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Abstract

A momentum-space approach to conformal field theory offers a new perspective on cosmo-
logical correlators and better reveals the underlying connections to scattering amplitudes.
While correlation functions at up to three points are well understood, the form of higher-
point functions is still under active study and few explicit results are available.

A representation for the general n-point function of scalar operators was recently pro-
posed in the form of a Feynman integral with the topology of an (n−1)-simplex, featuring
an arbitrary function of momentum-space cross ratios. In this thesis, we show the graph
polynomials for this integral can all be expressed in terms of the first and second minors of
the Laplacian matrix for the simplex. Computing the effective resistance between nodes
of the corresponding electrical network, an inverse parametrisation is found in terms of
the determinant and first minors of the Cayley-Menger matrix. These parametrisations
reveal new families of weight-shifting operators expressible as determinants that connect
n-point functions in spacetime dimensions differing by two. Furthermore, they enable the
validity of the conformal Ward identities to be established directly without recourse to
recursion in the number of points.

We then analyse the representation of conformal, and more general, Feynman integrals
through a class of multivariable hypergeometric functions proposed by Gelfand, Kapranov
& Zelevinsky. Among other advantages, this formalism enables the systematic construc-
tion of highly non-trivial weight-shifting operators known as “creation” operators. We
discuss these operators from a physics perspective emphasising their close connection to
the spectral singularities that arise for special parameter values, and their relationship
to the Newton polytope of the integrand. Via these methods we construct novel weight-
shifting operators connecting contact Witten diagrams of different operator and spacetime
dimensions, as well as exchange diagrams with purely non-derivative vertices.
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Chapter 1

Introduction

1.1 Conformal field theory

Conformal symmetry arises in many different physical contexts. Historically, it was first
applied in the 70s to the study of critical phenomena [2] and soon after started to play a
major role in string theory [3]. In the late 90s, conformal field theories (CFTs) were found
to be dual to gravitational theories in Anti de Sitter (AdS) space through a paradigm
known as holography [4, 5].

Among the key observables of quantum field theory, cosmology, and condensed matter
are correlation functions of operators. These are scale-invariant at critical points, and
surprisingly different physical systems are sometimes found to share the same set of critical
exponents. For example, the critical exponent for ferromagnets is the same as for water
(liquid-vapor transition) [6]. This property is called universality and reveals a common
underlying conformal symmetry. Polyakov showed that correlators at critical points are
indeed invariant under the full conformal group (which also includes special conformal
transformations) and opened the path for applications of conformal symmetry in physics
and quantum field theory [7]. A program to study the implications of conformal symmetry
for scalar and tensorial operators in general spacetime dimension was developed in [8–13].
The idea was to derive the form of correlators by symmetry principles, and this led to
looking for solutions of conformal Ward identities in a spacetime dimension d > 2 for
general scaling dimensions. These analyses were carried out in position space, where
conformal transformations act directly.

The study of conformal anomalies [14–16] and the application of holography to cos-
mology [17–32] motivated the development of momentum-space conformal field theory.
The inflationary epoch is described by an approximately de Sitter spacetime geometry,
and the symmetries of this spacetime act on late-time slices as conformal transforma-
tions. Therefore, inflationary correlators can equivalently be regarded as CFT correlators.
Moreover, momentum-space CFT also found a central role in the study of renormalisation
[33–36] and scattering amplitudes, revealing features such as double-copy structure and
colour/kinematic duality [37–41].

The analysis of the implications of conformal symmetry in momentum space started
ten years ago. The form of 2- and 3-point functions of scalar and tensorial operators
in d > 2 are strictly constrained by the symmetry and their unique form was found
[42, 43]. Equivalent representations for the 3-point function have been analysed: this can
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Chapter 1. Introduction

be expressed as an integral over three Bessel functions of the second kind, as a multivariable
hypergeometric function Appell F4, or as a one-loop triangle Feynman diagram. Except
for some special solutions, evaluating these functions can be difficult. A reduction scheme
has been described to construct a class of 3-point functions which are also the building
blocks of tensorial correlators [44, 33, 34]. This reduction is performed via the action of
shift operators that connect different solutions with shifted parameters. Moreover, a full
understanding of their singularities and renormalisation has also been discussed [45]. Less
complete and understood is instead the form of 4- and higher-point correlators for general
values of their parameters. A representation for the general n-point function of scalar
operators was recently proposed in the form of a Feynman integral with the topology of
an (n−1)-simplex, featuring an arbitrary function of momentum-space cross ratios [46, 47].
This was shown to be conformally invariant, and a recursive interpretation of its form was
given.

The research presented in this thesis takes its starting point from the simplex rep-
resentation of n-point functions and develops to explore the interplay between integral
representations and shift operators.

1.2 Shift operators

Operators that act on a function to shift one or more of its parameters appear in the
physical and mathematical literature with different names. Here, we refer to such operators
as shift operators.

Historically, their relevance in physics was first revealed in quantum mechanics. To
solve the Schrödinger problem of the harmonic oscillator, Dirac introduced shift operators
known as the creation and annihilation operators [48]. They were useful both on the
computational and physical sides. Indeed, such operators act on an eigenfunction of the
Hamiltonian to generate a new eigenstate of the same Hamiltonian, but with shifted
eigenvalue. Physically, the action of such shift operators makes an energy quantum }ω
appear or disappear. By knowing these operators, Dirac was able to find the ground state
and the full set of solutions of the quantum harmonic oscillator: once the ground state is
found, it is sufficient to apply the creation operator to find all the remaining eigenstates.

The idea of introducing operators that act on a quantum state to shift a quantum
number was also applied to describe the physics of the quantum angular momentum [49].
In the case of a three-dimensional angular momentum, it turned out that it was convenient
to define the shift operators, often referred to as raising/lowering operators. They are
complex linear combinations of the quantised spatial x and y components of the angular
momentum operator. In an analogy with the system of the harmonic oscillator, one
can show that these operators act on an eigenstate of the z component of the angular
momentum to increase or decrease it by an angular momentum quantum m}. Once the
quantisation of the angular momentum is defined, several applications show the utility of
such shift operators [50]. Among these, we find the solution of the Schrödinger problem of
the hydrogen atom [51, 52], and the study of hydrogen-like systems in solid state physics,
the effect of a magnetic field on the energy levels of an atom, and the Zeeman effect [53].

In quantum field theory (QFT), creation and annihilation operators appear in the
solution of dynamical equations. For instance, a scalar field is expressed as a superposition
of normal modes whose amplitudes of oscillation are given by operators analogous to
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Chapter 1. Introduction

the creation and annihilation operators of the quantum harmonic oscillator, since they
satisfy the same commutation relations. It is interesting to note that according to Pauli’s
exclusion principle [54], fermions and bosons are described by different symmetries and this
property results in the fact that while bosons’ shift operators obey commutation relations,
fermions’ obey anticommutation relations [55]. Therefore shift operators are related to
the symmetry of a system. This relation is extensively used in particle physics as well as
in statistical physics.

Along with the development of QFT, Feynman integrals became key objects in various
areas of physics. Their accurate evaluation became central to the understanding of physical
phenomena. With the development of experiment and theory, the need for precision and
accuracy increased. Higher orders in perturbative QFT are required in the computation of
observables via Feynman diagrams, whose number and complexity increase with the order
in perturbation. For this reason, Feynman integrals continue to be an active research
topic needed for example in scattering processes, perturbative quantum chromodynamics,
lattice computations, CFT and cosmology [56–64].

The problem of computing Feynman integrals is often hard to tackle. The main needs
are the reduction of tensorial integrals to scalar integrals and the reduction of the latter
into a small (finite) number of Feynman integrals known as master integrals. Various
techniques have been explored and continue to be discussed [65]. Among these we find
integration-by-parts (IBP) identities [66–68], allowing us to express any Feynman integral
as a linear combination of master integrals. These identities stem from taking the total
derivative of the integrand. More recently the IBP method has been extended by looking
at operators that annihilate the integrand [69]. A complementary method to simplify
the computation of Feynman integrals is based on recurrence relations, and the shift
operators from which they can be derived [70–72]. This method is based on considering
the Feynman integral as a function of its parameters, (i.e., the powers of propagators
and/or the spacetime dimension) and by acting with appropriate operators on such an
integral, one finds a new integral with shifted parameters. This is also useful in tensorial
reductions.

Later, when CFT arose in the study of physical phenomena, the methods involving
shift operators and recursion relations appeared in this context. Position-space 4-point
functions of scalar operators are expressed via the operator product expansion whose
terms, known as conformal blocks, depend on the spacetime dimension and the operator
dimensions. Dolan and Osborn showed that such conformal blocks satisfy a second-order
differential equation and are related to the eigenfunctions of the quadratic Casimir of
the conformal group [73, 74]. They define various sets of shift operators that act on
the conformal blocks to shift their parameters. These operators were fundamental for
the development of numerical bootstrap methods and found applications, for instance, in
the study of the three-dimensional Ising model, helping to find bounds on the physical
parameters [75].

Subsequently, various techniques for computing blocks of operators with spin have been
developed. Such operators played an important role, for example, in finding new results on
the Regge limit in CFTs [76, 77], or universal numerical bounds on classes of CFTs [78–80].
More recently it was also useful for the large-N solution of the SYK model [81, 82]. One of
the most promising techniques is the method introduced in [83], based on weight-shifting
operators. These operators act to increase or decrease the parameters of an operator, for
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instance, they can shift the spin. Recently, these shift operators found applications in the
computation of inflationary correlators [84]. Moreover, in momentum-space CFT, a set
of shift operators was also introduced to compute 3-point functions of tensorial operators
[85]. In a similar fashion to Feynman integrals, these operators allowed the computation
of tensorial correlators requiring only the knowledge of one (master) scalar correlator.

The search for new shift operators for momentum-space CFT correlators and Feynman
integrals that is presented in this thesis was inspired by the works summarised above.

1.3 Outline

The outline of the thesis is as follows. The first part is devoted to illustrating some aspects
of the state of the art of conformal field theory. In Chapter 2, we present the essential
features of conformal symmetry in position space and derive the consequent constraints
on correlators up to n-points. In Chapter 3, we give a broader presentation of conformal
symmetry in momentum space, where our research is focused. First, we derive conformal
Ward identities in momentum space and construct their solutions up to n points. We give
a detailed overview of the properties of 3-point functions by discussing equivalent repre-
sentations, singularities and shift operators. We then present the simplex representation
for n-point functions and conclude with an illustration of some special 4-point solutions
to the conformal Ward identities, namely the contact and exchange Witten diagrams. All
the ingredients necessary to follow the second part of the thesis are then in place. The
second part of the thesis is based on the research that appeared in [63] and [86]. Chapter 4
focuses on the simplex integral. We derive parametric integral representations for the sim-
plex integral. By using inverse Schwinger parameters, we find that all graph polynomials
for this integral can be expressed in terms of the first and second minors of the Laplacian
matrix for the simplex. Inspired by the analogy between the simplicial geometry and elec-
trical circuits, we regard the Schwinger parameters as resistances in an electrical network
and re-parametrise the simplex integral by computing the effective resistance between all
vertices of the simplex. This gives a representation in terms of the determinant and first
minors of the Cayley-Menger matrix. These parametrisations have various advantages.
The diagonal structure of the exponential factor in the integrand allows a Fourier-like cor-
respondence. This reveals new families of shift operators, expressible as determinants, that
connect solutions of the conformal Ward identities in spacetime dimension d to new solu-
tions in dimension d+2. They are the generalisation to n-point of the known 3-point shift
operators. Moreover, these novel representations reduce the number of scalar integrals and
allow us to verify that the conformal Ward identities are satisfied via direct computation.
Different integral representations may give complementary perspectives on the same ob-
ject. Motivated by the description of some 3- and 4-point conformal correlators in terms
of hypergeometric functions, in Chapter 5 we then move to analyse the representation
of conformal, and other more general Feynman integrals through a class of multivariable
hypergeometric functions proposed by Ge’lfand, Kapranov & Zelevinsky known as GKZ
functions. A Feynman integral in GKZ form is characterised by a unique denominator
and a higher-dimensional space of variables (in the context of Feynman integrals, these
are momenta and masses). The strength of this representation is that all the properties
of the function can be encoded in a matrix. From this, we can derive a set of partial
differential equations satisfied by the integral and the singularities in the parameters (for
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physical integrals, these are represented by the spacetime dimension and the generalised
propagators). These spectral singularities are given by an infinite number of hyperplanes
parallel to the facets of the Newton polytope associated with the matrix. We discuss how
the knowledge of these singularities is the starting point for a systematic construction
of non-trivial shift operators known as creation operators. For 3-point CFT correlators,
these are indeed the inverse operators of the shift operators involved in the reduction
scheme, acting on a 3-point function to lower d by two. We derive these shift operators
for various Feynman integrals and for special classes of 4-point (and n-point) conformal
correlators, such as contact Witten diagrams, consisting of integral over multiple Bessel
functions. Using this formalism, we also derive novel weight-shifting operators connecting
contact and exchange Witten diagrams with different operator dimensions but within the
same spacetime d. Remarkably, unlike all previous operators [84, 36], these novel shift
operators generate shifted exchange diagrams with purely non-derivative vertices and can
be applied for any values of the parameters. Finally, in Chapter 6, we conclude with a
summary and open questions.
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Chapter 2

Conformal field theory in position
space

In this chapter we briefly introduce the main features of conformal symmetry. We de-
fine conformal transformations (translations, rotations, dilatations and special conformal
transformations) and describe the conformal group by finding the generators of these trans-
formations and their commutation relations. We then analyse the consequences of con-
formal symmetry on correlation functions of scalar operators: symmetry imposes strong
constraints on their form. This material is discussed in many books and reviews from
where the content of this chapter is inspired [87–89].

2.1 Conformal transformations

In this section we present conformal transformations and explain their geometrical mean-
ing.

Let us consider a spacetime with metric gµν . A Weyl transformation is a spacetime-
dependent rescaling of the metric sending the initial gµν to the rescaled g′µν [90],

gµν → g′µν = e2σ(x)gµν , (2.1)

where σ(x) is a generic function of the coordinates defining the rescaling factor e2σ(x). The
infinitesimal version of this transformation is

gµν → g′µν = gµν + δgµν , with δgµν = 2σ(x)gµν . (2.2)

In general, the effect of a Weyl transformation is a change of the spacetime geometry. If
we consider the initial spacetime to be flat, with metric ηµν , a general Weyl transforma-
tion sends this flat metric to g′µν , a curved spacetime metric. We look for special Weyl
transformations (σ(x)) that can be undone by a special diffeomorphism so that the metric
remains flat. Let us consider the diffeomorphism

xµ → xµ − ξµ, (2.3)

8



Chapter 2. Conformal field theory in position space

then, the corresponding infinitesimal transformation of the metric reads

gµν → g′µν = gµν + δξgµν , with δξgµν = 2∇(µξν), (2.4)

where ∇ denotes the covariant derivative. In order to leave the spacetime metric flat,
we require the overall change in the metric – due to the Weyl transformation and the
diffeomorphism – to vanish. In other words, we require the following condition to be
satisfied:

δgµν = δσgµν + δξgµν = 0. (2.5)

Evaluating (2.2) and (2.4) on a flat metric, this reads

2∂(µξν) = −2σηµν , (2.6)

where we now wrote the standard partial derivative and ηµν denotes the (flat) Euclidean
metric ηµν = diag(1, 1, .., 1). Note that in this thesis we will work in Euclidean signature.
By contracting equation (2.6) we find the relation between the function σ(x) and the
vector ξµ

σ = −1

d
∂µξ

µ. (2.7)

Substituting (2.7) in (2.6), we obtain

∂(µξν) =
1

d
∂ρξ

ρηµν . (2.8)

This is the conformal Killing equation and defines the condition that ξµ must satisfy to
generate a diffeomorphism acting on the metric to undo the Weyl transformation. In
the following we show that when d > 2 the conformal Killing equation (2.8) has a finite
number of solutions, while when d = 2 an infinite number of solutions exists. However, in
this thesis we are interested in spacetime dimensions d ≥ 3. To find the general solution
of (2.8), we act with the partial derivative ∂ρ on (2.6), giving a second-order differential
equation. By taking a linear combination of this equation with Lorentz indexes cyclically
permuted, we obtain

∂µ∂νξρ = −ηµρ∂νσ − ηνρ∂µσ + ηµν∂ρσ, (2.9)

then by contracting it
∂2ξµ = (d− 2)∂µσ. (2.10)

We now act with ∂ν on this last equation and with ∂2 on (2.6). Combining the resulting
expressions we have

(d− 2)∂µ∂νσ = −(∂2σ)ηµν , (2.11)

whose contraction gives
2(d− 1)∂2σ = 0. (2.12)

Hence, ∂2σ = 0 for d > 1. Consequently, from (2.11) we deduce that

(d− 2)∂µ∂νσ = 0. (2.13)

9



Chapter 2. Conformal field theory in position space

Thus, for d > 2 the following condition holds

∂µ∂νσ = 0, (2.14)

which amounts to say that σ is at most linear in the spacetime coordinates xµ and,
according to (2.7), this means that the Killing vector ξµ is at most quadratic in xµ:

ξµ = Aµ +Bµνx
ν + Cµνρx

νxρ, (2.15)

with Aµ, Bµν and Cµνρ some coefficients we are going to find. To this aim, we substitute
(2.15) back into equation (2.6) and find that Aµ ≡ aµ is an arbitrary constant vector,
while Bµν is the sum of an antisymmetric term ωµν and a symmetric term proportional
to the metric

Bµν = ωµν + ληµν . (2.16)

Finally, taking into account that Cµνρ is symmetric in the last two indexes, it must be of
the form

Cµνρ = −bρηµν + bµηνρ − bνηµρ, (2.17)

where bν is an arbitrary constant vector. Hence, the general solution of the conformal
Killing equation for d ≥ 3 is

ξµ = aµ + ωµνx
ν + λxµ + bµx2 − 2(bνx

ν)xµ. (2.18)

The infinitesimal change of coordinates generated by this conformal Killing vector xµi
defines four class of transformations:

1. translations: ξµT = aµ,

2. rotations: ξµR = ωµνx
ν ,

3. scale transformations (dilatation): ξµD = λxµ,

4. special conformal transformations (SCT): ξµSCT = bµx2 − 2(bνx
ν)xµ.

This is what we anticipated at the beginning, i.e., that conformal transformations define a
group larger than the Poincaré one, by including dilatations and special conformal trans-
formations. Let us note that translations and rotations (or Lorentz transformations in the
case we are considering the Minkowski metric, instead of the Euclidean one) are isometries,
in fact σ(x) = 0 both for ξµT and ξµR. For scale transformations, the metric is rescaled by a
constant σ(x) = −λ, independent of the spacetime coordinates. Finally, for SCT we find
σ(x) = 2b ·x, which corresponds to a spacetime-dependent rescaling. While the first three
transformations are intuitive to visualise, the special conformal transformations defined
by

xµ → xµ − ξµSCT = xµ − bµx2 + 2(bνx
ν)xµ, (2.19)

are harder to visualise. However, we can see them as a combination of an inversion, a
translation by bµ and an inversion again:

xµ → x′µ

x′2
=
xµ

x2
− bµ, (2.20)

10



Chapter 2. Conformal field theory in position space

leading to

x′µ =
xµ − bµx2

1− 2b · x+ b2x2
. (2.21)

This corresponds to the finite version of the special conformal transformations (2.19) as
one can see by expanding the last expression for an infinitesimal vector bµ, recovering
x′µ = xµ − ξµSCT.

To conclude this section, we show that conformal transformations act locally as the
composition of a rotation and a scale transformation. To see this, we compute the Jacobian
associated to conformal transformations∣∣∣∣∂x′µ∂xν

∣∣∣∣ = (1− λ+ 2b · x)δµν − ωµν + 2(bνx
µ − bµxν)

≈ (1− λ+ 2b · x) (δµν − ωµν + 2(bνx
µ − bµxν)) = eσRµν , (2.22)

where Rµν = δµν − ωµν + 2(bνx
µ − bµxν) is an orthogonal matrix responsible for the

rotation, while the factor (1− λ+ 2b · x) = eσ is the local scale transformation. It is now
patent why the name conformal : conformal transformations preserve angles.

2.2 Conformal group

Conformal transformations form a group, i.e., given the infinitesimal conformal transfor-
mation

xµ → x′µ = xµ − ξµT − ξ
µ
R − ξ

µ
D − ξ

µ
SCT, (2.23)

the identity and inverse elements exist plus the composition of two conformal transforma-
tions is still a conformal transformation. Moreover, it is a continuous group since it acts
on the spacetime coordinates. This means that we can describe it through its generators
and the commutation relations amongst them. We start by finding the generator of trans-
lations. Let us assume f(x) to be an element of the conformal group, and act with an
infinitesimal translation described by the parameter aµ

f(xµ) → f(x′µ) = f(xµ − aµ) ≈ (1− iPµaµ)f(xµ), Pµ = −i∂µ, (2.24)

we found the expected generator for translations Pµ. The finite version of the transforma-
tion is then given by exponentiating the generator

f(x) → eiaµP
µ
f(x), (2.25)

therefore the generators are fundamental to define the group. Knowing the four infinites-
imal transformations defining the conformal group, we can find the associated generators:

Pµ = −i∂µ (translations), (2.26)

Mµν = −i(xµ∂ν − xν∂µ) (rotations/Lorentz transformations), (2.27)

D = −ixµ∂µ (dilatations), (2.28)

Kµ = −i(x2∂µ − 2xµxν∂
ν) (special conformal transformations). (2.29)

11
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The algebra of the conformal group is then defined by the following commutation relations

[Mµν ,Mρσ] = −i(ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ),

[Mµν , Pρ] = −i(ηµρPν − ηνρPµ),

[D,Pµ] = iPµ,

[Pµ,Kν ] = 2i(ηµνD −Mµν),

[D,Kµ] = −iKµ,

[Mµν ,Kρ] = −i(ηµρKν − ηνρKµ),

[Pµ, Pν ] = [D,D] = [Mµν , D] = [Kµ,Kν ] = 0. (2.30)

We can show that the Euclidean conformal algebra in d dimensions is isomorphic to the
algebra of the Lorentz group SO(d+ 1, 1). In fact, let us define the operators Jab = −Jba,
for a, b = −1, 0, 1, .., d:

Jµν = Mµν , J−1,0 = D, (2.31)

J−1,µ =
1

2
(Pµ −Kµ), J0,µ =

1

2
(Pµ +Kµ). (2.32)

They satisfy the commutation relations of the SO(d+ 1, 1) algebra:

[Jab, Jcd] = −i(ηacMbd − ηadMbc − ηbcMad + ηbdMac), (2.33)

where ηab = (−1, .., 1, 1, 1). In the same way one can show that the Lorentzian conformal
d−dimensional group is isomorphic to SO(d, 2). Finally, it is worth noticing that the
commutation relations above show that while Mµν and Pµ form a group, which is the
Poincaré group, the generators Mµν , Pµ and D also form a group. This implies that if we
enhanced the Poincaré group only by introducing the scale transformation, we would not
obtain the full conformal group.

2.3 Conformal transformations for operators

In the first section we defined the action of conformal transformations on the spacetime
coordinates and the metric. However, in a conformal field theory, the fields also transform.
To find their transformation we combine, as before, a general Weyl transformation with
the diffeomorphism found in section 1 and we find that, while we require the metric to
stay flat, other fields do not transform trivially. According to Weyl transformations, if the
metric transforms as gµν → g′µν = e2σ(x)gµν , then a Weyl transformation of a scalar field
O is

O → O′ = e−∆σO, (2.34)

where ∆ is the Weyl weight. Note that for scalar fields the Weyl weight coincides with
the scaling dimension of the operator. For instance in a Weyl-invariant free scalar field
theory described by the action

S = −1

2

∫
ddx
√
−g
(
gµν∂

µO∂νO + ζRO2
)
, (2.35)

12



Chapter 2. Conformal field theory in position space

one finds that the Weyl weight is the same as the canonical scaling dimension ∆, i.e.,
∆ = d

2 − 1. Moreover, conformal invariance also requires ζ = (d − 2)/(4(d − 1)). In the
following discussion, however, we will not need any Lagrangian to study conformal field
theory.
To determine the infinitesimal conformal transformation of scalar fields we compose the
infinitesimal Weyl transformation

δσO = −∆σO (2.36)

with the transformation of the scalar field due to the diffeomorphism

δξO = ξµ∂µO, (2.37)

giving

δO = δσO + δξO =

[
ξµ∂µ +

∆

d
(∂µξ

µ)

]
O, (2.38)

where we used (2.7) to express the Weyl parameter σ in terms of the vector ξµ. To find
how the field O transforms under purely dilatations or special conformal transformations,
we consider ξµ = ξµD = λxµ and ξµ = ξµSCT = bµx2 − 2(bνx

ν)xµ in the general relation
(2.38):

δDO(x) = λ(xµ∂µ + ∆)O(x), (2.39)

δSCTO(x) = bν
[
(x2ηµν − 2xµxν)∂µ − 2∆xν

]
O(x). (2.40)

The finite conformal transformation for scalar operators is

O(x) → O′(x′) =

∣∣∣∣∂x′∂x

∣∣∣∣−∆
d

O(x), (2.41)

which we can see as a rescaling of the field O by a power −∆ of the length rescaling factor
|∂x′/∂x|1/d = eσ. In fact |∂x′/∂x| is a local hypervolume in d dimensions, consequently
|∂x′/∂x|1/d is a length rescale. This transformation rule defines a so-called primary oper-
ator.

2.4 Conformal Ward Identities

In this section we analyse the consequences of conformal symmetry. We will show that
conformal symmetry imposes constraints on the observables allowing a non-perturbative
approach to CFT.

In field theory, invariance implies the following equivalence between correlators [55]

〈O1(x1)O2(x2) · · · On(xn)〉 = 〈O′1(x1)O′1(x2) · · · O′n(xn)〉, (2.42)

where Oi(xi) is a scalar operator with scaling dimension ∆i and O′i(xi) is the transformed
operator. One can show that the above equation holds by considering the path-integral
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Chapter 2. Conformal field theory in position space

formalism for correlators. Let SCI be a conformally invariant action, then

〈O1(x1)O2(x2) · · · On(xn)〉 =

∫
[DO]O1(x1)O2(x2) · · · On(xn)e−SCI[O]

=

∫ [
DO′

]
O′1(x1)O′2(x2) · · · O′n(xn)e−SCI[O′]

=

∫
[DO]O′1(x1)O′2(x2) · · · O′n(xn)e−SCI[O]

= 〈O′1(x1)O′2(x2) · · · O′n(xn)〉, (2.43)

where in the second line we renamed O → O′, while in the third line we considered
conformal invariance both of the action and the functional measure [DO]. When the
latter is not invariant, however, there will be an anomaly corresponding to the symmetry
breaking and equation (2.42) will be modified with an additional term. This is related to
renormalisation which we will discuss later in Chapter 3. In the following we assume the
symmetry is not broken. At the infinitesimal level, equation (2.42) reads

0 = δ〈O1(x1)O2(x2) · · · On(xn)〉

=

n∑
i=1

〈O1(x1)O2(x2) · · · δOi(xi) · · · On(xn)〉. (2.44)

This equation amounts to a set of differential equations, known as conformal Ward iden-
tities (CWIs). To obtain their expressions, we express δOi(xi) = O(x′i)−O(x) in (2.44)
using (2.38). For translations, δO(x) = aµ∂µO(x) and the Ward identity reads

n∑
i=1

∂

∂xµi
〈O1(x1)O2(x2) · · · On(xn)〉 = 0, (2.45)

while rotation Ward identity is

n∑
i=1

(xµi ∂
ν
i − xνi ∂

µ
i ) 〈O1(x1)O2(x2) · · · On(xn)〉 = 0. (2.46)

These two transformations require the scalar n-point correlator to be a function of the
coordinate separations

xij = |xi − xj |, i, j = 1, .., n. (2.47)

Less trivial are the constraints imposed by dilatation and special conformal Ward identities
which read respectively

n∑
i=1

(
xµi

∂

∂xµi
+ ∆i

)
〈O1(x1)O2(x2) · · · On(xn)〉 = 0, (2.48)

n∑
i=1

{(
x2
i η
µν − 2xµi x

ν
i

) ∂

∂xµi
− 2∆ix

ν
i

}
〈O1(x1)O2(x2) · · · On(xn)〉 = 0, (2.49)

where we used equations (2.39) and (2.40). The dilatation Ward identity (DWI) implies
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that the correlator has to be a homogeneous function of the positions of degree −∆t,
with ∆t =

∑n
i=1 ∆i. As it is now evident, each Ward identity constrains the shape of

correlators. Finally, let us mention that conformal symmetry also implies the following
equivalence between correlators

〈O1(x′1) · · · On(x′n)〉 =

∣∣∣∣∂x′1∂x1

∣∣∣∣−∆1/d

· · ·
∣∣∣∣∂x′n∂xn

∣∣∣∣−∆n/d

〈O1(x1) · · · On(xn)〉, (2.50)

which directly stems from equation (2.41). This is how the correlator transforms under a
finite conformal transformation.
In the following we will list the solutions for 2-, 3-, 4- and n−point scalar correlators
obtained by solving these constraints.

2.5 Position-space conformal correlators

In this section we present the solutions of position-space conformal Ward identities. We
will show that up to 3-point functions, the solution is unique.

First, let us note that the 1-point function vanishes

〈O1(x1)〉 = 0. (2.51)

In fact, translations and rotations require it to be a constant, 〈O1(x1)〉 =const. A non-
vanishing constant, however, would violate scaling invariance. To find solutions for n ≥ 2
we need instead the full set of CWIs as we show in the following sections.

2.5.1 2-point function

Translation and rotation symmetries imply that the 2-point correlator is a function of x12,
while dilatations require the correlator to be a homogeneous function in the positions with
degree −∆t. Hence the 2-point correlator must be of the form

〈O1(x1)O2(x2)〉 ∝ x−∆1−∆2
12 . (2.52)

Finally, the SCWI imposes a further constraint on the scaling dimension. By acting with
the SCWI on the 2-point function above, one finds that a non-vanishing solution exists if
and only if ∆1 = ∆2 = ∆. Therefore the general 2-point scalar function is

〈O1(x1)O2(x2)〉 =

{
C12x

−2∆
12 , ∆1 = ∆2 = ∆

0, ∆1 6= ∆2

, (2.53)

where C12 is a normalisation constant, it can be set to one by normalising the scalar
operators.
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2.5.2 3-point function

The solution of 3-point function CWIs is also unique. As above, translation and rotation
invariance requires the 3-point scalar correlator to be a function of xij , with i 6= j = 1, 2, 3

〈O1(x1)O2(x2)O3(x3)〉 = f(x12, x13, x23). (2.54)

The dilatation Ward identity specifies the function to be

〈O1(x1)O2(x2)O3(x3)〉 ∝ x2α12
12 x2α13

13 x2α23
23 , (2.55)

where αij are some constants that satisfy∑
1≤i<j≤3

αij = −∆t. (2.56)

Finally, the SCWI fixes uniquely the values of the parameters αij , since the terms of the
sum in equation (2.49) are three, as the number of the unknown parameters. Instead of
substituting the ansatz in the SCWI, we use equation (2.50) to find their values. Squaring
equation (2.21), one can show that

x′2ij =
x2
ij

γiγj
, (2.57)

where we defined γi = 1− 2b · xi + b2x2
i . And taking into account that for SCTs∣∣∣∣∂x′i∂xi

∣∣∣∣1/d = γ−1
i , (2.58)

using equation (2.50) we find

∆i = −
3∑
j=1

αij , i = 1, 2, 3, (2.59)

which fixes αij to
2α12 = 2∆3 −∆t, (2.60)

along with cyclic permutations. Hence the general solution of 3-point scalar CWIs is
unique and it reads

〈O1(x1)O2(x2)O3(x3)〉 =
C123

x∆1+∆2−∆3
12 x∆1−∆2+∆3

13 x−∆1+∆2+∆3
23

. (2.61)

Note that while the constant C12 could be set to one, this is not possible with the constant
C123. In fact, the latter is related to physical properties and is called “OPE constant” or
“structure constant”.
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2.5.3 4-point function

While symmetry fixes 2- and 3-point functions completely up to constants, 4-point and
higher-point functions are not uniquely fixed. However, conformal symmetry imposes
strong constraints on their form. Here we will analyse the solution of 4-point CWIs and
in the next section we will generalise the result to n-point functions.

Translation, rotation and dilatation invariance constrain the form of the solution to be

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 ∝
∏

1≤i<j≤4

x
2αij
ij , (2.62)

where ∑
1≤i<j≤4

2αij = −∆t, (2.63)

and without loss of generality we assume αij = αji and αii = 0.
Note that in this case the number of coordinate separations xij is larger than the

number n of constraints following from the SCWI. To be more specific, there are n(n−1)/2
coordinate separations and n constraints from the SCWI. This implies that there are
n(n − 3)/2 degree of freedom in the general solution. As showed earlier, under special
conformal transformations, equation (2.57) holds, therefore

∆i = −
4∑
j=1

αij , i = 1, .., 4. (2.64)

Note that, unlike for n = 3, this condition does not fully fix the parameters αij . Moreover,
due to equation (2.57), 4-point functions admit two simple conformal invariants, the so
called conformal cross ratios:

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

13x
2
24

x2
14x

2
23

. (2.65)

Therefore, the general 4-point function also depends on an arbitrary function f of cross
ratios:

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 = f(u, v)
∏

1≤i<j≤4

x
2αij
ij , (2.66)

where the parameters αij are related to the scaling dimension as in equation (2.64). In
the following section we generalise this result to n-point and discuss the dependence of
the number of independent cross ratios on the spacetime dimension d and the number of
points n.

2.5.4 n-point function

The result given in the previous section can be generalised to n points. The general solution
is the following conformally invariant n-point function of scalar operators O1, ...,On with
scaling dimensions ∆1, ...,∆n:

〈O1(x1) · · · On(xn)〉 =
∏

1≤i<j≤n
x

2αij
ij f(u), (2.67)
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where the parameters αij are related to the scaling dimensions by the formula implied by
special conformal invariance

∆i = −
n∑
j=1

αij , i = 1, 2, .., n, (2.68)

and f is an arbitrary function of Nd,n independent cross ratios

upqrs =
x2
prx

2
qs

x2
pqx

2
rs

, (2.69)

where p, q, r, s = 1, 2, .., n. We denote the set of all independent cross ratios with the
symbol u. As discussed in [91–93], the number of independent cross ratios Nd,n depends
on the number of points n and the spacetime dimension d

Nd,n = n(n− 3)/2, n ≤ d+ 2,

Nd,n = nd− (d+ 2)(d+ 1)/2, n > d+ 2. (2.70)

To understand this counting, let us consider n points x1, ...,xn in a d−dimensional space-
time. Using conformal transformations some of these n points can be fixed in the space-
time. For example, x1 can be sent to infinity by using a special conformal transformation,
while using translations x2 can be fixed at the origin. Then x3 can be set at (1, 0, ..., 0)
by performing a rotation together with a dilatation (which fixes the non-zero coordinate
to be equal to one):

x3 = (1, 0, ..., 0), (2.71)

where the vector contains d − 1 zero components. For the other points, we can use the
remaining rotations if available, depending on the spacetime dimension d. By doing a
rotation in a (d − 1)−dimensional spacetime (so that x3 remains fixed) we can move x4

to lie in the plane spanned by the first two axes, i.e.,

x4 = (X
(4)
1 , X

(4)
2 , 0, ..., 0), (2.72)

which has m = 2 degrees of freedom. We iterate this procedure by performing rotations
in successively lower-dimensional spaces, giving for instance

x5 = (X
(5)
1 , X

(5)
2 , X

(5)
3 , 0, ..., 0), (2.73)

that has m = 3 degrees of freedom. The nth point will be

xn = (X
(n)
1 , X

(n)
2 , ..., X

(n)
n−2, 0, ..., 0). (2.74)

Summing all the degrees of freedom m for each point, we find

Nd,n =

n−2∑
m=2

m =
1

2
n(n− 3). (2.75)
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Note that we implicitly assumed d ≥ n − 2 so far. When n = 4, for d ≥ 2 (and in this
thesis we are considering d ≥ 3), this assumption holds. Hence this counting of cross ratios
holds and gives, as expected, Nd,n = 2. On the other hand, if d < n − 2 (or equivalently
n > d + 2), then all xk, with k ≥ d + 2, will have d free parameters since there are no
rotational degrees of freedom left to fix them. So we have

xk = (X1, X2, ..., Xd), k = d+ 3, .., n. (2.76)

Hence, the counting of the degrees of freedom becomes

Nd,n =
( d∑
m=2

m
)

+ d (n− (d+ 2)) = nd− 1

2
(d+ 2)(d+ 1). (2.77)

Note that the two values for Nd,n in equations (2.75) and (2.77) coincide when n = d+ 1
or n = d+ 2.
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Chapter 3

Conformal field theory in
momentum space

3.1 Introduction

In this chapter we give an overview of the main results in momentum-space CFT. As a
counterpart to the previous chapter, we first derive CWIs in momentum space. Then, we
solve them from 2- to general n-point. We show that up to three points the symmetry
fixes uniquely the form of correlators and discuss their singularities and renormalisation.
In particular, we derive the 3-point function in the form of the triple-K integral, an integral
of three Bessel functions of the second kind and find equivalent representations. Then,
we introduce shift operators acting on the 3-point function to shift the parameters. This
helps the evaluation of special 3-point functions which would be otherwise difficult. While
3-point functions are well understood, the knowledge of higher-point functions is less
complete. We then present the general n-point function recently found as a Feynman
integral over a (n− 1)-simplex, featuring an arbitrary function of momentum-space cross
ratios and conclude with a summary and open questions which will be addressed in the
second part of the thesis.

3.2 Conformal Ward identities

In Chapter 2 we presented the scalar conformal Ward identities in position space. To
explore the implications of conformal symmetry in momentum space we start with deriv-
ing the corresponding momentum-space conformal Ward identities. We obtain a set of
differential equations that must be satisfied by conformal correlators. This means that, as
in position space, CWIs constrain the form of conformal correlators. Moreover, the theory
of differential equations and multivariable hypergeometric functions reveals a description
of 3-point functions and certain special 4-point functions [94, 95] in terms of known hyper-
geometric functions such as Appell F4 or Lauricella FC . In Chapter 5 we will also describe
some of these solutions as generalised hypergeometric functions introduced by Gelfand,
Kapranov, and Zelevinsky (GKZ systems).

The momentum-space dilatation and special conformal Ward identities read

0 = D〈〈O(p1)...O(pn)〉〉, (3.1)
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0 = Kµ〈〈O(p1)...O(pn)〉〉, (3.2)

where double brackets denote the reduced correlators related to the standard correlator
by pulling out the delta function of momentum-conservation:

〈O1(p1) · · · On(pn)〉 = (2π)dδ(p1 + · · ·+ pn)〈〈O1(p1) · · · On(pn)〉〉, (3.3)

while D and Kµ respectively are the dilatation and the special conformal operators:

D = −(n− 1)d+ ∆t −
n−1∑
j=1

pµj
∂

∂pµj
,

Kµ =

n−1∑
j=1

Kµj , (3.4)

with

Kµj = 2(∆j − d)
∂

∂pjµ
− 2pνj

∂

∂pνj

∂

∂pjµ
+ pµj

∂

∂pνj

∂

∂pjν
, (3.5)

and ∆t =
∑n

j=1 ∆j . To derive the momentum-space CWIs above, we consider the inverse
Fourier transform of position-space correlators

〈O1(x1) · · · On(xn)〉 =

 n∏
j=1

∫
ddpj
(2π)d

eipj ·xj

 〈O1(p1) · · · On(pn)〉. (3.6)

Translational invariance corresponds to pulling out a momentum-conserving delta func-
tion. To see this, we take the inverse Fourier transform of

〈O1(x1) · · · On(xn)〉 = 〈O1(x1 − xn) · · · On(0)〉, (3.7)

leading to

〈O1(x1) · · · On(xn)〉 =

n−1∏
j=1

∫
ddpj
(2π)d

eipj ·xjn

 〈〈O1(p1) · · · On(pn)〉〉, (3.8)

with xjn = xj − xn. We act with the position-space dilatation and special conformal
operators, (2.48) and (2.49), on the right-hand side of (3.8). This amounts to considering

the action only on the exponential factor exp
(∑n−1

j=1 pj · xjn
)

. For this purpose, we re-

write the position-space CWIs by eliminating the derivative with respect to xµn via the
translational Ward identity (2.45),

∂

∂xµn
→ −

n−1∑
j=1

∂

∂xµj
. (3.9)
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Thus, the rotation and dilatation Ward identities in position space read

0 =

n−1∑
j=1

(
xµjn

∂

∂νj
− xνjn

∂

∂µj

)
〈O1(x1)O2(x2) · · · On(xn)〉, (3.10)

0 =

∆t +
n−1∑
j=1

xµjn
∂

∂xµj

 〈O1(x1)O2(x2) · · · On(xn)〉. (3.11)

Rearranging the SCWI we have

0 =

n−1∑
j=1

{(
x2
jnη

µν − 2xµjnx
ν
jn

) ∂

∂xµj
− 2∆jx

ν
jn

}
〈O1(x1)O2(x2) · · · On(xn)〉

+ 2xνn

n−1∑
j=1

(
xµjn

∂

∂νj
− xνjn

∂

∂µj

)
〈O1(x1)O2(x2) · · · On(xn)〉

− 2xµn

∆t +
n−1∑
j=1

xµjn
∂

∂xµj

 〈O1(x1)O2(x2) · · · On(xn)〉, (3.12)

where the last two lines vanish upon (3.10) and (3.11) respectively. After having expressed
the position-space CWIs only in terms of xjn and ∂/∂xµj , with j = 1, ..., n−1, the standard
Fourier correspondence holds

xµjn → −i
∂

∂pµj
,

∂

∂xµj
→ ipµj , j = 1, .., n− 1. (3.13)

To find the dilatation and special conformal Ward identities in momentum space, we then
act with the operators in (3.11) and (3.12) on the right-hand side of (3.8) and integrate
by parts with respect to the momenta. This leads to the CWIs (3.1) and (3.2).

In the following section we will solve 2- and 3-point CWIs directly and find a represen-
tation for the general n-point function that solves the CWIs. Before moving to the next
sections, let us note that we can obtain a set of scalar SCWIs. In fact, in momentum space
we have the advantage of decomposing the operator Kµ into a basis of n− 1 independent
vectors pµj , with j = 1, .., n− 1:

Kµ = pµ1K1 + · · ·+ pµn−1Kn−1. (3.14)

Hence, the SCWI (3.2) is equivalent to n− 1 scalar equations

Kj〈〈O(p1)...O(pn)〉〉 = 0, j = 1, ..., n− 1. (3.15)

3.3 2-point function

Conformal invariance implies that the 1-point function vanishes, hence the first non trivial
correlator is the 2-point function. In this section we solve momentum-space CWIs at two
points. The complexity of the set of differential equations to be solved and their solutions
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increases with the number of points n.
Translational invariance corresponds to momentum conservation, hence the 2-point

correlator depends only on p ≡ p1 = −p2. Therefore the expansion in (3.14) contains
only one term. Moreover, rotational invariance implies that the scalar correlator only
depends on scalar quantities, which in this case is the magnitude p of the momentum p.
Using the chain rule

d

dpµ
=
pµ

p

d

dp
, (3.16)

from (3.1) and (3.15), we obtain the 2-point DWI and SCWI

0 =

(
d−∆1 −∆2 + p

d

dp

)
〈〈O(p)O(−p)〉〉, (3.17)

0 =

(
d2

dp2
+
d− 2∆1 + 1

p

d

dp

)
〈〈O(p)O(−p)〉〉. (3.18)

We start with solving the SCWI. The general solution of (3.18) reads

〈〈O(p)O(−p)〉〉 = c0p
2∆1−d + c1, (3.19)

where c0 and c1 are integration constants. We then plug this expression into the dilatation
Ward identity (3.17) and find

∆1 = ∆2 ≡ ∆, c1 = 0, (3.20)

as expected from the 2-point position-space solution. So the general 2-point conformal
correlator is

〈〈O(p)O(−p)〉〉 = c0p
2∆−d. (3.21)

We could have found this solution by Fourier transforming the known position-space
solution. Setting C12 = 1 in (2.53), we find the correspondent solution in momentum
space

〈〈O(p)O(−p)〉〉 =

∫
ddx

(2π)d
e−ip·xx−2∆ =

2d−2∆πd/2Γ
(
d
2 −∆

)
Γ(∆)

p2∆−d, (3.22)

where we wrote x−2∆ using the Schwinger parametrisation [65]

1

Aν
=

1

Γ(ν)

∫ ∞
0

dλλν−1e−λA, (3.23)

and performed the resulting Gaussian integral.

3.4 3-point function

In this section we present the 3-point function. First we solve the 3-point conformal
Ward identities by separation of variables, giving a scalar representation of the solution.
Then, we discuss the uniqueness of this solution by looking at its asymptotic behaviour
and the singularities arising from collinear configurations of the momenta. This leads to
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a unique 3-point function known as the triple-K integral. We then present equivalent
representations in terms of the generalised hypergeometric function Appell F4 and of a
1-loop triangle Feynman diagram.

Let us first write the 3-point CWIs in terms of scalar invariants. Poincaré invariance
implies that 3-point correlators depend on the scalars formed with p1 and p2: we choose
the momenta magnitudes pj , with j = 1, 2, 3. Let us start with the dilatation Ward
identity. Taking into account that p3 = −p1 − p2, we find the chain rules

∂

∂pµ1
=
pµ1
p1

∂

∂p1
+
pµ1 + pµ2
p3

∂

∂p3
,

∂

∂pµ2
=
pµ2
p2

∂

∂p2
+
pµ1 + pµ2
p3

∂

∂p3
. (3.24)

Hence, we can write the dilatation Ward identity in terms of scalar variables:

0 = D〈〈O1(p1)O2p2O3p3)〉〉 =

2d−∆t +

3∑
j=1

pj
∂

∂pj

 〈〈O1(p1)O2p2O3p3)〉〉. (3.25)

As noted earlier, this equation tells us that its solution is a homogeneous function of degree
∆t − 2d. This means that we can write the solution in the following way

〈〈O1(p1)O2p2O3p3)〉〉 = p∆t−2d
3 F

(
p1

p3
,
p2

p3

)
, (3.26)

where here F is a general function. To determine its explicit expression we need the special
conformal Ward identity

Kµ〈〈O1(p1)O2p2O3p3)〉〉 = 0, (3.27)

where
Kµ = pµ1K1 + pµ2K2. (3.28)

Therefore the SCWI (3.27) is equivalent to the system formed by the following two scalar
equations

Kj〈〈O1(p1)O2(p2)O3(p3)〉〉 = 0, j = 1, 2. (3.29)

Using the chain rule (3.24) we find the operators Kj . The explicit expression of K1 is

K1 =
∂2

∂p2
1

+
∂2

∂p2
3

+
2p1

p3

∂2

∂p1∂p3
+

2p2

p3

∂2

∂p2∂p3
− 2∆1 − d− 1

p1

∂

∂p1

− 2∆1 + 2∆2 − 3d− 1

p3

∂

∂p3
, (3.30)

and K2 can be obtained by permuting 1↔ 2 indices. Since these operators contain mixed
derivatives, we eliminate the mixed terms by invoking the DWI (3.25). We define

K13 = K1 −
2

p3

∂

∂p3
D, K23 = K2 −

2

p3

∂

∂p3
D, (3.31)
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hence the set of equations (3.25) amounts to the following simpler version

Kj3〈〈O1(p1)O2(p2)O3(p3)〉〉 = 0, j = 1, 2, (3.32)

where

Kij = Ki−Kj ,

Ki ≡
∂2

∂p2
i

− 2∆i − d− 1

pi

∂

∂i
, i 6= j = 1, 2, 3. (3.33)

Note that the operator Ki appeared already in the 2-point special conformal Ward identity
in equation (3.18).

In the following we find the general solution of the CWIs that – to summarise – we
wrote as the following set of equations

D〈〈O1(p1)O2(p2)O3(p3)〉〉 = 0,

K13〈〈O1(p1)O2(p2)O3(p3)〉〉 = 0,

K23〈〈O1(p1)O2(p2)O3(p3)〉〉 = 0. (3.34)

Before showing how to solve these, we give the general solution known as the triple-K
integral :

〈〈O1(p1)O2(p2)O3(p3)〉〉 = c123

∫ ∞
0

dx xα
3∏
j=1

p
βj
j Kβj (pjx), (3.35)

where c123 is an integration constant and Kβj is the modified Bessel function of the second
kind, also known as Bessel-K function [96]. The parameters α and βj are related to the
physical spacetime dimension and the scaling dimensions as follows:

α =
d

2
− 1, βj = ∆j −

d

2
, j = 1, 2, 3. (3.36)

In the following we will denote the triple-K integral (3.35) with Iα{β1β2β3}.
Let us present the derivation of the general solution. We denote the general solution

as f . Taking into account the definitions in (3.33), we can write the last two equations of
(3.34) as

K1 f = K2 f = K3 f. (3.37)

Therefore we use separation of variables

〈〈O1(p1)O2(p2)O3(p3)〉〉 = f(p1)f(p2)f(p3), (3.38)

leading to
K1 f1

f1
=

K2 f2

f2
=

K3 f3

f3
= x2, (3.39)

where x2 is a constant. Then, we have to solve the equation

Ki fi =

(
∂2

∂pi
+

1− 2βi
pi

∂

∂pi

)
fi = x2fi, (3.40)
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which is equivalent to the modified Bessel’s equation,[
p2
i ∂

2
i + pi∂i − (p2

ix
2 + β2)

]
ui = 0, (3.41)

with fi = pβii ui and ∂i = ∂/∂pi. Hence, the general solution of (3.40) is a linear combina-
tion of Bessel-K and Bessel-I functions:

fi(pi) = pβii [aKKβi(pix) + aIIβi(pix)] , (3.42)

and f =
∏
i fi(pi) solves the SCWIs. By linearity, indeed, any integral

∫
dxρ(x)f over a

spectral function ρ(x) solves the CWIs. The dilatation Ward identity fixes the form of
this function. Noting that

3∑
i=1

pi∂if(p1x, p2x, p3x) = x∂xf(p1x, p2x, p3x), (3.43)

we have∫ ∞
0

dxρ(x)x∂xf(p1x, p2x, p3x) = (βt − α− 1)

∫ ∞
0

dxρ(x)f(p1x, p2x, p3x), (3.44)

where we defined βt = β1 + β2 + β3. Integrating by parts we find ρ(x) = xα−βt . Therefore
we conclude that if f(p1, p2, p3) is the solution of the SCWIs, then

I =

∫ ∞
0

dxxα−βtf(p1x, p2x, p3x) (3.45)

solves the DWI. The solution we found is not exactly the triple-K integral in (3.35), since
the function f involves also Bessel-I functions. A discussion based on physical properties
of the solution restricts I to the final form of a triple-K integral, as we explain in the
following section.

3.4.1 Collinear singularities

For (3.45) to converge, at least one of the fi(pi) needs to be a Bessel-K function. Let us
assume f3 ∼ Kβ3 , then the conformal Ward identities admit four independent solutions
that schematically we can refer to as IIK, KIK, IKK, KKK. In this section we show
that only one of them is physically acceptable, leading to the triple-K integral (3.35). This
conclusion agrees with the result in position-space, where the 3-point function is unique.

To see this, consider the behaviour of modified Bessel functions when their argument
is large,

Iν(x) =
1√
2π

ex√
x

+ . . . , Kν(x) =

√
π

2

e−x√
x

+ . . . , x→∞. (3.46)

Since the Bessel-I function diverges for large x, as we anticipated, the solution must have
at least one Bessel-K function in the integrand. Now, let us consider the case where the
integrand is of the form IIK. According to the asymptotic behaviours (3.46), in order for
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the integral to converge, the following condition must hold

p3 ≥ p1 + p2. (3.47)

This violates the triangle inequality (p3 ≤ p1 + p2), therefore we exclude solutions of the
form IIK. If we consider the integrand with only one Bessel-I (IKK), we find that this is
also forbidden since it is singular for collinear momentum configurations. In fact, at large
x the integral would approximately be

I ∼
∫

dxxα−
3
2 e(p1−p2−p3)x. (3.48)

While the triangle inequality is respected, if the momenta are collinear, i.e., p1 = p2 + p3,
the integral diverges when α ≥ 1/2, hence d ≥ 3. Therefore we find that only a unique
3-point function exists, given by the triple-K integral

Iα{β1β2β3} = c123

∫ ∞
0

dxxα
3∏
j=1

p
βj
j Kβj (pjx). (3.49)

In the following, we present some explicit examples of triple-K integrals, for special values
of the parameters.

3.4.2 Examples

In this section we consider two examples. When the βi are half-integer, the integral is
given by elementary functions, while for integer βi, the triple-K can be expressed in terms
of the Bloch-Wigner function.

1. d = 4, ∆1 = ∆2 = ∆3 = 5/2.
In this case all βi are half integers:

α =
d

2
− 1 = 1, βi = ∆i −

d

2
=

1

2
, (3.50)

and the 3-point correlator reads

〈〈O1(p1)O2(p2)O3(p3)〉〉 = c(p1p2p3)
1
2

∫ ∞
0

dx xK 1
2
(p1x)K 1

2
(p2x)K 1

2
(p3x). (3.51)

The Bessel-K function in the integrand is

K 1
2
(x) =

√
π

2

e−x

x1/2
, (3.52)

and the integral is convergent giving

〈〈O1(p1)O2(p2)O3(p3)〉〉 =
cπ2

2
3
2

1√
p1 + p2 + p3

. (3.53)

2. d = 4, ∆1 = ∆2 = ∆3 = 2.

27



Chapter 3. Conformal field theory in momentum space

In this case all βi are integers

α =
d

2
− 1 = 1, βi = ∆i −

d

2
= 0, (3.54)

and we denote the 3-point function as

〈〈O1(p1)O2(p2)O3(p3)〉〉 = cI1{000}, (3.55)

where the integral I1{000} is a known integral in literature [97, 98] and is expressed
in terms of the dilogarithm function Li2 [99]. We show the explicit computation of
I1{000} in appendix A and quote here the final result:

I1{000} =
1

2
√
−J2

[
Li2(z̄)− Li2(z)− 1

2
ln(zz̄) ln

(
1− z
1− z̄

)]
, (3.56)

where the z-variables are related to the momenta magnitudes by

zz̄ =
p2

1

p2
3

, (1− z)(1− z̄) =
p2

2

p2
3

, (3.57)

or equivalently

z =
1

2p2
3

(
p2

1 − p2
2 + p2

3 +
√
−J2

)
, z̄ =

1

2p2
3

(
p2

1 − p2
2 + p2

3 −
√
−J2

)
, (3.58)

where we defined

J2 = (p1 + p2 − p3)(p1 − p2 + p3)(−p1 + p2 + p3)(p1 + p2 + p3)

= −(z − z̄)2p4
3. (3.59)

Note that J2 is related to the Gram determinant of p1 and p2:

J2 = 4G(p1,p2), (3.60)

and hence
√
J2 is proportional to the area of the triangle AT(p1, p2, p3) whose sides

are p1, p2, p3. The solution I1{000} is related to the Bloch-Wigner function D(z) in
the following way

I1{000} =
D(z)√
−J2

=
Vol(∆)

4AT(p1, p2, p3)
. (3.61)

Finally, let us note that the integral I1{000} is an example of a master integral : we can
obtain all triple-K integrals with integral βi from it by acting with shift operators,
as we will explain later in the thesis.

Below we summarise the dependence of the triple-K integral on βi:

• all βi half-integral ⇒ Iα{β1β2β3} in terms of elementary functions of momentum
magnitudes

• all βi integral ⇒ Iα{β1β2β3} in terms of dilogarithms.
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3.4.3 The 3-point function as a hypergeometric system

In this section we show an alternative way of solving the conformal Ward identities with the
aim of stressing the connection between CWIs and hypergeometric systems. It has been
shown independently in [43] and [100] that the solution of 3-point CWIs can be expressed
in terms of the generalised hypergeometric function of two variables Appell F4 [101, 102].
In fact, the system of dilatation and special conformal Ward identities is equivalent to the
set of differential equations defining Appell F4 function:

0 =

[
ξ(1− ξ) ∂

2

∂ξ2
− η2 ∂

2

∂η2
− 2ξη

∂2

∂ξ∂η

+
(
γ − (α+ β + 1)ξ

) ∂
∂ξ
− (α+ β + 1)η

∂

∂η
− αβ

]
F (ξ, η), (3.62)

0 =

[
η(1− η)

∂2

∂η2
− ξ2 ∂

2

∂ξ2
− 2ξη

∂2

∂ξ∂η

+
(
γ′ − (α+ β + 1)η

) ∂
∂η
− (α+ β + 1)ξ

∂

∂ξ
− αβ

]
F (ξ, η). (3.63)

where

ξ =
p2

1

p2
3

, η =
p2

2

p2
3

, (3.64)

and α, β, γ, γ′ are some linear combinations of the spacetime d and the scaling dimensions
∆i. Amongst the well known properties of the Appell F4 system, let us note that it admits
four linearly independent solutions:

F4(α, β; γ, γ′; ξ, η),

ξ1−γF4(α+ 1− γ, β + 1− γ; 2− γ, γ′; ξ, η),

η1−γ′F4(α+ 1− γ′, β + 1− γ′; γ, 2− γ′; ξ, η),

ξ1−γη1−γ′F4(α+ 2− γ − γ′, β + 2− γ − γ′; 2− γ, 2− γ′; ξ η). (3.65)

In the following we briefly explain how to show the equivalence between the Appell F4

system and the conformal Ward identities. First, we recall that the dilatation Ward
identity allows us to write the following ansatz for the general solution:

〈〈O(p1)O(p2)O(p3)〉〉 = p∆t−2d
3

(
p2

1

p2
3

)µ(
p2

2

p2
3

)λ
F

(
p2

1

p2
3

,
p2

2

p2
3

)
, (3.66)

with λ and µ arbitrary parameters. We also use the dilatation Ward identity (3.25)
to eliminate the derivatives with respect to p3 appearing in the special conformal Ward
identities:

∂

∂p3
→ 1

p3

(
∆t − 2d− p1

∂

∂p1
− p2

∂

∂p2

)
. (3.67)

Then, by using the chain rule to rewrite the special conformal Ward identities in terms of
ξ, η and their derivatives, we find that these equations coincide with those defining the
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Appell F4 system, when

µ =
1

2

(
∆1 −

d

2

)
(ε1 + 1), λ =

1

2

(
∆2 −

d

2

)
(ε2 + 1), (3.68)

with ε1, ε2 ∈ {−1,+1}. And

α =
1

2

[
ε1

(
∆1 −

d

2

)
+ ε2

(
∆2 −

d

2

)
+ ∆3

]
,

β = α−
(

∆3 −
d

2

)
,

γ = 1 + ε1

(
∆1 −

d

2

)
,

γ′ = 1 + ε2

(
∆2 −

d

2

)
. (3.69)

As showed in the previous section, the 3-point function is unique. Here, again, to avoid
collinear singularities, only a particular linear combination of the four linearly independent
solutions (3.65) is acceptable. In fact, Appell F4 has the integral representation [103]

F4

(
α, β; γ, γ′;

p2
1

p2
3

,
p2

2

p2
3

)
=

Γ(γ)Γ(γ′)

2α+β−γ−γ′Γ(α)Γ(β)
· pα+β

3

pγ−1
1 pγ

′−1
2

×

×
∫ ∞

0
dxxα+β−γ−γ′+1Iγ−1(p1x)Iγ′−1(p2x)Kβ−α(p3x), (3.70)

and taking into account (3.69), the four solutions read

p
∆1− d2
1 p

∆2− d2
2 p

∆3− d2
3

∫ ∞
0

dx x
d
2
−1I±(∆1− d2 )(p1x)I±(∆2− d2 )(p2x)K∆3− d2

(p3x). (3.71)

We explained earlier that ‘IIK’ integrals have singularities for collinear configurations of
the momenta. However, since

Kν(x) =
π

2 sin(νπ)
[Iν(x)− I−ν(x)] , (3.72)

we recover the triple-K solution by taking the following linear combination of the integrals
in (3.71):∫ ∞

0
dx xα−1Kβ1(p1x)Kβ2(p2x)Kβ3(p3x)

=
2α−4

cα
[A(β1, β2) +A(β1,−β2) +A(−β1, β2) +A(−β1,−β2)] , (3.73)

where

A(β1, β2) =

(
p1

p3

)β1
(
p2

p3

)β2

Γ

(
α+ β1 + β2 − β3

2

)
Γ

(
α+ β1 + β2 + β3

2

)
Γ(−β1)Γ(−β2)
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p1 p2

p3

q

Figure 3.1: The 1-loop massless triangle graph (3.75).

u23

u13 u12=

1/Z3 1/Z2

1/Z1

Figure 3.2: Equivalent electrical networks of resistors under star-mesh duality, where the resistances
are related as given in (3.84). The external currents flowing into the corresponding dotted nodes
and the overall power dissipation are equal.

× F4

(
α+ β1 + β2 − β3

2
,
α+ β1 + β2 + β3

2
;β1 + 1, β2 + 1;

p2
1

p2
3

,
p2

2

p2
3

)
. (3.74)

3.4.4 The triple-K integral as a triangle Feynman integral

In this section we introduce a further representation of the 3-point function: we show the
equivalence between the triple-K integral and the 1-loop triangle Feynman integral (see
fig. 3.1

Id{α12,α13,α23} =

∫
ddq

(2π)d
1

|q|2α12+d|q − p1|2α13+d|q + p2|2α23+d
. (3.75)

The relation between these two representations is

Iα{β1β2β3} = CT Id{α12,α13,α23} (3.76)

with

CT = c1232
3
2
d−4πd/2Γ

(
∆t − d

2

) ∏
1≤j<k≤3

Γ

(
αjk +

d

2

)
. (3.77)

To show that equation (3.76) holds, here we will manipulate both integrals. The reader
can find how to derive the triangle integral starting from the triple-K (and vice versa) in
[46] and [42]. The equivalence between these representations is the star-mesh equivalence
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of electrical circuits in disguise. To see this, we will Schwinger parametrise both rep-
resentations and perform a star-mesh transformation between the respective Schwinger
parameters uij and Zj . The triangle integral can be thought as the ‘mesh’ circuit with re-
sistances uij , while the triple−K integral corresponds to the ‘star’ circuit with resistances
1/Zj (see fig. 3.2) with the external momenta pj the ingoing currents. Later in this thesis
we will see how the connection between electrical networks and integral representations
of conformal correlation functions can be used to find new scalar representations of the
general n-point function.

Let us consider the triple-K integral (3.35). We re-express the Bessel-K functions using
the integral formula [96]

Kν(z) =
1

2

(
1

2
z

)ν ∫ ∞
0

dt t−ν−1 exp

(
−t− z2

4t

)
, (3.78)

giving

p
βj
j Kβj (pjx) =

1

2

(x
2

)βj ∫ ∞
0

dZj Z
βj−1
j exp

(
−
p2
j

Zj
− x2Zj

4

)
, (3.79)

where Zj = p2
j/t. We set z = x2/4 and perform the integral over z using (3.23), leading

to

Iα{β1β2β3} = c1232α−1Γ

(
∆t − d

2

) 3∏
j=1

∫ ∞
0

dZj Z
βj−1
j

Z
d−∆t

2
t exp

−∑
j

p2
j

Zj

 , (3.80)

where we defined Zt = Z1 + Z2 + Z3. The Zj variables can be interpreted as the conduc-
tivities of the ‘star’ network and the argument of the exponential can be seen as the power
dissipated in the same circuit.

Let us now work on the triangle Feynman integral (3.75). We Schwinger-parametrise
the factors in the denominator by using equation (3.23)

Id{α12α13α23} = C

 ∏
1≤j<k≤3

∫ ∞
0

dujk u
αjk+ d

2
−1

jk

U−
d
2 exp

(
−F
U

)
, (3.81)

with

C = (4π)−
d
2

∏
1≤j<k≤3

Γ

(
αjk +

d

2

)
, (3.82)

and U and F the Symanzik polynomials

U = u12 + u13 + u23, F = p2
1u12u13 + p2

2u12u23 + p2
3u13u23. (3.83)

Finally, we diagonalise the exponential by performing the ‘star-mesh’ change of variables.
In fact, the Schwinger parameters ujk can be interpreted as the resistances of the triangle
(or mesh) circuit which are related to the conductivities Zi of the star circuit via

uikujk
ut

=
1

Zk
, i, j, k = 1, 2, 3, (3.84)
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giving

Id{α12α13α23} = C

 3∏
j=1

∫ ∞
0

dZj Z
(αik−αt− d2 )−1

j

Z
αt+

d
2

t exp

−∑
j

p2
j

Zj

 , (3.85)

with αt = α12 +α13 +α23. It is evident that this integral is the same as in equation (3.80)
when

αjk = −βj − βk +
1

2

(
βt −

d

2

)
, (3.86)

or equivalently

βi = −d
2
−
∑
j 6=i

αij . (3.87)

Hence, we showed the equivalence in (3.76).

3.5 Singularities and renormalisation

So far we have presented 2- and 3-point functions. Before moving to higher-point functions
we discuss when divergences arise and briefly explain how to renormalise the solutions in
these cases. We will see that renormalisation is necessary when the solutions are analytic
functions of the squared momenta p2

i , since this corresponds to local solutions in position-
space.

3.5.1 2-point function

In section 3.3 we found the solution of the 2-point CWIs, but we have not discussed its
domain of existence. Let us recall the Fourier transformed 2-point solution (3.22):

〈〈O(p)O(−p)〉〉 = c0p
2(∆− d

2 ), c0 = c
2d−2∆πd/2Γ

(
d
2 −∆

)
Γ(∆)

. (3.88)

For finite c0 and generic ∆ this solves the CWIs. However, for values of d and ∆ such that

d

2
−∆ = −n, n ∈ Z+, (3.89)

the 2-point function is divergent and needs to be regulated. One way is to dimensionally
regulate the correlator by shifting d and ∆ as follows

d

2
−∆ = −n− ε, ε� 1. (3.90)

Then, expanding in ε, the regulated correlator reads

〈〈O(p)O(−p)〉〉reg =
c

(−1)
0

ε
p2n + c

(−1)
0 p2n ln p2 + c

(0)
0 p2n +O(ε), (3.91)

which has a pole in ε in the limit ε → 0. Can we cancel this singularity? We cannot
rescale c0 → εc0 since when the condition (3.89) holds, the 2-point function is an analytic
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function of p2:
〈〈O(p)O(−p)〉〉 = c0p

2n. (3.92)

This corresponds to a local solution, which means it has support only at x2 = 0 as one can
see from its Fourier transform: this is given by 2n derivatives acting on a delta function

〈O(x)O(0)〉 = c0(−�)nδ(x). (3.93)

This is not a physically acceptable solution and, as we showed in Chapter 2, all position-
space correlators are non-local. Moreover, when condition (3.89) holds, there is a new
local term in the action of the form

φ�nφ, (3.94)

where φ is the source of the operator O. With an appropriate choice of the coefficient,
this can be treated as a counterterm that cancels the divergence of the correlator.

The contribution to the momentum-space correlator of this counterterm is

〈〈O(p)O(−p)〉〉ct = c̃(ε)p2nµ2ε =
c̃(−1)

ε
p2n + c̃(−1)p2n lnµ2 + c̃(0)p2n +O(ε), (3.95)

where the renormalisation group (RG) scale µ appeared on dimensional grounds. If we
then sum the two contribution to the correlator, (3.91) and (3.95), we can cancel the

divergence by setting c̃(−1) = −c(−1)
0 and take the limit ε→ 0, leading to the renormalised

2-point function:

〈〈O(p)O(−p)〉〉ren = p2n

(
c

(−1)
0 ln

p2

µ2
+ c′0

)
. (3.96)

This solution depends on the renormalisation scale µ which breaks conformal symmetry
resulting in a conformal anomaly. This has been studied in more detail in [45] and we will
not need it in this thesis.

3.5.2 3-point function

In section 3.4 we found the general solution of the 3-point CWIs and discussed its unique-
ness due to the absence of collinear singularities, leading to the triple-K integral (3.35).
This converges at large x, according to the expansion in (3.46). However, there could be
divergences in the limit of x→ 0. The condition for this to happen is

α+ 1± β1 ± β2 ± β3 = −2n, n ∈ Z+. (3.97)

To see this, we consider the series expansion of the Bessel-K function around x = 0. Let βj
be a non-integer number. Then, taking into account the series expansion of the Bessel-I,
Iβ =

∑∞
n=0 aIx

β+2n, and equation (3.72), the expansion of Bessel-K is

Kβj (x) = xβj
∞∑

nj=0

a+x
2nj + x−βj

∞∑
nj=0

a−x
2nj . (3.98)
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We use this equation to expand the integrand of the triple-K (3.35), leading to integrals
of the form ∫ ∞

0
dx xη =

xη+1

η + 1
, η = α± β1 ± β2 ± β3 + 2nt, (3.99)

with nt = n1 + n2 + n3. This integral converges at x = 0 when

α± β1 ± β2 ± β3 > −1. (3.100)

However, if we consider the integral as a function of its parameters while the momenta are
fixed, we can perform an analytic continuation by considering the complex η-plane. Here
the integral in (3.99) is well defined unless η = −1, where it has a pole. This gives the
singularity condition in (3.97). For integer βj , the series expansion of Bessel-K functions
around x = 0 is

Kβj (x) = xβj
∞∑

nj=0

a+x
2nj + x−βj

∞∑
nj=0

a−x
2nj + cI log(x)Iβj (x). (3.101)

Then the corresponding expansion of the integrand in the triple-K contains also loga-
rithms, ∫ ∞

0
dx xη log(x) = − const1

(η + 1)2
+

const2

(η + 1)
. (3.102)

This, however, does not change the loci of singularities η = −1, it may only increase the
order of the pole.

When equation (3.97) holds, we need to regulate the triple-K integral. We dimensional
regulate it by shifting the parameters as follows

α→ α̃ = α+ uε, βi → β̃i = βi + vε, i = 1, 2, 3. (3.103)

Note that this leaves the form of the triple-K unchanged, but the parameters are now α̃
and β̃i and the constant c123 depends on the regularisation parameters ε, u and v. When
the singularity condition (3.97) holds, we find that the regulated solution is singular when
we take the limit ε → 0. Depending on the type of singularity, this is canceled either by
renormalisation or by an appropriate choice of the constant c123.

Four different singularity conditions arise from (3.97), depending on the relative signs
of the βi. These are the (− − −), (− − +), (− + +), (+ + +) conditions. The first two
singularities, i.e., (−−−) and (−−+), correspond respectively to ultralocal and semilocal
solutions. By ultralocal we mean that the solution only has support on configurations
where three positions collapse to one single point. By semilocal, we refer to solutions
that have support where two of the three positions coincide at one point. In these cases,
counterterms exist and divergences are canceled via renormalisation. The latter leads to
a conformal anomaly for the condition (−−−), while the condition (−−+) corresponds
to beta functions1.

On the other hand, the other two conditions with mostly ‘+’ signs, correspond to
non-local solutions. Consequently, counterterms do not exist and the singularities are just

1Note, this is not in contradiction with conformal symmetry, since this type of beta functions are
associated to couplings of composite operators which are not couplings appearing in the Lagrangian of
fundamental fields.

35



Chapter 3. Conformal field theory in momentum space

singularities of the triple-K integral that can be cured by choosing the constant c123 to be
proportional to ε.
Finally, note that more than one condition can be satisfied simultaneously, resulting in
higher-order singularities.

In the next section we illustrate some examples where the condition (3.97) holds.

3.5.3 Examples

1. (+ + +) condition: d = 3, ∆1 = ∆2 = ∆3 = 1 (α = 1/2 and βi = −1/2, with
i = 1, 2, 3).
Let us consider the following regularisation scheme

d→ d+ 2ε, ∆i → ∆i + ε, (3.104)

so that the indices βi (3.36) of Bessel-K functions don’t change. Then, the triple-K
integral reads

〈〈O1(p1)O2(p2)O3(p3)〉〉 = c(p1p2p3)−
1
2

∫ ∞
0

dx x
1
2

+εK 1
2
(p1x)K 1

2
(p2x)K 1

2
(p3x),

(3.105)
where the Bessel-K are elementary functions,

K 1
2
(x) =

√
π

2

e−x

x1/2
. (3.106)

Then, the integral evaluates to

〈〈O1(p1)O2(p2)O3(p3)〉〉 =
c123

p1p2p3

(π
2

)3/2
∫ ∞

0
dx x−1+εe−(p1+p2+p3)x

=
c123

p1p2p3

(π
2

)3/2
(p1 + p2 + p3)−εΓ(ε)

=
c123

p1p2p3

(π
2

)3/2
[

1

ε
− log(p1 + p2 + p3)− γE +O(ε)

]
,

(3.107)

where in the last equality we have expanded in ε, using

Γ(ε) =
1

ε
− γE +O(ε), (3.108)

with γE the Euler-Mascheroni constant. This 3-point function is divergent for ε→ 0.
However, the (+ + +) condition does not admit any counterterm. This is because
the leading term of (3.107) is a non-analytic function of the squared momentum
magnitudes and hence this is a non-local, physically acceptable, solution. We then
eliminate the divergence by choosing c123 = C123ε. Thus,

〈〈O1(p1)O2(p2)O3(p3)〉〉 =
(π

2

)3/2 C123

p1p2p3
. (3.109)
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2. (− − −) condition: d = 3, ∆1 = ∆2 = ∆3 = 2 (α = 1/2 and βi = 1/2, with
i = 1, 2, 3).
Using the regularisation scheme defined in (3.104), this 3-point function reads

〈〈O1(p1)O2(p2)O3(p3)〉〉 = −c123(p1p2p3)
1
2

∫ ∞
0

dx x
1
2

+εK 1
2
(p1x)K 1

2
(p2x)K 1

2
(p3x),

(3.110)
where the overall minus sign is for convenience. This integral is the same as the one
in (3.105), so here we have

〈〈O1(p1)O2(p2)O3(p3)〉〉 = c123

(π
2

)3/2
[
−1

ε
+ log(p1 + p2 + p3) + γE +O(ε)

]
.

(3.111)
However, the leading term in (3.111) is a constant and the divergence for ε → 0 is
ultralocal. This divergence is canceled by the counterterm

Sct = a(ε)

∫
d3+2εxφ3µ−ε, (3.112)

where µ is the renormalisation scale and φ is the source field of the operators O. To
cancel the divergence, we choose

a(ε) =
1

6
c123

(π
2

)3/2
(

1

ε
+ a0

)
, (3.113)

where a0 is an arbitrary constant dependent on the regularisation scheme. Then,
the renormalised 3-point function is

〈〈O1(p1)O2(p2)O3(p3)〉〉ren = c123

(π
2

)3/2
[
log

(
p1 + p2 + p3

µ

)
+ c1

]
, (3.114)

where c1 = c0 + γE . Therefore we find, as expected for the (−−−) condition, that
the correlator depends on the RG scale µ. Hence the conformal symmetry is broken
and a conformal anomaly A exists:

A =

∫
ddxA222(�2φ)3, (3.115)

where we defined

A222 = µ
µ

∂µ
〈〈O1(p1)O2(p2)O3(p3)〉〉ren = −c123

(π
2

)3/2
. (3.116)

3.6 Shift operators

We conclude the analysis on 3-point functions by presenting their shift operators. These
are operators that act on a 3-point function to shift the parameters d and ∆i (i = 1, 2, 3), or
equivalently α and βi. In other words, they connect two solutions of the CWIs with shifted
parameters. Earlier in this chapter we discussed the form of 3-point functions depending
on the values of βi. For half-integer βi the triple-K integral can easily be computed in
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terms of elementary functions. For integer βi the 3-point function is expressible in terms
of the dilogarithm function, however, the computation is cumbersome. We showed the
evaluation of the master integral I1{000} (α = 1 and βi = 0) in appendix A. For larger
integer values of βi the computation is more complicated. One strategy to obtain this class
of triple-K is to generate them by acting on the master integral with a shift operator. This
leads to the reduction scheme for the evaluation of 3-point functions discussed in [44].

In this section we show that two types of such operators exist. The first family of
shift operators acts to shift both the spacetime dimension d up by two (hence α up by
one) and one βi up or down by one. We derive their form using the properties of Bessel-
K functions, as shown in [42, 85]. In Chapter 4, we will find the general form of these
operators acting on n−point functions, using a new scalar representation of the n−point
functions. The second set of operators act to shift two of the βi up or down while leaving
the spacetime dimension invariant and will be further discussed in Chapter 5. We show
that their expression can be understood easily in position space. Finally, we derive some
recursion relations for triple-K integrals.

3.6.1 Operators shifting d

The 3-point d−shifting operators are

Li = − 1

pi

∂

∂pi
, Ri = 2βi − pi

∂

∂pi
, βi = ∆i −

d

2
. (3.117)

They act on the 3-point function by sending

Li : βi → βi − 1, α→ α+ 1, Ri : βi → βi + 1, α→ α+ 1, (3.118)

or equivalently,

L1 : (d,∆1,∆2,∆3)→ (d+ 2,∆1,∆2 + 1,∆3 + 1), (3.119)

R1 : (d,∆1,∆2,∆3)→ (d+ 2,∆1 + 2,∆2 + 1,∆3 + 1), (3.120)

and similarly under any permutation in the set {1, 2, 3}. To understand their expressions
and actions, consider the following properties of Bessel functions

Kν = K−ν , (3.121)

∂

∂p
[pνKν(px)] = −xpνKν−1(px). (3.122)

The first property (3.121), together with the definition of the triple-K integral (3.35),
imply that

Iα{−β1β2β3} = p−2β1
1 Iα{β1β2β3}, (3.123)

hence the operator p−2βi
i sends βi → −βi. This is effectively a shadow transformation,

sending ∆i → d − ∆i. From the property (3.122), we see that L1 acts on the triple-K
integral as

L1Iα{β1β2β3} = Iα+1{β1−1,β2β3}. (3.124)
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This can be seen by direct computation

L1Iα{β1β2β3} = c123

∫ ∞
0

dx xα
[
− 1

p1

∂

∂p1

(
pβ1

1 Kβ1(p1x)
)]
pβ2

2 p
β3
3 Kβ2(p2x)Kβ3(p3x)

= c123

∫ ∞
0

dx xα
(
x pβ1−1

1 Kβ1−1(p1x)
)
pβ2

2 p
β3
3 Kβ2(p2x)Kβ3(p3x)

= c123

∫ ∞
0

dx xα+1pβ1−1
1 pβ2

2 p
β3
3 Kβ1−1(p1x)Kβ2(p2x)Kβ3(p3x). (3.125)

Combining L1 and the shadow transform we obtain the operator R1

R1 = p2β1+2
1 L1 p

−2β1
1 , (3.126)

which acts on the triple-K as

R1Iα{β1β2β3} = Iα+1{β1+1,β2β3}, (3.127)

since

(βi, α)
p
−2βi
i−−−→ (−βi, α)

Li−→ (−βi − 1, α+ 1)
p
−2(−βi−1)
i =p

2(βi+1)
i−−−−−−−−−−−−−→ (βi + 1, α+ 1). (3.128)

It is interesting to note that the combination LiRi amounts to the special conformal
operator we introduced in (3.33),

LiRi = Ki =
∂2

∂p2
i

+
1− 2βi
∂

∂

∂pi
. (3.129)

This operator acts on a triple-K integral to shift α up by two, since Li and Ri shift βi in
opposite directions but both increase α by one:

Ki Iα{β1β2β3} = Iα+2{β1β2β3}, i = 1, 2, 3. (3.130)

Triple-K recursion relations

Using the actions of the above operators above and the CWIs we can derive some additional
recursion relations. From the dilatation Ward identity (3.25), expressing the operators
pi∂pi in terms of Li and Ri, we have

(α+ 1− βt)Iα{β1β2β3} =
(
p2

1L1 + p2
2L2 + p2

3L3

)
Iα{β1β2β3}, (3.131)

(α+ 1 + βt)Iα{β1β2β3} = (R1 +R2 +R3) Iα{β1β2β3}, (3.132)

and considering the action (3.124) of the operators Li and (3.127) of Ri, we obtain

(α+ 1− βt)Iα{β1β2β3} = p2
1Iα+1{β1−1,β2,β3} + p2

2Iα+1{β1,β2−1,β3} + p2
3Iα+1{β1,β2,β3−1}

(α+ 1 + βt)Iα{β1β2β3} = Iα+1{β1+1,β2,β3} + Iα+1{β1,β2+1,β3} + Iα+1{β1,β2,β3+1}. (3.133)

Taking into account that

L1Iα{β1β2β3} = R2R3Iα−1{β1−1β2−1β3−1},
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R1Iα{β1β2β3} = L2L3Iα−1{β1+1,β2+1,β3+1}, (3.134)

equations (3.131) and (3.132) are equivalent to the following identities

(α+ 1− βt)Iα{β1β2β3} =
[
p2

1R2R3 + p2
2R1R3 + p2

3R1R2

]
Iα−1{β1−1β2−1β3−1}, (3.135)

(α+ 1 + βt)Iα{β1β2β3} = (L1L2 + L1L3 + L2L3) Iα−1{β1+1,β2+1,β3+1}. (3.136)

3.6.2 Operators preserving d

In this section we discuss shift operators acting on solutions of the CWIs to shift the
scaling dimensions while preserving the spacetime dimension. The best known operators
in literature [30, 83] are those acting on the CWI solutions to shift two scaling dimensions
∆i up or down by one unit. They are denoted by Wσiσj

ij , with σi = ±1, and their action
is to send

d→ d ∆i → ∆i + σi, ∆j → ∆j + σj , (3.137)

or equivalently,
α→ α, βi → βi + σi, βj → βj + σj . (3.138)

One might wonder why the shift operators introduced until now act either to shift two
parameters by one unit or act to shift one parameter by two units (see (3.130)). This is
not a trivial question and we will address it in Chapter 5.

In the following we introduce the expressions of W-operators and derive their action
on the 3-point functions. We will consider W±±12 , since the expressions for general i, j can
be obtained by permutation. According to recent understanding of these operators [36] in
momentum space, their expressions read

W−−12 =
1

2

(
∂

∂pµ1
− ∂

∂pµ2

)(
∂

∂p1,µ
− ∂

∂p2,µ

)
, (3.139)

W+−
12 = p

2(β1+1)
1 W−−12 p−2β1

1 , (3.140)

W−+
12 = p

2(β2+1)
2 W−−12 p−2β2

2 , (3.141)

W++
12 = p

2(β1+1)
1 p

2(β2+1)
2 W−−12 p−2β1

1 p−2β2
2 . (3.142)

We explain below the expression ofW−−12 , while the remaining ones are obtained by shadow
transforming W−−12 .

Lowering operator W−−12

The easiest way to derive equation (3.139), is to start from position space. In fact given
the form of the general n-point solution (2.67), it is intuitive to find the position-space
expression of the lowering operatorW−−12 . As we showed in Chapter 2, the general position-
space n-point function can be written as

φn = 〈O(x1)...O(xn)〉 =
∏

1≤i<j≤n
x

2αij
ij f(u), (3.143)
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and the parameters αij are related to the scaling dimensions ∆i via

∆i = −
n∑
j=1

αij , i = 1, 2, .., n (3.144)

where αij = αji and αii = 0. It is straightforward to understand that x2
ij is an operator

shifting ∆i and ∆j down by one. If we multiply (3.143) by x2
ij , for some specific choice

of i and j, this serves to shift αij → αij + 1 and hence ∆i → ∆i − 1 and ∆j → ∆j − 1.
Multiplying by x2

ij thus acts as a lowering operator generating a new solution of the n-
point conformal Ward identities in which the dimensions ∆i and ∆j are reduced by one
while preserving f(u) and the spacetime dimension d.

To find the corresponding expression in momentum space we perform a Fourier trans-
form. The Fourier transformed n-point function is

Φn = F [φn] =

∫
dx1...dxn e−i

∑n
j=1 xj ·pjφn(x1, ..,xn), (3.145)

where, taking into account momentum conservation,

n∑
j=1

xj · pj =
n−1∑
j=1

pjxj −

n−1∑
j=1

pj

xn =
n−1∑
j=1

pjxjn. (3.146)

Therefore, pulling down a factor of x12 is equivalent to acting on the Fourier transformed
n−point function with the difference of derivatives with respect to pµ1 and pµ2 :

F [x12φ4] = i

(
∂

∂pµ1
− ∂

∂pµ2

)
Φ4, (3.147)

hence

W−−12 = F
[
−1

2
x2

12

]
=

1

2

(
∂

∂pµ1
− ∂

∂pµ2

)(
∂

∂p1,µ
− ∂

∂p2,µ

)
, (3.148)

where the factor −1/2 is purely conventional [30]. This is valid at n-point. However, here
we focus on the 3-point function. Using the chain rule (3.24) we obtain the expression of
the 3-point W−−12 in terms of Mandelstam variables:

W−−12 =
1

2

[
∂2

1 + ∂2
2 +

d− 1

p1
∂1 +

d− 1

p2
∂2 +

p2
1 + p2

2 − p2
3

p1p2
∂1∂2

]
. (3.149)

Let us now derive the action on the 3-point function. By construction, the lowering
operator acts to generate a 3-point function with ∆1 and ∆2 lowered by one. To show
this, we use the triangle representation (3.75). Using the equivalence between the 1-loop
triangle integral and the triple-K representation, we then derive the action on the triple-K
integral. To simplify the computation, we write the triangle integral by re-parametrising
the loop momentum:

Id{α12,α13,α23} =

∫
ddq

(2π)d
1

|p1 + p2 + q|2α23+d|q|2α13+d|p1 + q|2α12+d
, (3.150)
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and use the following identities(
∂

∂pµ1
− ∂

∂pµ2

)
f(p1 + p2) = 0, (3.151)(

∂

∂pµ1
− ∂

∂pµ2

)
f(p1) =

∂

∂pµ1
f(p1), (3.152)

where f is a generic function. Then, we only need to compute

δµν
∂

∂pµ1

∂

∂pν1

1

|p1 + q|2α12+d
=

2
(
α12 + d

2

)
(α12 + 1)

|p1 + q|2(α12+1)+d
. (3.153)

Hence the action of W−−12 on the triangle integral is

W−−12 Id{α12,α13,α23} = 2

(
α12 +

d

2

)
(α12 + 1)Id{α12+1,α13,α23}. (3.154)

Note that, according to (3.87), sending α12 → α12 + 1 is equivalent to send β1 → β1 − 1
and β2 → β2 − 1. We derive the action on the triple−K by combining (3.154) with the
triangle/triple-K equivalence (3.76)

W−−12 Iα{β1β2β3} = 2

(
α12 +

d

2

)
(α12 + 1)

CT
CT |α12+1

Iα{β1−1,β2−1,β3}

=
1

2

[
β2

3 − (α− 1 + β1 + β2)2
]
Iα,{β1−1,β2−1,β3}, (3.155)

where CT is given in (3.77). Let us anticipate here that in the second part of this thesis,
following the work [86], we explain how to derive the factor involving the parameters α
and βi by knowing the singularities of the triple-K.

Lowering-Raising W−+
12 and raising operator W++

12

The momentum-space expressions of W−+
12 and W++

12 can be derived using the shadow
transform as in (3.140-3.142). In fact, let us show that these definitions shift the parame-
ters as we want, i.e., β1 → β1− 1, β2 → β2 + 1 and β1 → β1 + 1, β2 → β2 + 1 respectively
:

W−+
12 : (β1, β2, β3)

p
−2β2
2−−−→ (β1,−β2, β3)

W−−12−−−→ (β1 − 1,−β2 − 1, β3)

p
2(β2+1)
2−−−−−→ (β1 − 1, β2 + 1, β3), (3.156)

W++
12 : (β1, β2, β3)

p
−2β1
1 p

−2β2
2−−−−−−−→ (−β1,− β2, β3)

W−−12−−−→ (−β1 − 1,−β2 − 1, β3)

p
2(β1+1)
1 p

2(β2+1)
2−−−−−−−−−−→ (β1 + 1, β2 + 1, β3). (3.157)
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By multiplying out the right-hand sides in (3.140)-(3.142), we obtain their explicit expres-
sions

W−+
12 = p2

2W−−12 + 2β2

(
β2 + 1− d

2
+ pµ2∂12µ

)
(3.158)

W+−
12 = p2

1W−−12 + 2β1

(
β1 + 1− d

2
− pµ1∂12µ

)
, (3.159)

W++
12 = p2

1p
2
2W−−12 + 2β1β2(p2

1 + p2
2 − p2

3)

+ 2β1p
2
2

(
β1 + 1− d

2
− pµ1∂12µ

)
+ 2β2p

2
1

(
β2 + 1− d

2
+ pµ2∂12µ

)
, (3.160)

where ∂12µ denotes the difference ∂/∂pµ1 − ∂/∂p
µ
2 .

3.6.3 Intertwining relations

In this section we conclude the discussion on shift operators presenting an algebraic method
to verify the action of a shift operator. Let I{d,∆i} be the solution of the CWIs (3.1)-(3.2)
and Xi a generic shift operator acting on the solution to shift d → d′ and ∆ → ∆′i, for
some i. Then Xi has to satisfy the following intertwining relation

Kµ[d′,∆′i]Xi −XiKµ[d,∆i] = Ô1Kµ[d,∆i] + Ôµ2D[d,∆i], (3.161)

where Kµ is the special conformal operator in (3.4) and Ôj are some differential operators
such that the homogeneity of the equation holds. Note that the right-hand side is an
operator that annihilates the solution I{d,∆i}. While the left-hand side holds, since

0 = Kµ[d′,∆′i]I{d′,∆′i} = Kµ[d′,∆′i]XiI{d,∆i} = XiKµ[d,∆i]I{d,∆i}. (3.162)

We can also consider the CWIs in Mandelstam variables, leading to the analogous relations:

Kij [d
′,∆′i]Xi −Xi Kij [d,∆i] = Ô1 Kij [d,∆i] + Ô2D[d,∆i] i, j = 1, 2, 3. (3.163)

By direct computation we verified that the d-shifting operators Li and Ri satisfy the
intertwining equation (3.163) with the right-hand side equal to zero, i.e.,

K12[d+ 2,∆1,∆2 + 1,∆3 + 1]Li = Li K12[d,∆1,∆2,∆3]. (3.164)

The weight-shifting operator W12, instead, satisfies (3.163) with a non zero right-hand
side of (3.163) different from zero. To be precise, its intertwining relation is

K12[d,∆1−1,∆2−1,∆3]W−−12 −W
−−
12 K12[d,∆1,∆2,∆3] =

(
1

p1
∂1 +

1

p2
∂2

)
K12 . (3.165)

3.7 Higher-point functions

In Chapter 2 we derived the general solution of the scalar 4- and n-point CWIs in position
space. While 3-point functions are uniquely fixed by conformal symmetry, 4- and higher-
point functions are less tightly constrained and depend on an arbitrary function of the
cross ratios. In this section we review recent work on general n-point correlation functions
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in momentum space [47, 46]. The representation found has the form of a Feynman integral
with the topology of an (n − 1)-simplex, featuring an arbitrary function of momentum-
space cross ratios. This will also be developed further in the following chapter.

3.7.1 4-point function

We first discuss 4-point correlation functions of scalar operators and then we generalise
the results to n-point functions. The general 4-point function in momentum space has
been shown to be expressible as a 3-loop Feynman integral, where the (massless) scalar
propagators are raised to generalised powers αij + d/2:

〈O1(p1)O2(p2)O3(p3)O4(p4)〉 =

(∫ 3∏
i=1

ddqi
(2π)d

)
f̂(û, v̂)

Den(qj ,pk)
(2π)dδ

( 4∑
j=1

pj

)
, (3.166)

where the denominator is

Den(qj ,pk) =q2α12+d
3 q2α13+d

2 q2α23+d
1 |p1 + q2 − q3|2α14+d

× |p2 + q3 − q1|2α24+d|p3 + q1 − q2|2α34+d (3.167)

and f̂ is an arbitrary function that depends on the two dependent momentum-space cross
ratios

û =
q2

2|p2 + q3 − q1|2

q2
3|p3 + q1 − q2|2

, v̂ =
q2

1|p1 + q2 − q3|2

q2
2|p2 + q3 − q1|2

. (3.168)

They play a role analogous to the position-space cross ratios (2.65), however they depend
on integration variables qj , and so are not independent conformal invariants in their own
right. In the following, we show the representation (3.166) is conformally invariant. First,
we Fourier transform the position-space 4-point function (2.66). Then, we briefly discuss
conformal invariance from a purely momentum-space perspective.

We already computed the Fourier transform of the 2-point function and this will be
useful in our discussion. As a warm up example, we first Fourier transform the position-
space 3-point function (2.61) that we denote with φ3 here

φ3 = x2α12
12 x2α13

13 x2α23
23 . (3.169)

To Fourier transform φ3, we use the convolution theorem as follows

F [φ3] = c123F
[
x2α12

12

]
∗ F

[
x2α13

13 x2α23
23

]
= c123

∫
ddq1

(2π)d
ddq2

(2π)d
F
[
x2α12

12

]
(pj − qj)F

[
x2α13

13 x2α23
23

]
(pj), j = 1, 2, 3. (3.170)

Using equation (3.22) and taking into account that the Fourier transform in the integrand
also depends on p3, we have

F
[
x2α12

12

]
(p1,p2,p3) = (2π)dδ(p1 + p2)δ(p3)

C12

p2α12+d
1

, (3.171)
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and

F
[
x2α13

13 x2α23
23

]
(p1,p2,p3) = (2π)dδ(p1 + p2 + p3)

C13C23

p2α13+d
1 p2α13+d

2

, (3.172)

where F [x
2αij
ij ...] denotes the Fourier transform over p1, p2 and p3. The parameters αij

are given in (2.60) and

Cij =
πd/222αij+d

Γ(−αij)
Γ

(
d

2
+ αij

)
. (3.173)

Then, substituting (3.171) and (3.172) in (3.170), we find

F [φ3] = c123C12C13C23

∫
ddq1

(2π)d
ddq2

(2π)d
(2π)dδ(p3 + q1 + q2)

q2α13+d
1 q2α23+d

2

(2π)dδ(p1 + p2 + p3)

|p1 − q1|2α12+d
.

(3.174)
Integrating over q2 and sending q1 → −q1 + p1 we recover the 1-loop triangle integral
(3.75):

F [φ3] = c123C12C13C23

∫
ddq

(2π)d
(2π)dδ(p1 + p2 + p3)

|q|2α12+d|q − p1|2α13+d|q + p2|2α23+d
. (3.175)

Now, we move to 4-point functions. To find the simplex representation of 4-point functions
(3.166), we Fourier transform the position-space 4-point function in identical fashion to
the 3-point function. Note that in this case we also have to consider the arbitrary func-
tion. First, let us assume a monomial position-space arbitrary function f(u, v) = uαvβ

in equation (2.66), then the position-space 4-point function is just a product of powers of
x2
ij :

φ4(α, β) = x
2(α12+α)
12 x

2(α13−α+β)
13 x

2(α14−β)
14 x

2(α23−β)
23 x

2(α24−α+β)
24 x

2(α34+α)
34

=
∏

1≤i<j≤n
x

2γij
ij , (3.176)

where

γ12 = α12 + α, γ13 = α13 − α+ β, γ14 = α14 − β,
γ23 = α23 − β, γ24 = α24 − α+ β, γ34 = α34 + α. (3.177)

Then, we use the convolution theorem by grouping the powers of xij in a way that a
recursive approach can be used:

F [φ4(α, β)] = F
[
x2γ14

14 x2γ24
24 x2γ34

34

]
∗ F

[
x2γ12

12 x2γ13
13 x2γ23

23

]
= F

[
x2γ14

14 x2γ24
24 x2γ34

34

]
∗ F [φ3](2π)dδ(p4), (3.178)

where the second factor on the right-hand side is given by the 3-point Fourier transform
(3.175). This makes the the recursive structure evident and will be useful for the general-
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isation to n-point functions. Taking into account that

F
[
x2γ14

14 x2γ24
24 x2γ34

34

]
=

(2π)dδ
(∑4

j=1 pj

)∏4
i=1Ci4

p2γ14+d
1 p2γ24+d

2 p2γ34+d
3

, (3.179)

using the result (3.175) and applying the convolution theorem we find

F [φ4(α, β)] =

∫
ddq1

(2π)d
ddq2

(2π)d
ddq3

(2π)d

∏
1≤i<j≤4Cij

Denαβ3 (qj ,pk)
(2π)dδ

( 4∑
j=1

pj

)
, (3.180)

with

Denαβ3 (qj ,pk) =q2γ12+d
3 q2γ13+d

2 q2γ23+d
1 |p1 + q2 − q3|2γ14+d

× |p2 + q3 − q1|2γ24+d|p3 + q1 − q2|2γ34+d, (3.181)

where the γij depend on α and β as in (3.177). Note that this is the right-hand side of
(3.166) with the momentum-space arbitrary function

f̂(û, v̂) =
∏

1≤i<j≤4

Cij û
αv̂β. (3.182)

So far we have shown that a 3-simplex integral (3.166) with f̂ in (3.182) is a solution of
CWIs. Next, we want to show that this is also valid for any arbitrary function f̂(û, v̂).
To see this, we take into account that (3.180) is a solution of CWIs and use the inverse
Mellin transform to express a general f̂ :

f̂(û, v̂) =
1

(2πi)2

∫ a+i∞

a−i∞

∫ b+i∞

b−i∞
dα dβ ρ(α, β)ûαv̂β, (3.183)

for some appropriate choice of integration contour specified by a and b. Since equation
(3.166) can be written as

〈O1(p1)O2(p2)O3(p3)O4(p4)〉 =
1

(2πi)2

∫ a+i∞

a−i∞

∫ b+i∞

b−i∞
dα dβ ρ(α, β)Wα,β, (3.184)

where we defined

Wα,β =
1∏

1≤i<j≤4Cij
F [φ4(α, β)], (3.185)

we showed that (3.166) is the general conformal 4-point function in momentum space. Note
that the solution (3.166) and the Fourier transform (3.180) differs by a factor consisting
in the product of the constants Cij defined in (3.173).

Conformal invariance via total derivative

In this section we discuss the solution (3.166) from the point of view of momentum space
only. We will briefly discuss why (3.166) is a solution of the momentum-space CWIs (3.1),
(3.2).
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The DWI for the reduced n-point conformal correlators given in (3.1) constrains their
expressions to scale as ∆t − (n − 1)d. For n = 4, it means that the conformal 4-point
function must scale as ∆t− 3d. By power counting, we find that this is indeed the scaling
of the simplex representation (3.166) of 4-point functions. In fact, the three integrals
contribute with dimension 3d, and each propagator scales as −2αij−d, with 1 ≤ i < j ≤ 4.
Hence the scaling dimension of (3.166) is

− 2
∑

1≤i<j≤4

αij − 6d+ 3d = −
4∑

i,j=1

αij − 3d = ∆t − 3d, (3.186)

where in the last equality we used the equation (2.64) relating αij and the scaling dimen-
sions of scalar operators.

Let us now move to the special conformal Ward identity. First, we recall that this is
given in (3.4), and in this case Kµ = Kµ1 +Kµ2 , with

Kµj = 2(∆j − d)
∂

∂pjµ
− 2pνj

∂

∂pνj

∂

∂pjµ
+ pµj

∂

∂pνj

∂

∂pjν
. (3.187)

To prove that (3.166) satisfies the 4-point special conformal Ward identity we have to show
that the action of the SCWI operator Kµ on the integrand of the simplex representation
corresponds to a total derivative. Taking into account that Kµ is a second-order differential
operator, we expect its action on the integrand of (3.166) to be of the form

Kµ
(

f̂(û, v̂)

Den(qj ,pk)

)
=

2∑
j=1

∂

∂qkj

(
Akµj f̂ +Bkµ

j

∂f̂

∂û
+ Ckµj

∂f̂

∂v̂

)
, (3.188)

for some coefficients Akµj , B
kµ
j and Ckµj that are independent of the arbitrary function f̂ .

Their explicit computation and expressions can be found in [47] and [46]. In the following
chapter we will prove the validity of the n-point CWIs using a new scalar parametrisation
of the simplex integral. Hence, we will omit further details here of the explicit computation
of these coefficients.

Before showing some special solutions of 4-point CWIs, we first extend the simplex
representation to the n-point functions. This is, indeed, a generalisation of what we
analysed in this section.

3.7.2 n-point function: the simplex representation

In this section we present the conformal n-point function of scalar operators known as
simplex integral. This is a Feynman integral with the topology of an (n − 1)-simplex,
featuring an arbitrary function of momentum-space cross ratios. This generalises the
4-point solution we introduced in the previous section and reads

〈O1(p1) . . .On(pn)〉 =
∏

1≤i<j≤n

∫
ddqij
(2π)d

f̂(û)

q
2αij+d
ij

n∏
k=1

(2π)dδ
(
pk +

n∑
l=1

qlk

)
, (3.189)
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where qij is the momentum running in the oriented edge from vertex i to j so that
qij = −qji and qjj = 0. The parameters αij are the same appearing in the position-space
solution and satisfy the condition (2.64). We denoted the set of independent cross ratios
with û, collecting the independent momentum-space cross ratios:

û[pqrs] =
q2
pqq

2
rs

q2
prq

2
qs

. (3.190)

Since the simplex integral is related to the position-space n-point solution through a
Fourier transform, their number follows from the position-space argument explained at
the end of chapter 2, i.e., there are n(n − 3)/2 for n ≤ d + 2 and nd − (d + 2)(d + 1)/2
when n > d + 2. Moreover, as noted for the 4-point functions, momentum-space cross
ratios depend on the integration variables.

Note that the integrand in (3.189) contains a product of n delta functions. To define
the reduced simplex integral (denoted with the double-brackets), we set aside the delta
function corresponding to momentum conservation

〈O1(p1) . . .On(pn)〉 = (2π)dδ
( n∑
i=1

pi

)
〈〈O1(p1) . . .On(pn)〉〉, (3.191)

so that the reduced simplex integral depends only on n−1 independent external momenta.
Then, we are left with n − 1 delta functions. We choose the loop-parametrisation of the
simplex by integrating over the variables qin for i = 1, 2, . . . , n−1. We obtain the following
reduced simplex integral

〈〈O1(p1) . . .On(pn)〉〉 =
∏

1≤i<j≤n−1

∫
ddqij
(2π)d

f̂(û)

Denn(α)
(3.192)

where the denominator reads

Denn(α) =
∏

1≤i<j≤n−1

q
2αij+d
ij ×

n−1∏
m=1

|lm − pm|2αmn+d (3.193)

and lm depends only on the remaining internal momenta,

lm = −qmn + pm =

n−1∑
j=1

qmj = −
m−1∑
j=1

qjm +

n−1∑
j=m+1

qmj . (3.194)

The integral (3.192) displays (n − 1)(n − 2)/2 d-dimensional integrals. In the following
chapter we describe instead new purely scalar parametrisations for the simplex which,
amongst other advantages, feature fewer integrals.

Conformal invariance via Fourier transform

Here we want to understand the simplex integral (3.189) from Fourier transforming the
position-space n-point function (3.143). The idea is to use the recursive structure already
illustrated in the previous section. A more direct proof of conformal invariance for the
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simplex integral will be given in the next chapter.
We follow the same strategy used in the previous section, i.e., we first consider a

monomial position-space arbitrary function f and derive the Fourier transform of the
associated n-point function. We will see that this corresponds to the simplex integral with
a monomial momentum-space arbitrary function. To show that for any generic arbitrary
function the simplex is conformally invariant, we then take an inverse Mellin transform.
Let Fn be the position-space n-point correlator (3.143) with a monomial arbitrary function.
This is expressed as a product of powers of the independent cross ratios

Fn(α;x1, . . . ,xn) =
∏

1≤i<j≤n
x

2αij
ij , (3.195)

where the parameters αij satisfy (2.64). We want to show that its Fourier transform is

F(n)[Fn] =
∏

1≤i<j≤n
Cij

∫
ddqij
(2π)d

1

q
2αij+d
ij

n∏
k=1

(2π)dδ
(
pk +

n∑
l=1

qlk

)
, (3.196)

where Cij is given in (3.173). This integral is referred to as the mesh integral in [104],
corresponding to a generalised Feynman integral with n points and n(n−1)/2 generalised
(scalar, massless) propagators with every pair of points connected. Note that with ‘gen-
eralised’ we intend that the powers αij are not necessarily equal to one. This integral also

corresponds to the simplex integral (3.189) when f̂ =
∏

1≤i<j≤nCij . First, let us note
that (3.195) is satisfied for n = 2:

F(2)[x
2α12
12 ](α12;p1,p2) = C12

∫
ddq12

(2π)d
1

q2α12+d
12

(2π)dδ(p1 − q12)(2π)dδ(p2 + q12)

= (2π)dδ(p1 + p2)
C12

p2α12+d
1

. (3.197)

This result is in agreement with the Fourier transform of the 2-point function (3.22). Before
we perform the Fourier transform of (3.195) and make the recursive structure manifest,
let us introduce the following notation

F(n)[Fn] =

∫
ddx1 . . . d

dxne−i
∑n
j=1 xj ·pjFn(α;x1, . . . ,xn)

F(n)[Fn−1] =

∫
ddx1 . . . d

dxne−i
∑n
j=1 xj ·pjFn−1(α;x1, . . . ,xn−1), (3.198)

and one can show that

F(n)[Fn−1] = F(n−1)[Fn−1](2π)dδ(pn). (3.199)

We are now ready to prove equation (3.196) by induction. The key point is the recursive
structure in n of F(n)[Fn]. We already showed this property for n ≤ 4 at the beginning
of this section. We discuss it more systematically here, for any n. Let us consider the
position-space function Fn and factorise it to display a recursive structure (see figure 3.3):

Fn = x2α1n
1n x2α2n

2n . . . x
2αn−1,n

n−1,n × Fn−1. (3.200)
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Figure 3.3: Illustration of the recursive structure of Fn (3.200). The continuous lines denote Fn−1,
and the dashed lines correspond to x2

jn (j = 1, . . . n− 1).

Then, we Fourier transform it by applying the convolution theorem:

F(n)[Fn] = F(n)[x
2α1n
1n x2α2n

2n . . . x
2αn−1,n

n−1,n ] ∗ F(n)[Fn−1]

=

 (2π)dδ
(∑n

j=1 pj

)∏n−1
i=1 Cin

p2α1n+d
1 p2α2n+d

2 . . . p
2αn−1,n+d
n−1

 ∗ [F(n−1)[Fn−1](2π)dδ(pn) (2π)dδ(pn)
]

=
n−1∏
i=1

Cin

∫
ddqi
(2π)d

F(n−1)[Fn−1](α;p1 − q1, . . . ,pn−1 − qn−1)

q2α1n+d
1 q2α2n+d

2 . . . q
2αn−1,n+d
n−1

(2π)dδ
(
pn +

n−1∑
j=1

qj

)
(3.201)

Now, first we rename qj → qjn (j = 1, ..., n− 1). Then, taking into account that equation
(3.196) holds for n = 2, equation (3.201) implies that (3.196) holds for all n ≥ 2 by
induction. This proves that the simplex integral (3.189) is conformally invariant when f̂
is a monomial in the momentum-space cross ratios. In fact, this is equivalent to shifting
the αij by some amount and re-defining f̂ = 1, as we showed for n = 4. In other words,

the simplex integral with monomial f̂ satisfies the CWIs just as the simplex with f̂ = 1.
Finally, to prove that the simplex integral is conformally invariant for any arbitrary

function, we express f̂ as an inverse Mellin transform in identical fashion we did in equation
(3.183) for n = 4.

Conformal invariance via CWIs

To directly prove that the simplex integral (3.189) satisfies the CWIs we proceed in an
analogous way of n = 4. First, to show the scale invariance of (3.192), we need to verify
that it scales as ∆t − (n− 1)d. Each integration increases the dimension by d, while each
propagator decreases the dimension by 2αij + d. Taking into account that the number of
integrals is (n− 1)(n− 2)/2 and the number of propagators appearing in the denominator
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(3.193) is (n− 1)(n− 2)/2 + (n− 1), the total scaling is

1

2
(n− 1)(n− 2)d−

[
1

2
(n− 1)(n− 2)− (n− 1)

]
d−

∑
1≤i<j≤n

2αij = ∆t− (n− 1)d, (3.202)

where we used (2.64). Hence, the DWI (3.1) is satisfied.
To prove that the simplex solves the SCWIs, one strategy is to show that the SCWI

operator Kµ =
∑n−1

j=1 K
µ
j acting on the integrand of (3.192) is equivalent to a sum of total

derivatives with respect to qij . This has been shown in [104], here we cite the result:

Kκ(∆)

[
f̂(û)

Denn(α)

]
=

n−1∑
i,j=1
i 6=j

∂

∂qµij

[
Γκµij (α)f̂(û) +

∑
I∈U

Γκµij,I(α)
∂f̂(û)

∂ûI

]
, (3.203)

with

Γκµij (α) = (2αin + d)×
Aκµij

Denn(α)
, (3.204)

Γκµij,[pqrs](α) = 2(δipδrn + δiqδsn − δipδqn − δirδsn)×
Aκµij û[pqrs]

Denn(α)
, (3.205)

and

Aκµij = (δκµδαβ + δκβδ
µ
α − δκαδ

µ
β)
qαij(li − pi)β

(li − pi)2
. (3.206)

In the second part of this thesis, in Chapter 4, we will show in a more direct manner that
the simplex solves the CWIs by using new scalar representations of the simplex.

3.7.3 4-point Ward identities: an example

In the previous section we showed that the general 4-point function depends on an arbitrary
function f̂ of momentum-space cross ratios. This means that different 4-point functions
associated to different f̂ exist. Certain classes of solutions for the 4-point CWIs are known,
including Witten diagrams and free fields [30, 36, 29, 95, 105, 106]. The corresponding
simplex representations of these solutions including the form of the function f̂ have been
analysed in [36, 46]. Amongst the conformal integrals appearing in the second part of this
thesis, we study contact and exchange Witten diagrams [107, 108]. Therefore, we conclude
this chapter with an exercise: proving that these 4-point Witten diagrams solve the CWIs.
Both diagrams consist of integrals of multiple Bessel functions.
First let us derive the 4-point CWIs in terms of the scalar variables p1, p2, p3, p4, s, t, with

s2 = (p1 + p2)2, t2 = (p2 + p3)2. (3.207)

Using the chain rule,

∂

∂p1µ
=
pµ1
p1

∂

∂p1
+
pµ1 + pµ2 + pµ3

p4

∂

∂p4
+
pµ1 + pµ2

s

∂

∂s
,
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∂

∂p2µ
=
pµ2
p2

∂

∂p2
+
pµ1 + pµ2 + pµ3

p4

∂

∂p4
+
pµ1 + pµ2

s

∂

∂s
+
pµ2 + pµ3

t

∂

∂t
,

∂

∂p3µ
=
pµ3
p3

∂

∂p3
+
pµ1 + pµ2 + pµ3

p4

∂

∂p4
+
pµ2 + pµ3

t

∂

∂t
, (3.208)

we obtain the DWI

0 =

[
−∆t + 3d+

4∑
i=1

pi∂i + s∂s + t∂t

]
〈〈O1(p1)O2(p2)O3(p3)O4(p4)〉〉 (3.209)

and the SCWIs [29]

0 = Dij〈〈O1(p1)O2(p2)O3(p3)O4(p4)〉〉, i, j = 1, ..., 4, (3.210)

where

D12 = K12 + (L1 − L2 − L3 + L4)
1

t
∂t + (−p2

3 + p2
4)

1

st
∂s∂t, (3.211)

D23 = K23 + (L1 + L2 − L3 − L4)
1

s
∂s + (p2

1 − p2
4)

1

st
∂s∂t, (3.212)

D34 = K34 + (−L1 + L2 + L3 − L4)
1

t
∂t + (−p2

1 + p2
2)

1

st
∂s∂t, (3.213)

are the independent special conformal operators and we defined Li = pi∂i −∆i.
Now, let us assume we seek a solution to these equations that does not depend on s and
t. Then the SCWIs simplify to

0 = Kij〈〈O1(p1)O2(p2)O3(p3)O4(p4)〉〉, i, j = 1, ..., 4. (3.214)

By comparing these equations with the 3-point SCWIs in (3.34), it becomes evident that
they can also be solved by separation of variables, giving an integral of four Bessel-K
functions. Since the DWI must also be satisfied, we find

〈〈O1(p1)O2(p2)O3(p3)O4(p4)〉〉 = c

∫ ∞
0

dx xd−1
4∏
j=1

p
βj
j Kβj (pjx). (3.215)

This indeed coincides with the 4-point contact Witten diagram, i[d; ∆1,∆2; ∆3,∆4;], when

c =

 4∏
j=1

2βj−1Γ (βj)

−1

. (3.216)

Let us now move to the 4-point s-channel exchange diagram. This is also an integral of
multiple Bessel functions and it reads

i[d; ∆1,∆2; ∆3,∆4; ∆x] =

∫ ∞
0

dz z−d−1K[∆1](z, p1)K[∆2](z, p2) (3.217)

×
∫ ∞

0
dζ ζ−d−1G[∆x](z, s; ζ)K[∆3](ζ, p3)K[∆4](ζ, p4),
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where ∆x is the dimension of the exchanged operator and G[∆x] denotes the bulk-to-bulk
propagator

G[∆x](z, s; ζ) =

{
(zζ)

d
2 Iβx(sz)Kβx(sζ) for z < ζ,

(zζ)
d
2Kβx(sz)Iβx(sζ) for z > ζ,

(3.218)

with Iβ and Kβ representing modified Bessel functions and βx = ∆x − d/2. We will not
derive this result here, which is a result known in holographic CFT. Our goal here is,
instead, to show that (3.217) solves the 4-point CWIs (3.209), (3.210). First, we note that
s-channel exchange diagrams don’t depend on t. Hence the SCWIs operators reduces to

D12 = K12,

D23 = K23 + (L1 + L2 − L3 − L4)
1

s
∂s,

D34 = K34. (3.219)

Taking into account that K12 = K1−K2, with Ki the Bessel operator in (3.40), by direct
computation we find that the following SCWIs are satisfied

0 = K12 i[d; ∆1,∆2; ∆3,∆4; ∆x] = K34 i[d; ∆1,∆2; ∆3,∆4; ∆x]. (3.220)

To prove the second SCWI involving D23 = 0, we first introduce the Casimir operator.
This is also useful to derive the action of the operatorW−−12 on both contact and exchange
diagrams. The quadratic Casimir operator in momentum-space reads

C12 =(p1 · p2δ
µν − 2pµ1p

ν
2)∂µ12∂

ν
12 + 2[(∆1 − d)pµ2 − (∆2 − d)pµ1 ]∂12,µ

+ (∆1 + ∆2 − 2d)(∆1 + ∆2 − d).
(3.221)

In Mandelstam variables, omitting terms involving derivatives with respect to t, this is

C12 =
1

2
(s2 + p2

1 − p2
2)K1 +

1

2
(s2 + p2

2 − p2
1)K2 − (L1 + L2 +

3d

2
)2 +

d2

4
+O(∂t). (3.222)

Then the action of the Casimir operator on the exchange diagram amounts to the action
of the following reduced operator [36]

C̃12 =
s2

2
(K1 +K2)− (L1 + L2 +

3d

2
)2 +

d2

4
, (3.223)

since the exchange diagram satisfies K12i[d; ∆1,∆2; ∆3,∆4; ∆x] = K34 i[d; ∆1,∆2; ∆3,∆4; ∆x] = 0.
This reduced operator has the property that it sends an exchange diagram to a contact
diagram as follows

(C̃12 +m2
x)i[d; ∆1,∆2; ∆3,∆4; ∆x] = i[d; ∆1,∆2; ∆3,∆4], (3.224)

where m2
x = ∆x(∆x−d). We are now ready to prove that the s-channel exchange diagram

satisfies the remaining SCWI D23i[d; ∆1,∆2; ∆3,∆4; ∆x] = 0. Taking into account D23 in
(3.219) and using the DWI (dropping the derivative with respect to t) to eliminate the
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derivative with respect to s, we have

s2D23 = s2K23 + (L1 + L2 − L3 − L4)(−3d− L1 − L2 − L3 − L4), (3.225)

and by rearranging, we find

s2D23 = s2K23 − (L1 + L2 + 3d/2)2 + (L3 + L4 + 3d/2)2 = C̃12 − C̃34, (3.226)

where we used (3.223). Thus, when acting on the exchange diagram

s2D23i[d; ∆1,∆2; ∆3,∆4; ∆x] = (C̃12 − C̃34)i[d; ∆1,∆2; ∆3,∆4; ∆x] = 0, (3.227)

where in the last equality we used the action of the reduced Casimir operator (3.224) and
took into account that C̃12 and C̃34 when acting on the exchange diagram give the same
contact diagram, hence the action of their difference on the latter vanishes.

In section 3.6.2 we introduced the weight-shifting operatorsW±±12 acting on any n-point
functions. We computed the action of W−−12 on the 3-point function (3.155), showing that
it generates a shifted 3-point function. While the 3-point function is unique, 4-point
functions are not. For instance, here we considered two types of 4-point functions, the
contact and s-channel Witten diagrams. As a consequence, the action of the weight-
shifting operator W±±12 on a 4-point function does not a priori generate the same function
with shifted parameters. In fact, in [36] it has been shown that the operator W±±12 acts on
an exchange Witten diagram to generate a linear combination of a shifted exchange and a
shifted contact diagrams, or equivalently a shifted exchange diagram but with derivative
vertices. Hence, it does not generate the same function with shifted parameters. A natural
question then arises: is there a weight-shifting operator that when acting on 4-point Witten
diagrams preserves the form of the function and only shifts the parameters? We show the
answer in Chapter 5.

3.8 Discussion

In this chapter we gave an overview of conformal field theory in momentum space, focusing
on the scalar sector. We derived the n-point CWIs and discussed their solutions. We de-
voted considerable space to the 3-point function, presenting its equivalent representations
and singularities. We constructed the shift operators Li and Ri (3.117), which connect
3-point functions in spacetime dimensions d differing by two. Moreover, we presented the
shift operators W±±ij that connect n-point functions with shifted scaling dimensions but
same d. We then derived the general solutions of 4- and n-point CWIs that were found
recently in terms of the simplex integral (3.189).

While various studies of n-point functions yielded special classes of solutions to the
4-point CWIs, the simplex integral provides the general solution. Several questions arise.
Is there a scalar representation of the simplex integral that simplifies the study of n-
point functions? What is the generalisation of the shift operators Li at n points? Is
there a representation of the simplex integral that helps us to find this class of operators?
Moreover, proving that the simplex integral satisfies the CWIs was cumbersome. Is there
a representation that simplifies this computation? We address these questions in the next
chapter, where we find new scalar parametrisations of the integral by using insights from

54



Chapter 3. Conformal field theory in momentum space

the physics of electrical circuits.
We concluded this chapter by showing that 4-point contact and exchange Witten dia-

grams solve the CWIs and quoted the action of the shift operatorsW±±ij on such solutions.
Unlike the 3-point case, these operators act on 4-point functions connecting solutions of
CWIs with shifted parameters but do not leave the form of the functions unchanged. Thus,
further questions about shift operators arise. Is there a shift operator that when acting
on Witten diagrams (and more generally on a certain integral) preserves the form of the
integral while shifting the parameters? Does the inverse operator of Li exist? We discuss
these questions and find a class of such operators in Chapter 5, using the formalism of a
class of multivariable hypergeometric functions known as GKZ systems.
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Integral representations and shift
operators
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Chapter 4

Shift operators from the simplex
representation in
momentum-space CFT

4.1 Introduction

Understanding the general form of correlation functions in momentum-space conformal
field theory is an important goal. Working in momentum space is natural for many appli-
cations, particularly inflationary cosmology (see, e.g., [19–32]), and reveals features inher-
ited from scattering amplitudes that would otherwise be hidden, for example double-copy
structure and colour/kinematics duality [37–41]. Momentum-space methods are moreover
well suited for renormalisation [45, 34–36], and are of growing interest for the conformal
bootstrap [109–111].

In position space, the structure of general scalar n-point functions has been under-
stood for over fifty years [7]. A correspondingly general solution in momentum space was
proposed only recently in [47, 46]. This takes the form of a generalised Feynman integral
with the topology of an (n− 1)-simplex,

〈O1(p1) . . .On(pn)〉 =
∏

1≤i<j≤n

∫
ddqij
(2π)d

f(q̂)

q
2αij+d
ij

n∏
k=1

(2π)dδ
(
pk +

n∑
l=1

qlk

)
, (4.1)

where the integration is taken over the internal momenta qij running between vertices of
the simplex. Here qij = −qji runs from vertex i to j, while the external momenta pi enter
only via momentum conservation as imposed by the delta function inserted at each vertex.
Each propagator corresponds to an edge of the simplex, as illustrated in figure 4.1, and is
raised to a power specified by the parameter αij . Together, these satisfy the constraints

∆i = −
n∑
j=1

αij , (4.2)

where ∆i is the scaling dimension of the operator Oi. To simplify the writing of such sums
we define αii = 0 and αji = αij . Euclidean signature will be assumed throughout.
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Figure 4.1: Structure of the simplex integral, illustrated for the 5-point function.

The distinguishing feature of the simplex representation (4.1) is the presence of an
arbitrary function f(q̂) of the independent momentum-space cross ratios

q̂[ijkl] =
q2
ijq

2
kl

q2
ikq

2
jl

, (4.3)

denoted collectively by the vector q̂. As the simplex representation can be derived from
the general position-space solution [47, 46], the number of independent cross ratios is the
same in both cases, i.e., n(n− 3)/2 for n ≤ d+ 2 and nd− (d+ 2)(d+ 1)/2 for n > d+ 2.
For n ≥ 4, the solution of the constraints (4.2) for the αij is not unique, but making a
different choice simply multiplies f(q̂) by a product of powers of the cross ratios (4.3).
Since f(q̂) is arbitrary, the solution of (4.2) chosen is therefore immaterial.

In this chapter, we explore scalar parametric representations of the simplex integral
(4.1) obtained by integrating out the internal momenta. This offers several advantages:

• The original integral (4.1) features n(n − 1)/2 d-dimensional loop integrations and
we have (n − 1) delta functions to help us, with one remaining behind to enforce
overall momentum conservation. This leaves the equivalent of (n − 1)(n − 2)d/2
scalar integrals to perform. In contrast, the parametrisations we derive feature
fewer integrals: only n(n− 1)/2 scalar parametric integrals, one for each edge of the
simplex.

• By inverting the graph polynomials that arise, we construct novel weight-shifting
operators connecting solutions of the conformal Ward identities in spacetime dimen-
sion d to new solutions in dimension d + 2. Remarkably, these operators have a
determinantal structure based on the Cayley-Menger matrix familiar from distance
geometry. In contrast, the well-known weight-shifting operators introduced in [83]
preserve the spacetime dimension. Operators mapping d → d + 2 are we believe
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known only for 3-point functions, where their existence can be seen from the triple-
K representation in momentum space [85]1, and for 4-point conformal blocks in
position space (the operator E+ in [74]). The new d→ d+2 operators we obtain can
be viewed as a natural generalisation of the 3-point operators of [85] to arbitrary
n-point correlators.

The plan of this chapter is as follows. In section 4.2, we show that all graph polynomials
for the simplex integral (4.1) can be constructed from the corresponding Gram matrix. The
standard parametric representations for Feynman integrals then follow. Alternatively, by
regarding the Schwinger parameters as resistances in an electrical network, we can compute
the effective resistances between all vertices of the simplex. This latter set of variables
dramatically simplifies the structure of the Schwinger exponential. In section 4.3, we use
these effective resistances to construct new d → d + 2 shift operators for the general n-
point function. The cases n = 3, 4 are discussed in detail, and we verify the action of
all operators independently through computation of their intertwining relations with the
conformal Ward identities. The actions of the d-preserving weight-shifting operators of
[83] are also demonstrated from this scalar parametric perspective. In section 4.4, we prove
that the new parametric representations indeed solve the conformal Ward identities. In
contrast to the vectorial representation (4.1) (for which the Ward identities are analysed in
[47, 46]), for the new scalar parametric representations the Ward identities can be verified
directly without use of recursive arguments in the number of points n. As we show in
section 4.5, the validity of the conformal Ward identities, as well as the action of the d-
preserving weight-shifting operators, can also be seen from the position-space counterpart
of the simplex. Section 4.6 concludes with a summary of results and open directions.

4.2 Parametric representations of the simplex

This section investigates scalar parametric representations for the simplex integral (4.1).
In the following, we identify the necessary graph polynomials (section 4.2.1), standard
parametric representations (section 4.2.2), and introduce new variables analogous to the
effective resistances between nodes of the simplex (section 4.2.3). To re-formulate the
simplex integral in these variables, we solve the inverse problem to express the origi-
nal Schwinger parameters in terms of the effective resistances (section 4.2.4). The re-
parametrised integral, which will be the basis of our new shift operators, then follows
(section 4.2.5).

4.2.1 Graph polynomials

Exponentiating all propagators via Schwinger parametrisation, the internal momenta can
be integrated out reducing the simplex integral to various scalar parametrisations. The
structure of the resulting Symanzik polynomials is clearest however when expressed in
terms of the inverse of the usual variables. For this reason, we use the inverse Schwinger
parametrisation

1

q
2αij+d
ij

=
1

Γ(αij + d/2)

∫ ∞
0

dvij v
−d/2−αij−1
ij e−q

2
ij/vij . (4.4)

1These d→ d+2 operators also enable the construction of d-dimensional tensorial correlators [42, 34, 35].
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The resulting polynomials U and F are then related to the standard Symanzik polynomials
U and F by

U(vij) =
( n∏
i<j

vij

)
U
( 1

vij

)
, F(vij) =

( n∏
i<j

vij

)
F
( 1

vij

)
. (4.5)

For the simplex, the structure of U and F can be expressed in terms of two matrices.
The first is the (n− 1)× (n− 1) Gram matrix Gij = pi · pj . For our purposes, the most
convenient parametrisation is

Gij =

{∑n
k=1 Vik i = j

−Vij i 6= j
i, j = 1, . . . , n− 1, (4.6)

where

Vij =

{
−pi · pj i 6= j

0 i = j
i, j = 1, . . . , n. (4.7)

Here the Vij provide a full set of n(n−1)/2 symmetric and independent Lorentz invariants.
To write the diagonal entries in the Gram matrix, we used momentum conservation to
express p2

i = −
∑n

k 6=i pi · pk. The second matrix is simply the image of the Gram matrix
under the mapping Vij → vij , namely

gij =

{∑n
k=1 vik i = j,

−vij i 6= j,
i, j = 1, . . . , n− 1. (4.8)

Since the vij correspond to the edges of the simplex we define, as we did for the Vij ,

vij = vji, vii = 0. (4.9)

As shown in appendix B.1, the graph polynomials are now

U = |g|, F = tr(adj(g) ·G),
F
U

= tr(g−1 ·G), (4.10)

where |g| = det g, adj g = |g| g−1 is the adjugate matrix and g−1 the inverse matrix.
The derivation proceeds by expressing the delta functions of (4.1) in Fourier form and
integrating out all internal momenta. Only after this step has been performed are the
Fourier integrals for the delta functions then evaluated. As the Gram determinant |G| is
proportional to the squared volume of the simplex spanned by the independent momenta,
the polynomial U describes the image of this squared volume under the mapping Vij → vij .
Alternatively, by the matrix tree theorem (see e.g., [65]), U is the Kirchhoff polynomial
encoding the sum of spanning trees on the simplex.

A second useful expression for F can be derived from Jacobi’s identity,

∂vij |g| = tr
(
adj (g) · ∂vijg

)
, (4.11)
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in combination with the relation

Gij =

n∑
k<l

Vkl
∂Gij
∂Vkl

=

n∑
k<l

Vkl
∂gij
∂vkl

. (4.12)

This last relation follows from the linearity of the Gij in the Vkl, as we saw in (4.6), and
the mapping of Gij → gij under Vkl → vkl. The sums run over all k and l such that
k < l, corresponding to all edges of the simplex. Substituting (4.12) into (4.10) then using
(4.11),

F =

n∑
i<j

∂|g|
∂vij

Vij ,
F
U

=

n∑
i<j

∂ ln |g|
∂vij

Vij , (4.13)

or in terms of the raw momenta,

F = −
n∑
i<j

∂|g|
∂vij

pi · pj ,
F
U

= −
n∑
i<j

∂ ln |g|
∂vij

pi · pj . (4.14)

4.2.2 Parametric representations of the n-point correlator

To express correlators compactly, we extract the overall delta function of momentum
conservation as

〈O1(p1) . . .On(pn)〉 = 〈〈O1(p1) . . .On(pn)〉〉(2π)dδ(
n∑
i=1

pn). (4.15)

We also define an arbitrary function f(v̂) whose arguments, denoted collectively by the
vector v̂, are the independent inverse Schwinger parameter cross ratios

v[ijkl] =
vijvkl
vikvjl

. (4.16)

The simplex integral (4.1) can now be written in a variety of standard forms using the
polynomials U and F defined in (4.10) or (4.14). Among the most useful are:

1. Schwinger parametrisation:

〈〈O1(p1) . . .On(pn)〉〉 =
( n∏
i<j

∫ ∞
0

dvij v
−αij−1
ij

)
f(v̂)U−d/2e−F/U (4.17)

Here, the v
−d/2
ij factors in (4.4) cancel with those associated with U−d/2 via (4.5).

2. Lee-Pomeransky parametrisation [112]:

〈〈O1(p1) . . .On(pn)〉〉 =
( n∏
i<j

∫ ∞
0

dvij v
−αij−1
ij

)
f(v̂) (U + F)−d/2 (4.18)
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3. Feynman parametrisation:

〈〈O1(p1) . . .On(pn)〉〉 =
( n∏
i<j

∫ ∞
0

dvij v
−αij−1
ij

)
δ
(

1−
n∑
i<j

κijvij

)
f(v̂)Uω−d/2F−ω

(4.19)
where ω = (n−1)d/2+

∑n
i<j αij = (−∆t+(n−1)d)/2 and the constants κij ≥ 0 can

be chosen arbitrarily provided they are not all zero.2 If we choose all κij = 1 then
the integration region is a simplex in the space spanned by the vij . Alternatively,
we can set a single κij to unity and the rest to zero which trivialises one of the
integrations at the cost of obscuring permutation invariance.

These representations are all equivalent up to numerical factors; for clarity, we have
re-absorbed these into the arbitrary functions. For analysing the action of weight-shifting
operators and verifying the conformal Ward identities, we will focus exclusively on the
Schwinger parametrisation (4.17). Nevertheless, the Lee-Pomeransky representation (4.18)
is well suited for studying the Landau singularities, as discussed in appendix B.3, and the
Feynman parametrisation (4.19) has the virtue that one integral can be performed using
the delta function.

Example: As a quick illustration, the 4-point function in Schwinger parametrisation is

〈〈O1(p1)O2(p2)O3(p3)O4(p4)〉〉

=
( 4∏
i<j

∫ ∞
0

dvij v
−αij−1
ij

)
f
(v12v34

v13v24
,
v14v23

v13v24

)
|g|−d/2e−tr (g−1·G) (4.20)

where Gij = pi · pj is the 3× 3 Gram matrix and g is its image

g =

v12 + v13 + v14 −v12 −v13

−v12 v12 + v23 + v24 −v23

−v13 −v23 v13 + v23 + v34

 . (4.21)

The determinant is

|g| = v12v13v14 + v12v14v23 + v13v14v23 + v12v13v24

+ v13v14v24 + v12v23v24 + v13v23v24 + v14v23v24

+ v12v13v34 + v12v14v34 + v12v23v34 + v13v23v34

+ v14v23v34 + v12v24v34 + v13v24v34 + v14v24v34 (4.22)

and the equivalence of (4.10) and (4.14) can be verified directly.

2 The Feynman parametrisation follows from the Schwinger parametrisation by setting vij = yij/σ
subject to the constraint

∑n
i<j κijyij = 1. The U and F are homogeneous polynomials of weights (n− 1)

and (n−2) respectively, meaning that F(vij)/U(vij) = σF(yij)/U(yij) while the Jacobian can be evaluated
as per appendix B of [46]. We then perform the scale integral over σ and relabel the yij → vij .
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4.2.3 The effective resistances

Thus far, we have expressed the Kirchhoff polynomial U as the determinant of g, the
image under Vij → vij of the Gram matrix, where pn is eliminated using momentum
conservation. However, since all vertices of the simplex are equivalent, U ought also to
be expressible in terms of the n× n matrix g̃ corresponding to the image of the extended
Gram matrix G̃ij = pi · pj for i, j = 1, . . . , n. This is simply the Laplacian matrix for the
simplex:

g̃ij =

{∑n
k=1 vik, i = j,

−vij , i 6= j,
i, j = 1, . . . , n. (4.23)

As every row and column sum of the Laplacian matrix is zero its determinant vanishes
identically, but its cofactors (i.e., signed first minors) are in fact all equal to U . To see
this, consider the diagonal minor |g̃(n,n)| formed by deleting row n and column n then
taking the determinant. Comparing with (4.8), we then see that |g̃(n,n)| = |g| = U . As
any diagonal minor is equal to its cofactor, U is likewise the (n, n) cofactor. However, by
elementary row and column operations one can show that all cofactors of the Laplacian
matrix are equal.3 Thus, every cofactor (and every diagonal minor) is equal to U . Note
this also confirms that our choice of eliminating pn in section 4.2.1 was immaterial.

Let us now turn to an electrical analogy involving a simplicial network of resistors.
Here, the Laplacian matrix naturally encodes the external current Ii flowing into node i,
since

Ii =
∑
j 6=i

vij(Vi − Vj) =
∑
j 6=i

g̃ijVj , (4.24)

where vij is the conductivity of the edge connecting nodes i and j and Vj is the voltage of
node j. Given this identification of the vij with the conductivities, a natural question to
ask is what are the corresponding effective resistances between the nodes? From Kirchhoff,
the effective resistance sij between nodes i and j is given by the ratio of minors [113, 114]

sij =
|g̃(ij,ij)|
|g̃(j,j)|

, (4.25)

where |g̃(I,J)| indicates the minor formed by deleting the set of rows I and columns J then
taking the determinant. Thus, |g̃(ij,ij)| is the second minor formed by deleting rows i and
j as well as columns i and j, while |g̃(j,j)| is the first minor corresponding to deleting row
and column j. From (4.23), the element vij appears only in the row and columns (i, i),
(i, j), (j, i) and (j, j) of g̃. Forming the first minor |g̃(j,j)| by deleting row and column j,
vij then appears only once in the (i, i) position. The derivative ∂|g̃(j,j)|/∂vij is thus equal

3For example, add one to every element of g̃ij then add all rows to the first row, and all columns to
the first column. The top left entry is now n2 while all remaining entries of the first row and column are
n. Taking the determinant, we first extract an overall factor of n from the top row, then subtract the new
top row (whose leftmost entry is now n with all other entries one) from all the other rows. The resulting
matrix has zeros in all entries of the first column apart from the top one which is n, and all entries other
than those in the first row and column are g̃ij (since we added one then subtracted one). The determinant
of g̃ij plus the all ones matrix is therefore n2 times the (1, 1) cofactor of g̃ij . Repeating the exercise for any
other choice of row and column yields the same result with the corresponding cofactor, hence all cofactors
are equal. Note this also shows that U is n−2 times the determinant of the Laplacian plus the all-ones
matrix.
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to the second minor |g̃(ij,ij)| formed by additionally deleting row and column i in |g̃(j,j)|.
Since |g̃(j,j)| = |g| as above, we have

sij =
∂ ln |g|
∂vij

,
F
U

= −
n∑
i<j

sij pi · pj , (4.26)

where the second result follows immediately from (4.14). The Schwinger exponent in (4.17)
thus encodes the effective resistances sij between all vertices. Moreover, both U and F
have been related to minors of the Laplacian: U is any diagonal first minor (or cofactor),
while the coefficients of the F polynomial correspond to the second minors: from (4.14),
the coefficient of Vij = −pi · pj (for i < j) is ∂|g|/∂vij = |g̃(ij,ij)|.

Earlier, we noted that U = |g| is proportional to the squared volume of the (n − 1)-
simplex formed by the independent momenta under the map Vij → vij . By the same
token, each coefficient |g̃(ij,ij)| of the F polynomial thus corresponds to the image of
|G̃(ij,ij)|, the second minor of the extended Gram matrix. However, this minor is simply
the determinant of the reduced Gram matrix formed from all the momenta apart from pi
and pj . Thus, the coefficient of Vij in the F polynomial is proportional to the squared
volume of the (n− 2)-simplex, formed from all the momenta except for pi and pj , under
the map Vij → vij . Similarly, the effective resistance sij is proportional to the ratio of the
squared volume of this (n− 2)-simplex to the squared volume of the full (n− 1)-simplex.

4.2.4 Re-parametrising the simplex

The original Schwinger parametrisation (4.17) is complicated by the non-linear dependence
of the exponent on the vij . As we saw in (4.26), however, the coefficients of the Vij =
−pi · pj in F/U are simply the effective resistances sij between nodes. The next step
is thus to invert the relation (4.26) to find the vij in terms of the sij , i.e., to express
the conductivities in terms of the effective resistances. The simplex integral can then be
fully re-parametrised in terms of the sij , with the linearity of the Schwinger exponent
giving a Fourier-style duality between the Vij and the sij . This duality means that all
momentum derivatives acting on the simplex, and all momenta, can be trivially exchanged
for operators constructed from the sij and derivatives ∂/∂sij . The latter can then be
integrated by parts. This strategy will repeatedly prove useful to us later.

We start by applying Jacobi’s relation to further evaluate (4.26),

sij =
1

|g|
∂|g|
∂vij

= tr
(
g−1 · ∂g

∂vij

)
=

{
(g−1)ii + (g−1)jj − 2(g−1)ij , i < j < n

(g−1)ii, i < j = n
(4.27)

where the matrices ∂g/∂vij are easily evaluated from (4.8). Defining sii = 0 for convenience
(as we similarly defined vii = 0) and re-arranging, we find

(g−1)ij =
1

2
(sin + sjn − sij), i, j = 1, . . . , n− 1 (4.28)

where the diagonal entries reduce to (g−1)ii = sin. Inverting this matrix will now give us
back the matrix g, as defined in (4.8), but re-expressed in terms of the sij . The desired
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expressions for the vij in terms of the sij can then be read off from the appropriate entries.
In fact, it is sufficient simply to know the determinant |g−1|. For i < j < n, the (i, j)

minor formed by deleting row i and column j of g−1 is |(g−1)(i,j)| = −(−1)i+j∂|g−1|/∂sij ,
since from (4.28) sij appears (with coefficient minus one-half) only in the positions (i, j)
and (j, i) of the symmetric matrix g−1. The off-diagonal entries of the adjugate matrix
are thus

adj(g−1)ij = (−1)i+j |(g−1)(i,j)| = −∂|g
−1|

∂sij
, i < j < n (4.29)

so

vij = −gij = − 1

|g−1|
adj(g−1)ij =

∂ ln |g−1|
∂sij

, i < j < n. (4.30)

Similarly, sin appears in every entry of the ith row of g−1, and in every entry of the ith

column. The coefficients for the off-diagonal entries are all one-half, while that for the
diagonal entry is one. The derivative ∂|g−1|/∂sin then corresponds to summing one-half
times the signed minors both along the ith row and down the ith column such that the
diagonal entry is counted twice. As g−1 is symmetric, however, these two sums are equal
so we can simply sum along the ith row only with coefficient one. This gives

∂ ln |g−1|
∂sin

=

n−1∑
j=1

(−1)i+j

|g−1|
|(g−1)(i,j)| =

n−1∑
j=1

1

|g−1|
adj(g−1)ij =

n−1∑
j=1

gij = vin, (4.31)

where in the final step we used (4.8) to identify the sum of the first n − 1 entries along
the ith row of the Laplacian as vin. The relation (4.30) thus holds for all i < j ≤ n.

To simplify this formula further, we observe that |g−1| can be re-expressed in terms of
the determinant of the (n+ 1)× (n+ 1) Cayley-Menger matrix,

m =



0 s12 s13 . . . s1n 1
s12 0 s23 . . . s2n 1
s13 s23 0 . . . s3n 1
...

...
...

...
...

s1n s2n s3n . . . 0 1
1 1 1 . . . 1 0


. (4.32)

When evaluating the determinant, if we subtract the nth column from the first (n − 1)
columns, and then the nth row from the first (n− 1) rows, we find

|m| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−2s1n s12 − s1n − s2n s13 − s1n − s3n . . . s1n 0

s12 − s1n − s2n −2s2n s23 − s2n − s3n . . . s2n 0

s13 − s1n − s3n s23 − s2n − s3n −2s3n . . . s3n 0

...
...

...
...

...

s1n s2n s3n . . . 0 1

0 0 0 . . . 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.33)

Comparing with (4.28), the upper-left (n − 1) × (n − 1) submatrix is −2g−1. Laplace
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expanding along the (n+ 1)th row and then the (n+ 1)th column thus gives

|m| = −(−2)n−1|g−1|. (4.34)

Equations (4.30) and (4.31) can now be cleanly re-expressed in terms of the Cayley-Menger
determinant:

vij =
∂ ln |m|
∂sij

, i < j ≤ n. (4.35)

This is our desired result expressing all the vij in terms of the sij , inverting (4.26). A few
additional relations also follow. Jacobi’s relation allows us to write

vij =
1

|m|
∂|m|
∂sij

=
1

|m|
tr
(

adj(m) · ∂m
∂sij

)
= tr

(
m−1 · ∂m

∂sij

)
= 2(m−1)ij , (4.36)

since ∂mkl/∂sij = 2δi(kδl)j from (4.32). As the off-diagonal entries of the Laplacian matrix
are g̃ij = −vij , this means that

g̃ij = −2(m−1)ij , i, j ≤ n. (4.37)

In fact, as indicated, this equation also holds for the diagonal elements with i = j ≤ n,
since if we multiply the (n+ 1)th row of m by column i of m−1 we find

0 =
n∑
j=1

m−1
ij , i ≤ n (4.38)

and since all row and column sums of the Laplacian matrix vanish,

g̃ii = −
n∑
j 6=i

g̃ij =
n∑
j 6=i

2(m−1)ij = −2(m−1)ii. (4.39)

Thus, the n × n upper-left submatrix of the inverse Cayley-Menger matrix is minus one-
half the Laplacian matrix, using either (4.26) or (4.35) to convert between the sij and
vij .

4

The appearance of the Cayley-Menger matrix in our analysis is not a total surprise:
in Euclidean distance geometry, the Cayley-Menger determinant is proportional to the
squared volume of the simplex whose squared side lengths are given by the sij . Here, the
map vij → Vij sends (g−1)ij to the inverse Gram matrix G−1

ij = (p̃i · p̃j), which is itself the

Gram matrix formed from the independent dual momentum vectors p̃i = G−1
ij pj satisfying

p̃i · pj = δij . The determinant |g−1| is thus proportional to the squared volume of the
dual (n − 1)-simplex spanned by the independent p̃i, and by (4.34), the sij are then the
squared side lengths of this dual simplex. This provides an alternative (dual) geometrical
interpretation for the sij , besides the volume ratio discussed at the end of section 4.2.3.

4 To the best of our knowledge, this result, along with a geometrical interpretation of the remaining
(n+ 1)th row and column of the Cayley-Menger inverse, was first obtained by Fiedler, see [115, 116].
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Example: All the relations above are easily checked for small values of n, and the sij
are always rational functions of the vij and vice versa. For the 4-point function, we find,
e.g.,

s12 =
∂ ln |g|
∂v12

= (v13v14 + v14v23 + v13v24 + v23v24 + v13v34 + v14v34 + v23v34 + v24v34) |g|−1

v12 =
∂ ln |m|
∂s12

= (−2s13s23 + 2s14s23 + 2s13s24 − 2s14s24 − 4s12s34

+ 2s13s34 + 2s14s34 + 2s23s34 + 2s24s34 − 2s2
34) |m|−1, (4.40)

where |g| was evaluated in (4.22) and

|m| =

∣∣∣∣∣∣∣∣∣∣
0 s12 s13 s14 1
s12 0 s23 s24 1
s13 s23 0 s34 1
s14 s24 s34 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
(4.41)

evaluates to

|m| = −2s12s13s23 + 2s12s14s23 + 2s13s14s23 − 2s2
14s23 − 2s14s

2
23 + 2s12s13s24 − 2s2

13s24

− 2s12s14s24 + 2s13s14s24 + 2s13s23s24 + 2s14s23s24 − 2s13s
2
24 − 2s2

12s34

+ 2s12s13s34 + 2s12s14s34 − 2s13s14s34 + 2s12s23s34 + 2s14s23s34 + 2s12s24s34

+ 2s13s24s34 − 2s23s24s34 − 2s12s
2
34. (4.42)

4.2.5 Cayley-Menger parametrisation of the n-point correlator

Using the results above, we can re-express the various parametrisations of the simplex
integral in terms of the effective resistances sij . If we write the external momenta in
Cayley-Menger form,

M = m
∣∣∣
sij→pi·pj

(4.43)

the Schwinger exponent can be written as

− F
U

=

n∑
i<j

sij(pi · pj) =
1

2
tr(M ·m) + n, (4.44)

where the constant term n just produces an overall scaling which can be re-absorbed
into the arbitrary function of cross-ratios. Moreover, as shown in appendix B.2.1, the
determinant of the Jacobian is∣∣∣∣∂s∂v

∣∣∣∣ =

∣∣∣∣∂2 ln |g|
∂v∂v

∣∣∣∣ ∝ |g|−n ∝ |m|n, (4.45)

where the constant of proportionality can again be absorbed into the arbitrary function.
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The Schwinger form (4.17) of the simplex integral now becomes

〈〈O1(p1) . . .On(pn)〉〉 =
( n∏
i<j

∫ ∞
0

dsij

(∂ ln |m|
∂sij

)−αij−1)
f(v̂) |m|d/2−n e

1
2

tr(M ·m) (4.46)

where the cross-ratios v̂ are rational functions of the sij as defined via (4.16) and (4.35).
An alternative expression can be given in terms of the Cayley-Menger minors, since from
Jacobi’s relation

∂|m|
∂sij

= 2(−1)i+j |m(i,j)|, (4.47)

where |m(i,j)| is the minor formed by taking the determinant after deleting row i and
column j. After absorbing numerical factors into the arbitrary function, this gives

〈〈O1(p1) . . .On(pn)〉〉 =
( n∏
i<j

∫ ∞
0

dsij |m(i,j)|−αij−1
)
f(v̂) |m|α e

1
2

tr(M ·m) (4.48)

where

α =
1

2

(
d+ n(n− 3)−

n∑
i=1

∆i

)
, v̂[ijkl] =

vijvkl
vikvjl

=
|m(i,j)||m(k,l)|
|m(i,k)||m(j,l)|

. (4.49)

Analogous expressions can be obtained for the Lee-Pomeransky and Feynman representa-
tions (4.18) and (4.19), but the Schwinger parametrisations (4.46) and (4.48) are particu-
larly convenient. As noted, the diagonal Schwinger exponent means differential operators
in the momenta can easily be traded for equivalent differential operators in the sij acting
on the exponential, whose action can be further evaluated through integration by parts.

4.3 Weight-shifting operators

New weight-shifting operators now follow from the Cayley-Menger parametrisation (4.48).
Acting on the Schwinger exponent (4.44) with an appropriate polynomial differential op-
erator in the momenta pulls down a corresponding polynomial in the sij . Choosing these
polynomials to be the Cayley-Menger determinant and its minors, we obtain shift opera-
tors either increasing α or decreasing one of the αij by integer units. We discuss these new
operators in section 4.3.1, showing their effect is to increase the spacetime dimension by
two while performing assorted shifts of the operator dimensions. Further weight-shifting
operators can then be constructed by conjugating these operators with shadow transforms
as shown in section 4.3.2. Explicit examples are given for the 3- and 4-point functions
in section 4.3.3. Then, in section 4.3.4, we turn to analyse the weight-shifting operators
proposed in [83]. These preserve the spacetime dimension but their action can nevertheless
be understood using our parametric representations.
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4.3.1 New operators sending d → d+ 2

Let us begin with the Vij defined in (4.7) as our independent momentum variables. Acting
on the Schwinger exponent (4.44), for any i < j

− ∂

∂Vij
e

1
2

tr(M ·m) = sij e
1
2

tr(M ·m), −Vij e
1
2

tr(M ·m) =
∂

∂sij
e

1
2

tr(M ·m) (4.50)

allowing differential operators in the momenta to be traded for equivalent operators in the
integration variables sij . The shift operators

S++
ij = |m(i,j)|

∣∣∣
sij→−∂/∂Vij

, S = |m|
∣∣∣
sij→−∂/∂Vij

, (4.51)

then serve to pull down factors of |m(i,j)| and |m| respectively, thus their action is to send

S++
ij : αij → αij − 1, S : α→ α+ 1. (4.52)

From (4.2) and (4.49), this is equivalent to shifting

S++
ij : d→ d+ 2, ∆i → ∆i + 1, ∆j → ∆j + 1, (4.53)

S : d→ d+ 2, (4.54)

and so the superscript on S++
ij is chosen to indicate its action of raising ∆i and ∆j by one.

While the Cayley-Menger structure of S++
ij and S is manifest in the variables Vij , where

convenient these operators can easily be rewritten in terms of other scalar invariants (e.g.,
Mandelstam variables) via the chain rule. We will discuss this for 3- and 4-point functions
shortly in section 4.3.3.

Alternatively, we can express S++
ij and S in terms of vectorial derivatives with respect

to independent momentum pi for i = 1, . . . n− 1. For S, we find

S = − (n− 1)!

|G|
p

[µ1

1 . . . p
µn−1]

n−1

∂

∂pµ1
1

. . .
∂

∂p
µn−1

n−1

(4.55)

where |G| = |pi · pj | is the Gram determinant and the µi are Lorentz indices. (We leave
all Lorentz indices upstairs to avoid confusion with the momentum labels, given we are
working on a flat Euclidean metric.) The equivalence of (4.55) to (4.51) can be established
either by direct calculation for specific n, or else by considering its action on the Schwinger
exponential of the representation (4.17). This representation is the appropriate one since,
from (4.10), it involves only dot products of the independent momenta. Evaluating, we
find

S
(
e−

∑n−1
i,j (g−1)ijpi·pj

)
= −(n− 1)!

|G|
p

[µ1

1 . . . p
µn−1]
n−1
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×
(
− 2

n−1∑
j1

(g−1)1j1p
µ1
j1

)
. . .
(
− 2

n−1∑
jn−1

(g−1)n−1,jn−1p
µn−1

jn−1

)
e−

∑n−1
i,j (g−1)ijpi·pj

=
−(−2)n−1(n− 1)!

|G|

n−1∑
j1,k1

. . .
n−1∑

jn−1,kn−1

(g−1)1j1 . . . (g
−1)n−1,jn−1(p1 · pk1

) . . . (pn−1 · pkn−1
)

× δ[k1

j1
. . . δ

kn−1]
jn−1

e−
∑n−1
i,j (g−1)ijpi·pj

= −(−2)n−1|g|−1e−
∑n−1
i,j (g−1)ijpi·pj

= |m| e−
∑n−1
i,j (g−1)ijpi·pj , (4.56)

where in the last step we used the Levi-Civita identity (n−1)! δ
[k1

j1
. . . δ

kn−1]
jn−1

= εj1...jn−1εk1...kn−1

to generate a product of determinants |g−1||G|, with the |G| then cancelling. Referring
back to (4.17), since U−d/2 = |g|−d/2 we see the action of S is thus indeed to raise d→ d+2.

Through similar manipulations, we find

S++
in = (−1)i+n

(n− 1)!

|G|
p

[µ1

1 . . . p
µn−1]

n−1 pµin

n−1∏
k 6=i

∂

∂pµkk
. (4.57)

Relative to (4.55), the derivative ∂/∂pµii has been replaced by the dependent momentum
pµin = −

∑n−1
ji=1 p

µi
ji

positioned to the left of all derivatives. This leads to

S++
in

(
e−

∑n−1
i,j (g−1)ijpi·pj

)
=

(−1)i+n(n− 1)!

|G|
p

[µ1

1 . . . p
µn−1]
n−1

×
(
−2

n−1∑
j1

(g−1)1j1p
µ1
j1

)
. . .
(
−2

n−1∑
ji

pµiji

)
. . .
(
−2

n−1∑
jn−1

(g−1)n−1,jn−1p
µn−1

jn−1

)
e−

∑n−1
i,j (g−1)ijpi·pj

= (−1)i 2n−2
n−1∑
ji=1

∂|g−1|
∂(g−1)iji

e−
∑n−1
i,j (g−1)ijpi·pj , (4.58)

since, relative to our previous calculation, the matrix element (g−1)iji is missing in the
product on the middle line. Instead of obtaining the full determinant |g−1|, we then get
the derivative of this with respect to the missing element. As in (4.31), we can now rewrite

n−1∑
ji=1

∂|g−1|
∂(g−1)iji

=
n−1∑
ji=1

(adj g−1)iji =

n−1∑
ji=1

giji |g−1| = vin|g|−1 = (−1)i 22−n|m(i,n)| (4.59)

using (4.47) in the last step. The action of S++
in in (4.57) on the exponential is thus to pull

down a factor of vij |g|−1. From the representation (4.17), this has precisely the required
action of sending αij → αij − 1 and d→ d+ 2.
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Finally, since the choice of dependent momentum is immaterial, (4.57) generalises to

S++
ij = (−1)i+j

(n− 1)!

|G|
p

[µ1

1 . . . p̂
µ̂j
j . . . p

µn]
n pµij

n∏
k 6=i,j

∂

∂pµkk
(4.60)

where the hats p̂
µ̂j
j indicates that this factor and index are omitted in the antisymmetrised

product, and we take p
µj
j = −

∑n
kj 6=j p

µj
kj

as the dependent momentum. In principle these
last few derivations allow use of the sij variables to be avoided entirely, although in practice
the form of the operators (4.55) and (4.60) would be hard to anticipate.

4.3.2 Further shift operators from shadow conjugation

Additional d → d + 2 shift operators can now be constructed – at no expense – by
conjugating S++

ij and S by a pair of shadow transforms. This idea was discussed recently
for d-preserving weight-shifting operators in [36].

In momentum space, the shadow transform ∆i → d−∆i (leaving d invariant) simply
corresponds to multiplying by pd−2∆i

i . First, notice that attempting to conjugate S++
ij by

shadow transforms on either of ∆i or ∆j has no effect: for example, the action of the

operator p2∆i−d
i S++

ij pd−2∆i
i corresponds to the successive parameter shifts

(∆i,∆j , d)
p
d−2∆i
i−−−−→ (d−∆i,∆j , d)

S++
ij−−−→ (d−∆i + 1,∆j + 1, d+ 2)

p
(d+2)−2(d−∆1+1)
i = p

2∆i−d
i−−−−−−−−−−−−−−−−−→ ((d+ 2)− (d−∆i + 1),∆j + 1, d+ 2)

= (∆i + 1,∆j + 1, d+ 2) (4.61)

which is equivalent to the action of S++
ij alone. Further computations confirm that the

shadow transform on ∆i or ∆j commutes with S++
ij .

However, we do obtain new operators if we shadow conjugate S++
ij on any index k 6= i, j.

For example, the action of
p2∆k+2−d
k S++

ij pd−2∆k
k (4.62)

corresponds to the successive parameter shifts

(∆i,∆j ,∆k, d)
p
d−2∆k
k−−−−→ (∆i,∆j , d−∆k, d)

S++
ij−−−→ (∆i + 1,∆j + 1, d−∆k, d+ 2)

p
(d+2)−2(d−∆k)

k = p
2∆k+2−d
k−−−−−−−−−−−−−−−−−→ (∆i + 1,∆j + 1,∆k + 2, d+ 2). (4.63)

Thus, in addition to the shifts produced by S++
ij alone, we have also shifted ∆k up by two.

Shadow conjugating on further variables has the same effect, for example,

p2∆k+2−d
k p2∆l+2−d

l S++
ij pd−2∆k

k pd−2∆l
l (4.64)
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for any (k, l) 6= (i, j) sends (∆i,∆j ,∆k,∆l, d)→ (∆i + 1,∆j + 1,∆k + 2,∆l + 2, d+ 2).
We can also apply similar considerations to S. The action of

p2∆i+2−d
i Spd−2∆i

i (4.65)

corresponds to the shifts

(∆i, d)
p
d−2∆i
i−−−−→ (d−∆i, d)

S−→ (d−∆i, d+ 2)
p

(d+2)−2(d−∆i)
i =p

2∆i+2−d
i−−−−−−−−−−−−−−−−→ (∆i + 2, d+ 2).

(4.66)

Shadow conjugating on further momenta pk leads similarly to shifting ∆k → ∆k + 2.
With all these operators obtained by shadow conjugation, notice we can always obtain

an equivalent differential operator with purely polynomial coefficients (i.e., an operator in
the Weyl algebra) by commuting the inner pd−2∆k

k shadow factors through the differential
operator S or S++

ij , whereupon all non-integer powers cancel with those from the outer
shadow transform.

4.3.3 Examples at three and four points

To illustrate the general discussion in the two preceding subsections, let us now compute
the explicit form of these d→ d+ 2 shift operators for 3- and 4-point functions.

3-point shift operators

For the 3-point function, it is convenient to use the three squared momentum magnitudes
as variables. Defining

Pi = p2
i , Di =

∂

∂Pi
=

1

2pi

∂

∂pi
, i = 1, 2, 3 (4.67)

via momentum conservation we have

Pi = −
3∑
j 6=i
pi · pj =

3∑
j 6=i

Vij ,
∂

∂Vij
=

3∑
k=1

∂Pk
∂Vij

∂

∂Pk
= Di +Dj (4.68)

From (4.51), writing DiDj = Dij for short, we then find

S = −4(D12 +D23 +D13),

S++
12 = −2D3, S++

23 = −2D1, S++
13 = 2D2. (4.69)

The various signs on the second line reflect our choice to use the Cayley minors in (4.48)
and (4.51): had we used instead the cofactors or ∂|m|/∂sij as per (4.47) then all signs
would be the same. Generally, any overall coefficient in S or the S++

ij can be eliminated
by rescaling the corresponding prefactor in the definition of the simplex integral.

As noted in the introduction, these 3-point operators (and their shadow conjugates)
are already known from the triple-K representation of the 3-point function. In [42, 85],
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the Bessel shift operators

Li = − 1

pi

∂

∂pi
, Ri = 2βi − pi

∂

∂pi
= p2βi+2

i Li p−2βi
i , βi = ∆i −

d

2
(4.70)

where shown to act on the 3-point function by sending

Li : βi → βi − 1, d→ d+ 2, Ri : βi → βi + 1, d→ d+ 2, (4.71)

or equivalently,

L1 : (d,∆1,∆2,∆3)→ (d+ 2,∆1,∆2 + 1,∆3 + 1), (4.72)

R1 : (d,∆1,∆2,∆3)→ (d+ 2,∆1 + 2,∆2 + 1,∆3 + 1), (4.73)

and similarly under permutations. This is consistent with our analysis here, since

(L1,L2,L3) = (S++
23 ,−S++

13 ,S++
12 ) (4.74)

and S++
ij augments ∆i and ∆j by one and d by two. The Ri operators are then their

shadow conjugates as defined in (4.62), producing the expected shifts (4.63). Finally,

S = −L1L2 − L2L3 − L3L1 (4.75)

does not appear explicitly in [85], but can be derived as follows. Writing the 3-point
function as the triple-K integral Id/2−1,{β1,β2,β3}, from (4.71) we have

−SId/2−1,{β1,β2,β3} = Id/2+1,{β1−1,β2−1,β3} + Id/2+1,{β1,β2−1,β3−1} + Id/2+1,{β1−1,β2,β3−1}

= (R1 +R2 +R3)Id/2,{β1−1,β2−1,β3−1}

=
(d

2
+ βt + 4

)
Id/2,{β1−1,β2−1,β3−1} (4.76)

where the final line follows by eliminating the sum of Ri operators using the dilatation
Ward identity. The effect of S is thus to increase d → d + 2 and all βi → βi − 1. All
dimensions ∆i = βi + d/2 are then preserved, consistent with (4.53).

4-point shift operators

The 3-point calculations above provide a first consistency check, but to obtain genuinely
new shift operators we now turn to the 4-point function.

To write our results, we introduce the Mandelstam variables,

PI = {p2
1, p

2
2, p

2
3, p

2
4, s

2, t2}, I = 1, . . . , 6 (4.77)

where s2 = (p1 + p2)2 and t2 = (p2 + p3)2, and define the derivative operators

DI =
∂

∂PI
, DIJ = DIDJ , DIJK = DIDJDK . (4.78)

Defining S++
ij = 4(−1)i+jS++

ij and S = −8S to suppress trivial numerical factors, from
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(4.51) and (4.41), using the chain rule analogous to (4.68), we obtain the operators

S++
12 = D34 +D45 +D35 +D56,

S++
13 = D24 −D56,

S++
14 = D23 +D26 +D36 +D56,

S++
23 = D14 +D16 +D46 +D56,

S++
24 = D13 −D56,

S++
34 = D12 +D15 +D25 +D56, (4.79)

and

S = D456 +D356 +D346 +D256 +D246 +D245 +D235 +D234

+D156 +D145 +D136 +D135 +D134 +D126 +D124 +D123. (4.80)

As per (4.53), the S++
ij increase ∆i and ∆j by one and d by two, while S increases d by

two.
Following section 4.3.2, we can obtain further shift operators by shadow conjugation.

As noted earlier, shadow conjugating each S++
ij on either of the (i, j) indices has no effect:

from (4.79), S++
ij contains neither Di or Dj hence these shadow factors commute through

the operator. Instead, we must shadow conjugate each S++
ij with respect to indices other

than (i, j). At four points, once a pair of insertions (i, j) is specified, the remaining set
also form a pair (k, l) 6= (i, j). Shadow conjugating each S++

ij on the opposite pair (k, l)
then defines

S̄++
ij = p

2(βk+1)
k p

2(βl+1)
l S++

ij p−2βk
k p−2βl

l , (k, l) 6= (i, j) (4.81)

where βi = ∆i − d/2. Expressed in terms of the variables (4.77), we find

S̄++
12 = β3β4 − β4P3D3 − β3P4D4 − (β3P4 + β4P3)D5 + P3P4S

++
12 ,

S̄++
13 = β2β4 − β4P2D2 − β2P4D4 + P2P4S

++
13 ,

S̄++
14 = β2β3 − β3P2D2 − β2P3D3 − (β2P3 + β3P2)D6 + P2P3S

++
14 ,

S̄++
23 = β1β4 − β4P1D1 − β1P4D4 − (β1P4 + β4P1)D6 + P1P4S

++
23 ,

S̄++
24 = β1β3 − β3P1D1 − β1P3D3 + P1P3S

++
24 ,

S̄++
34 = β1β2 − β2P1D1 − β1P2D2 − (β1P2 + β2P1)D5 + P1P2S

++
34 . (4.82)

The action of each operator S̄++
ij is to shift d→ d+2, ∆i,j → ∆i,j+1 and ∆k,l → ∆k,l+2.

This leaves βi and βj invariant while raising βk and βl by one. Heuristically, these S̄++
ij

are then the 4-point generalisation of the 3-point Ri operators in (4.70). Likewise, the
S++
ij in (4.79) leave βi and βj invariant but lower βk and βl by one, and represent the

4-point generalisation of the 3-point Li operators.
Besides shadow conjugating S++

ij with respect to the pair (k, l), one can of course also
conjugate with respect to only a single index k to find operators sending d → d + 2,
∆i,j → ∆i,j + 1 and ∆k → ∆k + 2 only. One can also apply the shadow conjugation
procedure to the d → d + 2 operator S. All these operators can be evaluated similarly
to the S̄++

ij above and we will not write them explicitly. One case of particular interest,

however, corresponds to acting with S̄++
ij followed by S++

ij , which produces an overall shift
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of d→ d+ 4 while increasing all operator dimensions by two. The same shift is produced
when acting with these operators in the opposite order (remembering to shift βk,l → βk,l−1
in S̄++

ij to account for the prior action of S++
ij ). By subtracting, we then obtain a shift

operator of only second order in derivatives, rather than fourth. For example,

S̄++
24

∣∣∣
β1−1,β3−1

S++
24 − S

++
24 S̄++

24

∣∣∣
β1,β3

= (β1 + β3)D56 (4.83)

and so D56 shifts d→ d+ 4 while sending all ∆i → ∆i + 2 and preserving the βi.
Finally, let us emphasise that the action of all these shift operators is general and

not in any way tied to the simplex representation: any solution of the 4-point conformal
Ward identities is mapped to an appropriately shifted solution.5 We have confirmed this
explicitly by computing all the relevant intertwining relations between the shift operators
in this section and the conformal Ward identities, whose form in Mandelstam variables
can be found in e.g., [36, 29]. Thus, for example,

K(∆1 + 1,∆2 + 1,∆3,∆4, d+ 2)S++
12 = S++

12 K(∆1,∆2,∆3,∆4, d) (4.84)

where K({∆i}, d) represents schematically any of the special conformal or dilatation Ward
identities with the operator and spacetime dimensions as indicated. Applying this relation
to any CFT correlator with dimensions ({∆i}, d), the right-hand side vanishes and the left-
hand side then indicates that the action of S++

12 produces a solution of the shifted Ward
identities. Intertwining relations such as these6 allow the shift action of operators to be
established independently of any integral representation for the correlator.

4.3.4 Operators preserving d

A different class of weight-shifting operators that preserve the spacetime dimension d
while shifting the ∆i was identified in [83]. In momentum space, these operators have
been applied to de Sitter correlators in [29, 30]. With the aid of shadow conjugation, we
can write them in the compact form [36]

W−−ij =
1

2

( ∂

∂pµi
− ∂

∂pµj

)( ∂

∂piµ
− ∂

∂pjµ

)
W+−
ij = p

2(βi+1)
i W−−ij p−2βi

i

W−+
ij = p

2(βj+1)
j W−−ij p

−2βj
j

W++
ij = p

2(βi+1)
i p

2(βj+1)
j W−−ij p−2βi

i p
−2βj
j , (4.85)

5Up to a technical caveat (common to all shift operators) that where divergences occur, one must work
in a suitable dimensional regularisation scheme. In some cases the shift operator then only yields the
leading divergences of the shifted correlator, see the discussion in [36].

6More generally, the right-hand side of (4.84) could feature any operator in the left ideal of the conformal
Ward identities, since all that matters is that it vanishes when acting on a solution with dimensions
({∆i}, d).
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where βi = ∆i − d/2 and 1 ≤ i < j ≤ n− 1 so pn is taken as the dependent momentum.
Their action is to shift

Wσiσj
ij : ∆i → ∆i + σi, ∆j → ∆j + σj , d→ d, {σi, σj} ∈ ±1. (4.86)

In this section, our goal is to understand the action of the simplest of these operators,
W−−ij , from the simplex perspective. The action of the others then follows via shadow

conjugation, or else can be shown explicitly: for example, we analyse W−+
ij in section

4.5.2.
We begin by writing the Schwinger exponential (4.10) in the form

− tr(g−1 ·G) =

n∑
k<l

skl pk · pl = −
n−1∑
k<l

(skn + sln − skl)(pk · pl)−
n−1∑
k

skn p
2
k. (4.87)

As only the independent momenta feature in this last expression, the action of W−−ij on
the Schwinger exponential can be rewritten as a differential operator in the skl. We will
do this in several steps. First, notice that

∂

∂pµi
e−tr(g−1·G) = −

(
2sinp

µ
i +

n−1∑
k 6=i

(sin + skn − sik)pµk
)
e−tr(g−1·G)

= −
n−1∑
k

(sin + skn − sik) pµk e
−tr(g−1·G), (4.88)

where in the second line sik vanishes for i = k. This gives

( ∂

∂pµi
− ∂

∂pµj

)
e−tr(g−1·G) =

n−1∑
k

(sik − sjk − sin + sjn) pµk e
−tr(g−1·G), (4.89)

and hence

W−−ij e−tr(g−1·G) (4.90)

=
(
− dsij +

1

2

n−1∑
k,l

(sik − sjk − sin + sjn)(sil − sjl − sin + sjn)pk · pl
)
e−tr(g−1·G).

To rewrite these momentum dot products as derivatives with respect to the skl, we now
rearrange this sum as follows. Using momentum conservation p2

k = −
∑n

l 6=k pk ·pl, for any
generic coefficient Ak such that An = 0, we have

n−1∑
k,l

AkAl pk · pl =

n−1∑
k,l
k 6=l

AkAl pk · pl +
n−1∑
k

A2
k p

2
k

=
n−1∑
k,l
k 6=l

Ak(Al −Ak)pk · pl −
n−1∑
k

A2
k pk · pn
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= −1

2

n−1∑
k,l
k 6=l

(Al −Ak)2 pk · pl −
n−1∑
k

A2
k pk · pn

= −
n∑
k<l

(Al −Ak)2 pk · pl (4.91)

where in the final line the sum runs up to n. Setting Ak = sik − sjk − sin + sjn, we find

W−−ij e−tr(g−1·G) =
(
− dsij −

1

2

n∑
k<l

(sik − sjk − sil + sjl)
2 pk · pl

)
e−tr(g−1·G)

=
(
− dsij −

1

2

n∑
k<l

(sik − sjk − sil + sjl)
2 ∂skl

)
e−tr(g−1·G)

= (−dsij + 2∂vij ) e
−tr(g−1·G)

= 2 |g|d/2 ∂vij
(
|g|−d/2 e−tr(g−1·G)

)
. (4.92)

In the second line here, we exchanged pk · pl for ∂skl using the first expression in (4.87).
The change of variables from ∂skl to ∂vij in the third line then comes from the Jacobian
evaluated in appendix B.2.2, and in the final line we used (4.26).

The action of W−−ij on the full simplex integral (4.17) now follows. First, the outer

factor of |g|d/2 in (4.92) cancels with the factor U−d/2 = |g|−d/2 in (4.17). Integrating by
parts with respect to vij , assuming the boundary terms vanish,7 the derivative then acts
on the prefactors as

− 2∂vij

( n∏
k<l

v−αkl−1
kl f(v̂)

)
= v−1

ij

n∏
k<l

v−αkl−1
kl f̃(v̂). (4.93)

Here, the terms coming from ∂vij hitting the cross-ratios (4.16) inside the arbitrary function

f(v̂), as well as those from hitting v
−αij−1
ij , have been repackaged in the form v−1

ij f̃(v̂) for

some new function of cross-ratios f̃(v̂). Thus, overall, we find

W−−ij
( n∏
k<l

∫ ∞
0

dvkl v
−αkl−1
kl

)
f(v̂)|g|−d/2e−tr(g−1·G)

=
( n∏
k<l

∫ ∞
0

dvkl v
−αkl−1
kl

)
v−1
ij f̃(v̂)|g|−d/2e−tr(g−1·G). (4.94)

The action of W−−ij on the simplex is therefore to send αij → αij + 1, up to changes
of the arbitrary function. The latter is of no account as far as mapping one solution
of the conformal Ward identities to another is concerned.8 From (4.2), we now confirm

7For the upper limit this is automatic for momentum configurations with non-vanishing Gram deter-
minant thanks to the decaying exponential. The lower limit vanishes provided αij < 0.

8An exception is if W−−ij maps us from a finite correlator to a singular one, corresponding to a solution
of the conditions d +

∑n
i=1 σi(∆i − d/2) = −2k for some non-negative integer k and a choice of signs
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that sending αij → αij + 1 while keeping the remaining αkl fixed is equivalent to sending
∆i → ∆i − 1 and ∆j → ∆j − 1 while preserving d, in perfect agreement with (4.86).

4.4 Verifying the conformal Ward identities

In this section, we prove that the parametric representation of the simplex integral (4.17)
satisfies the conformal Ward identities for any arbitrary function of cross-ratios. The
corresponding result for the vectorial simplex integral (4.1) was established in [47, 46].
Working purely in momentum space, our approach is to show that the action of the Ward
identities on the simplex integral reduces to a total derivative. With a degree of hindsight,
the structure of this total derivative, obtained in (4.118), can also be understood from
somewhat simpler position-space arguments. We will return to these in section 4.5.1.

As the dilatation Ward identity can be verified by power counting, we focus on the
special conformal Ward identities

0 =

n−1∑
j=1

(
pµj

∂

∂pνj

∂

∂pνj
− 2pνj

∂

∂pνj

∂

∂pµj
+ 2(∆j − d)

∂

∂pµj

)
〈〈O1(p1) . . .On(pn)〉〉, (4.95)

treating pn as the dependent momentum. As a first step, we rewrite the action of each in-
dividual term in (4.95) on the Schwinger exponential as an equivalent differential operator
in vij . From (4.10), we have

n−1∑
j

2(∆j − d)
∂

∂pµj
e−tr (g−1·G) =

n−1∑
j

pµj

(
− 4

n−1∑
k

(∆k − d)g−1
jk

)
e−tr (g−1·G), (4.96)

n−1∑
j

pµj
∂

∂pνj

∂

∂pνj
e−tr (g−1·G) =

n−1∑
j

pµj

(
− 2dg−1

jj + 4
n−1∑
k,l

g−1
jk g

−1
jl pk · pl

)
e−tr (g−1·G). (4.97)

Using (4.28) for the inverse metric and the manipulation (4.91), this last expression can
be rewritten analogously to (4.92):

n−1∑
j

pµj
∂

∂pνj

∂

∂pνj
e−tr (g−1·G) =

n−1∑
j

pµj

(
− 2dsjn −

n∑
k<l

(sjk − skn − sjl + sln)2 pk · pl
)
e−tr (g−1·G)

=

n−1∑
j

pµj

(
− 2dsjn −

n∑
k<l

(sjk − skn − sjl + sln)2 ∂skl

)
e−tr (g−1·G)

=
n−1∑
j

pµj

(
− 2dsjn + 4∂vjn

)
e−tr (g−1·G). (4.98)

{σi} ∈ ±1, see [47]. In such cases, the arbitrary function f̃(v̂) vanishes. In dimensional regularisation, this
zero then cancels the pole coming from the divergent correlator such that the result is finite, see [36].
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Next, we must deal with

n−1∑
j

(
− 2pνj

∂

∂pνj

∂

∂pµj

)
e−tr (g−1·G)

= 4
n−1∑
j

pµj

(
g−1
jj −

n−1∑
k,l

(g−1
jk + g−1

jl )g−1
kl pk · pl

)
e−tr (g−1·G)

= 4

n−1∑
j

pµj

(
g−1
jj − 2

n−1∑
k<l

(g−1
jk + g−1

jl )g−1
kl pk · pl − 2

n−1∑
k

g−1
jk g

−1
kk p

2
k

)
e−tr (g−1·G).

(4.99)

Using (4.28) and momentum conservation, the p2
k terms in this final sum can be rewritten

−2
n−1∑
k

g−1
jk g

−1
kk p

2
k =

n∑
k

skn(sjn + skn − sjk)
n∑
l 6=k

pk · pl

=
n∑
k<l

(
skn(sjn + skn − sjk) + sln(sjn + sln − sjl)

)
pk · pl. (4.100)

In the first line here, notice we extended the sum over k to run up to n, which is possible
since the additional term with k = n vanishes as snn = 0. To get the second line, we then
re-expressed the terms for which k > l by swapping k ↔ l. For convenience, it is useful to
define

ĝ−1
ij =

1

2
(sin + sjn − sij) =

{
g−1
ij i, j ≤ n− 1,

0 i = n and/or j = n,
(4.101)

effectively extending the (n− 1)× (n− 1) matrix g−1
ij to an n× n matrix ĝ−1

ij by adding a
final row and column of zeros. This allows us to compactly rewrite (4.99) and (4.100) as

n−1∑
j

(
− 2pνj

∂

∂pνj

∂

∂pµj

)
e−tr (g−1·G)

=
n−1∑
j

pµj

(
4ĝ−1
jj + 8

n∑
k<l

(
− (ĝ−1

jk + ĝ−1
jl )ĝ−1

kl + ĝ−1
kk ĝ

−1
jk + ĝ−1

ll ĝ
−1
jl

)
∂skl

)
e−tr (g−1·G).

(4.102)

Here, the sum over l for the pk · pl terms in (4.99) has similarly been extended to run up
to n, noting the additional l = n term vanishes. We then replaced pk · pl by a derivative
with respect to skl using (4.87). The result now simplifies further upon exchanging

∂skl =
n∑
a<b

∂vab
∂skl

∂vab = −
n∑
a<b

g̃a(kg̃l)b ∂vab , (4.103)

where g̃ab is the Laplacian matrix (4.23) and the Jacobian is evaluated in appendix B.2.2.
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First, we write

8
n∑
k<l

(
− (ĝ−1

jk + ĝ−1
jl )ĝ−1

kl + ĝ−1
kk ĝ

−1
jk + ĝ−1

ll ĝ
−1
jl

)
∂skl

= 4
n∑
a<b

n∑
k,l

g̃akg̃lb

(
(ĝ−1
jk + ĝ−1

jl )ĝ−1
kl − ĝ

−1
kk ĝ

−1
jk − ĝ

−1
ll ĝ

−1
jl

)
∂vab (4.104)

where the sum over k < l of (k, l)-symmetric terms has been rewritten as half the sum
over all k and l, noting the terms with k = l explicitly cancel. The final two terms now
vanish since all row and column sums of the Laplacian matrix g̃ are zero:

n∑
k,l

g̃ak g̃lb ĝ
−1
kk ĝ

−1
jk =

n∑
k

g̃ak ĝ
−1
kk ĝ

−1
jk

n∑
l

g̃lb = 0, (4.105)

n∑
k,l

g̃ak g̃lb ĝ
−1
ll ĝ−1

jl =

n∑
k

g̃lb ĝ
−1
ll ĝ−1

jl

n∑
k

g̃ak = 0. (4.106)

For the first two terms in (4.104), we use the identity

n∑
k

g̃ik ĝ
−1
kj = δij − δin, i, j ≤ n. (4.107)

To derive this, note the sum over k restricts to k ≤ n−1 from (4.101), then for i, j ≤ n−1
we have g̃ikĝ

−1
kj = gikg

−1
kj . For i = n, j ≤ n − 1 we use g̃nkĝ

−1
kj = −

∑n−1
l glkg

−1
kj and for

j = n and any i the sum vanishes from (4.101). With the aid of this identity, we then find

n−1∑
j

(
− 2pνj

∂

∂pνj

∂

∂pµj

)
e−tr (g−1·G)

= 4
n−1∑
j

pµj

(
sjn − ∂vjn −

n∑
a<b

(ĝ−1
ja + ĝ−1

jb )θvab

)
e−tr (g−1·G) (4.108)

where we used g̃ab = −vab for a < b to obtain the Euler operator θvab = vab∂vab .
Assembling the pieces above, the action of the conformal Ward identity is now

n−1∑
j=1

(
pµj

∂

∂pνj

∂

∂pνj
− 2pνj

∂

∂pνj

∂

∂pµj
+ 2(∆j − d)

∂

∂pµj

)
e−tr (g−1·G)

= 4
n−1∑
j

pµj

((
1− d

2

)
sjn −

n−1∑
k

(∆k − d)g−1
jk −

n∑
a<b

(ĝ−1
ja + ĝ−1

jb )θvab

)
e−tr (g−1·G)

= 4

n−1∑
j

pµj

((
1− d

2

)
sjn + d

n∑
a

ĝ−1
ja +

n∑
a6=b

ĝ−1
ja (αab − θvab)

)
e−tr (g−1·G) (4.109)
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using (4.2) in the last line. Finally, we need two further identities:

n∑
a6=b

θvab ĝ
−1
ja = −sjn,

n∑
a6=b

ĝ−1
ja vabsab = −sjn + 2

n∑
a

ĝ−1
ja (4.110)

To establish the first of these, we write

n∑
a6=b

θvab ĝ
−1
ja = −

n−1∑
a6=b

gab
∂g−1

ja

∂vab
+

n−1∑
a

van
∂g−1

ja

∂van
= −

n−1∑
a6=b

gab
∂g−1

ja

∂vab
+

n−1∑
a,b

gab
∂g−1

ja

∂van
(4.111)

then use the chain rule, which for i, j, k, l ≤ n− 1 gives

∂g−1
ij

∂vkl
= −

n−1∑
a,b

g−1
i(ag

−1
b)j

∂gab
∂vkl

= (g−1
ik − g

−1
il )(g−1

jl − g
−1
jk ), (4.112)

∂g−1
ij

∂vkn
= −

n−1∑
a,b

g−1
i(ag

−1
b)j

∂gab
∂vkn

= −g−1
ik g

−1
kj . (4.113)

Inserting these into (4.111), the sum over a 6= b can be extended to run over all a, b since
the term with a = b vanishes. The only non-cancelling term is then −g−1

jj = −sjn as
required.

For the second identity in (4.110), we use (4.28) to rewrite

n∑
a6=b

ĝ−1
ja vabsab = −

n−1∑
a6=b

g−1
ja gabsab +

n−1∑
a

g−1
ja vansan

= −
n−1∑
a6=b

g−1
ja gab(g

−1
aa + g−1

bb − 2g−1
ab ) +

n−1∑
a

g−1
ja

( n−1∑
b

gab

)
g−1
aa . (4.114)

The sum over a 6= b can then be extended to run over all a, b as the term with a = b
cancels, after which the first and the last terms cancel and the result follows.

With the aid of the identities (4.110), we find that (4.109) becomes

n−1∑
j=1

(
pµj

∂

∂pνj

∂

∂pνj
− 2pνj

∂

∂pνj

∂

∂pµj
+ 2(∆j − d)

∂

∂pµj

)
e−tr (g−1·G)

= −4

n−1∑
j

pµj |g|
d/2Ω−1

n∑
a6=b

∂vab

(
vab ĝ

−1
ja |g|

−d/2Ω e−tr (g−1·G)
)

(4.115)

where Ω =
∏n
k<l v

−αkl−1
kl . Recalling that the simplex representation (4.17) is

〈〈O1(p1) . . .On(pn)〉〉 =
( n∏
k<l

∫ ∞
0

dvkl v
−αkl−1
kl

)
f(v̂)|g|−d/2 e−tr (g−1·G), (4.116)
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we note that
n∑
b

b6=a

θvabf(v̂) = 0 (4.117)

since whenever the index a appears in a cross ratio v̂[acde] = vacvde/vadvce it enters with
equal weight in the numerator and the denominator producing a cancellation. Acting with
the Ward identity thus yields a total derivative:

n−1∑
j=1

(
pµj

∂

∂pνj

∂

∂pνj
− 2pνj

∂

∂pνj

∂

∂pµj
+ 2(∆j − d)

∂

∂pµj

)
〈〈O1(p1) . . .On(pn)〉〉

= −4

n−1∑
j

pµj

( n∏
k<l

∫ ∞
0

dvkl

) n∑
a6=b

∂vab

(
vab ĝ

−1
ja f(v̂)|g|−d/2Ω e−tr (g−1·G)

)
. (4.118)

The boundary terms vanish under reasonable assumptions: for generic momentum con-
figurations with non-vanishing Gram determinant, the upper limit is suppressed by the
decay of the Schwinger exponential; the lower limit is zero provided v−αabab f(v̂) vanishes
as vab → 0, which is satisfied whenever the simplex representation itself converges. The
simplex integral thus solves the special conformal Ward identity.

4.5 Insight from position space

Thus far, our analysis has been entirely in momentum space. However, as noted above,
the form of the total derivative produced by the action of the special conformal Ward
identity in (4.118) can also be understood through independent position-space arguments.
We present these in section 4.5.1. Then, in section 4.5.2, we show how similar position-
space arguments can be applied to verify the action of d-preserving shift operators such
as W−+

12 .

4.5.1 The conformal Ward identities

To Fourier transform the simplex representation (4.17) to position space, we compute

〈O(x1) . . .O(xn)〉 =
n−1∏
k

∫
ddpk
(2π)d

eipk·xkn〈〈O(p1) . . .O(pn)〉〉

=
( n∏
i<j

∫
dvij v

−αij−1
ij

)
f(v̂)|g|−d/2

( n−1∏
k

∫
ddpk
(2π)d

)
exp

( n−1∑
k

ipk · xkn −
n−1∑
k,l

g−1
kl pk · pl

)

=
( n∏
i<j

∫
dvij v

−αij−1
ij

)
f̃(v̂) exp

(
− 1

4

n−1∑
k,l

gkl xkn · xln
)

(4.119)

where xij = xi−xj , and for the Gaussian integral over momenta we completed the square:

n−1∑
k

ipk · xkn −
n−1∑
k,l

g−1
kl pk · pl
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= −
n−1∑
k,l

g−1
kl (pk −

i

2

n−1∑
a

gka xan) · (pl −
i

2

n−1∑
b

glb xbn)− 1

4

n−1∑
k,l

gkl xkn · xln. (4.120)

The numerical factor from the integration can then be re-absorbed into the arbitrary
function by setting (4π)(1−n)d/2f(v̂) = f̃(v̂). The exponent in (4.119) now simplifies to9

−1

4

n−1∑
k,l

gkl xkn · xln = −1

4

n∑
k,l

g̃kl xk · xl = −1

4

n∑
i<j

vijx
2
ij , (4.121)

and hence the simplex representation in position space is

〈O(x1) . . .O(xn)〉 =
( n∏
i<j

∫
dvij v

−αij−1
ij e−

1
4
vijx

2
ij

)
f̃(v̂). (4.122)

If the arbitrary function f̃(v̂) is a product of powers, this expression reduces to the

conformal correlator
∏n
i<j x

2α̃ij
ij where the α̃ij satisfy

∑
j 6=i α̃ij = −∆i. More generally,

wherever f̃(v̂) admits a Mellin-Barnes representation, we recover
∏n
i<j x

2αij
ij times a func-

tion of position-space cross ratios as shown in [46]. However, the most straightforward
way to check that (4.122) solves the conformal Ward identities is to note that, when acting
on a function F = F ({x2

kl}) of the squared coordinate separations,

n∑
i

(
2xµi x

ν
i

∂

∂xνi
− x2

i

∂

∂xµi
+ 2∆ix

µ
i

)
F =

n∑
i

2xµi

(
∆i +

n∑
j
j 6=i

x2
ij

∂

∂(x2
ij)

)
F. (4.123)

It then follows that

n∑
i

(
2xµi x

ν
i

∂

∂xνi
− x2

i

∂

∂xµi
+ 2∆ix

µ
i

)( n∏
k<l

∫
dvkl v

−αkl−1
kl e−

1
4
vklx

2
kl

)
f̃(v̂)

=

n∑
i

2xµi

( n∏
k<l

∫
dvkl v

−αkl−1
kl

)
f̃(v̂)

(
∆i +

n∑
j
j 6=i

vij
∂

∂vij

)
e−

1
4

∑n
k<l vklx

2
kl

=
n∑
i

2xµi

( n∏
k<l

∫
dvkl v

−αkl−1
kl

)
f̃(v̂)

(
∆i +

n∑
j

αij

)
e−

1
4

∑n
k<l vklx

2
kl = 0 (4.124)

where in the last line we integrated by parts10 then used (4.2). The middle line here
accounts for the form of the total derivative we found earlier in (4.118). Multiplying by
−i and Fourier transforming, the first line yields the momentum-space conformal Ward
identity acting on the momentum-space simplex representation (i.e., the left-hand side of

9Recall the analogous relation in a resistor network of simplex topology, namely, that the power dis-
sipated is

∑n
i<j vij(Vi − Vj)

2 =
∑n
i,j g̃ijViVj , where vij is the conductivity and Vi the voltage at node

i.
10As previously, the boundary terms vanish provided v

−αkl
kl f̃(v̂) as vkl → 0.
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(4.118)), while the middle line yields

n−1∑
i

2
∂

∂pµi

(( n∏
k<l

∫ ∞
0

dvkl v
−αkl−1
kl

)
f(v̂)

(
∆i +

n∑
j
j 6=i

vij
∂

∂vij

)
|g|−d/2e−

∑n−1
a,b g−1

ab pa·pb
)

=
n−1∑
i

( n∏
k<l

∫ ∞
0

dvkl

) n∑
j
j 6=i

∂

∂vij

(
vij Ω f(v̂)|g|−d/2

( n−1∑
a

−4g−1
ia p

µ
a

)
e−

∑n−1
a,b g−1

ab pa·pb
)

= −4
n−1∑
a

pµa

( n∏
k<l

∫ ∞
0

dvkl

) n∑
i 6=j

∂

∂vij

(
vij ĝ

−1
ia Ω f(v̂)|g|−d/2e−tr (g−1·G)

)
(4.125)

where in the second line we evaluated the momentum derivative of the exponential and
pushed the factors of Ω =

∏
k<l v

−αkl−1
kl , f(v̂) and vij inside the vij-derivative which

cancels the ∆i term via (4.2). In the final line, we extended the sum over i to run up to
n by replacing g−1

ia with ĝ−1
ia and combined it with the sum over j. Up to a relabelling

of indices, this final line is now the total derivative appearing on the right-hand side of
(4.118).

The manipulations above illustrate a general theme: given the simplicity of the position-
space simplex representation (4.122), it is often profitable to work with the position-space
equivalents of differential operators in order to evaluate their action in terms of the vij
variables. Both sides can then be Fourier transformed back to momentum space in order
to deduce the action of the corresponding momentum-space operator on the momentum-
space simplex in terms of the vij variables. In many cases this is more straightforward
than working in momentum space throughout.

4.5.2 Action of W−+
12

As a further illustration of this approach, let us evaluate the action of the shift operator
W−+

12 defined in (4.85). After expanding out the derivative, this operator can easily be
Fourier transformed to position space where it reads

W−+
12 =

1

2
x2

12

∂

∂xµ2

∂

∂x2µ
+ 2(β2 + 1)

(
β2 +

d

2
− xµ12

∂

∂xµ2

)
. (4.126)

Acting on a function F = F ({x2
kl}) of the squared coordinate separations, we find via the

chain rule

W−+
12 F =

n∑
i,j
i,j 6=2

x2
12(x2

2i + x2
2j − x2

ij)
∂2F

∂(x2
2i)∂(x2

2j)

+

n∑
i 6=2

(
2(β2 + 1)(x2

12 − x2
1i + x2

2i) + dx2
12

) ∂F

∂(x2
2i)

+ 2(β2 + 1)
(
β2 +

d

2

)
F

(4.127)
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Acting on the Schwinger exponent appearing in the position-space simplex representation
(4.122), this can be translated into vij-derivatives as

W−+
12

( n∏
k<l

∫
dvkl v

−αkl−1
kl e−

1
4
vklx

2
kl

)
f̃(v̂)

= 2
( n∏
k<l

∫
dvkl v

−αkl−1
kl

)
f̃(v̂)

[
(β2 + 1)

(
β2 +

d

2

)
+
(

2β2 + 1 +
d

2
+ θv12

)
θv12

+
n∑
i=3

v2i

(
(β2 + 1 + θv12)(∂v12 + ∂v2i − ∂v1i) +

(d
2

+ θv2i

)
∂v12

)
+

n∑
3≤i<j

v2iv2j(∂v2i + ∂v2j − ∂vij )∂v12

]
e−

1
4

∑n
k<l vklx

2
kl (4.128)

where ∂vij = ∂/∂vij and θvij = vij∂vij . Integrating by parts, we find

W−+
12

( n∏
k<l

∫
dvkl v

−αkl−1
kl e−

1
4
vklx

2
kl

)
f̃(v̂)

= 2
( n∏
k<l

∫
dvkl e

− 1
4
vklx

2
kl

)[
(θv12 − β2)

(
θv12 − β2 −

d

2
− 1 + n

)
+

n∑
i=3

v2i

(
(θv12 − β2)(∂v12 + ∂v2i − ∂v1i) +

(
n− d

2
+ θv2i

)
∂v12

)
+

n∑
3≤i<j

v2iv2j(∂v2i + ∂v2j − ∂vij )∂v12

]
Ωf̃(v̂). (4.129)

We now rewrite the first part of the last line as[ n∑
3≤i<j

v2iv2j(∂v2i + ∂v2j )∂v12

]
Ωf̃(v̂) =

[ n∑
i=3

( n∑
j=3
j 6=i

v2j

)
θv2i∂v12

]
Ωf̃(v̂)

=
[( n∑

j=3

v2j

)
∂v12

(
− θv12 +

n∑
i 6=2

θv2i

)
−

n∑
i=3

v2iθv2i∂v12

]
Ωf̃(v̂)

=
[
−

n∑
i=3

v2i

(
(θv12 + 1)− β2 −

d

2
+ (n− 1) + θv2i

)
∂v12

]
Ωf̃(v̂) (4.130)

where in the final step we rewrote ∂v12θv12 = (θv12 + 1)∂v12 and used
∑n

i 6=2 θv2i f̃(v̂) = 0,
as follows from (4.117), along with (4.2) with ∆2 = β2 + d/2 to replace

( n∑
i 6=2

θv2i

)
Ωf̃(v̂) = (β2 + d/2− (n− 1))Ωf̃(v̂). (4.131)
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Substituting (4.130) into (4.129) and making further use of (4.131), we find the result

W−+
12

( n∏
k<l

∫
dvkl v

−αkl−1
kl e−

1
4
vklx

2
kl

)
f̃(v̂)

= −2
( n∏
k<l

∫
dvkl e

− 1
4
vklx

2
kl

)[
(θv12 − β2)

n∑
i=3

v2i∂v1i +
n∑

3≤i<j
v2iv2j∂vij∂v12

]
Ωf̃(v̂).

(4.132)

Equivalently, acting on the position-space simplex withW−+
12 corresponds to acting on the

arbitrary function f̃(v̂) with the operator

W̃−+
12 = −2Ω−1

[
(θv12 − β2)

n∑
i=3

v2i∂v1i +
n∑

3≤i<j
v2iv2j∂vij∂v12

]
Ω. (4.133)

The same remains true when we Fourier transform back to momentum space, giving

W−+
12

( n∏
k<l

∫ ∞
0

dvkl v
−αkl−1
kl

)
|g|−d/2e−tr(g−1·G)f(v̂)

=
( n∏
k<l

∫ ∞
0

dvkl v
−αkl−1
kl

)
|g|−d/2e−tr(g−1·G)(W̃−+

12 f(v̂)). (4.134)

Finally, it remains to check that the action of W̃−+
12 on the arbitrary function produces

the required shift in dimensions ∆1 → ∆1 − 1 and ∆2 → ∆2 + 1. Since

∂vijΩ = −(αij + 1)
Ω

vij
, ∂vijf(v̂) =

h(v̂)

vij
, (4.135)

where h(v̂) is also function of the cross ratios, we see that

W̃−+
12 f(v̂) =

n∑
i=3

v2i

v1i
hi(v̂) +

n∑
3≤i<j

v2iv2j

vijv12
hij(v̂) (4.136)

where hi(v̂) and hij(v̂) are specific functions of the cross ratios. Each term in the first
sum then corresponds to a simplex integral with the shifts

α2i → α2i − 1, α1i → α1i + 1, (4.137)

while each term in the second sum corresponds to a simplex integral with the shifts

α2i → α2i − 1, α2j → α2j − 1, αij → αij + 1, α12 → α12 + 1. (4.138)

From (4.2), both (4.137) and (4.138) correspond to shifting ∆1 → ∆1 − 1 and ∆2 →
∆2 + 1 leaving all other operator dimensions fixed. The action of W−+

12 on the simplex
thus produces an appropriately shifted simplex integral, whose function of cross ratios is
obtained through the action of the operator (4.133).
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4.6 Discussion

Our analysis has furnished useful parametric representations for the general momentum-
space conformal n-point function. Starting from the generalised simplex Feynman integral
of [47, 46], we showed how all graph polynomials can be obtained from the corresponding
Laplacian matrix, or the Gram matrix to which it reduces once momentum conservation
has been enforced. With the graph polynomials to hand, all the usual scalar parametri-
sations of Feynman integrals can be adapted to represent the simplex solution. Only
n(n− 1)/2 integrals over Schwinger parameters remain to be performed – one for each leg
of the simplex – in contrast to the (n− 1)(n− 2)d/2 scalar integrals we started with.

Building on the analogy between Feynman graph polynomials and those of electrical
circuits, we then formulated a second class of parametric representations. For these, the
integration variables represent the effective resistances between vertices of the simplex,
rather than the conductivities (i.e., the inverse Schwinger parameters) used previously.
This change of variables immediately diagonalises the Schwinger exponential, expressing
the n-point function as a standard Laplace transform of a product of polynomials raised
to generalised powers. These polynomials correspond to the determinant and first minors
of the Cayley-Menger matrix for the simplex, which plays an analogous role to the Gram
matrix for this second class of parametrisations. From the form of these polynomials,
new weight-shifting operators can immediately be constructed to raise the power of these
polynomials, with further shift operators following by shadow conjugation. Besides shifting
the scaling dimensions of external operators, these new weight-shifting operators raise the
spacetime dimension by two. They therefore generalise the 3-point shift operators of
[42, 85] to n-points, and constitute a distinct class of operators to those identified in [83].

Our results suggest several interesting directions for further pursuit:

• Given we now have weight-shifting operators that both preserve and raise the space-
time dimension, is it also possible to construct operators that lower the spacetime
dimension? One approach we have explored, explained in appendix B.4, is to find
so-called Bernstein-Sato operators which act to lower the powers to which the vari-
ous polynomials of interest are raised. In this case, the relevant polynomials are the
Cayley-Menger determinant and its minors appearing in the parametrisation (4.48).
We found, for example, that replacing vij → ∂sij in the Kirchhoff polynomial U = |g|
yields an operator

B|m| = (|g|)
∣∣∣
vij→∂sij

(4.139)

which lowers by one the power to which the Cayley-Menger determinant is raised:

B|m| |m|a = b|m|(a)|m|a−1, b|m|(a) = −
n−1∏
k=1

(1− k − 2a). (4.140)

For the simplex representation (4.48), a is the parameter α given in (4.49) and so
lowering α by one corresponds to sending d → d − 2 if all the operator dimensions
are kept fixed. In principle, one would then integrate by parts to obtain an operator
acting solely on the Schwinger exponential, which, due to its diagonal structure,
could be translated into a differential operator in the external momenta. In practice,
however, this approach is complicated by the presence of all the remaining powers
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of Cayley-Menger minors present in (4.48).

• In sections 4.4 and 4.5.1, we saw how the action of the special conformal Ward iden-
tity on the simplex reduces to a total derivative. This followed directly from the
scalar parametric representation, without any recourse to the recursive arguments
developed in [47, 46]. Nevertheless, these arguments, and the recursion relation
between n- and (n + 1)-point simplices on which they are based, are of consider-
able interest in their own right and could be reformulated in the scalar-parametric
language used here. The deletion/contraction relations of graph polynomials (see,
e.g., [65]) and Kron reduction, corresponding to taking the Schur complement of a
subset of vertices in the simplex Laplacian (see e.g., [117]), may also yield relevant
identities.

• Starting from the general simplex solution, the arbitrary function of momentum-
space cross ratios can be restricted by imposing additional conditions of interest:
for example, dual conformal invariance [45, 95, 118, 119], or the Casimir equation
for conformal blocks. For such investigations, the connection with position-space
developed in section 4.5 provides a very simple link between the action of a given
differential operator in the external momenta or coordinates, and its corresponding
action on the arbitrary function of the simplex representation.

• For holographic n-point functions, bulk scalar Witten diagrams have the interesting
property that their form is invariant under the action of a shadow transform on
any of the external legs. In momentum space, shadow transforming the operator Oi
corresponds to multiplying the correlator by p−2βi

i , where βi = ∆i − d/2, which has

the effect of replacing βi → −βi in the bulk-boundary propagator zd/2pβii Kβi(piz).
It would be interesting to understand the restriction this condition places on the
function of cross-ratios appearing in the simplex representation.

• Finally, the parametric representations we have developed may provide a useful start-
ing point for the construction of general spinning n-point correlators via the action
of spin-raising operators [83, 29, 30], and for bootstrapping cosmological correlators
in de Sitter spacetime.
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Chapter 5

GKZ integrals and creation
operators for Feynman and
Witten diagrams

5.1 Introduction

It has long been suspected that Feynman integrals represent a multi-variable generali-
sation of hypergeometric functions [120, 121]. Recently [122–131], this connection has
been sharpened by writing Feynman integrals as Gel’fand-Kapranov-Zelevinksy (GKZ) or
A-hypergeometric functions [132–135]. As shown in [123, 124], this can be achieved sim-
ply by expressing Feynman integrals in Lee-Pomeransky form [112], where only a single
denominator polynomial appears, followed by uplifting to a higher-dimensional space of
generalised momenta. A-hypergeometric functions are well-studied in the mathematics
literature [136–141] and satisfy a set of linear partial differential equations whose form can
be read off in systematic fashion from a certain matrix – the A-matrix – which encodes
both the structure of the integral as well as all kinematic and spectral singularities.

A task of great practical interest is then to construct hypergeometric shift operators
connecting integrals of different parameter values. These operators enable a known ‘seed’
integral to be converted, by simple differentiation, into an entire series of new integrals.
For Feynman integrals, the parameters are typically the powers of various propagators
and the spacetime dimension. Here we will also study Witten diagrams in anti-de Sitter
spacetime for which the relevant parameters, besides the spacetime dimension, are the
scaling dimensions of operators in the holographically dual conformal field theory.

While various techniques for constructing shift operators for Feynman integrals [70,
72, 142, 143, 69] and Witten diagrams [144, 85, 83, 145, 30, 119, 36] are known, the GKZ
formalism offers a more powerful and unified approach. Besides the elementary shift oper-
ators, known as ‘annihilation’ operators in the mathematics literature, their inverses – a
highly non-trivial class of operators known as ‘creation’ operators – can be systematically
constructed [146–148]. Together, these creation and annihilation operators form a full
set of shift operators connecting A-hypergeometric functions of different parameter val-
ues, just as the ordinary creation and annihilation (or ladder) operators connect different
eigenstates of the quantum harmonic oscillator.
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Figure 5.1: The Newton polytope for a 3-point contact Witten diagram in momentum space is
an octahedron as shown. At n-points, we obtain an n-dimensional cross-polytope. The spectral
singularities consist of an infinite series of hyperplanes parallel to the facets of the Newton polytope,
while the integral is convergent for parameter values lying inside the polytope. Identification of
the singularities enables a systematic construction of all creation-type shift operators.

A key aim of this chapter is to show that creation operators can be constructed directly
from knowledge of the spectral singularities of an A-hypergeometric function, namely, the
special set of parameter values for which the corresponding GKZ integral representation
diverges. These singularities can be computed directly from the A-matrix of the integral.
Remarkably, they correspond geometrically to an infinite series of hyperplanes parallel
to the co-dimension one facets of the Newton polytope associated with the integral’s
denominator [149, 150]. (See figure 5.1.) Standard convex hulling algorithms exist for
computing such facets allowing a simple identification of all singularities.

To construct creation operators, we start with a pair of integrals connected by an
annihilation operator. As we will review, this annihilator consists of a single derivative with
respect to one of the GKZ generalised momenta. Specifically, we are interested in cases
with parameters such that the starting integral is divergent while the resulting integral
is finite. (To regulate divergences, we assume a dimensional scheme where parameters
are infinitesimally shifted away from their singular values.) The divergences are thus
projected out by the action of the annihilator. As the inverse of the annihilator, the
creation operator must then produce the reverse shift, from the finite integral to the
divergent one. Clearly, however, this cannot be achieved directly: the result of acting
with a finite differential operator on a finite integral must necessarily be finite. Instead,
the outcome must be a finite product of the divergent integral multiplied by a vanishing
function of the parameters. This function, whose zeros serve to cancel out the divergence,
is known as the b-function and holds the key to the construction of creation operators.

From a knowledge of the singular parameter values, we can predict the necessary
zeros of the b-function and hence its minimal form as a polynomial. Then, acting on
an integral with both the annihilator and the (as yet unknown) creation operator, we
must recover the original integral multiplied by the b-function. In the GKZ formalism,
however, any polynomial in the parameters can be traded for an equivalent polynomial
in Euler operators acting on the generalised momenta. Applying this procedure to the
b-function, the resulting differential operator must thus be factorisable into a product of
the annihilation and the creation operator. As the annihilator is just a single derivative,
this factorisation is easily performed (with the aid of a further set of PDEs known as the
toric equations) revealing the identity of the creation operator. As a final step, one then
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projects back from the higher-dimensional GKZ space of generalised momenta to that of
the physical variables (the external momenta and masses), with the aid of an auxiliary set
of Euler equations.

We hope this simple physical approach, based on the spectral singularities of the GKZ
integral, will facilitate the application of creation operators to a range of physical systems.
As an initial demonstration of the possibilities, we have used the formalism to construct
new shift operators for a range of simple Feynman integrals, as well as Witten diagrams
encoding momentum-space correlators in holographic conformal field theories. These latter
objects are intimately related to cosmological correlators in de Sitter spacetime, and the
new shift operators we construct can also be applied in this context. In particular, we
have found new shift operators connecting both exchange and contact 4-point Witten
diagrams, with arbitrary external scaling dimensions, to corresponding diagrams with
shifted scaling dimensions but the same spacetime dimension. Until now, such operators
were only available in the case where diagrams with non-derivative vertices are mapped to
those with derivative vertices, and for a restricted set of scaling dimensions at that [30, 36].
In contrast, the new shift operators we find can be applied for any scaling dimensions, and
moreover map non-derivative to non-derivative vertices. This enlarges the available arsenal
of shift operators for Witten diagrams (and by extension, cosmological correlators), and
as such is a useful and nontrivial result. We believe these examples provide a first proof
of principle that the creation operator method, and the GKZ formalism more generally,
holds promise for a variety of physical applications.

An outline of this chapter is as follows. Section 5.2 introduces A-hypergeometric
functions and the GKZ formalism. We summarise the PDEs these functions obey, their
construction, and their invariance under affine reparametrisations. In section 5.3, we relate
the spectral singularities of GKZ integrals to the Newton polytope of the denominator.
In section 5.4, we introduce creation operators and detail their construction based on
the spectral singularities of the integral. In section 5.5, we construct creation operators
for 3- and 4-point contact Witten diagrams in momentum space, as well as a further
set of shift operators that preserve the spacetime dimension. Using these results, we
then derive novel shift operators for exchange diagrams. Section 5.6 constructs creation
operators for a variety of simple Feynman integrals introducing the use of Gröbner bases
and convex hulling algorithms to automate the computation. We conclude in section
5.7 with a summary of results and open directions. In the appendices we discuss the
conversion of Feynman to GKZ integrals, creation operators for position-space contact
Witten diagrams, and an extension of the minimal construction algorithm outlined above.

5.2 A-hypergeometric functions

The application of the GKZ formalism to Feynman integrals has been explored in a number
of recent works [122–131]. In addition, many excellent expositions are available in the
mathematics literature [136–141]. Here, we focus on providing a simple and self-contained
summary of the key material needed to understand the construction of creation operators.
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5.2.1 GKZ integrals

An A-hypergeometric function (or equivalently, GKZ integral), is a multi-variable hy-
pergeometric function depending on a set of real parameters γ = (γ0, γ1, . . . , γN ) and
independent variables x = (x1, . . . , xn), where n ≥ N + 1. The integral takes the form

Iγ =
( N∏
i=1

∫ ∞
0

dzi z
γi−1
i

)
D−γ0 , (5.1)

where the ‘denominator’ D can be expressed as a polynomial in the integration variables
zi. Every term in this polynomial is moreover multiplied by a nonzero coefficient xj :

D =

n∑
j=1

xj

N∏
i=1

z
aij
i (5.2)

The parameters aij ∈ Z+ specifying the powers can be assembled into an N ×n matrix A,

(A)ij = aij . (5.3)

Thus, the jth term in the denominator D corresponds to the column j of the matrix A,
whose entries are then the powers of the variables zi appearing in that particular term.
(We will return to the relation between this matrix A and the larger A-matrix shortly.)

For Feynman integrals, it is useful to consider the Lee-Pomeransky representation
[112] in which the denominator G = U + F is formed from the sum of the first and
second Symanzik polynomials U and F . To uplift this to the GKZ integral (5.1), we
simply promote the coefficient of every term in G to a generalised independent variable
xj [123, 124], as summarised in appendix C.1. The original Lee-Pomeransky integral can
then be restored by returning the xj to their physical values, namely, unity for any of the
terms in U , and the appropriate function of the masses and external momenta for every
term in F .

Example: As discussed in appendix C.1, the massless triangle Feynman integral

I =

∫
ddq

(2π)d
1

q2γ3 |q − p1|2γ2 |q + p2|2γ1
(5.4)

has the Lee-Pomeransky representation

I = cγ

( 3∏
i=1

∫ ∞
0

dzi z
γi−1
i

)
(p2

1z2z3 + p2
2z1z3 + p2

3z1z2 + z1 + z2 + z3)−d/2 (5.5)

where the coefficient

cγ = (4π)−d/2
Γ(d/2)

Γ(d− γt)
∏3
i=1 Γ(γi)

, γt =

3∑
i=1

γi. (5.6)
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The corresponding GKZ integral is

Iγ =
( 3∏
i=1

∫ ∞
0

dziz
γi−1
i

)
D−γ0 (5.7)

where the denominator

D = x1z2z3 + x2z1z3 + x3z1z2 + x4z1 + x5z2 + x6z3 (5.8)

corresponds to the matrix

A =

0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

 . (5.9)

To recover the original Lee-Pomeransky integral, we project to the physical subspace

x = (p2
1, p

2
2, p

2
3, 1, 1, 1), γ = (d/2, γ1, γ2, γ3), (5.10)

after which I = cγ Iγ .

5.2.2 The Euler and toric equations

The primary advantage of uplifting from the original masses and momenta to the gen-
eralised GKZ space parametrised by the variables x is that the integral now obeys a
systematic set of linear partial differential equations. These can be grouped into two
categories, known as the Euler equations and the toric equations.

Euler equations

The Euler equations arise from integrating by parts with respect to the variables zi, under
the assumption that all boundary terms vanish. For z1, for example, we have

0 =

∫ ∞
0

dz1
∂

∂z1

(
zγ1

1

( N∏
i=2

∫ ∞
0

dzi z
γi−1
i

)
D−γ0

)
= γ1Iγ +

( N∏
i=1

∫ ∞
0

dzi z
γi−1
i

)
z1

∂

∂z1
D−γ0 . (5.11)

In the second term here, we can trade derivatives with respect to the integration variable
z1 for derivatives with respect to the external variables xj :

z1
∂

∂z1
D−γ0 = −γ0D−γ0−1

( n∑
j=1

a1jxj

N∏
i=1

z
aij
i

)
=
( n∑
j=1

a1jθj

)
D−γ0 (5.12)

where, here and throughout the chapter, we define the Euler operators

θj = xj
∂

∂xj
, j = 1, . . . , n. (5.13)
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Pulling these Euler operators outside the integrals, we obtain the equation

0 =
(
γ1 +

n∑
j=1

a1jθj

)
Iγ . (5.14)

Repeating this exercise for the remaining zi then leads to the set of Euler equations

0 =
(
γi +

n∑
j=1

aijθj

)
Iγ , i = 1, . . . , N. (5.15)

We are not quite done, however, since in addition we have the general identity( n∑
j=1

θj

)
D−γ0 = −γ0D−γ0 (5.16)

which, when applied to the GKZ integral, yields

0 =
(
γ0 +

n∑
j=1

θj

)
Iγ . (5.17)

This equation is effectively a dilatation Ward identity (or DWI, as we will use for short)
encoding the scaling behaviour of the GKZ integral under a dilatation x → λx of the
external variables.

Evidently this dilatation Ward identity can be placed on the same footing as the Euler
equations (5.15) by enlarging the matrix A to include a top row consisting of all 1s. This
construction defines the A-matrix mentioned in the introduction,

A =

(
1
A

)
, (5.18)

where 1 is the n-dimensional row vector with all-1 entries, or equivalently,

(A)0j = 1, (A)ij = aij , i = 1, . . . , N, j = 1, . . . , n, (5.19)

where we henceforth adopt the convention that the top row of A always carries index 0.
The A-matrix is thus (N +1)×n dimensional, and the Euler equations and DWI together
correspond to the (N + 1) equations

0 =
(
γi +

n∑
j=1

Aijθj
)
Iγ , i = 0, . . . , N. (5.20)

This is in effect a single matrix equation,

0 =
(
γ +A · θ

)
Iγ , (5.21)

regarding θ = (θ1, . . . , θn)T and γ = (γ0, γ1, . . . , γN )T as n- and (N+1)-component column
vectors respectively.
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Example: Returning to the massless triangle integral above, the A-matrix is

A =


1 1 1 1 1 1
0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

 (5.22)

and the GKZ integral satisfies the Euler equations

0 = (γ1 + θ2 + θ3 + θ4)Iγ , 0 = (γ2 + θ1 + θ3 + θ5)Iγ , 0 = (γ3 + θ1 + θ2 + θ6)Iγ
(5.23)

and DWI

0 = (γ0 +

6∑
j=1

θj)Iγ . (5.24)

Notice the form of these equations can be directly read off from the rows of the A-matrix.

Toric equations

The toric equations arise from vectors in the kernel of the A-matrix, and are closely
related to the corresponding toric ideal [140].1 Their origin can easily be grasped using
the example of the massless triangle integral above. Defining

∂j =
∂

∂xj
, j = 1, . . . , n (5.25)

in all that follows, the denominator (5.8) obeys the relations

∂1∂4D−γ0 = ∂2∂5D−γ0 = ∂3∂6D−γ0 = −γ0(−γ0 − 1)z1z2z3D−γ0−2, (5.26)

giving rise to the two independent (toric) equations

0 = (∂1∂4 − ∂3∂6)Iγ , 0 = (∂2∂5 − ∂3∂6)Iγ . (5.27)

For comparison, the kernel of the A-matrix (5.22) is spanned by two independent vectors,
u(1) and u(2), which we can choose to be

u(1) = (1, 0,−1, 1, 0,−1)T , u(2) = (1,−1, 0, 1,−1, 0)T . (5.28)

Notice that since the top row of the A-matrix is all 1s, the sum of the components of any
kernel vector is always zero. There is now a one-to-one match between kernel vectors and
toric equations (5.27) as follows. First, for each kernel vector u, we form a vector u+

composed only of the positive components of u, and a vector u− composed of only the
negative components. The components of u±, for each j = 1, . . . , n, are thus

u±j = max(±uj , 0). (5.29)

1The kernel is the space of vectors u such thatA·u = 0, obtained e.g., via NullSpace[A] in Mathematica.
The full toric ideal, though not needed here, can be constructed using Singular [151]: see section 5.6.2.
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By inspection, the toric equation corresponding to the kernel vector u = u+ − u− is now

0 =
( n∏
j=1

∂
u+
j

j −
n∏
j=1

∂
u−j
j

)
Iγ . (5.30)

For example, for u(1) in (5.28), u+
(1) = (1, 0, 0, 1, 0, 0)T while u−(1) = (0, 0, 1, 0, 0, 1)T hence

(5.30) reduces to the first equation in (5.27).
Some investigation shows this construction is a general one. First, the action of each

differential operator is

n∏
j=1

∂
u±j
j D

−γ0 = (−γ0)(−γ0 − 1) . . . (−γ0 − u± + 1)D−γ0−u±
( N∏
i=1

z
∑n
j=1 aiju

±
j

i

)
(5.31)

where u± =
∑n

j=1 u
±
j . Moreover, since the sum of components in any kernel vector vanishes

(as the top row of the A-matrix is all 1s), we have that u+ = u− = u. Thus,

( n∏
j=1

∂
u+
j

j −
n∏
j=1

∂
u−j
j

)
Iγ (5.32)

= (−γ0)(−γ0 − 1) . . . (−γ0 − u + 1)D−γ0−u
( N∏
i=1

z
∑n
j=1 aiju

+
j

i −
N∏
i=1

z
∑n
j=1 aiju

−
j

i

)
.

However, for any kernel vector we have A · u = A · (u+ − u−) = 0 and hence

n∑
j=1

aiju
+
j =

n∑
j=1

aiju
−
j , i = 1, . . . , N. (5.33)

The two terms appearing within the final factor of (5.32) are thus exactly equal producing
a cancellation. In general, as the A-matrix is (N+1)×n, there are (n−N−1) independent
vectors in the kernel, and hence this same number of independent toric equations.

To summarise, given a GKZ integral defined by an A-matrix and parameters γ, we
have two sets of linear partial differential equations: the Euler equations (and DWI) (5.20),
and the toric equations (5.30). We can also go in reverse: the Euler equations and DWI
fix γ and the A-matrix, and hence the toric equations and the GKZ integral. Note the
Euler equations all commute among themselves, as do the toric equations, but an Euler
and a toric equation do not in general commute.

5.2.3 Projection to physical variables

The systematic structure of the Euler and toric equations above is a consequence of up-
lifting from the Lee-Pomeransky to the GKZ denominator (5.2). To recover a set of PDEs
satisfied by the original Lee-Pomeransky integral we need to reverse this process. This re-
quires projecting the Euler and toric equations back to the physical hypersurface where the
x variables take their true physical values. Derivatives in directions not tangential to this
hypersurface (which therefore cannot be expressed purely in terms of physical variables)
can be exchanged for purely tangential derivatives through use of the Euler equations
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and DWI. Together these provide N + 1 equations, and so for all unphysical (i.e., non-
tangential) derivatives to be removable requires the original Lee-Pomeransky polynomial
to contain at least n − N − 1 independent physical variables (i.e., masses and external
momenta). This will generally be the case for the examples we consider, but does not hold
universally – particularly for higher-loop Feynman integrals – as we discuss in section 5.7.

Example: For the massless triangle integral, the physical hypersurface is the 3-dimensional
subspace spanned by the momenta in (5.10), namely x1 = p2

1, x2 = p2
2 and x3 = p2

3, with
x4 = x5 = x6 = 1. On this hypersurface, the Euler equations (5.23) reduce to

0 = (γ1 + θ2 + θ3 + ∂4)Iγ , 0 = (γ2 + θ1 + θ3 + ∂5)Iγ , 0 = (γ3 + θ1 + θ2 + ∂6)Iγ , (5.34)

where, as always, ∂j = ∂/∂xj . These equations allow us to eliminate the unphysical
derivatives ∂4, ∂5 and ∂6 from all remaining equations in which they appear linearly.2 For
example, evaluating the first toric equation in (5.27) on the physical hypersurface,

0 = (∂1∂4 − ∂3∂6)Iγ

=
(
∂1(−γ1 − θ2 − θ3)− ∂3(−γ3 − θ1 − θ2)

)
Iγ

=
1

4

[
−
(

2γ1 + p2
∂

∂p2
+ p3

∂

∂p3

) 1

p1

∂

∂p1
+
(

2γ3 + p1
∂

∂p1
+ p2

∂

∂p2

) 1

p3

∂

∂p3

]
Iγ , (5.35)

while for the second toric equation,

0 = (∂2∂5 − ∂3∂6)Iγ

=
(
∂2(−γ2 − θ1 − θ3)− ∂3(−γ3 − θ1 − θ2)

)
Iγ

=
1

4

[
−
(

2γ2 + p1
∂

∂p1
+ p3

∂

∂p3

) 1

p2

∂

∂p2
+
(

2γ3 + p1
∂

∂p1
+ p2

∂

∂p2

) 1

p3

∂

∂p3

]
Iγ . (5.36)

Finally, on the physical hypersurface, the DWI (5.24) reduces to

0 =
(d

2
+ θ1 + θ2 + θ3 + ∂4 + ∂5 + ∂6

)
Iγ

=
(d

2
− γ1 − γ2 − γ3 − θ1 − θ2 − θ3

)
Iγ

=
1

2

(
d− 2γ1 − 2γ2 − 2γ3 − p1

∂

∂p1
− p2

∂

∂p2
− p3

∂

∂p3

)
Iγ (5.37)

Equations (5.35)-(5.37) involve only physical variables, namely, the momentum magni-
tudes.

5.2.4 Affine reparametrisations

As we have seen, the set of Euler equations associated with a given GKZ integral can be
read off from the rows of the A-matrix: in the ith Euler equation (5.15), the coefficient of

2More generally, we can rewrite ∂m4 = x−m4 θ4(θ4 − 1) . . . (θ4 − m + 1), etc., then use the full Euler
equations to eliminate θ4, θ5 and θ6 before setting x4 = x5 = x6 = 1. Alternatively, we can supplement
(5.34) with derivatives of the Euler equations (and DWI) evaluated on the physical hypersurface.
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the operator θj is aij = (A)ij where 1 ≤ i ≤ N and 1 ≤ j ≤ n. (Recall we are labelling
the top all-1s row of the A-matrix as i = 0.) Viewed in reverse, the set of Euler equations
determines both the A-matrix and the set of parameters γ, and hence the GKZ integral.

What happens if we now form a new set of Euler equations by taking linear combina-
tions of the old ones? In the process, we could simultaneously add to each Euler equation
some multiple of the DWI. Together, these operations correspond to left-multiplying the
A-matrix by an (N + 1)× (N + 1) matrix

M =

(
1 0
b M

)
, (5.38)

where 0 is an N -dimensional row vector of zeros, b is an N -dimensional column vector
and M an N ×N matrix. This yields

A′ =MA =

(
1 0
b M

)(
1
A

)
=

(
1
A′

)
, (5.39)

where the components of A undergo the affine transformation

(A′)ij = a′ij = bi +

N∑
k=1

mikakj . (5.40)

The new set of Euler equations now corresponds to the rows of A′: the ith new Euler
equation is the sum of mik times the kth old Euler equation plus bi times the DWI (for
which the coefficient of every θj is one). In order to have a′ij ∈ Z+, so as to form a new
denominator polynomial D′ via (5.2), we will restrict the entries of M to mij ∈ Z+ and
bi ∈ Z+. Note the transformation (5.39) leaves the DWI unchanged.

The new set of Euler equations now takes the form

0 =
(
γ ′ +A′ · θ

)
Iγ′ , (5.41)

where

γ ′ =


γ0

γ′1
...
γ′N

 =

(
1 0
b M

)
γ0

γ1
...
γN

 =Mγ (5.42)

so that γ′i = γ0bi +
∑N

k=1mikγk for 1 ≤ i ≤ N while the DWI (5.17) remains unchanged.
Provided that det(M) is nonzero, the toric equations are also unchanged since the kernel
of A is preserved under multiplication by an invertible matrix.

What is now the relation of this new GKZ integral, defined by A′, to the original? The
new integral is

Iγ′ =
( N∏
i=1

∫ ∞
0

dz′i (z′i)
γ′i−1

)
(D′)−γ0 , (5.43)
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where

D′ =
n∑
j=1

xj

N∏
i=1

(z′i)
a′ij . (5.44)

Using (5.40), and making the identification

zk =
N∏
i=1

(z′i)
mik , (5.45)

we find

D′ =
n∑
j=1

xj

N∏
i=1

(z′i)
bi+

∑N
k=1mikakj =

( N∏
l=1

(z′l)
bl
)( n∑

j=1

xj

N∏
i=1

N∏
k=1

(z′i)
mikakj

)

=
( N∏
l=1

(z′l)
bl
)( n∑

j=1

xj

N∏
k=1

z
akj
k

)
=
( N∏
l=1

(z′l)
bl
)
D. (5.46)

Moving the factor of
∏N
l=1(z′l)

bl from the denominator to the numerator and using (5.42)
then gives

Iγ′ =
( N∏
i=1

∫ ∞
0

dz′i (z′i)
γ′i−γ0bi−1

)
D−γ0 =

( N∏
i=1

∫ ∞
0

dz′i (z′i)
∑N
k=1mikγk−1

)
D−γ0

=
( N∏
i=1

∫ ∞
0

dz′i
z′i

N∏
k=1

(z′i)
mikγk

)
D−γ0 =

( N∏
i=1

∫ ∞
0

dz′i
z′i

zγii

)
D−γ0 . (5.47)

Finally, since

dzi
zi

=

N∑
j=1

mji

dz′j
z′j
,

∏
i

∫ ∞
0

dzi
zi

= |detM |
∏
i

∫ ∞
0

dz′i
z′i
, (5.48)

we find
Iγ′ = |detM |−1Iγ . (5.49)

Thus, choosing a new basis for the Euler equations by taking linear combinations of the
old Euler equations and the DWI only rescales the GKZ integral by a constant factor. As
the GKZ system of equations is linear, this overall scaling is in any case not fixed and the
solution is effectively unchanged.

Example: The affine reparametrisation above can be used to show the equivalence of
the massless triangle integral (5.4) with the triple-K integral (see also [42, 46])

Iα,{β1,β2,β3} =

∫ ∞
0

dz zα
3∏
i=1

pβii Kβi(piz). (5.50)
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For α = d/2− 1 and βi = ∆i − d/2, this integral represents the momentum-space 3-point
function of scalars O∆i in any d-dimensional CFT. The triple-K integral can be put into
GKZ form by first Schwinger parametrising the modified Bessel functions as

pβii Kβi(piz) =
1

2

∫ ∞
0

dz′i (z′i)
βi−1 exp

[
− z

2

(
z′i +

p2
i

z′i

)]
(5.51)

then performing the z integral. This gives

Iα,{β1,β2,β3} = 2α−2Γ(α+ 1)
( 3∏
i=1

∫ ∞
0

dz′i (z′i)
βi−1

)[ 3∑
j=1

(
z′j +

p2
j

z′j

)]−α−1
(5.52)

which uplifts to the GKZ integral

Iα,{β1,β2,β3} = 2α−2Γ(α+ 1)
( 3∏
i=1

∫ ∞
0

dz′i (z′i)
γ′i−1

)
(D′)−γ′0 (5.53)

where
D′ = x1

z′1
+
x2

z′2
+
x3

z′3
+ x4z

′
1 + x5z

′
2 + x6z

′
3. (5.54)

The physical hypersurface (i.e., the original triple-K integral) corresponds to

γ′i = βi, γ′0 = α+ 1, x = (p2
1, p

2
2, p

2
3, 1, 1, 1). (5.55)

Here, we are using primes to distinguish the parameters of the triple-K integral from
those of the massless triangle integral earlier. Also, while the denominator (5.54) is not a
polynomial, this simple generalisation will nevertheless turn out to be the most convenient
representation for us later.3 The A-matrix corresponding to the triple-K integral is then

A3K =


1 1 1 1 1 1
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

 . (5.56)

Comparing with the massless triangle A-matrix (5.22), we find that

MAtriangle = A3K, (5.57)

where

M =


1 0 0 0
1 0 −1 −1
1 −1 0 −1
1 −1 −1 0

 . (5.58)

3 Should a purely polynomial denominator be required, one can simply pull out an overall factor of
(z′1z

′
2z
′
3)−1 from the right-hand side of (5.54) then transfer this to the numerator by shifting the γ′i.
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The parameters of the triangle integral are connected to those of the triple-K integral by

Mγtriangle =M


d/2
γ1

γ2

γ3

 =


d/2

d/2− γ2 − γ3

d/2− γ1 − γ3

d/2− γ1 − γ2

 =


α+ 1
β1

β2

β3

 = γ3K . (5.59)

Putting everything together, from (5.49) with detM = 2 and (5.6), we have

Id/2−1,{d/2−γ2−γ3, d/2−γ1−γ3, d/2−γ1−γ2} = C ′
∫

ddq

(2π)d
1

q2γ3 |q − p1|2γ2 |q + p2|2γ1
(5.60)

where

C ′ = πd/223d/2−4Γ(d− γt)
3∏
i=1

Γ(γi). (5.61)

As we saw above, the matrix multiplication here is just a slick way of executing the change
of variables

z1 =
1

z′2z
′
3

, z2 =
1

z′1z
′
3

, z3 =
1

z′1z
′
2

, (5.62)

on the triangle GKZ representation, followed by moving a factor of (z′1z
′
2z
′
3)−γ0 from the

denominator to the numerator.

5.3 Spectral singularities and the Newton polytope

We now turn to examine the singularities of GKZ integrals arising for special values of the
parameters γ. As we will see, these can be viewed geometrically in terms of the Newton
polytope of the GKZ denominator D.

5.3.1 The Newton polytope

A defining feature of the GKZ representation is that only a single denominator (5.2) is
present:

D =

n∑
j=1

xj

N∏
i=1

z
aij
i . (5.63)

The exponents of the jth term in this denominator define a vector aj living in an N -
dimensional space, whose components are

(aj)i = aij , i = 1, . . . N. (5.64)

Thus, aj is the jth column of the A-matrix after stripping off the top row of all 1s.
Constructing the convex hull of these exponent vectors then defines the N -dimensional
Newton polytope of D:

Newt(D) =
n∑
j=1

αjaj , with
n∑
j=1

αj = 1, αj ≥ 0 ∀ j. (5.65)
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(1,0,0)

(0,1,0)

(0,0,1)

(-1,0,0)

(0,-1,0)

(0,0,-1)

(1,0,0)

(0,1,0)

(0,0,1)

(1,1,0)

(1,0,1)

(0,1,1)

Figure 5.2: The Newton polytopes corresponding to the denominators of the triple-K integral
(5.54) (left) and the massless triangle integral (5.8) (right).

For the denominator (5.54) of the triple-K integral, for example, we obtain the regular
octahedron shown on the left of figure 5.2. For the denominator of the massless triangle
integral (5.8), we also obtain an octahedron, but now with vertices as shown on the right
of the figure. The vertices of each polytope are related by the affine transformation (5.40),

a
(3K)
j = b+Ma

(triangle)
j , j = 1, . . . , 6 (5.66)

where, from (5.38) and (5.58),

b =

1
1
1

 , M =

 0 −1 −1
−1 0 −1
−1 −1 0

. (5.67)

As we saw above, for any two A-matrices (and hence any two Newton polytopes) related
by an affine transformation, the corresponding GKZ integrals are proportional to each
other and satisfy the same system of equations (i.e., DWI, Euler and toric equations).
Thus, Newton polytopes such as these related by affine transformations are effectively
equivalent.

5.3.2 Spectral singularities

The physical significance of the Newton polytope becomes apparent when we consider the
spectral singularities of the GKZ integral. These are the divergences that arise for special
values of the parameters γ, with general kinematics, and are distinct from the kinematic
(or Landau) singularities (discussed, e.g., in [125]) which arise for general γ but special
kinematics. Remarkably, it can be shown [149, 150] that the spectral singularities are
closely related to the facets (i.e., co-dimension one faces) of the Newton polytope. As this
polytope lives in an N -dimensional space, let us first define the N -dimensional parameter
vector

γ̂ = (γ1, . . . , γN )T , (5.68)

where the hat serves to distinguish from the (N + 1)-dimensional parameter vector γ =
(γ0, γ̂)T . In addition, we define the rescaled Newton polytope to be the convex hull of
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the vertex vectors γ0aj . This corresponds to a linear rescaling4 of the original Newton
polytope by a factor of γ0. The GKZ integral is then finite for all parameter values γ̂ lying
within this rescaled Newton polytope. On the hyperplanes corresponding to the facets of
the rescaled Newton polytope, as well as on an infinite set of further hyperplanes both
parallel and exterior to these facets, the integral is singular.

An exact formula for all singular hyperplanes will be derived below in (5.109). The
location of these singularities will then be the main ingredient in our subsequent construc-
tion of creation operators. Two key steps are needed to establish the result (5.109). The
first is to show that the GKZ integral converges for all γ̂ values lying in the interior of
the rescaled Newton polytope. Rather than recounting the formal proof of [149, 150], we
will instead pursue a more informal approach based on a tropical analysis of the GKZ
integral [152, 153]. Many closely related constructions appear in sector decomposition, see
e.g., [154, 155]. The second step in the analysis is to construct a series of meromorphic
continuations across each of the singular hyperplanes. This can be achieved by a scaling
argument due to [149, 150]. Here, we present a further variation of this argument involving
a special linear combination of the Euler equations and DWI.

Example: As an initial check of the picture above, we recall that the spectral singular-
ities of the triple-K integral (5.50) are already known from conformal field theory [45].5

The condition for the triple-K integral Iα,{β1,β2,β3} to be singular is

α+ 1± β1 ± β2 ± β3 = −2m, m ∈ Z+ (5.69)

where any independent choice of the three ± signs can be made, and any value m =
0, 1, 2, . . . is permitted. (Throughout this chapter, we will take Z+ to be the set of all
non-negative integers including zero.) Re-expressing this condition in terms of the γ
parameters (5.55) appearing in the GKZ integral, and dropping the primes, this is

γ0 ± γ1 ± γ2 ± γ3 = −2m. (5.70)

We see immediately that the m = 0 singularities indeed correspond to the equations of the
hyperplanes containing the eight facets of the regular octahedron on the left of figure 5.2,
where the vertices in the figure correspond to (γ1, γ2, γ3) = γ0(±1, 0, 0), γ0(0,±1, 0) and
γ0(0, 0,±1). The remaining singularities for m > 0 then correspond to an infinite series of
regularly spaced hyperplanes, both parallel, and exterior, to the facets of the octahedron.

Tropical analysis: an example

To appreciate the role of the Newton polytope, let us start with a simple example intro-
duced in [149]. This is the GKZ integral

Iγ =

∫ ∞
0

dz1

∫ ∞
0

dz2 z
γ1−1
1 zγ2−1

2 (x1 + x2z2 + x3z
2
1 + x4z1z

2
2)−γ0 , (5.71)

4The significance of this rescaling can be anticipated by noting that the Newton polytope of the GKZ
denominator Dγ0 , in the special cases where γ0 ∈ N so that Dγ0 is itself a polynomial when expanded out,
is simply the Newton polytope of D linearly rescaled by γ0.

5The argument in [45] involves expanding the integrand of the triple-K integral about its lower limit
and looking for the appearance of z−1 poles.
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τ2

τ1

(i)

(ii)

(iv)

(iii)

0

γ0

2γ0

2γ0

γ1

γ2

Figure 5.3: Left: The integration sectors for the tropicalised GKZ integral (5.74), where each sector
corresponds to the dominance of a different term in the denominator. The sector boundaries are
simultaneously the normals to the facets of the Newton polytope shown on the right. Right:
Combining the conditions on γ1 and γ2 for the convergence of each sector, we obtain the interior
of the Newton polytope (rescaled by γ0) as shaded.

whose A-matrix is

A =

1 1 1 1
0 0 2 1
0 1 0 2

. (5.72)

The singularities of the integral derive from regions where the zi (for i = 1, 2) either vanish
or tend to infinity. Setting zi = eτi , these regions are mapped to |τi| → ∞ and

Iγ =

∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2 e
γ1τ1+γ2τ2(x1 + x2e

τ2 + x3e
2τ1 + x4e

τ1+2τ2)−γ0 . (5.73)

For large |τi|, we can approximate this integral by its tropicalisation as discussed in [152],

Itrop.
γ = x−γ0

j

∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2 exp
[
γ1τ1 + γ2τ2 − γ0 max(0, τ2, 2τ1, τ1 + 2τ2)

]
, (5.74)

which corresponds to retaining only the leading exponential in the GKZ denominator.
Which term this is will depend on which sector of the (τ1, τ2) plane we are in. If the
dominant term is, say, the jth one, then the overall prefactor is x−γ0

j as shown. If all
xk > 0 for k = 1, . . . , 4, the tropicalisation of the denominator in fact provides a lower
bound and so, for real γ0 > 0 and real γ1 and γ2, we have Iγ < Itrop.

γ . The convergence of
Itrop.
γ then establishes that of Iγ . (For rigorous bounds allowing complex γi, see [149, 150].)

The various integration sectors, as illustrated in figure 5.3, are then as follows:

(i) τ1 < 0 and τ2 < 0 so j = 1 and max(0, τ2, 2τ1, τ1 + 2τ2) = 0.

(ii) τ1 + τ2 < 0 and τ2 > 0 so j = 2 and max(0, τ2, 2τ1, τ1 + 2τ2) = τ2.

(iii) τ1 > 0 and τ1 − 2τ2 > 0 so j = 3 and max(0, τ2, 2τ1, τ1 + 2τ2) = 2τ1.

(iv) τ1 + τ2 > 0 and τ1 − 2τ2 < 0 so j = 4 and max(0, τ2, 2τ1, τ1 + 2τ2) = τ1 + 2τ2.
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Each sector forms a cone within which we can reparametrise τ = (τ1, τ2) as

τ = λ1n1 + λ2n2, λ1, λ2 ≥ 0 (5.75)

where n1 and n2 are the outward-pointing vectors forming the boundary of that particular
sector. By inspection, these are simultaneously the normal vectors to the facets of the
Newton polytope shown in the right-hand panel of figure 5.3, where the two normals
chosen are those for the two facets containing the leading vertex j. For the sector j = 3,
for example, we have n1 = (0,−1) and n2 = (2, 1) and so τ1 = 2λ2 and τ2 = −λ1 + λ2.
This third sector of the tropicalised integral is then

Itrop.
γ

∣∣∣
j=3

= 2x−γ0
3

∫ ∞
0

dλ1

∫ ∞
0

dλ2 exp
[
− γ2λ1 + (2γ1 + γ2 − 4γ0)λ2

]
. (5.76)

The linearity of the tropicalised exponent means that the integrals over λ1 and λ2 factorise,
and for convergence as λi →∞, both exponents must separately be negative:

γ2 > 0, −2γ1 − γ2 + 4γ0 > 0. (5.77)

This corresponds to the interior region bounded by the two lines intersecting the vertex
(γ1, γ2) = (2γ0, 0) in the right-hand panel of figure 5.3. This vertex is precisely that
corresponding to the dominant j = 3 term (namely, x3z

2
1) in the GKZ denominator, after

rescaling by γ0. On the boundary of the convergence region, the integral has either a
single or a double pole according to how many of the inequalities in (5.77) are saturated.

Repeating this exercise for the remaining sectors, we obtain the additional constraints

γ1 > 0, γ1 − γ2 + γ0 > 0. (5.78)

Combining all these conditions, the full integral Itrop.
γ then converges for (γ1, γ2) within

the polytope shown in the figure. This is indeed the Newton polytope for the GKZ
denominator after rescaling all vertex vectors by γ0.

Tropical analysis: general case

The analysis above clearly generalises. Setting again zi = eτi , the general GKZ integral
(5.1) has the tropical approximation

Itrop.
γ =

∫
RN

dτ exp
[ N∑
i=1

γiτi − γ0 maxk

(
lnxk +

N∑
i=1

aikτi

)]
. (5.79)

In particular, this is a good approximation precisely for the large |τi| regions where any sin-
gularities of the GKZ integral must arise, and so convergence of the tropical approximation
implies convergence of the full GKZ integral.6

The different integration sectors of the tropical integral (5.79) correspond to when
different terms dominate and are selected as the maximum in the exponent. For sufficiently

6 For real γi, γ0 > 0 and xj > 0, the tropical approximation provides an upper bound on the GKZ
integral as noted in the previous example. Cases where the γi can be complex and the xj are not constrained
to be positive can be handled by establishing a rigorous bound on the GKZ denominator, see [149, 150].
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large |τi|, this depends only on the direction in the τ = (τ1, . . . , τN ) plane and we can
neglect any contribution from the lnxk terms. Let us consider then the sector where, say,
the jth term forms the maximum. This sector can be parametrised as

τ =
∑
J∈Φj

λ(J)n(J), λ(J) ≥ 0, (5.80)

where Φj denotes the set of facets containing the vertex j, the λ(J) are the new integration
variables, and

n(J) = (n
(J)
1 , . . . , n

(J)
N )T (5.81)

is the outward-pointing normal to the facet J . We will assume that Φj contains precisely
N facets so that (5.80) holds.7 The contribution of this sector is then

Itrop.
γ

∣∣∣
j

= x−γ0
j

∏
J∈Φj

∫ ∞
0

dλ(J) exp
[
λ(J)

N∑
i=1

n
(J)
i (γi − γ0aij)

]
. (5.82)

As in the previous example, convergence then requires each of these exponents to be
negative giving

N∑
i=1

n
(J)
i (γi − γ0aij) < 0 ∀ J ∈ Φj . (5.83)

Viewed geometrically, these conditions state that the parameter vector γ̂ lies to the inside
of the (N−1)-dimensional hyperplane containing facet J of the rescaled Newton polytope,

n(J) · (γ̂ − γ0aj) < 0, (5.84)

and that this holds for all facets J containing the jth vertex vector γ0aj . Convergence
of the full tropicalised GKZ integral requires convergence in every integration sector, and
hence for every vertex j of the rescaled Newton polytope. The condition (5.84) must thus
hold for all facets J , meaning γ̂ must lie completely inside the rescaled Newton polytope.

5.3.3 Meromorphic continuation

Having shown the convergence of GKZ integrals for γ̂ lying within the rescaled Newton
polytope, the existence of further infinite sets of singular hyperplanes parallel to each facet
can be established by meromorphic continuation [149, 150]. Once again, the idea is most
easily seen in the context of an example, after which we resume our general analysis.

Example

Returning the GKZ integral (5.71), let us construct a continuation across, say, the upper-
right facet of the Newton polytope shown on the right of figure 5.3. The relevant outward
normal is n = (2, 1). Following [149], we perform a rescaling zi → λ−nizi, namely z1 →

7If there are fewer than this, we can factor out a finite integral over a transverse subspace following
appendix A of [152] then apply the argument above for the remaining integral over a lower-dimensional
cone.
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λ−2z1 and z2 → λ−1z2, where λ is some fixed parameter. The integral (5.71) becomes

Iγ = λ−2γ1−γ2+4γ0

∫ ∞
0

dz1

∫ ∞
0

dz2 z
γ1−1
1 zγ2−1

2 (x1λ
4 + x2z2λ

3 + x3z
2
1 + x4z1z

2
2)−γ0 (5.85)

but its value remains unchanged. We can therefore differentiate to find

0 =
d

dλ
Iγ
∣∣∣
λ=1

= (−2γ1 − γ2 + 4γ0)Iγ − 4γ0x1Iγ′ − 3γ0x2Iγ′′ (5.86)

where

γ′0 = γ0 + 1, γ′1 = γ1, γ′2 = γ2

γ′′0 = γ0 + 1, γ′′1 = γ1, γ′′2 = γ2 + 1. (5.87)

Alternatively, (5.86) can be obtained by taking a linear combination of the Euler equations
and DWI for (5.71), namely

0 =
(
− 2(γ1 + 2θ3 + θ4)− (γ2 + θ2 + 2θ4) + 4

(
γ0 +

4∑
j=1

θj
))
Iγ

=
(

4γ0 − 2γ1 − γ2 + 4θ1 + 3θ3

)
Iγ , (5.88)

where evaluating the action of the θi = xi∂xi yields (5.86).
As both Iγ′ and Iγ′′ in (5.86) take the same form as the original integral Iγ , except

with shifted parameters, the convergence regions are given by (5.77) and (5.78) replacing
γ with γ ′ or γ ′′. In terms of the unshifted parameters, Iγ′ thus converges for

γ1 > 0, γ2 > 0, γ0 + γ1 − γ2 + 1 > 0, 4γ0 − 2γ1 − γ2 + 4 > 0, (5.89)

while Iγ′′ converges for

γ1 > 0, γ2 + 1 > 0, γ0 + γ1 − γ2 > 0, 4γ0 − 2γ1 − γ2 + 3 > 0. (5.90)

In each case, the size of the Newton polytope is rescaled from γ0 → γ0 + 1, while for Iγ′′
we also translate by the vector (0,−1) as shown in figure 5.4. Note that neither of these
operations change the normals to the facets. Re-arranging (5.86), we now have

Iγ = (4γ0 − 2γ1 − γ2)−1
(
4γ0x1Iγ′ + 3γ0x2Iγ′′

)
, (5.91)

where the sum of shifted integrals on the right-hand side converges only for the intersection
of the two shifted polytopes (5.89) and (5.90), namely

γ1 > 0, γ2 > 0, γ0 + γ1 − γ2 > 0, 4γ0 − 2γ1 − γ2 + 3 > 0. (5.92)

Comparing with the original polytope formed by (5.77) and (5.78), only the final inequality
has changed. Now, the region of convergence extends across the facet with normal (2, 1) as
shown in figure 5.4. Equation (5.91) thus gives a meromorphic continuation of Iγ around
the pole at 4γ0−2γ1−γ2 = 0 (corresponding to the facet of the original Newton polytope
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γ1

γ2

2γ0 + 22γ0

γ0

γ0 + 1

−1
γ1

γ2

Figure 5.4: Left: Convergence regions of Iγ (green), Iγ′ (blue) and Iγ′′ (orange). The meromorphic
continuation (5.91) holds for the intersection of the convergence regions for Iγ′ and Iγ′′ . This
extends the domain of convergence of Iγ across the upper-right facet with normal (2, 1) to form
the region bounded by the solid line. Right: Dashed lines indicate the complete set of singular
hyperplanes (5.93) of the GKZ integral (5.71).

normal to (2, 1)) to the larger region (5.92).
This process can then be repeated for the boundary of the new region (5.92) by applying

the same procedure (namely, rescaling zi → λ−nizi, differentiating with respect to λ then
setting λ = 1) to the integrals on the right-hand side of (5.91). Alternatively, we can
extend (5.91) iteratively by using shifted analogues of (5.91) to replace Iγ′ and Iγ′′ on the
right-hand side of (5.91) itself. Repeating such calculations for all the facet normals of the
original Newton polytope, we obtain an infinite set of singular hypersurfaces parallel to
the facets of the Newton polytope. The integral (5.71) is thus singular on the hyperplanes

γ1 = −m1, γ2 = −m2, γ0 + γ1 − γ2 = −m3, 4γ0 − 2γ1 − γ2 = −3m4 (5.93)

for any (independent) choice of non-negative integers mi ∈ Z+, as illustrated in the right-
hand panel of figure 5.4.

General analysis

The analysis in this last example readily extends to general GKZ integrals. We begin by
defining a few useful quantities. First, we have the (N + 1)-dimensional vectors

γ =

(
γ0

γ̂

)
, Aj =

(
1,

aj

)
, N (J) =

(
n

(J)
0

n(J)

)
, (5.94)

where γ is the usual GKZ parameter vector, Aj is the jth column of the full A-matrix
(including the top row of 1s), and, as above, n(J) is the N -dimensional outwards-pointing

normal to facet J of the Newton polytope. The additional component n
(J)
0 is fixed by

requiring that
0 = N (J) ·Aj , j ∈ ϕJ (5.95)
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where ϕJ denotes the set of vertices lying within the facet J , giving

n
(J)
0 = −n(J) · aj , j ∈ ϕJ . (5.96)

The condition that γ̂ lies in the hyperplane containing facet J of the rescaled Newton
polytope,

0 = n(J) · (γ̂ − γ0aj) (5.97)

can now be compactly re-expressed as

0 = γ ·N (J) (5.98)

and the domain of convergence (5.84) corresponds to γ ·N (J) < 0 for all facets J . (From
an (N+1)-dimensional perspective, the Newton polytope therefore corresponds to a cone.)
In addition, we define the distance function

d
(J)
i = −Ai ·N (J) = n(J) · (aj − ai), j ∈ ϕJ . (5.99)

If n(J) is a unit vector, d
(J)
i is the normal distance from vertex i to facet J of the New-

ton polytope. Rather than choosing n(J) to be a unit vector, however, it will be more
convenient in practice to choose n(J) (and hence N (J)) to have integer components.

We now proceed to construct a meromorphic continuation of the GKZ integral across a
chosen facet J of the rescaled Newton polytope. To this end, we form a linear combination

of n
(J)
0 times the DWI plus the sum of n

(J)
k times the kth Euler equation, namely

0 =
[
n

(J)
0

(
γ0 +

n∑
l=1

θl

)
+

N∑
k=1

n
(J)
k

(
γk +

n∑
l=1

aklθl

)]
Iγ

=
(
γ ·N (J) −

n∑
l=1

d
(J)
l θl

)
Iγ . (5.100)

The sum over l on the second line here can be restricted to values l /∈ ϕJ , corresponding

to vertices l not in the facet J , since d
(J)
l vanishes for all l ∈ ϕJ . Moreover, by direct

differentiation of the GKZ integral as we will discuss further in section 5.4.1, one can show
that

θlIγ = −γ0xlIγ+Al . (5.101)

Here, the parameter vector of the right-hand integral has been shifted from γ → γ + Al.
Rearranging, this immediately gives the desired meromorphic continuation:8

Iγ = − γ0

γ ·N (J)

( ∑
l /∈ϕJ

xl d
(J)
l Iγ+Al

)
. (5.102)

The denominator γ ·N (J) generates a pole at the hyperplane containing the facet J , while
the sum of shifted integrals has a larger domain of convergence extending across the facet

8Alternatively, this equation can be derived by rescaling all zi → λ−n
(J)
i zi in Iγ and extracting a

prefactor of λ−γ·N
(J)

. We then differentiate with respect to λ and set λ = 1 analogously to in (5.86).
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J of the original rescaled Newton polytope for Iγ .
To see this, for each shifted integral labelled by an l /∈ ϕJ in the sum (5.102), the

domain of convergence (5.84) is

(γ + Al) ·N (K) = γ ·N (K) − d(K)
l < 0 ∀ K. (5.103)

This is equivalent to

n(K) · ((γ̂ + al)− (γ0 + 1)ak) < 0, k ∈ ϕK , (5.104)

i.e., for every facet K, the shifted parameter vector γ̂ ′ = γ̂+al must lie inside the Newton
polytope rescaled by γ′0 = γ0 + 1. The common overlap of these domains for every l /∈ ϕJ
then corresponds to

γ ·N (K) < δ(K) ∀ K, (5.105)

where
δ(K) = minl /∈ϕJ

[
d

(K)
l

]
≥ 0. (5.106)

For any facet K 6= J , the set of vertices l /∈ ϕJ includes vertices l ∈ ϕK lying in the facet

K. For such vertices, d
(K)
l and hence δ(K) is then zero. Just as in our earlier example, the

domain of convergence for the sum of shifted integrals in (5.102) is therefore unchanged
for all facets K 6= J ,

δ(K) = 0 ∀ K 6= J. (5.107)

The only facet across which the domain of convergence is extended is the facet K = J , for
which we obtain an extension

δ(J) = minl /∈ϕJ
[
d

(J)
l

]
. (5.108)

Geometrically, δ(J) > 0 is the normal distance to the facet J of the (non-rescaled) Newton
polytope starting from the nearest vertex l not belonging to J , multiplied by |n(J)|. If we
choose n(J) to have integer components, then as the components of the A-matrix are also
integer, δ(J) will be a positive integer.

Equation (5.105), together with (5.107) and (5.108), thus give us the domain of con-
vergence of the meromorphic continuation (5.102). Repeating the argument to construct
further meromorphic continuations, one finds that the GKZ integral Iγ has an infinite se-
ries of singular hyperplanes lying parallel to each facet J of the original Newton polytope.
These hyperplanes are given by

γ ·N (J) = mJ δ
(J), mJ ∈ Z+, (5.109)

where mJ is any non-negative integer m = 0, 1, 2, . . ..

Example: Let us check (5.108) against our previous example. Taking J to be the facet
with outward normal n(J) = (2, 1), we have ϕJ = {3, 4} and so using the A-matrix (5.72),

δ(J) = minl∈{1,2}

2∑
i=1

n
(J)
i (ai3 − ail) = min(4, 3) = 3. (5.110)
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The sole shifted boundary

γ ·N (J) = γ0n
(J)
0 + γ̂ · n(J) < δ(J), (5.111)

where n
(J)
0 = −

∑2
i=1 n

(J)
i ai3 = −4, then evaluates to

− 4γ0 + 2γ1 + γ2 − 3 < 0 (5.112)

in agreement with (5.92), and the singular hyperplanes in (5.109) match those in (5.93).

Implementation

In higher-dimensional examples, a convenient way to determine the singular hyperplanes
(5.109) is to apply a convex hulling algorithm (see, e.g., [156]) to identify which sets of
vertex vectors aj form the facets of the Newton polytope. We will discuss this explicitly
in section 5.6.3. The condition (5.98) that γ̂ lies in the hyperplane containing facet J of
the rescaled Newton polytope is then equivalent to

0 = γ ·N (J) = det (γ |Aj1 | . . . |AjN ), (5.113)

where j1, . . . , jN ∈ ϕJ are the N vertices belonging to facet J , and the Aj are the cor-
responding A-matrix columns. To see this, note that from (5.95) we have Aj ·N (J) = 0
for all the N vectors j ∈ ϕJ . As the total dimension of the vector space is N + 1, the
condition γ ·N (J) = 0 implies that γ lies in the span of the Aj with j ∈ ϕJ , and hence

the determinant above vanishes. The components n
(J)
i of N (J), for i = 0, . . . , N , can thus

be identified by expanding out the determinant and extracting the coefficient of γi. This

tells us that n
(J)
i is given by the (i, 1)th cofactor of the matrix, for example

n
(J)
0 = det (aj1 | . . . |ajN ). (5.114)

One must however also check that n(J) corresponds to the outwards-pointing normal by

verifying that d
(J)
k = −Ak ·N (J) > 0 for some k /∈ ϕJ , and swapping two columns of

(5.113) if not. The spacing δ(J) of the singular hyperplanes can then be computed using
(5.108) and (5.99).

5.4 Shift operators

Let us now examine the shift operators associated with A-hypergeometric functions. Two
natural classes present themselves: the ‘annihilation’ operators which correspond to the
simple derivative ∂j = ∂/∂xj , and the ‘creation’ operators which are purely polynomial
differential operators (i.e., operators in the Weyl algebra) that invert this operation.

5.4.1 Annihilation operators

From the GKZ integral (5.1) and denominator (5.2), we see by direct differentiation that

∂jIγ = −γ0Iγ′ , j = 1, . . . , n (5.115)
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where
γ′0 = γ0 + 1, γ′i = γi + aij , i = 1, . . . , N. (5.116)

In other words, differentiating with respect to xj increases the power of the denominator
by one, and adds to the numerator all powers of zi multiplying xj in the denominator.
From the A-matrix perspective, the shift of the parameter vector γ is given by the jth
column of the full A-matrix,

γ ′ = γ + Aj , (5.117)

combining the two formulae in (5.116).
One can naturally think of the toric equations (5.30) as representing the difference of

two products of annihilation operators, such that the total shift generated by each product
is the same leading to a cancellation. Namely, each factor

n∏
j=1

∂
u±j
j (5.118)

produces an overall parameter shift

γ → γ +
n∑
j=1

Aju
±
j , (5.119)

but since
n∑
j=1

Aju
+
j =

n∑
j=1

Aju
−
j (5.120)

the final shifted integral is the same in both cases and the difference vanishes.
Notice also that knowledge of the full set of n annihilation operators, plus the parameter

shifts they produce, is equivalent to knowledge of all columns of the A-matrix and hence
the full GKZ integral itself.9

Example: The annihilation operators for the GKZ uplift (5.53) of the triple-K integral
(5.50) are ∂j for j = 1, . . . , 6. The triple-K integral itself corresponds to evaluating the
GKZ integral on the physical hypersurface x = (p2

1, p
2
2, p

2
3, 1, 1, 1) according to (5.55). The

first three annihilators thus become

∂j =
∂

∂xj
=

∂

∂p2
j

=
1

pj

∂

∂pj
, j = 1, 2, 3. (5.121)

while for the remaining three we need to use the Euler equations following from the A-
matrix (5.56). These are

0 = β1 − θ1 + θ4, 0 = β2 − θ2 + θ5, 0 = β3 − θ3 + θ6, (5.122)

9 Prior to the work of GKZ, this approach was pioneered by Miller et al [157, 158] for various Lauri-
cella and Horn-type hypergeometric functions for which the annihilators can be identified from the series
definition.
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and projecting to the physical hypersurface by setting x4 = x5 = x6 = 1 gives

∂4 = θ1 − β1 =
p1

2

∂

∂p1
− β1, ∂5 = θ2 − β2 =

p2

2

∂

∂p2
− β2, ∂6 = θ3 − β3 =

p3

2

∂

∂p3
− β3.

(5.123)
Up to trivial numerical factors, these are the shift operators

Lj = − 1

pj

∂

∂pj
, Rj = 2βj − pj

∂

∂pj
, j = 1, 2, 3, (5.124)

introduced in [42, 85]. The action of these operators on the triple-K integral (5.50) can
be obtained from their action on the individual Bessel functions in the integrand giving

L1Iα,{β1,β2,β3} = −(α+ 1)Iα+1,{β1−1,β2,β3}, R1Iα,{β1,β2,β3} = −(α+ 1)Iα+1,{β1+1,β2,β3},
(5.125)

with the others following by permutation. This is consistent with the expected action for
the annihilation operators: from the columns of the A-matrix (5.56), this is

Lj : γ′0 → γ′0 + 1, γ′j → γ′j − 1, Rj : γ′0 → γ′0 + 1, γ′j → γ′j + 1, (5.126)

which from (5.55) is

Lj : α→ α+ 1, βj → βj − 1, Rj : α→ α+ 1, βj → βj + 1. (5.127)

5.4.2 Creation operators

Over the next three subsections, we present a construction of creation operators motivated
by consideration of the spectral singularities. These ideas are then illustrated using the
Gauss hypergeometric function. Originally, creation operators were first proposed by Saito
in [146, 147]; for further discussion, see [148, 159].

By definition, when acting on a GKZ integral, the creation operator Cj produces the
inverse parameter shift to the annihilation operator ∂j = ∂/∂xj . If we act with one
operator followed by the other, therefore, we must arrive back at the original integral up
to some function of the parameters:

Cj∂jIγ = bj(γ)Iγ . (5.128)

As we will see shortly, this ‘b-function’ bj(γ) is a polynomial whose zeros correspond to a
specific subset of the singular hyperplanes of Iγ given in (5.109). First, however, let us
sketch how knowing bj(γ) enables a direct construction of the creation operator Cj .

The first step is to replace all the parameters γ appearing in the b-function with linear
combinations of Euler operators using the DWI and Euler equations (5.20). This defines
a new polynomial Bj(θ) in the Euler operators,

Bj(θ) = bj(γ)
∣∣∣
γ→−

∑n
k=1Akθk

(5.129)

such that
Cj∂jIγ = Bj(θ)Iγ . (5.130)

113



Chapter 5. GKZ integrals and creation operators for Feynman and Witten diagrams

As all Euler operators commute with one another, there are no ordering ambiguities here.
Next, we expand out Bj(θ) and re-arrange so that, in every term, all factors of xk are

to the left of all derivatives ∂k. Up to a constant coefficient, each term of Bj(θ) is thus of
the form

n∏
k=1

xbkk ∂
bk
k (5.131)

for some set of powers bk. In certain cases, the product
∏
k ∂

bk
k will already contain an

explicit factor of ∂j . Otherwise, we can use the toric equations (5.30) to replace the

product
∏
k ∂

bk
k (which acts on the GKZ integral Iγ as per (5.130)) with an equivalent

product that does contain an explicit factor of ∂j . Such a replacement will always be
possible provided the b-function is correctly chosen. After completing this operation for
every term, the right-hand side of (5.130) now matches the form of the left-hand side
allowing the operator Cj to be read off. Thus, with the aid of the toric equations, Bj(θ)
acting on Iγ can be explicitly factorised into the form Cj∂j .

As a final step, the creation operator Cj , which is a differential operator with poly-
nomial coefficients defined in the n-dimensional GKZ space, must be projected back to
the physical hypersurface. For this, we restore all xk to their physical values (noting the
xk are positioned to the left of all derivatives), and use the Euler equations evaluated on
the physical hypersurface to replace derivatives in directions lying off the physical hyper-
surface with derivatives tangential to this hypersurface. This replacement also restores a
dependence on the parameters γ. Many examples of this projection procedure will appear
in subsequent sections.

5.4.3 Action of the creation operator

Returning to (5.128) and using the action of the annihilator ∂j as given in (5.115), the
action of the creation operator is

CjIγ′ = −γ−1
0 bj(γ)Iγ . (5.132)

As the shift here is acting in the direction γ ′ → γ = γ ′−Aj , rearranging (5.116) we have

γ0 = γ′0 − 1, γi = γ′i − aij , i = 1, . . . N. (5.133)

We will retain this allocation of prime and unprimed variables in the following for com-
patibility with the algorithm in the previous section based on (5.128).

Before discussing the b-function itself, a crucial point to notice is that the parameter
shift (5.133) can potentially take us from a finite to a divergent GKZ integral. In contrast,
the reverse shift (5.116) associated with the annihilation operator ∂j , when acting on a
finite integral, will always produce another finite integral.

To see this, let us start with an integral Iγ′ for which the vector γ̂ ′ = (γ′1, . . . , γ
′
N ) lies

inside the rescaled Newton polytope with vertices γ′0aj . In the notation of section 5.3.3,
this means that for every facet K we have

γ ′ ·N (K) < 0 (5.134)

and the GKZ representation for Iγ′ converges without meromorphic continuation. For the
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shifted integral Iγ in (5.132), we then have

γ ·N (K) = γ ′ ·N (K) + d
(K)
j (5.135)

where
d

(K)
j = n(K) · (ak − aj), k ∈ ϕK (5.136)

is proportional to the normal distance from vertex j to facet K of the (non-rescaled)

Newton polytope. Now, for any facet K containing the vertex j, d
(K)
j vanishes and hence

γ ·N (K) < 0. For the remaining facets not containing the vertex j, however, d
(K)
j > 0

since n(K) is the outward normal and j lies to the inside of the facet. Consequently, we
cannot be sure that γ ·N (K) < 0 for all facets K, and hence that Iγ is finite. Rather, if
there are any facets for which γ ·N (K) ≥ 0, the shifted integral Iγ will diverge whenever
the singularity condition (5.109),

γ ·N (K) = mKδ
(K), mK ∈ Z+ (5.137)

is satisfied for some non-negative integermK . Combined with (5.135), this condition allows
us to identify the initial parameter values γ ′ for which the shifted integral Iγ diverges.

For the annihilation operator ∂j , the direction of the parameter shifts are reversed and
so if the starting integral is finite, the shifted integral is also necessarily finite.

5.4.4 Finding the b-function

An apparent puzzle now arises for cases where the shifted integral Iγ in (5.132) is divergent,
since the action of a differential operator Cj with polynomial coefficients on any finite
integral Iγ′ must clearly be finite. The resolution is that, for such cases, the b-function in
(5.132) must have a zero cancelling the divergence in Iγ such that the right-hand side is
finite.10

The b-function for the creation operator Cj must thus have zeros corresponding to
every singular hyperplane that can be reached by a single application of Cj to any finite
starting integral, as illustrated in figure 5.5. The minimal b-function, containing just these
factors alone, is

bj(γ) =
∏
K/∈Φj

F
(K)
j −1∏
mK=0

(γ ·N (K) −mKδ
(K)) (5.138)

where the first product runs over all facets K not containing the vertex j and the upper
limit in the second product is set by

F
(K)
j =

d
(K)
j

δ(K)
. (5.139)

This counts by how many steps (in units of δ(K), the spacing between singular hyperplanes)
the creation operator Cj raises γ ′ ·N (K) according to (5.135). Effectively, if we define an

10In a ‘dimensional’ regularisation scheme where all parameters are shifted infinitesimally γ → γ + ε γ̄,
this requires bj(γ) ∼ εk while Iγ ∼ ε−k for some k ∈ Z+ such that bj(γ)Iγ is finite as ε→ 0.
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γ ·N (K)

2δ(K)

δ(K)

0

−δ(K)

−2δ(K)

d
(K)
j

Cj

γ ·N (K)

2δ(K)

δ(K)

0

−δ(K)

−2δ(K)

Cj

d
(K)
j

Figure 5.5: Mapping of finite to divergent integrals under the action of the creation operator Cj
as per (5.135), and construction of the corresponding b-functions. Left: If d

(K)
j = δ(K), facet K

contributes only the factor γ ·N (K) to the b-function. The zero of this factor cancels the pole of
the only singular integral (dashed line) that can be reached starting from a finite integral. Right: If

d
(K)
j = 3δ(K), the facet contributes three factors,

∏2
mK=0(γ ·N (K) −mKδ

(K)) whose zeros cancel
the poles of the three singular integrals reachable from a finite starting integral. The shaded region
indicates the rescaled Newton polytope.

initial m′K by the relation γ ′ · N (K) = m′Kδ
(K), the creation operator Cj acts to raise

this to mK = m′K + F
(K)
j . Thus, if F

(K)
j = 1 for some particular facet K, only the

singularity in (5.137) with mK = 0 can be reached by the action of Cj on a finite starting
integral (namely, that with m′K = −1). The product over mK in (5.138) is thus capped

at F
(K)
j − 1 = 0. Alternatively, if F

(K)
j = 2 for some facet, both the mK = 0 and mK = 1

singularities can be reached by acting with Cj on the finite starting integrals with m′K = −2

and m′K = −1 respectively. The product over mK in (5.138) then runs up to F
(K)
j −1 = 1,

and so on.
For all the Feynman and Witten diagrams we analyse in the remainder of the chapter,

F
(K)
j is an integer for all K and the minimal b-function (5.138) (containing only the zeros

necessary to cancel out the singularities of Iγ) is sufficient to find all creation operators.
These operators are moreover of the lowest possible order in derivatives, since the b-
function has the fewest factors. Nevertheless, in certain exceptional cases, the factorisation
step of the algorithm in section 5.4.2 can fail when using the minimal b-function. Such
cases, which arise when the associated toric ideal is non-normal [146–148, 159], can be
handled by supplementing (5.138) with additional factors. An example, which also features

a non-integer F
(K)
j , is discussed in appendix C.3.

Despite its formal appearance, the formula (5.138) is straightforward to evaluate in
practice as will become clear in the examples to follow. All that is required is to identify
the singular hyperplanes (5.109) for a given GKZ integral, along with the shift produced by
the creation operator Cj , and then to form the b-function from the product of all singular
hyperplanes that can be reached by one application of Cj on any finite starting integral.
We emphasise too that, while consideration of singular cases has been used to deduce the
form of the b-function, the creation operators we subsequently obtain can be used to map
finite integrals to finite integrals.
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5.4.5 Example

As a simple illustration before turning our efforts to Witten diagrams and Feynman in-
tegrals in the following sections, we compute creation operators for the GKZ integral
[149, 123]

Iγ =

∫
R2

+

dz1dz2
zγ1−1

1 zγ2−1
2

(x1 + x2z1 + x3z2 + x4z1z2)γ0
. (5.140)

On the hypersurface (x1, x2, x3, x4) = (1, 1, 1, y), this can be directly evaluated in terms
of the Gauss hypergeometric function

Iγ(y) =
Γ(γ1)Γ(γ2)Γ(γ0 − γ1)Γ(γ0 − γ2)

Γ(γ0)2 2F1(γ1, γ2, γ0; 1− y). (5.141)

Since all shift operators for the Gauss hypergeometric function are known this will allow
an easy check of our calculations.

Evaluating the A−matrix,

A =

1 1 1 1
0 1 0 1
0 0 1 1

, (5.142)

we can read off the DWI and Euler equations

0 = (γ0 + θ1 + θ2 + θ3 + θ4) Iγ , 0 = (γ1 + θ2 + θ4) Iγ , 0 = (γ2 + θ3 + θ4) Iγ , (5.143)

where θi = xi∂i and, from the kernel of the A-matrix, we find a single toric equation,

0 = (∂2∂3 − ∂1∂4) Iγ . (5.144)

From (5.109), the singular hyperplanes are

γ1 = −m1, γ2 = −m2, γ0−γ1 = −m3, γ0−γ2 = −m4, mi ∈ Z+ (5.145)

as displayed in figure 5.6. As expected, these singularities coincide with the poles of the
gamma functions in the numerator of the projected integral (5.141).

The annihilation operators ∂j send γ → γ ′ while the creation operators Cj send γ ′ → γ,
where for each j these parameters are related by

j = 1 : γ′0 = γ0 + 1, γ′1 = γ1, γ′2 = γ2

j = 2 : γ′0 = γ0 + 1, γ′1 = γ1 + 1, γ′2 = γ2

j = 3 : γ′0 = γ0 + 1, γ′1 = γ1, γ′2 = γ2 + 1,

j = 4 : γ′0 = γ0 + 1, γ′1 = γ1 + 1, γ′2 = γ2 + 1. (5.146)

The corresponding b-functions are

b1 = (γ0 − γ1)(γ0 − γ2),

b2 = γ1(γ0 − γ2),
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γ0 γ0 + 1

γ0

γ0 + 1

γ1

γ2

Figure 5.6: The singular hyperplanes of (5.140).

b3 = γ2(γ0 − γ1),

b4 = γ1γ2. (5.147)

In each case, the factors that appear are the zeros needed to cancel the poles arising when
the creation operator moves us from a finite to a singular integral. For b1, for example, the
shift produced by C1 can take a finite integral with γ′0 − γ′i = 1 to a singular integral with
γ0 − γi = 0 for both i = 1 and i = 2, as we see from (5.145). The zeros of b1 then cancel
these singularities so that the action (5.132) of C1 on a finite integral is always finite. For
b2, the shifts produced by C2 can take a finite integral with γ′2 = 1 to a singular integral
with γ2 = 0, and a finite integral with γ′0 − γ′1 = 1 to a singular integral with γ0 − γ1 = 0,
with these singularities again being cancelled by the zeros of b2. Note that the action of C2

leaves γ′1 and γ′0− γ′2 unchanged hence no further singularities arise, and hence no further
factors in b2. One can further check that the b-functions (5.147) are consistent with the
general formula (5.138).

From (5.130) plus the DWI and Euler equations (5.143), we now have, for example,

C1∂1Iγ = (γ0 − γ1)(γ0 − γ2)Iγ = (θ1 + θ3)(θ1 + θ2)Iγ
= (x1∂1 + x2

1∂
2
1 + x1x2∂1∂2 + x1x3∂1∂3 + x2x3∂2∂3)Iγ . (5.148)

By inspection, every term in the final line contains an explicit factor of ∂1 except for the
last, but this can be replaced by x2x3∂1∂4 using the toric equation (5.144). This gives us
the desired factorisation

C1 = x1 + x2
1∂1 + x1x2∂2 + x1x3∂3 + x2x3∂4

= x1(1 + θ1 + θ2 + θ3) + x2x3∂4. (5.149)
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In an identical fashion, we obtain

C2 = x2(1 + θ1 + θ2 + θ4) + x1x4∂3,

C3 = x3(1 + θ1 + θ3 + θ4) + x1x4∂2,

C4 = x4(1 + θ2 + θ3 + θ4) + x2x3∂1. (5.150)

Finally, in order to understand their action on (5.141), these creation operators can be
projected to the ‘physical’ hypersurface (x1, x2, x3, x4) = (1, 1, 1, y). For this we use the
DWI and Euler equations (5.143) evaluated on this hypersurface, which can be re-arranged
so as to eliminate all derivatives apart from ∂y:

∂1Iγ′(y) = (−γ′0 + γ′1 + γ′2 + θy)Iγ′(y),

∂2Iγ′(y) = −(γ′1 + θy)Iγ′(y),

∂3Iγ′(y) = −(γ′2 + θy)Iγ′(y). (5.151)

Notice here that as the creation operators act on the integral with parameters γ ′ by our
definition (5.132), we need to use these parameters here. With the aid of these equations,
the creation operators project to

Cph
1 = 1− γ′0 + (1− y)∂y,

Cph
2 = 1− γ′0 + (1− y)(γ′2 + θy),

Cph
3 = 1− γ′0 + (1− y)(γ′3 + θy),

Cph
4 = 1− γ′0 + (1− y)(γ′1 + γ′2 − 1 + θy), (5.152)

where the ‘ph’ superscript indicates the operators expressed in physical variables. From
(5.132), we then have, for example,

Cph
1 Iγ′0,γ′1,γ′2(y) = −γ−1

0 (γ0 − γ1)(γ0 − γ2)Iγ0,γ1,γ2(y)

= −(γ′0 − 1)−1(γ′0 − γ′1 − 1)(γ′0 − γ′2 − 1)Iγ′0−1,γ′1,γ
′
2
, (5.153)

since here the creation operator shifts γ′0 → γ0 = γ′0 − 1 while γ′i = γi for i = 1, 2. Noting
the presence of the gamma functions in (5.141), this corresponds to(

1− γ′0 + (1− y)∂y) 2F1(γ′1, γ
′
2, γ
′
0; 1− y) = (1− γ′0) 2F1(γ′1, γ

′
2, γ
′
0 − 1; 1− y) (5.154)

which indeed follows from standard relations for 2F1 (see e.g., equation 15.5.4 of [160]).
Taking into account the shifts (5.146), for the remaining operators we find

Cph
2 Iγ′0,γ′1,γ′2(y) = −γ−1

0 γ1(γ0 − γ2)Iγ0,γ1,γ2

= −(γ′0 − 1)−1(γ′1 − 1)(γ′0 − γ′2 − 1)Iγ′0−1,γ′1−1,γ′2
(y),

Cph
3 Iγ′0,γ′1,γ′2(y) = −γ−1

0 γ2(γ0 − γ1)Iγ0,γ1,γ2

= −(γ′0 − 1)−1(γ′2 − 1)(γ′0 − γ′1 − 1)Iγ′0−1,γ′1,γ
′
2−1(y),

Cph
4 Iγ′0,γ′1,γ′2(y) = −γ−1

0 γ1γ2Iγ0,γ1,γ2

= −(γ′0 − 1)−1(γ′1 − 1)(γ′2 − 1)Iγ′0−1,γ′1−1,γ′2−1(y). (5.155)
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These can again be verified using standard shift identities and contiguity relations for the
Gauss hypergeometric function.

5.5 Creation operators for Witten diagrams

The correlators of holographic conformal field theories at strong coupling can be computed
via Witten diagrams in anti-de Sitter spacetime. As the evaluation of these diagrams is
nontrivial, particularly in momentum space, it is important to identify classes of shift
operators connecting known ‘seed’ solutions to a broader family of correlators.

In this section, we construct novel creation operators for Witten diagrams in momen-
tum space. (Results for the position-space contact diagram, or holographic D-function,
are given in appendix C.2.) Starting with the contact diagram, we derive explicit creation
operators at 3- and 4-points, though the method extends to higher points. We also show,
again at 3- and 4-points, how to construct operators that shift the scaling dimensions
while preserving the spacetime dimension.

A case of particular interest, given the close connection to cosmological correlators,
is the 4-point exchange diagram. Here, a class of weight-shifting operators is known
connecting exchange diagrams with different external scaling dimensions [83, 30], but
subject to two restrictions [36]: first, these operators map an exchange diagram with
non-derivative vertices to one with derivative vertices; and second, they work only for a
special set of initial scaling dimensions. While these results are sufficient for cosmologies
where the inflaton is a derivatively-coupled massless scalar, finding further generalisations
is highly desirable.

A key problem, therefore, is to find a shift operator connecting exchange diagrams
with non-derivative vertices to new exchange diagrams, with shifted operator dimensions,
but still with non-derivative vertices. This operator should moreover be applicable for dia-
grams of arbitrary initial scaling dimensions. In section 5.5.6, we derive such an operator.

5.5.1 Definitions

In momentum space, the n-point contact Witten diagram is

i[d; ∆1, ...,∆n] =

∫ ∞
0

dz z−d−1
n∏
i=1

K[∆i](z, pi) (5.156)

where d is the boundary spacetime dimension of the CFT, ∆i is the scaling dimension of
the scalar operator Oi, and the bulk-to-boundary propagator

K[∆i](z, pi) =
z
d
2 pβii Kβi(piz)

2βi−1Γ(βi)
, βi = ∆i −

d

2
. (5.157)

Since the modified Bessel-K function is invariant under changing the sign of its index,
note we have the shadow relation

i[d; ∆1, ...,∆n]

∣∣∣
∆i→d−∆i

=
4βiΓ(βi)

Γ(−βi)
p−2βi
i i[d; ∆1, ...,∆n]. (5.158)

120



Chapter 5. GKZ integrals and creation operators for Feynman and Witten diagrams
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Figure 5.7: Witten diagrams representing the contact and exchange 4-point diagram i[∆1∆2∆3∆4]

and i[∆1∆2,∆3∆4x∆x] given by the integrals (5.156) and (5.159).

In addition to the contact diagram, we will discuss the 4-point s-channel exchange
diagram shown in figure 5.7,

i[d; ∆1,∆2; ∆3,∆4; ∆x] =

∫ ∞
0

dz z−d−1K[∆1](z, p1)K[∆2](z, p2) (5.159)

×
∫ ∞

0
dζ ζ−d−1G[∆x](z, s; ζ)K[∆3](ζ, p3)K[∆4](ζ, p4),

where ∆x is the dimension of the exchanged operator and s2 = (p1 + p2)2. The bulk-to-
bulk propagator in this expression is

G[∆x](z, s; ζ) =

{
(zζ)

d
2 Iβx(sz)Kβx(sζ) for z < ζ,

(zζ)
d
2Kβx(sz)Iβx(sζ) for z > ζ,

(5.160)

with Iβ and Kβ representing modified Bessel functions and βx = ∆x − d/2. Where neces-
sary, these integrals can be regulated by infinitesimally shifting the operator dimensions
and spacetime dimension d so as to ensure convergence [36].

5.5.2 GKZ representation of the contact diagram

The GKZ representation for the n-point momentum-space contact diagram can be eval-
uated analogously to that for the triple-K integral (see page 99). This yields the GKZ
integral

Iγ =
( n∏
i=1

∫ ∞
0

dzi z
γi−1
i

)[ n∑
j=1

(xj
zj

+ x̄jzj

)]−γ0

(5.161)

with the contact diagram being

i[d; ∆1, ...,∆n] = 2γ0Γ(γ0)
( n∏
i=1

1

2γiΓ(γi)

)
Iγ (5.162)
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with parameters

γ0 =
(n

2
− 1
)
d, γi = ∆i −

d

2
= βi, (5.163)

and physical hypersurface

xi = p2
i , x̄i = 1, i = 1, . . . , n. (5.164)

Our notation x = (xi, x̄i) for the GKZ variables here and in (5.161) is simply a convenience
designed to simplify the form of the Euler and toric equations as we will see below; x̄i
should be regarded as an independent dynamical variable equivalent to xi+n in the notation
of the previous section.

The (n+ 1)× 2n dimensional A-matrix for the integral (5.161) is now

A =

(
1 1
−In In

)
(5.165)

where 1 is the n-dimensional row vector of 1s and In is the n×n identity matrix. (Again,
we are departing from the notation of the previous section where n referred to the number
of columns in the A-matrix, reserving n now for the number of points.) Writing

∂i =
∂

∂xi
, ∂̄i =

∂

∂x̄i
, θi = xi∂i, θ̄i = x̄i∂̄i, (5.166)

the Euler equations are

0 = (γi − θi + θ̄i)Iγ , i = 1, . . . , n, (5.167)

while the DWI is

0 =
(
γ0 +

n∑
i=1

(θi + θ̄i)
)
Iγ . (5.168)

In addition, we have the toric equations

0 = (∂i∂̄i − ∂j ∂̄j)Iγ , i 6= j = 1, . . . , n. (5.169)

These can easily be verified by noting that ∂i∂̄i sends γ0 → γ0 + 2 but makes no change
to the power of zi appearing in the numerator of (5.161), hence the two terms in (5.169)
cancel.

It is well known that the contact diagram satisfies the equation,

0 = (Ki −Kj)i[d,∆1,...,∆n] ∀ i 6= j (5.170)

where Ki is the Bessel operator

Ki = ∂2
pi +

(1− 2γi)

pi
∂pi = ∂i(θi − γi). (5.171)

To see this from a GKZ perspective, we use the Euler and toric equations to show that

(Ki −Kj)Iγ = (∂iθ̄i − ∂j θ̄j)Iγ = (x̄i∂i∂̄i − x̄j∂j ∂̄j)Iγ = (x̄i − x̄j)∂i∂̄iIγ . (5.172)
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Upon projecting to the physical hypersurface (5.164), the right-hand side now vanishes.
Finally, we observe that the shadow relation (5.158) uplifts to

Iγ
∣∣∣
γi→−γi

=
( x̄i
xi

)γi
Iγ (5.173)

for any i = 1, . . . , n in GKZ variables. This can be seen by evaluating the right-hand side
with the substitution zi = xi/(x̄iz

′
i) in (5.161).

5.5.3 Creation and annihilation operators

The action of the annihilation operators is

∂iIγ = −γ0Iγ
∣∣∣
γ0→γ0+1, γi→γi−1

, ∂̄iIγ = −γ0Iγ
∣∣∣
γ0→γ0+1, γi→γi+1

(5.174)

for any i = 1, . . . , n. After projecting to the physical hypersurface (5.164), up to numerical
factors ∂i and ∂̄i become the operators Li and Ri respectively, as defined in (5.124). Note
that due to the shadow relation (5.173) (or re-arranging the Euler equation (5.167)), we
have

∂̄iIγ =
( x̄i
xi

)−γi−1
∂i

( x̄i
xi

)γi
Iγ . (5.175)

In physical variables, this projects to

Ri = p
2(βi+1)
i Li p−2βi

i . (5.176)

The action of the creation operators is the inverse of that in (5.174), namely

Ci : γ0 → γ0 − 1, γi → γi + 1, C̄i : γ0 → γ0 − 1, γi → γi − 1, (5.177)

where all remaining γj for j 6= i stay the same. By virtue of the shadow relation (5.158),
however, it suffices to construct only Ci since

C̄i Iγ =
( x̄i
xi

)1−γi
Ci
∣∣∣
γi→−γi

( x̄i
xi

)γi
Iγ . (5.178)

To construct Ci, we first need to identify the singular hyperplanes of Iγ . These can be
found either by expanding the integrand of (5.156) about the lower limit z = 0 and looking
for the appearance of z−1 pole terms (see [45], and the example on page 103), or by using
the formula (5.109) based on the Newton polytope. Here, the Newton polytope takes
the form of an n-dimensional cross-polytope with vertices at ±ej for every basis vector
(ej)k = δjk and 2n facets with outward normals n = (σ1, . . . , σn)T for every possible
independent choice of σj = ±1. From (5.96) and (5.108), n0 = −1 and δ = 2 for every
facet, hence the singular hyperplanes are

0 = −γ0 +
n∑
j=1

σjγj − 2m, m ∈ Z+. (5.179)

Given the action of Ci in (5.177), the only way this operator can shift us from a finite to
a singular integral is if σi = +1 so that m increases by one. The corresponding b-function
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is then

bi(γ) =
∏

{σj=±1}

1

2
(−γ0 + γi +

∑
j 6=i

σjγj), (5.180)

where the product runs over every possible choice of signs for all j 6= i. Using the Euler
equations, this gives

Bi(θ, θ̄) =
∏

{σj=±1}

(
θi +

∑
j 6=i

(δσj ,+1θj + δσj ,−1θ̄j)
)
. (5.181)

For convenience, to eliminate an overall numerical factor in this expression we inserted
factors of one-half in (5.180). Overall, this is simply a trivial rescaling of both the creation
operator and the b-function.

For the 3-point function, for example, these formulae evaluate to

b1(γ) =
1

16
(−γ0 +γ1 +γ2 +γ3)(−γ0 +γ1−γ2 +γ3)(−γ0 +γ1 +γ2−γ3)(−γ0 +γ1−γ2−γ3).

(5.182)
and

B1(θ, θ̄) = (θ1 + θ2 + θ3)(θ1 + θ̄2 + θ3)(θ1 + θ2 + θ̄3)(θ1 + θ̄2 + θ̄3). (5.183)

Recalling now the creation operators obey

Ci∂iIγ = bi(γ)Iγ = Bi(θ, θ̄)Iγ (5.184)

the idea is to expand out as11

Bi(θ, θ̄) = Qi(θ, θ̄)θi +
∑
j 6=i

Qj(θ, θ̄)θj θ̄j , (5.185)

where without loss of generality we can choose all Qj(θ, θ̄) for j 6= i to be independent of
both θi and θ̄i. (Note from (5.181) that Bi(θ, θ̄) is automatically independent of θ̄i.) We
then use the toric equations (5.169) to re-express

θj θ̄jIγ = xj x̄j∂j ∂̄jIγ = xj x̄j∂i∂̄iIγ (5.186)

so that

Bi(θ, θ̄)Iγ =
[
Qi(θ, θ̄)xi +

∑
j 6=i

Qj(θ, θ̄)xj x̄j ∂̄i

]
∂iIγ , (5.187)

11A factorisation of this form always exists as can be seen recursively in the number of points n. Once
all θi-dependence has been gathered into Qiθi, let us write the remainder at n-points as b

(n)
i = B

(n)
i |θi→0.

Multiplying out all the factors containing θn, and, separately, all the factors containing θ̄n, we obtain
b
(n)
i = ((. . .)θn + b

(n−1)
i )((. . .)θ̄n + b

(n−1)
i ) = (. . .)θnθ̄n + (. . .)b

(n−1)
i , where b

(n−1)
i is independent of θn and

θ̄n. Thus, if the decomposition b
(n−1)
i =

∑n−1
j 6=i Q

(n−1)
j θj θ̄j exists at (n − 1)-points, then it also exists at

n-points: b
(n)
i =

∑n
j 6=iQ

(n)
j θj θ̄j .
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This yields the creation operators

Ci = Qi(θ, θ̄)xi +
∑
j 6=i

Qj(θ, θ̄)xj x̄j ∂̄i. (5.188)

To project from the GKZ space to the physical space spanned by the momenta, we first
re-write (suppressing arguments for clarity)

Qixi = xiQi

∣∣∣
θi→θi+1

(5.189)

Qjxj x̄j ∂̄i = xj x̄j ∂̄iQj

∣∣∣
θj→θj+1, θ̄j→θ̄j+1

(5.190)

where for (5.190) we recall the Qj are independent of both θi and θ̄i. We then project to the
physical hypersurface (5.164) by using the Euler equations (5.167) to replace θ̄k → θk−γk
for all k = 1, . . . , n (which is justified since after the re-arrangements (5.189)-(5.190) all θ̄k
act directly on Iγ) and set all x̄k → 1. Note also that ∂̄i = θ̄i on the physical hypersurface
since x̄i = 1, hence we can also replace ∂̄i → θi − γi. The result is

Cph
i = xiQi

∣∣∣
θi→θi+1, θ̄k→θk−γk

+ (θi − γi)
∑
j 6=i

xjQj

∣∣∣
θj→θj+1, θ̄k→θk−γk+δkj

(5.191)

where the replacement on θ̄k applies to all the θ̄ variables present. As previously, the
superscript ‘ph’ denotes the operator expressed in physical variables. From the shadow
relation (5.158), we also have

C̄iph = xγi−1
i Cph

i

∣∣∣
γi→−γi

x−γii

= Qi

∣∣∣
θi→θi−γi+1, θ̄k→θk−γk

+
∑
j 6=i

xj∂iQj

∣∣∣
θj→θj+1, θ̄k→θk−γk+δkj

. (5.192)

Together, these expressions gives us the creation operators in terms of the physical vari-
ables

xk = p2
k, θk = xk∂k =

1

2
pk∂pk , (5.193)

From (5.132), their action is

CiI{γ0, γi} = −(γ0 − 1)−1bi(γ0 − 1, γi + 1)I{γ0−1, γi+1},

C̄iI{γ0, γi} = −(γ0 − 1)−1b̄i(γ0 − 1, γi − 1)I{γ0−1, γi−1}. (5.194)

The shift in b-function arguments on the right-hand sides here reflects the fact that, in
replacing θ̄k → θk−γk in the projection step above, we are taking the creation operator to
act on the integral I{γ0, γi}. This is equivalent to eliminating γ from (5.132) using (5.133)
then relabelling γ ′ → γ.
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3-point creation operator

Let us find the creation operator C1 for the 3-point function via the procedure outlined
above. Starting from the expression for B1(θ, θ̄) in (5.183), we decompose

B1(θ, θ̄) = Q1θ1 +Q2θ2θ̄2 +Q3θ3θ̄3 (5.195)

where

Q1 = (θ1 + u2 + u3)
(
(θ1 + u2)(θ1 + u3) + 2(v2 + v3)

)
, (5.196)

Q2 = (u2 + u3)u3 + v2 − v3, (5.197)

Q3 = (u2 + u3)u2 − v2 + v3, (5.198)

with
ui = θi + θ̄i, vi = θiθ̄i, i = 2, 3. (5.199)

Note that Q2 and Q3 are independent of θ1 and all coefficients are independent of θ̄1. We
have also chosen Q2 and Q3 to preserve the 2↔ 3 symmetry though this is not essential.

Re-iterating the steps above, making use of (5.186), we have

B1(θ, θ̄)Iγ =
(
Q1x1 +Q2x2x̄2∂̄1 +Q3x3x̄3∂̄1

)
∂1Iγ = C1∂1Iγ (5.200)

yielding the creation operator C1 in GKZ space. Moving the Qk to the right, this can
equivalently be written

C1 = x1Q1

∣∣∣
θ1→θ1+1

+ x2x̄2∂̄1Q2

∣∣∣
θ2→θ2+1, θ̄2→θ̄2+1

+ x3x̄3∂̄1Q3

∣∣∣
θ3→θ3+1, θ̄3→θ̄3+1

(5.201)

Since shifting θi → θi + 1 and θ̄i → θ̄i + 1 is equivalent to ui → ui + 2 and vi → 1 +ui + vi,
this is

C1 = x1(θ1 + 1 + u2 + u3)
(
(θ1 + 1 + u2)(θ1 + 1 + u3) + 2(v2 + v3)

)
+ x2x̄2∂̄1

(
1 + u2 + v2 − v3 + (u2 + u3 + 2)u3

)
+ x3x̄3∂̄1

(
1 + u3 + v3 − v2 + (u2 + u3 + 2)u2

)
. (5.202)

Finally, to project to the physical hypersurface, we set

x̄i → 1, θ̄i → θi − γi, ∂̄i → θi − γi (5.203)

which sends ui → 2θi − γi and vi → θi(θi − γi), yielding

C1 = x1(θ1 + 1 + 2θ2 + 2θ3 − γ2 − γ3)× (5.204)

×
[
(θ1 + 1 + 2θ2 − γ2)(θ1 + 1 + 2θ3 − γ3) + 2θ2(θ2 − γ2) + 2θ3(θ3 − γ3)

]
+ (θ1 − γ1)×

×
[
x2

(
1 + 2θ2 − γ2 + θ2(θ2 − γ2)− θ3(θ3 − γ3) + (2θ2 − γ2 + 2θ3 − γ3 + 2)(2θ3 − γ3)

)
+ x3

(
1 + 2θ3 − γ3 + θ3(θ3 − γ3)− θ2(θ2 − γ2) + (2θ2 − γ2 + 2θ3 − γ3 + 2)(2θ2 − γ2)

)]
Of course, this result also follows from (5.191) directly. We can simplify somewhat further
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by using the DWI evaluated on the physical hypersurface,

0 =
(
θ1 + θ2 + θ3 +

1

2
(γ0 − γ1 − γ2 − γ3)

)
Iγ . (5.205)

This gives the alternative form

C1 = −x1

2
(θ1 − 1 + γ0 − γ1)

[
2θ2

1 + 2(γ0 − γ1)θ1 + (γ0 − γ1 − 1)2 + 1− γ2
2 − γ2

3

]
(5.206)

+ (θ1 − γ1)×

×
[
x2

(
1 + 2θ2 − γ2 + θ2(θ2 − γ2)− θ3(θ3 − γ3)− (2θ1 − γ1 + γ0 − 2)(2θ3 − γ3)

)
+ x3

(
1 + 2θ3 − γ3 + θ3(θ3 − γ3)− θ2(θ2 − γ2)− (2θ1 − γ1 + γ0 − 2)(2θ2 − γ2)

)]
.

The action of this creation operator is

C1I{γ0,γ1} = −(γ0 − 1)−1b1(γ0 − 1, γ1 + 1)I{γ0−1,γ1+1} (5.207)

where

b1(γ0−1, γ1+1) = b1(γ)
∣∣∣
γ0→γ0−1, γ1→γ1+1

=
1

16

[(
(2−γ0+γ1)2−γ2

2−γ2
3

)2−4γ2
2γ

2
3

]
(5.208)

using b1(γ) as given in (5.182).

4-point creation operator

From (5.180), the 4-point b-function is

b1(γ) = 2−8(−γ0 + γ1 + γ2 + γ3 + γ4)(−γ0 + γ1 − γ2 + γ3 + γ4)(−γ0 + γ1 + γ2 − γ3 + γ4)

× (−γ0 + γ1 + γ2 + γ3 − γ4)(−γ0 + γ1 − γ2 − γ3 + γ4)(−γ0 + γ1 − γ2 + γ3 − γ4)

× (−γ0 + γ1 + γ2 − γ3 − γ4)(−γ0 + γ1 − γ2 − γ3 − γ4) (5.209)

which, after use of the Euler equations and DWI, corresponds to

B1 = (θ1 + θ2 + θ3 + θ4)(θ1 + θ̄2 + θ3 + θ4)(θ1 + θ2 + θ̄3 + θ4)(θ1 + θ2 + θ3 + θ̄4)

× (θ1 + θ̄2 + θ̄3 + θ4)(θ1 + θ̄2 + θ3 + θ̄4)(θ1 + θ2 + θ̄3 + θ̄4)(θ1 + θ̄2 + θ̄3 + θ̄4)
(5.210)

consistent with (5.181). We wish to decompose this as

B1(θ, θ̄) = Q1θ1 +Q2θ2θ̄2 +Q3θ3θ̄3 +Q4θ4θ̄4 (5.211)

where Q2, Q3 and Q4 are independent of θ1.
Let us deal with the Q1 term first. Denoting the eight factors in (5.210) as Rm for

m = 1, . . . , 8, we have

B1

∣∣∣
θ1=0

=
8∏

m=1

(−θ1+Rm) =
8∑

m=0

σ(m)(R)(−θ1)8−m = B1+
7∑

m=0

σ(m)(R)(−θ1)8−m (5.212)
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where σ(m)(R) is the mth elementary symmetric polynomial in the Rm. Rearranging then
gives

Q1 = θ−1
1

(
B1 −B1

∣∣
θ1=0

)
=

7∑
m=0

σ(m)(R)(−θ1)7−m, (5.213)

and since θ1 appears in each of the factors in (5.210),

Q1x1 = x1Q1

∣∣∣
θ1→θ1+1

=
7∑

m=0

σ(m)(1 +R)(−1− θ1)7−m. (5.214)

When acting on the GKZ integral Iγ , we can now use the Euler equations (5.167) and
DWI (5.168) to rewrite this expression in terms of elementary symmetric polynomials of
just the parameters γ alone, namely

x1Q1

∣∣∣
θ1→θ1+1

Iγ = x1

7∑
m=0

σ(m)(r)(−1− θ1)7−mIγ , (5.215)

where the eight variables

r{m} = 1− γ0 + γ1 ± γ2 ± γ3 ± γ4 (5.216)

are formed by making all possible independent choices of ± signs.
We now turn to the remaining Qk coefficients in (5.211) for k = 2, 3, 4. Defining the

auxiliary functions

S(θ) = (θ + θ3 + θ4)(θ + θ̄3 + θ4)(θ + θ3 + θ̄4)(θ + θ̄3 + θ̄4), (5.217)

T (θ) = θ−1(S(θ)− S(0)) = (θ + u3 + u4)
(
(θ + u3)(θ + u4) + 2v3 + 2v4

)
, (5.218)

where
uk = θk + θ̄k, vk = θkθ̄k, k = 3, 4 (5.219)

we can decompose

Q2 = T (θ2)T (θ̄2), (5.220)

Q3 =
(
(u3 + u4)u4 + v3 − v4)(S(θ2) + S(θ̄2)− S(0)), (5.221)

Q4 =
(
(u3 + u4)u3 + v4 − v3)(S(θ2) + S(θ̄2)− S(0)). (5.222)

Noting that for k = 3, 4,

(S(θ2) + S(θ̄2)− S(0))
∣∣∣
θk→θk+1, θ̄k→θ̄k+1

= (S(θ2 + 1) + S(θ̄2 + 1)− S(1)), (5.223)

and using (5.191), the creation operator is then

Cph
1 = x1

7∑
m=0

σ(m)(r)(−1− θ1)7−m + (θ1 − γ1)
[
x2 T̂ (θ2 + 1)T̂ (θ2 − γ2 + 1) (5.224)

+
(
x3

(
(2 + û3 + û4)û4 + û3 + 1 + v̂3 − v̂4

)
+ x4

(
(2 + û3 + û4)û3 + û4 + 1 + v̂4 − v̂3

))

128



Chapter 5. GKZ integrals and creation operators for Feynman and Witten diagrams

×
(
Ŝ(θ2 + 1) + Ŝ(θ2 − γ2 + 1)− Ŝ(1)

)]
where all hatted quantities are defined by replacing θ̄k → θk − γk for k = 3, 4 in the
corresponding unhatted quantities. Its action is

C1I{γ0,γ1} = −(γ0 − 1)−1b1(γ0 − 1, γ1 + 1)I{γ0−1,γ1+1} (5.225)

where, using b1(γ) as given in (5.209),

b1(γ0 − 1, γ1 + 1) = b1(γ)
∣∣∣
γ0→γ0−1, γ1→γ1+1

=
1

256

[(
(2− γ0 + γ1)2 − S(1)

)4
− 8
(

(2− γ0 + γ1

)2 − S(1)

)2
S(2)

+ 16S2
(2) − 64(2− γ0 + γ1)2S(3)

]
(5.226)

with the S(m) being elementary symmetric polynomials in γ2
2 , γ2

3 and γ2
4 .

5.5.4 Examples

Taking into account the additional gamma function factors in (5.162), the action of these
creation operators on contact diagrams is

C1 i[d; ∆1, ...,∆n] = −4γ1b1(γ0 − 1, γ1 + 1) i[d̃; ∆̃1,∆2 ...,∆n] (5.227)

where

d̃ = d− 2

n− 2
, ∆̃1 = ∆1 +

n− 3

n− 2
, (5.228)

Alternatively, in terms of the multiple-Bessel integral

Iγ0 {γ1, ..., γn} =

∫ ∞
0

dz zγ0

n∏
i=1

p2γi
i Kγi(piz), (5.229)

from (5.156) and (5.162) we have

Iγ =
2n−γ0

Γ(γ0)
Iγ0 {γ1, ..., γn} (5.230)

and hence

C1Iγ0 {γ1, γ2, ..., γn} = −2b1(γ0 − 1, γ1 + 1) Iγ0−1 {γ1+1, γ2, ..., γn}. (5.231)

Here we can either use (5.193) to rewrite C1 in terms of the momenta pi, or more easily,
re-express (5.229) using pi =

√
xi then convert back to pi after acting with C1.

A quick check of these results can be obtained by examining cases where all the Bessel
indices γi take half-integer values allowing direct evaluation of the contact diagrams. (We
restrict to cases where both the initial and the shifted integral are finite; for the analysis
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of renormalised cases see [36].) For example, at three points, the triple-K integrals (5.229)

I4{ 1
2

1
2

1
2
} =

15π2

16
√

2
(p1 + p2 + p3)−7/2 , I3{ 3

2
1
2

1
2
} =

π2(5p1 + 2p2 + 2p3)

8
√

2(p1 + p2 + p3)5/2
, (5.232)

and one can verify that

C1I4{ 1
2

1
2

1
2
} = − 45

128
I3{ 3

2
1
2

1
2
}, (5.233)

consistent with (5.231) using (5.208) for the 3-point b-function. We have performed many
similar checks at both 3- and 4-points.

More non-trivially, many triple-K integrals with integer indices can be evaluated [85]
by acting with the annihilators Li and Ri given in (5.124) on the known ‘seed’ integral
I1 {000} which can be evaluated in terms of the Bloch-Wigner dilogarithm. These relations
enable computation of all the necessary triple-K integrals arising in 3-point functions of
conserved currents and stress tensors in even spacetime dimensions [34, 35]. Since the
creation operators Ci and C̄i are the inverse of Li and Ri, this allows us to reverse the
direction of all operations linking different triple-K integrals within the reduction scheme.
Thus, for example, we find

R1I1{000} = I2{100}, −8C1I2{100} = I1{000} (5.234)

where the integrals

I1{000} =
1

2p2
3(z − z̄)

[
Li2 z − Li2 z̄ +

1

2
ln(zz̄) ln

(1− z
1− z̄

)]
, (5.235)

I2{100} =
1

2p2
3(z − z̄)2

[
4p2

3zz̄(−2 + z + z̄)I1{000} − 2zz̄ ln(zz̄)

− (z + z̄ − 2zz̄) ln[(1− z)(1− z̄)]
]

(5.236)

and the variables

z =
1

2p2
3

(
p2

1 − p2
2 + p2

3 +
√
−J2

)
, z̄ =

1

2p2
3

(
p2

1 − p2
2 + p2

3 −
√
−J2

)
(5.237)

or equivalently
p2

1

p2
3

= zz̄,
p2

2

p2
3

= (1− z)(1− z̄) (5.238)

with

J2 = (p1 + p2 + p3)(−p1 + p2 + p3)(p1 − p2 + p3)(p1 + p2 − p3)

= −p4
1 − p4

2 − p4
3 + 2p2

1p
2
2 + 2p2

2p
2
3 + 2p2

3p
2
1. (5.239)

5.5.5 Shift operators preserving the spacetime dimension

The creation operators constructed above decrease the spacetime dimension according
to (5.228). For many applications, we would prefer an operator capable of changing the
operator dimensions of a contact diagram while preserving the spacetime dimension. Thus,
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we seek an operator W σ1,σ2
12 such that

W σ1,σ2
12 i[d; ∆1,∆2,∆3, ...,∆n] ∝ i[d; ∆1+σ1,∆2+σ2,∆3, ...,∆n] (5.240)

for any independent choice of signs σ1 = ±1 and σ2 = ±1. Operators of this type
are known at three points [83, 30], but their analogue at four points acts on contact
diagrams to generate shifted contact diagrams with derivative vertices [36]. Instead, our
discussion of creation operators above can be modified to enable operators of this type to
be identified.12 At three points we will see these coincide with the operators of [83, 30],
but at four points and above they are novel. Using these operators will then enable further
new shift operators to be constructed for exchange diagrams.

Our starting point is the observation that, for the GKZ integral (5.161) corresponding
to the contact diagram,

W−−12 ∂̄1Iγ = bW (γ)∂2Iγ . (5.241)

Recalling the parameter identifications (5.163), the action of the operators here is

W−−12 : γ0 → γ0, γ1 → γ1 − 1, γ2 → γ2 − 1,

∂̄1 : γ0 → γ0 + 1, γ1 → γ1 + 1, γ2 → γ2,

∂2 : γ0 → γ0 + 1, γ1 → γ1, γ2 → γ2 − 1, (5.242)

with all remaining γk for k = 3, . . . , n staying the same. As the shifts produced by the
operators on each side of (5.241) are the same, both sides involve the same integral Iγ .
As previously, the b-function bW (γ) should be a product of linear factors that vanishes
whenever W−−12 maps us from a finite to a singular integral. Taking into account the action
(5.174) of the annihilators in (5.241), we have

W−−12 ∂̄1Iγ = −γ0W
−−
12 Iγ

∣∣∣
γ0→γ0+1, γ1→γ1+1

= −γ0bW (γ)Iγ
∣∣∣
γ0→γ0+1,γ2→γ2−1

= bW (γ)∂2Iγ (5.243)

and so the zeros of bW (γ) must cancel the singularities of Iγ |γ0→γ0+1,γ2→γ2−1. From
(5.179), this means

bW (γ) =
∏

σk∈±1

1

2

(
− (γ0 + 1)− γ1 − (γ2 − 1) + σ3γ3 + . . . σnγn

)
=

∏
σk∈±1

1

2

(
− γ0 − γ1 − γ2 + σ3γ3 + . . . σnγn

)
. (5.244)

Only the singularities with σ1 = σ2 = −1 in (5.179) appear here since these are the
only cases for which Iγ |γ0→γ0+1,γ2→γ2−1 is singular but the integral Iγ |γ0→γ0+1,γ1→γ1+1 on
which W−−12 acts is finite. Every possible independent choice of σk ∈ ±1 for all k = 3, . . . , n

12The shift operators that we identify will moreover be of minimal order, unlike the d-preserving com-
bination of an annihilator ∂i or ∂̄i followed by a creation operator Cj or C̄j . For example, the combination
C̄1∂2−C̄2∂1 produces the same shift as W−−12 but is of seventh order in derivatives for the 4-point function,
since each product is eighth order and taking the difference lowers the order by one. In contrast, the
4-point operator W−−12 we find will be of only fourth order.

131



Chapter 5. GKZ integrals and creation operators for Feynman and Witten diagrams

is permitted, however, and gives rise to a corresponding factor in (5.244). Once again, we
have also chosen to include trivial factors of one-half in bW (γ) to simplify the subsequent
form of W−−12 . Replacing the parameters γ in bW (γ) using the Euler equations (5.167)
and DWI (5.168), we find

W−−12 ∂̄1Iγ = ∂2

(
bW (γ)Iγ

)
= ∂2BW (θ, θ̄)Iγ (5.245)

where

BW (θ, θ̄) =
∏

σk∈±1

1

2

( n∑
j=1

(θj + θ̄j)− (θ1 − θ̄1)− (θ2 − θ̄2) + σ3(θ3 − θ̄3) + . . . σn(θn − θ̄n)
)

=
∏

σk∈±1

(
θ̄1 + θ̄2 + (δσ3,+1θ3 + δσ3,−1θ̄3) + . . .+ (δσn,+1θn + δσn,−1θ̄n)

)
.

(5.246)

Since BW (θ, θ̄) is in fact independent of θ2 the ordering of ∂2 and BW (θ, θ̄) on the right-
hand side of (5.245) is in fact immaterial, but had this not been the case the ordering
shown would be the correct one when using the unshifted Euler equations and DWI to
replace the γ parameters.

To identify W−−12 , all that is then needed is to start with ∂2BW (θ, θ̄) and, using the
toric equations (5.169), pull out a right factor of ∂̄1 according to (5.245). As usual, the
resulting operator can then be projected down to the physical hypersurface using the Euler
equations and DWI. These procedures are illustrated for the 3- and 4-point function below.
Finally, given W−−12 in physical variables, all the remaining operators in (5.240) can be
found by shadow conjugation using (5.173), namely

(W+−
12 )ph = x1+γ1

1 (W−−12 )ph x
−γ1
1 , (5.247)

(W−+
12 )ph = x1+γ2

2 (W−−12 )ph x
−γ2
2 , (5.248)

(W++
12 )ph = x1+γ1

1 x1+γ2
2 (W−−12 )ph x

−γ1
1 x−γ2

2 . (5.249)

3-point function

To illustrate the above discussion, for the 3-point function we have

bW (γ) =
1

4
(−γ0 − γ1 − γ2 + γ3)(−γ0 − γ1 − γ2 − γ3) (5.250)

and
BW (θ, θ̄) = (θ̄1 + θ̄2 + θ3)(θ̄1 + θ̄2 + θ̄3). (5.251)

The operator W−−12 can now be extracted from

W−−12 ∂̄1Iγ = ∂2BW (θ, θ̄)Iγ . (5.252)

For this, we write

∂2(θ̄1 + θ̄2 + θ3)(θ̄1 + θ̄2 + θ̄3)Iγ
= ∂2

[
(θ̄1 + θ̄2 + θ̄3 + θ3)(θ̄1 + θ̄2) + θ3θ̄3]Iγ

132



Chapter 5. GKZ integrals and creation operators for Feynman and Witten diagrams

=
[
(θ̄1 + θ̄2 + θ̄3 + θ3)(x̄1∂2∂̄1 + x̄2∂2∂̄2) + x3x̄3∂2∂3∂̄3]Iγ

=
[
(θ̄1 + θ̄2 + θ̄3 + θ3)(x̄1∂2 + x̄2∂1) + x3x̄3∂2∂1]∂̄1Iγ (5.253)

where in the penultimate line we used the toric equations (5.169). Thus

W−−12 = (θ̄1 + θ̄2 + θ̄3 + θ3)(x̄1∂2 + x̄2∂1) + x3x̄3∂2∂1

= (x̄1∂2 + x̄2∂1)(1 + θ̄1 + θ̄2 + θ̄3 + θ3) + x3x̄3∂2∂1, (5.254)

and using the DWI (5.168) to project to the physical hypersurface (5.164), we obtain

(W−−12 )ph = (∂2 + ∂1)(1− γ0 − θ1 − θ2) + x3∂2∂1

= −(γ0 + θ1 + θ2)(∂1 + ∂2) + x3∂1∂2 (5.255)

where for the 3-point function γ0 = d/2 from (5.163). A short calculation shows that

(W−−12 )ph = −1

4

(
∂2
p1

+ ∂2
p2

+
(d− 1)

p1
∂p1 +

(d− 1)

p2
∂p2 + (p2

1 + p2
2− p2

3)
1

p1p2
∂p1∂p2

)
(5.256)

which, up to a factor of −2, is the 3-point shift operator studied in [30, 36].
The action of W−−12 is

W−−12 Iγ = bW (γ)
∣∣∣
γ0→γ0−1, γ1→γ1−1

Iγ
∣∣∣
γ1→γ1−1, γ2→γ2−1

(5.257)

where the shift on the b-function derives from the fact that, in the projection step going
from (5.254) to (5.255), we have chosen that W−−12 acts on the integral Iγ requiring us to
shift the γ parameters present in (5.243). Evaluating, this gives

bW (γ)
∣∣∣
γ0→γ0−1, γ1→γ1−1

=
1

4
(2− γ0 − γ1 − γ2 + γ3)(2− γ0 − γ1 − γ2 − γ3)

=
1

4

(
(γ0 + γ1 + γ2 − 2)2 − γ2

3

)
(5.258)

such that (5.257) is consistent with the action of W−−12 obtained in [36]. Acting on the
holographic contact diagram, from (5.162) we have

W−−12 i[d,∆1,∆2,∆3] =
1

4(γ1 − 1)(γ2 − 1)
bW (γ)

∣∣∣
γ0→γ0−1, γ1→γ1−1

i[d,∆1−1,∆2−1,∆3]. (5.259)

4-point function

At 4-points, we find

bW (γ) =
1

16
(−γ0 − γ1 − γ2 + γ3 + γ4)(−γ0 − γ1 − γ2 − γ3 + γ4)

× (−γ0 − γ1 − γ2 + γ3 − γ4)(−γ0 − γ1 − γ2 − γ3 − γ4) (5.260)
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and hence

BW (θ, θ̄) = (θ̄1 + θ̄2 + θ3 + θ4)(θ̄1 + θ̄2 + θ̄3 + θ4)(θ̄1 + θ̄2 + θ3 + θ̄4)(θ̄1 + θ̄2 + θ̄3 + θ̄4).
(5.261)

Once again, to find W−−12 we must factorise

W−−12 ∂̄1Iγ = ∂2BW (θ, θ̄)Iγ . (5.262)

As a first step, we expand

BW (θ, θ̄) = Q0(θ̄1 + θ̄2) +Q3θ3θ̄3 +Q4θ4θ̄4 (5.263)

where the coefficients

Q0 = (u3 + u4 + θ̄1 + θ̄2)
(

2(v3 + v4) + (u3 + θ̄1 + θ̄2)(u4 + θ̄1 + θ̄2)
)
,

Q3 = (u3 + u4)u4 + v3 − v4,

Q4 = (u3 + u4)u3 − v3 + v4, (5.264)

and
uk = θk + θ̄k, vk = θkθ̄k, k = 3, 4. (5.265)

Now, since all coefficients are independent of θ2,

∂2BW (θ, θ̄)Iγ =
[
Q0(x̄1∂2∂̄1 + x̄2∂2∂̄2) +Q3x3x̄3∂2∂̄3∂3 +Q4x4x̄4∂2∂̄4∂4

]
Iγ (5.266)

=
[
x̄1Q0

∣∣∣
θ̄1→θ̄1+1

∂2 + x̄2Q0

∣∣∣
θ̄2→θ̄2+1

∂1

+ x3x̄3Q3

∣∣∣
θ3→θ3+1, θ̄3→θ̄3+1

∂2∂1 + x4x̄4Q4

∣∣∣
θ4→θ4+1, θ̄4→θ̄4+1

∂2∂1

]
∂̄1Iγ

where in the second line we used the toric equations (5.169). We thus have

W−−12 = (x̄1∂2 + x̄2∂1)Q0

∣∣∣
θ̄1→θ̄1+1

+ ∂1∂2

(
x3x̄3Q3

∣∣∣
θ3→θ3+1, θ̄3→θ̄3+1

+ x4x̄4Q4

∣∣∣
θ4→θ4+1, θ̄4→θ̄4+1

)
(5.267)

where in the first line we used the fact that θ̄1 and θ̄2 enter Q0 only in the combination
θ̄1 + θ̄2 and so the replacement θ̄1 → θ̄1 + 1 produces the same result as θ̄2 → θ̄2 + 1
allowing us to combine the two Q0 terms. We have in addition moved Q0, Q3 and Q4 to
the right (noting that all coefficients are independent of θ1 and θ2) so as to be able to use
the Euler equations for Iγ to project to the physical hypersurface. For this, we set x̄k → 1
and θ̄k → θk − γk inside all Qk coefficients giving

(W−−12 )ph = (∂1 + ∂2)Q0

∣∣∣
θ̄k→θk−γk+δk,1

(5.268)

+ ∂1∂2

(
x3Q3

∣∣∣
θ3→θ3+1, θ̄k→θk−γk+δk,3

+ x4Q4

∣∣∣
θ4→θ4+1, θ̄k→θk−γk+δk,4

)
.
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In all the replacements here, θ̄k stands for any index k = 1, . . . , 4. Evaluating this formula
explicitly using the coefficients in (5.264), we find

(W−−12 )ph = (∂1 + ∂2)(1− γ0 − θ1 − θ2)
(

2θ3(θ3 − γ3) + 2θ4(θ4 − γ4) (5.269)

+ (1 + 2θ3 − γ3 + θ1 − γ1 + θ2 − γ2)(1 + 2θ4 − γ4 + θ1 − γ1 + θ2 − γ2)
)

+ ∂1∂2

[
x3

(
(2 + 2θ3 − γ3 + 2θ4 − γ4)(2θ4 − γ4) + (1 + θ3)(1 + θ3 − γ3)− θ4(θ4 − γ4)

)
+ x4

(
(2 + 2θ3 − γ3 + 2θ4 − γ4)(2θ3 − γ3) + (1 + θ4)(1 + θ4 − γ4)− θ3(θ3 − γ3)

)]
where for the 4-point function γ0 = d from (5.163).

Alternatively, we can use the DWI (5.168) projected to the physical hypersurface,

0 =
(1

2
(γ0 − γt) +

4∑
k=1

θk

)
Iγ , γt =

4∑
k=1

γk, (5.270)

to eliminate the factors of θ1 + θ2 on the second line of (5.269). After further moving all
factors of ∂1 and ∂2 to the right, this gives the equivalent form

(W−−12 )ph = −(γ0 + θ1 + θ2)
(

(θ3 + θ4)(θ3 + θ4 − γ3 − γ4) (5.271)

+
1

4
(2− γ0 − γt + 2γ3)(2− γ0 − γt + 2γ4)

)
(∂1 + ∂2)

+
[
x3

(
(2 + 2θ3 − γ3 + 2θ4 − γ4)(2θ4 − γ4) + (1 + θ3)(1 + θ3 − γ3)− θ4(θ4 − γ4)

)
+ x4

(
(2 + 2θ3 − γ3 + 2θ4 − γ4)(2θ3 − γ3) + (1 + θ4)(1 + θ4 − γ4)− θ3(θ3 − γ3)

)]
∂1∂2

The action of W−−12 is

W−−12 Iγ = bW (γ)
∣∣∣
γ0→γ0−1, γ1→γ1−1

Iγ
∣∣∣
γ1→γ1−1, γ2→γ2−1

(5.272)

where, once again, the shift on the b-function derives from the fact that in projecting from
GKZ variables to the physical hypersurface we chose W−−12 to act on the unshifted integral
Iγ requiring us to shift the γ parameters present in (5.243). Explicitly, this is

bW (γ)
∣∣∣
γ0→γ0−1, γ1→γ1−1

=
1

16

(
γ2

3 + γ2
4 − (γ0 + γ1 + γ2 − 2)2

)2
− 1

4
γ2

3γ
2
4 . (5.273)

Acting on the holographic contact diagram, from (5.162) we again have

W−−12 i[d; ∆1,∆2,∆3,∆4] =
1

4(γ1 − 1)(γ2 − 1)
bW (γ)

∣∣∣
γ0→γ0−1, γ1→γ1−1

i[d; ∆1−1,∆2−1,∆3,∆4].

(5.274)

To our knowledge, this is the first time an operator that shifts the 4-point contact diagram
in this fashion has been identified. We emphasise that the 3-point operator (5.256), when
applied to 4-point contact diagrams, generates shifted contact diagrams but with derivative
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vertices and hence does not satisfy this requirement [36].

Examples: Contact diagrams for which the Bessel functions have half-integer indices
can be evaluated directly. This yields many simple examples for which the action of W−−12

can be checked. For instance, with (d,∆1,∆2,∆3,∆4) = (5, 3, 4, 3, 4), we find

i[5;3,4,3,4] =
1

p3
t

(
p2

1 + p2
3 + 2(p2

2 + p2
4) + 3(p1 + p3)(p2 + p4) + 2p1p3 + 6p2p4

)
(5.275)

where pt =
∑4

j=1 pj , while the shifted integral with (d,∆1,∆2,∆3,∆4) = (5, 2, 3, 3, 4) is

i[5;2,3,3,4] = −(pt + 2p4)

p1p3
t

. (5.276)

Evaluating the action of W−−12 in (5.271) using (5.193), we can verify (5.274), namely

W−−12 i[5;3,4,3,4] = −63

2
i[5;2,3,3,4]. (5.277)

Combinations of operators

To round up our discussion of shift operators for contact diagrams, we have identified
operators mapping

∂i : γ0 → γ0 + 1, γi → γi − 1 ∂̄i : γ0 → γ0 + 1, γi → γi + 1

Ci : γ0 → γ0 − 1, γi → γi + 1 C̄i : γ0 → γ0 − 1, γi → γi − 1

W
σiσj
ij : γi → γi + σi, γj → γj + σj , {σi, σj} ∈ ±1. (5.278)

Combining these allows us to construct yet further shifts, for example:

CiC̄i : γ0 → γ0 − 2, Ci∂̄i : γi → γi + 2, C̄i∂i : γi → γi − 2. (5.279)

Acting on the 3-point function specifically,

C1W
++
23 : γ0 → γ0 − 1, γi → γi + 1 ∀ i = 1, 2, 3 (5.280)

which is equivalent to shifting d→ d− 2 while preserving all operator dimensions ∆i.
Finally, one might wonder why all these operators produce a shift of two units: why, for

example, can one not construct an operator shifting γ0 → γ0 +1 only, or just γ1 → γ1 +1?
The absence of such operators can be traced to the spacing of the singular hyperplanes
of the contact diagram, specifically the term −2m appearing in the singularity condition
(5.179). As m ∈ Z+, this means that the singularities are effectively spaced by two units.
Any operator that produced a shift of a single unit would require a b-function containing
an infinite number of factors, since there are infinitely many finite integrals that are only
one unit away from a singular integral. (Namely, those for which m is half-integer.) As the
number of factors in the b-function corresponds to the order of the differential operator,
there is thus no single-shift operator of finite order. In contrast, for an operator shifting
by two units, the number of finite integrals that can be mapped to singular integrals is
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finite, and hence the b-functions and shift operators are also of finite order.

5.5.6 Exchange diagrams

Having analysed contact diagrams, we now turn to the s-channel exchange diagrams
(5.159). Rather than constructing an explicit GKZ representation, here we simply note
that shifts of the form

i[d; ∆1,∆2; ∆3,∆4; ∆x] → i[d; ∆1+σ1,∆2+σ2; ∆3,∆4; ∆x] (5.281)

for any {σ1, σ2} ∈ ±1 can be obtained by combining the 3- and 4-point W−−12 operators
given in (5.255) and (5.271) with the s-channel Casimir operator. As with contact dia-
grams, it is sufficient to focus on the case σ1 = σ2 = −1, since all remaining operators
follow by shadow conjugation according to (5.247). We emphasise however that both the
original and the shifted exchange diagrams we consider have purely non-derivative ver-
tices. Moreover, any operator and spacetime dimensions are permitted, provided we work
in dimensional regularisation where necessary to avoid divergences.

For purposes of disambiguation, let us define the operator

W−−12 = (d+ 2θ1 + 2θ2)(∂1 + ∂2)− 2s2∂1∂2 (5.282)

where d is the boundary spacetime dimension and ∂i = ∂/∂xi with xi = p2
i as usual. This

is simply the 3-point operator −2W−−12 in (5.256), but with p2
3 replaced by the Mandelstam

variable s2 = (p1 + p2)2 as appropriate for acting on s-channel exchange diagrams. (The
factor of −2 is included for consistency with theW−−12 defined in [30, 36].) In the following,
we will then use W−−12 to refer exclusively to the 4-point W−−12 operator given in (5.271).

As shown in [36], the action of W−−12 on an s-channel exchange diagram is to produce
a linear combination of a shifted exchange and a shifted contact diagram:

W−−12 i[d; ∆1,∆2;∆3,∆4; ∆x] = Nexch. i[d; ∆1−1,∆2−1;∆3,∆4; ∆x]

+Ncont. i[d; ∆1−1,∆2−1,∆3,∆4] (5.283)

where the coefficients13

Nexch. =
(d

2
− 2 + γ1 + γ2 + γx

)(d
2
− 2 + γ1 + γ2 − γx

)
Ncont. (5.284)

Ncont. = − 1

8(γ1 − 1)(γ2 − 1)
(5.285)

where γi = ∆i − d/2 and γx = ∆x − d/2. Thus, in order to go from an exchange diagram
to shifted exchange diagram only, the shifted contact contribution in (5.283) must be
subtracted.

This can be accomplished in two steps. First, the unshifted contact diagram is obtained
by acting on the original exchange diagram with the reduced Casimir operator,

Ĉ12 i[d; ∆1,∆2;∆3,∆4; ∆x] = i[d; ∆1,∆2,∆3,∆4], (5.286)

13 Where the shifted exchange diagram has a pole (or double pole) in dimensional regularisation, one
(or both) of the factors on the right-hand side of (5.284) vanish, see [36].
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where

Ĉ12 = 2s2
(

(θ1 + 1− γ1)∂1 + (θ2 + 1− γ2)∂2

)
−
(

2θ1 + 2θ2 − γ1 − γ2 +
d

2

)2
+ γ2

x

(5.287)

with θi = xi∂i. The action of this operator on an s-channel exchange is equivalent to that
of the Casimir operator plus the square of the exchanged mass [36].14 If desired, Ĉ12 can
be shorted using the identity

0 =
(

(θ1 + 1− γ1)∂1 − (θ2 + 1− γ2)∂2

)
i[d; ∆1,∆2,∆3,∆4 x∆x] (5.288)

which corresponds to the difference of the Bessel operators acting on legs 1 and 2, i.e.,
K1 −K2 where Ki = ∂2

pi + (1− 2γi)p
−1
i ∂pi . However, (5.287) is symmetric under 1↔ 2.

For the second step, we now construct the shifted contact diagram using the 4-point
W−−12 operator defined in (5.271). From (5.274), this has the action

W−−12 i[d; ∆1,∆2,∆3,∆4] = NW Ncont. i[d; ∆1−1,∆2−1,∆3,∆4] (5.289)

with Ncont. from (5.285) and

NW = −1

8

[ (
γ2

3 + γ2
4 − (d+ γ1 + γ2 − 2)2

)2 − 4γ2
3γ

2
4

]
. (5.290)

Putting everything together, we find the operator

Ω−−12 = NW W−−12 −W
−−
12 Ĉ12 (5.291)

whose action is

Ω−−12 i[d; ∆1,∆2; ∆3,∆4; ∆x] = NWNexch. i[d; ∆1−1,∆2−1; ∆3,∆4; ∆x]. (5.292)

This is therefore the desired operator mapping an exchange to a shifted exchange diagram.
Written out explicitly, with γt =

∑4
j=1 γj , we have

Ω−−12 = −1

8

[ (
γ2

3 + γ2
4 − (d+ γ1 + γ2 − 2)2

)2 − 4γ2
3γ

2
4

](
(d+ 2θ1 + 2θ2)(∂1 + ∂2)− 2s2∂1∂2

)
−
[
− (d+ θ1 + θ2)

(
(θ3 + θ4)(θ3 + θ4 − γ3 − γ4)

+
1

4
(2− d− γt + 2γ3)(2− d− γt + 2γ4)

)
(∂1 + ∂2)

+ x3

(
(2 + 2θ3 − γ3 + 2θ4 − γ4)(2θ4 − γ4) + (1 + θ3)(1 + θ3 − γ3)− θ4(θ4 − γ4)

)
∂1∂2

+ x4

(
(2 + 2θ3 − γ3 + 2θ4 − γ4)(2θ3 − γ3) + (1 + θ4)(1 + θ4 − γ4)− θ3(θ3 − γ3)

)
∂1∂2

]
×

×
[
2s2
(

(θ1 + 1− γ1)∂1 + (θ2 + 1− γ2)∂2

)
−
(

2θ1 + 2θ2 − γ1 − γ2 +
d

2

)2
+ γ2

x

]
.

(5.293)

14Specifically, Ĉ12 = C̃12 +m2
x with C̃12 as defined in (6.44) of [36] and m2

x = γ2
x − d2/4.
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Examples: All exchange diagrams involving fields of ∆ = 2, 3 in d = 3 were computed
recently in [36] and are available in the associated Mathematica package HandbooK.wl.
These results enable many tests of the operator Ω−−12 in (5.293) and its shadow conjugates

Ω+−
12 = x1+γ1

1 Ω−−12 x−γ1
1 , (5.294)

Ω−+
12 = x1+γ2

2 Ω−−12 , x
−γ2
2 , (5.295)

Ω++
12 = x1+γ1

1 x1+γ2
2 Ω−−12 x−γ1

1 x−γ2
2 . (5.296)

For this, we work in the dimensionally regulated theory with d→ d+ 2ε and ∆i → ∆i + ε
for all i = 1, 2, 3, 4, x. This scheme has the virtue of preserving the half-integer values of
all Bessel function indices γi = ∆i − d/2. The simplest such example is

i[3;22;22;2] = − 1

2s
D(+), (5.297)

i[3;33;22;2] =
1

2
(p3 + p4)Γ(2ε)p−2ε

T +
1

4s
(p2

1 + p2
2 − s2)D(+)

+
1

2
(p1 + p2)

[
log
( l34+

pT

)
+ 1
]

+
7

8
(p3 + p4) +O(ε) (5.298)

where

pT =

4∑
i=1

pi, lij± = pi + pj ± s, (5.299)

and

D(+) = Li2

( l12−
pT

)
+ Li2

( l34−
pT

)
+ log

( l12+

pT

)
log
( l34+

pT

)
− π2

6
. (5.300)

By direct differentiation, one then finds

Ω−−12 i[3;33;22;2] = (90 + 261ε+O(ε2))i[3;22;22;2] +O(ε) (5.301)

consistent with (5.292). Note NWNexch. on the right-hand side here is expanded to order
ε since i[3;22;22;2] has an ε−1 pole. We have performed similar checks for all other values
of the ∆i and ∆x, and for the shadow conjugated operators.

This ability to shift exchange diagrams directly to other exchange diagrams means that,
instead of computing all the diagrams individually, we can compute the easiest diagram
(namely, i[3;22;22;2]) to sufficiently high order in the regulator ε, and then obtain all others
by acting with Ωσ1σ2

12 and Ωσ3σ4
34 .

5.6 Creation operators for Feynman diagrams

In this section, we analyse various Feynman integrals presenting their GKZ representa-
tions, their singularities, and the associated creation operators. Many of the examples
we study have appeared in the recent works [123, 124, 128, 129]. Here, our focus will be
the construction of the creation operators and ways to automate this computation using
standard Gröbner basis and convex hulling algorithms.
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1

2

p

Figure 5.8: The single-mass bubble integral (5.305), with massless and massive propagators repre-
sented by dashed and undashed lines respectively.

In all cases, we start with an L-loop scalar integral in the momentum representation

I =
( L∏
j=1

∫
ddkj
(2π)d

) 1

P γ1
1 . . . P γNN

, (5.302)

where the propagators Pi for i = 1, . . . , N are raised to generalised powers γi. As shown
in appendix C.1 (see also [123, 65]), the corresponding GKZ integral is

Iγ =
( N∏
i=1

∫ ∞
0

dzi z
γi−1
i

)
D−γ0 , γ0 =

d

2
(5.303)

where the denominator D is formed from the Lee-Pomeransky denominator G = U + F ,
the sum of first and second Symanzik polynomials, by replacing the coefficient of every
term with an independent variable xk. The Feynman integral (5.302) now corresponds to

I = cγIγ , cγ =
(4π)−Lγ0Γ (γ0)

Γ ((L+ 1)γ0 − γt)
∏N
i=1 Γ(γi)

, γt =

N∑
i=1

γi (5.304)

with the xk restored to their physical (Lee-Pomeransky) values. Knowing the coefficient
cγ enables the action of a creation operator on the GKZ integral Iγ to be related to its
action on the Feynman integral I.

5.6.1 Bubble diagram

First, we consider the 1-loop bubble integral with propagators of mass m1 and m2. To
warm-up, we begin with the single-mass case (m1,m2) = (0,m) before turning to general
masses. The fully massless case m1 = m2 = 0 is trivial (evaluating to a simple power of
the momentum) and will be omitted.

1-mass bubble

The single-mass bubble diagram

I =

∫
ddk

(2π)d
1

k2γ1 ((p− k)2 +m2)γ2
, (5.305)
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corresponds via (5.304) to the GKZ integral [123, 124]

Iγ =

∫
R2

+

dz1dz2
zγ1−1

1 zγ2−1
2

(x1z1 + x2z2 + x3z1z2 + x4z2
2)γ0

(5.306)

evaluated on the physical hypersurface

(x1, x2, x3, x4) = (1, 1, p2 +m2,m2). (5.307)

In this simple case, the GKZ integral can of course be evaluated directly,

Iγ =
Γ(γ1)Γ (γ0 − γ1) Γ (γ1 + γ2 − γ0) Γ (2γ0 − γ1 − γ2)

Γ(γ0)2

×m2(γ0−γ1−γ2)
2F1

(
γ1, γ1 + γ2 − γ0; γ0;− p2

m2

)
, (5.308)

enabling the action of all creation operators to be verified. The A-matrix is

A =

 1 1 1 1
1 0 1 0
0 1 1 2

 , (5.309)

and from its kernel, we find a single toric equation

0 = (∂1∂4 − ∂2∂3)Iγ . (5.310)

The Euler equations can be read off from the rows of the A-matrix,

0 = (γ0 +θ1 +θ2 +θ3 +θ4)Iγ , 0 = (γ1 +θ1 +θ3)Iγ , 0 = (γ2 +θ2 +θ3 +2θ4)Iγ . (5.311)

The (rescaled) Newton polytope derived from the column vectors of the A-matrix is the
parellelogram shown in figure 5.9. From (5.109), the GKZ integral is then singular for

2γ0−γ1−γ2 = −k1, γ1+γ2−γ0 = −k2, γ0−γ1 = −k3, γ1 = −k4, ki ∈ Z+ (5.312)

consistent with the poles of the gamma functions in (5.308).
The annihilation operators ∂j send γ → γ ′ while the creation operators Cj send γ ′ → γ

where, for each j, these parameters are related by

j = 1 : γ′0 = γ0 + 1, γ′1 = γ1 + 1, γ′2 = γ2,

j = 2 : γ′0 = γ0 + 1, γ′1 = γ1, γ′2 = γ2 + 1,

j = 3 : γ′0 = γ0 + 1, γ′1 = γ1 + 1, γ′2 = γ2 + 1,

j = 4 : γ′0 = γ0 + 1, γ′1 = γ1, γ′2 = γ2 + 2. (5.313)

Knowing the location of the singular hyperplanes and the shifts generated by the creation
operators, the b-functions can be constructed according to (5.138),

b1 = γ1(2γ0 − γ1 − γ2),
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Figure 5.9: The rescaled Newton polytope associated to the 1-mass bubble integral (5.306).

b2 = (γ0 − γ1)(2γ0 − γ1 − γ2),

b3 = γ1(γ1 + γ2 − γ0),

b4 = (γ0 − γ1)(γ1 + γ2 − γ0). (5.314)

Their zeros serve to cancel the singularities that arise whenever the action of a creation
operator shifts us from a finite to a singular integral. For example, C4 shifts k2 → k2 + 1
and k3 → k3 + 1 which, according to (5.312), generates a singular integral when acting on
finite integrals with either k2 = −1 or k3 = −1. These singularities, however, are cancelled
by the zeros of b4.

Using the DWI and the Euler equations (5.311), we can now re-write

Cj∂jIγ = bj(γ)Iγ = Bj(θ)Iγ (5.315)

where

B1 = (θ1 + θ3)(θ1 + θ2) = (θ1 + θ2 + θ3)θ1 + θ2θ3,

B2 = (θ2 + θ4)(θ1 + θ2) = (θ1 + θ2 + θ4)θ2 + θ1θ4,

B3 = (θ1 + θ3)(θ3 + θ4) = (θ1 + θ3 + θ4)θ3 + θ1θ4,

B4 = (θ2 + θ4)(θ3 + θ4) = (θ4 + θ2 + θ3)θ4 + θ2θ3. (5.316)

By inspection, every term in Bj either contains an explicit factor of ∂j already through
θj , or else such a factor can be introduced using the toric equations. In B1 and B4, for
instance, we replace θ2θ3 = x2x3∂2∂3 → x2x3∂1∂4. This enables the Bj to be factored
(modulo the toric equations) in the form (5.315) yielding the creation operators

C1 = x1(1 + θ1 + θ2 + θ3) + x2x3∂4,

C2 = x2(1 + θ1 + θ2 + θ4) + x1x4∂3,

C3 = x3(1 + θ1 + θ3 + θ4) + x1x4∂2,

C4 = x4(1 + θ2 + θ3 + θ4) + x2x3∂1. (5.317)

These creation operators act on the full GKZ integral (5.306). To obtain their counterparts
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acting on the Feynman integral (5.305), we must project to the physical hypersurface
(5.307). Given the form of the operators (5.317), it is useful to first simplify using the
DWI to

C1 = x1(1− γ0 − θ4) + x2x3∂4,

C2 = x2(1− γ0 − θ3) + x1x4∂3,

C3 = x3(1− γ0 − θ2) + x1x4∂2,

C4 = x4(1− γ0 − θ1) + x2x3∂1. (5.318)

Next, as all factors of xj are placed to the left of all derivatives, we set

(x1, x2, x3, x4)→ (1, 1,m2 + p2,m2) (5.319)

and replace all derivatives lying in directions off this hypersurface (namely ∂1 and ∂2) with
those lying along the hypersurface. This can be accomplished using the Euler equations
(5.311) projected according to (5.319), namely

∂1 → −γ1 − (m2 + p2)∂3, ∂2 → −γ2 − (m2 + p2)∂3 − 2m2∂4. (5.320)

In addition, we use the chain rule with p2 = x3 − x4 and m2 = x4 to replace

∂3 = ∂p2 , ∂4 = −∂p2 + ∂m2 . (5.321)

This yields

Cph
1 = 1− γ0 + p2∂m2 − θp2 ,

Cph
2 = 1− γ0 − θp2 ,

Cph
3 = (1− γ0)m2 + (1− γ0 + γ2)p2 + (p2 −m2)θp2 + 2p2θm2

Cph
4 = (1− γ0)m2 + γ1p

2 − (p2 +m2)θp2 . (5.322)

From (5.132), the action on the projected GKZ integral is then

Cph
1 Iγ′0,γ′1,γ′2(p2,m2) = −γ−1

0 b1Iγ0,γ1,γ2 = −γ−1
0 γ1(2γ0 − γ1 − γ2)Iγ0,γ1,γ2 (5.323)

and similarly for the other operators. When acting the original Feynman integral, there
is an additional factor of cγ′/cγ from (5.304) we must take into account giving

Cph
1 Iγ′0,γ′1,γ′2(p2,m2) = − 1

4π
Iγ0,γ1,γ2 . (5.324)

All these results can be checked directly using (5.308) and the standard shift operators for
the 2F1 (see e.g., [160]).
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Figure 5.10: The massive bubble integral (5.326).

Massive bubble

Next we consider the full bubble graph with general masses m1 and m2,

I =

∫
ddk

(2π)d
1

(k2 +m2
1)γ1

(
(p− k)2 +m2

2

)γ2
. (5.325)

The corresponding GKZ integral is

Iγ =

∫
R2

+

dz1dz2
zγ1−1

1 zγ2−1
2

(x1z1 + x2z2 + x3z2
1 + x4z2

2 + x5z1z2)γ0
, (5.326)

where γ0 = d/2 and the physical hypersurface is

(x1, x2, x3, x4, x5) = (1, 1,m2
1,m

2
2,m

2
1 +m2

2 + p2). (5.327)

From the kernel of the A-matrix

A =

 1 1 1 1 1
1 0 2 0 1
0 1 0 2 1

 (5.328)

we obtain the toric equations

0 = (∂3∂4 − ∂2
5)Iγ , 0 = (∂2∂3 − ∂1∂5)Iγ , 0 = (∂1∂4 − ∂2∂5)Iγ , (5.329)

while the DWI and the Euler equations can be read off from the rows:

0 =
(
γ0 +

5∑
i=1

θi

)
Iγ , 0 = (γ1 +θ1 +2θ3 +θ5)Iγ , 0 = (γ2 +θ2 +2θ4 +θ5)Iγ . (5.330)

The rescaled Newton polytope corresponding to this A-matrix is the quadrilateral shown
in figure 5.11. The singular hyperplanes lie parallel to and outside the facets of this
polytope:

γ1 = −k1, γ2 = −k2, 2γ0−γ1−γ2 = −k3, −γ0+γ1+γ2 = −k4, ki ∈ Z+. (5.331)

For illustration, let us now discuss the creation operator C5. All others can be obtained
by similar computations. The annihilator ∂5 sends γ → γ ′ where

∂5 : γ′0 = γ0 + 1, γ′1 = γ1 + 1, γ′2 = γ2 + 1, (5.332)
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Figure 5.11: The rescaled Newton polytope associated with the massive bubble GKZ integral
(5.326).

while the creation operator C5 acts in the opposite direction sending γ ′ → γ. Given this
shift and the location of the singular hyperplanes, we identify the b-function as

b5 = γ1γ2(γ0 − γ1 − γ2). (5.333)

Using DWI and Euler equations, this can be re-written in terms of Euler operators as

B5 = (θ1 + 2θ3 + θ5)(θ2 + 2θ4 + θ5)(θ3 + θ4 + θ5). (5.334)

This expression can now be factorised as C5∂5 by expanding out and using the toric
equations to replace any terms not involving ∂5 with equivalent terms containing this
factor. Stripping off the factor of ∂5 then yields C5 in GKZ variables,

C5 = x5

[
2θ2

3 + 2θ2
4 + 8θ3θ4 + 3(θ3 + θ4)(1 + θ5) + (1 + θ5)2 + θ2(1 + 3θ3 + θ4 + θ5)

+ θ1(1 + θ2 + θ3 + 3θ4 + θ5)
]

+ x2x3∂1(1 + θ1 + 2θ3) + x1x4∂2(1 + θ2 + 2θ4)

+ 2x3x4∂5(4 + θ1 + θ2 + 2θ3 + 2θ4). (5.335)

To project this operator to the physical hypersurface (5.327), we first use the Euler equa-
tions to replace

θ1 → −γ1 − 2θ3 − θ5, θ2 → −γ2 − 2θ4 − θ5. (5.336)

The two occurrences of ∂1 and ∂2 can be dealt with similarly by writing ∂i = (xi)
−1θi for

i = 1, 2 and using (5.336). Then, setting (x1, x2, x3, x4, x5)→ (1, 1, x3, x4, x5), we obtain

Cph
5 =x5

[
(1− γ1)(1− γ2) + (1− γ1 − γ2 − θ5)(θ3 + θ4)

]
+ x3(γ1 + 2θ3 + θ5)(γ1 − 1 + θ5) + x4(γ2 + 2θ4 + θ5)(γ2 − 1 + θ5)

− 2x3x4∂5(γ1 + γ2 − 4 + 2θ5) (5.337)

The remaining variables here are all physical since

(x3, x4, x5) = (m2
1,m

2
2,m

2
1 +m2

2 + p2) (5.338)
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Figure 5.12: The massive triangle graph (5.340).

and

∂3 = ∂m2
1
− ∂p2 , ∂4 = ∂m2

2
− ∂p2 , ∂5 = ∂p2 . (5.339)

5.6.2 Massive triangle

Since the massless triangle integral is equivalent [42] to the 3-point contact Witten diagram
studied in sections 5.5.3 and 5.5.5, let us examine here the massive triangle integral

I =

∫
ddk

(2π)d
1

(k2 +m2
3)γ3

(
(k − p1)2 +m2

2

)γ2
(
(k + p2)2 +m2

1

)γ1
. (5.340)

The corresponding GKZ integral according to (5.304) is

Iγ =

∫
R3

+

dz1dz2dz3 z
γ1−1
1 zγ2−1

2 zγ3−1
3 D−γ0 , (5.341)

where

D =x1z1 + x2z2 + x3z3 + x4z2z3 + x5z1z3 + x6z1z2 + x7z
2
1 + x8z

2
2 + x9z

2
3 (5.342)

with γ0 = d/2. The physical hypersurface is

x = (1, 1, 1, p2
1 +m2

2 +m2
3, p

2
2 +m2

1 +m2
3, p

2
3 +m2

1 +m2
2,m

2
1,m

2
2,m

2
3) (5.343)

and the A-matrix reads

A =


1 1 1 1 1 1 1 1 1
1 0 0 0 1 1 2 0 0
0 1 0 1 0 1 0 2 0
0 0 1 1 1 0 0 0 2

 . (5.344)

For larger A-matrices such as this one, it is useful to automate the calculation of creation
operators using Gröbner basis algorithms. To this end, in place of the five independent
toric equations spanning the kernel of the A-matrix, we will use instead the full set of 17
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Figure 5.13: The Newton polytope associated to the denominator of the massive triangle integral
(5.342). The label {i} denotes the vector defined by the ith column of the A-matrix.

(non-independent) toric equations forming the toric ideal:15

Itoric = {∂2∂6 − ∂1∂8, ∂7∂8 − ∂2
6 , ∂1∂6 − ∂2∂7, ∂1∂5 − ∂3∂7, ∂

2
3∂9 − ∂7, ∂1∂4 − ∂3∂6,

∂2
4∂9 − ∂8, ∂5∂6 − ∂4∂7, ∂4∂6 − ∂5∂8, ∂4∂5∂9 − ∂6, ∂

2
3∂8∂9 − ∂2

2 , ∂
2
3∂7∂9 − ∂2

1 ,

∂2
3∂6∂9 − ∂1∂2, ∂3∂5∂9 − ∂1, ∂3∂4∂9 − ∂2, ∂2∂5 − ∂3∂6, ∂2∂4 − ∂3∂8}. (5.345)

Each entry here corresponds to a toric equation, for example the first is 0 = (∂2∂6−∂1∂8)Iγ
and similarly for the rest. Since all the partial derivatives commute, these equations can
be treated as a system of polynomial equations by mapping ∂i to an ordinary commutative
variable yi. As we will show below, this enables the factorisation step to be handled via
ordinary commutative Gröbner basis methods. (For alternative constructions of creation
operators using non-commutative Gröbner bases over the Weyl algebra, see [148].)

The DWI and Euler equations for this A-matrix are

0 =
(
γ0 +

9∑
i=1

θi

)
Iγ ,

0 = (γ1 + θ1 + θ5 + θ6 + 2θ7)Iγ ,
0 = (γ2 + θ2 + θ4 + θ6 + 2θ8)Iγ ,
0 = (γ3 + θ3 + θ4 + θ5 + 2θ9)Iγ (5.346)

and the corresponding Newton polytope is depicted in figure 5.13. From its facets, we

15 These can be obtained using the Singular code [151]:

LIB "toric.lib";

ring r=0,(x1,x2,x3,x4,x5,x6,x7,x8,x9),dp;

intmat A[4][9]=1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,2,0,0,0,1,0,1,0,1,0,2,0,0,0,1,1,1,0,0,0,2;

ideal I=toric ideal(A,"du");

I;
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obtain the singularity conditions

{23489} : γ1 = −k1, {1379} : γ2 = −k2,
{1278} : γ3 = −k3, {123} : γ0 − γ1 − γ2 − γ3 = +k4,
{4789} : γ1 + γ2 + γ3 − 2γ0 = +k5,

(5.347)

where all ki ∈ Z+. For the facet {123}, for example, we have the outward-pointing normal
n = (−1,−1,−1) which leads via (5.108) to the spacing of singular hyperplanes δ(J) = 1.

Let us now compute the creation operator C4 which acts on the GKZ integral to shift
γ ′ → γ, where

γ′0 = γ0 + 1, γ′1 = γ1, γ′2 = γ2 + 1, γ′3 = γ3 + 1. (5.348)

From these parameter shifts and the location of the singular hyperplanes, the correspond-
ing b-function is

b4 = γ2γ3(γ0 − γ1 − γ2 − γ3). (5.349)

Using the DWI and Euler equations, this can be re-expressed as

B4 =
( 9∑
i=4

θi

)
(θ2 + θ4 + θ6 + 2θ8)(θ3 + θ4 + θ5 + 2θ9). (5.350)

Our goal is now to factorise B4 as C4∂4 using the toric equations. To achieve this in an
automated fashion, we decompose B4 over the Gröbner basis formed from the toric ideal
(5.345) and ∂4. Treating the partial derivatives as ordinary commutative variables and
computing this Gröbner basis, we obtain

g = {∂4, ∂2, ∂8, ∂
2
3∂7∂9 − ∂2

1 , ∂6, ∂1∂5 − ∂3∂7, ∂3∂5∂9 − ∂1, ∂
2
5∂9 − ∂7}. (5.351)

Expanding out B4 and rewriting all terms in the form (5.131) so that all partial derivatives
∂i lie to the right of all xi, we can now decompose each term of B4 in this Gröbner basis.
This yields

B4 = Q · g = Q1∂4 +
8∑
i=2

Qigi. (5.352)

where the coefficients Qi are polynomials in the xj and θj (with j = 1, .., 9) which can be
computed automatically.16 To extract the required overall factor of ∂4, we now re-express
those gi (i = 2, .., 18) that are not already complete toric equations (and hence zero) in
terms of ∂4. For example, using the third from last toric equation in (5.345), we can

16 In Mathematica, for example, after writing B4 in the form (5.131) with all derivatives to the right,
we replace all ∂i (both in B4 and in the toric ideal) by commutative variables y[i]. The code

v = {y[5], y[6], y[7], y[8], y[9], y[1], y[2], y[3], y[4]};

toric = {y[2] y[6] - y[1] y[8], y[6]2 - y[7] y[8], y[1] y[6] - y[2] y[7], ...};

g = GroebnerBasis[Append[toric, y[4]], v]

Q = PolynomialReduce[B4, g, v][[1]]

then evaluates theQi coefficients with all derivatives y[i] placed to the right. These can then be re-expressed
in terms of Euler operators by rewriting yni = x−ni θi(θi − 1) . . . (θi − n+ 1) leading to (5.356).
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replace
g2 = ∂2 → ∂3∂4∂9. (5.353)

In this fashion, we can replace the basis g with the equivalent basis (modulo the toric
equations)

g̃ = {∂4, ∂3∂4∂9, ∂
2
4∂9, 0, ∂4∂5∂9, 0, 0}. (5.354)

All surviving terms then have an explicit factor of ∂4 which can be removed to obtain the
creation operator

C4 = Q1 +Q2∂3∂9 +Q3∂4∂9 +Q5∂5∂9, (5.355)

where the coefficients are

Q1 = x4

[
(1 + θ4)(θ5 + θ7 + θ9) + θ5(θ6 + θ7 + 3θ8 + θ9) + θ6(θ7 + θ8 + 3θ9)

+ (θ8 + θ9)(1 + 2θ7 + θ8 + θ9) + 4θ8θ9 + (1 + θ4 + θ5 + θ6 + θ8 + θ9)2

+ θ3(1 + θ4 + θ5 + 2θ6 + θ7 + 3θ8 + θ9)

+ θ2(1 + θ3 + θ4 + 2θ5 + θ6 + θ7 + θ8 + 3θ9)
]
,

Q2 = x2(θ3 + θ5 + 2θ9)(θ5 + θ6 + θ7 + θ8 + θ9),

Q3 = x8(θ3 + θ5 + 2θ9)
(
2θ5 + 3θ6 + 2(1 + θ7 + θ8 + θ9)

)
,

Q5 = x6(θ3 + θ5 + 2θ9)(1 + θ5 + θ6 + θ7 + θ9). (5.356)

Finally, to project to the physical hypersurface, we use the Euler equations to eliminate
the unphysical variables θ1, θ2, θ3 and set x1 = x2 = x3 = 1. This yields the physical
creation operator

Cph
4 =x4

[
(1− γ2)(1− γ3) + (θ5 + θ6 + θ7 + θ8 + θ9)(1− γ2 − γ3 − θ4)

]
+ (γ3 + θ4)

[
∂9(θ5 + θ6 + θ7 + θ8 + θ9)(γ3 + γ4 + γ5 + 2θ9)

− x6∂5(1 + θ5 + θ6 + θ7 + 3θ8 + θ9)− 2x8∂4∂9(1 + θ5 + θ7 + θ8 + θ9)
]

(5.357)

where the xi are as given in (5.343) and

∂4 = ∂p2
1
, ∂5 = ∂p2

2
, ∂6 = ∂p2

3
,

∂7 = ∂m2
1
− ∂p2

2
− ∂p2

3
, ∂8 = ∂m2

2
− ∂p2

1
− ∂p2

3
, ∂9 = ∂m2

3
− ∂p2

1
− ∂p2

2
. (5.358)

The automated approach outlined here can be applied similarly to other examples.

5.6.3 Massless on-shell box

Next we consider the massless box integral

I =

∫
ddq

(2π)d
1

|q|2γ1 |q + P 1|2γ2 |q + P 2|2γ3 |q + P 3|2γ4
, (5.359)

where

P k =

k∑
j=1

pj , for k = 1, 2, 3,

4∑
i=1

pi = 0. (5.360)
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Figure 5.14: The on-shell massless box integral (5.359).

For simplicity, we will restrict to the on-shell case17 where all p2
i = 0 for i = 1, .., 4.

According to (5.304), the corresponding GKZ integral is

Iγ =

4∏
i=1

(∫ ∞
0

dzi z
γi−1
i

)
(x1z1 + x2z2 + x3z3 + x4z4 + x5z1z3 + x6z2z4)−γ0 , (5.361)

where the physical hypersurface

x = (1, 1, 1, 1, s2, t2) (5.362)

with s2 = (p1 + p2)2 and t2 = (p2 + p3)2 the Mandelstam invariants. The integral can be
evaluated as a linear combination of the hypergeometric function 3F2 [161].

The A-matrix

A =


1 1 1 1 1 1
1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 1 0 1

 (5.363)

yields a single toric equation

0 = (∂1∂3∂6 − ∂2∂4∂5)Iγ , (5.364)

along with the DWI and Euler equations

0 =
(
γ0 +

6∑
i=1

θi

)
Iγ , 0 = (γ1 + θ1 + θ5)Iγ , 0 = (γ2 + θ2 + θ6)Iγ ,

0 = (γ3 + θ3 + θ5)Iγ , 0 = (γ4 + θ4 + θ6)Iγ . (5.365)

To determine the singularities of the integral, we need to find the equations of the facets of
the rescaled Newton polytope corresponding to the GKZ denominator in (5.361). As this
polytope lives in four dimensions, it is convenient to use an automated hulling algorithm.

17 Creation operators for the off-shell box are also computable but the results are rather long.
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Using the Mathematica package [156], for example, we can enter the vertices aj of the
non-rescaled Newton polytope (where aj is the jth column of the A-matrix without the
top row) as row vectors:

verts = {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1},{1,0,1,0},{0,1,0,1}};

The command CHNQuickHull[verts] then returns a list of the vertex vectors that make
up the convex hull (labelled according to the numbering specified in the input), followed
by a list of the facets. The latter are specified by the vertex vectors they contain. Thus,
in this example, we obtain

{{1,2,3,4,5,6}, {{1,2,3,5}, {1,2,4,3}, {1,2,5,6}, {1,2,6,4},

{1,3,4,5}, {1,4,6,5}, {2,3,5,6}, {2,3,6,4}, {3,4,5,6}}}

where the first set indicates that all six vertices belong to the convex hull, while the
remainder ({1, 2, 3, 5}, {1, 2, 4, 3}, etc.) list the facets. Here, each {ijkl} is a co-dimension
one facet containing the points (ai,aj ,ak,al).

The equations for the facets of the rescaled Newton polytope with vertices γ0ai can
now be computed through a determinant such as (5.113). For the facet {1, 2, 3, 4}, for
example, we have

0 = γ ·N = det (γ |A1 |A2 |A3 |A4 ) = γ0 − γ1 − γ2 − γ3 − γ4 (5.366)

and hence N = (n0,n) = (1,−1,−1,−1,−1). The fact that n is outwards-pointing can

be verified by showing d
(J)
i = −Ai ·N > 0 for any vertex i = 5, 6 not lying in the facet.

The spacing of the set of singular hyperplanes parallel to this facet is then δ(J) = 1 using
(5.108) and (5.99), with the singular hyperplanes themselves then following from (5.109).
Automating this procedure and applying it to the other facets, the singularities for the
GKZ integral (5.361) are

γi = −ki, i = 1, 2, 3, 4, γ1 + γ2 + γ3 + γ4 − γ0 = −k5,

γ1 + γ2 − γ0 = +k6, γ2 + γ3 − γ0 = +k7, (5.367)

γ3 + γ4 − γ0 = +k8, γ4 + γ1 − γ0 = +k9,

where all ki ∈ Z+.
We are now in a position to compute the creation operators. Let us choose C1, which

acts on the GKZ integral to shift γ ′ → γ where

γ′0 = γ0 + 1, γ′1 = γ1 + 1. (5.368)

From the singularities (5.367), the corresponding b-function is

b1 = −γ1(γ2 + γ3 − γ0)(γ3 + γ4 − γ0), (5.369)

which in terms of the Euler operators reads

B1 = (θ1 + θ2)(θ1 + θ4)(θ1 + θ5)

=
[
(θ1 + θ2)(θ1 + θ4) + (θ1 + θ2 + θ4)θ5

]
θ1 + θ2θ4θ5 (5.370)
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Applying the toric equation (5.364) to the final term now enables us to factorise B1 as
C1∂1 giving the creation operator

C1 = x1 [(1 + θ1 + θ2)(1 + θ1 + θ4) + (1 + θ1 + θ2 + θ4)θ5] + x2x4x5∂3∂6, (5.371)

where we shifted the factor of x1 to the left sending each θ1 → θ1+1. Finally, to obtain the
creation operator acting on the physical variables, we use the Euler equations (5.365) to
replace θi for i = 1, 2, 3, 4 with θ5 and θ6 and project to (5.362). This yields the operator

Cph
1 = (1− γ1 − γ2 − θt2)(1− γ1 − γ4 − θt2) + (γ1 − 1)θs2 − s2(γ3 + θs2)∂t2 . (5.372)

Using the automated determination of the convex hull in this example, and the factorisa-
tion of the b-function via Gröbner basis methods in the previous example, the calculation
of any creation operator can be fully automated.

5.7 Discussion

As we have seen, the GKZ formalism enables the construction of non-trivial shift operators
known as creation operators. The calculation is highly systematic. First, a Feynman or
Witten diagram is represented as a GKZ or A-hypergeometric function. Second, the b-
function is identified by examining the parameter shifts produced by the creation operator
in conjunction with the location of all singular hyperplanes of the integral. Physically, as
the b-function is the function of parameters that multiplies the shifted integral, its zeros
serve to cancel the singularities that would otherwise occur when the creation operator
maps a finite to a singular integral. Such singularities cannot arise under the action of
a finite differential operator on a finite integral. Next, using the Euler equations and
DWI, the b-function is expressed as a function of Euler operators and factorised into a
product of a creation and an annihilation operator with the aid of the toric equations.
The creation operator thus extracted is then re-expressed in terms of physical variables
(i.e., the momenta and masses) using once again the Euler equations and DWI.

This algorithm has a number of interesting features. First, the parametric singularities
of the integral all lie on hyperplanes parallel to the facets of the Newton polytope associ-
ated with the integral’s denominator. We derived a precise formula for the spacing of these
hyperplanes in (5.109). The b-function therefore has a geometrical character, as originally
shown by Saito in [146]. Second, the algorithm makes heavy use of the higher-dimensional
GKZ space obtained by promoting the coefficient of every term in the Lee-Pomeransky
denominator to an independent variable. This systematises the set of PDEs obeyed by
the integral into two distinct classes: the Euler equations and DWI, and the toric equa-
tions. Using the former, we can uplift to GKZ space by exchanging all dependence on the
parameters γ for dependence on the additional unphysical coordinates. Conversely, we
can project back to physical variables by using the Euler equations and DWI to exchange
derivatives with respect to the unphysical variables for derivatives with respect to the
physical variables and dependence on the parameters γ.

This last step is however a potential weakness of the algorithm. To project a creation
operator from GKZ space back to the physical hypersurface, the total number of Euler
equations (including the DWI) must be equal to, or greater than, the number of unphys-
ical coordinates. This enables every derivative in unphysical variables to be replaced by
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an equivalent expression in purely physical variables. For higher-loop Feynman integrals,
however, the number of terms in the Lee-Pomeransky denominator, and hence the dimen-
sion of the full GKZ space, typically grows more rapidly than the number of propagators
and hence Euler equations. Thus, while a full set of creation operators can be constructed
in GKZ space, in general we lack sufficient Euler equations to project back to the physical
hypersurface. For this reason, we have focused here on 1-loop Feynman integrals.

One possible workaround for this issue is to construct an alternative projectible GKZ
system based on some representation other than the Lee-Pomeransky. For example, for
higher-loop massive sunset (aka melon or banana) diagrams, one can construct a GKZ
representation based on their position-space formulation as a product of Bessel functions
[127, 131]. In this manner, these diagrams can be related to (analytic continuations of)
the momentum-space contact Witten diagrams for which we have already constructed
creation operators. For more general classes of diagrams, projectible GKZ representations
can also be obtained from Mellin-Barnes representations as shown in [128, 162, 131]. A
further possibility might be to develop a GKZ representation starting from the Baikov
representation.

Nevertheless, using the simplest formulation based on the Lee-Pomeransky represen-
tation, we have already identified a number of useful new shift operators. In particular,
for computations in AdS/CFT, we have found:

• The creation operators (5.206) and (5.224), along with their permutations and
shadow conjugates, connecting 3- and 4-point momentum-space contact Witten di-
agrams of different operator and spacetime dimensions. These new operators are
the inverse of the simple annihilators first identified in [42, 85]. The corresponding
operators can also be obtained in position space as detailed in Appendix C.2.

• The creation operators (5.255) and (5.271), plus their permutations and shadow
conjugates, relating 3- and 4-point momentum-space contact Witten diagrams of
different operator dimensions but the same spacetime dimension. While the 3-point
operator (5.255) is known [83, 30], the 4-point operator (5.271) is new.

• Using (5.271), we obtained a further new operator (5.293) connecting exchange Wit-
ten diagrams of different external operator dimensions but the same spacetime di-
mension. Unlike any previous construction, this operator connects exchange dia-
grams with purely non-derivative vertices. Working in dimensional regularisation
where necessary to avoid divergences [36], it also applies for arbitrary operators
dimensions.

There is ample scope for building on this first application of creation operators to Witten
diagrams. In particular, our results for exchange Witten diagrams were obtained from our
analysis of contact diagrams. It may be preferable to develop a GKZ representation for the
exchange diagram directly, both in momentum and in position space, potentially enabling
a more compact set of shift operators to be found, as well as operators acting to shift the
dimension of the exchanged leg. Operators achieving this latter goal are at present known
only for a very restricted set of external operator dimensions [30, 36]. The application of
the creation operator formalism to cosmological correlators in de Sitter spacetime is also
worthy of exploration. We hope to address some of these matters in future.
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Chapter 6

Conclusions

In this thesis we presented studies of conformal field theory in momentum space, focus-
ing on integral representations and shift operators. The mathematical and physical tools
that we used were quite diverse, spanning from electrical circuits to multivariable hyper-
geometric systems. We believe this work shows the importance of studying an object
from different perspectives. On one side, the recent formulation of conformal symmetry
in momentum space enlarges the domain of possible physical applications of conformal
symmetry – borrowing Whitman’s words, we could say that conformal symmetry is large,
it contains multitudes. And we have shown that different representations of the same
function reveal different properties.

In Chapter 4 we took as input the general n-point solution of conformal Ward identities
in the form of the simplex integral (4.1) and derived the new scalar parametrisations,
(4.17), (4.48), for this integral which allowed us to find the new shift operators Sij and
S for the n-point functions. To this aim, we first parametrised the integral in terms of
the inverse Schwinger parameters vij and obtained the associated Kirchhoff polynomials,
expressible in terms of the Gram determinant or the Laplacian matrix. We then interpreted
the parameters vij as conductances of the corresponding simplicial electrical network and
computed the effective resistances sij between the nodes of the simplex. This led to a
new reparametrisation of the simplex integral in terms of the Cayley-Menger matrix. This
parametrisation features an exponential diagonal in the sij , and a product of powers of the
determinant |m| and first minors |m(i,j)| of the Cayley-Menger matrix. The structure of
this integral then naturally reveals the shift operators. Multiplying the integrand by either
the determinant or a first minor of the Cayley-Menger matrix corresponds to shifting their
powers. The diagonal exponential allowed us to translate the polynomials in sij , defining
|m| and |m(i,j)|, into differential operators with respect to pi · pj . Besides finding new
shift operators, we discussed other advantages of these parametrisations of the simplex.
We noted that the number of integrals to be computed reduces from (n− 1)(n− 2)d/2 to
n(n−1)/2, and the correspondence to the position-space solution simplifies evaluating the
action of certain differential operators on the momentum-space integral. In particular, we
showed that the special conformal Ward identity corresponds to a total derivative acting
on the integrand, and we computed the action of the known weight-shifting operators
W±±ij .

Still, much remains to be explored about the n-point function. We have seen how the
simplex perspective makes the recursive structure evident, and how these new parametrisa-

155



Chapter 6. Conclusions

tions make the shift operators naturally arise. Perhaps by looking for other representations
of the simplex, new properties would become manifest. For instance, we might ask whether
a representation invariant under a shadow transform exists. Moreover, notice that we have
only analysed scalar correlators. Having available a full set of shift operators which gen-
eralise the 3-point Li operators, together with the other known spin- and weight-shifting
operators [83, 29, 30], we now have the tools to build tensorial correlators that are also of
interest in cosmology.

The study of integral representations led us to deepen our knowledge of the multivari-
able hypergeometric functions in the form of GKZ systems. In Chapter 5 we discussed
their features, giving a physical interpretation. We presented the formulation of GKZ
integrals and showed how their properties are encoded in the A-matrix. We discussed the
spectral singularities and their geometrical interpretation via the Newton polytope asso-
ciated with the A-matrix. We then used this formulation to derive the creation operators
of holographic contact Witten diagrams and some generalised Feynman integrals. The
construction of these operators is very systematic and uses the b-function as input. The
b-function is a polynomial in the parameters and the whole algorithm is based on the fact
that it can be factorised in terms of annihilation and creation operators as B(θ) ∼ C∂.
We gave a physical interpretation of the form of the b-function. We derived it by re-
quiring that the associated creation operator cannot send a finite integral to a divergent
one. Moreover, we used an analogous algorithm to find operators that act on contact and
exchange Witten diagrams to shift only the scaling dimensions and preserve the form of
the functions. As discussed, this class of operators is new and applies to any values of the
parameters. Our construction of creation operators for Witten diagrams is moreover valid
at n points.

The GKZ formalism entered the physics literature only recently. While various studies
focused on the series solutions of Feynman integrals, to our knowledge our work is the first
application of creation operators to physics, therefore this is only the beginning. There
are many paths to explore. Can we find a more optimal way for constructing the GKZ
representations of multi-loop Feynman integrals? Can we find a GKZ representation of
exchange Witten diagrams? Coming back to the simplex representation, in Chapter 4,
we derived its Lee-Pomeransky representation from which a GKZ representation can be
obtained. This would give us the spectral singularities of the conformal n-point functions.
Moreover, conformal blocks in position space were found to have a description in terms
of multivariable hypergeometric systems based on root systems [163, 164]. An interesting
question is whether we can construct a momentum-space description of conformal blocks,
and also whether a connection between GKZ and root systems exists. A more imme-
diate consequence of knowing various families of shift operators is their application to
cosmological correlators.

With these various open directions we conclude this thesis but certainly not the re-
search ahead.
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Appendix A

The master integral I1{000}

In this appendix we evaluate the master integral I1{000}. The strategy we follow is to
start with the Feynman parametrisation of the 1-loop triangle diagram (3.75), and solve
the resulting integral by making suitable changes of variables and using partial fractions
method. We will show that the z-variables defined in (3.57) arise naturally.

For the master integral d = 4 and ∆j (j = 1, 2, 3) and using (3.87), ajk = −1. Setting
the parameters at these values and Feynman parametrising the triangle representation we
have

I1{000} =
1

4

∫
[0,1]3

dX
1

p2
1x2x3 + p2

2x1x3 + p2
3x1x2

, (A.1)

where dX = dx1dx2dx3δ(x1 + x2 + x3− 1). Setting u = p2
1/p

2
3 and v = p2

2/p
2
3, the integral

reads:

4p2
3I1{000} =

∫ 1

0
dx3

∫ 1−x3

0
dx2

1

x1x2 + x2x3u+ x1x3v
, (A.2)

where x1 = 1− x2 − x3. Re-parametrising

y1 =
x1

x3
, y2 =

x2

x3
⇒ x2 =

y2

1 + y1 + y2
, x3 =

1

1 + y1 + y2
(A.3)

and computing the Jacobian |∂x/∂y| = (1 + y1 + y2)−3, we get

4p2
3I1{000} =

∫ ∞
0

dy1

∫ ∞
0

dy2
1

(1 + y1 + y2)(y1y2 + y1v + y2u)
. (A.4)

We then perform a first partial fraction

1

(1 + y1 + y2)(y1y2 + y1v + y2u)
=

1

y2
1 + (1 + u− v)y1 + u

×
(

u+ y1

(u+ y1)y2 + vy1
− 1

1 + y1 + y2

)
, (A.5)

and, integrating over y2, we find

4p2
3I1{000} =

∫ ∞
0

dy1
1

y2
1 + (1 + u− v)y1 + u

log

(
(1 + y1)(u+ y1)

vy1

)
. (A.6)
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The denominator is quadratic in y1, hence we can factorise it. This, indeed, leads to
defining the z-variables as in (3.57) and the integral reads

4p2
3I1{000} =

∫ ∞
0

dy1
1

(y1 + z)(y1 + z̄)
log

(
(1 + y1)(y1 + zz̄)

y1(1− z)(1− z̄)

)
. (A.7)

Then, we perform a second partial fraction

1

(y1 + z)(y1 + z̄)
=

1

z̄ − z

(
1

y1 + z̄
− 1

y1 + z

)
, (A.8)

and, after some manipulations, the integral becomes

4p2
3(z − z̄)I1{000} =

∫ ∞
0

dy1

(
1

y1 + z
− 1

y1 + z̄

)
log

(
(1 + y1)2

(1− z)(1− z̄)

)
. (A.9)

We now can evaluate it in terms of the dilogarithm giving the expression in equation 3.56,
with z1,2 ∈ C−]−∞, 0] ∪ [1,+∞[. To see this, note that there will be terms of the form∫ ∞

0
dy

log(1 + y)

y + z
, (A.10)

which can be computed by applying the Cauchy integral formula taking into account that
the discontinuity of Li2(z) across the branch cut [1,∞] is equal to 2πi log |z|. Setting
t = 1 + y:∫ ∞

1
dt

log t

t− 1 + z
=

1

2πi

∫ ∞
1

dt
disc(Li2(t))

t− 1 + z
=

1

2πi

∮
C

dt
Li2(t)

t− 1 + z
= Li2(1− z), (A.11)

where C is the “pac-man” closed contour. Then, using dilogarithm’s properties one can
express Li2(1− z) in terms of Li2(z) and find the explicit result anticipated in (3.56):

I1{000} =
−1

2p2
3(z − z̄)

[
Li2(z̄)− Li2(z)− 1

2
ln(zz̄) ln

(
1− z
1− z̄

)]
. (A.12)
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Appendix to chapter 4

B.1 Derivation of graph polynomials

In this appendix, we show that Schwinger representation of the simplex integral (4.1) is
given by (4.17) with graph polynomials given in (4.10). Our discussion builds on that in
[165]. Labelling the vertices of the simplex by i = 1, . . . , n, and the (directed) legs by
a = 1, . . . , N where N = n(n− 1)/2, we introduce the incidence matrix

εai =


+1 if leg a is ingoing to vertex i

−1 if leg a is outgoing to vertex i

0 otherwise

(B.1)

where for clarity we will write the vertex index downstairs and the leg index upstairs.
Thus, for example, if we choose a = {(12), (13), (14), (23), (24), (34)} as the legs of the
4-point function, where the leg (i, j) runs from vertex i to vertex j, the incidence matrix
is

ε =


−1 −1 −1 0 0 0
1 0 0 −1 −1 0
0 1 0 1 0 −1
0 0 1 0 1 1

 . (B.2)

Momentum conservation at vertex k of the simplex can now be re-expressed as

0 = pk +
n∑
l 6=k

qlk = pk +
N∑
a

εak qa (B.3)

where qa is the internal momentum flowing along the directed leg a. As always, all sums
are assumed to begin at one unless otherwise specified. The Laplacian matrix g̃ij defined
in (4.23) can now be written

g̃ij =
N∑
a

vaε
a
i ε
a
j , (B.4)

which follows by noting that for i 6= j only the leg for which a runs between vertices i
and j contributes giving −vij , while for i = j all legs running into this vertex contribute
giving

∑
k 6=i vik as required.
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Turning to the simplex integral (4.1), we first rewrite the delta functions of momentum
conservation in Fourier form

n∏
k

(2π)dδ
(
pk +

n∑
l 6=k

qlk

)
=

n∏
k

∫
ddyk exp

(
− iyk ·

(
pk +

N∑
a

εak qa
))
. (B.5)

Next, exponentiating all propagators of internal momenta (labelled by their leg indices)
using the Schwinger representation (4.4), we find1

〈O1(p1) . . .On(pn)〉 =
( N∏

a

1

Γ(αa + d/2)

∫ ∞
0

dva v
−d/2−αa−1
a

)
f(v̂)

×
( n∏

k

∫
ddyk exp(−iyk · pk)

)∫ ddqa
(2π)d

exp
(
−

N∑
a

(q2
a

va
+ i

n∑
l

εal yl · qa
))
. (B.6)

Evaluating the qa integrals by completing the square and using (B.4) now gives

〈O1(p1) . . .On(pn)〉 =
( N∏

a

πd/2

Γ(αa + d/2)

∫ ∞
0

dva v
−αa−1
a

)
f(v̂)

×
( n∏

k

∫
ddyk

)
exp

(
− i

n∑
k

yk · pk −
1

4

n∑
k,l

g̃kl yk · yl
)
. (B.7)

Since the Laplacian matrix has no inverse, to compute the yk integrals we must first shift

yn = zn, yk = zk + zn, k = 1, . . . n− 1. (B.8)

This transformation has unit Jacobian, but moreover greatly simplifies the exponent. Since
all row and column sums of the Laplacian matrix vanish,

n−1∑
l

g̃kl = −g̃kn,
n−1∑
k

g̃kn = −g̃nn, (B.9)

and using these identities we then find

− i
n∑
k

yk · pk −
1

4

n∑
k,l

g̃kl yk · yl

= −izn · pn − i
n−1∑
k

(zk + zn) · pk

1Note the argument of the arbitrary function f changes from the momentum cross ratios q̂ in (4.3)
to the Schwinger parameter cross ratios v̂ in (4.16). This can be seen by temporarily representing the
arbitrary function in Mellin-Barnes form (i.e., (4.18) of [46]) allowing all qij , including those from the
cross ratios, to be exponentiated via the Schwinger parametrisation (4.4). Performing the Mellin-Barnes
integration then generates f(v̂), since the Schwinger parametrisation replaces powers of qij by powers of
vij .
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− 1

4
g̃nnz

2
n −

1

2

n−1∑
k

g̃kn(zk + zn) · zn −
1

4

n−1∑
k,l

g̃kl (zk + zn) · (zl + zn)

= −izn ·
( n∑

k

pk

)
− i

n−1∑
k

zk · pk −
1

4

n−1∑
k,l

gkl zk · zl. (B.10)

In the final line here, all the zk · zn and z2
n terms cancel while the Laplacian matrix g̃kl

reduces to gkl for k, l = 1, . . . , n. The zn integral now gives the overall delta function of
momentum conservation which we strip off to obtain the reduced correlator (4.15). The
remaining zk integrals can be evaluated by completing the square, given that the inverse
g−1
kl exists. This yields our desired result,

〈〈O1(p1) . . .On(pn)〉〉 = C
N∏
a

∫ ∞
0

dva v
−αa−1
a f(v̂) |g|−d/2 exp

(
−
n−1∑
k,l

g−1
kl pk · pl

)
(B.11)

where the constant

C = (4π)(n−1)d/2
N∏
a

πd/2

Γ(αa + d/2)
(B.12)

can simply be re-absorbed into the arbitrary function f(v̂). Rewriting the product of legs
a as a product over vertices i < j and replacing pk · pl with the Gram matrix Gkl, we
recover precisely (4.17) with graph polynomials (4.10).

B.2 Jacobian matrix

In this appendix, we compute the Jacobian matrix for the change of variables from vij to
sij . In section B.2.1 we evaluate the Jacobian determinant, then in section B.2.2 we give
expressions for its matrix elements enabling conversion between partial derivatives.

B.2.1 Jacobian determinant

Our first goal is to derive the relation (4.45) for the Jacobian determinant, namely∣∣∣∣∂s∂v
∣∣∣∣ =

∣∣∣∣∂2 ln |g|
∂v ∂v

∣∣∣∣ ∝ |g|−n, (B.13)

where the constant of proportionality is not required since it can be re-absorbed into
the arbitrary function f(v̂). For small values of n this result can be verified by direct
calculation, and the exponent is simply fixed by power counting, but our aim is nevertheless
to prove this relation for general n.

We start by noting

∂2 ln |g|
∂vij∂vkl

=
∂gpq
∂vij

∂2 ln |g|
∂gpq∂grs

∂grs
∂vkl

(B.14)

can be re-expressed as a product of three square matrices of dimension n(n− 1)/2. Each
of the index pairs (p, q) and (r, s) is replaced by a single index running over the n(n−1)/2
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independent entries of the (n − 1) × (n − 1) symmetric matrix g, while (i, j) and (k, l)
are each replaced by a single index running over the n(n − 1)/2 edges of the simplex.
Noting the elements of g are linear in the v, the matrix determinant |∂g/∂v| evaluates to
a nonzero constant. On taking the determinant of (B.14), we find∣∣∣∣∂2 ln |g|

∂v ∂v

∣∣∣∣ ∝ ∣∣∣∣∂2 ln |g|
∂g ∂g

∣∣∣∣ (B.15)

hence it suffices to show that ∣∣∣∣∂2 ln |g|
∂g ∂g

∣∣∣∣ ∝ |g|−n. (B.16)

This relation in fact holds for any invertible symmetric square matrix g of dimension n−1.
To see this, from Jacobi’s relation we have

∂2 ln |g|
∂gpq∂grs

=
∂

∂grs

( 1

|g|
(adj g)pq

)
=
∂(g−1)pq
∂grs

= −2(g−1)p(r(g
−1)s)q. (B.17)

Diagonalising g via an orthogonal matrix O,

Λ = OgO−1, (B.18)

since g−1 = O−1Λ−1O the chain rule gives

∂g−1

∂g
=
∂(O−1Λ−1O)

∂Λ−1

∂Λ−1

∂Λ

∂(OgO−1)

∂g
(B.19)

where the last factor is just ∂Λ/∂g. Regarding this as a matrix product, the first and last
matrices depend only on O and are inverses of each other. On taking the determinant of
the right-hand side, their contributions therefore cancel giving∣∣∣∣∂g−1

∂g

∣∣∣∣ =

∣∣∣∣∂Λ−1

∂Λ

∣∣∣∣ . (B.20)

We thus only need to evaluate the latter determinant for the diagonal matrix Λ.
From (B.17), the Hessian is nonzero only when the index pairs are equal (p, q) = (r, s),

and is thus diagonal when regarded as a square matrix of dimension n(n− 1)/2:

∂2 ln |Λ|
∂Λpq∂Λrs

=
∂(Λ−1)pq
∂Λrs

=

{
−Λ−1

pp Λ−1
qq if (p, q) = (r, s)

0 otherwise
(B.21)

The determinant is now∣∣∣∣ ∂2 ln |Λ|
∂ΛpqΛrs

∣∣∣∣ ∝ n−1∏
p=1

(Λpp)
−n = |Λ|−n = |g|−n (B.22)

since each eigenvalue Λpp appears a total of n times along the diagonal: for example, Λ11

appears quadratically in the position (1, 1) and then linearly in each of the (n− 2) entries
indexed by (1, q) for q = 2, . . . n− 1. We have thus established (B.16), and hence (B.13).
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B.2.2 Matrix elements

We now compute the elements of the Jacobian matrix required to establish the relation

∂vkl = −1

4

n∑
i<j

(ski − sli − skj + slj)
2∂sij (B.23)

which we used in (4.92). Starting with (4.27),

∂sij
∂vkl

=
∂

∂vkl

(
(g−1)ab

∂gab
∂vij

)
=
∂(g−1)ab
∂vkl

∂gab
∂vij

(B.24)

where since gab is linear in the vij its second derivative vanishes. Using

∂(g−1)ab
∂vkl

= −(g−1)ae(g
−1)bf

∂gef
∂vkl

(B.25)

then gives

∂sij
∂vkl

= −tr
(
g−1 · ∂g

∂vij
· g−1 · ∂g

∂vjk

)
= −

n−1∑
a,b,e,f

(g−1)ae
∂gef
∂vkl

(g−1)fb
∂gba
∂vij

. (B.26)

For i, j, k, l 6= n, we can evaluate this as

∂sij
∂vkl

= −
n−1∑
a,b,e,f

(g−1)ae(−2δk(eδf)l + δekδfk + δelδfl))(g
−1)fb(−2δi(aδb)j + δaiδbi + δajδbj)

= −2(g−1)ik(g
−1)jl − 2(g−1)il(g

−1)jk + 2(g−1)ik(g
−1)jk + 2(g−1)il(g

−1)jl

+ 2(g−1)ik(g
−1)il + 2(g−1)jk(g

−1)jl − ((g−1)ik)
2 − ((g−1)il)

2 − ((g−1)jk)
2 − ((g−1)jl)

2

= −
(
(g−1)ik − (g−1)il − (g−1)jk + (g−1)jl)

)2
= −1

4

(
sik − sil − sjk + sjl

)2
(B.27)

where we used the symmetry of the inverse matrix g−1
ij , and in the last line we used (4.28).

For j = n but i, k, l 6= n,

∂sin
∂vkl

= −
n−1∑
a,b,e,f

(g−1)ae(−2δk(eδf)l + δekδfk + δelδfl))(g
−1)fb(δaiδbi)

= −
(
(g−1)ik − (g−1)il

)2
= −1

4

(
sik − sil − skn + sln

)2
(B.28)

which is equivalent to (B.27) setting j = n. The same also holds for l = n but i, j, k 6= n
due to the symmetry of (B.26). Finally

∂sin
∂vkn

= −
n−1∑
a,b,e,f

(g−1)ae(δekδfk))(g
−1)fb(δaiδbi)
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= −((g−1)ik)
2 = −1

4
(sik − sin − skn)2, (B.29)

also equivalent to (B.27) since snn = 0. Thus (B.27) in fact holds for all values of the
indices and we obtain (B.23).

For completeness, we can also calculate the inverse Jacobian by similar means:

∂vij
∂skl

=
∂

∂skl

(
(m−1)ab

∂mab

∂sij

)
=
∂(m−1)ab
∂skl

∂mab

∂sij
= −(m−1)ae

∂mef

∂skl
(m−1)fb

∂mba

∂sij

= −(m−1)ae(δekδfl + δelδfk)(m
−1)fb(δbiδaj + δbjδai)

= −2
(

(m−1)ik(m
−1)jl + (m−1)li(m

−1)jk

)
. (B.30)

Apart from the final (n+1)th row and column, the inverse Cayley-Menger matrix is minus
one half the Laplacian matrix g̃ij as we showed in (4.37) and (4.39). This gives

∂vij
∂skl

= −1

2

(
g̃ikg̃jl + g̃ilg̃jk

)
, (B.31)

where g̃ij = −vij for i 6= j and g̃ii =
∑n

a=1 via. For i, j, k, l all different, we therefore have

∂vij
∂skl

= −1

2

(
vikvjl + vilvjk

)
, i 6= j 6= k 6= l (B.32)

while if j = l,

∂vij
∂skj

= −1

2

(
vijvjk − vik

( n∑
a=1

vja

))
(B.33)

and if i = k and j = l,

∂vij
∂sij

= −1

2

(
v2
ij +

( n∑
a=1

via

)( n∑
b=1

vjb

))
. (B.34)

B.3 Landau singularities

The Landau singularities of the simplex integral are best studied in the Lee-Pomeransky
representation (4.18). They follow from solving simultaneously for all vij the conditions

0 = U + F , 0 = vij
∂

∂vij
(U + F). (B.35)

Here, the first Landau equation stipulates the vanishing of the Lee-Pomeransky denomi-
nator, while the second requires that this vanishing is either a double zero (for vij 6= 0),
corresponding to a pinching of the vij integration contour between two converging singu-
larities of the integrand, or else a pinch of the integration contour between a singularity
and the end-point of the integration (vij = 0). The second condition thus ensures the
singularity generated by the vanishing denominator cannot be avoided by a deformation
of the integration contour. Where the Landau conditions have more than one solution,
the solution with the greatest number of vij 6= 0 is referred to as the leading singularity.
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An important feature of the U polynomial (4.10) is that it is multilinear in the vkl:
from the determinant structure one sees that all the quadratic v2

kl terms cancel, and
that no higher powers can appear since vkl enters only in the row/columns (k, k), (k, l),
(l, k) and (l, l). Alternatively, this result follows from the matrix tree theorem where the
Kirchhoff polynomial U is the generator of spanning trees on the simplex. Since U is also
homogeneous of degree (n− 1), it follows that∑

k<l

∂U
∂vkl

vkl = (n− 1)U . (B.36)

We now find

U + F = U +
∑
k<l

∂U
∂vkl

Vkl =
∑
k<l

∂U
∂vkl

( vkl
n− 1

+ Vkl

)
(B.37)

and so a solution of the first Landau condition for all k < l is

vkl = λVkl = −λpk · pl and |G| = |pk · pl| = 0 (B.38)

for some constant λ. Evaluating the second Landau condition on this solution (∗) of the
first gives[
vij

∂

∂vij
(U+F)

]
∗

=
[
vij

∂U
∂vij

+vij
∑
k<l

∂2U
∂vij∂vkl

Vkl

]
∗

= (λ+n−2)λn−2Vij
∂U|v→V
∂Vij

(B.39)

using again the homogeneity of U . The second Landau condition is thus solved for all i, j
when λ = 2 − n, and indeed this is the leading singularity since the vkl are generically
nonzero. Returning to (B.37), on the solution (∗) we have

(U + F)∗ = (2− n)n−2|G| = 0, (B.40)

so to solve the first Landau condition we do indeed need the Gram determinant to vanish.
Generally this requires analytic continuation to non-physical momentum configurations,
since the only physical configurations (in Euclidean signature) for which the Gram de-
terminant vanishes are collinear ones, and on physical grounds there are no collinear
singularities. There is no contradiction here since the Landau equations are necessary, but
not sufficient, conditions for a singularity.

B.4 Bernstein-Sato operators

In this appendix, we construct a Cayley-Menger analogue of the classic identity

det(∂)(detX)a = a(a+ 1) . . . (a+ n− 1)(detX)a−1, (B.41)

where X = (xij) is an n × n matrix of independent variables and ∂ = (∂/∂xij) is the
corresponding matrix of partial derivatives. For proofs and variants of this identity, tra-
ditionally attributed to Cayley, see, e.g., [166, 167]. From a modern perspective, (B.41)
is an example of a Bernstein-Sato operator, a differential operator whose action lowers
the power a to which some polynomial of interest is raised, generating in the process an
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auxiliary polynomial in a known as the b-function [168]. Thus we have

Bf f(xij)
a = bf (a)f(xij)

a−1 (B.42)

where for (B.41), Bf = det(∂), f = detX and bf (a) = a(a + 1) . . . (a + n − 1). In the
following, we construct analogous operators for the Cayley-Menger determinant and other
polynomials arising in our parametric representations (4.48) and (4.17). Such relations
are potentially a source of new weight-shifting operators, see e.g., [169, 69].

Our starting point is the observation that

B|m| = (|g|)
∣∣∣
vij→∂sij

(B.43)

is a Bernstein-Sato operator for the Cayley-Menger determinant,

B|m| |m|a = b|m|(a)|m|a−1, b|m|(a) = −
n−1∏
k=1

(1− k − 2a). (B.44)

The operator B|m| thus corresponds to evaluating the Kirchhoff polynomial U = |g| and
replacing all vij → ∂sij to generate a polynomial differential operator in the ∂sij . We have
verified (B.44) by direct calculation for matrices up to and including n = 5. Moreover,
the leading behaviour at order an−1 follows by noting that such terms can only arise from
all n− 1 partial derivatives in B|m| hitting a power of |m| rather than a derivative of |m|.
Using (4.35) in the form ∂sij |m|a = avij |m|a along with (4.34), then gives

B|m| |m|a = an−1|m|a|g|+O(an−2) = (−1)n 2n−1an−1|m|a−1 +O(an−2) (B.45)

in agreement with (B.44).2

Similarly, we find

B|g| = (|m|)
∣∣∣
sij→∂vij

(B.46)

(i.e., the Cayley-Menger determinant replacing each sij → ∂vij ) is the Bernstein-Sato
operator for the Kirchhoff polynomial U = |g|,

B|g||g|a = b|g|(a)|g|a−1, b|g|(a) = −
n−1∏
k=1

(1− k − 2a). (B.47)

The b-function here is the same as that in (B.44), and the leading an−1 behaviour can be
understood via the analogous argument to that in (B.45). We note the result (B.47) is
equivalent to Theorem 2.15 of [166], since |m| = |m(n+1,n+1)|− |m(n+1,n+1) +J | where J is
the n× n all-1s matrix, and |m(n+1,n+1)| is the Cayley-Menger minor formed by deleting
the final row and column consisting of 1s and 0s. In addition, we find

B|g|(∂vij |g|)a = 0. (B.48)

Some further results worth recording are the following. For the second minors of the

2 A full proof of (B.44) likely follows via the methods of [166], though we will not pursue this here.
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Laplacian matrix, |g̃(ij,ij)| = ∂vij |g|, we find the operator

B∂vij |g| = (∂sij |m|)
∣∣∣
skl→∂vkl

(B.49)

satisfies

B∂vij |g| (∂vij |g|)
a = b(a) (∂vij |g|)a−1, B∂vij |g| |g|

a = b(a)vij |g|a−1 (B.50)

where the b-function is proportional to that in (B.44) but is missing the final factor,

b(a) = 2
n−2∏
k=1

(1− k − 2a). (B.51)

Again, we have verified these identities for values up to and including n = 5. This operator
further annihilates all (∂vkl |g|)a corresponding to other legs, i.e.,

B∂vij |g|(∂vkl |g|)
a = 0 for all (i, j) 6= (k, l). (B.52)

Similarly,

(∂vij |g|)
∣∣∣
vkl→∂skl

|m|a = b(a)sij |m|a−1 (B.53)

with the same b-function (B.51), but this operator does not appear to act simply (for n > 3)
on (∂sij |m|)a, in contrast to (B.50). Finding a Bernstein-Sato operator for (∂sij |m|)a would
be useful since by (4.47) this corresponds to the Cayley-Menger minors featuring in (4.48).

In principle, given a Bernstein-Sato relation such as (B.44), one might hope to apply
it inside the parametric representation (4.48) and integrate by parts to obtain an opera-
tor acting solely on the Schwinger exponential. Since the exponential is diagonal in the
representation (4.48), the result could then be translated to a differential operator in the
external momenta. This would then yield a new weight-shifting operator.

In practice, however, we must account for all the other powers of Cayley-Menger mi-
nors present in (4.48), as well as the arbitrary function. Either we must find a modified
Bernstein-Sato operator that acts appropriately on the entire non-exponential prefactor
in (4.48), which seems hard to do, or else we must find some means of removing and then
restoring these other factors. The Cayley-Menger minors, for example, can be removed
and then restored via a conjugation ΩB|m|Ω−1 where Ω =

∏n
i<j |m(i,j)|−αij−1. After

multiplying out, however, this conjugated operator is not in the Weyl algebra (i.e., is
non-polynomial in the sij and their derivatives) and so does not trivially translate into an
operator in the external momenta. On the other hand, if we include additional powers of
the |m(i,j)| on the left, so as to recover an operator in the Weyl algebra, besides lowering
α in (4.48) we also lower some of the αij . The operator then does not lower the spacetime
dimension d. Thus we have not succeeded in finding new weight-shifting operators via this
route, though with some variation the method might yet be successful.
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C.1 GKZ representation of Feynman integrals

In this appendix we relate a generic L-loop Feynman integral of the form (5.302) to the
corresponding GKZ integral (5.303). Related discussions can be found in, e.g., [123, 65].

After exponentiating the propagators and integrating out the loop momenta, (5.302)
has the Schwinger parametrisation

I = (4π)−γ0L
( N∏
i=1

1

Γ(γi)

∫ ∞
0

dti t
γi−1
i

)
U [t]−γ0 exp

(
− F [t]

U [t]

)
, γ0 =

d

2
, (C.1)

where U [t] and F [t] are the first and second Symanzik polynomials respectively, which are
homogeneous of weights L and L + 1 in the Schwinger parameters ti. The prefactor of
(4π)−γ0L is simply that in (5.302) multiplied by L factors of πd/2 from integrating out the
loop momenta. The corresponding Feynman representation is obtained by reparametrising

ti = σyi, yt =
N∑
i=1

yi = 1 (C.2)

and integrating out the variable σ. Using the Jacobian1

N∏
i=1

dti = σN−1dσ

N∏
i=1

dyi δ(1− yt), (C.3)

as well as the homogeneity of the Symanzik polynomials, we find

I = (4π)−γ0L
( N∏
i=1

1

Γ(γi)

∫ 1

0
dyi y

γi−1
i

)
δ(1− yt)U [y]−γ0

∫ ∞
0

dσ σγt−γ0L−1 exp
(
− σF [y]

U [y]

)
= (4π)−γ0LΓ(γt − γ0L)

( N∏
i=1

1

Γ(γi)

∫ 1

0
dyi y

γi−1
i

)
δ(1− yt)U [y]γt−γ0(L+1)F [y]−γt+γ0L.

(C.4)

1See, e.g., Appendix B of [46].
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In special cases where γt−γ0(L+1) vanishes (e.g., d = 2 multi-loop sunsets with standard
propagators) one can use the F polynomial alone to construct a GKZ representation [122].
More generally, one can use the Lee-Pomeransky representation [112, 123] obtained by
combining the two Symanzik polynomial factors using the Euler beta identity

U [y]−aF [y]a−b =
Γ(b)

Γ(a)Γ(b− a)

∫ ∞
0

ds sa−1(F [y] + sU [y])−b (C.5)

with a = γ0(L+ 1)− γt and b = γ0 giving

I = cγ

( N∏
i=1

∫ 1

0
dyi y

γi−1
i

)
δ(1− yt)

∫ ∞
0

ds sγ0(L+1)−γt−1(F [y] + sU [y])−γ0 (C.6)

where

cγ =
(4π)−Lγ0Γ (γ0)

Γ ((L+ 1)γ0 − γt)
∏N
i=1 Γ(γi)

. (C.7)

Setting yi = szi and using once again the homogeneity of the Symanzik polynomials, we
can eliminate the s integral since∫ ∞

0

ds

s
δ(1− szt) =

∫ ∞
0

ds

szt
δ(z−1

t − s) = 1 (C.8)

after which

I = cγ

( N∏
i=1

∫ ∞
0

dzi z
γi−1
i

)
(F [z] + U [z])−γ0 . (C.9)

Finally, this Lee-Pomeransky representation is upgraded to the GKZ representation by
replacing the coefficient of every term in the denominator F [z]+U [z] with an independent
variable xk. For the massless triangle integral, for example,

U [z] = z1 + z2 + z3, F [z] = p2
1z2z3 + p2

2z3z1 + p2
3z1z2 (C.10)

and so we replace the Lee-Pomeransky denominator

G = F [z] + U [z] = p2
1z2z3 + p2

2z3z1 + p2
3z1z2 + z1 + z2 + z3 (C.11)

with the GKZ denominator

D = x1z2z3 + x2z3z1 + x3z1z2 + x4z1 + x5z2 + x6z3. (C.12)

The GKZ integral

Iγ =
( N∏
i=1

∫ ∞
0

dzi z
γi−1
i

)
D−γ0 (C.13)

is then related to the massless triangle integral by

I = cγIγ (C.14)
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evaluated on the physical hypersurface

xi = p2
i , xi+3 = 1, i = 1, 2, 3. (C.15)

C.2 Creation operators for the position-space contact Wit-
ten diagram

In position space, the n-point AdS contact Witten diagram

In =

∫ ∞
0

dz

zd+1

∫
ddx0

n∏
i=1

C∆i

( z

z2 + x2
i0

)∆i

, C∆i =
Γ(∆i)

πd/2Γ(∆i − d
2)
, (C.16)

has the parametric representation2

In = Cn

( n∏
i=1

∫ ∞
0

dzi z
∆i−1
i

)
δ
(
1−

n∑
i=1

κizi
)(∑

i<j

zizjx
2
ij

)−∆t/2
. (C.17)

where

Cn =
πd/2

2
Γ
(∆t

2

)
Γ
(∆t − d

2

) n∏
i=1

C∆i

Γ(∆i)
, ∆t =

n∑
i=1

∆i, xij = xi − xj . (C.18)

The parameters κi ≥ 0 can be chosen arbitrarily provided they are not all zero. For the
4-point function specifically, choosing κi = δi4 and eliminating y4 using the delta function
leads to the GKZ representation

I4 = C4Iγ , Iγ =
( 3∏
i=1

∫ ∞
0

dzi z
γi−1
i

)
D−γ0 (C.19)

where
D = x1z2z3 + x2z1z3 + x3z1z2 + x4z1 + x5z2 + x6z3, (C.20)

the parameters

γ1 = ∆1, γ2 = ∆2, γ3 = ∆3, γ0 =
1

2
(∆1 + ∆2 + ∆3 + ∆4), (C.21)

and the GKZ variables are related to the physical coordinate separations by

(x1, x2, x3, x4, x5, x6) = (x2
23, x

2
13, x

2
12, x

2
14, x

2
24, x

2
34). (C.22)

Comparing with (5.8), the position-space 4-point contact diagram, also known as the
holographic D-function [170], is thus equivalent to the massless triangle integral (see also
[46]). As shown on page 99, the massless triangle integral is itself equivalent to the triple-K
integral (or momentum-space 3-point contact diagram) under affine reparametrisation of
the GKZ integral. The creation operators for the position-space contact diagram are thus

2See, e.g., equations (5.46)–(5.51) and (B.1)–(B.11) of [46].
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those analysed in section 5.5.3 and 5.5.5, except that no final projection to the physical
hypersurface is required as all the GKZ variables in (C.22) are physical.

Concretely, the A-matrix (5.22) leads to the Euler equations (5.23) and DWI (5.24),
and the toric equations (5.27). The Newton polytope corresponds to the right-hand panel
in figure 5.2. From its facets we obtain the singularity conditions

γi = −ni, γ0 − γi = −mi, i = 1, 2, 3,

γ1 + γ2 + γ3 − γ0 = −n, 2γ0 − γ1 − γ2 − γ3 = −m, (C.23)

where ni,mi, n,m ∈ Z+. The action of the annihilator ∂1 = ∂/∂x2
23 is to raise γ0, γ2 and

γ3 by one which corresponds to raising ∆2 and ∆3 by one, and the action of the creation
operator C1 is the reverse of this. The corresponding b-function

b1 = γ2γ3(γ0 − γ1)(γ1 + γ2 + γ3 − γ0), (C.24)

when re-expressed in terms of Euler operator is

B1 = (θ1 + θ3 + θ5)(θ1 + θ2 + θ6)(θ1 + θ5 + θ6)(θ1 + θ2 + θ3). (C.25)

As expected, this is simply (5.183) under the mapping θ̄i = θi+3 since the affine reparametri-
sation from the A-matrix (5.22) to (5.56) leaves the creation operators unchanged. Ex-
panding out and using the toric equations to factorise B1 = C1∂1, we recover the creation
operator (5.202) in GKZ variables. In our present variables (C.22), this is

C1 = x1(θ1 + 1 + u2 + u3)
(
(θ1 + 1 + u2)(θ1 + 1 + u3) + 2(v2 + v3)

)
+ x2x5∂4

(
1 + u2 + v2 − v3 + (u2 + u3 + 2)u3

)
+ x3x6∂4

(
1 + u3 + v3 − v2 + (u2 + u3 + 2)u2

)
(C.26)

where ui = θi + θi+3 and vi = θiθi+3. One likewise obtains the operator (5.254), namely

W−−12 = (θ4 + θ5 + θ6 + θ3)(x4∂2 + x5∂1) + x3x6∂2∂1. (C.27)

Both these operators can be rewritten in various equivalent forms using the DWI and
Euler equations. Their action on the position-space contact diagram follows from (5.59),
namely

C1 : ∆2 → ∆2 − 1, ∆3 → ∆3 − 1, W−−12 : ∆3 → ∆3 + 1, ∆4 → ∆4 − 1. (C.28)

C.3 Non-minimal b-functions

As we have seen, creation operators are constructed starting from a polynomial b(γ) in the
spectral parameters known as the b-function. In section 5.4.4, we argued that b(γ) must
possess a certain minimal set of zeros, namely, those required to cancel the singularities
arising when a creation operator shifts us from a finite to a singular integral. Notice
however that this argument does not preclude the existence of additional zeros besides
this minimal set. For all the Feynman and Witten diagram examples in the main text, the
minimal b-functions were sufficient for the construction of all creation operators. As these
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b-functions contain the fewest factors, the resulting creation operators were moreover of
lowest possible order in derivatives. Nevertheless, there are instances where the minimal
b-function is not sufficient: a simple example, which we analyse in this appendix, is the
GKZ integral (5.71). As we will show, additional factors must be appended to the minimal
b-functions in order to be able to apply the toric equations and factorise into a product of
creation and annihilation operators. The zeros of these additional factors are all parallel to
the facets of the rescaled Newton polytope, and in most (though not all) cases correspond
to additional singular hyperplanes of the GKZ integral.

Let us recall the necessary analysis of section 5.3. The integral (5.71), namely

Iγ =

∫ ∞
0

dz1

∫ ∞
0

dz2 z
γ1−1
1 zγ2−1

2 (x1 + x2z2 + x3z
2
1 + x4z1z

2
2)−γ0 , (C.29)

corresponds to the A-matrix

A =

1 1 1 1
0 0 2 1
0 1 0 2

 (C.30)

with DWI and Euler equations

0 = (γ0 + θ1 + θ2 + θ3 + θ4)Iγ , 0 = (γ1 + 2θ3 + θ4)Iγ , 0 = (γ2 + θ2 + 2θ4)Iγ , (C.31)

and a single toric equation
0 = (∂3

1∂
2
4 − ∂4

2∂3)Iγ . (C.32)

The singularities of this integral, derived in (5.93), are

γ1 = −m1, γ2 = −m2, γ0 + γ1 − γ2 = −m3, 4γ0 − 2γ1 − γ2 = −3m4, (C.33)

for all mj ∈ Z+. The annihilation operators ∂j send γ → γ ′ while the creation operators
Cj send γ ′ → γ, where for each j these parameters are related by

j = 1 : γ′0 = γ0 + 1, γ′1 = γ1, γ′2 = γ2

j = 2 : γ′0 = γ0 + 1, γ′1 = γ1, γ′2 = γ2 + 1

j = 3 : γ′0 = γ0 + 1, γ′1 = γ1 + 2, γ′2 = γ2,

j = 4 : γ′0 = γ0 + 1, γ′1 = γ1 + 1, γ′2 = γ2 + 2. (C.34)

According to (5.138), the minimal b-functions containing only the zeros necessary to cancel
the singularities produced by the action of the Cj are

bmin
1 = (γ0 + γ1 − γ2)

1∏
m4=0

(4γ0 − 2γ1 − γ2 + 3m4),

bmin
2 = γ2(4γ0 − 2γ1 − γ2),

bmin
3 =

1∏
m1=0

(γ1 +m1)
2∏

m3=0

(γ0 + γ1 − γ2 +m3),
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bmin
4 = γ1

1∏
m2=0

(γ2 +m2). (C.35)

For example, C3 shifts m1 → m1 + 2 and m3 → m3 + 3, and so the five singular integrals
with m1 = 0, 1 and m3 = 0, 1, 2 in (C.33) are accessible starting from finite integrals.
This means bmin

3 has the five zeros shown, which act to cancel these singularities. The
operator C1 is however a special case: this sends m3 → m3 + 1 and m4 → m4 + 4/3,

corresponding to a non-integer F
(4)
1 = 4/3 in (5.139). Only the singularities with m3 = 0

and m4 = 0, 1 are then accessible starting from finite integrals for which all mj < 0.
(In other words, integrals for which the GKZ representation (C.29) converges without
meromorphic continuation.)

Using the DWI and Euler equations to rewrite these b-functions in terms of Euler
operators, we then find

Bmin
1 = −(θ1 + 3θ3)

1∏
m4=0

(4θ1 + 3θ2 − 3m4),

Bmin
2 = (θ2 + 2θ4)(4θ1 + 3θ2),

Bmin
3 = −(2θ3 + θ4)(2θ3 + θ4 − 1)

2∏
m3=0

(θ1 + 3θ3 −m3),

Bmin
4 = −(2θ3 + θ4)(θ2 + 2θ4)(θ2 + 2θ4 − 1). (C.36)

At this point a problem appears: to extract a creation operator requires factorising

BjIγ = Cj∂jIγ , (C.37)

however the only toric equation we have available for this purpose, (C.32), is of fifth order
in derivatives. While Bmin

3 is indeed of fifth order, the remaining Bmin
j are of at most third

order. Upon expanding out and ordering terms according to (5.131), we find

Bmin
1 = (. . .)∂1 − 27x2

2x3∂
2
2∂3,

Bmin
2 = (. . .)∂2 + 8x1x4∂1∂4,

Bmin
3 = (. . .)∂3 − x3

1x
2
4∂

3
1∂

2
4 ,

Bmin
4 = (. . .)∂4 − 2x2

2x3∂
2
2∂3. (C.38)

For Bmin
3 , we obtain the necessary factorisation (C.37) upon using (C.32) allowing a suc-

cessful construction of C3. For the others, the order in derivatives is too low to apply
(C.32).

To find C1, C2 and C4, therefore, we look for new (non-minimal) Bj of the form:

B1 = (. . .)∂1 + (. . .)x4
2x3∂

4
2∂3,

B2 = (. . .)∂2 + (. . .)x3
1x

2
4∂

3
1∂

2
4 ,

B4 = (. . .)∂4 + (. . .)x4
2x3∂

4
2∂3. (C.39)

By construction, these are all of fifth order and can be factorised into the desired form
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(C.37) using (C.32). Since the Bj must be functions of the Euler operators, and

xni ∂
n
i = θi(θi − 1) . . . (θi − n+ 1), (C.40)

this is equivalent to seeking

B1 = (. . .)θ1 + (. . .)θ2(θ2 − 1)(θ2 − 2)(θ2 − 3)θ3,

B2 = (. . .)θ2 + (. . .)θ1(θ1 − 1)(θ1 − 2)θ4(θ4 − 1),

B4 = (. . .)θ4 + (. . .)θ2(θ2 − 1)(θ2 − 2)(θ2 − 3)θ3. (C.41)

For comparison, the singular hyperplanes in (C.33), when translated to Euler operators
via (C.31), correspond to the zeros of

(2θ3 + θ4 −m1), (θ2 + 2θ4 −m2), (θ1 + 3θ3 −m3), (4θ1 + 3θ2 − 3m4). (C.42)

As the non-minimal Bj in (C.41) must still contain the factors present in the minimal Bmin
j

in (C.36), we see that for B1, and B4 it suffices simply to append factors corresponding
to additional singular hyperplanes:

B1 = −(θ1 + 3θ3)

3∏
m4=0

(4θ1 + 3θ2 − 3m4),

B4 = −(2θ3 + θ4)
3∏

m2=0

(θ2 + 2θ4 −m2). (C.43)

Each of these non-minimal Bj contain the factors already present in the minimal Bmin
j .

Moreover, they are of the form (C.41) since they correspond to performing a linear shift
in θj on each of the factors present in the second term of each Bj in (C.41). (Equivalently,
setting θj to zero in each of the Bj in (C.43) yields the second term of each Bj in (C.41).)
This also shows that they are of the smallest order in derivatives consistent with (C.41).

For B2, the additional factors we must append to Bmin
2 are parallel to the singular

hyperplanes in (C.42) but have different spacing. Explicitly, we require

B2 = −
1∏

m1=0

(θ2 + 2θ4 − 2m1)

2∏
m2=0

(4θ1 + 3θ2 − 4m2) (C.44)

so that, when expanded in θ2, we obtain an expression of the form given in (C.41). Note
this is not possible using the spacings in (C.42).3

By construction, the non-minimal Bj in (C.43) and (C.44) all derive from correspond-
ing non-minimal b-functions which are polynomials in the spectral parameters,

b1 = (γ0 + γ1 − γ2)

3∏
m4=0

(4γ0 − 2γ1 − γ2 + 3m4),

3The zeros of (C.44), and of the corresponding of b2 in (C.45), do however coincide with the singular
hyperplanes of the integral obtained by deleting the second column of the A-matrix. This removes a vertex
from the Newton polytope changing the spacings of the singular hyperplanes; a procedure consistent with
confining all θ2 dependence in B2 to the first factor in (C.41).
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γ1

γ2

Figure C.1: For purposes of illustration, a two-dimensional example of a non-normal lattice can
be obtained by projecting to the (γ1, γ2) plane. The points (2k + 1, 0) and (2k + 1, 1) for k ∈ Z+

(shown in red) lie within the positive cone
∑

j R+aj (shaded region) spanned by the vertex vectors
aj of the Newton polytope (shown in blue). These points also belong to

∑
j Zaj since (2k+1, 0) =

k(2, 0) + (1, 2)− 2(0, 1) and (2k + 1, 1) = k(2, 0) + (1, 2)− (0, 1). However, these points cannot be
expressed in the form

∑
j Z+aj and hence the lattice generated by the aj is non-normal.

b2 =

1∏
m1=0

(γ2 + 2m1)

2∏
m2=0

(4γ0 − 2γ1 − γ2 + 4m2),

b4 = γ1

3∏
m2=0

(γ2 +m2). (C.45)

and all lead to valid creation operators via (C.37). From B2, for example, we find

C2 = x2

[
12θ2

4

(
48θ2

1 + 12θ1(3θ2 − 5) + 9θ2(θ2 − 2) + 5
)

+ 4θ4

(
64θ3

1 + 48θ2
1(3θ2 − 4) + 4θ1

(
9θ2(3θ2 − 5) + 32

)
+ 3θ2

(
9θ2(θ2 − 2) + 5

))
+ (θ2 − 1)(4θ1 + 3θ2 − 5)(4θ1 + 3θ2 − 1)(4θ1 + 3θ2 + 3)

]
+ 256x3

1x
2
4∂

3
2∂3. (C.46)

Having solved this example, let us note that the failure of the minimal b-functions
in (C.35) can also be understood geometrically. For Bmin

1 , Bmin
2 and Bmin

4 in (C.36) to
be factorisable as Cj∂j , we would need each of ∂2

2∂3∂
−1
1 , ∂1∂4∂

−1
2 and ∂2

2∂3∂
−1
4 to be

expressible as
∏N
k=1 ∂

ck
k for some set of ck ∈ Z+. (The inverses here are purely formal: we

mean that ∂2
2∂3 = ∂1

∏N
k=1 ∂

ck
k , etc.) In terms of the shifts produced by these operators
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on the spectral parameters γ = (γ0, γ1, γ2), this is equivalent to requiring that

2A2 + A3 −A1 =

2
2
2

 , A1 + A4 −A2 =

1
1
1

 , 2A2 + A3 −A4 =

2
1
0

 (C.47)

are all expressible as
∑N

k=1 ckAk for some set of ck ∈ Z+, where Ak denotes the kth column
of the A-matrix including the top row of ones. Clearly this is not possible, although these
vectors do all lie in the positive cone corresponding to solutions with ck ∈ R+ since

2A2 + A3 −A1 = 2(A1 + A4 −A2) =
2

3
(A2 + A3 + A4),

2A2 + A3 −A4 =
1

2
(3A1 + A3). (C.48)

Mathematically, this is precisely the condition that lattice generated by the Ak (or equiv-
alently, the toric ideal associated with the A-matrix) is non-normal. Conversely, when the
normality condition (∑

k

R+Ak

)
∩
(∑

k

ZAk

)
=
(∑

k

Z+Ak

)
(C.49)

is satisfied, it can be shown that the minimal b-functions (5.138) generate valid creation
operators [146, 147]. The non-triviality of the normality condition is illustrated in figure
C.1.
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[58] N. Böttcher, N. Schwanemann and S. Weinzierl, Box integrals with fermion bubbles
for low-energy measurements of the weak mixing angle, 2312.06773.

[59] F. Devoto, K. Melnikov, R. Röntsch, C. Signorile-Signorile and D.M. Tagliabue, A
fresh look at the nested soft-collinear subtraction scheme: NNLO QCD corrections
to N -gluon final states in qq̄ annihilation, 2310.17598.

[60] B. Agarwal, F. Buccioni, F. Devoto, G. Gambuti, A. von Manteuffel and
L. Tancredi, Five-Parton Scattering in QCD at Two Loops, 2311.09870.

[61] F. Gasparotto, S. Weinzierl and X. Xu, Real time lattice correlation functions from
differential equations, JHEP 06 (2023) 128 [2305.05447].

[62] T. Heckelbacher, I. Sachs, E. Skvortsov and P. Vanhove, Analytical evaluation of
cosmological correlation functions, JHEP 08 (2022) 139 [2204.07217].

[63] F. Caloro and P. McFadden, Shift operators from the simplex representation in
momentum-space CFT, JHEP 03 (2023) 106 [2212.03887].

[64] N. Arkani-Hamed, D. Baumann, A. Hillman, A. Joyce, H. Lee and G.L. Pimentel,
Differential Equations for Cosmological Correlators, 2312.05303.

[65] S. Weinzierl, Feynman Integrals, 2201.03593.

180

https://doi.org/10.5170/CERN-1955-026
https://doi.org/10.1017/9781108587280
https://doi.org/10.1098/rspa.1926.0034
https://doi.org/10.1007/BF01450175
https://doi.org/10.1007/BF02980631
https://arxiv.org/abs/2311.06385
https://doi.org/10.1134/S1547477123030676
https://arxiv.org/abs/2211.15535
https://arxiv.org/abs/2312.06773
https://arxiv.org/abs/2310.17598
https://arxiv.org/abs/2311.09870
https://doi.org/10.1007/JHEP06(2023)128
https://arxiv.org/abs/2305.05447
https://doi.org/10.1007/JHEP08(2022)139
https://arxiv.org/abs/2204.07217
https://doi.org/10.1007/JHEP03(2023)106
https://arxiv.org/abs/2212.03887
https://arxiv.org/abs/2312.05303
https://arxiv.org/abs/2201.03593


Bibliography

[66] K.G. Chetyrkin and F.V. Tkachov, Integration by parts: The algorithm to calculate
β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159.

[67] A.V. Smirnov and A.V. Petukhov, The Number of Master Integrals is Finite, Lett.
Math. Phys. 97 (2011) 37 [1004.4199].

[68] A.G. Grozin, Integration by parts: An Introduction, Int. J. Mod. Phys. A 26 (2011)
2807 [1104.3993].

[69] T. Bitoun, C. Bogner, R.P. Klausen and E. Panzer, Feynman integral relations
from parametric annihilators, Lett. Math. Phys. 109 (2019) 497 [1712.09215].

[70] O.V. Tarasov, Connection between Feynman integrals having different values of the
space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018].

[71] O.V. Tarasov, Generalized recurrence relations for two loop propagator integrals
with arbitrary masses, Nucl. Phys. B 502 (1997) 455 [hep-ph/9703319].

[72] R.N. Lee, Calculating multiloop integrals using dimensional recurrence relation and
D-analyticity, Nucl. Phys. B Proc. Suppl. 205-206 (2010) 135 [1007.2256].

[73] F.A. Dolan and H. Osborn, Conformal partial waves and the operator product
expansion, Nucl. Phys. B678 (2004) 491 [hep-th/0309180].

[74] F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical
Results, 1108.6194.

[75] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and
A. Vichi, Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev. D
86 (2012) 025022 [1203.6064].

[76] D. Li, D. Meltzer and D. Poland, Conformal Bootstrap in the Regge Limit, JHEP
12 (2017) 013 [1705.03453].

[77] M. Kulaxizi, A. Parnachev and A. Zhiboedov, Bulk Phase Shift, CFT Regge Limit
and Einstein Gravity, JHEP 06 (2018) 121 [1705.02934].

[78] L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin and R. Yacoby,
Bootstrapping 3D Fermions, JHEP 03 (2016) 120 [1508.00012].

[79] A. Dymarsky, J. Penedones, E. Trevisani and A. Vichi, Charting the space of 3D
CFTs with a continuous global symmetry, JHEP 05 (2019) 098 [1705.04278].

[80] A. Dymarsky, F. Kos, P. Kravchuk, D. Poland and D. Simmons-Duffin, The 3d
Stress-Tensor Bootstrap, JHEP 02 (2018) 164 [1708.05718].

[81] J. Polchinski and V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model,
JHEP 04 (2016) 001 [1601.06768].

[82] J. Murugan, D. Stanford and E. Witten, More on Supersymmetric and 2d Analogs
of the SYK Model, JHEP 08 (2017) 146 [1706.05362].

181

https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1007/s11005-010-0450-0
https://doi.org/10.1007/s11005-010-0450-0
https://arxiv.org/abs/1004.4199
https://doi.org/10.1142/S0217751X11053687
https://doi.org/10.1142/S0217751X11053687
https://arxiv.org/abs/1104.3993
https://doi.org/10.1007/s11005-018-1114-8
https://arxiv.org/abs/1712.09215
https://doi.org/10.1103/PhysRevD.54.6479
https://arxiv.org/abs/hep-th/9606018
https://doi.org/10.1016/S0550-3213(97)00376-3
https://arxiv.org/abs/hep-ph/9703319
https://doi.org/10.1016/j.nuclphysbps.2010.08.032
https://arxiv.org/abs/1007.2256
https://doi.org/10.1016/j.nuclphysb.2003.11.016
https://arxiv.org/abs/hep-th/0309180
https://arxiv.org/abs/1108.6194
https://doi.org/10.1103/PhysRevD.86.025022
https://doi.org/10.1103/PhysRevD.86.025022
https://arxiv.org/abs/1203.6064
https://doi.org/10.1007/JHEP12(2017)013
https://doi.org/10.1007/JHEP12(2017)013
https://arxiv.org/abs/1705.03453
https://doi.org/10.1007/JHEP06(2018)121
https://arxiv.org/abs/1705.02934
https://doi.org/10.1007/JHEP03(2016)120
https://arxiv.org/abs/1508.00012
https://doi.org/10.1007/JHEP05(2019)098
https://arxiv.org/abs/1705.04278
https://doi.org/10.1007/JHEP02(2018)164
https://arxiv.org/abs/1708.05718
https://doi.org/10.1007/JHEP04(2016)001
https://arxiv.org/abs/1601.06768
https://doi.org/10.1007/JHEP08(2017)146
https://arxiv.org/abs/1706.05362


Bibliography

[83] D. Karateev, P. Kravchuk and D. Simmons-Duffin, Weight Shifting Operators and
Conformal Blocks, JHEP 02 (2018) 081 [1706.07813].

[84] D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee and G.L. Pimentel, The
Cosmological Bootstrap: Weight-Shifting Operators and Scalar Seeds,
arXiv:1910.14051.

[85] A. Bzowski, P. McFadden and K. Skenderis, Evaluation of conformal integrals,
JHEP 02 (2016) 068 [1511.02357].

[86] F. Caloro and P. McFadden, A-hypergeometric functions and creation operators for
Feynman and Witten diagrams, 2309.15895.

[87] S. Rychkov, EPFL Lectures on Conformal Field Theory in D>= 3 Dimensions,
SpringerBriefs in Physics, Springer (1, 2016), 10.1007/978-3-319-43626-5,
[1601.05000].

[88] P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer,
New York (1997).

[89] M. Gillioz, Conformal field theory for particle physicists, SpringerBriefs in Physics,
Springer (2023), 10.1007/978-3-031-27086-4, [2207.09474].

[90] R.M. Wald, General Relativity, Chicago Univ. Pr., Chicago, USA (1984),
10.7208/chicago/9780226870373.001.0001.

[91] P. Kravchuk and D. Simmons-Duffin, Counting Conformal Correlators, JHEP 02
(2018) 096 [1612.08987].

[92] D. Simmons-Duffin, The Conformal Bootstrap, in Proceedings, Theoretical
Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields
and Strings (TASI 2015): Boulder, CO, USA, June 1-26, 2015, pp. 1–74, 2017,
DOI [1602.07982].

[93] M. Hogervorst and S. Rychkov, Radial Coordinates for Conformal Blocks, Phys.
Rev. D 87 (2013) 106004 [1303.1111].
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