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Abstract 

 

This thesis explores and develops methods for the simulation and analysis of flood risk 

for urban environments, using an advanced hydrodynamic model (CityCAT). Focused 

on bolstering urban flood resilience, the research is aimed at the need for better 

representation of urban features and blue green adaptations within hydrodynamic 

models. A number of aspects of urban flood modelling, exposure analysis and 

adaptation are addressed using novel methods and detailed applications to city case-

studies in Newcastle-upon-Tyne, Greater London (both UK) and Thessaloniki 

(Greece). Accurately representing buildings is addressed by critically comparing the 

‘Building Hole’ method with the prevalent ‘Stubby Building’ approach, demonstrating 

superior performance using a detailed flood validation dataset. Efficient flood risk 

management in urban areas necessitates interventions that modify surface flow 

pathways and introduce storage, so a novel cost-benefit ‘source-receptor’ framework is 

developed to identify flood sources, vulnerable receptors, and optimal locations for 

implementing Blue-Green Infrastructure (BGI). The framework integrates economic 

considerations, surpassing conventional hydraulic analyses. High-resolution flood 

risk and property-level exposure modelling for whole megacities has previously not 

been achievable, so here a case study of London is carried out, showcasing cloud-based 

flood modelling as a transformative tool for insurance and flood resilience strategies 

worldwide. In addition to extending the scale and accuracy of flood risk and exposure 

modelling practice, a number of conclusions are drawn and advice presented on 

practical aspects, such as : assessment of the superiority of the “Building Hole” method, 

alongside advice on improving the alternative “Stubby Building” method; firm 

guidelines for minimum DEM resolution and building representation in the model 

domain, considering both cases where high quality datasets are available and absent;  

an improved benefit-cost method for optimising placement of blue-green 

infrastructure, alongside proposals for further development through automation. 
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Chapter 1. Introduction 

 

1.1 Background 

Floods are a physical phenomenon characterised by the temporal covering of land by 

water, which is followed by negative consequences for humans (Galiatsatou, 2009). 

The extent and severity of the damage caused by urban floods is a product of both the 

intensity and duration of the rainfall (variable in space and time) and its interaction 

with the complex flowpaths of a city, on the surface and below ground. Nowadays, 

the impact of pluvial flooding is a major problem due to frequent natural disasters in 

the urban fabric (Teng et al., 2017). Detailed hydrodynamic modelling can be used to 

test a range of mitigation strategies to reduce urban flooding (Kilsby et al., 2020). There 

is, therefore, a great need to improve flood modelling and analysis tools to understand 

the impacts of floods and water flowpaths in an urban area. Computational hydraulics 

is one field of science for which computers opened a new way of working to 

researchers and engineers to determine what is happening in reality and to predict 

what may happen in the future (Popescu, 2014). Flood inundation models are valuable 

resources that enable researchers to model the hydrodynamics of past flood events and 

anticipate future occurrences that may cause damage in urban areas (Willis et al., 2019). 

Given the global climate change and the uncertainties it brings, studies in this field are 

of utmost importance. Enhancing hydraulic models is crucial to accurately predict the 

direction and magnitude of flooding. Buildings act as barriers to water flow, 

influencing its path, and therefore, they should be considered in hydraulic models 

(Rak et al., 2018). Numerous studies have utilised 2D hydraulic models to address 

complex urban challenges, encompassing numerical solutions of the 2D shallow water 

equations (Leandro et al., 2009; Mignot et al., 2006) and the analysis of surface water 

movement around buildings and underground urban drainage systems. 

In recent years, the UK has experienced multiple severe flood events causing 

significant damage to people, infrastructure, and the economy. The increase in 
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urbanisation has heightened the risk of urban flooding, making it a pressing issue. 

Pluvial floods, which are triggered by intense but short-duration rainfall events, are a 

major cause of flooding in urban areas (Bruwier et al., 2020). With the effects of climate 

change, the exposure to floods in urban areas is expected to rise, putting more lives at 

risk. Flood risk management has shifted towards resilience thinking, emphasizing the 

importance of designing cities that can absorb water and provide protection against 

floods (Potter & Vilcan, 2020). Hydraulic models are crucial in simulating urban 

flooding, considering the complex topography with buildings, drainage networks, and 

critical infrastructure (K. Guo et al., 2021). Accurate and high-resolution data such as 

Digital Elevation Models (DEM), Digital Surface Models (DSM), and Digital Terrain 

Models (DTM) play a significant role in defining flood pathways within cities 

(McClean et al., 2020). Hydrodynamic models are rapidly evolving with the 

introduction of new simulation methods and increased computational power. The 

growing demand for detailed and reliable estimates of surface water flood risk, as well 

as inundated risk protection for assets, infrastructure, and urban constructions, drives 

the development of hydraulic models with more realistic results (Kilsby et al., 2020). 

However, there are challenges in accurately representing urban features and 

incorporating effective blue-green interventions into these models. Currently, there is 

a lack of detailed and innovative techniques hindering the improvement of pluvial 

flood modelling, making it a priority area of focus. 

 

1.2 Aim and Objectives 

This thesis centres around urban flood modelling, with a specific emphasis on 

investigating and better defining the water flowpaths within urban areas, contributing 

to a better understanding of flood dynamics and aiding in the development of effective 

flood mitigation strategies. 
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1.2.1 Aim 

The thesis aims to enhance the representation of urban features within hydrodynamic 

models and utilise novel methodologies to achieve flood resilience in urban areas and 

catchments. The thesis will focus on applying these methods to real storm events in 

cities and analysing the urban features that are exposed to flood risk. By improving 

the representation of buildings and assessing their vulnerability to flooding, the 

research aims to contribute to the development of more accurate and effective flood 

management strategies in urban environments. 

 

1.2.2 Objectives 

The following objectives were primarily identified during the work of the thesis, but 

they will be discussed in detail at the end of the literature review in Chapter 2: 

1. Review the current methods for representing urban features in hydrodynamic 

models; 

2. Assess how simulated flowpaths and flood depths in cities are affected by 

building representation and develop advice for best practice in modelling; 

3. Develop a new methodology to locate areas and buildings at high risk of 

flooding and then provide solutions to reduce damages from flooding by 

adding Blue-Green infrastructure in critical locations; 

4. Demonstrate improved model representations in practical applications 

covering hazard (inundated areas and depths) and exposure (number and type 

of buildings and assets); 

5. Explore the significance of the Digital Elevation Model resolution in urban flood 

modelling; 

6. Application of the CityCAT model to a range of different cases for pluvial 

flooding (e.g. Newcastle, London etc); 
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1.3 Research contribution 

The project was funded by the EPSRC Centre for Doctoral Training in Water 

Infrastructure and Resilience (CDT-WIRe) as its aims align very closely with those of 

the CDT, with potential applications for CDT partners in industry, local authorities 

and the insurance sector. Data for various applications and the modelling software, in 

CityCAT, were primarily provided by Newcastle University, in some cases building 

on previous research. Outputs of this thesis were presented at various national and 

international conferences and have been published or are in review in international 

journals:  

• Chapter 3 - Flood Risk Management Journal (published on the 19/09/2023, 

Iliadis et al. (2023b)) 

• Chapter 4 –  Journal of Hydrology (in review) 

• Chapter 5 – Water (received reviewers’ comments and - corrections under way)  

• Chapter 6 – Hydrology (published on the 17/08/2023, Iliadis, Galiatsatou, et al. 

(2023)) 

 

1.4 Thesis structure 

This thesis comprises seven chapters. The schematic workflow can be seen in Figure 

1.1. To make the thesis more readable, chapters three to six have their own 

introduction, methodologies and conclusions. 
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Figure 1.1 Schematic workflow of the thesis. 
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Chapter 2. Overview of the state of the art in urban flood modelling 

 

2.1 Modelling the Urban System 

Flooding is a significant natural hazard that poses substantial threats to urban areas 

worldwide. As urbanisation continues to increase and climate change intensifies, the 

vulnerability of cities to flooding has become a pressing concern (Suriya & Mudgal, 

2012). Integrated flood risk assessment methodologies, nature-based solutions, 

community engagement, and adaptive strategies are pivotal in building urban 

resilience against flooding. While significant progress has been made in understanding 

and addressing this issue, ongoing research is essential to adapt to evolving 

circumstances and ensure the sustainability and safety of urban systems in the face of 

increasing flood risks. Flood modelling within the context of urban systems plays a 

pivotal role in understanding the impact of floods on cities and their inhabitants 

(Rosenzweig et al., 2018). Hydrodynamic models are able to combine topographic 

data, urban features and hydrological data, to simulate overland flow in urban 

settings. These models are often used to simulate flood wave propagation, inundation 

extents, and potential damages to buildings, roads, and critical infrastructure. 

Moreover, by incorporating climate change projections and historical flood data, 

hydrodynamic models can help city planners devise effective strategies for flood risk 

mitigation, early warning systems, and emergency response. The accuracy of flood 

modelling in urban systems is paramount for fostering disaster preparedness and 

minimize the economic and social repercussions of flooding events. In this chapter, a 

range of approaches for modelling urban flooding (starting with 1D modelling and 

moving on to 2D modelling) are presented and evaluated. 

 

2.1.1 Drainage models 

Urban stormwater management relies heavily on an effective drainage network. When 

the network capacity is inadequate to handle the volume of stormwater runoff, urban 
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surfaces are susceptible to flooding. To combat analyse this challenge, drainage 

network models are frequently employed, particularly when detailed data for the pipe 

network is available (Lee & An, 2019). Typically, flow within enclosed channels or 

pipes is analysed in a one-dimensional manner. These 1D models enable the 

simulation of stormwater dynamics within urban settings, aiding in the assessment of 

potential flood risks and the development of strategies to mitigate them. The primary 

objective of the 1D models is to replicate the movement of water within the sub-surface 

drainage network, producing flow hydrographs at the discharge points of urban 

catchments or sub-catchments. Most of the drainage network models are based on the 

1D Saint-Venant equations for shallow free surface flow (K. Guo et al., 2021). However, 

within urban drainage systems, the flow inside the pipes is able to undergo a dynamic 

transition between open-channel flow and pressurised flow, depending on variations 

in discharge. Open-channel flow manifests when a free surface exists, permitting 

pressure approximation through hydrostatic variables. In contrast, pressurised flow 

lacks a free surface and diverges from the hydrostatic pressure variables. Open-

channel drainage flow is simulated using the open-channel flow 1D St. Venant 

equations, whereas pressurised flow demands a distinct modelling approach (Néelz & 

Pender, 2013) which introduces significant computational expense, known as the 

Preissman slot (Preissmann & Cunge, 1961) to retaining a free surface. Unfortunately, 

this method introduces inaccuracies and numerical instabilities during trans-critical 

flow, see for example Malekpour and Karney (2016); Meselhe and Holly (1997). To 

assess overall surface flooding in urban areas, it is common practice to integrate 

drainage network models with hydrological or hydraulic models. Widely used 

commercial models like the Urban Drainage and Sewer Model (MOUSE), EPA SWMM, 

InfoWorks ICM, HEC-RASS, as well as various research models (Djordjević et al., 1999; 

Maksimović et al., 2009; Schmitt et al., 2004; Simões et al., 2010), are often employed or 

customised to simulate urban rainfall-runoff dynamics and flooding events within 

drainage networks and for flood mapping. These 1D models may not fully capture the 

intricacies of urban inundation processes due to the limitations of the extracted 
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information from the surface elevation in cities, and the sewer network. Moreover, the 

main issue with 1D models is that complex flow dynamics are not captured and this 

leads to inaccuracies as lateral flow is neglected. Acknowledging the critical role of 

surface connectivity and the resolution of both Digital Terrain Models (DTMs) and 

buildings is paramount. In pursuit of a physically based representation, these 1D 

models involve preprocessing the surface DTM data to delineate 1D surface flow 

pathways. These pathways are subsequently integrated into a 1D-1D dual drainage 

model (Chen et al., 2016; Djordjević et al., 2005; Simões et al., 2010). However, this 

process, while retaining a physical basis for representing the flow on the major 

pathways, loses accuracy across the whole domain through not retaining the full DEM 

information, which may be critical for flood exposure to individual buildings. The 

approach also makes it difficult to introduce blue green infrastructure features into the 

model to test flood risk management designs. Leitão et al. (2017) highlighted the 

critical role of inlet capacity in shaping the effectiveness of storm sewer systems. 

Understanding the interplay between the hydraulic components is paramount, and 

this is where the 1D-2D surface pathway method, as introduced by Maksimović et al. 

(2009), comes into play. It is now routine to integrate 2D surface pathway models with 

1D modelling capabilities,  e.g. the Infoworks sewer model, at least for relatively small 

urban areas. While such modelling strategies can provide useful understanding of the 

overall dynamics of stormwater systems, it should be noted that the limitations of the 

Preissman slot approach (Preissmann & Cunge, 1961) pose serious issues when 

modelling surcharged pipes in drainage networks. What Leitão et al. (2017) findings 

reaffirm, and which is further validated by the research conducted by Bertsch et al. 

(2017), is that regardless of the modelling nuances and the capacity of the pipe network  

itself, the significance of inlet drains remains consistently central. Their efficiency 

directly impacts how well the drainage system can handle and manage heavy rainfall 

events. These inlets act as the first line of defence against flooding, making their proper 

functioning essential in urban environments during intense storm events. 



      

 

9 
 

In the context of modelling sewer systems, whether as standalone entities or in 

conjunction with surface data, it is essential to have accurate data for the pipe network. 

However, in situations where data regarding the drainage system is unavailable, flood 

modellers are faced with various approaches. These include making assumptions, 

such as removing a specific percentage of rainfall from the modelling domain (Iliadis, 

Galiatsatou, et al., 2023) or generating synthetic storm inlets (Bertsch et al., 2017). In 

some countries, like the UK, guidelines may suggest subtracting 6mm to 15mm from 

the model to represent the drainage system (Guiding principles for drainage and 

wastewater management plans - GOV.UK (www.gov.uk)). A recent development in 

the UK presented in a recent study of the city of Leeds by Singh et al. (2023) uses 

spatially variable drainage capacity datasets estimated from water company pipe 

network data. This approach makes the assumption that this network capacity is all 

available and requires extra assumptions to include limitations due to the inlet 

capacity. 

 

2.1.2 Surface models 

Surface (or 2D) hydrodynamic models utilising a DEM over the whole domain, rather 

than identifying 1-D flow paths, represent a significant advance in our ability to 

understand and manage flood risks. This added detail, especially if coupled with sub-

surface models, allows for a more accurate and realistic depiction of flood water 

dynamics in complex urban landscapes. These models are crucial for assessing flood 

extents, depths, velocities, and the upcoming climate change, by helping authorities 

make informed decisions about flood risk mitigation and improving resilience in the 

urban environment. 

The evolution of urban flood modelling that solve the full 2D Shallow-Water equations 

has ushered in a new era of precision and insight into the complex dynamics of 

flooding within urban areas. These models are transformative in their approach. One 

of the cornerstones of these advanced urban flood models is the use of high-resolution 

https://www.gov.uk/government/publications/drainage-and-wastewater-management-plans-guiding-principles-for-the-water-industry/guiding-principles-for-drainage-and-wastewater-management-plans
https://www.gov.uk/government/publications/drainage-and-wastewater-management-plans-guiding-principles-for-the-water-industry/guiding-principles-for-drainage-and-wastewater-management-plans
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data, such as DTMs and urban fabric data. DTMs, which capture terrain elevation at a 

fine scale, are instrumental in simulating how floodwaters flow across the urban 

landscape. This high level of detail allows the models to consider even subtle 

variations in ground elevation, ensuring a more precise depiction of flood extents and 

depths. In tandem, urban fabric data, which includes information on buildings, roads, 

and other infrastructure, helps in replicating the intricate layout of urban areas. By 

factoring in the presence of structures, these hydrodynamic models can assess how 

flood waters interact with and are influenced by the built environment, improving the 

accuracy of flood predictions (K. Guo et al., 2021; Teng et al., 2017). The practical 

applications of these advanced flood models are diverse and far-reaching. Nowadays, 

urban planners and engineers use them to design resilient stormwater management 

systems, optimising drainage systems and flood defences to protect urban 

communities from inundation. Many research hydrodynamic models are applied in 

different fluvial and urban areas studies (Bates et al., 2010; Ghimire et al., 2013; Glenis 

et al., 2018; Guidolin et al., 2016; Xia et al., 2019) to understand the flood dynamics and 

to plan adaptation solutions with the collaboration of local authorities and the 

industry. Nonetheless, conducting modelling with such intricate detail, often down to 

the street or meter scale, inevitably leads to a substantial increase in the number of 

computational grids required. This heightened level of granularity necessitates the 

implementation of parallel algorithms and acceleration methods to effectively manage 

and mitigate the associated computational overhead. GPU-based parallel algorithms 

have proven to be a game-changer, delivering substantial speed enhancements in flood 

simulations. Meanwhile, when it comes to flood modelling, GPUs can encounter 

several challenges. Firstly, while GPUs excel at parallel processing, some 

hydrodynamic models may not be inherently parallelisable, limiting the potential 

speedup that GPU can offer. Note here that not all hydrodynamic models are 

optimised for GPU utilisation, which can lead to inefficiencies and underutilisation of 

the hardware. Another notable challenge with GPU is that due to limited overall 

memory, the expansive domains must be divided for effective flood modelling. 
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Research has documented remarkable improvements, with some studies reporting 

simulations speeds over ten times faster than traditional methods. This progress has 

been particularly evident in the application of GPU acceleration to tackle diverse 

scenarios, from catchment-scale flooding to urban flood modelling, even in instances 

involving grids numbering well beyond 100 million (as demonstrated by Smith and 

Liang (2013); Vacondio et al. (2014)). Meanwhile, in cases where urban flood models 

are employed, the computational demands are met through the utilization of GPU or 

cloud computing resources, as exemplified by Glenis et al. (2013) and Hou et al. (2018). 

These advancements in computational techniques not only empower researchers and 

practitioners to conduct more intricate flood simulations but also significantly enhance 

our preparedness and responsiveness in managing flood risks in urban environments. 

Commercial and other research flood models have been used in recent studies (Apel 

et al., 2009; Bisht et al., 2016; Fewtrell et al., 2011a; Hunter et al., 2008a; Syme, 2008; 

Thrysøe et al., 2021; Zhao et al., 2021). Some of the most commonly used models are: 

• HEC-RAS 2D: developed by the U.S. Army Corps of Engineers, the Hydrologic 

Engineering Centre’s River Analysis System (HEC-RAS) includes a 2D 

modeling component. It's widely used for river and floodplain modeling and is 

particularly valuable for analysing complex hydraulic conditions (HEC-RAS 

(army.mil)); 

• FLO-2D is a comprehensive flood modeling software used for simulating 

rainfall-runoff and open-channel hydraulics. It's employed in a variety of 

applications, including urban flood analysis and dam breach modeling 

(Homepage - FLO-2D Software); 

• TUFLOW is a hydrodynamic simulation software used for 2D flood modeling. 

It's known for its ability to handle complex topographies and is commonly used 

for flood risk assessments and urban drainage planning (TUFLOW, 2018); 

• MIKE Flood which is part of the MIKE software suite by DHI, MIKE Flood 

provides a range of tools for 2D flood modeling, enabling users to simulate 

https://www.hec.usace.army.mil/software/hec-ras/
https://www.hec.usace.army.mil/software/hec-ras/
https://flo-2d.com/
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flood scenarios, assess flood risks, and design flood mitigation measures (MIKE 

FLOOD (mikepoweredbydhi.com)); 

• InfoWorks ICM is used for integrated urban drainage and flood modeling. It 

combines 1D and 2D modeling to simulate the entire urban water cycle, making 

it valuable for urban flood management;  

• Flood Modeller Pro is a 1D and 2D flood modelling software that's used globally 

for flood risk assessments, river modelling, and urban flood management 

(Flood Modeller | Industry leading flood modelling software); 

• LISFLOOD-FP is a distributed hydrological model designed for floodplain 

inundation modeling. It has been influential in simulating flood events and 

understanding the interactions between river flow and floodplain dynamics. 

The model has seen developments and improvements in recent years 

(LISFLOOD-FP | School of Geographical Sciences | University of Bristol); 

• The TELEMAC system, developed by EDF (Electricité de France), is a suite of 

numerical models for hydrodynamic and sediment transport simulations in 

rivers, estuaries, and coastal zones. It has been essential in studying complex 

water flow phenomena and flood dynamics (Galland et al., 1991); 

• The Caddies Framework, originating by the University of Exeter, has been 

engineered to expedite large-scale flood modelling by harnessing the advanced 

processing capabilities of contemporary hardware equipped with parallel 

computing capabilities (Caddies framework | Centre for Water Systems | 

University of Exeter); 

In many instances, these models encounter challenges in accurately capturing shocks 

and flood wave propagation. Furthermore, when striving for high-speed simulations 

over expansive geographical areas, concerns about the precision and reliability of the 

results frequently arise (Bentivoglio et al., 2022; Mokarram & Khosravi, 2021). To 

achieve high-speed processing, hydrodynamic models resort to approximations and 

coarser resolutions, potentially sacrificing precision and reliability in predicting crucial 

flood parameters like extents, depths, and velocities. Balancing these factors is critical 

https://www.mikepoweredbydhi.com/products/mike-flood
https://www.mikepoweredbydhi.com/products/mike-flood
https://www.floodmodeller.com/
https://www.bristol.ac.uk/geography/research/hydrology/models/lisflood/
https://engineering.exeter.ac.uk/research/cws/resources/caddies/
https://engineering.exeter.ac.uk/research/cws/resources/caddies/


      

 

13 
 

for producing trustworthy results in expansive geographical analyses. The intricate 

dynamics of flood waves, often characterised by abrupt changes and complex 

interactions, pose difficulties for these models in effectively capturing and 

representing these phenomena (Hunter et al., 2008b; Néelz & Pender, 2013). This 

limitation can impact the fidelity of the simulations, particularly in scenarios where 

precise and detailed flood wave behaviour is crucial for informed decision-making, 

such as in densely populated urban areas or regions prone to flash floods. Finally, there 

is a delicate balance to be struck between computational speed and the accuracy of 

results. Striving to achieve both remains a priority to ensure that flood modelling tools 

not only run efficiently but also produce accurately results in the urban fabric.  

 

2.1.2.1 Hydrodynamic modelling with CityCAT 

In this thesis, the fully coupled 1D/2D hydrodynamic City Catchment Analysis Tool – 

CityCAT developed at Newcastle University by Glenis et al. (2018) was employed to 

develop innovative and resilient methodologies for reducing flooding in urban areas 

and catchments. CityCAT is an advanced urban flood modelling tool that can simulate 

both surface and pipe network flows, explicitly representing buildings, surface and 

sub-surface drainage systems, and various types of Blue-Green Infrastructure (BGI) 

within built-up areas. This capability allows to assess different flood alleviation 

measures and comprehensively evaluate flood risk mitigation strategies. Moreover, it 

offers advanced capabilities for modelling, analysing, and visualising surface water 

flooding and urban drainage (Bertsch et al., 2017). 

CityCAT’s architecture is based on the object-oriented method, offering flexibility in 

development and rapid extension of functionalities (Glenis et al., 2018; Kutija & 

Murray, 2007). The 2D Shallow Water Equations (SWEs) solved by finite volumes with 

high order shock capturing schemes for propagation of flood wave for flows with 

discontinuities (Tan, 1992; Toro, 2001; Toro, 2013). New Riemann solvers have been 

developed which can handle free surface, pressurised and mixed flows. Moreover, the 
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model is based on the St Venant equations and a conservative form of the Alievi 

equations based on the compressible Euler equations (Bourdarias et al., 2012). 

Infiltration in permeable spaces is calculating using the Green-Ampt method (Warrick, 

2003), allowing for 1D vertical water transfer (a part of the equations can be seen in 

section 5.2.1 and for full description see Glenis et al. (2018)). 

The model uses Digital Terrain Models (DTMs) for topography, which are crucial for 

hydrodynamic models, and for the representation of buildings, the ‘Building Hole’ 

approach is used (see Iliadis et al. (2023b)). Excluding the buildings from the 

computational grid by generating a no-flow boundary around them and re-distribute 

the rainfall from the roof to the nearest grid square improves the accuracy of flow path 

representation constrained by buildings, the simulation time is reduced, and making 

the model more efficient. CityCAT provides water depth and velocity flow time series, 

flood maps, and volume calculations for various components such as manholes, gully 

drains, and buildings. The required inputs for the model include are: the DTM, the 

buildings footprint, the green areas, and rainfall intensity information. 

CityCAT stands out as one of the most advanced and comprehensive hydrodynamic 

models available, enabling effective flood risk assessment and evaluation of flood 

mitigation strategies in the urban fabric. CityCAT has been used in all four of the 

following chapters in this thesis in a varied range of applications. To facilitate this use, 

and to provide background to the reader, a user manual of CityCAT was produced 

and can be found in Appendix A. The manual provides step-by-step instructions on 

how to utilize CityCAT effectively, making it a valuable resource for researchers, 

engineers, and policymakers seeking to employ advanced flood modelling techniques 

in urban settings. 

 

2.1.3 DEM resolution 

Digital Terrain Models (DTMs) or Digital Elevation Models (DEMs) play a crucial role 

in hydrodynamic modelling, aiding the accurate simulation and prediction of water 



      

 

15 
 

flow, flooding, and other hydraulic processes. DTMs are essential for various 

applications, including flood risk assessment and urban drainage design (McClean et 

al., 2020). These models, are derived from digital elevation data such as LiDAR or 

satellite imagery, represent the topography of the terrain with high precision. In flood 

models, a DTM is used to define the spatial characteristics of the land surface, 

including elevation and slope. Roughness can be estimated if the type of surface is 

known, e.g. grass, roads. This information is vital for simulating the movement of 

water and the interactions between water and the terrain. Several studies explored the 

influence of DTMs in resolving the water flowpaths in pluvial flooding (Apel et al., 

2009; Fewtrell et al., 2011b; Leitão et al., 2009; Noh et al., 2018; Pappenberger et al., 

2008) and in fluvial flooding (Muthusamy et al., 2021; Ngo et al., 2022; Xafoulis et al., 

2023). A study by Bates et al. (2010) addresses the importance of accurate terrain 

representation in hydrodynamic models. They conducted simulations of flooding 

events by using a flood model and found that the accuracy of the DTM significantly 

influenced the model’s ability to predict flood extents and depths accurately. This 

highlights the need for high quality DTM data in flood models. Another study by 

Leitão et al. (2009) shows that at least a 5m DTM resolution is required to represent 

buildings and roads adequately in flood models by testing the 1D-1D generated flow 

pathway model initially developed by Maksimović et al. (2009) with different DTM 

resolutions. Moreover, Leitão et al. (2016) conducted a comparative analysis between 

unmanned aerial vehicles (UAVs) DEM data with a resolution of 0.05 m and LiDAR 

data with a resolution of 2m. Their findings indicated that a 2m resolution DEM was 

mostly sufficient to resolve the water flowpaths. The significance of highly accurate 

DTMs in flood modelling for effective urban flood management has been presented in 

studies by Wang et al. (2018) and Jamali et al. (2018). In both studies 1m resolution 

DTMs were used to demonstrate the critical role of precision in flood modelling for 

informed decision-making in urban flood management scenarios. Escobar-Silva et al. 

(2023) delved into the impact of spatial resolution on flood modelling. Their case study 

involved a comparative assessment of three distinct rainfall events with spatial 
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resolutions of 0.50m and 5m. They concluded that when it comes to flood simulations, 

a DTM with an ultrafine spatial resolution of less than 0.50m, derived from spatial 

imagery, may not necessarily yield superior results compared to a DTM with a coarser 

spatial resolution of 5m, derived from orthoimages. The use of neural networks based 

on DTM to rapidly generate flood maps proposed and demonstrated by Z. Guo et al. 

(2021). This perspective is rooted in the argument that physically based models remain 

unsuitable for regions exceeding 1,000km2 when employing a raster grid size smaller 

than 10m, which is clearly not valid if sufficient computational resource is deployed. 

They proposed that in urban environments, the optimal raster grid size should fall 

within the range of 1m to 5m to adequately capture the complex urban characteristics. 

Note here that the natural network approach when combined with a DTM presents 

limitations in accurately representing the sewer systems and accommodating 

necessary adaptations within the modelling and design process for risk management 

and adaptation solutions. Some attempts have been made to simulate water flow in 

large urban areas more than 1000km2, a study introduced by Guerreiro et al. (2017) to 

model the flood impacts in 571 cities in Europe with a 25m DTM resolution and 

another study by Xu et al. (2023) to evaluate the flood risk in Shanghai with a 30m 

DTM resolution. The limitations of flood modelling in large urban areas can be 

significantly reduced by combining cloud computing with efficient hydrodynamic 

models (Glenis et al., 2013). By harnessing the power of cloud computing, flood 

modelling can tap into vast computational resources, enabling the processing of 

extensive datasets and the execution of complex simulations. 

 

2.1.4 Representation of urban features in hydrodynamic models 

In hydrodynamic models, multiple approaches are used to represent features such as 

bridges, embankments, leaky barriers, and buildings as obstacles within the model. 

These approaches aim to simplify the simulations for computational efficiency. 
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Buildings, in particular, are challenging to represent accurately in 2D flood models, 

and several techniques are commonly used (CH2M, 2019; SEPA, 2018; TUFLOW, 2018): 

i. The ‘Building Block’ (BB) approach involves raising the local topography to the 

height of the buildings’ roof level. This approach prevents floodwater from 

flowing into cells unless the water level reaches the roof. However, this method 

is not widely used due to the significant difference in water surface elevation 

between the roof and the ground level, which can cause instabilities in most 

numerical schemes. 

ii. The ‘Building Hole’ (BH) approach consists of removing the cells with buildings 

from the DEM/DTM, effectively excluding them from the simulation as by 

default no flow is allowed across the boundary between the domain and the 

“hole”. 

iii. The ‘Stubby Building’ (SB) method entails raising the DEM/DTM within the 

footprint of the buildings, typically by around 30cm. This approach avoids large 

elevation differences between neighboring cells caused by buildings. 

iv. Replace buildings with grid squares characterised by high roughness values, 

such as Manning’s coefficients ranging from 0.5 to 10. The purpose of this 

approach is to slow down and store water on the building footprint, reducing 

downstream flow, which can lead to significant ponding in some  cases. 

In industry models the most commonly employed approaches to represent buildings 

are: the "Building Hole" (BH) and the "Stubby Building" (SB) techniques. Both of these 

methods are popular due to their computational efficiency and straightforward 

implementation. When deciding which approach to use, it is essential to consider the 

specific modelling objectives and the desired level of accuracy for the flood 

simulations. 
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2.1.5 Extreme rainfall information 

Extreme rainfall events are a significant concern in hydrologic risk analysis, critical 

infrastructure design, and management worldwide. They can lead to destructive 

floods, necessitating the estimation of extreme rainfall for specific timeframes and 

selected return periods. The emergence of a climate change has brought more frequent 

and intense storm events, escalating the vulnerability and exposure of urban 

environments to flooding (Galiatsatou & Iliadis, 2022). Intensity-Duration-Frequency 

(IDF) curves serve as a valuable tool for summarising the interplay between rainfall 

intensity, duration, and the likelihood of an event occurring within a specified return 

period. Currently these curves find widespread applications in the fields of 

hydrodynamic infrastructure design and management, flood risk assessment for assets 

and infrastructure, as well as flood mitigation projects (Da Silva et al., 2018; Norbiato 

et al., 2007; Yan et al., 2020). IDF curves are essentially graphical representations that 

capture how rainfall intensity changes with varying durations, each associated with a 

specific return period. These curves are typically constructed by fitting theoretical 

probability distribution functions to the annual maximum rainfall intensities, which 

cover a range of durations, from brief sub-hourly events to daily and even longer-

duration rainfall occurrences (Galiatsatou & Iliadis, 2022). In hydrodynamic models, 

IDF curves play a pivotal role in simulating and predicting the behaviour of water 

systems during extreme rainfall events. These curves provide critical input data that 

help these models recreate realistic scenarios of rainfall intensity and duration, which 

are essential for accurately assessing flood risks, designing resilient hydraulic 

structures, and planning effective flood mitigation strategies. Incorporating IDF curves 

into hydrodynamic models raises two fundamental questions. Firstly, there is the 

choice between these curves uniformly across the entire modelling domain or 

generating storm profiles using the rainfall-runoff method pioneered by Kjeldsen 

(2007b) and Kjeldsen (2007a) followed by their uniform application over the entire 

domain, as demonstrated by Iliadis, Galiatsatou, et al. (2023). Secondly, the decision 

on whether to utilise stochastic or recorded rainfall data as model inputs is pivotal. 
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Typically, when researchers seek to analyse flood dynamics within an urban area 

comprehensively, the application of recorded rainfall data proves essential. This data 

provides a more accurate representation of real-world conditions, shedding light on 

the intricate flowpaths and immediate impacts of flooding on urban features. There is 

a greater need for the construction of accurate IDF curves to improve flood resilient 

solutions in urban environments. 

 

2.2 Exposure and risk mapping 

Due to the growth of urbanisation and the upcoming climate change more pluvial 

floods result from localised storm events characterised by exceptionally heavy rainfall 

concentrated within a brief timeframe and a relatively limited geographical area. These 

intense rainfalls generate substantial surface runoff, which can lead to direct damage 

to people, assets, and infrastructure (Cea & Costabile, 2022b). There is a great need for 

efficient exposure tools to analysing and identifying flooding in every structure of the 

urban fabric rather than generating flood risk zones to categorise areas based on their 

vulnerability to flooding (Lazaridis & Latinopoulos, 2023; Oppenheimer et al., 2014; 

Pham et al., 2022) or applied the Depth-Damage curves to buildings (Huizinga et al., 

2017; Paulik et al., 2022; Velasco et al., 2015). Flood risk zones are areas prone to 

potential inundation during heavy storm events or rising water levels from the rivers 

or the sea. Flood risk zones categorised by buildings pertain to geographical areas 

vulnerable to flooding, often as a whole, rather than assessing individual building level 

risk. In some cases, despite a high zone categorisation, not all buildings within face 

immediate flood risk.  

A more quantitative approach aiming to estimate losses and damages to properties 

and contents uses Depth-Damage curves, which are graphical representations of the 

relationship between flood depth and the extent of damage to structures or properties. 

Nowadays, both flood risk zones and Depth-Damage curves are effective tools for 

assessing the flood risks, aiding in disaster planning, and determining the potential 
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economic impacts of flooding events (Huizinga et al., 2017; Martínez-Gomariz et al., 

2020). With the increased power of urban flood models, these studies should focus on 

a more detailed analysis of the flood exposure to individual properties by categorising 

them according to the water depth around them or inside them, depending on the 

preferred representation of buildings in the hydrodynamic models (BH, SB etc). The 

last decade a few studies have focussed on flood risk to buildings with different 

approaches. Fuchs et al. (2015) presented a national multi-hazard exposure assessment 

in Austria, focusing on properties exposed to both pluvial and fluvial flooding. Their 

approach involved representing hazard information as polygons surrounding 

buildings, extending 15m from each structure. Note here that their methodology did 

not account for flooded roads and the flooded perimeter of buildings. Torgersen et al. 

(2017) and Szewrański et al. (2018) proposed a combination of hydrological modelling 

with drainage models and ArcGIS software to develop flood risk frameworks to 

analyse and calculate the exposure to individual buildings in newly developed areas. 

Both frameworks don’t count the flood dynamics on the surface as they extract flood 

information from the sewer system and historical rainfall events, and they did not 

validate their methodologies against real storm events. Zischg et al. (2018) applied an 

exposure analysis in Switzerland, utilising a flood model (BASEMENT) to validate 

model predictions against insurance data. This validation was carried out across four 

distinct areas of the country, and the assessment was performed at the scale of river 

reaches.  

Bertsch et al. (2022) developed a tool for urban-scale analysis that evaluates building-

level exposure to flooding. They assessed the tool’s accuracy by comparing its 

predictions to actual flood data from a storm event in Newcastle upon Tyne, UK. The 

validation dataset was gathered through surveys conducted by the local authority of 

residents affected by the storm, with a reasonably high level of coverage. The study 

showed model accuracy between 67% to 75%, which was impressive given that sub-

surface drainage was not included in the modelling.  In this thesis, the flood exposure 

calculator originally created by Bertsch et al. (2022) was used and further developed to 
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assess the likelihood of exposure to urban features. The calculator's application and 

findings are discussed in detail in each chapter of the thesis. 

 

2.3 Blue-Green Infrastructure 

Blue-Green Infrastructure (BGI) plays a pivotal role in transforming urban 

environments into more sustainable and resilient spaces, addressing the complex 

challenges posed by rapid urbanisation and climate changes (O'Donnell et al., 2020). 

The representation of BGI in hydrodynamic models is a critical component of 

contemporary flood risk assessment and the designing of resilient management 

solutions. BGI refers to use of natural or nature-based systems, such as green and blue 

roofs, permeable pavements, swales and ponds, to manage and reduce flood risks 

(Woods Ballard et al., 2015). Integrating BGI into flood models involves capturing the 

dynamic interactions between these features and the urban environments (Sörensen & 

Emilsson, 2019). Hydrodynamic models can simulate how BGI features absorb, store, 

and slow down excess rainfall and flood waves, reducing the impact of floods on urban 

areas (Fenner et al., 2019). The accuracy of the BGI representation in hydrodynamic 

models is crucial for urban planners and local authorities to make informed decisions 

about where and how to implement green infrastructure to improve flood resilience, 

in some cases the water quality, and promote sustainable urban development in the 

face of changing climate conditions. The most common BGI representation in 

hydrodynamic models as mentioned earlier are (Fletcher et al., 2015; Woods Ballard et 

al., 2015): 

• Green roofs are installations of live vegetation positioned atop buildings by 

serving various purposes such as improved building functionality and the 

mitigation of water runoff; 

• Blue roofs are a specially designed roofing system with the primary purpose of 

actively storing and managing flood water; 
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• Permeable pavements are designed to accommodate both pedestrian and 

vehicular traffic while facilitating the infiltration of rainwater through the 

surface and into the underlying structural layers; 

• Swales serve as channels for managing low-flow waters; 

• Ponds are landscape elements featuring a consistently present body of water, 

offering simultaneous functions of reducing and treating surface water runoff; 

In various studies addressing adaptation strategies at both local scales using 

Sustainable Urban Drainage Systems (SuDS) as seen in Fletcher et al. (2015) and 

Hörnschemeyer et al. (2023), and at larger scales, exemplified by Li et al. (2018), a 

common thread of non-adaptive efficiency becomes evident. This inefficiency is 

attributed to the limited information and uncertainties surrounding the capacity, 

performance, and optimal placement of these systems, as discussed in Ernst and 

Preston (2017), Kuller et al. (2017), and Preston et al. (2015). A recent research by 

Oladunjoye (2022) highlights the potential significance of SuDS in flood mitigation. 

These systems have the capacity to reduce runoff volume and mitigate flood risks by 

effectively managing flow through natural infiltration mechanisms. Although, there is 

a growing recognition of the potential of practical and cost-effective solutions like BGI, 

significant barriers hinder their widespread adoption (O’Donnell et al., 2021). To be 

effective on a city-wide scale, BGI adaptation solutions require substantial investments 

in multiple locations, rather than relying on opportunistic and fragmented initiatives 

tied to redevelopment projects. Consequently, a more systematic, city-wide strategy is 

imperative. This approach should include a comprehensive assessment of the overall 

costs and benefits before city planning authorities commit to such investments. 

Achieving this necessitates an urban flow simulation with sufficient precision, capable 

of not only assessing exposure and risk reduction at the property level but also 

identifying localised sources of runoff and the specific flow paths where BGI can be 

effectively implemented. An effective approach for pinpointing areas contributing to 

the overall flood extent in a simulated event involves a ‘source-to-impact’ flood analysis 

method, as presented by Vercruysse et al. (2019) and Dawson et al. (2020) in a city-
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scale and by Ewen et al. (2013) in a river-scale. Vercruysse et al. (2019) introduced a 

four-step methodology designed to trace flow paths and identify locations at high 

flood risk. This methodology involved assessing variations in modelled maximum 

water depths by comparing the baseline scenario with cells in the catchment that 

lacked rainfall. Additionally, four spatial prioritization criteria were employed to 

locate the most suitable cells for implementing flood adaptation interventions. Note 

here that by using maximum values of water depth is not ideal for this objective due 

to inaccuracies in elevation data in the DTM that could lead to overestimation of flood 

levels, especially in areas with relatively low flood hazard. Finally, a more systematic 

approach is required to manage the evaluation of interventions. This entails not only 

identifying the optimal locations for implementing effective adaptation solutions but 

also estimating potential damages to buildings and assessing how many buildings 

may be affected by flood waves. 

 

2.4 Real world and bigger applications 

Hydrodynamic models play a crucial role in assessing flood risk, particularly in 

densely populated urban areas facing the challenges of urbanisation and anticipated 

climate change impacts, as mentioned earlier. However, the progress in designing 

optimal and efficient flood risk management solutions has been hindered by the 

limitations in integrating cloud computing with flood models. Recent advancements 

in cloud-based flood modelling have expanded the capabilities for processing and 

storing data. This evolution in technology has opened up a wide array of possibilities 

for comprehensively understanding and addressing flood risk management in large 

urban areas and expansive catchments areas (Glenis et al., 2013). Nowadays, cloud 

services offer flexible payment arrangements based on resource rental duration and 

the necessary Random-Access-Memory (RAM) specifications. Conversely, there are 

situations where a local compute server must be deployed, incurring costs that align 

with the specific usage demands. Frequently, researchers shy away from simulating 
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surface flow in large urban areas. This reluctance can stem from either a lack of 

understanding in connecting their flood models with cloud resources or concerns 

about the reliability of these models. Additionally, many of the current flood models 

exhibit inefficiencies when utilising high-resolution DTMs as input data resulting in 

frequent crashes. Numerous research studies have focused on small urban catchments 

(Chen et al., 2009; Fewtrell et al., 2008; Huang et al., 2022; Iliadis, Galiatsatou, et al., 

2023; Rak et al., 2018; Xu et al., 2023) with a range of DTM resolutions from 1m to 10m 

by using several flood models such as HEC-RAS, TUFLOW, CityCAT etc. As 

mentioned in section 2.1.3, Guerreiro et al. (2017) simulated the surface flow across 

over 500 European cities using a 25m DTM resolution. The limitations in accurately 

representing water flow pathways were clear in their conclusions. Furthermore, Al-

Suhili et al. (2019) developed an urban flood alert system tailored for big cities, 

focusing particularly on Manhattan, New York City, USA. They achieved this by 

subdividing the Manhattan area into 140 sub-basins, by using a DTM resolution of 

0.30m, and coupling a drainage model with a database of flood level maps. In a recent 

study by Escobar-Silva et al. (2023), an evaluation has been made to determine the 

scope of flooding in São Caetano do Sul, situated in the southern region of São Paulo, 

Brazil. Their research focused on a modelling domain encompassing 15.33km2 and 

examined the impact and effectiveness of two distinct DTMs. The DTMs, with 

resolutions of 0.50m and 5m, were employed in conjunction with real rainfall data for 

analysis and validation. The precision and accuracy of the outcomes have now reached 

a level where they can apply to evaluations in critical urban areas, especially 

megacities with the highest levels of flood risk and vulnerability. In closing, it is 

imperative to further strengthen the link between cloud computing and flood 

modelling in future endeavours to achieve flood resilience across cities of varying sizes 

worldwide. 
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2.5 Problems and research gaps addressed 

The literature review in this chapter provided a comprehensive overview of the state 

of the art in urban flood modelling. This chapter explored the intricacies of modelling 

urban systems, including drainage models and surface models, with a particular focus 

on hydrodynamic modelling using CityCAT. The significance of Digital Terrain Model 

(DTM) resolution and the representation of urban features within hydrodynamic 

models are discussed in detail. The incorporation of extreme rainfall information, the 

vital role of flood exposure and risk mapping, and the growing importance of Blue-

Green Infrastructure in flood management are discussed too. Real-world and large-

scale applications of flood models are explored, offering insights into their practical 

utility. Finally, this chapter identifies key research problems and gaps that will be 

addressed in the chapters of this thesis as summarised in Table 2.1. 

 

Table 2.1 Summary of the identified gaps in the literature review, the description, the action, 
and the referred chapter. 

A/A Research Gap Description and Actions Chapter 

1 Representation of buildings (BH or SB?) 

• Industry uses two approaches for the 
representations of buildings, the BH and 
the SB techniques. 

• Need to compare these two approaches and 
identify the advances and disadvantages. 

3 

2 Improvement of the SB approach 

• Many modellers use this approach but, in 
most cases, there is noise in the DTM 
within the building’s footprints. 

• A new improved method for SB. 

3 

3 
Identification of buildings and locations 
at high risk of flooding  

• Need to analyse how many buildings 
contribute to flooding during a storm 
event. 

• Estimation of the likelihood of exposure at 
building level. 

4 

4 
Cost-benefit nexus between the ‘source’ 
and the ‘receptor’ 

• Flood damages are important in urban 
areas. 

• Calculation of damages based on the type 
of building 

4 
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5 
Identification of high priority areas to 
mitigate flooding by adding Blue-Green 
Infrastructure (BGI)  

• High priority locations to add BGI are 
crucial. 

• Develop a methodology to identify 
locations at high flood risk and add 
interventions to reduce flooding and 
achieve resilience. 

4 

6 
Comparison of different resolution 
DTMs in cities 

• There is a great need for urban flood risk 
management, especially in megacities. 

• Comparison of different DTM resolutions 
and analyse the flood exposure of urban 
features.   

5 

7 
Use of high-resolution of DTM in large 
urban areas 

• Megacities need to improve their resilience 
against flooding. 

• Link cloud computing with hydrodynamic 
models, with a high-resolution DTM, to 
understand the flood dynamics and 
estimating the buildings exposed. 

5 

8 Construction of accurate IDF/DDF  

• The IDF/DDF are an important input to 
hydrodynamic models. 

• Construct accurate IDF curves with a POT 
threshold. 

6 

9 Data scarcity 

• In countries like the UK or U.S. the data for 
flood modelling is available almost to 
everyone, in other countries there are 
limitations in the available data. 

• Model a city outside of the UK with limited 
access to data. 

6 

 

After identifying the gaps in the literature review and the actions that need to be taken, 

an abstract of every chapter is presented below. 

 

Gaps [1 & 2]: The literature review highlights that two widely used approaches for the 

representation of buildings and urban features in hydrodynamic models, the 

approximate ‘Stubby Building’ approach and the more accurate ‘Building Hole’ 

approach. A direct comparison of the two approaches is carried out allowing 

quantification of the errors incurred, a validation of these two approaches by using 

real storm data from the ‘Toon Monsoon’ event, and an improved method for the ‘Stubby 

Building’ approach which corrects for common errors in DTM generation is presented 
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in Chapter 3. Moreover, the outcomes of this chapter have been published in Journal 

of Flood Risk Management – “Iliadis, C., Glenis, V., & Kilsby, C. (2023). Representing 

buildings and urban features in hydrodynamic flood models. Journal of Flood Risk 

Management, n/a(n/a), e12950. https://doi.org/https://doi.org/10.1111/jfr3.12950“. 

 

Gaps [3-5]: A novel framework is presented in Chapter 4 to identify locations at high 

flood risk regarding the cost-benefit from the flood damages during multiple storm 

events, priority options to mitigate flooding by adding Blue-Green Infrastructure in 

critical locations, and a combination of rainfall information with flood dynamics and 

the cost benefits. This chapter was submitted in Journal of Hydrology , and it is under 

review – “Iliadis, C., Glenis, V., & Kilsby, C. (2023). A cost-benefit ‘source-receptor’ 

framework for implementation of Blue-Green flood risk management. Journal of Hydrology 

(under review). arXiv:2311.00420 ”. 

 

Gaps [6 & 7]: Chapter 5 highlights the crucial importance of DTMs in hydrodynamic 

models, incorporating multiple storm scenarios and including a validation with 

observations from a real storm event that happened on the 12th of July 2021. Thus, a 

novel demonstration is presented of how cloud-based flood modelling can be used to 

inform exposure insurance and achieve flood resilience. The outcomes of this chapter 

has been submitted in MPDI Water, and it is currently under review – “Iliadis, C., 

Glenis, V., & Kilsby, C. (2023). Cloud Modelling of Property-Level Flood Exposure in 

Megacities. Water, 15(19), 3395. https://www.mdpi.com/2073-4441/15/19/3395”.  

 

Gaps [8 & 9]: A methodological framework for combining hydrological with 

hydrodynamic modelling in the city of Thessaloniki to understand the impacts of 

urban floods, the water flowpaths in the city centre, and the urban features exposed at 

high flood risk are presented on Chapter 6. It is the first time that CityCAT is applied 

in a country with limited access to data and this combination can significantly assist 

https://doi.org/https:/doi.org/10.1111/jfr3.12950
https://arxiv.org/abs/2311.00420
https://www.mdpi.com/2073-4441/15/19/3395
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reliable assessment of infrastructure exposure to flooding, as well as contribute to 

flood damage mitigation and flood risk reduction. The outcomes of this chapter have 

been published in MODI Hydrology – “Iliadis, C., Galiatsatou, P., Glenis, V., Prinos, 

P., & Kilsby, C. (2023). Urban Flood Modelling under Extreme Rainfall Conditions for 

Building-Level Flood Exposure Analysis. Hydrology, 10(8), 172. 

https://www.mdpi.com/2306-5338/10/8/172”. 

 

To address the existing gap in accurately representing the drainage systems within 

urban environments, a planned initiative for future work is outlined in Chapter 7. 
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Chapter 3. Representing buildings and urban features in 

hydrodynamic flood models 

 

3.1 Introduction 

3.1.1 Background 

Flood inundation models have become an essential tool in understanding flood events, 

assessing flood risk, and predicting future risk to urban fabric (Willis et al., 2019). The 

latest generation of hydrodynamic models is capable of simulating flooding in the 

urban environment where the topography with buildings, drainage networks, and 

critical infrastructure are complex (K. Guo et al., 2021). High-resolution Digital 

Elevation Models (DEMs), Digital Surface Models (DSMs), and Digital Terrain Models 

(DTMs) play a key role in hydraulic models in defining the pathways of flood into 

cities (McClean et al., 2020). Hydrodynamic models have undergone rapid 

development exploiting new numerical schemes, more powerful computational 

implementation, as well as higher resolution data and a major leap in predictive 

capabilities is possible. The increasing demand of accurate and reliable estimates of 

surface water flood risk and flood risk protection of the assets, infrastructure, and man-

made constructions for flood insurance purposes and for urban planning by local 

authorities, drives this development of hydraulic models with more realistic results 

(Kilsby et al., 2020). Such studies are important due to global change and the possible 

‘unknowns’ to be faced. Several studies have been conducted applying 2D 

hydrodynamic models to complex urban problems, including numerical solutions of 

the 2D shallow water equations (Choley et al., 2021; Leandro et al., 2009; Mignot et al., 

2006; Paquier et al., 2015), the surface water movement around buildings and the 

underground drainage system. A few of these studies have focused on the demanding 

issue of how to represent buildings within 2D hydraulic models as obstacles to water 

flow (Bellos & Tsakiris, 2015; Beretta et al., 2018; Bisht et al., 2016; Glenis et al., 2013; 

Maksimović et al., 2009; Néelz & Pender, 2013; Rak et al., 2018; Schubert & Sanders, 
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2012; Schubert et al., 2008; Syme, 2008; Zhou et al., 2016) for pluvial flooding applied 

in urban areas.  

A large proportion of urban areas is covered by buildings and during flood events they 

exert significant influence on flow paths as water will only flow through them in cases 

when the main entrance or windows are open or the flood water exceeds the threshold 

of the entrance (Fewtrell et al., 2008; Wang et al., 2010). Alcrudo (2004) presented 

different approaches for the representation of buildings including (a) vertical walls to 

exclude buildings from the computational grid; (b) the bottom elevation approach, i.e. 

raising the elevation of the building to reach the rooftop; and (c) the local friction based 

representation of buildings, increase the friction coefficient (values between 0.50 to 

1.00) where buildings exist; he concluded that removing buildings from the 

computational grid is the most accurate representation. Hunter et al. (2008b) presented 

a test study to compare the performance of six 2D hydraulic models to simulate surface 

flooding of an urban catchment in the city of Glasgow, UK which showed an effective 

approach is to represent a building in hydrodynamic models by raising its elevation 

up to 12 m (high buildings) or 6m (small houses) to allow water flow around it, the so-

called ‘island method’. Chen et al. (2012) proposed another approximation by 

abstracting the buildings from a coarse grid and using the building coverage ratio and 

a conveyance reduction factor. Glenis et al. (2018) showed how the buildings’ footprint 

can be excluded from the computational grid and replaced by no-flow boundaries to 

improve the ability of the model to capture realistic flow paths in the built 

environment. In their method the buildings are retained as objects which can support 

other process representation (e.g. storage and/or flow of rainfall from roof surfaces, 

and ingress of flood water). 

In this chapter the two most widely used approaches for representation of urban 

features in hydrodynamic are assessed by validation against a real flood event: (a) the 

exclusion of buildings from the computational grid (‘Building Hole’), and (b) the raising 

of the buildings’ footprint by 30 cm (‘Stubby Building’). Moreover, a detailed analysis 
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of multiple ‘stubby’ models is presented and an improved version of the “Stubby 

Building” technique is proposed. 

 

3.2 Modelling system 

Among the many hydraulic models developed for surface flows, one of the most 

advanced and fully featured is CityCAT – City Catchment Analysis Tool, a fully 

coupled 1D/2D urban flood modelling tool, developed at Newcastle University for 

surface flow, representation of buildings, sewer network, and blue-green 

infrastructure with interventions (Glenis et al., 2018; Glenis et al., 2013). It also enables 

the assessment of benefits of different flood alleviation measures. CityCAT can 

produce maps and time series for given rainfall inputs of flood depth, flow velocity 

and volume in and out of manholes, gully drains, buildings etc (Kilsby et al., 2020). 

The software architecture in CityCAT is based on the object-oriented method which 

offers flexibility in development and rapid function extension (Glenis et al., 2018; 

Kutija & Murray, 2007). The DTMs for the topography and the UK Ordnance Survey 

Mastermap© (Lidar, 2016; MasterMap, 2020; Ordnance Survey, 2020) data for urban 

features such as roads, permeable surfaces, and buildings, are standard datasets used 

by CityCAT.  

The building footprint is excluded from the computational grid with no-flow 

conditions implemented along the building walls, which improves the ability to 

capture the flowpaths where they are constrained by buildings. 

In general, exclusion of buildings also delivers a reduced simulation time due to the 

reduction in the number of computational cells of some 29% in this application, which 

will be greater in other more densely built areas. The concentration of flow between 

buildings and consequent increased flow velocity may require a reduction in time step 

to ensure stability resulting in longer computational time, but this is limited to a small 

proportion of the simulation at the flood peak when high flows occur. This is also 

counteracted by a further reduction in computational time, as the more concentrated 
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flows resulting from no-flow building walls transfer the flood wave more rapidly than 

the more dispersed wave in the stubby building case, so requiring shortened timesteps 

for a reduced duration. Timings of equivalent simulations using Building Hole and 

Stubby Building methods show a reduction of some 28% in computational times, 

therefore confirming that the dominant effect is the reduction of the number of 

computational cells.  

To simulate the free surface flow, the 2D shallow water equations are used in their 

conservative form and the solution is obtained by using a high-resolution finite volume 

method with shock-capturing schemes (Glenis et al., 2018). The infiltration for green 

areas is calculated with the Green-Ampt method (Warrick, 2003) allowing 1-D, vertical, 

transfer of water. 

 

3.3 Representation of urban features into hydrodynamic models 

3.3.1 State of the art 

Hydraulic models generally approach the representation of features like bridges, 

embankments, leaky barriers and buildings as an obstacle inside the model, so the 

simulations are much quicker and easier to run but often deliver incorrect and 

unrealistic results. The most common techniques to represent buildings in 2D 

hydraulic models are: (a) the ‘Building Block’ (BB) method where the buildings are 

modelled by raising the local topography to the roof level, so the flood cannot flow 

into cells unless the water levels reaches the roof. This method is not often used as the 

large water surface elevation difference between roof and ground level causes 

instabilities in most numerical schemes; (b) ‘Building Hole’ (BH) where the cells with 

buildings will be clipped from the DEM/DTM and they are not involve in the 

simulation; (c) ‘Stubby Building’ (SB) where the buildings are represented by raising the 

DEM/DTM within the buildings’ footprint by (typically) 30 cm, thus avoiding large 

elevation differences between neighbouring cells; (CH2M, 2019; Kilsby et al., 2020; 

SEPA, 2018; Shen et al., 2018; Syme, 2008; TUFLOW, 2018). 
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Furthermore some studies (Bach et al., 2014; Beretta et al., 2018; Hunter et al., 2008b; 

Schubert et al., 2008; SEPA, 2018; Syme, 2008; Teng et al., 2017) replaced buildings by 

a flat area with high roughness, e.g. Manning coefficient between 0.50 to 10, which is 

intended to slow and store water on the building footprint to reduce downstream 

transfer. With sufficient calibration, such models can deliver plausible large-scale 

results for some situations, but at a local street or building scale methods such as SB or 

enhanced roughness introduce un-realistic flow paths and systematic under-

estimation of ‘blocking’ of flow which may in some situations cause significant 

ponding. 

 

3.3.2 Aim of this chapter 

In this chapter, we will assess the performance and identify the differences between 

the ‘Building Hole’ and the ‘Stubby Building’ approaches. These two techniques are 

widely used in industry to estimate flood risk in cities, where the hazard is higher, due 

to human lives, assets etc, and depth damage calculations are applied to buildings 

(SEPA, 2018). The other technique identified earlier, using increased roughness is less 

widely used and presents major issues with non-realistic flow pathways, so is not 

assessed here.  

The BH approach represents buildings as void space where the cells within the 

building are removed from the computational grid. The surface water cannot flow into 

the building voids, so the water flows around the building boundary (Bertsch, 2019). 

In addition, reduction of the simulation time from a smaller number of computational 

cells is an advantage, especially for dense built-up areas. In this chapter the BH 

numerical grid has 29% fewer cells than the SB numerical grid. With the SB approach, 

the threshold (h) of the building entrance height is used for the representation of 

buildings into the model. However, due to the variable entrance height of the buildings 

and to avoid instabilities in the model with large elevation differences, the most 

common values are 30 cm to 40 cm. Typically, buildings are assumed to be constant 30 
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cm above the local ground level elevation of the DEM/DTM which prevents water from 

flowing into buildings until the water depth exceeds 30 cm and can then flow over the 

building (Pettit, 2014; SEPA, 2018). 

 

3.3.3 Study Area 

Having outlined the principles behind the techniques to represent urban features in 

hydrodynamic models, a case is conducted in the city centre of Newcastle upon Tyne, 

UK. The domain has complex topography due to some substantial slopes and a range 

of roads of different widths, as well as green areas, and a variety of buildings of 

different plan areas and heights. This diversity provides a substantial opportunity to 

explore the behaviour of the urban features in the model with some 5422 buildings 

present. An additional advantage is that the area was subject to a major pluvial flood 

on June 28, 2012, and documentation of the flow paths and damage to exposed 

buildings is available for validation (see section 3.3.4.). Figure 3.1 shows the area of the 

case study with the general downslope flow direction is to the bottom, right (south-

east) corner into the river Tyne. 
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Figure 3.1 Urban features in the study area of Newcastle city centre, UK. Grey represents the 
buildings, green the permeable spaces, yellow the impermeable surfaces, and blue the main 

river. 

 

3.3.4 Model Set up 

CityCAT (Glenis et al., 2018) was used to simulate flooding and urban features in this 

chapter for all models. The flow domain was constructed using LiDAR (Light 

Detection And Ranging) terrain data at resolution of 1m (area of each cell is 1 m2), 

while the building footprints and the green spaces were extracted from Edina Digimap 

(Lidar, 2016; Ordnance Survey, 2020). The catchment comprises 4,000,000 cells 
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resulting in a total area of 4.0 km2 (2,842,209 cells for the BH as the buildings footprint 

is excluded from the computational grid and 4,000,000 cells for the SB). The infiltration 

of water in pervious areas is estimated using the Green-Ampt method (Warrick, 2003) 

and the outer boundaries of the domain are transmissive. MasterMap data are used to 

delineate urban features such as roads, permeable areas, and impermeable areas. The 

centroid of each computational cell and the polygons for the urban features are used 

to classify each cell and assign friction coefficients and soil properties. 

For the SB approach, an algorithm was developed to prepare the DEM for CityCAT 

starting from the DTM (i.e., the lidar coverage with the buildings removed) and adding 

30 cm to cells identified within the building footprint shapefiles. This process replicates 

the standard procedure in the flood modelling industry (CH2M, 2019). Furthermore, 

we identified some ‘errors’ (see section 3.4) affecting DTMs inside the building 

footprints in specific locations in the Area of Interest (AOI), where a new algorithm 

was developed to identify anomalous depressions within a building footprint and 

restore the elevation of these areas to ground level, adding 30 cm for the ‘stubby 

platform’ approach.  

For the BH approach, a custom mesh generation procedure is used which removes any 

cell of which more than half falls within the building shapefile (see Glenis et al. (2018) 

for full description, Figure 3.3). A spatially uniform rainfall series is used to drive all 

the simulations, based on the depth of the historical storm of June 28, 2012 (45 mm in 

two hours, see Figure 3.2). The rainfall falling onto roofs is redistributed to the 

neighbouring cells of the computational grid. A range of simulations with storm events 

of 1 hour duration and return periods of 50 and 100 years (2% and 1 % Annual 

Exceedance Probability respectively) are used to compare the two approaches and 

identify the differences in flow paths. The primary aim is to validate and better 

understand the techniques for the representation of buildings, so we excluded the sub-

surface drainage network system from the simulations reported here. While model 

results with and without the sub-surface network show differences in some locations, 
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the main features of flooding are similar for this very large event, and acceptably close 

to the observed impacts (Glenis et al., 2018). 

 

 

Figure 3.2 Storm profile corresponding to the historical storm on June 28, 2012, at Newcastle 
Upon Tyne. 
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Figure 3.3 The DEM and the extracted results from CityCAT of the study area (a & b) with 

the ‘Building Hole’; (c & d) with the ‘Stubby Building’. 

 

3.3.5 Flood exposure analysis 

Building outlines from OS (MasterMap, 2020; Ordnance Survey, 2020) were used to 

estimate the flood risk to buildings by analysing each model’s maximum flood depth 

output in a one-cell wide buffer around the building outline. Buildings were classified 
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as flooded if the flood water is above a typical property threshold of 30 cm (Bertsch, 

2019; Bertsch et al., 2022; Environment Agency, 2021). 

 

Table 3.1 Classification scheme for calculating flood exposure likelihood for buildings 
(Bertsch, 2019; Bertsch et al., 2022). 

Exposure Class Mean depth (m) Max depth (m) 
Low <0.10 <0.30 

Medium <0.10 ≥0.30 

 ≥0.10 - <0.30 <0.30 
High ≥0.10 ≥0.30 

 

 

3.4 Results and Discussion 

The performance of each simulation was compared in terms of the flood depth, the 

number of buildings inundated, and the water flowpaths. The complex topography 

and the high slopes around the city centre allow examining detailed water flowpaths 

and the direct influence on buildings. Figure 3.4(a) presents the study area with the 

‘Building Hole’ technique for the storm of June 28, 2012, and it can be seen that the 

flowpaths change direction or stop when there are buildings in the way, which is 

physically realistic. Thus, Figure 3.4(b) shows, for the same storm event, that with the 

‘Stubby’ approach, while the broad distribution of flood water is similar, the flood 

flowpaths frequently traverse the buildings where the water depth outside them 

exceeds the 30 cm threshold, which is not physically realistic. Proponents of the SB 

approach suggest that this process represents ingress to the building and subsequent 

egress, but this is very speculative, and the number of instances in this simulation show 

that there is a major mis-representation of flow pathways due to the approximation of 

30 cm roof elevation of the buildings. 
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Figure 3.4(a) Water depths from CityCAT for the storm on 28th June 2012 with the ‘Building 
Hole’ approach for Newcastle city centre. 
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Figure 3.4(b) Water depths from CityCAT for the storm on 28th June 2012 with the ‘Stubby 
Building’ approach for Newcastle city centre. 

 

Table 3.2 Summary of mean water flood depth for each model in different storm scenarios; 
BH denotes the ‘Building Hole’ method; SB30 denotes the ‘Stubby Building’ method with a 30 

cm threshold; Final code denotes either observed event rainfall used, or depth corresponding 
to an estimated return period. 

Models Mean flood depth (m) 

BH - 2012 0.044 
SB30 - 2012 0.042 
BH - 50y rp 0.038 
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SB30 - 50y rp 0.033 
BH - 100y rp 0.046 
SB30 - 100y rp 0.041 

 

Table 3.2 presents the water mean depths between the two techniques in different 

storm events, and it is clear that the mean depths are higher with the BH approach 

than with SB, which is plausible due to the exclusion of buildings from the 

computational grid and increased number of cases of flow blocking. 

 

3.4.1 Velocity comparison 

Furthermore, a useful extension of flood modelling in dense cities is to capture the 

correct direction of water flow paths and velocity considering the roads, pavements, 

all types of buildings, topography etc. A detailed comparison of velocity of flows is 

presented in this section between the ‘Building Hole’ and the ‘Stubby Building’ 

approach. 

Figure 3.5(a) presents the mean velocity of flow averaged over all grid squares in the 

domain for the two approaches. It can be seen that the velocity of flow with the BH 

approach is somewhat higher than with the SB which is consistent with the higher 

friction in the SB domain due to lower water depths overall, relative to the BH case 

where flows are channelled between buildings. Figure 3.5(b) shows that the differences 

in percentiles of the velocity of flow for the 70 min of the storm event are minor until 

the 70th, where the BH values are larger. The differences are largest for the 90th and the 

99th percentiles, i.e. the deepest flood waters. 

A detailed comparison of modelled flows is presented in Figure 3.6, near the Merz 

Court building on Newcastle University campus which was severely flooded. It is clear 

that in graphs (a) and (c) with the BH approach, the flood water changes direction on 

reaching the building and flows around it, as observed during the storm event. In 

contrast, with the SB approach the flood water flows over the building, generating 

unrealistic flowpaths. 
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Figure 3.5 (a) The domain average flow velocity for the BH and the SB approaches during the 
2012 storm; (b) the distribution of flow velocity (left axis) and water depth (right axis) for the 

70 minutes for the storm event plotted against its quantile. 
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Figure 3.6 (a), (c) Water depths and flow velocity (black arrows) for the BH approach and (b), 
(d) for the SB approach for two frontages of the Merz Court building – north (a, b) and west 

(c, d). 

 

3.4.2 Comparison of modelled flow depths 

To examine the differences between generated flow paths from the two approaches, 

two small areas of the domain were extracted. Firstly, Figure 3.7 illustrates the flood 

depth maps with the two techniques around Newcastle University main campus for a 

storm event of 60min with 100 years return period. On the left-hand map, a major 
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surface flow path from the (mostly culverted) Pandon Burn can be seen which is 

blocked by the Merz Court building (distinctive trapezoidal shape with central open 

space) and subsequent buildings, whereas the flow overtops every building in the SB 

model in the right-hand map. Figure 3.8 shows photographs taken during the storm 

event which provide detailed validation of the modelled depths upstream of Merz 

Court. 

 

 
Figure 3.7 Flood depth from CityCAT simulations around Newcastle University main 

campus. Left graph (a) is with BH and the right graph (b) with SB approach. 

 

 
Figure 3.8 Observation points upstream of Merz Court building for the validation of flood 

paths with BH & SB approaches. 
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Figure 3.9 shows results from CityCAT simulations with BH and the SB approaches 

and it is apparent that with the SB the flood water flows over/through the Merz Court 

building, and a deep pond was created in the roof on that building. While the building 

is documented as having suffered major flood ingress in the 2012 event, the observed 

flooding closely corresponds to that generated by the BH method, including the deep 

upstream ponding (see Figure 3.8). 

 

 
Figure 3.9 Flooding in Merz Court building at Newcastle University for a storm event of 60 
min duration and 100 years return period with (a) ‘Building Hole’ and (b) ‘Stubby Building’ 

approaches. 

 

Results from a second area on the city centre which was subject to severe flooding are 

shown in Figures 3.10 & 3.11 where it can be seen that the SB model again generates 

flood flows which overtop and flow ‘through’ buildings. This creates small ‘ponds’ on 

buildings due to ‘errors’ in the DTMs, as discussed in Section 3.4., which are then 

characterised as high flood risk, which is not physically realistic. These ‘errors’ in the 

DEM are likely to be associated with buildings located on sloping ground (around 1 

in 5, 20% gradient in this instance) due to poor identification of a mean ‘ground level’ 

for the area to allow interpolation within the building outline. 
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Figure 3.10 Flooding in a steep location of the city, Dean Street, with (a) BH and (b) SB 

approaches. 

 

 
Figure 3.11 Flooding at a second location with steep slopes, Westgate Street, with (a) BH and 

(b) SB approaches. 

 

3.4.3 Flood hazard to urban features 

In order to identify the critical differences to water flowpaths between the two 

approaches, flood depth maps simulated with the ‘Building Hole’ were subtracted from 

those with ‘Stubby Building’ and are shown in Figure 3.12. It can be seen that, 
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systematically, blue grid squares (positive depth difference) are where BH approach 

depths are greater than corresponding SB depths (e.g. on roads), (BH depths > SB) and 

red grids are generally on buildings where SB flowpaths exist and BH are absent (SB 

depths > BH). With the ‘Building Hole’ the flood water is forced to flow around the 

buildings, whereas with ‘Stubby Building’ the flow paths are different, as the flood 

water overtops almost 35% of the buildings in this area. 

The total number of flooded buildings for each model is shown in Table 3.3. The BH 

models present the largest number of inundated buildings (high flood risk) in the AOI 

in contrast with the SB30 models where the buildings in the high-risk class are around 

one third less of the totals due to the flood water which spreads more frequently onto 

buildings. Thus, SB30 models underestimate the flood risk to buildings due to the 

widespread ingress of water. 

 

Table 3.3 Number of buildings inundated per scenario by each model. 

Models Low Medium High 
BH - 2012 3941 646 835 
SB30 - 2012 4122 928 372 
BH - 50y rp 4102 638 682 
SB30 - 50y rp 4194 939 289 
BH - 100y rp 3945 674 803 
SB30 - 100y rp 4079 993 350 
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Figure 3.12 Differences in water depth between the BH and the SB models at Newcastle City 

Centre. Red is where SB predicts larger water depths than the BH and blue is vice versa. 

 

An artefact of the SB approach is that systematic differences in ground level across the 

domain are introduced, so generating increased gradients (at building outlines). 

Figure 3.13 shows the distribution of local slope calculated as the maximum elevation 

differences between a grid square and its four neighbours. It can be seen that the initial 

DEM is smoother in contrast with the generated DEM for the ‘Stubby Building’ 

approach, where a variation in elevation has been introduced between 0.20 to 0.40 m. 
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This is further evidence that water flow will be modified in the simulations, with 

consequent change in flow paths and velocities. 

 

 
Figure 3.13 Distribution in grid-by-grid elevation differences for (a) BH approach (original 

DEM); (b) the generated DEM for SB approach. 

 

3.4.4 Validation of the ‘Building Hole’ and the ‘Stubby Building’ against a real 

storm event 

The approach taken here to validation of the models is to estimate the flood exposure 

of each building and compare it with flooding in areal observed event. In a recent study 

by Bertsch et al. (2022), a new tool was developed to assess exposure of buildings to 

flooding and validate against a real flood event in Newcastle upon Tyne, UK. The 

‘Building Hole’ approach was used for the representation of buildings and the model 

successfully predicted between 68% and 75% of the surveyed buildings that suffered 

from flooding. 

In this section, a validation between the BH and the SB approaches will be presented 

for the buildings of the Newcastle University campus that suffered from different 

causes of flooding (from the surface and from the drainage system) during the storm 

event on the 28th of June 2012, also called the ‘Toon Monsoon’. Of 100 buildings on the 
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campus 20 were flooded and are presented in Table 3.4 with a description of the 

flooding mechanism. The location of the buildings and the dominant flooding 

mechanism are shown in Figure 3.14.   

Additionally Figure 3.15 shows the water depth modelled with the BH approach in 

four different locations where observed data existed. The CityCAT model correctly 

identified 80% (16 of the 20 buildings) of the affected buildings. Exposure calculated 

with water depths modelled with the ‘stubby’ approach is presented in Figure 3.16 

showing an underestimation of flood impact as the model was able to identify only 

15% (3 of the 20 buildings) of the exposed buildings. 

 

Table 3.4 Flooded buildings at Newcastle University campus during the 2012 flood event. 

A/A Buildings Description of damages. 

1 
Bio-Medical Research 
Building (BRB) 

Flood water travelled through building from central 
Courtyard area at CAV to Car Park next to NHS 
Estates.   

2 Merz Court 
Significant flooding. Flood water travelled through 
building from Queen Victoria Road to Claremont 
Walk. 

3 Philip Robinson Library 
Significant flooding to basement areas from 
surcharging drains and direct water ingress from 
external areas. 

4 Ridley 1 
Significant water ingress to entrance area adjacent to 
Lovers Lane. 

5 Agriculture Flooding to lift pit at basement level. 

6 Claremont Sports Hall Entrance area only. On route of Pandon Burn. 

7 Hadrian Building 
Flooding to lift shaft and basement level. Significant 
surface water flooding to service road. 

8 Herschel Flooding to lift shaft. 

9 Herschel Annex Flooding at basement level from duct. 

10 King's Gate 
Minor flooding to plant rooms adjacent to service 
road.  Considerable surface water flooding on 
service road/outside entrance door. 
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11 Music Water ingress from service road to basement areas. 

12 Students' Union 
Surface water flooding to lane outside and lift pit 
and basement areas. 

13 Armstrong Building 
Significant flooding to basement area of Music 
Practise Rooms. Drains back flowed into area, also 
unusual drainage layout. 

14 Windsor Terrace 19/20 
Drainage could not cope and flooded basement 
areas. 

15 Windsor Terrace 21/24 
Drainage could not cope and flooded basement 
areas. 

16 Claremont Building 
Some basement flooding from drains / 
groundwater? 

17 Claremont Tower Backflow from drainage causing minimal damage. 

18 
Grand Hotel and 
Commercials 

Basement level of Blackwell’s Bookshop and 
residential accommodation from back flowing 
drains.   

19 Old Library 
Drains back flowed into building, causing 
considerable damage to ground floor area.   

20 Percy Building Basement area flooded due to surcharging drains. 
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Figure 3.14 The flooded buildings from the ‘Toon Monsoon’ storm event and dominant 

mechanism of flooding. 

 

 
Figure 3.15 Validation for the ‘Building Hole’ approach. 
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Figure 3.16 Validation for the ‘Stubby Building’ approach. 

 

3.5 Improved application of the ‘Stubby Building’ approach 

An important question in modelling practice is why a value of 30 cm is used to 

represent building heights in flood models, and how this could be improved in order 

to obtain more realistic results. The ‘Stubby Building’ (as described in section 3.2.2.) 

approach increases the building threshold, usually by 30 cm, and in some cases, an 

increased hydraulic roughness to the building footprint (Environment Agency, 2021; 

SEPA, 2018; TUFLOW, 2018). The schematic framework in Figure 3.17 highlights the 

issues of the modeller and the actions that could be taken before using the ‘Stubby 

Building’ approach. DEMs are mostly used in pluvial flood modelling but according to 

McClean et al. (2020) there are instabilities in the accuracy of the elevation (‘errors’), 

where a modeller should first think of an effective way to identify them and correct 

them inside the model to avoid the overprediction of flooding in places with minor 

hazards. 

Furthermore, there is a range of actions that could improve the model using the ‘stubby’ 

approach. An obvious action is to increase the elevation of the building from 30 cm, if 
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the model numerical stability allows this. Otherwise, the modeller could avoid using 

this approach, or to flag the results as low confidence, in areas with steep slopes, as 

these are more likely to create conditions for overtopping the ‘stubby’ platforms due to 

interpolation ‘errors’ within the building footprint. A further option is to generate a 

uniformly flat roof in every building in the study area, thus avoiding relative low 

points for water to overtop. Section 3.4.2. will describe methods to ‘clean’ the DEM and 

thus improve the ‘Stubby Building’ approach. 

 

 
Figure 3.17 A framework with suggested steps to improve the ‘Stubby Building’ approach. 

 

3.5.1 ‘Stubby’ models 

To assess the magnitude of the DEM errors in using the SB approach, and to attempt 

to identify a good choice of platform height as a trade-off with DEM error, a range of 

scenarios was generated with different platform heights. While this height is 

essentially selected in industry models to maintain numerical stability, it can also be 

considered as representing an ingress threshold. The variant models have been set up 

as in Section 3.2.4. but as well as 30 cm, the ground elevation of the DEMs was raised 

in the buildings’ footprints by 20, 40, 60, 80, and 100 cm. Figure 3.18 presents the 

generated variants of SB, and it can be seen in Figures (a – SB20), (b – SB40) & (c – SB60) 

that the water more frequently spreads over the buildings, while in Figures (d – SB80) 

& (e – SB100) there is as expected a reduction of spread to flood water in buildings 

which is more realistic. Newgate Street in Newcastle city centre was selected to 
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validate the behaviour of the different thresholds for the ‘stubby’ models due to the 

complexity of the topography and the high slopes of the ground. 

 

 
Figure 3.18 Water depths at Newgate Street, Newcastle city centre, for a storm event of 60 
min and 100 years return period with the generated ‘stubby’ scenarios. a) model refers to 
‘stubby’ approach with a raised platform of 20 cm; b) 40 cm; c) 60 cm; d) 80 cm; e) 100 cm. 

 

3.5.2 A ‘cleaned Stubby’ approach 

In this section, a new corrected version of ‘Stubby Building’ is discussed. After the first 

simulation with the ‘stubby’ approach, the results have shown that there are anomalous 

depressions on some building footprints, with resultant flood depths above 1 m. These 

anomalies are assumed to arise from lack of robustness in the interpolation algorithm 

used to assign a ‘ground elevation’ to building footprints when converting from DTM 

to DEM in areas with high gradient. In order to develop a corrected DEM accounting 

for this systematic error source, the buildings with 1 m (or more) of inundated depth 
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within the footprint were first identified. A total of 191 urban features in the AOI were 

found (highlighted in red in Figure 3.19). Next the elevation of the DEMs was raised 

to the 95 percentile values of the elevations around the building perimeter to create flat 

roofs to these buildings. Then, a step of 30 cm was added to all buildings in the AOI, 

including the ‘cleaned’ buildings with the flat roofs, and the CityCAT model was run 

again with these new variants. This correction or cleaning of the DEM can be an 

important step in the modelling, as it removes spurious occurrences of potentially 

large flood depths and avoid overestimating flood risk in a complex urban area with 

elevation instabilities.  
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Figure 3.19 The identified buildings with depressions in the AOI. 

 

To illustrate the effect of the various modified ‘stubby’ treatments, the case of the Merz 

Court building is examined again in detail. Figure 3.20 shows flood depths in the area 

around the flooded Merz Court building at Newcastle University with the three 

different approaches: BH, SB and ‘cleaned’ SB with flat roofs. It can be seen the ‘cleaned’ 

variant model SB30 FR – 100y rp (Figure 3.20(c)), shows a more realistic condition, 

closer to the BH – 100y rp (BH) model – ‘Building Hole’, (Figure 3.20(a)) due to the 

generation of a flat roof and the correction of the elevation. 
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Table 3.5 List of codes for the modified ‘stubby’ models. 

SB20 The 'Stubby Building' method with 20 cm threshold 
SB30 The 'Stubby Building' method with 30 cm threshold 
SB40 The 'Stubby Building' method with 40 cm threshold 
SB60 The 'Stubby Building' method with 60 cm threshold 
SB80 The 'Stubby Building' method with 80 cm threshold 
SB100 The 'Stubby Building' method with 100 cm threshold 

BH The 'Building Hole' method 
SB30 FR The ‘cleaned Stubby’ method with flat roofs and 30 cm threshold 

 

 
Figure 3.20 Flooding in Merz Court Building for a storm event of 60 min and 100 years return 

period with (a) BH approach; (b) SB approach; (c) the ‘fixed’ version of ‘Stubby Building’. 

 

While looking at individual buildings is helpful to understand the effects of different 

model treatments, most exposure analysis will be for larger areas with many buildings, 

so the total number of flooded buildings for all the ‘stubby’ variant models has been 

calculated and is shown in Table 3.6. The models SB20 – 100y rp (20 cm threshold) and 

SB30 – 100y rp (30 cm threshold) generate the highest number of buildings at high 

flood risk due to the low threshold, while the total appears to reach a steady limit value 

above 60 cm threshold. While these total numbers are not closer to the BH benchmark 

value, the number of ‘high risk’ is still a factor of two larger. 

A comparison of the SB results with the more physically realistic BH approach shows 

that for the widely used 30 cm platform, an underestimation of some 34% in the 



      

 

60 
 

identification of high flood risk buildings is evident, as shown in Figure 3.21 which 

highlights the buildings according to flood risk with BH and SB approaches. This 

difference is reduced by raising the platform height, but of course at the expense of 

introducing numerical instabilities into codes less robust than CityCAT. 

 

Table 3.6 A total number of flooded buildings per scenario for each ‘stubby’ model, and for 
the ‘Building Hole’ approach for reference. 

Models Low Medium High 
BH - 100y rp 3945 674 803 
SB20 - 100y rp 4410 662 350 
SB30 - 100y rp 4079 993 350 
SB40 - 100y rp 3791 1291 340 
SB60 - 100y rp 3649 1427 346 
SB80 - 100y rp 3612 1465 345 
SB100 - 100y rp 3612 1465 345 
SB30 FR - 100y rp 4014 1053 355 

 

 
Figure 3.21 Flood exposure maps with the (a) BH (model BH – 100y rp); (b) SB (model SB30 - 
100y rp) approaches for the city centre of Newcastle, UK. Red is high risk, orange medium. 
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3.6 Conclusions 

This chapter presents an analysis of the performance of two widely used approaches 

for the representation of buildings in hydrodynamic flood models and presents an 

improved method for the ‘Stubby Building’ approach which corrects for common errors 

in DEM generation. For the first time, a direct comparison of the SB approach with the 

more realistic BH approach has been carried out and shows that the BH approach 

generates larger flood depths, as is to be expected since the SB approach allows re-

distribution of deep water over building footprints and presents fewer flow blocking 

situations. The flood paths with the SB approach are more dispersed, resulting in more 

buildings being affected. 

The velocity of flood water is also somewhat higher with the BH approach due 

primarily to larger flow depths (see Figure 3.6(a),(c) with ‘Building Hole’). The SB 

allows the water to flow more frequently over the buildings, and the direction of the 

water can be seen very clearly over and on top of them (see Figure 3.6(b),(d) with 

‘Stubby Building’). 

Furthermore, on some buildings, a ‘pond’ is generated on roofs with the SB approach 

due to ‘errors’ in the DEM which the modeller should check and correct before the 

simulations. An advantage of the ‘Building Hole’ approach is that this task of checking 

and correcting the DEM is not required, as the area within the building footprint is 

simply removed from the model domain and does not require an interpolated 

elevation to be assigned. 

Aside from ‘errors’ caused by artefacts in the DEM, in general, the SB approximation 

underestimates water depths, and the highest category of flood risk in the urban fabric, 

due to unrealistic flow paths over-riding the building forms. The validation of the 

affected buildings on the Newcastle University campus showed that the difference 

between the two approaches for the classification of building flood risk is very large 

(80% for the BH and 15% for the SB). This large difference suggests that a modified 

version of the exposure tool is needed to correctly identify high risk buildings. 



      

 

62 
 

In conclusion, the ‘Building Hole’ approach offers more realistic results which validate 

well against observed flooding where flow paths and flood depths are well captured 

by the model. The computational time and cost, especially in big urban areas with high 

resolution, to run a simulation is an important factor that favours the BH, due to fewer 

computational cells in the model (29% fewer cells). Additionally, it is simple and easy 

to identify buildings at high flood risk according to the water depth around their 

perimeter. An important advantage of this approach is that is suitable in any area, and 

especially for dense built-up areas, regardless of with the presence of steep slopes, in 

contrast to the ‘Stubby Building’ approach which is suggested in this chapter to be more 

suitable for use in flatter areas.  
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Chapter 4. A cost-benefit ‘source-receptor’ framework for 

implementation of Blue-Green flood risk management 

4.1 Introduction 

Surface water flooding is a major and increasing hazard in cities, where assets, 

properties, and humans are directly affected. The extent and severity of the damage 

caused by urban floods, around $40 billion per year according to OECD (2016), is a 

product of both the intensity and the duration of a storm and its interaction with the 

complex flow paths of a city on the surface and below ground. Extreme storm events 

are expected to increase worldwide and therefore constitute a critical issue in flood 

risk analysis and the design or management of critical adaptation solutions is a 

necessity to reduce and, in some cases, control the flow and the volume of flood water 

in the urban fabric (Galiatsatou & Iliadis, 2022). 

It is expected that by 2050 almost 75% of the world’s population will live in urban areas 

(Liu et al., 2014). The combination of climate change and the increasing urbanisation 

with the frequency of storms will lead dense areas to improve the current flood 

mitigation strategies and the drainage system to create resilience cities against future 

floods and protect humans, assets, infrastructure, and properties from damages 

(Bertilsson et al., 2019; Carter et al., 2015; Vercruysse et al., 2019). Nowadays, drainage 

systems in cities are under pressure due to urbanisation and are not able to withstand 

higher intensity and frequency of storm events (Eulogi et al., 2021; Rosenzweig et al., 

2018). As a result, flood risk management adaptation solutions are currently blocked 

by the lack of affordable and feasible strategies. In some studies of adaptation 

strategies at local scales with Sustainable Urban Drainage Systems (SuDS) (Fletcher et 

al., 2015) and larger scales (Li et al., 2018) there is a non-adaptation efficiency apparent 

between them (Ernst & Preston, 2017; Kuller et al., 2017; Preston et al., 2015) due to the 

lack of information and uncertainty of the capacity, the performance and the location 

of these systems (Hoang & Fenner, 2016; Mailhot & Duchesne, 2010; O’Donnell et al., 

2017; Schuch et al., 2017). A recent study by Oladunjoye (2022) asserts that SuDS could 
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be a crucial component of flood mitigation due to the capacity to decrease runoff 

volume and lower the danger of floods by controlling the flow in natural infiltration 

systems. 

While the potential of  more realistic and affordable solutions such as Blue-Green 

Infrastructure (BGI) or Natural Flood Management (NFM) is increasingly recognised, 

the barriers to their uptake are formidable, as effective city-wide schemes require 

significant investment in implementation in multiple locations if they are to be 

effective, rather than opportunist and piecemeal schemes where re-development 

permits. A more systematic city-wide approach is therefore required, with a clear 

demonstration of the overall cost and benefits, before a city planning authority will be 

prepared to invest. Such an approach requires an urban flow simulation with sufficient 

detail to resolve not only the exposure (and subsequent benefit form risk reduction) at 

property level, but also the highly localised runoff sources and flow paths where BGI 

can be implemented. This chapter therefore sets out to advance a new and systematic 

methodology combining an advanced high-resolution hydrodynamic flood model 

with a source-receptor benefit cost methodology.  

Urban flood models have been developed over the last decade (Glenis et al., 2018; Guo 

et al., 2020; Sanders, 2017; Teng et al., 2017; TUFLOW, 2018) to better understand the 

flood dynamics, better estimate the water flow paths and the flood depths around 

cities, and can increasingly be used to investigate the connectivity of flood 

management options and interventions with the characteristics of a city (impermeable 

surfaces, topography, storms etc). If applied at high resolution and large enough 

scales, these hydrodynamic models can provide accurate analysis of future flood risk, 

and with the collaboration of local authorities can be used to design flood mitigation 

solutions by locating areas at high flood risk and adding interventions in critical areas 

to reduce pluvial or fluvial flooding (Alves et al., 2016; Casal-Campos et al., 2015; 

Dawson et al., 2020; Hewett et al., 2020; McKenna et al., 2023; Morgan & Fenner, 2019). 

This chapter demonstrates the use of such an advanced high resolution system, the 

CityCAT hydrodynamic model (Glenis et al., 2018), in a systematic framework to locate 
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optimal areas where interventions can be made, accounting not only for their cost, but 

also their benefit in reduction of damages to properties from flooding in a city scale 

catchment. Recent studies have begun to explore methods of optimising location of 

BGI interventions, such as Birkinshaw and Krivtsov (2022) who established that for a 

particular urban setting locating a retention pond further upstream was most effective, 

and that storage in the lower part of the catchment could actually increase flood risk. 

There is however a need to more systematically manage the assessment of such 

options, so a cost-benefit driven ‘source-receptor’ analysis is developed here to locate 

areas at high flood risk, how many buildings are impacted by flooding, what 

information we extract from the model and where critical interventions should be 

added to the model to most efficiently reduce cost and flood damages. 

 

4.2 Methodology 

4.2.1 Case study 

The novelty of the cost-benefit driven ‘source-receptor’ flood risk framework offers the 

flexibility for designs to be developed in every urban area or catchment with any 

suitable resolution of the Digital Terrain Model (DTM) (according to Iliadis et al. 

(2023a), a DTM resolution of less than 5m is required to capture all the required 

information for this framework) to any commercial or research flood model. The 

required information and inputs of the methodology are: a) the Digital Elevation 

Model or Digital Terrain Model (DEM/DTM) of the study area; b) the buildings 

(classification, e.g. commercial or residential) and green spaces; c) rainfall data - the 

construction of IDF/DDF curves or storm profiles are needed to specify a range of flood 

hazards and d) flood damage estimates for commercial and residential buildings of 

the study area. In this chapter, the campus of Newcastle University and the adjacent 

city centre are subject to a major flood risk from upstream and suffered major damages 

during the 2012 ‘Toon Monsoon’ thunderstorm event (Kutija et al., 2014). The area is 

characterised by historic and commercial buildings, residential properties, and green 
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space with the most important being parkland areas, primarily the Town Moor and 

Leazes Park, which cover a significant extent of the study area. Previous studies have 

been made in relation to pluvial flooding after the historic storm, on the 28th of June 

2012, to add BGI in critical places in order to protect the assets (Fenner et al., 2019; 

Kilsby et al., 2020; O'Donnell et al., 2020; Wright & Thorne, 2014). 

The catchment has been modelled using CityCAT (Glenis et al., 2018) for storm events 

spanning 1 in 10-year to 1 in 100-year return period with a duration of 60 min. Figure 

4.1 shows the study catchment with buildings colour coded according to use, and land 

use. The resolution of the DEM and computational grid is two metres (area of each 

grid square is 4m2) and was derived from Lidar (2016). The total number of 

computational cells in the domain is 1,005,904 covering an area of 5.30 km2. The 

numerical grid was generated following the ‘Building Hole’ approach where building 

footprints are removed from the computational domain by generating a non-flow 

boundary around them, which is more realistic than widely used approximations such 

as the so-called stubby-building approach. Rainfall on to the building is retained by 

re-distribution to the nearest surface grid square (for a full description, see Iliadis et al. 

(2023b)). 
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Figure 4.1 Overview of the study area in Newcastle upon Tyne, UK. Grey represents 

residential buildings, red commercial (offices, public buildings, retail), green is permeable 
areas, and brown to yellow shading the ground surface elevation. 

 

4.2.2 A cost-benefit ‘source-receptor’ flood risk framework 

A powerful way to identify areas contributing to the total flood extent during a 

simulated event is the ‘source-to-impact’ flood analysis based on a systematic cell 

dependency applied by Vercruysse et al. (2019) and Dawson et al. (2020) for the urban 

core of Newcastle upon Tyne and by Ewen et al. (2013) for the river Hodder catchment 

in the northwest England. The analysis of Vercruysse et al. (2019) presented a four step 

methodology to capture the flow paths and identify the location at high flood risk. 

They considered the differences of modelled maximum water depths generated by 

subtracting the baseline scenario with the cells without rainfall of the catchment, and 

four spatial prioritisation criteria to identify the best cells in which to add 

interventions. In many cases, maximum values are not suitable for this purpose due to 

the instabilities in the accuracy of elevation (‘errors’ in the DEM/DTM) which can result 
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in the overestimation of flood values in places with minor hazard (Huang et al., 2022; 

Iliadis, Glenis, et al., 2023b; McClean et al., 2020). 

The framework developed in this chapter combines extreme rainfall information,  

flood dynamics and the cost-benefits of flood risk management in an urban area. The 

methodology consists of five steps to (i) identify the water flow paths; (ii) capture the 

rainfall for a range of different magnitude storm events; (iii) categorise buildings at 

significant flood risk; (iv) calculate the damages from flooding; and (v) add 

interventions in critical high-risk locations upstream or downstream prioritised 

according to their cost-benefit. The steps of the cost-benefit ‘source-receptor’ framework 

are detailed below: 

 

 
Figure 4.2 Schematic workflow of the cost-benefit ‘source-receptor’ flood risk methodology. 

 

1. Divide the study area into approximately equal size cells and classify the type of buildings; 
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2. Run the CityCAT model to generate flood depths for equal rainfall across all cells for the 

four different storms – Baseline Scenario FD(rp), where FD is the flood damages and rp 

is the return period of the storm; 

3. Turn off rainfall in individual cells – we refer to this as Max Capture FD(rp, rc_i), where 

rc_i is a  rainfall cell and i = 1..Total number of rainfall cells; 

4. Classify the buildings according to their flood risk (exposure analysis) and calculate the 

flood damages for the baseline scenarios and the max capture scenarios; 

5. Calculate the benefit by subtracting the max capture scenarios damages from the baseline 

scenarios flood damages FD(rp) – FD(rp, rc_i); 

6. Add interventions to cells (such as permeable pavements, water butts, green roofs, storage 

ponds etc) FD(rp, fc_i), where fc_i is an intervention (or “feature”) cell and i = 1..Total 

number of intervention cells; 

7. Classify the buildings according to their flood risk (exposure analysis) and calculate the 

damages; 

8. Compare the baseline scenarios with the intervention scenarios to identify the best cost-

benefit solution to reduce flooding FD(rp) – FD(rp, fc_i); 

 

The outcomes of the analysis are of course dependent on the size of the cells within the 

grid, the spatial resolution of the DEM/DTM, the type of buildings and the available 

green space in the study area. The first step is to divide the catchment into equal cells, 

twenty-three, with an area of 500m × 500m approximately which would be considered 

as ‘source area’ for the surface runoff and classify the type of buildings (commercial and 

residential) in the study area. The second step is to run the CityCAT model to generate 

the baseline scenario (FD(rp)) for multiple storm events: here four different storm 

magnitudes were used, which cover the range of storms required to estimate the flood 

exposure of the buildings, and the damages from flooding in the study area. We use 

storms corresponding to 1 in 10-year, 1 in 20-year, 1 in 50-year and 1 in 100-year 

(similar to the historic storm ‘Toon Monsoon’) return period with a duration of 60 
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minutes. The third step is to one-by-one switch off the rainfall in every cell of the study 

area (FD(rp, rc_i)) and then run the CityCAT model multiple times (i.e. one run per cell 

per storm scenario, a total of 92 runs). This represents a total ‘capture’ of the rainfall 

which means that there is no runoff from that cell. Moreover, the fourth step is to 

estimate the flood exposure to buildings and the flood damages per max capture 

scenario. In addition, the next step is to compare the baseline flood damages with the 

max capture damages by subtracting both for every cell (FD(rp) – FD(rp, rc_i)). Then, 

this cost-benefit step and the available green space in every cell allows ranking the 

areas from high-priority to low-priority cells to add adaptation solutions to mitigate 

runoff. 

A range of interventions such as permeable pavements, water butts, green roofs, and 

storage ponds (SuDS) can be explicitly represented in CityCAT. Hence, the next step is 

to locate the areas at high flood risk through the provided information from steps 1 to 

5 and the connectivity between the damages, the available green space and flood 

source areas where interventions can be implemented (see section 4.3.3.) in order to 

add interventions to these cells/areas (FD(rp, fc_i)), and run again the model equal 

times as the added interventions for different storms, in this chapter permeable 

pavements and ponds in critical locations were used. Then, the new flood exposure to 

buildings and the damages are calculated to check the behaviour of interventions 

against multiple storms. Finally, the baseline scenarios are compared with the 

intervention scenarios (FD(rp) – FD(rp, fc_i)) to identify the best cost-benefit solution 

to reduce flood damages, and explore if the proposed adaptation options for their 

building are acceptable to local authorities and insurance companies to reduce 

damages, content the properties and increase their resilience against the direct contact 

of flood water (Priest et al., 2022). 
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4.2.3 Assessing flood risk – flood exposure to buildings caused by each grid 

square 

The most important criterion of the cost-benefit ‘source-receptor’ flood risk framework 

to locate areas at high flood risk is a novel flood exposure analysis (Bertsch et al., 2022) 

to estimate the flood risk likelihood to buildings by analysing the water depths 

adjacent to the building (i.e. a one grid square buffer). These depths could be analysed 

as the mean depth in a buffer zone around the building, or the maximum depth, or 

more robustly the 90th percentile depth (used in this chapter) to avoid undue influence 

of a single erroneous depth value. The buffer zone depends on the computational grid 

resolution, 2m here. If the depths exceed a threshold of 30 cm (see Table 4.1) then 

buildings can be classified as high, medium, and low risk. In addition, the buildings at 

low flood risk have been excluded here by assuming that the damages from flooding 

are minor in comparison to damages to buildings at high and medium risk.  

 

Table 4.1 The criteria for calculating flood exposure likelihood for buildings. 

Exposure Class Mean depth (m) 90th percentile (m) 

Low <0.10 <0.30 

Medium 
<0.10 ≥0.30 

≥0.10 - <0.30 <0.30 

High ≥0.10 ≥0.30 

 

4.2.4 Flood damages to properties 

In the UK, flooding causes average damages of £1.3 billion per year, the cost for flood 

defence is around £4.4 billion the last decade, and the properties at flood risk are more 

than 5.2 million in England alone (Craig, 2021; Environment Agency, 2022; UK 

Government, 2016). Hence, residential and commercial flood damage is a crucial case 

that the researchers, the local authorities, and insurance companies collaborate with 

each other to propose efficient and innovative solutions against flooding. The available 

buildings in the study area are commercial (retail, public buildings, offices) and 
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residential. The cost-benefit ‘source-receptor’ flood risk framework took values 

(corresponding to 2022 prices) to calculate the damages to commercial and residential 

buildings from the Handbook for Economic Appraisal (Multi-Coloured Handbook, 

2022) by Priest et al. (2022) (Figure 4.3). Note that prices may differ for other parts of 

the UK and definitely for other countries. 

 

 
Figure 4.3 Direct damage from different water depths for: (a) commercial buildings; (b) 

residential buildings (Priest et al., 2022). 

 

4.2.5 Land in green spaces in cells 

The only spatial criterion in this framework covers the percentage of land use in the 

study area (Figure 4.4) where flooded green spaces may be considered as the areas 

most suitable to add efficient interventions such as ponds or swales to protect assets 

downstream or to guide the researcher to add other types of interventions such as 

permeable pavements, water butts etc. to other parts of the catchment. 
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Figure 4.4 The percentage of green spaces on the cells of the study area: (a) model green 

spaces; (b) the summary statistics. 

 

4.3 Results 

4.3.1 Baseline 

The modelled flood depths for the baseline scenarios (FD(rp)) shows us that in the 

catchment there are two main flow paths, the first from the west side of the catchment 

to the east (cells 1, 4, 6, 7, 9, 12, 15, 18 and 19) through Newcastle University campus 

and the second through the city centre in the lower catchment (cells 6, 9, 10, 13, 14, 17, 

20 and 21), see Figure 4.5. The flood exposure to buildings was calculated for the 

baseline scenarios to identify the number of buildings at high and medium flood risk 

and the cells that caused flooding to them (Table 4.2, Figure 4.5). Most of the buildings 

at high flood risk are located in the west, central, and downstream of the catchment, 

which is to be expected due to the generated flow paths in cells of the study area and 

the different characteristics of the ground, e.g. impermeable pavements, in the study 

area.  

 

Table 4.2 Number of inundated buildings per baseline scenario for different storm events. 

FD(rp) Medium High Total 

FD(10y) 206 258 464 
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FD(20y) 272 396 668 

FD(50y) 411 627 1038 

FD(100y) 518 809 1327 

 

 

 
Figure 4.5 Flood depth from CityCAT simulation and flood exposure to buildings for the 

baseline scenarios - FD(rp) for: (a) a 1 in 10-year storm event; (b) a 1 in 20-year storm event; 
(c) a 1 in 50-year storm event; and (d) a 1 in 100-year storm event with a duration of 60 min, 
the red colour defines the building at high risk, the orange at medium risk and the grey at 

low risk for Newcastle city centre. 

 

The estimated total flood damages per baseline scenario can be seen in Table 4.3 and 

in Figure 4.6, where the total damages even for the ‘small’ storm events (1 in 10-year 

and 1 in 20-year return period) are high. This is consistent with the significant 

commercial buildings which are impacted in the centre of the catchment. Note here 

that from the exposure analysis for the baseline scenarios some buildings are classified 

at high and medium flood risk but after turning off the rainfall to cells the classification 

scheme changes to some buildings from high to medium and low further downstream 

as expected (see Figure 4.7). 
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Table 4.3 The total flood damages for the baseline scenarios – FD(rp). 

FD(rp) Commercial (£) Residential (£) Total Damages (£) 

FD(10y) £40.8M £6.1M £47.0M 

FD(20y) £59.5M £8.9M £68.5M 

FD(50y) £92.3M £14.3M £106.7M 

FD(100y) £147.9M £18.4M £166.5M 

 

 

Figure 4.6 Examples of flood damages and water depth maps for the baseline scenarios – 
FD(rp) for: (a) a 1 in 10-year storm event; (b) 1 in 20-year storm event; (c) 1 in 50-year storm 

event; and (d) 1 in 100-year storm event with a duration of 60 min, yellow to dark red defines 
the cost per buildings from flooding. 
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Figure 4.7 Example of flood exposure map, before (left) and after (right) turning off rainfall 

in cell 17 (FD(10y, rc_17)), the red colour defines the buildings at high risk, orange at medium 
risk and the grey at low risk. 

 

4.3.2 Rainfall capture 

The cost-benefit ‘source-receptor’ flood risk framework was developed to assess the 

impact of certain cells on surface flooding by analysing the exposure to buildings and 

calculating the flood damages to properties on a local/large scale and further 

downstream. The simulated flood depths from the baseline scenarios (FD(rp)) for the 

multiple storm events allow us to identify the flow paths in the study area. Next the 

exposure analysis allows us to locate the buildings (commercial & residential) at 

high/medium flood risk and then the difference in flood damages to buildings from 

(a) the baseline scenarios (FD(rp)) and (b) the max capture scenarios (FD(rp, rc_i)) 

represents the cost-benefit (damage reduction) to buildings by switching-off the 

rainfall to cells (i.e. capturing all the rainfall in the cell – the ideal maximum 

intervention). The matching of cells identified in this way with the available green 

space offers the capability to identify high-priority cells to add adaptation solutions 

(Table 4.4, Figure 4.8 and 4.9) in a straightforward way. The highest value in the final  

column (Cost-Benefit * Green Fraction (GF)) of Table 4.4 corresponds to the highest 

priority location and this is used to select  the location and type of intervention most 
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suitable to build: this is discussed further in section 4.3.3. Moreover, due to simulating 

for multiple storm scenarios, it can be seen in Figure 4.9 that the prioritisation of cells 

varies for different magnitudes of storm  (FD(rp, rc_i)) which is to be expected due to 

the different flow paths in the catchment and the different extent of rainfall capture in 

cells. 

 

Table 4.4 The ranking system to prioritise cells with a high need of intervention for the 
different storm events, the five high-priority cells for all the max capture scenario per storm 

event, damages in £ million. 

10-year return period 

Cells 
Green 

Fraction (GF 
- %) 

Commercial 
(£) 

Residential 
(£) 

Total 
Damages 

(£) 

Cost-Benefit  

(FD(10y) – FD(10y, rc_i)) 
in £ 

Cost-Benefit * GF 

FD(10y, 
rc_13) 

62.20% £35.7M £5.8M £41.5M £5.5M 3.38 

FD(10y, 
rc_17) 

27.71% £29.2M £6.1M £35.3M £11.7M 3.24 

FD(10y, 
rc_14) 

50.70% £36.2M £6.1M £42.3M £4.7M 2.37 

FD(10y, 
rc_15) 

42.30% £39.7M £5.7M £45.4M £1.6M 0.69 

FD(10y, 
rc_16) 

70.29% £40.6M £5.7M £46.3M £0.7M 0.46 

20-year return period 

Cells 
Green 

Fraction (GF 
- %) 

Commercial 
(£) 

Residential 
(£) 

Total 
Damages 

(£) 

Cost-Benefit  

(FD(20y) – FD(20y, rc_i)) 
in £ 

Cost-Benefit * GF 

FD(20y, 
rc_13) 

62.20% £52.1M £8.6M £60.9M £7.6M 4.79 

FD(20y, 
rc_17) 

27.71% £48.4M £8.9M £57.3M £11.2M 3.08 

FD(20y, 
rc_12) 

53.82% £55.7M £8.2M £63.9M £4.6M 2.47 

FD(20y, 
rc_14) 

50.70% £55.3M £8.9M £64.2M £4.3M 2.21 

FD(20y, 
rc_10) 

55.28% £56.5M £8.3M £64.8M £3.7M 2.05 

50-year return period 

Cells 
Green 

Fraction (GF 
- %) 

Commercial 
(£) 

Residential 
(£) 

Total 
Damages 

(£) 

Cost-Benefit  

(FD(50y) – FD(50y, rc_i)) 
in £ 

Cost-Benefit * GF 

FD(50y, 
rc_13) 

62.20% £82.2M £14.0M £96.2M £10.5M 6.53 

FD(50y, 
rc_16) 

70.29% £86.3M £13.8M £100.1M £6.6M 4.64 
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FD(50y, 
rc_17) 

27.71% £76.4M £14.2M £90.6M £16.1M 4.45 

FD(50y, 
rc_12) 

53.82% £85.3M £13.6M £98.9M £7.8M 4.21 

FD(50y, 
rc_14) 

50.70% £85.2M £14.1M £99.3M £7.4M 3.76 

100-year return period 

Cells 
Green 

Fraction (GF 
- %) 

Commercial 
(£) 

Residential 
(£) 

Total 
Damages 

(£) 

Cost-Benefit  

(FD(100y) – FD(100y, rc_i)) 
in £ 

Cost-Benefit * GF 

FD(100y, 
rc_16) 

70.29% £135.0M £17.8M £152.8M £13.7M 9.56 

FD(100y, 
rc_9) 

84.13% £138.9M £18.1M £157.0M £9.5M 7.98 

FD(100y 
rc_13) 

62.20% £137.9M £18.1M £156.0M £10.5M 6.50 

FD(100y, 
rc_19) 

35.24% £132.6M £18.3M £150.9M £15.6M 5.49 

FD(100y, 
rc_12) 

53.82% £138.7M £17.8M £156.5M £10.0M 5.33 

 

 
Figure 4.8 Summary statistics of the cost-benefit ‘source-receptor’ for the max capture 

scenarios for all the storm events: (a) 1 in 10-year return period; (b) 1 in 20-year return 
period; (c) 1 in 50-year return period; and (d) 1 in 100-year return period with a duration of 

60 min. 
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Figure 4.9 Classification of cells as priority areas for BGI in the study area: (a) 1 in 10-year 

return period; (b) 1 in 20-year return period; (c) 1 in 50-year return period; and (d) 1 in 100-
year return period with a duration of 60 min. 

 

4.3.3 Adding Blue-Green Infrastructure to urban areas and catchments 

The previous section has examined the use of BGI to capture rainfall directly on receipt 

at the ground, but the cost-benefit ‘source-receptor’ flood risk framework can equally 

well be used with BGI interventions to capture runoff, for example with permeable 

pavements or detention ponds.   

 

4.3.3.1 Runoff  Capture – permeable pavements 

Firstly permeable pavements are introduced to capture runoff for storm events at 1 in 

10-year and 1 in 20-year return period with a duration of 60 min. The results from the 

exposure, the cost-benefit analysis of buildings and the ranking system for the small 

events (see supplementary material for the tables and the flood maps) suggest location 

of adaptation in cells 13, 17, 14, 15 and 16 for a 1 in 10-year storm event and to cells 13, 

17, 12, 14 and 10 for a 1 in 20-year storm event. Following identification, permeable 

pavements (FD(rp, fc_i)) were introduced in these cells to estimate the benefit reducing 
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damages to buildings downstream. The installation cost for permeable pavements is 

around £30 per square metre of pavement according to  SNIFFER (2006) and Woods 

Ballard et al. (2015). Table 4.5 below describes the cost-benefit in cells classified as high 

priority with the area of pavements in these cells and the installation cost to identify 

the most economic cell to add the proposed BGI. It can be seen that for cell 17 the 

reduction in damages is almost £1.60M by adding permeable pavements with a cost of 

£0.65M (Figure 4.10). 

 

Table 4.5 The flood damages for the intervention scenarios, add permeable pavements in cells 
13, 14, 15, 16 & 17, the cost-benefit, and the installation cost. 

Intervention Scenarios 10-year return period 

Cells 
Commercial 

(£) 
Residential 

(£) 
Total Damages 

(£) 

Cost-Benefit  

(FD(10y) – FD(10y, fc_i)) 
in £ 

Area (m2) 
Installation 

cost (£) 

FD(10y, 
fc_13) 

£40.7M £6.1M £46.8M £0.24M 15,396.718 £0.46M 

FD(10y, 
fc_14) 

£40.3M £6.1M £46.4M £0.64M 21,468.389 £0.64M 

FD(10y, 
fc_15) 

£40.8M £6.0M £46.8M £0.24M 7,143.89 £0.21M 

FD(10y, 
fc_16) 

£40.8M £6.1M £46.9M £0.14M 9,429.084 £0.28M 

FD(10y, 
fc_17) 

£39.3M £6.1M £45.4M £1.64M 21,726.375 £0.65M 
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Figure 4.10 Example of flood damages and water depth map, add an intervention in cell 17, 
green denotes the permeable pavements, yellow to dark red defines the cost per buildings 

from flooding. 

 

4.3.3.2 Runoff Capture – detention ponds 

A second method of runoff capture, installing detention ponds,  has been examined 

targeted at expendable green spaces. This builds on previous work (Birkinshaw & 

Krivtsov, 2022) which assessed the optimal location for ponds.  Two cells (9 and 12, see 

Figure 4.11) were chosen for further investigation as they are classified as high-priority 

cells with a high percentage of available green space (84% and 54% respectively) and 

a detention pond (FD(rp, fc_i)) was proposed to be built in each cell. The first step is to 

choose manually the best place in these cells to add the pond and re-run the model to 

estimate the reduction in flood damages. In cell 12 the total area of the proposed pond 

is 510 m2 with corresponding volume of 765 m3 and in cell 9 the area of the detention 

pond is 8,000 m2 with a volume of 10,000 m3. The estimated flood damages, the cost-

benefit, and the installation cost by simulating the ponds in cells 9 and 12 for multiple 

storm events can be seen in Table 4.6. An average cost to construct a pond is £80,000 

per 5,000 m3 water volume, so the estimated cost to build the two detention ponds in 
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cells 9 and 12 is around £0.16M with the economic benefit being more than £8.5M for 

the high storm events and more than £0.50M for small events (SNIFFER, 2006; Woods 

Ballard et al., 2015). Finally, a combination of interventions could be proposed to 

model in areas where the intensity of rainfall is extremely high (e.g. > 100 mm of 

rainfall). 

 

Table 4.6 The flood damage costs for the intervention scenarios, add storage pond in cells 9 
and 12 for multiple storm events, the cost-benefit, and the installation cost, see Table 4.3 for 

the baseline scenario damages FD(rp). 

Cells Commercial (£) Residential (£) Total Damages (£) 
Cost-Benefit  

(FD(rp) – FD(rp, fc_i)) 
in £ 

Installation 
cost (£) 

FD(20y, 
fc_9_12) 

£59.1M £8.9M £68.0M £0.55M ≈ £0.16M 

FD(50y, 
fc_9_12) 

£90.3M £13.7M £104.0M £2.75M ≈ £0.16M 

FD(100y, 
fc_9_12) 

£140.0M £17.7M £157.7M £8.78M ≈ £0.16M 

 

 
Figure 4.11 Example of flood damages and water depth map, with intervention in cells 9 and 
12 (FD(50y, fc_9_12), storage ponds), green denotes the ponds, yellow to dark red defines the 

damages per buildings from flooding. 
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4.4 Discussion 

It is crucial to recognise the constraints that define the scope of the outcomes. A 

framework such as the cost-benefit ‘source-receptor’ often encounters practical 

challenges in real-world complexities, such as fragmented land and property 

ownership, which could present significant obstacles to coordinating and 

implementing comprehensive adaptation solutions across diverse stakeholders. 

Achieving a balance between the theoretical effectiveness of risk reduction measures 

and their practical feasibility requires addressing these intricate challenges, 

streamlining procedures, and fostering collaborative efforts among stakeholders, 

insurance companies, and local authorities to ensure long-term success of risk 

mitigation strategies. 

This study has prioritised economic considerations, but it must be recognised that 

other aspects may be equally important. Restricting aspects include not only land 

ownership as outlined above, but also acceptance by communities and stakeholders 

on aesthetic, access or safety grounds. Positive aspects to increase benefit are 

increasingly found to be helpful in building cases for BGI and these include measures 

to improve bio-diversity, reduce pollution, increase carbon sequestration and combat 

urban heating.  

 Moreover, representing drainage systems in flood models is a challenging task, 

especially when data is unavailable. Future work is planned to improve the accuracy 

of the cost-benefit ‘source-receptor’ framework by incorporating the sub-surface system 

into the model or developing new novel methodologies to accurately represent the 

sewer drainage network by generating synthetic inlets according to the study area and 

the design standards worldwide. These approaches will provide modellers with 

flexibility in cases where access to data is limited (Bertsch et al., 2017; Costabile et al., 

2023; Dasallas et al., 2023; Iliadis, Galiatsatou, et al., 2023; Singh et al., 2023). 
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4.5 Conclusions 

This chapter demonstrates a novel approach to link surface water flooding information 

with the exposure and the flood damages to buildings in urban fabric and catchments. 

It uses a detailed hydrodynamic model to identify how many buildings are impacted 

by flooding during multiple magnitude storm events, the incurred damages and the 

potential locations to add the most effective type of BGI. The combination of 

hydrological data, flood dynamics and cost-benefits could guide spatial prioritisation 

for intervention in critical locations. Furthermore, the proposed framework has all the 

necessary principles to become a standard planning tool for flood risk management 

due to the simplicity of every step in the proposed methodology and the quantitative 

exposure outputs from flood models at individual building level. 

The systematic procedure of classifying the buildings at high and medium flood risk 

and calculating the damages by switching-off the rainfall in every cell for multiple 

storm events allows identification of areas and properties with high contribution and 

high direct flood impact. The proposed combination and comparison between the cost-

benefit and the available green spaces provides information to choose different types 

of interventions according to the intensity of the storm, e.g. permeable pavements, 

water butts and green roofs for storms with low intensity and ponds and swales for 

storms with high intensity or even a combination of interventions according to flood 

results in the study area. Furthermore, this framework offers the flexibility to be 

applied in larger dense cities and catchments where the results offer more options for 

flood management intervention. For example, a target percentage of rainfall could be 

removed in every cell, for example 5% of the total storm, instead of unrealistic total 

capture when the rainfall is extremely high (e.g. more than 100 mm per hour). 

Finally, much further work is planned to extend the capability of this cost-benefit 

‘source-receptor’ flood risk framework, such as automating the procedure to add BGI 

instead of manually investigating the best location in every cell (Rehman et al., 2023), 
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and considering combinations of larger number of interventions with smaller 

footprints and lower unit cost to improve feasibility and flexibility of implementation. 
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Chapter 5. Cloud modelling of property level flood exposure in 

megacities 

 

5.1 Introduction 

Surface water flooding is emerging as a major natural hazard due to the growth of 

urbanisation and the upcoming climate change that leads to more frequent flash floods 

from severe rainfall events in urban areas and catchments resulting in economic 

damages to infrastructure, assets, properties, and people worldwide (Barredo et al., 

2012; Di Paola et al., 2014; IPCC, 2014; Yang et al., 2016). In megacities, there is an 

especially notable increase in risk through anthropogenic activities increasing 

vulnerability  (Guan et al., 2015; Sillanpää & Koivusalo, 2014). The capacity of the 

current drainage system to most of the cities is overwhelmed during intense rainfall 

(Falconer et al., 2009) with subsequent damages to properties, critical infrastructure 

and population. 

In the face of climate change and urbanisation, flood risk management is pivotal to 

offering adaptation solutions and flood models are crucial to informing resilience 

planning in urban areas. Over the years, many research models have been developed 

to model the drainage system (Djordjević et al., 1999; Simões et al., 2010) and to solve 

the full shallow water equations (SWEs) (Bates et al., 2010; Glenis et al., 2018; Xia et al., 

2019). Many reviews have been written to evaluate the advantages and the limitations 

of hydrodynamic models (Bach et al., 2014; K. Guo et al., 2021; Karim et al., 2023; 

Mignot et al., 2019; Singh et al., 2021; Teng et al., 2017). Among the many 

hydrodynamic models developed to solve the full 2D - SWEs, City Catchment Analysis 

Tool (CityCAT) was employed in this study. CityCAT has undergone testing in various 

real flood events in the past (Bertsch et al., 2017; Bertsch et al., 2022; Glenis et al., 2013; 

Iliadis, Glenis, et al., 2023a, 2023b; Jenkins et al., 2018; Kutija et al., 2014; Vercruysse et 

al., 2019), encompassing different cities within the UK. Additionally, it has been 

applied in studies conducted in the USA, with a particular focus on urban flooding 



      

 

87 
 

(Rosenzweig et al., 2021). Furthermore, the model was employed in a recent study in 

Greece by Iliadis, Galiatsatou, et al. (2023). The accuracy and the quality of the results 

is now sufficient to take on assessments of the most important locations such as 

megacities where the greatest risk and vulnerabilities are found. Such large-scale 

modelling requires correspondingly large computational resources and as the power 

of cloud computing has increased, a few attempts have been made to assess flood risk 

in larger cities using hydrodynamic models. Many studies to simulate surface flow 

have been applied to small urban catchments (Bisht et al., 2016; Chen et al., 2009; 

Fewtrell et al., 2008; Fewtrell et al., 2011a; Huang et al., 2022; Hunter et al., 2008b; Neal 

et al., 2009; Paquier et al., 2015; Syme, 2008; Xu et al., 2023).  Other larger scale studies 

have focused on the flood risk from rivers (fluvial flooding) (Bellos & Tsakiris, 2016; 

Lamb et al., 2010; Ngo et al., 2022; Papaioannou et al., 2021). The first attempt to 

simulate the flood impacts in European cities was presented by Guerreiro et al. (2017), 

where they calculated the percentage of urban areas flooded for 571 cities in Europe 

with a spatial resolution DTM of 25x25m for nine different rainfall events, but 

concluded that the low resolution of the DTM imposed major limitations through not 

representing flow paths accurately. Another study evaluated the flood risk by 

simulating the pluvial flood distribution caused during three extreme rainfall events 

in Shanghai with a DEM of similar (30m) resolution (Hu et al., 2023). 

Digital Elevation Models (DEM) and Digital Terrain Models (DTM) play a key role in 

hydrodynamic models to produce accurate results by defining the water flowpaths 

and the flood risk in urban areas where the topography is complex due to the dense 

buildings and roads (McClean et al., 2020). Xafoulis et al. (2023) investigated the 

influence of different spatial resolutions in DEMs on flood risk assessment, focussing 

specifically on fluvial flooding in an agricultural region located in Greece. In terms of 

urban environments, recent studies by Wang et al. (2018) and Jamali et al. (2018) 

highlight the importance of the high accuracy of DEMs in flood modelling for urban 

flood management options through two different case studies with the use of 1m 

resolution DEM. Escobar-Silva et al. (2023) explored the influence of spatial resolution 
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in flood modelling by comparing three different rainfall events in São Caetano do Sul, 

São Paulo, Brazil, and validated the results with field measurements provided from 

the local civil defence agents of the area. 

This chapter therefore aims to investigate the limits of the ability of a high-resolution 

cloud-based hydrodynamic model to estimate the flood risk and exposure at 

individual building level for a large city. The critical role of the DTM resolution on 

accuracy and run-time is established using four different grid resolutions for multiple 

storm depths. While performance is mostly assessed through model inter-comparison, 

the underlying model fidelity is established with a validation against field 

measurements from a real storm event. The demonstration of large area, high 

resolution modelling and exposure analysis provides timings and costs of Cloud 

simulations which can guide and set new standards for industry practice to achieve.  

 

5.2 Methodology 

5.2.1 Hydrodynamic modelling with CityCAT 

The City Catchment Analysis Tool – CityCAT is a fully 1D/2D coupled hydrodynamic 

model, developed at Newcastle University, that can be used for modelling, analysis 

and visualisation of surface water flooding (Glenis et al., 2018) and urban drainage 

(Bertsch et al., 2017). The architecture of the model is based on the object-orient 

approach which offers rapid extension of functionality and flexibility in development 

(Kutija & Murray, 2007). CityCAT contains explicit solutions to the full Shallow Water 

Equations (SWE) (Tan, 1992) solved by finite volumes with high order shock-capturing 

schemes for propagation of flood wave for flows with discontinuities (Toro, 2013). 

New Riemann solvers have been developed which can handle free surface, pressurised 

and mixed flows (Erduran & Kutija, 2003). The model is based on the St Venant 

equations and a conservative form of the Alievi equations based on the compressible 

Euler equations, which can be written as: 
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𝜕𝜕𝑡𝑡𝐴𝐴 + 𝜕𝜕𝑥𝑥𝑄𝑄 = 0 

𝜕𝜕𝑡𝑡𝑄𝑄 + 𝜕𝜕𝑥𝑥 �
𝑄𝑄2

𝐴𝐴
+ 𝑝𝑝(𝑥𝑥,𝐴𝐴,𝑇𝑇)� = 𝑔𝑔𝑔𝑔(𝑆𝑆𝑜𝑜 − 𝑆𝑆𝑓𝑓)                 (5.1) 

 

Where: 𝑄𝑄 is the discharge, 𝐴𝐴 is the cross-sectional area, 𝑝𝑝 is the pressure, 𝑆𝑆𝑜𝑜 is  the slope, 

𝑆𝑆𝑓𝑓 is the friction term; T denotes the flow state: FS (free surface) or Pr (pressurised) 

(Glenis et al., 2018). 

 

𝑝𝑝(𝑥𝑥,𝐴𝐴,𝑇𝑇) = �
𝑔𝑔𝑔𝑔1 ,                                          𝑖𝑖𝑖𝑖 𝑇𝑇 = 𝐹𝐹𝐹𝐹 
𝑔𝑔𝑔𝑔1 + 𝑐𝑐2(𝐴𝐴𝑃𝑃𝑃𝑃 − 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚),     𝑖𝑖𝑖𝑖 𝑇𝑇 = 𝑃𝑃𝑃𝑃  

𝐼𝐼1 = ∫ (ℎ(𝑥𝑥) − 𝜂𝜂)𝜎𝜎(𝑥𝑥, 𝜂𝜂)ℎ(𝑥𝑥)
0 𝑑𝑑𝑑𝑑;  𝑐𝑐2 = 1

𝜌𝜌𝑜𝑜𝛽𝛽
;  𝐴𝐴𝑃𝑃𝑃𝑃 = 𝜌𝜌

𝜌𝜌𝑜𝑜
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚                (5.2) 

Where: 𝜂𝜂 is the depth integration variable along the vertical axis; ℎ(𝑥𝑥) is the water 

depth; 𝜎𝜎(𝑥𝑥, 𝜂𝜂) is the width of the cross-section; 𝜌𝜌𝑜𝑜 is the density of the water at 

atmospheric pressure; 𝜌𝜌 is the density of the water; 𝛽𝛽 is the water compressibility 

coefficient. 

An example of the shallow water equations used in CityCAT and solved by Finite 

Volumes shock-capturing methods can be written as follows: 

 

𝜕𝜕𝑡𝑡𝑸𝑸 + 𝜕𝜕𝑥𝑥𝑭𝑭(𝑸𝑸) + 𝜕𝜕𝑦𝑦𝑮𝑮(𝑸𝑸) = 𝑺𝑺(𝑸𝑸),      𝑸𝑸 = 𝑸𝑸(𝒙𝒙, 𝑡𝑡) ∈ 𝒟𝒟,   𝒙𝒙 = (𝑥𝑥,𝑦𝑦) ∈ Ω ⊂ ℝ2,    𝑡𝑡 > 0    (5.3) 

 

Where: 𝒟𝒟 is an open convex subset of ℝ𝑝𝑝; 𝑝𝑝 is the number of conservation laws; 𝐐𝐐 is the 

conserved quantities vector; 𝐅𝐅,𝐆𝐆: 𝒟𝒟→ℝ𝑝𝑝 are the flux vectors; and 𝐒𝐒: 𝒟𝒟→ℝ𝑝𝑝 is the source 

terms vector. With initial conditions: 𝐐𝐐(𝐱𝐱,0)= 𝐐𝐐0 (𝐱𝐱),  𝐱𝐱∈Ω; and boundary conditions: 

𝐐𝐐(𝐱𝐱,𝑡𝑡)= 𝐐𝐐𝐵𝐵𝐵𝐵 (𝐱𝐱,𝑡𝑡),  𝐱𝐱∈𝜕𝜕Ω,  t>0. 

The vectors are given as follows: 

 

𝑸𝑸 ≡ [𝑞𝑞1,  𝑞𝑞2, 𝑞𝑞3]𝑇𝑇 = �ℎ,  ℎ𝑣𝑣𝑥𝑥, ℎ𝑣𝑣𝑦𝑦�
𝑇𝑇; 𝑭𝑭(𝑸𝑸) ≡ [𝑓𝑓1,  𝑓𝑓2,𝑓𝑓3]𝑇𝑇 = �ℎ𝑣𝑣𝑥𝑥 ,  ℎ𝑣𝑣𝑥𝑥2 + 𝑔𝑔ℎ2/2,ℎ𝑣𝑣𝑥𝑥𝑣𝑣𝑦𝑦�

𝑇𝑇 

𝑮𝑮(𝑸𝑸) ≡ [𝑔𝑔1,  𝑔𝑔2,𝑔𝑔3]𝑇𝑇 = �ℎ𝑣𝑣𝑦𝑦 ,  ℎ𝑣𝑣𝑥𝑥𝑣𝑣𝑦𝑦 ,ℎ𝑣𝑣𝑦𝑦2 + 𝑔𝑔ℎ2/2�
𝑇𝑇; 𝑺𝑺(𝑸𝑸) = 𝑹𝑹 − 𝑳𝑳 + 𝑺𝑺𝒐𝒐 − 𝑺𝑺𝒇𝒇         (5.4) 
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Where 𝑣𝑣𝑥𝑥 and 𝑣𝑣𝑦𝑦 represent the depth-averaged velocity components in the 𝑥𝑥 and 𝑦𝑦 

directions respectively; ℎ is the water depth; 𝑔𝑔 is the gravity acceleration. 

𝑹𝑹 = [𝑅𝑅,  0,0]𝑇𝑇 is the rainfall intensity; 𝑳𝑳 = [𝐿𝐿,  0,0]𝑇𝑇 is the infiltration rate; 

𝑺𝑺𝒐𝒐 = �0,𝑔𝑔ℎ𝜕𝜕𝑥𝑥𝑧𝑧𝑏𝑏 ,𝑔𝑔ℎ𝜕𝜕𝑦𝑦𝑧𝑧𝑏𝑏�
𝑇𝑇is the bed slope source term and 𝑧𝑧𝑏𝑏 denotes the bed elevation; 

𝑺𝑺𝒇𝒇 = �0,𝑔𝑔ℎ𝑆𝑆𝑆𝑆𝑥𝑥,𝑔𝑔ℎ𝑆𝑆𝑆𝑆𝑦𝑦�
𝑇𝑇is the friction term; (see full description of the equations in 

Glenis et al. (2018)). 

The model represents built-up areas with explicit representation of buildings by using 

the ‘Building Hole’ approach (Iliadis et al., 2023b), bridges (McKenna et al., 2023) and 

different types of Blue-Green Adaptation solutions (Iliadis, Glenis, et al., 2023a). The 

produced outputs of CityCAT are time series of water depth, velocity flow, flood maps 

and volume in and out of manholes, gully drains, buildings etc (Kilsby et al., 2020). 

The required inputs to simulate a study area with CityCAT are: a) Digital Terrain 

Models (DTM); b) the buildings’ footprint; c) the permeable areas; and d) the rainfall 

intensity; Figure 5.1 highlights the steps to set-up a simple simulation in an urban area. 

 

 
Figure 5.1 Schematic workflow to set-up a simulation with CityCAT in an urban area. 

 

5.2.2 Cloud computing 

The design of optimal and efficient solutions for flood risk management is restricted 

due to the limitations of combining high performance computing with flood models. 
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The evolution of cloud flood modelling in the last years has offered a range of options 

to process and store data to understand and explore flood risk management in big 

urban areas and catchments (Glenis et al., 2013). In most cases, the use of the cloud 

meets specific payment options for the time of renting the resources and the required 

Random-Access-Memory (RAM). Alternatives to the Cloud usually involve a 

dedicated compute server, with a proportional cost.   

Many studies have explored and reviewed the use of the cloud for different cases, such 

as flood modelling, flood mapping, etc (Alonso et al., 2023; Bentivoglio et al., 2022; Cea 

& Costabile, 2022a; Karim et al., 2023; Liu et al., 2017; Mignot et al., 2019; Teng et al., 

2019; Thrysøe et al., 2021). A ‘blade’ server installed and located at Newcastle 

University for research purposes is presented here and compared with the use of the 

Cloud with extra payment options, like the Microsoft Azure platform. 

 

5.2.3 LiDAR data 

Digital Terrain Models (DTMs) are the most fundamental input for a hydrodynamic 

model as they define the computational grid and main flow characteristics. The key 

consideration for selection of DEM resolution is the trade-off between accuracy of flow 

path representation, affected by buildings as well as slopes, and speed of simulation 

as a doubling of grid resolution (e.g. from 2 to 1m) may increase run times by a factor 

of eight due to reduction of time step as well as increasing the number of calculations, 

as well as increasing memory requirements. Validation against historic storms in the 

past shows that 1m and 2m grid squares satisfactorily resolve streets and other flow 

paths between buildings while grid squares of size > 5m may close flow paths between 

buildings, resulting in unrealistic flood depths (Iliadis et al., 2023b; Kutija et al., 2014). 

For the UK, LiDAR derived DEM data is available from Digimap (Digimap 

(edina.ac.uk)) in different resolutions with unit pixels in metres. This study will 

explore the influence of high-resolution DTMs in flood modelling of megacities, and 

the required RAM to achieve that. The resolutions of the DTMs used in this case study 

https://digimap.edina.ac.uk/
https://digimap.edina.ac.uk/
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are 1m, 2m, 5m, and 10m. Table 5.1 shows an example of computational grid squares 

with the RAM required to run a simulation with CityCAT. 

 

Table 5.1 Number of cells in a computational grid and required memory to run CityCAT 
model. 

Number of cells in a 
computational grid 

Required RAM in GB 

500,000 ≈16 

1,500,000 ≈20 

10,000,000 ≈40 

15,000,000 ≈60 

50,000,000 ≈200 

 

5.2.4 Estimating flood exposure to buildings 

The flood exposure tool, initially developed by Bertsch et al. (2022), was used in this 

work to estimate the flood risk to buildings and classify them according to the water 

depth in a buffer zone with a simple scheme (see Table 5.2). The mean and the 90th 

percentile of water depth were extracted for each building of the study areas in 

multiple buffer zones around the building perimeter. Note that, the buffer zone 

depends on the DTM resolution (the proposed buffer zones are: 1.50m for the DTM 

with a 1m resolution, 3m for the DTM with a 2m resolution, 5m for the DTM with a 

5m resolution, and 10m for the DTM with a 10m resolution). These depths can be used 

for damage estimation using depth-damage curves as well as a classification. The 

threshold of 30cm was used to classify the buildings according to the flood risk. 

 

Table 5.2 Classification criteria to calculate the flood risk likelihood to buildings. 

Exposure Class Mean depth (m) 90th percentile (m) 

Low <0.10 <0.30 
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Medium 
<0.10 ≥0.30 

≥0.10 - <0.30 <0.30 

High ≥0.10 ≥0.30 

 

5.2.5 Rainfall data 

The FEH22 Rainfall Depth-Duration-Frequency (DDF) model is used with the latest 

rainfall estimation for the area of central London – Piccadilly Circus (Vesuviano, 2022). 

UK Centre for Ecology & Hydrology (2022). The storm profiles were generated 

following the FEH Rainfall-Runoff method (Kjeldsen, 2007a, 2007b). Table 5.3 presents 

the storm events for multiple return periods for a 1-hour duration, among them is the 

historic storm event which hit London on the 12th of July 2021 with 76.20 mm of rainfall 

in a 90 min duration.  This extreme event corresponds to a 1 in 484-year return period 

and is used to validate the observed data with the modelled output. Hence, the 

intensity of precipitation for this event is more than twice the average July total rainfall 

for London in less than two hours. Figure 5.2 shows the generated storm profiles for 

the range of return periods. A full risk assessment should consider storms of multiple 

durations as well as multiple return periods (depths) to establish the overall risk which 

may vary across the domain as different areas will have different catchment sizes and 

therefore different critical durations. A comprehensive coverage of durations and 

return periods was not possible within this study due to computational and time 

constraints, so a single duration was selected for ease of analysis and comparisons with 

other studies. Storm events of one hour were used for this initial study as the effective 

average catchment size for London is relatively small (of order 10 km2) and the 

majority of flooding in recent years is caused by events of around one hour duration. 

 

Table 5.3 Storm event depths for multiple return periods. 

Return Period Rainfall (mm) 

2 11.7 
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5 20.4 

10 26.7 

20 32.9 

50 41.5 

100 48.4 

 

 
Figure 5.2 Storm profiles for multiple return periods with a 1hr duration for the area of 

London. 

 

5.3 Area of interest and modelling set-up 

5.3.1 Case study 

The primary analysis focuses on a part of the Lea catchment, Central London, UK, with 

an area of 37.6 km2, which is subject to major flood risk. This catchment was hit by 

severe storm events in the last decade, twice recently in July 2021, resulting in damages 

from surface flooding to many houses, basements, businesses, and underground 

stations as reported by the Mayor of London (Great London Authority, 2022). 

Moreover, this study examined the flood risk during multiple storm events and a range 

of DTM resolutions for the City of London, Westminster, Kensington, and Chelsea 

where historic buildings are located such as Westminster Abbey, Big Ben, the British 
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Museum, residential properties, commercial places and large green spaces such as 

Hyde Park, Green Park, and Regent’s Park. Hence, this part of London is highly 

exposed, with Oxford Street having more than 500,000 pedestrians per day (LONDON 

ASSEMBLY, 2016), and ageing underground stations (Piccadilly Circus, Baker Street, 

Covent Garden, etc). Figure 5.3 illustrates the study catchment for the first part of the 

analysis where the locations are highlighted. Moreover, a larger part of London, which 

covers an area of 687 km2 and includes more than 1,700,000 buildings, was selected to 

explore the usage and the cost of the Cloud for flood modelling with the CityCAT 

model, more details will be discussed in section 5.4.4.  

 

 
Figure 5.3 Overview of the study area in London, UK. 

 



      

 

96 
 

5.3.2 CityCAT set-up 

The overland flow over and around urban features (buildings, green spaces) has been 

simulated using the hydrodynamic model CityCAT (Glenis et al., 2018) for storm 

events of 60 minute duration and return periods of 2, 5, 10, 20, 50 and 100 years  

Additionally, the historic storm of July 2021 was simulated with a 1 in 484-year return 

period design storm with a duration of 90 min. Simulations were carried out for 

multiple spatial resolutions of the DTMs, e.g. grid squares of area 1m2, 4m2, 25m2 and 

100m2. The buildings and the permeable areas were extracted from OS Mastermap 

Topography (Ordnance Survey, 2020). The ‘Building Hole’ technique was used to all 

models for the representation of the urban features, where the buildings’ footprints are 

removed from the computational grid and the rainfall on  every roof is re-distributed 

to the nearest surface grid square (Iliadis et al., 2023b) The total number of buildings 

in the study area is 95,976. The advantage of this approach is that offers more realistic 

results which validate well against observed data from real storm events, and it is easy 

and simple to categorise buildings according to their flood risk as well as to calculate 

the damages from surface flooding. For the sake of simplicity and ease of use, the 

catchment boundary conditions were kept open. 

The total computational grid squares in the domain comprise 25,199,282 cells, 

6,299,585 cells, 1,007,735 cells, and 255,786 for the DTMs with a resolution of 1m, 2m, 

5m, and 10 respectively. The Green-Ampt method is used to calculate the infiltration 

of water in permeable areas (Warrick, 2003). A significant limitation to this study is 

that the sewer network was excluded from all simulations due to the limited available 

data. While some practitioners make an allowance for this by reducing the input 

rainfall by e.g. 20mm (see Iliadis, Galiatsatou, et al. (2023)), for transparency and inter-

comparison we have not made any correction. An alternative option is to decrease the 

rainfall intensity to match the intensity associated with the concentration-time derived 

from the Intensity-Duration-Frequency curve corresponding to the design frequency, 

as per standards in place when the sewage system was originally commisioned. For 

the largest storms simulated here the storm sewer system would be expected to be 
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overwhelmed in any case as in principle it is designed to drain only up to 20 or so years 

return period storm event. All the simulations were performed on the Newcastle 

University blade server with a 767GB RAM memory, except the simulation for Greater 

London where the Microsoft Azure platform was used. Table 5.4 shows the required 

memory and run time for every simulation per rainfall scenario. 

 

Table 5.4 Number of grid squares, required RAM and simulation time per storm scenario. 

Number of cells in 
computational 

grids 
Cell size Required RAM (GB) 

Simulation time 
per storm scenario 

(min) 

255,786 10 m ≈16 10  

1,007,735 5 m ≈20 30  

6,299,585 2 m ≈40 300  

25,199,282 1 m ≈122 1200  

 

5.4 Flood risk in London 

Flood risk management in megacities, like London, is a critical aspect of urban 

planning and is exacerbated from the case of normal cities by the extra vulnerabilities 

of large (underground and overground) mass transit networks for their larger 

populations. Flood modelling is also crucial to these large cities in terms of insurance 

exposure as very large risk portfolios for residential and business properties are built 

up requiring re-insurance to spread the risk. 

 

5.4.1 Modelled flow depth 

In this section, the flood depth, the number of buildings exposed to flooding, the water 

flow paths, and the estimated inundated damages of each model were compared for 

the 1 in 100-year storm event with a 60min duration. The complex topography, roads, 

and the low gradient of the surface elevation in this part of London allow the 
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examination of the direct influence of flooding on urban features and the detailed 

changes to flood flowpaths. 

For models with lower spatial resolution (i.e. 5 and 10 m) significant underestimation 

of water depths, the buildings exposed to flooding and the changes to water flow paths 

can be seen in Figure 5.4. The differences between the 1m and the 2m resolution are 

minor, and resolution of the main flow paths in the domain can clearly be seen. The 

5m resolution model outputs show blocking of the main roads in the catchment, and 

only the major flow paths associated with natural channels are satisfactorily captured. 

The use of a 10m resolution in the study area results in the underestimation of water 

depth and the occurrence of unrealistic concentrations of water in certain locations. 

This leads to the formation of unrealistic ponding upstream without posing a severe 

flood risk. An artefact of the low spatial resolution across the computational domain 

is the systematic differences in water depths. Figure 5.5 shows the distribution of 

modelled water depths among the different spatial resolution of the DTMs, which 

shows that low resolution modelling cannot produce the full range of flooding 

observed. Note here that the very high depths in these tables correspond to the Thames 

river and several ponds of the study area. 

To achieve reliable results for flood risk management in large catchments in urban 

areas, it is advisable to avoid a square grid size larger than 5m in flood modelling. The 

sensitivity and the high accuracy of the Digital Terrain Models in flood models are 

crucial for designing effective flood defences in densely populated urban areas. This is 

especially important considering the projected urbanisation growth by 2050 and the 

anticipated increase in intense and frequent storm events due to climate change 

(United Nations Department of Economic and Social Affairs, 2019). 

In general, considering the critical importance of accurate flood modelling in densely 

populated urban areas, the high-resolution of the DTMs is crucial in achieving reliable 

results for flood risk management. The findings presented in this study highlight the 

limitations of lower spatial resolution DTMs (5m and 10m) in accurately simulating 
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flood depths, identifying buildings exposed to flooding, and capturing the water 

flowpaths in the urban fabric. Such underestimations and inaccuracies in flood 

modelling could have serious implications for designing effective flood defences. As 

megacities, such as London, continue to experience rapid urbanisation and face 

challenges of climate change, including more intense and frequent storm events, it 

becomes paramount the use of high-resolution DTMs (1m or 2m) to improve: a) 

accurate flood modelling; b) achieve flood resilience against intense storms. 

 

 
Figure 5.4 Example of flood exposure and modelled water depth for a 1 in 100-year storm 

event for grid resolutions of: (a) 1m ; (b) 2m ; (c) 5m ; and (d) 10m resolution. 
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Figure 5.5 Distribution in water depth for: (a) 1m resolution; (b) 2m resolution; (c) 5m 

resolution; and (d) 10m resolution. 

 

5.4.2 Exposure and flood damages to urban features 

To identify and compare the urban features exposed to flood risk for multiple storm 

scenarios and resolutions of the DTMs, the flood exposure calculator was used (see 

section 5.2.4.) developed by Bertsch et al. (2022). There are 95,976 separate unique 

buildings identified by the MasterMap coverage in the domain. Figure 5.6a highlights 

the exposed buildings to surface flooding per storm scenario and different resolutions 

of the computational grid. The model with a 1m resolution estimates the largest 
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number of buildings at flood risk for all the intensities of rainfall and the 10m the 

smallest, which is consistent with the correct capture of the water flow paths in the 

domain. Figure 5.6b presents the percentage of buildings at flood risk in the study area, 

where again the 1m resolution DTM shows the highest affected buildings from 

inundated depth. Figure 5.7 displays the buildings identified as being at high flood 

risk for multiple DTM resolutions. It is evident from the table that there is a noticeable 

decrease in the number of buildings at high risk estimated by the 10m resolution model 

compared with the 1m model. Figure 5.8 illustrates water depths and exposed 

buildings to flooding in a selected area of London, Mayfair, with a total of 3430 

buildings. It can be seen that for lower spatial resolution, e.g. 5m and 10m, this shows 

a similar under-estimation as was seen in the larger domain. It can be seen that the use 

of a low resolution DTM (e.g. 10m) introduces erroneous obstructions to the flowpath, 

resulting in an increased flood risk upstream while simultaneously reducing the flood 

risk downstream. The disparity in building assessments is shown in Table 5.5, which 

illustrates the differences in the count of buildings exposed to elevated flood risks 

between the 1m DTM resolution and the 10m DTM resolution. While the classification 

scheme is unchanged for 2029 buildings, substantial shifts are seen for the remainder, 

such as transition from low to high risk (e.g., 575 buildings, constituting 16.8% of the 

total urban features) and vice versa (e.g., 826 buildings, accounting for 24.1% of the 

total), rather than gradual shifts between medium and high or high and medium risk. 

While the total number of buildings classified as high flood risk at the 10m DTM 

resolution is reduced to around half that at the 1m DTM resolution, this change is 

actually the net result of 826 buildings at reduced risk (mostly downstream of 

blockages to the flow pathways) and 575 at increased risk (mostly upstream of 

blockages).  

The conventional approach was followed here of calculating the estimated damages 

from flooding with a Depth-Damage-Curve (DDC), with the simplification that the 

buildings in the study area are either all residential or all commercial. In megacities it 
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is a very challenging task to categorise buildings1 according to their type or to find 

proper data with all these useful pieces of information. The proposed prices from the 

Handbook for Economic Appraisal (Multi-Coloured Handbook, Priest et al. (2022)) 

were used to calculate the damages to residential and commercial properties. Average 

damages for residential and commercial buildings are given in Figure 5.9. For clarity, 

the buildings at low risk have been excluded from the damage calculation by assuming 

that the damages are only significant for buildings identified at medium and high risk. 

The estimated total flood damages per storm scenario and per different resolution of 

the computational grid are presented in Figure 5.10. It can clearly be seen that 

improving the model resolution increases the total damages successively, with a factor 

of three increase from 10m to 1m resolution, and even around 25% from 2m to 1m. The 

modelled water depth, the exposed buildings, and the total estimated damages in the 

Mayfair area of London are shown in Figure 5.11. Major differences can again be seen 

between coarse resolution (10m) model estimates and the higher resolution estimates 

(1m and 2m). This example shows that coarse models (10 m or worse) can substantially 

misidentify areas of flood risk, in this case by severely under-estimating the risk in the 

centre of the map and over-estimating the risk in the north west sector.  

 

 
Figure 5.6 a) Total numbers and b) Percentage of inundated buildings per storm scenario and 

per DTM resolution. 

 

 
1 The GeoInformation Group (2014): UK building classes. NERC Earth Observation Data Centre, 07/07/2023. 
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Figure 5.7 Number of buildings at high flood risk per rainfall scenarios and per DTM 
resolution. 

 

Table 5.5 Analysis of changes in numbers of buildings with flood risk for 1m and 10m DTM 
resolution models, for a 1 in 100-year storm event 

 Number of buildings 
(total 3430) 

Percentage of total 

High Flood Risk – 1m model 695 20.3% 
High Flood Risk – 10m model 363 10.6% 
No change from 1m and 10 m 

models 
2029 59.2% 

Change: Zero/Low/Medium to High 575 16.8% 
Change: High to Zero/Low/Medium 826 24.1% 

Net change : High to 
Zero/Low/Medium 

251 7.3%  
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Figure 5.8 Examples of water depth and flood exposure to buildings, inundation maps for a 1 

in 100-year storm event for: (a) 1m resolution; (b) 2m resolution; (c) 5m resolution; and (d) 
10m resolution of the computational flow domain. FE refers to flood exposure. Red, orange, 

and light grey colours define buildings at high, medium, and low risk respectively, while 
blue shades are water depths.   
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Figure 5.9 Depth damage curves for direct damage from different water depths for: (a) 

residential buildings; (b) commercial buildings (Priest et al., 2022). 

 

 
Figure 5.10 Estimated total damages per storm scenario and per spatial resolution. 

 



      

 

106 
 

 
Figure 5.11 Examples of water depth, flood exposure and damages to building maps for a 1 
in 100-year storm event for: (a) 1m resolution; (b) 2m resolution; (c) 5m resolution; and (d) 

10m resolution of the computational flow domain. FD refers to flood damages, and yellow to 
red defines the cost per building from flooding. 

 

5.4.3 Validation against real storm event 

Validation against real events is a fundamental step in assessing the reliability and 

accuracy of hydrodynamic models by comparing observed data from actual storm 

events with the model predictions to increase planning and designing flood resilience 

in cities. This process builds confidence in the model’s ability to accurately simulate 

flood events and has largely been absent from commercial modelling of urban floods 



      

 

107 
 

to date, but there is potential due to increased availability of flood depth data from 

social media and citizen science, e.g. Loftis et al. (2017) and See (2019). In this section, 

a validation between affected locations during a real rainfall event and the outputs 

from CityCAT will be compared. Following the extreme storm event on the 12th of July 

2021, fourteen flood points in the whole area of London have been selected (the flood 

points correspond to roads with buildings) where the observed depth was estimated 

from flood pictures downloaded from the Twitter platform during the day of this 

extreme event and from statements of people affected (Table 5.6). This comparison 

aims to ensure that the modelled water depth from CityCAT corresponds to the 

observed data. The resolution of the DTM for the validation has been chosen at 2m, as 

it resolves the water flowpaths quite well in large catchments as discussed in section 

5.4.1. Table 5.6 presents the affected sites with the observed (Dobs refers to observed 

depth) and the modelled data (Dmin refers to minimum model water depth and Dmax 

to maximum model water depth), while Figure 5.12 is the graphical comparison of the 

results. To ascertain the range of estimated water depths (Simulated range) at the 

observed points, a 12-metre buffer zone was generated to encompass the neighboring 

computational cells. Both the model and the observed values are associated with the 

nearest grid square location. It can be seen that there is some overestimation of the 

depths by the model, which is consistent with the exclusion of the drainage system 

from the simulations (see point 12). The largest difference (at point 4) between the 

observed and the modelled water depth is most likely because the observed depth is 

measured inside the property (see Figure 5.13 for the fourteen flood points with the 

flood picture) while CityCAT has excluded the buildings from the computational flow 

(see section 5.3.2.) and estimates the depth in the nearest surface grid of the building. 

In the other flood points, the modelled inundated depth is satisfactorily close to the 

observed depth. Figure 5.14 illustrates the likelihood of inundation exposure to 

buildings in the study area during this historic storm event. 

The CityCAT model has demonstrated acceptable accuracy in predicting depths at 

affected areas during validation.  This highlights the model’s effectiveness in detecting 
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areas that may be impacted by various factors, such as floods. It is worth noting that 

the modelled water depths, on average, show an overestimation of around 23%. This 

overestimation can be attributed to the exclusion of the drainage system from the 

simulations, and that there is a systematic bias due to the observed data being carried 

out by eye at the deepest point due to the limited access to flood survey data. This 

validation has been carried out with opportunist reports of flood depths, focussed on 

areas where flooding was severe. A more balance and substantive approach in addition 

to comparing these “true hits” would consider more systematically areas where actual 

depths were low and model depths were high (i.e. “false hits”) as in, for example at  

Bertsch et al. (2022). Such an approach requires a systematic survey of property owners 

and residents, and this was not available at the time of writing. 

 

Table 5.6 Flood validation points  in London during the 2021 storm event with observed and 
model estimated water depth. 

A/A Flood Points Dops Dmin Dmax Model depth in m 
1 Horse Guards Road 0.07 0.034 0.49 0.10 
2 Leicester Square 0.01 0.002 0.16 0.02 
3 Piccadilly Circus 0.10 0.002 0.22 0.13 
4 Ladbrook Grove 0.60 0.001 0.82 0.82 
5 Maida Vale 0.65 0.001 0.75 0.75 
6 Portobello Road 0.38 0.110 0.46 0.46 
7 Dorset Square 0.25 0.133 0.34 0.34 
8 Maida Vale 0.07 0.116 0.27 0.08 
9 TFC Camberwell 0.23 0.204 0.42 0.29 

10 Hackney Wick DLR 
Station 

0.22 0.400 0.61 0.25 

11 New Covent Garden 
Market 

0.30 0.002 0.34 0.34 

12 Brookfield Rd 0.35 0.510 0.99 0.40 
13 Lea Bridge road 0.90 0.002 0.96 0.96 
14 Idea Store Whitechapel 0.22 0.002 0.84 0.25 
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Figure 5.12 Comparison of the modelled and the observed water depths. 

 

 
Figure 5.13 Overview of the study area with the validation locations and the modelled 

inundation depth for the whole domain. 

 



      

 

110 
 

 
Figure 5.14 Water depth and flood exposure to buildings during the storm event in July 2021 

for the central London (first part of validation). 

 

5.4.4 Cloud flood modelling – The Greater area of London 

Assessing flood risk in megacities, like London, is always a challenging task due to the 

limitation of computer power and the possible high cost of using the cloud. In this 

section, a flood risk analysis with a DTM at a high spatial resolution of 4m2 (grid square 

is 2m) for all individual properties in Greater London is presented for a range of 

intense rainfall events by using the power of the cloud to model an area of 687 km2 

which comprises 132,857,544 computational cells in the flow domain and 1,750,914 

buildings approximately. Thus, this approach is suitable for a densely built-up area 

such as London. The outputs of this analysis are at property level, so in principle, and 

with appropriate validation, could be appropriate for detailed insurance portfolio 

assessment, as well as large scale strategic planning, resilience, and climate change 

stress tests. 

Microsoft Azure platform (Microsoft, 2022) was used to perform all the simulations of 

this area with 700GB RAM memory and almost 20 hours of CPU time for each storm 

event with a one-hour duration. The advantage of the Azure platform is that it 



      

 

111 
 

provides the same simulation cost per hour for all the instance types of resources and 

for that reason has been chosen (Glenis et al., 2013), with different configurations 

ranging from 1 core with 1 GB RAM to 96 cores with 1 TB RAM. The final cost of every 

simulation was around £12 per hour. Calculating the likelihood of exposure to urban 

features for each storm event required an additional four hours per storm scenario on 

the Newcastle University blade server. Table 5.7 shows the buildings estimated to be 

exposed to flooding for multiple storm events for a storm with a 1 in a 100-year return 

period where the total urban features correspond to the 16% buildings of in the study 

area. Figure 5.15 illustrates the estimated model water depth and the buildings 

exposed to flooding in the Greater London area (more flood exposure maps are 

available on Appendix B). 

This is the first time that such a large urban area has been modelled with a 

hydrodynamic model at such a high spatial resolution and for a range of storm events. 

The industry standard until now for large areas typically uses a DTM at 5m resolution 

and the ‘stubby’ platform for the representation of buildings where this approach 

according to Iliadis et al. (2023b) causes unrealistic water flowpaths in the domain and 

systematically underestimates flood risk. This study is a clear demonstration that 

modern, efficient codes like CityCAT, coupled with Cloud-based computing, obviate 

the need for simulating large domains at either inadequately low resolutions, or with 

inefficient sub-divisions of the domain.  

 

Table 5.7 Total number of inundated buildings per storm event for the Greater  London area. 

RP Medium High Total 
2 5,159 5,447 10,606 
5 13,458 15,274 28,732 
10 37,553 48,948 86,501 
20 50,414 68,337 118,751 
50 63,189 89,885 153,074 
100 105,381 163,516 268,897 
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Figure 5.15 Example of the modelled domain of Greater London. Flood depths from CityCAT 
simulation and flood exposure to buildings for a storm event for a 1 in 100-year return period 

with one hour duration. The red colour defines the buildings at high risk, the orange at 
medium risk and the light grey at low risk. 

 

5.5 Discussion & Conclusions 

This study illustrates the critical role of DTM resolution in large scale hydrodynamic 

flood modelling, using an application which evaluates the flood exposure to individual 

buildings in a large city. The high resolution hydrodynamic model CityCAT operating 

on the Azure platform (cloud) is presented to assess the flood risk in megacities which 

provides a template and guide for modellers engaged by insurers, local authorities, 
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and other risk managers and planners to define modern assessment strategies and 

workflows.  

Water flowpaths and flood depths are well captured with a high spatial resolution 

DTM, such as 1m and 2m resolution, while with a lower resolution DTM (5m or more), 

many  flowpaths  are systematically blocked due to buildings. In many cases with low 

resolution DTM models, blocked flowpaths lead to some overestimation of water 

depths upstream, while downstream widespread under-estimation occurs, leading to 

unrealistic results by falsely highlighting areas as high risk. Moreover, assessing the 

exposure flooding likelihood of urban features with a high-resolution offers more 

accuracy in identifying and locating all the exposed buildings, in contrast with the low-

resolution modelling where there is overall a manifest underestimation. 

A validation of model estimates of water depth during a real storm event in multiple 

places in London showed that the use of a 2m resolution DTM in CityCAT successfully 

predicts the water depth, with an overestimation of 23% consistent with the exclusion 

of the sewer system from the simulations, and the systematic bias via eye. A more 

comprehensive and systematic validation is planned when flood survey data are 

available. Overall, the model results have a good correlation with observed flood data 

from a major pluvial flood on the 12th of July 2021.  

Finally, cloud computing has enabled higher resolution of pluvial flood modeling and 

access to enough resources to allow simulations for multiple storm events in larger 

areas than before with the  hydrodynamic model CityCAT. This novel city-wide scale 

application in London demonstrated here can be replicated for other megacities 

globally to cover the needs of urban flood risk management assessments. An efficient 

collaboration between the insurance industry and other hazard management agencies 

could offer verification of the results to validate and test the estimated model depths 

for real rainfall events.    

Further work is in hand to improve simulations in megacities by adding the storm 

drainage or combined sewer network. This is a major challenge, since the network data 
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and properties are rarely available, forcing modellers to use approximations such as 

the UK practice of subtracting 12mm/hr from the observed rainfall. While this 

approach can be improved using spatially variable pipe capacity datasets (e.g. Singh 

et al. (2023)), the high resolution approach demonstrated here demands a similarly 

high resolution and accurate representation of pressurised flows in storm drainage 

networks (see e.g. CityCAT capability in Bertsch et al. (2017)) to account for potentially 

important interactions between the surface and network flows. An urgent need is 

evident to establish a standardized and straightforward methodology for accurately 

representing sewer systems, particularly in cities where datasets are scarce. This can 

be achieved by generating synthetic storm drains that mirror the prevailing conditions 

and comply with the design regulations of every country. A pioneering effort in this 

direction was made by Bertsch et al. (2017) in a Scottish city, where they successfully 

calibrated and validated a systematic approach for simulating synthetic storm inlets 

against the existing drainage system. This approach holds promise in addressing the 

challenges posed by limited data availability and can significantly contribute to 

improving the representation of sewer systems. 
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Chapter 6. Urban Flood Modelling under Extreme Rainfall Conditions 

for Building-Level Exposure Analysis 

 

The collaboration of this chapter involved Newcastle University and Aristotle 

University of Thessaloniki, Greece. In terms of my contribution, I played a significant 

role in analysing the extreme rainfall information, modelling the storms in the study 

area and calculating the likelihood of exposure to buildings. The editing of this chapter 

was a joint effort between me and Dr. Panagiota Galiatsatou from Aristotle University, 

who supervised the part of the extreme rainfall. 

 

6.1 Introduction 

Urban surface water floods are amongst the most widely distributed natural hazards, 

endangering lives and causing damage to properties worldwide. The extent and 

severity of the damage is a product of both the intensity and duration of extreme 

rainfall events (variable in space and time), and their interaction with the complex 

flowpaths in a city on the ground surface and below it (Iliadis et al., 2023b). 

Impermeable surfaces in urban areas, impeding infiltration and creating overland flow 

which exceeds the drainage capacity of the existing infrastructure, renders cities 

vulnerable to flash floods. Climate change and urbanisation are expected to increase 

urban flood risk, contributing to different components of the flooding system. Climate 

change, associated with global warming and an increase in the frequency and severity 

of extreme weather events, is anticipated to intensify flooding hazards. Urbanisation 

will contribute to the increase in flooding hazards, caused by a decrease in infiltration, 

baseflow and lag times and an increase in runoff volumes and peak discharges (Ogden 

et al., 2011; Suriya & Mudgal, 2012), but also to the increasing impacts of urban floods 

(increase in potential flood damages) caused by the growth of settlements and assets 

in flood-prone areas followed by a rise in property value in such areas (Cabrera & Lee, 

2019; Park et al., 2021). 
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Nowadays, urban floods affect both developing and developed countries, with the 

impacts of pluvial flooding being a major problem due to frequent natural disasters in 

urban areas (Teng et al., 2017). Flood damage mitigation in urban areas includes both 

structural and non-structural measures. Structural measures involve urban flood 

defences and flood control structures or designing or upgrading stormwater and 

drainage networks. Non-structural measures mainly focus on flood early warning 

systems and preventive actions (Andjelkovic, 2001; Park et al., 2021). Urban flood 

modelling combined with exposure assessment of the buildings and population 

affected represents a principal non-structural measure to effectively manage urban 

flooding events and their adverse effects, as well as a prerequisite for disaster 

prevention and mitigation. 

Flood modelling is a powerful tool in understanding the hydrodynamics of historic 

flood events, and in some cases, the construction of accurate IDF (intensity–duration–

frequency)/DDF (depth–duration–frequency) curves can be used to predict future 

events that will cause damage to the urban fabric (Willis et al., 2019). There exist several 

studies combining flood inundation modelling with hydrological modelling and the 

unit hydrograph theory, mainly focusing on fluvial flooding in small or larger 

catchments (Bellos & Tsakiris, 2016; Hdeib et al., 2018; Papaioannou et al., 2018; 

Papaioannou et al., 2019; Papaioannou et al., 2021; Xafoulis et al., 2023), using DEMs 

(Digital Elevation Models) or DTMs (Digital Terrain Models) with a computational 

grid resolution ranging between 5 m and 100 m. However, it should be noted that the 

combination of an incorrect representation of urban features in the flood model such 

as buildings, bridges, infrastructure, etc., and the resampling of the DEM/DTM 

multiple times might cause large inconsistencies (Alcrudo, 2004; Iliadis, Glenis, et al., 

2023b; McClean et al., 2020) and overestimation of the flooding hazard in areas with 

minor inundation issues and vice versa. Unlike studies modelling fluvial flood 

inundation in urban areas, studies focusing on the exposure assessment of urban areas 

to pluvial floods are rather limited, and started receiving significant interest quite 

recently. Zhu et al. (2020) used the LISFLOOD-FP hydrodynamic model to simulate 
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flooding in Lishui City, China, and employed the building-scale population 

distribution map to assess the population affected. Park et al. (2021) evaluated flood 

risk for different building types, conducting vulnerability and exposure analysis in five 

regions of Ulsan City, South Korea. Their analysis resulted in a classification of each 

building type into five risk-related classes. Stefanidis et al. (2022) presented a coupling 

of hydrological and hydraulic modelling on a national scale to produce flood hazard 

maps regarding flooding exposure in residential areas and infrastructure in Greece. 

Bertsch et al. (2022) presented a sensitivity analysis and validation of a generic flood 

exposure analysis following a large storm event in Newcastle upon Tyne, UK, where 

more than 70% of the inundated buildings in the area were correctly identified during 

the storm event. 

Pluvial flood risk assessment in urban areas, associated with estimating the hazard, 

exposure, and vulnerability components for the affected system, is therefore a major 

challenge for future societies. There is a great need to combine hydrological and 

hydrodynamic modelling to understand the impacts of urban floods, the water 

flowpaths in a city, and the urban features exposed to high flood risk. This study 

combines a detailed analysis and modelling of extreme rainfall events in the centre of 

Thessaloniki, Greece, with an advanced hydrodynamic model, CityCAT, to simulate 

pluvial flooding, significantly assisting a reliable assessment of exposure to flooding. 

The results of this study can aid in the planning and design of resilient solutions 

against urban flash floods, as well as contributing to targeted flood damage mitigation 

and flood risk reduction. 

CityCAT has previously been applied in studies in the UK (Bertsch et al., 2017; Bertsch 

et al., 2022; Glenis et al., 2018; Iliadis, Glenis, et al., 2023a, 2023b) and the USA 

(Rosenzweig et al., 2021) (Environmental Justice of Urban Flood Risk and Green 

Infrastructure Solutions-Urban Systems Lab, Urban Flooding, Equity, and Green 

Infrastructure 

(https://storymaps.arcgis.com/stories/3d982b40189c42aa9af56d52548caaf0, accessed 

on 10 July 2023)), where detailed and reliable spatial datasets were available, such as 

https://urbansystemslab.com/urbanfloodrisk
https://urbansystemslab.com/urbanfloodrisk
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DTMs, building footprints, green spaces, and roads. This chapter also aims to 

demonstrate and assess the universal applicability of CityCAT, even in regions where 

comparable datasets may not be readily available, emphasising the value of integrating 

the model with extreme rainfall data to enhance flood resilience in urban areas. The 

practical implementation of the model in this study will assist local authorities and 

engineers in improving their future flood adaptation strategies. This chapter also 

marks the first published implementation of a flood exposure analysis calculator at the 

building level in a large Greek city, as opposed to conventional assessments limited to 

flood zoning. 

 

6.2 Materials and Methods 

6.2.1 Study area and available datasets 

The historic centre of Thessaloniki city in Greece was the study area of the present 

work, located in the northern part of Greece. Thessaloniki is part of the municipality 

of Central Macedonia, and it is the second largest city in Greece with a population of 

around 814,000 (Thessaloniki Population 2023: worldpopulationreview.com, accessed 

on 5 June 2023). The dense city centre facing the coastal front is characterised by 

historic buildings, residential properties, marketplaces, and a few green open spaces 

(see Figure 6.1). This part of Thessaloniki has suffered from severe storms and flash 

floods in the last decade, causing significant damage to roads, basements, local stores, 

etc. It should be noted that, during storm events, the roads are seen to become the main 

flowpaths for floodwater. 

Two different datasets are available in the study area for the analysis of extreme rainfall 

events. The first dataset consists of daily rainfall data at AUTh (Aristotle University of 

Thessaloniki) station located in the centre of the city and covering 64 years (1958–2021) 

of measurements (no missing data are present), obtained from the database of the 

School of Geology, AUTh. The second dataset includes monthly maximum rainfall 

depths for rainfall durations of 5 min, 10 min, 15 min, 30 min, 1 h, 2 h, 6 h, 12 h and 24 
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h at Mikra station, located in the eastern part of the city. This dataset was made 

available by the Hellenic National Meteorological Service (HNMS) and covers a period 

of 25 years (1963–1987). It is therefore evident that the second dataset includes rainfall 

measurements of finer temporal scales than the first one, but it contains only monthly 

maximum values, and its length is significantly shorter than that of the daily rainfall 

series available at AUTh. It should also be noted that the second dataset contains 

missing values. To proceed with the extreme value analysis of all available datasets, 

annual maxima were first extracted for both the daily and the sub-daily series, and 

each dataset was tested for stationarity and trends (Coles et al., 2001). The datasets 

examined satisfy the hypothesis of stationarity, while no statistically significant trends 

were detected. 

 

Figure 6.1 An overview of the study area in Thessaloniki, Greece: a) the computational 
domain; b) the urban features, where grey denotes the buildings, green the permeable areas 

and yellow to brown shading the surface elevation of the area. 
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6.2.2 Extreme rainfall assessment 

Extreme value theory includes two main approaches for identifying and modelling the 

extreme values of a random process, namely the block-maxima approach where the 

extremes follow a generalised extreme value (GEV) distribution, and the peaks-over-

threshold (POT) approach that fits the extremes using a generalized Pareto distribution 

(GPD). In the former approach, the observation period is divided into nonoverlapping 

equal intervals (of length usually equal to one year) and block maxima are selected to 

be fitted according to a GEV distribution (Coles et al., 2001) 

 

𝐺𝐺(𝑥𝑥; 𝜇𝜇,𝜎𝜎, 𝜉𝜉) = �
exp �− �1 + 𝜉𝜉 �𝑥𝑥−𝜇𝜇

𝜎𝜎
��
−1 𝜉𝜉� � , 𝜉𝜉 ≠ 0

exp �−exp �𝑥𝑥−𝜇𝜇
𝜎𝜎
�� , 𝜉𝜉 = 0

                                                  (6.1) 

 

where µ, σ and ξ are the location, scale and shape parameters of the distribution, 

respectively. The POT approach employs two probability distribution functions: one 

for the intensity of exceedances over an appropriately defined threshold, typically a 

GPD, and another for the number of events per year (typically a Poisson distribution, 

or alternatively a constant number is used). The cumulative distribution function of 

the GPD is given by (Coles et al., 2001): 

 

𝐺𝐺(𝑥𝑥;𝜎𝜎, 𝜉𝜉, 𝑢𝑢) = �
1 − �1 + 𝜉𝜉 �𝑥𝑥−𝑢𝑢

𝜎𝜎
��
−1 𝜉𝜉� , 𝜉𝜉 ≠ 0

1 − exp �- 𝑥𝑥−𝑢𝑢
𝜎𝜎
� , 𝜉𝜉 = 0

                                                           (6.2) 

 

where σ and ξ are the scale and shape parameters of the GPD, respectively, while u is 

the defined threshold value. The scale parameter of the GPD, sometimes referred to as 

the modified scale parameter, is expressed as a function of the respective GEV scale 

parameter as: 
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𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺 = 𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜉𝜉(𝑢𝑢 − 𝜇𝜇)                                                                                                      (6.3) 

 

considering that the shape parameter, ξ, of the GPD is equal to that of the 

corresponding GEV. The GPD-Poisson, which employs the Poisson distribution to 

model the number of exceedances over the threshold value per year, is characterized 

by three parameters, the exceedance rate, λ, the scale, σ, and the shape, ξ, parameters.  

Considering the threshold of the POT approach, a high value improves the validity of 

the asymptotic approximation of the GPD, but at the same time increases the variance 

of parameter estimates because of the reducing dimensions of the excess sample. In 

contrast, a very low threshold may increase bias from model misspecification (Mackay 

& Jonathan, 2020; Northrop & Coleman, 2014). Finding a trade-off between these two 

issues is critical in fitting an extreme value distribution and producing reliable 

estimates of extremes. The parameters of the extreme value distributions were assessed 

using both maximum likelihood estimation (MLE) and the L-moments (Galiatsatou & 

Prinos, 2011) approach. 

 

6.2.2.1 POT threshold selection 

When the POT approach is used to model rainfall extremes, an appropriate threshold 

should be selected to detect exceedances and define the extreme sample. Various 

threshold selection methods have been proposed in the literature, such as empirical 

methods, distance measure approaches, or diagnostic plots such as the mean residual 

life plot and GPD parameter estimates stability plots (Alonso et al., 2014). However, 

these approaches have a significant level of subjectivity in the threshold selection 

process. This chapter uses two methodologies, which aid a more automatic threshold 

selection (Radfar & Galiatsatou, 2023). These threshold selection methods are 

proposed by Bader et al. (2018) and Silva Lomba and Fraga Alves (2020) assisting a less 

ambiguous and more objective selection of daily extreme rainfall events. 
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Bader et al. (2018) consider a set of candidate thresholds u1 < … < ul, each having ni 

exceedances, i = 1, …, l. Let H0(i) denote the null hypothesis that the distribution of ni 

exceedances above the threshold ui follow the GPD. Following the Forward stop rule 

of G'Sell et al. (2016) a rejection rule is constructed by returning a cutoff level 𝑘𝑘�, such 

that H1 to 𝐻𝐻𝑘𝑘�  are rejected: 

 

𝑘𝑘� = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑘𝑘 ∊ {1, … , 𝑙𝑙}:− 1
𝑘𝑘
∑ 𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑝𝑝𝑖𝑖) ≤ 𝑎𝑎𝑘𝑘
𝑖𝑖=1 �                                                            (6.4) 

 

where a is a prespecified significance level and pi i= 1, …, l are the corresponding p-

values of the l hypotheses. If there is no 𝑘𝑘�  ∊ [1, …, l], there is no rejection of the null 

hypothesis.  

The p-values in Eq. (6.4) are assessed using the Anderson-Darling (AD) test for each 

candidate threshold, with the respective statistic assessed as: 

 

𝐴𝐴𝑛𝑛2 = −𝑛𝑛 − 1
𝑛𝑛
∑ (2𝑖𝑖 − 1)𝑛𝑛
𝑖𝑖=1 �𝑙𝑙𝑙𝑙𝑙𝑙�𝑧𝑧(𝑖𝑖)� + 𝑙𝑙𝑙𝑙𝑙𝑙�1 − 𝑧𝑧(𝑛𝑛+1−𝑖𝑖)��                                                   (6.5) 

 
 
where 𝑧𝑧(𝑖𝑖) = 𝐹𝐹�𝑦𝑦(𝑖𝑖)�𝜃𝜃�𝑛𝑛� is the probability integral transformation of the order statistics 

of the exceedances y(1) ≤ … ≤ y(n) , based on the maximum likelihood estimator of θ, 𝜃𝜃�𝑛𝑛, 

under the null hypothesis H0. F denotes the cumulative distribution function of the 

GPD for each candidate threshold.  

The methodology proposed by Silva Lomba and Fraga Alves (2020) is based on L-

moments. For the random variable X with distribution function F, the theoretical L-

moments λr+1 with r=0, 1, .. are expressed as linear functions of the specific probability 

weighted moments (PWM): 

 

𝑎𝑎𝑟𝑟 =  𝑀𝑀1,0,𝑟𝑟 =  E{𝑋𝑋[1 − 𝐹𝐹(𝑋𝑋)]𝑟𝑟}                                                                                        (6.6) 
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with the dimensionless L-moment ratios L-skewness, τ3=λ3/λ2, and L-kurtosis, τ4=λ4/λ2, 

calculated as functions of the L-scale, λ2, and the third, λ3, and fourth, λ4, L-moments. 

Let ar be the unbiased estimator of ar for an ordered sample x1:n ≤…≤ xn:n: 

 

ar = 1
𝑛𝑛

 ∑ �𝑛𝑛 − 𝑖𝑖
𝑟𝑟 � 𝑥𝑥𝑖𝑖:𝑛𝑛𝑛𝑛

𝑖𝑖=1 �𝑛𝑛 − 1
𝑟𝑟 �

−1
, 𝑟𝑟 = 0, 1, … ,𝑛𝑛 − 1                                                (6.7) 

with the unbiased sample L-skewness, t3=l3/l2, and L-kurtosis, t4=l4/l2, calculated as 

functions of the sample L-scale, l2, and the third, l3, and fourth, l4, sample L-moments, 

respectively.  

 A set of candidate thresholds {𝑢𝑢𝑖𝑖}𝑖𝑖=1𝐼𝐼  is first defined with I=10 or 20 sample 

quantiles. The minimum Euclidean distance is then defined between the sample L-

skewness, 𝜏𝜏3,𝑢𝑢𝑖𝑖, and L-kurtosis, 𝜏𝜏4,𝑢𝑢𝑖𝑖, for each threshold value and the respective 

quantities of the theoretical GPD curve: 

 

d𝑢𝑢𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝜏𝜏3

��𝑡𝑡3,𝑢𝑢𝑖𝑖 − 𝜏𝜏3�
2

+ �𝑡𝑡4,𝑢𝑢𝑖𝑖 − 𝑔𝑔(𝜏𝜏3)�
2
, for i=1,.., I, with 𝑔𝑔(𝜏𝜏3) = 𝜏𝜏3

1+5𝜏𝜏3
5+𝜏𝜏3

                  (6.8) 

 

The best candidate threshold is then defined as: 

   𝑢𝑢∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑢𝑢𝑖𝑖,1≤𝑖𝑖≤𝐼𝐼

�𝑑𝑑𝑢𝑢𝑖𝑖�                                                                                                                (6.9) 

 

characterized by L-moment statistics that fall closer to the respective values of the 

theoretical L-moment ratio curve. 

 

6.2.2.2 Scaling rainfall extremes 

Rainfall features of different temporal scales can be linked using scaling models, 

mainly based on the multifractal behaviour of rainfall. Temporal downscaling and 

temporal disaggregation methods are used to produce finer temporal scale rainfall 

data from coarser resolution observations. Temporal downscaling usually refers to the 
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generation of data of high temporal resolution by means of statistical techniques, most 

commonly stochastic models, calibrated using information on the statics of data from 

lower resolution temporal scales. Temporal disaggregation indicates the generation of 

high-resolution temporal data based on coarser time scales, so that the former add-up 

to the totals of the second scale. This can be performed by means of a temporal 

partitioning of low temporal resolution amounts using a recursive rule or by 

repeatedly adjusting stochastic models to the generated high-resolution data. Within 

the general framework of temporal disaggregation, different methodologies have been 

developed in the literature. Some quite simple techniques, based on assumptions on 

the association of specific characteristics of the probability distribution functions of 

rainfall amounts at different time scales, have been developed by Liu et al. (2006), and 

Chen et al. (2011), among others. However, these techniques do not represent the basic 

statistics of the fine temporal scales of precipitation in a satisfactory way, nor the 

intermittency of precipitation events. Precipitation stochastic generators are also 

utilized for temporal disaggregation purposes of rainfall amounts. Methods based on 

point-process models for temporal disaggregation of hydro-meteorological data are 

quite spread, producing satisfactory results (Hanaish et al., 2011; Koutsoyiannis & 

Onof, 2001; Koutsoyiannis et al., 2003; Marani & Zanetti, 2007; Onof et al., 2005). Lee 

et al. (2010), Salas and Lee (2010) and Lee and Jeong (2014) introduced a nonparametric 

model for temporal disaggregation of hydro-meteorological variables, which 

incorporates a k-nearest neighbour resampling and a genetic algorithm. Temporal 

disaggregation of hydro-meteorological data is also performed by means of machine 

learning techniques (i.e. Kumar et al. (2012)). 

The hypothesis of scale invariance (Veneziano et al., 2007) is usually applied to link 

rainfall intensities of different temporal scales. More specifically, the hypothesis of 

scale invariance states that annual maximum rainfall intensities, Id and Iλd, 

corresponding to durations d and λd, can be related by the following equation (Bara et 

al., 2010; Galiatsatou & Iliadis, 2022; Innocenti et al., 2017): 
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𝐼𝐼𝜆𝜆𝜆𝜆 = 𝜆𝜆𝛽𝛽𝐼𝐼𝑑𝑑                                                                                      (6.10) 

 

where equality corresponds to similarity of probability distributions. The coefficient λ 

is the ratio of scale invariance between the known duration D and the duration to be 

assessed, d, and β is the self-similarity index of the studied rainfall process. The qth 

moments of rainfall intensity are obtained from Equation (6.10) as follows (Bara et al., 

2010): 

 

𝐸𝐸�𝐼𝐼𝜆𝜆𝜆𝜆
𝑞𝑞 � = 𝜆𝜆𝛽𝛽(𝑞𝑞)𝐸𝐸�𝐼𝐼𝑑𝑑

𝑞𝑞�                                                                                                            (6.11) 

 

where β(q) is the scale exponent of order q, estimated by log-transforming Equation 

(6.11): 

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝐼𝐼𝜆𝜆𝜆𝜆
𝑞𝑞 � = 𝛽𝛽(𝑞𝑞)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝐼𝐼𝑑𝑑

𝑞𝑞�                                                               (6.12) 

 

Therefore, the exponent β can be assessed as the slope of the linear relationship 

described by Equation (6.12). The abovementioned scaling behaviour can be also 

detected in quantiles of rainfall intensities corresponding to durations d and λd, 

considering that their cumulative distribution function (CDF) has a standardized form 

independent of the rainfall duration (Galiatsatou & Iliadis, 2022). In this chapter, a 

scaling procedure is applied to rainfall intensity quantiles corresponding to different 

durations, considering that their CDF has a standardized form independent of the 

rainfall duration. The scaling laws are assessed for all return periods for rainfall 

durations from 5min to 30min and from 30min to 24h, considering that rainfall 

dynamics change quite significantly in convective events. 

 Intensity-duration-frequency (IDF) and depth-duration-frequency (DDF) curves 

based on local precipitation measurements summarise the relationships between 

rainfall dynamics, namely rainfall intensity or depth, duration and frequency (return 



      

 

126 
 

period), and are currently utilized for engineering design and management 

applications, such as flood risk protection structures and infrastructures or flood 

mitigation projects. The IDF (DDF) curves are constructed for different return periods 

representing the variation of rainfall intensity (depth) with duration. Theoretical 

probability distribution functions are fitted to annual maximum or POT rainfall 

intensities of particular durations ranging from shorter ones e.g. 5 min to daily events. 

When annual maximum rainfall intensities (or depths) are available, the GEV 

distribution (Eq. 6.1) is fitted to the samples of different duration and rainfall return 

levels are assessed as: 

 

𝑋𝑋𝑇𝑇 = �
µ- 𝜎𝜎

𝜉𝜉
�1 − �−ln �1 − 1

𝑇𝑇
��
−𝜉𝜉
� , 𝜉𝜉 ≠ 0

µ-σln �−ln �1 − 1
𝑇𝑇
�� , 𝜉𝜉 = 0

                                                         (6.13) 

 

for a defined return period, T. When the GPD (Eq. 6.2) is fitted to rainfall POTs, the 

return levels are given by (Coles et al., 2001): 

𝑋𝑋𝑇𝑇 = �
u+ 𝜎𝜎

𝜉𝜉
��𝛵𝛵𝑛𝑛𝑦𝑦𝜁𝜁𝑢𝑢�

𝜉𝜉
− 1� , 𝜉𝜉 ≠ 0

u+σln�𝛵𝛵𝑛𝑛𝑦𝑦𝜁𝜁𝑢𝑢�, 𝜉𝜉 = 0
                                                                (6.14) 

 

where ny is the number of observations per year and ζu is the total exceedance rate of 

the threshold u. 

 

6.2.3 Flood exposure 

An efficient flood exposure tool, developed by Bertsch et al. (2022), was used to 

calculate the flood exposure likelihood to buildings. Figure 6.2 presents the schematic 

workflow of the flood exposure analysis tool. Each building was assessed for flood risk 

using simulated flood depths in a 3m buffer zone around its perimeter, where the 

mean and the 90th percentile values were calculated, the proposed value for the buffer 



      

 

127 
 

zone (see Figure 6.3) depending on the resolution of the computational grid (2m in this 

study). A simple classification scheme shown in Table 6.1 was used to categorise 

buildings at low, medium and high flood risk. 

 

 

Figure 6.2 Schematic workflow of the flood exposure analysis tool for the classification of 
buildings to the water depth in the buffer zone (Bertsch et al., 2022). 

 

 
Figure 6.3 Example of the buffer zone to calculate inundation depth from grid squares 

(Bertsch et al., 2022). 

 

Table 6.1 Classification scheme to calculate flood exposure likelihood for buildings. 

Exposure Class Mean depth (m) 90th percentile (m) 
Low <0.10 <0.30 



      

 

128 
 

Medium <0.10 ≥0.30 
 ≥0.10 - <0.30 <0.30 

High ≥0.10 ≥0.30 
 

6.2.4 Modelling system and model set up 

Over the last decade, many studies have reviewed hydraulic and hydrodynamic 

models which have been developed to simulate surface flows (K. Guo et al., 2021; 

Morales-Hernández et al., 2021; Sanders, 2017; Teng et al., 2017), and one of the most 

advanced and fully featured is the City Catchment Analysis Tool—CityCAT (for a full 

description, see Glenis et al. (2018)) developed at Newcastle University. CityCAT is a 

unique hydrodynamic model able to simulate fully coupled surface and pipe network 

flows, and it can represent natural drainage systems and built-up areas, with the 

explicit representation of buildings, where the buildings’ footprint is excluded from 

the computational grid, and different types of blue-green infrastructure (BGI) (Bertsch 

et al., 2017; Glenis et al., 2018; Iliadis, Glenis, et al., 2023a; Kilsby et al., 2020) (such as 

blue/green roofs, water butts, swales, etc.), thus enabling the assessment of different 

alleviation measures. The model outputs include maps and time series of water depth, 

flow velocity, and the volume in and out of manholes, gully drains, buildings, etc. The 

required inputs are: (a) a high-resolution Digital Terrain Model (DTM) to unlock the 

full potential of the model, although depending on urban layouts, a lower resolution 

model may still be very functional; (b) the buildings’ footprint; (c) green spaces to 

calculate the infiltration with the Green–Ampt method (Warrick, 2003); and (d) the IDF 

and DDF curves to generate storm profiles with the rainfall–runoff method (Kjeldsen, 

2007a, 2007b), to be applied over the whole domain with a uniform assumption. 

The flood domain studied here was modelled using CityCAT for two different design 

storm events, with a magnitude of 1 in 50 years and a duration of 1 h and 2 h. The 

buildings’ footprint was extracted from the ONEGEO data (https://onegeo.co/data, 

accessed on 10 May 2023) and the permeable areas from OpenStreetMap 

(https://www.openstreetmap.org, accessed on 10 May 2023). The computational grid 

https://onegeo.co/data
https://www.openstreetmap.org/


      

 

129 
 

was constructed using the DTM provided by the Hellenic Cadastre 

(http://www.ktimatologio.gr/en, accessed on 10 May 2023) at a resolution of 2 m (each 

cell with an area of 4 m2), so the total number of computational cells in the flow domain 

was 125,192, covering an area of 0.78 km2. The representation of the buildings in the 

model was performed following the ‘Building Hole’ approach where a non-flow 

boundary is generated around buildings to redistribute the rainfall to the nearest grid 

square (for a full description and performance relative to other methods, see Iliadis et 

al. (2023b)). Following the previously described approach, this chapter explored the 

likelihood of flood exposure for 1165 buildings. The roughness coefficient (Manning’s 

n) was defined as 0.02 for impermeable areas and 0.035 for permeable areas. Due to 

the limitations in the Hellenic National regulations in urban flood modelling, and the 

intended design of the combined sewer system for storms with a return period of 10 

years in the city centre of Thessaloniki (based on design cross-sections of existing 

combined sewers), a simple assumption was made in this work, that 20% of the rainfall 

enters the drainage system. In other countries, i.e., the UK, there is an instruction to 

flood modellers, when they do not combine the drainage system with the surface, to 

exclude specific rainfall from the model (e.g., 6 mm–15 mm). 

 

6.3 Results 

6.3.1 Extreme rainfall assessment 

Threshold selection for the daily rainfall data was performed using both well-known 

threshold selection techniques, such as the mean residual life plot (MRL) and 

parameter stability plots, while also accounting for site-specific characteristics of 

extreme rainfall, together with the two new threshold selection techniques presented 

in Section 6.2.2.1. The MRL plot of the daily rainfall sample at AUTh station is 

presented in Figure 6.4. 

 

http://www.ktimatologio.gr/en
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Figure 6.4 MRL plot of daily rainfall in Thessaloniki for the interval 1958-2021. 

 

The MRL plot identifies a range of possible threshold values in the interval 10 mm ≤ u 

≤ 30 mm. Figure 6.5 presents the GPD parameter stability plots for the modified scale 

(scale parameter of the GPD), and shape parameter, ξ, for thresholds in [10,30] mm. 

Based on stability characteristics of the GPD stability plots, while also considering the 

uncertainty of the parameters represented using 95% confidence intervals shown as 

vertical lines for each threshold, a threshold between 14 mm ≤ u ≤ 27 mm is considered 

to be a good candidate.  

 
Figure 6.5 GPD parameter stability plots for daily rainfall in Thessaloniki for the interval 

1958-2021. 
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The threshold selection method (a) was applied for threshold values in the entire 

range, 10 mm ≤ u ≤ 30 mm. The significance level selected was set at 5%. The forward 

stop rule applied did not explicitly identify a cutoff level. However, it has been 

observed that the threshold u = 22 mm was the only one giving a p-value of the AD 

statistic lower than 5%. The threshold selection method (b) provided clearer results, 

indicating u = 22 mm as the threshold providing a local minimum to the Euclidean 

distance criterion. The threshold u = 28 mm provided the global minimum of the 

distance 𝑑𝑑𝑢𝑢𝑖𝑖 in the studied interval. However, this threshold level ended up with only 

134 POT samples, corresponding to just λ = 2.09 exceedances per year. Therefore, the 

threshold u = 22 mm was selected to perform the extreme value analysis of the daily 

rainfall data, corresponding to 221 POT samples, with around λ = 3.45 exceedances per 

year. 

Using a threshold u = 22 mm, the GPD was fitted to daily rainfall maxima (Equation 

(6.2)) using both MLE and the L-moments approach, with both approaches providing 

consistent results, with higher return level estimates assessed using MLE. Figure 6.6 

presents rainfall return level estimates assessed using Equation (14), with the 

parameters of the GPD calculated using the MLE approach. The black line represents 

maximum likelihood rainfall return level estimates, while the blue lines represent the 

upper 97.5% and the lower 2.5% confidence limits (95% confidence interval). Round 

marks in the return level plot correspond to measured data from the available extreme 

rainfall sample. It should be noted that the most extreme 24-hourly rainfall 

measurement was 98 mm, and was observed in 1985 and 2014. The maximum 

likelihood return level estimate significantly underestimates this value, while the 

upper 97.5% confidence limit seems to better fit the most extreme part of the observed 

sample. More specifically, for a return period of 64 years, equal to the daily rainfall 

sample length, the maximum likelihood estimate of the rainfall return level is about 84 

mm, and the respective 97.5% upper confidence limit is 100.5 mm. Based on this 

finding, the upper 97.5% confidence limit for daily rainfall return levels was used in 
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the scaling methodology presented in Section 6.2.2.2 to extract rainfall return levels 

corresponding to finer temporal scales. 

 

 
Figure 6.6 Rainfall ML return levels and 95% confidence interval (mm) assessed by fitting the 

GPD to daily rainfall in Thessaloniki for the period 1958-2021. 

 

The GEV distribution (Equation (6.1)) is then fitted to annual maximum rainfall 

intensities for time periods of 5 min, 10 min, 15 min, 30 min, 1 h, 2 h, 6 h, 12 h and 24 

h, available at Mikra station for the period 1963–1987 using L-moments (due to the 

small sample size of this dataset). Rainfall return levels for the different durations are 

assessed for return periods of 2, 5, 10, 20, 50, 100, 200 and 500 years using Equation 

(6.13). For each return period, plots of Log(i) and Log(λ) are created, and linear 

functions are then fitted, dividing the plots into two parts, the first one corresponding 

to rainfall durations from 5 min to 30 min, and the second one from 30 min to 24 h. To 

end up with two different rainfall duration groups, a number of trials were performed 

considering different duration groups, and finally we selected those providing the 

highest coefficients of determination, R2, for all return periods. Figure 6.7 presents the 

linear relationships between the log-transformed quantiles (log-transformed return 

levels) of rainfall intensity and log-transformed scale factors of different durations, for 

return periods of 5 years (left panel) and 50 years (right panel). The plots include the 

linear function equations for rainfall durations in the intervals of 5 min to 30 min and 
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30 min to 24 h, and the respective coefficients of determination. Table 6.2 presents 

estimates of the self-similarity index (estimates of −β) assessed for all return periods 

and for the two groups of rainfall duration. 

 

 
Figure 6.7 Scaling of rainfall return level estimates at the station of Mikra, in Thessaloniki, for 

return periods 5 (left panel) and 50 (right panel) years. 

 

Table 6.2 Self-similarity indices, -β, for all return periods and rainfall durations in 5min-
30min and 30min-24hr. 

Return period (years) 5min-30min 30min-24hr 
2 0.5415 0.7286 
5 0.5674 0.7379 
10 0.5908 0.7400 
20 0.6136 0.7407 
50 0.6418 0.7407 
100 0.6614 0.7403 
200 0.6794 0.7398 
500 0.7008 0.7390 

 

The self-similarity indices presented in Table 6.2 are then used in Equation (6.12) to 

temporally downscale daily rainfall return levels assessed from fitting the GPD to data 

from AUTh station (1958–2021). More specifically, daily rainfall return level estimates 

corresponding to the 97.5% upper confidence limit (see Figure 6.6) are used in the 

scaling process. Rainfall return level estimates extracted for durations of 5 min, 10 min, 
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15 min, 30 min, 1 h, 2 h, 6 h, and 12 h are used to construct IDF and DDF curves for the 

study site. The formulas extracted to describe the IDF and DDF curves are given below: 

 

𝑖𝑖 �𝑚𝑚𝑚𝑚
ℎ
� = 16.63𝑇𝑇0.2152

𝑡𝑡0.7116  and 𝑝𝑝 (𝑚𝑚𝑚𝑚) = 17.47𝑇𝑇0.2152𝑡𝑡0.2884                                         (6.15) 

 

where T is the return period (years) and t is the rainfall duration (h). Figure 6.8 presents 

IDF and DDF curves for Thessaloniki based on Equation (6.15) for return periods of 2, 

5, 10, 20, 50, 100, 200, and 500 years. 

 

 
Figure 6.8 IDF (top panel) and DDF (bottom panel) curves for Thessaloniki for return periods 

2, 5, 10, 20, 50, 100, 200, and 500 years. 
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6.3.2 Modelled flow depth 

A detailed analysis of the areas where maximum water depths are highlighted and 

analysis identifying the critical roads during heavy rains will be presented in this 

section. The rainfall depth for 50-year events, specifically for durations of 1 h and 2 h, 

is evaluated. The findings indicate that the assessed rainfall depth is approximately 

70% higher than the quantiles derived from the DDF curves extracted from the shorter-

duration dataset spanning 25 years (1963–1987). This high difference is attributed to: 

(i) using the upper 97.5% confidence limit to assess daily rainfall return levels of the 

longer time series (1958–2021), (ii) fitting a POT model to the 64-year daily series to 

assess extreme quantiles, and (iii) missing observations in the shorter series perhaps 

leading to an underestimation of the extreme sample. To simulate these two storm 

events, the CityCAT model is employed. It should be noted that when selecting the 

duration for modelling purposes, it is essential to consider the critical duration that 

triggers the most significant flood response, taking into account factors such as time-

to-peak and other relevant characteristics. In the case of a catchment area spanning 

only a few square kilometres, a duration of 1 or 2 h is often sufficient to adequately 

represent the hydrological processes and capture the flood dynamics effectively. These 

durations are typically suitable for encompassing the key rainfall patterns and 

associated runoff generation within the catchment, enabling accurate flood modelling 

and analysis. The application of the CityCAT model in simulating the two storm events 

(50-year events with durations of 1 h and 2 h, see Figure 6.9) provides valuable insights 

into flood depths and water flowpaths within the study area. Note that the simulated 

storm events here exhibit similarities to previously observed storms as reported by the 

Hellenic National Meteorological Service (HNMS). 
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Figure 6.9 Storm profiles corresponding to the constructed DDF curves for Thessaloniki, 

Greece: a) a 39 mm rainfall of 1hr duration; and b) a 46 mm rainfall of 2hr duration. 

 

The flood maps produced by the model outputs, depicted in Figure 6.10 (maximum 

flood depths), clearly identify a major water flowpath along Agias Sofias street (see 

Figure 1 to locate the street), where the darker blue illustrates water depths exceeding 

30 cm. This indicates that the street is highly susceptible to flooding during intense 

rainfall events. Furthermore, the presence of small ponds in various parts of the 

catchment, attributed to the complex and dense topography of the area, highlights the 

potential for localised flooding. Identifying these ponding areas is crucial for 

understanding flood risk and implementing measures to minimise the impacts, such 

as sacrificial zones, the creation of retention ponds, the improvement of surface 

drainage in specific locations, or converting the impermeable pavements to permeable 

pavements. 

The study area’s locations and roads, discussed below, have experienced substantial 

water buildup during intense rainfall events in the past, as reported by local authorities 

and residents. However, additional efforts are required to compare and confirm these 

observed occurrences with the results obtained through modelling. The modelled 

water depths of this work were calculated to estimate the maximum levels on the 

following roads (see Figure 6.1 to locate the streets): (a) Palaion Patron Germanou and 

Pavlou Mela. This particular area demonstrates a significant propensity for water 

pooling, with estimated water depths exceeding 30 cm. (b) Notably, Proxenou 
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Koromila experiences frequent ponding, with estimated flood depths ranging from 25 

cm to 41 cm. This road is particularly susceptible to water accumulation during storm 

events, which can lead to hazardous conditions. (c) In certain parts of Mitropoleos 

street, water depths exceeding 25 cm have been estimated. This poses a risk of localised 

flooding which would result in traffic disruption. 

The estimated water depth and the flow direction for the two storms with 1 h and 2 h 

durations can be seen in Figures 6.11 – 6.13, where we zoom in on these areas. Overall, 

the contribution of a detailed flood model, such as CityCAT, is crucial to developing a 

better understanding of the flood dynamics, quantifying water depths with high 

accuracy, and locating areas at high flood risk to improve inundation resilience in 

dense cities. 

 

 
Figure 6.10 Example of maximum flood depths from a CityCAT simulation for a 50-year 

storm event with durations of (a) 1 h and (b) 2 h, for the centre of Thessaloniki. 
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Figure 6.11 Flood depths and flow direction (black arrows) for a 50-year storm event with 

durations of (a) 1 h and (b) 2 h at Palaion Patron Germanou and Pavlou Mela streets (marked 
as (b) in Figure 6.1). 

 

 
Figure 6.12 Flood depths and flow direction (black arrows) for a 50-year storm event with 

durations of (a) 1 h and (b) 2 h at Proxenou Koromila (marked as (c) in Figure 6.1). 
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Figure 6.13 Flood depths and flow direction (black arrows) for a 50-year storm event with 
durations of (a) 1 h and (b) 2 h at a part of Mitropoleos street (marked as (d) in Figure 6.1). 

 

6.3.3 Exposure likelihood to buildings 

In order to identify the urban features exposed to flood risk, an innovative tool was 

used, as described in Section 6.2.3. The analysis of flood exposure to buildings in the 

study area provides valuable insights into the vulnerability of urban features to flood 

risk. Note that this area has faced inundation issues from extreme events in the past, 

for which no formal reports exist, but are well known by local people. 

Table 6.3 provides the total number of inundated buildings per scenario in the study 

area. The number of buildings classified as being at high risk for the first storm event 

(1 h duration) is 165, and that for the second storm event (2 h duration) is 186. These 

values are nearly twice as high as for the buildings with medium flood exposure. Most 

of the high-risk buildings are located on the streets mentioned in Section 6.3.2, where 

the flood depth is more than 30 cm. Furthermore, in the studied area of the city centre, 

many buildings house businesses, particularly on their ground floor, often containing 

vulnerable assets, while there also exist numerous buildings of historical value.  

 

Table 6.3 Total number of inundated buildings per scenario for the centre of Thessaloniki. 

Storm Scenarios Medium High 
50-years event of 1hr 90 165 
50-years event of 2hr 99 186 
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Figure 6.14 illustrates the flood depths and the resulting flood exposure of buildings 

during the two generated storm events (50-year storm events with durations of 1 h and 

2 h). The use of colour-coded zones helps to categorize buildings based on the flood 

depths in the buffer zone. The red-coloured buildings indicate high-risk, where the 

flood depth exceeds the 30 cm threshold. These buildings are estimated to be more 

vulnerable to damage from flooding, and it is crucial to prioritize them for adaptation 

measures and enhance their resilience to future flooding. Buildings depicted in orange 

indicate a medium risk of flooding, where damage from flooding is still significant. 

Lastly, a grey colour highlights the buildings at low risk, with minimal flood depths 

and lower vulnerability to flooding. 

 

 
Figure 6.14 Maximum flood depths and flood exposure of buildings for a 50-year storm event 

with durations of (a) 1 h and (b) 2 h for the centre of Thessaloniki. 

 

It should be noted that further investigation is needed into the 30 cm threshold to 

categorise buildings according to their flood risk, in order to provide more accurate 

estimations to understand the risk and the vulnerability profile of the city’s buildings. 
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6.4 Conclusions 

This chapter combines a detailed contemporary analysis of extreme rainfall events in 

Thessaloniki, Greece, with an advanced hydrodynamic model to simulate pluvial 

flooding, assisting in the reliable assessment of building exposure to flooding risks. A 

dual scheme is employed to assess extreme rainfall: (i) extreme daily rainfall, resulting 

from a long daily series, is analysed using a GPD. Two threshold detection methods 

are applied, to assist a less ambiguous selection of daily extreme rainfall events. (ii) 

Extreme rainfall of shorter annual maximum series ranging from sub-hourly to sub-

daily durations is analysed using the GEV distribution. A scaling procedure is applied 

to rainfall return level estimates assessed from (ii), and the resulting scaling laws are 

applied to the more reliable daily rainfall return levels of (i), in order to finally derive 

storm profiles with durations of 1 h and 2 h. The resulting storm profiles are used to 

drive the hydrodynamic model CityCAT to simulate flooding, estimate the water 

depths, identify the critical water flowpaths and finally assess the total number of 

inundated buildings through a novel exposure analysis calculator per extreme rainfall 

scenario in the historic centre of Thessaloniki. Furthermore: 

1. Typical storm events have durations spanning 1 h to 2 h, so both durations have 

been used here to see how sensitive the damages are to storm duration. For 

storms of the same return period, a modest increase is found for the 2 h storm 

relative to the 1 h storm. 

2. The CityCAT model provides valuable insights into flood depths and water 

flowpaths, identifying a major water flowpath along Agias Sofias street, which 

is highly susceptible to flooding during intense rainfall events. The presence of 

small ponds in various parts of the studied catchment further highlights the 

potential for localised flooding. 

3. The estimated likelihood of flood exposure to buildings reveals the 

vulnerability of urban features to flood risk. Due to the previous flood events in 

the area, the number of buildings at high risk for both storm events underscores 

the importance of addressing flood impacts on the built environment. 
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4. The modelling system is suitable for assessing the performance of flood-

resilience strategies such as retention ponds, surface drainage improvements, 

and permeable pavements. 

This chapter showcases the unique capabilities of CityCAT in its application to a 

country like Greece, which faces challenges of limited data availability. By leveraging 

globally accessible datasets, a high-resolution Digital Terrain Model (DTM, provided 

by the Hellenic Cadastre), and a detailed analysis of extreme rainfall events, this model 

facilitates a better understanding of the dynamics of urban flooding. It is noteworthy 

that in Greece, flood exposure analysis is conducted here for the first time at the level 

of individual buildings, moving away from the conventional approach of assessing 

flood risk in predefined zones. The identification of critical flow paths and the 

assessment of buildings at high flood risk serve as key considerations for future work. 

This includes expanding the catchment area, adding the current sub-surface drainage 

system or developing new synthetic methods to represent the system, implementing 

the model, and validating against historical storm events. These efforts are aimed at 

making informed decisions to develop flood-resilience solutions that safeguard 

people, assets, and infrastructure from future flood events.  
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Chapter 7. Conclusions and Future work 

 

7.1 Conclusions 

This thesis has made significant contributions to the field of flood risk management in 

urban areas by developing, demonstrating and critically assessing methods for 

simulation and analysis of flood exposure and adaptation using blue-green 

infrastructure .  

It includes a comprehensive and direct comparison of two widely used approaches for 

modelling buildings and their associate flood exposure, providing valuable insights 

into their strengths and weaknesses. As well as showing the advantages of the 

“Building Hole” method, an improvement to the inferior but more widely used “Stubby 

Building” approach was developed, providing two alternative novel methods to link 

surface water flooding information with individual building exposure and flood 

damages. Moving on from assessing flood exposure in existing cities, the research 

focused on identifying optimal locations for implementing Blue-Green Infrastructure 

(BGI) to mitigate flood risks. By considering various factors such as land use, 

hydrological characteristics, and infrastructure suitability, it has provided valuable 

guidance to decision-makers for strategically placing nature-based solutions. This 

approach can contribute to reducing flood damages, improving urban resilience, and 

promoting sustainable development. 

The critical role of Digital Terrain Model (DTM) resolution in large-scale 

hydrodynamic modelling was then explored using a real-life case study of the whole 

of London, and it was demonstrated that higher-resolution DTMs (better than 5m) 

significantly enhance the accuracy and reliability of flood simulations, emphasizing 

the importance of investing in high-quality elevation data for effective flood mapping 

and forecasting. 

Furthermore, to enable high resolution modelling for very large domains such as 

Greater London, this thesis proposed a novel combination of cloud computing with 
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the powerful hydrodynamic model CityCAT. By leveraging the scalability and 

computational resources of the cloud, this integration offers unprecedented 

opportunities for large-scale simulations in flood risk management with high 

accuracy.  Achieving high-resolution flood simulations for large areas is possible, but 

it requires cloud computing resources. Even with cloud-based processing, the 

computations can still be time-intensive, particularly for intricate systems like pipe 

networks. 

Further work demonstrated the portability of the modelling approach to cities where 

high resolution data are not so readily available, with a case study in Thessaloniki in 

Greece. 

Through the research, this project has gained a better understanding of flood dynamics 

in urban areas, enabling the development of systematic and efficient flood risk 

management strategies. It identified highly vulnerable urban features and provided 

insights into effective mitigation measures. This knowledge can guide urban planners, 

policymakers, and emergency responders in developing comprehensive strategies to 

manage flood risks effectively. 

Lastly, the developed modelling system proves to be suitable for assessing the 

performance of flood-resilient strategies, including retention ponds, surface drainage 

improvements, and permeable pavements. By simulating the implementation of these 

strategies under different flood scenarios, decision-makers can prioritize and optimise 

their investments based on cost-effectiveness and potential impact. 

In summary, this thesis advances the understanding of flood risk management in 

urban areas by comparing different approaches, proposing novel methods, identifying 

optimal locations for BGI implementation, emphasizing the role of DTM resolution, 

exploring cloud integration, and enhancing the overall understanding of flood 

dynamics. The link between the novel aspects of this work and the research gaps 

identified in Chapter 2 are summarised in Table 7.1. These findings provide valuable 
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insights for practitioners, enabling them to make informed decisions and develop 

effective strategies to mitigate flood risks in urban areas worldwide. 

 

Table 7.1: Linking the developed methodologies with the research gaps identified in Chapter 
2 (Section 2.5) in Table 2.1. 

 Methods Novel aspects 
Research 

Gap 

1 ‘Building Hole' approach 

1) Demonstrated accuracy of method by 
validating against real storm events; 2) 

Demonstrated advantages for megacities as it 
reduces the number of active computational grid 

squares. 

1 

2 A 'cleaned' Stubby Building approach 

1) Identified and quantified errors of SB approach 
from two sources: (a) flow over buildings (b) DEM 

interpolation on building footprint  
2) Developed 'cleaned' approach for SB addressing 

type (b) error and identified  where the method 
may be inaccurate to give advice to users. 

2 

3 
A cost-benefit 'source-receptor' flood risk 
framework 

Linked flood depth maps to building level 
damages through an improved exposure method, 

and developed methods to identify locations to 
add cost-effective Blue-Green Infrastructure  with 

any flood model.  

3, 4, 5 

4 
A city-scale application in London by 
linking cloud computing with 
hydrodynamic models 

1) The largest known application of a high-
resolution flood model; 2) establishing minimum 
reliable DTM resolution; 3) providing an easily 

analysed list of exposed buildings and associated 
damages rather than a spatial map. 

6, 7 

5 

An application presenting that the 
CityCAT model is powerful in areas 
with limited access to data and the 
construction of detailed IDF curves 

Establishing that useful and informative results 
can be obtained with pragmatic use of limited 

spatial data. 
8, 9 

 

7.2 Limitations 

While this research has made significant advances in addressing key aspects of flood  

modelling to achieve urban resilience, it is imperative to acknowledge the limitations 

that shape the scope of the outcomes. In this section, these limitations are discussed to 

provide a comprehensive perspective on the thesis’s boundaries. 
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1. While current capabilities for representation of buildings within flood models 

are fully exploited here using high accuracy building outlines with high 

resolution surrounding terrain to capture water flow paths, no attempt has been 

made so far to account for openings that allow water ingress and egress from 

buildings. The CityCAT ‘Building Hole’ approach allows partial opening of no 

flow boundaries around the building, but this has not been systematically 

implemented to represent e.g. doors or window openings which may be 

available from more detailed data sets such as Building Information Models 

(BIM) or from imagery. 

2. Regarding the categorisation of flood risk to buildings based on the 30cm 

threshold assumption for significant flood risk, it’s important to acknowledge 

the necessity for further investigation as the risk critically depends on  door 

threshold heights. In the UK for various building types, and certainly in various 

other countries, the initial elevation of a building's entrance may differ from the 

standard 30cm used here, so there exists a need for further exploration and 

investigation of the impact of this simplification. 

3. Challenges arise when seeking data on building types to calculate the estimated 

damages from flooding. While this study has assumed all urban features are 

either residential or commercial, a comprehensive coverage of these categories 

is needed as large differences and errors may arise from mis-classification. 

Additionally, the utilisation of damages values from the UK based on the Multi-

Coloured Handbook by Priest et al. (2022) raises questions about global 

applicability.  

4. While this work has carried out validation using observed data obtained by 

leveraging social media imagery for flood depth estimations during a flood 

event in London, this was limited to a modest number of locations due to time 

constraints. To obtain larger numbers of depth points, an automated approach 

such as presented by Chaudhary et al. (2019). According to their findings, 

automation methods that identify objects of known dimensions, such as 
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vehicles and individuals, could enhance accuracy as well as providing orders 

of magnitude larger data sets. 

5. The adaptation portfolio here’s introduces manually added ponds, but 

automation holds potential to streamline and enhance the process and include 

further classes of BGI. By automating the addition of BGI, simulations could 

optimise placement across different locations, exploring a range of 

interventions with varying footprints and cost-effectiveness, and ultimately 

improving feasibility and adaptability. 

6. Global challenges in obtaining high-resolution DTMs hinder universal flood 

risk analysis. While some regions like the UK and the US benefit from DTMs 

with multiple resolutions, starting from 0.50m, global availability is currently 

coarser, typically 12m or 30m and above. This limitation restricts both accurate 

simulation of flowpaths, and the representation of small-scale flood risk 

management solutions in urban areas. 

7. Storm or combined sewer networks can be an important component of urban 

drainage, especially in less intense storm events, but present a significant hurdle 

in simulation due to scarce network data. It is hard to imagine automatic and 

universal implementation of detailed real networks in flood models in the next 

few years due to restricted access to commercial information on pipe networks 

(UK), lack of formal records (developing countries) and difficulties in digitising 

and setting up network models (all cases). Modellers often resort to 

approximations, such as the UK practice of deducting 12mm/hr from observed 

rainfall. Improvements are possible by employing spatially variable pipe 

capacity datasets, following the approach demonstrated by Singh et al. (2023). 

A pressing need therefore exists to improve methodologies for accurately 

representing sewer systems, particularly in data-scarce urban areas. Synthetic 

storm drain generation that mirrors local conditions and adheres to design 

regulations of each country, as presented by Bertsch et al. (2017), offers a 

pioneering solution. This methodology holds promise in overcoming data 
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limitations and significantly advancing sewer system representation within 

flood models. 

7.3 Future work 

In terms of future work, there are several areas that can be explored to further enhance 

our understanding and management of flood risks in urban areas, addressing the 

limitations outlined above. 

Firstly, the development of a methodology to represent the drainage system in cities 

with limited or no data presents an intriguing avenue for research. Many cities, 

especially in developing regions, lack comprehensive and up-to-date information on 

their drainage infrastructure. One approach is to exploit the limiting nature of the inlet 

drain capacity and simulate only the entry of water into the sewers system, assuming 

an infinite capacity once in the network. Inlet drain data sets can be surveyed or 

derived from remote sensing data (e.g. Google Street View), or innovative 

methodologies to generate synthetic but realistic layouts can be used, such as the 

Synthetic Storm Drains (SSD) QGIS routine, developed by Bertsch et al. (2017)  

The SSD approach can be extended to create realistic representations of not only the 

storm drains, but also sewer networks and manholes. This can be done using physics-

based rules for generating gravity drainage networks upstream of a “pour point”, 

requiring only the already available DTM and street layout, together with design 

standards for spacing of drains and diameters of pipes. This approach could be 

extended by utilising remote sensing data, citizen science, or machine learning 

algorithms, enabling more accurate flood simulations and risk assessments. 

Additionally, practical applications can be expanded to cover the exposure and 

vulnerability of buildings and assets by improving their resilience at property level as 

well as at strategic or city-wide scales. While previous studies have focused on 

assessing the vulnerability of structures to floods, future research can delve deeper 

into identifying and testing practical measures to enhance the resilience of buildings 

and critical infrastructure using either modified depth-damage curves, or explicitly 
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modelling flooding within buildings. This can involve investigating the effectiveness 

of flood-resistant construction techniques, retrofitting existing buildings, or 

integrating smart technologies to enable real-time monitoring and adaptive flood 

management systems. 

The vulnerability of underground assets in megacities, such as basements and metro 

systems, is an area that increasingly demands attention. Urban areas with extensive 

underground infrastructure face severe challenges during flood events, as water 

ingress into these spaces can lead to severe damage and disruptions as seen in recent 

years in London and China. Investigating the vulnerability of these underground 

assets, assessing their resilience, and developing targeted mitigation strategies can 

help in minimizing the impacts of flooding on critical urban infrastructure, ensuring 

the continuous functioning of essential services, and safeguarding public safety. 

By addressing these future research areas, we can systematically advance and 

automate our capability for modelling and understanding of urban flood risks and 

contribute to the development of more effective and sustainable flood risk 

management strategies. These efforts will not only enable cities to mitigate the impacts 

of flooding but also enhance their overall resilience to future climate change and 

urbanisation challenges. 
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Appendix A 

 

General files 

The essential inputs needed for conducting a basic simulation using CityCAT in an 

urban area are as follows: 

a. DTM for the topography; 

b. Shape files of buildings and green areas (optional if not available); 

c. Rainfall event – rainfall time series; 

d. CityCAT Configuration file; 

e. CityCAT executable; 

The input data must be of a specific type with a specific name and must be in the same 

folder with CityCAT.exe. 

 

Table 0.1 The format of the input data for CityCAT. 

Data type File type File name Comment 
DTM .asc Domain_DEM.asc   

Buildings .txt Buildings.txt   
Green areas .txt GreenAreas.txt   

Rainfall event .txt Rainfall_Data_[i].txt i is a positive 
integer  

CityCAT 
Configuration file .txt CityCat_Config_[i].txt i is a positive 

integer 

 

 
 

To fully utilise the model’s capabilities, a high-resolution DTM is essential. However, 

the model can still function with lower resolution DTMs. It has been observed that a 

2m grid resolution adequately resolves streets and other flow paths between buildings, 

striking a good balance. On the other hand, using grid squares larger than 5m may 

lead to the closure of flow paths, resulting in unrealistic and inaccurate results. 
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Domain_DEM.asc 

The DTM is the foundational input for CityCAT as it shapes the computational grid. 

The model generates a uniform rectangular grid based on the DTM. In certain 

scenarios, it may be necessary to clip the DTM from a larger area. This can be achieved 

by generating a catchment boundary using a shapefile or by identifying the specific 

catchment of interest and using the "extract by mask" tool in QGIS. This ensures that 

CityCAT operates within the relevant area of interest, allowing for more focused and 

accurate simulations. The procedure is: open QGIS and then ‘Processing Toolbox -> 

Search -> then type extract by mask’. Care must be taken to specify the correct coordinate 

system of the study area. The final file should have the format in Figure 0.1. 

 

 
Figure 0.1 Example file of the Domain_DEM.asc with a 5 m resolution. 

 

Buildings.txt & GreenAreas.txt 

For buildings and green areas, the x and y coordinates should be extracted from a 

shape file to a txt file, which will allow the model to exclude the building’s footprint 

from the computational grid and to locate the green spaces for infiltration. To extract 

the coordinates from buildings and green spaces and generate the txt file a Python 
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script in Spyder (Anaconda) can be used (files of buildings and green areas are preferred 

to be in a shape file format): 

The geopandas library and the citycatio library citycatio · PyPI need to be installed. 

More information about the  citycatio library can be found at: GitHub - 

nclwater/citycatio: Python package for creating CityCAT models and converting 

results. Thus, the txt input files for CityCAT will be generated in the same folder with 

the scripts, and the final format is as shown in Figure 0.2. 

 

To install the libraries: 

Follow the steps: 

1. Start Anaconda Prompt: 

 

 

2. Type: ‘conda create -n myenv rasterio geopandas’ and press enter 

https://pypi.org/project/citycatio/
https://github.com/nclwater/citycatio
https://github.com/nclwater/citycatio
https://github.com/nclwater/citycatio
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3. Type: ‘conda activate myenv’ and press enter 

 

 

4. Type: ‘pip install citycatio’ and press enter 
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5. Type: ‘conda update gdal’ 

6. Type: ‘conda install -c anaconda ipywidgets’ -> this library is for the exposure 

analysis 

7. Type: ’pip install spyder’ 

8. Type: ‘spyder’ 

Start Spyder (Anaconda) and write or copy the following python scripts for buildings 

and green areas:

For buildings: 

#authors: Fergus Mcclean, Chris Iliadis 

#host: Newcastle University 

import geopandas as gpd 

from citycatio.inputs import Buildings 

input_folder = r'copy the folder path/' 

name_shp_file = ‘the name of the shp file' 

gdf = gpd.read_file(input_folder + name_shp_file + '.shp') 

Buildings(gdf).write('.') 
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# Just printing the output of the file to show what's in it 

with open('Buildings.txt') as f: 

  print(*f.readlines()[:10]) 

 

For Green Areas: 

#authors: Fergus Mcclean, Chris Iliadis 

#host: Newcastle University 

import geopandas as gpd 

from citycatio.inputs import GreenAreas 

input_folder = r'copy the folder path/' 

name_shp_file = ‘the name of the shp file' 

gdf = gpd.read_file(input_folder + name_shp_file + '.shp') 

GreenAreas(gdf).write('.') 

# Just printing the output of the file to show what's in it 

with open('GreenAreas.txt') as f: 

  print(*f.readlines()[:10]) 

 

 
Figure 0.2 Example of txt files, where the first row defines the total number of buildings and 

green areas of the study area, the first column of the second row defines the number of 
points in that polygon/building/green space (the polygons must be closed, i.e. first and last 
point are the same) and then the x coordinates are listed first, and the y coordinates follow. 
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Rainfall_Data_[i].txt 

The rainfall file is also compulsory, unless a boundary condition flow is being applied. 

The rainfall is usually applied over the whole domain (uniform assumption) for 

catchments or cities. Alternatively, spatially distributed rainfall can be used. The [i] in 

the file name corresponds to the index number (McClean et al., 2023) of rainfall event 

to be used in a simulation (see Figure 0.3(a)) and is specified in the command line when 

the run is initiated. In the case of no rainfall, this file should be specified, and the 

intensity of rainfall needs to have a zero value (see Figure 0.3(b)). To calculate the 

intensity of rainfall in a study area, Intensity-Duration-Frequency curves can be used, 

or the modeller can generate synthetic rainfall data e.g. with a python script.  

The file format of Rainfall_Data_[i].txt is: 

i. The first three lines are comments not used by the model but contain metadata 

giving information about the rainfall event; 

ii. The fourth line is the number of data lines; 

iii. Next line is also a comment and usually the modeller uses this line as a header 

for the lines below; 

iv. In the first column of the sixth line the time is given in seconds from start of the 

simulation (s) and the second column defines the rate of rainfall in metres per 

second (m/s). These units will often be converted from mm/hr (conversion 

factor 2.7778e-7). The modeller could use as many lines are necessary for the 

study event; 

It is possible to use spatially distributed rainfall by changing the following in the 

configuration file: 

From uniform rainfall (Line 15 in the configuration file, see Figure 0.5): 

<RainfallData spatial="False" zones="1"/> 

To: 

<RainfallData spatial="True" zones="5"/> 
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The number of zones corresponds to the number of rainfall polygons. Two extra files 

are also needed:  

i. Rainfall polygons file: “Rainfall_Polygons.txt’    (see Figure 0.4) 

ii. Rainfall time series: “Spatial_Rainfall_Data_[i].txt” (see Figure 0.3(c)) 

 

 
Figure 0.3 Examples of rainfall txt files: (a) File with rainfall in m/s; (b) File with zero rainfall 

rate; (c) Spatial rainfall file. 
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Figure 0.4 Example of the rainfall polygon file with 23 spatial zones. 

 

CityCAT – Config_[i].txt 

This file is compulsory to run CityCAT, as it defines the basic parameters to run the 

model. These are: 

i. the total time of the simulation (in seconds)  

ii. the initial time step (in seconds) 

iii. the frequency of the outputs 

iv. the friction coefficient for impervious and green areas  

v. parameters for the Green-Ampt model. 

The format of the configuration file can be seen in Figure 0.5 and the final files in Figure 

0.6. 
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Figure 0.5 Example of the configuration file for a simulation in an urban area. 

 

 
Figure 0.6 Example of the final files to start a simulation in an urban area, all files should be 

in the same folder. 

 

Other files 

To configure CityCAT to simulate special cases such as river flows, dam break, and 

coastal flooding some extra files are required. 
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InitSurfaceWaterElev_Polygons.txt 

This file can be used to simulate a dam break and it defines the reservoir and the water 

surface elevation in the reservoir (Figure 0.7). Also, some settings need to be changed 

in the configuration file (see Figure 0.8). 

 

 
Figure 0.7 Example of initial surface water elevation file, the first row defines the number of 

boundaries used, the first column of the second row refers to the total points of the 
boundary, the second column defines the water surface elevation in the reservoir and then 

the x coordinates are listed first, and the y coordinates are following as for the 
buildings/green areas/rainfall polygon. 

 

 
Figure 0.8 Red highlights the necessary settings in the configuration file that should be 

changed. 

 

BCs_open.txt – Open boundary condition polygon 

By default, all outer boundaries of the model are closed, so in many cases some open 

boundaries are needed to prevent the accumulation of water along the edges of the 

study area. If cell boundaries at the edge of the study area and those completely within 

the polygon are declared  open, this allows surface water to leave the domain through 

that boundary. Polygons of such cell boundaries to be opened could be generated in 

QGIS, and their format can be seen in Figure 0.9. As previously,  the first row is the 
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number of polygons, the first column of the second row is the number of points of the 

polygon then the x coordinates are listed first, and the y coordinates are following. 

 

 
Figure 0.9 Example of the open boundary condition polygon file. 

 

Alternatively, all the outer boundaries can be opened by changing the following in the 

configuration file: 

<OpenExternalBoundaries>True</OpenExternalBoundaries>   

 

 
Figure 0.10 Red highlights the necessary settings in the configuration file that should be 

changed. 

 

BCs_flow.txt – Flow boundary condition polygon 

Flow boundary conditions can be defined at the outer boundaries of the domain using 

polygons and flow time series. The polygon and the format of the txt file follows the 

same procedure as with the Open boundary condition polygon. 

 

 
Figure 0.11 Example of flow boundary condition polygon file. 
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Flow_BC.flw - Flow time series 

This file contains time series of flow data.  The second column after the fifth row is the 

flow (q) per unit width (m3/s/m), see Figure 0.12. Note that the total flow Q = q × cell 

size × number of cell boundaries. 

 

 
Figure 0.12 Example of the flow time series, the first three rows and the fifth row are for 

comments, the fourth row defines the total number of data points, the first column after the 
fifth is the time (secs) and the second column is the flow (m3/s/m). 

 

Spatial_GreenAreas.txt 

Areas with different soil properties can be defined using polygons, see Figure 0.13. The 

Green-Ampt parameters for the infiltration for each soil should be added in the 

configuration file, see Figure 0.14.   
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Figure 0.13 Example of different soils in the catchment, the first row refers to the number of 
polygons used, the first column in the second row defines the soil id, the second column the 

total points of the polygon then the x coordinates are listed first, and the y coordinates 
follow. 

 
Figure 0.14 Green-Ampt parameters for each soil. 

 

FrictionCoeffs.txt 

Areas with different Manning’s n friction coefficient can be defined using polygon, see 

Figure 0.15. 
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Figure 0.15 Example of areas with different friction coefficients, the first row refers the 
number of polygons, the first column in the second row defines the total points of the 

polygon, the second column refers to the coefficient then the x coordinates are listed first, 
and the y coordinates follow. 

How to run CityCAT 

How to run the CityCAT model 

1st step: Check that the files have the correct format; 

2nd step: Check that all files are in the same folder; 

3rd step: Then select the folder (mouse left click) and click ‘shift’ on the keyboard plus 

right-click on the mouse and open the ‘Open PowerShell window here’ or ‘Open 

command window here’ (depending on the laptop or pc operating system); 

  

 

4th step: Type ‘cmd’ to Windows PowerShell and press Enter; 
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5th step: To run the simulation use the following command and then press Enter; 

 

citycat -c [config file number] -r [rainfall file number] 
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To stop the model run press simultaneously ‘Ctrl’ and ‘C’ buttons to the Windows 

PowerShell. To monitor the progress of the simulation open the file: CityCat_Log.txt. 

N.B. this file will not update itself and the modeller needs to close it and open it again. 
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Hence, a new folder with the results will be generated. The output ASCII files (file 

extension: *.rsl) contain water depths and velocities at different times during the 

simulation. The files can be opened in any text editor, e.g. Notepad++, Sublime Text. Also 

in the folder will be the maximum flood depth map in csv format, i.e. a map showing 

for each cell the maximum depth recorded at any time in the whole simulation. Note 

this map is not a single ‘snap shot’ in time – the maximum depth may occur at different 

times for different cells. 

 

 

 

 
Figure 0.16 Example of an output folder from CityCAT, and explanation of every column on 

the results. 
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Plot the results 

To analyse the outputs from CityCAT there are many options including : 

1. Import the rsl files and the csv file into QGIS and rasterize them. These can then 

be used to generate tiff files which can be displayed in QGIS or ArcGIS (see the 

next section).  

2. A python script to generate png files for water depths and velocities. 

 

Rasterise csv files 

Start QGIS and import the csv file (output from CityCAT): 

Layer -> Add Layer -> Add Delimited Text Layer 

 

 

 

The important part of this step (highlighted with the red polygons) is to add the correct 

coordinate system (Geometry CRS) for the case study and for the Z field select the 

“depth”. Then press Add in the bottom right corner. 
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The second step is to convert the csv file to tif file. For the latest version of QGIS go to 

Processing Toolbox -> SAGA -> Raster – Rasterizing -> Features to Raster, for older versions 

of QGIS go to Processing Toolbox -> SAGA -> Raster creation tools -> Rasterize. 

 

 

 

To generate a raster layer from a csv file select the parameters/options shown in next 

figure. Then select the generated raster layer, right-click and  Export -> Save As  to save 

a tif file. 



      

 

192 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



      

 

193 
 

Appendix B 

 

London flood maps 
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