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Abstract 

 

Vaccine development at lab scale through to large scale produc6on can take 10-15 years. With 

the outbreak of the SARS-CoV-2 disease, emphasis on fast vaccine produc6on was 

emphasised.  However, the cells that are grown to produce an6gens have complex metabolic 

networks consis6ng of thousands of reac6ons, metabolites, and genes. There is liJle 

understanding of why a cell in the same environmental condi6ons may grow via one route 

over another. If this process was beJer analysed, process op6misa6on to increase biomass 

growth and reduce inhibi6ng metabolites could be performed. All routes that a cell can use 

during its life are collec6vely known as elementary flux modes. Genome networks are being 

constructed over 6me allowing for full reac6on stoichiometry to be known. However, genome 

networks do not have all the elementary flux modes iden6fied due to the combinatorial 

explosion that occurs when solving as there can be billions of possible routes.  

 

In this thesis, mixed integer linear programming has been presented to enumerate elementary 

flux modes as a future proof method towards genome scale solving. It is compared to publicly 

available tools and mixed integer linear programming methods throughout literature. The 

benefits of this method in the future for finding elementary flux modes are also discussed. 

Compression techniques and code parallelisa6on are examined and reduced solve 6mes 

presented. Alongside elementary flux mode enumera6on this thesis also applies flux analysis 

techniques as a method of finding biologically relevant elementary flux modes. Disadvantages 

of these techniques are highlighted whilst presen6ng an integrated form of metabolic flux 

analysis to alleviate some of the issues. The technique presented is proven to be a viable 

method for enumera6ng elementary flux modes with the integra6on of fluxes.  

 

E.coli can be modelled as the full genome network or a reduced set of reac6ons represen6ng 

the key areas of the network; this is known as the core network. E. coli fermenta6on data from 

GlaxoSmithKline was provided for this work, allowing for analysis techniques iden6fied and 

created in this work to be applied. However, this data was found to be underdetermined 

preven6ng aspects to flux analysis and elementary flux mode enumera6on to be performed. 

This thesis discusses the process data and es6mates specific growth and uptake rates for all 



 III 

fermenta6ons in batch and fed batch opera6ons. This key data was missing and helps in beJer 

understanding the opera6ons taking place in the fermenters. More importantly however 

areas where more data is required for flux analysis are presented along with the issues of data 

limita6on on finding the elementary flux modes even for the core network. Underdetermined 

flux analysis allowed for es6ma6ons on the number of possible elementary flux modes in 

batch and fed batch opera6ons, highligh6ng the reduc6on in feasible routes during fed batch 

due to the cell’s phase.  
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Chapter 1 Introduc;on 

1.1 General Overview of Vaccines 

The vaccine industry was es6mated to be worth $61 billion in 2022 [2]. Vaccines have changed 

public health across the globe. Countries with high vaccina6on rates have found that vaccines 

have been responsible for the decrease in childhood diseases caused by major illnesses [3]. 

The World Health Organisa6on (WHO) es6mates that 2-3 million lives are saved each year by 

the use of vaccines [4]. Therefore, improving produc6on efficiency as global popula6on 

increases is vital. 

 

Vaccines u6lise the ability of the human immune system to respond to, and remember, 

pathogenic an6gens within the body [5]. A vaccine induces an immune response to protect 

the human body from infec6on and/or disease a^er exposure to a pathogen. This is achieved 

via an6gens that are either derived from the pathogen or are synthe6cally produced to 

represent parts of the pathogen. An6gens can bind to a specific an6body or T-cell receptor. 

The an6body contacts the an6gen over a broad surface and electrosta6c interac6ons, 

hydrogen bonds, van der Waals forces, and hydrophobic interac6ons can all contribute to 

binding [6]. The key ingredient to most vaccines is one or more protein an6gens [5, 7]. Immune 

response is mediated by B cells, which produce an6bodies, and T cells and vaccines tend to 

provide protec6on through the induc6on of an6bodies [7]. This learned response is then 

u6lised by the body if the pathogen is encountered again.  

1.2  Vaccine Production 

How vaccines are produced varies with the vaccine type. Viral vector vaccines, grow the 

vaccine in the cells. They do not actually contain an6gens, but instead use the body’s own 

cells to produce them; o^en animal cells are used. A modified virus (vector) delivers the 

gene6c code for the an6gen to the cell. Large amounts of an6gen are made by the cells when 

infected, which triggers an immune response within the body, crea6ng a strong cellular 

response that is remembered [7, 8]. These cells are grown in bulk within bioreactors and an 

example of a viral vaccine is the oral polio vaccine [9]. 
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For mRNA (messenger ribonucleic acid) vaccines, a gene6c sequence containing the encoded 

an6gen is inserted into a carrier which can replicate itself [10]. A reac6on can then be 

triggered to synthesise the mRNA. The process allows for any sequence to be designed, 

produced in vitro, and distributed to any type of cell [11]. Two of the vaccines currently used 

against the SARS-CoV-2 disease are mRNA vaccines.  

 

Inac6vated vaccines require an isolated strain of the virus to be grown, o^en in cells, allowing 

it to replicate. This can be extracted and then inac6vated. Inac6vated vaccines are not as 

effec6ve as live vaccines and o^en require boosters [12]. The flu vaccine is an example of an 

inac6vated vaccine.  

Regardless of the vaccine type, the time from early development to production can be 10-15 

years, Figure 1.1. Clinical trials occur in three phases. The first phase gives the vaccine to a 

small group of people (max 100) to study side effects and immune response. The second 

Figure 1.1 General overview of vaccine development and production 
timeline 

Design and preclinical studies

Years

Develop the process, preclinical and toxicology 
studies

2 - 4 Years

Clinical trials

5 -7 Years

Regulatory reviews

1 -2 Years

Large scale production and distribution
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phase takes hundreds of participants across a range of ages and health status like those who 

will receive the vaccine if successful. The final phase gives the vaccine to thousands of people 

to confirm the immune response, side effects and collect data on how to safely use the 

vaccine.   

The SARS-CoV-2 pandemic led to a speed up in all steps of the production process from years 

to months, emphasising that if the need arose the process could be made more efficient. This, 

however, was only possible due to the influx in investment in the industry and a slackening in 

regulatory requirements [13]. The severity of the disease regarding threat to life and fast 

spread also necessitated a shortened vaccine development and production. Therefore, steps 

need to be undertaken to reduce costs and improve production efficiency when this large 

investment is not provided.   

1.3 Vaccine Production Barriers 

Vaccines, however, only work if they are administered and there are some challenges that 

reduce the success of this. Firstly, there are immunological challenges. Some pathogens are 

highly variable, such as hepa66s C, leading to gene6c diversity. This makes an6gen 

iden6fica6on difficult as one an6gen may not induce a response if a varia6on of the pathogen 

is encountered [5]. The RV144 vaccine for HIV was found to only offer 31% protec6on [14]. 

Secondly, the an6-vaccine movement is having a global impact. This movement does not affect 

the produc6on of vaccines but does reduce the number of those wishing to be administered 

with one. Efforts are being made to engage with the movement to debunk myths surrounding 

vaccines and how they work [5]. 

 

Another issue encountered within the vaccine industry is the lack of commercial incen6ve for 

development. This occurs with diseases without global reach, such as Ebola, whereby the sale 

of the vaccine would not offer large profits. Reducing the opera6ng costs in vaccine produc6on 

could lead to these undesirable projects having greater chance of being tackled in industry. 

There is o^en also a lack of data available with genome networks of cells o^en being unknown 

or just recently collated. Without this informa6on it is hard to infer how a cells’ reac6on route 

will adjust to environmental condi6ons. More research is needed to develop models on cells 

that also have extensive experimental data to allow for analysis. The final obstruc6on is limited 
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access to vaccines due to a lack of health infrastructure and poor financial resources of 

countries to purchase vaccines. It was found that between 2010 and 2021 global coverage for 

diphtheria–tetanus–pertussis-containing vaccines have only increased from 84% to 86% [15]. 

However, closer examina6on of these sta6s6cs show that some global areas had nearly 100% 

of children unvaccinated [5]. The Immunisa6on Agenda (2020-2030), of the WHO, set a clear 

goal to ensure that everyone is protected by full immunisa6on, regardless of loca6on, age, 

gender, or socioeconomic barriers [16]. For this to be possible vaccines must be produced 

quicker and with a reduced cost; only then will most of the barriers be overcome.   

 

To speed up produc6on and lower costs all possible routes within the cell’s metabolic network 

need to be known. However, at genome scale these routes are unknown due to the 

combinatorial explosion that occurs when trying to find them. These routes are known as 

elementary flux modes (EFMs) and knowledge of these EFMs allows for targeted op6misa6on 

of the process; the process in this thesis being Escherichia coli fermenta6on.  

1.4 Escherichia coli 

Escherichia coli (E. coli) is a foodborne pathogen that causes severe disease in humans across 

the globe. It is a gram-nega6ve (thin cell wall and o^en highly resistant to an6bio6cs) [17], 

rod-shaped, faculta6ve anaerobic (makes ATP via aerobic respira6on) bacterium which is a 

prokaryo6c organism [18]. A prokaryo6c organism does not have a dis6nct nucleus with a 

membrane or other specialised organelles (subcellular structure that has one or more specific 

jobs to perform in the cell, much like an organ does in the body) [19]. E. coli was first described 

by Theodor Escherich in 1885 and since then the genome has been mapped [18, 20]. It is 

commonly grown in the produc6on of recombinant proteins. Large-scale protein expression 

trials have shown that <50% of bacterial proteins and <15% of non-bacterial proteins are 

expressed by E. coli [21]. Recombinant proteins allow for the targe6ng of immune responses 

[22, 23].  

 

E. coli has many advantages reported in literature and industry. Firstly, it has fast growth 

kine6cs. In op6mal environmental condi6ons E. coli doubles in 20 minutes in glucose-salt 
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media [24]. High cell density is easily achieved which makes it ideal for large-scale processes 

and finally, the complex media is readily available and inexpensive [22].  

 

The data in this thesis was provided by GlaxoSmithKline’s vaccine site in Rixensart, Belgium. 

Six fermenta6on data sets for E. coli are used with three an6gens being produced: WT1, M72 

and F4co.  

1.5 Elementary Flux Modes 

EFMs are non-decomposable routes through the metabolic network of a cell. A full set of 

EFMs describe all routes from point A to point B, like mapping routes on a road. They describe 

unique sets of flux carrying reactions in steady state [25]. Chapter 2 provides all the 

background information regarding EFMs. It is worth noting if a flux through a reaction is zero, 

then each contributing EFM will also have a zero flux through that reaction. Understanding 

the routes that a cell is using would help in improving the efficiency of production as 

environmental conditions could be altered to drive reactions and waste would be minimised. 

By increasing antigen yield and reducing waste the operating costs would reduce and vaccines 

could be produced at large scale quicker. Considering the length of time to get most vaccines 

to production and distribution, speedy production is vital.  

EFMs are useful tools in setting environmental conditions for optimal production. However, 

finding EFMs for genome networks has not been possible. Solving EFMs for large networks 

causes combinatorial explosion [25]. Combinatorial explosion refers to the rapid growth of a 

problems complexity due to mounting constraints and bounds of the problem [26]. Across 

the methods created to find EFMs the maximum found thus far is just under 2 billion [27, 28, 

29, 30, 31, 32, 33].  However, there is discussion regarding the need for full sets of EFMs when 

finding the biologically relevant ones would be more useful to process optimisation [34, 35, 

36, 37]. This thesis proposes a method towards the aim of finding only active EFMs at genome 

scale in the future.  
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1.6 Aims 

The aim of this thesis is to create a future-proof method towards finding ac6ve EFMs at 

genome scale. This aim was then reduced and is covered across 6 chapters. 

 

Chapter 3: This chapter presents flux analysis techniques for underdetermined systems. To do 

this flux balance analysis and flux variability analysis is trialled. These methods are well 

presented in literature, and they provide a poten6al way of reducing the search space for 

EFMs. This aim was to be completed within 2 months.  

 

Chapter 4: This chapter presents metabolic flux analysis (MFA) which can be used for exactly 

determinable systems. Limita6ons of this method needed to be iden6fied and then an 

integrated form of the analysis studied, simulated, and discussed as an op6on to improve on 

the shorzalls of MFA. These techniques again offer a reduc6on in search space for EFMs, 

ensuring only ac6ve EFMs are found. This aim was to be completed in 10 months.  

 

Chapter 5: This chapter presents a mixed integer linear programming (MILP) method to 

enumerate EFMs. This is performed ini6ally on small networks and then on the E. coli core (in 

1 hour), as presented by COBRA Toolbox [38]. Comparisons against literature presented MILP 

methods is also presented. This aim is met once the MILP method offers a compe66ve 

advantage to commercial tools in terms of future solving. Overall, this aim was given 18 

months for comple6on.     

 

Chapter 6: This chapter presents methods to improve the solve 6me for the MILP method 

presented and increase the number of EFMs found for E. coli core. Areas of further 

improvement from Chapter 5 are applied and discussed, along with methods presented 

throughout literature to reduce the search space for solu6ons. This chapter’s aim is also to 

show the benefits of MILP in the future for compu6ng EFMs at genome scale. This chapter is 

needed to reduce the solve 6me of MILP and once this has occurred the aim is achieved. It 

would take 4 months to achieve this aim.  
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Chapter 7: This chapter presents analysis of all the data provided by GlaxoSmithKline and 

assess the feasibility of determining flux and EFMs for the network. Any flux analysis that could 

be performed would be done and discussion regarding the effect of an6gens on this data was 

also necessary. Addi6onal data that should be collected to allow for further analysis would be 

highlighted and the need for this data emphasised. Once statement 3 in sec6on 1.6 is met, 

this aim was complete, and this is done over 8 months.  

1.7 Statement of Innovation  

The outcomes of this thesis can be summarised into 3 main points: 

 

1) Development of a flux analysis technique to reduce error and improve understanding 

of reaction rates. This technique is an integrated form of metabolic flux analysis and 

offers an avenue for flux analysis development in the future which has not currently 

been explored in literature.  

2) Development of a MILP method to enumerate EFMs incorporating network 

compression. The MILP method allows for full genome computation in the future with 

computational and algorithmic advances.  

3) Analysis of an E. coli data set provided by GlaxoSmithKline highlighted the need for 

further extracellular metabolite concentrations. Specific growth rates and uptake 

rates were calculated for all fermentations showing a reduction in these rates in the 

fed batch phase and a reduction in the number of feasible elementary flux modes. This 

information was previously unknown.  
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Chapter 2 Preliminaries 

 

2.1 Introduction 

Background understanding and basic definitions are key to the understanding of this thesis. 

This chapter will go into the basic theory behind metabolic network set up, elementary flux 

modes (EFMs) and a macroscopic overview of cells. It will also discuss commercial EFM solvers 

and network visualisation.  

2.2 Metabolic Networks 

The cell is equivalent to a microreactor with a high number of internal metabolites that are 

consumed and produced by reversible and irreversible intracellular enzymatic reactions [39].  

These reactions can be mapped as a metabolic network. Metabolic networks are desirable to 

model due to various properties [40]: 

i. There exist only small molecules within them that are near identical to one 

another – unlike proteins.  

ii. Large quantities of the molecules within the metabolome.  

iii. Interactions between the molecules have been well studied in vitro by organic 

chemists to better understand the cell environment.  

iv. Metabolic models accurately capture most of their whole phenotype (observable 

characteristics or traits of an organism).  

 

Metabolites in a metabolic network are categorised as intracellular or extracellular. The need 

for this categorisa6on is for the accurate modelling of the fluxes of the reac6ons. Extracellular 

metabolites are any which are outside the cell wall. However, it should be noted that there is 

o^en no dis6nguishing of the periplasmic space and the extracellular medium in some of the 

networks available [41]. In general, the term extracellular metabolites refers to the inputs and 

outputs of the cell [42]. Based upon this defini6on it can be said that intracellular metabolites 

are anything within the cell walls that act as intermediaries for the reac6ons.   
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Along with categorising metabolites, the reac6ons can also be defined in the same manner. 

Any reac6on that crosses the cell boundary is extracellular and any reac6on that occurs within 

the cell’s walls is intracellular.  

2.2.1  Stochiometric Representation  

The metabolic stoichiometry can be split into the extracellular and intracellular components. 

As metabolism operates on a faster time scale than regulatory or cell division events, 

therefore allowing an assumption of quasi or pseudo steady state, a metabolite balancing 

equation is created [30].  

𝑺&𝒗 = 0 (2.1) 

𝑺.𝒗 = 𝒗𝒎 (2.2) 

 

The stochiometric matrix is represented by 𝑺/, where subscript ‘i’ denotes intracellular 

metabolites only and ‘e’ extracellular. Flux is given by 𝒗, in concentra6on per unit of 6me i.e 

gL-1hr-1, and measurable flux by 𝒗𝒎. Equa6on (2.1) is the basis of all further analysis within 

this thesis as it ensures each metabolite is consumed in the same quan6ty as it is produced.  

 

Figure 2.1 shows a simple metabolic network. The intracellular and extracellular 

stoichiometric matrices are,  

 

𝑺& = I1 −1
0 0 						

−1
1 							

1
−1						

0
1						

0
−1M 

(2.3) 

𝑺. = N

−1 0 0 0 0 0
0 0 0 0 −1 0
0 1 0 0 0 0
0 0 0 0 0 1

O (2.4) 

 

 where, the first row in 𝑺&  is representa6ve of metabolite ‘A’ and the second row, ‘B’. 

Reac6ons are represented by the column entries. The numerical values being the 

stoichiometric coefficients of the species involved in a reac6on. A nega6ve value indicates that 

the metabolite is a reactant species and a posi6ve value a product species in a par6cular 

reac6on. A zero entry in the stoichiometric matrix indicates that the species does not 

par6cipate in the reac6on. 
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Figure 2.1 Example network to demonstrate stoichiometric representation 

So, for this example there are two internal metabolites, four external metabolites and six 

reac6ons (where reac6ons 3 and 4 are a reversible pair). The reac6ons are: 

 

𝑟A 𝑚A → 𝐴 

𝑟B 𝐴 → 𝑚C 

𝑟C 𝐴 → 𝐵 

𝑟D 𝐵 → 𝐴 

𝑟E 𝑚B → 𝐵 

𝑟F 𝐵 → 𝑚D 

 

In this thesis it is the conven6on to decompose a reversible reac6on into two non-reversible 

reac6ons.  

2.3 Elementary Flux Modes 

An EFM is a minimal route through a metabolic network and are direc6on vectors, like the 

Cartesian coordinate system [25]. The word minimal implies that if the route is disrupted at 

any point, it can no longer con6nue to produce the necessary extracellular product. Therefore, 

EFMs allow for the produc6on strategy to be iden6fied for any product. No two EFMs can 

share the exact same reac6ons; they must be unique.  

 

A complete set of EFMs will describe a metabolic network. Therefore, every steady state flux 

distribu6on can be described with a non-nega6ve weighted superposi6on of EFMs [25]. EFMs 

A B

m1
m2

m4m3

1

2

3
4

5

6

𝑚B 𝑚A 

𝐴 𝐵 

𝑚C 𝑚D 
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are advantageous as each flux distribu6on may be decomposed into fundamental units 

without ‘cancella6on’ [43]. Therefore, if a flux through any reac6on is zero, then each 

contribu6ng EFM will have a zero-flux value for that reac6on.  

 

There are mul6ple uses for EFMs in industry and academia today [44]: 

 

i. Identification of minimal conversion pathways or cycles in networks. 

ii. Prediction of network properties i.e., gene essentials, blocked reactions etc. 

iii. Yield optimal routes for products and biomass can be found. 

iv. Identification of intervention strategies for targeted network modification. 

v. Identification of  module contribution in a metabolic phenotype [45]. 

 

The limita6on of EFM determina6on is that it is a combinatorial problem which prevents large 

scale enumera6on. To alleviate this issue several methods have been created and presented 

in literature. This thesis will discuss this work in detail.  

 

EFMs can be presented as vectors or matrices. This thesis present sets of EFMs as a matrix 

with columns equal to the EFM and rows equal to the reac6ons. Table 2.1 lists the EFMs that 

describe the metabolic network presented in Figure 2.1 (details regarding their enumera6on 

using tradi6onal methods, such as efmtool, are provided later in this chapter).  

 

Table 2.1 EFMs for example network 

 𝑬A 𝑬B 𝑬C 𝑬D 

𝑟A 1 0 1 0 

𝑟B 1 0 0 1 

𝑟C 0 0 1 0 

𝑟D 0 0 0 1 

𝑟E 0 1 0 1 

𝑟F 0 1 1 0 
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There are four EFMs, 𝑬A,….,𝑬D (the columns in Table 2.1). Each EFM is described by the 

presence of a non-zero flux vector for a par6cular reac6on; the numerical values presented in 

Table 2.1 for each EFM.  A zero-flux vector indica6ng that the reac6on does not par6cipate in 

the EFM. Therefore 𝑬A comprises reac6on 𝑟A and 𝑟B, i.e., the route  

 

𝑚A → 𝐴 → 𝑚C (2.5) 

	
An alterna6ve representa6on would be the unique set of reac6ons they represent, e.g., 𝐸A =

{𝑟A, 𝑟B}, 𝐸B = {𝑟E, 𝑟F}, etc. The en6re set of EFMs is represented in matrix nota6on as, 𝑬 =

[𝐸A ⋯ 𝐸.]. 

2.3.1  Extreme Pathways 

Extreme pathways (EPs) exist within metabolic networks and differ to EFMs in subtle ways. 

EFMS and EPs are equivalent when all reac6ons are irreversible and act as edges of a cone.  If 

reversible reac6ons exist, then the set of EPs act as the convex basis vectors and EFMs are a 

superset of the EPs. Therefore, all EPs are EFMs [25, 46]. 

2.3.2  Flux Cones 

The set of flux values contained in 𝒗, that sa6sfy equa6on (2.1) exist in the null space (or 

Kernel) of 𝑺&. If we define, 

 

𝑺&𝑲 = 0 (2.6) 

  

Then the matrix 𝑲 consists of linearly independent column vectors that define the 

dependencies in the columns of 𝑺&. The null space dimension, i.e., number of column vectors, 

𝑁(𝑺&) is found by equa6on (2.7). 

 

	𝑁(𝑺𝒊) = 𝑁1 − 𝑟𝑎𝑛𝑘(𝑺𝒊) (2.7) 
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where 𝑁1  is the number of reac6ons in the network stoichiometry and 𝑟𝑎𝑛𝑘(𝑺𝒊) is the 

rank of the stoichiometric matrix. The set of flux vectors that sa6sfy equa6ons (2.1) and (2.2) 

can be expressed as:  

 

𝐹𝐶 = {𝒗 ∈ ℝ𝒏|𝑺𝒊𝒗 = 0, 𝒗𝒊𝒓𝒓 ≥ 0} (2.8) 

 

 where 𝒗𝒊𝒓𝒓 are irreversible fluxes. Equa6on (2.8) is a subset of the null space. It is the 

intersec6on of the null space with the nonnega6ve half spaces corresponding to irreversible 

reac6ons [44]. Geometrical speaking, this is a convex polyhedral cone. In this work, defined 

as the flux cone (𝐹𝐶). A general polyhedral cone is defined as equa6on (2.9).  

 

𝐶 = {𝒙 ∈ ℝ𝒏|𝑨𝒙 ≥ 0} (2.9) 

 

Figure 2.2 illustrates a small network example. The stoichiometric matrix for this network is, 

 

𝑺 = N

−1 0 0
1 −1 −1
0 1 0
0 0 1

O (2.10) 

 

For this example, the intracellular stoichiometric matrix is, 

 

𝑺& = [1 −1 −1] (2.11) 

 

The rank of this matrix is one and as there are three reac6ons the null space dimension is 2. 

Therefore, any two linearly independent vectors will form the basis of the null space. For 

example, 

Figure 2.2 A small reaction network with three extracellular metabolites (A, B, C) 
and one intracellular (m).  

A
C

B
mr1

r2

r3
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𝑲 = c
1 0
2 −1
−1 1

e (2.12) 

 

Note that these basis vectors do not have to meet the irreversibility constraint as set in 

equa6on (2.8) [44].  

 

 

Figure 2.3 is the same network as presented in Figure 2.2, however reac6on 2 is now deemed 

reversible. There exists three EFMs for this network, 𝑬𝟏 = [1	1	0]I  and 𝑬𝟐 = [1	0	1]I  and 

𝑬𝟑 = [0 − 1	1]I. Figure 2.4 illustrates the flux cone which is bounded on one side by two 

extreme vectors e1 and e2. These extreme vectors are also EFMs, along with e3. O^en in 

metabolic analysis it is common to only be interested in minimal routes within the network 

[44, 47]. This creates a basis for characterising the flux cone. However, if this is done o^en 

EFMs that exists within the space and are not the bounds are missed, so e3 would not be 

found. It therefore is impera6ve that any method to find EFMs is inclusive of these vectors.  

 
 

 
 
 

A
C

B
mr1

r2

r3

Figure 2.3 A small reaction network with three extracellular metabolites 
(A, B, C),one intracellular (m) and a reversible reaction 
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2.3.3  Weighting of Elementary Flux Modes 

The metabolic network of a cell can be conceived as the weighted sum of EFMs [39]. Flux 

distribution across a network can be decomposed into the EFMs by equation (2.13), 

𝒗 =f𝑤*𝑬*

𝑬

*LA

 (2.13) 

 where 𝑤𝒋 is a weigh6ng associated with the EFM vector, 𝑬. The weigh6ngs are 

commonly known as elementary mode weigh6ngs [48]. The elementary mode weigh6ngs are 

expressed in units of flux. To represent the frac6onal usage of each EFM instead, an α-

weigh6ng can be used. An α-weigh6ng is a weigh6ng that is normalised by dividing the fluxes 

by the limi6ng maximum flux of each EFM [49].  

In this thesis an EFM can only be irreversible, therefore the weigh6ng will only ever be 

posi6ve,  

e1 

e3 
e2 

Figure 2.4 The null space of example network in figure (2.1). The red lines indicate that the null space is 
unbounded (in all directions). The black arrows are extreme vectors (e1, e2) and EFMs (all e). 
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𝑤𝒋 ≥ 0 (2.14) 

As the number of EFMs in a system increase equa6ons (2.13) and (2.14) do not provide a 

unique solu6on. Instead they offer a con6nuous convex space of feasible solu6ons [48]. To 

allow for unique solu6ons to be obtained equa6on (2.8) is necessary to apply minimise a 

constraint [48], equa6on (2.15).  

𝑚𝑖𝑛f𝑤𝒋𝟐	
𝑬

*LA

 
(2.15) 

For an example, the network in Figure 2.2 may have a flux distribution of, 

𝒗 = c
6
4
2
e 

(2.16) 

This flux vector indicates that all 3 reactions are in operation. Utilising the two EFMs that 

exist for this network, 

𝑬 = c
1 1
1 0
0 1

e (2.17) 

The weightings for each EFM required to generate the flux as close to the specified 

distribution are, 

𝒘 = I42M (2.18) 

Therefore, both EFMs are necessary to get the specified flux distribution. The residual flux 

from for each reaction using the specified weightings in this example is, 

𝒗𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 = I00M 
(2.19) 

 

 



 17 

2.4 Elementary Flux Mode Solvers 

There are many tools available to find EFMs all with varying efficiency, opera6ng system 

capability and limita6ons. The three most used throughout literature are efmtool [29, 31], 

METATOOL 5.0 [50, 51] and FluxModeCalculator [33]. All tools are designed to operate on 

Windows, with efmtool also working on Mac and Linux. These tools vary in memory usage so 

their opera6ng 6mes on different computer types will vary. These tools will be compared 

alongside the mixed integer linear programming method proposed within this thesis. 

2.4.1 METATOOL 5.0 

METATOOL uses a variant on the double descriptive method [50]. Like efmtool, it can be used 

in MATLAB allowing basic changes to be made by the user. The notable difference with this 

tool is that the test for checking the independence of EFM candidates is performed 

algebraically, via a rank test [50, 52]. It also computes structural invariants such as 

conservation relationships and enzyme subsets [50, 51]. 

This algebraic test is notably quicker than a combinatorial test [27].The combinatorial test 

compares each EFM candidate to all other modes, leading to the test growing as the number 

of EFMs grow. Rank testing avoids this as it is independent of the other modes and the 

complexity is limited to the number of reactions used by the EFM. The rank test will be 

discussed in Chapter 4, as it is used for the development of the MILP.  

METATOOL was previously the fastest solver available for efm enumeration, however, it has 

now been reported to be outperformed by efmtool [31].  

2.4.2  efmtool 

This tool uses the double descriptive method (described in detail in section 2.6) as it’s basis 

and is coded into the MATLAB environment. EFM-candidates are found via pairwise 

combinations and must be verified to be an EFM afterwards. The verification is the major 

bottleneck of the double descriptive method [25]. Over the years there has been multiple 

improvements such as exploiting multi-core CPUs to allow for greater storage capabilities and 

bit set trees to speed up computation [31].  The tool benefits from easy integration with the 
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COBRA toolbox [38]. COBRA provides the E. coli core network and can perform flux analysis 

with specific data input. This toolbox is used in Chapter 7 of this thesis. Overall efmtool has 

been shown to be the best performing EFM solver operating on a single processor machine 

[53, 54] . 

2.4.3  FluxModeCalculator 

The double descriptive method is used for FluxModeCalculator with improvements from 

literature being utilised, such as network compression, solved inequalities stored as bit 

patterns and the use of bit pattern trees for combinatorial testing [33]. It is stated to require 

4GB of free memory to calculate 271 million EFMs in E. coli in 17 hours [33]. This is partially 

due to the solver saving immediate solutions on the hard drive to reduce the memory size 

required to completed one iteration. Moreover, it checks at the end of each iteration whether 

the resulting flux modes still fit in the memory. If not, the system terminates providing the 

intermediate solution. Along with this it also uses a demand based network subdivision 

strategy to automatically subdivide the network for the remaining constraints and calculated 

the flux modes for the corresponding subnetworks [28]. 

2.5 Double Descriptive Method 

All the above tools use the double descriptive method as their basis. Originally the double 

descriptive method was proposed by Motzkin et al for the determination of a numerical value 

and of all solutions in a game with a finite number of strategies, and of general finite systems 

with linear inequalities and corresponding maximisation problems [55]. It is now widely used 

as a basis for calculating EFMs of a metabolic network. It is able to find all extreme rays of a 

general polyhedral cone [56]. The double descriptive method works by finding double 

descriptive pairs – a pair of matrices that contain two different descriptions of the same 

object. This is useful for the solving of EFMs as an EFM always corresponds to an extreme ray, 

Figure 2.5 [57]. The final cone, like the one in Figure 2.5, is formed through the application of 

constraints. Each constraint is represented by a half space, which intersects the original cone 

until all constraints are accounted for. Figure 2.6 provides a visual example of this, showing a 

new extreme ray, h, being created from adjacent rays ‘a’ and ‘g. Any descendants from non-

adjacent rays, like ‘i’ from ‘c’ and ‘g’, are not extreme rays. 
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Therefore, every intersec6on with half space ‘H’ removes extreme rays, crea6ng a smaller 

cone each itera6on. New extreme rays are created by adjacent extreme ray pairs through 

Gaussian elimina6on [31]. The new ray lies in the hyperplane, separa6ng retained from 

removed rays.  

 

Figure 2.5 Pointed polyhedral cone. Dashed lines represent unbounded areas. Red lines highlight a pair of adjacent 
extreme rays 

a 

h 

e 

d 

c b 
a 

d 

c 

h 
e g 

f 

b 

i 

H 

Figure 2.6 Graphical representation of the double description method finding EFMs 

Cone j Cone j-1 
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Wagner et al proposed using a unique form of the null space of the stochiometric matrix as 

the ini6al cone, equa6on (2.20) [58]. A kernel (𝑲𝒓) of a matrix is the same as the null space of 

a matrix.  

 
𝑲𝒓 = [𝑰;𝑲𝒓

∗]I  (2.20) 
 
 
𝑰	is the iden6ty matrix and this accounts for the irreversibility of fluxes. The steady state 

constraint equa6on (2.1) is met by 𝑲𝒓. A^er applying these constraints, a reduced cone, ‘j’ is 

found, like in Figure 2.6. Extreme rays can be found itera6vely and are grouped into one of 

three categories: posi6ve, nega6ve or zero flux. To create the next, reduced cone (j+1), 

extreme rays with posi6ve and zero flux are kept, and new ones generated from ray pairs. To 

create new pairs the flux value at posi6on j+1 is cancelled out, to be 0, via the use of Gaussian 

elimina6on. 

 

Due to the new ray being a combina6on of old rays, non-nega6ve and Defini6on 1 being true, 

the new ray is a ray of a cone.  

 
Definition 1[31] 

A set P of points in Rd is convex if the line segment between two points in P lies in P. A set P is 

referred to as a cone if for every x ∈ P, it’s non-negative multiple lies in P. It is also a convex 

cone if: 

 

𝜆A𝒙A + 𝜆B𝒙B ∈ 𝑃 

𝜆A, 𝜆B ≥ 0 

𝒙A, 𝒙B ∈ 𝑃 

 

Adjacency tests are needed to make sure that the ray found is an extreme ray and thus an 

EFM. To ensure this equation (2.21) must be upheld, where 𝑍 is the set of inequality indices 

satisfied by the extreme ray with equality [57]. Therefore, 𝑍(𝒆) and 𝑍(𝒆′) contain at least one 

element that is the same and 𝑍(𝒆′′) is fully contained, a subset of, or equal to 𝑍(𝒆′). 

 

𝑍(𝒆) ∩ 𝑍(𝒆′) ⊆ 𝑍(𝒆′′) (2.21) 
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Most solvers use a varia6on on the double descrip6ve method to find EFMs. They o^en only 

require user input of stoichiometry and reac6on reversibility making them much more 

efficient than performing the double descrip6ve method by hand. It is worth no6ng that any 

method that uses the double descrip6ve method as the base for solving EFMs will be sensi6ve 

to constraint ordering [59]. Constraint ordering refers to the ordering of matrix rows when 

solving with the double descrip6ve method. Commonly the null space approach is used, 

equa6on (2.6) to generate the kernel matrix in row-echelon form to act as the first extreme 

ray matrix. The iden6ty matrix must be preserved; however, all remaining rows must be 

organised to maximise efficiency [31].  

2.5.1  Double Descriptive Method Example 

For the hypothe6cal metabolic network postulated in for Figure 2.7, the intracellular 

stochiometric matrix (𝑺&), irreversible reac6on only matrix (𝑺𝒊𝒓𝒓) and reversible reac6on only 

matrix (𝑺𝒓𝒆𝒗) are as follows: 

 

𝑺& =	 c
1 0 0	
0 1 0
0 0 1

	
1 0 −1
−1 1 0
0 −1 1

e (2.23) 

𝑺𝒊𝒓𝒓 =	 c	
1 0 −1
−1 1 0
0 −1 1

e (2.24) 

𝑺𝒓𝒆𝒗 =	 c	
1 0 0	
0 1 0
0 0 1

e (2.25) 
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A tableau (𝑻(()) can be formed and can be solved up to a max of ‘m’ itera6ons, equa6on 

(2.26) [60]. In the tableau 𝑩(() represents the reversible reac6on sec6on and 𝑭(()	 

irreversible reac6on sec6on. The aim of the itera6ons is to get the stochiometric matrices to 

be filled with zero elements in ‘m’ steps. This in turn creates a set of EFMs. The reac6ons for 

larger networks may also be grouped together based upon their reliance on one another to 

reduce the size of the tableau [61]. Equa6on (2.26) is beJer interpreted by rela6ng it to the 

steady state constraint, equa6on (2.27). By forcing the stochiometric matrices to be 0 ensures 

only a set of EFMs will be found, equa6on (2.28) 

 

𝑻(𝟎) = r𝑩
(𝟎)

𝑭(𝟎)
s = t

𝑰 𝟎 𝑺𝒓𝒆𝒗𝑻

𝟎 𝑰 𝑺𝒊𝒓𝒓𝑻
v (2.26) 

𝑺&𝒗 = 0 (2.27) 

𝟎 = r𝑩
(𝟎)

𝑭(𝟎)
s = t

𝒗𝒓𝒆𝒗 𝑺𝒓𝒆𝒗𝑻

𝒗𝒊𝒓𝒓 𝑺𝒊𝒓𝒓𝑻
v (2.28) 

 

To combine rows, equa6ons (2.29) and (2.30) must be upheld. These equa6ons are for 

elements in a column number, that is equivalent to the itera6on number, ‘m’. However, the 

whole row must undergo the same opera6on as the elements concerned. A scalar can be used 

on any row to ensure these equa6ons are met.  

X1 

X3 X2 

r1 

r6 

r4 

r3 

r2 

r5 

Figure 2.7 Hypothetical metabolic network example 
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𝑓&* ± 𝑏&* = 0 

𝑓&* ≠ 0	𝐴𝑁𝐷	𝑏&* ≠ 0	 
(2.29) 

𝑓&* + 𝑓∗&* = 0 

𝑓&* < 0	𝐴𝑁𝐷	𝑓∗&* > 0	 
(2.30) 

 

Where: 

 i = row number 

 j = column number, which is equivalent to the itera6on you are currently undergoing 

 b = element in row vector of 𝐁 

 f = element in row vector of 𝐅 

 ∗ i = a differing row number to i  

 

To ensure only EFMs are found, equa6on (2.21) must be used; no two rows can be combined 

if there exists another row in the same space. Equa6on (2.29) combines any row of 𝑩, with a 

value not equal to 0 in the current column, with all rows in 𝐅, which must also not be equal to 

0. Equa6on (2.30) combines all rows in 𝐅 in pairs if they have opposite signs in the current 

column. 

 

The first tableau,	𝑻(V), is set up as follows (the blue doJed lines are to aid in the iden6fica6on 

of the different sec6ons, blue text provides row number): 

 

𝑻(V) =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 	0
0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 1 −1 0
0 0 0 0 1 0 0 1 −1
0 0 0 0 0 1 −1 0 1 ⎦

⎥
⎥
⎥
⎥
⎤

 

 

To create the next tableau, 𝑻(A), the first column of the right-hand-side quadrants is examined. 

Any row that has a zero element in this column does not need to be combined with any other 

row. Therefore, by examining 𝑻(V)it can be said that only rows 1,4 and 6 must be used further.  

 

1 
2 
3 
4 
5 
6 
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To create the next tableau the following combina6ons, based upon equa6ons (2.21), (2.29) 

and (2.30), are performed: 

 

i. Row 1 and row 4. The right-hand-side has + 1 values in the first column, so these 

vectors must be subtracted from one another, equation (2.29).  

ii. Row 1 and row 6. The right-hand-side has differing signs so the two rows can just be 

summed together.  

 

A similar process is adapted for sec6on 𝑭. Any rows in 𝐅 with opposing signs in the current 

column should be combined. Thus, row 4 and 6 can be combined via summa6on due to 

opposing signs in the right-hand-side ini6al column and but also due to their independence 

compared to all other row vectors.  

 

Any row vector that is combined with another is removed form the next tableau as they are 

accounted for via the combina6on vector created. It is important to remember that sec6on 𝑩 

accounts for reversible reac6ons, and sec6on 𝐅 the irreversible ones. Therefore, when 

crea6ng the next tableau, the new vector must be placed in the correct sec6on. Any vector 

combina6on that includes a vector from 𝐅 must remain in 𝐅. This is due to the vector no longer 

being fully reversible.  

 

The new tableau to examine is as follows (red text shows how the vectors have been formed 

based upon previous row numbers): 

 

𝑻(A) =

⎣
⎢
⎢
⎢
⎢
⎡
0 1 0 0 0 0 0 1 		0
0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 1 −1
0 0 0 1 0 1 0 −1 1
−1 0 0 1 0 0 0 −1 0
1 0 0 0 0 1 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎤

 

 

This process is con6nued un6l the right-hand-side is a zero matrix, 𝑻(C): 

 

1 
2 
3 
4 
5 
6 

2 
3 
5 
4 + 6 
1 - 4 
1 + 6 
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𝑻(C) = 𝑭(C) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−1 1 0 1 0 0 0 0 0
0 −1 1 0 1 0 0 0 0
1 0 −1 0 0 1 0 0 0
0 1 −1 1 0 1 0 0 0
−1 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0
1 −1 0 0 1 1 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎤

= (𝒇W ⋮ 𝟎) 

 

Therefore, there are 7 EFMs for this network, all classed as irreversible (all exist in sec6on 𝐅). 

Nega6ve stoichiometry gives direc6onality to the reversible reac6ons. Transla6on of these 

results into the form used in this thesis is given in Table 2.2.  

 

Table 2.2 EFMs for double descriptive method 

 𝑬A 𝑬B 𝑬C 𝑬D 𝑬E 𝑬F 𝑬X 

𝑟A: → 𝑋A 1 0 1 0 0 0 1 

𝑟B:	𝑋A → 0 0 0 0 1 0 0 

𝑟C: 𝑋B → 𝑋A 0 0 0 1 1 1 0 

𝑟D: 𝑋C → 𝑋B 0 1 0 0 1 1 1 

𝑟E: 𝑋A → 𝑋C 1 0 1 1 0 1 1 

𝑟F: 𝑋B → 0 1 0 0 0 0 1 

𝑟X: → 𝑋B 0 0 0 1 0 0 0 

𝑟Y: 𝑋C → 1 0 1 1 0 0 0 

𝑟Z: → 𝑋C 0 1 0 0 1 0 0 

 

2.6 Network Visualisation  

In chemical work molecular graphs are used to beJer understand the structure of a molecule. 

The graph is made up of nodes and edges, where the nodes are the atoms, and the edges are 

the bonds between the atoms. This is then applied to chemical reac6on networks; a reac6on 

network is effec6vely a flow network. In this network the elements are the nodes, and the 

reac6ons are the edges. Therefore, it can be easy to apply this to metabolic networks. 

However, metabolites can par6cipate in more than one reac6on and reac6ons can have more 

than one substrate and more than one product.  
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Directed graphs allow for both metabolic network and EFM representa6on. Visualisa6on of 

EFMs on publicly available tools is limited. EFM data is produced in a table or matrix format, 

this data must then be exported to online tools, such as Escher, to visualise the EFMs on the 

network [38]. With large data sets this data can be meaningless, however, an integrated 

visualisa6on tool would make it more accessible. 

 

These graphs have been applied to analyse the metabolism of cells in greater detail. For 

example, degree distribu6ons and centrality measures can highlight network connec6vity [62, 

63, 64]. Dele6on of any nodes or edges can be representa6ve of environmental changes or 

therapeu6c drugs which target specific metabolite enzymes [65, 66]. O^en these graphs are 

preferred over flux balance analysis, which maximises an objec6ve func6on, as the graph 

relies solely on the metabolic stoichiometry [64].  

 

Metabolic networks can be translated into graphs by one of three ways: 1) reac6on centric, 

where reac6ons are the nodes and metabolites the edges, equa6on (2.9) [67], 2) metabolite 

centric, where metabolites are the nodes and reac6ons are the edges, equa6on (2.10) [68] or 

3) bipar6te, where both reac6ons and metabolites act as nodes [64].  

 

To construct a network graph, consider a stoichiometric matrix that is wriJen in terms of the 

reactant and product stoichiometric numbers, 

 

𝑺 = 	 [𝑺0 −	𝑺1] (2.31) 

 

So, for example, for a metabolic network described by the stoichiometry, 

 

𝑺 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−1 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 −1 0 0 0
1 −1 −2 0 0 0 0
0 0 1 0 0 −1 −1
0 0 0 0 1 −1 0
0 −1 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (2.32) 
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There are seven reac6ons, 𝑟A, … . 𝑟X  and ten metabolites with the naming A, G, F, B, C, E, D, H, 

I, P. The external metabolites are A, G, F (substrates) and H, I, P (products). The intracellular 

metabolites are, B, C, D, E. The matrices of the stoichiometric numbers of the reactant and 

product species are given by, 

 

𝑺1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 1 2 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (2.33) 

𝑺0 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (2.34) 

 

 

Using a binary representation of 𝑺1  and 𝑺0 (where all the nonzero stoichiometric numbers 

are indicated by ones, gives two matrices denoted 𝑺�1  and 𝑺�0) the reaction centred, 𝑨! , and 

metabolite centred, 𝑨", adjacency matrix is defined as,  

 

𝑨!([!,[!) =	𝑺
�0I𝑺�1  (2.35) 

𝑨"([",[") =	𝑺
�1𝑺0I  (2.36) 

 

For the stoichiometric matrix, equa6on (2.32), this gives,  
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𝑨! =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0 1 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 1
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (2.37) 

𝑨" =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (2.38) 

 

The adjacency matrices can be used to draw the directed graphs that connect nodes of the 

graph, where the non-zero terms in the adjacency matrix define the connec6ons between the 

nodes (edges of the graph). For example, for the reac6on centric adjacency matrix, with 

nodes, 𝑟A, … . , 𝑟X the following edges are defined (which can be verified by inspec6on of the 

rows of the adjacency matrix),  

	
(𝑟A, 𝑟B), (𝑟A, 𝑟C), (𝑟C, 𝑟F), (𝑟C, 𝑟X), (𝑟D, 𝑟B), (𝑟E, 𝑟F)	

	

Similarly, for the metabolite centric adjacency matrix, with nodes A, G, F, B, C, E, D, H, I, P the 

following edges are defined, 

 

(𝐴, 𝐵), (𝐺, 𝐸), (𝐹, 𝐷), (𝐵, 𝐶), (𝐵, 𝐻), (𝐶, 𝐼), (𝐶, 𝑃), (𝐸, 𝐼), (𝐷, 𝐻) 

 

The reac6on centric digraph is shown in Figure 2.8 and the metabolite centric in Figure 2.9. 
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An alterna6ve to the reac6on or metabolite centric graph is the use of a bipar6te graph that 

includes both reac6ons and metabolites (also referred to as a hyper-graph). The adjacency 

matrix of the bipar6te graph is given by, 

 

r1

r2 r3

r4 r5

r6r7

Figure 2.8 Reaction centric digraph 

A G F

B

C

E D

H

IP

Figure 2.9 Metabolite centric digraph 
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𝑨𝑴,𝑹 =	 �
𝟎 𝑺�𝒓
𝑺�𝒑𝑻 𝟎

�  (2.39) 

 

This has nodes ordered by metabolites and then reactions, and for the example being 

considered the adjacency matrix is a 17 x 17 matrix (10 metabolites and 7 reactions). Figure 

2.10 shows the bipartite graph created for this example.  

2.7 Dead-end Metabolites  

A dead-end metabolite (DEM) is an intracellular metabolite that is produced by known 

reactions in the network but has no reactions consuming it or is consumed by known reactions 

in the network but has no known reactions producing it. In both these cases there are no 

identified transporter reactions [69]. DEMs can occur due to a lack of knowledge of network 

structure where further experimental research is required. Figure 2.11 highlights three dead-

end metabolites, H, I and K. EFMs will not be generated containing the reactions that lead to 

or from these metabolites as any EFM should go from extracellular substrates to products. 

Therefore, removal of these reactions from any stochiometric matrix will reduce the search 

space for EFMs.  

A GF

B

C

ED

H

IP

r1

r2r3

r4 r5

r6r7

Figure 2.10 Bipartite digraph 
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2.8 Macroscopic Networks   

The overall stochiometric matrix for the macroscopic network of a cell is found via equa6on 

(2.40). If the rank of 𝑺𝑲 is less than the number of unknowns, the system is undeterminable.  

𝑺𝑲 = �𝑺𝑺𝑺𝑷
� × 𝑬 (2.40) 

𝑺𝑲 is the overall (macroscopic) stoichiometry, 𝑺𝑺 is the stoichiometry of the substrates only 

and 𝑺𝑷 is the stoichiometry of the products only. The number of macro reac6ons for any given 

network is equivalent to the number of EFMs. Reac6on rate equa6ons can be designed 

specifically for macro reac6ons. The maximum specific uptake/excre6on rates for extracellular 

metabolites, 𝒂𝒊, are therefore related to 𝑺𝑲 via equa6on (2.41).  

𝒗𝒎 = 𝑺𝑲 	× 	𝒂𝒊 (2.41) 

Accurate determina6on of EFMs enables a macro view of a cell to be obtained. This in turn 

can be used to create dynamic models of the cell’s life6me. This is discussed in further detail 

in Chapter 3. 
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Figure 2.11 Bipartite graph network with dead-end sections highlighted in red 
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2.9 Linear Programming   

A general, finite dimensional, optimisation program can be defined as, 

        𝑚𝑖𝑛/ 𝑓(𝑥) 

𝑠. 𝑡. 𝑔&(𝑥) ≤ 0, 𝑖 = 1,… ,𝑚 

																					ℎ*(𝑥) = 0, 𝑗 = 1,… ,𝑚 

								𝑥 ∈ 𝐷 

(2.42) 

 where, 𝐷 ⊆ ℝ<, 𝑔& ∶ 𝐷 → 	ℝ for 𝑖 = 1,… ,𝑚 and 𝑓 ∶ 𝐷 → 	ℝ.  𝑓(𝑥) is the objective 

function, 𝑔&(𝑥) ≤ 0 a set of inequality constraints and ℎ*(𝑥) = 0 a set of equality constraints. 

Rather than minimising equation (2.42) you could also maximise. Rather than a general 

optimisation problem, this work considers linear programs (LPs), therefore both the objective 

function and constraints are linear. This is defined in matrix and vector forms as, 

        𝑚𝑖𝑛/ 𝑐I𝒙 

𝑠. 𝑡. 𝑨𝒙 ≤ 𝒃 

							𝑨𝒆𝒒𝒙 = 𝒃𝒆𝒒 

								𝒙 ∈ ℝ< 

(2.43) 

where, 𝑐 ∈ ℝ<, 𝑨 and 𝑨𝒆𝒒 ∈ ℝ(×< and 𝒃 and 𝒃𝒆𝒒 ∈ ℝ(. All LPs can be written in the 

form as presented in equation (2.43). Any vector 𝒙# is a feasible solution if it fulfils all the 

constraints set by the LP. The solution space contains all feasible 𝒙#s. However, an 𝒙# is only 

an optimal feasible solution, 𝒙, if 𝑐I𝒙# ≤ 𝑐I𝒙 for all 𝒙 ∈ ℝ< within the set constraints. There 

is no requirement for a feasible solution to exist for a LP and if a feasible solution does exist, 

there does not need to be an optimal solution [70]. Optimal solutions are also not required 

to be unique.  

LP constraints are equivalent to a half space in ℝ< which reduces the solution space. The 

intersections of these half spaces define a polyhedron, Figure 2.12.  
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The simplex method, proposed by Dantzig in 1948, is the most used way to solve LPs [71]. It 

moves from one vertex to an adjacent vertex, whilst improving the objective value, until 

reaching an optimal solution [72]. If the problem is unbounded or infeasible the algorithm will 

stop with no solution produced.  

2.10 Mixed Integer Linear Programming 

If any of the variables in a LP are integers, such as binary variables, mixed integer linear 

programming (MILP) must be used. Binary variables can be used to define on/off constraints. 

MILP has been shown to be NP-hard (nondeterministic polynomial time) [73]. Equation (2.42) 

is still upheld but a subset of the decision variables, 𝑥, are defined as binary variables, i.e., 

{0,1}. 

The most common method of solving MILPs is the branch and bound method [74]. The solver 

iteratively goes down various paths, or branches, reaching a feasible solution within the 

constraints provided, Figure 2.13. The branch and bounding method is a solution approach 

that is based upon the principle that the total set of solutions for a problem can be reduced 

to a smaller subset of solutions. These subsets can then be evaluated until the best solution 

is found. The success of branch and bounding lies in guiding the initial search [75]. Once a 

x2 

x1 
0 

I 

II 

III 

Figure 2.12 Constraint (I, II and III) application to define a polyhedron 
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solution is found it saves it and repeats the process. For larger networks, this branching and 

bounding process is time consuming and can cause combinatorial explosion. 

 

2.11 Summary 

EFMs give an overall map of all routes possible in a metabolic network. These EFMs can be 

found within a convex polyhedral cone. Most commercial solvers use the double descrip6ve 

method to find these EFMs. However, it s6ll has not been possible to find genome scale 

network EFMs due to the combinatorial explosion that occurs whilst solving. Metabolic 

networks can be drawn either reac6on or metabolite centrically or as a bipar6te graph. These 

allow users to observe how reac6ons are connected to metabolites through the network and 

can even highlight dead-end metabolites. Removal of dead-end metabolites reduces the 

network size, and this will help in the detec6on of EFMs, par6cularly with linear programming 

techniques.  

 

 

Figure 2.13 Branch and bounding of MILP.  The green 
circle highlights a feasible solution 
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Chapter 3 Flux Balance and Flux Variability Analysis 
 

3.1 Introduction 

Flux analysis is used in metabolic engineering to maximise product yield, find the range of 

feasible fluxes and to es6mate unknown intracellular flux values. There are two well 

documented methods that will be discussed in this chapter: 

 

1. Flux balance analysis (FBA) – optimisation of one metabolite through a reaction with 

other flux values estimated around this. 

2. Flux variability analysis (FVA) – range of feasible flux values are found for an 

underdetermined system. 

 

A system is underdetermined if, 

rank(𝑺𝑵) < u (3.1) 

 where 𝑺𝑵 is the stoichiometry consisting of the reactions with unknown fluxes and u	is 

the number of unknowns [76]. Underdetermined systems do not allow for unique flux 

solu6ons to be obtained [76].  

3.2 Flux Balance Analysis 

FBA has a wide range of uses due to its simplicity, from gap filling networks to genome-scale 

synthe6c biology [77]. There is also o^en no need to code FBA from scratch as tools such as 

COBRA provide a reliable system for doing so [38]. However, the method is easily performed 

within the framework of linear programming introduced in Chapter 2. FBA is performed using 

the pseudo steady state constraint, equa6on (3.2), where 𝑺&  is the intracellular metabolic 

stoichiometry, 𝑺.  is the extracellular metabolic stoichiometry and 𝒗 is the flux vector for all 

reac6ons in the metabolic network. Three constraints are required: 

 

i) the flux is irreversible, equation (3.2). 

ii) the flux does not exceed its upper bound limit, equation (3.3). 
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iii) any experimentally measured fluxes are constrained via upper and lower bounds, 

equation (3.5), where 𝑣( is an experimentally measured flux value.  

 

�𝑺&𝑺𝒆
� ∙ 𝒗 = � 𝟎𝒗𝒎

� (3.2) 

𝒗 ≥ 0 (3.3) 

𝒗 ≤ 𝒗(=/ (3.4) 

𝑣(,(&< ≤ 𝑣( ≤ 𝑣(,(=/ (3.5) 

 

The next step in FBA is to define a phenotype in the form of a biological objec6ve that is 

relevant to the metabolic network being studied [77]. For example, if growth is being 

predicted the objec6ve is biomass produc6on. This is the rate at which metabolites are 

converted to biomass cons6tuents such as proteins and lipids. Biomass produc6on can be 

represented by the addi6on of an ar6ficial biomass reac6on that encompasses all reac6ons 

that lead to growth of the cell. The objec6ve func6on is maximised, equa6on (3.6), where  𝑍 

is the objec6ve func6on and 𝛿&  is a binary variable indica6ng if the reac6on is on or off in the 

objec6ve func6on.  

 

𝑚𝑎𝑥: 𝑍 = 	𝛿A𝑣A + 𝛿B𝑣B +⋯𝛿&𝑣& 				(𝑖 = 1, . . , 𝑁!) (3.6) 

 

A major drawback of FBA is the assump6on of op6mal behaviour of the cell. Therefore, the 

op6mal solu6on found may not correspond to the actual flux distribu6on within the cell. 

Therefore, when using FBA, it is vital to hypothesise that a) the cell has evolved to achieve 

op6mal behaviour b) the objec6ve of the cell is known and c) the objec6ve of the cell can be 

transformed into mathema6cal form [78]. Another drawback is the restric6on to one op6mal 

flux mode e.g. biomass growth [31]. Overall, it can be said that FBA is useful at obtaining flux 

values within op6mal condi6ons. However, to back up calculated values it would be necessary, 

and widely encouraged to perform experimental tests.  
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3.2.1 Exactly Determinable Chinese Hamster Ovary Cell 

 

A simple, exactly determinable Chinese hamster ovary (CHO) cell has a total of five products. 

These products were maximised via FBA code with flux limits of 0	 ≤ 𝑣	 ≤ 	10 mM (d x 109 

cells)-1. These limits were chosen as the maximum flux achieved for this network was 

8.1524mM (d x 109 cells)-1) (Chapter 4). The products were: 

1. Lactate via reaction 6 

2. Alanine via reaction 7 

3. Ammonia via reactions 16 and 17 

4. Carbon dioxide via reaction 19 

5. Biomass via reaction 18 

Glucose 6-Phosphate

Glucose

Lactate

Glutamine

Glyceraldehyde 3-Phosphate Dihydroxy-acetone 
Phosphate

Pyruvate

Acetyl-coenzyme A
CO2

Citrate

Oxaloacetate

Alanine

Alpha-ketoglutarate

CO2

Glutamate
NH4

NH4

Malate

Aspartate

v1

v2v3

v4v5
v6

v7

v8

v9

v10
v11

v13

v14

v15

v16

v17

CO2

Ribose-5-Phosphate

Nucleotides v18

CO2

CO2

v19 Fumarate
v12

Figure 3.1 Simple CHO cell network. Blue indicates the reaction or metabolite is extracellular and black is extracellular [1] 



 38 

Biomass is not explicitly defined in this network, however, purine and pyrimidine nucleotides 

are necessary simultaneously to produce biomass [79]. Therefore, it can be inferred that by 

maximising the production of these nucleotides you are increasing the biomass yield.  

Lactate is the predominant waste product of this network [80]. It poses a risk to cell growth 

and the produc6vity of the cell over its life6me, par6cularly at high concentra6on during the 

manufacturing of recombinant proteins [81]. Recombinant protein yield is a func6on of the 

cell density and protein produc6on [82]. Lactate engagers the laJer. To reduce lactate 

produc6on process op6misa6on can be used however this is o^en restricted to the specific 

needs of the producer and their steps they take to op6mise the process [81]. Gene6c 

engineering is also another op6on.  

 

Ammonia has a similar effect to lactate [81, 83]. The effect of ammonia on the metabolism of 

glucose, glutamine, and other amino acids in a batch culture of recombinant CHO cells have 

been inves6gated. The yields of cells to glucose, glutamine and other consumed amino acids 

decreased with the increase of ini6al ammonia concentra6ons. The metabolic pathways taken 

changed when ammonia concentra6ons were higher [84]. The glucose consump6on was more 

prone to form lactate by anaerobic metabolism; thus, crea6ng more ‘waste’ and inhibi6ng the 

cell further.  

 

Alanine is an amino acid that is used to generate the proteins, o^en required in therapeu6c 

recombinant protein produc6on. Alanine is a non-essen6al amino acid; however, it has been 

found to have a posi6ve impact on the biomass produc6on in the CHO cell. Inclusion of all 

amino acids regardless of their assumed essen6ality leads to greater biomass produc6on [85]. 

Overall, it is important to maximise alanine and biomass produc6on in this network, whilst 

trying to minimise lactate and ammonia.  

3.2.1.1 Presenting Flux Data 

There are many ways to present flux data, for example in a tableau or heat map. However, this 

work proposes that the use of digraphs to display flux is more meaningful and accessible. 

Figure 3.3 to Figure 3.5 provide the bipar6te representa6ons of the reac6ons and their 

associated flux, in mM (d x 109 cells)-1, required to maximise the 5 products. The numbers 
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shown between reac6ons and metabolites are the associated fluxes. For example, in Figure 

3.3, reac6on 1 which consumes glucose and produces Glucose-6-P has a flux of 5 mM (d x 109 

cells)-1. Both ammonia and CO2 are maximised from the same set of reac6ons shown in Figure 

3.4. Based upon the biological significance of the products reac6on 6, producing lactate, and 

reac6ons 16 and 17, producing ammonia should be avoided.  
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Figure 3.2 FBA results to maximise Alanine production 
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Figure 3.3  FBA results to maximise lactate production 
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Examina6on of Figure 3.2 highlights the trade off in maximising alanine is the produc6on of 

ammonia via reac6on 17. Figure 3.4, however, shows that the maximisa6on of undesirable 

ammonia will also produce another undesirable product, lactate. Therefore, FBA in this case 

shows that maximising the produc6on of desirable products will produce some undesirables 

but does not maximise them. This example shows the use of FBA in learning how to drive 

produc6on without comprising on cell growth.  

3.3 Flux Variability Analysis 

Every flux within a network can be defined as a convex combina6on of elementary flux modes 

(EFMs), 

 

𝒗 = f 𝝁𝒊𝒆𝒊

<`a"

&LA

= 𝐄𝛍 
(3.7) 

 

This equa6on is equivalent to the weigh6ng’s equa6on presented in Chapter 2, equa6on 

(2.13).  

 

Figure 3.6 shows a simple network with 3 EFMs, 

 

𝑬 = c
1 1 0 0
1 0 1 0
0 1 0 1

e (3.8) 

Figure 3.6 Example network to demonstrate stoichiometric representation 

m1
v1

A
v2

m3

m2

v4v3
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These three EFMs define a polyhedral cone, which contains all possible flux distribu6ons.  If 

all reac6on fluxes are unknown, 𝑺𝑵, i.e., none have been measured, 𝑺𝒎, then the system is 

underdetermined as equa6on (3.1) is true. In any underdetermined case then the basis search 

space for EFMs is,  

 

�𝑺𝑵 𝟎
𝑺𝒎 −𝒗𝒎

� ∙ I𝒗𝟏M = 𝟎 (3.9) 

which leads to two extreme rays,  

 

𝒆𝟏 = [1	0	1	0] (3.10) 

𝒆𝟐 = [0	1	0	1] (3.11) 

 

These rays are equivalent to two of the EFMs in equa6on (3.7); 𝑬𝟏 exists within the space 

created by these rays. The extreme rays can be used to generate a flux spectrum for the 

reac6on network, 

 

N

0 ≤ 𝑣A ≤ 1
0 ≤ 𝑣B ≤ 1
0 ≤ 𝑣C ≤ 1
0 ≤ 𝑣D ≤ 1

O (3.12) 

 

Any solu6on within these bounds is a feasible flux for the network. Figure 3.7 provides the 

axis representa6on of the extreme rays to define the flux distribu6on space [86]. An 

alterna6ve to this procedure is FVA, to generate the same spectrum of results [87]. The 

spectrum of results obtained are the maximum and minimum feasible flux values for a specific 

objec6ve func6on, which is o^en biomass [88]. There do exist varia6ons on this method, fast 
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thermodynamically constrained flux variability analysis (tFVA) for example. This method 

removes thermodynamically infeasible reac6ons to reduce solver 6me [36].  

 

To perform FVA, an op6mal value is determined for one or a combina6on of reac6ons to 

maximise an objec6ve. Then the possible maximum and minimum flux values are es6mated, 

whilst ensuring the objec6ve func6on is met. The set of flux ranges found define the boundary 

of the op6mal solu6on space, for a par6cular objec6ve [89]. Equa6ons (3.2), (3.3) and (3.5) 

are used along with seYng the objec6ve func6on to be the maximum possible solu6on, which 

is the flux for a specified reac6on. All fluxes must be maximised and minimised to ensure the 

objec6ve func6on is met, equa6ons (3.13) and (3.14). 

 

𝑚𝑎𝑥: 𝑍 = 	𝑣&             (𝑖 = 1, . . , 𝑁!) (3.13) 

𝑚𝑖𝑛: 𝑍 = 𝑣&            (𝑖 = 1, . . , 𝑁!) (3.14) 

 

 

 

 

!! = 1	0	1	0

!" = 0	1	0	1

&# = [1	1	0	0]

Figure 3.7 Axis depiction of extreme rays and elementary flux mode 
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3.3.1 Underdetermined Chinese Hamster Ovary Cell 

FVA was used on an underdetermined CHO network from Provost et al’s work, Figure 3.8, 

using the undesirable lactate production as the objective function [90]. This network is the 

same as that presented in Figure 3.1 but expanded to encompass the pentose phosphate 

pathway.  Lactate is maximised via flux through reaction 6. Due to the lack of comprehensive 

data on CHO cell composition, it is acceptable to not use growth of biomass as the objective 

[91]. The minimum flux values of 0 in Figure 3.8 are expected due to the irreversibility 

constraint. It is also expected that reaction 6 will have the same value for minimum and 

maximum flux as this reaction solely produces lactate and is being maximised. In Provost et 

al’s work, FVA was not performed as the exactly determinable network was used. Therefore, 

the results in Figure 3.8, are not comparable against literature. However, based upon typical 

flux values expected in the CHO cell, see Chapter 4, from Provost et al’s data, the flux ranges 

found are acceptable. Any flux within the flux range can occur. Figure 3.8 results emphasise 

that only 5 reactions need to be operational to maximise the yield of lactate. As discussed 

previously, lactate will hinder the growth of the CHO cell. The flux ranges achieved by FVA 

highlight the ease with which lactate can be largely produced. Therefore, FVA offers insight 

into ease of production through a network. 
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Figure 3.8 Maximum and minimum fluxes for underdetermined CHO cell network 
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3.4 Conclusion 

For undetermined networks both FBA and FVA can be performed. FBA requires experiments 

to confirm the results but highlights key reactions in the production of desirable and 

undesirable metabolites. It can be used to learn how to drive production without 

compromising on cell growth. FVA produces a range of fluxes with the aim of maximising 

reactions. It gives an insight into how easy it is to maximise metabolites at a minimum flux 

with as few reactions as possible.  This has been found to be particularly useful when network 

routes that produce undesirable products at a low overall flux distribution. Both FBA and FVA 

offer an insight in a cell’s flux distribution but with experimental data true flux estimates can 

be achieved. The next chapter will discuss how this experimental data can be used.  

Integration of these analysis techniques into E. coli EFM detection will be investigated in 

Chapter 7. 
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Chapter 4 Integrated Metabolic Flux Analysis 
 

4.1 Introduction 

Metabolic flux is the passage of a metabolite through a reac6on system over 6me. Metabolic 

flux analysis (MFA) uses experimental measurements for extracellular metabolites to es6mate 

unknown intracellular metabolite movement through the reac6on system. MFA is only 

possible for fully determinable systems [78]. A system is fully determined if, 

rank(𝑺𝑵) = u (4.1) 

MFA, based on stoichiometric equations representing reactions within metabolic networks, 

is widely used to determine the metabolic flux distribution that reflects or represents cell 

physiology [92]. It creates a metabolic map revealing the contribution of each reaction to the 

overall metabolic processes of substrate consumption and product formation [78]. However, 

using MFA has several drawbacks: 1) it cannot be used in undetermined systems, as defined 

by Klamt et al [76]. This case is often encountered due to the lack of measurable fluxes. 2) 

Errors in measurements introduce noise into the analysis, leading to unreliable flux 

estimations [93]. 3) Reversible reactions cannot be examined as the flux estimated would be 

the net value for that particular reaction [94]. 

 

The work presented in this chapter aims at improving the effect of sampling and errors within 

this analysis. It was proposed to use an integrated form of metabolic flux analysis (iMFA) as 

ini6ally proposed by Portela et al [93]. However, the work presented here goes further by 

discussing how observa6ons of material change via the intracellular routes can be made. As 

will be demonstrated, observa6on of material change allows for constants in reac6on rates to 

be es6mated and a dynamic simula6on produced [95, 96]. The method was applied to two 

simula6ons; with con6nuous, batch and fed-batch condi6ons examined [90, 93]. 

4.2 Metabolic Flux Analysis 

4.2.1  Methods 

https://www.sciencedirect.com/topics/engineering/stoichiometric-equation
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/metabolic-flux
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In a bio-reactor the rate of change of mass (or concentration) of the external species 

(substrates or products) can be defined by [97], 

 

𝑑𝒎
𝑑𝑡 =

𝑑(𝒄𝑉)
𝑑𝑡 = 𝑺. ∙ 𝒗(𝒕) + 𝐹 ∙ 𝒄𝑭 (4.2) 

 

In this equation, 𝒎 = (𝑚A, ⋯ 𝑚()I  is a vector of the mass (𝑔) of the individual 

metabolites, 	 𝒄 = (𝑐A, ⋯ 𝑐()I 	a vector of the concentration (𝑔. 𝑙bA) of the individual 

species, 𝑉 is volume (𝑙), 𝒄𝑭 = (𝑐a,A, ⋯ 𝑐a,()I  a vector of the concentration of the external 

species in a feed stream (𝑔. 𝑙bA) and 𝐹	(𝑙. ℎbA) the feed rate (a batch reactor has 𝐹 = 0). 

 

The basis of MFA is the assumption that there is no accumulation of intracellular metabolites. 

As discussed in Chapter 2, Elementary flux modes (EFMs) represent non-decomposable 

metabolic pathways between the substrates and final products. Knowledge of the EFMs 

allows the time dependent vector of fluxes to be written as a non-negative combination of 

specific reaction rates,  𝒓	(𝑚./ × 1), 

 

𝒗(𝑡) = 𝑬 ∙ 𝒓(𝑡) ∙ 𝑉 (4.3) 

 

In this equation, 𝑬	(𝒆 × 𝑁!)  is a matrix of EFMs and 𝒓(𝒕) is a vector of the specific reaction 

rates (𝑔. 𝑙bAℎbA). 𝒓(𝑡) can be modelled, for example, via the generalized Michaelis-Menten 

rate expression [90, 96], 

 

𝑟(𝑡) =
𝑋 ∙ 𝑎 ∙ 𝑐&
𝐾 + 𝑐&

	 (4.4) 

 

In this equation, 𝑎 is the maximum rate achieved by the system, 𝑋 is biomass concentration 

and 𝐾 is the Michaelis constant. 

 

Substituting equation (4.2) into equation (4.3) gives, 
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𝑑𝒎
𝑑𝑡 =

𝑑(𝒄𝑉)
𝑑𝑡 = 𝑺. ∙ 𝑬 ∙ 𝒓(𝑡) ∙ 𝑉 + 𝐹 ∙ 𝒄𝑭 = 𝑺c ∙ 𝒓(𝑡) ∙ 𝑉 + 𝐹 ∙ 𝒄𝑭 (4.5) 

 

The matrix 𝑺c = 𝑺. ∙ 𝑬 is the macroscopic stochiometric matrix, relating the external 

substrates and products. Expanding the differential this may also be written as, 

 

𝑑𝒄
𝑑𝑡 = 𝑺. ∙ 𝑬 ∙ 𝒓(𝑡) +

𝐹
𝑉 ∙

(𝒄𝑭 − 𝒄) (4.6) 

 

Using equation (4.7) we can define equation (4.8), 

 

�𝑺&𝑺𝒆
� ∙ 𝒗(𝑡) = � 0

𝒗𝒎(𝑡)
� (4.7) 

𝒗𝒎(𝑡) = 𝑺𝒆 ∙ 𝒗(𝑡) =
𝑑𝒎
𝑑𝑡 − 𝐹 ∙ 𝒄𝑭 =

𝑑(𝒄𝑉)
𝑑𝑡 − 𝐹 ∙ 𝒄𝑭 (4.8) 

 
For an exactly determinable system equation (4.8) can be solved subject to the constraint, 

𝒗 ≥ 𝟎. Note, however, given experimental measurements the method requires an 

approximation of the derivative terms in equation (4.8). Therefore, by approximating the 

derivative using measured concentrations you can also get these specific rates over time. 

Least squares, linear or quadratic programming can be used to get the flux value at each time 

point provided the system is not underdetermined. 

 

When using experimental data, it is necessary to know, or estimate, the extracellular fluxes – 

fluxes that cross the cell boundary. This can be done via differentiation or integration, 

however, the use of differentiation is most commonly used [98]. To use the differential 

method, a function is fitted to approximate the measured extracellular metabolite 

(metabolites classed as outside the cells wall, Chapter 2) concentrations, then the derivative 

of this function is found [99]. The derivative is then divided by the biomass concentration at 

that specific time, to estimate extracellular fluxes. It is known that this method can amplify 

errors derived from the measured concentrations due to poorly estimated derivatives.  



 51 

4.2.2 Intracellular Flux Estimation 

Constrained op6misa6on is used to es6mate fluxes in MFA due to measurement errors 

present within experimental data. Dai and Locasale discussed using large-scale constrained 

non-linear least squares set up to evaluate unknown fluxes. This is done via the minimisa6on 

of the difference in simulated isotopomer distribu6on profiles (technique to measure 

synthesis of biological polymers in vivo [100]) from assumed fluxes and the experimentally 

measured isotopomer distribu6on profiles [101].  

 

As opposed to using a least squares objective function (minimising the squared error between 

an output and a predicted output) in this work the objective function used was the sum of 

the absolute errors (the ℓA norm), known as least absolute deviations (LAD). Unlike least 

squares, LAD is not as sensitive to outliers and produces robust flux estimations [102]. This is 

due to not squaring the residual, like with least squares. Therefore, the following cost function 

was minimised, 

 

 

The advantage of using the ℓA norm is that it may be formulated as a linear objective function 

allowing the use of linear programming methods. Rewriting equation (4.9) using a vector of 

artificial variables, 𝒛 = (𝑧A, … , 𝑧<)d where 𝑛 is the number of reactions, gives, 

 

Equa6on (4.10) is minimised subject to the constraints, 

 

𝐽 = ‖𝑺. 	𝒗(𝑡) − 𝒗𝒎(𝑡)	‖A (4.9) 

𝐽 =f𝑧&

<

&LA

 (4.10) 

−𝒛 + 𝑺.𝒗(𝑡) ≤ 𝒗𝒎 (4.11) 

−𝒛 − 𝑺.𝒗(𝑡) ≤ −𝒗𝒎 (4.12) 
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Equa6ons (4.11) and (4.12) minimise the sum of the errors generated by the extracellular 

measured fluxes. Equa6on (4.13) ensures that the error term is posi6ve, and equa6on (4.14) 

is the steady state constraint.  

4.2.3  Hypothetical Cell Example 

Figure 2.10 shows the digraph of a simple cell network consisting of three extracellular 

substrates, A, F and G and three extracellular products H, I and P [93]. The stoichiometry for 

this network is, 

 

𝒛 ≥ 0 (4.13) 

𝑺&𝒗(𝑡) = 𝟎 (4.14) 

𝑺𝒊 = N

1 −1 −2 0 0 0 0
0 0 1 0 0 −1 −1
0 0 0 0 1 −1 0
0 −1 0 1 0 0 0

O (4.15) 

  

A GF

B

C

ED

H

IP

r1

r2r3

r4 r5

r6r7

Figure 4.1 Hypothetical simple cell metabolic network 
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As this network is hypothetical reaction rates had to also be generated to simulate the 

network. There exists three EFMs for this network, equation (4.17), which can be used 

alongside extracellular stoichiometry to find the macroscopic network 𝑺!, equation (4.18).  

 

Three reaction rates for the macroscopic stoichiometry, 𝑺!, were used to generate the rates 

and therefore the measured fluxes for this network. As no biomass was defined for this 

network it is assumed that metabolite ‘I’ is biomass. The three rates were, 

 

𝑺𝒆 =

⎣
⎢
⎢
⎢
⎢
⎡
−1 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 −1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

 (4.16) 

𝑬 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 2 2
1 0 0
0 1 1
1 0 0
0 0 1
0 0 1
0 1 0⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (4.17) 

  

𝑺! = 𝑺" ∙ 𝑬 =

⎣
⎢
⎢
⎢
⎢
⎡
−1 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 −1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

∙

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 2 2
1 0 0
0 1 1
1 0 0
0 0 1
0 0 1
0 1 0⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
−1 −2 − 2
0 0 −1
−1 0 0
1 0 0
0 0 1
0 1 0 ⎦

⎥
⎥
⎥
⎥
⎤

 

 

(4.18) 

𝑟A =
0.4 ∙ 𝑐e ∙ 𝑐f

𝑐e + 0.1 + 10 ∙ 𝑐gB
 (4.19) 
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Using equation (4.6) this allowed the set of ordinary differential equations (ODEs) to be 

integrated to obtain the extracellular species concentrations with respect to time. The 

equations were integrated with ode45 – sampled every 10 seconds. Integration was 

performed with ode45 due to the non-stiff nature of the equations.  

 

If measured fluxes were unknown then derivative approximation was required; therefore, 

polynomial fitting can be performed. The ideal data (no noise), which is often not available, is 

used to ascertain the degrees of the polynomial equations expected for each extracellular 

metabolite as a starting point. For MFA the ‘polyfit’ and ‘polyder’ functions in MATLAB2021a 

were used to estimate the derivative at measured concentrations. Equations (4.22) and (4.23) 

give an example of what these equations may look like, where b,d,e and f are constants.  

  

𝑐 = 𝑏𝑡C + 𝑑𝑡B + 𝑒𝑡 + 𝑓 (4.22) 

𝑑𝑐
𝑑𝑡 = 3𝑏𝑡B + 2𝑑𝑡 + 𝑒	 (4.23) 

4.2.4  Exact Derivatives 

For an ideal system only the substrate stochiometric matrix is required to ensure the system 

is exactly determinable [76]. The LAD formula6on of MFA gives the results shown Figure 4.2. 

For example, the flux in reac6on 1 is ini6ally at 0.1𝑔. 𝑙bA. ℎbA rising to 0.9𝑔. 𝑙bA. ℎbA over 100 

hours of cell life. Each 6me point has an associated flux for each reac6on of the network. As 

the system is modelled as batch, without substrate forma6on as a product, the concentra6ons 

of substrates will decrease over 6me resul6ng in a decrease in flux to a steady state. 

𝑟B =
0.2 ∙ 𝑐e ∙ 𝑐f
𝑐e + 4.5

 (4.20) 

𝑟C =
0.1 ∙ 𝑐h ∙ 𝑐f
𝑐h + 10.5

∙
𝑐e

𝑐e + 0.001
 (4.21) 
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Figure 4.2 MFA results for all fluxes in a hypothetical cell from 0 to 100 hours 
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 4.2.5  Noisy Derivatives 

To simulate realistic conditions noise is required. Random noise was added to each 

concentration data point for all extracellular metabolites. Normal distributed noise is used 

with a standard deviation of [0.8713, 0.4227, 1.2240, 0.9400, 1.4182] for each species 

respectively. A total of 2.5% of the random noise is added onto all of A’s data points, 0.25% 

of the random noise to G, F, H, and I and 1% of the random noise to P. The randomised noise 

is kept constant. There is no noise at the initial data point.  

 

MFA was trialled with deriva6ve es6mated measured fluxes using the noisy data. Figure 4.3 

shows the ideal data (no noise) compared to the flux found via polynomial fiYng (noisy data 

used). The polynomial fiYng data has been sampled every 10 hours. The fit is poor if the flux 

value plateaus and decreases over the simula6on 6me. This is o^en the case if mul6ple phases 

of cell life are modelled. Flux through reac6ons o^en decrease in the death phase. The 

polynomial fiYng accounts only for growth, and therefore, a gradual increase of flux over 

6me. The polynomial equa6on required for reac6ons 2 and 4 are different a^er 35 hours. To 
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Figure 4.3 MFA ideal flux = black line, polynomial fitting = blue dot 
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improve the fit beJer es6ma6ons of the equa6ons would be required; a process that could 

be lengthy as the number of reac6ons in a network increase. It would not be possible to make 

an accurate es6ma6on of flux using this method if all reac6ons required highly accurate 

polynomial’s, par6cularly with high likelihood of noise in any real data set [95].  

4.2 Integrated Metabolic Flux Analysis 

4.3.1  Methods 

iMFA uses an integrated form of equations (4.5) and (4.7) to remove the need for estimating 

the derivative of concentration (or mass) with respect to time. Therefore, specific measured 

rates are not needed; these rates can be hard to determine so are often not available [93]. 

The integrated form of equation (4.5) is, 

𝒎(𝑡) = 𝒎(0) + ± (𝑺𝒆 ∙ 𝒗(𝑡) + 𝐹 ∙ 𝒄𝑭)
i

V
𝑑𝑡

= 𝒎(0) + 𝑺𝒆± 𝒗(𝑡)𝑑𝑡 + ± 𝐹 ∙ 𝒄𝑭𝑑𝑡
i

V

i

V
 

(4.24) 

The steady state assump6on is,  

𝑺& ∙ ± 𝒗(𝑡)𝑑𝑡
i

V
= 𝟎 (4.25) 

This is generalised in equa6on (4.26). 

�𝑺𝒊𝑺𝒆
� ∙ ± 𝒗(𝑡)𝑑𝑡

i

V
= � 𝟎

𝒎𝒎(𝑡)
� (4.26) 

In this equation 𝒎((𝑡) is a vector of masses, which are obtained via re-arrangement of 

equation (4.8),  

𝒎𝒎(𝑡) = 𝑺.± 𝒗(𝑡)𝑑𝑡
i

V
= (𝒎(𝑡) −𝒎(0)) − ± 𝐹 ∙ 𝒄𝑭𝑑𝑡

i

V
 (4.27) 

Note that for a batch reactor, equa6on (4.27) is defined without the need for an 

approxima6on. For a semi-batch reactor, there is the need to approximate the integral term. 

For an exactly determinable system equa6on (4.24) can be solved subject to the constraint, 

∫ 𝒗(𝑡)𝑑𝑡i
V ≥ 𝟎. This provides the integrated fluxes with units of mass.  
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There is no need to approximate the deriva6ve for iMFA as integra6ng (4.16) with respect to 

6me yields a predicted polynomial, example given in equa6on (4.28). Therefore, errors from 

the polynomial equa6on are not magnified.  

 

4.3.2 Hypothetical Cell Example 

4.3.2.1 Exact Derivatives 

The same network used in section 4.2.2 is used again but for iMFA. The results for the seven 

reactions with ideal data are given in Figure 4.4. 

The integrated form of MFA for ideal data allows the conservation relationships within the 

network to be examined. Each time point has an associated integrated flux, otherwise known 

±
𝑑𝑐
𝑑𝑡

iA

iV
𝑑𝑡 = 𝑏𝑡C + 𝑑𝑡B + 𝑒𝑡 + 𝑓	 (4.28) 
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Figure 4.4 iMFA results for all fluxes in a hypothetical cell from 0 to 100 hours 
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as concentration, Figure 4.4. The manner of which Figure 4.4 should be interpreted is through 

example. The plot for v1 shows that at 100 hours of run time, a total of 40gL-1 of material has 

passed through the route. Only A is consumed via this route so it can be said that 40gL-1 of A 

has passed through the route. Moreover, as the volume is set to 1L it can be said that 40g of 

A has been consumed in 100 hours, as it is a substrate. This analysis can go further with the 

use of macroscopic material balances.  

 

4.3.2.2 Noisy Derivatives 
 

The same noisy data utilized in Figure 4.3 is applied to iMFA. iMFA’s results are given in Figure 

4.5. It is apparent that iMFA is better suited to noisy data sets than MFA; due to not requiring 

the derivative approximation to find the measured flux. Without estimating the derivative, 
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Figure 4.5 iMFA ideal flux = black line, polynomial fitting = blue dot 
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the error carried through the problem is reduced. Further sampling times and noise levels are 

tested below to give a better review on the method at determining flux.  

 
A total of 7 sampling simula6ons were tested. These simula6ons had noise present to deviate 

from an ideal data set; however, the noise was maintained throughout all the tests to allow 

for fair comparison. The sampling 6mes tested were 2hrs, 4hrs, 10hrs, 20hrs, 30hrs, 40hrs and 

50hrs. The fit for the sample 6me of 10 hours from the original simula6on has also been 

collected. 

 

Figure 4.6  details the results obtained via sampling simula6ons. Normalised root-mean 

square error (NRMSE) was used to allow for comparison of fits across all reac6ons. NRMSE 

relates the RMSE to the observed range of the variable. Thus, the NRMSE can be interpreted 

as a frac6on of the overall range that is typically resolved by the model. A fit closer to 0 is the 

ideal result. The best fit achieved was 0.68 at a 1-hour sampling 6me with the iMFA method. 

As sampling reduces the interpolated data follows the ideal data loosely, therefore, increasing 

error. However, the fits achieved for all iMFA simula6ons is an improvement on the MFA 

results. Overall, this method produced good fit values across the simula6ons tested.  With 
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industry o^en sampling frequently in the day and not at night iMFA currently offers the most 

reliable way of es6ma6ng concentra6on, and therefore, material change across the cell [93]. 

 
 

Figure 4.7 details the fit values obtained throughout the 9 noise simula6ons trailed with 

sampling every 10 hours. Two different noise sets were applied to the data, named seed 1 and 

seed 2. MATLAB allows for the use of randomised numbers to be generated and reused 

throughout the script; this allowed for consistent random noise to be u6lised. Doubling or 

halving the noise added did not double or halve the fit. Halving the noise improved the fit 

compared to the original noisy data by 26.94% for MFA and 18.2% for iMFA. All the MFA 

simula6ons yielded poorer fits when compared to iMFA.  It is apparent that noise has liJle 

effect to reducing the effec6veness of iMFA. The reasoning behind this result is that the use 

of the deriva6ve in MFA introduces addi6onal error to the solu6on. Therefore, when noise is 

added this error is amplified further. iMFA does not require a deriva6ve approxima6on and so 

any noise added to the data will not be mul6plied via the deriva6ve approxima6on. Figure 4.7 

also presents the fit’s achieved when a metabolite is set to have an error much greater than 
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the other extracellular metabolites. Across all metabolites, iMFA provided a beJer fit. Like 

with the doubling and halving tests, this is due to not requiring the deriva6ve approxima6on 

in yielding a result.  

4.3.3 Chinese Hamster Ovary Cell Example 

The Chinese hamster ovary (CHO) cell is widely used in the pharmaceu6cal industry in the 

produc6on of therapeu6c proteins; o^en used in the treatment of cancer, HIV and other 

diseases [103]. It is necessary to generate stable CHO cell lines with op6mal output to get the 

most out of their produc6on [104]. Figure 4.8 gives the metabolic network for a simplified 

version of the CHO cell. This network has two main energe6c nutrients, glucose, and 

glutamine. It produces lactate, Alanine, ammonia, and carbon dioxide via the four 

fundamental pathways: the glycolysis pathway, the glutaminolysis pathway, the TCA cycle, and 

the nucleo6des synthesis pathway [90]. Glutamine also acts as an extracellular substrate for 

this network. There are 19 reac6ons and 21 metabolites. 
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The data used in this example is from Bas6n et al’s work using three CHO-320 batch cultures 

[1, 90]. The cells were grown with measurements taken for glucose, glutamine, ammonia, 

lactate, Alanine, and cell density over 80 hours, which is equivalent to the growth phase. There 

was available data up to 200 hours, but this encapsulated the transi6on and decay phases of 

cell life which required differing reac6on rates per phase, so it was decided to use the growth 

phase only.  

4.3.3.1 MFA and iMFA Results 

MFA flux results were used to es6mate concentra6on change over 6me in a simula6on and 

this was then compared to the experimental results. The concentra6on results es6mated from 

iMFA were used to generate the change in concentra6on over 6me and this was then applied 

to a simula6on. The simula6on was then compared to the experimental results. Figure 4.9 

Figure 4.8 Uncompressed simple CHO cell network. Blue indicates the reaction or metabolite is extracellular and black is 
intracellular 
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shows the summed fits generated by using MFA fluxes to es6mate concentra6on and iMFA 

results, achieved across all 8 sampling periods simulated. At sampling 6mes of 10-, 20- and 

40-hours MFA outperformed iMFA. However, from Figure 4.9 it can be seen this is marginal. 

Therefore, it can s6ll be said that iMFA offers a reliable method compared to MFA across a 

wide range of sampling 6mes. The peak and trough results are caused due to outliers present 

in sampling leading to poor es6mates at 6me points. 

4.3.3.2 Prediction of Rate Constants Using iMFA 

As briefly men6oned above the concentra6on results produced by iMFA can be used to 

generate rates. Therefore, iMFA also offers the ability to es6mate rate constants given a 

postulated rate model; so extracellular concentra6on can be predicted over the en6re 

simula6on 6me. Using Michaelis-Menten kine6cs, reac6on rates for each metabolite can be 

formulated. Substrate’s glucose and glutamine in the CHO network are generated via 

equa6ons (4.29) and (4.30) respec6vely. Equa6on (4.31) provides the reac6on rate expression 

for products lactate, alanine, and ammonia. The stochiometric matrix defines the routes 
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Figure 4.9 Summed fits (NRSME) achieved for the CHO cell across 7 sampling times for MFA and iMFA 



 65 

whose material balance must be used to es6mate the reac6on rate for the metabolite. For 

example, for glutamine the iMFA results for route 17 and 18 must be combined as it is 

consumed via both routes. Non-linear least squares regression is used to find the constants 

for equa6ons (4.29), (4.30) and (4.31), Table 4.1. The macroscopic matrix network for the 

underdetermined system is given by equa6on (4.32) showing how the EFMs relate the 2 

substrates with the 3 products. Details on finding the macroscopic stoichiometry can be found 

in Chapter 2, sec6on 2.9.  

 

𝑟h =
𝑎h,1h𝑐h
𝐾h,1h + 𝑐h

	 (4.29) 

𝑟j =
𝑎j,1j𝑐j
𝐾j,1j + 𝑐j

	 (4.30) 

𝑟k =
𝑎k,1k𝑐h𝑐j

(𝐾h,1k + 𝑐h)(𝐾j,1k + 𝑐j)
 (4.31) 

𝑺𝑲 =

⎣
⎢
⎢
⎢
⎡
−1
0

0
−1

2
0
0

0
1
1

0
−1

0
−1

1
2
0

0
2
0

−1
0

−2
−3

0
0
0

1
0
1

−2
−3

−2
−3

2
1
0

0
0
1

−2
−3
0
1
0 ⎦
⎥
⎥
⎥
⎤
 (4.32) 

 

 
Table 4.1 Reaction rate constants determined via non-linear regression 

 
 
 
 
 

 

Table 4.1 shows that some of the half-satura6on constants were in fact nega6ve. This is not 

realis6c as the half satura6on is the concentra6on suppor6ng an uptake rate one-half the 

maximum rate [105]. The data set used to determine these constants does contain errors as 

experimental data is used. These errors will be carried through to the nonlinear regression 

fiYng of a and K. To alleviate these issues o^en the half-satura6on constant is set to a value 

and the constant ‘a’ es6mated [90]. Therefore, the satura6on constant was set to 0.01 and 

the constant ‘a’ es6mated, Table 4.2. 

 

Metabolite A KG KQ 

Glucose 0.1625 -0.7218 - 
Glutamine 0.0354 - -0.2078 

Lactate 0.2512 0.9936 0.2788 
Ammonia 0.0375 0.7816 0.1798 
Alanine 0.0170 -0.1370 -0.0940 
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Table 4.2 Reaction rate constants determined via non-linear regression and saturation constants set to 0.01 

 

 

 

 

 

 
A^er applying the reac6on rate constants to a dynamic simula6on a simulated fit can be 

overlayed the sampled data from Bas6n and Provost’s work, Figure 4.10 [90]. The fit achieved 

is a good predic6on of concentra6on for both substrates and products. Fit values for Figure 

4.10 have been determined, along with fit values for the dynamic simula6on presented in 

Bas6n et al’s work, Table 4.3.  

 

Table 4.3 Fit achieved for each extracellular metabolite vs time plot using Provost and Bastin et al's simulation and the iMFA 
generated simulation 

SimulaXon Biomass Glucose Glutamine Lactate Ammonia Alanine 
iMFA 0.3654 0.2455   0.7078    0.4674 0.2633 0.5606 

BasMn et al 0.3654 0.2756 0.5823 0.3189 0.2595 0.2448 

Metabolite a 
Glucose 0.1929 

Glutamine 0.0393 
Lactate 0.2918 

Ammonia 0.0421 
Alanine 0.0184 
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Bas6n et al’s fit based on MFA is on average beJer performing than the one created with the 

iMFA results. iMFA is has a NRSME fit 31.28% worse than Bas6n et al’s across the 6 

metabolites, Table 4.3. However, the iMFA route offers a simpler method to create dynamic 

simula6on than Bas6n’s. iMFA does not required measured flux rates to be known/or 

es6mated; a process that can be lengthy and error introducing. Moreover, the proposed 

method only requires the stochiometric matrix and sample concentra6ons to be known. 

Es6ma6on of biomass specific growth rate is s6ll required. Overall, the iMFA method offers a 

reliable route to create a dynamic simula6on of cell growth which requires less approximated 

data compared to tradi6onal methods.  

 

0 20 40 60 80
Time [h]

0

0.5

1

1.5

2

2.5

3

3.5
C

on
c 

[m
M

]
Biomass

0 20 40 60 80
Time [h]

0

2

4

6

8

10

12

14

16

18

C
on

c 
[m

M
]

Glucose

0 20 40 60 80
Time [h]

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

C
on

c 
[m

M
]

Glutamine

0 20 40 60 80
Time [h]

0

5

10

15

20

25

30

C
on

c 
[m

M
]

Lactate

0 20 40 60 80
Time [h]

0.5

1

1.5

2

2.5

3

3.5

4

C
on

c 
[m

M
]

NH4

0 20 40 60 80
Time [h]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C
on

c 
[m

M
]

Alanine

Figure 4.10  Sampled concentrations from Provost and Bastin experimental data (blue) and iMFA generated simulated 
model (black) 
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4.3.4  System Types 

All results thus far have been on batch systems. To inves6gate the effects of opera6ng under 

different condi6ons, both fed batch and con6nuous systems have been modelled with the 

hypothe6cal cell presented in sec6on 4.2.2. Equa6ons (4.33) to (4.35) detail the extracellular 

deriva6ve equa6ons used for modelling substrates, products and intracellular species 

condi6ons respec6vely [97]. These are substrate, product, and biomass specific versions of 

equa6on (4.6). 𝐷&  is the dilu6on rate, 𝑥 biomass concentra6on and 𝑟 reac6on rate. The 

equa6ons adjust based upon the system type. For a batch system, 𝐷& = 0 and for a fed-batch 

system [𝑃] = [𝑃>].  

 

𝑑𝑐l
𝑑𝑡 = 𝐷&(𝑐a,l − 𝑐l) − 𝑟*𝑋 (4.33) 

𝑑𝑐k
𝑑𝑡 = 𝑟*𝑋 − 𝐷&𝑐k	 (4.34) 

𝑑𝑋(=@1m
𝑑𝑡 = 𝑟(=@1m − 𝜇𝑋(=@1m	 (4.35) 

 

Figure 4.11 and Figure 4.12 provide the extracellular metabolite concentra6ons over the 

simula6on 6me for con6nuous and fed batch systems respec6vely. A typical con6nuous 

bioreactor is the chemosat, where the medium is designed to ensure there is only one single 

rate-limi6ng substrate [106]. The growth rate of biomass can be controlled and o^en steady 

state is achieved in these systems [97]. Figure 4.11 shows an ideal system where the substrates 

‘A’, ‘G’ and ‘F’ have constant concentra6ons in the vessel as the feed rate is equal to the 

consump6on rate. The substrates have a period of ini6al growth and then their concentra6ons 

are constant as the extrac6on of these metabolites form the vessel is equivalent to the 

accumula6on. The iMFA results therefore can produce realis6c models for con6nuous systems 

that mirror that of which is expected experimentally.   
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Con6nuous systems are not o^en used due to the risk of contamina6on from the feed stream 

[97]. Instead fed batch is the system of choice for many fermenta6ons as the substrate feed 

can be kept constant [97]. Figure 4.12 shows the fed batch case where the inlet flow of 

substrates is less than the consump6on rate (rates remained unchanged). It was therefore 

expected that ‘A’, ‘G’ and ‘F’ would decrease in concentra6on over 6me, which the iMFA 

results clearly show to be true. By modelling a case where the substrate consump6on rate is 

greater than the inlet rate it allowed for checks to be made that the product concentra6ons 

responded by increasing and then plateauing as the substate concentra6ons dwindled. This is 

seen in the results of ‘H’ where the concentra6on begins to level off at ~100hrs.  

 

 

 

 

Figure 4.11 Extracellular concentrations A,G,F,H,I and P for a continuous system, blue dots showing sampling of 10 hours 
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MFA and iMFA for the con6nuous system yield Figure 4.14 and fed batch Figure 4.15. iMFA 

appears to perform worse than MFA, however, the NRSME results reveal that iMFA is in fact 

more accurate, Error! Reference source not found.. MFA is beJer suited to batch systems over 

con6nuous and fed batch systems, Error! Reference source not found.. MFA relies on a 

deriva6ve es6ma6on, which for con6nuous and fed batch systems also include a dilu6on rate 

and current concentra6on values. Without ideal data, as in the simula6on, the deriva6ve 

approxima6on for these systems will have greater error than with the batch system.  

 

iMFA outperforms MFA in all systems. The good fit values across the board show that it should 

be the preferable choice over MFA. The fed batch and con6nuous systems offer a poorer fit 

than batch with the iMFA. Like with MFA this is due to the introduc6on of error form noisy 

concentra6on data. However, iMFA provides on average 2.24 6mes beJer fit than MFA, Error! 

Reference source not found.. 
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Figure 4.12 Extracellular concentrations, A,G,F,H,I and P for a fed-batch system, blue dots showing sampling of 10 
hours 



 71 

 

batch fedbatch continuous
Dynamic Simulation

0

1

2

3

4

5

6

7

8

9

Su
m

m
ed

 N
RS

M
E 

Fi
t

MFA
iMFA

Figure 4.13 Dynamic simulation summed fits achieved for MFA and iMFA 
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Figure 4.14 Continuous system with MFA and iMFA. Ideal data (black) and approximated with polyfitting (blue dots) 
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Figure 4.15 Fed batch system with MFA and iMFA. Ideal data (black) and approximated with polyfitting (blue dots) 
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4.3.5 Conservation Relationships 

Results from iMFA can be utilised to define the conservation relationships of any cell network. 

These relationships relate substates to products. Every solution or operating mode is 

contained within the null space of the stochiometric matrix [107]. If we wish to find the 

macroscopic conservation relationships; where mass consumed is equivalent to mass 

produced [108], then the null space of the overall stoichiometry must be found, equation 

(4.36).  

 

𝒎.𝒃 = 	𝑛𝑢𝑙𝑙³𝑺𝑲I´ =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0.5
0 1 −1
1 0 −0.5
1 0 0
0 1 0
0 0 1 ⎦

⎥
⎥
⎥
⎥
⎤

 (4.36) 

 

In this equa6on 𝒎.𝒃	(𝑚./ × 𝑒) is matrix of conserva6on rela6onships. The overall 

stoichiometry is used as we are only interested in the minimal routes that give a macroscopic 

view of the network. The results of the iMFA can be used to expand upon this showing how 

changes in substrate effect product yield. The balances for this system created using the 

results of equa6on (4.36) are,  

  

𝑚a = 𝑚g (4.37) 

𝑚h = 𝑚f 	 (4.38) 

0.5(𝑚e −𝑚a) − 𝑚h−= 𝑚k	 (4.39) 

 

Therefore, the consump6on of F is directly propor6onal to the produc6on of H, so on so forth. 

To expand on these balances a MILP method can be applied to minimise the sum of the 

binaries associated with each metabolite within 𝑺𝑲, equa6on (4.40). The equality constraint 

ensures the overall stochiometric matrix, mul6plied by some vector 𝒄	(1 ×𝒎), is equal to 0, 

equa6on (4.41). Equa6on (4.42) shows that 𝛿&  is the binary variable vector associated with 

any extracellular metabolite. This, combined with integer cuts, equa6on (4.43), will provide 

all the possible conserva6on rela6onships that exist within the network. In equa6on (4.43) 𝜹= 
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are the vectors of binary variables obtained from the previous k itera6ons of the MILP and 

‖𝜹=‖V is the cardinality of the vector of binary variables obtained at itera6on k. 

 

 

𝑚𝑖𝑛f𝜹𝒊

<

&LA

	 (4.40) 

𝑺𝑲 ∙ 𝒄 = 𝟎 (4.41) 

𝜹𝒊 = N

𝛿A
𝛿B
⋮
𝛿<

O , 𝑖𝑓	𝑐 ≥ 1, 𝛿< = 1	𝑒𝑙𝑠𝑒	𝛿< = 0	 (4.42) 

(2𝜹= − 1)I𝜹WnA ≤ ‖𝜹=‖V − 1      (𝑎 = 2,… , 𝑘)	 (4.43) 

 

The applica6on of this method finds two of the already defined conserva6on rela6onships, 

equa6ons (4.37) to (4.39), along with the following.  

  

0.49𝑚h + 0.01𝑚a = 0.49𝑚f + 0.01𝑚g (4.44) 

0.167𝑚e = 0.33𝑚f + 0.167𝑚g + 0.33𝑚k	 (4.45) 

0.01𝑚e + 0.47𝑚a = 0.02𝑚f + 0.48𝑚g + 0.02𝑚k	 (4.46) 

0.01𝑚e + 0.47𝑚h = 0.49𝑚f + 0.01𝑚g + 0.02𝑚k (4.47) 

0.01𝑚e + 0.01𝑚h + 0.46𝑚a = 0.03𝑚f + 0.47𝑚g + 0.02𝑚k (4.48) 

 

These relationships inform us on the ratio of substrates to desired products. It also highlights 

the importance of one substrate over another for the network. For example, only small 

quantities of substrate ‘A’ are required for all conservation relationships.  If the culture was 

previously being grown with large amounts of all substrates, having this information would 

allow for substrate quantities to be decreased whilst not sacrificing product yield. 

4.4 Conclusion 

This chapter has focussed on the use of an integrated form of MFA to approximate material 

transfer through all routes of a metabolic network. This method uses the integrated form of 

flux – concentra6on change – to calculate intracellular data. A prevalent issue with MFA is it’s 
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inaccuracy with real 6me data [94], however, iMFA has been found to be more accurate in 

these cases. iMFA’s accuracy with sparse, noisy data sets means it is a viable tool for industry 

to monitor the transfer of material through routes in a network. Monitoring material transfer 

is a useful technique in understanding the phase of cell life. Also, if the transfer of material 

through routes are known, it would be possible to expand the work into examining which 

routes are ac6ve over the cell’s life6me.  

 

iMFA was also found to be useful in crea6ng a dynamic simula6on of the cell’s growth phase. 

Approxima6on of rate constants via lengthy methods of trial and error have been widely used 

[79, 90, 109]. Although successful, as in the case discussed in this work, some6mes a beJer 

fit than iMFA, the process is sped up via the use of iMFA. iMFA offers an efficient method in 

approxima6ng both the satura6on constant and rate constant for a reac6on rate in a 

Michaelis-Menten form. Whilst s6ll offering a good predic6on of substrate and product 

concentra6ons over 6me. To add to this, iMFA does not require behaviour assump6ons of the 

cell to be made, apart from the pseudo-steady state assump6on. Specific fluxes are not 

necessary in the predic6on of intracellular material change, a major drawback of MFA.  

 

Deriva6ve approxima6on is required to predict measured fluxes. For MFA this leads to the 

introduc6on of errors. The same can be said for iMFA but the errors are greatly reduced, with 

data reconcilia6on offering the best approxima6on for iMFA. By using the integrated form of 

deriva6ve approxima6on for measured rates this work found that data reconcilia6on 

performed well across all sampling 6mes. This is due to data reconcilia6on reducing the errors 

on the individual data points rather than using the noisy data to es6mate other values for use 

in the simula6on.  

 

The proposed method does not improve on MFA’s inability to work on underdetermined 

systems or reversible reac6on networks. However, the reduc6on in error in the solu6on 

achieved highlights the poten6al of using iMFA. FBA allows for the use of underdetermined 

systems; further to this it may be possible to use an integrated form, to build a predic6ve 

model of a metabolic network using material change. Therefore, it may also be possible to use 

an integrated form of FVA.  
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Using metabolic analysis methods is widely done, with improvements o^en only focussing on 

wholly new techniques. The adjustment of current techniques may offer an avenue of 

research to understand a cell’s network in the manner of material change instead of flux. The 

reduc6on of error in real 6me data across batch, fed batch and con6nuous systems make iMFA 

a real contender in flux analysis techniques. 
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Chapter 5 Elementary Flux Modes 

5.1 Introduction 

An elementary flux mode (EFM) is a non-decomposable route through a cell connecting an 

extracellular substrate, through an intracellular network, to an extracellular product. A set of 

EFMs describe all the routes through a network. The number of EFMs in a network increases 

with the number of reactions present, for example a medium sized network for Escherichia 

coli (E.coli) (containing about 100 reactions) consists of around 272 million EFMs [25]. The 

main issue associated with this computation is the combinatorial explosion of the number of 

EFMs with the network size [87], additionally requiring a large memory space. 

This chapter discusses a mixed integer linear programming (MILP) approach to solve EFMs 

and how it compares to publicly available tools; efmtool and FluxModeCalculator [29, 30, 31, 

33]. The developed approach is an extension to the algorithm first proposed by de Figueiredo 

et al originally designed to calculate the K-shortest EFM’s, where K is any assigned integer 

determining how many EFMs you wish to find [32]. The approach includes additional model 

constraints that enhance the efficiency of the MILP algorithm which allows larger networks 

to be analysed. In de Figueiredo et al’s work only the 10-shortest EFMs were ever found for 

genome size networks. There also was no report on the speed of the method in finding EFMs 

within networks of increasing complexity.  The number of EFMs solvable will be discussed 

along with how MILP could be used in the future to solve large scale networks. Heuristics, an 

approach to solving the problem using biological fundamentals have also been employed to 

reduce the EFM search space to ensure only EFMs that can occur will be found.  

The use of linear programming techniques, par6cularly mixed integer linear programming 

(MILP) to determine EFMs has also been examined throughout literature. In work by de 

Figueiredo et al, EFMs are enumerated via a sequence of MILP op6misa6on problems [32]. 

Any flux mode with the minimum number of reac6ons must be, by defini6on, an EFM. This 

acts as the basis of the method which is used to find the ‘K-shortest’ EFMs for a par6cular 

metabolite produc6on or consump6on. Although this technique is successful, the authors 

acknowledged that it is beJer suited for product/substrate targeted EFM enumera6on. This is 
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the best way to get biologically significant and therefore meaningful results from EFM 

enumera6on.  

 

Pey and Planes [110] proposed using MILP to enumerate EFMs that fulfil several biological 

constraints. Along with constraints from de Figueredo et al’s work, the use of the addi6onal 

biological constraints reduced problem size and enhanced the MILP solver solu6on 6me. This 

was applied to a saccharomyces cerevisiae network to maximise ethanol produc6on via the 

use of 100% of the carbon source, glucose. To do this they deac6vated reac6ons which did 

not contribute to ethanol’s produc6on to get the subset of EFMs. 

 

Larger scale EFM enumera6on has been possible with MILP as the basis. Chan et al proposed 

an MILP scheme to break down flux distribu6ons into EFMs at genome scale [111]. Unlike the 

other methods, this algorithm finds a set of EFMs that decompose a flux distribu6on for large 

scale networks, without the prior need for all EFMs. This work could go further s6ll by 

examining several flux vectors simultaneously to reveal common routes across experimental 

condi6ons. However, it provides an analy6cal method ready for use if in vivo flux 

measurements can be performed.  

 

MILP has also been used in other manners to examine a metabolic network. For example, 

Kaleta et al proposed using it to find pathways in sub-networks, within the context of the 

whole network [112]. These pathways are known as elementary flux paJerns (EFP). EFPs can 

correspond to at least one EFM in a network; so are useful in determining the robustness of 

the network and the composi6on of minimal substrates need for the produc6on of a par6cular 

product [59]. Another example, is the work of Bockmayr and Röhl which reduced networks 

down into subnetworks with given proper6es [113]. EFM enumera6on in smaller networks is 

less computa6onally hard so spliYng into subsec6ons allows for easier solving. These works 

show the mul6ple uses for MILP on metabolic networks, outside the solving of EFMs.  

 

This chapter proposes the use of MILP as a successful method for the determina6on of EFMs. 

Established commercial solvers use varia6ons of the double descrip6ve method only and the 

proposed method offers a reliable technique ready for computa6onal advances in the 

following years. Any future advances in hardware and solver efficiency will improve the solve 
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6me of MILP. In 24 years, up to 2014, there was a 200 billion speed up in the solving of MILP 

problems, with further advancements being made every year [114, 115, 116]. 

5.3 Methods 

A flux distribu6on within a metabolic network is any vector of flux rates 𝒗 (𝑁1 	𝑥	1) that 

sa6sfies equa6on (5.1), where 𝑺	(𝑁(	x	𝑁1) is the internal stoichiometric matrix comprising of 

𝑁(	metabolites and 𝑁1  reac6ons. To ensure that only irreversible reac6ons exist, any 

reversible reac6on is decomposed into two irreversible reac6ons (as discussed in chapter 2). 

Furthermore, the non-decomposability of a EFM is represented by equa6on (5.2), which 

states that, an EFM is a minimal, unique set of flux-carrying reac6ons. 

 

𝒗 ∈ {𝒗|𝑺𝒗 = 𝟎, 𝒗𝒊𝒓𝒓 ≥ 𝟎} (5.1) 

𝑬𝟏 ⊄ 𝑬𝟐 (5.2) 

 

MILP can be used to find EFMs due to the constraint-based nature of the problem. For each 

reac6on in the metabolic network a binary integer variable, 𝛿&(𝑖 = 1,… . , 𝑁!) ∈ {0,1} is used 

to define whether a reac6ons is ac6ve, 𝛿& = 1, ⇒ 𝑣& > 0 or not, 𝛿& = 0, ⟹ 𝑣& = 0. The MILP 

approach proposed by de Figueiredo et al aimed to minimise the sum of these variables 

subject to the addi6onal constraints discussed below [32]. The decision variables are the 

on/off binary variables represen6ng reac6on pathways.  

 

min∑ 𝛿&
[!
&LA   (5.3) 

𝑺𝒗 = 𝟎 (5.4) 

𝑣& ≤ 𝑀&𝛿&        (𝑖 = 1,… . , 𝑁1) (5.5) 

𝛿& ≤ 𝑣& 													(𝑖 = 1,… . , 𝑁1) (5.6) 

f𝛿𝒊 ≥ 1
[#

&LA

	 (5.7) 

 

Constraint (5.4) ensures the steady-state condi6on of the metabolic network and 

determina6on of the flux distribu6on associated with the ac6ve reac6ons. Equa6ons (5.5) and 

(5.6) represent the so-called Big M constraint method, where 𝑀 is the Big M constant (which 
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theore6cally can be different for each reac6on). These equa6ons ensure that 𝛿& = 1, ⇒ 𝑣& >

0 and, 𝛿& = 0, ⟹ 𝑣& = 0. The choice of the Big M constant is always greater than the greatest 

stochiometric ra6o allowed within any flux distribu6on [111]. In addi6on, equa6on (5.7) 

ensures that at least one reac6on is ac6ve avoiding the trivial solu6on where all the binary 

variables are set to zero. 

 

A final constraint is added to the MILP to ensure any reac6ons from the same reversible 

reac6on set cannot simultaneously occur; recall, reversible reac6ons must be decomposed 

into 2 individual reac6ons to ensure equa6on (5.7) is met. Assuming the set of reversible 

reac6on pairs is defined, then for each reversible reac6on, there will be a binary variable 

associated with the forward reac6on, 𝛿>,?  and the reverse reac6on 𝛿1,?    (𝑙 = 1,… ,𝑁1.2) 

where 𝑁1.2 are the total number of reversible reac6ons in the network. Therefore constraint 

(5.8) ensures that the reversible reac6on pair cannot occur simultaneously.  

 

𝛿>,? + 𝛿1,? ≤ 1							(𝑙 = 1,… . , 𝑁1.2)	 (5.8) 

 

The solu6on of this MILP will find one poten6al EFM, that must be confirmed. This addi6onal 

test is discussed in sec6on 5.3.2. Furthermore, as formulated, equa6on (5.3) to (5.8) will only 

find one solu6on (the shortest – in terms of the total number of reac6ons included) and to 

find all solu6ons (all EFM’s) integer cuts are required so that once a poten6al EFM is found it 

is removed from the solu6on space and the algorithm is resolved to find addi6onal EFMs. 

5.2.1 Integer cuts 

When the solu6on to the MILP is found an integer cut is added, equa6on (5.9) [117], before 

the solu6on procedure is repeated for 𝑘 = 1,… . . 𝑁W itera6ons. 

 

(2𝜹= − 1)I𝜹WnA ≤ ‖𝜹=‖V − 1      (𝑎 = 2,… , 𝑘) (5.9) 

  

In equa6on (5.9) 𝜹= are the vectors of binary variables obtained from the previous k itera6ons 

of the MILP and ‖𝜹=‖V is the cardinality of the vector of binary variables obtained at itera6on 

k. 
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5.3.2  The rank test 

To check the solu6on is an EFM, a rank test is used. This has been extensively used throughout 

literature [27, 31, 118]. If all reac6ons are irreversible, then 𝒗 is an EFM if equa6on (5.10) is 

true. This test works as a feasible solu6on is an EFM if and only if the null space of the 

submatrix 𝑺𝑬𝑭𝑴	that involves the reac6ons of the EFM is of the dimension one [27]. In other 

words, the rank of this submatrix must be equal to the number of the par6cipa6ng reac6ons 

minus one.  

 

𝜌(𝑺𝑬𝑭𝑴) = ‖𝜹=‖V − 1	 (5.10) 

 

Note – this test is done a^er all itera6ons have been performed by the MILP. Figure 5.1 

provides a flowchart view of the proposed method prior to the addi6on of further constraints.  
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5.3.3  Additional constraints to improve the efficiency of the MILP 

There will be a binary variable associated with the reac6ons directly related to the substrates, 

𝛿3,(    (𝑚 = 1,… ,𝑁3) and the products 𝛿0,<   (𝑛 = 1,… ,𝑁0) where 𝑁3	is the total number of 

substrates and 𝑁0 the total number of products. Therefore, to ensure that at least one 

substrate and at least one product is included in any EFM the following constraints can be 

defined,  

 

f 𝛿𝒔,𝒎 ≥ 1
[$

(LA

	 (5.11) 

f𝛿𝒑,𝒏 ≥ 1

[%

<LA

 (5.12) 

Apply constraints (5.4 to 5.8) 

Minimise cost func6on (5.3)  

Integer cut (5.9) 

Rank test (5.10) 

EFMs provided. 

< max number of 
iteraMons 

Figure 5.1 Flow chart of EFM enumeration via proposed MILP method 
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Any EFM must be a minimal decomposi6on of the flux distribu6on and cannot share the same 

reac6on set with another EFM, equa6on (5.1). This defini6on helps in the reduc6on of the 

search space as once a feasible EFM has been found no other EFM can contain the exact set 

of reac6ons as another. Opera6ng similarly to an integer cut, constraint (5.13) ensures that 

the new EFM can be composed of at most ‖𝜹𝒌‖V − 1 of the reac6ons in the previously found 

EFMs.  

 

𝜹𝒂I𝜹𝒌n𝟏 ≤ ‖𝜹𝒂‖V − 1      (𝑎 = 2,… , 𝑘)	 (5.13) 

 

Dependency of one reac6on onto another can be observed through flux balances. If any 

metabolite is consumed by only one reac6on, 𝛿@,A, and produced by only one reac6on, 𝛿01,A 

then constraint (5.14) must hold. This is commonly known as flux coupling and is o^en used 

to reduce the size of genome networks [119, 120]. 

 

𝛿@,A − 𝛿01,A = 0	 (5.14) 

 

Constraint (5.14) effec6vely compresses the network, reducing the search space. These flux 

balance constraints can be deduced from a priori inspec6on of the rows of the stoichiometric 

matrix 𝑺. Alterna6vely, they are observed through the digraph representa6on of the network 

whereby species nodes that an indegree and an outdegree of one iden6fy the reac6on 

pairings. 

5.3 Algorithm implementation 

The MILP is implemented in MATLAB using the ‘intlinprog’ func6on. We make use of the 

output func6on associated with ‘intlinprog’ as this reports addi6onal solu6ons to the MILP at 

each itera6on. Not all these solu6ons will be EFMs when tested, however, by saving all outputs 

as possible solu6ons the search 6me may be reduced as some will be EFMs (the benefit of 

using this will be reported in the results sec6on).  
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Maximum itera6ons are manually set for all networks. These are par6cularly important when 

working with larger, complex networks as the MILP branch and bound search method will take 

6me to find feasible solu6ons.  

5.4 Results 

5.4.1  EFM Detection 

A total of 9 networks were ini6ally tested in the MILP set-up for finding EFMs. Four MILP 

setups were trailed: 1) standard MILP equa6ons (5.8) to (5.10), 2) use of the intlinprog’ output 

func6on which reports addi6onal (sub-op6mal) solu6ons to the current MILP, 3) constraint 

(5.13) preven6ng reac6on sets reappearing in future EFMs and 4) constraint (5.14) to 

compress the network through flux balances. All these tests have been 6med and compared 

to the results found in efmtool and the FluxModeCalculator (FMC). Each network was chosen 

or designed to test that the solver was able to find EFMs with varying circumstance. The 

networks tested are as follows (their sizes, i.e., number of metabolites, number of reac6ons 

and number of reversible reac6ons can be found in Table 5.1): 

 

1. A realistic simple network for initial EFM detection [93]. 

2. Knockout reaction network [70]. 

3. Larger realistic network – Chinese Hamster ovary (CHO) cell – which is exactly 

determinable [76]. 

4. Larger realistic network – CHO cell – which is underdetermined [76]. 

5. Simple saccharomyces cerevisiae network [46] 

6. Pichia Pastoris cell– pyruvic acid acting as a product as per the stoichiometry used in 

literature [121]. 

7. Simple yeast core model based on that used by Damiani et al, [122]. 

8. Pichia Pastoris cell– pyruvic acid acting as a substrate [121]. 

9. Escherichia coli (E. coli) core [38]. 
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Table 5.1 Network sizes, number of flux balances and the value of the BigM used in EFM enumeration  

Network 
No. ReacXons 

(reversible pairs) 

No. 

Metabolites 

Flux 

balances 
Big M 

1 7 (0) 10 2 2.5 

2 14 (0) 15 4 1 

3 19 (0) 21 5 10 

4 24 (0)  25 5 10 

5 22 (0) 21 2 10 

6 61 (17) 46 10 3500 

7 40 (9) 26 5 10 

8 61 (17) 46 9 781 < BigM < 45833 

9 114 (39) 92 2 1000 

 

The Big M value, equa6on (5.5), varies with each network. For the networks discussed in 

sec6on 4.5.1 the Big M values are given in Table 5.1. Larger networks with more reversible 

reac6ons require larger Big M values. If the Big M value chosen is too small not all EFMs will 

be found. O^en the Big M is chosen to be the upper bound on the flux range across the 

reac6ons [113]. For networks with integer stoichiometry, flux es6mates are o^en small integer 

values that are scalar with the stoichiometry. However, network 8 consists of stoichiometry 

which are not integers, leading to a large range of flux es6ma6ons. These values are reflected 

in the Big M’s chosen. There is a large range due to the number of reac6ons each with non-

integer values. To improve the efficiency, it was decided to use differing Big Ms based upon 

the individual reac6ons upper flux es6ma6ons.  Table 5.1 also details the number of flux 

balances per network used to reduce the search space, equa6on (5.14).  
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Table 5.2 gives all the computa6on 6mes and efficiency for all 4 MILP methods discussed, 

efmtool and FMC. Efficiency is the number of true EFMs, confirmed via the rank test, equa6on 

(5.10), divided by the number of poten6al EFMs found by the solver. This solve 6me is 

computer specific; MacBook Pro; 2.4 GHz Quad-Core Intel Core i5, 8 GB 2133 MHz LPDDR3. 

Efmtool outperformed FMC’s computa6on 6me throughout all tests, however, this was 

expected as it reported in literature that efmtool is the superior EFM solver [53, 54].  

 

Figure 5.2 provides the run 6mes for all networks (excluding network 9 due to large network 

size and run 6mes) across the various MILP setups. Network 8 in standard MILP form has a 

large run 6me, making it difficult to interpret the results. Therefore, Figure 5.3 also displays 

the run 6mes, but without network 8. Network 8’s run 6me is much larger than the others 

due to the increased number of possible EFMs which all require storing as the MILP itera6vely 

solves for the next EFM. In the standard MILP form the branch and bounding is a 6me-

consuming process. However, when other constraints are added and the output func6on is 

used, finding more solu6ons each itera6on, the solve 6me is dras6cally reduced.  

Figure 5.2 Run times for networks across all the MILP setup with network 8  
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Figure 5.3 shows that the output func6on tends to take longer to run with larger networks 

than the standard MILP. This is due to increased memory storage being required, which in turn 

reduces the efficiency of the solver. It is clear, however, that the addi6on of the extra 

constraint (equa6on 4.14) and flux balances with the output func6on reduce solve 6me across 

all networks considerably.  

 

 

Run 6mes for network 9 were longer than 24 hours for the standard MILP so the run 6me for 

both these networks were limited to 10 minutes and 1 hour.  The EFMs found in this 6me and 

the efficiency are given in Table 5.3. The number of itera6ons of the MILP was set to 100 with 

a target EFM of 500. Both efmtool and FMC could find all 100274 EFMs of the E. coli core in 

37.38s and 2min 13.40s respec6vely. Efmtool’s efficiency for the E. coli core is 0.9999 and 

FMC’s is not reported as it is not generated by the solver. The best results for number of EFMs 

found in this case was when all constraints were applied with MILP. Efficiency also improves 

Figure 5.3 Run times for networks across all the MILP setups without network 8 
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when all constraints are used as the simula6on 6me increases. Run 6mes increase as the 

networks do, as the number of constraints generated rises.  
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Table 5.2 Run times and efficiency for various MILP methods, efmtool and FluxModeCalculator. No efficiency is provided for FluxModeCalculator this is unknown. Network 9 and 10 
computation times for FMC and efmtool are for the full 100,274 EFMs not the reduced amounts set for MILP 

Network Number Variables 
Standard 

MILP 

Output 

FuncXon 

Constraint 

(5.13) 

Flux 

balance 

(5.14) 

Efmtool FMC 

1 

ComputaMon 

Time  0.38s 0.37s 0.42s 0.58s 0.04s 0.31s 

Efficiency 1 1 1 1 1 - 

2 

ComputaMon 

Time 0.85s 0.72s 0.46s 0.51s 0.05s 0.35s 

Efficiency 0.4 0.4 1 1 1 - 

3 

ComputaMon 

Time 4.06s 3.04s 1.01s 1.04s 0.07s 0.69s 

Efficiency 0.3103 0.3103 1 1 1 - 

4 

ComputaMon 

Time 12.82s 5.33s 2.16s 1.96s 0.02s 0.68s 

Efficiency 0.1864 0.1864 1 0.9167 1 - 

5 
ComputaMon 

Time 

5min 

23.84s 

33min 

55.40s 1.23s 1.37s 0.33s 1.34s 
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Efficiency 0.0575 0.0131 0.9583 1 1 - 

6 

ComputaMon 

Time 

14min 

35.70s 

55min 

58.80s 

2min 

8.15s 77.21s 0.12s 6.19s 

Efficiency 0.0967 0.1106 1 0.9899 0.9074 - 

7 

ComputaMon 

Time 

8min 

32.42s 

1hr 6min 

18.54s 6.74s 6.72s 0.05s 4.71s 

Efficiency 0.0844 0.0781 0.971 0.9853 0.9178 - 

8 

ComputaMon 

Time 21hr 4.00s 1hr 17min 

30min 

26.20s 

27min 

26.40s 0.08s 29.61s 

Efficiency 0.0955 0.0719 0.9026 0.9287 0.9698 - 
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Table 5.3 E. coli network efficiency and number of EFMs found in 10 minutes and 1 hour 

 

 

 

 

 

 

5.4.2  Heuristics 

Heuris6cs can be used to reduce the search space for EFM’s based upon biological knowns. 

This may not find all EFMs, but instead will find the most biologically significant ones and the 

ones that are most likely to occur.  

 

Any cell requires a carbon source to grow. Carbon sources taken by the cell act as a substrate 

to the network, where they can be broken down to supply pools of amino acids and other 

components [123]. Glucose is commonly used and is present in every network simulated in 

sec6on 4.5.1. Therefore, reac6ons that provide the cell with glucose, or any carbon source, 

can be assumed to be ac6ve when searching for EFMs with MILP.  

 

Cells can be aerobic, anaerobic, or faculta6ve anaerobic, i.e., can grow in both aerobic and 

anaerobic environments. E. coli is an example of a faculta6ve anaerobic cell [124]. For 

faculta6ve cell’s the oxygen reac6ons entering the network can be on or off dependent on the 

growth condi6ons. This can be used for reducing the search space when finding EFMs with 

MILP as the reac6on may or may not be possible.  

 

Chemical energy generated by substrate oxida6ons is conserved in bacterial cells by the 

forma6on of high-energy compounds such as adenosine diphosphate (ADP) and adenosine 

triphosphate (ATP) [125]. These compounds are vital for cell life. Simplified cell networks, like 

Run 

Time 
Variables 

Standard 

MILP 

Output 

FuncXon 

Constraint 

(5.13) 

Flux 

balance 

(5.14) 

10 min 

Number of 

EFMs found 62 144 194 168 

Efficiency 0.7949 0.5199 0.7791 0.7636 

1 hour 

Number of 

EFMs found 38 175 271 337 

Efficiency 0.7917 0.4861 0.7901 0.8180 
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the E. coli core, o^en have ATP maintenance reac6ons [38]. If these are present the search 

space should be adjusted to include some EFMs that encapsulate this vital area. This will 

highlight key areas of the network that have to be in opera6on to ensure high energy yields.  

 

The tricarboxylic acid (TCA) cycle operates during aerobic and anaerobic respira6on or 

fermenta6on by running in an oxida6ve cycle (when respiring oxygen) or in an incomplete, 

reduc6ve, and branched pathway, respec6vely [126]. The cycle does not produce high 

amounts of ATP; but instead removes electrons from inputs and transfers them to an electron 

carrier that deposits their electrons onto the electron transport chain [127]. It is the most 

important central route connec6ng almost all the individual metabolic network parts, and 

therefore, ensuring it is in the EFM set is valuable [128]. Acetyl-CoA (acetyl coenzyme A) is the 

precursor to the TCA cycle, and therefore, in good cell growth condi6ons the reac6ons 

producing and consuming it should be ac6ve. Modifica6on of the TCA cycle yields the 

glyoxylate cycle. Its main purpose is anabolic, to allow for the produc6on of glucose from faJy 

acids. It is therefore essen6al for carbon sources such as acetate or faJy acids [129].  

 

Any combina6on of basic biological constraints can be added to the MILP solver to reduce the 

search space to find fewer EFMs. This not only reduces the search 6me but highlights the 

biologically significant EFMs. It is important to note that applying all these constraints at once 

will only provide the EFMs that contain all the desired reac6ons, therefore, if the desire was 

to know individual reac6ons, then these must be computed individually.  

 

For example, for the simplified CHO cell during the growth phase, glucose consump6on will 

be high. Therefore, to reduce the search space it would be worth only permiYng EFMs with 

reac6ons that consume glucose. As a cell is growing, CO2 will be produced as the oxygen 

uptake increases if the cell is grown aerobically. Therefore, during the growth phase it also is 

worth including CO2 produc6on reac6ons.  However, for a CHO cell it has been found that CO2 

levels of 36 to 250mmHG reduces the specific growth rate [130]. Therefore, although 

heuris6cally it makes sense to encapsulate CO2 produc6on during growth, the results may 

show EFMs that could in fact nega6vely affect the cell’s growth. This will be discussed in 

further detail in Chapter 6. To simulate growth condi6ons, and therefore the only EFMs that 

could be occurring at that moment in 6me, in the EFM search space, reac6on 1 for glucose 
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consump6on and reac6ons 3,8,10,11 and 14 must be ‘on’ in the MILP solver (see Table 5.4 for 

the full reac6on list). This reduces the number of EFMs from 9 to 2 and solve 6me from just 

over 1 minute to 0.18s. Table 5.4 shows the two EFMs found.  If the reac6on is denoted with 

a 0 for the EFM, the reac6on is not required for the complete route of the EFM. The numerical 

values indicate the amount of ra6o of the reac6on required for the EFM, which is reflected in 

the fluxes obtained by flux analysis. In both the EFMs reac6ons 1,3,8,11 and 14 are present as 

this was specified in the MILP solver. The EFMs are very similar apart from 𝑬𝟏 requiring 

reac6on 7 and 𝑬𝟐 requiring reac6on 16. Both these reac6ons are ways to u6lise glutamate in 

the produc6on of 𝛼-Ketoglutaric. This is no surprise as 𝛼-Ketoglutaric is necessary to facilitate 

reac6on 11, which was required via heuris6c determina6on.  

 
Table 5.4 Two EFMs found via heuristic determination of CHO cell 

 

 

ReacXon 
number ReacXon 𝑬𝟏 𝑬𝟐 

r1 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 → 𝐺𝑙𝑢𝑐𝑜𝑠𝑒	6-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 1 1 
r2 𝐺𝑙𝑢𝑐𝑜𝑠𝑒	6-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 → 𝐷𝑖𝑙ℎ𝑦𝑑𝑟𝑜𝑥𝑦-𝐴𝑃 +

𝐺𝑙𝑦𝑐𝑒𝑟𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒	3-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒		
0 0 

r3 𝐺𝑙𝑢𝑐𝑜𝑠𝑒	6-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 → 𝑅𝑖𝑏𝑜𝑠𝑒	5-pℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 + 𝐶𝑂B 1 1 
r4 𝐷𝑖𝑙ℎ𝑦𝑑𝑟𝑜𝑥𝑦-𝐴𝑃 → 𝐺𝑙𝑦𝑐𝑒𝑟𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒	3-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒	 0 0 
r5 𝐺𝑙𝑦𝑐𝑒𝑟𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒	3-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 → 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 0 0 
r6 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 → 𝐿𝑎𝑐𝑡𝑎𝑡𝑒 0 0 
r7 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 + 𝐺𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒 → 𝛼-Ketoglutaric	 0.5 0 
r8 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 → 𝐴𝑐𝑒𝑡𝑦𝑙-𝐶𝑜𝐴 + 𝐶𝑂B 0.5 1 
r9 𝐴𝑐𝑒𝑡𝑦𝑙-𝐶𝑜𝐴 + 𝑂𝑥𝑜𝑙𝑜𝑎𝑐𝑒𝑡𝑎𝑡𝑒 → 𝐶𝑖𝑡𝑟𝑎𝑡𝑒 0.5 1 
r10 𝐶𝑖𝑡𝑟𝑎𝑡𝑒 → 	𝛼-Ketoglutaric	+	𝐶𝑂B 0.5 1 
r11 𝛼-Ketoglutaric	→	Fumarate	+	𝐶𝑂B 2 2.5 
r12 Fumarate → 𝑀𝑎𝑙𝑎𝑡𝑒 2.5 3 
r13 𝑀𝑎𝑙𝑎𝑡𝑒 → 𝑂𝑥𝑜𝑙𝑜𝑎𝑐𝑒𝑡𝑎𝑡𝑒 1.5 2 
r14 𝑀𝑎𝑙𝑎𝑡𝑒 → 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 + 	𝐶𝑂B 1 1 
r15 𝐺𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒 + 𝑂𝑥𝑜𝑙𝑜𝑎𝑐𝑒𝑡𝑎𝑡𝑒 → 𝐴𝑠𝑝𝑎𝑟𝑡𝑎𝑡𝑒 1 1 
r16 𝐺𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒 → 𝛼-Ketoglutaric	+	N𝐻D 0 0.5 
r17 𝐺𝑙𝑢𝑡𝑎𝑚𝑖𝑛𝑒 → 𝐺𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒 + N𝐻D 0 0 
r18 𝐺𝑙𝑢𝑡𝑎𝑚𝑖𝑛𝑒 + 	𝑅𝑖𝑏𝑜𝑠𝑒	5-pℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 + 𝐴𝑠𝑝𝑎𝑟𝑎𝑡𝑒 + 	𝐶𝑂B

→ 𝐹𝑢𝑚𝑎𝑟𝑎𝑡𝑒 + 𝑁𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑠 
0.5 0.5 

r19 𝐶𝑂B,./i1=@.??p?=1 → 𝐶𝑂B 4.5 6 
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The same method can be applied to a simplified yeast core network [122]. Glucose 

consump6on is necessary for growth so consump6on reac6ons in the stoichiometry  must 

occur in any EFM result. The glyoxylate cycle and TCA should also be func6oning as it is a vital 

central pathway. Ensuring any reac6ons in this cycle in aerobic respira6on are on will ensure 

the EFMs found encapsulate this network sec6on. Applica6on of these heuris6cs highlights 

three key reac6ons. These three reac6ons reduce the EFMs down from 67 to 14 and the solve 

6me from 12.66s to 7.89s.  

 

Using heuris6cs to reduce the EFM space not only speeds up solve 6me but prevents 

biologically unfeasible solu6ons being produced. Targe6ng specific EFMs to understand how 

to maximise product yield and reduce waste will be discussed later in this thesis.  

5.4.3  Essential Reactions 

When compu6ng some or all EFMs essen6al reac6ons become apparent. These are reac6ons 

that occur in most or all EFMs, meaning they are vital to the cell’s life; biomass and other 

metabolite produc6on would not be possible without them. Figure 5.4 shows the reac6on 

usage across the 67 EFMs for the simplified yeast core cell. Reac6ons 4, 5, 14 and 28 are not 
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Figure 5.4 Reaction usage in EFMs for simple yeast core cell 
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used by any EFM. These are reac6ons that lead to dead-end metabolites, see sec6on 2.8, and 

therefore removal of these from the search space would speed up solve 6me. The essen6al 

reac6ons are the ones with the greatest percentage, therefore, reac6ons 8 and 21 are the two 

most important reac6ons to the cell, 

𝑟Y = 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 → 𝐺𝑙𝑢𝑐𝑜𝑠𝑒	6-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 

𝑟BA = 𝐴𝑐𝑒𝑡𝑦𝑙-𝐶𝑜𝐴 → 𝑀𝑎𝑙𝑎𝑡𝑒 + 𝐺𝑙𝑦𝑜𝑥𝑦𝑙𝑎𝑡𝑒 

Reac6on 8 is the consump6on of intracellular glucose a^er it has been transported into the 

cell. Therefore, it is a precursor to most reac6ons within the network and is expected to be 

essen6al. This is reaffirmed with 72% of EFMs using it. Reac6on 21 is the ini6alisa6on of the 

glyoxylate cycle, which as discussed in sec6on 5.5.2, is vital to good cell growth. Overall, 81% 

of EFMs use reac6on 21 This shows that even though there are no biological constraints in 

determining the full set of EFMs, the EFMs will highlight key areas required by the cell.  

5.5 Discussion 

5.5.1 Mixed Integer Linear Programming’s General Performance 

The MILP setup was unaffected by reversible reac6ons or an increase in network size, at this 

small scale. Despite FMC being published 7 years a^er efmtool, it o^en was 10 6mes slower 

than efmtool and at 6mes was outperformed marginally by the MILP solver. Due to the 

efficiency of efmtool this solver will now solely be used for comparison with MILP throughout 

this thesis.   

 

Overall, the MILP’s performance is as expected – the efficiency reduces as the number of 

constraints and network size increase. The next steps were to test the limita6ons of MILP for 

this problem type. If the MILP solver was able to solve problems of a larger size, then it is just 

a maJer of improving efficiency as it solves. It is posi6ve to see similar opera6ng 6mes with 

the FMC in some examples as it shows that the current work was on track to eventually being 

on par with EFM solvers already publicly available. However, the key point to take away is that 

even though there MILP solves slower it has a greater chance of solving at genome scale due 

to how linear programming is solved via branch and bounding [111]. This is mainly due to the 
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ability to disregard constraints that are not relevant to the current search space due to their 

small size. The double descrip6ve method constantly builds over solve 6me and can only be 

minimised via sparsity or bit paJern trees without any disregarding.  

 

Advances in solver efficiency and hardware also make MILP a promising op6on. Between 1990 

and 2014 advances in integer op6misa6on, along with computa6onal advances, led to a 200 

billon factor speedup in solving MILP problems [114, 115, 116]. Bixby measured the speed up 

of MILP solvers by solving the same set of problems using twelve consecu6ve versions of 

CPLEX. The versions ranged from the 1991 release, CPLEX 1.2, up to the 2007 release, CPLEX 

11. The total speed up factor, from the first to the final release tested, was 29000 [114]. 

Evidence of speed up in solvers is not just present in CPLEX, but also Gurobi. Gurobi 9.5, 

released 2021, is reportedly 15% faster on mixed integer problems than the previous version 

[131].  Hardware speed up between 1993 and 2013 is approximately 105.5 [116]. This evidence 

all suggests the viability of MILP for solving EFMs at genome scale in the future.  

 

The ’bench’ test was performed in MATLAB to compare the device used to enumerate EFMs 

with other computer types. All other computer types outperformed the device used, and 

MATLAB online also offered considerable performance improvements.  

 

Compu6ng EFMs is a hard computa6onal task, hence the restric6on on the network size. The 

null space approach proposed by Wagner [58] offered improvement to the double descrip6ve 

method. It accelerated computa6on 6me and shi^ed most of the limita6on over to the 

memory requirement for a typical PC [57]. Despite this development in 2004 it has s6ll not 

been able to fully compute a genome scale network, with par6cular focus on ac6vity the 

routes over 6me. The work thus far has shown the advantages of using MILP over the double 

descrip6ve method on network size, but now also offers an avenue to model the three phases 

of cell life alongside ac6vity due to environmental factors; a feature currently not possible on 

widely used EFM solvers.  

 

5.5.2 Impact of Network Features on Mixed Integer Linear Programming 
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The two main structural features of genome scale networks are reversible reac6ons and cyclic 

reac6on sets. From the examples above it can be assumed that the cyclic system does not 

have a great impact on solve 6me. However, reversible reac6ons clearly do. In the MILP code 

produced, the presence of reversible reac6ons requires addi6onal constraints to be added. 

 

Another key part of a cell’s metabolic network is the growth, transi6on, and decay phases. The 

existence of these three phases reduces the number of ac6ve pathways at any one 6me. This 

in turn reduces the number of EFMs to be calculated per phase. The u6lisa6on of these three 

stages has been men6oned in literature already, however, the lack of true data accessible has 

meant that the use of these stages has yet to be used at genome scale [79, 93, 132]. Accurate 

applica6on of this data would enable ac6ve sets of EFMs to be found easily within the MILP 

setup.  

 

As a network increases in size so does the number of constraints. This slows the computa6on 

6me due to the memory required to store the large matrices. A^er running the E. coli network 

for 10 minutes the inequality constraint matrix is 1.3MB. A^er an hour this matrix is 2MB in 

size. All matrices in the E. coli MILP setup, a^er an hour, total 5.94MB in size. Therefore, 

memory issues will become apparent as the networks increase in size and more EFMs are 

found. This is an ongoing issue with EFM enumera6on and is not specific to MILP. However, 

parallelisa6on or high-performance compu6ng (HPC) could offer a memory reduc6on with the 

u6lisa6on of mul6ple cores and servers to store data.  

5.6 Conclusion 

This chapter presented a MILP approach with solve 6mes for small networks and the E. coli 

core. The solve 6me of efmtool was quicker than MILP due to the many improvements made 

over the years to reduce memory usage and accelerate computa6on 6me [31]. However, 

improvements in solver efficiency and hardware present the opportunity for MILP to be a 

feasible solu6on to solving the problem in the future [114, 116]. To improve the solve 6me 

the next chapter will examine compression methods, to reduce solve 6me, and techniques to 

reduce memory storage requirements. 
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Chapter 6 Improving Elementary Flux Mode Discovery whilst using MILP 

6.1 Introduction  

Large metabolic networks require extensive memory storage and computational power to 

determine elementary flux modes (EFMs). This is the case for commercial EFM solvers, like 

efmtool, and the mixed integer linear programming (MILP) method presented in Chapter 5. 

To overcome the demands set by this large-scale network, reduction of its size has been 

exploited to improve performance [35, 113, 133, 134, 135, 136].  

In 2015, Erdrich et al, introduced a method called NetworkReducer [35]. This method reduces 

large networks into smaller subnetworks whilst ensuring important biological properties 

remain, such as energy maintenance. NetworkReducer consists of a pruning and a 

compression step. In the compression step any reactions belonging to the same enzyme 

subset are lumped together. An enzyme subset is defined as a group of enzymes that operate 

together in fixed flux proportions in all steady states of the system [51]. The method searches 

for a suitable subnetwork by iterating over the reactions. The flux rate for one reaction is set 

to zero for each iteration and a linear program is solved to check if the remaining reactions 

still form a feasible subnetwork. Feasibility in this case means that there exists non-zero flux 

vectors satisfying the steady-state constraint [35, 113]. Flux variability analysis (FVA) is used 

to identify the removable reaction, with the reaction with the smallest overall flux range 

selected. This method does not necessarily find the minimum subnetwork with respect to the 

number of active reactions, and therefore, further reduction could be possible.  

Vlassis et al proposed the FASTCORE algorithm, which like NetworkReducer, uses linear 

programming to find subnetworks [135]. However, it does not require FVA and is therefore 

faster than NetworkReducer. FASTCORE does not find minimum subnetworks and only 

protected reactions can be specified, and not protected metabolites [113]. Protected 

reactions and metabolites are those which the user does not want compressed, and therefore 

effectively ‘lost’ from the network. 

Röhl and Bockmayr presented a MILP approach to determine one or more minimum 

subnetworks. Unlike the other discussed methods, their MILP algorithm ensured minimality 

of the subnetwork with the active reactions and preserved protected reactions and 
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metabolites. Their method also enabled several minimum solutions to be found if they 

existed. The MILP algorithm was also faster than NetworkReducer due to the decreased 

complexity of the problem [113]. 

All the discussed methods for network compression reduce large networks to multiple 

subnetworks via linear programming or MILP methods. However, network compression can 

be performed by observing the conservation relationships of metabolites alone. This chapter 

discusses how this simple method can be utilised to reduce the solve time of the MILP 

approach on Chapter 5, without the loss of any EFMs from the solution.  

There are other methods to improve efficiency other than network compression. For 

example, using sparse matrices will reduce the memory storage required or parallelisation of 

MILP to allow for multiple cores to be used in the solving of the EFMs. Therefore, this chapter 

will also discuss how these techniques can be implemented and the effect on solve time.  

6.2 Compression Techniques 

6.2.1 Sparse Matrices 

Reducing a full matrix by the removal of any zeros is the creation of a sparse matrix. The MILP 

method presented in Chapter 5 used sparse matrices for the equality and inequality 

constraints within the ‘intlinprog’ function. However, this was found to not improve 

computation. Therefore, sparse matrices were instead used to build up all constraints 

throughout the MILP setup. This alongside network compression reduces the memory size 

required.  

6.2.2 Integer Cut 

The integer cut was needed in the output function and standard MILP setups to prevent 

repeat solutions clogging up the memory space. However, it has been found that with the 

addition of equation (5.13), Chapter 5, the integer cut is now redundant. Removal of the 

integer cut reduces the size of the constraints and aids in the reduction of solve time and 

memory storage.  
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6.2.3 Irreversible Reaction Network Compression Methods 

Conservation relations of metabolites can be identified as linear dependencies between the 

rows of the stoichiometry matrix, 𝑺 [137]. If conservation relations exist then some of the 

dependent rows of 𝑺 can be removed such that only independent rows exist [27]. This 

removal requires the combining reactions to create rows of zeros in 𝑺. For example, consider 

a network of 6 reactions and 5 metabolites, Figure 6.1a. This network has the intracellular 

stoichiometry given in equation (6.1).  

 

𝑺 = 	

⎣
⎢
⎢
⎢
⎡
1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 1 −1
0 0 0 0 −1 0 ⎦

⎥
⎥
⎥
⎤
 (6.1) 

 

The first row corresponds to metabolite ‘A’. To make the row a zero-row, columns 1 and 2 

can be combined due to ‘A’ being produced by reaction 1 and consumed by reaction 2.  This 

reduces 𝑺 to, 

Figure 6.1 a) full network b) reduced network by using conservation relations 
between metabolites 
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𝑺 = 	

⎣
⎢
⎢
⎢
⎡
0 0 0 0 0
1 −1 0 0 0
0 1 −1 0 0
0 0 1 1 −1
0 0 0 −1 0 ⎦

⎥
⎥
⎥
⎤
 (6.2) 

Now metabolite ‘A’ has an all zero row and is therefore no longer needed to define the 

network and is therefore removed from the intracellular stoichiometric matrix giving, 

𝑺 = 	 N

1 −1 0 0 0
0 1 −1 0 0
0 0 1 1 −1
0 0 0 −1 0

O (6.3) 

The next row corresponds to metabolite ‘B’. Again, only one reaction reduces this metabolite, 

and one reaction consumes it. Therefore, columns 1 and 2 can be combined, 

𝑺 = 	 N

0 0 0 0
1 −1 0 0
0 1 1 −1
0 0 −1 0

O (6.5) 

Metabolite ‘B’ now has a zero row so must be removed, 

𝑺 = 	 c
1 −1 0 0
0 1 1 −1
0 0 −1 0

e (6.6) 

This process is repeated until no more combinations are possible, resulting in, 

𝑺 = 	 I1 1 −1
0 −1 0 M (6.7) 

The final compressed network is shown in Figure 6.1b. It may be noted that the final 

compressed network for this example has reduced the number of intracellular metabolites 

from five to two and the number of considered reactions from six to three. This process is 

particularly important with cyclic sections of networks as these areas often contain multiple 

reactions in sequence [138]. For small networks this process can be done manually but larger 

networks require code. 

 

r1+r2    r3       r4       r5       r6 

r1+r2    r3       r4       r5       r6 

r1+r2+r3    r4       r5       r6 

r1+r2+r3    r4       r5       r6 

r1+r2+r3+r4    r5       r6 
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6.2.4 Irreversible Reaction Network Compression Results 

This standard method can be applied to irreversible networks.  

6.2.4.1 Hypothetical Cell Network 

For example, Figure 6.2a shows a full metabolic network with 7 reactions and 10 metabolites, 

can be reduced to 3 reactions and 6 metabolites, Figure 6.2b. The new reactions are defined 

as, 

𝑅1 = 𝑟A + 0.5𝑟C + 0.5𝑟X 

𝑅2 = 2𝑟A + 𝑟C + 𝑟E + 0.5𝑟F 

𝑅3 = 𝑟A + 𝑟B + 𝑟D 

No solve time or constraint size is quoted as the reduced network for this simple network are 

the EFMs. This is a unique case due to the simplicity of the network.  
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Figure 6.2 a) Simple cell network consisting of 10 metabolites and 7 reactions b) reduced simple cell network 
consisting of 6 metabolites and 3 reactions.  
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6.2.4.2 Chinese Hamster Ovary Cell Network 

Unlike the previous examples, for most metabolic networks, the compression method merely 

reduces the size of the network – it does not discover the full set of EFM’s. The original 

Chinese hamster ovary (CHO) cell network consists of 19 reactions and 21 metabolites, Figure 

6.3 [90]. However, after network compression, this is reduced to 9 reactions and 11 

metabolites, Figure 6.4. The reaction numbers in Figure 6.4 do not correspond to the original 

reaction numbers due to the adjustment of stoichiometry during network compression, 

𝑅6 = 𝑣A + 𝑣B + 𝑣D + 2𝑣E 

𝑅7 = 𝑣AA + 𝑣AB + 𝑣AD 

𝑅8 = 𝑣AA + 𝑣AB + 𝑣AC + 𝑣Y + 𝑣Z + 𝑣AV 

Figure 6.3 Uncompressed simple CHO cell network. Blue indicates the reaction or metabolite is extracellular and black is 
intracellular 
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𝑅9 = 𝑣AA + 2𝑣AB + 2𝑣AC + 2𝑣AE + 𝑣A + 𝑣C + 0.5𝑣AY 

R6 to R9 can be defined as fully coupled; where a non-zero flux for one reaction implies a non-

zero flux for the next which is fixed, and vice versa [119]. For example, for reaction 2 in, Figure 

6.3 to occur, reaction 1 must have occurred. Therefore, if there is non-zero flux in reaction 1, 

reaction 2 will also have a non-zero flux fixed by the flux of reaction 1.  
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6.2.4.3 Chinese Hamster Ovary Cell Compression Results 

 Figure 6.5 highlights the reduced solve time achieved via the use of the compressed network. 

Although this is only a small reduction it highlights that speed up is possible with these 

adjustments. The compressed network finds 1 extra potential EFM than the uncompressed 

network in a shorter length of time. This does, however, reduce efficiency with the 

uncompressed network yielding an efficiency of 1 and the compressed network 0.9. This, 

however, is a worthwhile reduction as the problem is solved quicker. The uncompressed 

network has a combined constraint size of 0.0047MB. The compressed network however has 

a constraint size of 0.0023MB. That is approximately half the storage size required. With 

larger networks this reduction will become hugely beneficial.  

6.2.5 Reversible Reaction Network Compression Methods 

The decomposition of reversible reactions expands the problem size for MILP. Therefore, the 

compression of these reactions is instrumental in reducing the solve time and memory 
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Figure 6.5 Compressed and uncompressed CHO cell run times over EFMs found 
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storage requirements. There are three rules that can be applied to compress these reactions. 

Firstly, although reversible pairs cannot occur simultaneously, there may be sequential 

reactions that can if the forward or reverse reaction occurs. For example, Figure 6.6a shows 

an uncompressed network consisting of 4 reactions and 3 metabolites, with intracellular 

stoichiometry,  

𝐒	 = 	 c
−1 1 0 0
1 −1 −1 1
0 0 1 −1

e (6.8) 

Reactions 1 and 2 cannot occur simultaneously and neither can reactions 3 and 4. However, 

if reaction 1 does occur in an EFM solution, then reaction 3 must also occur. The same can be 

said for reaction 4 and 2. Therefore the network can be compressed into 2 reactions and 2 

metabolites, Figure 6.6b. These two new reactions will now act as a reversible pair that cannot 

simultaneously occur in an EFM. The stoichiometry is therefore now, 

𝐒	 = 	 I−1 1
1 −1M 

(6.9) 

 

Secondly when a metabolite is produced and consumed by a reversible reaction but is only 

then consumed or produced by one or multiple reactions. For example, in Figure 6.7a 

metabolite ‘B’ is consumed by reaction 2 and 3 but is only produced by reaction 1. The 

stoichiometry is,  

𝐒	 = 	 I−1 1 0
1 −1 −1M (6.10) 
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r1 + r3

C
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Figure 6.6 a) uncompressed reversible reaction 
network b) compressed reversible reaction network 
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In any EFM it would not be possible to have reactions 1 and 2 as they are a reversible pair. 

However, if reaction 1 occurs then reaction 3 must also. Therefore, the network can be 

compressed to that shown in Figure 6.7b. The compressed network still contains a reversible 

reaction pair, but the number of reactions is reduced from 3 to 2. Reactions 1 and 3 combined 

effectively skip out metabolite ‘B’, giving the new stoichiometry,  

𝐒	 = 	 I−1 1
0 −1M (6.11) 

The final rule that can be applied regards if a metabolite in a chain is produced and consumed 

by a reversible reaction, Figure 6.8a [138]. In this network ‘A’ acts as the substrate and 

reaction 5 continues in the network to eventually produced an extracellular product. There 

exists only one EFM for this network 𝑬𝟏 = [1	1	0	0	1]I, confirmed via efmtool and the MILP 

method presented. The reversible reaction comprising of reactions 3 and 4 is effectively 

redundant. Therefore, the network can be compressed to that in Figure 6.8b. This has reduced 
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Figure 6.7 a) uncompressed network with one reversible reaction pair b) 
compressed version of the network  
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the number of reactions from 5 to 2 and the number of metabolites from 4 to 2. Applying this 

technique to larger networks will reduce the search space for MILP. 

6.2.6 Reversible Reaction Network Compression Results 

6.2.6.1 Yeast Core Network 

A simple yeast core network is given in Figure 6.9 [122]. The network consists of 40 reactions, 

18 of which are reversible pairs, and 26 metabolites. Compression without considering 

reversible reactions reduces the network to 34 reactions and 20 metabolites. Compressing 

the reversible reactions reduces the reactions to 29 and metabolites to 18. 

 

The compressed network is given in Figure 6.10 with a closer figure exploring the cyclic 

reactions given in Figure 6.11. The new reactions which are fully coupled for this network are 

as follows, 

Figure 6.9 Simple yeast core network. Reaction numbers in red and extracellular metabolites in blue 
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𝑅3 = 𝑣AV + 𝑣AB 

𝑅4 = 𝑣AA + 𝑣AC 

𝑅16 = 𝑣BX + 𝑣BY 

𝑅17 = 𝑣BZ 

𝑅18 = 𝑣CV + 𝑣CB 

𝑅19 = 𝑣CA + 𝑣CC 

𝑅27 = 𝑣A + 𝑣B + 𝑣C + 𝑣F + 𝑣X 

𝑅28 = 𝑣A + 𝑣B + 𝑣D + 𝑣E 

𝑅29 = 𝑣AD + 𝑣AE 

 

The most important coupled reaction is 𝑅27. This reduces 5 reactions to 1, thus reducing the 

search space for MILP.  Glucose is one of two main nutrients for this network, the other being 

ethanol. Therefore, EFMs will have to be generated from the reaction that consumes it, 

reaction 1 in Figure 6.9. By compressing the reactions that follow, you are guaranteed to 

reduce solve time. Cyclic reactions lead to multiple routes for MILP to follow. Although the 

reductions are small by coupling the reactions in these cycles it helps with the search time, 

for example 𝑅18 and 𝑅19. 
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Figure 6.10 Compressed yeast core network 
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Figure 6.11 Zoom in of compressed yeast core network 

Pyr

Fatty Acids

Acetyl-CoA

OAA

IsoCit

Succ

Glyox

Mal

Cit

R2

R5

R6
R7

R8

R9

R10

R11

R12

R13

R18

R19

R20

R21

R22

R23

R24

R25

R29



 115 

6.2.6.2 Yeast Core Compression Results 

The improvements made by compressed the yeast core network are shown in Figure 6.12, 

highlighting that more potential EFMs are found, again in a shorter time. The run time for the 

compressed network is 1.97s, approximately a 50% reduction in solve time compared to the 

uncompressed network. The constraint memory sizes have also decreased, the equality 

constraint decreased from 0.001928MB to 0.001432MB and the inequality constraint from 

0.02004MB to 0.0142MB.   

6.3 Compressing the E. coli Core 

Utilising all the discussed compression methods the E. coli core was reduced from 114 

reactions, of which 39 are in reversible pairs, and 92 metabolites to 90 reactions, of which 30 

are reversible pairs, and 84 metabolites. This drastically improved the number of EFMs 

achievable in 10 minutes and 1 hour, Table 6.1. In 10 minutes compared to the previous MILP 

setup (results in Chapter 5 section 5.5.1) there was a 436% increase in the number of EFMs 
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Figure 6.12 Compressed and uncompressed yeast core cell run times over EFMs found 
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found. The increase for 1 hour was 302%. Iterations for both these runs had to be increased 

to 250, as 100 iterations was solved prior to the allocated time. Efficiency for both these runs 

also improved on the results reported in Chapter 5 on average by 12%. This demonstrates 

that network compression, removal of integer cuts and sparsity of matrices reduces solve 

time for large networks. Therefore, compression is required for MILP in enumerating EFMs at 

large scale and creates the opportunity for genome scale in the future.  

Table 6.1 E. coli network efficiency and number of EFMs found in 10 minutes and 1 hour 

 

 

 

As an example of the improved run times both the uncompressed and compressed network 

were run for a maximum of 50 iterations, Figure 6.13. The compressed network finds slightly 

more potential EFMs than the uncompressed network, however, the reduced solve time for 

the compressed network is the key takeaway.  

Run 

Time 

Number of 

EFMs found 
Efficiency 

10 min 817 0.8988 

1 hour 1018 0.8985 
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6.4 Parallelisation 

 Solving larger networks using efmtool requires the use of multiple cores [30]. Using multiple 

computers or multiple cores within one computer will also improve the efficiency of MILP in 

enumerating EFMs.  However, efmtool is not the only tool to report on the use of 

parallelisation methods. Klamt et al presented a case to split the computation into two 

independent processes [27]. Firstly, a reaction (n) is chosen and (i) the set of EFMs which 

involve reaction n are computed, (ii) then all EFMs not containing reaction n are computed. 

The complete set of EFMs consists of the solutions obtained in (i) and (ii). This computation 

process is possible due to steps (i) and (ii) being independent [27].  

Klamt et al’s work also discussed the splitting of EFM enumeration into 2b independent 

processes, where the process above is applied recursively leading to a binary tree with b layers 

and 2b leaves, Figure 6.14. The root node is the complete problem to find all EFMs, 
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Figure 6.13 E. coli core compressed and uncompressed network run times over EFMs found in 50 iterations 
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intermediate nodes are the subtasks that be computed independently, and each leaf is a final 

subtask. Each intermediate node has a different reaction, n, which yields EFMs that contain 

and do not contain it. Collecting all 2b results together will provide the full EFM set.  

Subtasks can be performed on multiple computers or cores. In the MILP reactions can be 

turned on or off through use of their associated binary variable were specifying that a 

particular term is either 1 or 0 indicating if they should or should not exist within the EFM set.  

6.4.1 Yeast Core Network 

For example, for the yeast core network reactions 14 and 18 can be turned on and off in 

multiple combinations, Table 6.2. Solving these four combinations separately reduces the 

solve time and still finds all 39 EFMs. Reactions 14 and 18 are not a unique case, the same 

method was applied to reactions 9 and 10, Table 6.3. Again all 39 EFMs were found with each 

combination running in an average of 1.12s.  

Table 6.2 Reactions 14 and 18 combinations and the EFMs found  

Reaction combination Solve Time / s EFMs 

R14 on R18 on 1.2192 10 

R14 on, R18 off 0.6874 6 

R14 off, R18 on 1.6521 12 

R14 off R18 off 0.9189 11 

E
!r1 r1

E(!r1)
!r2 r2

E(r1)
!r3 r3
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Figure 6.14 Splitting the computation of EMs into independent sub-tasks 
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Table 6.3 Reactions 9 and 10 combinations and the EFMs found  

Reaction combination Solve Time / s EFMs 

R9 on R10 on 1.4119 14 

R9 on, R10 off 1.1518 7 

R9 off, R10 on 1.1061 8 

R9 off R10 off 1.0030 10 

6.4.2 E. coli Core Network 

A similar approach has been taken with the E. coli core. Four reactions have been chosen due 

to their locations in the network either connecting central section’s e.g., connecting the TCA 

cycle to the network, or due to the fact they act as intermediates in long chains of reactions. 

These reactions were then forced on and off in the MILP code to find how many EFMs could 

be detected in within a maximum of 50 iterations. The results for the various combinations of 

reactions 15, 27, 44 and 74 are given in Table 6.4. These multiple combinations yielded 1077 

EFMs, a greater value than that obtained by running the code for an hour. This is due to the 

reduced search space created by on/off reaction constraints. Some reaction combinations 

yielded no EFMs, for example R15 and R27 on and R44 and R74 off. Rather than holding up 

the entire computational power searching for the possibility of EFMs in conditions were there 

are none, parallelisation will allow for non EFMs to be found and move on whilst searching 

for other EFMs on different cores or computers.  

Further reaction combinations could be applied to obtain more EFMs. All the EFMs found by 

these individual searches would require post-processing to ensure that each EFM is non-

decomposable into another. However, this again proves the benefits of parallelisation of MILP 

to obtain more EFMs. Any reaction combinations could be run on multiple computers or 

cores, reducing the search time for EFMs with MILP at large scale. In future, this would allow 

for genome scale to be solved.   

Table 6.4 Reactions 15,27,44 and 74 combinations and the EFMs found. Red indicates off and green indicates on 

Reaction combination Solve Time / s EFMs 

R15, R27, R44, R74 124.3353 246 
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R15, R27, R44,R74 105.1657 166 

R15, R27, R44,R74 0.1931 0 

R15, R27, R44,R74 0.1859 0 

R15, R27, R44,R74 0.1743 0 

R15, R27, R44, R74 0.1606 0 

R15, R27, R44, R74 0.1740 0 

R15, R27, R44, R74 0.1538 0 

R15, R27, R44, R74 105.6646 140 

R15, R27, R44, R74 97.5701 93 

R15, R27, R44, R74 87.8148 70 

R15, R27, R44, R74 80.5641 218 

R15, R27, R44, R74 0.1780 0 

R15, R27, R44, R74 64.7635 112 

R15, R27, R44, R74 86.4769 32 

R15, R27, R44, R74 0.1782 0 

Total number of EFMs found 1077 

6.5 Application of Flux Data  

Flux data can be utilised when finding EFMs to reduce the search space. Flux indicates what 

reactions are in operation, with a 0-flux indicating the reaction is not being used. The 

application of this data when finding EFMs will therefore reduce the branch and bounding 

steps required by the MILP. For example, for the network in Figure 6.10 if it was found that 

the flux through R2 was equal to 0, this reaction could be removed from the search space. 

This reduces the EFMs from 39 to 25 and the efficiency is 1. These EFMs are found in 1.92s. 

Therefore, direct use of flux data to set 0-flux reactions to off in the MILP method will reduce 

the search space and reduce solve time.  

In Chapter 3, section 3.3.1 an underdetermined CHO cell was used to find the range of fluxes 

via FVA to maximise lactate production. The minimum FVA results, Figure 3.8, showed only 5 

reactions were required, however setting these reactions to be on and all other reactions off 

generated no EFMs in 0.89s. This shows a case where application of flux data over constrains 
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the search space for EFMs. Therefore, flux data can be applied to help with the search of 

EFMs, but it must be done with realistic cases only. The minimum flux data generated by FVA 

is a hypothetical case which is unlikely to occur. Applying a variation of FVA results from the 

minimum results to the maximum is a better method. For example, for the CHO cell, if one 

extra reaction is added to the 5 minimum occurring reactions, 1 EFM is found in 0.25s.  

6.6 Conclusion  

The MILP approach of branch and bound causes memory storage clogging and reduced solve 

time for EFM enumeration, particularly at a large scale. However, this chapter has shown that 

improvements can be made to alleviate this issue. Firstly, the removal of unnecessary integer 

cuts and introducing sparse matrices throughout the code reduced the strain on the memory. 

Although memory size is small for the networks discussed, genome scale requirements would 

lead to large data sets that have to be stored throughout computation. Therefore, reducing 

the number of constraints and how the matrices are saved is crucial to the future of MILP in 

EFM enumeration. Secondly, compressing networks in some cases halved the solve time. 

Compression can be performed on reversible or irreversible reactions, reducing the number 

of metabolites and reactions in a network’s stoichiometry. Combining these techniques made 

it possible to solve over a 1000 EFMs in the E. coli core, a 302% increase on the method 

presented in Chapter 4. Reducing the search space was also found to be possible by applying 

flux data. Zero fluxes indicate that reactions are not in operation, and this can be used to 

prevent EFMs containing these reactions being found via MILP. However, flux data needs to 

be carefully used with the understanding that FBA and FVA are ideal, non-realistic cases. Their 

results offer a starting point in reducing the search space. Finally, this chapter discussed the 

benefits of running MILP code in parallel to one another to speed up EFM enumeration. This 

technique would future-proof MILP so it could be used on much larger networks, and 

potentially genome scale, to find EFMs. Overall, this chapter has emphasised the 

improvements needed to enable MILP to find more EFMs in a shorter period, whilst 

highlighting future methods that could be applied to apply the technique at genome scale.  
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Chapter 7 The E. coli Cell 

7.1 Introduction  

The production of recombinant proteins in microbial systems changed the vaccine industry 

drastically. There is no longer a need for vast amounts of animal and plant tissues or large 

volumes of biological fluids to produce the desired quantities of the proteins [22]. Large-scale 

trials have shown that <50% of bacterial proteins and <15% of non-bacterial proteins can be 

expressed in Escherichia coli (E. coli) [21]. This demonstrates the versality of the cell and 

emphasises the importance of ensuring high yields.  

This chapter presents the data collected by GlaxoSmithKline (GSK) at their Rixenstrat, Belgium 

site. The key groups within the core metabolism will be discussed highlighting areas of 

interest. Flux analysis will be presented, the generation of elementary flux modes (EFMs) and 

the limitations of the data highlighted.  

7.2 Key Groups of the Core Metabolism 

The E. coli core (reduced set of reactions representing the key areas of the network) 

metabolism is often used as a start point before moving onto the genome. Within the core 

metabolic network there exists 11 groupings of biochemical reactions [41]. These groupings 

help split the 95-reaction model into easier to understand parts, but it should be noted that 

some reactions are used in multiple groupings. Each grouping also plays a key role in the 

cellular function and therefore can be applied to many other cell’s metabolic networks.  

7.2.1 Glycolysis  

The glycolysis set consists of 10 reactions: converting sugars into precursors for biomass. The 

reaction set terminates with pyruvate. Some small amounts of ATP (adenosine triphosphate) 

and NADH (Nicotinamide adenine dinucleotide) are also formed, which act as key global 

metabolites within the network. Most reactions rely on the supply of ATP, and in cases where 

this supply is low, biosynthesis suffers [139]. The pyruvate produced in this grouping is a key 

component in many other reactions across the network. 

7.2.2 Pentose Phosphate Pathway  
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The pentose phosphate pathway (PPP) group consists of 8 reactions. Two biosynthetic 

precursors are created in this grouping: 𝛼-D-ribose 5-Phosphate and D-erythrose 4-

phostphate. These precursors can be made by one of 2 parallel routes, one oxidative and the 

other nonoxidative [41]. If the conditions are anaerobic there is greater flux through the non-

oxidative route [41, 140].  

7.2.3 Tricarboxylic acid cycle 

The tricarboxylic acid (TCA) cycle’s function changes based upon the environment. During 

aerobic growth on 6-carbon sugars, the TCA cycle’s function is to produce the precursors 

oxaloacetate, 2-oxoglutarate (-ketoglutarate) and succinyl-CoA. However, during anaerobic 

growth the TCA cycle functions as two separate pathways. In general, it acts as the final route 

for the oxidation of fuel molecules, such as amino acids and carbohydrates [141].  

7.2.4 Glyoxylate Cycle, Gluconeogenesis and Anaplerotic Reactions 

The glyoxylate cycle is used instead of the TCA cycle to bypass reactions that lose carbon in 

the form of carbon dioxide. Therefore, the glyoxylate cycle does consist of some of the same 

reactions as the TCA cycle. The reversal of the glyoxylate cycle is known as gluconeogenesis 

[38].  

To replenish the intermediates of the TCA cycle, which are used for biosynthesis, anaplerotic 

reactions are required. The TCA cycle can oxidise acetate to carbon dioxide without any 

consumption or production of intermediates. The intermediates (e.g., oxaloacetate) are 

consumed in the production of macromolecules (large molecule such as a protein) [41]. 

7.2.5 Electron Transport Chain, Oxidative Phosphorylation, and Transfer of Reducing 

Equivalents   

The electron transport chain and oxidative phosphorylation are used to produce most of the 

ATP for the cell under aerobic conditions. The electron transport chain moves protons (H+) 

from the cytoplasm via the cytoplasmic membrane (plasma membrane) into the periplasmic 

space [142]. The cytoplasmic membrane is impermeable to protons and electrons (OH-) so a 
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difference in electrical charge will occur across it. This is the thermodynamic potential 

difference [41]. 

The potential difference drives the reactions with protons assumed to move to the 

extracellular medium. This assumption is since the pH of periplasm and extracellular medium 

is near the same [41, 143]. The reactions involved in these groupings are given in equations 

(7.1) to (7.8) [41]. Equation (7.5) is an entirely hypothetical reaction that is only required due 

to the core network not encompassing all reactions that consume ATP.  

NADH dehydrogenase 

(uniquinone-8 and 3 protons) 
4ℎ + 𝑛𝑎𝑑ℎ + 𝑞8 → 3ℎ[𝑒] + 𝑛𝑎𝑑 + 𝑞8ℎ2 (7.1) 

Cytochrome oxidase bd 

(uniquinol-8: 2 protons) 
2ℎ +

1
2𝑜2 + 𝑞8ℎ2 → ℎ2𝑜 + 2ℎ[𝑒] + 𝑞8 (7.2) 

Oxygen transport via diffusion 𝑜2[𝑒] ↔ 𝑜2 (7.3) 

ATP synthase (4 protons: ATP) 𝑎𝑑𝑝 + 4ℎ[𝑒] + 𝑝𝑖 ↔ 𝑎𝑡𝑝 + ℎ2𝑜 + 3ℎ (7.4) 

ATP maintenance requirement 𝑎𝑡𝑝 + ℎ2𝑜 → 𝑎𝑑𝑝 + ℎ[𝑒] + 𝑝𝑖 (7.5) 

Adenylate kinase 𝑎𝑚𝑝 + 𝑎𝑡𝑝 ↔ 2𝑎𝑑𝑝 (7.6) 

NAD(P) transhydrogenase 2ℎ[𝑒] + 𝑛𝑎𝑑ℎ + 𝑛𝑎𝑑𝑝 → 2ℎ + 𝑛𝑎𝑑 + 𝑛𝑎𝑑𝑝ℎ (7.7) 

NAD transhydrogenase 𝑛𝑎𝑑 + 𝑛𝑎𝑑𝑝ℎ → 𝑛𝑎𝑑ℎ + 𝑛𝑎𝑑𝑝 (7.8) 

7.2.6 Fermentation 

The fermentation process produces end products from sugars within the cell [38]. Substantial 

amounts of carbon dioxide and hydrogen are produced in this set of reactions. The flux can 

vary throughout the network based upon the pH of cell at the time. All end products of 

fermentation do leave the cell, via a concentration gradient, thus transferring a proton from 

the cytoplasm to the periplasmic space.  

7.2.7 Nitrogen Metabolism 

Nitrogen is the 4th most abundant metabolite in the E. coli metabolism. Nitrogen enters the 

cell as either ammonium (nh4[c]), or as a moiety within glutamine (glu-L[c]) or glutamate (gln-

L[c]) [38].  
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7.3 The Process Data 

Six sets of data were supplied by GSK. The process data can be broken down into 5 parts: 

sampling, feed, off-gas, product composition and fermentation.  The average fermentation 

volume at time 0hrs (after inoculation) was 9023.8mL with fed-batch being initialised at 

~21hrs. The airflow was 20NLmin-1, pH was 7 and the temperature at 0hrs was 37oC, 

decreasing to 28oC at 66hrs. A total of 19 samples were taken during the experiments, with 

10 being taken between 40 and 48 hours. This time range highlights the transitional phase of 

the cell’s life.  

An antifoam (3mL of SAG47) and antibiotic (4.5mL kanamycin) were bolus fed to the cell 

cultures at 0hrs. A base feed of ammonia (density: 0.88gmL-1) was also added to the culture 

every 15 minutes. To ensure the cells could successfully grow, glucose (density: 1.20106 gmL-

1) was required. This was added every 15 minutes and consisted of: beta-D-glucose 

(2775.31mmolL-1), dipotassium phosphate (122.85 mmolL-1), monopotassium phosphate 

(76.72 mmolL-1) and L-Isoleucine (15.25 mmolL-1). 

Figure 7.1 and Figure 7.2 provide off-gas data for oxygen uptake rate (OUR) and carbon 

dioxide excretion rate (CER). All growth cultures have an OUR and CER excretion rate peak at 

~20hours, except fermentation MME17 due to measurement errors. In the first 20 hours the 

cells are grown in batch. They, therefore, consume available sugar as fast as possible leading 

to an exponential growth. Once the sugar has been exhausted, the OUR and CER drop 

drastically. The decrease in OUR leads to an increase in the dissolved oxygen, signalling that 

the fed-batch must be initialised. The difference in the OUR and CER in MME17 can be put 

down to measurement error initially, which was highlighted in the data set provided for this 

experimental run.  
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Figure 7.2 Oxygen uptake rate for all cell cultures 
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Figure 7.1 Carbon dioxide excretion rate for all cell cultures 



 127 

The product compositions of each of the cell cultures are given in Figure 7.3. Environmental 

and operating conditions were maintained as close as possible for all cultures; therefore, the 

differences are not due to these factors. The variation in the compositions is due to the 

antigens present within the cells. All fermentations begin with an E. coli strain with genome 

only and no plasmid. A plasmid is a small circular DNA molecule found in bacteria and some 

other microscopic organisms that can that can replicate autonomously [144]. One of three 

different plasmids, containing the coding sequence for the respective antigen, is added to a 

different ‘empty’ E. coli strain. Integration of the plasmid to the strain is promoted with a 

treatment such as temperature change or electric shock. A single clone of the E. coli cell is 

selected where integration was successful to create the inoculum. Plasmid integration is 

known as bacterial transformation [145].   

 

An antigen induces an immune response within the body. Production of these antigens is vital 

for producing vaccines and in the combat of cancer. The process data consist of three 

antigens: WT1 (Figure 7.3a), M72 (Figure 7.3b) and F4co (Figure 7.3c).  

 

WT1, also known as Wilms’ tumour gene 1,  has been found to be a useful target antigen in 

tumour specific immunotherapy in the human invitro system [146]. Oka et al proposed that 

the creation of a WT1-based T cell therapy and vaccine would help against a variety of 

malignant cancers [147].   

 

M72 has been used in a vaccine produced by GSK against Mycobacterium tuberculosis. The 

vaccine was found to elicit an immune response and gave participants to the trial at least 

three years protection against progression to pulmonary tuberculosis [148]. F4co has also 

been used in a vaccine, but in the reduction of viral load in those infected with HIV [149].  

 

Although this process data only encapsulates three antigens, the importance of these 

antigens is clear. More importantly it shows the versatility of E. coli and why there is such 

interest in optimising its growth in suspension culture for pharmaceutical/therapeutic 

applications.  
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7.3.1 Biomass Composition 

Biomass consists of 20 amino acids, RNA and DNA. Figure 7.4 shows the biomass 

concentration per fermentation across the sample time. Biomass data across the 6 

fermentations all show similar profiles, with fermentations with the same antigen correlating 

most.  

In addition to the similarity in biomass composition, the more in-depth amino acid 

comparison shows the consistency across all fermentations,  Figure 7.5. Details of RNA and 

DNA composition are given in Figure 7.6. 

7.3.2 Absolute Quantification  

48 metabolites were measured throughout the sample time. These were either classed as 

extracellular, intracellular, or low-intracellular. Low intracellular showed that the metabolite 

amount in the sample was less than 5%.  
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Figure 7.5 Average amino acids composition of biomass proteins (mol/mol Amino acids) 

 

Figure 7.6 Average nucleotide composition for a) DNA and b) RNA 

a 
 

b 
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7.3.3 Respiratory Quotient 

Calculation of the respiratory quotient (RQ) allows an indirect, but quick, way of identifying 

the lack of substrate in the growth medium [150] [151]. Equation (7.9) is used to estimate the 

RQ with 𝑂𝑈𝑅 representing the oxygen uptake rate and 𝐶𝑃𝑅, the carbon dioxide production 

rate.   

 

For the process data, the RQ’s were calculated and can been seen in Figure 7.7. Fermentations 

MME17 and MME18 had large errors in the off-gas data due to measurement issues. 

Therefore, their corresponding RQ’s have not been calculated.  

Figure 7.7 shows that a steady RQ of 1 is achieved for all fermentations after the fed batch 

process has been initialised. If growth is fully respiratory and the main source is a 

carbohydrate, in this case glucose, the RQ will be ~1 [152].   

 

𝑅𝑄 =
𝐶𝑃𝑅
𝑂𝑈𝑅 (7.9) 

Figure 7.7 RQ for MME15, MME16, MME19 and MME20 against time 
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7.4 Gene Data 

The regulation of genes allows a cell to respond to environmental changes as it changes the 

set of proteins present. GSK provided four sets of gene expression data for fermentations 

MME15 to MME18. There exist 133 genes in the data sets. Gene expression has been 

normalised to show the relative change from the initial gene concentration, 𝐺&, equation 

(7.10).  

 

Gene change figures can be found in the Appendix A. These figures show that the gene 

expression is affected by the antigen induced, and therefore, produced by the culture. Large 

relative change in gene expression can highlight reactions that are being used by the cell. In 

the E. coli core out of 136 genes, 120 are expressed by one reaction. Knowledge of which 

reactions are being used the most by the cell would allow for a huge reduction in the problem 

size in finding elementary flux modes (EFMs). For example, in MME15 and MME16 amtB has 

a peak relative change. This gene is expressed solely by the reversible ammonia transport 

reaction. When finding EFMs this could be utilised to reduce the search space. Due to the 

time required to execute this analysis, this work has not been done in this thesis but will be 

discussed in future work. Whereas ackA has a low relative change, so the acetate kinase 

reaction that expresses it is effectively inactive.  

Overall, the gene expressions for same antigen producing cultures are similar. Due to the low 

relative change of some genes, it would be possible to use these results to reduce the search 

space for EFMs. This is discussed further in Chapter 7. 

∆𝐺 =
𝐺 − 𝐺&
𝐺&

 (7.10) 
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7.5 Flux Analysis 

Flux analysis of the E. coli genome would allow a metabolic map of product formation and 

substrate consumption to be generated. Metabolic flux analysis (MFA) requires measured 

fluxes to approximate the unknowns, Chapter 4. Extracellular metabolites, and therefore 

reactions that cross the cell boundary, must have known concentrations to be able to 

compute the MFA result [153]. The core network contains 20 extracellular metabolites and 

only 7 of these are measured in the GSK data set. These metabolites are beta-D-Glucose, 

ammonia, acetate, L-glutamine, L-glutamate, oxygen, and carbon dioxide. Zamorano et al 

tested the accuracy of underdetermined flux results from MFA on a Chinese hamster ovary 

cell network [154]. This required ensuring the mass balance system was well-posed to reduce 

flux intervals via assumptions. They found that although some fluxes were uniquely 

determinable, the size of certain flux intervals could not be reduced due to the existence of 

parallel linking between pathways. Therefore, an accurate MFA is not possible for this data 

set.  

Flux balance analysis (FBA) can be used to maximise an objective to find the unknown fluxes, 

section 3.2, and works with underdetermined systems [153]. This technique will help build a 
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predictive model for a desired optimisation [78]. Due to the complexity of the genome, and 

the lack of measurable data the data provided was applied to the E. coli core network. 

Maximising biomass is the desired objective which does require the glucose uptake rate to be 

calculated. The experimental data for glucose concentration is shown in Figure 7.8, with the 

fed-batch process expanded in Figure 7.9.  

7.5.1 Prediction of Biomass Growth in Batch Phase 

Biomass growth during batch phase is exponential, equation (7.11). The predicted values for 

𝑎 and 𝑏 are given in Table 7.1. All R2 values are very close to, or exactly 1. Therefore, the 

exponential fit is a good prediction for biomass concentration over time. The average 

equation for all fermentations is given in equation (7.12) and is shown with experimental data 

on Figure 7.10.  

𝑓(𝑋) = 𝑎 ∙ 𝑒qi (7.11) 

𝑓(𝑋) = 0.00011667 ∙ 𝑒V.EEZEEi (7.12) 
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Table 7.1 Exponential fitted equation and R2 value for each fermentation 

 

 

 

 

 

The R2 values ranged from 0.90003 for MME18 to 0.97841 for MME20. The residuals and the 

biomass prediction for these ‘worst and ‘best’ cases are given in Figure 7.11 and Figure 7.12  

respectively. Due to the good R2 values achieved, equation (7.12) is a suitable estimation for 

batch concentration during batch phase for these process conditions.  

Fermentation a b R2 

MME15 0.0001 0.5574 0.99984 

MME16 0.0002 0.5258 0.99946 

MME17 0.0001 0.5774 0.9992 

MME18 0.0001 0.5643 1.0000 

MME19 0.0001 0.5715 0.9999 

MME20 0.0001 0.5609 0.9999 
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Figure 7.11 'Worst' fermentation prediction case for MME18 with residual plot 
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7.5.2 Prediction of Biomass Growth in Fed-Batch Phase 

Biomass experimental data was used to create an equation to predict the growth of the cell 

during the fed-batch phase. It was found that 3-degree polynomial gave the best fit (provided 

R2 close to 1) across all the fermentations. An example of the polynomial fitted to the data for 

MME15 is given in Figure 7.13.  

The fitted equation in the form given in Equation (7.13), along with the R2 value, is given in 

Table 7.2. 

 

 

𝑓(𝑋) = 𝑃A𝑡C + 𝑃B𝑡B + 𝑃C𝑡 + 𝑃D (7.13) 
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Figure 7.13 Polynomial fitting of MME15 biomass data over time 
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Table 7.2 Polynomial fitted equation and R2 value for each fermentation 

 

The average of all these values were taken to generate an overall equation to predict the 

growth of biomass in fed-batch operation in the process conditions presented in section 7.3, 

equation (7.14). Figure 7.14 shows equation (7.14) along with all fermentation biomass 

concentrations over time.  

 

Fermentation P1 P2 P3 P4 R2 

MME15 0.0003 -0.0514 2.6024 15.9558 0.97719 

MME16 0.0002 -0.0406 2.2753 16.4781 0.99293 

MME17 0.0003 -0.0419 2.1646 15.1519 0.98791 

MME18 0.0002 -0.0405 2.2677 14.7384 0.98549 

MME19 0.0003 -0.0527 2.5555 14.2367 0.99413 

MME20 0.0006 -0.0752 2.8756 15.4146 0.99914 

𝑋(𝑡) = 0.00031667𝑡C − 0.0503833𝑡B + 2.45685𝑡 + 15.32925 (7.14) 
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The R2 values achieved for the fitted equation range from 0.85483, for MME15, to 0.96918, 

for MME20. The fit along with the residuals for the ‘best’ and ‘worse’ fit are given in Figure 

7.16 and Figure 7.15 respectively. Due to the high R2 values across the 6 fermentations it is 

fair to assume that the equation (7.14) offers a good prediction of biomass concentration 

during fed-batch operation.  
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Figure 7.16 MME20 fit with biomass polynomial equation and residuals 

0 5 10 15 20 25 30 35 40 45
Time / hr

20

30

40

50

60

Bi
om

as
s 

co
nc

en
tra

tio
n 

/ g
D

C
W

/L

X vs. time
Biomass Prediction

0 5 10 15 20 25 30 35 40 45
Time / hr

0

1

2

3

4

5

Bi
om

as
s 

co
nc

en
tra

tio
n 

/ g
D

C
W

/L Biomass Prediction - residuals

0 5 10 15 20 25 30 35 40 45
Time / hr

20

30

40

50

60

Bi
om

as
s 

co
nc

en
tra

tio
n 

/ g
D

C
W

/L

X vs. time
Biomass Prediction

0 5 10 15 20 25 30 35 40 45
Time / hr

0

1

2

3

4

5

Bi
om

as
s 

co
nc

en
tra

tio
n 

/ g
D

C
W

/L Biomass Prediction - residuals

Figure 7.15 MME15 fit with biomass equation and residuals 



 140 

7.5.3 Specific Growth Rate of Biomass during Batch Operations 

The general equation presented in section 7.5.1 is one way of predicted biomass growth. 

During the batch phase of a cell’s life, the biomass concentration can also be modelled by 

equation (7.15), where 𝜇 is the specific growth rate of biomass in gDCW L-1 hr-1. Integration 

of equation (7.15) yields equation (7.16), which with the application of least squares allows 𝜇 

to be found, equation (7.17).  

 

The estimated 𝜇 for each fermentation is given in Table 7.3. The R2 values for all fermentations 

are close to 1, therefore, proving the calculated 𝜇 offer good biomass concentration 

prediction in the batch phase. This is further emphasised by Figure 7.17, which shows the 

actual vs predicted response for all fermentations. The similar 𝜇 achieved for each 

fermentation shows that the biomass growth rate is not antigen dependent. 

Table 7.3 Estimated specific growth rate of biomass in batch phase with the corresponding R2 number  

Fermentation 𝝁 / gDCW L-1 hr-1 R2 

MME15 0.4318 0.9269 

MME16 0.4311 0.9354 

MME17 0.4327 0.9033 

MME18 0.4304 0.9052 

MME19 0.4298 0.9056 

MME20 0.4342 0.9184 

𝑑𝑋
𝑑𝑡 = 𝜇𝑋 (7.15) 

𝑙𝑛
𝑋
𝑋V

= 𝜇𝑡 (7.16) 

𝜇 =
∑ 𝑙𝑛 𝑋𝑋V
∑𝑡  (7.17) 
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7.5.4 Specific Uptake Rate of Glucose during Batch Operations 

In batch operations the change in substrate concentration is determined via equation (7.18), 

where 𝑣 is the specific uptake rate in mmol L-1 hr-1. Combining this with equation (7.15) 

generates 𝑎, relating specific biomass growth and specific uptake rate, equation (7.19). 

Integration of equation (7.18) allows for 𝑎 to be calculated with least squares, equation (7.20).  

𝑑𝑆
𝑑𝑡 = −𝑣𝑋 (7.18) 

𝑑𝑆
𝑑𝑋 = −

𝑣
𝜇 = 	−𝑎 

(7.19) 

 

𝑎 = −
∑𝑆 − 𝑆0
∑𝑋 − 𝑋0 (7.20) 
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Glucose consumption was simulated, and the simulation output compared to the 

experimental data. The specific biomass growth rate for each fermentation was also used to 

generate the simulation.   

Table 7.4 provides the calculated specific uptake rates of glucose for each fermentation in 

batch phase. The R2 values achieved show that the estimated specific uptake rates are realistic 

estimations.  

 

Table 7.4 Estimated specific uptake rate of glucose in batch phase with the corresponding R2 number 

 

Figure 7.18 shows the actual response and the predicted response for glucose concentration 

using estimated biomass growth rate and glucose uptake rate. The fit achieved is good until 

about 21 hours. At this point nearly all glucose has been consumed by the cells, Figure 7.8, 

changing how the cell is behaving. Equations (7.14) and (7.17) only account for batch growth 

phase with a good supply of growth medium. Therefore, it is expected that at 21 hours the 

estimated rates will not encapsulate the cell’s behaviour. However, the R2 values show that 

the estimations are still decent enough to model glucose consumption with the estimated 

specific uptake rates in the batch phase.  

Fermentation 𝑎 / mmol 𝒗	/ mmol gDCW-1 hr-1 R2 

MME15 15.5979 6.7349 0.9339 

MME16 15.1499 6.5310 0.9398 

MME17 13.6040 5.8863 0.8670 

MME18 14.6728 6.3152 0.8975 

MME19 15.7187 6.7556 0.9934 

MME20 13.9900 6.0741 0.9253 
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7.5.5 Specific Growth Rate of Biomass during Fed-Batch Operations 

The system, although fed batch, operates as mini batch systems as the feed is not continuous. 

Each 15-minute interval is a batch process. To reduce the amount of data created it is 

assumed that each hour is a batch process. Figure 7.19 shows the biomass concentration over 

the fed batch period along with the predicted biomass estimated using 𝜇 from equation 

(7.16). The figure shows the excellent fit achieved by modelling the system as batch over each 

hour. This is not just the case for MME15; good fits were achieved for each fermentation as 

shown in Figure 7.20. The specific growth rate is greatest initially and reduces over the 

experimentation time as the cell enters the transition and decay phases of life. The growth 

rates for each hour for all fermentations are shown in Figure 7.21. During the batch phase the 

specific growth rate was around 0.4gDCWL-1h-1, therefore, initial average rates of 

0.1146gDCWL-1h-1 are reasonable.  
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Figure 7.19 MME15 biomass experimental data and predicted data using estimated specific growth rate 
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7.5.6 Specific Uptake Rate of Glucose during Fed-Batch Operations 

Like in section 7.5.5 the fed batch system can be multiple batch sections. During the fed batch 

process a control scheme is utilised to feed glucose to the cells. This control scheme aims at 

maintaining the glucose concentration so that s(h?p@m3.)
si

= 0. As the change in glucose 

concentration should be 0 it can be assumed that the glucose feed is equivalent to the glucose 

uptake rate, 

 

The glucose feed rate is measured for all fermentations, therefore, based on equation (7.21) 

the uptake rate is also known. However, as can be seen by Figure 7.9 the control scheme 

does not achieve s(h?p@m3.)
si

= 0 across the fed batch phase, 

𝑖𝑓	
𝑑(𝐺𝑙𝑢𝑐𝑜𝑠𝑒)

𝑑𝑡 = 0 ∴ 𝑣 = 𝑐a  (7.21) 
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Figure 7.21 Specific uptake rates over fed batch for all fermentations 
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Due to the small changes in concentration over time the increase or decrease in 𝑣	compared 

to 𝑐a  will also be small. This will only marginally affect the fluxes achieved by FBA, but the 

on/off state of reactions will still be clear. Overall, this work assumes an ideal control scheme, 

so equation (7.21) is upheld. The feed concentration, equivalent to uptake rate, is given in  

Figure 7.22. The negative feed concentration at 1 hour for MME20 is due to a measurement 

error caused by the mass measurement of the feed vessel every 15 minutes. 

Rather than utilising the specific uptake rate every 15 minutes, the mean uptake rate will be 

used for flux analysis in the fed batch phase. Table 7.5 details the average uptake rate of 

glucose for each fermentation in the fed batch phase. These results are less than that during 

𝑖𝑓	
𝑑(𝐺𝑙𝑢𝑐𝑜𝑠𝑒)

𝑑𝑡 > 0 ∴ 𝑣 < 𝑐a  (7.22) 

𝑖𝑓	
𝑑(𝐺𝑙𝑢𝑐𝑜𝑠𝑒)

𝑑𝑡 < 0 ∴ 𝑣 > 𝑐a  (7.23) 
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the batch phase, which is expected as the cell is leaving the growth phase as fed batch is 

initiated.  

Table 7.5 Estimated specific uptake rate of glucose in fed batch phase  

 

 

 

 

 

 

7.6 Flux Balance Analysis 

FBA can be efficiently performed on the COBRA Toolbox, which has the E. coli core network 

readily available. The default constraints on the toolbox are ATP maintenance requirement 

lower bound is 8.39 mmol gDCW-1 hr-1 and the D-Glucose exchange reaction lower bound is -

10 mmol gDCW-1 hr-1. The D-Glucose lower bound is adjusted to reflect the uptake rates found 

for the batch and fed-batch operations. As the process is aerobic, high oxygen uptake rates 

are required. During the batch operations the oxygen uptake rate peak is approximately 1700 

mmol hr-r and 1000 mmol hr-1 in fed-batch. The biomass equation, which is maximised, is 

given in Table 7.6. Biomass formation is given in the commonly used Neidhardt biomass 

equation with growth-associated maintenance [38, 155].  

Table 7.6 E. coli core biomass equation 

Fermentation 𝒗 / mmol gDCW-1 hr-1 

MME15 1.4832 

MME16 1.4325 

MME17 1.5695 

MME18 1.5554 

MME19 1.5730 

MME20 1.7198 

Metabolite Stoichiometry 
3-Phospho-D-glycerate -1.496 

Acetyl-CoA -3.7478 
ADP 59.81 

2-Oxoglutarate 4.1182 
ATP -59.81 

Coenzyme A 3.7478 
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During batch operations the fluxes for all 95 reactions were calculated, with maximising 

biomass as the objective. The objective function achieved, which is the predicted biomass 

growth rate for each fermentation is given in Table 7.7. These growth rates are greater than 

that achieved in the growth rate estimations, Table 7.3. This is expected as FBA produces the 

maximum possible rate and when compared to the real system, maximum uptake rate will 

rarely be achieved due to FBA not accounting for environmental factors during fermentation. 

These factors, such as temperature and pH, could hinder the growth of the cell over time.  

Figure 7.23 displays all the fluxes required across the fermentations to maximise biomass 

growth rate. Out of 95 reactions, some of which are reversible, FBA estimates only 47 are 

necessary to achieve these high rates. The flux necessary for each reaction is consistent across 

the fermentations, despite the different antigens being produced. Therefore, the antigens 

being produced does not affect the reactions necessary to maximise biomass for E. coli. This 

could be due to the antigens being grown on the bacterial cell wall, which in turn does not 

affect the internal route taken within the metabolic network inside the wall [156].   

FBA results often show fluxes in unrealistic conditions. However, due to the similarity in the 

maximised specific growth rate and the measured rate estimated by the experimental data 

D-Erythrose 4-phosphate -0.361 
D-Fructose 6-phosphat -0.0709 

Glyceraldehyde 3-phosphate -0.129 
D-Glucose 6-phosphate -0.205 

L-Glutamine -0.2557 
L-Glutamate -4.9414 

H2O -59.81 
H+ 59.81 

Nico6namide adenine dinucleo6de -3.547 
Nico6namide adenine dinucleo6de - reduced 3.547 
Nico6namide adenine dinucleo6de phosphate 13.0279 

Nico6namide adenine dinucleo6de phosphate - reduced -13.0279 
Oxaloacetate -1.7867 

Phosphoenolpyruvate -0.5191 
Phosphate 59.81 
Pyruvate -2.8328 

alpha-D-Ribose 5-phosphate -0.8977 
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the results shown in Figure 7.23 may show an example of what could be happening within the 

cell.  

Table 7.7 Maximised objective function for each fermentation in batch phase and percentage of increase from estimated 
rate and maximum possible 

 

The mean specific uptake rates for the fed batch phase were used to maximise the biomass 

growth rate. Table 7.8 details the maximum specific growth rates for biomass across the 6 

fermentations. These rates are lower than that possible in the batch phase, Table 7.7, as the 

cell is not in the growth phase. However, the cell will still be growing but at a reduced rate, 

emphasised by the maximum feasible 𝜇.  

Table 7.8 Maximised objective function for each fermentation in fed batch phase 

Fermentation 𝝁 / mmol gDCW hr-1 

MME15 0.0932 

MME16 0.0886 

MME17 0.1011 

MME18 0.0998 

MME19 0.1015 

MME20 0.1149 

Figure 7.24 provides the FBA results for fed batch operation for all fermentations. Only 44 out 

of the 95 reactions are necessary to achieve the maximum feasible rates in Table 7.8. To 

ensure that equation (7.20) could be assumed to be upheld throughout the fed batch process 

Fermentation 𝝁 / mmol gDCW hr-1 
Percentage of increase between estimated 

value and maximised objective 

MME15 0.5746 25% 

MME16 0.5559 22% 

MME17 0.4968 13% 

MME18 0.5362 20% 

MME19 0.5765 25% 

MME20 0.5141 16% 



 150 

±5% was added to the mean specific uptake rates. The active reactions required maximise 

the biomass growth rate remained unchanged.  
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Figure 7.23 Flux for E. coli core network required to maximise biomass growth rate in batch phase 
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Figure 7.24 Flux for E. coli core network required to maximise biomass growth rate in fed batch phase 
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Like with the batch phase the fluxes needed are similar across all fermentations, emphasising 

that the chosen antigen does not affect the active reactions. Three reactions are necessary in 

the batch system that are not needed in fed batch: reactions 91, 93 and 94. These reactions 

will be necessary to form the additional EFMs needed in the batch system that are not present 

in the fed batch solution set. Reactions 91, 93 and 94 are reversible but the flux results from 

FBA, see Figure 7.23, show that they are all operating in the forward direction. The reactions 

are, 

𝑟ZA 

𝐺𝑙𝑦𝑐𝑒𝑟𝑜𝑙-3-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 + 𝑆𝑒𝑑𝑜ℎ𝑒𝑝𝑡𝑢𝑙𝑜𝑠𝑒-7-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒

→ 𝐷-𝐸𝑟𝑦𝑡ℎ𝑟𝑜𝑠𝑒-4-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒

+ 𝐷-𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒-6-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 

  

𝑟ZC 

𝐷-𝑋𝑦𝑙𝑢𝑙𝑜𝑠𝑒-5-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 + 𝑎𝑙𝑝ℎ𝑎-𝐷-𝑅𝑖𝑏𝑜𝑠𝑒-5-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒

→ 𝐺𝑙𝑦𝑐𝑒𝑟𝑜𝑙-3-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒

+ 𝑆𝑒𝑑𝑜ℎ𝑒𝑝𝑡𝑢𝑙𝑜𝑠𝑒-7-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 

  

𝑟ZD 

𝐷-𝐸𝑟𝑦𝑡ℎ𝑟𝑜𝑠𝑒-4-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 + 𝐷-𝑋𝑦𝑙𝑢𝑙𝑜𝑠𝑒-5-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒

→ 𝐺𝑙𝑦𝑐𝑒𝑟𝑜𝑙-3-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒

+ 𝐷-𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒-6-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 
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Figure 7.25 Reactions necessary in fed batch phase overlayed onto E. coli core map 
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The E. coli core consists of 95 reactions and 72 metabolites. The EFMs for this network can be 

found efficiently via efmtool, with the COBRA Toolbox modelling the E. coli core [38]. The 

glucose uptake rate was provided to efmtool for both the batch and fed-batch operations of 

each fermentation. The batch phase for all fermentations was found to have no EFMs and the 

fed batch phase 1 EFM. These two phases differ in the number of EFMs as the lower glucose 

uptake rate and biomass growth rate will make some reactions unfeasible. The reactions 

necessary in the fed batch phase overlayed onto the E. coli core map are shown in Figure 7.25.  

Applying flux data to reduce the search space for EFM enumeration will aid in the solve time 

and memory storage required for MILP. However, FBA presents an ideal non-unique case that 

does not consider EFMs but instead what reactions are necessary to produce the maximum 

biomass. As the case is non-unique it is fair to assume that EFMS would occur but instead they 

are not being encapsulated in the non-unique flux distribution found. A better use of flux 

analysis in the determination of EFMs would be flux variability analysis (FVA).  

7.7 Flux Variability Analysis 

FVA was performed around maximising the biomass objective. FVA in the batch phase yields 

7 reactions, out of 95 non-decomposed reactions, which have a minimum and maximum flux 

of 0mmolL-1hr-1, Figure 7.26 and Figure 7.27. The same reactions are found to be unused in 

the fed batch phase,  Figure 7.28 and Figure 7.29. The unused reactions are exchange 

reactions for D-Fructose, fumarate, L-Glutamine and L-Malate, allowing for extracellular 

metabolites to enter the cell. The other three reactions are,  

𝑟DE 
𝐷-𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒 + 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑒𝑛𝑜𝑙𝑝𝑦𝑟𝑢𝑣𝑎𝑡𝑒

→ 𝐷-𝐹𝑟𝑢𝑐𝑡𝑜𝑠𝑒-6-𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 + 𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 

  

𝑟EB 

𝐴𝑇𝑃 + 𝐿-𝐺𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒 +𝑊𝑎𝑡𝑒𝑟

→ 𝐴𝐷𝑃 + 𝐿-𝐺𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒 + 𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛

+ 𝑃ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 

  

𝑟FC Hydroge𝑛. + L-Malat𝑒. → Hydrogen + L-Malate 
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The used reactions all have minimum and maximum flux ranges shown on the figures. Any 

reaction can have a flux within this range occurring at any moment in time, whilst still 

maximising biomass. Some reactions have small ranges allowing for the reasonable 

assumption that the mean flux is occurring, however, some reactions like reaction 44, have 

large ranges. Further investigation should be done to estimate the optimal flux necessary to 

maximise biomass, however further measured data is required to do this.  
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Figure 7.26 Flux range for each reaction in the batch phase generated by FVA 
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Figure 7.27 Flux range for each reaction in the batch phase generated by FVA with outliers removed from view 



 159 

 

0 10 20 30 40 50 60 70 80 90 100
Reaction

-200

0

200

400

600

800

1000

Fl
ux

 m
m

ol
/L

/h
r

MME15
MME16
MME17
MME18
MME19
MME20

Figure 7.28 Flux range for each reaction in the fed batch phase generated by FVA 
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Figure 7.29 Flux range for each reaction in the fed batch phase generated by FVA with outliers removed from view 
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Efmtool finds 100274 EFMs for the batch system and 87163 for the fed batch. The batch phase 

therefore uses all EFMs possible in the E. coli core network [38]. The difference in these values 

is due to some reversible reactions operating in only one direction, which differs between the 

phases. The 13111 EFM reduction between the batch to the fed batch phase highlights that 

application of FVA in EFM enumeration in the MILP method would be beneficial. FVA provides 

the full range of unique solutions possible when maximising an objective. It, therefore, is more 

reflective of what could occur within a cell. As discussed in section 7.7, 7 reactions in both the 

batch and fed batch phase are unused to maximise biomass yield. These reactions can be 

removed from the MILP search space. In addition to this, some reversible reactions are only 

operating in one direction as the flux is 0 or negligible which will also reduce the search space.  

The fed batch FVA results have been applied to the compressed E. coli core network used in 

the MILP method. In 10 minutes 896 EFMs were found with an efficiency of 0.9376. Compared 

to the compressed network results in Chapter 5, the number of EFMs found increased by 

9.67% and efficiency improved by 4.32%. The number of EFMs found increased due to the 

reduced search space for MILP. Therefore, application of FVA to MILP in the future will aid in 

the enumeration of greater sets of EFMs; particularly those of which can occur within the 

experimental conditions. Elimination of reactions in the network allow for a fewer false EFMs 

to be found, which improves efficiency. Overall FVA is found to be a useful tool in improving 

MILP efficiency and solve time for EFM determination.  

7.8 Conclusion  

The E. coli cell data provided appears extensive at first glance but upon inspection lacks 

metabolite concentration data to allow for fully determinable flux analysis (metabolic flux 

analysis, MFA). The data was not originally collected for this project, hence the large amount 

of unmeasured data points. This chapter explored the biomass composition for all 6 

fermentations, highlighting the differences in the three antigens: WT1, M72 and F4co. The 

limitations of the data only allowed flux balance and flux variability analysis to be performed. 

To use these techniques the specific uptake rate for glucose, the carbon source, and biomass 

growth rate were required. Both these rates were found for all fermentations in the batch 

and fed batch phases of production. The growth rate and uptake rate of glucose were lower 

during fed batch operations due to the cell entering the transition phase of life at ~40 hours. 
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FBA was found to reduce the network’s reactions by nearly half. This however did not benefit 

the EFM enumeration as there were no EFMs in the batch phase and only 1 in the fed batch 

phase. This is due to the non-unique solution achieved in FBA, only providing the necessary 

reactions to maximise the biomass reaction. Therefore, FVA was used to find the range of flux 

for each reaction to maximise biomass yield. Only 7 reactions were found to be completely 

unused in the fermentations and some reactions were found to have negligible flux (<

× 10bZ). Application of these results allowed for a 9.67% increase in the number of EFMs 

found and an increase in efficiency of 4.32% for the MILP method presented within this thesis. 

The application of FVA creates a way to find more EFMs using MILP as it reduces the search 

space. Active EFMs for the E. coli cell could be determined if the data collected was more 

extensive as MFA could be used.  
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Chapter 8 Conclusion and Recommenda;ons for Future Works 

8.1 Overview of Aims 

The aim for this thesis was to create a future-proof method of finding elementary flux modes 

(EFMs) so that genome scale models could be examined. EFMs found could then in turn be 

used to improve produc6on efficiency and reduce waste in vaccine produc6on by driving 

par6cular reac6ons. Each chapter had their own aim to contribute to the overall work.  

 

Firstly, chapters 3 and 4 studied underdetermined and exactly determined flux analysis. 

Examina6on of flux analysis provided routes for reducing the search space for EFMs. 

Furthermore, a new integrated form of metabolic flux analysis was presented and the 

advantages of this method in reducing error discussed. Chapter 5’s aim was to use a mixed 

integer linear programming (MILP) method to enumerate EFMs. Various networks were to be 

tested and the efficiency of the method compared to exis6ng tools and MILP solvers. Then 

chapter 6 was aimed at reducing the solve 6me of the MILP method through techniques 

discussed in literature. Areas where MILP would be beneficial in the future were also to be 

highlighted in this chapter.  The final chapter, chapter 7, was used to analyse the data provided 

by GlaxoSmithKline and assess the feasibility of determining flux and EFMs for the network. 

Applica6on of flux analysis techniques were done, if possible, along with a cri6cal analysis of 

where extra data was required to allow for ac6ve EFMs to be determined.  

8.2 Result Overview 

8.2.1 Chapter 3 

This chapter studied flux balance (FBA) and flux variability analysis (FVA) for underdetermined 

systems. Through simula6on it was proven that FBA results must be confirmed via 

experimental results to ensure their accuracy. However, key reac6ons to any metabolic 

network can be found via this op6misa6on problem. FBA results can also show which 

reac6ons are vital in the produc6on of desirable and undesirable metabolites, crea6ng a basic 

understanding of how environmental condi6ons should be set to drive reac6ons, e.g., 

reducing concentra6on of a substrate a^er a period. FVA produced a range of fluxes providing 

insight into how to maximise produc6on of metabolites with low overall flux distribution. This 
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was found to be particularly helpful at highlighting how easily some metabolites, that 

negatively affect growth, are produced. FVA was found to be more useful than FBA as it did 

not just present one non-unique flux distribution. Therefore, this chapter highlighted that FVA 

could be used in conjunction with EFM enumeration to reduce the search space. Overall, 

these methods created good hypotheses for cell behaviour, but the lack of measured data 

created situations that were questionable and therefore required experimental confirmation 

and further data collection. A list of all possible measurable metabolites is needed, and this 

must be compared to those within the core network to allow for a more determinable system.  

8.2.2 Chapter 4 

This chapter used metabolic flux analysis (MFA) and integrated MFA (iMFA) to estimate flux 

and concentration change through an exactly determinable metabolic network. The main 

disadvantage to MFA proven in this chapter is its inaccuracy to real-time data. Through 

simulation and comparison with experimental data available, iMFA was found to mitigate this 

disadvantage. iMFA was proven to be a reliable technique suitable for industry to monitor 

transfer of material through all reactions in a metabolic network. If there was a reduction in 

material transfer, then it would show that reaction use was in decline. Knowledge of material 

transfer through reactions also enabled iMFA to be used in generating dynamic simulations 

of the cell’s growth phase through the approximation of rate constants. iMFA offered an 

efficient method in approximating both the saturation constant and rate constant for a 

reaction rate in a Michaelis-Menten form. Whilst still offering a good prediction of substrate 

and product concentrations over time. To add to this, iMFA does not require behaviour 

assumptions of the cell to be made, apart from the pseudo-steady state assumption. Specific 

fluxes are not necessary in the prediction of intracellular material change, a major drawback 

of MFA.  

8.2.3 Chapter 5 

MILP was proven to be a viable method to enumerate EFMs and the work in this thesis 

improved on the solve time of MILP methods presented in literature via the addition of 

additional constraints. The commercial solver, efmtool, was quicker than MILP due to the 

many improvements made over the years to reduce memory usage and accelerate 
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computation time. However, this chapter highlighted areas of future improvements in solver 

efficiency and hardware which would reduce the MILP solve time.  

8.2.4 Chapter 6 

Areas of improvement mentioned in Chapter 5 were applied in Chapter 6. MILP caused 

memory storage clogging and reduced solve time for EFM enumeration, particularly at a large 

scale. Integer cuts were found to be unnecessary due to the extra constraints added to the 

MILP method in Chapter 5. Removal of these reduced the matrices size of the problem. This 

chapter also showed the introduction of sparse matrices throughout the code reduced the 

strain on the memory. Network compression was introduced and applied to various networks, 

including the E. coli core. Combining these techniques made it possible to solve over a 1000 

EFMs in the E. coli core, a 302% increase on the method presented in Chapter 5. Flux data was 

also shown to be useful in reducing the search space. Zero fluxes indicated that reactions 

were not in operation, and this was used to prevent EFMs containing these reactions being 

found via MILP. Overall, this chapter emphasised the improvements needed to enable MILP 

to find more EFMs in a shorter period, whilst highlighting future methods that could be 

applied to apply the technique at genome scale.  

8.2.5    Chapter 7 

The data provided was for 6 fermentations with three different antigen productions: WT1, 

M72 and F4co. This chapter’s key finding was the data provided lacked measurements 

allowing for it to be exactly determinable, restricting the flux analysis possible. As a result, 

only FBA and FVA could be performed. The specific uptake rate of glucose and the biomass 

growth rate were found for both batch and fed-batch operations. It was found that the growth 

rate and uptake rate of glucose were lower during fed batch operations due the cell entering 

the transition phase of life at ~40 hours. FBA reduced the network size but did not provide 

EFMs as the non-unique solution achieved in FBA only provided the necessary reactions to 

maximise the biomass reaction, which does not conform to the definition of an EFM. FVA was 

deemed a better flux analysis technique for the E. coli data and the flux range to maximise 

biomass was calculated. Only 7 reactions were found to be completely unused in the 

fermentations and some reactions were found to have negligible flux. Application of these 
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results allowed for a 9.67% increase in the number of EFMs found and an increase in efficiency 

of 4.32% for the MILP method presented within this thesis. The application of FVA created a 

way to find more EFMs using MILP as it reduced the search space.  

8.3 Final Remarks and Future Scope 

8.3.1 Chapter 3 and Chapter 4 

These two chapters met aims set at the project’s beginning; to understand and improve 

where possible on flux analysis techniques for determined and underdetermined systems. 

Flux analysis is well documented throughout literature, however, the errors from 

experimental data were found to skew results obtained in MFA. iMFA proved successful in 

reducing these errors whilst still providing meaningful results. Therefore, it is proposed to trail 

an integrated approach of FVA and FBA. An integrated form of FVA would provide a range of 

material transfers for every reaction required to maximise an output, e.g., biomass. 

Knowledge of the material transfer would allow reaction rates within the range to be 

predicted for each reaction. As the integrated FVA would find the minimum and maximum 

possible material transfer through a reaction, the change in the reaction rates for this 

minimum and maximum could also be analysed. This is of particular interest for the substrate 

saturation constant. If the specific growth rate is set to be half the maximum specific growth 

rate, the substrate saturation constant equals the concentration of the growth rate-limiting 

nutrient. Therefore, the substrate saturation constant is the concentration of growth rate-

limiting nutrient that supports half the maximum specific growth rate [157]. So, if two 

enzymes are competing for one substrate, effectively two reactions, the route with the 

greater saturation constant will have the largest amount of relative flux.  Collecting a range 

of these saturation constants will allow for evaluation of the most likely route travelled within 

the cell in minimum and maximum conditions.  

8.3.2 Chapter 5 and Chapter 6 

Chapter’s 5 and 6 completed the main aim of the work to create a method to viably solve 

large scale EFMs. Currently the MILP is implemented into MATLAB as a standalone 

optimisation tool. Commercial optimisation packages, such as Gurobi and CPLEX, will offer an 
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improved solve time to MATLAB and should be considered a viable option in the future. These 

packages also offer a useful approach to Big M constraints which can cause instability within 

the optimisation. This work required flux data to estimate the Big M constraint for each 

reaction. However, the packages offer specially ordered sets (SOS) as an alternative to the Big 

M constraint. The Big M constraint is used to ensure that 𝛿& = 1, ⇒ 𝑣& > 0 and, 𝛿& = 0, 

⟹ 𝑣& = 0, equations (8.1) and (8.2). However, SOS do the same process without the 

additional of constraints, equation (8.3) [158]. SOS offer an always valid and numerically 

stable alternative to the Big M constraint. Using this method would reduce the number of 

constraints in the problem, speeding up solve time and reducing memory clogging.  

𝑣& ≤ 𝑀&𝛿&        (𝑖 = 1,… . , 𝑁1) (8.1) 

𝛿& ≤ 𝑣& 													(𝑖 = 1,… . , 𝑁1) (8.2) 

𝛿& , 𝑣& ∈ 𝑆𝑂𝑆 − 1 (8.3) 

Chapter 6 discussed the possibility of a parallelisation when solving for EFMs. In the future it 

would be beneficial to apply this method either on multiple cores on a computer or a high-

performance computer, like the Rocket HPC at Newcastle University. The code would need to 

be reconfigured to ensure that no “breaks” existed as parallel computation is only possible 

within MATLAB if this is the case. Different processors could also be trailed within this study 

as MATLAB currently benchmark the Intel Core i9-12900 processor as being the most efficient 

at solving optimisation problems within their framework.  

8.3.3 Chapter 7 

Chapter 7 utilised the GSK data as set out in the aims to better understand the process and 

highlight measurements that are needed to take this work further. Unlike the concentrations 

of metabolites, the gene concentration is more extensive, therefore, further analysis of the 

gene concentration data could be performed. Gene changes over time were examined in this 

thesis but with each gene relating to a reaction it could in fact be used to reduce the search 

space for EFMs. The associated reactions with gene concentrations with little to no change 

over time can be assumed to be non-operational. This data could be used to reduce the EFM 

search space and ensure only EFMs that could be active are found.  
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To be able to perform more accurate FVA/FBA and to perform MFA, further metabolite 

concentrations are required. Tackling the E. coli core is an easier task experimentally than the 

genome due to less measurements being required. The E. coli core network consist of 72 

metabolites, of which only four of these in the data set are measured. A total of 48 

extracellular metabolites are measured and with the genome consisting of 1904 metabolites, 

emphasising that measuring data to fit the core is a much less intensive task which should be 

tackled first [20]. 
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Figure A.1  MME15 relative gene expression at various sampling times 
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Figure A.2  MME16 relative gene expression at various sampling times 
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Figure A.3  MME17 relative gene expression at various sampling times 
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Figure A.4 MME18 relative gene expression at various sampling times 
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