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Abstract : ]

Abstract

Tubular joints are of great importance in oftfshore jacket structures. This thesis
cxamines the ultimate state behaviour of tubular joints in offshore structures. In
particular, the validity of a nonlinear fimte element method was mvestigated and

it was subsequently used to determine the ultimate load behaviour of a range of

tubular joints.

A geometrically nonlinear, eight node isoparametric shell finite element pro-
gram is developed which allows six degrees of freedom per node. The material laws
in the model include elastic and elastoplastic multilaver solution with integration

across the thickness. Strain hardenmmg effects can be included.

The nonlinear solution strategies are based on the Newton-Raphson Method.
The load is applied in increments where for each step, equilibrium iterations are
carried out to establish equilibrium, subject to a given error criterion. To cross
the Iimit point and to select load increments, iterative solution strategies such as

the arc length and automatic load increments method are adopted.

To analyse tubular joints, a simple mesh generator has been developed. Struc-
tural symmetry is exploited to reduce the number of elements. The tubular joint
Is divided into a few regions and by means of a blending function. each region is

discretised mto a number of elemeoents.

A wide range of tubular joints have been analysed using this finite element
mcethod. The numerical results have been compared with experimental tests un-

dertaken by the Wimpey Offshore Laboratory using large scale specimens.
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Finally, the applicability of the nonlinear [inite element developed here is briefly
discussed and potential areas of research in the ultimate behaviour of tubular joints

are proposed.
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Chapter I

Introduction

1.1 Hydrocarbons

1.1.1

lIydrocarbons are chemical compounds composed of the elements carbon and
hydrogen. At normal temperature and normal pressure, they may be liquid, gas
or solid depending on their composition. Accumulations of hyvdrocarbons can be
found 1 many places of the world. All hydrocarbons which occur naturally mn the
carths crust are termed petroleum. In the commercial sense the word is usually
restricted to the liquid deposit crude oil, the gaseous form 1s termed nat-ura_l gas,
and the solid forms are called bitumen, asphalt or wax according to their composi-
tion. In general, the proportion of carbon and hydrogen does not vary appreciably
among the different varieties of petroleunt : carbon comprises §2% to 87% and
hydrogen 12% to 15% by molecular':u*eight' [Chapman 1983]. Hydrocarbons are
extremely economically important, and are the concern of a multibillion pound in-
ternational industry. They are overﬁ-'helmiligl}' important as fuels (after refining),

but also have a myriad other uses.

Oil Fields

A petroleum reservoir can be delined as the part of g'ét)liigiﬂc 'ii'a‘p' i which oil

and gas accumulate, while an accumulatlon compuses one. or more 1eser\ 0irs of oil

= W = -l--

or equivalent gas. About third of those (11‘3(‘0\ emd h‘a\' pmcluced [Cmmalt 1986]

According to the BP Statistical Riview [.1988],' (he total oil reseves in 1967 were
418 billion barrels and this had doubled by 1987. The oil reserves in 1987 were
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396 billion barrel. Most oil reserves are located in Middle East (see Fig. 1.1a-b).
However, most gas reserves are located m what used to be the Centrally Planned
Ecottomies. Since 1977, the world gas reserves have increased from 2159 trillion

. cubic feet to 3797 trillion cubic feet 1 1987.

I} Exonomict o35
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. Latin America 18.3%

D Middle East 66.0%

Figure 1.1a : Percentage of il reserves in the world 1987
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Figure 1.1h ; Percentage of gas reserves in the world 1987
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Many explorations have been carried out in the sedimentary basins of the
world which were expected to have oil accumulation. The result of exploration can
be classiflied into 4 groups, which are intensively explored, moderately explored.
partially explored and essentially unexplored. 277 of prospective sedimentary
basins in the world currently produce hydrocarbons, another 40% of the basins have
been partially or moderately explored and tested but do not produce commercial
quantities of petroleum. The total of the world’s prospective sedimentary basin
area 1s approximately 77,643,000 sq. km. About 26.395,000 sq. km of this area

lics in the world’s oceans (sce Table 1.1) [Halbouty. 1986].

Onshore foshore
(1000 sq km) | (1000 sq km)

Total
(1000 sq km)
044
1015
1042
2472
3669
3348
5167
0604
1851
8247

LLocatton

Japan

Iastern LEurope

Antlartica

Republic of China

Middle East

Western ILurope

Canada
Australia-N7Z

Latin America
Us A
S and SE Asia

SY16
13223
14945

Alrica/Madagascar
USSR

TOTAL |

Table 1.1 — Approximate prospective areas of the sedimentary basins

of the world [Halbouty 1986]
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1.1.2 Offshore Oil Production

Now o1l drilling has spread to the offshore area in almost every part of the world.
About 17% of the worlds annual crude oil output came from offshore oil fields in
1970 and this proportion increasced until it reach 23% in 1980 (see Tablel.?). As
mentioned above, more than one third of the prospective basin area lies in the
oceans basin (Table 1.1). This means that. the prospect of oflshore oil produ'ction_

i the future is excellent.

billion | 7 of total oil

production

Table 1.2 — World Offshore Crude Oil Production 1970-1980
. . [ Tiratsou,1984] . -
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1.2 Offshore Structures Type

The first oflshore structural platform. which was built in 1896 on the coast
of California. used a wharf which was built out into the water. Futhermore, a
wooden platform was used in Ferry Lake in Caddo Parish Lousiana on 1909/1910.
This platform was used for drilling. and was built on top of cypress tree piling.
After that year, several wooden platforms were built in offshore fields. In 1946, the
Magnolia oil company used steel piles for an offshore platform. This was the first
oifshore platform to use steel piles. The choice of steel piles was because of problem
with teredo, a marine borer, which attacked the wooden piles. Three years later, in
1949, mobile drilling units mounted on barges were introduced. Now many types
of offshore structure have been developed. The most comumon type is the jacket
structure. Some offshore structure type will now be briefly listed [Bettess 1989,

Gerwick 1986, Graff 1981].
1.2.1 Jack-ups

Jack-ups rigs are normally operated in a 1'a11gé of water depth from 30 m to
1om. Jack-ups are uséd i dl‘illil;g. operal-ions._. b-ﬁt niay he uséd as a production
support. The jack-ups consist of a barge as a deck section and several tubular
legs usually 3 or 4 at the side of the deck section. The legs can be lowered to the

scabed on site, then the deck section of platform is raised to a certain level above

sea. In transit the legs are raised and the barge can be towed.

1.2.2 Semi-Submersibles_

Semi-submersibles are the most popular form of floating production system.
These have been used as early as 1975 on the Argyll field in the North Sea. They
are basically buoyant structures which consist of 2 pontoons and several colunns - -
to support the deck platform: When thiey are operating, they are moored to the
seabed and the pontoons are fully-submerged.- Tll’iszilmorin'é system allows a Jarge -

lieave motion in extreme wave enviroments and this can cause problems with the
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1.2.4

1.2.5

1.2.6
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Monolulls

Mouohulls are designed for the developnient of small fields. The design con-
cept takes a small o1l tanker, with elaborate dynamic positioning equipment. and
facilities Lo locate the well head and to process the oil production. The Petrojarll

15 a turret moored monohull production vessel. It started work in the Oseberg field

in September 19806.
Tension Leg Platform (TLP)

The basic design of all teusion leg platform is a buoyant structure which s
connected to the seabed by taut vertical mooring lines. The buoyancy force of
the platform creates an upward force keeping the mooring lines under constant
fension. The first tension leg platform was the Hutton field platform in 147 m
depth of water in the North Sea, developed by Conoco. TLP has been prefered for
the Jolliet field in the Gulf of Mexico which has 536 m water depth. The Jolliet
TLP has been installed, despite problems with tendons. The TLP scheme has

great potential for operation in great water depth.
Monopole Platforms

Monopole platforms are sometimes called guyed tower platform. One was
installed by Exxon in 1983 in the Gulf of Mexico in a depth of 350 m of water.
The basic idea of this platform is a tower with a flexible joint at the base held in

position by means of positive buoyancy and mooring lines.

Tripod Tower Platforms -

- ]

The Conccpt of the slccl tllpod has becn dev Clopcd b\ Hemcma / :\1\01 Thc de- |

sign looks like a lf.‘lld]lt‘(ll{)ll uf sleel tubm&, Oue ldlgé tenllal Colounlﬁ IS bllppmled

by three smaller (llametel mcthd tubes 'Smne l)lacmg frames are comlected be-

tween the central column and the mclmed leg. The structure is pinned to the

seabed by the piles. A number of small tripod:structures have been installed in. .- -
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1.2.8

shallow water, in the south north sea. The large tripod structure have been studied
for Norske Shell and a design study was carried out for the Norwegian Troll gas
field. It would have been very large structure in a water depth of 340 m and with
eck loading of 60000 tonnes. lowever 1t .was not built, a conventional concrete

gravity structure being prefered.

Concrete Gravity

Most concrete offshore structures are situated in the North Sea., especially
in the Norwegian sector and a few concrete gravity structures are also used off
the coast of Brazil. The first major concrete gravity structufes was the Ekofisk
storage tank, Ekofisk 1. It was built by C. G. Dorris for Phillips petroleum and it

has storage capacity of 5.6 million cubic feet.

The concrete gravity structures are founded at the sea floor, transfering their
load to the soil by means of shallow foolings. They ofler mtegrated oil storage and

a short installation time since no piling is required. Platforms usually have short

skirt piles. It is also possible to install the topside facilities at a sheltered inshore

location. These gravil.y'_ platforms are huge structures and they are only suited to

large field developments. The final design for the Norwegian Troll gas field was a

concrete gravity structure.
Jacket Structures

Jacket or template structures have evolved from simple piled jetties or plat-

11111

forms, originally used in only a few metres of water, just ofl the coast. Now, these - -

structures are in depths of more than 300 m. The huge jacket structure. Shell

Bullwinkle. has just been built and H stands in a water del)th: of 412 m 1 the US

D m E— —— BT e gy — T '.-"L‘"'I_...q—ln._i--—ll o g T—— - -

Cinlf of Mexico {Anon. 1988]. Although designs have become more complicated

and sophisticated over the years, the original layout has proved to surprisingly

flexible and eflective.

Table 1.3, lists known, completled structures located in-walers exceeding 140

[
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metres while Tig. 1.2 depicts major historical developments.

Name/Owner/Locatlion

[wakv Exxon/Japan
Murchison/Conoco. North Sea
North Cormorant/Shell. North Sea
Casablanca/Chevron, Spain
Thistle/BNOC, North Sea
Nomorado II/Petrobas, Brazil

Magnus/B.P North Sea

Mississippl Canvon,
[1S1/ARCO. Gull of Mexico

Zapata, Gulf of Mexico
Garden Banks 230A /

Chevron, Gul{ of Me.}'c:ico

Eureka/ Shéll, offshore
Eureka/Shell, offshore Califomi;a

Cerveza ligera/ Union,

Gulf of Mexico
Clerveza/Union, Gulf of Mexico

Northern Ninian/ -
Chevron, North Sca

Bullwinkle/Shell.

Gulf of Mexico

Walter

depth
(m)

160
160
161

170
154

1 259

141

412

60

No. of | Jacket

weight

(tonnes)

6500

10200

11000

20900
30400

13000

440359

[

[Foundation

Type

[Extended skirt
Clust.er
Cluster

Extended skirt
Cluster

Extended skirt

IExtended skirt

Extended skirt
Extended skirt

Extended skirt
Extended skirt |

Extended skirt

Extended skirt

Extended skirt

Table 1.3 — Fixed steel offshore platforms located in water depths -

- zexceeding 140 metres -
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The principal structural components of a fixed offshore structure arve the jacket.
the deck, and piles. The jacket consists of a three dimensional frame structure,
the main members of which are vertical or slightly inclined and which extended
from the seabed to above the water surface. They are called legs. The other
members. which are usually smaller are horizontal members and diagonal bracing,
I bracing, X bracing or more complicated bracing schemes are used. The members
are mvariably cylindrical tubes and some of the members are sometimes internally
or externally stiffened. Gusset plates are also sometimes used at joints. The

itersections of members are called nodes or joints.

The jacket is prefabricated onshore as a space frame and is transp‘ort.e_d to the
site. At the offshore site the jacket, the pile and the deck will be installed together.
The tubular members are fabricated from plates which are rolled to the correct
radius and welded up. At intersection of a member and braces, the radius of the
member 1s enlarged, firstly to strengtehen the joint area and secondly to provide
sufhicient spacing hetween neighbouring braces for welding purposes. The enlarged
part of a memeber is called a can. Belore tubes are constructed into the space

[rame, the tubes have to prepared for welding of the joint. The nodes have to he

profiled at the end of the tubes, so that the riodes can be welded together. Another "

way to prepare the joints, is to fabricate the joint from pieces of tube by welding or
it may be cast in one unit. A typical structure might have 600 members and 100

joints. The framework -of the jacket tends to have many features attached to it.

These include guides for the conductors, risers and other oppurtenances, mcluding

fenders and sacrificial anodes.

As the foundation of the:jacket structure, the piles project downward through -

the inside of leg, which form the template:: The piles ¢an also be driven alongside

the leg. To do this, the:base:of leg:is:fitted with.a battle or pile cluster,:consisting : -
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500.0
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[Figure 1.2 : Water depth vs years for fixed pla.t1f01'§115.__

of several hollow steel cylinders, which hold and guide the piles, in clusters. Some

jacket structures use additional skirt piles in between the jacket legs. The skirt pile
is driven through the skirt pile sleeve which is attached to the bracing members.
The depth of piling depends on the condition of soil. If necessary additional lengths
of pile may be welded on. When the driving has finished the piles are firmly fixed
{o the jacket by l)umping‘grout- .int.o the annulus between pile and leg or hottle

cvlimder.

Modules are installed-on the top of the jacket. The top facilities frequently
comprise several decks: a drilling deck, a well head/ production deck, and cellar
deck and so on. These decks are supporied on a gridwork of girders, trusses and
columus. The initial section of the deck Lazé"lbégg'éfteudiug below it with stabbing

guides to fit into the piles or jackel legs. The hlﬁel;l-]];aillél-lt equipment is always pre

L=} " wlfrn v - e by oo drwom - P -—
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altaclied to the decks. Each deck of the platform is lifted on in succesion. After

cach deck is erected, the remaining equipment for the deck is set.

Tubular Joints

As mentioned above, most steel offshore structures comprise three dimensional
[rames composed of cylindrical steel members. These give the hest compromise
in satisfying the requirements of low drag coeficient, high buoyancy, high strength
fo weight ratio and equal bending in all directions [Lalani 1987]. The members

are connected at their ends forming tubular joints. The tallest-of fixed offshore

structure with water depth 112m, Bullwinkle in Gulf of Mexico, has been built’

up from more than 3000 members and over 1000 joints [Anon. 1988]. This shows
that the design of tubular jomnts are a significant part in oflshore structure design.
Joint design is controlled by static strength or by fatigue strength performance.
Other constraints include the properties of available materials, fabrications and

imspection criteria.

In general, the joint configuration may be classified into three groups. They
are single joints, double joints and complex joints. Single and double joints can

be seen in I'ig. 1.3. Other joints which-are not included in the figure are cbmplex

joints [UEG 1985]. The geometric and nondimensional parameters for simple joints

can be seen n IFFig.1.4 and the basic dimensions which describes simple joints are:

L = chord length

D = chord outside diameter
d = Dbrace outside diameter
T = chord wall thickness e
t = brace wall t.?hicknessm o o
g = gap (for I, YT and KT joints -o'ul}‘)‘ T
= angle between chord and brace ..
¢ = eccentricity _ 1
Iy = material .yield stress ST
fiy = material tensile s_trt_}__‘n_g.;l-:h‘ AU e
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A i

Single Joints Double Joints

Y joint

DK joint

YT joint

Figure 1.3 : Single and.double joint:configuration --- -+

1.3.1 Tubular Joints Staticﬁisﬁti'eﬁigth*f'

Several type of failure mode can occur-to the joint under staticload.. They-are:: -+:-- .o

k. i, TR el T ..

-y =Pl e
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Figure 1.4 : Geometric notation of simple joint

- plastic failure of the chord

- cracking and gross separation of the chorc_l from_ brace

- cracking of the bracing

- local buckbng

- Shear failure of the chord between adjacent bracings

- lammelar tearing of thick chiord walls under brace tension loading

The type of failure of a tubular jomt under static loa.(*lin_g depends on material

strength, joint type, loading condition, and geometry of the joints [UEG 1985].

In recent vears, a-number of reviews and codes for the predictions of the wul-
timate strength of tubilar joints have been published. In the ‘abseiice of suitahle

analvtical methods, all of those formulae aré derived from experimental evidence,

based on a ‘best fit’ to test data points. - Most of the formulae in various codes =

and guidance documents have beer derived largely from the same source of infor-- -

mation. However no two documents give identical recommendations. -“This can he -
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understood because of the differences ol adopted philosopy, classification, load m-
teraction effects, minimum capacily requirements and safety factors {Lalani 1987].
FFuthermore, the lack of data in many practical areas, for nstance simple joints
with 4 > 0.8 {UEG 1985}, multiplanar joints, ring stiffened joints, with the result
that design codes or the guidance mayv be not sufliciently accurate and sometinies

there 1s no available guidance for the design of complex joints.

Almost three decade of research in the ultimate strength of tubular joint has
been carried out, mostly by experimental tesl-ing. [Towever the fundamental is-
sues relating to the ultimate state of tubular joints are still not well understood
[Lalani 1987]. Because of the wide range of the joint types, loading condition
and the mherent complexity of the joint area, no suitable analytical solution has
been developed to predict the ultimate strength of tubular joints [Burdckin 1987].
while the design of oflshiore structures requires an accurate method of prediction.
The most feasible wayv in the near future to understand the behaviour of the ulti-
mate strength of tubular joints is numerical methods. especially thie finite element
method. The finite element method has developed rapidly during past thirty years

and computer systems are now available to assist in this approach.

Finite Element Method In Tubular Joint

In the late sixties, the finite element method was a proven analysis technique
that appeared to be ideally suited to the analyvsis of tubular joints because of its
ability to easily model complex geometry, loading and boundary condition. At that
{ime, flat elements were used to' analysetill.)ularjoint.s and a i'éla.ti\*ély'ﬁne mesh
was required. To generate the model, a large number of engineering man hours was

equired. The problem was overcome, by Greste (1970)[as quoted hy Coler ctal.
required. The problem was ovel by Greste (1970)[as quoted hy Cofer ctal

1990] when he introduced a finite element tubular joint analysis integrated with the

aulomatic mesh generator. Futhermoré,- the finite element method-became popular:=--° -
to determine elastic stresses in tubular joints after Ahmad €t.al {1970} introduced - -

curved shell elemments. The researcl attention was then directed toward validating . . .

the finite element method and -during the eighties tests parametric studies of the
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stresses in joints were carried out [Burdekin 1987, Gibstein 1978/1981, Hoffman

1980, lrving 1982, Kuang 1975, Liaw 1976, Visser 1974).

As mentioned above, the analysis of tubular joints using the finite element
method quickly became popular, but it was applicable only to the linear elastic
model. The development of the nonlinear finite element method and solution tech-
‘niques procedure to pass the maximum point of ultimate load during eighties gave
the possibility of analysing the tubular joints with a nonlinear model. Some work
has been done to analyse simple joint and loading [Baba 1984, Cofer 1990,Ebecken
1984, Lalani 1989, Irving 1982, Van D(_-?l; Valk 1987} In these works, only a few s1m-
ple joint have heen analysed. The detail of those work will be mentioned later in
chapter 5 and chaptler 6. In the present work, t.he* nonlinear finite element method
will be developed to analyse a wide range of tubular joints. The numerical test

results will be compared with experimental results.

1.4 Outline Scheme of the Study

The analytical complexities of the problem, rather than lack of interest, have
been responsible for the limited number of ultimate load study of tubular joint,
particularly when dealing with coniplex tubular joints and loading conditions. The

objectives of this thesis are therefore:

-To develop a nonlincar finite element program for general shell analysis and
combme it with automatic incremental loading and iterative solution strategies

such as the spherical arc length method to pass the point of the maximum load.

-To develop a simple mesh generator for tubular joints and to analyse a wide

range ol tubular joints and compare the results with experimental tests.

In chapter two, the degenerate shell finite element method will be developed
with six degrees of [reedom per node. This six degrees of [reedom per node model
has the special advantages when dealing with the rotation of tubular joints loaded

by i-plane bending moment.
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[n chapter three, the shiell finite element will be developed to include geometric
and material nonlinearity. The complete updated Green stram increment will be
used to handle geometric nonlinearity of the structure and Von Mises yield criterion

will be used to account for material nonhnearity.

In chapter four, the full Newton-Raphson solution technique procedure will be
adopted and combined with automatic incremental loading. To pass the maximum
point, iterative solution strategies such as the spherical arc length method will be

ecmploved.

After developing a simple mesh generator for a tubular joint (presented m
appendix A), the nonlinear finite element program will be employed to analyse
tubular joints under axial loading conditions in chapter five and in chapter six
the numerical results of tubular joints under m-plane bending moment will be

compared with experimental results.

In chapter seven, conclusions and recomendations for future work are discussed.
Particular emphasis is placed on the application of nonlinear finite element method

to the analysis of complex tubular joints.
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Shell Finite Element

2.1 Introduction

The developmént of analysis procedures for shell structures represents one of
the most challenging tasks of finite clement research. Over the last fwo decades
much effort has been directed towards this task with varying degrees ol success.
Shell finite elements can be classified as 3-D continuum shells, classical shells and
degenerated shells. The skeletal outline of this classification can be seen 1 Fig.

2.2 [Kanock 1979} and is discussed briefly as follows.

2.1.1 3-D Continuum Elements

The 3-D continuum element can be formed by using the three dimensional
lield equation. This produces an element which ignores the usual assumptions of
most shell problems and it can lead to various difficulties. For instance, along
lhe edge corresponding to the shell thickness. three degree of {reedom pernode
will produce large stiffens coeflicients for relative displacements. This present
numerical problems and may lead to ill-condition equations when shell thickness
hecome small compared with the other dimension in the elel_l.lent. I'urthermore,
cconomic consideration ussually curtail the usefulness of tih_i.s ele;ment-. The large
number of nodes across the thickness is required to satisfy the assumption that

| - ——

the normals to the middle surface remain practically straight after deformation

[Zienkiewicz 1977).
2.1.2 Classical Shell Elements

The classical shell element is derived by reducing the 3-D field equation to a

particular class of shell equation using analytical integration over the thickness
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while eniploying shell assumptions. A comumon asswnption is that the rotation
of the cross section is simply the slope of the shell. This is true only when the
shell 1s relatively thin and its shear is negligible. As a result normals to the
reference surface remain normal. This 1s the IKirchoff-Love hypothesis and can be
illustrated using a one dimensional beam as indicated in Fig. 2.1. This can lead
to displacement equations of equilibrium that are a coupled set of two second-
order diflerential equations in-plane and a fourth-order diﬂerential equation in the
transverse direction of the shell. Therefore, a shell element must be based on C;
“continuity and hence higher order interpolation functions are needed than for shell
formulations based on the two other classifications. Nodal variables must include
at lcast three displacements and two derivatives of the transverse displécement.
The inplane, membrane interpolation functions are usually of lower order than the
transverse, bending, functions. This can create gaps or overlaps between the edges
of two nonplanar elements such as fold lines in shells. Many shell elements and shell
theories also lack the presence of rigid body modes. although some are reported
to perform satisfactorily for linear, infinitesimal displacement analysis [Thompson

1989].

du 4 S neutral axis
dx N -

‘bheam section

Figure 2.1a :-Beam deformation excluding shear effect.
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.. .@}_1_3 neutral axis
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beam section
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Figure 2.1h : Beam delormation including shear effect.

2.1.3 Degenerate Shell Element

The degeneration concept directly discretizes the 3-D field e(iua.tions In terms
of the mid-surface nodal variables. This procedure was originally introduced by ..
Ahmad et al.[1970] for th:e linear analysis of moderatejl}' thick shells. -The equilib- .
rium equation with indclz)'en(len't* rotational and displ'aceﬁlént- degrees of freedom
1s emploved, 1 which the three dimensional stress and strain are related to shell
behaviour. This permits transverse shear deformation to be taken into account
since rotations are not tied to the mid-surface slope. The equilibrium equation is a
sccond order differential equation, therefore. the clements require only a Cqy conti-  ~
nous shape [unction. Two basi%:_a_551!111|)tiq115‘are adopted in this process. Iirstly,
it 1s assumed that even for thick shells. normals to the middle surface remain prac- .
tically straight after (lefoirmal;i(m. Secondly. (he erﬁiu energy corresponding o
the stress perpendicular to the middle surface is disregarded; 1.e.” the stress com- .
ponent normal to the shell midsurface is constrained 1o be zero 1n the constitutive

cquations. The degenerate shell element is adopted in the present work.
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Figure 2.2 : Qverview of shell element derivation -



Shell Finite Element J0

2.2 Degenerate Shell Element Formulation

oince the degenerate shell element was introduced by Ahmad, a large amount
of work has been done dealing with tins shell. The Ahmad implemention of the
isoparametric clement possescs five degree of freedom. these are the three displace-
ments and two rotations at each nodal pomt. In this present work six degrees of
frecdom are specified at cach nodal point, corresponding to its three displacements

and three rotations. The sixth (‘drilling’) degree of freedom, 1s somewhat artificial

and is added for completeness using a suitable transformation.

2.2.1 Coordinate System

To formulate degenerate curved shell elements, four different coordinate sys-
tems are employed. They are global coordinates, nodal coordinates, curvilinear
coordinates and local coordinates (see fig.2.3). They will now be described in

turn.
l. Global Coordinate

The global coordinate is a cartesian coordinate system which is freely chosen
and defines the structure in space. Fig. 2.3 depicts this system and the notation

1s used as follows;

Ty denotes the bhase vector of each axes
g denotes the displacement direction
Q; are the angles of rotation for each axis

where : = 1,2,3
2. Curvilinear Coordinate

Here, the curvilinear cordinate €. 5 i1s on mid-surface of the shell element-and --- -
¢ 1s a linear coordinate in the thickness direclion (see Fig. 2.3). The element is
bounded by planes having constant &, 7 and ¢ values of —1 and +1. Where ( is

assumed approximately perpendicular to the mid-surface of the element. Eq.(2.9)
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defines the relation between the curvilinear coordinate and the global coordinates

systen.
3. Nodal Coordinate

Fig. 2.3 depicts nodal coordinates and variables V5 used at cach nodal point
. The vector V31 1s the normal thickness vector at nodal point & and can be

constructed using the following procedure.
Var = Vi x ¢ (2.1)

where f is the shell thickness at node & and-the unit vector V31 can be obtained as

oo Vi x ¢
3k = T3, X 1]

et
b
o
-

\{{k 1s the normal to the mid surface and is defined as follows

‘_ﬂ!. Y ¥ Xy
ELIa T ..
I:l '-E X;l“" I

where

i
5

a.r':
Jy

9rg
dn

I

Ly

To define the other vector (V;.: 154). some assumptions must be introduced. There
is no unique way to define the directions of vectors Vy; and V5;. Here, two methods
will be adopted. First, it is assumed that vector 1% is paralle]l to the a3 planc

and perpendicular to 155 . This implies that

Vi =0
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il 1Ic1,,“1
global coordinate system nodal coordinate system
at node k
4
N
’ X; C
X
s
surface ¢ = constant surface n= constant
loc¢al c¢oordinate system
IFigure 2.3 : Coordinate systems
Y sz
Var = Vi
Vor = =173 (2.4a)
il V31 is parallel to the xy direction, this gives
c¥ o
‘.5-1 p— 0 B
Vop =13k L (240)

Superscripts x,y,z denote projection to.the global coordinates xy,xs,23. The

second assumption is that the normal vector V35 is orthogonal to the tangent
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vector of 5 axes at the centre of element, this gives

Var = Vo X Li5(0,0) (2.9a)
and the unit vector Vo is
— Var X ;. |
‘:31, 34 1+1(0,0) _ (2,—)’,)

B I"J.:zk X Liag(0,0) |

The direction of the vector Vj; can now be obtained from the cross product of

vector Vop and Vi, as

Vi = Vor x V3 (2.00)
and the unit vector 1y 1s

Vap X V4,

— T (2.60

1k =

The direction cosine ¢ which relates the transformations between the nodal and

global coordinate systemn is defined by,

0] = [Viks Vo V] (2.7)
Or __ '
gWOOW W [ O 637
O = |V V) Vi =10 02 63| (27a)
| RS \-3: L0311 032 O33]

where V1, 15 and V3 are unit vectors in the direction of 17. V% and Vj axes respec-

tively.
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. Local Coordinate

The local coordinate is the cartesian coordmate svstem defined at Gauss sam-

pling points where the stress and strain are to be calculated. I'ig. 2.3 depicts this

svstem and the notation used is wj.ah, 4. The local coordinate system can be

obtamed by interpolating the nodal coordinate as;

n

;l‘i' = 2 !\rk(f*")‘-’;' (2.8(!)
k=1

As usual, the unit vector can be delined as follows
U | (2.80)

£q.(2.8h) defines direction cosines which gives the transformation bhetween local

coordinates and global coordinate. Eq.(2.8h) can be written as;

—ir =y =1z

41 Ty € P11 Y12 13
—f —ITr -1 —f= . -
@ = Xy = ;I‘-'{_:__,I ;'t’f:_iq £ = | P21 22 Y3 (28(‘)
=Ir -.’y et ~
T3 T3 T3 P31 Y32 3

Tle local coordinates can also he defined in a shiilar way as the nodal coordinate
system, but the ¢ and n value are measured with reference to the Gauss sampling

points.

2.2.2 Geometry and Displacement Field - I

A general shell element, with a total of n nodes on the midsurface, can be de-
fined by curvilinear coordinates. Geometric interpretation is given in Fig. 2.3 and
Fig. 2.4, which feature a non dimensional thickness coordinate. As the thickness
of the shell element is defined in the direction of , the normal to the mid surface,

the position of any point in-the element can be defined -as lollows;

n 1. - ‘
Lige ) = Dpeg NMelTie + 5@”'3&-) | (2.9)
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| e

where

the coordinate of the midsurface at node A

ol =

t = thickness

n = total number of nodes per element
13 = the unit normal vector al node k

The quadratic serendipity interpolation functions /Ny are Cg continuous, taking
a value of unity at node k& and zero at all other nodes and arve given [Zienkiewicz

1977] by

corner nodes

] .
N = :I(E + EE N 4y )(EEL + . — 1)

midside nodces

D PR
=0 Np=z(1—€)(1+nmp)

| 1 5
=0, Np=s(l+Ea)1—1) (2.10)

where & and 7 are the ¢ and 7 coordinate of the &th node respectively. This

mterpolation function is implemented in this present study.

Taking into consideration the shell assumption that normals to the middle
surface remain practically straight after deformation even for thick shells, the dis-
placement field can be described by six degrees of freedom; three displacements at
mid surface and three rotations. The element displacement field can be expressed

by

-~

" - . , ' ‘ .

ui(f-'h() — =] J\‘k{llﬂ‘. -+ (;],-a} | | (211)

Where w; 1s the nodal displacement vector on the midsurface, and U/, is the
relative nodal displacement veclor produce by a normal rotation at node & (see
IFig. 2.4). The vector Uy, is to be expressed in terms of two rotation vector inplane - -

and drilling rotation vectors, aj;; about each of global axes. Considering Fig. 2.4
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the nodal displacements produced by normal rotations are

Q2
l .
dir(e) = 501 | —ar’ (2.12)
0
wndeformed deformed position
normal at node k of the normal
t{sk
\
. 0
2K |
\1‘ 01k ™ Yok
Wy L /{\ """" ¥
\ - Lok
1, " v
5t - 1K
1\'. . | %K
\ v o
\ l
%
\ {

X4

Figure 2.4 : Displacements of a point on the normal at node £

For infinitesimal rotations, the usual transformation from é;; to U and a}. to ajy,
in view of eq.(2.12) leads to

| .
Uka = :;fC‘i”‘Oik (2.13a)

where

O =|-05 O 0{'3
[0:] 0110 dij_)

where ;5 are defined in eq.(2.7a2). On substituting eq.(2.13a) into eq.(2.11) we

obtain the expression for the displacement veclor at any point in the shell element
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in terms of nodal variables.

n
| S
U; = Z Nk{u,-k -+ :;(J‘I’LO,‘};}

k=1

(2.14)

2.2.3 Strain Displacement Relationship

In order to deal more easily with the shell assumption of zero normal stress
in the 245 direction (¢, = 0), the strain component should be defined in terms of
thie local coordinate system. At any point in the shell element, the local strain

components are

€; Bui
S 7
xyTry Dr}
(_} auq
'rgui dr,
{ aug
" /
e: _ r3ry | _ ; Jdry ’ (2.15)

ff Jduj; n Jun

S dz4 ar}

f’ .Q..ti!-l + ?ﬁa{i

ney | |3t o

i i

C’ o duy + Oua

1'-33.'] 01'5 C?I,l

where uy, «, and uj are displacement components in the local coordinate system.
Using the matrix transformation eq.(2.8c). the local derivatives can be obtained

as follows;

ouy  duy  duy duy  Juz  duy
Uri ari OI; | Jry Iy Jdry
Bu'] dut Ju’ T | & 0 Ju
) 3 _ i1 uz ua
dr, Oz Oz, } ¥ dra 012 Oz2 | ¥ (2'16)
atlrl OH:} I'?H'a Bul Jus aua
dr; dry  dxg drz Odrz O0r3

The displacement. derivatives correspouding to the global coordinate may be ob-

tained numerically through the Jacobian maltrix transformation.

duy

8:1

Juy
3.172

duy
01‘3

P
—
St

c:;ca.:l
= M
S =}

‘l

Q-
by
|

o et
he |z
e bo

1

Jus iy din
Jr J<€ o€
Ju3 — [J]—l QUI dun
dro di} dn
dun du Jun
Jry J¢ J(

(2.17)

The Jacobian matrix J contains the derivative of x; with respect to the curvilinear

coordmates £, 1, ¢. Using eq.(2.19), the:Jacolhan-matrix-can-be obtamed as;

| i}‘_}_ 3.!_":

J¢ J§

_— | 9xy | dx:
T on dn
dry - . 0ry

L (2.18)-
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The geometric and displacement derivatives with respect to curvilinear coordinates

can be expressed as;

"

v J' “ s 17
i,6 = Z Neglrvin + 7;(,”’31:}
k=] -

;2';',1,

no 1 -
Z f\il:.r;{‘rik + T)'(;”{'}k}
k=1 N

1
l .. - |
il = Z ;1\;;”-'3;; (2.19a)
k=17
and

" r 1. |
Uje = }‘Z 1\';‘.‘5{{!;1- -+ ";giq?"a,'k}

i

: 1k
'”i.” — Z }\k,?]{ufk + ‘—)-(’f(I)L(I:k}

k=1
1 1 L |
Ui ¢ = Z :-)-i‘i’ Q;p (190)
k=1~

the symbol (.),, defines derivative with respecl to the variable *. The Jacobian

matrix eq.(2.18) can be written as
J=J"4+(¢R _ (2.20)

where JV is the Jacobian associated x{'ith the midsurface of the shell and R 1s a

matrix describing the curvature of the mid surface. R is given by

R=|3N;, V3 O (2.21)

In order to obtain the Jacobian matrix.-J. some workers | Ahmad 1970. Kanock
1979, Panisch 1981, Thompson 1989, Zicukiewicz 1971 etc] take the constant value
( = 0. This is the usual assumption made when using explicit integration and is
embodied in Love’s first approximation in classical shell theory. However with

such a simplification, the resulting linear and nonlinear curvature expressions do
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nol in general satisfy rigid body rotation requirements. lHence the standard form

of explicit integration (¢ = 0) is inadequate for linear shell analysis |[Milford 1986].

Considering the effect of ¢ in explicit integration. Belytschko [1989], Crisfield
[1986} and Milford [19S6] use an approximation to obtain the inverse of the Jacoban
matrix. The result is that there is no straining under rigid body rotations{Milford
1986]. In this present work, the elfect of ¢ is considered by mmplicit integration.
Implicit imtegration can be adopted in Ila}'ered shell alla]}fsis and this 1s presented
later in seclion 2.3. Layer analysis is necessary to take account of the variation

of stress through the thickness of the shell when it is used to analyse material

nonlinearity.

- }
Using the inverse of the Jacobian matrix the displacement derivative can be

written as

gvl Z {Ojruir + 0k Prax} (2.220)
11]
where
Ojr = Lj1Nke + 12Nk, (2.220) .
and y '
| 1 . ,
Ok = HHCOjk + 13N%) (2.22¢)

and the {I; ;} are the component of the inverse of the Jacobian matrix given by

Iyy Iy Iy
J7h=|In In I ' (2.23)
I31 132 I3
By using eq.(2.22) the strain displacement matiix B of a shell element can be

constructed. The details of the displacement derivative of eq.( 2.22) will be pre-
scnted in section(2.2.5). The rows in the matrix correspond to all six global strain

components defined by the global vector {e}lr given by

T -
{E} = {exli’lﬁei’zi'zvﬁrafau €rirasCrozas 53:.3:;3} (2.24)
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The strain matrix I3 relates the global strain vector {e}T to the nodal variables

i [ma]T such that

(e} =Y Byl (2.25)
k=1

As an alternative, we can employ the local strain as indicated by eq.(2.16) and
. . . . T . N
eq.(2.13). The relation between local strain {€'}" and the nodal variables 6 =
"
lu.a]” can be expressed as

i
= > Bl (2.26)
=1
where B’ is the local strain displacement. matrix.

2.2.4 Stress-Strain Relationship

The stress-strain relationship in local coordinate svstem can be written in

tensor notation as follows

= Cijren (2.27)

where cr and e“ are lLhe stress and strain tensors and ('

ii 1 1s the tensor elastic

11k

constant. For an isotropic material, this has the explicit form [Bathe 1982,Chen
1988]
C; gkl — ’\61_}6“ + ﬂétk‘sﬂ "[" ﬂé:lgﬂ (2.28)

where A and g are the Lamé constants aund §;; is the IKronecker delta defined by

{1 Mfr =
U if 1 £

0;; =
‘The stress-strain tensor. eq.(2.27). can be represented in matrix form as
f vf

where

! / ! / / ,
{(7 } [grl.l110':-_:.1'31a.rg.ca*axlrgigrgrgag;c;grl] (")"30)
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and €' is the local strain as indicated by eq.(2.15). To satisfy the shell assumption
that the normal stress 1s zero, the constitutive equation must be modified. The

third row in C7 . must be zero so that o' = 0 and colummn three is zero to decouple

I3Tr3y

all stress from e}, ... The elastic constant " can be written in the following form.

1 v 0 0 0 0
1 0 0 0 0
\ 0 0 0 0
[(:'] __£ - (2.31)
1 —wv- R ( B |
e g
symm 1.3'1,”'

where £ and v are Young's modulus of elasticity and Poisson’s ratio respectively.
I a is shiear correction lactor which is usually to be taken 1.2 [Ahmad 1970]. This
is because the true distribution of shear stress across the thickness of the shell is

parabolic, rather than constant.

[n order to obtain the appropriate constitutive equation for the global coor-
dinate, the tensor translormation T must be applied which relates the stress and

strain between global and local systems.
{0} = [T]{o') (2.32)

and

('} = [T} {e) O (2.33)

subtituting eq.(2.33) mto eq.(2.29) and subtituting the result into eq.(2.32), we

will obtain the transformation of the tensor elastic constant.
) (T ¢ - A -
{o'} = |C"] [T]" {e} (2.31)

{o} = [T] '] [T]" {e) (2.35)

€] = (1) [¢] (1) | (2.36)
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The elements of T are obtamed from the direction cosines of the local axis measured

in global coordinate axes and is given by [Bathe 1982].

It 23, ¥ a1 Y114 2] Y2131 ¥31¥11

sz 'ng &’5’53 Y 12yY22 F 22432 32412

T} = C1a ‘ £33 33 ¥13¢'23 ¥ 23¥33 ¥33¥13
21012 2oawer 2@aiwse v e s ¢l @312 + v
29129713 29028723 29932033 i3+ F1382 @oave3 + P3¢ ¢329013 + ¢¥33% 1
20137011 2p23ve1 2933931 FCI3¥1 T P13 ©aY3l F 21933 €33911 + 9314713

(2.37)

where 5 1s defined in cquation (2.8¢).

2.2.5 Derivation of Element Stiffness

As usual. the standard form of element stiflness matrix can be written as
follows [Zienkiewicz 1977].

K= [ BTCBdV (2.38)

substituting eq.(3.30) mmto eq.(3.38). yields
K = /‘ BTTC'TT Bay

K= /‘ B'TC'B'dv j - (2.39)

If we use equation (2.38) we do not need to transfer the global strain derivatives
into local strain derivatives (sce eq.(2.16)). Equation (2.38) has satisfied the as-
sumptions of shell analysis. On the other hand by using eq.(2.39) we do not need
to transfer the elastic constants from local to global coordinate systems. Both
eq(2.38) and (2.39) must give the same result and can be expressed in the curvi-

Imcar coordinate syvstem as;

1 1 1
- _ T e gt . 59
K lllB(mnﬁwa (2.10)

or

1 1 1
- 1’ i -
K —_{ /1_/1 B C'B|J| dédnd( (2.41)



Shell Fintte Element

Contribution of displacement derivative
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2.3 Numerical Integeration

In the shell plane (surface ¢ = 0) the normal (full) integration rule consists of
m X m Gauss point where m is the number of nodes along each element side. lHow-
ever, when degenerate shell elements are fully imntegerated, they exhibit shear and
meiul)rane locking m the thin shell Iimit and this can affect the majority of appli-
cations. This shear locking was first identified in the late sixties [Zienkiewicz 1971].
Zienkiewicz retained the transverse shear éuerg}' but used a reduction in integra-

tion n order to evaluate it, for quadratic and cubic 1soparametric and serendipity
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elements. lor the lower order elements. reduced integration appears to be ab-
solutely essential for good behaviour in thin shell applications; for higher order
clements significants improvements in accuracy are attained with reduced integra-
tion. However. reduced integration olten suffers from the drawback that it may
lead to the occurance of non zero energy deformation mode, in addition to rigid
moces. Therefore the assembled stiffness matrix for a system of underintegrated
elements may be singular [Thompson 1989]. Whether or not the assembled stiff-
ness matrix 1s singular depends on the boundary conditions [Cook 1931]. As a
natural extension, selective integration can. be adopted to eliminate locking {Iin-
ton 1984, Huang 1986]. Other methods to eliminate locking have been proposed
by Stolarski (1982] and Belytschko [1985] and are based on some form of stress (or

strain) projection.

In the through thickness direction, where a linear variation of strain is as-
sumed, two Gauss points are sufficient to capture the bending behaviour in linear
‘matcrial problems [Hinton 1984]. High order Gaussian quadrature has been sug-
gested for nonlinear malterial problem by Cormeau[1978]. Burgoyne and Crislield
11990] have tested the overall performance of the numerical procedures that relate
to the integration of stresses through the thickness of plates and shells when there
are discontinuities in stress. The conclusion is that Gauss integration should be
used, if integration is always required over the same range, and that as high an
order formula as possible should be used rather than making repeated use of sim-
pler formulas. However, simple and general procedures to discretize and integrate

through the thickness are adopted in the so-called ‘layer model’, shown in Figure

2.9.

For through shell thickness iutegraﬁbu with € and 5 kept constant. the stiflness

matrix can be written as follows :

1
I = / 1(C)dC (2.42)
i J o
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- Figure 2.5 : Layered model

Using n layers (see Fig. 2.5), in this case 3 layers, eq.(2.42) can be written as
a b ' 1
K= / E(C)dC + / E(C)dC + / k(C)dC (2.43)
—1 a b |

If R; is the abscissca of a Gauss sampling point and 117 is the weight for the interval
—1 to +1, the corresponding abscissca of the Gauss sampling point, r;, and weight

w; for the interval a to b in the second layer are [Bathe 1982]

a+bd b—a
9 2

[ i

X f2; (2.44)

and
b — «
‘)

e

w; =

x W; , (2.45)

Two point Gauss integration for each layer is adopted in present work. Using the
above formulation, arbitrary numbers of lavers can be dealt with. This process
of integration in the thickness direction is computationally more expensive, but
1S more appropriate for variable thickness problems in which the variation of the
focal svstem of axes, and the variation of the Jacobian matrix through the shell

{hickness must be {aken into account as was discussed 1 section 2.2.3.
2.4 Torsional Effect

The local stiflness corresponding to the drilling rotation is a common problem

of the shell or plate which employs six degrees of freedom per node. This problem
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can be seen when a facet shell element is used to approximate a curved surlace
[INanock 1979]. Here the convergence is spoiled by the weakly restrained torsional
mode after the mesh reaches some state of refinement. The reason i1s that the
resistance to the torsional rotation at node & comes directly from the coupling of
the a; nonplanar elements surrounding node & and when the finite element mesh
1s refined the angles of the kinks between these elments tend toﬁ*ards 27 and the
coupling effect 1s reduced. This weak coupling only generates a minute amount
of stillness for the torsional rotation. Tllereforé, any slight- disturbance in the
generalized load corresponding to this degree of freedom can amplify the torsional

mode by an unrealistic amount, which aflects the global solution.

In a degenerated shell, the rotation of the normal and midsurface displacement

lield are independent. The 1dea then is to derive an additional constraint between
. . : : au’

the torsional rotation of the normal a3y’ and the rotation of the midsurface. %(-0—_:,2 -

. i -1

d / . . s . . ‘
E}%’L)’ which is illustrated in Fig. 2.6.

It can be seen from Fig. 2.6a, that the deviation of associated rotation. a-'.
[rom mid-surface slope, %%), is governed by the transverse shear strain energy.
This relation 1s given in eq.(2.46a). Similarlyv.the deviation of the torsional rotation
of the normal from that of the midsurface (see Fig. 2.6b), is assumed to have

governing strain energy [Ixanok 1979} given in equation 2.46h.

m = kGl /[03
(2.460)

ky is a parameter such that Ay G7 is large relative to the factor Et? which appears in
the bending stram energy. Equation 2.16b will play the role of a penalty function

and results m the desired constrait.

=1 Guy Oy P
’ 2 0;2?’1 6;1:.’3 (_“ ')

Il
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idsurface

M=k pt f[a’—- %(ﬂ%——;)]edk (2.46b)

Figure 2.6 : Penalty function for transverse shear and torsion

al- the Gauss point.

The component of the penalty function can be expressed in the terms of the

global strain derivatives as :

o, LA o
E‘T — Z LFm.]‘rjp.f.’up.rm | (‘Z‘lb)
1 m=] p=1 |
oy 33 _
l &
o' = Z Z Ym.2¢p,1Up X, (2.49)
2 m=1 p=1

af; = Ni[0y3 023 033){ay}
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an = Nik{ay} (2.50)

For n nodes in a shell element and using eq.(2.48) to eq.(2.49) the strams produced
from the derivation of the torsional rotation from the rotation of the mid surface

may be given by :

1 ad, o L. 1
(1'3 -5 ‘a—f" - E ,1 } — Z Z { — ':5[‘;9:::,2 — ‘r:'k.ll
< Uy 2 k=1 =1 = (2.01)

O {tx} + dem®r{or}] + Ni{k} {ar})

If we look at eq.(2.46a) and eq.(2.46b), the two penalty factors &y and k4 should
hbe of the same order of magnitude. Ikanok{1979] employed a valuc of & = 10 in
his faceted shell element and indicated that the converged solution is insensitive
to &y, as long as ky is large enough (> 0.1) to sufficiently restrain the troublesome
torsional modes. Thompson [1989] has studied the effect of &y in this degenerated
curved shell element and he found that penalty function for the inplane rotation

performed satisfactorily using &y = 10.

A popular approach in the shell formulation using six global degree of freedom
per node is to Incorporate a fictitious torsional spring. This may be added either
locally at the element ievel or i some pseudo-normal direction defined at each
node [Bathe 1981]. It has been suggested that the stiffness corresponding to this

in-plane rotation should be sel equal to 10~ times the smallest bending stiffness

of the element [Ixardestuncer 1957]. which is implemented in this present work.

2.5 Numerical Examples

The purpose of this section i1s to demonstrate the numerical performance of the
element compared with other workers results or analytic solution. A good shell

element must have the ability to handle inextensional bending mode deformation,
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membrane states of stram and rigid body motion without strain. Presented in this

seclion are the analyses of five test problems, which are outlined below.
Example 1. Pinched Cylinder

The first problem is a pmched cylinder with rigid diaphragms at the two ends
in I'ig. 2.7. This problem is very popular for testing a shell element and exhibits
two main features in terms of deformation behaviour of structures. These are
extensional bending and membrane response around the point load. Structural

symietry is exploited and only one eighth of the shell is modelled.

L/2 : L/2

= 4,935 inches
10.35 inches

10.5 108 1b/in?
0.094 inches
0.01548 inches

= 100 1b (for T)
= 0.1 1b {for t)
« (0,3125

< O g A =] I1 ™
"

igure 2.7 : The pinched cylinder test problem

[

This problem also demonstrates the accuracy and convergence of the shell
by mecans of various meshes. - Thick and fairly thin shells are -employed in this
problem. Tables <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>