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Abstract

Video-based human action recognition has become a crucial component in recent years for

many applications, such as human machine interaction, video surveillance and healthcare-

related systems. The primary task for human action recognition is to analyse the human

behavior based on the given action data. However, different from the general action recog-

nition, medical action recognition is more challenging due to the data limitation, privacy

protection and noisy annotations issues. In this thesis, in order to improve the medical ac-

tion recognition performance and the robustness of system by addressing the aforementioned

issue, a variety of enhanced approaches are proposed.

The first contribution aims to focus on human multiple fall events classification using

a deep neural network framework by reducing the redundant information and presenting a

two-stage framework. The proposed redundant reducing theory is developed to remove the

unimportant part, including the redundant empty frames from the video and the redundant

body parts from the processed privacy-mitigated human skeleton data. In addition, the

proposed two-stage framework is designed for addressing the imbalanced data issue from

the data limitation. To improve the classification performance, the gating parameter is

utilized along with the proposed structure.

The second contribution relates to address the noisy annotation issue for multiple fall

events classification, since the quality of the annotations plays a key role in the data-driven

methods. The proposed noisy annotation managing system includes two parts: cascaded

noisy annotation purification and noisy annotation learning framework, which is called

JoCoT. The purification theory is based on the principle of the joint distribution probability

density function to identify and prune the incorrect annotations. JoCoT is proposed for
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Abstract v

fully exploiting the potential of the noisy instances with a trinity network. The small loss

theory is utilized for selecting the clean instances. Moreover, both the co-regularization and

contrastive learning with joint loss function are applied for enhancing the performance.

The third contribution focuses on extracting the novel direction-level features by the

proposed signal image generation (SIG) to further protect the privacy information, which

could assist the position-level feature to improve the performance by investigating their

complementary benefits in different stages for medical action recognition. A one-shot learn-

ing framework is developed to address the medical data limitation issue, and together with

the cross-attention mechanism (CsA) is used to reduce the misclassification bias for the

similar medical action issue. Moreover, dynamic time warping (DTW) module is proposed

to minimize the temporal mismatching issue between the instances from the same category,

thereby improving the performance.

The proposed contributions are evaluated on the UP-Fall, NTU RGB+D 60, NTU

RGB+D 120 and PKU-MMD benchmark datasets, which are widely used for medical action

recognition. Detailed evaluations on the benchmarks, along with the comparisons with the

recent state-of-the-art methods, confirm the effectiveness of the proposed approaches on

medical action recognition.
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Statement of Originality

The contributions of this thesis are mainly to focus on improving the performance

and robustness of medical action recognition. The following international journal and

conference papers verify the novelty of the contributions.

In Chapter 3, a redundant information reduction strategy is proposed to remove

the inessential information in the data processing stage to achieve better multiple fall

events classification performance. Then a two-stage framework based on the deep

neural network is designed to address imbalanced data issue and further improve the

performance. Additionally, a gating method is exploited empirically for controlling

the filtering ability in the initial stage for better discriminating ability. These research

outputs have been presented in:

• L. Xie, Y. Yang, Z. Fu, and S. M. Naqvi, ‘Skeleton-based Fall Events Classifi-

cation with Data Fusion’, in IEEE International Conference on Multisensor

Fusion and Integration for Intelligent Systems (MFI), 2021.

• L. Xie, Y. Sun, J. A. Chambers, and S. M. Naqvi, ‘Two-stage Fall Events Classi-

fication with Human Skeleton Data’, in arXiv preprint arXiv:2208.12027, 2022.

In Chapter 4, a novel cascaded learning framework is proposed to purify the cor-

rupted dataset for addressing the noisy annotation issue. The noisy annotations are

pruned by four different methods, which are based on the principle of joint distribu-

tion probability density function. Moreover, learning with the noisy label algorithm is

proposed to fully exploit the potential of noisy instances and enhance the robustness

of the proposed framework. The small-loss theory is applied for the clean instances

selection, along with the Kullback-Leibler divergence is utilized for avoiding the net-

works converging and extending the effective training process. The outputs of these

solutions are presented in:
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• L. Xie, Y. Sun, J. A. Chambers, and S. M. Naqvi, ‘Privacy Preserving Multiclass

Fall Classification based on Cascaded Learning and Noisy Labels Handling’, in

IEEE International Conference on Information Fusion (FUSION), 2022.

• L. Xie, Y. Sun, and S. M. Naqvi, ‘Learning with Noisy Labels for Human Fall

Events Classification: Joint Cooperative Training with Trinity Networks’, in

ACM Transactions on Computing for Healthcare (under review).

In Chapter 5, a multiple-level fusion within a novel one-shot learning framework

is proposed to address the data limitation for medical action recognition. Both the

direction-level and position-level features are extracted and transformed by the pro-

posed signal-level image transformation (SIG) method for further mitigating the pri-

vacy information. A cross-attention mechanism is developed to address the similar

action issue, together with the dynamic time warping (DTW) module for aligning

the temporal information between the instances. Moreover, feature-level and decision-

level fusion approaches are proposed to further enhance performance by exploiting the

complementary benefits among different features. The contributions of this chapter

are presented in:

• L. Xie, Y. Yang, Z. Fu, and S. M. Naqvi, ‘One-shot Medical Action Recognition

with a Cross-Attention Mechanism and Dynamic Time Warping’, in IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),

2023.

• L. Xie, Y. Yang, Z. Fu, and S. M. Naqvi, ‘MF-OSMAR: Multiple-level Fusion

of One-Shot Learning for Privacy Preserved Skeletal Human Medical Action

Recognition’, in IEEE Transactions on Multimedia (under review)
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Chapter 1

INTRODUCTION

1.1 Motivation

Due to the decreasing of birth rate and the increasing in the average lifespan in the

past 80 years, the aging population has been a worldwide problem [12]. According to

the report from the World Health Organization (WHO), the aging population (aged

65 or over) has reached 20% of the population worldwide and will reach 28% by 2050,

which is approximately 1.5 billion [13,14]. Generally, deterioration with age leads to

cognitive, physical and sensory functionalities reduction [15,16]. At least 35% of aging

people may suffer one time or more medical actions per year and these medical actions

may have various consequences for the aging population, the healthcare systems and

society [14]. With the increasing of aging population, human medical action recogni-

tion has played an important role in recent years for many applications. The major

task of human medical action recognition is to accurately analyze and classify medical

actions based on the given action sequences [17]. Since the video camera has become

ubiquitous with the development of industrial technologies, video data analytics plays

a crucial role in the intelligent medical action recognition area [18,19]. However, pri-

vacy protection is one of the most challenging issues in the medical area, otherwise

will lead to various invasions to the people, especially to the aging population which

lacks distinguishing abilities, such as identity theft, legal liability, financial fraud and

doctor-patient trust issues. The ultimate objective of it is to automatically discover,

1
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analyze and understand medical actions according to the visual and privacy-protected

information from the video cameras.

Human medical action recognition which represents an essential and fundamental

step has enormously advanced in many applications, such as nursing homes, hospi-

tals and assisted living homes. Example applications of medical action recognition

are illustrated in Figure 1.1. The major interest of medical action recognition is to

facilitate the autonomous intelligent system to obtain better comprehension and ana-

lyzing ability for human-involved events which are related to medical actions, such as

vomiting, falling down, headache, and staggering. Many researchers have been seek-

ing various reliable action recognition approaches which enable the intelligent system

to acquire better human action features from the sequences, therefore facilitating

comprehensive human action interpretation [20, 21]. However, there still exist many

challenging issues which need to be further addressed. These problems are particu-

larly caused by privacy protection and dataset limitation, such as imbalanced data,

limited data, noisy annotations, redundant information, temporal mismatching and

similar action. To address these challenging issues, there are various approaches that

have been proposed for this task area. This thesis focuses on utilizing the video-based

data for addressing the aforementioned issues of medical action recognition tasks by

only replying on the privacy-mitigated approaches.

Amongst the medical actions, with the rapid development of the aging population,

falling down has surpassed cardiovascular diseases and cancer becoming the primary

reason for death and health effects in the aging population during these years [22,23].

With the significant advancements in perception sensors, recent human fall detection

approaches have benefited remarkably in either wearable or non-wearable sensors.

The wearable-based approaches using wearable sensors, such as accelerometers and

gyroscopes to detect fall events, but present challenges in terms of high hardware

costs, battery exhaustion, and potential data loss in tracking due to the resistance
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or forgetfulness of the aging population to consistently wear these devices. The non-

wearable sensor methods use such as the environment sensors or the WiFi signal

to detect fall events, which are sensitive to the environment and more difficult to

distinguish the falls under the multiple subject scenarios. The majority of previous

research using non-wearable sensors primarily focused on the binary fall detection

task, which involved determining if the fall events had taken place or not. However,

different falling events can cause varying levels of physical harm to aging population.

For instance, the extent of injuries incurred from falling onto a chair is extremely

different from those caused by falls on stairs, which are particularly leading to head

injuries for aging population. Therefore, it is imperative to classify specific fall events

to account for the unique nature and severity of injuries associated with different

falling events.

Figure 1.1: Example application scenes of medical action recognition: (a) Hospital.
(b) Nursing home. (c) Assisted living for aging population. (d) Smart home with AI.

The rapidly developed deep learning approach is essentially the data-driven ap-

proach [24, 25]. The performance of the model not only depends on the quality of
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the data but also on the quality of the data annotations. Due to the aforementioned

issue, there exist noisy label issues for medical action recognition because the occur-

rence of most medical actions is much less than normal human actions. Moreover, the

anonymizing or de-identifying operation for protecting medical privacy information

may lead to the loss of crucial information for medical actions, which may result in

noisy labels. The occurrence of noisy label issues primarily stems from biases in de-

termining the same categories of actions, negligence in judging similar data, and the

potential for careless errors during data annotation. Improving label quality can be

achieved through labeling by experts, iterative labeling, and the use of standardized

annotation methods. Noisy label issue commonly arises the datasets that are manu-

ally or semi-automatically labelled. Since the noisy labels have a significant negative

impact on the performance, the model may not be able to demonstrate promising

performance. It is necessary to provide suitable learning with noisy label and dataset

purification algorithms.

Owing to the low occurrence and privacy protection reasons for medical action

data, in addition to the aforementioned noisy label issue, the problem of data and an-

notation lacking issue is also existing in this area. More recent learning with limited

labelled data methods are developed based on the one-shot learning framework to

mitigate this issue, which indicates learning novel categories with single labeled data.

However, applying the conventional one-shot learning framework directly is inade-

quate to achieve the desired medical action recognition performance, since there exist

several limitations which need particular attention to further improve its capability in

medical action recognition applications. Firstly, the performance of the entire frame-

work is heavily dependent on the preprocessing stage since the high-quality training

instances could provide more informative features to the models and lead to a more

explainable artificial intelligence system. Extracting more informative features from

the limited raw action sequences is beneficial for better interpreting the relationship
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between different body parts of the subjects. The framework is also required to

be able to clearly distinguish similar medical actions such as vomiting and abdom-

inal pain as it may confuse the model and decrease the classification performance.

Moreover, the model should include a mechanism to determine the aforementioned

temporal mismatching issue, thereby synchronising the temporal information of the

action sequences. Ultimately, in the context of medical action recognition, the asso-

ciation between different extracted features should be well exploited to improve the

efficacy of the framework.

1.2 Aims and Objectives

This thesis aims to fully exploit the approaches based on deep learning techniques to

obtain better promising performance for privacy-preserved medical action recognition.

The main goal is to address the aforementioned limitations existing in the medical

action recognition area by improving several principal components. The particular

objectives are:

• Objective 1: Improving the fall events classification performance by applying

the proposed redundant information reduction method.

In Chapter 3, a redundant information reduction method which processes the

useless information from the raw action sequences is developed for multiple fall events

classification, which aims to avoid the impact of redundant information and decrease

the computational cost.

• Objective 2: Improving the fall events classification performance by applying

the two-stage framework selection and filtering the incorrect classification.

In Chapter 3, the establishment of enhanced fall events classification reliability is

divided into two stages: Identifying and filtering out the normal actions from the raw
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imbalanced dataset by utilizing the parameter-controlled gating approach and specific

multiple fall events classification. This is beneficial to be less prone to incorrect action

recognition and the imbalanced data issue.

• Objective 3: Improving the quality of dataset annotations by applying noisy

annotation cleaning learning and cascaded learning pipeline.

In Chapter 4, noisy label detection and pruning algorithms are used to retrieve

accurate and qualitative annotations for achieving promising performance. The ex-

tracted human skeleton data is utilized as the training data for handling the dynamic

lighting conditions.

• Objective 4: Enhancing the robust ability the improving the performance by

applying the proposed learning with noisy label algorithm.

In Chapter 4, in order to fully exploits the potential effectiveness of noisy instances,

a joint cooperative training method using the trinity networks is used to mine the

non-corrupted annotations and decrease the negative impact of the noisy labels for

human fall events classification.

• Objective 5: Elevating the learning with limited data ability by performing

one-shot learning for medical action recognition.

In Chapter 5, to enhance the one-shot learning framework, the dynamic time

warp mechanism and the cross-attention mechanism are jointly used for mitigating

the aforementioned temporal mismatching and similar medical action issues, respec-

tively. Moreover, a novel action data generation approach is applied for better privacy

protection.

• Objective 6: Improving the one-shot learning system to be further accurate in

medical action recognition by extracting further feature information and apply-

ing multiple fusion approaches at diverse levels.
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In Chapter 5, a novel human action feature is extracted from the initial sequences

to represent the direction-level information. Moreover, a multiple-level fusion ap-

proach is developed to exploit the potential complementary relations between different

features for further improving performance at both feature-level and decision-level.

1.3 Thesis outline

The remainder of this thesis is structured as follows:

Chapter 2, in general, gives a relevant literature review of privacy-mitigating medi-

cal action recognition algorithms, and also explains the background preliminaries that

are helpful to derive and evaluate the proposed techniques in the thesis. The existing

challenges associated with medical action recognition are first discussed from four

perspectives. Moreover, related developed research algorithms are allocated by carry-

ing through the major components of the proposed system, where the limitations of

these approaches are given. The primary components for medical action recognition

in this thesis are also provided, including the deep neural network, peer network and

ProtoNet. After that, in order to compare with the state-of-the-art approaches, both

benchmark datasets and evaluation metrics are given detailed for the medical action

recognition system.

The major technical contributions of this thesis are divided into the next three

chapters. Chapter 3 aims to address the first and second objectives and provides

contributions to improve the model performance by filtering the redundant informa-

tion and reducing the computational cost via the proposed framework. This chapter

is mostly based on the works in [26] and [27]. Chapter 4 illustrated the proposed

algorithms and pertains to the third objective via the proposed dataset purifica-

tion method, which indicates removing the corrupted annotations in the early pre-

processing stage of the entire fall events classification framework. In order to fully

exploit the potential of the corrupted instances, this chapter also aims to deal with
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the fourth objective via the proposed learning with the noisy label algorithm for mul-

tiple fall events classification. The technical parts in this chapter were previously

presented in [28] and [29]. Chapter 5 continuously deals with data issues which are

the fifth and sixth objectives by introducing a novel one-shot learning framework and

extracting various human action features in the early data processing stage. Further-

more, a multiple-level feature fusion approach is developed to further improve medical

action recognition by constructing the complementary relations between different ex-

tracted features from the limited raw data. This contribution was partly published

in [30] and [31]. In the final chapter, the contribution chapters are summarized and

a discussion of the future work is provided.



Chapter 2

RELEVANT LITERATURE REVIEW

AND PRELIMINARIES

2.1 Introduction

Due to the distinctive attributes of the medical action recognition task as mentioned

before, it requires a more accurate and robust performance with privacy protection

methods for the real-world environments. For this purpose, many researchers have

been investigating related algorithms to fulfil these requirements in recent years. The

summary of the recent progression for medical action recognition, which is mostly

relevant to the proposed approaches in this thesis is provided in this chapter. In fact,

the improved medical action recognition approaches are from diverse dimensions such

as model upgrading and data pre-processing, therefore it is difficult to classify them

in a universal criterion. Therefore, this chapter introduces the corresponding exist-

ing algorithms along with the limitations of the current medical action recognition

frameworks. The main challenges of medical action recognition are first introduced,

which are primarily divided into four aspects: multiple fall classification, privacy

protection, data limitations and noisy annotation issues. Following by the recently

relevant developed methods for these limitations. After that, the evaluation instances

from four different benchmark datasets together with the applied evaluation metrics

in this thesis are presented for comparing the proposed approaches with the other

9
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state-of-the-art methods.

2.2 The challenges of medical action recognition

Different from normal action recognition, medical action recognition becomes more

challenging, especially with the multiple fall classification, privacy protection, data

limitations and noisy annotations issues. In the following subsections, relevant solu-

tions to these challenges are presented and discussed.

2.2.1 Multiple fall classification

Figure 2.1: Example visual illustrations of multiple fall classification from the UP-
Fall dataset: (a) Hand falling. (b) Backwards falling. (c) Sideways falling. (d) Knee
falling.

According to the conventional fall detection research works, the approaches in

this area are primarily divided into two categories: wearable sensor-based and video-

based. The wearable sensor-based methods aim to detect fall events by analyzing

the significant physiological variations of the human body, which can be captured
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by wearable sensors, such as accelerometers [32–34], gyroscopes [35–37] and pressure

sensors [38–40]. For example, a single gyroscope with three different identification

measures was proposed in [41], which are angular velocity, angular acceleration and

the body angle variations of the targets. The empirical thresholds were set for dis-

criminating the normal actions and fall actions. A sensor fusion method which used

both accelerometers and gyroscopes was established in [42], which is more accurate

and robust than using single sensors. However, due to the major target of fall de-

tection being aging population, wearable sensor-based methods are suffering from

several perspectives. Firstly, aging population often exhibits resistance to adopting

such intrusive wearable equipment due to subjective discomfort [43, 44]. Secondly,

cognitive impairments-related disease or memory decline among the aging population

can lead to objective forgetting to equip the device [45,46]. Thirdly, long-term usage

of the device without recharging may result in failure to capture the body variation

information [47]. Moreover, these wearable devices could potentially exacerbate the

injuries to the aging population, such as fractures.

The video-based fall detection approach is the most widely applied in recent

decades due to the extreme developments of computer vision and deep learning tech-

niques, which normally utilized the information captured from static RGB cameras

to distinguish normal actions and fall actions [12,48,49]. Different from the wearable

sensor-based method, most static RGB cameras are non-intrusive and wired thereby

preventing the aforementioned limitations in wearable sensor-based methods [13].

However, these vision-based approaches may suffer from the dark scene and dynamic

illumination [50]. Moreover, in contrast to wearable sensor-based approaches, tra-

ditional vision-based research predominantly focused on binary fall detection tasks,

which involve determining whether a fall event has occurred or not [13]. There was a

marked scarcity of attention dedicated to the distinct fall events classification tasks.

Moreover, the majority of public fall events benchmark datasets are designed with
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the lack of types of falls or amount of the subjects [51–53], with only the public

UP-Fall [1] dataset containing the sufficiently large scale and multimodal collection

of multiple fall event categories, which is presented in Figure 2.1.

The injuries incurred by the aging population due to various types of fall incidents

exhibit substantial variability. For instance, falling onto a chair might lead to minimal

injuries, while falling down from a staircase may result in hindbrain injuries, thereby

endangering the overall safety and well-being of the aging population. Consequently,

according to the aforementioned factors, the fall detection research field is in dire

need of vision-based methods that can comprehensively categorize various fall event

categories.

2.2.2 Privacy protection

Figure 2.2: Medical action recognition illustration of privacy protection issue: the
personal information of the target needs to be protected from leaking. (a) Facial
information. (b) Dressing information. (c) Background information.

In medical-related areas, privacy protection is one of the most challenging tasks.

Medical data contains sensitive health, personal and even familial information, the

leakage of which could cause disruptions in their lives and financial concerns [54,55].
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An example illustration of private information leakage is shown in Figure 2.2. As

for video-based medical action recognition, which is a medical-related task, it is im-

portant to handle action sequences for preserving the privacy of targets. With the

increasing extent of privacy processing, more data information may lose and result

in the model performance decreasing [56]. The objective of this task is to achieve

a balance between maximizing model accuracy and preserving privacy such as fa-

cial information, dressing information and background information. The video-based

privacy-preserving approaches for medical action recognition are primarily divided

into two categories: low-resolution processing and training with human skeleton se-

quences.

The utilization of low-resolution techniques aims to preserve visual privacy fea-

tures while remaining the model performance by reducing the resolution of the raw

images [57–59]. The approach proposed in [58], aims to involve the down-sampling

of the original videos to obtain extremely low-resolution frames, along with utilizing

specialized models to enhance the practicality. Another approach proposed in [59]

involves the initial identification of the most critical visual privacy features through

user surveys, following the resolution reduction processing on the raw data to ensure

privacy protection. In [60], the researchers applied both spatial and temporal res-

olution reduction on the raw video sequences to preserve privacy information, and

the experimental outcomes are thoroughly analyzed. However, while these methods

effectively ensure privacy protection, the usage of low-resolution techniques signifi-

cantly decreases the model performance [60–62], contradicting the requirements of

the medical field which necessitates accurate performance.

Utilizing human skeleton sequences offers a preserving privacy solution by re-

taining positional information of the landmarks while removing all other raw image

details [63–66],. This approach enables privacy protection while maintaining model

performance [65]. Moreover, skeletal data can mitigate the impact of dynamic illumi-
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nation and darkness and reduce computational costs. In [67], a directed acyclic graph

data paradigm was proposed for processing the skeleton sequences to enhance model

performance. In [68], a dynamic network was designed that simultaneously learns

both temporal and spatial information from skeleton data, thereby enhancing model

representation and generalization. Based on the foundations of [68], [63] extracted

skeleton features at different levels and fused them to enhance model robustness and

performance. However, these skeleton sequences still reveal the position and land-

marks information upon observation. In this thesis, both Chapter 3 and Chapter 4

utilize the extracted skeleton data for model training. To further enhance privacy

protection and address the aforementioned issue, Chapter 5 introduces a novel signal-

level image generation (SIG) method for skeleton representation, rendering training

data impervious to leaking the positions of landmarks or motion information upon

observation.

2.2.3 Data limitations

Medical action detection datasets exhibit several types of data limitations, are pri-

marily consisted of two following categories: the limited quantity of medical action

instances and the medical annotation lacking. Addressing these two issues within

deep learning-based medical tasks presents significant challenges, as the quality of the

dataset constitutes the most important factor influencing the performance [69–71].

On one hand, due to rarely occurrence of medical actions compared to normal

human actions, two challenges are raised. Firstly, this leads to an imbalance of quan-

tities issue within the dataset, where the number of normal action sequences greatly

surpasses that of medical action sequences. The direct consequence of data imbalance

is to exhibit overfitting during the training process [72–74], subsequently diminishing

model performance and generalization ability. Some methods tackled the imbalanced

issue by employing focal loss [75], aiming to enhance model performance by atten-
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uating attention towards numerous sample categories and augmenting focus on the

few sample categories. In Chapter 3 of this thesis, a two-stage framework is proposed

to mitigate the imbalanced dataset issue. Secondly, the limited quantity of medi-

cal action samples avoids applying the conventional deep-learning-based framework

for training. Recent research works have focused on exploiting one-shot or few-shot

frameworks to mitigate this challenge [76–79]. These frameworks were trained with

the numerous action categories to acquire prior knowledge, followed by fine-tuning

their parameters using the few sample categories. A detailed explanation of the well-

known one-shot learning frameworks will be presented in the following section, which

is utilized as the backbone of the third contribution of this thesis. This issue also

serves as one of the motivations for the approach proposed in Chapter 5 of this thesis.

On the other hand, the second challenge is caused by the annotation lacking, stem-

ming from the dual concerns of privacy protection and the expensive costs associated

with annotations. This issue serves as the second motivation for the approach pro-

posed in Chapter 5 of this thesis. Over the past few years, various training approaches

have been employed to accomplish this issue. As aforementioned, the one-shot learn-

ing framework can tackle this issue by training with a small set of few sample cate-

gories (medical actions) which are correctly annotated. Furthermore, self-supervised

learning frameworks were investigated to tackle the annotation-lacking issue [80–82].

By obtaining information from the entire dataset and then generating pseudo-labels,

these approaches facilitated the model through the training stage without numerous

annotations. However, the efficacy of these approaches is constrained by the quality of

the generated pseudo-labels, potentially decreasing the performance [82]. The semi-

supervised learning frameworks were embraced for addressing this issue by training

the model with a subset of annotated instances and then generating pseudo-labels

for unlabeled instances [83–85]. Similar to self-supervised learning approaches, the

efficacy of semi-supervised learning heavily depends on the quality of the generated
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pseudo-labels. Moreover, the aforementioned data imbalance issue and the noisy an-

notation which will be discussed in the following subsection could derive extremely

negative impacts on the performance of semi-supervised learning frameworks due to

the characteristics biases. In this thesis, a one-shot learning framework will be utilized

to address the aforementioned data limitation issue.

2.2.4 Noisy annotations

Figure 2.3: Example visual illustration of noisy annotations from the UP-Fall dataset:
(a) Given label: laying, Correct Label: sideways falling. (b) Given label: hand falling,
Correct Label: knee falling.

In data-driven deep learning methods, the quality of the annotations plays a funda-

mental role in the performance of the frameworks [69]. The low quality of annotations

results in incorrect training direction which can deteriorate the classification perfor-

mance of the neural models. The fundamental origins of noisy annotations in datasets

can be attributed to the following primary points: firstly, the heavy time cost and the

heavy labor cost associated with the manual annotation method facilitate some re-

searchers to apply fully or semi-automated annotation methods, consequently result-

ing in bring the noisy annotations into the dataset during the inaccurate models [86].

Secondly, some researchers employ multiple annotators for collaborative annotation

work, which can introduce noise due to reasons such as work fatigue, time constraints
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and disparities in the understanding of identical data categories [70]. Finally, the im-

balanced data issue can lead annotators to identify the incorrect annotations to the

infrequently data categories due to the rarity of the instances. The example visual

illustration of noisy annotations is shown in Figure 2.3.

The noisy annotations bring substantial negative impacts on the model perfor-

mance. A long-term training process can lead the model to update parameters

towards the incorrect direction and overfit to noisy instances [71]. Furthermore,

medical-related research works necessitate promising results due to their direct rel-

evance to the life security of patients [71]. Hence, it becomes paramount to tackle

the noisy annotations issues for medical action recognition. To address this issue,

researchers have exploited various methods for noisy annotation handling [5–7, 87].

In recent years, the DNN model has been proven to learn the simple (clean) data

at the beginning of the training process and then gradually trend to adapt the hard

(noisy) data with the increasing of the training epochs [88]. In addition, the clean

data also have been proven to have a smaller loss value than the noisy data [89],

which inspired the researchers to investigate this small-loss theory as the foundation

for discriminating the clean instances and noisy instances during the training process.

Since the DNN models have an extensive capacity for fitting to noisy instances,

therefore the updating strategy plays a crucial role in robust learning with noisy label

methods [69,90]. The disagreement updating strategy was proposed in [87] to enrich

the effective training process rather than overfitting to the noisy instances, which

trains two DNN models simultaneously and attempts to update the parameters by

utilizing the instances only if the predictions from the two models are different. Han

et al. [5] attempted to improve the noisy label learning framework by introducing

the cross-update theory, which indicates training two DNN models simultaneously by

applying the useful data with small loss values to the peer network for the parameter

updating. However, the two DNN models may easily tend to converge with the in-
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creasing training epochs by employing this co-training algorithm [5]. In order to keep

the DNN models diverged to keep learning the knowledge from the useful instances

and to further improve the performance, it is needed to address the aforementioned

converge issue by investigating the novel updating strategy. In this thesis, both a

data purification method based on the joint probabilities matrix and a noisy label

learning framework are proposed for addressing the data quality issue.

2.3 Primary components for medical action recognition

2.3.1 Deep neural network

The deep neural network (DNN) models have been exploited for addressing many

practical video processing tasks such as human action recognition, human tracking

and abnormal human behavior detection. A DNN model primarily comprises three

distinct layers: the input layer, hidden layers, and the output layer, which contain

numerous neurons for delivering and processing the feature information.

The DNN model aims to minimize the loss value between the training targets

and the output predictions for updating the parameters by utilizing the weights and

biases. The gradient descent strategy is applied to decrease the weights and the biases

for minimizing the loss value to fit the dataset and obtain the model with the best

performance.

Moreover, multiple DNN variation models are proposed for specific tasks, such as

convolutional neural networks (CNN) for processing the image data [91, 92], graph

neural networks (GNN) for processing the graph data [93, 94] and recurrent neural

networks (RNN) for handling the data with time series information. In this thesis,

DNN models are utilized as the backbone in both Chapter 3 and Chapter 4. Ad-

ditionally, one of the most extensively employed CNN architectures is employed in

Chapter 5 for feature learning.
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2.3.2 Peer networks for learning with noisy annotations

For the proposed learning with noisy labels algorithm in Chapter 4, the peer networks

are utilized as the backbone model for mining the clean instances. The peer network

consists of two vanilla DNNs with identical structures, and each mini-batch of data is

simultaneously fed into these two DNN models for training. Following the small-loss

criteria, instances with small loss values are considered clean samples. The loss values

of the data from each mini-batch are ranked after each training epoch. Based on the

proportion of noise, it is determined how many clean samples exist within a mini-

batch. Initially, the training aims to maintain a higher proportion of clean samples

and gradually decrease this proportion as epochs increase. The DNN model is inclined

to learn from simple clean samples in the initial stage of the training process before

tackling more challenging noisy samples. The peer network models have the ability

to filter out the noisy instances at the beginning of the training since they have not

yet received the impacts from the noisy instances. The peer networks will gradually

overfit the noisy data with the training epochs increasing and thereby decrease the

discriminatory capability between the clean instances and noisy instances.

The cross-update and agreement strategies are also employed for enhancing the

noisy-tolerant ability in the proposed learning with noisy labels framework. Intu-

itively, different classifiers can generate distinct decision boundaries leading to differ-

ent learning abilities. Additionally, the random initialization of the two DNN models

results in divergent initial parameters, thereby enhancing the disparate learning capa-

bilities of peer models. The models update the parameters by using the loss values of

the selected clean samples from their peer models at the end of each training epoch,

rather than individually updating the parameter by using the loss values of the entire

mini-batch instances. Through this peer-review update strategy, the two DNN mod-

els can adaptively refine training errors originating from the peer network, even if

where the selected instances transmitted from the peer model are not entirely clean.
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2.3.3 The prototypical network for medical action recognition

Definition of one-shot learning

The objective of one-shot learning is different from conventional supervised learning.

Conventional supervised learning aims to learn the features from the training set

during the training process and generalize to the testing set to acquire promising

performance. However, one-shot learning aims to obtain the distinguishing capability

to learn from the limited samples, which is called ‘learn to learn’.

To be precise, the samples in the training set and the testing set are independent

of conventional supervised learning, but the categories are the same. Nevertheless,

both the samples and categories of the instances utilized for testing are independent

of instances from the training set in one-shot learning. As a result, one-shot learning

presents more difficulty compared to conventional supervised learning. There are two

definitions which are widely used in one-shot learning: the support set and the query

set. The support set is utilized for fine-tuning the model by learning with limited

instances with novel classes after the pre-training stage. The labels of the instances

in the support set will be provided to the model for further information learning. The

support set is often described using the notation ‘n-way-k-shot’, where ‘n’ denotes the

number of novel classes in the support set and ‘k’ is the number of samples per class.

i.e. ‘5-way-1-shot’ indicates the existence of five novel classes in the support set, with

each class having one instance. The query set is employed to evaluate the model after

the meta-training stage based on the support set. The experimental results on the

query set instances are utilized as the conclusive performance of the framework.

The preliminaries of the prototypical network

In Chapter 5 of this thesis, ProtoNet [9] is selected as the one-shot learning frame-

work. For each class, it calculates the mean vector of the embedded instances from

the support set as the prototype for that class. The model is tested on the query
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set by calculating a specific variation of Euclidean distance between the instances

from the query set and the acquired prototypes of each class, which is called regular

Bregman divergence [95]. Bregman divergence represents a form of distance between

two points in a specific space. When these points are subject to arbitrary probability

distributions, the averaged point is invariably the one with the minimized average dis-

tance to these points in the specific space, which is used for calculating the distance

between the prototype instance and the query instance. The illustration of ProtoNet

is provided in Figure 2.4.

Figure 2.4: The illustration of prototypical networks in one-shot learning scenarios.
The one-shot prototypes ck are calculated as the anchors for determining the dis-
tances with the query actions xi, thereby discriminating the similarities between the
prototypes and query actions.

In the one-shot learning task, a small support set of N labeled instances I =

{(x1, y1) , . . . , (xN , yN)}, where xi ∈ RD indicates the instance features with D di-

mensions and yi ∈ {1, . . . , K} is the ground truth labels. Ik indicates the instance

set with class k.

TheM dimensional prototype of each class ck ∈ RM is obtained after the ProtoNet
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computing. The mean vectors of the embedded instances are presented as:

ck =
1

|Ik|
∑

(xi,yi)∈Ik

fϕ (xi) (2.3.1)

where fϕ is the encoder function which embedding the features RD → RM with learn-

able parameter ϕ. The Bregman divergence is utilized for evaluating the similarity

between the instances, which is formulated as follows:

disφ (z, z
′) = φ(z)− φ (z′)− (z− z′)

T∇φ (z′) (2.3.2)

where φ is the differentiable and z, z′ denotes the points to be calculated for distances.

∇ is the gradient function and T is the transpose operation. ProtoNet then calculates

the distance between query instance x and each class prototype and calculates the

classification probability distribution by softmax:

pϕ(y = k | x) = exp (− dis (fϕ(x), ck))∑
k′ exp (− dis (fϕ(x), ck′))

(2.3.3)

where pϕ(y = k | x) represents the probability of instance x from the query set

belongs to class k. dis(·) is the distance function as shown in equation 2.3.2 and

exp(·) is the exponential function.

J(ϕ) = − log pϕ(y = k | x) (2.3.4)

The learning process of Protonet is to minimize the value of J(ϕ) by utilizing the

stochastic gradient descent (SGD). This is equivalent to maximising pϕ(y = k | x)

value to obtain the predicted classes.
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2.4 Evaluation Datasets

To demonstrate the effectiveness and applicability of the proposed medical action

recognition methods, it is essential to evaluate the experimental performance of these

proposed methods. In this section, several widely used and public medical action

recognition benchmark datasets are explained, which are applied to demonstrate the

efficacy of the proposed methods. The image example illustrations from the following

benchmark datasets are provided in both Figure 2.5 and Figure 2.6.

2.4.1 UP-Fall Dataset

UP-Fall dataset is a large-scale fall detection dataset which provides multimodal

sensor data, including the accelerators, EEG, infrared and RGB cameras. These data

comprise raw and action features from 17 healthy subjects from 12 different human

actions, which includes falling using hands, falling using knees, falling sidewards,

falling backwards and falling sitting in an empty chair. Each of them has three trials.

Moreover, the dataset provides two different experimental use cases for research. The

RGB images are utilized for the experiments and fed into Alphapose [8] for the skeletal

data extraction to remove the noisy information and protect the privacy information.

The amount of skeleton data groups is 220,660 after applying the pre-processing

approach, which will be shown detailed in Chapter 3.

2.4.2 NTU RGB+D 60

NTU RGB+D 60 is a 3D large-scale human action dataset which provides skeleton

data sequences. Each action is captured by 3 Kinect V2 cameras at the same height

but with different horizontal angles, which are−45◦, 0◦ and 45◦. This dataset provides

RGB images, depth map sequences, 3D skeleton data and infrared (IR) videos for each

sample sequence. For privacy protection considerations, skeleton sequences data are

selected as the training data in this thesis. The skeleton data sequences consist of
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56,880 instances for 60 types of human actions. These sequences are recorded from

40 different subjects with 17 different scene conditions, each subject provides 25 pose

landmarks. The age range of the subjects is from 10 to 35 and the actions are labelled

from A001 to A060.

2.4.3 NTU RGB+D 120

NTU RGB+D 120 is an extended version of NTU RGB+D 60. It contains 120 types

of human actions recorded from 106 subjects in 155 different scene conditions and

each subject also provides 25 pose landmarks. There are 114,480 skeleton sequences

including daily, mutual and medical-related actions. This dataset is the most widely

used benchmark for action recognition in recent years, which has diversity in cam-

era views, environmental conditions and human subjects. The extended actions are

labelled from A061 to A120.

2.4.4 PKU-MMD

PKU-MMD dataset is a 3D large-scale dataset which contains 1,076 long human

action sequences in 51 human action classes, which include daily actions, interactive

actions and medical-related actions. This dataset is recorded from 66 subjects in

3 different camera views and the ages of the subjects are from 18 to 40. There

are over 20,000 instances provided with multi-modality data, including RGB, depth,

infrared radiation and skeleton sequences. The dataset is captured by the Kinect V2

cameras and the skeleton data is chosen for training. The skeleton data consists of

3-dimensional locations of 25 human landmarks for detected targets in scenes.

2.5 Evaluation Metrics

This section describes the four common evaluation metrics to evaluate the action

recognition performance of the related medical action recognition approaches. One
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term is precision which is widely used for fall detection retrieval to evaluate the

accuracy of positive predictions made from the framework. The second is recall which

determines the proportion of actual positive cases that can be correctly identified by

the model. The third is the F1 score which is one of the widely used tools to give the

individual and brief performance and it is relevant for the imbalanced dataset. The

last is Top-1 accuracy which plays the most important role in the action recognition

field, which will be applied to compute the benchmark performance of the proposed

method, so as to accomplish a fair comparison with the other state-of-the-art medical

action recognition methods in the ranking board.

2.5.1 Precision

The precision score is to measure the average medical action classification errors

between the predicted action categories and the ground truth, which is formulated

as:

Precision =
TP

TP + FP
(2.5.1)

Precision measures the performance of the proposed algorithm between the pre-

dicted positive and the true positive instances. It is mainly applied in Chapter 4 to

evaluate the proposed noisy label learning method, which is used for inspecting the

rate of the predicted clean instances to the ground truth clean instances.

2.5.2 Recall

The recall score measures the proportion of actual positive cases that were correctly

identified by the model, the definition of recall is:

Recall =
TP

TP + FN
(2.5.2)
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The model with a high recall score indicates that it has a strong ability to correctly

identify positive instances. Recall is one of the crucial evaluation metrics in medical-

related areas, which will be utilized in Chapter 3 to determine the model selection.

2.5.3 F1 Score

The F1 score as the evaluation metric, is designed to measure the performance of

the fall events classification framework between the human daily normal actions and

different fall events, and it is calculated as:

F1 score = 2 · Precision · Recall
Precision + Recall

=2 ·
TP

TP+FP
· TP
TP+FN

TP
TP+FP

+ TP
TP+FN

=
2TP

2TP + FP + FN

(2.5.3)

where the range of F1 score is [0, 1], higher value indicates the proposed framework

has better performance. The scores are reported in percentage formats. Since the

occurrence of medical actions is not as frequent as human normal actions, which will

lead to data imbalanced issues. F1 score combines both precision and recall, which is

suitable for evaluating the imbalanced dataset and remains effective in the presence of

imbalanced data and missing label issues. Due to the fact that the F1 score provides

a comprehensive and intuitive manner to analyze the action classification ability of

the proposed framework, it is applied in Chapter 3 as the main evaluation metric for

addressing Objective 1 and Objective 2.

Combining precision and recall, it is suitable for unbalanced datasets and remains

effective in the presence of unbalanced data or missing labels by calculating the har-

monic mean of both recall and precision. The F1 score provides a comprehensive and

intuitive way to evaluate the classification ability of a model.
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2.5.4 Top-1 Accuracy

The top-1 score as accuracy is often considered the most important evaluation metric

for appraising the medical action recognition performance. It refers to the percentage

of times that model correctly predicts the highest-probability class for the specific

input sequence, and it is calculated as:

Top− 1 =
TP + TN

TP + FP + TN + FN
(2.5.4)

It is mainly comprised of the following two error categories: the false positive and

the false negative. A classification or mismatched error is likely to happen between

similar human medical actions, such as neck pain and headache. In order to achieve

promising Top-1 accuracy, these errors are expected to be as few as possible. This

Top-1 accuracy is the most widely-used evaluation metric for comparing the pro-

posed algorithms with the benchmarks in Chapter 4 and Chapter 5. The scores are

illustrated in the percentage format for the evaluations.

2.6 Summary

In this chapter, the challenges of medical action recognition were first introduced

along with the existing approaches as well as the limitations of these approaches were

investigated. Then, the three primary components of the proposed approaches in

this thesis were presented: deep neural network for multiple fall events classification,

peer network for noisy label issue and ProtoNet for data limitation issue. This thesis

aims to address the aforementioned challenges for medical action recognition tasks.

Four benchmark datasets have also been presented and the evaluation metrics were

provided to evaluate the proposed approaches. In the next chapter, the redundant

information reduction theory and the two-stage framework for the specific multiple

fall classification task will be first developed to improve the performance.



Chapter 3

PRIVACY MITIGATING HUMAN

FALL EVENTS CLASSIFICATION

USING DATA FUSION AND

CASCADED LEARNING

3.1 Introduction

In human action recognition, due to the vulnerability of the aging population, it is

important for the framework to be accurately and promptly aware of the occurrence

of fall events since it has been proven that the time taken to be detected after the

fall events for the aging population is positively correlated with the severity of the

injuries they suffer.

Conventional fall detection methods are empirically divided into two main cate-

gories, which are wearable sensor-based and video-based. Due to the memory decline

of the aging population, the lack of willingness to wear the devices, and the power

consumption of wearable devices, there are numerous limitations and uncertainties as-

sociated with wearable sensor-based approaches and may not be effective and sustain-

able in dealing with fall detection in real-world scenarios. Alternatively, the human

action recognition methods in data-driven mechanisms based on the video sequence

30
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have been widely developed to analyse human behavior with promising model perfor-

mance. A substantial proportion of the established methods aims to apply the human

skeleton sequence to avoid the impact of the dynamic illumination and preserved the

privacy information. Moreover, the computational cost for calculating the skeleton

sequence is much less than the video sequence. However, previously established video-

based algorithms have primarily focused on addressing the occurrence of fall events,

which is the binary detection task. Due to the relatively fragile physical condition

of aging population, different fall events lead to distinct physical and emotional in-

juries. For instance, the risk posed by falling backwards from stairs is significantly

more critical than falling into a chair. On the other hand, exploring the redundant

information in the human skeleton sequences could provide better performance and

robustness in fall events classification with less computation time.

In order to address the aforementioned limitations of the existing methods, this

chapter presents a deep neural network-based (DNN) framework for fall events clas-

sification in video. The proposed system primarily exploits two concepts: redundant

information reduction and a two-stage cascaded learning framework for fall events

classification. The redundant information reduction technique aims to remove the

skeleton parts which are relatively low weights for the fall classification by consid-

ering improving the performance and robustness in the data processing stage. A

skeleton feature extractor is applied to distillate the skeleton information and fol-

lowing the skeleton data preprocessing stage to remove the undesired subjects and

redundant empty frames. After that, the redundant information reduction technique

is applied and four classic clustering classifiers are used for verifying the efficiency

of the proposed method, which are Random Forest (RF), Support Vector Machine

(SVM), Multiple Layer Percepton (MLP) and Adaptive Boosting (AdaBoost). In or-

der to mitigate the imbalanced data issue and further improve the performance of the

fall events classification on the framework level, a two-stage multiple fall events clas-



Section 3.1. Introduction 32

sification framework based on DNN is proposed for addressing these issues with the

extracted skeleton features. In the initial stage, the model focuses on discriminating

the normal actions and fall actions based on the re-annotated binary labels. In the

conclusive stage, the DNN is applied for the multiple fall events classification based

on prior knowledge from the initial stage. Moreover, the gating parameter is utilized

along with the proposed structure to further boost the classification performance,

which would refine the controlling of the initial stage for better discriminating ability.

1. A novel DNN-based strategy is developed for multiple fall events classification

on video data.

2. The redundant data issue is mitigated on the data processing level with reduced

computational cost and the privacy information is protected by utilizing the

extracted skeleton features.

3. A two-stage learning framework for human fall events classification based on the

extracted skeleton features is proposed to address the imbalanced data issue on

the framework level and further improve the performance.

This chapter addresses the first objective and second objectives of the thesis,

which match the deep learning-based fall events classification using the redundant

information reduction method published in [26], and the DNN-based fall events clas-

sification using the proposed two-stage learning to improve the performance which

presented in [27]. Section 3.2 introduces the proposed fall events classification al-

gorithms in detail as four main components, including raw RGB image processing,

skeleton feature extraction, redundant information reduction and the proposed two-

stage learning framework. Experimental results are shown in Section 3.3 and the

conclusion and discussions are reported in Section 3.4. The overview of the proposed

fall events classification system is shown in Figure 3.1.
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3.2 Proposed Method

3.2.1 Data Processing

Data Preprocessing

Figure 3.2: An illustration of dataset recording environment for the UP-Fall dataset.

In this chapter, the experiments are implemented on the widely-used UP-Fall

dataset. This dataset provides various daily normal actions and different fall events

in video sequences. The UP-Fall contains various kinds of normal activities, such as

walking, jumping and sitting. Figure 3.2 shows the recording environment of the UP-

Fall dataset. The UP-Fall dataset contains two perspectives of video data from two

Kinect cameras, which are the front view and the side view, respectively. The video

data from the side view camera (CAM1) is selected as the data to the framework for

the initial pre-processing. According to the description of the UP-Fall dataset, part

of the action sequences are missing, in order to match the sequences and annotations,

the synchronization operation is applied between the instances and the annotations.

The annotations are transformed into the numpy file for the model training. The

instances are sorted by the subject ID, trial ID and timestamp ID. The instances

from the same subject, same actions and same trial are packaged into the same folder

for sending to the skeleton extractor in the next step.
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Skeleton Extractor

Since the video sequences exist dynamic illumination and leakage the privacy infor-

mation, such as dress information, facial information and background information.

Moreover, the computational cost for the video data is relatively higher than ap-

plying the skeleton sequences. To tackle these issues, AlphaPose is introduced for

extracting the human skeleton features from the video data, which is open-sourced

by Shanghai Jiaotong University (https://www.mvig.org/research/alphapose.html).

The model was pre-trained on the COCO detection dataset and achieved 89.2% ac-

curacy as the motion estimation performance. Readers are referred to [8] for further

details of the model instructions. A pose graph which consists of 17 keypoints of

the human body is generated by applying the image data to the model. Both the

confidence scores c and the coordinates of the values are included in the set of the

keypoints, which are denoted as (x, y, c). Therefore, the model estimates a total of

3 × 17 = 51 sets of characteristics for each target in every frame. In this way, the

initial RGB image sequences are converted into the skeleton sequences and will be

utilized for model training after the following major target selection step.

Skeleton Data Preprocessing

Figure 3.3: The illustrations of the instance with a redundant target from the UP-
Fall dataset, a pedestrian could be observed walking in the corridor. The data with
different settings are conducted as follows: (a) The initial RGB image data with a
redundant target. (b) The skeleton rendered data from AlphaPose. (c) The redundant
data with only skeleton information before the major target selection step.
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The UP-Fall dataset recordings were conducted within a controlled laboratory

setting featuring glass walls and an adjacent corridor. With the meticulous data

checking, two distinct reasons for interference with the recorded targets were identified

during the data collection process: the first pertains to subject shadows resulting

from reflections on the glass walls and the second involves the presence of individuals

walking across the corridor during dataset recording. Subsequent to the initial data

processing step, where raw image data is transformed into human skeleton data, there

arise instances in which the output files contain multiple skeletons within a single

frame. This situation leads to the inadvertent inclusion of undesired and redundant

targets in the skeleton data. To tackle this issue systematically, it becomes imperative

to perform a targeted selection of the desired targets while effectively eliminating

redundant ones from the processed skeleton data. To be precise, the confidence

scores of the targeted subjects are utilized for filtering out the undesired subjects.

The confidence scores are ranked and the target with the highest scores is defined

as the desired subject. This rigorous selection process ensures that the output files

solely consist of the intended targets, thereby mitigating interference arising from

subject reflection and corridor passersby. Through meticulous data selection and

refinement, the objective is to obtain a refined and reliable human skeleton dataset for

subsequent analysis and research within the context of the UP-Fall dataset, recorded

in the laboratory environment. Moreover, when the detected subjects are walking

out of the field of view of the camera, the dataset will contain empty frames. These

empty frames are redundant for the training stage and will affect the performance of

the proposed framework. Therefore, these empty frames will be removed from the

dataset in advance to reduce the impact on the proposed framework performance.

Figure 3.3 illustrates an example with a redundant target, which includes the original

RGB image, the rendered image from AlphaPose, and the skeleton-only image.
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Redundant Data Reduction and Fusion

In the acquired skeleton data, a total of 17 keypoints are extracted, including five

facial keypoints and twelve body keypoints. However, the facial keypoints demon-

strate comparatively not as informatics as the body keypoints for the fall events. To

be precise, the five facial keypoints will be fused to identify the proposed optimal

fusion approach. The detailed redundant data reduction is Fr(xr, yr, cr) formulated

as follows:

Fr(xr, yr, cr) =
1

M

M∑
i=1

(xi, yi, ci) (3.2.1)

where M represents the number of redundant keypoints to be fused, xi and yi

denote the x-axis and y-axis coordinates of each keypoint, respectively. ci represents

the confidence score associated with each keypoint.

By employing this redundant data reduction technique, the resulting facial key-

points retain critical fall-related information while exhibiting reduced computation

time compared to the original facial keypoints. Furthermore, the performance of fall

event classifications is evaluated under four occlusion scenarios in the following ex-

periment section, which are right arm, left arm, right leg, and left leg occlusion, to

analyze the impact of missing data due to occlusion and privacy protection measures.

The proposed framework holds significant practical implications for fall detection

under occlusion and privacy protection scenarios with enhancements of 3% to 9%,

offering valuable insights into mitigating challenges faced in real-world fall detection

applications.

3.2.2 Proposed DNN

Since the size of the skeleton data extracted from the video image is much less than

the raw image data, the skeleton data may have a trade-off between privacy protection
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Figure 3.4: The proposed DNN architecture for mitigating information loss in the
proposed data purification method.

and promising performance. To overcome the possible information loss, a new DNN

model is proposed as shown in Figure 3.4. It has 8 dense layers and 3 concatenation

operations between the layers in order to reuse the skeleton information. Meanwhile, 3

sub-outputs from different layers are extracted to generate the final weighted output,

which is defined as the inner-ensemble. The sub-outputs from different layers have

different sensitivity and precision for different activities. The weighted loss for the

three outputs is utilized for updating the parameters of the proposed vanilla DNN

model, the loss function is formulated as follows:

L = −
∑
i=1

ωi(ỹi · log(p∗i )) (3.2.2)

where ωi represents the loss weight of the sub-output i. And ỹi and p∗i indicate the

target and prediction for the sample in the ith sub-output, respectively. The final

loss is the weighted combination of three sub-losses, therefore the number of sub-loss

is 3, and the weight ratio of the sub-output is 1:1:2.
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3.2.3 Cascaded Learning

Initial Stage: Binary Fall Classification

The aforementioned imbalanced data issue may lead negative impact on the clas-

sification performance of fall events. In order to tackle this problem, the proposed

framework focuses on identifying the normal and abnormal actions at the initial stage

and trends to the multiple fall events classification at the conclusive stage by propos-

ing a vanilla DNN model. The objective of the initial stage is to filter out the normal

actions from the entire dataset and thereby address the imbalanced data problem.

Due to the fall events may lead to serious health and life risks for the aging popula-

tion, it is crucial for the model trained in the initial stage to be capable of detecting

most fall events and achieving a high recall measure. The recall measure compar-

isons between RF and the proposed vanilla DNN model for fall detection ability are

presented in Table 3.1.

Table 3.1: Comparison between the DNN and the RF [11] at the initial stage for
model selection by using recall measure.

Method
No. of Falls

Detected / Ground Truth
Recall

DNN 1788 / 1803 0.96

RF [11] 1605 / 1803 0.86

According to Table 3.1, it can be observed that there are a total of 1803 ground

truth instances. Due to the requirements of the medical-related task, it is essential to

detect as many true positive instances as possible and minimize false negatives. The

recall represents the proportion of true positive instances correctly predicted among

all actual positive instances. Therefore, recall is utilized as the evaluation metric for

the best model selection. The proposed DNN model achieved a recall of 96%, which

is 10% higher than the recall of the pre-trained RF model on the UP-Fall dataset.

This performance indicates that the proposed DNN model is more suitable for the

binary classification task of distinguishing fall events from normal activities in the
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initial stage. Since it is a binary classification during the initial stage, the binary

cross entropy is used as the loss function, which is shown in equation 3.2.3. In order

to overcome the information loss in the network layers, multiple weighted outputs are

utilized from different layers as sub-outputs to reuse the information.

La = −
∑
i

ωi(y
g
i · log(p

p
i ) + (1− ygi ) · log(1− ppi )) (3.2.3)

where ωi represents the loss weight of ith sub-output. ygi and ppi respectively indicate

the ground truth and instances prediction from the ith sub-output. La represents

the loss function for the initial model. The weight ratio of the sub-outputs is 1:1:2.

Moreover, the sigmoid activation function is used as the activation function of the

output layers in the proposed DNN model. Since the efficacy of the proposed approach

significantly depends on the performance achieved during the initial stage, particularly

focusing on minimizing errors during the training process in the initial stage. To

mitigate classification errors, two thresholds denoted as ξfp and ξfn are introduced to

handle the occurrences of false positives and false negatives, respectively.

Conclusive Stage: Multiple Fall Events Classification

Upon completing the training of the DNN model in the initial stage, a subset of

training data exclusively containing fall events is obtained. Subsequently, the second

DNN model is trained using this refined subset, wherein the labels represent distinct

categories of different fall events. The purpose of the second model in the conclusive

stage is to address the classification of multiple fall events. The definition of loss

function from the proposed conclusive stage is as follows:

Lb = −
∑
i

ωi(y
g
i · log(p

p
i )) (3.2.4)

Since the classification task in the conclusive stage involves multiple fall events,
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the sparse categorical cross-entropy loss function Lb is employed for classifying the

multiple fall events, which is shown in equation 3.2.4. Moreover, weighted sub-outputs

are utilized, and the final loss function in the conclusive stage consists of several

sub-output losses with a weight ratio of 1:1:2. Furthermore, the sigmoid activation

functions are employed in the output layers.

During the testing stage, the instances are initially evaluated by the trained binary

classification model in the initial stage. The instances are then fed into the multi-

class fall classification model in the conclusive stage to determine the specific fall

event category if it is identified as positive in the initial stage. The proposed two-

stage learning approach for multiple fall events classification is outlined in Algorithm

1 as follows:

Algorithm 1: Two-stage learning fall events classification

Input : Training data D, original labels L, binary labels Lbin, binary model
epoch Tmax

a , multi-class model epoch Tmax
b

1 Initialize Binary model Ma,
2 Multi-class classification model Mb

3 for Ta ← 1, 2, 3, ..., Tmax
a do

4 Based on D and Lbin,
5 Train Ma by using equation (1) ;

6 end
7 After Ma is trained:
8 Obtain Qbin ←Ma, D
9 // Generate binary classification map ;

10 Obtain Dmulti ← D,Qbin

11 // Generate multi-class falls data ;
12 Obtain Lmulti ← L,Qbin

13 // Generate multi-class falls labels ;
14 for Tb ← 1, 2, 3, ..., Tmax

b do
15 Based on Dmulti and Lmulti,
16 Train Mb by using equation (2) ;

17 end
Output: Trained binary classification model Ma;

Trained multi-class classification model Mb
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3.3 Experiments

3.3.1 Datasets

The UP-Fall dataset comprises 2 Kinect cameras capturing front-view and side-view

images of the subject. The raw data from the side view camera is selected for training

the model in this chapter and Chapter 4, in which the resolution of the images is

640 × 480 in PNG format. After the redundant empty frame reduction processing,

a total of 220,660 frames were utilized for the human skeleton feature extraction.

The dataset is divided into two parts for the experiments: 70% (154,462 frames) for

training and 30% (66,198 frames) for testing.

The AlphaPose algorithm is utilized to extract the skeleton features with 17 key-

points of the human body, encompassing 5 facial keypoints and 12 body keypoints.

The proposed redundant data reduction theory primarily concentrates on the facial

keypoints. To compare with the baseline results, the five facial keypoints are con-

sidered as redundant data for reduction. The proposed simple and efficient method

significantly improves both results and calculation time, which are demonstrated in

the following sections. Additionally, an ablation study experiment is carried out on

the left and right arms (shoulder, wrist, elbow) as well as the left and right legs (hip,

knee, ankle) of the human body. This is done to examine the impact of occlusion on

the experimental outcomes for various body parts. To address occlusion scenarios in

this research, each classification method employs a 10-fold cross-validation approach.

This ensures a robust experimental validation basis for the theory of redundant data

reduction.

3.3.2 Parameter Settings

The UP-Fall dataset encompasses 5 types of falls and 7 types of normal human activ-

ities. Adam is selected as the optimizer with β1 = 0.9 and β2 = 0.99, and the epsilon
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is set as 1e−8. The initial learning rate is set as 0.0001 and the batch size is set as

1024. Moreover, 300 instances from the training set are selected as the validation set

for the best model selection in the proposed two-stage cascaded learning framework.

The training and testing evaluations were conducted on a workstation equipped with

a CPU i7-9700k and a GPU Nvidia GTX 1660Ti with 6GB of RAM.

3.3.3 Experimental Results for Redundant Data Reduction

Table 3.2 presents the F1 score performance comparisons, which use RF, SVM, MLP

and AdaBoost as the classifiers for evaluation. The detailed parameter settings are

set as default as in [11]. Better performance for each label is highlighted in bold. For

the detailed description of each label, Label-1 denotes forward falling using hands,

Label-2 represents forward falling using knees, Label-3 indicates backwards falling,

Label-4 is sideways falling and Label-5 is falling to an empty chair.

Table 3.2: Comparison using F1 score (%) based on four classifiers between the
baseline and the proposed method.

Methods Label-1 Label-2 Label-3 Label-4 Label-5
RF Baseline [11] 76.1 73.9 66.1 79.2 84.5
RF Proposed 85.2 82.6 77.6 86.2 84.5
SVM Baseline 79.0 77.0 73.1 82.1 83.3
SVM Proposed 84.0 81.3 76.9 86.3 86.5
MLP Baseline 65.1 53.1 51.6 51.5 55.8
MLP Proposed 64.2 54.6 54.1 56.3 59.1
AdaBoost Baseline 74.8 73.9 70.0 80.5 78.5
AdaBoost Proposed 76.9 72.1 70.1 79.6 79.1

It can be observed from Table 3.2 that the proposed method using RF and SVM

shows higher improved performance compared to the other two classification meth-

ods, with enhancements of 3% to 9%, respectively. The classification improvements

for MLP and AdaBoost generally range from 1% to 3%. Additionally, it is noteworthy

that the performance of MLP for Label-1 exhibits a relatively small reduction, while

the performance of Label-2 and Label-4 also slightly decreases in AdaBoost. Fur-
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thermore, both Label-3 and Label-5 demonstrate relatively significant improvements

for all classification methods after applying the proposed redundant data reduction

method. The reason for these performance improvements is that during the different

fall events, most of the physical variations of the human body are mainly localized

on the trunk and limbs of the human body, rather than the facial landmarks. In

this case, the facial landmarks information is relatively similar for different fall events

which are redundant or adverse for the fall events classification performance. By

utilizing the proposed method, the differences between the different fall events are

more distinct for the model training and reduce the misclassification issue. It needs

to be mentioned that different from the other 3 classifiers, AdaBoost achieves no

significant improvements after applying the proposed method. The reason for this

is that AdaBoost is one of the integrated learning methods and is sensitive to noisy

annotations, which motivates the dataset purification method in the next chapter.

Table 3.3: Ablation study precision performance (%) under four body parts occlusion
scenes with four clustering classifiers for fall classification.

Methods Left Arm Right Arm Left Leg Right Leg Baseline
RF 92.8 92.4 92.5 93.1 93.7
SVM 84.2 84.7 84.2 85.2 87.9
MLP 72.5 71.6 72.2 72.8 72.9
AdaBoost 84.8 85.3 85.1 85.9 86.0

The experimental results confirm the efficacy of the proposed framework for en-

hancing the performance of multiple fall events classification. In addition, to further

investigate whether the proposed theory for other body parts could affect the fall

events classification results, the remaining skeleton features are manually into four

parts: left arm, right arm, left leg, and right leg. Ablation study experiments are

further conducted on these four parts under occlusion conditions compared with the

baseline to verify if these body parts are also redundant for the fall events classifica-

tion. Table 3.3 examines the impact on precision performance when different parts of

the human body are occluded. Precision is selected as the performance metric as it
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indicates the proportion of true positive instances that are from the predicted positive

instances. The performance of the baseline is provided as the comparison group.

From Table 3.3, it is evident that the precision result of SVM decreases by ap-

proximately 2%-3% in each occlusion situation. Meanwhile, the performance of RF,

MLP, and AdaBoost remains tiny decreasing, respectively. This observation can be

attributed to the symmetry of the body structure, where missing a certain part of

the data does not have a definitive increase in the performance but leads to a slight

decrease. It could be seen that different the RF, MLP and AdaBoost, SVM achieves a

slight decrease compared with the baseline. The reason for this is SVM is sensitive to

the missing data, especially to the large-scale dataset (landmark occluded indicates

parts of the raw data are missed). This finding is significant for further fall detection

research involving missing data due to occlusion or privacy protection considerations.

Figure 3.5: Time reduction by using different degrees of redundant data reduction,
x-axis denotes the remaining processed redundant keypoints and y-axis denotes the
percentage of the time reduction.

Figure 3.5 illustrates the computation time of different classifiers achieved after the

proposed redundant information fusion. The x-axis represents the number of reduced

redundant keypoints, while the y-axis indicates the percentage of time reduction. It

can be observed that the proposed method significantly reduces the computational
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time with the reduction level increasing. Especially SVM, compared to the result with

baseline, the calculation time is reduced by more than 50%. And the calculation time

percentages of the other classifiers compared with the raw data have been reduced by

approximately 15%-30%, respectively.

3.3.4 Experimental Results for Two-stage Framework

Table 3.1 has demonstrated that the DNN outperforms RF in terms of the initial stage

for selecting the fall events from the entire dataset. Therefore, in this section, the

results of the proposed two-stage learning for the multiple fall events classification are

presented. Furthermore, the performance of four classifiers used in are illustrated in

Figure 3.6, which clearly shows that RF is the best classifier in terms of performance.

In terms of this, RF performance is selected as the comparison group for verifying

the efficacy of the proposed two-stage learning framework.

Table 3.4: The F1 score comparisons of multiple fall events classification on the UP-
Fall dataset among the single RF, single DNN and the proposed TS-DNN.

Methods HF KF BF SF SDF
Single RF [11] 0.88 0.85 0.82 0.87 0.87
Single DNN 0.85 0.83 0.83 0.88 0.88
TS-DNN (ξfp,ξfn=0) 0.84 0.85 0.85 0.89 0.89

Table 3.5: The computational time cost comparisons between the proposed TS-DNN
and the four selected clustering classifiers.

Methods RF SVM MLP AdaBoost TS-DNN
Time cost (s) ↓ 135.4 2480.7 242.5 115.5 23.1

Table 3.4 presents a performance comparison between the baseline approaches and

the proposed two-stage DNN (TS-DNN) model. The results indicate that the sin-

gle DNN achieves superior classification performance for backwards falling, sideways

falling and falling to a chair. The overall multiple events classification performance

is further improved with the proposed TS-DNN. It is noteworthy that no thresholds
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Figure 3.6: The F1-score performance of multiple fall events classification by using
the UP-Fall dataset. The RF achieves the best performance in all five fall events
classification performance compared with other classification methods.

are incorporated into the TS-DNN, as shown in Table 3.6 (where ξfp = 0, ξfn = 0).

Moreover, since the fall classification system requires high accuracy and fast response

time, the computational time cost comparisons between the proposed TS-DNN and

the four clustering classifiers are provided in Table 3.5. It could be seen that the

computational time cost for the proposed TS-DNN is much faster than the other

baselines, which indicates that our model is better than the other classifiers.

Table 3.6: The performance comparison with the single RF in F1 score evaluation
metric for UP-Fall dataset multiple fall events classification by using different settings.

Methods HF KF BF SF SDF

Single RF [11] 0.88 0.85 0.82 0.87 0.87
TS-DNN (ξfp,ξfn=0.3) 0.72 0.76 0.63 0.74 0.82
TS-DNN (ξfp,ξfn=0.1) 0.84 0.86 0.84 0.87 0.88
TS-DNN (ξfp,ξfn=0.05) 0.85 0.86 0.85 0.88 0.89
TS-DNN (ξfp,ξfn=0.03,0.02) 0.85 0.86 0.85 0.89 0.89
TS-DNN (ξfp,ξfn=0) 0.84 0.85 0.85 0.89 0.89

Nevertheless, the hand-falling (HF) performance in the TS-DNN is lower compared



Section 3.4. Summary 48

to that of the single model. This discrepancy may be attributed to misclassifications

by the binary fall classification model in the initial stage. Consequently, two thresh-

olds (ξfp and ξfn) will be introduced to re-classify the misclassified fall and no-fall

categories in the initial stage, to enhance the performance in the conclusive stage.

Based on Table 3.6, the TS-DNN with the proposed gating parameters (ξfp = 0.03

and ξfn = 0.02) exhibits improved performance compared to the TS-DNN without

thresholds and the single RF. The proposed TS-DNN with gating parameters achieves

better performance for both falling with hands and falling with knees, which refines

the human action discriminating ability in the initial stage. RF achieves the best

performance in hand falling (HF) at approximately 88% but the proposed TS-DNN

is 85%, the assumption of this is that hand falling is similar to knee falling, which

will lead to confusion to the model for the action classification. For the backward

falling, sideway falling and sit-down falling, the proposed TS-DNN achieves 2-3%

improvements compared with the RF method. By considering the F1 score, the

proposed two-stage framework demonstrates the highest accuracy in multiple fall

events classification. The introduction of the DNN-based binary classifier in the

initial stage eliminates the data imbalanced problem and leads to better classification

performance of the multi-class classifier in the conclusive stage. Additionally, the

gating parameters in the initial stage contribute to improving the final classification

performance in the conclusive stage.

3.4 Summary

In summary, this chapter achieves the contribution to improving the human fall events

classification and enhancing the robustness by proposing two components: redundant

data reduction and the two-stage learning framework. For both of these two parts,

the initial RGN data were first sent for the skeleton feature extraction to preserve

privacy, thereby avoiding the impact from the dynamic illumination and reducing
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the computing time. The redundant empty frames and redundant targets were then

removed according to the confidence scores. The redundant data reduction technique

was exploited to remove the unnecessary keypoints among the skeleton sequences. In

order to avoid the imbalanced issue which typically exists in the fall events dataset,

the proposed two-stage learning framework was designed for distinguishing the fall

events from the entire dataset in the initial stage and trend to classify different fall

events in the conclusive stage. Additionally, the gating parameter with the proposed

structure was exploited for further improving the classification performance by con-

trolling the discriminating ability in the initial stage. The redundant data reduction

evaluation in Section 3.3.3 showed the contributions of the proposed method, as well

as demonstrated the ablation study for occlusion handling of the other four body

parts. Evaluations on the UP-Fall dataset were further provided in Section 3.3.4,

which confirms the proposed method achieved improved performance compared to

other approaches.

Although the proposed fall events classification method has achieved improved

performance, the quality of the annotations may arise a negative impact on the clas-

sification performance with the data-driven algorithms in the real-world environment,

since the UP-Fall dataset is manually annotated by multiple annotators. The next

chapter focuses on increasing the quality of the annotation by purifying the corrupted

dataset, as well as exploiting the potential of the corrupted instances by the robust

framework for better fall events classification performance.



Chapter 4

PRIVACY MITIGATING DATA

PURIFICATION AND JOINT

COOPERATIVE TRAINING WITH

NOISY LABELS FOR HUMAN FALL

EVENTS CLASSIFICATION

4.1 Introduction

This chapter is mainly aimed at addressing the noisy annotation issue for the fall

events classification. As aforementioned in the previous chapters, different types of

fall events will lead to various injuries in human bodies. However, conventional video-

based fall detection only focuses on whether the fall event has occurred but ignores

different types of fall events, which may cause different injuries to elderly people

[12, 47]. Moreover, DNN models have exhibited impressive performance in recent

years [96, 97]. Their success depends on high-quality labels, and a massive amount

of data [91]. However, obtaining high-quality data annotation is expensive and time-

consuming because the labels of the dataset are all manually annotated. Therefore,

some annotators choose to use the non-manufactured, semi-manufactured or online

50
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survey methods to improve the data annotation efficiency [98–100], which leads to

incorrect annotations due to the differences in cognitive definitions of annotators and

model performance. Therefore, a robust fall classification system which could address

the noisy annotations and improve the classification performance is needed for better

healthcare.

Handling the corrupted instances plays a key element in the model performance.

Existing work in [101] has attempted to perform a two-stage measurement filtering

theory to address the noisy annotation issue. This noisy instance filtering approach

typically comprises the confidence score ranking and the probabilistic thresholds to

estimate noise, which can be efficiently applied to the fall events classification task.

However, all the benchmarks applied for this method are large-scale image datasets

for classification tasks. Due to privacy protection requirements for the medical action

task, the human skeleton is the training data for feeding into the model rather than

the image data, which has much lower information density compared to image data.

On the other hand, recent noisy label learning approaches [5–7] shows the small

loss algorithm has been demonstrated to discriminate the noisy instance during the

training stage rather than utilizing the two-stage pipeline. However, the direction of

the model update mainly depends on the selected clean instances from the single peer

network module, which is not robust enough due to the overfitting problem, especially

with the deep noise rate.

This chapter aims to mitigate the noisy annotations issue on the extracted skele-

ton data from the UP-Fall dataset by presenting a noise managing system which is

mainly divided into two parts: a cascaded noisy dataset purification method and a

noisy label learning framework with trinity networks (JoCoT). The proposed cascaded

noisy dataset purification algorithm falls into the aforementioned confident learning

to filter out the corrupted instances by three steps, which are instance counting, con-

fidence score ranking and noisy data pruning. Four different pruning methods are
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provided for the noisy instance cleaning. They are based on the principle of a joint

distribution probability density function and focus on label quality by characterizing

and identifying noisy labels. JoCoT is proposed to fully exploit the potential of the

noisy instances and enhance the robustness of the framework, especially with deep

noise rates. Specifically, it trains a trinity network that includes two teacher modules

and one student module. The consensus outputs of the two teacher modules are fed

into the student module to guide the clean instances mining. The peer network is used

with the proposed structure for selecting clean instances during the training process.

Moreover, both the co-regularized and contrastive learning with joint loss function

are applied for keeping the peer networks converged, which is able to enhance the

model performance. The main contributions of this chapter are listed as follows:

1. The data purification algorithm with four different pruning methods is applied

to human skeleton data from the UP-Fall dataset to clean the corrupted anno-

tations.

2. Noisy label learning with trinity networks (JoCoT) is developed to improve the

robustness and the performance of human fall events classification with differ-

ent noise categories and rates via the consensus-based noisy instances selection

method.

3. Empirical results demonstrate the efficiency of the proposed noise managing

system is superior to many state-of-the-art approaches. Additionally, sufficient

verification experiments with different estimated noises are conducted for fur-

ther analysis and discussion.

In this chapter, since the applied UP-Fall dataset is manually annotated and

exists the noisy label issue. Therefore, the dataset purification algorithm which is

called clean lab is introduced to remove the corrupted instances and improve the

fall events classification performance. In addition, to fully exploit the knowledge
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potential of the noisy instances rather than pruning them, a learning with noisy

labels algorithm called JoCoT is developed for human fall events classification and

verified with different noise distributions and rates. This chapter targets to fulfill the

third and fourth objectives of this thesis, which are the enhanced data purification

for human fall events classification based on the vanilla DNN model presented in [28],

and the enhanced learning with noisy label algorithm using privacy-preserved skeletal

data for human fall events classification which is submitted to ACM Transaction on

Computing for Health [29]. The rest of this chapter is organised as follows: Section

4.2 demonstrates the corrupted dataset annotation purification method. Section 4.3

describes the proposed training process with noisy labels. Section 4.4 performs the

experimental results, analysis and discussion. Furthermore, the summary of this

chapter is presented in Section 4.5.

4.2 Formulation of Data Purification

4.2.1 Overview

The overview of the proposed dataset purification theory for fall events classification

is shown in Figure 4.1, which primarily consists of two steps: counting and pruning

with ranking. Firstly, both the entire corrupted dataset and corrupted annotations

are fed into the vanilla-DNN model to generate the prediction coarse pf (x) for each

instance, the structure of the vanilla-DNN model is set as the same as the model

applied in section 3.2.2.

The determined possibility threshold τf is generated by pf (x) for determining

the ground truth labels, which is the expected self-confidence score for each category.

After that, the confidence joint counting matrix between the predicted labels and true

labels is generated and recalibrated for counting the noisy annotation by proposing

the confidence joint probability distribution matrix, which is precisely formulated in
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equation 4.2.4. Then four different noisy annotation ranking methods are utilized for

dataset cleaning. The data with weak scores identified as noisy samples are pruned.

On the other hand, the purified data and annotations are mapped from the confidence

map. Finally, the clean dataset is fed into the same vanilla DNN model again for

retraining, then obtain the conclusive classification performance for human multiple

fall events.

4.2.2 Confident Learning for Noisy Label Pruning

Assume corrupted training dataset D = {x , ỹ}NM ∈ (R, {1, 2, ...,M})N , which denotes

the dataset contains N samples in M categories with noisy label ỹ for samples x ,

along with the correct labels are given as y∗. The possibility threshold is defined as:

τf =
1

|Dỹ=f |
∑

x∈Dỹ=f

p̂f (x ) (4.2.1)

where τf is the possibility threshold for all samples labelled as ỹ = f . If the predicted

probability has p̂f (x ) < τf , then it will be suspected as a wrong annotation. The

estimated dataset D̂ỹ=d,y∗=f is defined as follows:

D̂ỹ=d,y∗=f =
{
x ∈ Dỹ=d : p̂f (ỹ = f ;x ) ≥ τf

}
(4.2.2)

Cỹ,y∗ [d][f ] :=
∣∣∣D̂ỹ=d,y∗=f

∣∣∣ (4.2.3)

where each cell of the unnormalized confident joint counting matrix Cỹ,y∗ [d][f ] is the

number of samples with the noisy label is d but correct label is f . |Dỹ=d| denotes the

sample amounts with ỹ = d.
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Ĵỹ=d,y∗=f =

Cỹ=d,y∗=f∑
f∈[M ] Cỹ=d,y∗=f

· |Dỹ=d|∑
d∈[M ],f∈[M ]

(
Cỹ=d,y∗=f∑

f∈[m] Cỹ=d,y∗=f
· |Dỹ=d|)

(4.2.4)

where the instance amount of Cỹ,y∗ is not equal to the true instance amount due

to the limitation from τf , it needs to be refined by Dỹ=d. After the joint confident

probability distribution matrix Ĵỹ=d,y∗=f is obtained. The noisy labels are pruned by

the following methods:

Confusion: Estimate the i-th noisy labels as ỹi ̸= argmaxf∈[M ]p̂f (ỹ = f ;x i),

∀x i ∈ D, which indicates to be selected by off-diagonal elements of confusion matrix.

PBC: For each class d ∈ [M ], select N ·
∑

f∈[M ]:f ̸=d(Ĵỹ=d,y∗=f [d]) samples for

filtering with lowest confidence are identified as noisy labels.

PBNR: N · Ĵỹ=d,y∗=f samples in off-diagonal are selected and has x ∈ Dỹ=d .

C+NR: Align the previous PBC and PBNR with the operation ‘and’.

4.3 Noisy Labels Learning with Trinity Networks

Table 4.1: Comparisons between the other algorithms and the proposed JoCoT.

Co-teaching [5] Co-teaching+ [6] JoCoR [7] JoCoT

Small Loss ✓ ✓ ✓ ✓
Cross Update ✓ ✓ ✗ ✓
Joint Training ✗ ✗ ✓ ✓
Agreement ✗ ✗ ✓ ✓

Disagreement ✗ ✓ ✗ ✗

Consensus ✗ ✗ ✗ ✓

In this section, detailed explanations of the proposed JoCoT are presented. As

shown in Figure 4.2, both teacher modules instruct the student module to mine the

reliable and clean instances from the corrupted dataset in the training stage. Each

mini-batch of the corrupted instances are simultaneously fed into the teacher modules

and the prediction indexes for the noisy annotations are obtained. According to the

predictions from the teacher modules, a consensus-based data selection strategy is
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applied for choosing reliable and clean data, then fed the selected data into the

student module for training. The consensus algorithm is updated in both teacher

modules after each iteration. The comparisons of state-of-the-art approaches with

the proposed JoCoT are listed in Table 4.1.

4.3.1 Preliminaries

In order to verify the proposed algorithm JoCoT, the multi-class dataset is defined

as D = {x i, yi}Ni=1, N indicates the number of instances in the dataset. For the

data training, x i denotes the tensor quantity of i-th instance and the corrupted

annotation yi ∈ {1, 2, ...,M}, M indicates the classes of human activities. Both of

the teacher modules have the peer networks, which are denoted as F (x ,Θ1), F (x,Θ2)

and G(x,Φ1), G(x,Φ2), respectively. For the instance x , ∀x ∈ Dn, Dn is the mini-

batch dataset which is fetched from D. Moreover, the prediction probabilities of the

instances xi from the two teacher modules are denoted as p1 =
[
p11, p

2
1, . . . , p

M
1

]
,p2 =[

p12, p
2
2, . . . , p

M
2

]
and q1 =

[
q11, q

2
1, . . . , q

M
1

]
, q2 =

[
q12, q

2
2, . . . , q

M
2

]
, which could also be

considered as the “softmax” layer outputs from the network parameters Θ1, Θ2, Φ1,

Φ2, respectively.

For the proposed approach, both teacher modules could individually predict the

annotations but train the network to update the parameters simultaneously with the

peer paradigm. The cross-entropy loss L1 which applied in the teacher module is as

follows:

L1(x i, yi) = Ls(x i, yi) = Ls1(x i, yi) + Ls2(x i, yi) (4.3.1)

where Ls1 and Ls2 indicate the sub-losses from the teacher module. The classifier

function f maps the feature x i to the label space and is defined as f(·) : X → RM ,

eyi is a one-hot vector which equals to 1 if the predicted label is the same as yi,

otherwise equals to 0. For the second teacher module, there exists the joint-training
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stage. The precise loss function L2 for xi is defined as followed:

L2(x i, yi) = (1− λ)L1 (x i, yi) + λLc(x i) (4.3.2)

where Ls and Lc denote the supervised loss and contrastive loss functions in the joint

loss function. Moreover, λ is the weight parameter. The range of λ is between 0.05

and 0.95, it is empirically selected for different noise rates. The detailed explanations

of the Ls and Lc are presented in the following subsections.

4.3.2 Classification Loss

Since the algorithm is proposed for addressing the multi-classification noisy label

learning, the cross-entropy loss is chosen as the supervised classification loss function

for all the peer networks from the teacher modules. It is widely used in multi-class

classification tasks for calculating the loss value between the annotations and the

predictions. Since the small-loss selection could help the network filter the noisy

labels, the cross-update theory [5] is applied to reduce the annotation errors. The

complete supervised loss function Ls is defined as follows:

Ls(x i, yi) = Ls1(x i, yi) + Ls2(x i, yi)

= −
∑N

i=1

∑M
m=1yi log(q

m
1 (x i))

−
∑N

i=1

∑M
m=1yi log(q

m
2 (x i))

(4.3.3)

where qm1 (x i) and qm2 (x i) denote the predicted probabilities of i-th instance from the

peer networks for m-th label.

4.3.3 Contrastive Loss

According to the previous work [5], the DNN model will tend to learn the simple and

clean instances at the beginning of the training process. The peer networks will reach
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a consensus on most of the data but not on the corrupted data. In order to guide the

models to find more clean and reliable data, thereby achieving better generalization

ability and performance. Co-regularization is constructed as the contrastive term in

the loss function for the second teacher module, which could help the classifiers to

maximize the agreement. One of the specific forms of Jensen-Shannon (JS), Kullback-

Leibler (KL) divergence, is utilized to calculate the loss value between the predictions

from the peer networks. The symmetric KL divergence based contrastive loss function

Lc is specifically defined as follows:

Lc = DKL(q1 || q2) +DKL(q2 || q1) (4.3.4)

The detailed definition of sub terms DKL(q1 || q2) and DKL(q2 || q1) in Lc are as:

DKL(q1 || q2) =
∑N

i=1

∑M
m=1q

m
1 (x i) log

qm1 (x i)

qm2 (x i)
(4.3.5)

DKL(q2 || q1) =
∑N

i=1

∑M
m=1q

m
2 (x i) log

qm2 (x i)

qm1 (x i)
(4.3.6)

where q1 and q2 indicate the prediction probabilities of the peer networks. Hence, the

negative memorization effects of noisy labels could be mitigated, and the classification

performance could be further improved.

4.3.4 Small Loss Selection

The peer networks are more likely to reach a consensus on most clean instances but

will have different predictions on the noisy data. According to the previous work

focusing on the LNL algorithms [5,102], the instances with small loss are more likely

to be clean. Therefore, the network model will be improved if the training data are

with small-loss values. With the same decaying settings in JoCoR and Co-teaching,

a parameter factor R(Tk) is defined to determine the proportion of the instances that
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should be selected related to the noise rate τ . After each iteration, the small loss

values will be sorted for selecting the mini-batch data. As mentioned in Chapter 2,

the DNN model trends to learn the easy and clean instances at the beginning of the

training process, but overfit to the noisy instances with the prolong of the training

process, i.e., it has the best noisy instances filtering out ability at the beginning of the

training process. Therefore, in order to maximally keep the clean instances, R(Tk)

will be gradually reduced to 1−τ with the epochs increasing, i.e., R(Tk) is the largest

at the beginning and then gradually decrease. Hence, clean instances could be kept

and noisy instances will be dropped before the network overfits to the noisy instances.

The calculation of the remember rate R(Tk) is as follows.

R(Tk) = 1−min

{
Tk

T
τ, τ

}
(4.3.7)

where Tk and T indicate current epochs and total decay epoch numbers in the training

stage. It could be observed that the R(Tk) will gradually decrease with the epochs

increasing to keep the network trained with ‘clean’ instances during the current train-

ing process. The detailed definitions of the instances selection algorithm in teacher

modules are as follows:

D̄p = argminD′
n:|D′

n|≥R(t)|Dn|L1(D
′

n) (4.3.8)

D̄q = argminD′
n:|D′

n|≥R(t)|Dn|L2(D
′

n) (4.3.9)

where D̄p and D̄q indicate the small loss selection instances from the sorted mini-batch

data D′
n in the teacher modules. In this case, the influences from the noisy data will

be reduced.
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4.3.5 Consensus-Based Data Selection

The framework of the proposed JoCoT contains three modules, including two teacher

modules and one student module. Intuitively, the instances jointly selected by the two

teacher modules are more reliable and clean-confident than those selected by a single

teacher module. The teacher modules in the framework not only stabilize the selection

process but also eliminate the noisy data. To be precise, the two teacher modules

will be trained in parallel, and the peer networks will select the clean instances in

each mini-batch. A reasonable method is designed to select reliable clean instances,

which uses the consensus-based decision from the predictions of the teacher modules.

Finally, the reliable clean instances will be fed to the student module for guiding the

parameter updating.

The framework of JoCoT is illustrated in Figure 4.3. The teacher modules which

contain the peer networks are trained at the same time. After that, the consensus

decision between the predictions from the teacher modules will guide the student mod-

ule to classify the noisy data. A mini-batch of the input instances will be separately

and simultaneously trained into the teacher modules. Each pair of networks in each

teacher module will obtain a prediction index for the input data. Therefore, there will

be four output indexes from the teacher modules. The consensus decision contains

two steps which are called inner consensus and outer consensus. Inner consensus in-

dicates that the consensus decision between the peer networks outputs from the same

teacher module and outer consensus indicates the consensus decision between differ-

ent teacher modules. The consensus-based data selection will be repeated in each

data iteration for the teacher modules until the training stage is finished. After that,

the consensus-based clean instances will be fed into the student module for model

training. The detailed schematic of the proposed consensus method is shown in Fig-

ure 4.4. This multi-step consensus data selection strategy could guide the networks to

utilize more robust and reliable clean instances for parameter updating. The original
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data will be used as the testing set for both teacher modules and student module.

The testing sets for the three modules are the same, and the student module outputs

are reported as the final results.

Icon =
(
Ip1
∩ Ip2

)
∩
(
Iq1
∩ Iq2

)
= Ip ∩ Iq

(4.3.10)

where Ip1
, Ip2

and Iq1
, Iq2

indicate the output indexes from the teacher modules. Icon

demonstrates each mini-batch final consensus-based selected data index. The calcu-

lation order of the equation will firstly be the inner brackets union (inner consensus)

and then outside the brackets union (outside consensus). Afterwards, the selected

instances and labels corresponding to the Icon will be fed into the student module for

training. The detailed process of JoCoT is shown in Algorithm 2.

Algorithm 2: JoCoT Teacher Modules Training

input : Epoch Tmax, learning rate λ, iteration Nmax, sub networks F,G with
randomly initialization parameters Θ1,Θ2 and Φ1,Φ2;

18 for t = 1, 2, 3, ..., Tmax do
19 Shuffle training set D;
20 for n = 1, 2, 3, ...,Nmax do
21 Fetch mini-batch Dn from D;
22 p1,p2 = F (x ,Θ1), F (x ,Θ2) ∀x ∈ Dn;
23 Calculate loss value L1 using p1 and p2;
24 q1, q2 = G(x ,Φ1), G(x ,Φ2) ∀x ∈ Dn;
25 Calculate loss value L2 using q1 and q2;
26 Obtain the small-loss selections D̄p and D̄q by equation 4.3.5 and

4.3.6 from Dn;
27 Update the peer network parameters Θ1,Θ2 and Φ1,Φ2;
28 Obtain the inner consensused data index sets Ip, Iq;

29 end
30 Calculate Ip ∩ Iq by equation 4.3.10;
31 Obtain the outer consensused data index set Icon;
32 Joint both I con and mini-batch data Dn for the consensused-based clean

instance set D̂n;
33 Update R(t) by equation 4.3.7

34 end

output: Consensused-based clean instance set D̂n
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4.4 Experiments and Performance Analysis

4.4.1 Dataset for Data Purification

Table 4.2: Abbreviations of five fall events in the proposed method

HF Hands forward Falling
KF Knees forward Falling
BF Backward Falling
SF Sideways Falling
SDF Sit Down Falling

In the UP-Fall dataset, there are 5 fall events and 6 normal daily activities in

both 2 perspective cameras. The image data from a sideway camera is selected

as the training data, which is named as CAM1. The work in [11] is the baseline,

several clustering classifiers were utilized to perform the fall detection performance.

To avoid any confusion, the dataset is divided into 12 classes with one more class called

unknown activity. By using Alphapose [8], the human skeleton will be obtained which

contains 17 joint points. Each feature point contains 3 dimensions which are joint

scores and 2-D coordinates. Therefore, 51 attributes are used as features for each

image for the model to classify the five fall events. Table 4.2 shows the details of the

five fall actions in the UP-Fall dataset. It is highlighted that different from the other

fall events, the subjects are facing the camera when they are recording the sideways

fall. In the other 4 fall events, subjects are side-way in the camera field of view.
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4.4.2 Data Purification hypermeter settings

Figure 4.5: An example of forward falling using hands. (a) is the original RGB image,
(b) is the skeleton data extracted from AlphaPose [8].

The ratio of the number of falls and no-fall in the data set is approximately

3:97. After the preprocessing step, in total there are 220,660 groups of skeleton data,

154,462 in training and 66,198 testing sets, respectively. Besides, parts of the training

set are set as the validation set in order to prevent the overfitting issue. The batch

size was set as 128 and the initial learning rate is 0.0001. The overall training epoch

was set as 300 and the random seed is 42. Adam was selected as the optimizer and

the monument was set as 0.9. Figure 4.5 shows the skeleton data example which

is extracted by using AlphaPose. The experiments are conducted on a workstation

with 4 GeForce GTX 1080Ti GPUs, and 16GB of RAM. The proposed framework is

implemented based on Keras.

4.4.3 Data Purification Results

It can be seen in Figure 4.6 that among the four classification methods, RF has the

highest performance but the DNN also achieves competitive performance. According

to Table 4.3, MLP has the lowest inference time with the lowest classification perfor-

mance. Meanwhile, the proposed CD-DNN has the second shorter inference time and

achieves competitive performance compared with the best classification performance

of all falls events.
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The RF earns first place in all events classification, however, from Table 4.3, the

inference time of the proposed CD-DNN (1.23 seconds) is shorter than RF (2.13

seconds), which has 73.17 % improvement in the inference time. Therefore, the RF-

and DNN-based fall detection algorithms have trade-off between the classification

performance and its inference time. Since fall detection always requires low inference

time, the proposed CD-DNN will be the better choice.

Table 4.3: Inference time of the proposed method and other methods by using cleaned
data.

Methods MLP CD-DNN RF KNN SVM
Time (s) 0.34 1.23 2.13 146.87 157.64

Figure 4.6: The F1 score comparisons between the clustering classifiers and the DNN
on the UP-Fall dataset. The fall events abbreviations are shown in Table 4.2.

Figure 4.7: Examples of different types of noisy labels.
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In Table 4.4, the comparison results between the baseline method [11] and the

proposed methods. It can be observed that after using the proposed noisy instance

pruning methods, almost all the fall events classification performance has improved.

These results confirm the importance of confident learning in noisy instance pruning

methods when using skeleton data. Meanwhile, within the noisy instance pruning

methods, the Confusion method can achieve the best performance. After comparing

the results between RF-Confusion and DNN-Confusion in Table 4.4, RF-Confusion

earns the best performance in 2 events (HF and KF) while DNN-Confusion gives the

best performance in 3 events (BF, SF and SDF).

Table 4.4: Classification performance using F1-score with proposed cascaded data
purification methods.

Methods HF KF BF SF SDF
RF [11] 0.85 0.80 0.78 0.84 0.83
RF-PBC 0.83 0.81 0.78 0.83 0.83
RF-C+NR 0.84 0.82 0.80 0.86 0.86
RF-PBNR 0.86 0.83 0.79 0.87 0.84
RF-Confusion 0.88 0.85 0.82 0.87 0.87
DNN 0.85 0.79 0.76 0.83 0.82
CD-DNN-PBC 0.83 0.82 0.79 0.84 0.84
CD-DNN-C+NR 0.86 0.80 0.79 0.84 0.83
CD-DNN-PBNR 0.82 0.81 0.81 0.87 0.84
CD-DNN-Confusion 0.85 0.83 0.83 0.88 0.88

The visualization results are provided in Figure 4.7, which shows examples of the

noisy labels found by confident learning in the dataset. According to the observation,

in terms of fall events, in Figure 4.7 (a), the true label is falling by using hands,

but the given label is falling by using knees. In Figure 4.7 (b), the true label is

falling by using knees but the given label is falling by using hands. Moreover, in daily

activities, Figure 4.7 (c) shows the case where the given label is laying but the true

label is side-way falling.

The results confirm that different from previous work, where confident learning

was applied at the image level, the noisy label issue with skeleton data can also
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be addressed. This is beneficial for classification models trained with accurate su-

pervision. Based on classification performance and computational cost, the proposed

CD-DNN appears to be the best choice for fall event classification using the extracted

privacy-preserving skeleton data.

4.4.4 Dataset for Learning with Noisy Labels

Table 4.5: Comparison between the original and re-scaled training set and detailed
description for UP-Fall dataset.

Activity ID Original Re-scaled Description

1 935 940 Falling using hands
2 922 958 Falling using knees
3 1,073 966 Falling backwards
4 902 942 Falling sideways
5 1,157 975 Falling to a chair
6 28,326 962 Walking
7 39,762 964 Standing
8 33,241 967 Sitting
9 1,162 955 Picking up objects
10 16,305 965 Jumping
11 29,682 961 Laying
12 995 965 Unknown

The custom dataset for JoCoT is selected from the UP-Fall dataset. Since the

proportion of positive and negative samples in the UP-Fall dataset is imbalanced,

their ratio is approximately 3:97. Therefore, the dataset is rescaled by randomly

selecting 1,200 samples from the original dataset in each activity. In total, there

are 14,400 groups of skeleton data. the dataset consists of three main components,

training set, testing set, and validation set, and the ratio is 8:1:1. Validation set was

applied to select the model with the best classification performance. Table 4.5 shows

the details of the UP-Fall dataset, including the description and the numbers of each

activity. The dataset has five fall events and seven normal human indoor activities.

The number of fall events is much smaller than the normal activities in the original

training set. In order to simulate the data corruption situation in the real world,
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noisy labels were added automatically to the dataset by using the noise-generating

matrix which will be introduced in the section 4.4.6. The imbalanced dataset problem

significantly affects the actual noise rate far away from the noise rate settings and

leads to a biased experimental performance. To be precise, the significant disparity

in the quantity of data samples among different categories can lead to an imbalance

in the generated noise label types, consequently affecting experimental outcomes.

For instance, considering a noise label ratio of 0.1 in the case of pairflip noise with

the original dataset, when generating from falling to a chair to walking, there are

approximately 116 generated noisy instances. However, when generating from walking

to standing, the number of generated noisy instances is around 2830, showcasing a

substantial discrepancy that can significantly impact experimental results. Therefore,

re-scaling the dataset is required for addressing the noise generation problem.

4.4.5 Learning with Noisy Labels Parameter Settings

The vanilla DNN network architectures are applied in both two teacher modules and

one student module. The experimental settings in both student and teacher modules

are the same. ReLU was used as the activation function. For the Adam optimizer

used in all the experiments, similar to the settings in the baseline, the momentum

is set as 0.9. Due to the skeleton data containing less information than the RGB

image data, the initial learning rates were set as 0.0001. The batch size was set to

128. The epochs were set as 300 for mining the clean instances in the consensus data

selection stage. With the same learning rate decay point as in both teacher modules,

the learning rate decayed gradually and linearly to zero from 80 to 300 epochs. The

clean validation set guided the network training in the correct direction and prevented

the over-fitting issue from noisy label instances. Different λ were chosen to achieve

the best performance under different noise rates and types. All the experiments were

conducted on a workstation with 4 GeForce GTX 1080Ti GPUs and 16GB of RAM.
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4.4.6 Learning with Noisy Labels Results

Noise Types

To estimate the real-world noisy dataset, the dataset needs to be corrupted by using

the noise-generating matrix W . There are several noise types, e.g., pairflip and sym-

metric. Details of them will be introduced below, R denotes the noise rate and M

denotes the number of activities in the dataset:

(i) Pairflip flipping, a noise type which flips the ground truth to another specified

activity among the entire dataset. The noisy matrix for pairflip is shown below:

W =



1−R R 0 · · · 0

0 1−R R · · · 0

...
...

. . . . . .
...

...
... 1−R R

R 0 · · · 0 1−R


(4.4.1)

(ii) Symmetry flipping, which indicates that the noisy label is uniformly distributed

over all labels except the true label, with an equal probability distribution. The

detailed noise matrix explanation is shown below:

W =



1−R R
M−1

R
M−1

· · · R
M−1

R
M−1

1−R R
M−1

· · · R
M−1

... R
M−1

1−R ...

...
...

. . . R
M−1

R
M−1

R
M−1

· · · R
M−1

1−R


(4.4.2)
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Pairflip analysis

Flipping-Rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Co-teaching [5] 87.16 85.16 76.51 75.10 47.88 32.84 13.45 8.50
Co-teaching+ [6] 86.75 85.57 81.85 61.79 46.57 20.83 14.22 11.41

JoCoR [7] 88.18 86.12 83.52 78.71 44.32 25.63 12.03 11.04
JoCoT 89.15 86.54 84.30 79.30 50.14 37.25 20.78 12.25

Table 4.6: Average test accuracy (%) of Pairflip noise with different noise rate on
UP-Fall.

Flipping Level Average LR-Avg HR-Avg
Co-teaching [5] 53.33 74.36 18.26
Co-teaching+ [6] 51.12 72.51 15.49

JoCoR [7] 53.69 76.17 16.23
JoCoT 57.46 77.89 23.43

Table 4.7: Average test accuracy (%) of Pairflip noise with different noise rate levels
on UP-Fall.

To verify JoCoT performance at different levels of noise rate, pairflip noise from 0.1

to 0.8 are generated into the dataset for the proposed JoCoT for cleaning. Different

noise levels are introduced in the experiments to simulate the corrupted dataset in

the real-world environment.

As shown in Table 4.6, the test accuracy of Co-teaching and Co-teaching+ are

not stable, Co-teaching+ shows better performance than Co-teaching with 30% noisy

data, the accuracy reaches 81.85%. However, it drops significantly to 61.79% when

the noise rate increases to 40%. Co-teaching achieves better performance than Co-

teaching+ at 40% noisy data, which is 75.10% and without a significant drop but a

steady decrease. JoCoT still achieves 79.30% test accuracy with the same noise rate

setting, which is 40% of pairflip noisy labels. In a similar situation between JoCoR

and Co-teaching+, it could be observed that the performance of JoCoR is better than

Co-teaching+ at the low noise rate levels but trends to worse than Co-teaching+ when

the rates are achieved 50% and 70%, which achieves 44.32% and 12.03%, respectively.

It verifies that the robustness of the baseline approaches is not stable enough for
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responding to different noise rate settings. Although JoCoR achieves the best average

performance in different levels of noise rate among the baseline approaches, it could

not gain all the best performance with all the noise rate settings. Different from

those baselines, the proposed JoCoT achieves the best performance of the others

among all the noise rate levels. Besides these, four algorithms have performance

dropping when the noise rate reaches 50%, and the accuracy decreases by at least

25%. It is assumed that the most important reason is the density distribution of the

pairflip noisy instances is imbalanced among all the activity categories.

According to the definition of pairflip in equation 4.4.1, each of the activities only

exists one specified noisy activity. Thus the density distribution of the pairflip noisy

instances is imbalanced. Besides this, the noisy labels ratio of the corrupted dataset

reaches a threshold (50%), which indicates the noisy instances become more than half

of the original clean dataset. The impact of the weight of the clean instances on the

model is lower than the noisy instances, even though the DNN model first learns the

clean and simple instances. Those factors can exacerbate the negative influence of

the noisy samples, which leads to the incorrect parameter updating direction and the

performance dropping. According to Table 4.7, the average test accuracy of JoCoT

is better than the other algorithms. It also presents the average testing accuracy in

low noise rates (LR-Avg from 0.1 to 0.5 cases) and the average accuracy in high noise

rates (HR-Avg from 0.6 to 0.8 cases). It could be observed that the performance

improvement at HR-Avg is more significant than in the LR-Avg noise rate. The

robust noisy label training method could mine valuable and clean instances even if

the noise rate is relatively high. The student could distillate more reliable knowledge

from the peer teacher rather than a single teacher. These confirm that the JoCoT

has better noise tolerance and robustness to address the high-level noise rate issue

for pairflip settings.
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Results on Symmetric

Flipping-Rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Co-teaching [5] 87.73 86.29 85.33 83.47 81.11 78.70 69.70 51.79
Co-teaching+ [6] 85.77 84.65 84.31 80.16 77.24 73.56 68.35 46.69

JoCoR [7] 89.37 87.82 86.07 83.36 80.96 79.08 70.87 51.68
JoCoT 89.44 88.10 86.32 84.49 82.55 80.63 73.71 57.35

Table 4.8: Average test accuracy (%) of Symmetry noise with different noise rate on
UP-Fall.

Flipping Level Average LR-Avg HR-Avg
Co-teaching [5] 78.02 84.79 66.73
Co-teaching+ [6] 75.09 82.43 62.87

JoCoR [7] 78.65 85.52 67.21
JoCoT 80.32 86.18 70.56

Table 4.9: Average test accuracy (%) of Symmetry noise with different noise rate
levels on UP-Fall.

Similar to the discussion in pairflip section, Table 4.8 shows the performance of

different algorithms with different symmetric noise rates. Among all the noise rate

levels, it could be easily found that Co-teaching+ achieved the worst performance.

The average performance for Co-teaching+ is 75.09%. According to Table 4.9, the

LR-Avg and HR-Avg performances are much worse than the other algorithms, which

are 82.43% and 62.87%, respectively. Regarding Co-teaching and JoCoR, JoCoR

achieves better performance than Co-teaching from 10% to 30% noise rate. However,

slightly lower than Co-teaching when the rates in 40%, 50% and 80%. This same

situation happened in symmetric noise, verifying that the baseline algorithms are

not robust enough for the skeleton data-based noisy label learning on the UP-Fall

dataset. Overall, the average JoCoR performance is 78.65%, almost the same as the

average performance of Co-teaching, which reaches 78.02%. According to Table 4.8,

JoCoT also achieves the best performance for symmetric noise among all the noise rate

levels. When the noise rate achieves 80%, JoCoT can also maintain the test accuracy

at 57.35% which indicates more than half of the data could be classified correctly.
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This verifies that the proposed JoCoT could effectively and robustly mine the clean

instance under different noise rates. Moreover, according to Table 4.9, the average

accuracy of JoCoT reaches 80.32%, which is almost 5% higher than Co-teaching+.

The same in the pairflip section, the improvement of JoCoT obtained in HR-Avg is

more than in the LR-Avg. With the increase of the noise rate, the improvements

that the proposed JoCoT obtains are improving. This further verified the noise-

tolerant ability of JoCoT even under a high-level noise rate, more reliable and robust

clean instances could be mined based on the consensus-based clean instance selection

algorithm.

In contrast to the pairflip performance change in Table 4.6, there is no performance

dropping for symmetric in Table 4.8. The performance of all the algorithms decreased

steadily with the increase in the noise rate. This is due to the noisy instances being

distributed uniformly in the dataset according to the definition of symmetric noise

in equation 4.4.2. Therefore, different from the pairflip noise, the distribution of the

noisy data is balanced. This could help to prevent the performance from dropping.

JoCoT achieves the best performance among all the noise rate settings with symmetric

noises, which justifies its clean instance mining and noise tolerant ability are better

than the other approaches.

Pairflip analysis

Table 4.10 indicates the precision performance for the noisy data with pairflip noise

in the last training epoch. Since part of the original dataset is applied as the testing

set, label precision experiments are conducted on the training set. According to

Table 4.10, it could be significantly observed that the proposed JoCoT outperforms

all the other baseline algorithms. The same with the test accuracy in Table 4.6, Co-

teaching+ could find the least noisy instances on the average of all the noise rates.

Comparing Co-teaching with Co-teaching+ in Table 4.10, it could be observed that



Section 4.4. Experiments and Performance Analysis 77

the precision of Co-teaching outperforms Co-teaching+ in most of the noise rates but

not in 10% and 50%. This may be due to the disagreement applied in Co-teaching+

was to select the incorrect instances for mitigating the peer networks diverged, this

may guide the parameter updating towards the erroneous direction. When the rate

achieves 50%, there exists a significant drop in all the approaches, as aforementioned,

this is due to the noisy instances becoming over half of the dataset and misleading

the training process.

Flipping-Rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Co-teaching [5] 71.75 75.77 82.20 74.44 50.94 47.39 59.75 76.27
Co-teaching+ [6] 73.03 74.51 78.33 69.17 52.70 44.81 57.55 71.41

JoCoR [7] 73.06 78.44 80.18 78.87 51.82 48.96 58.29 75.58
JoCoT 81.26 85.35 84.78 87.01 60.99 61.46 74.40 85.64

Table 4.10: The precision of noisy data (%) for Pairflip noise with different noise rates
on UP-Fall.

Flipping Level Average LR-Avg HR-Avg
Co-teaching [5] 67.31 71.02 61.14
Co-teaching+ [6] 65.19 69.55 57.92

JoCoR [7] 68.15 72.48 60.94
JoCoT 77.61 79.97 70.62

Table 4.11: Average Noisy label precision (%) of Pairflip noise with different noise
rate levels on UP-Fall.

In Table 4.11, the average precision of Co-teaching+ reaches 65.19% and 67.31%

for Co-teaching. Regarding JoCoR, the same situation happens. It could obtain

68.15% on average, which is higher than Co-teaching, but the precision at 30%, 70%

and 80% noise rates are lower than Co-teaching. Since JoCoR applied designed loss

function between the peer networks predictions, it is assumed that the reason for this

is due to the skeleton data containing no such enough information for maintaining the

JoCoR performance at some noise levels. This leads the peer networks from JoCoR

to learn the incorrect information and mislead the direction of the parameter updat-

ing. No matter whether in the LR-Avg or HR-Avg, JoCoT always has significant
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improvement for finding the noisy instances and retains the clean instances for infor-

mation mining. According to Table 4.11, JoCoT has a more significant improvement

of precision at a high rate of noise than at a low rate, which reaches around 13%

improvement than Co-teaching+.

Moreover, as shown in Tables 4.10 and 4.11, the precision of JoCoT achieves

77.61% for the average precision, which achieves around 10% improvement over Jo-

CoR. Both the performances in LR-Avg and HR-Avg significantly outperformed all

the other baseline algorithms, which confirms the robustness and noisy data mining

ability of the proposed JoCoT in all the pairflip noise levels.

Symmetric analysis

Flipping-Rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Co-teaching [5] 79.31 85.73 89.42 90.61 90.20 91.08 92.50 92.08
Co-teaching+ [6] 77.71 81.51 82.88 84.10 83.44 84.32 84.96 84.09

JoCoR [7] 82.50 85.99 90.28 91.50 90.13 91.44 92.18 90.72
JoCoT 88.72 91.22 93.46 94.24 93.24 94.64 95.30 95.97

Table 4.12: The precision of noisy data (%) of Symmetry noise with different noise
rates on UP-Fall.

Flipping Level Average LR-Avg HR-Avg
Co-teaching [5] 88.87 87.05 91.89
Co-teaching+ [6] 82.88 81.93 84.46

JoCoR [7] 89.34 88.08 91.44
JoCoT 93.35 92.18 95.30

Table 4.13: Average Noisy label precision (%) of Symmetric noise with different noise
rate levels on UP-Fall.

Regarding JoCoR and Co-teaching, JoCoR could achieve higher precision than

Co-teaching on average. However, as shown in Table 4.12, the JoCoR could not

achieve better precision than Co-teaching among all the noise rates. For example,

when the noise rate increases to 70% and 80%, Co-teaching reaches 92.50% and

92.08% respectively, but JoCoR achieves 92.18% and 90.72% respectively, which are
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lower than Co-teaching. As opposed to this, the proposed JoCoT could consistently

achieve the best performance. This confirms that the JoCoT could always find most

of the noisy instances and verify its robustness.

Tables 4.12 and 4.13 show the precision of the algorithms with different noise

rates of symmetric noise. Co-teaching+ shows the lowest precision among the noisy

label learning methods under different noise rates. The average precision is 82.88%.

This may be due to the incorrect clean instances selection of disagreement strategy

applied in Co-teaching+ since the skeleton contains much less information than the

information the RGB image contains. The average precision of JoCoT reaches 93.35%.

JoCoR has only 89.34% for the averaged precision. Both LR-Avg and HR-Avg of

JoCoT have nearly 4% precision improvements than JoCoR. Each noise rate setting

with JoCoT could achieve at least around 3% improvement over JoCoR. In order to

simultaneously analyze the performance in both Table 4.8 and Table 4.12, it could

be observed that even if the noisy data precision of JoCoT achieves almost 95%

with 60%-80% symmetric noisy instances, which means over 95% noisy data could be

found, the accuracy of JoCoT still decreases from over 80% to 57.35%. This is because

the number of noisy instances increases in percentage with the increasing of the noise

rate. As aforementioned in the dataset setting section, there are 11,520 samples in

the training set after the re-scaling operation. Even if the precision of JoCoT achieves

around 96% at 80% noise rate. There still exist 11520 × (1 − 95.97%) × 80% ≈ 371

noisy instances in the dataset, which JoCoT does not select in the corrupted dataset.

The noisy instances which are not found by JoCoT with a 10% noise rate, which is

approximately 11520× (1− 88.72%)× 10% ≈ 130 in the dataset. It is much smaller

than the number of noisy instances at 80% noise rate. The more noisy instances that

could not be found, the more significant the performance dropping occurs in the test

accuracy. The results in Table 4.8, Table 4.12 and Table 4.13 further confirm the

noise tolerant and clean instances mining ability of JoCoT.
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Lastly, it is noteworthy to emphasize that the proposed JoCoT framework is

almost algorithm-driven. The primary procedure of it for mining clean instances is not

heavily reliant on GPUs, unlike certain other deep learning methods. Consequently,

JoCoT can be trained not only on GPUs but also on workstations with only CPUs.

The training time for each experimental set is approximately 1 hour. Furthermore,

the computational power and model size required for JoCoT has also been optimized.

The proposed JoCoT requires 13.76M bytes for the model parameters and around 8

seconds for each epoch. Since the JoCoT contains both teacher and student modules,

its computational cost is relatively large than the baseline approaches.

4.5 Summary

This chapter aims to tackle the noisy annotation issue for human fall events classifica-

tion by proposing the following two components: noisy annotations purification and

noisy label learning framework, which is call JoCoT. The noisy annotations purifica-

tion strategy which contains four different pruning methods was utilized for cleaning

the corrupted annotations from the dataset. The noisy label learning with trinity

networks was exploited to improve the robustness of the framework by applying the

corrupted dataset, which could fully exploit the potential of the noisy annotations.

The small selection, agreements and cross-update algorithms were utilized for se-

lecting the clean samples in the training stage. Additionally, contrastive learning

was applied for improving performance by extending the training process. Finally,

the consensus-based decisions were fed into the model for conclusive decisions. The

data purification evaluation in Section 4.4.3 showed the contributions of different pu-

rification approaches. Evaluations on the widely-used UP-Fall dataset were further

demonstrated in Section 4.4.6 to verify the proposed noisy label learning algorithm

compared to the other state-of-the-art methods. Furthermore, the analytical ex-

periments with different noisy types were presented to confirm the efficiency of the
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proposed JoCoT algorithm.

Overall this chapter has demonstrated the effectiveness of the proposed methods

for addressing the noisy label issues both in dataset purification and learning with

noisy labels perspectives. However, the data and annotation-lacking issue caused by

the privacy issue may be still limited for medical action recognition tasks. In order to

address this issue comprehensively and extend its applicability rather than be limited

to fall events classification tasks, the proposed approach aims to generalize it for the

medical action recognition task with the same privacy issue in the following chapter.

Therefore, the next chapter focuses on handling the data and annotation-lacking

issue, as well as improving the performance from the feature fusion perspective with

limited annotated data by performing a multiple-level fusion of a one-shot learning

framework.



Chapter 5

MULTIPLE LEVEL FUSION OF

ONE-SHOT LEARNING WITH

PRIVACY MITIGATING DATA FOR

MEDICAL ACTION RECOGNITION

5.1 Introduction

Previous chapters contributed to improving the fall events classification performance

by reducing the redundant information and addressing the noisy label issues for fall

Figure 5.1: The illustrations between the general actions and medical actions.

82



Section 5.1. Introduction 83

events classification. However, the data and label lacking as a challenging issue due

to the characterisation of the medical data presented in this thesis has not been effec-

tively addressed. Moreover, in order to broaden the range of the application rather

than focusing on fall events, this chapter aims to address the data and annotation

lacking issues for medical action recognition. Figure 5.1 shows some examples of gen-

eral actions and medical actions. Different from the general action recognition task,

medical action recognition has much fewer samples. There are several reasons leading

to this issue. Firstly, similar to other medical applications, privacy protection is one

of the most challenging topics for medical action recognition [28,30]. Secondly, med-

ical actions such as coughing, headache, or falling occur much less frequently than

normal human actions in daily life [58]. Some of these medical actions may not even

occur within a month. As a result, the number of samples available for analysis is

significantly smaller compared to normal behaviors. Furthermore, there are still chal-

lenging issues that hinder performance, such as temporal mismatching and similar

actions.

Figure 5.2: The illustration of similar medical actions and temporal mismatching
issues, which are the two primary limitations existing in the conventional one-shot
learning methods.

With the development of one-shot learning, this learning-with-limited-samples
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framework has contributed attractive success to medical action recognition with hu-

man skeleton sequences, which could effectively preserve personal information and

represent the pose by human landmarks [103, 104]. One-shot learning indicates

to fed the model with a single instance for each category after prior knowledge

trained [105, 106]. There are two primary limitations in this learning framework

that need to be improved as mentioned before: temporal mismatching and similar

actions, which are illustrated in Figure 5.2. Firstly, since the same labelled action se-

quences may have different action timing and temporal lengths. Precisely, variations

in the speed at which subjects demonstrate the same action can result in different

lengths of action sequences [107]. This temporal mismatching issue will decrease the

model performance for the framework when matching the sequences from the sup-

port and query sets [108]. Secondly, there exist similar medical actions in the real-life

environment, such as headache and neck pain, taking on the glasses and taking off

the glasses. Similar actions may confuse the model and lead the incorrect training

directions since they have different importance for their landmarks [109]. This may

also degrade the experimental performance drastically when matching the support

and query set because the unimportant landmarks can have a noise-like effect during

the matching process [110].

Furthermore, the fusion of data features has been verified to enhance the recogni-

tion performance and robustness in recent years, it also improves the reliability and

the explainability of the artificial intelligence system [63,111–114]. However, the pre-

vious work has not taken into consideration the information regarding the changes in

the angles of the human skeleton extracted from raw skeleton sequences and the skele-

ton data used in previous studies still retains visible residual landmarks information

regarding privacy concerns. Most previous works for skeletal data action recognition

simply applied the feature vectors only consisting of the coordinates of the 3D human

landmarks, which could be considered as the position-level features of the skeleton
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data. However, the direction-level features from the raw skeleton data, which repre-

sent the features of angles between the skeletal bones and coordinate system are not

extracted. Precisely, the angles of the bones are complementary with the position of

the joint features, which is more informative in interpreting the direction information

in the temporal dimension for action recognition. Figure 5.3 demonstrates the moti-

vation of the proposed method which combines both the position and direction-level

information for medical action recognition.

Figure 5.3: Neck pain actions in joint and angle formats. (a) The previous approaches
using joint features predict them as different actions. (b) The proposed angle features
and fusion method enhance the recognition performance and consider the samples as
the same actions.

In this work, a one-shot learning framework is proposed for aiming to deal with the

aforementioned issues with a cross-attention mechanism and dynamic time warping

via a multi-level fusion approach for medical action recognition. The overview of the

proposed medical action recognition framework is illustrated in Figure 5.4 and Figure

5.8. The proposed approach consists of two main components: one-shot learning and

multi-level fusion. For one-shot learning, there are three modules, which are signal

image generation (SIG), cross-attention (CsA) and dynamic time warping (DTW).

In the SIG stage, more informative features are obtained from the limited given data.

The skeleton sequences will be first extracted from the raw data. After that, joint
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and angle-transformed signal-level images are distilled from the skeleton sequences to

further mitigate privacy leakage issues. Moreover, the pixel values from the trans-

formed images are normalized in the pre-processing stage to avoid performance issues

caused by significant variations in the temporal dimension. The CsA module aims to

guide the model to prioritize the more crucial landmarks from the data, which helps

the model discriminate similar actions and reduce the misclassification situation. The

DTW module is designed to assist the model in aligning the temporal information of

two instances during the matching stage, which helps alleviate the performance degra-

dation caused by mismatched action timings. Multi-level fusion is designed with joint

and angle features at both feature and decision levels. The intuition of this design

is to enable the maximum strengths from the two different features that exhibit a

complementary relationship and also mitigate the sensitivity of the misclassification

occurring in the original single feature rule. NTU RGB+D 60, NTU RGB+D 120 and

PKU-MMD Benchmark evaluations are provided to verify the improved performance

over the other state-of-the-art one-shot learning methods. To summarize, the main

contributions of the proposed work are listed as follows:

1. A novel feature transformation method that distilled the skeleton sequences for

both human joints and angles is proposed for further preserving privacy and

improving the recognition performance.

2. A novel medical action recognition approach is proposed by conducting a feature

cooperative training method within the one-shot learning framework, along with

a multiple-level fusion to further improve the framework performance.

3. Both the cross-attention and the dynamic time warping modules are applied

to address similar medical actions and temporal mismatching issues to enhance

the training process.

4. Experimental results on NTU RGB+D 60 [2], NTU RGB+D 120 [3] and PKU-
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MMD [4] are provided to confirm improved performance better than other state-

of-the-art one-shot learning action recognition methods.

This chapter aims to address the fifth and sixth objectives of this thesis, which

relate to the one-shot learning framework based on medical action recognition includ-

ing cross-attention and dynamic time warping modules published in IEEE ICASSP

2023 [30], both the feature transformation for human skeleton sequences and the

multiple level fusion theory are exploited by submitting to IEEE Transactions on

Multimedia [31].

The rest of this chapter is presented as follows: Section 5.2 presents the de-

tails of each module in the proposed one-shot learning framework, which includes

the signal image transformation, cross-attention and dynamic time warping modules.

Section 5.3 explains the multiple-level fusion process, which is realized by applying

the transformed features on both the feature level and decision level. Then the train-

ing objectives for the proposed one-shot learning framework including the prediction

distribution and loss function are formulated in Section 5.4. Extensive experimen-

tal results on the benchmarks and discussions are presented in Section 5.5 to verify

the effectiveness of the proposed one-shot learning framework with the multiple-level

fusion approach for medical action recognition. The conclusions of this chapter are

summarized in Section 5.6.
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5.2 The Proposed One-shot Learning Framework

5.2.1 Overview

The overview of the proposed one-shot learning framework is illustrated in Figure

5.4. The foundation of one-shot learning was introduced in detail in Chapter 2,

Section 2.3.3. Firstly, for both the support set and the query set, raw human skeleton

sequences are transformed into signal-level images. Then the instances are fed into the

ResNet18 followed by the cross-attention for enhancing the discriminative capability

in similar medical action recognition. The resulting cooperative outputs from the

cross-attention module are further processed through the proposed dynamic time

warping module to mitigate the temporal information mismatching issue. Finally,

ProtoNet [9] is applied for calculating the similarity between the instances from the

support set and the query set for conclusive predictions according to the outputs from

the feature space.

5.2.2 Preliminaries

To address the limitations of the one-shot medical action recognition abovementioned,

a ProtoNet-based [9] novel one-shot learning framework is proposed to train with

multiple level fusion by signal level images. The details of ProtoNet are provided

in section 2.3.3 of Chapter 2. The proposed algorithm will be demonstrated on the

dataset D = {(S i, yi)}Ni=1 which includes N skeleton sequences S 1, ...SN , with given

labels yi ∈ {1, . . . ,M}. Two different human action features, Fj and Fa are extracted

from S i with signal-level image representation, The proposed model aims to train the

extracted features Fj and Fa from dataset D to get the joint feature representation

xj = fδ(Fj) and the angle feature representation xa = fδ(Fa). And utilizes xj and

xa with the multiple-level fusion approaches by calculating the distance based on the

proposed metric learning framework for human medical action recognition.
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5.2.3 Signal Images Transformation

Joints Transformation

Figure 5.5: The left sketch illustrates the joint labels for each body part from NTU
RGB+D 60, NTU RGB+D 120 and PKU-MMD. The right sketch shows the bone
labels which are extracted for the angle features, the direction of arrows indicates the
bone directions.

Based on the human physical structure, the human bones are manually designed

from the landmarks in the raw skeleton sequences. The customised joint connections

for the human bone information from NTU RGB+D and PKU-MMD datasets are

shown in Figure 5.5. Different from most of the available skeleton-based approaches,

the transformed signal level images will be applied as the training data, the same

as in [30]. The raw skeleton sequence S from NTU RGB+D 60, NTU RGB+D 120

and PKU-MMD datasets denote as S = RX×T×V , where X denotes the number

of joints in each skeleton, T denotes the temporal length of the sequence and V

denotes the 3D coordinates position of each joint. Since the pixels of RGB image

has three colour channels, S could be transferred into image representation as Fj ∈

{0, 1, ..., 255}H×W×3. Hence, the total number of joints X and the temporal length T

are transformed into the image height of H and the image width W , respectively.

To balance the impacts of the pixel values on the model performance, a normal-

ization operation is applied to the transformed images. The overall transformation
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Figure 5.6: The illustration of joint feature image transformation.

process of the joint feature is illustrated in Figure 5.6.

Angles Transformation

In order to obtain different types of human action features from the raw skeleton

sequences. The angles of the human bones are extracted as the other action features

from the raw skeleton sequences.

Figure 5.7: The illustration of angle feature images transformation.

Since the provided data is in 3D coordinates, in order to facilitate the acquisition of

angle information, three normal vectors are established based on a coordinate system.

By calculating the angle information between each bone with the three normal vectors,
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respectively in the time dimension and performing image transformation operations,

human angle features are complementary to the joint information for recognition

accuracy. The angles with the three coordinate system planes are formulated as

follows:

θx = arccos
|vx · vb|
|vx| · |vb|

(5.2.1)

θy = arccos
|vy · vb|
|vy| · |vb|

(5.2.2)

θz = arccos
|vz · vb|
|vz| · |vb|

(5.2.3)

where vb denotes the bone vector and vx,vy,vz are the normal vectors from the three

dimension, respectively. The same as the joint image features, the angle information

will be also transferred into Fa ∈ {0, 1, ..., 255}H×W×3. θx, θy, θz will be calculated as

the values of three colour channels for the pixels after the normalization. Similar to

the joint feature, temporal length T and the number of joints X are transferred into

the height W and the width H of the SIG images, respectively. The illustration of

the transformation process for angle SIG images is shown in Figure 5.7.

5.2.4 Cross Attention Mechanism

After transferring the skeleton sequence into the signal-level representation, a cross-

attention module between the support set and query set is exploited in the proposed

framework. In previous cross-attention approaches, typically only one of the two

modules involved in the computation was focused on. This is due to the aim of

cross-attention is to utilize information from one module in another to enhance the

model performance. To extend the capabilities of the cross-attention module, it is

supposed to focus on more modules and capture a more comprehensive set of asso-

ciative information. This mechanism could decrease the difficulties in discriminating

against similar human actions. This is because the spatial relationship between the
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different parts of the human body plays an important role in distinguishing similar

actions. For example, coughing is similar to neck pain, the difference between them

is that the head joint of coughing is more important than the neck joint for the neck

pain action. Furthermore, the representation of the support set should adaptively

change the importance of each joint according to the representation of the query set

or vice versa. The transformed representations of query set R̂q and support set R̂p

are formulated as follows:

R̂q = S

(
Mq

1R
q · [Mq

2R
p]T√

d

)
Mq

3R
q (5.2.4)

R̂p = S

(
Mp

1R
p · [Mp

2R
q]T√

d

)
Mp

3R
p (5.2.5)

where the representation of the query set and support set could be formulated as

Rq and Rp , respectively. And S(·) denotes the Softmax function which is applied for

calculating the weights of different human body parts. M1,M2,M3 are the transfor-

mation matrices, which contain the trainable parameters. T denotes the transpose

matrix operation and d indicates the latent dimension of the skeleton joints.

H
(
R̂q, R̂p

)
=
∥∥∥R̂q − R̂p

∥∥∥
F

(5.2.6)

where H denotes the distance between the two samples from the support and

query set, respectively. This will be applied in prototypical networks [9] for classifying

different human actions. And ∥ · ∥F indicates the Frobenius normalization which is

a kind of specific L2 regularization between the matrices. In equations 5.2.4 and

5.2.5, Mq
2R

p and Mp
2R

q allow the model to interact with the feature information

from different perspectives. The model can improve its accuracy in recognizing and

classifying similar actions by incorporating its attention mechanism to further pay

attention to the important joints through the interactive information between the
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support and query sets. This approach aims to reduce the learning inductive bias

and minimize the occurrence of misclassifications of similar actions. By applying

higher attention weights to the more crucial parts of the human body, the model

enhances its ability to distinguish between similar actions and ultimately enhances

its overall accuracy.

5.2.5 Dynamic Time Warping

There exist several factors (e.g. different experimental subjects, speed, duration of

the recording and action timing) that result in the temporal information mismatching

issue between the support set and query set actions. For the instance in support set

P =
{
R̂p

1, R̂
p
2, · · · R̂p

m

}
and the query set Q =

{
R̂q

1, R̂
q
2, · · · R̂q

m

}
, m is the length of

the resized signal image. The mismatching issue will directly affect the Euclidean

distance calculation between R̂p
i and R̂q

j and decrease the classification performance.

To tackle this issue, the most popular temporal information alignment approach is

exploited, which is the dynamic time warping approach from [108] to address this

issue.

Ψ(i, j) = E(i, j) + min{Ψ(i− ζ, j − ζ),Ψ(i− ζ, j),Ψ(i, j − ζ)} (5.2.7)

where Ψ(i, j) indicates the cumulative distance between the i-th frame from the query

set and the j-th frame from the support set. ζ is the time mismatch hyperparameter.

Each element in E(i, j) is generated according to equation 5.2.6. In practice, each pair

of instances is correspondingly associated with each other to compute a correlation

distance response map. The instances could be aligned by measuring the similarity

between them since DTW allows for the non-linear mapping of the temporal dimen-

sion. The P̂ and Q̂ will be updated from support set P and the query set Q after the
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DTW module, respectively.

5.3 Multiple Level Feature Fusion

5.3.1 Multiple Feature Fusion

In this context, multiple-feature fusion actually enhances the representation of the

human action features. It refers to merging both the joint and angle signal-level

images at an early stage of the proposed framework. It involves combining the com-

plementary feature information and increasing the correlation between the joint and

angle before any further processing stage begins. The commonly used position-level

information of the skeleton data only contains 2D or 3D coordinates of the joints.

Nevertheless, the angles of the human bones, which are regarded as direction-level

information are naturally complementary to the position-level information. Typically,

the movement differences between the angles and the directions are more informative

and discriminative for action recognition.

After the signal image transformation, joint and angle images are merged as one

single image representation, respectively. However, the temporal dimensions of each

raw skeleton sequence are different, to ensure consistent signal image size after trans-

formation, the feature images are resized with customised image resolutions. Early

fusion can benefit from cooperative learning and feature sharing across both the po-

sition and direction-level information, potentially leading to improved performance.

Moreover, the computational complexity could be simplified and straightforward to

implement and interpret due to the increasing feature dimensions. A detailed illus-

tration of early fusion is shown in Figure 5.8 (a).
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5.3.2 Multiple Stream Fusion

Since the multiple feature fusion merges joint and angle information at the beginning

of the proposed framework. The fused features may be sensitive to noise and outliers

if it includes potentially noisy information in the individual feature. Furthermore,

due to the various complexity of the human action dataset, late fusion is needed for

action recognition. Without the correlations between the joint and angle information,

the prediction probabilities value will be weight averaged and obtained for the fusion

recognition task. The pipeline of late fusion is demonstrated in Figure 5.8 (b) for

further explanation. Both the joint and angle features are trained in a multiple stream

network model, and the late fusion matching prediction is computed as follows:

Pm = Pj + αPa (5.3.1)

where Pj and Pa are the joint prediction values and angle prediction values from the

sub-streams, respectively. α indicates the importance of weight and is set as 1 as

the default. A detailed value analysis of the weight settings will be discussed in the

experiment session.

5.4 Training Objectives

For the support set, there are N classes with M labelled support actions in each

class. As the definition in [9], each prototype indicates the mean vector of the support

embedding points which belong to its categories. The prototypical representation of

each instance could be formulated as follows:

Cm =
1

M

∑
(Ap

i ,y
p
i )

fϕ (Ap
i )× F (ypi = m) (5.4.1)

where Ap
i is the actions from the support set and F is the indicator function. fϕ
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denotes the action encoder for the learnable parameter ϕ and ypi denotes the ground

truth label for the i-th instance from the support set. The prediction distribution of

the actions from the query set is defined as follows:

pϕ (y = m | Aq) =
exp (− dis (fϕ (Aq) , Cm))∑
m′ exp (− dis (fϕ (Aq) , Cm′))

(5.4.2)

where Aq denotes the query actions. And exp is the exponential function and

dis(·) is the distance function. pϕ (y = m | Aq) represents the probability of instance

Aq from the query set belongs to classm. The model aims to maximise pϕ(y = m | Aq)

value to obtain the predicted classes, which means minimising the distance between

the query instances and prototype. The matching loss Lm is derived as shown in

equations 5.4.3 and 5.4.4.

Ld = −
1

B × r

B∑
b

r∑
i

∥Ubi∥ (5.4.3)

Lm = − 1

N q

Nq∑
i

log pϕ (ŷi = yi | Aq
i ) + λLd (5.4.4)

where Ld is the disentanglement loss function for decreasing the linear dependence

between the skeleton key points. B denotes the batch size, b is the b-th instance from

the batch and r is the length of the resized image. Ubi ∈ RX×d denotes the i-th

second action position of b-th updated image presentation. Model training proceeds

to minimise the negative log probability of the ground truth yi with the optimizer. N q

indicates the number of query actions and ŷi is predicted label of the i-th instance. ∥·∥

indicates the paradigm function for regularization and λ is the weight hyperparameter

of Ld for obtain the optimal model performance.
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5.5 Experiments

5.5.1 Datasets

This section briefly introduces the three selected public and available datasets for

the experiments. All three datasets are large-scale datasets and provide the human

skeleton sequence data. These datasets are distinctively and roughly divided into

training (80%), validation (10%) and testing (10%) sets. The instances in the testing

sets are entirely unseen during the training stage.

PKU-MMD

PKU-MMD dataset is a 3D large-scale dataset which contains 1076 long skeleton

sequences in 51 action classes. It is recorded from 66 subjects in 3 different camera

views. There are over 20,000 instances provided with multi-modality data, including

RGB, depth, infrared radiation and skeleton sequences. Five medical-related actions

are selected as the testing set which contains, falling, backache, heart pain, headache

and neck pain (A11, A42, A43, A44, A45). There are 5 randomly selected classes

applied as the validation set and 41 classes of actions for the training set.

NTU RGB+D 60

NTU RGB+D 60 is a 3D large-scale human action dataset which provides skeleton

data sequences. The skeleton data sequences consist of 56,880 instances for 60 types

of human actions. These sequences are recorded from 40 different subjects with 17

different scene conditions, each subject provides 25 pose landmarks. For evaluation

of medical action recognition, 6 actions with medical conditions are considered for

testing, they are cough, falling down, headache, chest pain, back pain and neck pain

(A41, A43, A44, A45, A46, A47).
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NTU RGB+D 120

Similar to NTU RGB+D 60, it is an extended version of NTU RGB+D 60. It

contains 120 types of human actions recorded from 106 subjects in 155 different scene

conditions and each subject also provides 25 pose landmarks. There are over 114,000

skeleton sequences including daily, mutual and medical-related actions. For medical

action recognition, 12 actions with medical conditions are selected as testing set, they

are cough, staggering, falling, headache, chest pain, back pain, neck pain, vomiting,

fan self, yawn, stretch oneself and blow nose (A41, A42, A43, A44, A45, A46, A47,

A48, A49, A103, A104, A105). There are 12 classes selected as the validation set and

the rest of the actions are set as the training set which contains 96 classes.

5.5.2 Implementation Details

For all the datasets, ResNet18 [91] is selected as the backbone to encode the proposed

image-level pose feature, which is the most widely used for image-processing tasks.

Adam optimizer [115] is applied to the experiments with an initial learning rate of

0.001 with a decay of 0.5. The random seed is chosen as 7 and ProtoNet [9] is

selected for classifying the action by calculating the distances between the instances.

The parameter of DTW is set to default as 1. Furthermore, all the experiments are

conducted under the Ubuntu system by using Pytorch deep learning framework, on

a workstation with 4 GeForce GTX 1080Ti GPUs.

5.5.3 Performance Analysis

In this section, the performance analysis is presented to evaluate the effectiveness of

the proposed approach, including the ablation study of different proposed modules

as well as the experiments with different parameter settings. The experiments are

conducted on the widely-used and well-known action recognition datasets for this

purpose, which are NTU RGB+D 60, NTU RGB+D 120 and PKU-MMD datasets.
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Ablation Study

Table 5.1: The 5-way-1-shot Top-1 accuracy (%) comparisons with SOTA methods on
NTU RGB+D 120, NTU RGB+D 60 and PKU-MMD for medical action recognition.

Approaches NTU-120 NTU-60 PKU-MMD

Skeleton-DML [104] 39.3 45.1 34.8
SL-DML [116] 41.8 33.6 36.0
PAMMAR [30] 67.9 56.5 57.3

Angle 64.3 56.1 68.4
Joint 67.9 56.5 57.3

MF-OSMAR (MF) 68.6 57.3 72.0
MF-OSMAR (MS) 68.6 59.2 68.6

Table 5.2: The 5-way-1-shot accuracy (%) of the proposed MF-OSMAR for medical
action recognition with different resolutions on NTU RGB+D 120 dataset.

Features
Size 192 Size 160

DTW CsA+DTW DTW CsA+DTW
Joint [30] 64.6 67.9 64.2 66.0
Angle 63.0 64.3 62.6 62.7

MF-OSMAR (MF) 67.8 68.6 66.6 67.0
MF-OSMAR (MS) 67.1 68.6 66.2 68.3

Table 5.3: The 5-way-1-shot accuracy (%) of the proposed MF-OSMAR for medical
action recognition with different signal image resolutions on NTU RGB+D 60 dataset.

Features
Size 192 Size 160

DTW CsA+DTW DTW CsA+DTW
Joint [30] 52.9 56.5 52.8 54.1
Angle 52.1 56.1 52.1 55.2

MF-OSMAR (MF) 55.0 57.3 53.5 55.6
MF-OSMAR (MS) 58.2 59.2 56.5 58.0

Table 5.4: The 5-way-1-shot accuracy (%) of the proposed MF-OSMAR for medical
action recognition with different signal image resolutions on the PKU-MMD dataset.

Features
Size 192 Size 160

DTW CsA+DTW DTW CsA+DTW
Joint [30] 56.4 57.3 55.9 56.7
Angle 65.2 68.4 64.2 65.0

MF-OSMAR (MF) 66.6 72.0 66.3 66.8
MF-OSMAR (MS) 65.4 68.6 65.2 65.3
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In order to investigate the contributions of different proposed components of the

proposed approaches, the ablation study is performed from two perspectives. Firstly,

the experiments with only DTW module or both DTW and CsA modules are con-

ducted individually after the raw skeleton sequences are processed by the proposed

SIG transformation operation. Next, the impacts of the multiple features (MF) and

multiple streams (MS) are analyzed with the overall proposed framework including

SIG, CsA and DTW. Furthermore, ablation studies for specific medical actions by

joints and angles are provided. Finally, the fusion hyperparameter ablation study is

conducted to analyze the impact of the fusion weights on the late fusion performance.

Table 5.1 illustrates the comparisons with the SOTA approaches on medical ac-

tion recognition. Table 5.2, 5.3 and 5.4 report the detailed evaluations on NTU

RGB+D 120, NTU RGB+D 60 and PKU-MMD for the proposed multiple-level fu-

sion approach, respectively. Compared to PAMMAR [30], the proposed method here

effectively reduces incorrect recognition times and improves NTU RGB+D 120 by

0.7%, NTU RGB+D 60 by 2.7% and PKU-MMD by 14.7%. This is because NTU

RGB+D 120 is a massive scale dataset, which is much more complex and challenging

than the other two datasets. Comparison between DTW and DTW+CsA verifies

the cross-attention module correctly directs the model to focus on the important

parts, even with the early fusion. Moreover, the model is employed with different

image resolutions to further verify the contributions of each proposed module. The

smaller resolution of the transformed image leads to a slight decrease in the model

performance, which is due to the information loss during the image resize operation.

Analysis for Specific Classes

To investigate the performance of each specific action, quantitative ablation study

experiments are conducted for each specific medical action on NTU RGB+D 60, NTU

RGB+D 120 and PKU-MMD datasets of the proposed one-shot learning approach in
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this section.

Figure 5.9: The heatmap visualization for 5-way-1-shot medical action recognition im-
plemented by the proposed MF-OSMAR on A042 (staggering) and A044 (headache)
from NTU RGB+D 120 dataset without (w/o) CsA and with (w/) CsA modules.
The predicted important body parts are highlighted in the red boxes. (Best viewed
in the color version)

Table 5.5 reports the Top 1 accuracy (%) performance on the medical action for the

three datasets. In Table 5.5, w/o CsA indicates the framework without CsA module

and w/ CsA indicates the framework with CsA module is employed. To compare the

performance of joint and angle without CsA module in Table 5.5, for some specific

medical actions, such as vomiting and headache in NTU RGB+D 120, backache

and heart pain from PKU-MMD dataset, the performance of the single angle feature

relatively outperforms single joint feature performance. This is due to the fact that the

changing of the angles of the human physical body is more significant in these medical

action sequences, which contributes informative knowledge to the angle features for

model training. It could be easily observed that most of the best performances for each

specific medical action are under the proposed multiple-stream or multiple-feature

fusion method, which verifies that the joint information benefits the complementary

relation for enhancing the medical action recognition performance. The visualization

heatmap comparisons between A042 staggering and A044 headache are illustrated
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in Figure 5.9, which demonstrates the query activation attention weights when the

instances from the query and support set are the same. According to Table 5.5,

the staggering and headache medical actions from the NTU 120 RGB+D dataset

perform better results from angle features rather than joint features. For the A042

staggering, both the arms and legs of the subjects keep significant movements in the

sequences. It could be observed that the model correctly focuses on the important

body parts after the CsA module, which are labelled as 15, 19, 14, 18, 7, 11, 6 and 10.

For the A044 headache, the subjects keep holding their heads by using their arms.

The heatmaps for A044 demonstrate higher weights after getting through the CsA

module for the arms and hands, which are labelled as 6, 10, 11, 7, 21, 22, 23 and

24. Furthermore, the weights of the head are slightly improved in the angle features

after the CsA module which corresponds to the minor movements of the head, which

are labelled as 2 and 3. Detailed illustrations of the landmarks label are shown in

Figure 5.5. Comparing the heatmaps from the joint and angle w/o CsA for A042, it

could be observed that landmarks 6, 7, 10 and 11 have more important weights in

angle than joints, the same situation happens in A044, in which the color of these

parts is brighter than the joint. The reason is that the direction-level features are

more informative than the position-level features in interpreting A042 actions. the

visualisation results demonstrate the CsA module guides the network to focus on the

correct and important parts for each specific medical action, which is beneficial for

distinguishing similar actions and improving performance. The experimental results

illustrated in the tables verify the complementary relation between the position and

direction-level features for further enhancing performance.

Overall, the proposed data fusion approaches achieve the best performance among

almost all the medical actions compared to the single feature performance in all the

datasets. This verifies that the joint and angle features are complementary in the

spatial and temporal dimensions. Joints provide the position of the landmarks and
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angles provide the bending magnitude of the subject bodies. Both the changing

rates of these two features are also supplied in the temporal dimension. Compared

to PAMMAR [30], the proposed fusion method achieves 6.1% and 6.6% improved

performance for headache and back pain on NTU RGB+D 60, respectively. Similar

to NTU RGB+D 120 dataset, the proposed data fusion improves vomiting by 9.6%

and 7.3%, respectively. According to the results from the three datasets, particularly

in PKU-MMD, falling achieved over 99% accuracy. This is because both the joint and

angle of falling have noticeable changes based on the position and bending angles.

There exist significant differences between the first frame and the last frame for falling.

The experimental evaluation above imply that the proposed multiple-scale fusion

method could considerably strengthen the one-shot learning framework performance

for medical action recognition. Moreover, the UMAP [10] visualization results of

medical actions from the NTU RGB+D 120 dataset are shown in Figure 5.11. The

uniform manifold approximation and projection (UMAP) demonstrates the clustering

relationship by dimension reduction operation of the features. The larger distance

from the other clustering demonstrates higher performance. For example, as shown in

Figure 5.11, falling down, staggering and stretch oneself actions are more centralized

and relatively have higher performance in Table 5.5. According to Table 5.5, the

performance of cough and neck pain are always relatively lower than the other medical

action for the proposed one-shot learning framework. As a suggestion for future work,

exploiting the feature relation between joint and angle on both spatial and temporal

dimensions, which is useful for capturing the long-term latency of the trajectories of

important body parts could further improve the proposed fusion method performance.

Analysis for Parameters

The experiments on the datasets are also conducted to analyze the impacts of different

critical parameter settings. The proposed approach is first evaluated on different
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transformed image resolutions, as illustrated in Table 5.6. Top 1 accuracy (%) is

employed to investigate the relative influences on the performance. With the increase

of resolutions from 32 to 192, the performance of the proposed approach is largely

improved from 58.9% to 67.9%. This is because there exists a positive correlation

between the image resolution and the performance. Since the images contain more

information with larger image resolutions.

Table 5.6: The 5-way-1-shot accuracy (%) of the proposed method using joint features
on different signal image resolutions for medical actions on NTU RGB+D 120 dataset.

Resolutions Baseline [104] DTW CsA+DTW

32×32 33.4 56.0 58.9
64×64 33.7 60.7 62.0
96×96 37.6 59.5 64.7
144×144 40.7 63.5 65.4
160×160 42.0 64.2 66.0
192×192 41.8 64.6 67.9

Furthermore, the ablation study performance on the fusing hyperparameter α

is analyzed for late fusion, which controls the fusing weight of each classifier with

6 different settings, the experimental results of different importance are shown in

Figure 5.10. Since both the joint and angle contain different action features in dif-

ferent dimensions. In order to determine the best weight value settings for different

datasets, an appropriate value is experimentally determined for α from equation 5.3.1

to manage the importance of the weight between the joint features and angle features.

To this end, a set of pilot tests α = {0, 0.4, 0.8, 1.2, 1.6, 2.0} is conducted on NTU

RGB+D 60, NTU RGB+D 120 and PKU-MMD datasets. All the performance of

the three datasets increases when the value of α changes from 0 to 0.4. The best im-

portant weight selections for NTU RGB+D 60, NTU RGB+D 120 and PKU-MMD

are 1.2, 0.8 and 2.0, respectively. The above experimental results demonstrate that

the joint and the angle feature are complementary for enhancing the medical action

recognition performance. One thing that needs to be noted is that the largest image
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resolutions with the full proposed model are used and keep them fixed during this

ablation study experiment.

5.5.4 Benchmark Evaluations

The proposed framework is evaluated on the NTU RGB+D 60, NTU RGB+D 120

and PKU-MMD datasets. Quantitative experimental results compared with recent

state-of-the-art approaches are shown in Table 5.7. These state-of-the-art approaches

include: Attention Network [117], Fully Connected [117], Average Pooling [118],

APSR [3], TCN [119], SL-DML [116], Skeleton-DML [104], SMAM-Net [78], ALCA-

GCN [120], PAMMER [30], PartProtoNet [77], CTR-GCN-KP [79] and MMTS [121].

In order to conduct a fair comparison with the state-of-the-art approaches, the dataset

partitioning is consistent with the SOTA methods in this part.

Table 5.7: The 5-way-1-shot human action recognition accuracy (%) comparisons
with SOTA methods on NTU RGB+D 60, NTU RGB+D 120 and PKU-MMD with
general dataset partitioning. † indicates the SIG method is applied.

Approaches NTU-60 NTU-120 PKU-MMD

Attention Network [117] - 41.0 -
Fully Connected [117] 60.9 42.1 56.4
Average Pooling [118] 59.8 42.9 58.1

APSR [3] - 45.3 -
TCN [119] 64.8 46.5 56.1

CTR-GCN-KP [79] - 68.1 -
† SL-DML [116] 71.4 50.9 67.0
ALCA-GCN [120] - 57.6 -
PartProtoNet [77] - 65.6 -
† Skeleton-DML [104] 71.8 54.2 68.6

SMAM-Net [78] 73.6 56.4 70.4
† PAMMER [30] 69.9 58.3 78.5
MMTS [121] - 69.8 -

† MF-OSMAR 76.3 76.0 82.6

As could be observed from Table 5.7, the proposed method (MF-OSMAR) reports

state-of-the-art accuracy compared with the other recent state-of-the-art one-shot
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learning approaches for human action recognition on NTU RGB+D 60, NTU RGB+D

120 and PKU-MMD datasets with general dataset partitioning, which indicates the

proposed method is capable to provide more valuable action feature information to

the model. It is worth noting that the full proposed model, which contains both CsA

and DTW modules is applied for comparison with the state-of-the-art methods in

this part of the experiments by the 192×192 resolutions.

5.5.5 Failure Case

According to Table 5.5, the proposed method performs better in recognizing some of

the medical actions rather than the baseline approach [30], such as ”Falling down”

and ”Staggering”, demonstrating that the proposed method of enhancing the com-

plementary relation features in distinguishing different medical actions. However,

the specific experimental results of the action ”Cough” are relatively not promising,

which are around 45%. This demonstrates the proposed method is insensitive in cap-

turing the medical actions with the tiny range of movements. Presumably, this is

because the pixel values of the angle features for these medical actions are relatively

limited. Moreover, since the backbone is chosen to use ResNet18, the kernel size of it

is fixed when taking the instances, the feature values may extend to disappear after

several layers compared to the other actions. Therefore, the discriminative capability

of MF-OSMAR based on barely on the actions with limited movements is insufficient

for some challenging cases.

5.6 Summary

In summary, this chapter contributed to addressing the data and label-lacking issue to

improve the medical action recognition performance by proposing a one-shot learning

framework with a multiple-level fusion theory. By performing the one-shot learning

framework including cross-attention and dynamic time warping modules, the simi-
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lar medical action misclassify and temporal information mismatching issues are both

effectively mitigated. The signal image transformation approach was proposed to al-

leviate the privacy leakage issue by transforming the human skeleton sequence into

the RGB image. By employing the multiple-level fusion method, the medical action

features were enriched and the misclassified errors were alleviated, thereby maximiz-

ing the complementary benefits between the joint features and the angle features for

various similar medical actions. In Section 5.5.3, the detailed performance analysis

including the extensive ablation study and visualization results was conducted to ex-

ploit the contributions from different proposed components. Evaluations on the NTU

RGB+D 60, NTU RGB+D 120 and PKU-MMD with general partitioning in Section

5.5.4 were provided to verify the effectiveness of the proposed approach compared

with other state-of-the-art methods.

Furthermore, the failure case of medical action recognition was given and discussed

in Section 5.5.5. In future work, techniques for extracting more robustness and deeper

feature together with occlusion-aware medical action recognition will be exploited for

better real-world scenarios generalization ability.



Chapter 6

CONCLUSIONS AND

FUTURE WORK

Privacy mitigating algorithms provide a variety of solutions for addressing the existing

issues in medical action recognition tasks, including data limitations, noisy annota-

tions and privacy protection. This thesis focuses on the multiple human fall events

classification task rather than the conventional video-based binary fall detection task

in the first and second contribution chapters since fall events play a key role in the

reasons for aging population death and different fall events result in varying degrees

of injury. The proposed algorithms are then generalized to medical action recognition

for a border application field in the third contribution chapter. Overall, this thesis

has effectively accomplished the six objectives aforementioned in Chapter 1, by devel-

oping three different methods which are described in detail in the three contribution

chapters to address the challenging issues for medical action recognition. Extensive

experimental evaluations on various medical action recognition-related benchmark

datasets verify the effectiveness of the proposed algorithms, along with detailed in-

vestigation in both quantitative and qualitative ways were provided to compare with

the recent state-of-the-art methods.

In the final chapter, the contributions of this thesis will be summarized along

with the limitations in Section 6.1. Section 6.2 will provide future research plans that

could further improve the robustness and performance of medical action recognition.

113
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6.1 Conclusions

In Chapter 3, a new redundant data reduction theory was first developed in the data

processing stage. The main functionality of this method was to enhance the data

quality by removing unimportant information including the redundant empty frames

and the redundant body parts related to the fall events. The main advantage is that

this method tackles redundant information in the data processing stage, therefore it

is plugin into either the data-driven methods or the model-driven methods. For the

RF classification method, the proposed redundant data reduction method achieved

7% to 11% improvements for different fall events. Furthermore, to deal with the

imbalanced data issue for multiple fall events, a two-stage deep neural network-based

framework was designed to efficiently filter the normal human activities in the initial

stage and focused on multiple fall events classification in the conclusive stage. The

gating parameter settings were made to control the data filtering ability in the initial

stage. The proposed methods achieved approximately 2% to 3% improvements in

multiple fall events classification on the extracted privacy-mitigated skeleton data

from the UP-Fall dataset. Evaluations on the UP-Fall benchmark dataset further

verified the effectiveness of the proposed methods compared with other state-of-the-

art methods. Both of the detailed experimental results analysis and discussion were

presented in Chapter 3.

Chapter 4 was particularly dedicated to demonstrating the paramount impor-

tance of annotation quality to data-driven methods, and thus proposed a novel noisy

annotations managing system. There are two primary components included in the

proposed system: noisy annotation purification and noisy label learning. For the

proposed noisy annotation purification method, the entire corrupted dataset was fed

into the model for obtaining the initial prediction coarse. Followed by generating

the confidence joint counting matrix and counting the noisy annotation from the raw

corrupted dataset with the refined confidence joint probability distribution matrix.
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After that, four noisy annotation pruning methods were proposed for purifying the

corrupted dataset. The proposed noisy label learning algorithm is developed with a

trinity network to fully exploit the potential of the noisy instance, which includes two

teacher modules and one student module. The peer network structures were utilized

for mining the clean instances. The small loss algorithm was used for distinguishing

the noisy annotations since the clean data performs relatively small loss values at the

initial training process. The co-regularization algorithm was utilized as a contrastive

term in the proposed Kullback-Leibler loss function for maximizing the clean data

agreement. Moreover, cross update approach was used for exchanging the perceived

clean instance during the training process between the peer networks. Furthermore,

the consensus-based data selection theory was developed to enhance the robustness of

the proposed system by allocating the clean data agreement from the teacher modules

to guide the student module training. Evaluations on the UP-Fall dataset confirmed

the efficacy of the proposed purification method in Chapter 4, which achieved 3% to

7% improvements for different fall events, respectively. Moreover, experiments with

different estimated noise types and noise rates on the UP-Fall dataset were also pro-

vided. The proposed JoCoT achieved approximately 4% and 2% improvements for

the average of all rate settings for the pairflip and symmetric noise, respectively. For

the deep corruption, JoCoT achieved 5% and 3% improvements, respectively. Im-

proved experimental results demonstrated the superiority of the proposed noisy label

learning algorithm in discriminating the noisy instances and promoting classification

performance in different noisy situations.

In Chapter 5, the entire medical action recognition process was typically estab-

lished from a multiple-level fusion perspective. The first contribution targeted at

addressing the issues of data limitation by proposing a one-shot learning framework

with both the cross-attention mechanism and dynamic time warping module. Since

similar medical action may lead to misclassification and decreased performance, the
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cross-attention mechanism aims to guide the model more concerned with the im-

portant landmarks for each medical action. By aligning the temporal information

between the instances, the dynamic time warping module effectively addressed the

temporal mismatching issue. In order to further mitigate the privacy leakage issue,

both the position and direction-level features were distilled and transformed into

the proposed signal-level images, since they were able to better protect the privacy

information compared with the features from the unprocessed raw human skeleton

sequences. Then, the proposed multiple-level fusion was developed to investigate the

complementary benefits between the direction-level and position-level features as the

second contribution, such a multiple-level fusion approach was performed promising

to remedy the shortage of the usage of single features. Evaluations on the NTU-60,

NTU-120 and PKU-MMD benchmark datasets confirmed the advantageous perfor-

mance of the proposed method compared with the recent state-of-the-art one-shot

learning medical action recognition methods in both visualization and statistics per-

spectives. Moreover, extensive ablation study experiments confirmed the efficacy of

each proposed module. Furthermore, for the benchmark evaluation with the general

dataset partitioning, the proposed MF-OSMAR achieved 2.7%, 6.2% and 4.1% im-

provements for NTU-60, NTU-120 and PKU-MMD benchmark datasets, respectively.

6.2 Future Work

Although the proposed approaches have achieved improved and promising perfor-

mance in the medical action recognition research area, there are still several limita-

tions that can be addressed for further comprehensive this study. This section aims to

provide some prospective research directions that may insight any researchers plan-

ning to dedicate to this research field.

In this thesis, human fall events classification as one of the computer vision tasks

has been exploited to achieve improved performance by removing redundant informa-
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tion and addressing the imbalanced data issue. However, the applied dataset is mostly

containing a single target from a single camera perspective, this technique can obtain

a better generalization ability to the real-world environment which may contain mul-

tiple targets with fall events by combining the person re-identification and multiple

human tracking algorithms. It is also possible that other kinds of approaches such as

semantic segmentation, multiple-view understanding and multimodal learning, can

be available for better classification of human fall events.

Even though this thesis has addressed the noisy annotation issue by pruning the

noisy instance and learning with the noisy instance. It should be noted that perform-

ing a noisy annotation correction theory during the training process can also achieve

promising performance. This theory requires an effective noisy instance selection

mechanism that can accurately filter the incorrect annotation, along with a powerful

annotation correction ability either based on the designed network architecture or

joint probability density distribution matrix. In this way, the corrupted dataset can

be purified during the training process by taking advantage of cleaning the dataset

without removing instances and training with correcting. Moreover, estimating the

density distribution matrix of noisy annotations from the corrupted dataset is also a

good option to particularly deal with real-world noise rather than manually generated

noise.

In the medical action recognition research area, addressing the widespread oc-

clusion and frequent occlusion is still a challenging issue, and its quality directly

affects the medical action recognition performance. Consequently, various future re-

search towards to tackle this issue. Firstly, the position and posture of the occluded

target during the occlusions can be estimated by historical information. Recent pos-

sible solutions based on deep learning methods to accomplish this issue include Self-

Supervised Learning and Transformers. Secondly, the target with frequent occlusion

can be beneficial by incorporating the person re-identification algorithm, thereby bet-
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ter recognising the desired target during the occlusion.

Due to the distinctive attributes of medical action recognition, such as fall events

holds significant lethality for aging population. Therefore, an accurate medical action

prediction system is required rather than mere recognition after their occurrence. This

system requires an effective human medical action forecasting mechanism that could

accurately predict the next movement of the target based on the historical trajecto-

ries, which guide the system to predict the next occurring events according to past

events. Understanding human motion can be applied by utilizing such as Federated

Learning, Spatial-Temporal Networks, Self-Supervised Learning and Transformers.

To this end, more accurate human medical action trajectories can be predicted ac-

cording to the aforementioned deep learning methods but the conventional linear

prediction algorithms can be prevented or improved.
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