
Newcastle University, UK
School of Engineering
Microsystems Group

RUN-TIME CONFIGURABLE APPROXIMATE
MULTIPLIER DESIGN

Ibrahim Aref Haddadi

A thesis presented for the degree of Doctor of Philosophy
August 14, 2023

Copyright Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this dissertation are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this, or any other
university. This dissertation is my own work and contains nothing which is the out-
come of work done in collaboration with others, except as specified in the text and
Acknowledgements. This dissertation contains fewer than 65,000 words including
appendices, bibliography, footnotes, tables and equations and has fewer than 150
figures. The copyright of this thesis rests with the author. Copies (by any means)
either in full or of extracts, may not be made without prior written consent from
the author. Copyright ©2023 Ibrahim Aref Haddadi, all rights reserved.

Signed: Ibrahim Aref Haddadi
Date: August 14, 2023

i

Certificate of Approval

We confirm that, to the best of our knowledge, this thesis is from the student’s own
work and effort, and all other sources of information used have been acknowledged.
This thesis has been submitted with my approval.

Dr. Rishad Shafik
Prof. Alex Yakovlev
Dr. Fei Xia

ii

— Until we meet again —

In loving memory of my Brother "Slam" (1988-2022)

In loving memory of my beautiful Grandma "Lala" (1930-2022)

To the soul of my Father "Aref" who was and will always be my role model
(1962-2020)

In loving memory of my special Uncle "Abdouslam" (1965-2015)

— Ibrahim

To my beloved Mother "Rana"

To my Wonderful Wife "Eman". Thank you my darling for being with me abroad
far from our country (The Kingdom of Saudi Arabia (KSA)) and for the

unconditional support and love to fulfil such success.

To my lovely kids "Kyan" and "Aref"

Acknowledgements

I would like to express my deep gratitude to my supervisors Dr. Rishad Shafik,

Prof. Alex Yakovlev and Dr. Fei Xia for their support and guidance through my

PhD journey. Rishad and I have shared many philosophical discussions and he has

guided me to become the researcher I am today. Alex has pushed me to share my

research widely and has helped me to discover the commercial world. Dr. Fei Xia

has been there to give practical advice in all aspects of electronic design and writing.

They have always been a source of motivation and my inspirational as a researcher. I

am grateful to the College of Computer Science and Engineering (CCSE), TAIBAH

University, Kingdom of Saudi Arabia for funding my PhD study and offering this

place to finish my study abroad.

I would like also to express my gratefulness and appreciation to my colleagues

and friends in school of Engineering, especially in MicroSystems Research Group.

We have discussed many topics over the years, and they were very helpful. Special

thanks to my colleagues Dr. Turki Alnuayri and my friend Dr. Issa Qiqieh for their

help and support. I hope they continue to be successful with their research and

future careers.

vii

Abstract

The complexity of arithmetic continues to be an issue in the design of high-performance
and energy-efficient hardware. The problem is further exacerbated in systems pow-
ered by variable power levels can limit their computation capabilities. Multipliers
constitute a major component of these applications with complex logic design and
a large gate count compared to other arithmetic units. As such, there is significant
interest in designing new approaches to low-complexity multipliers.

Recently, approximate arithmetic, in particular approximate adders and multi-
pliers, have shown notable advantages to benefit from a wide spectrum of naturally
imprecise-tolerant applications, such as image processing, pattern recognition, and
machine learning (ML). The concept of approximate arithmetic involves replacing
system components of normal degrees of complexity with less complex components,
which may provide reduced accuracy. Compared to the adder, the multiplier is a
crucial component of these applications with complex logic design and a large gate
count.
This thesis investigates the possibility and profitability to trade accuracy for energy
at run-time by using configurable approximate arithmetic hardware. In the first
approach, a configurable adaptive approximation method for multiplication is pro-
posed. The extra overheads associated with in the configuration circuits prove to
be negligible compared to the multiplier’s costs. Central to the proposed approach
is a significance-driven logic compression (SDLC) multiplier architecture that can
dynamically adjust the level of approximation depending on the run-time power/ac-
curacy constraints. The architecture can be configured to operate in the exact mode
(no approximation) or in progressively higher approximation modes (i.e. 2 to 4-bit
SDLC). In the second approach, a novel ML hardware design method centred around
multiply–accumulate (MAC) units is presented. Core to the configurable MAC de-
sign is a configurable multiplier. In the third approach, a configurable modified
activation function is proposed to minimize the prediction error of the configurable
MAC design.

viii

To evaluate and validate the trade-offs, the three approaches (configurable mul-
tiplier, MAC unit and modified activation function) are designed in System-Verilog
and synthesized using Synopsys Design Compiler, employing a UMC 90nm digi-
tal complementary metal-oxide semiconductor (CMOS) technology as well as on
Field Programmable Gate Arrays (FPGAs), and then compared with other avail-
able methods. These improvements come at the expense of errors introduced into
the circuit and investigated. The efficacy of the first approach (configurable mul-
tiplier) technique is evaluated with a real life image processing application, which
consists of additions and multiplications using the proposed three multiplier config-
urations (Exact, 2- and 4-bit SDLC). The analysis considers the Gaussian blur filter
since it is widely used in image processing application, typically to reduce image
noise and artifacts by acting as a low-pass filter.

Additionally, the second and third approaches are evaluated as the key processing
blocks in a multi-layer perceptron (MLP) network in order to validate the dynamic
tunability between accuracy and power consumption. As case studies, the MLP is
trained using well-known machine learning (ML) datasets. The configurable mul-
tiplier design (first approach) can be suitably used for energy-efficient multiplier
designs, where quality requirements can be relaxed. The second and the third ap-
proaches (configurable MAC unit and activation function) can also be used within
the power-adaptive neuron modules with a minimal loss in output quality compared
to those used in previous studies.

Publications
Journal and magazines publications:
• Ibrahim Haddadi; Rishad Shafik, Fei Xia,Alex Yakovlev, Run-time Config-

urable Approximate Multiplier Design for Neural Network Applications, (in re-
view), submitted to MDPI :Computer Science and Engineering SI: Reconfigurable
Computing – Hardware/Software Co-design.
This paper presents the design and analysis of the proposed run-time configurable
adaptive MAC unit and implement the proposed MAC architecture in an ANN
and validate it by exercising different data-sets to evaluate the performance-
energy-quality trade-offs. This work appears in Chapter 4.

• Ibrahim Haddadi; Rishad Shafik, Fei Xia, Alex Yakovlev, Neural Network
Design with a Configurable Modified Activation Function, (to be submitted).
This paper presents the design and analysis of a new configurable modified ac-
tivation function, which supports run-time configuration multiplier. This work
appears in Chapter 5.

Conference publications:

• Ibrahim Haddadi; Issa Qiqieh, Rishad Shafik, Fei Xia, Muhammad Al-Hayanni
and Alex Yakovlev, Run-time Configurable Approximate Multiplier using Significance-
Driven Logic Compression, Accepted for publication in Proceedings of the 39th
IEEE International Conference on Computer Design (ICCD-2021),October 24-
27. 2021.
This paper presents the design and analysis of the proposed run-time config-
urable adaptive approximation method for multiplication. This work appears in
Chapter3.

• Adrian Wheeldon, Rishad Shafik, Alex Yakovlev, Jonathan Edwards, Ibrahim
Haddadi and Ole-Christoffer Granmo, Tsetlin Machine: A New Paradigm for
Pervasive AI, SCONA Workshop at Design, Automation and Test in Europe,
DATE, 2020.

x

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Energy-Efficient Computing . 2
1.3 Approximate Computing . 3
1.4 Multipliers in Applications . 4
1.5 MAC Unit . 5
1.6 Neural Networks . 7
1.7 Thesis Hypotheses and Questions . 8
1.8 Thesis Scope and Contributions . 8
1.9 Thesis Overview . 9

2 Background 11
2.1 Approximate Computing . 12
2.2 Approximate Circuit Design . 13

2.2.1 Imprecise Hardware Design 13
2.2.2 Non-Boolean Circuits . 14
2.2.3 The Fundamental Principle of the Approximate Circuits . . . 15
2.2.4 Exploiting Imprecision-Resilience 17
2.2.5 Taxonomy of Approximate Circuits 17
2.2.6 Significance-Driven Logic Compression (SDLC) 19

2.3 Artificial Neural Networks . 21
2.3.1 A Biological Neuron . 21
2.3.2 Models of a Neuron . 21
2.3.3 Network Architectures . 22

2.4 Learning Processes . 27
2.5 Learning Algorithms . 28

2.5.1 Feed-forward Operations . 29
2.5.2 Activation Functions . 29
2.5.3 Back-propagation Algorithm 30

i

Contents

3 Configurable Approximate Multiplier 32
3.1 Introduction . 33

3.1.1 Organization of the Chapter 33
3.2 Existing SDLC Method and Motivation 34
3.3 Proposed Configurable Approximation Hardware 36

3.3.1 Configurable Multiplier Architecture 36
3.3.2 Hardware Knobs for Run-Time Configuration 38

3.4 Error Analysis . 42
3.5 Comparative Evaluations . 44

3.5.1 Area, Delay & Power Trade-offs in ASIC Implementations . . 44
3.5.2 Area, Delay & Power Trade-offs in FPGA Implementations . . 46

3.6 Case Studies . 46
3.6.1 Energy-Aware Configuration Algorithm (EACA) 47
3.6.2 Gaussian Blur Filter . 48
3.6.3 Energy-Aware Approximation 50

3.7 Conclusions . 51

4 Neural Network Design with Run-time Configurable
Approximate MAC 53

4.1 Introduction . 54
4.1.1 Contributions . 54
4.1.2 Chapter Organisation . 55

4.2 SDLC Method and Motivation . 55
4.3 Run-time Configurable Approximate Neuron Design 56

4.3.1 Configurable Neuron Architecture 56
4.3.2 MAC unit reconfigurable circuits 58

4.4 Implementation of ANNs . 59
4.4.1 Area Reduction & Inference Accuracy in FPGA Implemen-

tations . 64
4.5 Case Study . 64
4.6 Conclusion . 66

5 NN Design with Modified Activation Function 67
5.1 Introduction . 68

5.1.1 Contributions . 68
5.2 Methods of Activation Functions . 69
5.3 Proposed Adaptive Approximation Method 69

ii

Contents

5.4 Proposed Configurable Modified Activation Function 73
5.5 Experimental Results . 75

5.5.1 Area, Delay & Power Trade-offs in ASIC Implementations . . 75
5.5.2 Area, Delay & Power Trade-offs in FPGA Implementations . . 77
5.5.3 Neuron Module Learning . 77

5.6 Case Studies . 80
5.6.1 Data Classification Results using MLP 80
5.6.2 Inference Accuracy Results for Different ANN Hardware

Configurations with Different Data-sets and Activation Func-
tions . 84

5.6.3 Modified Activation Function Area Overhead in ASIC Im-
plementations . 87

5.6.4 Energy-Aware Variation Scenarios 87
5.6.5 Configurable Neuron Architecture Scenarios 89

5.7 Conclusions . 92

6 Conclusions and Future Work 94
6.1 Summary . 95
6.2 Critical Review and Future Work . 96

iii

List of Figures

1.1 Global internet users [6]. 3
1.2 Basic design of MAC unit . 6
1.3 Fully parallel feed-forward deep neural network architecture[45]. . . . 7

2.1 Error-Resilient Paradigms [54]. 12
2.2 Taxonomy of imprecise computation in hardware [55]. 13
2.3 Example of a (2×2) multiplier: (a) exact, and (b) approximate [37]. . 16
2.4 : Taxonomy of approximate circuits [75]. 18
2.5 Three different sizes of logic clusters are used to compress par-

tial products based on their progressive bit-significance in an (8 x
8) multiplier : Dot diagram showing the impact of increasing the
depth of the logic clusters in the case of (8×8) multiplier: (a) clus-
tering a group of bits within 2 successive rows in the partial prod-
uct bit-matrix after bitwise multiplication; (b) generating a reduced
set of product terms after targeting the depth of 2-row logic com-
pression; (c) ordered matrix after applying commutative remapping
of the bit sequence resulting from the SDLC approach; (d), (e) and
(f) the same process when applying 3-bit logic compression; (g),
(h) and (i) the same process when applying 4-bit logic compression.
The dotted rectangles at the right indicate the heights of the crit-
ical columns which are further reduced compared to the accurate
accumulation tree [25]. 20

2.6 A single neuron structure [84]. 22
2.7 Neural networks Types. 23
2.8 Feedforward network with a single layer of neurons [85]. 23
2.9 Fully connected feedforward network with one hidden layer and one

output layer [86]. 24
2.10 Architectural graph of a MLP with four hidden layers [87]. 25

iv

List of Figures

2.11 Recurrent network with no self-feedback loops and no hidden neu-
rons [88]. 26

2.12 Supervised learning [96]. 27
2.13 Reinforcement Learning [95]. 28

3.1 Two different sizes of logic clusters are used to compress partial
products based on their progressive bit-significance in an (8 x 8)
parallel multiplier architecture. (a) clustering a group of bits within
two successive rows in the partial product bit-matrix after bitwise
multiplication; (b) generating a reduced set of product terms after
targeting the depth of 2-row logic compression; (c) ordered matrix
after applying commutative remapping of the bit sequence resulting
from the SDLC approach; (d), (e), and (f) the same process when
applying 4-bit depth of logic clusters. The d-bit indicates the depth
of logic cluster. 35

3.2 Process chart explaining the difference between the main stages in
(a) exact multiplication and (b) the proposed multiplication using
the SDLC approach. 37

3.3 The reduction stages of an (8 × 8) Wallace tree multiplication il-
lustrate the accumulation method for the PPM formed from exact
and two different sizes of logic clusters (shown in Figure 3.1) (a)
four reduction stages are required in the case of the (8 × 8) tradi-
tional Wallace tree multiplier(WTM); (b) two reduction stages are
required by means of the Wallace accumulation method to reduce
the PPM generated by the 2-bit SDLC(see Figure3.1 (c); (c) no re-
duction stages for the 4-bit SDLC as the height of the PPM is only
two rows(see Figure 3.1 (f)), and (d) configurable (8 × 8) Wallace
tree multiplication includes the common similarities and variations
shown in (a), (b) and (c). 41

3.4 Diagrammatic sketch of the proposed hardware architecture of the
configurable (8 × 8) multiplier with exact, 2-bit and 4-bit SDLC
modes. 42

3.5 Flowchart diagram showing the main steps for evaluating the pro-
posed design using Synopsys Design Compile. 45

3.6 Flowchart diagram showing the main steps for evaluating the im-
pact of the proposed multiplier on the final quality of image pro-
cessed by Gaussian blur filter. 49

v

List of Figures

3.7 Output quality and energy consumption for Gaussian blur filtering
using the three different configurations of the proposed (8 × 8) mul-
tiplier. 50

3.8 Different scenarios for the EACA model operate at run-time under
highly variable energy conditions while sustaining execution. 51

4.1 Neuron structure-serial processing including the proposed hardware
architecture of the configurable MAC unit. 57

4.2 Representation of the reconfigurable circuits supporting three differ-
ent modes. 58

4.3 Main steps for training and testing a Neural Network. 60
4.4 Back-propagation learning rule results for various selections of ANN

hardware configurations using Noisy XOR and Binary IRIS data-sets. 61
4.5 Inference accuracy results for various selections of ANN hardware

architectures using various data-sets. 62
4.6 Different run-time scenarios for the EACA model to operate under

highly variable energy conditions. (a) only exact configuration al-
lowed and (b) all configurations allowed. 65

5.1 The reduction stages of an (8 × 8) Wallace tree multiplication il-
lustrate the accumulation method for the PPM formed from the
exact and logic clusters of two different sizes (a) four reduction
stages are required in case of (8 × 8) traditional Wallace tree mul-
tiplier(WTM); (b) no reduction stages for the 4-bit SDLC as the
height of the PPM is only two rows, and (c) configurable (8 × 8)
Wallace tree multiplication. 71

5.2 Neuron (structure-serial) processing including the proposed hard-
ware architecture of the configurable MAC unit. 72

5.3 Simulation process of error metrics calculation. 75
5.4 A schematic representation of a single neuron architecture with the

activation function is shown (a) and the proposed modified activa-
tion function is shown in (b). 76

5.5 Flowchart diagram demonstrating the main steps for evaluating the
impact of the proposed MAC unit with modified activation function
and on a perception based Classifier. 79

vi

List of Figures

5.6 The test set perceptron classification using; (a) exact multiplier and
exact activation function ; (b) 4-bit SDLC multiplier in [102] and
exact activation function; (c) proposed 4-bit SDLC multiplier and a
configurable activation function (blue and red points represent two
classes 0 and 1, black dots mismatch classification points and the
axises show the random inputs between 0 to 255 for 8x8 multiplier . . 79

5.7 Backpropagation learning rule results for various selections of ANN
hardware configurations using different MAC configurations with
the modified Sigmoid activation function in several well-known
data-sets. 81

5.8 Backpropagation learning rule results for various selections of ANN
hardware configurations using different MAC configurations with
the modified ReLU activation function in several well-known data-
sets. 82

5.9 Inference accuracy results for various selections of ANN hardware
architectures using various data-sets with (a)- Sigmoid and (b)-
ReLU activation functions. 84

5.10 Backpropagation learning rule results for various selections of ANN
hardware configurations using different MAC configurations with
the ReLU activation function in MNIST data-set. Different run-
time scenarios for the EACA model to operate under highly vari-
able energy conditions. (a) Only Exact configuration allowed. (b)
Approximate (4-bit SDLC) configurations allowed (c) All configura-
tions allowed. 88

5.11 Backpropagation learning rule results for various selections of ANN
hardware configurations using different MAC configurations with
fixed and modified ReLU activation function in the MNIST data-
set. 92

vii

List of Tables

1.1 Summary of approximate multiplier design approaches [32]. 5

2.1 Truth table for the exact and approximate (2×2) multipliers used
to obtain comparative error analysis in Figure 2.3, with changed the
entry highlighted [37]. 16

2.2 List of Abbreviations [100]. 31

3.1 The number of full and half adders used by the accumulation stages
and CPA for different exact, approximate multipliers and the Pro-
posed configurable (8 × 8) Wallace tree. 38

3.2 MRED and NMED for different approximate configurations in an (8
× 8) configurable multiplier. 43

3.3 Comparing existing multiplier designs and the proposed configurable
design in terms of power(P), area (A) delay(DL) and Power-delay
product (PDP). 45

3.4 Comparing non-functional metrics with Kumar et al [42]. 46

4.1 Numbers of input, layers and required neurons/MACs for different
data-sets. 59

4.2 Area (A), power(P), delay(DL) and Power-delay product (PDP)
results for different MAC configurations. 63

4.3 Comparing with Ullah, S et al [148] in terms of Area reduction and
Inference accuracy. 64

5.1 The number of full and half adders used by the accumulation stages
and CPA for different exact, approximate multiplier and the Pro-
posed configurable (8 × 8) Wallace tree. 72

5.2 Normalised Mean Error Distance (NMED) for (8x8) multiplier size
with a different d-bit. 73

viii

List of Tables

5.3 Error Distance (ED), Error Rate (ER), Mean Relative Error Dis-
tance (MRED), Normalised Mean Error Distance (NMED), are dif-
ferent metrics used to evaluate a multiplier. 74

5.4 Comparing existing multiplier designs and the proposed configurable
design in terms of power(P), area (A) delay(DL) and Power-delay
product (PDP). 77

5.5 Comparing non-functional metrics with other approaches. 77
5.6 ER results for different designs (a),(b) and (c). 80
5.7 Numbers of input, layers and required neurons for different data-sets. 83
5.8 Area overhead results for the modified Sigmoid activation function

(ModifiedAF) including the additional number of adders in hidden
layers (h) and output layer (y) compared to the fixed (FixedAF)
activation function. 86

5.9 Area (A), Power(P), Delay(DL), Power-delay product (PDP), In-
ference Accuracy (IA) and Area overhead(Aoverh) results for dif-
ferent MAC configurations using fixed/modified ReLU activation
function in the hidden layers (h) and output layer (y). 91

ix

Acronyms

AI artificial intelligence.

ANN artificial neural network.

ASIC application-specific integrated circuit.

CLA carry look-ahead adder.

CMOS complementary metal-oxide-semiconductor.

CNN convolutional neural network.

CPA carry-propagate addition.

DNN deep neural networks.

EACA energy-aware configuration algorithm.

ED error distanc.

FPGA field programmable gate array.

MAC multiply–accumulate.

ML machine learning.

MLP multi-layer perceptron.

MNIST modified national institute of standards and technology.

MRBM modified radix2 booth multiplier.

PCMOS probabilistic complementary metal-oxide-semiconductor.

PPM partial product matrix.

x

Acronyms

PSNR peak signal to noise ratio.

QoR quality of the result.

RED relative error distance.

RNN recurrent neural network.

RTL register-transfer level.

SC stochastic computing.

SDLC significance-driven logic compression.

SOC system-on-chip.

VOS voltage over-scaling.

WTM wallace tree multiplier.

xi

Chapter 1

Introduction
In a wide range of computing applications, an emerging design paradigm called
approximate computing has recently evolved to exploit imprecision resilience and
achieve further improvements. This chapter presents the motivation and defines the
key concepts of the research reported in this thesis. It emphasises the importance
for approximate computing in the domain of arithmetic multiplier design to improve
energy and performance efficiency. Subsequently, the primary contributions of this
research, together with how the thesis is arranged is discussed.

1

Chapter 1. Introduction

1.1 Motivation

Designing high-performance and energy-efficient hardware still has difficulties due
to the complexity of arithmetic. The issue is even worse in systems powered by
variable power level since changing power levels can restrict their ability to perform
computations. In the past, researchers have worked on low-level modifications that
focus on common arithmetic circuits and have investigated and designed circuits
such as multipliers [1], [2] or made application-specific modifications [3]. However,
these techniques have not been implemented in systems that are designed to operate
under varying power/energy conditions, such as those used to harvest power from
ambient sources that may exhibit variations in spatial and temporal dimensions,
by two or more orders of magnitude [4]. This presents new challenges in operating
devices powered by such energy sources, specifically those with varying power en-
velopes. Despite this, the device must make forward progress with its computations
and deliver sufficient computational capacity under extreme power conditions [5].
To meet the requirements of these applications, the current study investigates the
factors that should be considered in designing these types of new devices, here by
using the advantages of approximate computing, ML techniques and a system to
allocate an accelerator and optimise hardware according to power constraints. The
motivation of this work is introduced as follows.

1.2 Energy-Efficient Computing

The ever-evolving digital world’s present processing capability cannot keep up with
the demands for computational performance brought on by the large amounts of
global data. Furthermore, there are already more than 4.95 billion internet users
worldwide (as of January, 2022) [6]. Mobile devices were used by the vast majority of
users to access their preferred platforms see Figure 1.1. Additionally, the exponen-
tial rise in the production of digital data worldwide [7] is linked to the evolution of
the global electricity demand for data centres [8]. This makes it possible to discover
substitute computer systems that offer the required processing performance while
consuming considerably less energy. The exponential scaling of integrated circuits
and many-core system-on-chip (SOC) technologies have helped to meet the demand
for better computational performance over the past three decades [9]. However,
the rapid development of these technologies coincides with reports that Moore’s
Law, which states that the number of transistors on a microchip doubles every two
years, no longer applies [10]. As a result, technology scaling won’t likely be a driv-

2

Chapter 1. Introduction

24/09/2022, 16:47 02-Global-headlines-DataReportal-20220124-Digital-2022-Global-Overview-Report-v01-Slide-9-1024x576-1-1.png (1024×5…

https://wearesocial.com/wp-content/uploads/sites/2/2022/01/02-Global-headlines-DataReportal-20220124-Digital-2022-Global-Overview-Report-v… 1/1

Figure 1.1: Global internet users [6].

ing force behind computing in the near future [11]–[14] as the downscaling of the
complementary metal-oxide semiconductor (CMOS) is entirely strained to its limits.
Furthermore, at different abstraction levels, the per-transistor performance power
efficiency is not keeping up with established power-reduction strategies [15]–[17].
With time, this leads to the so-called Dark Silicon era [18], in which it could only
be possible to turn on a small portion of the on-chip computer resources in order
to maintain safe thermal and power density restrictions. In order to increase func-
tionality of computing platforms across the board, from servers and data centres to
mobile and deeply embedded devices, there is an actual need to investigate new com-
puting paradigms. Examples of existing energy efficiency design methods include
precision scaling [19], approximate logic designs [5] and new analog or mixed-signal
circuit designs [20]. The approximate computing paradigm is a viable strategy for
achieving energy efficient [2], [21]–[25]. The following section provides a thorough
introduction to approximation computing and multiplier design.

1.3 Approximate Computing

There is a constant need for increased computing performance at reduced energy
cost. It is unlikely that improvements from manufacturing processes alone, such
as technology nodes, voltage scaling or many-core system-on-chip, will be able to
cope with this challenge. Thus, there is a genuine need to develop disruptive design

3

Chapter 1. Introduction

approaches to achieve transformational energy reductions. Approximate computing
systems design is a promising approach to this end [2], [23].

The basic idea of approximate arithmetic, which is approximate computing, in-
volves replacing system components operating at normal levels of complexity with
less complex components in order to achieve a number of goals such as lower power
consumption, high performance,accuracy and a very low area. However, in terms of
accuracy, error-resilience can be defined as a technique used to deliver acceptable
results. Moreover, to reach this point, two factors need to be focused on, namely
perceptual resilience in relation to error and algorithmic resilience [22], [24].

Over the years, a number of approximate computing approaches have been pro-
posed. These approaches aim to reduce the complexity of the circuits and systems
in terms of their computation latency and energy consumption. Approximations
can be introduced at all design levels, starting from the circuit [26] via the logic [27]
and the design [28] to programming language [29] and algorithms [30], [31]. The
common design techniques in approximate circuit designs including functional, tim-
ing (voltage over-scaling (VOS) and over-clocking) approximations and systematic
design methodologies with a summary of the related work, are described in further
detail in the next chapter.

1.4 Multipliers in Applications

In many applications, multipliers are the most significant part due to two main
reasons. The first reason is that multipliers in modern types of microprocessors are
identified as having comprising complex logic design owing to their function unit
for data processing. The second reason is that computation-intensive applications
require a massive multiplication operation in order to generate results. Furthermore,
these two factors have led to a focus on approximate fixed-point multipliers and
research into their design, due to its impact on overall system power consumption
as well as performance [32].

4

Chapter 1. Introduction

Table 1.1: Summary of approximate multiplier design approaches [32].
References Scheme Limitations
[33], [34] Aggressive voltage scaling:

reduce the current value of
the input voltage underneath
its nominal value.

Unexpected errors generated
by time, generally impacting
the most significant bit.

[35], [36] Truncation: elimination from
the least significant columns
of partial products.

The resulting errors are in-
creased as more columns are
eliminated.

[37], [38] Modular re-design: inaccu-
rate small blocks of multipli-
ers.

The critical path may not be
reduced by this technique.

[32] sums up aspects of as well as the limitations of studies in the area of approx-
imate computing listed in Table 1.1. [33], [34] worked on timing behaviour and how
to adjust it by using specific voltage scaling techniques. Moreover, working lower
than minimal required voltage to decrease the required energy consumption will af-
fect with the loss of accuracy because of the number of the errors that will appear.
While, [35], [36] focus on reducing the area and energy by using functional modifi-
cations which can handle logic reduction techniques using Boolean equivalence.

As a consequence of reducing the number of columns, energy reduction is accom-
plished. Conversely, error levels will rise. Likewise, modules can be redesigned to
use low complexity combinational logic, which is known as different effective method
[37], [38]. Using this technique can help to design multipliers with greater energy
efficiency by using small approximate blocks. As a result of using this technique,
the number of errors will raise the cost of increasing the size of the multiplier. In
one proposed design of an energy-efficient approximate multiplier, an approach was
used called Significance-Driven Logic Compression (SDLC) [25]. This is an algo-
rithm that produces partial product rows depending on their bit significance [25].
To minimize the number of product rows, the algorithm is followed by combative
remapping.

1.5 MAC Unit

multiply–accumulate (MAC) unit is normally made of three parts which are a
multiplier, adder and accumulator (pipeline registers). So, an n-bit type of MAC
consists of an 8-bit multiplier, a 17-bit adder, and an 18-bit accumulator. Figure

5

Chapter 1. Introduction

1.2 shows the design of the normal MAC unit [39].

17-bit Register

17-bit Adder

18-bit Register

18-bit Accumulator Register

8-bit Multiplier

8-bit data8-bit data

Outputs

Figure 1.2: Basic design of MAC unit
[39].

Many researchers have been working on the design of the MAC unit, notably on
the architectures required to design advanced MAC unit modules that optimize for
power, area and timing parameters. A considerable amount of literature is available
on designing MAC units due to their significance in different applications. For ex-
ample, [40], [41] and [42] target exact designs without considering approximation for
power reduction. Existing work on an approximate MAC unit is limited compared
to other functional units. For example, Dutt et al. [43] proposed an approximate
radix-2 hybrid redundant MAC unit based on a redundant number system. The pro-
posed design exploits an approximate hybrid redundant adder as the basic building
block for both addition and multiplication operations in the MAC unit. However,
a significant energy gain mandates approximating 40 out of the 64 bits in relation
to the results, which significantly degrades the output quality significantly. An ap-
proximate MAC unit based on partial products compression and elimination, was
proposed in [44].

The parallel information processing structure known as an artificial neural net-

6

Chapter 1. Introduction

work (ANN) comprises of processing units. Therefore, it is necessary to build an
effective processing unit that also offers greater performance in the computation
time. The MAC unit (multiplication and accumulation) and the activation unit
make up the processing unit. The following section describes the usage of the MAC
unit as arithmetic operations of the modular electronic neurons.

1.6 Neural Networks

An artificial neural network (ANN) is characterised by a large number of simple
processing neurons like processing elements or nodes, which are the fundamental
components of an ANN [46]. Two different processing elements in the networks are
processing units and topology. Processing units are typically, MAC and an activa-
tion unit [47]. Established on the processing unit the performance of the network is
increased. Two topologies are in the ANNs, one comprises feed forward networks,
whilst the other is feedback or recurrent networks. Feed forward network consists of
single layer, multilayer perception and radial basis function. Recently, the research
on artificial neural network algorithms and ML has increased to the level of human
beings in specific fields. In particular, researches pertaining to hardware accelera-
tors [48], [49] such as deep neural networks (DNN) have been extensively adopted
in many computer vision areas such as image processing, medical imaging, activity
recognition and robotics. This is because of the performance of the parallel process
calculators that have been improved to handle a large number of computations and

n11

n12

....
n1N

Input Layer

n21

n22

....
n2N

Hidden Layer

n(e-1)1

n(e-1)2

....
n(e-1)N

ne1

ne2

....
neN

Output Layer

Activation
Function

Artifical NeuronW1

W2

Wn

b

MAC
Operation

Bias
+1

x1

x2

xn

f(x)

Figure 1.3: Fully parallel feed-forward deep neural network architecture[45].

7

Chapter 1. Introduction

weights for ANN [50]. Typically, DNNs conduct the challenging multiplication to
update synaptic weights using high-precision values, for example 24-bit, 32-bit or
even 64-bit. The key factor requiring the extremely complex multiply-accumulate
(MAC) circuits with significant energy consumption is the high-precision multipli-
cation in DNNs [51](see Figure 1.3). Neural networks (NNs), often referred to as
"connectionist models" or "concurrent connections," have witnessed initial interest.
Indeed, the study of connectionism, another name for NN, has come back into fash-
ion in recent years, and there is now a substantial amount of global research being
conducted in this field. Many facets of computing are expected to undergo a renais-
sance thanks to NN technology. The phrase "neural networks" conjures up countless
vivid images. It implies devices that resemble neurons and might be loaded with
overtones of science fantasy associated with the Frankenstein legend. In brief, a
NN is a linked collection of discrete processing "nodes" or cells, whose operation is
somewhat analogous to that of a biological neuron.

1.7 Thesis Hypotheses and Questions

Hypotheses are in the context of configurable approximate arithmetic hardware,
must address the following points:

• (a)- Is it possible and profitable to trade accuracy for energy at run-time by using
configurable approximate multiplier design ?

• (b)- Can the target design work against the power consumption of the error
correction (training) ?

• (c)- Can every approximate neuron (includes approximate multiplier and acti-
vation function) be used functionally the same as or approximately the same as
exact neuron (includes exact multiplier and activation function) ?

1.8 Thesis Scope and Contributions

This thesis attempts to address the above fundamental questions by exploring promis-
ing research directions in the development of energy-efficient configurable approxi-
mate arithmetic hardware. It presents novel design approaches for improving energy
and performance efficiency of configurable approximate multiplier with variable-
accuracy implementations. From the perspective of levels of abstraction, the re-
search work in this thesis focuses on modifying the behavioural description of the

8

Chapter 1. Introduction

multiplier design from gate level and register-transfer level (RTL). The aim is to
develop a run-time configurable adaptive approximation method for multiplication
that is capable of managing the energy and performance trade-offs. Using this
architecture (configurable multiplier), a configurable-approximation MAC unit is
implemented that is the fundamental arithmetic component in Neural Networks
based ML systems. Additionally, a configurable modified activation function was
proposed to minimize the prediction error of the configurable-approximation MAC
unit. Points below are emphasize the thesis contribution’s architecture as follows:

• propose a new multiplier architecture using variable approximation, which sup-
ports run-time configuration (Chapter 3, Thesis Questions 1.7-(a));

• propose a new MAC design using variable approximation, which supports run-
time configuration by implementing the proposed MAC design in an ANN and
validating it by way of applying different data-sets to evaluate the performance-
energy-quality trade-off (Chapter 4,Thesis Questions 1.7-(b));

• propose a new neuron design with configurable modified activation function
(Chapter 5,Thesis Questions 1.7-(c)).

1.9 Thesis Overview

This thesis is organized into six chapters. The following is a summary of the work
carried out in the thesis:

Chapter 2 outlines in a logical manner widely used and recently reported meth-
ods for energy-efficient imprecise hardware. It covers approximate circuit design
approaches and describes the purposes of approximate computing. A survey of the
most recent approximative multiplier designs is then presented. In order to highlight
their similarities and distinctions, different design methodologies are reviewed and
categorised using a multi-dimensional taxonomy. Chapter 3 proposes a run-time
configurable adaptive approximation method for multiplication that is capable of
managing the energy and performance tradeoffs — ideally suited in these systems.
Central to the approach is a significance-driven logic compression (SDLC) multi-
plier architecture that can dynamically adjust the level of approximation depending
on the run-time power/accuracy constraints. Results compared to other available
approaches are also shown.This chapter exhibits a case study of image processing ap-
plication using Gaussian blur filter to evaluate the efficacy of the proposed technique
with a real life application. Chapter 4 proposes a new MAC architecture taking ad-
vantage of the ability of the configurable adaptive approximate multiplier approach,
which supports run-time configuration. This chapter presents the assessment of

9

Chapter 1. Introduction

the capabilities of the configurable-approximation MAC units as the key process-
ing block in an artificial neural network (ANN). Additionally, the chapter provides
the implementation of the proposed MAC architecture in an ANN and validates it
by exercising different data-sets to evaluate the performance-energy-quality trade-
offs. Chapter 5 presents a new neuron design with configurable modified activation
function. A configurable modified activation function was proposed to minimize the
prediction error from the approximate configuration. The methods of approximation
of the activation functions are developed and modified using piecewise linear and
approximation. This chapter exhibits two case studies; a machine learning applica-
tion using perceptron classifier and backpropagation learning rule results for various
selections of ANN hardware configurations using different MAC configurations with
the Sigmoid activation function on several well-known data-sets. Chapter 6 outlines
the contributions and main aspects of this thesis, demonstrating a critical analysis
of the research as well as possible future directions.

10

Chapter 2

Background
During the last decade, there has been an increasing interest in approximate com-
puting as one of the most promising energy-efficient computing paradigms. Approx-
imate computing exploits the flexibility provided by inherent application resilience
in hardware or software implementations for more performance and energy gains.
Approximate computing research combines insights from hardware engineering, ar-
chitecture, system design, programming languages and even application domains
similar to image processing and ML. However, approximate computing based on
software techniques has been considered out of the scope for this thesis. This chap-
ter highlights the basic concepts behind approximate circuits to understand the
motivation and the choices made in the context of this work.

11

Chapter 2. Background

2.1 Approximate Computing

This particular section will cover the design of the most important component of
the MAC unit, specifically the multiplier. Additionally, this section reveals sev-
eral multiplier designs using approximate computing methods which can improve
the traditional design strategies concerning power reduction. The basic idea of ap-
proximate arithmetic, which is approximate computing, involves replacing system
components operating at normal complexity levels with less complex components in
order to achieve a number of goals, such as lower power consumption, high perfor-
mance, very low area and accuracy. However, in terms of accuracy, Error-resilience
can be defined as a technique used to deliver acceptable results. Moreover, to reach
this point, two factors need to be focused on, namely perceptual resilience to er-
ror and algorithmic resilience [22], [52]. Figure 2.1 shows the different types of
error-resilience paradigms. Moreover, stochastic computing (SC) is the second type
of error-resilience paradigm known as a low-cost alternative in the field of conven-
tional binary computing. Additionally, this type has several other advantages. For
example, in terms of representing information as well as processing, it applies the
characteristics of digitised probabilities. A further advantage is that arithmetic units
in SC are very low in complexity.

Despite the fact that the advantages connected with SC were considered to be
extremely significant in the past, there were disadvantages which meant that it
was seen as impractical due to low a performance in computation as well as low
accuracy [53]. According to Intel, probabilistic computing is not a new study area
and working on algorithms as regard deep learning and high-performance computing
can generate new and valuable knowledge. As a consequence, research during the
next few years is likely to achieve significant improvements in AI systems including
in hardware design; for instance, in reliability, security, serviceability and high-
performance computing [54].

Error-Resilience Paradigms

Approximate Computing Stochastic Computing Probability Computing

Figure 2.1: Error-Resilient Paradigms [54].

12

Chapter 2. Background

2.2 Approximate Circuit Design

In the literature, there are various research efforts devoted to addressing different
designs relating to imprecise computing in hardware. In this section, the hardware
that does not produce the exact output at all times by imprecise hardware is denoted.
The reason for this concept is to ensure it includes a variety of existing designs that
can lead to error in the output, such as in approximate, probabilistic and non-
Boolean circuits. The following subsection enables the reader to understand the
scope of approximate circuit design by distinguishing the work on it from related
but conceptually distinct efforts in probabilistic and non-Boolean circuits.

2.2.1 Imprecise Hardware Design

This section presents imprecise hardware, including probabilistic, non-Boolean and
approximate designs, to understand the area of the approximate circuits from other
related efforts in the literature. Figure 2.2 illustrates a taxonomy of related terms in
this area. Therefore, these terms are briefly discussed along with some explanatory
instances, as follows:

Imprecise Computation in Hardware

Probabilistic Non-Boolean Approximate

Figure 2.2: Taxonomy of imprecise computation in hardware [55].

Stochastic circuits use three computational techniques: probabilistic complementary
metal-oxide-semiconductor (PCMOS), quantum, and stochastic circuits, depending
on the circuit, which is inherently stochastic in operation. While PCMOS and quan-
tum circuits and signals are stochastic, probabilistic circuits use deterministic means
to represent and process probabilistic data [55], [56]. These computer techniques
are briefly described below.

• Probabilistic CMOS
Probabilistic CMOS is a particular form of complementary metal-oxide-semiconductor
(CMOS) termed PCMOS that was invented in anticipation of competing with
current low power CMOS technology. This is motivated by hardware-specific
"bug" behaviour when to smaller technology nodes. This is because it is sus-
ceptible to process variability and noise. Consider that CMOS devices have an
exponential relationship between accuracy probability (P) and switching energy

13

Chapter 2. Background

(E). To this end, PCMOS devices can use noise as a resource to achieve low
power, high-performance computations [14], [57], [58].

• Quantum Circuits
Quantum circuits show different kinds of intrinsically probabilistic calculations
that perform efficient algorithms for stubborn problems such as classical computer
science [59], [60]. B. Fast factorization of numbers [61], [62], such as fast number
factorization [63]. According to the laws of quantum physics, quantum circuits
are in multiple states and offer tremendous processing power due to their ability
to perform one possible sequential task simultaneously and quantum computing
data processes in the form of quanta.

• Stochastic Circuits
Stochastic circuits are a class of arithmetic circuits in which numbers are rep-
resented by random values in a series "stream" or a "bundle" of parallel [64].
The main attraction of stochastic hardware is the ability to perform complex
operations with simple circuits. However, there are certain drawbacks to such
calculations. For example, meeting higher accuracy requirements exponentially
increases the computational time of a stochastic circuit. This is especially true
if the correlation between the signals in the circuit is not guaranteed to be low
enough [65].

2.2.2 Non-Boolean Circuits

Non-Boolean computing refers to the class of computers that use analogue devices
to store/process data. For example, the bit is the truth value (0 or 1) [66]–[68].
Non-Boolean circuits can exceed these definitions. This has been proven in various
arithmetic tasks. For instance, the simulation of biological systems using analogue
transistors [69], has proven to be much more efficient than digital computing. How-
ever, similar calculations use continuous values, so the process cannot be reliably
repeated with exact equivalence [70]. In addition, existing analogue computers must
be manually programmed, i.e., is a complex process that is very time-consuming for
large, application-specific simulations [71]. However, there is still the opportunity
to investigate the potential of these technologies to perform useful non-Boolean cal-
culations.

14

Chapter 2. Background

2.2.3 The Fundamental Principle of the Approximate Circuits

A class of computing known as approximate circuits uses deterministic designs to
provide outputs with an acceptable level of accuracy in the pursuit of enhanced
performance and energy-efficiency. However, it often utilises statistical properties
to trade quality for energy/power reduction [22]. For instance, Figure 2.3 delineates
the Exact and Approximate circuits for (2×2) multiplier suggested in [72]. The
error statistics of the approximate circuit are displayed in the last row of Table 2.1.
The primary goal is to introduce error into the multiplier by manipulating its logic
function.

The fundamental principle of the above imprecise hardware designs (i.e., proba-
bilistic, non-Boolean and approximate), is to trade minor accuracy loss in the output
so as to improve performance and energy efficiency in emerging computing systems.
It is feasible to address the result of (2×2) multiplication using just three bits in-
stead of four. Consequently, the approximate circuit has an incorrect output out of
the sixteen possible inputs (with a magnitude of 9 − 7 = 2 and a probability of 1/16
(assuming a uniform input distribution)). However, the approximate multiplier in
Figure 2.3 - (b) has nearly half the area of the Exact (a), with a shorter critical path
and is also less interconnected. Thus, the approximate version offers the potential
for significant dynamic power reduction for the same frequency of operation, due to
smaller switching capacitance. Nevertheless, a taxonomy of approximate circuits is
further discussed in the following sections, presenting their potential to benefit many
emerging applications using different design approaches. In the following subsection,
the intrinsic attributes of imprecision-resilience in a wide range of applications are
defined [37].

15

Chapter 2. Background

(a)

(b)

Figure 2.3: Example of a (2×2) multiplier: (a) exact, and (b) approximate [37].

Table 2.1: Truth table for the exact and approximate (2×2) multipliers used to obtain
comparative error analysis in Figure 2.3, with changed the entry highlighted [37].

Input Outputs Error
B1 B0 A1 A0 Exact Approximate Free Distance
0 0 0 0 0000 0000 YES 0
0 0 0 1 0000 0000 YES 0
0 0 1 0 0000 0000 YES 0
0 0 1 1 0000 0000 YES 0
0 1 0 0 0000 0000 YES 0
0 1 0 1 0100 0100 YES 0
0 1 1 0 0010 0010 YES 0
0 1 1 1 0011 0011 YES 0
1 0 0 0 0000 0000 YES 0
1 0 0 1 0010 0010 YES 0
1 0 1 0 0100 0100 YES 0
1 0 1 1 0110 0110 YES 0
1 1 0 0 0000 0000 YES 0
1 1 0 1 0011 0011 YES 0
1 1 1 0 0110 0110 YES 0
1 1 1 1 1001 0111 NO 2

16

Chapter 2. Background

2.2.4 Exploiting Imprecision-Resilience

By eliminating the necessity for operations to be absolutely accurate or completely
deterministic, approximate computing takes advantage of the inherent resilience in a
wide range of hardware implementations. Thoughts on how to use faults to shorten
operation times and save energy have just begun to surface. Because of measur-
able trade-offs and application-based error-resilience, errors are increasingly being
included into hardware design as purposeful features. It is possible to define error-
resilience as the ability of a system to generate usable outcomes even when job
computations are performed inaccurately. A deeper understanding of inherent re-
silience applications is necessary for approximation computing design [22]. Utilizing
perceptual restriction can enhance performance and energy efficiency (i.e., errors are
not recognisable because of human perception capabilities, e.g., in multimedia appli-
cations). The functional equivalence between the specification and implementation
is not necessary for these applications to function properly. These applications can
be generally categorised into four groups and are frequently found in hardware cir-
cuits for mobile, embedded, and server systems [22], [59], [73]:

• Applications using analogue inputs that analyse noisy real-world data from sen-
sors, such voice recognition, image processing,

• Multimedia, image rendering, and sound synthesis are examples of applications
using analogue output that are designed for human perception,

• applications like ML and web search that lack a clear solution, and

• programmes that iteratively process large volumes of redundant data, with the
number of iterations determining the quality of the result (QoR). Due to this
redundancy, an algorithm can frequently be lossy and still be adequate. In
the aforementioned applications, approximate circuits take use of imprecision-
resilience and significantly reduce delay and energy usage. The next discussion
will cover various explicit design techniques that can be used to accomplish this.

2.2.5 Taxonomy of Approximate Circuits

Applying the concept of approximate computing in hardware consists of two basic
design approaches [2], [23], [74]:

• Timing-induced approximation (voltage over-scaling (VOS) and over-clocking),
and

17

Chapter 2. Background

• Functional approximation.

Approximate Circuits

Timing-inducedFunctional

Over-ClockingVoltage Over-Scaling

Figure 2.4: : Taxonomy of approximate circuits [75].

Figure 2.4 demonstrates a taxonomy of design approaches in approximate cir-
cuits. The voltage over-scaling [75], [76] and over-clocking [77], [78] approaches use
ordinary circuits that work perfectly fine under usual circumstances.

The principal design approach can reduce power consumption by scaling the sup-
ply voltage below the expected value, which can generate the occurrence of occa-
sional violations. Typically, in CMOS technology, the power consumption associated
with the task is dominated by dynamic power dissipation Pdynamic, which is given
by [79]:

Pdynamic = Ceff .V 2
dd.f (2.1)

Where (Vdd) is the supply voltage, (Ceff) is the effective switched capacitance,
and f is the clock frequency. In this manner, scaling down the supply voltage leads
to an overall quadratic reduction within the energy to total a task. Nevertheless,
aggressive scaling of supply voltage result in timing errors while maintaining a fixed
performance. The literature has shown different methods to reduce the effect of
such caused errors in the systems, including adding error detection and correction
circuits, which often operate within standard supply voltage [80].
Over-clocking can accomplish superior performance by enhancing the circuit’s work-
ing frequency over the highest frequency. This bring about the occurrence of timing
errors but better overall performance [77], [78]. Generally, the circuit will have
a maximum “stable” speed for any voltage that still operates correctly. However,
while working on a constant voltage, a designer may trade the manufacturer’s safety
margin by setting the device to run in the higher end of the margin.
Unlike voltage/frequency over-scaling, functional approximation does not use the
original circuit but a specially designed one instead. This circuit is redesigned with-

18

Chapter 2. Background

out the fully Boolean logic implementation described in the specification. For in-
stance, a standard method for implementing functional approximation is to omit
the less significant bits of the result by removing related logic. This is expected
to reduce the circuit complexity (i.e., critical path) and, therefore, achieve more
performance/energy efficiency than the accurate version, with some error in the less
significant bits of output. However, the approaches mentioned above used by ap-
proximate circuits are further discussed from the perspective of multiplier design
given that it is the central theme of this thesis. The following subsection introduces
a brief overview as regards applying the concept of approximate computing in arith-
metic circuits.

2.2.6 Significance-Driven Logic Compression (SDLC)

Recently, Qiqieh et al. [25] proposed different levels of logic compression depend-
ing on bit significance, namely significance-driven logic compression (SDLC). Their
investigation highlighted energy-accuracy trade-offs. The partial product terms
are combined and compressed progressively to reduce the carry propagation chain
length. Figure 2.5 shows an illustration of the approach using a dot notation in
three steps. Three compression techniques are depicted using different logic cluster
sizes in a 8-bit multiplier circuit. The first step aims to form a cluster of several
rows in the partial product terms depending on the number of logic compression:
2-,3- or 4-bit from the groups after the multiplication operation. The second step
is accumulation, which refers to the generation of a reduced partial product after
applying the logic compression type. The third step subsequently applies a commu-
tative remapping of the bit sequence resulting from the SDLC approach.

Figure 2.5 demonstrates the dotted rectangles in the third step indicating the
critical column’s height, which is reduced by half compared to the accurate ac-
cumulation tree in step 1. After applying these three steps, the accuracy of the
results varies depending on the size of significant bits, seeing as more compression
(i.e., clustering of rows) is performed for low significance bits and progressively less
compression is performed for higher significance bits. By doing so, the product is
generally approximate with minimum accuracy loss. However, due to shorter carry
chain paths the energy is reduced drastically.

19

Chapter 2. Background

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.5: Three different sizes of logic clusters are used to compress partial products
based on their progressive bit-significance in an (8 x 8) multiplier : Dot diagram show-
ing the impact of increasing the depth of the logic clusters in the case of (8×8) multi-
plier: (a) clustering a group of bits within 2 successive rows in the partial product bit-
matrix after bitwise multiplication; (b) generating a reduced set of product terms after
targeting the depth of 2-row logic compression; (c) ordered matrix after applying com-
mutative remapping of the bit sequence resulting from the SDLC approach; (d), (e) and
(f) the same process when applying 3-bit logic compression; (g), (h) and (i) the same
process when applying 4-bit logic compression. The dotted rectangles at the right indi-
cate the heights of the critical columns which are further reduced compared to the accu-
rate accumulation tree [25].

Although SDLC method provides substantial energy reductions, It lacks config-
urability. Put differently, the accuracy cannot be adjusted dynamically with variable
compression levels. As a result, the multiplier models produced can provide only a
specific range of performance, energy and power due to static design.

20

Chapter 2. Background

2.3 Artificial Neural Networks

The human brain which has inspired work on ANN computes entirely differently
from the conventional digital computer. It can organise its structural constituents
known as neurons to perform certain computations. For example, pattern recogni-
tion, perception and motor control are considerably quicker than the fastest digital
computer in existence these days.

Consider, for instance, human vision, which is an information-processing task
[81]–[83] At birth, a brain has an excellent system and the capability to develop via
experience or knowledge. Specifically, the brain routinely accomplishes perceptual
recognition tasks. For instance, a familiar face embedded in an unfamiliar scene can
be recognised in approximately 100-200 ms, whereas for functions of much lesser
complexity it may take days on a conventional computer.

Experience is created over time, with the most dramatic development, for ex-
ample, the hard-wiring of the human brain during the first two years from birth,
although the growth, which is termed the training stage, continues well beyond that
stage. The interest in this work is primarily confined to an introductory class of
neural networks that perform valuable computations through a process of learning.

A neural network is a machine designed to model how the brain performs a par-
ticular task or function of interest in its most common form. Networks are generally
implemented using electronic components or simulated in software on a digital com-
puter. To achieve good performance, neural networks use large connections of simple
computational cells called "neurons" or "processing devices" to attain high perfor-
mance. Therefore, the following definition of a neural network that is considered an
adaptive machine can be provided. The next section introduces the components of
the neural network.

2.3.1 A Biological Neuron

A biological neuron is the most basic data processing unit in the body’s nervous
system, the primary controlling, regulatory and communicating system. Biological
neurons are made up of the following parts: Dendrites (input), Cell body, Axon
(output). A biological neuron receives signals from its dendrites, processes the
signal and outputs the signal from its axon based on the input signal [84].

2.3.2 Models of a Neuron

Neural networks are comprised of neurons, also known as nodes or perceptrons.
Here, three basic elements of the neural model are identified:

21

Chapter 2. Background

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 2.6: A single neuron structure [84].

• A set of synapses or connecting links, each of which is characterised by a weight
or strength of its own.

• An adder for summing the input signals, weighted by the respective synapses of
the neuron and

• an activation function for limiting the amplitude of the output of a neuron.

A neuron is a computational unit with one or more weighted input connections.
The neurons are split between the input, hidden and output layers. A simple oper-
ation is shown in Figure 2.6, where the single neuron accepts the serial processing
of weights and parallel input pairs. Each pair is multiplied together and a running
total is recorded. Once all the input pairs have been processed, the final sum is
passed through the activation function to produce the neuron’s output.

Here, w is represents the weights, b denotes the bias, whilst x signifies the input
activations of a neuron. The Equation 2.2 represents the activation function for
introducing non-linearity in the network model.

f(x) =
∑

(xiwj + b) (2.2)

2.3.3 Network Architectures

Neurons in neural networks are structured tight and linked to the learning algorithms
used to train the network. However, the classification of learning algorithms is
considered in the next section(see section 2.3). The development of different learning
algorithms is taken up in subsequent chapters of this work. This section, focus on
network architectures (structures). In general, three fundamentally different classes
of network architectures may be identified (see Figure2.7 :

22

Chapter 2. Background

Types of Neural Networks

Artificial Neural Networks (ANN)

Multilayer Feed ForwardSingle Layer Feed Forward

Deep Neural Networks (DNN)

Recurrent Neural Networks (RNN)Convolutional Neural Networks (CNN)Multilayer Perceptron (MLP)

AlexNet

VGG-16

GoogleNet

ResNet

LSTM (Long Short-Term Memory) Networks

Figure 2.7: Neural networks Types.

• Single-Layer Feedforward Networks
In a layered neural network, neurons are organised into layers. The simplest form
of a layered network is the input layer of the source node, which is projected onto
the output layer (computing node) of the neuron, although not the other way
round. Specifically, this network is strictly feedforward, when there are four
nodes on both the input and output layers, as shown in Figure 2.8 when there
are four nodes on both the input and output layers. Such networks are called

Input layer of
source nodes

Output layer
of neurons

Figure 2.8: Feedforward network with a single layer of neurons [85].

23

Chapter 2. Background

single-layer networks. The term "single-layer" refers to the output layer of the
computing nodes (neurons). The source node’s input layer is not counted because
no calculations are performed on the source node [85].

• Multilayer Feedforward Networks
Second-class feedforward neural networks consist of one or more hidden layers,
whose compute nodes are named accordingly hidden neurons or units. The func-
tion of hidden neurons is to intervene between the external input and network
output in a convenient way. Adding one or more hidden layers allows the network
to extract higher-order statistics [86]. The ability of hidden neurons extracting
higher-order statistics is exceptionally useful when the size of the input layer is
large.

The source node of the input layer of the network provides each element of the
activation pattern (input vector) that represents the input signal applied to the
neurons (computational nodes) of the second layer (specifically, the first hidden
layer). Second layer’s output is used as input by the third layer and the rest
of the network. Typically, neurons in each network layer have only the output
signal from the previous layer as input. The set of output signals from neurons
in the (final) output layer of the network forms the overall network response to
the activation patterns provided by the source node of the (first) input layer.

The architectural graph in Figure 2.9 illustrates the layout of a multilayer feedfor-

Input layer of
source nodes

Output layer
of neurons

Layer of
hidden neurons

Figure 2.9: Fully connected feedforward network with one hidden layer and one output
layer [86].

24

Chapter 2. Background

ward neural network for the case of a single hidden layer. For brevity, the network
in Figure 2.9 because it has ten source nodes, four hidden neurons, along with
two output neurons, is known as a 10-4-2 network. The neural network in Figure
2.9 is identified as fully connected because every node in each layer of the net-
work is connected to every other node in the adjacent forward layer. However, if
some of the network’s communication links (synaptic connections) are absent, it
is called a partly connected network.

• Multilayer Perceptron (MLP)
The MLP is the real example of a deep neural network. The architecture of an
MLP consists of multiple hidden layers to capture more complex relationships
that exist in the training data-set [87]. An illustration of an MLP is shown in
Figure 2.10.

Hidden layer(s)Input layer Output layer

.

Figure 2.10: Architectural graph of a MLP with four hidden layers [87].

• Recurrent Neural Networks
A recurrent neural network (RNN) differentiates itself from a feedforward neural
network with at least one feedback loop. For instance, a recurrent network may
consist of a single layer of neurons. Each neuron feeds its output signal back to
the inputs of all the other neurons, as illustrated in the architectural graph in
Figure 2.11.

There is no self-feedback in the network in the structure shown in this figure. It
should be mentioned that self-feedback refers to the situation where the neuron’s
output is fed back to its input. The recurrent network illustrated in Figure 2.11
also has no hidden neurons. The presence of feedback loops in the RNN structure
regarding Figure 2.11 has a severe effect on the learning capability of the network

25

Chapter 2. Background

and its performance. Moreover, the feedback loops involve the use of particular
branches composed of unit-delay elements (denoted by Z−1 or Z−transform). The
symbol Z−1 for naming a one-sample delay operator (equivalent to a memory
unit).

This results in a nonlinear dynamical behaviour, assuming that the neural net-
work contains nonlinear units [88].

Z-1

Z-1

Z-1

Z-1

Unit-delay
operators

Figure 2.11: Recurrent network with no self-feedback loops and no hidden neurons [88].

• Convolutional Neural Network
convolutional neural network (CNN) Arrange has achieved groundbreaking re-
sults over the past decade in various areas related to pattern acknowledgement,
from image preparation to voice recognition. CNN constitutes a specific class
of DNN. The foremost advantageous perspective of CNNs is decreases the num-
ber of parameters in ANNs. This accomplishment has incited both analysts and
designers to approach larger models to fathom complex errands, which was not
conceivable with traditional ANNs. The most critical assumption is that the
CNN solves problems should not have spatially dependent features. In other
words, for example, in a confront discovery application, does not matter where
the faces are located in the images. The only concern is to detect them regard-
less of their position in the given images. Four well-know CNNs are AlexNet,
VGG-16,GoogleNet, and ResNet [89], [90].

26

Chapter 2. Background

2.4 Learning Processes

ANNs are models defined to imitate the learning capability of the human brain
[91]. As in humans, training, validation and testing are essential components in
creating such computational models. Artificial neural networks learn by receiving
a variety of data-sets (which may be labelled or unlabelled) and computationally
adjusting the network’s free parameters adapted from the environment by means of
simulation. Based on the learning rules and training methods, learning in ANNs can
be categorised into supervised, reinforcement and unsupervised learning [92]–[94].

• Supervised Learning
In supervised learning, as the name suggests, an artificial neural network is su-
pervised by a teacher (such as a systems designer) who uses their knowledge of
the environment to train the network with labelled data-sets [94]. Thus, artifi-
cial neural networks are trained by receiving input and target pairs of different
observations from labelled data-sets, processing the input, comparing the output
with the target, calculating the error between the output and the target, and
computing the signal use. Backpropagation regulates weights connecting neu-
rons in a network to minimize errors and optimise performance. Fine-tuning of
the network continues until the weights are reached, which reduces the discrep-
ancy between the output and the desired output. Figure 2.12 shows the block
diagram conceptualizing supervised learning in ANNs. Supervised learning tech-
niques are used to solve classification and regression problems [95]. The output
of a supervised learning algorithm can either be a classifier or a predictor [93].
The application of this method is limited to when the supervisor’s knowledge
of the environment is sufficient to supply the networks with input and desired
output pairs for training.

Compute Output

Is desired
output

achieved?

Stop

Adjust
Weights

Figure 2.12: Supervised learning [96].

27

Chapter 2. Background

• Unsupervised Learning
Unsupervised learning is used when it is impossible to augment the training data
sets with class identities (labels). This occurs in situations where there is no
knowledge of the environment or the cost of acquiring such knowledge is too high
[97]. In unsupervised learning, as its identify implies, the ANN is no longer below
the supervision of a “teacher”. Instead, it is supplied with unlabelled data sets
(containing only the input data) and left to locate patterns in the data and build
a new model. In this situation, ANN learns to categorise the data by exploiting
the distance between clusters within it.

• Reinforcement Learning
Reinforcement learning is another type of learning that concerns interaction with
the environment, obtaining the state of such territory, choosing an action to
change this state, sending the action to a simulator and receiving a numerical
reward in the shape of feedback that can be positive or negative to learn a policy
[93]–[95], [98]. Activities that increase the reward are chosen by trial-and-error
methods [99]. Figure 2.13 illustrates the block diagram to explain the idea of
reinforcement learning.

Action

Agent

Reward

State

Environment

Figure 2.13: Reinforcement Learning [95].

2.5 Learning Algorithms

The MLP’s learning algorithm consists of two main steps: forward-propagation and
backward-propagation. The hidden layer ht and the output layer activation yt are
the significant blocks as a result of two main reasons; the higher power consumption
and the extent of the occupation silicon area compared to other blocks in the MLP
design. Chapter 4 presents the applications and investigated these two significant
blocks ht and yt in a number of case studies.

28

Chapter 2. Background

2.5.1 Feed-forward Operations

• From the input layer to the hidden layer
The first operation is to feed all the neurons in the input layer with input values
and weights. All inputs and weights are stored in matrices. This operation is the
input into the hidden layer that can be described using equation (2.3).

ht = f
∑

(Whxxt + bh), (2.3)

ah = Φ(ht) (2.4)

where Whx is the weight matrices for hidden connection. f and Φ are the activa-
tion functions for the hidden and bh is the bias vectors for the hidden layer.

• From the hidden layer to the output layer
The output of the hidden layer will include bias, which is defined as an additional
parameter in the neural network. However, the benefit of the bias is that it
adjusts the output. This operation is the hidden layer to the output that can be
described using the equation (2.5).

yt =
∑

(Wyxah + by), (2.5)

ay = Φ(yt) (2.6)

where Wyx represents the weight matrices for the connection at the output layer
and by is the bias vectors for the output layer.

2.5.2 Activation Functions

An important components is the nonlinear activation function, which is used at the
output of every neuron. Several different activation function are currently available,
such as Sigmoid, hyperbolic tangent (tanh), and Rectified Linear Unit (ReLU),
Leaky ReLU, as well as Maxout. The most frequently used activation function in
back propagation neural networks is the sigmoid function. Activations are typically
represented by a number within the range of 0 to 1. The weight is double the
activation function. It is most commonly a sigmoid function. It can be described
using equation (2.7) [100].

sig(x) = 1
1 + e−x

(2.7)

29

Chapter 2. Background

2.5.3 Back-propagation Algorithm

Back-propagation is at the heart of every neural network. It is used to minimize the
prediction error which results from the feed-forward operation. However, the Back-
propagation Algorithm has certain advantages, such as it is simple to program, flex-
ible as it does not require prior knowledge concerning the network and the function
features do not require any particular discussion to be learned. Similarly, it is a
standard method that generally works well. To calculate the error coefficient, the
following equation in the output layer is used [101].

ei = outputdesired − outactual (2.8)

then the error gradient (g) at the output layer is calculated.

gi = Dsig(Y i)(ei) (2.9)

To reduce the prediction error, the weights and bias should be updated. The
formula to change/update the weights and bias at the output layer is based on its
derivative. The equations can be described as below.

∆Wji = (α)(Y j)(gi) (2.10)

∆Bi = (α)(−1)(gi) (2.11)

at the hidden layers, the error gradient is calculated using the below equa-
tion[101].

gj = Dsig(Y i)(Wji)(gi) (2.12)

Afterwards, the network weights and bias are updated, based on the following
equation:

∆Wji = (α)(Xj)(gi) (2.13)

∆Bj = (α)(−1)(gi) (2.14)

the deltas acquired are added as below:

Wj = Wj + ∆W (2.15)

Bj = Bj + ∆B (2.16)

According to equation (2.8) the new weight can be calculated by calculating
the error coefficient and subtracting the desired output by the actual output which

30

Chapter 2. Background

provides two valuable pieces of information: the sign and magnitude. The derivative
sign creates the relationship between the weight and the error. If the sign is positive,
then the relationship is direct; whereas if it is negative, then it is the inverse. The
derivative magnitude will give the needs value of the increasing or decreasing of the
value of the weight. Furthermore, the system will continue to update the weights
according to the derivatives and retrain the network until an acceptable error level
is achieved.

Table 2.2: List of Abbreviations [100].
Abbreviations Variables Name

ei Error Coefficient
gi Error Gradient

∆Wji The change in Weights
∆Bj The change in Bias

ei Perseptron
ei Target

outputdesired Desired output
outactual Actual output

sig Sigmoid Activation Function
Dsig Derivative of the Sigmoid Activation Function
Xi Network’s input
Y i Network’s input
α Alpha
yi Network’s output

31

Chapter 3

Configurable Approximate Multiplier
The previous chapter investigated approaches used to improve energy efficiency in
the area of approximate circuit design. This chapter identifies the main core research
contributions of this thesis and presents the proposed run-time configurable adaptive
approximation method for multiplication that is capable of managing energy and
performance trade-offs and which is also ideally suited for these systems. Central to
the proposed approach is a significance-driven logic compression (SDLC) multiplier
architecture that can dynamically adjust the level of approximation depending on
power and accuracy constraints. The architecture can be configured to operate in the
exact mode with no approximation or in progressively higher approximation modes
at 2 to 4-bit SDLC. The architecture is designed in SystemVerilog and synthesized
using Synopsys Design Compiler. The proposed method is implemented in both
ASIC and FPGA. Post-synthesis experiments show a substantial decrease in power
consumption as well as silicon area, compared to existing methods. The efficiency
of the proposed design is evaluated through a number of case studies. The results
demonstrate that the proposed approach incurs a negligible loss in output quality
when using the 4-bit SDLC configuration for the 8-bit multiplier. The scalability of
the configurable approximate multiplier approach and the feasibility of performing
signed multiplication also discussed.

32

Chapter 3. Configurable Approximate Multiplier

3.1 Introduction

Over the years, approximate hardware designs have been extensively researched.
Many studies consider the trimming of arithmetic complexity leveraged by the in-
herent error-resilience of certain real-world applications. Examples span across var-
ious design strategies, such as accuracy scaling [19], approximation of parallel log-
ical patterns [5], [102] and hardware/software approximations for NNs [103]. The
commonality among these examples is to achieve power savings by employing static-
configuration methods for specifying fixed approximate processing units, including
approximate multipliers and adders [104], [105], based on design-time predictions of
environment and data conditions.

In approaches that are aware of the bit-level precision [106], the more signifi-
cant blocks are processed using exact arithmetic units, whilst non-significant blocks
are processed using approximate and low-complexity ones. Recently, a significance-
driven logic compression (SDLC) approximation method was proposed for multi-
pliers, where complex logic operations are replaced by low-complexity logic gates
for a group of partial product terms depending on progressive bit significance [25].
This method allows the computations to operate at different logic compression lev-
els, designed in different multiplier units. By suitably choosing the multiplier logic
compression level, the method offers a varying degree of energy efficiency and perfor-
mance. To enable this, a number of multipliers are designed with selection circuitry,
which is expensive in terms of area and leakage power [107].

Emerging ubiquitous systems, in particular, systems based on harvesting en-
ergy from the real-world through vibration[108], thermal energy[109], or from the
environment through solar or kinetic energy [110] represent a paradigm shift from
traditional systems. The energy supply of such systems can vary temporally and
spatially within a dynamic range, essentially making computation extremely chal-
lenging [5], [111]–[113]. Adaptive hardware approximations with tunable energy
and accuracy trade-offs can present opportunities in these systems for elastically
continuing computation under varying power levels. Certain real-world applications
rely on approximate computing due to its inherent error resilience. For instance, in
the region 82% of run-time is spent on unnecessary computations, which can alter-
natively be executed in approximate modes [54] to reduce energy consumption.

3.1.1 Organization of the Chapter

The remainder of the chapter is organised as follows : Section 3.2 describes the
SDLC method and the reason for this work. Section 3.3 explains in detail the pro-

33

Chapter 3. Configurable Approximate Multiplier

posed design method. Section 3.4 presents error analysis and validates the config-
urable architecture by comparing with individual approximate multipliers. Section
3.5 compares the non-functional metrics, for instance area, speed and energy with
competing designs. Section 3.6 presents the energy-aware configuration algorithm
(EACA) algorithm and two cases of real-world problem solving. Finally, Section 3.7
concludes the chapter.

3.2 Existing SDLC Method and Motivation

Recently, Qiqieh et al. [102] suggested an approximate multiplier design with differ-
ent levels of logic compression depending on bit significance known as Significance-
driven Logic Compression (SDLC). Their investigation highlighted energy-accuracy
trade-offs corresponding to these levels. The principle idea is to combine the par-
tial product terms and compress them progressively based on significance (i.e. least
significant bits are more compressed compared to more significant bits) by means of
replacing the AND gates with the OR gates. Architecturally, this leads to reduction
of the carry propagation chain length and thereby energy efficiency at the cost of
minimal loss of accuracy loss.

Figure 3.1 illustrates the SDLC approach using a dot notation for the (8 × 8)
parallel multiplier. This can be explained in three steps, as follows. Initially, (8 × 8)
AND logic gates are used to generate the partial product matrix (PPM). The first
step aims to form a cluster of several rows in the PPM. The depth of the clusters
may be 2 or 4 bits (2- or 4-bit SDLC). The present work differs from the SDLC
proposed by Qiqieh et al. [102] presented in Figure 2.5 and section 2.2.6, in that
the 3-bit SDLC depth cluster has been removed due to its similarity to the 2-bit
SDLC depth cluster in terms of accuracy and power consumption. The idea is to
utilise the array of OR logic gates to reduce the number of product terms within
each cluster. The next step describes how OR logic array is used to compress the
terms into a single row of bits leading to a reduction of the total number of product
terms within each cluster in the PPM to decrease, as seen in step 2. A commutative
remapping of the bit sequence is applied in the third step to form a reduced number
of the partial product rows after applying the logic compression. The number of the
rows is dependent on the depth of the clusters selected in the first step. The dotted
rectangles indicate the critical column’s height, which is reduced by half in the case
of 2-bit SDLC and by quarter in regard to the 4-bit SDLC in step 3 compared to
the exact accumulation tree in step 1.

34

Chapter 3. Configurable Approximate Multiplier

Partial Product Compressed Bit Resulting from Logic Clusters

1
2
3
4

1234567891011131415

12

3 4 5 6 11

12

13 14 15 10 12 7 8 9

2
1

Step 1 Step 2 Step 3

(a) (b) (c)

(d) (e) (f)

d-bit = 2

d-bit = 4

Figure 3.1: Two different sizes of logic clusters are used to compress partial products
based on their progressive bit-significance in an (8 x 8) parallel multiplier architec-
ture. (a) clustering a group of bits within two successive rows in the partial product
bit-matrix after bitwise multiplication; (b) generating a reduced set of product terms
after targeting the depth of 2-row logic compression; (c) ordered matrix after applying
commutative remapping of the bit sequence resulting from the SDLC approach; (d), (e),
and (f) the same process when applying 4-bit depth of logic clusters. The d-bit indicates
the depth of logic cluster.

Following these three steps, the resulting accuracy varies depending on the signif-
icant of the bit sizes. More compression (i.e. clustering of rows) is performed for bits
of lower significance (compression occurs in the square cells) and progressively less
compression is performed for higher significance bits (no compression for the round
cells). The final product is then generally approximated with its loss of accuracy
under control. As a consequence of shorter carry chain paths and a reduction of the
number of single-bit adders, the energy is reduced drastically and speed is improved.
Although the SDLC method provides substantial energy reduction, it lacks run-time
configurability. In other words, the accuracy cannot be adjusted dynamically with
variable compression levels. As a result, the multiplier models produced can pro-
vide only a specific range of performance, energy and power due to static design. In
certain fields of application, such as artificial intelligence and signal processing and
including speech technology, image processing, and mobile communication, variable
accuracy can be leveraged opportunistically in favour of energy savings depending
on availability of power or energy. For example, when power delivery is high it may
be possible to tune the accuracy mode to a higher level, while in low power situations

35

Chapter 3. Configurable Approximate Multiplier

the accuracy can be scaled down. This is completed with the aim of obtaining a
longer operating lifetime and the survivability of the execution. Section 3.6 includes
an exemplar of similar applications. To facilitate this, the SDLC based multiplier
needs to be re-designed for run-time reconfigurability with power awareness. The
key hypothesis is as follows: by designing variable SDLC knobs in a multiplier, it
is possible to leverage SDLC levels in response to power levels dynamically and
improve adaptability and survivability under in variable power situations. To cor-
roborate the hypothesis, a new configurable and energyaware multiplier is designed
using three different modes: an exact and two different approximate levels of 2- and
4-bit SDLC multipliers.

3.3 Proposed Configurable Approximation Hardware

Whilst it is possible to construct a system with copies of separate exact and ap-
proximate (e.g. SDLC) multipliers and select which one to use depending on the
environmental conditions, such a design is wasteful of silicon and may cause substan-
tial energy loss through leakage. This method is therefore not suitable for systems
that have to operate under power and energy uncertainty. The following subsec-
tions present a novel, run-time configurable multiplier design that allows dynamic
approximation needs in such applications.

3.3.1 Configurable Multiplier Architecture

A configurable multiplier is proposed, which provides exact and approximate ver-
sions for use under appropriate conditions. A configurable multiplier is proposed,
which provides exact and approximate versions for use under appropriate conditions.
This multiplier only requires an insignificant additional amount of silicon compared
to a regular exact multiplier. This is realised by maximally re-using the single-bit
adders for different configurations of the multiplier.

Figure 3.2 illustrates the difference between the exact and the proposed multi-
plier. Generally, the final product of exact multiplication can be generated after
following three main steps: 1) the partial product matrix (PPM) is formed, 2) PPM
is reduced to a height of two rows using any accumulation method such as Wallace
or Dadda trees, then 3) these two rows are combined by using a (carry propagation
adder (CPA) since a carry propagation adder is just needed to generate the product
(no extra delay required for accumulation tree) (see Figure 3.2 (a)). In the proposed
multiplier, the SDLC approach is included after the formation of the PPM (as shown
in Figure 3.2 (b)), in order to minimize the number of rows in the PPM using logic

36

Chapter 3. Configurable Approximate Multiplier

compression (see Figure 3.1). Therefore, this decreases the delay needed for the
PPM to be reduced to a height of two rows (i.e. during stage 2). Subsequently, the
minimized PPM is accumulated to a height of two rows and summed up using CPA.
Likewise the same occurs in steps 2 and 3 of the exact multiplier. In this work,
the proposed approach based on the Wallace tree structure is demonstrated. Like
other multi-stage tree multipliers, it achieves high speed due to a lower logic depth
compared to more conventional designs [114][115].

For this work the Wallace tree serves as an example. The method can be applied
based on any exact multiplier design including multi-stage tree structures such as
Wallace and Dadda trees. Fundamentally, adders in the multiplier serving as the
exact configuration are re-purposed via re-wiring to implement the approximate
configurations.

Figure 3.3 illustrates how the proposed configurable (8 x 8) multiplier design
performs the exact and approximate multiplication. In this design, each circle rep-

Partial Product Formation.

 Multiplier and Multiplicand

Partial Product Accumulation.

Producing the final product
using a Carry Propagation

Adder.

Accurate Product.
(a)

 Multiplier and Multiplicand

Producing the final product
using a Carry Propagation

Adder.

(b)
 Approximate Product.

Significant-Driven Logic
Compression (SDLC)
 and remapping of the

resulting product terms.

(1)(1)

(2)

(2)

(3)

(3)

(4)

Partial Product Accumulation.

Partial Product Formation.

Figure 3.2: Process chart explaining the difference between the main stages in (a) exact
multiplication and (b) the proposed multiplication using the SDLC approach.

37

Chapter 3. Configurable Approximate Multiplier

Table 3.1: The number of full and half adders used by the accumulation stages and CPA
for different exact, approximate multipliers and the Proposed configurable (8 × 8) Wal-
lace tree.

Multiplier → Exact 2-bit SDLC 4-bit SDLC Proposed
Adder type HA FA HA FA HA FA HA FA

Stage 1 4 12 3 9 - - 4 12
Stage 2 3 13 6 6 - - 3 13
Stage 3 4 6 - - - - 3 9
Stage 4 4 7 - - - - 4 8

CPA 10 11 11 11

resents one partial-product bit. The necessary half adders are marked by rectangles
spanning columns of two partial product bits and full adders are marked by rect-
angles spanning columns of three bits. The exact configuration in (a) represents a
traditional Wallace tree multiplier which uses the largest number of half and full-
adder units within the reduction stages. The 2-bit SDLC configuration presented in
(b) is considerably smaller, whilst the 4-bit SDLC in (c) is the smallest. It is worth
noting that the proposed configurable design requires a few additional number of
adders on top of the already existing adders needed by the exact configuration. By
investigating the proposed configurable multiplier design with its exact and approx-
imate (2 and 4-bit SDLC) configurations, structural similarities are identified in
the shapes of the SDLCs and parts of the Wallace tree multiplier. For instance,
in Figure 3.3, the 2-bit SDLC’s reduction stages and the carry-propagate addition
(CPA)parts in (b) can be mapped onto stages 3 and 4 and the CPA of the exact
reduction tree in (a), with only ten additional partial-product bits required (shown
in black and diameter-line circles). Similarly, the 4-bit SDLC in (c) can be mapped
onto the CPA in (a) with just a single additional bit. This bit is also shared with
the 2-bit SDLC.

Table 3.1 may be read in conjunction with Figure 3.3 to represent the required
single-bit adders in all parts of the proposed configurable multiplier design. As can
be noticed from the table, the exact configuration requires the majority of half and
full adders. Only a very small number of adders are required in addition to the
exact configuration to accommodate the SDLC configurations. In Section 3.5 the
additional silicon area required by the SDLC’s is calculated.

3.3.2 Hardware Knobs for Run-Time Configuration

In the case of the (8 x 8) multiplier, a 3-to-1 multiplexer (MUX) is essential for
top-level configuration selection. This switch provides the actuation facility for
controlling the configuration according to whatever rules the designer sets for the

38

Chapter 3. Configurable Approximate Multiplier

configuration strategy. A configuration signal is received from the controller and fed
to the MUX to select one of the three configurations accordingly. The configuration
procedure is low-overhead, no more than a couple of layers of parallel switches. Even
after including the two-bit to three-wire one-hot signal decoding logic to supply all
the control signals required with no area overhead, the entire procedure should fit
comfortably within a single clock cycle for any reasonably modern technology. In
this work, the hardware into field programmable gate array (FPGA) was synthe-
sized to characterise the energy and power required for executing each configuration
(see Section 3.5). This is because it is eventually implemented on FPGA. If other
technologies are used in the implementation, the same characterisation can be per-
formed on the relevant technology. From these characterisation data, it is possible
to derive energy thresholds that an energy-aware configuration algorithm may use
to make control decisions.

If the rules of configuration are not determined by the availability of energy,
different characterisation experiments may be carried out to produce appropriate
threshold values in the alternative physical parameters that are important for the
configuration control. This work, concentrates on an energy-aware configuration.
For instance, one of the case studies, the EACA , which will be presented in Sec-
tion 3.6.1, concentrates on efficient energy usage. Consequently, all experimental
work is focused on energy being the crucial physical parameter. The hardware
facilities that provide the hooks for configuration described in this section target
energy-aware designs, but are generic enough to need no adjustment or slight ad-
justment for control based on other parameters.

With three different configurations in total, a configuration signal produced by
the control module consists of two binary bits. The following settings are used:
00 for the exact configuration, 01 for the 2-bit SDLC configuration and 1x (with x
representing ‘"don’t care’", i.e. can be either 0 or 1) for the 4-bit SDLC configu-
ration. This is shown in Figure 3.4. Assigning the ‘don’t care’ to the 4-bit SDLC
configuration shows the energy-centric design priority, as the smallest circuit is used
to select the smallest configuration, which is likely chosen when the energy supply
is low. Based on the configuration selection input signal, the control hooks perform
the following actuation:

• the right groups of adders are included in the configuration - for the example
in Section 3.3.1, the three selectable groups roughly correspond with the three
parts of the exact Wallace tree: Stages 1 and 2, Stages 3 and 4, and the CPA.
The exact configuration includes all three groups, the 2-bit SDLC configuration
includes Stages 3 and 4 and the CPA, while the 4-bit SDLC includes the CPA.

39

Chapter 3. Configurable Approximate Multiplier

• additional adders are included as appropriate for the SDLC configurations.

• appropriate re-wiring of the full and half adders (growing some half adders to full
adders and shrinking some full adders to half adders) for the appropriate SDLC
configurations.

40

Chapter 3. Configurable Approximate Multiplier

St
ag

e2

St
ag

e3

St
ag

e1

St
ag

e4

C
PA

C
PA

St
ag

e1

St
ag

e2

C
PA

(a
)

(b
)

(c
)

Fu
ll

ad
de

r

H
al

f a
dd

er
Ex

is
ts

 fo
r E

xa
ct

,
2

an
d

4-
bi

t S
D

LC
O

nl
y

ex
is

ts
 fo

r
2

an
d

4-
bi

t S
D

LC

Ex
is

ts
 fo

r E
xa

ct
 a

nd
 2

-b
it

SD
LC

O
nl

y
ex

is
ts

 fo
r

2-
bi

t S
D

LC

O
nl

y
ex

is
ts

 f
or

 E
xa

ct

St
ag

e2

St
ag

e3

St
ag

e1

2-bit SDLC

St
ag

e4

C
PA

4-bit SDLC

(d
)

Exact

Fi
gu

re
3.

3:
T

he
re

du
ct

io
n

st
ag

es
of

an
(8

×
8)

W
al

la
ce

tr
ee

m
ul

tip
lic

at
io

n
ill

us
tr

at
e

th
e

ac
cu

m
ul

at
io

n
m

et
ho

d
fo

r
th

e
PP

M
fo

rm
ed

fr
om

ex
ac

t
an

d
tw

o
di

ffe
re

nt
siz

es
of

lo
gi

c
cl

us
te

rs
(s

ho
w

n
in

Fi
gu

re
3.

1)
(a

)
fo

ur
re

du
ct

io
n

st
ag

es
ar

e
re

qu
ire

d
in

th
e

ca
se

of
th

e
(8

×
8)

tr
ad

iti
on

al
W

al
la

ce
tr

ee
m

ul
tip

lie
r(

W
T

M
);

(b
)

tw
o

re
du

ct
io

n
st

ag
es

ar
e

re
qu

ire
d

by
m

ea
ns

of
th

e
W

al
la

ce
ac

cu
m

ul
at

io
n

m
et

ho
d

to
re

du
ce

th
e

PP
M

ge
ne

ra
te

d
by

th
e

2-
bi

t
SD

LC
(s

ee
Fi

gu
re

3.
1

(c
);

(c
)

no
re

du
ct

io
n

st
ag

es
fo

r
th

e
4-

bi
t

SD
LC

as
th

e
he

ig
ht

of
th

e
PP

M
is

on
ly

tw
o

ro
w

s(
se

e
Fi

gu
re

3.
1

(f
))

,a
nd

(d
)

co
nfi

gu
ra

bl
e

(8
×

8)
W

al
la

ce
tr

ee
m

ul
tip

lic
at

io
n

in
cl

ud
es

th
e

co
m

-
m

on
sim

ila
rit

ie
s

an
d

va
ria

tio
ns

sh
ow

n
in

(a
),

(b
)

an
d

(c
).

41

Chapter 3. Configurable Approximate Multiplier

Multiplicand & Multiplier

Selection Model

 Energy, Power
or Performance

Constraints.

2

8

Stage2

Stage3

Stage1

2-
bi

t S
D

LC

Stage4

CPA 4-
bi

t S
D

LC

Ex
ac

t

Final Product

C
on

fig
ra

tio
n

Si
gn

al

Selection
Exact

4-bit SDLC

00
01

1x

 2-bit SDLC
8

16

Figure 3.4: Diagrammatic sketch of the proposed hardware architecture of the config-
urable (8 × 8) multiplier with exact, 2-bit and 4-bit SDLC modes.

3.4 Error Analysis

In this section, the impact on accuracy of the proposed approach is investigated
in the form of error analysis. Several error metrics have been discussed in [116]
and [117] in relation to evaluating and quantifying errors. The error distanc (ED) is
defined as the arithmetic difference between the accurate (exact) product (P) and
erroneous (approximate) product (P ′). The relative error distance (RED) is the

42

Chapter 3. Configurable Approximate Multiplier

ratio of ED over the accurate output. It is defined as in [118]:

RED = ED

P
= |P − P ′|

P
. (3.1)

The mean RED (MRED) is one more error metric for any (N × N) approximate
multiplier. It is defined as:

MRED =
∑22N−1

i=0 REDi

22N
. (3.2)

MRED is the mean value of RED across all possible different operand multipli-
cation pairs. Without recognising the application, is assumed here that each unique
pair of operand values has exactly the same probability of occurring.

To compare multipliers of different degrees and methods of approximation, the
normalised MRED (NMED)[119] is used:

NMED = MRED

Pmax

=

∑22N−1

i=0 REDi

22N

Pmax

, (3.3)

where Pmax is the maximum product that can be obtained from an (N x N) exact
multiplier, i.e. Pmax = (2N−1)2.

Simulation studies are performed in Matlab by incorporating a functional model
of the proposed multiplier using different logic clusters with (8 × 8) Wallace tree
accumulation.

Table 3.2: MRED and NMED for different approximate configurations in an (8 × 8)
configurable multiplier.

Multiplier ↓ MRED (%) NMED(%) Difference from [102]
2-bit SDLC 1.9883 0.3527 0 (%)
4-bit SDLC 10.5836 3.2723 0 (%)

Table 3.2 lists the error trade-off when changes take place between the two degrees
of approximation (2- and 4-bit SDLC) in the new design. As can be seen, the MRED
is only minimal for the 2-bit SDLC type. The 4-bit SDLC also records a small error.
A similar observation can be made in the case of the NMED metrics. Moreover,
the table includes the difference between the approximation parts in this new design
and the previous work [102], in order to investigate if by moving to a configurable
design, a price is paid in errors. The results indicate that the differences are 0%,
and there is no error overhead.

For more extensive analysis involving error metrics, for instance in the case study

43

Chapter 3. Configurable Approximate Multiplier

in Section 3.6.2, different configurations of the proposed configurable multiplier are
used in calculating the Gaussian blur algorithm. Such metrics as peak signal to
noise ratio (PSNR) are used. PSNR is a fidelity metric used to measure the quality
of the output images. PSNR is expressed as:

PSNR = 20log10
255√
MSE

, (3.4)

where MSE is the mean squared-error measured with respect to the reference pixel
[120]. The total MSE of the image can be determined as the sum of all sub-image
MSE values as follows:

MSEk
B = 1

m · n

m∑
i=1

n∑
j=1

(Bk(i, j) − B′
k(i, j))2

. (3.5)

These PSNR analysis methods are used in Section 3.6.2.

3.5 Comparative Evaluations

In this section, the area, delay and power trade-offs of the proposed multiplier
design are compared with recently proposed approaches, considering two hardware
implementations: application-specific integrated circuit (ASIC) and FPGA. These
implementations are included in order to achieve a wider insight of comparative
evaluations as some of the compared implementations are in ASIC, while others are
in FPGA.

3.5.1 Area, Delay & Power Trade-offs in ASIC Implementations

For ASIC comparisons, a generic System-Verilog code 1is used to generate synthe-
sizable modules for the proposed configurable multiplier. Mentor Graphics Questa
Sim is used to compile the System-Verilog code and run the associated testbenches.
Synopsys Design Compiler is used for synthesising the multiplier configurations.
The circuits are implemented in the Faraday 90nm technology library. The com-
pared methods are implemented in exactly the same way, so that comparisons can
be performed on the same implementation technology node and library. Figure 3.5
demonstrates the main steps for evaluating the proposed design using Synopsys De-
sign Compile.

1The source code is available on [121].

44

Chapter 3. Configurable Approximate Multiplier

Logic Synthesis
(Synopsys Design Compiler)

Set my_period [expr 100 / $my_clock_freq_MHz]

Area Report Power Report Time Report

VHDL / Verilog Models

Set VHDL / Verilog Model name

Script

hdl

pre_synth

launch

Set targete technology library UMC_90nm

Set target_library "fse0k_d_generic_core_tt1p2v25c.db"

Set my_input_delay_ns 0.1

Set my_output_delay_ns 0.1

source ../script/dc_start.tcl
 source ../script/compile_dc.tcl

Figure 3.5: Flowchart diagram showing the main steps for evaluating the proposed de-
sign using Synopsys Design Compile.

Table 3.3 presents area, delay and power trade-off figures when compared with [102].
As can be noticed, the configurable hardware is larger in terms of area than the ex-
act multiplier alone. A delay overhead is also expected in the configurable design
because of the increased number of adders.

Table 3.3: Comparing existing multiplier designs and the proposed configurable design
in terms of power(P), area (A) delay(DL) and Power-delay product (PDP).

Multiplier ↓ P (µW) A(um2) DL(ns) PDP (fJ)
Fixed Configs [102] 158.39 3495.71 7.82 1238.6

Proposed Exact 66.20 1450.40 2.66 176.1
Exact [25] 62.42 1417.47 2.63 164.2

Proposed 2-bit SDLC 39.21 904.56 2.11 82.7
Proposed 4-bit SDLC 25.42 501.37 1.35 34.32

It can be seen from Table 3.3 that the area overhead, which compares the con-
figurable multiplier (Proposed Exact) to the exact multiplier on which it is based

45

Chapter 3. Configurable Approximate Multiplier

(Exact [25]), is 2.3% increase of 1417.47(um2). The power overhead is 6%, the la-
tency overhead is 1.1%, and the power-delay product overhead is 7.2% increase of
164.2(fJ). However, the proposed model (second row) saves more than 58.5% de-
crease of 3495.71(um2) which is the area of the solution proposed in [102](first row),
which includes separate exact and SDLC multipliers for run-time selection. This
large area reduction implies significant power savings because of leakage power,
leading to large PDP reductions. The competitive figures obtained on these non-
functional metrics suggest that this configurable design would also compare favourably
against the other designs in [25] and [102].

3.5.2 Area, Delay & Power Trade-offs in FPGA Implementations

For a more flexible design, the configurable multiplier is also implemented in FPGA
using Xilinx Vivado Design Suite for the Ultra96-V2 platform [122]. The compared
existing designs, originally also on FPGA, are re-implemented on this same platform
for fair comparisons.

A previous study includes different designs of exact multipliers on FPGA (see
Table 3.4), focusing on performance [42]. These are compared with the three config-
urations for non-functional parameters. Table 3.4 lists the results for each design in
terms of area, delay and power. It can be observed that the proposed configurable
multiplier, in its different configurations (between exact to 4-bit), is competitive
in terms of area, delay, and power compared to Modified Radix2 Booth Multiplier
modified radix2 booth multiplier (MRBM) and wallace tree multiplier (WTM). It
is noteworthy that the exact configuration is competitive in delay with these multi-
pliers, which were designed for speed.

Table 3.4: Comparing non-functional metrics with Kumar et al [42].
Multiplier ↓ Area (LUT’s) Power (W) Delay (ns)
MRBM [42] 137 1.010 6.721
WTM [42] 96 1.061 6.102

Proposed Exact 91 1.22 6.102
Proposed 2-bit SDLC 65 0.32 4.1
Proposed 4-bit SDLC 42 0.23 3.8

3.6 Case Studies

In this section, an example configuration selection algorithm is first illustrated. This
algorithm attempts to find the maximum usage of available energy by selecting the

46

Chapter 3. Configurable Approximate Multiplier

least approximate configuration. Later, a case study is presented for the configurable
MAC in real-world problems. The case study demonstrates the capabilities of the
proposed configurable multiplier as well as the validity of the configuration selection
algorithm.

3.6.1 Energy-Aware Configuration Algorithm (EACA)

In order to have a design that can survive under unreliable power supply (nondeter-
ministic fluctuations in power levels) and guarantee reliable computation, a system
with survival instincts needs to be built. A configuration controller is designed tak-
ing advantage of the three-mode configurable multiplier architecture to implement
energy-aware execution. The EACA model, which fits into the "Selection Model"
box in Figure 3.4, is shown in Algorithm 1.

Algorithm 1 Energy-aware configuration algorithm
1: Initialize with energy figures
2: const: k = number of different approximation configurations
3: for i = 1 to k do
4: E (i) = energy required for the ith configuration
5: end for ▷ i = 1 is exact and i = k is the min config
6: begin EACA
7: while true do
8: Eia = 0 ▷ instantaneous available energy
9: j=1 ▷ initialize index

10: wait control cycle time length
11: while Eia < E(k) do
12: obtain Eia from energy supply
13: end while ▷ until enough energy for min config
14: while Eia < E(j) do
15: j = j+1
16: end while ▷ find the least approx config for Eia
17: select the jth configuration
18: end while
19: end EACA

The EACA assumes the existence of energy supply information at run-time,
which is not uncommon among well-designed energy harvesting systems [123],[124],[125].
The available energy is subsequently compared with the required energy to execute
the least energy-hungry configuration. If the available energy is insufficient, the mul-
tiplier is not executed whilst the monitoring of incoming energy continues. Once
the available energy is confirmed to be a sufficient amount to execute at least the
configuration with the smallest energy requirement (in the (8 × 8) multiplier ex-

47

Chapter 3. Configurable Approximate Multiplier

ample in this work, this is the 4-bit SDLC configuration), the EACA continues to
the configuration selection stage. In this stage, the EACA progressively tests the
available energy against the energy required by the different configurations one by
one, starting from the heaviest configuration (Exact multiplier configuration) with
the smallest approximation and moving orderly towards the lightest configuration,
which has the greatest degree of approximation. In principle, the EACA attempts
the following optimisation problem: Treating the available energy as a constraint,
maximise the multiplication accuracy (or minimize the multiplication approxima-
tion) by selecting the correct configuration by sending a signal to activate the con-
figuration that fits the available energy.

3.6.2 Gaussian Blur Filter

In this case study, the efficacy of the proposed technique is evaluated with a real-
life image processing application, which consists of additions and multiplications
using the three multiplier configurations. The analysis considers the Gaussian blur
filter [126], given that it is commonly employed in graphics software, typically to
reduce image noise and artifacts (e.g. Moiré effects) by acting as a low-pass filter.
Figure 3.6 demonstrates a test platform to examine the effectiveness of the proposed
multiplier on the quality of final output image processed by Gaussian blur filter. All
configurations (2-bit and 4-bit SDLC) are implemented in Matlab. The Gaussian
kernel is (3 × 3) with a 1.5 standard deviation value. It uses 8-bit fixed point
arithmetic and is applied to 8-bit grayscale input images comprising (500 × 500)
pixels. Gaussian blur is approximated by replacing the standard multiplication in
the Gaussian filter with the two approximate multipliers configurations (2-bit and
4-bit SDLC).

Figure 3.7 illustrates the impact of different configurations on the image quality
after applying the Gaussian blur filter. As shown in Figure 3.7 the use of the SDLC
approach can yield reasonable results. The PSNR values for the case of 2- and 4-bit
logic clustering for (8 × 8) SDLC are 50.2dB and 30dB respectively. The values of
PSNR values are computed compared to the reference image, obtained from applying
Gaussian blur filtering using the exact configuration, according to (3.4).

To calculate the energy consumed in the multiplier when processing an input
image, the equation 3.6 is follow

Energy = Power ∗ Delay ∗ N, (3.6)

where Power and Delay are obtained for one multiplier design from the synthesis tool.

48

Chapter 3. Configurable Approximate Multiplier

Start

Input Image

Initialize Gaussian
Low-Pass Filter

Implement Matlab Function to Describe
the Selected Approximate Multiplier.

Multiplication
Operator

Output Image
Output Image

Calculate PSNR

(500X500) gray-scale

(3X3) Gaussian kernel

1.5 standard deviation

(3X3) Gaussian kernel

Each pixel value in the
input image are multiplied
by the corresponding entry of the
kernel using standard multiplication
operator.

Exact

Each pixel values in the input image is
multiplied by the corresponding entry of
the kernel using Matlab functions, such
as 2-bit SDLC.

Approximate

Kernel ConvolutionKernel Convolution

Exact
Approximate

Different degrees of logic compression

 2 and 4-bit SDLC

Figure 3.6: Flowchart diagram showing the main steps for evaluating the impact of the
proposed multiplier on the final quality of image processed by Gaussian blur filter.

N is the number of multiplications necessary to treat the input image by Gaussian
filter. The energy savings are subsequently calculated compared to the conventional
exact multiplier. The energy savings and PSNR results obtained, shown in Fig-
ure 3.7, demonstrate that the proposed approach can provide significant dynamic
energy savings with acceptable image qualities. The quality-energy trade-off evident
throughout the three configurations.

49

Chapter 3. Configurable Approximate Multiplier

Exact Multiplier bit SDLC bit SDLC �� ���

Reference Image
Energy Saving/Image

PSNR = ����

������
PSNR = ��

������

Figure 3.7: Output quality and energy consumption for Gaussian blur filtering using the
three different configurations of the proposed (8 × 8) multiplier.

3.6.3 Energy-Aware Approximation

To evaluate the energy consumed by the proposed configurable multiplier, the config-
urable multiplier is described in System-Verilog, including its exact and approximate
variations. The configurable multiplier is then synthesized using Synopsys Design
Compiler [127]. This has been achieved by mapping the circuit designs to Fara-
day’s 90nm technology library [128] and following the design set-up of 1V voltage
units,1.0pf capacitance units and 1ns time units to measure the power consumption
related to each configuration. These measurements are then incorporated into the
EACA model to allocate the optimal design configurations for each possible sce-
nario. For example, in the case of the (8 x 8) multiplier, the threshold values E(i)
listed in line 4 in Algorithm 1 are obtained after the synthesis of the exact, 2-, and
4-bit SDLC variations.

Figure 3.8 demonstrates an example execution trace where the supply energy
is variable within a wide range over time. The highest amount of energy available
is shown to be 250 fJ, whereas the lowest amount of energy available is shown
to be 35 fJ. EACA’s energy-aware configuration supports the system to achieve
reasonable PSNR figures in the execution for the available energy at any time. The
priority is survival of the continuous execution by optimising PSNR whilst satisfying
energy constraints. This trace confirms that this configurable multiplier supports

50

Chapter 3. Configurable Approximate Multiplier

0

10

20

30

40

50

60

2
-b

it
 S

D
L

C

2
-b

it
 S

D
L

C

2
-b

it
 S

D
L

C

E
x
ac

t

E
x
ac

t

E
x
ac

t

E
x
ac

t

2
-b

it
 S

D
L

C

2
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C

2
-b

it
 S

D
L

C

2
-b

it
 S

D
L

C

E
x
ac

t

0

50

100

150

200

250

300

P
S

N
R

(%

)

E
N

E
R

G
Y

 (
F

J)

Output PSNR dB (%) Instantaneous Energy (fJ)

 Exact

configuration

Approximate

configurations

time

Figure 3.8: Different scenarios for the EACA model operate at run-time under highly
variable energy conditions while sustaining execution.

the EACA’s sustainability focus. In this experiment, the extra overhead used in the
configuration circuits prove to be negligible compared to the multiplier’s costs. The
EACA itself is assumed to be run on an outside processor whose energy is external
to the energy budget shown, without losing generality.

3.7 Conclusions

This chapter presented an investigation into facilitating energy efficiency. This in-
vestigation involves a configurable (8×8) multiplier with different levels of approx-
imations achieved via configurable logic clustering. The System-Verilog design was
implemented on an ASIC, using Synopsys Design Compiler and Xilinx Vivado De-
sign Suite. The synthesised results confirm that up to 43.75% of energy savings and
a reduction in critical path delay of virtually 38.03% can be achieved. The proposed
multiplier is also implemented on the Ultra96v2 Evaluation FPGA Platform. The
results confirm that the proposed approach can provide significant energy and area
savings with negligible loss in output quality (the worst PSNR is 30dB for the 4-bit
SDLC multiplier). The capabilities of the configurable multiplier are demonstrated
by introducing the EACA method of obtaining the optimal configuration of the mul-

51

Chapter 3. Configurable Approximate Multiplier

tiplier depending on the available energy.
The results reveal that the EACA model allows the proposed design to operate

at run-time under highly variable energy conditions while sustaining execution. The
highlight of this configurable multiplier is the sharing of the same adders between
different configurations, saving both silicon and leakage energy. It is believed that
the proposed multiplier architecture leverages arithmetic approximation to support
energy-efficiency for applications where detailed accuracy may not be important,
such as ML. The following chapter investigates the application of the proposed
multiplier architecture as a ML hardware design.

52

Chapter 4

Neural Network Design with Run-time
Configurable Approximate MAC
Chapter 3 described a Run-time Configurable Approximate Multiplier using significance-
driven logic compression. This chapter introduces a configurable-approximation
multiply-accumulate (MAC) unit, which is the fundamental arithmetic component
in Neural Networks based machine learning (ML) systems. The new configurable
MAC unit is designed using an adaptive SDLC multiplier architecture that is pre-
sented in Chapter 3. Additionally, this chapter explains the implementation that
allows the evaluation of the capabilities of the proposed MAC unit as the key pro-
cessing blocks in neural network applications and the validation of the dynamic
control of the trade-off between accuracy and power consumption. The new MAC
architecture using variable approximation, supports run-time configuration, and the
proposed MAC architecture is implemented in an ANN and validated using different
data-sets to evaluate trade-offs between performance, energy, and quality. The chap-
ter also demonstrates the implementations of the proposed architectures in a number
of case studies. To evaluate the trade-offs, the hardware architecture is designed in
System-Verilog and synthesized using Synopsys Design Compiler, employing UMC
90nm digital complementary metal-oxide semiconductor (CMOS) technology as well
as Field Programmable Gate Arrays (FPGAs).

53

Chapter 4. Neural Network Design with Run-time Configurable Approximate MAC

4.1 Introduction

Energy efficiency is a primary design objective to enable powerful artificial intel-
ligence (AI) applications at the microedge [129]. The traditional hallmark in AI
systems is inspired by the principle of neural network (NN), originally proposed
by Rosenblatt [130], [131]. An NN is organised in multiple layers where a learning
problem is defined by the weighted sum of the input data. An activation func-
tion normalises the weight updates in each path, which are carried out by itera-
tive gradient descent exercises during training. The NN implementations consist of
the modular electronic neurons, known as multiply-accumulate (MAC) units, that
primarily feature arithmetic operations [132]. The number of MACs as well as the
complexity increases with more inputs, along with the learning problem at hand. As
such, achieving the required training accuracy under a limited power or energy bud-
get has remained challenging [133]. Over the years, energy-efficient AI designs have
been extensively researched. Many studies consider arithmetic complexity trimming
leveraged by the inherent resilience of AI applications. Examples span over various
design strategies, such as accuracy scaling, network sparsification [134], approxima-
tion of parallel logical patterns [5] and hardware/software co-design for NNs [19],
[103]. Approximate arithmetic, such as approximate multipliers and adders [28],
can reduce energy requirements, enhance speed and reduce cost [105]. As such, the
primary emphasis will be on approximation methods applied in multipliers as part
of the new MAC designs. A common trait among existing methods is to minimize
energy by exploiting static approximation methods that provides for the pruning of
the hardware resources used to compute a pre-established number of least significant
bits (LSBs) of the product [135]–[137]. However, this short of static configuration
does not allow boosting computational capability under varying power or energy at
run-time, which this work aims to achieve. Recently, a significance-driven logic Com-
pression (SDLC) approximation approach has been proposed for multipliers, where
complex logic operations are replaced by low-complexity logic gates for a group of
partial product terms depending on progressive bit significance [25]. This approach
provides the computations to operate at different logic compression levels, designed
in different multiplier units. By suitably choosing the multiplier logic compression
level, the method offers a varying degree of energy efficiency and performance.

4.1.1 Contributions

For this work, the SDLC approximation method is extended further as follows. A
new configurable MAC unit is design using an adaptive SDLC multiplier architec-

54

Chapter 4. Neural Network Design with Run-time Configurable Approximate MAC

ture. The architecture leverages a tunable approximation method to specify the
logic compression level depending on the model-driven energy and accuracy trade-
offs.

Thus, by allocating the appropriate configurations during run-time, the computa-
tion capability under variable power or energy budgets can be adjusted. Specifically,
this study makes the following contributions:

• propose a new MAC architecture using variable approximation, which supports
run-time configuration; and

• implement the proposed MAC architecture in an ANN and validate it by em-
ploying different data-sets such as (modified national institute of standards and
technology (MNIST) and street view house numbers (SVHN) to evaluate the
performance-energy-quality trade-offs.

4.1.2 Chapter Organisation

The remainder of the chapter is organised as follows: Section 4.2 presents the reason
for this work. Section 4.3 explains in detail the proposed design method, presents the
neuron structure design using configurable MACs. Section 4.4 shows the simulation
and evaluation results and compares the non-functional metrics, for instance, area,
speed and energy with competing designs. Section 4.5 presents a case of real-world
problem solving. Finally, Section 4.6 concludes the chapter.

4.2 SDLC Method and Motivation

In certain fields of application, such as AI and signal processing, variable accuracy
can be leveraged in favor of energy savings opportunistically depending on the power
or energy availability. For example, when power delivery is high it may be possible to
tune the accuracy mode to a higher level, while in low power situations the accuracy
can be scaled down. This is completed with the aim of a longer operating lifetime
and the survivability of the execution. Section 4.5 includes an exemplar of similar
applications. Using the SDLC approach this can be undertaken by static allocation
of different MAC units with separately designed multipliers with variable degrees of
approximation. However, this is likely to significantly add to the overhead of the
design in terms of power and area costs.

To facilitate a run-time configurable MAC architecture with low overheads caused
by a few additional adders on top of the already existing adders, it is important
to re-design the SDLC based multiplier for run-time reconfigurability with power

55

Chapter 4. Neural Network Design with Run-time Configurable Approximate MAC

awareness. The key hypothesis is as follows: by designing a low-complexity config-
urable SDLC MAC with variable compression knobs(SDLC levels 2-bit and 4-bit),
it is possible to leverage the SDLC levels in response to power levels dynamically
and improve adaptability under variable power situations. To corroborate the hy-
pothesis, a new configurable and energy-aware MAC is designed using three different
modes built on the same MAC architecture: an exact and two different approximate
levels of 2- and 4-bit SDLC multipliers(depths of logic clusters in 8×8 multiplier
size). Further details of the new MAC design as well as the neural network struc-
ture are provided next.

4.3 Run-time Configurable Approximate Neuron Design

This section illustrates the configurable approximation neuron architecture, followed
by the reconfigurable circuits supporting three different modes(Exact, 2-bit and 4-
bit SDLC).

4.3.1 Configurable Neuron Architecture

A configurable multiply-accumulate (MAC) unit is designed using the SDLC ap-
proach as the core part of a neuron module. A carry look-ahead adder (CLA) is
employed to accumulate the results of the multiplication. CLA is preferred over other
types of adders for low power and high-performance considerations [138]. Besides
MACs, there are other components that require multiplication and other arithmetic,
such as gradient update units. However, given that MACs constitute a significant
proportion of neural networks (NNs), they are the focus for run-time adaptation in
this work.

The neuron module shown in Figure 4.1 accepts the weights and input pairs
(fixed-point)[139], where each pair is multiplied together through MACs. For each
input pair, the result of the multiplication is sequentially accumulated by a CLA. The
final sum is passed through the activation function to produce the neuron’s output.
An energy-aware configuration algorithm (EACA)(see Chapter 3, Section 3.6.1,Al-
gorithm 1)is used to allocate the optimal configuration of the MAC unit in the
neuron module depending on the instantaneous available power and provide higher
performance, with acceptable levels of accuracy. All neurons are fed with the avail-
able power to avoid being ideal.

56

Chapter 4. Neural Network Design with Run-time Configurable Approximate MAC

Weights & Inputs

Selection Model

 Energy, Power
or Performance

Constraints.

2

N-bit

Stage2

Stage3

Stage1

2-
bi

t S
D

LC

Stage4

CPA 4-
bi

t S
D

LC

Ex
ac

t

Final Product

C
on

fig
ra

tio
n

Si
gn

al

Selection
Exact

4-bit SDLC

00
01

1x

 2-bit SDLCN-bit

CLA (Adder)

Accumulator

Activation Function

2N-bit

Figure 4.1: Neuron structure-serial processing including the proposed hardware architec-
ture of the configurable MAC unit.

57

Chapter 4. Neural Network Design with Run-time Configurable Approximate MAC

4.3.2 MAC unit reconfigurable circuits

The proposed design shown in Figure4.2 includes three modes consists of three
subcircuits and works as follows. During the Exact mode the EACA send a signal
to active all three subcircuits and disable unused circuits that required for other

Stage2

Stage3

Stage1

Stage4

CPA

(b)

New HA

New HA

Required for 2 & 4-bit_SDLC

 Approximate Mode 2-bit SDLC

Stage2

Stage3

Stage1

Stage4

CPA

(a) Exact Mode

2-bit SDLC
PPM

EACA Model

Exact
PPM

4-bit SDLC
 PPM

01

8
8A and B

2-bit SDLC
PPM

EACA Model

Exact
PPM

4-bit SDLC
PPM

8
8A and B 00

E

A1

A2

E

A1

A2

DisconnectedComponents can be involved

Stage2

Stage3

Stage1

Stage4

CPA

(c)

New HA

New HA

Required for 2 & 4-bit_SDLC

2-bit SDLC
PPM

 Approximate Mode 4-bit SDLC

EACA Model

Exact
 PPM

4-bit SDLC
 PPM

1x

A and B 8
8

E

A1

A2

E

A1

Figure 4.2: Representation of the reconfigurable circuits supporting three different
modes.

58

Chapter 4. Neural Network Design with Run-time Configurable Approximate MAC

modes in order to prepare the circuit for the inputs coming from PPM operation.
As well the EACA is responsible for generating a signal to select the PPM mode.
Then the PPM will send the results to the adders in the stage. The approximate
mode, includes two circuits A1, A2 where a majority components can be involved
between and active during the Exact and 2-bit SDLC approximate Mode. The
remaining logic in E circuit will switched off by EACA model. It means that both
circuits A1 and A2 are only active in this mode (see Figure4.2 (b)). The third mode
is 4-bit SDLC located at A2 circuit. In this mode the scenario EACA is optimized to
switch off all the two subcircuits E and A1 and some components in A2 can remain
disconnected. The EACA is optimized for the scenario in which the approximate
mode is active for a predominant part of the whole runtime. This is the reason, why
A2 is always powered. The goal of the evolution is to find a circuit showing the
highest possible power reduction when it operates in the approximate mode.

4.4 Implementation of ANNs

Using the neuron module (Figure 4.1), a number of ANNs are implemented targeting
well-known ML data-sets. Table 4.1 lists the data-sets including the required number
of MACs required in neurons. The Noisy XOR data-set contains 12 binary inputs,

Table 4.1: Numbers of input, layers and required neurons/MACs for different data-sets.
Data-set No. of Input No. of Layers No. of Neurons

Noisy XOR [140] 12 2 13
Binary IRIS[141] 16 2 103

MNIST[142] 784 3 660
SVHN[143] 1024 6 1560

two of which are related by XOR with the remaining 10 inputs randomised. The
training set provides 10000 examples and 40% of the outputs are inverted for added
noise. For this reason, learning accuracy is limited to 80%. The test set provides
a further 10000 examples, this time without output inversion, meaning that 100%
test accuracy is theoretically possible [144].

The binary IRIS data-set is a further ANN architecture which has been imple-
mented. Found in [145] and [146], the proposed ANN consists of two hidden layers.
Each layer includes the proposed MAC unit connected to every node (see Table 4.1).
After every hidden layer, the neuron module includes an activation function to define
the output (Figure 4.1). To achieve a more efficient model and control the learning
process all the parameters such as the numbers of neurons, layers and inputs have

59

Chapter 4. Neural Network Design with Run-time Configurable Approximate MAC

been set. The learning algorithm of the ANN consists of two main stages, namely
forward-propagation and backward-propagation. However, a single hidden layer ,
which computes a hidden layer ht and the activation output layer yt are the signifi-
cant blocks, as previously mentioned in 2, due to two main reasons: its higher power
consumption and its silicon area compared to other blocks in the ANN design. The
following part describes the hidden layer and activation of output layer.

Start Read the data-set. Define features
and labels.

Divide the data-set into
two parts for traning

and testing.

Implementing the
model.

Train the model
using the training
data part (N%).

Weights changes
/calculate the best

weights.

Training accuracy
best waight.

End

Back-propagation

Offline in software.

Start
Read the test data

part (N%).

Calculate the infrance accuracy
using the best waights and the

test data part.
End

Save the best waights.

Feed-forward operation for infrance accuracy.

Online in hardware architecture.

Figure 4.3: Main steps for training and testing a Neural Network.

To demonstrate the proposed approach, the neuron module in System-Verilog to
implement the ANN is described. The neuron modules are then synthesised with
different configurations using Synopsys Design Compiler with the circuits mapped
onto the Faraday 90nm technology library to measure the power consumption, sil-
icon area and the performance profiles related to each configuration. Additionally,
the library setup time is 9.93ns for the operation speed. These measurements are
subsequently modeled within the EACA model to allocate the optimal design re-

60

Chapter 4. Neural Network Design with Run-time Configurable Approximate MAC

quirements for the ANN.
After the ANN circuit is implemented, it is trained using 60% of the Noisy XOR

and Binary IRIS data-set [141] with the back-propagation learning algorithm by
working offline to calculate the best weights (see Figure 4.3). Then, the remainder
of the data-set is used to test the data-sets online by means of the feed-forward
in hardware architecture after adding a range of possible formulations that are the
different MAC unit configurations. In terms of learning, it is apparent that the best
weights were achieved at the 5th iteration for the Noisy XOR data-set, and at the
50th iteration for the Binary IRIS data-set.

The Exact ANN version using wallace-tree multiplier (WTM) [27] is the most
efficient for learning, followed by the SDLCs types 2-, and 4-bit SDLCs, as demon-
strated in Figure 4.4. Additionally, there is a directly proportional relationship
between the size of the logic clusters in the chosen MAC unit configuration and
learning performance. Depending on the selected multiplier configuration, the size
of the logic clusters is determined by the range of accuracy losses, which will detect
the number of the required iterations to determine the best weights. As a result, the
SDLC configuration models (i.e. 2-, and 4-bit) have achieved the best weights at the
10th and 18th epochs for the Noisy XOR data-set, and 90th and 100th epochs for the
Binary IRIS data-set, after the Exact configuration model, as shown in Figure 4.4.

1 2 3 4 5 6 7 8 9 10 18

65

70

75

80

85

90

95

100

Training Epochs

T
ra

in
in

g
 A

cc
u
ra

cy
 %

Noisy XOR

Exact 2-bit SDLC 4-bit SDLC

0 10 20 30 40 50 60 70 80 90 100

0

15

30

45

60

75

90

Training Epochs

T
ra

in
in

g
 A

cc
u

ra
cy

 %

Binary IRIS

Exact 2-bit SDLC 4-bit SDLC

Noisy XORFigure 4.4: Back-propagation learning rule results for various selections of ANN hard-
ware configurations using Noisy XOR and Binary IRIS data-sets.

A similar method is used to generate the weights but with a different number of
layers and neurons (see Table 4.1). As shown in Figure 4.5 the Exact version records
the best at 96%. Conversely, in terms of power, energy and latency, the SDLCs have

61

Chapter 4. Neural Network Design with Run-time Configurable Approximate MAC

higher efficiency (see Table 4.2), at broadly satisfactory levels of inference accuracy
within the range of 91% and 89%. Consequently, this design will represent the best
power-adaptive hardware design that can operate in conditions of varying power
constraints while delivering power efficiency and learning efficacy.

Moving on to the more complex problem of ‘Hand Written Digit Recognition’
using modified national institute of standards and technology (MNIST) [142] data-
set, the 4-bit SDLC multiplier’s accuracy reduces to 89%.

82
84
86
88
90
92
94
96
98

E
x

ac
t

2
-b

it
 S

D
L

C
 /

E
x
ac

t

2
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C
 /

E
x
ac

t

4
-b

it
 S

D
L

C

E
x

ac
t

2
-b

it
 S

D
L

C
 /

E
x
ac

t

2
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C
 /

E
x
ac

t

4
-b

it
 S

D
L

C

E
x

ac
t

2
-b

it
 S

D
L

C
 /

E
x
ac

t

2
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C
 /

E
x
ac

t

4
-b

it
 S

D
L

C

E
x

ac
t

2
-b

it
 S

D
L

C
 /

E
x
ac

t

2
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C
 /

E
x
ac

t

4
-b

it
 S

D
L

C
Noisy XOR Binary IRIS MNIST SVHN

In
fe

re
n

ce
 A

cc
u

ra
cy

Figure 4.5: Inference accuracy results for various selections of ANN hardware architec-
tures using various data-sets.

The SVHN data-set [143] is considerably more challenging for classification than
MNIST with large numbers of inputs and neurons (Table 4.1) and is therefore used
next to demonstrate the capabilities of the proposed configurable MAC. The accu-
racy results are shown in Figure 4.5, with the 4-bit SDLC achieving a respectable
87% accuracy.

The results in Table 4.2 are obtained from Synopsys Design Compiler using
the CMOS 90-nm library for ASIC implementations of ANNs using the proposed
configurable MAC unit with hidden layer focusing on ha, and oa.

Table 4.2 lists the results of area, power, delay and Power-Delay Product (PDP)
for different configurations of MAC unit focusing on specific configurations. As can
be seen, in row 1 of every model of neutral data-sets architecture, the model has
significantly higher power consumption and delay, area and energy compared with

62

Chapter 4. Neural Network Design with Run-time Configurable Approximate MAC

Table 4.2: Area (A), power(P), delay(DL) and Power-delay product (PDP) results for
different MAC configurations.

Data-set → Noisy XOR
ht / yt A(um2) P (µW) DL(ns) PDP (fJ)
Exact 1.84E+04 8.11E+2 3.42E+1 2.77E+04

2-bit SDLC/Exact 1.23E+04 5.10E+2 2.80E+1 1.43E+04
2-bit SDLC 1.18E+04 5.07E+2 2.74E+1 1.39E+04

4-bit SDLC/Exact 7.44E+03 4.37E+2 1.88E+1 8.22E+03
4-bit SDLC 6.52E+03 3.25E+2 1.74E+1 5.66E+03
Data-set → Binary IRIS

ht / yt A(um2) P (µW) DL(ns) PDP (fJ)
Exact 1.46E+05 6.43E+03 2.71E+2 1.74E+06

2-bit SDLC/Exact 9.47E+04 4.09E+03 2.19E+2 8.96E+05
2-bit SDLC 9.32E+04 4.02E+03 2.17E+2 8.72E+05

4-bit SDLC /Exact 5.44E+04 2.69E+03 1.43E+2 3.85E+05
4-bit SDLC 5.17E+04 2.53E+03 1.37E+2 3.47E+05
Data-set → MNIST

ht / yt A(um2) P (µW) DL(ns) PDP (fJ)
Exact 9.35E+05 4.12E+04 1.74E+3 7.17E+07

2-bit SDLC /Exact 6.02E+05 2.60E+04 1.40E+3 3.64E+07
2-bit SDLC 5.97E+05 2.57E+04 1.36E+3 3.50E+07

4-bit SDLC/Exact 3.40E+05 1.69E+04 9.04E+2 1.53E+07
4-bit SDLC 3.31E+05 1.65E+04 8.91E+2 1.47E+07
Data-set → SVHN

ht / yt A(um2) P (µW) DL(ns) PDP (fJ)
Exact 2.21E+06 9.74E+04 4.74E+3 4.00E+08

2-bit SDLC /Exact 1.47E+06 6.14E+04 3.30E+3 2.02E+08
2-bit SDLC 141E+06 6.12E+04 3.36E+3 2.01E+08

4-bit SDLC/Exact 8.48E+05 4.00E+04 2.12E+3 8.47E+07
4-bit SDLC 7.82E+05 3.97E+04 2.8E+3 8.36E+07

the other models. This is because, at that stage, the model has operated using only
the Exact model in all the design blocks. In relation to the stages between rows
2-5 when traditional complex Exact blocks are replaced by low-complexity design
ones, the power consumption and delay are reduced depending on the type of MAC
configuration using the approximation level. Therefore, row 5, where the model
includes the 4-bit SDLC model and the highest approximation and low complexity, is
the optimized model chosen for energy and power efficiency and low delay (decreasing
in area complexity and hence in power, energy and delay).

The accuracy of this model is good compared with that of the Exact model in
row 1. The configuration in Table 4.2 ht/yt is selected as the higher approximation

63

Chapter 4. Neural Network Design with Run-time Configurable Approximate MAC

for the hidden layer and not the output layer because it directly affects the output
(see Figure 4.5). The results show that up to more than 5.1 times higher (expressed
in terms of power-delay product (PDP)[147]) that is calculated to make a clearer
assessment of the energy efficiency achieved in the case of the 4-bit SDLC MAC,
suggesting that this SDLC version is the most efficient in terms of power, energy,
and delay, with a comparatively moderate loss of accuracy.

4.4.1 Area Reduction & Inference Accuracy in FPGA Implementations

To compare with existing designs the configurable MAC and Ullah, S et al [148] de-
signs were re-implemented in FPGA using Xilinx Vivado Design Suite and Ultra96-
V2 platform [122] for fair comparisons. For validation experiments, the proposed
MAC performance is examined using the MNIST database and the LeNet-5 convo-
lutional neural network (CNN). The architecture of LetNet-5 [149] consists of two
convolution layers, two max-pooling layers, and two fully connected layers. The
CNN application was created using the Pythirch framework [150] for the training
module. The CNN is trained with 128 batch size and 20 epochs. Then the CNN is
implemented in System-Verilog with the best weight and biases achieved from the
training stage. To perform the inference, the 4-bit SDLC approximate and Exact
MACs are used. Since the convolution layer requires the most computation, the
Exact is replaced with the 4-bit SDLC MAC. The proposed 4-bit SDLC MAC con-
figuration achieves 91% inference accuracy according to Table 4.3 that compares the
Inference Accuracy and convolutional layer’s area reduction of two multipliers (Ex-
act and [148] design). The proposed 4-bit SDLC approximate MAC configuration
obtains a negligible loss in output quality with the least area when compared to the
existing approximate MAC design.

Table 4.3: Comparing with Ullah, S et al [148] in terms of Area reduction and Inference
accuracy.

Data-set → MNIST
MAC ↓ Area Reduction(%) Inference Accuracy(%)

Proposed Exact - 98.2
Accapp [148] 4.02 64.1

Proposed 4-bit SDLC 45.2 91

4.5 Case Study

In this section a case study is presented where the configurable MAC is controlled by
the EACA algorithm (Algorithm 1) solving real-world problems such as continuing

64

Chapter 4. Neural Network Design with Run-time Configurable Approximate MAC

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

0

10

20

30

40

50

60

70

80

90

100

(f
J)

(%
)

(a)Inference Accuracy (%) Energy (fJ)

Time

Not enough energy –

computation skipped

E
x

ac
t

E
x

ac
t

E
x

ac
t

E
x

ac
t

E
x

ac
t

(a)

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

0

20

40

60

80

100

4
-b

it
 S

D
L

C
 /

E
x
ac

t

2
-b

it
 S

D
L

C

2
-b

it
 S

D
L

C
 /

E
x
ac

t

E
x

ac
t

E
x
ac

t

E
x

ac
t

E
x
ac

t

2
-b

it
 S

D
L

C
 /

E
x

ac
t

2
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C
 /

E
x

ac
t

4
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C
 /

E
x

ac
t

4
-b

it
 S

D
L

C

2
-b

it
 S

D
L

C

2
-b

it
 S

D
L

C
 /

E
x
ac

t

E
x

ac
t

(f
J)

(%
)

(c)
Inference Accuracy (%) Energy (fJ)

Exact

configuration

Approximate
configuration

Time

(b)

Figure 4.6: Different run-time scenarios for the EACA model to operate under highly
variable energy conditions. (a) only exact configuration allowed and (b) all configura-
tions allowed.

65

Chapter 4. Neural Network Design with Run-time Configurable Approximate MAC

to provide a required computation capacity under variable energy supply conditions.
The case study demonstrates the capabilities of the proposed configurable multiplier
as well as the validity of the EACA configuration selection algorithm.

In this investigation, two different MAC configuration systems are compared.
The first case is presented in Figure 4.6(a) where only the exact MAC configuration
is allowed. The EACA algorithm’s response to the energy variations is recorded
and shown in the figure. Also recorded and exhibited in the figure are the accu-
racy of the ANN (vertical bars) and the instantaneous energy availability (black
curve). The EACA runs the exact configuration only when the energy is sufficient
for that configuration. When the energy is not enough the EACA waits, until more
energy becomes available to restart. The second case is shown in Figure 4.6(b)
where all configurations are allowed. The EACA attempts to fit the least approxi-
mate configuration to the instantaneous available energy. When the energy is low,
more approximate configurations are chosen to maintain processing; when it is high,
less approximate configurations are chosen for superior accuracy. Case 1 mimics a
conventional exact-only system, which has poor adaptability under variable energy
supply.

4.6 Conclusion
In this chapter presents a new method for power-adaptive ML hardware design.
Firstly, ability of the significant-driven logic compression (SDLC) multiplier ap-
proach is taken advantage of to design a configurable MAC unit. Secondly, the
EACA model was employed to allocate the optimal configuration of the MAC unit
depending on the available instantaneous energy. The proposed configurable MAC
designs were implemented in System-Verilog and synthesised using Synopsys De-
sign Compiler. The synthesised results explained that up to 5× higher (expressed
in terms of PDP) energy savings can be achieved. Thirdly, the proposed MAC is
utilised to operate into neuron module targeting ML systems. The EACA model
proved capable of tuning the required computation capability of the neuron un-
der variable power budgets. Then, the presented neuron module was scaled up to
build the proposed model-driven power-adaptive ANN design. The results reveal
that the proposed approach can provide significant energy and area savings with
negligible loss in output quality (the worst inference accuracy is 91% for the 4-bit
SDLC MAC)ompared to an existing work. Moreover, the results demonstrate that
the EACA model allows the ANN to operate at run-time under significant energy
variations while meeting the quality requirements.

66

Chapter 5

NN Design with Modified Activation
Function
In chapter 4, a new method including a configurable MAC unit for the design of
power-adaptive ML hardware was introduced. This chapter introduces a config-
urable modified activation function in order to minimize prediction error caused by
the approximate configurations as mentioned in chapter 4. The estimation of the
accuracy of approximation by these methods of activation functions is performed.
To evaluate the effectiveness of modified activation function, a new neuron design
which includes a configurable MAC (exact and 4-bit SDLC) and the modified acti-
vation function are designed in System-Verilog and used to generate synthesizable
modules. The synthesized designs are further characterized for power, area, delay,
and energy using Synopsys Design Compiler, employing UMC 90nm digital CMOS
technology and the Xilinx Vivado Design Suite. Also, an extensive error analysis is
provided.

67

Chapter 5. NN Design with Modified Activation Function

5.1 Introduction

A significant part of neuron implementation is the development of activation function
hardware. Sigmoid and rectified linear unit (ReLU) activation functions are the
most frequently used activation functions in backpropagation neural networks(NNs)
[151]–[154]. The NN implementations consist of the modular electronic neurons
that primarily feature arithmetic operations such as MAC units. The arithmetic
complexity increases with more inputs as well as the learning problem at hand.
Intrinsically, achieving the required performance under restricted power or energy
budget remains challenging [131], [133]. This chapter presents a new configurable
MAC unit taking advantage of the proposed MAC unit presented in chapter 4. The
architecture leverages between the Exact and approximate configurations to specify
the optimize configuration depending on the model-driven power and accuracy trade-
offs (see Subsection5.6.4). Thus, by allocating the appropriate configurations during
run-time, the computation capability under variable power or energy budgets can
be adjusted. Furthermore, a configurable modified activation function to minimize
the prediction error was proposed (see the following Figure).

Exact MAC

Approximate MAC
Modified

Activation Function

Activation Function

Presented in the previous chapter

The following chapter presents

≈ Approximately Equal

5.1.1 Contributions

This chapter presents a new configurable modified activation function, which sup-
ports run-time configuration multiplier. The architecture leverages a tunable ap-
proximation method to specify the logic compression level depending on the model-
driven energy and accuracy trade-offs. Thus, by allocating the appropriate configu-
rations during run-time, the computation capability under variable power or energy
budgets can be adjusted the rate of errors in multiplication can be corrected. In
this chapter, the following contributions are made:

• Propose a new neuron design with a configurable modified activation function;

68

Chapter 5. NN Design with Modified Activation Function

• implement the proposed new neuron architecture in a MLP and validate it by
exercising a data-set to evaluate the performance-energy-quality trade-offs.

The remainder of the chapter is organised as follows: Section 5.4 explains in
detail the proposed design method of configurable multiply-accumulate (MAC) unit
and modified activation function. Section5.5 presents the synthesised results, whilst
section 5.6 demonstrates the simulation and evaluation results. Finally, section 5.7
concludes the chapter.

5.2 Methods of Activation Functions

An important component is the nonlinear activation function, which is used at the
output of every neuron. Several different activation functions are available today,
such as sigmoid [155], hyperbolic tangent (tanh)[156], and Rectified Linear Unit
(ReLU) [157],along with Leaky ReLU and Maxout. Activations are typically repre-
sented by a number within the range of 0 to 1. The weight is double the activation
function. The most frequently used activation function in backpropagation NNs is
the sigmoid function. It can be described using equation (5.1) [158].

sig(x) = 1
1 + e−x

(5.1)

5.3 Proposed Adaptive Approximation Method

The configurable MAC unit presented in chapter 4 is redesigned to have the largest
size of the d-bit SDLC approach using the exact area as the core part of a neu-
ron module. In this work the Wallace tree serves as an example. The proposed
method can be applied based on any exact multiplier design including multi-stage
tree structures, for instance Wallace and Dadda trees. Fundamentally, adders in the
multiplier acting as the exact configuration are re-purposed through re-wiring to
implement the approximate configurations. Figure 5.1 illustrates how the proposed
configurable (8 x 8) multiplier design performs the exact and approximate multipli-
cation. In this design, each circle represents one partial product bit. The required
half adders are marked by rectangles spanning columns of two partial product bits
and full adders are marked by rectangles spanning columns of three bits. The exact
configuration in (a) represents a traditional Wallace tree multiplier which uses the
largest number of half and full adder units within the reduction stages. The 4-bit
SDLC configuration presented in (b) is considerably smaller, while (c) reveals the
new configurable design that includes both the exact and 4-bit SDLC using few

69

Chapter 5. NN Design with Modified Activation Function

additional numbers of adders in addition to the already existing adders required by
the exact configuration.

The neuron module shown in Figure 5.2 accepts the weights and input pairs,
where each pair is multiplied together. For each input pair, the multiplication
result is sequentially accumulated by the CLA. The final sum is passed through the
activation function to produce the neuron’s output. A 2x1 multiplexer (MUX) is
added for the configurable selection of the logic compression level performed by the
MAC unit.

70

Chapter 5. NN Design with Modified Activation Function

St
ag

e2

St
ag

e3

St
ag

e1

St
ag

e4

C
PA

4-bit SDLC

St
ag

e2

St
ag

e3

St
ag

e1

St
ag

e4

C
PA

C
PA

(a
)

(b
)

(c
)

Fu
ll

ad
de

r

H
al

f a
dd

er

Exact

Ex
is

ts
 fo

r E
xa

ct
 &

 4
-b

it
SD

LC
O

nl
y

ex
is

ts
 fo

r 4
-b

it
SD

LC

O
nl

y
ex

is
ts

 f
or

 E
xa

ct

Fi
gu

re
5.

1:
T

he
re

du
ct

io
n

st
ag

es
of

an
(8

×
8)

W
al

la
ce

tr
ee

m
ul

tip
lic

at
io

n
ill

us
tr

at
e

th
e

ac
cu

m
ul

at
io

n
m

et
ho

d
fo

r
th

e
PP

M
fo

rm
ed

fr
om

th
e

ex
ac

t
an

d
lo

gi
c

cl
us

te
rs

of
tw

o
di

ffe
re

nt
siz

es
(a

)
fo

ur
re

du
ct

io
n

st
ag

es
ar

e
re

qu
ire

d
in

ca
se

of
(8

×
8)

tr
ad

iti
on

al
W

al
la

ce
tr

ee
m

ul
tip

lie
r(

W
T

M
);

(b
)

no
re

du
ct

io
n

st
ag

es
fo

r
th

e
4-

bi
t

SD
LC

as
th

e
he

ig
ht

of
th

e
PP

M
is

on
ly

tw
o

ro
w

s,
an

d
(c

)
co

nfi
gu

ra
bl

e
(8

×
8)

W
al

la
ce

tr
ee

m
ul

tip
lic

at
io

n.

71

Chapter 5. NN Design with Modified Activation Function

Weights & Inputs

Selection Model

 Energy, Power
or Performance

Constraints.

2

N-bit

Stage2

Stage3

Stage1

Stage4

CPA 4-
bi

t S
D

LC

Ex
ac

t

Final Product

C
on

fig
ur

at
io

n
Si

gn
al

 Selection

Exact
4-bit SDLC

00
1xN-bit

CLA (Adder)

Accumulator

Activation Function

2N-bit

Figure 5.2: Neuron (structure-serial) processing including the proposed hardware archi-
tecture of the configurable MAC unit.

Table 5.1: The number of full and half adders used by the accumulation stages and CPA
for different exact, approximate multiplier and the Proposed configurable (8 × 8) Wal-
lace tree.

Multiplier → Exact 4-bit SDLC Proposed
Adder type HA FA HA FA HA FA

Stage 1 4 12 - - 4 12
Stage 2 3 13 - - 3 13
Stage 3 4 6 - - 4 6
Stage 4 4 7 - - 4 7

CPA 10 11 11

72

Chapter 5. NN Design with Modified Activation Function

Table 5.1 may be read in conjunction with Figure 5.1 to represent the required
single-bit adders in all parts of the proposed configurable multiplier design. As can
be noticed from the table, the exact configuration requires the majority of half and
full adders. Only a very small number of adders are required in addition to the
exact configuration to accommodate the 4-bit SDLC configuration. In Section 5.6.4
the additional silicon area required by the 4-bit SDLC is calculated.

5.4 Proposed Configurable Modified Activation Function

The proposed research begins with the following hypothesis (5.2). For every activa-
tion function, AFe can be used to construct a NN Ne with (Me). Let’s represent
this by NeMe, AFe. An activation function exists (AFa) such that Na=NaMa, AFa
is functionally the same as or approximately the same as (Ne). This concept can be
represented by:

Na {Ma, AFa} ≈ Ne {Me, AFe} (5.2)

where (Na) is a neuron that includes (Me), the exact multiplier for weights and
inputs multiplications and (AFe) is the exact activation function.

Table 5.3 shows the multiplier’s accuracy factors. The error distance (ED) pa-
rameter is a metric for assessing output quality but is not illustratively compared to
other metrics such as the error rate (ER), mean relative error distance (MRED), and
normalised mean error distance (NMED). These metrics (ER,MRED and NMED)
are considered to evaluate the output quality of the approximate circuits in error
resilient applications [159]–[162]. It is worth noting that in many imprecise appli-
cations, such as those focusing on bit Significance-Driven Logic Compression, the
difference between the exact and inaccurate results is more important than their
relative difference. The MRED and NMED are considered to be the best metrics
for these applications [102]. Moreover, in these applications, it is necessary that the
multipliers comprising different sizes are compared. Accordingly, in these cases the

Table 5.2: Normalised Mean Error Distance (NMED) for (8x8) multiplier size with a
different d-bit.

d-bit↓ NMED (%)
2-bit 0.0035
3-bit 0.0101
4-bit 0.0327

73

Chapter 5. NN Design with Modified Activation Function

NMED metric would be more illustrative [102].

Table 5.3: Error Distance (ED), Error Rate (ER), Mean Relative Error Distance
(MRED), Normalised Mean Error Distance (NMED), are different metrics used to eval-
uate a multiplier.

Metrics Error Metric Approximate circuits Bit SDLC Comparing multipliers of different sizes
ED [✓] [×] [×] [×]
ER [✓] [✓] [×] [×]

MRED [✓] [✓] [✓] [×]
NMED [✓] [✓] [✓] [✓]

However, the proposed neuron model including (Configurable MAC unit and
modified activation function) is built based on the NMED as a metric that is consid-
ered to be the best error metric as previously mentioned (see Table 5.3). To estimate
the accuracy of the approximate multiplier configuration (4-bit SDLC), comprehen-
sive simulations are performed using Vivado and MATLAB simulation (see Figure
5.3) by implementing a functional model the proposed MAC unit. The response of
the approximate multiplier configuration is evaluated for all possible combinations
of operands (see Table 5.2). The traditional sigmoid function described in equation
(5.1). Equation (5.4) shows the modified sigmoid function, to which the variable
CM was added. The CM is the compensation described in Equation 5.3 to be equal
to the NMED in Table 5.2 that will be used to minimize the prediction error that
caused by the approximate multiplier configuration (4-bit SDLC). In addition, the
focus has been on the higher level SDLC multipliers where energy reductions are
achieved at the cost of reduced quality (e.g., 4-bit SDLC in 8x8 multiplier size).
In essence, the same approach is used in the ReLU activation function. Figure 5.4
represents a single neuron architecture with the activation function shown in (a) and
the proposed modified activation function shown in (b) including the variable CM
and the CLA adder. The additional overhead silicon area caused by the registers
and adder in Figure 5.4(b) is calculated in Subsection 5.6.3.

CM = NMED (5.3)

In fact, by performing simple transformations for 5.1 and 5.3, is obtained

sig(x) = (1
1 + e−x

) + CM (5.4)

74

Chapter 5. NN Design with Modified Activation Function

 Take one lac of random input patterns

Convert Random Sample Input into (.hex) file with
MATLAB code and simulated using MATLAB
Software

 (.hex) file is applied at Verilog Test bench program of
the approxmate multiplier.

Computes Error Metrics using (.text) file with
MATLAB code simulated using MATLAB Software.

The output of the approxmate multiplier is converted
into a (.text) file and simulate by using Vivado
Software

Start

Stop

Figure 5.3: Simulation process of error metrics calculation.

5.5 Experimental Results

To demonstrate the proposed approach, the neuron module is described in System-
Verilog to implement the MLP. Then, neuron modules were synthesised with differ-
ent configurations using Synopsys Design Compiler and the circuits were mapped to
the Faraday’s 90nm technology library to measure the power consumption, silicon
area and the performance profiles related to each configuration. These measure-
ments are then modelled within the EACA model (see Chapter 3 (Section 3.6.1))
to allocate the optimal design requirements for the MLP. Next, the proposed neuron
is implemented on an embedded FPGA (Xilinx Ultra96 v2) Evaluation Platform us-
ing Xilinx Vivado Design Suite. The following subsections list the synthesised result
of different configuration of the proposed neuron including MAC unit module and
a case study for the neuron module learning algorithm.

5.5.1 Area, Delay & Power Trade-offs in ASIC Implementations

For ASIC comparisons, a generic System-Verilog code is used to generate synthe-
sisable modules for the proposed configurable MAC. Synopsys Design Compiler is
applied to synthesise the MAC configurations and the circuits are implemented in

75

Chapter 5. NN Design with Modified Activation Function

X + Reg

Reg

Reg

n0 1
 Activation Function

Out
Reg

Input
Bias

Weight

Selection Model

Configrable MAC unit

Configration Signal

X + Reg

Reg

Reg

n0 1
Configurable Modified Activation Function

Out
Reg

Input
Bias

Weight

Selection Model

Configrable MAC unit

Configration Signal
+Reg

CM
CLA

(a)

(b)

CLA

CLA

Figure 5.4: A schematic representation of a single neuron architecture with the acti-
vation function is shown (a) and the proposed modified activation function is shown in
(b).

the Faraday 90nm technology library.
The compared methods [102], [163] and [25] are re-implemented using the

same technology library (Faraday 90nm technology library), the Synopsys Design
Compiler synthesis tool and the library setup time is 9.93ns for the operation speed.
Thus, comparisons can be performed on the same implementation technology node
and library. Table 5.4 presents area, delay and power trade-off figures when com-
pared with [102], [163] and [25]. As can be realised, the configurable hardware
(row 1) is larger in terms of area than the exact multiplier [25] alone. A delay over-
head is also expected in the configurable design because of the increased number of
adders.

Table 5.4 shows that the area overhead that compares the configurable multiplier
Proposed Exact to the Exact multiplier on which it is based (Exact [25]), is 0.12%
increase of 62.42 um2. Power overhead is 0.14%, the latency overhead is 0.3%
whereas the PDP overhead is 0.6% increase of 164.2fJ Exact [25]. However, the
proposed model saves more than 59.4% of area compared with the solution proposed
in [102], which includes separate Exact, 2-bit and 4-bit SDLC multipliers for run-
time the selection. This large reduction in area implies significant power and energy
savings. The competitive figures obtained for these non-functional metrics suggest

76

Chapter 5. NN Design with Modified Activation Function

Table 5.4: Comparing existing multiplier designs and the proposed configurable design
in terms of power(P), area (A) delay(DL) and Power-delay product (PDP).

Multiplier ↓ P (µW) A(um2) DL(ns) PDP (fJ)
Fixed Config(s) [102] 158.39 3495.71 7.82 1238.6
Proposed Exact [163] 66.20 1450.40 2.66 176.1

Exact [25] 62.42 1417.47 2.64 164.2
Proposed Exact 62.50 1419.20 2.65 165.3

Proposed 4-bit SDLC 25.42 501.37 1.35 34.32

that this configurable design would also compare favourably against the other designs
in [25], [163] and [102].

5.5.2 Area, Delay & Power Trade-offs in FPGA Implementations

For a more flexible design, the configurable multiplier is also implemented in FPGA
using Xilinx Vivado Design Suite for the Ultra96-V2 platform [122]. The compared
existing designs, originally also on FPGA, are re-implemented on this same platform
for fair comparisons. A previous study includes different designs of exact multipli-
ers on FPGA (see Table 5.5), focusing on performance [164] and [163]. These are
compared with the two proposed configurations for non-functional parameters. Ta-
ble 5.5 lists the results for each design in relation to area, delay and power. It can
be observed that the proposed configurable multiplier, in its different configurations
(between exact and 4-bit), is competitive in terms of area, delay and power com-
pared to modified radix2 booth multiplier (MRBM) and WTM. It is notable that
the exact configuration is competitive in delay with these multipliers, which were
designed for speed.

Table 5.5: Comparing non-functional metrics with other approaches.
Multiplier ↓ Area (LUT’s) Power (W) Delay (ns)
MRBM [164] 137 1.010 6.721
WTM [164] 96 1.061 6.102

Proposed Exact [163] 91 1.22 6.102
Proposed Exact 89 1.18 6.101

Proposed 4-bit SDLC 42 0.23 3.8

5.5.3 Neuron Module Learning

In this section, a case study for the perceptron learning algorithm is presented, in
which a training set is utilised to train the perceptron to classify inputs correctly.

77

Chapter 5. NN Design with Modified Activation Function

This is achieved by adjusting the connecting weights and the bias to precisely handle
linearly separable sets. Figure 5.5 shows a test platform to evaluate the effectiveness
of the proposed multipliers on perceptron-based machine learning application. All
input sets are randomly generated and independently distributed from 0 to 255 to
allow exact or approximate 8-bit multiplication to be employed. Then, the classifier
is evaluated against a test set of 1000 two-dimensional points that belong to two
classes [0,1].

The exact and the approximate multiplier 4-bit SDLC multiply the perceptron
inputs by the weight vectors. After that, the proposed modified sigmoid function
was used to generate the final output. The error rate (ER) is the mismatch ratio
between the classified class and the actual output. Table 5.6 and Figure 5.6 are
demonstrate the comparison of the classification problem with the exact (8 × 8)
multiplier and exact activation function in (a). In (b), the approximate 4-bit SDLC
proposed in [102] and an exact activation function were used. However, in (c), the
proposed 4-bit SDLC was applied with design that is proposed in [102] with the
proposed configurable activation function. The results reveal that in (c) compared
to (a), where the exact multiplier and exact activation function were used, the
proposed SDLC multiplier and configurable activation function (c) mismatch only
two points from the 1000 points in the testing set, as class 1 by mistake. Note that
even the design applying exact multiplier and activation function (a) cannot classify
all points correctly (one mismatched point due to the random initialisation of the
weights).

78

Chapter 5. NN Design with Modified Activation Function

Start

Random Input Vectors xi

Adjust Weights wi and Bias b

Implement Matlab Functions to Describe Different
integer (8-bit) Approximate Multipliers

Count Mismatch
Classification Points (M)

Input Vectors
Count >1000

? Calculate Error rate
(M /1000)

 1300 integer vectors between (0 to 255)
Training set (300)

Test set (1000)

No

𝒚 = ∑ wi • xi + b

Multiply each Integer Input
in the Test Set Vectors with

Corresponding Weight

Select a Matlab function to perform
approximate multiplication operator.

 Fixed-point multiplicatiopn is used to multiply
the integer inputs with fractional weights.

All addition and subtraction operations
 are done using exact compution.

Yes

Figure 5.5: Flowchart diagram demonstrating the main steps for evaluating the impact
of the proposed MAC unit with modified activation function and on a perception based
Classifier.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

(a)

0 50 100 150 200 250 300
0

50

100

150

200

250

300

(b)
0 50 100 150 200 250 300

0

50

100

150

200

250

300

(c)

Figure 5.6: The test set perceptron classification using; (a) exact multiplier and exact
activation function ; (b) 4-bit SDLC multiplier in [102] and exact activation function;
(c) proposed 4-bit SDLC multiplier and a configurable activation function (blue and red
points represent two classes 0 and 1, black dots mismatch classification points and the
axises show the random inputs between 0 to 255 for 8x8 multiplier

).

79

Chapter 5. NN Design with Modified Activation Function

The proposed approach outperforms the other designs and can provide acceptable
error rates (considering 10% average relative error as an acceptable accuracy metric
for all applications, verified by [165]) compared with the proposed design in [102]
illustrated in (b), which recorded eight mismatch points.

Table 5.6: ER results for different designs (a),(b) and (c).
VERSION ER (%)

Exact 0.01
4-bit SDLC [102] 0.08

Proposed 4-bit SDLC 0.02

5.6 Case Studies

To demonstrate the proposed neural model presented in section 5.3, the neuron
model was scaled up to implement the MLP. Next, the MLP was synthesised with
different configurations using Synopsys Design Compiler to measure the power con-
sumption, silicon area and the performance profiles related to each configuration. In
this section six case studies are set up. The first and second case studies exhibit the
learning and inference accuracy results for various selections of MLP configurations
using different MAC configurations with fixed and modified activation functions in
several well-known data-sets. The third case study compares the area overhead be-
tween the fixed and modified activation function. The fourth case study evaluates
different scenarios for power variation using MLP. The fifth case study takes advan-
tage of the reconfigurability and focuses on specific blocks in the MLP architecture.
These case studies demonstrate the capabilities of the proposed configurable MAC
with a modified activation function as well as the validity of the configuration selec-
tion algorithm.

5.6.1 Data Classification Results using MLP

Using the neuron module (Figure 5.2), MLP are implemented targeting well-known
ML data-set. To demonstrate the proposed approach, the neuron module is de-
scribed in System-Verilog to implement the MLP. The neuron modules are then
synthesised with different configurations using Synopsys Design Compiler with the
circuits mapped onto the Faraday 90nm technology library to measure the power
consumption, silicon area and the performance profiles related to each configura-
tion. These measurements are then modelled within the EACA model to allocate
the optimal design requirements for the MLP.

80

Chapter 5. NN Design with Modified Activation Function

70
75
80
85
90
95

100

1 2 3 4 5 6 7 8 9 10 18
T

ra
in

in
g

 A
cc

u
ra

cy
 %

Training Epochs

Binary IRIS

Proposed Exact 2-bit SDLC

4-bit SDLC Proposed 4-bit SDLC

(a)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Training Epochs

MNIST

Proposed Exact 2-bit SDLC

4-bit SDLC Proposed 4-bit SDLC

(b)

0

20

40

60

80

100

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3
0

1
4

0

1
5

0

Training Epochs

SVHN

Proposed Exact 2-bit SDLC

4-bit SDLC Proposed 4-bit SDLC

(c)

Figure 5.7: Backpropagation learning rule results for various selections of ANN hard-
ware configurations using different MAC configurations with the modified Sigmoid acti-
vation function in several well-known data-sets.

81

Chapter 5. NN Design with Modified Activation Function

70

80

90

100

1 2 3 4 5 6 7 8 9 10 18

T
ra

in
in

g
 A

cc
u

ra
cy

 %

Training Epochs

Binary IRIS

Proposed Exact 2-bit SDLC

4-bit SDLC Proposed 4-bit SDLC

(a)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Training Epochs

MNIST

Proposed Exact 2-bit SDLC

4-bit SDLC Proposed 4-bit SDLC

(b)

0

20

40

60

80

100

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3
0

1
4

0

1
5

0

Training Epochs

SVHN

Proposed Exact 2-bit SDLC

4-bit SDLC Proposed 4-bit SDLC

(c)

Figure 5.8: Backpropagation learning rule results for various selections of ANN hard-
ware configurations using different MAC configurations with the modified ReLU activa-
tion function in several well-known data-sets.

82

Chapter 5. NN Design with Modified Activation Function

The binary IRIS data-set is an ANN architecture that has been implemented.
Observed in [145] and [146], the proposed ANN consists of two hidden layers.
After the ANN circuit is implemented, it is trained using 60% Binary IRIS data-set
including the back-propagation learning algorithm by working offline to calculate
the best weights. Subsequently, the remainder of the data-set is applied to test the
data-sets after adding a range of possible formulations that are the different MAC
unit configurations with the proposed activation function. In terms of learning, it
is evident that the best weights were achieved at the 7th iteration for the Binary
IRIS data-set using Exact MAC with fixed activation function. The proposed 4-
bit SDLC achieved the best weights at the 8th iteration applying the new modified
Sigmoid function (see Figure 5.7 (a)). Additionally, for The proposal concerning the
ReLU activation function the best weights were recorded with a smaller number of
iterations at the 6th iteration using Exact MAC and at the 7th iteration with the
proposed 4-bit SDLC (see Figure 5.8 (a)).

To demonstrate more flexibility, the more complex problem of ‘Hand Written
Digit Recognition’ is addressed next. The MNIST data-set [142] is different ANN
architecture that has been implemented. A three-layer MLP can achieve 95.5%
accuracy [166] on the 784-input, 10-output problem utilising 128 neurons in the
hidden layer. The MNIST has 55,000 training images divided into two sets, one
set of 45,000 images are used as training data with the backpropagation learning
algorithm by working offline to calculate the best weights. The other set of 10,000
images are employed to validation data. 100 is used to train the model with the
training images, based on different learning rates. Next, the 10,000 validation images
are used to evaluate the 100 results. Finally, the selected parameters are utilised
to test the data-set after adding a range of possible formulations that comprise the
different MAC unit configurations and activation function. Figures 5.7 and 5.7 (b)
exhibit the training results of different MAC configurations and activation functions.
It is apparent that the that the proposed 4-bit SDLC with both types of activation
function can achieve the best weight more raplidly, in comparison to the fixed SDLC
with the fixed activation function. For instance, the newly proposed 4-bit SDLC

Table 5.7: Numbers of input, layers and required neurons for different data-sets.
Data-set No. of Input No. of Layers No. of Neurons

Noisy XOR 12 2 13
Binary IRIS 16 2 103

MNIST 784 3 660
SVHN 1024 6 1560

83

Chapter 5. NN Design with Modified Activation Function

with the ReLU activation function attains the best weights with fewer numbers of
iterations,70, in total. In contrast the fixed 4-bit SDLC required a greater number
of iterations and recorded less learning accuracy at 87% and 91% after the 100th

iteration.
The SVHN data-set [143] is considerably more challenging as regards classifi-

cation than the MNIST with large numbers of inputs and neurons (Table 5.7).
Therefore, it is applied next to demonstrate the capabilities of the proposed config-
urable MAC with various types of activation functions. Training Accuracy results
presented in Figures 5.7 and 5.8 (c) record less accuracy due to the increase in the
number of approximate neurons (fixed 2, 4-bit SDLC). However, the new proposed
4-bit SDLC achieves the best learning accuracy with 1% difference compared with
the exact configuration.

87

88

89

90

91

92

93

94

95

96

P
ro

p
o
se

d
 E

x
ac

t

2
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C

P
ro

p
o
se

d
 4

-b
it

 S
D

L
C

P
ro

p
o
se

d
 E

x
ac

t

2
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C

P
ro

p
o
se

d
 4

-b
it

 S
D

L
C

P
ro

p
o
se

d
 E

x
ac

t

2
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C

P
ro

p
o
se

d
 4

-b
it

 S
D

L
C

 Binary IRIS MNIST SVHN

In
fe

re
n

ce
 A

cc
u
ra

cy
 (

%
)

(a)

87
88
89
90
91
92
93
94
95
96
97

P
ro

p
o
se

d
 E

x
ac

t

2
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C

P
ro

p
o
se

d
 4

-b
it

 S
D

L
C

P
ro

p
o
se

d
 E

x
ac

t

2
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C

P
ro

p
o
se

d
 4

-b
it

 S
D

L
C

P
ro

p
o
se

d
 E

x
ac

t

2
-b

it
 S

D
L

C

4
-b

it
 S

D
L

C

P
ro

p
o
se

d
 4

-b
it

 S
D

L
C

 Binary IRIS MNIST SVHN

In
fe

re
n

ce
 A

cc
u
ra

cy
 (

%
)

(b)

Figure 5.9: Inference accuracy results for various selections of ANN hardware architec-
tures using various data-sets with (a)- Sigmoid and (b)- ReLU activation functions.

5.6.2 Inference Accuracy Results for Different ANN Hardware Config-
urations with Different Data-sets and Activation Functions

Figure 5.9 presents testing accuracy results for various selections of ANN hardware
architectures using various data-sets with (a)- Sigmoid and (b)- ReLU activation
functions. It can be noticed that the accuracy of three MLP network architectures
using the exact version of MAC and consisting of the ReLU activation function
(Figure 5.9 -(b)) records the best at ranges between 95% and 97%, whilst fixed

84

Chapter 5. NN Design with Modified Activation Function

approximate versions (2,4-bit SDLC) record the best accuracy in the range that is
between 87% and 94%. However, the proposed 4-bit SDLC with modified activation
functions (Sigmoid and ReLU) including the (CM) value to minimize the prediction
error caused by the approximate configurations), records the best accuracy in the
range that is between 1 to 2 percentage points less than the exact configuration.

85

Chapter 5. NN Design with Modified Activation Function

Ta
bl

e
5.

8:
A

re
a

ov
er

he
ad

re
su

lts
fo

r
th

e
m

od
ifi

ed
Si

gm
oi

d
ac

tiv
at

io
n

fu
nc

tio
n

(M
od

if
ie

d
A

F
)

in
cl

ud
in

g
th

e
ad

di
tio

na
ln

um
be

r
of

ad
de

rs
in

hi
dd

en
la

ye
rs

(h
)

an
d

ou
tp

ut
la

ye
r

(y
)

co
m

pa
re

d
to

th
e

fix
ed

(F
ix

ed
A

F
)

ac
tiv

at
io

n
fu

nc
tio

n.
D

at
a-

se
t→

M
N

IS
T

H
id

de
n/

O
ut

pu
t

La
ye

rs
A

re
a

Pe
r

N
eu

ro
n

A
re

a
Pe

r
La

ye
r

To
ta

lA
re

a(
u

m
2)

La
ye

rs
B

lo
ck

s
h

1
h

2
y

F
ix

ed
A

F
M

od
if

ie
d

A
F

la
y
er

(h
))

la
y
er

(y
))

A
ct

iv
at

io
n

Fu
nc

tio
ns

↓
F

ix
ed

A
f

50
0

15
0

10
13

2.
49

-
86

11
8.

5
13

24
.9

87
44

3.
4

A
dd

iti
on

al
ad

de
rs

(+
)

+
50

0
+

15
0

+
10

-
70

.2
+

45
63

0
+

70
2

+
46

33
2

M
od

if
ie

d
A

f
(F

ix
ed

A
f

+
a
d
d
er

)
50

0
+

50
0

15
0

+
15

0
10

+
10

-
20

2.
69

13
17

48
.5

20
26

.9
13

37
75

.4
(4

0.
2%

)
↑

86

Chapter 5. NN Design with Modified Activation Function

5.6.3 Modified Activation Function Area Overhead in ASIC Implemen-
tations

In this case study, the area overhead of the newly proposed modified activation
function has been measured and compared to the fixed activation function. As an
initial step, the MLP was implemented with the same architecture used for the
MNIST data-set. This is equal to 660 neurons divided into two hidden layers with
650 neurons each and ten neurons assigned for the output layer (see section 5.6.1,
Table 5.7). In addition, the Sigmoid activation function was utilised as a case study
model. CLA has been chosen as an additional adder to meet the requirements of
equation 5.4. Table 5.8 shows the number of neurons in the hidden layers. The
first hidden layer (h1) is equal to 500 neurons, whereas the second hidden layer
(h2) equals 150 neurons. The result illustrates that the overhead silicon area of the
proposed activation function is 40.2% by adding a silicon area equal to 70.2 um2

in comparison to the fixed activation function of 132.49 um2 (see the first row in
Table 5.8). The adder (CLA in this case) consumes that additional silicon area and
is applied per neuron to modify the fixed activation function. According to Table
5.8, the additional number of adders equals the number of neurons. There are 650
neurons in each of the two hidden layers, requiring the same number of adders (500
for the first and 150 for the second hidden layer). Ten neurons require ten adders
in the output layer. Section 5.6.5 presents different MLP architecture scenarios
focusing on specific layer blocks and a reduction in power/area/delay/energy when
the proposed activation function is added only to the output layer (y).

5.6.4 Energy-Aware Variation Scenarios

In this case study, the same MNIST MLP architecture in subsection5.6.1 and the
RELU activation function are used. Additionally, the configurable MAC is controlled
by the EACA algorithm presented in [163]. However, in this study, three different
MAC configuration setups are compared. The first case is shown in Figure 5.10-(a)
where only the Exact MAC configuration is allowed. The second case is presented
in Figure 5.10-(b) where only approximate configuration (4-bit SDLC) is permitted.
The third case is shown in Figure 5.10-(c) where all configurations are allowed.

The EACA attempts to fit the least approximate configuration to the instan-
taneous available energy. The response to the energy variations is recorded and
shown in the figure. Also recorded and shown in the figure is the accuracy of the
ANN (vertical bars) and the instantaneous energy availability (black curve). EACA
runs the Exact configuration only when the energy is enough for that configuration.

87

Chapter 5. NN Design with Modified Activation Function

When the energy is not enough the EACA pauses (see Figure 5.10-(a)), the period
between 20th epoch and 30th epoch, until more energy becomes available to resume.
As a consequence the Exact configuration only record high delay with additional 50
epochs comparing with Figure5.10-(b).

Concerning accuracy and performance, when the energy is low, more approximate
configurations are chosen to maintain processing. Moreover, when it is high, less
approximate configurations are chosen for improved accuracy. Case 1 (Figure 5.10-

0.00E+00

5.00E+04

1.00E+05

0

50

100

0 10 20 - - - 30 40 - - 50 60 70

(f
J)

T
ra

in
in

g
 A

cc
u
ra

cy
 %

Training Epochs

Exact Energy

time

Computation

Not enough energy

skipped

(a)

0.00E+00

5.00E+04

1.00E+05

0

50

100

0 10 20 30 40 50 60 70 80 90 100

(f
J)

T
ra

in
in

g
 A

cc
u
ra

cy
 %

Training Epochs

Proposed 4-bit SDLC Energy

time

(b)

0.00E+00

5.00E+04

1.00E+05

0

50

100

0 10 20 30 40 50 60 70 80 90 100

(f
J)

T
ra

in
in

g
 A

cc
u
ra

cy
 %

Training Epochs

Proposed Exact Proposed 4-bit SDLC Energy

time

(c)

Figure 5.10: Backpropagation learning rule results for various selections of ANN hard-
ware configurations using different MAC configurations with the ReLU activation func-
tion in MNIST data-set. Different run-time scenarios for the EACA model to operate
under highly variable energy conditions. (a) Only Exact configuration allowed. (b) Ap-
proximate (4-bit SDLC) configurations allowed (c) All configurations allowed.

88

Chapter 5. NN Design with Modified Activation Function

(a)) mimics a conventional Exact-only system, which has poor adaptability under
variable energy supply. Case 2 (Figure5.10-(b)) a conventional approximate-only
system records a high performance but less accuracy. Case 3 (Figure 5.10-(c))
demonstrates the ability of the proposed configurable MAC to make best use of an
unpredictable energy supply.

5.6.5 Configurable Neuron Architecture Scenarios

This case study focused on the hidden layers (h) and output layer (y) blocks using
the same MNIST MLP architecture in section 5.6.2. Table 5.9 lists the results of the
area, power, delay, power-delay product, inference accuracy and area overhead for
different configurations of the MAC unit and the fixed/the proposed modified acti-
vation. As shown by the first row (first configuration), the Exact MAC with fixed
activation function ([×]) has significantly higher power consumption and delay, area
and energy than the other configurations (rows 2 - 4). The reason is that only the
Exact MAC is used at all the design blocks. In the other rows, on the other hand,
the traditional complex Exact blocks were replaced with low-complexity design ones
(4-bit SDLC/the proposed 4-bit SDLC). Therefore, the second row includes the fixed
4-bit SDLC (the highest approximation) and low complexity with fixed activation
function on both the hidden layers (h [×]) and the output layer (y [×]). The third
row (third configuration) includes the proposed 4-bit SDLC with a modified acti-
vation function on both the hidden layers (h [✓]) and output layer (y [✓]). The
fourth row (fourth configuration) includes the proposed 4-bit SDLC with a modified
activation function only at the output layer (y [✓]).

In terms of overheads, the third and fourth configurations (third and forth rows,
respectively) to the fixed 4-bit SDLC proposed in [163] have been compared with
the fixed activation function on the h and y layers. Table 5.9 shows the additional
area overhead caused by the increased silicon (small number of adders) area in the
both proposed 4-bit SDLC and the activation function inserted in both the (h) and
(y) layers. For this reason, the third row is not the optimised configuration as result
of 36.4% of the area overhead compared to the fixed configuration in the second
row. Meanwhile, the optimised model chosen for energy, power efficiency and low
delay is the fourth configuration (fourth row) where the modified activation has been
inserted only in the output layer.

The synthesised results signify that up to 63% of the energy savings were achieved
when the fourth configuration (fourth row) was selected compared to the Exact
model (first configuration) with a low area overhead 0.57% compared to fixed ap-
proximate configuration in the second row. In terms of training accuracy, the fourth

89

Chapter 5. NN Design with Modified Activation Function

configuration model is good compared to the Exact model (first row) and the third
configuration (third row) where the proposed activation inserted in both layers (h)
and (y) target high learning accuracy in a smaller number of epochs (see Figure 5.11).
Additionally, concerning Inference Accuracy (IA), the fourth configuration records
high accuracy compared to the fixed approximate configuration in the second row
(see Table 5.9). The proposed 4-bit SDLC MAC with the modified activation func-
tion can significantly save energy and area significantly with negligible loss in output
quality, while using it only on the output layer(y).

90

Chapter 5. NN Design with Modified Activation Function

Ta
bl

e
5.

9:
A

re
a

(A
),

Po
w

er
(P

),
D

el
ay

(D
L

),
Po

w
er

-d
el

ay
pr

od
uc

t
(P

D
P

),
In

fe
re

nc
e

A
cc

ur
ac

y
(I

A
)

an
d

A
re

a
ov

er
he

ad
(A

ov
er

h)
re

-
su

lts
fo

r
di

ffe
re

nt
M

A
C

co
nfi

gu
ra

tio
ns

us
in

g
fix

ed
/m

od
ifi

ed
R

eL
U

ac
tiv

at
io

n
fu

nc
tio

n
in

th
e

hi
dd

en
la

ye
rs

(h
)

an
d

ou
tp

ut
la

ye
r

(y
).

D
at

a-
se

t
→

M
N

IS
T

M
ul

tip
lie

r
↓

h
y

A
(u

m
2)

P
(µ

W
)

D
L(

ns
)

P
D

P
(f

J
)

I
A

(%
)

A
ov

er
h

(u
m

2)
Pr

op
os

ed
Ex

ac
t

[×
]

[×
]

9.
56

E+
05

4.
14

E+
04

1.
86

E+
03

7.
70

E+
07

98
-

4-
bi

t
SD

LC
[1

63
]

[×
]

[×
]

3.
51

E+
05

1.
69

E+
04

1.
01

E+
03

1.
71

E+
07

90
-

Pr
op

os
ed

4-
bi

t
SD

LC
[✓

]
[✓

]
4.

79
E+

05
1.

96
E+

04
1.

64
E+

03
2.

55
E+

07
96

1.
28

E+
05

(3
6.

4%
)

↑
Pr

op
os

ed
4-

bi
t

SD
LC

[×
]

[✓
]

3.
53

E+
05

1.
72

E+
04

1.
02

E+
03

1.
75

E+
07

94
.6

2.
00

E+
03

(0
.5

7%
)

↑

91

Chapter 5. NN Design with Modified Activation Function

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

T
ra

in
in

g
 A

cc
u
ra

cy
 %

Training Epochs

MNIST

Proposed Exact

Proposed 4-bit SDLC,Afe (y)

Proposed 4-bit SDLC,Afe (h,y)

Figure 5.11: Backpropagation learning rule results for various selections of ANN hard-
ware configurations using different MAC configurations with fixed and modified ReLU
activation function in the MNIST data-set.

5.7 Conclusions
In this chapter, a novel neuron method is proposed. Firstly, the ability of the con-
figurable approach presented in chapter 4 is taken advantage of and re-designed to
include two configurations (exact and 4-bit SDLC). The 2-bit SDLC is not consid-
ered since the focus on this chapter is on the highest-level SDLC multipliers where
energy reductions are achieved at the cost of reduced quality (for example, with the
4-bit SDLC in an 8x8 multiplier size) to build the new configurable MAC unit. The
estimation of the accuracy of approximate configuration (4-bit SDLC) is performed
using Vivado and MATLAB simulation to find the value of normalised mean er-
ror distance (NMED) that can be used as a compensation value (CM) to minimize
the prediction error caused by the approximate configurations. Secondly, a modi-
fied activation function is proposed to minimize the prediction error caused by the
approximate multiplier (4-bit SDLC configuration) by adding the CM value. Sub-
sequently, the Energy-Aware Configuration Algorithm (EACA) model presented in
chapter 3 is employed to allocate the optimal configuration of the MAC unit de-
pending on the available instantaneous power. The proposed neuron design method
is implemented in System-Verilog and synthesized by applying the Synopsys De-
sign Compiler and the Xilinx Vivado Design Suite. The evaluation results indicate
savings of more than 59.4% of area compared with an existing proposed solution.
Thirdly, the proposed neuron including the configurable MAC and modified activa-
tion function is operated in a neuron module targeting ML systems. The presented
neuron module is then scaled up to build the proposed model-driven power-adaptive
multi-layer perceptron (MLP) design. Finally, an analytical model is built to sim-

92

Chapter 5. NN Design with Modified Activation Function

ulate performance, power and energy for various examples of well-known types of
MLP architectures such as MNIST.

The evaluation results illustrate that energy savings of up to 63% can be achieved
with a minimal loss in output quality, compared to an existing system if the 4-bit
SDLC MAC and the modified activation function are applied to the output layer on
the MLP.

93

Chapter 6

Conclusions and Future Work

94

Chapter 6. Conclusions and Future Work

6.1 Summary

In many imprecision-resistant applications, approximate computing has recently
acquired significant interest as a competitive alternative to exact computing. It
provides several design methods for creating extremely energy- and performance-
efficient on-chip systems at various levels of abstraction. Approximate arithmetic,
which includes adders and multipliers, is one of the de facto sub-areas of approx-
imate circuits that has gotten significant attention in the literature. This section
summarises the main conclusions drawn from this thesis. The state-of-the-art tech-
niques of approximate multipliers face different challenges, which are discussed in
chapter 2. To mitigate the impact of challenges, a novel idea proposed a config-
urable multiplier design with the ability to dynamically tune the approximation in
the multiplier via logic compression control. The capabilities of the configurable mul-
tiplier were demonstrated by introducing the energy-aware configuration algorithm
(EACA) method to ascertain the optimal multiplier configuration depending on the
available energy. The results show that the EACA model allows the proposed de-
sign to operate at run-time under highly variable energy conditions while sustaining
execution. This configurable multiplier highlights sharing the same adders between
different configurations, saving both silicon and leakage energy.

Additionally, a new method for power-adaptive ML hardware design was recom-
mended. Firstly, the ability of the configurable approximate multiplier approach
presented in chapter 3 is taken advantage of to design a configurable MAC unit.
Secondly, the EACA model is employed to allocate the optimal configuration of the
MAC unit depending on the available instantaneous energy. Thirdly, the proposed
MAC operates in neuron modules targeting ML systems (see chapter 4). Next,
the presented neuron module was scaled up to build a model-driven power-adaptive
ANN design. The results show that the proposed approach can provide significant
energy and area savings with negligible loss in output quality.

Finally, in chapter 5 a configurable modified activation function was proposed
to minimise the prediction error caused by using the approximate multiplier. The
configurable multiplier design (presented in chapter 3) can be suitably used for
energy-efficient multiplier designs with a minor loss in image quality requirements.
Additionally, the second and the third approaches (configurable MAC unit and
modified activation function discussed in chapters 4 and 5) can be used within the
power-adaptive neuron modules to extract manifold benefits for NNs with a minimal
loss in output quality.

95

Chapter 6. Conclusions and Future Work

6.2 Critical Review and Future Work

The objectives of this research can be extended to open up new research directions
for upcoming configurable multiplier design. Therefore, several different research
directions can be drawn and determined by this thesis to achieve more performance
and energy efficiency. Directions for future research are discussed as follows:

• Scaling up the current architecture of the proposed configurable MAC
unit:
Design energy-efficient ML hardware continues to be challenging due to its over-
whelming arithmetic complexities. This study proposes an adaptive approxima-
tion method for Multiply-Accumulate (MAC) units that are fundamental arith-
metic components in ML systems which is discussed in chapter 4. However,
scaling up the current architecture to a higher level of complexity is a promising
direction for future work.

• Dynamic Voltage Frequency Scaling (DVFS):
The critical path latency in the proposed configurable multiplier (when utilis-
ing 4-bit SDLC) is significantly shortened as a result of the decreased number
of rows in the accumulation tree (see chapter 3). This can be used to reduce
energy consumption or increase multiplication throughput without adding fur-
ther timing errors by allowing the voltage/frequency to be set for power-adaptive
computing purposes. For instance, a design may use different implementations
of configurable multiplier (approximate and exact multipliers) to carry out the
task for power-adaptive computing objectives. Slack reclamation strategy [167],
which uses the free time between jobs completed by approximative multipliers
to purposefully slow down execution, can explain this (e.g. scaling down the
operational clock frequency). The goal is to use less power and energy while still
completing tasks on time.

It is believed that the research outcomes produced by this thesis will be beneficial
for the circuit design community and continue to inspire further research and
development in the directions mentioned above.

96

References

[1] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, “A review, classifica-
tion, and comparative evaluation of approximate arithmetic circuits,” ACM
Journal on Emerging Technologies in Computing Systems (JETC), vol. 13,
no. 4, pp. 1–34, 2017.

[2] S. Mittal, “A survey of techniques for approximate computing,” ACM Com-
puting Surveys (CSUR), vol. 48, no. 4, pp. 1–33, 2016.

[3] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A survey,”
IEEE Design & Test, vol. 33, no. 1, pp. 8–22, 2015.

[4] A. Harb, “Energy harvesting: State-of-the-art,” Renewable Energy, vol. 36,
no. 10, pp. 2641–2654, 2011.

[5] R. Shafik, A. Yakovlev, and S. Das, “Real-power computing,” IEEE Trans-
actions on Computers, vol. 67, no. 10, pp. 1445–1461, 2018.

[6] S. Kemp and D. Reinsel. “2022 global digital reports, [Online],Available:”
https://www.nature.com/nature/, [last accessed on 07/12/2022]. ().

[7] M. J. Strydom and S. Buckley, “The big data research ecosystem: An an-
alytical literature study,” in Research Anthology on Artificial Intelligence
Applications in Security, IGI Global, 2021, pp. 2027–2057.

[8] A. S. Andrae and T. Edler, “On global electricity usage of communication
technology: Trends to 2030,” Challenges, vol. 6, no. 1, pp. 117–157, 2015.

[9] V. De, “Energy-efficient computing in nanoscale cmos,” IEEE Design &
Test, vol. 33, no. 2, pp. 68–75, 2016.

[10] G. E. Moore et al., Cramming more components onto integrated circuits,
1965.

[11] J. M. Shalf and R. Leland, “Computing beyond moore’s law,” Computer,
vol. 48, no. 12, pp. 14–23, 2015.

[12] M. Schulz, “The end of the road for silicon?” Nature, vol. 399, no. 6738,
pp. 729–730, 1999.

R-1

https://www.nature.com/nature/

References

[13] R. R. Schaller, “Moore’s law: Past, present and future,” IEEE spectrum,
vol. 34, no. 6, pp. 52–59, 1997.

[14] L. B. Kish, “End of moore’s law: Thermal (noise) death of integration in
micro and nano electronics,” Physics Letters A, vol. 305, no. 3-4, pp. 144–
149, 2002.

[15] A. Lingamneni and K. Palem, “What to do about the end of moore’s law,
probably,” in Proc. Design Automation Conference (DAC), 2012.

[16] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,
“Power challenges may end the multicore era,” Communications of the ACM,
vol. 56, no. 2, pp. 93–102, 2013.

[17] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger,
“Dark silicon and the end of multicore scaling,” in Proceedings of the 38th
annual international symposium on Computer architecture, 2011, pp. 365–
376.

[18] M. Shafique, S. Garg, J. Henkel, and D. Marculescu, “The eda challenges
in the dark silicon era: Temperature, reliability, and variability perspec-
tives,” in Proceedings of the 51st Annual Design Automation Conference,
2014, pp. 1–6.

[19] E. Wang, J. J. Davis, R. Zhao, et al., “Deep neural network approximation
for custom hardware: Where we’ve been, where we’re going,” ACM Comput-
ing Surveys (CSUR), vol. 52, no. 2, p. 40, 2019.

[20] S. Cawley, F. Morgan, B. McGinley, et al., “Hardware spiking neural net-
work prototyping and application,” Genetic Programming and Evolvable
Machines, vol. 12, no. 3, pp. 257–280, 2011.

[21] H. Esmaeilzadeh, A. Sampson, M. Ringenburg, L. Ceze, D. Grossman, and
D. Burger, “Addressing dark silicon challenges with disciplined approxi-
mate computing,” in Proc. 4th Workshop on Energy-Efficient Design, 2012,
pp. 1–2.

[22] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm
for energy-efficient design,” in 2013 18th IEEE European Test Symposium
(ETS), IEEE, 2013, pp. 1–6.

[23] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, and J. Henkel, “Cross-
layer approximate computing: From logic to architectures,” in Design Au-
tomation Conference (DAC), 2016 53nd ACM/EDAC/IEEE, IEEE, 2016,
pp. 1–6.

R-2

References

[24] L. Sekanina, “Introduction to approximate computing: Embedded tutorial,”
in 2016 IEEE 19th International Symposium on Design and Diagnostics of
Electronic Circuits & Systems (DDECS), IEEE, 2016, pp. 1–6.

[25] I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov, and A. Yakovlev, “Energy-
efficient approximate multiplier design using bit significance-driven logic
compression,” in Design, Automation & Test in Europe Conference & Exhi-
bition (DATE), 2017, IEEE, 2017, pp. 7–12.

[26] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy, “Im-
pact: Imprecise adders for low-power approximate computing,” in IEEE/ACM
International Symposium on Low Power Electronics and Design, IEEE,
2011, pp. 409–414.

[27] I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov, S. Das, and A. Yakovlev,
“Energy-efficient approximate wallace-tree multiplier using significance-
driven logic compression,” in 2017 IEEE International Workshop on Signal
Processing Systems (SiPS), Oct. 2017, pp. 1–6. doi: 10.1109/SiPS.2017.
8109990.

[28] K. Al-Maaitah, G. Tarawneh, A. Soltan, I. Qiqieh, and A. Yakovlev, “Ap-
proximate adder segmentation technique and significance-driven error cor-
rection,” in 2017 27th International Symposium on Power and Timing Mod-
eling, Optimization and Simulation (PATMOS), Sep. 2017, pp. 1–6. doi:
10.1109/PATMOS.2017.8106986.

[29] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D.
Grossman, “Enerj: Approximate data types for safe and general low-power
computation,” in Proceedings of the 32Nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’11, San
Jose, California, USA: ACM, 2011, pp. 164–174, isbn: 978-1-4503-0663-8.
doi: 10.1145/1993498.1993518.

[30] K. Jain and V. V. Vazirani, “Approximation algorithms for metric facil-
ity location and k-median problems using the primal-dual schema and la-
grangian relaxation,” Journal of the ACM (JACM), vol. 48, no. 2, pp. 274–
296, 2001.

[31] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture sup-
port for disciplined approximate programming,” SIGPLAN Not., vol. 47,
no. 4, pp. 301–312, Mar. 2012, issn: 0362-1340.

R-3

https://doi.org/10.1109/SiPS.2017.8109990
https://doi.org/10.1109/SiPS.2017.8109990
https://doi.org/10.1109/PATMOS.2017.8106986
https://doi.org/10.1145/1993498.1993518

References

[32] P. Sangeetha and A. A. Khan, “Comparison of braun multiplier and wallace
multiplier techniques in vlsi,” in 2018 4th International Conference on De-
vices, Circuits and Systems (ICDCS), IEEE, 2018, pp. 48–53.

[33] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design of
voltage-scalable meta-functions for approximate computing,” in 2011 De-
sign, Automation & Test in Europe, IEEE, 2011, pp. 1–6.

[34] Y. Liu, T. Zhang, and K. K. Parhi, “Computation error analysis in digital
signal processing systems with over-scaled supply voltage,” IEEE transac-
tions on very large scale integration (VLSI) systems, vol. 18, no. 4, pp. 517–
526, 2009.

[35] N. Petra, D. De Caro, V. Garofalo, E. Napoli, and A. G. Strollo, “Trun-
cated binary multipliers with variable correction and minimum mean square
error,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57,
no. 6, pp. 1312–1325, 2009.

[36] J. E. Stine and O. M. Duverne, “Variations on truncated multiplication,” in
Euromicro Symposium on Digital System Design, 2003. Proceedings., IEEE,
2003, pp. 112–119.

[37] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with
an underdesigned multiplier architecture,” in 2011 24th Internatioal Confer-
ence on VLSI Design, IEEE, 2011, pp. 346–351.

[38] C.-H. Lin and C. Lin, “High accuracy approximate multiplier with error
correction,” in 2013 IEEE 31st International Conference on Computer De-
sign (ICCD), IEEE, 2013, pp. 33–38.

[39] T. T. Hoang, M. Sjalander, and P. Larsson-Edefors, “A high-speed, energy-
efficient two-cycle multiply-accumulate (mac) architecture and its applica-
tion to a double-throughput mac unit,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 57, no. 12, pp. 3073–3081, 2010.

[40] J.-K. Chang, H. Lee, and C.-S. Choi, “A power-aware variable-precision
multiply-accumulate unit,” in 2009 9th International Symposium on Com-
munications and Information Technology, IEEE, 2009, pp. 1336–1339.

[41] L.-H. Chen, O.-C. Chen, T.-Y. Wang, and Y.-C. Ma, “A multiplication-
accumulation computation unit with optimized compressors and minimized
switching activities,” in 2005 IEEE International Symposium on Circuits
and Systems (ISCAS), IEEE, 2005, pp. 6118–6121.

R-4

References

[42] M. S. Kumar, D. A. Kumar, and P. Samundiswary, “Design and perfor-
mance analysis of multiply-accumulate (mac) unit,” in 2014 International
Conference on Circuits, Power and Computing Technologies [ICCPCT-
2014], IEEE, 2014, pp. 1084–1089.

[43] S. Dutt, A. Chauhan, R. Bhadoriya, S. Nandi, and G. Trivedi, “A high-
performance energy-efficient hybrid redundant mac for error-resilient ap-
plications,” in 2015 28th International Conference on VLSI Design, IEEE,
2015, pp. 351–356.

[44] D. Esposito, A. G. Strollo, and M. Alioto, “Low-power approximate mac
unit,” in 2017 13th Conference on Ph. D. Research in Microelectronics and
Electronics (PRIME), IEEE, 2017, pp. 81–84.

[45] G. Raut, A. Biasizzo, N. Dhakad, N. Gupta, G. Papa, and S. K. Vishvakarma,
“Data multiplexed and hardware reused architecture for deep neural net-
work accelerator,” Neurocomputing, vol. 486, pp. 147–159, 2022.

[46] E. Grossi and M. Buscema, “Introduction to artificial neural networks,” Eu-
ropean journal of gastroenterology & hepatology, vol. 19, no. 12, pp. 1046–
1054, 2007.

[47] H. K. Ghritlahre and R. K. Prasad, “Application of ANN technique to pre-
dict the performance of solar collector systems - a review,” Renewable and
Sustainable Energy Reviews, vol. 84, pp. 75–88, 2018, issn: 1364-0321.

[48] J. Chang, Y. Choi, T. Lee, and J. Cho, “Reducing mac operation in convo-
lutional neural network with sign prediction,” in Reducing MAC operation
in convolutional neural network with sign prediction, Oct. 2018, pp. 177–
182. doi: 10.1109/ICTC.2018.8539530.

[49] T. Tsai, Y. Ho, and M. Sheu, “Implementation of FPGA-based accelerator
for deep neural networks,” in 2019 IEEE 22nd International Symposium
on Design and Diagnostics of Electronic Circuits Systems (DDECS), 2019,
pp. 1–4.

[50] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. K. Gupta, and H. Esmaeilzadeh,
“Snapea: Predictive early activation for reducing computation in deep con-
volutional neural networks,” in Proceedings of the 45th Annual International
Symposium on Computer Architecture, ser. ISCA ’18, Los Angeles, Califor-
nia: IEEE Press, 2018, pp. 662–673, isbn: 9781538659847.

R-5

https://doi.org/10.1109/ICTC.2018.8539530

References

[51] K. Van Pham, T. Van Nguyen, S. B. Tran, et al., “Memristor binarized
neural networks,” J. Semicond. Technol. Sci, vol. 18, no. 5, pp. 568–588,
2018.

[52] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, and J. Han, “A compara-
tive evaluation of approximate multipliers,” in 2016 IEEE/ACM Interna-
tional Symposium on Nanoscale Architectures (NANO-ARCH), IEEE, 2016,
pp. 191–196.

[53] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM Trans-
actions on Embedded computing systems (TECS), vol. 12, no. 2s, pp. 1–19,
2013.

[54] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analy-
sis and characterization of inherent application resilience for approxi-mate
computing,” in Proceedings of the 50th Annual Design Automation Confer-
ence, 2013, pp. 1–9.

[55] A. Paler, A. Alaghi, I. Polian, and J. P. Hayes, “Tomographic testing and
validation of probabilistic circuits,” in 2011 Sixteenth IEEE European Test
Symposium, IEEE, 2011, pp. 63–68.

[56] A. K. Mishra, R. Barik, and S. Paul, “Iact: A software-hardware framework
for understanding the scope of approximate computing,” in Workshop on
Approximate Computing Across the System Stack (WACAS), vol. 52, 2014.

[57] K. Natori and N. Sano, “Scaling limit of digital circuits due to thermal noise,”
Journal of applied physics, vol. 83, no. 10, pp. 5019–5024, 1998.

[58] K. L. Shepard and V. Narayanan, “Conquering noise in deep-submicron
digital ics,” IEEE Design & Test of Computers, vol. 15, no. 1, pp. 51–62,
1998.

[59] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration
for general-purpose approximate programs,” in 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, IEEE, 2012, pp. 449–460.

[60] D. Candrea, A. Sharma, L. Osborn, Y. Gu, and N. Thakor, “An adaptable
prosthetic socket: Regulating independent air bladders through closed-loop
control,” in 2017 IEEE International Symposium on Circuits and Systems
(ISCAS), IEEE, 2017, pp. 1–4.

[61] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L.
O’Brien, “Quantum computers,” nature, vol. 464, no. 7285, pp. 45–53, 2010.

R-6

References

[62] M. A. Nielsen and I. Chuang, Quantum computation and quantum informa-
tion, 2002.

[63] P. W. Shor, “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[64] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An architec-
ture for fault-tolerant computation with stochastic logic,” IEEE transac-
tions on computers, vol. 60, no. 1, pp. 93–105, 2010.

[65] M. B. Parker and R. Chu, “A vlsi-efficient technique for generating multiple
uncorrelated noise sources and its application to stochastic,” IEEE Transac-
tions on circuits and systems, vol. 38, no. 1, 1991.

[66] R. Ramachandran, S. Felix, M. Saranya, et al., “Synthesis of cobalt sulfide–
graphene (cos/g) nanocomposites for supercapacitor applications,” IEEE
transactions on nanotechnology, vol. 12, no. 6, pp. 985–990, 2013.

[67] C. Li, M. Hu, Y. Li, et al., “Analogue signal and image processing with
large memristor crossbars,” Nature electronics, vol. 1, no. 1, pp. 52–59, 2018.

[68] X. Zhang, X. Zhang, S. L. Ho, and W. Fu, “A modification of artificial bee
colony algorithm applied to loudspeaker design problem,” IEEE Transac-
tions on Magnetics, vol. 50, no. 2, pp. 737–740, 2014.

[69] T. T. Dung, Y. Oh, S.-J. Choi, I.-D. Kim, M.-K. Oh, and M. Kim, “Ap-
plications and advances in bioelectronic noses for odour sensing,” Sensors,
vol. 18, no. 1, p. 103, 2018.

[70] V. Choi, Systems, devices, and methods for analog processing, US Patent
8,190,548, May 2012.

[71] L. Hardesty, Analog computing returns, 2016.

[72] M. Masadeh, O. Hasan, and S. Tahar, “Comparative study of approximate
multipliers,” in Proceedings of the 2018 on Great Lakes Symposium on VLSI,
2018, pp. 415–418.

[73] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “Macaco: Mod-
eling and analysis of circuits for approximate computing,” in 2011 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), IEEE, 2011,
pp. 667–673.

R-7

References

[74] T. Ohlemueller and M. Petri, “Sample synchronization of multiple multi-
plexed da and ad converters in FPGAs,” in 14th IEEE International Sym-
posium on Design and Diagnostics of Electronic Circuits and Systems, IEEE,
2011, pp. 301–304.

[75] D. May and W. Stechele, “Voltage over-scaling in sequential circuits for ap-
proximate computing,” in 2016 International Conference on Design and
Technology of Integrated Systems in Nanoscale Era (DTIS), IEEE, 2016,
pp. 1–6.

[76] R. Ragavan, B. Barrois, C. Killian, and O. Sentieys, “Pushing the limits
of voltage over-scaling for error-resilient applications,” in Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), 2017, IEEE, 2017,
pp. 476–481.

[77] R. P. Duarte and C.-S. Bouganis, “A unified framework for over-clocking
linear projections on FPGAs under pvt variation,” in International Sympo-
sium on Applied Reconfigurable Computing, Springer, 2014, pp. 49–60.

[78] V. Mishra, Q. Chen, and G. Zervas, “Reon: A protocol for reliable software-
defined FPGA partial reconfiguration over network,” in 2016 International
Conference on ReConFigurable Computing and FPGAs (ReConFig), IEEE,
2016, pp. 1–7.

[79] J. Rabaey, Low power design essentials. Springer Science & Business Media,
2009.

[80] M. Nicolaidis, “Double-sampling design paradigm—a compendium of ar-
chitectures,” IEEE transactions on device and materials reliability, vol. 15,
no. 1, pp. 10–23, 2015.

[81] M. Kawato, K. Furukawa, and R. Suzuki, “A hierarchical neural-network
model for control and learning of voluntary movement,” Biological cybernet-
ics, vol. 57, no. 3, pp. 169–185, 1987.

[82] D. S. Levine, “Neural network modeling.,” Physics of life reviews, 2002.
[83] S. Lockery and T. Sejnowski, “Distributed processing of sensory information

in the leech. iii. a dynamical neural network model of the local bending re-
flex,” Journal of Neuroscience, vol. 12, no. 10, pp. 3877–3895, 1992.

[84] H. Li, Z. Zhang, and Z. Liu, “Application of artificial neural networks for
catalysis: A review,” Catalysts, vol. 7, no. 10, p. 306, 2017.

[85] T. D. Sanger, “Optimal unsupervised learning in a single-layer linear feed-
forward neural network,” Neural networks, vol. 2, no. 6, pp. 459–473, 1989.

R-8

References

[86] T. J. Sejnowski and P. Churchland, The computational brain. JSTOR, 1992.

[87] E. Bisong, Building machine learning and deep learning models on Google
cloud platform. Springer, 2019.

[88] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration of
recurrent network architectures,” in International conference on machine
learning, PMLR, 2015, pp. 2342–2350.

[89] O. Abdel-Hamid, L. Deng, and D. Yu, “Exploring convolutional neural net-
work structures and optimization techniques for speech recognition.,” in In-
terspeech, Citeseer, vol. 2013, 2013, pp. 1173–5.

[90] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” arXiv preprint arXiv:1603.07285, 2016.

[91] D. J. Livingstone, Artificial neural networks: methods and applications. Springer,
2008.

[92] R. Rojas, Neural networks: a systematic introduction. Springer Science &
Business Media, 2013.

[93] R. Sathya, A. Abraham, et al., “Comparison of supervised and unsuper-
vised learning algorithms for pattern classification,” International Jour-
nal of Advanced Research in Artificial Intelligence, vol. 2, no. 2, pp. 34–38,
2013.

[94] M. Bennamoun, “Neural network learning rules,” University of Western
Australia, Australia, 2018.

[95] V. Stankovic, “Introduction to machine learning in image processing,” Uni-
versity of Strathclyde, Glasgow, 2017.

[96] S. D. Fabiyi, “A review of unsupervised artificial neural networks with ap-
plications,” International Journal of Computer Applications, vol. 181, no. 40,
pp. 22–26, 2019.

[97] A. F. Atiya, “An unsupervised learning technique for artificial neural net-
works,” Neural Networks, vol. 3, no. 6, pp. 707–711, 1990.

[98] A. Gosavi, “Neural networks and reinforcement learning,” Department of
Engineering Management and Systems Engineering Missouri University of
Science and Technology Rolla, 2015.

[99] F. Woergoetter and B. Porr, “Reinforcement learning,” Scholarpedia, vol. 3,
no. 3, p. 1448, 2008.

R-9

References

[100] E. haq Shaik and N. Rangaswamy, “Multi-mode interference-based pho-
tonic crystal logic gates with simple structure and improved contrast ratio,”
Photonic Network Communications, vol. 34, no. 1, pp. 140–148, 2017.

[101] R. R. Asaad and R. I. Ali, “Back propagation neural network (bpnn) and
sigmoid activation function in multi-layer networks,” Academic Journal of
Nawroz University, vol. 8, no. 4, pp. 216–221, 2019.

[102] I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov, S. Das, and A. Yakovlev,
“Significance-driven logic compression for energy-efficient multiplier design,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 8, no. 3, pp. 417–430, 2018.

[103] G. Zhong, A. Dubey, C. Tan, and T. Mitra, “Synergy: A HW/SW frame-
work for high throughput cnns on embedded heterogeneous SoC,” CoRR,
vol. abs/1804.00706, 2018.

[104] K. Al-Maaitah, G. Tarawneh, A. Soltan, I. Qiqieh, and A. Yakovlev, “Ap-
proximate adder segmentation technique and significance-driven error cor-
rection,” in 2017 27th International Symposium on Power and Timing Mod-
eling, Optimization and Simulation (PATMOS), 2017, pp. 1–6. doi: 10 .
1109/PATMOS.2017.8106986.

[105] K. Al-Maaitah, I. Qiqieh, A. Soltan, and A. Yakovlev, “Configurable-accuracy
approximate adder design with light-weight fast convergence error recovery
circuit,” in 2017 IEEE Jordan Conference on Applied Electrical Engineer-
ing and Computing Technologies (AEECT), 2017, pp. 1–6. doi: 10.1109/
AEECT.2017.8257753.

[106] D. Burke, D. Jenkus, I. Qiqieh, R. Shafik, S. Das, and A. Yakovlev, “Spe-
cial session paper: Significance-driven adaptive approximate computing for
energy-e!icient image processing applications,” in 2017 International Con-
ference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
2017, pp. 1–2. doi: 10.1145/3125502.3125554.

[107] N. H. Weste and D. Harris, CMOS VLSI design: a circuits and systems
perspective. Pearson Education India, 2015.

[108] S. P. Beeby, R. N. Torah, M. J. Tudor, et al., “A micro electromagnetic
generator for vibration energy harvesting,” Journal of Micromechanics and
microengineering, vol. 17, no. 7, p. 1257, 2007.

[109] J. A. Paradiso and T. Starner, “Energy scavenging for mobile and wireless
electronics,” IEEE Pervasive computing, vol. 4, no. 1, pp. 18–27, 2005.

R-10

https://doi.org/10.1109/PATMOS.2017.8106986
https://doi.org/10.1109/PATMOS.2017.8106986
https://doi.org/10.1109/AEECT.2017.8257753
https://doi.org/10.1109/AEECT.2017.8257753
https://doi.org/10.1145/3125502.3125554

References

[110] S. Chalasani and J. M. Conrad, “A survey of energy harvesting sources for
embedded systems,” in IEEE SoutheastCon 2008, IEEE, 2008, pp. 442–447.

[111] S. P. Beeby, R. Torah, M. Tudor, et al., “A micro electromagnetic genera-
tor for vibration energy harvesting,” Journal of Micromechanics and micro-
engineering, vol. 17, no. 7, p. 1257, 2007.

[112] J. A. Paradiso and T. Starner, “Energy scavenging for mobile and wireless
electronics,” IEEE Pervasive computing, vol. 4, no. 1, pp. 18–27, 2005.

[113] D. Dondi, A. Bertacchini, D. Brunelli, L. Larcher, and L. Benini, “Mod-
eling and optimization of a solar energy harvester system for self-powered
wireless sensor networks,” IEEE Transactions on Industrial Electronics,
vol. 55, no. 7, pp. 2759–2766, 2008. doi: 10.1109/TIE.2008.924449.

[114] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on
Electronic Computers, vol. EC-13, no. 1, pp. 14–17, 1964. doi: 10.1109/
PGEC.1964.263830.

[115] K. Bhardwaj, P. S. Mane, and J. Henkel, “Power- and area-efficient approx-
imate wallace tree multiplier for error-resilient systems,” in Fifteenth Inter-
national Symposium on Quality Electronic Design, 2014, pp. 263–269. doi:
10.1109/ISQED.2014.6783335.

[116] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of ap-
proximate and probabilistic adders,” IEEE Transactions on computers,
vol. 62, no. 9, pp. 1760–1771, 2012.

[117] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance approx-
imate multiplier with configurable partial error recovery,” in 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE), IEEE,
2014, pp. 1–4.

[118] J. M. Phillips and W. M. Tai, “The gaussiansketch for almost relative error
kernel distance,” arXiv preprint arXiv:1811.04136, 2018.

[119] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of ap-
proximate and probabilistic adders,” IEEE Transactions on computers,
vol. 62, no. 9, pp. 1760–1771, 2012.

[120] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b: Li-
brary of approximate adders and multipliers for circuit design and bench-
marking of approximation methods,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, 2017, pp. 258–261. doi: 10.23919/
DATE.2017.7926993.

R-11

https://doi.org/10.1109/TIE.2008.924449
https://doi.org/10.1109/PGEC.1964.263830
https://doi.org/10.1109/PGEC.1964.263830
https://doi.org/10.1109/ISQED.2014.6783335
https://doi.org/10.23919/DATE.2017.7926993
https://doi.org/10.23919/DATE.2017.7926993

References

[121] Ibrahim.Haddadi. “Thesis codes, [Online],Available:” https : / / www .
overleaf.com/read/ykhyrmqjmcph, [last accessed on 26/06/2023]. ().

[122] 2. Ultra96-V2 Development Board 2018, Avnet., [Online],Available: http:
//zedboard.org/product/ultra96- v2- development- board, [last
accessed on 07/12/2022].

[123] P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green,
“Energy harvesting from human and machine motion for wireless electronic
devices,” Proceedings of the IEEE, vol. 96, no. 9, pp. 1457–1486, 2008.

[124] A. S. Weddell, M. Magno, G. V. Merrett, D. Brunelli, B. M. Al-Hashimi,
and L. Benini, “A survey of multi-source energy harvesting systems,” in
2013 Design, Automation Test in Europe Conference Exhibition (DATE),
2013, pp. 905–908. doi: 10.7873/DATE.2013.190.

[125] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, D. Brunelli,
and L. Benini, “Hibernus: Sustaining computation during intermittent sup-
ply for energy-harvesting systems,” IEEE Embedded Systems Letters, vol. 7,
no. 1, pp. 15–18, 2014.

[126] C. Solomon and T. Breckon, Fundamentals of Digital Image Processing: A
practical approach with examples in Matlab. John Wiley & Sons, 2011.

[127] Synopsys design compiler, https://www.synopsys.com/implementation-
and-signoff/rtl-synthesis-test/dc-ultra.html, Accessed: 2021-09-
10.

[128] Faraday technology corporation, http://www.faraday- tech.com, Ac-
cessed: 2021-09-12.

[129] A. Biswas and A. P. Chandrakasan, “Conv-RAM: An energy-efficient SRAM
with embedded convolution computation for low-power cnn-based machine
learning applications,” in 2018 IEEE International Solid - State Circuits
Conference - (ISSCC), Feb. 2018, pp. 488–490. doi: 10.1109/ISSCC.2018.
8310397.

[130] F. Rosenblatt, The perceptron, a perceiving and recognizing automaton Project
Para. Cornell Aeronautical Laboratory, 1957.

[131] L. Benini, “Plenty of room at the bottom: Micropower deep learning for
cognitive cyberphysical systems,” RTNS Keynote, 2017.

[132] M. Cho and Y. Kim, “Fpga-based convolutional neural network accelerator
with resource-optimized approximate multiply-accumulate unit,” Electron-
ics, vol. 10, no. 22, p. 2859, 2021.

R-12

https://www.overleaf.com/read/ykhyrmqjmcph
https://www.overleaf.com/read/ykhyrmqjmcph
http://zedboard.org/ product/ultra96-v2-development-board
http://zedboard.org/ product/ultra96-v2-development-board
https://doi.org/10.7873/DATE.2013.190
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
http://www.faraday-tech.com
https://doi.org/10.1109/ISSCC.2018.8310397
https://doi.org/10.1109/ISSCC.2018.8310397

References

[133] S. Draghici, “Neural networks in analog hardware—design and implementa-
tion issues,” International journal of neural systems, vol. 10, no. 01, pp. 19–
42, 2000.

[134] S. Li, W. Wen, Y. Wang, S. Han, Y. Chen, and H. Li, “An FPGA design
framework for CNN sparsification and acceleration,” in 2017 IEEE 25th An-
nual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), IEEE, 2017, pp. 28–28.

[135] S. Perri, F. Spagnolo, F. Frustaci, and P. Corsonello, “Designing energy-
efficient approximate multipliers,” Journal of Low Power Electronics and
Applications, vol. 12, no. 4, p. 49, 2022.

[136] C.-H. Chang and R. K. Satzoda, “A low error and high performance multiplexer-
based truncated multiplier,” IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, vol. 18, no. 12, pp. 1767–1771, 2010. doi: 10 .
1109/TVLSI.2009.2027327.

[137] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and N. S. Kim,
“Energy-efficient approximate multiplication for digital signal processing
and classification applications,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 23, no. 6, pp. 1180–1184, 2015. doi: 10.
1109/TVLSI.2014.2333366.

[138] P. Balasubramanian and N. Mastorakis, “Performance comparison of carry-
lookahead and carry-select adders based on accurate and approximate addi-
tions,” Electronics, vol. 7, no. 12, p. 369, 2018.

[139] H. Benmaghnia, M. Martel, and Y. Seladji, “Fixed-point code synthesis for
neural networks,” arXiv preprint arXiv:2202.02095, 2022.

[140] R. O. Duda, P. E. Hart, et al., Pattern classification. John Wiley & Sons,
2006.

[141] A. Wheeldon, R. Shafik, T. Rahman, J. Lei, A. Yakovlev, and O.-C. Granmo,
“Learning automata based energy-efficient ai hardware design for iot ap-
plications,” Philosophical Transactions of the Royal Society A, vol. 378,
no. 2182, p. 20 190 593, 2020.

[142] Y. LeCun, C. Cortes, and C. J. Burges, The MNIST database of handwrit-
ten digits, [Online],Available: http://yann.lecun.com/exdb/mnist/, [last
accessed on 18/11/2021].

R-13

https://doi.org/10.1109/TVLSI.2009.2027327
https://doi.org/10.1109/TVLSI.2009.2027327
https://doi.org/10.1109/TVLSI.2014.2333366
https://doi.org/10.1109/TVLSI.2014.2333366
http://yann.lecun.com/exdb/mnist/

References

[143] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Read-
ing digits in natural images with unsupervised feature learning,” in NIPS
Workshop on Deep Learning and Unsupervised Feature Learning 2011, 2011.

[144] R. O. Duda, P. E. Hart, et al., Pattern classification. John Wiley & Sons,
2006.

[145] A. Eldem, “An application of deep neural network for classification of wheat
seeds,” Avrupa Bilim ve Teknoloji Dergisi, no. 19, pp. 213–220, 2020.

[146] A. Eldem, H. Eldem, and D. Üstün, “A model of deep neural network for
iris classification with different activation functions,” in 2018 International
Conference on Artificial Intelligence and Data Processing (IDAP), IEEE,
2018, pp. 1–4.

[147] F. Sabetzadeh, M. H. Moaiyeri, and M. Ahmadinejad, “A majority-based
imprecise multiplier for ultra-efficient approximate image multiplication,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 11,
pp. 4200–4208, 2019.

[148] S. Ullah, S. Rehman, M. Shafique, and A. Kumar, “High-performance ac-
curate and approximate multipliers for fpga-based hardware accelerators,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 2, pp. 211–224, 2021.

[149] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998. doi: 10.1109/5.726791.

[150] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information Pro-
cessing Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035. [Online].
Available: http://papers.neurips.cc/paper/9015- pytorch- an-
imperative-style-high-performance-deep-learning-library.pdf.

[151] T. M. Jamel and B. M. Khammas, “Implementation of a sigmoid activation
function for neural network using FPGA,” in 13th Scientific Conference of
Al-Ma’moon University College, vol. 13, 2012.

[152] S. Ngah and R. A. Bakar, “Sigmoid function implementation using the un-
equal segmentation of differential lookup table and second order nonlinear
function,” Journal of Telecommunication, Electronic and Computer Engi-
neering (JTEC), vol. 9, no. 2-8, pp. 103–108, 2017.

R-14

https://doi.org/10.1109/5.726791
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

References

[153] P. W. Zaki, A. M. Hashem, E. A. Fahim, et al., “A novel sigmoid func-
tion approximation suitable for neural networks on FPGA,” in 2019 15th
International Computer Engineering Conference (ICENCO), IEEE, 2019,
pp. 95–99.

[154] C. Banerjee, T. Mukherjee, and E. Pasiliao Jr, “An empirical study on gen-
eralizations of the relu activation function,” in Proceedings of the 2019 ACM
Southeast Conference, 2019, pp. 164–167.

[155] D. Costarelli and R. Spigler, “Approximation results for neural network op-
erators activated by sigmoidal functions,” Neural Networks, vol. 44, pp. 101–
106, 2013.

[156] A. H. Namin, K. Leboeuf, R. Muscedere, H. Wu, and M. Ahmadi, “Effi-
cient hardware implementation of the hyperbolic tangent sigmoid function,”
in 2009 IEEE International Symposium on Circuits and Systems, 2009,
pp. 2117–2120. doi: 10.1109/ISCAS.2009.5118213.

[157] S. Goel, S. Karmalkar, and A. Klivans, “Time/accuracy tradeoffs for learn-
ing a relu with respect to gaussian marginals,” Advances in Neural Informa-
tion Processing Systems, vol. 32, 2019.

[158] V. Beiu, J. Peperstraete, J. Vandewalle, and R. Lauwereins, “Closse ap-
proximations of sigmoid functions by sum of step for vlsi implementation of
neural networks,” Sci. Ann. Cuza Univ., vol. 3, pp. 5–34, 1994.

[159] H. Jiang, J. Han, and F. Lombardi, “A comparative review and evaluation
of approximate adders,” in Proceedings of the 25th edition on Great Lakes
Symposium on VLSI, 2015, pp. 343–348.

[160] V. Leon, G. Zervakis, D. Soudris, and K. Pekmestzi, “Approximate hybrid
high radix encoding for energy-efficient inexact multipliers,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 3,
pp. 421–430, 2017.

[161] F. Sabetzadeh, M. H. Moaiyeri, and M. Ahmadinejad, “A majority-based
imprecise multiplier for ultra-efficient approximate image multiplication,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 11,
pp. 4200–4208, 2019. doi: 10.1109/TCSI.2019.2918241.

[162] S. Perri, F. Spagnolo, F. Frustaci, and P. Corsonello, “Designing energy-
efficient approximate multipliers,” Journal of Low Power Electronics and
Applications, vol. 12, no. 4, p. 49, 2022.

R-15

https://doi.org/10.1109/ISCAS.2009.5118213
https://doi.org/10.1109/TCSI.2019.2918241

References

[163] I. Haddadi, I. Qiqieh, R. Shafik, F. Xia, M. Al-Hayanni, and A. Yakovlev,
“Run-time configurable approximate multiplier using significance-driven
logic compression,” in IEEE International Conference on Computer Design
(ICCD 2021), 2021.

[164] M. S. Kumar, D. A. Kumar, and P. Samundiswary, “Design and perfor-
mance analysis of multiply-accumulate (mac) unit,” in 2014 International
Conference on Circuits, Power and Computing Technologies [ICCPCT-
2014], IEEE, 2014, pp. 1084–1089.

[165] M. Imani, D. Peroni, and T. Rosing, “Cfpu: Configurable floating point
multiplier for energy-efficient computing,” in Proceedings of the 54th An-
nual Design Automation Conference 2017, 2017, pp. 1–6.

[166] J. Si, S. L. Harris, and E. Yfantis, “A dynamic relu on neural network,” in
2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS), 2018,
pp. 1–6. doi: 10.1109/DCAS.2018.8620116.

[167] I. Pietri and R. Sakellariou, “Energy-aware workflow scheduling using fre-
quency scaling,” in 2014 43rd International Conference on Parallel Process-
ing Workshops, 2014, pp. 104–113. doi: 10.1109/ICPPW.2014.26.

R-16

https://doi.org/10.1109/DCAS.2018.8620116
https://doi.org/10.1109/ICPPW.2014.26

	Dedication
	Dedication
	Dedication
	Dedication
	Acknowledgements
	Publications
	 Introduction
	Motivation
	Energy-Efficient Computing
	Approximate Computing
	Multipliers in Applications
	MAC Unit
	Neural Networks
	Thesis Hypotheses and Questions
	Thesis Scope and Contributions
	Thesis Overview

	 Background
	Approximate Computing
	Approximate Circuit Design
	Imprecise Hardware Design
	Non-Boolean Circuits
	The Fundamental Principle of the Approximate Circuits
	Exploiting Imprecision-Resilience
	Taxonomy of Approximate Circuits
	Significance-Driven Logic Compression (SDLC)

	Artificial Neural Networks
	A Biological Neuron
	Models of a Neuron
	Network Architectures

	Learning Processes
	Learning Algorithms
	Feed-forward Operations
	Activation Functions
	Back-propagation Algorithm

	 Configurable Approximate Multiplier
	Introduction
	 Organization of the Chapter

	Existing SDLC Method and Motivation
	Proposed Configurable Approximation Hardware
	Configurable Multiplier Architecture
	Hardware Knobs for Run-Time Configuration

	Error Analysis
	Comparative Evaluations
	Area, Delay & Power Trade-offs in ASIC Implementations
	Area, Delay & Power Trade-offs in FPGA Implementations

	Case Studies
	Energy-Aware Configuration Algorithm (EACA)
	Gaussian Blur Filter
	Energy-Aware Approximation

	Conclusions

	Neural Network Design with Run-time Configurable Approximate MAC
	Introduction
	Contributions
	Chapter Organisation

	SDLC Method and Motivation
	Run-time Configurable Approximate Neuron Design
	Configurable Neuron Architecture
	MAC unit reconfigurable circuits

	Implementation of ANNs
	Area Reduction & Inference Accuracy in FPGA Implementations

	Case Study
	Conclusion

	 NN Design with Modified Activation Function
	Introduction
	Contributions

	Methods of Activation Functions
	Proposed Adaptive Approximation Method
	Proposed Configurable Modified Activation Function
	Experimental Results
	Area, Delay & Power Trade-offs in ASIC Implementations
	Area, Delay & Power Trade-offs in FPGA Implementations
	Neuron Module Learning

	Case Studies
	Data Classification Results using MLP
	Inference Accuracy Results for Different ANN Hardware Configurations with Different Data-sets and Activation Functions
	Modified Activation Function Area Overhead in ASIC Implementations
	Energy-Aware Variation Scenarios
	Configurable Neuron Architecture Scenarios

	Conclusions

	 Conclusions and Future Work
	Summary
	Critical Review and Future Work

