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Abstract

Stochastic kinetic models (SKMs) provide a natural framework for modelling continuous-

time physical processes with inherent stochasticity. As such, they are frequently used to

model interacting species populations in areas such as epidemiology, population ecology

and systems biology. This thesis focuses on the challenging problem of performing fully

Bayesian inference for the rate constants governing these models, using discrete-time ob-

servations of the species populations that may be incomplete and subject to measurement

error. The SKM is often represented by either a Markov jump process (MJP) or an Itô dif-

fusion process. In either case, the observed data likelihood is intractable, necessitating the

use of computationally intensive techniques such as pseudo-marginal Metropolis-Hastings

(PMMH). One prominent example of PMMH is particle Markov chain Monte Carlo (parti-

cle MCMC), whereby the observed data likelihood is unbiasedly estimated using a particle

filter. Whilst powerful, such schemes are often impractical due to their large computational

expense.

This thesis aims to increase the computational and statistical efficiency of these schemes

using various techniques. Several of these techniques leverage a tractable surrogate model,

the linear noise approximation (LNA), which can be derived directly from the MJP or the

diffusion process. The LNA can be used in three ways: in the design of a gradient-based

parameter proposal such as the Metropolis-adjusted Langevin algorithm (MALA); in the

first stage of a delayed-acceptance step; and to construct an appropriate bridge construct

within the particle filter. Further computational savings can be made if several of these

techniques are used in tandem, as the equations governing the LNA need only be solved

once for use in all three techniques. A further acceleration technique involves inducing

positive correlation between successive likelihood estimates within the particle filter. A

novel approach to MALA is also proposed, whereby the gradient is approximated to reduce

the number of differential equations required to estimate it. The proposed acceleration

techniques are then applied to several models utilising real-world and synthetic data, to

compare their performance.
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2.7 Itô calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7.1 SDE illustrative example . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Stochastic kinetic models 29

3.1 Markov jump processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Time discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 The linear noise approximation . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 LNA derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 LNA solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.3 Restarting the LNA . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

i



Contents

3.4.1 Birth-death model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2 Lotka-Volterra model . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Bayesian inference for a tractable stochastic kinetic model 43

4.1 Marginal likelihood using the forward filter . . . . . . . . . . . . . . . . . . 44

4.2 Metropolis adjusted Langevin algorithm . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Tail behaviour in RWM and MALA . . . . . . . . . . . . . . . . . . 49

4.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Birth-death process . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.2 Lotka-Volterra model . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Limitations of the LNA as an inferential model . . . . . . . . . . . . . . . . 56

5 Bayesian inference for intractable stochastic kinetic models 58

5.1 Correlated pseudo-marginal Metropolis-Hastings . . . . . . . . . . . . . . . 60

5.1.1 Diffusion bridge particle filter . . . . . . . . . . . . . . . . . . . . . . 61

5.1.2 Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.3 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Immigration-death model . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.2 Lotka-Volterra model . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.3 Autoregulatory network . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.4 Epidemic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.5 Summary of Application results . . . . . . . . . . . . . . . . . . . . 78

6 Accelerating inference for intractable models using tractable surrogates 80

6.1 Delayed acceptance pseudo-marginal Metropolis Hastings using the LNA . . 80

6.2 Improved Bridge constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Combining techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.1 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4.1 Aphid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4.2 Epidemic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.3 Lotka-Volterra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.4 Summary of Application results . . . . . . . . . . . . . . . . . . . . 96

7 Conclusions 99

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

ii



Contents

A Additional model details 105

A.1 First order sensitivities for the Lotka-Volterra model . . . . . . . . . . . . . 105

A.2 First order sensitivities for the epidemic model . . . . . . . . . . . . . . . . 107

B Alternative algorithm details 109

B.1 Modified innovation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

iii



List of Figures

2.1 Histograms with overlaid target density, and trace plots of samples of θ

from output of a PMMH scheme with 104 iterations and an initial value of

θ(0) = 0. Left panels: a = 1. Middle panels: a = 0.1. Right panels: a = 0.01. 17

2.2 Histograms with overlaid target density, and trace plots of samples of θ

from output of a CPMMH scheme with 104 iterations, ρ = 0.999 and an

initial value of θ(0) = 0. Left panels: a = 1. Middle panels: a = 0.1. Right

panels: a = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Sample paths of standard Brownian motion. Left panel: ∆t = 10−1. Middle

panel: ∆t = 10−3. Right panel: ∆t = 10−5. . . . . . . . . . . . . . . . . . . 24

2.4 Sample path of geometric Brownian motion, with θ1 = 0.5, θ2 = 1, and

∆t = 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Birth-death model. A single simulation of the MJP for t ∈ [0, 50]. . . . . . . 37

3.2 Birth-death model. Mean (solid lines) and 95% credible region (dashed

lines) for 105 simulations of Xt with x0 = 50 and c = (0.5, 0.55)′, with time

step ∆t = 0.1, using the MJP (top left), Poisson leap method (top right),

CLE (bottom left), and LNA with restart (bottom right). . . . . . . . . . . 39

3.3 Lotka-Volterra model. A single simulation of the MJP for X1,t (black lines)

and X2,t (red line), for t ∈ [0, 25]. . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Lotka-Volterra model. Mean (solid lines) and 95% credible region (dashed

lines) for 104 simulations of X1,t (left panels) and X2,t (right panels) with

x0 = (100, 100)′, c = (0.5, 0.0025, 0.3)′ and ∆t = 0.1. In each case the

black lines represent the true stochastic kinetic process (MJP), whilst the

red lines represent differing approximations: the Poisson leap method (top

row), CLE (second row), LNA without restart (third row), LNA with restart

(bottom row). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 From left to right panels: illustrations of a light, standard and heavy-tailed

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

iv



List of Figures

4.2 Birth-death model. Dataset (red line) and underlying Markov Jump Process

(black line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Birth-death model. Left and middle panels: marginal posterior distribu-

tions based on the RWM proposal. Right panel: contour plot of the joint

posterior. The true values of c1 and c2 are indicated. . . . . . . . . . . . . . 54

4.4 Birth-death model. Joint posterior densities and the first 50 iterations of

the chain for two different schemes. Left panel: RWM. Right panel: MALA. 55

4.5 Lotka-Volterra model. Marginal posterior distributions for c1, c2 and c3

respectively, based on the full MALA proposal. The true values of each

parameter are indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Immigration death model. Left and middle panels: marginal posterior dis-

tributions based on the output of CPMMH (ρ = 0.99). Right panel: Con-

tour plot of the joint posterior. The true values of log(c1) and log(c2) are

indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Immigration death model. Correlogram based on log(c2) samples from the

output of MIS (left panel), CPMMH with ρ = 0.99 (middle panel) and

PMMH (right panel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Lotka-Volterra model. Marginal posterior distributions based on the output

of CPMMH (ρ = 0.99) using data sets D1 (solid lines), D2 (dashed lines)

and D3 (dotted lines). The true values of log(c1), log(c2) and log(c3) are

indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Autoregulatory network. A single realisation of the jump process with c =

(10, 0.1, 0.1, 0.7, 0.008)′ and X0 = (5, 5)′. Observations are indicated by

circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Autoregulatory network. Marginal posterior distributions based on the out-

put of CPMMH (ρ = 0.996). The true values of log(ci), i = 1, . . . , 5, are

indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Epidemic model. Marginal posterior distributions based on the output of

CPMMH (histograms). Prior densities are given by the solid lines. . . . . . 79

6.1 95% credible region (dashed lines) and mean (solid lines) of the Lotka-

Volterra model. Black lines are the true conditioned process; red lines

are bridge constructs. Top row: prey component; bottom row: predator

component. Left: MDB; middle: RB; right: RB−. . . . . . . . . . . . . . . 86

6.2 Observations from the aphid data set, with the latent process (solid line)

overlaid. The dashed lines are the mean, 2.5% and 97.5% quantiles of 1000

bridges generated with the RB construct, using the ground truth for c1 and

c2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

v



List of Figures

6.3 Aphid model. Marginal posterior plots for the two parameters. The ground

truth is indicated on each plot. . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Epidemic model. Joint posterior density and the first 100 iterations of

CPMMH-RWM (left) and CPMMH-MALA (right). . . . . . . . . . . . . . . 95

6.5 Epidemic model. Full versus simplified gradient of the log posterior density

with respect to c1 (left) and c2 (right) computed for 1000 draws from the

joint posterior over c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6 Lotka-Volterra model. Full versus simplified gradient of the log posterior

density with respect to c1 (left), c2 (centre) and c3 (right) computed for

1000 draws from the joint posterior over c. . . . . . . . . . . . . . . . . . . . 96

6.7 Lotka-Volterra model. Marginal posterior plots for the three parameters.

The ground truth is indicated on each plot. . . . . . . . . . . . . . . . . . . 97

vi



List of Tables

3.1 Some example reaction types and associated hazards. . . . . . . . . . . . . . 30

4.1 Birth-death model. Acceptance rate α, CPU time (in seconds), minimum

ESS, minimum ESS per second and relative (to RWM) minimum ESS per

second. All results are based on 105 iterations of each scheme. . . . . . . . . 54

4.2 Lotka-Volterra model. Acceptance rate α, CPU time (in seconds), minimum

ESS, minimum ESS per second and relative (to RWM) minimum ESS per

second. All results are based on 105 iterations of each scheme. . . . . . . . . 56

5.1 Immigration death model. Correlation parameter ρ, number of particles

N , CPU time (in seconds), minimum ESS, minimum ESS per second and

relative (to PMMH) minimum ESS per second. All results are based on

2× 104 iterations of each scheme. . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Lotka-Volterra model. Number of particles N , CPU time (in seconds),

minimum ESS, minimum ESS per second and relative (to PMMH) minimum

ESS per second. All results are based on 105 iterations of each scheme. . . . 73

5.3 Autoregulatory network. Number of particles N , CPU time (in seconds),

minimum ESS, minimum ESS per second and relative (to myopic filter

driven PMMH) minimum ESS per second. All results are based on 105

iterations of each scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Boarding school data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Epidemic model. Number of particles N , CPU time (in minutes m), mini-

mum ESS, minimum ESS per minute and relative minimum ESS per minute.

All results are based on 2× 105 iterations of each scheme. . . . . . . . . . . 78

6.1 Order of complexity in terms of ODE components required to be solved

for different bridge construct implementations, and the additional compu-

tational cost required to enact delayed acceptance, simplified or full MALA.

Note that N , s and r denote the number of particles, species and parameters

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

vii



List of Tables

6.2 Aphid model. Number of particles N , acceptance rate α, CPU time (in

seconds), minimum ESS, minimum ESS per second, and relative (to the

worst performing scheme) minimum ESS per second. All results are based

on 105 iterations of each scheme. . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Eyam plague data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Epidemic model. Number of particles N , acceptance rates α1, α2|1 and

α, CPU time (in seconds), minimum ESS, minimum ESS per second, and

relative (to the worst performing scheme) minimum ESS per second. All

results are based on 104 iterations of each scheme. . . . . . . . . . . . . . . 94

6.5 Lotka-Volterra model. Number of particles N , acceptance rates α1, α2|1

and α, CPU time (in seconds), minimum ESS, minimum ESS per second,

and relative (to the worst performing scheme) minimum ESS per second.

All results are based on 105 iterations of each scheme. . . . . . . . . . . . . 97

viii



Chapter 1

Introduction

A stochastic kinetic model (SKM) typically refers to a reaction network, an associated rate

law and a probabilistic description of the reaction dynamics. Reactions occur continuously

in time with a reaction occurrence resulting in a discrete change to the system state. A

Markov jump process (MJP) provides a natural description of the time-course behaviour

of the species involved in the reaction network. A concise introduction to SKMs can be

found in Wilkinson (2018).

Whilst exact simulation of the MJP is straightforward (using for example the direct

method of Gillespie (1976)), performing exact fully Bayesian inference is made problematic

by the intractability of the observed data likelihood. Consequently, several approaches

have been developed that make use of computationally intensive methods. These include

the use of data augmentation (Boys & Giles, 2007; Boys et al., 2008; Fuchs, 2013) together

with Markov chain Monte Carlo (MCMC), reversible jump MCMC (Boys et al., 2008;

Wang et al., 2010), population Monte Carlo (Koblents & Miguez, 2015), approximate

Bayesian computation (ABC) (Minter & Retkute, 2019; Wu et al., 2014), and particle

MCMC (Andrieu et al., 2010; Golightly & Wilkinson, 2011; Owen et al., 2015). Such

methods typically require many simulations of the jump process, prohibiting their use for

SKMs with many reactions and species. Consequently, there has been much interest in

the development of exact (simulation-based) inference schemes for cheap approximations

of the MJP. In particular, approximations based on time discretisation do not require

simulation of every reaction event, but rather update the state of the system in one go,

after a particular time step (typically chosen by the practitioner). One such approach

is the Poisson leap method of Gillespie (2001); another approach is to approximate the

MJP with an Itô stochastic differential equation known as the chemical Langevin equation

(CLE; Gillespie, 2000), and then discretise this using the Euler-Maruyama discretisation.

The modelling framework arising from either the MJP, CLE, or Poisson leap method is

fairly flexible, and thus has been used ubiquitously in areas such as epidemiology (O’Neill

1



Chapter 1. Introduction

& Roberts, 1999; Lin & Ludkovski, 2013; McKinley et al., 2014), population ecology (Ferm

et al., 2008; Boys et al., 2008; Gillespie & Golightly, 2010; Sun et al., 2015) and systems

biology (Wilkinson, 2009; Golightly & Wilkinson, 2015; Koblents & Miguez, 2015; Hey

et al., 2015; Owen et al., 2015; Georgoulas et al., 2017; Golightly et al., 2019). However,

even when working with a time discretisation of the MJP, inference remains far from

straightforward. Typically, to maintain a desired level of accuracy, inference requires the

imputation of the latent process at pre-specified inter-observation time points. Since the

latent process at these time points cannot be integrated out analytically, the observed

data likelihood remains intractable even under these approximate models. Thus, although

typically more efficient than working with the MJP, inference remains computationally

expensive.

1.1 Thesis aims

The aim of this thesis is the development of fully Bayesian inference schemes for these

SKMs that are both computationally and statistically efficient, given discrete-time data

that may be incomplete and subject to error. To circumvent the problem of intractable

observed data likelihoods, much of this thesis focuses on pseudo-marginal MCMC, in

particular particle MCMC schemes (pMCMC), for performing fully Bayesian inference,

and improvements in computational efficiency over basic implementations of these schemes

in several ways.

A special case of the auxiliary particle filter of Pitt & Shephard (1999) is used to

(unbiasedly) estimate the observed data likelihood. As shown by Golightly & Wilkinson

(2015), this is crucial in avoiding highly variable likelihood estimates in scenarios where

intrinsic stochasticity outweighs the error in the observation process. Essentially, particles

are propagated conditional on future observations by using a suitable bridge construct,

that is, a tractable approximation of the intractable end-point conditioned process. Several

bridge constructs are considered in this thesis, including the modified diffusion bridge

(MDB) of Durham & Gallant (2002), and different implementations of the residual bridges

of Whitaker et al. (2017b) (see also van der Meulen & Schauer, 2017), and each of these

constructs has an effect on the computational and statistical efficiency of the resulting

inference scheme.

We also make use of the recently proposed correlated pseudo-marginal algorithm (Deli-

giannidis et al., 2018; Dahlin et al., 2015), which introduces positive correlation between

successive likelihood estimates in order to reduce the variance of the acceptance ratio.

Our approach is to introduce correlation between the bridges generated by the particle

filter at iteration i and those generated at iteration i + 1. Tran et al. (2016) and Chop-

pala et al. (2016) describe a similar approach, known as the blockwise pseudo-marginal

2
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method, and apply it to a univariate diffusion process and a Lotka-Volterra reaction net-

work, respectively. In the blockwise pseudo-marginal method, the observed data likelihood

is calculated by averaging several ‘blocks’ of unbiased estimates (which can be computed

in parallel). Correlation is then introduced by only updating the likelihood in a randomly

chosen block.

In addition, we look to use tractable approximations of the likelihood to further ac-

celerate the inference schemes. Approximations such as the linear noise approximation

(LNA; Kurtz, 1970; Komorowski et al., 2009; Fearnhead et al., 2014) are computationally

inexpensive, and whilst the approximations may not be sufficiently accurate to use as the

inferential model, they can have several benefits. Firstly, they can be used to estimate

not only the log-likelihood but also its gradient, which can then be used to perform the

Metropolis-adjusted Langevin algorithm (MALA), an algorithm proposed by Roberts &

Stramer (2002) as an ‘intelligent’ proposal mechanism derived from a discretised Langevin

diffusion. In essence, gradient information from the LNA is used to push proposals from a

Metropolis-Hastings (MH) scheme towards areas of high posterior density. This requires

the solution of a system of ordinary differential equations (ODEs), which in general do

not have analytic solutions. Tractable approximations of the likelihood can also be used

in a delayed acceptance stage of an inference scheme. The idea of delayed acceptance was

proposed by Christen & Fox (2005), and used by Golightly et al. (2015) inside a pseudo-

marginal scheme. The basic principle is to propose a set of parameter values, then use an

initial MH step with an acceptance probability based on an approximate model. Proposed

parameter values which are accepted at this initial screening stage proceed to another MH

step with the marginal posterior as the target density. Hence, computationally expensive

calculations of the observed data likelihood estimate are avoided for parameter proposals

that are likely to be rejected.

The above acceleration techniques typically leverage the tractability of a common

surrogate model such as the LNA, and as such further computational savings can be made

by combining techniques in such a way that avoids unnecessary repeated solving of the

ODE system that governs the surrogate model. Information from one solution of the ODE

system can be used in three ways: firstly, in the design of a MALA proposal; secondly, to

construct an appropriate bridge construct for use in the bootstrap particle filter; thirdly,

in the first stage of a delayed acceptance step. This thesis presents a unified framework

for applying a pMCMC algorithm, potentially with correlated bridges, a MALA proposal

mechanism, and a delayed acceptance step, to a general class of time discretised stochastic

kinetic models, that additionally allows a flexible observation regime. In particular, we

consider incomplete observation of the model components as well as Gaussian measurement

error. This framework can be applied whether the MJP, CLE, or Poisson leap method

is used as the inferential model. The methodology is applied to several examples arising
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in systems biology and epidemiology, using both real and synthetic data, including a

birth-death model, immigration death model, the Lotka-Volterra predator-prey model, an

autoregulatory network, an SIR epidemic model and a model for aphid populations. The

remainder of this thesis is organised as follows.

1.2 Thesis layout

In Chapter 2, we review the necessary background material on Monte Carlo methods

for intractable problems, including importance sampling and weighted resampling. We

consider Markov chain Monte Carlo methods for generating (dependent) samples from

target distributions known up to proportionality, and pseudo-marginal schemes for sce-

narios where the likelihood function involves an intractable integral. The use of correlation

within a pseudo-marginal scheme is also considered here.

Chapter 3 introduces stochastic kinetic models. Starting with a pseudo-reaction net-

work, the Markov jump process representation of species dynamics is considered. Updating

reactions in discrete time steps leads to the Poisson leap approximation, and further ignor-

ing state-space discreteness leads to a stochastic differential equation (SDE) approximation

known as the chemical Langevin equation (CLE). This can be further approximated by a

Gaussian process known as the linear noise approximation (LNA).

In Chapter 4, we consider the problem of performing fully Bayesian inference for the

parameters and any unobserved component in a tractable SKM (namely the LNA). We

describe a computationally efficient method for evaluating the observed data likelihood via

a forward filter and outline a scheme utilising the Metropolis adjusted Langevin algorithm

(MALA), which we illustrate with two synthetic data applications: a simple birth-death

model, and the Lotka-Volterra predator-prey network.

In Chapter 5, we consider the challenging problem of performing fully Bayesian infer-

ence in the context of an intractable SKM, such as the MJP or CLE. We describe the

use of particle filters within a particle MCMC scheme and consider the use of correlation

to accelerate inference in this setting. Several applications of these techniques with both

real and synthetic data are considered: an immigration-death model, the Lotka-Volterra

system, an autoregulatory network, and an SIR epidemic model using real data from an

influenza outbreak in a boarding school.

Chapter 6 gives a unified framework for using a tractable surrogate, namely the LNA, to

accelerate inference for intractable SKMs. In particular, the tractability of the surrogate is

exploited in a delayed acceptance step, to obtain an approximate log-likelihood gradient for

use in MALA, and to drive a particular bridge construct within a particle filter. Moreover,

we consider a strategy for only solving the system of ordinary differential equations (ODEs)

governing the LNA solution once per pMCMC iteration. This is compared and contrasted
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with a method that re-solves the ODE system for each particle in a given particle MCMC

iteration. These techniques are considered within several synthetic and real-world data

applications: a synthetic data model of aphid population dynamics, a real-world epidemic

example studying the outbreak of plague in Eyam, and finally revisiting the Lotka-Volterra

system.

In chapter 7, we summarise the findings of this thesis and discuss several avenues for

future research.
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Chapter 2

Monte Carlo methods and

stochastic differential equations

The bulk of this thesis concerns Bayesian inference where a critical component of this

inference, namely the posterior density, is intractable. To proceed, we employ Monte

Carlo methods, which use repeated sampling of random variables to approximate a de-

sired quantity, such as an expectation, probability, or posterior density. This chapter will

review standard Monte Carlo methods such as importance sampling and weighted resam-

pling, before giving a brief overview of Markov chain Monte Carlo and some standard

techniques within this field. Some models considered in this thesis utilise stochastic dif-

ferential equations, and so this chapter shall finish by providing a brief introduction to

stochastic differential equations and Itô calculus.

2.1 Monte Carlo integration and importance sampling

Consider an integral of the form

I =

∫
D
φ(θ)dθ,

that is, the integral of a function φ of a quantity θ over all possible values of θ within a

domain D. I may be intractable, but if the integrand can be re-written in the form

φ(θ) = φ̃(θ)f(θ)

for some density function f(·) with the same domain D and
∫
D f(θ)dθ = 1, then the

integral takes the form of an expectation

I =

∫
D
φ̃(θ)f(θ)dθ = Ef

[
φ̃(Θ)

]
,
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where Θ is a random variable with probability density function (PDF) f(θ). If we can

generate N independent realisations θ(1), . . . , θ(N) from f(·), then we can evaluate φ̃(θ(i))

for i = 1, . . . , N , and use the arithmetic mean of these as an estimator for I, that is

Î =
1

N

N∑
i=1

φ̃(θ(i)).

Estimating integrals in this way is known as Monte Carlo integration. In the simplest

case, D is just an interval on the real line [a, b], and Θ has a uniform distribution within

this interval,

f(θ) =
1

b− a
, a ≤ θ ≤ b.

The estimator Î has some desirable properties in that it is an unbiased and consistent

estimator of I, provided the variance of φ̃(Θ) is finite. Unbiasedness can be seen by

checking the expectation of the estimator

E
[
Î
]

=
1

N

N∑
i=1

E
[
φ̃(Θ(i))

]
= E

[
φ̃(Θ)

]
= I.

Assuming a finite variance of φ̃(Θ), consistency can be seen by noting the variance of the

estimator

V ar
[
Î
]

= V ar

[
1

N

N∑
i=1

φ̃(Θ(i))

]
=

1

N
V ar

[
φ̃(Θ(i))

]
,

which will tend to 0 as N tends to infinity. Thus, as N increases the estimator converges

to the true value of I.

There are cases where it is prohibitively difficult to write the integrand of I in the

form φ̃(θ)f(θ) for an easily sampled density f(·), or where estimators using Monte Carlo

integration have a very high variance for computationally practical values of N . In these

cases, if we can easily sample from another density g(·), with φ̃(·)f(·) > 0 =⇒ g(·) > 0,

then we can multiply and divide our integrand by this density and re-express the resulting

integral as the sum of integrals over different domains

I =

∫
D

φ̃(θ)f(θ)

g(θ)
g(θ)dθ

=

∫
G

φ̃(θ)f(θ)

g(θ)
g(θ)dθ +

∫
D\G

φ̃(θ)f(θ)

g(θ)
g(θ)dθ −

∫
G\D

φ̃(θ)f(θ)

g(θ)
g(θ)dθ.

Note now that for θ /∈ D we have f(θ) = 0, and for θ ∈ D ∩ G{, we have that f(θ) > 0

and g(θ) = 0, meaning that we must have φ̃(θ) = 0 for our assumption on g(·) to hold.

Therefore, the latter two integrals above are 0, and the remaining integral can now be
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written as an expectation with respect to g(·)

I =

∫
G

φ̃(θ)f(θ)

g(θ)
g(θ)dθ = Eg

[
φ̃(Θ)f(Θ)

g(Θ)

]
.

Thus, sampling N realisations from g(·) and following an analogous process to Monte

Carlo integration, we can construct an estimate for I as

ÎIS =
1

N

N∑
i=1

φ̃(θ(i))f(θ(i))

g(θ(i))
.

This is known as importance sampling. It can be shown using the same process as for stan-

dard Monte Carlo integration that importance sampling leads to unbiased and consistent

estimators for I. Moreover, the variance of the estimator is given by

1

N
V ar

[
φ̃(Θ(i))f(Θ(i))

g(Θ(i))

]
.

Thus, the variance can be reduced by increasing N , similar to Monte Carlo integration,

but can additionally be reduced by choosing g(·), known as the importance density, such

that V ar
[
φ̃(·)f(·)
g(·)

]
is small.

Sometimes we may only know f(·) up to a constant of proportionality k. In these

cases, we can use the self-normalised estimator

ÎSNIS =
1
N

∑N
i=1 φ̃(θ(i))f(θ(i))/g(θ(i))∑N
i=1 f(θ(i))/g(θ(i))

.

If we replace f(·) in ÎSNIS with f̃(·) = kf(·), then we see that k cancels in the numerator

and denominator to leave f(·). This is a valuable property in Bayesian statistics, where

often a target density of interest is known only up to proportionality. Unfortunately, the

resulting estimator is no longer unbiased. However, it is still consistent, as when N →∞
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Algorithm 1 Weighted resampling

1. Generate N realisations, θ(1), . . . , θ(N), from some proposal density g(·) with the
same domain as f(·).

2. Assign a normalised weight to each realisation

w(j) =
f(θ(j))/g(θ(j))∑N
i=1 f(θ(i))/g(θ(i))

, j = 1, . . . , N.

3. Resample M times with replacement from {θ(1), . . . , θ(N)}, with probabilities ac-
cording to the weights calculated in step 2.

we have

ÎSNIS →
Eg

[
φ̃(Θ)f(Θ)/g(Θ)

]
Eg [f(Θ)/g(Θ)]

=

∫
D
φ̃(θ)f(θ)
g(θ) g(θ)dθ∫

D
f(θ)
g(θ)g(θ)dθ

=

∫
D φ̃(θ)f(θ)dθ∫
D f(θ)dθ

=
I

1
= I,

and so the estimator converges to the true value of the integral.

2.2 Weighted resampling

Weighted resampling is a method used to generate realisations from a continuous distribu-

tion with density f(·) that may otherwise be difficult to sample from. The principle is to

sample from one distribution that is easier to generate realisations from, and then correct

that value using a weighting and resampling technique to ensure that the resulting realisa-

tions are from the desired distribution. The steps to generate realisations from f(·) using

weighted resampling are outlined in algorithm 1. The result is a sample θ(1), . . . , θ(M)

which is approximately distributed according to f(·). Note that typically M = N in

practice, and so we shall use N for both the initial realisations and the resampled real-

isations for the remainder of this section. As with self-normalised importance sampling

in Section 2.1, this algorithm can be applied even if the target f(·) is only known up to

proportionality, making it another useful tool in Bayesian statistics.

Weighted resampling approximates a continuous distribution with a discrete one. How-
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ever, as the number of samples N tends to infinity, the algorithm converges to sample from

the exact target distribution. To show this, consider for simplicity the univariate case,

with a random variable Θ. Let F (·) denote the cumulative distribution function (CDF)

under the target density f(·), and let F̃ (·) be the CDF of the distribution generated by

the algorithm. F̃ (θ∗) is the probability that a sample from the set {θ(1), . . . , θ(N)} is less

than or equal to some new value θ∗ and is given by the sum of all weights for which the

corresponding sample is less than or equal to θ∗, that is

F̃ (θ∗) =

N∑
j=1

w(j)I(θ(j) ≤ θ∗) =

∑N
j=1 f(θ(j))/g(θ(j))I(θ(j) ≤ θ∗)∑N

i=1 f(θ(i))/g(θ(i))
,

where I(θ(j) ≤ θ∗) is an indicator variable that takes a value of 1 if θ(j) ≤ θ∗ and 0

otherwise. Note that if we multiply the numerator and denominator of our CDF by 1
N , then

both are Monte Carlo integration estimates for the expectations of I(Θ ≤ θ∗)f(Θ)/g(Θ)

and f(Θ)/g(Θ) respectively. Thus, as N →∞, we have

F̃ (θ∗)→
∫
D[f(θ)/g(θ)]I(θ ≤ θ∗)g(θ)dθ∫

D[f(θ)/g(θ)]g(θ)dθ

=

∫
D f(θ)I(θ ≤ θ∗)dθ∫

D f(θ)dθ

= F (θ∗).

2.3 Markov chain Monte Carlo

Consider a target density π(θ), with parameter vector θ = (θ1, . . . , θp)
′ ∈ S, for some

state-space S ⊆ Rp, where the ′ denotes the transpose of the vector. Markov chain Monte

Carlo (MCMC) is a technique used to simulate from distributions whose densities may

only be known up to proportionality, by simulating from a specially constructed continuous

Markov chain with the target density as its stationary distribution. Providing the chain

has converged (at least approximately), any value sampled will be (approximately) from

our target density π(θ). In general, a chain will not converge exactly to its stationary

distribution in finite time. However, in practice, a commonly used technique is to run the

chain for a long period of time, then discard the initial portion of the chain as “burn-in”,

and assume that the chain has approximately converged after this point. We can therefore

use these samples to evaluate integrals and perform inference. However, note that samples

from a Markov chain will not be independent from one another. In the following sections

we discuss some key properties of continuous Markov chains, and then detail some MCMC

algorithms used to construct such Markov chains with the required stationary distribution.
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2.3.1 Continuous Markov chains

Consider a continuous state-space, discrete-time Markov chain Θn, with state-space S.

We can define the conditional cumulative distribution function of the chain as

P (θ|φ) = P(Θn+1 ≤ θ|Θn = φ).

It is often more convenient to work instead with the transition density p(θ|φ), where

p(θ|φ) =
∂

∂θ
P (θ|φ).

Now, denote the stationary distribution of this Markov chain by π(·). A stationary density

satisfies

π(φ) =

∫
S
π(θ)p(φ|θ)dθ. (2.1)

Determining whether a density is a stationary density of the Markov chain is often done

by checking whether it satisfies the detailed balance equation

π(φ)p(θ|φ) = π(θ)p(φ|θ), ∀φ, θ ∈ S. (2.2)

To see that (2.2) implies (2.1), we can integrate both sides over S with respect to θ to give∫
S
π(φ)p(θ|φ)dθ =

∫
S
π(θ)p(φ|θ)dθ

=⇒ π(φ)

∫
S
p(θ|φ)dθ =

∫
S
π(θ)p(φ|θ)dθ

=⇒ π(φ) =

∫
S
π(θ)p(φ|θ)dθ.

A Markov chain is known as π-irreducible if, for any initial state Θ0, the chain has a

positive probability of entering any set A ⊆ S for which π(·) has a positive probability,

at some point in the future. Furthermore, if there are portions of the state space that a

Markov chain can only visit at certain regularly spaced times, then the chain is known

as periodic, otherwise the chain is known as aperiodic. For rigorous definitions of these

terms, see for example Tierney (1994) or Roberts & Rosenthal (2004).

If a Markov chain is π-irreducible and aperiodic, and a proper stationary distribution

π(·) exists (proper in the sense that π(·) integrates to 1), then it can be shown that

no matter the initial state Θ0, the chain will converge to this stationary distribution as

n −→∞. A proof of this statement can be found in Roberts & Rosenthal (2004).
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Algorithm 2 The Metropolis-Hastings algorithm

1. Initialise the iteration counter to i = 1, and initialise the chain at θ(0) from some-
where in the domain of π(θ).

2. Propose a new value θ∗ using the proposal density q(θ∗|θ(i−1)).

3. Evaluate the acceptance probability α(θ∗|θ(i−1)) of the proposed move using (2.3).

4. Set θ(i) = θ∗ with probability α(θ∗|θ(i−1)), otherwise set θ(i) = θ(i−1).

5. Set i = i+ 1 and return to step 2.

2.3.2 Metropolis-Hastings algorithm

One of the fundamental algorithms in the field of MCMC is the Metropolis-Hastings al-

gorithm. Metropolis et al. (1953) introduced the concept, which was then generalised by

Hastings (1970) (see e.g. Gamerman & Lopes, 2006, for a more recent review). Central to

the Metropolis-Hastings algorithm is the idea of a proposal density q(·|·). The proposal

density does not need to have π(θ) as its stationary distribution, and it can be advan-

tageous to use a proposal distribution which is easy to simulate from. The Metropolis-

Hastings algorithm is outlined in algorithm 2. At each stage a new value θ∗ is generated

from the proposal distribution. This value is then either accepted, in which case the chain

moves to the proposed value, or rejected, in which case the chain will remain at its current

position. The probability of a move from θ to θ∗ being accepted is given by the acceptance

probability

α(θ∗|θ) = min

{
1,
π(θ∗)q(θ|θ∗)
π(θ)q(θ∗|θ)

}
. (2.3)

As the target density π(θ) only enters the acceptance probability as a ratio, this algorithm

can be used when the target is known only up to proportionality. This is commonly

the case in Bayesian inference, where these algorithms are used frequently, and are often

referred to as Metropolis-Hastings schemes, or M-H schemes.

A key user-defined element of the Metropolis-Hastings algorithm is the choice of pro-

posal density q(·|·). A good choice of proposal density is one that leads to a chain that

converges rapidly towards its stationary distribution, and traverses efficiently around the

parameter space, known as a well-mixing chain. Some commonly used classes of proposal

distribution are now considered.
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Symmetric proposals

If the proposal distribution is symmetric, that is

q(θ∗|θ) = q(θ|θ∗), ∀θ, θ∗ ∈ S,

then the acceptance probability simplifies to become

α(θ∗|θ) = min

{
1,
π(θ∗)

π(θ)

}
.

This means that if the proposal density is symmetric then the acceptance probability does

not depend on the proposal density.

Random walk Metropolis

The proposal density q(·|·) can take the form

θ∗ = θ + ω,

where ω, known as an innovation, is a d× 1 random vector that is independent from the

state of the chain, and d is the dimension of the chain. Typically, ω has a Gaussian dis-

tribution centred around zero. Metropolis-Hastings schemes with this form of symmetric

proposal mechanism are known as random walk Metropolis (RWM) schemes.

The variance of the innovations ω is a tuning parameter chosen by the user, and affects

the mixing of the Markov chain. If the variance is too small, the chain will accept many

proposed values but will not explore the parameter space well as each move will be small.

Conversely, if the variance is too high, any moves will be large, but the chain will remain

in place for long periods of time as few proposed values will be accepted. Subject to

some constraints on the target distribution, for large values of d the asymptotic optimal

acceptance rate of the chain is 0.234, and the optimal choice of the variance is

2.382

d
Var(Θ).

For more details on this see e.g. Roberts & Rosenthal (2001); Sherlock et al. (2015). This

optimal acceptance rate does not need to be reached precisely in practice, particularly

for small d - an acceptance rate between 0.1 and 0.4 is often seen as acceptable (see e.g.

Schmon & Gagnon, 2021). In general, Var(Θ) will not be available, and so typically a pilot

run with a somewhat arbitrary choice of variance is used in order to obtain an estimate

of Var(Θ).
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Independence samplers

If the proposal density takes the form q(θ∗|θ) = g(θ∗) for some density g(·), independently

of the current value θ, then the chain is known as an independence sampler. This leads to

an acceptance probability of

α(θ∗|θ) = min

{
1,
π(θ∗)

g(θ∗)
× g(θ)

π(θ)

}
.

For an independence sampler, the optimal acceptance probability is 1, and so increasing

the acceptance probability as much as possible is desirable. This can be achieved by

choosing g(·) to be as close to π(·) as possible.

2.3.3 Validity of Metropolis-Hastings

For the M-H algorithm to be valid, the target density π(θ) must be a stationary distribution

of the Markov chain, and the chain must converge to this distribution. Recall from Section

2.3.1 that a density is stationary for a Markov chain if it satisfies detailed balance, and

that a chain will converge towards its stationary distribution, assuming one exists, if it

is aperiodic and π-irreducible. We show here that the target density for M-H satisfies

detailed balance, and refer the reader to Tierney (1994) for discussion on the convergence

of M-H schemes, and to Meyn et al. (2009) for a more in-depth analysis of convergence of

continuous state-space Markov chains.

To see that π(θ) satisfies detailed balance, we must first obtain the transition density.

When the chain moves, this takes the form

p(θ∗|θ) = q(θ∗|θ)α(θ∗|θ), θ∗ 6= θ.

When the proposed move is rejected, the chain remains at θ, which happens with a prob-

ability of ω(θ), where

ω(θ) = 1−
∫
S
q(θ∗|θ)α(θ∗|θ)dθ∗,

or 1 minus the marginal probability of the chain moving. Thus, the transition density is

p(θ∗|θ) = q(θ∗|θ)α(θ∗|θ) + ω(θ)δ(θ∗ − θ),

where δ(θ∗−θ) is the Dirac delta function, equal to 1 if θ∗ = θ and 0 otherwise. Note that

this function is trivially symmetric in θ∗ and θ, that is δ(θ∗ − θ) = δ(θ − θ∗). Moreover,

any function multiplied by this function is also trivially symmetric in θ∗ and θ.
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We can now check detailed balance as follows

π(θ)p(θ∗|θ) = π(θ)q(θ∗|θ)α(θ∗|θ) + π(θ)ω(θ)δ(θ∗ − θ)

= π(θ)q(θ∗|θ) min

{
1,
π(θ∗)q(θ|θ∗)
π(θ)q(θ∗|θ)

}
+ π(θ)ω(θ)δ(θ∗ − θ)

= min {π(θ)q(θ∗|θ), π(θ∗)q(θ|θ∗)}+ π(θ)ω(θ)δ(θ∗ − θ)

= min {π(θ∗)q(θ|θ∗), π(θ)q(θ∗|θ)}+ π(θ∗)ω(θ∗)δ(θ − θ∗)

= π(θ∗)q(θ|θ∗)α(θ|θ∗) + π(θ∗)ω(θ∗)δ(θ − θ∗)

= π(θ∗)p(θ|θ∗).

Thus, detailed balance is satisfied.

2.4 Pseudo-marginal Metropolis-Hastings (PMMH)

Sometimes, the target of interest π(θ) may not be known, even up to proportionality. This

can often be the case if the target is an integral of the form discussed at the beginning of this

chapter. If a non-negative, unbiased estimate of π(θ) can be obtained (for instance, using

Monte Carlo integration or importance sampling), then a technique known as pseudo-

marginal Metropolis-Hastings (PMMH) may be employed to sample from π(θ) exactly.

Let U ∼ g(u) denote the auxiliary random variables (such as the proposal distribution in

an importance sampler) used to generate an estimator π̂U (θ) of the target density. The

corresponding estimate will then be denoted π̂u(θ). The PMMH algorithm is an M-H

algorithm targeting the joint density

π̂(θ, u) ∝ π̂u(θ)g(u).

For a joint proposal density q(θ∗|θ)g(u∗), the acceptance probability is

α{(θ∗, u∗)|(θ, u)} = min

{
1,
π̂(θ∗, u∗)

π̂(θ, u)
× q(θ|θ∗)g(u)

q(θ∗|θ)g(u∗)

}
= min

{
1,
π̂u∗(θ

∗)g(u∗)

π̂u(θ)g(u)
× q(θ|θ∗)g(u)

q(θ∗|θ)g(u∗)

}
= min

{
1,
π̂u∗(θ

∗)

π̂u(θ)
× q(θ|θ∗)
q(θ∗|θ)

}
, (2.4)

and therefore the density associated with the auxiliary variables need not be evaluated.

Comparing this acceptance probability with that found in 2.3, we see that it is of the

same form, but with π(θ) and π(θ∗) replaced by their estimates π̂u(θ) and π̂u∗(θ
∗). If the

estimator of π(·) is non-negative, and unbiased up to a multiplicative constant so that

EU [πU (θ)] ∝ π(θ), then the PMMH algorithm will exactly target the density of interest
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π(θ) when the auxiliary variables are marginalised out of the joint density, as∫
S
π̂(θ, u)du =

∫
S
π̂u(θ)g(u)du

= EU [π̂U (θ)]

∝ π(θ). (2.5)

2.4.1 PMMH illustrative example

Consider a standard Normal target density π(θ) ∝ exp
{
−θ2/2

}
. Clearly, this density

is readily available to sample from directly, but to illustrate the approach discussed in

Section 2.4 we can “estimate” this target density by generating samples directly and then

multiplying these samples by a random variable U with an expected value of 1. Thus the

estimator for π(θ) is π̂U (θ) = π(θ)U , and the joint density is π̂(θ, u) ∝ π(θ)ug(u). For this

example, we will take U ∼ Ga(a, a). Thus E[U ] = 1, V ar[U ] = 1/a, and so it is easy to

verify that the estimator is unbiased as

EU [π̂U (θ)] = π(θ)E[U ] = π(θ).

This unbiasedness means that an M-H scheme targeting π̂(θ, u) will marginally target π(θ)

by (2.5).

Figure 2.1 shows the output of a PMMH scheme with 104 iterations, a Gaussian random

walk proposal with a variance of σ2 = 1, an initial value of θ(0) = 1 and varying values of

a. As we can see, in each case the scheme is targeting the correct density, but with varying

levels of success. This is because as a decreases from 1 to 0.1 to 0.01, the variance of the

estimator increases from 1 to 10 to 100. Having an estimator with a high variance can lead

to significant over-estimates or under-estimates of π(θ). Significant under-estimates are

likely to lead to a small numerator in the acceptance probability and therefore be rejected,

and so should not have much of an effect. However, significant over-estimates are likely

to lead to a large numerator and therefore acceptance, at which point the estimate will

appear in the denominator of the acceptance probability in future iterations, leading to

a small acceptance probability and many consecutive rejections, until a similarly large or

larger value of π(θ) is generated, either by another over-estimate or by a proposal into an

area of much higher density. This “sticky” behaviour affects the mixing of the chain, as

can be seen in the trace plots in Figure 2.1.

A useful diagnostic check and measure of the statistical efficiency of the chain is the

effective sample size (ESS), which is the equivalent number of samples if each realisation
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Figure 2.1: Histograms with overlaid target density, and trace plots of samples of θ from output of
a PMMH scheme with 104 iterations and an initial value of θ(0) = 0. Left panels: a = 1. Middle
panels: a = 0.1. Right panels: a = 0.01.

of the chain was completely independent from every other. It is given by the formula

ESS =
niters

1 +
∑∞

k=1 ψ(k)
,

where niters is the number of realisations of the distribution (also the number of iterations

in the MCMC scheme), and ψ(k) is the lag-k autocorrelation. The effective sample sizes

for each chain can be found using the R package coda (Plummer et al., 2006), and for

a = 1, 0.1, 0.01 these are 826, 202, and 29 respectively, to the nearest integer. As the ESS

increases, the distribution of the realisations converges closer towards the target density.

Thus, a high ESS is desirable, which further highlights the benefits of having an estimator

with a low variance.
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2.5 Correlated pseudo-marginal Metropolis-Hastings (CP-

MMH)

As seen in Section 2.4.1, a low variance estimator can improve effective sample size and

reduce “sticky” behaviour in MCMC chains. One method of reducing the variance of

an estimator in PMMH is by inducing correlation between successive estimates. This

leads to a technique known as correlated pseudo-marginal Metropolis-Hastings (CPMMH)

(Deligiannidis et al., 2018; Dahlin et al., 2015). The proposal density is not restricted to

using g(u∗), and so we may use a proposal density q(θ∗|θ)K(u∗|u) that induces correlation

between u and u∗, which will in turn induce correlation between π̂u(θ) and π̂u∗(θ
∗). We

must choose K(·, ·) such that it satisfies the detailed balance equation

g(u)K(u∗|u) = g(u∗)K(u|u∗).

One such choice of g(·) and K(·|·) that satisfies these conditions is a standard Gaussian

density and a Crank-Nicolson proposal density (Cotter et al., 2013), that is

g(u) = N(u; 0, Iu), K(u∗|u) = N(u∗; ρu, (1− ρ2)Iu), (2.6)

where Iu is the identity matrix with dimension equal to the number of elements in u, and

ρ ∈ (−1, 1) is a tuning parameter controlling the correlation between successive values of

u. To show that the detailed balance equation is satisfied, consider the densities written

out in full

g(u)K(u∗|u) =
1√
2π

exp

(
−u2

2

)
× 1√

2π(1− ρ2)
exp

(
−(u∗ − ρu)2

2(1− ρ2)

)
.

Collecting terms and multiplying out brackets gives

g(u)K(u∗|u) =
1

2π
√

1− ρ2
exp

(
−u

2 − u2ρ2 + (u∗)2 − 2ρuu∗ + u2ρ2

2(1− ρ)2

)
=

1

2π
√

1− ρ2
exp

(
−u

2 − 2ρuu∗ + (u∗)2

2(1− ρ)2

)
. (2.7)

By completing the square we see that

u2 − 2ρuu∗ = (u− ρu∗)2 − (u∗)2ρ2,
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and substituting this into (2.7) gives

g(u)K(u∗|u) =
1

2π
√

1− ρ2
exp

(
−(u− ρu∗)2 + (u∗)2 − (u∗)2ρ2

2(1− ρ)2

)
=

1

2π
√

1− ρ2
exp

(
−(u− ρu∗)2 + (u∗)2(1− ρ2)

2(1− ρ)2

)
=

1√
2π

exp

(
−(u∗)2

2

)
× 1√

2π(1− ρ2)
exp

(
−(u− ρu∗)2

2(1− ρ2)

)
= g(u∗)K(u|u∗), (2.8)

and so detailed balance is satisfied. In practice ρ is chosen to be close to 1 to induce

strong positive correlation between u and u∗. However, if ρ is too close to 1 then this

will negatively impact the mixing of the chain, resulting in long term dependence in the

θ values. One approach is to choose ρ so that the ESS of the auxiliary chain for u is

similar to the ESS of the parameter chain for θ. Taking ρ = 0 gives the special case that

K(u∗|u) = g(u), which is equivalent to uncorrelated PMMH.

The acceptance probability of the CPMMH algorithm is identical to 2.4. The ratio-

nale behind correlating the innovations is that if (θ, U) and (θ∗, U∗) are sufficiently close

together, then it is expected that the ratio of the estimators in 2.4 will have a reduced

variance (relative to if (θ, U) and (θ∗, U∗) were independent). If we consider the variance

of the log-ratio of the estimators, we have

Var

(
log

(
π̂u∗(θ

∗)

π̂u(θ)

))
= Var(log(π̂u∗(θ

∗))) + Var(log(π̂u(θ)))

− 2 Cov(log(π̂u∗(θ
∗)), log(π̂u(θ))),

which will be smaller if the estimators are positively correlated than if they are inde-

pendent. Deligiannidis et al. (2018) consider the asymptotic properties of the error of

the (log)likelihood ratio for both PMMH and CPMMH and found that, under certain

conditions, the variance of this ratio is lower for CPMMH than for PMMH, and that at

stationarity the CPMMH scheme is less prone to sticky behaviour. If U does not follow

a standard Gaussian distribution, we may generate from a standard Gaussian distribu-

tion, transform the realisations using the CDF of a standard Gaussian distribution to give

standard uniform variates, and then transform again using the inverse CDF of the desired

distribution to achieve realisations of our required distribution whilst still satisfying the

detailed balance equation in 2.6.
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2.5.1 CPMMH illustrative example

To illustrate the use of CPMMH and its benefits over PMMH, we revisit the example of

Section 2.4.1. Note that the random variable U used in the estimator of π(θ) follows a

Gamma distribution, rather than a standard Gaussian distribution. However, consider

another random variable V which does follow a standard Gaussian distribution. Denote

the PDF and CDF of V by φ(·) and Φ(·) respectively, and the PDF and CDF of U by g(·)
and G(·) respectively. Then

U = G−1(Φ(V )).

Thus, we may generate a value v from φ(·) and transform it using the method described

in Section 2.5, to obtain the same estimator and joint density as in Section 2.4.1. Using

V means that we can use the Crank-Nicolson proposal density for K(v∗|v), and it will

satisfy the detailed balance equation

φ(v)K(v∗|v) = φ(v∗)K(v|v∗),

as shown in (2.8). The estimator for π(θ) is now π̂V (θ) = π(θ)G−1(Φ(V )), and the

joint density is now π̂(θ, v) ∝ π(θ)G−1(Φ(v))φ(v). As we still have that E[U ] = 1, it is

straightforward to verify that this estimator remains unbiased as

EV [π̂V (θ)] = π(θ)EV [G−1(Φ(V ))] = π(θ)EU [U ] = π(θ).

Thus, as before, an M-H scheme targeting π̂(θ, v) will marginally target the density of

interest, π(θ).

We can induce correlation between the successive “estimates” of π(θ) by proposing a

new value of θ from a Gaussian random walk, proposing a new value of v from K(v∗|v) with

a suitably large value of ρ, and then transform v to obtain a new value of u = G−1Φ(v).

In R these transformations can be achieved easily with the pnorm and qgamma functions.

Thus, we can run this CPMMH scheme with ρ = 0.999, and all other parameters equal

to the example in 2.4.1. We can see from figure 2.2 that decreasing the value of a hasn’t

caused the same level of sticky behaviour in the chain, and this is confirmed by looking at

the effective sample sizes for each chain, which to the nearest integer are 1105, 982 and 191

for a = 1, 0.1, and 0.01 respectively, a clear improvement on the standard uncorrelated

PMMH scheme.

2.6 Stochastic differential equations

Here, we provide some background on stochastic differential equations (SDEs) by first con-

sidering diffusion processes, in particular Brownian motion, and introducing the concept
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Figure 2.2: Histograms with overlaid target density, and trace plots of samples of θ from output
of a CPMMH scheme with 104 iterations, ρ = 0.999 and an initial value of θ(0) = 0. Left panels:
a = 1. Middle panels: a = 0.1. Right panels: a = 0.01.

of the Itô integral. For a more comprehensive introduction to SDEs, we refer the reader

to Øksendal (2003).

2.6.1 Diffusion processes

Consider a stochastic Markov process {Xt, t ≥ 0}, the continuous-time analogue to the

continuous state-space Markov chains described in Section 2.3.1. A stochastic process

is considered (first order) Markov if it satisfies the Markov condition. That is, given a

sequence of n times t0 < t1 < . . . < tn, we have that

P(Xtn ≤ xtn |Xtn−1 = xtn−1 , Xtn−2 = xtn−2 , . . . Xt0 = xt0) = P(Xtn ≤ xtn |Xtn−1 = xtn−1).

In other words, the future states of Xt depend only on the past states through the present

state. For times 0 ≤ t < t∗ <∞, the transition density from x at time t to x∗ at time t∗ is

denoted by p(x∗, t∗|x, t), which is the continuous-time analogue to the transition density

defined in Section 2.3.1. We also denote α(x, t) and β(x, t) to be the infinitesimal mean
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and variance of the process at time and state (x, t), also known as the drift and diffusion

coefficient of the process, respectively.

Feller (1949) distinguished between two types of continuous-time Markov process: a

Markov jump process, and a diffusion process. In a Markov jump process (MJP), there

is an overwhelming probability that in a small time interval the state of the process will

remain unchanged, however if the state does change then the change may be radical. This

type of process leads to sample paths with discontinuities, and will be discussed further

in Chapter 3. By contrast, in a diffusion process it is certain that some change will occur

in any time interval, however small, but it is also certain that changes during small time

intervals will also be small. In other words, sample paths of a diffusion process are (almost

surely) continuous. The dynamics of the diffusion process going forwards and backwards

in time are given by the Kolmogorov forward and backward equations (Kolmogorov, 1931).

The backward equation is given by

− ∂p(x∗, t∗|x, t)
∂t

= α(x, t)
∂p(x∗, t∗|x, t)

∂x
+

1

2
β(x, t)

∂2p(x∗, t∗|x, t)
∂x2

. (2.9)

Similarly, the forward equation is given by

∂p(x∗, t∗|x, t)
∂t∗

= − ∂

∂x∗
(α(x∗, t∗)p(x∗, t∗|x, t)) +

1

2

∂

∂x∗2
(β(x∗, t∗)p(x∗, t∗|x, t)) . (2.10)

The forward equation is also known in this context as the Fokker-Planck equation (Fokker,

1914; Planck, 1917). Derivations of (2.9) and (2.10) can be found in Wilkinson (2018).

Given α(·) and β(·), (2.9) and (2.10) can be used to determine the transition density of

the diffusion process. However, in general, these differential equations are analytically

intractable.

2.6.2 Brownian motion

One diffusion process of particular interest is standard Brownian motion, first discovered

by and named after Robert Brown when observing particles contained in the pollen of

plants (Brown, 1828). It is also known as a Wiener process, and is thus typically denoted

Wt, after Norbert Wiener, who proved its existence and provided a construction of the

process (Wiener, 1923). Standard Brownian motion can be seen as a special case of

a diffusion process with mean α(x, t) = 0 and variance β(x, t) = 1. More formally, a

univariate stochastic process {Wt, t ≥ 0} is a standard Brownian motion if Wt ∈ R depends

continuously on t, and the following conditions are satisfied:

• W0 = 0

• For all times 0 ≤ t0 < t1 < t2 <∞, Wt2 −Wt1 is independent of Wt1 −Wt0
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• For all times 0 ≤ t0 < t1 <∞, Wt1 −Wt0 ∼ N(0, t1 − t0)

The second condition here ensures that standard Brownian motion has independent in-

crements, and thus the process is (first order) Markovian as Wt2 − Wt1 is independent

of {Wt, 0 ≤ t < t1}. The third condition can be used to give the distribution of Wt1

conditional on Wt0 , as Wt1 = Wt1 −Wt0 +Wt0 , and thus Wt1 |Wt0 = x ∼ N(x, t1 − t0).
The transition density for this process is then given by

p(x∗, t∗|x, t) =
1√

2π(t∗ − t)
exp

(
−1

2

(x∗ − x)2

t∗ − t

)
.

In this case, the Fokker-Planck equation (2.10) simplifies to

∂p(x∗, t∗|x, t)
∂t∗

=
1

2

∂ (p(x∗, t∗|x, t))
∂x∗2

.

We can differentiate the transition density with respect to t∗ and x∗ to show that the

Fokker-Planck equation is satisfied. Using the product rule to differentiate with respect

to t∗, we obtain

∂p(x∗, t∗|x, t)
∂t∗

=
1√

2π(t∗ − t)
∂

∂t∗

{
exp

(
−1

2

(x∗ − x)2

t∗ − t

)}
+

∂

∂t∗

{
1√

2π(t∗ − t)

}
exp

(
−1

2

(x∗ − x)2

t∗ − t

)
=

(x∗ − x)2

2(t∗ − t)2
p(x∗, t∗|x, t)− 1

2(t∗ − t)
p(x∗, t∗|x, t).

Differentiating the transition density with respect to x∗ gives

∂p(x∗, t∗|x, t)
∂x∗

= −x
∗ − x
t∗ − t

p(x∗, t∗|x, t),

and using the product rule to differentiate again with respect to x∗ we obtain

∂2p(x∗, t∗|x, t)
∂x∗2

= −x
∗ − x
t∗ − t

∂p(x∗, t∗|x, t)
∂x∗

+
∂

∂x∗

{
−x
∗ − x
t∗ − t

}
p(x∗, t∗|x, t)

=
(x∗ − x)2

(t∗ − t)2
p(x∗, t∗|x, t)− 1

t∗ − t
p(x∗, t∗|x, t).

Multiplying this by 1/2 shows that the Fokker-Planck equation is satisfied.

Generating a continuous-time realisation of Brownian motion is not possible, as the

constant movement of the process would require infinitely many calculations. However,

discrete-time sample paths of the process can be easily generated for an arbitrarily fine

discretisation. For an equally spaced grid of t0 < t1 < . . . < tm with ti+1 − ti = ∆t,
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Figure 2.3: Sample paths of standard Brownian motion. Left panel: ∆t = 10−1. Middle panel:
∆t = 10−3. Right panel: ∆t = 10−5.

i = 0, . . . ,m− 1, a sample path can be generated by recursively sampling

Wti+1 |Wti = xi ∼ N(xi, ∆t).

Some illustrative sample paths of Wt for increasingly fine simulation grids are shown in

Figure 2.3.

2.7 Itô calculus

Stochastic differential equations require the definition of stochastic integrals, as processes

such as Brownian motion, whilst continuous almost everywhere, are almost nowhere dif-

ferentiable (see e.g Breiman, 1968). Integrals of the form∫ t

0
f(Xs, s)dWs

cannot be interpreted in the traditional Riemann sense. We proceed by defining the Itô

stochastic integral, which is a stochastic generalisation of the Riemann integral. This

integral, along with this branch of stochastic calculus, is named after Kiyosi Itô, who

founded the concepts of stochastic integrals and stochastic differential equations.

Consider an equally spaced partition of [0, t] as

0 = τ0 < τ1 < . . . < τm = t, (2.11)

with ∆τ = τi+1− τi, i = 0, . . . ,m−1, so that τ → 0 as m→∞, and ∆Wτi = Wτi+1−Wτi ,

i = 0, . . . ,m − 1. For a square-integrable function f(Xs, s), the Itô stochastic integral is

24



Chapter 2. Monte Carlo methods and stochastic differential equations

given by ∫ t

0
f(Xs, s)dWs =

ms
lim
m→∞

m−1∑
i=0

f(Xτi , τi)∆Wτi . (2.12)

Here,
ms
lim refers to the mean-square limit. That is, if a series Sm has a mean-square limit

L as m→∞, then

lim
m→∞

E
(
(Sm − L)2

)
= 0.

Note that our partition here uses the left endpoint of each sub-interval. For standard

Riemann integration, it does not matter where the function was evaluated within each

sub-interval, as the limit is the same in all cases. However, for stochastic calculus, this

selection of the point within the sub-interval is important. The other common choice is to

evaluate the function at the midpoint of each sub-interval, which leads to the Stratonovich

stochastic integral (Stratonovich, 1966). For a discussion on the relative merits of Itô and

Stratonovich interpretations of stochastic integrals, see Øksendal (2003). For the purposes

of this thesis it is convenient to work with Itô integrals, and so stochastic integrals in this

thesis shall take that form.

For some simple cases, (2.12) can be applied directly to evaluate an Itô integral. For

instance, for the function f(Xt, t) = 1, we have

∫ t

0
dWs =

ms
lim
m→∞

m−1∑
i=0

∆Wτi

=
ms
lim
m→∞

[
(Wτ1 −Wτ0) + (Wτ2 −Wτ1) + . . .+ (Wτm −Wτm−1)

]
=

ms
lim
m→∞

(Wτm −Wτ0)

=
ms
lim
m→∞

(Wt −W0)

= Wt −W0

= Wt.

For a real-valued, square-integrable function g(·), a useful property of the Itô integral

is that ∫ t

0
g(s)dWs ∼ N

(
0,

∫ t

0
g(s)2ds

)
. (2.13)

To see this, we use (2.12) to write

∫ t

0
g(s)dWs =

ms
lim
m→∞

m−1∑
i=0

g(τi)∆Wτi

using the partition (2.11). Now, as ∆Wτi ∼ N(0, ∆t), we have a linear combination of
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Gaussian random variables, and so

m−1∑
i=0

g(τi)∆Wτi ∼ N

(
0,
m−1∑
i=0

g(τi)
2∆t

)
.

Taking the limit as m →∞ gives a Riemann integral for the variance term, and thus we

recover (2.13). An obvious corollary from this result is that

E

[∫ t

0
g(s)dWs

]
= 0, (2.14)

and

E

[{∫ t

0
g(s)dWs

}2
]

=

∫ t

0
g(s)2ds. (2.15)

The property given in (2.15) is known as Itô isometry.

A stochastic process {Xt, t ≥ 0} is known as an Itô process if it can be expressed as

the sum of (Riemann) deterministic and (Itô) stochastic integrals. That is

Xt = X0 +

∫ t

0
α(s,Xs)dt+

∫ t

0

√
β(t,Xt)dWt.

This can be written equivalently in differential form as

dXt = α(t,Xt)dt+
√
β(t,Xt)dWt. (2.16)

Equation (2.16) is known as the stochastic differential equation (SDE), which shall be

utilised throughout this thesis. In general, these SDEs do not permit analytic solutions (see

e.g. Øksendal, 2003, for conditions and details on the existence and uniqueness of solutions

to SDEs). However, there are SDEs for which an analytic solution can be obtained through

Itô calculus. An example of one such process is given below.

2.7.1 SDE illustrative example

Geometric Brownian motion (GBM) is a model often used as a basic model of stock price.

A GBM is a stochastic process {Xt, t ≥ 0} satisfying the SDE

dXt = θ1Xtdt+ θ2XtdWt, X0 = x0 > 0. (2.17)

Here we have a drift α(t,Xt) = θ1Xt, and diffusion coefficient
√
β(t,Xt) = θ2Xt. This is

an example of an SDE that can be solved analytically, using an identity known as Itô’s

lemma, which can be seen as the Itô calculus equivalent of the chain rule. Writing the

drift and diffusion as α and β respectively for ease of notation, Itô’s lemma states that
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for an SDE of the form given in (2.16) and a function f(t, x) that is differentiable at least

once with respect to t and twice with respect to x, then

df(t, x) =

(
∂f

∂t
+ α

∂f

∂x
+
β

2

∂2f

∂x2

)
dt+

√
β
∂f

∂x
dWt.

Applying Itô’s lemma to (2.17) with f(t,Xt) = log(Xt) gives

d log(Xt) =

(
0 +

θ1Xt

Xt
− θ22X

2
t

X2
t

)
dt+

θ2Xt

Xt
dWt

=

(
θ1 −

θ22
2

)
dt+ θ2dWt.

Integrating both sides between 0 and t gives

log(Xt)− log(X0) =

(
θ1 −

θ22
2

)
t+ θ2

∫ t

0
dWs

=⇒ log(Xt) = log(x0) +

(
θ1 −

θ22
2

)
t+ θ2Wt

=⇒ Xt = x0 exp

{(
θ1 −

θ22
2

)
t+ θ2Wt

}
.

Thus, Xt follows a log-normal distribution

Xt ∼ LN
(

log(x0) +

(
θ1 −

θ22
2

)
t, θ22t

)
.

Using standard results of the log-normal distribution we have that E(Xt) = x0e
θ1t and

Var(Xt) = x20e
2θ1t

(
eθ

2
2t − 1

)
.

As with standard Brownian motion, we cannot generate a continuous-time realisation

of GBM, but we can easily generate discrete-time sample paths for a given discretisation.

To do so for an equally spaced grid of t0 < t1 < . . . < tm with ti+1 − ti = ∆t, i =

0, . . . ,m− 1, we recursively sample from

Xti+1 |xti = xti exp

{(
θ1 −

θ22
2

)
∆t+ θ2

√
∆tZ

}
, Z ∼ N(0, 1).

Figure 2.4 shows a sample path of a GBM with θ1 = 0.5 and θ2 = 1, simulated using a

discretisation of ∆t = 10−3.
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Figure 2.4: Sample path of geometric Brownian motion, with θ1 = 0.5, θ2 = 1, and ∆t = 10−3.
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Chapter 3

Stochastic kinetic models

This chapter will provide an introduction to the class of model for which we aim to perform

Bayesian inference in this thesis, namely stochastic kinetic models (SKMs). These are a

flexible class of model, and have been used to model several different scenarios ranging

from the spread of epidemics throughout a population (O’Neill & Roberts, 1999) to gene

expression within organisms (Hey et al., 2015). Typically, an SKM consists of a reaction

network, an associated rate law and a probabilistic description of reaction dynamics. We

first introduce a natural representation of an SKM, the Markov jump process, before

detailing a stochastic differential equation approximation, the chemical Langevin equation,

and a further, more tractable, approximation, the linear noise approximation. For a more

comprehensive overview of stochastic kinetic models we refer the reader to Wilkinson

(2018).

3.1 Markov jump processes

Consider a reaction network involving s species X1,X2, . . . ,Xs and r reactionsR1,R2, . . . ,Rr
such that the effect of reaction Ri is

s∑
j=1

pijXj −→
s∑
j=1

qijXj , i = 1, . . . , r

where the pij and qij are non-negative integers known as stoichiometric coefficients. Let

Xj,t denote the (discrete) number of species Xj at time t, and let Xt be the s-vector Xt =

(X1,t, X2,t, . . . , Xs,t)
′. A reaction Ri will instantaneously change the state of the system

Xt, by removing pij and adding qij to Xj,t for j = 1, . . . , s. Thus for any i ∈ {1, . . . , r}, if

Ri occurs at time t the state becomes

Xt = Xt−dt + Si,
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Reaction type Order Reactants Products Hazard

Influx 0 ∅ X1 c1
Reproduction 1 X1 2X1 c2X1

Decay 1 X1 ∅ c3X1

Catalysation 2 X1 + X2 X3 c4X1X2

Absorption 2 X1 + X2 2X2 c5X1X2

Dimerisation 2 2X1 X2 c6X1(X1 − 1)/2
Trimerisation 3 3X1 X3 c7X1(X1 − 1)(X1 − 2)/6

Table 3.1: Some example reaction types and associated hazards.

where Si is the ith column of the s × r stoichiometry matrix S whose (i, j)th element is

given by qji − pji.
The time evolution of the process {Xt, t ≥ 0} is most naturally described by a Markov

jump process (MJP), which is a continuous-time, discrete-valued Markov Process. We

follow the representation of an MJP used in Golightly & Sherlock (2019), where the state

of the system at time t is defined as

Xt = x0 +

r∑
i=1

SiRi,t.

Here, X0 = x0 is the initial system state and Ri,t is a counting process that denotes the

number of times that reaction i has occured by time t. Following Kurtz (1972) (see also

Wilkinson, 2018), it can be shown that

Ri,t = Yi

∫ t

0
hi(xs, ci)ds,

where Yi are independent, unit rate Poisson processes for i = 1, . . . , r, and hi(·, ci) is

known as the reaction hazard. For an infinitesimal time increment dt and a reaction hazard

hi(Xt, ci), the probability of a type i reaction occurring in the time interval (t, t + dt] is

hi(Xt, ci)dt. Under the standard assumption of mass action kinetics, hi is proportional to

a product of binomial coefficients. Specifically

hi(Xt, ci) = ci

s∏
j=1

(
Xj,t

pij

)
. (3.1)

Some examples of particular reactions and their hazards are given in table 3.1.Values

for c = (c1, c2, . . . , cr)
′ and the initial system state X0 = x0 complete specification of the

Markov process.

The probability of observing a particular system state xt at time t, p(xt), can be shown
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Algorithm 3 Gillespie’s direct method

1. Set t = 0. Initialise x0 = (x1,0, . . . , xu,0)
′, and set the stopping time T .

2. Calculate the hazards hi(xt, ci), i = 1, . . . , v using 3.1 and the combined hazard
h0(xt, c) using 3.2.

3. Simulate the time to the next event, t′ ∼ Exp(h0(xt, c)).

4. Simulate the reaction index i from the set {1, . . . , v} with probabilities
hi(xt, ci)/h0(xt, c).

5. Set xt+t′ = xt + Si, where Si denotes the i-th column of S.

6. Set t = t+ t′. Output xt and t. If t < T , return to step 2.

(van Kampen, 2001) to satisfy the chemical master equation (CME):

d

dt
p(xt) =

r∑
j=1

[
hj(xt − Sj)p(xt − Sj)− hj(xt)p(xt)

]
.

Unfortunately, the CME can rarely be solved in practice, with the exactly solvable cases

described in McQuarrie (1967). However, despite this intractability, generating exact

realisations of the MJP is straightforward via a technique described in Algorithm 3, known

in this context as Gillespie’s direct method (Gillespie, 1977). In brief, if the current time

and state of the system are t and Xt respectively, then the time to the next event will be

exponential with a rate parameter equal to the combined hazard

h0(Xt, c) =
r∑
i=1

hi(Xt, ci), (3.2)

and the event will be a reaction of type Ri with probability hi(Xt, ci)/h0(Xt, c) indepen-

dently of the inter-event time.

3.2 Time discretisation

Whilst generating simulations of the MJP description of the SKM is straightforward,

capturing every occurrence of a reaction time and type can be computationally expensive,

and this may preclude use of the MJP as an inferential model. We therefore consider

two approximations to the MJP, the Poisson leap method and the chemical Langevin

equation, and give an intuitive derivation of these approaches, before discussing a further

approximation, namely the linear noise approximation.
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Consider an infinitesimal time interval, (t, t + dt], over which the reaction hazards

will remain constant almost surely. The occurrence of reaction events can therefore be

regarded as the occurrence of events of a Poisson process with independent realisations for

each reaction type. Hence, for an interval (t, t+∆t] of finite length, ∆t, and the current

system state Xt, the number of reaction events of type i, r̃i, is approximately Poisson

distributed with rate hi(Xt, c)∆t. Let r̃ = (r̃1, . . . , r̃r)
′. The system state can then be

updated approximately, according to

Xt+∆t = Xt + Sr̃ . (3.3)

This discrete approximate update is known as the Poisson leap method.

If we wish to make a further approximation, then from (3.3), and knowing the rate of

each r̃i, we see that the expectation and variance of the infinitesimal dXt are

E(dXt) = S h(Xt, c)dt, Var(dXt) = S diag{h(Xt, c)}S′dt,

where h(Xt, c) = (h1(Xt, c1), . . . , hr(Xt, cr))
′. Hence, we can construct an Itô stochastic

differential equation (SDE) that has the same infinitesimal mean and variance as the true

MJP. That is

dXt = S h(Xt, c)dt+
√
S diag{h(Xt, c)}S′ dWt, (3.4)

where Wt is an s-vector of standard Brownian motion and
√
S diag{h(Xt, c)}S′ is an s×s

matrix B such that BB′ = S diag{h(Xt, c)}S′. Equation (3.4) is typically referred to

as the chemical Langevin equation (CLE), and can be shown to approximate the SKM

increasingly well in high concentration scenarios (Gillespie, 2000). The CLE can rarely

be solved analytically, and it is common to work with a discretisation such as the Euler-

Maruyama discretisation which gives

Xt+∆t = Xt + S h(Xt, c)∆t+
√
S diag{h(Xt, c)}S′∆tZ, (3.5)

where Z is a standard multivariate Gaussian random variable.

3.3 The linear noise approximation

The linear noise approximation (LNA) can be seen as a further approximation to an SDE

such as the CLE, with increased tractability. The LNA first appeared in Kurtz (1970,

1971) as a functional central limit law for density dependent processes. Here we derive

the LNA in an informal manner following that of Golightly et al. (2015) and Fearnhead

et al. (2014); more formal derivations and detailed discussion can be found in Komorowski

et al. (2009), Elf & Ehrenberg (2003) and Ferm et al. (2008). We begin by deriving the
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LNA for a general SDE, and then use it to approximate the CLE specifically.

3.3.1 LNA derivation

Consider an SDE of the form

dXt = α(Xt)dt+ εβ(Xt)dWt, X0 = x0, (3.6)

where ε is used to indicate that the stochastic term is small and is dominated by the drift,

or deterministic term, of the SDE. We can then partition Xt as

Xt = ηt + εRt, (3.7)

where ηt is the deterministic part of Xt corresponding to the solution of

dη

dt
= α(ηt), (3.8)

and Rt is a residual stochastic process. Assuming that the norm ||Xt − ηt|| is O(ε) over a

time interval of interest, we then substitute (3.7) into (3.6) to give

d(ηt + εRt) = α(ηt + εRt)dt+ εβ(ηt + εRt)dWt.

Taylor expanding α(·) about ηt up to terms of O(ε) gives

α(ηt + εRt) = α(ηt) + εFtRt + . . .

where Ft is the Jacobian matrix with (i, j)th element ∂αi(ηt)/∂ηj,t, and αi(ηt) is the ith

element of the vector α(ηt). Similarly, Taylor expanding εβ(·) about ηt up to terms of

O(ε) gives

εβ(ηt + εRt) = εβ(ηt) + . . . .

Collecting these terms, removing the terms relating to (3.8) and cancelling the remaining

ε gives the approximate SDE for Rt of

dRt = FtRtdt+ β(ηt)dWt, (3.9)

Now that we have collected terms ofO(ε), we may set ε = 1 without loss of generality, as

ε does not appear in the evolution of either ηt or Rt (equations (3.8) and (3.9) respectively).
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3.3.2 LNA solution

Provided the SDE for Rt has fixed or Gaussian initial conditions, that is, R0 ∼ N(m0, V0),

then dRt is a linear combination of Gaussians and so will have a Gaussian distribution for

all t. We can then solve this SDE explicitly to give

Rt|R0 = r0 ∼ N(Gtr0, GtψtG
′
t), (3.10)

where Gt is known as the fundamental matrix and satisfies

dGt
dt

= FtGt, G0 = Id, (3.11)

and ψt satisfies
dψt
dt

= G−1t β2(ηt)
(
G−1t

)′
, ψ0 = V0. (3.12)

To see this, we can follow Whitaker (2016) by rewriting the identity matrix as GtG
−1
t and

using the product rule to expand the time derivative

d

dt
GtG

−1
t = Gt

dG−1t
dt

+
dGt
dt

G−1t = 0.

Rearranging and pre-multiplying by G−1t gives

dG−1t
dt

= −G−1t
dGt
dt

G−1t . (3.13)

Substituting (3.11) into (3.13) gives

dG−1t
dt

= −G−1t FtGtG
−1
t = −G−1t Ft. (3.14)

Now define a new variable At = G−1t Rt. As G0 = G−10 = Id, we have that A0 = R0, and

dAt = d
(
G−1t Rt

)
= Rtd

(
G−1t

)
+G−1t d (Rt) .

Substituting in the expressions for d
(
G−1t

)
and d (Rt) from (3.14) and (3.9) respectively

gives

dAt = −G−1t FtRtdt+G−1t (FtRtdt+ β(ηt)dWt)

= G−1t β(ηt)dWt.

Integrating this gives

At = A0 +

∫ t

0
G−1t β(ηt)dWs.
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From properties (2.14) and (2.15), we know that for any process Xt,

E

[∫ t

0
XsdWs

]
= 0

and

E

[(∫ t

0
XsdWs

)2
]

= Var

[∫ t

0
XsdWs

]
= E

[∫ t

0
X2
sds

]
.

Thus, as we have a linear combination of Gaussian quantities, the distribution for At given

A0 is

At|A0 ∼ N
(
A0,

∫ t

0
G−1s β2(ηs)(G

−1
s )′ds

)
.

Finally, we substitute in ψt from (3.12), along with R0 = A0, Rt = GtAt to obtain (3.10).

The system of coupled ODEs (3.8), (3.11) and (3.12) characterise the LNA, and must be

solved either analytically or, more often, numerically. The approximating distribution of

Xt is then given by

Xt ∼ N(ηt +Gtr0, GtψtG
′
t).

An equivalent representation of the LNA can be achieved by writing

Rt|R0 = r0 ∼ N(mt, Vt), (3.15)

where
dmt

dt
= Ftmt, m0 = r0, (3.16)

and the ODE for Vt = GtψtG
′
t can be found using the product rule, 3.11 and 3.12 to give

dVt
dt

= (Gtψt)
dG′t
dt

+
d

dt
(Gtψt)G

′
t

= GtψtG
′
tF
′
t +

(
Gt
dψt
dt

+
dGt
dt

ψt

)
G′t

= VtF
′
t +GtG

−1
t β2(ηt)(G

−1
t )′G′t + FtGtψtG

′
t

= VtF
′
t + β2(ηt) + FtVt. (3.17)

Thus this alternative LNA representation is characterised by the coupled ODE system

of (3.8), (3.16) and (3.17), and the approximating distribution of Xt for this alternative

representation is

Xt ∼ N(ηt +mt, Vt).

For the CLE, we have that

α(Xt) = S h(Xt, c), β(Xt, c) =
√
S diag{h(Xt, c)}S′
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and so the LNA for the CLE has

dη

dt
= S h(ηt, c), (3.18)

dV

dt
= VtF

′
t + S diag{h(ηt, c)}S′ + FtVt, (3.19)

and

dRt = FtRtdt+
√
S diag{h(ηt, c)}S′dWt.

3.3.3 Restarting the LNA

Fearnhead et al. (2014) (see also Golightly et al., 2015; Minas & Rand, 2017) discuss

how the accuracy of the LNA can become poor over time when the ODE satisfied by ηt

is solved once over the whole time-course for a given initial condition. Essentially, for

large t, it is possible that a significant discrepancy between the stochastic process and

the deterministic ODE solution for ηt can emerge, leading to a poor approximation of

Xt. To alleviate this problem, Fearnhead et al. (2014) propose ‘restarting’ the LNA by

repeatedly re-initialising and re-integrating the ODE system. If Xt has a discrete set of n

observations xti , i = 0, . . . , n−1, then we may restart the LNA by re-initialising ηti = xti ,

mti = 0s (that is, an s-length vector of zeroes) at each observation, and re-integrating

forward to ti+1. The rationale behind restarting the LNA is that the approximation relies

on a first-order Taylor expansion about ηt, and so repeatedly realigning the point about

which the expansion is performed aims to minimise the impact of the higher-order terms

that have been disregarded in order to make the approximation. Note that this repeated

re-initialisation has the added benefit of reducing the dimension of the ODE system, since

(3.16) need no longer be solved as mt = 0s for all t ≥ t0. Therefore, unless otherwise

stated, all applications of the LNA in this thesis shall use this restarted version.

3.4 Examples

We illustrate the different SKM representations that we have introduced using two exam-

ples - a univariate birth-death process, and a bivariate Lotka-Volterra model.

3.4.1 Birth-death model

The birth-death model is a univariate model for the population size of a singular species.

The size of the population at time t is denoted Xt, and the reaction network takes the
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Figure 3.1: Birth-death model. A single simulation of the MJP for t ∈ [0, 50].

form

R1 : X c1−−−→ 2X

R2 : X c2−−−→ ∅,

where R1 and R2 denote a birth and a death in the system, respectively. A single simu-

lation from the MJP for this model is shown in Figure 3.1. The stoichiometry matrix is

given by

S =
(

1 −1
)

and the associated hazard function is

h(Xt, c) = (c1Xt, c2Xt)
′

Applying these to (3.4) gives the CLE as

dXt = (c1 − c2)Xtdt+
√

(c1 + c2)Xt dWt, X0 = x0,

where Wt is a standard Brownian motion process. The Jacobian Ft is given by

Ft = c1 − c2.
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Thus, the ODE system (3.18) and (3.19) governing the LNA for this model is

dηt
dt

= (c1 − c2)ηt, (3.20)

dVt
dt

= 2(c1 − c2)Vt + (c1 + c2)ηt. (3.21)

This is a tractable system of ODEs, which we can solve to get analytical solutions for the

LNA. For ηt, we can rearrange (3.20) to find

dηt
ηt

= (c1 − c2)dt.

Integrating both sides gives

log(ηt) = (c1 − c2)t+ C

=⇒ ηt = C̃e(c1−c2)t,

where C is the constant of integration and C̃ = eC . At t = 0, η0 = C̃ = x0, so we have

ηt = x0e
(c1−c2)t. (3.22)

We can substitute this into (3.21) and rearrange to find

dVt
dt
− 2(c1 − c2)Vt = (c1 + c2)x0e

(c1−c2)t.

To proceed, we multiply both sides of this equation by the integrating factor e−2(c1−c2)t,

to obtain (
dVt
dt
− 2(c1 − c2)Vt

)
e−2(c1−c2)t = (c1 + c2)x0e

−(c1−c2)t

=⇒ d

dt
(Vte

−2(c1−c2)t) = (c1 + c2)x0e
−(c1−c2)t

Integrating both sides and then multiplying by e2(c1−c2)t gives

Vt = e2(c1−c2)t
(
C − (c1 + c2)

(c1 − c2)
x0e
−(c1−c2)t

)
,

where again C is the constant of integration. At t = 0, V0 = 0, which implies that

C = (c1+c2)
(c1−c2)x0. Thus,

Vt =
(c1 + c2)

(c1 − c2)
x0e

(c1−c2)t
[
e(c1−c2)t − 1

]
. (3.23)
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Figure 3.2: Birth-death model. Mean (solid lines) and 95% credible region (dashed lines) for 105

simulations of Xt with x0 = 50 and c = (0.5, 0.55)′, with time step ∆t = 0.1, using the MJP (top
left), Poisson leap method (top right), CLE (bottom left), and LNA with restart (bottom right).

Figure 3.2 shows the mean and 95% credible regions for 105 simulations of the model,

using the MJP, Poisson leap method, CLE and LNA (with restart). Note that although

reactions under the MJP occur with continuous time, we have collected the state of the

system in increments of 0.1 time units, to ensure direct comparisons between methods. We

see that the CLE and Poisson leap method provide very good approximations to the MJP

for this model. The LNA, on average, shows similar behaviour to the MJP for this model,

however the LNA is far more variable, as shown by the wider credible region. Recall that

one of the key assumptions for the LNA is that the stochasticity in the process is small

relative to the drift. From Figure 3.1, we can see that a typical path for this process

exhibits significant stochasticity relative to the expected path in Figure 3.2, which may

explain why the LNA performs poorly relative to the other approximations for this model.

Fearnhead et al. (2014) discuss further how the LNA can become more inaccurate when

the perturbations of the system from the ODE solution are no longer small.

3.4.2 Lotka-Volterra model

The Lotka-Volterra reaction network comprises two biochemical species X1 (prey) and X2

(predator), and three reactions: R1 denotes the reproduction of a member of the prey
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Figure 3.3: Lotka-Volterra model. A single simulation of the MJP for X1,t (black lines) and X2,t

(red line), for t ∈ [0, 25].

species, R2 denotes the death of a member of prey and the reproduction of a predator,

and R3 denotes the death of a predator. The resulting reaction list is

R1 : X1
c1−−−→ 2X1

R2 : X1 + X2
c2−−−→ 2X2

R3 : X2
c3−−−→ ∅

Let Xt = (X1,t, X2,t)
′ denote the system state at time t. The system is frequently used to

benchmark competing inference algorithms; see e.g. Fearnhead et al. (2014) when using

the LNA, Boys et al. (2008), Koblents & Miguez (2015) when using the MJP representation

or Fuchs (2013), Ryder et al. (2021), Graham & Storkey (2017), Golightly et al. (2019)

when using the CLE. For this reason, this model shall be revisited in subsequent chapters

to illustrate different inference techniques. A single simulation from the MJP for this

model is shown in Figure 3.3. The stoichiometry matrix associated with the system is

given by

S =

(
1 −1 0

0 1 −1

)
and the associated hazard function is

h(Xt, c) = (c1X1,t, c2X1,tX2,t, c3X2,t)
′.
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Applying these to (3.4) give the CLE as

d

(
X1,t

X2,t

)
=

(
c1X1,t − c2X1,tX2,t

c2X1,tX2,t − c3X2,t

)
dt+

(
c1X1,t + c2X1,tX2,t −c2X1,tX2,t

−c2X1,tX2,t c2X1,tX2,t + c3X2,t

) 1
2

d

(
W1,t

W2,t

)

where W1,t and W2,t are independent standard Brownian motion processes. As in Section

3.3.2, we can approximate Xt as Xt ∼ N(ηt, Vt), where

ηt =

(
η1,t

η2,t

)
, Vt =

(
V1,t VC,t

VC,t V2,t

)
,

and VC,t denotes the covariance between X1,t and X2,t. The Jacobian Ft is given by

Ft =

(
c1 − c2η2,t −c2η1,t
c2η2,t c2η1,t − c3

)
.

Substituting these into (3.18) and (3.19) gives the coupled ODE system that specifies the

LNA for this model

dηt
dt

= (c1η1,t − c2η1,tη2,t, c2η1,tη2,t − c3η2,t)′, (3.24)

dVt
dt

= Vt

(
c1 − c2η2,t c2η2,t

−c2η1,t c2η1,t − c3

)
+

(
c1η1,t + c2η1,tη2,t −c2η1,tη2,t
−c2η1,tη2,t c2η1,tη2,t + c3η2,t

)

+

(
c1 − c2η2,t −c2η1,t
c2η2,t c2η1,t − c3

)
Vt. (3.25)

These ODEs are intractable, and so must be solved numerically.

Figure 3.4 shows the mean and 95% credible regions for 104 simulations of this model,

using the MJP (again with the system state collected every 0.1 time units), Poisson leap,

CLE and LNA both with and without restart. We see that, generally, all methods approx-

imate the MJP well at smaller times, but the accuracy of the approximation decreases at

larger times. In particular, the LNA without restart approximates the behaviour of the

MJP poorly at larger times. Conversely, the LNA with restart approximates the MJP

particularly well across all times. In future chapters, unless specified otherwise, this thesis

will restart the LNA whenever this approximation is used.
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Figure 3.4: Lotka-Volterra model. Mean (solid lines) and 95% credible region (dashed lines) for 104

simulations of X1,t (left panels) and X2,t (right panels) with x0 = (100, 100)′, c = (0.5, 0.0025, 0.3)′

and ∆t = 0.1. In each case the black lines represent the true stochastic kinetic process (MJP),
whilst the red lines represent differing approximations: the Poisson leap method (top row), CLE
(second row), LNA without restart (third row), LNA with restart (bottom row).
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Chapter 4

Bayesian inference for a tractable

stochastic kinetic model

Suppose that the processXt is not observed directly, but observationsD = (yt0 , yt1 , . . . , ytn)

are available and assumed conditionally independent (given the latent process) with con-

ditional probability distribution obtained via the observation equation,

Yti = P ′Xti + εti , εti ∼ N (0, Σ) , i = 0, 1, 2, . . . , n. (4.1)

Here, for some value d, Yti is a length-d vector, P is a constant matrix of dimension s× d
and εti is a length-d Gaussian random vector. Note that this allows for d < s - a partial

observation scenario where only a subset of the components of the network are observed.

The density linking the observed and latent process is denoted by p(yti |xti), and we assume

that the observations are conditionally independent given the latent process, so that the

density for the observations given the latent process, p(D|x), is given by

p(D|x) =

n∏
i=0

p(yti |xti),

where p(yti |xti) ∼ N(P ′xti , Σ) from (4.1). For simplicity we assume that Σ is known.

For the remainder of this thesis, interest lies in performing Bayesian inference on the

rate constants c of stochastic kinetic models. Specifically, we seek to obtain samples from

a posterior density π(c|D), given a prior density π(c) and a likelihood given observed data

p(D|c) (or, in later chapters, an estimate of this likelihood). The posterior density can be

written as

π(c|D) ∝ π(c)p(D|c). (4.2)

This thesis considers several different inferential models, and thus several different varia-

tions of p(D|c).
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Chapter 4. Bayesian inference for a tractable stochastic kinetic model

4.1 Marginal likelihood using the forward filter

In general, given data D, the likelihoods for many representations of SKMs are intractable

(see Chapter 5 for more details). One of the simplest methods for performing Bayesian

inference for SKMs is therefore to replace the model with a tractable approximation. For

the purposes of this chapter, we shall therefore use the LNA, introduced in Section 3.3, as

the inferential model.

Denote the (approximate) posterior under the LNA by

πa(c|D) ∝ π(c)pa(D|c).

The observed data (approximate) likelihood pa(D|c) can be factorised as

pa(D|c) = pa(yt0 |c)
n∏
i=0

pa(yti+1 |yt0:ti , c), (4.3)

where yt0:ti = (yt0 , . . . , yti). Constituent terms in (4.3) are tractable, and can be computed

recursively using a forward filter, which is outlined in Algorithm 4.

The forward filter is a special case of the Kalman filter Kalman (1960). The filter

leverages the linear Gaussian structure of both the LNA and the observation equation.

Consider a time point ti. At the next time point ti+1, a prior distribution of the under-

lying process given the previous observations, Xti+1 |yt0:ti , is constructed. Bayes theorem

is then applied to combine this prior with the likelihood given by the observation equa-

tion 4.1 using standard conditional multivariate Gaussian results, to obtain the posterior

distribution Xti+1 |yt0:ti+1 . This posterior distribution is then used to construct the prior

distribution at the next time step. An intuitive derivation of such filters can be found in

Barker et al. (1995).

Algorithm 4 utilises the approach introduced in Section 3.3.3 of restarting the LNA at

each observation time ti. In this case, as the observations are subject to error, we instead

initialise ηti at ati , the posterior mean of Xti given the observations up to time ti. Also,

the algorithm assumes a fixed initial condition Xt0 = a. Extending the algorithm to allow

for a Gaussian initial condition Xt0 ∼ N(a,B) is straightforward: the initialisation step

will just follow steps 2(b) and 2(c) but with ηt0 = a and Vt0 = B.

An M-H scheme targeting πa(c|D) can therefore be implemented, with the forward

filter used to evaluate the likelihood, where necessary. Note that if all components of the

network are observed and observations are without error, that is, P = Is and Σ = 0s, then

Algorithm 4 simplifies considerably. In this case ati = yti , and Bti = 0 for all i. Thus,

the (approximate) marginal likelihood may be obtained by simply integrating the ODEs
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Chapter 4. Bayesian inference for a tractable stochastic kinetic model

Algorithm 4 Forward Filter: Marginal likelihood under the LNA

1. Initialisation. Set at0 = a, Bt0 = 0. Compute

pa(yt0 |c) = φ(yt0 ;P ′a,Σ),

where φ(·; a,B) denotes the Gaussian density with mean vector a and variance matrix
B. The posterior at time t0 is therefore Xt0 |yt0 = a.

2. For times ti, i = 0, 1, . . . , n− 1:

(a) Prior at ti+1. Initialise the LNA with ηti = ati , mti = 0 and Vti = Bti . Integrate
(3.8) and (3.17) (and (4.7) if performing MALA) forward to ti+1 to obtain ηti+1

and Vti+1 . Hence
Xti+1 |yt0:ti ∼ N(ηti+1 , Vti+1).

(b) One step forecast. Using the observation equation, we have that

Yti+1 |yt0:ti ∼ N(P ′ηti+1 , P
′Vti+1P +Σ).

Compute
pa(yt0:ti+1 |c) = pa(yt0:ti |c)pa(yti+1 |yt0:ti , c).

(c) Posterior at ti+1. Combining the distributions of Xti+1 and Yti+1 and then
conditioning on yt0:ti+1 and c gives Xti+1 |yt0:ti+1 ∼ N(ati+1 , Bti+1) where

ati+1 = ηti+1 + Vti+1P (P ′Vti+1P +Σ)−1(yti+1 − P ′ηti+1)

Bti+1 = Vti+1 − Vti+1P (P ′Vti+1P +Σ)−1P ′Vti+1 .

forward from each observation, and computing individual terms of (4.3) as

pa(yti+1 |yt0:ti , c) = φ(yti+1 ; ηti+1 , Vti+1).

In scenarios where observations are not error-free, and interest lies in learning the latent

process (at the observation times), we consider the joint posterior density

πa(c, x|D) ∝ π(c)p(xt0)p(xt1:tn |xt0 , c)p(D|x),

where xt1:tn = (xt1 , . . . , xtn) and x = (xt0 , . . . , xtn). Note that the joint posterior can also

be factorised directly as

πa(c, x|D) = πa(c|D)πa(x|c,D),

which suggests a two-stage sampling procedure as follows:

1. Draw c ∼ πa(c|D)
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Chapter 4. Bayesian inference for a tractable stochastic kinetic model

2. Draw x ∼ πa(x|c,D).

The conditional posterior is tractable and can be efficiently sampled using backward sam-

pling. This method is shown in Algorithm 5 - for further details on forward filtering and

backward sampling, see West & Harrison (1997).

Algorithm 5 LNA Backward Sampler

1. From the output of Algorithm 4, sample xtn from Xtn |D ∼ N(atn , Btn).

2. For times ti, i = n− 1, n− 2, . . . , 0:

(a) Joint distribution of Xtj and Xtj+1 . Note that Xtj |yt0 : ytj ∼ N(atj , Btj ). The
joint distribution of Xtj and Xtj+1 conditional on yt0 : ytj is(

Xtj

Xtj+1

)
∼ N

((
atj
ηtj+1

)
,

(
Btj BtjG

′
tj

GtjBtj Vtj+1

))
.

(b) Backwards distribution. Conditioning further on Xtj+1 gives the distribution

of Xtj |Xtj+1 , yt0 : ytj as N(ãtj , B̃tj ), where

ãtj = atj +BtjG
′
tjV
−1
tj+1

(xtj+1 − ηtj+1),

B̃tj = Btj −BtjG′tjV
−1
tj+1

GtjBtj .

Sample xtj from Xtj |Xtj+1 , yt0 : ytj ∼ N(ãtj , B̃tj ).

4.2 Metropolis adjusted Langevin algorithm

A common choice of proposal mechanism in MCMC schemes is the random walk Metropolis

(RWM) proposal discussed in Chapter 2.3.2, which we write here as

q(c∗|c) = N(c∗; c, λΣT ),

for some tuning covariance matrix ΣT and step size λ, where both are typically chosen to

try to optimise the mixing of the chain. For example it is common to take ΣT = V̂ar(c|D)

estimated from a pilot run, with λ tuned to meet a desired acceptance rate. This proposal

mechanism is computationally inexpensive, but does not use any information about the

target density and as such can sometimes result in a lower statistical efficiency than other

proposals.

Ideally, we seek a proposal using local information about the posterior to sample from

areas of higher posterior density. The Metropolis adjusted Langevin Algorithm (MALA)

was proposed by Roberts & Tweedie (1996) as an ‘intelligent’ proposal mechanism derived
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Chapter 4. Bayesian inference for a tractable stochastic kinetic model

from a discretised Langevin diffusion. Consider the posterior density of the rate constants,

π(c|D). One way of sampling from the posterior would be to construct a Markov process

that has π(c|D) as its stationary distribution. The gradient of the log-posterior density,

∇ log π(c|D), can be used to construct a Langevin SDE of the form

dc =
1

2
∇ log (π(c|D)) dt+ dWt. (4.4)

This Langevin SDE has been constructed to admit the target density π(c|D) as a stationary

distribution. Further insight can be gleaned by considering the Fokker-Planck equation

governing density of c at time t, p(c, t) (where the dependence of this density on D has

been suppressed). That is,

∂

∂t
p(c, t) = − ∂

∂c
{α(c, t)p(c, t)}+

1

2

∂2

∂c2
{β(c, t)p(c, t)} , (4.5)

where here α(c, t) = (1/2)∇ log π(c|D) and β(c, t) = 1. If the process is in equilibrium,

then p(c, t) = p(c), and ∂
∂tp(c) = 0. Thus we can show that π(c|D) is a solution of (4.5)

since ∂
∂tπ(c|D) = 0 and the right-hand side of (4.5) becomes

− ∂

∂c

{
1

2
(∇ log π(c|D))π(c|D)

}
+

1

2

∂2π(c|D)

∂c2
= − ∂

∂c

{
1

2

π′(c|D)

π(c|D)
π(c|D)

}
+

1

2
π′′(c|D)

= −1

2
π′′(c|D) +

1

2
π′′(c|D)

= 0,

and so π(c|D) is stationary. Note here that π′(c|D) and π′′(c|D) denote the first and

second (partial) derivatives of π(c|D) with respect to c.

In general the SDE (4.4) cannot be solved analytically, and so we cannot just sample

from this solution to obtain samples from the posterior distribution. However, we can

discretise using the Euler-Maruyama discretisation introduced in Section 3.2 to give

c∗ = c+
λ

2
∇ log (π(c|D)) +

√
λZ, Z ∼ N(0, Id),

for some step size λ. This will introduce a discretisation error. Taking λ to be small

would reduce this discretisation error, but the resulting chain would fail to rapidly mix

over the parameter space. Therefore, for a given λ, a Metropolis-Hastings step is used

to correct for the discretisation. Consequently, we have a proposal mechanism that takes

into account the gradient information of the target density. Statistical gains can be made

by employing a preconditioning matrix (Roberts & Stramer, 2002), such that the proposal
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density takes the form

q(c∗|c) ∼ N
(
c∗; c+

λ

2
∇ log (π(c|D)) , λΣT

)
,

where ΣT is the preconditioning matrix and plays a similar role to the tuning matrix in

the random walk proposal density. The extra drift term in the MALA proposal density

serves to ‘push’ the proposed values towards regions of high posterior density. As such,

MALA algorithms have a larger optimal proposal variance than RWM algorithms, and a

larger asymptotic optimal acceptance rate of 0.574, compared to 0.234 for RWM. However,

as with RWM, this acceptance rate does not need to be reached precisely, and in practice

acceptance rates between 0.4 and 0.8 are generally seen as acceptable. It can also be

shown that as the number of parameters to be inferred increases, the efficiency of MALA

decreases at a slower rate than RWM, meaning that the algorithm scales better in large

dimensions than RWM. For further details on the scaling and optimal acceptance rates of

MALA, see e.g. Roberts & Rosenthal (1998, 2001).

Using the LNA as the inferential model we construct the likelihood using the factori-

sation (4.3), and note that each constituent term of the factorisation can be calculated

using the forward filter, with

p(yti+1 |yt0:ti , c) = N(yti+1 ;P ′ηti+1 , P
′Vti+1P +Σ).

Note that ηti+1 and Vti+1 depend on initial conditions ati and Bti , which themselves de-

pend implicitly on the rate constants c through the forward filter. It is not obvious how

to determine this dependence analytically, and so we disregard it and treat ati and Bti as

constants independent of c, in order to obtain a closed form expression for our (approx-

imate) gradient, and note that schemes using this approximation work well empirically.

Thus, the (approximate) gradient of the constituent log-likelihood terms is given by

∇ log p(yti+1 |yt0:ti , c) = ∇ logN(yti+1 ;P ′ηti+1 , P
′Vti+1P +Σ).

For ease of notation, in what follows we shall work with a general multivariate normal

distribution with mean µ(c, t) and variance Ψ(c, t), and note that for our purposes µ(c, t) =

P ′ηti+1 and Ψ(c, t) = P ′Vti+1P + Σ, where ηti+1 and Vti+1 are both implicitly dependent

on the rate parameters c. The form of each partial derivative for the log of a multivariate

normal distribution with respect to a rate constant ci is given by

∂ logN(y;µ(c, t), Ψ(c, t))

∂ci
=

1

2
Tr

{
(γγT − Ψ−1(c, t))∂Ψ(c, t)

∂ci

}
+ γT

∂µ(c, t)

∂ci
, (4.6)

where γ = Ψ−1(c, t){y − µ(c, t)}. Evaluating (4.6) requires the first order sensitivities
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∂µ(c, t)/∂ci and ∂Ψ(c, t)/∂ci. These are not in general available analytically, but as we

have expressions for dµ(c, t)/dt and dΨ(c, t)/dt we can find expressions for the time deriva-

tives of the first order sensitivities by augmenting the system of ODEs giving the LNA

solution. Let ξ be the vector of all elements of µ(c, t) and all lower triangular elements

of Ψ(c, t), and let the number of these elements be denoted NS . Then the first order

sensitivity of the jth element of ξ with respect to the ith rate constant ci is given by

Sij =
∂ξj
∂ci

, i = 1, . . . , r, j = 1, . . . , NS .

The time derivatives of these sensitivities can then be written using the total derivative

as

d

dt
Sij =

NS∑
l=1

∂

∂ξl

dξj
dt
Sil +

∂

∂ci

dξj
dt
, i = 1, . . . , r, j = 1, . . . , NS . (4.7)

For further insight into first-order sensitivity equations, see Calderhead & Girolami (2011).

Given an initial condition of Sij = 0 at time t0, these time derivatives can then be integrated

forward numerically along with the rest of the component ODEs giving the LNA solution.

Conveniently, this can be done as part of step 2a in Algorithm 4.

The augmentation of the LNA ODE system does come with an additional computa-

tional cost. For a reaction network with s species and r rate constants, the number of

ODEs to solve excluding sensitivities is given by s+ s(s+ 1)/2. With the addition of the

sensitivity ODEs, the augmented system has (r + 1) (s+ s(s+ 1)/2) ODEs in total to be

solved. This means that using this method will at least double the number of ODEs to

be solved, and this number can grow quickly as s and r increase, which can be compu-

tationally prohibitive for reaction systems with many species and/or reactions. As one

of the underlying assumptions of the LNA is that the stochastic perturbations are small

compared to the deterministic process, we can alleviate this computational cost by making

a further approximation and basing our gradient information solely on the deterministic

part of the LNA. This is equivalent to ignoring the dependence of Ψ(c, t) on c. The partial

derivative in (4.6) becomes

γT
∂µ(c)

∂ci
, (4.8)

thereby reducing the number of ODE components to s(r + 1) + s(s + 1)/2. We denote

the use of a MALA proposal with this additional approximation as simplified MALA, or

sMALA.

4.2.1 Tail behaviour in RWM and MALA

The performance of both MALA and RWM algorithms can depend on the shape of the

target density, in particular the size of the tails. If a target density π(θ) has most of its

49



Chapter 4. Bayesian inference for a tractable stochastic kinetic model

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

D
en

si
ty

Figure 4.1: From left to right panels: illustrations of a light, standard and heavy-tailed distribution.

area centred around the mode, and the density tails off quickly as θ moves away from

the mode, then the density is said to be light-tailed. Conversely, if the density tails off

slowly away from the mode, then the density is said to be heavy-tailed. Illustrations of

these types of distributions, along with a reference distribution proportional to a standard

Gaussian, are shown in Figure 4.1.

To illustrate the behaviour of both schemes for light and heavy tails, we shall consider

a simple univariate target density

π(θ) ∝ exp

(
−|θ|

a

a

)
, θ ∈ R.

Note that for a = 2, this corresponds to a standard Gaussian density, and for all a the

mode of this target density is at θ = 0. In particular, we shall focus on the positive tail of

this distribution where θ � 0, noting that by symmetry the behaviour will be the same

for θ � 0. The density can then be written as π(θ) ∝ exp(−θa/a), and the gradient of

the log-density becomes

∇ log π(θ) =
d

dθ

(
−θa

a

)
= −θa−1. (4.9)

The expected value of the MALA proposal distribution for this density is therefore

E[θ∗|θ] = θ − λ

2
θa−1.

The variance of this proposal distribution does not depend on θ or θ∗.

When a > 2 so that the target density has lighter tails than a standard Gaussian

distribution, this proposal runs into problems. As λ is fixed, no matter how small it

is fixed at, there will be some θ � 0 for which λθa−1/2 > 2θ. At this point, MALA

‘overshoots’, as the expectation of the proposed value θ′ is beyond the mode of the target
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density, and is in fact further away from this mode than the original value θ. As π(θ) is

light-tailed, moving further away from the mode will quickly result in much lower values

of π(θ), and thus the acceptance probability for this move will be close to 0, leading to an

inefficient ‘sticky’ chain. For a = 2, the expected proposal value becomes

E[θ∗|θ] = θ(1− λ

2
).

Thus, a similar problem arises for λ > 4, but for λ < 4 the expected proposed value will

be closer to the mode than the current value. Note that RWM does not suffer from this

issue, as the expected proposed value for the RWM algorithm is θ, regardless of the tails

of the distribution.

For a < 1, note that (4.9) tends to 0 as θ tends to infinity. Thus, for large θ, RWM and

MALA exhibit similar behaviour. To examine this behaviour, recall that the acceptance

probability for RWM is the minimum of 1 and a ratio R, where in this case

R =
π(θ∗)

π(θ)
=

exp(−|θ∗|a/a)

exp(−|θ|a/a)
= exp

(
|θ|a − |θ∗|a

a

)
.

For θ � 0 and proposal mechanism θ∗ = θ + ω, the numerator for this exponent can be

written as

θa − (θ + ω)a = θa(1− (1 + ω/θ)a).

We can Taylor expand the (1 + ω/θ)a term, keeping the first two terms, to obtain

|θ|a − |θ∗|a ≈ θa(1− (1 + aω/θ)) = − aω

θ1−a
,

which tends to 0 as θ tends to ∞ or −∞. Thus the acceptance probability for large |θ|
becomes very close to 1, no matter the proposed value. Thus, in the tails of a heavy tailed

target density, both MALA and RWM exhibit behaviour similar to a simple random walk,

scarcely more likely than not to move into a region of higher density, which leads to very

inefficient sampling of the target density.

4.3 Applications

To illustrate the proposed approach, and to assess the effectiveness of MALA over the basic

implementation of the M-H scheme, we consider two synthetic data examples. We first fit

the LNA to a simple birth-death model. Note that in this case the ODEs governing the

LNA are analytically tractable, and thus the first order sensitivities required for MALA

are analytically available. Our second example concerns the Lotka-Volterra predator-prey

model. In this case the ODE system is analytically intractable and thus we utilise the
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lsoda solver within the R package deSolve to numerically solve these equations.

In each example we use the effective sample size, as mentioned in Section 2.4.1, as a

measure of statistical efficiency. This is calculated using the function effectiveSize in

the R package coda. We report the minimum effective sample size over all components of

the chain, denoted by mESS. To measure computational efficiency, we use wall clock time

in seconds. We then use mESS/s as a comparator of overall efficiency between schemes.

All algorithms are coded in R and were run on a desktop computer with an Intel Core

i7-4770 processor and a 3.40GHz clock speed.

Since the rate constants must be strictly positive we target the posterior density of

log(c), so that our chain has R as its support. To tune the schemes, we ran short pilot

schemes to obtain an estimate of the posterior variance V̂ar(c|D). We then used this as

a basis for ΣT , and scaled the jump size accordingly with λ to obtain acceptance rates

within the range (0.1, 0.4) for RWM, and (0.4, 0.8) for MALA.

4.3.1 Birth-death process

Recall the birth-death process introduced in Section 3.4.1. In particular, recall that the

LNA for this model had analytic solutions given by (3.22) and (3.23). From these solutions,

we can derive analytical expressions for the sensitivities ∂ηt
∂ci

and ∂Vt
∂ci
, i ∈ {1, 2}. For ηt,

these sensitivities are trivially

∂ηt
∂c1

= tx0e
(c1−c2)t

∂ηt
∂c1

= −tx0e(c1−c2)t.

To differentiate Vt with respect to c1, we can first rearrange to obtain

∂Vt
∂c1

=
∂

∂c1

(
(c1 + c2)

(c1 − c2)
e2(c1−c2)t − (c1 + c2)

(c1 − c2)
e(c1−c2)t

)
x0. (4.10)

We now have two terms to differentiate, both of which require the use of the product and

quotient rules. Differentiating the first term with respect to c1 gives

e2(c1−c2)t
[

2t(c1 + c2)

c1 − c2
+

∂

∂c1

(
c1 + c2
c1 − c2

)]
=2e2(c1−c2)t

[
t(c1 + c2)

c1 − c2
− c2

(c1 − c2)2

]
.
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Figure 4.2: Birth-death model. Dataset (red line) and underlying Markov Jump Process (black
line).

Similarly, differentiating the second term with respect to c1 gives

e(c1−c2)t
[
t(c1 + c2)

c1 − c2
+

∂

∂c1

(
c1 + c2
c1 − c2

)]
=e(c1−c2)t

[
t(c1 + c2)

c1 − c2
− 2c2

(c1 − c2)2

]
.

Substituting these derivatives into (4.10), collecting terms and rearranging gives

∂Vt
∂c1

=
[
t(c21 − c22)

(
2e(c1−c2)t − 1

)
− 2c2

(
e(c1−c2)t − 1

)] x0e(c1−c2)t
(c1 − c2)2

.

An analogous process shows that

∂Vt
∂c2

=
[
2c1

(
e(c1−c2)t − 1

)
− t(c21 − c22)

(
2e(c1−c2)t − 1

)] x0e(c1−c2)t
(c1 − c2)2

.

A synthetic dataset of 51 observations was generated from this model by simulating

from the MJP using algorithm 3 with c1 = 0.5, c2 = 0.55, X0 = 50 and T = 50, and

retaining the size of the population at integer times. This data was then corrupted with

additive Gaussian noise with a variance of σ2 = 1, to give

Yt ∼ N(Xt, 1), t = 0, 1, . . . , 50.

The data, along with the underlying process, are shown in Figure 4.2.

Using the LNA as the inferential model, we took independent N(0, 102) priors for
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Proposal α CPU (s) mESS mESS/s Rel.

RWM 0.35 40 13171 329 1
MALA 0.47 80 45481 569 1.7

Table 4.1: Birth-death model. Acceptance rate α, CPU time (in seconds), minimum ESS, minimum
ESS per second and relative (to RWM) minimum ESS per second. All results are based on 105

iterations of each scheme.
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Figure 4.3: Birth-death model. Left and middle panels: marginal posterior distributions based on
the RWM proposal. Right panel: contour plot of the joint posterior. The true values of c1 and c2
are indicated.

log c1 and log c2, and performed runs for M-H schemes consisting of 105 iterations with

both RWM and MALA proposals. Results are summarised in Table 4.1 and Figure 4.3.

Figure 4.3 shows the marginal and joint posterior distributions from the RWM scheme

- plots from the MALA scheme showed the same behaviour and so are omitted. We can see

that the posterior samples are consistent with the true values that produced the dataset,

despite using the LNA as the inferential model rather than the MJP. We also see a strong

posterior correlation between the two parameters. From Table 4.1 we can see that the

extra computational cost required to calculate the sensitivities and gradient for MALA

is outweighed by the increase in minimum ESS achieved by the scheme. In terms of

overall efficiency (as measured by minimum ESS per second), MALA outperforms RWM

by almost a factor of 2.

Figure 4.4 shows the first 50 iterations of the output from RWM and MALA schemes

where the chains were initialised away from the values that produced the data. As can

be seen from the figure, the RWM scheme meanders more slowly towards the area of high

posterior density, whereas the MALA scheme enters the area of high posterior density

more quickly, and thus spends more time exploring the space of high posterior density.

One consequence of this is that if a chain is initialised away from the posterior mean,

MALA may require a shorter “burn-in” period than RWM, thus leading to a greater

efficiency, as fewer iterations of the scheme will need to be discarded. However, care must
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Figure 4.4: Birth-death model. Joint posterior densities and the first 50 iterations of the chain for
two different schemes. Left panel: RWM. Right panel: MALA.

be taken, as if the chain is initialised too far into the tail of the posterior distribution,

then the tail behaviour problems of Sections 4.2.1 may arise. In particular, if the posterior

distribution is light-tailed, then MALA may actually perform worse than RWM, as if the

chain is initialised far enough into the tail of the distribution it may immediately become

subject to the “overshooting” problem, and thus have an intolerably low acceptance rate.

4.3.2 Lotka-Volterra model

Recall the Lotka-Volterra system introduced in Section 3.4.2. First order sensitivity ODEs

for this model can be found in Appendix A.1. We generated a single realisation of the

jump process at 51 integer times via Algorithm 3 with rate constants as in Boys et al.

(2008), that is c = (0.5, 0.0025, 0.3)′ and an initial condition of x0 = (100, 100)′, as in

Golightly & Wilkinson (2011). We then corrupted the system state according to

Yt ∼ N
(
Xt, σ

2I2×2
)
, t = 0, 1, . . . , 50,

where I2×2 is the 2× 2 identity matrix and σ = 1.

Using the LNA as the inferential model, we took independent N(0, 102) priors for

the log ci, and performed runs for M-H schemes consisting of 105 iterations with RWM,

sMALA and MALA proposal mechanisms. Results are summarised in Figure 4.5 and

Table 4.2.

Figure 4.5 shows the marginal posterior distributions from the full MALA scheme -

plots from the RWM and sMALA schemes showed the same behaviour and so are omit-
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Figure 4.5: Lotka-Volterra model. Marginal posterior distributions for c1, c2 and c3 respectively,
based on the full MALA proposal. The true values of each parameter are indicated.

Proposal α CPU (s) mESS mESS/s Rel.

RWM 0.34 5090 8414 1.65 1
sMALA 0.64 7740 34181 4.42 2.68
MALA 0.66 24738 37688 1.52 0.92

Table 4.2: Lotka-Volterra model. Acceptance rate α, CPU time (in seconds), minimum ESS,
minimum ESS per second and relative (to RWM) minimum ESS per second. All results are based
on 105 iterations of each scheme.

ted. Again, we can see that the posterior samples are consistent with the true values that

produced the dataset. From Table 4.2 we can see that despite the clear improvement in

minimum ESS gained from the full MALA proposal, this is negated by the large addi-

tional computational overhead required to solve the large system of ODEs governing the

sensitivities for Vt. However, simplified MALA requires the solution of a much smaller

system of ODEs, and thus has a much lower computational cost. Despite the additional

gradient approximation required to reduce the size of the ODE system, the minimum ESS

is almost as high as for full MALA, meaning that sMALA combines the benefits of both

approaches in this scenario, outperforming both other schemes by a factor of almost 3.

4.4 Limitations of the LNA as an inferential model

As we have seen in this chapter, approximating the MJP with the LNA as an inferen-

tial model can be advantageous due to its tractability, which leads to computationally

inexpensive algorithms for performing Bayesian inference for the rate constants of SKMs.

However, there are certain scenarios where the LNA is not appropriate as an inferential

model. As discussed in Section 3.4.1 (see also Fearnhead et al., 2014), the LNA can ap-

proximate the MJP poorly in scenarios where the reaction network exhibits a large amount

of stochasticity relative to its deterministic properties. Moreover, Fintzi et al. (2021) warn
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against utilising the LNA as an inferential model in certain situations, such as the ex-

tinction and emergence of epidemic outbreaks, due to certain dynamics that cannot be

captured by approximating MJP transition densities with a simple Gaussian distribution.

Golightly et al. (2015) also found an epidemic modelling scenario where the posterior den-

sity under the LNA significantly differed from that under the MJP, and Grima et al. (2011)

found that the CLE gave a more accurate approximation than the LNA, particularly for

low-volume systems. One previously discussed limitation of the LNA is the decreasing

accuracy of the approximation over time. Although the technique described in Section

3.3.3 of restarting the LNA at each observation can alleviate the problem, this technique

becomes less effective for large inter-observation times, as the accuracy of the approxima-

tion may degrade even between observations. Furthermore, recall from Section 3.2 that

the Poisson leap and CLE approximations share the same infinitesimal mean and variance

as the true MJP. For reaction networks involving multiple species, it is in general not true

that the LNA matches even the infinitesimal mean of the true stochastic process, due to

correlation between different species. To illustrate this point, consider the Lotka-Volterra

model of Section 3.4.2. The ODE that governs the drift of the LNA for this model is given

by

d

(
η1,t

η2,t

)
=

(
c1η1,t − c2η1,tη2,t
c2η1,tη2,t − c3η2,t

)
dt.

The expectation of the CLE for this model is given by

dE(Xt) =

(
c1 E(X1,t)− c2 E(X1,tX2,t)

c2 E(X1,tX2,t)− c3 E(X2,t)

)
dt.

Whilst it is true that E(X1,t) = η1,t and E(X2,t) = η2,t, the correlation between the two

species means that E(X1,tX2,t) 6= η1,tη2,t. Thus the LNA has the undesirable property

that its drift does not, in general, match that of the process that it is approximating.

For more limitations of the LNA, see e.g. Scott et al. (2006); Minas & Rand (2017).

For these reasons, the next chapter will explore inference techniques when using the more

intractable, but generally more accurate, CLE or Poisson leap approximations to the MJP.
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Recall the scenario introduced in Chapter 4, where the process X is not observed directly,

but observations (on a regular grid) D = (yt0 , yt1 , . . . , ytn) are available, related to the

underlying process via (4.1). Recall that the marginal posterior density (4.2) is given by

π(c|D) ∝ π(c)p(D|c),

where π(c) is the prior density ascribed to c, and p(D|c) is the observed data likelihood.

The observed data likelihood can be constructed as

p(D|c) =

∫
p(x|c)p(D|x)dx,

where

p(D|x) =
n∏
i=0

N(yti ;xti , Σ). (5.1)

The term p(x|c) is typically referred to as the complete data likelihood, whose form depends

on the inferential model. In the case of the MJP, we have x = {xt, t0 ≤ t ≤ tn}, and

p(x|c) =

{
nr∏
i=1

hνi
(
xτi−1

)}
exp

{
−
∫ tn

t0

r∑
i=1

hi (xt) dt

}
,

where nr denotes the total number of reaction events; reaction times (assumed to be in

increasing order) and types are denoted by (τi, νi), i = 1, . . . , nr, νi ∈ {1, . . . , r} and we

take τ0 = t0. A complete data scenario for the MJP requires knowledge of the times and

types of every reaction within the system, and as such is likely to be practically infeasible,

particularly for large systems.
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When working with the CLE, the transition density under the Euler-Maruyama dis-

cretisation, pe(xti+1 |xti , c), is given by (3.5), with ∆t = ti+1−ti. However, as with the LNA

(see Section 4.4), this transition density is likely to be inaccurate if the inter-observation

time ∆t is too large. Hence, it is commonplace to introduce intermediate time points be-

tween observation instants allowing the discretisation to operate over a time step chosen

by the practitioner. To this end, consider an equally spaced partition of [ti, ti+1] as

ti = τi,0 < τi,1 < . . . < τi,m−1 < τi,m = ti+1, (5.2)

with τi,j+1 − τi,j = ∆τ = 1/m for j = 0, . . . ,m − 1. Hence, the approximation is ap-

plied recursively over each sub-interval [τt−1,i, τt−1,i+1] rather than in a single instance

over [ti, ti+1], with m controlling both the accuracy and computational cost of the approx-

imation. It is then straightforward to evaluate the complete data likelihood p(x|c), where

x = (x[t0,t1), x[t1,t2), . . . , x[tn−1,tn]). This takes the form

p(x|c) = p(xt0)

n−1∏
t=0

m−1∏
i=0

N
(
xτt,i+1 ;xτt,i + S h(xτt,i , c)∆τ , S diag{h(xτt,i , c)}S′∆τ

)
(5.3)

For the Poisson leap approximation we have that

p(D|c) =
∑
xt0 ,r̃

p(xt0)p(r̃|xt0 , c)p(D|r̃, xt0)

where r̃ = (r̃τ0,1 , . . . , r̃τ0,m , r̃τ1,1 , r̃τ1,2 . . . , r̃τn−1,m) and for example, r̃τi,j = (r̃τi,j,1 , . . . , r̃τi,j,v)′

is the length-r vector containing the number of reactions of each type in the interval

[τi,j−1, τi,j ]. It should be clear that given xt0 and r̃, x can be obtained deterministically

through recursive application of (3.3). Hence p(D|r̃, xt0) coincides with p(D|x) in (5.1)

and

p(r̃|xt0 , c) =
n−1∏
i=0

m−1∏
j=0

v∏
k=1

Po
(
r̃τi,j+1,k

; hk(xτi,j , ck)∆τ
)

where Po(·;h) denotes the mass function of a Poisson random variable with mean h.

Irrespective of whether the MJP, CLE, or Poisson leap method is used as the inferential

model, the observed data likelihood p(D|c) remains intractable. On the other hand, whilst

a complete data scenario is typically impractical, the complete data likelihood is tractable.

This motivates simulation based approaches to inference based on data augmentation,

whereby a sampler is constructed to target the joint posterior of c and the latent jump

process between observation instants, and the uncertainty for the latent process is then

integrated over via Monte Carlo. For this thesis, we focus specifically on construction of

PMMH (Beaumont, 2003; Andrieu & Roberts, 2009; Andrieu et al., 2010) or CPMMH
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(Dahlin et al., 2015; Deligiannidis et al., 2018; Golightly et al., 2019) schemes using either

the CLE or Poisson leap as the inferential model. In the next section, we describe how

these approaches, introduced in Sections 2.4 and 2.5, can be applied to perform inference

for these particular SKMs.

5.1 Correlated pseudo-marginal Metropolis-Hastings

Suppose that auxiliary variables U ∼ g(u) can be used to generate a non-negative unbiased

estimator p̂U (D|c) of p(D|c). Therefore, an unbiased (up to a multiplicative constant)

estimator of the posterior is

π̂U (c|D) = π(c)p̂U (D|c).

In this context, the PMMH scheme of Section 2.4 becomes an M-H scheme targeting

π̃(c, u|D) = π(c)g(u)p̂u(D|c) (5.4)

which, following the method in (2.5), has marginal distribution∫
π(c)g(u)p̂u(D|c) du ∝ π(c|D).

For a proposal kernel of the form q(c∗|c)g(u∗), the M-H acceptance probability is

α {(c∗, u∗)|(c, u)} = min

{
1 ,

π̃(c∗, u∗|D)

π̃(c, u|D)
× q(c|c∗)g(u)

q(c∗|c)g(u∗)

}
= min

{
1 ,

π(c∗)p̂u∗(D|c∗)
π(c)p̂u(D|c)

× q(c|c∗)
q(c∗|c)

}
(5.5)

and therefore the density associated with the auxiliary variables need not be evaluated.

Recall from Section 2.5 that the proposal kernel need not be restricted to the use of

g(u∗). The CPMMH scheme (Deligiannidis et al., 2018; Dahlin et al., 2015) generalises

the PMMH scheme by using a proposal kernel of the form q(c∗|c)K(u∗|u) where K(·|·)
satisfies the detailed balance equation

g(u)K(u∗|u) = g(u∗)K(u|u∗). (5.6)

It is straightforward to show that an M-H scheme with proposal kernel q(c∗|c)K(u∗|u) and

acceptance probability (5.5) satisfies detailed balance with respect to the target π̃(c, u).
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Upon negating the trivial scenario that the chain does not move, we have that

π̃(c, u|D)q(c∗|c)K(u∗|u)α {(c∗, u∗)|(c, u)}

= min {π(c)g(u)p̂u(D|c)q(c∗|c)K(u∗|u) , π(c∗)g(u)p̂u∗(D|c∗)q(c|c∗)K(u∗|u)}

= min {π(c)g(u)p̂u(D|c)q(c∗|c)K(u∗|u) , π(c∗)g(u∗)p̂u∗(D|c∗)q(c|c∗)K(u|u∗)}

= π̃(c∗, u∗|D)q(c|c∗)K(u|u∗)α {(c, u)|(c∗, u∗)}

where (5.6) is used to deduce the third line.

In practice, the approach detailed in Section 2.5 of taking g(u) to be a standard

Gaussian density and K(u∗|u) to be the kernel associated with a Crank-Nicolson proposal

is commonplace. That is

g(u) = N (u; 0 , Id) and K(u∗|u) = N
(
u∗; ρu ,

(
1− ρ2

)
Id
)

where Id is the identity matrix whose dimension d is determined by the number elements

in u and ρ is chosen to be close to 1, to induce positive correlation between p̂U (D|c) and

p̂U∗(D|c∗). Recall that taking ρ = 0 gives the special case that K(u∗|u) = g(u∗), which

corresponds to the PMMH scheme. The motivation for taking ρ ≈ 1 is to reduce the

variance of the acceptance probability in (5.5) - for further details, see Section 2.5, or

Deligiannidis et al. (2018). Consequently, significant gains in statistical efficiency (relative

to the standard PMMH scheme) may be expected. The use of correlation here is likely to

be of most benefit in low dimensional models, since it is likely that N can be scaled at

rate n1/2 for univariate models and n2/3 for bivariate models (Deligiannidis et al., 2018),

as opposed to at rate n for the standard PMMH scheme (Bérard et al., 2014). Recall that

in scenarios where U is not normally distributed it is straightforward to generate uniform

random variates via Φ(U) (where Φ(·) is the cdf of a standard normal random variable).

These uniform draws can then be transformed to give draws from the required distribution

via the inversion method.

The CPMMH scheme is summarised in Algorithm 6. After initialisation, each iteration

requires computation of p̂u∗(D|c∗). This is achieved by executing a diffusion bridge particle

filter (for each proposed value (c∗, u∗)), which we describe in the next section.

5.1.1 Diffusion bridge particle filter

The marginal likelihood p(D|c) can be factorised as

p(D|c) = p(yt0 |c)
n∏
i=0

p(yti+1 |yt0:ti , c), (5.7)
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Algorithm 6 Correlated PMMH scheme (CPMMH)

1. Initialisation. For i = 0:

(a) Set c(0) in the support of π(c|D) and draw u(0) ∼ N(0, Id).

(b) Compute p̂u(0)(D|c(0)) by running Algorithm 7 with (c, u) = (c(0), u(0)).

2. For iteration i ≥ 1:

(a) Draw c∗ ∼ q(·|c(i−1)) and ω ∼ N(0, Id). Put u∗ = ρu(i−1) +
√

1− ρ2ω.

(b) Compute p̂u∗(D|c∗) by running Algorithm 7 with (c, u) = (c∗, u∗).

(c) With probability α
{

(c∗, u∗)|(c(i−1), u(i−1))
}

given by (5.5), put (c(i), u(i)) =

(c∗, u∗) otherwise store the current values (c(i), u(i)) = (c(i−1), u(i−1)).

where yt0:ti = (yt0 , . . . , yti). Although the constituent terms in (5.7) will typically be

intractable, a particle filter provides an efficient mechanism for their estimation. Moreover,

the particle filters that we consider here can be used to give an unbiased estimator of p(D|c)
(Del Moral, 2004; Pitt et al., 2012) and hence drive the CPMMH scheme described above.

The basic idea behind the particle filter is to recursively approximate the sequence of

filtering densities p(xti |yt0:ti , c) using a sequence of importance sampling and resampling

steps, whereby N state particles are propagated forward, appropriately weighted using the

complete data likelihood and observation density, and resampled with replacement (e.g.

systematically as in Deligiannidis et al., 2018) to prune out particle paths with low weight.

Let u = (u1, . . . , un) denote a realisation of the random variables required by the particle

filter. We further adopt the partition ut = (ũt, ūt)
′ to distinguish between the variables

used to propagate state particles and those used in the resampling step, respectively. Note

that ũt = (ũ1t , . . . , ũ
N
t ) corresponding to a filter with N particles and ũit = (ũit,1, . . . , ũ

i
t,m)

for t > 1, corresponding to the time discretisation introduced at the beginning of this

chapter.

Given a weighted sample of ‘particles’ {xjti−1
, w(ujti−1

)}Nj=1 approximately distributed

according to p(xti−1 |yt0:ti−1 , c), the particle filter uses the approximation

p̂(x(ti−1,ti]|yt0:ti , c) ∝ p(yti |xti , c)
N∑
j=1

p(x(ti−1,ti]|x
j
ti−1

, c)w(ujti−1
) (5.8)

where, in the case of the CLE, x(ti−1,ti] = (xτti−1,1
, . . . , xτti−1,m

). In the case of the Poisson

leap approximation, x(ti−1,ti] is replaced by r̃(ti−1,ti] = (r̃τti−1,1
, . . . , r̃τti−1,m

), since xti can

be obtained deterministically, given xti−1 and r̃(ti−1,ti]. In what follows, differences between

the CLE and Poisson leap will be made explicit, and to avoid repetition x(ti−1,ti] will be

used as notation where both x(ti−1,ti] and r̃(ti−1,ti] are appropriate.
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The auxiliary particle filter (APF) of Pitt & Shephard (1999) (see also Pitt et al.,

2012), which can be constructed by noting that

p(yti |xti , c)p(x(ti−1,ti]|xti−1 , c) = p(yti |xti−1 , c)p(x(ti−1,ti]|xti−1 , yti , c),

constructs a pre-weight g(yti |x
j
ti−1

, c), and then propagates particles via xj(ti−1,ti]
= fti(ũ

j
ti

) ∼
g(·|xjti−1

, yti , c), after initialising with xjt0 = ft0(ũjt0) ∼ g(·|yt0 , c). We use the diffusion

bridge particle filter of (Golightly & Wilkinson, 2011), which can be seen as a special case

of the APF with pre-weight g(yti |x
j
ti−1

, c) = 1, and defer discussion on the construction of

appropriate propagation constructs g(x(ti−1,ti]|x
j
ti−1

, yti , c) until later in this section. Note

that taking g(·|xjti−1
, yti , c) = p(·|xjti−1

, c) so that each xj(ti−1,ti]
is generated by simple for-

ward simulation from the model (MJP, CLE or Poisson leap) gives the bootstrap particle

filter of Gordon et al. (1993). As discussed in Golightly & Wilkinson (2015), this approach

is likely to be inefficient when the inherent stochasticity in the latent process dominates

the measurement error variance.

Resampling

For the resampling step we follow Deligiannidis et al. (2018) and use systematic resampling,

which only requires simulating a single uniform random variable at each time point. These

can be constructed from ūti ∼ N(0, 1) via Φ(ūti). Sorted uniforms can then be found via

ūjRti = (j − 1)/N + Φ(ūti)/N, j = 1, . . . , N which are in turn used to choose indices

ajti−1
that (marginally) satisfy Pr(ajti−1

= k) = w(ukti−1
). Note that upon changing c

and u the effect of the resampling step is likely to prune out different particles, thus

breaking the correlation between successive estimates of marginal likelihood. To alleviate

this problem, Deligiannidis et al. (2018) sort the particles before resampling via the Hilbert

sort procedure of Gerber & Chopin (2015). We follow Choppala et al. (2016) by using a

simple Euclidean sorting procedure, which is more resource-efficient. At observation time

ti (immediately after propagation), we sort the particle trajectories xj(ti−1,ti]
as follows.

The first sorted particle corresponds to that with the smallest value of the first component

of the set {x1ti , . . . , x
N
ti }. The remaining particles are chosen by minimising the Euclidean

distance between the currently selected particle and the set of all other particles. Note

one potential issue of these sorting procedures is that they sort particle trajectories based

on the endpoints xti , ignoring the preceding trajectories. Thus, particle trajectories that

are dissimilar over the course of (ti−1, ti] but are close at ti will be sorted close together.

The diffusion bridge particle filter is described in Algorithm 7. Note that steps 1(c)

and 2(e) give the particle filter’s estimate of the constituent marginal likelihood terms in

(5.7).
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Algorithm 7 Diffusion bridge particle filter

1. Initialisation (t0).

(a) Sample ũjt0 ∼ N(0, 1) and put xjt0 = ft0(ũjt0) ∼ g(·|yt0 , c), j = 1, . . . , N .

(b) Compute the weights. For j = 1, . . . , N

w̃(ujt0) =
p(xjt0)p(yt0 |x

j
t0
, c)

g(xjt0 |yt0 , c)
, w(ujt0) =

w̃(ujt0)∑N
k=1 w̃(ukt0)

.

(c) Compute the current estimate of marginal likelihood p̂ut0 (yt0 |c) =∑N
j=1 w̃(ujt0)/N .

2. For times t2, t3, . . . , tn:

(a) Euclidean sorting: for j = 1, . . . , N obtain the sorted index s(j) and put{
xjti−1

, w(ujti−1
)
}

:=
{
x
s(j)
ti−1

, w(u
s(j)
ti−1

)
}

.

(b) Sample ūti ∼ N(0, 1) and put ūjRti = (j − 1)/N + Φ(ūti)/N , j = 1, . . . , N .

Obtain indices ajti−1
using systematic resampling with weights w(ujti−1

).

(c) Propagate. Sample ũjti ∼ N(0m, Im) and put xj(ti−1,ti]
= fti(ũ

j
ti

) ∼ g
(
·

|x
ajti−1

ti−1
, yti , c

)
, j = 1, . . . , N .

(d) Compute the weights. For j = 1, . . . , N

w̃(ujti) =
p(yti |x

j
ti
, c)p

(
xi(ti−1,ti]

|x
ajti−1

ti−1
, c
)

g
(
xj(ti−1,ti]

|x
ajti−1

ti−1
, yti , c

) , w(ujti) =
w̃(ujti)∑N
k=1 w̃(ukti)

(e) Compute the current estimate of marginal likelihood p̂ut0:ti (yt0:ti |c) =

p̂ut0:ti−1
(yt0:ti−1 |c)p̂uti (yti |yt0:ti−1 , c) where p̂uti (yti |yt0:ti−1 , c) = 1

N

∑N
j=1 w̃(ujti).

5.1.2 Propagation

The form of (5.8) suggests a simple importance sampling/resampling strategy where parti-

cles are sampled (with replacement) in proportion to their weights, propagated myopically

of any future observations via p(x(ti−1,ti]|x
j
ti−1

, c) and reweighted by p(yti |xti , c). The re-

sulting algorithm gives the bootstrap particle filter of Gordon et al. (1993). However,

as discussed in Del Moral & Murray (2015) and Golightly & Wilkinson (2015) (see also

Golightly et al., 2019), this scheme is likely to perform poorly when observations are infor-

mative, since very few state particles will have reasonable weight, which leads to a highly

variable estimator of the marginal likelihood. We therefore require a proposal mechanism
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that can generate paths between observations for the particles, conditional on the current

state of the particle, the next observation and the rate constants. These paths are of-

ten referred to as bridges, and the mechanisms for generating them are known as bridge

constructs. These constructs play an important role in reducing the variance of p̂U (D|c)
relative to the aforementioned myopic approach based on forward simulation.

Markov jump process

Without loss of generality, consider a time interval (0, T ] for which we require a bridge

construct with density g(x(0,T ]|x0, yT , c). Consider first the MJP as the inferential model

and suppose that we have simulated as far as time t. A suitable bridge construct can be

found by noting the conditioned hazard (CH) associated with reaction Ri is

hi(xt|yT ) = hi(xt)
p(yT |Xt = x∗)

p(yT |Xt = xt)
,

where x∗ = xt+S
i. The transition density p(yT |xt) will typically be intractable. However,

we may follow Golightly & Sherlock (2019) by replacing it with the transition density under

the LNA

pa(yT |Xt = xt) = N
(
yT ;P ′

[
ηT |0 +GT |t(xt − ηt|0)

]
, P ′VT |tP +Σ

)
.

Here, we use the notation ηt∗|t, Gt∗|t and Vt∗|t to denote the solution of the ODE system in

(3.8), (3.11) and (3.17) at time t∗ > t, integrated over (t, t∗] with initial conditions zt = xt,

Gt = Is and Vt = 0s. Hence, a single integration of the ODE system over [0, T ] gives ηt|0,

Gt|0 and Vt|0 for t ∈ [0, T ]. We can then re-express GT |t and VT |t via two identities, which

we derive here following a similar method to that of Golightly & Sherlock (2019). Recall

from (3.10) and (3.15) that we may write

RT |R0 = r0 ∼ N(GT |0r0, VT |0),

which we can naturally extend to

RT |Rt ∼ N(GT |tRt, VT |t).

Thus we have

E(RT |r0) = GT |0r0

= GT |t E(Rt|r0)

= GT |tGt|0r0.
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Our first identity is therefore

GT |t = GT |0G
−1
t|0 . (5.9)

Similarly,

Var(RT |r0) = VT |0

= GT |t Var(Rt|r0)G′T |t + VT |t

= GT |tVt|0G
′
T |t + VT |t,

which leads to our second identity

VT |t = VT |0 −GT |tVt|0G′T |t. (5.10)

Use of (5.9) and (5.10) avoids reintegration of the ODE system at each jump event. By

ignoring the explicit dependence of hi(xt|yT ) on t, sampling the resulting bridge pro-

posal g(x(0,T ]|x0, yT , c) can be achieved by executing Algorithm 3 with hi(xt) replaced by

hi(xt|yT ). Evaluating g(x(0,T ]|x0, yT , c) is straightforward via the complete data likelihood

of x(0,T ], again with hi(xt) replaced by the conditioned hazard function.

Chemical Langevin equation

Consider now the discretised CLE as the inferential model. Recall the partition in (5.2)

which we will write as

0 = τ0 < τ1 < . . . < τm−1 < τm = T

for notational simplicity, with ∆τ = 1/m as before. We adopt the following factorisation,

g(x(0,T ]|x0, yT , c) =

m−1∏
k=0

g(xτk+1
|xτk , yT , c),

and seek suitable expressions for the constituent terms in the product. One option is to

use the modified diffusion bridge (MDB) construct of Durham & Gallant (2002) (see also

Golightly & Wilkinson (2008) for the generalisation to partial, noisy observations, and

Whitaker et al. (2017b) for a recent discussion) which effectively uses a linear Gaussian

approximation of Xτk+1
|xτk , yt, c. Under the Euler-Maruyama approximation, the one step

transition density is given by

Xτk+1
|xτk , c ∼ N(xτk + αk∆τ, βk∆τ),

were αk = S h(xτk , c) is the drift of the CLE, βk = S diag{h(xτk , c)}S′ is its diffusion

coefficient. The same Euler-Maruyama approximation, combined with the observation
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equation (4.1) gives

YT |xτk+1
, c ∼ N(P ′(xτk+1

+ αk+1∆k+1), P
′βk+1P∆k+1 +Σ),

where αk+1 = S h(xτk+1
, c), βk+1 = S diag{h(xτk+1

, c)}S′ and ∆k+1 = T − τk+1. To obtain

a joint Gaussian distribution of Xτk+1
and YT conditional only on xτk , we make the further

approximation that the hazard function is locally constant, and thus estimate αk+1 and

βk+1 with αk and βk respectively. The (approximate) joint conditional distribution is then

given by(
Xτk+1

YT

)∣∣∣∣∣xτk ∼ N
((

xτk + αk∆τ

P ′(xτk + αk∆k)

)
,

(
βk∆τ βkP∆τ

P ′βk∆τ P ′βkP∆k +Σ

))
,

were, ∆k = T − τk. Finally, using standard multivariate Gaussian arguments we condition

Xτk+1
on YT = yt to obtain

g(xτk+1
|xτk , yT , c) = N

(
xτk+1

; xτk + µMDB(xτk , c)∆τ , Ψ(xτk , c)∆τ
)

(5.11)

where

µMDB(xτk , c) = αk + βkP
(
P ′βkP∆k +Σ

)−1 {
yt − P ′(xτk + αk∆k)

}
and

Ψ(xτk , c) = βk − βkP
(
P ′βkP∆k +Σ

)−1
P ′βk∆τ. (5.12)

Given that the importance density in (5.11) is Gaussian, it is straightforward to perform

the propagation step in Algorithm 7 by drawing ũit ∼ N(0m, Im) and then setting

xτk+1
= xτk + µ(xτk , c)∆τ +

√
Ψ(xτk , c)∆τ ũ

i
t,k+1, k = 0, . . . ,m− 1.

The effect of this bridge construct is to effectively “push” particles linearly towards obser-

vations, so that on average the particle travels in a straight line between observations.

Poisson leap

For the Poisson leap approximation, we factorise as

g(r̃(0,T ]|x0, yT , c) =
m−1∏
k=0

g(r̃τk+1
|xτk , yT , c),

and again seek suitable expressions for the constituent terms in the product. We take

g(r̃τk+1
|xτk , yT , c) to be a Poisson probability, with rate given by the (approximate) ex-

pected number of reactions E(R̃τk+1
) in (τk, τk+1] given the current state of the system
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xτk and the observation yT . To obtain this approximate rate, we follow the derivation of

Golightly & Wilkinson (2015), combined with the MDB approach above. First assume a

constant reaction hazard h(xτk , c) over (τk, T ], and then take a Normal approximation to

the corresponding Poisson distribution for R̃τk+1
as

R̃τk+1
|Xτk = xτk ∼ N (h(xτk , c)∆τ,diag{h(xτk , c)}∆τ) .

Let R̃T− denote the number of reactions over (τk+1, T ]. Then

R̃T− |Xτk+1
= xτk+1

∼ N
(
h(xτk+1

, c)∆k+1,diag{h(xτk+1
, c)}∆k+1

)
.

As we have Gaussian observation error from (4.1) we have that

YT |Xτk+1
= xτk+1

∼ N
(
P ′(xτk+1

+ SR̃T−), P ′βkP∆k+1 +Σ
)
.

Thus the (approximate) joint density of R̃τk+1
and YT (conditional on xτk) is(

R̃τk+1

YT

)
∼ N

{(
h(xτk , c)∆τ

P ′(xτk + αk∆k)

)
,

(
diag{h(xτk , c)}∆τ diag{h(xτk , c)}S′P∆τ

P ′S diag{h(xτk , c)}∆τ P ′βkP∆k +Σ

)}
.

We can then take the expectation of R̃τk+1
|YT = yT using standard multivariate Gaussian

arguments, and divide the resulting expression by ∆τ to give an (approximate) conditioned

reaction hazard

hPL(xτk , c|yT ) = h(xτk , c) + diag{h(xτk , c)}S
′P (P ′βkP∆k +Σ)−1

[
yT − P ′(xτk + αk∆k)

]
.

Hence, we obtain

g(r̃τk+1
|xτk , yT , c) =

r∏
j=1

Po(r̃τk+1,j
;hPL(xτk , c|yT )∆τ). (5.13)

The propagation step in Algorithm 7 can be performed by drawing ũjti,k+1 ∼ N(0, Ir) and

then applying the inverse Poisson CDF to each component of Φ(ũjti,k+1) to give r̃τk+1
for

k = 0, 1, . . . ,m− 1. We then set

xτk+1
= xτk + Sr̃τk+1

, k = 0, 1, . . . ,m− 1.

5.1.3 Tuning

A single iteration of the CPMMH scheme described in Algorithm 7 requires n−1×m×N
draws of the bridge construct with density (5.11) when using the CLE, and mass function
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(5.13) when using the Poisson leap (when using the MJP, the bridge construct requires the

use of Algorithm 3, and so the number of draws is dependent on the number of reactions).

Recall that n is the number of observations, m is the number of latent process values per

observation interval and N is the number of particles in the auxiliary particle filter. The

cost of drawing from (5.11) and (5.13) is dictated by the number of observed components

d, where d ≤ s, since the inversion of d × d matrices is required. It remains to choose

m and N to balance posterior accuracy with the cost and variance of the particle filter

estimator.

To choose m (or equivalently, ∆τ), we follow Stramer & Bognar (2011) and Golightly

& Wilkinson (2011) among others, by performing short pilot runs of the inference scheme

(for a fixed, conservative value of N), with increasing values of m (decreasing values of ∆τ ,

until no discernible difference in the posterior output is detected (this is typically done

heuristically by visual inspection of kernel density estimates of the marginal parameter

posteriors).

The number of particles N used in the scheme can be chosen by following the practical

advice proposed by Tran et al. (2016) for their block PMMH method, which was extended

to the CPMMH method by Choppala et al. (2016). The variance of the log-posterior

(σ2N computed with N particles) at a central value of c (e.g. estimated posterior mean)

should satisfy σ2N = 2.162/1− ρ2l where ρl is the correlation between p̂u(y|c) and p̂u′(y|c′),
estimated from a short pilot run with parameters fixed at the same central value of c.

Note that ρl = 0 corresponds to the vanilla PMMH case in which case the aforementioned

tuning advice is broadly consistent with Sherlock et al. (2015).

5.2 Applications

To illustrate the proposed approaches we consider four applications of increasing complex-

ity. A simple immigration-death model is considered in Section 5.2.1. We fit the CLE to

synthetic data and compare CPMMH with PMMH and additionally, the state-of-the-art

MCMC scheme, that is, the modified innovation scheme (MIS) of Golightly & Wilkinson

(2008), described briefly in Appendix B.1. In Section 5.2.2, we fit the CLE associated with

a Lotka-Volterra model to synthetic data. We also investigate the effect of increasing ob-

servation noise on the performance of the CPMMH scheme. The autoregulatory network

of Sherlock et al. (2014) is considered in Section 5.2.3. We generate synthetic data that is

inherently discrete, precluding the use of the CLE as an inferential model. We therefore

perform inference using the Poisson leap, and additionally explore the effect of using a

bootstrap particle filter on the performance of the CPMMH scheme. In Section 5.2.4, the

CLE approximation of a Susceptible–Infected–Removed (SIR) epidemic model is fitted

using data on an influenza outbreak in a boys’ boarding school in Britain (BMJ News and
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Notes, 1978). It is assumed that the infection rate is a mean reverting diffusion process

giving a model with two unobserved components.

Since the rate constants must be strictly positive we update log(c), as in Section 4.3,

and use an RWM proposal with Gaussian innovations. We took the innovation variance

to be the posterior variance of log(c) (estimated from a pilot run) scaled by a factor of

2.562/r for (C)PMMH and 2.382/r for MIS, as in Sherlock et al. (2015). Recall that r

is the number of rate constants. This scaling factor can then be fine-tuned to achieve

the parameter dimension-dependent optimal acceptance rates in Schmon et al. (2021) for

(C)PMMH and in Schmon & Gagnon (2021) for MIS. We choose m and N following the

advice in Section 5.1.3, and choose ρ according to the approach mentioned in Section 2.5,

that is, choosing the largest possible ρ such that the ESS of the auxiliary chain is broadly

consistent with the ESS of the parameter chain to mitigate long term dependence between

parameter draws. As in Section 4.3, we use effective sample size (calculated using the

function effectiveSize in the R package coda) as a comparator, as well as wall clock

time. We report the minimum effective sample size over all components of the chain,

denoted by mESS. All algorithms are coded in R and were run on a desktop computer

with an Intel Core i7-4770 processor and a 3.40GHz clock speed.

5.2.1 Immigration-death model

The immigration-death reaction network takes the form

R1 : ∅ c1−−−→ X1

R2 : X1
c2−−−→ ∅

with immigration and death reactions shown respectively. The stoichiometry matrix is

given by

S =
(

1 −1
)

and the associated hazard function is

h(Xt, c) = (c1, c2Xt)
′

where Xt denotes the state of the system at time t. Applying (3.4) directly gives the CLE

as

dXt = (c1 − c2Xt) dt+
√

(c1 + c2Xt) dWt.

We generated a synthetic data set consisting of 101 observations by simulating from the

Markov jump process via Algorithm 3 and retaining the system state at integer times. To

provide a challenging scenario for the CLE, we took c1 = 4 and c2 = 0.8 giving inherently
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Figure 5.1: Immigration death model. Left and middle panels: marginal posterior distributions
based on the output of CPMMH (ρ = 0.99). Right panel: Contour plot of the joint posterior. The
true values of log(c1) and log(c2) are indicated.

discrete trajectories that ‘mean revert’ around the value 5. Moreover, we took X0 = 500

so that typical trajectories exhibit nonlinear dynamics over the time interval [0, 10], but

are reasonably linear between observation times. We assume error-free observation of

Xt so that the latent path between observation times, which is propagated according to

equation(5.11), becomes

g(xτk+1
|xτk , xt, c) = N

(
xτk+1

; xτk +
xt − xτk
t− τk

∆τ ,
t− τk+1

t− τk
β(xτk , c)∆τ

)
,

which can be sampled for k = 0, 1, . . . ,m − 2. We also note in the case of error-free

observation of all components of Xt (as is considered in this application), the particle

filter of Section 5.1.1 reduces to a simple importance sampler. Consequently, the sorting

and resampling steps of Algorithm 7 are not required here.

We took independent N(0, 102) priors for log(c1) and log(c2), and determined an appro-

priate discretisation level by performing short runs of MIS with ∆τ ∈ {0.05, 0.1, 0.2, 05}.
Since there was very little difference in posteriors beyond ∆τ = 0.2, we used this value

in the main monitoring runs which consisted of 2 × 104 iterations of MIS, CPMMH and

PMMH. The results are summarised by Figures 5.1–5.2 and Table 5.1.

Posterior samples are consistent with the true values that produced the data, despite

using the CLE (rather than the MJP from which the data were generated) as an inferential

model. Table 5.1 shows a comparison of each competing inference scheme. As the tuning

advice in Section 5.1.3 suggests, CPMMH can tolerate much smaller values of N than

PMMH, with the scheme only requiring a value of N around 2 (and we report results

for N = 1, 2) when ρ = 0.99 compared to N = 50 for PMMH. Moreover, we found that

the PMMH scheme often exhibited ‘sticky’ behaviour, resulting in relatively low effective

sample sizes. Consequently, in terms of minimum ESS per second, CPMMH with ρ = 0.99
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Figure 5.2: Immigration death model. Correlogram based on log(c2) samples from the output of
MIS (left panel), CPMMH with ρ = 0.99 (middle panel) and PMMH (right panel).

Algorithm ρ N CPU (s) mESS mESS/s Rel.

MIS – – 121 2190 18 90
CPMMH 0.99 1 45 1910 42 210

0.99 2 78 2370 30 150
0.90 1 45 820 18 90

PMMH 0 50 1740 380 0.2 1

Table 5.1: Immigration death model. Correlation parameter ρ, number of particles N , CPU time
(in seconds), minimum ESS, minimum ESS per second and relative (to PMMH) minimum ESS
per second. All results are based on 2× 104 iterations of each scheme.

and N = 1 outperforms PMMH by a factor of 210, reducing to 150 when N = 2.

As noted by Deligiannidis et al. (2018), values of ρ close to 1 can result in slow mixing

of the auxiliary variables U , in turn giving parameter correlograms that exhibit long

range dependence. This does not appear to be the case for ρ = 0.99 (see middle panel

of Figure 5.2). Nevertheless, we note that reducing ρ to 0.9 still gives an increase in

overall efficiency of almost two orders of magnitude over PMMH. Finally, we compare

CPMMH to the modified innovation scheme. We obtain similar ESS values between the

two schemes for ρ = 0.99. However, the relatively low computational cost of CPMMH for

these parameter choices results in an improvement in overall efficiency (with an mESS/s

of 42 vs 18 for N = 1, or 30 vs 18 for N = 2).

5.2.2 Lotka-Volterra model

Recall the Lotka-Volterra system introduced in Section 3.4.2. We generated a single real-

isation of the jump process at 51 integer times via Algorithm 3 with rate constants as in

Boys et al. (2008), that is c = (0.5, 0.0025, 0.3)′ and an initial condition of x0 = (100, 100)′.
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Figure 5.3: Lotka-Volterra model. Marginal posterior distributions based on the output of CPMMH
(ρ = 0.99) using data sets D1 (solid lines), D2 (dashed lines) and D3 (dotted lines). The true values
of log(c1), log(c2) and log(c3) are indicated.

Algorithm N CPU (s) mESS mESS/s Rel.

D1 (σ = 1)
MIS – 14697 9218 0.627 13.5
CPMMH 3 11278 8023 0.711 16.3
PMMH 16 59730 2771 0.046 1.0
D2 (σ = 5)

MIS – 14598 8139 0.558 14.3
CPMMH 8 29779 3681 0.124 3.2
PMMH 20 75929 2959 0.039 1.0
D3 (σ = 10)

MIS – 14690 6436 0.438 15.3
CPMMH 19 71524 3516 0.049 1.7
PMMH 28 105770 3031 0.029 1.0

Table 5.2: Lotka-Volterra model. Number of particles N , CPU time (in seconds), minimum ESS,
minimum ESS per second and relative (to PMMH) minimum ESS per second. All results are based
on 105 iterations of each scheme.

We then obtained 3 data sets by corrupting the system state according to

Yt ∼ N
(
Xt, σ

2I2×2
)

where I2×2 is the 2×2 identity matrix and σ ∈ {1, 5, 10} giving data sets designated as D1,

D2 and D3 respectively. We took independent N(0, 102) priors for each log(ci), i = 1, 2, 3,

and followed Golightly & Wilkinson (2011) by setting ∆τ = 0.2. The main monitoring

runs consisted of 105 iterations of MIS, CPMMH (with ρ = 0.99) and PMMH. The results

are summarised in Figure 5.3 and Table 5.2.

Figure 5.3 shows that posterior samples are consistent with the true values that pro-

duced the data, despite using an approximate inferential model (the CLE). Table 5.2
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shows a comparison of each competing inference scheme. When using data set D1 (σ = 1),

CPMMH outperforms PMMH by an order of magnitude (in terms of overall efficiency)

and compares favourably with MIS. However, it is clear that as the measurement error

standard deviation (σ) increases, PMMH and CPMMH require more particles, in order to

effectively integrate over increasing uncertainty in the observation process. Consequently,

MIS outperforms PMMH and CPMMH when using D2 (σ = 5) and D3 (σ = 10), although

the relative difference is less than an order of magnitude for MIS vs CPMMH. It is worth

noting that the rate of increase in N is greater for CPMMH than for PMMH. Increasing

σ appears to break down the correlation between successive estimates of the log-posterior.

Fixing the parameter values at the posterior mean and estimating the correlation, denoted

by ρl, between p̂u(D|c) and p̂u∗(D|c) gave ρl = 0.97 for D1, ρl = 0.91 for D2 and ρl = 0.57

for D3. Nevertheless, we still observe a worthwhile increase in overall efficiency of a fac-

tor of 2 for CPMMH vs PMMH, when using data set D3 corresponding to the relatively

extreme σ = 10.

5.2.3 Autoregulatory network

In this section, we consider a simple autoregulatory network with two species, X1 and X2

whose time course behaviour evolves according to the following set of coupled reactions,

R1 : ∅ c1−−−→ X1

R2 : ∅ c2−−−→ X2

R3 : X1
c3−−−→ ∅

R4 : X2
c4−−−→ ∅

R5 : X1 + X2
c5−−−→ 2X2

Essentially, reactions R1 and R2 represent immigration and reactions R3 and R4 represent

death. The species interact via R5. Let Xt = (X1,t, X2,t)
′ denote the system state at time

t. The stoichiometry matrix associated with the system is given by

S =

(
1 0 −1 0 −1

0 1 0 −1 1

)

and the associated hazard function is

h(Xt, c) = (c1, c2, c3X1,t, c4X2,t, c5X1,tX2,t)
′.

We simulated a single realisation of the jump process at 101 integer times via Algorithm
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Figure 5.4: Autoregulatory network. A single realisation of the jump process with c =
(10, 0.1, 0.1, 0.7, 0.008)′ and X0 = (5, 5)′. Observations are indicated by circles.

Algorithm N CPU (s) mESS mESS/s Rel.

CPMMH (Diffusion bridge) 20 15575 1272 0.082 6.2
PMMH (Diffusion bridge) 55 42014 1302 0.031 2.4
PMMH (Myopic) 200 95802 1263 0.013 1

Table 5.3: Autoregulatory network. Number of particles N , CPU time (in seconds), minimum
ESS, minimum ESS per second and relative (to myopic filter driven PMMH) minimum ESS per
second. All results are based on 105 iterations of each scheme.

3 with rate constants c = (10, 0.1, 0.1, 0.7, 0.008)′ and an initial condition of X0 = (5, 5)′.

We then discarded the values of X1,t to leave observations of X2,t only. The full data

trace used to generate the data set is given in Figure 5.4. The inherently discrete nature

of the data set coupled with long time periods where X2,t = 0 make applying the CLE

impractical. We therefore use the Poisson leap approximation as the inferential model.

To provide a challenging scenario, we assume error-free observation of X2,t so that step

2(d) of Algorithm 7 assigns a weight of 0 to the particle xit unless xi2,t coincides with

the observation at time t. We took a weakly informative Gamma(10, 1) prior for c1 and

Gamma(0.1, 0.1) priors for the remaining rate constants. We found little difference in

sampled posterior values for a value of ∆τ beyond 0.2 and therefore used this value in our

main monitoring runs which consisted of 105 iterations of CPMMH (with ρ = 0.996, which

we found to work well for the partial observation scenario) and PMMH. We report results

for schemes driven by both the myopic particler filter of Gordon et al. (1993), and by the

diffusion bridge particle filter of Section 5.1.2. The results are summarised in Table 5.3

and Figure 5.5.

Again, we chose the number of particles N by following the practical advice of Tran

et al. (2016) for CPMMH and Sherlock et al. (2015) for PMMH. Inspection of Table 5.3

reveals that the myopic particle filter driven PMMH scheme required N = 200 particles.
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Figure 5.5: Autoregulatory network. Marginal posterior distributions based on the output of
CPMMH (ρ = 0.996). The true values of log(ci), i = 1, . . . , 5, are indicated.

This reduces to N = 55 when using the diffusion bridge particle filter, and reduces further

still toN = 20 when strong and positive correlation is introduced between successive values

of the random variables that drive the diffusion bridge particle flter. Despite the diffusion

bridge driven scheme requiring many fewer particles than the myopic scheme, overall

efficiency (as measured by minimum ESS per second) is only increased by a factor of 2.4

due to the computational complexity of the conditioned hazard, which is used to propagate

state particles within the diffusion bridge particle filter. The correlated implementation

gives a further increase of a factor of 2.6, giving a 6-fold increase in overall efficiency over

the most basic PMMH scheme.

5.2.4 Epidemic model

The Susceptible–Infected–Removed (SIR) epidemic model (see e.g. Andersson & Britton,

2000) describes the evolution of two species (susceptibles X1 and infectives X2) via two re-

action channels which correspond to an infection of a susceptible individual and a removal

76



Chapter 5. Bayesian inference for intractable stochastic kinetic models

of an infective individual. The reaction equations are

R1 : X1 + X2
c1−−−→ 2X2

R2 : X2
c2−−−→ ∅.

The stoichiometry matrix is given by

S =

(
−1 0

1 −1

)

and the associated hazard function is

h(Xt, c) = (c1X1,tX2,t, c2X2,t)
′.

We consider a data set consisting of the daily number of pupils confined to bed (out of

a total of 763) during an influenza outbreak in a boys’ boarding school in Great Britain,

instigated by a single pupil. Hence, X0 = (762, 1)′. The data are displayed graphically in

BMJ News and Notes (1978) and converted into counts in Fuchs (2013). For completeness,

we give the data in Table 5.4. We work with the CLE which has the form

d

(
X1,t

X2,t

)
=

(
−c1X1,tX2,t

c1X1,tX2,t − c2X2,t

)
dt

+

(
c1X1,tX2,t −c1X1,tX2,t

−c1X1,tX2,t c1X1,tX2,t + c2X2,t

)1/2

d

(
W1,t

W2,t

)
. (5.14)

We further assume that the infection rate is a mean reverting diffusion process governed

by the SDE

d log(c1,t) = c3(c4 − log(c1,t))dt+ c5dW3,t. (5.15)

Hence, the inferential model is specified by (5.14) and (5.15), where c1 is replaced by c1,t

in (5.14). We wish to infer c = (c2, c3, c4, c5)
′ based on measurements of X2,t only, giving

a partially observed system. We took a normal N(0, 102) prior on the reversion level c4 of

log(c1,t), and exponential Exp(1) priors for the remaining parameters. For simplicity, we

fixed the initial unobserved infection rate by taking log(c1,0) = −6. The discretisation level

was fixed by taking ∆τ = 0.1. The main monitoring runs consisted of 2 × 105 iterations

of CPMMH and PMMH. The results are summarised in Figure 5.6 and Table 5.5. It is

evident that CPMMH outperforms PMMH in terms of overall efficiency (as measured here

by minimum ESS per minute) by a factor of 7.
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Day 1 2 3 4 5 6 7 8 9 10
No. of infectives 1 3 6 25 73 221 294 257 236 189

Day 11 12 13 14 15
No. of infectives 125 67 26 10 3

Table 5.4: Boarding school data.

Algorithm N CPU (m) mESS mESS/m Rel.

CPMMH 90 2765 226 0.08 7.2
PMMH 600 26338 299 0.01 1

Table 5.5: Epidemic model. Number of particles N , CPU time (in minutes m), minimum ESS,
minimum ESS per minute and relative minimum ESS per minute. All results are based on 2× 105

iterations of each scheme.

5.2.5 Summary of Application results

In all applications considered in this chapter, CPMMH outperformed its standard PMMH

counterpart in terms of overall efficiency. This is due to the lower number of bridges

required in the particle filter (or importance sampler in application 5.2.1) to achieve a

similar effective sample size, leading to reduced computational effort for a similar standard

of output. In the most extreme case, with full, error-free observations, the CPMMH scheme

was able to use a single bridge compared to 50 bridges for the PMMH scheme, and the

resulting mESS was still five times greater for CPMMH than for PMMH. In such cases,

where little to no noise in observations meant that high ESS could be achieved with few

bridges, the CPMMH scheme performs favourably compared to a competing scheme, the

MIS. However, as noise in the system increases, the performance of CPMMH degrades

faster than that of PMMH or MIS, leading it to underperform compared to MIS in high

noise scenarios, and outperform PMMH by a smaller margin.
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Figure 5.6: Epidemic model. Marginal posterior distributions based on the output of CPMMH
(histograms). Prior densities are given by the solid lines.
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Chapter 6

Accelerating inference for

intractable models using tractable

surrogates

The previous two chapters have considered performing Bayesian inference for stochastic

kinetic models using both tractable and intractable inferential models. Using a tractable

approximation to the MJP, such as the LNA, as an inferential model is significantly more

computationally efficient, but may not be suitably accurate in practice. Using a more

accurate, but intractable, approximation such as the CLE or Poisson leap method is often

desirable, but may come with a large computational overhead. This chapter therefore

considers methods of using the LNA as a tractable surrogate likelihood in order to im-

prove either the statistical or computational efficiency of inference schemes utilising an

intractable inferential model. Firstly, we use the LNA in the first stage of a delayed ac-

ceptance scheme. We then consider the solution of some or all of the ODEs governing the

LNA for use in improved bridge constructs within the particle filter. We then discuss how

the use of several of the techniques used in the thesis can be applied in tandem to further

increase computational savings.

6.1 Delayed acceptance pseudo-marginal Metropolis Hast-

ings using the LNA

Consider now the particle MCMC scheme of Section 5.1 targeting the joint posterior

π̂(c, u|D) in (5.4) for which π(c|D) is a marginal. Whilst a particle filter is useful for con-

structing an unbiased estimator of the observed data likelihood, it can be computationally

expensive, particularly when many particles are required to keep the variance of the esti-

mator low. Therefore, we would ideally like to avoid running the particle filter to compute
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p̂u∗(D|c∗) if c∗ is likely to be rejected. This motivates the use of a screening step, whereby

the particle filter is only run for proposals accepted under the surrogate posterior. This

is known as delayed acceptance (DA). This method was first proposed by Christen & Fox

(2005), and applied to stochastic kinetic models by Golightly et al. (2015).

For a given iteration with current state (c, u), Stage One of the DA scheme proposes

c∗ ∼ q(·|c), computes pa(D|c∗) using a surrogate likelihood such as the LNA (as discussed

in Section 4.1) and runs a M-H screening step with acceptance probability

α1 (c∗|c) = min

{
1,
π(c∗)pa(D|c∗)
π(c)pa(D|c)

× q(c|c∗)
q(c∗|c)

}
. (6.1)

If this screening step is successful, Stage Two of the DA scheme is to propose u∗ ∼ g(·),
construct the estimate p̂u∗(D|c∗) using a particle filter, and the Stage Two acceptance

probability

α2|1 {(c∗, u∗)|(c, u)} = min

{
1,
π(c∗)p̂u∗(D|c∗)
π(c)p̂u(D|c)

× π(c)pa(D|c)
π(c∗)pa(D|c∗)

}
= min

{
1,
p̂u∗(D|c∗)
p̂u(D|c)

× pa(D|c)
pa(D|c∗)

}
. (6.2)

Thus the overall acceptance probability for the scheme is

αDA {(c∗, u∗)|(c, u)} = α1 (c∗|c)α2|1 {(c∗, u∗)|(c, u)} . (6.3)

This algorithm, known as delayed acceptance CPMMH (DA-CPMMH) is shown in Algo-

rithm 8.

In much the same way as we showed that a CPMMH scheme satisfied detailed balance

in section 5.1, we can show that detailed balance is satisfied for daCPMMH. Upon negating

the trivial scenario that the chain does not move, we have that

π̃(c, u|D)q(c∗|c)K(u∗|u)αDA {(c∗, u∗)|(c, u)}

= min
{
π(c)g(u)p̂u(D|c)q(c∗|c)K(u′|u) , π(c)g(u)p̂u(D|c)q(c∗|c)K(u∗|u)

×π(c∗)pa(D|c∗)q(c|c∗)
π(c)pa(D|c)q(c∗|c)

× p̂u∗(D|c∗)pa(D|c)
p̂u(D|c)pa(D|c∗)

}
= min {π(c)g(u)p̂u(D|c)q(c∗|c)K(u∗|u) , π(c∗)g(u)p̂u∗(D|c∗)q(c|c∗)K(u∗|u)}

= min {π(c)g(u)p̂u(D|c)q(c∗|c)K(u∗|u) , π(c∗)g(u∗)p̂u∗(D|c∗)q(c|c∗)K(u|u∗)}

= π̃(c∗, u∗|D)q(c|c∗)K(u|u∗)αDA {(c, u)|(c∗, u∗)} ,

where again (5.6) is used to deduce the third line.

As mentioned in Christen & Fox (2005), a delayed acceptance algorithm will always be

less statistically efficient than an equivalent scheme that does not employ delayed accep-
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Algorithm 8 Delayed acceptance correlated PMMH scheme (DA-CPMMH)

1. Initialisation. For i = 0:

(a) Set c(0) in the support of π(c|D) and draw u(0) ∼ N(0, Id).

(b) Compute pa(D|c(0)) by running Algorithm 4 with c = c(0).

(c) Compute p̂u(0)(D|c(0)) by running Algorithm 7 with (c, u) = (c(0), u(0)).

2. For iteration i ≥ 1:

(a) Draw c∗ ∼ q(·|c(i−1)) and ω ∼ N(0, Id). Put u∗ = ρu(i−1) +
√

1− ρ2ω.

(b) Stage 1

(i) Compute pa(D|c∗) by running Algorithm 4 with c = c∗.

(ii) With probability α(c∗|(c(i−1)) given by (6.1), compute p̂u∗(D|c∗) by running
Algorithm 7 with (c, u) = (c∗, u∗) and go to step 2(c); otherwise store the
current values (c(i), u(i)) = (c(i−1), u(i−1)), increment i and go to step 2(a).

(c) Stage 2
With probability α

{
(c∗, u∗)|(c(i−1), u(i−1))

}
given by (6.2), put (c(i), u(i)) =

(c∗, u∗) otherwise store the current values (c(i), u(i)) = (c(i−1), u(i−1)). Incre-
ment i and go to step 2(a).

tance (unless the Stage 1 acceptance rate is 1, which would render the delayed acceptance

step redundant). Essentially this is because some proposals that may have been accepted

at Stage 2 will be rejected at Stage 1. This means that, for a given number of iterations,

a delayed acceptance scheme will generally have a lower ESS than the non-delayed accep-

tance equivalent. Thus, in order to be more efficient overall, the computational savings

made by the scheme must outweigh the loss in statistical efficiency. As noted by Christen

& Fox (2005), this is most likely when the acceptance rate is low, and when the com-

putational cost of the approximation is negligible compared to the cost of the Stage 2

calculation. This concept has been formalised by Sherlock et al. (2021), who provide tun-

ing advice and optimal acceptance rates for pseudo-marginal delayed acceptance schemes,

which differ depending on how many orders of magnitude cheaper it is to calculate Stage

1 than Stage 2.

6.2 Improved Bridge constructs

As discussed in Section 5.1.2, the MDB construct guides particles towards observations in

a linear fashion. Thus, if the underlying stochastic process exhibits nonlinear dynamics

between observations, the MDB will fail to adequately capture these dynamics. This can

lead to few particles having a reasonable weight in the particle filter, necessitating a much
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larger number of particles to keep the variance of the estimator to a reasonable level. At

worst, parameter choices that lead to accurate dynamics of the underlying process may be

rejected as the bridge construct does not recreate these dynamics, leading to inaccurate

inference. The MDB is therefore inadequate when dealing with such inter-observation

nonlinearity, and so another class of bridge constructs is required for time-discretised

approximations to the MJP.

As in Section 5.1.2, consider without loss of generality a time interval (0, T ] partitioned

as

0 = τ0 < τ1 < . . . < τm−1 < τm = T, ∆τ =
1

m
.

Whitaker et al. (2017b) (see also Botha et al., 2021) propose a class of bridge constructs

known as residual bridge (RB) constructs. These involve partitioning Xt as Xt = ηt +Rt,

for a deterministic process {ηt, t ≥ 0} satisfying

dηt
dt

= α(ηt), η0 = x0, (6.4)

and a residual stochastic process {Rt, t ≥ 0} satisfying

dRt = {α(Xt)− α(ηt)}dt+
√
β(Xt)dWt. (6.5)

We can then solve (6.4) (either directly or using an ODE solver), and construct the MDB

for the residual stochastic process. To do this, note that our partition of XT can be

substituted into the observation equation (4.1) and rearranged to obtain

YT − P ′ηT = P ′Rt + εT .

Thus, YT − P ′ηT is a partial, noisy observation of RT , and so we can approximate the

joint distribution of Rτk+1
and YT − P ′ηT given rτk in the same manner as Section 5.1.2

to obtain(
Rτk+1

YT − P ′ηT

)∣∣∣∣∣ rτk ∼ N
((

rτk + (αk − αηk)∆τ
P ′(rτk + (αk − αηk)∆k)

)
,

(
βk∆τ βkP∆τ

P ′βk∆τ P ′βkP∆k +Σ

))
,

where αηk = α(ητk) = S h(ητk , c). Recall from Section 5.1.2 that αk = S h(xτk , c), βk =

S diag{h(xτk , c)}S′, and ∆k = T − τk. We follow Whitaker et al. (2017b) by replacing αηk
with δηk to approximate dηt/dt, where

δηk =
ητk+1

− ητk
∆τ

.
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Making this replacement gives(
Rτk+1

YT − P ′ηT

)∣∣∣∣∣ rτk ∼ N
((

rτk + (αk − δηk)∆τ

P ′(rτk + (αk − δηk)∆k)

)
,

(
βk∆τ βkP∆τ

P ′βk∆τ P ′βkP∆k +Σ

))
.

Conditioning on YT − P ′ηT as in Section 5.1.2 gives an equation for Rτk+1
|yT , rτk , which

can then be simplified when obtaining the corresponding equation for Xτk+1
|yT , rτk by

noting that

Xτk+1
= ητk+1

+Rτk+1
= ητk + δηk∆τ +Rτk+1

.

The δηk∆τ term above cancels with the term in the expectation of Rτk+1
, and the ητk term

combines with the rτk term in the expectation to give xτk . Thus we obtain the simple

residual bridge construct, henceforth referred to as RB, which takes the form of (5.11) but

with µMDB(xτk , c) replaced with

µRB (xτk , c) = αk + βkP
(
P ′βkP∆k +Σ

)−1 [
yT − P ′

{
ηT + rτk +

(
αk − δηk

)
∆k

}]
, (6.6)

A more advanced residual bridge construct, henceforth referred to as RB−, can be

found by further partitioning Xt as Xt = ηt + ρ̂t +R−t , where ρ̂t is the expectation of the

approximate conditioned residual process, that is ρ̂t = E(R̂t|r0, yT ), and {R−t , t ∈ [0, T ]} is

the additional residual stochastic process arising from this new partition. Our approximate

conditioned residual process {R̂t, t ∈ [0, T ]} can be found using the LNA. For a general

t ∈ [0, T ] we can extend the representation of the LNA given in (3.15) to

R̂T |R̂t ∼ N
(
GT |tR̂t, VT |t

)
, (6.7)

where GT |t and VT |t are as defined in Section 5.1.2. Using (5.9), we can rewrite the

expectation for (6.7) as

E
(
R̂T |R̂t

)
= GTG

−1
t E

(
R̂t

)
= GT R̂0. (6.8)

As R̂T |R̂t can be written as a linear combination of GT |tR̂t and some independent noise,

we can determine the covariance of R̂T and R̂t to be

Cov
(
R̂T , R̂t

)
= Cov

(
GT |tR̂t, R̂t

)
(6.9)

= GT |t Var
(
R̂t

)
(6.10)

= GTG
−1
t Vt. (6.11)

As YT −P ′ηT can be seen as a partial, noisy observation of R̂T , we can use (6.8) and (6.11)

84



Chapter 6. Accelerating inference for intractable models using tractable surrogates

to construct the joint distribution of R̂t and YT − P ′ηT conditional on r̂0 as(
R̂t

YT − P ′ηT

)∣∣∣∣∣ r̂0 ∼ N
((

Gtr̂0

P ′GT r̂0

)
,

(
Vt Vt{G−1t }′G′TP

P ′GTG
−1
t Vt P ′VTP +Σ

))
.

Note that for a known X0, r̂0 = r0. Thus, as ρ̂t = E(R̂t|r0, yT ) we can condition on

YT − P ′ηT to obtain

ρ̂t = Gtr0 + Vt{G−1t }′G′TP
(
P ′V ′TP +Σ

)−1 (
yT − P ′(ηT +GT r0)

)
. (6.12)

In general r0 = 0, and so (6.12) simplifies to

ρ̂t = Vt{G−1t }′G′TP
(
P ′V ′TP +Σ

)−1 (
yT − P ′ηT

)
.

We can then construct an approximate joint distribution for the further residual process

R−τk+1
and YT − P ′ηT , and condition further on the observation in an analogous manner

to the construction of the RB construct. This leads to the RB− construct, whereby we

replace µMDB (xτk , c) in (5.11) with

µRB− (xτk , c) = αk+βkP
(
P ′βkP∆k +Σ

)−1 [
yT − P ′

{
ηT + ρ̂T + r−τk +

(
αk − δηk − δ

ρ
k

)
∆k

}]
,

(6.13)

where

δρk =
ρτk+1

− ρτk
∆τ

,

and δηk is as before. Note that this construct requires the solution of a larger ODE system

than other implementations of the LNA, since the ODEs governing Gt must be explicitly

solved. Recall that in general we avoid solving these ODEs through the use of restarting

the LNA, as mentioned in Section 3.3.3.

Although not considered in this thesis, it should be noted that for applications where

the system is observed fully and without error, both the RB and RB− constructs simplify

considerably. For RB, µRB (xτk , c) becomes

µ∗RB (xτk , c) = δηk +
xT − ηT − (xτk − ητk)

∆k
,

and for RB−, µRB− (xτk , c) becomes

µ∗RB (xτk , c) = δηk + δρk +
xT − ηT − ρ̂k − (xτk − ητk − ρ̂τk)

∆k
.

We can compare the accuracy of the MDB, RB and RB− constructs by using them to

propose conditioned paths between two observations from an SKM. To illustrate this, we
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Figure 6.1: 95% credible region (dashed lines) and mean (solid lines) of the Lotka-Volterra model.
Black lines are the true conditioned process; red lines are bridge constructs. Top row: prey
component; bottom row: predator component. Left: MDB; middle: RB; right: RB−.

shall use the Lotka-Volterra model - for full details of this model, see Section 3.4.2. Using

the parameters of Boys et al. (2008), that is c = (0.5, 0.0025, 0.3)′, we simulated a path

from x0 = (100, 100)′ to time T = 2 using Algorithm 3. We treated the observation x2 as

very informative and so use the observation equation

Y2 ∼ N(X2, 0.012I2),

where I2 is the 2×2 identity matrix. We then proposed 105 bridges between x0 and x2 using

the MDB, RB and RB− constructs with m = 200 intermediate time points. Figure 6.1

compares the means and 95% credible regions of these bridges for the predator component

with those of the “true” conditioned process, obtained using weighted resampling. It

can be seen that the MDB pushes the path towards the observation in a linear fashion,

and does not capture the dynamics of the true conditioned process. The simple residual

bridge, RB, is a modest improvement, and begins to capture these dynamics, whilst the

RB− construct captures the dynamics very effectively, with paths very close to the true

conditioned process.
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6.3 Combining techniques

By combining the techniques presented so far in this thesis, we can construct a unified in-

ference framework that simultaneously aims to avoid unnecessary calculations of p̂u∗(D|c∗),
reduce the variance of the likelihood estimator for a given N and use a parameter proposal

mechanism informed by an approximation of the marginal posterior density.

Deriving the gradient of the log (π(c|D)) for use with MALA is challenging when using

the CLE, Poisson leap, or MJP as the inferential model, due to the intractable observed

data likelihood p(D|c). It is possible to estimate the gradient directly from the inferential

model (see e.g. Poyiadjis et al., 2011; Nemeth et al., 2016). However, the behaviour of the

algorithm in these methods depends heavily on the number of particles used to estimate the

gradient. Instead, we estimate the gradient using the surrogate LNA model, as in Section

4.2, and note that the additional approximation used in the proposal will be corrected for

in the Metropolis-Hastings step.

Use of the surrogate LNA model in a delayed acceptance step, the MALA parameter

proposal and to construct bridge proposals inside the particle filter each require the so-

lution of an ODE system. However, there is some overlap in the ODE components that

must be solved to perform each technique, and as such, if implemented correctly, further

computational savings can be made when using several of these techniques at once.

Computing the observed data likelihood under the LNA for use in a delayed accep-

tance step requires the solution of (3.8) and (3.17), restarted at the posterior mean and

variance given by the forward filter at each observation time. Computing the gradient

information to use full MALA requires the solution of (3.8) and (3.17), as well as the first

order sensitivities ∂µ(c, t)/∂ci and ∂Ψ(c, t)/∂ci for i = 1, . . . , r. The gradient information

using simplified MALA does not require the solution of the ∂Ψ(c, t)/∂ci. The simple resid-

ual bridge, RB, requires only the solution of (3.8). The residual bridge with additional

subtraction, RB−, and conditioned hazard, CH, require the solution of (3.8), (3.11) and

(3.17).

As we can see, all of these techniques require the solution of (3.8) and the majority also

require the solution of (3.17). Thus, it is desirable to solve these ODEs once per (C)PMMH

iteration and use the output in several different techniques. Running the forward filter to

obtain the surrogate likelihood used in delayed acceptance also solves several of the ODE

components used in determining the gradient of the log posterior for MALA. Care must be

taken when implementing the RB− bridge construct, which, for an arbitrary observation

interval [ti, ti+1] and time t ∈ (ti, ti+1], requires the LNA variance Vt|ti initialised at 0s to

calculate ρ̂t, whereas the forward filter restarts this variance at the filtering mean Bi (see

Algorithm 4). This “disconnect” is alleviated via (5.10) which we may write as

Vt|ti = Vt −GtVtiG′t,
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(C)PMMH da(C)PMMH Simplified MALA Full MALA

RBiter O(s) +O(s2) +O(sr) +O(s2r)
RB−iter O(s2) − +O(sr) +O(s2r)
RBpart O(sN) +O(s2) +O(sr) +O(s2r)
RB−part O(s2N) +O(s2) +O(sr) +O(s2r)

Table 6.1: Order of complexity in terms of ODE components required to be solved for different
bridge construct implementations, and the additional computational cost required to enact delayed
acceptance, simplified or full MALA. Note that N , s and r denote the number of particles, species
and parameters respectively.

where Vt and Gt are obtained from the forward filter. We denote the resulting bridge

constructs in this setting by RBiter, RB−iter and CHiter. The accuracy of the bridges over

[ti, ti+1] can be improved by re-integrating the ODE system given by (3.8) and (3.17)

for each particle x
(k)
ti

. That is, ηti is set at x
(k)
ti

and Vti = 0s. We denote the resulting

bridge constructs by RBpart, RB−part and CHpart. Although use of the latter compared

to the “once per iteration” approach is likely to result in an estimator of observed data

likelihood with lower variance and in turn, better mixing of the (C)PMMH scheme, it

comes with an additional computational cost. Given s species and N particles, “once per

particle” bridges require the solution of an additional sN ODE components. Table 6.1

shows the relative computational complexity (in terms of the number of ODE components

that must be solved) for different acceleration techniques. Note that CHiter and CHpart

have the same computational complexities as RB−iter and RB−part.

6.3.1 Tuning

Schemes employing CPMMH require specification of a correlation parameter ρ, and irre-

spective of the acceleration technique employed, all schemes require specification of several

other tuning parameters. These include a number of particles N , a preconditioning matrix

ΣT and scaling parameter λ, with the latter two tuning parameters used in the RWM or

MALA proposal mechanism. In all cases, we take the usual choice of ΣT = V̂ar(c|D) to be

estimated from a short pilot run, and find the largest permissible ρ that gives an effective

sample size (ESS) value for the auxiliary variable chain consistent with the minimum (over

parameter chains) ESS value (mESS) obtained from the pilot run (as in Chapter 5).

Practical advice for choosing the number of particles N for PMMH can be found in

Doucet et al. (2015) and Sherlock et al. (2015); see also Schmon et al. (2021) for parameter

dimension guidelines. For CPMMH, we follow Deligiannidis et al. (2018) by choosing N

so that the variance of the logarithm of the ratio p̂u∗(D|c)/p̂u(D|c) is around 1 with c set

at some central posterior value. For RWM, we use a starting point of λ = 2.562/r as in

Sherlock et al. (2015), and then follow Schmon et al. (2021) by fine tuning λ to give an
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empirical acceptance rate of around 20%, depending on the number of parameters to be

inferred. When using MALA, we apply the practical advice of Nemeth et al. (2016) and

aim for an acceptance rate of around 40%− 50%. Guidance on tuning delayed acceptance

(RWM) schemes can be found in Sherlock et al. (2021). For DA-CPMMH schemes with

either a RWM or MALA proposal, we first choose the number of particles following the

procedure above, and then conditional on this choice, tune the scaling to optimise efficiency

and finally, with this scaling, choose the number of particles to optimise efficiency (e.g.

mESS).

6.4 Applications

To illustrate the proposed acceleration approaches, we consider three applications. In

Section 6.4.1, we show the benefit of using the residual bridge constructs, even separately

from other acceleration techniques, by fitting the CLE approximation to synthetic data

generated from an aphid model. The underlying process in this model exhibits strong

nonlinearity between observations, precluding the use of the MDB, and so we instead

compare the RB constructs with a myopic but computationally inexpensive approach

based on forward simulating from the underlying process. In Section 6.4.2, we fit the

MJP representation of an SIR model to real data from the Eyam plagues data set. The

discrete nature of the data and the inferential model requires the use of the conditioned

hazard (CH) bridge construct. Finally in Section 6.4.3, we return to the well-studied Lotka-

Volterra model to implement a scheme comparing several different acceleration techniques.

In what follows, all algorithms are coded in R and were run on a desktop computer

with an Intel quad-core CPU. For all applications, we again compare the performance of

competing algorithms using minimum (over each parameter chain) effective sample size

per second (mESS/s), computed using the R coda package (Plummer et al., 2006) and

wall clock computing time. The latter is based on main monitoring runs of the MCMC

scheme considered and we note that the CPU cost of tuning was small relative to the cost

of the main run and comparable across competing schemes. When using the discretised

chemical Langevin equation as the inferential model (second application), we fixed ∆τ at

0.1, which gave a reasonable balance between accuracy and computational efficiency.

6.4.1 Aphid model

Aphids, also known as greenflies, are small, sap-sucking insects that feed on plants, often

on the underside of leaves. Cotton aphids (Aphis gossypii) are a species of aphid that are

hosted on several plants, including cotton. When aphids initially infest a plant, they tend

to reproduce far faster than they die. However, as well as damaging the plant directly, they

also secrete honeydew over the plant leaf, and whilst this can damage the plant further,
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it also forms a cover over the leaf which prevents the aphids from moving or sucking more

sap, and so causes starvation (Prajeshnu, 1998). The more aphids that have been on a

leaf, the more honeydew there is and so the faster the aphids die, until the rate of death

overtakes the rate of reproduction. Matis et al. (2006) describe a model for the population

growth of aphids with two species, the current population size Nt, and the cumulative

population size Ct. The reaction list is

R1 : N
c1−−−→ 2N + C

R2 : N + C
c2−−−→ C

Let Xt = (Nt, Ct)
′ denote the state of the system at time t. The stoichiometry matrix

associated with the reaction system is

S =

(
1 −1

1 0

)

and the associated hazard function is

h((Nt, Ct)
′, c) = (c1Nt, c2NtCt)

′.

The CLE for this model, which we take to be the inferential model, is

d

(
Nt

Ct

)
=

(
c1Nt − c2NtCt

c1Nt

)
dt+

(
c1Nt + c2NtCt c1Nt

c1Nt c1Nt

)1/2

d

(
W1,t

W2,t

)
.

Similarly, the LNA for this model is specified by the coupled ODE system

dηt
dt

= (c1ηN,t − c2ηN,tηC,t, c1ηN,t)′,

dGt
dt

=

(
c1 − c2ηC,t −c2ηN,t

c1 0

)
Gt

dVt
dt

= Vt

(
c1 − c2ηC,t c1

−c2ηN,t 0

)
+

(
c1ηN,t + c2ηN,tηC,t c1ηN,t

c1ηN,t c1ηN,t

)
+

(
c1 − c2ηC,t −c2ηN,t

c1 0

)
Vt.

Using parameter values inspired by the real data example in Whitaker et al. (2017a),

synthetic data were generated at 8 integer times using Algorithm 3 with c = (1.75, 0.001)′

and N0 = C0 = 5. The data for {Ct} were then discarded to obtain a challenging partial

observation scenario, and the resulting data set was corrupted with Gaussian error. We

followed Whitaker et al. (2017a) by taking the variance proportional to the current number

of aphids in the system, which was found to give a better predictive fit in real data

90



Chapter 6. Accelerating inference for intractable models using tractable surrogates

0 1 2 3 4 5 6 7

0
20

0
40

0
60

0
80

0

Time

N

●
●

●

●

●

●

●

●

Figure 6.2: Observations from the aphid data set, with the latent process (solid line) overlaid.
The dashed lines are the mean, 2.5% and 97.5% quantiles of 1000 bridges generated with the RB
construct, using the ground truth for c1 and c2.

applications. Hence, we have that

Yt = P ′Xt + εt, εt ∼ N
(
0, σ2P ′Xt

)
, t = 0, . . . , 7 (6.14)

where Xt = (Nt, Ct)
′, P ′ = (1, 0) and we chose σ = 1.

The data are shown in Figure 6.2, alongside the underlying latent Nt process that

produced the data. It is clear that the behaviour of the latent process between observa-

tions is nonlinear. As discussed in Section 6.2, this precludes the use of bridge constructs

such as the MDB, that push the particles towards the observations in a linear fashion. As

well as using residual bridges as discussed in Section 6.2, a computationally inexpensive

option is to generate particles from the model myopically from one time point to the next,

without taking into consideration the observation at the end point. This will ensure that

particle trajectories capture the nonlinear dynamics of the process, however, as mentioned

in Section 5.1.2, this implementation leads to a highly variable estimator when the obser-

vation variance is small relative to the intrinsic stochasticity of the latent process, thus

necessitating a far larger number of particles. This in turn can negate any computational

benefit arising from the simplified form of the simulator and associated weight (compared

to when using a bridge construct).

We therefore compared the performance of PMMH and CPMMH using either myopic

simulation or the simple RB construct. We adopted an independent prior specification

with N(0, 102) distributions assigned to log c1 and log c2. We treated σ, N0 and C0 as

fixed and known. Using ρ ≈ 1 in this application led to long term dependence between
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Scheme N α CPU (s) mESS mESS/s Rel.

PMMH / RWM / Myopic 100 0.10 15320 4172 0.272 1.0
CPMMH / RWM / Myopic 35 0.09 4452 2482 0.558 2.1

PMMH / RWM / RBpart 5 0.19 6527 4857 0.744 2.7
PMMH / RWM / RBiter 5 0.17 5030 4226 0.840 3.1

CPMMH / RWM / RBpart 2 0.19 2593 3563 1.374 5.1
CPMMH / RWM / RBiter 2 0.18 2493 3737 1.499 5.5

Table 6.2: Aphid model. Number of particles N , acceptance rate α, CPU time (in seconds),
minimum ESS, minimum ESS per second, and relative (to the worst performing scheme) minimum
ESS per second. All results are based on 105 iterations of each scheme.

Time (months)
0 0.5 1 1.5 2 2.5 3 4

Susceptibles 254 235 201 153 121 110 97 83
Infectives 7 14 22 29 20 8 8 0

Table 6.3: Eyam plague data.

parameter draws, which reduced the effective sample size of the schemes. Therefore, we

reduced ρ to 0.75 for this application, which we found to be optimal. To implement the

residual bridge construct, we replaced σ2P ′Xt by σ2P ′ηt where ηt is the solution to (3.8)

at observation time t but emphasise that this is necessary to obtain a tractable bridge and

does not introduce any further approximation in terms of the posterior output.

Figure 6.3 and Table 6.2 summarise the output of each scheme. Table 6.2 shows

that despite the computational complexity required to solve the ODEs for this construct,

the resulting schemes outperform the myopic schemes in terms of overall efficiency by

around a factor of 3. The behaviour of the simple residual bridge can be seen in Figure

6.2, and adequately captures the dynamics of the latent process. Indeed, we found no

improvement in overall efficiency by using the residual bridge with additional subtraction

(results omitted). Finally, we note a small improvement in overall efficiency by solving

the ODE system used by the residual bridge, once per iteration as opposed to once per

particle.

6.4.2 Epidemic model

We consider the well studied Eyam plague data set (see e.g. Raggett, 1982) consisting of

8 observations on susceptible and infective individuals during the outbreak of plague in

the village of Eyam, England, taken over a four month period from June 18th 1666 and

are presented here in Table 6.3.

We assume that the data can be modelled by a susceptible–Infected–Removed (SIR)

compartment model which has two species (susceptibles X1 and infectives X2) and two
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Figure 6.3: Aphid model. Marginal posterior plots for the two parameters. The ground truth is
indicated on each plot.

reaction channels (infection of a susceptible and removal of an infective):

R1 : X1 + X2
c1−−−→ 2X2

R2 : X2
c2−−−→ ∅.

For this application, we took the Markov jump process representation of species dynamics

as the inferential model. We additionally assumed the challenging scenario of exact ob-

servation of all model components (albeit at discrete times), for which the particle filter

in Algorithm 7 assigns a non zero weight to the particle x
(k)
(ti,ti+1]

if and only if x
(k)
ti+1

is

equal to the observation yti+1 . That is, simulated trajectories must “hit” the observation

or else receive zero weight. In this exact observation setting, no resampling is required and

the particle filter coincides with a series of independent importance samplers (over each

observation interval). Hence, the ODE solution required to implement the conditioned

hazard approach of Section 5.1.1 need not be re-initialised for each particle and therefore

CHiter and CHpart coincide.

We followed Ho et al. (2018) by taking an independent prior specification with a

N(0, 1002) distribution assigned to the logarithm of each rate constant. We then ran

bridge-based CPMMH (ρ = 0.99) with and without MALA, with and without delayed

acceptance. For bench-marking, we also ran standard PMMH (based on forward simula-

tion, denoted “Myopic”) and bridge-based PMMH. The main monitoring runs consisted of

104 iterations and this output is summarised in Table 6.4. Use of the conditioned hazard

and correlating reaction times / types between successive runs of the particle filter gives
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Scheme N α1 α2|1 α CPU (s) mESS mESS/s Rel.

PMMH / RWM (Myopic) 5000 – – 0.16 68177 863 0.013 1.0
PMMH / RWM 100 – – 0.19 25752 644 0.025 2.0

CPMMH / RWM 75 – – 0.25 15796 609 0.039 3.0
CPMMH / MALA 75 – – 0.41 16040 1360 0.085 6.7
CPMMH / sMALA 75 – – 0.42 15799 891 0.056 4.4

daCPMMH / RWM 75 0.28 0.49 0.13 4746 340 0.071 5.6
daCPMMH / MALA 75 0.15 0.45 0.07 2840 386 0.136 10.7

Table 6.4: Epidemic model. Number of particles N , acceptance rates α1, α2|1 and α, CPU time (in
seconds), minimum ESS, minimum ESS per second, and relative (to the worst performing scheme)
minimum ESS per second. All results are based on 104 iterations of each scheme.

a modest improvement in overall efficiency (by a factor of 3) compared to the most basic

PMMH scheme. For this particular target posterior (see Figure 6.4) MALA is clearly more

effective than RWM and is more than twice as efficient (in terms of minimum ESS per

second) compared to RWM. Combining CPMMH, delayed acceptance and MALA gives

the best performing scheme. The increased performance due to delayed acceptance is

unsurprising, given the accuracy of the surrogate (as evidenced by the Stage-Two accep-

tance probability) and its computational efficiency (with the relative cost of calculating

the observed data likelihood under the surrogate versus an estimate from the particle filter

scaling as around 1:100).

Finally, we note from Figure 6.5 and Table 6.4 that although simplified MALA (sMALA,

using equation (4.8)) gives gradients of the log posterior that are generally comparable to

full MALA (using equation (4.6)), the reduction in CPU time is not sufficient to overcome

the reduction in mixing efficiency. This is unsurprising given that CPU time is dominated

by the particle filter, as noted above.

6.4.3 Lotka-Volterra

Recall again the Lotka-Volterra system of Section 3.4.2, and the sensitivities for this model

discussed in Section 4.3.2 and derived in Appendix A.1. To implement the RB− schemes,

we additionally need to augment the system of ODEs with the time derivative of the

fundamental matrix, given by

dGt
dt

=

(
c1 − c2η2,t −c2η1,t
c2η2,t c2η1,t − c3

)
Gt

We generated a single realisation of the jump process at 51 integer times via Algorithm

3 with rate constants as in Boys et al. (2008), that is c = (0.5, 0.0025, 0.3)′ and an initial

condition of X0 = (100, 100)′. We then corrupted the data for both species with inde-
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Figure 6.4: Epidemic model. Joint posterior density and the first 100 iterations of CPMMH-RWM
(left) and CPMMH-MALA (right).
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Figure 6.5: Epidemic model. Full versus simplified gradient of the log posterior density with respect
to c1 (left) and c2 (right) computed for 1000 draws from the joint posterior over c.

pendent, additive Gaussian error and standard deviation σ = 1, so that the observation

equation (4.1) becomes

Yt = Xt + εt, εt ∼ N (0, I2) , t = 0, . . . , 50,

where I2 is the 2 × 2 identity matrix. We ran CPMMH with 4 different bridge imple-

mentations: RBiter, RBpart, RB−iter, and RB−part, along with the presence or absence of two

techniques: simplified MALA and delayed acceptance. Since the residual bridge with extra

95



Chapter 6. Accelerating inference for intractable models using tractable surrogates

subtraction (RB−) typically outperformed the simple residual bridge (RB) up to a factor

of 2 in terms of overall efficiency (depending on the acceleration technique employed), we

report results for RB− only. Similarly, we found little difference between the gradients

employed by simplified MALA versus full MALA (see Figure 6.6) and report results for

the former.
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Figure 6.6: Lotka-Volterra model. Full versus simplified gradient of the log posterior density with
respect to c1 (left), c2 (centre) and c3 (right) computed for 1000 draws from the joint posterior
over c.

We took an independent prior specification for c and assigned N(0, 102) distributions

to the logarithm of each rate constant. We then ran all schemes for 105 iterations, includ-

ing PMMH (with RB−iter which performed best of all bridge implementations) for bench-

marking. Figure 6.7 and Table 6.5 summarise our findings. The former gives marginal

parameter posterior densities from the output of the best performing inference scheme

(with consistent results obtained from other schemes but not shown) from which we see

consistency with the ground truth values. From Table 6.5, we see that the most basic

CPMMH scheme (without MALA or delayed acceptance) gives an improvement in overall

efficiency over PMMH of around a factor of 3. It is also clear that while the per iter-

ation implementation of RB− results in a small reduction in minimum effective sample

size compared to the per particle implementation, the computational saving is worthwhile.

Replacing the RWM parameter proposal with MALA gives a relative increase in overall

efficiency by a factor of 3. It is evident that the combination of delayed acceptance and

MALA gives the best performing scheme, with an order of magnitude increase in mESS/s

against the benchmark.

6.4.4 Summary of Application results

Application 6.4.1 shows that in scenarios where a linear diffusion bridge such as the MDB

is infeasible for inference, the residual bridge constructs outperform a computationally

cheap myopic scheme of generation by forward simulation from the model. The additional
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Figure 6.7: Lotka-Volterra model. Marginal posterior plots for the three parameters. The ground
truth is indicated on each plot.

Scheme N α1 α2|1 α CPU (s) mESS mESS/s Rel.

PMMH / RWM / RB−iter 2 – – 0.13 25735 2809 0.109 1.0

CPMMH / RWM / RB−iter 2 – – 0.21 25372 7705 0.304 2.8
CPMMH / RWM / RB−part 2 – – 0.25 31568 8445 0.280 2.6

CPMMH / sMALA / RB−iter 2 – – 0.44 28898 24709 0.855 7.8
CPMMH / sMALA / RB−part 2 – – 0.44 39643 25545 0.644 5.9

daCPMMH / RWM / RB−iter 2 0.22 0.85 0.19 10877 6415 0.590 5.4
daCPMMH / sMALA / RB−iter 2 0.46 0.84 0.39 18339 19944 1.088 10.0

Table 6.5: Lotka-Volterra model. Number of particles N , acceptance rates α1, α2|1 and α, CPU
time (in seconds), minimum ESS, minimum ESS per second, and relative (to the worst performing
scheme) minimum ESS per second. All results are based on 105 iterations of each scheme.

computational expense of the residual bridges was offset by the smaller number of bridges

required, leading to a CPMMH RB scheme that took less CPU time to generate a larger

mESS than its myopic counterpart.

Applications 6.4.2 and 6.4.3 show the benefits of combining techniques such as (s)MALA

and delayed acceptance with CPMMH to increase efficiency. In both applications, (s)MALA

led to a greater increase in efficiency than delayed acceptance when considered separately,

but the combination of both techniques led to greater improvements than when used in-

dividually. Comparing figures 6.5 and 6.6 shows that the additional assumptions made in

sMALA compared to full MALA will affect the mixing efficiency more in some cases than

others - this reduction in mixing efficiency may outweigh the computational savings, as in

application 6.4.2. Due to the intractable form of the LNA variance sensitivity to the rate

parameters, it is difficult to gain insight into when this sensitivity is small enough to be

ignored without incurring a noticeable effect on the gradient estimate, as was the case in

application 6.4.3.

The performance of RB against RB− was also case dependent. In application 6.4.1,
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the simple residual bridge captured the dynamics of the latent process well enough that

the additional cost of the additional subtraction did not outweigh any gains in mESS.

However, for application 6.4.3, the additional subtraction was worthwhile, with gains in

mESS leading to a greater overall efficiency despite the additional cost. In both applica-

tions, solving the ODE system once per iteration was more efficient than solving once per

particle, reducing the computational complexity whilst sacrificing very little in terms of

mESS.
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Conclusions

This thesis considers the problem of performing Bayesian inference, given discrete, time-

course data that may be subject to error, for the parameters governing a stochastic kinetic

model (SKM), which is most naturally represented by a Markov Jump Process (MJP).

Exact (simulation-based) inference for MJPs is complicated by the intractability of the

observed data likelihood, and inference methods based on estimates of this likelihood such

as pseudo-marginal Metropolis-Hastings (PMMH) are often computationally impractical

due to the overhead required for integrating over every reaction time and type in the

process. One possibility is to replace the MJP as the inferential model with a tractable

approximation such as the linear noise approximation (LNA), which requires the solution

of a system of coupled ODEs (see e.g. Komorowski et al., 2009; Fearnhead et al., 2014).

This allows for the likelihood to be efficiently calculated via a forward filter, and so in-

ference may proceed via traditional MCMC methods. However, there are scenarios in

which the LNA is not suitable as an approximation to the MJP. In these cases, a more

accurate approximation of the MJP based on time-discretisation may be used. Two such

approximations are the chemical Langevin equation (CLE), and the Poisson leap method.

For these models, the observed data likelihood remains intractable, necessitating the use

of PMMH techniques such as particle MCMC (pMCMC), but the advantage here is that

such schemes only require integrating over a user-specified number of intermediate states

between each observation. Although less expensive, inference can still be very computa-

tionally intensive, and so various techniques may be required to accelerate inference using

these schemes.

This thesis contributes a unified framework for performing inference for the rate con-

stants governing an array of different classes of SKM, potentially using multiple different

acceleration techniques at once. These models include an LNA approximation, the chem-

ical Langevin equation, the Poisson leap method and the full Markov jump process, of

which inference for the latter three classes of SKM utilises the pMCMC algorithm. Ac-
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celeration techniques considered in this thesis cover the parameter proposal mechanism of

the scheme, as well as methods of reducing both the computational cost of the particle

filter and the number of times that it needs to be run.

For parameter proposal, the standard random walk Metropolis (RWM) proposal mech-

anism can often be improved upon by utilising the Metropolis-adjusted Langevin algorithm

(MALA), which uses the gradient of the posterior density of the parameters to propose

values that are more likely to be in regions of higher posterior density, thus increasing the

acceptance rate and effective sample size of the scheme. Whilst it is possible to estimate

the gradient directly from the inferential model when using pMCMC (Poyiadjis et al.,

2011; Nemeth et al., 2016), we eschew this approach in favour of an approximate gradient

based on the LNA (Stathopoulos & Girolami, 2013), which can clearly also be utilised

when the LNA is used as the inferential model. This approximation requires the solution

of a system of coupled ODEs, which scales at rate rs2 with the number of rate constants r

and species s. As one of the assumptions of the LNA is that the deterministic movement

of the process dominates its intrinsic stochasticity, a further acceleration technique can

be made to reduce the dimension of this ODE system by ignoring the dependence of the

variance of the LNA on the parameters, instead estimating the gradient solely from the

deterministic term. The success of this approach, denoted sMALA, naturally depends on

the extent to which the process is dominated by its deterministic movement. In Section

4.3.2, we observed an increase in overall efficiency (as measured by minimum effective sam-

ple size per second, mESS/s) of a factor of 3 for sMALA over MALA when considering a

Lotka-Volterra system with the LNA approximation as the inferential model.

To reduce the number of times the expensive particle filter must be run in pMCMC

schemes, a delayed acceptance step is implemented (Golightly et al., 2015), using the LNA

as an inexpensive surrogate likelihood in an initial Metropolis-Hastings acceptance step.

The rationale behind this step is to prune out parameter proposals that are clearly un-

suitable and therefore likely to be rejected in the final Metropolis-Hastings step, therefore

reserving evaluation of the particle filter for parameter proposals that are more likely to

be accepted. In Section 6.4.2, we found in a real data SIR model that the use of a delayed

acceptance step in schemes that employed other acceleration techniques improved mESS/s

by a factor of 2.

To reduce the computational cost of the particle filter, two acceleration techniques

may be used. The first of these is to induce strong, positive correlation between successive

observed data likelihood estimates by correlating the innovations that drive the proposal

mechanism in the particle filter (see e.g. Dahlin et al., 2015; Deligiannidis et al., 2018;

Golightly et al., 2019). To do this, innovations are drawn from a Crank-Nicolson proposal

with a user-defined correlation parameter ρ, and then transformed if necessary so that

the resulting kernel satisfies detailed balance with respect to the innovation density (such
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as transforming the Gaussian innovations from the Crank-Nicolson proposal to Poisson

variates in the case of the Poisson leap method). Typically ρ is chosen to be close to 1, with

the aim of inducing strong correlation between successive estimates of the observed data

likelihood. This then leads to a reduced variance in their ratio which necessitates fewer

particles to be used in the particle filter to keep the variance of the acceptance probability

low. However, in practice, strong correlation between the auxiliary variables does not

necessarily translate to strong correlation in the observed data likelihood estimates, as a

high degree of measurement error in the system can lead to a breakdown of correlation

between estimates. This breakdown can impede the performance of CPMMH as the

measurement error increases, as the performance appears to degrade faster than that of

standard PMMH. However, when comparing CPMMH to PMMH for synthetic data from

a Lotka-Volterra system corrupted with increasingly variable additive Gaussian noise in

Section 5.2.2, we found that even in the most extreme scenario where the measurement

error variance and average species sizes are of a similar order of magnitude, CPMMH

still outperforms PMMH by a factor of 2. In other applications, CPMMH outperformed

PMMH by a factor of 3 when applied to a Poisson Leap approximation of an autoregulatory

network (Section 5.2.3), and by a factor of 7 when applied to an SIR model of a real-

world influenza outbreak (Section 5.2.4). Unsurprisingly, the biggest gains in efficiency

were achieved for a fully observed, error-free immigration-death model, using the CLE

approximation as the inferential model (Section 5.2.1). With no measurement error to

break the correlation between successive estimates, CPMMH here outperformed PMMH

by around two orders of magnitude.

The other acceleration technique considered here is the use of three residual bridge

constructs, denoted RB, RB− and CH (Whitaker et al., 2017b; Golightly & Sherlock,

2019). These bridge constructs use the ODEs associated with the LNA surrogate (or

in the case of simple RB, a subset of them) to create a bridge that aims to capture the

dynamics of the underlying process, whilst still conditioning on the endpoint observation of

the bridge. We considered two implementations of these surrogate-based bridge constructs:

one in which the ODE system is re-solved per particle (with initial conditions informed

by the current state particle) which we denote e.g. RBpart, and one in which the ODE

system is solved once per iteration (with initial conditions informed by the output of the

forward filter), which we denote e.g. RBiter. The relative efficiency of both approaches

likely depends on the number of particles in the particle filter, as well as which construct

is being implemented, as RB requires the solution of O(s) ODEs, compared to O(s2)

ODEs for RB− or CH. Regardless of implementation, use of these bridge constructs

leads to significantly fewer particles being required in the particle filter compared to less

sophisticated bridge implementations such as myopic forward simulation, and are crucial

in capturing nonlinear dynamics that may be missed by linear bridge constructs such as
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the modified diffusion bridge (MDB). When comparing the residual bridges with myopic

forward simulation for a partially observed aphid population model in Section 6.4.1, we

observed that schemes using the residual bridge constructs required an order of magnitude

fewer particles, which corresponded to an efficiency increase of a factor of 3 (as the residual

bridges are more computationally expensive to implement than simple forward simulation

bridges).

As the acceleration techniques considered here (with the exception of inducing corre-

lation) leverage the tractability of the LNA, further computational savings can be made

by implementing multiple acceleration techniques in tandem. In particular, from a single

run of Algorithm 4, one can obtain an estimate of the posterior gradient to be used in

the MALA proposal, an estimate of the likelihood under the LNA for use in a delayed

acceptance step, and the solutions of the LNA ODEs for use in the RBiter, RB−iter or CHiter

constructs. However, not all acceleration techniques are suitable for use in all contexts.

For example, the use of delayed acceptance is likely to be most effective in scenarios where

the overall computational cost is dominated by the particle filter and thus the cost of

obtaining the likelihood under the LNA is relatively inexpensive (Sherlock et al., 2021).

In fact, in scenarios where this is not the case, using delayed acceptance may lead to a

less efficient algorithm, as schemes using delayed acceptance are typically less statistically

efficient (Christen & Fox, 2005), meaning that in general they will have a lower ESS for

a given number of iterations than schemes that do not employ delayed acceptance. Simi-

larly, the increase in statistical efficiency gained from using MALA in a pMCMC scheme

is most likely to outweigh its additional computational cost in scenarios where this cost is

negligible relative to the cost of estimating the likelihood through the particle filter. The

optimal scenarios for implementing these acceleration techniques naturally run counter to

the aim of the other techniques, which is to reduce the cost of running the particle filter.

Nevertheless, there are applications where the use of all acceleration techniques together

results in the most efficient scheme, as in Section 6.4.3.

A natural question is how well these acceleration techniques will scale as either the

length of the dataset or the number of parameters to infer grows. It is believed that

CPMMH scales better than standard PMMH as the length of the data set grows, leading

to larger efficiency gains for CPMMH over PMMH for particularly long data sets. For a

number of observations n, it may be possible for univariate models to scale the number

of particles N at rate n1/2, compared to at rate n for PMMH (Bérard et al., 2014). For

bivariate models, it may be possible to scale N at rate n2/3. This suggests that the

benefits of CPMMH over PMMH degrade as the dimension of the problem increases. See

Deligiannidis et al. (2018) for further discussion on the scaling of CPMMH relative to

PMMH. Roberts & Rosenthal (2001) show that the statistical efficiency of MALA scales

better with parameter dimension than RWM schemes. However, as noted in Section 4.2,
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the computational cost of implementing full MALA using LNA gradient estimation grows

quickly with the parameter dimension, due to the increasing number of ODEs to be solved,

which may nullify its increased statistical efficiency. Use of sMALA will greatly mitigate

the additional computational cost in higher dimensions, and so should scale better. The

scaling properties of other acceleration techniques remains an open area of research.

7.1 Future Work

There are a number of directions in which future research in this area can extend the work

of this thesis. For example, Golightly et al. (2019) suggest that one way of preserving

correlation between successive observed data likelihood estimates may be to perform the

weighted resampling step less often, or even to avoid resampling altogether and replace

the particle filter with an importance sampler. They note that the feasibility of this

may depend on the accuracy of the bridge construct. As the paper considered only the

modified diffusion bridge construct, it is possible that using the residual bridge constructs

of Chapter 6 may lend itself well to this idea.

Another area that merits further research is the simplified MALA proposal mechanism

of Section 4.2. We have given an informal justification for this approach and demonstrated

that it can work well empirically, but a more theoretically rigorous treatment may be

beneficial. Alternatively, other proposal mechanisms could be considered. One option is

to use Hamiltonian Monte Carlo (HMC), of which MALA can be seen as a special case. In

brief, HMC aims to estimate the Hamiltonian dynamics of the posterior density, and use

these dynamics to propose a move to a point in the parameter space that is far away from

the current state of the chain, but maintains a high acceptance probability. The resulting

algorithm can be computationally intensive, but extremely statistically efficient, and the

question of whether the statistical efficiency outweighs the computational burden when

applied to the SKMs considered in this thesis is an interesting problem. Another proposal

mechanism of which MALA is a special case is manifold MALA, which has been applied

to the LNA by Stathopoulos & Girolami (2013).

As mentioned in Section 5.1.1, the particle filter of Golightly & Wilkinson (2011) used

in this thesis can be seen as a special case of the auxiliary particle filter of Pitt et al. (2012),

with pre-weight g(yti |x
j
ti−1

, c) = 1. However, other choices of pre-weight are available that

could be investigated. For example, Golightly & Wilkinson (2015) describe a method of

performing an initial “look ahead” step by resampling amongst the xjti−1
with weights

proportional to some g(·|·). The tractability of the LNA could once again be exploited

to provide this pre-weight. However, as mentioned in Golightly & Wilkinson (2015), the

Gaussian approximation of the LNA may be light-tailed relative to the target, and so this

look-ahead step could lead to otherwise valid trajectories being pruned out.
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Finally, an acceleration technique not considered within this thesis is the use of paral-

lelisation. Although the state-dependent nature of MCMC schemes means that different

iterations of the scheme cannot be computed in parallel, there are elements within each

iteration that can be computed in parallel, notably the particles of the particle filter. For

instance, Choppala et al. (2016) implement a block pseudo-marginal method which utilises

several independent particle filters computed in parallel. An approach similar to this may

be able to be implemented for the particle filters used in this thesis, and the resulting

schemes could be compared to the block pseudo-marginal method when both are applied

to SKMs.
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Additional model details

A.1 First order sensitivities for the Lotka-Volterra model

Recall the Lotka-Volterra system introduced in Section 3.4.2. In addition to the equations

therein, we require the first order sensitivities for the model to perform MALA. These

sensitivities are intractable, however, we can find their time derivatives by applying (4.7)

to (3.24) and (3.25). Let ξ = (η1,t, η2,t, V1,t, VC,t, V2,t). Note that the final term of (4.7)

is the only term that explicitly depends on ci, and so there is significant overlap of the

form of the sensitivities with respect to each parameter. The remaining terms of each

sensitivity time derivative are given by

d

dt
Si1 −

d

dci

dξ1
dt

= (c1 − c2η2,t)Si1 − c2η1,t Si2 (A.1)

d

dt
Si2 −

d

dci

dξ2
dt

= c2η2,t S
i
1 + (c2η1,t − c3)Si2 (A.2)

d

dt
Si3 −

d

dci

dξ3
dt

= (c1 + c2(η2,t − 2VC,t))S
i
1 + c2(η1,t − 2V1,t)S

i
2

+ 2(c1 − c2η2,t)Si3 − 2c2η1,t S
i
4 (A.3)

d

dt
Si4 −

d

dci

dξ4
dt

= c2(VC,t − V2,t − η2,t)Si1 + c2(V1,t − VC,t − η1,t)Si2

+ c2η2,t S
i
3 + (c1 + c2(η1,t − η2,t)− c3)Si4 − c2η1,t Si5 (A.4)

d

dt
Si5 −

d

dci

dξ5
dt

= c2(2V2,t + η2,t)S
i
1 + (c2(2VC,t + η1,t) + c3)S

i
2

+ 2c2η2,t S
i
4 + 2(c2η1,t − c3)Si5, (A.5)
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for i ∈ {1, 2, 3}. Replacing i in (A.1) to (A.5) with the appropriate superscript in the

following, the full sensitivity time derivatives can be written as

d

dt
S1
1 = (A.1) + η1,t

d

dt
S2
1 = (A.1)− η1,tη2,t

d

dt
S3
1 = (A.1)

d

dt
S1
2 = (A.2)

d

dt
S2
2 = (A.2) + η1,tη2,t

d

dt
S3
2 = (A.2)− η2,t

d

dt
S1
3 = (A.3) + 2V1,t + η1,t

d

dt
S2
3 = (A.3)− 2η2,tV1,t − 2η1, tVC,t + η1,tη2,t

d

dt
S3
3 = (A.3)

d

dt
S1
4 = (A.4) + VC,t

d

dt
S2
4 = (A.4) + (η1,t − η2,t)VC,t + η2,tV1,t − η1,tV2,t − η1,tη2,t

d

dt
S3
4 = (A.4)− VC,t

d

dt
S1
5 = (A.5)

d

dt
S2
5 = (A.5) + 2η1,tV2,t + 2η2,tVC,t + η1,tη2,t

d

dt
S3
5 = (A.5) + η2,t − 2V2,t.

These derivatives are then integrated forward with the ODEs governing the LNA for this

process, (3.24) and (3.25) to numerically obtain the sensitivities.

106



Appendix A. Additional model details

A.2 First order sensitivities for the epidemic model

Recall the SIR model considered in Section 6.4.2. To perform MALA, we require an

estimate of the gradient of the log-target density, which we obtain via the LNA surrogate

as discussed in Section 6.3 and Section 4.2. To do so, we approximate Xt as Xt ∼ N(ηt, Vt)

as in Section 3.3.2, where

ηt =

(
η1,t

η2,t

)
, Vt =

(
V1,t VC,t

VC,t V2,t

)
,

and VC,t denotes the covariance between X1,t and X2,t.The Jacobian Ft for this model is

given by

Ft =

(
−c1η2,t −c1η1,t
c1η2,t c1η1,t − c2

)
,

and the ODE system governing the LNA is given by

dηt
dt

= (−c1η1,tη2,t, c1η1,tη2,t − c2η2,t)′, (A.6)

dVt
dt

= Vt

(
−c1η2,t c1η2,t

−c1η1,t c1η1,t − c2

)
+

(
c1η1,tη2,t −c1η1,tη2,t
−c1η1,tη2,t c1η1,tη2,t + c2η2,t

)

+

(
−c1η2,t −c1η1,t
c1η2,t c1η1,t − c2

)
Vt. (A.7)

As in Appendix A.1, let ξ = (η1,t, η2,t, V1,t, VC,t, V2,t). We find the time derivatives of

the first order sensitivities by applying (4.7) to (A.6) and (A.7), and these derivatives can

then be integrated forwards with (A.6) and (A.7). Following the convention set out in

Appendix A.1, the terms of each sensitivity time-derivative that are independent of ci are
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given by

d

dt
Si1 −

d

dci

dξ1
dt

= −c1η2,tSi1 − c1η1,tSi2 (A.8)

d

dt
Si2 −

d

dci

dξ2
dt

= c1η2,tS
i
1 + (c1η1,t − c2)Si2 (A.9)

d

dt
Si3 −

d

dci

dξ3
dt

= (η2,t − 2VC,t)c1S
i
1 + (η2,t − 2V1,t)c1S

i
2

− 2c1η2,tS
i
3 − 2c1η1,tS

i
4 (A.10)

d

dt
Si4 −

d

dci

dξ4
dt

= (VC,t − V2,t − η2,t)c1Si1 + (V1,t − VC,t − η1,t)c1Si2

+ c1η2,tS
i
3 + (c1(η1,t − η2,t)− c2)Si4 − c1η1,tSi5 (A.11)

d

dt
Si5 −

d

dci

dξ5
dt

= (2V2,t + η2,t)c1S
i
1 + ((2VC,t + η1,t) + c2)S

i
2

+ 2c1η2,tS
i
4 + 2(c1η1,t − c2)Si5, (A.12)

for i ∈ {1, 2}. Replacing i in (A.8) to (A.12) with the appropriate superscript in the

following, the full sensitivity time derivatives can then be written as

d

dt
S1
1 = (A.8)− η1,tη2,t

d

dt
S2
1 = (A.8)

d

dt
S1
2 = (A.9) + η1,tη2,t

d

dt
S2
2 = (A.9)− η2,t

d

dt
S1
3 = (A.10) + η1,tη2,t − 2(η2,tV1,t + η1,tVC,t)

d

dt
S2
3 = (A.10)

d

dt
S1
4 = (A.11) + η2,t(V1,t − VC,t) + η1,t(VC,t − V2,t)− η1,tη2,t

d

dt
S2
4 = (A.11)− VC,t

d

dt
S1
5 = (A.12) + 2(η2,tVC,t + η1,tV2,t) + η1η2

d

dt
S2
5 = (A.12)− 2V2,t + η2,t.
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Alternative algorithm details

B.1 Modified innovation scheme

We give a brief description of the modified innovation scheme (MIS) and refer the reader

to Whitaker et al. (2017a) in the references therein for further details.

Consider the joint posterior of c and the latent process x under the CLE given by

π(c, x) ∝ π0(c)p(x|c)p(D|x)

where p(x|c) and p(D|x) can be found in (5.3) and (5.1). A Gibbs sampler can be used to

generate draws from π(c, x) by alternately sampling from the full conditionals

1. p(x|c,D),

2. p(c|x).

It is straightforward to sample p(x|c,D) using Metropolis within Gibbs coupled with a

suitable blocking approach. For example, the latent process can be updated over each

interval [t − 1, t + 1], t = 1, 2, . . . , n − 1 with the modified diffusion bridge construct in

(5.11) used as the proposal mechanism. The use of overlapping blocks in this way ensures

that latent process is updated at the observation times (as well as at all other intermediate

times). The full conditional p(c|x) can be sampled via Metropolis within Gibbs however

for small values of ∆τ , dependence between the parameters and latent process can render

this approach impractical. This well known problem is discussed at length in Roberts &

Stramer (2001). The issue is circumvented by the MIS via a reparameterisation. The basic

idea is to draw parameter values conditional on a process whose quadratic variation does

not determine c. For example, for a time interval [0, T ], conditioning on the innovations

that drive the modified diffusion bridge construct (see e.g. Section 5.1.2; Durham &
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Gallant, 2002) leads to the continuous-time innovation process

dZt = β(Xt, c)
−1/2

(
dXt −

xT −Xt

T − t
dt

)
, (B.1)

= β(Xt, c)
−1/2

{
α(Xt, c)−

xT −Xt

T − t

}
dt+ dWt

where α(Xt, c) = S h(Xt, c) and β(Xt, c) = S diag{h(Xt, c)}S′. A justification for condi-

tioning on realisations of this process in a Gibbs sampler can be found in Fuchs (2013).

In practice, we work with a discretisation of (B.1), that is, the modified diffusion bridge

construct. For the induced invertible mapping x = f(z) (where we have suppressed de-

pendence of f(·) on c and the values of the latent process at the observation times), the

full conditional density required in step 2 is easily shown to be

p(c|z) ∝ π0(c)p(f(z)|c)J(f(z)|c) (B.2)

where p(f(z)|c) is given by (5.3) and

J(f(z)|c) ∝
n−1∏
t=1

m−1∏
k=1

∣∣β(xτt,k−1
, c)
∣∣−1/2

is the Jacobian determinant of f . Naturally, the full conditional in (B.2) will typically be

intractable, requiring the use of Metropolis-within-Gibbs updates. We propose to update

log(c) using random walk Metropolis with Gaussian innovations.
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