the two-state

model and the multi-state model, for drives in the healthy state and drives in the critical

states, conditional on surviving until age τi = 5000, 10000, 15000, 20000 hours; 84 days is

approximately 3 months (or a quarter of a year) and this is how often Backblaze releases
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new data. The quantities obtained from the multi-state model posterior predictive survival

distributions allow us to explicitly identify the impact of a single critical attribute, and the

impact of multiple critical attributes, on hard drive survival probabilities. For example,

from Table 5.2, we can see that the median posterior probabilities of surviving an 84 day

(2016 hour) horizon for a drive of age 20,000 hours are 0.9410, 0.7658, and 0.5866 for

drives with no critical attributes, one critical attribute and multiple critical attributes,

respectively. In addition, under the two-state model, the median posterior probability of

surviving an 84 day (2016 hour) horizon for a drive of age 20,000 hours is 0.8179 regardless

of how many critical attributes the drive has acquired.
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Figure 5.5: Posterior medians (dashed lines) and 95% central prediction intervals (solid
lines) of the survival probability over time under the two-state model (grey) and the multi-
state model, for hard drives in the healthy state (orange), hard drives in the critical 1
state (red), and hard drives in the critical 2 state (blue), conditional on surviving until age
τi = 5000, 10000, 15000, 20000 hours.

Figure 5.6 illustrates the dynamic RUL predictions obtained under the multi-state model

(for drives in the healthy state, the critical 1 state, and the critical 2 state), using the

parameter posterior distributions summarised in Table A.3 in Appendix A.1. Figure 5.6

provides the RUL predictions, conditional on surviving until age

81



Chapter 5

A
ge

T
w
o-
S
ta
te

m
ed
ia
n

H
ea
lt
h
y
m
ed
ia
n

C
ri
ti
ca
l
1
m
ed
ia
n

C
ri
ti
ca
l
2
m
ed
ia
n

(τ
i)

an
d

95
%

P
I

an
d

95
%

P
I

an
d

95
%

P
I

an
d

95
%

P
I

50
00

0.
99
10

(0
.9
86
6,

0.
99
41
)

0.
99
52
,

(0
.9

92
5,

0.
99

69
)

0.
94
97
,

(0
.9

23
5,

0
.9

67
7)

0.
87
93
,

(0
.8

16
0,

0
.9

22
3)

10
00
0

0.
98
15

(0
.9
78
7,

0.
98
39
)

0.
99
10
,

(0
.9

89
2,

0.
99

24
)

0.
89
92
,

(0
.8

81
8
,0
.9

15
3)

0.
77
48
,

(0
.7

29
8,

0
.8

13
0)

15
00
0

0.
93
08

(0
.9
25
6,

0.
93
55
)

0.
97
45
,

(0
.9

71
6,

0.
97

71
)

0.
84
32
,

(0
.8

29
7
,0
.8

56
1)

0.
67
68
,

(0
.6

53
6,

0
.6

99
3)

20
00
0

0.
81
79

(0
.8
05
0,

0.
83
09
)

0.
94
08
,

(0
.9

32
3,

0.
94

85
)

0.
78
42
,

(0
.7

58
1
,0
.8

06
0)

0.
58
74
,

(0
.5

54
3,

0
.6

23
0)

T
ab
le

5.
2:

P
os
te
ri
or

m
ed
ia
n
an
d
ce
n
tr
al

p
os
te
ri
or

95
%

p
re
d
ic
ti
on

in
te
rv
al
s
of

th
e
p
ro
b
ab
il
it
y
of

su
rv
iv
in
g
an

84
d
ay

(2
01
6
h
ou
r)

fo
re
ca
st

h
or
iz
on

u
n
d
er

th
e
tw
o-
st
at
e
m
o
d
el
an
d
th
e
m
u
lt
i-
st
at
e
m
o
d
el
,
fo
r
h
ar
d
d
ri
ve
s
in

th
e
h
ea
lt
h
y
st
at
e,
d
ri
ve
s
in

th
e
cr
it
ic
al

1
st
at
e,
an
d
d
ri
ve
s

in
th
e
cr
it
ic
al

2
st
at
e,
co
n
d
it
io
n
al

on
su
rv
iv
in
g
u
n
ti
l
ag
e
τ i

=
50

00
,1

00
00
,1

50
00
,2

00
00

h
ou
rs
.

82



Multi-state models for left-truncated and right-censored data

τi = 5000, 10000, 15000, 20000 hours. As depicted in Figure 5.6, the RUL, conditional on

surviving until age τi, for drives in the critical 1 state is lower than the RUL for drives in

the healthy state; and the RUL, conditional on surviving until age τi, for drives in the

critical 2 state is lower than the RUL for drives in the critical 1 state. This illustrates

that drives with multiple critical attributes are more prone to failure than drives with

only one critical attribute and drives with one critical attribute are more prone to failure

than drives without any critical attributes.

In addition, Figure 5.6 illustrates the dynamic RUL predictions obtained under the

two-state model, using the parameter posterior distributions summarized in Table A.1 in

Appendix A.1. From Figure 5.6, it appears that the RUL distribution, conditional on

surviving until age τi, for τi = 5000, 10000, 15000, 20000, obtained under the two-state

model is a weighted mixture of the three RUL distributions (corresponding to the RUL

distributions for drives in the healthy, critical 1 and critical 2 states) obtained under the

multi-state model, conditional on surviving until age τi, for

τi = 5000, 10000, 15000, 20000. The two-state model appears to underestimate the RUL

of drives in the healthy state and overestimate the RUL of drives in the critical states.

We will assess this more formally in the next section.

The survival probabilities were obtained by sampling from the appropriate posterior

predictive survival distributions under each model; and the RUL distributions were

obtained by inverse transform sampling from the relevant conditional survival

probabilities.

5.2.7.2 Model assessment

In this section, we investigate the performance of the two-state model, the illness-death

model and the multi-state model in a simulation study, using the AUC (discrimination) and

the PE (calibration) described in Chapter 4; the square loss function is used to obtain the

PE. We obtain the AUC and the PE under all models every 672 hours (28 days), assuming

three time intervals for prediction of 672 hours (28 days), 1344 hours (56 days), and 2016

hours (84 days), i.e., s = 672, 1344, 2016. More speci�cally, we obtain the AUC and the

PE under all models at the beginning of the study, at calendar time τ = 0, and then

at calendar time τ = 672, 1344, . . . , with s = 672, 1344, 2016. We perform Monte Carlo

cross-validation, splitting the data into training (60%) and validation (40%) data. For each

split, we �t the two-state model, the illness-death model and the multi-state model to the

training data to obtain the joint posterior distribution of the model parameters under each

model. The joint posterior distribution of the model parameters is obtained once under

each model using all of the training data. We then obtain the AUC and the PE at each

time point and for each forecast horizon, s. We run 1000 Monte Carlo simulations.
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Figure 5.6: Posterior medians and 95% central prediction intervals of the posterior
predictive RUL distributions for hard drives under the two-state model (grey) and the
multi-state model, for hard drives in the healthy state (orange), hard drives in the critical
1 state (red), and hard drives in the critical 2 state (blue), conditional on surviving until
age τi = 5000, 10000, 15000, 20000 hours. The scales of the y-axes vary between plots.

Table A.1, Table A.2 and Table A.3 in Appendix A.1 provide summaries of the parameter

posterior distributions for the two-state model, the illness-death model and the multi-state

model, respectively, for one Monte Carlo cross-validation.

In Figure 5.7, and Figures A.1 and A.2 in Appendix A.1, we present the results of the

simulation study, for s = 672, 1344, 2016. Figure 5.7 presents the results comparing the

multi-state model to the two-state model; Figure A.1 presents the results comparing the

illness-death model to the two-state model; and Figure A.2 presents the results comparing

the multi-state model to the illness-death model. The calendar times shown were selected

based on when the most failures occur in the data (Papageorgiou et al., 2019).

The boxplots in the top, middle and bottom left panels of Figure 5.7 represent the di�erence

in the AUC between the multi-state model and the two-state model, at multiple time points,

for s = 672, 1344, 2016, respectively. The boxplots in the top, middle and bottom right
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Figure 5.7: Top, middle and bottom left panels show the di�erence in the AUC, at multiple
time points, between the multi-state model and the two-state model, for s = 672, 1344
and 2016, respectively. Top, middle and bottom right panels show the di�erence in the
PE, at multiple time points, between the two-state model and the multi-state model, for
s = 672, 1344 and 2016, respectively. The scales of the y-axes vary between plots.
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panels of Figure 5.7 represent the di�erence in the PE between the two-state model and

the multi-state model. The structure is the same in Figures A.1 and A.2, but these �gures

compare the illness-death model to the two-state model and the multi-state model to the

illness-death model, respectively.

From the left panels in Figures 5.7 and A.1, we can see that the AUC is larger for the

multi-state model and the illness-death model, compared to the two-state model, at all

time points, indicating that the multi-state model and the illness-death model are better

at discriminating between hard drives than the two-state model. This makes sense since

the two-state model does not take into account the e�ect of obtaining critical attributes.

Under the two-state model, the probability of surviving the forecast horizon will always

be higher for a �younger� drive. The results shown in the left panels of Figures 5.7 and

A.1 indicate that the multi-state model and the illness-death model are able to identify

younger drives that are more likely to fail within the relevant time interval, due to these

drives being in a critical states.

Moreover, from the right panels in Figures 5.7 and A.1, we can see that the PE is larger for

the two-state model, compared to the multi-state model and the illness-death model, at

all time points (except for prediction 13 for s = 672, where the PE for the two-state model

is smaller, compared to the multi-state model and the illness-death model; and prediction

9 for s = 672 and prediction 13 for s = 1344, where the PE for the two-state model is

approximately the same as the PE under the illness-death model). This suggests that the

multi-state model and the illness-death model are more accurate than the two-state model.

Furthermore, from the left panels in Figure A.2, we can see that the AUC is larger for

the multi-state model, compared to the illness-death model, at all time points (except for

prediction 18 for s = 672, 2016, where the AUC is slightly larger for the illness-death model

compared to the multi-state model). This indicates that the multi-state model is better

at discriminating between hard drives compared to the illness-death model. This makes

sense, since the illness-death model does not di�erentiate between drives with one critical

attribute and drives with multiple critical attributes. Under the illness-death model, the

probability of surviving the forecast horizon, for a �xed age, is identical for drives with

one critical attribute and drives with multiple critical attributes. However, according to

the multi-state model (see Figure 5.5), drives in the critical 2 state have a lower survival

probability at all time points compared to drives in the critical 1 state, suggesting drives

with multiple critical attributes are more prone to failure than drives with a single critical

attribute. The results shown in the left panels of Figure A.2 indicate that the multi-state

model is able to identify drives that are more likely to fail within the relevant time interval

due to these drives having multiple critical attributes rather than a single critical attribute.

Finally, from the right panels in Figure A.2, we can see that the PE is larger for the illness-

death model, compared to the multi-state model, at all time points. This suggests that

the multi-state model is more accurate than the illness-death model.
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We note that the di�erences in the AUC and the PE between the multi-state model and the

illness-death model are not as large as the di�erences between the multi-state model and

the two-state model or between the illness-death model and the two-state model (see the

scales in Figures 5.7 and A.1 compared to Figure A.2). This suggests that more complex

models, for example, a multi-state model with �ve states (with three critical states), may

not be superior to the four-state multi-state model presented in this chapter. In addition,

this model would have more parameters and be more challenging to train (due to fewer

drives transitioning between each state).

5.3 Conclusions

In this chapter, we proposed a coherent and novel way to use data collected by SMART

to obtain survival probabilities and DRLs for hard drives; and we examined the impact of

a single critical attribute and the impact of multiple critical attributes on hard drive

failure ages. We showed how to use posterior predictive survival distributions and

posterior predictive RUL distributions (see Figure 5.5, Table 5.2 and Figure 5.6) to

concretely examine the impact of critical attributes on hard drive survival probabilities

and failure ages.

Following from Ma et al. (2015), Rincón et al. (2017), and Backblaze (2022b) we reduced

the number of SMART attributes to a reduced set of �critical� attributes. A parametric

model for the critical attributes is needed for the purpose of prediction. However, the

evolution of each critical attribute is poorly understood, and it is challenging to predict

the values of the critical attributes over time. To overcome this problem, we proposed

critical states for hard drives using the critical attributes. Under our de�nition of the

critical states, we do not need to forecast the process for any critical attribute. Instead, we

must forecast the probability of entering the critical states. It is challenging to predict the

value of critical attributes over time, but it is more manageable to obtain the probability

of entering the critical states. This provided a framework for incorporating the erratic

critical attributes.

We modelled the semi-competing risks data using the illness-death model and the

multi-state model, and examined the impact of critical attributes on hard drive survival

probabilities and failure ages using the multi-state model. The proposed models provided

a coherent and novel way to model the failure ages of hard drives while incorporating the

attributes provided by SMART.

We illustrated the multi-state modelling approach using a dataset of hard drives that is left-

truncated and right-censored. We proposed transition-speci�c hazard functions for each

event. We used the GLFP model to model the probability of failure for drives in the healthy
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state. The GLFP model described the early failure mode due to manufacturing defects and

captured the wear-out failures observed after the initial �burn-in� period. Weibull hazards

were used to describe the transitions between all other states.

We investigated the impact of critical attributes on hard drive failure ages using the multi-

state model. The multi-state model suggested that the RUL for drives was impacted

by a single critical attribute and impacted further by multiple critical attributes. The

RUL, conditional on surviving until age τi = 5000, 10000, 15000, 20000 hours, for drives

in the critical 1 state was lower than the RUL for drives in the healthy state; and the

RUL, conditional on surviving until age τi = 5000, 10000, 15000, 20000 hours, for drives

in the critical 2 state was lower than the RUL for drives in the critical 1 state. The

multi-state model suggested that drives with multiple critical attributes are more prone to

failure than drives with only one critical attribute and drives with one critical attribute

are more prone to failure than drives without any critical attributes. We obtained the

posterior predictive survival probabilities over time, conditional on surviving until age τi =

5000, 10000, 15000, 20000 hours, for drives with no critical attributes (drives in the healthy

state), for drives with one critical attribute (drives in the critical 1 state) and for drives

with multiple critical attributes (drives in the critical 2 state). The posterior predictive

survival curves allow us to concretely de�ne the impact of a single critical attribute and the

impact of multiple critical attributes on the survival probabilities of a hard drive, which

in turn allows us to examine the impact of a single critical attribute and the impact of

multiple critical attributes on the RUL of a hard drive.

We assessed the performance of the multi-state model using discrimination (AUC) and

calibration (PE) measures, comparing predictions obtained from the multi-state model

to the illness-death model and the two-state model. We performed Monte Carlo cross-

validation, splitting the data into training (60%) and validation (40%) data. For each

split, we �tted the two-state model, the illness-death model and the multi-state model

to the training data. We obtained the AUC and the PE every four weeks (672 hours),

assuming relevant time intervals of s = 672, 1344, 2016 hours for prediction. We found

that the multi-state model and the illness-death model outperformed the two-state model.

Furthermore, we found that the multi-state model outperformed the illness-death model.

The results illustrated the importance of incorporating data collected by SMART, and the

multi-state model provided a framework to do this.

The di�erences in the AUC and the PE between the multi-state model and the illness-death

model were not as large as the di�erences between the multi-state model and the two-

state model or between the illness-death model and the two-state model. This suggested

that more complex models, for example, a multi-state model with �ve states, may not be

superior to the four-state multi-state model presented in this chapter. Furthermore, we

found that command timeout, SMART 188, did not appear to be a critical attribute.
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Chapter 6

Introduction

In this chapter we introduce the reliability and maintenance concepts required for the

subsequent chapters and we outline the contributions in Part II of the thesis. We begin

by introducing system reliability for multi-component systems. Next, de�ne economic and

stochastic dependence in the context of maintenance. Finally, we introduce degradation

processes and degradation thresholds.

6.1 Multi-Component Systems

In Chapter 5 we obtained hard drive reliability (or survival) functions. This chapter

provided an example of obtaining individual drive (component) reliability. Individual

component reliability is the foundation of reliability assessment. The reliability of a group

of hard drives, called a RAID group, is a function of the reliability of each hard drive in

the RAID group. In this context, the RAID group is a multi-component system. In this

section we introduce system reliability for multi-component systems. We will explore

ways of representing multi-component systems using reliability block diagrams and

provide examples of system reliability for systems with di�erent structural properties.

Series systems

In reliability analysis, we often model systems graphically. This provides a visual

representation of the components and how they are con�gured to form a system. One of

the most commonly used system representations in reliability analysis is the reliability

block diagram.

Figure 6.1 provides a reliability block diagram of a series system with n potentially non-

identical components. A series system is a system that functions if and only if all of its n

components are functioning.
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Component1 Component2 . . . Componentn

Figure 6.1: A series system with n (potentially non-identical) components.

The system reliability at time t of a series system, with n components, is

Rsys(t) =

n∏
i=1

Ri(t), (6.1.1)

where Ri(t) is the reliability of component i at time t.

Parallel systems

Figure 6.2 provides a reliability block diagram of a parallel system with n potentially non-

identical components. A parallel system is a system that functions if at least one of its n

components is functioning.

Component1

Componentn

...

...

...

Figure 6.2: A parallel system with n (potentially non-identical) components.

The system reliability at time t of a parallel system, with n components, is

Rsys(t) = 1−
n∏
i=1

(1−Ri(t)), (6.1.2)

where Ri(t) is the reliability of component i at time t.
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Series-parallel systems

Figure 6.3 provides a reliability block diagram of a series-parallel system with m

subsystems. Subsystem i has ni potentially non-identical components. A series-parallel

system is a system that functions if and only if all of its m subsystems are functioning

and each subsystem is a system that functions if at least one of its ni components is

functioning.

Componenti1

Componentini

...

...

...

Component11

Component1n1

...

...

...

Componentm1

Componentmnm

...

...

.... . . . . .

Figure 6.3: A series-parallel system with m subsystems. Subsystem i has ni potentially
non-identical components.

The system reliability at time t of the series-parallel system shown in Figure 6.3 is

Rsys(t) =

m∏
i=1

{
1−

ni∏
j=1

(1−Rij(t))
}
, (6.1.3)

where Rij(t) is the reliability of componentij at time t.

6.2 Economic and stochastic dependence

Economic dependence exists when the cost of maintaining or inspecting multiple units

simultaneously is di�erent from the sum of the costs of maintaining or inspecting these

units separately. Economic dependence is usually incorporated as a �xed set-up cost. For

example, suppose component1 in Figure 6.1 is in a failed state and all other components

are in a functioning state. Hence the system is in a failed state. Maintenance is required to

repair or replace component1 in order for the system to function. A maintenance crew could

replace each component upon failure. This would result in the most frequent maintenance,
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since a maintenance crew is required at each failure to replace one and only one component

(assuming no simultaneous failures, for illustration).

It may be bene�cial, especially if the cost of hiring a maintenance crew is large, to

replace some or all of the functioning components whilst the maintenance crew replaces

component1 (the only failed component). This grouping of maintenance activities can

reduce the number of maintenance call-outs, the number of times the maintenance crew

has to set-up equipment (such as sca�olding, etc), the number of times the system is in

an idle state, etc, and can result in lower long-term maintenance costs. On the other

hand, there are some downsides to replacing some or all of the functioning components

whilst replacing component1. Replacing components that are still in a functioning state

wastes RUL of working components, and replaces working components before it is

necessary to do so.

Stochastic dependence arises when the state of a component in�uences the deterioration

processes or lifetime distributions of other components, or when components are subjected

to common-cause failures. In Part II of this thesis, we study failure-based load sharing

systems. Failure-based load sharing systems are subject to stochastic dependence since

component failures increase the workload on at least one of the remaining components, and

consequently the deterioration rates, or failure rates, of these components also increase.

We assume workload enters each subsystem and is split between components within the

same subsystem (see Figure 6.3). Under failure-based load sharing, the total load within

subsystem i (see Figure 6.3) is shared among all functioning units within the subsystem

and thus the load faced by at least one component in the subsystem changes upon failure

of another component within the same subsystem. If a component fails, the system keeps

operating but at least one of the remaining components, within the subsystem of the

failed component, need to work harder to realise the same output level. The failure of a

component thus increases the load of at least one of the working components in the same

subsystem. Hence some of the working components will deteriorate faster. The system

shown in Figure 6.3 is in a failed state when all components within any subsystem are in

a failed state.

Stochastic dependence provides incentive to replace components upon failure, to prevent

the failure rates of working components from increasing. On the other hand, economic

dependence provides the incentive to group maintenance as late as possible (we assume

there is no system failure penalty and that components are replaced instantly so there

is no system idle time when replacing all components at once), to reduce maintenance

frequency, and to reduce wasting resources; for example, as a result of replacing working

components. For example, consider the system shown in Figure 6.2; to minimise the e�ects

of economic dependence we aim to replace all components at the same time, at the failure

of the system (i.e., when all components have failed). This will result in the least frequent
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maintenance and no wasted resources as a result of replacing working components. If we

replace all components prior to system failure, this will results in replacing at least one

working component; and hence some wasted resources.

Replacing all components at system failure results in no loss, due to economic dependence,

and infrequent maintenance call-outs. However, this results in the maximum loss, due

to stochastic dependence. By leaving components in failed states (in order to replace all

components together at system failure), at least one of the working components degrade

more quickly (after each component failure), since they must work harder to realise the

same output. Replacing components upon failure will result in no loss due to stochastic

dependence, but increases the loss due to economic dependence, since this results in the

most frequent maintenance.

The optimal maintenance decisions will depend on the condition of components, the loss

due to economic dependence and the loss due to stochastic dependence.

6.3 Degradation Processes

Consider Figure 6.3. We assume each subsystem receives workload at time t, Xi(t;θXi),

for i = 1, . . . ,m, where θXi is a vector of parameters. For example, θXi may be the shape

and rate parameters of a gamma distribution. This workload is split between all working

components in subsystem i, for i = 1, . . . ,m. Componentij , for i = 1, . . . ,m, j = 1, . . . , ni,

receives workload Xij(t), such that

ni∑
j=1

Xij(t;θXi) = Xi(t;θXi). (6.3.1)

Let Yi(t) = (Yi1(t), . . . , Yini(t)) be the failure indicator vector for subsystem i, where

Yij(t) = 1 if Componentij is in a working state at time t and Yij(t) = 0 if Componentij

is in a failed state at time t, for j = 1, . . . , ni. The number of functioning components

in subsystem i at time t is denoted Πi(t) =
∑ni

j=1 Yij(t). If the workload in subsystem i,

Xi(t;θXi), is split evenly between all working components, we have

Xij(t;θXi) =
Xi(t;θXi)

Πi(t)
, (6.3.2)

for j = 1, . . . , ni. The workload received at time t, Xij(t), causes Componentij to degrade.

More speci�cally, the increase in degradation of Componentij due to Xij(t) is
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∆Dij(t) = ∆Dij(t;θDij ,θXi) = ∆Dij(t;θDij , Xij(t;θXi)), (6.3.3)

for i = 1, . . . ,m and j = 1, . . . , ni, where θDij is a vector of parameters that characterises

how much the workload allocated to Componentij at time t a�ects the degradation level

of Componentij . When all components within subsystem i are functioning, Componentij ,

j = 1, . . . , ni, degrades at the baseline rate (the �no load sharing� rate). When a component

within subsystem i fails, at least one component within subsystem i receives additional

workload. Hence, at least one component in subsystem i degrades more quickly than the

baseline rate.

The workload vector is denoted by Xij(a, b;θXi) = {Xij(t;θXi) : a < t ≤ b}, and is the

workload of Componentij from time a to time b. The total degradation of Componentij at

time t is

Dij(t) = Dij(t;θDij ,θXi) = Dij(t;θDij ,Xij(t
∗
ij , t;θXi)) = Dij(t

∗
ij) +

∫ t

t∗ij

∆Dij(s)ds,

(6.3.4)

for i = 1, . . . ,m and j = 1, . . . , ni, where t
∗
ij is the time of the most recent replacement of

Componentij .

6.3.1 Degradation Thresholds

Typically papers de�ne component failure as the time the component degradation level,

Dij(t), reaches a �xed failure threshold, Lij . However, in practice, many components will

fail before, or after, the degradation reaches Lij . In this paper the probability of failure

(the reliability) will increase (decrease) as the degradation level increases. Components

will not be assumed to fail as soon as a �xed threshold, Lij , is reached. Every observed

degradation level, Dij(t), will come with an associated probability of failure, rather than

having a probability of zero of failure for Dij(t) < Lij and a probability of one of failure

for Dij(t) = Lij .

When degradation and failure time data are both available, the stochastic nature of

component failure times can be modelled using random failure thresholds, as used in

Hong and Meeker (2013a). Componentij fails at time T ′ij when the degradation reaches a

random threshold, Lij , that varies from subsystem to subsystem and between components

within a subsystem. That is, Lij = Dij(T
′
ij), where T

′
ij is the failure time of Componentij .

The degradation threshold, Lij , has the CDF FLij (Dij(t);θLij ), where θLij is a vector of
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Figure 6.4: Illustration of the relationships between subsystem workload, degradation,
random degradation thresholds, and component failure times for a three component
subsystem (subsystem i).

model parameters which relates the degradation level of Componentij at time t to the

probability of failure at time t. The cdf of the failure time T ′ij , can be expressed as

Fij(t;θDij ,θLij ,θXi) = Pr(T ′ij ≤ t) = Pr(Lij ≤ Dij(t)) = FLij (Dij(t;θDij ,θXi);θLij ).

(6.3.5)

In words, the probability that Componentij fails before time t is equivalent to the

probability that the degradation level, Dij(t), is greater than the random failure

threshold, Lij .

Figure 6.4 illustrates the relationship between the covariate process (i.e., subsystem

workload) and the failure time of a component for a three component subsystem

(subsystem i with ni = 3). Figure 6.4 (top left) shows an example workload process for

subsystem i. In this illustrative example, we assume that all components in subsystem i

are identical, that is they degrade at the same rate assuming a �xed workload and the
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probability of failure, for a �xed level of degradation, is the same - that is, we assume all

components have the same failure threshold distribution. We assume the workload is

split evenly between all working components.

Figure 6.4 (top right) shows the degradation of Componentij over time, Dij(t); the orange

(bold) line shows the degradation of Componentij if Componentij degraded at the baseline

rate (assuming the workload is split evenly between the components), the red (dashed) line

shows the degradation of Componentij if two components are in a working state (assuming

the workload is split evenly between the two working components), and the blue (dotted)

line shows the degradation of Componentij if only one component is in a working state.

We can see that the degradation at te varies depending on the workload received (indicated

by the number of working components). The cdf for the failure threshold, Lij , is shown

in Figure 6.4 (bottom left), assuming each component in subsystem i is identical and

hence all components have the same failure threshold distribution. From this �gure we can

see that each degradation level has an associated probability of failure. The probability

of Componentij failing at time te is 0.01 if Componentij degraded at the baseline rate,

compared to 0.87 if Componentij was the only functioning component in subsystem i.

The CDFs for the failure time T ′ij are shown in Figure 6.4 (bottom right). The bold (dashed,

dotted) line shows the cdf for T ′ij for the degradation process shown by a bold (dashed,

dotted) line in Figure 6.4 (top right). The probability of Componentij failing before time

te is equivalent to the probability of Dij(te) exceeding the failure threshold, Lij . The

degradation at time te depends on the covariate history Xij(0, te) = {Xij(s), 0 < s ≤ te},
where

Xij(s) =
Xi(s)

Πi(s)
, (6.3.6)

and Πi(s) is the number of working components at time s.

We note that the workload was assumed to be split evenly between all components in the

example, but the workload does not have to be split evenly in practice.

Figure 6.5 illustrates the di�erences between the deterministic approach, the �xed threshold

approach, and the random threshold approach. The red (dashed) line in Figure 6.5 depicts

an example RUL distribution of a new component under the random threshold approach.

This approach represents the RUL distribution for a component taking into account all

failure time uncertainty. The blue (dotted) line depicts an example RUL distribution

of a new component under the �xed threshold approach. Components are assumed to

fail when the degradation level reaches a �xed threshold, L = F−1
L (0.5), where FL is

the failure time distribution of the red (dashed) distribution. The black (dashed) line at

t = 29.4 shows the expected failure time of a new component (i.e., the RUL distribution
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Figure 6.5: RUL distributions for a new component under di�erent approaches. The blue
(dotted) line shows the RUL distribution under the �xed threshold approach, the red
(dashed) and orange (bold) lines show the RUL distributions under the random threshold
approach, assuming small and large amounts of stochastic variation for the random failure
threshold, respectively. The black (dashed) line at t = 29.4 shows the expected failure
time of a new component (i.e., the RUL distribution under the deterministic approach).
The black (bold) lines depict the degradation distributions at each time point.

under the deterministic approach). From Figure 6.5 we can see that the �xed threshold

and deterministic approaches do not fully capture the RUL distributions of components,

and will often lead to suboptimal maintenance decisions.

The orange (bold) line in Figure 6.5 depicts an example RUL distribution of a new

component under the random threshold approach, with a larger amount of stochastic

variation for the random failure threshold. Again, the �xed threshold is taken to be

L = F−1
L (0.5) and the expected failure time is t = 29.4. This example highlights further

the disadvantages of using the �xed threshold and deterministic approaches. The larger

the amount of stochastic variation in the random failure threshold, the more information

the �xed threshold and deterministic approaches are ignoring.
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6.4 Conclusions

In this chapter we introduced the reliability and maintenance concepts required for the

subsequent chapters. We introduced system reliability for series, parallel, and

series-parallel systems. We then de�ned economic and stochastic dependence and

described how multi-component systems can be economically dependent through �xed

set-up costs and stochastically dependent through failure-based load sharing. Finally, we

de�ned workload and described how workload causes components to degrade. Finally, we

de�ned random failure thresholds and described the di�erences between RUL

distributions under the random threshold, �xed threshold, and deterministic (expected

failure time) approaches.
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Condition-Based Maintenance

Policy

In this chapter we investigate a CBM policy for making maintenance decisions. We begin

by illustrating the penalties incurred by multi-component systems as a result of economic

dependence, through a �xed set-up cost, and stochastic dependence, through failure-based

load sharing. We then propose a novel CBM policy that incorporates a loss-based utility

function, which is a combination of interpretable penalties that encapsulate the costs of

economic and stochastic dependence, in a sequential Bayesian decision framework. In

Chapter 8, we compare the loss-based utility function presented in this chapter to the

commonly used cost per unit time utility function. In addition, in Chapter 8, we will

compare a random-threshold approach to a �xed-threshold approach and an expected

failure time approach to highlight the importance of incorporating all uncertainty when

making maintenance decisions.

7.1 Penalties for multi-component systems with

economic and stochastic dependence

Before we derive the loss-based utility function, we illustrate, using examples, the

penalties observed for multi-component systems with economic and stochastic

dependence. First, we de�ne maintenance opportunities and the settings in which our

utility function is applicable.
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7.1.1 Maintenance opportunities

We consider the case where all component failure times are maintenance opportunities.

Component failures increase the degradation rate of other components, hence there is an

incentive to replace components as soon as they fail. On the other hand, set-up costs are

involved when replacing a component. Every maintenance opportunity has the option of

no replacements unless the system is in a failed state.

We do not consider predictive maintenance, as we decide which components to replace at

maintenance opportunities - de�ned as a time a component fails. At each maintenance

opportunity, we used a predictive model to identify the components to replace (which

could involve components that are not in a failed state). For example, consider Figure

6.2 and assume Component1 has failed and all other components are in a working state.

The failure time of Component1 is an opportunity to perform maintenance and we want

to decide which components to replace at this maintenance opportunity (if any at all) and

this could include the failed component, Component1, and other components that are not

in failed states.

System Settings

We consider systems where:

(i) Each component is continuously monitored.

(ii) Compared to the time period between two maintenance actions, the duration of

maintenance is negligible. Hence, there is no system downtime cost.

(iii) Replacements are perfect and restore components to a �good-as-new� condition.

(iv) There is no system failure cost.

The key properties of the maintenance policy we will develop could be extended to systems

with non-negligible maintenance times and to systems with a system failure cost.

For illustration, we consider a three-component parallel system (see Figure 6.2 with n = 3)

and assume the three components are identical (meaning the components cost the same

and degrade at the same rate, assuming a �xed workload). We will compare three di�erent

ways of scheduling three component replacements to illustrate the penalties incurred by

multi-component systems with economic and stochastic dependence.

For illustration, we assume that workload enters the parallel system and that this workload

is split evenly between the working components. More speci�cally,
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Xi(t) =
Xsys(t)

Π(t)
, (7.1.1)

for i = 1, 2, 3, where Xi(t) is the workload for componenti at time t, Xsys(t) is the system

workload at time t, and Π(t) is the number of functioning components at time t. The

workload will cause the system components to degrade. The system can function as long

as at least one component is functioning.

7.1.2 Illustration one

A hypothetical example
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Figure 7.1: A hypothetical system where load sharing does not increase the degradation
rate of the working components. The blue (dotted) line shows the degradation path of
Component1, the red (dashed) line shows the degradation path of Component2, and the
orange (bold) line shows the degradation path of Component3. Component1 is observed
to fail at t′1, Component2 is observed to fail at t′2, and Component3 is observed to fail at
t′3. We note that the degradation paths for all components are the same for t ∈ [0, t′1], and
the degradation paths for Component2 and Component3 are the same for t ∈ (t′1, t

′
2].
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Figure 7.1 provides example degradation paths for three new components. In this example,

all three components are new at time t = 0 and workload continuously enters the system,

and hence all components continuously degrade. At time t′1 = 10.7 Component1 is observed

to fail. We note that the degradation for all components is the same up to time t′1 since

we assume the workload is split evenly between all components and that the components

degrade at the same rate. Under our de�nition of maintenance opportunities, the failure

of Component1 at t′1 is an opportunity to perform maintenance.

For illustrative reasons, let us assume that we can leave Component1 in a failed state

without the remaining working components degrading more quickly (i.e., Component2

and Component3 sustain the full system workload but degrade at the baseline rate). In

this, hypothetical scenario, there are no advantages to replacing Component1, only

disadvantages (for example, paying a maintenance team to replace Component1). Hence,

we leave Component1 in a failed state and both Component2 and Component3 continue

to degrade (at the baseline rate).

From Figure 7.1, we can see that Component2 and Component3 continue to degrade until

the failure of Component2 at t′2 = 29.4. In practice, this would be an opportunity to

perform maintenance. However, for illustrative purposes, we will assume that we can leave

Component1 and Component2 in failed states without any impact to Component3 (i.e.,

Component3 sustains the full system workload but degrades at the baseline rate).

From Figure 7.1, we can see that Component3 continues to degrade until failure at t′3 =

54.6. Now the whole system is in a failed state and hence maintenance must be performed.

We make all three component replacements at once at t′3 = 54.6 and pay one set-up cost,

S. This example is hypothetical because, in practice, leaving components in failed states

will result in the remaining working components degrading more quickly. The hypothetical

example is used as a baseline for comparison and illustration reasons.

In this hypothetical scenario, we replaced three components on three separate occasions,

and hence paid the set-up cost three times. Hence, the total penalty for replacing

components upon failure is

ΛH = ΛH(φ, φ, {Component1,Component2,Component3}) = S, (7.1.2)

where S is the set-up cost.
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Three practical examples

Replacing components upon failure

In practice, leaving components in failed states will result in the remaining working

components degrading more quickly. Suppose we replace Component1 at t′1 = 10.7. This

will prevent load sharing between the components in the system. Then suppose the next

component failure is Component2 at t′2 = 29.4 and suppose we replace Component2 upon

failure. Again, this will prevent load redistribution between the components. Finally,

suppose the next failure is Component3 at t′3 = 54.6, and we replace Component3 at t′3.

This is one possible way of making three component replacements.

In this scenario, we replaced three components on three separate occasions, and hence

paid the set-up cost three times. Moreover, relative to the hypothetical example, we

replaced Component1 (t′3 − t′1) time units earlier, and we replaced Component2 (t′3 − t′2)

time units earlier. Hence, the total penalty, relative to the hypothetical example, for

replacing components upon failure is

Λ1 = Λ1({Component1}, {Component2}, {Component3}) = 3S + c̄(t′3 − t′1) + c̄(t′3 − t′2),

(7.1.3)

where S is the set-up cost and c̄ is the expected cost per unit time for a component in the

system (noting the expected cost per unit time for each component is the same since we

assumed all components are identical).

Intuitively, Λ1 penalises replacing components upon failure because this approach results in

three set-up costs, and requires Component1 to be replaced (t′3− t′1) time units earlier and

Component2 to be replaced (t′2 − t′1) time units earlier, than in the hypothetical example.

The cost of replacing Component1 (t′3 − t′1) time units earlier than in the hypothetical

example is c̄(t′3 − t′1). This is the expected cost of using a component for (t′3 − t′1) time

units. Since we replaced Component1 (t′3 − t′1) time units earlier, than in the hypothetical

example, we also expect Component1 to fail (t′3 − t′1) time units earlier.

Replacing a component prior to failure

Suppose we replace Component1 and Component2 at t′1 = 10.7. Then suppose the next

failure is Component3 at t
′
3 = 54.6, and we replace Component3 at t

′
3. This is another way

of making three component replacements.
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In this scenario, we replaced three components on two separate occasions, and hence paid

the set-up cost twice. Moreover, relative to the hypothetical example, we replaced

Component1 (t′3 − t′1) time units earlier and Component2 (t′3 − t′1) time units earlier.

Hence, the total penalty, relative to the hypothetical example, is

Λ2 = Λ2({Component1,Component2}, {Component3}) = 2S + 2c̄(t′3 − t′1). (7.1.4)

Replacing all components at system failure

Suppose we postpone maintenance until all three components have failed and we replace

all components at system failure. This is another way of making three component

replacements.

Figure 7.2 illustrates example degradation paths observed when we take into account the

e�ects of load sharing. Comparing Figures 7.1 and 7.2, we can see the impacts of load

sharing. The failure of Component1 causes Component2 and Component3 to degrade more

quickly. In this scenario, Component2 fails at t′L2 = 19, compared to t′2 = 29.4 when

degrading at the baseline rate. The increased load resulted in Component2 failing 10.4

time units earlier. Furthermore, the degradation rate of Component3 increases further at

the failure of Component2. We observe Component3 to fail at t′L3 = 21.8; 32.8 time units

earlier than if Component3 degraded at the baseline rate.

Hence, the total penalty, relative to the hypothetical example, is

Λ3 = Λ3(φ, φ, {Component1,Component2,Component3}) = S + 3c̄(t′3 − t′L3 ), (7.1.5)

where φ denotes the empty set or no maintenance.

The optimal maintenance schedule

We note that

Λ1 − Λ2 = S + c̄(t′1 − t′2),

Λ1 − Λ3 = 2S + c̄(t′L3 − t′3) + c̄(t′L3 − t′2) + c̄(t′L3 − t′1),

Λ2 − Λ3 = S + c̄(t′L3 − t′3) + 2c̄(t′L3 − t′1).

(7.1.6)
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Figure 7.2: Observed degradation paths for each component when all components are
replaced at system failure. The blue (dotted) line shows the degradation path of
Component1, the red (dashed) line shows the degradation path of Component2, and the
orange (bold) line shows the degradation path of Component3. Component1 is observed
to fail at t′1, Component2 is observed to fail at t′L2 , and Component3 is observed to fail at
t′L3 . We note that the degradation paths for all components are the same for t ∈ [0, t′1],
and the degradation paths for Component2 and Component3 are the same for t ∈ (t′1, t

′L
2 ].

The optimal way to make three component replacements is the action set with the smallest

penalty. In other words, if Λ1 − Λ2 < 0 and Λ1 − Λ3 < 0, then approach one (replacing

components upon failure) is the optimal choice.

The di�erences in penalties can be interpreted relative to each other. For example, Λ1−Λ3,

is the di�erence in penalties between approach one and approach three. In approach

one, we replaced one component at times t′1, t
′
2, and t

′
3. In approach three, we replaced

three components at t′L3 . In approach one, we pay two extra set-up costs, and we expect

Component3 to fail (t′3 − t′L3 ) time units later, Component2 to fail (t′2 − t′L3 ) time units

later, and Component1 to fail (t′L3 − t′1) time units earlier, relative to approach three.
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7.1.3 Illustration two

Let us view the same example considered in Section 7.1.2 but from a di�erent perspective.

Replacing components upon failure

Consider replacing components upon failure. We replace Component1 at t
′
1, Component2 at

t′2, and Component3 at t
′
3. Replacing components upon failure prevents load redistribution

between components. In this scenario, we replaced three components on three separate

occasions, and hence paid the set-up cost three times. The total penalty is

Λ∗1 = Λ∗1({Component1}, {Component2}, {Component3}) = 3S, (7.1.7)

since we paid three set-up costs.

Replacing a component prior to failure

Suppose we replace Component1 and Component2 at t′1 = 10.7. Then suppose the next

failure is Component3 at t′3 = 54.6, and suppose we replace Component3 at t′3. The total

penalty is

Λ∗2 = Λ∗2({Component1,Component2}, {Component3}) = 2S + c̄(t′2 − t′1). (7.1.8)

We paid two set-up costs and are penalised for this. In addition, we replaced a working

component and hence did not utilise some RUL; this penalty is the cost of wasting the

RUL of Component2.

Replacing all components at system failure

Suppose we postpone maintenance until all three components have failed and suppose we

replace all components at system failure. Figure 7.3 depicts the loss in life, of Component2

and Component3, between t
′
1 (the �rst maintenance opportunity) and t′L2 (the subsequent

maintenance opportunity).

From the point of view of t′1 (the �rst maintenance opportunity), not replacing

Component1 results in Component2 and Component3 degrading more quickly until the
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Figure 7.3: Degradation paths illustrating the impacts of load sharing between t′1 and t′L2 .
Component1 is observed to fail at t′1. Between t′1 and t′L2 Component2 and Component3
degrade more quickly. Component2 is observed to fail at t′L2 because of load sharing,
and is observed to fail at t′2 if Component2 degrades at the baseline rate. Component3
is observed to fail at t′3 if Component3 degrades at the baseline rate. Component3 is
observed to fail at t′L1

3 due to the impacts of load sharing between t′1 and t
′L
2 . We note that

the degradation paths for all components are the same for t ∈ [0, t′1], and the degradation
paths for Component2 and Component3 are the same for t ∈ (t′1, t

′L
2 ], under the load sharing

scenario, and the degradation paths for Component2 and Component3 are the same for
t ∈ (t′1, t

′
2], under the baseline rate scenario.

subsequent maintenance opportunity. The total penalty due to not performing

maintenance at t′1 is

Λ∗3(φ) = c̄(t′2 − t′L2 ) + c̄(t′3 − t
′L1
3 )− c̄(t′L2 − t1). (7.1.9)

This �rst two terms in this penalty correspond to the loss, in terms of cost, due to load

sharing between the current maintenance opportunity and the subsequent maintenance

opportunity; (t′2 − t′L2 ) is the loss in life of Component2, and (t′3 − t′L1
3 ) is the loss in

life of Component3. The �nal term is a reward, since we postponed the maintenance of
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Component1. Not replacing Component1 results in a loss, due to load sharing, but also

a reward, since we postponed the replacement of Component1 by (t′L2 − t1) time units.

Replacing Component1 at t′L2 instead of t′1 will save (t′L2 − t1) time units of the lifetime of

Component1. In other words, if we replace Component1 at t′L2 we expect Component1 to

fail (t′L2 − t1) time units later than if we replaced Component1 at t′1.
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Figure 7.4: Degradation paths illustrating the impacts of load sharing between t′L2 and t′L3 .
Component3 is observed to fail at t′L1

3 if Component3 degrades at the baseline rate after
t′L2 . Component3 is observed to fail at t′L3 due to the impacts of load sharing between t′L2
and t′L3 .

At t′L2 (the next maintenance opportunity - see Figure 7.4) we perform no maintenance.

Hence, Component3 has to sustain the whole system workload. This results in further

loss due to load sharing. The total loss, due to performing no maintenance at t′1 and no

maintenance at t′L2 , is

Λ∗3(φ, φ) = Λ∗3(φ) + c̄(t′L1
3 − t′L3 )− 2c̄(t′L3 − t′L2 ). (7.1.10)

This �rst term is the penalty due to performing no maintenance at t′1. The second term

is the loss, in terms of cost, due to load sharing between t′L2 and t′L3 (the failure time of
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Component3 and hence the failure of the system). The �nal term is the reward due to not

replacing Component1 and Component2 at t
′L
2 . Replacing Component1 and Component2 at

t′L3 instead of at t′L2 saves (t′L3 −t′L2 ) time units of life for both Component1 and Component2.

In other words, if we replace Component1 and Component2 at t′L3 we expect Component1

and Component2 to fail (t′L3 − t′L2 ) time units later than if we replaced both components

at t′L2 .

Finally, at t′L3 we replace all three components, and hence pay a set-up cost. The total

penalty is

Λ∗3 = Λ∗3(φ, φ, {Component1,Component2,Component3})

= S + c̄(t′2 − t′L2 ) + c̄(t′3 − t′L3 )− c̄(t′L3 − t′1)− c̄(t′L3 − t′L2 ).
(7.1.11)

We paid one set-up cost and are penalised for this. In addition, we postponed the

maintenance of Component1 from t′1 to t′L3 and the maintenance of Component2 from t′L2
to t′L3 . We are rewarded for this (terms 4 and 5 in Equation (7.1.11)). Furthermore,

leaving Component1 in a failed state at t′1 resulted in Component2 and Component3

degrading more quickly due to load sharing between t′1 and t′L2 ; and then leaving

Component1 and Component2 in failed states at t′L2 resulted in Component3 sustaining

the full system workload from t′L2 until the failure of the system at t′L3 . We are penalized

for components failing sooner due to load sharing (terms 2 and 3 in Equation (7.1.11)).

The penalties due to economic and stochastic dependence

We note that

Λ∗1 − Λ∗2 = S + c̄(t′1 − t′2) = Λ1 − Λ2,

Λ∗1 − Λ∗3 = 2S + c̄(t′L3 − t′3) + c̄(t′L3 − t′2) + c̄(t′L3 − t′1) = Λ1 − Λ3,

Λ∗2 − Λ∗3 = S + c̄(t′L3 − t′3) + 2c̄(t′L3 − t′1) = Λ2 − Λ3.

(7.1.12)

Therefore, both ways of visualising the penalties result in the same outcome. In summary,

there are four di�erent types of penalties:

1. The set-up cost, S.

2. A penalty for replacing working components, and hence wasting RUL.

3. A load sharing penalty, due to components degrading more quickly because of load

redistribution.
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4. A reward, at the expense of load sharing, due to postponing maintenance of failed

components.

In some scenarios, replacing components upon failure will be bene�cial. For example, if

the set-up cost is small relative to the loss due to load sharing. It may also be bene�cial

to replace a component in a working state. For example, suppose Component1 is in a

failed state, Component2 is heavily degraded, and Component3 is relatively new. It may

be bene�cial to replace a working component (Component2) alongside Component1 (the

failed component). In this scenario, we prevent load sharing and also prevent another

(shortly expected) maintenance opportunity at the failure of Component2 (a heavily

degraded component).

If, at the failure of Component1, Component2 and Component3 are both heavily degraded

and expected to fail soon, it may be bene�cial to postpone maintenance until system failure

and to replace all components together. This will result in only one set-up cost and will

synchronise component failure times (by synchronising component degradation levels).

In contrast, for the three-component parallel system with identical components, replacing

components upon failure will desynchronise component failure times. In the short term, it

may seem bene�cial to replace a component to prevent load sharing. In the long term, it

may be bene�cial to take a large loss (due to load sharing) to synchronise component failure

times (possibly resulting in better maintenance groupings in the future). For example, if

we replace a component upon failure to prevent load sharing, we may end up having to do

this again and again to prevent load sharing at future opportunities.

For example, suppose S = 10 and c̄ = 1, we obtain

Λ∗1 − Λ∗3 = 2S + c̄(t′L3 − t′3) + c̄(t′L3 − t′2) + c̄(t′L3 − t′1) = Λ1 − Λ3 = −9.3. (7.1.13)

This suggests that approach one is superior to approach three. Approach one may have

the smallest penalty, but we considered a relatively short forecast horizon (i.e, the optimal

way to make three component replacements). If we forecasted further ahead (for example,

considering the optimal way to make 6, 9, 12, etc, component replacements) the optimal

action to perform at t′1 may not be to replace Component1.

Figure 7.5 illustrates the degradation levels of all three components at time t′3 (if we

replace components upon failure). From Figure 7.5 we can see that at time t′3, upon

replacing Component3, the degradation level of Component1 is 29.8, the degradation

level of Component2 is 17, and the degradation level of Component3 is 0. In other words,

Component1 is heavily degraded, Component2 is moderately degraded, and Component3

112



Condition-Based Maintenance Policy

is new. Therefore, the expected failure times of the components are out of sync. This

may result in expensive maintenance costs in the future. For example, suppose

Component1 fails shortly after t′3. This presents an opportunity to perform maintenance.

Postponing maintenance of Component1 to group component replacements at a later

time, in order to pay the set-up cost less frequently, could be expensive in this scenario

since Component2 and Component3 are not expected to fail within a relatively short time

horizon. Therefore, Component2 and Component3 may have to sustain the whole system

workload for a relatively long period of time, resulting in a relatively large amount of loss

because of load redistribution due to Component1 being in a failed state.

Replacing Component1 at this maintenance opportunity will prevent load sharing.

However, the next maintenance opportunity is expected to be at the failure of

Component2, and the expected failure times of the components are expected to stay out

of sync. Once again, replacing Component2 may result in the system having one new, one

moderately degraded and one relatively new component (hence the components remain

out of sync). Finally, replacing Component1 and Component2 would result in wasting

RUL of Component2. All possible maintenance options may be unappealing. Replacing

each component upon failure may be the optimal short term decision, but it may result

in expensive maintenance at a later time point.

On the other hand (see Figure 7.2), by replacing all components at the same time (at t′L3 )

all three components are new and are expected to fail at the same time. This could be

bene�cial in the long-term. For example (see Figure 7.5), Component1 failing at t′1 = 10.7

and Component3 failing at t′3 = 54.6 (while degrading at the baseline rate) may have

been unlikely events. I.e., the component failure times may, on average, be expected to be

clustered closely together, and we just sampled an unlikely set of failure times. If this is the

case, it may be better to postpone maintenance and synchronize component failure times.

Forecasting further ahead could provide this valuable information, even though this may

come with initial (relatively) large penalties due to leaving components in failed states for

(relatively) long periods of time.

The impact of desynchronising component failure times depends on several factors,

including the stochastic variation in component failure times. The smaller the stochastic

variation in component failure times, the more likely component failure times will be

clustered closely together. This provides more incentive to cluster component

replacement times (even if, in the short term, it appears more bene�cial to replace a

failed component). In contrast, if component failure times are highly stochastic, they are

less likely to be clustered closely together. This gives more incentive to replace

components upon failure. This highlights the importance of a sequential maintenance

policy that takes into account long-term impacts of maintenance decisions along with the

uncertainty in component failure times (as well as other uncertainties).
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Figure 7.5: Example degradation paths if Component1 fails and is replaced at t′1,
Component2 fails and is replaced at t′2, and Component3 fails and is replaced at t′3. The
blue (dotted) line shows the degradation path of Component1, the red (dashed) line shows
the degradation path of Component2, and the orange (bold) line shows the degradation
path of Component3.

To choose the optimal set of components to replace at each maintenance opportunity we

need to consider all possible penalties and the impact maintenance replacements have

on future maintenance decisions (for example, a large penalty, due to load sharing, at a

maintenance opportunity may help with future groupings). Moreover, the decisions will

depend on the uncertainties in component failure times.

This discussion highlights that our decision framework needs to be sequential, to prevent

optimal short term decisions resulting in higher long term maintenance costs, and needs

to incorporate uncertainty.

We will now derive a one-step ahead maintenance policy which incorporates a loss-based

utility function in a Bayesian framework. We then extend the policy to a sequential decision

policy that minimises the long-term expected loss of a sequence of maintenance actions.
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7.2 Condition-Based Maintenance Policy

The following general maintenance policy is proposed to be used at maintenance

opportunities. The failure time of a component is an opportunity to perform

maintenance. Maintenance must be performed if the system is in a failed state. We

consider a system with m subsystems. Subsystem i has ni potentially non-identical

components (see Figure 6.3). The replacement cost for Componentij is cij .

7.2.1 Problem Setup

In this section we describe the state of each component immediately prior to, and

immediately following, a maintenance action at a maintenance opportunity.

Suppose we are at the kth maintenance opportunity, at time tk, and have observed

x(tk) = (x1(tk), . . . , xm(tk)),

y(tk) = (y11(tk), y12(tk), . . . , y1n1(tk), . . . , ym1(tk), . . . , ymnm(tk)),
(7.2.1)

where xi(tk) > 0 is the observed workload at tk for subsystem i and yij(tk) = 1 if

Componentij is in a working state at tk and yij(tk) = 0 if Componentij is in a failed state

at tk.

Thus, we can obtain

D(tk) = (D11(tk), D12(tk), . . . , D1n1(tk), . . . , Dm1(tk), . . . , Dmnm(tk)), (7.2.2)

where Dij(tk) is the degradation of Componentij at tk and is given by

Dij(tk) =

∫ tk

t∗ij

∆Dij(t;θDij , xij(t))dt, (7.2.3)

where t∗ij is the time of the most recent replacement of Componentij , xij(t) is the

workload of Componentij at time t, ∆Dij(t;θDij , xij(t)) is the degradation increment for

Componentij at time t due to workload xij(t), and θDij is a vector of model parameters

that characterises how much the workload entering Componentij at time t a�ects the

degradation level of Componentij .
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We need to decide which action, utk ∈ Utk , to perform at the current time point, tk, where

utk is a set of components to be replaced and can be empty unless the system is in a failed

state, and Utk is the set of all possible actions.

After applying utk we observe

y+(tk) = (y+
11(tk), y

+
12(tk), . . . , y

+
1n1

(tk), . . . , y
+
m1(tk), . . . , y

+
mnm

(tk)), (7.2.4)

and obtain

D+(tk) = (D+
11(tk), D

+
12(tk), . . . , D

+
1n1

(tk), . . . , D
+
m1(tk), . . . , D

+
mnm

(tk)), (7.2.5)

where

y+
ij(tk) =

1 if Componentij ∈ utk ,

yij(tk) if Componentij 6∈ utk ,
(7.2.6)

and

D+
ij(tk) =

0 if Componentij ∈ utk ,

Dij(tk) if Componentij 6∈ utk .
(7.2.7)

The term Dij(tk) represents the degradation of Componentij at tk prior to maintenance

and D+
ij(tk) represents the degradation of Componentij at tk after applying utk . The

degradation of Componentij after applying utk will remain unchanged if Componentij is not

replaced and will be restored to zero if Componentij is replaced. The term yij(tk) indicates

whether Componentij is in a working state at tk prior to maintenance. Similarly, the

term y+
ij(tk) indicates whether Componentij is in a working state at tk after maintenance.

If Componentij is not replaced the state of Componentij will remain unchanged after

maintenance; if Componentij is replaced then Componentij will be in a working state after

maintenance.

The number of functioning components in subsystem i after applying utk is

π+
i (tk) =

ni∑
j=1

y+
ij(tk), (7.2.8)

for i = 1, . . . ,m.
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7.2.2 Short-Sighted Maintenance Policy

In this section we introduce the penalties that occur as a result of a maintenance action,

and propose a decision framework to decide which maintenance action to perform, at a

maintenance opportunity, based on one-step ahead forecasts.

Applying utk produces a corresponding penalty. The penalty due to applying utk is given

by

Λ(utk | Tk+1,X(tk,∞),D(tk,∞),θ) = SI{|utk |6=0}

+

m∑
i=1

ni∑
j=1

c̄ij(τ
−
ij − tk)I{Componentij∈utk ,yij(tk)=1}

+
m∑
i=1

ni∑
j=1

c̄ij(τ
+
ij − τ

+,L
ij )−

m∑
i=1

ni∑
j=1

c̄ij(Tk+1 − tk)I{Componentij /∈utk ,yij(tk)=0},

(7.2.9)

where Tk+1 is the time of the (k + 1)st maintenance opportunity,

X(tk,∞) = (XT
1 (tk,∞), . . . ,XT

m(tk,∞))T , where the ith row of X(tk,∞) is denoted

Xi(tk,∞) = {Xi(t;θXi), tk < t < ∞}, and represents the workload of subsystem i for

times t > tk, D(tk,∞) = (DT
11(tk,∞), . . . ,DT

1n1
(tk,∞), . . . ,DT

mnm
(tk,∞))T , where

DT
ij(tk,∞) = {Dij(t;θDij ,Xij(tk, t;θXi)), tk < t <∞}, and represents the degradation of

Componentij for times t > tk, θ = (θD11 ,θL11 ,θX1 , . . . ,θDmnm
,θLmnm

,θXm) is a vector of

model parameters, S is the set-up cost, |utk | is the number of components in utk , c̄ij is

the expected cost per unit time for Componentij , τ
−
ij is the expected failure time for

Componentij , obtained immediately prior to utk being performed, if Componentij

degraded at the baseline rate after tk, τ
+
ij is the expected failure time for Componentij ,

obtained immediately after utk is performed, if Componentij degraded at the baseline

rate after tk, τ
+,L
ij is the expected failure time for Componentij , obtained immediately

after utk is performed, taking into account potential load sharing between tk and Tk+1,

and

IA =

1, if event A occurs,

0, otherwise.
(7.2.10)

More speci�cally, (τ−ij − tk)I{Componentij∈utk ,yij(tk)=1} is the expected wasted life of

Componentij if Componentij is a working component that is replaced at tk; (τ+
ij − τ

+,L
ij )

is the expected loss in life of Componentij between tk and Tk+1 due to load sharing; and
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(Tk+1 − tk)I{Componentij /∈utk ,yij(tk)=0} is the idle time of a failed component that is not

replaced at tk.

The �rst term in Equation (7.2.9) is the set-up cost and is only paid if the action, utk ,

is non-empty. The second term is only paid if one or more components in utk are in a

working state at tk prior to maintenance. More speci�cally, the second term is the total

loss, in terms of cost, due to replacing working components. The third term is the loss,

in terms of cost, due to load sharing between tk and Tk+1. The �nal term is the reward

for postponing maintenance of failed components and is hence subtracted from the total

penalty.

The expected failure time τ−ij is given by

τ−ij =



∫ ∞
tk

tfLij (Dij(t;Xij(tk, t)))dt =

∫ ∞
tk

[1− FLij (Dij(t;Xij(tk, t)))]dt,

if yij(tk) = 1,

t′ij ,

if yij(tk) = 0,

(7.2.11)

where fLij (·;θLij ) is the pdf for the degradation threshold, Lij , FLij (·;θLij ) is the cdf for

the degradation threshold, θLij is a vector of model parameters associated with fLij (·)
and FLij (·), Xij(tk, t) = {Xij(s) : tk < s ≤ t} is the workload of Componentij from time

tk to time t conditional on all components in subsystem i being in a working state (i.e.,

the baseline or �no load sharing� workload), and t′ij is the most recent failure time for

Componentij . In addition, the degradation of Componentij at time t > tk is

Dij(t) = Dij(tk) +

∫ t

tk

∆Dij(s;θDij , Xij(s;θXi))ds. (7.2.12)

The expected failure time τ+
ij is given by

τ+
ij =



∫ ∞
tk

tfLij (Dij(t;Xij(tk, t)))dt =

∫ ∞
tk

[1− FLij (Dij(t;Xij(tk, t)))]dt,

if y+
ij(tk) = 1,

t′ij ,

if y+
ij(tk) = 0.

(7.2.13)

In this case, the degradation of Componentij at time t > tk is
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Dij(t) = D+
ij(tk) +

∫ t

tk

∆Dij(s;θDij , Xij(s;θXi))ds. (7.2.14)

The expected failure time τ+,L
ij is given by

τ+,L
ij =



∫ ∞
tk

tfLij (Dij(t;X
+
ij (tk, t)))dt =

∫ ∞
tk

[1− FLij (Dij(t;X
+
ij (tk, t)))]dt,

if y+
ij(tk) = 1,

t′ij ,

if y+
ij(tk) = 0.

(7.2.15)

In this case, the degradation of Componentij at time t > tk is

Dij(t) = D+
ij(tk) +

∫ t

tk

∆Dij(s;θDij , X
+
ij (s;θXi))ds, (7.2.16)

where X+
ij (tk, t) = {X+

ij (s) : tk < s ≤ t} is the workload of Componentij from time tk to

time t, taking into account potential load sharing between tk and Tk+1. The workload of

Componentij at time s, X+
ij (s), for tk < s ≤ Tk+1, is the workload for Componentij after

potential load redistribution and X+
ij (s), for Tk+1 < s < ∞, is the baseline (or "no load

sharing") workload for Componentij . If π
+
i (tk) = ni, where ni is the number of components

in subsystem i, then there is no load redistribution since all components in subsystem i

are in a working state. Moreover, it is possible that the workload for Componentij does

not change even if π+
i (tk) 6= ni; it may be the case that no extra load is distributed to

Componentij . We just require
∑ni

j=1X
+
ij (t) = Xi(t), where Xi(t) is the workload of system

i at time t. Furthermore, X+
ij (Tk+1,∞) = Xij(Tk+1,∞) (the baseline or �no load sharing�

workload). I.e., X+
ij (tk,∞) is used to measure the impact of load sharing between t and

Tk+1 and only depends on the potential load redistribution between tk and Tk+1.

For example, if the workload in subsystem i, Xi(s;θXi), for s > tk, is split evenly between

all working components, we have

Xij(s) = Xij(s;θXi) =
Xi(s;θXi)

ni
,

X+
ij (s) = X+

ij (s;θXi) =
Xi(s;θXi)

Πi(s)
,

(7.2.17)

for j = 1, . . . , ni, where ni is the number of components in subsystem i, and
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Πi(s) =

π+
i (tk), for tk < s ≤ Tk+1,

ni, for s > Tk+1,
(7.2.18)

where π+
i (tk) is the number of functioning components within subsystem i between tk and

Tk+1.

τ−ij is the expected failure time of Componentij assuming no maintenance is performed on

Componentij at the current maintenance opportunity at time tk, if Componentij degrades

at the baseline rate at times t > tk (i.e., the rate when all components in subsystem i

are in a working state). Hence, τ−ij − tk is the expected RUL of Componentij assuming

Componentij degrades at the baseline rate at times t > tk. If Componentij is a working

component that is replaced, τ−ij − tk is the wasted life of Componentij .

τ+
ij is the expected failure time of Componentij obtained immediately after the

maintenance opportunity at tk, if Componentij degrades at the baseline rate at times

t > tk. If Componentij is not replaced at tk, then τ
+
ij = τ−ij . If Componentij is replaced at

tk, the degradation level for Componentij is restored to zero (D+
ij(tk) = 0).

τ+,L
ij is the expected failure time of Componentij obtained immediately after the

maintenance opportunity at tk, if Componentij degrades at the load-sharing rate between

tk and Tk+1 and the baseline rate at times t > Tk+1. τ
+,L
ij − τ+

ij measures the expected

loss in RUL due to load sharing between tk and Tk+1 (see Figure 7.3). If π+
i (tk) = ni (i.e,

if all components in subsystem i are in a working state), then τ+,L
ij = τ+

ij . As expected,

when there are no failed components in subsystem i, there will be no loss due to load

sharing within subsystem i. In addition, if π+
i (tk) 6= ni and if Componentij receives no

extra workload then τ+,L
ij = τ+

ij . In both scenarios, X+
ij (s;θXi) = Xij(s;θXi) and hence

τ+,L
ij = τ+

ij .

The optimal action to be performed at the current time point, tk, is the action with the

smallest expected penalty, and is given by

utk = argmin
utk∈Utk

{
E
[
Λ(utk | Tk+1,X(tk,∞),D(tk,∞),θ)

]}
, (7.2.19)

where the expectation is taken with respect to the joint distribution,

(Tk+1,X(tk,∞),D(tk,∞),θ).
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7.2.3 Sequential Maintenance Policy

In this section we extend the policy from Section 7.2.2 to a sequential maintenance policy.

The goal of the sequential maintenance policy is to consider the optimal way to make ξ

component replacements. In order to capture all possible ways of making ξ component

replacements we need to forecast K-steps ahead.

7.2.3.1 Forecasting K-Steps Ahead

In this section we construct the penalty function that corresponds to performing K
maintenance actions. Similarly to policies in the literature that group maintenance

activities (Vu et al., 2012, 2020), the planning horizon should guarantee that all

components are maintained at least once. The degradation of Componentij at Tk+1 is

given by

Dij(Tk+1) = D+
ij(tk) +

∫ Tk+1

tk

∆Dij(t;θDij , X
+
ij (t;θXi))dt. (7.2.20)

At Tk+1 we can apply uTk+1
∈ UTk+1

, where uTk+1
is a set of components to be replaced

and can be empty unless the system is in a failed state, and UTk+1
is the set of all possible

actions. The penalty associated with uTk+1
is given by

Λ(uTk+1
| Tk+1, Tk+2,X(Tk+1,∞),D(Tk+1,∞),θ) = SI{|uTk+1

|6=0}

+
m∑
i=1

ni∑
j=1

c̄ij(τ
−
ij − Tk+1)I{Componentij∈uTk+1

,Yij(Tk+1)=1}

+

m∑
i=1

ni∑
j=1

c̄ij(τ
+
ij − τ

+,L
ij )−

m∑
i=1

ni∑
j=1

c̄ij(Tk+2 − Tk+1)I{Componentij /∈uTk+1
,Yij(Tk+1)=0},

(7.2.21)

where Tk+2 is the time of the (k + 2)nd maintenance opportunity, and Yij(Tk+1) is the

failure state of Componentij prior to maintenance at Tk+1. The expected failure times,

τ−ij , τ
+
ij , and τ+,L

ij are obtained as in Section 7.2.2 but replacing tk with Tk+1 and Tk+1

with Tk+2.

The total penalty for the set (utk , uTk+1
) is
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Λ(utk , uTk+1
| Tk+1, Tk+2,X(tk,∞),D(tk,∞),θ) = Λ(utk | Tk+1,X(tk,∞),D(tk,∞),θ)

+ Λ(uTk+1
| Tk+1, Tk+2,X(Tk+1,∞),D(Tk+1,∞),θ).

(7.2.22)

The process can be repeated to obtain all sets of length K, (utk , . . . , uTk+K−1
). The

associated penalty is

Λ(utk , . . . , uTk+K−1
| Tk+1, . . . , Tk+K,X(tk,∞),θ) = Λ(utk | Tk+1,X(tk,∞),D(tk,∞),θ)

+

K−1∑
i=1

Λ(uTk+i
| Tk+i, Tk+i+1,X(Tk+i,∞),D(Tk+i,∞),θ).

(7.2.23)

7.2.3.2 Bayesian Sequential Decision Framework

The optimal action to perform at tk is the action with the smallest expected penalty, and

is given by

utk = argmin
utk∈Utk

{
E
[

min
(uTk+1

,...,uTk+K−1
)

(
Λ(utk , uTk+1

, . . . , uTk+K−1
|Tk+1, . . . , Tk+K,

X(tk,∞),D(tk,∞),θ, |uTk+K | 6= 0, |utk |+ |uTk+1
|+ · · ·+|uTk+K | = ξ)

)]}
,

(7.2.24)

where the expectation is taken with respect to the joint distribution,

(Tk+1, . . . , Tk+K,X(tk,∞),D(tk,∞),θ). Performing action utk ∈ Utk at tk is expected to

give the smallest long term penalty.

7.3 Conclusions

We began this chapter by identifying four di�erent types of penalties observed for

multi-component systems with economic dependence through a �xed set-up cost and

stochastic dependence through failure-based load sharing. We then derived a one-step

ahead CBM policy which incorporated a loss-based utility function in a Bayesian

framework. We then extended the CBM policy to a sequential decision policy that

minimises the long-term expected loss of a sequence of maintenance actions. In Chapter
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8, we compare the loss-based utility function presented in this chapter to the commonly

used cost per unit time utility function. In addition, in Chapter 8, we will compare a

random-threshold approach to a �xed-threshold approach and an expected failure time

approach to highlight the importance of incorporating all uncertainty when making

maintenance decisions.
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Simulation Studies

In this chapter we implement the CBM policy proposed in Chapter 7. We consider two

di�erent systems; a three-component parallel system with identical components (Section

8.2), and a six-component series-parallel power plant system (Section 8.3) from Vu et al.

(2020) (the degradation processes and model parameters used in our study are di�erent).

The CBM policy is compared to alternative policies to highlight the importance of a

sequential CBM policy that incorporates both economic and stochastic dependence and

all types of uncertainty present; and to investigate whether it has advantages over the cost

per unit time policy.

8.1 Alternative Maintenance Policies

Component1

Component2

Component3

Figure 8.1: A parallel system with three identical components.

125



Chapter 8

The �rst alternative maintenance policy, referred to as the individual maintenance policy,

replaces every component immediately upon failure. By replacing components immediately

upon failure, the individual maintenance policy results in no loss, in terms of cost, due to

load sharing. However, the individual maintenance policy will pay the set-up cost, S, with

the highest frequency.

The second policy, referred to as the simultaneous maintenance policy, replaces all

components at the same time, at system failure. The simultaneous maintenance policy

will pay the set-up cost, S, as infrequently as possible. However, the simultaneous

maintenance policy will result in the maximum loss, in terms of cost, due to load sharing.

The third policy, referred to as the CPT policy, decides which action to perform by

minimising cost per unit time (Vu et al., 2020). This utility is commonly used in the

literature to schedule maintenance. We adapt the approach used by Vu et al. (2020) to

calculate the cost per unit time of a sequence of actions. The cost per unit time is the

sum of the set-up costs and the cost of ξ component replacements over the time interval

I = [a, b]. The start of the time interval, a, is the time of the current maintenance

opportunity, and the end of the time interval, b, is the time of the �rst component failure

after the �nal maintenance opportunity. Figure 8.2 gives two sequences of ξ = 6

component replacements, for the system shown in Figure 8.1, from the point of view of

the current maintenance opportunity. The interval de�nitions will allow us to compare

how the cost per unit time over the interval I = [a, b] compares to the total penalty over

I = [a, b]. We note that b is random and will vary from sequence to sequence. The �rst

sequence is

ζ1 =
{
φ, φ, {Component1,Component2,Component3},

φ, φ, {Component1,Component2,Component3}
}
,

(8.1.1)

and the second sequence is

ζ2 =
{
Component1,Component2,Component3,Component3,Component1,Component2}.

(8.1.2)

In Figure 8.2, b1 is the end of the time interval for the sequence ζ1 and is the time of the

�rst component failure after the �nal maintenance opportunity (where all three components

were replaced at system failure); b2 is the end of the time interval for the sequence ζ2 and

is the time of the �rst component failure after the �nal maintenance opportunity (where

Component2 was replaced at t′2,2).
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a System Failure System Failure b1

Component3,1

Component2,1

Component1,1

Component3,2

Component2,2

Component1,2

a = t'1,1 t'2,1 t'3,1 t'3,2 t'1,2 t'2,2 b2

Component1,1

Component2,1

Component3,1

Component3,2

Component1,2

Component2,2

Figure 8.2: Two possible ways of making ξ = 6 component replacements, for the
system shown in Figure 8.1, from the point of view of the failure of Component1 (at
a). Componenti,j refers to the jth replacement of Componenti, and t

′
i,j refers to the jth

failure time of Componenti.

The fourth policy, referred to as the threshold policy, assumes components fail when their

degradation reaches a �xed threshold. The threshold policy is identical to the CBM policy,

but under the threshold policy we assume components fail when their degradation reaches

a �xed threshold.

Finally, several papers in the literature use the expected failure time of a component

when scheduling maintenance opportunities (Vu et al., 2012, 2020). Vu et al. (2012, 2020)

schedule tentative (expected) maintenance times for each component in the system, before

grouping components to save expenses. This is comparable to having �xed, expected

maintenance opportunities (de�ned using component expected maintenance times) for each

component which are then grouped to minimise the penalties incurred through economic

and stochastic dependence. To this end, the �fth alternative policy, referred to as the

deterministic policy, will schedule maintenance times for each component based on their

expected failure times, before grouping the components to minimise the total penalty. The
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deterministic policy is identical to the CBM policy, but under the deterministic policy we

assume components fail at their expected maintenance times.

8.2 A Three-Component Parallel System with

Identical Components

Figure 8.1 presents a parallel system with three identical components, labeled Componenti

for i = 1, 2, 3 (the components cost the same and degrade at the same rate, assuming a

�xed workload and have the same probability of failure (distribution) assuming a �xed

degradation level). The components are placed in a parallel setting, which means the

system functions as long as at least one component functions. Since the components are

identical, the cost of replacing Componenti is c for i = 1, 2, 3.

8.2.1 Deterioration Process

The system receives workload continuously, Xsys(t;θX), and this workload is split evenly

between all working components. The following model for Xsys(t;θX) is used

Xsys(t;θX) ∼ TN(µX , σX , αX , βX), (8.2.1)

where TN is the truncated normal distribution and θX = (µX , σX , αX , βX), where µX

is the mean, σX is the standard deviation and αX and βX are lower and upper bounds,

respectively.

The increase in degradation of Componenti due to Xsys(t;θX) is modelled using redundant

dependency, as in Keizer et al. (2018) and Yu et al. (2007). More speci�cally, the increase

in degradation of Componenti due to Xsys(t;θX) is

∆Di(t) = ∆Di(t;θD, Xsys(t;θX),Π(t)) =
Xsys(t;θX)

Π(t)ρ
, (8.2.2)

for i = 1, . . . , 3, where Xsys(t;θX) is the system workload at time t, Π(t) is the number

of working components at time t, and θD = ρ ≥ 0 is a load sharing factor. The larger

the value of ρ the stronger the in�uence a failed component has on the failure rates of the

remaining components. When all components are functioning the system degrades at a

rate that is proportional to 1/3ρ. This is de�ned as the baseline rate.

The total degradation at time t is
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Figure 8.3: Observed degradation paths for each component. The blue (dotted) line shows
the degradation path of Component1, the red (dashed) line shows the degradation path
of Component2, and the orange (bold) line shows the degradation path of Component3.
Component1 is observed to fail at t

′
1, Component2 is observed to fail at t

′
2, and Component3

is observed to fail at t′3. We note that the degradation paths for all components are the
same for t ∈ [0, t′1], and the degradation paths for Component2 and Component3 are the
same for t ∈ (t′1, t

′
2].

Di(t) =

∫ t

t∗i

∆Di(s)ds, (8.2.3)

for i = 1, 2, 3, where t∗i is the time of the most recent replacement of Componenti.

8.2.2 Simulation study details

µX σX αX βX ρ µL σL αL βL c S ξ

1 1 0.5 1.5 2 20 {2, 4, 6, 8} 0 40 150 {20, 40, 60, 80} {3, 6}

Table 8.1: Model parameters, component cost, c, set-up cost, S, and ξ.
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Table 8.1 summarises the values of the model parameters used in this simulation study

alongside component cost, c, the set-up cost, S, and the number of replacements considered

in the CBM policy, ξ. The value of the set-up cost, S, the standard deviation of the random

threshold, σL, and the number of component replacements considered in the sequential

maintenance policy, ξ, will be varied in the simulation study.

The parameter σL describes the stochastic variation in the random failure threshold, L.

As σL tends to 0, the random failure threshold tends to a �xed failure threshold. As σL

increases, the stochastic variation in the random failure threshold increases. In general,

even identical components will not fail at the same degradation level and simulating data

with varying amounts of stochastic variation in the random failure threshold will represent

certain real life systems. We expect policies that use �xed thresholds and policies that

use expected maintenance times to perform poorly, compared to policies that incorporate

random thresholds, as σL increases. We vary σL in this simulation study to highlight the

importance of a random failure threshold.

In addition, the set-up cost, S, will vary from system to system. For example,

maintenance of a failed hard drive requires an on-site maintenance worker to simply

remove the failed drive and replace it with a new one. On the other hand, maintenance of

o�-shore wind farms, subsea power cables, or underground pipelines, are more

complicated operations and require specialist equipment. The bene�ts of grouping

component replacements will depend crucially on the set-up cost, S, which will be

application dependent. We vary the set-up cost, S, in this simulation study to compare

the bene�ts of grouping component replacements for systems with relatively expensive

set-up costs and for systems with relatively cheap set-up costs.

Furthermore, the number of component replacements considered in the sequential

maintenance policy, ξ, will be varied in the simulation study to examine the sequential

nature of maintenance. Policies that do not consider the long term impacts of

maintenance decisions can result in expensive long term maintenance costs.

Figure 8.3 gives an illustration of the component degradation process between system

initiation and system failure (assuming no maintenance actions are taken) using the

parameters shown in Table 8.1, with σL = 6. The degradation paths for all components

are the same for t ∈ [0, t′1]. At t′1 Component1 is observed to fail and hence the

degradation rates increase for Component2 and Component3. Similarly, Component2 is

observed to fail at t′2, and consequently, the degradation rate for Component3 increases

again. Component3, and hence the system, are observed to fail at t′3.

Componenti, i = 1, 2, 3, fails at time T ′i when the degradation reaches a random threshold

L. All components have the same random threshold distribution since all components are
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Figure 8.4: RUL distributions for a new component. The blue (left) histogram shows the
RUL distribution for a new component conditional on only one component functioning
in the three-component parallel system. The red (middle) histogram shows the RUL
distribution for a new component conditional on two components functioning. The orange
(right) histogram shows the RUL distribution for a new component degrading at the
baseline rate.

identical. That is, L = Di(T
′
i ), where T

′
i is the failure time of Componenti, for i = 1, 2, 3.

The cdf of the degradation threshold, L, is given by

FL(Di(t;θD,θX);θL) = FL(Di(t);µL, σL, αL, βL), (8.2.4)

where θL = (µL, σL, αL, βL), and FL(·) is the cdf of the truncated normal distribution, with

mean µL, standard deviation, σL, and lower and upper bounds αL and βL, respectively.

Figure 8.4 shows the RUL distribution for an example new component based on 10,000

simulations using the parameters shown in Table 8.1 (with σL = 6) and Equations (8.2.1)

- (8.2.4). The blue (left) histogram shows the RUL distribution for a new component

conditional on only one component functioning in the three-component parallel system.

The red (middle) histogram shows the RUL distribution for a new component conditional
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Figure 8.5: RUL distributions for a new component under di�erent policies. The blue
(dotted) line shows the RUL distribution under the threshold policy, the red (dashed) line
shows the RUL distribution under the CBM policy when σL = 2, and the orange (bold) line
shows the RUL distribution under the CBM policy when σL = 8. The black (dashed) line
at t = 29.4 shows the expected failure time of a new component (i.e., the RUL distribution
under the deterministic policy). The black (bold) lines depict the degradation distributions
at each time point.

on two components functioning. The orange (right) histogram shows the RUL distribution

for a new component degrading at the baseline rate.

Given the parameter values chosen, the expected lifetime for a new component degrading at

the baseline rate is 30.1 time units, the expected lifetime for a new component conditional

on two components functioning is 13.4 time units, and the expected lifetime for a new

component conditional on only one component functioning is 3.3 time units. Consequently,

we obtain the expected component cost per unit time, c̄ = c/30.1 = 5.0. Note, if the

workload or environment change dynamically then the expected cost per unit time, c̄,

will need to be updated on a regular basis. For example, c̄ can be updated before every

maintenance decision (see Algorithm A.1).

Algorithm A.1, in Appendix A.2, is used to obtain the optimal action to be performed at

a maintenance opportunity.
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8.2.3 Results

We compare the long-term system cost per unit time under the CBM policy to the �ve

alternative policies. Each simulation is run until 45 component replacements have been

made in order to give an idea of the long-term cost per unit time under each policy. One

thousand simulations are performed for each combination of parameters. The system cost

per unit time for the proposed CBM policy (policy 1), the individual maintenance policy

(policy 2), the simultaneous maintenance policy (policy 3), the CPT policy (policy 4), the

threshold policy (policy 5), and the deterministic policy (policy 6) are denoted by CPT1(ξ),

CPT2, CPT3, CPT4, CPT5, and CPT6, respectively.
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Figure 8.6: Boxplots showing the di�erence in CPT between the individual maintenance
policy (CPT2) and the CBM policy (CPT1(ξ = 6)) for di�erent values of S, with σL = 2
(top left), σL = 4 (top right), σL = 6 (bottom left), and σL = 8 (bottom right).

Table 8.2 shows the average run-time for a maintenance decision under each policy. Each

maintenance decision was run using R parallel computing with 20 cores with Intel CPU

(Xeon, E5-2699 v4, base frequency 2.2GHz) through the Slurm workload manager (Slurm,

2022) on Newcastle University's high performance computing service, Rocket.
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Policy Average run-time (seconds)

CBM policy (ξ = 6) 35.7
CBM policy (ξ = 3) 4.4

CPT policy 35.3
Threshold policy 5.3

Deterministic policy 105.1

Table 8.2: Average run-time for a maintenance decision under each policy.
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Figure 8.7: Boxplots showing the di�erence in CPT between the simultaneous maintenance
policy (CPT3) and the CBM policy (CPT1(ξ = 6)) for di�erent values of S, with σL = 2
(top left), σL = 4 (top right), σL = 6 (bottom left), and σL = 8 (bottom right). The scales
of the y-axis vary between plots.

8.2.3.1 CBM Policy (ξ = 6) versus Individual Maintenance Policy

Figure 8.6 shows the di�erence in CPT between the individual maintenance policy and the

CBM policy for di�erent values of S, with σL = 2 (top left), σL = 4 (top right), σL = 6

(bottom left), and σL = 8 (bottom right).

From Figure 8.6 we can see that the di�erence in CPT between the individual maintenance
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Figure 8.8: Boxplots showing the di�erence in CPT between the CPT policy (CPT4) and
the CBM policy (CPT1(ξ = 6)) for di�erent values of S, with σL = 2 (top left), σL = 4
(top right), σL = 6 (bottom left), and σL = 8 (bottom right). The scales of the y-axis vary
between plots.

policy and the CBM policy increases as S increases, for all values of σL, as expected. As

S increases there is more incentive to cluster replacements in order to pay the set-up cost,

S, as infrequently as possible. Consequently, the CBM policy outperforms the individual

policy, which replaces components as soon as they fail.

The di�erence in CPT between the two policies decreases as σL increases. When S = 20,

the policies perform approximately the same when σL = 8, however, the CBM policy

clearly outperforms the individual policy when σL = 2. This is because when σL = 2 there

is a smaller amount of stochastic variation in the component failure times. Consequently,

component failure times are clustered closely together (see Figure 8.5). This gives incentive

to replace components at the same time, at system failure, to result in paying the set-up

cost, S, as infrequently as possible. In addition, since component failure times are clustered

closely together, this results in only small amounts of loss due to load sharing.

In contrast, when σL = 8, component failure times are highly stochastic (see Figure 8.5),
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and hence are less likely to be clustered together. Component failure times will often be

far apart and leaving components in a failed state will result in large amounts of loss due

to load sharing. Consequently, when σL = 8 (and S = 20), there is incentive to replace

components as soon as they fail, since the set-up cost is small relative to the load sharing

penalties.

8.2.3.2 CBM Policy (ξ = 6) versus Simultaneous Maintenance Policy

Figure 8.7 shows the di�erence in CPT between the simultaneous maintenance policy and

the CBM policy for di�erent values of S and σL.

From Figure 8.7 we can see that the di�erence in CPT between the simultaneous

maintenance policy and the CBM policy increases as S decreases, for σL = 6, 8, as

expected. As S decreases there is more incentive to replace components as soon as they

fail in order to prevent loss due to load sharing. Consequently, the CBM policy

outperforms the simultaneous policy, which replaces components at system failure.

There is less incentive to cluster component replacements at system failure when there

is a large amount of stochastic variation in component failure times. In contrast, when

σL = 2, 4, the policies perform approximately equally for all values of S. This is because it

is more cost e�ective to pay the set-up cost, S, as infrequently as possible when component

failure times are clustered more closely together (see Figure 8.5).

8.2.3.3 CBM Policy (ξ = 6) versus CPT Policy

Figure 8.8 shows the di�erence in CPT between the CPT policy and the CBM policy for

di�erent values of S and σL. From Figure 8.8 we can see that the CBM policy and the CPT

policy perform approximately the same for all values of S for σL = 2, 4. The CBM policy

outperforms the CPT policy for σL = 6 and S = 40 and for σL = 8 and S = 40, 60, 80.

Moreover, as mentioned in Section 1.2 there are potential bene�ts to writing the loss of

each type of dependence separately in the loss-based utility function.

In addition, the loss (or reward) of a maintenance action is well de�ned. The loss

depends on expected component failure times (immediately before and immediately after

maintenance), the time of the subsequent maintenance opportunity and the loss between

the current and subsequent maintenance opportunity (see Equation (7.2.9)); which can

all be calculated at each maintenance opportunity. Hence the loss of a maintenance

action is revealed at the time the action is performed. Consider the three-component

parallel system in Figure 8.1, and consider the following sequence of ξ = 6 component

replacements
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ζ =
{
φ, φ, {Component1,Component2,Component3},

φ, φ, {Component1,Component2,Component3}
}
.

(8.2.5)

This sequence of maintenance actions is depicted in Figure 8.9. At time t′1,1, Component1

fails and we perform no maintenance, and obtain a loss, Λ1(φ). The next failure is

Component2 at t
′L
2,1 and we perform no maintenance. The total loss is

Λ({φ, φ}) = Λ1(φ) + Λ2(φ). This process continues until time t
′L
2,2 when we replace all

components {Component1,Component2,Component3}. The total loss is Λ(ζ). At every

decision, the loss is instantly revealed since it is independent of future actions; the loss

due to performing φ at t′1,1 is Λ1(φ), regardless of what decision is made at the

subsequent maintenance opportunity. In addition, the total loss is additive. At each

maintenance opportunity, we are penalised if we pay the set-up cost, if we replace

components in a working state, for loss due to failure-based load sharing, and we are

rewarded due to postponing maintenance of failed components.

a = t'1,1 t'2,1
L t'3,1

L
t'3,2 t'1,2

L
b

t'2,2
L

φ

φ

Component1,1
Component2,1
Component3,1

φ

φ

Component1,2
Component2,2
Component3,2

Figure 8.9: One possible way of making ξ = 6 component replacements, for the system
shown in Figure 8.1, from the point of view of the failure of Component1 (at a).
Componenti,j refers to the jth replacement of Componenti, and t

′
i,j refers to the jth failure

time of Componenti.

The cost-per-unit time utility isn't as intuitive. For example, the cost of ζ is 2S+6c (since

we replace six identical components and pay two-set up costs). But what is the �reward�
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of paying this cost? The reward, under the cost-per-unit time utility, is the amount of

system time we gain from paying a maintenance cost. The �system time� that we gain

from paying the maintenance cost is di�cult to de�ne. What is the time reward due to

performing ζ? We de�ne the time interval, I = [a, b], where a is the time of the �rst

maintenance opportunity in the sequence (t′1,1), and b is the end of the time interval, taken

to be the �rst failure time after the �nal maintenance opportunity in the sequence, see

Figure 8.9. This is consistent with the interval considered in the loss-based approach. We

obtain

CPT(ζ) =
2S + 6C

b− a
. (8.2.6)

This is not as intuitive as the loss-based penalty because the time-reward due to replacing

all components at t′3,2 has not yet been fully revealed, as two of the replaced components

are still in a working state. The reward due to replacing all components at t′3,2 requires

us to forecast further ahead, but to forecast further ahead we need to make a decision at

each future maintenance opportunity. Since the full reward of maintenance is not revealed

this may result in suboptimal decisions being made since the proportion of the full reward

that is revealed can vary for di�erent sequences of length ξ; or it may require us to forecast

further ahead to reveal the bene�t of a sequence of actions. It can also be viewed as the full

time-reward of replacing all components at t′3,1 being fully revealed at time t′3,2, whereas the

loss due to replacing all components at t′3,1 only requires us to forecast until the subsequent

maintenance opportunity (which is well de�ned) and to calculate the expected component

failure times (immediately before and immediately after maintenance). This property of

the loss-based utility function could make it appealing to DRL algorithms. The reason the

CPT policy performs worse for some values of σL and S may be due to the CPT policy

not �fully revealing� the reward of maintenance.

Moreover, using a �xed-time interval, as in Vu et al. (2020), for every sequence of

maintenance actions would not work in the simulation study considered in this section.

Comparing di�erent decisions using a �xed-time interval reduces to choosing the plan

with the lowest cost. In this simulation study, using a �xed-time interval would result in

the policy choosing the action with the smallest number of set-up costs, which would be

identical to the simultaneous maintenance policy. Thus, we found that the decision that

minimises cost-per-unit time over a �xed interval, will not, in general, be the optimal

decision. Figure 8.10 compares two possible ways of making ξ = 6 component

replacements, for the system shown in Figure 8.1, from the point of view of the failure of

Component1 (at a) using a �xed-time interval (analogous to the �xed-time intervals

considered in Vu et al. (2020)).

The �rst sequence is
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ζ1 =
{
φ, φ, {Component1,Component2,Component3},

φ, φ, {Component1,Component2,Component3}
}
,

(8.2.7)

and the second sequence is

ζ2 =
{
Component1,Component2,Component3,Component3,Component1,Component2}.

(8.2.8)

The cost of ζ1 is 2S+ 6C and the cost of ζ2 is 6S+ 6C. We �nd ζ1 ≤ ζ2 with equality only

when S = 0. Therefore, for any S > 0 the �xed-time interval approach will opt to replace

all components at system failure rather than replacing components upon failure. The cost-

per-unit time approach here does not take into account that the components in Figure

8.10 (top) may be more heavily degraded in the time interval compared to the components

in Figure 8.10 (bottom) and may fail shortly after b, whereas Component2,2 is brand

new at b. This detail could make replacing components at system failure less appealing.

Furthermore, when S = 0, the �xed-time interval policy would not be able to distinguish

between replacing all components at system failure and replacing each component upon

failure. However, when S = 0 replacing all components together at system failure becomes

less appealing. Clustering component replacements becomes more bene�cial as S increases.

The drawbacks of using cost-per-unit time could be considered further in future research

alongside potential issues with using a loss-based approach to obtain the maintenance

decisions; since the goal for many companies will be to minimise the long-term cost - and

the loss-based approach does not directly minimise this.

In summary, when using the CPT policy, the reward of a sequence of maintenance actions

will, in general, not be fully revealed until further into the future (which requires further

decisions to be made). In contrast, using the loss-based utility proposed in Chapter 7,

the full loss (or full reward) of a maintenance action is obtained at the time an action

is performed since it is independent of future actions. In the sequence, ζ, of length ξ,

the third decision is to replace all components and we obtain a loss for this decision

Λ3({Component1,Component2,Component3}) - there will be no further loss because of

this action in the future; however, we need to forecast further ahead to obtain the �system

time� reward due to replacing these components.

This property of the loss-based utility could identify the optimal sequence of actions for

smaller values of ξ compared to the cost-per-unit time policy. This could be considered in

future work. Is it bene�cial to choose a utility function (or reward function) whose rewards

are instantly revealed (at the the time the action is performed) and are independent of

future actions? Could this reduce computational time? Could it reduce the value of ξ
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a System Failure System Failure b

Component3,1

Component2,1

Component1,1

Component3,2

Component2,2

Component1,2

a = t'1,1 t'2,1 t'3,1 t'3,2 t'1,2 b = t'2,2

Component1,1

Component2,1

Component3,1

Component3,2

Component1,2

Component2,2

Figure 8.10: Two possible ways of making ξ = 6 component replacements, for the system
shown in Figure 8.1, from the point of view of the failure of Component1 (at a) using a
�xed-time interval. Componenti,j refers to the jth replacement of Componenti, and t′i,j
refers to the jth failure time of Componenti.

required to obtain the optimal decision? In addition, the loss-based utility performed as

well or better than the CPT utility for all values of S and all values of σL. Furthermore, it

is not clear from the cost-per-unit time given by Equation (8.2.6), how much each type of

dependence (economic dependence and failure-based load sharing dependence) contributes

to the overall cost-per-unit time; whereas we can see the contribution of each type of

dependence to the loss using the loss-based utility given by Equation (7.2.9).

8.2.3.4 CBM Policy (ξ = 6) versus Threshold Policy/Deterministic

Policy

Figure 8.11 shows the di�erence in CPT between the threshold policy and the CBM policy

for di�erent values of S and σL. The CBM policy performs at least as well as the threshold

policy for all values of S and all values of σL.
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Figure 8.11: Boxplots showing the di�erence in CPT between the threshold policy (CPT5)
and the CBM policy (CPT1(ξ = 6)) for di�erent values of S, with σL = 2 (top left), σL = 4
(top right), σL = 6 (bottom left), and σL = 8 (bottom right). The scales of the y-axis vary
between plots.

The threshold policy assumes components fail when their degradation reaches a �xed

threshold (see Figure 8.5). Consequently, it ignores some of the stochastic variation in

component failure times. The �xed threshold is taken to be L = F−1
L (0.5), where F−1

L (·)
is the inverse of the degradation threshold cdf given by Equation (8.2.4). The �xed

threshold is the median degradation level at component failure times.

Under the threshold policy, it appears more bene�cial to cluster all component failure times

because it believes that all components will fail at approximately the same time once all

degradation levels are synchronised (equal). The threshold policy naively believes that once

all component degradation levels are synchronised, components can always be replaced at

system failure, resulting in the set-up cost being paid as infrequently as possible, with

only small amounts of load sharing (since the threshold policy predicts that all component

failure times will be clustered closely together, see Figure 8.5). This is the optimal policy

when component failure times are tightly clustered together.
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Figure 8.12: Boxplots showing the di�erence in CPT between the deterministic policy
(CPT6) and the CBM policy (CPT1(ξ = 6)) for di�erent values of S, with σL = 2 (top
left), σL = 4 (top right), σL = 6 (bottom left), and σL = 8 (bottom right). The scales of
the y-axis vary between plots.

From Figure 8.11 we can see that the threshold policy and the CBM policy perform

identically when σL = 2. This is because when σL = 2, the stochastic variation in the

random failure threshold is small, and hence ignoring this variation has no e�ect on the

optimal maintenance decision at maintenance opportunities. As σL increases, the

di�erence in CPT between the threshold policy and the CBM policy increases.

From Figure 8.5 we can see that the threshold RUL distribution does not capture the

stochastic variation in component failure times when σL = 8 and hence results in a

suboptimal policy. In contrast, when σL = 2, the threshold RUL distribution closely

matches the RUL distribution with σL = 2.

The threshold policy is invariant to changes in σL and hence results in a suboptimal policy

as σL increases. When σL = 2 component failure times are clustered closely together.

This gives incentive to replace components at the same time, at system failure, to result in

paying the set-up cost, S, as infrequently as possible. In contrast, when σL = 8, component
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failure times are highly stochastic. Leaving components in failed states will often result in

large amounts of loss due to load sharing.

Figure 8.12 shows the di�erence in CPT between the deterministic policy and the CBM

policy for di�erent values of S and σL. The CBM policy performs at least as well as the

deterministic policy for all values of S and all values of σL.

The deterministic policy assumes that all components will fail at exactly the same time

once all degradation levels are synchronised (see Figure 8.5). Under the deterministic

policy, it appears more bene�cial to cluster all component failure times to synchronise all

component failure times. Similarly to the threshold policy, the deterministic policy

naively believes that once all component degradation levels are synchronised (equal),

components can always be replaced at system failure, resulting in the set-up cost being

paid as infrequently as possible, with no load sharing. This would be the optimal policy

if there was no stochastic variation in component failure times.

Similarly to the threshold policy, the deterministic policy and the CBM policy perform

identically when σL = 2. As σL increases, the di�erence in CPT between the deterministic

policy and the CBM policy increases.

8.2.3.5 CBM Policy (ξ = 6) versus CBM Policy (ξ = 3)

Figure 8.13 shows the di�erence in CPT between the CBM policy with ξ = 3 and the CBM

policy with ξ = 6 for di�erent values of S and σL.

From Figure 8.13 we can see that the CBM policy with ξ = 3 and the CBM policy with

ξ = 6 perform almost identically for all values of S and all values of σL. The CBM policy

with ξ = 3 is able to identify that it is more bene�cial to postpone maintenance when there

is a small amount of stochastic variation in component failure times and can recognise that

it is advantageous to replace components upon failure when component failure times are

highly stochastic.

8.3 A Six-Component Series-Parallel System

Figure 8.14 presents a reliability block diagram of a power plant composed of six

components arranged in four subsystems from Vu et al. (2020) (the degradation processes

and model parameters used in our study are di�erent). Subsystem one consists of two

components, pump A and pump B, arranged in parallel; subsystem two consists of two

components, pulveriser A and pulveriser B, arranged in parallel; subsystem three is a

single component, the boiler; and subsystem four is a single component, the generator.
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Figure 8.13: Boxplots showing the di�erence in CPT between the CBM policy with ξ = 3
(CPT1(ξ = 3)) and the CBM policy with ξ = 6 (CPT1(ξ = 6)) for di�erent values of S,
with σL = 2 (top left), σL = 4 (top right), σL = 6 (bottom left), and σL = 8 (bottom
right). The scales of the y-axis vary between plots.
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Figure 8.14: Reliability block diagram of a power plant composed of six components
arranged in four subsystems from (Vu et al., 2020). Subsystem one consists of two
components, pump A and pump B, arranged in parallel; subsystem two consists of two
components, pulveriser A and pulveriser B, arranged in parallel; subsystem three is a single
component, the boiler; and subsystem four is a single component, the generator.

Pump A, pump B, pulveriser A, and pulveriser B are non-critical components since the

power plant can still operate when one of the pumps/pulverisers fails. The boiler and the
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generator are critical to the operation of the power plant. The number of critical

components can change over time. For example, if pump A fails, pump B becomes a

critical component.

In other words, subsystems one and two will function as long as one component functions.

The failure of the boiler or the generator results in a system failure. The failure of a

component in subsystem one or two will result in the remaining component having to

sustain the whole subsystem workload; thus increasing the failure rate of the remaining

working component. The failure of a component is an opportunity to perform maintenance.

The system is in a failed state if at least one subsystem is in a failed state.

The pumps in subsystem one are identical (the pumps cost the same and degrade at the

same rate, assuming a �xed workload) and the cost of replacing a pump is denoted c1, but

the pulverisers in subsystem two are not identical; the cost of replacing pulveriser A is c21

and the cost of replacing pulveriser B is c22. The cost of replacing the boiler is c3 and the

cost of replacing the generator is c4.

In this section we compare the CBM policy to the short-sighted maintenance policy for this

power plant to highlight the importance of a sequential maintenance policy when making

maintenance decisions.

8.3.1 Degradation Processes

Gamma processes have been widely used to describe the degradation of systems. A

characteristic of Gamma processes is that they are strictly monotone increasing, which is

the behavior observed in most physical deterioration processes. Moreover, the paths are

discontinuous and can be thought of as the accumulation of an in�nite number of small

shocks.

Gamma processes will be used to model the degradation of the components in the six-

component series-parallel system shown in Figure 8.14. More speci�cally, the increase in

degradation of Componenti, for i = 3, 4, at time t is

∆Di(t) ∼ Ga(αi, βi), (8.3.1)

where αi is the shape parameter and βi is the rate parameter. Similarly, the increase in

degradation of Component1i, for i = 1, 2, at time t is

∆D1i(t) | Π1(t) = j ∼ Ga(α1,j , β1,j), (8.3.2)
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for j = 1, 2, where α1,j , for j = 1, 2, are shape parameters and β1,j , for j = 1, 2, are rate

parameters. When both components in subsystem one are functioning, Component1i, for

i = 1, 2, degrades at the baseline rate. Finally, the increase in degradation of Component2i,

for i = 1, 2, at time t is

∆D2i(t) | Π2(t) = j ∼ Ga(α2i,j , β2i,j), (8.3.3)

for j = 1, 2, where α2i,j , for i, j = 1, 2, are shape parameters and β2i,j , for i, j = 1, 2, are

rate parameters. The total degradation at time t is

Dij(t) =

∫ t

t∗ij

∆Dij(s)ds, (8.3.4)

for i = 1, . . . , 4, and j = 1, . . . , ni, where t
∗
ij is the time of the most recent replacement of

Componentij , and ni is the number of components in subsystem i.

Componentij , for i = 1, . . . , 4, and j = 1, . . . , ni, fails at time T ′ij when the degradation

reaches a random threshold, Lij . That is, Lij = Dij(T
′
ij), where T

′
ij is the failure time of

Componentij , for i = 1, . . . , 4, and j = 1, . . . , ni. Both components in subsystem one have

the same random threshold distribution since they are identical. The cdf of the degradation

threshold, Lij , is given by

FLij (Dij(t);θLij ) = FLij (Dij(t);µL,ij , σL,ij , αL,ij , βL,ij), (8.3.5)

where θL,ij = (µL,ij , σL,ij , αL,ij , βL,ij), and FLij (·) is the cdf of the truncated normal

distribution, with mean µL,ij , standard deviation, σL,ij , and lower and upper bounds αL,ij

and βL,ij , respectively.

α1,2 β1,2 α1,1 β1,1 α22,2 β22,2 α22,1 β22,1 α21,2 β21,2 α21,1

10 10 120 30 45 20 120 30 90 80 80

β21,1 α3 β3 α4 β4 µL,1 σL,1 αL,1 βL,1 µL,22 σL,22

25 40 20 40 20 150 60 0 300 350 140

αL,22 βL,22 µL,21 σL,21 αL,21 βL,21 µL,3 σL,3 αL,3 βL,3
0 700 150 60 0 300 350 140 0 700

µL,4 σL,4 αL,4 βL,4 c1 c21 c22 c3 c4 ξ

350 140 0 700 150 175 160 200 200 6

Table 8.3: Model parameters, component costs, and ξ.

Table 8.3 summarises the values of the model parameters used in this simulation study

alongside component costs, and the number of replacements considered in the CBM policy,
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Figure 8.15: Degradation increment distributions. The degradation increment distribution
of (from left to right): a pump (i.e., a component in subsystem one) conditional on both
pumps working; pulveriser A conditional on both pulverisers working; the boiler/generator;
pulveriser B conditional on both pulverisers working; pulveriser A conditional on pulveriser
B being in a failed state; and a pump conditional on the other pump being in a failed
state/pulveriser B conditional on pulveriser A being in a failed state.

ξ. The value of the set-up cost, S, will be varied in the simulation study. The parameter

values are chosen to provide a large amount of uncertainty in component failure times,

which will often be present in real systems as a result of the stochastic nature of component

failure times and because of limited or noisy data.

Figure 8.15 shows the degradation increment distributions based on 10,000 simulations

using the parameters shown in Table 8.3 and Equations (8.3.1) - (8.3.3). Figure 8.16 shows

the RUL distributions for new components in each subsystem based on 10,000 simulations

using the parameters shown in Table 8.3 and Equations (8.3.1) - (8.3.5). From Figure 8.16

(left) we can see that the pulverisers have approximately the same expected RUL when both

pulverisers are functioning, but the e�ect of load sharing is more signi�cant for pulveriser

A. In addition, from Figure 8.16 we can see that the components in subsystem one/two

degrade more quickly when the other component is in a failed state. Furthermore, from

Figure 8.16 (right) we can see that the boiler and the generator have the longest expected
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Figure 8.16: RUL distributions. Figure (left) shows the RUL distributions of (from left
to right): pulveriser A conditional on pulveriser B being in a failed state; pulveriser
B conditional on pulveriser A being in a failed state; pulveriser A conditional on both
pulverisers working; and pulveriser B conditional on both pulverisers working. Figure
(right) shows the RUL distributions of (from left to right): a pump conditional on the
other pump being in a failed state; a pump conditional on both pumps working; and the
boiler/generator.

lifetime; this is realistic since critical components should have the longest lifetimes.

8.3.2 Results

In this section we compare the long-term system cost per unit time under the CBM

policy to the short-sighted maintenance policy. Each simulation is run until 18

component replacements have been made. One thousand simulations are performed for

each value of S. The system cost per unit time for the proposed CBM policy, and the

short-sighted maintenance policy, are denoted by CPT(ξ = 6), and CPT(SS),

respectively.

Table 8.4 shows the average run-time for a maintenance decision under each policy. Each

maintenance decision was run using R parallel computing with 20 cores with Intel CPU
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(Xeon, E5-2699 v4, base frequency 2.2GHz) through the Slurm workload manager (Slurm,

2022) on Newcastle University's high performance computing service, Rocket.

Policy Average run-time (seconds)

CBM policy (ξ = 6) 163
Short-sighted policy 4

Table 8.4: Average run-time for a maintenance decision under each policy.

8.3.2.1 CBM Policy versus Short-Sighted Policy
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Figure 8.17: Di�erence in CPT between short-sighted maintenance policy (CPT(SS)) and
CBM policy (CPT(ξ = 6)) for di�erent values of S.

Figure 8.17 shows the di�erence in CPT between the short-sighted maintenance policy and

the CBM policy for di�erent values of S. From Figure 8.17 we can see that the short-sighted

policy and the CBM policy perform approximately the same when S = {50, 100, 250}.
When the set-up cost is small it is usually bene�cial to simply replace components upon

failure, or to replace failed components upon system failure. Both policies are able to

recognise that this is the optimal maintenance strategy. However, as S increases the

di�erence in CPT between the short-sighted policy and the CBM policy increases.
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The failure of any of the subsystems results in a system failure. Suppose the system is in

a failed state and pump A, pulveriser A, and the boiler are in failed states. When S is

large, it may be bene�cial, in the long-term, to replace all components at this system

failure. This will result in a large initial penalty since we will be replacing three

components that are not in failed states (pump B, pulveriser B, and the generator),

however, replacing all components upon system failure will result in paying the large

set-up cost, S, as infrequently as possible in the long term. Replacing working, but

partially degraded, components will increase the (expected) time to the next system

failure, resulting in less frequent maintenance. This results in paying the expensive set-up

cost less frequently.

The short-sighted policy would naively opt to replace only the failed components (pump

A, pulveriser A, and the boiler), since this results in the smallest short-term penalty.

Continuing to only replace failed components at system failure will always result in the

smallest short-term penalty (when S is large) but does not result in the smallest long-term

penalty. Forecasting further ahead reveals that a large initial penalty results in a smaller

long-term penalty.

This example highlights the importance of a sequential maintenance policy. Policies that

minimise short-term penalties or cost per unit time, or maximise short-term pro�t (Liu

et al., 2014), may result in a suboptimal long-term strategy.

8.4 Conclusions

In this chapter we implemented the sequential maintenance policy proposed in Chapter 7.

We considered two di�erent systems, a three-component parallel system with identical

components, and a six-component series-parallel power plant system. We compared the

CBM policy to alternative policies to highlight bene�ts of a loss-based approach and

including all uncertainty when making maintenance decisions.

The loss-based utility performed as well or better than the CPT utility and we highlighted

the bene�ts of a loss-based approach over the cost-per-unit time utility and suggested

areas for future research. We compared the random-threshold approach to the �xed-

threshold approach (the threshold policy) and the deterministic policy to highlight that not

incorporating all uncertainty can lead to suboptimal decisions and to encourage policies

to incorporate parameter uncertainty. Finally, we compared a short-sighted policy to a

sequential policy to highlight that short-sighted policies can lead to suboptimal decisions.
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Conclusions and Future Work

This thesis is concerned with reliability and maintenance optimisation in the age of data-

centric engineering and has two main contributions. One is in the �eld of reliability for

HDDs with automatic data-collecting devices and one is in the �eld of CBM for complex

multi-component systems with dependencies. The �rst contribution, described in detail in

Part I, provides a novel way to model the survival probabilities and failure ages of hard

drives using dynamic data collected by the drives. The methodology allows us to specify

the impact of critical attributes on the failure age of a hard drive. The work described

in Part I has been accepted for part of a special issue on degradation and maintenance,

modelling and analysis in Applied Stochastic Models in Business and Industry (ASMBI).

The second contribution, described in detail in Part II, provides a novel loss-based utility

(or reward) function, that is incorporated in a Bayesian sequential decision framework, to

decide which components are to be maintained at maintenance opportunities for

continuously monitored multi-component systems that are subject to economic and

failure-based load sharing dependence (a type of stochastic dependence). The work

described in Part II was published in January 2022 as part of a special issue on

maintenance planning in Reliability Engineering & System Safety (Oakley et al., 2022).

9.1 Part I

The aim of this work was to study the survival probabilities and failure ages of hard drives,

using data collected by SMART, and to examine the impact of critical attributes on hard

drive failure ages. The problem of predicting hard drive failure ages is of critical importance

and has been extensively studied over the past decades. Predicting drive failures before

they occur can inform us to take action in advance. Our work was motivated by the lack

of papers in the literature focusing on hard drive failure prediction from a probabilistic or
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RUL point of view. Furthermore, we sought to concretely answer the question �How much

do critical attributes impact the failure age of a hard drive�?

As a starting point, we focused on modelling the survival probability of hard drives

without incorporating the (covariate) attributes collected by SMART. More speci�cally,

following from Mittman et al. (2019), we proposed a two-state model to obtain the

survival probabilities of hard drives using left-truncated and right-censored failure age

data. A generalised limited failure population model was used to describe the failure age

of hard drives. This model captured the early failure mode and the wear-out failure mode

of hard drives. In Chapter 3, we described in detail the left-truncated and right-censored

data observed and derived the likelihood and the DRLs under the two-state model. We

completed the model by specifying prior distributions for model parameters and

estimated the model parameters in RStan.

We then set out to extend the two-state model to incorporate the attributes collected by

SMART. Following from Ma et al. (2015), Rincón et al. (2017), and Backblaze (2022b),

we reduced the number of SMART attributes to consider to �ve attributes; SMART 5, the

reallocated sectors count; SMART 187, the reported uncorrectable errors; SMART 188,

command timeout; SMART 197, the current pending sector count; and SMART 198, the

uncorrectable sector count. We named these attributes critical attributes. A parametric

model for each critical attribute is needed for the purpose of prediction. However, the

erratic nature of these poorly understood processes made it di�cult to predict their values

over time.

Consequently, we proposed an illness-death model to obtain the survival probabilities of

hard drives, where we de�ned a drive to be in the illness state, termed the critical state, if

at least one of the critical attributes is nonzero. This is an immediate extension of the two-

state model, and it allowed us to incorporate the critical attributes collected by SMART

without having to forecast the process for any of the critical attributes. Instead, we needed

to forecast the probability of entering the critical state; a more manageable problem. We

characterised the illness-death model using state speci�c transition hazards and proposed

a parametric model for each transition hazard.

We then extended the illness-death model to a four-state multi-state model, named the

multi-state model. This model incorporated two intermediate states: the critical 1 state

and the critical 2 state. We de�ned a hard drive to be in the critical 1 state if one of the

critical attributes is nonzero. We de�ned a drive to be in the critical 2 state if at least two

of the critical attributes are nonzero.

We illustrated how to obtain DRLs under the multi-state model and the two-state model.

We found that the RUL for drives in the critical 1 state is lower than the RUL for drives

in the healthy state; and the RUL for drives in the critical 2 state is lower than the
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RUL for drives in the critical 1 state. The multi-state model suggested that drives with

multiple critical attributes are more prone to failure than drives with only one critical

attribute and drives with one critical attribute are more prone to failure than drives without

any critical attributes. The RUL distribution, for a drive conditional on surviving until

age τi = 5000, 10000, 15000, 20000, obtained under the two-state model appeared to be a

weighted mixture of the three RUL distributions (corresponding to the RUL distributions

for drives in the healthy, critical 1 and critical 2 states) obtained under the multi-state

model. This indicated that the two-state model may be underestimating the RUL of

drives in the healthy state and overestimating the RUL of drives in the critical states.

Furthermore, we illustrated how to obtain survival probabilities under the multi-state

model. We showed how the survival posterior predictive distributions can be used to

compare the probabilities of failure of drives in the healthy state to drives in the critical

states, and drives in the critical 1 state to drives in the critical 2 state, within a forecast

horizon of interest. This allows us to concretely de�ne the impact of a single critical

attribute and the impact of multiple critical attributes on the survival probabilities of

hard drives; which in turn allows us to examine the impact of a single critical attribute

and the impact of multiple critical attributes on the RUL of hard drives. This approach

allowed us to coherently answer the question �How much do critical attributes impact the

failure age of a hard drive?�

We assessed the performance of the two-state model, the illness-death model, and the multi-

state model in a simulation study, using the AUC (discrimination) and the PE (calibration)

described in Chapter 4. We performed Monte Carlo cross-validation, splitting the data into

training (60%) and validation (40%) data. For each split, we �tted the two-state model,

the illness-death model, and the multi-state model to the training data. We obtained the

AUC and the PE every four weeks (672 hours), i.e., at calendar times τ = 0, 672, . . . ,

assuming relevant time intervals of s = 672, 1344, 2016 hours for prediction. We found

that the multi-state model and the illness-death model outperformed the two-state model.

Furthermore, we found that the multi-state model outperformed the illness-death model.

The results illustrated the importance of incorporating the attributes collected by SMART,

and the multi-state model provided a framework to do this.

The di�erences in the AUC and the PE between the multi-state model and the illness-death

model were not as large as the di�erences between the multi-state model and the two-state

model or between the illness-death model and the two-state model. This suggested that

more complex models, for example a multi-state model with �ve states, may not be superior

to the four-state multi-state model presented in Chapter 5. In addition, this model would

have more parameters and be more challenging to train (due to fewer drives transitioning

between each state). Furthermore, we found that command timeout, SMART 188, did not

appear to be a critical attribute.
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We stated in Section 5.1.2.1: Backblaze uses �ve SMART attributes as a means of helping

determine if a drive is going to fail (Rincón et al., 2017; Backblaze, 2022b). Namely,

SMART 5, the reallocated sectors count; SMART 187, the reported uncorrectable errors;

SMART 188, command timeout; SMART 197, the current pending sector count; and

SMART 198, the uncorrectable sector count. When the raw value for at least one of these

�ve attributes is greater than zero, Backblaze has a reason to investigate (Rincón et al.,

2017; Backblaze, 2022b). In Part I of this thesis we found that command timeout, SMART

188, did not appear to be a critical attribute. In addition, we showed how to use posterior

predictive survival distributions and posterior predictive RUL distributions (see Figure 5.5,

Table 5.2 and Figure 5.6) to concretely examine the impact of critical attributes on hard

drive survival probabilities and failure ages. The novel approach to modelling hard drive

survival probabilities can be used to monitor the risk of data loss.

Future work should consider extending the illness-death model and the multi-state model

to hierarchical models to model the failure ages of the entire Backblaze population

consisting of di�erent but similar subpopulations (drive-brands). The limited amount of

data available for many of the subpopulations may prohibit �tting the multi-state models

to each drive-brand separately. Modelling subpopulation-speci�c parameters

hierarchially, borrowing strength across subpopulations, could make �tting the

multi-state models more feasible. Moreover, in this thesis we use GLFP and Weibull

hazard functions for the two-state, illness-death and multi-state models. Future work

could consider alternative hazard functions, such as Cox proportional hazards and

semi-Markov models (Suresh et al., 2017; Lee et al., 2021). In addition, a joint modelling

approach for longitudinal (the SMART attributes) and time-to-event data could be

considered and compared to the multi-state models presented in Part I of this thesis.

9.2 Part II

The research in Part II is motivated by gaps in the maintenance literature. There are only a

small number of papers in the literature that consider stochastic dependence (Keizer et al.,

2017; de Jonge and Scarf, 2019). The majority of studies on multi-component systems

consider a single type of dependence, implying that ample research opportunities exist

that incorporate multiple dependencies (de Jonge and Scarf, 2019). Moreover, as noted by

de Jonge and Scarf (2019), only a limited number of studies take parameter uncertainty

into account. We contribute to all of these areas in Part II of this thesis. Furthermore, we

highlight the bene�ts of sequential maintenance decisions over one-step ahead decisions.

It is common in the maintenance literature to make maintenance decisions by minimising

the cost per unit time. In Part II of this thesis we proposed a loss-based utility (or reward)
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function, Λ, for multi-component systems with economic dependence (through a �xed set-

up cost) and stochastic dependence (through failure-based load sharing). The utility, Λ,

is a combination of interpretable penalties that encapsulate the costs of economic and

stochastic dependence.

There are potential bene�ts to using a loss-based utility function in practice. First, writing

the loss of each type of dependence separately shows the cost of each type of dependence.

It could be bene�cial, in terms of design or maintenance planning, to understand which

dependence is the most expensive. For example, if we �nd that the cost of load-sharing

is magnitudes larger than other costs, it may prompt us to add more redundancy to a

system or to a particular subsystem; or if the cost of resource dependence is magnitudes

larger than other costs, it may allow us to schedule more workers or to buy more spare

parts in advance. The above insights may not be as clearly drawn when using the cost-per-

unit-time utility. Separating the costs of each form of dependence may be of value to the

maintenance literature, especially for large complex systems with multiple dependencies.

Second, in Section 8.2.3.3, we discussed that when using the cost-per-unit time utility, the

reward of a sequence of maintenance actions will, in general, not be fully revealed until

further into the future (which requires further decisions to be made). In contrast, using

the loss-based utility proposed in Chapter 7, the full loss (or full reward) of a maintenance

action is obtained at the time an action is performed since it is independent of future

actions.

This property of the loss-based utility could identify the optimal sequence of actions for

smaller values of ξ compared to the cost-per-unit time policy. This could be considered in

future work. Is it bene�cial to choose a utility function (or reward function) whose

rewards are instantly revealed (at the the time the action is performed) and are

independent of future actions? Could this reduce computational time? Could it reduce

the value of ξ required to obtain the optimal decision? Moreover, as discussed in Section

8.2.3.3, using a �xed-time interval, as in Vu et al. (2020), for every sequence of

maintenance actions would not work in the simulation study considered in Section

8.2.3.3. Comparing di�erent decisions using a �xed-time interval reduces to choosing the

plan with the lowest cost. In our simulation study, using a �xed-time interval would

result in the policy choosing the action with the smallest number of set-up costs, which

would be identical to the simultaneous maintenance policy. Thus, we found that the

decision that minimises cost-per-unit time over a �xed interval, will not, in general, be

the optimal decision. The drawbacks of using cost-per-unit time could be considered

further in future research alongside potential issues with using a loss-based approach to

obtain the maintenance decisions; since the goal for many companies will be to minimise

the long-term cost - and the loss-based approach does not directly minimise this.
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Before proposing the loss-based utility function (to be incorporated into a CBM policy) we

illustrated, through examples, the penalties observed for multi-component systems subject

to economic dependence, through a �xed set-up cost, and stochastic dependence, through

failure-based load sharing. We de�ned four di�erent types of penalty observed for multi-

component systems subject to economic and stochastic dependence. Namely, the set-up

cost; a penalty for replacing working components, and hence wasting remaining useful

component life; a load sharing penalty, due to components degrading more quickly because

of load redistribution; and a reward, at the expense of load sharing, due to postponing

maintenance of failed components.

We then derived a one-step ahead maintenance policy which incorporated a loss-based

utility function in a Bayesian framework. We then extended the policy to a sequential

decision policy that minimises the long-term expected loss of a sequence of maintenance

actions. The ideas proposed in Part II could be used to extended loss-based utility functions

to systems with resource and structural dependence. In addition, the losses due to each

type of dependence can be tailored to application.

In Chapter 8 we found that the loss-based utility performed as well or better than the

CPT utility and we highlighted the bene�ts of a loss-based approach over the cost-per-unit

time utility and suggested areas for future research. We compared the random-threshold

approach to the �xed-threshold approach (the threshold policy) and the deterministic

policy to highlight that not incorporating all uncertainty can lead to suboptimal decisions

and to encourage policies to incorporate parameter uncertainty. Finally, we compared a

short-sighted policy to a sequential policy to highlight that short-sighted policies can lead

to suboptimal decisions.

We consider the case where all component failure times are maintenance opportunities.

Further work could involve adapting the policy to consider preventative replacements.

Moreover, for some systems the downtime cost will not be negligible, and a system

shutdown cost could be incorporated into the analysis.

The proposed policy will encounter computational di�culties for larger systems. For this

reason we suggest future work could consider using deep reinforcement learning methods to

test the proposed methodology for large systems with economic and stochastic dependence.

The negative of the proposed utility function could be used in deep reinforcement learning

approaches as the reward function for maintenance actions (Huang et al., 2020; Wei et al.,

2020; Zhang and Si, 2020). The properties of the loss-based utility, discussed in Section

8.2.3.3, could make it appealing to deep reinforcement learning algorithms. Moreover, the

proposed policy should be tested on some real datasets and compared to the alternative

policies introduced in Section 8.1 to test whether the policy can be applied in practice and

if it works in practice. Future work could also consider the robustness of the loss-based

utility to model misspeci�cation.
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Appendix A

Appendices

A.1 Supplementary material for Part I

A.1.1 Supplementary tables and figures

In this section we provide summaries of the parameter posterior distributions for the two-

state model, the illness-death model and the multi-state model, respectively, for one Monte

Carlo cross-validation. In addition, we present the simulation study results comparing the

illness-death model to the two-state model and the results comparing the multi-state model

to the illness-death model.

Parameter α0.025 α0.5 α0.975

tp1 0.5774 1.760 3.452
σ1 0.5337 0.9616 2.691
tp2 17.90 18.25 18.57
σ2 0.2015 0.2141 0.2286
π 0.02760 0.05731 0.1137

Table A.1: Posterior medians and 95% credible intervals for the �ve two-state model
parameters. The quantiles of tp1 and tp2 are in thousands of hours.
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Parameter α0.025 α0.5 α0.975

tp01 19.53 19.95 20.36
σ01 0.3777 0.3960 0.4163

tp1,02 0.3584 1.563 5.951
σ1,02 0.5853 1.451 6.251
tp2,02 24.61 25.75 27.11
σ2,02 0.1985 0.2430 0.3034

π 0.01909 0.04935 0.1522
tp12 8.598 9.594 10.51
σ12 0.2697 0.2997 0.3344

Table A.2: Posterior medians and 95% credible intervals for the nine illness-death model
parameters. The quantiles of tp01 , tp1,02 , tp2,02 and tp12 are in thousands of hours.

Parameter α0.025 α0.5 α0.975

tp01 21.07 21.59 22.15
σ01 0.4050 0.4260 0.4510
tp02 14.37 15.24 15.99
σ02 0.2765 0.3087 0.3541

tp1,03 0.3719 1.553 6.077
σ1,03 0.5516 1.450 5.304
tp2,03 24.61 25.69 27.05
σ2,03 0.1962 0.2408 0.3011

π 0.01856 0.04947 0.1285
tp12 6.216 7.298 8.337
σ12 0.4196 0.4688 0.5308
tp13 8.341 10.70 12.56
σ13 0.2927 0.3673 0.4749
tp23 6.282 8.408 10.18
σ23 0.3604 0.4322 0.5330

Table A.3: Posterior medians and 95% credible intervals for the �fteen multi-state model
parameters. The quantiles tp01 , tp02 , tp1,03 , tp2,03 , tp12 , tp13 and tp23 are in thousands of
hours.
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Figure A.1: Top, middle and bottom left panels show the di�erence in the AUC, at multiple
time points, between the illness-death model and the two-state model, for s = 672, 1344
and 2016, respectively. Top, middle and bottom right panels show the di�erence in the
PE, at multiple time points, between the two-state model and the illness-death model, for
s = 672, 1344 and 2016, respectively. The scales of the y-axes vary between plots.
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Figure A.2: Top, middle and bottom left panels show the di�erence in the AUC, at multiple
time points, between the multi-state model and the illness-death model, for s = 672, 1344
and 2016, respectively. Top, middle and bottom right panels show the di�erence in the
PE, at multiple time points, between the illness-death model and the multi-state model,
for s = 672, 1344 and 2016, respectively. The scales of the y-axes vary between plots.
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A.2 Supplementary material for Part II

A.2.1 Simulation Algorithm to Evaluate CBM Policy

In this section we provide the simulation algorithms used to obtain the action to be

performed at a maintenance opportunity for the parallel system with three identical

components considered in Section 8.2.

Algorithm A.1 Simulation algorithm to obtain the action to be performed at a
maintenance opportunity.

Input: c, S, tk (current time), t′1, t
′
2, t
′
3 (most recent failure times), t∗1, t

∗
2, t
∗
3 (most recent

replacement times), xi(t
∗
i , tk) = {xi(s) : t∗i < s ≤ tk}, πi(t∗i , tk) = {πi(s) : t∗i < s ≤ tk}

for i = 1, 2, 3, y(tk) = (y1(tk), y2(tk), y3(tk)), ξ = 6, θb, for b = 1, . . . , B, where θb

are parameter samples from the most recently updated posterior distribution, where
θb = (θbD,θ

b
L,θ

b
X), where θbD = ρb, θbL = (µbL, σ

b
L, α

b
L, β

b
L), and θbX = (µbX , σ

b
X , α

b
X , β

b
X),

and I ∈ N1, where I is chosen large enough to provide su�cient precision.
1: for b ∈ {1, . . . , B} do
2: Set θ = (ρ, µL, σL, αL, βL, µX , σX , αX , βX) = θb.
3: Obtain D(tk) using Equations (8.2.2) and (8.2.3).
4: Simulate Xsys(tk,∞;θX) = {Xsys(s;θX) : tk < s <∞} using Equation (8.2.1).
5: Obtain c̄ using Algorithm A.2 with t = tk, and D(t) = 0.
6: Obtain z using Algorithm A.3.
7: Sample ξ random uniform observations from U(0, 1) and store them in a vector, p.
8: for utk ∈ Utk do

9: if |utk | > ξ then
10: Exit iteration.
11: Obtain y+(tk),D

+(tk), and π
+(tk) using Equations (7.2.6), (7.2.7), and (7.2.8),

respectively.
12: Obtain τ−i , for i = 1, 2, 3, using Algorithm A.4 with t = tk, Y (t) = y(tk),

Π(t) = 3, D(t) = D(tk), and T = tk.
13: Update z and p using Algorithm A.5 with u = utk .
14: Obtain τ+

i , for i = 1, 2, 3, using Algorithm A.4 with t = tk, Y (t) = y+(tk),
Π(t) = 3, D(t) = D+(tk), and T = tk.

15: Obtain Tk+1, Y (Tk+1), and D(Tk+1), using Algorithm A.4 with t = tk,
Y (t) = y+(tk), Π(t) = π+(tk), D(t) = D+(tk), and T =∞.

16: Obtain Π(Tk+1) using Y (Tk+1).
17: Obtain τ+,L

i , for i = 1, 2, 3, using Algorithm A.4 with t = tk, Y (t) = y+(tk),
Π(t) = π+(tk), D(t) = D+(tk), and T = Tk+1.

18: Obtain Λ(utk | Tk+1,Xsys(tk,∞),θ) using τ−i , τ
+
i , Tk+1, and τ

+,L
i and Equation

(7.2.9).
19: if |utk | = ξ then
20: Store Λ(utk) in memory, Γutk , and exit iteration.
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21: for uTk+1
∈ UTk+1

do

22: if |utk |+ |uTk+1
| > ξ then

23: Exit iteration.

24:

...
25: for uTk+K−1

∈ UTk+K−1
do

26: if |utk |+ |uTk+1
|+ · · ·+ |uTk+K−1

| > ξ then
27: Exit iteration.

28:

...

29:

...
30: Obtain Λb(utk) = min{Γutk}
31: Obtain

Λ̄(utk) =
1

B

B∑
b=1

Λb(utk). (A.2.1)

The action to be performed at tk is

utk = argmin
utk∈Utk

{Λ̄(utk)}. (A.2.2)

32: return utk .

Algorithm A.2 Simulation algorithm to obtain the expected component cost per unit
time, c̄.

Input: D(t), Xsys(t,∞;θX), ρ, θL = (µL, σL, αL, βL), I, and c.
1: Obtain D(t,∞) = {D(s) : t < s <∞}, where

D(s) =
1

3ρ

∫ s

t
Xsys(v;θX)dv. (A.2.3)

2: Obtain FL(D(s);µL, σL, αL, βL), for t ≤ s <∞, where FL(·) is the cdf of the truncated
normal distribution.

3: for l ∈ {1, . . . , I} do
4: Sample wl from W ∼ U(0, 1).
5: Obtain D(τl) = F−1

L (wl).
6: Obtain τl = D−1(D(τl)).

7: Obtain

τ̄ =
1

I

I∑
l=1

τl, (A.2.4)

8: and
c̄ =

c

τ̄
. (A.2.5)

9: return c̄.
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Algorithm A.3 Simulation algorithm to obtain z, the probabilities used to generate
component failure times.

Input: D(tk) = (D1(tk), D2(tk), D3(tk)), and θL = (µL, σL, αL, βL).
1: for i ∈ {1, 2, 3} do
2: Obtain FL(Di(tk);µL, σL, αL, βL), where FL(·) is the cdf of the truncated normal

distribution.
3: Sample zi from Z ∼ U(FL(Di(tk)), 1).

4: return z = (z1, z2, z3).

Algorithm A.4 Simulation algorithm to obtain the subsequent maintenance
opportunities, T , the failure states at subsequent maintenance opportunities, Y (T ), the
degradation levels at subsequent maintenance opportunities, D(T ), and τ−i , τ

+
i , and τ

+,L
i ,

for i = 1, 2, 3.

Input: t, t′1, t
′
2, t
′
3, Y (t), Π(t), D(t), Xsys(t,∞;θX), ρ, θL = (µL, σL, αL, βL), T , and

z = (z1, z2, z3).
1: for i ∈ {1, 2, 3} do
2: if Yi(t) = 0 then

3: Set τi = t′i ≤ t.
4: Set Di(T ) = Di(t) for T > t.
5: else

6: Obtain Di(t,∞) = {Di(s) : t < s <∞}, where

Di(s) = Di(t) +

∫ s

t

Xsys(v;θX)

N (v)ρ
dv, (A.2.6)

where

N (v) =

{
Πi(t), for t < v ≤ T ,
3, for v > T .

(A.2.7)

7: Obtain FL(Di(s);µL, σL, αL, βL), for t ≤ s <∞, where FL(·) is the cdf of the
truncated normal distribution.

8: Obtain Di(τi) = F−1
L (zi).

9: Obtain τi = D−1
i (Di(τi)).

10: Obtain
T = min{τi : τi > t, i = 1, 2, 3}, (A.2.8)

and
I = min

i
{τi : τi > t, i = 1, 2, 3}. (A.2.9)

11: Set Y (T ) = Y (t).
12: Set YI(T ) = 0.
13: return τi, for i = 1, 2, 3, T , Y (T ) = (Y1(T ), Y2(T ), Y3(T )), and D(T ) =

(D1(T ), D2(T ), D3(T )).
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Algorithm A.5 Simulation algorithm to update z and p, the probabilities used to generate
component failure times.

Input: u, z, and p.
1: for i ∈ {1, 2, 3} do
2: if Componenti ∈ u then

3: Set zi equal to the �rst element of p.
4: Remove the �rst element of p.

5: return z, and p.
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