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Abstract

This thesis proposes innovative methods to analyse road traffic collision data with

the aim of improving the evaluation of before/after safety schemes and predicting

collision hotspots, thereby addressing significant research problems in the field of

road safety. We integrate Bayesian inference, extreme value theory, and spatio-

temporal modelling to create robust and flexible models for these analyses.

Specifically, the research problems include evaluating and demonstrating the lim-

itations of frequently utilised techniques in the assessment of road safety schemes,

and the need for bespoke modelling formulations for atypical before/after studies.

Key findings are introduced in the form of a new model to capture treatment ef-

fect for randomised trials, and the application of extreme value theory to conduct

a traffic conflict-based before/after safety scheme evaluation. To account for spa-

tial correlation between neighbouring sites, Gaussian processes are included in the

expressions for the location and scale parameters governing the generalised extreme

value distribution. In terms of hotspot prediction, a Bayesian hierarchical model is

proposed to segregate the seasonal and zonal effects in monthly collision data from

multiple sites within fixed Traffic Administration Zones. Additionally, a spatio-

temporal model for collision rates is introduced that allows for serial dependence,

seasonality, and correlation between rates at nearby zones.

The key impact factors of this research are manifested in its practical applications

to real-world data, including collision rate data from north Florida, USA; traffic-

conflict data from Vancouver, Canada; STATS19 data from the UK; and collision

count data from Tyne and Wear, UK. These applications demonstrate the effective-

ness of the proposed approach in improving the evaluation of safety schemes and

predicting collision hotspots, thereby offering insights that can guide stakeholders

in making informed decisions on road safety interventions.
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Chapter 1

Background

1.1 Introduction

Road safety is specifically mentioned in the United Nation’s (UN) Sustainability

Development Goal (SDG) 3.6 (UN General Assembly, 2017):

‘By 2020, halve the number of global deaths and injuries from road

traffic accidents’,

and, UN SDG 11.2 (UN General Assembly, 2017):

‘By 2030, provide access to safe, affordable, accessible and sustainable

transport systems for all, improving road safety, notably by expanding

public transport, with special attention to the needs of those in vul-

nerable situations, women, children, persons with disabilities and older

persons’.

Improving road safety is an important objective across the world. Approximately

1.3 million people are killed each year as a result of road traffic collisions worldwide,

resulting in road traffic collisions being the 8th leading cause of death globally and

the leading cause of death for children and young adults aged 5–29 years (WHO,

2020). The emotional toll of road traffic injuries is immense, affecting individuals

and their families, and also causing substantial economic losses to nations as a whole.

These losses arise from the cost of treatment as well as lost productivity for those

killed or disabled by their injuries, and for family members who need to take time

off work or school to care for the injured. In 2020, a fatal accident was calculated

to cost in excess of £2 million in the UK; annually, the cost burden of road traffic

1



Chapter 1. Background

collisions in the UK is estimated to be in the billions of pounds (Department for

Transport, 2021). In Europe, the ‘Vision Zero’ initiative sets the target of zero fa-

talities by 2050 (Swedish Transport Administration, 2012). February 2020 saw the

introduction of the Stockholm Declaration at the Third Global Ministerial Confer-

ence on Road Safety: Achieving Global Goals 2030. Setting out a plan to achieve a

50% reduction in road deaths globally by 2030, and moving toward ‘Vision Zero’.

Clearly, it is in everyone’s best interest to reduce the number of collisions on the

road. Ways to do this include education, enforcing traffic laws to reduce dangerous

driving, such as drink driving or speeding, and improving infrastructure. This is

reflected in road deaths being three times higher in low-income countries than in

high-income countries. The number of deaths is still rising in these low to low-

medium income countries, as opposed to high-income countries that are seeing a

decrease. These statistics highlight the necessity of well-funded infrastructure for

road safety and the importance of improving road safety in poorer countries. This

comes with challenges as low-income countries don’t tend to have a vast amount of

data readily available, like in richer countries, hence it is vital to find ways to improve

road safety without relying on large, informative datasets. Statistics plays a crucial

role in the improvement of infrastructure. By analysing collision data, experts can

identify high-risk areas and patterns of incidents, which can inform the design and

implementation of road safety measures. The evaluation of the effectiveness of road

safety interventions, such as speed cameras, can inform the development of new

strategies to improve road safety. The prediction of future road traffic collisions can

help determine the most effective placement of traffic lights, speed bumps, and road

signs. Overall, statistics provide valuable insights that can inform evidence-based

policies and interventions to improve road safety and reduce the human and eco-

nomic costs of road traffic collisions.

1.1.1 Statistics and road safety

In road safety, statistical methods are commonplace. As statistical methods im-

prove, the opportunities for road safety organisations grow just as rapidly. How-

ever, in our experience, many of these organisations do not have the software or

resources to use the most up-to-date methods and are using outdated techniques

2



Chapter 1. Background

in their analyses. With modern technological advances made in recent decades,

the ease of data collection has led organisations to amass vast quantities of data.

Coined ‘Big Data’, this resource has outpaced current, common-practice analytical

tools and methods for analysing and forecasting data within reasonable time frames.

Therefore, further work must be done to bridge the gap between advanced statistical

methods used in academia and those used within organisations day-to-day. Road

safety GB (RSGB) is a national road safety organisation made up of representatives

from groups across the UK, including local government road safety teams. RSGB

recognised the importance of being data-driven and established their annual data

conference, ‘Joining the dots’, which aims to bring road safety experts – both aca-

demics and practitioners – together to showcase new developments and promote

better practice. Furthermore, the American Statistical Association’s (ASA) Trans-

portation Statistics Interest Group (TSIG) was established in 2002 with a vision to

become a leading organisation of experts involved in applying statistical methods

to transportation-related issues. Additionally, data science and statistics sessions

at large transport conferences such as the Transportation Research Board (TRB)

annual meeting have become more prominent.

1.1.2 Road safety schemes

In an attempt to reduce collisions and to make roads safer for all road users, road

safety schemes can be introduced. Many schemes are developed to change driver be-

haviour, such as speed cameras and traffic calming measures; others work to improve

the safety of the road itself, such as improving the drainage or the inclusion of crash

barriers. Those tasked with implementing and analysing these schemes are often

practitioners within road safety organisations. Practitioners wish to implement and

evaluate the effectiveness of such schemes with the potential of reducing collisions,

fatal or otherwise. Usually these schemes are introduced at carefully chosen loca-

tions, ones which have an unusually high number of collisions, considering the road

type and traffic flow. Typically, roads with a higher traffic flow will generally see

more collisions and so it is important to choose locations contextually, relative to

collision rates at similar locations. This project will be focused on the improvement

of assessing the effectiveness of safety schemes, and aiding practitioners in their

evaluations. The initial issue of determining the effectiveness of a given road safety

3
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treatment, or scheme evaluation, is choosing the optimal location for the scheme.

This requires extensive road safety data for, not only the proposed location, but

those similar to best inform the subsequent decision-making. Once implemented,

we wish to evaluate whether the scheme has been successful in improving road safety,

i.e. see a reduction in collisions/fatalities. Unfortunately, this usage of road safety

data can be problematic and lead to biased conclusions if the data are not handled

correctly, an effect felt most keenly where the datasets are relatively small.

Various road safety schemes are widely implemented to reduce road traffic acci-

dents. Some examples include the use of speed cameras, leading pedestrian intervals

(LPIs) at intersections, and vehicle activated signs. Speed cameras are designed to

detect and capture images of vehicles that are exceeding the speed limit. The aim

of these cameras is to encourage drivers to slow down and comply with speed limits.

Leading pedestrian intervals (LPIs) are signals at intersections that give pedestrians

more time to cross before vehicles are allowed to move forward. Vehicle activated

signs are electronic road signs that are triggered by the presence of vehicles, alerting

drivers to potential hazards such as sharp curves, speed limit changes, or pedestrian

crossings. These signs can help to increase driver awareness.

1.1.3 Prediction

Within road safety, current practice for treating such ‘hotspots’ is almost always

reactive: once a threshold level of collisions has been overtopped during some pre-

determined observation period, treatment is applied (e.g. road safety cameras).

However, more recently, methodology has been developed to predict collision counts

at potential hotspots in future time periods, with a view to a more proactive treat-

ment of road safety hotspots. Identifying road safety hotspots based on predicted

(rather than observed) counts avoids the need to wait until collisions (and hence ca-

sualties/fatalities) occur before applying road safety schemes. Of course, you must

have faith in the underpinning methodology, and the predictions produced by the

statistical models used. The usefulness of implemented forecasting models is al-

ways questionable, as mentioned by Box and Draper (1987), ‘Essentially, all models

are wrong, but some are useful’. Statistical methods for prediction are prominent

in road safety and have become much more accessible with the advancement of
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computers. More recently, practitioners have access to Bayesian analyses without

the need to fully understand the underpinning statistics. In road safety literature,

we refer to accident prediction models (APMs), and safety performance functions

(SPFs). These are typical regression models using characteristic information in or-

der to determine what a ‘typical” collision count at a site displaying a given set of

characteristics would be, in the case of a APM; or to evaluate the safety of a trans-

portation system in an SPF. Time-series models are also widely used in collision

count forecasting. These include use of autoregressive integrated moving average

(ARIMA) models and its extensions such as SARIMA and SARIMAX, where sea-

sonal factors and exogenous explanatory variables are included (Chen and Tjandra,

2014, Ihueze and Onwurah, 2018, Parvareh et al., 2018). ARIMA-based models

are popular univariate statistical methods used for short-term forecasting purposes.

Crash prediction model (CPM) studies commonly employ generalised linear models

(GLMs) and are proven to be successful as they effectively model the rare, random,

sporadic, and non-negative collision data. The generalised linear regression methods

for CPM development mainly include Poisson regression and its various extensions,

such as zero-inflated Poisson regression, negative binomial regression, and Poisson

lognormal regression (El-Basyouny and Sayed, 2009a, Miaou et al., 1992, Sawalha

and Sayed, 2006, Shankar et al., 2003).

1.1.4 Aims and objectives

Throughout this research, we are committed to pioneering innovative analytical

strategies for road traffic collision data. Our central ambition is to enhance the

assessment of before/after safety schemes and to elevate the precision of predicting

collision hotspots. To realise this, we will harness the intrinsic characteristics and

spatial nuances of the data, thereby negating the need for additional external data,

which isn’t always accessible. Critically, our approach will delve into understanding

the nuances of prevalent road safety assessment techniques and introduce unique

modelling methods for unconventional before/after studies.

Our work will cover two main areas: (1) enhancing road safety hotspot prediction

techniques, that require minimal covariates, through Bayesian hierarchical modelling

and state-space models; (2) rigorous evaluation of interventions (e.g. speed cameras)
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at road safety hotspots identified for treatment through (1). To-date, most methods

for hotspot prediction rely on regression methods proposed in the evaluation litera-

ture, so we will discuss the general methodology for road safety scheme evaluation

first. Classically, safety scheme evaluations are reliant on tried-and-tested empiri-

cal/fully Bayesian methodology to account for confounding factors such as RTM and

trend, such methods with be reviewed in Chapter 3. However, some before/after

studies require more bespoke considerations, demonstrations of such will be provided

in Chapter 4. In terms of prediction, we propose the use of a dynamic linear model

(DLM) which is allowed to evolve over time and capture the confounding factors

using linear modelling in the observation equation.

1.2 Industrial collaborators

1.2.1 PTV Group

PTV, based in Karlsruhe, Germany, are the market leader in the provision of soft-

ware for transport planning and logistics. Formed as a spin-off company from Karl-

sruhe Institute for Technology in 1979, they have always valued academic credibility,

and our collaboration with PTV through this PhD project is part of a long history of

successful PTV academic collaboration (for example, with Universities in Germany,

Switzerland, the US and South Africa). In our case, PTV have academic support

from statisticians at Newcastle University to help develop novel statistical models in

applications such as collision prediction, with the development of any such method-

ology being seriously scrutinised through peer-reviewed publications. At Newcastle,

we benefit from access to PTV software, datasets and – crucially – translational

and impact-oriented research through PTV’s software and their network of clients

around the world. PTV have been assisting with the project in several significant

ways, including:

• Project co-supervision — Dr. Karsten Kremer (Senior Manager Engineering).

• Hosting student industrial secondments.

• Free access to relevant traffic simulation software packages (e.g. VISIM and

VISUM).

• Access to real-time traffic data.
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Chapter 1. Background

Newcastle University has a long-standing collaborative arrangement with PTV and

they have supported (both financially and in-kind) PhD research at Newcastle in the

quantitative analysis of traffic data. Through their collaborative links with PTV,

the supervisory team have access to vast amounts of data. The methods developed

thus far for the prediction of road safety hotspots use just a fraction of this data

(specifically, site-specific data pertaining to a time series of discretely-observed col-

lision counts with associated predictor variables such as traffic volume, speed limit,

average observed speed etc.). In the use cases developed by the supervisory team,

collision counts for potential hotspots are usually annual, or at most monthly, al-

lowing crude estimation of trend and seasonal effects. Through recent advances in

the development of methods for analysing Big Data, PTV are confident that the

methods developed will be scalable to data disaggregated to a much higher level

of granularity and over a much larger geographical area. With this in mind, PTV

provided training on using an SQL server and data acquisition techniques. This

enabled us to gain data on every police-reported road traffic collision in the UK over

an 11-year period. This dataset, outlined in Section 1.3.4, was subsequently utilised

to gain valuable insights into the spatial and seasonal patterns of collisions across

the UK (see Chapter 5).

PTV have software devoted to road safety in VISIM safety, within this software

they allow for scheme evaluation techniques and prediction. It is, therefore, in

their interest to include new and relevant statistical techniques in their software and

support projects such as this one for the advancement of their software. They aided

this project through providing data, industrial knowledge and training.

1.2.2 Gateshead Council

The Newcastle road safety team, comprising of academic staff, doctoral students

and post-doctoral researchers, have a long-standing collaborative arrangement with

the road safety data analysis team at Gateshead Council. Historically, members

of both teams have sat on steering groups and road safety committees to ensure

a co-ordinated, data-driven approach to decision-making around the deployment

of road safety schemes and their subsequent evaluation. Gateshead Council have

awarded the Newcastle team several rolling grants, over a period of eight years, to

help develop user-friendly software tools to facilitate the deployment of sophisticated
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modelling techniques in their practice. Within the remit of this PhD project, one

aim was to develop a strategy for evaluating vehicle activated signs (see Chapter 4),

although the pandemic meant the application of our method was paused and instead

we illustrate our approach using simulated data. Gateshead have been instrumental

in the development of the statistical methodology, providing expert insight and test

datasets. The collaboration with Gateshead Council is ongoing.

1.2.3 Florida and New York State Departments of Trans-

portation

Members of the Newcastle road safety team met representatives from Florida State

Department of Transportation, and indeed other road safety practitioners in the

United States, at several annual meetings of the Transportation Research Board in

Washington, D.C., between 2016–2019. Collaborations have included a comparison

of standard and more novel statistical models for road safety hotspot identification

(e.g. Guo et al., 2019) and the provision of many datasets – including the Florida

collision dataset described in Section 1.3.2 and used in Chapters 6 and 7, and a

dataset for a before/after analysis of road safety cameras in New York City.

1.3 Datasets

In this thesis, we will utilise various real-world datasets to illustrate the discussed

techniques and showcase the results that can be achieved.

1.3.1 Northumbria Safety Camera Partnership data

The Northumbria Safety Camera Partnership (NSCP) commissioned an investiga-

tion into the impact of mobile safety cameras on the demand for secondary health

care at the region’s hospitals. A mobile camera is a portable unit which is operated at

designated sites. The group collected data from 67 treated sites in the region from

a before period (April 2001–March 2003) and an after period (April 2004–March

2006) and from 67 reference sites in the Northumbria Police force area. At each of

the treated sites, the number of casualties before and after the implementation of

the safety camera was observed, as well as numerous covariates:

• Average observed speed (x1 miles per hour).

8
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• Percentage of drivers exceeding the speed limit (x2).

• Daily traffic flow (x3 in thousands).

• Speed limit (x4 miles per hour).

• Eighty-fifth percentile speed (x5 miles per hour).

• Percentage of drivers at least 15mph over the speed limit (x6).

• Road classification (x7 = A/B/C/Unclassified roads).

• Road type (x8 = single/dual/mixed carriageway).

The dataset contains a single casualty count and single observations for each co-

variate in the before period and then a single casualty count in the after period at

each treated site. Continuous covariates were averaged over their respective 2 year

period, categorical covariates remained constant throughout the data, and casualty

counts were aggregated to give the total number of collisions in the before and after

treatment periods, separately. In Chapter 3 we use a subset of 56 of the 67 mobile

camera sites in the original study (due to missing values). The sites vary but all

have an abnormally high number of casualties in the before period, which is why

they were chosen for treatment. Overall there were 438 casualties before treatment;

this reduced to 298 after the mobile cameras were implemented. After checking the

dataset for multicollinearity between covariates and backwards stepwise regression to

remove any non-significant covariates, we remove speed limit, percentage of drivers

15mph over the speed limit, road type and the 85th percentile speed. We therefore

retain x1, x2, x3 and x7. Summary statistics for this dataset (along with casualty

counts y) are provided in Table 1.1. The table presents a before/after comparison

between the treated sites before and after intervention, and the comparison sites.

The treated sites initially had higher average speeds, a greater percentage of drivers

exceeding the speed limit, and more collisions compared to the untreated (compar-

ison) sites; however, post-treatment, these metrics improved, suggesting that the

treatment had a positive impact in fostering safer driving conditions, although they

have not yet reached the safer baseline levels observed in the untreated sites.

9
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x1 x2 x3 x7A x7B x7C x7U y
Treated
(before)

Mean/Prop. 36.63 38.45 6.92 0.50 0.23 0.18 0.09 7.79
S.D. 9.90 21.67 4.03 - - - - 5.38

Treated
(after)

Mean/Prop. 34.58 34.06 7.58 - - - - 5.32
S.D. 9.64 20.03 5.05 - - - - 4.02

Comparison Mean/Prop. 32.95 35.73 9.13 0.37 0.16 0.30 0.16 4.28
S.D. 6.89 29.63 6.48 - - - - 4.77

Table 1.1: Table showing the mean and standard deviations of the continuous covari-
ates, and proportion for categorical covariates from the Northumbria before/after
dataset for the treated and comparison pools of sites.

1.3.2 Florida State Department of Transport data

The dataset used to introduce the idea of seasonal and spatial effects in collision

modelling in Chapters 6 and 7 was provided by the Florida State Department of

Transport. It contains collision rates (collisions per vehicle kilometre travelled) at

49 traffic analysis zones (TAZs) across the state of Florida, U.S.A., over a period of

46 years (1960–2015) inclusive. However, a significant amount of data are missing,

making any kind of longitudinal study impossible. Within each zone a number of

sites were tracked and the rate of collisions per zone was calculated as the average

number of collisions across those sites. The collision rates are disaggregated by

month, allowing the inclusion of a seasonal component in the model, and the dataset

contains the longitude and latitude of the centroid of each TAZ, enabling spatial

effects to be investigated. To search for seasonal patterns in the data, we found

the mean collision rate for each month individually for each zone. This is shown in

the left-hand-side of Figure 1.2. The majority of zones exhibit sinusoidal patterns

over a 12-month period. The right-hand-side of Figure 1.2 shows histograms of the

collision rates at a select few zones, they suggest that the rates could be reasonably

assumed Gaussian. In Chapter 7 we use a subset of this dataset.

1.3.3 Canadian leading pedestrian interval data

With the safety of pedestrians in mind, safety treatments at signalised intersections

have been investigated. ‘The leading pedestrian interval (LPI) is one treatment that

has been implemented at signalised intersections to permit pedestrians to begin cross-

ing several seconds before the release of conflicting vehicle movements’ (Van Houten

et al., 2000). We have data available from Transport Canada’s National Collision
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Figure 1.1: Centroids of the 49 zones overlaid onto a map of Florida.
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Figure 1.2: Left: Monthly mean rates of collisions for each of the 49 zones. Right:
Histograms of the rates of collisions for zones 18, 30, 32, 38.
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Figure 1.3: Post-encroachment times (PET), PET = t1 − t2

Database. A number of Intersections in downtown Vancouver (see Figure 1.1) – e.g.

Granville Street at Smithe Street – have had LPIs of 5s introduced to give pedestri-

ans more time to cross before a left-turning car is released. At each intersection, one

crosswalk has been treated. Data were collected over 8 months, 4 months in the be-

fore period, and 4 months in the after period in the same 12-hour period (8:00–20:00)

for the before and after period to mitigate potential confounders such as seasonal

variation. Data spanning exactly the same time period are also available for a fur-

ther seven intersections that have not been treated with the LPI intervention, for

comparison purposes. Studies employ specific thresholds of conflict indicators such

as post-encroachment time (PET) to identify near-misses. PET is the time (in sec-

onds) between the moment the first road user passes the conflicting point, t1, and

the moment the second user reaches that point, t2. The positions of the vehicle

and pedestrian are shown in Figure 1.3. We have the minimum PET in 10 minute

intervals over 12 hours per day. Video data are processed with the automated traf-

fic conflict analysis system using computer vision techniques (Saunier and Sayed,

2007, Zaki et al., 2020), with conflicts between pedestrians and left-turning vehicles

at crosswalks being automatically extracted. PETs < 15s were recorded. As PET

= t1− t2, if t1 = t2 then we have a collision between pedestrian and vehicle. Smaller

PET values imply a near-miss, and a value close to zero would imply a dangerous

situation. Figure 1.5 compares the densities of PETs from the before and after

treatment time periods at sites 2 and 8. For site 8 there is a noticeable shift in

the density plot towards larger values in the after period, suggesting a treatment

effect. This shift in the distribution suggests that the treatment has had a positive

12
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Figure 1.4: Intersection locations overlaid onto a map of Vancouver, Canada.

impact and lead to a reduction in traffic conflicts. At site 2 where no treatment

has occurred, the PETs from the before and after periods are very similar with the

majority of the density curves overlapping.

1.3.4 UK STATS19 data

The United Kingdom’s Department for Transport collects data on road traffic inci-

dents for Great Britain through STATS19 – a database comprising information on

all personal injury road traffic accidents (RTAs) occurring on public highways and

reported to the police within 30 days. The statistics relate only to personal injury

accidents on public roads that are reported to the police, and subsequently recorded,

using the STATS19 accident reporting form. STATS19 data currently provides the

most robust, complete, and detailed annual statistics for road casualties across Great

Britain (Department for Transport, 2022). STATS19 includes information on how

many cars/pedestrians were involved, junction detail, road type, road number, lon-

gitude and latitude coordinates, urban or rural area, local authority district amongst

many more contributing factors for each collision.
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Figure 1.5: Density plots of PETs (s) at sites 2 (left) and 8 (right) in the before
period (black) and after period (blue).

With help and training through multiple visits to PTV, we have been able to

take downloaded STATS19 data and put it into a Microsoft SQL dataframe with

counts of collisions per month per zone (as many years as necessary can be added).

The SQL code creates a formatted empty table which can then take the downloaded

STATS19 data, adding each year’s available data. From the STATS19 data within

SQL management studio, we can group ‘zones’ through, for example, ‘Local au-

thority highway’, ‘Local authority district’, or location ‘LSOA of accident location’.

We then format date, longitude and latitude to allow us to count the number of

collisions in each zone per month per year. This can then be exported to an excel

spreadsheet, an example of which is shown in Figure 1.6.

STATS19 data was collected from Jan 2009–Dec 2019. Using an SQL server,

we aggregated the data to give collision counts per month within a zone. Zones

here are defined by their local authority highway ID, in which there are 207. There

is the option to aggregate the data finer, for example, collision count per day or

hour, however monthly data was chosen to omit zeros. In the dataset, we have

included average longitude and latitude over all collisions in each zone to include a
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Figure 1.6: Excel spreadsheet showing the aggregated data exported from the SQL
server.

spatial term. Another advantage of using STATS19 data, is the numerous variables

available that could be included into our modelling. Figure 1.8 shows time-series

plots for four of the UK sites over the 11 year recording period.

1.4 Thesis structure

The focus of this thesis is to analyse two primary responsibilities performed by road

safety professionals: assessing the effectiveness of road safety schemes and predict-

ing collision hotspots. The aim is to develop methodologies that are versatile and

widely applicable. The methods introduced for forecasting are focused on exploiting

patterns in the observed data to achieve sensible results when there is a lack of

covariate information. The modelling includes working with collision counts, colli-

sion rates and near-misses, hence, the type of data is not restricted and models are

introduced for a variety of datasets.
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Figure 1.7: Centroids of the 207 zones overlaid onto a map of the UK.
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Figure 1.8: Collision counts by month from January 2009–December 2019 in
Gateshead (black), Newcastle (pink), North Tyneside (blue), South Tyneside (green)
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In Chapter 2, we begin with an overview of the methods used throughout the

thesis and include illustrative examples where necessary. Chapter 3 discusses com-

monly used safety scheme evaluation methods and investigates their advantages and

disadvantages. A sensitivity analysis is performed on the estimates of treatment ef-

fect, which illustrates the importance of model selection. Chapter 4 then introduces

bespoke before/after safety scheme evaluation models for data that are collected in

a way that varies from those modelled in Chapter 3. We firstly introduce a Poisson

regression model for collision counts where the treated sites are randomly selected.

Then we introduce a model for near-miss data which justifies the use of the extremal

types theorem, with adjustments to the usual modelling framework to account for

temporal dependence and treatment effects. Chapter 5 introduces spatial extreme

value modelling methods for the near-miss data used in Chapter 4. We propose a

latent variable model to introduce spatial variation in the parameters as well as cap-

turing the treatment effect through linear modelling of these parameters. Chapter 6

turns attention to hotspot prediction and proposes a Bayesian hierarchical model

which allows us to segregate the seasonal and zonal effects alongside capturing the

uncertainty in the parameters sufficiently. We provide the within-sample predictive

distributions for posterior predictive checks, which can be used to investigate the

model fit. This random effects model is applied to two real datasets, with slight

alterations. Chapter 7 introduces a joint spatio-temporal model of collision rates

over multiple zones. A dynamic linear model is used at the level of a single zone, and

allows for seasonality via a single harmonic with time-varying amplitude and phase

parameters. We then account for spatial dependence at nearby locations by adding

a spatial Gaussian process to the system equation, thereby smoothing spatial devi-

ations from the underlying temporal process. The resulting model allows for both

within- and out-of-sample forecasting for locations which are fully observed and for

locations at which some data are missing. Conclusions are drawn in Chapter 8,

where we also discuss potential further work.

The main research contributions of this thesis include a new model to evaluate

before/after safety schemes where the treated sites are randomly assigned; using

a bivariate threshold excess model to conduct a traffic conflict-based before/after

safety evaluation using the extreme value theory where the treatment effects were

measured through linear modelling in the scale parameter (Chapter 4). An analysis

on the traffic-conflict data was performed where spatial dependence was accounted
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for through the inclusion of a latent spatial process in extreme value parameters to

evaluate the effectiveness of a safety scheme with linear modelling of the parameters

to capture treatment effect (Chapter 5). The use of random effects methodology to

capture zonal and seasonal effects within a Bayesian framework (Chapter 6); using a

sinusoidal dynamic linear model with Gaussian processes to create a spatio-temporal

model available for hotspot prediction (Chapter 7).

1.5 List of publications

• N. K. Hewett, A. Golightly, L. Fawcett and N. Thorpe, Bayesian inference for

a spatio-temporal model of road traffic collision data. Pre-print available at:

arXiv:2302.00342 (2023), https://arxiv.org/abs/2302.00342

• N. K. Hewett, L. Fawcett, A. Golightly, and N. Thorpe, Using extreme value

theory to evaluate the leading pedestrian interval road safety intervention.

Writing-up in progress
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Chapter 2

Methods

2.1 Generalised linear modelling

In statistics, linear regression is an approach for modelling linear relationships be-

tween a response variable, Yi, and one or more covariates, x1i, x2i, . . . , xpi, where i

indicates the index of each observation and p denotes the number of covariates. It

assumes that the relationship between the response variable and covariates is linear.

The response variable and covariates can take various forms, including but not lim-

ited to continuous, positive continuous, discrete, and count data formats. To predict

the response, a typical model often includes a combination of such covariates. An

example of a linear regression equation with a single covariate is,

Yi = β0 + β1xi + ϵi (2.1)

where β0, β1 are unknown parameters controlling the intercept and slope, respec-

tively. The intercept is the value of the response variable at the point where the

regression line crosses the y-axis. The slope term represents the rate of change of the

response variable in response to a change in the covariate, xi, and hence determines

the steepness of the regression line. The error term, ϵi, accounts for the uncertainty

in the response variable and is typically assumed to follow a normal distribution with

zero mean and a constant variance, σ2. Therefore, Equation (2.1) can be written as

Yi ∼ N(µi, σ
2),
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where µi, often termed the linear predictor, can be written as µi = β0 + β1xi.

A generalised linear model (GLM) is an extension of the linear model that intro-

duces a link function to relate the linear predictor to the response variable. There

are many possibilities where this is appropriate, for example, when the relationship

between the response and explanatory variables is non-linear, or the variance is not

constant, or if the response is discrete and/or strictly positive. GLMs use a link

function g(·) to relate the linear predictor to the response variable, which allows the

response variable to take on a wider range of distributions than the normal distri-

bution assumed in linear regression. GLMs were formulated as a way of unifying

various statistical models, including linear, logistic and Poisson regression (Zhao,

2012). The general form of a GLM is,

g(µi) = β0 + β1x1i + . . .+ βpxpi,

where g(·) is the link function that relates the expected value of the response variable,

denoted as µi, to the linear predictor. Poisson regression is a type of generalised

linear model used to analyse count data and contingency tables. It is assumed that

the response variable Yi follows a Poisson distribution, and assumes the logarithm of

its expected value can be expressed as a linear combination of unknown parameters.

The basic form is,

Yi ∼ Po(λi),

log λi = β0 + β1xi1 + β2xi2 + . . .+ βpxip,

where λi is the expected number of occurrences of the event for the ith case, and

xij is the value of the jth predictor variable for the ith case. The β values are

the regression coefficients that represent the effect of each predictor variable on the

response variable.

We can formulate models for all n observationsY = (Y1, . . . , Yn)
T , with covariate

vector xi = (x1i, . . . , xpi)
T , for the ith observation and unknown parameter vector

β = (β1, . . . , βp), as 
g(Y1)
...

g(Yn)

 =


xT1
...

xTn



β1
...

βp


20



Chapter 2. Methods

or

g(Y) = Xβ,

where X is known as the design matrix.

In statistics, we are trying to find the model that best fits our observed data.

Usually it is relatively easy to choose a probability distribution and the model pa-

rameters such that the theoretical population mean of the model is approximately

equal to the sample mean. However, this isn’t as straightforward for the variance,

especially for simpler models. If the observed variance is more than the model vari-

ance, we have overdispersion. Conversely, if the variance is less than the mean,

underdispersion has occurred. In the case of modelling count data, as is the case for

most road traffic data, we use a Poisson distribution, with rate λ,

X ∼ Po(λ), λ > 0,

where the mean and variance are defined as

E(X) = V ar(X) = λ.

Commonly this assumption is not met and the data have a variance that is propor-

tional to its mean, such that

V ar(X) = θλ, θ > 0.

Most commonly the variance is larger than the mean and so θ > 1 which means

θ = 1 + γ,

where γ is known as the overdispersion parameter and controls the severity of the

excess variance. If θ < 1 then we have underdispersion, and θ = 1 relates to the

standard Poisson distribution.

A way to acknowledge the overdispersion in count data, is within a Bayesian

framework where we allow the rate parameter to be a random variable drawn from

a prior distribution. Then we have the same Poisson set-up for the data however,

the distribution is now conditional on the rate parameter λ,

X|λ ∼ Po(λ), λ > 0.
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For mathematical convenience, we set the prior distribution of λ to be a gamma

distribution which is conjugate to the Poisson distribution and thus we gain an

analytical posterior distribution for λ. We have,

λ ∼ Ga(α, β),

with PDF

g(λ) =
βα

Γ(α)
λα−1 exp{βλ}, α, β > 0.

We are then able to find the unconditional distribution for X, f(X), by integrating

out λ,

f(x) =

∫
Λ

f(x|λ)g(λ) dλ,

=

∫ ∞

0

λx

x!
exp{−λ} × βα

Γ(α)
λα−1 exp{βλ} dλ,

=
βα

Γ(α)x!

∫ ∞

0

λx+α−1 exp{−(β + 1)λ} dλ.

We notice that the integrand has the form of a gamma distribution proportional to

Y ∼ Ga(x+ α, β + 1) with PDF

f(Y ) =
(β + 1)(x+α)

Γ(x+ α)
yx+α−1 exp{−(β + 1)y}, y > 0.

As this is a PDF we have
∫∞
0
f(Y ) dy = 1, ergo,∫ ∞

0

λx+α−1 exp{−(β + 1)λ} dλ

=

∫ ∞

0

(β + 1)(x+α)

Γ(x+ α)

Γ(x+ α)

(β + 1)(x+α)
yx+α−1 exp{−(β + 1)y} dy,

=
Γ(x+ α)

(β + 1)(x+α)

∫ ∞

0

(β + 1)(x+α)

Γ(x+ α)
yx+α−1 exp{−(β + 1)y} dy,

=
Γ(x+ α)

(β + 1)(x+α)
× 1,

=
Γ(x+ α)

(β + 1)(x+α)
.
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Hence, f(x) becomes

f(x) =
βα

Γ(α)x!
× Γ(x+ α)

(β + 1)(x+α)
,

=
Γ(x+ α)

Γ(α)Γ(x+ 1)

(
β

β + 1

)α(
1

β + 1

)x
,

=

(
y + α− 1

y

)(
β

β + 1

)α(
1

β + 1

)x
.

We recognise this as the probability mass function (PMF), f(x) = Pr(X = x), of a

negative binomial random variable and so

X ∼ NB

(
α,

1

β + 1

)
is the unconditional distribution for X.

2.2 Extreme value theory

Let Xn denote a stationary sequence of random variables with common distribution

function F , and letMn = max{X1, . . . , Xn}. It is typically the case that, as n→ ∞,

Pr(Mn ≤ x) ≈ F nθ(x), (2.2)

where θ ∈ (0, 1) is known as the extremal index; see, for example, Leadbetter and

Rootzén (1988). As θ → 0 there is increasing dependence in the extremes of the

process; for an independent process, θ = 1, as Pr(Mn ≤ x) = Pr(X1, X2, . . . , Xn ≤
x) = Pr(X1 ≤ x) × Pr(X2 ≤ x) × . . . = F n. Initially concerned with the inde-

pendent case (i.e. θ = 1), classical extreme value theory (EVT) sought families of

limiting models for F n, without reference to the marginal distribution function F

as any small discrepancies in F could lead to large discrepancies in F n.

Examining the behaviour of Mn as n → ∞ gives rise to the Extremal Types

Theorem (see Fisher and Tippett (1928), Gnedenko (1943)). The limiting distri-

bution of Mn is degenerate, that is, the distribution converges to a single point on

the real line with probability 1, this single point being the upper endpoint of F .

This is analogous to the sample mean X̄ converging to the population mean µ with

certainty in the Central Limit Theorem. The Extremal Types Theorem states that
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if there exists sequences of constants an > 0 and bn such that, as n→ ∞,

Pr {(Mn − bn)/an ≤ x} → G(x)

for some non-degenerate distribution G, then G is of the same type as one of the

following distributions:

I : G(x) = exp{− exp(−x)}, −∞ < x <∞;

II : G(x) =

0 x ≤ 0,

exp(−x−α) x > 0, α > 0;

III : G(x) =

exp{−(−x)α} x < 0, α > 0,

1 x ≥ 0.

Distributions I, II and III have become known as the Gumbel, Fréchet and Weibull

types (respectively), and are known collectively as the extreme value distributions.

For both the Gumbel and Fréchet distributions the limiting distribution G is un-

bounded; that is, the upper–endpoint tends to ∞. The Weibull distribution has a

finite upper bound. It should be noted that the Extremal Types Theorem does not

ensure the existence of a non–degenerate limit for Mn; nor does it specify which

of types I, II or III is applicable if a limit distribution does exist (i.e. in which

domain of attraction the distribution of G lies (Coles, 2001)). However, when such

a distribution does exist, we find that, by analogy with the Central Limit Theorem,

the limiting distribution of sample maxima follows one of the distributions given by

the Extremal Types Theorem, no matter what the parent distribution F .

2.2.1 The generalised extreme value distribution

Von Mises (1954) and Jenkinson (1955) independently derived a distribution which

encompasses all three types of extreme value distribution; the generalised extreme

value distribution (GEV). The GEV is the limiting model for F n, with distribution

function (d.f.)

G(x;µ, σ, ξ) =

exp
[
−(1 + ξ(x− µ)/σ)−1/ξ

]
+
, ξ ̸= 0

exp [− exp(−(x− µ)/σ)] , ξ = 0
(2.3)

defined on {x : 1 + ξ(x− µ)/σ > 0}, where −∞ < µ <∞, σ > 0 and −∞ < ξ <∞
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are parameters of location, scale and shape, respectively. It can be shown that F nθ

is also GEV with d.f. G(x;µ∗, σ∗, ξ), provided long-range dependence is negligi-

ble. Let X1, X2, . . . , Xn be the first n observations of a stationary series satisfying

Leadbetter’s D(un) condition, which ensures that long-range dependence is suffi-

ciently weak so as not to affect the asymptotics of an extreme value analysis (Lead-

better et al., 1983), and let Mn =max{X1, X2, . . . , Xn}. Now let X̃1, X̃2, . . . , X̃n

be an independent series, with X̃ having the same distribution as X, and let

M̃n = max{X̃1, X̃2, . . . , X̃n}. Then if M̃n has a non-degenerate limit law given

by Pr{(M̃n − bn)/an ≤ x} → G(x), it follows that

Pr{(Mn − bn)/an ≤ x} → Gθ(x). (2.4)

The effect of dependence is simply a replacement of G in Equation (2.3) as

the limit distribution with Gθ. If G corresponds to the GEV distribution with

parameters (µ, σ, ξ), then

Gθ(x) = exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ

+

}θ

= exp

{
−
[
1 + ξ

(
x− µ∗

σ∗

)]−1/ξ

+

}

where µ∗ = µ − σ

ξ
(1 − θξ) and σ∗ = σθξ. Thus, if the (approximate) distribution

of Mn is GEV with parameters (µ, σ, ξ), then the (approximate) distribution of M̃n

is GEV with parameters (µ∗, σ∗, ξ). Hence, for block maxima, in practical terms

short-range dependence can be ignored since the distribution of block maxima falls

within the same family of distributions as would be appropriate if the series were

truly independent. The extreme value distribution is used to model the largest

or smallest value from a group or block of data. The GEV distribution can be

described as the limiting distribution of block maxima or minima and can be fit

to the data using statistical methods, see Sections 2.3 and 2.4.3. In practice, the

GEV is used to model maxima over some convenient calendar unit – usually years.

However, choosing a suitable block size can sometimes be problematic. It is crucial

to select a block size that is sufficiently large to satisfy limiting conditions, yet not

too large that there are too few extreme values from which to make inferences. In

some applications, in which data span only a period of months, years would not
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be appropriate; blocks would need to be large enough for the limiting results to

hold, yet if they’re too large there will be too few maxima from which to make

inferences. Furthermore, this method can lead to a significant loss of valuable data

since informative observations on the extremes are often discarded.

2.2.2 The generalised Pareto distribution

Pickands (1975) showed that for θ = 1 and u large, (X − u|X > u) follows a

Generalised Pareto Distribution (GPD) with d.f.

H(x; σ̃, ξ) =

1− (1 + ξx/σ̃)1/ξ, ξ ̸= 0

1− exp(−x/σ̃), ξ = 0
(2.5)

defined on x > 0, with scale and shape parameters σ̃ and ξ respectively. Here, σ̃ is

related to the parameters in the corresponding GEV distribution for block maxima

through σ̃ = σ+ξ(u−µ). Threshold methods classify observations as extreme if they

exceed some high threshold, usually denoted u; then, the GPD in Equation (2.5)

is fitted to the excesses over this threshold. Graphical diagnostics are available

for the selection of a suitable threshold, as will be demonstrated in Section 4.3.

Unlike the case of modelling block maxima with the GEV, powering F n by θ, as

described by Equation (2.2), does not lead to another extreme value distribution

whose parameters have absorbed the extremal index; thus, careful consideration of

extremal dependence is required (and, unlike consecutive block maxima, extremal

dependence is usually present between consecutive threshold excesses).

2.2.3 Return levels

Once the extreme value distribution has been fit to the data, it can be used to

estimate the probability of extreme events occurring in the future. Estimates of an

extreme quantile zr can be obtained by inversion of G(zr) or Hθ(zr) to 1− r−1 and

then solving for y = zr, where zr is the r-observation return level associated with

return period r. Termed return levels as they refer to levels that might be returned

on average at least once every r years, and high quantiles of the fitted distribution
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are used as estimates of these return levels. Specifically,

zr =

µ
∗ − σ∗

ξ

[
1−

(
− log(1− r−1)

)−ξ]
, ξ ̸= 0

µ∗ − σ∗ log(− log(1− r−1)), ξ = 0,

when modelling block maxima. When modelling threshold excesses:

zr =

u+ σξ−1
[
(λ−1

u ωr)
ξ − 1

]
, ξ ̸= 0

u+ σ log(λ−1
u ωr), ξ = 0,

where ωr = 1 − [1− (rny)
−1]

1/θ
, λu is the rate of threshold excess and ny is the

(average) number of observations per year. We will make use of EVT in our analysis

of the leading pedestrian interval data from Canada (see Section 4.3).

2.3 Maximum likelihood estimation

Maximum likelihood estimation is a method of estimating the parameters of a sta-

tistical model. Given a set of observations, this method seeks to find the parameter

values that maximise the likelihood of obtaining the observations. To use the max-

imum likelihood estimation method, we first need to define a statistical model that

describes the process that generated the data. This model will include one or more

parameters that we want to estimate. The likelihood function then needs to be de-

fined, which is a function that explains how well a parameter explains the observed

data through the product of the individual probability density functions (PDF) at

each observation to gain the joint distribution. The likelihood function is used to

estimate the parameter values that maximise the likelihood of obtaining the obser-

vations; this is typically done using numerical optimisation methods. For a more

in-depth tutorial-style text, see Myung (2003).

Suppose that there exists a parameter, θ, that maximises the likelihood function,

L(θ|x), on the set of possible parameters Θ, i.e.

L(θ̂|x) = max
θ∈Θ

{L(θ|x)} .

Then θ̂ is called the Maximum Likelihood Estimator (MLE). The MLE (usually)
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satisfies the following two properties (Casella and Berger, 2021):

1. Consistency. We say that an estimate θ̂ is consistent if θ̂ → θ0 in probability

as n→ ∞, where θ0 is the ‘true’ unknown parameter of the distribution of the

sample.

2. Asymptotic Normality. We say that θ̂ is asymptotically normal if

√
n
(
θ̂ − θ0

)
D−→ N

(
0, σ2

θ0

)
,

where σ2
θ0
is called the asymptotic variance of the estimate θ̂. Asymptotic nor-

mality says that the estimator not only converges to the unknown parameter,

but it converges at a rate 1/
√
n.

Under some regularity conditions and for n sufficiently large we have the following

approximate result:
√
n
(
θ̂ − θ0

)
≈ N

(
0,

1

I(θ0)

)
.

where I(θ) is called the Fisher information. The Fisher information matrix is a

way of measuring the amount of information that an observable random variable X

carries about an unknown parameter θ of a distribution that models X as is given

as

I(θ) = Eθ

[(
∂

∂θ
ℓ(θ|x)

)2
]
,

under regularity conditions this is equivalent to

I(θ) = −Eθ
[
∂2

∂θ2
ℓ(θ|x)

]
,

where ℓ(θ|x) denotes the log-likelihood (logL(θ|x)). With independent and identi-

cally distributed (iid) data, the Fisher information can be shown to have the form

In(θ) = nI(θ).

Standard errors (SE) of the estimator, θ̂, are just the square roots of the diago-

nal terms of the variance-covariance matrix. Maximum likelihood estimation is a

method from which we can derive an estimator that converges to the true parameter

values as the sample size increases. Furthermore, it is relatively simple to imple-
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ment and has mathematical properties that make it amenable to theoretical analysis.

We provide an example for completeness. As introduced in Section 1.3.3, we have

eight months of PET data where smaller values constitute dangerous situations. We

are most interested in the extreme values and therefore utilise EVT. In order to use

standard methods from the EVT toolkit directly (designed for analysing ‘large’

extremes), we negate our series of PET values at each location, thus switching the

focus from very small values to very large values to identify dangerous situations in

our series. We block the PET data by day and model the daily maxima from site

2 – an untreated site. We firstly assume that the data follow the GEV distribution

with unknown parameters, µ, σ and ξ. We require the likelihood function of the

GEV, L(µ, σ, ξ|x). Differentiation of Equation (2.3) gives the PDF of the GEV; this

can be found to be

g(x;µ, σ, ξ) =
1

σ

[
1 + ξ

(
x− µ

σ

)]− 1
ξ
+1

+

exp

{
−
[
1 + ξ

(
x− µ

σ

)]− 1
ξ

+

}
,

for ξ ̸= 0, and

g(x;µ, σ, ξ) =
1

σ
exp

[
− exp

(
−x− µ

σ

)
−
(
x− µ

σ

)]
,

when ξ → 0. The likelihood can then be evaluated as the products of the PDFs

evaluated at all maxima xi,

L(µ, σ, ξ|x) =
m∏
i=1

g(xi;µ, σ, ξ),

where m is the number of block maxima. We then define the likelihood function,

L(µ, σ, ξ|x) =
n∏
i=1

[
1

σ

[
1 + ξ

(
xi − µ

σ

)]− 1
ξ
−1

+

exp

{
−
[
1 + ξ

(
xi − µ

σ

)]− 1
ξ

+

}]
,

(2.6)

for ξ ̸= 0, and

L(µ, σ, ξ|x) =
n∏
i=1

[
1

σ
exp

{
−xi − µ

σ
− exp

(
−xi − µ

σ

)}]
, (2.7)
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for ξ → 0. Therefore, the log-likelihood is,

ℓ(µ, σ, ξ|x) = −m log σ−
(
1

ξ
+ 1

)
log

m∑
i=1

(
1 +

ξ

σ
(xi − µ)

)
−

m∑
i=1

(
1 +

ξ

σ
(xi − µ)

)− 1
ξ

,

(2.8)

for ξ ̸= 0, and

ℓ(µ, σ, ξ|x) = −m log σ − exp

{
−

m∑
i=1

(
xi − µ

σ

)}
−

m∑
i=1

(
xi − µ

σ

)
, (2.9)

for ξ → 0.

To find the MLEs we differentiate the log-likelihood function with respect to

each parameter and set the resulting derivatives equal to zero. We then solve for

the corresponding parameter to get the MLE. We therefore calculate,

∂ℓ

∂µ
= 0,

∂ℓ

∂σ
= 0,

∂ℓ

∂ξ
= 0,

and replace µ, σ, ξ with µ̂, σ̂, ξ̂ to obtain the MLEs. To verify that the estimates

are maximum likelihood estimates, we compute the second derivatives of the log-

likelihood function with respect to each parameter. If the second derivatives are

negative this denotes the peak in the log-likelihood function about these values and

hence the estimates are maximum likelihood estimates. Since the MLE equations for

the GEV distribution are not solvable analytically, we use numerical approximation

methods in R to maximise the likelihood function and obtain the MLEs. The MLEs

are

µ̂ = −7.9717
(0.0979)

, σ̂ = 1.3541
(0.0711)

, ξ̂ = −0.0025
(0.0466)

, (2.10)

with their standard errors (SE) given in parentheses underneath. These standard

errors can be used to formulate 95% confidence intervals. For location parameter µ,

the 95% confidence interval is calculated as,

µ̂± 1.96SEµ,

where SEµ is the standard error for µ̂, similarly for the remaining parameters. The

value of 1.96 is based on the fact that 95% of the area of a normal distribution is

within 1.96 standard deviations of the mean. The MLEs and 95% confidence inter-
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µ̂ σ̂ ξ̂
MLE −7.9717 1.3541 −0.0025

95% CI (−8.1635, −7.7798) (1.2147, 1.4934) (−0.0938, 0.0888)

Table 2.1: Maximum likelihood estimates and 95% confidence intervals of the GEV
parameters.

vals for the GEV parameters are shown in Table 2.1. Here, a confidence interval

represents a range of values that is likely to contain the true value of a parameter,

based on the sampling distribution of the estimator. A 95% confidence interval

means that if the experiment were repeated many times, the true value of the pa-

rameter would be expected to fall within the interval in 95% of the experiments.

2.4 Bayesian inference

The majority of the statistical inference in this thesis will be done within a Bayesian

framework. Bayesian statistics is an approach to data analysis based on Bayes the-

orem. A typical statistical analysis might formulate the likelihood function for the

assumed statistical model, maximising this with respect to the parameters in that

model to obtain their MLEs, see Section 2.3. In a classical sense these are sample-

based estimates of fixed but unknown quantities. In the Bayesian paradigm, the

likelihood is merely an ingredient in the inferential process; via Bayes Theorem, it

is combined with the density of the prior distribution to provide a posterior distri-

bution for the parameters of interest – in effect an update in our beliefs about the

parameters after having observed some data, relative to our beliefs before observ-

ing these data. Crucially, the interpretation of the model parameters is different

here: rather than being fixed (but unknown) constants, the parameters are now

regarded as random variables. This means that in the Bayesian setting, confidence

(or credible) intervals (for example) have a much more natural interpretation, with

there being a probability of 0.95 that the parameter falls within the bounds of the

95% Bayesian credible interval. A Bayesian framework provides many advantages;

it allows for incorporating uncertainty in models and parameters as well as allowing

expert knowledge to be used to formulate the prior distributions.

Suppose we have data x = (x1, . . . , xn)
T which we model using PDF f(x|θ),
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which depends on a single parameter θ. The main result in Bayesian statistics is

Bayes theorem which states that the posterior distribution of θ, denoted π(θ|x),
can be obtained by multiplying the prior distribution of θ, π(θ), with the likelihood

obtained by observing data x, L(θ|x) (also denoted f(x|θ)), and dividing by a

normalising value constant with respect to θ, f(x). We can write this mathematically

as,

π(θ|x) = L(θ|x)π(θ)
f(x)

.

where

f(x) =


∫
Θ
π(θ)L(θ|x) dθ if θ is continuous,∑
Θ π(θ)L(θ|x) if θ is discrete.

As f(x) is not a function of θ, the normalising constant is often omitted and it

is sufficient to say that the posterior distribution is proportional to the likelihood

multiplied by the prior distribution,

π(θ|x) ∝ L(θ|x)π(θ). (2.11)

2.4.1 Prior distributions

In Bayesian statistics, a prior distribution is a probability distribution that repre-

sents our beliefs or knowledge about the values of a parameter before observing any

data. The prior is specified before observing the data and is updated to a posterior

distribution using Bayes theorem. The prior can take different forms depending

on the information available and the assumptions made about the parameter. For

example, a uniform prior assumes that all values of the parameter are equally likely,

while a normal prior assumes that the parameter follows a normal distribution with

a specific mean and variance. We have substantial prior information for θ when the

prior distribution dominates the posterior, that is π(θ|x) ∼ π(θ). If there is very

little or no prior information about θ, we choose a prior distribution which is not

concentrated about any particular value, that is, one with a large variance. The ma-

jority of the information about θ will be passed through to the posterior distribution

via the data and hence, π(θ|x) ∼ L(θ|x). When we assume no prior knowledge or

prior ignorance we tend to use a Jeffreys prior.

The Jeffreys prior, named after Sir Harold Jeffreys, is a non-informative prior
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distribution for a parameter space (Jeffreys, 1946). It is commonly used to depict

prior ignorance. Its density function is proportional to the square root of the deter-

minant of the Fisher information matrix. Jeffreys recommended that we represent

prior ignorance by the prior distribution,

π(θ) ∝
√

I(θ).

The Jeffreys prior favours values of θ for which I(θ) is large. Hence it satisfies the

local uniformity property: it does not change much in the region over which the like-

lihood is significant and it is invariant with respect to one–to–one transformations.

If θ is a vector then Jeffreys prior is

π(θ) ∝
√
det I(θ),

which is still invariant under reparametrisation.

We provide an example of a Jeffreys prior for a random sample from an Ex-

ponential distribution, that is Xi|θ ∼ Exp(θ) for i = 1, . . . , n (independent). We

calculate the likelihood function

L(θ|x) =
n∏
i−1

θ exp{−θxi},

= θn exp

{
−θ

n∑
i=1

xi

}
,

= θn exp{−nx̄θ},

as x̄ = 1
n

∑n
i=1 xi. Therefore

ℓ(θ|x) = n log θ − nxθ,

⇒ ∂

∂θ
ℓ(θ|x) = n

θ
− nx,

⇒ ∂2

∂θ2
ℓ(θ|x)) = − n

θ2
,

⇒ I(θ) = Eθ
[
− ∂2

∂θ2
ℓ(θ|x)

]
=

n

θ2
.
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The Jeffreys prior for this model is

π(θ) ∝
√

I(θ)

∝
√
n

θ
,

∝ 1

θ
, θ > 0.

2.4.2 Markov Chain Monte Carlo

Monte Carlo methods are a broad class of computational techniques that rely on

random sampling to estimate numerical solutions to problems that may be difficult

or impossible to solve analytically. These methods generate random samples from

the data’s (assumed) underlying distribution and use these samples to estimate the

desired quantity. The accuracy of the estimate improves as the number of sam-

ples increases. For example, if we consider a bivariate model, fΘ(θ1, θ2) where the

marginals fθ1(θ1) and fθ2(θ2) are hard to compute, we can simulate realisations of

both θ1 and θ2 and look at the two histograms for information about the marginals.

We can also use these realisations to gain sample mean and variances. Monte Carlo

can then be used as a way of estimating difficult integrals.

Suppose we wish to evaluate an integral of the form∫
Θ

h(θ) dθ,

for which there is no closed analytical solution. If the integrand has the form

h(θ) = h̃(θ)f(θ),

for some PDF f(·), then the integral has the form,∫
Θ

h(θ) dθ =

∫
Θ

h̃(θ)f(θ) dθ = E[h̃(θ)],

where θ is a random variable with PDF f with support Θ. If we are able to simulate
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iid realisations of θ, such as θ(1), . . . , θ(N), we obtain an unbiased estimator:

∫
Θ

h(θ) dθ = E[h̃(θ)] ≈ 1

N

N∑
i=1

h̃(θ(i)) = Î .

This method for approximating integrals is called Monte Carlo integration. Provided

σ2
h = V ar[h(θ)] <∞ exists,

V ar[Î] =
1

N2
V ar

[
N∑
i=1

h̃(θ(i))

]
,

=
σ2
h

N
.

Hence, the size of error in Î is proportional to the standard deviation of the estimator.

When performing a Bayesian analysis, we are most often interested in finding

the posterior distribution. However, finding an analytic form for the posterior is

not always possible. Fortunately, techniques to sample from the posterior numeri-

cally have been developed. The most common approach is to use a Markov Chain

Monte Carlo (MCMC) scheme, of which there are several kinds. If there is conju-

gacy within the parameters, where the prior and data distributions are of the same

distribution family, we are able to calculate full conditional distributions (FCDs) for

the parameters and draw samples directly. Conjugate and semi-conjugate models

can be sampled using a Gibbs sampler (Casella and George, 1992). Through Bayes

theorem we can calculate the FCDs for θ up to proportionality and draw posterior

elements successively. The general algorithm for a Gibbs sampler for N iterations

is given in Algorithm 1.

The samples returned form a Markov chain whose stationary distribution equals

the posterior distribution, π(θ|x). The chain is initialised arbitrarily, yet it is com-

monplace to initialise at the prior means. As the initialisation is somewhat guess-

work, we wouldn’t necessarily assume these values are from the posterior, hence it

is common practice to discard the samples before the chain has reached convergence

as ‘burn-in’. Furthermore, how the chain is initialised shouldn’t matter as the chain

should converge at the same stationary distribution. Checking for convergence can

be done numerically or by simply plotting the trace plots for each element in the
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Algorithm 1 Gibbs sampler

1: Initialise the chain at its initial value θ(0) =
(
θ
(0)
1 , . . . , θ

(0)
p

)
. Set i = 1

2: Draw a sample for each element of θ from its FCD,

θ
(i)
1 ∼ π

(
θ
(i)
1 |θ(i−1)

2 , . . . , θ(i−1)
p ,x

)
θ
(i)
2 ∼ π

(
θ
(i)
2 |θ(i)1 , . . . , θ

(i−1)
p ,x

)
...

θ(i)p ∼ π
(
θ(i)p |θ(i)1 , . . . , θ

(i)
p−1,x

)
3: If i = N stop, else set i = i+ 1 and go to step 2.

parameter vector θ and eyeballing that the chains converge at the same distribution.

We provide an example of a Gibbs sampler for a conjugate Poisson-gamma model

with unknown rate. Our conjugate model structure is,

Xi|λ ∼ Po(λ), i = 1, . . . , n,

λ ∼ Ga(g0, h0).
(2.12)

From this we can derive the FCD for λ,

λ|x ∼ Ga

(
n∑
i=1

xi + g0, n+ h0

)
.

We demonstrate this using example data,

Xi|λ ∼ Po(λ = 5), i = 1, . . . , n,

for n = 200 data points. We specify vague prior information via the hyperparame-

ters, g0 = 0.1 and h0 = 0.1, to give large variance. To demonstrate convergence to

the posterior, we initialise at λ(0) = 1, 5, 10. Output is shown in Figure 2.1. After

the few initial iterations, all chains converge to the same distribution.

If there is no conjugacy and the posterior distribution is intractable, a Metropolis-

Hastings (MH) algorithm can be used (Hastings, 1970). Here, instead of being able

to draw directly from FCDs, we propose posterior values of each element of θ and

accept or reject depending on a probability given by the observed data likelihood
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Figure 2.1: Trace plots for the posterior samples for λ from a Gibbs sampler for a
Poisson-gamma model using initialisation points λ(0) = 1, 5, 10 as the black, blue
and pink lines respectively.

and prior distributions. The MH algorithm is outlined in Algorithm 2. There are

numerous options for the proposal distribution q(·|·) which can be used to draw our

proposal value θ∗, the most common is a normal distribution, centred on the current

value of θ with some tuning variance Σ,

θ∗ ∼ N(θ,Σ).

An advantage of using a normal random walk is that the normal distribution is

symmetric, therefore in the acceptance probability q(θ(i−1)|θ∗) = q(θ∗|θ(i−1)) and so

cancel out in the formula for α. The parameter Σ controls the size of jumps from

the current value to proposed value in the chain. If Σ is too large then proposed

values will be far from current, accepted values and will most likely result in the

majority of proposals being rejected and hence we will achieve a low acceptance rate

(the number of accepted proposed values divided by the number of iterations). On
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Algorithm 2 Metropolis-Hastings

1: Initialise the chain at its initial value θ(0) =
(
θ
(0)
1 , . . . , θ

(0)
p

)
. Set i = 1

2: Sample a proposal value θ∗ from the proposal distribution of θ,

θ∗ ∼ q(·|·)

3: Set θ(i) = θ∗ with probability α, where

α = min

{
1,
π(θ∗)L(θ∗|x)q(θ∗|θ(i−1))

π(θ)L(θ|x)q(θ(i−1)|θ∗)

}
else set θ(i) = θ(i−1)

4: If i = N stop, else set i = i+ 1 and go to step 2.

the other hand, if Σ is too small, the majority of the proposals will be accepted and

though this seems like an advantage, it will result in very slow convergence to the

stationary distribution (if the initial value is far from the posterior) meaning a lot

of iterations will be removed as burn-in. There will also be a high autocorrelation

between successive values of the chain indicating the posterior distribution is not

being explored effectively. Selecting a good value of Σ is referred to as tuning the

chain and is important. An optimal MH scheme should aim to accept around 23.4%

of the proposal values, in high dimensional settings (Roberts and Rosenthal, 2001).

A formula provided to assist in achieving this acceptance rate is given using the

variance of the parameters chains from a short pilot run, say 1k iterations then,

q(θ∗|θ) = N(θ∗; θ,Σ) where the innovation matrix Σ = γV̂ ar(θ|x), with V̂ ar(θ|x)
obtained from a pilot run and γ = 2.382

p
where p is the number of parameters.

For many problems of interest, FCDs may be available for sampling from for a

subset of components of θ. In this case we use a componentwise transitions algo-

rithm as outlined in Algorithm 3. This is in fact the original form of the Metropolis

algorithm. Proving that π(θ|x) is the stationary distribution of a Markov chain

defined in this way can be achieved by induction (details omitted). Note that the

Metropolis-Hastings algorithm as presented in Algorithm 2 can be seen as a special

case of Algorithm 3. If the FCD is available for sampling from directly, for a par-

ticular component θi, it is easy to show that the resulting acceptance probability is

1. When all FCDs are available for sampling from, we obtain Algorithm 1.
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Algorithm 3 Componentwise transitions

1: Initialise the chain at its initial value θ(0) =
(
θ
(0)
1 , . . . , θ

(0)
p

)
. Set i = 1

2: Obtain a new value θ(i) from θ(i−1) by successive generation of values,

θ
(i)
1 ∼ π

(
θ
(i)
1 |θ(i−1)

2 , . . . , θ(i−1)
p ,x

)
θ
(i)
2 ∼ π

(
θ
(i)
2 |θ(i)1 , . . . , θ

(i−1)
p ,x

)
...

θ(i)p ∼ π
(
θ(i)p |θ(i)1 , . . . , θ

(i)
p−1,x

)
using individual Metropolis-Hastings steps with proposal distributions
q(θ1|θ(i−1)

1 ), q(θ2|θ(i−1)
2 ), . . . , q(θp|θ(i−1)

p ) respectively.
3: If i = N stop, else set i = i+ 1 and go to step 2.

We provide an example of an MH scheme using the Poisson-gamma model from

Equation (2.12) using a normal random walk MH algorithm with varying choices of

innovation parameter Σ. Trace plots for the parameter λ are given in Figure 2.2.

From Figure 2.2 we can deduce that when Σ = 0.005, the chain is too ‘hot’, it

updates frequently with an acceptance rate of 92%, but the updates are very small

meaning the chain takes a long time to reach its stationary distribution. Further-

more, the successive samples are highly correlated meaning the chain explores the

posterior distribution inefficiently. For Σ = 0.5 the chain is too ‘cold’, the difference

between candidate values and current values of the chain are relatively large and

hence results in a high rate of rejection (only 6% of proposals were accepted), vastly

reducing the efficiency of the scheme. Finally, when Σ = 0.12 we have good and

quick convergence and the chain explores the posterior distribution efficiently. This

results in an acceptance probability of 24%, where the updates are large enough

to reduce the autocorrelation of the chain but we are not wasteful of data. This

demonstrates the ‘Goldilocks Principle’ of parameter tuning, where we want an in-

novation parameter which is not too large or too small.

In MCMC algorithms, the log-likelihood is often used in the acceptance probabil-

ity instead of the likelihood itself. This is because the log-likelihood is more numeri-

cally stable than the likelihood, especially for small probabilities. When calculating

the acceptance probability, the likelihood of the proposed sample is compared to
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Figure 2.2: Traceplots for the Poisson rate parameter λ from a Metropolis-Hastings
algorithm with innovation parameter ϵ = 0.12, 0.005, 0.5 respectively.

the likelihood of the current sample. If the proposed sample has a higher likelihood,

it is more likely to be accepted. However, if the likelihood is very small, it can

become difficult to compute accurately, leading to numerical instability. Using the

log-likelihood in the acceptance probability can help to avoid this and improve the

accuracy of the MCMC algorithm.

2.4.3 Bayesian inference example

In Section 2.3 we introduced maximum likelihood estimation for the GEV param-

eters. We will now perform the same inference in a Bayesian setting. Firstly, we

assign independent, non-informative prior distributions to the model parameters.

The joint prior distribution can be written as,

π(µ, σ, ξ) = π(µ)π(σ)π(ξ),

where

µ ∼ N(0, 100), η ∼ N(0, 100), ξ ∼ N(0, 100),

where we reparameterise η = log σ to respect the positivity of the scale parameter.

As the posterior distribution is intractable, we use MCMC with normal random walk

proposals to draw realisations from the posteriors. The MCMC scheme is imple-

mented as in Algorithm 2 using the likelihood function defined in Equations (2.6)

40



Chapter 2. Methods

µ σ ξ
Mean −7.9674 1.3683 0.0012
95% CI (−8.1522, −7.7580) (1.2376, 1.5207) (−0.0837, 0.1012)

Table 2.2: Posterior means and 95% credible intervals of the GEV parameters.

and (2.7) in the acceptance probabilities. We draw realisations of µ, η and ξ re-

cursively over each iteration. The MCMC scheme was run for 10k iterations with a

burn-in of 1k to ensure convergence. The posterior means and 95% credible intervals

for each parameter are given in Table 2.2. The posterior means and MLEs, shown in

Equation (2.10), agree to within one decimal place. However, MLEs provide a point

estimate for each parameter, while Bayesian analysis generates a posterior distribu-

tion for each parameter that reflects both prior knowledge and the likelihood of the

data. Bayesian analysis also produces posterior distributions that can be used to

quantify uncertainty about the estimated parameters, while MLEs provide standard

errors. The confidence intervals in Table 2.1 are similar to the Bayesian credible

intervals in Table 2.2, but the interpretation is different. The credible intervals

represent a range of values for the parameters that have a specified probability of

containing the true values, given the observed data and prior knowledge, thus the

95% credible interval means that there is a 95% probability that the true value of

the parameter is within the interval.

2.4.4 Deviance Information Criteria

The deviance information criterion (DIC) was introduced by Spiegelhalter et al.

(2002) as a metric for Bayesian hierarchical model selection. In application, DIC

is analogous to the Akaike information criterion (AIC) (Akaike, 1974), it is a func-

tion of model deviance and the effective number of parameters. While AIC uses

the maximum likelihood estimate, DIC’s estimate is based on the posterior mean;

hence, the DIC is an asymptotic approximation as the sample size becomes large,

it’s also only valid when the posterior distribution is approximately normal.

The DIC gives a numerical value to summarise how well the model fits the data,

however as in the AIC, it penalises the model for how many parameters are used.

Clearly using more parameters will give a better fit, but we want model adequacy
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with the least model complexity. The statistical deviance is defined as

D(x, θ) = −2 log(L(θ|x)).

where L(θ|x) is the likelihood function, with data x and unknown parameters θ.

The deviance at the posterior mean of θ, denoted θ̄, is

Dθ̄(x) = D(x, θ̄),

and the expectation of the deviance under the posterior of the un-standardised model

D̄(x, θ) = E(D(x, θ)|x),

where larger values correspond to a worse fit. The effective number of parameters,

pD, is denoted as

pD = D̄(x, θ)−D(x, θ̄).

Furthermore, the deviance information criterion is the derived as

DIC = D̄(x, θ) + pD. (2.13)

Smaller values of DIC are preferred.

2.5 Dynamic linear models

If we consider a time-series {Xti , i > 1}, then we say this is a first order Markov

chain if, for i > 1

π(xti |xt1:i−1
) = π(xti |xti−1

),

that is, information about xti carried by all observations up to time ti−1 is the same

as that carried by xti−1
alone. The joint distribution of the Markov chain can be

factorised as

π(xt1:n) = π(xt1)
n∏
i=2

π(xti |xti−1
).

State-space models assume there is a Markov chain in some underlying state process

(θti) and then the observations are noisy measurements of θti . The observations Xti

are then independent conditional on θti (Petris et al., 2009).
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State-space models build on the relatively simple dependence structure of a

(first order) Markov chain. They are made of two main components, observed

data (xt1 , . . . , xtn) and unobserved/latent states (θt0 , . . . , θtn). Figure 2.3 shows the

evolution of a simple univariate state space in which the continuous valued latent

state process {θt0 , θt1 , . . . , θti−1
, θti , . . .} evolves according to a first order Markov

chain with transition density π(θti |θti−1
). The continuous-valued observation pro-

cess {xt1 , xt2 , . . . , xti−1
, xti , . . .} is linked to the latent state process at an arbitrary

time ti via the density π(xti |θti); here it is assumed that the observed data are condi-

tionally independent given the latent states. The observable process (Xti) depends

on the underlying, unobservable latent state process (θti) and we can reasonably

assume that the observation Xti only depends on the state of the system at the

time the measurement is taken, θti . State-space models can be used for modelling

univariate or multivariate time-series in the presence of non-stationarity, structural

changes and irregular patterns (see e.g. Harvey (1990), West and Harrison (2006)).

Time-series analysis typically begins with the formulation of a model that ac-

counts for temporal dependence, for example through auto-correlation, trend or

seasonality. The use of state-space models within a time-series setting allows for

uncertainty quantification in both the observation process and any dynamic vari-

ables that are not observed directly. Forecasting therefore accounts for these dif-

ferent sources of uncertainty and, when inferences are made within the Bayesian

paradigm, additional parameter uncertainty. Throughout, we focus on a particu-

lar class of state-space model within which the observation and system equations

involve linear functions of the latent process. Such models are known as dynamic

linear models (DLMs, see e.g. Petris et al. (2009), West and Harrison (2006)) and of-

fer several practical benefits over their nonlinear counterparts. Notably, they admit

a tractable observed data likelihood function, allowing a computationally efficient

approach to inference and forecasting.

It remains that we specify the relationship between Xti and θti , and between

θti and θti−1
. In each case, we adopt linear relationships, and further assume that

the errors in the state and observed components are independent and normally
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θt0 θt1 θt2 θti−1 θti

xt1 xt2 xti−1 xti

T = 1 T = 2 T = i− 1 T = i

Initialisation

π(θt1|θt0) π(θt2|θt1)
· · ·

π(θti|θti−1
)

· · ·

π(xt1|θt1) π(xt2|θt2) π(xti−1
|θti−1

) π(xti|θti)

Figure 2.3: Directed acyclic graph showing the dependence structure of the state-
space model.

distributed. This structure leads to a DLM, given by the following equations:

Observation Equation : Xti = Ftiθti + νti ,

System Equation : θti = Gtiθti−1
+ ωti .

Here, Xti is a scalar, θti is a p× 1 vector, Fti is a 1× p vector, Gti is a p× p matrix

and νti ∼ N(0, Vti) and ωti ∼N(0,Wti) are independent white noise processes with

known variance matrices Vti and Wti , typically assumed to be constant. Assuming

that the initial latent state follows a Gaussian distribution gives

θ0 ∼ N(m0, C0),

θti |θti−1
∼ N(Gtiθti−1

,Wti),

Xti |θti ∼ N(Ftiθti , Vti),

for suitably chosen hyperparameters m0 and C0.

The simplest univariate DLM is the locally constant DLM, also known as the

local level model. This model has constant functions Fti = 1, Gti = 1 and variance

components Vti = V , Wti = W . The observation and system equations are

Xti = θti + νti , νti
indep∼ N(0, V ),

θti = θti−1
+ ωti , ωti

indep∼ N(0,W ).
(2.14)

2.5.1 Bayesian inference for DLMs

Let ψ = (ψ1, . . . , ψnp)
T denote all fixed model parameters, let θt0:n = (θt0 , . . . , θtn)

T

denote the vector of latent states up to time n and let x = xt1:n = (xt1 , . . . , xtn)
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denote the equally spaced observed data. Upon ascribing a prior density π(·) to ψ,
Bayesian inference may proceed via the joint distribution:

π(ψ, θt0:n|x) ∝ π(ψ)π(θt0)π(θt1:n |θt0 , ψ)π(x|θt1:n , ψ),

where π(θt1:n|θt0 , ψ) =
n∏
i=1

π(θti ;Gtiθti−1
,Wti),

and π(x|θt1:n , ψ) =
n∏
i=1

π(xti ;Ftiθti , Vti).

If interest lies in the marginal parameter posterior then we may compute

π(ψ|x) ∝ π(ψ)π(x|ψ),

where the marginal likelihood π(x|ψ) is given by

π(x|ψ) = π(xt1|ψ)
n∏
i=2

π(xti |xt1:i−1
, ψ), (2.15)

and whose constituent terms are analytically tractable. Simulating from θt0:n|x, ψ
can be achieved using a forward filtering, backward sampling algorithm (FFBS)

(Carter and Kohn, 1994, Frühwirth-Schnatter, 1994). The idea is to first calculate

the filtering distributions π(θti |xt1:i) recursively, for i = 1, . . . , n. This is achieved

using a forward filter, also known as a Kalman filter (Kalman, 1960). The key

steps of the forward filter for time ti, where we have the posterior for θti−1
as

θti−1
∼ N(mti−1

, Cti−1
), are as follows. Note that we suppress dependence on ψ

where possible.

• Using the system equation at time ti the prior distribution is

θti |xti−1
∼ N(ati , Rti),

where
ati = Gtimti−1

,

Rti = GtiCti−1
GT
ti
+Wti .

• From the observation equation, the one step ahead predictive distribution is

Xti |xti−1
∼ N(fti , Qti),
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where
fti = E(xti |xti−1

) = Ftiati ,

Qti = V ar(xti |xti−1
) = FtiRtiF

T
ti
+ Vti .

• To update the posterior density, we construct the joint density of (θti , Xti)
T

and note that Cov(θti , Xti)=Cov(θti , Ftiθti + Vti)=RtiF
T
ti
, hence,(

θti
Xti

)∣∣∣xt1:i−1
∼ N

{(
ati
fti

)
,

(
Rti RtiF

T
ti

FtiRti Qti

)}
.

• Conditioning on Xti = xti yields the required filtering distribution as

θti |xti ∼ N(mti , Cti),

with
mti = E(θti |xti) = ati +RtiF

T
ti
Q−1
ti
eti ,

Cti = V ar(θti |xti) = Rti −RtiF
T
ti
Q−1
ti
FtiRti .

where eti = Xti − fti is the forecast error.

These steps can be executed for i = 1, . . . , n to give the forward filter. To obtain

the terms necessary for the backward sweep, we have the joint density of θti and

θti+1
(given xt1:i) is(

θti
θti+1

)∣∣∣xt1:i−1
∼ N

{(
mti

Gti+1
mti

)
,

(
Cti CtiG

T
ti+1

Gti+1
Cti Gti+1

CtiG
T
ti+1

+Wti

)}
.

Conditioning on θti+1
gives

π(θti |θti+1
, xt1:i) = N(θti ;hti , Hti),

where
hti = mti + CtiG

T
ti+1

(Gti+1
CtiG

T
ti+1

+ 1)−1(θti+1
−Gti+1

mti),

Hti = Cti − CtiG
T
ti+1

(Gti+1
CtiG

T
ti+1

+Wti)
−1Gti+1

Cti .

Note that the constituent terms of the marginal likelihood in Equation (2.15) are

obtained from the forward pass as

π(xti|xt1:i−1
, ψ) = N(xti ; fti , Qti).
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The full FFBS scheme is outlined in Algorithm 4.

Algorithm 4 FFBS scheme

Forward Filtering:
1: Initial distribution: θt0 ∼ N (mt0 , Ct0). Store the values of mt0 and Ct0 .
2: For i = 1, . . . , n,

(a) Prior at ti. Using the system equation, we have that

θti |xt1:i−1
∼ N

(
Gtimti−1

, GtiCti−1
GT
ti
+Wti

)
.

Store Rti = GtiCti−1
GT
ti
+Wti .

(b) One step forecast. Using the observation equation, we have that

Xti |xt1:i−1
∼ N

(
FtiGtimti−1

, FtiRtiF
T
ti
+ Vti

)
.

Store the marginal likelihood contribution

π
(
xti |xt1:i−1

)
= N

(
xti ;FtiGtimti−1

, FtiRtiF
T
ti
+ Vti

)
.

(c) Posterior at ti : θti | xt1:i ∼ N (mti , Cti), where

mti = Gtimti−1
+RtiF

T
ti

(
FtiRtiF

T
ti
+ Vti

)−1 (
xti − FtiGtimti−1

)
Cti = Rti −RtiF

T
ti

(
FtiRtiF

T
ti
+ Vti

)−1
FtiRti

Store the values of mti and Cti .

Backward Sampling:
3: Sample θtn|xt1:n ∼ N (mtn , Ctn).
4: For i = n− 1, . . . , 0,

(a) Backward distribution: θti |θti+1
, xt1:i ∼ N (hti , Hti), where

hti = mti + CtiG
T
ti+1

(
Gti+1

CtiG
T
ti+1

+Wti

)−1 (
θti+1

−Gti+1
mti

)
Hti = Cti − CtiG

T
ti+1

(
Gti+1

CtiG
T
ti+1

+Wti

)−1

Gti+1
Cti

(b) Sample θti |θti+1
, xt1:i ∼ N (hti , Hti).

2.5.2 Example: Local level model

Consider the local level model given by Equation (2.14), with ψ = (V,W )T . When

using a Gibbs sampler, we can firstly simulate θt0:n from π(θt0:n|ψ, x) using the FFBS
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scheme outlined in Algorithm 4. The next step is to simulate ψ:

1. Simulate ψ1 from π(ψ1|ψ2, θt0:n , x) = π(ψ1|θt0:n , x).

2. Simulate ψ2 from π(ψ2|ψ1, θt0:n , x) = π(ψ2|θt0:n).

Where ψ1 = V and ψ2 = W . Specifying independent inverse gamma prior distri-

butions for ψ1 and ψ2 results in semi-conjugacy leading to tractable FCDs. Taking

ψ1 ∼ InvGa(αv, βv) and ψ2 ∼ InvGa(αw, βw), the FCD of ψ1 is calculated as

π (ψ1|ψ2, θt0:n , x) ∝ π (ψ, θt0:n , x) ,

∝ π (x|θt1:n , ψ1) π (θt1:n|ψ2) π (θt0) π(ψ),

∝
n∏
i=1

π (xti |θti , ψ1)
n∏
i=1

π
(
θti |θti−1

, ψ2

)
π (θt0) π (ψ1) π (ψ2) ,

∝ π (ψ1)
n∏
i=1

π (xti |θti , ψ1) ,

∝ ψ
−(αv+

n
2 )−1

1 exp

(
− 1

ψ1

[
βv +

1

2

n∑
i=1

(xti − θti)
2

])
.

Hence,

ψ1|θt1:n , x ∼ InvGa

(
αv +

n

2
, βv +

1

2

n∑
i=1

(xti − θti)
2

)
.

Similarly,

ψ2|θt0:n ∼ InvGa

(
αw +

n

2
, βw +

1

2

n∑
i=1

(
θti − θti−1

)2)
.

When FCDs are available to sample from and a Gibbs sampler is used to sample

from the joint posterior π(ψ, θt0:n|x), retaining draws of ψ gives samples from the

marginal parameter posterior π(ψ|x). Alternatively, although the marginal likeli-

hood is tractable, the posterior will typically be unavailable in closed form. Hence

we use MH to generate draws from π(ψ|x):

1. Initialise the chain with ψ(0). Set j = 1.

2. Propose ψ∗ ∼ q(ψ∗|ψ(j−1)).
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3. Calculate the acceptance probability α(ψ∗|ψ(j−1)) of the proposed move, where

α(ψ∗|ψ(j−1)) = min
{
1, A(ψ∗|ψ(j−1))

}
= min

{
1,

π(ψ∗|x)q(ψ(j−1)|ψ∗)

π(ψ(j−1)|x)q(ψ∗|ψ(j−1))

}

4. With probability α(ψ∗|ψ(j−1)), set ψ(j) = ψ∗; otherwise set ψ(j) = ψ(j−1).

5. Set j = j + 1. Return to step 2.

Then, given draws from π(ψ|x), the backward sampler can be used to generate draws

from π(θ|x).

2.5.2.1 Simulated data example

To illustrate the methods, we draw simulated data from a local level DLM as in

Equation (2.14), with V = 1, W = 0.5 and θt0 = 0. We simulate data for n = 150

time points as follows

• For i = 1, . . . , n :

1. Draw θti ∼ N(θti−1
,W ).

2. Draw xti ∼ N(θti , V ).

We assume the variance components, V and W , follow independent Gamma

distributions such that,

V ∼ Ga(av, bv); W ∼ Ga(aw, bw),

with av, aw, bv, bw = 0.1. Using an MH MCMC scheme, we propose values of ψ =

(V,W ) at each iteration from a normal random walk where the forward filter is

used to evaluate the marginal likelihood for use in the acceptance probabilities.

The inference is run initially for 5k iterations with the sampled parameter values

used to estimate V ar(ψ|x) for use as a tuning matrix in the main monitoring run.

It is then run for 30k iterations with a thin of 30 to gain sufficiently low auto-

correlation. The marginal posterior distributions of V and W are summarised by

plots shown in Figure 2.4. The trace plots show good mixing and convergence to the

target distribution. The density plots show how the data has been informative in

forming the posterior as they both now show peaks consistent with the true values,
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Figure 2.4: Left: trace plots, middle: ACF plots, and right: density plots of posterior
estimates of V and W from the MCMC scheme, with the prior distributions overlaid
in red

as opposed to the prior (shown in red). The stored values of mti and Cti were

then fed into the backward sampler, along with the posterior estimates of ψ to draw

samples of θti . Figure 2.5 summarises the output, π(θt0:n|ψ, x), through the posterior

mean in blue with 95% credible intervals in green overlaid on the real values of θti .

They are consistent with the true values, with the majority of the true values lying

within the 95% credible intervals.

Furthermore, to check the validity of the model we can look at within-sample

predictions. The within-sample predictive density is given by

π(x̂t1:n|xt1:n) =
∫ ∫

π(x̂t1:n|θt1:n , ψ)π(θt1:n , ψ|xt1:n) dθt1:n dψ,

where

π(θt1:n , ψ|xt1:n) = π(θt1:n|ψ, xt1:n)π(ψ|xt1:n).

Although the within-sample predictive density is intractable, draws from π(θt1:n , ψ|xt1:n)
are readily available and therefore π(x̂t1:n|xt1:n) can be sampled via Monte Carlo.
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Figure 2.5: Posterior means (blue) and 95% credible intervals (green) for θti from
backward sampling with the true values plotted in black.

Given draws from (ψ(r), θ
(r)
t1:n), r = 1, . . . , N , we can simulate

X̂
(r)
ti |θ(r)ti , ψ

(r) ∼ N(Ftiθ
(r)
ti , V

(r)),

for i = 1, . . . , n and where r is the number of iterations. Figure 2.6 shows the

majority of the observed data falling comfortably within the 95% CIs of the within-

sample predictions of yti for all ti, as expected for this synthetic data example.
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Figure 2.6: Observed data (black) with overlaid within-sample predictions – mean
(blue) and 95% credible intervals (green).
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Chapter 3

Statistical methods for traditional

before/after studies

3.1 Introduction

Transportation-related safety schemes can include objectives such as safer vehicles,

safer users, safer roads or any combination of these. Some common examples of road

safety schemes include speed cameras, changes to road layout and vehicle activated

signs. Most countries have a department for transport or similar who are responsible

for making the road safer for all road users. The Global Network of road safety leg-

islators was established in 2016 to address road traffic deaths and injuries globally

through their corresponding parliamentarians. One of their aims is to encourage the

UN to develop a set of global guidelines for standards for road safety (The Global

Network for Road Safety Legislators, 2016).

Most road safety schemes (e.g. speed cameras) are evaluated retrospectively

through ‘before/after studies’ (Hauer, 1997). In the UK, historically, Road Safety

Partnerships (e.g. the Northumbria Safer Roads Initiative in northeast England)

have been responsible for safety on the road network for which the local/regional

police force has jurisdiction. These partnerships monitor their road networks contin-

uously, identifying potential sites ‘with promise’; that is, sites that might be worthy

of treatment of some sort. The Highway Safety Improvement Program (HSIP) Eval-

uation Guide (Gross and Scury, 2017) from the United States Department of Trans-

portation notes that ‘evaluations are limited to sites already selected for treatment
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based on other reasons including safety concerns’. Sites with promise are usually

then monitored more closely during some predetermined observation (‘before’) pe-

riod, over which vast amounts of data are collected (for example, over a three year

observation period, within a predefined radius of each identified ‘site’, data on the

number accidents, daily traffic volume and average speed might be collected). Of

course, other site-specific data are available, including static data such as speed

limit, road classification and surrounding land-use. The UK has access to so-called

STATS19 data which has vast amounts of information associated with each indi-

vidual accident (data collected by the police at the scene of the accident, mostly

pertaining to casualty-level information – e.g. age of drivers involved in the accident,

severity of the accident etc. (Department for Transport, 2013)). At the end of the

observation period, sites at which a threshold level of accident counts have been ob-

served are selected for treatment; treatment is applied; and then data are collected

during a subsequent treatment (‘after’) period. Until very recently, partnerships in

the UK performed extremely rudimentary analyses of their before/after data, often

just citing overall percentage changes in accident counts between the observation

and treatment periods, and attributing the reduction entirely to the intervention.

Of course, such simple analyses are extremely over-simplistic, and treatment

effects are bound to be exaggerated in this way because of selection bias: sites

have been selected for treatment based on their abnormally high accident counts

during the ‘before’ period, and counts in the subsequent ‘after’ period are bound to

reduce anyway, even if no intervention was used. This is known as the regression to

the mean (RTM) phenomenon, and is well-known and well-documented in statistics

(Fawcett and Thorpe, 2013, Galton, 1889, Hauer, 1980).

3.2 Confounding factors in traditional studies

3.2.1 Regression to the mean

In road safety, practitioners make decisions on the implementation of safety schemes

based upon data. However, issues in collecting data cause problems with the im-

plementation or retention of safety schemes. Common issues include problems with

sparsity of data, temporal trends or regression to the mean (RTM). Regression to

the mean is a concept which refers to the fact that when a sample from a ran-
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dom variable is extreme, eventually the following samples will return closer to the

mean value. It was first documented by Sir Francis Galton in his paper ‘Regression

towards mediocrity in hereditary stature’ (Galton, 1886), in which he noted the ef-

fect of parents who are well above the average population height having children

who themselves are tall but ‘regressed towards the mean’ population height, hence

shorter than their parents. The opposite was also shown true in shorter parents.

In the context of road safety, the first significant investigation into the RTM

effect was by Ezra Hauer (Hauer, 1980, 1986) and can be defined in this context

as selection bias when a treatment is applied non-randomly based on the responses

on the individuals that are treated (see also, Elvik (1997), Mountain et al. (1998)).

Usually, decisions on implementation of road safety schemes are based upon data

collected at numerous sites. The data collected at these sites will include various

traffic statistics such as traffic flow and average speed, alongside any recorded col-

lisions. Commonly, when the number of collisions exceeds some threshold value,

within a fixed time period, a safety scheme is introduced. However, the number

of collisions is bound to fluctuate stochastically over time regardless of any safety

scheme. This is due to collisions being caused by a variety of reasons, with one key

factor being human error. This brings the question of whether the road is truly

‘unsafe’ as blame cannot be placed upon the location itself. Additionally, minor

collisions are less likely to be reported and recorded formally meaning a lot of sites

will have a collision count which is lower than the true value, bringing data quality

issues. Recently, some countries are focusing on standardising the way collisions are

reported, for example STATS19 in the UK, in a bid to remove some inconsistencies

in the data. However, some inconsistencies are difficult to avoid, for example the

exact location or time of a collision, hence we must conclude that it is unlikely that

any dataset, especially those including minor collisions, are completely free of error.

Collision count data might be thought of as observations drawn from a Poisson

distribution with rate λ, as the counts are discrete. From this we would expect the

mean number of collisions to be λ and for other observations to fluctuate around

this mean by, on average,
√
λ. If, for example, we had a site which has a mean

number of 8 collisions per year (λ = 8) from 2002–2018, and in 2019 we saw a surge

of collisions to 12; practitioners may perceive this as a site which has become unsafe

and therefore implement a safety treatment. Following this, in 2020, the treated
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site observes 6 collisions. We may then conclude that the safety scheme has reduced

the number of collisions by 6, however, without the safety scheme the site will have

most likely seen a reduction naturally, say to 9 collisions (regressing to the mean).

Therefore the safety scheme may have actually only helped avoid 3 collisions. That

is why the RTM effect is important to take into account when evaluating safety

schemes as we want to avoid overestimating their effectiveness.

The RTM effect varies but in some instances, the reduction in collision counts

owing to RTM has been shown to be around 20–30% (Elvik, 2002, Fawcett and

Thorpe, 2013, Hauer, 1997, Mountain et al., 1998). This might be viewed as the

exaggerated effects of the road safety intervention, as often reported by police or in

the media (Brooker and North, 2007). Hence, it is vital that this is accounted for

when evaluating schemes when almost a third of the reduction could be inevitable.

If it was possible to know the number of collisions that would have taken place

in the after period without the scheme, treatment effect elicitation would be trivial.

We could determine that the treatment effect is the difference between the collision

counts with and without the scheme in the after period,

τi = ỹi,AFT − yi,AFT ,

where yi,AFT is the recorded number of collisions at site i after treatment, and

ỹi,AFT is the unobserved collision count in the same period, at site i. Unfortunately,

in reality we cannot know ỹi,AFT and hence we must estimate it to allow us to deduce

the treatment effect. Determining an estimate to the treatment effect at a site may

seem simplistic, such as merely the difference between the collision counts in the

before and after periods,

τ̂i = yi,BEF − yi,AFT . (3.1)

Upon setting mi to be the underlying collision rate at site i then we have

E[τ̂i] = E[yi,BEF − yi,AFT ],

= E[yi,BEF ]− E[yi,AFT ],

= mi − (mi − τi),

= τi,
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and providing our assumptions of the expected values in each period are accurate,

we have an unbiased estimator of the treatment effect, τi. For the treatment effect

over all n sites we would simply calculate

τ̂ =
n∑
i=1

τ̂i.

Unfortunately, this approach is over-simplistic and naive as it fails to account for

RTM and other confounding factors, such as trend. As mentioned in Section 3.2.1,

treated sites are most likely chosen where there is an abnormally high number of

collisions in the before period. Hence, we would expect

yi,BEF = mi + ρi,BEF ,

yi,AFT = mi + ρi,AFT + τi,

where mi is the true, underlying collision rate, and ρi,BEF and ρi,AFT are the random

deviations due to chance. Ergo, Equation (3.1) becomes

τ̂i = yi,AFT − yi,BEF ,

= (ρi,AFT − ρi,BEF ) + τi,

= ρi + τi,

(3.2)

where ρi is the RTM effect at site i. If sites were chosen randomly, the RTM effect

would be obsolete, and ρi = 0. However, as sites deemed dangerous through their

high collision count are chosen, we induce a bias, such that

E[ρi,BEF ] > 0.

As the after period is free of selection bias and is independent to the before period

we can set E[ρi,AFT ] = 0. Therefore, we have that the RTM effect,

E[ρi] < 0.

Now, we no longer have an unbiased estimator of the treatment effect in Equa-

tion (3.1). Therefore, to regain unbiased estimates we must remove the RTM effect
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from the estimate of the treatment effect,

E[τ̂i] = E[yi,AFT − yi,BEF − ρ̂i],

= ρi + τi − ρi,

= τi.

Correctly quantifying the RTM effect is a challenge in before/after studies, as a de-

crease or increase in collision counts at a site could be attributed to this phenomenon.

We estimate the RTM effect through,

E[ρi] = yi,BEF − E[mi],

where E[ρi] represents the expected RTM effect, yi,BEF is the observed collision

count before implementing a safety measure, and E[mi] is the expected collision

count in the absence of the safety measure.

3.2.2 Other confounders

Another feature not accounted for through such a simple comparison of ‘before’ with

‘after’ is trend: we might expect a change in accident counts between the observa-

tion and treatment periods owing to general temporal trends, perhaps as a result

of road safety awareness campaigns. To derive Equation (3.2), we assume that the

underlying collision rate, mi, is constant and any changes to collision rates are down

to RTM or treatment effects. In reality, there are a multitude of reasons as to why

this rate could change over time; traffic volume, recent safety awareness schemes and

vehicle safety improvements could all change the underlying rate in either direction.

If we do not account for trend, our estimates for the treatment effect will be biased.

When accounted for, trend is usually factored in to any before/after analysis by

applying a multiplicative factor to the change in counts between the ‘before’ and

‘after’ periods, based on historical records of accident counts across the region, or

perhaps expert opinion on trend at the location (see, Guo et al. (2019), Yanmaz-

Tuzel and Ozbay (2010)). Temporal trends can vary across different levels of severity,

as evidenced by recent data from the UK which shows an annual rise in reported

‘slight’ accidents while accidents graded as ‘KSI’ (Killed or Seriously Injured) have

steadily decreased. Therefore, taking into account the severity of accidents is an im-
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portant factor to consider when building effective accident prediction models. Thus,

careful consideration of accident severity might also play a part in successful accident

prediction modelling. Other confounding effects include traffic volume, any other

significant change to the site in the same period or simply general fluctuations in

the number of accidents. Elvik (2002) studied seven before/after studies and found

that not controlling for confounding factors lead to an overestimate of the effects of

the road safety measure in five of the seven cases. Hence, such simplistic studies,

which do not control for any confounding factors, should not be trusted.

Commonly, the amount of data available for before/after studies is relatively

small and it’s not possible to measure these effects from the treated site data alone;

hence, we use data collected at comparison sites, where no scheme has been imple-

mented, to gain estimates of the RTM and trend effects. These control sites are

chosen to be similar to the treated sites in terms of characteristics, and the same

amount of data are collected in the before and after periods. The differences in the

before and after periods at the treated sites are then compared to control sites to

account for RTM or other confounding factors (Engel and Thomsen, 1992, Yannis

et al., 2014). While simplistic before/after studies comparing treated and control

sites can provide some insights into the safety effects of roadway treatments and ac-

count for confounding factors, a more advanced methodology is the empirical Bayes

(EB) approach.

3.2.3 Road safety hotspot prediction

‘Predictive policing’ of the road network is now becoming an accepted part of prac-

titioners’ road safety plans. For example, installing a speed camera at a location

with an abnormally high number of accidents during some observation period might

be an unnecessary knee-jerk response, with wasted resource, given the discussion

on RTM above. Hence, road safety organisations are increasingly looking towards

accident prediction modelling to identify sites for treatment based on their pre-

dicted accident counts. The International Road Assessment Programme (iRAP)

have developed AiRAP which uses artificial intelligence and machine learning to

collect road data globally in the hope to support road safety assessment, crash risk

mapping and investment prioritisation for all road users (The International Road

Assessment Programme (iRAP), 2022). The supervisory team have also worked

59



Chapter 3. Statistical methods for traditional before/after studies

closely with researchers at PTV to develop a model for predicting accidents with

the following features:

• Makes use of information (observed or modelled) across a ‘global’ network (e.g.

region/ municipality/ borough/ ward), obtained from within PTV software.

• Dynamically models global trend.

• Allows site-specific deviations from the global trend, should there be significant

evidence at a site for such a deviation.

• Uses historical accident data (observed or modelled) at each site to estimate

a site-specific underlying mean accident rate.

• Incorporates a device to allow more recent observations at a site to inform

predictions at that site with more certainty, relative to observations further in

the past.

The model developed with PTV is now available within PTV’s Visum software,

as well as a locally-hosted prototype developed at Newcastle (essentially a suite of

R-Shiny web-based applications). Currently, 19 road safety organisations globally

are using this hotspot prediction model, some of which are using it to help guide

investment decisions relating to road safety interventions. Many of the prediction

models used, heavily rely on covariate information to provide reliable predictions;

however, data availability is restricted. It is common to have collision information

but not necessarily any matching covariates, such as traffic flow or average speed.

Commonly, these data need to be outsourced and combined with the collision data.

This matching exercise is time-consuming and not always straightforward. In Chap-

ters 6 and 7, we present models that utilise available data to identify patterns in

the response variable. Our proposed model in Chapter 7 is capable of predicting on

more precise scales, providing finer-scale predictions.

3.3 The empirical Bayes approach for RTM

When a road safety organisation or practitioner wants to account for RTM, they

usually do so through an ‘Empirical Bayes’ (EB) approach (Fawcett and Thorpe,

2013, Fawcett et al., 2017, Hauer, 1980). Here, collision counts in the before period,

yi at site i, are assumed Poisson (see Appendix A.1.7) conditional on rate mi. As
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described in Section 2.1, the unconditional distribution for yi is negative binomial

with mean µi and variance µi + κµ2
i , where κ = 1/γ > 0 is the negative binomial

overdispersion parameter. For mathematical convenience, as the gamma distribution

is the conjugate (from the same distribution family) prior for the Poisson, mi is

assumed to be gamma distributed, such that

yi|mi ∼ Po(mi), independently,

mi ∼ Ga(γ, γ/µi),

where γ is the reciprocal of the overdispersion parameter of the unconditional neg-

ative binomial distribution of the collision counts yi. The PDF for mi is,

π(mi) =
1

Γ(γ)

(
γ

µi

)γ
m

(γ−1)
i exp

{
− γ

µi
mi

}
,

strategically parameterised so that we have mean µi and variance proportional to

the overdispersion parameter. Using Bayes theorem, we can calculate the posterior

up to proportionality,

π(mi|yi) ∝ m
(γ−1)
i exp

{
− γ

µi
mi

}
× myi

i

yi!
exp{−mi},

∝ m
(yi+γ−1)
i exp

{
−mi

(
γ

µi
+ 1

)}
.

Then, the posterior distribution for mi is found to be

mi|yi ∼ Ga(γ + yi, γ/µi + 1), (3.3)

with posterior mean

E[mi|yi] = αiµi + (1− αi)yi,

where αi = γ/(γ + µi), 0 < αi < 1.
(3.4)

The effectiveness of a scheme is then measured through a comparison of yi,AFT and

E[mi|yi]. The standard EB approach treats the posterior mean, E[mi|yi], as a ‘coun-

terfactual outcome’ – in other words, it uses the underlying mean accident rate at

each site (µi) and the actual observed count in the before period (yi) to suggest

what the accident count might have been had no intervention been used. It then
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compares this count (rather than the count from the ‘before’ period) to that in the

‘after’ period to account for the fact that the observed count in the before period

may have been abnormally high.

Data from a reference set of sites, at which no treatments have been applied, are

usually used to estimate the underlying mean accident rate µi as, typically, historical

records are not available. Simple log-linear regression models (so-called ‘Accident

Prediction Models’ (APMs) or Safety Performance Functions (SPFs)) linking colli-

sion counts to several regressors are constructed for data at reference sites, and then

applied to regressor information at the treated sites, in order to estimate µi,

µ̂i = exp

{
β̂0 +

np∑
p=1

β̂pxpi

}
,

where xpi are variables associated with attributes at site i that could have an effect

on the mean number of casualties at that site (e.g. traffic flow or average vehicular

speed) and np is the number of such variables used. The estimated regression coef-

ficients, β̂p, p = 0, . . . , np, are obtained from analyses on reference sites. Reference

sites are chosen such that their attributes (used as explanatory variables) are as

identical as possible to the treated sites, yet they observe a more ‘normal’ collision

frequency. The treated sites have been chosen because of their abnormally high

collision counts, but for µi we need a model that will give us a more representa-

tive prediction of the mean collision count at the treated sites i. Estimation of the

weight αi and thus the overdispersion parameter γ is required; to do this, we set the

SPF to be a negative binomial GLM (see, Section 2.1), which we fit using maximum

likelihood estimation and obtain our SPF coefficient vector β̂ = (β0, . . . , βnp) and

an estimate of the inverse of the overdispersion parameter, κ. We can then gain our

EB estimates of the collision frequency at each site i through Equation (3.4).

In the absence of reference sites, regional or national models are sometimes relied

upon to provide an ‘off-the-shelf’ estimate of µi (e.g. the ‘COBA manual’ in the

UK). Further examples detailing the RTM effect, and the potential pitfalls it causes

can be found in Garćıa-Gallego et al. (2011); further examination on the uses of

empirical Bayes in before/after studies can be found in Persaud and Lyon (2007).

It is standard practice for frequentist techniques to be employed to estimate the
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regression coefficients in the APM, which then feed through the Bayesian analysis as

outlined above. Of course, in a truly Bayesian setting, these parameters’ coefficients

might have prior distributions themselves, and simulation-based procedures might

be needed (e.g. MCMC) to estimate all parameters within a ‘fully Bayesian’ (FB)

context. Doing so could more realistically quantify our uncertainty in estimates of

RTM and treatment effects by acknowledging our uncertainty in the estimated APM.

Previous reluctance to embrace an FB methodology in industry can be explained

by the enhanced level of computing and statistical ability needed to implement this

method, fortunately advances of computing and software applications greatly im-

prove the accessibility and hence, FB methods are becoming more commonplace

(El-Basyouny and Sayed, 2012, Heydari et al., 2014). As an example, Bayesian

methodology is used by PTV group in their software VISUM and by Gateshead

council through RAPTOR. The RAPTOR suite of software applications was devel-

oped by the Newcastle road safety team to allow practitioners to implement Bayesian

methods, without any technical or computational requirements (Matthews et al.,

2019). The advantage stems from use of diffuse prior distributions for the coeffi-

cients in the regression equation. This allows for more realistic standard deviations

and doesn’t accept the estimated regression coefficients as fixed (known) values. In

addition, it also allows for change of priors omitting the need for the Poisson-gamma

conjugacy. Despite FB methods being accepted in the literature for a while, with

Schlüter et al. (1997) providing support for a hierarchical model to replace EB in

the 1990s, EB still remains in common usage currently with Høye (2015), Park and

Abdel-Aty (2015), Wang et al. (2017) providing examples of studies carried out in

the last several years still relying on an EB methodology for inference. For more

examples in favour of a fully Bayes analyses, see Kitali and Sando (2017), Lan et al.

(2009), Yanmaz-Tuzel and Ozbay (2010).
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3.4 Data example: The Northumbria Safety Cam-

era Partnership data

3.4.1 Empirical Bayes analysis

Two datasets were provided by Northumbria Safety Camera Partnership (NSCP):

56 treatment sites, where mobile safety cameras were operated, with data from a

before period and an after period, and 67 reference sites to account for RTM. The

data were collected from 2001–2003 in the before period and 2004–2006 in the after

period. This dataset was introduced in Section 1.3.1. Generalised linear modelling

and maximum likelihood estimation is used to obtain the prior mean µi from the

reference set,

µ̂i = exp{1.933
(0.534)

− 0.041x1
(0.015)

− 0.013x2
(0.004)

+ 0.444x3
(0.193)

+ 0.674x4I
(0.417)

+ 0.846x5I
(0.422)

+ 1.060x6I
(0.380)

},
(3.5)

where x1, x2 and x3 correspond to average observed speed (mph), percentage of

drivers over speed limit and traffic flow (respectively), and x4I , x5I and x6I are in-

dicator variables associated with road classification (A, B and C). The regression

coefficients, β̂p, are represented by maximum likelihood estimates with their stan-

dard errors given in parentheses underneath. The overdispersion parameter is given

as γ̂ = 2.494; maximum likelihood estimates and standard errors are from fitting the

‘glm’ function in R to the reference data. With estimates available for all regression

coefficients and the overdispersion parameter, we can calculate our estimates for µi

at each site and in turn our weight value αi. We are able to estimate E(mi|yi), the
number of casualties we would expect to see had no scheme been implemented via

Equation (3.4). The standard deviation can be calculated through the square root

of the variance of the posterior distribution, π(mi|yi) in Equation (3.3). Table 3.1

shows that after RTM we would expect to see, on average, 317 casualties over all

sites, had no treatment been applied. We conclude that, through the EB method,

the speed cameras have resulted in a reduction, on average, of 19 casualties across

the sites.
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EB Method Difference
yi µi αi E(mi|yi) SD(mi|yi) yi,AFT Observed After RTM

Site i = 2 4 1.673 0.599 2.607 1.023 0 −4 −2.607
Site i = 13 12 2.063 0.547 6.561 1.723 2 −10 −4.561
Site i = 39 7 1.464 0.630 3.511 1.140 2 −5 −1.511
Site i = 47 16 4.809 0.341 12.179 2.832 5 −11 −7.179
Total 438 317 298 −138 −19

Table 3.1: Results of the EB analysis to account for RTM for four sites treated with
safety cameras, as well as totals for all 56 safety camera sites.

3.4.2 Fully Bayes analysis

It is standard practice in road safety to use frequentist techniques (EB) for estimates

of the regression coefficients and to feed these through to a Bayesian analysis, using

these maximum likelihood estimates to build our prior distribution for mi. However

in a fully Bayesian (FB) setting we assign priors to the regression coefficients to

quantify our uncertainty in these parameters. Therefore, moving to the FB method,

we initially work with the same Poisson-gamma hierarchy, however, we now assign

prior distributions to the regression coefficients βp, p = 0, . . . , 6, and the negative

binomial overdispersion parameter κ = 1/γ. We use diffuse, independent priors:

βp ∼ N(0, 100), p = 0, . . . , 6 and

ρ = log κ ∼ N(0, 100),

working with the natural logarithm to retain the positivity of κ, we can then gain

estimates of the overdispersion parameter as γ = exp(−ρ). We use a Markov chain

Monte Carlo (MCMC) algorithm with normal random walk proposals to draw real-

isations from the posteriors.

Algorithm 5 Fully Bayes MCMC scheme

1: Initialise the chain β(0) =
(
β
(0)
0 , . . . , β

(0)
6

)
, ρ(0) at their MLEs. Set j = 1.

2: For each element βp:

• Sample a proposal value β∗
p from the proposal distribution q(β∗

p |β
(j−1)
p ),

β∗
p ∼ N(β(j−1)

p ,Σβp),

where Σβp is determined from tuning the acceptance probabilities.
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• Set β
(j)
p = β∗

p with probability αβp , where

αβp = min

{
1,

π(β∗
p)L(β

∗|ρ(j−1),x)q(β∗
p |β

(j−1)
p )

π(β
(j−1)
p )L(β(j−1)|ρ(j−1),x)q(β

(j−1)
p |β∗

p)

}
,

where x denotes the reference data; else set β
(j)
p = β

(j−1)
p .

3: Update ρ.

• Sample a proposal value ρ∗ from the proposal distribution q(ρ∗|ρ(j−1)),

ρ∗ ∼ N(ρ(j−1),Σρ),

where Σρ is determined from tuning the acceptance probabilities.

• Set ρ(j) = ρ∗ with probability αρ, where

αρ = min

{
1,

π(ρ∗)L(ρ∗|β(j),x)q(ρ∗|ρ(j−1))

π(ρ(j−1))L(ρ(j−1)|β(j),x)q(ρ(j−1)|ρ∗)

}
,

else set ρ(j) = ρ(j−1). Set γ(j) = exp(−ρ(j)).

4: For i = 1, . . . , 56,

• Calculate µi.

• Sample a proposal value m∗
i from the proposal distribution q(m∗

i |m
(j−1)
i ),

m∗
i ∼ N(m

(j−1)
i ,Σmi

),

where Σmi
is determined from tuning the acceptance probabilities.

• Set m
(j)
i = m∗

i with probability αmi
, where

αmi
= min

{
1,

π(m∗
i |µi, γ(j))L(m∗

i |yi)q(m∗
i |m

(j−1)
i )

π(m
(j−1)
i |µi, γ(j))L(m(j−1)

i |yi)q(m(j−1)
i |m∗

i )

}
,

where yi denotes the treated sites data; else set m
(j)
i = m

(j−1)
i .

5: If j = N stop, else set j = j + 1 and go to step 2.

The MCMC scheme, outlined in Algorithm 5, was run for 400k iterations with a

thin of 400 and discarding the first 1000 as burn-in. The tuning parameters for each
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Figure 3.1: Trace plots for βp, p = 0, . . . , 6 and γ from the MCMC scheme.

coefficient were chosen suitably to give acceptance probabilities of around 23%. The

trace plots in Figure 3.1 show good convergence for all and have similar means and

variances in different sections of the chains. The autocorrelation was sufficiently low

after thinning and the histograms in Figure 3.2 show good estimates of marginal

densities.

In Table 3.2, we show estimates for µi and mi for the same 4 sites as shown in

Table 3.1 for illustrative purposes. As can be seen by comparing standard deviations

for mi from the FB analysis to those from the EB analysis in Table 3.1, posterior

variability is substantially greater in the FB analysis. This is because we have

acknowledged the variability of the regression parameters βp; hence, this makes our

estimation for the accident prediction model (APM) more realistic as it quantifies

our uncertainties in these coefficients. We see in Figure 3.3 how an FB analysis
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Figure 3.2: Histograms for βp, p = 0, . . . , 6 and γ from the MCMC scheme showing
marginal posterior densities.

is more realistic over the uncertainty of the parameters, with most showing larger

posterior standard deviations for mi. Additionally, by comparing the estimates of

E(mi|yi) obtained from the FB and EB analyses, an FB analysis estimates that we

would expect to observe fewer casualties in the after period when accounting for

RTM.

3.4.3 Sensitivity to prior distribution

As discussed earlier, the Poisson-gamma hierarchy was chosen out of mathematical

convenience to give us a convenient form for the expectation of the posterior. How-

ever, simulation-based methods, such as MCMC, are relatively straightforward and

allow us to draw realisations from the posterior without the necessity for conjugate
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Posterior
Mean St. Dev. Median 95% Credible interval

β0 1.962 0.539 1.962 (0.816, 2.963)
β1 −0.042 0.015 −0.041 (−0.073, −0.015)
β2 −0.013 0.004 −0.013 (−0.021, −0.005)
β3 0.465 0.216 0.465 (0.030, 0.848)
β4 0.668 0.489 0.660 (−0.268, 1.469)
β5 0.858 0.450 0.846 (0.014, 1.773)
β6 1.074 0.391 1.064 (0.296, 1.818)
γ 2.167 0.680 2.093 (1.077, 3.488)

µi

Site i = 2 1.821 0.852 1.661 (0.701, 3.983)
Site i = 13 2.384 1.344 2.113 (0.809, 5.461)
Site i = 39 1.587 0.722 1.445 (0.613, 3.370)
Site i = 47 4.976 0.971 4.888 (3.322, 7.157)

mi

Site i = 2 2.676 1.284 2.459 (0.860, 5.961)
Site i = 13 7.070 2.642 6.728 (2.956, 12.949)
Site i = 39 3.711 1.589 3.419 (1.308, 7.568)
Site i = 47 12.543 3.261 12.267 (6.892, 19.292)

Total 311.915 37.286 311.015 (258.706, 366.825)

Table 3.2: Posterior summaries for a fully Bayesian analysis to account for RTM for
four treated sites and the total over all 56 sites.

priors. In the last Section we compared the results from a traditional EB analysis

for a safety camera before/after study to those from an analogous FB analysis, not-

ing the increase in uncertainty under the more ‘honest’ FB analysis. Here, we will

compare results from five different prior specifications; all are chosen such that they

have support on (0,∞) (as we are specifying a prior for a rate parameter). The

estimates of the marginal densities for each of the coefficients are not dependent

on the prior for mi, hence, these estimates vary only marginally over each MCMC

output.

We explore the sensitivity of the posterior for mi to the following prior dis-

tributions: Gamma; Weibull; lognormal; beta-prime; and inverse-gamma (see Ap-

pendix A.1). Additionally, we use a Jeffreys prior as an uninformative prior to assess

the relevance of the reference data. To allow for relative comparisons between the

different priors, we keep the mean and variance the same in all specifications, that

is, we hold E(mi) = µi and V ar(mi) = µ2
i /γ, as was the case in the Poisson-gamma

specification in the last Section, with the prior mean given by the accident predic-

tion model (APM) in Equation (3.5). For example, in the case of the lognormal
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Figure 3.3: Standard deviations for mi from EB analysis against Poisson-Gamma
FB analysis

distribution, we reparameterise as

mi ∼ Lognormal(λi, σ
2), where

λi = log(µi)−
1

2
log(1 + γ−1) and

σ2 = log(1 + γ−1).

(3.6)

For the inverse-gamma prior, we have

mi ∼ InvGa(α, β),

µi =
β

(α− 1)
,

µ2
i

γ
=

β2

(α− 1)2(α− 2)
,

giving α and β in terms of µi and γ.

We use the Deviance Information Criterion (DIC; see Section 2.4.4) to compare

the five model formulations outlined here. Table 3.3 shows posterior summaries

for accident rates mi totalled across all 56 sites, with summaries from the original

Poisson-gamma formulation, as reported in Table 3.2, included for completeness.
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Gamma prior Lognormal prior Weibull prior
Mean 95% CI Mean 95% CI Mean 95% CI

Total 311 (258, 366) 339 (248, 400) 317 (296, 371)
RTM (%) −28.9 −(40.8, 15.6) −22.7 −(36.7, 8.7) −27.6 −(39.3, 15.3)

DIC 666.3 787.2 645.6
Beta-prime prior Inv-gamma prior Jeffreys prior

Mean 95% CI Mean 95% CI Mean 95% CI
Total 333 (290, 378) 339 (298, 381) 464 (421, 506)

RTM (%) −23.9 −(33.8, 13.7) −22.9 −(31.9, 12.9) 5.9 (−3.7, +15.6)
DIC 754.4 773.5 805.0

Table 3.3: Posterior means and 95% credible intervals for the total expected num-
ber of casualties and the RTM effect. Also shown are the computed values of the
Deviance Information Criterion.

Also reported in Table 3.3 are posterior summaries for the estimated RTM percent-

age change, that is,

100

(
56∑
i=1

E(mi|yi)− yi

)/
56∑
i=1

yi,

along with the DIC values for each model specification. As can be seen, there are

some discrepancies in results when comparing across the five informative prior spec-

ifications. Both the lognormal and inverse-gamma priors give posterior inferences

suggesting a reduction in casualties, after accounting for RTM, to around 339, com-

pared to 333 when using a beta-prime prior or around 311 when using a gamma or

317 with a Weibull prior. This would indicate an inflated estimated treatment ef-

fect under the lognormal, inverse-gamma or beta-prime prior specifications, relative

to an analysis based on a gamma or Weibull prior specification. Correspondingly,

the estimated RTM effects are larger under the gamma and Weibull prior specifica-

tions, relative to the lognormal, inverse-gamma and beta-prime specifications. The

DIC values suggest the Poisson-Weibull specification might be the most appropriate

here, followed closely by the Poisson-gamma formulation. The other three model

formulations using informed priors have returned much larger DIC values, perhaps

ruling them out in this particular application. The Jeffreys prior doesn’t refer to

the reference data at all, and so expects the number of casualties to continue being

abnormally high. Only in the very lower tail of the marginal distribution would we

see a reduction in total casualties over all sites. Without the reference data, the

RTM effect is somewhat ignored, as we might expect.

The results reveal some sensitivity in estimates of RTM to the choice of prior

distribution for the mean casualty rate used in the NSCP study on the effectiveness
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of mobile safety cameras. Of the informative priors used, the DIC suggests the least

appropriate prior distribution for the mean casualty rate is the lognormal, and the

most appropriate is the Weibull. Indeed, there might be some practical justification

for this: taking γ̂ = 2.494 and µ̂47 = 4.809 (as reported in Table 3.1 for site 47),

gives a value for Pr(mi > 40) under the lognormal prior that is 7 times larger

than that under the gamma prior, and 77 times larger than that under the Weibull

prior! Even for a relatively high casualty frequency site like site 47, it would be

extremely unusual to observe a casualty rate of more than 40, and so we might trust

most the prior with smallest tail probabilities. An EB analysis would, of course,

miss the nuances reported here, and miss altogether the supposed best-fitting model

formulation using the Weibull prior.

3.5 Discussion

We have introduced some commonly used methods for the evaluation of road safety

schemes. Typically, in road safety before/after studies, locations with an unusually

high number of collisions in the pre-determined time-period are selected. However,

this approach may result in selection bias issues. These locations were chosen due

to the high number of collisions over a certain period, and the number of collisions

in a subsequent period is likely to decrease. This is known as regression to the

mean, where the abnormally high observation tends to return to the average over

time. Practitioners therefore must account for this in their evaluations of how ef-

fective a safety scheme has been. Other confounders must also be accounted for to

gain a ‘clean’ estimate of the treatment effect. We introduced the commonly-used

empirical Bayes (EB) and fully Bayes (FB) methods and showed the advantages of

a full Bayesian framework through acknowledging the variability of the regression

parameters and hence realistically quantifying the uncertainty in the coefficients.

We also presented the added flexibility that comes with the FB method through

the ability to stray from a Poisson-gamma formulation. The sensitivity to change

in prior distributions analysis showed that the conclusions drawn on the treatment

effect’s effectiveness can alter vastly with the use of different priors. For the NSCP

data analysis, we showed that the best-fitting model formulation is using a Weibull

prior.

In the realm of road safety research, both EB and FB methods come with their
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respective advantages and limitations. EB is computationally efficient and well-

suited for large datasets, especially when prior information is limited. However, it’s

less robust and can be sensitive to the choice of estimated hyperparameters. On the

other hand, FB offers robustness and the flexibility to incorporate complex models

and prior beliefs. It also provides a fuller quantification of uncertainty through its

posterior distributions. Yet, FB comes with the drawback of being computation-

ally intensive, sensitive to prior choice, and potentially less scalable for very large

datasets.
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Bespoke modelling formulations

for atypical before/after studies

4.1 Introduction

EB or FB methods are not applicable to all before/after studies. If the sites are not

chosen for their abnormally high collision counts, then we no longer need to account

for RTM and thus, have reference data. In recent years, with the advancement of

technology and video-processing techniques, interest in near-misses has peaked. In

these studies we usually model times between road users reaching a point in space,

hence standard techniques would not apply. In other disciplines, randomised trials

are commonplace. In medicine, randomised trials aim to avoid selection bias thus

ensuring that any differences in outcome can be solely attributed to the treatment.

They help to ensure that any variations between treatment groups are due to chance

which reduces the potential for bias and confounding. Hence, implementing safety

schemes at sites that are randomly allocated could provide reliable estimates of the

treatment effect in road safety evaluation studies. Naturally, the implementation of

many road safety schemes, such as installing speed bumps or changes to road layouts,

can be costly – requiring significant time and resources. If these safety interventions

are then proven to be ineffective and they were implemented at sites that were

already deemed ‘safe’, they may be classed as a waste of money and resources.

However, there are cheap and easy to install safety intervention options, such as

vehicle activated signs, which could be a viable option for a randomised trial. In

these instances, we must curate a model to estimate any potential treatment effect.
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4.1.1 Vehicle Activated Signs

Vehicle activated signs (VAS) are traffic signs which activate when traffic approaches,

some may activate if a speed limit is being exceeded, or if a hazard is ahead, includ-

ing warning of a sharp bend in the road. They are created to look similar to usual

road signs, with clear messages flashing up when activated, some may show a happy

face to traffic going below a speed limit and an angry face to those exceeding. VAS

are a low-cost and low-maintenance option for a traffic calming measure which have

been proven to be effective in reducing speeding and accidents (Jamson et al., 2010,

Winnett and Wheeler, 2002). As a result of this, VAS could be a viable option for

a randomised trial. They are cheap to implement and maintain, compared to speed

cameras, and are not as ‘controversial’ from a public perception or a resource point-

of-view. Trials of safety schemes in which sites to be treated are chosen randomly

would also not fit into the ‘standard’ model formulation. In this case we wouldn’t

require reference data to account for RTM.

To avoid selection bias, Xie et al. (2011) select random segments of a highway to

apply the Highway Safety Manual (HSM, AASHTO, 2010) procedures to roadway

segments in Oregon. Issues of selection bias are common place, Elvik (2004) studies

the extent of site selection bias in a study on Norway’s national roads. Clearly the

methods outlined in Chapter 3 attempt to account for this bias, however studies can

be performed omitting this bias altogether.

4.1.2 Traffic conflict analyses

It is not always the case that data are collected as collision counts, recently attention

has turned to looking at near-misses or traffic conflicts. Traffic conflicts are generally

defined as a situation in which two road users approach each other in time and space

to such an extent that they will collide if their trajectories remain unchanged. Traf-

fic conflicts are more frequent than collisions, easy to observe and are of marginal

social cost (Tarko, 2018). As such, traffic conflict and near-miss before/after studies

can be conducted over shorter time periods. Furthermore, new technology has been

adopted, such as automated video techniques (Saunier and Sayed, 2007), traffic sim-

ulation (Wang et al., 2018), and software (for e.g. TrafxSAFE, Transoft Solutions,

2020) to allow for detecting and tracking moving objects based on their trajecto-
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ries; conflict data are thus easily extracted. We are then able to analyse these

traffic conflicts and near-misses through post encroachment times (PETs; outlined

in Section 1.3.3) which have become popular to define conflicts in relevant litera-

ture (Navarro et al., 2022, Paul and Ghosh, 2021). When working with PETs or

time to collision (TTC) it is intuitive to model using extreme value theory (EVT).

Small PETs or TTCs denote a dangerous situation. Zangenehpour et al. (2016)

categorised PET values in terms of severity through the following classification:

• Very dangerous, PET ≤ 1.5s

• Dangerous, 1.5s < PET ≤ 3s

• Mild interaction, 3s < PET ≤ 5s

• Safe interaction, PET > 5s

Hence, we look for extreme values in the data and in before/after studies, our safety

scheme has had a positive effect when we have larger values for PET or TTC in

the after period. A significant reduction in potential conflicts will likely lead to

a significant reduction in actual collisions. There is the added benefit of treating

potential road safety hotspots proactively. Standard road safety interventions are

usually analysed in a reactive manner. Collisions are rare events and so prolonged

observation periods are necessary, with much waiting for collisions to happen to

evaluate a treatment using a standard before/after analysis. Working with traffic

conflicts means not having to wait for collisions to happen.

4.2 Study of Vehicle Activated Signs in Tyne and

Wear

As discussed in Section 1.2.2, the road safety team at Newcastle have been working

closely with Gateshead Council since 2015 on various road safety-related projects,

including an evaluation of their mobile safety camera scheme (see Section 3.4 for

full details). In August 2019, the council’s road safety steering group gave the green

light to a completely randomised trial of their newly-purchased vehicle activated

signs. The aim of the trial would be an evaluation of their VAS in terms of reducing

collisions at potential road safety hotspots across Tyne and Wear and Northum-

berland. Compared to their well-established programme of deployment for mobile
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road safety cameras, VAS were a relatively new form of road safety intervention for

the council, and there was an eagerness to properly assess their effectiveness before

a full rollout as part of their standard road safety practices. It was hoped that a

randomised trial would provide the best form of evaluation here, helping to avoid

any selection bias and thus the need to account for RTM at the data analysis stage.

The following model formulation was developed just before discussions around site

selection were held; the evaluation was due to take place during the 2020/2021 fiscal

year, but the pandemic has since put the study on hold. Thus, throughout the rest

of this section we use simulated data to illustrate the model we develop for assessing

the effectiveness of Gateshead Council’s VAS.

Gateshead council had planned to implement the signs at five localities, and col-

lect monthly collision data in five months before and 5 months after implementation.

Therefore, the data were generated to represent the number of collisions over five

localities. This was based on five records before treatment and five after. Suppose

the number of collisions, Xij, follow a Poisson distribution,

Xij|λij ∼ Po(λij), λij > 0,

where i = 1, . . . , 5 denotes the specific locality and j = 1, . . . , 10 denotes the time

period. A Poisson regression equation was chosen to describe the rate of collisions

dependent on certain factors,

log λij = α + βtij + (γ + δtij)(li − l̄), (4.1)

where tij = 0 before treatment and tij = 1 after treatment. The total number

of collisions at the five localities are recorded (li) and compared to the mean over

numerous localities (l̄) in an attempt to standardise the data, making it easier to

compare across sites. For experimental purposes,

li − l̄ =
1

5
(−2,−1, 0, 1, 2).

We set,

α = 2, β = −2, δ = 2, γ = 1,

in the regression equation to calculate values of λij. The data were simulated in R
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Figure 4.1: Simulated data over five localities for 5 observations before treatment
and 5 after.

using a Poisson distribution (with mean λij) gaining 10 observations at each locality;

five observations before treatment (j = 1, . . . , 5, tij = 0) and five observations after

treatment (j = 6, . . . , 10, tij = 1), and are shown in Figure 4.1. Since the parameters

could take any value, normal prior distributions were chosen for each parameter

independently, with zero mean and large variance,

α ∼ N(0, 100), β ∼ N(0, 100), δ ∼ N(0, 100), γ ∼ N(0, 100),

such that the prior can be written as

π(Θ) = π(α)π(β)π(δ)π(γ),

where Θ denotes the parameter vector. As the posterior distribution π(Θ|x) is

intractable and full conditional distributions (FCDs) are not available in closed

form, we draw realisations from π(Θ|x) using a Metropolis-Hastings algorithm with

individual normal random walk proposals on each parameter (see Section 2.4.2).

The MCMC scheme is initialised at α(0) = 0, β(0) = 0, δ(0) = 0, γ(0) = 0. At each

iteration k, proposals are drawn for each parameter from normal distributions such
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α β δ γ
Mean 2.042 −2.185 2.415 1.347

95% Credible interval (1.897, 2.183) (−2.739,−1.688) (0.833, 4.071) (0.818, 1.840)

Table 4.1: Posterior mean and 95% credible intervals for the regression coefficients
from 400k iterations and a thin of 400.

that, for example,

α∗ ∼ N(α(k−1), ϵα)

where ϵα = 0.3 is the tuning parameter for the α updates. For the remaining model

parameters, we have ϵβ = 0.3, ϵδ = 0.9 and ϵγ = 0.9. In the acceptance probabilities

we use the log-likelihood of the Poisson distribution, such that

ℓ(λ|x) =
5∑
i=1

10∑
j=1

xij log λij −
5∑
i=1

10∑
j=1

λij −
5∑
i=1

10∑
j=1

log(xij!).

Therefore the acceptance probability for α is

Aα = min

{
0,

π(α∗)ℓ(λ∗|x)q(α∗|α(k−1))

π(α(k−1))ℓ(λ|x)q(α(k−1)|α∗)

}
where α(k−1) is the last accepted value of α. The same methods apply for the re-

maining parameters.

The MCMC scheme is run for 400k iterations with a thin of 400 to gain suffi-

ciently low autocorrelation between realisations. The acceptance rates for all pa-

rameters were approximately 0.21. The trace plots showed good convergence for

all regression coefficients and have similar means and variances in different sections

of the chains. The autocorrelation was sufficiently low after thinning and the his-

tograms showed good estimates of marginal densities. Numerical summaries are

shown in Table 4.1. Using the means of the marginal posterior distributions for

each coefficient, obtained from the MCMC scheme, we can estimate the regression

equation, Equation (4.1), to be

log λij = 2.042− 2.185tij + (2.415 + 1.347tij)(li − l̄). (4.2)

We can therefore see how well the model fits the data as the means of the marginal

distributions are very close to the true parameter values used to simulate the data.
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We noticed a high correlation between parameters α and β (Cor(α, β) = −0.91)

and δ and γ (Cor(δ, γ) = −0.93). This suggests that we could benefit from using

joint proposals combining θ1 = (α, β)T and θ2 = (δ, γ)T within the MCMC scheme.

Hence, proposals come from multivariate normal distributions, where

θ∗1 =

(
α∗

β∗

)
∼ N2

[(
α(j−1)

β(j−1)

)
,

(
0.17 −0.16

−0.16 0.17

)]
,

θ∗2 =

(
δ∗

γ∗

)
∼ N2

[(
δ(j−1)

γ(j−1)

)
,

(
2.0 −1.88

−1.88 2

)]
.

For proposals, the variance matrices for (α, β)T and (δ, γ)T were determined from

tuning the acceptance probabilities. As discussed in Section 2.4.2, for high-dimensional

target distributions formed of independent and identically distributed (iid) compo-

nents, the acceptance rate optimising the efficiency of the process approaches 0.234

(23.4%) (Gelman et al., 1997), from this algorithm we have 0.256 and 0.233 for θ1

and θ2 respectively. From the independent proposals, the covariance matrix approx-

imated through MCMC for the parameters can be used to generate an approximate

optimal covariance matrix to use for joint normal random walks. These are given

to be

1

2
2.382Vα,β =

(
0.166 −0.165

−0.165 0.191

)
,

1

2
2.382Vδ,γ =

(
2.073 −1.848

−1.848 1.854

)
, (4.3)

where

Vα,β =

(
0.059 −0.058

−0.058 0.067

)
and Vδ,γ =

(
0.732 −0.653

−0.653 0.655

)
.

Updating the MCMC to use these covariance matrices gives acceptance probabilities

of 0.231 and 0.242 for θ1 and θ2 respectively. Altering the Poisson regression to joint

proposals to account for high correlation between α and β, and γ and δ, made

the MCMC more efficient reducing the amount of thin needed from 400 to 100,

hence a shorter run is plausible to estimate the marginals. Figures 4.2 and 4.3

show the outcome of the MCMC run for 100k iterations. The trace plots show

good convergence and the histograms show good estimations to marginal densities.
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Figure 4.2: Trace plots for α, β, δ, and γ from 100k iterations after burn-in and thin
of 100 with their true values overlaid by a red dotted line.

The horizontal dotted lines on the trace plots denote the true values for the model

parameters – those used to simulate the data, and hence the model has estimated

them well.

4.3 Study of a leading pedestrian interval inter-

vention in Vancouver

With the safety of pedestrians in mind, safety treatments at signalised intersections

have been investigated in Vancouver, Canada as outlined in Section 1.3.3. The LPI

was implemented at multiple sites by adjusting the signal phasing and pedestrian

interval to provide a walk display of several seconds before the adjacent vehicle green

display, making this an efficient and low-cost safety measure. The LPI intervention,

and associated traffic conflict data on collision near-misses, justifies the use of the ex-

tremal types theorem (EVT, see Section 2.2). Small PET values imply a near-miss,

a value close to zero implying a dangerous situation. Our aim is to model extremely
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Figure 4.3: Histograms of the posterior densities of α, β, δ, and γ from 100k iterations
after burn-in and thin of 100 with their density overlaid.

small PET values and investigate differences between extremes from periods before

and after the LPI treatment was introduced. Typical applications of EVT occur in

the environmental sciences to model, for example, extreme precipitation events or

extreme wind speeds (see, for example, Fawcett and Walshaw, 2006, Katz, 1999);

for interested readers, we point to the classical reference of Gumbel (1958) and the

tutorial-style text of Coles (2001). Here, we focus on the lower tail of the data where

small time values indicate a dangerous situation: a near-miss or collision between a

pedestrian and left-turning vehicle.

EVT has become popular in traffic conflict analyses. Zheng and Sayed (2019a)

use a peaks over threshold approach including covariates in the scale parameter for

crash estimation; furthermore, they also use EVT on block maxima from a traffic

conflict before/after study (Zheng and Sayed, 2019b). Wang et al. (2019) use bivari-

ate EVT to predict annual crash frequencies at intersections, Zheng et al. (2018) use

bivariate threshold excess model methods to estimate crashes relating to merging

events on freeway entrance merging areas. Fu et al. (2021) use hierarchical EVT

modelling on traffic conflict extremes for crash estimation. Guo et al. (2020) anal-
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Figure 4.4: Left: Time series plot of negated PET values (seconds) before and after
intervention at intersection 1, the vertical red line showing when the after period
begins. Right: Temporal dependence of observations at neighbouring time points
for intersection 1 (t on x-axis against t+ 1 on y-axis).

ysed the effectiveness of LPI treatment at two signalised intersections in Vancouver,

Canada by modelling the scale and shape parameters of the GPD as a function of

a treatment indicator, a period indicator (before/after), and an interaction of the

two variables. They use a peaks over threshold approach to remove dependence

between consecutive extremes. In this project we use EVT in an attempt to cap-

ture treatment effects from the LPI intervention described in Section 1.3.3. Our

method aims to maximise data usage by performing a threshold-based analysis (as

opposed to a block maxima analysis; see, for example, Coles (2001)). We include

an example of the use of a block maxima approach before proposing the use of a

threshold-based approach on the premise of including more data in the analysis than

the block maxima approach, which can be wasteful through discarding all but the

most extreme observations in each block. It is hoped that the inclusion of more data

points will lend greater precision to the analysis, including reduced uncertainty in

our estimated treatment effect.
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In order to use standard methods from the EVT toolkit (designed for analysing

maxima), we negate our series of PET values at each location thus switching the

focus from very small values to very large values to identify dangerous situations in

our series. Figure 4.4 shows a time series plot of these negated PET values, and a

plot of observations at neighbouring time points, for one of the intersections at which

the LPI was applied. Note the apparent systematic decrease in PET values after the

LPI implementation; note also the clear temporal dependence between consecutive

data values, persisting into the extremes of the process.

4.3.1 Including covariates

When the data admits non-stationarity – for example trend, or a dependence on

covariates – we can attempt to incorporate this non-stationarity through linear

modelling of the GEV or GPD parameters. Generally, we can write the extreme

value parameters in the form h(XTβ), where h is a specified function, β is a vector

of parameters and X is the model vector. Recall from Section 2.2 that the GPD,

H(σ̃, ξ), arises from the GEV, G(µ, σ, ξ), where the GPD scale parameter is a func-

tion of the GEV location and shape parameters. Thus, attempting to model any

trend in our threshold excesses is usually done through linear modelling of the loca-

tion parameter when fitting a GEV, or the scale parameter σ̃ when fitting a GPD.

The PET data we are investigating have before/after time implications at each of

the fifteen intersections. We attempt to capture the treatment effect through the

following parameterisations. We set the location parameter of the GEV as

µt = β0 + β1t,

and the scale parameter in the GPD as,

σ̃t = exp(β0 + β1t), (4.4)

where t = 0 in the before period and t = 1 in the after period. We take the

exponential to respect the positivity of σ̃. Hence, at each intersection we could use

the slope parameter β1 as a proxy for our LPI treatment effect; an estimate of β1

that is deemed significantly different from zero might be indicative of a treatment

effect at an intersection.
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4.3.2 Classifying extremes through block maxima

The first step in any application of the generalised extreme value distribution is

to fit Equation (2.3) to a series of block maxima, Mn,i. This requires choosing

a block length n, and then discarding all but the maximum value in each block.

However, the optimal block length isn’t always apparent. Choosing an appropriate

block length is crucial. Excessively short blocks may invalidate the limiting argu-

ments that support the GEV distribution and result in maxima that are too close

together to assume independence. Additionally, selecting a block length that is too

large relative to the sample size n can result in insufficient data being available for

analysis. Conventionally, it is common to work with convenient block lengths – e.g.

annual maxima in environmental applications, however our application differs. As

the data has a few reasonable block sizes available, we look at hourly, daily and

weekly maxima, in addition to this we choose the maxima of a block size of ap-

proximately
√
N , where N is the total number of observations per site. Firstly,

hourly maxima data showed seasonality and temporal dependence, and thus, this

block length was not chosen. When using weekly maxima, we were only left with

32 maxima to model with, and although we can reasonably assume independence

between maxima, we are discarding over 17k observations. Figure 4.5 shows that

we can reasonably assume independence between both daily and
√
N maxima, and

no seasonality was present between blocks. As a result, the limiting arguments are

valid for all three block sizes, and to maximise the use of available data, we opt to

model daily maxima, which provides us with 244 maxima per site.

The model is formulated as follows, we have daily maxima for each site coming

from a GEV distribution with location, µt = β0 + β1t, scale σ > 0 and shape ξ

parameters. Deviance statistics were used to check model adequacy in terms of the

additional linear trend in µ through time. Allowing for the linear trend in time was

shown to improve model fit for all treated sites.

As there are no conjugate priors for the GEV distribution, we use MCMC to

draw realisations from the posterior distribution. We perform inference within a

Bayesian framework, our parameter vector at each intersection can be written as,

Θ = (β0, β1, η, ξ)
T ,
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Figure 4.5: Temporal dependence of observations at neighbouring time points for
intersection 1 (t on x-axis against t+1 on y-axis) for blocks of daily,

√
N and weekly

maxima (left to right).

where, η = log σ to respect the positivity of σ. The parameters are assumed inde-

pendent and hence the prior can be written as,

π(Θ) = π(β0)π(β1)π(η)π(ξ),

where

β0 ∼ N(0, 10), β1 ∼ N(0, 10), η ∼ N(0, 10), ξ ∼ N(0, 10).

Our MCMC scheme evaluates the posterior through Bayes theorem, such that,

π(Θ|x) ∝ L(Θ|x)π(Θ).

The same methods apply for all other sites.

Bayes theorem requires the likelihood to evaluate the target posterior distri-

bution. To avoid numerical instability and improve the accuracy of the MCMC

algorithm, we will use the log-likelihood function, outlined in Equations (2.8) and
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(2.9), in the acceptance probabilities. For our model, we will simply replace µ by

µt = β0 + β1t, where t is a vector with ti = 0 for i = 1, . . . , 122 (the before period)

and ti = 1 for i = 123, . . . , 244 (the after period). The acceptance probability in the

MH scheme then becomes,

αΘj
= min {0, A} ,

where

A = log π(Θ∗
j) + ℓ(Θ∗

j |x) + log q(Θ∗
j |Θ

(i−1)
j )− log π(Θj)− ℓ(Θj|x)− log q(Θ

(i−1)
j |Θ∗

j).

The MCMC scheme with MH was run for 100k iterations with a thin of 100 and

the first 20k iterations discarded as burn-in. This is run for each site individually, to

gain estimates to the marginal posterior distributions for the elements of Θj, where

j denotes sites 1, . . . , 15.

From the marginal posterior means and CIs of β1 in Figure 4.6, we can clearly

identify the non-treated sites as the CIs include 0. Although modelling block maxima

is a common approach, it does come with issues. Some of which include finding the

correct block size, if the block length is too small the limiting arguments will not hold

(the GEV is a limiting result, which holds approximately for large n). Alternatively,

if the block length is too large we will not have enough maxima to model. There

is also evidence of possible sensitivity of GEV parameter estimates to block length

(Özari et al., 2019). Additionally, it is extremely wasteful of data; we discard all

but the block maxima when other observations in the block may also be extreme,

just not as extreme as the maxima.

4.3.3 Classifying extremes through threshold excesses

4.3.3.1 Temporal dependence

Our aim now is to maximise precision by including as much data in the analysis

as possible; hence, we will proceed with a threshold-based approach to analysis.

As discussed in Section 2.2.2, unlike the case of modelling block maxima with the

GEV, powering F n by θ, as described by Equation (2.2), does not lead to another

extreme value distribution whose parameters have absorbed the extremal index;

thus, careful consideration of extremal dependence is required. In this Section, we

describe two methods for handling temporal dependence present between consec-
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utive threshold excesses: a declustering approach, leading to the commonly-used

‘peaks over threshold’ analysis of a filtered subset of extremes (Davison and Smith,

1990), and an approach that explicitly models the transition from one extreme to

the other through a bivariate extreme value model. As the right-hand-side plot in

Figure 4.4 reveals, even above a high threshold there appears to be dependence be-

tween consecutive PET values. At busier times of the day – perhaps early morning

or late-afternoon – we might expect more pedestrians to be using the crosswalks at

each of our intersections, and a greater number of vehicles turning into the inter-

sections, perhaps resulting in a greater number of near-misses (with an associated

clustering of small PET values) at these times. Clustering of extremes is common

in many other applications of the threshold approach to extreme value modelling –

for example, dependence between consecutive temperature or wind speed extremes,

and serial correlation in extremes obtained from financial time series. Ignoring such

dependence will likely lead to under-estimated uncertainty measures (for example,

confidence intervals that are unrealistically narrow; see, Barao and Tawn, 1999, Shi

et al., 1992).

A common method to handle temporal dependence is through declustering. The

aim of this approach for handling extremal dependence is to extract a series of in-

dependent threshold excesses, justifying the use of θ ≈ 1 in Equation (2.2). An

auxiliary ‘declustering parameter’, say κ, is chosen and a cluster of threshold ex-

cesses is then deemed to have terminated once at least κ consecutive observations

fall sub-threshold. This is repeated over the entire series to identify clusters of ex-

cesses. Then, the maximum (or ‘peak’) observation from each cluster is extracted,

and the GPD fitted to the set of (hopefully independent) cluster peak excesses.

This approach is often referred to as the ‘peaks over threshold’ approach (POT,

Davison and Smith, 1990) and is the most commonly-used approach for dealing with

clustered extremes. Although this approach is quite easy to implement, there are

issues surrounding the choice of κ; if κ is too small, the cluster peaks will not be

far enough apart to safely assume independence. If κ is too large, there will be too

few cluster exceedances on which to form our inference (and of course, the approach

will be wasteful of data). Furthermore, parameter estimates have been shown to be

sensitive to the choice of κ (Fawcett and Walshaw, 2012). Given how commonplace

POT analyses for threshold excesses have become, we will include results based on
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this approach as a baseline for comparing our results using a first-order extreme

value Markov chain for modelling dependence.

To avoid declustering, we can account for dependence between consecutive ex-

tremes by assuming a first order Markov structure. For example, we can assume the

following joint density,

g(x|θ) = g(x1)× g(x2|x1)× . . .× g(xn|xn−1),

= g(x1)×
g(x1, x2)

g(x1)
× . . .× g(xn−1, xn)

g(xn−1)
,

=

∏n
i=2 g(xi−1, xi)∏n−1

i=2 g(xi)
,

(4.5)

and log-likelihood,

log g(x|θ) =
n∑
i=2

log g(xi−1, xi)−
n−1∑
i=2

log g(xi),

for our series of (negated) PET values at each intersection, where θ is a generic

parameter vector. In a threshold excess context, univariate contributions to the

denominator in Equation (4.5) are given through the GPD (on differentiation of

Equation (2.5)). We therefore allow consecutive extremes to follow a bivariate ex-

treme value distribution with some dependence parameter.

Limiting distributions for bivariate extremes

We letM∗
n = (M∗

x,n,M
∗
y,n) be the normalised maxima i.e. M∗

x,n = max{Xi}/n for i =

1, . . . , n, where the (Xi, Yi) are i.i.d. with standard Fréchet marginal distributions.

Then if

Pr(M∗
x,n,M

∗
y,n) → G(x, y),

where G is non–degenerate, then G has the form

G(x, y) = exp {−V (x, y)} ; x > ux, y > uy. (4.6)

Appealing to bivariate EVT, transformation from GPD to unit Fréchet margins

(see, for example, Coles, 2001) provides a range of models to use for contributions to
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the numerator in Equation (4.5), the most commonly-used being the logistic family

with,

V (x, y) =
(
x−1/α + y−1/α

)α
, (4.7)

in Equation (4.6). Here, α ∈ (0, 1) controls the extent of extremal dependence in

the process, with independence giving α = 1 and α → 0 corresponding to increas-

ing levels of extremal dependence. The logistic model is symmetric meaning the

variables are exchangeable. See Coles (2001) for other choices for G and a more

detailed discussion of bivariate EVT more generally. Where direct evaluation of

Equation (2.2) is necessary – for example, when obtaining quantiles from the fit-

ted distribution (often used as estimates of “return levels” in applications of EVT)

– Fawcett and Walshaw (2012) provide an approximation to the extremal index θ

based on the estimated logistic dependence parameter α.

We define our bivariate extremes as those observations which exceed a threshold

in one or other margin. The distribution function for the exceedances of a threshold

ux by a variable X, conditional on X > ux for large enough ux is,

H(x) = 1− λux

{
1 +

ξx(x− ux)

σx

}−1/ξx

,

defined on {x− ux : x− ux > 0 and (1 + ξx(x− ux)/σx > 0}, where ξx ̸= 0, σx > 0,

and λux = Pr(X > ux) is the empirical threshold exceedance rate. If we suppose

X and Y follow a GPD with parameters (σx, ξx) and (σy, ξy) and thresholds ux, uy

respectively, we obtain our unit Fréchet margins with the transformations

x̃ = −

(
log

{
1− λux

[
1 +

ξx(x− ux)

σx

]−1/ξx
})−1

,

ỹ = −

(
log

{
1− λuy

[
1 +

ξy(y − uy)

σy

]−1/ξy
})−1

.

For ξ → 0, our transformations are,

x̃ = −
(
log

{
1− λux

[
exp

(
−x− ux

σx

)]})−1

,

ỹ = −
(
log

{
1− λuy

[
exp

(
−y − uy

σy

)]})−1

.
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Differentiation of Equation (4.7), with careful censoring when one or both of

(x, y) lie sub-threshold, gives pairwise contributions to the numerator in Equa-

tion (4.5). We obtain contributions to the likelihood function for a pair of ob-

servations through

g(x, y;α) =



∂2G
∂x∂y

∣∣∣
(x,y)

, if x > ux, y > uy,

∂G
∂x

∣∣
(x,uy)

, if x > ux, y < uy,

∂G
∂y

∣∣∣
(ux,y)

, if x < ux, y > uy,

G(ux, uy), ifx < ux, y < uy.

Then, we have

L(α|x, y) =
n∏
i=1

g(xi, yi).

For the logistic model, G(x̃, ỹ) is expressed in Equation (4.7). Therefore, for ξ → 0

our likelihood contribution for the region where x > ux and y > uy can be calculated

by the following

∂G

∂x
= G×−α

(
x̃−1/α + ỹ−1/α

)α−1 ×− 1

α
x̃−1− 1

α × ∂x̃

∂x
,

where
∂x̃

∂x
= x̃2

[
1− λux exp

(
−x− ux

σx

)]−1

× λux
σx

exp

(
−x− ux

σx

)
.

Then, with k = x̃−(1+
1
α) ∂x̃

∂x
,

∂2G

∂y∂x
= k

∂G

∂y

(
x̃−1/α + ỹ−1/α

)α−1
+ kG

∂

∂y

(
x̃−1/α + ỹ−1/α

)α−1
,

giving

∂2G

∂y∂x
= Gx̃−

1
α ỹ−

1
α
∂x̃

∂x

∂ỹ

∂y

(
x̃−1/α + ỹ−1/α

)α−2
[(
x̃−1/α + ỹ−1/α

)α
+

(
1

α
− 1

)]
.

Furthermore, in regions below thresholds ux and uy,

x̃ = −(log(1− λux))
−1, x < ux,

ỹ = −(log(1− λuy))
−1, y < uy.
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as Pr(X < ux) = 1− λux .

In our application, we invoke bivariate extreme value theory in a serial context, in

which X and Y are replaced with Xi−1 and Xi respectively, to support contributions

to the numerator in Equation (4.5).

4.3.3.2 Threshold selection

The threshold stability property of the GPD means that if it is a valid model for ex-

cesses over some threshold u0, then it is valid for excesses over all thresholds u > u0.

Furthermore, for all u > u0, E[X − u|X > u] is a linear function of u. In practice,

this expectation can be estimated empirically as the sample mean of the excesses

over u. This leads to the mean residual life plot (MRL plot; see, for example, Coles,

2001): a graphical procedure for identifying a suitably high threshold for modelling

extremes via the GPD in which mean excesses over u are plotted against a range of

values for u, and the optimal threshold is chosen at the lowest point at which we

observe linearity in the plot. The process of choosing a suitable threshold should not

be taken lightly as the scale parameter, σ, is threshold dependent where σ∗ = σ+ξu.

For all intersections, we class extremes as those values that exceed thresholds

which were checked against MRL plots to ensure linearity is observed at this value.

As an example, the MRL plot for negated PET values at intersections 1 and 7 are

shown in Figure 4.7, both MRL plots are mostly linear between (−7,−5), ergo we

choose a threshold of u1 = −5.6930 for intersection 1 and u7 = −5.53 for intersection

7, these values also represent the 95% quantiles at these sites.

4.3.3.3 Prior specification

The Canada data we are investigating has before and after implementation time

periods. As outlined in Section 4.3.1, we wish to include a time covariate to see if

there is a significant difference in the scale parameter, σt, from before to after the

delay in releasing cars was introduced. Here, we will be most interested in the sign

and magnitude of β1 as this will indicate any treatment effect. Now,

ηt = log σt = β0 + β1t.
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Figure 4.7: Mean residual life plot for sites 1 (left) and 7 (right). The solid line shows
the empirical mean excess of values exceeding u; the outer dashed lines show the
95% confidence band around this mean excess. The chosen threshold u is overlaid
in blue, u1 = −5.693 and u7 = −5.53.

As in the block maxima example, we are interested in finding the posterior distribu-

tion, however an analytic form for the posterior is not available. We therefore, use

MCMC to estimate the posterior here. Our MCMC scheme evaluates the posterior

through Bayes theorem, such that:

π(Θ|x) ∝ L(Θ|x)π(Θ),

where Θ denotes all model parameters. We work with the reparameterised GPD

scale parameter as in Equation (4.4).

In the absence of any expert prior information regarding our model parameters,

we adopt fairly uninformative, independent prior distributions. Recall that, for each

intersection, we adopt a bivariate threshold excess model for negated PET values

exceeding a threshold identified by the 95% quantile and validated through use of

an MRL plot. The margins are assumed GPD with a linear model enabling the

scale parameter to vary between before and after periods via Equation (4.4); for the
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dependence between successive threshold excesses we adopt a logistic model with a

parameter quantifying the degree of serial correlation present. Thus, our parameter

vector at each intersection can be written as:

Θ = (β0, β1, ξ, α)
T ,

for which we set the following prior:

π(Θ) = π(β0)π(β1)π(ξ)π(α),

and where

β0 ∼ N(0, 10), β1 ∼ N(0, 10), ξ ∼ N(0, 100) and α ∼ U(0, 1).

We set initial values for all parameters to their prior means, using a simple

Metropolis update to give successive draws

(β
(j)
0 , β

(j)
1 , ξ(j), α(j)), j = 1, . . . , 105,

after thinning to every tenth iteration and removing the first 2k iterations as burn-

in. Within the MCMC scheme, proposals were drawn using normal random walks.

We have that q(Θ∗|Θ) = N(Θ∗; Θ,Σ) where the innovation matrix Σ = γV̂ ar(Θ|x),
with V̂ ar(Θ|x) obtained from a pilot run and γ is chosen to give an acceptance rate

of around 25% (see Section 2.4.2).

4.3.3.4 Results

Figure 4.8 shows the posterior means and 95% credible intervals for β1 over all sites,

from analyses that (i) ignore dependence, (ii) filter out dependence through declus-

tering, and (iii) explicitly model the dependence via our first-order extreme value

Markov chain model. The treated sites are denoted with a ‘T’ on the x-axis. In

our model, β1 captures the treatment effect as the slope term in our linear predictor

for the GPD scale parameter. When we ignore dependence we use all threshold ex-

cesses and hence our credible intervals are relatively narrow owing to the maximal

use of extreme data. However, we are violating the assumption that consecutive

threshold excesses are independent; as such, these credible intervals are likely to be

unrealistically narrow as there is less information in the data than the likelihood
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requires. Declustering (here with κ = 10) removes this dependence, but at a cost:

reduced datasets, with site 1 (for example) now having just 107 threshold excesses

post-declustering (from an original 17,467 raw excesses). We have done nothing to

‘optimise’ the declustering interval κ here, and it could be that our choice of κ is

unnecessarily large resulting in a procedure that is wasteful of data (giving relatively

wide credible intervals). However, even if we were to investigate an optimal choice

of declustering interval κ, our extreme value Markov chain model for explicitly mod-

elling dependence is probably a superior approach here, as it maximises data usage

whilst also making some effort to capture the dependence in the series of threshold

excesses.

As β1 corresponds to the treatment effect, a value of β1 < 0 shows a success-

ful treatment as this indicates larger (negated) PET values in the after period (in

other words, larger values on the raw PET scale, meaning a move away from a

near-miss/actual collision). Of course, there is uncertainty in our inference, so we

look for 95% credible intervals that are wholly below 0 to identify a successful treat-

ment effect. In the majority of the treated sites β1 = 0 lies outside the range of

the 95% credible intervals, hence we conclude these sites have seen an improvement

post-treatment, with increased PETs.

Numerical summaries of the marginal posterior distributions for each parameter

via their mean and 95% credible intervals for the three analyses – ignoring depen-

dence, declustering and the logistic model are displayed in Table 4.2. For all sites

and analyses, ξ is negative, meaning the GPD has a ‘light tail’. This implies that

the distribution has a low probability of producing extreme events. As seen in Fig-

ure 4.8 for the posterior summaries of β1, the posterior CIs for parameters β0 and

ξ when using declustering are much wider than those from the logistic model. The

posterior mean estimates for ξ are more negative meaning we would expect an even

lower probability of extreme events. Hence, including all of the data has hugely

improved the parameter estimates in terms of uncertainty.
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Figure 4.8: Posterior means and 95% CIs for β1 over all sites from ignoring depen-
dence (pink), declustering (black) and the logistic model (blue). Treated sites are
denoted with ‘T’ above the x-axis.

4.4 Discussion

The Poisson regression model introduced in Section 4.2 is relatively straightforward

and captures both site and treatment effect through estimating the posterior mean

of λij in the before and after periods for each site independently. For any road traffic

data that does not require accounting for RTM and reference data, the model could

be used to estimate the effectiveness of a safety intervention. The model fits well

with only five observations in either period and would be improved if more data were

available. The data are also transformed to be in terms of the overall mean number

of collisions over many sites, hence we can notice sites which do have abnormally

high number of collisions relatively. Though randomised trials may seem ethically

questionable as a potential waste of resources, they are a viable option as they omit

selection bias. Though we may not necessarily randomly choose roads which have

abnormally high collision rates, ones which ‘should’ have treatment, performing a

randomised trial allows us to truly focus on whether the treatment works without

concerning ourselves with issues of bias. Furthermore, VAS are an optimal choice
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for randomised safety schemes as they are cheap to operate and low maintenance.

To mitigate issues of confounding treatment effects with time in Gateshead Coun-

cil’s plan, a crossover or stepped wedge design could be advantageous. In a crossover

design, signs could initially be placed in some localities and later rotated to others,

allowing for within-site comparisons and controlling for time trends. Alternatively,

a stepped wedge design could stagger the sign rollout across localities at different

times, making it easier to separate the signs’ impact from other time-related fac-

tors. Both designs would yield more reliable insights into the signs’ effectiveness.

The project team are hoping to implement this model with data from Gateshead’s

VAS in the financial year 2023/24.

In Section 4.3, a bivariate threshold excess model was proposed to conduct a

near-miss-based before/after safety evaluation using extreme value theory. The ap-

proach is able to combine near-miss incidents of different sites (treatment sites and

control sites) and different periods (the before period and after period) to develop

a bivariate model to capture dependence for the treatment effect estimation. The

approach was applied to a before/after safety evaluation of the leading pedestrian

interval (LPI). Pedestrian near-misses were collected from the treatment and control

sites during the before and after periods using automated computer vision analy-

sis techniques. The treatment effects were measured through linear modelling in

the scale parameter. Bivariate EVT was used to account for dependence between

consecutive extremes by assuming a first order Markov structure. Transforming the

random variables to have unit Fréchet distributions and using a logistic model in

the limiting distribution omits the need to remove dependence in the data which

means we do not need to be wasteful of data – a common issue in EVT.

Use of the bivariate threshold excess model resulted in narrower CIs than from

a declustering approach and was also more successful in estimating which sites had

been treated. This was due to us being able to include all of the data in the analysis

to inform the parameter estimates. The posterior distributions for the intercept

term (β1) coincide for the model ignoring dependence and logistic model, with sim-

ilar posterior means. This is also true for the other parameters. However, although

ignoring dependence and fitting a GPD to all threshold excesses results in narrow

CIs, when we ignore dependence our model is no longer valid. Using a declustering

approach, to remove dependence, results in wide CIs which makes drawing conclu-
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sions about the treatment effect ambiguous. This approach also results in more

negative posterior estimates of the shape parameter which results in smaller tails in

the fitted GPD.

The modelling approach can be extended as the data showed signs of spatial

dependence and this can be accounted for through spatial extreme methods. This

allows for further sharing of information across sites which is advantageous in ex-

tremes modelling as data are regularly scarce. As suggested by Arun et al. (2023),

our approach uses stationary thresholds at the treated sites however the LPI treat-

ment could also affect the thresholds, and holding them constant in both the before

and after periods could be erroneous. Additionally, more attention could have been

paid to threshold selection and the optimal declustering value.

Model Site Threshold, u β0 β1 ξ

Ignore Dependence

1 −5.6930

Mean 0.4108 −0.3324 −0.1809

95% CI (0.3253, 0.4963) (−0.3861,−0.2786) (−0.2360,−0.1259)

Declustering
Mean 0.9363 −0.2123 −0.3516

95% CI (0.5911, 1.2816) (−0.4853, 0.0607) (−0.5916,−0.1115)

Logistic
Mean 0.3981 −0.3436 −0.1649

95% CI (0.3015, 0.4948) (−0.4559,−0.2314) (−0.2221,−0.1077)

Ignore Dependence

2 −4.8800

Mean 0.1058 −0.0019 −0.1373

95% CI (0.0147, 0.1968) (−0.0549, 0.0512) (−0.1949, −0.0797)

Declustering
Mean 0.6136 −0.0642 −0.2552

95% CI (0.2878, 0.9394) (−0.3605, 0.2321) (−0.4900, −0.0204)

Logistic
Mean 0.1297 −0.0129 −0.1454

95% CI (0.0251, 0.2344) (−0.1234, 0.0975) (−0.2082, −0.0826)

Ignore Dependence

3 −5.9500

Mean 0.4687 −0.2308 −0.2119

95% CI (0.3967, 0.5408) (−0.2841, −0.1775) (−0.2538, −0.1700)

Declustering
Mean 0.9325 −0.1498 −0.3003

95% CI (0.6369, 1.2280) (−0.4786, 0.1790) (−0.5286, −0.0719)

Logistic
Mean 0.4695 −0.2033 −0.1910

95% CI (0.3858, 0.5533) (−0.3139, −0.0926) (−0.2368, −0.1452)

Ignore Dependence

4 −5.7400

Mean 0.4632 −0.3357 −0.2066

95% CI (0.3821, 0.5442) (−0.3881, −0.2834) (−0.2502, −0.1630)

Declustering
Mean 0.9938 −0.3250 −0.3682

95% CI (0.6649, 1.3226) (−0.5854, −0.0647) (−0.6117, −0.1247)

Logistic
Mean 0.4792 −0.3447 −0.2071

95% CI (0.3865, 0.5719) (−0.4529, −0.2364) (−0.2630, −0.1513)

Ignore Dependence

5 −5.9600

Mean 0.4687 −0.2308 −0.2119

95% CI (0.3967, 0.5408) (−0.2841, −0.1775) (−0.2538, −0.1700)

Declustering
Mean 0.9325 −0.1498 −0.3003

95% CI (0.6369, 1.2280) (−0.4786, 0.1790) (−0.5286, −0.0719)

Logistic
Mean 0.4695 −0.2033 −0.1910

95% CI (0.3858, 0.5533) (−0.3139, −0.0926) (−0.2369, −0.1452)

Ignore Dependence

6 −6.7500

Mean 0.409 −0.2011 −0.1837

95% CI (0.3245, 0.4935) (−0.2544, −0.1478) (−0.2309, −0.1364)

Declustering
Mean 0.8900 −0.2082 −0.2974

95% CI (0.5393, 1.2407) (−0.5297, 0.1133) (−0.4987, −0.0962)

Logistic
Mean 0.4177 −0.2151 −0.1719

95% CI (0.3211, 0.5144) (−0.3240, −0.1062) (−0.2229, −0.1208)

Ignore Dependence

7 −5.5300

Mean 0.3845 −0.1920 −0.1823

95% CI (0.3051, 0.4639) (−0.2411, −0.1428) (−0.2256, −0.1390)

Declustering
Mean 0.9984 −0.1637 −0.4098

95% CI (0.6883, 1.3084) (−0.4064, 0.0791) (−0.6374, −0.1822)

Logistic
Mean 0.3999 −0.1763 −0.2046

95% CI (0.3082, 0.4915) (−0.2786, −0.0740) (−0.2541, −0.1551)

Ignore Dependence

8 −7.4020

Mean 0.3183 −0.0925 −0.0834

95% CI (0.2354, 0.4012) (−0.1523, −0.0327) (−0.1317, −0.0351)
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Table 4.2 continued from previous page

Model Site Threshold, u β0 β1 ξ

Declustering
Mean 1.0146 −0.1652 −0.2931

95% CI (0.6750, 1.3542) (−0.4812, 0.1508) (−0.5060, −0.0801)

Logistic
Mean 0.3153 −0.0895 −0.1186

95% CI (0.2190, 0.4116) (−0.2136, 0.0345) (−0.1728, −0.0643)

Ignore Dependence

9 −6.1300

Mean 0.1779 0.0295 −0.1706

95% CI (0.0718, 0.2841) (−0.0366, 0.0955) (−0.2325, −0.1088)

Declustering
Mean 0.8241 0.2195 −0.4150

95% CI (0.4972, 1.1510) (−0.0773, 0.5163) (−0.6876, −0.1424)

Logistic
Mean 0.2068 0.0404 −0.1358

95% CI (0.0859, 0.3276) (−0.0971, 0.1779) (−0.2066, −0.0650)

Ignore Dependence

10 −5.1600

Mean 0.1200 −0.0289 −0.1340

95% CI (0.0279, 0.2122) (−0.0874, 0.0296) (−0.1901, −0.0778)

Declustering
Mean 0.6670 −0.0939 −0.2505

95% CI (0.3498, 0.9843) (−0.4052, 0.2175) (−0.4641, −0.0369)

Logistic
Mean 0.1327 −0.0303 −0.1072

95% CI (0.0286, 0.2368) (−0.1500, 0.0894) (−0.1741, −0.0402)

Ignore Dependence

11 −6.5155

Mean 0.2028 −0.0541 −0.1249

95% CI (0.1095, 0.2960) (−0.1124, 0.0042) (−0.1661, −0.0837)

Declustering
Mean 0.7097 −0.2032 −0.1831

95% CI (0.3112, 1.1082) (−0.5839, 0.1776) (−0.4316, 0.0654)

Logistic
Mean 0.2102 −0.0701 −0.1239

95% CI (0.1033, 0.3171) (−0.1910, 0.0508) (−0.1809, −0.0668)

Ignore Dependence

12 −6.2600

Mean 0.3638 −0.0929 −0.1961

95% CI (0.2757, 0.4518) (−0.1476, −0.0382) (−0.2467, −0.1455)

Declustering
Mean 1.0513 −0.2451 −0.3788

95% CI (0.6634, 1.4393) (−0.5202, 0.0300) (−0.6586, −0.0989)

Logistic
Mean 0.3778 −0.0941 −0.1688

95% CI (0.2774, 0.4783) (−0.2086, 0.0205) (−0.2255, −0.1121)

Ignore Dependence

13 −5.0500

Mean 0.2562 −0.1708 −0.1470

95% CI (0.1641, 0.3482) (−0.2259, −0.1157) (−0.1919, −0.1021)

Declustering
Mean 0.9524 −0.3738 −0.3970

95% CI (0.6237, 1.2811) (−0.6159, −0.1318) (−0.6729, −0.1212)

Logistic
Mean 0.2456 −0.1858 −0.1634

95% CI (0.1394, 0.3518) (−0.2982, −0.0734) (−0.2260, −0.1008)

Ignore Dependence

14 −10.4100

Mean 0.3635 −0.1695 −0.0788

95% CI (0.2895, 0.4374) (−0.2394, −0.0996) (−0.1207, −0.0368)

Declustering
Mean 0.7947 −0.1247 −0.0480

95% CI (0.4865, 1.1029) (−0.5910, 0.3417) (−0.2650, 0.1689)

Logistic
Mean 0.3666 −0.1649 −0.0572

95% CI (0.2836, 0.4496) (−0.3082, −0.0216) (−0.1056 −0.0087

Ignore Dependence

15 −5.1635

Mean 0.2499 −0.0947 −0.1548

95% CI (0.1612, 0.3386) (−0.1514, −0.0380) (−0.2156, −0.0940)

Declustering
Mean 0.6906 −0.1064 −0.2655

95% CI (0.3828, 0.9985) (−0.4114, 0.1986) (−0.4958, −0.0352)

Logistic
Mean 0.2289 −0.0901 −0.1454

95% CI (0.1274, 0.3304) (−0.2066, 0.0264) (−0.2074, −0.0833)

Table 4.2: Numerical posterior summaries for model parameters at all intersections.
For each parameter we show the posterior mean and 95% credible interval from
the three analyses (ignoring dependence, declustering and logistic) and the chosen
threshold.
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Chapter 5

Modelling spatial extremes from

the LPI intervention

In this chapter, we continue our analysis of the PET data introduced in Section 1.3.3

and analysed in Chapter 4. The data supplied longitude and latitude of all 15 sites

which are potential covariates in a model that admits spatial variation. To check

for spatial dependence we plotted the correlation between PET data for all pairs of

sites against the distance between them in kilometres as shown in the left plot of

Figure 5.1. There is a clear decay in correlation as distance between sites increases.

Hence, our inference might be improved by accounting for this spatial dependence,

potentially increasing the overall explanatory power of the model. By capturing such

spatial correlation in the model, we aim to improve posterior parameter estimates

and therefore the estimation of treatment effects and uncertainty quantification.

When spatial dependence exists, usually observations at nearby locations tend to be

more similar to each other than to observations at distant locations. This spatial cor-

relation can be quantified and incorporated in the model to predict at neighbouring,

unobserved sites.

5.1 Background

Spatial extremes modelling is used to analyse and model the occurrence of extreme

events in space. Additionally, it can be used to identify areas that are particu-

larly susceptible to extreme events, which can aid in the development of targeted

adaptation and mitigation measures. In road safety analyses, it is common that
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Figure 5.1: Left: Correlation of all PETs against distance between all pairs of sites.
Middle: Correlation of daily maxima against distances for all pairs of sites. Right:
Correlations between all PETs against distances for all pairs of sites in the before
period (black) and the after period (blue).

measurements are taken at many different sites and modelling is performed assum-

ing these sites are spatially independent. However, realistically, this is frequently

false. Given their proximity, sites that are geographically close are likely to share

similar characteristics such as traffic and pedestrian volumes or weather conditions.

This inevitably leads to correlation. Thus, it is not unexpected to observe such

spatial dependence among these sites. As mentioned, road safety practitioners are

often in possession of observed data without many covariates. They are then left to

attempt to pair these observations with explanatory variables over the same time

period. This is very time-consuming and sometimes the extra variables do not exist.

Therefore, any chance there is to exploit all possible patterns in the available data

should be taken. Extreme events are sparse by definition, such as the PET data

analysed in Chapter 4, and spatial modelling allows us to borrow strength across

locations for better marginal estimation.

Interest lies in developing a framework in which it is possible to estimate prob-
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abilities of joint events over space and of events at sites for which data are not

available. The need for statistical techniques for spatial extremes data is common-

place across many disciplines. For example, it is used in climatology (Davison and

Gholamrezaee, 2012, Reich and Shaby, 2019), hydrology (Huser and Davison, 2014),

and public health (Vettori et al., 2019). Some important texts in this area include

Banerjee et al. (2015), Cressie (2015), Stein (2012). The classical theory is outlined

in Davison et al. (2012) and includes an application of the main types of spatial

extremes methods on rainfall data; a more recent review of current methods is pro-

vided by Huser and Wadsworth (2022). An advantage of this approach is it allows

for joint marginals for model parameters over all sites, sharing information across

sites to have marginal fits at individual sites can potentially increase precision in

parameter estimates. It also brings opportunity for interpolation between parame-

ter values so for an unobserved site, meaning we can potentially estimate extreme

events across zones rather than single sites.

Within road safety, researchers have found that spatial analyses are advanta-

geous as road collisions are subject to both spatial and temporal variations (Loo

and Anderson, 2015). Spatial analysis examines the relationship between road safety

attributes and their impact on surrounding areas, as well as the spatial variation

of explanatory parameters’ influence. Aguero-Valverde (2013) uses a full Bayes hi-

erarchical approach to estimate crash frequency using a multivariate conditional

autoregressive model to describe spatial random effects. They show that the multi-

variate spatial model outperforms its univariate counterpart through measurement

of the DIC. Zeng and Huang (2014) propose a Bayesian joint model to estimate crash

frequencies of road segments and intersections in an urban road network where the

spatial correlations between adjacent road segments and intersections are accounted

for. Wang and Huang (2016) propose a Bayesian hierarchical joint model for road

network safety evaluation including random effects to capture spatial correlation.

Further examples of spatial analyses include El-Basyouny and Sayed (2009b), Noland

and Quddus (2004), Quddus (2008). A recent full review of spatial analyses in road

safety research can be found in Ziakopoulos and Yannis (2020). To the best of the

author’s knowledge, there have been no studies that apply spatial extreme value

theory (EVT) methods to road safety analyses.

We propose a latent variable model to introduce spatial variation in the GEV
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parameters. We have applied our methods to block maxima as it is currently the

setting where extremal spatial methods are most commonly used and for which

the existing theory supports. However, the extension to threshold modelling would

allow for more flexible inference, and although research in this area is still in its

early stages, it holds promise for future applications. Some examples of spatial

models for threshold excesses are Cooley et al. (2007), Roth et al. (2012), Sharkey

and Winter (2019); for a thorough overview of the current state of research in this

field, we recommend referring to the comprehensive review by Huser and Wadsworth

(2022). Our methodology assumes a standard extreme value model to describe the

data generation process at extreme levels for each location. In addition, we make

the assumption that the unobservable model parameters represent realisations of a

smooth stochastic spatial process (Casson and Coles, 1999). Traditional inference

methods, such as maximum likelihood, are intractable. Therefore, we use MCMC

methods which are proven to be effective in estimating the parameters of latent

spatial process models (Diggle et al., 1998).

5.2 Preliminary inference

Currently most spatial extremes research is performed within the block maxima

paradigm. We therefore assume the GEV distribution for the data (see Section 2.2.1).

To see how strong the spatial correlation is, we plotted the correlation between daily

maxima between pairs of sites against their Euclidean distance apart (the argument

behind this choice of block length is outlined in Section 4.3.2). The middle plot in

Figure 5.1 shows the correlation between daily maxima decreases as sites get further

apart, meaning sites closer together seem to possess similar patterns and using this

in the model could be advantageous.

Firstly, the block maxima model from Section 4.3.2 is adapted to allow for data

from all sites to be fed into the model at once, rather than site by site. This joint

model allows for draws from the likelihood over all sites in a single MCMC algorithm.

The log-likelihood is therefore calculated as

ℓ(µ, σ, ξ|x) =
ns∑
j=1

N∑
i=1

log {g(µj, σj, ξj;xij)} ,
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where ns is the number of sites and N is the number of observations per site.

We utilise an MCMC scheme to draw estimates of each parameter for each site

and obtain posterior samples. This scheme is implemented as laid out in Sec-

tion 4.3.2, however we use the joint log-likelihood in the formulation of the accep-

tance probabilities and draw parameter proposals from multivariate normal random

walks. For example, we obtain draws for β0 by sampling from Nns(β0,Λβ0), where

β0 = (β1
0 , . . . , β

ns
0 )T and Λβ0 is the tuning matrix for the normal random walk. The

same process is followed for the parameters β1,η, and ξ, where, η = logσ to re-

spect the positivity of the scale parameter. All parameters were given uninformative

normal prior distributions with zero mean and a variance of 100, as in the individ-

ual sites model. Upon comparison of the parameter estimates from the individual

model against the joint model, the marginal posterior distributions coincide for each

parameter over all sites.

As the shape parameter is estimated to be around zero for all sites, as shown in

Figure 4.6, we fixed ξ over all sites, which in turn reduced the number of parameters

to estimate from 60 to 46. The inference was performed again with the MCMC

scheme set up as before, except we draw estimates ξ∗ ∼ N(ξ,Λξ) where Λξ is now

the scalar tuning parameter for the normal random walk. Again, posterior esti-

mates for parameters β0,β1,η coincide with the individual model estimates. The

posterior mean for the shape parameter, ξ is −0.0026 with 95% CI (−0.0965, 0.0946).

5.3 Spatial extremes

To account for spatial correlation between neighbouring sites, we include Gaussian

processes (GP) in the expressions for the location and scale parameters. As in Sec-

tion 5.2, resulting from the knowledge that ξ is estimated to be approximately zero

for all sites, we fix ξ across all sites and omit the need for a GP component to be

included. GPs are often used to model spatial dependence because they provide

a flexible and computationally efficient way to incorporate prior information about

the spatial dependence of a variable of interest. One of the key advantages of GPs is

that they are non-parametric, meaning that they do not rely on a fixed set of param-

eters to describe the underlying function. Instead, they use a covariance function,

also known as a kernel function, to describe the similarity between any two points in
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the spatial domain. The kernel function encodes prior information about the spatial

dependence of the variable of interest, such as whether the variable is more simi-

lar between nearby locations or more distant locations. The exponential covariance

kernel, also known as the radial basis function (RBF) kernel, is a popular choice for

a Gaussian process because it is smooth, infinitely differentiable, and isotropic.

The model is set out as follows. As before we have

Xtj|µtj, σj, ξ ∼ GEV (µtj, σj, ξ),

where t = 0, 1 denotes the before and after periods respectively, and j = 1, . . . , ns

denotes the site. However, with the addition of the GPs, the location parameter

becomes
µ0 = β0 + Sµ(αµ, λµ),

µ1 = β0 + β1 + Sµ(αµ, λµ),

where Sµ is a zero mean, stationary Gaussian process with exponential covariance

function, such that

Sµ ∼ Nm

(
0, αµ exp

{
−∥h∥
λµ

})
,

with unknown sill and range parameters αµ and λµ. The matrix, ∥h∥, is obtained

by computing the pairwise distances between sites using their coordinates. Each

element of ∥h∥ represents the Euclidean distance in kilometres between two sites j

and j′. Similar formulations are used for the scale parameter.

In this instance, we are modelling a before and after period through a time vary-

ing location parameter. To avoid the time vector inclusion, we separate the location

parameter to have µ0 in the before period and µ1 in the after period. We denote the

data over all sites as (x1, . . . , xns), where ns is the number of sites. We use conju-

gate priors where possible and let all β coefficients follow independent multivariate

normal distributions, and take independent inverse-gamma distributions for αµ. We

use relatively uninformative gamma distributions for λµ where no conjugate priors

are available, similarly for the sill and range parameters for the scale parameter.

The priors are similarly chosen for the remaining GEV parameters (Davison et al.,
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2012). The full conditional distributions are defined as follows:

π(µ0| · · · ) ∝ π(µ0|αµ, λµ, βµ0)π(x0|µ0, σ, ξ),

π(µ1| · · · ) ∝ π(µ1|αµ, λµ, βµ1)π(x1|µ1, σ, ξ),

π(αµ| · · · ) ∝ π(αµ|κ∗αµ
, θ∗αµ

)π(µ0|αµ, λµ, βµ0)π(µ1|αµ, λµ, βµ1),

π(λµ| · · · ) ∝ π(λµ|κ∗λµ , θ
∗
λµ)π(µ0|αµ, λµ, βµ0)π(µ1|αµ, λµ, βµ1),

π(βµ| · · · ) ∝ π(βµ|γ∗µ,Σ∗
µ)π(µ0|αµ, λµ, βµ0)π(µ1|αµ, λµ, βµ1),

where κ∗• , θ
∗
• , γ

∗
• , Σ

∗
• are the hyperparameters of the prior distributions. The subscript

dot notation denotes all indexes related to that particular parameter. Also, x0

denotes the data in the before period and x1 in the after period, across all sites. We

assume that the spatial correlation remains constant over time and therefore fix αµ

and λµ across the before and after periods. The right-hand-side plot of Figure 5.1

compares the spatial correlations in the before and after periods and shows that

they do not vary between the two time periods. The full conditional distributions

for the remaining GEV parameters are similarly derived.

5.3.1 Model description

The reparameterised model is then given by,

µ0 = β0 + αµ exp(−∥h∥/λµ),

µ1 = β0 + β1 + αµ exp(−∥h∥/λµ),

η = β2 + αη exp(−∥h∥/λη),

ξ = β3,

where η = log σ to respect the positivity of the scale parameter. As we have a before

and after period which was previously modelled through t, we can think of this as

having a location parameter µ0 for the before period (t = 0) and µ1 for the after

period (t = 1). Hence in our FCDs, to draw β0 and β1 we will use their respective

µ•. Then, we can deduce that the GEV parameters follow normal distributions, and

107



Chapter 5. Modelling spatial extremes from the LPI intervention

the prior distributions are as follows:

µ0 ∼ Nm(β0,Σµ); µ1 ∼ Nm(β0 + β1,Σµ),

η ∼ Nm(β2,Ση); ξ ∼ N(β3, νξ),

β0 ∼ Nm(γβ0 ,Σβ0); β1 ∼ Nm(γβ1 ,Σβ1),

β2 ∼ Nm(γβ2 ,Σβ2); β3 ∼ N(γβ3 , νβ3),

αµ ∼ InvGa(καµ , θαµ); αη ∼ InvGa(καη , θαη)

λµ ∼ Ga(κλµ , θλµ); λη ∼ Ga(κλη , θλη),

νξ ∼ Ga(a0, b0),

where Nm(·, ·) denotes a multivariate normal distribution. The variances for the nor-

mal distributions for the GEV parameters, Σµ,Ση, are the corresponding Gaussian

random field, e.g. Ση = αη exp(−∥h∥/λη). As we have fixed the shape parameter, ξ

over all sites, and for ease of calculation, νβ3 and νξ are scalar precisions, where we

set νβ3 = 0.01.

5.3.2 Parameter FCDs

Due to the use of conjugate priors, the full conditional distributions are available

for β0, β1, β2, β3, αµ, αη and νξ to sample from directly. Firstly, to derive the full

conditional distribution of β0, we need to use Bayes theorem and the properties of

normal distributions. Bayes theorem states that:

π(β0|µ0, γβ0 ,Σµ,Σβ0) =
π(µ0|β0,Σµ)π(β0|γβ0 ,Σβ0)

π(µ0|γβ0 ,Σβ0 ,Σµ)
.

Up to proportionality, the posterior distribution can be expressed as,

π(β0|µ0, γβ0 ,Σµ,Σβ0) ∝ π(µ0|β0,Σµ)π(β0|γβ0 ,Σβ0).
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Upon substituting the expressions for π(µ0|β0,Σµ) and π(β0|γβ0 ,Σβ0), we have:

π(β0| · · · ) ∝ exp

{
−1

2
(µ0 − β0)

TΣ−1
µ (µ0 − β0)

}
× exp

{
−1

2
(β0 − γβ0)

T Σ−1
β0

(β0 − γβ0)

}
,

∝ exp

{
1

2
βT0
(
Σ−1
µ + Σ−1

β0

)
β0 + βT0

(
Σ−1
µ µ0 + Σ−1

β0
γβ0
)}

.

We set

A = Σ−1
µ + Σ−1

β0
, B = Σ−1

µ µ0 + Σ−1
β0
γβ0 ,

then the FCD for β0 is expressed as,

π(β0| · · · ) ∝ exp

{
−1

2
(β0 − A−1BTA)(β0 − A−1B)

}
,

which we recognise as proportional to a multivariate normal distribution, and hence

we can write

β0| · · · ∼ Nm(A
−1B,A−1). (5.1)

Similarly for β1 we have,

π(β1| · · · ) ∝ exp

{
−1

2
(µ1 − (β0 + β1))

TΣ−1
µ (µ0 − (β0 + β1))

}
× exp

{
−1

2
(β1 − γβ1)

T Σ−1
β1

(β1 − γβ1)

}
,

∝ exp

{
1

2
βT1
(
Σ−1
µ + Σ−1

β1

)
β1 + βT1

(
Σ−1
µ µ1 − Σ−1

µ β0 + Σ−1
β1
γβ1
)}

.

We set

C = Σ−1
µ + Σ−1

β1
, D = Σ−1

µ (µ1 − β0) + Σ−1
β1
γβ1 ,

then the FCD is expressed as,

π(β1| · · · ) ∝ exp

{
−1

2
(β1 − C−1DTC)(β1 − C−1D)

}
,

which is proportional to a multivariate normal distribution and so we write,

β1| · · · ∼ Nm(C
−1D,C−1). (5.2)
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Following the same methods, the prior distribution of β2 is chosen to be normal with

mean γβ2 and variance matrix Σβ2 . Therefore the mean parameters for η are drawn

from the FCD,

β2| · · · ∼ Nm(E
−1F,E−1). (5.3)

where

E = Σ−1
η + Σ−1

β2
, F = Σ−1

η η + Σ−1
β2
γβ2 .

The FCD for β3 is calculated as

π(β3| · · · ) ∝ exp

{
−1

2

(
νξ(ξ − β3)

2 + νβ3(β3 − γβ3)
2
)}

,

∝ exp

{
−1

2

(
β2
3(νξ + νβ3)− 2β3(νξξ + νβ3γβ3

)}
,

and hence,

β3| · · · ∼ N

(
νξξ + νβ3γβ3
νξ + νβ3

, νξ + νβ3

)
.

As for the hyperparameter for the precision, with the use of conjugate priors the

FCDs are calculated as:

νξ| · · · ∼ Ga

(
a0 +

1

2
, b0 +

1

2
(ξ − β3)

2

)
. (5.4)

For the Gaussian process parameters we have the following priors:

αµ ∼ InvGa(καµ , θαµ),

λµ ∼ Ga(κλµ , θλµ),

similarly for those related to the scale parameter, η. Then, due to the use of con-

jugate priors, the sill parameter αµ is drawn directly from an inverse-gamma distri-

bution:

π(αµ| · · · ) ∝ θ
καµ
αµ α

καµ−1
µ exp

{
θαµ

αµ

}
× exp

{
−1

2
(µ0 − β0)

TΣ−1
µ (µ0 − β0)

}
× exp

{
−1

2
(µ1 − (β0 + β1))

TΣ−1
µ (µ1 − (β0 + β1))

}
,
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which equates to

αµ| · · · ∼ InvGa(G,H), (5.5)

where the shape and rate are defined as

G = καµ + 1,

H = θαµ +
1

2
αµ(µ0 − β0)

TΣ−1
µ (µ0 − β0) +

1

2
αµ(µ1 − (β0 + β1))

TΣ−1
µ (µ1 − (β0 + β1)).

Similarly, αη is drawn from an inverse-gamma distribution with shape and rate

parameters:

καη +
1

2
,

θαη +
1

2
(η − β2)

TΣ−1
η (η − β2).

To update the range parameter, λ•, where we use non-conjugate priors, we require

a Metropolis step for the proposals. The full MCMC algorithm is outlined in Al-

gorithm 6. The Jacobian term is included in the acceptance probability in the

Metropolis-Hastings step for the range parameter to account for the change in vol-

ume caused by the reparameterisation in the proposal distribution. It adjusts the

acceptance probability so that the Markov chain has the correct stationary distribu-

tion. It is typically calculated by taking the determinant of the Jacobian matrix of

the transformation from the current state to the proposed state. Here, the Jacobian

term is
∂λµ
∂ζµ

= exp ζµ.

When applying the change of variable formula, the Jacobian is the absolute value of

the derivative of the transformation function, however as the Jacobian is scalar the

absolute value is not needed.

5.3.3 Application

In what follows, we implement the MCMC scheme from Algorithm 6. We have that

q(ψ∗|ψ) = N(ψ∗;ψ,Λ) where the innovation matrix Λ = γV̂ ar(ψ|x), with V̂ ar(ψ|x)
obtained from a pilot run and γ is chosen to give an acceptance rates of around
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Algorithm 6 MCMC algorithm

Given a current value of the Markov chain

ψ(j) =
(
µ
(j)
0 , µ

(j)
1 , η(j), ξ(j), α(j)

µ , λ(j)µ , α(j)
η , λ(j)η , β

(j)
0 , β

(j)
1 , β

(j)
2 , β

(j)
3 , ν

(j)
ξ

)
,

the next state of the chain ψ(j+1) is obtained as follows:
1: Update the GEV parameters at each site:

for t=(0,1) do

(a) Each component of µ
(j)
t = (µ

(j)
t,1 , . . . , µ

(j)
t,ns

) is updated singly through gen-
erating a proposal µ∗

t,s from a symmetric random walk and compute the
acceptance probability

A(µ∗
t,s|µ

(j)
t,s ) = min

{
1,

π(yt,s|µ∗
t,s, σ

(j)
s , ξ(j))× π(µ∗

t |αµ, λµ, βµ)
π(yt,s|µ(j)

t,s , σ
(j)
s , ξ(j))× π(µ

(j)
t |αµ, λµ, βµ)

}
.

(b) With probability A(µ∗
t,s|µ

(j)
t,s ) the µt,s component of ψ(j+1) is set µ∗

t,s; other-

wise, µ
(j+1)
t,s = µ

(j)
t,s .

end do

• σ
(j)
s and ξ(j) are updated similarly.

2: Update the regression parameters:

• Due to the use of conjugate priors, β0 and β1 are drawn directly from a
multivariate normal distributions as shown in Equation (5.1) and Equa-
tion (5.2).

• The regression parameters for the GEV scale and shape are updated simi-
larly.

3: Update the sill parameters of the covariance function:

• Due to the use of conjugate priors αµ is drawn from an inverse-gamma
distribution as shown in Equation (5.5).

• The sill parameters for the GEV scale and shape are updated similarly.

4: Update the range parameters of the covariance function:

• Here we have a non-conjugate prior and hence require a Metropolis step.
To respect the positivity of λ•, we generate proposals of ζ• = log λ• from a
symmetric, normal random walk.

• Generate a proposal ζ∗µ ∼ N(ζ
(j)
µ ,Λζµ) and compute the acceptance proba-

bility: A(ζ∗µ|ζ
(j)
µ ) = min {1,Ψ}, where
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Ψ =
π(µ

(j)
0 |α(j)

µ , λ∗µ, β
∗
µ0
)

π(µ
(j)
0 |α(j)

µ , λ
(j)
µ , β

(j)
µ0 )

×
π(µ

(j)
1 |α(j)

µ , λ∗µ, β
∗
µ1
)

π(µ
(j)
1 |α(j)

µ , λ
(j)
µ , β

(j)
µ1 )

×

(
λ∗µ

λ
(j)
µ

)κ∗λµ−1

exp
{
−θ∗λµ

(
λ∗µ − λ(j)µ

)}
×

exp ζ∗µ
exp ζµ

,

and
exp ζ∗µ
exp ζµ

is the Jacobian term and λµ = exp ζµ.

• λη is updated similarly.
5: Draw precisions νξ from Equation (5.4).

25%, see Section 2.4.2. We define the prior parameters to be

γβ0 = −6 · 1, Σβ0 = diag{10 · 1},

γβ1 = 0 · 1, Σβ1 = diag{10 · 1},

γβ2 = 0 · 1, Σβ2 = diag{10 · 1},

γβ3 = 0, νβ3 = 0.01,

καµ = 1, θαµ = 5

καη = 1, θαη = 5

κλµ = 10, θλµ = 1

κλη = 10, θλη = 1,

a0 = 0.1, b0 = 0.1,

with 1 being a ns× 1 vector of 1s. As suggested by Banerjee et al. (2015), informa-

tive priors should be used for the parameters α• and λ• of the covariance functions,

in order to yield non-degenerate marginal posterior distributions for them.

The MCMC scheme was run for 500k iterations with a thin of 500 for sufficiently

low auto-correlation. From visual checks of all trace plots, the posterior distri-

butions show good mixing and convergence to the target distribution. Marginal

posterior distributions for parameters η and ξ are in agreement with those from the

joint model outlined in Section 5.2, with a mean difference of 0.004 between the

corresponding parameters. Like before, we are interested in the change in location

parameter, µ, from before the LPI treatment, to after. Hence here we will compare

the values of µ0 and µ1 to measure the treatment effect. Figure 5.2 shows posterior
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Figure 5.2: Posterior means and 95% CIs for the change in location parameter
between the before and after period (µ1 − µ0). Treated sites are denoted with a ‘T’
above the x-axis.

summaries for the treatment effect, µ1 − µ0, over all sites. The treatment effect is

successfully captured in all the treated sites (the credible intervals (CI) are wholly

negative), and the sites at which no treatment took place, the change in location

parameter might be assumed zero (their CIs contain zero). Table 5.1 shows the pos-

terior means and 95% CIs from the joint model and the spatial model. We see the

means and CIs are very similar, however, the spatial model correctly identifies site

12 as untreated, by including zero in the CI. The posteriors for parameters µ0, µ1

and η are summarised through their mean and 95% CIs in Figure 5.3, alongside a

density plot of the marginal posterior for ξ which is fixed across all sites. Figure 5.4

summarises the posteriors for parameters µ0, µ1 and η through their mean and 95%

CIs however this time they’re plotted against the corresponding longitude and lati-

tude of the site. This shows a potential decrease in both µ0 and µ1 from West–East

and South–North, and an increase in scale parameter from South–North. A change

in location parameter shifts the distribution along the x-axis and hence the North–

East is potentially where we’d expect the least near-misses. The scale parameter in

the GEV distribution controls the spread or variability of the distribution, therefore
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Treatment effect
Spatial model Joint model

Site Mean 95% CI Mean 95% CI
1 −0.6949 (−1.1069,−0.2831) −0.7259 (−1.1217,−0.3268)
2 0.0004 (−0.3665, 0.3578) −0.0426 (−0.4069, 0.3202)
3 −0.2371 (−0.6362, 0.1513) −0.2820 (−0.6876, 0.1015)
4 −0.9329 (−1.3257,−0.5501) −0.9775 (−1.3826,−0.5918)
5 −0.7845 (−1.1948,−0.3754) −0.8399 (−1.2331,−0.4559)
6 −0.8973 (−1.3509,−0.4494) −0.9718 (−1.4183,−0.5101)
7 −0.7657 (−1.1419,−0.3823) −0.8035 (−1.1659,−0.4428)
8 −1.0982 (−1.5339,−0.6554) −1.1319 (−1.5723,−0.7047)
9 −0.1906 (−0.6730, 0.2822) −0.2425 (−0.7194, 0.2301)
10 −0.1093 (−0.4369, 0.2223) −0.1433 (−0.4745, 0.1784)
11 −0.2366 (−0.6086, 0.1218) −0.2681 (−0.6460, 0.0989)
12 −0.3584 (−0.7462, 0.0375) −0.4099 (−0.8104,−0.0184)
13 −0.0796 (−0.4146, 0.2500) −0.1046 (−0.4381, 0.2247)
14 −0.9772 (−1.3907,−0.5634) −1.0495 (−1.4948,−0.6145)
15 −0.5167 (−0.9147,−0.1251) −0.5478 (−0.9332,−0.1528)

Table 5.1: Treatment effect posterior mean and 95% credible intervals from the
spatial model (µ1 − µ0) and the joint model (β1, as specified in Section 5.2).

α λ
Mean 95% CI Mean 95% CI

µ 0.1276 (0.0123, 0.5133) 90.2594 (47.2135, 118.8835)
η 0.3174 (0.0250, 1.8452) 44.8333 (23.7952, 61.3935)

Table 5.2: Posterior means and 95% CIs for αµ, αη, λµ, λη.

we may expect to see a larger range of PETs at sites that are further North.

When using an exponential kernel in a Gaussian process to capture spatial de-

pendence, the length scale parameter, λ•, controls the spatial scale over which the

function varies. A larger length scale means that the function can change more grad-

ually over larger distances, whereas a smaller length scale means that the function

can change more rapidly over shorter distances. The signal variance parameter, α•,

controls the overall variability of the spatial function, with larger values indicating

more variability and smaller values indicating less variability. Table 5.2 summarises

the marginal posterior distributions of the hyperparameters in the GP. For the LPI

data we have that the amplitude of the spatial function is determined by a relatively

small value of α• for both µ and η indicating less variability. The spatial scale, over
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which the function varies, is determined by 1/λ•. As such, the function can change

rapidly over short distances. Numerical summaries for the marginal posteriors of all

other model parameters are provided in Tables 5.4, 5.5 and 5.3.

When a GEV distribution is fitted to negated PETs at signalised intersections,

two important quantitative measures of safety indices exist: the risk of crash (RC)

and return levels. The risk of crash is calculated as,

RCj = Pr {zj ≥ ad} = 1− Gj(ad) =

 1− exp

{
−
[
1− ξ

µ•j

σj

]− 1
ξ

}
, for ξ ̸= 0,

1− exp
{
− exp

(
µ•j

σj

)}
, for ξ = 0.

If ad = 0, RCj is the risk of crash at site j, zj is the maximum negated PET at

site j, and Gj(·) is the fitted GEV distribution. RC is non-negative, where a RC

value of zero means no risk of crash, while an RC value greater than zero indicates

a risk of crash. Typically, ad = 0 which gives the probability that there are zero

seconds between the pedestrian and vehicle and hence, of a crash. However we are

interested in the probability of dangerous situations and severe near-misses, hence

we use ad = −0.5. This gives us the probability of a negated PET being more

than −0.5 seconds or the probability that a car and pedestrian will come within 0.5

seconds of each other at each site.

Using the posterior parameter estimates from the MCMC output, we draw es-

timates of RC
(i)
tj for each site using (µ

(i)
0j , µ

(i)
1j , σ

(i)
j , ξ

(i)), where i = 1, . . . , N and N

is the number of posterior draws available from the MCMC scheme, in the before

(t = 0) and after (t = 1) periods. The posterior distribution of RCtj is summarised

through the mean and 95% credible intervals at each site in Figure 5.5. For the

return levels, we estimate the probability of extreme events occurring in the future.

Estimates of an extreme quantile zr can be obtained by inversion of G(zr), where
zr is the r-observation return level associated with return period r, as outlined in

Section 2.2.3. Specifically,

zr =

µ•j − σj
ξ

[
1− (− log(1− r−1))

−ξ
]
, ξ ̸= 0

µ•j − σj log(− log(1− r−1)), ξ = 0.
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Figure 5.3: Posterior means and 95% CIs for parameters µ0, µ1, η for each site, with
the posterior density of the shape parameter, ξ. Treated sites are shown in blue.
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Figure 5.4: Posterior mean and 95% credible intervals for the GEV parameters (µ0

(top), µ1 (middle), η (bottom)) plotted against longitude (left) and latitude (right).
Treated sites are shown in blue.
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Figure 5.5: Posterior means and 95% credible intervals of RC at each site. The RC
in the before period is shown in black, and the after period in blue. Treated sites
are denoted with a ‘T’ above the x-axis.

Using the posterior parameter estimates, as outlined for the drawing of RCtj,

we find distributions for the one-year return levels for each site in the before and

after periods. The means and 95% credible intervals of the distribution are shown

in Figure 5.6. In both the return levels and the crash risk assessments, we see an

improvement in safety in the after period for the treated sites. On average, the crash

risk at the treated sites has decreased by 37%, and at the non-treated sites there has

been a reduction of 11% on average. The mean one year return level has decreased

by 0.83 seconds at the treated sites and by 0.17 seconds at the non-treated sites.

5.4 Discussion

We have developed a spatial model to capture the treatment effect at intersections

treated with 5 second LPIs. We use a block maxima approach as this is most com-

mon in current spatial extremes research. The model allows for spatial dependence

and a varying location parameter between the before and after treatment time pe-

riods. The treatment effect is then estimated through comparison of the estimates
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Figure 5.6: Posterior means and 95% credible intervals of the one-year return level
(seconds) at each site. The return level in the before period is shown in black, and
the after period in blue. Treated sites are denoted with a ‘T’ above the x-axis.

for the location parameter in the before period to those in the after period at each

site. A Gaussian process is built in to the GEV location and scale parameters, using

an exponential covariance function to describe the similarity between two points in

the spatial domain. We fixed the shape parameter across all sites as it is estimated

as approximately zero for all sites. The model can be fitted through Markov chain

Monte Carlo, using Gibbs sampling where conjugacy allows and MH steps elsewhere.

We applied our approach to real data consisting of negated PETs at 15 intersec-

tions, of which 8 had been treated with the LPI safety intervention. There was clear

spatial correlation shown between sites and accounting for this within the model

allowed for pooling of information which is beneficial when extra covariates are

not accessible. Although modelling parameter variation as a latent spatial process

resulted in slightly wider credible intervals for the treatment effect for some sites

compared to the joint model, it has better estimated the treatment effect in general.

The untreated sites have means closer to zero and site 12 is correctly identified as

untreated which contradicts what was found through the joint model, where the 95%
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CI was wholly negative. This differentiation highlights the refined capability of the

spatial model to discern untreated sites with means closer to zero. While both mod-

els offer valuable insights, the spatial model provides a more nuanced understanding

of the underlying phenomena and represents a more precise approach for capturing

the true treatment effect at specific sites. Another advantage of this model, though

not pursued here, is that it can be used to estimate PETs at sites for which obser-

vations are not available. The GP allows interpolation between parameter values.

Using the distances between the unobserved and the observed sites, we can construct

the covariance matrix and then the conditional Gaussian for the parameters at the

unobserved sites. The Gaussian conditional is then available to sample from at the

unobserved sites given the parameter draws at the observed sites, see Casson and

Coles (1999). The treatment was shown to have been advantageous as the location

parameter became more negative in the after periods in all treated sites. Through

return levels and risk of crash summaries, we again showed how the treatment made

the intersections safer through reducing the probability of near-misses.

Our modelling approach can be improved in a number of ways. For example,

the inclusion of covariate information would not only provide more insight into

how these effect near-misses, but would also improve estimations and predictions.

Other correlation functions could be considered and potentially found to be more

beneficial (Diggle et al., 1998); more attention could be given to the specification of

prior distributions; and better tuning could make the MCMC scheme more efficient.

ξ β3 νξ

Mean 0.0017 −0.0087 1.0858

95% CI (−0.0950, 0.0952) (−2.8032, 2.3732) (0.0707, 3.8865)

Table 5.3: Posterior means and 95% CIs for ξ, β3 and νξ.
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µ0 µ1 η

Site Mean 95% CI Mean 95% CI Mean 95% CI

1 −8.8844 (−9.1857, −8.5793) −9.5757 (−9.8571, −9.2876) 0.4327 (0.3156, 0.5522)

2 −7.9694 (−8.2448, −7.7295) −7.9600 (−8.2287, −7.7067) 0.3142 (0.2028, 0.4317)

3 −9.3314 (−9.5851, −9.0639) −9.5664 (−9.8491, −9.3167) 0.3821 (0.2621, 0.5086)

4 −8.6910 (−8.9690, −8.4090) −9.6259 (−9.9108, −9.3552) 0.4177 (0.2990, 0.5401)

5 −9.2741 (−9.5562, −8.9805) −10.0445 (−10.3378, −9.7468) 0.4410 (0.3238, 0.5656)

6 −10.2611 (−10.5633, −9.9790) −11.1743 (−11.4775, −10.8505) 0.5379 (0.4240, 0.6517)

7 −8.6314 (−8.8878, −8.3732) −9.3911 (−9.6705, −9.1068) 0.3621 (0.2525, 0.4912)

8 −10.9011 (−11.2090, −10.5380) −11.9592 (−12.2907, −11.6413) 0.5270 (0.4154, 0.6474)

9 −9.6073 (−9.8730, −9.3340) −9.8144 (−10.2163, −9.4389) 0.3644 (0.2332, 0.5138)

10 −8.3146 (−8.5418, −8.0828) −8.4201 (−8.6442, −8.2166) 0.2315 (0.1074, 0.3622)

11 −9.5689 (−9.8394, −9.2682) −9.8135 (−10.1061, −9.5353) 0.3244 (0.2017, 0.4536)

12 −9.6879 (−9.9544, −9.4307) −10.0332 (−10.3034, −9.7728) 0.3886 (0.2660, 0.5059)

13 −7.7549 (−8.0135, −7.4904) −7.8192 (−8.0664, −7.5890) 0.2471 (0.1238, 0.3707)

14 −13.4408 (−13.7645, −13.1265) −14.4448 (−14.7344, −14.1483) 0.4589 (0.3412, 0.5738)

15 −8.2877 (−8.5784, −7.9970) −8.8079 (−9.0756, −8.5334) 0.4123 (0.2936, 0.5381)

Table 5.4: Posterior means and 95% CIs for µ0, µ1 and η.

β0 β1 β2

Site Mean 95% CI Mean 95% CI Mean 95% CI

1 −7.5217 (−8.8202, −4.5331) −1.6373 (−3.1992, −0.6337) 0.3550 (−0.4885, 1.1920)

2 −6.6307 (−7.9185, −3.4488) −0.9234 (−2.4593, 0.1177) 0.2368 (−0.6217, 1.0381)

3 −7.9759 (−9.2660, −4.7144) −1.1818 (−2.7253, −0.1801) 0.3048 (−0.4756, 1.0752)

4 −7.3249 (−8.6183, −4.2132) −1.8879 (−3.4460, −0.8402) 0.3357 (−0.4794, 1.1517)

5 −7.9070 (−9.1997, −4.7127) −1.7228 (−3.2163, −0.6967) 0.3656 (−0.4454, 1.2069)

6 −8.9039 (−10.2233, −5.8630) −1.8560 (−3.4739, −0.8198) 0.4549 (−0.4080, 1.3429)

7 −7.2753 (−8.5330, −4.1312) −1.7019 (−3.2330, −0.6452) 0.2841 (−0.5866, 1.1032)

8 −9.5608 (−10.9008, −6.4892) −1.9855 (−3.4685, −0.9293) 0.4542 (−0.3794, 1.2633)

9 −8.2911 (−9.5380, −5.1159) −1.1189 (−2.7184, −0.1013) 0.2962 (−0.5749, 1.1600)

10 −6.9738 (−8.2271, −3.7587) −1.0354 (−2.5959, −0.0402) 0.1531 (−0.6602, 0.9298)

11 −8.2073 (−9.5100, −5.2197) −1.1946 (−2.7654, −0.1688) 0.2404 (−0.5902, 1.0392)

12 −8.3226 (−9.5987, −5.2641) −1.2985 (−2.7959, −0.2785) 0.3096 (−0.4670, 1.0855)

13 −6.4074 (−7.6588, −3.2454) −1.0038 (−2.4845, 0.0052) 0.1685 (−0.6968, 0.9547)

14 −12.1274 (−13.3797, −9.0578) −1.9248 (−3.5600, −0.8918) 0.3898 (−0.5037, 1.1788)

15 −6.9574 (−8.2572, −3.6861) −1.4494 (−2.9741, −0.4041) 0.3361 (−0.4937, 1.1264)

Table 5.5: Posterior means and 95% CIs for β0, β1 and β2.
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Chapter 6

Accounting for seasonal and zonal

effects in collision data

6.1 Introduction

As discussed in Section 1.1, road safety practitioners strive to improve road safety

and reduce the number of collisions on the road. They often do this by applying

safety schemes to locations in which there has been a high number of collisions in

some ‘before’ period and hope that the scheme will reduce the number of collisions

in the ‘after’ period. Clearly choosing the sites in which the schemes are imple-

mented is an important task. The sites must be chosen such that the scheme is the

most effective, in that there is an expected measurable reduction in collisions after

accounting for RTM and trend effects. We will refer to these sites as ‘hotspots’. Log-

ically it would make sense for these sites to be chosen where there has been a large

number of collisions and with that number following an upward trend. However, we

do not want to have to wait to see this growth as people are potentially losing their

lives. Therefore, we intend to be proactive over reactive by predicting the number

of collisions at hotspots to inform site selection. Naturally, finding ways to predict

hotspots is prominent in road safety research. Lu et al. (2015) use logistic regression

analysis to form a prediction model for accident hotspots. Fawcett et al. (2017) use

a Bayesian hierarchical model for predicting road safety hotspots, building upon the

relatively simple EB methodology. Deublein et al. (2013) combine hierarchical mul-

tivariate Poisson-lognormal regression analysis and Bayesian Probabilistic Networks

to predict road traffic collisions. Further studies in this area include Abdel-Aty and
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Radwan (2000), El-Basyouny et al. (2014), Qu and Meng (2014), with a full litera-

ture review available in Yannis et al. (2017)

Poisson regression and negative binomial (NB) models have been utilised for

years to analyse road traffic accident occurrence, however they come with limita-

tions. The Poisson model requires the unlikely situation of the mean of the data

being equivalent to the variance, then both the Poisson and NB models require the

data to be uncorrelated in time. At their basic level, these regularly-used models

are incapable of taking into account some unobserved heterogeneities due to spatial

and temporal effects of crash data. Usually it is assumed that sites with the same

attributes must have the same crash risk, and that crash counts at a site are tempo-

rally independent. However, in reality we notice that these assumptions rarely hold

and some unobserved factors may exist between sites and subsequent crash counts.

Hence, we must account for site-specific effects and temporal effects to avoid un-

derestimating the uncertainty in the regression coefficients. It is common in road

safety to have data which show seasonality, and in which sites differ in terms of their

safety through factors that are not observed in the data. To allow us to capture such

differences between seasons and sites we can use random effects models. Random

effects models are an extension of the general linear model outlined in Section 2.1.

Random effects modelling is commonly used in road safety analyses to account

for sources of variability that are not explicitly measured, such as weather conditions

and driver behaviour. By estimating the variance components of multiple factors,

practitioners can identify important predictors of road safety outcomes and pro-

vide valuable insights for improving road safety interventions and policies. Random

effects modelling is a powerful tool for understanding the complex relationships be-

tween different factors that contribute to road safety, and can help decision-makers

develop more effective strategies for reducing accidents and improving overall road

safety. Random effects models can account for potential unobserved heterogeneity

between sites and correlations between the residuals. They are also available for

prediction. A random effects model is fitted to observed data with a set of predictor

variables. Once the regression coefficients have been estimated, the model can be

used to predict values of the response variable at each site in future time periods.

Random effect negative binomial (RENB) models have been shown to outperform

regular negative binomial and Poisson models (Jiang et al., 2014, Shankar et al.,
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1998). In what seems to be the first application of the RENB model to road safety,

Shankar et al. (1998) indicated that the model is appropriate as geometric and

traffic variables are likely to have site-specific effects. Huang and Chin (2010) use

random effects to capture site-effects in their zero-inflated Poisson regression with

site-specific random effects (REZIP). Chin and Quddus (2003) use a RENB model

to identify the elements that affect intersection safety. We propose a Bayesian

hierarchical random effects model to capture seasonal and zonal effects shown in the

collision rate data provided by the Florida Department of Transport, outlined in

Section 1.3.2. As we have rates, we avoid the need to model counts through Poisson

or NB distributions and assume a normal distribution to describe the data. We

then fit the model to UK count data, outlined in Section 1.3.4, and assume the data

follow a Poisson distribution.

6.2 Florida data analysis

We have monthly collison data available from North Florida, USA within fixed Traf-

fic Administration Zones (TAZ), outlined in Section 1.3.2. For each of the 49 zones

there are multiple sites – the rate is the average number of collisions across those

sites in each month within each TAZ. We propose a Bayesian hierarchical model

which allows us to segregate the seasonal and zonal effects alongside capturing the

uncertainty in the parameters sufficiently. Here we denote the rate of collisions per

zone and season by ymj where m denotes the season (month) m = 1, . . . , 12 and j

denotes the zone j = 1, . . . , 49. As to make the model more general, in this section

we will denote nz as the number of zones, ns as the number of months and nmj as

the number of observations in month m in zone j.

Upon visual inspection of the raw data, it appears that the majority of the

combinations of month and zone approximately follow normal distributions. This is

to be expected as the rate for each zone was calculated as an average across multiple

sites. Additionally, the rates across all sites are sufficiently larger than zero, with

a mean of 7.8, and so the normal distributions are unlikely to pass through zero.

We assume a model that has each observation y
(i)
mj, for i = 1, . . . , nmj (denoting

the number of observations in month m in zone j), normally distributed with mean

µmj and precision τ = 1/σ2. The raw data over each zone and month combination

has similar variances, therefore we assume constant σ2 and thus constant precision.
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Throughout this chapter, N0(A,B) denotes a normal distribution with mean A and

precision B – precision chosen for notational convenience. The model takes the

form,

y
(i)
mj|µmj, τ ∼ N0 (µmj, τ) , with

µmj = µ+ ϵ(j) + γ(m) and

τ = 1/σ2 ∼ Ga (α, β) ,

for i = 1, . . . , nmj, m = 1, . . . , ns and j = 1, . . . , nz. We let α = 1, β = 0.01 to have

an uninformative prior on τ . All effects for µmj are assumed to be normally and

independently distributed:

µ ∼ N0(f, g),

ϵ(j) ∼ N0 (0, νϵ) ,

γ(m) ∼ N0 (0, νγ) ,
(6.1)

where f = 0 and g = 0.01. The overall mean µ is separate to the random effects

to capture any similarities between the zones and months, leaving ϵ(j) and γ(m) to

capture the variability. We set the random effects priors to be normal distributions

with zero mean and precisions νϵ and νγ, respectively. We choose non-informative

(large variance) priors for the hyperparameters, giving

νϵ ∼ Ga(a, b),

νγ ∼ Ga(c, d),

where a = 1, b = 0.01, c = 1 and d = 0.01.

6.2.1 Full posterior

The model is complex with a large number of parameters. Hence, calculating the

full posterior is problematic. Using Bayes’ theorem, we have

π
(
ϵ(1:nz), γ(1:ns), µ,τ, νϵ, νγ|y

)
∝

π(µ)π(τ)π(νϵ)π(νγ)π
(
ϵ(1:nz)|νϵ

)
π
(
γ(1:ns)|νγ

)
π
(
y|µ, ϵ(1:nz), γ(1:ns), τ

)
,

(6.2)
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where y = {y(i)mj}, i = 1, . . . , nmj and

π
(
ϵ(1:nz)|νϵ

)
=

nz∏
j=1

N0

(
ϵ(j); 0, νϵ

)
,

π
(
γ(1:ns)|νγ

)
=

ns∏
m=1

N0

(
γ(m); 0, νγ

)
,

π
(
y|µ, ϵ(1:nz), γ(1:ns), τ

)
=

ns∏
m=1

nz∏
j=1

nmj∏
i=1

N0

(
y
(i)
mj;µ+ ϵ(j) + γ(m), τ

)
.

However, Equation (6.2) is intractable; therefore, we will use an MCMC scheme to

draw posterior realisations of the parameters. As we have semi-conjugate priors for

the parameters governing the random effects, and full conjugacy elsewhere, we are

able to use Gibbs sampling to perform inference. We alternate between draws of

1. ϵ(j)|· ∼ π
(
ϵ(j)|y·j, γ(1:ns), νϵ

)
, j = 1, . . . , nz,

2. γ(m)|· ∼ π
(
γ(m)|ym·, ϵ

(1:nz), νγ
)
, m = 1, . . . , ns,

3. µ|· ∼ π
(
µ|y, ϵ(1:nz), γ(1:ns), τ

)
,

4. τ |· ∼ π
(
τ |y, µ, ϵ(1:nz), γ(1:ns)

)
,

5. νϵ|· ∼ π
(
νϵ|ϵ(1:nz)

)
,

6. νγ|· ∼ π
(
νγ|γ(1:ns)

)
.

Where, for example, y·j = {y(i)mj},m = 1, . . . , 12, i = 1, . . . , nmj.

6.2.2 Full conditional distributions

Having ymj follow a normal distribution permits Gibbsian updates of all unknowns.

The full conditional distributions (FCDs) are available for all parameters to sam-

ple from directly. Consider seasonal effect γ(m) for µmj with distribution given in

Equation (6.1), then the density of each month effect γ(m), m = 1, . . . , ns is given

by

π
(
γ(m)|νγ

)
=

√
νγ
2π

exp
{
−νγ

2

(
γ(m)

)2}
.
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Thus, the joint density is

π
(
γ(1:ns)|νγ

)
=
( νγ
2π

)ns
2
exp

{
−νγ

2

ns∑
m=1

(
γ(m)

)2}
.

The prior is

π(νγ) ∝ νc−1
γ exp {−dνγ} .

We can now write the posterior distribution as

π
(
νγ|γ(1:ns)

)
∝ ν

(c+ns
2
)−1

γ exp

{
−νγ

[
d+

1

2

ns∑
m=1

(
γ(m)

)2]}
,

and then, the FCD for νγ is

νγ|· ∼ Ga

(
c+

ns
2
, d+

1

2

ns∑
m=1

(
γ(m)

)2)
.

By similar arguments, the FCD for νϵ is

νϵ|· ∼ Ga

(
a+

nz
2
, b+

1

2

nz∑
j=1

(
ϵ(j)
)2)

.

The full conditional for τ is available for Gibbs sampling. Each y
(i)
mj has density

given by

π
(
y
(i)
mj|τ, ϵ(j), γ(m), µ

)
=

√
τ

2π
exp

{
−τ
2

(
y
(i)
mj −

(
µ+ ϵ(j) + γ(m)

))2}
. (6.3)

Thus, the likelihood is

π
(
y|ϵ(j), γ(m), µ, τ

)
=
( τ
2π

)N
2
exp

{
−τ
2

nz∑
j=1

ns∑
m=1

nmj∑
i=1

(
y
(i)
mj −

(
µ+ ϵ(j) + γ(m)

))2}
,

where N =
∑nz

j=1

∑ns

m=1

∑nmj

i=1 1. The prior density is

π(τ) ∝ τα−1 exp{−βτ}, α, β > 0.
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Therefore the full conditional distribution (FCD) for τ is

τ |ϵ(j), γ(m), µ, y ∼ Ga

(
α +

N

2
, β +

1

2

nz∑
j=1

ns∑
m=1

nmj∑
i=1

(
y
(i)
mj −

(
µ+ ϵ(j) + γ(m)

))2)
.

We then have the prior for γ(m) as

π
(
γ(m)

)
=

√
νγ
2π

exp
{
−νγ

2

(
γ(m)

)2}
.

Using Equation (6.3), the full conditional density for γ(m) is

π
(
γ(m)|·

)
∝ exp

{
−τ
2

nz∑
j=1

nmj∑
i=1

(
y
(i)
mj −

(
µ+ ϵ(j) + γ(m)

))2
− νγ

2

(
γ(m)

)2}

∝ exp

−νγ + nmτ

2

γ(m) −
τ
∑nz

j=1

∑nmj

i=1

(
y
(i)
mj − ϵ(j) − µ

)
νγ + nmτ

2
 ,

where nm =
∑nz

j=1 nmj. Hence, the FCD for γ(m) is

γ(m)|· ∼ N

τ∑nz

j=1

∑nmj

i=1

(
y
(i)
mj − ϵ(j) − µ

)
νγ + nmτ

, νγ + nmτ

 .

Similarly, the FCD for ϵ(j) is

ϵ(j)|· ∼ N0

τ∑ns

m=1

∑nmj

i=1

(
y
(i)
mj − γ(m) − µ

)
νϵ + njτ

, νϵ + njτ

 ,

where nj =
∑ns

m=1 nmj. To find the FCD for µ we have, again, Equation (6.3) with

prior distribution

π(µ) =

√
g

2π
exp

{
−g
2
(µ− f)2

}
.

Following similar arguments as above, we find the FCD for µ to be

µ|· ∼ N0

fg + τ
∑nz

j=1

∑ns

m=1

∑nmj

i=1

{
y
(i)
mj −

(
γ(m) + ϵ(j)

)}
g +Nτ

, g +Nτ

 .
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6.2.3 Application

The model is applied to the Florida collision rate data defined in Section 1.3.2.

After a couple of initial runs, we simplified the model to have the seasonal effect as

fixed, the argument being that once we had accounted for zonal effects, we would

assume that the accident rate would not change by more than ±2. Therefore, we

set νγ = 1 and hence γ(m) ∼ N(0, 1). This removed a step from the sampler making

it run faster and improved mixing. The Gibbs sampler draws realisations for each

parameter from their FCD over each iteration. We run the Gibbs sampler for 300k

iterations and thinned by 300 which gave reasonable mixing and sufficiently low

autocorrelation. Our results are summarised by Figures 6.1, 6.2, 6.3. There is a

clear sinusoidal pattern for the rate of collisions seasonally shown in Figure 6.2,

suggesting that we’d expect a higher collision rate over the autumn months and

a lower rate over spring time. This is expected to be down to weather patterns;

Florida’s wet season is from May to October and hurricanes pose a regular threat

from June to November. There also seems to be a slight increase in rate from West

to East shown when the zonal effect is plotted against longitude in Figure 6.3.

For validation we predict within the sample for month m and zone j to check

that the observed data are consistent with the predictive distributions. We have

posterior samples of parameters, that is draws of ψ = (µ, ϵ(j), γ(m), τ) from π (ψ|y).
The within-sample predictive density at month m and site j is given by

π (ỹmj|y) =
∫
ψ

π (ỹmj|ψ) π (ψ|y) dψ.

Although the within-sample predictive density is intractable, we can get draws from

π (ỹmj|y) via Monte Carlo:

For k = 1, . . . , niters:

1. Draw

ỹ
(k)
mj ∼ N

({
µ(k) + ϵ

(j)
(k) + γ

(m)
(k)

}
, τ(k)

)
, (6.4)

where µ(k), ϵ
(j)
(k), γ

(m)
(k) and τ(k) are the kth posterior draws of µ, ϵ(j), γ(m)

and τ ; the sampled values can then be used to obtain histograms or

summaries, as desired.

2. Overlay observed data points.
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Figure 6.1: Trace plots and density plots for τ , µ and νϵ from 300k iterations of the
Gibbs sampler and a thin of 300.

Results of the within-sample predictions are shown in Figure 6.4. The marginal

posterior densities include all observed values, showing the model fits well to the

data. Note that the model discussed thus far ignores any temporal dependence

exhibited by the data, and without additional covariate information, out of sample

forecasts are likely to be poor.

6.2.4 Comparison to a fixed effects model

To justify the use of random effects to capture the seasonal and zonal effects, we

compare this to a ‘simpler’ fixed effect model where we have data in month m and
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Figure 6.2: Posterior mean and 95% credible intervals for seasonal effects (γ(m))
from the analysis of the Florida data.

zone j following independent normal distributions, with mean µmj and precision τ ,

ymj|µ∗
mj, τ ∼ N0(µ

∗
mj, τ),

µ∗
mj

indep∼ N0(a, b),

τ ∼ Ga(c, d).

As we have conjugate priors, we are able to draw realisations via a Gibbs sampler

using FCDs for µ∗
mj and τ . The FCDs are calculated as

µ∗
mj|· ∼ N

(
ba+ τ

∑nmj

i=1 y
(i)
mj

b+ nmjτ
, b+ nmjτ

)
,

τ |· ∼ Ga

(
c+

N

2
, d+

1

2

nz∑
j=1

ns∑
m=1

nmj∑
i=1

(
y
(i)
mj − µ∗

mj

)2)
.

Therefore, the MCMC scheme draws realisations from the FCDs for each iteration

1. µ∗
mj|· ∼ π (µ|y, τ) for j = 1, . . . , nz,m = 1, . . . , ns,
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Figure 6.3: Posterior mean and 95% credible intervals for zonal effects (ϵ(j)) against
the longitude (top) and latitude (bottom) of the corresponding Florida TAZ cen-
troid.
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Figure 6.4: Within-sample predictions: Histogram of predictive posterior draws of
ỹmj for j = 48 and m = 1, 2, 3 with true observations overlaid on the x-axis.

2. τ |· ∼ π
(
τ |y, µ∗

mj

)
,

where, y = {y(i)mj}, i = 1, . . . , nmj. As in Section 6.2, we use uninformative priors

for all parameters such that a = 0, b = 0.01, c = 0.1, d = 0.01. As the model has

fewer parameters than the random effects model, and all can be drawn using Gibbs

sampling, the MCMC can be run for fewer iterations to gain convergence and good

mixing. Therefore, the MCMC is run for 30k iterations with a burn-in of 20k. The

results were then compared to the random effects model. The mean values for τ

from the two models were within 0.01 of each other, agreeing on a posterior mean

value of approximately 0.39. Figure 6.5 shows that the posterior mean estimates

of each µmj and µ∗
mj coincide with them being linear and lying on or close to the

overlaid line of y = x. However, the advantages of modelling using random effects

is evident when we see the improvement in precision in all µmj over µ
∗
mj from the

fixed effect model. The standard deviations are on average three times larger in the

fixed effect model. Furthermore, Figure 6.6 shows posterior mean estimates of the

within-sample predictions (ỹmj) drawn from Equation (6.4) for the random effects,

against those drawn from the fixed effects model. We see both models estimate the

value of ỹmj similarly, however the majority of the standard deviations from the

134



Chapter 6. Accounting for seasonal and zonal effects in collision data

4 6 8 10 12 14

4
6

8
10

12
14

Random effects

F
ix

ed
 e

ffe
ct

s

0.0 0.1 0.2 0.3
0.

0
0.

5
1.

0
1.

5

Random effects

F
ix

ed
 e

ffe
ct

s

Figure 6.5: Left: Posterior mean values of µ∗
mj from the fixed effects analysis, against

µmj from the random effects. Right: Posterior standard deviations of µ∗
mj from a

fixed effects model against µmj from a random effects model. Both include the line
y = x overlaid in blue.

fixed effect model are larger than their random effects equivalents.

6.3 UK data analysis

For further impact, we wish to be able to share our research with local practitioners

that we currently work with, e.g. Highways England. Therefore, we fit a similar

random effects model to STATS19 data for the UK, outlined in Section 1.3.4. Using

a SQL server we collected 11 years of collision data (2009–2019 inclusive) over the

UK and aggregated it to give the number of collisions per zones. The 207 zones are

grouped by their local authority highway ID from the STATS19 data and we have

the number of collisions for each month in each year.
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Figure 6.6: Left: Posterior mean values of within-sample predictions ỹmj from the
fixed effects analysis, against those from the random effects. Right: Posterior stan-
dard deviations of within-sample predictions ỹmj from a fixed effects model against
random effects. Both include the line y = x overlaid in blue.

6.3.1 Model description

Here, as this is count data, the number of collisions is assumed to follow a Poisson

distribution

ymj|λmj ∼ Po(λmj).

We define the rate of the Poisson distribution as

λmj = exp{ϵ(j)λ + γ
(m)
λ },

to respect the positivity of λ. Similarly to Section 6.2, all effects for λmj are assumed

normal and independently distributed,

ϵ
(j)
λ ∼ N0(µϵλ , νϵλ),

γ
(m)
λ ∼ N0(0, νγλ),
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with normal distributions parameterised in terms of mean and precision. We choose

non-informative hyperparameters giving,

µϵλ ∼ N0(d
∗, e∗),

νϵλ ∼ Ga(f ∗, g∗),

νγλ ∼ Ga(a∗, b∗),

with e∗, f ∗, g∗, a∗, b∗ = 0.01 and d∗ = 0. Furthermore, in the model, the data has

had to be reduced as to avoid the likelihood becoming too large, and hence we have

used ymj/10 to estimate ϵλ and γλ.

As for the Florida analysis, the full posterior is intractable. Hence, we will use

an MCMC scheme to perform inference. We alternate between draws of

1. ϵ
(j)
λ |· ∼ π

(
ϵ
(j)
λ |y·j, γ(1:ns)

λ , µϵλ , νϵλ

)
, j = 1, . . . , nuk,

2. γ
(m)
λ |· ∼ π

(
γ
(m)
λ |ym·, ϵ

(1:nuk)
λ , νγλ

)
, m = 1, . . . , ns,

3. µϵλ|· ∼ π
(
µϵλ |ϵ

(1:nuk)
λ

)
,

4. νϵλ|· ∼ π
(
νϵλ|ϵ

(1:nuk)
λ

)
,

5. νγλ |· ∼ π
(
νγλ|γ

(1:ns)
λ

)
.

Where, for example, y·j = {y(i)mj}, m = 1, . . . , ns, i = 1, . . . , nmj. Steps 1. and

2. are MH steps using normal random walks and 3.–5. are Gibbs steps. The

same techniques are used to find the FCDs for µϵλ , νϵλ and νγλ as those outlined in

Section 6.2.2. Hence, steps 3.–5. are performed by drawing from

µϵλ |· ∼ N

(
d∗e∗ + νϵλ

∑ns

m=1

∑nuk

j=1 ymj

e∗ + nsνϵλ
, e∗ + nsνϵλ

)
,

νϵλ |· ∼ Ga

(
f ∗ +

nuk
2
, g∗ +

1

2

nuk∑
j=1

(
ϵ
(j)
λ − µϵλ

)2)
,

νγλ |· ∼ Ga

(
a∗ +

ns
2
, b∗ +

1

2

ns∑
m=1

(
γ(m)

)2)
,

recursively, for each iteration.
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Figure 6.7: Posterior mean and 95% credible intervals for seasonal effects from the
UK data, γ

(1:ns)
λ , from a run of 500k, the first 400k iterations discarded as burn-in

and a thin of 100.

6.3.2 Application

We run the MCMC scheme for 500k iterations with a thin of 400 after the first 100k

iterations were discarded as burn-in. From visual checks of the trace plots, the chains

had converged, there was good mixing and sufficiently low auto-correlation. The

MCMC scheme draws realisations from the FCDs for µϵλ , νϵλ and νγλ ; our posterior

estimates for ϵλ and γλ are drawn using proposal distributions which are tuned

to give reasonable acceptance probabilities. Figure 6.7 shows estimated seasonal

effects, from this we would expect fewer collisions in February–April than over the

summer months May–July, with peaks in October–November. Figure 6.8 shows how

ϵλ varies with longitude and latitude, respectively. There seems to be an increase in

the estimated number of collisions across from West to East. There also seems to be

a decrease in the number of collisions moving from South to North. Results of the

within-sample predictions are shown in Figure 6.9 for site 2 in January, February

and March. The marginal posterior densities include all observed values, showing

the model fits well to the data.
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Figure 6.8: Posterior mean and 95% credible intervals for zonal effects, ϵ
(1:nuk)
λ ,

plotted against the longitude (top) and latitude (bottom) of the corresponding UK
zone centroid.
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Figure 6.9: Within-sample predictions: Histogram of posterior predictive draws of
ỹmj for j = 2 and m = 1, 2, 3 with true observations overlaid on the x-axis.

6.4 Discussion

Random effects modelling is a powerful statistical technique that can be used to

analyse data and identify patterns that are not immediately obvious. One of the

key benefits of this approach is that it allows us to exploit patterns in the response

variable, making us less reliant on covariate information. This can be particularly

useful in road safety analyses, where the available data may be limited or incom-

plete. By using random effects modelling, practitioners can gain valuable insights

into monthly trends and other patterns in the data that can be used to make pre-

dictions for future time periods. Analyses may reveal spatial or seasonal patterns;

this information can be used to develop more accurate predictions for future time

periods, even in zones where no data are available. By exploiting patterns in the

data, meaningful models can be developed that allow for quality predictions without

the need for additional covariates. This is important in road safety analyses, where

accurate predictions can help practitioners and other decision-makers develop effec-

tive interventions and policies to reduce accidents and improve overall road safety.
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From this analysis on the Florida data, we have gained insight into monthly

trends and how the rate of collisions at zones differ from each other. The estimates

for seasonal effects suggested a sinusoidal pattern within the rate of collisions. The

estimates suggest that the rates would be lowest over the spring time and with peaks

over autumn. This is likely down to weather patterns in Florida, where the rainy

season is defined as occurring between May and October, during which thunder-

showers bring heavy rainfall. This could explain the steady increase in rate from

April–September. After October, a dry season sets in across most of Florida, this

dry season typically lasts until late April in most areas which again could explain

the decrease in rate from October–April.

The zonal effects estimates suggest an increase in collision rate from West–East.

This could be down to the terrain or landscape in these areas differing. Another

possibility is that population density or traffic volume may vary across these regions,

with more drivers on the road in certain areas leading to an increased risk of colli-

sions. Weather conditions may also be a contributing factor. Finally, it is possible

that cultural or demographic differences between the eastern and western regions of

Florida may play a role, with differences in driving habits, attitudes towards road

safety, or other factors contributing to a higher rate of collisions in certain areas. Fur-

ther investigation and analysis would be necessary to determine the specific factors

contributing to the observed increase in road collisions from West to East in Florida.

By comparing the random effects model to a fixed effects model, we found that

the random effects model provided more precise marginal posterior parameter es-

timates for µmj. Specifically, the level of uncertainty surrounding these estimates

was lower in the random effects model compared to the fixed effects model. Less

uncertainty is advantageous as our predictions from the random effects model would

also be more precise, this is shown in Figure 6.6 where the majority of the stan-

dard deviations for within-sample predictions of ỹmj are smaller from the random

effects model than from the fixed effects. Note that the model discussed ignores

any temporal dependence exhibited by the data, and without additional covariate

information, out of sample forecasts are likely to be poor.

The model was then altered to allow analysis of count data. The monthly colli-

sion count data were chosen to follow a Poisson distribution which altered the top
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layer in the hierarchical model from Section 6.2. Again the data were exploited and

seasonal and zone effects were extrapolated to show when we would expect more

collisions in a year period, and how collision counts over zones differ. The estimates

for seasonal effects suggested that there was an overall increase in collisions counts

from February to November, where we expect to see the peak in November across

sites and the lowest in February. This could be explained by weather conditions.

The winter months in the UK can be particularly challenging for drivers due to ad-

verse weather conditions such as snow, ice, and fog, increasing the risk of collisions.

There is also evidence of increased traffic over the summer months in the UK due

to tourism and events. More people on the roads can increase the risk of collisions,

especially in popular holiday destinations and major cities.

There is evidence of a increase in the rate from North to South and from West

to East. We were able to conclude from this that we would expect higher collision

counts in the South-East of the UK. This could be down to variables such as popu-

lation density, urbanisation and infrastructure. This information is invaluable when

we aim to predict collision counts at zones where no data are available. As for the

Florida analysis, further investigation and analysis would be necessary to determine

the specific factors contributing to the observed increase in rate of road collisions

geographically in the UK.
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Application of a sinusoidal

dynamic linear model to road

traffic collision data

7.1 Introduction

Working with collision counts can introduce issues of zero-inflation, especially over

short time-frames. By working with rates over zones, we have the advantage of

fewer zeros in the dataset and upon removing these, we may treat the data as con-

tinuous, which can be mathematically convenient in terms developing a tractable

model. Most road traffic data are recorded sequentially over time and it is com-

mon for there to be dependencies between each observation. Hence, it is necessary

to account for these dependencies in the model via a time-series model, such as a

state-space model. The use of state-space models in road safety analysis is relatively

new and uncommon, though they provide advantages for prediction.

State-space models can be used for modelling univariate or multivariate time-

series in the presence of non-stationarity, structural changes and irregular patterns

(see e.g. Harvey, 1990, West and Harrison, 2006). Time-series analysis begins with

the formulation of a model that accounts for temporal dependence, for example

through auto-correlation, trend or seasonality. The use of state-space models within

a time-series setting allows for uncertainty quantification in both the observation

process and any dynamic variables that are not observed directly. Forecasting there-
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fore accounts for these different sources of uncertainty and, when inferences are made

within the Bayesian paradigm, additional parameter uncertainty. Throughout, we

focus on a particular class of state-space model within which the observation and

system equations involve linear functions of the latent process. Such models are

known as dynamic linear models (DLMs, see e.g. Petris et al., 2009, West and Har-

rison, 2006) and offer several practical benefits over their nonlinear counterparts.

Notably, they admit a tractable observed data likelihood function, allowing a com-

putationally efficient approach to inference and forecasting.

Gamerman and Migon (1993) give a list of hierarchical dynamic linear models

(DLMs) used for the state evolution, smoothing and filtering through the stages of

the hierarchy. Although state-space models and DLMs in particular, have been to

date rarely exploited in the road safety context (see e.g. Buddhavarapu, 2015, Fei

et al., 2011), they have been ubiquitously applied in environmental settings. For

example, Lai et al. (2020) use a spatio-temporal model to forecast sensor output

consisting of temperature and humidity measurements at five locations in North

East England. The signal is described using coupled dynamic linear models, with

spatial effects specified by a Gaussian process (GP). A related approach in the con-

text of emissions data can be found in Shaddick and Wakefield (2002).

In this thesis we propose a joint spatio-temporal model of collision rates over

multiple zones. A DLM is used at the level of a single zone, and allows for season-

ality via a single harmonic with time varying amplitude and phase parameters. We

then account for spatial dependence at nearby locations by adding a spatial Gaus-

sian process to the system equation, thereby smoothing spatial deviations from the

underlying temporal process. The resulting model allows for both within- and out-

of-sample forecasting for locations which are fully observed and for locations for

which some data are missing. A Bayesian approach is used to infer both dynamic

and static model components and leverages the tractability of the observed data

likelihood, which can be efficiently computed via a forward filter (see e.g. Carter

and Kohn, 1994, Frühwirth-Schnatter, 1994). We apply the inference scheme to a

real data application. We assess the assumption of time-varying parameters govern-

ing the seasonal component to each zone separately before considering a joint model

of all zones.
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Figure 7.1: Left: Time series plots of monthly collision rate in each of the 8 zones.
Right: Histograms of collision rates for zones 2,3,5,6.

7.1.1 Data

We consider a subset of the Florida monthly collision rate data outlined in Sec-

tion 1.3.2. We focus on 8 zones, where for each zone we have 115 months of observa-

tions where the most recent observations are from April 2014. Figure 7.1 shows the

multiple data streams over time for the different zones. For all zones, the monthly

collision rates exhibit sinusoidal patterns over a 12 month period. Histograms of the

monthly collision rates suggest that a Gaussian observation model may adequately

describe the observation process. Through scatter plots, we determined that there

was clear temporal dependence between certain months in year t to year t+ 1, pre-

cluding the use of a simpler model with “month” as a fixed effect. Furthermore,

zones geographically closer are more strongly correlated (see Figure 7.2).

7.1.2 Zone specific model

The dataset described in Section 1.3.2 showed seasonality in that, over all zones there

was a clear sinusoidal pattern about the rate of collisions over a year. Therefore,

to account for this within the DLM we include a single harmonic. Note that it
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Figure 7.2: Left: Correlation between the 8 zones against distance between zones
(km). Right: The temporal dependence between observations in months 2,3,4,5 in
consecutive years across all zones.

is possible to account for seasonality through the inclusion of multiple harmonics

in the system equation (see e.g. Petris et al., 2009), however, we find that using a

single harmonic and allowing the amplitude and phase to vary over time, provides

a parsimonious modelling approach.

Consider first a single location. We assume constant variance matrices V and W

and data at irregularly spaced times t1, t2, . . . , tn. The observation equation becomes

Xti = Ftiθti + νti , νti
indep∼ N(0, V ), (7.1)

where θti = (θ1,ti , θ2,ti , θ3,ti)
T and the observation matrix is given by

Fti =

(
sin

(
2πti
Px

)
, cos

(
2πti
Px

)
, 1

)
,

where Px is the time corresponding to one complete period (Px = 12 for seasonal

data). Note that the observation equation can be written as

Xti = θ̃1,ti cos

(
2πti
Px

− θ̃2,ti

)
+ θ3,ti + νti (7.2)
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where the dynamic parameters in Equation (7.1) and (7.2) are related using

θ̃1,ti =
√
θ21,ti + θ22,ti , θ̃2,ti = tan−1

(
θ1,ti
θ2,ti

)
. (7.3)

We impose some smoothness in these dynamic parameters by taking the system

equation to be of the form

θti = θti−1
+ ktiωti , ωti

indep∼ N(0,W ).

Which has been further altered to allow for measurements that are irregularly spaced

on a temporal grid. That is, we include a coefficient, kti , on the variance in the

state equation such that k2ti = ti − ti−1. Hence the sinusoidal form DLM captures

seasonality via a single harmonic whose amplitude θ̃1,ti and phase θ̃2,ti vary according

to two transformed independent random walk processes.

7.1.3 Joint model over zones

We now consider a model of monthly collision rates that captures both the seasonal-

ity, and additionally, the correlation between nearby zones. LetXti = (X1
ti
, . . . , Xnz

ti )
T

denote the collection of monthly collisions rates at time ti with X
j
ti corresponding

to zone j, and j = 1, . . . , nz. In Section 7.3.1 we find that amplitude and phase are

plausibly constant for each zone. Therefore, for ease of notation, in what follows we

fix θ1,ti = θ1 and θ2,ti = θ2. The model at zone j is

Xj
ti = θj1 sin

πti
6

+ θj2 cos
πti
6

+ θj3,ti + νjti , νjti
indep∼ N(0, V j),

θj3,ti = θj3,ti−1
+ ktiω

j
ti + pjti , ωjti

indep∼ N(0,W j).

To induce correlation between nearby zones, we include the term pjti , as a com-

ponent of a spatially smooth error process pti = (p1ti , . . . , p
nz
ti )

T . We model {pti ,
ti = 1, . . . , n} using independent (over i) zero mean Gaussian processes so that

pti
indep∼ GP{0, f3(·; η3)}.

We impose smoothness by taking a squared exponential kernel for the covariance
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function. Hence, the covariance between spatial errors at locations j and j′ is

f3(djj′ ; η3) = Cov(θj3,ti , θ
j′

3,ti
) = σ2

3exp(−ϕ3djj′), (7.4)

with η3 = (σ3, ϕ3)
T parameterising the kernel; note that ϕ3 determines the de-

cay ratio of the correlation as the distance between zones j and j′ (djj′) increases

(Banerjee et al., 2014). Similarly, we adopt GP priors for θ1 = (θ11, . . . , θ
nz
1 )T and

θ2 = (θ12, . . . , θ
nz
2 )T so that θ1 ∼ GP (m1(·), f1(·; η1)) and θ2 ∼ GP (m2(·), f2(·; η2))

with f1 and f2 defined analogously to Equation (7.4) with the addition of m1(·) and
m2(·) as appropriate mean functions. Hence, the full spatial DLM model (over all

locations) is

Xti =Ftiθti + νti , νti
indep∼ N(0, diag{V 1, . . . , V nz}),

θ3,ti =θ3,ti−1
+ ktiωti , ωti

indep∼ N(0, diag{W 1, . . . ,W nz}+K3),

where Fti = diag(F 1
t1
, . . . , F nz

ti ), θ3,ti = (θ13,ti , . . . , θ
nz
3,ti

)T , θti = (θ11, θ
1
2, θ

1
3,ti
, . . . , θnz

1 , θ
nz
2 , θ

nz
3,ti

)T

and K3 is an nz × nz matrix with (i, j)th element f3(dij, η3).

7.2 Bayesian inference

For simplicity, suppose we have nz zones with n observations in each zone. Let

V = (V 1, . . . , V nz)T and W = (W 1,W 2, . . . ,W nz)T . Furthermore, let η3 = (σ3, ϕ3)
T

denote the hyperparameters governing f3(·), with η1 = (σ1, ϕ1)
T and η2 = (σ2, ϕ2)

T

denoting the hyperparameters governing f1(·) and f2(·) respectively. Let xj =

(xjt1 , . . . , x
j
tn)

T denote the vector of collision rates at zone j so that x = (x1, . . . , xnz)

denotes the complete dataset over all zones. The joint posterior over all dynamic

and static parameters is proportional to the marginal static parameter posterior

multiplied by the conditional posterior of the dynamic process θ3 = (θ3,t0 , . . . , θ3,tn)

such that

π(θ1, θ2, V,W,η1, η2, η3, θ3|x) ∝

π(θ1, θ2, V,W, η1, η2, η3|x)× π(θ3|θ1, θ2, V,W, η1, η2, η3, x).

Let ψ denote all fixed model parameters. To simulate realisations from the joint

posterior we use a two step approach:

1. Simulate from the marginal posterior ψ ∼ π(ψ|x).
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2. Simulate from the conditional posterior θ3 ∼ π(θ3|ψ, x).

For step 1, as the marginal static parameter posterior is intractable, we use Markov

chain Monte Carlo (see e.g. Gilks et al., 1995). For step 2 we use a forward filter

backward sampling algorithm (see e.g. West and Harrison, 2006) to directly draw

from π(θ3|ψ, x). We provide details as follows.

7.2.1 Simulation based inference

Let θ3,t0:n = (θ3,t0 , θ3,t1 , . . . , θ3,tn) denote the collection of latent states up to time

tn and let x = xt1:n = (xt1 , . . . , xtn) denote the observed data. Note that θ3,ti =

(θ13,ti , . . . , θ
nz
3,ti

)T and xti = (x1ti , . . . , x
nz
ti )

T . Upon assuming an independent prior

specification for the constituent terms of ψ, Bayesian inference may proceed as

follows. Integrating out the dynamic parameters, gives us the marginal posterior:

π(θ1, θ2,V,W, η1, η2, η3|x) ∝

π(θ1|η1)π(θ2|η2)

[
nz∏
j=1

π(V j)π(W j)

]
×

π(η1)π(η2)π(η3)× π(x|θ1, θ2, η3, V,W ),

where the marginal likelihood π(x|θ1, θ2, η3, V,W ) is given by

π(x|θ1, θ2, η3, V,W ) = π(xt1|θ1, θ2, η3, V,W )
n−1∏
i=1

π(xti+1
|xt1:i , θ1, θ2, η3, V,W ), (7.5)

and whose constituent terms are analytically tractable. Moreover, π(θ1|η1) = N(θ1;m1, K1)

and π(θ2|η2) = N(θ2;m2, K2) are multivariate normal densities, π(V j) and π(W j)

are the prior densities ascribed to V j and W j, π(η1), π(η2) and π(η3) are the prior

densities ascribed to η1, η2 and η3.

The marginal likelihood can be efficiently evaluated using a forward filter. It will

be helpful here to define

X̃ti ≡ Xti −θ1 sin
πti
6

−θ2 cos
πti
6

= F̃tiθ3,ti +νti , νti
indep∼ N(0, diag{V 1, . . . , V nz}),

so that

X̃ti |θ3,ti ∼ N(F̃tiθ3,ti , diag{V }),

where F̃ti is the nz × nz identity matrix and will be omitted for ease of notation in
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what follows. We also write

θ3,ti|θ3,ti−1
∼ N(θ3,ti−1

, W̃ti),

where W̃ti = k2ti(diag{W
1, . . . ,W nz}+K3).

Algorithm 7 Forward filter

1. Initial distribution: θ3,t0 ∼ N(m0, C0). Store the values of m0 and C0.

2. For ti, i = 1, . . . , n,

(a) Prior at ti. Using the system equation, we have that

θ3|x̃t1:i−1
∼ N(mti−1

, Cti−1
+ W̃ti).

Store Rti = Cti−1
+ W̃ti .

(b) One step forecast. Using the observation equation, we have that

X̃ti |x̃t1:i−1
∼ N(mti−1

, Rti + V ).

Store the marginal likelihood contribution

π(x̃ti |x̃t1:i−1
) = N(x̃ti ;mti−1

, Rti + V ).

(c) Posterior at ti: θ3,ti |x̃t1:i ∼ N(mti , Cti) where

mti = mti−1
+Rti(Rti + V )−1(x̃ti −mti−1

),

Cti = Rti − AtiQtiA
T
ti
,

where Ati = RtiQ
−1
ti and Qti = Rti + V . Store the values of mti and Cti .

Algorithm 7 gives the steps of the forward filter. This is akin to the forward

filter in Algorithm 4 from Section 2.5, where θ3,ti is scalar and F̃ti and Gti are set

to unity. We see that the constituent terms in Equation (7.5) are obtained from the

forward pass as

π(x̃ti |x̃t1:i−1
, θ1, θ2, η3, V,W ) = N(x̃ti ;mti−1

, Rti + V ),
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where Rti = Cti−1
+ W̃ti and mti−1

, Cti−1
are updated recursively; we refer the reader

to Petris et al. (2009) (see also Carter and Kohn, 1994, Frühwirth-Schnatter, 1994,

West and Harrison, 2006, for further details).

Although the marginal likelihood is tractable, the posterior will typically be

unavailable in closed form. Hence we use Metropolis-Hastings to generate draws

from π(ψ|x̃); see Algorithm 8.

Algorithm 8 MCMC scheme

1 Initialise the chain with ψ(0). Set r = 1.

2 Propose ψ∗ ∼ q(ψ∗|ψ(r−1)).

3 Calculate the acceptance probability α(ψ∗|ψ(r−1)) of the proposed move, where

α(ψ∗|ψ(r−1)) = min
{
1, A(ψ∗|ψ(r−1))

}
= min

{
1,

π(ψ∗|x̃1:n)q(ψ(r−1)|ψ∗)

π(ψ(r−1)|x̃1:n)q(ψ∗|ψ(r−1))

}
.

4 With probability α(ψ∗|ψ(r−1)), set ψ(r) = ψ∗; otherwise set ψ(r) = ψ(r−1).

5 Set r := r + 1. Return to step 2.

It remains that, given draws of ψ(1), . . . , ψ(N) we can sample θ
(r)
3 ∼ π(θ3|ψ, x),

r = 1, . . . , N . This can be achieved by noting the factorisation

π(θ3|ψ, x) = π(θ3,tn|ψ, xt1:n)
n−1∏
i=0

π(θ3,ti |θ3,ti+1
, ψ, xt1:i),

where the constituent densities are tractable and can be sampled recursively via a

backward sampling algorithm. The key steps are given in Algorithm 9.

Missing data

Missing observations are commonplace. That is, only observations on a subset of

components of Xt may be available at time ti. To account for this in the model we

let X̃o
ti
denote the observed rates at time ti. The observation model is then written

as

X̃o
ti
= PtiX̃ti , (7.6)

where the nobs×nz incidence matrix Pti determines which components are observed

at time ti (Lai et al., 2020). For example, if we have data from 5 zones and data are
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Algorithm 9 Backward sampler

Backward Sampling
3. Sample θ3,n|x̃t1:n ∼ N(mn, Cn).
4. For ti, i = n, . . . , 1,

(a) Backward distribution: θ3,ti|θ3,ti+1
, x̃t1:i ∼ N(hti , Hti), where

hti = mti + Cti(Cti + W̃ti+1
)−1(θ3,ti+1

−mti),

Hti = Cti − CT
ti
(Cti + W̃ti+1

)−1Cti .

(b) Sample θ3,ti|θ3,ti+1
, x̃t1:i ∼ N(hti , Hti).

missing at the second and third zone at time ti, then the incidence matrix is

Pti =

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

 .

The forward filter and backward sampler can be modified straightforwardly to allow

for this scenario. In brief, each occurrence of F̃ti is replaced by PtiF̃ti and each

occurrence of V is replaced by PtiV in Algorithm 7.

7.2.2 Within-sample predictive density

In order to assess model fit, we consider the within-sample predictive density. The

within-sample predictive density is given by

π(x̂t1:n|xt1:n) =
∫ ∫

π(x̂t1:n|θ3,t1:n , ψ)π(θ3,t1:n , ψ|xt1:n) dθ3,t1:n dψ,

where

π(θ3,t1:n , ψ|xt1:n) = π(θ3,t1:n|ψ, xt1:n)π(ψ|xt1:n).

Although the within-sample predictive density is intractable, draws from π(θ3,t1:n , ψ|xt1:n)
are readily available and therefore π(x̂t1:n|xt1:n) can be sampled via Monte Carlo.

Given draws (ψ(r), θ
(r)
3,t1:n

), r = 1, . . . , N , we can simulate

X̂
(r),j
ti |θ(r),jti , ψ(r),j ∼ N(Ftiθ

(r),j
ti , V (r),j), r = 1, . . . , N, i = 1, . . . , n, j = 1, . . . , nz,

(7.7)
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where θ
(r),j
ti = (θ

(r),j
1 , θ

(r),j
2 , θ

(r),j
3,ti

) denotes the rth sample of θjti , with X̂
(r),j
ti defined

similarly. Draws obtained from (7.7) can be summarised (e.g. via the mean, upper

and lower quantiles) and bench marked against the observed data.

7.2.3 k-step ahead prediction

The system and observation forecast distributions can be obtained by exploiting the

linear Gaussian structure of the DLM. The one-step ahead system forecast density

is given by

π(θ3,tn+1|xt1:n) =
∫ ∫

π(θ3,tn+1|θ3,tn , ψ, xt1:n)π(θ3,tn|ψ, xt1:n)π(ψ|xt1:n) dθ3,tn dψ,

=

∫
π(θ3,tn+1|ψ, xt1:n)π(ψ|xt1:n) dψ,

where

π(θ3,tn+1|ψ, xt1:n) = N(θ3,tn+1 ;mtn , Ctn + W̃tn+1).

Similarly, the one-step ahead observation forecast density is given by

π(xtn+1 |xt1:n) =
∫
π(xtn+1|ψ, xt1:n)π(ψ|xt1:n) dψ,

where

π(xtn+1 |ψ, xt1:n) = N(xtn+1 ;mtn , Ctn + W̃tn+1 + V ).

Hence, given N posterior summaries (m
(r)
tn , C

(r)
tn ), r = 1, ..., N from π(θ3,tn|ψ, xt1:n)

and ψ(r) from π(ψ|xt1:n), the one-step ahead state and observation forecast distribu-

tions can be sampled via Monte Carlo, by drawing

θ
(r)
3,tn+1

|ψ(r), x1:n ∼ N(m
(r)
tn , C

(r)
tn + W̃

(r)
tn+1

),

X̃
(r)
tn+1

|ψ(r), xt1:n ∼ N(m
(r)
tn , C

(r)
tn + W̃

(r)
tn+1

+ V (r)).

Then,X
(r)
tn+1

can be obtained from X̃
(r)
tn+1

by adding the term θ
(r)
1 sin

(
πtn+1

6

)
+θ

(r)
2 cos

(
πtn+1

6

)
to the latter. For the general k-step ahead forecast, the above draws are replaced

by

θ
(r)
n+k|ψ, x1:n ∼ N

{
m

(r)
tn , R

(r)
tn+k

}
,

X̃
(r)
tn+k

|ψ(r), xt1:n ∼ N
{
m

(r)
tn , R

(r)
tn+k

+ V (r)
}
,
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where

R
(r)
tn+k

= C
(r)
tn +

k∑
i=1

W̃
(r)
tn+i

.

7.3 Application

In what follows, and where required, we implement the MCMC scheme from Sec-

tion 7.2 by taking a random walk proposal with Gaussian innovations. We have that

q(ψ∗|ψ) = N(ψ∗;ψ,Σ) where the innovation matrix Σ = γV̂ ar(ψ|x), with V̂ ar(ψ|x)
obtained from a pilot run and γ is chosen to give an acceptance rate of around 25%

(Roberts and Rosenthal, 2001). Within the MCMC scheme, for mathematical con-

venience, we will work with precisions such that τV = 1/V, τW = 1/W . Moreover,

for parameter vectors whose components that must be strictly positive (i.e. V,W, η)

we implement the proposal on the log scale.

7.3.1 Single zone analysis

In this section we assess the assumption that amplitude and phase vary with time.

We present results for zone 4 and note similar findings (namely that amplitude and

phase are plausibly constant) for the remaining zones.

For the single zone model, ψ = (τV , τW1 , τW2 , τW3)
T is the vector of precision

parameters. We set the mean and variance of θt0 to be m0 = (1.5, 1.5, 6) and

C0 = diag{1.5, 1.5, 20} respectively. We take an uninformative and independent

prior specification for the components of ψ, via τV , τW1 , τW2 , τW3 ∼ Ga(0.1, 0.1).

The MCMC scheme was run for 22k iterations with a thin of 20 and the first 2k

discarded as burn-in, leaving 20k iterations on which to base posterior summaries.

The marginal MH scheme gives the estimated marginal posterior densities for

the components of ψ shown in Figure 7.3 with their prior densities overlaid. The

ψ samples were thinned to obtain 1k (near uncorrelated) draws form the marginal

parameter posterior, denoted {ψ(r)}1000r=1 . The FFBS algorithm was then executed for

each ψ(r), to obtain samples of the dynamic parameter vector, {θ(r)ti }1000r=1 , i = 1, . . . , n,

from the within-sample predictive. Samples of the dynamic components θ1,ti and

θ2,ti can be transformed via (7.3) to obtain phase and amplitude draws from their
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respective within-sample predictive densities; see Section 7.2.2 for further details re-

garding the method for obtaining samples from these predictive distributions. These

distributions are summarised in Figure 7.4 via their means and 95% credible inter-

vals. We can conclude that, upon allowing for the uncertainty in amplitude and

phase, they are are plausibly constant over time for this zone. Performing the anal-

ysis on the remaining zones shows that the same conclusions can be drawn. This

suggests that the dynamic parameters θ1,ti and θ2,ti , i = 1, . . . , n, can reasonably be

replaced with static parameters θ1 and θ2.

We assess the validity of the proposed model for a single zone by comparing

observed data with their model-based within-sample posterior predictive distribu-

tions and with model-based out-of-sample forecast distributions. For the latter, we

withheld the last 10 observations when fitting the model. Figure 7.5 shows the

within-sample predictive distribution for the observation process, summarised by

the mean and 95% credible interval calculated for each time point. This suggests

that the model is able to reasonably account for the observation process. Similarly,

the 10-step ahead forecast distribution is summarised by the mean and 95% credible

interval at each time point. We see that the forecast distribution is able to capture

the general trend exhibited by the observations.

7.3.2 Joint zone analysis

We now consider the joint model over all zones detailed in Section 7.1.3. Our prior

specification takes the following form.

We expect that amplitude and phase should be similar at nearby zones. Recall

that θ1 ∼ GP (m1(·), f1(·; η1)), θ2 ∼ GP (m2(·), f2(·; η2)) and the Gaussian process

components in the dynamic mean process are pti
indep∼ GP{0, f3(·; η3)}. We take

the mean functions to be constant so that m1(·) = m2(·) = 1.5 · 1, with 1 defined

as an nz × 1 vector of 1s. We have that fk(djj′ ; ηk) = σ2
kexp(−ϕkdjj′), k = 1, 2, 3.

We take log σk
indep∼ N(log(0.1), 0.1) representing fairly strong prior beliefs about

the amplitude variance and phase within a zone. For the logarithm of the inverse

length scales, we take log ϕk ∼ N(log(0.1), 0.1), giving typical length scales of around

10km and reflecting typical distances between zones. The precisions of the obser-

vation equations governing each zone are τV j
indep∼ Ga(0.1, 0.1) and similarly for the

system variances, τW j
indep∼ Ga(0.1, 0.1), j = 1, . . . , nz. Finally, the initial values θ

j
3,t0
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Figure 7.3: Density plots of τV , τW1 , τW2 , τW3 respectively, from 20k iterations and a
thin of 20 with prior densities overlaid in red.
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Figure 7.5: Left: Zone 4 observed data (black) with overlaid within-sample pre-
dictions – mean (blue) and 95% credible intervals (green). Right: Observed data
(black) with overlaid 10 step ahead predictions – mean (blue) with 95% credible
interval (green).

for each site were assumed to follow N(6, 20) distributions.

The MCMC scheme was run for 1 × 106 iterations; the output is summarised

by Table 7.1. Figure 7.6 shows the mean value and 95% credible interval of the

posterior densities for amplitude and phase at each zone against longitude. There

are signs of spatial dependence as the phase seems to decrease and amplitude in-

creases in zones further to the east. Figure 7.7 shows a single period of the sine

curve, averaged over draws of amplitude and phase for the most eastern versus most

western zone with 95% credible intervals. From this we would expect to see more

pronounced fluctuations in the rate of collisions across the year for eastern zones.

Furthermore, we would expect the highest rate of collisions to be a month sooner

(August) in eastern zones than that in western zones (September).

Figure 7.8 shows summaries (mean and 95% credible interval) of the difference

between observations and the within-sample predicted observation process for zones

2, 4 and 8. The left-hand-side plots show the differences from the single zone analysis

and the right-hand-side from the joint analysis. It is clear that the mean difference
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Figure 7.6: Mean amplitude and phase with 95% credible intervals against longitude
for each zone.

at each time-zone combination is small and that a mean difference of zero is plau-

sible (the 95% credible intervals include zero). Comparing left to right, shows the

improvement in the within-sample predictions from a single zone analysis to a joint

model; that is, the spatial information included through the GP has increased pre-

diction precision. We additionally calculated the root mean square error (RMSE)

at each time-point (observation vs prediction) and averaged this measure over all

time points for each zone; the results are shown in Table 7.2. We see that the mean

RMSEs are approximately 5 times larger for the single zone analysis, giving further

evidence of an improvement in fit when considering a joint model over all zones.

Figure 7.9 shows 10-step ahead predictions for zones 2, 4, 6 and 8, following

application of the method in Section 7.2.3. Note that the last 10 observations were

removed from each zone before running the inference scheme. The figure shows that

the forecast distributions are consistent with the data as they lie within the forecast

intervals for all zones. As we would expect, uncertainty grows as we move away

from the last recorded observation.

7.4 Discussion and limitations

We have developed a spatio-temporal model for collision rates that allows for se-

rial dependence, seasonality and correlation between rates at nearby zones. We
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ψ Mean 95% CI ψ Mean 95% CI
V 1 0.034 (0.021, 0.052) θ41 0.251 (−0.045, 0.532)
V 2 0.025 (0.015, 0.039) θ51 0.226 (−0.065, 0.514)
V 3 0.059 (0.039, 0.084) θ61 0.249 (−0.039, 0.526)
V 4 0.037 (0.022, 0.058) θ71 −0.181 (−0.501, 0.133)
V 5 0.031 (0.018, 0.048) θ81 −0.014 (−0.308, 0.271)
V 6 0.041 (0.023, 0.066) θ12 0.585 (0.301, 0.877)
V 7 0.119 (0.059, 0.196) θ22 0.651 (0.367, 0.944)
V 8 0.045 (0.026, 0.071) θ32 0.566 (0.285, 0.856)
W 1 0.021 (0.011, 0.037) θ42 0.424 (0.144, 0.722)
W 2 0.024 (0.012, 0.041) θ52 0.809 (0.530, 1.098)
W 3 0.023 (0.011, 0.044) θ62 0.601 (0.311, 0.896)
W 4 0.025 (0.012, 0.044) θ72 1.264 (0.931, 1.587)
W 5 0.024 (0.013, 0.043) θ82 0.945 (0.660, 1.249)
W 6 0.034 (0.016, 0.061) σ1 1.688 (1.315, 2.309)
W 7 0.099 (0.031, 0.213) σ2 1.545 (1.201, 2.253)
W 8 0.029 (0.014, 0.055) σ3 1.352 (1.349, 1.355)
θ11 0.357 (0.066, 0.642) ϕ1 1.527 (1.278, 1.917)
θ21 0.213 (−0.077, 0.494) ϕ2 1.603 (1.387, 1.903)
θ31 0.213 (−0.084, 0.499) ϕ3 1.103 (1.098, 1.107)

Table 7.1: Marginal parameter posterior means and quantile-based 95% credible
intervals obtained from the MCMC scheme.

Mean RMSE
Zone Single zone Joint zone
1 1.384 0.198
2 1.066 0.167
3 1.214 0.258
4 1.083 0.206
5 1.114 0.185
6 1.191 0.217
7 1.339 0.378
8 1.107 0.227

Table 7.2: The mean RMSE over all time-points for each zone, from the single zone
and joint zone analyses.
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Figure 7.7: Mean and 95% credible intervals for the seasonal component for the
most western zone (black) against the most eastern (blue).

considered a dynamic linear model (DLM) whose observation equation takes the

form of a single harmonic with a smoothly time-varying amplitude and phase, thus

accounting for seasonality and potential long term changes. Spatial consistency is

accounted for at nearby zones by adding a Gaussian process (GP) component in the

system equation. The model can be fitted in a Bayesian paradigm using an efficient

two-stage Markov chain Monte Carlo procedure, targeting the joint posterior over

the parameters, the latent time-varying harmonic coefficients (amplitude and phase)

and dynamic mean. At the first stage, parameter samples are generated from the

marginal parameter posterior using a random walk Metropolis algorithm with the

likelihood evaluated via a forward filter. At the second stage, samples of the dy-

namic parameters are generated conditionally on the static parameter draws from

stage one using a backward sampler. Further details of this forward filter, backward

sampling (FFBS) approach can be found in Petris et al. (2009) (see also Carter and

Kohn, 1994, Frühwirth-Schnatter, 1994).

We applied our approach to a real dataset consisting of 115 months of collision

rates over eight traffic administration zones in Florida, USA. An exploratory analysis

that considered separate models for each zone found that the phase and amplitude

were plausibly constant. We were therefore able to simplify the joint model over

all zones by treating the harmonic components as static, with a GP prior allowing

correlation between these parameters at nearby zones. The validity of both the
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Figure 7.8: Mean (blue) and 95% credible intervals (green) for the difference between
the within-sample predictive and the observations over time. Each row shows the
differences from the single zone analysis (left) and the joint zone analysis (right) for
zones 2 (top), 4 (middle) and 8 (bottom).

single zone and joint models was assessed using within-sample posterior predictive

distributions, which suggested a satisfactory fit in both cases. Moreover, the within-

sample predictions were improved substantially when using the joint model, with

the credible intervals of our predictions narrowing almost tenfold, and a reduction

in root mean squared error (RMSE) between the observations and predictions of

around a factor of 5.

Our analysis suggests clear spatial patterns between phase and longitude as well

as amplitude and longitude. For all zones we found that the lowest rates of collisions

would fall earlier in the year. The model also suggests that for western zones, the

lowest rates would be in March, and in February for eastern zones. It appears that

peak collision rates are in September in the East and August in the West. We would
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Figure 7.9: Rates of collisions in Florida zones 2, 4, 6 and 8 with overlaid out-of-
sample 10-step ahead predictions – mean (blue) and 95% credible intervals (green).

also expect to see a larger fluctuation in the rate of collisions in an eastern zone. Our

interest also lies in the ability to forecast collision rates in future months. Model-

based out-of-sample forecast distributions suggest that our model is able to capture

observed trend and seasonality in monthly collision rates up to around a year ahead.

In the context of road safety, the time-variant parameter θ3,ti plays a pivotal

role in capturing the overall mean rate of collisions at each site. This parameter

is particularly useful for identifying both temporal trends and location-specific risk

factors. It allows us to dissect the data to uncover how safety conditions evolve

over time at individual locations, providing critical insights for targeted safety in-

terventions. Furthermore, given its capability to model site-specific and temporal

dynamics, this DLM with GP component could be extended to address the appar-
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ent correlation between multivariate time-series data, such as rates of fatal, serious,

and slight injury collisions. By modelling these categories simultaneously, we can

gain a comprehensive understanding of how different severity levels of incidents are

interrelated, thereby enabling more nuanced road safety evaluations and strategies.

In our pursuit of refining the model, various avenues were explored, including

data transformation to address apparent positive skewness. However, this transfor-

mation turned out to be inconsequential, as it neither improved nor significantly

altered the inference results. This suggests that the existing model already provides

a satisfactory representation of the underlying data distribution. Beyond this, there

are several other avenues for potential improvement in our modelling approach. For

example, it is common to have covariate information such as traffic flow or average

speed associated with a particular location at which a collision has occurred. How-

ever, pooling such data over zones is time-consuming and not always straightforward.

Nevertheless, incorporation of covariates into the DLM framework is straightforward

in principle, via the observation equation, and we anticipate improved prediction in

this scenario. Although not pursued here, our model can also be used to predict

collision rates at zones for which observations are not available. Interpolation of

the fitted GP component in the system equation governing the dynamic mean and

GP prior over the static parameters governing the harmonic, can be performed for

unobserved zones of interest; see e.g. Rasmussen and Williams (2005) for further

details.
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Chapter 8

Conclusions and future work

8.1 Conclusions

In this thesis we have investigated challenges faced by road safety practitioners and

introduced statistical techniques that enable them to use their data efficiently in

safety scheme evaluation studies and in the prediction of hotspots. Chapter 1 em-

phasised the significance of enhancing road safety and the toll, in terms of both hu-

man lives and financial burden, inflicted by road collisions in the UK and worldwide.

Chapter 2 outlined the concept of Bayesian inference and explained its usefulness

in statistical analysis. We introduced background information on methods used

throughout this thesis, including Bayesian inferential techniques such as Markov

chain Monte Carlo, which are indispensable in the implementation of many statis-

tical models.

Chapter 3 outlined the predicaments confronted by road safety practitioners

who rely on data to make informed decisions, specifically the challenge posed by

regression to the mean, which can yield erroneous conclusions if not addressed ap-

propriately. We then outlined methods to overcome the issues of RTM by utilising

external data from other sites within the network to detect any anomalous data at

treated sites. We focused on road safety scheme evaluation and the conventional

statistical approaches employed to perform an evaluation analysis. We discussed

the possible influence of RTM and other confounders in misleading the scheme eval-

uation analysis. As a result, we highlighted the reason why a simplistic before/after

comparison could result in an inflated estimate of the treatment effect. The infer-

ence was then shifted to take place completely within a Bayesian paradigm. This
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full Bayes model allowed us to filter effects of regression to the mean from genuine

treatment effects; hence, we were able to gain a ‘cleaner’ estimate of the treatment

effect. The full Bayes approach was shown to include benefits such as capturing the

uncertainty in the parameters more realistically and adding flexibility to our choice

of prior distribution. We demonstrated the fitting of multiple priors and compared

the resulting models in terms of their goodness-of-fit to the data using the Deviance

Information Criterion.

Chapter 4 emphasised the necessity for bespoke modelling formulations for atyp-

ical before/after studies. We focused on two instances where the data were not of

the ‘standard’ before/after collision count form. Firstly, we introduced a new model

created for a study involving randomly allocated vehicle activated signs (VAS). The

novel model was designed to capture both site and treatment effects and without

choosing sites due to abnormally high collision counts, the model isn’t required to

account for RTM. The model fit well to synthetic data and is ready for application to

real data as and when the VAS study progresses. Secondly, we proposed a bivariate

threshold excess model to conduct a traffic conflict-based before/after safety scheme

evaluation of the leading pedestrian interval using extreme value theory. We intro-

duced a block maxima model where treatment effects were measured through linear

modelling of the location parameter. The generalised extreme value (GEV) distri-

bution was fit to daily maxima and correctly identified the treated sites, where the

coefficient of the time indicator forming the intercept term in the location parameter

was wholly negative. To permit the use of more data in our analysis, we moved from

modelling block maxima and modelled threshold excesses. We introduced a peaks

over threshold (POT) approach, capturing treatment effects via linear modelling of

the scale parameter, and removing temporal dependence through declustering. We

then introduced an alternative which avoids having to remove temporal dependence

altogether by using bivariate EVT. We accounted for dependence between consecu-

tive extremes by assuming a first-order Markov structure, meaning we were able to

include all of the data in the analysis to inform the parameter estimates. The bi-

variate threshold excess model resulted in narrower credible intervals than the POT

approach and was also more successful in identifying which sites had been treated.

Chapter 5 continued the analysis of the LPI data and used the longitude and

latitude of the sites to determine the presence of any spatial correlation. The in-
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clusion of spatial extremes methods is commonly done so within the block maxima

paradigm. Therefore, we expanded upon the daily maxima model which drew es-

timates of the GEV parameters of each site separately and altered this to become

a joint model. The joint model allowed for draws from the likelihood over all sites

in one MCMC algorithm. To account for spatial correlation between neighbouring

sites, Gaussian processes were included in the expressions for the location and scale

parameters, and the shape parameter was fixed across all sites. Although the model

is computationally expensive, many of the parameters can be drawn using Gibbs

sampling via their full conditional distributions. As before, treatment effects were

measured within the location parameter, we modelled separate location parameters

for the before and after periods and compared their posterior estimates to draw con-

clusions of the treatment effect. Including spatial dependence seemed to improve

the estimation of which sites were treated and which were not. We also discussed

two measures of safety indices - return levels and risk of crash. Both showed that

at treated sites, there was evidence to suggest that the sites are safer after the in-

troduction of LPI.

Chapter 6 turned attention away from safety scheme evaluation and onto ‘hotspot’

prediction. We proposed a Bayesian hierarchical model which allows the segrega-

tion of seasonal and zonal effects. The model was firstly applied to monthly collision

rate data from zones in Florida. The data followed a normal distribution with mean

varying with zone and month. The mean was modelled linearly where an under-

lying mean captured similarities between zones and two random effects parameters

capture the zonal and seasonal variability. Owing to the semi-conjugate priors, we

were able to use Gibbs sampling to perform inference. There was a clear sinusoidal

pattern for the rate of collisions seasonally, which suggests there are higher collision

rates in autumn months and lower rates in spring months. Zonal effects suggested

rates would be higher in more eastern zones. Within-sample posterior predictive

distributions showed good fits to the observed data. The advantages of modelling

using random effects were discussed through a comparison with an equivalent fixed

effects model. An improvement in precision of the mean of the normal distribution

governing the data was shown, where posterior standard deviations from the fixed

effects model were 5 times larger than those from the random effects model. The

model was then altered to fit to UK collision count data which had been sourced

from STATS19 data and aggregated via an SQL server. At the top-level, the data
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now followed a Poisson distribution. Again, patterns in the data were exploited

and seasonal and zonal effects were extrapolated which aided in conclusions that

we would expect higher collision counts in the South-East of the UK. The ability

to extrapolate this information from the data is invaluable when wanting to predict

collision counts/rates at unobserved zones.

Chapter 7 introduced a spatio-temporal model for collision rates that allowed

for serial dependence, seasonality and correlation between rates at nearby zones. To

account for seasonality and potential long term changes, we proposed a sinusoidal

dynamic linear model for a single zone with a smoothly time-varying amplitude and

phase. From this, the phase and amplitude were found to be plausibly constant

for all zones. We extended this to become a joint model and included a Gaussian

process component in the system equation which accounted for spatial consistency

at nearby zones. We allowed for spatial correlation between the static harmonic

components via a GP prior. In both cases the validity of the model was checked

using within-sample posterior predictive distributions, which suggested satisfactory

fits in both cases. The inclusion of spatial correlation in the model improved the

within-sample predictions reducing the root mean squared error between the obser-

vations and predictions by around a factor of 5. We were able to draw conclusions

on collision rates at zones spatially, in that we have evidence to suggest that the

lowest rates would come in March for western zones and in February in eastern

zones. There also seemed to be larger fluctuations in the rate of collisions in eastern

zones than in western. Model-based out-of-sample forecast distributions suggested

the model was able to capture observed trend and seasonality in monthly collision

rates up to around a year ahead.

In this thesis, a variety of statistical methodologies—including Empirical Bayes

(EB), Fully Bayes (FB), Extreme Value Theory (EVT), random effects models, and

Dynamic Linear Models (DLMs)—have been applied to road safety analysis. Each

of these approaches comes with its own advantages and limitations, offering differ-

ent perspectives on the complex issue of road safety. It’s important to note that

beyond the methods discussed in this thesis, other methodologies exist for both be-

fore/after studies as well as hotspot prediction, such as the propensity score method

(Rosenbaum and Rubin, 1983), for example. It is noteworthy that causal inference

has increasingly gained prominence in the road safety literature. Originating from
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seminal works by Fisher (1925), Rubin (1974, 1978), Splawa-Neyman et al. (1923),

the Rubin Causal Model (RCM), named by Holland (1986), offers an alternative

framework that explicitly considers the mechanism of site selection for treatment

and introduces the concept of counterfactual outcomes for causal effect estimation.

This approach has been robustly employed in other scientific disciplines like epi-

demiology, economics, and sociology (Imbens and Wooldridge, 2009, Morgan and

Winship, 2007, Robins et al., 2000). For its application in the context of road

safety, readers may refer to the work by Davis (2000). Despite the broad range

of methodologies considered in this work, causal inference represents an important

avenue for future research. Its growing relevance in road safety studies suggests that

incorporating this framework could potentially provide a more nuanced understand-

ing of treatment effects, complementing the methods already employed in this thesis.

Throughout this research, we have methodically achieved our set objectives.

We confronted and addressed challenges in road safety using innovative statistical

methodologies. Our in-depth exploration of safety schemes and our advancements in

hotspot prediction highlight the effectiveness of our approach. Leveraging a Bayesian

framework, we managed to distinguish genuine treatment effects from confounding

variables. Furthermore, our emphasis on bespoke modelling and the integration

of spatial correlations underscores our commitment to precision and innovation. In

sum, this thesis fulfills the aims and objectives we set out with, marking a significant

stride in road safety analytics.

8.2 Future work

There are several promising avenues for future work in the areas explored in this

thesis. One direction is to apply the treatment effects model, in Section 4.2, to

real-world data once Gateshead Council proceeds with the random allocation of

vehicle-activated signs. This would aid in the validation of the model’s effectiveness

and allow for the evaluation of the effectiveness of this type of road safety scheme

using a robust statistical framework.

Additionally, there is potential to use the spatial extremes model developed in

Chapter 5 for forecasting purposes, especially at unobserved sites. Forecasting col-

lision rates in advance can aid in the planning of road safety interventions and
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resource allocation. Forecasting at unobserved sites is also important because it can

help prioritise limited resources towards the locations with the highest risk of road

collisions. By leveraging information from nearby locations with available data,

models can provide estimates of collision rates at unobserved locations, allowing

decision-makers to make informed decisions about where to allocate resources such

as traffic calming measures, increased enforcement, or other interventions to reduce

the likelihood of collisions. This can be especially useful in countries where data

collection may be more difficult or costly, as it can help focus limited resources on

areas where they are most needed.

Another area for future exploration is the application of threshold techniques

to the spatial extremes model. Such models are available but not as common as

block maxima models, however benefits include the ability to be less wasteful of

data. It may also be beneficial to incorporate covariate information into the models

developed in this thesis, as this could improve the accuracy of the predictions and

enable a more nuanced understanding of the factors that contribute to road safety.

There is potential to expand upon the analysis conducted on UK data. This could

include examining collision counts by day or time of day, incorporating covariate

information, and exploring zero-inflated models to account for the excess zeros in

the data.

The DLM with GP model in Chapter 7 can be improved by including covari-

ate information such as traffic flow or average speed associated with a particular

location at which a collision has occurred. The incorporation of covariates into the

DLM framework is straightforward in principle, via the observation equation, and

we anticipate improved prediction in this scenario. Additionally, our model can also

be used to predict collision rates at zones for which observations are not available.

Interpolation of the fitted GP component in the system equation governing the dy-

namic mean and GP prior over the static parameters governing the harmonic, can be

performed for unobserved zones of interest. There is also scope to develop a similar

model for application to count data. Times series consisting of counts will require a

different approach. Ideally, a state space model with a Poisson observation process

and a random walk (or related) state process (to capture the log of the mean of the

observed process), such as a dynamic generalised linear model (Gamerman, 1998).

Unfortunately, inference for this model will be complicated by the intractability of
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the marginal likelihood. We will therefore appeal to recently developed pseudo-

marginal MH approaches (see e.g., Andrieu et al., 2010). This approach is likely

to be practically infeasible for long time series. We will therefore also consider a

tractable approximation as a DLM, that may be appropriate for example, when the

data are aggregated.

170



Appendix A

Supplementary information

A.1 Useful probability distributions

We take this opportunity to introduce some probability distributions used through-

out this thesis, see Forbes et al. (2011) for further information on these distributions.

A.1.1 Gamma distribution

The gamma distribution is a continuous probability distribution. A random variable

X which is gamma-distributed with shape α > 0 and rate β > 0, is denoted

X ∼ Ga(α, β),

with probability density function (PDF)

f(x;α, β) =
βα

Γ(α)
xα−1 exp{−βx}, x > 0, α > 0, β > 0. (A.1)

Where Γ(·) denotes the gamma function, defined as

Γ(α) =

∫ ∞

0

xα−1 exp{−x} dx, for α > 0.

The mean and variance are calculated as

E(x) =
α

β
; V ar(x) =

α

β2
.
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From Equation (A.1), if we set α = 1,

f(x;α = 1, β) = β exp{−βx}, x > 0,

we gain the PDF of an Exponential distribution. Hence we can conclude that a

Ga(1, β) is equivalent to Exp(β). More generally, the sum of n independent Exp(β)

random variables is equivalent to a Ga(n, β) random variable.

A.1.2 Weibull distribution

The Weibull is a continuous probability distribution. A random variable X which

is Weibull-distributed with shape κ > 0 and scale λ > 0, is denoted

X ∼ Weibull(κ, λ),

with PDF

f(x;κ, λ) =
κ

λ

(x
λ

)κ−1

exp
{(x

λ

)κ}
, x ≥ 0, κ > 0, λ > 0.

The mean and variance are calculated as

E(x) = λΓ(1 + 1/κ),

V ar(x) = λ2
[
Γ(1 + 2/κ) + (Γ(1 + 1/κ))2

]
.

The Weibull distribution is also equivalent to an Exponential distribution when

κ = 1.

A.1.3 Beta prime distribution

The beta prime distribution (or inverted beta distribution) is a continuous probabil-

ity distribution. A random variable X which is beta prime-distributed with shape

α > 0 and scale β > 0 is denoted

X ∼ β′(α, β),

with PDF

f(x;α, β) =
xα−1(1 + x)−α−β

B(α, β)
, x ≥ 0, α > 0, β > 0.
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Where B(·, ·) denotes the beta function, defined as

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
.

The mean and variance are calculated as

E(x) =
α

β − 1
, if β > 1,

V ar(x) =
α(α + β − 1)

(β − 2)(β − 1)2
, if β > 2.

A.1.4 Lognormal distribution

A lognormal distribution is a continuous probability distribution of a random vari-

able whose logarithm is normally distributed. Thus, if the random variable X is

lognormally distributed, then Y = log(X) has a normal distribution. This would be

denoted as

X ∼ Lognormal(µ, σ2)

with PDF

f(x;µ, σ) =
1

xσ
√
2π

exp

(
−(log x− µ)2

2σ2

)
, x > 0,−∞ < µ <∞, σ > 0.

The mean and variance are calculated as

E(x) = exp

(
µ+

σ2

2

)
,

V ar(x) = [exp(σ2)− 1] exp(2µ+ σ2).

A.1.5 Inverse-gamma distribution

An inverse-gamma distribution is a continuous probability distribution. If a random

variable Y is gamma distributed, then 1/Y is inverse-gamma distributed. A random

variable X which is inverse-gamma distributed with shape α > 0 and scale β > 0 is

denoted as

X ∼ InvGa(α, β),
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with PDF

f(x;α, β) =
βα

Γ(α)
x−α−1 exp

(
−β
x

)
, x > 0, α > 0, β > 0.

The mean and variance are calculated as

E(x) =
β

α− 1
for α > 1,

V ar(x) =
β2

(α− 1)2(α− 2)
for α > 2.

A.1.6 Negative binomial distribution

A negative binomial distribution is a probability distribution that describes the num-

ber of successes in a sequence of independent and identically distributed Bernoulli

trials before a specified number of failures occur. The negative binomial distribution

is characterised by two parameters: the probability of success in each trial, p, and

the number of failures until the experiment is stopped, r. A random variabe, X

which is negative binomial distributed is denoted as

X ∼ NB(r, p),

with probability mass function (PMF),

Pr(x = k) =

(
k + r − 1

k

)
pr(1− p)k

where k is the number of successes. The mean and variance are calculated as

E(x) =
r(1− p)

p
,

V ar(x) =
r(1− p)

p2
.

A.1.7 Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses the

probability of a given number of events occurring in a fixed interval of time or space

if these events occur with a known constant mean rate and independently of the

time since the last event (Haight, 1967). A discrete random variable X which is
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Poisson distributed with rate parameter λ > 0 is denoted as

X ∼ Po(λ),

with PMF

Pr(X = k) =
λke−λ

k!
.

The mean and variance are calculated as

E(x) = V ar(x) = λ.
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