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Abstract

Asynchronous circuits are a promising, yet intricate, type of digital circuit that

offers higher performance and lower power consumption than their synchronous coun-

terpart. However, asynchronous circuits still see limited usage in today’s commercial

products, which often is linked to the adaptation challenges that are posed by in-

dustry, e.g. the time required for developing new tools and training circuit designers

versus existing synchronous-based tools for a faster production line.

Several formal models were introduced to aid with asynchronous circuit design. In

particular, the ‘legacy’ approach of Burst-Mode (BM) Specifications and the ‘disrup-

tive’ approach of Signal Transition Graphs (STGs). On one hand, BM specifications

resemble synchronous Finite State Machines (FSMs) allowing circuit designers to eas-

ily adapt and use them, but there is no longer support provided for their tools. On the

other hand, STGs have access to state-of-the-art tools that produce well-optimised

circuits, yet they are seen as too complicated compared to FSMs.

In this thesis, a new model called Burst Automaton (BA) is proposed. BA is

a generic FSM-based model that acts as a framework for enabling interoperability

between many models including BM specifications and STGs. BA offers a new de-

sign path that bridges the gap between ‘legacy’ and ‘disruptive’ approaches, granting

circuit designers access to state-of-the-art tools for higher quality implementations

without costing their familiarity with FSMs. Thus, removing any adaptation require-

ments. This design path is implemented as a new Workcraft plugin that supports the

design automation of BAs, and is evaluated on some case studies.
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Chapter 1

Introduction

The role of digital systems has seen a significant change over the past century,

where they were once large sophisticated integrated circuits used in industrial-sized

computer systems and are now part of today’s smaller, yet efficient, systems-on-

chip (SoCs) used in everyday smart phones.

Typically, digital systems are designed using synchronous circuits, where the cir-

cuits rely on the use of a global clock signal to synchronise their components at fixed

time intervals. However, synchronous circuits also come with several drawbacks, as

their operations are forced to wait for one another, even if most of them may already

be completed, and that they must always be active to receive any input changes,

which leads to more power consumption.

An alternative to design digital circuits are asynchronous circuits, where the cir-

cuits remove the use of this global clock signal and instead rely on the local synchro-

nisation between their components [63]. This results in a higher performance as their

operations may now be performed as soon as input changes are received, and lower

power consumption as they do not have to always be active [52].

Additionally, they also avoid clock-related issues like clock skew [13] as they do

not have a clock signal, and their design methodology has even been used in other

areas of applications, such as analogue and mixed signal (AMS) systems [61], image

sensors [8], machine learning [40] and memory compilers [10].

1



CHAPTER 1. INTRODUCTION

However, despite the promising aspects about asynchronous circuits, they are still

not widely adopted in industry. This is often linked to circuit designers, who are

already familiar with the synchronous design methodology, where there is a perceived

convention of using state-based methods like Finite State Machines (FSMs) to design

digital circuits within the synchronous community.

In particular, there are some asynchronous approaches that even cater towards

the circuit designer’s familiarity of FSMs. For example, Burst-Mode (BM) specifi-

cations [55] are a type of asynchronous FSM that was introduced to (synchronous)

circuit designers as a simple entry into asynchronous circuit design, due to the BM

specifications’ resemblance to synchronous FSMs.

Oppositely, the asynchronous design methodology uses event-based methods to

design digital circuits graphically using vertices and arcs, where these connections

are used to express many types of behaviours and the circuit designers are required

to understand the effects of these causal events, e.g. how firing one signal transition

may enable multiple other signal transitions for firing.

One prominent event-based method is Signal Transition Graphs (STGs) [58, 18],

which are a type of labelled Petri net [57] that specifies asynchronous circuits and de-

termines the causality of systems, based on its flow of tokens from places to transitions

and from transitions to places.

Nevertheless, these event-based methods are seen as too different by the industry

when compared to their conventional state-based methods. This suggests that many

circuit designers are likely too unfamiliar with STGs and would require training,

which can be costly and time consuming. Instead, the industry would much rather

opt for a more familiarised approach like BM specifications, which reduces the need

for training and helps them quickly meet market demands.

To address the issues that are described above, this thesis introduces a new model

2



CHAPTER 1. INTRODUCTION

called Burst Automaton (BA) that provides the necessary framework to enable in-

teroperability between many models including BM specifications and STGs. Here, a

new ‘co-design’ route can be established, where circuit designers can specify their BM

specification and translate it into a BA to gain access to the STG’s well-established

tools for subsequent composition, verification, and synthesis.

Notably, this new design route allows circuit designers, who are already familiar

with synchronous FSMs and BM specifications, to transition into the STG’s world

of asynchronous circuit design, where all the circuit designer’s unfamiliarities with

STGs are ‘stripped’ away, and hidden behind the BA’s design flow that is automated

and implemented as a Workcraft [2] plugin.

Thus, in this chapter, we will cover the current design routes for asynchronous

circuit design, which involve the ‘legacy’ route of BM specifications and the ‘disrup-

tive’ route of STGs, as well as the motivation of this thesis that briefly highlights

the need and benefit of this new ‘co-design’ route of BAs. We will then discuss the

contributions of this thesis and how they will aid (unfamiliar) circuit designers with

the design of asynchronous circuits, before we show the structure of this thesis, where

we will discuss the main topics of each chapter.

1.1 Introductory Motivation

To give us an insight into the motivation of this thesis, let us consider a simplified

view of the current design routes shown in Figure 1.1, where we have three design

routes that are the ‘legacy’ route, the ‘disruptive’ route, and the ‘co-design’ route.

In the ‘legacy’ route, BM specifications are used. Here, this design route can be

seen as the familiarised route for many circuit designers, as BM specifications are a

state-based method that the industry prefers and can be synthesised with a tool like

3
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Burst Automaton

Circuit Implementation Circuit Implementation

Burst-Mode (BM)
Specification
Design Route

Signal Transition
Graph (STG)
Design Route

Synthesis with
BM-based tools

Synthesis with
STG-based tools

Distributable EnvironmentNon-distributable Environment

Figure 1.1: Abstracted view of design routes

Minimalist [54] to produce some asynchronous BM circuit implementation.

However, support for these BM-based tools has become limited and their circuit

implementations may no longer be well-optimised, as these tools are slowly becoming

outdated. Additionally, the circuit implementations produced by the BM synthesis

tools also do not work with a distributed environment, as the environment is assumed

to be ‘centralised’ and cannot be easily split, due to the BM specification’s inherent

timing assumption. Moreover, the design of these BM specifications are also not mod-

ular, as there are no tools that support the composition of BM specifications, meaning

circuit designers must rely on the monolithic approach to specify their systems.

In the ‘disruptive’ route, STGs are used. Here, this design route can be considered

the optimised route for asynchronous circuits, where STGs are supported by well-

established tools likePetrify [20] andMpsat [34], which can produce well-optimised

circuit implementations that work well with a distributed environment, due to the

expressiveness of STGs. Furthermore, STGs are also easily composable, allowing

circuit designers to follow a modular approach for specifying their systems.

But, as mentioned above, circuit designers are unfamiliar with STGs as they are
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an event-based method, meaning circuit designers will instead opt for the state-based

methods like BM specifications to specify their systems.

Thus, we introduce the ‘co-design’ route that is established by using the BA model,

where a ‘bridge’ is formed between the gap of the ‘legacy’ route and the ‘disruptive’

route. In this ‘co-design’ route, BA allows circuit designers to specify their systems

using BM specifications, where they can then gain access to the STG’s well-established

tool by translating their BM specifications to STGs via BA.

A more technical view of the motivation is covered in Chapter 3, where an example

that highlights the issues described for the ‘legacy’ route and the ‘disruptive’ route is

shown, as well as a new design workflow that involves our ‘co-design’ route.

1.2 Thesis Contributions

The major contributions of this thesis are as follows:

Burst Automaton model [16]: A new formal model that provides the nec-

essary framework for enabling interoperability between many models including BM

specifications, Extended BM (XBM) specifications [68], STGs, FSMs, or generally

any formalism that can be automatically translated into any of these models, e.g.

Waveform Transition Graphs (WTGs) [50] which have STG-based semantics.

Translation methods from BAs to STGs: Three separate translations that

each preserve the language, weak bisimulation, and strong bisimulation, to the original

BA, as well as another method for translating the XBM specification’s components

(e.g. conditionals and “don’t cares”) to their STG counterparts.

Automated design flow based on the Burst Automaton’s ‘co-design’

route: A new design route that is established between BM specifications and STGs,

where (X)BM specifications can be granted access to the STG’s well-established tools
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for subsequent composition of BM specifications, verification, and synthesis of speed-

independent (SI) (quasi-delay insensitive (QDI)) asynchronous circuits.

Implementation of the automated design flow as a Workcraft plugin: A

new plugin that supports the design automation of BAs and (X)BM specifications

featuring a graphical-based design, automated translation to STGs, composition, sim-

ulation, verification, and synthesis with Petrify and Mpsat backends.

1.3 Thesis Structure

This thesis is organised as follows:

Chapter 1 Introduction. In this chapter, we briefly discuss the motivation

of this thesis and summarise the contributions, which include the BA model, the

translation methods from BAs to STGs, the design flow based on the BA’s design

route that is established between BM specifications and STGs, and the Workcraft

plugin that supports the design automation of BAs and (X)BM specifications.

Chapter 2 Background. This chapter discusses the background of asynchronous

circuits, where we cover their delay models, circuit operation modes, and classes.

Next, we cover the existing formal models that are used to design asynchronous

circuits in greater detail, including FSMs, BM specifications, XBM specifications,

Petri nets and STGs, as well as the model equivalences that are used to check the

equivalence relation between two given models. Finally, we introduce the existing

Computer-Aided Design (CAD) tools that are available for the design, verification

and synthesis of (X)BM specifications and STGs.

Chapter 3 Technical Motivation. This chapter provides the technical moti-

vation of this thesis, where we cover the motivation in greater depth by providing an

example that is based on a handshake decoupling system, and showing the designs
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that are created with the ‘legacy’ route and the ‘disruptive’ route. We then cover

the new design route that is proposed by BA, where we show how BAs are used to

establish the connection between BM specifications and STGs.

Chapter 4 Burst Automata. This chapter introduces the BA model, where we

cover its formal definition and its defined asynchronous state graph. Next, we cover

the three translation methods from BAs to STGs, where each translation is shown to

preserve the language, weak bisimulation, and strong bisimulation between the BA

and STG, before we then cover the translation method of the XBM specification’s

components to their STG counterparts. Lastly, we show how BAs can be composed

by translating them to STGs, using one of the three aforementioned methods, via

parallel composition before it is synthesised into an asynchronous circuit.

Chapter 5 Design Automation. This chapter discusses the implemented

Workcraft plugin that supports the design automation of BAs, BM specifications,

and XBM specifications, where we will show the automated design flow and the fea-

tures of the plugin. We will then cover the experimental results of this Workcraft

plugin, where we analyse the size growth of the BA to STG translation, and compare

the literal counts between the BM synthesis tools and the STG synthesis tools.

Chapter 6 Case Studies. This chapter covers two case studies involving the

design of the buck converter [61] and the design of the Versa Module Europa (VME)

bus controller [1] where, in each case study, we will explain their operations and show

how they can be specified using STGs. We will then identify the issues posed for BM

specifications when specifying these systems, before we show how BAs can be used

as an alternative to specify these systems to achieve the same results as STGs.

Chapter 7 Conclusion. This chapter provides a summary of the contributions

in this thesis, and discuss future research and development to be considered for BAs

and the implemented Workcraft plugin.
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Chapter 2

Background

In this chapter, we will cover the background of this thesis, where we will first

explore asynchronous circuits in further detail including their delay models, circuit

operation modes and classes in Section 2.1.

Next, we will study several formal models with a particular focus on Finite State

Machines (FSMs), Burst-Mode (BM) specifications, Extended BM (XBM) specifi-

cations, Petri nets and Signal Transition Graphs (STGs) in Section 2.2, before we

investigate the model equivalences including strong bisimulation, weak bisimulation,

language equivalence and output determinacy in Section 2.3.

Finally, we will analyse some existing tools that are available for (X)BM specifi-

cations and STGs in Section 2.4, where we will review the BM-based tools Minimal-

ist, 3D and BM Decomp, and the STG-based tools Petrify, Mpsat, Pcomp and

Workcraft.

2.1 Asynchronous Circuits

Asynchronous circuits are a promising type of digital circuit that removes the use of

a global clock signal in favour of local synchronisation between its components [63]

offering benefits like higher performance, robustness to variability conditions and

lower power consumption [52], while resolving clock-related issues like clock skew [13].
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In particular, asynchronous circuits and their circuit operation mode can be clas-

sified based on the timing assumptions, which are made about the delays between

their components and their interaction with the environment.

2.1.1 Delay Models

At the hardware level, asynchronous circuits can be seen as a connection of wires

between gates and delay elements, where each wire is connected from the output of

a gate (or delay element) to the input of one or more gates (or delay elements). The

gates compute a set of outputs using their input, while the delay elements produce

a single output delayed by their input. In particular, the delay elements can be

categorised based on the timing model that they use. These include:

• A fixed delay model where the delay has a fixed value.

• A bounded delay model where the delay has a value within a given time interval.

• An unbounded delay model where the delay has an arbitrary finite value.

2.1.2 Circuit Operation Modes

The circuit operation mode can be described as the interaction between a device

and an environment. The most common circuit operation mode is the generalised

fundamental mode [39, 21], where the environment is assumed to wait for the circuit

to stabilise before it can produce new inputs.

Notably, fundamental mode can be divided into two separate sub-classes called

single input change (SIC) mode and multiple input change (MIC) mode. The former

mode forces the inputs to be sequential but restricts the circuit’s operation speed,
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while the latter mode allows one or more inputs to change after the circuit stabilises

but makes the circuit more difficult to implement.

As a result, the burst-mode timing assumption [55] is introduced as a trade-off

between the two aforementioned modes. In this timing assumption, signals are allowed

to change in groups called bursts, where these signals may arrive in any order and time.

Each burst consists of a non-empty set of inputs that precedes a set of outputs, such

that the circuit waits until a complete input burst has arrived from the environment

before producing any output bursts and transitioning to a different state. In turn, the

environment waits until the circuit has produced its output burst, before it can send

any new input bursts. This means that bursts cannot easily capture the concurrency

between inputs and outputs, as the firing of input bursts and firing of output bursts

are mutually exclusive.

Another well-known circuit operation mode is input-output mode [39, 21], where

the environment is allowed to respond to a device’s outputs without any timing con-

straints. Unlike fundamental mode and the ‘burst-mode’ timing assumption, input-

output mode enables concurrency between inputs and outputs, allowing many types

of concurrent asynchronous circuits like distributed systems to be produced.

2.1.3 Classes of Asynchronous Circuits

Asynchronous circuits follow the same design principles as huffman circuits [30], where

huffman circuits are designed to work correctly in fundamental mode and a bounded

delay is assumed for both gates and wires. In particular, several classes of asyn-

chronous circuits are created and can be identified as the following:

• Delay insensitive (DI) circuits [19, 66], which are a set of asynchronous circuits

that have been designed to work correctly in input-output mode with an un-
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bounded gate and wire delay. In [42], it is shown that only a few DI circuits

can be built if the user can only use simple gates. However, many practical

DI circuits can also be built using complex gates [26], which are constructions

of several simple gates that operate in a DI manner and rely on some timing

assumptions.

• Speed-independent (SI) circuits [51], which are another set of asynchronous cir-

cuits that have been designed to work correctly in input-output mode regardless

of gate delays and all wire delays are assumed to be negligible (or shorter than

any gate delay). In Quasi-delay-insensitive (QDI) circuits [41], the assumption

about wire delays is relaxed by requiring that (some) wire forks are isochronic,

meaning the maximal difference in delays from the root of the fork to the ends

of its branches is negligible (or shorter than any gate delay). Intuitively, the

isochronic fork assumption means that the fork can be characterised by a single

delay, which conceptually can be appended to the driving gate’s delay. Thus,

this makes QDI circuits very similar to SI circuits.

• Self-timed circuits [60], which are a set of asynchronous circuits that have been

built using a group of elements, where each element may be an SI circuit or

a circuit that relies its operation on local timing assumptions. However, there

were no timing assumptions made on the communication between the elements

and the circuit operating in input-output mode. If both internal and external

timing assumptions were used to optimise the design of these self-timed circuits,

then the circuit would instead be classified as a timed circuit [53].
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2.2 Formal Models

2.2.1 Finite State Machines

Finite State Machines (FSMs) [28], also known as Finite State Automata (FSA), are

abstract mathematical models used to specify and analyse sequential systems. FSMs

can be classified as either Moore machines [48] or Mealy machines [44], where the

former produces outputs on states and is determined by the current state rather than

by inputs, while the latter produces outputs on transitions rather than on states.

FSMs can be in one of many possible finite states at any given time, and can

transition to another state in response to some given word from the alphabet. The

alphabet is a finite set of atomic symbols and a word from the alphabet Σ is a finite

sequence of symbols from Σ, where ε denotes the empty set (i.e. H) and Σ˚ denotes

the set of all words over Σ (including ε).

In order to specify concurrent systems, FSMs must allow concurrency between

atomic actions to happen in any order by using interleaving, which allows all possible

actions to take place in any order and forms a ‘diamond’ shape in the state graph.

FSMs consist of a finite set of states, a finite alphabet, a set of transitions, and

an initial state, such that each transition determines the flow of a system by its

connection between a source state and a target state.

Formally, FSMs can be defined as a tuple M “ pQ,Σ, A, q0q where:

• Q is the finite set of states.

• Σ is the finite alphabet.

• A Ď Q ˆ pΣ Y εq ˆ Q is the set of transitions.

• q0 P Q is the initial state.
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Notably, the behaviour of FSMs can be also captured by their language and reach-

able states, where:

• A word w over Σ is accepted by an FSM if q0
w
ÝÑ q for some state q P Q.

• The language (accepted or generated) by an FSM is the set L(FSM) of all words

accepted by it, and L(FSM) is prefix-closed.

• A state q P Q is reachable if q0
w
ÝÑ q for some string w.

• A state q P Q is called a deadlock if it has no exit arcs.

• An FSM is said to be deadlock-free if none of its reachable states is a deadlock

i.e. a reachable state that contains no outgoing arcs.

• An FSM is said to be reversible if q0 can be reached from any reachable state q

i.e. the FSM can eventually return to initial state.

• An FSM is said to be deterministic, if there are no transitions that labels an

empty action (i.e. ε) and that there are no two transitions, which reach different

states using the same action (i.e. transitions pq, a, q1q and pq, a, q2q such that

q1 ‰ q2). Otherwise, the FSM is non-deterministic.

• If an FSM has no unreachable states then it is reversible if, and only if, its graph

is strongly connected i.e. there is a directed path between any pair of its states.

In the graphical model of FSMs, states are drawn as circles and transitions are

drawn as arcs (i.e. arrows) such that the initial state is expressed with an arrow

pointing at it. For example, Figure 2.1 shows an FSM specifying a vending machine

that sells cokes and chocolates [5].

13



CHAPTER 2. BACKGROUND

Figure 2.1: FSM of a vending machine selling cokes and chocolates

2.2.2 Burst-Mode and Extended Burst-Mode Specifications

In circuit design, there are synchronous FSMs and asynchronous FSMs. The former

model uses a global clock signal to synchronise its components, while the latter model

relies on the local synchronisation between its components in the form of handshakes.

Traditionally, many circuit designers are familiar with synchronous circuits and

use synchronous FSMs to design their specifications, due to the ease of using FSMs

and the industry’s perceived convention of using the synchronous design methodology.

Though, this design approach requires some assumption that every component works

well through a common clock and that clock-related issues do not occur, e.g. clock

skew as previously described in Section 2.1.

Alternatively, there have been early works to help adopt the use of asynchronous

FSMs in industry, where these FSMs operate in either SIC mode or MIC mode.

However, as previously described in Section 2.1.2, both aforementioned modes have

a drawback, i.e. SIC mode restricted the speed of the circuit’s operation due to its

sequential inputs and MIC mode makes a circuit more difficult to implement due

to its enabling of multiple input changes. Thus, this leads to the introduction of

Burst-Mode (BM) specifications [55].

BM specification is a variant of an asynchronous FSM that operates in the ‘burst-
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mode’ timing assumption, where it offers (synchronous) circuit designers a simple

entry into asynchronous design due to its similarity with synchronous FSMs.

Like traditional FSMs, BM specifications can be in one of many possible finite

states, and can transition to another state after receiving an input burst followed by

producing an output burst.

Additionally, BM specifications consist of a finite set of states, a set of inputs, a

set of outputs, a set of transitions, an initial state, and two labelling functions that

defines the values of its inputs and outputs respectively.

Formally, BM specifications can be defined as a directed graph G “ pV,E, I, O, v0,

in, outq where:

• V is a finite set of states.

• E Ď V ˆ V is the set of transitions.

• I “ tx1, ..., xmu is the set of inputs.

• O “ tz1, ..., znu is the set of outputs.

• v0 P V is the initial state.

• in : V Ñ t0, 1um is the labelling function that defines the values of m inputs

at the unique entry point of each state, such that inipvq denotes the value of xi

entering state v.

• out : V Ñ t0, 1un is the labelling function that defines the values of n outputs

at the unique entry point of each state, such that outjpvq denotes the value of

zj entering state v.

In particular, the labelling functions transi and transo can also be derived from

the BM specification G, where transi : E Ñ PpIq defines the set of input changes
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(i.e. the input burst) and transo : E Ñ PpOq defines the set of output changes (i.e.

the output burst), such that PpIq and PpOq defines the set of all possible subsets

from I and O respectively.

Furthermore, a BM specification must also be well-formed by satisfying the fol-

lowing requirements that include the:

• Unique entry condition, where each state must always be entered with the same

set of input and output values.

Formal Definition: For each state v, it is always entered with the input value

inpvq and output value outpvq. Note that the formal definition of graph G

automatically satisfies this requirement, as stated in [55].

• Non-empty input burst property , where a burst must contain at least one input

in its set of inputs.

Formal Definition: For every transition e P E, transipeq ‰ H. Note that this

is enforced by the labelling functions transi and transo.

• Maximal set property , where the set of inputs from one burst are not a subset

of the set of inputs from another burst, which originate from the same state.

Formal Definition: For each pair of transitions pu, vq, pu,wq P E, transipu, vq Ď

transipu,wq Ñ v “ w. Note that this is also enforced by the labelling functions

transi and transo.

In the graphical model of BM specifications, they are drawn exactly the same as

FSMs with the exception that states are labelled with its defined encoding values of

both inputs and outputs, and the word w contains both the input burst and output

burst that are separated by a slash symbol (‘/’). For example, Figure 2.2 shows a

BM specification specifying the C-element gate.
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Figure 2.2: BM specification of C-element

However, as previously described in Section 2.1.2, BM specifications cannot ex-

press concurrency between inputs and outputs due to their inherent ‘burst-mode’

timing assumption, where the circuit waits until a complete input burst arrives be-

fore producing any outputs and the environment waits until a complete output burst

completes before producing any inputs.

As a result, the Extended Burst-Mode (XBM) [68] specification was proposed to

address BM specification’s inability to express input-output concurrency by intro-

ducing conditionals and directed “don’t cares”. Note that for the remainder of this

thesis, we will call directed “don’t cares” as simply “don’t cares” unless we need to

distinguish them from terminating “don’t cares”.

Conditionals are level-sensitive inputs that determine the system’s control flow

based on their sampled value, while “don’t cares” are monotonic signals (i.e. signals

that may only change once) where inputs can change concurrently with outputs.

When a conditional is sampled, they must be stabilised once a compulsory edged

input (i.e. inputs that are not “don’t cares” in the previous burst) appears and hold

their value until all subsequent outputs are produced. The minimum delay between

the conditional stabilising and the first compulsory input is called the setup time,

while the minimum delay between the last terminating output and the conditional

change is called the hold time. Thus, the period between the setup time and hold

time is called the sampling period .

Formally, XBM specifications can be defined as a directed graph G1 “ pG,C, condq

where:
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• G “ pV,E, I, O, v0, in, outq is a BM specification.

• C “ tc1, ..., clu is the set of conditional inputs, such that C X I “ H.

• cond : E Ñ t0, 1, ˚ul is the labelling function that labels each state transition

with a set of conditionals, defining the sampled value of each conditional.

Additionally, the labelling functions transIN : E Ñ PpIq and transOUT : E Ñ

PpOq are implicitly derived for the XBM specification G1 as it is an extension to G.

Thus, given some state transition pu, vq P E:

• If inipuq ‰ inipvq _ inipvq “ ˚ then input xi P transINpu, vq such that:

– xi` is in input burst, if inipvq “ 1 ^ inipuq ‰ 1.

– xi´ is in input burst, if inipvq “ 0 ^ inipuq ‰ 0.

– xi˚ is in input burst, if inipvq “ ˚.

• If outjpuq ‰ outjpvq then output zj P transOUT pu, vq such that:

– zj` is in output burst, if outjpvq “ 1 ^ outjpuq “ 0.

– zj´ is in output burst, if outjpvq “ 0 ^ outjpuq “ 1.

Moreover, the labelling function ctransINpu, vq can also be derived from the XBM

specification G1, where ctransINpu, vq “ txi P transinpu, vq | inipuq ‰ ˚ ^ inipvq ‰ ˚u

defines the set of compulsory input changes, such that xi does not start or end as a

“don’t care” for each input xi P transinpu, vq.

Like its BM specification predecessor, the XBM specification must also be well-

formed by satisfying the BM well-formed requirements (excluding the maximal set

property) and the additional XBM well-formed requirements, which include the:
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• Distinguishability constraint , which extends BM’s maximal set property, where

bursts that originate from the same state must either have unique conditional

values or their set of inputs are not a subset of another burst with consideration

of “don’t care” transitions.

Formal Definition: For every pair pu, vq, pu,wq P E, function ctransINpu, vq Ď

transINpu,wq implies that either v “ w, or condpu, vq and condpu,wq are mu-

tually exclusive, such that there exists a k where condkpu, vq ‰ condkpu,wq ^

condkpu, vq ‰ ˚ ^ condkpu,wq ‰ ˚.

• Compulsory input requirement , where all input bursts must contain at least one

compulsory input (i.e. an input that does not appear as a directed “don’t care”

nor a terminating “don’t care”).

Formal Definition: For every state transition pu, vq, there exists an input

xi P transINpu, vq such that inipuq ‰ ˚ ^ inipvq ‰ ˚.

• Toggled termination of “don’t cares”, where all directed “don’t cares” must

terminate such that the signal toggles. For example, if a signal’s state was

originally 0 (1) before appearing as a “don’t care” then it must go 1 (0) at its

next termination.

Formal Definition: For every sequence of state transitions u Ñ v1 Ñ ... Ñ

vn Ñ w with n ě 1 and inipuq “ inipwq ‰ ˚, there exists k P 1, ..., n where

inipvkq ‰ ˚.

In the graphical model of XBM specifications, they are drawn exactly the same as

BM specifications with the addition of ˚ directions for inputs that appear as “don’t

cares”, and the word w is expanded to include conditionals that also appear in the

input burst. Note that conditionals are enclosed with angle brackets, i.e. xcy where

19



CHAPTER 2. BACKGROUND

Figure 2.3: XBM specification of the bus interface unit’s FIFO to DMA module

conditional c P C. For example, Figure 2.3 shows an XBM specification specifying

the first-in first-out (FIFO) to direct memory access (DMA) module of a bus interface

unit found in the Small Computer System Interface (SCSI) controller [69].

2.2.3 Petri Nets and Signal Transition Graphs

Petri nets [57] are a simple, yet powerful, mathematical model used to specify and

analyse many systems that are, but not limited to, concurrent, asynchronous, dis-

tributed, parallel, non-deterministic, and stochastic.

Petri nets can be in one of many possible finite markings (i.e. a multiset of places)

at any given time, and the marking of Petri nets may change in response to firing an

enabled transition when all of its preceding places contain a token.

Petri nets consist of a finite set of places, a finite set of transitions, a finite set of

arcs, and a finite set of markings, which include the initial marking (i.e. the set of all

places that are initially marked with a token) used to identify the start of the Petri

net. Each arc determines the flow of tokens and is connected between a place and a

transition, or between a transition and a place.

Formally, Petri nets can be defined as a tuple PN “ pP, T, F,M, lq where:
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Figure 2.4: Petri net of a vending machine selling cokes and chocolates

• P is the finite set of places.

• T is the finite set of transitions, such that T X P ‰ H.

• F Ď pP ˆT qYpT ˆP q is the set of arcs from places to transitions and transitions

to places.

• M is a marking of PN where M : P Ñ t0, 1, 2, ...u such that M0 is the initial

marking.

• l : T Ñ Σ is a labelling function of transitions, where Σ is the alphabet.

But unlike FSMs, Petri nets can express concurrency without using interleaving

meaning they can easily specify input-output concurrency and subsequently, asyn-

chronous circuits.

Notably, Petri nets can also be seen as an extension to FSMs, where a Petri net

can model multiple FSMs as one entity especially if the Petri net is 1-safe (i.e. every

place in all markings only ever contain at most one token). Thus, one can see and

interpret (1-safe) Petri nets as FSMs.

In the graphical model of Petri nets, places are drawn as circles, transitions are

drawn as squares, arcs are drawn as arrows, and tokens are drawn as black dots

inside places. For example, Figure 2.4 shows a Petri net specifying the same vending

machine that sells cokes and chocolates [6] from Figure 2.1.
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Signal Transition Graphs (STG) [58, 18] are labelled Petri Nets that focus on spec-

ifying asynchronous systems, where its transitions label the rising and falling edges

of signals, such that these signals can be subdivided into inputs, outputs, internals,

and dummies with the latter behaving like the empty word ε in language theory.

STGs can be synthesised into SI (QDI) circuits, and are known to be flexible

due to their inherent Petri net model, which allows them to easily express input-

output concurrency, choices between any type of signals, and both deterministic and

non-deterministic specifications.

STGs are also easy to compose and decompose, especially when using high-level

asynchronous concepts [11], and enjoy good tool support for verification and synthe-

sis by well-established tools that include Petrify [20] and Mpsat [34, 33], which

are both integrated in the visual framework Workcraft [2]. Note that details of

Petrify, Mpsat and Workcraft are covered in Section 2.4.2.

Like Petri nets, STGs consist of a finite set of places, a finite set of transitions,

a finite set of arcs, and a finite set of markings (including the initial marking) with

an additional set of inputs and an additional set of outputs. Places may also contain

a token, which depicts the current marking, and arcs determines the flow of tokens

between a place and a transition, or between a transition and a place.

Formally, STGs are defined as a tuple N “ pPN, In,Outq where:

• PN “ pP, T, F,M, lq is a Petri net.

• In “ ti0, ..., ixu is the set of inputs.

• Out “ to0, ..., oyu is the set of outputs.

Notably, l can be redefined for STGs as l : T Ñ Σ where Sig “ In Y Out is

the set of all signals, where In and Out are disjoint from each other, and Σ :“

pSig ˆ t`,´uq Y tλu is the alphabet such that λ is the label of dummy transitions.
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For an STG to be synthesised into an SI (QDI) circuit, it must ideally satisfy the

following implementability properties [4] that include:

• Consistency – For every signal z P Sig, where Sig “ In Y Out is the set of all

signals and In and Out are disjoint from each other, z` and z´ must alternate

in each possible trace such that z always starts with the same sign.

• Deadlock freeness – Each reachable marking must enable at least one transition.

• Input properness – An input must not be triggered by an internal signal, as the

environment must be oblivious to internal signals, and must not be disabled by

a local (i.e. an output or internal) signal.

• Output persistency – A local (i.e. an output or internal) signal must not be

disabled by any other signal.

• Output determinacy [37] – The STG is said to be not self-contradictory, where

this property will trivially hold for determistic STGs. However, for non-deterministic

STGs, it may be possible to execute the same trace (i.e. the sequence of signal

edges) w in two different ways, such that they reach two different markings.

So, if one of these markings enables some output o and the other does not,

then there is a contradiction as the STG simultaneously requires the circuit to

produce o after w, and forbids to do so.

Additionally, given a constant k P N, an STG N is called k-bounded if for every

reachable marking M and every place p where Mppq ď k, bounded if it is k-bounded

for some k, or safe if it is 1-bounded such that k “ 1. Note that N is bounded if,

and only if, the set of its reachable markings is finite.

In the definition of Sig ˆ t`,´u, each signal s P Sig is assigned a ` or ´ event

where tps,`q, ps,´qu Ď Sigˆ t`,´u. The event ` defines a value change from 0 (i.e.
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logical low) to 1 (i.e. logical high), while the event ´ defines a value change from 1

to 0. For simplicity, we can also define ps,`q and ps,´q as s` and s´ respectively.

In particular, the preset of x can be defined as ‚x and the postset of x can be

defined as x‚, where x P P Y T can be either a place or a transition.

The transition t is said to be enabled at a marking M , which can be denoted as

M rty, if for each p P ‚t, Mppq ě 1. Such an enabled transition can fire, changing M

to M 1 “ M ´ Mppq ` Mpqq for all p P ‚t and all q P t‚, denoted by M rtyM 1.

For a transition sequence v = t1..tn and markings M and M 1, M rvyM 1 can be

written if there are markings M1, . . .Mn´1 such that M rt1yM1rt2y...Mn´1rtnyM 1.

Moreover, M is said to be reachable if there exists a transition sequence v such

that M0rvyM , and an empty transition λ is said to be enabled under every marking

where λ does not correspond to any signal change. Note that hiding a signal s means

all s˘ labelled transitions are changed to λ, while unhiding a signal s means the

transition’s labels are changed back to their initial values.

In the graphical model of STGs, they can be drawn out the same as Petri nets

with the exception that transitions labelling inputs have their text coloured in red,

and transitions labelling outputs have their text coloured in blue. For example,

Figure 2.5a shows an STG specifies the C-element gate.

In Workcraft, we can simplify the drawing of STGs, where transitions labelling

inputs or outputs are replaced with a red text block or a blue text block respectively,

such that they act as signal transitions. If a place has exactly one incoming transition

and one outgoing transition, then this place and its connecting arcs can be replaced

with an arc between the original transitions, where this arc contains an ‘implicit’

place. For example, Figure 2.5b shows the simplified STG drawing of Figure 2.5a.

Lastly, we can also obtain the reachability graph of an STG by decoupling the

markings after each transition. As such, the reachability graph of an STG N can be
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(a) Petri net drawing (b) Workcraft drawing

Figure 2.5: STG specification of C-element gate

Figure 2.6: Reachability graph for the STG specification of C-element

described as an arc-labelled directed graph RGN “ pQ,A, q0q where:

• Σ is the alphabet of N .

• Q is the set of reachable markings of N .

• A Ď Q ˆ Σ ˆ Q is the set of labelled arcs and pq, γ, q1q P A iff there exists a

γ-labelled transition t of N such that qrtyq1.

• q0 “ M0 is the initial marking of N .

If an STG is said to be safe then RGN is finite and can be interpreted as a finite

automaton in the language theory, or as an FSM. In particular, the language LpNq

can be defined as the language of RGN , where all states of RGN are considered

accepting, and N is said to be deterministic if RGN is a deterministic automaton as

in the language theory, i.e. it contains no ε-transitions and no distinct arcs originating

from the same state and having the same label.

For an example of an STG’s reachability graph, Figure 2.6 shows the reachability

graph for the STG specification specifying the C-element gate from Figure 2.5.
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2.3 Model Equivalences

2.3.1 Bisimulation

Bisimulation [29, 46] is the equivalence relation between two associating systems

that behave in a similar manner, where one system can simulate the other system’s

behaviour and vice versa. So, given an FSM M “ pQ,A, q0q and another FSM

M 1 “ pQ1, A1, q1
0q, M and M 1 are said to be (strongly) bisimilar if there exists a

relation between their states called bisimulation (denoted as „), such that:

• The initial states of M and M 1 are related, i.e. q0 „ q1
0.

• For every pair of related states q „ q1:

– For each step q
a
ÝÑ r in M , there exists a matching step q1 a

ÝÑ r1 in M 1 such

that r „ r1.

– Similarly, for each step q1 a
ÝÑ r1 in M 1, there exists a matching step q

a
ÝÑ r

in M such that r „ r1.

If both M and M 1 are bisimilar then LpMq “ LpM 1q the language of M is equal

to the language of M 1, but not vice versa in general. Note that bisimilarity coincides

with language equivalence for deterministic FSMs.

For some examples of strong bisimulation, Figure 2.7 shows several scenarios of

two FSMs that are strongly bisimilar to each other.

In Figure 2.7a, the initial states must first be related and the transition s0
a
ÝÑ s0

on the left FSM can also be matched by the transition q0
a
ÝÑ q0 on the right FSM and

vice versa, meaning s0 „ q0. Also, the transition s0
a
ÝÑ s1 on the left FSM can be

matched by the transition q0
a
ÝÑ q0 on the right FSM, meaning s1 „ q0. Thus, these

two FSMs are strongly bisimilar to each other.
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In Figure 2.7b, the initial states must first be related and the transition s0
a
ÝÑ s1

on the left FSM can also be matched by the transition q0
a
ÝÑ q0 on the right FSM and

vice versa, meaning s0 „ q0. Also, the transition s1
a
ÝÑ s1 on the left FSM can be

matched by the transition q0
a
ÝÑ q0 on the right FSM, meaning s1 „ q0. Thus, these

two FSMs are strongly bisimilar to each other.

In Figure 2.7c, the initial states must first be related, meaning s0 „ q0. Next, the

transitions s0
a
ÝÑ s1 and s0

a
ÝÑ s2 on the left FSM can be matched by the transition

q0
a
ÝÑ q1 on the right FSM and vice versa. So, s1 „ q1 and s2 „ q1. Lastly, the

transition s1
b

ÝÑ s3 on the left FSM can be matched by the transition q1
b

ÝÑ q2 on

the right FSM and vice versa, while the transition s2
c

ÝÑ s4 on the left FSM can be

matched by the transition q1
c

ÝÑ q3 on the right FSM and vice versa. So, s3 „ q2 and

s4 „ q3. Thus, these two FSMs are strongly bisimilar to each other.

(a) (b) (c)

Figure 2.7: Strong bisimulation examples

For two systems to be strongly bisimilar to each other, they are required to match

each other’s every action, where one can perform the action of the other system’s

action and vice versa. However, this requirement can be considered too sharp of an

equivalence to check, if a system’s internal behaviour, and sometimes its external

behaviour, needs to be observed and distinguished.

Hence, the above definition of bisimulation can be redefined, where two systems

can still be seen as equivalent if they exhibit the same external behaviour, regardless of
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any intermediate internal behaviour that may occur, as they are invisible to external

observers and are not required for the systems to be matched.

So, given an FSM M “ pQ,A, q0q and another FSM M 1 “ pQ1, A1, q1
0q, the notion

of bisimulation above can be relaxed by replacing all
a
ÝÑ by

w
ÝÑ, where w is either ε or

a P Σ. In particular, M and M 1 are said to be weakly bisimilar if:

• Each ε-labelled step of FSM is matched by 0 or more ε-labelled steps of FSM 1.

• Each a-step of FSM is matched by 0 or more ε-labelled steps followed by an

a-step followed by 0 or more ε-labelled steps of FSM 1.

For some examples of weak bisimulation between two FSMs, Figure 2.8 shows

several scenarios of two FSMs that are weakly bisimilar to each other.

In Figure 2.8a, the initial states must first be related and the transition s0
a
ÝÑ s0

on the left FSM can be matched by the transition q0
a
ÝÑ q0 on the right FSM and vice

versa, meaning s0 „ q0. Also, the left FSM can do the transition s0
ε

ÝÑ s1, which can

only be matched by the right FSM doing nothing at q0, so s1 „ q0. Thus, these two

FSMs are weakly bisimilar to each other.

In Figure 2.8b, the initial states must first be related and the left FSM can do the

transition s0
ε

ÝÑ s1, which can only be matched by the right FSM doing nothing at

q0. So, s0 „ q0. Also, the transition s1
a
ÝÑ s1 on the left FSM can be matched by the

transition q0
a
ÝÑ q0 on the right FSM and vice versa, meaning s1 „ q0. Thus, these

two FSMs are weakly bisimilar to each other.

In Figure 2.8c, the initial states must first be related, meaning s0 „ q0. Next, the

transitions s0
a
ÝÑ s1 and s0

a
ÝÑ s2 on the left FSM can be matched by the transition

q0
a
ÝÑ q1 on the right FSM and vice versa. So, s1 „ q1 and s2 „ q1. Also, the transition

s1
b

ÝÑ s3 on the left FSM can be matched by the transition q1
b

ÝÑ q2 on the right FSM

and vice versa, meaning s3 „ q2. Lastly, the transition q1
ε

ÝÑ q3 on the right FSM
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can be matched by the transition s2
ε

ÝÑ s4 on the left FSM, or by the left FSM doing

nothing at s1 or s2. So, s1 „ q3 and s2 „ q3. Similarly, the transition s2
ε

ÝÑ s4 on the

left FSM can be matched by the transition q1
ε

ÝÑ q3 on the right FSM or the right

FSM doing nothing at q1. So, s4 „ q1 and s4 „ q3. Thus, these two FSMs are weakly

bisimilar to each other.

(a) (b) (c)

Figure 2.8: Weak bisimulation examples

2.3.2 Language Equivalence

Language equivalence is the relation between two associating systems whose languages

match each other, where one system can capture the other’s sets of traces through

its own sets of traces and vice versa. So, given an FSM M and an FSM M 1, if the

language of M can be captured by M 1 and vice versa then M and M 1 are said to be

language equivalent such that LpMq “ LpM 1q.

For an example of language equivalence between two FSMs, Figure 2.9 shows two

FSMs that are language equivalent to each other. Here, the language of the left FSM

is Lleft “ tε, a, ab, acu and the language of the right FSM is Lright “ tε, a, ab, acu,

where all ε-transitions are represented by the ε in the set. Thus, Lleft “ Lright.

(a) (b)

Figure 2.9: Language equivalence example
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2.3.3 Output determinacy

While equivalences like bisimulation may be more desirable in situations where both

systems must behave similarly, there are still some instances where it is enough for

both systems to be language equivalent, e.g. when using output-determinate STGs.

In [37], the semantics of non-deterministic STGs are formally defined and a prop-

erty called output-determinacy is introduced. Output determinacy is defined as a

relaxation of determinism, where non-deterministic STGs are said to be output-

determinate if they can perform the same trace in two different ways and reach

different states M1 and M2, such that the outputs enabled by M1 and the outputs

enabled by M2 are the same. If an STG is not output-determinate then it is said to

be ill-formed and cannot be correctly implemented by a circuit, as it shows that the

language is not a satisfactory semantic of non-deterministic STGs in general.

This means that there is no need to preserve stronger equivalences like bisim-

ulation, as models preserving the language are adequate enough in practice. Note

that any attempt to synthesise a non-output-determinate STG will fail or result in

an incorrect circuit. So, an STG N is called output-determinate if MN rwyyM1 and

MN rwyyM2 is implied for every x P OutN where M1rx˘yy if, and only if, M2rx˘yy.

For an example of output-determinate STGs, Figures 2.10a and 2.10b shows two

output-determinate STGs as neither STG produces a contradictory output after firing

a+, i.e. firing a+ only enables x+, and Figure 2.10c shows a non-output-determinate

STG, as firing a+ on the right enables x+ but firing a+ on the left enables y+.

(a) (b) (c)

Figure 2.10: Output determinacy examples
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2.4 Computer-Aided Design Tools

Computer-aided design (CAD) is the concept, where computers are used to aid de-

signers with the creation, modification, analysis, and optimisation of their design.

Notably, there are several CAD tools that aid with the design and synthesis of asyn-

chronous circuits includingMinimalist, 3D andBM Decomp for BM specifications,

and Petrify, Mpsat, Pcomp and Workcraft for STGs.

2.4.1 Tools for Burst-Mode Specifications

Minimalist [54] is a framework that was developed to support the synthesis and

verification of optimised BM specifications, and consists of a complete technology-

independent synthesis path using exact and heuristic algorithms for the synthesis of

asynchronous circuits that include:

• Coding for Hazard-free Asynchronous State Machines (CHASM) [27], an exact-

based method that focuses on the optimisation of state encodings.

• HFMIN [27], ESPRESSO-HF [65], and IMPYMIN [64], exact-based and heuristic-

based tools that focus on two-level hazard-free minimisation of logic.

• Synthesis for testability [56], a method that focuses on targetting multi-level

logic, and producing circuits that are hazard-free and testable under either

stuck-at or robust path delay fault models with little to no overhead.

Minimalist features a command-line interface and graphical interface, where

the former interface is used to synthesise and optimise BM specifications, while the

latter interface is used to display the BM specifications and the produced circuit

implementations from Minimalist’s synthesis results.
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Figure 2.11: Synthesis of the C-element specification using Minimalist

Minimalist also supports an extension that allows new tools to be added through

its defined interfaces, and allows the designer to explore different trade-offs between

the available synthesis options, which include a focus on the optimisation of literals,

optimisation of product, minimisation of single-output logic, and minimisation of

multi-output logic, with the option to include feedback outputs as state variables.

For an example of the design and synthesis procedure in Minimalist, Figure 2.11

shows each step of the synthesis approach, where the BM specification of a C-element

gate is first specified in text, displayed, and then synthesised with the options set to

optimise literals, minimise multi-output logic and to include feedback outputs, before

the produced circuit implementation is displayed.

Also, for an example of the verification procedure in Minimalist, Figure 2.12

showsMinimalist detecting a violated well-formed requirement from some BM spec-

ification (i.e. non-empty input burst property), before it stops the synthesis process

and displays an error message on the command-line interface window.
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Figure 2.12: Verification of Minimalist framework

While Minimalist helps produce BM controllers, there are some notable caveats:

1. Minimalist does not support XBM specifications meaning it cannot read the

XBM syntax, e.g. conditionals and “don’t cares”. In [54], it was planned that

Minimalist will support XBM specifications, though this was never completed.

2. Minimalist only verifies that specifications satisfy the BM’s well-formed re-

quirements during its synthesis step. This can be problematic as:

(a) This verification is based on properties that are only applicable for BM

specifications. While it is useful to ensure that BM specifications are well-

formed by design, it cannot be easily reused for other formal models similar

to BM specifications, e.g. other types of asynchronous FSMs.
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(b) It may be more convenient to separate the verification and synthesis pro-

cesses, as a designer may not necessarily want to synthesise their specifica-

tion after verification, e.g. the designer may wish to verify the specification

and then synthesise it with other available tools.

3. While Minimalist provides some graphical interface to display the BM spec-

ifications and the circuit implementation from its synthesis results, there is no

dedicated graphical interface to aid the designer with creating their BM specifi-

cation. Instead, the designers are required to create their BM specification using

a text editor, where they must type out the whole specification and ensure that

it correctly follows BM’s syntax. This process can be quite tedious, especially

if the specification is large, and it requires the designer to understand the BM’s

syntax in file format, which can be non-trivial for new circuit designers. Also,

this process can be extremely error-prone, as a designer can make a mistake like

typing out the name of a non-existing signal.

3D [68] is a tool that was developed to support the synthesis and verification

of BM specifications and XBM specifications using a complete set of automated se-

quential synthesis algorithms, which include hazard-free state assignment, hazard-free

state minimisation, and critical-race-free state encoding. Unlike Minimalist, 3D

uses heuristic greedy state minimisation and encoding algorithms, and only performs

single output logic minimisation using HFMIN to produce high-performing circuit

implementations. However, these methods may also not guarantee that the produced

results are the most optimum one, as shown in the benchmarks in [54].

Nevertheless, because support for XBM specifications was never implemented in

Minimalist, this means that 3D remains to be the only tool that supports the

synthesis and verification of XBM specifications.
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Figure 2.13: Synthesis of the C-element specification using 3D

For an example of the design and synthesis procedure in 3D, Figure 2.13 shows

each step of the synthesis approach, where the XBM specification of a C-element gate

is first specified in text, displayed (using Minimalist’s binaries), and synthesised into

an XBM controller, before the produced circuit implementation is displayed.

Similarly, for an example of the verification procedure in 3D, Figure 2.14 shows

3D detecting a violated well-formed requirement from some XBM specification (i.e.

distinguishability constraint), before it stops the synthesis process and displays an

error message on the command-line interface window.

BM Decomp [3] is a command-line tool that decomposes (X)BM specifications

into smaller groups of (X)BM specifications. BM Decomp uses the cycle-based

decomposition method proposed in [7], where it searches through a given (X)BM

specification and determines how many cycles are contained in the specification.

If only one cycle is found then the decomposition does not take place. Otherwise,
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Figure 2.14: Verification of 3D tool

if n-number of cycles are found, where n ą 1, then the (X)BM specification is de-

composed n ` 1 times to create one “master” and n-number of “machine” (X)BM

specifications. These (X)BM specifications may then be synthesised using Minimal-

ist to produce a BM controller or 3D to produce an (X)BM controller.

For an example of the decomposition procedure in BM Decomp, let us consider

the circuit block diagram of a distributed mutual-exclusion (DME) controller shown

in Figure 2.15a with its equivalent BM specification shown in Figure 2.15b.

(a) Circuit block diagram (b) BM specification

Figure 2.15: DME controller
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Here, we can see that there are three cycles, where the first cycle can be reached

by firing lin+ / rout+ Ñ rin+ / rout- Ñ rin- / lout+ Ñ lin- / lout- from the initial

state s0, the second cycle can be reached by firing uin+ / rout+ Ñ rin+ / rout- Ñ

rin- / uout+ Ñ uin- / uout- Ñ Ñ lin+ / lout+ Ñ lin- / lout- also from state s0, and

the third cycle can be reached by firing uin- / uout- Ñ uin+ / uout+ from state s6.

Now, if we were decompose this BM specification using BM Decomp then BM

Decomp will first detect these three cycles, and generate a master “master” BM

specification and three “machine” BM specifications as shown in Figure 2.16, where

the latter corresponds to each cycle that was described above.

(a) Master

(b) First machine

(d) Third machine (c) Second machine

Figure 2.16: Decomposed BM specifications of the DME Controller
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Note that the communication between these (X)BM specifications happen through

a globalised set of request and acknowledgement signals, where the ‘control’ is given

to a (X)BM specification via a request from the active (X)BM specification, such that

there can only be at most one active BM specification and all other BM specifications

are either inactive (i.e. waiting to receive control) or suspended (i.e. waiting for the

control to return). This, in particular, means that this decomposition method [7] is

purely “syntactic” and does not allow concurrency between different components and

their environments.

2.4.2 Tools for Signal Transition Graphs

Petrify [20] is a logic-based synthesis tool used to manipulate concurrent specifi-

cations such as Petri nets and STGs, and to synthesise and optimise asynchronous

circuits. When a Petri net or an STG is given, Petrify can ‘net synthesis’ this Petri

net or STG, where it will optimise and produce a new corresponding Petri net or

STG that is simpler than the original one.

For example, let us consider an STG that contains some redundancies (e.g. dou-

bled a+ transitions, doubled x+ transitions and an ineffective arc from b+ to z+)

in Figure 2.17a. Here, if we apply ‘net synthesis’ to this STG, Petrify will then

optimise and remove the redundances, as shown in Figure 2.17b.

(a) Redundant STG (b) Optimised STG

Figure 2.17: Petrify optimisation of an STG using ‘net synthesis’

38



CHAPTER 2. BACKGROUND

Petrify can also produce an optimised net-list of asynchronous controllers in

a target gate library, while preserving any specified input-output behaviour. When

a Petri net or STG is synthesised into an asynchronous circuit, Petrify will first

perform state assignment, which consists of logic minimisation and speed-independent

technology mapping to the target library, by resolving any complete state coding (CSC)

problems. Thus, resulting in a net-list that is speed-independent.

For example, let us consider an STG that contains a CSC conflict in Figure 2.18a [20].

Here, if we use Petrify to resolve the CSC conflict in this STG, then Petrify will

insert a new state signal csc0 to resolve the conflict, such that csc0+ and csc0- were

inserted to ensure the resulting logic is optimised, as shown in Figure 2.18b.

(a) STG with CSC conflicts (b) STG with resolved CSC conflicts

Figure 2.18: Petrify resolving some CSC conflicts found in an STG

The Unfolding Tools [32] are a collection of command-line based tools that are

used to provide various verification and synthesis flows, based on Petri net unfoldings.

Mpsat [34, 33] is the unfolding tool used to verify and synthesis STGs using

an incremental Boolean satisfiability approach, where Mpsat addresses the issue of

deriving equations for logic gates that implement each other signal, e.g. when the

reachability graph of an STG is used to be synthesised into an asynchronous circuit,

by not constructing the reachability graph of the STG. Instead, Mpsat performs

the synthesis based on the STG’s causality, avoiding the STG’s structural conflicts

between its events that are involved in a finite and complete prefix of its unfolding.
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Additionally, Mpsat also provides a host of verification including the STG’s im-

plementability properties provided in Section 2.2.3, CSC checks, and N-way confor-

mation. For example in Figure 2.19, if we verified N-way conformation between the

three STGs [9] that are specifying a toggle (i.e. Figure 2.19a), a call (i.e. Figure 2.19b)

and the environment (i.e. Figure 2.19c), then we will find that these STGs are indeed

conformant with each other.

(a) Toggle (b) Call (c) Environment

Figure 2.19: N-way conformant STGs

Another tool in the Unfolding Tools is Pcomp [9] , which is used to combine

several STGs into one singular STG via parallel composition, where the designer

follows the modular design approach by designing the models of subsystems and then

combining them to create the model of the whole system, rather than the monolithic

design approach of designing the model of the whole system.

To show how Pcomp works, let us re-consider the three STGs in Figure 2.19. If

we apply parallel composition to these three STGs using Pcomp, then we can achieve

the composed STG shown in Figure 2.20.

Figure 2.20: Composed STG of the three STGs from Figure 2.19 using Pcomp
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Workcraft [2] is a visual framework that provides rich support for interpreted

graph models including FSMs, Petri nets, and in particular STGs.

Workcraft has a graphical front-end that supports the editing and simulation

of specifications, as well as an established back-end of tools that include Petrify and

Unfolding Tools like Mpsat for the verification and synthesis of specifications,

as well as Pcomp for the composition of STGs, which are automated. Moreover,

Workcraft uses a plugin-based architecture that allows new plugins and new back-

end tools to be easily integrated.

For an example of Workcraft and its features, Figure 2.21 shows the design,

simulation, verification, and synthesis of an STG specifying the C-element gate.

Figure 2.21: Design, simulation, verification, and synthesis of an STG specifying a
C-element gate in Workcraft
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Technical Motivation

In this chapter, we will cover the motivation of this thesis in greater detail, where

we also include the technical aspects that are not yet covered in Section 1.1.

Firstly, we will revisit the current design philosophy, where circuit designers must

choose between the ‘legacy’ design route of Finite State Machines (FSMs) involv-

ing Burst-Mode (BM) specifications and the ‘disruptive’ design route of Petri nets

involving Signal Transition Graphs (STGs).

Next, we will provide a motivating example that involves the design of a handshake

decoupling system. In this example, we have a three-part asynchronous controller

that interacts with a distributed environment that consists of a two-part generator

and two handshake handlers, where there are two concurrent handshakes that can be

decoupled as far as possible depending on the environment conditions. We will then

attempt to model this example using both BM specifications and STGs, before we

evaluate each model according to the design philosophy.

Finally, we will establish the connection between BM specifications and STGs by

proposing a new model called the Burst Automaton (BA), which acts as a framework

for enabling interoperability between many models including BM specifications and

STGs. Here, we also cover a new design route that is provided by our model, where

we can transition from the design of BM specifications to the circuit synthesis of

STGs, before we show how BAs are used to model the motivational example.
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3.1 Design Philosophy of Asynchronous Circuits

In this section, we will cover the two design routes of asynchronous circuits that were

briefly covered in Section 1.1, where the first is the ‘legacy’ design route based on

FSMs and the second is the ‘disruptive’ design route based on Petri nets.

To begin, let us revisit the two aforementioned design routes shown in Figure 3.1

that is expanded to include the synthesis tools used in their respective route.

(Extended) Burst-Mode
((X)BM) Specification model

Signal Transition Graph
(STG) model

Circuit Implementation

Circuit Implementation

Verification and
Synthesis with Minimalist

(BM) and 3D (XBM)

Synthesis with Workcraft
via Petrify and MPSat

Non-distributable Environment

Distributable Environment

Verification with
Workcraft via MPSat

Check failed

Check passed

Check failed

Check passed

Design routes

Burst-Mode Specification

Signal Transition Graph

Figure 3.1: Existing Design Routes with BM specifications and STGs

In the first design route, BM specifications are used to model and synthesise BM

controllers. In Section 2.2.2, BM specifications are described to be a simple entry

into asynchronous circuit design for (synchronous) circuit designers, as they resemble

synchronous FSMs [55]. BM specifications favour the circuit designer’s familiarity of

state-based methods, meaning they can easily adapt and use BM specifications.
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Additionally, BM specifications are supported by the synthesis tool Minimalist

to produce optimal BM controllers [54]. Note that BM specifications cannot express

input-output concurrency, which led to the proposal of its extension, the Extended

BM (XBM) specification, where it enables input-output concurrency by introducing

conditionals and “don’t cares” [68], and is supported by the synthesis tool 3D.

However, while BM specifications prove to be quite effective and have seen use

by both academia and industry to design and implement a number of significant

circuits [54], the circuit implementations produced by both Minimalist and 3D may

no longer be well-optimised, as these tools have limited support and are no longer

regularly updated. Moreover, the produced circuit implementations are limited to a

non-distributable environment, due to BM’s inherent ‘burst-mode’ timing assumption

and BM’s well-formed requirements, which can be limiting if a particular behaviour

is required, e.g. decoupled signals and output choices as later shown in Section 3.2.

In the second design route, STGs are used to model and synthesise speed-independent

(SI) (or equivalently quasi-delay-insensitive (QDI)) asynchronous circuits. In Sec-

tion 2.2.3, STGs are described to be flexible as they can express many behaviours

including input-output concurrency, output choices, non-determinism and other in-

herent behaviours from distributed systems. STGs favour producing well-optimised

circuits using their well-established tools like Petrify and Mpsat, which aims for

circuit implementations that are small and yield a high performance.

Nevertheless, while STGs are desirable for asynchronous circuit design, STGs

are also seen as too different by the industry, due to the industry’s unfamiliarity

with event-based methods. This suggests that circuit designers may opt for more

familiarised approaches that are state-based methods like BM specifications.

In the following sections, we will show how our BA model bridges the gap between

the ‘legacy’ design route and the ‘disruptive’ design route.
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3.2 Motivating Example of a Handshake Decoupler

In this section, we will use a distributed control system that decouples handshakes as

an example to highlight some of the issues described for BM specifications and STGs.

The circuit block diagram of our handshake decoupler is shown in Figure 3.2, where

an asynchronous controller interacts with a distributed environment that consists

of a two-part generator and two other environment parts called ‘left’ and ‘right’

respectively. For each side of the controller, there is a pair of handshakes that can be

decoupled as far as possible, depending on the environment conditions.

Figure 3.2: Block Diagram of the Handshake Decoupler

As shown in the circuit block diagram, there are three components in our asyn-

chronous controller: the left side of the controller, the right side of the controller, and

a synchroniser. The left side of the controller interacts with the left generator, left

environment and synchroniser via handshakes rm/am, rleft/aleft and rendm/aendm,

while the right side of the controller interacts with the right generator, right environ-

ment and synchroniser via handshakes rn/an, rright/aright and rendn/aendn.

For each iteration of the handshake rm/am (rn/an), the left (right) generator

provides a reading of m (n) to the controller’s left (right) side, where:
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• If m=1 (n=1) then the controller’s left (right) side will initiate the handshake

rleft/aleft (rright/aright) with the left (right) environment, such that when the

handshakes rm/am (rn/an) and rleft/aleft (rright/aright) are completed, the con-

troller is reset for the next reading of m (n) and the left (right) generator’s

counter is incremented. Note that this transition sequence can be repeated up

to i (j) times where i P N (j P N).

• If m=0 (n=0) then the controller’s left (right) side will instead initiate the hand-

shake rendm/aendm (rendn/aendn) with the synchroniser, where the controller’s

left (right) side is prevented from initiating further handshakes of rm/am (rn/an)

with the left (right) generator. These handshakes may only resume once the con-

troller’s right (left) side also initiates its handshake rendn/aendn (rendm/aendm)

with the synchroniser, which resets both sides of the controller to their initial

state and resets the counters of both the left generator and right generator to

zero. Note that only the rendm input events should follow the aendm output

events, and only the rendn input events should follow the aendn output events.

Now, suppose that we want to design all three parts of the asynchronous controller

in our handshake decoupler by following either design route and using its formalism.

Firstly, let us consider the ‘disruptive’ design route. Here, we can easily design and

capture the specified behaviour of the controller using STGs, as shown in Figure 3.3.

Next, we can verify in Workcraft that each STG satisfies the standard STG

implementability properties that include consistency, deadlock-freeness, input proper-

ness, output-persistency and output determinacy.

Lastly, once verification is complete, we can synthesise the three STGs using either

Petrify or Mpsat backends to produce some possible circuit implementations like

the SI (QDI) circuits shown in Figure 3.4.
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(a) Left Side (b) Sync Component (c) Right Side

Figure 3.3: STG of each controller part

(a) Left Side (b) Sync Component (c) Right Side

Figure 3.4: Possible Circuit Implementation of the Controller Parts
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Alternatively, if we want to compose the STGs together, then we can easily use

Workcraft to perform composition of our three STGs using the Pcomp backend,

as shown in Figure 3.5 Note that all shared signals are converted into outputs and

the composed STG is set to guarantee N-way conformation between the three STGs.

Figure 3.5: Composed STG from the Decoupling Handshake Controller Parts

Again, we can verify in Workcraft that this composed STG also satisfies the

aforementioned standard STG implementability properties, and then synthesise it us-

ing either Petrify or Mpsat backends to produce a possible circuit implementation

like the SI (QDI) circuit shown in Figure 3.6.

Nevertheless, while STGs are shown to be flexible, i.e. they are concurrent, can

express behaviours not available in (X)BM specifications, can be easily composed

and have access to well-established tools like Petrify and Mpsat, the problem with

the ‘disruptive’ design route is that circuit designers are not generally familiar with
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event-based methods. Instead, they rather opt for the ‘legacy’ design route as they

are more familiarised with state-based methods, despite the disadvantages that this

route may pose, e.g. not well-optimised circuit implementations.

In fact, this need for the circuit designer’s familiarity of FSMs can even be seen in

some STG-based approaches, e.g. Extended STGs (XSTGs) that has some elements

of XBM specifications [45, 24], several design flows that partition STGs into several

XBM specifications [38, 12, 43], and an STG-based flow with some FSM entry [25].

Figure 3.6: Possible Circuit Implementation of the Composed Controller
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Now, let us consider using the ‘legacy’ design route. Here, we try to design

and capture the specified behaviour of the controller using BM specifications, while

following the STG’s transition sequence in Figure 3.3, as shown in Figure 3.7.

(a) Left Side (b) Sync Component (c) Right Side

Figure 3.7: BM Specification of each controller part

Note that if the rising and falling of the environment conditions m and n is unde-

termined, then it is more convenient to use XBM specifications to capture m and n

with conditionals, as this would otherwise require the whole model of the BM spec-

ification to be replicated at least once. But, as shown in the left and right STGs in

Figure 3.3, we can interpret m and n to only rise or fall when there is a token at the

place between rm and am, and the place between rn and an respectively. Thus, we

can capture this behaviour using BM specifications.

When we verify the three BM specifications, they satisfy BM’s well-formed re-

quirements that include the maximal set property (as we have no non-deterministic

choices), non-empty input burst property (as all outputs appear with an input), and

the unique state entry condition (as encodings are not changed by signal changes).
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However, while the three BM specifications are all well-formed, there are two

compromises that had to be made. In particular:

1. A new input called begin is added at the start of the controller’s left side and

the controller’s right side, as the controller’s left side initiates its handshake

with the left generator by firing output event rm+ and the controller’s right

side initiates its handshake with the right generator by firing output event rn+.

If the input events begin+ are not included in either BM specification then the

non-empty input burst property is violated. So, we added the begin+ input

events and assume the environment sending these events is well-behaved.

2. Due to the structure of bursts in the ‘burst-mode’ timing assumption, the output

events aendm and aendn in the controller’s synchroniser must be grouped up.

This means that both input events rendm and rendn will always follow both

output events aendm and aendn despite the environment is distributed, where

only rendm should follow aendm and only rendn should follow aendn as shown

in the synchroniser STG in Figure 3.3b. Note that grouping the output events

aendm and aendn also causes a conformation violation between both sides of

the controller and the synchroniser, as the controller’s left side is forced to wait

for aendn and the controller’s right side is forced to wait for aendm, despite

neither side should wait for the other to receive their respective outputs (e.g.

the controller’s left side should be able to send rendm after receiving aendm

from the synchroniser without waiting for the controller’s right side to receive

aendn). Typically, we resolve this by interleaving the output events aendm and

aendn to force some order. But, this is not possible in BM specifications without

violating their non-empty input burst property.
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Furthermore, if we wish to compose these BM specifications together, this is un-

fortunately impossible (or at least extremely difficult), as there are no automated

methods that are available to conveniently compose (X)BM specifications or com-

pose their circuit implementations. Also, the ‘burst-mode’ timing assumption makes

it non-trivial to compose (X)BM specifications due to the coupling of bursts [17], and

BM’s well-formed requirements can limit how the (X)BM specifications are composed,

e.g. composing two BM specifications may result in a non-deterministic choice, which

violates the maximal set property (or the distinguishability constraint in the case of

XBM specifications), or bursts that only contain outputs after the shared signals are

turned into outputs, which violates the non-empty input burst property.

3.3 Proposal of Burst Automaton Route

To address the issues that are described for the ‘legacy’ design route of BM specifica-

tions and the ‘disruptive’ design route of STGs, we propose a new model called Burst

Automaton (BA) [16]. BA is a generic FSM-like model that labels its arcs with sets

of actions, where it can specify many types of systems including concurrent systems,

asynchronous circuits, and distributed systems.

BA also provides the necessary framework to enable interoperability between many

types of models including FSMs, BM specifications, XBM specifications, Petri nets,

STGs, and generally any model that can be automatically translated into any of these,

e.g. Waveform Transition Graphs (WTGs) [50] which have STG-based semantics.

Note that Chapter 4 covers BAs in greater detail, where it discusses BA’s model

description, mathematical definitions (i.e. formal definition and asynchronous reach-

ability graph), translation methods to STG including XBM components (e.g. condi-

tionals and “don’t cares”), and distribution method to compose several BAs together.
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By proposing BAs, we create a new ‘co-design’ route that establishes a connection

between the ‘legacy’ and ‘disruptive’ design routes as shown in Figure 3.8, where

the ‘legacy’ design route’s flow is highlighted in red, the ‘disruptive’ design route’s

flow is highlighted in blue, the ‘co-design’ route’s flow is highlighted in green, and all

common paths are not highlighted with a particular colour.

(Extended) Burst-Mode
((X)BM) Specification model

Signal Transition Graph
(STG) model

Circuit Implementation

Circuit Implementation

Burst Automaton
(BA) model

Verification and
Synthesis with Minimalist

(BM) and 3D (XBM)

Translation from
XBM Specification
to Burst Automaton

Synthesis with Workcraft
via Petrify and MPSat

Translated STG model

Translation from BA
to STG

Non-distributable Environment

Distributable Environment

Verification with
Workcraft via MPSat

Verification of (X)BM
well-formed properties

via Workcraft

Check
failed

Check passed

Check failed
(translated via BA)

Check failed
(original STG)

Check passed

Burst-Mode Specification

Signal Transition Graph

Burst Automata

Common path

Design routes

Check failed

Check passed

Figure 3.8: Proposal of new ‘co-design’ route established by Burst Automata

In this ‘co-design’ route, circuit designers can create their (X)BM specifications,

automatically translate them to BAs for subsequent translation to STGs, where they

can access the STG’s tools to compose their (X)BM specifications using Pcomp and

synthesise them into SI (QDI) circuits using Petrify and Mpsat.

53



CHAPTER 3. TECHNICAL MOTIVATION

This approach essentially allows circuit designers to produce well-optimised circuit

implementations using (X)BM specifications, where it does not compromise the circuit

designer’s familiarity of FSMs and the circuit designer does not need to re-specify their

systems using STGs, as this design route automates the translation process from

(X)BM specifications to STGs and hides it from the circuit designer’s view. Thus,

this grants circuit designers convenient access to the STG’s tools for their (X)BM

specification without the need to train and understand the STG’s semantics.

To understand the design, verification and synthesis processes in this ‘co-design’

route, let us revisit the handshake decoupler and design all three parts of its asyn-

chronous controller. Here, we can easily design and capture the specified behaviour of

the handshake decoupler’s controller using BAs, while also following the STG’s tran-

sition sequence in Figure 3.3, as shown in Figure 3.9. Note that in some cases, we can

also translate (X)BM specifications to BAs by relaxing their inherent ‘burst-mode’

timing assumption and their well-formed requirements, as later shown in Section 6.1.

Although the BAs in Figure 3.9 are larger than the BM specifications in Figure 3.7,

BA’s fine-grain style of specifying behaviour allows us to easily capture the decoupling

of handshakes rendm/aendm and rendn/aendn, whereas BM specification’s coarse-

grain style of specifying behaviour cannot do so without violating one of its well-

formed requirements or the ‘burst-mode’ timing assumption.

Once the three BAs are designed, we can translate them to the STGs shown in

Figure 3.10, where we can even simplify these STGs by ‘net synthesis’ using Petrify

to obtain similar or the same STGs in Figure 3.3. We can then verify in Workcraft

that the three translated STGs satisfy the standard STG implementability properties

(i.e. consistency, deadlock-freeness, input properness, output-persistency and output

determinacy), and synthesise them using Petrify orMpsat backends to produce the

same possible circuit implementations like the SI (QDI) circuits shown in Figure 3.4.
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(a) Left Side (b) Sync Component (c) Right Side

Figure 3.9: BA of each controller part

Alternatively, we can also compose the three translated STGs together using

Pcomp to obtain the composed STG shown in Figure 3.11.

Again, we can verify in Workcraft that this composed STG also satisfies the

aforementioned standard STG implementability properties, and then either synthesise

it using Petrify or Mpsat backends to produce the same possible circuit implemen-

tation like the SI (QDI) circuit shown in Figure 3.6, or build its reachability graph

that can be interpreted as the composed BA.

Note that the reachability graph of the composed STG is not included in this

section and can instead be found in Appendix A via Figure A.1, as the model cannot

reasonably fit due to its monolithic size after translating many concurrent transitions.

55



CHAPTER 3. TECHNICAL MOTIVATION

(a) Left Side (b) Sync Component (c) Right Side

Figure 3.10: Translated STG of each controller part

However, one behaviour that cannot be easily implemented by BAs is mutual

exclusion (mutex) elements [59], which are used to resolve metastability issues.

In circuit design, systems are required to make an arbitrary decision, where

metastability can persist for a long period of time. Although the probability of a

long delay is small, if this indecision is repeated enough times, then this can cause

a malfunction in some systems like synchronous circuits, e.g. when a delay becomes

longer than a clock cycle. Additionally, metastability is analogue by nature and

should therefore not propagate into the digital part of the system.

For asynchronous circuits, mutex elements are introduced to resolve this metasta-

bility issue. Although mutex elements do not fail, it can take an indefinitely long

time to resolve. Thus, it is important that they are removed from critical paths.
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Figure 3.11: Composed Translated STG of the Handshake Decoupler’s Controller

(a) Output persistent STG (b) BA (c) Non-output persistent STG

Figure 3.12: Modelling a mutex element

In STGs, we can simply tag a place as a ‘mutex’ using Workcraft as shown

in Figure 3.12a. But, this is not possible at the level of BAs. If we design a system

that contains some arbitration, e.g. an N-way arbiter, as the BA in Figure 3.12b

and translate it to the STG in Figure 3.12c, then this can violate output persistency

unless we tag the appropriate place as a ‘mutex’ in the translated STG.
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3.4 Benefits from Burst Automaton Route

From this modelling exercise, we can identify several potential areas of improvements

for the ‘legacy’ design route of (X)BM specifications and the ‘disruptive’ design route

of STGs, which our ‘co-design’ route of BAs achieves. These include:

• Access to the STG’s well-established tools for enabling composition,

verification and synthesis of SI (QDI) circuits for BM specifications:

Using BAs, we grant BM specifications access to the STG’s well-established

tools after subsequent translations to STGs. This, in particular, enables the

necessary step for the verification and synthesis of BM specifications into well-

optimised SI (QDI) circuit implementations using Petrify and Mpsat back-

ends, and the composition of BM specifications (at the level of BAs) using the

Pcomp backend. With the support of Workcraft, we are also able to design,

simulate and translate our BM specifications and BAs seamlessly.

• Familiarity for state-based circuit designers: Because BM specifications

can be implemented by BAs, this allows state-based circuit designers to access

the STG’s well-established tools by simply translating their BM specifications

into BAs and then subsequently into STGs. This means that state-based circuit

designers are not required to fully understand the design and semantics of STGs

or re-specify their systems using STGs, as BAs automate the process of building

an STG from a (X)BM specification in the background through the implemented

tool support in Workcraft, which is covered in Chapter 5

• Simpler model definition for (X)BM specifications: By generalising some

of the (X)BM specification’s well-formed properties, e.g. the maximal set prop-

erty and non-empty input burst property, BAs can express many behaviours in-
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cluding input-output concurrency, output choices and non-deterministic choices,

while enabling an easy way to compose (X)BM specifications. In fact, BAs are

easier to define than (X)BM specifications as there are no constraints (i.e. well-

formed requirements) that determine how systems are specified, and we even

ensure that the state-based circuit designer’s familiarity of FSMs is retained

through the BA’s design. Moreover, BAs are more symbolic and are more of

a translation-oriented model, meaning it has less “physicalities” than (X)BM

specifications, e.g. the states in BAs are not physically implemented as states

variables and do not store any information, whereas the states in (X)BM spec-

ifications store the encoded value of every signal.

• Model interoperability: There are great advantages of modelling formalisms

that have compatible semantics, as this allows a fluid transition (via an au-

tomatic translation process) from one formalism to another, and allows the

design of large systems using pre-existing blocks that are expressed in different

formalisms. With BAs, we achieve interoperability between BM specifications,

XBM specifications, STGs, FSMs, Petri nets, and generally any formalism that

can be automatically translated into any of these formalisms, e.g. WTGs [50]

which have STG-based semantics.

3.5 Summary

In this chapter, we cover the current design routes that are available for circuit de-

signers, where the first, i.e. ‘legacy’, design route involves BM specifications and the

second, i.e. ‘disruptive’, design route involves STGs.

For our motivating example, we use a handshake decoupler to highlight and anal-

yse the processes involved in both the ‘legacy’ and ‘disruptive’ design routes.
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In the ‘legacy’ design route, (X)BM specifications are able to model each part of

the handshake decoupler’s asynchronous controller sufficiently without violating any

of the (X)BM well-formed requirements, and can be synthesised into a BM controller.

However, several compromises are also made to each model to ensure that the (X)BM

well-formed requirements and the ‘burst-mode’ timing assumption are not violated

(e.g. adding begin events to prevent violating the non-empty input burst property,

and coupling the handshakes rendm/aendm and rendn/aendn to prevent violating the

‘burst-mode’ timing assumption). Additionally, there are also no methods that can

conveniently compose (X)BM specifications together, meaning manual composition

is required, which can be a non-trivial and very time consuming task.

In the ‘disruptive’ design route, STGs are able to model each part of the handshake

decoupler’s asynchronous controller without any compromises, as they are flexible, can

be easily composed, and can be easily verified and synthesised into an SI (QDI) circuit

using their well-established tools. But, despite these advantages, the industry is not

familiar with event-based methods like STGs and rather opt for more familiarised

state-based approaches like (X)BM specifications, as using STGs require training the

circuit designers, which can be expensive and time-consuming.

Thus, we propose a new model called BA, which is generic-FSM like model that

labels its arcs using sets of actions and acts as a framework that enables interoperabil-

ity between many models including (X)BM specifications and STGs. By proposing

BAs, we also create a new ‘co-design’ route that establishes a connection between

the ‘legacy’ design route and the ‘disruptive’ design route, and enable the co-design

of (X)BM specifications and STGs, where we can verify and synthesise the (X)BM

specifications into SI (QDI) circuits and compose a group of (X)BM specifications

together through an automated method, which translates BM specifications to BAs

and subsequently STGs.
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Burst Automata

In this chapter, we will study the Burst Automaton (BA) model, which is the

main contribution of this thesis.

In Section 4.1, we will cover the model description of BAs, where we provide a

textbook definition of BAs and a basic view of the BA’s design.

In Section 4.2, we will cover the mathematical definitions for BAs that include

their formal definition and their asynchronous reachability graph, where the latter

can be used to check for model equivalences with the reachability graph of another

model, e.g. Signal Transition Graphs (STGs).

In Section 4.3, we explore the three translation methods from BAs to STGs, where

each translation method preserves differing model equivalences (i.e. the language,

weak bisimulation and strong bisimulation), and the translation method for Extended

Burst-Mode (XBM) specification’s components to their STG counterparts.

Finally, in Section 4.4, we investigate the distribution methodology for BAs, where

we provide a textbook definition of a distributed Finite State Machine (FSM) and

their distribution criteria. We will then cover the composition method of BAs,

which include the verification and synthesis of speed-independent (SI) (or equiva-

lently, quasi-delay-insensitive (QDI)) circuits via STGs.
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4.1 Model Description

In this section, we cover the model concept of BAs. Here, we discuss the design of

BAs and provide some basic examples, where we will describe the properties of BAs

and highlight the differences between BAs and FSMs. Next, we will highlight the

purpose and benefits of BAs, before we show the design workflow of BAs and explain

how it achieves interoperability between many different models.

Note that for the comparison between BAs and FSMs, we will focus on Burst-

Mode (BM) specifications, as they can be seen as a sub-class of fundamental mode

asynchronous FSMs that operate in the ‘burst-mode’ timing assumption, where the

fundamental mode is essentially ‘extended’ to work with bursts.

4.1.1 Definition of Burst Automaton

BA [16] is a generic FSM-like model that acts as a framework for enabling interoper-

ability between many types of models, and is akin to Mealy machines [44].

The BA’s framework allows us to dynamically change between many models in-

cluding FSMs, BM specifications, XBM specifications, Petri nets and Signal Transi-

tion Graphs (STGs), which can be particularly useful when we wish to change our

specification from one model (e.g. BM specification) to another model (e.g. STG),

or even combine specifications that may be expressed using different models.

BA also allows us to create a new design route for circuit designers, where we

establish a connection between the ‘legacy’ design route (X)BM specifications and the

‘disruptive’ route of STGs. This essentially grants BM specification access to the well-

established tools that are available for STGs, which enables subsequent composition,

verification and synthesis of SI (QDI) circuits via translation to STGs [15].
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(a) BM Specification (b) STG (c) BA

Figure 4.1: Design of C-element Gate

4.1.2 Summarised Design of Burst Automaton

To understand the general design of BAs, let us first consider the C-element gate that

is specified as a BM specification in Figure 4.1a and as an STG in Figure 4.1b, before

we view the C-element gate that is specified as a BA in Figure 4.1c.

For the purpose of this example, we will only focus on the design aspect of the

C-element gate. By observing the BM specification, the STG and the BA, there are

two key points that can be made about these models:

1. We can see that the design of these three models are very similar. Indeed,

the firing sequence of the signals are the same for all three models, where the

key difference is that the BM specification fires its burst in the order of inputs

then outputs, the STG fires its concurrent transitions that comprise the burst,

and the BA fires its set of signals using arcs that require a step for inputs and

another step for outputs.

2. The states in the BM specification and the BA are akin to the places in the STG,

as the STG is 1-safe. The BA also models the intermediate state between the

BM specification’s input burst and output burst, where this intermediate state

represents when the inputs have arrived and the outputs are not yet produced.

Due to the similiarity between the designs of these three models, we can use

BAs as the intermediate model to translate between BM specifications and STGs.
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Thus, this allows BAs to act as a framework that enables interoperability between

BM specifications, STGs, FSMs, or any other models that share their semantics, e.g.

Waveform Transition Graphs (WTGs) [50] which uses STG semantics.

Note that while WTGs are also introduced as a new formal model to bridge the gap

between designers and formal models like BAs, the design of WTGs are also based

on waveforms that are generally understood by analogue circuit designers but not

digital circuit designers, whereas BAs resemble FSMs that are generally understood

by both analogue circuit designers and digital circuit designers. Thus, this allows

BAs to be easily incorporated in other design flows of asynchronous circuit design,

e.g. the analogue-asynchronous design flow [61].

4.2 Mathematical Definitions

In this section, we will cover the formal definition of BAs and the asynchronous

reachability graph of BAs, where the latter can be used to check for model equivalence

with the reachability graph of another model, e.g. STGs.

4.2.1 Formal Definition

Generally, a BA can be interpreted as an FSM with its arc labels being sets of actions,

where it is defined as a tuple B “ pΣ, S, A, s0q such that:

• Σ is an alphabet of atomic actions.

• S is a finite set of states.

• A Ď S ˆ 2Σ ˆ S is the set of arcs determining the flow relation.

• s0 P S is the initial state.
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In this definition, we do not partition the BA’s alphabet into inputs and outputs

nor do we assign any directions (i.e. ` or ´) to its actions, as these can instead be

viewed as refinements of the BA since it is a generic model.

There are no requirements that are similar to the BM specification’s maximal

set property nor the XBM specification’s distinguishability constraint, as BAs allow

arbitrary non-determinism, e.g. it is possible for two distinct arcs to originate from

the same state and be labelled by sets of actions that are a subset of or equal to each

other. It is also possible to have an empty set of actions as an arc label, which can be

interpreted as an ε transition. In fact, we can see that BAs naturally extend FSMs,

where the latter are essentially BAs that have its arcs labelled by singletons or by H.

In (X)BM specifications, bursts typically comprise a set of inputs followed by a

set of outputs. In BAs, we can model these bursts by explicitating the intermediate

state where all inputs have arrived and no outputs have been produced, such that

a BA requires two steps to fire an (X)BM-like burst. Note that it is possible for

the graphical notation to hide this intermediate state and be similar to the (X)BM

notation. Alternatively, it is also possible to mix inputs and outputs in the BA’s arc

labels, which in particular enables input-output concurrency.

Furthermore, we can consider the XBM specification’s conditionals and “don’t

cares” as auxiliary components that can be attached to the BA to create an XBM-

like model. Note that the translation from XBM specification’s conditionals and

“don’t cares” to their STG equivalent is covered in Section 4.3.4.

To help us understand the design of our BA formally, Figure 4.2 shows several BAs

with arcs labelling H, a set containing a singleton, a set containing multiple actions,

and a non-deterministic choice between two sub-related sets, while Figure 4.3 shows

several BAs with self-loop arcs labelling H, a set containing a singleton, and a set

containing multiple actions.
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(a) Empty set (b) Singleton (c) Multiple actions (d) Non-deterministic choice

Figure 4.2: Examples of BA’s labelled arcs

(a) Empty set (b) Singleton (c) Multiple actions

Figure 4.3: Self loop examples of BA’s labelled arcs

4.2.2 Reachability Graph

In addition to the formal definition of BAs, we can also assign interleaving semantics

to the BAs by defining their asynchronous reachability graph, where the actions in

the labelled arc’s set can fire in any order. These actions are atomic, as BAs are a

natural extension to FSMs, where the reachability graph of a BA can be interpreted

as a BA with all of its arcs labelled by singletons or by H.

Note that it is not possible to interpret the reachability graphs of (X)BM speci-

fications as (X)BM specifications, because they are not a proper extension of FSMs

with arcs labelling single events. In particular, the reachability graphs of (X)BM

specifications cannot be well-formed (X)BM specifications, as the ‘burst-mode’ tim-

ing assumption requires the input bursts and output bursts to alternate, and the

singular events expressing outputs violate the non-empty input burst property.

By defining the reachability graph of BAs, we can directly compare the BA with

another formalism, e.g. STG, through their reachability graphs and check their bisim-

ulation relation to each other.
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To help us understand the formal definition of the BA’s asynchronous reachability

graph, Figure 4.4 shows a simple example of some BA with the labelled arcs ‘a’, ‘b, c’

and ‘x, y, z’ in Figure 4.4a and its reachability graph in Figure 4.4b. In this example,

we will categorise each component found in the BA’s reachability graph and provide

a description of its role within the model. These components include:

• Original states that appear in the original BA. In this example, we have the

original states s1
0, s

1
1, s

1
2 and s1

3 where s1
0 is the initial state.

• Intermediate states that appear after firing some action that does not reach

an original state. In this example, we have the intermediate states ps12, tbuq,

ps12, tcuq, ps23, txuq, ps23, tyuq, ps23, tzuq, ps23, tx, yuq, ps23, tx, zuq and ps23, ty, zuq.

• Original to original connections, which are arcs between the BA’s original states.

In this example, we only have one original to original arc that is ps0, a, s1q.

• Original to intermediate connections, which are arcs from an original state to an

intermediate state. In this example, we have the original to intermediate con-

nections ps1, b, ps12, tbuqq, ps1, c, ps12, tcuqq, ps2, x, ps23, txuqq, ps2, y, ps23, tyuqq

and ps2, z, ps23, tzuqq.

• Intermediate to intermediate connections, which are arcs between intermediate

states. In this example, we have the intermediate to intermediate connections

pps23, txuq, y, ps23, tx, yuqq, pps23, txuq, z, ps23, tx, zuqq, pps23, tyuq, x, ps23, tx, yuqq,

pps23, tyuq, z, ps23, ty, zuqq, pps23, tzuq, x, ps23, tx, zuqq and pps23, tzuq, y, ps23, ty, zuqq.

• Intermediate to original connections, which are arcs from an intermediate state

to an original state. In this example, we have the intermediate to original

connections pps23, tx, yuq, z, s3q, pps23, tx, zuq, y, s3q and pps23, ty, zuq, x, s3q.
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(a) BA (b) Reachability graph

Figure 4.4: Simple example demonstrating the design of a BA’s reachability graph

From this simple example, we can formally define the asynchronous reachability

graph of a BA B as an arc-labelled directed graph RGB = pΣ, S1, A1, s1
0q where:

• The alphabet Σ is inherited from B.

• S 1 = S Y pA ˆ p2Σ z tH,Σuqq is the set of reachable states such that for every

pair pa,D1q P S 1, a “ psu, D, svq P A is a labelled arc and H ‰ D1 Ă D is a

subset of a’s label.

• A1 Ď S 1 ˆpΣYtεuqˆS 1 is the set of labelled arcs, which establishes the following

connections between the states:

Original Ñ Original: psu, ε, svq P A1 if psu,H, svq P A and psu, l, svq P A1 if

psu, tlu, svq P A.

Original Ñ Intermediate: psu, l, pa, tluqq P A1 if a “ psu, D, svq P A and l P D.

Intermediate Ñ Intermediate: ppa,D1q, l, pa,D1 Ytluqq P A1 if a “ psu, D, svq P A

and l R D1 and D1 Y tlu Ă D.

Intermediate Ñ Original: ppa,D1q, l, svqq P A1 if a “ psu, D, svq P A and l R D1

and D1 Y tlu “ D.

• s1
0 “ s0 is the initial state.
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Again, to help us understand the design of our BA’s reachability graph formally,

Figure 4.5 shows several reachability graphs of BAs with arcs labelling H, a set con-

taining a singleton, a set containing multiple actions, and a non-deterministic choice

between two sub-related sets, while Figure 4.6 shows several reachability graphs of

BAs with self-loop arcs labelling H, a set containing a singleton, and a set containing

multiple actions.

(a) Empty set (b) Singleton (c) Multiple actions (d) Non-deterministic choice

Figure 4.5: Examples of BA’s reachability graph’s labelled arcs

(a) Empty set (b) Singleton (c) Multiple actions

Figure 4.6: Self loop examples of BA’s reachability graph’s labelled arcs

When we observe the reachability graph of a BA, we can see that it is just an FSM

(or even a BA with all of its arcs labelled by singletons and H) and is very similar to

the reachability graph of STGs. Note that the size of the BA’s reachability graph is

exponential to the maximal cardinality of the BA’s bursts, although large bursts are

rare in practice.
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4.3 Translation to Signal Transition Graphs

In this section, we will cover three translation methods from BAs to STG and a trans-

lation method from the XBM specification’s components to their STG counterparts.

The first translation method in Section 4.3.1 produces an STG with “fork” and

“join” dummy transitions, which preserves the language and is linear to the size of

the original BA.

The second translation method in Section 4.3.2 produces an STG with “join”

dummy transitions, which preserves weak bisimulation but is potentially exponential

to the size of the original BA.

The third translation method in Section 4.3.3 produces an STG with neither

“fork” nor “join” dummy transitions, which preserves strong bisimulation but is also

potentially exponential to the size of the original BA.

Finally, the translation method from the XBM specification’s components to their

STG counterpart in Section 4.3.4 explicitates fake outputs and “don’t cares”, and

translates conditionals into elementary cycles with lock places.

4.3.1 STGs with dummy transitions

In this translation, we produce an STG that is language equivalent to the original

BA. Intuitively, the BA’s states are translated into STG places where the initial state

is represented by the place containing a token, and the BA’s bursts are translated

into concurrent STG transitions where two extra dummy transitions (i.e. ε-labelled

transitions) called ‘fork’ and ‘join’ are created for each burst.

To help understand how this translation works, Figure 4.7 shows a simple example

where we translate a BA with the labelled arcs ‘a’, ‘b, c’ and ‘x, y, z’ to an STG.
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(a) BA Burst

(b) Transitions (c) Places (d) Arcs

Figure 4.7: Translating a BA to an STG with “fork” and “join” dummy transitions

To begin, we create six transitions labelled a, b, c, x, y and z respectively, where

transition a comprises the labelled arc ‘a’, transitions b and c comprise the labelled

arc ‘b, c’, and transitions x, y, and z comprise the labelled arc ‘x, y, z’. Then, we

create two additional dummy transitions called ‘fork’ and ‘join’ for each labelled arc.

Next, we create a place for each state s0, s1 and s2, before we add a token to the

place corresponding to s0 as it is the initial state. Then, for each labelled transition

t P ta, b, c, x, y, zu, we create one incoming place and one outgoing place.
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Now, for each state s P ts0, s1, s2u, we connect an arc from the place corresponding

to s to the ‘fork’ dummy transition created from the labelled arc where s is the source

state, and an arc from the ‘join’ dummy transition created from the labelled arc where

s is the destination state to the place corresponding to s. Then, for each labelled

arc a P tps2, ‘a’, s0q, ps0, ‘b, c’, s1q, ps1, ‘x, y, z’, s2qu, we connect arcs from the ‘fork’

dummy transition created from a to all incoming places created by a’s label, and from

all outgoing places created by a’s label to the ‘join’ dummy transition created from

a. Finally, for each labelled arc a P tps2, ‘a’, s0q, ps0, ‘b, c’, s1q, ps1, ‘x, y, z’, s2qu, we

connect an arc from each incoming place created by a’s label to the labelled transitions

that comprise a’s label, and an arc from the labelled transitions that comprise a’s

label to each outgoing place created by a’s label, such that there is only one incoming

place and one outgoing place for each each labelled transition.

By completing this example, we can determine how a BA is translated into an

STG with this method, and formalise the above steps for every burst found in the BA

as shown below, where each step is categorised by the STG component being created.

Transitions: For each arc in the BA, we create two ε-labelled STG transitions

called ‘fork’ and ‘join’ and a transition for every burst label element, such that:

• If the arc’s label is tσ1, σ2, ..., σku, where k ě 1, then we create k STG transitions

labelled σ1, σ2, ..., σk.

• If the burst’s label is H, then we create an STG transition labelled ε.

Places: For each state in the BA, we create a place and add a token to this place

if it corresponds to the BA’s initial state. Then, for each burst in the BA, we create

a set of incoming places and a set of outgoing places based on the burst’s cardinality,

e.g. if the burst’s cardinality is k ě 1 then we create k incoming places and k outgoing

places. For empty bursts, one incoming place and one outgoing place are created.
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Arcs: For each burst in the BA, we create an arc from:

1. The place corresponding to the source state to the ‘fork’ dummy transition.

2. The ‘fork’ dummy transition to every incoming place.

3. The i-th incoming place to the burst transition labelled by σi (or ε-labelled

transition in case of an empty burst).

4. The burst transition labelled by σi (or ε-labelled transition in case of an empty

burst) to the i-th outgoing place.

5. Each outgoing place to the ‘join’ dummy transition.

6. The ‘join’ dummy transition to the place corresponding to the destination state.

To show that the resulting STG from this translation is linear to the original BA,

Figure 4.8 shows an example where we translate a BA that contains the labelled arc

‘a, b’ followed by a choice between the labelled arcs ‘x, y’ and ‘x, z’.

By studying this example, we can see that the resulting STG is linear to the BA

and preserves the BA’s language. In particular, there is a one-to-one correspondence

between the BA’s states and the STG’s places (excluding the incoming and outgoing

places that are created from the bursts), and the firing of a burst in BAs is modelled by

the firing of concurrent transitions in STGs, where the labels of transitions correspond

to the actions that comprise the burst.

To illustrate how this translation preserves the language, Figure 4.9 shows the

reachability graphs of the BA and the translated STG in Figure 4.8, where two

possible traces are shown and highlighted in blue. The first trace in Figure 4.9a

shows firing labelled arc ‘a, b’ followed by labelled arc ‘x, y’, and the second trace in

Figure 4.9b shows firing labelled arc ‘a, b’ followed by labelled arc ‘x, z’.
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(a) BA (b) Translated STG

Figure 4.8: Linear translation of simple example

Note that the left and right FSMs in Figure 4.9a produce the language L1 “

tε, a, b, ab, ba, abx, aby, bax, bay, abxy, baxyu, while the left and right FSMs in Fig-

ure 4.9b produce the language L2 “ tε, a, b, ab, ba, abx, abz, bax, baz, abxz, baxzu. If

we merge the language sets L1 and L2, then we can generate the language L “

L1 Y L2 “ tε, a, b, ab, ba, abx, aby, abz, bax, bay, baz, abxy, abxz, baxy, baxzu for both

the reachability graph of the BA and the reachability graph of the translated STG.

Thus, meaning LpBARGq “ LpSTGRGq.

While we can see that this translation preserves the language of the original BA by

inspecting the traces of the BA’s asynchronous reachability graph and the resulting

STG’s reachability graph, it however does not preserve weak bisimulation when there

are choices between multiple ‘fork’ dummy transitions. For example, Figure 4.10

shows us trying to establish a bisimulation relation between the reachability graph of

the BA and the reachability graph of the translated STG from Figure 4.9.
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(a) First trace: L1 “ tε, a, b, ab, ba, abx, aby, bax, bay, abxy, baxyu

(b) Second trace: L2 “ tε, a, b, ab, ba, abx, abz, bax, baz, abxz, baxzu

Figure 4.9: Language preservation of linear translation example
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Figure 4.10: Violation of weak bisimulation found in the linear translation example

For the sake of contradiction, suppose that these two reachability graphs (i.e.

FSMs) are weakly bisimilar. Then, according to the definition of bisimulation in

Section 2.3.1, there is a bisimulation relation „ between the states of these FSMs and

it must relate the initial states, meaning s1
0 „ q0.

Here, the right FSM can make a transition q0
ε

ÝÑ q1, and the only way to match

this transition in the left FSM is to do nothing and stay in s1
0, meaning s1

0 „ q1.

Next, the left FSM can make a transition s1
0

a
ÝÑ ps01, tauq that can be matched by

the right FSM making a transition q1
a
ÝÑ q2 and vice versa. Also, the left FSM can

make a transition s1
0

b
ÝÑ ps01, tbuq that can be matched by the right FSM making a

transition q1
b

ÝÑ q3 and vice versa. Thus, meaning ps01, tauq „ q2 and ps01, tbuq „ q3.

Afterwards, the left FSM can make the transitions ps01, tauq
b

ÝÑ s1
1 and ps01, tbuq

a
ÝÑ

s1
1, which can be matched by the right FSM making the transitions q2

b
ÝÑ q4 and

q3
a
ÝÑ q4 respectively and vice versa. So, s1

1 „ q4.
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Like the first step, the right FSM can make a transition q4
ε

ÝÑ q5, and the only

way to match this transition in the left FSM is to do nothing and stay in s1
1, meaning

s1
1 „ q5.

Upon reaching state q5 on the right FSM, there is now a choice between transitions

q5
ε

ÝÑ q6 and q5
ε

ÝÑ q7. Note that the only way to match either of these transitions in

the left FSM is to do nothing and stay in s1
1, meaning s1

1 „ q6 and s1
1 „ q7.

However, when the left FSM is at state s1
1, it can make a transition s1

1
z
ÝÑ ps13, tzuq,

which the right FSM cannot match at state q6 due to no choice of z. Furthermore,

when the left FSM is at state s1
1, it can also make a transition s1

1
y
ÝÑ ps12, tyuq, which

the right FSM cannot match at state q7 due to no choice of y. Thus, this contradicts

s1
1 „ q6 and s1

1 „ q7 meaning these two FSMs are not weakly bisimilar.

Nevertheless, as we covered in Section 2.3.2, the semantics of non-deterministic

STGs are formally defined in [37], where it is argued that non-output-determinate

STGs are ill-formed and that language equivalence is adequate for output-determinate

STGs. This means that there is no requirement to preserve bisimulation, and that

the models produced by our translation are adequate enough in practice, since the

language is preserved and the models remain output determinate.

4.3.2 STGs with join dummy transitions

In Section 4.3.1, we presented a translation that produces an STG with ‘fork’ dummy

transitions and ‘join’ dummy transitions, which is linear to the size of the original

BA and preserves the language. However, Figure 4.10 shows that the translation

violates weak bisimulation when there are choices between multiple ‘fork’ dummy

transitions, as the choice of left x, right x, y and z in the original BA is replaced by

a non-deterministic choice of two ε-labelled ‘fork’ transitions in the translated STG.
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In this translation, we produce an STG that is weakly bisimilar to the original

BA, where we remove the ‘fork’ dummy transitions and preserve the ‘join’ dummy

transitions from the first translation. The cost to remove the ‘fork’ dummy transitions

is that places, which correspond to the BA states that contain multiple outgoing

arcs, must be replicated. Note that this may cause the resulting STG to become

exponential to the size of the original BA in the worst case, though the size of these

resulting STGs tend to be small in practice. Also, by removing the ‘fork’ dummy

transitions, it may be easier for verification and synthesis tools to handle as there are

fewer ε-transitions, e.g. Mpsat uses STG unfoldings and preserves ε-transitions.

To help understand how this translation works, Figure 4.11 shows a simple exam-

ple where we translate the same BA from Figure 4.7 to an STG.

(a) BA Burst

(b) Transitions (c) Places (d) Arcs

Figure 4.11: Translating a BA to an STG with “join” dummy transitions
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Like the previous translation, we again create six transitions labelled a, b, c, x, y

and z respectively, where transition a comprises the labelled arc ‘a’, transitions b and

c comprise the labelled arc ‘b, c’, and transitions x, y, and z comprise the labelled

arc ‘x, y, z’. Then, we create one additional dummy transition called ‘join’ for each

labelled arc.

Next, for each state s P ts0, s1, s2u, we create n places where n P N is the number

of actions found in the labelled arc that s is the source state, i.e. we create two

places for s0, three places for s1 and one place for s2. Note that these places replace

the connections from s to the ‘fork’ dummy transition and from the ‘fork’ dummy

transition to the transitions that comprise the labelled arc’s label, where this ‘fork’

dummy transition corresponds to the labelled arc that s is the source state. Then,

we add tokens to the places that correspond to s0 as s0 is the initial state, and create

one outgoing place for each labelled transition t P ta, b, c, x, y, zu.

Now, for each state s P ts0, s1, s2u, we connect an arc from the i-th place corre-

sponding to s to the labelled transition of the j-th label in the labelled arc that s is

the source state, where i, j P N and each labelled transition is connected by only one

place, i.e. we create an arc from the places corresponding to s0 to the labelled transi-

tions b and c individually, an arc from the places corresponding to s1 to the labelled

transitions x, y and z individually, and an arc from the place corresponding to s2 to

the labelled transition a. Then, we connect an arc from the ‘join’ dummy transition

created from the labelled arc where s is the destination state to the places correspond-

ing to s. Finally, for each labelled arc a P tps2, ‘a’, s0q, ps0, ‘b, c’, s1q, ps1, ‘x, y, z’, s2qu,

we connect an arc from all outgoing places created by a’s label to the ‘join’ dummy

transition created by a, and an arc from the labelled transitions that comprise a’s

label to each outgoing place created by a’s label, such that each labelled transition is

connected by only one outgoing place.

79



CHAPTER 4. BURST AUTOMATA

By completing this example, we can determine how a BA is translated into an

STG with this method, and formalise the above steps for every burst found in the BA

as shown below, where each step is categorised by the STG component being created.

Transitions: The transitions are created in the same way as the first translation

in Section 4.3.2 except no ‘fork’ dummy transitions are created.

Places: For every state s in the BA, we create a set of places in the STG as follows.

Suppose the bursts labelling the outgoing arcs from s are Out1, Out2, . . . , Outk, k ě 0,

where empty bursts are encoded as tεu. Then we create a new place for each tuple in

the Cartesian product Out1 ˆOut2 ˆ ¨ ¨ ¨ ˆOutk. If k “ 0 then this Cartesian product

contains the empty tuple as the only element. Additionally, if s is the initial state

of the BA, then these places are initially marked (i.e. a token is added). Moreover,

for each burst in the BA, we create a set of outgoing places based on the burst’s

cardinality. For example, if the burst cardinality is k ě 1 then we create k outgoing

places. For empty bursts, only one outgoing place is created.

Arcs: For each burst in the BA, we create an arc from:

1. The place corresponding to a BA state s to a tuple po1, . . . , okq to the oi-labelled

transition (which may be ε-labelled transition in case of an empty burst) in the

i-th burst, for each i P t1, . . . , ku.

2. Each burst’s j-th transition to the j-th outgoing place, where j ranges from 1

to the cardinality of the burst. Note that empty bursts are encoded as tεu and

so only one arc is created if the burst is empty.

3. Each outgoing place to the ‘join’ dummy transition.

4. The ‘join’ dummy transition to every place corresponding to the destination

state.
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(a) BA (b) Translated STG

Figure 4.12: Exponential translation of simple example

To show that the resulting STG from this translation does not exponentially ex-

plode to the size of the original BA, Figure 4.12 shows an example where we translate

the same BA from Figure 4.8 that contains the labelled arc ‘a, b’ followed by a choice

between the labelled arcs ‘x, y’ and ‘x, z’. Note that the first translation’s ‘join’

dummy transitions are not this translation’s ‘fork’ dummy transitions, as the ‘fork’

dummy transitions are contracted (i.e. removed from the STG). However, one may

interpret the ‘join’ dummy transitions as ‘join fork’ dummy transitions (i.e. a ‘join’

dummy transition followed by subsequent a ‘fork’ dummy transition).

By studying this example, we can see that the resulting STG is not exponential to

the size of the original BA, meaning this translation is small for practical BAs. Note

that the exponential explosion only occurs when there are many arcs originating from

the same state and are labelled with large bursts, where if there are n arcs with non-

empty bursts of cardinalities k1, k2, . . . , kn then k1 ¨k2 ¨ . . . ¨kn STG places are created.

Fortunately, the presence of these large bursts are rare in practice, as discussed in

Section 4.2.2.
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Figure 4.13: Example preserving weak bisimulation

Unlike the previous translation in Section 4.3.1, this translation preserves weak

bisimulation between the resulting STG’s reachability graph and the BA’s reachability

graph. In particular, there are no longer any choices between multiple dummy tran-

sitions like the first translation’s ‘fork’ dummy transition, which caused the violation.

For example, let us consider Figure 4.13 which shows the reachability graph of the

BA from Figure 4.9 and the reachability graph of the translated STG in Figure 4.12b.

According to the definition of bisimulation in Section 2.3.1, there is a bisimulation

relation „ between the FSMs’ states and it must relate the initial states, so s1
0 „ q0.

Here, the left FSM can make a transition s1
0

a
ÝÑ ps01, tauq that can be matched by

the right FSM making the transition q0
a
ÝÑ q1 and vice versa. Also, the left FSM can

make a transition s1
0

b
ÝÑ ps01, tbuq that can be matched by the right FSM making the

transition q0
b

ÝÑ q2 and vice versa. Thus, meaning ps01, tauq „ q1 and ps01, tbuq „ q2.

Next, the left FSM can make the transitions ps01, tauq
b

ÝÑ s1
1 and ps01, tbuq

a
ÝÑ s1

1,

which can be matched by the right FSM making the transitions q1
b

ÝÑ q3 and q2
a
ÝÑ q3
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respectively and vice versa. So, s1
1 „ q3. Note that the right FSM can make a

transition q3
ε

ÝÑ q4, and the only way to match this transition in the left FSM is to

do nothing and stay in s1
1, meaning s1

1 „ q4.

Now, at state s1
1 in the left FSM and state q4 in the right FSM, there is a choice

between left x, y, right x and z. Here, the left FSM can make the transitions s1
1

x
ÝÑ

ps12, txuq and s1
1

x
ÝÑ ps13, txuq, which can be matched by the right FSM making the

transitions q4
x
ÝÑ q5 and q4

x
ÝÑ q9 respectively and vice versa. So, ps12, txuq „ q5 and

ps13, txuq „ q9. Also, the left FSM can make the transition s1
1

y
ÝÑ ps12, tyuq that can

be matched by the right FSM making the transition q4
y
ÝÑ q6 and vice versa, meaning

ps12, tyuq „ q6. Similarly, the left FSM can make the transition s1
1

z
ÝÑ ps13, tzuq that

can be matched by the right FSM making the transition q4
z
ÝÑ q10 and vice versa,

meaning ps13, tzuq „ q10. Note that the left FSM’s transition s1
1

x
ÝÑ ps12, txuq can also

be matched by the right FSM’s transition q4
x
ÝÑ q9, and that the left FSM’s transition

s1
1

x
ÝÑ ps13, txuq can also be matched by the right FSM’s transition q4

x
ÝÑ q5, despite

ps12, txuq can only fire y while q9 can fire z and ps13, txuq can only fire z while q5 can

fire y. However, this does not contradict bisimulation, as the states are still matched

by at least one state, i.e. ps12, txuq with q5 and ps13, txuq with q9.

Finally, the left FSM can make the transitions ps12, txuq
y
ÝÑ s1

2 and ps12, tyuq
x
ÝÑ s1

2,

which can be matched by the right FSM making the transitions q5
y
ÝÑ q7 and q6

x
ÝÑ q7

respectively and vice versa. So, s1
2 „ q7. Also, the left FSM can make the transitions

ps13, txuq
z
ÝÑ s1

3 and ps13, tzuq
x
ÝÑ s1

3, which can be matched by the right FSM making

the transitions q9
z
ÝÑ q11 and q10

x
ÝÑ q11 respectively and vice versa. So, s1

3 „ q11.

Again, the right FSM can make the transitions q7
ε

ÝÑ q8 and q11
ε

ÝÑ q12, and the

only way to match these transitions in the left FSM is to do nothing and stay s1
2 and

s13 respectively, meaning s1
2 „ q8 and s1

3 „ q12.

Thus, the reachability graphs of the resulting STG and BA are weakly bisimilar.
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4.3.3 STGs without dummy transitions

In Section 4.3.2, we presented a translation method that produces an STG with ‘join’

dummy transitions, which is weakly bisimilar to the original BA. While the resulting

STG could be exponential to the size of the BA in the worst case, it is shown that

this is rare in practice due to the unlikelihood of large bursts.

However, despite that the translation preserves weak bisimulation, it does not

preserve strong bisimulation due to the remaining ‘join’ dummy transitions, as these

dummy transitions do not correspond to any actions of the original BA.

In this translation, we produce an STG that is strongly bisimilar to the original

BA, where we remove both the ‘fork’ dummy transitions and ‘join’ dummy transitions

from the prior translations. The cost to remove both ‘fork’ dummy transitions and

‘join’ dummy transitions is that places, which correspond to the BA states with

multiple incoming arcs and multiple outgoing arcs, have to be replicated. Note that

this may cause the resulting STG to become exponential to the size of the original

BA and potentially larger than the second translation in the worst case. Again, the

size of these resulting STGs also tend to be small in practice, and it may even be

easier for verification and synthesis tools to handle as there are no ε-transitions.

To help understand how this translation works, Figure 4.14 shows a simple exam-

ple where we translate the same BA from Figures 4.7 and 4.11 to an STG.

Like the previous translations, we again create six transitions labelled a, b, c, x, y

and z respectively, where transition a comprises the labelled arc ‘a’, transitions b and

c comprise the labelled arc ‘b, c’, and transitions x, y, and z comprise the labelled arc

‘x, y, z’. However this time, we do not create any additional dummy transitions.

Next, for each state s P ts0, s1, s2u, we create m ˚ n places where m P N is the

number of actions found in the labelled arc that s is the destination state, and n P N
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(a) BA Burst

(b) Transitions (c) Places (d) Arcs

Figure 4.14: Translating a BA to an STG with no “fork” or “join” dummy transitions

is the number of actions found in the labelled arc that s is the source state, i.e. we

create two places for s0, six places for s1 and three places for s2. Note that these

places replace the connections from the transitions that comprise the previous labelled

arc’s label to the ‘join’ dummy transition, from the ‘join’ dummy transition to the

places corresponding to s, from the places corresponding to s to the ‘fork’ dummy

transition and from the ‘fork’ dummy transition to the transitions that comprise the

current labelled arc’s label, where the ‘fork’ dummy transition corresponds to the

labelled arc that s is the source state and the ‘join’ dummy transition corresponds

to the labelled arc that s is the destination state. Then, we add tokens to the places

that correspond to s0 as s0 is the initial state.

Now, for each state s P ts0, s1, s2u, we connect an arc from the m-th place that

corresponds to s to the labelled transition of the i-th label in the labelled arc that

s is the source state, where m, i P N and each labelled transition is connected by k

incoming places, such that k P N is the number of actions in the labelled arc where s

is the destination state, i.e. we create an arc from the places corresponding to s0 to
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the labelled transitions b and c individually, two arcs from the places corresponding

to s1 to the labelled transitions x, y and z individually, and three arcs from the

place corresponding to s2 to the labelled transition a. Similarly, we also connect

an arc from the labelled transition of the j-th label in the labelled arc that s is the

destination state to the n-th place that corresponds to s, where n, j P N and each

labelled transition is connected to l outgoing places, such that l P N is the number

of actions in the labelled arc where s is the source state, i.e. we create two arcs from

the labelled transition a to the places corresponding to s0 each, three arcs from the

labelled transitions b and c to the places corresponding to s1 each, an arc from the

labelled transitions x, y and z to the place corresponding to s2.

Note that transition a can only fire once all places corresponding to s2 have a

token, i.e. when transitions x, y and z have fired. Similarly, b and c can only fire

when all places corresponding to s0 receive their token via a, and transitions x, y and

z can only fire when all places corresponding to s1 receive their tokens via b and c.

By completing this example, we can determine how a BA is translated into an

STG with this method, and formalise the above steps for every burst found in the BA

as shown below, where each step is categorised by the STG component being created.

Transitions: The transitions are created in the same way as the prior translations

in Sections 4.3.1 and 4.3.2, except neither ‘fork’ nor ‘join’ transitions are created.

Places: For every state s in the BA, we create a set of places in the STG as

follows. Suppose the bursts labelling the arcs incoming to s are In1, In2, . . . , Ink,

and the bursts labelling the arcs outgoing from s are Out1, Out2, . . . , Outk1 , k, k1 ě 0,

where empty bursts are encoded as tεu. Then we create a new place for each tuple

in the Cartesian product In1 ˆ In2 ˆ ¨ ¨ ¨ ˆ Ink ˆ Out1 ˆ Out2 ˆ ¨ ¨ ¨ ˆ Outk1 . If k “ 0

and k1 “ 0 then this Cartesian product contains the empty tuple as the only element.

Additionally, if s is the initial state of the BA, these places are initially marked.
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(a) BA (b) Translated STG

Figure 4.15: Exponential translation of simple example

Arcs: For each place p corresponding to a BA state s and a tuple pi1, . . . , ik, o1, . . . , ok1q,

we create an arc from:

1. The ij-labelled transition (which may be ε-labelled transition in case of an

empty burst) in jth incoming burst to p, for each j P t1, . . . , ku.

2. p to the oj-labelled transition (which may be ε-labelled transition in case of an

empty burst) in jth outgoing burst, for each j P t1, . . . , k1u.

To show that the resulting STG from this translation also does not exponentially

explode to the size of the original BA, Figure 4.15 shows an example where we trans-

late the same BA from Figures 4.8 and 4.12 that contains the labelled arc ‘a, b’

followed by a choice between the labelled arcs ‘x, y’ and ‘x, z’.

By studying this example, we can see that the resulting STG is not exponential

to the size of the original BA, meaning this translation also is small for practical

BAs. Again, note that the exponential explosion only occurs when there are many

arcs originating from the same state and are labelled with large bursts, where the

presence of such large bursts are rare in practice, as discussed in Section 4.2.2.
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Figure 4.16: Violation of safeness when translating BAs with non-singleton bursts

Figure 4.17: Example preserving strong bisimulation

If the original BA contains any self-loops with non-singleton bursts, then this

translation may yield an unsafe STG that is 2-bounded. For example, Figure 4.16

shows a BA on the left and its translated STG on the right, where firing the transition

labelling a will produce another token on the second place to the left.

In the context of circuit synthesis, labels are usually directed (i.e. they have a `

or ´) and the consistency requirement is imposed for each signal s, where s` and s´

must alternate in every trace. If such a directed action occurs in a self-looped labelled

arc, then the consistency requirement is clearly violated. Thus, circuit specifications

do not use self-loops and will not be translated into unsafe STGs.

By removing both ‘fork’ and ‘join’ dummy transitions, this translation preserves

strong bisimulation between the reachability graphs of the resulting STG and BA.

For example, let us consider Figure 4.17 which shows the reachability graph of the

BA from Figure 4.9 and the reachability graph of the translated STG in Figure 4.15b.

According to the definition of bisimulation in Section 2.3.1, there is a bisimulation

relation „ between the FSMs’ states and it must relate the initial states, so s1
0 „ q0.
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Here, the left FSM can make a transition s1
0

a
ÝÑ ps01, tauq that can be matched by

the right FSM making the transition q0
a
ÝÑ q1 and vice versa. Also, the left FSM can

make a transition s1
0

b
ÝÑ ps01, tbuq that can be matched by the right FSM making the

transition q0
b

ÝÑ q2 and vice versa. Thus, meaning ps01, tauq „ q1 and ps01, tbuq „ q2.

Next, the left FSM can make the transitions ps01, tauq
b

ÝÑ s1
1 and ps01, tbuq

a
ÝÑ s1

1,

which can be matched by the right FSM making the transitions q1
b

ÝÑ q3 and q2
a
ÝÑ q3

respectively and vice versa. So, s1
1 „ q3.

Now, at state s1
1 in the left FSM and state q4 in the right FSM, there is a choice

between left x, y, right x and z. Here, the left FSM can make the transitions s1
1

x
ÝÑ

ps12, txuq and s1
1

x
ÝÑ ps13, txuq, which can be matched by the right FSM making the

transitions q3
x
ÝÑ q4 and q3

x
ÝÑ q7 respectively and vice versa. So, ps12, txuq „ q4 and

ps13, txuq „ q7. Also, the left FSM can make the transition s1
1

y
ÝÑ ps12, tyuq that can

be matched by the right FSM making the transition q3
y
ÝÑ q5 and vice versa, meaning

ps12, tyuq „ q5. Similarly, the left FSM can make the transition s1
1

z
ÝÑ ps13, tzuq that

can be matched by the right FSM making the transition q3
z
ÝÑ q8 and vice versa,

meaning ps13, tzuq „ q8. Note that the left FSM’s transitions s1
1

x
ÝÑ ps12, txuq and

s1
1

x
ÝÑ ps13, txuq can also be matched by the right FSM’s transitions q4

x
ÝÑ q9 and

q4
x
ÝÑ q5 respectively, despite ps12, txuq can only fire y while q9 can fire z and ps13, txuq

can only fire z while q5 can fire y. Again, this does not contradict bisimulation, as

the states are still matched by one state, i.e. ps12, txuq with q3 and ps13, txuq with q7.

Finally, the left FSM can make the transitions ps12, txuq
y
ÝÑ s1

2 and ps12, tyuq
x
ÝÑ s1

2,

which can be matched by the right FSM making the transitions q4
y
ÝÑ q6 and q5

x
ÝÑ q6

respectively and vice versa. So, s1
2 „ q6. Also, the left FSM can make the transitions

ps13, txuq
z
ÝÑ s1

3 and ps13, tzuq
x
ÝÑ s1

3, which can be matched by the right FSM making

the transitions q7
z
ÝÑ q9 and q8

x
ÝÑ q9 respectively and vice versa. So, s1

3 „ q11.

Thus, the reachability graphs of the resulting STG and BA are strongly bisimilar.
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4.3.4 Extended Burst-Mode Components

In this translation, we cover how the XBM specification’s fake outputs, conditionals,

and “don’t cares” are translated to their respective STG counterparts [15]. Here,

these (X)BM components are considered auxiliary features that can be attached to

the BA, where we can interpret it as an (X)BM-like model. Note that the use of this

(X)BM-like model may be useful in some scenarios, as shown below.

Fake Outputs

In Section 2.2.2, (X)BM specifications are described to create a “dummy” output (i.e.

a fake output) for every burst without a set of outputs to signify an internal change

within the system. In BAs, we can model empty bursts as H-labelled arcs that can

be interpreted as ε transitions, whether it is originally an input burst or output burst.

However, there are still some scenarios where these fake outputs can be useful. For

example, Figure 4.18 shows a BM specification with a choice between an input-output

burst and an input-only burst, and its translated STG without “fake” outputs, where

this BM specification’s choice can prevent the synthesis of the resulting STG.

(a) BM Specification (b) Resulting STG

Figure 4.18: Hidden unresolvable CSC conflict

In the BM specification, there is a choice between bursts i+ / and j+ / y+, where

i+ / reaches state s1 and is followed by burst i-, j+ / x+ to reach state s3, while j+

/ y+ reaches state s2. This is a valid BM specification that can be synthesised by

Minimalist and 3D, as a fake output is added to i+ / to signify an internal change.
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Now, suppose that we translate this BM specification to its equivalent STG with-

out any modification and try to synthesise it with Petrify orMpsat. Unfortunately,

this is not possible as there is an unresolvable complete state coding (CSC) conflict.

By studying the STG, we can see that firing i+ and then i- will lead to a state, where

it is uncertain whether the system will next fire x+ or y+ after j+ is received.

While the above scenario is trivial and can be fixed by adding a transition that

explicitates this fake output [15], this may be a difficult and tedious task if these hid-

den CSC conflicts occur many times in the BM specification. Thus, this necessitates

an optional translation to the STG, where these fake outputs are explicitated.

To implement these explicit fake output transitions, we must identify all bursts

in the (X)BM-like model (i.e. BA) that have an empty set of outputs, and create an

output transition fakeK+ for each k-th burst where k P N ą 1. For the explicit fake

output transitions to be consistent, they are mapped to an input transition of the

input burst, which the fake output appears in, and are replicated for every occurrence

of that mapped input transition such that their edges match.

For example, Figure 4.19 shows the same BM specification from Figure 4.18 and

its translated STG with explicit fake output transitions.

(a) BM specification (b) Resulting STG

Figure 4.19: Resolving the hidden CSC conflict during translation

By observing the resulting STG, we can see that fake0 is mapped to i, where every

occurrence of i+ (i-) is correctly followed by fake0+ (fake0-). If we try to synthesise

this STG, it will now be successful as there are no more unresolvable CSC conflicts.
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“Don’t cares”

In Section 2.2.2, “don’t cares” are described as monotonic inputs that can concur-

rently change with outputs, where they may appear through multiple bursts with the

direction ˚ until they terminate in a burst with the direction ` or direction ´.

Additionally, “don’t cares” must always appear with a compulsory input, and

they must correctly terminate based on their original value before appearing as a

“don’t care”, due to the well-formed requirement of correct termination of “don’t

cares” described in Section 2.2.2. For example, if the signal was low (high) before

appearing as a “don’t care” then it must terminate with a ` (´) event to ensure that

the XBM specification is well-formed. Note that if the “don’t care” appears in a loop

then we assume it remains a “don’t care” unless it terminates, in which we must add

a transition of the opposite direction to reset the “don’t care” when exiting the loop.

When we translate “don’t cares” to their STG counterpart, the “don’t cares” are

turned into explicit STG transitions that connect from the set of input transitions

that they appear with to the set of output transitions that they terminate by [15].

Due to the concurrency of STGs, the transitions of “don’t cares” can fire at any time

between the aforementioned sets of input transitions and output transitions.

For example, Figure 4.20 shows an XBM specification with a “don’t care” and its

translated STG with an explicitated “don’t care” transition.

(a) XBM Specification (b) Resulting STG

Figure 4.20: Translating “don’t cares” to explicit delayed STG transitions
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By observing the XBM specification, we can see that the “don’t care” j* appears in

burst i+, j* / x+ until it terminates with direction ` at burst j+, l+ / z+. Now, if we

observe the resulting STG, we can also see that the input transition j+ is connected

from the places corresponding to state s0 to the output transition z+, where j+ can

fire concurrently with transitions i+, x+, k+, y+ and l+.

Conditionals

In Section 2.2.2, conditionals are described as level-sensitive inputs that determine

the system’s control flow based on their signal values, which may continuously change

between high and low values until the conditional is sampled. When conditionals are

sampled, they must stabilise once a compulsory input appears and hold their value

until all subsequent outputs are produced.

Notably, conditionals can be translated into elementary cycles [12], which are a

pair of places and a pair of rising and falling transitions used to explicitly represent

the signal’s current value, where places depict when the signal is high or low and

transitions depict when the signal rises or fall. However, elementary cycles do not have

restrictions that prevent the signal from firing, meaning the signal can continuously

fire. This contradicts the sampling of conditionals, as they must be stabilised.

To ensure that the elementary cycle’s signal remains stable like conditionals, we

add some so-called ‘lock’ places [15] that are generated by the number of compulsory

inputs found in the corresponding burst. These lock places contain a token, and are

connected to every transition labelling the burst’s compulsory inputs and connected

from transition labelling the burst’s outputs. Additionally, these lock places are

connected with the rising and falling transitions of the elementary cycle in both

directions using read arcs (i.e. a shorthand expression for an arc connecting from

node x to node y, and an arc connecting from y to x).
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When one of the transitions labelling the compulsory inputs is fired, it removes

the associating lock place’s token and disables the elementary cycle from firing its

rising and falling transitions, imitating the conditional’s setup time (i.e. the time

until a compulsory input arrives). The firing of the elementary cycle’s rising and

falling transitions can only resume, once the tokens from all lock places have returned

after the transitions labelling the outputs have fired, imitating the conditional’s hold

time (i.e. the time that the signal remains stable until all outputs are produced).

For example, Figure 4.21 shows an XBM specification with a conditional and its

translated STG with an elementary cycle.

(a) XBM specification (b) Resulting STG

Figure 4.21: Translating conditionals to elementary cycles with lock places

By observing the XBM specification, we can see that there is a choice between

bursts i+, j* / x+, y+ that are determined by the conditional c’s value. If the value

of c is 0 (1) then we fire burst xc=0y i+, j* / x+, y+ (xc=1y i+, j* / x+, y+).

Now, if we observe the resulting STG, we can see that the elementary cycle’s

signal can continuously rise and fall until a transition labelling a compulsory input

(i.e. i+) fires, where the tokens from its associating lock places are removed (i.e.

places s1 0 and s1 1 if c=0 or places s2 0 and s2 1 if c=1) and are only returned

once the transitions labelling the outputs (i.e. x+ and y+) have fired. Note that the

transitions labelling j+ do not have connections, as it is a “don’t care” and the STG

is translated from a BM specification segment that only contains j* appearing.
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4.4 Distribution Methodology

In this section, we will cover the definition of distributed FSMs (DFSMs) for this

thesis, and the distribution criteria used as a guideline to determine how the group of

FSMs communicate with each other. We will then cover the composition method for

BAs, including how it is verified and synthesised into a composed SI (QDI) circuit.

4.4.1 Definition of Distributed Finite State Machines

For this thesis, we will define DFSM as a collection of FSMs that are connected to

each other through common signals, where these common signals are sent and received

by each FSM via the four-phase request-acknowledgement handshake protocol, such

that, for some signal x, FSM M sends a request xreq to FSM M 1 and M 1 sends an

acknowledgement xack to M . for some signal x.

4.4.2 Distribution Criteria

Due to the inherent behaviours and structure of any distributed specification, where

each sub-specification may have its own set of behaviours, timing assumptions and in-

terfaces (e.g. signals), we will consider the following distribution criteria as a guideline

to determine the behaviour of our DFSM:

1. All connected FSMs are assumed to be concurrent with each other, e.g. there

may be multiple FSMs that are running at the same time or are waiting for a

response from another FSM before continuing.

2. All communication made between the connecting FSMs will follow the four-

phase request-acknowledgment handshake protocol, such that the sending FSM
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will wait for a response from the receiving FSM to continue and vice versa

(unless their next set of signals are mutually exclusive). Note that the names

of requests and acknowledgements can differ between each FSM.

3. The connecting FSMs must be conformant with each other, such that the FSMs

do not contradict each other.

4.4.3 Composition of Burst Automata

Using DFSMs’ definition in Section 4.4.1 and the distribution criteria in Section 4.4.2,

Figure 4.22 shows how we compose a controller BA with the two other BAs.

(a) Left part (b) Controller (c) Right part

Figure 4.22: BAs of a controller and the left and right environment parts

Here, we can see that the BAs are concurrent with each other, and that each BA

communicates with another BA using the four-phase request-acknowledgment hand-

shake protocol, e.g. the controller interacts with the left (right) part via handshakes

lreq/lack (rreq/rack). Note that the controller receives go from and sends fin to the

environments that are not modelled in this example.

Because BAs can be translated to STGs using any of the three translations in

Section 4.3 and STGs are easy to compose using Pcomp, we can translate our three

BAs to the STGs shown in Figure 4.23 for subsequent composition.
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(a) Left part (b) Controller (c) Right part

Figure 4.23: Translated STGs of the controller and the environment parts

Using Workcraft, we can verify that these three STGs satisfy the standard

STG implementability properties (defined in Section 2.2.3) that include consistency,

deadlock-freeness, input-properness, output-persistency, and output determinacy.

Next, we will review the three resulting STGs to ensure that they satisfy each of

our distribution criterion:

1. In Section 2.2.3, it is described that STGs can express input-output concurrency,

meaning they are concurrent with other STGs. Thus, this satisfies criterion 1.

2. In Section 4.3, it is shown that the BA’s signals do not change after it is trans-

lated to an STG, and that the STG preserves the language of the original BA

(or its reachability graph is bisimilar to the original BA), meaning the STGs

also retain the communication (via the four-phase request-acknowledgement

handshake) between the BAs. Thus, satisfying criterion 2.

3. With access to the STG’s well-established tools, we can verify that the three

resulting STGs are conformant with each other by using Workcraft to check

N-way conformation between the STGs. Thus, satisfying criterion 3.

Now, we can compose the three resulting STGs into the composed STG shown

in Figure 4.24 by using Pcomp. Again, using Workcraft, we can verify that this

composed STG also satisfies the aforementioned STG implementability properties.
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Figure 4.24: Composed STG of the controller and the environment parts

We can then synthesise this composed STG using either Petrify orMpsat backends

inWorkcraft to produce a possible circuit implementation like the SI (QDI) circuit

shown in Figure 4.25.

Figure 4.25: Possible circuit implementation from synthesis of composed STG

Alternatively, we can generate the reachability graph of this composed STG shown

in Figure 4.26 and interpret it as a BA. Note that this reachability graph is essentially

the controller in Figure 4.22b, except signals lack and rack are now outputs.

Figure 4.26: Composed BA via the reachability graph of the composed STG
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4.5 Summary

In this chapter, we cover the model description of BAs, where we provide a textbook

definition of BAs and use an example to compare their design with the design of

(X)BM specifications and STGs. We then cover the mathematical definitions of BA,

where we formally define what BAs are and what their reachability graph are, such

that the latter is essentially an FSM and is used to check the model equivalence with

other formalisms, e.g. STG, through their reachability graph.

Next, we cover three translations from BAs to STGs, where the first translation

produces an STG with “fork” and “join” dummy transitions that preserves the lan-

guage, the second translation produces an STG with “join’ dummy transitions that

preserves weak bisimulation, and the third translation produces an STG with neither

“fork” nor “join” dummy transitions that preserves strong bisimulation. Furthermore,

we also cover the XBM specification’s components to their STG counterparts includ-

ing the BM specification’s “fake” outputs and the XBM specification’s conditionals

and “don’t cares”.

Lastly, we cover the distribution methodology of BAs, where we provide a text-

book definition of DFSMs and a distribution criteria that acts as a guideline for

composing the BAs. We translate the BAs to STGs, where we can compose them

with Pcomp before we verify and synthesise the composed STG with Petrify or

Mpsat to produce an SI (QDI) circuit, or generate its reachability graph, which can

be interpreted as a composed BA.

99



Chapter 5

Design Automation

In this chapter, we will cover the implemented Workcraft plugin that supports

the design automation of Burst Automata (BAs).

Firstly, we will review the design flow of BAs, where a new design route is created

to enable the co-design between Burst-Mode (BM) specifications and Signal Transi-

tion Graphs (STGs). We will then highlight how our Workcraft plugin achieves

this design flow, where the process to design, verify and synthesise STGs by translat-

ing the (X)BM specifications via BAs is automated.

Next, we will cover the features that are implemented in the Workcraft plugin,

where we can design and simulate BAs, validate BAs based on (X)BM well-formed

requirements if they are an (X)BM-like model, automatically translate BAs to STGs

through the available translation options, and finally verify and synthesise the BAs

via translated STGs using Petrify and Mpsat.

Lastly, we will study the benchmark results of our experiment using the imple-

mented Workcraft plugin, where we analyse the model size growth of our trans-

lations from (X)BM specifications to STGs using BAs, and the literal counts from

circuit implementations produced by Minimalist, 3D, Petrify and Mpsat.
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5.1 Automation of Burst Automata Design Flow

In this section, we will cover the co-design between BM specifications and STGs

that is achieved by using BA, where we review the design flow that is automated

and implemented in our Workcraft plugin. Note that in this plugin, the graphical

notation of the BM specification’s bursts are supported and used when bursts contain

both inputs and outputs, though it follows the firing semantics of BAs where each

arc (i.e. burst) is fired as two-steps such that the arrival of an input burst is followed

by the subsequent production of an output burst.

XBM model Conversion to
BA (Workcraft) BA model

Translation to
STG (Workcraft)

Verification
of STG

(Workcraft,
Petrify, MPSat)

Synthesis
(Petrify,
MPSat)

Circuit
Implementation

Conformation
to Specification

STG model

1 2

3 4

5 6

Figure 5.1: Design flow of Burst Automaton

To help us understand how this design flow works and how the co-design between

BM specifications and STGs is achieved, Figure 5.1 shows a step-by-step procedure of

how a circuit designer can create, validate, and translate their (X)BM specification in

Workcraft, where they can then verify the translated STG and synthesise it into

a speed-independent (SI) (or similarly, quasi-delay-insensitive (QDI)) asynchronous

circuits. Note that the annotated boxes in Figure 5.1 corresponds to the steps below:
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1. Firstly, we can design our initial (X)BM specification by using Workcraft

or by reading a (X)BM file. We can then validate it by using the interactive

simulation feature, and verify it based on the (X)BM’s well-formed requirements

described in Section 2.2.2 using the interactive commands in the plugin.

2. Next, we can translate our (X)BM specification into a BA, where the BM timing

assumption and the (X)BM’s well-formedness properties are relaxed.

3. Subsequently, we can then translate our BA into an STG by using one of the

three translations described in Section 4.3.

4. Once an STG is obtained, we can verify the standard STG implementability

properties and/or some custom properties of this resulting STG, ensuring that

there are no hazards and/or no unexpected behaviour.

5. Now, we can synthesise the STG into an SI (QDI) circuit by using one of the

available implementation styles (i.e. complex-gate, generalised C-element, or

standard C-element) with either Petrify or Mpsat backends.

6. Finally, we can formally verify the conformation of the resulting circuit im-

plementation against the translated STG. While circuit synthesis is in theory

correct by construction, it is also complicated and tools may have bugs, meaning

it is important that we use formal verification to help increase our confidence in

the correctness of the circuit implementation. Note that there is a one-to-one

correspondence between BAs and the translated STGs, meaning it is possible

to verify the STG, determine the violated properties (e.g. output persistency)

and resolve the violation using BA (e.g. adding/removing transitions to pre-

vent/avoid the violation). Moreover, it is also possible that the circuit may have

been manually modified, which further necessitates formal verification.
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From this example, there are several benefits for both state-based and event-based

circuit designers, which our automated design flow achieves:

1. The design of (X)BM specifications is now automated through the design flow

of BAs. Previously, the design of (X)BM specifications was mostly completed

by specifying it in a text file and then visualised using one of Minimalist’s

executables without simulation capability. Here, we allow event-based circuit

designers to easily specify (X)BM specifications using Workcraft and then

translate it into an STG, while we also allow state-based circuit designers to

continue specifying their (X)BM specifications (whether as a text file or through

Workcraft) and make use of the plugin’s features, e.g. interactive simula-

tion, verification and translation to STG for subsequent STG verification and

synthesis of an SI (QDI) circuit.

2. With BAs, state-based circuit designers may now access the STG’s well-established

tools to compose, verify and/or synthesise their (X)BM specification (or an

equivalent FSM-based formalism) accordingly. Because the design flow of BAs

and the translations from BAs to STGs are automated, state-based circuit de-

signers do not need to understand how to design an STG, as this step is now

covered by simplying translating their (X)BM specification to an STG for sub-

sequent verification and synthesis of an SI (QDI) circuit. Thus, saving time

required to re-specifying the circuit designer’s specifications as STGs, while

also providing the confidence that their circuits are correct, well-optimised and

hazard-free via the STG’s well-established tools.

3. Due to BA’s interoperability between (X)BM specifications and STGs, there can

be a closer collaboration between state-based circuit designers and event-based

circuit designers, as one can switch from (X)BM specifications to STGs and
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vice versa. This is particularly useful, especially when these circuit designers

must share their work with one another (which may be in different formalisms)

and when designing large systems, where some blocks are expressed as (X)BM

specifications and other blocks are expressed as STGs.

5.2 Features of the Implemented Workcraft Plugin

In this section, we will cover the features that are supported in the implemented

Workcraft plugin.

Firstly, we will demonstrate the modelling of a BA, where we show how its states,

arcs and signals are created. We will then demonstrate two methods of assigning

directions to signals, where the first method does the assignment by calculating the

encoding differences between the source state and the destination state, while the

second method does the assignment by the conventional method of adding directions

to the signals.

Next, we will show the interactive simulation of a BA including its traces and how

conditionals are changed. We will then show how the verification of the (X)BM’s

well-formed requirements are performed for BAs that are designed as (X)BM-like

models.

Finally, we will demonstrate the translation of BAs to STGs for subsequent verifi-

cation and composition, where the three translations shown in Section 4.3 are imple-

mented. We will then demonstrate how the BAs are synthesised into SI (QDI) circuits

via their translated STGs, before the produced circuit implementation is verified for

conformity with the original specification.
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5.2.1 Design of Burst Automaton

To design a BA or (X)BM-like model, let us first consider how we generate its states,

signals and arcs. In the plugin, we have three separate buttons that each creates a

new signal, a new signal and a new arc, which the latter must be connected between

two existing states. These buttons are annotated and shown in Figure 5.2, where

(a) annotates the button that creates states, (b) annotates the button that creates

signals, and (c) annotates the button that creates arcs. Note that (d) annotates the

toggle button that changes the signal type to an input, conditional or output.

Figure 5.2: Generating the BA’s states, signals and arcs
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Additionally, we can select an arc and create a new input and a new output

by pressing the create button labelled as ˚ under the ‘Input burst’ label and the

‘Output burst’ label respectively. We can also create a new conditional by using the

conditional text field, where the user provided text is checked to ensure that it is in

the form of conditional “ 0 or conditional “ 1, such that conditional is a string of

alphanumerical characters. Again, these buttons and text field are annotated and

shown in Figure 5.3, where (a) annotates the button that creates a new input in the

input burst, (b) annotates the button that creates a new output in the output burst,

and (c) annotates the text field that checks the input text and then creates a new

conditional, if it satisfies the regular expression check.

Figure 5.3: Generating conditionals with alternative way to generate signals
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5.2.2 Direction Assignment to Signals

When the BA has at least two states, one signal and one arc, we can assign a direction

(i.e. a `, ´, or ˚) to a signal in an arc. Note that direction ˚ is included to support

the design of (X)BM-like models, and that if there are no directions assigned to any

of the arc’s signals then an ε-symbol is shown instead.

Currently, there are two methods of assigning directions to signals in an arc. The

first method calculates the state encoding difference between the arc’s states, while

the second uses the conventional assignment of directions to signals by selecting the

associating direction.

Firstly, let us cover the method that calculates the state encoding differences

shown in Figure 5.4. Here, we can select a state and assign the encoding values 1, 0,

or ? to one of the state’s signals, where:

• If the encoding value of some signal x is 0 in the source state and 1 in the

destination state, then a ` event is added to x in the arc. Similarly, if the

encoding value of the signal x is 1 in the source state and 0 in the destination

state, then a ´ event is added to x in the arc. Otherwise, if the encoding value

of the signal x is either 0 or 1 in both the source state and destination state,

then no direction event is added. If a direction was existing for x before the

same encoding value was assigned, then x and its direction are removed from

the arc (and are potentially pushed to the next arc).

• If the encoding value of some signal x is ? in the destination state then a ˚ event

is added to x in the arc, regardless of whether the encoding value of x is 0, 1 or

? in the source state. Note that ? also sets the visual encoding of x as ‘X’.
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• If the encoding value of some signal x is ? in the source state, then:

– A ` event is added to x in the arc, if the encoding value of signal x is 1 in

the destination state.

– A ´ event is added to x in the arc, if the encoding value of signal x is 0 in

the destination state.

– A ˚ event is added to x in the arc, if the encoding value of signal x is also

? in the destination state.

Figure 5.4: Assigning Signal Directions via State Encoding Calculation
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Now, let us cover the conventional method of assigning directions to signals in

Figure 5.5. Here, we can select an arc and assign the directions `, ´, or ˚ to some

signal x, where:

• If ` is assigned, then x’s encoding value is set to 1 at the destination state, such

that if x’s encoding value is also 1 at the source state, then x is removed from

the arc. Similarly, if ´ is assigned, then x’s encoding value is set to 0 at the

destination state, such that if x’s encoding value is also 0 at the source state,

then x is removed from the arc.

• If ˚ is assigned, then x’s encoding value is set to ? at the destination state.

Figure 5.5: Assigning Signal Directions via Traditional Method
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5.2.3 Simulation of Burst Automaton

Once we have designed a complete BA, we can simulate it inWorkcraft. Like other

models such as FSMs and STGs, the BA becomes ‘fireable’ where it is displayed with

highlighted arcs that are enabled and can be ‘fired’ by clicking the arc to generate

a new trace. For example, Figure 5.6 shows the simulation of a BA specifying a

C-element gate.

Here, we can see the simulation trace table on the right side of the model, where

it shows that we have fired in0+, in1+, out+, in0-, in1-, out-, and in0+, in1+, such

that the BA is currently on state s1 and out+ is enabled for firing.

Figure 5.6: Running Simulation of the BA
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If the BA is an (X)BM-like model and contains a conditional, then a checkbox for

this conditional is displayed under the simulation trace table, where we can simulate

the conditional rising or falling. For example, Figure 5.7 shows the simulation of

an XBM-like model specifying the biu-fifo2dma specification [69] which contains the

conditional cntgt.

Figure 5.7: Toggling Conditionals during Simulation of an XBM-like Model

To understand how the conditional checkbox works, suppose that we reach a state

where its outgoing arc(s) contain a conditional, e.g. in Figure 5.7 where state s4 has

bursts xcntgt=0y dackn-, fain* / dreq- and xcntgt=1y dackn-, fain* / dreq-. Then:

• If the checkbox for the conditional is unchecked, all bursts that have the con-

ditional as low is enabled, while all bursts that have the conditional as high is
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disabled. For example, unchecking cntgt will enable the burst xcntgt=0y dackn-,

fain* / dreq- and disable xcntgt=1y dackn-, fain* / dreq-.

• If the checkbox for the conditional is checked, all bursts that have the conditional

as high is enabled, while all bursts that have the conditional as low is disabled.

For example, checking cntgt will enable the burst xcntgt=1y dackn-, fain* / dreq-

and disable xcntgt=0y dackn-, fain* / dreq-.

5.2.4 Verification of Burst-Mode Well-formed Requirements

In addition to simulation, if the BA is designed as an (X)BM-like model, then we can

verify it to check if it satisfies or violates any of the (X)BM’s well-formed requirements.

Note that BAs do not need to satisfy the (X)BM’s well-formedness requirements, as

this verification is implemented for BAs specifying (X)BM specifications.

To verify the (X)BM’s well-formedness requirements in the plugin, we can select

the desired verification check under the ‘Verification’ menu as shown in Figure 5.8,

where the options to verify the (X)BM-like model for BM’s maximal set property,

XBM’s distinguishability constraint, non-empty input burst property and XBM’s

correct termination of “don’t cares” are highlighted.
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Figure 5.8: Available verification options based on (X)BM well-formed requirements

5.2.5 Translation to Signal Transition Graphs

After validating our BA through simulation and/or verifying it against the (X)BM

well-formed requirements if it is specified as an (X)BM-like model, we can translate

the BA into an STG using any of the three translations described in Section 4.3.

Note that each translation will also translate the XBM specification’s conditionals

and “don’t cares”, and has another option that adds “fake” outputs to bursts without

outputs, as described in Section 4.3.4.

These translation methods can be found under the ‘Translation’ menu as shown

in Figure 5.9, where the available translation options are highlighted.
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Figure 5.9: Available translations from BAs to STGs

To illustrate the plugin using one of the translation methods from BAs to STGs,

Figure 5.10 shows the translation of the biu-fifo2dma specification to its equivalent

STG, where neither ‘fork’ nor ‘join’ dummy transitions are included and “fake” out-

put transitions are created for every empty output burst. Note that after obtaining

our translated STG, we can verify it against the STG’s implementability properties

under the STG’s ‘Verification’ menu (which the STG in Figure 5.10 passes) and even

compose it with other STGs using Pcomp under the STG’s ‘Tools’ menu (which is

not shown in Figure 5.10 as composition is not required).
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Figure 5.10: Translation from BAs to STGs with neither ‘fork’ nor ‘join’ dummy
transitions (including the translation of the optional ‘fake’ output)

5.2.6 Synthesis of Speed-Independent Circuits

Finally, after verifying our translated STG from one of the available translations, we

can synthesise it into an SI (QDI) circuit using either Petrify or Mpsat backends

via Workcraft, and then verify it for conformity with the STG.

To illustrate how the plugin synthesises the STG and produce some possible circuit

implementation, Figure 5.11 shows the possible SI (QDI) circuit implementation that

is produced from synthesising the translated STG in Figure 5.10, where we can then

verify and see that this circuit conforms with the translated STG.
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Figure 5.11: Synthesis and conformation of the translated STG

5.3 Experimental Results

In this section, we will highlight the benefits of BA and the established design

workflow, where we will cover two experiments involving BAs and our implemented

Workcraft plugin.

Section 5.3.1 provides the table of results of the first experiment, where we analyse

the size growth of the translated STGs to the original (X)BM specifications.

Section 5.3.2 provides the table of results of the second experiment, where we

compare the literal counts of the circuit implementations produced by Minimalist

and 3D with the literal counts of the circuit implementations produced by Pet-
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rify and Mpsat. To ensure fairness, we factorised the literal counts produced by

both Minimalist and 3D using Logic Friday [62] (a graphical frontend to the

Espresso logic minimiser [14]) before counting them, as they were originally in the

sum-of-products form.

Note that only the number of literals are compared, as they are a traditionally

used metric for analysing the performance of circuits, e.g. the experimental results

in [49] only included the CPU performance and literal count. Additionally, it is shown

that the power consumption and area of the controller is irrelevant in practice as some

other parts of the system will be dominant in both aspects, e.g. [61] shows that the

power consumption is small, but the main savings came from the fast reaction to

inputs that leads to savings in the analogue part of the buck controller.

In both experiments, we used (X)BM specifications from several publications and

translated them into STGs using the three translations described in Section 4.3.

These specifications include the published XBM specifications that can be found

in the Minimalist framework [54, 3] (concur-mixer, dme, dram-ctrl, hp-ir, token-

distributor, pe-send-ifc, pscsi, scsi, tangram-mixer), in the 3D [68] tool (biu-dma2fifo,

diffeq, fifocellctrl), and other various publications (ack-xbm-si [31], biu-fifo2dma [68],

imec-alloc-outbound [23], nowick-basic [55], po-office-sbuf-send-ctl [22]).

Furthermore, we affix FJ , FJ , and FJ below the ‘STG’ keyword in Table 5.1 and

Table 5.2 to help us distinguish the results of the three translated STGs where:

• FJ represents the STG with both ‘fork’ and ‘join’ transitions.

• FJ represents the STG without ‘fork’ but with ‘join’ transitions.

• F J represents the STG with neither ‘fork’ nor ‘join’ transitions.
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5.3.1 Analysis of Model Sizes

In Table 5.1, from the leftmost column to the rightmost column, we have included

the name of the specification, the number of signals in the specification, the model

size of the (X)BM specifications, and the model sizes of the three translated STGs.

Here, we define the XBM specification’s size as the total number of states, arcs

and signal appearances within each arc label, and define the STG’s size as the total

number of explicit places (as implicit places, i.e. those with fanin 1 and fanout 1, are

not drawn and so are not counted), arcs, and transitions.

Although the sizes of these two kinds of models are not directly comparable, we

can use this result to observe the growth rate of the translations. In particular,

we can see that all three translations scale well with the size of the original XBM

specification, and that the potential exponential blowup [67] for the FJ and F J

translations did not materialise on these benchmarks. This is particularly beneficial

to ensure that any translated specification remains comprehensive, especially when

synthesising them into circuits at a smaller complexity as demonstrated in [43].

5.3.2 Comparison of Literal Counts

In Table 5.2, from the leftmost column to the rightmost column, we have included

the name of the specification, the number of signals in the specification, the literal

counts of the circuit implementations produced by the XBM tools, and the literal

counts of the circuit implementations produced by the STG tools.

In each row, we highlight the smallest literal count in bold, and if a literal count

is not the smallest in their row then we include a percentage overhead with them,

which is calculated with respect to the smallest literal count of that row. We also

mark an ‘X’ for any specification that cannot be read by the tool due to incompatible
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syntax, e.g. Minimalist cannot read the XBM extension, and mark an ‘F’ for any

synthesis failures, e.g. unresolvable complete state coding (CSC) conflicts.

For an example of how we can interpret these results, let us consider the second

row containing the literal counts of the specification biu-fifo2dma: Here, biu-fifo2dma

could not be synthesised with Minimalist due to an incompatible syntax nor with

3D due to a synthesis failure. On the other hand, for all three of our proposed

translations, biu-fifo2dma can be synthesised with Petrify and Mpsat reaching a

maximum literal count of 24 and producing the smallest literal count of 22 for STGFJ

using Mpsat. Because the other synthesis results are not the smallest, a percentage

overhead (i.e. p24´22q

22
) is also included for each result.

Additionally, we calculated the overall average overhead for each synthesis tool,

based on the synthesis results produced for all the XBM specifications and for all three

translated STGs. This overall average overhead is calculated by totalling the percent-

age overhead of every literal count found in each tool column, and then dividing them

by that tool’s total number of successful synthesis results (i.e. the total number of non-

X and non-F results). For example, let us consider the overall average overhead for

3D: Here, we total up all the percentage overheads (i.e. 120`26`34`...`36`43`50)

and divide them by the total number of successful synthesis results (i.e. 34´3), which

leads to a result of p120`26`34`...`36`43`50q

p34´3q
.

5.3.3 Evaluation of Literal Counts Comparison

By evaluating our experimental results, we found that most of the specifications

synthesised with Petrify and Mpsat had a lower literal count than when they are

synthesised with Minimalist and 3D, despite many of them are originally (X)BM

specifications. In particular, simpler specifications like concur-mixer and and nowick-
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basic shown little to no improvement, as they were already the most optimal result.

However, more complicated specifications like biu-dma2fifo, dme-fast, pscsi-isend, and

scsi-tsend-bm all shown substantial improvements. Note that Workcraft supports

both Petrify and Mpsat, so one can synthesise the specification with both tools

and select the more optimal result.

Moreover, we also found that only a few specifications required the implementation

of fake outputs to be synthesiseable with Petrify and Mpsat. These included

biu-fifo2dma, pe-send-ifc, po-sbuf-send-ctl, and two-ticks-if as they all had a signal

transition x` (x´) followed by an immediate signal transition of x´ (x`), which

causes a CSC conflict.

Finally, all of the benchmarks can be synthesised as an STG when we usedMpsat.

This suggests that most XBM specifications can be designed as an STG and remain

synthesiseable without needing the ‘burst-mode’ timing assumption.

5.4 Summary

In this chapter, we cover the automated design flow of BAs and how we can use BAs

to establish a connection between the design routes of BM specifications and STGs.

In this automated design flow, we provide a step-by-step procedure of how (X)BM

specifications are translated to BAs and then subsequently to STGs, where they can

be composed with other STGs, verified, and synthesised into SI (QDI) circuits.

Next, we cover the implemented Workcraft plugin that supports the design

automation of BAs. In particular, we showcase the features of this plugin that include

how we design BAs, how we assign directions to signals, the simulation of BAs, the

optional verification of (X)BM’s well-formed requirements, automated translation to

STGs, and finally synthesis into an SI (QDI) circuit.
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Lastly, we cover the experimental results of the design workflow with BAs, where

we compare the model sizes between XBM specifications and STGs, and the literal

counts between Minimalist, 3D, Petrify and Mpsat. There, it is shown that the

size of the STG did not exponential explode due to the second and third translations

in Section 4.3, and that both Petrify and Mpsat produced circuit implementations

that had lower literal count than the circuit implementations produced by Minimal-

ist and 3D.
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Table 5.1: Analysis of Model Growth from STG translation

Specification Model Size
Name Sigs XBM STGFJ STGFJ STGFJ

biu-dma2fifo 6 44 101 96 89
biu-fifo2dma 6 33 93 90 142
counter-6 7 18 46 38 38
concur-mixer 6 27 55 43 41
diffeq-alu1 8 50 132 130 215
diffeq-mul1 6 27 67 59 59
diffeq-mul2 6 19 47 36 35
dme 6 38 50 50 50
dme-fast 7 45 80 68 66
dram-ctrl 14 75 186 169 171
fifocellctrl 4 15 26 20 19
hp-ir 5 33 61 61 74
hp-ir-it-ctrl 12 59 158 149 191
hp-ir-rf-ctrl 11 56 92 81 80
imec-alloc-outb 7 35 41 41 41
imec-sbuf-ramw 10 34 64 56 58
martin-qelement 4 16 16 16 16
nowick-basic 5 21 51 52 51
token-distributor 8 48 48 48 48
pe-send-ifc 8 70 166 197 345
po-sbuf-send-ctl 6 35 83 76 68
pscsi-ircv 7 33 81 81 130
pscsi-isend 7 53 123 121 171
pscsi-trcv 7 33 69 70 123
pscsi-trcv-bm 8 46 114 114 191
pscsi-tsend 7 54 106 104 156
pscsi-tsend-bm 8 58 132 125 179
scsi-isend-bm 9 57 125 123 120
scsi-isend-csm 9 57 125 123 120
scsi-trcv-bm 9 57 127 121 133
scsi-trvc-csm 9 45 101 94 144
scsi-tsend-bm 9 58 112 103 102
scsi-tsend-csm 9 49 85 71 67
tangram-mixer 6 31 35 35 35
two-ticks-if 6 31 77 68 67
Average size increase by factor 2.08 1.95 2.37
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Table 5.2: Comparison of Literal count between BM tools and STG tools

XBM STGFJ

Specification Minimalist 3D Petrify Mpsat
biu-dma2fifo X 44 (+120%) 22 (+10%) 20
biu-fifo2dma X F 24 (+10%) 22
counter-6 13 13 13 13
concur-mixer 15 15 15 15
diffeq-alu1 49 (+59%) 39 (+26%) 31 35 (+13%)
diffeq-mul1 X 28 (+34%) 24 (+15%) 24 (+15%)
diffeq-mul2 X 13 (+9%) 13 (+9%) 12
dme 21 (+50%) 20 (+43%) 15 (+8%) 14
dme-fast 27 (+69%) 27 (+69%) 23 (+44%) 16
dram-ctrl 41 (+3%) 40 46 (+15%) 41 (+3%)
fifocellctrl X 10 (+12%) 11 (+23%) 9
hp-ir 8 F 8 8
hp-ir-it-ctrl 46 (+22%) 39 (+3%) 44 (+16%) 38
hp-ir-rf-ctrl 37 (+24%) F F 32 (+7%)
imec-alloc-outb 23 (+44%) 21 (+32%) 16 17 (+7%)
imec-sbuf-ramw X 30 (+20%) 26 (+4%) 25
martin-qelement 9 (+29%) 9 (+29%) 7 7
nowick-basic 10 10 11 (+10%) 10
token-distributor 42 (+56%) 39 (+45%) 28 (+4%) 27
pe-send-ifc 81 (+89%) 52 (+21%) 49 (+14%) 43
po-sbuf-send-ctl 28 (+34%) 31 (+48%) 26 (+24%) 21
pscsi-ircv 27 (+50%) 27 (+50%) 21 (+17%) 18
pscsi-isend 55 (+67%) 61 (+85%) 40 (+22%) 33
pscsi-trcv 23 (+28%) 23 (+28%) 18 19 (+6%)
pscsi-trcv-bm 38 (+32%) 35 (+21%) 33 (+14%) 33 (+14%)
pscsi-tsend 43 (+35%) 45 (+41%) 36 (+13%) 32
pscsi-tsend-bm 52 (+45%) 50 (+39%) 46 (+28%) 37 (+3%)
scsi-isend-bm 47 (+57%) 50 (+67%) 39 (+30%) 30
scsi-isend-csm 47 (+52%) 50 (+62%) 39 (+26%) 31
scsi-trcv-bm 55 (+72%) 45 (+41%) 37 (+16%) 32
scsi-trvc-csm 46 (+65%) 38 (+36%) 32 (+15%) 28
scsi-tsend-bm 76 (+118%) 50 (+43%) 43 (+23%) 36 (+3%)
scsi-tsend-csm 41 (+71%) 36 (+50%) 40 (+67%) 25 (+5%)
tangram-mixer 8 8 10 (+25%) 8
two-ticks-if 13 (+19%) 11 12 (+10%) 11
Average overhead 41% 33% 15% 2%
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Table 5.2: Comparison of Literal count between BM tools and STG tools (continued)

STGFJ STGFJ

Specification Petrify Mpsat Petrify Mpsat
biu-dma2fifo 22 (+10%) 20 22 (+10%) 20
biu-fifo2dma 24 (+10%) 24 (+10%) 24 (+10%) 24 (+10%)
counter-6 13 13 13 13
concur-mixer 15 15 15 15
diffeq-alu1 31 35 (+13%) 31 35 (+13%)
diffeq-mul1 21 27 (+29%) 21 27 (+29%)
diffeq-mul2 13 (+9%) 13 (+9%) 13 (+9%) 13 (+9%)
dme 15 (+8%) 14 15 (+8%) 14
dme-fast 21 (+32%) 16 21 (+32%) 16
dram-ctrl 45 (+13%) 41 (+3%) 45 (+13%) 41 (+3%)
fifocellctrl 11 (+23%) 9 11 (+23%) 9
hp-ir 8 8 8 8
hp-ir-it-ctrl 44 (+16%) 51 (+35%) 44 (+16%) 51 (+35%)
hp-ir-rf-ctrl F 30 F 30
imec-alloc-outb 16 17 (+7%) 16 17 (+7%)
imec-sbuf-ramw 26 (+4%) 30 (+20%) 26 (+4%) 29 (+16%)
martin-qelement 7 7 7 7
nowick-basic 11 (+10%) 10 11 (+10%) 10
token-distributor 28 (+4%) 28 (+4%) 28 (+4%) 27
pe-send-ifc 50 (+17%) 48 (+12%) 50 (+17%) 49 (+14%)
po-sbuf-send-ctl 26 (+24%) 27 (+29%) 26 (+24%) 26 (+24%)
pscsi-ircv 21 (+17%) 18 20 (+12%) 18
pscsi-isend 40 (+22%) 33 33 33
pscsi-trcv 18 19 (+6%) 20 (+12%) 19 (+6%)
pscsi-trcv-bm 32 (+11%) 33 (+14%) 29 33 (+14%)
pscsi-tsend 45 (+41%) 32 45 (+41%) 32
pscsi-tsend-bm 46 (+28%) 36 40 (+12%) 37 (+3%)
scsi-isend-bm 39 (+30%) 36 (+20%) 40 (+34%) 36 (+20%)
scsi-isend-csm 39 (+26%) 36 (+17%) 42 (+36%) 36 (+17%)
scsi-trcv-bm 40 (+25%) 41 (+29%) 38 (+19%) 41 (+29%)
scsi-trvc-csm 32 (+15%) 28 32 (+15%) 28
scsi-tsend-bm 43 (+23%) 38 (+9%) 35 39 (+12%)
scsi-tsend-csm 40 (+67%) 24 39 (+63%) 25 (+5%)
tangram-mixer 10 (+25%) 8 10 (+25%) 8
two-ticks-if 12 (+10%) 11 12 (+10%) 11
Average overhead 15% 7% 15% 7%
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Case Studies

In this chapter, we will highlight the benefits of the proposed Burst Automa-

ton (BA) model and the implemented Workcraft plugin, by covering two case

studies based on real-life systems.

The first case study involves the design of the buck converter [61], where we will

investigate the design and operations of the buck converter including their Signal

Transition Graph (STG) models. We will then try to design the same scenarios of

the buck converter using Burst-Mode (BM) Specifications, before we identify some of

the shortcomings of BM specifications and design the buck’s scenarios using BAs.

The second case study involves the design of the Versa Module Europa (VME)

bus controller [1], where we will investigate the design and operations of the VME

bus controller including their STG models. Here, we model the read, write, and

combined modes the VME bus controller using BAs, before we show that the BAs

and the reachability graphs of the STGs are equivalent.
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6.1 Buck Controller

In this section, we will study the design of the buck converter [61], where we will

first show its STGs and try to model the buck using (X)BM specifications, before we

highlight the limitations of (X)BM specifications and the benefits of BAs.

6.1.1 Design and Operations of the Buck Converter

Buck converter is a direct current (DC) to DC converter that steps down the voltage

and steps up the current from its input (battery) to its output (load). It comprises an

analogue buck and an asynchronous controller as shown in the top-level schematic in

Figure 6.1. Here, the asynchronous controller is to be specified using some formalism

(e.g. STG) and then synthesised as an asynchronous circuit.

control

V nmos

V pmos

buck

V ref

I 0

R
lo
ad

PMOS

NMOS

I max

gp ack

oc

uv

zc

gn ack

gp

gn

Figure 6.1: Schematic of a basic buck converter

In this schematic diagram, we can see that the controller switches the power

regulating PMOS and NMOS transistors ON and OFF, as a reaction to the under-

voltage (UV), over-current (OC) and zero-crossing (ZC) conditions.
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These conditions are detected and signalled by a set of sensors (i.e. uv, oc, and

zc) that are implemented as comparators of the measured current and voltage levels

against some reference values (i.e. V ref , I max and I 0 respectively).

The gp and gn signals are then buffered to drive the very large power regulating

transistors, and their effect on the buck can be significantly delayed. Thus, the

controller is explicitly notified by the gp ack and gn ack signals, when the power

transistor threshold levels are crossed.

As such, we can even capture this operation of the buck as a phase diagram as

shown in Figure 6.2, where the intended reaction to the various sequences of the

detected conditions can be seen.
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Figure 6.2: Phase diagram of buck operation

Here, we can see the alternation of the UV and OC conditions, which are handled

by switching the power regulating PMOS and NMOS transistors of the buck ON

and OFF. Here, the detection of the ZC condition after UV does not change this

behaviour. However, if ZC is detected before UV then both the PMOS and NMOS

transistors remain OFF until the UV event.

As such, we can even model this behaviour with STGs in a natural way by cap-

turing the three possible scenarios (i.e. late ZC, no ZC, early ZC) as three separate

STGs, and then combine them into a single STG, where the reset sequence that

is common in all three scenarios can be compressed into one sequence for the final

combined model, as shown in Figure 6.3.
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Note that it is particularly beneficial to model several parts of a controller and

then compose them into a single model, rather than model the whole of the controller,

as shown in [47].

(a) No ZC scenario

(b) Late ZC scenario

(c) Early ZC scenario

(d) Combined STG of all three scenarios

Figure 6.3: STGs of the buck scenarios

Using Workcraft, we can easily verify that the combined STG model satisfies

the standard STG implementability properties that include consistency, deadlock-

freeness, input-properness, output-persistency, and output determinacy, which are all

defined in Section 2.2.3.
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To avoid short-circuiting the battery, the PMOS and NMOS transistors of the buck

must never be ON at the same time, which can be captured as a custom property

that must be formally verified. Hence, we can specify this custom property as the

invariant gp ¨gp ack`gn ¨gn ack, which ensures that gp and gp ack are not on at the

same time as gn and gn ack, and we can then easily verify in Workcraft that this

custom property also holds for our STG above. Note that this invariant also takes

care of the transient short-circuit, due to the slow switching of transistors.

Following the verification of our STG, we can then synthesise it into a speed-

independent (SI) (quasi-delay insensitive (QDI)) circuit using either Petrify or Mp-

sat backends in Workcraft, where a possible circuit implementation is produced

that could be the SI (QDI) circuit shown in Figure 6.4.

Figure 6.4: Possible circuit implementation of the buck

As the final step, we can again use Workcraft to verify that this circuit is

indeed a correct implementation of the above STG in Figure 6.3d (via conformation),

and that it also holds the above invariant which prevents short-circuiting the battery.

6.1.2 Modelling Issues for Burst-Mode Specifications

Now, suppose that we are a circuit designer who wishes to design the buck controller

using an FSM-based model, e.g. BM specification. However, this is not straightfor-

ward due to the following circumstances:
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1. There is concurrency between inputs and outputs, which cannot be captured in

BM specifications as explained in Section 2.2.2. In particular:

(a) For the late ZC scenario, one may think it is possible to use “don’t care”

transitions from the XBM specification to capture the concurrency between

transition sequences zc+ Ñ zc- and gn- Ñ gn ack- Ñ gp+ Ñ gp ack+.

However, this does not work as there must at least be one compulsory

input that appears with the “don’t cares” due to the XBM’s compulsory

input requirement defined in Section 2.2.2, where the compulsory input

uv+ must then appear with the “don’t care” input zc* meaning zc+ can

also fire before uv+, which breaks the scenario. This becomes even more

complicated as zc- is also concurrent with the transition sequence gn- Ñ

gn ack- Ñ gp+ Ñ gp ack+, meaning expressing zc- as a “don’t care” would

either break the scenario (as it needs to appear and terminate with another

signal) or violate the XBM’s compulsory input requirement (as it would

appear by itself).

(b) Similarly for the early ZC scenario, the “don’t care” transition cannot

be used for the uv+ transition as, again, the compulsory input zc+ must

appear with the ‘don’t care’ input uv* meaning uv+ can fire before zc+

which too breaks the scenario.

2. There are sequences of inputs without intermediate outputs. While it is possible

in BM specifications to have bursts without outputs, this is interpreted as having

a fake output, which may potentially cause a state change. Furthermore, this

cannot be done without introducing the timing assumption that firing this fake

transition and state change would happen faster than the arrival of the next

input, which is difficult to guarantee.

130



CHAPTER 6. CASE STUDIES

3. Finally, it is not possible to compose the BM specifications of the three ZC

scenarios into one model (like in Figure 6.3d where the three STGs were com-

posed into one STG), as there is a non-deterministic choice between the two

uv` transitions that is prevented by the BM’s maximal set property. Addi-

tionally, we are also not able to decouple the outputs due to the BM’s inherent

timing assumption, nor are we able to express bursts containing only outputs

due to the BM’s non-empty input burst property. Furthermore, removing this

non-deterministic choice from the buck converter is non-trivial.

6.1.3 Relaxing Burst-Mode Well-formedness Requirements

Due to the non-straightforwardness in modelling the buck converter with BM spec-

ifications, let us instead consider modelling the converter with a ‘generalised’ BM

specification, where we set aside some of the BM’s well-formedness properties, i.e.

BM’s non-empty input bursts requirement is ignored to enable empty output bursts

and subsequent output bursts, and BM’s maximal set property and XBM’s distin-

guishability constraint are ignored to enable non-determinism.

By relaxing these requirements, it is now possible for us to model the converter

without any issues, as shown in Figure 6.5 where each of the three ZC scenarios can

be described as a BM-like model. Note that unlike the traditional interpretation of

BM specification where ‘fake’ outputs must be created for every burst without an

output, this is not required for BAs and is instead included as another method for

translating a BA into an STG with explicitated ‘fake’ outputs. Additionally, these

three models can also be manually combined into a single model while compressing

the common reset phase, as shown in Figure 6.5d.
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(a) No ZC scenario

(b) Late ZC scenario

(c) Early ZC scenario

(d) Combined BM-like specification of all three scenarios

Figure 6.5: BM-like specifications of the buck scenarios
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When we observe the resulting model, we can see that it makes sense semanti-

cally despite not being a well-formed BM, and that it actually strongly resembles a

reachability graph of the original STG model in Figure 6.3d, with the only difference

being that transitions were combined into bursts where possible.

As we already have an STG produced, it would be tempting to just build its

reachability graph and interpret it as a BM-like model with single-event bursts. Un-

fortunately, this is not viable as BM specifications are not a proper extension of FSMs,

and so the state graphs of STGs are generally not well-formed BM specifications.

On the other hand, we may even opt to only use STGs to design their specifica-

tions. However, many circuit designers are still more familiar with FSMs, and there

are still some inclinations that the industry finds STGs to be too complicated when

compared to the very familiarised FSM-based models.

Thus, this encourages the need for BAs, as BAs can help bridge the gap between

BM specifications and STGs where, on the side BM specifications, it is not possible

to express certain behaviours, and on the side of STGs, many circuit designers are

still not familiar with it.

For example, by removing some of the BM’s well-formedness requirements and

enabling a more fluid transition between different formalisms (i.e. FSMs like BM

specifications and Petri nets like STGs), we can achieve the three models shown in

Figure 6.5, which are all valid BAs that can be subsequently translated to STGs or

FSMs, formally verified, and then synthesised into SI (QDI) circuits.

In particular, we even can translate the composed BA in Figure 6.5d automatically

to the STG shown in Figure 6.6 via Workcraft.

Alternatively, we may even translate the three BAs in Figure 6.5 into STGs, apply

them with net synthesis using Petrify, and then combine them, while compressing

the reset phase, to achieved the same STG shown in Figure 6.3d.
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Once our translated STG is ready, we can then formally verify in Workcraft

that our translated STG satisfies the standard STG implementability properties, and

the custom property where there is no short-circuit, before we synthesis the translated

STG into an SI (QDI) circuit, like the one shown in Figure 6.4.

Figure 6.6: Translated STG of the overall buck converter

6.1.4 Benefits from Burst Automata Modelling

From this simple modelling exercise, there are several potential areas of improvements

that we can identify for BM specifications, which BAs help achieve. These include:

• Local input-output mode: Sometimes, e.g. when modelling input-output

concurrency or choices like the mutex element, bursts are too coarse-grained

and the XBM specification’s “don’t care” transitions may not be applicable, so
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it would be beneficial to allow the designer to fall back to the FSM-style fine-

grain way of specifying behaviour. The flip side of this is that the possibility

to specify a wider class of behaviours would require a more computationally

expensive SI (QDI) synthesis. However, we can argue that this is a reasonable

price to pay, as the alternative is not being able to model the desired behavior

at all, or introducing timing assumptions which can be much more cumbersome

and computationally expensive to handle.

• Non-deterministic specifications: By dropping some of (X)BM’s well-formed

requirements, in particular the non-empty input burst property and BM’s max-

imal set property (or XBM’s extension, the distinguishability constraint), we

can enable modelling and synthesis of non-deterministic specifications, e.g. the

BA in Figure 6.5d has a non-deterministic choice at the initial state between

two uv` transitions. Additionally we also allow empty bursts, which can be

interpreted as ε-transitions in FSMs. The semantics of non-deterministic spec-

ifications are formally defined in [37], where it is argued that non-determinism

is an extremely useful and powerful feature, e.g. as it was shown earlier in

the buck converter example above, where no timing assumption was required

for the late ZC scenario due to the no ZC scenario. Note that common trans-

formations, such as hiding signals, can turn deterministic specifications into

non-deterministic ones. In particular, non-deterministic specifications can also

be determinised provided that output-determinacy holds, as violation of output

determinacy means that there are errors.

• Model interoperability: There are great advantages of modelling formalisms

to have compatible semantics. This allows fluid transition (via automatic trans-

lation) from one formalism to another, as well as designing large systems from
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pre-existing blocks expressed in different formalisms. Thus, with BAs, inter-

operability can be achieved between BMs, XBMs, STGs, FSMs, Petri nets, or

generally any formalism that can be automatically translated into any of these

models, e.g. Waveform Transition Graphs (WTGs) [50] which have STG-based

semantics.

Interestingly, these advantages are achieved in the BA not by adding ‘bells and

whistles’ to the BM specification, e.g. like how XBM specifications added conditionals

and “don’t cares” that made its well-formedness properties more complicated as a

result, but rather by dropping some of its restrictions, which in turn also simplified

the definition of the model. In particular, BAs can be simpler to define than BM

specifications as:

• There is no maximal set property (nor XBM’s extension, the distinguishability

constraint) that prevents non-deterministic choices.

• There is no requirement that the input bursts must be non-empty (which, in-

cluded with the above bullet point, means non-determinism can be enabled).

• Bursts are not split into input and output half-bursts, but instead are just sets

of actions. Note that splitting these inputs and outputs into half bursts may

still be useful and can be shown graphically, but it is not a part of the model

definition in Section 4.2.1.

• There is in fact no need to distinguish between inputs and outputs as BAs

are defined over a homogeneous alphabet of actions, and the partitioning of

the alphabet into inputs and outputs, as well as adding directions to actions

(e.g. a` and a´) with the associated consistency requirements, are instead

refinements of the original BA model.
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6.2 VME Bus Controller

In this section, we will study the design of the VME bus controller [1], which can be

modelled as an STG. We will then attempt to model the VME bus controller’s mode

of operations using (X)BM specifications, which have a restricted ordering of output

events, before attempting to model with BAs.

6.2.1 Design and operations of the VME Bus Controller

To understand the operation of the VME bus controller, let us consider its schematic

shown in Figure 6.7.

dsw

dsr

dtack

d

lds

ldtack

VME bus
controller

transceiver

device

bus

Figure 6.7: Schematic of the VME bus controller

In this schematic diagram, we can see that the controller has two modes of oper-

ation, where one mode reads the data from the device into the bus by enabling the

input dsr and the other mode writes the data from the bus into the device by enabling

the input dsw.

When the VME bus controller is in read mode, a request to read the data from

the device is sent by firing lds+. When the device is ready to send this data, it is

acknowledged by the assertion of ldtack+, where the VME bus controller opens up

its transceiver by asserting d+ and notifies the bus that data is ready for a transfer
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by asserting dtack+. Once the read operation is complete, all signals return to their

initial state.

When the VME bus controller is in write mode and when the data is stable on

the bus, the VME bus controller opens up its transceiver by asserting d+ and a write

request is then made by asserting lds+. Once the device acknowledges that it has

received the data via the assertion of ldtack+, the VME bus controller then closes the

transceiver by asserting d-. As a result, the device gets isolated from the bus, and the

bus is then notified that the write operation is completed by the assertion of dtack+.

Like in read mode, once the write operation is complete, all signals return to their

initial state.

Thus, we capture each operation of the VME bus controller as timing diagrams

as shown in Figure 6.8.
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(a) Read mode

dsw
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d
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(b) Write mode

Figure 6.8: Timing diagrams for the VME bus controller

Using these timing diagrams, we can even specify the VME bus controller’s two

modes as STGs as shown in Figure 6.9, where we can capture sequence of events

that were described for the read mode (Figure 6.9a) and write mode (Figure 6.9b).

Notably, we can even combine these STGs together by merging their initial marking

and collapsing the common dtack- transition as shown in Figure 6.9c, where we now

have one choice place between dsr+ and dsw+ and one choice place between top lds+

and bottom lds+, as well as two merge places from either top d- or dsw-.
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(a) STG of read mode

(b) STG of write mode

(c) Combined STG

Figure 6.9: STGs of the VME bus controller

If we verify the composed STG model, we will see that it satisfies the standard

STG implementability properties that includes deadlock-freeness, input-properness,

output-persistency, and output determinacy, which are all defined in Section 2.2.3

and can be easily checked in Workcraft.

We can then synthesise the composed STG into an SI (QDI) circuit using either of

the Petrify or Mpsat backends in Workcraft, which produces a possible circuit

implementation like the SI (QDI) circuit shown in Figure 6.10.
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Figure 6.10: Possible circuit implementation of the VME bus controller

6.2.2 Modelling with Burst Automata

Now, if we try to model the VME bus controller using (X)BM specifications, it is

unfortunately not possible as:

• There is input-output concurrency, which as explained in Section 2.2.2 can-

not be expressed in BM specifications. While XBM specifications can express

input-output concurrency using its conditionals and “don’t cares”, neither con-

ditionals nor “don’t cares” can be applied here, as none of the inputs in the
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VME bus controller appears with another input (even if we turned it into a

BM specification), meaning conditionals would have appeared on their own if

we substituted any of the inputs (which is incorrect), and the compulsory input

requirement (for “don’t cares”) would likely be violated.

• There are output choices, which BM specifications cannot express because of

their non-empty input burst requirement. Although one might consider group-

ing up these output transitions into bursts, e.g. d+ and dtack+, this would

break the scenario, as the ordering of these outputs in the VME bus controller

is important, e.g. dtack+ is dependent on d+.

• There is merging of specifications, which can be a non-trivial operation for BM

specifications. While there are decomposition methods like BM Decomp that

are available for BM specifications, there does not seem to be a composition

method for BM specifications. Instead, we can just consider combining these

specifications together like how we do for STGs, it becomes complicated once we

need to factor in situations, such as input-output concurrency, output choices

and even non-deterministic choices (which are not possible in BM specifications,

due to its maximal set property).

Instead, suppose that we use BAs to model the VME bus controller. Here, because

there are no well-formed requirements to be considered like in (X)BM specifications,

we can model the VME bus controller easily using BAs as shown in Figure 6.11, where

concurrent inputs and outputs, as well as output choices, can be expressed in BAs.
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(a) BA of read mode (b) BA of write mode

(c) Combined BA

Figure 6.11: BAs of the VME bus controller

Once our BAs are modelled, we can then translate them into the STGs shown in

Figure 6.12, where we can subsequently verify and determine that they pass all of the

STG’s implementability properties, and synthesise the combined STG to produce the

same possible circuit implementation of the VME bus controller shown in Figure 6.10.

Note that we can also apply ‘net synthesis’ to these STGs with Petrify to achieve

same STGs shown in Figure 6.9.
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(a) Translated STG of read mode (b) Translated STG of write mode

(c) Combined translated STG

Figure 6.12: Translated STGs of the VME bus controller

To ensure that our BAs are equivalent to original STGs in Figure 6.9, we can also

build their reachability graphs as shown in Figure 6.13 to check for model equivalences.

Note that by observing the BAs in Figure 6.11, we can see that they exactly resem-

ble the STG’s reachability graphs in Figure 6.13 and that each state can be matched

accordingly, as the transitions are common in both BAs and STG reachability graphs.
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(a) Reachability graph of STG specifying read mode

(b) Reachability graph of STG specifying write mode

(c) Reachability graph of Combined STG

Figure 6.13: Reachability graph of the STGs specifying the VME bus controller
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Conclusion

This thesis presents a new formal model called Burst Automaton (BA) that

can capture the design, verification, and synthesis of composed Finite State Ma-

chine (FSM)-based models, while also providing the necessary framework for en-

abling interoperability of many different models like Burst-Mode (BM) specifications

and Signal Transition Graphs (STGs), which helps establish a new design route that

bridges the gap between the ‘legacy’ design route and ‘disruptive’ design route of

specifying asynchronous circuits.

In this chapter, we summarise the main ideas that are developed and discussed

throughout this thesis, where we highlight the key contributions and discuss their

impact in Section 7.1, and then outline the future research area that can be considered

for further investigation and improvement to the project in Section 7.2.

7.1 Summary of Thesis Contributions

Burst Automaton model: In Chapter 4, we introduce the BA model, where we

provide its model description (Section 4.1), its formal definition (Section 4.2.1) and

its defined semantics as an asynchronous state graph (Section 4.2.2), which the latter

is comparable to the reachability graph of STGs.

With the support of several methods that can translate BAs to STGs (Section 4.3),
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BAs enable interoperability between many models including BM specifications, Ex-

tended BM (XBM) specifications, STGs, FSMs, or generally any formalism that

can be automatically translated into any of these models, e.g. Waveform Transition

Graphs (WTGs) [50] which have STG-based semantics. As a result, we also enable

the composition of (X)BM specifications via BA (Section 4.4), which can be verified

and synthesised into a speed-independent (SI) (quasi-delay insensitive (QDI)) circuit.

As shown in Section 3.3, this particularly helps establish a new ‘co-design’ route

that bridges the gap between the ‘legacy’ design route of BM specifications and the

‘disruptive’ design route of STGs, where we grant the state-based circuit designers

access to the well-established tools that are available for STGs by automated transla-

tion via BA, and similarly, enable event-based circuit designers to make use of ‘legacy’

designed BM specifications via a convenient import and export mechanism.

The benefits of BAs can also be found in Chapter 6, where we cover two case stud-

ies involving the design of a buck converter and the design of a VME bus controller,

and show how BAs can enhance the modelling of BM specifications to express similar

behaviours to the STGs.

Automated design flow based on the Burst Automaton’s ‘co-design’

route: In Chapter 3, we discuss the issues that are posed for the ‘legacy’ design route

and the ‘disruptive’ design route of specifying asynchronous circuits, where the former

produces circuit implementations that are not well-optimised and the latter is avoided

by state-based circuit designers due to their unfamiliarity with STGs (Section 3.1).

These issues are then highlighted and shown in our motivational example, where we

first specify the handshake decoupler as an STG and then try to specify it as a BM

specification (Section 3.2).

This results in the proposal of a new ‘co-design’ route that is established by using

BAs, where it bridges the gap between the ‘legacy’ design route and the ‘disruptive’
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design route (Section 3.3), and allows us to then easily specify the handshake decou-

pler using BAs, which shown several potential areas of improvements for both the

‘legacy’ design route and the ‘disruptive’ design route (Section 3.4).

Translation methods from Burst Automata to Signal Transition Graphs:

In Section 4.3, we present three translations from BAs to STGs, where the first trans-

lation is linear and preserves the language (Section 4.3.1), the second is exponential

and preserves weak bisimulation (Section 4.3.2), and the third is exponential and

preserves strong bisimulation (Section 4.3.3).

In particular, these proposed translations enable BAs to be easily composed (Sec-

tion 4.4), verified and synthesised into speed-independent (SI) (quasi-delay insensi-

tive (QDI)) circuit, using the STG’s established tools. Because (X)BM specifications

can be translated into a BA by generalising some of its well-formed requirements (Sec-

tion 6.1.3), these translation methods also directly enables composition, verification,

and synthesis of SI (QDI) circuits for (X)BM specifications.

Moreover, the translation of the XBM specification’s components to their STG

counterparts (Section 4.3.4) allows the interpretation of (X)BM-like models via BAs.

Implementation of the automated design flow as a Workcraft plugin: In

Chapter 5, we show the implementation Workcraft plugin that is based on our

automated design flow of BA’s ‘co-design’ route (Section 5.1), where it enables design

automation support for BAs and (X)BM specifications featuring graphical-based de-

signs (Sections 5.2.1 and 5.2.2), simulation (Section 5.2.3), (X)BM-based verification

(Section 5.2.4), translation to STG (Section 5.2.5), and STG-based verification and

circuit synthesis using Petrify and Mpsat backends (Section 5.2.6).

The results of the Workcraft plugin are then shown in Section 5.3, where all

three translation methods from BAs to STGs scaled well (Section 5.3.1) and their

produced circuit implementations achieved smaller literal counts (Section 5.3.2).
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7.2 Future research and Development

The contributions of this thesis have shown how our proposed BA model helps estab-

lish a new ‘co-design’ route between the ‘legacy’ route of designing BM specifications

and the ‘disruptive’ route of designing STGs, where several benefits can be par-

ticularly found for both ‘legacy’ circuit designers and ‘disruptive’ circuit designers.

However, there are still improvements that can be made and considered for the future

research and development of this BA model and its design flow.

Firstly, there are still optimisations that can be done to the presented BA model,

where better circuit results can be produced e.g. reducing the impact of interleaving,

reducing the concurrency of output bursts, and optimising the ordering of outputs.

The presented translation methods, in particular the two exponential-sized trans-

lations that preserves weak bisimulation and strong bisimulation, in Section 4.3 can

also be improved due to the creation of redundant places. For example, recent work

in [35, 36] shows how these exponentially-sized translations can be significantly im-

proved to polynomial-sized translations by replacing the Cartesian product construc-

tion with a new construction, based on edge clique covers of graphs.

New features can also be added to the presented Workcraft plugin in Section 5,

such as a method that groups up ‘burstable’ signals (e.g. interleaving arcs containing

only inputs/outputs) in composed BAs when signal order is not important, and a

method that decouples/recouples bursts into optimised subsets of signals.

Finally, the presented distributed methodology for composing BAs in Section 4.4

can be extended to include the modelling of distributed environments, where it can

be used to investigate the possibility of allowing multiple timing assumptions to co-

exist in a circuit implementation, e.g. one part operating in input-output mode and

another part operating in the ‘burst-mode’ timing assumption.
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Appendix A

Composed BA Model

Figure A.1: Composed BA of the Handshake Decoupler’s Controller in Chapter 3
interpreted from STG reachability graph in Figure 3.11
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