
Methodologies for Managing Big Data

Analytics Pipelines for Smart City

Applications

Nipun Balan Thekkummal

School of Computing

Newcastle University

“This dissertation is submitted for the degree of”

Doctor of Philosophy

Newcastle University May 2023

To my beloved mother, Leela Balan,

whose unwavering love, support, and sacrifices have been the foundation of my life. Your

strength and perseverance have always been an inspiration to me, and your belief in me has

made all the difference. Thank you for encouraging me to dream big and standing by me

every step of my life. This thesis is dedicated to you with all my love and gratitude.

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this or any other university. This

dissertation is my own work and contains nothing which is the outcome of work done

in collaboration with others except as specified in the text and Acknowledgements. This

dissertation contains fewer than 45,000 words, including appendices, bibliography, footnotes,

tables and equations, and fewer than 40 figures.

Nipun Balan Thekkummal

May 2023

Acknowledgements

Throughout the research and writing of this thesis, I have been fortunate to receive a tremen-

dous amount of support and assistance from many wonderful people. I would first like

to express my heartfelt gratitude to my supervisor, Prof. Rajiv Ranjan. His expertise and

guidance have been invaluable in shaping my research topic and methodology, and I am

truly grateful for his mentorship. A special thank you goes out to my other supervisors,

Prof. Philip James and Prof. Aad Van Moorsel. Your cooperation and the opportunities you

provided me to conduct my research and further my thesis have been instrumental in my

success.

I must also acknowledge my amazing colleagues at Newcastle University, who have been

a constant source of collaboration, encouragement, and assistance. You have all played an

essential role in my journey, and I am grateful for your willingness to help me every step of

the way.

In addition, I would like to express my deepest gratitude to my family for their wise

counsel and sympathetic ears. To my loving wife, Tejaswini, your support, patience, and love

have carried me through even the most challenging moments. To my brother Anil Kumar and

sister Bijila, your belief in me has been a beacon of strength, and I am truly grateful to have

you both in my life. And to my dear mother, Leela Balan, your boundless love, guidance,

and wisdom have been the foundation of my accomplishments. You always encouraged me

to reach for the stars and believe in the endless possibilities of my dreams.

viii

Lastly, I must thank my incredible friends. Your support, understanding, and companion-

ship have been invaluable as we shared our struggles, discoveries, and happy distractions

along the way.

Abstract

Smart cities and Early warning systems rely on complex analytics on the data generated

by sensor networks, including IoT and social media. In order to extract value from IoT

and social media, a massive volume of heterogeneous data needs to be processed, stored

and analysed, which demands a combination of tools from stream processing engines, data

lakes and analytics tools. As the data sources are highly distributed and significant in the

count, the analytics process is also distributed across different layers. The flow of data

from the source and through different subsystems of the IoT and social media depends on

various aspects like the frequency of observation, sampling, bandwidth availability, type of

analytics processing and location of processing. In IoT networks, the analytical processing is

distributed across edge and cloud data centres. The network conditions in the IoT network are

prone to be highly variant as it relies on wireless networks operating on radio frequencies like

cellular and WiFi. It is quite a common scenario in IoT networks to have frequent bandwidth

changes while switching networks and various environmental conditions. Hence, data flow

management in IoT networks is an essential aspect of managing the quality of service.

This thesis addresses critical challenges in managing the data flow and analytics pipelines

for IoT and social media data. The first part of the thesis explains a tool kit to perform data

flow experiments using emulation of a three-layered IoT network. The second part processes

algorithms to manage data flow based on the workload and bandwidth between the edge and

the cloud data centres. The third part of the thesis explains the design of the data ingestion

x

and analytics part of a landslide early warning system. This section discusses methodologies

for orchestrating a real-time streaming data analytic pipeline for social media data.

The main contributions of this thesis are i) A set of algorithms to manage the dataflow in

IoT networks. ii) A set of tools for emulating IoT networks using edge processing hardware

iii) Methodologies and a framework for the orchestration of streaming analytics pipeline for

social media data used in an early warning system.

Table of contents

List of figures xv

List of tables xvii

1 Introduction 1

1.1 Research Questions and Challenges . 4

1.2 Research Contribution . 7

1.3 Publications . 7

1.4 Thesis Structure . 9

2 Background 11

2.1 Related Technologies and Use Cases . 13

2.1.1 Wireless Communication Technologies in IoT 13

2.1.2 Communication Protocols . 14

2.1.3 IoT Application Domains . 16

2.1.4 Smart Cities . 17

2.2 IoT Data Analytics . 21

2.2.1 IoT Data Flow Management . 21

2.2.2 IoT Data Flow Challenges . 23

2.2.3 IoT Data Streams . 24

2.2.4 Computational Models for IoT Data Streams 25

xii Table of contents

2.2.5 Big Data Orchestration . 26

2.2.6 Message Brokers . 29

2.3 Simulator and Emulators for IoT . 30

2.3.1 Simulators . 30

2.3.2 Emulators . 32

2.4 Conclusion . 33

3 Emulation Tookit for benchmarking Internet of Things Networks 35

3.1 Introduction . 35

3.2 Background . 38

3.2.1 Edge+cloud IoT architecture . 39

3.3 Research Questions . 39

3.4 Architecture . 40

3.4.1 Sensor Emulator . 41

3.4.2 Edge GateKeeper (EGK) . 42

3.4.3 Adaptive Flow Controller (AFC) 43

3.5 Implementation Details . 46

3.6 Experimental Settings . 48

3.6.1 Hardware and Network Configuration 48

3.6.2 Software Configuration . 49

3.6.3 Data Flow and Rate Configuration 49

3.6.4 Latency Measurement . 49

3.6.5 Performance Metrics . 49

3.7 Evaluation . 50

3.7.1 Performance Baseline . 50

3.7.2 Backpressure Detection . 51

3.7.3 Data Freshness . 53

Table of contents xiii

3.8 Discussion . 54

3.8.1 Data Flow Rate . 54

3.8.2 Backpressure Detection . 55

3.8.3 Data Freshness . 56

4 Coordinated Data Flow Control in IoT Networks 57

4.1 Introduction . 57

4.2 Data Flow Control . 59

4.3 Model . 60

4.3.1 Dynamic Flow Allocation . 60

4.3.2 Adaptive Data-Rate Control . 65

4.4 Evaluation . 69

4.4.1 Experimental Setup . 69

4.4.2 Adaptive Data Rate Control . 71

4.4.3 Dynamic Flow Allocation . 73

4.5 Discussion . 74

4.5.1 Adaptive Data Rate Control . 74

4.5.2 Dynamic Flow Allocation . 75

5 Real-time Data Analysis Pipeline for Landslide Early Warning System 77

5.1 Introduction . 77

5.2 Background . 79

5.2.1 Complex Event Processing . 79

5.2.2 Data Stream Processing . 80

5.2.3 Stream Processing in Early Warning Systems 81

5.3 Methodology . 82

5.3.1 Steaming Data Pipeline: Concept 83

xiv Table of contents

5.3.2 Data Ingestion . 85

5.3.3 Data Processing . 86

5.3.4 Data Storage and Indexing . 87

5.4 Implementation Details . 88

5.4.1 Kafka as Data Backbone . 88

5.4.2 Pipeline Orchestration . 89

5.4.3 Elastic Search as searchable Index 91

5.4.4 Landslip Early Warning System Pipeline 92

5.5 Evaluation . 93

5.6 Discussion . 98

6 Conclusion and Future Work 101

6.1 Future Work . 104

References 107

Appendix A Additional Images 119

A.1 Landslip EWS Data Processing . 119

A.1.1 In-Stream Natural Language Processing 119

A.1.2 Social Media Content Classification 120

A.1.3 Mapping with Landslip Ontology 123

List of figures

1.1 Example of data flow in Early Warning Systems 3

1.2 Research Challenges . 5

2.1 IoT Communication Protocols in Different Layers 17

2.2 Layered Architecture of a generic smart city[119] 19

2.3 IoT Data Analytics . 21

2.4 IoT Data Flow Management Taxonomy 22

3.1 Architecture . 41

3.2 Data flow and control flow between the layers: For IoT sensors, data flow

happens from IoT layer to cloud while the control flow is from cloud layer

to IoT layer . 43

3.3 Shows data flow from sensor network to cloud through edge. D1-D9: IoT

sensors, E1-E3: Edge Devices, C: Cloud Layer. λ1-λ9: Data from from

D1-D9 to the connected Edge devices. In matrix M rows represent the edge

devices (E1-E3) and columns represent IoT devices (D1-D9) 45

3.4 Edge GateKeeper Workflow . 45

3.5 Prototype Implementation . 46

3.6 Results of baseline performance in terms of forwarding rates for different

data arrival rate . 51

xvi List of figures

3.7 Results of baseline performance under normal operation without back pressure 52

3.8 CPU and memory usage of edge device for different data rates 52

3.9 Data Rate - CPU and Memory: Linear Ramp up test until the device crashed 53

3.10 Results of latency test for 4G, 3G and GPRS network 54

4.1 Adaptive Datarate Control and Dynamic Data Rate Control 61

4.2 ADC Flow Chart . 68

4.3 ADC adjusting data rates based on Queue lenght 72

4.4 ADC adjusting data rates based on CPU usage and Queue lenght 72

5.1 High-level Functional Architecture . 82

5.2 Data processing steps . 87

5.3 Orchestrating Data Processing Pipeline . 90

5.4 Landslip Early Warning Stream Processing Pipeline 93

5.5 LEWs Pipeline used for Experimentation 94

5.6 Pipeline Consumer Lag . 96

5.7 Pipeline Consumer Lag after removing bottleneck 97

5.8 Consumer Lag sensitivity to Datarate . 97

A.1 NLP Pipeline for Named Entity Recognition 121

A.2 Named Entity Recognition Example . 121

A.3 Data Classification Hierarchy . 123

A.4 Process of populating the Knowledge Base from social media content . . . 123

List of tables

2.1 IoT Communication Technologies . 14

2.2 IoT Messaging Protocols . 17

2.3 Application Domains . 18

3.1 Device Reconfiguration Commands . 48

4.1 A summary of symbols and abbreviations used within the formal definition. 62

4.2 Symbols used in the ADC Flow Chart . 66

4.3 Back pressure recovery time with AFC . 71

4.4 Expected and actual record counts for each priority level 74

5.1 Pipeline Throughput . 95

Chapter 1

Introduction

The unprecedented growth of cyber-physical systems (CPS) created a revolution by creating

new services and applications such as environmental monitoring, early warning systems,

healthcare and intelligent infrastructure. IoT has been utilised by smart cities[14] as a way

to boost the effectiveness and performance of urban infrastructure. Cyber-physical systems

and the people on social media manifest a more extensive network of things and people[49].

As defined[33] by Cisco, the Internet of Everything (IoE) is a networked connection of

people, processes, data, and things. IoE has increasingly become the most significant data

source, providing unprecedented opportunities for organisations, communities and countries.

The combination of sensors, things, and people generates large amounts of data, while the

processes and analysis of this data harness its significant value. As per the International

Data Corporation (IDC) research forecast[99], the amount of IoT data generated by 2025 is

expected to reach 73.1 ZB. The efficient use of data for practical reasons like Early Warning

Systems (EWS), Smart Cities, and predictive analysis for planning and mitigation is one of

the major difficulties in IoE. While the EWSs require near-real-time inference and decision

support capabilities, historical IoE data is utilised for planning and predictive modelling that

aid in the development of smart infrastructure.

2 Introduction

Early warning systems(EWS) play a significant role in managing the risk of natural

hazards[66, 55]. The development of early warning systems and rapid response tools designed

to aid in adapting to these future challenges are critical [74]. Since the Indian Ocean Tsunami

of 26 December 2004, there has been generally an increase in the interest in developing

early warning systems [22]. In a survey [133] of EWS capacities and gaps, the UNISDR

placed a strong emphasis on the value of early warnings in minimising catastrophe losses. A

successful EWS should be people-centred and have the following four essential elements:

risk comprehension, technological monitoring, meaningful warning distribution, and reaction

capabilities. Such complex systems demand rich data from various data sources, directly or

indirectly related to the hazards of interest. People-centred EWS should be use a combination

of physical sensors and people-generated data like social media feeds[133, 55]. Sensor

values are analysed using statistical processing models to predict and detect events such

as floods and landslides. Meanwhile, data from social media like Twitter and Facebook

generated by users in the affected area provide situational awareness. In order to derive

insights, historical and real-time streaming data analysis is performed. Differences in the

type and volume of data and the historical and streaming nature create challenges [113] in

orchestrating heterogeneous data processing environments. Early warning systems will have

a significant advantage while using a real-time or a near real-time analysis strategy, as a faster

response time potentially could save lives. As the Internet of Everything (IoE) continues to

grow and evolve, data flow management in IoT presents multiple challenges that need to

be addressed to ensure the efficient and effective use of data for applications such as Early

Warning Systems (EWS), Smart Cities, and predictive analysis. Some of these challenges

include data heterogeneity, volume, velocity, security, privacy, processing and analysis.

Managing data flow from the source, processing, classifying and storing is a multifaceted

process involving numerous steps depending on the application context, the complexity

3

Raw Observation

Data Aggregation

Data Scrubbing

Semantic-Mapping

Processed Data

Data Fusion

Summary Stats

Derived Geo Markers

Maps, Models,
Ontology

Casual Inferences

Network, Analysis

Linkage,
Associations

Actionable Decisions

Forecasts,
Predictions

Alerts

Action Plans

Big Data Operations Information Extraction Knowledge Extraction Action

Twitter Data IoT Data Geotagging

Ontology /
 Extracting Associated Events

1. No. of weather related
 tweets
2. Summary
3. Most tweeted weather
 event

Reporting and Visualisation

Fig. 1.1 Example of data flow in Early Warning Systems

of analysis and temporal requirements. This thesis addresses several critical problems in

managing the data flow and orchestration of real-time data processes for such systems.

For Chapter 3 and Chapter 4, data flow management in a three-layered IoT network is

studied. A typical IoT network consists of an IoT layer consisting of sensors and actuators,

the edge layer responsible for connecting IoT devices locally and managing data collection,

local processing and forwards and the cloud layer, which has the primary analytical and

inference workloads. Edge computing enables the processing of data at the edge of the IoT

networks, hence improving efficiency by addressing the response time constraints of the

cloud layer and bandwidth cost savings. In this research, algorithms have been developed

for managing the data flow between the edge and cloud layer. These methods enable local

processing and bandwidth management at the edge layer depending on several factors, like

the frequency and priority of sensors in the IoT layer. For this, a tool kit has been developed

for conducting data flow experiments.

In Chapter 5, data flow in an Early Warning System is studied. The real-time data

analytics pipeline for EWS consists of several steps: data collection, cleansing, classification,

4 Introduction

natural language processing, ingestion and indexing. Investigated methods for orchestrating

data processing stages in the analytics pipeline while addressing the main challenges of EWS,

like the classification of social media posts.

Evaluation of these methods will be done by developing an analytical pipeline for

landslide early warning systems. Pipelines collect, pre-process, classify, store and query

social media and public web news site data.

1.1 Research Questions and Challenges

In a broader context, IoT systems’ objectives are sensing the physical environment and

filtering, sampling and analysing these observed values and extracting meaningful information

to perform decision-making. This thesis mainly focuses on the research challenges of

data flow management in IoT infrastructure, including sensor data and social media data.

These challenges can be classified as data challenges and processing challenges. The data

challenges are the volume of the data, the challenge of fusing multiple data observations,

the heterogeneity of data by different types of IoT devices, and different data frequencies

from various sources. The processing challenges are as follows. i) The complexity of finding

a signal from the noise processing data in-stream for near-real-time decision support due

to the real-time nature of the IoT data. ii) Orchestrating processing across edge and cloud

infrastructure. iii) Workload and Process Distribution in Edge and Cloud

The computing paradigms, such as Edge computing, support data analysis near data

sources in IoT use cases. These techniques help manage volume and frequency constraints

of data where insights need to be actioned on a timely basis, optimising bandwidth usage.

Another challenge is the data fusion complexity from multiple sensors, which is very much

domain-specific and context-driven. Sensor fusion is the concept of combining the best

information available from each sensor subsystem while ignoring the rest and making

inferences and decisions based on it. The challenge of heterogeneous data types also needs to

1.1 Research Questions and Challenges 5

Research Challenges

Data Management
Challenges

Processing
Challenges

Volume

Data Fusion

Heterogeneity

Classifying Signal and
Noise

Real-Time Nature

Data Flow Management

Service Orchestration

Frequency

Processing Data in-stream for
near real-time decision

support

Data Flow between Edge and
Cloud

Fault-Tolerance in Edge Layer

How to manage bandwidth
limitations between edge and

cloud

Orchestrating processing
pipelines in a cloud servers

Moving processing services
across edge and cloud

Problems addressed in this thesis

Other challenges and problems

Fig. 1.2 Research Challenges

be addressed based on the context and the domain. This thesis addresses mainly IoT sensor

data and social media data.

IoT and social media generate a massive volume of data, and it is a challenge to process

and identify a valid signal from the large volume of meaningless information. It is a

classical problem of finding a signal from the noise. Depending on the use case, several

classification methods are used to classify information based on its value to the purpose. The

real-time nature of the IoT data streams is a significant challenge in processing and data

flow management. Managing streaming data has a different set of methodologies and QoS

parameters. For instance, streaming data are generally timestamped, and the response time

for processing the data needs to be optimum. The in-stream analysis is an essential method

for processing such data. The scalability of stream processing systems is managed differently

and requires more specialised tools than a batch processing system.

Other key processing challenges in IoT networks are data flow management and service

orchestration across edge and cloud data centres. These two problems are closely interlinked,

6 Introduction

where service orchestration methodologies demand data flow management for efficiently

moving data according to the service location, availability and bandwidth. This thesis focuses

on some key research questions related to data flow management and service orchestration.

Data flow management challenges include the data flow control between the edge and the

cloud data centres, the decision problem of "process locally" or "forward" to the cloud, and

the sampling/filtering strategies. The osmotic computing paradigm addresses critical service

orchestration problems like the methodologies to move the workloads and services across

the edge and the cloud data centres. Another service orchestration problem is deploying a

distributed data processing pipeline for near-real-time processing of IoT and social media

data. One of the research questions addressed by this thesis investigates methods to the same

with landslide early warning system as a case study.

Following are the research questions addressed in this thesis.

1. What are the methodologies for achieving the maximum data flow rate for each node

in the IoT network utilising the available bandwidth while maintaining the stability of

the network and the nodes?

2. How to identify data flow bottlenecks in a three-layered IoT network dynamically?

3. What are the methodologies for efficiently coordinating a large number of heteroge-

neous edge nodes and IoT devices sending data to the cloud simultaneously?

4. How can a distributed analytics pipeline can help in Early Warning Systems like

landslide early warning systems and how can the pipelines be efficiently orchestrated?

1.2 Research Contribution 7

1.2 Research Contribution

This thesis investigates a comprehensive set of techniques for managing the data flow of

IoT data. It also explores methods for processing streaming data and orchestration of the

streaming analytics pipeline. The major contributions of this thesis are as follows

1. The first contribution is developing a tool kit for emulating a three-layer IoT network.

Conducting real-world experiments in IoT networks requires a workload to run on the

same or similar hardware of an edge device. A tool kit has been developed to conduct

IoT experiments. It consists of a sensor emulator, Edge Gatekeeper - a middleware

software for edge devices, Commander and Adaptive Flow Controller in the cloud,

which coordinates the data flow control.

2. The second contribution is a formal model and a set of algorithms for managing data

flow for IoT devices. This includes an algorithm to allocate data rates based on the

priority of the IoT sensors/devices. This work investigates i) methods to identify

backpressure, ii) Algorithms to adaptively adjust data flow rates based on the available

bandwidth.

3. The third contribution is the methodology to orchestrate a Big data analytics processing

pipeline for social media data processing. This work explains the design of a streaming

processing pipeline for an Early Warning System, also investigating the use-case-

specific challenges like natural language processing on stream. This work also presents

a methodology for identifying bottlenecks in the data streaming pipeline steps.

1.3 Publications

The work presented in this thesis is a result of many collaborations. Following is the list of

contributions and publications done during this project.

8 Introduction

• Thekkummal, N.B., Jha, D.N., Puthal, D., James, P. and Ranjan, R., 2020. Coordinated

data flow control in IoT networks. In Algorithmic Aspects of Cloud Computing: 5th

International Symposium, ALGOCLOUD 2019, Munich, Germany, 10 September,

2019, Revised Selected Papers 5 (pp. 25-41). Springer International Publishing.

• Phengsuwan, J., Thekkummal, N.B., Shah, T., James, P., Thakker, D., Sun, R.,

Pullarkatt, D., Hemalatha, T., Ramesh, M.V. and Ranjan, R., 2019, July. Context-based

knowledge discovery and querying for social media data. In 2019 IEEE 20th Interna-

tional Conference on Information Reuse and Integration for Data Science (IRI) (pp.

307-314). IEEE.

• Phengsuwan, J., TH, N.B. and Ranjan, R., 2019, January. Onto-DIAS: Ontology-

based Data Integration and Analytics System for Landslide hazard Early Warning. In

Geophysical Research Abstracts (Vol. 21).

• Wen, Z., Phengsuwan, J., Thekkummal, N.B., Sun, R., jamathi-Chidananda, P., Shah,

T., James, P. and Ranjan, R., 2020, October. Active Hazard Observation via Hu-

man in the Loop Social Media Analytics System. In Proceedings of the 29th ACM

International Conference on Information & Knowledge Management (pp. 3469-3472).

• Phengsuwan, J., Shah, T., Thekkummal, N.B., Wen, Z., Sun, R., Pullarkatt, D., Thirug-

nanam, H., Ramesh, M.V., Morgan, G., James, P. and Ranjan, R., 2021. Use of social

media data in disaster management: a survey. Future Internet, 13(2), p.46.

• Contreras, D., Wilkinson, S., Balan, N. and James, P., 2022. Assessing post-disaster

recovery using sentiment analysis: The case of L’Aquila, Italy. Earthquake Spectra,

38(1), pp.81-108.

1.4 Thesis Structure 9

1.4 Thesis Structure

This thesis consists of six chapters. The organisation of the chapters is illustrated in Figure

• Chapter 1: Introduction

This chapter explains the motivation behind the research and the general background

of data flow management in IoT networks and social media. It reveals challenges and

research questions in managing big data analytics pipelines for IoT networks and early

warning systems. The problem, challenges and methodologies are introduced along

with the thesis contributions.

• Chapter 2: Background and Literature Review

This chapter presents the background study of IoT and social media data flow manage-

ment and how EWS use this data effectively. This chapter includes:

1. Three-layer IoT network architecture details

2. The role of Osmotic Computing and edge processing in optimising the perfor-

mance of IoT infrastructure

3. Real-Time analytics pipelines

4. The overview of the Landslip project.

• Chapter 3: Emulation Tool-kit for benchmarking Internet of Things Networks

This chapter presents an emulation tool kit for three layers of IoT network emulation.

This tool-kit includes tools for emulating sensors, edge processing, edge gateway,

edge data flow control, and cloud data ingestion. This toolkit enables to run data

flow experiments for three layered IoT networks. This chapter also explains some

experiments and their results using this set of tools.

• Chapter 4: Coordinated Data flow control in IoT Networks

This chapter explains models and algorithms to manage data flow in IoT networks

10 Introduction

which includes i) Formal model of IoT network data flow ii) Algorithm for allocating

bandwidth to IoT devices according to priority. iii) Algorithms to adaptively control

the data rate of IoT devices as per the network conditions and their evaluation

• Chapter 5: Managing real-time big data analytics pipeline for Landslide Early

Warning System

This chapter presents a novel data integration and real-time streaming analysis pipeline

for active hazard observation using social media. It shows a prototype system for

real-time processing of social media data and their orchestration methods. It addresses

some critical issues in the scalability of such pipelines.

• Chapter 6: Conclusion

This chapter concludes the thesis, summarising the contributions and briefly discuss

the future direction of the research.

Chapter 2

Background

This chapter describes an overview of the necessary background information and related work

to understand better the related technologies, challenges and research questions addressed

in this thesis. First, the use of Internet of Things (IoT) data, methodologies and tools are

discussed. Furthermore, three-tier IoT network, data flow, and Osmotic Computing concepts

are discussed. Finally, real-time streaming analytics techniques in IoT and social media

analytics are discussed.

"The most profound technologies are those that disappear. They weave themselves into

the fabric of everyday life until they are indistinguishable from it". This is a famous statement

by the Xerox PARC Chief Scientist Mark Weiser describing ubiquitous computing in his

article[138] titled "The Computer for the 21st Century" in Scientific America. He predicted

that specialised hardware and software elements connected by wired and wireless networks

would be so ubiquitous that no one would notice their presence. The Internet of Things is a

convergence of multiple technologies, communication, ubiquitous computing[54] and Big

data analytics techniques to make use of the data. Many traditional fields like wireless sensor

networks, control systems, embedded systems, and automation helped in the evolution of

IoT. IoT is defined as "a global infrastructure for the information society, enabling advanced

services by interconnecting (physical and virtual) things based on existing and evolving

12 Background

interoperable information and communication technologies" [132] by IoT Global Standard

initiative. It describes the network of physical devices consisting of sensors, actuators,

software and other technologies for connecting and exchanging data with other devices

and systems over the Internet. The devices consist of sophisticated industrial equipment

to, household appliances, vehicles and urban infrastructure components. Thus, IoT has

become the enabler of a new interaction between people and things and between things by

integrating several technologies and communications solutions. It has applications prevalent

in logistics, transportation, healthcare, environment, disaster management, smart cities, and

urban planning. Things that form the Internet of Things are characterised by low resource

capacity in terms of computation and energy [56]. Hence, any IoT solutions should be

designed with resource efficiency and scalability in mind.

Application domains of the IoT can be broadly classified[128] into three i) Industry ii)

Environment iii) Society. IoT is widely deployed in manufacturing, logistics, banking and

finance, governmental bodies and intermediaries in the industry. Companies are investing in

redesigning factory workflows, tracking materials and bringing optimisation in every possible

way using data analysis. IoT is widely deployed in environmental domains like agriculture

and breeding, environment management, recycling and energy management for monitoring,

protecting and developing natural resources. Smart farming is already helping many farmers

optimise yields, profitability and protection of the environment. IoT is used in activities

related to societies, cities, and people’s development and inclusion in the Society domain,

including smart infrastructure, smart cities, e-participation and inclusion. For instance, IoT-

enabled devices like sensors, actuators, and advanced data analytics are helping us reduce air

pollution in some of the world’s biggest cities and improve agriculture and food supply.

The following sections discuss more on the technology, protocols and devices involved

in modern IoT.

2.1 Related Technologies and Use Cases 13

2.1 Related Technologies and Use Cases

The following section explains a brief overview and illustration of the Internet of Things

communication technologies and protocols. Different protocols are designed to work in

different layers.

2.1.1 Wireless Communication Technologies in IoT

Wireless communication technology plays a vital role in the Internet of Things echo system.

It enables connectivity between smart devices wirelessly. Wireless technology used in IoT

systems has specific characteristics in terms of its capabilities and the requirement for it

to work in a resource-constrained environment like IoT. For instance, most of the wireless

technologies used in IoT have strict power usage requirements as IoT devices are mostly

battery-operated and are deployed away from regular power supply.

Wi-Fi is a popular choice for local networks due to its high data rates and broad coverage,

making it ideal for data-intensive applications like video surveillance. Zigbee and Z-Wave are

mainly utilised in home automation due to their low power requirements and mesh networking

capabilities, enabling devices to communicate through other devices and extending the

network’s range. Bluetooth, and Bluetooth Low Energy (BLE), is frequently employed for

short-range, low-power applications, such as wearables and health monitoring devices. On

the other hand, Long Range (LoRa) and SigFox are low-power, wide-area network (LPWAN)

technologies designed for long-range communications in applications such as smart cities or

agriculture, where devices are dispersed over a large geographical area. Cellular networks

(3G, 4G, and 5G) provide extensive coverage and high data rates, making them appropriate

for applications requiring real-time communication and high mobility. Table 2.1 lists the

important characteristics of IoT’s leading wireless communication technologies.

14 Background

Table 2.1 IoT Communication Technologies

Frequency
Band Range Data Rate Power IoT Use Cases

NFC 13.56 Mhz 4 cm
106 -

424 kbit/s
Very
Low

Cashless Payments, Asset
Tracking, Time & Attendance,

Transport and Logistics

BLE 2.4 Ghz 100+ m
125 kbps -

2 Mbps
Very
Low

Health care, Smart Wearables,
Advertisement, Retail, Automotive,

Indoor Location and Navigation

ZigBee 2.4 Ghz
band 10-100m

20-
250 kbps Low

Home & Building Automation,
Wireless sensor Networks,
Industrial Control Systems,
Medical Data Collection,
Fire and Safety Systems

Z-Wave Sub GHz
bands 15-150m

9.6 -
100 kbps Low

Smart Home,
Home and building Automation

WiFi 2.4, 5, 6
Ghz

100 m to
several kms

Upto
1 Gbps Medium

Smart Home,
Home and Building Automation,

Connecting complex IoT devices, CCT

LoRaWAN Sub Ghz
bands 5-20 km

0.3-
50 kbps Low

Asset Tracking, Sending data
from sensors deployed in remote areas,

Smart Agriculture/Irrigation.

SigFox 868, 902
Mhz 10-40 km 100 bits/sec Low

Sending data from remote IoT devices
and sensor networks

Cellular 900 -
3500 Mhz Upto 40km

Upto
1 Gbps High

Connecting Remote IoT devices and
smart devices,

Smart Cities, Early Warning Systems,
Smart Environment Sensors

2.1.2 Communication Protocols

1. Constrained Application Protocol

The Constrained Application Protocol (CoAP)[117] is a specialised web protocol for

use with resource-constrained nodes, e.g., low-power, lossy networks. The CoAP is a

web transfer protocol based on REST and HTTP functionality. REST is an easier way

for clients and servers to exchange data over HTTP. CoAP, an application layer protocol

for IoT applications, was developed by the IETF Constrained RESTful Environments

(CoRE) working group.

REST enables servers and clients to expose and consume web services similar to the

Simple Object Access Protocol (SOAP) using Uniform Resource Identifiers (URIs)

2.1 Related Technologies and Use Cases 15

as nouns and HTTP get, post, put, and delete methods as verbs. REST does not

rely on XML for message exchanges. CoAP is bound by default to UDP instead of

TCP, making it more suitable for Internet of Things applications. In addition, CoAP

modifies specific HTTP capabilities to meet IoT requirements, such as low power

consumption and operation over lossy and noisy connections. CoAP is based on REST,

so conversion between these two protocols in REST-CoAP is straightforward. CoAP

aims to make RESTful interactions accessible to low-power, low-computing, and

low-communication devices.

2. Message Queue Telemetry Transport (MQTT)

Message Queuing Telemetry Transport (MQTT) is a messaging protocol was intro-

duced in 1999 by Andy Stanford-Clark of IBM and Arlen Nipper of Arcom (now

Eurotech) and standardised by OASIS[32, 124] in 2013. Its objective is to connect

embedded devices and networks to applications and middleware. The connection oper-

ation employs a routing mechanism (one-to-one, one-to-many, and many-to-many).

It enables MQTT as the optimal connection protocol for the Internet of Things and

machine-to-machine communication.

MQTT uses the pub/sub pattern and offers transition flexibility with a simple implemen-

tation. It is suitable for devices with limited resources and lossy network conditions

with low bandwidth. MQTT runs on top of TCP protocol and has 2 QoS levels. There

are five major versions of MQTT have five main versions

(a) MQTT v3.1[79]: Earlier version of the protocol, which is widely in use and

well-supported

(b) MQTT v3.11[123]: This version is an OASIS standard which is built on top of

MQTT v3.1. It is one of the last decade’s most widely used IoT protocols.

16 Background

(c) MQTT v5.0[124] The latest version of MQTT as of 2023 is an OASIS standard.

It includes a few new features, including shared subscription and improved error

reporting mechanisms.

(d) MQTT-SN[125] is an adaptation of MQTT designed to make it more suitable

for sensor networks. It is more suitable for scale and power-constrained wireless

sensor networks.

3. Advanced Message Queuing Protocol (AMQP)

The Advanced Message Queuing Protocol AMQP is an open standard[122] for trans-

mitting business messages between applications or organisations. It connects systems,

provides business processes with the required information, and reliably transmitsÂăthe

instructions necessary to accomplish their objectives.

The main features of AMQP are queuing, routing (point-to-point, pub/sub and fanouts)

and message orientation. AMQP is a feature-rich protocol with a higher overhead than

MQTT and might not work efficiently in resource-constrained devices. It supports "at

most once", "at least once", and "exactly once" message delivery like MQTT. However,

these features come at the expense of increased resource consumption and complexity,

making AMQP more suitable for enterprise-level applications requiring high reliability

and security levels.

Table 2.2 lists and compares more protocols used in IoT networks. Figure 2.1 maps the

protocols and the layers in which they operate.

2.1.3 IoT Application Domains

IoT technologies have vast applications that span multiple domains and industries. This

section lists the important IoT application domains. Table 2.3 briefly explains the IoT

application domains.

2.1 Related Technologies and Use Cases 17

Table 2.2 IoT Messaging Protocols

Criteria HTTP/
RESTFul MQTT AMQP CoAP WebSockets DDS XMPP

Communication
Model Req/Resp Pub/Sub

Req/Resp,
Pub/Sub

Req/Resp,
Pub/Sub

Req/Resp,
Pub/Sub

Req/Resp,
Pub/Sub

Req/Resp,
Pub/Sub

Header Size Undefined 2 Bytes 8 Bytes 4 Bytes Undefined Undefined Undefined

Payload Size

Undefined/
Depends

on
web server

Upto
250 MB Undefined

Less than
1 IP Datagram Undefined Undefined Undefined

Transport
Protocol TCP TCP. UDP TCP UDP TCP TCP, UDP TCP

QoS /
Delivery
Guarantees

TCP based
Flow and
Congestion
Control

At most once,
At least once,
Exactly once

At most once
(Settle Format),
At least once
(Unsettle Format)

At most once
(Confirmable
Message),
At least once
(Non
Confirmable
Message)

TCP based
Flow and
Congestion
Control

Extensive None

Encoding
Format

Text
serialised
to Binary

Binary Binary Binary
Text
serialised
to Binary

Binary
XML serialised
to Binary

Scope in IoT Device-Cloud,
Cloud-Cloud

Device-Cloud,
Cloud-Cloud

Device-Cloud,
Cloud-Cloud Device-Device

Cloud-Device,
Cloud-Cloud

Device-Device,
Device-Cloud ,
Cloud-Cloud

Device-Cloud,
Cloud-Cloud

Security HTTPS TLS TLS + SASL DTLS HTTPS
TLS, DTLS,
DDS Security TLS + SASL

HTTP CoAP WebSockets

MQTT XMPP DDS HTTP

TCP UDP

IPv4 IPv6 6LoWPAN

802.3 - Ethernet 802.16 - WiMax

802.11 - WiFi 802.15.4 – LR-WPAN

2G/3G/4G
LTE/5G

Application Layer

Transport Layer

Network Layer

Link Layer

Bluetooth Zigbee Z-Wave NFC

Sigfox

LoRAWAN

Fig. 2.1 IoT Communication Protocols in Different Layers

2.1.4 Smart Cities

The process of urbanisation has resulted in the emergence of numerous threats, issues, and

problems. Only by using "Smartness" can concerned administrations find optimal solutions

for the city’s challenges. Moreover, smart cities are more eco-friendly, livable, secure, green,

18 Background

IoT Application Domains Description
Building and Living Enhances comfort, energy efficiency, and safety

via automation and real-time monitoring sys-
tems.

Healthcare Allows for remote patient monitoring, care for
the elderly, and fitness tracking, and provides es-
sential data for diagnosis and preventative care.

Environment Contributes to environmental monitoring and
conservation efforts.

Early Warning and Disaster Management Enables real-time disaster alerts and post-
disaster rescue efforts

Energy Boosts energy efficiency, facilitates intelligent
grids, and integrates renewable energy sources.

Transportation and Logistics Enhances fleet management, asset tracking, and
traffic management while enabling intelligent
parking solutions.

Manufacturing The foundation of Industry 4.0, enabling automa-
tion, real-time monitoring, predictive mainte-
nance, and improved supply chain management.

Retail Improves inventory management and enables
automated checkout systems.

Agriculture Allows for precision farming, automated irriga-
tion, crop health monitoring, and livestock mon-
itoring.

Table 2.3 Application Domains

or connected. Indeed, all of these goals can be thought of as constituting the definition

of Smart City. According to Nam and Pardo (2011) "A city can be defined as "smart"

when investments in human and social capital and modern transport and communication

infrastructure fuel sustainable economic growth and a high quality of life, with a wise

management of natural resources, through participatory governance." Fig 2.2 shows the

layered architecture of a generic smart city

Challenges of Smart Cities

The idea of smart cities is widely accepted, and many have begun to put it into practice, but

there are still problems that must be fixed before the concept can advance any further. There

2.1 Related Technologies and Use Cases 19

Fig. 2.2 Layered Architecture of a generic smart city[119]

are many obstacles that must be overcome before IoT can become widely adopted, including

high design and operation costs, device heterogeneity, massive data collection and analysis,

information security, and sustainability.

• Cost: One of the biggest obstacles to the practical implementation of smart cities is the

design and maintenance cost. There are two types of expenses: planning and running

costs. The initial investment needed to build a smart city is the design cost. Therefore,

the lower the design cost, the more likely it will be used in the real world.

• Heterogeneity: The ability to integrate all these disparate components at the application

layer is crucial to the practical implementation of the smart city concept. However,

integration and inter-operation at the application layer are hampered by platform

incompatibilities resulting from heterogeneity.

• Data Privacy: Data privacy is essential in a smart city’s infrastructure. Citizens of

a smart city can access the city’s essential services through their computers, smart-

20 Background

phones, and other connected devices. In light of this, addressing privacy concerns like

eavesdropping is crucial.

• Data Volume: For a smart city to run smoothly and without interruption, it must be

able to transfer, store, recall, and analyse large amounts of data. As a result, smart

cities need to explore novel areas and promising methods for handling the generation

and analysis of Big Data.

• Failure Management: Failure management is also an important consideration for smart

city construction projects. System failures, like infrastructure breakdown and network

unavailability, can occur after natural disasters like floods, earthquakes, and tornadoes.

Smart City Initiatives

• OASC[9]: Together, the world’s smart cities are working on a project called Open

and Agile Smart Cities (OASC). The goal of the Open & Agile Smart Cities initiative

is to facilitate the development of a community-driven, open smart city market. To

remain competitive, cities require interoperability and standards that allow for easy

comparison to benchmark performance, sharing best practices, and eliminating vendor

lock-ins.

• OrganiCity[91]: OrganiCity is a new European Union project that prioritises citizens

in urban planning. Three of the world’s most advanced smart cities and 15 experts

from a wide range of fields will collaborate on this project.

• UrbanIxD[121] : The goal of UrbanIxD, a two-year European project (FP7-FET), is to

establish a network of researchers interested in studying human activity, experience,

and behaviour in data-rich urban settings.

2.2 IoT Data Analytics 21

2.2 IoT Data Analytics

The IoT constantly produces massive amounts of data from a wide range of devices. Data

analytics processes, which can be roughly divided into historical and real-time categories,

are used to extract useful information and insights from these datasets. Figure 2.3 shows the

IoT data analytics methods and use cases.

IoT Data Analytics
Processing

Real-Time

Historical

Diagnostics

Micro-Batch
Predictive Analysis

Stream Data Analysis

Predictive

Descriptive

Model Building

Micro-Batch
Prescriptive Analysis

For training and
building ML models for
prediction

Ex: Predicting urban air
quality, power demand

Ex: Hazard Early
warning, Emergency
Alert

Ex: Urban planning,
Reports

Ex: Real-time
Environmental data

Ex: Predicting power
demand, predicting
logistical data for
emergencises

Ex: Time to repair in
Industrial IoT

Fig. 2.3 IoT Data Analytics

2.2.1 IoT Data Flow Management

Data flow management of IoT systems requires systems to collect, process and store informa-

tion from the source to the destination. The flow of data is affected by various factors like the

data generation rate at the sensors, and the network variabilities due to factors like switching

of network and load at the edge data center.

22 Background

Data Flow
Mangement

Flow
Control

Edge Load
Balancing

Based of
CPU/Memory Usage

Based on Information
from Application

Layer

Based Messaging
Queue Length

Methods

Round Robin

Least Resource
Utilisation

Filtering

Sampling

Local Processing

Criterion

Static

Adaptive

Hashing

Sticky Session

Least Response Time

Least Connections

Least Bandwidth

Capability Based
Routing

Fig. 2.4 IoT Data Flow Management Taxonomy

2.2 IoT Data Analytics 23

2.2.2 IoT Data Flow Challenges

The data flow management challenges in IoT networks are well studied, and both industry

and academia have proposed multiple solutions. Lukić et al. (2018) study various methods to

establish a data path between sensor nodes and web-or cloud-based IoT applications. In this

work, the authors studied the details of data flow challenges in the IoT network while using

long-range, low-power networks such as LoRAWAN and NB-IoT. In their paper Szydlo et al.

(2017) used the concept of data flow transformation to run parts of the computation closer to

the origin of data on edge devices with constrained resources.

Edge computing paradigms address many IoT data flow challenges like latency, band-

width and network congestion, scalability, resilience and, reliability etc.

Edge Computing Paradigms

Computing methodologies that bring the computation and data storage closer to the source

of data, which reduces latency and save bandwidth while improving privacy and security.

1. Fog Computing: Fog computing[37], which was developed by Cisco, extends cloud

computing to the network’s edge. It distributes storage and processing to the most

logical and efficient locations between the data source and the cloud. It is capable of

scalable management of a large number of nodes.

2. Cloudlet: A Cloudlet[17] is a small-scale cloud data centre located at the Internet’s

edge. It is the middle level of a three-level hierarchy: mobile device cloudlet cloud.

Cloudlets are an architectural element that extends the cloud computing infrastructure

of the present day.

3. Osmotic Computing: Osmotic computing[137] is a new paradigm for deploying and

executing microservices across edge and cloud computing infrastructures. The primary

24 Background

objectives of osmotic computing are to support the efficient execution of Internet of

Things (IoT) services and applications within an interoperable, multi-cloud ecosystem.

2.2.3 IoT Data Streams

Stream processing, which started from a single machine system such as Aurora [5] and

TelegraphCQ [40], has been studied for decades. With the increasing amount of input

data, stream processing has been moved to a distributed processing paradigm, for example,

Spark Streaming [140], Storm [131], Flink [38], Google Dataflow [12]. Furthermore, stream

processing in the IoT environment requires systems that can utilise the computing resources

from both edge nodes and the cloud to achieve low latency and high throughput [139]. In

this paper, we re-use the existing sampling technology and priority queue to ensure the QoS

when the computing resources are limited. IoT data streams have some desirable properties

for their applications:

High throughput. In edge+cloud solutions, an edge node may connect with a large number

of sensors; similarly, a large number of edge nodes are continuously sending data to the

cloud. Therefore, high throughput processing is the key to keeping up with the incoming

streams. For example, more than 15,000 sensors (attached to around 1,200 sensor nodes)

were deployed in the Santander project for smart city research [43], and Boeing 787 creates

half a terabyte of data per flight reported by Virgin Atlantic [Boeing].

Low latency (data freshness). The latency or data freshness is defined as the elapses

between a sensor sensing the value from an IoT device and the data arriving at the cloud.

Data latency is a crucial performance parameter in the sensor network, as delayed or stale

data could result in wrong analysis/decision-making. Consider a real-time traffic monitoring

application which collects the traffic data across the city. If the latency is too high because

of limited network bandwidth or computing resources of edge nodes, this application may

2.2 IoT Data Analytics 25

not be able to make a correct decision or may provide inaccurate information for users.

Consequently, low latency is very important for this distributed IoT data stream processing

system. The system designer should use techniques like sampling [139] and edge processing

to ensure low latency in low bandwidth/high latency IoT networks.

Adaptability. Computation resources are geo-distributed in edge+cloud architecture, and

the underlying hardware are heterogeneous. As a result, the system needs to be adapted to

the dynamic IoT environment. For example, cloud-based distributed stream process systems

have frequently experienced crash-stop node failures [136, 11], and IoT environments have

much more uncertainty than cloud environments [103].

2.2.4 Computational Models for IoT Data Streams

For IoT data, several streaming computation models are preferred depending on the use cases.

This section introduces a few computation models in use.

Bulk-synchronous parallel (BSP). This model has been used in many stream process-

ing systems such as Spark Streaming [140], Google Dataflow [12] with FlumeJava. In this

model, the computation is a directed acyclic graph (DAG) of operators (e.g. sum, group

by, join), the DAG is partitioned into the available computing resources. Moreover, the

mini-batch, which reserves the streaming data for T seconds, is processed over the entire

DAG.

Continuous Operator Streaming (COS). In this model, there is no blocking barrier like

mini-batch to sync all operators in a defined time period. These operators are long-running

operators, and the messages can be transferred directly among them. The representative

systems are Naiad [100], Stream Scope [78] and Flink [38].

26 Background

Approximate computing. Sampling techniques have been applied in distributed big data

analytics to obtain a reasonable output efficiently [7, 57, 69]. This approach is based on the

observation that, for many applications, only an approximate value of the sensor reading

is required for its desired functionality. Chippa et al. (2013) reported that by reducing 5%

accuracy of the k-means clustering algorithm, 50 times energy can be saved. As a result, we

leverage a similar strategy by using a sampling algorithm to overcome the trade-off between

the limited computing resources and processing the large volumes of IoT data in real-time.

Next, these techniques are widely applied in stream processing [112, 23], which demon-

strated well that the proposed systems could balance the quality of output and computation

efficiency. Unfortunately, these systems only work on cloud-based environments and cannot

utilise the computing resources from edge nodes. Wen et al. (2018) share the same architec-

ture in their work and use the simple technique to overcome the issue of how to sample IoT

data in truly distributed environments while ensuring low latency and high throughput.

Simple random sampling (SRS). SRS is a naive approach for sampling, in which n samples

are drawn from a population in such a way that the chance of sampling every set of n

individuals is equal. Thus, SRS is an unbiased surveying technique which means the selected

subset can represent the population as a whole.

Data flow management of IoT systems requires systems to collect, process and store

information from the source to the destination. The flow of data is affected by various factors

like the data generation rate at the sensors and the network variabilities due to factors like

switching of network and load at the edge data center.

2.2.5 Big Data Orchestration

Big Data flow orchestration systems refers to the programming technology to manage the

interconnections and interactions among big data workloads on public and private cloud

2.2 IoT Data Analytics 27

infrastructure. It interconnects tasks into a cohesive workflow to accomplish a goal, with

permissions oversight and policy enforcement. Workflow orchestration system provision,

deploy or start servers, tasks and services; acquire and assign storage capacity; manage

networking; create VMs; and gain access to specific software on cloud services. This is

accomplished through three main, closely related attributes of cloud orchestration: service,

workload and resource orchestration. The main aspects of a workflow management system

are workflow model/specification, workflow initiation, scheduling/workflow mapping, and

resource management. Several big data processing partially address each of these challenges.

Big data processing frameworks use resource managers like Apache YARN [135, 108]

and Apache Mesos [53]. Apache YARN provides resource management and a central

platform to deliver consistent operations, security and data governance across Hadoop

clusters. It has separate daemons for resource management and job scheduling/monitoring.

It supports multi-tenancy for data processing and also ensures cluster utilisation by dynamic

allocation of cluster resources. While YARN provides resource management for processing

frameworks like Apache Hadoop, it does not have a holistic view of the workflow or its

resource requirements. It is unaware of the data flow between different workflow stages

and assumes HDFS to handle the data locality. Scheduling decision in YARN is taken in

a centralised manner. Initially created as a resource manager for Hadoop [118] jobs and

later extended to support non-MapReduce applications. Its APIs are complex and provide

low level resource management interfaces and it is difficult to build custom YARN based

application.

Mesos adopts Non Monolitic/de-centralised scheduling. Mesos does a fine-grained

scheduling by providing the frameworks (Hadoop, Spark, Flink etc.) with resource offers

and allowing the frameworks to do the scheduling by itself. Each framework won’t be having

a view of data availability or the flow of data from a workflow perspective. Mesos and

YARN are framework-level (Hadoop), and don’t have a view of the workflow. Apache Oozie

28 Background

[Apache] is a workflow scheduler for Hadoop systems. It is a system which runs workflow

of inter-dependent jobs. Here, users are permitted to create Directed Acyclic Graphs of

workflows, which can be run in parallel and sequentially in Hadoop. Oozie is scalable and can

manage the timely execution of thousands of workflows (each consisting of dozens of jobs)

in a Hadoop cluster. The scope of Oozie is restricted to the Hadoop environment. Establishes

relationship between various data and processing elements on a Hadoop environment and

provides feed management services such as feed retention, replications across clusters,

archival etc. It accepts entities using DSL (Domain Specific Language), which provides the

dependency graph between infrastructure, data and processing logic. Falcon dynamically

creates Oozie workflows. Apache NiFi[Apa] was built to automate the data flow between

systems. It has a Web-based user interface which helps to design, control, feedback, and

monitor. It can be used for enrichment/preprocessing (Parsing, Format Conversion) of data

before feeding into analytics platforms like Hadoop or Spark [141]. It supports routing

decisions based on the data. NiFi is not used for distributed computing or complex stream

processing. It uses a flow-based model using a concept called FlowFile. The preliminary

requirement for a workflow engine is to have a language which could describe all the

parameters of the workflows. OASIS TOSCA [28, 27] standard enabled the interoperability

of cloud application which enhances the portability for cloud applications across different

providers.

It provides a vendor-agnostic model to describe an application, its services in cloud,

relationship between other services and operational/life-cycle behaviour. Using TOSCA,

the structure of an application is represented by a Topology Template, which consists of

Node and Relationship Templates. Together, they represent a service as a DAG of deployable

components. Qasha et al. (2015) introduces an approach to using TOSCA or describing

a scientific workflow. This work used the cloudify DSL to specify scientific workflow

which enables automated workflow deployment. The inheritance and object orientedness

2.2 IoT Data Analytics 29

of TOSCA is good motivation to use as DSL for Big Data Workflow definition. There exist

several commercial and open-source configuration management tools like Chef [che], and

Puppet [pup]. These tools are capable of managing individual application deployment and

configuration. Orchestration engines like Karamel can deploy big data clusters and submit

jobs. Orchestration engines in general, serves the purpose of chaining the jobs based on a set

of rules.

2.2.6 Message Brokers

There should be a distributed message broker which enables the communication between

different processing operators/steps in the pipeline. A broker is centralised; it can receive

messages from multiple sources, determine the correct destination and route each message to

the correct channel. While the core idea of the broker is centralised, distributed brokers are

being widely deployed, which distributed data using data replication and partitioning. Apache

Kafka is one of the most widely used as distributed event streaming systems. Messaging

brokers serve as the back bone to the system. Every processing steps/operators consume data

from the broker and publish its results to the broker in different channels/topic. Message

broker should persist data published, and it should be cleared for purging only upon the

subscriber demand. This is required for reprocessing, resilience and recovery from an error.

Processors and other data sources write into a channel/topic while its subscribers read the

information in the order it arrived. This data should be available even after the reading is

complete so that it can be re-read in case of any failure or need for reprocessing. This is also

useful to perform re-reprocessing of events so that provenance information of a process can

be stored. This is especially useful in the case of scientific computing.

30 Background

Sequential Flow of Data as Events

The data should be entering and exiting the system sequentially, and all operations should be

performed in-stream without storing the data beyond the window of operation. This ensures

optimal usage of resources of the processing infrastructure. Applications like IoT generate

data points based on the reading and the timestamp of observation, which follows this pattern

on data flow. Social media feeds also flow sequential data flow based on the time the user

interact with the social media. Each message in the system should represent only one event

and its data. It should contain only atomic values and should not have repeating groups of

data like defined in the 1st normal form of the RDBMS [87]. At the same time, the input

and output of the operators can be queued as a buffer for managing varying data processing

speeds and network bandwidth.

2.3 Simulator and Emulators for IoT

Simulation and emulation are useful in designing and evaluating IoT systems. Emulation is

used for in-depth testing and evaluation of system components and tries to emulate real-world

scenarios, while simulation is used for high-level system design and analysis.

Simulation and emulation are crucial research tools for the development of IoT envi-

ronments. t is often impractical or impossible to test such systems in real-world conditions

due to the large number of connected devices and complex interactions characterising IoT

networks. The virtual environment simulation and emulation allow for the controlled testing

and evaluation of various IoT scenarios like network, configuration and protocols[127]

2.3.1 Simulators

The Cambridge dictionary defines a simulator as: "a bit of equipment that is designed to

represent real conditions". A simulator is a system or programming model that can mimic

2.3 Simulator and Emulators for IoT 31

real-world events and identify the outcomes of different hypotheses or assumptions without

putting the experimenter in uncertainty, danger or risk[105]. The Internet of Things simulator

allows users to simulate networks containing hundreds of user-defined connected devices

reliably. Control, configurability, manageability, integration, repetition, and scalability are

just a few of the many benefits of using a simulator. The following section discusses a list of

3 leading simulator systems systems.

• IOTSim[142]: It is based on the popular CloudSim[36] toolkit, a framework for

simulating cloud environments, and adds functionality necessary for the Internet of

Things. It’s ability to model data processing at the network’s edge, closer to where

data is generated by IoT devices, can help to alleviate bottlenecks and delay in the

transmission of data. Big data processing workflows, such as MapReduce jobs, are

frequently used in IoT applications to process large volumes of data generated by IoT

devices. IoTSim includes support for simulating such workflows.

• iFogSim[60]: iFogSIM is used to model the Internet of Things and Fog infrastructures

so that latency, network congestion, energy consumption, and cost can be evaluated

as a result of different resource management strategies. In order to simulate the

Internet of Things, fog data centres, edge devices, network connections, cloud analysis,

and performance metrics assessment, iFogSim is built on top of a cloud simulator

specifically designed for IoT. Its features include the ability to compare and contrast

different approaches to resource management that have been built around quality

of service standards (for things like network congestion, latency, bandwidth, task

scheduling, etc.).

• EdgeCloudSim [120]: EdgeCloudSim is an open-source simulator used to model and

simulate edge computing environments. EdgeCloudSim fills this gap in the domain of

edge computing, which requires consideration of both computational and networking

32 Background

considerations. To assess the many facets of edge computing, EdgeCloudSim offers

a mobility model, a network link model, and an edge server model. In addition to

its simulation capabilities, EdgeCloudSim also demonstrates improved usability by

offering a means by which to retrieve the settings for devices and applications from

XML files rather than defining them in code.

2.3.2 Emulators

An emulator is a piece of software or hardware designed to make one system act like another

for the purpose of simulation or testing. It is a way to mimic how an Internet of Things (IoT)

gadget or system would act in a lab setting. Emulation is the process of running the actual

software that would be used in the real IoT system but on a different hardware platform, as

opposed to simulation, which uses a mathematical model. This allows for comprehensive

testing and evaluation of the system’s behaviour, and it can provide a high degree of realism.

Following are examples of some widely used emulators in IoT research

• MAMMotH[80]: MAMMotH is a large-scale IoT emulator that can be utilised for

the development of experiment scenarios, their subsequent deployment on a test-bed,

and the subsequent analysis of the outcomes. It provides link emulation, gateway

emulation and node emulation. It uses virtual machines under the hood.

• COOJA[18]: In order to simulate the "Contiki OS" and "WSN," the cooja emula-

tion/simulation was developed. It is a java-based simulator and capable of simu-

lating the IoT sensors (Z1 sensors = sense/send/blink), RPL in WSNs (example =

UDP-RPL/broadcast), preparation set, system controlled, analysed, and operating

system[105]. With COOJA, you can model sensor networks with nodes that are com-

pletely unique from one another, both in terms of their on-board software and the

simulated hardware. COOJA is flexible because it allows for the simple addition or

removal of features and functionality

2.4 Conclusion 33

• EMULAB [126]: Emulab is a full-featured network emulation test-bed that allows for

complex testing scenarios by virtualising hosts, routers, and networks. Virtual topology

allows to emulate resources such as network links. By comparing the virtual topology

to the actual hardware, EMULAB determines how best to distribute the available

resources.

2.4 Conclusion

This chapter provided comprehensive background information on the key concepts and

technologies that form the base of this thesis. Starting with the overall context of the IoT, its

architecture, its applications, and their respective domains were all examined. The paper then

dove into the details of key wireless communication technologies for the Internet of Things,

such as MQTT, AMQP, and CoAP. Several data analytics methods for IoT, both historical

and real-time, were also covered in this chapter because of their importance in understanding

IoT data. We delved deeper into the difficulties of managing data in the Internet of Things

and its data flow.

We investigated several edge computing paradigms, such as Fog Computing and Cloudlet,

that are designed to address data flow challenges in IoT. The benefits of these paradigms, as

well as their role in mitigating data-related issues, were highlighted.

We discussed the concepts of IoT simulation and emulation, emphasising their signifi-

cance in IoT research. We discussed various tools useful in this domain, such as IoTSim,

EdgeCloudSim, and NetSim. However, it was discovered that there is a gap in the area

of IoT emulation, specifically in creating realistic and scalable environments for data flow

management research in IoT networks and to conduct data flow experiments.

Chapter 3

Emulation Tookit for benchmarking

Internet of Things Networks

3.1 Introduction

According to forecasts[90] by IHS, the number of connected IoT devices will reach 125

billion in 2030. This unprecedented increase in linked networks is due to the spread of

IoT devices in the last decade. Due to this rapid increase, the creation of effective and

scalable IoT network designs is now necessary to meet the rising needs for data transmission,

processing, and security. IoT connects physical devices to the Internet. The data come from

various resources, including industrial sensors and control systems, business applications,

and open web data and use multiple layers to process and transmit data to the cloud servers.

The large volume of big data these devices generate is eventually sent from IoT devices to

the cloud for further analysis. This data volume, velocity, veracity, and application contexts

bring several grant challenges in IoT application composition, data management, application

orchestration, security privacy and compliance [114, 89]. As discussed in Section 1.1, one of

the critical challenges in processing IoT data is Data Flow Management, which includes data

flow between the IoT, Edge and cloud devices.

36 Emulation Tookit for benchmarking Internet of Things Networks

Due to bandwidth restrictions, sending data straight to the cloud may only sometimes be

efficient or even viable as the volume and speed of data increase. Additionally, the cloud

might not be able to handle some time-sensitive applications’ need for speedier processing.

New computing paradigms that bring processors near the sensors are required to address the

issues of high bandwidth, extremely low latency, and privacy concerns. Edge computing[41],

Osmotic computing[137, 98], and Fog computing[37, 30] are a few of the well-known

concepts created by academia and industry.

IoT sensors send data to the cloud by several means, i.e. (i) Direct: IoT devices can

connect directly to the cloud over the Internet using Wi-Fi, cellular, or wired connections.

In this approach, devices communicate directly with cloud platforms using IoT-specific

protocols (ii) IoT Gateway/ Edge Computing: Edge nodes collect the data from IoT devices

and then forward the collected and processed data to the cloud. The former solution needs

more flexibility to reprocess the IoT data on the ground due to the limited computing resources

of the sensors. In some scenarios, this solution may cause high latency when the network

is unstable, wasting network bandwidth to forward the whole data to the cloud, where we

only require some aggregated information. The edge and cloud solutions integration has

been applied in many state-of-the-art systems [20, 116]. However, these systems consider

replacing the analytic jobs close to the data source, reducing latency. ApproxIoT system

[139] was designed to utilise edge computing resources such as mobile phones, network

gateways and edge data centres at ISPs where the approximate computing is performed by

achieving low latency analytics. However, the IoT network’s uncertainty affects edge devices’

stability and communication to the cloud. For example, the available bandwidth of a cellular

network is highly variable due to the changing number of devices connected to a base station.

Also, the cellular network is dynamically changing among 2G, 3G and 4G in rural areas with

insufficient base stations.

3.1 Introduction 37

In many cases, high-frequency data is not required when no significant variance in the

value or no imminent real-world situation demands a high data rate reading and sensor

data analysis. The sensor types, the location and real-world scenarios are the factors which

determine the data-sending rate or frequency. For example, a sensor installed for measuring

the ambient temperature of a factory floor may send its values twice a second. In contrast, a

vibration sensor installed in a compression pump at a critical location sends data at a rate of

100 samples per second. Any significant change in vibration within a short period can cause

severe damage if it is not acted upon quickly.

In order to evaluate the real-world data flow in a three-layered IoT network, taking into

consideration factors such as data flow, data rates, frequency, and dependability, an IoT

emulation toolset is required. It is essential to assess the network’s capacity to handle various

data speeds and frequencies due to IoT devices’ diversity and varied data transmission needs

[13]. Researchers and developers may test the network’s ability to handle the various data

rates and frequencies produced by these devices by simulating the complex data exchanges

between heterogeneous devices in the edge, fog, and cloud layers using an IoT emulation

toolkit. Additionally, the toolkit offers a way to assess the system’s dependability in terms

of data freshness, guaranteeing that IoT data is effectively sent and processed with little

packet loss and delay. An IoT emulation toolkit is an essential resource for improving system

performance, testing novel solutions, and ultimately building a more robust and effective

IoT ecosystem that can handle various data types and satisfy the requirements of multiple

applications. This thesis investigates a set of techniques for managing the data flow in an

IoT network. For this purpose, an IoT Emulation tool kit has been developed. This chapter

describes the IoT Emulation toolkit, which consists of a Sensor Emulator, Edge GateKeeper

and Adaptive Flow Controller.

The remaining chapter is organised as follows. Section 5.2 sets the background and

reviews some related work. Section 3.4 explains the proposed system architecture, including

38 Emulation Tookit for benchmarking Internet of Things Networks

Sensor emulator, Edge GateKeeper (3.4.2) and Adaptive Flow Controller (AFC) (3.4.3). The

implementation details in Section 3.5 and the evaluation of the toolkit with experiments to

detect back pressure and data freshness are provided in Sections 4.4

3.2 Background

Smart cities, healthcare, transportation, and manufacturing are just a few of the industries

that have seen a substantial influence due to the explosive growth of the Internet of Things

(IoT) networks. The creation of cutting-edge tools and techniques is necessary due to IoT

networks’ complex and diversified nature and the difficulties in design, implementation, and

performance evaluation. Setting up real-world IoT test beds may be expensive and time-

consuming, which restricts the ability to assess network performance in various scenarios. In

light of these difficulties, IoT emulation toolkits [104, 81, 106] have become vital for stream-

lining the creation, improvement, and assessment of IoT network solutions. Researchers and

developers may recreate intricate data flows and communication patterns using emulation

toolkits, emulating real-world situations in a controlled setting. In order to guarantee the

scalability, dependability, and general performance of IoT networks, benchmarking is crucial.

Due to the shortcomings of current performance assessment approaches, assessing network

performance under various real-world circumstances can take time and effort. Emulation

toolkits provide customised and expandable environments that closely mirror existing IoT

networks to overcome these constraints. This makes adopting new IoT technologies and

standards easier to adopt, ensuring that networks stay effective and current.

Emulating adaptable and customisable environments enables the development of IoT

network designs and communication protocols, enabling networks to adapt to shifting needs

and technology[77]. Emulation toolkits will be essential to the success and broad acceptance

of IoT networks as they develop further. It enables the effective assessment and optimisation

of IoT networks by offering a controlled environment that simulates real-world conditions,

3.3 Research Questions 39

thereby aiding their success in various applications. The design and implementation of an

emulation toolkit, as well as its potential, is covered in this chapter.

3.2.1 Edge+cloud IoT architecture

The increasing number of sensors or IoT devices in smart manufacturing facilities and smart

cities are continuously generating and emitting high volumes of data across distributed

infrastructures. Further, more powerful devices such as Raspberry Pi, edge gateway, PC or

edge cloud collect the emitted data and perform the data aggregation, sampling, filtering,

projections or transformation into other formats over these collected data in the edge. This

processed data is forwarded to the cloud for more complex analysis. This processing workflow

runs over the Edge+cloud architecture as shown in Figure 3.1. The Edge+cloud architecture

helps in reducing latency, increasing privacy and saving network bandwidth [95] compared

to the architecture where the sensors or IoT devices are connected directly to the cloud. Fog

computing[30] uses Edge+cloud architecture to extend the cloud computing paradigm to the

edge layer by moving some of the processing workloads to the edge layer.

3.3 Research Questions

In this work, we build a data flow emulation toolkit that can help conduct experiments on

three-layered IoT infrastructure. It can test the data forwarding from edge to cloud based

on the uncertainty of the IoT network. To this end, we develop a i) Sensor emulator which

emulates various sensors sending data at different data rates. ii) Edge Gatekeeper (EGK)

which monitors the status of each edge node while dynamically adapting the data ingestion

rate from the IoT sensors to edge nodes, and edge nodes The design of the EGK allows

any flow algorithms to be implemented and deployed on the edge node like processing and

40 Emulation Tookit for benchmarking Internet of Things Networks

delivering only a subset of the data, sampling and windowed calculations to reduce the

latency.

In order to address the following research challenges, the proposed toolkit provides a

platform for running data flow experiments:

• What are the methodologies for achieving the maximum data flow rate for each node

in the IoT network utilising the available bandwidth while maintaining the network’s

and the nodes’ stability?

• How to dynamically identify data flow bottlenecks in a three-layered IoT network?

• What are the methodologies for efficiently coordinating many heterogeneous edge

nodes and IoT devices sending data to the cloud simultaneously?

This work makes the following contribution.

• We propose a system set of tools to emulate different layers on an IoT infrastructure.

• We validated our proposed tool kit’s system architecture through experiments using

real-world data. Our experimental results support how effectively we can conduct

experiments on the real edge and cloud infrastructure, test different data flow control

algorithms, and measure conditions like back pressure and rate limiting.

3.4 Architecture

The Emulation tool kit consists of i) A Sensor Emulator ii) Edge GateKeeper, and iii) Adaptive

Flow Controller. The system uses MQTT[76] protocol to communicate between the layers.

The purpose of the flow controller is to actively control the rate of data being processed

and forwarded from the edge device to the cloud. The edge gateway can reconfigure IoT

sensors to set the data rate, reducing the amount of data sent by the sensors. This acts as

3.4 Architecture 41

Edge Devices
IoT Layer Edge Layer Cloud Layer

Monitoring Agent

Command
Listener

Rate
Limiter

Device
Config.
Agent

Edge GateKeeper

Data
Forwarder

Messaging Broker

M
es

sa
gi

ng
 B

ro
ke

r

Data

AMQP Edge
Device

Controller
(AFC) Stats

Command

Ingestion
Layer

Stream
Analytics

Historical
Analytics

Analytics
Layer

IoT
Sensors

...

Cloud Servers

Data

Command

Fig. 3.1 Architecture

a stabilisation mechanism for the varying workload at the edge layer. The sensors’ type,

frequency, and priority were considered while designing the reference architecture (Figure

3.1). The scenario of a single-hop star network where the sensor IoT devices interact directly

with the edge device was evaluated. It consists of 1) the IoT layer, which contains the IoT

devices/sensors having the lowest processing capacity; 2) the Edge layer, which consists of

devices which act as the entry points to the larger cloud network and is also capable of doing

some processing of the sensor data; 3) Cloud layer with the highest processing capacity of

all the other layers. Data flows from the IoT to the cloud layer through the edge layer. The

data flow control is done using Edge GateKeeper (EGK), deployed in the edge layer and

Adaptive Flow Controller (AFC), deployed in the cloud layer. This work proposes the system

architecture for dynamically reconfiguring the edge device based on the number of devices

connected and the priority of each sensor in the network.

3.4.1 Sensor Emulator

The IoT network’s first layer consists of sensors that sense the physical environment and send

the observed value to the cloud layer through the edge layer. While the edge layer performs

42 Emulation Tookit for benchmarking Internet of Things Networks

specific actions based on the observed value, the sensor layer makes minimal decisions and

actions. For performing experiments on the data flow, it is essential to see data flowing from

various kinds of sensors sending data at different frequencies. While we use real hardware

like Raspberry Pi for emulating the edge layer, it is very hard to do the same in the sensor

layer as there could be a wide range of sensors measuring different physical observations

working over various types of networking protocol, data rate and reliability. For instance, a

building temperature sensor may operate over a Zigbee protocol, sending data to the edge

layer every 1 minute. In contrast, a water pump vibration sensor sends observations ten times

every second over Bluetooth. To emulate this situation, we developed a sensor emulator

which can emulate 10s to 100s of sensors from a single Raspberry Pi.

Sensor emulator is a critical component of the Emulation tool kit, which enables the

researcher to run several sensors from a single hardware. Different types of sensors can be

created with different data rates, sending various physical observations. The tool can read

files consisting of the sensor readings and send them to the edge layer. It can be configured

to read files from the file system and send the observation at different data rates for each

sensor. We used real-world observations from the Urban Observatory and Urban Science

building[67] data. Sensor emulator uses MQTT[76] messaging protocol for transferring data

to the Edge layer where the broker is configured to accept the messages.

3.4.2 Edge GateKeeper (EGK)

An extensive IoT network contains 1000s of sensors connected to 100s of edge devices. The

load on the edge device is proportional to the volume and velocity of data. Edge devices can

send the whole data as-it-is to the cloud layer or perform sampling/pre-processing before

sending it to the cloud. The proposed reference architecture uses a coordinated data flow

control to allow the edge devices to balance the data flow by dynamically reconfiguring

sensors to send data at different frequencies, allowing control of the volume and velocity of

3.4 Architecture 43

IoT Layer Edge Layer Cloud Layer

Data
Flow

Control
Flow

Data
Flow

Control
Flow

Fig. 3.2 Data flow and control flow between the layers: For IoT sensors, data flow happens
from IoT layer to cloud while the control flow is from cloud layer to IoT layer

data. This acts as a stabilisation mechanism for a varying workload at the edge layer. The

reference architecture consists of IoT sensor devices with a data channel and control channel

for communication with the edge device. The edge device is a low-powered computer with

essential traffic management and processing capacity.

Edge GateKeeper (EGK) is a lightweight application running on the edge device which

acts as the gateway for all communication to and from it. It consists of i) a Lightweight local

message broker, ii) Sensor data ingest and Forwarder, iii) a Pre-processor, iv) Rate Limiter,

v) a Command listener, and vi) a Device reconfiguration agent. The Sensor data reader reads

the data from the message broker to which sensors send their readings in real-time. The

pre-processor performs essential pre-processing and filtering operations. Figure 3.4 explains

the functionality of EGK.

3.4.3 Adaptive Flow Controller (AFC)

The Adaptive Flow Controller (AFC), hosted in the cloud layer, controls the reconfiguration

decisions. EGK and the cloud layer are connected using data and control channels. The

data channel carries data forwarded by the EGK from the IoT layer to the cloud ingestion

layer. The control channel has commands to control the edge layer and IoT layer. Sensors

44 Emulation Tookit for benchmarking Internet of Things Networks

are registered to EGK, and EGK registers itself and its connected sensors to the ingestion

layer in the cloud. The AFC stores the full map of the IoT network as a graph. The graph

can be represented as a 2D sparse matrix M (Figure 3.3). Edge devices are represented as

rows, and IoT devices are represented as columns. The value at M[i][j] denotes the data rate

of IoT device D j to edge device Ei. Three scenarios can trigger a reconfiguration. i) More

IoT devices are added to an edge device. ii) Edge devices’ processing capacity becomes

a bottleneck for the data flow. iii) There is a demand for higher data rates by some of the

sensors. The maximum forward rate is set on the edge device based on the resource capacity

of the edge device and network stability. We assume this value is set for each edge device

during the initial setup. When additional IoT devices are added, the edge device informs the

AFC. The AFC, in turn, recalculates the data rate allocation for each IoT device and sends it

back to the edge device. The data rate allocation problem is formally defined in Chapter 4,

Section 4.3.

3.4 Architecture 45

C

E2 E3E1

D1

D2

D3

D4 D5 D6

D7

D8

D9

λ1

λ2

λ3

λ4 λ5 λ6
λ7

λ8

λ9

μ1 μ2 μ3

(A)

M =

⎡

⎣

⎢
⎢

λ1

0

0

λ2

0

0

λ3

0

0

0

λ4

0

0

λ5

0

0

λ6

0

0

0

λ7

0

0

λ8

0

0

λ9

⎤

⎦

⎥
⎥

D1 D2 D3 D4 D5 D6 D7 D8 D9
E1

E2

E3

(B)

Fig. 3.3 Shows data flow from sensor network to cloud through edge. D1-D9: IoT sensors,
E1-E3: Edge Devices, C: Cloud Layer. λ1-λ9: Data from from D1-D9 to the connected Edge
devices. In matrix M rows represent the edge devices (E1-E3) and columns represent IoT
devices (D1-D9)

commandListener()

idle

commandReceived

detectCommandType()

cmd =
setForwardRate

cmd = reConfigureIoTDevice

sensorDataIngestAndForward()

m=readDataFromDataStream()

preProcess()

forwardToCloudQueue()

Cloud Message Queue

rateLimiter()

setNewRateLimit()

RateLimiter()

tokenEmitter()

deviceConfigurationAgent()

process
command

selectDevice()

sendSetRateLimit
(newRate, DeviceID)

Device
Command
Channel

Fig. 3.4 Edge GateKeeper Workflow

46 Emulation Tookit for benchmarking Internet of Things Networks

3.5 Implementation Details

We used Raspberry Pi 3B+ as edge nodes and for emulating sensors. Raspberry Pi is a

credit-card-sized single-board computer (SBC)[134] mainly developed for simulation and

teaching purposes. As it has a small form factor, is reliable and has low power requirement,

this device is increasingly being used for industrial and IoT applications [96].

We set up the tool kit, consisting of three layers, namely, IoT layer, Edge layer and Cloud

layer. Real sensor values from Newcastle Urban Observatory (UO) [67] have been used, an

IoT-based city environment monitoring system consisting of about 1000 sensors forwarding

around 5000 data points a second. To test this system, the sensor emulator was developed,

which sends data points to edge devices at a configured frequency. The sensor emulator

runs on three Raspberry Pi devices, each emulating a subset of sensors. Each instance ran a

version of the sensor emulator configured with different sensor types, source files, and data

rates.

Fig. 3.5 Prototype Implementation

The system is implemented based on the reference architecture (Figure 3.1) proposed

in this paper. We used Raspberry Pi 3B+ devices as the edge nodes. Devices are installed

with Raspbian OS running in shell-only mode. A lightweight MQTT broker, Mosquitto

[76] is installed in each edge device to queue data from the sensors. As mentioned in the

architecture section, sensors are partitioned, and each partition is connected to one Raspberry

3.5 Implementation Details 47

Pi device through LAN connectivity. An instance of Edge Gatekeeper (EGK) software is

configured to run in each edge node. EGK is designed to run with minimal memory and CPU

footprint and is developed in GoLang [92]. One topic is created for each sensor for command

communication, while a single topic is used for data communication from sensors to the

edge. Sensors receive commands from the device configuration agent in EGK by subscribing

to the command topic to which it publishes reconfiguration commands. Sensors send the

readings as streams of data points in JSON format to the MQTT broker. As MQTT is a

pub/sub-based messaging protocol working over TCP/IP, both (emulated) sensors/IoT devices

and edge devices communicate through network sockets. We selected a QoS Level 1 [65],

which promises "AT LEAST ONCE" delivery assurance to ensure delivery of every message.

Elevating to QoS Level 2 has a significant performance impact. All the sensors publish data

points to the topic "sensor data". Upon startup, EGK initiates the data forwarder sub-service

as a thread which subscribes to the topic "sensor data". EGK receives the messages from

all the sensors publishing to its local broker at the configured publish rate. EGK receives

data from all the sensors connected to it, and it forwards this to the cloud messaging queue.

The data forwarding rate is preset at each edge device, which can be reconfigured by the

Adaptive Flow Controller (AFC) in the cloud data centre.

EGK also runs a service which listens to the commands from the (AFC). We have defined

reconfiguration commands (Table 3.1) to set the data rate/frequency of both IoT devices

and edge devices. A reconfiguration command could be addressed to an IoT device (using

sensor_id) or edge device (using edge_id). AFC sends the reconfiguration command to

the corresponding edge node. The device reconfiguration agent running as a service in the

edge gatekeeper is responsible for reconfiguring the edge and IoT nodes. If it is a command

addressed to the edge node, it reconfigures itself with the new data rate. If it is addressed to

a sensor, the device configuration agent sends the reconfiguration command to the sensor,

which sets the new data rate and continues its normal operation.

48 Emulation Tookit for benchmarking Internet of Things Networks

Table 3.1 Device Reconfiguration Commands

Command Description
SET E_FWD_RT ⟨edge_id⟩⟨datarate⟩ Set data forwarding

rate of an edge node
SET S_RT ⟨sensor_id⟩⟨datarate⟩ Set data rate of

a sensor node/IoT device
START E_FWD ⟨edge_id⟩ Instructs an edge node to

start forwarding data
STOP E_FWD ⟨edge_id⟩ Instructs an edge node

to stop forwarding data
START S_SND ⟨sensor_id⟩ Instructs a sensor node to

start sending data points
STOP S_SND ⟨sensor_id⟩ Instructs a sensor node to

stop sending data points

AFC is a program running in the cloud environment which has the information of all

the sensors and edge nodes. The data rate allocation algorithm (Algorithm 1) is triggered

whenever a new sensor is added to the network.

3.6 Experimental Settings

This section describes the experiment settings and configurations used to evaluate the system.

3.6.1 Hardware and Network Configuration

The hardware configuration consists of 2 sensor emulators, each emulating three sensors and

two edge devices. All the devices are implemented on Raspberry Pi 3B with 1 GB of RAM.

The sensor emulators and edge devices are connected to the network using wired LAN cables

through a 1 Gigabit LAN switch. A router is connected to the switch, providing edge layer

access to the cloud layer as shown in Figure 3.5. The router is connected to the internet using

a 4G network. The 3G and GPRS networks are emulated using the TC [15] Linux tool.

3.6 Experimental Settings 49

3.6.2 Software Configuration

The edge devices run EdgeGateKeeper, designed to preprocess and forward the data received

from the sensor emulators to the cloud layer. The clocks of all devices are synchronised

using a standard Network Time Protocol (NTP) server to ensure accurate timestamping of

the data records. Sensor emulator listens to the command channel for traffic rate adjustments.

3.6.3 Data Flow and Rate Configuration

Data rates were incrementally set in the experiments on the IoT devices, varying the total

data rates from 10 to 450 records per second for each sensor. This configuration results in a

total data rate ranging from 100 to 4500 records per second.

In the backpressure detection experiment (Section 3.7.2), each edge device is set with a

max forward rate of 5000 records per second. The data rates of sensors are elevated gradually

to identify the point at which the edge cannot forward all the data received.

3.6.4 Latency Measurement

Latency is calculated by comparing the epoch time attached by the sensor emulators with the

timestamp attached by the edge devices when forwarding the data to the cloud. The latency

is tested under three network scenarios: 4G, 3G, and GPRS.

3.6.5 Performance Metrics

The performance of the system is evaluated using the following metrics:

• Forward rate: The rate at which the edge device forwards the received data to the cloud

layer.

• CPU usage: The percentage of CPU utilisation by the edge device.

50 Emulation Tookit for benchmarking Internet of Things Networks

• Memory usage: The percentage of memory utilisation by the edge device.

• Latency: The time difference between the epoch time attached by the sensor emulator

and the timestamp attached by the edge device when forwarding the data to the cloud.

These metrics are used to evaluate the performance of the edge device under different

conditions and understand the system’s limitations in data handling capacity, resource

utilisation, and data freshness.

3.7 Evaluation

To validate this system, three experiments were designed to run on the prototype. The primary

objective of the experiments is to understand the impact of a different data flow rate for a

fixed load on the edge device. The second objective is to understand the point at which the

edge device is rendered into an unstable state, where data backpressure starts building on the

edge device. The third objective is understanding how adaptive flow control deals with the

backpressure and how it impacts the data freshness ingested into the cloud layer.

As mentioned in the implementation details, the setup consists of 2 sensor emulators

emulating three sensors each for this experiment. These sensor emulators are connected to

two edge devices with a balanced configuration where each edge device receives three sensor

streams. Both sensor emulators and edge devices are implemented on Raspberry Pi devices.

All the devices are connected to the network using wired LAN cables through a 1 Gigabit

LAN switch. A router is connected to the switch, providing edge layer access to the cloud

layer as shown in Fig 3.5.

3.7.1 Performance Baseline

The processing load on the edge device is the prepossessing and forwarding overhead. This

experiment establishes the baseline performance of the edge device for different data rates

3.7 Evaluation 51

for the fixed load. Data rates are incrementally set on the IoT devices so that the total data

rates are varied from 10 records per second to 450 records per second for each sensor. ie

values are set for λDi such that ∑kεGi λDi is varied from 100 to 4500 records per second. The

effective forward rate is measured for each data rate for a fixed period. The results show that

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Edge Data receive rate (records/sec)

0

500

1000

1500

2000

2500

Ed
ge

 D
at

a
fo

rw
ar

d
ra

te
 (r

ec
or

ds
/s

ec
)

Max Forward Rate capped at different data rates
2000 records/sec
1000 records/sec

Fig. 3.6 Results of baseline performance in terms of forwarding rates for different data arrival
rate

the forward rate matches the receive rate until capped forward rates (1000, 2000 records/sec),

after which backpressure started building and affecting the forward data performance, making

the forward rate dip. Another test is done by increasing the data rate until the back pressure

starts building. This will show the CPU and memory characteristics when performing

normally without back pressure.

3.7.2 Backpressure Detection

In this test, we try to identify the point at which the system reaches the state where the

backpressure in the edge device starts building. Each edge device is set for this with a max

forward rate of 5000 records per second. The data rates of sensors are elevated gradually to

identify the point at which the edge cannot forward all the data received. CPU and memory

52 Emulation Tookit for benchmarking Internet of Things Networks

0 250 500 750 1000 1250 1500 1750
Time(seconds)

0

10

20

30

40

50

60

(%
)

CPU(%)
Memory(%)

(a) CPU and Memory

0 500 1000 1500 2000 2500
data_rate

0

10

20

30

40

50

60

cp
u

(b) Data Rate - CPU Usage Regression Line

Fig. 3.7 Results of baseline performance under normal operation without back pressure

stats of the edge device are monitored and plotted against the data receive rate. Results

(Figure 3.8) show the point at which the backpressure of the data spikes up the resource

utilisation, especially the memory utilisation. Another test is conducted without a fixed

max forward rate which may lead to CPU/Memory saturation. This experiment helps to

identify the point at which CPU/Memory saturates, leading to backpressure and, eventually,

the unstable behaviour of the edge device. The results show the total CPU saturation point

around 63% and the rapid spike in the memory when the CPU is saturated.

500 1000 1500 2000 2500 3000 3500 4000
Edge Data receive rate (records/sec)

10

20

30

40

50

60

70

80

90

CP
U

Us
ag

e
(%

)

Mean CPU Usage vs Incoming Datarate
cpu0
cpu1
cpu2
cpu3

(a) CPU usage for different data rates

500 1000 1500 2000 2500 3000 3500 4000
Edge Data receive rate (records/sec)

10

12

14

16

18

20

M
em

or
y

Us
ag

e
(%

)

Backpressure

Mean Memory Usage vs Incoming Datarate
4G

(b) Memory usage for different data rates

Fig. 3.8 CPU and memory usage of edge device for different data rates

3.7 Evaluation 53

0 200 400 600 800 1000
Time(seconds)

0

20

40

60

80

100
(%

)
CPU(%)
Memory(%)

Fig. 3.9 Data Rate - CPU and Memory: Linear Ramp up test until the device crashed

3.7.3 Data Freshness

The clocks of all the devices are synchronised using a standard Network Time Protocol (NTP)

server. Each record produced in the sensor simulator is attached with an epoch time. These

records are sent to the cloud through edge devices. The edge device attaches its current

timestamp to the record before forwarding it to the cloud. This timestamp attached by the

sensor is compared with the epoch time in the cloud environment to measure the latency/data

freshness. The latency is tested with three different network scenarios: 4G, 3G and GPRS.

The results show that the latency is showing a sharp spike at the point of the forward rate

limit.

54 Emulation Tookit for benchmarking Internet of Things Networks

50 100 150 200 250 300 350 400
Data sending rate (records/sec) per sensor

0

20000

40000

60000

80000

La
te

nc
y

(m
s)

Mean Latency
4G
3G
GPRS

Fig. 3.10 Results of latency test for 4G, 3G and GPRS network

3.8 Discussion

Here, we discuss the outcomes of the tests conducted to assess the Emulation Toolkit. The

three main topics of discussion are data flow rates, the onset of backpressure at the edge

device, and how adaptive flow management handles backpressure and its effects on data

freshness.

3.8.1 Data Flow Rate

In the first set of experiments, baseline performance (Section 3.7.1) is identified. For this, the

data rate from the sensors to the edge devices is increased linearly at a rate of 200 records per

second. Results show that there is a linear relation between the incoming data rate (Figure

3.7) and the CPU usage until the point where the CPU is not capable of processing more

records. In the second set of experiments, we tried to detect the back pressure (Section 3.7.2)

by performing the linear ramp up until the edge device became unstable and crashed. This

is to capture the point where the back pressure starts building and eventually making the

edge device unstable. Results show that for RPi 3B+, the CPU load went up to 63% and

stayed under 75% for a long time and eventually crashing the system (Figure 3.8). The

system functionality i) and ii) are evaluated by checking the monitoring results and how

they match the edge device’s actual system stats. A caveat of this approach is that the CPU

3.8 Discussion 55

usage percentage was calculated for all the cores, while some cores were utilised more than

others. In this case, some CPU cores were the bottleneck while the total CPU usage across

all the cores remained under 63%. The CPU threshold detection model could be changed

to consider the maximum usage across all the CPUs. The most evident and trivial reason

for back pressure is that the incoming data rate is more than the outgoing data rate. Apart

from edge device processing capacity and memory, data flow is also affected by network

bandwidth latency and jitter. In these experiments, the networking factors are not considered,

and network bandwidth and latency are kept relatively stable with LAN networking. The

messaging broker in the edge device holds the data in a queue until it is consumed for

processing. Memory usage is observed to be growing with the increase in the queue length.

(Section3.7.1) shows the edge device’s capacity to transmit data at various data flow rates.

Figure 3.6 illustrates how the forward rate and receive rate coincide up to a certain point, at

which point backpressure begins to accumulate and influence the forward data performance.

The edge device can manage data up to a particular data flow rate before its performance

starts to degrade.

Additionally, Figure 3.7 displays the CPU and memory use in a backpressure-free envi-

ronment during typical operation. The findings demonstrate a distinct relationship between

data rate and CPU consumption (Figure 3.7b). This information is vital for understanding

the system’s limitations and planning for efficient resource management on edge devices.

3.8.2 Backpressure Detection

The backpressure detection experiment (Section 3.7.2) identifies the point at which the edge

device begins to experience backpressure. It is evident from Figure 3.8 that the system’s

memory utilisation swiftly increases, indicating the onset of back pressure. This information

can be used to determine the data handling capacity and resource utilisation limitations of

the edge device.

56 Emulation Tookit for benchmarking Internet of Things Networks

In addition, the experiment without a fixed maximum forwarding rate (Figure ??) demon-

strates that the edge device becomes unstable when the CPU reaches approximately 63%

saturation, followed by a rapid increase in memory utilisation. This finding is essential for

establishing secure operating limits for edge devices and preventing potential failures or

instability.

3.8.3 Data Freshness

The data freshness experiment (Section 3.7.3) examines latency or data freshness in various

network scenarios (4G, 3G, and GPRS). Figure 3.10 demonstrates a significant increase in

latency at the point of the forward rate limit. This observation suggests that the adaptive flow

control mechanism should be designed to resolve this issue and maintain an acceptable level

of data freshness in the face of backpressure.

Chapter 4

Coordinated Data Flow Control in IoT

Networks

4.1 Introduction

The edge and cloud solutions integration has been effectively implemented in numerous

cutting-edge systems [20, 116]. These systems focus on relocating analytical tasks closer

to the data source, thus reducing latency. The ApproxIoT system [139] was developed to

harness edge computing resources, such as mobile phones, network gateways, and edge data

centres at ISPs, for low latency analytics through approximate computing. However, IoT

networks’ inherent uncertainty impacts edge devices’ stability and communication with the

cloud. For instance, the available bandwidth of a cellular network can vary significantly due

to fluctuations in the number of devices connected to a base station. Additionally, cellular

networks in rural areas often switch dynamically between 2G, 3G, and 4G, where base

stations are limited[31]. In many instances, high-frequency data is unnecessary when there

is minimal variation in values or no immediate real-world situation demanding rapid data

analysis. Factors such as sensor types, location, and real-world scenarios determine the data

transmission rate or frequency. For example, a sensor measuring the ambient temperature

58 Coordinated Data Flow Control in IoT Networks

of a factory floor may send readings twice per second. In contrast, a vibration sensor in

a critical location of a compression pump may transmit data at a rate of 100 readings per

second. Rapid response to significant changes in vibration is crucial, as any delay may lead

to severe damage.

This work presents a data flow control system which can adapt the data forwarding from

edge to cloud based on the uncertainty of the IoT network. To this end, we develop an Edge

Gatekeeper (EGK) which monitors the status of each edge node while dynamically adapting

the data ingestion rate from the IoT sensors to edge nodes and edge nodes to the cloud data

centre. The design of the EGK allows the edge node to process and deliver only a subset of

the data to reduce the latency.

Our proposed system needs to consider the following research questions:

• What are the methodologies for achieving the maximum data flow rate in the IoT

network utilising the available bandwidth while maintaining the stability of the network

and the nodes?

• What are the methodologies for efficiently coordinating a large number of heteroge-

neous edge nodes and IoT devices sending data to a cloud simultaneously?

To address the research questions mentioned above, this work makes the following contribu-

tion

• We propose a system and a reference architecture for IoT which coordinates the

operations of edge devices to ensure stable and resilient operation using Dynamic

Flow Allocation and a Coordinated data flow control mechanism. It is capable of

coordinating a large number of heterogeneous edge nodes to utilise the computing

resources in the cloud efficiently. We also provide a formal model of data flow in an

IoT system.

4.2 Data Flow Control 59

• We validated our proposed models and the system architecture through a set of ex-

periments using real-world data and a testbed. Our experimental results support the

effectiveness of flow control for the stable operation on edge devices and resilience to

the changes in the number of sensors and the data rate from the sensors.

Outline. The remaining chapter is organised as follows. Section 4.2 introduces the Data

Flow Control methodologies. The proposed model and algorithms are explained in Section

4.3 followed by the evaluation by experimentation and discussion in Section 4.5.

4.2 Data Flow Control

The purpose of the flow controller is to actively control the rate of data being processed and

forwarded from the edge device to the cloud. To reduce the amount of data being sent by

the sensors, the edge gateway can reconfigure IoT sensors to set the data rate. This acts as

a stabilisation mechanism for the varying workload at the edge layer. While designing the

reference architecture (Figure 3.1), we considered the type, frequency and priority of the

sensors. We considered the scenario of a single-hop star network where the sensor IoT devices

are interacting directly with the edge device. It consists of 1) IoT layer, which contains the

IoT devices/sensors having the lowest processing capacity, 2) Edge layer, which consists

of devices which act as the entry points to the larger cloud network and are also capable of

doing some processing of the sensor data, 3) Cloud layer with the highest processing capacity

of all the other layers. Data flows from the IoT to the cloud layer through the edge layer. The

data flow control is done using Edge GateKeeper (EGK), which is deployed in the edge layer

and Adaptive Flow Controller (AFC) deployed in the cloud layer. This work proposes the

system architecture for dynamically reconfiguring the edge device based on the number of

devices connected and the priority of each sensor in the network.

60 Coordinated Data Flow Control in IoT Networks

Two methods are developed for managing the data flow. i) Dynamic Flow Allocation:

The first method performs a flow allocation for each sensors based on the priority. When the

edge device have a change in the total maximum data rate, this algorithm allocates the data

rate on each sensors based on the priority of each sensor. ii) Adaptive Data Rate Control:

The second algorithm allows the edge devices to set the maximum allowed data rate based on

the network conditions by detecting the back pressure and resource utilisation of the device.

Back pressure in the data flow pipeline is detected by observing the rate of change of the

queue size in the messaging broker. Messaging broker queue length and CPU usage of the

edge device are observed using APIs developed for the Edge Gatekeeper.

4.3 Model

Dynamic Flow Allocation and Adaptive Data Rate control algorithm work in tandem to

manage the data flow between in the IoT network. This section explains the models supporting

both Dynamic Flow Allocation and Adaptive Data Rate Control.

4.3.1 Dynamic Flow Allocation

Assume that we have a set of IoT devices D, and each one Di ∈ D has its priority Pi and

sending rate λi. These devices are partitioned into K groups, and each group Gk,k ∈ K

interacts with only one edge node E j. As a result, the total number of edge node |E| equals

the number of groups K, where E is a set of edge nodes. Finally, all edge nodes forward the

received data streams to the cloud data centre

We define the data flow as a tuple ⟨µ j,λi⟩, where µ j is the forwarding rate of E j while λi

represents the data injection rate from Di to E j. We consider the situation that IoT devices

are generating more data streams than the edge node can process and forward. This situation

can occur because of two main reasons, i)Edge does not have enough resources to process

4.3 Model 61

Queue
Length
Monitor

System
Stat

Monitor

Adaptive Data Rate
Control

Dynamic Flow
Allocation

Sensor
Layer

Edge
Layer

Cloud
Layer

Fig. 4.1 Adaptive Datarate Control and Dynamic Data Rate Control

and forward the amount of data it receives ii) Edge node has assigned a maximum data

forwarding rate it could perform to the cloud when the total incoming data rate is higher

than the forward rate. For example, the injection rate of a group of IoT devices G j which

are connecting with edge node E j is larger than the forwarding rate of E j, noting µ j, i.e.,

∑i∈G j λi > µ j.

To overcome this, we design a flow control method that prioritises the data streams which

are coming from high priority IoT devices by dynamically reducing the injection rates of the

less critical IoT devices. We set weights to each sensor according to the priority. Possible

values of priority P are {HIGH, MEDIUM, LOW}. Weights W corresponding to these

priorities are {3, 2, 1}. Weights associated with IoT device Di is represented by Wi.

The data rate allocation for device Di is given by

Ai =
Wi

∑k∈G j Wk
×µ (4.1)

62 Coordinated Data Flow Control in IoT Networks

Table 4.1 A summary of symbols and abbreviations used within the formal definition.

Symbol Explanation
Di IoT Device
Pi Priority of IoT device Di
K Number of partitions of IoT devices
Gk Group of IoT devices
E j Edge device
|E| Total number of edge nodes
λi Data emission rate of ith IoT device
Si Data size of each value of ith IoT device
N Number of IoT devices
K Number of Partitions of IoT devices

⟨µ j,λi⟩ Data Flow
µ j Forwarding rate of Edge node E j
λ j Data injection rate from Di to E j
Wi Weight given to the IoT device Di

A[n][m] Data rate allocation matix. Rows represent
edge devices and columns represent IoT devices

Algorithm 1 finds the data rate of individual IoT devices. Data stream ds for each

IoT device is again a tuple ds = ⟨λi,Si⟩ where, λi and Si are the data rate and size of

data generated by the IoT device Di. We therefore define the dataflow mapping as a tuple

⟨E j,C ,λ{Di→E j},λ{E j→C}⟩, where the λ{Di→E j} represents the data rate from device Di to

edge E j and λ{E j→C} represents the data rate from edge E j to cloud data center C. Consider

there are X number of edge devices each represented by the tuple ⟨id,C ,λ{Di→E j},λ{E j→C}⟩

where id is the identifier of the edge device, C is the capacity of the edge device which is again

a tuple C = ⟨RS,RH⟩ where RH and RS are the hardware and software support provided by

the edge device. Similarly, cloud datacentre C is represented as a set of components (VMs or

containers) with an incoming data rate constraint of λC.

Based on the given priority of IoT devices Di, the edge-to-cloud communication is

sampled according to the function F : λ{Di→E j} → λ{E j→C}. To perform this operation, the

edge needs to compute the data rate for each IoT sensor device, which enables the sampling

of the data.

4.3 Model 63

Problem Formulation: Given the IoT infrastructure, D,E,C,

maximize{λ{E1→C},λ{E2→C}, ...,λ{EK→C}}

with constraint to:

∑{λ{E1→C}+λ{E2→C}+ ...+λ{EK→C}} ≤ λC (4.2)

∃i∃ j{∑
i

λDi ≤ λE j} (4.3)

where there is a mapping between Di and E j

Constraint 2 explains that the data rate of all the edge to cloud communication should be

less than the available data rate of the cloud. Similarly, Constraint 3 explains the data rate

limitation of each edge device E j.

64 Coordinated Data Flow Control in IoT Networks

Algorithm 1: Data Rate Controller Algorithm
Input :A[n][m]: A 2-D matrix where rows represent Edge devices and columns

represent IoT Devices; Values represent the data rate from the IoT device to

the Edge device; n edge device; m IoT devices

P[n][m]: List of Priority for each Edge device; n=number of Edge Devices

λ : Total data rate of all IoT devices connected to an Edge device

µ j: Data rate from edge to the cloud

Output : Data rate allocation matrix A[n][m]

1 Initiate weight matrix W[n][m]

2 Initiate total weight array tw[n] with 0

3 for i=0 to n-1 do

4 for j=0 to m-1 do

5 if P[i][j]=’HIGH’ then

6 W [i][j]=3

7 tw[i] = tw[i] + 3

8 end

9 else if P[i]=’MEDIUM’ then

10 W [i][j]=2

11 tw[i] = tw[i] + 2

12 end

13 else

14 W [i][j]=1

15 tw[i] = tw[i] + 1

16 end

17 end

18 end

19 Initiate data rate allocation matrix A[n][m]

20 for i=0 to n-1 do

21 for j=0 to m-1 do

22 A[i][j] = W [i][j]
tw[i] ×µ

23 end

24 end

4.3 Model 65

4.3.2 Adaptive Data-Rate Control

In an IoT infrastructure, different types of networking and protocols are employed. Mostly

the wireless technologies used in the IoT network varies in terms of the network bandwidth,

latency and gitter. Edge devices connect to the cloud servers over wired and wireless

connections. WiFi and celluar (2G/3G/4G/5G) are the most widely used types of connectivity

for edge devices to the cloud infrastructure. Several factors, like temperature and humidity,

influence the bandwidth and latency of the network in such scenarios. In many scenarios,

the edge device may have to switch the network types based on the network conditions.

For instance, it may switch from 4G to 3G when 4G signals are week, and this affects

the bandwidth and latency of the network. Adaptive Data-Rate control(ADC) efficiently

uses the maximum available data rate by monitoring the back pressure and the resource

utilisation. ADC involves detecting the back pressure and mitigating it by changing the data

rate according to the varying level of back pressure. This feedback loop-based data rate

control ensures the network traffic’s stability.

Detecting Back Pressure

Back pressure, in the conventional sense, is the resistance or force against the desired flow

of liquid through a pipe. In a data pipeline, the flow of data behaves like a flowing fluid. In

a data pipeline, the input is generally referred to as the data source and the destination of

the data is referred to as the data sink. Like in fluid dynamics, if the rate of data ingested

into the pipeline should match the amount of data going out of the pipeline. A back pressure

develops when the rate of ingestion from the source exceeds the rate of output to the sink.

In any data pipeline, a varying amount of back pressure occurs due to several factors like

variability in the data processing speed, spikes in data rate and a dip in the rate of data sink.

In an IoT network the pipeline of data is IoT sensors -> Edge -> Cloud. Changes in network

bandwidth or faults may create back pressure in an IoT data pipeline. In any network, buffers

66 Coordinated Data Flow Control in IoT Networks

Table 4.2 Symbols used in the ADC Flow Chart

Symbol Explanation

DC Current Data Rate

DN New Data Rate

DLS Last Stable Data Rate

DLU Last Unstable Data Rate

CC CPU Usage

CT CPU Usage Threshold

QL Queue Length

QR Rate of Change of Queue Length

URU Linear Ramp Up Unit

URD Linear Ramp Down Unit

are used to handle the variability in the data flow. In a three-layer IoT network, the buffering

is handled by the messaging broker in the edge layer. Back pressure leads to a delay in the

processing of data records on time. In a time-sensitive IoT network, delays in processing

sensor reading and decision-making could have bad implications.

Back pressure in the data pipeline is detected by monitoring the queue size in the

messaging broker. Queue size in the messaging broker does not essentially point to a

problem in the data pipeline. However, a growing queue size indicates a condition where the

downstream processors cannot process the data as much as it receive. We developed a back

pressure detection mechanism for our Edge GateKeeper by monitoring the rate of change

of the MQTT broker message queue length. Queue length measurement samples are taken

every second, and the rate of change of queue length is measured by taking the average of

deltas for a window of 10 seconds.

4.3 Model 67

Data Rate Control

The data rate control work with the back pressure detection mechanism to decide the data

rates to be set. Two methods have been used to detect the back pressure. The first method

relies on the queue length of the MQTT broker and its rate of change. The second approach

considers the CPU utilisation of the edge node as well as the queue length and its rate of

change. Data rate control employs an adaptive multiplicative increase and multiplicative

decrease algorithm. The data rate is increased and decreased based on the back pressure

condition, the last know stable data rate. Figure 4.2 explains the algorithm flow chart.

68 Coordinated Data Flow Control in IoT Networks

Start

Read Current Data Rate DC
Last Stable Data Rate (DLS) = 0

Poll the Edge Device for Queue
length and System Stats

Calculate CPU Usage CC

Calculate Queue Length (QL)
and Queue Length Rate of

Change (QR)from Last Reading

If mean QL for
last 10 sec > 50 and

QR is positive
and

CC > Threshold (CT)

If
CC < Threshold (CT)

and If mean QL for
last 10 sec < 15
and Last Ramp

Up/Down
was more than
30 seconds ago

Last Stable Data Rate (DLS) = DC
New Data Rate (DN) = DC x 2

IF(DN>DC) Then DN = DC - URD

Ramp-Down

Last Unstable Data Rate (DLU) = DC
New Data Rate (DN) = (DC – DLS)/2

Ramp-Up

Send New Data Rate
to sensors based on

the priorities /weight of sensors

Time Since
Last Execution

of the
monitoring process >

2 Seconds

Wait

TRUE

FALSE

TRUE

TRUE

FALSE

L

G

E

H

A

B

C

D

F

I

J

K

M

Fig. 4.2 ADC Flow Chart

4.4 Evaluation 69

4.4 Evaluation

This section explains the evaluation of the Dynamic Flow Allocation and Adaptive Data

Rate Control strategies. To validate this system, we designed four experiments to run on

the prototype. The primary objective of the experiments is to understand the impact of a

different rate of data flow for a fixed load on the edge device. The second objective is to

understand the point at which the edge device is rendered into an unstable state, where data

flow backpressure starts building on the edge device. The third objective is understanding

how adaptive flow control deals with the backpressure and how it impacts the data freshness

ingested into the cloud layer.

4.4.1 Experimental Setup

The experimental setting for determining how well the Dynamic Flow Allocation (DFA)

approach performs is described in this section. The experimental setup is intended to

replicate different data rates and network latency, simulating actual IoT scenarios. The

experimental settings consist of 2 sensor emulators emulating ten sensors each and Edge

devices implemented on Raspberry Pi 3B devices, simulating a real-world IoT network. The

sensors are connected to edge devices, which in turn are connected to a cloud server through

4G internet. The edge devices implement the Adaptive Data Rate Control to manage the data

flow between the sensors and the cloud server. 3G and GPRS networks are emulated using

Linux TC[15] tool.

Hardware Setup

The experimental hardware configuration comprises the following components.

70 Coordinated Data Flow Control in IoT Networks

1. Sensor Emulators: A collection of Raspberry Pi devices are utilised to simulate Internet

of Things (IoT) sensors. These devices produce data at different intervals and send it

to the EdgeGateKeeper.

2. Edge Gateway: The Edge Gateway, which is a Raspberry Pi device, is tasked with the

responsibility of receiving data from the Sensor Emulators and transmitting it to the

Cloud Instances. EdgeGateKeeper software is installed on these devices

3. Cloud Instances: A number of cloud instances (e.g., AWS EC2 instances) are used to

simulate the cloud layer in the IoT environment. Each instance is configured with a

specific processing capacity and network bandwidth.

Software Setup

The software components for the experiments include:

1. MQTT Broker: An MQTT broker is installed on the Edge Gateway to facilitate data

transmission between the Sensor Emulators and the Cloud Instances.

2. EdgeGateKeeper: The EdgeGateKeeper software is installed in the Edge Gateway

Raspberry Pi’s

3. Data Processing and Storage: Each Cloud Instance is equipped with data processing

and storage services to process and store the received data. Cloud

4. DFA Algorithm Implementation: The DFA algorithm is implemented within the Cloud

layer to allocate data rates for sensors dynamically.

4.4 Evaluation 71

4.4.2 Adaptive Data Rate Control

In order to test the efficiency of the ADC, back pressure recovery time is measured. The

table (Table 4.3) shows the recovery time from the backpressure for each data rate when

AFC is engaged.

Table 4.3 Back pressure recovery time with AFC

Data Rate(rec/sec) Recovery Time (seconds)
3250 ∼2

3500 ∼2.5

3750 ∼4

4000 ∼6

4500 ∼7

Adaptive Data Rate Control is turned on, and the system is allowed to adjust the data rate

based on the queue length. The experiment setup consists of a sensor emulator emulating

three sensors, which is connected to a edge. Both sensor emulators and edge devices are

implemented on Raspberry Pi devices. We used a sample of data for 1 week from different

sensors in the Newcastle urban observatory with a mean record length of 75 characters/75

bytes. For this experiment, the length of the queue in the messaging broker is also monitored.

The change in queueing and memory is calculated every 2 seconds. The recovery time is

calculated as the time it takes for the messaging queue to be empty, and the change in queue

size is stable around 0. Two variants of ADC algorithm is tested and compared. One is based

on the CPU usage and queue length, while the second algorithm relies only on the queue

length.

72 Coordinated Data Flow Control in IoT Networks

0 200 400 600 800 1000
Time

0

1000

2000

3000

4000

D
at

a
R

at
e

se
t b

y
A

D
C

0 200 400 600 800 1000
Time

20

40

60

80

C
P

U
(%

)

CPU0
CPU1
CPU2
CPU3

0 200 400 600 800 1000
Time

0

2000

4000

6000

Q
ue

ue
 L

en
gt

h

0 200 400 600 800 1000
Time

500

0

500

1000

1500

Q
ue

ue
 L

en
gt

h
D

el
ta

Fig. 4.3 ADC adjusting data rates based on Queue lenght

0 200 400 600 800 1000 1200
Time

0

1000

2000

3000

4000

D
at

a
R

at
e

se
t b

y
A

D
C

0 200 400 600 800 1000 1200
Time

0

20

40

60

80

C
P

U
(%

)

CPU0
CPU1
CPU2
CPU3

0 200 400 600 800 1000 1200
Time

0

5000

10000

15000

20000

Q
ue

ue
 L

en
gt

h

0 200 400 600 800 1000 1200
Time

1000

0

1000

2000

3000

Q
ue

ue
 L

en
gt

h
D

el
ta

Fig. 4.4 ADC adjusting data rates based on CPU usage and Queue lenght

4.4 Evaluation 73

4.4.3 Dynamic Flow Allocation

To validate the Dynamic Flow Allocation (DFA) approach the sensor data received at the

cloud layer is analysed. The main objectives of these experiments are to assess the capability

of the DFA in balancing the data flow among multiple sensors, ensuring optimal resource

utilisation, and maintaining data freshness in the cloud layer. This evaluation verifies the

effectiveness of Dynamic Flow Allocation in setting the data rate for individual sensors based

on the priority set for each sensor.

Out of the 20 sensors, 5 of them are given highest priority and 8 medium priority and 7

the lowest priority. DFA allocated the total available bandwidth based on the priority of the

sensor. To evaluate this, the data received at the cloud server is analysed for the distribution

of data by sensors.

Consider the total data rate available for allocation is Dtotal , we can distribute the data

rate among the sensors according to their priority levels. Let the data rate allocated to the

highest, medium, and lowest priority sensors be Dhigh, Dmedium, and Dlow, respectively.

We assign weights to each priority level as 3 for the highest priority, 2 for medium priority,

and 1 for the lowest priority. The sum of weights will be:

Sum Weights = (3 x 5) + (2 x 8) + (1 x 7) = 15 + 16 + 7 = 38

Then, the proportion of the total data rate allocated to each priority level:

Dhigh =
3×5

38
×Dtotal (4.4)

Dmedium =
2×8

38
×Dtotal (4.5)

Dlow =
1×7

38
×Dtotal (4.6)

Suppose the DFA is allocating the data rate correctly. In that case, the proportion of data

points/records received by the cloud server by each of these priority levels should be equal

74 Coordinated Data Flow Control in IoT Networks

to the theoretical data rate proportion as mentioned in the above equations. Analysing the

number of records for sensors in each priority level, the following are the results.

Table 4.4 Expected and actual record counts for each priority level

D_high D_medium D_low
Expected Records 29,934,688 (39.47%) 31,930,333 (42.11%) 13,969,521 (18.42%)
Actual Records 32,792,452 (43.24%) 31,491,291 (41.53%) 11,550,799 (15.23%)

4.5 Discussion

The study aimed to assess the efficacy of Dynamic Flow Allocation (DFA) and Adaptive Data

Rate Control (ADC) techniques in the management of data flow within the Internet of Things

(IoT) systems. This section analyses the essential findings and potential improvements of the

methodologies.

4.5.1 Adaptive Data Rate Control

Two variants of Adaptive Data Rate Control (ADC) are evaluated in Section 4.4.2. In the

first run (Fig 4.3). Adaptive Data Rate Controller is enabled, and it can adjust the data rate

according to the allowed bandwidth using i) queue length and its ii) rate of change. Based on

these two parameters, the algorithm triggered the ramp-up and ramp-down of the data rate.

Results show that the data rate is adjusted so that the queue length is stable and the CPU is

not overloaded. The second run (Figure 4.4) shows the ADC’s performance based on CPU

load and queue length together. Ramp-down event is triggered when the CPU usage crosses

a threshold (63% in this case). Results show that the data rate is adjusted to a stable point so

the CPU is not overloaded. The response time of queue-based ADC is comparatively faster as

queue length changes are detected instantaneously than CPU usage. The queue length-based

algorithm performed more data rate changes, while the CPU usage-based algorithm reached

4.5 Discussion 75

stable data more efficiently. In the experiment based on CPU usage, the ADC performed 16

and 12 data rate changes, respectively. However, the queue length-based ADS performed

around 24 data rate changes while the network and workload were identical. Considering

network bandwidth, the queue length-based model is more reliable as the CPU usage is well

under the threshold while the bandwidth is the bottleneck. In this experiment, we set the CPU

threshold to 63% based on the previous observation of the saturation point. Determining the

CPU usage saturation point ahead of time is a challenge. In the baseline performance test,

we could find a linear relationship between CPU usage and the data rate. However, these

characteristics cannot be generalised for all workloads.

The backpressure problem in IoT systems was addressed by the use of the Adaptive

Data Rate Control technique. The results of the trials show that the ADC approach can

successfully deal with backpressure and modify the data rate based on the queue length

(Figure 4.3) or a combination of CPU utilisation and queue length (Figure 4.4). This shows

how the ADC technique can adjust to changing system circumstances and handle the data

flow appropriately. There is room for development, though. The influence of various system

resources like memory and network bandwidth may not be appropriately taken into account

by the existing ADC technique. Other resource metrics could be integrated into a more

thorough strategy, allowing the ADC strategy to better adapt to various IoT scenarios and

offer even more effective data flow management.

4.5.2 Dynamic Flow Allocation

The goal of the Dynamic Flow Allocation technique was to allocate the available data rate

among the sensors according to their relative priorities. The percentage of records received by

each priority level provided by the assessment results demonstrated that the DFA algorithm

was successful in achieving this objective. This highlights the DFA strategy’s capacity to

76 Coordinated Data Flow Control in IoT Networks

optimise resource usage, preserve data freshness in the cloud layer, and balance data flow

among various sensors.

The expected and actual record counts for each priority level do not match up exactly,

though (Table 4.4). These variations might be explained by a number of variables, including

sensor data rate unpredictability, processing delays, and network latency. Additional research

into these elements and how they affect DFA performance may help in improving the

algorithm.

Additionally, the static priority assignment is the foundation of the current DFA algorithm.

Sensor priorities may alter dynamically over time in actual IoT applications. Dynamic priority

updates may be added to the DFA method in the future, enabling it to better adjust to shifting

sensor priorities and offer better data rate allocation.

Chapter 5

Real-time Data Analysis Pipeline for

Landslide Early Warning System

5.1 Introduction

A complex Internet of Things (IoT) environment comprises various components, including

devices, networks, cloud infrastructure for storage and processing, analytics tools, applica-

tions, and security measures. The Internet of Everything (IoE) [52, 94] expands upon the IoT

concept by integrating people and processes, enhancing early warning systems and smart city

applications through the involvement of human sensors and improved prediction accuracy.

Modern early warning systems and smart city applications often utilise social media feeds

to extract contextual information about developing situations[42, 115]. IoE aims to create

a more interconnected world where devices, data, and human interactions facilitate better

decision-making and drive automation. A crucial requirement for IoE applications is the

ability to perform real-time or near real-time[73] processing to produce actionable insights

or enable automation.

Processing the continuous flow of information from distributed IoE sources at uneven

rates in response to complex queries can be challenging. Data Stream Processing (DSP)

78 Real-time Data Analysis Pipeline for Landslide Early Warning System

engines have been implemented in numerous domains like smart cities to address these

challenges[130]. Modern DSPs[61] are highly scalable and perform stream analysis effi-

ciently, but the question remains whether they can scale beyond a cluster of DSP engines.

As the IoT and IoE continue to grow as highly dispersed data sources, more distributed

processing across heterogeneous platforms is necessary.

Existing DSPs distribute processing across a cluster of machines that are, for the most

part, uniform in nature. This study explores a highly distributed "actor-based" [25, 8, 10]

approach in which processing occurs on multiple platforms, with data made accessible via a

distributed messaging system. Apache Kafka[72], a proven pub/sub-based[51] distributed

event streaming engine, is used as a scalable data backbone for streaming and storing data

from disparate sources, distributing the processing load according to a set of QoS parameters.

This processing mechanism is fundamentally distinct from existing DSPs because processing

is distributed and pipelined across multiple platforms/machines.

For instance, a smart city application for proactive air pollution control uses multiple data

sources[63] to make traffic control and rerouting decisions, relying heavily on air pollution

data streams and city road video streams. Numerous real-time air pollution inference models

utilise proprietary software running on a specific platform, while video stream processing and

inference require machines with high processing capacity and GPUs. Non-distributed DSPs

cannot handle such workloads. In this context, we propose an architecture for a distributed

stream processing system capable of performing complex processing on the stream and

pipelining the data processing tasks.

For an Early Warning System (EWS) like a Landslide Early Warning System, sensor and

social media data fusion can significantly improve precision. The methodologies described

in this chapter address the following research questions:

1. How can a distributed real-time analytics pipeline be used for real-world applications

like early warning systems and smart cities?

5.2 Background 79

2. What methods can be used for pipelines to be efficiently monitored and scaled?

To address the research questions mentioned above, this chapter outlines the following

research contributions:

1. We evaluated our Landslide Early Warning System using real-time social media data

and real-world sensor data.

2. A system is designed to orchestrate streaming workflows distributed across multiple

processing units on the edge and in the cloud.

The structure of this chapter provides an exploration of these research contributions

and their potential implications. Section II delves into the history and related work of the

Complex Event Processing (CEP)[35] and Event Stream Processing(ESP)[21] communities.

The functional and technical architecture of the proposed processing model is described in

Section 5.3. The Implementation and Evaluation are discussed in Section5.4 and Section

5.5.

5.2 Background

5.2.1 Complex Event Processing

Complex event processing (CEP), a class of information flow processing system views the

flow of information as a notification of events[84]. These systems are capable of identifying

complex patterns of events from multiple heterogeneous streams of data[47]. They have a

wide range of applications, from control systems, financial services, and business process

management to more recent IoT technologies[50]. CEP have a different approach based on

traditional Context-Based Publish-Subscribe systems. Information comes into the system

as messages coming from multiple publishers. The information sent out from the system

are notifications to the interested subscribers, defined by detection rules. Complex event

80 Real-time Data Analysis Pipeline for Landslide Early Warning System

processing model is based on event-driven information systems. A complex event is defined

as an event that could only happen if a lot of other events happened. For example, suppose it

is raining heavily, and it is happening only because of the number of events in the atmosphere

that lead to heavy rain. There exists a causal history for a complex event to happen. CEP

systems are built to identify higher-level events from the complex series of lower-level events.

Events relations are based on cause, by timing and by membership. This helps to analyse

events to answer questions concerning higher-level events.

5.2.2 Data Stream Processing

Data stream processing is a data management approach in which data is handled in real

time as its being generated. This approach is beneficial in scenarios where large volumes of

data are produced continuously, such as financial transactions, market feeds, social media

feeds and IoT sensor data. By processing continuous feeds of real-time or near-real-time

data, decisions can be made quickly and acted on, which enhances efficiency. It enables

the extraction of valuable insights that might be too vast for traditional batch-processing

techniques. Various tools and frameworks have been developed to enable data stream

processing with their own features and capabilities. Apache Kafka[72], Apache Flink[38]

and Apache Samza[102] are some of examples of this. These technologies make stream

processing pipelines highly scalable, fault-tolerant, and effective. Organisations can create

pipelines that filter, aggregate, transform, and analyse data streams in real-time by utilising

these frameworks, giving them the ability to react quickly to new trends, anomalies, or

business opportunities. Data stream processing is now crucial to modern data architecture,

enabling businesses to remain adaptable and competitive in a data-driven world.

Data Stream Management Systems (DSMS)[58] has its root in DBMS and approaches

the problem as an evolution of traditional DBMS. It processes streams of data coming

from different sources to produce new output data streams. Designed to process transient

5.2 Background 81

data, which is updated continuously. Executes standing queries which run continuously and

provide results as and when new data arrives. DSMSs process data with transformations

based on SQL operators like selection, aggregates, joins and other operators defined by

relational algebra. Modern data stream processing engines[72, 38] like Apache Storm, Spark

Streaming, and Flink are highly scalable and capable of processing millions of events per

second and can be scaled up across large clusters of machines.

5.2.3 Stream Processing in Early Warning Systems

Stream processing, which enables real-time or near real-time data processing, is critical to

the effectiveness of modern early warning systems [47]. Numerous data sources are utilised

in early warning systems for landslides, earthquakes, and tsunamis, enabling rapid analysis

and timely actions. Data streams from various sources, such as weather stations, remote

sensing platforms, ground-based sensors and social media feeds, must be processed and

analysed in these systems as they arrive to ensure that emerging threats are quickly identified

and appropriate countermeasures are implemented.

Using stream processing technologies, early warning systems can effectively handle the

massive amounts of data generated by these sources, process the data in parallel, and make

decisions based on the most recent information available. The ability to process data in real-

time is critical for accurate and timely hazard detection, allowing authorities to warn affected

populations and implement mitigation measures as soon as possible. Stream processing

enables continuous analysis and decision-making, significantly improving the dependability

and responsiveness of early warning systems. Stream processing, as opposed to traditional

batch processing methods, which may cause delays due to the need for data accumulation

and scheduled processing, allows for continuous analysis and decision-making.

82 Real-time Data Analysis Pipeline for Landslide Early Warning System

5.3 Methodology

This section explains the approach to designing, implementing, and evaluating a scalable

data stream processing pipeline early warning systems, focusing on leveraging Apache

Kafka for real-time data analysis in early warning systems. As a data backbone, Apache

Kafka enables efficient data management and provides valuable monitoring and orchestration

capabilities. The proposed methodology addresses the challenges of dealing with large

amounts of streaming data while ensuring prompt hazard detection and response. This

section explains the processes and techniques required to build a robust and efficient real-

time data analysis pipeline, leveraging the power of Apache Kafka for stream processing and

system monitoring. Figure 5.1 shows the high-level functional architecture of the Landslide

Early Warning System.

Data Sources Data Extraction, Classification and Ingestion Pipelines

Data Extraction
Stages

Data
Classification

Stages

Data Sinks
and

Preprocessing

API for
Conversation (FB

Messenger)

EWS Interaction Agent

Knowledge Base
(Triple Store)

Index DB

Knowledge
API

Search API

Streaming
API

Knowledge
API

Vi
su

al
is

at
io

n/
D

as
hb

oa
rd

Twitter

Facebook

News Sites

Data Source
Discovery Data Access

Context based Knowledge Discovery and Quering

Wireless
Sensor
Network

MQTT

News API
Integration

Web Data
Scrapers

Social Media API
Integrations

Fig. 5.1 High-level Functional Architecture

The key design considerations for the EWS based on social media, sensor network and

weather data are

5.3 Methodology 83

• Responsiveness to the events or the real-time processing capacity. i.e. the information

should be processed, and useful information should be extracted and made available

for the EWS operator in near real-time.

• Flexibility to add new data sources. The data model schema should be flexible to

incorporate multiple data sources, like tweets and news articles

• Efficient information extraction, which includes spatial and temporal information.

• Indexing capability, which helps to search and retrieve data fast.

• Scalability and Reliability (Monitoring and Fault-Tolerance)

This chapter is mainly focusing on the orchestration and scalability of the processing

infrastructure. The research is not focusing on the effectiveness of the detection of landslide

events. Phengsuwan et al. (2019) discusses the Context based knowledge discovery for

Landslip Early warning which deployed on the infrastructure this work proposes.

5.3.1 Steaming Data Pipeline: Concept

The principles of Flow-Based programming[97] and Actor model computation[62] are

brought together in the concept of the Stream Processing Pipeline in order to produce a data

processing pipeline that is both scalable and easily maintained. Streaming data pipeline

is a flexible and modular solution for managing data flow in distributed systems that uses

Apache Kafka as the data backbone and container-based applications as the processing units.

Streaming data pipeline can be modelled as a directed graph consisting of nodes and edges.

Edges signify information passing from one containerised component to another via Apache

Kafka topics, and nodes stand for individual components.

Pipelining containerised applications is a method that divides a data processing system

into smaller, self-sufficient parts, each of which executes a distinct task inside a container. Be-

cause these parts operate independently, multiple data items can be processed simultaneously

84 Real-time Data Analysis Pipeline for Landslide Early Warning System

at various points in the pipeline. Containers guarantee uniformity and processing-component

isolation, while parallelism boosts throughput and efficiency. The integrity of the process

is preserved as data moves in a predetermined order through the pipeline. The pipeline can

deal with fluctuating data rates and recover from component failures with scalability, fault

tolerance, and loose coupling provided by containerised applications.

The main features of this streaming data pipeline are

1. Scalable Data Backbone: Apache Kafka is the data backbone, allowing for reliable,

low-latency streaming with high throughput. Kafka’s distributed design makes it

simple to increase or decrease the size of the pipeline in response to changes in the

processing load or the amount of data being processed. This enables asynchronous

communication between the processing components.

2. Modular Processing: To facilitate rapid deployment, scalability, and reusability, the

stream processing pipeline employs containerised applications as processing units

along the pipeline. Each module can be built, tested, and deployed separately from the

others because it handles its own unique data processing function.

3. Dynamic Data Flow: This processing framework is based on Flow-Based Program-

ming principles[97], which facilitates parallelism, concurrency, and asynchronous

communication between components for effective data processing. The data is pro-

cessed in real-time, guaranteeing a high throughput and minimising delays in the

pipeline. It enables loose coupling and compostability of processing components.

4. Observability and Management: The data pipeline can be monitored and managed

with Kafka’s integrated monitoring and management system. This infrastructure

enables monitoring of performance, data flow, and overall system health; it also

permits configuration changes and the scaling of individual components.

5.3 Methodology 85

5. Extensibility and Interoperability: The streaming pipeline is built to be easily

extended with new features and technologies as they become available. Using a

containerised approach, developers can run their code on any platform, regardless of

the language or framework in which it was written. It also allows the containers to be

deployed on specific platforms based on the requirement of the processing component.

Deep learning model inferences run faster on GPU-accelerated machines where the

containers with specific processing steps can be deployed. Hence, this methodology

enables highly distributed but interoperable processing components.

In a containerised pipeline, Kafka topics are important in orchestrating data flow between

processing components. Producers publish data to Kafka topics; consumers subscribe to these

topics to read and process the data. When a component processes the data, it produces its out-

put to another Kafka topic for the next component in the pipeline to consume. This sequential

flow of data through Kafka topics ensures the integrity and order of the data processing while

allowing for easy communication between the independently running components. Kafka’s

scalability and fault tolerance allows the pipeline to process massive amounts of data with

minimal delays, making it an ideal data-flow mechanism for containerised software.

5.3.2 Data Ingestion

Data ingestion refers to the process of collecting and integrating data from diverse sources

such as sensor networks and social media platforms, to enable processing and analysis in the

subsequent stages of the pipeline. For Landslip early warning system, sensor data from the

network of sensors deployed on landslide-prone areas, weather data from public APIs and

social media feeds from Twitter were ingested.

86 Real-time Data Analysis Pipeline for Landslide Early Warning System

Sensor Data Collection

Sensor data forms an integral part of an early warning system. Various types of sensors,

including weather stations, soil moisture sensors, rain gauges, inclinometers, and extensome-

ters, are deployed to gather real-time data on environmental parameters relevant to hazard

detection. This data is ingested into the system using standard messaging protocols like

MQTT. This is then fed into Kafka topics, which enables further processing.

Social Media Data Collection

Along with sensor data, social media platforms also provide real-time, location-specific con-

textual insights into ongoing events, making them valuable sources of information for early

warning systems. Relevant Twitter feeds are collected based on predefined keywords using

API provided by Twitter. This enables for the extraction of critical contextual information

from social media feeds, which may aid in the early detection of hazards.

5.3.3 Data Processing

This section discusses the details of data processing steps and ML models and their execution

workflow. The first step in processing is to use User Classifiers to identify who is posting this

message. Currently, only two types of user classification are considered in this system: one

is an official account, such as Meteorological Office; the other is for regular users. In general,

the information provided by official accounts is more reliable than normal users. However,

normal users can provide richer contextual information from the proximity of the hazard site.

Since Twitter already provides user information, we use the Twitter handle to classify the

users based on a dictionary. Next, the Event Classifiers identify whether a message relates

to landslide hazard and antecedent hazard events (i.e., warning signs). These classifiers are

developed by using spaCy, a NLP framework. To this end, a small amount of labelled data

5.3 Methodology 87

has been collected and then used this dataset to retrain spaCy’s convolutional neural network

(CNN) models [68, 111] to improve the accuracy of detecting events.

User
Classifier

Event
Classifier

Information
Extraction

Location
Identification

Data
Ingestion

Storage
& Indexing

Data Processing
Steps

Fig. 5.2 Data processing steps

Obtaining the geolocation information from the mentions in the message is also essential

for analysing landslides. This task consists of two steps: Information Extraction and Location

Identification. The Information Extraction component aims to extract the named entities of

a message using en_core_web_lg model (available on spaCy), a CNN model trained on

OntoNotes[64]. These extracted named entities are the inputs of the Location Identification

that classify the named entities as including geolocation information. If yes, these geo-names

are converted to geo-coordinates by OpenStreetMap (OSM) datasets 1 using geocoding

method2. A single geo-name may have multiple entries in the OSM dataset. The first entry

from the OSM dataset is taken. In future works, the module will be seeded with the location

of interest. Finally, all the outputs are published and stored in the Elastic Search Database for

further analysis. More details about the data processing steps are explained in Appendix A.1

5.3.4 Data Storage and Indexing

For data storage and indexing Elasticsearch[59] is used as the primary data storage solution.

Elasticsearch is a distributed, RESTful search and analytics engine built on Apache Lucene.

1https://wiki.openstreetmap.org/wiki/Downloading_data
2https://nominatim.org/

https://wiki.openstreetmap.org/wiki/Downloading_data
https://nominatim.org/

88 Real-time Data Analysis Pipeline for Landslide Early Warning System

It supports geo-search and indexing for efficient geolocation-based querying and analysis,

and it can handle large amounts of textual data and complex search queries.

Efficient full-text search operations like tokenising the text, filtering out common stop

words, and applying text analysis techniques like stemming and lemmatisation are made

possible using an inverted index for text indexing. Geolocation data is indexed using the

GeoPoint data type, enabling location-based queries and analysis. Appropriate mappings and

index settings are created to facilitate efficient querying and analysis. Elasticsearch stores

the results of the Data Processing section’s processing, such as user classifications, event

classifications, extracted geolocations, and other valuable data. The system can quickly and

accurately perform complex search queries, analyse the gathered data to detect and track

landslip events and produce valuable insights and visual representations. Elasticsearch’s fast

and accurate search and analysis capabilities are made possible by the system’s ability to

handle large amounts of social media data through efficient indexing techniques.

5.4 Implementation Details

5.4.1 Kafka as Data Backbone

Kafka is a distributed system comprising servers and clients communicating through a high-

performance TCP network protocol. It can be deployed on bare-metal hardware, virtual

machines, and containers in on-premise and cloud environments.

Servers: Kafka operates as a cluster of one or more servers spanning multiple data

centres or cloud regions. Some servers form the storage layer known as brokers. Kafka

Connect[], continuously importing and exporting data as event streams to integrate Kafka

with existing systems like relational databases and other Kafka clusters. A Kafka cluster is

highly scalable and fault-tolerant to accommodate mission-critical use cases. If any server

node fails, others will take over their tasks, ensuring continuous operations without data loss.

5.4 Implementation Details 89

Clients: These enable the development of distributed applications and microservices that

read, write, and process event streams in parallel, at scale, and in a fault-tolerant manner,

even in the face of network problems or machine failures. Kafka includes some clients and

supports dozens more provided by the Kafka community. Clients are available for various

programming languages like Java, Scala, Go, Python, C/C++, and REST APIs.

Producers publish events to Kafka, while consumers subscribe to and process these events.

In Kafka, producers and consumers are fully decoupled and agnostic of each other, a key

design element for achieving high scalability. Kafka provides guarantees like processing

events exactly once. Events are organised and durably stored in topics, which are partitioned

and distributed across multiple Kafka brokers for scalability. This allows client applications

to read and write data from/to many brokers simultaneously.

5.4.2 Pipeline Orchestration

Container Based Micro-services as Processing Modules

Microservice architecture organises an application as a group of services that can be indepen-

dently deployed, tested, and maintained and which are loosely coupled to one another and

centred on business capabilities. This architecture allows for the rapid and reliable delivery

of large, complex applications by allowing individual services to scale and update indepen-

dently. Containers provide a lightweight, standardised way for applications to move between

environments and run independently. Except for the server’s shared operating system, the

code, runtime, system tools, libraries, and dependencies required to run the application are all

contained within the container object. The pipeline processing components were deployed

as containers which can be independently developed and tested. Containers can be placed

on machines with specific hardware based on the processing components requirement, like

GPU-accelerated node when the processing module performs a deep learning inference.

90 Real-time Data Analysis Pipeline for Landslide Early Warning System

Fig. 5.3 Orchestrating Data Processing Pipeline

Deployment on Docker swarm Cluster

Each pipeline processing module is deployed as a container-based microservice. A Docker

Swarm is a group of physical or virtual machines running the Docker application and

configured to join together in a cluster. Swarm managers control the cluster’s activities,

while machines that have joined the cluster are called nodes. Docker Swarm is a container

orchestration tool that manages multiple containers deployed across multiple host machines,

providing high application availability. The container orchestrator ensures that each service’s

required number of instances runs and automatically starts new instances in case of failures.

Docker compose files are created with each of the processing components specified as a

service. The input and output topic names are passed as environment variables. The services

are deployed as a "docker stack" consisting of all the pipeline services.

Health Check and Monitoring

Service containers are monitored using cAdvisor, which tracks CPU usage, memory usage,

and network in/out. Monitoring information is visualised using Grafana and focuses on key

metrics like the number of messages in the pipeline and the number of messages processed by

each step. The following tools are used for storing and visualising the monitoring information.

5.4 Implementation Details 91

Prometheus: A open-source monitoring system that collects and stores metrics from the

pipeline components. Prometheus provides a flexible query language for analysing collected

metrics, enabling real-time monitoring and alerting.

Grafana: A visualisation tool that integrates with Prometheus to display the monitoring

data in a user-friendly dashboard. Grafana offers customisable graphs and charts, making it

easy to track the performance and health of the pipeline.

Consumer Lag Monitoring

One of the key metrics for monitoring the processing pipeline is consumer lag. This metric

calculates the difference between the number of messages on the topic and the number of

messages consumed by the consumer processing the message. Different processing steps

in the pipeline may have different processing overheads. This may create bottlenecks in

the pipeline. Bottlenecks in the pipeline can be identified by monitoring the consumer

lag across each step. This enables system administrators to quickly identify performance

issues, optimise pipeline components, and guarantee that the pipeline continues to perform

as expected across a wide range of data rates. System developers can assess the pipeline’s

scalability by watching how it responds to an increase in data throughput thanks to consumer

lag monitoring, ensuring the system can handle massive data streams in production. For

early warning systems to function properly, it is essential to manage and optimise the

performance of the pipeline that processes data streams in a timely manner, making consumer

lag monitoring a vital tool.

5.4.3 Elastic Search as searchable Index

Elasticsearch[59] is a distributed, open-source search and analytics engine built on Apache

Lucene[26, 83] and developed in Java. It began as a scalable version of the Lucene open-

source search framework, with added horizontal scalability for Lucene indices. Elasticsearch

92 Real-time Data Analysis Pipeline for Landslide Early Warning System

enables storing, searching, and analysing large volumes of data quickly and in near real-time,

returning answers in milliseconds. It achieves fast search responses by searching an index

rather than the text directly. Elasticsearch uses a document-based structure instead of tables

and schemas and offers extensive REST APIs for storing and searching data. Elasticsearch is

a server that processes JSON requests and returns JSON data. The last step of the pipeline

involves an Elasticsearch injector, which inserts incoming records into Elasticsearch as

documents. This allows for efficient indexing and searching of the stored data, providing

quick access to relevant information when needed. By utilising Elasticsearch, the system

can accommodate large-scale data storage and retrieval, ensuring fast and reliable search

responses even as data volumes grow.

5.4.4 Landslip Early Warning System Pipeline

Utilising Real-Time Data Pipelines, LEWS was created as a collection of containerised

processing components communicating with individual Kafka topics. Sensor network data

and social network(Twitter) feeds were the primary data types processed by the various

pipeline components. Data is progressively analysed as data moves through the pipeline, and

information is extracted and enriched. This data is added as metadata to the incoming data

and is passed to the next stage for processing. As shown in Figure 5.4 the LEWs pipeline

consists of 7 steps, each connected to the next step through Kafka topics.

5.5 Evaluation 93

Topic 1

Data Ingestion
Topic 2

User Classifier
Topic 3

Event Classifier
Topic 4

Named Entity
Recognition

Topic 5

Intend Recognition

Topic 5
Location

Identification
Data
Sink

ElasticSearch

News Sites

Wireless
Sensor
Network

Fig. 5.4 Landslip Early Warning Stream Processing Pipeline

5.5 Evaluation

This section describes the evaluation of the proposed stream data pipeline system. The

key objectives of this evaluation are to analyse the scalability, performance and resource

utilisation under different workloads. The experiments were designed to measure the overall

throughput, latency and resource utilisation while a high volume of data is streamed through

the pipeline.

Since the Twitter streaming API only provides a certain number of Tweets per minute,

we had to collect a sizable amount manually. The data collector module was fed with these

pre-collected tweets to simulate high-velocity data flow. The average number of characters

per tweet is 3330 bytes for the collected dataset, which roughly is around 3 KB per tweet.

Because of the additional metadata and attributes added by Twitter, the size of the tweet object

is larger. This metadata is important in the case of LEWS as it provides rich information

about the users, like their signed-up location, and geolocation if it is enabled.

For the simplicity of experimentation only one data source is considered. However,

adding more data sources to this system is relatively simple, considering the decoupled nature

of the producing data to Kafka.

94 Real-time Data Analysis Pipeline for Landslide Early Warning System

Experiment Setup

The experiment setup consists of a cluster of three machines with 16 GB of RAM and 4-core

Intel Xeon processor. The following components

1. Kafka Cluster as data backbone by enabling data streaming between processing com-

ponents

2. Elasticsearch as the data storage to store and enable fast searching using its indexes

3. Docker swarm as the container orchestration

On bare metal running Linux, a three-node Kafka cluster was installed. All three nodes now

have the supporting service Zookeeper set up on them. Each machine had the Docker engine

installed, making it a node in the Docker Swarm container orchestrator cluster. Since pipeline

components are now considered services, they can be independently scaled. Using a Docker

stack to deploy the services described in a YAML file as steps, the pipeline could be set up,

run, and monitored with a single command. Kafka topics representing the input and output

of each module were made available via environment variables.

For this experiment, a simplified version of the LEWs pipeline is used, which consists of

the steps shown in Fig 5.5

Topic 0
DATA

INGESTION

Topic 1
LEWS-TWITTER-

FIELD-FILTER

Topic 2LEWS-TWEER-
LANGUAGE-

DETECT

Topic 3LEWS-TWEET-
LANGUAGE-
TRANSLATE

Topic 4LEWS-
GEOLOCATION-

IDENTIFIER

Topic 5

LEWS-USER-
CLASSIFICATION

Topic 6

LEWS-ES-
INGECTOR

ElasticSearch

Fig. 5.5 LEWs Pipeline used for Experimentation

5.5 Evaluation 95

Throughput

Timestamps were appended to each record at the start and finish of the pipeline to calculate

throughput and latency. NTP was used to ensure that all of the computers’ clocks were within

1 millisecond of each other. Each record has a collection time stamp and a processing time

stamp that were added in the first and second steps, respectively. However, the throughput

of the pipeline is always dependent on the workloads in and the scale of the processing

containers.

Throughput is the total number of records which pass through the pipeline per unit time.

A set of 399,083 tweets are sent to the pipeline, and the time it took from the start of the

pipeline to ingesting to ElasticSearch after all the processing steps were calculated. This

experiment is repeated 5 times to take the average throughput.

Results

No. of Records/Tweets Time (s) Records/second
399083 2624 152.09
399083 2877 138.71
399083 2585 154.38
399083 2553 156.32
399083 2627 151.92

Average Throughput 150.41
Table 5.1 Pipeline Throughput

After ingesting the same dataset 5 times, results show an average throughput of 150.41

records/second.

Bottleneck Detection Using Consumer Lag

As mentioned earlier in the chapter, in Kafka, consumer lag metrics measure the time elapsed

between the offset of the most recently produced message and the offset of the most recently

consumed message for a given set of consumers. This is the total number of messages

96 Real-time Data Analysis Pipeline for Landslide Early Warning System

that have been received but have yet to be processed. Consumer lag measures how slowly

recipients are processing transmissions from senders. Lower consumer lag indicates that it

is keeping pace with the producers, if it is large, it could mean that the recipient’s message

processing is lagging behind.

In this experiment, data is published to the data ingestion process at a very high rate. This

remains the maximum rate at which the Kafka producer can produce the data to a Kafka

topic while reading the records from the filesystem. The consumer lag for each topic in

the pipeline is monitored over a specific period. The following plot (Fig 5.6) shows the lag

observed in each topic. Notably, the topic that the LEWS-GEOLOCATION-IDENTIFIER

step reads from indicates an increasing consumer lag. This finding implies that this particular

stage in the pipeline is the bottleneck, hindering the overall performance of the pipeline. The

efficiency and throughput of the pipeline can be improved by locating and eliminating these

bottlenecks.

0
100
200
300
400
500
600
700
800
900

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

20
21
-03
-…

Pipeline Consumer Lag (Bottleneck Detection)

topic1-LEWS-TWITTER-FIELD-FILTER-CG01

topic2-LEWS-TWEET-LANGUAGE-DETECT-CG01

topic3-LEWS-TWEET-LANGUAGE-TRANSLATE-CG01

topic4-LEWS-GEOLOCATION-IDENTIFIER-CG01

topic5-LEWS-USER-CLASSIFICATION-CG01

Fig. 5.6 Pipeline Consumer Lag

Subsequent experiments were conducted by removing the step LEWS-GEOLOCATION-

IDENTIFIER from the pipeline, and it shows (Fig , there is no bottleneck in the pipeline

which hinders its throughput.

The bottleneck in the process was identified, and subsequent experiments were run

without the LEWS-GEOLOCATION-IDENTIFIER. These tests aimed to measure how much

5.5 Evaluation 97

this process stage affected the pipeline’s efficiency as a whole. The pipeline’s throughput

increased after removing the bottleneck shown in Fig 5.7). Increasing the parallelism of the

LEWS-GEOLOCATION-IDENTIFIER step is a way to boost the pipeline’s performance.

As a result, the system could process more data and reduce wait times.

0
10
20
30
40
50
60

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

20
21
-0
3-
…

Pipeline Consumer Lag After Removing Bottleneck

topic1-LEWS-TWITTER-FIELD-FILTER-CG01

topic2-LEWS-TWEET-LANGUAGE-DETECT-CG01

topic3-LEWS-TWEET-LANGUAGE-TRANSLATE-CG01

topic4-LEWS-GEOLOCATION-IDENTIFIER-CG01

topic5-LEWS-USER-CLASSIFICATION-CG01

Fig. 5.7 Pipeline Consumer Lag after removing bottleneck

Another experiment with three different data rates was conducted to examine the sen-

sitivity of consumer lag to data rates. The data rates were progressively increased in two

stages to gain a more comprehensive understanding of the pipeline’s response to varying data

rates. This experimental setup was designed to elucidate the correlation between consumer

lag and data rates, which could reveal helpful information about the pipeline’s efficacy and

scalability. This also helps identify which steps need to be scaled more when data rate is

increased.

0

100

200

300

400

500

600

700

800

20
21
-03
-19
T1
6:1
3:0
3.4
18
79
6

20
21
-03
-19
T1
6:1
3:0
9.5
01
95
7

20
21
-03
-19
T1
6:1
3:1
5.5
78
80
4

20
21
-03
-19
T1
6:1
3:2
1.7
73
68
6

20
21
-03
-19
T1
6:1
3:2
8.0
41
64
2

20
21
-03
-19
T1
6:1
3:3
4.1
55
81
6

20
21
-03
-19
T1
6:1
3:4
0.2
67
58
9

20
21
-03
-19
T1
6:1
3:4
6.3
29
86
3

20
21
-03
-19
T1
6:1
3:5
2.4
31
37
9

20
21
-03
-19
T1
6:1
3:5
8.5
17
96
4

20
21
-03
-19
T1
6:1
4:0
4.9
73
89
3

20
21
-03
-19
T1
6:1
4:1
1.0
32
92
9

20
21
-03
-19
T1
6:1
4:1
7.0
99
52
6

20
21
-03
-19
T1
6:1
4:2
3.1
82
14
9

20
21
-03
-19
T1
6:1
4:2
9.2
89
95
1

20
21
-03
-19
T1
6:1
4:3
5.3
83
10
3

20
21
-03
-19
T1
6:1
4:4
1.5
55
97
4

20
21
-03
-19
T1
6:1
4:4
8.0
18
73
5

20
21
-03
-19
T1
6:1
4:5
4.1
58
95
3

20
21
-03
-19
T1
6:1
5:0
0.4
53
68
5

20
21
-03
-19
T1
6:1
5:0
6.5
17
99
3

20
21
-03
-19
T1
6:1
5:1
2.6
52
82
3

20
21
-03
-19
T1
6:1
5:1
8.7
01
03
5

20
21
-03
-19
T1
6:1
5:2
4.7
55
55
7

20
21
-03
-19
T1
6:1
5:3
1.6
70
24
4

20
21
-03
-19
T1
6:1
5:3
7.9
00
00
6

20
21
-03
-19
T1
6:1
5:4
4.2
48
06
5

20
21
-03
-19
T1
6:1
5:5
0.4
94
86
0

20
21
-03
-19
T1
6:1
5:5
6.5
57
04
9

20
21
-03
-19
T1
6:1
6:0
2.9
61
73
9

20
21
-03
-19
T1
6:1
6:0
9.0
11
12
5

20
21
-03
-19
T1
6:1
6:1
5.1
10
63
7

20
21
-03
-19
T1
6:1
6:2
1.1
64
67
5

20
21
-03
-19
T1
6:1
6:2
7.2
29
28
9

20
21
-03
-19
T1
6:1
6:3
3.2
78
84
2

20
21
-03
-19
T1
6:1
6:3
9.3
20
86
3

20
21
-03
-19
T1
6:1
6:4
5.3
72
90
9

20
21
-03
-19
T1
6:1
6:5
1.6
21
08
6

20
21
-03
-19
T1
6:1
6:5
7.6
72
84
4

20
21
-03
-19
T1
6:1
7:0
3.7
32
75
2

20
21
-03
-19
T1
6:1
7:0
9.8
55
08
1

20
21
-03
-19
T1
6:1
7:1
5.9
01
02
5

Pipeline Consumer Lag sensitivity to Data Rate

topic1-LEWS-TWITTER-FIELD-FILTER-CG01 topic2-LEWS-TWEET-LANGUAGE-DETECT-CG01

topic3-LEWS-TWEET-LANGUAGE-TRANSLATE-CG01 topic4-LEWS-GEOLOCATION-IDENTIFIER-CG01

topic5-LEWS-USER-CLASSIFICATION-CG01

Fig. 5.8 Consumer Lag sensitivity to Datarate

98 Real-time Data Analysis Pipeline for Landslide Early Warning System

5.6 Discussion

Given the research context, the investigation was aimed at designing and testing a distributed

real-time analytics pipeline for early warning systems and Smart City projects. This work’s

contributions include evaluating a Landslip Early Warning System using social media data

and real-world sensor data in real-time and designing a system to orchestrate streaming

workflows distributed across multiple processing units connected using a common streaming

solution. Early warning systems and smart city IoT applications are some of the real-world

use cases that can benefit from this stream data pipeline system. In addition, utilising human

sensors and contextual information from social media feeds, the Internet of Everything’s

(IoE) integration of people and processes could improve the precision of prediction and

decision-making.

The proposed pipeline system addresses the near real-time data processing requirement

from different IoE sources at variable data rates. The system can distribute the processing

load by using Apache Kafka as a data backbone for streaming and storing data from different

sources. The system’s ability to perform complex processing on the stream and to pipeline

the data processing tasks across multiple platforms and machines is made possible by

the actor-based processing approach. Bottlenecks like the one discovered in the LEWS-

GEOLOCATION-IDENTIFIER step can be efficiently monitored and removed to scale the

proposed pipeline system. The pipeline can adjust to different workloads and maintain a

high level of performance by monitoring consumer lag and adjusting the parallelism of

processing steps. This flexibility is very important in Early Warning Systems and Smart

City applications, which depend on prompt reactions to events and the effective management

of large volumes of data generated by IoT devices. However, in this work, no automatic

bottleneck mitigation techniques were proposed.

Nonetheless, the system and the experiments in this work have some limitations:

5.6 Discussion 99

• Only one data source, Twitter, was considered to keep the experimentation simple.

The evaluation was not thorough enough to judge the pipeline’s effectiveness when

subjected to a wide variety of complex data streams, despite the fact that it was intended

to accommodate multiple data sources.

• Since only three machines were used in the experiments, the results may not be indica-

tive of the system’s scalability and performance in large-scale, real-world deployments.

• It was required to manually collect many tweets for the experiments as the Twitter

streaming API only provides a fixed number of tweets per minute. This method might

not represent the real data rate and volume the pipeline would need to process.

• These experiments did not objectively measure the pipeline’s orchestration’s effective-

ness, especially in resource management and the distribution of processing tasks. The

effectiveness of the proposed system’s orchestration is thus still uncertain.

Future research that pays particular attention to these questions will shed light on the

pipeline system’s orchestration capabilities, paving the way for creating more reliable,

scalable, and effective pipelines for streaming data to be used in things like early warning

systems and smart city IoT applications.

Chapter 6

Conclusion and Future Work

This thesis discussed several methodologies for data flow management in Internet of Things(IoT)

systems used in Smart Cities and Early Warning System (EWS), which consists of edge

and cloud layers. It also discusses the distributed real-time analytics pipeline orchestration

for systems like EWS and Smart Cities. The goal was to address the challenges of process-

ing massive amounts of data generated by IoT systems while ensuring data freshness and

efficiently coordinating the data flow from many heterogeneous devices.

Revisiting the original research questions presented at the beginning of the thesis, the

following contributions have been made through this work.

1. What are the methodologies for achieving the maximum data flow rate for each node

in the IoT network utilizing the available bandwidth while maintaining the stability of

the network and the nodes?

Chapter 3 discusses an IoT Emulation toolkit which enabled experimentation on three

layered IoT networks. The proposed system and PoC is an emulation framework which

closely models the real-world network and IoT devices.

In Chapter 4, through the development of a formal model and a set of algorithms

for managing data flow in IoT devices (Section 4.3), this thesis demonstrated how to

102 Conclusion and Future Work

allocate data rates based on the priority of IoT sensors/devices and adaptively adjust

data flow rates based on available bandwidth (Section 4.3.2). In addition, an IoT

Emulation Toolkit (Section 3.4) was developed to emulate a three-layer IoT network

to conduct experiments and evaluate the performance of IoT networks. This toolkit

assists in identifying backpressure, managing data flow, and maintaining data freshness,

thereby ensuring network and node stability.

2. How to identify data flow bottlenecks in a three-layered IoT network dynamically?

This thesis identified performance limitations and bottlenecks in IoT networks, such

as backpressure, through developing and applying the IoT Emulation Toolkit and

the backpressure detection method (Section 3.7.2). These experiments led to the

development of data flow management algorithms (Section 4.3).

3. What are the methodologies for efficiently coordinating a large number of heteroge-

neous edge nodes and IoT devices sending data to the cloud simultaneously?

The adaptive flow control algorithms presented in this thesis (Section 4.3) enable

efficient coordination of heterogeneous edge nodes and IoT devices simultaneously

sending data to the cloud by dynamically managing data flow rates based on available

bandwidth and node priorities. This strategy helps preserve network stability and

ensures efficient data flow management in IoT networks.

4. How can a distributed analytics pipeline help in Early Warning Systems like landslide

early warning systems, and how can the pipelines be efficiently orchestrated?

Chapter 5 of the dissertation presented a method for orchestrating a Big Data analytics

processing pipeline for social media data processing in Early Warning Systems and

Smart Cities. This methodology involved the design of a pipeline for streaming

processing that addresses the orchestration challenges of a real-time streaming analytics

pipeline. The proposed pipeline system satisfies the need for near-real-time data

103

processing from multiple IoE sources with variable data rates. The system can distribute

the processing load using Apache Kafka as the data backbone for streaming from

various sources. The actor-based processing approach enables the system to perform

complex processing on the stream and to pipeline the data processing tasks across

multiple platforms and machines. This enables the distribution and orchestration of

the analytics pipeline in a decoupled way based on the processing requirements.

This thesis provided valuable insights and solutions for managing data flow in IoT

networks, identifying and addressing bottlenecks in three-layered IoT networks, coordinating

large numbers of heterogeneous edge nodes and IoT devices, and designing and orchestrating

distributed analytics pipelines for Early Warning Systems. The findings and contributions

presented in this thesis and the IoT Emulation Toolkit can be a foundation for future research

and development in IoT networks and analytics for EWS and Smart Cities.

Even though this work provides valuable methods for managing data flow in IoT net-

works and orchestrating distributed analytics pipelines, the following limitations must be

acknowledged.

1. The IoT Emulation Toolkit allows for emulating IoT devices and edge nodes, but it may

not precisely reflect the properties and limitations of real-world things and network

conditions. Emulation toolkit experiment results may not accurately represent the

performance or difficulties encountered by actual IoT devices.

2. Experiments focused on backpressure detection, data flow rate, and data freshness, and

the toolkit was developed to simulate a three-layer IoT network. The experiments did

not consider advanced QoS parameters. Even though the Linux TC tool is used to

induce bandwidth limitations and latency, experiments used LAN networking, which

allowed for relatively stable network bandwidth, latency, and jitter. The system’s

performance and data flow management may be affected by the more dynamic and

varying network conditions likely to be present in real-world IoT networks.

104 Conclusion and Future Work

3. Early Warning Systems can benefit significantly from integrating social media data

into their streaming analytics pipeline. A deeper understanding of the pipeline’s

efficacy in real-world applications can be attained through a more exhaustive evaluation

considering a wide range of data sources and complex data streams.

4. Data streaming pipeline bottlenecks are identified, but no automatic mitigation strate-

gies for improving the system’s scalability or performance are proposed. Future work

will investigate the automatic mitigation of bottlenecks in distributed real-time stream

processing pipelines.

5. Experiments in Chapters 4 and 5 that required manual data collection may not have

represented the data rate and volume the pipeline would need to process in practical

settings.

6.1 Future Work

The IoT emulation tool kit enabled us to perform experiments on the hardware directly

emulating data flow from a real sensor network. Several enhancements to the tool kit are

proposed to help the user to conduct IoT experiments efficiently. The IoT Emulation Toolkit

developed in this work has room for improvement, particularly in adding features and making

it more realistic. The adaptability of the toolkit would increase, for instance, if it supported

multiple types of Internet of Things devices with varying capacities and communication

standards than just MQTT used in this case. The ability to model more complex network

behaviour, including latency, jitter, and packet loss variations, would also provide a more

accurate representation of real-world IoT networks and expand the scope of experimentation.

The prototype system we developed enabled the edge devices to control the data rate

it forwards to the cloud environment by dynamically reconfiguring the IoT devices. The

AFC algorithm is effective for recovering the system from the backpressure in the data

6.1 Future Work 105

flow. This approach helps to improve the data freshness in a congested IoT network. Future

work includes the integration of sampling algorithms into EGK to perform sampling of the

incoming data keeping the data quality high. EGK also opens the possibility of load balancing

between multiple edge devices to reduce the load while maintaining the data quality. The

adaptive flow control algorithms discussed in this thesis have room for improvement and

expansion through machine learning and reinforcement learning. These methods enable more

advanced algorithms to detect changes in the data flow, anticipate potential bottlenecks and

adapt the data or sampling rate in real time.

Creating adaptive data control algorithms that can distribute work between edge devices

is another promising area for future study. Network performance and reliability can be

significantly improved by intelligently distributing the data flow among multiple edge devices.

To ensure effective processing and reduce the impact of a failure or congestion on one of

the edge devices, the data flow could be dynamically rerouted through the nearest available

edge device. New load-balancing strategies that consider IoT networks’ specific features and

limitations, like limited bandwidth and low power consumption requirements, could be the

focus of future studies in this area. Data priorities and real-time network conditions are a

few considerations that could be incorporated into such strategies, along with edge devices’

processing power, energy consumption, and communication latency.

Further optimisation of the real-time analytics pipeline described in Chapter 5 could

increase its performance and scalability. The pipeline’s adaptability to massive data volumes

and varying data rates could be improved by creating novel data partitioning, load balancing,

and resource allocation strategies. This work finds bottlenecks in the data streaming pipeline

steps but does not suggest any automatic mitigation strategies to improve the scalability

and performance of the system. The future direction of this work includes the development

of automatic backpressure detection and mitigation algorithms for real-time streaming

pipelines.

References

[Apa] Apache nifi. Accessed on: 2023-05-07.

[che] Chef and puppet | chef.

[pup] Puppet infrastructure & it automation at scale.

[spa] spacy - industrial-strength natural language processing in python. https://spacy.io/.

[5] Abadi, D. J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker,
M., Tatbul, N., and Zdonik, S. (2003). Aurora: a new model and architecture for data
stream management. the VLDB Journal, 12(2):120–139.

[6] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., and Chen, Z. (2015). TensorFlow:
Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/.
Software available from tensorflow.org.

[7] Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., and Stoica, I. (2013).
BlinkDB: Queries with Bounded Errors and Bounded Response Times on Very Large
Data. In Proceedings of the 8th ACM European Conference on Computer Systems, pages
29–42. ACM.

[8] Agha, G. A. (1986). A model of concurrent computation in distributed systems. the MIT
Press.

[9] Ahlers, D., Wienhofen, L. W., Petersen, S. A., and Anvaari, M. (2019). A smart
city ecosystem enabling open innovation. In Innovations for Community Services: 19th
International Conference, I4CS 2019, Wolfsburg, Germany, June 24-26, 2019, Proceedings
19, pages 109–122. Springer.

[10] Ahmed, A. A. and Eze, T. (2019). An actor-based runtime environment for heteroge-
neous distributed computing. In Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA), pages 37–43. The
Steering Committee of The World Congress in Computer Science, Computer âĂę.

[11] Akidau, T., Balikov, A., Bekiroğlu, K., Chernyak, S., Haberman, J., Lax, R., McVeety,
S., Mills, D., Nordstrom, P., and Whittle, S. (2013). Millwheel: fault-tolerant stream
processing at internet scale. Proceedings of the VLDB Endowment, 6(11):1033–1044.

[12] Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S., Fernández-Moctezuma, R. J.,
Lax, R., McVeety, S., Mills, D., Perry, F., Schmidt, E., et al. (2015). The dataflow model: a
practical approach to balancing correctness, latency, and cost in massive-scale, unbounded,
out-of-order data processing. Proceedings of the VLDB Endowment, 8(12):1792–1803.

108 References

[13] Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., and Ayyash, M. (2015).
Internet of things: A survey on enabling technologies, protocols, and applications. IEEE
Communications Surveys & Tutorials, 17(4):2347–2376.

[14] Albino, V., Berardi, U., and Dangelico, R. M. (2013). Smart cities: definitions,
dimensions, and performance.

[15] Almesberger, W. et al. (1999). Linux network traffic controlâĂŤimplementation
overview.

[Apache] Apache. Apache/oozie: Mirror of apache oozie. Apache Software Foundation.

[17] Babar, M., Khan, M. S., Ali, F., Imran, M., and Shoaib, M. (2021). Cloudlet computing:
recent advances, taxonomy, and challenges. IEEE Access, 9:29609–29622.

[18] Bagula, B. and Erasmus, Z. (2015). Iot emulation with cooja. In ICTP-IoT workshop,
page 99.

[19] Bahl, L. R., Brown, P. F., de Souza, P. V., and Mercer, R. L. (1989). A tree-based
statistical language model for natural language speech recognition. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 37(7):1001–1008.

[20] Bahreini, T. and Grosu, D. (2017). Efficient placement of multi-component applications
in edge computing systems. In Proceedings of the Second ACM/IEEE Symposium on
Edge Computing, page 5. ACM.

[21] Barga, R. S., Goldstein, J., Ali, M., and Hong, M. (2006). Consistent streaming through
time: A vision for event stream processing. arXiv preprint cs/0612115.

[22] Basher, R. (2006). Global early warning systems for natural hazards: systematic and
people-centred. Philosophical transactions of the royal society a: mathematical, physical
and engineering sciences, 364(1845):2167–2182.

[23] Beck, M., Bhatotia, P., Chen, R., Fetzer, C., Strufe, T., et al. (2017). Privapprox:
privacy-preserving stream analytics. In 2017 {USENIX} Annual Technical Conference
({USENIX}{ATC} 17), pages 659–672.

[24] Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155.

[25] Bergenti, F., Poggi, A., and Tomaiuolo, M. (2014). An actor based software framework
for scalable applications. In Internet and Distributed Computing Systems: 7th Interna-
tional Conference, IDCS 2014, Calabria, Italy, September 22-24, 2014. Proceedings 7,
pages 26–35. Springer.

[26] Białecki, A., Muir, R., Ingersoll, G., and Imagination, L. (2012). Apache lucene 4. In
SIGIR 2012 workshop on open source information retrieval, page 17.

[27] Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., and Wagner,
S. (2013a). Opentosca–a runtime for tosca-based cloud applications. In Service-Oriented
Computing: 11th International Conference, ICSOC 2013, Berlin, Germany, December
2-5, 2013, Proceedings 11, pages 692–695. Springer.

References 109

[28] Binz, T., Breitenbücher, U., Kopp, O., and Leymann, F. (2013b). Tosca: portable
automated deployment and management of cloud applications. In Advanced Web Services,
pages 527–549. Springer.

[Boeing] Boeing. Boeing 787s to create half a terabyte of data per
flight, says virgin atlantic. https://www.computerworlduk.com/data/
boeing-787s-create-half-terabyte-of-data-per-flight-says-virgin-atlantic-3433595/.
Accessed: 2019-04-08.

[30] Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog computing and its role
in the internet of things. In Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC ’12, pages 13–16, New York, NY, USA. ACM.

[31] Borralho, R., Mohamed, A., Quddus, A. U., Vieira, P., and Tafazolli, R. (2021). A
survey on coverage enhancement in cellular networks: Challenges and solutions for future
deployments. IEEE Communications Surveys & Tutorials, 23(2):1302–1341.

[32] Borras, J. (2004). International technical standards for e-government. Electronic journal
of e-government, 2(2):pp75–80.

[33] Bradley, J., Reberger, C., Dixit, A., Gupta, V., and Macaulay, J. (2013). Internet of
everything (ioe): top 10 insights from ciscoâĂŹs ioe value at stake analysis for the public
sector. Economic Analysis, pages 1–5.

[34] Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C. (1992). Class-
based n-gram models of natural language. Computational linguistics, 18(4):467–479.

[35] Buchmann, A. and Koldehofe, B. (2009). Complex event processing.

[36] Buyya, R., Ranjan, R., and Calheiros, R. N. (2009). Modeling and simulation of scalable
cloud computing environments and the cloudsim toolkit: Challenges and opportunities. In
2009 international conference on high performance computing & simulation, pages 1–11.
IEEE.

[37] Byers, C. and Swanson, R. (2017). Openfog consortium openfog reference architecture
for fog computing. OpenFog Consortium Archit. Working Group, Fremont, CA, USA,
Tech. Rep. OPFRA001, 20817:27–28.

[38] Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., and Tzoumas, K. (2015).
Apache flink: Stream and batch processing in a single engine. The Bulletin of the Technical
Committee on Data Engineering, 38(4).

[39] Cavnar, W. B., Trenkle, J. M., et al. (1994). N-gram-based text categorization. In
Proceedings of SDAIR-94, 3rd annual symposium on document analysis and information
retrieval, volume 161175. Citeseer.

[40] Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M. J., Hellerstein, J. M.,
Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., et al. (2003). Telegraphcq:
Continuous dataflow processing for an uncertain world. In Cidr, volume 2, page 4.

https://www.computerworlduk.com/data/boeing-787s-create-half-terabyte-of-data-per-flight-says-virgin-atlantic-3433595/
https://www.computerworlduk.com/data/boeing-787s-create-half-terabyte-of-data-per-flight-says-virgin-atlantic-3433595/

110 References

[41] Chang, H., Hari, A., Mukherjee, S., and Lakshman, T. (2014). Bringing the cloud to the
edge. In 2014 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pages 346–351. IEEE.

[42] Chatfield, A. and Brajawidagda, U. (2012). Twitter tsunami early warning network: a
social network analysis of twitter information flows.

[43] Cheng, B., Longo, S., Cirillo, F., Bauer, M., and Kovacs, E. (2015). Building a big
data platform for smart cities: Experience and lessons from santander. In 2015 IEEE
International Congress on Big Data, pages 592–599. IEEE.

[44] Chippa, V. K., Chakradhar, S. T., Roy, K., and Raghunathan, A. (2013). Analysis
and characterization of inherent application resilience for approximate computing. In
Proceedings of the 50th Annual Design Automation Conference, page 113. ACM.

[45] Collobert, R. and Weston, J. (2008). A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the 25th
international conference on Machine learning, pages 160–167. ACM.

[Common Crawl] Common Crawl. Common Crawl. http://commoncrawl.org/.

[47] Cugola, G. and Margara, A. (2012). Processing flows of information: From data stream
to complex event processing. ACM Computing Surveys (CSUR), 44(3):1–62.

[48] Cunningham, H., Tablan, V., Roberts, A., and Bontcheva, K. (2013). Getting more
out of biomedical documents with gate’s full lifecycle open source text analytics. PLoS
computational biology, 9(2):e1002854.

[49] De, S., Zhou, Y., Larizgoitia Abad, I., and Moessner, K. (2017). CyberâĂŞphysicalâĂŞ-
social frameworks for urban big data systems: A survey. Applied Sciences, 7(10).

[50] Etzion, O. and Niblett, P. (2010). Event processing in action. Manning Publications Co.

[51] Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-M. (2003). The many
faces of publish/subscribe. ACM Comput. Surv., 35(2):114âĂŞ131.

[52] Evans, D. (2011). The internet of things: How the next evolution of the internet is
changing everything. CISCO white paper, 1(2011):1–11.

[53] Frampton, M. and Frampton, M. (2018). Apache mesos. Complete Guide to Open
Source Big Data Stack, pages 97–137.

[54] Friedewald, M. and Raabe, O. (2011). Ubiquitous computing: An overview of technol-
ogy impacts. Telematics and Informatics, 28(2):55–65.

[55] Garcia, C. and Fearnley, C. J. (2012). Evaluating critical links in early warning systems
for natural hazards. Environmental Hazards, 11(2):123–137.

[56] Giusto, D., Iera, A., Morabito, G., and Atzori, L. (2010). The internet of things: 20th
Tyrrhenian workshop on digital communications. Springer Science & Business Media.

References 111

[57] Goiri, I., Bianchini, R., Nagarakatte, S., and Nguyen, T. D. (2015). Approxhadoop:
Bringing approximations to mapreduce frameworks. In ACM SIGARCH Computer Archi-
tecture News, volume 43, pages 383–397. ACM.

[58] Golab, L. and Özsu, M. T. (2003). Issues in data stream management. ACM Sigmod
Record, 32(2):5–14.

[59] Gormley, C. and Tong, Z. (2015). Elasticsearch: the definitive guide: a distributed
real-time search and analytics engine. " O’Reilly Media, Inc.".

[60] Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., and Buyya, R. (2017). ifogsim: A
toolkit for modeling and simulation of resource management techniques in the internet
of things, edge and fog computing environments. Software: Practice and Experience,
47(9):1275–1296.

[61] Hesse, G. and Lorenz, M. (2015). Conceptual survey on data stream processing
systems. In 2015 IEEE 21st International Conference on Parallel and Distributed Systems
(ICPADS), pages 797–802. IEEE.

[62] Hewitt, C., Bishop, P., and Steiger, R. (1973). Session 8 formalisms for artificial
intelligence a universal modular actor formalism for artificial intelligence. In Advance
Papers of the Conference, volume 3, page 235. Stanford Research Institute Menlo Park,
CA.

[63] Honarvar, A. R. and Sami, A. (2019). Towards sustainable smart city by particulate
matter prediction using urban big data, excluding expensive air pollution infrastructures.
Big data research, 17:56–65.

[64] Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., and Weischedel, R. (2006). Ontonotes:
the 90% solution. In Proceedings of the human language technology conference of the
NAACL, Companion Volume: Short Papers, pages 57–60.

[65] Hunkeler, U., Truong, H. L., and Stanford-Clark, A. (2008). MQTT-S - A pub-
lish/subscribe protocol for wireless sensor networks. In 2008 3rd International Conference
on Communication Systems Software and Middleware and Workshops (COMSWARE’08),
pages 791–798. IEEE.

[66] Intrieri, E., Gigli, G., Mugnai, F., Fanti, R., and Casagli, N. (2012). Design and
implementation of a landslide early warning system. Engineering Geology, 147-148:124–
136.

[67] James, P. M., Dawson, R. J., Harris, N., and Joncyzk, J. (2014). Urban observatory
environment. Newcastle University, pages 154300–19.

[68] Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A convolutional neural
network for modelling sentences. arXiv preprint arXiv:1404.2188.

[69] Kandula, S., Shanbhag, A., Vitorovic, A., Olma, M., Grandl, R., Chaudhuri, S., and
Ding, B. (2016). Quickr: Lazily approximating complex adhoc queries in bigdata clusters.
In Proceedings of the 2016 international conference on management of data, pages
631–646. ACM.

112 References

[70] Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882.

[71] Kim, Y., Jernite, Y., Sontag, D., and Rush, A. M. (2016). Character-aware neural
language models. In Thirtieth AAAI Conference on Artificial Intelligence.

[72] Kreps, J., Narkhede, N., Rao, J., et al. (2011). Kafka: A distributed messaging system
for log processing. In Proceedings of the NetDB, volume 11, pages 1–7.

[73] Krishnamurthi, R., Kumar, A., Gopinathan, D., Nayyar, A., and Qureshi, B. (2020).
An overview of iot sensor data processing, fusion, and analysis techniques. Sensors,
20(21):6076.

[74] Kryvasheyeu, Y., Chen, H., Obradovich, N., Moro, E., Van Hentenryck, P., Fowler, J.,
and Cebrian, M. (2016). Rapid assessment of disaster damage using social media activity.
Science advances, 2(3):e1500779.

[75] Lai, S., Xu, L., Liu, K., and Zhao, J. (2015). Recurrent convolutional neural networks
for text classification. In Twenty-ninth AAAI conference on artificial intelligence.

[76] Light, R. A. et al. (2017). Mosquitto: server and client implementation of the mqtt
protocol. J. Open Source Software, 2(13):265.

[77] Lima, L. E., Kimura, B. Y. L., and Rosset, V. (2019). Experimental environments for
the internet of things: A review. IEEE Sensors Journal, 19(9):3203–3211.

[78] Lin, W., Qian, Z., Xu, J., Yang, S., Zhou, J., and Zhou, L. (2016). Streamscope: contin-
uous reliable distributed processing of big data streams. In 13th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 16), pages 439–453.

[79] Locke, D. (2010). Mq telemetry transport (mqtt) v3. 1 protocol specification. IBM
developerWorks Technical Library, 15.

[80] Looga, V., Ou, Z., Deng, Y., and Ylä-Jääski, A. (2012a). Mammoth: A massive-scale
emulation platform for internet of things. In 2012 IEEE 2nd International Conference on
Cloud Computing and Intelligence Systems, volume 3, pages 1235–1239. IEEE.

[81] Looga, V., Ou, Z., Deng, Y., and YlÃd’-JÃd’Ãd’ski, A. (2012b). Mammoth: A massive-
scale emulation platform for internet of things. In 2012 IEEE 2nd International Conference
on Cloud Computing and Intelligence Systems, volume 03, pages 1235–1239.

[82] Loper, E. and Bird, S. (2002). Nltk: the natural language toolkit. arXiv preprint
cs/0205028.

[83] Lucene, A. (2010). Apache lucene-overview. Internet: http://lucene. apache.
org/iava/docs/[Jan. 15, 2009].

[84] Luckham, D. C. (2002). The power of events: An introduction to complex event
processing in distributed enterprise systems. Addison-Wesley Longman Publishing Co.,
Inc.

[85] Lukić, M., Mihajlović, Ž., and Mezei, I. (2018). Data flow in low-power wide-area iot
applications. In 2018 26th Telecommunications Forum (TELFOR), pages 1–4. IEEE.

References 113

[86] Magerman, D. M. (1995). Statistical decision-tree models for parsing. In Proceedings
of the 33rd annual meeting on Association for Computational Linguistics, pages 276–283.
Association for Computational Linguistics.

[87] Mannila, H. and Räihä, K.-J. (1992). The design of relational databases. Addison-
Wesley Longman Publishing Co., Inc.

[88] Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., and McClosky, D. (2014).
The stanford corenlp natural language processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguistics: system demonstrations, pages
55–60.

[89] Marjani, M., Nasaruddin, F., Gani, A., Karim, A., Hashem, I. A. T., Siddiqa, A., and
Yaqoob, I. (2017). Big iot data analytics: architecture, opportunities, and open research
challenges. ieee access, 5:5247–5261.

[90] Markit, I. (2017). News release | ihs markit online newsroom.

[91] McLoughlin, S., Maccani, G., Puvvala, A., and Donnellan, B. (2021). An urban data
business model framework for identifying value capture in the smart city: The case of
organicity. Smart Cities and Smart Governance: Towards the 22nd Century Sustainable
City, pages 189–215.

[92] Meyerson, J. (2014). The go programming language. IEEE Software, 31(5):104–104.

[93] Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and Khudanpur, S. (2010). Recurrent
neural network based language model. In Eleventh annual conference of the international
speech communication association.

[94] Miraz, M. H., Ali, M., Excell, P. S., and Picking, R. (2015). A review on internet of
things (iot), internet of everything (ioe) and internet of nano things (iont). In 2015 Internet
Technologies and Applications (ITA), pages 219–224.

[95] Mohammadi, M., Al-Fuqaha, A., Sorour, S., and Guizani, M. (2018). Deep learning
for IoT big data and streaming analytics: A survey. IEEE Communications Surveys &
Tutorials, 20(4):2923–2960.

[96] Morabito, R. and Beijar, N. (2016). Enabling data processing at the network edge
through lightweight virtualization technologies. In 2016 IEEE International Conference
on Sensing, Communication and Networking (SECON Workshops), pages 1–6.

[97] Morrison, J. P. (2010). Flow-Based Programming: A new approach to application
development. CreateSpace.

[98] Morshed, A., Jayaraman, P. P., Sellis, T., Georgakopoulos, D., Villari, M., and Ranjan,
R. (2017). Deep osmosis: Holistic distributed deep learning in osmotic computing. IEEE
Cloud Computing, 4(6):22–32.

[99] Mukherjee, A., Rojas, B., and Ujhazy, H. (2020). Iot growth demands rethink of
long-term storage strategies, says idc.

114 References

[100] Murray, D. G., McSherry, F., Isaacs, R., Isard, M., Barham, P., and Abadi, M. (2013).
Naiad: a timely dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pages 439–455. ACM.

[101] Nam, T. and Pardo, T. A. (2011). Conceptualizing smart city with dimensions of
technology, people, and institutions. In Proceedings of the 12th annual international
digital government research conference: digital government innovation in challenging
times, pages 282–291.

[102] Noghabi, S. A., Paramasivam, K., Pan, Y., Ramesh, N., Bringhurst, J., Gupta, I.,
and Campbell, R. H. (2017). Samza: stateful scalable stream processing at linkedin.
Proceedings of the VLDB Endowment, 10(12):1634–1645.

[103] O’Keeffe, D., Salonidis, T., and Pietzuch, P. (2018). Frontier: resilient edge processing
for the internet of things. Proceedings of the VLDB Endowment, 11(10):1178–1191.

[104] Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., and Voigt, T. (2006). Cross-level
sensor network simulation with cooja. In Proceedings. 2006 31st IEEE Conference on
Local Computer Networks, pages 641–648.

[105] Patel, N., Mehtre, B., and Wankar, R. (2019a). Simulators, emulators, and test-beds
for internet of things: A comparison. In 2019 Third International conference on I-SMAC
(IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), pages 139–145. IEEE.

[106] Patel, N. D., Mehtre, B. M., and Wankar, R. (2019b). Simulators, emulators, and
test-beds for internet of things: A comparison. In 2019 Third International conference on
I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pages 139–145.

[107] Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543.

[108] Perwej, Y., Kerim, B., Adrees, M. S., and Sheta, O. E. (2017). An empirical exploration
of the yarn in big data. International Journal of Applied Information Systems (IJAIS),
12(9):19–29.

[109] Phengsuwan, J., Thekkummal, N. B., Shah, T., James, P., Thakker, D., Sun, R.,
Pullarkatt, D., Hemalatha, T., Ramesh, M. V., and Ranjan, R. (2019). Context-based
knowledge discovery and querying for social media data. In 2019 IEEE 20th International
Conference on Information Reuse and Integration for Data Science (IRI), pages 307–314.
IEEE.

[110] Qasha, R., Cala, J., and Watson, P. (2015). Towards automated workflow deployment
in the cloud using tosca. In 2015 IEEE 8th International Conference on Cloud Computing,
pages 1037–1040. IEEE.

[111] Qian, B., Su, J., Wen, Z., et al. (2020). Orchestrating the development lifecycle
of machine learning-based iot applications: A taxonomy and survey. ACM Computing
Surveys (CSUR), 53(4):1–47.

References 115

[112] Quoc, D. L., Chen, R., Bhatotia, P., Fetze, C., Hilt, V., and Strufe, T. (2017). Ap-
proximate stream analytics in Apache Flink and Apache Spark Streaming. arXiv preprint
arXiv:1709.02946.

[113] Ranjan, R., Garg, S., Khoskbar, A. R., Solaiman, E., James, P., and Georgakopoulos,
D. (2017). Orchestrating bigdata analysis workflows. IEEE Cloud Computing, 4(3):20–28.

[114] Ranjan, R., Rana, O., Nepal, S., Yousif, M., James, P., Wen, Z., Barr, S., Watson, P.,
Jayaraman, P. P., Georgakopoulos, D., et al. (2018). The next grand challenges: Integrating
the internet of things and data science. IEEE Cloud Computing, 5(3):12–26.

[115] Rossi, C., Acerbo, F. S., Ylinen, K., Juga, I., Nurmi, P., Bosca, A., Tarasconi, F.,
Cristoforetti, M., and Alikadic, A. (2018). Early detection and information extraction for
weather-induced floods using social media streams. International journal of disaster risk
reduction, 30:145–157.

[116] Sajjad, H. P., Danniswara, K., Al-Shishtawy, A., and Vlassov, V. (2016). Spanedge:
Towards unifying stream processing over central and near-the-edge data centers. In 2016
IEEE/ACM Symposium on Edge Computing (SEC), pages 168–178. IEEE.

[117] Shelby, Z., Hartke, K., and Bormann, C. (2014). The constrained application protocol
(coap). Technical report.

[118] Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010). The hadoop distributed
file system. In 2010 IEEE 26th symposium on mass storage systems and technologies
(MSST), pages 1–10. Ieee.

[119] Silva, B. N., Khan, M., and Han, K. (2018). Towards sustainable smart cities: A review
of trends, architectures, components, and open challenges in smart cities. Sustainable
cities and society, 38:697–713.

[120] Sonmez, C., Ozgovde, A., and Ersoy, C. (2018). Edgecloudsim: An environment
for performance evaluation of edge computing systems. Transactions on Emerging
Telecommunications Technologies, 29(11):e3493.

[121] Stals, S., Smyth, M., and Mival, O. (2019). Urbanixd: From ethnography to speculative
design fictions for the hybrid city. In Proceedings of the Halfway to the Future Symposium
2019, pages 1–10.

[122] Standard, O. (2012). Oasis advanced message queuing protocol (amqp) version 1.0.
International Journal of Aerospace Engineering Hindawi www. hindawi. com, 2018.

[123] Standard, O. (2014). Mqtt version 3.1. 1. URL http://docs. oasis-open.
org/mqtt/mqtt/v3, 1:29.

[124] Standard, O. (2019). Mqtt version 5.0. Retrieved June, 22:2020.

[125] Stanford-Clark, A. and Truong, H. L. (2013). Mqtt for sensor networks (mqtt-sn)
protocol specification. International business machines (IBM) Corporation version,
1(2):1–28.

116 References

[126] Stoller, M. H. R. R. L., Duerig, J., Guruprasad, S., Stack, T., Webb, K., and Lepreau,
J. (2008). Large-scale virtualization in the emulab network testbed. In USENIX annual
technical conference, Boston, MA, pages 255–270.

[127] Sundani, H., Li, H., Devabhaktuni, V., Alam, M., and Bhattacharya, P. (2011). Wireless
sensor network simulators a survey and comparisons. International Journal of Computer
Networks, 2(5):249–265.

[128] Sundmaeker, H., Guillemin, P., Friess, P., and Woelfflé, S. (2010). Vision and chal-
lenges for realising the internet of things. Cluster of European research projects on the
internet of things, European Commision, 3(3):34–36.

[129] Szydlo, T., Brzoza-Woch, R., Sendorek, J., Windak, M., and Gniady, C. (2017).
Flow-based programming for iot leveraging fog computing. In 2017 IEEE 26th Interna-
tional conference on enabling technologies: infrastructure for collaborative enterprises
(WETICE), pages 74–79. IEEE.

[130] Tönjes, R., Barnaghi, P., Ali, M., Mileo, A., Hauswirth, M., Ganz, F., Ganea, S.,
Kjærgaard, B., Kuemper, D., Nechifor, S., et al. (2014). Real time iot stream processing
and large-scale data analytics for smart city applications. In poster session, European
Conference on Networks and Communications, page 10. sn.

[131] Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J. M., Kulkarni, S.,
Jackson, J., Gade, K., Fu, M., Donham, J., et al. (2014). Storm@ twitter. In Proceedings
of the 2014 ACM SIGMOD international conference on Management of data, pages
147–156. ACM.

[132] Union, I. T. (2012). Internet of things global standards initiative.

[133] UNISDR, P. (2006). Global survey of early warning systems: An assessment of
capacities, gaps and opportunities toward building a comprehensive global early warning
system for all natural hazards. Platf Promot Early Warn UNISDRâĂŤPPEW UN, page
2006.

[134] Upton, E. and Halfacree, G. (2014). Raspberry Pi user guide. John Wiley & Sons.

[135] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R.,
Graves, T., Lowe, J., Shah, H., Seth, S., et al. (2013). Apache hadoop yarn: Yet another
resource negotiator. In Proceedings of the 4th annual Symposium on Cloud Computing,
pages 1–16.

[136] Venkataraman, S., Panda, A., Ousterhout, K., Armbrust, M., Ghodsi, A., Franklin,
M. J., Recht, B., and Stoica, I. (2017). Drizzle: Fast and adaptable stream processing at
scale. In Proceedings of the 26th Symposium on Operating Systems Principles, pages
374–389. ACM.

[137] Villari, M., Fazio, M., Dustdar, S., Rana, O., and Ranjan, R. (2016). Osmotic
computing: A new paradigm for edge/cloud integration. IEEE Cloud Computing, 3(6):76–
83.

[138] Weiser, M. (1991). The computer for the 21 st century. Scientific american, 265(3):94–
105.

References 117

[139] Wen, Z., Bhatotia, P., Chen, R., Lee, M., et al. (2018). ApproxIoT: Approximate
analytics for edge computing. In 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), pages 411–421. IEEE.

[140] Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., and Stoica, I. (2013). Discretized
streams: Fault-tolerant streaming computation at scale. In Proceedings of the twenty-fourth
ACM symposium on operating systems principles, pages 423–438. ACM.

[141] Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X.,
Rosen, J., Venkataraman, S., Franklin, M. J., et al. (2016). Apache spark: a unified engine
for big data processing. Communications of the ACM, 59(11):56–65.

[142] Zeng, X., Garg, S. K., Strazdins, P., Jayaraman, P. P., Georgakopoulos, D., and
Ranjan, R. (2017). Iotsim: A simulator for analysing iot applications. Journal of Systems
Architecture, 72:93–107.

Appendix A

Additional Images

A.1 Landslip EWS Data Processing

A.1.1 In-Stream Natural Language Processing

Natural Language Processing (NLP) is a set of information engineering techniques which

enables computers to process and make sense of human (natural) languages. NLP technique

has evolved from complex handwritten rules to models trained using machine learning.

Earlier machine learning techniques like decision trees[19, 86] generated rules similar to

handwritten ones, using machine learning. The application of NLP in this work is to extract

useful information from the natural language and to classify the content into different topics

of interest. Language modelling techniques apply probability distribution over a sequence

of words. Unigram, n-gram [34, 39], Exponential and Neural networks [93, 24, 71] are the

main types of language models in use. Recent studies promise high accuracy in classifying

natural language using a neural network. A unified architecture for NLP using deep learning

technique has been introduced in work [45] by NEC Labs. In this work, the input sentence can

be processed to perform part-of-speech tagging, chunking, named entity tags, semantic roles

etc. using a language model and CNN. A study [70] at New York University reveals a series

120 Additional Images

of experiments using Convolutional Neural Network (CNN) which is trained on a pre-trained

model of word vectors for sentence classification in which the model showed significant

improvement in performance in several NLP tasks. Over the years several open-source NLP

projects like NLTK[82], CoreNLP[88], Spacy[spa], GATE[48] etc. gained interest of both

academia and industry. While these methods and tools support natural language processing,

building knowledge from natural language pose several challenges.

1. Natural Language Processing Pipeline

2. Real-time Information Extraction

(a) Named Entity Recognition

(b) Geo-Location Identification

A.1.2 Social Media Content Classification

The first step to process the user text is to identify the hazard which the user is referring

to on social media. Recurrent Neural Network (RNN) [75] such as Long Short Term

Memory networks (LSTM) and Convolutional Neural Network (CNN) are widely used in

text classification. In this work, we have used CNN, a deep learning technique, [70] to

perform text classification. A model, which is custom trained using weather related text is

used. The model training and inference processes are explained in the following sections.

Information Extraction and Annotation

In this step, a scenario is developed using information about the situation from user-provided

text. NLP techniques, namely Part of Speech (PoS) tagging and Named Entity Recognition

(NER) are used to extract useful information from the text. Pre-trained NLP models for the

English language recognise Geo-location and affected entities (for example, Road, Building,

Electric Pole, etc.). The English language model,a multi-task CNN trained on OntoNotes[64],

A.1 Landslip EWS Data Processing 121

with GloVe[107] vectors trained on Common Crawl[Common Crawl] is used in this work.

This model is built for assigning word vectors, context-specific token vectors, POS tags,

dependency parse and named entity recognition.

Tokenizer PoS
Tagger Parser NERText

Text
with

Entity Tags

Fig. A.1 NLP Pipeline for Named Entity Recognition

Named entities are extracted from the user-generated content using NER. An NLP tool

called Spacy [spa] was used to perform the series of tasks required to perform NER. The

processing pipeline consists of a tokenizer, PoS tagger, Parser, and NER. The tokenizer

tokenizes sentences into words for which a PoS tag is attached based on the sentence

structure. Then the parser performs a dependency parsing of the sentence, which represents

its grammatical structure and defines the relationship between words. This step is followed by

the NER phase, which identifies the type of entity such as geo-location, person, organisation,

physical object, date, time, building/infrastructure etc. This model and pipeline gave a largely

accurate prediction of the type of the entity from the noun words tagged from the PoS tagging

phase. Figure A.2 shows an example of a sentence being processed and labelled. The entity

I saw leaning poles near Hill Cart Road at 8.00 PM

I saw leaning poles near Hill Cart Road at 8.00 PM
ENTITY:FACILITY

ENTITY:GEOLOCATION
ENTITY:TIMEENTITY:EVENT

ENTITY:OBJECT

NER

ENTITY:PERSON

Keywords & Concepts

Fig. A.2 Named Entity Recognition Example

tags are attached to the original data as metadata for storage and indexing. This extracted

information is instantiated as objects based on the concepts defined in the ontology and stored

in the knowledge base.

122 Additional Images

Model

A classification hierarchy, as shown in Figure A.3, has been defined for our prototype

system. A model is trained using 1000 user-generated texts related to hazards, which are

marked for different hazard events and warning signs (for example, Events: Flood, Heavy

Rainfall, Snow etc.; Warning Signs: Leaning Light Pole, Water Discolouration etc.). Each

class has around 200 records. TensorFlow [6], an open source library, was used for data

preparation, training and inference. The model is similar to the one proposed by Kim Yoon

in his work Convolutional Neural Networks for Sentence Classification [70], which achieved

good classification performance for different text classification tasks like sentiment analysis

and is a standard baseline for new text classification methods. The model consists of a

word embedding layer, which maps vocabulary word indices to lower dimensional vector

spaces. The convolutional layer calculates convolutions over the embedded word vectors

using different filter sizes as each convolution produces tensors of different shapes followed

by max-pooling, which is a sampling-based discretization process. These vectors are later

merged to form a large feature vector. Full details of the CNN layers and training process are

beyond the scope of this paper.

Inference

Every text message received by the Landslip agent is passed to the classifier, which outputs

the hazard event and any warning sign mentioned in the text. This step enables the system to

understand the topic from the user-generated content. Data classification for this system is a

two-step process involving the classification of hazards and warning signs. In the first step,

the classifier tags the message whether a hazard or warning sign is present in the text. The

second step involves two classifiers, one for classifying the type of hazard and the second for

categorising the kind of warning sign as per the classification hierarchy. In some cases, a

message may contain information about both hazard and warning sign. In such a scenario,

A.1 Landslip EWS Data Processing 123

the system passes this message to both classifiers. In the inference step, the result is attached

as metadata to the input text.

Source Text

OtherHazards

Landslide

Warning Signs

Increase in
Water LevelFlood Leaning

Telephone Pole

Fig. A.3 Data Classification Hierarchy

A.1.3 Mapping with Landslip Ontology

The Landslip Ontology is a conceptual model that formally represents domain knowledge

about landslides captured from domain experts of natural hazards management. Th ontol-

ogy consists of concepts and relationships but does not model concrete objects or named

individuals, that represent actual events of landslides. With the emergence of social media

as a potential resource to build the domain knowledge, social media contents to represent

actual events of landslides are dynamically instantiated within the ontology. In order to do

this however, sophisticated techniques are required to understand the context of the social

media content and extract information from the content to create individuals based on the

conceptual model. Figure A.4 shows the process o

Social Media Content
Classifica0on

messages

Information Extraction
and Annotation

Classification Model

Knowledge Base
and Ontology

Social Media

Knowledge base

Classification Model

Domain Ontology

keywords and
concepts

model

feed

Fig. A.4 Process of populating the Knowledge Base from social media content

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Research Questions and Challenges
	1.2 Research Contribution
	1.3 Publications
	1.4 Thesis Structure

	2 Background
	2.1 Related Technologies and Use Cases
	2.1.1 Wireless Communication Technologies in IoT
	2.1.2 Communication Protocols
	2.1.3 IoT Application Domains
	2.1.4 Smart Cities

	2.2 IoT Data Analytics
	2.2.1 IoT Data Flow Management
	2.2.2 IoT Data Flow Challenges
	2.2.3 IoT Data Streams
	2.2.4 Computational Models for IoT Data Streams
	2.2.5 Big Data Orchestration
	2.2.6 Message Brokers

	2.3 Simulator and Emulators for IoT
	2.3.1 Simulators
	2.3.2 Emulators

	2.4 Conclusion

	3 Emulation Tookit for benchmarking Internet of Things Networks
	3.1 Introduction
	3.2 Background
	3.2.1 Edge+cloud IoT architecture

	3.3 Research Questions
	3.4 Architecture
	3.4.1 Sensor Emulator
	3.4.2 Edge GateKeeper (EGK)
	3.4.3 Adaptive Flow Controller (AFC)

	3.5 Implementation Details
	3.6 Experimental Settings
	3.6.1 Hardware and Network Configuration
	3.6.2 Software Configuration
	3.6.3 Data Flow and Rate Configuration
	3.6.4 Latency Measurement
	3.6.5 Performance Metrics

	3.7 Evaluation
	3.7.1 Performance Baseline
	3.7.2 Backpressure Detection
	3.7.3 Data Freshness

	3.8 Discussion
	3.8.1 Data Flow Rate
	3.8.2 Backpressure Detection
	3.8.3 Data Freshness

	4 Coordinated Data Flow Control in IoT Networks
	4.1 Introduction
	4.2 Data Flow Control
	4.3 Model
	4.3.1 Dynamic Flow Allocation
	4.3.2 Adaptive Data-Rate Control

	4.4 Evaluation
	4.4.1 Experimental Setup
	4.4.2 Adaptive Data Rate Control
	4.4.3 Dynamic Flow Allocation

	4.5 Discussion
	4.5.1 Adaptive Data Rate Control
	4.5.2 Dynamic Flow Allocation

	5 Real-time Data Analysis Pipeline for Landslide Early Warning System
	5.1 Introduction
	5.2 Background
	5.2.1 Complex Event Processing
	5.2.2 Data Stream Processing
	5.2.3 Stream Processing in Early Warning Systems

	5.3 Methodology
	5.3.1 Steaming Data Pipeline: Concept
	5.3.2 Data Ingestion
	5.3.3 Data Processing
	5.3.4 Data Storage and Indexing

	5.4 Implementation Details
	5.4.1 Kafka as Data Backbone
	5.4.2 Pipeline Orchestration
	5.4.3 Elastic Search as searchable Index
	5.4.4 Landslip Early Warning System Pipeline

	5.5 Evaluation
	5.6 Discussion

	6 Conclusion and Future Work
	6.1 Future Work

	References
	Appendix A Additional Images
	A.1 Landslip EWS Data Processing
	A.1.1 In-Stream Natural Language Processing
	A.1.2 Social Media Content Classification
	A.1.3 Mapping with Landslip Ontology

