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Abstract

As the real world is full of uncertainty, we often estimate, or even guess to quantify uncer-
tainty. Probabilistic models are the key to cope with uncertainty. One of the most prominent
concurrent probabilistic models are probabilistic Petri nets. Petri nets are one of the mathe-
matical modeling languages for the representation of distributed systems. They have been
characterised as one of the expressive models to capture the notion of concurrency.

Developing probabilistic concurrent system has been proved to be a difficult and ongoing
problem. This is because in a concurrent systems different executions of a concurrent
computation should have the same probability. However, this is not always guaranteed as
concurrent systems may exhibit confusion.

Confusion is an overlapping between conflict and concurrency – two fundamental con-
cepts used in the area of concurrent systems modelling – which interferes with probability
analysis. In this thesis, we set out to develop a probabilistic framework and outline ap-
proaches leading to a model where distributed choices are resolved in a way which allows
one to carry out probabilistic estimation. In particular, the concept of cluster-acyclic net is
introduced to transform a net with confusion into another net whose structure is free-choice
which facilitates probabilistic estimation.

Moreover, we formally extend calculating probabilities and the definition of conflict and
confusion to Communication Structured Acyclic Nets (CSA-nets). Intuitively, in CSA-nets,
acyclic nets are integrated into one structure that allows them to interact by the means of
asynchronous and synchronous communications.

CSA-nets are sets of interacting acyclic nets derived from Structured Occurrence Nets
(SO-nets), which are a Petri net based formalism for representing the behaviour of complex
evolving systems.

We show that a CSA-net with confusion can be translated into another, confusion-free net,
whose behaviour is closely linked to the behaviour of the original CSA-net. Also, a boolean
satisfiability model is introduced to formally verify behavioural properties of CSA-nets.
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Chapter 1

Introduction

1.1 Background

In everyday life, the presence of uncertainty can never be eliminated completely. Predicting
tomorrow’s weather, where we left our keys, or even the outcomes of a simple task of flipping
a coin cannot be predicted with certainty. Generally, this type of unpredictability is a result
of our ignorance and limited knowledge. Usually, we find ourselves obligated to guess or
estimate our beliefs. As the real world is immensely complicated, mathematical models are
used to cope with the real world complexity. In particular, probability theory plays a key
role in coping with uncertainty. In fact, the probability theory is the science of uncertainty.
It is based on statistical details that estimates the likelihood of an event occurrence. Hence,
probability models are frameworks that mitigate our limited knowledge in the sense that we
are capable of making reasonable decisions or predictions.

There are ubiquitous uses of probability models in real life applications. For example,
in crime or accident investigation systems – which are examples of Complex Evolving
Systems (CES) – a crime or accident is portrayed by numerous scenarios due to the lack of
enough information concerning the crime or accident. This is because a full information
about a specific activity is, in general, not available [106]. Hence (often numerous) alternate
scenarios are pursued by investigators in order to clarify the status of a crime or accident.
Such systems are characterised as being inherently non-deterministic which results from
the lack of the ability to observe all the events and their causes. To cope with this difficulty,
investigators need to consider all the possible scenarios. However, considering all possible
scenarios might result in meaningless conclusion. Thus, reasoning about what is probable
along with what is possible is essential to obtain meaningful conclusion [77]. Equipping
such system with probability estimations can enhance the investigators decisions regarding
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crimes or accidents. In this case, investigators can narrow down their hypothesis and reason
about what was most likely to occur. As a result, they are able to prioritise the investigation
of alternative scenarios. Therefore, providing effective probabilistic estimation of different
scenarios would greatly help the investigators to find answers to crucial questions concerning
the incident. This would enable one to interpret relative likelihood of events involved and
then combine them into a meaningful information, which would increase the degree of
certainty of crime or accident representation.

Not limited to analysing crime or accident investigations systems, there is a rapidly
growing interest in probabilistic models for a variety of applications, such as machine
learning and medical researches. In this thesis we are interested in concurrent probabilistic

models.
Developing concurrent probabilistic systems has bee a long standing challenge. One of

the most prominent concurrent probabilistic models are probabilistic Petri nets. Probabilistic
Petri nets were introduced in [26, 69, 3, 128, 68, 19, 87, 9, 4]. In probabilistic Petri nets,
the ordering of concurrent events is irrelevant and behaviours differ only in such orderings
should be assigned the same probability. Also, the conflict between the transitions is resolved
probabilistically, and there is a probability distribution over a cell/cluster, which is a set of
transitions that are in direct conflict. Then, the probability of a step sequence is the product
of probabilities of its constituent transitions. If all the conflict transitions have the same set
of causal predecessors, then they are always enabled together. Hence, we can say that such a
cell/cluster is either enabled or not enabled. However, conflict transitions do not always have
identical causal predecessors.

p1

b
p3

p2

c
p5

a
p4

Fig. 1.1 An acyclic Petri net.

Figure 1.1 shows an acylic net with three transitions: a,b,c. Note that a and c are in
direct conflict, but they have different input places. Resolving the conflict between a and
c depends on firing b first (before firing a). In this case, the probability of choosing a or
choosing c is 0.5. However, if a is fired before b, then the probability of a is 1 and so it is
different than in the first case. Hence, it is not obvious what the probability of a should be.
That is due to the fact that a and c have different causal predecessors. The situation where
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1.1 Background

the transitions have different probabilities based on the ordering in which they are executed
is called confusion.

Confusion arises when conflict and concurrency overlap. Assigning probabilities to
transitions in the presence of confusion is problematic and interferes with probability analysis.
That is because transitions are not probabilistically independent despite the fact that they are
concurrent. For instance, even though a and b in Figure 1.1 above are concurrent, firing b

has influence on the probability of a. Remedying confusion has generated great interest over
the past years. Several studies explored the effect of confusion and proposed approaches to
remove it [26, 1, 69, 3, 68, 19, 4, 31, 32].

In this thesis, we develop a theoretical concurrent probabilistic framework based on
Communication Structured Acyclic Nets (CSA-nets) and Behavioural Abstraction Com-
munication Structured Acyclic Nets (BSA-nets). The concept of CSA-nets is derived from
Structured Occurrence Nets (SO-nets), which were first introduced in [105] and elaborated
in [78]. CSA-nets consists of multiple acyclic nets that are associated with varying kinds of
formal relationships, with the objective of recording information about the actual or expected
behavior of CESs. [84] characterises a CESs as a system being composed of wide array of
(sub)systems that interact with each other and with its surrounding environment, resulting
in a highly complex structure. The expressive structure of CSA-nets is suitable to represent
the activities of such systems since the cognitive complexity can be reduced and managed
by choosing the adequate notation for describing the behavior of complex evolving systems.
[78] introduced the basic formalisation of SO-nets to represent complex fault-error-failure
chains. Also, [84] showed that SO-nets can be used to visualise and analyse behaviour of
CESs, and [11] demonstrated SO-nets capabilities for modelling cybercrime investigation.
Moreover, the previous work on SO-nets provided a framework for provenance [92], timed
behaviours [23, 10], and events extraction [15, 16]. A SAT-based model checking for CSA-
nets was introduced in [14], and improving the visualisation aspects was discussed in [5–7].
Equipping CSA-nets with probabilities was introduced in [12, 13].

BSA-nets can be defined as a way of capturing the evolution of a set of related acyclic nets.
They provide a mechanism to abstract parts of a complex activity by another system. More
precisely, the behaviour can be embodied at two levels of abstraction, namely the upper-level
and lower-level. The upper-level provides a simple view and hides unimportant details of
the behaviour. The lower-level, on the other hand, shows the full details of behaviour during
different evolution stages.

This thesis will address theoretical aspect of probabilistic CSA-nets and probabilistic
BSA-nets. The main focus of the thesis is to propose approaches for handling confusion.
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Also, we explore how this probabilistic analysis can be facilitated by a SAT-based model
checking verification of behavioural properties of CSA-nets and BSA-nets.

1.2 Aim and Objectives of the Thesis

Aim:

To develop a formal concurrent probabilistic framework for CSA-nets and their behavioural
abstractions and provide techniques to handle the case of confusion.

Objectives:

1. Surveying the existing probabilistic models

Different mathematical probability models have been introduced over the past decades.
We review a number of the existing probability models. These probability models serve
different purposes. For instance, the formalism of automata based models provide
probability analysis for sequential behaviour only. Also, the next state probability
is based on the present state only excluding the history of the process. Providing
probability analysis for complex evolving systems cannot be achieved with these
restrictions. Concurrent probabilistic models, in particular token-based models such
as Perti nets, are compatible with the features of such systems. Reviewing several
probability models provides us the basic concepts for understanding their features and
how they can be used in practical applications.

2. Surveying the existing approaches for removing confusion in Petri nets

There exists an extensive literature on the topic of confusion and approaches for
handling it. The aim of reviewing a range of the existing techniques for removing
confusion is to gain understanding of its effects and propose acceptable approaches of
removing it.

3. Developing a theoretical probabilistic framework for the analysis of CSA-nets

To develop principles for probabilistic analysis of composed acyclic nets captured by
CSA-nets, we will develop (in Chapter 3) the basic theory of probabilistic analysis
for a single acyclic net. In particular, a formula calculating the probability of a step
sequence so that conflicts between transitions are resolved probabilistically will be
defined. Confusion is defined, with some illustrative examples, as a situation where
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the probabilistic analysis is not feasible. In Chapter 4, we will extend the probabilities
calculation and the definition of confusion to the level of interacting acyclic nets
(CSA-nets).

4. Developing different approaches for removing confusion in CSA-nets

Identifying the cases where confusion arises are needed in order to propose techniques
for remedying it. This leads to defining a novel class of acyclic nets, namely cluster-

acyclic nets. Chapter 3 introduces two approaches of removing confusion for acyclic
nets in this class. Extending the definition of confusion and the approaches of removing
it to be applicable to sets of interacting acyclic nets is the core contribution of Chapter 4.
Moreover, cascading CSA-nets are defined as a new class of CSA-nets, and a novel
technique of handling confusion for this class of CSA-nets is proposed.

5. Developing a theoretical probabilistic framework for the analysis of BSA-nets and
proposing an approach for handling confusion

In Chapter 5, we extend our probabilistic framework so that the probability analysis is
applicable for two-level BSA-nets. In particular, the probabilities calculation that is
reflected at the upper-level acyclic nets is based on the details provided at the lower-
level acyclic nets. In this case, the abstracted view captured by upper-level acyclic
nets is seen not only as a means of simplifying the representation, but also as a tool
of analysing the lower-level behaviour. Moreover, an initial approach is proposed to
handle the confusion through utilizing the behavioural abstraction relation.

6. Developing a SAT-based verification method for CSA-nets

To facilitate the development of our probabilistic framework in practical applications,
we investigate verifying CSA-nets and BSA-nets properties using SAT-based model
checking. In particular, we focus on developing formulas for detecting conflict and
confusion. Also, formulas are introduced to ensure that a set of transitions represents a
valid behaviour.

1.3 Contributions

Our main contributions developed to satisfy the aim and objectives are as follows:

1. A survey of the existing approaches of removing confusion in probabilistic Petri
nets
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Probabilistic Petri nets has been of interest for a considerable period. Consequently,
there is also a large body of work in this area considering handling confusion. To meet
Objective 2, we would like to review a collection of studies that proposed techniques
for removing confusion. For example, the work introduced by [1] and [2] provided
an approach of handling confusion by means of branching cells in such way that a
net is decomposed dynamically. The most recent theory proposed by [26] offers a
new approach for removing confusion by static decomposition of branching cells.
Additional investigation about other approaches for removing confusion are explored
in Chapter 2.

2. A theoretical probabilistic framework for the analysis of cluster-acyclic nets and
CSA-nets, and different approaches for removing confusion

Cluster-acyclic nets are defined as a new class of acyclic nets, where conflict transitions
are grouped into a cluster. The acyclicity over all the clusters is an important restriction,
and the clusters are probabilistically independent. Probabilities are calculated based on
the weights assigned to the transitions in conflict. Overlapping conflict and concurrency
causes confusion which means that the probabilities are not calculated accurately. Two
approaches are proposed to remedy this situation for cluster-acyclic nets.

We then extend the definition of confusion and techniques for removing it to sets
of interacting acyclic nets represented by CSA-nets. It turns out that the acyclicity
constraint can be lifted to the level of CSA-nets. We also define cascading CSA-nets,
and propose a simple approach for removing confusion from cascading CSA-nets.
These outcomes are essential to meet Objective 4.

3. A theoretical probabilistic framework for the analysis of BSA-nets, and an ap-
proach for handling confusion in BSA-nets

To satisfy Objective 5, we first extend the model of BSA-nets discussed in [78, 106,
105, 84, 11, 92]. In particular, the upper-level nets are defined as free-choice acyclic
nets instead of being line-like in order to represent alternatives in a given lower-level
behaviour. Being able to represent alternative behaviours motivated us to extend the
probabilistic framework so that probabilities are represented at the upper-level nets.
This is a novel representation of probabilities in the area of net theory. The abstracted
view captured by upper-level nets can be seen as a tool for not only providing a
simpler representation but also contributing in the analysis. In this case, the probability
of a upper-level transition is derived from the weights associated with the lower-
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level transitions that are ascribed to it. Moreover, we propose a preliminary idea of
controlling confusion in BSA-nets. More precisely, exploiting the structural constraints
of upper-level nets, behavioural relation is used to filter out undesirable representation
of a given behaviour.

4. A SAT-based verification for CSA-nets and BSA-nets

We investigate the development of a SAT-based model checking technque for our
framework. Regarding Objective 6, we formalise important behavioural specifications
of CSA-nets and BSA-nets as satisfiability formulas. For instance, we show how the
presence of confusion can be detected using a suitable SAT formula. Checking of other
crucial behavioural properties is discussed in Chapter 6.

1.4 Thesis Outline

The thesis is organised as follows:
Chapter 2 provides an overview of the background details and related work of probabilistic
Petri nets.
Chapter 3 presents the notions and properties concerning acyclic nets. Also, it discusses
the notion of confusion and the ways it can affect the probabilistic analysis of acyclic nets.
Moreover, different approaches of removing confusion are presented.
Chapter 4 discusses CSA-nets and their properties. In particular, the definition of confusion
is extended to CSA-nets as well as the methods of removing it.
Chapter 5 discusses BSA-nets and their properties.
Chapter 6 introduces SAT-based model checking for CSA-nets and BSA-nets.
Chapter 7 summarises and concludes the work, and proposes directions for further work.

1.5 List of Publications

Parts of this thesis have been documented in the following publications:

1. Almutairi, N. and Koutny, M. (2021). Verification of communication structured acyclic
nets using SAT. In PNSE@Petri Nets, volume 2907 of CEUR Workshop Proceedings,
pages 175–194. CEUR-WS.org.

2. Almutairi, N. (2022). Probabilistic communication structured acyclic nets. In PNSE@Petri
Nets, volume 3170 of CEUR Workshop Proceedings, pages 168–187. CEUR-WS.org.
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3. Almutairi, N. (2023). Probabilistic Behavioural Acyclic Nets. In PNSE@Petri Nets,
volume 3430 of CEUR Workshop Proceedings. CEUR-WS.org.

4. Alahmadi, M., Alharbi, S., Alharbi, T., Almutairi, N., Alshammari, T., Bhattacharyya,A.,
Koutny, M., Li, B. and Randell, B. (2024) Structured Acyclic Nets. arXiv preprint
arXiv:2401.07308
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Chapter 2

Background

This chapter reviews the main graph-based formalisms used to model probabilistic computing
systems. First, we give an introduction of the automata-based models. These automata-
based models include: Markov Automata (MA), Probabilistic Automata (PA), and Interactive

Markov Chains (IMCs). After that, Bayesian Networks (BNs) and Factor Graphs (FGs) are
presented as other classes of probabilistic graphs.

We then focus on token-based models of Petri nets, where probabilities are associated
with conflicting transitions that are related to our work, specifically considering approaches
for handling confusion.

2.1 Probabilistic automata-based models

2.1.1 Probabilistic Automata

The seminal work by Rabin [101] provided the initial proposal of Probabilistic Automata
(PA). The initial idea was re-formulated by Segala and Lynch [117, 118, 116]. The model is
a mathematical framework for probabilistic analysis and it can be seen as a generalisation
of non-deterministic finite state automata with probabilistic distributions. A PA consists of
states represented by circles which are connected by arcs that represent transitions. Choices
can be resolved probabilistically or non-deterministically. That is, a transition from a state
s with an action a occurs with the probability distribution over several next states. Also, a
transition can be taken non-deterministically when there are several transitions with the same
action but with different distributions [121]. In general, PA are an extension of the labelled

transitions systems such that transitions are non-deterministic, but governed by probability
distribution (the labelled transitions systems lack similar quantitative analysis). PA have
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been used extensively in both theory and practice-oriented research [43, 68, 19, 42]. In
particular, PA have been used for modelling asynchronous systems with discrete probabilistic
analysis. Such systems include distributed algorithms, fault tolerant systems, and probabilistic
communication protocols. The probabilities that can be associated with these systems are
related to correctness and performance evaluation [121].

Example 1. A probabilistic automaton representing a vending machine (taken from [19]) is
shown in Figure 2.1. The initial state is s0 which is also the final state. The probability of
accepting an inserted coin is 0.9 and in this case a transition from s0 to s1 occurs. On the
other hand, the probability of rejecting the coin is 0.1 where the system does not change its
state s0. In s1 there are two probabilistic transitions captured by choosing coke and moving
to s2 with probability 0.5 or choosing chock and moving to s3 with probability 0.5. Then
with a deterministic transition the system returns to its initial state. ⋄

s0start s1

s2

s3

s4

s5

coin: 0.1

coin: 0.9

coke: 0.5

chock: 0.5

get coke
1

get chock

1

1

1

Fig. 2.1 Probabilistic automaton of a vending machine.

2.1.2 Interactive Markov Chains

Interactive Markov Chains (IMCs) are also one of the automata-based models. They distin-
guish between non-deterministic choices, which are captured by interactive transitions, and
exponentially distributed delays captured by Markovian transitions. An interactive transition
is represented by s α−→ s′ where the action α is executed in zero time with non-deterministic
choices, denoted as (s,α,s′). The set of interactive transitions is IT (s) = {(s,α,s′) ∈ IT}.
A Markovian transition denoted by (s,λ ,s′), written as s−− λ−→ s′, which means that the
system moves from state s to state s′ after a delay exponentially distributed with rate λ
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[61]. The set of Markovian transitions is MT (s) = {(s,λ ,s′) ∈MT}. In a state where both
kinds of transitions are enabled, interactive transitions are taken immediately. The outgoing
transitions identify the type of the states. For instance, we say that a state s is an interactive
state if there is s α−→ s′, and s is a Markovian state if there is s−− λ−→ s′. For Markovian
states, R(s,s′) = ∑{λ | (s,λ ,s′) ∈MT (s)} is the rate for sate s to move to state s′. Also,
E(s) = ∑s′∈S R(s,s′) is the exit rate of state s. Then the probability to move from state s to s′

is given by P(s,s′) = R(s,s′)
E(s) [124].

Examples of using IMCs include dynamic fault trees [29] and architectural description
language [25].

s0start s1 s2

s3

s4

s5

s6

s7

coin

coke: 0.5

chock: 0.5

get coke
1

get chock
1

1

1

0.2

0.4

0.6

Fig. 2.2 Interactive Markov Chain of vending machine (from [19]).

Example 2. A vending machine modelled by IMC is presented in Figure 2.2 (taken
from [19]). After a coin is inserted, the machine enters state s1 which is a Markovian state as
all its outgoing transitions are Markovian transitions. Then, states s2 and s3 are racing each
other as they are both available at s1, the one whose rate expires first is taken. s2 is an error
state which represents the situation when the machine is not working. The probability of
moving from state s1 to state s2 is P(s1,s2) = 0.6 and the probability of moving to state s3 is
P(s1,s3) = 0.4. As the delay of the transition to s3 expires first, s3 is chosen where either
coke or chock is taken non-deterministically. ⋄
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2.1.3 Markov Automata

Markov Automata (MA) is one of the general automata-based models. A powerful aspect
of MA is that they can describe systems in terms of non-deterministic, probabilistic, and
timed behaviour [40]. The semantics of MA is captured by actions or events which are
responsible of moving a system from one state to another. Transferring to the next state is
governed by a probabilistic distribution and exponentially distributed delays. In other words,
transitions in MA are classified into immediate probabilistic transitions and Markov timed

transitions [52]. Hence, MA is a combination of Probabilistic Automata (PA) and Interactive

Markov Chains (IMCs). That means MA are similar to PA in terms of resolving the choices
probabilistically for probabilistic transition, and choices are resolved stochastically for the
Markovian transitions as in IMC [19].

MAs are expressive and suitable to model systems in both theoretical and practical
research [40, 42, 52, 56, 57, 124, 123, 43, 19]. For instance, in [55], MA is used to establish
quantitative analysis for cost and risk related to Bitcoin, as well as to evaluate performance
of resource-sharing systems.

Example 3. Figure 2.3 shows the same vending machine in Figure 2.1 as a Markov
automaton. After the inserted coin is accepted with probability 0.9, two transitions are
enabled at s1 as in Example 2. States s1 and s2 are Markovian states. If the error state s2 is
chosen, the machine can be in state s1 again after some time represented by rate 0.2. This
shows how this MA is different form the PA in Figure 2.1 as not only probabilistic behaviour
is captured, but also the stochastic one. ⋄

2.2 Bayesian Nets

The theory of Bayesian Nets (BNs) is based on the work introduced by Bayes in 1764 [96].
The term "Bayesian network" was coined by Judea Pearl in 1985 [97]. Bayesian nets use
an underlying graphical structure and the probability to provide a theoretical foundation to
handle uncertainty. Basically, BNs are directed acyclic graphs representing a set of variables
and their conditional relationships. More precisely, they consist of nodes that represent
variables and direct edges that capture causal dependencies. BNs are used to capture the
possibility that one of a range of potential known causes contributed to an event that already
happened. For instance, BNs could depict the probability connections between diseases and
symptoms. In other words, BNs can be used to calculate the likelihood that a certain set of
diseases will be present given a set of symptoms.
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s0start s1 s2

s3

s4

s5

s6

s7

coin: 0.1

coin: 0.9

coke: 0.5

chock: 0.5

get coke

1

get chock

1

1

1

0.2

0.4

0.6

Fig. 2.3 Markov automaton of a vending machine (from [19]).

The probability distribution in BN of an event is conditional on the set of its parents for
each possible outcome. Intuitively, if Q = {x1, . . . ,xn} is the set of variables represented by
the nodes in BN and Pai denotes the parents for each node xi, then the joint probability is
P(Q) = ∏

n
i=1 P(xi | Pai) [120], which is the probability of xi given the fact that its parents

Pai are observed. Hence, one can say that in BN the probability is based on the background
knowledge.

There exists a large body of works on BNs, both theory-based and practical ones [60, 96,
94, 65, 63].

Smoking High CloistralDiabetes

Coronary Heart Disease

Heart Attack

Fig. 2.4 Bayesian network representing the likelihood of a heart attack.

Example 4. Figure 2.4 shows an example of Bayesian network representing the causes of
heart attack. The causal dependencies of Coronary Heart Disease are Smoking, Diabetes, and
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High cloistral. Hence, the probability distribution of coronary heart disease is conditionally
on all its parents. Similarly, the probability distribution of Heart Attack is based on observing
Coronary Heart Disease. Hence, the joint probability distribution of this Bayesian network
represents is

P(D,S,H,CHD,A) = P(D) ·P(S) ·P(H) ·P(CHD | D,S,H) ·P(A |CHD)

where D stands for Diabetes, S for Smoking, H for High Cloistral, CHD for Coronary Heart

Disease, and A for Heart Attack (note that the conditional probability tables for each node is
not presented). ⋄

2.3 Factor Graphs

A factor graph (FG) is an undirected bipartite graph that shows how a function is factorised.
In fact, factor graphs are a class of probabilistic graphical models that are used to depict
the factorization of probability distributions. The main components of an FG are variables

represented by circles and factors represented by boxes, which represent the relationship
and probabilistic information of the graph variables. The independence relation between the
variables is visualised as an edge added between a variable and a factor if the variable appears
in the factor. In more details, each factor is associated with a factor function that explains
the relation between the various variables it might be attached to. Each factor function has a
weight that indicates the factor’s influence on its variables. Basically, the weight of the factor
function represents our confidence in the correlations reflected by the factor function [88].
The overall function of all the variables is the product of all independent factor functions.
Hence, FG represents joint probability distribution.

As BNs are suitable for modelling, FGs are recommended for performing inference [39].
For example, FGs are used effectively in simultaneous localisation and mapping (SLAM) as
one of the central large scale inference problems in robotics [39] due to the fact that in FGs
one can utilize certain factors to obtain fast inference. FGs have become increasingly popular
in recent years as a tool for modelling complex systems and inference in robotics [115, 88,
80, 39, 38].

Example 5. A FG is shown in Figure 2.5. It has three variables x1, x2, x3 and four factors
f1, f2, f3, f4. The joint probability distribution is the product of the factors over the subset of
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x1 x2 x3

f1 f2 f3 f4

Fig. 2.5 A Factor graph

variables. Hence, the function g(x1,x2,x3) factorizes as

g(x1,x2,x3) = f1(x1) f2(x1,x2) f3(x1,x2,x3) f4(x3).

⋄

All the previous probabilistic models including automata-based formalisms, Bayesian
nets, and factor graphs represent the sequential behaviour of systems. In particular, inter-
leaving semantics only, whereas concurrency is not captured. In addition, they rely on the
current states only to find the probability distribution of the next states. This property is
known as memoryless which means that the probability of occurring of some future events is
not influenced by the occurrence of some past events.

2.4 Related Work

As this thesis is focused on formalism and developing a probabilistic framework to facilitate
the analysis of acyclic nets and CSA-nets, we review in this section a collection of related
studies considering resolving conflicts probabilistically, and specifically handling confusion.
This is widely reported and extensively explored in the literature.

2.4.1 Probabilistic Petri nets

An increased interest in merging quantitative analysis and Petri nets has emerged in recent
years. Providing a probabilistic framework for a concurrent model like Petri nets relies on
the presence of conflict transitions. Then the positive numerical weights are either assigned
to those conflict transitions or to the arcs in such way that the conflict is resolved by taking
the weights into consideration. This seems trivial when the structure of nets is restricted
to free-choice, a structure that ensures resolving the conflict locally. [9] is an example of
practical application. Probabilities and free-choice Petri nets are used as a basic model
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to represent human activity based on bank surveillance videos. The local probabilistic
distribution is defined over the output arcs for each place. Then the probabilistic model is
used to reason about two queries. First, finding the minimal clips of video that captured a
specific event with a probability larger than a given threshold, that was known as Threshold
Activity Queries. Second, what is the most likely activity to occur in a given video, which is
Activity Recognition Queries. Also, reasoning about cyber-physical attack was investigated
using coloured probabilistic Petri nets in [87]. The aim was to provide probabilistic analysis
to the threat propagation among and between the cyber and physical components which then
can support practitioners to predict possible attacks and provide defence techniques. In [133]
the fuzzy-timing Petri nets with probabilistic choices were developed to provide probabilistic
analysis for the response time of web service systems. The authors extended the time Petri
nets so that not only time delay is considered, but also the probability of choosing the event
‘read’ over the event ‘write’ in the read-write systems.

Establishing a general probabilistic framework requires taking a special case into con-
sideration. A confusion arises when conflict and concurrency are overlapped which causes
problematic probabilistic estimation. In [128], the main result was to show that in confusion-

free probabilistic net system the runs are Mazurkiewicz equivalent. The choices are resolved
probabilistically as the transitions in conflict are associated with weights. Basically, the
authors extended Mazurkiewicz equivalence to probabilistic words, which were defined as
probability distribution, to describe the probabilistic net systems. Also, [21] investigated
the approach of equipping Petri nets with probabilities by proposing what is called Markov

Nets in such way that interacting components that compose Markov net are probabilistically
independent. The proposed model was motivated through observation and fault diagnosis
of distributed systems, specifically telecommunication networks. However, free-choice nets
were only considered which is quite limiting in practice. The probabilistic framework pre-
sented in [54] was introduced to overcome the limitations of [21]. Similarly, the motivation
was to provide probabilistic model for fault diagnosis in telecommunication networks. Essen-
tially, finding the most likely causes of faults was the core of the diagnosis task. The cluster

net was defined so that the net is partitioned into nodes that are closed under conflict and
then the clusters are scheduled in which they make their local choices. The unfolding was
obtained based on the cluster net considering the steps, instead of single transitions, enabled
at each cluster. More precisely, the branching processes of the unfolding were obtained based
on the cluster processes. However, the construction is quite complicated as some places and
transitions were unnecessarily added. For example, the empty steps were generated in the
construction derived from each cluster. More importantly, the non-determinism between the
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clusters leads to different probabilities of the same run. In terms of probabilities calculation,
no details were given of how the probabilities would be calculated after adding the empty step.
The attempt in [53] of investigating the confusion in the unfolding semantics by introducing
the clusters and the prosaic development in [119] to analyse it did not actually remedy the
confusion. In [89] and [24] only the formalisation and the algorithms of detecting confusion
in both safe and unsafe nets were investigated. However, no approaches were proposed to
handle confusion. The exclusion of handling the confusion is a critical constraint on all of
the work discussed above. Next, we provide an overview of the approaches of removing
confusion related to our probabilistic theoretical framework.

2.4.2 Approaches of handling confusion

Localising decisions made as the executions proceed is a key challenge in creating true-
concurrency probabilistic models [4]. There exists an extensive literature on this topic. For
example, we can find the following contributions. The work introduced by [1] and [2] studied
the construction of probabilistic event structure arising from the unfolding of a finite safe Petri
net. Their construction is based on dynamic decomposition of configurations by the means of
branching cells. The confusion was handled as the branching cells decompose the maximal

configurations recursively and dynamically. Hence, the available choices in each branching
cell should be maximal (the maximal configurations are seen as stack of choices inside
each branching cell). More precisely, their definition of dynamic branching cells allows: (i)
associating a local transition probability with each branching cell, (ii) using the chain rule to
combine the local probabilities such that concurrent choices are taken independently and the
probabilities are given to the maximal configurations. Due to the confusion, the branching
cells may overlap, which means that some events may appear in different branching cells and
hence they are defined dynamically. However, this can increase the complexity as the number
of branching cells can be exponential. The authors in [4] extended the results in [1, 3, 2] so
that the infinite event structures with confusion are investigated. In fact, the probabilistic
framework in [129], which only considered the free-choice structure, is the foundation for [1]
and [2].

The Covered Petri Nets (CPNs) are nets covered by agents proposed by [69] to remedy
confusion. The agents are responsible for resolving conflicts between their enabled transitions
probabilistically and locally based on their local states. The priority of selecting an agent to
resolve the conflict is given to the agent that has a complete view of the non-determinism of
the net. Basically, their distributed algorithm, which is based on semaphores, of choosing
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the agents provides a strategy or scheduler that selects which agent should be picked to
resolve the next probabilistic choice. The confusion is handled by semaphores. Intuitively,
certain places of the net are associated with a semaphore. The agents can ‘lock’ or ‘free’ the
semaphore such that the confusion disappears. When an agent locks a semaphore associated
with a place pivotal to the confusion, it may delay the execution of some transitions involved
in the confusion or it may need to change the place as being marked by firing some transitions.
The goal behind the semaphores is to ensure that the agents’ perception of their probabilistic
decisions is constant. In fact, this yields two-level scheduling technique: schedulers select
the agents based on the global states and the agents make their probabilistic choices based on
their own local states.

Petri nets with priorities are defined in [18]. There, transitions are given different
priorities levels to address confusion. As the confusion arises due to the different ordering
of the transitions, adding priority imposes a deterministic ordering of conflict resolution
and hence the confusion is avoided. In General Stochastic Petri Nets (GSPNs), where the
transitions are classified as timed and immediate, the confusion was partially handled using
the weights and priorities. However, the authors in [43, 68, 19] emphasized that confusion is
a dynamic phenomenon so it is not always solved by weights and priorities. Their approach
for removing confusion in GSPNs is to translate confused GSPNs into Markov Automata
where non-determinism and probabilities are presented. In fact, the analysis of GSPNs is
generally limited to confusion-free nets [19]. It is worth to mention that the difference
between Stochastic Petri Nets (SPNs) and GSPN is that in the former all the transitions are
associated with a rate, concurrently enabled timed transitions are taken probabilistically, and
the confusion is absent. However, in the latter the presence of immediate transitions causes
the emergence of confusion [69].

Algorithms to detect confusion and an approach for avoiding it were considered in [31].
Basically, enforcing a constraint of supervisory control ensures that conflict transitions are
enabled together so that confusion cannot occur in marking evolution. After detecting the
subnet involved in a confusion, the Places and Enabling degree of some transitions belong
to the confused subnet are identified. Then, P/E constraint is enforced via a monitor in
order to avoid firing some transitions when certain places are marked to ensure that all the
conflict transitions belong to the confused subnet are enabled at the same time. However, no
approach is given of how the original behaviour is maintained. Confusion was controlled
in [32] by attaching an external event with each transition involved in confusion. Then a
control sequence is chosen so that the execution of these transitions is controlled.
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The most recent and advanced theory proposed by [26] offers a new approach for
removing confusion. Basically, the structural branching cells were utilized to statically
identify the locus of alternatives, allowing a confusion-free net to be created from a given
confused net by recursive static decomposition. Constructing a confusion-free net required
generating a special class of places; persistence negative places were employed to create
additional causality between the freshly generated transitions. The new non-deterministic
net was then associated with probabilities to account for the conflict between transitions.
However, only backward deterministic nets were studied in this paper. A further barrier
is the complexity of the encoding procedure as the number of nested cells might grow
exponentially.

A general comment which applies to the above past approaches is that they are all
concerned with standard Petri nets, whereas the proposed work needs to find solutions for
nets supporting different kinds of interprocess communication and abstraction. Also, all
the previous work related to probabilities in Petri nets did not consider systems like crime
investigation systems. In this thesis, we develop probabilistic framework for such systems.
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Chapter 3

Acyclic Petri nets

3.1 Introduction

One of the mathematical modelling languages for the representation of distributed systems
are Petri nets. They are directed graphs with two fundamental components, namely places
and transitions. Their concept was developed by Carl Adam Petri at the age of 13 to illustrate
chemical processes and introduced formally in his PhD Thesis in 1964 [99]. Petri Nets’
execution semantics is precisely defined in mathematical terms, and for years they have been
regarded as one of most suitable models to capture the notion of concurrency.

Acyclic Petri Nets, or just acyclic nets, are a class of Petri nets where iterated execution
is excluded. However, they provide an explicit representation of causality, conflict, and
confusion, three essential characteristics for concurrent systems. Causality is captured when
a transition’s enabledness is being dependent on the occurring of another transition. Conflict,
on the other hand, means that the execution of one transition disables other transitions.
Confusion in a mix between conflict and concurrency.

Acyclic nets are probabilistic when conflicts are resolved with probability estimation,
and non-deterministic when conflicts are resolved randomly and without details of how it is
resolved.

Developing probabilistic concurrent systems has been a challenge and a long standing
problem. It is even more complicated when the choices are distributed. One reason is that
in concurrent systems the computations are undistinguishable if they only differ by the
execution order of independent transitions. The probability of a concurrent computation
should be the same for all its different executions.

In this chapter, after introducing the relevant behavioural properties of acyclic nets, we
develop a probabilistic acyclic nets framework such that transitions in conflict are associated
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with positive numerical weights which represents their likelihood. Then the scenarios, which
represents execution histories of an acyclic net, are derived with probabilities estimation.
In addition, the notion of confusion is discussed as an undesirable situation that causes
inaccurate probabilities calculation for same scenarios.

Handling confusion within concurrent semantics is a complicated problem. We propose
two approaches to remove it based on a new class of acyclic nets, called cluster-acyclic

nets. This class of acyclic nets uses the notion of clusters which partition the transitions into
equivalence classes of conflict relation. Then, a confused net is encoded into another net
which is confusion-free.

The chapter is organised as follows. In Section 3.2, the basic definitions and examples
concerning acyclic nets are present. In Section 3.3, we introduce the notion of probabilistic

acyclic nets, and we show with illustrated examples how the different executions of a
concurrent scenario are assigned the same probability when confusion in not present. In
Section 3.4, confusion is formally defined. Additionally, some examples are provided to
demonstrate how confusion interferes with probabilistic calculation. Cluster-acyclic nets are
introduced in Section 3.5 as a new class of acyclic nets. Section 3.6 provides two approaches
of removing confusion from a fixed cluster acyclic net together with related algorithms.
Extending these approaches of removing confusion to the unfolding semantics is presented
in Section 3.7. Section 3.8 concludes the chapter.

3.2 Basic definitions

Definition 3.2.1 (acyclic net [8]). An acyclic net is a triple acnet = (P,T,F), where P and T

are disjoint finite sets of places and transitions respectively, and F ⊆ (P×T )∪ (T ×P) is a
flow relation such that:

1. P is nonempty and F is acyclic.

2. For every t ∈ T , there are p,q ∈ P such that pFt and tFq.

The set of all acyclic nets is denoted by AN. ⋄

Graphically, places are represented by circles, transitions by boxes, and arcs between the
nodes represent the flow relation.

We denote P, T , and F by Pacnet, Tacnet, and Facnet, respectively, when it is required to
indicate explicitly the net. To indicate relationships between different nodes, for all x ∈ P∪T
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and X ⊆ P∪T , we denote the directly preceding and directly following nodes as follows:

•x = preacnet (x) ≜ {z | zFx} •X = preacnet (X) ≜
⋃
{•z | z ∈ X}

x• = postacnet (x) ≜ {z | xFz} X• = postacnet (X) ≜
⋃
{z• | z ∈ X} .

The initial and final places of acnet are respectively given by:

Pinit
acnet ≜ {p ∈ P | •p =∅} and Pfin

acnet ≜ {p ∈ P | p• =∅} .

Definition 3.2.2 (free-choice net [22]). An acyclic net acnet = (P,T,F) is free-choice if, for
every two transitions t ̸= u ∈ T , if •t ∩ •u ̸=∅ then |•t|= |•u|= 1. ⋄

Definition 3.2.3 (extended free-choice net [41]). An acyclic net acnet = (P,T,F) is extended
free-choice if the following hold :

1. for every two places p and r, either p•∩ r• =∅ or p• = r•.

2. for every two transitions t and u, either •t ∩ •u =∅ or •t = •u. ⋄

3.2.1 Step sequence semantics

In this section, a set of behavioural notions are introduced. Given an acyclic net, its execution
proceeds by the occurrence (or firing) of sets of transitions. The definitions below specify
the conditions under which a marking enables a set of transitions (called a step), and how the
execution of the transitions changes the current marking.

Definition 3.2.4 (marking and step [8] ). Let acnet be an acyclic net.

1. markings(acnet)≜ P(Pacnet) are the markings and Minit
acnet ≜ Pinit

acnet is the default initial

marking.

2. steps(acnet)≜ {U ∈ P(Tacnet)\{∅} | ∀t ̸= u ∈U : •t ∩ •u =∅} are the steps. ⋄

Graphically, markings are shown by placing tokens within the circles. In an acyclic net
acnet, a step U is a set of the transitions Tacnet such that all transitions in U are conflict-free.

Definition 3.2.5 (enabled and executed step [8] ). Let M be a marking of an acyclic net
acnet.

1. enabledacnet(M)≜ {U ∈ steps(acnet) | •U ⊆M} are the steps enabled at M.
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2. A step U enabled at M can be executed yielding a new marking M′ ≜ (M∪U•)\ •U .
This is denoted by M[U⟩acnet M′ or M U−→M′. ⋄

Markings of acyclic nets are safe by definition, i.e., a place can ‘hold’ only one token.
Note that if M[U⟩acnet M′ and t ̸= u ∈U are such that p ∈ t•∩ u•, then p will ‘hold’ only
one token in M′. Such a feature will be useful when dealing with OR causality and negative
tokens later on. For a step U to be enabled at marking M, all its input places are required to
be included in M. Executing the enabled steps is responsible of transferring the tokens from
one global state into another. That is, executing a step U removes all the tokens in its input
places and then produces tokens in all its output places.

Definition 3.2.6 (mixed step sequence and step sequence [8] ). Let M0, . . . ,Mk (k ≥ 0) be
markings and U1, . . . ,Uk be steps of an acyclic net acnet such that Mi−1[Ui⟩acnet Mi, for every
1≤ i≤ k.

1. µ = M0U1M1 . . .Mk−1UkMk is a mixed step sequence from M0 to Mk.

2. σ =U1 . . .Uk is a step sequence from M0 to Mk.

The above is denoted by M0[µ⟩⟩acnet Mk and M0[σ⟩acnet Mk, respectively. Moreover, M0[⟩acnet Mk

denotes that Mk is reachable from M0. ⋄

If k = 0 then µ = M0 and the corresponding step sequence σ is the empty sequence
denoted by λ .

Definition 3.2.7 (behavioural notions [8]). The following sets capture various behavioural
notions related to step sequences and reachable markings of an acyclic net acnet.

1. sseq(acnet)≜ {σ |Minit
acnet[σ⟩acnet M} are the step sequences.

2. mixsseq(acnet)≜ {µ |Minit
acnet[µ⟩⟩acnet M} are the mixed step sequences.

3. maxsseq(acnet) ≜ {σ ∈ sseq(acnet) | ∄U : σU ∈ sseq(acnet)} are the maximal step

sequences.

4. maxmixsseq(acnet) ≜ {µ ∈ mixsseq(acnet) | ∄U,M : µUM ∈ mixsseq(acnet)} are
the maximal mixed step sequences.

5. reachable(acnet)≜ {M |Minit
acnet[⟩acnet M} are the reachable markings.

6. finreachable(acnet) ≜ {M | ∃σ ∈ maxsseq(acnet) : Minit
acnet[σ⟩acnet M} are the final

reachable markings
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7. fseq(acnet) = {U1 . . .Uk ∈ sseq(acnet) | k ≥ 1 =⇒ |U1| = · · · = |Uk| = 1} are the
firing sequences.

8. conflsetacnet(M, t)≜ {t}∪{u∈ enabledacnet(M) | t#0u} is the conflict set of a transition
t ∈ T enabled at a marking M. ⋄

We can treat individual transitions as singleton steps; for instance, a step sequence
{t}{u}{w,v}{z} can be denoted by tu{w,v}z.

Note that an occurrence net is a deterministic process capturing an equivalence class
of maximal step sequences that are distinguishable only in the order of concurrent transi-
tions [26].

3.2.2 Conflict, causality and concurrency

This section introduces structural properties of acyclic nets.

Definition 3.2.8 (structural notions [8] ). Let acnet = (P,T,F) be an acyclic net.

1. Two transitions t ̸= u ∈ T are in direct (forward) conflict, denoted t#0u, if they have a
common place in their presets, i.e., •t ∩ •u ̸=∅.

2. Two transitions t ̸= u ∈ T are in direct backward conflict if they have a common place
in their postsets, i.e., t•∩u• ̸=∅.

3. Two nodes x,y ∈ P∪T are in conflict, denoted x#y, if there are transitions t and u such
that t#0u and (t,x),(u,y) ∈ F∗.

4. A self-conflict transition is any t ∈ T such that t#t.

5. ≼ given by F+|T×T is the causality relation on transitions.

6. Two nodes x ̸= y ∈ P∪T are concurrent, denoted xcoy, if neither x#y nor xF+y nor
yF+x.

7. causedacnet(x)≜ {y ∈ P∪T | xF+y} are the elements caused by x ∈ P∪T . Moreover,
causedacnet(X) =

⋃
x∈X causedacnet(x), for X ⊆ P∪T .

8. subnetacnet(V )≜ (•V ∪V •,V,F |(•V×V )∪(V×V •)) is the subnet induced by a set of tran-
sitions V ⊆ T . ⋄
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Fig. 3.1 Acyclic net with initial marking.

Example 6. Figure 3.1 shows a free-choice acyclic net acnet, where

P = {p0, p1, p2, p3, p4, p5}
T = {a,e, f ,g,h}
F = {(p0,a),(a, p1),(a, p2), . . . ,(h, p4)}.

The sets of initial and final places are {p0} and {p4, p5}, respectively. This acyclic net
exhibits backward and forward non-determinism, namely transitions e and f are involved
both in direct forward conflict and direct backward conflict. The two possible maximal steps
sequences are σ1 = {a}{e,g}{h} and σ2 = {a}{ f ,g}{h}. ⋄

Intuitively, conflicts between transitions emerge from having a common pre-place (in
the case of forward non-determinism) or a common post-place (in the case of backward
non-determinism), while concurrency results from multiple post-places emerging from a
transition [106].

An acyclic net can exhibit backward non-determinism (when |•p|> 1, for some place p)
and forward non-determinism (when |p•|> 1, for some place p).

Definition 3.2.9 (backward deterministic acyclic net [8]). A backward deterministic acyclic

net is an acyclic net such that |•p| ≤ 1, for every place p. The set of all backward deterministic
acyclic nets is denoted by BDAN. ⋄

Example 7. Figure 3.2 shows an example of backward deterministic acyclic net. c1 is the
common pre-place for the transitions e and f (which are in direct conflict), and each place
except c0 has at most one incoming arc. ⋄

Definition 3.2.10 (occurrence net [8]). An occurrence net is an acyclic net such that |•p| ≤ 1
and |p• |≤ 1, for every place p. The set of all occurrence nets is denoted by ON. ⋄
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Fig. 3.2 Backward deterministic acyclic net with initial marking.

An occurrence net describes a single execution of some concurrent system in such a way
that only the details of causality and concurrency between transitions are captured [78]. It
can represent an execution history of a system. In other words, one can build an occurrence
net to model a system’s history [104]. Moreover, the transitions with causal dependencies
relations are ordered whereas those that are casually independent are unordered [84].

Next, we define scenarios as structurally unique execution histories of an acyclic net that
can be used later to analyse the acyclic net probabilistically.

Definition 3.2.11 (scenario and maximal scenario [8]). Let acnet be an acyclic net.

1. A scenario of acnet is an occurrence net ocnet such that:

(a) Tocnet ⊆ Tacnet and Pocnet = Minit
acnet∪postacnet (Tocnet).

(b) preocnet (t) = preacnet (t) and postocnet (t) = postacnet (t), for every t ∈ Tocnet.

2. A maximal scenario of acnet is a scenario ocnet such that there is no scenario ocnet′

satisfying Tocnet ⊂ Tocnet′ .

The sets of all scenarios and maximal scenarios are denoted by scenarios(acnet) and
maxscenarios(acnet), respectively. ⋄

Basically, scenarios are subnets that adhere to forward and backward determinism and
start with the same initial marking. Also, they provide an abstract view of the behaviour
without details of the actual executions. As maximal scenarios are complete and cannot be
extended, an occurrence net is itself its only maximal scenario.

Each scenario of an acyclic net acnet = (P,T,F) is identified by the set of its transitions.
The scenario with the transition set V ⊆ T is denoted by scenarioacnet(V ) and given by:

scenarioacnet(V )≜ (P,V,F |(P×V )∪(V×P)), where P = Pinit
acnet∪V •.
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Example 8. Figure 3.3 shows the only two maximal scenarios of the acyclic net in
Figure 3.1. The net in (a) represents the first maximal scenario which is associated with the
transitions a,e,g,h, i.e., ocnet1 = scenarioacnet({a,e,g,h}). The second maximal scenario
ocnet2 = scenarioacnet({a, f ,g,h}) is shown in (b). ⋄

p0
a

p1

p2
g

p5

e
p3

h
p4

(a)

p0
a

p1

p2
g

p5
f

p3

h
p4

(b)

Fig. 3.3 Maximal scenarios (with initial markings) of the acyclic net in Figure 3.1.

3.2.3 Well-formed acyclic nets

In this section, well-formedness is defined as a fundamental consistency property of acyclic
nets. Its main purpose is to guarantee an unambiguous and unique set of causal dependencies
in behaviours of acyclic nets, where, in terms of graph theory, the causality relation between
e and f is represented by a directed path from e to f . Understanding causality in acyclic
nets can be related to their step sequences [8]. For instance, let e, f ∈ Tacnet be such that e is
a cause of f (this is captured by the flow relation eF+

acnet f ). Then, for every step sequence
σU ∈ sseq(acnet) such that f ∈U , e appears in σ .

Definition 3.2.12 (well-formedness [8] ). An acyclic net acnet is well-formed if each tran-
sition occurs in at least one step sequence and the following hold, for every step sequence
U1 . . .Uk ∈ sseq(acnet):

1. t•∩u• =∅, for every 1≤ i≤ k and all t ̸= u ∈Ui.

2. U•i ∩U•j =∅, for all 1≤ i < j ≤ k. ⋄

Intuitively, a well-formed acyclic net does not have ‘useless’ transitions and no place is
filled more than once in any given step sequence.

In the rest of this chapter, an acyclic net which is not a result of encoding is

always assumed to be well-formed.
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Proposition 3.2.1 ([8]). A backward deterministic acyclic net is well-formed iff it has no
self-conflict transitions.

p0
a

p1

p2
g

e
p3

h
p4

Fig. 3.4 An acyclic net which is not a well-formed

Example 9. Figure 3.4 illustrates how the well-formedness property is violated. For
example, in the step sequence σ = a{e,g}, we have e•∩g• = {p3} ̸=∅.
We further observe that the only maximal ‘scenario’, which includes all the transitions, does
not respect Definitions 3.2.10 and Definition 3.2.11 as the number of incoming arcs for p3 is
greater than one. Hence, in terms of causal history for transition h, it is not obvious whether
it is caused by e or by g. More precisely, h is fireable whenever a token generated by e

or g arrives at p3. Intuitively, the ’OR causality’ between e and g violates the property of
well-formedness. ⋄

Algorithm 1 Verifying well-formedness.
1: function BOOLEAN WELLFORMED(σ )
2: Input: step sequence σ =U1 . . .Uk
3: Output: true if σ is well-formed; otherwise false
4: for each 1≤ i < j ≤ k do
5: if (U•i ∩U•j ̸=∅ ) then
6: return false
7: end if
8: end for
9: for each step Ui do

10: for each two transitions t ̸= t ′ ∈Ui do
11: if (t•∩ t ′• ̸=∅ ) then
12: return false
13: end if
14: end for
15: end for
16: return true
17: end function
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Algorithm 1 checks whether a given step sequence σ is ‘well-formed’, i.e., whether the
conditions formulated as Definition 3.2.12(1,2) are satisfied. The input is a step sequence
σ = U1 . . .Uk. The conditions in the if-statements are based on Definition 3.2.12(1,2). If
neither steps Ui and U j nor their transitions t and t ′ break these conditions, true is returned.

Further details of checking for well-formedness are discussed in Chapter 6.

Proposition 3.2.2 ([8]). Each occurrence net is well-formed.

Proposition 3.2.3 ([8]). The following statements are equivalent, for every acyclic net acnet.

1. acnet is well-formed.

2. Each transition occurs in at least one scenario, and each step sequence is a step sequence
of at least one scenario.

3. Each transition occurs in at least one scenario, and each firing sequence is a firing
sequence of at least one scenario.

4. Each transition occurs in at least one firing sequence and, for every firing sequence
t1 . . . tk ∈ fseq(acnet) and for all 1≤ i < j ≤ k, t•i ∩ t•j =∅.

Proposition 3.2.4 ([8]). Step sequences of a well-formed acyclic net do not contain multiple
occurrences of transitions.

Each step sequence σ of a well-formed acyclic net acnet induces a scenario

scenarioacnet(σ)≜ scenarioacnet(
⋃

σ)

such that σ ∈maxsseq(scenarioacnet(σ)). Thus, in a well-formed acyclic net, different step
sequences may generate the same scenario, and conversely, each scenario is generated by at
least one step sequence. Moreover, two maximal step sequences generate the same scenario
iff their executed transitions are identical.

Example 10. Figure 3.3 can be used to illustrate the last point by showing the maximal
scenario ocnet1 = scenarioacnet({a,e,g,h}) has five executions:

{p0}
a−→ {p1, p2}

{e,g}−−−→ {p3, p5}
h−→ {p4, p5},

{p0}
a−→ {p1, p2}

g−→ {p1, p5}
e−→ {p3, p5}

h−→ {p4, p5},
{p0}

a−→ {p1, p2}
e−→ {p2, p3}

{g,h}−−−→ {p4, p5},
{p0}

a−→ {p1, p2}
e−→ {p2, p3}

g−→ {p3, p5}
h−→ {p4, p5}, and

{p0}
a−→ {p1, p2}

e−→ {p2, p3}
h−→ {p2, p4}

g−→ {p4, p5}.
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The above five maximal step sequences generate the same scenario involving transitions
{a,e,g,h}. ⋄

3.3 Calculating probabilities in acyclic nets

Probabilistic models are the key to cope with uncertainty. They provide mathematical
frameworks to analyse behaviours with a limited knowledge so that we are capable of making
reasonable decisions.

As the real world is full of uncertainty, we often estimate, or even guess, when quantifying
uncertainty. For instance, in CESs full information about a specific activity is, in general,
not available [106]. Moreover, available evidence in crime or accident investigation is
usually unspecific and/or contradictory. Hence (often numerous) alternate scenarios are
pursued by investigators in order to clarify the status of a crime or accident [84]. Therefore,
adding probability estimates to transitions that represent crime events would crucially help
to increase the degree of certainty of different scenarios and to prioritise investigation
of alternate scenarios. The investigators could also interpret relative likelihood of crime
transitions and then combine them into meaningful reports.

In acyclic nets, in order to find the probabilities of alternate scenarios and identify the
probabilistic behaviour, conflicting transitions can be assigned positive numerical weights.
Weights represent the likelihood of transitions and a zero weight for a transition is not allowed.
In our discussion, we do not care where a probability estimates comes from, or how are they

derived.

Associating conflict transitions with weights to resolve conflict probabilistically has been
investigated in [43, 68, 128]. However, in [26, 87, 9] the conflict is resolved by probabilistic
arcs. The examples in [19] have shown that assigning weights to the transitions or to the arcs
would produce the same result.

From now on, we assume that each acyclic net acnet has an additional (last) component
ω defined as a mapping from the set of transitions to positive integers. For each transition t,
ω(t) is its weight which in diagrams annotates the corresponding node. Also, we assume
that the weights are assigned to the transitions rather than the arcs and are represented inside
the boxes. In such cases the names of transitions are represented outside.

Probabilities of concurrent transitions are given by the products of their weights over
the sum of the weights of transitions in their conflict sets. More precisely, we define the
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probability of executing a transition t and step U enabled at a reachable marking M as:

Pacnet(M, t)≜
ω(t)

∑u∈conflsetacnet(M,t)ω(u)
and Pacnet(M,U)≜ ∏

t∈U
Pacnet(M, t) .

We then define the probability of an execution σ =U1 . . .Uk as

Pacnet(σ)≜ Pacnet(M0,U1) · . . . ·Pacnet(Mk−1,Uk) ,

where M0, . . . ,Mk−1 are such that M0
U1−→ . . .Mk−1

Uk−→Mk.

c0

1
h

c4

c1

1
g c5

6
e

3
f

c3

c2

Fig. 3.5 Backward deterministic acyclic net with weights.

Example 11. Consider the acyclic net acnet in Figure 3.5. Transitions e and f are in direct
conflict and their weights are ω(e) = 6 and ω( f ) = 3. Such a conflict can be resolved proba-
bilistically at reachable markings M = {c1,c4} and M′ = {c1,c5} by calculating probabilities
as follows:

Pacnet(M,e) = Pacnet(M′,e) = ω(e)
ω(e)+ω( f ) = 6

9

Pacnet(M, f ) = Pacnet(M′, f ) = ω( f )
ω(e)+ω( f ) = 3

9 .

Note that h and g are certain transitions since no transition competes with them for a token,
and so their actual weights are irrelevant.

There are two maximal scenarios for the acyclic net in Figure 3.5, namely ocnet1 =

scenario({h,g,e}) and ocnet2 = scenario({h,g, f}). Each of the scenarios can be executed
in several ways by following different maximal step sequences:
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• ocnet1 has three executions: σ1 = heg, σ2 = hge, and σ3 = h{e,g}. Their probabilities
are the same as we have:

Pacnet(σ1) = ω(h)
ω(h) ·

ω(e)
ω(e)+ω( f ) ·

ω(g)
ω(g) = 1 · 6

9 ·1 = 6
9

Pacnet(σ2) = ω(h)
ω(h) ·

ω(g)
ω(g) ·

ω(e)
ω(e)+ω( f ) = 1 ·1 · 6

9 = 6
9

Pacnet(σ3) = ω(h)
ω(h) ·

(
ω(e)

ω(e)+ω( f ) ·
ω(g)
ω(g)

)
= 1 · (6

9 ·1) = 6
9

• ocnet2 has also three executions: σ4 = h f g, σ5 = hg f , and σ6 = h{ f ,g}. Their
probabilities are equal as well:

Pacnet(σ4) = Pacnet(σ5) = Pacnet(σ6) =
3
9
.

As a result, we can assign probabilities to the two maximal scenarios:

Pacnet(ocnet1) =
6
9

and Pacnet(ocnet2) =
3
9
.

Note that Pacnet(ocnet1)+Pacnet(ocnet2) = 1. ⋄

The last example illustrates the point that a key issue for our investigation is to

“ensure in each case that no matter which of the executions of a scenario is

followed in the calculation of probabilities, the same value is obtained (in other

words, all maximal step sequences generated from a scenario should have the

same probability)”.

That is, for every ocnet ∈ scenarios(acnet) and all σ ,σ ′ ∈maxsseq(ocnet), it should be the
case that Pacnet(σ) = Pacnet(σ

′). One can then define the probability of the scenario as
Pacnet(ocnet) = Pacnet(σ), where σ is any execution of ocnet.

Moreover, to avoid probability normalisation, one might also expect that the sum of the
probabilities of all maximal scenarios is one, i.e.,

∑
ocnet∈maxscenarios(acnet)

Pacnet(ocnet) = 1.

However, the above is not always the case as acyclic nets can exhibit confusion described
next.
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3.4 Confusion

Confusion is an interplay between conflict and concurrency which interferes with the cal-
culation of probabilities when the conflict is resolved probabilistically. It basically oc-
curs when the execution of one of two concurrent (independent) enabled transitions influ-

ences, in terms of expanding or shrinking, the conflict set of the other transition. Con-
fusion has been of interest for a considerable period since the early interest in Petri net
research [31, 26, 43, 68, 90, 19, 111, 32, 69].

Confusion exists in the real world in different forms, depending on the context of
describing concurrent systems [111]. For instance, we have the following examples of
confusion:

• The paper [26] describes the situation where you can choose either to come to the town
or go to the sea, and the permanent choice of your partner to go to the theatre clarifies
that the availability of alternatives for you.

• In [69], two scientists confront a tough decision as they either have the choice to write
a paper separately for a conference, where each can participate in only one paper, or
join together to produce a paper.

• The concurrency between "Update" event and "Fault alarm" event in the fault recovery
system in [32], where "Recovery" event can never be fired when the system executes
"Update". In the same vein, the model of a control system in [89] the emergency
system never be executed when the system is automatically shout down.

The two types of confusion are introduced below:
In a symmetric confusion, executing transition f concurrent with e removes at least one
transition from the conflict set of e. In an asymmetric confusion, executing transition f

concurrent with e adds a new transition to the conflict set of e [31]. Hence as the conflict
set is modified according to the order in which one chooses to execute e and f , the same
scenario would obtain different probabilities.

For each well-defined confusion-free acyclic net one can calculate probabilities of indi-
vidual scenarios. This may no longer be the case if confusion is present. As a result, systems
with confusion are typically challenging to analyse.

Definition 3.4.1 (confusion [26]). A well-formed acyclic net acnet has a confusion at a
reachable marking M if there are distinct transitions e, f ,h such that {e, f} ∈ enabledacnet(M),
•e∩ • f =∅ and one of the following holds:
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3.4 Confusion

• e#0h#0 f and h ∈ enabledacnet(M).

• e#0h and h ∈ enabledacnet(M′)\ enabledacnet(M), where M[ f ⟩acnet M′.

We then denote

• symconfusedacnet(M,e, f ,h) in the first (symmetric) case, and

• asymconfusedacnet(M,e, f ,h) in the second (asymmetric) case.

We also say that the acyclic net acnet is confusion-free if it has no confusion in all its
reachable markings. ⋄

p1

p2

A
7

p3

B
3

p4

C
3

p5

Fig. 3.6 An acyclic net with a symmetric confusion.

Example 12. Figure 3.6 depicts a well-formed acyclic net acnet with symmetric confusion
as we have symconfusedacnet(M,A,C,B), where M = {p1, p2}. There are two maximal
scenarios:

• ocnet1 = scenarioacnet({A,C}) with three executions (σ1 = AC, σ2 = CA, and σ3 =

{A,C}), and

• ocnet2 = scenarioacnet({B}) with one execution only.

Transitions A and C are in direct conflict with B, and they can be independently enabled at
M. In σ1, where A is executed first then C yields to disable B which reduces the size of the con-
flict set of C. More precisely, conflsetacnet({p1, p2},C) = {B} ≠ conflsetacnet({p3, p2},C) =

∅. Similarly, executing C then A as in σ2 modifies the conflict set of A. That means
conflsetacnet({p1, p2},A) = {B} ≠ conflsetacnet({p1, p5},A) = ∅. Accordingly, the same
scenario ocnet1 = scenarioacnet({A,C}) obtains different probabilities as shown below:
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If σ1 is executed, we follow {p1, p2}
A−→ {p3, p2}

C−→ {p3, p5}. Hence the probability of
C is 1 (C is in this case a certain transition), and so the probability of σ1 is

Pacnet(σ1) =
ω(A)

ω(A)+ω(B)
· ω(C)

ω(C)
=

7
10
·1 = 0.7 .

However, if σ2 is executed, then the resulting probability is

Pacnet(σ2) =
ω(C)

ω(B)+ω(C)
· ω(A)

ω(A)
=

3
6
·1 = 0.5 ̸= Pacnet(σ1) .

Hence one cannot assign a probability to ocnet1 = scenarioacnet({A,C}).
A similar conclusion can be reached for the acyclic net in Figure 3.7 which exhibits asym-

metric confusion at a reachable marking M = {p1, p2} captured by asymconfusedacnet(M
init
acnet,a,b,c).

The three maximal scenarios are:

ocnet1 = scenarioacnet({d,a})
ocnet2 = scenarioacnet({b,c})
ocnet3 = scenarioacnet({b,a}).

scenarioacnet({b,a}) has three executions : σ1 = ba, σ2 = ab, and σ3 = {b,a}, with different
probabilities. For example, if σ1 is executed, then firing b first adds c to the conflict set
of a; conflsetacnet({p1, p2},a) = ∅ ̸= conflsetacnet({p2, p3},a) = {c}. Then the obtained
probability is

Pacnet(σ1) =
ω(b)

ω(b)+ω(d)
· ω(a)

ω(a)+ω(c)
=

3
10
· 4

10
=

12
100

.

However, in σ2 and σ3, a is taken with probability one as no transitions are enabled competing
with a for the token in p2. Hence we obtain

Pacnet(σ2) = Pacnet(σ3) =
ω(a)
ω(a)

· ω(b)
ω(b)+ω(d)

= 1 · 3
10

=
3

10
̸= Pacnet(σ1) .

Due to the asymmetric confusion involving the transitions a,b,c, calculating probabilities for
ocnet3 = scenarioacnet({b,a}) in Figure 3.7 is not accurate. ⋄

The result below shows that due to the presence of confusion, conflict set of a given
transition is modified by the execution of another transition with which it is not in conflict.
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p1

3
b

7
d p6

p3

p2

6
c p5

4
a p4

Fig. 3.7 An acyclic net with an asymmetric confusion.

Proposition 3.4.1. Let acnet be a well-formed acyclic net and M be its reachable marking.
If symconfusedacnet(M,e, f ,h) or asymconfusedacnet(M,e, f ,h), then conflsetacnet(M,e) ̸=
conflsetacnet(M′,e) and e ∈ enabledacnet(M′), where M[ f ⟩acnet M′.

Proof. We will consider the two cases in Definition 3.4.1.

• First case: Let us assume that there is a symmetric confusion at the reachable marking
M. So, by the first case of Definition 3.4.1, we have symconfusedacnet(M,e, f ,h)

implying •e∩ • f =∅, e#0h#0 f , and {e, f} ∈ enabledacnet(M).

Since e#0h and f #0h, we have h ∈ conflsetacnet(M,e) ∩ conflsetacnet(M, f ). Exe-
cuting f disables h and leads to a marking M′ such that e ∈ enabledacnet(M′) and
h /∈ enabledacnet(M′). Hence,

h ∈ conflsetacnet(M,e)\ conflsetacnet(M′,e)

and e ∈ enabledacnet(M)∩ enabledacnet(M′).

• Second case: Let assume that there is an asymmetric confusion at the reachable marking
M. So, by the second case of Definition 3.4.1, we have asymconfusedacnet(M,e, f ,h)

implying •e∩• f =∅, e#0h, and {e, f}∈ enabledacnet(M), whereas h∈ enabledacnet(M′)\
enabledacnet(M), where M[ f ⟩acnet M′. Since e#0h and h ∈ enabledacnet(M′), we have

h ∈ conflsetacnet(M′,e)\ conflsetacnet(M,e)

and e ∈ enabledacnet(M)∩ enabledacnet(M′).
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A crucial property is that in a confusion-free acyclic net, conflict sets of transitions are
constant for all the executions of each scenario.

Proposition 3.4.2. Let acnet be a confusion-free well-formed acyclic net.

1. If M and M′ are two reachable markings of acnet such that M[⟩acnet M′, then

conflsetacnet(M, t) = conflsetacnet(M′, t) ,

for every transition t ∈ enabledacnet(M)∩ enabledacnet(M′).

2. If M and M′ are two reachable markings of ocnet ∈ scenarios(acnet), then

conflsetacnet(M, t) = conflsetacnet(M′, t) ,

for every transition t ∈ enabledocnet(M)∩ enabledocnet(M′).

Proof.

1. We will prove this by showing that if M′ is obtained by executing only one transition and
that conflsetacnet(M, t) ̸= conflsetacnet(M′, t), then acnet is not confusion-free acyclic
net producing a contradiction. So, there are two cases:

• First case: Let us assume that there is a transition h such that

h ∈ conflsetacnet(M, t)\ conflsetacnet(M′, t)

where M′ is obtained by executing only one transition u ̸= t, so M[u⟩acnet M′. We
have {t,u}∈ enabledacnet(M), t#0h#0u, and h∈ enabledacnet(M)\enabledacnet(M′).
Then, according to the first part of Definition 3.4.1, there is a symmetric confusion
at reachable marking M such that symconfusedacnet(M, t,u,h) holds.

• Second case: Let us assume that there is a transition h such that

h ∈ conflsetacnet(M′, t)\ conflsetacnet(M, t)

where M′ is obtained by executing only one transition u ̸= t, so M[u⟩acnet M′. We
have {t,u} ∈ enabledacnet(M), t#0h, and h ∈ enabledacnet(M′)\ enabledacnet(M).
Then, according to the second part of Definition 3.4.1, there is an asymmetric
confusion at reachable marking M such that asymconfusedacnet(M, t,u,h) holds.
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The above proof of two cases considers the situation where generating M′ requires
executing only one transition u. However, this is not always the case. Thus, we might
have Minit

acnet[t1 . . . tm⟩M[u1 . . .uk⟩M′, which means that

M = M0[u1⟩M1 . . .Mk−1[uk⟩Mk = M′

where t is enabled at every marking Mi (knowing that acnet is well-formed and using
the result of Proposition 9(4) from [8] implies that t ∈ enabledacnet(Mi) for i = 0, . . . ,k).
Hence, by what we already demonstrated in this proof, we have:

conflsetacnet(M0, t) = conflsetacnet(M1, t) = · · ·= conflsetacnet(Mk, t).

2. Since it is not guaranteed that M and M′ are reachable from each other, we first
use twice the result of Proposition 8(4) from [8] to conclude that there is a reachable
marking M′′ such that M′′[⟩M and M′′[⟩M′ and t ∈ enabledacnet(M′′). As both markings
M and M′ are reachable from M′′, then the first part of this result can be applied. So, it
follows that

conflsetacnet(M, t) = conflsetacnet(M′′, t) = conflsetacnet(M′, t).

Hence, conflsetacnet(M, t) = conflsetacnet(M′, t)

Next we show that cofusion-freeness holds for any occurrence net.

Proposition 3.4.3. Each occurrence net is confusion-free.

Proof. It follows from the structure and Definition 3.2.10.

As it was already mentioned, the probability of concurrent transitions should not be
changed by the order in which they were executed; otherwise, assigning correct probability to
a scenario is not possible. As we have seen above, this can fail due to confusion. Therefore,
excluding confusion is crucial. Verification of confusion-freeness dynamically has high
complexity. However, there are classes of nets which exclude confusion by imposing
structural restrictions. One of such classes are free-choice nets [41]. For instance, [129]
introduced confusion-free probabilistic models where free-choice nets are only considered.
This, however, results in an excessively limited framework.
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Several contributions in the literature have been published on handling confusion. We
provide a review of some techniques of removing confusion in standard Petri nets in Sec-
tion 2.4.2.

In the remainder of this chapter, we develop two novel approaches of removing confusion
in well-formed acyclic nets following the work in [26]. More precisely, a confused acyclic
net is encoded into another net that is confusion-free. For localising decisions made, the
conflict transitions are grouped into maximal clusters, which are equivalence classes of
conflict relation. The encoding involves generating negative places. However, as the models
that we consider in this chapter are acyclic nets that are well-formed, such places can hold
only one token. The approaches of removing confusion are explained in more details in the
next section.

3.5 Cluster-acyclic nets

The approach of removing confusion is based on identifying the choice points by applying
the concept of clusters.

Definition 3.5.1 (cluster). Let acnet = (P,T,F) be a well-formed acyclic net.

• A cluster is a non-empty set κ ⊆ T such that κ×κ ⊆ (#0)
∗ and if •t ⊆ •κ , then t ∈ κ ,

for every t ∈ T .

• A maximal cluster is a cluster κ ⊆ T such that there is no cluster κ ′ such that κ ⊂ κ ′.

• ⊏ is a relation on the clusters such that κ ⊏ κ ′ if caused(κ)∩ •κ ′ ̸=∅, for all clusters
κ and κ ′.

The set of all clusters is denoted by clusters(acnet), and the set of all maximal clusters is
denoted by maxclusters(acnet). ⋄

A maximal cluster is an equivalence class of the relation (#0)
∗, and so the set of maximal

clusters partitions the set of all transitions.
Below we will consider a subclass of acyclic nets where the ordering ⊏ is a strict partial

order on the set maximal of clusters.

Definition 3.5.2 (cluster-acyclic net). A well-formed backward deterministic acyclic net is
cluster-acyclic if the relation ⊏ on its maximal clusters is a strict partial order. ⋄

Note that cluster-acyclic nets include all free-choice well-formed backward deterministic
acyclic nets as well as all extended free-choice well-formed acyclic nets.
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From now on, we generally assume that every cluster-acyclic net is well-formed

and backward deterministic.

Definition 3.5.3 (transaction). Let κ be a cluster of an acyclic net, and M⊆ •κ . A transaction

of κ with M is a maximal step θ included in κ such that •θ ⊆M, and there is no step θ ′

included in κ such that •θ ′ ⊆M and θ ⊂ θ ′.
The set of all transactions of κ with M is denoted by trans(κ,M). ⋄

Intuitively, a transaction is one of possible ways of executing the subnet induced by the
cluster. Note that we have:

trans(κ,M) = {θ ∈ steps(subnetacnet(κ)) | •θ ⊆M∧
(∄θ ′ ∈ steps(subnetacnet(κ)) : •θ ′ ⊆M∧θ ⊂ θ ′}.

Proposition 3.5.1. Let κ be a cluster of a cluster-acyclic net acnet = (P,T,F). Then

⋃
trans(κ,•κ) = κ.

Proof. It follows directly from the definitions.

Proposition 3.5.2. Let κ be a cluster of a cluster-acyclic net acnet = (P,T,F).

1. (κ×κ)∩F+ =∅.

2. caused(κ) =
⋃
{caused(θ) | θ ∈ trans(κ,•κ)}.

3. trans(κ,•κ)⊆maxsseq(subnetacnet(κ)).

4. scenariosubnetacnet(κ)(trans(κ,•κ)) = maxscenarios(subnetacnet(κ)).

Proof.

1. It follows from Definitions 3.5.1 and Definition 3.5.2 and the fact that there is a cluster
κ ′ ∈maxclusters(acnet) such that κ ⊆ κ ′.

2. It follows from Proposition 3.5.1.

3. From Definition 3.5.3, we have

trans(κ,•κ) = {θ ∈ steps(subnetacnet(κ)) |
∄θ ′ ∈ steps(subnetacnet(κ))) : θ ⊂ θ ′},
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which means that each transaction θ is a maximal step for the subnet induced by κ .
Also, from Definition 3.2.7(3), we have

maxsseq(subnetacnet(κ)) = {σ ∈ sseq(subnetacnet(κ)) |
∄U : σU ∈ sseq(subnetacnet(κ))}.

Then, each transaction θ ∈ trans(κ,•κ) is one way of executing the subnet induced by
κ and included also in maxsseq(subnetacnet(κ)). Hence, the following holds:

trans(κ,•κ)⊆maxsseq(subnetacnet(κ)).

4. It follows from the result of Proposition 14 (2) in [8] and the above result since
trans(κ,•κ)⊆maxsseq(subnetacnet(κ)). Hence, the following holds:

scenariosubnetacnet(κ)(trans(κ,•κ)) = maxscenarios(subnetacnet(κ)).

Since the transactions of a cluster are maximal step sequences generating all maximal
scenarios of the subnet induced by the cluster, one can say that the behaviour of a cluster is
described by its transactions.

Example 13. Consider again the acyclic net in Figure 3.7. Figure 3.8 (using dotted boxes)
shows its two maximal clusters, κ1 = {b,d} and κ2 = {a,c}, together with their presets.
The transactions of these clusters and markings are:

trans(κ1,{p1}) = {{b},{d}}
trans(κ2,{p2, p3}) = {{a},{c}}
trans(κ2,{p2}) = {{a}}
trans(κ2,{p3}) = ∅.

We have κ1 ⊏ κ2 and κ2 ̸⊏ κ1 as well as κ1 ̸⊏ κ1 and κ2 ̸⊏ κ2. Hence this acyclic net is
clearly cluster-acyclic. ⋄
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p1

b

d
p6

p3

p2

c
p5

a
p4

κ1

κ2

Fig. 3.8 Cluster-acyclic for the acyclic net in Figure 3.7.

3.6 Removing confusion from cluster-acyclic net

3.6.1 Approach A: based on maximal clusters and markings

In this section, acnet = (P,T,F) is a fixed cluster-acyclic net.
The encoding of a confused cluster-acyclic net acnet into an confusion-free acyclic

net necessitates generating negative places to capture the additional causality between the
concurrent transitions belonging to the partially ordered clusters in the original acnet. For a
place p ∈ P, its negative image is denoted by p. In the executions of acnet, once p is marked
the regular place p will never be marked. Moreover, the original transitions are replaced
by transitions representing transactions associated with maximal clusters κ and markings
M ⊆ •κ . We will proceed as follows:

• All places of acnet are retained. In addition, for each place p ∈ P, a negative place p is
created.

• For each maximal cluster κ with marking M ⊆ •κ , and all the transactions θ in
trans(κ,M), a new transition tκ,θ ,M is created. Its preset is M together with the
negative versions of all places in •κ \M. Its postset are all the places in the postset of
θ and the negative versions of places caused by κ which are not caused by θ .

• Negative places with empty post-sets, which have no influence on the behaviour, are
removed.

The following definition provides full details of the encoding.

Definition 3.6.1 (encoding cluster-acyclic net). The confusion-free encoding of a cluster-
acyclic net acnet = (P,T,F) is an acyclic confreeA(acnet) = (P′,T ′,F ′) constructed in the
following stages:
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• P′′ ≜ P∪P.

• T ′ ≜ {tκ,θ ,M | κ ∈maxclusters(acnet)∧M ⊆ •κ ∧θ ∈ trans(κ,M)}.

• •t ≜ M∪ •κ \M and t• ≜ θ •∪ caused(κ \θ)∩P, for every t = tκ,θ ,M ∈ T ′.

• All negative places p ∈ P′ such that p• = ∅ are deleted. Then, P′ ≜ P′′ \ {p ∈ P′′ |
p• =∅}. ⋄

We first verify that the result of the above encoding is indeed an acyclic net.

Proposition 3.6.1. Let acnet′ be as in Definition 3.6.1. Then acnet′ is an acyclic net.

Proof. It follows directly from Definition 3.6.1, and the fact that acnet is cluster-acyclic.

The executions of the acyclic net constructed in Definition 3.6.1 (and other nets with
negative places constructed later) are as follows:

The initial marking of acnet′ in Definition 3.6.1 is Minit
acnet′ = Minit

acnet = P with all

the execution rules and notations being the same as for acnet.

We will now formulate and prove a number of important properties of the encoding
described in Definition 3.6.1. First, however, we show that if acnet is an extended free-choice
net, then acnet′ is basically the same as acnet.

Theorem 3.6.1. Let acnet and acnet′ be as in Definition 3.6.1. If acnet is an extended
free-choice net, then acnet′ and acnet are isomorphic nets.

Proof. If acnet is extended free-choice and tκ,θ ,M ∈ T ′, then •κ = •θ = M and θ = {u}, for
some u ∈ T . This also means that before the last part of Definition 3.6.1, we have p• =∅,
for every p ∈ P. It therefore follows that all the negative places are removed in the last stage
of Definition 3.6.1. Hence, in turn, the presets of tκ,θ ,M and u are the same, and the postsets
of tκ,θ ,M and u are the same. As a result, acnet and acnet′ are isomorphic acyclic nets.

The next result gathers together a number of structural properties of the net constructed
in the last definition.

In this, and subsequent results, we link the steps executed by acnet′ with the steps executed
by acnet, by using the following notation, for every set of transitions U of confreeA(acnet):

TU ≜
⋃

tκ,θ ,M∈U

θ .

44



3.6 Removing confusion from cluster-acyclic net

Proposition 3.6.2. Let acnet and acnet′ be as in Definition 3.6.1. Moreover, let p be a place
of acnet, and w = tκ,θ ,M and u = tκ ′,θ ′,M′ be transitions of acnet′.

1. If p ∈ •κ , then either p ∈ •w or p ∈ •w.

2. If w#0u then κ = κ ′.

3. If κ = κ ′, then either w#0u, or M∩M′=∅, M∪M′= •κ , •w∩P = M′ and •u∩P = M.

4. •θ ⊆ •w and θ • = w•∩P.

5. If U is step of acnet′, then TU is a step of acnet such that •TU ⊆ •U and T •U =U•∩P.

Proof. It follows directly from Definition 3.6.1.

The first part of the next result demonstrates that the executions of acnet′ have direct
representations in the executions of acnet. The second part explains why p can be seen as a
‘negative’ version of p.

Proposition 3.6.3. Let acnet and acnet′ be as in Definition 3.6.1. Moreover, let

(Minit
acnet′) = M0U1M1 . . .Mk−1UkMk

be a mixed step sequence of acnet′. Then:

1. There is a marking M of acnet such that Minit
acnet[TU1 . . .TUk⟩acnet M and Mk∩P⊆M.

2. For every place p of acnet, p ∈M0∪·· ·∪Mk implies p /∈M0∪·· ·∪Mk.

Proof.

1. By induction on the length of the mixed step sequence, as follows:

• Base case (k = 0): It holds as acnet generates the empty step sequence and
Minit

acnet′ ⊆Minit
acnet.

• Inductive case (k+1): Let

Minit
acnet′[U1 . . .Uk⟩acnet′Mk[Uk+1⟩acnet′Mk+1.

By inductive hypothesis, there is a making M of acnet such that

Minit
acnet[TU1 . . .TUk⟩acnet M
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and Mk∩P⊆M. Moreover, by Proposition 3.6.2(5), TUk+1 is a step of acnet such
that •TUk+1 ⊆ •Uk+1. Hence TUk+1 is enabled at M, and so there is a marking M′

of acnet such that

Minit
acnet[TU1 . . .TUk⟩acnet M[TUk+1⟩acnet M′.

In addition, by Proposition 3.6.2(5), T •Uk+1
=U•k+1∩P. As we also have Mk∩P⊆

M and •TUk+1 ⊆ •Uk+1, it follows that Mk+1∩P⊆M′.

2. It follows from the construction in Definition 3.6.1, and the fact that the acyclic net
acnet is backward-deterministic.

As an immediate corollary of Proposition 3.6.3(1), we obtain that all executions of acnet′

can be regarded as the executions of acnet.

Theorem 3.6.2. Let acnet and acnet′ be as in Definition 3.6.1. Then

{TU1 . . .TUk |U1 . . .Uk ∈ sseq(acnet′)} ⊆ sseq(acnet) .

The reverse inclusion does not hold in general. The reason is that transitions of acnet′

represent maximal steps (transactions). As a consequence, a result which can be seen as a
converse of Theorem 3.6.2, will be formulated in a different way (and will apply to maximal
step sequences).

The essence of the next result is that the net constructed in Definition 3.6.1 exhibits the
extended free-choice property in its behaviours.

Proposition 3.6.4. Let acnet and acnet′ be as in Definition 3.6.1. Moreover, let M0 be a
reachable marking of acnet′ and

w = tκ,θ ,M ∈ enabledacnet′(M0) and u = tκ ′,θ ′,M′ ∈ enabledacnet′(M0).

Then w#0u implies •w = •u.

Proof. We consider two cases:

• First case: κ ̸= κ ′. Then, the transactions θ and θ ′ are derived from two different
clusters. Hence, their corresponding transitions as well as presets are disjoint. Hence,
•w∩ •u =∅, which produces a contradiction with w#0u.
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• Second case: κ = κ ′. Then, the transactions are derived from the same cluster. Suppose
that M ̸= M′ and (without loss of generality) p ∈ M \M′. Then, by •u∩P = M′,
p /∈ •u. Hence, by Definition 3.6.1, p ∈ •u. Moreover, by u ∈ enabledacnet′(M0)

and Proposition 3.6.3, p /∈M0. This produces a contradiction with •w∩P = M and
w ∈ enabledacnet′(M0). Hence M = M′, and so •w = •u.

An immediate corollary of the last result is that in the net constructed in Definition 3.6.1,
a transition has always the same conflict set in all the markings in which it is enabled.

Proposition 3.6.5. Let acnet′ be as in Definition 3.6.1. Moreover, let M and M′ be reachable
markings of acnet′, and t ∈ enabledacnet′(M)∩ enabledacnet′(M′). Then

conflsetacnet′(M, t) = conflsetacnet′(M
′, t).

Proof. It follows directly from Proposition 3.4.2.

The above result has far reaching implications as it essentially means that, in the net
constructed in Definition 3.6.1, one can calculate transitions probabilities statically.

Next, we show that the constructed acyclic nets are confusion-free, and their behaviour is
closely related to the original cluster-acyclic nets.

Theorem 3.6.3. Let acnet′ be as in Definition 3.6.1. Then acnet′ is a confusion-free acyclic
net.

Proof. We observe that acnet′ is acyclic since acnet is cluster-acyclic. Moreover, it follows
directly from Propositions 3.4.1 and 3.6.5 that acnet′ is confusion-free.

A cluster-acyclic net acnet and its confusion-free version acnet′ = confreeA(acnet)

have closely related behaviours. The paper [112] explored several ways (structurally and
dynamically) to define how two systems are similar to each other. Dynamically, one technique
of showing that two systems have equivalent behaviours concerns with transitions not with
the places. Our approach of proving that behaviours are closely related also concentrates
on transitions that induce scenarios. Note that some executions of scenario in the original
acnet are not preserved in acnet′ (see Examples 14 and Example 17 as well as Figures 3.8,
Figure 3.9 and Figure 3.11 Pages 48 - 51).

In our case, we have already shown in Theorem 3.6.2 that the executions of acnet′

correspond to executions of acnet. The next result can be seen as a converse of this as it
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shows that each maximal scenario of acnet corresponds to at least one maximal execution of
acnet′. Hence, the executions of a confusion-free acyclic net acnet′ can be used to assign
probabilities to the maximal scenarios of the acyclic net acnet.

Theorem 3.6.4. Let acnet and acnet′ be as in Definition 3.6.1. Then, for every maximal
scenario ocnet ∈maxscenarios(acnet), there is a maximal step sequence U1 . . .Um of acnet′

such that TU1 . . .TUm is a maximal step sequence of ocnet.

Proof. For every κ ∈maxclusters(acnet), let Tκ = κ ∩Tocnet. Moreover, let

TK = {κ ∈maxclusters(acnet) | Tκ ̸=∅}.

Due to the cluster-acyclicity of acnet, there is an enumeration κ1, . . . ,κm of the clusters in TK

such that if κi ⊏ κ j then i < j. This and the definition of ⊏ means that Tκ1 . . .Tκm is a step
sequence of ocnet. Let M0Tκ1M1 . . .Mm−1TκmMm be the corresponding mixed step sequence
of ocnet. For every 1≤ i≤ m, we define:

M′i = Mi−1∩ •κi, ti = tκi,Tκi ,M
′
i
, and Ui = {ti}.

We observe that Tκi ∈ trans(κi,M′i) since ocnet is maximal and (Tκi ∪·· ·∪Tκm)
•∩ •Tκi =∅.

Hence ti is a transition of acnet′, and Ui is a step of acnet′. We then observe that, for every
p ∈ •κi \M′i , there must be u ∈ Tκ1 ∪ . . .Tκi−1 such that p#u, since ocnet is maximal and
backward deterministic and, moreover, we have p /∈ •(Tκ1 ∪·· ·∪Tκi−1) ∪ u ∈ Tκ1 ∪ . . .Tκi−1 .

It then follows that U1 . . .Um is a step sequence of acnet′ such that TU1 . . .TUm = Tκ1 . . .Tκm

is a maximal step sequence of ocnet. This and Theorem 3.6.2 also means that U1 . . .Um is
maximal.

Example 14. Figure 3.9 shows the result of the encoding described in Definition 3.6.1 for
the confused cluster-acyclic net in Figure 3.8. The transitions have been created before the
last stage of the construction (i.e., the deletion of negative places with empty postsets) in the
following way (see also the transactions in Example 13).

• For the transactions associated with κ1 = {b,d} and marking M = {p1}, transitions
tκ1,{b},{p1} and tκ1,{d},{p1} are created. Their common preset is

{p1}∪{p1}\{p1}= {p1}.
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p1

tb

td

p6

p3

p3

p2

tc
p5

ta

t ′a
p4

Fig. 3.9 Encoding the cluster-acyclic net in Figure 3.8 into a confusion-free acyclic net with
negative place, where: tb = tκ1,{b},{p1}, td = tκ1,{d},{p1}, ta = tκ2,{a},{p2,p3}, tc = tκ2,{c},{p2,p3},
and t ′a = tκ2,{a},{p2}.

Their postsets are, respectively,

b•∪ caused(κ1 \{b})∩P = {p3, p6} and d•∪ caused(κ1 \{d})∩P = {p6, p3, p5}.

• For the transactions associated with κ2 = {a,c} and marking M = {p2, p3}, transitions
tκ2,{a},{p2,p3} and tκ2,{c},{p2,p3} are created. Their common preset is

{p2, p3}∪{p2, p3}\{p2, p3}= {p2, p3}.

Their postsets are, respectively, {p4, p5} and {p5, p4}.

• For the transaction associated with κ2 = {a,c} and marking M = {p2}, transition
tκ2,{a},{p2} is created. Its preset is

{p2}∪{p2, p3}\{p2}= {p2, p3}

and its postset is {p4, p5}.

• No transitions are created for κ1 with M =∅, κ2 with M =∅, and κ2 with M = {p3},
as in each case there are no transactions.

In the last stage of encoding all negative places except for p3 are deleted.
Note that in the original acnet in Figure 3.8, a is concurrent with d and b; however, their

corresponding transitions in Figure 3.9 are causally dependent. This emphasises that the
decision about conflict resolution should be made first at κ1, and then all conflict transitions
corresponding to the transactions in κ2 are enabled together. In other words, a in the original
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acnet can be executed before c becomes enabled, which causes confusion in calculating
probabilities. In the confusion-free version in Figure 3.9, the execution of the corresponding
transition ta is postponed until the choice between tb and td has been resolved. Despite the
fact that there are two transactions ta and t ′a based on transition a, their presets are different
as they are associated, respectively, with

trans(κ2,{p2, p3}) = {{a},{c}} and trans(κ2,{p2}) = {{a}},

and they are never executed in the same step sequence as p3 and p3 cannot receive tokens in
the same execution (see Proposition 3.6.3(2)).

The behaviour of the constructed confusion-free acyclic net is closely linked to the
original one. At first, both tb and td are enabled. If tb is executed, ta and tc become enabled
together, to avoid the situation in the original net where a can be executed before c being
enabled. Executing td , on the other hand, produces tokens in places p6 and p3, which enables
t ′a. ⋄

From the probabilistic analysis point of view, the weights of transitions should not be
affected by the encoding result. In fact, the confusion-free version is used for the purpose of
probabilities calculation. To illustrate this, let us assume that the transitions of the cluster-
acyclic net in Figure 3.8 are assigned weights as in Figure 3.7. Then, the weight for each
transition represented by the transaction is mapped to the corresponding transition in the
encoding depicted in Figure 3.9. The example below illustrates how probabilities could be
derived from the constructed confusion-free acyclic net.

Example 15. Figure 3.7 shows asymmetric confusion where the transitions’ weights are as
follows: ω(b) = 3, ω(d) = 7, ω(a) = 4 and ω(c) = 6.

According to Example 12, ocnet3 = scenarioacnet({b,a}) has different executions and
each has different probability. However, in the confusion-free net in Figure 3.9 a similar sce-
nario is induced by the corresponding transitions. This scenario can be executed only in one
way, and its probability is calculated based on the weights associated with the original acnet.
This means that the corresponding scenario for scenarioacnet({b,a}) is scenarioacnet′({tb, ta})
with one execution σ ′ = {tb}{ta} and its probability is

Pacnet′(σ
′) =

ω(tb)
ω(tb)+ω(td)

· ω(ta)
ω(ta)+ω(tc)

=
3
10
· 4

10
=

12
100

.

where acnet′ = confreeA(acnet). Note that the rest of the scenarios and their probabilities
are treated similarly. ⋄
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Fig. 3.10 Encoding the acyclic net in Figure 3.6 into a confusion-free acyclic net.

Example 16. Figure 3.10 shows the transformation of the acyclic net with symmetric confu-
sion in Figure 3.6 into a confusion-free one. Let the weights associated with the transitions
be the same as in Example 12 on Page 35. Then, the corresponding of scenarioacnet({A,C})
in the original net is scenarioconfreeA(acnet)({tAC}) with one execution σ = {tAC} and its
probability calculated as below:

PconfreeA(acnet)(σ) =
ω(tAC)

ω(tAC)+ω(tB)
=

7+3
7+3+3

=
10
13

= 0.8.

Similarly, scenarioconfreeA(acnet)({tB}) is the corresponding scenario involving transition {B}
in the original one and its probability is 0.2. ⋄
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Fig. 3.11 Cluster-acyclic net with confusions (a) and its confusion-free version in (b).
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Example 17. Consider the confused cluster-acyclic net in Figure 3.11(a). There are three
maximal clusters: κ1 = {a,b}, κ2 = {c,d}, and κ3 = {x,y,z}. Their transactions are

trans(κ1,{p1}) = {{a},{b}},
trans(κ2,{p2}) = {{c},{d}},
trans(κ3,{p3, p4, p5}) = {{x,z},{y}},
trans(κ3,{p3, p4}) = {{x,z}},
trans(κ3,{p3, p5}) = {{z}},
trans(κ3,{p4, p5}) =∅,

trans(κ3,{p3}) = {{z}},
trans(κ3,{p4}) =∅,

trans(κ3,{p5}) =∅,

Its confusion-free version confreeA(acnet) is depicted in Figure 3.11(b).
⋄
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z

p5

p7 p3
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p9

p8

p10

κ3

κ1

κ2

Fig. 3.12 A cluster-acyclic net with confusion.

Example 18. Figure 3.12 shows a cluster-acyclic net with three clusters: κ1 = {x,y},
κ2 = {q,z}, and κ3 = {s,u,w}. Figure 3.13 shows all transactions of κ3 with all different
marking M ⊆ •κ3. Also, Figure 3.14 shows all the maximal scenarios that can be produced
from the confusion-free encoding of cluster-acyclic net in Figure 3.12 ⋄
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Fig. 3.13 All the transactions of cluster κ3 with marking M ⊆ •κ3 for the cluster-acyclic net
in Figure 3.12.
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Fig. 3.14 All the maximal scenarios for the encoding of a cluster-acyclic net in Figure 3.12.53
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3.6.2 Constructing clusters of conflict transitions

The encoding procedure is based on partitioning transitions of a cluster-acyclic net so that
a set of conflict transitions is grouped in one cluster. This implies that we are interested in
the case where places have multiple output transitions. To group conflict transitions in one
cluster, one can first specify all the output transitions {t1, t2, . . . , tn} of a place p. If at least
one of such transitions has another place r in its preset, then the local behaviour depends on
presence of tokens in both p and r [109]. Hence, it is essential to check iteratively, for each
transition t ∈ p•, whether it has another place r with multiple post-transitions.

Algorithm 2 Calculating maximal clusters of acyclic net
1: function MAXCLUSTER(acnet)
2: Input: acyclic net acnet.
3: Output: maxclusters(acnet)
4: Visited←∅, Cluster←∅, AllPreset←∅, Maxclusters←∅
5: for each place p ∈ P do
6: if |p•|> 0 and p /∈Visited then
7: Cluster = p•

8: Visited =Visited∪{p}
9: for each t ∈ p• do

10: AllPreset = •(p•)\{p}
11: while AllPreset ̸=∅ do
12: for each r ∈ AllPreset do
13: Visited =Visited∪{r}
14: Cluster =Cluster∪ r•

15: AllPreset = (AllPreset ∪ •(r•))\Visited
16: end for
17: end while
18: end for
19: Maxclusters = Maxclusters∪{Cluster}
20: Cluster =∅, AllPreset =∅
21: end if
22: end for
23: return Maxclusters
24: end function

Algorithm 2 partitions the transitions of the acyclic net into maximal clusters. The
input is a given acyclic net acnet. The first for loop iterates non-visited places p ∈ P. Each
examined place is added to Visited list to keep track of the places that have already been
explored. All the output transitions of p are added to the accumulative list Cluster. Then,
for each transition t ∈ p•, all its input places are processed so that their output transitions

54



3.6 Removing confusion from cluster-acyclic net

p3

p1
c

d

p4

p6

p2

b

e

g

f

p5

p8

p9

p10

p7

κ1

Fig. 3.15 Constructing a cluster for conflict transitions.

are considered as well and added to Cluster. The while loop stops when all the places of the
preset of a maximal cluster are already visited.

Example 19. Consider the acyclic net in Figure 3.15. Each two conflict transitions have
different presets. That is, for example, c#0d and •c ̸= •d. Similarly, e#0g and •e ̸= •g. If
Algorithm 2 is performed, then the set of transitions {b,c,d,e, f ,g} forms a maximal cluster
κ1. ⋄

3.6.3 Constructing all transactions of a cluster

After identifying all maximal clusters, transactions are computed for each one and all potential
initial markings. According to Definition 3.5.3 on Page 41, for a given cluster κ and marking
M ⊆ •κ , trans(κ,M) is the set of maximal steps for κ with marking M.

Chapter 6 introduces a satisfiability formula that computes the maximal scenarios of an
acyclic net. As SAT-solver provides a general solution, considering the net induced by a
cluster κ and the set of transitions in κ such that •t ⊆M for each t ∈ κ , all the transactions
can be computed using the satisfiability formula.

Another technique to calculate the set of all the transactions of a cluster κ and marking M

is to use algorithms for a well-known All Maximal Independent Sets (AMIS) graph problem.
In this case, κ and M are converted into an undirected graph Gκ,M = (V,E), defined as
follows:

• V is the set of transitions in κ such that •t ⊆M.

55



Acyclic Petri nets

• {t,v} ∈ E iff t and v are transitions in direct conflict.

A MIS algorithm finds a maximal set of vertices such that each two are not adjacent. That
is, S ⊆ V is an independent set if its vertices are not connected by an edge. Moreover, S

is a maximal independent set (or mi-set) if there is no other independent set S′ such that
S⊂ S′ [107].

3

b5

c

6

e
7

d
8

g
4

f

Fig. 3.16 Undirected graph Gκ1,{p1,p2,p3,p4} for κ1 = {b,c,d,e, f ,g} and M = {p1, p2, p3, p4}
in Figure 3.15.

Example 20. Figure 3.16 shows the undirected graph representation for κ1 = {b,c,d,e, f ,g}
in Figure 3.15. The nodes are the transitions in κ1 such •t ⊆M = •κ1, and each two transitions
in direct conflict are connected via an edge. ⋄

The problem of finding all mi-sets received significant attention, e.g., in [125, 30, 67, 83].
It is also related to the problem of finding all maximal cliques [125]. In [30], the problem of
generating all mi-sets in lexicographical order is investigated in the case of trees. Note that,
in an ordered set,

two subsets S and Q are sorted lexicographically (or lex-sorted) with S being

before Q, if the first element on which they disagree belongs to S [67].

The basic idea behind the algorithm proposed in [30] is as follows:

• Let G = (V,E) be a tree, where V = {1,2, . . . ,n}. The vertices are ordered numerically.
Let MIS1 be the first mi-set which starts with the smallest vertex v = 1. Then, the next
mi-set is generated which starts with vertex v = 1, if such a mi-set exists.

• Let assume that MIS1 = {v1,v2, . . . ,vk} starts with vertex v1. Generating the first
mi-set MIS1 is done by searching vertices V in ordered and never excluding a vertex
unless it is connected to a vertex already in MIS1.

• Let MIS2 be the next mi-set starting with the same vertex v1. Before constructing
MIS2, we find potential vertices Ps ⊆V \MIS1 such that each p ∈ Ps can be used to
generate MIS2 from MIS1.
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3.6 Removing confusion from cluster-acyclic net

• Since MIS2 starts with v1, each vertex p ∈ Ps is not connected with v1. Also, p > v1,
and there is a vertex vm ∈ MIS1 such that vm < p is the smallest vertex in MIS1

connected with p. Hence, once MIS1 is constructed, the set of the potential vertices
and their corresponding vertices that are already in MIS1 are derived to produce MIS2

which is in the form {v1, . . . ,vm−1, p, . . .} [30].

We follow the algorithms proposed in [30] with some modifications. As the graph Gκ,M

may include cycles, undirected graphs are considered instead of just trees. Moreover, the
transitions in the cluster κ are assumed to be integers V = {1,2, . . . ,n}.

Algorithm 3 outlines the proposed algorithm of generating all mi-sets in [30] with
modifications mentioned above. The input is the graph Gκ,M.

The first mi-set MIS1 is generated by Algorithm 4 starting with the smallest vertex v1 = 1.
At each iteration of the while loop, the smallest vertex w ∈V ′ is chosen and it is excluded
along with its neighbours from V ′. The set I stores the selected independent vertices.

Based on MIS1, candidate vertices are computed by the CANDIDATEVER function which
takes Gκ,M and MIS1 as input. The set CandidateVer includes all vertices in V excluding
those vertices that have been added to MIS1 along with the neighbours of v1. It returns the
set of pairs of the candidate vertex p and the corresponding vertex vm ∈MIS1. Then, for
each p and vm in PairVer, the set of potential mi-set PotenMIS is generated after removing
vm and all vertices that are larger than vm from MIS1 and adding p instead. Algorithm 4
is used to find the mi-set for the reduced graph Greduced resulting removing all vertices of
PotenMIS and their connected vertices in Gκ,M from the graph Gκ,M. The mi-set for the
reduced graph Greduced is stored in NewMIS. The union of PotenMIS and NewMIS is the
next mi-set NLMIS. The set of all NLMIS is stored in AllNextMIS. The returned result is
the next mi-set NLMIS of MIS1.

Algorithms 3, 4, and 5 are illustrated in the following examples.
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Algorithm 3 Computing all transactions
1: function TRANSACTIONS(κ , M)
2: Input: cluster κ and marking M such that M ⊆ •κ
3: Output: trans(κ,M)
4:
5: v1 = 1,Gtemp = Gκ,M = (V,E) where V = {t ∈ κ | •t ⊆M} and E = {(t,u) | t#0u}
6:
7: while v1 ≤ vn do /* vn is the largest vertex in G */
8: G = Gtemp
9: find the first mi-set MIS1 starting with v1 using Algorithm 4

10: while MIS1 ̸=∅ do
11: AllMIS = AllMIS∪{MIS1}
12: find the next mi-set MIS2 starting with vertex v1 using Algorithm 5
13: MIS1 = MIS2
14: end while
15: v1 = v1 +1.
16: end while
17: return AllMIS
18: end function
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Fig. 3.17 A cluster κ = {t1, t2, t3, t4, t5, t6, t7} with M = •κ (a) and its undirected graph Gκ,M
in Example 21 (b). Note: each i stands for ti.

Example 21. The graph Gκ,M = (V,E) in Figure 3.17 represents some cluster and marking
as in Algorithm 3. The smallest vertex is 1, so the first mi-set is MIS1 = {1,4,6}. The
candidate vertices that can be added to some vertices in MIS1 to generate the next mi-set are:

CandidateVer =V \ (MIS1∪{2,3}) = {5,7} (note that {2,3} are the neighbours of 1).
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3.6 Removing confusion from cluster-acyclic net

The smallest vertices in MIS1 that are connected to 5 and 7 are 4 and 6, respectively. Hence,
PairVer(5,4) and PairVer(7,6) are obtained. The potential mi-set PotenMIS is generated
for each pair as follows:
for PairVer(5,4), 4 and all the vertices larger than 4 are removed from MIS1 and 5 is added.
So, PotenMIS = {1,5}.

The reduced graph Greduced is obtained after removing all vertices in PotenMIS and their
connected vertices in Gκ,M from the graph Gκ,M. This step is depicted in Figure 3.18(a),
where all removed vertices are in gray circles. That means, 7 is the only remaining vertex in
Greduced . The new mi-set NewMIS for the graph Greduced is {7}. Hence the next mi-set added
to AllNextMIS is:

NLMIS = PotenMIS∪NewMIS = {1,5}∪{7}= {1,5,7}.

Similarly, for PairVer(7,6), 6 and all the vertices larger than 6 are removed from MIS1

and 7 is added. Hence, PotenMIS = {1,4,7}. In this case, Greduced has no vertices as shown
in Figure 3.18(b), which means NLMIS = PotenMIS = {1,4,7}. The two next mi-sets
NLMISs of MIS1 = {1,4,6} are {1,5,7} and {1,4,7}. The latter is the next mi-set of MIS1.
The remaining vertices in Gκ,M are processed similarly, and all mi-sets are:

{1,4,6}, {1,4,7}, {1,5,7}, {2,4,6}, {2,4,7}, {2,5,7}, {3,5,7}, {3,6}.

⋄
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Fig. 3.18 An illustrative example of Algorithm 5 for the graph in Figure 3.17.
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Algorithm 4 Computing the first mi-set (MIS)
1: function MIS(Gκ,M)
2: Input: Gκ,M = (V,E)
3: Output: the first mi-set (MIS) of Gκ,M
4:
5: I =∅, V ′ =V
6: while V ′ ̸=∅ do
7: choose the smallest vertex w ∈V ′

8: I = I∪{w}
9: V ′ =V ′ \ ({w}∪N(w)) /* N(w) is the set of the neighbours of w */

10: end while
11: return I
12: end function

Algorithm 5 Computing the next mi-set for MIS1 (NLMIS)
1: function NLMIS(Gκ,M,MIS1)
2: Input: graph Gκ,M = (V,E) and the first mi-set MIS1 = {v1,v2, . . . ,vn}
3: Output: the next mi-set of MIS1 starting with v1 if such set exists
4:
5: Gtemp = Gκ,M, PotenMIS =∅, NewMIS =∅, AllNextMIS =∅
6:
7: Call Function CANDIDATEVER(Gκ,M,MIS1)
8: for each vertex p and the corresponding vertex vm in PairVer do
9: Gκ,M = Gtemp

10: PotenMIS = {p}∪ (MIS1 \ (vm∪ vq)) for each vq ∈MIS1 with q > m
11: remove all vertices in PotenMIS and all their connected vertices in Gκ,M from

Gκ,M
12: let Greduced be the new graph.
13: compute the mi-set for Greduced using Algorithm 4
14: let NewMIS be the returned result
15: NLMIS = NewMIS∪PotenMIS
16: AllNextMIS = AllNextMIS∪{NLMIS}
17: end for
18: return the next mi-set NLMIS of MIS1 in AllNextMIS
19: end function
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Algorithm 6 Computing the set of candidate vertices and their corresponding vertices in
MIS1

1: function CANDIDATEVER( Gκ,M,MIS1 )
2: Input: Gκ,M = (V,E) and the first mi-set MIS1 = {v1,v2, . . . ,vn}
3: Output: the set of candidate vertices and the corresponding vertices in MIS1
4:
5: CandidateVer =∅, PairVer =∅
6: CandidateVer =V \ (MIS1∪N(v1) /* N(v1) is the set of the neighbors of v1 */
7:
8: for each vertex p ∈CandidateVer do
9: Let vm be the smallest vertex in MIS1 connected to p

10: if p < vm then
11: CandidateVer =CandidateVer \{p}
12: else
13: add the pair vertices p and vm to PairVer(p,vm)
14: end if
15: end for
16: return PairVer(p,vm)
17: end function

Example 22. If Algorithm 4 is applied to the graph representation of κ1 in Figure 3.16, then
the first mi-set would be MIS1 = {b,c, f} as b is smallest vertex in the graph Gκ1,{p1,p2,p3,p4}

and all the nodes in MIS1 are independent. ⋄

In Algorithm 3, if the first mi-set which starts with the smallest vertex v1 does not exist,
MIS1 =∅, then the next vertex is chosen which is depicted by v1 = v1 +1 in line 18.

In general, generating a mi-set is not complicated as generating all the mi-sets as their
number might be exponential.

3.6.4 Cluster-acyclicity and places caused by clusters

Before constructing the confusion-free net confreeA(acnet), one must ensure that the relation
⊏ on the maximal clusters of acnet is a strict partial order. Algorithm 8 examines whether
this property holds, calling the CAUSED function which is listed in Algorithm 7. This method
uses the depth-first search technique to traverse an acyclic net starting from the subnet
induced by κ to return not only all the places caused by a transition t ∈ κ , but also all its
post-places. This is illustrated in the example below.
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Algorithm 7 Computing places caused by a cluster
1: function CAUSED( Q)
2: Input: a subset Q of cluster κ .
3: Output: the set caused(Q) of places caused by Q.
4:
5: caused =∅, stack S =∅, visited =∅
6:
7: for each t ∈ Q do
8: S.push(t•) /* the output places of t are added one-by-one */
9: visited = visited∪ t•.

10: while S ̸=∅ do
11: temp = S.top()
12: if (temp is a place) then
13: caused = caused∪{temp}
14: end if
15: S.pop()
16: for each v ∈ temp• do
17: if v /∈ visited then
18: S.push(v)
19: visited = visited∪{v}
20: end if
21: end for
22: end while
23: end for

return caused
24: end function
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Fig. 3.19 Cluster-acyclic net (a), and generating tokens in marked negative places in
caused(κ1 \{b})∩P after tb is executed.

Example 23. The cluster-acyclic net in Figure 3.19 has three maximal clusters:

κ1 = {a,b}, κ2 = {c,d} and κ3 = {e, f}.

According to Definition 3.2.8 (7) on Page 25, caused(κ)∩P for each cluster is as follows:

caused(κ1)∩P = {p4, p5, p6, p8}
caused(κ2)∩P = {p5, p7, p8}
caused(κ3)∩P = {p8, p9}.

Executing b leads to the absence of token in p4, which implies eventually that p5 and p8

will never be marked. In the construction of confusion-free net, that means p4, p5 and p8 are
marked as soon as the corresponded transaction tb is executed, which in return enables td and
t f immediately as they are the only available ones. Figure 3.19 (b) shows that disabling the
transition ta due to executing tb is propagated across the net by inserting tokens into negative
versions of the places belonging to caused(κ1). Note that the whole confusion-free net is not
presented in Figure 3.19(b), only the relevant part. ⋄

Once all the places caused by the clusters are calculated, then one can verify that an
acyclic net acnet is a cluster-acyclic, as shown in Algorithm 8.

Example 24. The acyclic net depicted in Figure 3.20 is not cluster-acyclic as we have:

caused(κ)∩P = {p2, p3, p5}∩ •κ ′ ̸=∅ and caused(κ ′)∩P = {p2, p5, p6}∩ •κ ̸=∅.
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⋄

p1

a p2

b
p3

p4
c

d

p5

p6

κ
κ ′

Fig. 3.20 An acyclic net which is not cluster-acyclic.

Algorithm 8 Verifying cluster-acyclicity

1: function BOOLEAN CLUSTERACYCLIC(clusters(acnet))
2: Input: maxclusters(acnet)
3: Output: true if acnet is a cluster-acyclic; otherwise f alse
4: for each two maximal clusters κ,κ ′ ∈maxclusters(acnet) do
5: if CAUSED(κ)∩ •κ ′ ̸=∅ and
6: CAUSED(κ ′)∩ •κ ̸=∅ then
7: return f alse
8: end if
9: end for

10: return true
11: end function
12:
13:

3.6.5 Constructing confusion-free net

The encoding steps are presented in Algorithm 9. The input is a cluster-acyclic acnet. For
each iteration, a new transition is generated for each transaction θ belongs to trans(κ,M) for
each cluster κ . Then, the presets and postsets are added according to Definition 3.6.1.

Compared to the encoding in [26], the proposed encoding is simpler because of the
following:

• The contact-free acyclic net resulting from encoding uses the same net model as all
acyclic nets (i.e., persistent places and extended markings are not needed).
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Algorithm 9 Encoding cluster-acyclic net (Approach A)
1: function REMOVECONFUSION(acnet )
2:
3: Input: cluster-acyclic net acnet = (P,T,F)
4: Output: confusion-free acyclic net confreeA(acnet)
5:
6: P′ = P′∪ p, T ′ =∅
7:
8: for each κ ∈maxclusters(acnet) and M ⊆ •κ do
9: for each θ ∈TRANSACTIONS(κ,M) do

10: caused =CAUSED(κ \θ)
11: T ′ = T ′∪{tκ,θ ,M}
12: •tκ,θ ,M = M∪ •κ \M
13: t•

κ,θ ,M = θ •∪ caused
14: end for
15: end for
16: remove all p ∈ P′ such that p• =∅
17: return (P′,T ′,F ′)
18: end function

• The number of negative places is smaller than in [26]. That because in [26], auxiliary
places are generated as their cells are static. Also, the dynamic net is used as an
intermediate step of the construction. Hence, a persistent place is added to the preset
of a transition t to enable it dynamically. Figure 3.21 shows the confusion-free version
for the net in Figure 3.7 according to the construction in [26]. Note that there are five
new places created whereas our encoding shown in Figure 3.9 only adds one negative
place.

In general, if we have a cluster-acyclic net with n places, then there can be at most n

clusters κ . For each cluster κ , the number of negative places to be added is determined
by the set of unmarked places belonging to the preset of κ . More precisely, |•κ \Minit|
negative places are generated. The worst case is when none of the pre-places of κ is
initially marked. In this case, a negative place p is generated for each place p ∈ •κ .
On the other hand, the best case is when all the pre-places of κ are initially marked. In
this case, no negative paces are generated.

• There is no need to use dynamic nets as an intermediate step of the construction.

• We expect that our encoding will be much easier to comprehend and use by practitioners
with relatively limited formal methods skills.
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Fig. 3.21 The confusion-free version for the acyclic net in Figure 3.7 according to the
encoding steps defined in [26]

Additionally, one of the limitations of [26] is that only the case of backward deterministic
nets has been addressed. We will extend the encoding to the unfolding semantics as it is
discussed in Section 3.7, where more general cases can be considered, and to communication
structured acyclic nets in Chapter 4.

We do not expect the fact that our encoding works for a subclass of cluster-acyclic nets to
be limiting in practical applications. This is based on the examples modelling investigations
we evaluated, and also on the fact that in case of non-compliance it is always to require an
investigator to provide additional information to ‘repair’ the not, or using other source of
information, e.g., timing information associated with places and/or transitions.

3.6.6 Approach B: based on all clusters and borders

Approach A introduced in the previous sections to eliminate confusion imposed no restrictions
on the structure of cluster-acyclic nets. In Approach A, the number of newly generated
transitions depends on the marked pre-places of the cluster κ . In other words, all the
considered cases of generating new transitions are according to the different combinations of
the marking of •κ . Hence, for instance, if n is the number of pre-places of κ , then the number
of all considered cases of creating new transitions is 2n as each place p ∈ •κ can either be
marked or unmarked. As a result, the potential number of all possible new transitions is
exponential. In this section, we assume that each cluster-acyclic net is binary synchronised.
This restriction reduces the number of instances of the same transition. As a result, the size
of the newly generated net is never worse compared to Approach A.

In this section, another approach of removing confusion is introduced. It is based on
determining sets of places, called borders, of clusters. The intention behind borders is to
generate negative places in the construction, to serve a similar purpose as in Approach A.
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3.6 Removing confusion from cluster-acyclic net

Definition 3.6.2 (binary synchronised net). A binary synchronised net is a cluster-acyclic
net such that each transition has at most two pre-places. ⋄

Definition 3.6.3 (borders). Let acnet=(P,T,F) be a cluster-acyclic net and κ ∈ clusters(acnet).
A border of κ is a minimal set of places δ such that (•κ)• \κ ⊆ δ •.
The set of all the borders of κ is denoted by borders(κ). ⋄

A maximal cluster has only the empty border.
Below, we will use the notation δp1...pk for a border {p1, . . . , pk}, the notation κt1...tm for a

cluster {t1, . . . , tm}, and the notation τu1...un for a transaction {u1, . . . ,un}.

p1 p2p3 p4

db e c

p5 p6p7 p8

κ1

Fig. 3.22 A maximal cluster κ1 of a binary synchronised acyclic net.

Example 25. For the binary synchronised cluster-acyclic net in Figure 3.22, transitions
b,c,d,e form the maximal cluster κ1, for which borders(κ1) = {∅}. A non-maximal cluster
κb = {b} also has one border, borders(κb) = {δp3}. ⋄

Proposition 3.6.6. |borders(κ)|= 1, for every cluster κ of a binary synchronised cluster-
acyclic net.

Proof. Clearly, if κ is maximal, then borders(κ)= {∅}. In general, since we are dealing with
a binary synchronised cluster-acyclic net, borders(κ) = {δ}, where •((•κ)•)\ •κ ⊆ δ .

Definition 3.6.4 (transaction). A transaction of a cluster κ of a cluster-acyclic net is a
maximal step θ included in κ . The set of all transactions of a cluster κ is denoted by trans(κ).
⋄

Example 26. The binary synchronisation acyclic net acnet in Figure 3.22 exhibits symmetric
confusion. The maximal cluster κ1 = κbdec = {b,d,e,c} has the empty border, borders(κ1) =
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{∅}. The transactions included in κ1 are captured by trans(κ1) = {τbd,τbc,τec}. For other
clusters, there are at most one place in their borders. Their borders and transactions are as
follows:

κbed : borders(κbed) = {δp4} trans(κbed) = {τbd,τe}
κbe : borders(κbe) = {δp2} trans(κbe) = {τb,τe}
κcd : borders(κcd) = {δp1} trans(κcd) = {τd,τc}
κb : borders(κb) = {δp3} trans(κb) = {τb}
κc : borders(κc) = {δp3} trans(κc) = {τc}
κd : borders(κd) = {δp1 p4} trans(κd) = {τd}

⋄

After finding the transactions of a maximal cluster and all its non-maximal clusters with
their transactions, a confused binary synchronised cluster-acyclic net acnet is encoded into a
confusion-free net acnet′. The steps are as below:

• All places of acnet are retained and for each place p ∈ borders(κ), a negative place p

is added.

• All transitions in acnet are deleted, and for each cluster κ with its maximal step
θ ∈ trans(κ) a new transition tκ,θ ,δ is generated. Its presets are all the pre-places of κ

and the negative places in δ ∈ borders(κ). Its postsets are the output places of θ and
the places caused by κ excluding those caused by θ .

• All places with empty postsets are deleted.

• All places with empty presets together with their postsets are deleted. This is repeated
until no more places with empty presets remain.

• Each negative places with non-singleton postset is split, and individual copies are
provided for all transitions in its postset.

Below is the formal definition of producing a confusion-free acyclic net of a confused binary
synchronised one.

Definition 3.6.5 (encoding binary synchronisation cluster-acyclic net). The confusion-free

encoding of a binary synchronisation cluster-acyclic net acnet = (P,T,F) is an acyclic
confreeB(acnet) = (P′,T ′,F ′) constructed as follows:

• P′′ ≜ P∪P.
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• T ′ ≜ {tκ,θ ,δ | κ ∈ clusters(acnet)∧θ ∈ trans(κ)∧δ ∈ borders(κ)}.

• •t ≜ •κ ∪δ and t• ≜ θ •∪ caused(κ \θ)∩P, for every t = tκ,θ ,δ ∈ T ′.

• Each negative place p such that p• = {v1, . . . ,vk} (k≥ 2) is replaced by negative places
p1, . . . , pk satisfying •pi =

•p and p•i = {vi}, for every 1≤ i≤ k. Let Pnew be the set
of the new generated negative places.

• All places with empty postsets are deleted, and all places with empty presets together
with their postsets are deleted (this is repeated until no more places with empty presets
remain).

Then, P′ ≜ P′′∪Pnew \{p′ ∈ P′ | p′• =∅ or •p′ =∅}. ⋄

Example 27. Figure 3.23 shows on the left the maximal cluster κ1 and its sub-clusters. The
transitions derived from their transactions according to Definition 3.6.5 are shown on the
right.

After deriving all the clusters together with their borders and transactions, a confusion-free
acyclic net is generated which is depicted in Figure 3.24. For instance, for the transactions
trans(κ1) = {τbd,τbc,τec} of κ1, transitions

tκ1,τbd ,∅ tκ1,τbc,∅ tκ1,τec,∅

are generated. Similarly, for the cluster κbed , transitions

tκbed ,τbd ,δp4
tκbed ,τe,δ p4

are created. The remaining transitions are created in a similar same way.
Note that borders(κb) = borders(κc) = {δp3} and b, c are not in conflict hence, in the

encoding p3 is split into p3 and p′3. Also, it is worth to mention that the non-maximal
clusters are always affected by the minimal outside places. For instance, for κbe, κc, and κb

their outside places respectively are {p2, p4}, {p1, p3}, and {p2, p3, p4}. However, in the
construction, the negative versions of the places in their borders are considered only. Except
for κd where all the outside places are in its border as well. ⋄
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Fig. 3.23 All the sub-clusters and their associated transactions of the binary synchronised
acyclic net in Figure 3.22.

Example 28.
Figure 3.25 shows the same maximal cluster κ1 in Figure 3.22 however with the initial

marking M = {p1,r1,r2,r3}. Figure 3.26 shows its encoding according to Approach A in
steps where the transactions of κ1 are computed based on the marking M (note that the
clusters κ , κ ′, and κ ′′ are free-choice so in the construction they are not modified, hence we
did not show this part). Based on the number of the new generated transitions for κ1 in Figure
3.24 and Figure 3.26 respectively, it is shown that the size of confusion-free net using the two
approaches is almost the same. We hypothesise that Approach B introduces less-dependence
compared to Approach A. That is for example in Figure 3.24 for the transitions tb, t ′e to be
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p1 p2p3 p4

tbc tec tbd
t ′btb t ′e

t ′bd te

tc td t ′c t ′d
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Fig. 3.24 Encoding of confused binary synchronised cluster-acyclic net in Figure 3.22
according to Approach B.
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Fig. 3.25 The maximal clusters of a binary synchronised acyclic net with initial marking.

enabled the absence of the token in p2 is required as their presets are {p1, p3, p2}. On the
other hand, for the transitions t ′′b , t

′′
e in Figure 3.26, the absence of the tokens in both p2 and

p4 are required as their presets are {p1, p3, p2, p4}. The observation applies for t ′b and t ′′′′b

in Figure 3.24 and Figure 3.26 respectively. That is because in Approach A all the places
belonging into •κ \M and the marked pre-places of κ are considered whereas in Approach B

only the places belonging into the cluster’s border as well as the pre-places of κ are used
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in the construction. Also, there are only two instances of transition tb created when using
Approach B as shown in Figure 3.24. However, five instances of tb are generated using
Approach A as it is depicted in Figure 3.26. ⋄

The main difference between Approaches A and B is that in the former there are no
imposed structural restrictions on the cluster-acyclic. The latter, on the other hand, requires
that a cluster-acyclic net to be binary synchronised, which in returns limited cases are
considered compared to Approach A. In terms of the size of the resulting confusion-free net,
it turns out that the size of nets produced by both approaches are quite similar. However,
Approach B retains much more concurrency of the original behaviour, which my be exploited
both for further modelling and analyses.

The worse case for Approach A is when all the pre-places of a cluster κ are not marked.
In this case, if there are p places where p ∈ •κ and p /∈ M, then there are 2p different
possibilities for p places to be marked. That means, the number of generating new transitions
in the constructed net might be exponential. A similar comment is applicable for Approach
B as the number of the sub-clusters would be large as well.
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Fig. 3.26 All the transaction associated with cluster κ1 in Figure 3.25 according to Ap-
proach A.
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The key properties of the second kind of encoding are similar to those obtained in
Approach A, as formulated below. We omit proofs which are similar to those of the corre-
sponding results presented erlier.

Theorem 3.6.5. Let acnet and acnet′ be as in Definition 3.6.5. Then

{TU1 . . .TUk |U1 . . .Uk ∈ sseq(acnet′)} ⊆ sseq(acnet) .

Theorem 3.6.6. Let acnet′ be as in Definition 3.6.5. Then acnet′ is a confusion-free acyclic
net.

Theorem 3.6.7. Let acnet and acnet′ be as in Definition 3.6.5. Then, for every maximal
scenario ocnet ∈maxscenarios(acnet), there is a maximal step sequence U1 . . .Uk of acnet′

such that TU1 . . .TUk is a maximal step sequence of ocnet.

Theorem 3.6.8. Let acnet and acnet′ be as in Definition 3.6.5. If acnet is an extended
free-choice net, then acnet′ and acnet are isomorphic nets.

3.6.7 Non-cluster-acyclic nets

We now revisit Example 24 and Figure 3.20, where cluster-acyclicity constraint is not satisfied.
The aim behind imposing this restriction over the clusters is to ensure that the decisions
are taken first locally at the precedent clusters, and then the posterior clusters’ resolutions
are made accordingly. That was captured by tokens produced by the former clusters which
were consumed by some transitions belonging to the latter clusters. For clusters κ and κ ′ in
Figure 3.20 Page 64, it is not obvious which cluster should resolve the conflict first. In fact,
even if we assume that the choice must be resolved first at κ , then some missing information
is not taken into account. This information is represented by some transitions being causally
dependent on transitions in κ ′ and leads to incorrect conflict resolving. Hence, Approaches A

and B introduced earlier are not applicable. However, there is an intuitive idea that encoding
the net in Figure 3.20 differently could produce a confusion-free net.

The key to possible solution here is to create new auxiliary transitions to play the role
of transitions attached to the output arcs of places in the interface between the clusters. In
Figure 3.20, the transitions a and c are such transitions that can be replaced by the auxiliary
transitions as they belong to the postsets of the interface places p6 and p3, respectively.
Replacing such transitions should be concerned only with their weights. The example below
illustrates how to handle the situation where the clusters acyclicity restriction is broken in
such way that the confusion has disappeared.
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Fig. 3.27 An acyclic net which is not a cluster-acyclic (a), and its encoding into confusion-
free (b).

Example 29. Figure 3.27(a) shows the same net in Figure 3.20 but with weights associated
with conflict transitions. Its encoding into a confusion-free net is depicted in Figure 3.27(b).
Assuming that the conflict should be resolved at κ first, then the auxiliary transition aux is
added instead of the non-enabled transition a. This transition uses the weight of a to preserve
resolving the conflict against b probabilistically. The concept of encoding is still the same
as in Approach A. Also, an important observation about the encoding in Figure 3.27(b) is
that transition a is only available when both p3 and p5 are marked. Finally, it is worth to
mentioned that the encoding can be obtained the other way around, by assuming that the
conflict at κ ′ should be resolved first and replacing transition c and its weight to be associated
with the auxiliary transition aux conflict with d, which would produce the same result. ⋄

The next section extends the two approaches of removing confusion to the unfolding
semantics.

3.7 Unfolding backward conflicts

In the previous section, we discussed approaches of removing confusion by constructing
a new confusion-free acyclic net. The constructions rely on generating negative places for
each original place. All the examples discussed previously are backward deterministic, and
so each transition and place has a unique set of causes. Hence, the encodings proposed
in Section 3.6 are not applicable for general acyclic nets, where a place can have multiple
incoming arcs. This section extends the proposed approach of removing confusion to the
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unfolding semantics. Note that in this section we assumed that the reader is familiar with the
basic concepts net unfolding (for more information see [70]).

3.7.1 Branching Process of acyclic nets

The net unfolding can be seen as the partial order behaviour of a concurrent system and relies
on acyclic net to represent the system states. The unfolding has been one of the central topics
in the net theory. Essentially, unfolding a Petri net results in creating a labelled acyclic net
Unf which is complete and finite in our case. Since we assume in this thesis that Petri net
is acyclic, its unfolding generates a finite backward deterministic acyclic net. The mapping
procedure from the unfolding to the original net is called branching process, defined next.

Definition 3.7.1 (Branching process). A homomorphism from a backward deterministic
acyclic net acnet′ = (P′,T ′,F ′) to an acyclic net acnet′ = (P,T,F) is a mapping h : P′∪T ′→
P∪T such that:

• h(P′)⊆ P and h(T ′)⊆ T .

• For each e ∈ T ′, the restriction of h to •e is a bijection between •e and •h(e), and
similarly for e• and h(e)•.

• The restriction of h to Minit
acnet′ is a bijection between Minit

acnet′ and Minit
acnet.

• For all e, f ∈ T ′, if •e = • f and h(e) = h( f ), then e = f .

Then the pair π = (acnet′,h) is called a branching process of acnet. ⋄

Two branching processes π and π ′ are isomorphic if there is a bijective homomorphism h

from π ′ to π such that π ′ ◦h = π . As stated in [70], there is a unique (up to label-preserving
isomorphism) maximal (w.r.t. prefix relation) branching process of acnet called unfolding.

p1

b

d
p3

p2

c
p5

a
p4
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p3d

p3b
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Fig. 3.28 An acyclic net (a) and its unfolding into backward deterministic acyclic net (b) .
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Figure 3.28 shows an unfolding of acnet into its maximal branching process, where each
place has at most one incoming arc.

The reachable markings of the unfolding correspond to reachable markings of the original
net. More precisely, h(M) is a reachable markings of the original net, for every reachable

marking M of π . Moreover, for a reachable marking M of π , M e−→M′ implies h(M)
h(e)−−→

h(M′). And, conversely, for a reachable marking M of π , h(M)
t−→M′ implies that there are e

and M′′ such that h(M′′) = M′, h(e) = t, and h(M)
t−→M′′.

Since we interested in building a complete and finite unfolding, generating a complete

prefix is not considered. Therefore, there is no need to take the cut-off events in the consider-
ation.

In this thesis, we will consider an existing unfolding algorithm presented in [70]. However,
such an algorithm is focused on generating a complete prefix of the unfolding. In order to
derive a maximal unfolding, suitable modifications need to added to this algorithm.

Example 30. If the algorithm presented in [70] is performed on the the acyclic net in
Figure 3.28(a), then the net in Figure 3.29 will be the result. It is a complete prefix but
not the full unfolding. Note that, d is considered as a cut-off event. Thus, the construction
stopped at this point. ⋄

p1

b

d
p3

p3

p2

c
p5

a
p4

Fig. 3.29 Complete prefix for the acyclic net in Figure 3.28(a).

Since the previous example shows that the algorithm in [70] generates just a complete
prefix, our modifications should produce a full unfolding of any acnet. The modified version
of the algorithm in [70] is represented in Algorithm 10. The difference between the two
algorithms is that the former takes into account the cut-off events so that the construction
of the prefix is pruned without losing information such as transition executability, whereas
the latter continues the construction and appends all the potential extensions (the set of
transitions that can be added to the unfolding to extend it), even if they have been already
added to the prefix being constructed. As a result, many instances of the same transition may

78



3.7 Unfolding backward conflicts

be added several times as the full unfolding depicted in Figure 3.28(b) where the transition c

is added for each branch.

Algorithm 10 Unfolding algorithm for an acyclic net

1: Input: acnet = (P,T,F,M0)
2: Output: a finite Unfolding Unfacnet′ of acnet
3: Unfacnet′ ← the empty branching process
4: pe =∅
5: add instances of the places in the initial marking of acnet to Unfacnet′

6: add all possible extension of Unfacnet′ to pe
7: while pe ̸=∅ do
8: ProcessEvent(e)
9: add to Unfacnet′ a transition t ′ = (t, p) of pe and a place (p′t , t

′) for every output place
p of t

10: end while
11:
12: procedure PROCESSEVENT(e)
13: for all g ∈ UpdatedPotentialExt(Unfacnet′,e) do
14: pe← pe∪{g}
15: end for
16: end procedure

p1

b

d
p3d

p3b

p2

c

c′

p5

p5

a
p4

κ1 κ2

(a)

p1

tb

td
p3d

p3b

p2

tc

tc′

p5

p5

ta

t ′a

p4

p3d

p3b

(b)

Fig. 3.30 (a) A cluster-acyclic net for the unfolding in Figure 3.28 (b) and its encoding
according to Approach A (b).

Example 31. Consider the net in Figure 3.30. In Figure 3.30(a) the cluster-acyclic net
for the unfolding in Figure 3.28 is portrayed. There are two maximal clusters: κ1 = {b,d},
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κ2 = {a,c,c′}. It is worth to notice that the weight of transitions c and c′ should not be
split as they never be enabled at the same time. According to Approach A, the transactions
associated with clusters are as follows:

trans(κ1,{p1}) = {{b},{d}}
trans(κ2,{p2, p3d}) = {{a},{c′}}
trans(κ2,{p2, p3b}) = {{a},{c}}.

Since caused(κ2)∩ •κ1 = ∅, we have κ2 ̸⊏ κ1 and the strict partial order relation is satis-
fied. Therefore, Approach A in Definition 3.6.1 is applicable, and the result is shown in
Figure 3.30(b). ⋄

3.8 Conclusion

This chapter developed a theoretical framework that concerns the probabilistic analysis of
acyclic nets. The fundamental concept of the probabilistic acyclic nets is the presence of
conflict between transitions. We formally define how conflicts can be resolved probabilisti-
cally based on the positive integer weights associated with transitions. The scenarios defined
to represent execution histories of acyclic nets are used to analyse probabilistically their
behaviour. An important requirement in concurrent probabilistic models is that the execution
order of a scenario should be independent from the probability calculation. More precisely,
all the executions of a single scenario should obtain the same probability. Then, confusion

was discussed as an undesirable situation, where the conflict is not resolved correctly leading
to inaccurate results of probability calculation.

We have formally defined the class of cluster-acyclic net that appear to be a new kind of
acyclic nets which was not previously discussed in the literature. The purpose of introducing
this class is to partition the acyclic net in such way that the conflict transitions are grouped
into clusters, and all the clusters are strictly partially ordered. To localize nondeterministic
choices made, conflicts are resolved locally at each cluster. The class of cluster-acyclic
net is used as a basis to remove confusion by translating confused cluster-acyclic nets into
confusion-free acyclic nets.

Two approaches were proposed to eliminate confusion. Approach A (motivated by
the work in [26]) concentrates on markings M included in the pre-places of a cluster. In
Approach B, only the binary synchronised acyclic nets are considered.
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Both approaches use negative places to introduce additional causality between transitions,
and the encoding produced relies on postponing the executions of some transitions (see
Example 14 on Page 48, Example 17 on Page 52, and Example 27 on Page 69). A key
result is that the constructions according to Definitions 3.6.1 and Definition 3.6.5 produce
confusion-free nets. Proving such a property is based on ensuring that the executions of
resulting nets satisfy the structure of free-choice or extended free-choice nets, where the
conflict transitions are always enabled together at the same marking. Then, we formalised
the correspondence of behaviour in the original confused net and its confusion-free version.
Basically, our approach of maintaining the original behaviour is obtained through the maximal

scenarios that can be simulated in both nets.
The probabilistic framework conducted in this chapter has limited applicability as we

considered only acyclic nets. We intend to extend the definitions and theoretical results
to improve the applicability of the framework. The extended version of the framework
concerns the set of communicating acyclic nets as done in the subsequent chapter (Chapter 4).
Moreover, our probabilistic framework can be extended to the abstraction relation as discussed
in Chapter 5. Satisfiability checking to detect the case of confusion is discussed in Chapter 6.

The probabilistic framework developed in this chapter can provide a basis for possible
directions of future work. For example, time can be considered to handle the confusion. In
such a case, transitions involved in confusion would exhibit some delay duration to ensure
they are enabled at the same time. Also, another direction is a combination of weighted
and unweighted transitions to allow non-deterministic conflict resolution. However, this is
outside the scope of this thesis.
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Chapter 4

Communication structured acyclic nets

4.1 Introduction

In previous chapter (Chapter 3), a probabilistic framework was introduced for a single acyclic
net. Also, we investigated the confusion phenomenon, which is a situation where conflict
between transitions is resolved incorrectly and results in an inaccurate probabilistic analysis.
In Section 3.5, a new class of acyclic nets, cluster-acyclic nets, was defined to remove
confusion. Then, we proposed two approaches to convert a confused cluster-acyclic net into
another acyclic net which is behaviourally equivalent and confusion-free.

In this chapter, we investigate how to extend the probabilistic framework to Communi-
cation Structured Acyclic Nets (CSA-nets), which are sets of communicating acyclic nets.
Intuitively, in CSA-nets, acyclic nets are integrated in one structure that allows them to
interact by the means of asynchronous and synchronous communication using extra nodes
called buffer places.

The definition of conflict and confusion is also extended to CSA-nets. The proposed
solution of removing confusion from a CSA-net requires translating it into a single acyclic net
such that the underlying transitions involved in asynchronous communications are expanded
and the buffer places are replaced by regular places. The transitions forming synchronised
cycles via synchronous communication are glued together and the buffer places are deleted.
Respecting the cluster-acyclicity constraint is essential to reuse the approaches introduced in
Section 3.5. It turns out that the the cluster-acyclicity constraint can sometimes be checked
at the level of CSA-nets. This constraint is satisfied when asynchronous communication
between the component acyclic nets is unidirectional. More precisely, as an extension of the
work in [12], we formally define another approach concerned with eliminating confusion
in cascading CSA-nets. In terms of maintaining the behaviour of the original net, the
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constructed confusion-free version simulates the original behaviour if all possible scenarios
are reproduced.

This chapter is organised as follows: Formal definitions of CSA-nets and their behavioural
and structural properties are introduced in Section 4.2–Section 4.6. Probabilistic CSA-nets are
introduced in Section 4.7. In Section 4.8, we show how adding communications at the level
of alternative scenarios can cause a confusion, and then we formally provide the definition of
confusion in CSA-nets. Section 4.9 proposes an approach for removing confusion in CSA-nets,
where a confused CSA-net is translated into a single acyclic net. A new class of cascading
CSA-nets is introduced in Section 4.10. Then a new approach of removing confusion in such
class is presented in Section 4.10.1. Unfolding CSA-nets is discussed in Section 4.11 as a
step needed to remove confusion in non-backward-deterministic CSA-nets. The chapter is
concluded in Section 4.12.

4.2 Communication Structured Acyclic Nets (CSA-nets)

Communication Structured Acyclic Nets (CSA-nets) are derived from Structured Occurrence
Nets (SO-nets) which were introduced in [103, 105] and elaborated in [78]. [103] mentioned
that gaining a deep understanding of the dependability between failures, errors, and faults in
complex evolving system composed of distributed sub-systems was the motivation behind
introducing SO-nets, where fault-error-failure chain can be represented by event-cause-state.
In [106], SO-nets were used to support the analysis of evidence related to the activities of
complex systems, including cybercrime and major accidents. The goal was to indicate those
responsible for cybercrime or identify the causes of accident. [84] showed that SO-nets can
be used as a framework for visualising and analysing behaviour of complex evolving systems.
SO-nets were used in [11] as a framework for modelling cybercrime investigation. Other
works on SO-nets were related to provenance [92] and timed behaviours [23]. A recently
designed and implemented tool SONCraft [85] (based on the WORKCraft platform [132, 100]
which is a flexible common underpinning for graph based models) provides an extensive and
powerful support for dealing with models of complex evolving systems based on SO-nets,
including visualisation and verification.

Generalising SO-nets, CSA-nets are defined as sets of related acyclic nets, including
various types of relationships and supporting abstraction in such a way that it is possible to
record the past, current, and future behaviour of CESs [78]. This makes CSA-nets a suitable
candidate for the modelling of sophisticated systems, where the complexity of behaviour can
be captured by the structure of CSA-nets.
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CSA-nets add communication to represent the interaction among several separate subsys-
tems. The idea is to build component acyclic nets with different communications between
them instead of only one acyclic net that reflects the combined activity of numerous interact-
ing systems [78, 84, 11].

Each CSA-net is a set of acyclic nets with synchronous or asynchronous communication
links between their transitions implemented using extra nodes called buffer places (which
provided a motivation for a/syn connections discussed, e.g., in [74]). These buffer places can
be used to represent the causality between component acyclic nets [73]. When two transitions
are subject to synchronous communication, they are always executed together, but under
asynchronous communication they may be executed simultaneously or sequentially.

Below are formal definitions of CSA-nets and their behavioural and structural properties.

Definition 4.2.1 (CSA-net [8]). A communication structured acyclic net (or CSA-net) is a
tuple csan = (acnet1, . . . ,acnetn,Q,W ) (n≥ 1) such that:

1. acnet1, . . . ,acnetn are acyclic nets with disjoint sets of nodes. We denote:

Pcsan ≜ Pacnet1 ∪·· ·∪Pacnetn Pinit
csan ≜ Pinit

acnet1 ∪·· ·∪Pinit
acnetn

Tcsan ≜ Tacnet1 ∪·· ·∪Tacnetn Pfin
csan ≜ Pfin

acnet1 ∪·· ·∪Pfin
acnetn

Fcsan ≜ Facnet1 ∪·· ·∪Facnetn .

2. Q is a finite set of buffer places disjoint from Pcsan∪Tcsan.

3. W ⊆ (Q×Tcsan)∪ (Tcsan×Q) is a set of arcs. We denote: Qcsan ≜ Q and Wcsan ≜W .

4. For every q ∈ Q, there is t ∈ Tcsan such that tWq, and qWu then t and u belong to
different acneti’s.

The set of all CSA-nets is denoted by CSAN. ⋄

To indicate relationships between different nodes, for all x ∈ Pcsan ∪ Tcsan ∪Qcsan and
X ⊆ Pcsan∪Tcsan∪Qcsan, we denote the directly preceding and directly following nodes as
follows:

precsan (x) ≜ {z | (z,x) ∈ Fcsan∪Wcsan} preacnet (X) ≜
⋃
{precsan (z) | z ∈ X}

postcsan (x) ≜ {z | (x,z) ∈ Fcsan∪Wcsan} postcsan (X) ≜
⋃
{postcsan (z) | z ∈ X} .

That is, in a CSA-net the the preset and postset of a node are extended to include buffer
places [84] – responsible of transferring tokens among component acyclic nets – in order to
capture the relation of weak causality between transitions of different acyclic nets [64].
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acnet1

acnet2

•
p1

p2

p3

p4a b

c d

•
p5 p6 p7

e f

q1 q2 q3

Fig. 4.1 CSA-net with initial marking.

Example 32. Figure 4.1 shows a CSA-net composed of two acyclic nets. Transitions e and c

are communicating asynchronously, so they can be executed together, or e then c (but not c

before e). Therefore, we can say that there is a weak causality relationship between e and c

captured by the presence of q1 ∈ postcsan (e)∩precsan (c). On the other hand, d and f must
be executed simultaneously as they are involved in synchronous communication. The set of
buffer places {q1,q2,q3} is responsible for passing the tokens among the component acyclic
nets. Also, it is worth to notice that postacnet (e) = {p6,q1} since the firing of e will produce
tokens in those two places. ⋄

Just as acyclic nets, CSA-nets may exhibit backward and forward non-determinism. More-
over, they can contain synchronous cycles involving only buffer places.

Definition 4.2.2 (BDCSA-net [8]). A backward deterministic CSA-net (or BDCSA-net) is
bdcsan ∈ CSAN such that:

1. The component acyclic nets belong to BDAN.

2. |prebdcsan (q)|= 1, for every q ∈ Qbdcsan.

The set of all BDCSA-nets is denoted by BDCSAN. ⋄

In BDCSA-nets backward determinism is required, whereas forward determinism is not
necessary. The next class of CSA-nets can provide full and unique records of causal histories.

Definition 4.2.3 (CSO-net [8]). A communication structured occurrence net (or CSO-net) is
cson ∈ CSAN such that:

1. The component acyclic nets belong to ON.

86



4.2 Communication Structured Acyclic Nets (CSA-nets)

2. |precson (q)|= 1 and |postcson (q)| ≤ 1, for every q ∈ Qcson.

3. No place in Pcson belongs to a cycle in the graph of cson.

The set of all CSO-nets is denoted by CSON. ⋄

A CSO-net exhibits backward determinism and forward determinism providing full and
unambiguous information about a single causal history of all transitions it involves [8].

Scenarios for CSA-nets can be defined similarly as for acyclic nets.

Definition 4.2.4 (scenario and maximal scenario [8]). A scenario of a CSA-net csan =

(acnet1, . . . ,acnetn,Q,W ) is a CSO-net cson = (ocnet1, . . . ,ocnetn,Q′,W ′) such that:

1. ocneti ∈ scenarios(acneti), for every 1≤ i≤ n.

2. Q′ ⊆ Q and W ′ ⊆W .

3. precson (t) = precsan (t) and postcson (t) = postcsan (t), for every t ∈ Tcson.

Moreover, cson is maximal if there is no scenario cson′ satisfying Tcson ⊂ Tcson′ .
The set of all scenarios of csan is denoted by scenarios(csan), and the set of all maximal
scenarios of csan by maxscenarios(csan). ⋄

acnet1

acnet2

•
p1

p3

p4

c d

•
p5 p6 p7

e f

q1 q2 q3

Fig. 4.2 CSO-net with initial marking.

One can say that scenarios represent possible deterministic executions (concurrent his-
tories), and maximal scenarios are complete in the sense that they cannot be extended any
further.

Each scenario of a CSA-net csan = (acnet, . . . ,acnetk,Q,W ) is identified by the set of its
transitions. The scenario with the transition set V ⊆ Tcsan is denoted by scenariocsan(V ).
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Example 33. Figure 4.2 shows a CSO-nets which is also one of the maximal scenarios of
the CSA-net in Figure 4.1. ⋄

4.3 Step sequence semantics

Definition 4.3.1 (step and marking [8]). Let csan be a CSA-net.

1. markings(csan)≜ P(Pcsan∪Qcsan) are the markings.

2. Minit
csan ≜ Pinit

csan is the default initial marking.

3. steps(csan)≜ {U ∈ P(Tcsan)\{∅} | ∀t ̸= u ∈U : precsan (t)∩precsan (u) =∅} are the
steps. ⋄

The initial marking of a CSA-net is the union of the initial markings of all the component
acyclic nets. More precisely, Minit

csan = Minit
acnet1 ∪Minit

acnet2 · · ·∪Minit
acnetn with an assumption that

the buffer places are always excluded from the initial marking Minit
csan. However, in contrast to

acyclic nets, in general the marking in CSA-net can be a set of places and buffer places. The
transitions belonging to a step of a CSA-net come from one or more component acyclic nets.

Example 34. For the CSA-net in Figure 4.1, the initial marking is Mcsan
0 = {p1, p5}. The

steps are steps(csan) = {U ∈ P({a,b,c,d,e, f})\{∅} | a ∈U =⇒ c /∈U}. ⋄

Definition 4.3.2 (enabled and executed step [8]). Let M be a marking of csan.

1. enabledcsan(M) ≜ {U ∈ steps(csan) | precsan (U) ⊆ M ∪ (postcsan (U)∩Q)} are the
steps enabled at M.

2. A step U enabled at M can be executed yielding a new marking M′≜ (M∪postcsan (U))\
precsan (U). This is denoted by M[U⟩csan M′. ⋄

In CSA-net, an enabled step U requires not only all the input places of the set of acyclic
nets to be included in the marking, but also the the buffer places connected to the incoming
arcs of U must be in the marking. However, if a buffer place is not included in the marking,
then it must belong to the postset of a transition in U [8]. In other words, the step semantic
defined above means that a step U can not only use the tokens available locally at each
acyclic net, but also the tokens from other component acyclic nets which are passed by the
buffer places. Hence, an enabled step U in CSA-net can include sets of transitions fired
simultaneously due to the presence of communication between interacting acyclic nets. This
execution semantics is more expressive than that in acyclic nets [84].
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Definition 4.3.3 (mixed step sequence and step sequence [8]). Let M0, . . . ,Mk (k ≥ 0) be
markings and U1, . . . ,Uk be steps of a CSA-net csan such that Mi−1[Ui⟩csan Mi, for every
1≤ i≤ k.

1. µ = M0U1M1 . . .Mk−1UkMk is a mixed step sequence from M0 to Mk.

2. σ =U1 . . .Uk is a step sequence from M0 to Mk.

This is denoted by M0[µ⟩⟩csan Mk and M0[σ⟩csan Mk, respectively. Moreover, M0[⟩csan Mk

denotes that Mk is reachable from M0. ⋄

If k = 0 then µ = M0 and the corresponding step sequence σ is the empty sequence
denoted by λ .

Definition 4.3.4 (behavioural notions [8]). The following sets capture various behavioural
notions related to step sequences and reachable markings of a CSA-net csan, assuming that
the the initial marking is the starting point of system execution.

1. sseq(csan)≜ {σ |Minit
acnet[σ⟩csan M} are the step sequences.

2. mixsseq(csan)≜ {µ |Minit
acnet[µ⟩⟩csan M} are the mixed step sequences.

3. maxsseq(csan) ≜ {σ ∈ sseq(csan) | ¬∃U : σU ∈ sseq(csan)} are the maximal step

sequences.

4. maxmixsseq(csan)≜ {µ ∈mixsseq(csan) | ¬∃U,M : µUM ∈mixsseq(csan)} are the
maximal mixed step sequences.

5. reachable(csan)≜ {M |Minit
csan[⟩csan M} are the reachable markings.

6. finreachable(csan)≜ {M | ∃σ ∈maxsseq(csan) : Minit
csan[σ⟩csan M} are the final reach-

able markings.

Example 35. For the CSA-net in Figure 4.1, all possible maximal step squences in
maxsseq(csan) are:

σ1 = {a,e}{b} σ2 = {a}{e}{b} σ3 = {a}{b}{e}
σ4 = {a}{e,b} σ5 = {e}{a}{b} σ6 = {c,e}{d, f}
σ7 = {e}{c}{d, f}
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and all possible maximal mixed step sequences in maxmixsseq(csan) are:

µ1 = {p1, p5}{a,e}{p2, p6,q1}{b}{p4, p6,q1}
µ2 = {p1, p5}{a}{p2, p5}{e}{p2, p6,q1}{b}{p4, p6,q1}
µ3 = {p1, p5}{a}{p2, p5}{b}{p4, p5}{e}{p4, p6,q1}
µ4 = {p1, p5}{a}{p2, p5}{e,b}{p4, p6,q1}
µ5 = {p1, p5}{e}{p1, p6,q1}{a}{p2, p6,q1}{b}{p4, p6,q1}
µ6 = {p1, p5}{c,e}{p3, p6}{d, f}{p4, p7}
µ7 = {p1, p5}{e}{p1, p6,q1}{c}{p3, p6}{d, f}{p4, p7}.

Moreover, all the reachable markings are:

reachable(csan) = {{p1, p5},{p2, p6,q1},{p4, p6,q1},{p3, p6},{p4, p7}, . . .}

and the final reachable markings are finreachable(csan) = {{p4, p6,q1},{p4, p7}}. ⋄

As discussed in [73], the standard Petri nets can usually be seen as asynchronous concur-
rency model with a firing sequence semantics or a step semantics based on sets of transitions
that may occur simultaneously when enough resources are available. Hence, whenever a
step occurs each of its transitions (or subsets) could also be fired. There is no (structural)
possibility to express that an enabled transition has to (wait in order to) synchronise with
another one. On the other hand, it is not difficult to make an otherwise enabled transition
wait for the occurrence of a second one by using a message (in the form of a token left by the
second one in a special input place of the first transition). These considerations motivated the
introduction of buffer places used by the CSA-nets. Suppose that transition t has an output
buffer place q and transition v has q as an input buffer place. Then if t occurs it adds a
‘message’ (a token) to the buffer place q; this message may either remain there to serve later
as input to v (the usual asynchronous communication of Petri nets), or be directly picked up
by v in the same step. The communication connection provided by the buffer place q (an
a/synchronous communication channel) can be compared to a telephone connection with an
answering machine: either the caller waits for the callee to answer the phone (and then they
communicate synchronously), or the caller leaves a message on the answering machine to be
listened to later by the callee.

Concepts similar to the buffer places used in CSA-nets can be found in the existing
literature. [33] observed that such a mechanism is not a concept in the standard Petri net
models, and to model synchronous communication one needs additional places and transitions
which may result in complicated structures. Hence, [33] proposed to extend the Coloured
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Petri Net model to support communication through channels inspired by the synchronisation
operators of CCS [91] and CSP [62] (as well as communication constructs expressed in high
level programming languages). Such an extension is seen as a powerful description primitive
(see also [81]), and a way to structure Petri net models.

As another example, [27] introduced Petri nets with so-called zero places, allowing one to
consider firing sequences leading from one ‘stable’ marking (a marking in which all zero
places are empty) to the next stable marking without affecting ordinary places on the way.
For example, [76] used such a feature to model protocols in which one partner can be ahead
of another one in the middle of communication.

At the level of abstract system modelling, REO [17] used channels operating like buffer
places to model coordination of (software) components. [114] discussed how systems that
communicate through REO channels can be modeled as Petri nets. Again, this leads to
relatively complex net structures.

As a simple example of a modelling advantage of using buffer place, let us consider
two acyclic nets, acnet and acnet′, such that acnet wants to communicate synchronously
with acnet′ using exactly one of n transitions t1, . . . , tn, and acnet′ wants to communicate
synchronously with acnet using exactly one of n transitions v1, . . . ,vn. Assume also, for the
sake of argument, that each of these transitions has m adjacent arcs. One could model this
quite easily by ‘gluing’ together each ti with each v j, creating n2 new transitions and 2mn2

new arcs. On the other hand, it is possible to achieve the same effect by constructing just 2
new buffer places, q and q′, and 4n new arcs (i.e., (t1,q), . . . ,(tn,q),(v1,q′), . . . ,(vn,q′) and
(q′, t1), . . . ,(q′, tn),(q,v1), . . . ,(q,vn)). One could take this example further and consider k

acyclic nets and a synchronisation requirement such that exactly one of n transitions in these
k acyclic nets has to be used. Then the explicit construction of all possible synchronised
transition would create nk new transitions and 2mnk new arcs, whereas the same could be
achieved using only k buffer places and 2kn new arcs.

4.4 Well-formed CSA-nets

A basic property of CSA-nets is well-formedness. The motivation of this property is to obtain
unambiguous records of causal histories [8] and to interpret the causality and concurrency
explicitly so one can ensure that each transition is executed only once in each step sequence.

Definition 4.4.1 (well-formedness [8]). A CSA-net csan is well-formed if each transition
occurs in at least one step sequence and the following hold, for every step sequence U1 . . .Uk ∈
sseq(csan):
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1. postcsan (t)∩postcsan (u) =∅, for every 1≤ i≤ k and all t ̸= u ∈Ui.

2. postcsan (Ui)∩postcsan (U j) =∅, for all 1≤ i < j ≤ k. ⋄

Intuitively, a well-formed CSA-net does not have ‘useless’ transitions and no place or
buffer place is filled by a token more than once in any given step sequence. In other words, no
token is used more than once and no transition is executed more than once in step sequences
of a well-formed CSA-net. As a result, one can guarantee that the resulting marking is not
effected by the order of the execution of transitions [8].

acnet3

acnet1 acnet2
p1

e
p2 p3

h
p4

p5

d
p6

q1

Fig. 4.3 CSA-net which is not a well-formed.

Example 36. Figure 4.3 shows a non-well-formed CSA-net. The asynchronous com-
munication between e and d and between h and d through the same buffer place q1 ∈
postcsan (e)∩postcsan (h) produces unclear causality relation. More precisely, it is not obvi-
ous ‘who’ causes d. Even though this CSA-net is safe so each regular and buffer place can
hold only one token, transition d is fireable once a token generated by either e or h arrives
at q1. The ‘OR-causality’ captured by the incoming arcs to q1 violates Definition 4.2.3 and
Definition 4.2.4 where the regular and buffer places must have at most one input and output
arcs. Hence, the step sequence σ = {e,h}{d} leads to an invalid scenario. Well-formed
definition is introduced to exclude such cases. ⋄

By satisfying the backward and forward determinism, SO-nets enjoy some essential
behavioural properties ‘for free’.

Proposition 4.4.1 ([8]). Each CSO-net is well-formed.

Proposition 4.4.2 ([8]). A CSA-net is well-formed iff each transition occurs in at least one
scenario, and each step sequence is a step sequence of at least one scenario.
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Proposition 4.4.3 ([8]). Step sequences of a well-formed CSA-net do not contain multiple
occurrences of transitions.

Each step sequence σ of a well-formed CSA-net csan induces a scenario scenariocsan(σ)≜

scenariocsan(
⋃

σ) such that σ ∈maxsseq(scenariocsan(σ)). Thus, in a well-formed CSA-net,
different step sequences may generate the same scenario, and conversely, each scenario is
generated by at least one step sequence. Moreover, two maximal step sequences generate the
same scenario iff their executed transitions are identical.

4.5 Syn-cycles

In the case of CSO-nets each executed step can be unambiguously represented as a disjoint
union of sub-steps which cannot be further decomposed.

Definition 4.5.1 (syn-cycle [8]). A syn-cycle of a CSO-net cson is a maximal non-empty set
of transitions S⊆ Tcsan such that, for all t ̸= u ∈ S, (t,u) ∈W+

cson. The set of all syn-cycles is
denoted by syncycles(cson). ⋄

The idea behind the notion of syn-cycles is to represent maximum number of synchronous
communications [84].

Example 37. In Figure 4.1, there is one non-singleton syn-cycle S1 = {d, f}. Moreover,
S2 = {a}, S3 = {b}, S4 = {c}, and S5 = {e} are singleton syn-cycles. ⋄

The set of all syn-cycles is a partition of the transition set of a CSO-net (in a unique way).

Proposition 4.5.1 ([8]). syncycles(cson) forms a partition of Tcson, for every CSO-net cson.

As stated next, each step occurring in step sequences of a CSO-net can be partitioned into
syn-cycles which can then be fired sequentially.

Proposition 4.5.2 ([8]). Let M be a reachable marking of a CSO-net cson and M[U⟩cson M′.
Then there are U1, . . . ,Uk ∈ syncycles(cson) such that U =U1⊎·· ·⊎Uk and M[U1 . . .Uk⟩cson M′.

The above result means that syn-cycles is responsible for generating all reachable markings
of a CSON cson rather than all the potential steps. Moreover, the same holds for every
well-formed CSA-net csan and the syn-cycles of its scenarios given by syncycles(csan)≜⋃
{syncycles(cson) | cson ∈ scenarios(csan)} [8].

Proposition 4.5.3 ([8]). Let M be a reachable marking of a well-formed CSO-net csan and
M[U⟩csan M′. Then there are S1, . . . ,Sk ∈ syncycles(csan) such that U = S1 ⊎ ·· · ⊎ Sk and
M[S1 . . .Sk⟩cson M′.
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The introduction of probabilistic analysis to the model of CSA-nets leads to a slight
re-formulation of the execution semantics CSA-nets (motivated by general modelling consid-
erations). More precisely, suppose that M is a reachable marking of a well-formed CSA-net
csan and M[U⟩csan M′. By Proposition 4.5.3, we know there are S1, . . . ,Sk ∈ syncycles(csan)

such that U = S1⊎·· ·⊎Sk. In such a case, it may happen some of the syn-cycles Si are not
enabled at M and so their inclusion in the probabilistic analysis is not justified.

We will therefore require until the end of the thesis that the following holds for the

enabledness condition of a well-formed CSA-net.

U ∈ enabledcsan(M) =⇒ ∃S1, . . . ,Sk ∈ syncycles(csan) :
U = S1⊎·· ·⊎Sk ∧S1, . . . ,Sk ∈ enabledcsan(M).

(4.1)

No other changes are made to the notations and definitions.
The above additional condition is harmless from the executability point of view since

M[U⟩csan M′ in the original formulation implies that for the syn-cycles S1, . . . ,Sk as in
Eq.(4.1), we have M[S1, . . . ,Sk⟩csan M′ in the modified formulation (moreover, the syn-cycles
S1, . . . ,Sk can be executed in any order).

4.6 Conflict, causality, and concurrency

This section extends the structural properties of acyclic nets presented in Section 3.2.2 to the
level of CSA-nets, but they are now based on syn-cycles rather than transitions.

Definition 4.6.1 (structural notions). Let csan be a well-formed CSA-net.

1. Two syn-cycles S ̸= S′ ∈ syncycles(csan) are in direct forward conflict, denoted S#0S′,
if precsan (S)∩precsan (S

′) ̸=∅.

2. Two syn-cycles S ̸= S′ ∈ syncycles(csan) are in direct backward conflict if postcsan (S)∩
postcsan (S

′) ̸=∅.

3. Two nodes x,y ∈ Pcsan∪Qcsan∪Tcsan are in conflict, denoted x#y, if there are S ̸= S′ ∈
syncycles(csan) such that S#0S′ and (S×{x})∩ (Fcsan∪Wcsan)

∗ ̸=∅ and (S′×{y})∩
(Fcsan∪Wcsan)

∗ ̸=∅.

4. The conflict set of S ∈ syncycles(csan) enabled at a marking M of csan is

conflsetcsan(M,S)≜ {S}∪{S′ ∈ enabledcsan(M) | S#0S′}.
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⋄

Example 38. For the CSA-net in Figure 4.1, the syn-cycles S1 = {d, f} and S2 = {a} are in
conflict, S1#S2 , at marking M = {p1, p6,q1} . ⋄

4.7 Calculating probabilities in CSA-nets

In this section, we extend the calculation of probabilities in acyclic nets presented in Sec-
tion 3.3 to well-formed CSA-nets. In this case, CSA-nets are extended by adding the ‘weight’
argument ω assigning positive numerical weights to transitions. Then each syn-cycle S is
assigned its weight ω(S) = ∑t∈S ω(t).

After that, we define the probability of a syn-cycle S enabled at a reachable marking M as
the weight of S divided the combined weights of all the syn-cycles that are in conflict with S

and are enabled at M, and then calculate the probability of a step U composed of syn-cycles
S1, . . . ,Sk as follows:

Pcsan(M,S) ≜ ω(S)
∑S′∈conflsetcsan(M,S) ω(S′)

Pcsan(M,S1⊎·· ·⊎Sk) ≜ ∏
k
i=1 Pcsan(M,Si) .

We then define the probability of a step sequence σ =U1 . . .Uk as

Pcsan(σ)≜ Pcsan(M0,U1) · . . . ·Pcsan(Mk−1,Uk) ,

where M0, . . . ,Mk−1 are such that M0
U1−→ . . .Mk−1

Uk−→Mk.

Example 39. Figure 4.4 shows a CSA-net with weights (shown inside transitions in conflict).
There are two maximal scenarios:

cson1 = scenariocsan({e, f ,A,D}) and cson2 = scenariocsan({e, f ,B,C}) .

There are also four syn-cycles: S1 = {e}, S2 = { f}, S3 = {A,D}, and S4 = {B,C}. The
probabilities of two of the maximal step sequences are as follows:

Pcsan({e}{ f}{A,D}) = ω(S1)
ω(S1)

· ω(S2)
ω(S2)

· ω(S3)
ω(S3)+ω(S4)

= ω(S1)
ω(S1)

· ω(S2)
ω(S2)

· ω(A)+ω(D)
ω(A)+ω(D)+ω(B)+ω(C)

= 1 ·1 · 9
14 = 9

14 = 0.6

Pcsan({e}{ f}{B,C}) = ω(S1)
ω(S1)

· ω(S2)
ω(S2)

· ω(S4)
ω(S3)+ω(S4)

= ω(S1)
ω(S1)

· ω(S2)
ω(S2)

· ω(B)+ω(C)
ω(A)+ω(D)+ω(B)+ω(C)

= 1 ·1 · 5
14 = 5

14 = 0.4
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As mentioned earlier, different step sequences may generate the same scenario. For example,
the three step sequences: σ1 = {e, f}{A,D}, σ2 = {e}{ f}{A,D}, and σ3 = { f}{e}{A,D}
generate scenario cson1 with the same probability 9

14 , and so Pcsan(cson1) =
9
14 .

Also, cson2 has three different executions with the same probability. As a result, one can
assign probabilities to the two maximal scenarios. It is worth to notice that the sum of the
probabilities of the scenarios in this case is as follows: Pcsan(cson1)+Pcsan(cson2) = 1. ⋄

For the above example, the calculation of probabilities was fully successful. However,
this is not always the case as CSA-nets can exhibit confusion described next.

acnet1

acnet2

p1
e

p2
5
A

B
3

p3

p4

q1

p5
f

p6 C
2

q2

D
4

p7

p8

q3 q4

Fig. 4.4 CSA-net with weights.

4.8 Confusion in probabilistic CSA-nets

In this section, the definition of confusion in acyclic nets presented in Section 3.4 is extended
to CSA-nets. An acyclic net has a confusion at a reachable marking M whenever a transition
is fired and its firing expands or reduces the conflict set of another concurrent transition.
Extending this situation to a CSA-net csan requires to consider the buffer places as a step
in csan is enabled if all its input places belonging to the component acyclic nets and all
its ‘external’ input buffer places are included in the marking. Hence, assuming that each
acyclic net of csan is confusion-free, csan can exhibit confusion when communications are
added at the level of alternative scenarios. In this case, there is a possibility that a syn-cycle
S ∈ syncycles(csan) enabled at reachable marking M is fired and its firing influences the
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conflict set of another concurrent syn-cycle S′ enabled at M. Such a situation is illustrated in
the examples below.

acnet1

acnet2

p1
7
A

B
3

p2

p3

p4 C
2

D
3

p5

p6

q1 q2

Fig. 4.5 CSA-net with a symmetric confusion.

Example 40. Consider the CSA-net csan in Figure 4.5 where the communications captured
by the buffer places q1 and q2 are added at the level of alternative scenarios. The two possible
maximal scenarios are cson1 = scenariocsan({A,D}) and cson2 = scenariocsan({B,C}). Note
that in cson1 each transition belongs to a separate syn-cycle: S1 = {A} and S2 = {D}.
Also it has three maximal step sequences: σ1 = S1S2, σ2 = S2S1, and σ3 = S1 ∪ S2. The
second scenario has a single maximal step sequence σ4 = {B,C} due to the synchronous

communication that forms the syn-cycle S3 = {B,C}.
If σ1 is executed, the conflict set of S2 is reduced. More precisely, conflsetcsan({p1, p4},S2)=

{S3} ̸= conflsetcsan({p2, p4},S2) =∅. Then in σ1, the probability of S2 is 1 (D is a certain
transition), and so:

Pcsan(σ1) =
ω(S1)

ω(S1)+ω(S3)
· ω(S2)

ω(S2)
=

7
12
·1 =

7
12

.

However, if σ2 is executed, then the resulting probability is

Pcsan(σ2) =
ω(S2)

ω(S2)+ω(S3)
· ω(S1)

ω(S1)
=

3
8
·1 =

3
8
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that is because in σ2, executing S2 first modifies the conflict set of S1. That is, conflsetcsan({p1, p4},S1)=

{S3} ̸= conflsetcsan({p1, p6},S1) =∅.
As a result, P(σ1) ̸= P(σ2). Hence one cannot assign probability to cson1.

The behaviour of this CSA-net is similar to the symmetric confusion in Figure 3.6 on Page
35. Here, S1 and S2 are independent, and firing any of them has influence on the conflict set
of the other one, i.e., firing S1 decreases the conflict set of S2, which is where the confusion
arises. ⋄

Below, we provide the formal definition of confusion in CSA-nets.

Definition 4.8.1 (confusion in CSA-nets). A well-formed CSA-net csan has a confusion at a
reachable marking M if there are distinct syn-cycles S1,S2,S3 ∈ syncycles(csan) such that
S1,S2,S1 ⊎ S2 ∈ enabledcsan(M), precsan (S1)∩ precsan (S2) = ∅, and one of the following
holds:

• S1#0S3#0S2 and S3 ∈ enabledcsan(M).

• S2#0S3 and S3 ∈ enabledcsan(M′)\ enabledcsan(M), where M[S1⟩csan M′.

We then denote

• symconfusedcsan(M,S1,S2,S3) in the first symmetric case and

• asymconfusedcsan(M,S1,S2,S3) in the second asymmetric case.

We also say that CSA-net csan is confusion-free if there is no confusion in all its reachable
markings. ⋄

Example 41. The CSA-net csan in Figure 4.6 exhibits asymmetric confusion represented
by asymconfusedcsan({p1, p4},S2,S4,S3) where the syn-cycles are: S1 = {a}, S2 = {b},
S3 = {c}, and S4 = {d}. All possible maximal scenarios are: cson1 = scenariocsan({a,d}),
cson2 = scenariocsan({b,c}), and cson3 = scenariocsan({b,d}). The last scenario can be
generated by step sequences σ1 = S2S4 and σ2 = S4S2, which have different probabili-
ties. That is because in σ1, executing S2 first enables S3, which is in conflict with S4.
That implies that the conflict set of S4 is increased. conflsetcsan({p1, p4},S4) = ∅ ̸=
conflsetcsan({p3, p4,q1},S4) = {S3}. The resulting probability is:

Pcsan(σ1) =
ω(S2)

ω(S1)+ω(S2)
· ω(S4)

ω(S3)+ω(S4)
=

4
10
· 8

10
=

32
100

.
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acnet1

acnet2
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Fig. 4.6 CSA-net with an asymmetric confusion.

However for σ2, S4 is executed first with probability 1 as there are no enabled syn-cycles to
compete with it for the tokens in the initial marking (conflsetcsan({p1, p4},S4) =∅). Hence,
we have:

Pcsan(σ2) =
ω(S4)

ω(S4)
· ω(S2)

ω(S1)+ω(S2)
= 1 · 4

10
=

4
10

.

Obviously, Pcsan(σ1) ̸= Pcsan(σ2) which implies that the probability of scenariocsan({b,d})
depends on the order of transition executions.
⋄

One can infer from the above discussion that the presence of communication in CSA-net
can cause confusion which modifies the conflict sets of enabled syn-cycles.

The result below shows that due to the presence of confusion, conflict sets of an enabled
syn-cycle can change after executing a concurrent syn-cycle.

Proposition 4.8.1. Let csan be a well-formed CSA-net and M be its reachable marking. If
symconfusedcsan(M,S1,S2,S3) or asymconfusedcsan(M,S1,S2,S3), then conflsetcsan(M,S1) ̸=
conflsetcsan(M′,S1) and S1 ∈ enabledcsan(M′), where M[S2⟩csan M′.

Proof. We will consider the two cases in Definition 4.8.1.

• Let us assume that symconfusedcsan(M,S1,S2,S3) holds.
Then, by the first case of Definition 4.8.1, we have that precsan (S1)∩precsan (S2) =∅,
S1#0S3#0S2, and S1⊎S2 ∈ enabledcsan(M).
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Since S1#0S3 and S2#0S3, then S3 ∈ conflsetcsan(M,S1)∩ conflsetcsan(M,S2). Execut-
ing S2 disables S3. So, S1 ∈ enabledcsan(M′) whereas S3 /∈ enabledcsan(M′). Hence,

S3 ∈ conflsetcsan(M,S1)\ conflsetcsan(M′,S1)

where S1 ∈ enabledcsan(M)∩ enabledcsan(M′).

• Let us assume that asymconfusedcsan(M,S1,S2,S3) holds.
Then, by the second case of Definition 4.8.1, we have that precsan (S1)∩precsan (S2) =

∅, S1#0S3, and S1⊎S2 ∈ enabledcsan(M), whereas S3 ∈ enabledcsan(M′)\enabledcsan(M),
where M[S2⟩csan M′. Since S1#0S3 and S3 ∈ enabledcsan(M′), then

S3 ∈ conflsetcsan(M′,S1)\ conflsetcsan(M,S1)

where S1 ∈ enabledcsan(M)∩ enabledcsan(M′).

In the result below, we show that if a CSA-net has no confusion, then the conflict sets of
an enabled syn-cycle are constant for all the executions of a given scenario.

Proposition 4.8.2. Let csan be a confusion-free well-formed CSA-net.

1. If M and M′ are two reachable markings of csan such that M[⟩csan M′, then

conflsetcsan(M,S) = conflsetcsan(M′,S) ,

for every syn-cycle S ∈ enabledcsan(M)∩ enabledcsan(M′).

2. If M and M′ are two reachable markings of cson ∈ scenarios(csan), then

conflsetcsan(M,S) = conflsetcsan(M′,S) ,

for every syn-cycle S ∈ enabledcson(M)∩ enabledcson(M′).

Proof. (1) We first prove this for M′ obtained by executing only one syn-cycle and that if
conflsetcsan(M,S) ̸= conflsetacnet(M′,S), then csan is not confusion-free acyclic net produc-
ing a contradiction. There are two cases:

• Let us assume that there is a syn-cycle S′ such that

S′ ∈ conflsetcsan(M,S)\ conflsetcsan(M′,S)
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where M′ is obtained by executing only one syn-cycle S′′, so M[S′′⟩csan M′. As S⊎S′′ ∈
enabledcsan(M), S#0S′#0S′′, and S′ ∈ enabledcsan(M)\enabledcsan(M′) then, according
to the first part of Definition 4.8.1, symconfusedacnet(M,S,S′,S′′) holds.

• Let us assume that there is a syn-cycle S′ such that

S′ ∈ conflsetcsan(M′,S)\ conflsetcsan(M,S)

where M′ is obtained by executing only one syn-cycle S′′, so M[S′′⟩csan M′. As S⊎S′′ ∈
enabledcsan(M), S#0S′, and S′ ∈ enabledcsan(M′)\ enabledcsan(M) then, according to
the second part of Definition 4.8.1, asymconfusedcsan(M,S,S′,S′′) holds.

The above proof of two cases considers the situation where generating M′ requires exe-
cuting only one syn-cycle. However, this is not always the case. Thus, we might have
Minit

csan[U1 . . .Um⟩csan M[S1 . . .Sk⟩csan M′, for some syncycles S1 . . .Sk, which means that

M = M0[S1⟩csan M1 . . .Mk−1[Sk⟩csan Mk = M′

where S is enabled at every marking Mi (knowing that csan is well-formed and using the
result of Proposition 4.5.3 implies that S ∈ enabledcsan(Mi) for i = 0, . . . ,k). Hence, by what
we already demonstrated in this proof, we have:

conflsetcsan(M0,S) = conflsetcsan(M1,S) = · · ·= conflsetcsan(Mk,S).

(2) Since it is not guaranteed that M and M′ are reachable from each other, then using
twice the result of Proposition 8(4) in [8], we conclude that there is a reachable marking M′′

such that M′′[⟩cson M and M′′[⟩cson M′ and S ∈ enabledcsan(M′′). As both markings M and M′

are reachable from M′′, then the first part can be applied. So, it follows that

conflsetcsan(M,S) = conflsetcsan(M′′,S) = conflsetcsan(M′,S).

Hence, conflsetcsan(M,S) = conflsetcsan(M′,S).
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4.9 Removing confusion from CSA-nets

4.9.1 From CSA-net to acyclic net

In this section, we assume that a well-formed CSA-net has a confusion due to the presence
of communication between the syn-cycles involved in the alternative scenarios (i.e., each
component acyclic net is confusion-free). Our approach of removing confusion from the
CSA-net is to encode it into a behaviourally closely equivalent single acyclic net. This
means the whole CSA-net, which is a group of acyclic nets, becomes one large acyclic net
such that the original buffer places are regular places. The encoding is based on expanding
the underlying transitions involved in asynchronous communications. Buffer places of
asynchronous communications are considered as regular places.

Transitions communicating synchronously are combined into one synchronised transition,
and the buffer places involved are removed. The original transitions are also removed. Instead,
for each syn-cycle S, a transition τS is created (graphically, we may put the transitions of S

inside the box representing τS). Its preset and postset are those of S except those involved
in synchronous communication. If the result is a well-formed cluster-acyclic net, then the
approaches proposed in Chapter 3 can be applied.

The encoding is done following these steps:

• All the places of csan together with their markings are retained.

• Each buffer place becomes a regular place.

• For each syn-cycle S ∈ syncycles(csan), a transition τS is created. Its presets are the
pre-places of S except the buffer places in precsan (S)∩postcsan (S). Its post-sets are
the post-places of S except the buffer places in precsan (S)∩postcsan (S).

• The original buffer places with empty pre-sets are removed.

The following definition formally captures the details of the encoding.

Definition 4.9.1. The encoding of a well-formed CSA-net csan is an acyclic net acyclicnet(csan)≜

(P,T,F) constructed in the following steps:

• P ≜ Pcsan∪Qcsan.

• T ≜ {τS | S ∈ syncycles(csan)}.
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• F is such that, for every S ∈ syncycles(csan):

preacnet (τS) ≜ precsan (S) \{q ∈ Qcsan | q ∈ precsan (S)∩postcsan (S)}
postacnet (τS) ≜ postcsan (S)\{q ∈ Qcsan | q ∈ precsan (S)∩postcsan (S)} .

• Finally, the original buffer places with empty pre-sets are removed from P. ⋄
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Fig. 4.7 CSA-net csan with asymmetric confusion (a) and its encoding to an acyclic net
acyclicnet(csan) (b).

Example 42. The CSA-net in Figure 4.7(a) is the same csan in Figure 4.6 and Example 41,
which exhibits asymmetric confusion, i.e., we have asymconfusedcsan({p1, p4},S2,S4,S3).
Recall the four syn-cycles from Example 41:

S1 = {a}, S2 = {b}, S3 = {c}, S4 = {d}.

To remove confusion from CSA-net, it is translated into a single acyclic net acnet =

acyclicnet(csan), which is depicted in Figure 4.7(b). All the syn-cycles in Figure 4.7(a) are
removed and instead a transition τS is created for each syn-cycle S. Hence, S1 = τa, S2 = τb,

103



Communication structured acyclic nets

S3 = τc, and S4 = τd . Moreover,

preacnet (τa) = precsan (S1) = {p1}
preacnet (τb) = precsan (S2) = {p1}
preacnet (τc) = precsan (S3) = {p4,q1}
preacnet (τd) = precsan (S4) = {p4}.

Note that despite the fact that there is an asynchronous communication between S2 and S3

and they might be executed simultaneously, they are encoded as singleton transitions (not
combined) and the buffer place q1 becomes a regular place. The significant fact is that the
behaviour of the constructed acyclic net is closely linked to the original csan. First, τa,τb,τd

are enabled and the transitions of scenarioacnet({τa,τd}) and scenarioacnet({τb,τd}) can be
executed in any order. The global causality between S2 and S3 captured by the buffer place
q1 is simulated by their corresponding transitions τb and τc in Figure 4.7(b) where q1 is a
regular place. ⋄

The step sequences executed by acyclicnet(csan) and the step sequences executed by csan

are related to each other by using the following notation. For every set of transitions U of
acyclicnet(csan), TU is the set of transitions of csan given by:

TU ≜
⋃
{S | τS ∈U}.

Below we show a structural property of the net acyclicnet(csan) obtained according to
Definition 4.9.1.

Proposition 4.9.1. Let csan and acyclicnet(csan) be as in Definition 4.9.1. If U is a step of
the acyclic net acyclicnet(csan), then TU is a step of csan such that •U ⊆ precsan (TU) and
U• = postcsan (TU).

Proof. It follows directly from Definition 4.9.1.

Hence, the result below shows that the executions of acyclicnet(csan) have direct repre-
sentationss in the executions of csan.

Proposition 4.9.2. Let csan and acyclicnet(csan) be as in Definition 4.9.1. Moreover, let

(Minit
acyclicnet(csan)) = M0U1M1 . . .Mk−1UkMk

be a mixed step sequence of acyclicnet(csan). Then there is a marking M of csan such that
Minit

csan[TU1 . . .TUk⟩csan M and Mk ⊆M.
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Proof. By induction on the length of the mixed step sequence, as follows:

• Base case (k = 0): The result holds as acyclicnet(csan) generates the empty step
sequence and Minit

acyclicnet(csan) ⊆Minit
csan.

• Inductive case (k+1): Let

Minit
acyclicnet(csan)[U1 . . .Uk⟩acyclicnet(csan)Mk[Uk+1⟩acyclicnet(csan)Mk+1.

By the inductive hypothesis, there is a making M of csan such that

Minit
csan[TU1 . . .TUk⟩csan M

and Mk ⊆M. Moreover, by Proposition 4.9.1, TUk+1 is a step of csan such that •Uk+1 ⊆
precsan (TUk+1). Hence TUk+1 is enabled at M, and so there is a marking M′ of csan such
that

Minit
csan[TU1 . . .TUk⟩csan M[TUk+1⟩acnet M′.

In addition, by Proposition 4.9.1, postcsan (TUk+1) =U•k+1. As we also have Mk ⊆M

and •Uk+1 ⊆ precsan (TUk+1), it follows that Mk+1 ⊆M′.

Proposition 4.9.2 implies that all the executions of acyclicnet(csan) can be simulated by
the executions of csan.

Theorem 4.9.1. Let csan and acyclicnet(csan) be as Definition 4.9.1. Then:

{TU1 . . .TUk |U1 . . .Uk ∈ sseq(acyclicnet(csan))} ⊆ sseq(csan).

Together with the following result it demonstrates that the behaviour of the constructed
acyclic net acyclicnet(csan) is closely related to the behaviour of original csan.

Theorem 4.9.2. Let csan and acnet = acyclicnet(csan) be as in Definition 4.9.1. Then
for every maximal scenario cson ∈maxscenarios(csan), there is a maximal step sequence
U1 . . .Uk of acnet such that TU1 . . .TUk is a maximal step sequence of cson.

Proof. We know from results proven in [8] that there exists a maximal step sequence S1 . . .Sk

of cson such that each Si is a syn-cycle of cson, and so also a syn-cycle of csan. Let
Ui = {τSi}, for every 1 ≤ i ≤ k. We show by induction on m ≤ k that U1 . . .Um is a step
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sequence of acnet leading to the same marking Mm as S1 . . .Sm, for each m≤ k. Note that, as
required, TUi = Si for every 1≤ i≤ k.

• Base case: The result holds for m = 0 as there is an empty step sequence of acnet.

• Inductive Case: We assume that m > 1 and the result holds for m−1. By the induction
hypothesis, U1 . . .Um−1 is a step sequence of acnet leading to the same marking Mm−1

as S1 . . .Sm−1. It then follows from Definition 4.9.1 that Um is enabled at Mm−1 and its
firing leads to the same marking Mm as the firing of S1 . . .Sm.

We further observe that, by Theorem 4.9.1, U1 . . .Uk is a maximal step sequence of acnet.
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tτd

t ′τd p6
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Fig. 4.8 A cluster-acyclic net for acyclicnet(csan) in Figure 4.7 (a) and its encoding according
to Approach A (b).

Next, if acyclicnet(csan) is a well-formed acyclic net whose clusters are acyclic, then we
apply the construction according to Approach A in Section 3.6.1.

Example 43. Let csan be CSA-net. The first stage of the approach of removing confusion in
csan (i.e., translating into an acyclic net) is presented in Example 42. In this example we
introduce the second and the third stage of the approach as it is portrayed in Figure 4.8. In
Figure 4.8(a), acyclicnet(csan) is partitioned into its maximal clusters: κ1 = {τa,τb}, and
κ2 = {τc,τd}. It is worth to notice that the clusters acyclicity in Definition 3.5 is satisfied,
i.e., κ1 ⊏ κ2 since ⊏ is a strict partial order on the maximal clusters. The associated maximal
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transactions for each maximal cluster are:

trans(κ1,{p1}) = {{τa},{τb}}
trans(κ2,{p4,q1}) = {{τc},{τd}}
trans(κ2,{p4}) = {{τd}}.

The net in Figure 4.8(b) represents the third stage, which is confreeA(acyclicnet(csan)), the
encoding using Approach A proposed in Section 3.6.1. The construction is similar to the net
in Figure 3.9 in Example 14. ⋄

Similarly, removing the symmetric confusion with the synchronous communication dis-
cussed in Example 40 in Figure 4.5 is illustrated in the following example.

Example 44. The encoding acyclicnet(csan) of CSA-net csan in Figure 4.5 where the syn-
cycles are as follow: S1 = {A},S2 = {D}, and S3 = {B,C} is represented in Figure 4.9(a). All
the syn-cycles are deleted, and a new transition is created for each transition included in the
syn-cycles S. Hence, τA, τD, and τBC are generated. Note that the transitions of S3 = {B,C}
involve in a synchronous communication are combined together in a synchronised transition
τBC, hence the buffer places are removed. There is only one cluster κ = {τA,τBC,τD} and its
maximal transactions are trans(κ,{p1, p4}) = {{τA,τD},{τBC}}. The confusion-free version
is depicted in Figure 4.9(b). Hence, for each maximal transaction in κ , these transitions are
created: tκ,{τAτD},{p1,p4} and tκ,{τBC},{p1,p4}, which are tτAD and tτBC respectively as shown in
Figure 4.9(b).
Note that the weights associated with the syn-cycles in the original CSA-net are not affected by
the translation. That is, the probabilities still can be calculated for the confusion-free version.
Hence, the corresponding scenario for the first scenario cson1 = scenariocsan({A,D}) in the
original CSA-net in Figure 4.5 is scenarioconfreeA(acyclicnet(csan))({tτAD}), which is executed by
only one step sequence σ1 = {tτAD} with probability:

PconfreeA(acyclicnet(csan))(σ1) =
ω(tτAD)

ω(tτAD)+ω(tτBC)
=

7+3
7+3+3+2

=
10
15

= 0.7

Similarly, the corresponding scenario for the second scenario cson2 = scenariocsan({B,C}) in
the original CSA-net in Figure 4.5 is scenarioconfreeA(acyclicnet(csan))({tτBC}) which is executed
by only one step sequence σ2 = {tτBC} with probability:

PconfreeA(acyclicnet(csan))(σ2) =
ω(tτBC)

ω(tτAD)+ω(tτBC)
=

3+2
7+3+3+2

=
5
15

= 0.3
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It is worth to notice that PconfreeA(acyclicnet(csan))(σ1)+PconfreeA(acyclicnet(csan))(σ2) = 1. ⋄
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Fig. 4.9 A cluster-acyclic net for acyclicnet(csan) in Figure 4.5 (a) and its encoding according
to Approach A (b).

The proposed approaches for removing confusion in Section 3.6 are based on transforming
a confused acyclic nets into another one that is confusion-free. This section also applies the
same technique to eliminate confusion in CSA-nets. Since CSA-nets consist of sets of acyclic
nets, encoding large confused CSA-nets into acyclic nets is more complex than the encoding
of confused acyclic nets. In the next section, another approach of handling confusion in CSA-
nets is introduced for the cascading CSA-net, a sub-class of CSA-nets where the acyclicity
constraint is lifted to the level of CSA-nets.

4.10 Cascading CSA-nets

Consider again the CSA-net csan in Figure 4.7 (a) and its encoding acyclicnet(csan) in
Figure 4.8 (a), where the acyclicity constraint over the clusters holds. Therefore, it is
possible to reuse the proposed approaches discussed in Chapter 3 after transforming csan

into acyclicnet(csan). There is also an intuition that the clusters acyclicity constraint can
be established at the level of CSA-net. This happens, in particular, when the asynchronous

communication between the transitions of component cluster-acyclic nets is unidirectional.
That is, for example, if we have acneti and acnet j in csan such that there are no t ∈ Tacnet j

and u ∈ Tacneti satisfying (t,u) ∈W 2
csan, for all i < j. The nets in Figure 4.6 and Figure 4.7(a)
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adhere to this condition. Such a structure can be seen as an information cascade where
decisions are made and propagated sequentially from one acyclic net to another.
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e
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p9
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Fig. 4.10 Cascading CSA-net.

Definition 4.10.1 (cascading CSA-net). Let csan = (acnet1, . . . ,acnetn,Q,W ) (n≥ 1) be a
well-formed CSA-net composed of confusion-free acyclic nets such that the following hold:

1. For all 1≤ i < j ≤ n, there are no t ∈ Tacnet j and u ∈ Tacneti such that (t,u) ∈W 2
csan.

2. |precsan (q)|= |postcsan (q)|= 1, for every q ∈ Q.

3. If asymconfusedcsan(M,S1,S2,S3) is an asymmetric confusion in csan, then we have
precsan (S2)\Q = precsan (S)\Q, for every syn-cycle S such that S#0S2. ⋄

Example 45. The CSA-net in Figure 4.10 is cascading. The communication between the
two component acyclic nets is unidirectional. ⋄

The result below shows that the encoding of a cascading well-formed CSA-net produces a
cluster-acyclic net.
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Proposition 4.10.1. Let csan be as in Definition 4.10.1. Then acyclicnet(csan) is cluster-
acyclic. Moreover, csan has no symmetric confusion, and each syn-cycle is a singleton
set.

Proof. It follows directly from the definitions.

Since the syn-cycles of cascading CSA-nets are singletons, we will often refer to the
transitions of cascading CSA-nets instead of their syn-cycles in the next section.

4.10.1 Approach C: removing confusion from cascading CSA-nets

In previous section, we introduced an approach to remove confusion from CSA-nets by
translating them into single acyclic nets.

In this section, we assume that csan = (acnet1, . . . ,acnetn,Q,W ) is a cascading CSA-net
with asymmetric confusion caused by asynchronous communications (i.e., the component
acyclic nets are confusion-free). In such a case, one can remove confusion from csan

by adding new buffer places between acneti and acnet j, for i < j, inducing asynchronous
communication. Such an approach of removing confusion avoids generating negative places
and translating the whole CSA-net into a single acyclic net which might be very large. Also,
the transformation retains the structure of being cascading CSA-net and utilizes the buffer
places to handle confusion.

Example 46. Consider the confused cascading CSA-net in Figure 4.10, where a confusion
arises due to the possibility of executing d before c is enabled (the same holds for e and f ).
This behaviour is excluded in Figure 4.11, where new buffer places and arcs are shown in
gray. More precisely, in Figure 4.11, the execution of d is delayed until the conflict between
a and b is resolved. As a result, d and c are enabled together. Basically, if a is chosen over b,
then this yields {p2, p4,q′1}, which leads to enabling d only. On the other hand, choosing b

yields {p3, p4,q′1,q1}, which enables both c and d together.
Note that e and f are treated similarly as their firing is postponed until the decision at

acnet2 has been taken. ⋄

Example 46 shows how adding asynchronous communication for cascading CSA-net
produces effect similar to that present in extended free-choice nets. In this case, the presets
(including the buffer places) of all the transitions involved are not exactly identical, but they
are fed with tokens coming from the same sources.

The construction of a confusion-free cascading CSA-net is formally defined below (see
Proposition 4.10.1).
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Fig. 4.11 Encoding a confused cascading CSA-net in Figure 4.10 according to Approach C.

Definition 4.10.2 (encoding cascading CSA-net). Let csan be a cascading CSA-net as in
Definition 4.10.1 and, for every transition t ∈ Tcsan, let #csan(t)≜ {w ∈ Tcsan | t#0w}. Then,
the confusion-free encoding of csan is

confreeC(csan) = (acnet1, . . . ,acnetn,Q∪Q′,W ∪W ′)

constructed as follows. For every asymmetric confusion asymconfusedcsan(M, t,u,v), we
add to Q′ new buffer places Qtuv = {qw

tuv | w ∈ #csan(u)\{v}} such that:

preconfreeC(csan) (q
w
tuv) = #csan(t) and postconfreeC(csan) (q

w
tuv) = {w} ,

for every qw
tuv ∈ Qα . ⋄

Note that syn-cycles (i.e., transitions, as stated in Proposition 4.10.1) are the same in csan

and confreeC(csan), and all the places of csan with their markings are retained.
In Definition 4.10.2, according to Definition 4.8.1, t,u ∈ enabledcsan(M), u#0v and

v ∈ enabledcsan(M′)\ enabledcsan(M), where M[t⟩csan M′.
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Adding new buffer places Qtuv, implies that both u and v are now enabled together at the
marking M′, and avoiding the situation where u is executed before v is enabled.

The examples below show the construction steps of confreeC(csan) together with proba-
bilities calculation.
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Fig. 4.12 Cascading csan with asymmetric confusion (a) and its encoding according to
Approach C (b).

Example 47. The cascading CSA-net in Figure 4.12 (a) has the two confusions:

asymconfusedcsan({p1, p5, p6,q2},d,b,a) and asymconfusedcsan({p3, p4, p6,q1},e,b,a).
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Hence, in this case, Qdba = {qb
dba} and Qeba = {qb

eba}, where qb
dba = q′1 and qb

eba = q′2 are as
in Figure 4.12 (b). Adding these buffer places postpones the execution of b until the conflict
between c and d is resolved. ⋄

The following example shows how probabilities can calculated in confreeC(csan).

Example 48. Consider the confused cascading csan in Figure 4.13 (a), where asymmetric
confusion arises due to the possibility of executing b before a is enabled. (The same holds
for the firing of h or g before the enabledness of f .)
To remove confusion, a buffer place q′1 is added, as shown in Figure 4.13 (b). Similarly, q′2
and q′3 are added to remove other cases of confusion (note that some simplifications have
also been applied).
Let the associated weights be as follows: ω(a) = 5, ω(b) = 5, ω(c) = 3, ω(d) = 7, ω(e) = 1,
ω( f ) = 2, ω(g) = 2, and ω(h) = 6.
One of the maximal scenarios is cson1 = scenariocsan({d,b,e, f}) which can be executed by
different maximal step sequences, e.g., σ1 = {d}{b}{e}{ f} and σ2 = {b}{d}{e}{ f}. In σ1,
d is executed first which enables a in conflict with b. Hence, Pcsan(σ1) =

7
10 ·

5
10 ·

2
10 = 70

1000 .
On the other hand, Pcsan(σ2) =

7
10 ·

2
10 = 14

100 . In Figure 4.13(b), the same scenario can be
simulated in only one maximal step sequence which is σ1 as the possibility of firing b before
d (and before a becomes enabled) is excluded due to the additional causality between d and
b captured by the new buffer place q′1.
In this way, the maximal scenario cson1 in the original CSA-net has a corresponding maximal
scenario in confreeC(csan) with only one execution and its probability is always the same.
The rest of the scenarios are treated similarly. ⋄

Considering the cascading CSA-nets as a sub-class of CSA-nets has two advantages: (i) the
encoding into acyclicnet(csan) always produces a cluster-acyclic net (see Proposition 4.10.1),
and (ii) the acyclicity constraint can be lifted to the level of CSA-net to produce a confusion-
free version (see Definition 4.10.2). Also, producing confusion-free version of a CSA-net
using Approach C as in Definition 4.10.2 is superior to the technique of removing confusion
according to Definitions 4.9.1 and 3.6.1. The reason is that Approach C maintains the
structure of cascading CSA-nets and no new transitions nor (negative) places are added.
Finally, it is applicable even if the confused CSA-net is not backward-deterministic whereas
obtaining confusion-free version of CSA-net using Approaches A and B requires backward-
determinism.

The next example discusses Approaches A and C of handling confusion in cascading
CSA-nets.
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Fig. 4.13 Cascading csan with asymmetric confusion (a) and its encoding according to
Approach C (b).

Example 49. Figure 4.13(b) and Figure 4.14 show the confusion-free versions of the
cascading CSA-net csan in Figure 4.13(a). The former version is obtained by using Ap-
proach C according to Definition 4.10.2, where only buffer places are added and generating
acyclicnet(csan) is avoided. The latter version is obtained according to Approach A and Defi-
nitions 4.9.1 and Definition 3.6.1. In both techniques the acyclicity constraint is essential. No-
tice that Figure 4.14 produces a large acyclic net due to generating additional (negative) places
and transitions. More importantly, the maximal scenario cson1 = scenariocsan({d,b,e, f}) in
the original CSA-net in Figure 4.13(a) can be mapped to its corresponding maximal scenario
scenarioconfreeA(acyclicnet(csan))({tτd , tτb, tτe, tτ f }) in Figure 4.14 which is generated by only one
maximal step sequence σ = {tτd}{tτb}{tτe}{tτ f } with probability PconfreeA(acyclicnet(csan)) =
7
10 ·

5
10 ·

2
10 = 70

1000 , where the weights are as in Example 48. ⋄
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Fig. 4.14 Encoding confused cascading CSA-net in Figure 4.13 (a) according to Approach A.

Next we show an important structural property for the construction in Definition 4.10.2.

Proposition 4.10.2. Let csan′ = confreeC(csan) be a cascading CSA-net as in Defini-
tion 4.10.2, and asymconfusedcsan(M, t,u,v) be a confusion of csan. Moreover, let M′

be a reachable marking of csan′ such that #csan(u)∩ enabledcsan′(M′) ̸=∅. Then, for every
marking M′′ reachable from M′ satisfying #csan(u)∩ enabledcsan′(M′′) ̸=∅, we have:

enabledcsan′(M
′)∩#csan(u) = enabledcsan′(M

′′)∩#csan(u) .

Proof. It follows directly from Definition 4.10.1 and Definition 4.10.2.

The result below shows that confreeC(csan) is confusion-free for every cascading csan.

Theorem 4.10.1. confreeC(csan) is confusion-free for every cascading CSA-net csan.

Proof. It follows directly from Proposition 4.10.2 that for every asymmetric confusion
asymconfusedcsan(M, t,u,v) in csan there is no asymmetric confusion of the the form
asymconfusedcsan(M

′,z,w,v) or asymconfusedcsan(M
′,z,u,w) (for w ∈ {u,v}). Moreover,

there is no confusion in csan′ involving choices not affected by confusion in csan since the
construction in Definition 4.10.2 does not introduce new asymmetric confusions. Hence
confreeC(csan) is confusion-free.
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Next we show that the behaviours of a well-formed confused cascading CSA-net csan and
csan′ = confreeC(csan) are closely related. In particular, we demonstrate that each maximal
scenario of cascading csan corresponds to at least one maximal scenario of confreeC(csan).
Hence, the executions of the confusion-free confreeC(csan) can be used to assign probabili-
ties to the maximal scenarios of csan.

Theorem 4.10.2. Let csan and csan′ = confreeC(csan) be as in Definition 4.10.2.

1. All step sequences of csan′ are also step sequences of csan.

2. For every cson∈maxscenarios(csan), there is a maximal step sequence of csan′ which
is a maximal step sequence of cson.

Proof. (1) This follows directly from the definitions.
(2) Let σ be any maximal step sequence of cson. First we can split all non-singleton steps

of σ so that each step is now a sigleton obtaining a maximal step sequence σ ′. Then, due to
the acyclicity of communication in csan, one can rearrange the order of steps in σ ′ so that it
has the form σ1 . . .σk, where each σi is a step sequence of acneti. Then, from the acyclicity
of communication in csan′ it follows that σ1 . . .σk is a step sequence of csan′.

Example 50. Consider again the confusion-free cascading CSA-net in Figure 4.11 whose
behaviour closely simulates the behaviour of the original CSA-net in Figure 4.10. The
transitions a and b are enabled at the initial marking. Executing a enables d only. In the
original csan in Figure 4.10, d is enabled at the initial marking and can be executed before a,
however, as they are concurrent, there is also possibility that it can executed after a or they
are executed together. Hence, the confusion-free version in (b) simulates only one execution
that eliminates the confusion. In other words, the additional global causality between a and d

is captured by the new buffer place q′1 excludes the possibility of executing them concurrently
or d before a, which is in fact has no significant effects on the behaviour in general. Similarly,
the enabledness of e and f is based on arriving the tokens at buffer places q2 and q′2 which
are generated by executing d. Executing c, on the other hand, leads to enable f , which
is also enabled at the initial marking in the original csan in Figure 4.10. In spite of that,
the confusion-free csan in Figure 4.11 still produces one possible execution of the all the
maximal scenarios of the original csan. ⋄

Based on the above discussion, the confusion-free versions of CSA-nets that are produced
by Definitions 4.9.1, 3.6.1, and 4.10.2 maintain the behaviour of the original one by con-
sidering all possible maximal scenarios. Basically, if a cascading csan is confused, then
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its confusion-free versions confreeA(acyclicnet(csan)) and confreeC(csan) can still mimic
csan’s behaviour at the level of the processes that can be generated.

4.11 Unfolding CSA-nets

In Section 3.7, we introduced unfolding as an additional step for the confused acyclic nets that
are not backward deterministic before the encoding into confusion-free acyclic nets. Similarly,
if confused CSA-net is not backward deterministic, the unfolding should be performed
before removing the confusion. [84] proposed the unfolding algorithm for Communication

Structured Place Transitions Nets (CSPT-nets) introduced in [73]. The branching processes
of the unfolding are the processes of CSPT-nets that are represented by CSO-nets. Like for
the unfolding of the standard Petri nets, CSPT-nets unfolding provides complete details of
the reachability of the original net. However, in contrast with the standard unfolding, buffer
places are taken into consideration in the process of producing CSPT-nets unfolding. Hence,
as an interesting observation, it is efficient to construct the acyclicnet(csan) and then generate
the standard unfolding, instead of generating the unfolding for each component acyclic net
of CSA-net then transforming the resulting net into an acyclic net to remove the confusion
using the approaches in Sections 3.6. More precisely, if csan is a confused non-backward
deterministic CSA-net, then encoding it into acyclicnet(csan) and then applying the standard
unfolding is more effective than unfolding each component acyclic net separately. The next
example illustrates the difference.

Example 51. Consider the confused CSA-net csan in Figure 4.15(a) and its unfolding in
Figure 4.15(b) that has been generated for each component acyclic net separately (according
to the unfolding algorithm in [84]). Then, extra buffer places and arcs are added to each split
transition involved in the syn-cycle S = {e, f}. Figure 4.16 represents the transformation into
an acyclic net for the unfolding csan in Figure 4.15(b). The net in Figure 4.17 is the trans-
formed acyclic net acyclicnet(csan) according to Definition 4.9.1, for csan in Figure 4.15(a),
where the transitions in the syn-cycle S are combined into a synchronised transition e f and S

is removed together with two buffer places. Moreover, since any confused csan is transferred
into an acyclicnet(csan) to remove confusion using the approaches in Section 3.6, then any
additional buffer places together with their arcs that are generated when constructing the
unfolding for each acyclic net would be collapsed. Therefore, constructing unfolding requires
extra steps especially in terms of generating many new nodes which eventually would be
collapsed.
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It is also worth noting that removing confusion in this CSA-net using Approach C is even
more efficient as generating the unfolding is not essential. ⋄
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Fig. 4.15 CSA-net with confusion (a) and its unfolding in (b).
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Fig. 4.16 Constructed acyclicnet(csan) for the csan unfolding in Figure 4.15(b).
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Fig. 4.17 Constructed acyclicnet(csan) for csan in Figure 4.15(a)

4.12 Conclusion

In this chapter, we formally defined the notion of CSA-net with its execution semantic and
other behavioural properties. In particular, asynchronous and synchronous communications
are introduced that are captured by the new nodes, namely buffer places which are responsible
of transferring the tokens among several components acyclic nets. Hence, in contrast with
the enabled steps in a single acyclic net defined in Chapter 3, the enabled steps in CSA-
nets can involve transitions from different acyclic nets executed synchronously. This was
the motivation for introducing the notion of syn-cycles. Then, the definitions of conflict,
confusion, and scenarios are extended to be based on syn-cycles rather than transitions. Also,
calculating the probabilities of alternative scenarios is extended. The core contribution of
this chapter is the proposed approach of handling confusion in CSA-nets as presented in
Section 4.9. More precisely, a confused CSA-net is translated into a single acyclic net such
that transitions involved in asynchronous communication and their buffer places are replaced
by regular transitions and places, whereas transitions involved in each syn-cycle representing
synchronous communications are glued together into one synchronised transition. Our
approach of preserving the behaviour in the original confused net and the new one is similar
to the approach used in Chapter 3. Basically, the acyclic net obtained from a confused CSA-
net simulates the original behaviour as long as it can generate representations of all possible
scenarios in the original CSA-net. After obtaining the single acyclic net, the cluster-acyclic
net concept from Chapter 3 is reused to apply Approach A or Approach B that are concerned
with removing confusion from a single backward-deterministic acyclic net.

It turns out that cluster-acyclicity is guaranteed when a sub-class of CSA-nets is considered.
Cascading CSA-nets are formally defined when asynchronous communications are unidi-
rectional. One of the observations about this class of CSA-nets is that translating confused

119



Communication structured acyclic nets

cascading CSA-net into a single acyclic net always produces a cluster-acyclic net. Imposing
this constraint structure on CSA-nets allows to check the acyclicity globally. That led to formal
definition of another approach for removing confusion in CSA-nets. Approach C was intro-
duced to handle confusion in cascading CSA-nets via adding asynchronous communications
with new buffer places so that the execution of some transitions is postponed. This technique
of dealing with confusion avoids generating new transitions and negative places. Also, as a
significant feature, the structure of CSA-nets is retained and the backward-determinism is not
mandatory to produce a confusion-free version.

In the next chapter, we intend to extend our probabilistic framework by considering
behavioural abstraction relation.

120



Chapter 5

Behavioural Structured Acyclic Nets

5.1 Introduction

The structures of nets in Chapter 4 capture the notion of interaction between different systems
via a/synchronous communication, however, the evolution of systems is not represented. In
this chapter we introduce behavioural relation as a way of capturing the evolution of a set of
related acyclic nets. This relation provides a mechanism to abstract part of a complex activity
by another system. In other words, behaviour relation models the duality of the system-state
as the behaviour can be embodied at two levels of abstraction, upper-level and lower-level, to
depict both a system and state of an activity of that system [92].

In this chapter, Behavioural Structured Acyclic Nets (or BSA-nets) are defined as we
formally extend the version of behavioural abstraction in [106, 103, 84] from being based on
occurrence nets to one based on acyclic nets. That includes relaxing the line-like structural
constraint on the upper-level net. However, only free-choice structure is allowed for the
upper-level net. Moreover, we investigate how to extend the probabilistic framework to
consider behavioural relation. Basically, probability assigned to an upper-level transition is
the product of the weights of transitions that are ascribed to it.

Since the upper-level net is free-choice, behavioural relation can be used to control the
occurrence of confusion at the lower-level. More precisely, only the confusion-free behaviour
at the lower-level can be abstracted by the upper-level.

This chapter is organised as follows. The formal definition of BSA-nets with their be-
havioural and structural properties is introduced in Section 5.2 – Section 5.4. Calculating
probabilities in BSA-nets is discussed in Section 5.5. Section 5.6 provides an illustrative
example to show a preliminary approach of how confusion can be controlled via behavioural
relation. Finally, the chapter is concluded in Section 5.7.
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5.2 Behavioural structured acyclic nets

An abstract representation is the process of translating a complex representation of a problem
into a new simpler representation [50] by removing irrelevant details. The aim is to solve
the problem by retaining certain desirable properties from the original representation. It can
be seen as a process of many-to-one mapping with ignoring details and considering unlike
objects as if they were identical [86]. It also includes the ability of distinguishing between
relevant and irrelevant details to solve a complex problem. Hence, abstraction can be seen as
cognitive skills to cope with complexity in, e.g., mathematics and software engineering [59].
In fact, abstraction is a fundamental concept to mathematics, computer science, and software
engineering [58, 59, 79]. Beside handling the complexity, other justifications include the
intricate characteristic of systems and the flexibility of exploring them at multiple level of
detail and abstraction based on the intention [79]. Several studies have explored abstraction
in different contexts [50, 75, 93, 131].

There is also a large body of work regarding Petri nets and abstraction. [49] shows
that Petri nets are suitable for modelling large scale systems as they offer techniques for
abstraction and refinement. Sets of place-bordered and transition-bordered sub-nets are
identified so that a net can be abstracted by replacing these sub-nets by a single element.
It also shows that coloured Petri nets are another form of abstraction. Hierarchical Petri
nets are introduced in [47] to support modelling of large systems and handling place and
transition refinement. Building blocks are also purposed to hierarchical structure Petri nets.
However, the formal definition of hierarchical Petri nets considers the structure only, without
addressing the semantic information.

Multi-level abstraction in Petri nets is investigated in [126] to integrate Petri nets and
object-orientation. Two-level modelling is introduced, using system nets and object nets. A
token in a system net represents an object Petri net. In other words, object nets are mapped to
places, and markings of the system net are represented by the processes of object nets. The
approach contributes to reducing the size of the model as well as exploring the properties
of the system net through the object net. In the same vein, [127] proposed tokens as nets

concept to abstract objects nets by representing them as tokens of systems net by constructing
multi-level hierarchical abstraction. Abstraction of Petri nets is also used for analysis in [122].
Verifying properties such as deadlocks, liveness, and boundedness is obtained for a subnet
abstracted by a single transition. An abstraction representation based analysis is developed
in [48] where the state spaces are reduced by gluing unimportant places for a certain verified
property. In the following, we present the notion behinds behavioural abstraction.
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In the initial work published in [103], Brian Randell mentioned that his attempt to
illustrate failure / fault / error chains in an evolved complex system was the beginning
of the story of behavioural abstraction. The interchangeable meaning of system and state
allows to represent systems and states of different interacting occurrence nets using one
place [105]. In this abstraction relation, many-to-one mapping is also applied as the states
of one occurrence net are linked to sets of states in other occurrence net. For instance, a
state of an occurrence net can be expanded into an another occurrence net that has its own
places and transitions. More precisely, the hierarchical structure of behavioural abstraction
involves two-level view of a system’s history. The upper-level represents an abstract view
of the details regarding the evolution of the system at the lower-level. Moreover, the dual
representation of states and systems supports multiple abstraction of provenance [92]. [105]
formalises evolutional occurrence nets in which occurrence net captured modification or
creation of system components through evolution abstraction.

acnet

acnet1

p1 update
p2

p3
e

p4
f p6

updated versionoriginal version

Fig. 5.1 Behavioural structured occurrence net.

The aim of the hierarchical structure is to emphasize that upper level always provides an
upper-level view and hides the details of the behaviour of lower level. The lower-level, on
the other hand, shows the full details of behaviour during different evolution stages which
are represented by the phases of the general activity [78].

Example 52. Figure 5.1 shows the concept of the behavioural relation in a system update.
The upper-level acyclic net acnet represents a version change caused by an update event.
The lower-level acyclic net acnet1 provides the detailed behaviour of the system before
and after the update. The dashed lines between the two levels are used to capture the
relevant relationships between the two types of behaviours. The divisions of the lower-level
behaviours are captured by the phases, which are sets of states that are mapped to the
upper-level places. ⋄
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The version of behavioural relation in [78, 106, 105, 84, 11, 92] does not support the
notion of conflict at the upper level. Hence, applying the probability analysis for behavioural
relation is trivial when the upper-level nets are always line-like.

Example 53. The net in Figure 5.2 is taken from [84]. The lower-level acyclic net involves
two alternative scenarios: scenarioacnet({e0,e1,e2,e6}) and scenarioacnet({e0,e3,e4,e5,e6}).
Moreover, different phases in the lower-level acyclic net map to a single place in the upper-
level acyclic net. In this case, we have place p2 pointing to places p6 and p7 which are both
included in two conflict scenarios. This illustrates the ‘one-to-many’ relationship between
the upper-level places and phases of the lower-level. ⋄

Still referring to the acyclic net in Figure 5.2, let us assume that the weights of transitions
e1 and e3 are 3 and 7, respectively. Since these two scenarios are mapped into one scenario
at the upper-level acyclic net, then all the upper-level transitions can be considered as certain
ones as they abstract all the lower-level scenarios. Basically, what the upper-level net can tell
is that there is a scenario, without any details of the probability of the actually executed one.

acnet′

acnet

p1
f0

p2
f1

p3

p4
e0

p5

e1

e3

p6

p7

e2

e4
p8

e5 p9

e6 p10

Fig. 5.2 Behavioural structured occurrence net in [84] (Figure 3.7).

Therefore, extending the current version where probabilities can be estimated for the
entire net requires relaxing the assumption of upper-level net as being line-like. In addition
to that restriction, behavioural structured occurrence nets are generalised by being based on
acyclic nets instead of occurrence nets. However, this generalisation is restricted as it permits
only free-choice structure of the upper-level acyclic nets. The new version of behavioural
relation is formally defined below.
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Definition 5.2.1 (BSA-net [8]). A behavioural structured acyclic net (or BSA-net) is a triple
bsan = (lcsan,hcsan,β ) such that

lcsan = (lcsan1, . . . , lcsann, lQ, lW ) and hcsan = (hacnet1, . . . ,hacnetn,hQ,hW )

are as follows:

• hcsan = (hacnet1, . . . ,hacnetn,hQ,hW ) is a well-formed CSA-net (n≥ 1).

• For every 1≤ i≤ n, lcsani = (acneti1, . . . ,acnetimi
,Qi,Wi) is a CSA-net such that

csan(lcsan) = (acnet11, . . . ,acnet1m1
, . . . ,acnetn1, . . . ,acnetnmn

, lQ∪
n⋃

i=1

Qi, lW ∪
n⋃

i=1

Wi)

is a well-formed CSA-net.

• hcsan and lcsan have disjoint sets of nodes, and we denote:

Plcsan =
⋃n

i=1 Plcsani Tlcsan =
⋃n

i=1 Tlcsani

Phcsan =
⋃n

i=1 Phacneti Thcsan =
⋃n

i=1 Thacneti

Moreover, β ⊆
⋃n

i=1 Plcsani ×Phacneti , and the following are satisfied, for all 1 ≤ i ≤ n and
t ∈ Thacneti:

1. |Minit
hacneti|= 1 and |prehacneti (t)|= |posthacneti (t)|= 1.

2. βMinit
hacneti

= Minit
lcsani

and βprehacneti
(t)[⟩lcsani

βposthacneti
(t), where βp = β{p} = {r | rβ p}, for

every p ∈ Phcsan.

The default initial marking of bsan is Minit
bsan = Minit

hcsan∪
⋃n

i=1 Minit
lcsani

, and the set of all BSA-
nets is BSAN. ⋄

Intuitively, lcsan provides a detailed ‘lower-level’ view and hcsan provides an ‘upper-
level’ view of the system evolution. The role of β is to identify in the lower-level view
the divisions of behaviours into ‘phases’, and each βp indicates a ‘boundary’ between two
consecutive phases. In other words, β is responsible for showing dependencies between the
system’s detailed behaviour and its evolution [84].

Example 54. The new (generalised) version of BSA-net is illustrated in Figure 5.3. The
initial marking of the lower-level CSA-net belongs to the initial marking of bsan. The two
maximal scenarios at the lower-level are explicitly represented by distinct scenarios at the
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hacnet1

lcsan1

p1
x

y

p2

p3

r1
a

b

r2

c

r4

d

r3

r5

Fig. 5.3 BSA-net bsan = (lcsan,hcsan,β ) where lcsan = (lcsan1,∅,∅) with no lQ, lW , and
hcsan = (hacnet1,∅,∅) with no hQ,hW , and β = {(p1,r1),(p2,r3),(p3,r5)}.

upper-level. Basically, the two maximal scenarios at the upper-level scenariohacnet({x})
and scenariohacnet({y}) are the abstracted versions of the lower-level maximal scenarios
scenariolacnet({a,c}) and scenariolacnet({b,d}), respectively. ⋄

Proposition 5.2.1. Assume the notation as in Definition 5.2.1, and let 1≤ i≤ n.

1. reachable(hacneti) = {{p} | p ∈ Phacneti}.

2. |M∩Phacneti|= 1, for every M ∈ reachable(hcsan).

3. βp ∈ reachable(lcsani), for every p ∈ Phacneti .

Proof. It follows directly from Definition 5.2.1.

That is, a reachable marking of the upper-level CSA-net includes exactly one place from
each of its component acyclic nets. Moreover, all the boundaries between different phases
are reachable markings of the lower-level CSA-nets.

The next definition shows how a BSA-net is underpinned by a CSA-net combining the two
levels.

Definition 5.2.2 (underlying CSA-net). Assuming the notation as in Definition 5.2.1,

csan(bsan) = (hacnet1, . . . ,hacnetn,acnet11, . . . ,acnet1m1
, . . . ,acnetn1, . . . ,acnetnmn

,Q,W ) ,
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where Q = hQ∪ lQ∪
⋃n

i=1 Qi and W = hW ∪ lW ∪
⋃n

i=1Wi, is the CSA-net underlying bsan.
⋄

Proposition 5.2.2. Let bsan ∈ BSAN. Then csan(bsan) is a well-formed CSA-net.

Proof. It follows directly from Definition 5.2.1 and Definition 5.2.2.

Definition 5.2.3 (phase and phase-consistent marking). Assuming the notation as in Defini-
tion 5.2.1.

1. phase(p)= {βp}∪{M | ∃t ∈ posthacneti (p) : βp[⟩lcsani
M[⟩lcsani

βposthacneti
(t)} is the phase

of p ∈ Phacneti (1≤ i≤ n).

2. The phase-consistent markings of bsan are as follows:

phcmarkings(bsan) = {M ∈ reachable(csan(bsan)) |
∀1≤ i≤ n : M∩Plcsani ∈ phase(βM∩Phacneti

)}

⋄

Intuitively, Definition 5.2.3(1) implies that phase(p) of the upper-level net is a continuous
‘chunk’ of lcsani delimited by the marking corresponding to p (start) and all markings (ends)
corresponding to the places obtained by executing one output transition of p (such a transition
indicates a ‘phase change’). All markings in-between belong to the delimited phase. Hence,
each transition of a upper-level acyclic net maps to a single phase of the corresponding
lower-level CSA-net.

Phase-consistency in Definition 5.2.3(2) identifies implicitly the markings of lower-level
acyclic nets which belong to the phases corresponding to the markings of the upper-level
acyclic nets. This will guarantee that the ordering of the upper-level places matches the
consecutive phases of the lower-level CSA-nets.

Proposition 5.2.3. Minit
bsan is a phase-consistent marking.

Proof. It follows directly from Definition 5.2.3.

Example 55. For the bsan in Figure 5.3, the phases are as follows:

phase(p1) = {{r1},{r2},{r3},{r4},{r5}}
phase(p2) = {{r3}}
phase(p3) = {{r5}}.
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Also, βMinit
hacnet1

= {r1} and {p2,r2},{p3,r4} ∈ reachable(csan(bsan)). However, neither
marking is phase-consistent due to the fact that {r2} /∈ phase(p2) and {r4} /∈ phase(p3). ⋄

5.3 Structure and semantics of BSA-nets

In this section, bsan ∈ BSAN is as in Definition 5.2.1. All basic notions and notations
concerning the structure and semantics of bsan are taken from the underlying CSA-net
csan(bsan).

Definition 5.3.1 (BSO-net [8]). A behavioural structured occurrence net (or BSO-net) is
bsan ∈ BSAN such that csan(bsan) ∈ CSON. The set of all BSO-nets is BSON. ⋄

Note that in BSO-nets, the upper-level acyclic nets are ‘line-like’ occurrence nets.

Definition 5.3.2 (BDBSA-net [8]). A backward deterministic behavioural structured acyclic

net (or BDBSA-net) is bsan ∈ BSAN such that csan(bsan) ∈ BDCSAN. The set of all BDBSA-
nets is BDBSAN. ⋄

Proposition 5.3.1. BSON⊂ BDBSAN⊂ BSAN.

Proof. It follows directly from the definitions.

Example 56. Figure 5.3 shows an example of a BDBSA-net. Moreover, a BSO-net is shown
in Figure 5.5. ⋄

Definition 5.3.3 (step and marking [8]). Assuming the notation as in Definition 5.2.2,

1. steps(bsan) = steps(csan(bsan)) are the steps.

2. markings(bsan) = markings(csan(bsan)) are the markings.

3. Pbsan =Pcsan(bsan), Tbsan =Tcsan(bsan), Fbsan =Fcsan(bsan), Qbsan =Qcsan(bsan), and Wbsan =

Wcsan(bsan).

4. prebsan () = precsan(bsan) () and postbsan () = postcsan(bsan) (). ⋄

Definition 5.3.3 means that the basic characteristics of bsan are as in csan(bsan). The
notion of enabled step is, however, different. It is based on the phases of lower-level CSA-nets
induced by the phase boundaries defined by the relation β .
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Definition 5.3.4 (enabled and executed step). Let M and M′ be markings of bsan, and U be
a step of bsan. Then,

U ∈ enabledbsan(M) and M[U⟩bsan M′

if M,M′ ∈ phcmarkings(bsan) and M[U⟩csan(bsan)M′. ⋄

Intuitively, bsan is executed in exactly the same way as its underlying CSA-net provided
that the markings involved are phase-consistent.

hacnet1

lcsan1

p1

t
p2

u
p3

s0

a
s1

b
s2

s3

e

f

s4

s5

Fig. 5.4 BSA-net with no enabled step.

Example 57. Figure 5.4 illustrates phase-consistency and step enabledness. The phases are:

phase(p1) = {{s0},{s1}}
phase(p2) = {{s1},{s2,s3},{s4,s3},{s2,s5},{s4,s5}}
phase(p3) = {{s4,s5}}

The marking {p1,s2,s3} is not phase-consistent because {s2,s3} /∈ phase(p1). Consequently,
according to Definition 5.3.4, U = {e, f} /∈ enabledbsan({p1,s2,s3}). Note, however, that U

is enabled in the reachable marking {p2,s2,s3} of the underlying CSA-net. ⋄

Definition 5.3.5 ((mixed) step sequence). Assume the notation as in Definition 5.2.2. Let
µ = M0U1M1 . . .Mk−1UkMk (k ≥ 0) be a sequence such that M0, . . . ,Mk are markings and
U1, . . . ,Uk are steps of bsan.

1. µ is a mixed step sequence from M0 to Mk if Mi−1[Ui⟩bsan Mi, for every 1≤ i≤ k.

2. If µ is a mixed step sequence from M0 to Mk, then σ = U1 . . .Uk is a step sequence

from M0 to Mk.
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This is denoted by M0[µ⟩⟩bsan Mk and M0[σ⟩bsan Mk, respectively. Also, M0[⟩bsan Mk denotes
that Mk is reachable from M0. ⋄

In the last definition, the starting point was an arbitrary marking. The next definition
assumes that the starting point is the default initial marking.

Definition 5.3.6 (behavioural notions). The following sets capture various behavioural
notions related to step sequences and reachable markings of a BSA-net bsan.

1. sseq(bsan) = {σ |Minit
bsan[σ⟩bsan M} step sequences.

2. mixsseq(bsan) = {µ |Minit
bsan[µ⟩⟩bsan M} mixed step sequences.

3. maxsseq(bsan) = {σ ∈ sseq(bsan) | ¬∃U : σU ∈ sseq(bsan)}
maximal step sequences.

4. maxmixsseq(bsan) = {µ ∈mixsseq(bsan) | ¬∃U,M : µUM ∈mixsseq(bsan)}
maximal mixed step sequences.

5. reachable(bsan) = {M |Minit
bsan[⟩bsan M} reachable markings.

6. finreachable(bsan) = {M | ∃σ ∈maxsseq(bsan) : Minit
bsan[σ⟩bsan M}

final reachable markings.

⋄

Example 58. A maximal mixed step sequence of the BSA-net depicted in Figure 5.5 (a) is:

µ = {p1,r1}{b}{p1,r4}{y,d}{p3,r5}

and the corresponding maximal step sequence is σ = {b}{y,d}. ⋄

As before, what matters is to identify in a BSA-net all deterministic behaviours (scenarios)
which can then be investigated.

Definition 5.3.7 (scenario and maximal scenario). Assume the notation as in Definition 5.2.2.

1. A scenario of bsan is a BSO-net bson = (lcson,hcson,β ′) such that:

(a) csan(lcson) ∈ scenarios(csan(lcsan)) and hcson ∈ scenarios(hcsan).

(b) β ′ = β ∩ (Plcson×Phcson).
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2. A maximal scenario of bsan is a scenario bson such that there is no scenario bson′

satisfying Tbson ⊂ Tbson′ .

The set of all scenarios of bsan is scenarios(bsan), and the set of all maximal scenarios of
bsan is maxscenarios(bsan). ⋄

hacnet1

lcsan1

p1

y
p3

r1

b
r4

d
r5

(a)

hacnet1

lcsan1

p1
x

p2

r1
a

r2

c
r3

(b)

Fig. 5.5 All the maximal scenarios for the BSA-net in Figure 5.3.

Example 59. Figure 5.5 depicts the only two maximal scenarios of the BSA-net shown in
Figure 5.3. ⋄

5.4 Well-formed BSA-nets

The general definition of BSA-net given above does not guarantee that the step sequences
of bsan cover all possible scenarios of the lower-level CSA-net. Indeed, in the extreme case,
we can take hcsan which contains no transitions at all, and the resulting BSA-net generates
then only the empty step sequence. It is therefore crucial to identify cases where bsan

generates at least one step sequence for every scenario of lcsan. As a result, the definition of
a well-formed BSA-net is more demanding than the definition of a well-formed CSA-net.

Definition 5.4.1 (well-formedness). A BSA-net bsan = (lcsan,hcsan,β ) is well-formed if
the following hold:
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1. sseq(bsan) =
⋃

sseq(scenarios(bsan)).

2. For every cson ∈maxscenarios(csan(lcsan)), there is U1 . . .Uk ∈maxsseq(bsan) such
that (U1∩Tlcsan) . . .(Uk∩Tlcsan) ∈maxsseq(cson).

The set of all well-formed BSA-nets is denoted by WFBSAN. ⋄

The well-formedness of BSA-net ensures that for each scenario of the lower-level csan

[8], there is at least one step sequence that can be generated by the whole bsan.
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p3

p4
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E
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p6

p7

p5

(b)

Fig. 5.6 BSA-nets that are not well-formed.

Example 60. Consider the bsan in Figure 5.6(a). Note that there are two scenarios in lcsan1:

scenariolcsan1({a,b,e}) and scenariolcsan1({a,c, f}).

There is a step sequence σ = {a}{t,b}{e} ∈maxsseq(bsan) that can be generated for the
former scenario. However, there is no similar step sequence for the latter one. That is because

postlcsan1
(c) = {s3} /∈ phase(p) and postlcsan1

( f ) = {s5} /∈ phase(p),

for every p ∈ Phacnet1 . Moreover, we have

{s3, p3}[ f ⟩bsan {s5, p3} and { f} /∈ enabledbsan({s3, p3})
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because the phase-consistency is not satisfied: {s3} /∈ phase(p3). Hence, f is a ‘useless’
transition. In the same vein, the upper-level hcsan in Figure 5.6(b) does not provide a
complete view of the lower-level. Indeed, what the upper-level can tell is that there are only
two scenarios, corresponding to A and B, whereas three scenarios are included in the lower-
level: scenariolcsan1({C}), scenariolcsan1({D}) and scenariolcsan1({E}). That is because the
last scenario is not abstracted at hacnet1. Hence, the behaviour captured by hacnet1 is not
complete and, e.g., the probabilistic analysis is not accurate due to the missing information. ⋄

In the above sections we considered BSA-net properties. Next we illustrate how proba-
bilities can be added to BSA-net. Basically, the probabilities are assigned to the upper-level
transitions using the weights of the lower-level transitions with respecting the phases between
the levels.

5.5 Calculating probabilities in BSA-nets

In this section, we assume that the high-level nets have no communications. This section
extends the probabilities calculation in CSA-nets so that behavioural relation is taken into
consideration. More precisely, the β relation is used to represent the probabilities at the
upper-level that are derived from the weights associated with the lower-level syn-cycles. In
this case, the probability of a whole lower-level scenario that is calculated as in Chapter 4
is reflected by its abstracted upper-level syn-cycle. Therefore, in addition to defining the
probabilities of syn-cyclesas in Chapter 4, in this chapter the upper-level syn-cycles, are
assigned probabilities derived from the weight of conflict syn-cycles at the lower-level
Basically, extending the formula in Section 4.7 on Page 95 includes ensuring that all the
reachable markings obtained by executing lower-level CSA-nets should belong to the phases
corresponding to the markings obtained by executing upper-level CSA-nets. This means that
the phase-consistency of markings should be satisfied. In this thesis, we will not introduce
the formal formulas for calculating the probabilities in BSA-nets. We plan to extend the work
in [13] and address this part in the future work.

Example 61. Consider the BSA-net in Figure 5.7. The low-level syn-cycles in lcsan

are: Slcsan
1 = {a}, Slcsan

2 = {b}, Slcsan
3 = {c},Slcsan

4 = {d}. The high-level syn-cycles are:
Shcsan

1 = {x}, Shcsan
2 = {y}, Shcsan

3 = {z}. Then the three maximal scenarios are as follows:

bson1 = scenariobsan({a,c,x}) bson2 = scenariobsan({a,d,y})
bson3 = scenariobsan({b,z})
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Fig. 5.7 BSA-net with weights.

According to the β relation between the two levels, we have βp1 = {r1}, and posthcsan (p1) =

{x,y,z}. The phases are as follows:

phase(p1) = {{r1},{r2},{r3},{r4},{r5}} phase(p2) = {{r3}}
phase(p3) = {{r5}} phase(p4) = {{r4}}

Initially, only the weights of lower-level transitions are given. Then, the probability of
each low-level maximal scenario is represented at the high-level syn-cycles such that β

relation is taken into account. For example, scenariolcsan({a,c}) can be executed as σ1 =

Slcsan
1 Slcsan

3 with the 0.18 probability (calculated as in Section 4.7) which is then assigned to
its corresponding high-level syn-cycle Shcsan

1 = {x}. ⋄

The powerful representation of the systems and states in the behavioural relation using
places [103] allows us to represent the probabilities at the upper-level acyclic nets assuming
that the probabilities in CSA-nets introduced in Chapter 4 can capture the probabilities of the
scenarios at the lower-level. Intuitively, the upper-level acyclic nets do not only provide an
abstraction of the detailed behaviour at the lower-level, but also can be used as a means to
analyse the probabilistic aspects of executions.

Example 62. Consider the BSA-net bsan in Figure 5.8. The low-level nets are as csan in
Figure 4.4 on Page 96. However, here they are abstracted by the high-level acyclic net hacnet.
Recall from Example 39, the low-level syn-cycles: Slcsan

1 = {e}, Slcsan
2 = { f}, Slcsan

3 = {A,D},
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Fig. 5.8 BSA-net with weights.

and Slcsan
4 = {B,C}. Note that the probabilities of the maximal scenarios (based on the calcula-

tion in Example 39) are represented at their corresponding high-level syn-cycles Shcsan
1 = {x},

and Shcsan
2 = {y}. Basically, scenariolcsan({e, f ,A,D}) and scenariolcsan({e, f ,B,C}) with

the probability of their executions are assigned to the syn-cycles of the upper-level net. ⋄

In the above example, we have shown the initial idea of employing behavioural relation to
provide probabilistic analysis. Note that the lower-level CSA-net in the above example are
confusion-free.

5.6 Confusion in behavioural structured acyclic nets

In Section 5.1, we restricted the structure of upper-level acyclic nets as being free-choice only.
Therefore, with the assumption that there are no communications at the higher-level nets
as in Section 5.5, any potential a/symmetric confusion within the upper-level acyclic net is
excluded. In this section, we propose a new approach of handling confusion via behavioural
relation. The aim is to take advantage of the structural constraint at the upper-level so
that the confused behaviour at the lower-level is mapped to a probabilistic confusion-free
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representation at the upper-level. In this case, the upper-level net can be seen as a controller
of the lower-level confused behaviour. In this section, we stipulate that the behavioural
relation is a bottom-up abstraction approach. This means the maximal scenarios of lower-
level CSA-nets with their weights and calculated probabilities for certain steps sequences
which generate these maximal scenarios are defined first. Then the calculated probabilities
are represented at the high-level. In this case,we first ensure that all the maximal scenarios
are represented by the abstract nets, second; since the abstraction can play a role in analysing
nets [82], the abstracted confusion-free scenarios allow probabilistic analysis of concurrent
nets.

Example 63. Figure 5.9 shows a lower-level CSA-net lcsan with a symmetric confu-
sion. According to Approach A, to remove confusion transitions A and C are combined
together in one synchronised transition AC in conflict with B (similar to Example 16
and Figure 3.10 on Page 51). However, in the proposed approach lower-level CSA-net
lcsan is abstracted by a confusion-free upper-level acyclic net hacnet. Basically, the
maximal scenarios scenariolcsan({A,C}) and scenariolcsan({B}) of lcsan are represented
by scenariohacnet({AC}) and scenariohacnet({B}) at the upper-level, respectively, through the
β relation. Hence, the phases are as follows:

phase(s1) = {{p1, p2},{p3, p5},{p1, p5},{p3, p2},{p4}}
phase(s2) = {{p3, p5}} phase(s3) = {{p4}}.

Mapping places p3 ∈ postlacnet (A) and p5 ∈ postlacnet (C) to the same place s2 captures the
fact that A and C are executed together. Hence, the probability that {A,C} are chosen over B

at the lower-level is reflected by executing AC at the upper-level with probability 0.8 (based
on their weights and probability calculation in Example 16). ⋄
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Fig. 5.9 BSA-net with a symmetric confusion.

Using behavioural relation to manage confusion is a powerful aspect of abstraction.
Example 63 illustrates how abstraction allows us to construct a clearer representation of
the maximal scenarios. For example, the conflict between A,C and B at the lower-level in
Example 63 can be resolved with accurate probability estimation when {A,C} are executed
together as one step (more precisely, not their interleaving execution). Such representation
is reflected at the abstract level. In other words, behavioural abstraction is filtering out the
undesirable behaviour (the interleaving execution of A and C in the above example) without
losing significant information. Essentially, handling confusion using behavioural relation
requires to modify the step sequence semantics and consider the maximal step in each of
phases. We aim to address this in future work.

The last topic related to behavioural abstraction concerns the situation in which a scenario
is linked to different interpretations. This case accounts for contradicting views of what
actually happened, which can be represented by several alternative abstractions of the same
activity. More precisely, investigators or judges might agree about what actually happened,
however, their analysis perspectives are different. In this case, the system represented by
lower-level nets can be seen as source of information for alternative abstractions, each of
which is possible analysis of the system [106].

Example 64. Figure 5.10 shows BSA-net whose upper-level acyclic net hacnet shows two
different abstractions of the lower-level scenario. This can be interpreted as investigators
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being in disagreement of the probability of a single scenario. More precisely, through β

relation, we can infer that the scenario at the lower-level can be analysed probabilistically via
transition t ′ with probability 0.7 or via transition u′ with probability 0.3. ⋄

hacnet

lcsan

p1
0.7

t ′

0.3

u′

p2

p3

p4

t
p5

u p6

Fig. 5.10 Alternative abstractions for one scenario.

5.7 Conclusion

In this chapter, a formalisation for behavioural abstraction relation is introduced. In par-
ticular, in BSA-nets the evolution of a set of interacting acyclic nets is captured through
behavioural abstraction. The hierarchical structure of this relation allows to represent the
behaviour of a complex evolving system at two levels: the upper level which captures an
abstract view and the lower level in which it represents the full details of the system behaviour.
In particular, the β relation can map a set of places from the lower level to a place at the
upper level. This results in dividing the lower-level view into phases.

This chapter extends the behavioural abstraction in [106, 103, 84] as being based on acyclic
nets instead of occurrence nets so that the upper-level free-choice nets reflect the distinct
scenarios at the lower level. Then, calculating probabilities in Chapter 4 is represented at the
upper-level syn-cycles. Through phases, which are delimited by the β relation, we provide
an initial idea of how the probability of a low-level maximal scenario can be assigned to its
corresponding transition at the high-level. This mechanism of representing the probabilities at
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the abstract view emphasizes that abstraction is not only a tool to simplify the representation
of complex scenarios, but also it can contribute to the analyses of these scenarios. This is the
motivation for proposing a new approach of handling confusion in BSA-net. Exploiting the
structural constraint of the upper-level acyclic nets allows to propose a preliminary approach
of controlling the evolving of a confusion at the lower level. More precisely, behavioural
abstraction is seen as a filtering to distinguish desirable and undesirable behaviours at the
lower level. Hence, only confusion-free behaviour is represented at the upper-level net. An
illustrative example was provided to show how confusion can be handled by behavioural
abstraction relation.

In general, this chapter is introduced at the exploratory level, especially the sections
related to calculating probabilities and handling confusion. Providing formal definitions
concerned with these sections requires extending the current definitions of BSA-nets, which
goes beyond the time frame of this PhD thesis. Intuitively, the probability of a single process
at the lower-level should be represented at the higher-level. Also, we would need to define
the probabilities of phases (not only of processes) which may include multiple different
alternatives at the lower-level. Relaxing the structural constraints imposed on the higher-level
nets would also extend this chapter. Moreover, additional results and proofs are essential for
the approach of handling confusion through behavioural relation.
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Chapter 6

Verifying properties using SAT-solvers

6.1 Introduction

In the work so far, we have proposed approaches to remedy confusion. Generally, the aim
was to extend probabilistic analysis from acyclic nets to CSA-nets and BSA-nets. However,
a satisfactory property verification for CSA-nets and BSA-nets is still missing. To address
this, our main contribution in this chapter is to fill this gap by providing SAT-encoding of
the most significant behavioural properties of CSA-nets and BSA-nets, such as reachability
and deadlock scenarios. Since CSA-nets and BSA-nets are formalisms to model concurrent
and distributed systems, providing formal verification is crucial and poses a significant
challenge [46]. That is because in distributed systems software, meagre errors may lead
to significant collapse of systems functionalities [70]. In fact, proving the correctness of
such systems is not guaranteed through ordinary testing. Employing mathematical proofs of
correctness in the sense of formal verification is therefore needed.

In this chapter, we discuss the notion of a SAT-basic verification. It is a technique that
determines if a given logical formula represented in propositional logic is satisfiable, i.e., if
there is a truth assignment to the variables that makes the statement true. Basically, first, we
formally translate behavioural specifications of an acyclic net. That includes constructing a
formula to check whether or not a set of transitions represents a scenario. Conditions, such
as being causally related, forward-deterministic, and backward-deterministic, presented in
Definition 3.2.11, are translated into SAT constraints. Moreover, investigating the enabledness
property is essential to verify that a given scenario is maximal. It turns out that constructing
a scenario formula is a basis for providing a formal checking for other behavioural speci-
fications. For example, converting the well-formedness definition into a SAT-encoding is
obtained by identifying a scenario and an enabled transition whose firing violates scenario’s
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definition. In the same vein, checking deadlock scenarios and dead of transitions is based
on the scenario formula. Simplified formats of these formulas are presented in the case of
backward deterministic acyclic nets. Extending the work of [14], a SAT-based formula is
proposed to detect confusion in an acyclic net. Detecting confusion using SAT-encoding
considers both structural and dynamic aspects. To our knowledge, no such technique has
been proposed in the literature so far.

Then, extended versions of the above formulas are provided for CSA-nets. This is the
first work to propose a model checking solution for CSA-nets. It turns out that translating
most of SAT-based formulas to the level of CSA-nets is straightforward. Basically, buffer
places, not only places like in the case of acyclic nets, and syn-cycles instead of individual
transitions are considered. SAT-based model checking for BSA-nets is also introduced. The
most important constraints are related to Definition 5.2.3. Intuitively, we investigate how
to translate the notions of a phase and phase consistent marking into a SAT formula (they
are both required to formally verify the properties of BSA-nets). Finally, we explain the
SAT-encoding constraints with illustrative examples.

This chapter is organised as follows: Section 6.2 provides an overview of the SAT-based
model checking. Translating behavioural specifications of acyclic nets into SAT instances is
presented in Section 6.3. We investigate in Section 6.4 how to extend SAT formulas to include
behavioural properties of CSA-nets. SAT-based model checking for BSA-nets is considered in
Section 6.5. The chapter is concluded in Section 6.6.

6.2 SAT-based model checking

The task of a SAT-solver is to find a satisfying assignment for the variables used in a
propositional boolean formula φ . That is, the SAT-solver looks for an assignment f : Var→
{0,1} for the variables Var which occur in φ that makes φ true, i.e., φ [ f ] = 1. And, if such
an assignment exists, φ is satisfiable. The formula φ is often expressed in conjunctive normal

form (CNF), i.e., a conjunction of clauses which are disjunctions of literals (where a literal is
either a variable or the negation of a variable). The size of a CNF formula is based on the
number of literals in its clauses.

SAT problems became popular as Cook was able to prove that they are NP-complete [35].
Reducing well-known NP-complete problems into SAT formulas increase the applicability
of the SAT technique in the practically based research [34, 95]. In particular, scheduling
problems [36], fault tolerance in circuits [102, 20], and an automatic verification of both
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hardware and software systems [28] are all examples of exploiting the powerful technique of
SAT-solvers in real-world applications.

Verifying formally the structural or dynamical aspects requires to model a system using
a formalism such as Petri nets [98]. Verifying Petri net properties is one of the uses of
SAT-solvers in Petri net analysis. The properties of a Petri net can be characterized as
logical formulas that describe the conditions under which the behaviour of the net should
operate. Some of these properties can be verified with SAT-solvers by encoding the Petri
net behaviours and the negation of the property as a logical formula and then evaluating
the formula’s satisfiability. If the formula is satisfiable, then there is a Petri net behaviour
that violates the property, and the SAT-solver can offer evidence of such a behaviour. If
the formula is unsatisfiable, then the property holds true for all Petri net behaviours. This
method can be used to validate a variety of properties of safe Petri nets, including reachability,
liveness, and boundedness. There exists an extensive literature on verifying a Petri net model
using SAT-solvers. For instance, [72] proposed an approach using SAT-solver to detect state
encoding conflicts in Signal Transition Graphs which are converted into equivalent Petri nets
and the verification is performed on the finite complete prefixes of their unfoldings ([71]
extends this approach to model-checking for merged processes). [46] introduced a general
study of model-checking based on Petri net unfoldings. A similar work has been done for the
verification of contextual nets in [110]. Deadlock and reachability checking in Elementary
Object Nets System (EOS) was introduced in [66].

6.3 Verifying properties of acyclic nets

In next sections, we provide a satisfiability checking for key behavioural properties related to
acyclic nets. First, we construct a formula to find the scenarios. Then, such a formula is used
as a basis to encode other properties.

6.3.1 Identifying scenarios and maximal scenarios for acyclic nets

In Chapter 3, we formally defined a scenario of an acyclic net. Then, its definition was
extended in the subsequent chapters, Chapter 4 and Chapter 5. Scenarios are a significant
notion of system’s behaviour. Scenarios can be used to inspect, simulate, and analyse system
properties. For instance, in the previous chapters, CSA-nets are analysed probabilistically
through their scenarios. As scenarios’ features include forward and backward determinism,
they are suitable to provide a unique representation of the execution history. In the same vein,
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in this section, we continue to show that scenarios are crucial concepts which can be used to
verify some important behavioural properties.

Definition 3.2.11 asserts that a scenario structurally demonstrates causal and conflict
relationships. Recall that, for a given acyclic net acnet = (P,T,F), a subset of transitions
T ′ ⊆ T induces a scenario whenever the following three properties hold:

• causality: all non-initial pre-places of T ′ received tokens from T ′.

• forward deterministic: the transitions in T ′ are free from forward conflicts.

• backward deterministic: the transitions in T ′ are free from backward conflicts.

The next definition and proposition identify the scenarios of an acyclic net with occurrence
net restrictions induced by subsets of transitions T ′.

Definition 6.3.1 (restricting acyclic net). Let acnet = (P,T,F) be an acyclic net and T ′ ⊆ T .
Then acnet|T ′ = (P′,T ′,F |(P′×T ′)∪(T ′×P′)), where P′ = Minit

acnet∪postacnet (T
′), is the restric-

tion of acnet to T ′. ⋄

Note that if acnet|T ′ is a scenario, then acnet|T ′ = scenarioacnet(T ′).

Proposition 6.3.1. The following statements are equivalent for an acyclic net acnet =

(P,T,F) and T ′ ⊆ T :

1. acnet|T ′ ∈ scenarios(acnet).

2. acnet|T ′ is an occurrence net and preacnet (T
′)\Minit

acnet ⊆ postacnet (T
′).

Proof.

(1)⇒ (2) Since acnet|T ′ is a scenario, then it is also an occurrence net (see Definition 3.2.11)
and preacnet (P

′)\Minit
acnet ⊆ postacnet (T

′).
(2)⇒ (1) Obvious.

In [14] we presented a propositional formula which can be used to identify all the scenarios
of an acyclic net acnet. Basically, the aim is to construct a formula Scenarioacnet which
evaluates to 1 iff all the transitions assigned 1 (i.e., all transitions t such that int is assigned 1)
induce a scenario of acnet (note that acnet is not assumed to be well-formed). The following
boolean variables will be used in the construction of Scenarioacnet and the translation into
SAT instances:

• For every t ∈ T , we have a variable int tracing that t belongs to a scenario.
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The constraints on the above variables are defined, following Proposition 6.3.1, as follows:

• To ensure that all non-initial pre-places of T ′ received tokens from T ′:

Causalityacnet ≜
∧
t∈T

(
int →

∧
p∈•t\Minit

acnet

∨
u∈•p

inu
)

where
∧

p∈•t\Minit
acnet

∨
u∈•p inu is set to 1 if •t ⊆Minit

acnet.

• To ensure that scenario has no forward conflicts:

NoForwardConflictacnet ≜
∧
t∈T

∧
u∈(•t)•\{t}

¬(int ∧ inu)

where
∧

u∈(•t)•\{t}¬(int ∧ inu) is omitted if (•t)• = {t}.

• To ensure that scenario has no backward conflicts:

NoBackwardConflictacnet ≜
∧
t∈T

∧
u∈•(t•)\{t}

¬(int ∧ inu)

where
∧

u∈•(t•)\{t}¬(int ∧ inu) is omitted if •(t•) = {t}.

Then the formula which characterises all the scenarios of acnet is:

Scenarioacnet ≜ Causalityacnet∧NoForwardConflictacnet∧NoBackwardConflictacnet

The size of the above formula (in terms of the number of the occurrences of literals) is
bounded by |T |+3 · |T | ·min{|F |2, |P| · |T |}.

Proposition 6.3.2. Let acnet be an acyclic net.

1. If f is a satisfying assignment for Scenarioacnet then acnet| f−1(1) is a scenario of acnet.

2. If acnet′ is a scenario of acnet, then there is a satisfying assignment f for Scenarioacnet

such that acnet| f−1(1) = acnet′.

Proof. Recall that (see Section 6.3.1 on Page 145):

Scenarioacnet ≜ Causalityacnet∧NoForwardConflictacnet∧NoBackwardConflictacnet
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(1) Suppose that Scenarioacnet has a satisfying assignment f . Then Causalityacnet[ f ] = 1,
NoForwardConflictacnet[ f ] = 1 and NoBackwardConflictacnet[ f ] = 1. Hence, for any transi-
tion t such that f (int) = 1, it is required that each non-initial place p ∈ •t should have
received a token, and so at least one u ∈ •p had to be fired as well which is guaran-
teed by Causalityacnet[ f ] = 1. Moreover, since we have NoForwardConflictacnet[ f ] = 1 and
NoBackwardConflictacnet)[ f ] = 1, then for any transition y in forward or backward conflict
with t we have f (iny) = 0. Hence, all transitions whose corresponding variable assignment
is 1 induce a scenario captured by acnet| f−1(1).

(2) Suppose that there is scenario acnet′ of the acyclic net acnet. Then, from [8] there is a
step sequence σ ∈ sseq(acnet) which induces acnet′:

scenarioacnet(σ) = (P′,T ′,F |(P′×T ′)∪(T ′×P′)) = acnet′.

From Definition 6.3.1, acnet′ is a restriction of acnet to T ′ where T ′ =
⋃

σ . Let f be variable
assignment such that f (int) = 1, for every t ∈ T ′, and f (int) = 0, for every t ∈ T \T ′. Since
acnet′ is a scenario, then it is also an occurrence net, which satisfies forward and backward
determinism. This means the transitions in T ′ have no forward conflict and have no backward
conflict. Hence, NoForwardConflictacnet[ f ] = 1 and NoBackwardConflictacnet[ f ] = 1. Since
for each executed transition t ∈ σ we have f (int) = 1, then it is necessary that, for every
p ∈ •t there is u ∈ •p such that u occurs in σ , which implies that f (inu) = 1. Hence,
Causalityacnet[ f ] = 1, and we can conclude that Scenarioacnet has a satisfying assignment f

such that acnet| f−1(1) = acnet′.

Hence, we can use Scenarioacnet to find all the subsets T ′ of transitions of acnet inducing
scenarios after translating it into CNF and feeding into a SAT-solver.

p0
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p1
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p3

1
h p4

Fig. 6.1 A scenario induced by transitions for whom the corresponding variables are assigned
1 or 0 (see the acyclic net in Figure 3.1). Note that the assigned values are shown inside the
boxes representing transitions.
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Example 65. Figure 6.1 shows an acyclic net acnet and an assignment r of values to
boolean variables associated with its transitions (i.e., t is associated with int). We have
r(ina) = r(ine) = r(ing) = r(inh) = 1 and r(in f ) = 0.

Transitions a,e,g,h induce a scenario, namely scenarioacnet({a,e,g,h}). That is confirmed
by the formula Scenarioacnet as is satisfied under r. First, we have:

Causalityacnet[r] = (ina→ 1)[r]∧ (in f → ina)[r]∧ (ine→ ina)[r] ∧
(ing→ ina)[r]∧ (inh→ (ine∨ in f ))[r]

= (1→ 1)∧ (0→ 1)∧ (1→ 1)∧ (1→ 1)∧ (1→ (1∨0)) = 1
NoForwardConflictacnet[r] = ¬(ine∧ in f )[r] = ¬(1∧0) = 1
NoBackwardConflictacnet[r] = ¬(ine∧ in f )[r] = ¬(1∧0) = 1

Hence, we have Scenarioacnet[r] = 1. ⋄

Identifying scenarios of a given acyclic net leads also to determining the maximal scenarios.
Recall that calculating probabilities introduced in Chapter 3 concerns maximal scenarios
only. Moreover, Approach A and Approach B of removing confusion in Section 3.6 rely on
computing transactions, which are maximal scenarios of clusters. Therefore, there is a clear
need to provide a boolean formula that computes maximal scenarios.

A scenario is maximal if it cannot be extended. Intuitively, it means that no enabled
transition exists. Verifying the enabledness property is therefore essential to determine the
maximality of a scenario. Recall that a transition t is enabled if each of its non-initial input
places received a token, and that such tokens have not yet been consumed. This constraint
can be formally translated into a boolean formula Enabledt , as follows:

Enabledt ≜
∧

u∈(•t)•
¬inu ∧

∧
p∈•t\Minit

acnet

∨
u∈•p

inu

where the second clause is omitted if •t ⊆Minit
acnet.

The first part of the above formula implies that transition t along with all the output transitions
u of places which belongs to the preset of t have not been executed (this is captured by ¬inu).
The second part of this formula ensures that each non-initial input place p of t received a
token produced by some transition u (this is represented by inu).

Example 66. Consider the acyclic net in Figure 6.2 and the variable assignment r indicated
there. Such an assignment induces scenario. We then can examine the enabledness of e, as
follows:

Enablede[r] = ¬(ine∧ in f )[r]∧ ina[r] = ¬(0∧0)∧1 = 1
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Fig. 6.2 Verifying enabledness for transitions e and f of the acyclic net in Example 66.

Similarly, Enabled f [r] = 1. ⋄

After introducing the Enabledt formula, a formula for maximal scenario can be given. As
we mentioned earlier, a scenario is maximal if there are no enabled transitions. Then the
negation of Enabledt (for all t) together with the scenario formula Scenarioacnet produces the
required constraint for maximal scenarios. Hence, the satisfying assignment for the following
formula give all the maximal scenarios:

MaxScenarioacnet ≜ Scenarioacnet ∧
∧
t∈T

¬Enabledt

The size of MaxScenarioacnet is bounded by |T |+5 · |T | ·min{|F |2, |P| · |T |}. Intuitively, it
is satisfiable for all the scenarios that do not enable any transitions.

Proposition 6.3.3. Let acnet be an acyclic net.

1. If f is a satisfying assignment for MaxScenarioacnet then acnet| f−1(1) is a maximal
scenario of acnet.

2. For every maximal scenario acnet′ of acnet, there is a satisfying assignment f for
MaxScenarioacnet such that acnet| f−1(1) = acnet′.

Proof. It follows directly from Proposition 6.3.2.

Hence we can use MaxScenarioacnet to find the subsets T ′ of transitions of acnet inducing
maximal scenarios after translating it into CNF and feeding into a SAT-solver.

Example 67. Figure 6.3 shows a well-formed acyclic net that exhibits both forward and
backward conflict. Observe that the transitions in {x,e, f ,h} satisfy the causality condition,
and have no forward nor backward conflict. Hence, Scenarioacnet is satisfied by the assign-
ment r indicated in Figure 6.3. The scenario leads to marking {p5}, where no transitions
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Fig. 6.3 A maximal scenario for a well-formed acyclic net in Example 67.

are enabled. Therefore, the set of transitions {x,e, f ,h} induces a maximal scenario. This is
confirmed by the formula MaxScenarioacnet, as we have the following:

MaxScenarioacnet[r] = Scenarioacnet[r]∧¬Enabledx[r]∧¬Enablede[r]∧
¬Enabled f [r]∧¬Enabledg[r]∧¬Enabledh[r]

= 1∧1∧1∧1∧1∧1 = 1

Note that MaxScenarioacnet also evaluates to 1 if the values for ing and inh are swapped. ⋄

As shown by the above example, providing a formula to capture maximal scenarios is
derived from Scenarioacnet. Similarly, in the next sub-sections, Scenarioacnet is used as a
basis to capture other properties.

6.3.2 Well-formedness

The property of well-formedness of an acyclic net is given in Definition 3.2.12. It asserts, in
particular, that no place is filled with a token more than once. To characterise acyclic nets
which are not well-formed, we use the Scenarioacnet and Enabledt formulas, as follows:

NotWellFormedacnet ≜ Scenarioacnet∧
∨
t∈T

(
Enabledt ∧

∨
u∈•(t•)

inu
)

Intuitively, in the above formula, Scenarioacnet ‘selects’ one of the executions (scenarios)
of acnet which does not violate well-formedness, and the second part means that there is a
transition which can be executed after that violating well-formedness.
The size of the above formula is bounded by |T |+6 · |T | ·min{|F |2, |P| · |T |}.

Hence we can use NotWellFormedacnet to find out whether acnet is well-formed after
translating it into CNF and feeding into a SAT-solver.

Example 68. The acyclic net in Figure 6.4 is not well-formed as scenarioacnet({e,b,d})
enables transition a which violates well-formedness (firing a violates Definition 3.2.11 as
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Fig. 6.4 A non-well-formed acyclic net with assignment variables.

that causes p3 to be filled twice). This is confirmed by the the assignment f illustrated in
Figure 6.4, as we have the following:

• Scenarioacnet[ f ] = 1.

• Enableda[ f ] = 1.

• (
∨

u∈•(a•) inu)[ f ] = (ina∨ inb)[ f ] = (0∨1) = 1.

Hence, NotWellFormedacnet[ f ] = 1. ⋄

Proposition 6.3.4. An acyclic net acnet is well-formed iff NotWellFormedacnet does not have
a satisfying assignment.

Proof. Recall that we have (see Section 6.3.2 on Page 149):

NotWellFormedacnet ≜ Scenarioacnet∧
∨
t∈T

(
Enabledt ∧

∨
u∈•(t•)

inu
)

(⇒) Assume that NotWellFormedacnet has a satisfying assignment f . Then, by Proposi-
tion 6.3.2(1), acnet′ = acnet| f−1(1) is a scenario of acnet. Then there is a step sequence σ

which induces acnet′. Moreover, there is transition t such that Enabledt [ f ] = 1 and there is
u ∈ •(t•) such that f (inu) = 1. This means that σ{t} is a step sequence of acnet and u occurs
in σ . Hence acnet is not well-formed.

(⇐) Assume that acnet is not well-formed. Then there is a step sequence σ =U1 . . .Uk

such that σ does not meet the conditions in Definition 3.2.12, but σ ′ =U1 . . .Uk−1 meets the
conditions in Definition 3.2.12. Hence, σ ′ induces a scenario captured by scenarioacnet(σ

′)

and there are two transitions, t ∈ Uk and u ∈ σ ′ such that t• ∩ u• ̸= ∅. From Proposi-
tion 6.3.2(2) there is a satisfying assignment f for the formula Scenarioacnet such that
acnet| f−1(1) = scenarioacnet(σ

′), where the assignment function f is such that f (inz) = 1 for
z ∈ σ ′, and f (inz) = 0 for z /∈ σ . Therefore, the conjunction of Scenarioacnet, Enabledt , and
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inu evaluates to 1 under f . Hence, we conclude that the NotWellFormedacnet formula has a
satisfying assignment.

6.3.3 Not dead transitions

Definition 3.2.12(2) asserts that a well-formed acnet has non-dead transitions if each transi-
tion is guaranteed to occur in at least one of its steps sequences. In other words, if for each
transition t there is a scenario that contains t.
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Fig. 6.5 A well-formed acyclic net with a dead transition c (see Example 69).

Example 69. Consider the backward deterministic acyclic net acnet in Figure 6.5. The two
transitions g and h are in direct conflict. Also, they are both required for c to be enabled.
Hence, c is in a self-conflict. This means that c can never be executed, i.e., there is no step
sequence σ ∈ sseq(acnet) such that c ∈

⋃
σ . Therefore, c is not included in any scenario of

scenarios(acnet), and can be seen as an irrelevant part of acnet.
This is confirmed by evaluating the relevant boolean formulas. For the acyclic net in

Figure 6.5, we can see that Scenarioacnet is not satisfiable for any assignment r such that
r(inc) = 1 since

Causalityacnet = (inx→ 1)∧ (ing→ inx)∧ (inh→ inx)∧
(in f → inx)∧ (inc→ (ing∧ inh))

NoForwardConflictacnet = ¬(ing∧ inh)

NoBackwardConflictacnet = ¬(inh∧ ing)

Hence, if r(inc) = 1 and Causalityacnet[r] = 1 then we have r(ing) = r(inh) = 1, and so
NoForwardConflictacnet[r] = 0. Therefore, Scenarioacnet[r] = 0. This means there is no
scenario such that c belongs to it. ⋄
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Checking whether a transition t belongs to at least one scenario can be done using the
following formula:

NotDeadt
acnet ≜ int ∧Scenarioacnet .

Example 70. Consider again the acyclic net in Figure 6.5. In Example 69, we showed that
there is no scenario satisfiable by Scenarioacnet in which c is included. This can be tested
using the formula:

NotDeadc
acnet = inc∧Scenarioacnet

As another example, verifying the not dead property for transition h in Figure 6.3 can be done
by observing that with the assignment r in Figure 6.3 the corresponding formula evaluates to
1 as shown below:

NotDeadh
acnet[r] = inh[r]∧Scenarioacnet[r] = 1∧1 = 1 .

⋄

Proposition 6.3.5. A well-formed acyclic net acnet has only non-redundant transitions iff
the formula NotDeadt

acnet is satisfiable for every t ∈ T .

6.3.4 Marked places and deadlocked scenarios

Consider a scenario of a well-formed acyclic net acnet. Then a place p ∈ P is marked when
at least one transition in its preset has been executed and no transition in its postset has
consumed the token from p. This can be captured as follows:

Markp ≜
∨

t∈•p
int ∧

∧
u∈p•
¬inu

where
∨

t∈•p int is omitted if p has no input transitions, and
∧

u∈p•¬inu is omitted if p has no
output transitions. The size of the above formula is bounded by 2 · |T |, and it can be used to
answer questions such as “is a specific marking reachable?”.

The following formula can be used to check whether there is a reachable marking in which
all places in a non-empty set M ⊆ P are marked:

ReachM
acnet ≜ Scenarioacnet ∧

∧
p∈M

Markp
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Example 71. To illustrate how to use Markp to verify that place p1 in Figure 6.2 is marked
under the assignment r indicated there, we have the following:

Markp1 [r] = ina[r] ∧ (¬in f ∧¬ine)[r] = 1∧1 = 1

Also, in Figure 6.2, M = {p1} is reached by the scenario scenarioacnet({a}) induced by r as
the next formula is satisfied:

Reach{p1}
acnet[r] = Scenarioacnet[r]∧Markp1[r] = 1∧1 = 1

⋄

Proposition 6.3.6. Let acnet be a well-formed acyclic net and M be a non-empty set of
its places. Then there is a reachable marking M′ satisfying M ⊆ M′ iff ReachM

acnet has a
satisfying assignment.

Proof. Recall that the following hold (see Section 6.3.4 on Page 152):

ReachM
acnet ≜ Scenarioacnet ∧

∧
p∈M

Markp and Markp ≜
∨

t∈•p
int ∧

∧
u∈p•
¬inu.

(⇒) Let M′ be a marking reachable through step sequence σ such that M ⊆M′. Since
acnet is well-formed, from [8], σ induces scenario acnet′ = Scenarioacnet(σ) Since acnet′ is
a scenario, then from Proposition 6.3.2(2), there is a satisfying assignment for Scenarioacnet

such that acnet| f−1(1) = acnet′. This implies that the assignment function f is such that
f (int) = 1 for t ∈ σ , and f (int) = 0 for t /∈ σ .

Also, a place p ∈ M is marked when a transition t ∈ •p is fired and belongs to σ

and no transitions u ∈ p• have consumed such token, which implies that f (int) = 1, and
f (inu) = 0 for each u ∈ p•. Hence, Markp[ f ] = 1, which implies Scenarioacnet[ f ] = 1 and∧

p∈M Markp[ f ] = 1. We then conclude that ReachM
acnet has a satisfying assignment.

(⇐) Let f be an assignment such that ReachM
acnet[ f ] = 1. Since Scenarioacnet[ f ] = 1, then

from Proposition 6.3.2(1) acnet| f−1(1) is a scenario of acnet. Also, acnet is well-formed
and so there is a step sequence σ =U1 . . .Uk such that acnet| f−1(1) = scenarioacnet(σ), and
f (int) = 1 for every t ∈ σ , and f (int) = 0 for every t /∈ σ . Since

∧
p∈M Markp[ f ] = 1, then

all the places p ∈M are marked by scenarioacnet(σ). Hence, M′ reached by scenarioacnet(σ)

is such that M ⊆M′.

No execution of an acyclic net acnet = (P,T,F) can be extended indefinitely. However,
one may consider a scenario as deadlocked if it is maximal and some of the places it marks do
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not belong to Mfin
acnet. (Verification of deadlock-freeness using SAT-solvers has been studied

in, e.g., [106, 1, 90].) All the deadlocked scenarios can be captured by the following formula:

DeadlockScenarioacnet ≜ MaxScenarioacnet ∧
∨

p∈P\Mfin
acnet

Markp

The size of MaxScenarioacnet is bounded by |T |+5 · |T | ·min{|F |2, |P| · |T |}+2 · |P| · |T |.
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Fig. 6.6 A deadlocked maximal scenario for the acyclic net in Example 72.

Example 72. According to the the assignment f illustrated in Figure 6.6 MaxScenarioacnet[ f ] =

1 and so {a,c,e} induce a maximal scenario. This maximal scenario is deadlocked as it
leads to the reachable marking {p4, p5} which marks a non-final place p4. We also have
Markp4[ f ] = 1 and p4 ∈ P\Mfin

acnet, and so DeadlockScenarioacnet[ f ] = 1. ⋄

6.3.5 Backward deterministic acyclic nets

In this section, we assume that each acyclic net is backward deterministic. In this case, some
formulas defined earlier can be simplified. For instance, the formula capturing causality
in Section 6.3.1, can be reduced by only considering the conjunction of all the transitions
causally related to a certain transition t. Also, the Scenarioacnet formula would be the con-
junction of Causalityacnet and NoForwardConflictacnet only as there is no backward conflict.
Enabledt and Markp formulas are similarly modified. Finally, since this section concerns only
backward deterministic nets, then there is no need for checking well-formedness property
as by Proposition 3.2.1 well-formedness holds for each backward deterministic acyclic net.
Below we introduce all the important modifications for these formulas.

• Causality: Causalityacnet ≜
∧

t∈T
(
int →

∧
u∈•(•t) inu

)
.

• Enabling: Enabledt ≜
∧

u∈(•t)•¬inu∧
∧

u∈•(•t) inu.
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• Scenario: Scenarioacnet ≜ Causalityacnet∧NoForwardConflictacnet.

• Place marking (for p ∈ P and t ∈ T satisfying {t}= •p): Markp ≜ int ∧
∧

u∈p•¬inu.

• Checking well-formedness is not needed as acnet is well-formed.

6.3.6 Detecting confusion in acyclic nets using SAT

The papers [90] and [24] used FDR model-checker to detect conflict and confusion after
translating concurrent Petri nets into Communicating Sequential Processes (CSP). Their
approach of detecting confusion is related to trace theory and it addressed only the structural
properties of confusion. Also, [31] proposed an algorithm for detecting confusion by
analysing its structure. In this section, an extended version of the work in [14] is introduced
by constructing a satisfiability checking for detecting confusion in a given acyclic net.
Our approach however considers both aspects of confusion: structural and dynamic. In
particular, the structural constraints are captured by the conditions identified according to
Definition 3.4.1 on Page 34. This static information is related to the set of distinct transitions
e, f ,h involved in a potential confusion. For instance, the below captures the static conditions
of symmetric confusion:

PotSymConfusedacnet = {(e,h, f ) | e#0h ∧ f #0h ∧ •e∩ • f =∅}

With the above, the dynamic constrains of symmetric confusion can be obtained as shown
below:

Symconfusedacnet ≜ Scenarioacnet ∧
∨

(e, f ,h)∈PotSymConfusedacnet

Enablede ∧ Enabled f ∧ Enabledh

Similarly, the asymmetric case can be detected using the following formula:

Asymconfusedacnet ≜ Scenarioacnet ∧
∨

(e, f ,h)∈PotAsymConfusedacnet

(
Enablede∧Enabled f ∧¬Enabledh ∧

∧
p∈•h\ f •

Markp
)

where PotAsymConfusedacnet = {(e,h, f ) | e#0h∧ • f ∩ •h = • f ∩ •e = ∅} is set of distinct
transitions e, f ,h ∈ T involved in a potential asymmetric confusion. Hence, detecting any
confusion for a given acnet can in general be done using the following formula:

Confusionacnet ≜ Symconfusedacnet∨ Asymconfusedacnet
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Proposition 6.3.7. An acyclic net acnet is confused iff Confusionacnet has a satisfying
assignment.

Proof. Follows directly form Definition 3.4.1 in Section 3.4 on Page 34.

Example 73. Consider the acyclic nets in Figure 6.7 which shows the two types of confusion.
In Figure 6.7(a), we have a symmetric confusion for scenarioacnet({d}). The structural
constraints are represented by PotSymConfusedacnet = {(a,b,c)}. Then, the symmetric
confusion is detected by the following formula:

Symconfusedacnet ≜ Scenarioacnet ∧ Enableda ∧ Enabledb ∧ Enabledc

which evaluates to 1∧1∧1∧1 = 1 under the assignment shown in Figure 6.7(a).
Similarly, the acyclic net in Figure 6.7(b) exhibits an asymmetric confusion for scenarioacnet({b}).

The structural constraints are represented by PotAsymConfusedacnet = {(a,b,c)}. Then, the
asymmetric confusion is detected by the following formula:

Asymconfusedacnet ≜ Scenarioacnet ∧ Enabledb∧Enableda∧¬Enabledc ∧Markp2

which evaluates to 1∧1∧1∧1∧1 = 1 under the assignment shown in Figure 6.7(b). ⋄
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Fig. 6.7 Symmetric confusion (a) and asymmetric confusion (b) in an acyclic net with
assignment variables.

156



6.4 Verifying properties of CSA-nets

6.4 Verifying properties of CSA-nets

In this section, we extend SAT-encodings concerning the properties of acyclic nets to include
CSA-nets. It is worth noting that this is the first work aimed at transforming CSA-nets
behavioural properties into SAT problems.

The development and intuitive meaning of formulas needed to check the basic properties
of CSA-nets are similar as in the case of acyclic nets. Therefore, we will avoid repeating
some of the explanations and formal properties. Also, the sizes of formulas introduced for
CSA-nets are similar to those developed for acyclic nets with the number of transitions being
sometimes replaced by the number of syn-cycles.

Identifying scenarios and maximal scenarios

Similarly to identifying a scenario in a given acyclic net, we say that a set of transitions
T ′⊆ Tcsan induces a scenario of csan if the following three constraints are satisfied: Causality,
No Forward Conflict, and No Backward Conflict. The next definition and proposition make
this more formal.

Definition 6.4.1 (restricting CSA-net). The restriction of a CSA-net

csan = (acnet1, . . . ,acnetn,Q,W )

to T ′ ⊆ Tcsan is

csan|T ′ ≜ (acnet1|T ′, . . . ,acnetn|T ′,Q′,W |(Q′×T ′)∪(T ′×Q′)),

where Q′ = Q∩postacnet (T
′). ⋄

Proposition 6.4.1. The following are equivalent for T ′ ⊆ Tcsan:

1. csan|T ′ ∈ scenarios(csan).

2. csan|T ′ is a CSO-net and precsan (T
′)\Minit

csan ⊆ postcsan (T
′).

Proof. This result can be shown in a similar way as Proposition 6.3.1. The only important
modification is to consider the syn-cycles rather than individual transitions.

The following boolean variables will be used in the construction of Scenariocsan and the
translation into SAT problem.
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• For every t ∈ Tcsan, we have a variable int tracing that t belongs to a scenario.

The constraints on the above variables are defined, following Proposition 6.3.1, as follows:

• To ensure that all non-initial pre-places of T ′ received tokens from T ′:

Causalitycsan ≜
∧

t∈Tcsan

(
int →

∧
p∈precsan (t)\Minit

csan

∨
u∈precsan (p)

inu
)

• To ensure that scenario has no forward conflicts:

NoForwardConflictcsan ≜
∧

t∈Tcsan

∧
u∈postcsan (precsan (t))\{t}

¬
(
int ∧ inu

)
• To ensure that scenario has no backward conflicts:

NoBackwardConflictcsan ≜
∧

t∈Tcsan

∧
u∈precsan (postcsan (t))\{t}

¬
(
int ∧ inu

)
Note that sometimes parts of the above formulas may be omitted, similarly as in the case of
acyclic nets. Then the formula which characterises all the scenarios of csan is:

Scenariocsan ≜ Causalitycsan∧NoForwardConflictcsan∧NoBackwardConflictcsan

The satisfying assignments of Scenariocsan identify precisely all the scenarios of csan which
is not necessary well-formed.

Example 74. All the transitions in Figure 6.8 which have value 1 assigned by the indicated
assignment r represent a scenario for csan because we have:

Causalitycsan[r]

= (in f → 1)[r]∧ ((ind → inA)[r]∧ (ine→ in f )[r]∧ (inA→ ine)[r]∧
(inB→ (ine∧ inC))[r]∧ ((inC→ (in f ∧ inB)))[r])

= (0→ 0)∧ (1→ 1)∧ (0→ 1)∧ (1→ (1∧1))∧ (1→ (1∧1))∧ (1→ 1) = 1
NoForwardConflictcsan[r]

= (¬(inA∧ inB)[r]∧¬(inB∧ inA)[r]) = ¬(0∧1)∧¬(1∧0) = 1.
NoBackwardConflictcsan[r]

= (¬(inA∧ inB)[r]∧¬(inB∧ inA)[r]) = ¬(0∧1)∧¬(1∧0) = 1

Hence, Scenariocsan[r] = 1∧1∧1 = 1. ⋄
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Fig. 6.8 A CSA-net with a scenario indicated by transitions assigned 1.

Proposition 6.4.2. Let csan be a CSA-net.

1. If f is a satisfying assignment for Scenariocsan then csan| f−1(1) is a scenario of csan.

2. For every scenario csan′ of CSA-net csan, there is a satisfying assignment f for
Scenariocsan such that csan| f−1(1) = csan′.

Proof. This result can be shown in a similar way as Proposition 6.3.2. The only important
modification is to consider the syn-cycles rather than individual transitions.

The formula Scenariocsan represents scenarios which are not necessarily maximal. In
order to capture the maximality of a scenario, we need to evaluate the enabledness property
as any scenario is maximal iff there are no enabled steps that can be executed. In this case,
however, sync-cycles (which include individual transitions) rather than individual transitions
need to be checked for enabledness.

The following formula captures the enabledness of a syn-cycle S ∈ syncycles(csan):

EnabledS ≜
∧

u∈postcsan (precsan (S))

¬inu ∧
∧

p∈precsan (S)\(Minit
csan∪(Q∩postcsan (S)))

∨
u∈precsan (p)

inu

Thus S is a set of synchronised transitions whose enabledness depends on each other. For
instance, in Figure 6.8, B and C are transitions involved in a synchronous communication
and S = {B,C} is a syn-cycle.
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Finally, the following formula represents the set of transitions that induce a maximal
scenario of a well-formed csan:

MaxScenariocsan ≜ Scenariocsan ∧
∧

S∈syncycles(csan)

¬EnabledS .

Example 75. The scenario induced by { f ,e,B,C} in Figure 6.8 is also a maximal scenario
as there is no enabled syn-cycle. Moreover, MaxScenariocsan[r] = 1 for the assignment r

indicated there. ⋄

6.4.1 Well-formedness

Translating well-formedness into SAT formula requires the two formulas Scenariocsan and
EnabledS introduced earlier. Informally speaking, csan is not well-formed if there is a subset
of transitions that induce a scenario which does not violate well-formedness and there is
an enabled sync-cycle S such that its execution violates well-formedness. The following
formula detects whether a given csan is not well-formed:

NotWellFormedcsan ≜ Scenariocsan ∧
∨

S∈syncycles(csan)

(
EnabledS ∧

∨
u∈precsan (postcsan (S))

inu
)
.
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Fig. 6.9 A non-well-formed CSA-net with assignment variables.

Example 76. Figure 6.9 displays a non-well-formed CSA-net (the same in Figure 4.3) with
the assignment r. According to r, Scenariocsan[r] = 1. Also, Enabledh[r] = 1, r(ine) = 1 and
e ∈ precsan (postcsan (h)). Hence, NotWellFormedcsan[r] = 1∧ (1∧1) = 1. ⋄

160



6.4 Verifying properties of CSA-nets

Proposition 6.4.3. A CSA-net csan is well-formed iff NotWellFormedcsan does not have a
satisfying assignment.

Proof. This result can be shown in a similar way as Proposition 6.3.4. The only important
modification is to consider the syn-cycles rather than individual transitions.

6.4.2 Not dead transitions, marked places, and deadlocked scenarios

The absence of dead transitions of csan can be verified in the same way as for an acyclic net,
by checking that, for every t ∈ Tcsan, the following formula has a satisfying assignment:

NotDeadt
csan ≜ int ∧ Scenariocsan

The formula for checking whether a place p is marked by a scenario is also similar as before:

Markcsan
p ≜

∨
t∈precsan (p)

int ∧
∧

u∈postcsan (p)

¬inu

Moreover, checking whether a set of places M is marked by a scenario is achieved by:

ReachM
csan ≜ Scenariocsan ∧

∧
p∈M

Markcsan
p

Detecting deadlocked scenarios can then be done using the following formula:

DeadlockScenariocsan ≜ MaxScenariocsan ∧
∨

p∈Pcsan\Mfin
csan

Markp

Note that it is not required that the buffer places are empty in non-deadlocked markings.

Proposition 6.4.4. Let csan be a well-formed CSA-net and M be a non-empty set of its
places. Then there is a reachable marking M′ satisfying M ⊆M′ iff ReachM

csan has a satisfying
assignment.

Proof. This result can be shown in a similar way as Proposition 6.3.6. The only important
modification is to consider the syn-cycles rather than individual transitions.
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6.4.3 Backward deterministic CSA-nets

When csan is a backward deterministic CSA-net, some formulas defined earlier can be
simplified, for example:

Causalitycsan ≜
∧

t∈Tcsan

(
int →

∧
p∈precsan (precsan (t)) inu

)
EnabledS ≜

∧
u∈postcsan (precsan (S))¬inu ∧

∧
u∈precsan (precsan (S))\S inu

Then, the Scenariocsan formula is reduced to:

Scenariocsan ≜ Causalitycsan∧NoForwardConflictcsan

and the formula for marking place p with precsan (p) = {t} is:

Markp ≜ int ∧
∧

u∈postcsan (p)

¬inu

6.4.4 Detecting confusion in CSA-nets using SAT

This section extends the approach of detecting confusion in acyclic nets to CSA-nets. As
in the strategy of verifying the static constraints of confusion in acyclic nets, we provide
SAT-encoding for the structural features of confusion in CSA-net. In particular, the set of
syn-cycles involved in potential confusions are considered instead of individual transitions.
In the case of symmetric confusion, potential confusions are defined as follows, according to
the first part of Definition 4.8.1:

PotSymConfusedacnet = {(S1,S2,S3) | S1#0S3 ∧ S2#0S3 ∧ •S1∩ •S2 =∅}

Then the following formula detects symmetric confusion in a given csan:

Symconfusedcsan ≜ Scenariocsan ∧
∨

(S1,S2,S3)∈PotSymConfusedcsan

(
EnabledS1 ∧EnabledS2 ∧EnabledS3

)
The asymmetric case can be detected using the following formula:

Asymconfusedcsan ≜ Scenariocsan∧
∨

(S1,S2,S3)∈PotAsymConfusedcsan

(
EnabledS1∧EnabledS2∧¬EnabledS3∧

∧
p∈precsan (S3)\postcsan (S2)

Markp
)
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where PotAsymConfusedcsan captures the static constraints, according to the second part of
Definition 4.8.1, for syn-cycles involved in potential asymmetric confusions:

PotAsymConfusedcsan = {(S1,S2,S3) | S1#0S3 ∧ •S1∩ •S2 =∅ ∧ •S2∩ •S3 =∅}

Then, detecting any confusion can be done using the following formula:

Confusioncsan ≜ Symconfusedcsan∨Asymconfusedcsan

acnet1

acnet2

p1
1
A

B
0

p2

p3

p4 C
0

D
1

p6

p7

q1 q2

Fig. 6.10 A symmetric confusion in CSA-net with assignment variables.

Example 77. A symmetric confusion is depicted in Figure 6.10 (for the confused CSA-net
in Figure 4.5) together with a variable assignment r. From Example 40, we have

PotSymConfusedacnet = {(S1,S2,S3)},

where S1 = {A}, S2 = {D} and S3 = {B,C}. Also, we have

Symconfusedcsan[r] = Scenariocsan[r]∧EnabledS1[r]∧EnabledS2[r]∧EnabledS3[r] = 1.

⋄

Proposition 6.4.5. A CSA-net csan is confused iff Confusioncsan has a satisfying assignment.
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Proof. It follows directly from Definition 4.8.1 in Section 4.8 on Page 96.

6.5 Verifying properties of BSA-nets

In this section, we discuss how to extend the SAT-based verification approach developed for
acyclic nets and CSA-nets to BSA-nets.

In BSA-nets, there are some additional constraints that are not required in acyclic nets
and CSA-nets. For instance, Definition 5.2.3 asserts that all markings of lower-level and
upper-level nets must respect the start and end of the phases. In turn, that imposes restrictions
over the steps enabledness. Therefore, before constructing boolean formulas for checking
behavioural properties of BSA-nets, translating phase and phase-consistent markings into SAT-
encodings is essential. The underlying CSA-net of a BSA-net bsan, i.e., csan = csan(bsan)

as in Definition 5.2.2, will be used in constructing verification formulas.
In the rest of this section, we assume that bsan and csan = csan(bsan) are as Defini-

tions 5.2.1 and 5.2.2, together with other associated definitions.

6.5.1 Identifying valid executions for BSA-nets

The phase of a place p belonging to hacneti is the set of markings in lcsani reached
along a step sequence starting from βp and ending at one of the markings βr, for r ∈
posthacnet (posthacnet (p)). The following formula captures this constraint:

Phasep ≜
∨

R∈phase(p)

( ∧
q∈R

Markq∧
∧

q∈Plcsani\R
¬Markq

)
The idea of verification of phase-consistent marking in BSA-nets is to separate the static and
the dynamic part. The static part is related to calculating markings belonging to the phase of
a place p which is captured by the formula Phasep.

The dynamic part is to verify that a marked place p in hacnet is matched by a marking in
phase(p). After introducing the Phasep formula, it is possible now to capture formally this
constraint as it is shown below:

PhConsMarkingp ≜ Markp→ Phasep
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6.5 Verifying properties of BSA-nets

And for the whole BSA-net we have:

PhConsMarkingbsan ≜
∧

p∈Phacnet

Markp→ Phasep

The above formula translates the second part of Definition 5.2.3. Basically, this formula
ensures that the makings of lower-level acyclic nets belong to the phases corresponding to
the markings of the upper-level acyclic nets.

In this section we do not provide a formula for characterising exactly all the scenarios of
bsan. We leave this for the future work. Instead, we discuss some initial findings and ideas.

We first observe that the step sequences of bsan (behaviours) are those step sequences
of csan(bsan) which are based on phase-consistent marking. In particular, each such step
sequence must end at a phase-consistent marking. It is therefore the case that the set of
all step sequences of csan(bsan) which end at phase-consistent markings provide an over-

approximation of the step sequences of bsan. Such a characterisation can be clearly useful
to verify various behavioural properties of bsan’s behaviours. The (over-approximated)
characterisation of the behaviours of bsan is given by the following formula:

PhConsScenariobsan ≜ Scenariocsan(bsan) ∧ PhConsMarkingbsan

hacnet

lcsan

p1
1
x

0
y

p2

p3

p4

1
e p5

1
a

0
b

p6p7

Fig. 6.11 BSA-net with assignment variables.

Example 78. Figure 6.11 illustrates a BSA-net with a variable assignment r. The set of the
markings at lcsan included in phase(p1) is as follows:

phase(p1) = {{p4},{p5},{p6},{p7}}.
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To check that using the Phasep1 formula holds under r, we obtain:

Phasep1[r] = (Markp4 ∧¬Markp5 ∧¬Markp6 ∧¬Markp7)[r]∨
(Markp5 ∧¬Markp4 ∧¬Markp6 ∧¬Markp7)[r]∨
(Markp6 ∧¬Markp4 ∧¬Markp5 ∧¬Markp7)[r]∨
(Markp7 ∧¬Markp4 ∧¬Markp5 ∧¬Markp6)[r]

(1∧1∧1∧1)∨ (0∧0∧1∧1)∨ (0∧0∧1∧1)∨ (0∧0∧1∧1)
1∨0∨0∨0 = 1

To ensure the marking is phase-consistent, the following are checked:

PhConsMarkingp1
[r] = Markp1[r]→ Phasep1[r] = 1→ 1 = 1

PhConsMarkingp2
[r] = Markp2[r]→ Phasep2[r] = 0→ 0 = 1

PhConsMarkingp3
[r] = Markp3[r]→ Phasep3[r] = 0→ 0 = 1

Moreover, Scenariocsan(bsan)[r] = 1 as the set of transitions {e,a,x} induces a valid scenario
scenariocsan(bsan)({e,a,x}). Therefore, PhConsScenariobsan[r] = 1. ⋄

As before, to evaluate the maximality of behaviours in BSA-nets, the enabledness property
needs to be captured. Here the problem is that, in addition to considering the constraint of
phase-consistent (current) marking, executing a step should also lead to a phase-consistent
marking.

Example 79. The BSA-net in Figure 6.12 shows two upper level acyclic nets with a
synchronous communication which forms a syn-cycle S1 = {t,u}. Executing S1 requires the
execution of two different syn-cycles, S2 = {e} and S3 = {d}, at different lower acyclic nets
due to the β relation which enforces consistency between the two levels. ⋄

We want to capture conditions for the enabledness of a step U . The following formula
checks its enabledness:

PhConsEnabledU ≜ EnabledU ∧ PhConsMarking’bsan ∧
∧
t∈U

in′t = 1 ∧
∧

t∈Tbsan\U
in′t = int

where the variables in′t represent the transitions fired before and in U , PhConsMarking’bsan is
PhConsMarkingbsan with each int replaced by in′t , and EnabledU is the enabledness formula
introduced for csan(bsan).
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Fig. 6.12 An illustrative example of verifying enabledness property in BSA-nets.

Example 80. Consider bsan shown in Figure 6.13 together with the assignment r in-
dicated there. Let U = {S1,S2,S3}, where S1 = {t,u}, S2 = {e} and S3 = {b}. Then
PhConsEnabledU [r] = 1 and so the boolean formula correctly identifies enabled step. ⋄

Checking of other properties can be built upon the formulas we provided above.

6.6 Conclusion

This chapter developed a theoretical framework that concerns the fundamentals of SAT-based
verification of acyclic nets, CSA-nets. Extending our work in [14], behavioural properties
of BSA-nets were also investigated to enhance the applicability of the proposed verification
method. Booleans variables are associated with the transitions to find a satisfying assignment
for the formula that verifies certain behavioural properties. For instance, checking that a set
of transitions induces a scenario is obtained by checking that they are causally dependent,
forward and backward conflict free. Also, the two cases of confusion are detected via a
formula that considers the structural and behavioural aspects of confusion.

The challenges in this chapter were related to verifying the behavioural properties of
bsan. That because most of its behavioural properties are defined in terms of the underlying
csan.The implication is that the formulas provide an over approximation of behaviour
characterisation of bsan. In order to define formulas that check exactly bsan behaviour
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Fig. 6.13 An illustrative example of verifying an enabled step in BSA-nets.

characterisation, steps and step sequences need to be defined for bsan. However, we leave
that for the future work.

Also, an important future direction of the current work is concerned with an implementa-
tion of formulas developed here in SONCraft tool [85]. This would allow comparisons of the
efficiency of the proposed model checking technique with other approaches (note that verifi-
cation problems considered here are NP-complete; see, e.g., [45]). In particular, a comparison
with model checking based on finite prefixes of net unfoldings [46, 70] after adapting it to
CSA-nets and their step sequence execution semantics. In this case, the branching processes
of CSA-nets unfolding algorithm presented in [84] can be used. However, even the unfolding
of acyclic nets, where the forward and backward conflict are allowed, would in the worst
case generate exponential finite prefixes [71]. The method proposed in this chapter does not
suffer from a similar problem.
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Chapter 7

Concluding Remarks

7.1 Summary

In this thesis, we have developed a concurrent probabilistic framework for acyclic nets,
CSA-nets, and BSA-nets.

In Chapter 3, acyclic nets and their structural and behavioural specifications are considered.
Resolving conflicts probabilistically is discussed throughout providing the method of calcu-
lating probabilities in acyclic nets. The crucial contribution of this chapter are the approaches
of avoiding the confusion from acyclic nets. These approaches have been formally defined
and explained using several illustrative examples (see Section 3.6.1 and Section 3.6.6 ).

In Chapter 4, the basic concepts of Communication Structured Acyclic Nets (CSA-nets)
were considered. The initial version of this concept was built on occurrence nets (see [84,
78, 105, 11, 23, 92]), and it aims to provide a notation for representing and recording the
activities of complex evolving systems and the interaction of their components. In this
chapter, the model is generalised by being based on acyclic nets. Calculating probabilities is
extended so that conflict between set of transitions represented by syn-cycles is resolved by
probability estimation. Moreover, the definition of confusion and the techniques of handling
it are extended.

Chapter 5 extended the probabilistic framework so that probabilities are represented by
means of behavioural relation at the upper-level. In behavioural relation, parts of a complex
activity are abstracted by another system. This abstraction mechanism is embodied at two
levels, and the upper-level provides a simpler abstracted representation of the details captured
by the lower-level. In this chapter, BSA-nets are extended so that the structure of the upper-
level nets are not line-like as in [78, 84, 105, 11, 92]. However, only free-choice structure
is allowed for the upper-level nets. The probabilities of certain alternative behaviours at

169



Concluding Remarks

the lower-level are represented by the corresponding behaviours at the upper-level. More
precisely, calculating probabilities is extended in such way that the weights of the lower-
level alternatives are used to assign the probabilities at the upper-level. This is a novel
representation of probabilities in the area of concurrent probabilistic models. Exploiting the
free-choice structural constraint of the upper-level nets motivated us to propose a new idea of
handling confusion. More precisely, all the alternative behaviours of the lower-level net with
the presence of confusion are abstracted by the processes of the upper-level free-choice net.
Hence, only the behaviours where confusion is not present are captured.

Chapter 6 provided a method to make the probabilistic framework usable in applications.
A SAT-based model checking was proposed in order to formally verify the behavioural
properties of acyclic nets, CSA-nets, and BSA-nets. The proposed formulas allow to check,
e.g., whether a set of transitions induce a valid behaviour, and to detect confusion.

7.2 Aim and Objectives

This thesis aimed to develop a theoretical concurrent probabilistic framework based on
CAS-nets and their behavioural abstraction and propose approaches of removing confusion.
We believe the research work presented in this dissertation makes an original and significant
contribution to this aim. We have already listed key contributions in Chapter 1, Section
1.2, and we provide further context for this here by reviewing the results achieved for each
objective.

1. A survey of the existing approaches of removing confusion in probabilistic Petri
nets

There is a large body of work in probabilistic Petri nets considering handling confu-
sion. We have fulfilled this objective by reviewing some studies that have proposed
techniques of handling confusion. For example, the work introduced by [1] and [2]
provided an approach of handling confusion by means of branching cells in such way
that a net is decomposed dynamically. The most recent theory proposed by [26] offers
a new approach for removing confusion by static decomposition of branching cells.
Additional investigation about other approaches for removing confusion are explored
in Chapter 2. Even though that our survey of the previous studies concern removing
confusion has provided us good understanding of the issue, we can’t guarantee that we
have covered all the work in this area.
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2. A theoretical probabilistic framework for the analysis of cluster-acyclic nets and
CSA-nets, and different approaches for removing confusion

Satisfying this objective requires developing various results. We have developed
foundation theory of cluster-acyclic nets. In particular, we have defined the formula
of calculating probabilities in a single acyclic net. We showed with some illustrative
examples how the presence of confusion can affect calculating the probabilities. For
example, we have proved formally that in a confusion-free acyclic net the conflict
set of a transition is constant for all the executions of each scenario, and hence the
probabilities can be calculated. Two approaches of removing confusion are developed.
Approach A (motivated by the work in [26]) concentrates on markings M included in
the pre-places of a cluster. In Approach B, only the binary synchronised acyclic nets are
considered. A key result is that the constructions produce confusion-free nets. Proving
such a property is based on ensuring that the executions of resulting nets satisfy the
structure of free-choice or extended free-choice nets, where the conflict transitions are
always enabled together at the same marking. These results and others are proved in
Chapter 3. In Chapter 4, we have formally extended these results to a set of interacting
acyclic nets captured by CSA-nets. Precisely, the formula of calculating probabilities
is extended to consider syn-cycles instead of transitions. Moreover, the definition
of confusion is extended in a similar way. The core contribution of Chapter 4 is the
proposed approach of handling confusion in CSA-nets as presented in Section 4.9.

3. A theoretical probabilistic framework for the analysis of BSA-nets, and an ap-
proach for handling confusion in BSA-nets

To satisfy this objective we first extended the model of BSA-nets discussed in [78,
106, 105, 84, 11, 92]. In particular, the upper-level nets are defined as free-choice

acyclic nets instead of being line-like in order to represent alternatives in a given
lower-level behaviour. Being able to represent alternative behaviours motivated us to
extend the probabilistic framework so that probabilities are represented at the upper-
level nets. In this case, the probability of a upper-level transition is derived from the
weights associated with the lower-level transitions that are ascribed to it.The formula of
calculating probabilities in CSA-nets is reused and the obtained results are represented
at the upper level. Moreover, we propose a preliminary idea of controlling confusion
in BSA-nets. More precisely, exploiting the structural constraints of upper-level nets,
behavioural relation is used to filter out undesirable representation of a given behaviour.

4. A SAT-based verification for CSA-nets and BSA-nets
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We have fulfilled this objective by investigating the development of a SAT-based
model checking technique for our framework. We formalise important behavioural
specifications of CSA-nets and BSA-nets as satisfiability formulas. For instance, we
show how the presence of confusion can be detected using a suitable SAT formula.
Checking of other crucial behavioural properties is discussed in Chapter 6.

7.3 Challenges

1. Fully behaviour preservation

Simulating all the executions of the step sequences in the confusion-free version of an
acyclic net was a major challenge. Even though that our encoding preserves all the
maximal scenarios, some of their executions can’t be simulated. The reason was the
additional causality between the transitions whose some of their postset and preset
belong to the negative places. Also, in the encoding, the transactions are computed
which are the maximal step sequences. In fact, we established a crucial result in
Theorem 3.6.2 that all the executions of the constructed net can be regarded as the
executions of the original one, however, the reverse inclusion does not hold. We believe
that proposing a general approach of removing confusion in concurrent systems is
quite complicated. Hence, imposing reasonable restrictions is needed. For instance,
we require the ordering relation over the maximal clusters to be strict partial order.
Consequently, fully behaviour preservation would be impossible.

2. Dealing with a confused acyclic net that is not a cluster-acyclic

The main idea of the approaches of removing confusion presented in this thesis is
to delay the execution of some transitions such that all the conflicting transitions are
enabled together. That is due to the constraint imposed over the maximal clusters
to be strict partially ordered. In this case, it is possible to add negative places to
capture the additional causality between the transitions belong to consecutive maximal
clusters. However, if the strict ordering relation over the clusters is not satisfied, then
the approaches proposed in this thesis are not applicable. Figure 3.20 showed an
example of this case.We proposed an initial idea to handle this situation in Section
3.6.7. The key solution was to repair the acyclicity over the clusters by adding auxiliary

transitions. However, it turned out that adding more information, for instance time

would be useful to address this issue efficiently.

3. Providing a formula to calculate probabilities in BSA-nets
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7.4 Future work

In Chapter 3, we formally defined a formula that calculates the probabilities for the
maximal steps sequences. Basically, the probabilities are calculated for the execution
histories captured by the maximal scenarios. Similarly, in Chapter 4, the formula was
extended to consider syn-cycles instead of transitions. It turned out that extending
the formula in Chapter 4 to calculate probabilities in BSA-nets is a major challenge.
Even though that in this thesis the definition of BSA-nets is extended by being based on
acyclic nets instead of being line-like, their calculating probabilities were not addressed
in this thesis. In fact, the the enabled steps in BSA-nets were defined in terms of the
underlying CSA-nets. In order to calculate the probabilities for the BSA-nets steps,
their definition need to be extended and defined explicitly. In this case, the phases and
the phase-consistent markings should be considered. Since, the current definition of
steps in BSA-nets is introduced in terms of csan(bsan) and based on phase-consistent
marking, then it is required that each such step sequence must end at a phase-consistent
marking. Therefore it provides only over approximation of the steps sequences of bsan.
We face this challenge again in Chapter 6 as we could not able to provide satisfiability
formulas that verifies exactly the behavioural properties of bsan.

Hence, for probabilistic analysis of bsan, we reused the formula defined in Chapter 4
to represent only the probabilities at the upper-level transitions. Extending the formula
would result in extending other results as well, however, that is left for the future work.

7.4 Future work

There are several directions along which the work contained in the current thesis could be
extended in the future.

1. Probability and Time

This thesis concerns probability estimation for transitions firing. Time can be added
to the probabilistic framework. Several attempts have been published related to
probabilistic Time Petri Nets (TPNs). [44] extended TPNs in a way that output arcs of the
transitions are defined as probabilistic hyperarcs. Firing a transition generates tokens
in its output places and one of its hyperarcs is chosen with probability distribution.
Each transition has its time interval and it is fireable if it is enabled and its clock has
value within its interval. If its interval period passed, then it will not be fired even if
it is enabled. Combining time and probability estimation in such a way may avoid
the case of confusion. In particular, we can enforce conflict transitions to have the
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same time interval to ensure that they are always fireable together. In the same vein,
TPNs were extended by associating a probability density function to the fixed firing
interval of each nondeterministic transition [130]. Extending the current thesis by
considering time can be investigated by using the work in [23] as a basis. It provides
time for related occurrence nets with alternative behaviours and is aimed to model
and reason about causally related and concurrent transitions whose time information
is not complete. Representing time for concurrent probabilistic models would be a
significant extension of CSA-nets.

2. Probabilistic Coloured CSA-nets

Coloured Petri Nets (CPNs) are extension of the standard Petri nets. They are a well
known formalism to represent synchronised components systems, communication
protocols, and distributed systems. In CPNs, tokens are associated with data values
which are the tokens’ colour. Probabilistic Coloured Petri Nets have been investigated
in [87, 113]. The work in [11] can be used to extend the current thesis to Probabilistic
Coloured CSA-nets. In this thesis, we proposed approaches of handling confusion.
Exploring further possibilities of how the confusion can be handled in Probabilistic
Coloured CSA-nets is an attractive direction of the current thesis.

3. Probabilistic model checking

The core of this thesis is the development of probabilistic framework for CSA-nets. Also,
in Chapter 6, we provided a SAT-based verification approach for various properties of
CSA-nets. An interesting direction of taking the current thesis forward is to develop
probabilistic model checking for CSA-nets. In this case, we could infer the probability
that a certain property holds. It would be an effective approach for formally checking
the quantitative features of systems. Probabilistic model checking in Petri Nets have
been discussed in [37, 51, 108].

4. Unfolding model checking for CSA-nets and tool support

It would be interesting to develop an effective unfolding based model checking ver-
ification for CSA-nets. [84] proposed unfolding algorithm for CSPT-nets. Complete
unfolding prefixes can then be generated before being fed to SAT-solvers in order to
verify the relevant behavioural properties. Such a model checking technique could
alleviate the state space explosion problem. Also, it would be a significant addition to
the SONCraft tool to implement prefix-based verification plug-in for CSA-nets.
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