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Abstract 

The transition of a commensal dental biofilm, to one overpopulated with acidogenic species, 

e.g.  Streptococcus mutans, is associated with caries development. Approaches to understand 

this dysbiosis have not balanced representing the complexity of dental biofilms, with defining 

the factors underpinning caries development, including interspecies interactions and pH 

influence. This research aimed to characterise S. mutans invasion into a synthetic oral 

community, to better understand the factors contributing to colonisation, using modelling 

approaches in a defined environment. 

A 4-species synthetic oral community, comprised of Streptococcus gordonii, Actinomyces oris, 

Neisseria subflava, and Veillonella parvula, was exposed to S. mutans. Biofilms were grown on 

hydroxyapatite coupons in continuous flow bioreactors, using a developed chemically defined 

medium, supplemented with glucose and lactic acid. Biofilm and planktonic growth were 

simulated with a 2-D Individual-based model (IbM) and a 0-D continuous reactor model, 

respectively. 

High glucose and lactic acid concentrations resulted in a significant pH drop and S. mutans 

dominating the biofilm and planktonic communities. In substrate-limited environments, the 

community composition, measured by qPCR and fluorescence in situ hybridization, was more 

balanced. The IbM simulated S. mutans dominance at high glucose concentrations, using 

kinetic parameters collected experimentally. When the influence of pH on the bacterial 

growth kinetics was considered, rather than just on chemical speciation, the simulations 

corroborated with in vitro and in vivo findings. 

I have developed in vitro and in silico models characterising S. mutans invasion of a 4-species 

commensal community, improving on previous attempts to represent the complexity of the 

dental biofilm. These models have advanced knowledge of the importance of pH in S. mutans 

invasion and considering pH in growth kinetics within simulations. Models will assist safe oral 

care product development by enabling the impact of antibacterial agents on the dental biofilm 

to be studied without in vivo assessment. 

 

 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Acknowledgements 

I would not have been able to complete my research and this thesis without the support and 

generosity of so many people during my time in Newcastle. I would like to thank my 

supervisors for their guidance during my studies. Firstly, I would like to thank Dana for helping 

me in the modelling aspect of my research, with scientific writing throughout the project, and 

for allowing me to develop as a researcher. I want to thank Nick for giving me a home in the 

dental school, where I have grown enormously as a scientist and met so many great people. 

Thank you also for your support regarding everything microbiology related. Tom, I would like 

to thank you for your overall support and guidance, particularly at the ISME conference. I 

would like to thank both of my supervisors over at Unilever, Aline, and Paul. I appreciate your 

help during these studies, including keeping perspective of the impact of my research, and for 

hosting me at the Safety and Environmental Assurance Centre at Unilever. I would also like to 

give a special thank you to Valentina, who has helped me enormously with the modelling 

aspect of this research when you did not have to. I will forever be grateful and hope to one 

day repay the generosity. I would like to thank my funding bodies the Engineering and Physical 

Sciences Research Council, and the Safety and Environmental Assurance Centre at Unilever, 

for funding my research over the course of the last 4 years. 

I thank everyone from the level 7 lab for keeping me sane during my time conducting 

experiments and making me feel at home from the very first day. I want to thank my lab sisters 

Nadia and Zella. Nadia for reigning me in and giving advice when I fell into bad habits of 

overworking to the point of burning out and Zella for all the food breaks. My mental health 

thanks you, even if my bank balance does not. I would also like to thank Jamie and Chris for 

all your support, both for experimental advice and for being present as very good friends. I 

would also like to thank my friends over in Merz court for keeping me company during my 

time in the Biolab and whilst writing the annual reports. There are too many of you to mention, 

but specifically Obaidullah for being a fantastic desk buddy and for the wonderful home-

cooked food, and James for the two years of being a flatmate during Covid, ranting about the 

stresses of PhD life. I would like to thank the laboratory technicians for their support. 

Manpreet and Paul, I appreciate all your help autoclaving my reactors and carboys in 

engineering. I want to thank the city of Newcastle, which will always feel like home, due to 

the fantastic memories, generosity of the people, and plethora of amazing food places. 



iv 
 

I would like to thank my family for all their support during the last 4 years. Firstly, my mum 

and dad for assuring me that I will finish my research, in times when I thought I was not 

capable of doing so. I would like to thank my Pinder and Rani Dhadi, for all the life advice. 

Without this, I would not have even taken this project. I thank my siblings for always being the 

inspiration to push myself to become better in every facet, including my research. I would like 

to thank the people who are no longer with us, including my Baba and Dhadi ma, who will 

always be with me and whom I hope to have made proud by getting to this point through all 

the obstacles that I have faced. Finally, I would like to thank Surina for all the support in the 

good times and bad during this PhD. The goal of spending our lives together after this project 

kept me going every time I have been ready to throw in the towel. 

I dedicate this project and everything else that I achieve in life, to my brother and best friend 

Rajan. I have an endless amount of stories to share with you one day over a glass of milk and 

a PlayStation controller. Until then, I hope that I am making you proud. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

Conference attendance, publications, and awards 
 

Conference presentations: 

 

Cold Spring Harbor Laboratory, virtual conference, 20-23rd October 2020 

Poster presentation- The development of a chemically defined medium for a synthetic oral 

microbial community and its characterisation with FISH. 

Oral Microbiology and Immunology Group, virtual conference, 24th-29th March 2021 

Poster presentation-The development of a chemically defined medium for a synthetic oral 

microbial community and its characterisation with FISH. 

Microbiology Society 2022, Belfast, Ireland, 4th-7th April 2022 

Poster presentation- The effect of glucose on Streptococcus mutans invasion of an in vitro 

synthetic community of oral bacteria. 

International Symposium on Microbial Ecology, Laussane, Switzerland, 14th-19th August 

2022 

Oral presentation-Modelling Streptococcus mutans invasion of an in vitro synthetic 

community of oral bacteria. 

 

Publications: 

 

Paper 1 (in process of submission)- 

Characterising the invasion of Streptococcus mutans into an oral multispecies community 

using an in vitro model. 

Paper 2: (in process of submission)- 

Mathematical models of multispecies dental biofilm stress the importance of considering pH 

in modelling growth. 

 

Awards: 

Unilever Safety and Environmental Assurance Centre, Bedford, 13-15th June 2022 

PhD prize award; runner up. 



vii 
 

Table of contents 

 

Abstract ............................................................................................................................ i 

COVID-19 impact statement ................................................... Error! Bookmark not defined. 

Acknowledgements ......................................................................................................... iii 

Conference attendance, publications, and awards ........................................................... vi 

Table of contents ............................................................................................................ vii 

List of Figures .................................................................................................................. xi 

List of Tables .................................................................................................................. xv 

List of abbreviations ....................................................................................................... xvi 

Chapter 1- Introduction and literature review ................................................................... 1 

1.1 Dental caries, a global health and economic burden .................................................................... 1 

1.2 The oral microbiome, role in health and disease .......................................................................... 4 

1.2.1 The complexity of the oral microbiome .................................................................................. 4 

1.2.2 Structure and function of dental biofilms ............................................................................... 6 

1.2.3 Health-associated oral species in dental biofilms .................................................................. 8 

1.2.4 Disease-associated oral species in dental biofilms ............................................................... 10 

1.3 Experimental-based modelling approaches to study dental biofilms ......................................... 13 

1.3.1 The use of bacterial communities to understand dental biofilm in caries ........................... 13 

1.3.2 In vivo modelling of dental biofilms ..................................................................................... 15 

1.3.3 In vitro modelling of dental biofilms .................................................................................... 15 

1.3.4 Different types of nutritional sources used in in vitro models .............................................. 20 

1.4 In silico modelling approaches to characterising dental biofilms ............................................... 21 

1.5 Aims and objectives .................................................................................................................... 30 

1.6 Importance of the research......................................................................................................... 31 

Chapter 2. Material & Methods ...................................................................................... 32 

2.1 Materials used in research .......................................................................................................... 32 

2.1.1 List of bacterial strains ......................................................................................................... 32 

1.2 List of equipment ........................................................................................................................ 33 

2.2 Culturing and storage of bacterial strains ................................................................................... 35 

2.2.1 Routine culturing of bacterial strains ................................................................................... 35 

2.2.2 Preparation of glycerol stocks .............................................................................................. 36 

2.2.3 Colony forming unit counts .................................................................................................. 36 

2.3 Experiments defining synthetic community ............................................................................... 37 

2.3.1 Growth experiments ............................................................................................................. 37 

2.3.2 Development of AFMC medium ........................................................................................... 37 



viii 
 

2.3.3 Carbohydrate utilisation ....................................................................................................... 38 

2.3.4 CalscreenerTM experiments ................................................................................................... 38 

2.4 Molecular biology techniques ..................................................................................................... 39 

2.4.1 Agarose gel electrophoresis .................................................................................................. 39 

2.4.2 NanoDropTM for DNA quantification ..................................................................................... 39 

2.4.3 Genomic DNA extraction from bacterial species .................................................................. 39 

2.4.4 Plasmid extraction from E. coli ............................................................................................. 40 

2.4.5 PicoGreen™ for double-stranded DNA quantification of plasmids ....................................... 40 

2.4.6 qPCR primers and probes ...................................................................................................... 40 

2.4.7 Cloning of targets into E.coli ................................................................................................. 41 

2.4.8 Validation of successful cloning of targets into E. coli .......................................................... 42 

2.4.9 qPCR and multiplex qPCR ...................................................................................................... 42 

2.5 Flow cytometry for live and dead analysis .................................................................................. 43 

2.6 Microscopy .................................................................................................................................. 44 

2.6.1 Gram staining ....................................................................................................................... 44 

2.6.2 Fluorescence in situ hybridization (FISH) .............................................................................. 45 

2.6.3 Live dead staining for imaging of biofilms ............................................................................ 46 

2.7 CDC reactor invasion experiments .............................................................................................. 47 

2.7.1 Reactor system setup ............................................................................................................ 47 

2.7.2 Inoculation strategy .............................................................................................................. 49 

2.7.3 Sampling from invasion experiments ................................................................................... 49 

2.8 In silico modelling of the synthetic community ........................................................................... 50 

2.8.1 Flux balance analysis ............................................................................................................ 51 

2.8.2 Stoichiometry considered for the bacterial species .............................................................. 52 

2.8.3 Growth kinetics for each bacterial species ........................................................................... 54 

2.8.4 pH influence on growth ........................................................................................................ 57 

2.8.5 Continuum stirred tank reactor (CSTR) model ...................................................................... 60 

2.8.6 Implementation of the CSTR model ...................................................................................... 61 

2.8.7 Individual based model ......................................................................................................... 62 

2.8.8 IbM implementation and solving algorithm ......................................................................... 67 

2.9 Statistical analysis ........................................................................................................................ 69 

Chapter 3. Development of a synthetic microbial community model ............................... 70 

3.1 Introduction ................................................................................................................................. 70 

3.2 Aims and objectives ..................................................................................................................... 73 

3.3 Results ......................................................................................................................................... 74 

3.3.1 Selection of a synthetic community of oral bacteria and in vitro growth model ................. 74 

3.3.2 The development of a CDM to support the growth of the oral synthetic community .......... 77 



ix 
 

3.3.3 Determining the kinetic parameters of the oral bacterial species ....................................... 83 

3.3.4 Substrate utilisation by the synthetic community ................................................................ 86 

3.3.5 Growth of oral species and acid production at different pH ................................................ 89 

3.3.6 Synthetic community visualisation through fluorescence in situ hybridization ................... 91 

3.3.7 Development of a qPCR method to quantify bacterial species ............................................ 98 

3.3.8 Using qPCR and FISH to develop inoculation strategy ....................................................... 103 

3.4 Discussion .................................................................................................................................. 105 

Chapter 4. In vitro modelling approaches to characterise the invasion of Streptococcus 

mutans into an oral commensal community ................................................................. 111 

4.1 Introduction............................................................................................................................... 111 

4.2 Aims and objectives .................................................................................................................. 113 

4.3 Results ....................................................................................................................................... 114 

4.3.1 Description of in vitro invasion experiments ...................................................................... 114 

4.3.2 Observing turbidity of the reactor bulk over time .............................................................. 117 

4.3.3 Quantifying the glucose and sucrose concentration of the reactor bulk over time ........... 119 

4.3.4 Quantifying the lactic acid concentration of the reactor bulk over time ........................... 122 

4.3.5 Quantifying changes in the pH of the reactor bulk over time ............................................ 125 

4.3.6 Quantifying the relative abundance of the synthetic community species in the reactor bulk

 ..................................................................................................................................................... 128 

4.3.7 Quantifying the relative abundance of the synthetic community species in biofilms ........ 133 

4.3.8 Imaging the synthetic community biofilm using fluorescence in situ hybridization .......... 139 

4.3.9 Assessing the viability of bacteria within the reactor system ............................................ 143 

4.4 Discussion .................................................................................................................................. 148 

Chapter 5- In silico modelling approaches to characterise the invasion of Streptococcus 

mutans into an oral commensal community ................................................................. 154 

5.1 Introduction............................................................................................................................... 154 

5.2 Aims and objectives .................................................................................................................. 157 

5.3 Results ....................................................................................................................................... 158 

5.3.1 Description of in silico modelling experiments ................................................................... 158 

5.3.2A The glucose concentration of the reactor bulk ................................................................ 161 

5.3.2B The lactic acid concentration of the reactor bulk ............................................................. 164 

5.3.2C The pH of the reactor bulk ................................................................................................ 167 

5.3.2D Species relative abundance in the bulk ............................................................................ 169 

5.3.3A The pH and substrate concentrations of the synthetic biofilm ........................................ 173 

5.3.3B The relative abundance of bacterial species in the synthetic biofilm .............................. 175 

5.3.4 Influence of bacterial seeding on species relative abundance in the community biofilm .. 180 

5.4 Discussion .................................................................................................................................. 184 



x 
 

Chapter 6.  Conclusions .................................................................................................190 

6.1 General discussion ..................................................................................................................... 190 

6.2 Future work ............................................................................................................................... 197 

6.3 Concluding remarks ................................................................................................................... 201 

References ....................................................................................................................203 

Appendix A- AFMC medium components .......................................................................230 

Appendix B- Gibbs free energy of formation for chemical species ..................................232 

Appendix C- Stoichiometry table for synthetic community species .................................233 

Appendix D- Dissociation constants for chemical species ...............................................234 

Appendix E- Code and functions for in silico models ......................................................235 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

List of Figures 
 

Figure 1.1 Illustration of caries development through cariogenic biofilm formation……….…….2 

Figure 1.2 Microbial diversity in the oral environment.………………………………………………………...6 

Figure 1.3 Processes governing dental biofilm formation……………………………………………..………7 

Figure 1.4 Metabolic pathways of oral bacteria…………………………………………………………..………11 

Figure 1.5 Figure demonstrating the abundance of bacteria at phylum, genus, and species 

level…………………………………………………………………………………………………………………………………….12 

Figure 1.6 Different types of models used to grow dental biofilms………………………………..……14 

Figure 1.7 An IBM used for wastewater systems…………………………………………………………...…...25 

Figure 2.1 Flow cytometry gating to determine live and dead cells……………………………………..44 

Figure 2.2 Schematic of CDC reactor setup………………………………………………………………………….47 

Figure 2.3 Setup of the CDC reactors……………………………………………………………………………..…...48 

Figure 2.4 Sampling of coupons in the laminar flow hood…………………………………………………..50 

Figure 2.5 Two mathematical modelling approaches are used in this research to describe the 

behavior of the synthetic community……………………………………………………………………………..…..51 

Figure 2.6 Schematic representation of the sub-domains included in the IbM………….……..…63 

Figure 2.7 Workflow for solving the algorithm for the IbM and the interactions between the 

model’s modules…………………………………………………………………………………………………………………68 

Figure 3.1 A CDC bioreactor setup, recently used for dental biofilm research……………..………78 

Figure 3.2 Imaging the members of the synthetic community on THYE + lactic acid 

medium……………………………………………………………………………………………………………………………….80 

Figure 3.3 Growth curves of the oral bacteria over 24 h on FMC medium……………..…………...81 

Figure 3.4 Reaction flux of V. parvula growth……………………………………………………………………..82 

Figure 3.5 Growth curves of the oral bacteria over 24 h in AFMC medium………………………….84 

Figure 3.6 Substrate affinity constants (Ks) for S. gordonii, S. mutans, A. oris, and N. subflava. 

…………………………………………………………………………………………………………………………………………...86 

Figure 3.7 Substrate affinity constant (Ks) for V. parvula………………………………………………….…87 

Figure 3.8 Growth and substrate utilisation of the synthetic community members over 24 h 

on AFMC, supplemented with either glucose or sucrose……………………………………………………..88 

Figure 3.9 Growth of S. mutans on AFMC supplemented with different sugars…………………..89 

Figure 3.10 Heat output from S. gordonii, S. mutans, and N. subflava on glucose and sucrose 

over 24 h recorded using a microcalorimeter……………………………………………………………………..90 



xii 
 

Figure 3.11 Maximum OD600nm of the synthetic community members at different initial pH 

over 48 h on AFMC medium.. ……………………………………………………………………………………………..91 

Figure 3.12 The final pH of the AFMC medium after 48 h of growth for each species of oral 

bacteria…………………………………………………………………………………………………………………………….…92 

Figure 3.13 Fluorophores selected to optimise minimal overlap……………………………………..….93 

Figure 3.14 A. oris planktonic cells visualised using FISH…………………………………………………..…94 

Figure 3.15 Members of the synthetic community visualised as monoculture planktonic cells 

using FISH…………………………………..……………………………………………………………………………………….95 

Figure 3.16 Members of the synthetic community visualised as monoculture biofilms using 

FISH…………………………………………………………………………………………………………………………………….97 

Figure 3.17 Visualising S. gordonii and S. mutans  in a mixed-species biofilm using confocal 

microscopy………………………………………………………………………………………………………………………….98 

Figure 3.18 Imaging the 5 species synthetic community biofilm using FISH, aided by spectral 

fingerprinting……………………………………………………………………………………………………………………...99 

Figure 3.19 Validating the amplification of gDNA target using designed cloning primers…..100 

Figure 3.20 Analysis of pDNA species extracts-post cloning using the NanoDropTM…………..101 

Figure 3.21 Standard curve generated using the PicoGreen™ assay kit…………………..…………102 

Figure 3.22 Amplification of genomic DNA from each species in wells using multiplex 

qPCR………………………………………………………………………………………………………………………………....103 

Figure 3.23 Visualising A. oris and S. mutans mixed-species biofilms grown anaerobically on 

AFMC………………………………………………………………………………………………………………………………..104 

Figure 3.24. Number of cells per 72 h biofilm, quantified using multiplex qPCR, to confirm an 

appropriate inoculation strategy………………………..……………………………………………………………..105 

Figure 4.1 Overview of the reactor strategy and goals of Chapter 4………………………………….117 

Figure 4.2. The OD600nm readings recorded over 9 days for all reactor experiments…………..119 

Figure 4.3 The change in glucose concentration in the reactor bulk over time for all reactor 

experiments………………………………………………………………………………………………………………………122 

Figure 4.4 The change in lactic acid concentration in the reactor bulk over time for all reactor 

experiments………………………………………………………………………………………………………………………124 

Figure 4.5 The pH variation in the CDC reactor bulk for each condition for all reactor 

experiments………………………………………………………………………………………………………………………125 

Figure 4.6. Relative abundance of each synthetic community member in the reactor bulk for 

reactor experiment 1………………………………………………………………………………………………………..130 



xiii 
 

Figure 4.7. Relative abundance of each synthetic community member in the reactor bulk for 

reactor experiment 2…………………………………………………………………………………………………………131 

Figure 4.8. Relative abundance of each synthetic community member in the reactor bulk for 

reactor experiment 3………………………………………………………………………………………………………..132 

Figure 4.9. Relative abundance of each synthetic community member in the reactor bulk for 

reactor experiment 4……………………………………………………………………………………………………..…133 

Figure 4.10. Relative abundance of each synthetic community member in the reactor bulk 

for reactor experiment 5…………………………………………………………………………………..………………134 

Figure 4.11. Relative abundance of each species in the synthetic community for reactor 

experiment 1………………………………………………………………………………………………………………....…135 

Figure 4.12. Relative abundance of each species in the synthetic community for reactor 

experiment 2…………………………………………………………………………………………………………………….136 

Figure 4.13. Relative abundance of each species in the synthetic community for reactor 

experiment 3…………………………………………………………………………………………………………………….137 

Figure 4.14. Relative abundance of each species in the synthetic community for reactor 

experiment 4. …………………………………………………………………………………………………………………..138 

Figure 4.15. Relative abundance of each species in the synthetic community for reactor 

experiment 5. …………………………………………………………………………………………………………………..139 

Figure 4.16. Imaging of the synthetic community biofilm over time for reactor experiment 1 

using FISH………………………………………………………………………………………………………………………….141 

Figure 4.17. Imaging of the synthetic community biofilm over time for each reactor condition 

using FISH…………………………..………………………………………………………………………………………….…143 

Figure 4.18 Viability of the synthetic community in both the reactor bulk and biofilm for 

reactor experiment 1………………………………………………………………………………………………………..144 

Figure 4.19 Viability of the synthetic community in both the reactor bulk and biofilm for 

reactor experiment 2………………………………………………………………………………………………………..145 

Figure 4.20 Viability of the synthetic community in both the reactor bulk and biofilm for 

reactor experiment 3…………………………………………………………………………………………………………146 

Figure 4.21 Viability of the synthetic community in both the reactor bulk and biofilm for 

reactor experiment 4…………………………………………………………………………………………………………147 

Figure 4.22 Viability of the synthetic community in both the reactor bulk and biofilm for 

reactor experiment 5…………………………………………………………………………………………………………148 



xiv 
 

Figure 5.1 Overview of the in silico strategy and goals in Chapter 5 to characterise S. mutans 

invasion…………………………………………………………………………………………………………………………….161 

Figure 5.2 Glucose concentrations with and without pH influence on the growth rate of 

synthetic community members…………………………………………………….…………………………………..164 

Figure 5.3 Lactic acid concentrations with and without pH influence on the growth rate of 

synthetic community members…………………………………………….…………………………………………..167 

Figure 5.4 The pH of the bulk with and without pH influence on the growth rate of synthetic 

community members….…………………………….………………………………………………………………………169 

Figure 5.5 Simulation of relative abundances in the reactor bulk without pH correction....171 

Figure 5.6 Simulation of relative abundances in the reactor bulk with pH correction……..…173 

Figure 5.7 Representation of a biofilm, its corresponding glucose, and lactic acid 

concentrations, and pH profile………………………………………………..………………………………….…….175 

Figure 5.8 Simulation of relative abundances in the synthetic community biofilm without pH 

correction………………………………………………………………………………………………………………………….178 

Figure 5.9 Simulation of relative abundances in the synthetic community biofilm with pH 

correction………………………………………………………………………………………………………………………….180 

Figure 5.10 Relative abundance of each synthetic community member simulated in the 

biofilm, plotted with abundances from experimental data. Simulations were with seeding of 

cells clustered by species………………………………………………………………..…………………………………182 

Figure 5.11 Relative abundance of each synthetic community member simulated in the 

biofilm, plotted with abundances from experimental data. Seeding strategy matched the 

reactor runs………………………………………………………………………………………………….…………………..184 

Figure 6.1 Strategy for using the modelling approaches to combat caries development…..200 

  



xv 
 

List of Tables 
 

Table 2.1 All bacterial strains used in this research, including the genotype and 

reference……………………………………………………………………………………………………………………….……32 

Table 2.2 All equipment used in this research, including the device application, name, and 

manufacturer………………………………………………………………………………………………………………………33 

Table 2.3 All qPCR primers and probes used in this research project…………………………………..41 

Table 2.4 Reaction steps for the qPCR experiments…………………………………………………………….43 

Table 2.5 All FISH probes used in this research project……………………………………………..………..45 

Table 2.6. The kinetic parameter for each bacterial species used in mathematical models…56 

Table 2.7 The boundaries for each of the bacteria species considered in the pH correction for 

species kinetic parameters………………………………………………………………………………………………….60 

Table 2.8 Diffusion coefficients for the soluble components considered in the IbM……………66 

Table 3.1 Selection of the synthetic community of oral bacteria, including names of strains, 

justification of selection, and references……………………………………………………………………….……76 

Table 3.2 Development of the AFMC medium to support the growth of the whole synthetic 

community………………………………………………………………………………………………………………………….81 

Table 3.3 The μmax and Ks values for all oral bacterial species…………………………………………..85 

Table 3.4 Inoculation strategy to be used for the in vitro experiments…………………………..…106 

Table 4.1 Reactor experiment conditions used in Chapter 4….………………………………………….115 

Table 4.2 A summary of the OD600nm readings across all reactor experiments………………..…120 

Table 4.3. A summary of the glucose concentrations across all reactor experiments…….….122 

Table 4.4. A summary of the lactic acid concentrations across all reactor experiments…….125 

Table 4.5 The pH recording across the 9-day reactor experiments for all conditions……..….128 

Table 5.1 Conditions tested using simulations in Chapter 5………………………………………………159 

Table 6.1 Summary of key findings and applications from all results chapters….……………….193 

 

 

 

 

 

 



xvi 
 

List of abbreviations 
 

[prod] Concentration of reaction products 

[S] Substrate concentration 

°C Degrees Celsius 

3D Three dimensions 

Ach Acetate 

ANOVA Analysis of variance 

ATP Adenosine 5’-triphosphate 

BHI Brain Heart Infusion 

Bp Base pairs 

C3H5O3
- Lactate 

C3H6O3 Lactic acid 

CDM Chemically defined medium 

CFU Colony forming unit 

CLSM Confocal Laser Scanning Microscopy 

Cm Centimetre 

CO2 Carbon dioxide 

CSTR Continuous stirred-tank reactor 

CV Crystal violet 

Deff Effective diffusion of chemical species 

EDTA Ethylenediaminetetraacetic acid 

EPM Extracellular polymeric matrix 

et. al and others 

FBA Flux balance analysis 

FISH Fluorescence in situ hybridization 

Form Formate 

g Gram 

Gana Gibbs free energy of anabolism 

Gcat Gibbs free energy of catabolism 

GDIS Gibbs free energy of dissociation 

gDNA Genomic DNA 



xvii 
 

GL-1 Gram/litre 

h Hour(s) 

H+ Hydrogen ions 

H2 Hydrogen 

H2CO3 Carbonic acid 

H2O Water 

H2O2 Hydrogen peroxide 

HCl Hydrochloric acid 

IBM Individual-based model 

K Kelvin 

keq Equilibrium constant 

Kj Kilojoule 

Ks Monod substrate affinity constant 

L Litre 

M Molar 

Mbac Maintenance term 

Mg Magnesium 

min Minute 

mm Millimetre 

mM Millimolar 

mmol L-1 Millimole per litre 

NaOH Sodium hydroxide 

NH3 Ammonia 

nm Nanometres 

nM Nanomolar 

O2 Oxygen 

OD Optical density 

OH+ Hydroxyl ion 

OVG Overall growth equation 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

pDNA Plasmid DNA 



xviii 
 

PFA Paraformaldehyde 

pHmax Maximum pH boundary 

pHmin Minimum pH boundary 

pHopt Optimum pH boundary 

Prop Propionate 

qPCR Quantitative polymerase chain reaction 

rpm Revolutions per minute 

rRNA Ribosomal RNA 

s Second(s) 

SD Standard deviation 

SDS Sodium dodecyl sulphate 

T Temperature 

TAE Tris-acetate-EDTA 

THYE Todd Hewitt Yeast Extract 

UK United Kingdom 

USA United States of America 

UV Ultraviolet 

v/v Volume/volume 

xg G-force 

Yxs Growth yield 

μ Micro 

μ (Bacterial growth kinetics) Growth rate 

μL Microlitre 

μm Micrometre 

μM Micromolar 

μmax Maximum specific growth rate 

μw Microwatt 

τ Residence time 

 



1 
 

Chapter 1- Introduction and literature review 
 

1.1 Dental caries, a global health and economic burden 

Dental caries, also known as tooth decay, is characterised by the localised destruction of 

mineral tissues of teeth. Caries is the most prevalent, non-communicable disease worldwide 

(Pitts et al., 2021b), with an estimated 2.3 billion untreated cases globally (Bernabé & 

Marcenes, 2020). Caries develops when a high frequency of sugar is eaten, leading to acid 

production from oral bacteria, and a lack of fluoride, which is a natural element that 

strengthens teeth and prevents decay (Medjedovic et al., 2015). Caries progression can lead 

to endodontic infections and acute pain when oral hygiene is not maintained using safe 

products i.e., toothbrushes and fluoridated toothpaste, and an excess of sugar is consumed 

(Paredes et al., 2021). The estimated global treatment costs attributed to caries is 

approximately $298 billion per annum (Listl et al., 2015). Caries has been known to be a 

psychological burden, directly affecting quality of life. This cascades into a knock-on effect, as 

those suffering from poor mental health, are more likely to neglect their oral hygiene, leading 

to disease progression (Knapp et al., 2021). 

Caries is associated with biofilms that form on teeth, known clinically as dental plaque.  These 

dental biofilms remain relatively stable in species composition over time, a term called 

microbial homeostasis, which is maintained by a balance in synergistic and antagonistic 

interactions between microbes (Marsh, 2006). Diets that are high in sugar concentration and 

frequency, along with poor oral hygiene, lead to oral dysbiosis. Here, the microbial 

composition changes. In these conditions, acid production from commensal organisms, i.e., 

those belonging to the genera Streptococcus and Actinomyces, paves the way for acidogenic 

species, including Streptococcus mutans and Scardovia wiggsiae, to overpopulate dental 

biofilms (Takahashi & Nyvad, 2016) (Figure 1.1). These acidogenic species produce more acid, 

which can demineralise teeth at a pH of approximately 5.5 (known as the critical pH level) and 

below (Dawes, 2003). The loss of calcium and phosphate in the early stages is reversible, as 

these ions can deposit into the crystal lattice from saliva  (Hamba et al., 2020). Persistent acid 

production and the resulting demineralisation lead to white spot lesions, the first clinical signs 

of caries development (Khoroushi & Kachuie, 2017). Progression of caries leads to the 

structural integrity of the tooth being compromised, resulting in cavities (Roberts et al., 2022). 
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Once cavities form, bacteria invade dentinal tubules, causing endodontic infection (Love & 

Jenkinson, 2016). This leads to severe pain and inflammation. If untreated, oral bacteria access 

the base of the tooth, resulting in periapical abscess formation. These can prove life-

threatening (Erazo & Whetstone, 2022). Later stages of caries development also have a 

detrimental effect on other parts of the mouth. The waste products from fermentation, 

including acid production, contribute to gingivitis, gum recession and inflammation (Nyvad & 

Takahashi, 2020).  

 

 

Figure 1.1 Illustration of caries development through cariogenic biofilm formation. A) 
Cariogenic dental biofilm, comprised of an overpopulation of acidogenic species e.g., S. 
mutans, lowers the local pH. B) This leads to demineralisation of teeth, particularly the loss of 
calcium and phosphate. C) This net loss occurs at an approximate pH of 5.5 for enamel and 
6.5 for dentin, known as the critical pH level. Figure adapted with permission through creative 
common license (Balhaddad et al., 2019). 
 

Numerous oral hygiene products are used to combat the global health and economic 

problems arising from caries, by reducing the progression before severe problems develop. 

The most common method is the use of toothbrushes to remove dental biofilms (Otten et al., 

2012). The mechanical motion of biofilm disruption and removal is effective at controlling 

dental biofilm development in areas that the bristles can not access. Successful removal using 

manual toothbrushes varies significantly based on technique (Slot et al., 2012).  The use of 
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electric toothbrushes is also used to fight caries, but whilst they negate some of the variances 

in success seen with manual toothbrushes resulting from human error in technique, an 

improvement in efficacy is not universally agreed upon. In one study, electronic toothbrushes 

showed an 86% reduction in plaque index vs 85% with manual toothbrushes (Slot et al., 2012). 

The use of dental floss is effective at removing interproximal plaque that toothbrushes do not 

have access to, but difficulty in technique leads to a low compliance of between 10-30% 

among adults (Sambunjak et al., 2019). These products can be combined with fluoridated 

toothpaste. The use of fluoride reduces demineralisation, as the enamel recovers lost minerals 

as fluorapatite. Fluorapatite forms when fluoride is present in an acidic environment and 

reacts with hydroxyapatite (Daruich & Brizuela, 2022). Hydroxyapatite is a naturally occurring 

mineral form of calcium apatite and the main component of dentin and enamel (O’Hagan-

Wong et al., 2022; Habibah et al., 2022). Fluoride also acts as an antimicrobial by inhibiting F-

ATPase, a group of enzymes that bacteria use to catalyse the hydrolysis of phosphate bonds 

to form adenosine triphosphate (Zhang et al., 2019). Fluoride affects the synthesis of 

extracellular polymeric substances (EPS), which are important in biofilm formation. 

Oral supplementation strategies have been researched for their anti-cariogenic effect. The use 

of xylitol as a replacement for sugars, or the supplementation of xylitol in the diet, has been 

associated with a significant reduction in caries incidence (Horst et al., 2018). This anti-caries 

was linked to the reduction of S. mutans concentration in the saliva, where the species 

metabolised xylitol-5-phosphate, shown to be toxic to the cell (Tanzer et al., 2006.). Recent 

evidence suggests that previous studies on the positive effects of xylitol were flawed. There is 

a lack of evidence in human cases and use in animal models has previously resulted in 

hyperglycaemia and intestinal dysbiosis (Janket et al., 2019). The use of probiotics and 

probiotic-related bacteria, including Lactobacillus reuteri (now Limosilactobacillus reuteri) 

have also been shown to reduce S. mutans invasion of dental biofilms (Baca-Castañón et al., 

2015), but the efficacy of these treatments and the ability to get probiotic bacteria to establish 

has varied in success (Cagetti et al., 2013). 

Approaches to combat caries can be assisted with the use of microbial risk management to 

prevent caries development. Studies have demonstrated that diet, bacterial profile i.e., the 

amount of S. mutans or S. wiggsiae in plaque, fluoride intake, and brushing/flossing teeth, all 

intervened in caries development in those undergoing orthodontic treatment (Beheshti, 

2021). The resilience of the oral microbiome is identified as a criterion for characterising a 
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healthy microbiome. This is particularly relevant to the oral microbiome as oral products are 

routinely used and microbial dysbiosis is strongly linked to caries development (McBain et al., 

2019). Microbial risk assessments (MRA) have been used to help prevent the undesirable 

effects of products on the oral microbiome (Métris et al., 2022). Understanding the effect of 

fluoride-containing toothpaste on microbial perturbation, the reversibility of perturbations 

and the understanding of preserving desirable species in the dental biofilm, all help in 

offsetting the contribution of oral dysbiosis in caries development. This means that the 

development of oral MRA is important as they help further our understanding of how to 

protect a commensal oral microbiome. Protecting commensal species that have health 

benefits (Section 1.2.3) and preventing the overpopulation of cariogenic species (Section 

1.2.4) through the use of antimicrobial actives, would help prevent caries progression 

(Inquimbert et al., 2019; Philip et al., 2018). 

1.2 The oral microbiome, role in health and disease 

1.2.1 The complexity of the oral microbiome 

The oral microbiome is an open, natural microbial system. It is the second most diverse 

microbiome in the body, consisting of over 700 different species of bacteria, as well as fungi, 

archaea protozoa and viruses (Kilian et al., 2016). The bacteria found within the oral 

environment were some of the first observed. This dates back to initial observations of dental 

biofilms, using primitive microscopes, by Van Leeuwenhoek in 1680 (He & Shi, 2009). 

The colonisation of the oral environment occurs at or very soon after birth, before hard tissues 

i.e., teeth are present. The microbial diversity begins at birth, where the delivery method can 

affect the oral microbial composition (H. Li et al., 2019). As hard tissues start to form, 

pioneering colonisers e.g., Streptococcus, Actinomyces, Neisseria and Veillonella populate the 

tooth surface and salivary pellicle (Huang et al., 2011). The oral cavity is the primary route of 

entry into the digestive system and respiratory tracts for both commensal and pathogenic 

microorganisms. Up to 108 microbes are present per millilitre of saliva (Philip D Marsh et al., 

2015). The diversity of the oral microbiome is contributed to by constant contact with food 

intake and breathing.  Bacterial cells are present as either free-living planktonic cells or 

assembled into a biofilm. They populate different tissue surfaces within the oral environment, 

e.g., the tongue, gums, and teeth. 
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The oral environment itself consists of several different tissue types and varying compositions 

of the oral mucosa. Areas of the oral cavity have varying microenvironments, contributing to 

the diversity and complexity of the oral microbiome. The tooth surface is the only non-

shedding surface in the oral cavity. This provides an opportunity for biofilm formation, leading 

to a higher diversity of species compared to saliva or the tongue.  The presence of multiple 

microenvironments within the mouth leads to species abundance in sample collections 

differing, depending on where they are taken from (Krishnan et al., 2017). Species abundance 

differs not only within different sites of the same human host but also from person to person. 

The advancement of new technologies, including next-generation genomic sequencing (Caselli 

et al., 2020a), has shed light on the microbial populations in different areas of the mouth 

(Figure 1.2), and the complexity of interspecies interactions.  Anaerobes, including 

Actinomyces, Veillonella, and Fusobacterium, are found in higher abundance in subgingival 

dental biofilms compared to supragingival biofilms, as there is a lower concentration of oxygen 

in this environment (Caselli et al., 2020b). Rothia dentocariosa and Streptococcus gordonii 

preferentially colonise teeth, whilst Streptococcus salivarius has been predominantly found 

on the tongue dorsum. Streptococcus mitis populate numerous areas of the oral cavity and 

are almost universally found in patient samples (Aas et al., 2005), whilst Clostridia species have 

been found to reside preferentially in the tongue dorsum (Dong et al., 2018). Furthermore, 

species that have close metabolic interactions, e.g., that between Streptococcus and 

Veillonella, are often found in similar microenvironments with the oral cavity (Abram et al., 

2022). The latter is not able to metabolise carbohydrates to grow and relies on lactic acid 

produced by other oral species e.g., those belonging to the Streptococcus genus, to grow in 

the mouth.  Overall, the diversity of the oral microbiome shows the importance of defining 

microbial relationships and their effect on the oral environment i.e., acid production leading 

to enamel demineralisation. 



6 
 

 
Figure 1.2 Microbial diversity in the oral environment. Genera of bacteria populate different 
areas of the oral cavity. Streptococcus, Neisseria and Veillonella are abundant in numerous 
areas of the oral cavity, whilst Gemella is associated with specific areas, including the buccal 
mucosa (Withers, 2019).Figure adapted with permission through creative common license. 
 
 

1.2.2 Structure and function of dental biofilms 

Bacterial biofilms are believed to be the preferred mode of bacterial existence in nature and 

can exist as either monospecies or multispecies. Almost all biofilms found within the body e.g., 

dental biofilms, are multispecies and are formed when cells adhere to a surface and/or each 

other within a self-produced extracellular polymeric matrix (EPM). The EPM can constitute up 

to 90% of the dry mass of biofilms (Bogino et al., 2013). The protection offered by this matrix 

allows the cells to thrive when compared to planktonic cells. There are numerous advantages 

for cells to exist within a biofilm structure, including the recycling of nutrients and enhanced 

intracellular communication (Flemming & Wuertz, 2019). Furthermore, the matrix maintains 

cells near host tissue, which facilitates interactions between microorganisms and the host. 

This can impact health and disease (Jakubovics et al., 2021). The bacterial composition of the 
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biofilm affects both its physical and chemical characteristics and influences how it affects the 

surrounding tissue. 

There are several steps in the formation of dental biofilms (Figure 1.3), governed by numerous 

physical, biological, and chemical processes. Initial stages of dental biofilm formation on teeth, 

following brushing, include early coloniser bacteria, e.g., Actinomyces and Streptococcus, 

coming into contact with the enamel surface. This surface is coated by a conditioning layer 

known as the salivary pellicle. The pellicle is formed of proteins, glycoproteins, and lipids 

(Chawhuaveang et al., 2021). Initial adherence of cells to the pellicle occurs. The reversible 

attachment of bacteria develops into irreversible attachment through the use of surface 

proteins. This initial attachment is variable depending on the presence of nutrients, 

competitor cells, etc. A three-dimensional layer can be established. This adds to the structural 

complexity of dental biofilms, where microchannels and gradients of nutrients, oxygen and 

heat appear (Proctor & Relman, 2017; Simón-Soro et al., 2013). Cells aggregate and spread to 

nearby environments and the formation procedure can then occur again  (Melaugh et al., 

2016). 

Figure 1.3 Processes governing dental biofilm formation. Salivary pellicles form on teeth after 
saliva comes into contact with the enamel surface. This pellicle influences the adhesion and 
colonisation of bacteria to the enamel surface. Both reversible and irreversible cell attachment 
of early coloniser bacteria occurs. Bacteria within the dental biofilm are involved in physical 
interactions and the exchange of nutrients as maturation occurs. Micro-colonies develop into 
macro-colonies, and dispersal from the dental biofilm occurs (Gedif Meseret, 2021). Figure 
adapted with permission through creative common license. 
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The depth and structure of dental biofilms contribute to their protection against antibiotics 

and disinfectants. This is due to the difficulty of penetrating the biofilm and killing off cells in 

the deeper layers (Kouidhi et al., 2015). Cells within the dental biofilm are between 10-1000 

times more resistant to antibiotics than their planktonic counterparts (Sharma et al., 2019). 

This means understanding dental biofilm behaviour is important in combatting their role in 

oral diseases i.e., caries and periodontitis. As these biofilms mature, they can infect tissues 

surrounding the tooth, causing inflammation (Jakubovics & Kolenbrander, 2010; Strauss et al., 

2019). Uncontrolled dental biofilms can also influence peri-implant mucositis, characterised 

by inflammation and bleeding, and peri-implantitis (Mombelli & Décaillet, 2011), which results 

in bone destruction. This included bone that supports dental implants, often leading to 

implant failure. 

1.2.3 Health-associated oral species in dental biofilms 

In a health-associated oral environment, dental biofilms consist of a balanced microbial 

cohort, where commensal organisms help prevent the domination of cariogenic species (Oh 

et al., 2020). Commensal oral bacteria are those that exist in the oral environment in a 

balanced state, not driven towards disease and dysbiosis (Khan et al., 2019). They prevent 

pathobionts (opportunistic organisms) from dominating the oral microbiota. Oral commensal 

bacteria include species e.g., Actinomyces oris, an early coloniser of freshly cleaned teeth 

(Mishra et al., 2010), and S. gordonii (Nairn et al., 2021).  These were found to be in high 

abundance in normal, healthy dental biofilms by Palmer et al., (2014), who studied the 

microbiome composition using 16S rRNA gene analysis. Similar levels of these genera were 

also observed in a study by Takahashi and Nyvard et al., (2008). The proportion of bacterial 

sequences was similar across individuals classified as possessing a healthy oral microbiome. 

This supports the concept of a core microbiome in health (Zaura et al., 2009). 

These commensal organisms are often found in high abundance in dental biofilms and once 

they have bound to the tooth surface, offer a more complex environment that other species 

can bind to (Baker & Edlund, 2019). Certain oral species, including S. gordonii, Streptococcus 

oralis and S. sanguinis, can produce hydrogen peroxide. This is antagonistic to other bacterial 

growth, including that of cariogenic-related species e.g., S. mutans (Zheng et al., 2011). Whilst 

numerous commensal bacteria produce acid, contributing towards caries development, 

species e.g., S. salivarius, Actinomyces naeslundii and S. gordonii can utilise arginine to elevate 
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the local pH (Burne & Marquis, 2000). S. gordonii and S. sanguinis produce ammonia from the 

hydrolysis of ammonia and urea, increasing the pH of the local environment, which 

contributes towards tooth remineralisation (Nascimento et al., 2009). Furthermore, early 

colonisers restrict access to the host epithelium, by competing with cariogenic species for 

nutrients and directing foreign microbes away from enamel via saliva (Valm, 2019a). The 

activity of these commensal microorganisms means they play an important role in preventing 

dysbiosis by preventing the overpopulation of aciduric species. Understanding the 

interactions between commensal, early colonisers, and later cariogenic species, as well as 

preventing a shift in abundance away from the health-associated bacteria, is important in 

preventing caries development. 

Commensal bacteria within dental biofilms have been associated with positive health effects 

outside of caries prevention.  Genera i.e., Veillonella and Neisseria, are capable of the 

denitrification of nitrate to nitrite, and then to nitrogen, using bacterial nitrate reductases 

(Doel et al., 2005). Saliva is rich in nitrate, particularly after the consumption of green 

vegetables, indicating that the mouth is a favourable environment to see the benefits of these 

denitrifying species (Ma et al., 2018). Acidified nitrite has been shown to have an antimicrobial 

effect on oral pathogens that contribute towards periodontitis. This includes Fusobacterium 

nucleatum (Allaker et al., 2001). Evidence suggests that nitric oxide produced at significant 

enough levels can play a regulatory role in inflammatory disorders of gum tissue (Schreiber et 

al., 2010).  Nitric oxide has been shown to help with lowering blood pressure and reducing 

ischemia-reperfusion damage. When the oral microbiota was disrupted with mouthwash, 

some of these health benefits were lost (Petersson et al., 2009a). Koch et al., (2017) 

demonstrated that disruption of the oral microbiome by using an antibacterial mouthwash 

led to a reduction in nitrate reduction, and an increase in blood pressure in treated 

hypersensitive men and women. These studies provide evidence that oral species involved in 

dental biofilms have health benefits beyond the local environment. Protecting commensal 

microorganisms within the mouth is important in reducing the progression of diseases. 

Therefore, there have been strategies to increase the concentration of several bacteria. 

Genera that offset oral disease-associated activity and have been of interest to increase 

through probiotic treatment, include Bifidobacterium (Invernici et al., 2018). They do so by 

reducing some of the inflammatory effects of Porphyromonas gingivalis, which contributes 

towards periodontitis (Y. Zhang et al., 2022a). Lactobacillus acidophilus LA5, has also been of 
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interest in probiotic treatment as it has been observed to downregulate mfa1 and fimA, which 

are virulence factors implicated in gingivitis (Y. Zhang et al., 2022b). 

1.2.4 Disease-associated oral species in dental biofilms 

Despite commensal oral bacteria in dental biofilms providing health benefits to the local 

environment and beyond, they can also contribute to negative health outcomes. A. oris and 

Actinomyces israelii are early colonisers of freshly cleaned teeth and are considered 

commensal microorganisms universally found in the common oral microenvironment. 

However, on rare occasions, these species can lead to actinomycosis, leading to abscess 

formation and pain (Valour et al., 2014). A study of mouse models linked A. naeslundii 

peptidoglycan to the induction of inflammatory cytokine production. This led to bone loss, 

comparable to that induced by P. gingivalis (Sato et al., 2012). It should be considered that 

mouse models do not directly relate to the human oral environment. 

Oral bacteria form complex networks with intricate metabolic, physical, and chemical 

interactions between species (Figure 1.4). This includes interactions between commensal 

bacteria and pathobionts. The production of acids by early colonisers paves the way for 

acidogenic species to thrive. Poor oral hygiene and ecological factors in the oral environment, 

i.e., high sugar concentrations occurring through eating a sugar-rich diet, can lead to the 

colonisation and overpopulation of dental biofilms by these acidogenic species, including S. 

mutans and S. wiggsiae (Keller et al., 2017). 
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Figure 1.4 Metabolic pathways of oral bacteria are complex and have varying effects on caries 
development. In this Figure, pathways are represented by arrows and the associated health 
effects related to these pathways can be seen at the bottom. One example is the metabolism 
of carbohydrates, leading to the production of acids that can be broken down further into 
weaker acids (red). This overall process had been related to caries development (Takahashi, 
2015). Figure adapted with permission through creative common license. 

 

S. mutans produces exopolysaccharides from sucrose. This does not occur when grown on 

other sugars e.g., glucose (Costa Oliveira et al., 2021a). This makes S. mutans suited to thrive 

within dental biofilms, as EPS production by S. mutans on sucrose improves the ability to 

adhere to surfaces and increases the physical integrity/stability of the biofilm (Cai et al., 2018). 

The lowering of pH by these cariogenic species favours aciduric bacteria, which produce even 

more acid. Acid production, leading to low pH, leads to bacterial cell stress, including 

compromising the structural integrity of cell membranes (Guan & Liu, 2020a). This leads to 

microbial dysbiosis in a positive feedback loop which drives caries progression, as aciduric 

microorganisms e.g., S. mutans and Bifidobacteria thrive in this lowered pH environment 

(Valm, 2019b). S. mutans can adapt to acidic conditions, due to an acid adaptation response, 

where it can alkalinize the cytoplasm to reduce cell stress (Baker et al., 2017a). S. mutans is 

protected against hydrogen peroxide, produced by commensal oral species, by Veillonella 

parvula, which thrives by consuming the lactic acid produced by S. mutans (Zhou et al., 2021a). 

This synergistic relationship likely contributes to the increased abundance of V. parvula in 

caries-associated dental biofilms (Dame-Teixeira et al., 2021).  The prevalence of S. mutans 

and V. parvula in caries-associated patients was also observed by Gross et al., (2012). In this 

study, PCR and 16S rRNA gene sequence identification was used on samples from 72 patients, 

36 with caries and 36 healthy control patients (Figure 1.5). The results also found a decrease 
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in species diversity within and between patients’ dental biofilms as caries progressed. This co-

association was also observed more recently by Abram et al., (2022), who found that V. 

parvula, S. mutans, A. naeslundii and Capnocytophaga gragranulosa were present in 

significantly higher levels within the diseased roots of 7 different people with caries lesions, 

although abundance varied dramatically. 

Figure 1.5 Figure demonstrating the abundance of bacteria at phylum, genus, and species 
level. These were quantified using PCR and 16S rDNA sequence identification at different 
stages of caries from a study of 72 patients by Gross (2012). S. mutans and V. parvula were 
two species found in elevated abundances in caries-associated patients, whilst Proteobacteria 
and Actinobacteria generally decreased during the progression of caries. Figure adapted with 
permission through creative common license. 
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1.3 Experimental-based modelling approaches to study dental biofilms 

1.3.1 The use of bacterial communities to understand dental biofilm in caries 

Understanding the behaviour of dental biofilms that contribute to caries progression, requires 

the use of bacterial communities. These have varied from complex, mammalian-derived 

communities, to single species grown in the laboratory. 

Sampling microbial communities straight from human patients offers an understanding of 

species' behaviour in the host environment. A study by Cruz de Jesus et al., (2021) took 

supragingival plaque and swab samples from 80 children (40 caries-free and 40 with caries) to 

understand the microbial composition differences.  This study was able to determine that the 

fungal species Candida dubliiensis and Candida tropicalis were more abundant in non-caries 

associated patients. An alternative to sampling from humans is the use of animal models. A 

study by Crowley et al.,  (1999) used rat models to inoculate S. mutans into the oral 

microbiome and track caries progression in extracted teeth using x-ray spectrometry. This 

study provided information on what occurred in situ, when compared to the more artificial, in 

vitro models, but did not reflect the human oral environment as well as the study by de Jesus 

et al., (2021). This is because of the difference in the host response and species behaviour 

between human and animal models (Bibiloni, 2012; Shi et al., 2019). Also, there is an ethical 

aspect to consider when using animal models, such as in this study. These research studies 

often cause an induced disease state and, in many cases, the animals must be euthanised. 

Microcosm biofilm models, where communities are derived from human samples, are often 

used to study dental biofilms. They aim to achieve a bacterial diversity and composition similar 

to that found in vivo. These models can offset some of the ethical implications seen in human 

and animal models. Culturing artificial biofilms allow for far more sampling opportunities, as 

a significant number of biofilms can be cultured from minimal saliva samples. A study by Li et 

al., (2021) investigated the influence of nutrient and surface properties on microbial 

composition. This research demonstrated that the biofilm cultured from saliva collected from 

a patient, had several species struggle to thrive on a rich brain heart infusion medium without 

the addition of growth factors i.e., vitamin K.  This showed that the medium type influences 

species diversity. The study also found that substrate type influenced the community 

composition. Using reconstructed human gingiva instead of hydroxyapatite or titanium, led to 
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a more similar microbial profile to that of saliva. This demonstrated that the human host 

environment plays an important role in oral ecology. 

To eliminate the ethical implications of human and animal models, synthetic biofilms are often 

used. These biofilms do not fully resemble extracted dental plaque, but they allow for 

selecting specific species of interest to study and choosing the number of species within a 

community. Furthermore, they allow for the introduction of oral species into the biofilm at 

controlled times. This level of control allows for the simplification of biofilms, which is 

particularly useful when the research aims to understand drivers of microbial composition 

changes and inter-species interactions. Synthetic communities that have been used to study 

caries development have varied significantly. This includes studying S. mutans genes involved 

in biofilm formation using gene deletion (Yoshida & Kuramitsu, 2002). These simple models 

are useful in characterising the species of interest, which can be used to help elucidate what 

their role in vivo might be, but they are too simple to capture any inter-microbial interactions 

which are core to dental biofilms. Furthermore, species behave differently in monoculture and 

so findings on isolated species may not be the same as they would in a mixed-species 

environment. To circumvent this problem, multi-species synthetic biofilms have been used. 

Studies that use these synthetic biofilms include the testing of phytocompounds on a mixed-

species biofilm comprising species from the Streptococcus and Rothia genera (Sateriale et al., 

2020).  The difference in resistance to antimicrobial actives between single and multi-species 

biofilms in this study highlighted the need to include a sufficient number of oral species within 

in vitro biofilm models. A study by Lyu et al., (2021)  showed ursolic acid effectively inhibited 

the growth of a synthetic community containing several oral Streptococci, including S. mutans, 

by reducing EPS synthesis. Complex communities containing 14 species, including 

Streptococcus gordonii, Actinomyces oris, and Veillonella parvula, have been used to test the 

ability of glycerol at different concentrations in strengthening the probiotic effect of 

Limosilactobacillus reuteri on dental biofilms. This study by Van Holm et al., (2022) used a 

chemostat model and concluded that there was a synergistic relationship between glycerol 

and L. reuteri. Glycerol supplementation led to the reduction of pathobionts in the dental 

biofilm, including P. gingivalis and F. nucleatum. The use of numerous species in this study 

was more representative of the dental biofilm, which has a diverse representation of oral 

species, compared to those using simple biofilm i.e., that by Yoshida et al., (2002). These 

studies show the promise of synthetic oral communities in defining drivers of disease over 
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dental biofilm samples. Also in testing antimicrobial actives, provided they are complex 

enough to represent the microbial ecology occurring in the in vivo environment. 

1.3.2 In vivo modelling of dental biofilms 

In vivo models are often used in the growth and characterisation of dental biofilms to best 

characterise their role in caries. These models attempt to understand changes in response to 

different anti-cariogenic products, within the natural environment that they reside. 

One study used nail varnishes containing different compounds including fluoride on bovine 

enamel surfaces that were worn intra-orally (Salomão et al., 2016). This was to monitor the 

effectiveness of these compounds on species implicated in the carious demineralisation of 

enamel. This study was useful as the sample was exposed directly to the oral environment. 

This avoided the use of synthetically controlled parameters e.g., the use of artificial media 

instead of saliva. These models are invasive and require compliance from enough patients. 

Combinatory approaches between in vivo and in vitro models have also been attempted as a 

balance between the two (Klug et al., 2016). A mouth-to-model approach was used to 

demonstrate that biofilms from the in vivo environment, could be cultured in the laboratory 

under more simplified conditions. This study cultivated dental biofilms using a drip flow 

reactor and noted that Streptococci and Veillonella remained dominant after this transfer, 

with anaerobic species including Actinomyces, Prevotella and Rothia increasing in abundance. 

This demonstrated the sensitivity of oral composition to changes in environment between in 

vivo and in vitro, but also suggests that oxygen is an important parameter to consider in such 

models. 

1.3.3 In vitro modelling of dental biofilms 

In vitro models have been used to study the role of dental biofilm communities in caries 

development, discussed in Section 1.3.1. These models avoided the ethical implications and 

difficulty with obtaining samples that come with in vivo model. In vitro models routinely used 

include continuous flow models and more modern models e.g., microfluidic devices. Both can 

supply constant nutrients to microbial communities. Commonly used growth models also 

include static biofilm models i.e., microtiter plates that do not have this constant media supply 

(Figure 1.6) The type of models used are selected based on the goals of the research study 

they are employed in. They help characterise the activity of bacteria in different conditions, 
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to help us understand their impact on each other and the local environment. These factors 

can contribute towards disease in vivo i.e., acid production and demineralisation. 

Figure 1.6 Different types of models used to grow dental biofilms. A) Chemostat models offer 
the ability to flow medium in and out of the reactor, but at the cost of low throughput. B) 
Cheaper, more cost-effective models exist including static microtiter plate models, but they 
lack characteristics of the in vivo environment, e.g., the flow of nutrients. C) The use of models 
is advancing, with microfluidic devices now becoming popular (J. L. Brown et al., 2019). Figure 
adapted with permission through creative common license. 

 

Closed systems, where nutrients do not flow in or out of the model, are used for growth in 

some studies. They usually have a lower chance of contamination and are cost-effective.  

However, they do not resemble the oral environment, which is an open system, where 

nutrients are continuously fed and removed. One closed system commonly used is a microtiter 

plate or a multiple-well plate. These are used widely in dental biofilm research and have been 

utilised by Roberts et al., (2002) for the growth of oral pathogens S. mutans and P. gingivalis. 

This study successfully grew biofilms comprising these two species, demonstrating a low-cost, 

albeit labour-intensive, reproducible laboratory model. Microtiter plates offer limited control 

over the flow rate, which is important in the in vivo environment, and feeding in batch is not 

representative of the supply of nutrients to dental biofilms from saliva in the mouth. The study 

by Roberts (2002) led to more rapid growth of S. mutans and P. gingivalis initially, then a fall 

due to nutrient limitation which is not seen in the oral environment. The model also only 

considered two species, insufficient in appropriately representing dental biofilms. This was in 

contrast with a study by Guggenheim et al., (2004) who developed the Zurich model 

(multispecies microtiter plate studying dental biofilms) to grow 6 oral species. This model was 

used to observe the spatial arrangement and associative behaviour of multispecies biofilms, 
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using species-specific probes in multiplex fluorescence in situ hybridization (FISH). The Zurich 

model provided the framework for the research by Amann et al., (2012). This study used a 10-

species community (instead of 6) and different modified saliva media to identify the 

nutritional needs of subgingival biofilms. This research investigated biofilm composition and 

the use of FISH to observe biofilm structure. The results showed that Treponema denticola 

struggled to establish in a dental biofilm when using media containing low or no heat-

inactivated human serum. Using 50% heat-inactivated human serum resulted in significantly 

thicker and more stable biofilms, and a species abundance more similar to that in vivo 

compared to media with less human serum. The model allowed for characterising interspecies 

independence, where F. nucleatum had a very strong dependency on Streptococci and needed 

them in the local environment to establish. T. denticola, P. gingivitis and Tannerella forsythia 

occupied the top layer of dental biofilms, demonstrating the promise of FISH in identifying the 

spatial preference of oral species. 

Open systems are more prone to contamination; however, they better mimic the oral 

environment.  They enable fresh culture medium to be supplied and better control over 

conditions e.g., flow rate and feeding profile of cells. A device that has been used in dental 

biofilm research is the Modified-Robbins device (MRD). The MRD is a biofilm model that allows 

for the formation of microbial biofilms on various substrates under controlled flow conditions. 

This has been used to study the removal efficacy of a disinfectant in oral medicine (Coenye et 

al., 2008). This study found NitrAdine®, an anti-bacterial agent, was effective in reducing the 

cell counts of Candida albicans, Staphylococcus aureus, S. mutans, and Pseudomonas 

aeruginosa in biofilms. This model allowed simultaneous biofilm formation by different 

bacteria and within this study, it was possible to test several different substrata and growth 

media. There are drawbacks to using the MRD as a growth model. Particularly, the presence 

of a substrate gradient along these devices and less control over variables, including pH 

monitoring. The constant depth film fermenter (CDFF) is a high throughput biofilm growth 

model that produces biofilms of defined thickness using a scraper. It allows for the continuous 

feeding of media into the reactor. A CDFF has been used by Roberts et al., (2021) to show that 

starch and sucrose exposure to dental biofilms, led to significantly more demineralisation and 

mineral loss, compared to sucrose alone, in the presence of fluoride. This was not seen when 

fluoride was absent. CDFF reactors provide more control over the MRD or closed systems, 

including flow rate modification and reactor bulk agitation to prevent nutrient gradients. It 
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has the specific advantage of allowing for biofilm growth on a solid substratum, with nutrients 

being supplied continuously in a thin liquid that trickles over the surface. A drawback is that 

the size of the biofilm is predetermined. The physical intervention on exact biofilm size is 

something that is not controlled uniformly in the oral environment (although there is some 

level of natural control with mechanical movements e.g., the tongue over teeth). This does 

reduce the ability of the model to replicate the growth of dental biofilms similar to that in the 

environment. 

The CDC biofilm is a continuously stirred tank reactor (CSTR) that has recently been shown to 

be useful in dental biofilm research. The reactor can hold up to 24 coupons for biofilm growth. 

The coupons can be composed of material relevant to dental biofilm research different i.e., 

hydroxyapatite, and provide multiple sampling opportunities. Furthermore, the conditions of 

the model are flexible. One example is the control of the shear stress on the biofilm through 

the controlled agitation speed of the magnetic stir bar.  Greater control on the feeding profile, 

including medium flow rate, and feeding of multiple media types, allows for use of the model 

in investigating dental biofilm compositional changes under varying conditions. This includes 

sucrose pulsing, which has been utilised by Rudney et al., (2012). The results showed that 

sucrose pulsing led to a decrease in oral species diversity, with the abundance of 

Streptococccus and Veillonella increasing. Whilst this study involved saliva, the reactor is also 

effective at growing pure-culture bacteria that are not human or animal-derived. This has 

been done by Song et al., (2017), working with mono and mixed cultures of F. nucleatum and 

P. gingivalis under different flow rates. This research used varying flow rates and found that 

dynamic flow led to lower bacterial adherence and that flow rate did not affect the ability of 

chlorhexidine to decrease bacterial counts. 

A study by An et al., (2022) successfully used the CDC reactors to grow, maintain and test the 

reproducibility of a diverse oral microbiota. The reactors were operated under conditions 

mimicking the oral environment. This included maintaining a temperature of 37 °C, similar to 

that of the oral environment, using a flow rate of 0.5 mL min-1 for the medium similar to that 

of saliva, and using hydroxyapatite disks as a surface for biofilm growth (mimicking enamel). 

In this model, saliva inoculum from 6 healthy volunteers, to represent the oral microbiome, 

was used to grow biofilms on supplemented brain heart infusion. The study was able to 

cultivate the six major phyla previously identified as the core saliva microbiome. This included 

Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Spirochaetes and Fusobacteria. The 
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growth model was used in combination with analytical techniques, including confocal laser 

scanning microscopy (CLSM) and 16s rRNA metagenomic analysis, to examine the bacterial 

community. CFU counting found that after an initial acclimatisation period, communities 

stabilised. The use of CLSM showed that aggregates formed between days 1-3. These 

colonised the surface and biofilms developed 3D structured masses between days 5-8. 

Continuous monitoring of pH found that there was a decrease from 7.0 to 5.8 over the first 24 

h, before increasing to 6.8 on day 3 and remaining between 6.5-8 for the remainder of the 

experiment.  The Stoodley research group (Stoodley, 2022) used this model to test the impact 

of antimicrobial actives on the oral microbiome. Chlorhexidine and triclosan were applied for 

14 days to test the effect on the microbial composition daily to mimic the oral healthcare 

regime. The research used analytical techniques including CLSM and 16s rRNA metagenomic 

analysis to examine the bacterial community and found that Streptococcus, Veillonella and 

Actinomyces decreased in abundance over 9 days, whilst Selenomonas, Camplyobacter and 

Oribacterium increased.  Triclosan led to the diminished prevalence of Fusobacterium, whilst 

Chlorohexidine led to an increased prevalence of Streptococcus genera relative to the control. 

This research was an example of an in vitro system studying dental biofilms that can be used 

in testing antimicrobial actives. The model was useful in benchmarking antimicrobial actives 

against those that are well-characterised e.g., chlorohexidine, and tracking the resulting 

change in microbial ecology over time, to inform risk assessment and improve product safety. 

There were advantages and disadvantages to all the laboratory models seen above. These in 

vitro models do not resemble naturally occurring dental biofilms as well as in vivo models, but 

offer far greater experimental control, allowing for the defining of biofilm characteristics. The 

ethical issues associated with animal models are not relevant when using in vitro models. 

Dental biofilms grown using these models can be analysed by techniques e.g., qPCR, which 

allows for bacterial quantification in dental biofilm samples (Bourgeois et al., 2017), and FISH, 

which allows for imaging spatial and structural patterns for mixed-species dental biofilms. 

(Xiao et al., 2017). The use of these techniques has allowed for characterising of defined 

biofilms using growth models, where previous analysis had been limited to the use of selective 

media (J. L. Brown et al., 2019). 
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1.3.4 Different types of nutritional sources used in in vitro models 

The growth medium that oral models are maintained on is vital to characterising these oral 

communities. The behaviour of bacteria changes depending on the nutrients and growth 

factors metabolised, as described with S. mutans on sucrose compared to other sugars in 

Section 1.2.4. In the oral environment, bacteria consume nutrients provided by food, 

metabolites excreted from other species in the same environment, urea, serum proteins and 

other nutrients in the saliva. 

To reflect the in vivo environment, these models are often fed with saliva as this is the case as 

found in situ. Research Lim (Lim et al., 2020) fed biofilm in vitro using saliva collected from 

both caries and caries-free associated patients, supplemented with basal mucin medium. This 

was to study the effect of caries activity on the composition of S. mutans in saliva-induced 

biofilms on bracket materials. The conclusion was that the caries-associated saliva feeding 

resulted in more S. mutans but less overall bacterial count. Other studies have used artificial 

saliva in growing mixed-species, in vitro models (Tabenski et al., 2014). Several oral species 

require the addition of further chemicals to artificial saliva, including growth factors to support 

growth. The use of artificial saliva is less variable than human saliva, which helps with keeping 

studies standardised and reduces variability. Furthermore, sourcing artificial saliva is easier 

than human saliva and does not require the same ethical hurdles and access to patients. There 

are other rich media, containing animal-derived products, used in dental biofilm growth 

models. One medium that is commonly used is brain-heart infusion (BHI) (Cristina Barbosa da 

Silva et al., 2008). Another that is used to culture a wide range of oral bacteria is SHI medium 

(Lamont et al., 2021). This supported a wide range of oral species and is easy to source from 

chemical companies. These media are generally easy to handle and store, provided they have 

been sterilised by methods e.g., autoclaving. 

Chemically defined media (CDM) provide the advantage of knowing every chemical and its 

concentration used. CDM are devoid of undefined, animal-derived components e.g., bovine 

serum. They are therefore extremely useful in studying bacterial metabolism by quantifying 

the consumption of medium components. This untangles the complexity of the chemical 

environment, which is not possible on media comprising animal-derived products, as used in 

the models discussed in Section 1.3.3. The defined chemical nature of these media eliminates 

the batch-to-batch variation that can occur using media containing animal-derived 
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components. CDM has often been used to support the growth of oral species, including 

several Streptococci (Terleckyj et al., 1975). The FMC medium developed here has been used 

numerous times in dental biofilm research to understand the behaviour of oral species on 

varied carbon source concentrations (Guo et al., 2014; Renye et al., 2004; Zeng & Burne, 

2021). A significant drawback is the artificial nature of the media, as it is very different in 

composition from the in vivo environment and the tedious nature of compiling media that can 

consist of over 60 different components. 

1.4 In silico modelling approaches to characterising dental biofilms 

In silico modelling approaches have been used to characterise dental biofilms. This includes 

the influence of bacterial species on each other and their role in oral diseases, including caries. 

In silico models help understand factors driving caries development, including predicting the 

growth of cariogenic species at different sugar concentrations, and acid production of a dental 

biofilm, which is directly implicated in enamel demineralisation. Furthermore, simulations 

help direct experimental strategies to characterise biofilm behaviour, in a cost and time-

effective manner. 

The oral microbiome contains a complex network of metabolic interactions between species. 

Interspecies interactions can have synergistic effects on some bacteria and antagonistic 

effects on others (see Streptococci-Veillonella interaction in Section 1.2.1 as an example). 

Understanding these metabolic interactions is vital for characterising microbial contributions 

towards oral diseases. Central to understanding these complex networks is the sequencing of 

bacteria. Several studies have taken advantage of the progression of genome sequencing 

technology to identify the abundance of taxa in various parts of the mouth (Caselli et al., 

2020c). Once genomes have been sequenced, metabolic models can be constructed, and flux 

balance analysis (FBA) carried out to analyse the flow of metabolites through a metabolic 

network. This provides information on what reactions can happen in a cell, including 

metabolite consumption and production (Jensen et al., 2020). One study by Mazumdar (2009) 

used metabolic modelling strategies to quantitatively understand the metabolic network for 

P. gingivalis, which is largely implicated in periodontitis. A model was constructed to inform 

amino acid preference and cytotoxic by-product secretion. This enabled the potential 

targeting of knock-out genes that could inhibit this pathogen to be identified. This included 

the genes GMAND, a mannose dehydratase enzyme, and GFUCS, a fucose synthase enzyme. 
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These enzymes were found to help produce GDP-L-fucose, vital in LPS assembly and the 

detrimental immune response associated with P. gingivalis. Understanding which enzymes, 

belonging to disease-associated oral species, are responsible for detrimental oral health, is 

useful in identifying targets central to the production of antimicrobials for disease treatment. 

This study showed the potential benefit of such metabolic models in combatting oral 

pathogens. This framework shows promise for use in other oral pathogens for antibacterial 

target strategies. 

Metabolic modelling has been used in caries research to understand the interactions between 

species in dental biofilms. S. mutans and S. sanguinis are prevalent in dental biofilm and 

understanding interactions between the two is important, as it is known that commensal 

Streptococci species play a role in preventing S. mutans overpopulation. Valdebenito et al., 

(2018) performed genomic and metabolic pathway comparisons to understand the 

competition and antagonistic relationship between the two species. It was concluded that S. 

sanguinis contained an enzyme capable of neutralising hydrogen peroxide, an antibacterial 

chemical produced by itself and several other oral species, something that S. mutans lacks. 

This leads to S. sanguinis outcompeting S. mutans in dental biofilms. This research 

demonstrated the benefit of using metabolic modelling to better understand the competitive 

nature between commensal and cariogenic species within the same environment. Genome 

sequencing and annotation must be completed to construct an accurate metabolic model, as 

done in this research. 

Understanding the nutritional requirements of oral species is important in characterising their 

role and ability to thrive in the oral environment. Metabolic modelling approaches can be used 

to develop CDM for oral species in a time and cost-effective manner, by directing laboratory 

experiments to formulate them. These CDM can be used to untangle complex environmental 

influences in dental biofilm behaviour. Jijakli et al., (2019) manually constructed a genome-

scale metabolic model of the cariogenic species S. mutans to better understand its 

metabolism. This helped uncover findings e.g., the ability of S. mutans to catabolise sorbitol 

and the requirement for the Leloir pathway to use substrates e.g., raffinose. This study used 

FBA to better understand the chemical requirements to produce a CDM to support growth, 

with simulations validated by experimental work. Manual curation helped improve the 

accuracy of the automatic reconstruction of the metabolic model. One drawback of this type 

of modelling in general is the use of gap filling for unknown metabolic pathways. The strain 
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used in this research was S. mutans UA159 which is fully sequenced. Whilst this work is 

promising in the production of a CDM and a better understanding of bacterial metabolism, 

the species needs to be fully sequenced. 

Continuous models, often using differential equations applied to continuous data, have 

advanced knowledge of dental biofilms and their roles in caries development. Pioneering work 

by Dibdin and Reece et al., (1990; 1984), developed a 1-D continuous model to understand 

factors contributing towards caries development. This included the modelling of sugar 

clearance in saliva, modelled separately from dental biofilm/saliva exchange of sugars. Sugar 

diffusion and utilisaition were modelled using an iterative Crank-Nicolson central difference 

scheme with time steps of one second or less. Sugar utilisation and acid production were 

computed within this time step. Lactic acid and acetic acid production were considered within 

this model. The research showed the importance of the isoelectric point of oral bacteria in 

factors associated with caries development, including acid production. It was also shown that 

varying biofilm/saliva contact affected cariogenic development. The model also concluded 

that changing initial acetate in the dental biofilm from 10 mmol L-1 to 60 mmol L-1 did not lead 

to a significant difference in the Stephen curve but decreased mineral loss. The consideration 

of modelling salivary regarding characterising factors associated with caries was important. 

This is because saliva surrounds dental biofilms, providing nutrients and impacting the oral 

ecology (Simon-Soro et al., 2022). To date, there are still limited modelling approaches in 

characterising microbial ecology in the saliva, including composition, response to substrate 

concentrations, and acid production. More recent continuous models have investigated the 

relationship between specific oral species. This includes modelling the relationship between 

Streptococcus species and those belonging to the Veillonella genus. Feng et al.,  (2021) 

developed a 2-D, continuum model, considering the mass balance of biomass and two 

nutrients (saliva and lactic acid), to understand the symbiotic relationship between S. gordonii 

and Veillonella atypica.  The primary focus was the consumption of lactic acid by Veillonella, 

which is produced by S. gordonii, and is antagonistic to S. gordonii growth. The model was 

informed with parameters specific to the two bacteria, including growth rates and growth 

yield on saliva.  Microscopy was also used to examine that S. gordonii aggregated into clusters, 

where model simulations showed that this species rose within the biofilm to more 

nutritionally dense areas whilst competing for substrates. This model provides evidence that 

continuum modelling of the bulk is useful in the prediction of bacterial interactions, including 
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lactic acid consumption/production. One drawback of this model was the numerous 

assumptions, including the assumptions of kinetic parameters. These could have been 

determined experimentally. Furthermore, limited consideration for mechanical interactions 

between species was given. 

Modelling biofilms pose different challenges to planktonic cells. Mechanical forces act 

between cells which impact the overall biofilm.  Adhesion and competition for limited 

nutrients, as they diffuse through the biofilm in a non-homogenous environment, are 

important characteristics of biofilms not seen in planktonic cultures. This means that 

modelling approaches must consider these interactions to be able to characterise the ecology 

of biofilm systems more accurately. Individual-based modelling (IbM) allows for consideration 

of the chemical and mechanical properties of each cell and between bacteria within a biofilm. 

Each cell is represented as its agent, having individual properties i.e., mass and kinetic 

parameters. This is useful as species within a biofilm have independent effects on the overall 

structure and function of a biofilm i.e., acid production contributing to the overall pH of the 

local environment (Aruni et al., 2015). IbM can simulate these individual species 

characteristics, helping to simulate the heterogeneity in the biofilm, rather than assuming 

each cell acts the same within the model. There have been models developed that use IbM 

but do not consider such mechanical forces and only focus on the biological and chemical 

elements of biofilms. IBM have been used to characterise biofilms found within the ear, as 

developed by Brown et al., (2019). This work simulated the difference in morphologies of 

Haemophilus influenzae biofilms formed in vitro and in vivo. The model reproduced surface 

fractal patterns that were observed in vivo. The results showed that the in vivo clusters were 

10x smaller than in vitro clusters, due to the elimination of planktonic cells. This model did not 

consider mechanical interactions between agents, which is known to have a profound effect 

on biofilm formation (Stubbendieck et al., 2016). One model that considered the mechanical 

forces between cells in a domain containing a biofilm, homogenous bulk, and boundary 

domain, is that developed by Schluter et al., (2015). Here, the effect of adhesion was studied, 

and they identified that growth within different locations of the biofilm affected the ability of 

the cells to thrive and outcompete, due to nutrient competition and resistance to sloughing. 

Simulated adhesive cells physically outcompeted less adhesive cells through pushing and this 

provided an advantage in a nutrient-limited system. This model showed the importance of 

considering mechanical forces between cells when characterising the evolution of a biofilm 
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under nutrient-limiting conditions when sloughing of the biofilm is considered. Another model 

that used IbM to model biofilms and considers mechanical interaction was developed by 

Jayathilake et al., (Jayathilake et al., 2017) to analyse biofilms in wastewater. This model 

integrated bacterial cell biochemistry and physics to enable the quantification and prediction 

of a variety of properties of biofilms, including the effect of shear rate and biofilm growth 

(Figure 1.7). The model was based on the thermodynamic first law, and successfully integrated 

growth and mechanics, including adhesion and decay, by creating a microbiological 

adaptation of an open-source microbial simulator. The model took into consideration 

characteristics i.e., deformation and detachment of cells, which are both important in biofilm 

formation. This work also considered the resistance of agents to anti-bacterial agents/forces, 

not widely applied in IBM.  Simulating large complex microbial systems can be challenging in 

terms of computational demand. One such work to do so was that by Li (2019) whose fully 

parallelised, 3-D model simulated biofilm formation and detachment considering fluid 

dynamics and several microbial functional groups and nutrients. 

 

Figure 1.7 An IBM used for wastewater systems. This model, based on the first principle of 
thermodynamics, represented individual bacteria as spheres and takes into consideration 
several characteristics e.g., the collision of particles and shear force characteristics which are 
desirable in dental biofilm modelling (Jayathilake et al., 2017). 
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IbM models can simulate trophic interactions and population dynamics, considering several 

species with the same biofilm domain. A spatially resolved IBM model of microbial dynamics 

in soil was presented by Kim et al., (2016). The research concluded that the effective water 

film thickness determined the microbial swimming speed across the biofilm surface and that 

swimming velocity was affected by the roughness of different regions of soils. This model 

considered two different nutrients and two species, where one species consumed by-products 

produced by the other. This model was therefore useful in providing a framework where 

mixed-community models on several substrates can be simulated in different environments 

within the same biofilm. This model did not, however, consider any characteristics specific to 

a bacterial species e.g., growth rates. This model would need expanding with kinetic 

parameters, thermodynamic considerations etc before the model could be applied to 

characterising a microbial community comprising specific bacteria. One model that considered 

these species-specific parameters was that developed by Gogulancea (2019). Using IbM, this 

model considered biological, chemical, and thermodynamic factors associated with biological 

growth to better simulate biofilm growth and the effect on the surrounding environment. 

Here, the stoichiometry of species as a thermodynamic approach was included, as well as 

Monod type kinetics, where species-specific growth rates and substrate affinity constants 

were defined. The model was able to simulate the local pH and substrate utilisation as the 

biofilm grew. The drawback of such models was the computational demand of simulating so 

many agents over long simulation times. 

IBM are useful in dental biofilm research as the oral microbiome contains over 700 different 

species with complex interspecies interactions. It has allowed more complex dental models to 

be developed, advancing on pioneering work by Dibdin and Reece et al., (1990; 1984), who 

developed 1-D and 2-D continuous models to calculate the pH profiles in the dental biofilm. 

Head (2021) used this type of modelling to determine the factors that governed biofilm 

composition and changes towards a cariogenic state under different conditions. He simulated 

the growth of two different populations and found that one would progressively disappear 

out of the system depending on the parameters defined for aciduric potential and nutrient 

uptake. The model did not consider the mass transfer limitations of glucose, so the 

populations were competing for space rather than for substrate. It was concluded that 

important parameters to consider were glucose concentration and acid buffering.  This model 

did not define specific bacterial species or their kinetic/thermodynamic parameters, and 
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therefore lacked discrete information on how different bacteria would contribute to this 

environment in the tested carbohydrate change. 

Mathematical and in silico modelling in dental biofilm research has become more popular. 

Head et al., (2017) conducted in silico modelling to assess the effect of the frequency of sugar 

administration on supragingival plaque development. This was useful as the consumption of 

a high frequency of sugar is a primary driver of caries, due to the resulting acid production 

(Kawada-Matsuo et al., 2017).  This model can be used to inform dietary changes and further 

strengthen the known impact of sugar consumption on caries. The effect of saliva flow was 

neglected in the study to keep non-microbial factors limited. This is a parameter that plays an 

important role in the oral environment, as the salivary flow has a profound effect on pH 

buffering and sugar clearance within the mouth (Lynge Pedersen & Belstrøm, 2019a; 

Muddugangadhar et al., 2015). One assumption made in this model was that the simulated 

biofilm was either always or never cariogenic, whereas dental biofilms potentially shift 

between the two states (Meyer et al., 2021; Mark Steven & Charlie, 2009). Taking into 

consideration the dynamic nature of dysbiosis and how the microbiome changes from a 

healthy to a cariogenic state, is important in oral health and disease. This is generally lacking 

in modelling strategies. 

Marsh et al., (2015) developed a mathematical and in silico plaque simulation model. This was 

to predict changes in biofilm composition and growth under varying acid levels and 

antimicrobial agent concentrations. The model considered two bacterial populations, one 

aciduric and one non-aciduric. The simulation also included pulsing of glucose, leading to acid 

production. Microbes were modelled as discrete particles representing cell aggregates. The 

work concluded that reducing the frequency of acid challenge or terminal pH, by reducing 

bacterial growth, resulted in the protection of commensal microorganisms. This area of 

modelling, assessing whether environmental factors can modulate the dental biofilm without 

direct lethal microbial action, is very useful. This is because directly altering the microbiome 

can lead to the abolishment of positively contributing characteristics from specific oral 

bacterial species. This includes the denitrifying capacity of Neisseria. It also helps direct 

antimicrobial active use by targeting the more cariogenic species within a biofilm in this 

model. One area of research that should be expanded is looking at the impact of discrete 

bacterial species and considering more than two bacterial populations. This will help us 
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understand which species in a dental biofilm are sensitive to antimicrobial agents and pH 

changes. 

A study by Martin et al., (2017) involved the development of an IBM focused on interactions 

between P. gingivalis and S. gordonii. The former was shown to contribute towards dysbiosis. 

The model furthered knowledge of the bacterial interactions in biofilms that may happen 

during the transition between non-caries and caries. This model incorporated bacterial growth 

and yield into the model from experimental work and considered growth on different 

substrate concentrations. This allowed for simulations to resemble the in vivo environment 

more closely. The study utilised CLSM, which allowed for the assessment of biofilm 

architecture and characteristics of the two species. Nevertheless, an important limitation in 

this work concerning modelling dental biofilm was that the model produced was based on 

data from only two species. This limits research in an area where analysing numerous strains 

and having a more expansive model is important. The interaction between different bacterial 

species e.g., acid production and consumption, is key in dental biofilm research. Taking into 

consideration a very limited number of species does not represent the oral environment well. 

This model also did not consider bacterial cell death and detachment, which are important 

processes that occur continuously in any bacterial microbiome. 

Mathematical models have also been used to understand the shape of carious lesions, to 

understand which parts of the tooth are important for caries development, and to understand 

the rate of caries progress. A 3-D model by Fabregas & Rubinstein (2014) considered diffusion 

of hydrogen and calcium ions, and reactions at the surface of enamel, in determining the rate 

of caries progression. This was done by quantifying the total volume change of enamel. The 

model was able to incorporate pH as a variable, simulating a pH drop mirroring that after 

eating. The model concluded that the outer prismless layer of enamel was vital in slowing 

down caries progression. This type of model provided information on the progression of the 

disease, not directly related to bacterial activity. Characterising tooth material better, it 

helped understand how fast caries progresses under certain conditions and gives more 

information on the specific parts of the tooth that need protecting to reduce caries 

progression. Another model built to characterise tooth enamel demineralisation was that by 

Ilie et al., (2012). This model differed significantly from the model by Fabregas, as it put the 

focus on the modelling of the demineralisation of plaque through acid production from 

bacterial metabolism of substrates. This model focused on more species, including aciduric 
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Streptococci, non-aciduric Streptococci, Actinomyces and Veillonella, using their species-

specific kinetic parameters. The use of several species within the oral model allowed it to 

better reflect dental biofilms compared to a simpler one or two-species system, as done by 

Martin (2017). This model found that Veillonella had a net negative effect on demineralisation 

due to consuming lactate, which the other species produced, increasing the pH. This research 

also demonstrated the importance of considering lactate consumption by bacteria in 

modelling caries formation. This was because the exposure of plaque to high glucose 

concentrations for 2 min led to glucose being present in the plaque for 25 min. The retention 

time in the saliva bulk was much lower, at 10 min. These types of oral models, where 

numerous species are considered, are becoming more popular as they better characterise the 

oral microbiota which is very diverse. One model that considered numerous species was a 

stochastic attachment model by Chathoth et al., (2022). This research modelled the 

attachment of oral microcolonies of P. gingivalis, S. gordonii and T. denticola, to biotic and 

abiotic surfaces through intra and interspecies interactions. This was simulated under 

different iron concentrations. The research used three parameters, probability of attachment 

to the surface, horizontal attachment probability of bacteria, and vertical attachment 

probability. This data was collected experimentally, and the model was fitted to each species 

using this data. The model concluded that decreasing iron concentrations lead to lower 

horizontal attachment and higher vertical attachment. This model provided a useful tool for 

understanding caries progression, as bacterial adhesion to tooth surfaces is important in 

dental biofilm development. The modelling of three species was an improvement on two 

species models, as done by Martin (Martin et al., 2017), although this is still too simple to 

capture the complexity needed from an oral community. 

In silico approaches to understand species behaviour have shown to better reflect in vivo 

findings and in vitro data when validated by experimental data. This includes using pH 

corrections in species-specific bacterial growth kinetics, which has been done by Rosso (Rosso 

et al., 1995). This research described µmax as a function of temperature and pH, using three 

cardinal pH parameters (optimum pH, maximum pH where growth occurs and minimum pH 

where growth occurs). This resulted in better correspondence between mathematical 

simulations and experimental data. Whilst this was not directly applied to dental research, the 

consideration of pH on bacterial growth kinetics in oral species is important to consider, as 

there is often a drop in pH in the oral environment due to sugar fermentation (Kianoush et al., 
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2014). Also, species have different tolerances to these acidic conditions (Boisen et al., 2021a). 

Studies utilising mixed in vitro and in silico approaches to understand dental biofilms activity 

in caries are limited, and those that have done so often consider few oral species  (Rath et al., 

2017; Martin et al., 2017) It is, therefore, desirable to use mixed in vitro-in silico approaches, 

where the use of a  CDM (Section 1.3.4) would allow for testing the effect of one parameter 

at a time i.e. sugar concentration, on oral dysbiosis and caries progression. 

1.5 Aims and objectives 

In this research, I aimed to develop in vitro and in silico modelling approaches, to characterise 

and quantify the invasion of S. mutans into a 4-species, commensal dental biofilm. This 

involved modelling the transition to a cariogenic state, as seen in vivo. I aimed to model this 

transition in a defined environment. This was done using a CDM, to untangle complex 

chemical environmental influences. The CDM was used to support the growth of the synthetic 

community, representing dental biofilms. I aimed to use the combination of in vitro and in 

silico models (informed by experimental-collected kinetic parameters), to identify factors, 

including pH, glucose and lactic acid concentration, that influenced S. mutans invasion. 

The objectives of this research were as follows: 

1) Develop a chemically defined medium, supporting the growth of all members of a 5-

species synthetic community of oral bacteria, to enable invasion experiments in a 

defined chemical environment. 

2) Characterise the synthetic community of oral bacteria, including collecting the 

maximum specific growth rates (µmax) and substrate utilisation constants (Ks) that will 

inform in silico modelling approaches. 

3) Establish an in vitro reactor model capable of characterising the invasion of S. mutans 

into the pre-formed 4 species dental biofilm. 

4) Use the in vitro model to characterise S. mutans invasion under different glucose and 

lactic acid concentrations, through optimised techniques i.e., qPCR and FISH. This 

included ascertaining the factors i.e., low pH, contributing towards S. mutans invasion 

and the effect of the commensal biofilm. 

5) Develop in silico models to simulate the growth of these species under the same 

conditions used for the reactors, using experimentally collected kinetic parameters 

and considering the effect of pH on species kinetics. 
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1.6 Importance of the research 

Modelling strategies that appropriately resemble the complexity of dental biofilms, whilst 

providing a defined environment to understand factors contributing to cariogenic species 

invasion, are limited. The models developed in this research fill this gap, allowing for the 

quantification of S. mutans invasion into a commensal dental biofilm, under different glucose 

and lactic acid concentrations, over time. The models considered the impact of invasion on a 

complex, commensal biofilm and the local environment. This included pH change, relevant to 

enamel demineralisation and caries progression. The in vitro model was a defined system, 

including the use of a CDM. This was developed to support the growth of a more diverse 

consortium of species, including the lactic acid-consuming species V. parvula, which is 

prevalent in dental biofilms. The in silico model, informed by experimentally-collected kinetic 

parameters, helped understand these caries-related factors by simulating dental biofilm 

invasion, local pH change and substrate consumption. The combined approaches of the in 

vitro and in silico models provide a framework, which will inform the production of safe 

products, including antimicrobial actives, toothpaste and risk assessment (Section 1.1) to help 

combat the significant global health and economic impact of dental caries. 
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Chapter 2. Material & Methods 

 

2.1 Materials used in research 

2.1.1 List of bacterial strains 

The bacterial strains I used in this research project, including the name, genotype, and origin, 

were listed in Table 2.1.  These were all wild type and comprised the synthetic community, 

excluding Escherichia coli TOP10, which were pre-made competent cells, used for cloning of 

plasmid inserts. 

Table 2.1 All bacterial strains used in this research, including the genotype and reference. 
Escherichia coli TOP10 was used in plasmid cloning, all other species comprised the synthetic 
community. 

  

Bacterial strain Genotype Reference NCBI reference for 
fully sequenced 

genomes 

Streptococcus 
gordonii DL1 

Wild type (Jauregui et al., 
2013) 

(Streptococcus 
gordonii DL1/CH1 
(ID 1021), Genome, 
NCBI, 2022) 

Streptococcus 
mutans UA159 

Wild type (Ajdic et al., 2002) (Streptococcus 
mutans UA159 (ID 
856), NCBI, 2022.) 

Actinomyces oris 
MG1 

Wild type (Mishra et al., 2007) - 

Neisseria subflava 
DSM17610 

Wild type (German Collection 
of Microorganisms 
and Cell Cultures 
GmbH: 2019) 

- 

Veillonella parvula 
DSM2008 

Wild type (German Collection 
of Microorganisms 
and Cell Cultures 
GmbH: 2019) 

(Veillonella parvula 
DSM 2008 (ID 2471), 
NCBI, 2022.) 

Escherichia coli 
TOP10 

F- mcrA Δ(mrr-
hsdRMS-mcrBC) 
Φ80lacZΔM15 
ΔlacΧ74 recA1 
araD139 Δ(ara-
leu)7697 galU galK 
rpsL (StrR) endA1 
nup 

(TOPOTM TA 
CloningTM Kit for 
Subcloning, with 
One ShotTM 
TOP10,2020.) 

(Escherichia Coli (ID 
167), NCBI, 2022.) 
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1.2 List of equipment 

 

The list of major equipment I used in this research project was listed in Table 2.2 This Table 
included the equipment type, device name, and manufacturer details. All equipment used 
was operated post-safety training and following the manufacturer’s standard operating 
procedure. 
 

 

 
Table 2.2 All equipment used in this research, including the device application, name, and 
manufacturer. In all instances, devices were operated post-safety training, where applicable. 

Equipment Device Manufacturer 

Anaerobic cabinet Whiteley DG250  Don Whitley Scientific, 

Bingley, UK 

Aerobic incubator IKA KS 4000 IKA, Cologne, Germany 

Autoclave Astell autoclave Astell, Kent, UK 

Swing out centrifuge Sigma 3K10 Sigma, MA, USA 

Microcentrifuge PrismR refrigerated 

microcentrifuge 

Labnet, NJ, USA 

Benchtop vortex Starlab IR vortexer Starlab, Brussels, Belgium 

Laminar flow cabinet Gelaire TC 48 Gelaire, NSW, Australia 

Water bath JB1 Grant instruments, 

Cambridge, UK 

Biochrom spectrophometer Biochrom Libra S11 Biochrom, Cambridge, UK 

Calorimeter Calscreener™ calorimeter Symcel, Solna, Sweden 

Agarose gel tank Bio-Rad power pack 3000 Bio-Rad, California, USA 

Transilluminator G box:Transilluminator Syngene, Cambridge, UK 
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NanoDropTM 

spectrophometer 

ND-1000 NanodropTM Thermo Fisher, MA, USA 

Plate reader Biotek Synergy HT Biotek, Vermont, USA 

qPCR thermocycler QuantStudio qPCR studio Thermo Fisher, MA, USA 

Flow cytometer Attune NxT Thermo Fisher, MA, USA 

Light microscope Leica DM750 Leica, Wetzlar, Germany 

Fluorescence microscope Olympus BX60  Olympus, Tokyo, Japan 

Confocal microscope Zeiss 880 LSM Zeiss, Jena, Germany 

In vitro reactors CBR 90-3 CDC bioreactor Biosurface Technologies, USA  

Benchtop pH probe/meter Mettler Toledo Seveneasy Mettler Toledo, Ohio, USA 

Weighing scale Ohaus Pioneer Ohaus, NJ, USA 

Autoclavable pH probe F-695 Broadley James Broadley James, California, 

USA 

Raspberry Pi 3 with tentacle Raspberry Pi 3 RS components, London, UK 

Peristaltic pump 101 U/R low flow Watson Marlow                          

Falmouth, UK 

Magnetic stirrer and hot 

plate 

Biosurface hot plate Biosurface Technologies, MT, 

USA  

Camera IXUS 220 HS Canon, Tokyo, Japan 
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2.2 Culturing and storage of bacterial strains 

 

2.2.1 Routine culturing of bacterial strains 

All bacterial species within this study were cultured using routine microbiological processes. 

S. gordonii, S. mutans, A. oris and V. parvula were all cultured anaerobically (80% N2, 10% H2, 

10% CO2) inside an anaerobic cabinet for 16 h at 37 °C. N. subflava and E. coli were cultured 

in aerobic conditions using an aerobic incubator. E. coli was cultured in Lysogeny Broth (Sigma 

Aldrich, Missouri, UK). All other species were cultured in THYE medium, containing 30 gL-1 

Todd Hewitt broth (Melford, Ipswitch, UK) and 5 gL-1 yeast extract (Melford). For V. parvula, 

this included the addition of 12.1 gL-1 DL lactic acid. At all steps of culturing and at the end of 

all experiments, bacteria were checked for contamination using microscopy, Gram staining or 

visual inspection of colonies on agar plates. This included making sure that only one type of 

colony was observed during mono-culture experiments. Strain stocks were stored at -80 °C. 

Agar was prepared by autoclaving THYE medium, supplemented with 13 gL-1 Bacto agar 

(Melford), at 121 °C for 15 min. This medium was poured into sterile, empty Petri dishes 

(Thermo Fisher, MA, USA), which were cooled and stored at 4°C. Plates were inverted to stop 

condensation inside the dish. Agar plates used for the growth of V. parvula were reduced 

inside an anaerobic incubator for 24 h before use. Plates containing bacterial species were 

incubated overnight in either an anaerobic or aerobic incubator. 

To prepare an overnight inoculum in preparation for experimentation, a single colony was 

taken from the agar plate using a sterile disposable inoculum loop. This was placed inside a 

universal bottle containing 20 mL of THYE medium and left for 16 h at 4 °C. For the growth of 

V. parvula, DL lactic acid syrup (Sigma Aldrich) was also included (final concentration 12.1 gL-

1) into the medium and agar, which were reduced anaerobically for 24 h before inoculation. 

E. coli was grown on LB broth (Sigma Aldrich) medium supplemented with 100 μg mL-1 

Ampicillin (Sigma Aldrich) to provide selection pressure for plasmid retention and expression. 
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2.2.2 Preparation of glycerol stocks 

Glycerol stocks of each species were for use in all experiments involving the oral synthetic 

community members. Single colonies of bacterial strains were grown overnight in 20 mL of 

THYE medium. For V. parvula, this was supplemented with 12.1 gL-1 lactic acid. Incubation of 

A. oris, S. gordonii, S. mutans and V. parvula took place in an anaerobic incubator for 16 h at 

4 °C. N. subflava and E. coli were incubated inside an aerobic incubator. Following incubation, 

cells were harvested by centrifugation at 3,800 xg for 10 min at 4 °C using a swing-out rotor 

centrifuge. Pellets were resuspended in 2 mL of sterile, suitable medium, diluted 1:1 with 50% 

(v/v) glycerol (VWR, Pa, UK) for a final concentration of 25% glycerol.  Suspensions were mixed 

using the bench-top vortex and 1 mL pipetted using filter pipette tips into sterile screw-top 

Eppendorf tubes (Thermo Fisher, MA, USA). Glycerol stocks were stored at -80 °C. Glycerol 

stocks at a higher bacterial concentration were produced for use in CDC bioreactor 

experiments by the method above but involved growing a 600 mL of overnight culture instead 

of 20 mL culture.  All stocks were plated and checked for contamination before and after 

culture. 

2.2.3 Colony forming unit counts 

The number of cells per mL were calculated in glycerol stocks and overnight cultures using 

colony forming unit (CFU) counting. This was to standardise the inoculum for each species. 

Ten-fold serial dilutions of glycerol stock were created for each member of the synthetic 

community using 180 μL of sterile PBS (Sigma Aldrich) and 20 μL of culture. Dilutions ranged 

from 10-4 to 10-7. Samples were mixed using vortexing and 10 μL was pipetted onto pre-dried 

agar for each serial dilution. Drops were left to dry in the laminar flow cabinet, before being 

incubated for 24-48 h. 

Plates were imaged using a Canon IXUS 200 (Canon, Tokyo, Japan), and colonies formed were 

counted using ImageJ (Fiji, Maryland, USA). The average number of colonies were calculated 

for dilutions, where between 10 and 100 colonies could be counted. The colony count was 

multiplied by the dilution factor and then by 100 (to account for volume) to calculate the 

number of cells per mL of glycerol stock or overnight culture. 
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2.3 Experiments defining synthetic community 

2.3.1 Growth experiments 

The oral species were grown individually to generate growth rates from the exponential 

phase. Sterile universal bottles containing 20 mL THYE were inoculated with a single colony of 

cells and incubated in the anaerobic workstation, excluding N. subflava which was incubated 

aerobically.  After 16-20 h, the overnight cultures were each transferred into 50 mL Falcon 

tubes (Fisher Scientific) and centrifuged at 3,800 xg at 4 °C. The supernatant was discarded. 

Cells were suspended in 20 mL of altered FMC (AFMC), a chemically defined growth medium 

(CDM), (see Appendix A) and gently vortexed using a bench-top vortex. This culture was 

centrifuged at 3,800 xg and 20 °C to wash the cells of any residual medium. The cells were re-

suspended in 20 mL AFMC and mixed with the vortex. 4.8 mL of medium was pipetted into 

each test tube and 0.2 mL of cell culture was added for a final dilution of 1:25. The test tubes 

were gently shaken and placed in a water bath for the duration of the experiment at a 

temperature of 37 °C, with the test-tube tops screwed tightly closed. At the end of the 

experiment, the test tubes were placed into the anaerobic workstation, excluding N. subflava 

and E. coli, which were incubated aerobically. 

For the experiments performed to calculate the substrate affinity constants (Ks), the media 

used were kept constant, apart from varying concentrations of the limiting substrates 

(glucose, sucrose, and lactic acid). 

2.3.2 Development of AFMC medium 

AFMC was developed to support the growth of the synthetic community. The formulation of 

FMC medium (Terleckyj et al., 1975)  was supplemented with additional chemicals (see 

Appendix A) to support the growth of A. oris and V. parvula. When the growth of all species 

was supported, and each species was able to grow for at least 40 generations, this medium 

was known as AFMC. AFMC components were stored in aliquots at the appropriate 

temperature (see Appendix A). Flux balanced analysis (see 2.8.1) was used to validate that 

AFMC could support growth. FBA was used to model the metabolism of these species, and 

confirm growth, with and without the addition of chemicals e.g., lactic acid for V. parvula. 
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2.3.3 Carbohydrate utilisation 

To understand the metabolic requirements of the synthetic community members and inform 

the IBM, growth experiments on different carbon sources were conducted. Bacterial strains 

were grown as described in 2.3.1. All chemicals used were from the Megazyme Sucrose/D-

Glucose assay kit (Megazyme, Wicklow, Ireland). At the desired time point, 0.1 mL of bacterial 

culture was pipetted into each of the two Falcon tubes. To the first Falcon tube, 0.1 mL acetate 

buffer was added and 0.1 mL β-fructosidase was added to the other test tube. Both test tubes 

and all reagent blanks were incubated at 50 °C in a water bath for 20 min. After this time, 1.5 

mL of glucose oxidase was added to each test tube, which were again incubated at 50 °C in a 

water bath. Finally, 1 mL of each test tube was pipetted into a cuvette (Fisher Scientific) and 

the optical density at a wavelength of 510 nm was recorded using the Biochrom 

spectrophotometer. To quantify the lactic acid concentration, 0.1 mL bacterial culture, 

containing between 0.5-30 ug of lactic acid, was pipetted into a cuvette. 1.6 mL distilled water 

was added, along with 0.5 mL of solution 1 buffer, 0.1 mL NAD+ and 0.02 mL D-GPT (D-L Lactic 

acid assay kit, Megazyme, Ireland). The optical density was read at a wavelength of 340 nm 

after 5 min (A1). 0.02 mL D-LDH and 0.02 mL L-LDH (D-L Lactic acid assay kit, Megazyme, 

Ireland) were added to the cuvette and the optical density was measured after 10 min at 340 

nm (A2). The lactic acid concentration was calculated, using these two values, from the 

equation detailed in the assay kit protocol. 

2.3.4 CalscreenerTM experiments 

For each species, the heat produced over 24 h was recorded using the Calscreener™ (Symcel, 

Solna, Sweden) calorimeter. This was to observe any metabolic differences when grown on 

different carbon sources and between planktonic and biofilm morphologies. Cultures for each 

species were grown in preparation for experiments, as described in Section 2.3.1. Then, 0.1 

μL was pipetted into plastic wells containing 190 μL of AFMC and inserted into the 

Calscreener™ titanium wells (Symcel, Solna, Sweden). These were loaded into the 

Calscreener™ plate loader and inserted into the Calscreener™. Both the top and bottom rows 

of wells in the 48-well plate loader contained 200 μL of AFMC as control samples. A 30 min 

incubation period was allowed for signal stabilisation. Using the provided Calview™ software 

(Symcel), the heat flow (µW) was recorded over 24 h. Control samples were used to take a 

baseline of all culture samples. 
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2.4 Molecular biology techniques 

2.4.1 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to identify the quality of DNA extracts and qPCR 

products. Gels also needed to be run so that cloned inserts and the correct amplified products 

in the qPCR could be identified. Gels were made by adding 1-2% agarose (Melford) in 50 mL 

of TAE buffer (Thermo Fisher) and heated using a microwave, until dissolved. This was cooled 

briefly, before adding 5 μL of Ethidium Bromide (Thermo Fisher) and left to set in a cassette. 

4 μL of DNA sample was mixed with 1 μL of 5x DNA loading buffer (Bioline Ltd, London, UK) 

and loaded into the gel. 5 μL of Hyperladder V DNA ladder (Bioline) was loaded onto the gel 

into a separate well. Gels were run at 90 V for 60 min using the gel electrophoresis machine. 

The DNA samples in the gels were visualized under UV light using the Transilluminator. 

2.4.2 NanoDropTM for DNA quantification 

NanoDropTM spectrophotometry was used to quantify nucleic acid concentrations of bacterial 

gDNA and plasmids. This was also used to check for the quality of the DNA collected from the 

synthetic community species. A reading of nuclease-free water (Sigma) was taken and the 

appropriate elution buffer (included in the kits for the experiments conducted) was used as a 

blank. 1 μL of the sample was used for all readings. Values were recorded in ng/μL. The purity 

of DNA was checked by confirming that the 260/280 nm values recorded on the NanoDrop 

NanoDropTM were between 1.8-2. 

2.4.3 Genomic DNA extraction from bacterial species 

Genomic DNA was extracted using a DNeasy Powersoil Pro kit (Qiagen, Hilden, Germany). Cells 

were first suspended in a mixture of 180 μL Tris-HCl (Thermo Fisher), 10 μL Mutanolysin (50 U 

concentration) (Sigma Aldrich) and 10 μL lysozyme (200 mg/mL) (Sigma Aldrich). The 

suspension was incubated at 37 °C for 1 h in a water bath. 2 μL of Proteinase K (Thermo Fisher) 

at a concentration of 20 mg/mL was added. The suspension was vortexed and incubated at 65 

°C for 45 mins. The rest of the protocol was followed according to the manufacturer's 

instructions. DNA was eluted in 50 μL of elution buffer (Qiagen) and checked on the 

NanoDropTM for yield (Section 2.4.2) as well as on an agarose gel (Section 2.4.1) for sample 

quality. DNA was stored at -20 °C. 
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2.4.4 Plasmid extraction from E. coli 

Plasmids were extracted from E. coli using the QIAprep Spin Miniprep plasmid kit (Qiagen) in 

accordance with the manufacturer’s instructions. Following the extraction, samples were 

eluted in 50 μL of elution buffer (Qiagen). The plasmids were stored at -20 °C and used as 

standards in later qPCR experiments. Samples obtained were measured on the NanoDropTM 

spectrophotometer (Section 2.4.2) to check yield and quality. Plasmids were run on an agarose 

gel (Section 2.4.1) to check the quality of the DNA. 

2.4.5 PicoGreen™ for double-stranded DNA quantification of plasmids 

The DNA concentration of plasmids extracted from E. coli was accurately quantified using a 

Quant-iT PicoGreen™ dsDNA Assay Kit (Thermo Fisher). The standard curve used was in the 

high range of 1 μg/mL-200 ng/mL. The protocol was carried out as per the manufacturer’s 

instructions. Samples in black 96 well plates (Greiner Bio-One, Kremsmunster, Germany) were 

incubated for 5 min in the dark and fluorescence values were recorded on a plate reader at 

excitation/emission of 480/520 nm. Triplicate values were taken from three independent 

experiments and their average was used for the quantification of DNA. 

2.4.6 qPCR primers and probes 

Primers and probes specific to each synthetic community member were needed to correctly 

quantify each species using qPCR. All qPCR primers and probes used in this study were listed 

in Table 2.3, along with the targeted region for amplification. Primers were ordered using DNA 

Oligo Synthesis Services (Thermo Fisher). For N. subflava, primers and probes for qPCR 

quantification were designed using Snapgene software (Dotmatics, MA, USA). Primers were 

designed such that the difference in annealing temperature within the same primer set was 

5°C or less. Primers and the Gibbs free energy of bonds were checked for hairpins using IDT 

OligoAnalyser (IDT, Iowa, USA). 
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Table 2.3 All qPCR primers and probes used in this research project, as well as the origin of 
the sequence used. Primers were checked for hairpins and suitable annealing temperatures 
(gene copy number a-1 b-3 c-4) 

 
 

2.4.7 Cloning of targets into E.coli 

 

The amplified DNA targets of bacterial species were cloned into the PCR 2.1 TOPOTM vector 

using the TOPOTM TA cloning kit (Invitrogen, MA, USA).  This was necessary so that qPCR 

standards for each species could be generated. One cloning reaction was set up per species. 

To set up the cloning reaction, between 0.5-4 μL of fresh PCR product was pipetted into an 

Eppendorf (quantity was based on PCR fragment size, with a molar ratio of vector to PCR 

product of 1:3 desired). To this tube, 1 μL salt solution, 1 μL TOPOTM vector and nuclease-free 

water (to make a total volume of 5 μL) were added. All chemicals used were from the TOPOTM 

cloning kit (Invitrogen). The solution was mixed gently and incubated at room temperature for 

5 min. From this mix, 5 μL was pipetted into a vial of pre-prepared competent E. coli cells and 

Bacterial 

strain 

Target 

region 

Forward 

primer 

Reverse primer Probe Origin 

Streptococcus 

gordonii DL1 

 

23S rRNA c CTG ATG TCA 

ACC TGA TTA 

ACG GCA 

GCT TGG TCA 

GAC CCT GAA 

AAA TCA 

CTT TGA GGG 

AGA TGC TGT 

CTA CTC CAT 

GTA 

(Jones, 

2019) 

Streptococcus 

mutans 

UA159 

16S rRNAa  GCC TAC AGC 

TCA GAG ATG 

CTA TTC T 

GCC ATA CAC 

CAC TCA TGA 

ATT GA 

TGG AAA TGA 

CGG TCG CCG 

TTA TGA A 

(Yoshida 

et al., 

2003) 

Actinomyces 

oris MG1 

 

23S rRNAb  GGT GGT CTC 

CAG CAC TGG 

G 

ATC CTG TGC 

GGA CGT AAC 

GC 

GGG TGA TGG 

GCA CCG AGG 

CGT A 

(Jones, 

2019) 

Neisseria 

subflava 

DSM17610 

23S rRNAc AAC GTA TTC 

ACC GCA GTA 

TG 

TGG AGC CAA 

TCT CAC AAA 

AC 

AGT CCG GAT 

TGC ACT CTG 

CAA CTC G 

(Ciric et 

al., 2010) 

Veillonella 

parvula 

DSM2008 

23S rRNAc  CGT TTA GGA 

ATG AGT ACA 

GCC GTA 

CGG ATG GTG 

TTG AAG ACC 

CA 

ATT CGT ACT 

GCT GAA TGT 

GCG GGA G 

(Jones, 

2019) 
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gently mixed. The cells were incubated on ice for 15 min and heat shocked in a water bath for 

30 s at 42 °C. The cells were transferred to ice and 250 μL of SOC medium from the TOPOTM 

cloning kit was added. The tube was shaken horizontally at 200 rpm at 37 °C for 1 hr.  50 μL of 

cell suspension was pipetted and spread on LB agar supplemented with ampicillin (100 

μg/mL). As a positive control, 1 μL of supplied pUC19 vector (Invitrogen) was used and no 

insert with plasmid was used as a negative control. Plates were incubated at 37 °C for 24 h.  

Six colonies from the plate were picked and re-streaked to ensure the purity of the samples. 

Glycerol stocks were prepared and stored at -80 °C. When needed, 10 μL of glycerol stock was 

cultured in 5 mL of LB supplement with ampicillin and incubated aerobically at 37 °C for 16-20 

h. Plasmids were extracted and used as qPCR standards for qPCR experiments. 

 

2.4.8 Validation of successful cloning of targets into E. coli 

 

To confirm the successful cloning of targets into E. coli, cells were grown in LB medium for 16 

h at 37 °C. Cells were centrifuged at 3,800 xg for 10 mins at 4 °C. Plasmids were extracted using 

the QIAprep Spin Miniprep plasmid kit (Qiagen) and stored at -20 °C. Samples were sent for 

sequencing at Eurofins Genomics UK (Eurofins, Luxembourg) using the Mix2seq sequencing 

kit (Eurofins). This involved pipetting 15 μL of plasmid with the forward probe provided in the 

kit and 15 μL with the reverse primer. Obtained sequences were aligned with the genomic 

sequence of the bacterial species using NCBI Blast (NCBI, Maryland, USA), along with the 

forward/reverse primers and the qPCR probe. 

 

2.4.9 qPCR and multiplex qPCR 

 

Each species had its own qPCR reaction with specific primers and probes. Each reaction 

mixture contained 300 nM of forward and reverse primer, 150 nM of probe, 12.5 μL of 2x 

Premix ExTaq mix (Takara, Shiga, Japan), 2 mM Rox (Takara) and nuclease-free water (Thermo 

Fisher) making a total volume per well of 23 μL. Mixtures were pipetted into 96 well qPCR 

plates (Eurogentecs, Seriang, Belgium). 1 uL of DNA sample was added to each well, with 

plasmid standards added for positive controls and nuclease-free water (Thermo Fisher) for 

negative control wells. All samples were tested in triplicate. The plate was sealed tightly using 

96 well plate micro seals (BioRad) and loaded onto the qPCR system. The running protocol for 

all species consisted of the steps detailed in Table 2.4. 
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Table 2.4 Reaction steps for the qPCR experiments using the QuantStudio qPCR machine for 
all species. 

 

After the experiment has finished, all samples were stored at 4 ᵒC until analysed. Amplified 

products were run on a gel (Section 2.4.1) to check for correct amplification results and were 

analysed using the Thermo Fisher Connect Software (Thermo Fisher). This was also done for 

cloned targets from E. coli, to ensure the product was at the size expected. 

 

2.5 Flow cytometry for live and dead analysis 

 

Flow cytometry was used to quantify how much of the biofilm and planktonic culture in the 

reactors was viable. This was important in determining the “health” of the bacterial system.  

Biofilms were scraped off hydroxyapatite coupons (Biosurface technology, Bozeman, USA) and 

suspended in filter-sterilised PBS (Thermo Fisher). Cells were centrifuged at 12,000 xg in a 

microcentrifuge at 4 °C and resuspended in 1mL of PBS (Thermo Fisher). Serial dilutions were 

made of samples, so that the cell concentration was between 1 x 10-3 and 1 x 10-4 cells mL-1. 

This was to prevent cell aggregates from passing by the laser undetected. Staining mixtures 

were made using 35 μL of SYTO 9 dye (1.67 mM) /Propidium Iodide (1.67 mM (compound A) 

and 35 μL of SYTO 9 (1.67 mM)/ Propidium iodide (18.3 mM) (component B). Compounds A 

and B were used from the Thermo Fisher BaclightTM live dead staining kit (Thermo Fisher). 

From this mixture, 0.6 μL of combined reagent was added to each sample and mix thoroughly 

with a pipette. Plates were incubated in the dark for 15 min. Samples were analysed on the 

Attune NxT flow cytometer following the manufacturer’s instructions. All samples were gated 

to determine the number of live and dead cells (Figure 2.1) BL1-H representing green 

fluorescence and live cells was plotted against BL3-H, representing dead cells. Samples 

containing PBS and dye, as well as samples containing dead cells, were used as controls to 

determine dead cells and residual cells. Gate settings were applied across all samples to 

ensure no bias in gating occurred. 

 

Step Temperature (ᵒC) Time (s) Number of cycles 

Initial denaturation 95 30 1 

Denaturation 95 5 40 

Annealing 60 30 40 
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Figure 2.1 Gating using the NxT Attune fluow cytometer was used to differentiate live cells 
(represented by BL1-H) and dead cells (represented by BL3-H). Samples containing PBS and 
dye, as well as dead cells, were used as controls to differentiate lve from dead and machine 
remnants. All gate setting were kept constatn across samples. 
 

2.6 Microscopy 

 

2.6.1 Gram staining 

 

Gram staining and microscopy of samples were conducted to assess the potential 

contamination of samples and bacterial stocks. A 5 μl of the cell sample of interest was 

pipetted onto a microscope slide. The bacteria were heat-fixed to the slide using a Bunsen 

burner. Filtered crystal violet (0.5 %) (Thermo Fisher) was applied to the microscope slide and 

left for 30 s. Excess crystal violet was washed off the slide using distilled water.  Filtered Lugol’s 

iodine (0.5 %) (Thermo Fisher) was pipetted onto the slide and left for 30 s, before 70% ethanol 

(Sigma) was gently sprayed onto the slide to de-stain and the slide was quickly washed in 

distilled water. The microscope slide was counter-stained using filtered safranin (0.5 %) 

(Thermo Fisher) and left for 2 min to stain. Excess safranin was washed off the slide, which 

was blot dried, assisted by a Bunsen flame. Samples were viewed using the Leica DM750 light 

microscope with a 100x objective, bright field setting, with a small drop of immersion oil 

placed on the sample. Images were recorded using Lumenera Infinity Analyze 3 (Lumenera, 

Ottawa, Canada) software. 
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2.6.2 Fluorescence in situ hybridization (FISH) 

 

Fluorescent in situ hybridization (FISH) was used to identify each species in a mixed species 

biofilm and collect spatial information on the biofilm. Biofilms grown on hydroxyapatite 

coupons were washed gently with PBS (Thermo Fisher) to remove excess medium and 

planktonic cells.  1 mL of fixation buffer consisting of 4% paraformaldehyde in PBS, (Sigma 

Aldrich) was pipetted into each well and the biofilms were left to fix for 2 h at 4 °C. The biofilms 

were washed in PBS and 1 mL of dehydration buffer (50% ethanol in PBS) was added, and 

these were stored at -20 °C for 2 h. The biofilms were washed in PBS and incubated in 1mL 

lysozyme solution (1 mg/mL) (Thermo Fisher) for 15 min at 37 °C. Biofilms were again washed 

in PBS and hybridisation buffer was added (0.9 M NaCl, 20 mM Tris- HCl at pH 7.2, 0.01% SDS, 

25% formamide) (chemicals sourced from Sigma Aldrich) containing 250 ng of the appropriate 

DNA probe (Table 2.5). The biofilms were protected from light by covering them with 

aluminium foil and were incubated for 3 h at 46 °C. After incubation, biofilms were washed 

with a wash buffer (10 mM Tris- HCl at pH 9.0, 1 mM EDTA) (chemicals sourced from Sigma 

Aldrich) and incubated in this buffer at 55 °C for 10 min. This step was repeated three times. 

All biofilms were kept in the dark until imaged. Images were taken using either the Olympus 

BX60 fluorescence microscope or the Zeiss 880 confocal microscope.  All probes used in FISH 

experiments were listed in Table 2.5. Excitation intensity and any post-processing using Zen 

Black software (Zeiss, Jena, Germany) were recorded within the software for an accurate 

depiction of the signal received. 

Alexa probes were selected using the Thermo Fisher Spectraviewer (Thermo Fisher), based on 

having as little overlap of emission/excitation as possible. Spectral fingerprints were 

generated using the Zenblue software (Zeiss). For each species, the emission profile of 

individual pixels was taken from 6 areas of a FISH image and the average wavelength and 

intensity were saved. Mixed-culture images were spectrally unmixed using these fingerprints 

so that artificial fluorescence and bleed-through signals were minimised. For all experiments, 

both positive and negative controls were used. The negative control involved imaging a biofilm 

sample that had not been stained with a fluourescent probe. This helped identify false signals 

and autofluorescence. For the positive control, a universal EUB338 probe (Table 2.5) that 

binds to a conserved region of across bacterial phyla, was used.All permeabilisation steps were 

kept the same across both Gram + and Gram – species  to reduce bias as signal was found to 



46 
 

be affected be the permeability step. 

Table 2.5 All FISH probes used in this research project. Fluorophores were selected to 
minimise excitation overlap. The probe for N. subflava was designed using Snapgene. 

 

 

 

2.6.3 Live dead staining for imaging of biofilms 

 
Live dead staining was used to assess the viability of the biofilm through microscopy. Biofilms 

were scraped off hydroxyapatite coupons (Biosurface technology, Bozeman, USA) and 

suspended in PBS (Thermo Fisher). Cells were centrifuged at 3,800 xg at 4°C and resuspended 

in 1mL of PBS (Thermo Fisher). Cells were stained according to the steps detailed in Section 

2.5, were. Plates were incubated in the dark for 15 min. Biofilms were imaged using the 

Olympus BX60 fluorescence microscope using excitation/emission wavelengths of 480/500 

(SYTO9) and 490/635 (PI). For all samples, multiple images were taken to get a better 

representation of the health of the overall biofilm. 

 

Bacterial strain Target  FISH Probe Fluorophore  Reference 

Streptococcus 

gordonii DL1 

16S rRNA V3 CAC CCG TTC TTC TCT 

TAC A 

Alexa 594 (Thurnheer et 

al., 2001) 

Streptococcus 

mutans UA159 

16S rRNA V4 ACT CCA GAC TTT CCT 

GAC 

Alexa 488 (Thurnheer et 

al., 2001) 

Actinomyces 

oris MG1 

16S rRNA V1 CGG TTA TCC AGA AGA 

AGG G 

Alexa 555 (Thurnheer et 

al., 2004a) 

Neisseria 

subflava 

DSM17610 

16S rRNA V8 AGT CCG GAT TGC ACT 

CTG CAA CTC G 

Alexa 405 Designed in this 

research 

Veillonella 

parvula 

DSM2008 

16S rRNA V3 CTA ACT GTT CGC AAG 

AAG GC 

Alexa 647 (Sunde et al., 

2003) 

Universal 16S rRNA GCT GCC TCC CGT AGG 

AGT 

Alexa 405 (Amann et al., 

1990) 
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2.7 CDC reactor invasion experiments 

 

2.7.1 Reactor system setup 

 

The invasion experiments were all conducted using CDC reactors (Biosurface Technologies, 

US). These were selected based on the ability to control important variables in the system, 

including flow rate, temperature and stirring speed. The vessels allowed for sufficient 

sampling opportunities of biofilms growing on hydroxyapatite disks, and planktonic culture. 

Several practice runs were conducted to assess the ability to maintain a sterile system and to 

practice sampling from the system. The reactors were always run in triplicate, with each 

reactor supplied with AFMC from its own carboy. A shared waste carboy was connected to all 

3 reactors. A schematic of the reactor setup can be seen in Figure 2.2. 

 

Figure 2.2 Schematic of CDC reactor setup. Each reactor, kept on a hot plate to maintain 
temperature, had its own medium carboy, containing 6 L of AFMC, fed at a flow rate of 0.4 mL 
min -1. One port per vessel contained the pH probe, which continuously recorded the pH. The 
reactors were connected to a 20 L waste carboy.  The flow of medium followed the arrows in 
the diagram, as did the flow of data from pH probes to the computer system and Raspberry 
Pi. 
 

The CDC reactors contained 7 polypropylene rods per reactor (Biosurface Technologies), with 

each rod holding 3 hydroxyapatite coupons.  An autoclavable pH probe was inserted into the 

eighth port, allowing for continuous pH readings to be taken. The pH probes were connected 
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to a Raspberry PI using a BNC cable (RS components, London, UK) and a tentacle device. All 

data logged on the Raspberry PI was processed through Atlas IoT software (Atlas, NY, USA). 

Each CDC reactor was connected by 1 m of platinum-cured silicone tubing (Watson Marlow, 

Falmouth, UK) to a 10 L autoclavable carboy containing AFMC. A peristaltic pump was used to 

feed AFMC medium from a 10 L carboy into the reactor. An outflow tube connected each 

reactor to a shared 20 L waste carboy. The weir maintained the volume in the reactor at 350 

mL. A sampling tube was connected to the top of the vessel which was connected to an air 

filter. All feed carboys, pumps and reactors were kept at the same height to prevent variable 

effects on the flow rate of AFMC (Figure 2.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3 Setup of the CDC reactors. Each CDC reactor, positioned on top of a magnetic stirrer 
hot plate, was connected to its own carboy containing 6 L of AFMC medium and fed using a 
peristaltic pump. All reactors were run over the course of 9 days. 
 
 
2.7.2 Invasion experiments 
 

All reactor components and hydroxyapatite coupons were washed with Cleanline bleach 

(Cleanline, Coventry, UK) and rinsed with distilled water prior to assembly. Hydroxyapatite 

coupons were inserted into the polypropylene rods and reactors filled with 300 mL of distilled 

water before autoclaving. All pH probes were calibrated using the appropriate pH 4, 7 and 10 
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solutions (Cole-Parmer, Illinois, USA) and one probe per reactor was inserted in the place of 

one of the eight rods. All tubing connected to the reactors and carboys was clamped and ends 

wrapped in aluminium foil. Carboys containing a magnetic stir bar were filled with 5.5 L of 

distilled water and autoclaved, along with tubing and reactors, at 121 °C for 15 min. 

 

After the completion of the autoclave cycle, sterile media components with a total volume of 

500 mL, were added to the carboys and mixed on a magnetic stirrer/hot plate for 3 h. This 

helped to cool the medium. The carboys were connected to the reactors and the autoclaved 

distilled water from within the reactors poured off via the weir to maintain sterility. 300 mL 

of medium was pumped into the reactors using the peristaltic pumps, ready for inoculation. 

2.7.2 Inoculation strategy 

All species were seeded with the same number of cells, 3.85 x109 per CDC reactor.  Glycerol 

stocks were centrifuged at 3,800 xg at 4 °C and resuspended in 2 mL of AFMC. These were 

pipetted into the CDC reactor through a coupon holder port under aseptic conditions. A. oris 

was seeded on day 1, with S. gordonii, N. subflava and V.  parvula seeded on day 2 S. mutans 

was inoculated on day 3. The flow rate of 0.4 mL min-1 was set to reflect the flow rate of saliva 

in vivo  (Iorgulescu, 2009). The bulk was observed for potential contamination on the day after 

each inoculation using a light microscope. This was done before the invasion experiments 

were continued. The reactors were run for 9 days and maintained at 37 °C using hot plates 

and thermal insulation wrapping. 

2.7.3 Sampling from invasion experiments 

An autoclaved, silicone sample inlet tube (Watson Marlow) was inserted into a sampling port 

of the reactor. The sterility of this was maintained by sampling in a biological safety cabinet, 

spraying with 70% ethanol and covering tube ends with autoclaved foil after sampling. Feeding 

of the reactors from the carboys was paused during sampling and tubes were clamped. 10 mL 

of culture medium was withdrawn using a syringe and ejected into a 15 mL Falcon tube. 5 mL 

of this culture was filtered using a 0.2 uM filter (Merck, Darmstadt, SA) into a separate Falcon 

tube so that the sterile medium could be used for substrate analysis and the rest used for 

qPCR analysis. The filtrate and remaining culture were stored at -20 °C until analysed. On days 

3,5, 7 and 10, hydroxyapatite coupons were extracted from the rods (Figure 2.4) and placed 

into 12 well microtiter plates.  The coupons were covered in either 50% ethanol (for FISH) or 
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PBS (for qPCR analysis). Rods were placed back into the reactors. All sampling was done in 

sterile conditions, in a biological safety cabinet. Ports were sprayed with 70% ethanol (Thermo 

Fisher) and covered with autoclaved aluminium foil. Tubes were disconnected (during 

sampling of hydroxyapatite coupons) as far away from the reactor ports as possible, towards 

the waste carboy. 

 

 

 

 

 

 

 

 

Figure 2.4 Sampling of coupons in the laminar flow hood. One coupon per analytical method 
was taken and placed in a microtiter plate, which was stored at -20 °C. Care was taken with 
sampling to minimize the risk of contamination. 

 

2.8 In silico modelling of the synthetic community 

The mathematical models in this research aimed to describe the behaviour of the synthetic 

community, including the growth of each species over time and the pH change of the medium. 

The development of the altered FMC medium (Section 2.3.2) was supported and validated by 

FBA, described in Section 2.8.1.  To describe the phenomena occurring in the continuous 

stirred tank reactor (CSTR) and on the biofilm coupons, two different modelling approaches 

were used. A continuous 0-D mathematical model, based on ordinary differential equations 

(ODEs), was used to simulate the reactor bulk. A 2-D Individual-based Model (IbM) was used 

to model the biofilms formed on the coupons (Figure 2.5). 
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Figure 2.5 Two mathematical modelling approaches were used in this research to describe the 
behaviour of the synthetic community. A) The continuous 0-D model was used to simulate the 
planktonic bulk. B) The 2-D IBM was used to simulate the synthetic community bacterial 
biofilm. 

 

2.8.1 Flux balance analysis 

Flux balance analysis (FBA) was used to simulate the metabolism of the bacterial species 

through genome-scale reconstructions. This was used to help assist in the development and 

validation of AFMC (Appendix A), to support the growth of A. oris and V. parvula. KBase (The 

Departments of Energy Systems Biology Knowledgebase; https://www.kbase.us) was used for 

constructing draft metabolic models, using genomes for each species obtained from the NCBI 

database (https://www.ncbi.nlm.nih.gov/) and genome annotations (Table 2.1). Components 

of FMC (Terleckyj et al., 1975), proven experimentally to support the growth of S. gordonii, S. 

mutans, and N. subflava, were uploaded into KBase. Chemicals were added to the uploaded 

medium once at a time (in the order listed in Appendix A) and FBA was run to determine if 

biomass was generated from the simulations. Once FBA was completed for each species, the 

objective value was used to determine whether growth on AFMC was possible. 

 

 

 

B) Individual-based modelling of bacterial biofilm 

A) Continuous modelling of the bulk  
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2.8.2 Stoichiometry considered for the bacterial species 

 

A simplified reaction for the catabolic and anabolic pathways for each of the bacterial species 

was proposed (eq 1a-1c). In dental biofilms, S. gordonii, S. mutans, and A. oris are mainly 

facultative anaerobes that consume glucose (carbon source and electron donor) in anaerobic 

conditions and produce lactic acid as the main product (Dame-Teixeira et al., 2016; Lemos et 

al., 2019; Loo et al., 2000). V. parvula is an obligate anaerobe that consumes lactic acid (carbon 

source and electron donor), producing acetate and propionate (Ilie et al., 2012; Seeliger et al., 

2002). N. subflava is an aerobic species that consumes glucose and has oxygen as the primary 

electron donor, producing acetate and formate (Bradshaw et al., 1996a). This species was 

considered in the synthetic community as a scavenger for oxygen to protect the strict 

anaerobes, as previously reported for chemostat and biofilm experiments with dental biofilm 

species (Bradshaw et al., 1996a). To respect N. subflava known stoichiometry (eq 1b) and to 

replicate the experimental micro-aeration conditions in vitro, in this research, a constant 

concentration of 1 mg L-1 of oxygen inside the biofilm/reactor was considered.  N. subflava as 

glucose sink and the oxygen consumption was not modelled. 

 

For the anabolism, I used the general biomass formula CH1.8O0.5N0.2, proposed by Roels (Roels, 

1980.), using glucose and lactic acid, respectively as the carbon source and ammonia as the 

nitrogen source. The anabolic reactions were written with respect to 1 C-mole of biomass. The 

energy required for performing the anabolism was derived from catabolism, during which 

substrates were converted into lower-energy products, producing ATP. 

The stoichiometric equations for each species were presented in equations 1 a-c: the catabolic 

reactions correspond to those reported by Ilie (Ilie et al., 2012) and Seeliger (Seeliger et al., 

2002). 
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S. gordonii, S. mutans and A. oris – anaerobic glycolysis                                                          (1a) 

Catabolism: 

C6H12O6 → 2 C3H5O3
- + 2H+ 

Anabolism: 

0.175 C 6H12O6 + 0.2 NH3 → CH1.8O0.5N0.2 + 0.05 HCO3
- + 0.05 H+ + 0.4 H2O 

 

N. subflava– aerobic glucose respiration                                                                                    (1b) 

Catabolism: 

C6H12O6 + 1.5 O2 → 2 CH3COO- + HCOO- + 2 HCO3
- + 4 H+ 

Anabolism: 

0.175 C6H12O6 + 0.2 NH3 → CH1.8O0.5N0.2 + 0.05 HCO3
- + 0.05 H+ + 0.4 H2O 

 

V. parvula – anaerobic lactic acid fermentation                                                                        (1c) 

Catabolism: 

1/3 C3H5O3
- - → 2/3 CH3CH2COO- + 1/3 CH3COO- + 1/3 HCO3

- + 1/3 H+ 

Anabolism: 

0.35 C3H6O3 + 0.2 NH3 → CH1.8O0.5N0.2 + 0.05 HCO3
- + 0.05H+ + 0.4 H2O 

 

The maximum theoretic growth yield (YXS) estimation accounted for the number of times the 

catabolic reaction needed to run to generate enough energy for biomass formation. It  was 

the ratio between the free energy supplied by the catabolic pathway catG , the energy that 

was required for the anabolic pathway anaG , and the energy that was dissipated by the 

bacterial species for maintenance disG  (eq. 2), as proposed by Heijnen and Kleerebezem ( 

2010): 

 

cat
XS

ana dis

G
Y

G G


=
 +

  (2) 

 

The Gibbs free energy was computed for each catabolic and anabolic reaction using eq. 3, with 

the values for the chemical species free energy of formation listed in Appendix B. 
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 

 
0

Prod

React

n
r r

m

G G RT =  +



 (3) 

 

where: ∆𝐺𝑟
𝑜  (kJ mol-1) represented the free energy of reaction in standard conditions (1 atm 

and 20 oC); [Prod] (mol L-1), the concentration of the reaction products; [React] (mol L-1), the 

concentration of reactants; R (kJ mol-1·K-1), the ideal gas constant; and T (K) the temperature. 

In eq. 2, the value used for the dissipation energy value was 200 kJ C-mol-1, similar to the value 

used for glucose fermenters in anaerobic digestion studies (Buckel, 2021). 

 

The inverse of the growth yield was used to derive the overall growth reaction, according to eq 

4. 

 

catOVG Ana f Cat= +            (4) 

 

where OVG, Ana and Cat were the sets of stoichiometric coefficients corresponding to the 

overall growth reaction, anabolic and catabolic reactions, respectively (eq 1a-1c). fcat was 

defined as proposed by Heijnen and Kleerebezem (2010): 

 

1
cat ed

XS

f
Y

= − +  (5) 

 

 

where 𝜆𝐸𝐷 was the stoichiometric coefficient of the electron donor. The stoichiometry for the 

synthetic community (eq 1a-c) is included in matrix form in Appendix C. 

 

 

2.8.3 Growth kinetics for each bacterial species 

 

The bacterial growth and substrate consumption was modelled with a mixed thermodynamic–

empirical Monod approach, previously described in Gogulancea et al., (2019). The growth 

kinetics were described by a traditional Monod calculation, and the bacterial yield was 

estimated using a thermodynamic approach (Section 2.8.2). Here, Monod kinetics were used 
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to model the growth kinetics of the bacteria, considering the growth based on only one 

limiting substrate. In eq.6, the growth rate (𝜇) for bacterial species was computed. 

 

 

 

 
 max

S

S
m

K S
 = −

+
 (6) 

 

where, the growth rate (μ, h-1) of each bacterial species considered the maximum specific 

growth rate of that microorganism (μmax, h-1) on the limiting carbon source (S, mmol L-1), the 

Monod substrate affinity constant (Ks, mmol L-1) and the maintenance term (m, h-1).  The 

Monod substrate affinity constant (Ks, mmol L-1) was equal to the substrate concentration at 

which μ = ½ μmax. The kinetic parameters were unique for each species and were measured 

experimentally. They were detailed for each species in Table 2.6. KS was presented both in 

(mmol L-1) and (g·L-1) as the concentrations of substrates were measured experimentally in 

(g·L-1) and the model results will be reported as such. 

 

The maintenance term included in the bacterial cell mass balance in the IbM, considered the 

Gibbs free energy of dissociation and catabolism, defined by eq. 7: 

 

𝑚 =
𝑚𝐺

𝛥𝐺𝑐𝑎𝑡
 (7) 

 

Where mG was the maintenance energy, considered constant for all species and equal to 4.5 

kJ C-mol-1h-1 (Heijnen & Kleerebezem, 2010).   

 

 
 
 
 
 
 
 
 
 
 
 



56 
 

Table 2.6. The kinetic parameter for each bacterial species used in mathematical models were 
collected experimentally. S. gordonii had the highest maximum specific growth rate (μmax) of 
0.492 h-1, whilst A. oris had the lowest, 0.227 h-1. S. mutans and N. subflava had the lowest 
substrate affinity constant, Ks (1.0 gL-1). 
 

Bacterial species 

Kinetic parameter 

Carbon source 

μmax (h-1) Ks (mmol L-1) Ks (gL-1) 

Streptococcus 

gordonii 

0.492 6.60 1.88 Glucose 

Streptococcus 

mutans 

0.406 5.55 1.00 Glucose 

Actinomyces oris 0227 7.78 1.40 Glucose 

Neisseria subflava 0.261 5.55 1.00 Glucose 

Veillonella 

parvula 

0.246 26.90 2.42 Lactic acid 

 

Th use of Monod kinetics assumed that each species only utilised one limiting substrate at a 

time, whereas species have complex metabolic pathways (Section 1.2.3) and can often use 

more than one carbon source to generate biomass. The growth rates in Table 2.6 were also 

derived from single-species experiments, therefore the use of Monod kinetics to model the 

mixed-species synthetic community with these parameters was a simplification of the more 

complex multispecies synthetic community.  No explicit decay was considered in the 

modelling of the suspended culture using the 0-D continuous model. Here, the assumption 

was that the dead cells were accounted for and removed by the outlet flow at a flow rate of 

0.4 mL min-1.  

 

I modelled cell decay in the biofilm using the IbM. If the maintenance term became larger than 

the growth term, I assumed that the bacteria entered a decay stage. The decay was modelled 

using linear kinetics, presented in eq (8): 

 

dk = −   (8) 
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where kd was the decay coefficient, assumed to value of 4.2·10-3 h-1, similar to Head et al.,  

(Head et al., 2014a). 

 

 

2.8.4 pH influence on growth 

 

The variation in pH is known to be one of the most important parameters affecting bacteria, 

including their growth.  The pH affects enzyme activity within bacteria and the structural 

integrity of cells. The protonation of acids can trigger cytoplasmic acidification and collapse 

proton gradients, leading to cell death (Yin et al., 2019). In the model, substrates were 

considered in one dissociated form i.e., either lactic acid or lactate, not both, assuming 

bacteria could uptake only one form of a chemical. The concentrations and the availability of 

these chemical forms were affected by diffusion, mass transfer and the biological processes 

of the bacteria. The speciation of lactic acid affects V. parvula growth, as it can only utilize 

lactate for growth (Ilie et al., 2012). Glucose, the primary carbon source for four of the species, 

does not undergo dissociation and therefore this did not have a direct impact on their growth.  

The energy balance for the catabolic and anabolic pathways for these species was, however, 

influenced by pH, which influenced the computed values of the growth yields. 

 

I modelled the pH variation explicitly, considering the deprotonation and hydration reactions 

that occurred in the main chemical components of the system (organic acids, CO2 and 

ammonia). The system was buffered using a phosphate buffer in the continuous model, to 

mimic the experimental system. Due to the computational burden, I used a carbonate buffer 

in the IbM, to minimize the number of soluble species and mass balance equations that were 

solved. The deprotonations were modelled as equilibrium equations. Both the deprotonation 

and hydration reactions were assumed to occur instantaneously (by comparison with the 

timescale of bacterial growth and diffusion reactions). The pH was computed at every time 

step by solving the mass and charge balances (Volcke et al., 2005). The equations for the pH 

calculations were detailed below in eq 9 a-m: 
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LacH ↔Lac-+H+, 
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= ;    1

tLacH Lac LacH− = + 
                               (9a) 

AcH↔Ac-+H+, 
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1
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− +      
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PropH↔Prop-+H+, 
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    2 3

3 4 3 4 2 4 4 4tH PO H PO H PO HPO PO− − −     = + + +       

H2O ↔ OH-+ H+, 
eqk H OH+ −   =                                     (9m) 
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I retrieved the equilibrium constant values from the literature, and these were listed in 

Appendix D. The concentration of all the species in the system of equations above was 

expressed as a function of the proton [H+] concentration and their respective equilibrium 

constant. 

The solution was neutral (from the ionic standpoint), and the concentration of all negatively 

charged species was balanced by that of the positively charged species, as described in the 

charge balance equation (10): 

 

 

2

4 3 3H NH Ac Prop Form HCO CO OH+ + − − − − − −               + = + + + + +                 (10) 

 

The concentrations of all species (function of proton concentration) can be replaced in the 

charge balance (equation 10) above. The equation was solved using the Newton method for 

non-linear equations and the pH was expressed using equation 11 below. 

 

10logpH H + = −    (11) 

 

To consider the direct impact of pH on the bacterial species growth rate (Boisen et al., 2021), 

I implemented a pH correction method to adjust the maximum specific growth rate of each 

species, as proposed by Rosso et al., (1995),  presented in eq 12. 

 

( )
( ) ( )

( ) ( ) ( )
min max

max max, 2

min max

opt

opt

pH pH pH pH
pH

pH pH pH pH pH pH
 

− −
=

− − − −
 (12) 

 

In eq. (8, I considered three different parameters: i) the pH at which max  was optimal (pHopt); 

ii) the pH above which no growth occurred (pHmax); and iii) the pH below which no growth 

occurred (pHmin). The pH boundaries were specific to each bacterial species, as species have 

different tolerances to acidic and alkaline conditions (Table 2.7). Although slightly lower than 

in other reports, the pHmin for S. mutans was proposed here based on the fact that this species 

can continue to grow in continuous cultures at pH values of 4.5–5.0, and it is known to 

continue to perform glycolysis and membrane proton transport at pH 2.5–3.0 (Baker et al., 

2017). Moreover, in studies with dental biofilm, the local pH fell regularly below 4.0 (Bradshaw 
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& Marsh, 1998) and S. mutans biofilm survived acid stress of pH 3.0 (Welin-Neilands & 

Svensäter, 2007). 

 

Table 2.7 The boundaries for each of the bacteria species considered in the pH correction for 
species kinetic parameters. Each condition was specific to the species and now had a direct 
impact in bacteria kinetics within model simulations. 
 

Species pHmin pHopt                        pHmax References 

Streptococcus 

gordonii 

4.5 

 

7.0 9.0 (Castillo et al., 

2000) 

Streptococcus 

mutans 

4.0 6.0 9.0 (Castillo et al., 

2000; Bender et 

al., 1985) 

Actinomyces oris 5.3 7.0 9.0 Proposed based 

on (Caous et al., 

2013) 

Neisseria 

subflava 

5.0 7.0 9.0 Proposed based 
on 
(Tønjum & van 

Putten, 2017) 

Veillonella 

parvula 

4.8 7.0 9.0 Proposed based 

on (Head et al., 

2017) 

 

2.8.5 Continuum stirred tank reactor (CSTR) model 

The synthetic community growth in the suspended culture of the CDC was modelled as a 0-D 

continuous model.  The continuous model allowed for the simulation of a homogenous mixed 

species system. It allowed for the comparison of the relative abundances in the liquid culture 

against those measured in the invasion experiments, whilst predicting substrate 

concentration/consumption, and pH in the bulk.  The model assumed that the bulk was a 

homogenous mixture, at constant temperature of 37 °C. 
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The continuum model was comprised of 15 ordinary differential equations which represented 

the mass balances for the 10 chemical species included in the stoichiometry (Appendix B; 

Section 2.8.2  eq 1a-i) and the 5 bacterial species (eq. 13). 

( ),0

,

1 1

j

i
j j i i

i X S

dS
X S S

dt Y



= + −                                                                                                        (13) 

where Si was the concentration of soluble species i (mol L-1), Si,0 was the inlet concentration 

to the bioreactor (mol L-1), , ji X SY  was the yield for the I-bacterial species growing 

on/producing the chemical species i (mol-X mol-S-1), 𝜇𝑗 and 𝑋𝑗 were the corresponding 

growth rate (h-1) and concentration for bacterial species j (mol L-1) and τ was the reactor 

residence time (h-1). 

( ),0

1j

j j j j

dX
X X X

dt



= + −                                                                                                             (14) 

where Xj  was the concentration of bacterial species j (mol L-1), 𝑋𝑗,0 was the inlet concentration 

of the bacterial species j (mol L-1; set to zero for all the species), 𝜇𝑗 was the growth rate (h-1) 

of the species j and τ was the reactor residence time (h-1). 

For the continuous model, the synthetic community members were introduced in the 

simulation at the same times as in the inoculation procedure reported in Chapter 3. The order 

of inoculation was A. oris on day 1; S gordonii, N. subflava and V.  parvula on day 2; and S 

mutans on day 3. 

2.8.6 Implementation of the CSTR model 

The 0-D continuum model was implemented in Matlab® and the system of 15 ordinarily 

differential equations integrated with Runge Kutta numerical method (ode15s built in 

function). The code was added in Appendix E. The main file of the model was 

“MainStaggeredpH.m” which called all the subroutines. The model assembled the metabolic 

matrix of the selected species (through the function assemble.m) and read all simulation 

parameters (function ‘read_param.m’) from the Excel file “Repository.xlsx”. This file contained 

the kinetic parameters for the species, as well as the stoichiometry, thermodynamic 

parameters, and influent concentrations for the substrates. 
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For the continuous model, the synthetic community members were introduced in the 

simulation at the same times as in the inoculation procedure.  This was A. oris on day 1; S 

gordonii, N. subflava and V.  parvula on day 2; and S mutans on day 3. The continuous model 

outputted simulation results over 9 days. For all the soluble species’ concentration and the 

biomass. The model computed and updated the pH values after every successful integration 

step. The results were plotted against the date from the in vitro experiments. For the bacterial 

species, the results were calculated as relative abundances, to be able to compare them with 

the data collected from the in vitro system, while for the substrates concentration and pH 

there was a direct comparison with the measured data. 

2.8.7 Individual based model 

The multispecies biofilm developed on the hydroxyapatite coupons in the CDC reactor was 

simulated with a 2-D individual based model (IbM). In the IbM, the bacterial cells were 

represented as discrete entities (particulate components of the model), while the chemical 

species involved in the biochemical reactions (Section 2.8.2 eq 1a-i) were soluble components 

which participated in diffusion-reaction processes, generating the field of concentration. The 

two-dimensional biofilm model was split in three subdomains (Figure 2.6). These were the 

biofilm itself growing at the bottom of the domain, the boundary layer, and the bulk liquid. 

Figure 2.6. Schematic representation of the sub-domains included in the IbM. In the bulk and 
boundary layer sub-domains, there were only soluble components (i.e., glucose, lactic acid, 
acetate etc.), while in the biofilm sub-domains there was biomass (bacterial cell) and soluble 
components. 
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Bacterial cells were modelled as cylinders of constant height (1 µm), each bacterial agent 

having its own set of properties (radius, mass, set of kinetic parameters). The cells were placed 

in a 2-D computational domain, a square of 100 x 100 µm, where the bacterial biofilm was 

allowed to reach the maximum height of 80 µm. Bacterial cells above this height were 

removed from the computational domain, to replicate the detachment phenomena that 

occurred in the reactor biofilms. Each bacterial cell had its unique sets of spatial coordinates, 

specifying the position of its centre and its radius. 

The bacterial cells had a maximum (division) radius of 2 µm, chosen to be in the same range 

reported by Head et al.,  (2014). The initial seeding radius for all the cells was set at 90% of 

the division radius. 

 

The IbM allowed for three possible behaviours of bacterial cells: 

 

a. Growth: if the growth requirement (𝜇𝑚𝑎𝑥 ∙
𝑆

𝐾𝑠+𝑆
)  was higher than its maintenance 

requirement (m), the cell was allowed to grow, using the following mass balance 

equation 

 

( ) ( )

( )
( )max

, ,
,

,

j i

j

s i

dX x y S x y
m X x y

dt K S x y

 

= −  + 
 (15) 

 

where µmax (h-1) was the maximum specific growth rate; Ks (mmol L-1) was the 

substrate affinity constant; Si(x,y) was the limiting substrate concentration in the grid 

cell (x,y); m maintenance term calculated with eq 16; and ( ),jX x y the concentration 

of biomass of species i in the grid cell (x,y). 

 

b. Maintenance: if the growth requirement was equal to its maintenance requirement, 

the cell maintained its current mass 

 

( ),
0

idX x y

dt
=  (16) 
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c. Decay: if the growth requirement was higher than the maintenance requirement, the 

cell entered the decay stage 

( )
( )

,
,

i

d i

dX x y
k X x y

dt
= −   (17) 

 

where 𝑘𝑑 was the decay coefficient, assumed to have the value of 4.2·10-3 h -1 similar to Head 

et al.,  (2014). 

As bacteria grew, they reached the maximum imposed radius and were divided into two 

individual cells, each containing between 45-55% of the initial parent cell mass. The cell mass 

was determined by a random number within the code. One of the daughter cells retained the 

position of the parent, while the other was placed adjacent to it, at a random angle. After each 

successful integration step, a division check was performed and the new numbers and 

positions of the bacterial cells were recorded. As cells may have overlapped following a 

division event, an overlap check was performed. Overlaps were resolved by pushing the 

existing neighbour cells until the maximum overlap between bacterial cells became lower than 

10% (of their area). This process was traditionally called “shoving” and it was initially described 

by Kreft et al., (Kreft et al., 2001). During the decay stage, the cell shrunk and the biomass 

(with general formula CH1.8O0.5N0.2) was transformed back into soluble components (the 

reverse of the anabolic reaction). When the radius of a bacterial cell became smaller than a 

threshold (10% of its radius following division), the cell was considered “dead” and removed 

from the biofilm. 

 

In the biofilm sub-domain, it was assumed that the nutrients were transported only by 

diffusion, which was modelled using Fick’s second law. The mass balance equation for the 

solute i in the grid cell of the coordinates (x,y) was, therefore: 

 

2 2

2 2
( , )i i i

eff i

S S S
D r x y

t x y

   
= + + 

   
                                                                                              (18) 

 

where Si was the molar concentration of chemical species i, Deff the effective diffusion of 

chemical species i, and ( , )ir x y was the net reaction term for the chemical species i in the 

grid cell (x,y). The net reaction term represented the sum of the rates of all the processes in 
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which the soluble component i was involved, weighted by the yield factors corresponding to 

the particular bacterial cell type present in the grid cell (x,y). 

 

Table 2.8 Diffusion coefficients for the soluble components considered in the IbM. Nutrients 

were transported only by diffusion in the biofilm sub-domain, modelled using Fick’s law. 

 

 

In the biofilm subdomain, the diffusion coefficients of the solutes were affected by the 

presence of cells (which had a higher density than the bulk). Their values were adjusted with 

a diffusion factor proposed by Fan et al., 1990 (Fan et al., 1989). This was further used in the 

IbM as proposed by Ofiteru et al., 2014 (Ofiţeru et al., 2014): 

 

( )

( )

0.92

0.99

0.43 ,
( , ) 1

11.19 0.27 ,
f

X x y
d x y

X x y


= −

+ 
                                                                                           (19) 

 

On top of the biofilm, there was a 20 µm boundary layer, in which the entire diffusional 

resistance of the bulk liquid was concentrated.  No chemical reactions occurred in the 

boundary layer, and the diffusion coefficients for the soluble species were the same as those 

reported for water, presented in Table 2.8. Therefore, the mass balance for the soluble 

components in these two sub-domains was also described by eq 18, but without the reaction 

Soluble component Diffusion coefficient (m2h-1) Reference 

Glucose 3.06 · 10-6 (Ilie et al., 2012) 

 

 

Acetic acid/Acetate 4.97· 10-6 

Lactic acid/Lactate 4.72· 10-6 

Formic acid/ Formate 6.62· 10-6 

Propionic acid/Propionate 4.97· 10-6 

Ammonia 5.90· 10-6  (Yaws, 2009) 

Oxygen 9.58· 10-6 

Carbon dioxide 5.40· 10-6 
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term. In the boundary layer, the diffusion factors ( , )fd x y  were equal to 1 (as X(x,y) = 0) and 

therefore the diffusion coefficients had the same value as reported in water. 

 

In the bulk sub-domain, the diffusion coefficient was assumed to be several orders of 

magnitude (103) higher than in the boundary layer and the biofilm. This was to describe the 

perfectly mixed environment on the top of the biofilm, which had the same concentrations as 

the bulk liquid in the reactor.  This assumption was previously used by Ofiteru et al., 2014 

(Ofiţeru et al., 2014).  Modelling the bulk liquid of the reactor as perfectly mixed was in line 

with the assumption that the bulk was perfectly mixed (as CSTR) during the in vitro 

experiments. 

 

The model assumed that the biofilm was placed inside a continuous reactor, whose behaviour 

was solely influenced by the biofilm, as presented originally in Picioreanu et al., (2004) 

The mass balance equations for the reactor were: 

 

,1 0

n

liq ii

reactor

r S SdS

dt V 
= −

= +
  (20) 

 

where ∑ 𝑟𝑙𝑖𝑞,𝑖
𝑛
𝑖=1  was the sum of all the reaction rates at which the soluble species were 

consumed or produced by each bacterial agent (i) located in the biofilm subdomain. The 

biofilm volume represented a small fraction of the bulk liquid volume (i.e. its characteristic 

length was assumed to be 100 times larger than a biofilm grid cell). 
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2.8.8 IbM implementation and solving algorithm 

Individual based model (IbM) simulations were implemented and solved in Matlab® 

(Mathworks, Ca, USA) where it solved the mass balance equations for the soluble species and 

bacterial cells sequentially, as presented in Figure 2.7. 

 

Figure 2.7 Workflow for solving the algorithm for the IbM and the interactions between the 
model’s modules. Solving began with initialization (building the stoichiometric matrix, defining 
all soluble components concentrations, and bacterial cell placements at the bottom of the 
computational domain). This was followed by resolving the diffusion-reactions, biomass 
growth, mass balance for the reaction, division and decay and the mechanical interactions, 
including shoving. 

 

The domain was first seeded with 46 bacterial cells, such that the entire first row of the 

computational domain was filled with bacterial cells, placed at an equal distance from each 

other and from the walls of the computational domain. The five species were seeded with the 

same initial number of agents, while the positions of the agents were randomly assigned. To 

solve the diffusion reaction equations for the soluble species, domain discretization was 

performed as follows: first, the height of the domain was computed, by adding the height of 

the boundary layer on top of the height of the biofilm. The computational domain was divided 

into grid cells, the length and height of the maximum division diameter for the bacterial cells 
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(2 µm). The pH was computed in every grid cell, using the current soluble species 

concentrations. The reaction rates for each soluble species were computed using the 

concentration of bacterial agents in each computational grid and the estimated growth yields. 

To allow the decoupling of the system of equations for the bacterial and soluble species, I 

assumed that the diffusional processes were much faster than the biological processes (the 

concentration of the bacterial species was considered constant, while solving the mass 

balances for the chemical species) (Kreft et al., 2001). The partial differential equation system 

(PDE) described by equation 18, was transformed into a system of algebraic equations using 

the Crank-Nicholson discretisation method. 

The boundary conditions were as follows: 

• Dirichlet boundary condition at the top of the computational domain: 

0<x<max_x; y = max_height, S = S0 

• The vertical domain walls have periodic boundary conditions 

0<y<max_height, x=0, x=max_x, Si=Sj 

• No flow condition at the bottom of the computational domain 

0<x<max_x; y = 0, dS/dt = 0; 

 

The resulting system was solved iteratively using matrix left division and lower-upper (LU) 

decomposition. The time step for the diffusion calculations was set at 10-6 h. Following 

convergence, the soluble species concentrations were updated in every grid cell. The mass 

balance equations for the bacterial cells were solved: the system of ordinary differential 

equations (eq. 15) was solved using the backward Euler method and a time step of 15 min.The 

boundary conditions were re-calculated, using the reactor coupling to compute the top 

boundary conditions for the next time step. The last steps in the algorithm were the division 

checks, followed by resolving the overlap. After solving the reactor balance, the mass and 

radius of each bacterial agent were updated and the division and overlap check was 

performed. These steps were repeated until the total simulated time reached 9 days. The IbM 

simulations were initially run in triplicates, to verify the random division positioning and 

overlap resolve did not significantly impact the outcomes of the model. The average 

simulation time on a computer with 11th generation Intel® Core™ i7 @2.30GHz processor and 
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16GB RAM was 48h. The Matlab® files and a description of the main functions were included 

in Appendix E. 

2.9 Statistical analysis 

All experiments involved in Chapters 3 and 4 were repeated as biological triplicates containing 

technical triplicates. Plotted points were the average, with error bars representing the 

standard deviation from the mean. For all image analyses, including FISH and live-dead 

imaging, a minimum of three images were taken from the sample. Statistical analysis was 

completed using Prism (Graphpad, USA) to determine significant differences between the 

means of the two groups. T-tests were used to assess significant differences (p<0.05) between 

flow cytometer cell viability. One-way analysis of variance (ANOVA) with Tukey post hoc tests 

(P value lower than 0.05) was used to observe differences between different species 

abundances from qPCR data. This was using Prism 9 statistical software (GraphPad, Inc., San 

Diego, CA, USA), with a significance of 5% used. 
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Chapter 3. Development of a synthetic microbial community model 

 

3.1 Introduction 

Caries develops when the commensal dental biofilm shifts to a cariogenic state (Marsh, 

2006b). Understanding factors contributing towards caries progression, including 

overpopulation of acidogenic species e.g., S. mutans, is important in informing the 

development of safe oral care products e.g., toothpaste and mouthwash.  These will help 

prevent the global health and economic impact of caries. 

Characterising the factors that lead to the invasion of S. mutans into dental biofilms over time, 

and the effect on commensal species is challenging in vivo. This is due to the number of species 

in the oral environment and the rich chemical environment in the mouth. To understand the 

factors leading to S. mutans invasion in vitro requires a model biofilm, or synthetic community 

of bacteria, to represent dental biofilms. These oral synthetic communities help better 

understand changes to bacterial ecology in vivo, including metabolic interactions and the 

effects on the local environment, e.g., pH changes through acid production (Chatzigiannidou 

et al., 2020a). Microbial communities provide the advantage of simplifying a very complex 

system found in vivo, where there are often hundreds of species in a biofilm, which is difficult 

to work with on a lab scale. The use of these communities allows for the control of variables 

e.g. sugar concentration and analysis of the effect that these changes have on the community 

(Bengtsson-Palme, 2020). Selection of the species used in a synthetic community needs to 

balance being clinically relevant in vivo, in terms of function and abundance, whilst also being 

able to be cultured under the same conditions e.g., oxygen tolerances. Mono and dual-species 

models have been used extensively (Díaz-Garrido et al., 2020), but they do not resemble the 

complexity of dental biofilms due to considering a limited number of species. Therefore, many 

recent studies have employed defined synthetic communities containing numerous species to 

understand these interactions and more accurately model the in vivo environment (Thurnheer 

et al., 2004a; van Holm et al., 2022 ; Wang et al., 2011). Whilst these models are examples of 

work characterising dental biofilms by using complex commensal communities, there are a 

limited number of models used to characterise the transition of a commensal dental biofilm 

to a cariogenic-associated state in a defined environment. Once these synthetic communities 

have been established to appropriately represent the in vivo environment, they can be used 
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in computational modelling approaches (as done in Chapter 5). Synthetic communities can be 

used to understand drivers of cariogenic species invasion by simulating the activity of oral 

species in different conditions (Head et al., 2017). The simulation of these synthetic 

communities has shown to have better correspondence to experimental data when the kinetic 

parameters of each species were used to inform the in silico models (Rosso et al., 1995). 

Kinetic parameters include the maximum specific growth rates (μmax) and substrate affinity 

constants (Ks). To collect these parameters and further study the bacterial communities 

experimentally, the environmental conditions needed to support growth must first be 

established. This includes an appropriate growth medium. 

Chemically defined media (CDM) are often used in understanding bacterial behaviour, as they 

reduce the chemical complexity of the system. They allow for the quantification of the 

chemical compounds fed into the system, consumption and production by bacteria. CDM have 

been developed for oral species (Socransky et al., 1985) (Terleckyj, 1975), however, as bacteria 

have specific nutrition requirements, these do not support the growth of all oral species. CDM 

are useful when considering in silico strategies they allow for inputting of all chemical 

concentrations within the system, which are needed for growth simulation and pH balancing. 

They also allow the main carbon source/electron donor to be determined, which was needed 

in the mass balance equations of such mathematical models. The development of CDM can 

be directed by using flux balance analysis (FBA). This mathematical modelling approach 

allowed for the construction of bacterial metabolic models and the simulation of the potential 

growth of bacteria on a defined medium (Orth et al., 2010). FBA can show whether biomass 

production was possible on a given medium. This saves time by directing the selection of 

which chemicals are needed, rather than experimenting with individual substrates blindly. FBA 

has been used to show the nutritional requirements of S. mutans (Jijakli & Jensen, 2019).Once 

a CDM had been developed to support the growth of the synthetic community, 

experimentation can be conducted to understand species' behaviour and their effect on the 

local environment. 

Bacteria are metabolically complex, showing different characteristics in a rich environment of 

different substrates (Afroz, 2016). S. mutans can utilise glucose and sucrose, but physically 

behave differently depending on which sugar was present. S. mutans produces 

exopolysaccharides from extracellular sucrose, which helps adhesion to surfaces, biofilm 

formation and microcolony development (Olivera, 2021). S. mutans, therefore, has properties 
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making it suited to the invasion of dental biofilms, especially in the presence of sucrose. This 

species was also resistant to acidic environments, due to its acid tolerance response (N 

Takahashi & Yamada, 1999). This helps S. mutans resist the bacterial stress of low pH 

environments, which contributes to this species thriving in carious lesions (Dinis et al., 2022). 

Characterising the behaviour of each species in a mixed-species biofilm is therefore critical in 

understanding the behaviour of the system in different conditions. 

Characterising and quantifying a mixed microbial system, including the invasion of a species 

into a mixed-species biofilm, requires the use of optimised analytical tools that can help 

understand ecological changes. This includes qPCR, which can be used to quantify the absolute 

amount of each bacterial species, allowing changes to be tracked over time (Wang, 2021). 

However, qPCR does not allow for the composition of a mixed system to be visualised or give 

any spatial information. It can therefore be used in conjunction with other analytical tools, 

e.g., fluorescence in situ hybridization (FISH). When optimised for the bacteria studied, FISH 

can reveal the spatial characteristics and patterns lacking from cell quantification (Thurnheer 

et al., 2004b).  The combination of qPCR and FISH provides a powerful analytical tool for 

characterising the changes in a mixed microbial community.  Using qPCR only enumerates 

bacteria based on the DNA present within the community and FISH only provides information 

on the presence of the bacteria cells. It is important to determine the viability of the members 

of the community to understand cell stresses and species prevalence in the system, which 

change under different conditions. Flow cytometry and live/dead staining have been used to 

quantify the proportions of viable microorganisms in the system over time (Berney, 2007). 

 

 

 

 

 

 

 

 

 

 



73 
 

3.2 Aims and objectives 

 

 
In this chapter, I aimed to select a synthetic community to represent the dental biofilm and 

develop a CDM supporting growth of the 5-oral species. I aimed to characterise the synthetic 

community of oral bacteria, including collecting μmax and Ks, and develop methods needed 

to quantify S. mutans colonisation into the commensal biofilm. This was in preparation for the 

colonisation experiments in Chapter 4 and the in silico simulations in Chapter 5. 

 

Objectives: 

 

1) Select a representative cohort of oral species to comprise the synthetic community, 

including 4-commensal species and the cariogenic species S. mutans. 

2) Develop a chemically defined medium, that supported the growth of all members of a 

5-species synthetic community of oral bacteria. This medium was needed to support 

growth without the cells being significantly stressed. 

3) Collect the kinetic parameters from the bacterial species needed to inform the in silico 

models. This included the maximum specific growth rates (μmax) and the substrate 

utilisation constants (Ks). 

4) Identify characteristics of the bacteria species, including substrate utilisation, growth 

at different pH and acid production. 

5) Develop and refine the analytical techniques needed to investigate S. mutans 

colonisation into the synthetic biofilm. This included qPCR and FISH. 

6) Establish an inoculation strategy, so that the whole synthetic community could grow 

in an in vitro system. 
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3.3 Results 

 

3.3.1 Selection of a synthetic community of oral bacteria and in vitro growth model 

 

Selecting oral species to comprise the synthetic community, used in both the in vitro and in 

silico models to represent the oral microbiome and specifically dental biofilms, was central to 

this research.  With the oral microbiome consisting of over 700 species, it is difficult to 

represent with too few species, as this would not capture the complexity of the system and 

help characterise important inter-species interactions. Selecting too many species poses 

difficult challenges in terms of laboratory work and in silico computational demand.  

Furthermore, as many species have similar roles in dental biofilms e.g., S. mutans and S. 

wiggsiae are both species directly implicated in caries progress, it is important to recognise 

that justification for other oral species could have been made. The oral bacterial species 

chosen were S. mutans UA159, S. gordonii DL1, A. oris MG1, Neisseria subflava DSM17610 and 

V. parvula DSM2008. S. mutans was selected as the cariogenic species due to its well-known 

involvement in disease progression (as discussed in Section 1.2.4). A pre-formed commensal 

bacterial community, comprising the other 4 species, representing the dental biofilm, was 

exposed to S. mutans. These commensal bacteria were selected based on their reported 

abundance from taxonomic quantification studies in literature, known function in the oral 

microbiome and established inter-species interactions that play a role in dental caries. This 

includes the nitrate reduction and anti-cariogenic properties discussed in Section 1.2.4. The 

species were also used routinely in my research group (excluding N. subflava), which 

influenced my decision in selecting the community due to my research group characterising 

the behaviour of these oral species and their role in the oral microbiome. The justification for 

synthetic community selection was detailed in Table 3.1. This synthetic community was 

central to all laboratory work and mathematical simulations involved in this research. 



75 
 

Table 3.1 Selection of the synthetic community of oral bacteria, including names of strains, justification of selection and references. Species were 
selected based on the reported abundance in vivo, function and known interactions. S. mutans was the cariogenic species introduced into the 4-
species community to characterise invasion. 

No. Strain Reasons for inclusion References 

1 Streptococcus 

gordonii DL1 

A pioneering colonizer of the oral microbiome, part of initiating dental biofilm 

development. 

Found in large abundances in dental biofilm and established relationship with other 

commensal bacteria e.g., Actinomyces. 

Produces hydrogen peroxide that has been shown to reduce the success of S. mutans in 

dental biofilms. 

Fully sequenced strain of S. gordonii, useful for primer design and any metabolic analysis. 

(Rath et al., 2017) 

(Zhang & Senpuku, 2013; 

Xu et al., 2020) 

(Kreth et al., 2009) 

Accession number 

NC009785 

2 Streptococcus 

mutans 

UA159 

Strong consensus on S. mutans being cariogenic and having a large role in caries 

progression due to acid production and tolerance. 

Paves way for secondary colonisers e.g., Lactobacillus spp. and Candida spp. 

Comprises only 2% of the initial Streptococci population, which increases in caries-related 

patients This makes it of interest when attempting to characterise the transition of a 

commensal dental biofilm to a caries-associated state/ 

Fully sequenced strain of S. mutans, useful for primer design and any metabolic analysis. 

(Chenicheri et al., 2017) 

(Matsui & Cvitkovitch, 

2010a; Cavalcanti et al., 

2017) 

(Fakhruddin et al., 2019) 

Accession number 

AE014133 

3 Actinomyces 

oris MG1 

Among the most common early colonisers of freshly cleaned teeth and is found in high 

abundance. 

(Li et al., 2004) 

(Mohammed et al., 2018) 

(Dame-Teixeira et al., 

2016a) 
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Found to populate dental biofilms in all age groups and through different stages of caries, 

owing to acid production and high acid tolerance. In high abundance in early dental 

plaque formation. 

Observed in different morphologies, but evidence points towards the importance of 

interaction with other species in microcolonies for initial biofilm development e.g., S. 

gordonii. 

 

4 

 

Neisseria 

subflava 

DSM17610 

Neisseria is abundant in the oral microbiome, despite not being prevalent in many oral 

models. 

Shown to be able to reduce nitrate to nitrite and be one of the main species causing this 

in the oral environment. This may have relevant benefits e.g., blood pressure regulation. 

Consumption of oxygen contributes to a reduced oxygen environment and acts as a 

carbon sink to help anaerobic species. 

Aerobic nature meant the synthetic community successfully represented bacteria with 

different oxygen demands/tolerances as the case is in vivo 

 

(Liu et al., 2015) 

(Hyde et al., 2014; 

Petersson et al., 2009b) 

(Bradshaw et al., 1996) 

(Marangoni et al., 2020) 

 

5 Veillonella 

parvula 

DSM2008 

Present in progression stages of dental biofilm formation and relatively high abundance 

in dental biofilm. 

Established interaction and protection of S. mutans during caries progression. 

Several positive effects on oral microbiome and beyond, including the metabolism of acid 

produced by species e.g., S. mutans as well as reduction of nitrate to nitrite. 

Fully sequenced strain of V. parvula, useful for primer design and any metabolic analysis. 

(Crielaard et al., 2011b) 

(Luppens et al., 2008a) 

(Mashima et al., 2016a; 

Vanhatalo et al., 2018) 

Accession number NC 

013520 
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An appropriate growth model was needed to study the invasion of S. mutans into the dental 

biofilm. The CDC bioreactor (Figure 3.1) was selected due to the advantages discussed in 

Section 1.3.3. This included providing a flow-through system that was amenable to the 

measurements of key parameters e.g., medium flow rate, different growth substrates and 

temperature control, whilst being able to grow multiple biofilms simultaneously. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 A CDC bioreactor setup, recently used for dental biofilm research (Miller et al., 
2020). The CDC bioreactor allowed for constant flow-through of the medium under varying 
flow rates. Up to twenty-four coupons could be contained within, allowing for multiple 
biofilms to be formed at the same time. The reactor setup involved medium fed into the 
reactor using a peristaltic pump, media weirs out of the reactor into the waste carboy via the 
outlet port once the volume reaches 350 mL. 
 
 

3.3.2 The development of a CDM to support the growth of the oral synthetic community 

 
I aimed to develop a CDM that would support the growth of the synthetic community. This 

was to untangle the complexity of the chemical environment, better understand the 

nutritional demands of the bacterial species, and help inform the in silico approaches used in 

Chapter 5. First, I attempted to culture all 5 species on THYE + lactic acid medium, to gather 

preliminary information on the species, including morphology. I imaged all 5 species using 

Gram staining, done at the start and end of each experiment, to determine the shape of the 

cells and check the purity of the cultures. S. gordonii (Figure 3.2A) and S. mutans (Figure 3.2B) 

looked very similar down a microscope as they were both cocci, formed chains and were 

Gram-positive. This made them difficult to differentiate images using routine light microscopy 

techniques. A. oris (Figure 3.2C) was also Gram-positive, but cells had a distinct rod shape that 

often formed a “V” shaped pair. N. subflava (Figure 3.2D) and V. parvula (Figure 3.2E) looked 
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similar to each other, being Gram-negative cocci, however, N. subflava formed diplococci. I 

observed that A. oris cells tended to cluster together in liquid culture, relative to the other 

species. Similarities in morphology between pairs of species highlighted the need to use FISH 

to differentiate in later mixed-culture experiments. 
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Figure 3.2 Imaging the members of the synthetic community on THYE + lactic acid medium, using a light microscope and Gram staining. S. 
gordonii, S. mutans and A. oris were Gram-positive and appeared purple. N. subflava and V. parvula were Gram-negative and appeared pink. All 
experiments were checked for contamination by confirming the presence of only one cell type A) S. gordonii, B) S. mutans, C) A. oris, D) N. 
subflava, E) V. parvula.

D) 

B) 
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I attempted to grow the synthetic community on FMC medium, as described in Chapter 2.3.1. 

I recorded the optical density of each monoculture sample over 24 h. S. gordonii, S. mutans 

and N. subflava grew on FMC to high turbidity (Figure 3.3), with OD600nm values of over 1.5 

reached at 24 h for all.  No signs of cell stress, e.g., bulging cells or un-uniform morphology, 

were observed when looking down the microscope. A. oris and V. parvula cultures were not 

able to grow to high turbidity, with OD600nm after 24 h being below 0.2 for both species. This 

showed that FMC lacked the required nutrients to support these species. 

Figure 3.3 Growth curves of the oral bacteria over 24 h in FMC medium. S. gordonii, S. mutans 
and N. subflava grew on the medium, whilst A. oris and V. parvula failed to grow. Plotted 
points were the average OD600nm values taken per h, over biological triplicates, with error bars 
representing the standard deviation from the mean. Each biological replicate contained 
technical triplicates (n=3). 
 
 

To validate experimental approaches in the development of a CDM that would also support 

the growth of A. oris and V. parvula, I used Flux balance analysis (using KBase software). This 

was used in combination with what I found from the literature (see V. parvula use of lactic 

acid in Chapter 1). I constructed metabolic models of each species and used FBA to simulate 

whether biomass could be fully generated on my defined medium. My FBA showed that 

neither A. oris nor V. parvula could grow on FMC medium, with the objective value for biomass 

production both being 0. I was unable to get A. oris to generate biomass through these 

simulations, so I attempted to supplement with chemicals found in the literature. When I 
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included lactic acid and putrescine in the medium, I obtain a positive objective value of 3.63 

for biomass generation of V. parvula, indicating that the species could grow on the medium. 

Simulations of the metabolic fluxes of V. parvula on this medium showed that lactic acid 

uptake contributed the most towards biomass production, with a flux of 60.90 (Figure 3.4). 

When I omitted lactic acid from FBA simulations, the objective value was 0 and there was no 

reaction output figure from KBase. This was because of the inability of V. parvula to generate 

biomass from a carbon source without the presence of lactic acid. The difference in simulated 

results with and without lactic acid confirmed that supplementation was necessary to support 

synthetic community growth.  

 

 
Figure 3.4 Reaction flux of V. parvula growth. Lactate uptake contributed significantly towards 
the objective value, with biomass being the desired function.  FBA showed that growth was 
not supported on FMC medium, which did not contain lactate, but was attainable when lactate 
and putrescine were added to the medium. This figure was a snapshot from simulation results 
generated using AFMC in KBase, where no figure could be generated without lactic acid 
present .  
 

The combined approach of literature and metabolic modelling helped formulate AFMC. I used 

AFMC to attempt to grow all 5 species of the synthetic community. The components of AFMC 

medium can be seen in Table 3.2 
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Table 3.2 Development of the AFMC medium to support the growth of the whole synthetic 
community. FMC medium was not able to do so, but with the addition of several chemicals, 
including cysteine, lactic acid and putrescine, the growth of all species was achieved. Each 
species was grown in biological triplicate to confirm the status of growth on the medium (n=3). 
 

a. Growth was defined as reaching an OD600nm of ≥0.5 after 24 h. 

 

 

 

No 

 

Medium 

Species growtha 

S. gordonii S. mutans A. oris N. subflava V. parvula 

1 FMC + + - + - 

2 FMC 

+ 

L-cysteine HCl 

1 gL-1 

Inositol 2 

mgL-1 

Thioctic acid 

0.1 mgL-1 

Oleic acid 2 

mgL-1 

Pimelic acid 

0.1 mgL-1 

+ + + 

 

+ - 

3 Medium from 

No. 2 

+ lactic acid 

(12.1 gl-1) 

+ + + 

 

+ - 

4 AFMC 

(Medium 

from No.3 

+ 1 mgL-1 

putrescine) 

+ + + + + 
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AFMC supported the growth of all synthetic community species (Figure 3.5) and supported 

multiple-generation subculturing (over 50 generations).  All 5 species entered the stationary 

phase at different times, with S. gordonii reaching it the fastest after 6 h, but all reached it 

within 24 h of inoculation into fresh medium. A. oris and V. parvula reached OD600nm values of 

1.3 and 1.1 respectively, which they were not able to do on FMC. This showed that the 

combination of using FBA and literature research was effective in developing a chemically 

defined medium. AFMC was used for future experimentation. 

Figure 3.5 Growth curves of the oral bacteria over 24 h in AFMC medium.  All synthetic 
community members were able to grow on this medium, all achieving an OD600nm above 1.0. 
Plotted points were the average OD600nm values over biological triplicates, with error bars 
representing the standard deviation from the mean. Each biological replicate contained 
technical triplicates (n=3). 
 

3.3.3 Determining the kinetic parameters of the oral bacterial species 

 

The maximum specific growth rate (μmax) and substrate affinity constant (Ks) were 

determined for each bacterial species. This was so that the experimentally measured kinetic 

parameters could be used by the mathematical model to simulate growth of the synthetic 

community in Chapter 5. The μmax values for each bacterium (Table 3.3) were calculated 

using the gradient of the exponential phase of growth. To determine Ks values, I grew each 

species, excluding V. parvula, in AFMC supplemented with lactic acid ata a concentration of 

12.1 gL-1, and glucose at varying concentrations. I plotted the growth rates determined for 
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each species against the substrate concentration and Ks was equal to the substrate 

concentration at which μ = ½ μmax. I grew V. parvula on AFMC supplemented with glucose at 

20 gL-1 , but also with lactic acid at varying concentrations. 

 

Table 3.3 μmax and Ks values for all oral bacterial species. The μmax values were taken from 
the average gradient of the exponential phase of growth (n=3). S. gordonii had the highest 
growth rate of 0.492 h-1, whilst A. oris had the lowest growth rate of 0.227 h-1. Substrate 
affinity constant values (Ks) for all species were determined by plotting the growth rate (μ) 
against their primary substrate concentration. The Ks value was equal to the substrate 
concentration at ½ μmax. 

 
 

S. gordonii had the fastest growth rate of 0.492 h-1, compared to the other species (p<0.005). 

A. oris was the slowest growing of the species, with a μmax of 0.227 h-1.  For each of the four 

glucose-consuming species, μmax was highest at 20 gL-1 glucose and decreased at a higher 

glucose concentration (Figure 3.6). For S. mutans, the growth rate decreased from 0.406 h-1 

to 0.349 h-1 when the glucose concentration increased from 20 gL-1 to 30 gL-1. N. subflava was 

able to grow without glucose, unlike S. gordonii, S. mutans and A. oris, showing that this 

species could grow by using other components of AFMC (data not shown). The lower the Ks 

value, the higher the affinity for the substrate and the greater the concentration needed to 

reach μmax. S. mutans and N. subflava had the lowest KS value of the glucose consumers, 

with a Ks of 1.00 gL-1, whilst A. oris has the highest Ks value of 1.40 gL-1. 

 
 

 Species characteristics 

μmax (h-1)                 Ks (gL-1) 

 

Carbon source 

Streptococcus gordonii 0.492 1.88 Glucose 

Streptococcus mutans 0.406 1.00 Glucose 

Actinomyces oris 0.227 1.40 Glucose 

Neisseria subflava 0.261 1.00 Glucose 

Veillonella parvula 0.246 2.42 Lactic acid 
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Figure 3.6 Substrate affinity constants (Ks), estimated from the substrate concentration at 
which μ = ½ μmax. Plotted points were the μmax for each species at different glucose 
concentrations. All species had their μmax plateau and then decreased when the 
concentration increased above 20 gL-1. 
 

V. parvula was not able to grow without lactic acid. The growth rate plateaued at 12.1 gL-1 

lactic acid (Figure 3.7). The μmax value decreased significantly, when the starting lactic acid 

concentration was reduced, dropping from 0.246 h-1 at 12.1 gL-1, to 0.216 h-1 at 7.26 gL-1. At 

24.2 gL-1 lactic acid, there was a slight drop, showing that saturation occurs between 1% and 

2%.  Overall, these results show that the growth rate of V. parvula was directly related to the 

lactic acid concentration of the medium. V. parvula, consuming lactic acid as a primary carbon 

source, had a higher Ks value (2.42 gL-1) than any of the glucose consumers, therefore 

requiring higher quantities of lactic acid to grow compared to the amount of glucose needed 

for the other species. Based on these data, a glucose concentration of 2 gL-1 and a lactic acid 

concentration of 2.42 gL-1 were used in the substrate-limiting systems (Chapter 4). 
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Figure 3.7 Substrate affinity constant (Ks) for V. parvula, estimated from the substrate 
concentration at which μ = ½ μmax.  Plotted points were the μmax for V. parvula at different 
substrate concentrations.  V. parvula did not grow in the absence of lactic acid and μmax 
plateaued between a concentration of 12.1 gL-1 to 24.2 gL-1. 
 
 

3.3.4 Substrate utilisation by the synthetic community 

 
I grew each species on AFMC supplemented with either glucose or sucrose to confirm the 

substrate usage for the synthetic community members. I also observed any differences in 

characteristics of the species between growing on glucose or sucrose. I quantified growth and 

substrate concentration over 24 h. All species, excluding V. parvula, consumed glucose as they 

grew over time (Figures 3.8 a-e). The results showed that a starting glucose concentration of 

20 gL-1 was in excess of what was needed in the monoculture growth experiments, for all 

species. For V. parvula, it was confirmed that lactic acid was the carbon source consumed for 

growth (Figure 3.8e). Lactic acid was also in excess AFMC, as the concentration of lactic acid 

never dropped below 3.19 gL-1.  Glucose and sucrose levels remained the same, as they were 

not consumed by V. parvula. V. parvula was not affected by the presence or absence of these 

sugars. N. subflava grew without either glucose or sucrose in AFMC. S. gordonii, S. mutans and 

A. oris, however, did not grow without having either glucose or sucrose in the medium (data 

not shown). 
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Figure 3.8 Growth and substrate utilisation of the synthetic community members over 24 h on AFMC supplemented with either glucose or 
sucrose. All species grew in the presence of glucose and sucrose. V. parvula was unable to consume these sugars but consumed lactic acid for 
growth. Data points represented the average OD600nm or substrate concentration value across biological triplicates, all with three technical 
triplicates. Error bars represent the standard deviation from the mean (n=3).  S. gordonii (A), S. mutans (B), A. oris (C) and N. subflava (D), V. 
parvula (E).

A) 

E) D) C) 

B) 
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I examined the growth of the species on different sugars to determine any significant 

difference in behaviour.  When grown in AFMC containing sucrose, S. mutans cells aggregated, 

with the amount of aggregation noticeably different depending on the quantity of the sugar 

(Figure 3.9). With either glucose or fructose present in the absence of sucrose, there was no 

aggregation of S. mutans. No other species exhibited this behaviour. 

 

 

 

 

Figure 3.9 Growth of S. mutans on AFMC supplemented with glucose, sucrose, or fructose. S. 
mutans behaved differently depending on the carbon source used. Whilst capable of growing 
on glucose sucrose or fructose, S. mutans exhibited the unique attribute of aggregating 
together when grown on sucrose. This was not observed from any of the other species 
members or on any of the other sugars. 
 

I used calorimetry to observe if any difference in metabolic activity was detected between the 

5 oral species on the different sugars. The species were grown on AFMC supplemented with 

either glucose or sucrose in monoculture, inside vials. The calorimeter recorded heat 

generation from the cultures.  N. subflava showed a significantly greater thermal output on 

glucose than on sucrose, reaching a peak of 82 μW on glucose, compared to 58 µW on sucrose 

(Figure 3.10). S. gordonii and A. oris (not shown) showed no difference in metabolic activity, 

regardless of whether the species were grown on glucose or sucrose. N. subflava also 

produced far more energy than any of the other species (p<0.005), likely due to this species 

  Negative control                2 gL-1  glucose                   1.9 gL-1  sucrose              2 gL-1 fructose 
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undergoing aerobic respiration, a far more energy-efficient method of growth compared to 

anaerobic respiration. V. parvula was not able to grow in these experiments, likely due to the 

oxygen presence in the vials of the experiments. S. mutans produced a greater amount of 

energy on sucrose (48 μW), than on glucose (40 μW). 

 

Figure 3.10 Heat output from S. gordonii, S. mutans and N. subflava on glucose and sucrose 
over 24 h recorded using a microcalorimeter. N. subflava produced a significant amount of 
heat on glucose compared to sucrose, whilst S. gordonii had a similar amount of heat 
produced regardless of the substrate. All experiments were conducted in biological triplicate 
containing technical triplicates (n=3). 
 
 

3.3.5 Growth of oral species and acid production at different pH 

 
Acid production by bacterial species has a significant impact on caries progression, where 

demineralisation occurs around a pH of 5.5 and below. The yield of bacterial growth also 

differs depending on the pH of the local environment. I investigated the ability of each species 

to grow to high turbidity in acidic environments, and the pH variation of AFMC resulting from 

the growth of each species This was to help identify species' ability to thrive in acidic 

environments, often seen in caries, and their potential contribution to demineralisation in 

vivo, by way of understanding how the species impact the pH of their environment. 

Furthermore, understanding their contribution to pH change would help explain any pH 

changes seen in the invasion experiments (Chapter 4). Species were grown in monoculture 

and data collected after 48 h. 
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All 5 synthetic community species were affected by the starting pH of the medium. S. mutans 

grew far better than the other species at an initial pH of 6 (Figure 3.11) (p<0.05), with an 

OD600nm of 1.14 reached. S. mutans was the only species to grow at a pH of 5.3, all others did 

not grow significantly from their starting optical densities (OD600nm values below 0.1). For all 

species, the optimal pH for growth from those tested was determined to be pH 7.  These 

findings demonstrated that S. mutans grew significantly better in a more acidic condition than 

the other species and indicated that once the mixed-culture environment decreases below 

5.5, the majority of the synthetic community members would struggle to grow. 

Figure 3.11 Maximum OD600nm of the synthetic community members at different initial pH over 

48 h on AFMC medium. S. mutans grew significantly better at lower starting pH, compared to 

the other species in the synthetic community. Data plotted was taken after 48 h and was the 

average across biological triplicates, with error bars representing the standard deviation from 

the mean (n=3). 

 

I measured the pH after 48 h of growth of each species in AFMC, at different starting pH levels. 

I observed that all species produced significant amount of acid by the time they have reached 

stationary phase. S. mutans was the most acid producing species, lowering the pH from 7 to 

4.94 (Figure 3.12), compared to V. parvula which lowered the pH the least to 5.98. As the 

starting pH lowered, for all species, the pH changed from the initial pH by a smaller amount. 

This was due to less growth being observed once the pH fell below the optimal condition of 

S.gordonii S.mutans A.oris N.subflava V.parvula
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pH 7. By a pH of 5.3, the end pH was similar to the starting pH as all species struggled to grow, 

therefore producing minimal acid from fermentation. 

 

Figure 3.12 The final pH of the AFMC medium after 48 h of growth for each species of oral 
bacteria. S. mutans was the most acid-producing species, whilst V. parvula was the least acid-
producing. Data represented the average pH across triplicate experiments, with error bars 
representing the standard deviation from the mean (n=3). 
 

 

3.3.6 Synthetic community visualisation through fluorescence in situ hybridization 

 
I developed an optimised FISH method to visualise members of the synthetic community.  This 

was because it was difficult to differentiate between synthetic community species using light 

microscopy, as there were bacteria with similar cell morphologies i.e., both S. gordonii and S. 

mutans form cocci chains. I selected 5 different fluorophores that were as far spread on the 

wavelength spectrum as possible (Figure 3.13) to minimise the overlap of fluorescent 

emission. However, with the chosen fluorophores, there was still spectral overlap. In Figure 

3.13, the excitation of each fluorophore was represented by the dashed lines, and the 

emission peaks by the solid peaks. The emission spectra of Alexa 594 bled into that of Alexa 

647 and so some of the signal would have been picked up by the detector. The excitation of 

Alexa 594 was also close to the emission of Alexa 555. 

 

 



92 
 

 

 

 

Figure 3.13 Fluorophores selected to optimise minimal overlap. I used Spectra viewer 
(ThemoFisher) as a tool to represent excitation (dashed lines) and emission (solid lines) of all 
peaks for the 5 fluorophores. These 5 fluorophores were selected to conjugate to the FISH 
probes used in this research (Alexa 405= N. subflava, Alexa 488= S. mutans, Alexa 555= A. oris, 
Alexa 594 = S. gordonii, and Alexa 647 = V. parvula. 
 
 
Each bacterium was hybridized using the same conditions so that I could make the transition 

to hybridize all of them in a mixed sample. I refined the experimental conditions so that 

optimal images could be taken. This included optimising the hybridization steps and wash 

steps to significantly reduce background noise (Figure 3.14). The Alexa 555 fluorophore, used 

to image A. oris, resulted in significant background fluorescence before optimisation, which 

was reduced by optimising the hybridization temperature, including a short hybridization 

period at room temperature, and then using a series of wash steps. This had a drastic effect 

on the amount of autofluorescence, which would have been even greater in a mixed-species 

system, where more than one fluorophore was employed. 
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Figure 3.14 A. oris planktonic cells visualised using FISH. (A).  Without the improved washing 
cycle steps and hybridization step at room temperature I observed a large amount of 
background noise and autofluorescence. (B) Optimising the protocol led to a significant 
reduction in background noise. Images were taken in a minimum of triplicates, with 
representative images used. 
 

Initially, I grew each species planktonically in monoculture using THYE + lactic acid medium (as 

described in Chapter 2). I was able to image all species in planktonic culture using FISH. I 

imaged areas of low density so that I could observe the cell structure. For example, in Figure 

3.15A, S. mutans could be seen forming cocci chain structures and A. oris with a distinct rod 

shape (Figure 3.15C). Each fluorophore emitted light at different intensities with Alexa 594, 

used for S. gordonii, emitting a weak signal. This was improved by adjusting the gain to 

equalise the signal. 

A) B) 
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Figure 3.15 Members of the synthetic community visualised as monoculture planktonic cells using FISH. I imaged each species after 24 h and 
identified their structure. Positive controls using EUB338a (not shown) and negative controls using non-species-specific primers were used in all 
FISH experiments.    A) S. gordonii, B) S. mutans, C) A. oris, D) N. subflava, E) V. parvula F) Negative control. 

C) 

D) 

A) B) 

E) F) 



95 
 

Once all species had been imaged in monoculture as planktonic cells, I visualised each species 

as mono-species biofilms of different maturities. Each biofilm was cultured initially in THYE + 

lactic acid medium on glass coverslips, contained within 6-well plates. Once I was able to do 

this, I visualised each biofilm grown in AFMC on hydroxyapatite disks placed within 6-well 

plates (Figure 3.16).  These were the desired conditions within the CDC reactor system 

(Chapter 4). I was able to visualise each species. It was evident that individual cells could be 

observed, but also the structure formed by the biofilms. A. oris cells in a biofilm preferentially 

grew densely together in structures (Figure 3.16C), whereas N. subflava (Figure 3.16D) and V. 

parvula (Figure 3.16E) cells disperse over the surface more. S. gordonii (Figure 3.16A) and S. 

mutans (Figure 3.16B) formed chains of cocci and grew to very high cell densities. 
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Figure 3.16 Members of the synthetic community visualised as monoculture biofilms using FISH. I grew each biofilm anaerobically, excluding N. 
subflava, which was grown aerobically, on hydroxyapatite disks for 24 h before imaging. Species were grown on AFMC. The images shown were 
representative samples of numerous tests. A) S. gordonii, B) S. mutans, C) A. oris, D) N. subflava, E) V. parvula 

C) 

C) 

A) B) 

E) D) 
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Once I was able to image all biofilms separately, I attempted to image mixed species biofilms 

in different combinations to test whether they could be enumerated together. I attempted 

this with S. gordonii and S. mutans, as they looked very similar without fluorescent imaging 

(Figure 3.17A), as both formed chains of cocci cells, so it was important to be able to 

differentiate them. By using species-specific probes, they could be separated in the same 

image from the same sample (Figure 3.17B). Here, both species were grown together for 24 h 

after being inoculated at the same time. 

 

 
Figure 3.17 Visualising S. gordonii (orange) and S. mutans (green) in a mixed-species biofilm 
using confocal microscopy. (A) When the sample was viewed using bright field and no 
fluorescence, both were difficult to differentiate due to forming chains of cocci cells. B) The 
use of fluorescent staining as part of FISH allowed for separating them in a mixed-species 
environment 
 

 

The final aim was to image all 5 species in the same biofilm. I encountered significant overlap 

in the emission/excitation of the fluorophores, despite them being selected to be as far away 

on the spectrum as possible. I reduced the overlap in spectra by employing spectral 

fingerprinting for each of the 5 fluorophore-species combinations (Figure 3.18A). This involved 

recording several emission signals from mono-culture samples for each species biofilm and 

using the profile to create a “fingerprint”. The fingerprint showed what emission should be for 

the species and what was autofluorescence or coming from a different channel.  With this 

approach, there was a possibility of not recording the full fluorescent signal of the sample, but 

it provided a more accurate signal received from the bacteria and significantly reduced bleed 

B) A) 
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over from other channels. In the mixed-species biofilm, A. oris was grown first (inoculation 

strategy discussed in 3.2.7), with S. gordonii, N. subflava and V. parvula brought in 24 h later. 

S. mutans was inoculated after 48 h. All 5 fluorophores could be seen, demonstrating that it 

was possible to grow a biofilm including the whole synthetic community (Figure 3.18B). No 

specific spatial pattern was observed. Using spectral fingerprinting on the mixed-species 

biofilms reduced background fluorescence and overlap of emission spectra, although this was 

not eliminated completely. The Alexa 405 dye conjugated probe, hybridized to N. subflava, 

still contributed to bleed-through and over-saturation. 

 

Figure 3.18 Imaging the 5 species synthetic community biofilm using FISH, aided by spectral 
fingerprinting. A) I took multiple signals from cells in a mono-culture biofilm for each species 
(shown here for S. mutans) and averaged the emissions to create a spectral fingerprint file. 
The peaks represent emission from individual cells. This was used to help filter overlapping 
fluorescent emissions and reduce autofluorescence. B) I was able to visualise all 5 synthetic 
community members in AFMC medium on hydroxyapatite disks. 
 
 

3.3.7 Development of a qPCR method to quantify bacterial species 

 

I used qPCR to quantify each bacterial species in my synthetic community. I needed to develop 

the assay before progressing with the in vitro model, as tracking the change in abundance of 

each species, particularly S. mutans, was vital in characterising invasion into the synthetic 

community biofilm. 

A) B) 
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I extracted genomic DNA (gDNA) from each species and amplified species-specific regions of 

the 23s rRNA gene for synthetic community member using the primers and probes in Chapter 

2. I ran the PCR products on a 1% agarose gel (Figure 3.19) to check that the correct targets 

had been amplified.  These fragments corresponded to the desired sizes and produced strong 

bands within this region, confirming the amplification of the region of interest. The presence 

of a strong band confirmed sufficient quality of DNA fragments. 

 
Figure 3.19 Amplification of gDNA targets using designed cloning primers. A) I ran the targets 
using gel electrophoresis on a 1% TAE gel, with 1kb HyperLadder™. B) The PCR products for 
each species were compared against the ladder to determine the correct size (Expected target 
size S. gordonii (SG)= 552 bp, S. mutans (SM)=313 bp, A. oris (AO) =692 bp, N. subflava (NS) 
=679 bp, V. parvula (VP) = 672 bp). 
 

I cloned each of these targets into E. coli using the TOPOTM TA cloning kit (Invitrogen, MA, 

USA). I extracted bacterial plasmids from each species using the QIAprep Spin Miniprep 

plasmid kit (Qiagen, Hilden, Germany). I confirmed the insertion of the region of interest by 

sending samples for sequencing, using the Mix2seq sequencing kit (Eurofins, Luxembourg). I 

ran these on a gel to confirm the presence of the fragment within the TOPOTM plasmid. I 

extracted the plasmid DNA (pDNA) from E. coli for each species. The quality of each plasmid, 

sufficient concentration and degree of DNA contamination were all confirmed using 

A) B) 

SM 
SG 

AO NS VP 
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NanoDropTM and gel electrophoresis (Figure 3.20). The 260/280 ratios were all between 1.80-

2.00, confirming that the plasmid DNA was of acceptable quality (Figure 3.20). 

 

 
Figure 3.20 Analysis of pDNA species extracts post-cloning using the NanoDropTM. 260/280 
ratios were between 1.80-2.00 indicating suitable quality. Concentrations of each plasmid 
ranged from 333-555 ng/uL. 
 
 
I quantified each E. Coli plasmid extract using the PicoGreen™ assay kits (Thermo Fisher, MA, 

USA). I generated a standard curve (Figure 3.21) so that I could accurately quantify the exact 

amount of DNA in each sample, as the method was more accurate than using the NanoDropTM. 

This was necessary for generating the standard curves needed in my qPCR assay.  The quantity 

of each of the plasmids differed from the concentrations on the NanoDropTM, which also picks 

up other obstacles in the light path other than DNA. I, therefore, used the concentrations 

determined by PicoGreen™ (Thermo Fisher, MA, USA) for my qPCR standard curves. 
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Figure 3.21 Standard curve generated using the PicoGreen™ assay kit (Thermo Fisher, MA, 
USA). This was used to accurately quantify the concentration of each plasmid standard, to be 
used in qPCR. The R2 value of the curve was 0.9945. 
 
 
It was necessary to confirm a working protocol for qPCR quantification of the oral species 

before use in the invasion experiments in Chapter 4. First, I generated a standard curve for 

each bacterial species' pDNA. To do this, I amplified serial dilutions between 10-2-10-8 of the 

known pDNA standards using species-specific primers. I confirmed that the primer/probe set 

efficiencies for each species were between 90-100%, deemed acceptable by the MIQE 

guidelines (Bustin et al., 2009). I ran these products on a gel to confirm the correct size of the 

target. I used these standard curves for all future qPCR quantification experiments. I grew 

biofilms on glass coupons in monoculture and extracted DNA as described in Chapter 2. After 

amplifying the gDNA of my species, I ran each product on a gel to confirm that the amplified 

region from each standard corresponded to the desired target (Figure 3.22A). These were 

confirmed to be of the expected size when run on a gel. Once I had confirmed the amplification 

of gDNA for each species from monoculture biofilms, I multiplexed the reaction to make the 

experiment more time and cost-efficient, cutting down the analysis from 5 samples to 2. This 

was necessary as a significant number of samples were generated for the invasion 

experiments. I amplified mixed species pDNA standard extracts in a multiplex setup, S. 

y = 0.0296x - 6.8858     R² = 0.9945 
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gordonii, A. oris and V. parvula in one sample, with S. mutans and N. subflava in the other.  

Once this was confirmed to work, I amplified gDNA from planktonic cells of each species, using 

multiplex qPCR (Figure 3.22B), to validate that this method could be used on bacterial 

samples, as needed for in vitro samples in Chapter 4.   

 

  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 3.22 Amplification of genomic DNA from each species using multiplex qPCR (A). 
Samples were amplified in triplicate and the product was run on an agarose gel to confirm the 
correct size of the amplified product (Expected target size S. gordonii (SG)= 102 bp, S. mutans 
(SM)=111 bp, A. oris (AO) = 153 bp, N. subflava (NS) =110 bp, V. parvula (VP) = 88 bp). (B) 
Multiplex qPCR was used to amplify gDNA from a mixed species sample (Colour of 
amplification plot line S. gordonii = purple, S. mutans = orange, A. oris = yellow, N. subflava = 
dark blue, V. parvula = light blue). 
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3.3.8 Using qPCR and FISH to develop inoculation strategy 

 

I conducted test runs of the CDC reactors to establish the early colonisers in a mixed-species 

biofilm. The synthetic dental biofilms were to consist of S. gordonii, A. oris, N. subflava and V. 

parvula.  Biofilms were grown on hydroxyapatite disks and fed using AFMC medium. I used 

FISH and qPCR to test for the growth of these species. 

After forming biofilms with the four species inoculated at different times, I determined that 

A. oris struggled to establish a mixed-species biofilm when grown with the Streptococci. One 

such test involved the inoculation of S. mutans and A. oris at the same time. A. oris was not 

detectable by FISH after 24 h (Figure 3.23A). A. oris has the slowest growth rate, therefore was 

likely to have been out-competed. When I grew a 24 h A. oris biofilm and then introduced S. 

mutans, both A. oris and S. mutans formed a mixed-species biofilm (Figure 3.23B). This showed 

that the inoculation order was very important and A. oris was not well suited to growing at 

the same time as competing species. Rather, I needed to grow A. oris first when attempting 

to establish the synthetic community biofilm. S. mutans must be inoculated last as I am 

studying the invasion of S. mutans into the pre-formed biofilm. When I inoculated A. oris first, 

S. gordonii, N. subflava and V. parvula after 24 h, and S. mutans 24 h later, I was able to 

establish the growth of a mixed species biofilm containing the whole synthetic community 

(Figure 3.18B). 

 

 

 

 

 

 

 

Figure 3.23 (A) Visualising A. oris and S. mutans mixed-species biofilms grown anaerobically 
on AFMC. When both were inoculated at the same time, A. oris (red) struggled to grow after 
24 h. When inoculated 24 h before S. mutans (green), both species were established in a 48-
h biofilm (B). Overlapping signals where cells grew in the same region resulted in yellow 
colours. This image was a maximum projection image of a z-stack. 
 
 

A) B) 
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To confirm that it was possible to enumerate all species in the synthetic community biofilm, I 

used qPCR to quantify the absolute cell number of each species. I grew mixed species biofilms 

for 72 h on AFMC in the CDC reactor, using the inoculation strategy in 3.3.8, and amplified the 

extracted gDNA from samples.  Each CDC reactor was inoculated with 3.85 x109 cells per 

species. I obtained amplification for all species (Figure 3.24).  The absolute number of cells 

quantified per species accounted for the copy number (number of times the amplified region 

of genetical material repeats in the species genome). In this instance, S. gordonii was the most 

abundant species, with 3.93 x 108 cells cm-1. A. oris was the least abundant of the synthetic 

community, with a cell concentration of 1.13 x 105 cells cm-1, despite being inoculated first. 

Figure 3.24. The cell concentration per 72 h biofilm was quantified using multiplex qPCR to 
confirm an appropriate inoculation strategy. All species were established within the biofilm, 
with S. gordonii being the most abundant. Plotted data points were the average across 
triplicates, with error bars representing the standard deviation from the mean. 
 

These results confirmed an inoculation strategy whereby all species could grow together in a 

synthetic community biofilm for the in vitro system (Table 3.4). This strategy was used in 

future experiments using the in vitro system in Chapter 4. 
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Table 3.4 Inoculation strategy to be used for the in vitro experiments. I decided upon this 

based on roles in vivo, growth rate and observing their ability to establish in a mixed-species 

biofilm using FISH and qPCR. 

 

 

3.4 Discussion 

 

I have successfully developed a biofilm model for studying the invasion of S. mutans into a 

pre-existing 4-species early coloniser biofilm. A key step was the development of a chemically 

defined medium, termed AFMC, that supported the growth of all 5 species. I have obtained 

the kinetic parameters of the species on AFMC medium, which will be used to inform the in 

silico modelling approaches for species growth simulation in Chapter 5. Finally, I have 

developed key tools in assessing mixed-species biofilms and species invasion into a microbial 

community, including FISH and qPCR. 

I selected a synthetic community of oral bacteria comprised of S. mutans and several early 

colonisers, that are known to be abundant in dental biofilms. S. gordonii (Salli & Ouwehand, 

2015),  S. mutans (Zhou et al., 2018) A. oris (Luo et al., 2022), N. subflava (Bradshaw & Marsh, 

1998a) and V. parvula (Mashima & Nakazawa, 2015a), have all been used in previous models 

to characterise dental biofilms. There have also been models that have used a combination of 

these commensal species and S. mutans within the same model (Chatzigiannidou et al., 

2020b). Despite a significant number of synthetic communities assembled for dental biofilm 

research, there has not been one used to track the transition of a commensal dental biofilm 

to a cariogenic state, in a defined environment, using an in vitro-in silico combinatorial 

approach. This unique 5-species community allowed me to track the invasion of S. mutans 

Inoculation strategy 

Day Species 

0 Actinomyces oris 

1 Streptococcus gordonii 

Neisseria subflava 

Veillonella Parvula 

2 Streptococcus mutans 
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over time, quantifying the abundance of each species, and the effect on substrate 

concentration in vitro (Chapter 4). It also allowed me to simulate the abundances, substrate 

and pH impact in silico (Chapter 5), with the in silico models informed by synthetic community 

kinetic parameters collected experimentally in this chapter, and validated by the reactor 

results in Chapter 4. 

I developed AFMC by advancing a previously assembled chemically defined medium (Terleckyj 

et al., 1975) to support the growth of this synthetic community. There were other CDM 

produced for oral species, (Socransky et al., 1985),  but FMC was chosen due to it supporting 

the oral Streptococci used in this research and having been previously used by my research 

group. Despite FMC being rich in nutrients, the chemical demand of oral bacteria is complex 

and diverse, therefore explaining why growth was not successful for the whole synthetic 

community.  This was evident by the omission of putrescine from AFMC not allowing for the 

growth of V. parvula, which is known to be an important component of the cell wall (Gronow 

et al., 2010a). Upon formulation, I was able to use AFMC as the foundation for all the 

characterisation experiments in this Chapter and invasion experiments in Chapter 4. The 

advantages of having a CDM were apparent through the experiments in this Chapter. I was 

able to input AFMC into the metabolic modelling to show me fluxes for each species, which 

helped me finalise the AFMC.  I was also able to determine more about my species by using 

AFMC, including substrate usage. Developing AFMC allowed me to grow the synthetic 

community in a defined environment in the in vitro colonisation experiments and study the 

influence of one parameter at a time (Chapter 4). It also underpinned the defined 

stoichiometry and kinetics used in silico in Chapter 5. The use of FBA (using KBase) was a useful 

tool in validating experiments in the development of AFM. The metabolic analysis confirmed 

that both putrescene and lactic acid were needed for V. parvula growth. FBA helped 

determine which chemicals were missing from the medium, as was cross-referencing other 

chemically defined media for the other species. Further work with KBase would be useful in 

directing the development of a minimal medium, as has been done for S. mutans (Mazumdar 

et al., 2009b) . This would have saved preparation time and cost over using a medium as rich 

as AFMC. The use of FBA should be used further to characterise the synthetic community. This 

will help better understand factors that contribute towards S. mutans invasion and the effect 

of the synthetic community on the local environment i.e., acid production (beyond lactic acid) 

that contribute towards pH decrease. Approaches have already been developed using 
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constraint-based FBA, that can predict metabolic fluxes, community growth rates and 

fractional biomass abundance within microbial communities (Khandelwal et al., 2013). 

My growth curves and Ks experiments showed that the species have very different growth 

profiles but consume similar substrates. For example, S. gordonii has a growth rate over 

double that of A. oris, at 0.492 h-1 vs 0.227 h-1.  The superior growth rate of oral Streptococci 

has been observed before (Beckers, 1982).  S. gordonii and A. oris both consume glucose as a 

primary carbon source, as do S. mutans and N. subflava. The preference for glucose as a 

carbon source for oral species, e.g., Streptococci, is well known (Willenborg & Goethe, 2016a). 

My results showed that there would be competition for glucose in a mixed system as all 

species consumed glucose, excluding V. parvula, although N. subflava was able to grow 

without glucose present. The Streptococci would have a competitive advantage due to how 

fast they grow.  My substrate experiments showed that S. mutans grew differently when 

grown on sucrose, with the cells aggregating together. This was a phenomenon that has been 

seen before (H. Zhang et al., 2022). I, therefore, expected that S. mutans would have a 

competitive advantage when I ran my in vitro experiments using sucrose, compared to one 

using glucose, in Chapter 4. This meant, when evaluating colonisation in the sucrose-fed 

reactor system, nutrient availability and growth rate were not the only factors to be 

considered. V. parvula, despite having one of the lower growth rates, has an advantage over 

the other species in that it consumes lactic acid for growth, not glucose, therefore not having 

the same competition for the primary carbon source. This is already a well-known 

characteristic of V. parvula (Periasamy & Kolenbrander, 2010). Also, the production of lactic 

acid by oral species, as seen in literature with S. mutans (Baker et al., 2017b) suggested V. 

parvula could grow on the by-products of the other community members from fermentation 

which would help in providing a growth nutrient. 

I have also shown the synthetic community species were impacted differently by acidic 

conditions, by observing their decrease in maximum OD600nm reached, at different starting pH 

of AFMC. I observed they have different acid production levels on AFMC. This was very 

important for several reasons. As a cariogenic biofilm develops in vivo, the environment 

becomes more acidic.  Species that have shown a higher acid tolerance were more likely to 

thrive than those that struggle at a low pH. My experiments showed that S. mutans grew 

better at a low pH compared to the other species. S. mutans reached an OD600nm of 0.755 at a 

pH of 5.5, whereas the next highest OD600nm reached was by S. gordonii at 0.176. S. mutans 
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has been seen previously to have an acid adaptation response. This species can alkalinize the 

cytoplasm to reduce cell stress (Baker et al., 2017a) and has a lower optimal pH for F-ATPase, 

which is responsible for generating ATP. F-ATPase is also upregulated in acidic conditions for 

S. mutans (Kuhnert et al., 2004).  This could explain why S. mutans grew to a higher OD600nm 

in Section 3.3.5.  S. mutans exhibits further acid tolerance as a biofilm (McNeill & Hamilton, 

2003a) and was therefore likely to thrive in the synthetic community biofilm in an acidic 

system, compared to the other oral species. Whilst V. parvula grew to a higher OD600nm than 

the other synthetic community members (excluding S. mutans), it still struggled at pH of 5.5 

and 5. This is despite previous studies finding that V. parvula is resistant to low pH 

environments and has been found in a high abundance within carious sites at pH 5.5 and 

below (Do et al., 2015). The finding in this study, that the histidine biosynthetic pathway was 

elevated in low pH-caries regions, suggests that histidine could have provided a greater intra-

cellular buffering capacity for this species in saliva. 

It was very important to understand the contribution of each species to the pH of the 

environment. This is because teeth will demineralise when exposed to excess acids produced 

by bacteria, past a certain pH. Whilst the pH resulting in demineralisation varies depending on 

factors such as the calcium and phosphate ion concentration, it occurs at pH of around 5.5  

(Dawes, 2003.).  My results showed that all species produce a large amount of acid, as 

indicated by the drop in pH of the growth medium. S. mutans dropped the pH the most, down 

to 4.94 from a starting pH of 7.   V. parvula was the least acid-producing species. This is not 

surprising as V. parvula consumes lactic acid to produce weaker acids, namely propionic acid, 

and formic acid (Prasetianto Wicaksono et al., 2020). The reduction in pH of AFMC resulting 

from the growth of V. parvula was surprising but could be due to the carbon dioxide fixation 

(Zhou et al., 2021b). Overall, this data explained why S. mutans is implicated in caries, as it is 

adapted to grow at a low pH, significantly contributes to a low pH environment through acid 

production and would produce an environment for the growth of aciduric species. The drop 

in pH also demonstrated that the buffering capacity of the medium could not balance the pH 

against the amount of acid produced by the species. This is despite the AFMC being rich in 

phosphate buffers, which is effective at buffering between a pH 5.8-8 (Ganesh et al., 2017). 

The development of qPCR and FISH helped to better define species characteristics in Chapter 

4, including the inability of A. oris to establish in a mixed-species biofilm which has been seen 

previously (Jakubovics et al., 2008) This allowed me to confirm their enumeration within the 
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biofilm in Chapter 4. Having so many fluorophores did present the challenge of overlapping 

excitation and emission wavelengths but obtaining spectral fingerprint profiles for each 

species helped reduce the impact that this had. However, there was still bleed-through of the 

Alexa 405 blue dye, attached to N. subflava, limiting FISH as a quantitative tool in its current 

form. This showed that given more time, further optimisations, such as that done by Valm et 

al., (2012) are necessary to make the most out of this technique. 

The development of a qPCR protocol was key in tracking the colonisation of S. mutans and the 

abundance of the commensal species over time in Chapter 4. The quantitative data provided 

by qPCR was essential in comparing to in silico simulations in Chapter 5 and has been lacking 

in other oral models (Thurnheer et al., 2004b). It took numerous stages to be able to quantify 

species using multiplex qPCR, from primer design and cloning in amplified targets, to altering 

the qPCR run parameters. Being able to multiplex was very helpful as I needed to sample from 

the biofilms and the planktonic bulk from three reactors on multiple sampling occasions. This 

technique made the method far more manageable. One disadvantage of this qPCR method is 

that it does not show the viability of the samples from the reactors, as it only quantifies DNA. 

I, therefore, needed to use live/dead analysis using flow cytometry at the end of my reactor 

run in Chapter 4. This showed how viable the system was. The use of this method in this 

research did not differentiate viability between species but identified the conditions in the 

synthetic community biofilms thrived in. 

By using FISH and qPCR, I was able to establish an inoculation strategy suitable for the invasion 

experiments (Chapter 4). Through imaging using FISH, I demonstrated that A. oris formed a 

robust biofilm, it struggled to establish itself in a mixed-species biofilm if it is inoculated at the 

same time as a faster-growing species, such as S. mutans. A. oris had the least number of cells 

in the synthetic community biofilm after 72 h of growth on the hydroxyapatite coupon, despite 

being inoculated first, as seen in Section 3.3.8, showing that A. oris needs to be introduced 

first. This was likely due to A. oris having much lower growth rates whilst competing for 

glucose. A. oris has been known to struggle in mixed-species systems, where the production 

of hydrogen peroxide by species i.e., S. gordonii can significantly reduce the ability of A. oris 

(A. naeslundii) to grow, with cell numbers found to be >90% lower in mixed culture vs 

monoculture after 24 h (Jakubovics et al., 2008). It is justifiable to introduce A. oris first as it 

was a known early coloniser of freshly cleaned teeth in vivo  (Palmer et al., 2003). The results 
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showed the importance of techniques e.g., qPCR and FISH in determining inoculation 

strategies for mixed-species biofilms. 

Having developed the tools to establish and monitor the development of mixed-species 

biofilms, the next section of work (Chapter 4) aimed to investigate the impact of different 

carbohydrate concentrations on S. mutans invasion and the effect of the synthetic community 

growth on the local environment, including pH. 
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Chapter 4. In vitro modelling approaches to characterise the invasion of 

Streptococcus mutans into an oral commensal community 
 

 

4.1 Introduction 

The invasion and overpopulation of Streptococcus mutans into dental biofilms has been 

associated with the progression of caries and increased risk of cavities (Nomura et al., 2020). 

This is directly related to environmental conditions. S. mutans is well adapted to high-sugar, 

low-pH environments (Baker et al., 2017a), particularly when a large amount of sucrose is 

present. This shifts the composition of the oral microbiota (Angarita-Díaz et al., 2022). S. 

mutans utilises sucrose to produce intracellular and extracellular polysaccharides that give it 

a competitive advantage in biofilm formation (Costa Oliveira et al., 2021b).  The dominance 

of S. mutans in dental biofilms has been associated with the presence of other caries-related 

species within the biofilm, that thrive in a low-pH environment (van Ruyven et al., 2000) 

(Lamont et al., 2018).  For these reasons, the development of models to characterise S. 

mutans invasion in the dental biofilm is of great importance, particularly as caries is a global 

burden on billions of people (Kassebaum et al., 2017). 

Acid production by oral bacteria alters the pH of the oral environment, which favours aciduric 

species and can change the microbial composition within dental biofilms. By-products of sugar 

fermentation by oral bacteria, including lactic acid, can drive the composition of the oral 

microbiota towards lactic acid-consuming bacteria i.e., V. parvula (Mashima et al., 2016). V. 

parvula protects cariogenic species e.g., S. mutans, through catalase activity that reduces the 

antibacterial effects of hydrogen peroxide, produced by commensal microbes such as S. 

gordonii (Liu et al., 2020, Zhou et al., 2017). Overall, this demonstrates that substrate 

availability is important in understanding the microbial composition of dental biofilms. It is 

also important to characterise what conditions contribute to the invasion and prevalence of 

cariogenic species in the oral microbiota, including S. mutans. These factors in vivo, which can 

be understood through in vitro modelling approaches, are necessary for understanding what 

protection and environment is needed for commensal species and preventing the 

overpopulation of caries-contributing species. 

Synthetic communities have been used to study dental biofilm growth and S. mutans invasion. 

Mono and dual-species models have been used extensively to better understand what factors 
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may influence this colonisation (Díaz-Garrido et al., 2020). These do not efficiently explore the 

complex interaction between species and are too simple to represent the oral microbiome, 

which consists of over 700 species (Kilian et al., 2016). More complex communities have been 

developed to represent the dental biofilm, including the use of 14 species systems, to test the 

probiotic effect of glycerol in a mixed-species biofilm (van Holm et al., 2022). 

Growth models used to study these synthetic communities include closed systems i.e., 

microtiter plates. This provides a low-cost model, which has been used to grow S. mutans and 

P. gingivalis, and to test the antimicrobial effect of chlorohexidine. CSTR reactor systems have 

been used that enable control of operating variables in a way that is not possible with closed 

models. This includes setting the flow rate of media fed into the model to mirror that of 

salivary flow. One CSTR model recently used for dental biofilm research was the CDC reactor. 

This has been used to test the adhesion of S. mutans in dental biofilms developed on 

orthodontic brackets (Park et al., 2022). The CDC reactor has been used by An (2022), to 

successfully grow, maintain and test the reproducibility of diverse oral microbiota. This was 

operated under conditions mimicking the oral environment, including using a flow rate of 

medium at 0.5 mL min-1, similar to that of saliva, and using hydroxyapatite disks, mimicking 

the enamel surface. These models employed complex media. The use of a CDM can simplify 

the chemical environment (Fontana et al., 2000) (Edlund et al., 2013), and helps test dental 

biofilm activity and invasion whilst changing one parameter at a time. 

Collecting data from these mixed-species models requires the refinement of molecular and 

microscopic techniques. The use of qPCR is beneficial in quantifying the change in the 

abundance of species in dental biofilms, including the prevalence of S. mutans (Suzuki et al., 

2005). Imaging complex mixed-species biofilms, to identify bacterial species prevalence and 

provide structural information, can be challenging. The implementation of fluorescence in situ 

hybridization (FISH), refined further for multi-species analysis, helped circumvent these issues 

(Thurnheer et al., 2004). This, however, did not give information on the viability of bacterial 

cells, which can vary significantly depending on environmental factors, including pH (Lund et 

al., 2014). To assess this, the live:dead ratio of dental biofilm cells can be quantified using flow 

cytometry  (Grainha et al., 2020). 

The use of in vitro oral models allows for validating in silico modelling approaches, by testing 

invasion in mixed-species biofilm, and comparing the experimental data with the simulation 
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results. Furthermore, in silico models are cost and time efficient in directing the in vitro 

experimental approaches before they are carried out (Herzog et al., 2017). This means that 

mixed modelling approaches can be used to better understand the factors underpinning S. 

mutans invasion of dental biofilms, without the invasive and ethical implications associated 

with animal and human models (Levy, 2012). 

4.2 Aims and objectives 

In this Chapter, I aimed to characterise the factors underpinning S. mutans invasion of a 4-

species, commensal community of oral bacteria. I also aim to understand how these factors 

affected the early colonisers within the dental biofilm. I aimed to develop an in vitro CSTR 

reactor model to quantify the invasion of S. mutans into a commensal dental biofilm, and the 

effect on the local environment i.e., pH change, over time. The 5-species synthetic community 

was grown on AFMC in a defined system, where variables i.e., temperature and flow rate were 

controlled to reflect the in vivo environment. Different glucose and lactic acid concentrations, 

as well as sucrose, were tested to evaluate their influence on invasion. 

1) Characterise the effect of synthetic community growth in the reactor on the local 

environment. Invasion experiments were tested at varying glucose and lactic acid 

concentrations, as well as on sucrose. This included quantifying the turbidity of the 

bulk, substrate consumption/production and pH. 

2) At these substrate concentrations, quantify S. mutans invasion into the commensal 

biofilm and bulk, over time using qPCR. This included quantifying the change in early 

coloniser species abundance. 

3) Observe any spatial-temporal patterns within the synthetic community biofilm and 

confirm species presence using FISH. 

4) Ascertain how decreasing the glucose and lactic acid concentrations affect the viability 

of the synthetic community biofilm using flow cytometry. 

 

 

 

 



114 
 

4.3 Results 

4.3.1 Description of in vitro invasion experiments 

I quantified the invasion of S. mutans into the 4-species oral community, in both high and low 

glucose/lactic acid environments, to understand the influence of the chemical environment 

on invasion. The glucose and lactic acid concentrations used were selected based on the 

experiments in Chapter 3. After these experiments, I tested S. mutans invasion on AFC 

supplemented with sucrose, rather than glucose. This was to determine if the competitive 

advantage that S. mutans has when grown on sucrose, including EPS production and increased 

adhesion (H. Zhang et al., 2022; Kreth et al., 2008), restored the ability of S. mutans to 

dominate the synthetic community biofilm at low substrate concentrations. The substrate 

concentrations used in each reactor experiment were detailed along with the starting pH of 

the bulk, in Table 4.1. 

 

Table 4.1 Reactor experiment conditions used in this Chapter. Experiments 1 (high glucose, 
high lactic acid) and 2 (high glucose, intermediate lactic acid) were at high glucose 
concentrations. Reactor experiments 3 (low glucose, high lactic acid_ and 4 (low glucose, low 
lactic acid) were at low glucose concentrations.  Reactor 5 (low sucrose, low lactic acid) 
contained sucrose instead of glucose. The lactic acid concentrations were high in experiments 
1 and 3, intermediate in run 2 and low in runs 4 and 5. The starting pH was similar across all 
simulation runs. 
 

 

 Glucose 

concentration 

(gL-1) 

Lactic acid 

concentration 

(gL-1) 

Sucrose 

concentration 

(gL-1) 

Starting pH 

Reactor 

experiment 1 

21.85 11.61 - 6.92 

Reactor 

experiment 2 

21.30 6.28 - 6.82 

Reactor 

experiment 3 

2.09 12.46 - 6.94 

Reactor 

experiment 4 

1.98 2.61 - 6.93 

Reactor 

experiment 5 

- 2.60 1.92 7.0 
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I operated the CDC in vitro model under parameters that mimicked the oral environment. 

This included using a flow rate of 0.4 mL min-1 resembling the flow of saliva (Iorgulescu, 

2009), and using hydroxyapatite coupons as a growth substrate to mimic the enamel surface 

(Habibah et al., 2022). The temperature of the reactors was maintained at 37 °C, similar to 

that of the oral environment (Sund-Levander et al., 2002), using a hot plate and insulation. 

Each reactor was inoculated with 3.85 x109 cells per species. The only species present within 

the first 24 h was A. oris. S. gordonii, N. subflava and V. parvula were added 24 h later, with 

S. mutans added at 48 h. FISH and qPCR were used to quantify species abundance change 

over the course of the 9-day experiment. The effect on the local environment, including the 

change in pH of the bulk, was examined. Furthermore, the viability of the synthetic 

community at the end of the experiment was quantified using flow cytometry. An overview 

of the experimental design was detailed in Figure 4.1. 
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Figure 4.1 Overview of the reactor strategy and goals of this Chapter. The glucose and lactic acid concentrations were varied in AFM. S. mutans 
invasion, using the same inoculation strategy for all runs, was analysed using techniques i.e., qPCR and FISH. The end goal was to characterise S. 
mutans invasion into the commensal dental biofilm and understand the factors that drive this.
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4.3.2 Observing turbidity of the reactor bulk over time 

I measured the turbidity of the reactor bulk over 9 days. A decrease in optical density over 

time would have indicated that planktonic growth, was less than the amount of biomass 

washed out of the system. The bacterial turbidity was compared across experiments to 

understand the effect of glucose and lactic acid concentration on growth. In reactor 

experiment 1 (high glucose, high lactic acid), an OD600nm of 1.3 was reached after day 1 (Figure 

4.2), attributed to A. oris growth. On day 2, a peak OD600nm of 1.57 was reached. Throughout 

the rest of the nine-day experiment, the OD600nm dropped significantly and reached a low of 

0.73 by day 9.  The largest drop in OD600nm was observed between days 3 and 5, where the 

OD600nm dropped from 1.29 to 0.92. 

For reactor experiment 2 (high glucose, intermediate lactic acid), a lower OD600nm of 0.9 on 

day 1 was recorded. For this experiment, the maximum OD600nm was also reached on day 2. 

This value of 1.60, was similar to that reached at the higher lactic acid concentration (1.57). 

For reactor experiment 2, the OD600nm also dropped over time. There was a decrease between 

days 2 and 5, from 1.60 to 0.73. There was a steady decline down to day 9, where the lowest 

OD600nm of 0.58 was recorded. 

For reactor experiment 3 (low glucose, high lactic acid), the decrease in glucose concentration 

had a significant effect on the turbidity of the bulk. Here, an OD600nm of 1.35 was reached after 

day 1 and a peak OD600nm of 1.63 on day 2. This was similar to the two previous experiments 

(1.57 and 1.60 respectively). However, at the lower glucose concentration, the OD600nm 

remained high throughout the remainder of the experiment. By day 9, the OD600nm was 1.48, 

over twice as high as the OD600nm reached at the higher glucose concentration experiments. 

This indicated that the bacterial growth was higher at the lower glucose concentration than 

at the higher glucose concentration, most likely due to the higher pH resulting in less cell stress 

(Figure 4.5). 
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Figure 4.2. The OD600nm readings were recorded over 9 days for the reactor experiments (RE). 
The OD600nm reached a peak on day 2 for all conditions. It dropped significantly at high glucose 
concentrations (RE 1 and 2) but stayed at high levels at low glucose/sucrose levels (RE 3,4 and 
5). Plotted data points were the mean of three CDC reactor conditions and the error bars 
represented the standard deviation from the mean. 
 

For reactor experiment 4 (low glucose, low lactic acid), lowering both the glucose and lactic 

acid concentration led to significantly higher turbidity of the bulk, compared to the high 

glucose experiments. The OD600nm reached 1.15 after day 1, and a high of 2.34 after day 2. This 

was higher than any OD600nm recorded from reactor runs where AFMC contained glucose. 

There was a significant decrease in OD600nm between days 2 and 5, from 2.34 to 1.76. The 

OD600nm decreased to 1.40 on day 9. This was still higher than the high glucose experiments 

and similar to that of reactor experiment 3 (low glucose, high lactic acid). 

In reactor experiment 5 (low sucrose, low lactic acid), the in vitro system was run on AFMC 

containing sucrose rather than glucose. The OD600nm increased from 1.63 on day 1, to 2.36 on 

day 2. This was the highest OD600nm reached across all experiments and meant that for all 

experiments, the peak OD600nm was reached on day 2. The OD600nm decreased from 2.36 on 

day 2, to 1.88 on day 9. The OD600nm then decreased over time down to 1.65 by day 9. This was 

the highest OD600nm recorded on day 9 for any experiment. A summary of OD600nm readings 

across the experiments can be seen in Table 4.2. 
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Table 4.2 A summary of the OD600nm readings across all reactor experiments. High turbidities 
were reached across all conditions, but the OD600nm dropped from day 2 onwards, particularly 
for the high glucose conditions (reactor experiments 1 and 2). All values were the mean across 
readings from three CDC reactor runs, with standard deviations from the mean also detailed. 
 

 

 

 

4.3.3 Quantifying the glucose and sucrose concentration of the reactor bulk over time 

I aimed to understand the ability of S. mutans to invade the synthetic community biofilm 

under different glucose concentrations. This included determining the difference in invasion 

between a glucose-rich environment and one where this carbon source was limited. 

Furthermore, I was interested in whether this invasion was more effective when the carbon 

source was switched from glucose to sucrose, where S. mutans has previously been shown to 

have a competitive advantage over other species (see Chapter 1). In reactor experiment 1 

(high glucose, high lactic acid), glucose was consumed in the first 24 h, decreasing from 21.85 

gL-1 to 15.15 gL-1 on day 1 (Figure 4.3) when only A. oris was inoculated. The glucose 

concentration decreased to 5.73 gL-1 on day 2. The lowest glucose concentration recorded for 

this experiment was 3.93 gL-1 on day 3, 24 h after the introduction of S. mutans. The glucose 

concentration then increased over time, reaching 9.02 gL-1 on day 9. This showed that the 

glucose concentration for this experiment was in excess at all times in the samples recorded. 

I observed a similar pattern in the glucose concentration of the bulk for reactor experiment 2 

(high glucose, intermediate lactic acid). Here, levels dropped to 14.36 gL-1 on day 1, then down 

to a low of 5.21 gL-1 on day 2. The concentration increased over time to 10.93 gL-1 on day 9. 

This showed that whilst the synthetic community used a significant amount of glucose, 

 Reactor 

experiment 

1 

Reactor 

experiment 

2 

Reactor 

experiment 

3 

Reactor 

experiment 

4 

Reactor 

experiment 

5 

Day 2-Highest 

OD600nm reached 

1.57 ± 0.05 1.60 ± 0.03 1.63 ± 0.04 2.34 ± 0.06 2.36 ± 0.08 

Day 9- Final day 

OD600nm 

0.73 ± 0.02 0.58 ± 0.03 1.48 ±0.02 1.40 ± 0.05 1.65 ± 0.15 
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particularly in the first 48 h of the invasion experiment, the glucose concentration was still in 

excess. There was a drop in biomass (Figure 4.2) from day 3 onwards, leading to less glucose 

consumption. This explained why there was an increase in glucose concentration over time, 

as AFMC was still fed into the system. 

In reactor experiment 3 (low glucose, high lactic acid), glucose became a limiting substrate. 

The glucose concentration dropped to 0.143 gL-1 on day 1. The concentration dropped to 

0.078 gL-1 on day 2 and remained below 0.1 gL-1 for the remainder of the 9-day experiment. 

This showed that the glucose being supplied to the reactors was depleted by the synthetic 

community. This also occurred in reactor experiment 4 (low glucose, low lactic acid). The 

starting glucose concentration of 1.984 gL-1 dropped to 0.983 gL-1 on day 1, then down to 

0.073 gL-1 by day 2.  The glucose concentration in this experiment also remained below 0.1 gL-

1 for the remainder of the experiment, with a final concentration of 0.04 gL-1. 

Figure 4.3 The change in glucose concentration in the reactor bulk over time for all reactor 
experiments (RE). The substrate concentrate was in excess for RE 1 (high glucose, high lactic 
acid) and RE 2 (high glucose, intermediate lactic acid), but depleted for the rest. In all cases, 
the concentration dropped significantly within the first 48 h. All plotted points were the 
average of triplicate reactor readings, and the error bars represented the standard deviation 
from the mean. 
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In reactor experiment 5 (low sucrose, low lactic acid), the sucrose concentration for the fifth 

reactor concentration was at 1.92 gL-1, chosen to give a similar carbon source concentration 

to the runs with low glucose. The sucrose concentration dropped to 0.097 gL-1 by day 1 and 

stayed below 0.1 gL-1 for the remainder of the experiment. The sucrose concentration was 

therefore also a limiting carbon source in this environment. A summary of the carbon source 

concentrations can be seen in Table 4.3. 

 
Table 4.3. A summary of the glucose concentrations across all reactor experiments. Glucose 
was in excess in reactor experiments 1 (high glucose, high lactic acid) and 2 (high glucose, 
intermediate lactic acid). It was depleted by the synthetic community by day 2 for reactor 
experiments 3 (low glucose, high lactic acid) and 4 (low glucose, low lactic acid). The values 
were the mean across readings from three CDC reactor runs, with standard deviations from 
the mean detailed. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Reactor 

experiment 1 

Reactor 

experiment 2 

Reactor 

experiment 3 

Reactor 

experiment 4 

Day 0- 

Starting glucose 

concentration 

21.85 ± 0.94 21.30 ± 0.41 2.09 ± 0.18 1.98 ± 0.04 

Day 9- 

Final glucose 

concentration 

9.02 ± 0.76 10.93 ± 0.43 0.04 ± 0.01 0.04 ± 0.01 
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4.3.4 Quantifying the lactic acid concentration of the reactor bulk over time 

I quantified the concentration of lactic acid in the reactor bulk under the different conditions 

tested in the in vitro model. It was important to quantify change over time as lactic acid is 

produced in abundance by oral species, including the Streptococci in this study (See Chapter 

1,). Furthermore, it is the primary substrate consumed by V. parvula. Therefore, monitoring 

its concentration in the bulk gave an indication of the balance between production from 

Streptococci and consumption by V. parvula. I compared this against the species relative 

abundance. 

In reactor experiment 1 (high glucose, high lactic acid) the lactic acid concentration dropped 

significantly from 11.61 gL-1 to 3.47 gL-1 after 24 h (Figure 4.4). For the remainder of the 

experiment, the lactic acid concentration ranged between 4.03 gL-1, recorded on day 2 and 

3.97 gL-1 on day 9. The lactic acid concentration was therefore in excess during this reactor 

experiment. 

In reactor experiment 2 (high glucose, intermediate lactic acid), there was a significant 

difference in the resulting lactic acid concentration. The lactic acid concentration dropped 

after 24 h, from 6.8 gL-1 to 4.72 gL-1, but subsequently increased over time. On day 2, the 

concentration increased to 8.79 gL-1 and remained stable up until day 7, when the 

concentration recorded was 8.64 gL-1. The lactic acid concentration increased to 10.31 gL-1 on 

day 9. This was the highest concentration of lactic acid recorded for this experiment. It was 

also more than double the concentration recorded at the end of reactor experiment 1 (high 

glucose, high lactic acid), where the lactic acid concentration was 3.97 gL-1. This was despite 

the starting concentration of lactic acid for reactor experiment 2 (high glucose, intermediate 

lactic acid) being half that of the previous experiment. 
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Figure 4.4 The change in lactic acid concentration in the reactor bulk over time for all reactor 
experiments (RE). The substrate concentrate was in excess for RE 1 (high glucose, high lactic 
acid), RE 2 (high glucose, intermediate lactic acid) and RE 3 (low glucose, high lactic acid). The 
lactic acid concentration was depleted by day 2 for RE 4 (low glucose, low lactic acid) and RE 
5 (low sucrose, low lactic acid). All plotted points were the average of triplicate reactor 
readings, and the error bars represented the standard deviation from the mean. 
 

In reactor experiment 3 (low glucose, high lactic acid), the lactic acid concentration decreased 

from 12.46 gL-1 to 9.30 gL-1 on day 1. The lactic acid continued to decrease throughout the 

remainder of the experiment. On day 3, the lactic acid concentration was 9.12 gL-1. This 

decreased over time to 5.53 gL-1 by day 9, the end of the experiment.  

In reactor experiment 4 (low glucose, low lactic acid), the lactic acid concentration decreased 

to 2.21 gL-1 after day 1 and further to 0.63 gL-1 by day 3. This was the lowest lactic acid 

concentration recorded on day 3 for any of the conditions tested. Lactic acid levels dropped 

further until day 7, where the concentration was 0.16 gL-1. This was the lowest concentration 

measured on any day for any experiment. The lactic acid concentration increased back up to 

0.40 gL-1 on day 9 of the in vitro experiment for this condition. 
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In reactor experiment 5 (low sucrose, low lactic acid), lactic acid became a limiting nutrient. 

The lactic acid concentration dropped to 2.21 gL-1 on day 2 and decreased significantly by day 

2, to 0.63 gL-1. The concentration recorded was 0.39 gL-1 by day 4, before increasing to 0.75 

gL-1 by day 5. The lactic acid levels dropped until the end of the experiment until day 9, where 

the concentration measured was at 0.31 gL-1. This was the lowest value recorded on day 9  

compared to all of the other reactor experiments tested (Table 4.4). 

 

Table 4.4. A summary of the lactic acid concentrations across all reactor experiments. Lactic 
acid was in excess in reactor experiments 1 (high glucose, high lactic acid), 2 (high glucose, 
intermediate lactic acid) and 3 (low glucose, high lactic acid). It was depleted by the synthetic 
community by day 2 for reactor experiments 4 (low glucose, low lactic acid) and 5 (low 
sucrose, low lactic acid). All values were the mean across readings from three CDC reactor 
runs. 
 

 

 

 

 

 

 

 

 

 

 Reactor 

experiment 

1 

Reactor 

experiment 

2 

Reactor 

experiment 

3 

Reactor 

experiment 

4 

Reactor 

experiment 

5 

Day 0- Starting 

lactic acid 

concentration 

11.61 ± 1.22 6.28 ± 0.29 12.46 ± 0.32 2.61 ± 0.09 2.60 ± 0.09 

Day 9- Final 

lactic acid 

concentration 

3.97 ± 1.23 10.31 ± 0.51 5.53 ± 0.39 0.41 ± 0.02 0.31 ± 0.01 
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4.3.5 Quantifying changes in the pH of the reactor bulk over time 

The pH is a key contributor to tooth demineralisation in vivo. Monitoring the pH in the reactor 

bulk indicated the acid production resulting from synthetic community growth. Furthermore, 

pH was recorded to understand its influence on invasion and species growth. The pH in the 

reactor dropped significantly in reactor experiment 1 (high glucose, high lactic acid). On day 

1, when only A. oris was present, the pH decreased from 6.92 to 5.64 (Figure 4.5). The pH 

dropped further by day 2, down to 5.19. The pH increased back up to 5.90 by day 3, 24 h after 

S. mutans was added. The pH dropped to 5.20 on day 4 and stayed constant between 5.20-

5.30 throughout the remainder of the experiment, as S. mutans dominated the bulk. The pH, 

therefore, stayed below the critical value of 5.5 for most of the experiment. 

A similar pattern in the pH of the bulk was observed in reactor experiment 2 (high glucose, 

intermediate lactic acid). The pH dropped by day 1, from 6.82 to 6.14. This was, however, 

higher than the pH at the elevated lactic acid concentration. The pH dropped further to 5.23 

by day 2, the lowest reached during this experiment. The pH increased to 5.91 on day 4, before 

dropping down throughout the rest of the experiment. The pH by the end of the experiment 

was 5.35. This meant that the pH for both the high glucose reactor experiments was low and 

similar, despite the change in lactic acid concentration. 

There was a higher pH recorded in reactor experiment 3 (low glucose, high lactic acid), 

compared to reactor experiment 1 (high glucose, high lactic acid). The pH dropped from 6.92 

to 5.90 by day 1. The acid produced was an outcome of A. oris fermentation of glucose. The 

pH dropped further to 5.60 by day 2. This was the lowest pH reached during this experiment, 

which was significantly higher than the pH of 5.19 and 5.23 reached at the higher glucose 

concentrations. The pH increases over time to 5.90 by day 5 and stayed between 5.90-6.00 

throughout the remainder of the rest of the experiment. 
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Figure 4.5 The pH variation in the CDC reactor bulk for each condition of the reactor 
experiments (RE).  In all cases, the pH dropped, with the decrease being greater at the high 
glucose and sucrose conditions. The lowest pH was recorded for RE 1 (high glucose, high lactic 
acid), with a pH reached on day 9. Readings were plotted every hour through the 9-day 
experiment. 
 

For reactor experiment 4 (low glucose, low lactic acid), the lactic acid decrease in the feed led 

to a higher pH of the reactor bulk. Here, the pH dropped to 6.47 on day 1. The pH decreased 

to 6.32 on day 2, before S. mutans was inoculated into the rest of the system. For the 

remainder of the 9-day experiment, the pH stayed constant between 6.15-6.25. This was the 

highest pH that was reached of all the conditions tested in the invasion experiments. 

In reactor experiment 5 (low sucrose, low lactic acid), there was a significant pH drop in the 

reactor bulk. Here, the pH dropped to 5.48 by day 1. The pH dropped further to 5.30 on day 

2. This pH was significantly lower than that reached at the low glucose concentrations and 

similar to those at the high glucose concentrations. The pH increased significantly over time. 

By the end of the experiment, the pH was 5.97, which was higher than that for reactor 

experiments 1 (high glucose, high lactic acid and 2 (high glucose, intermediate lactic acid), but 

lower than the low glucose concentrations in experiments 3 (low glucose, high lactic acid) and 

4 (low glucose, low lactic acid). 
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A summary of the pH readings taken across all experiments can be seen in Table 4.5. It was 

clear that the starting substrate concentration has a significant impact on the pH recorded 

from the reactor bulk. At the high glucose concentrations and the sucrose concentration, 

there was a drop in pH of over 1.5 units from the starting pH to the lowest levels and at least 

1.0 by the end of the experiments, showing a significant amount of acid production by the 

synthetic community. The most acidic runs (experiments 1 and 2) also led to the lowest 

OD600nm values, demonstrating that pH negatively impacted growth. 

 

Table 4.5 The pH recording across the 9-day reactor experiments for all conditions. The pH 
dropped across all conditions tested. The lowest pH reached by the end of the run was for 
reactor experiment 1 (high glucose, high lactic acid), whilst the highest pH recorded was for 
reactor experiment 4 (low glucose, low lactic acid). Recordings were averaged across 2 
reactors whilst 
 

 

 

 
 
 
 
 
 
 
 
 

 Reactor 

experiment 

1 

Reactor 

experiment 

2 

Reactor 

experiment 

3 

Reactor 

experiment 

4 

Reactor 

experiment 

5 

Day 0- 

Stating pH 

6.92 6.82 6.92 6.93 7.00 

Day 2- 

Lowest pH 

5.23 6.14 5.60 6.32 5.30 

Day 9- End 

pH 

5.20 5.35 6.00 6.24 5.97 
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4.3.6 Quantifying the relative abundance of the synthetic community species in the reactor bulk 

I quantified the abundance of each oral bacterial species, within the reactor planktonic bulk, 

over the course of the 9-day experiment. This was done for each reactor experiment to 

determine the impact of substrate concentration on S. mutans invasion, and on the 

commensal species, over time. The abundance of each species was measured using qPCR with 

species-specific primers. To facilitate absolute quantification, templated DNA for each species 

was amplified and cloned into a pTOPO2.1 vector and purified plasmid was quantified with 

PicoGreen™. 

In reactor experiment 1 (high glucose, high lactic acid), S. gordonii, A. oris, N. subflava and V. 

parvula were all able to establish in the bulk by day 2 (Figure 4.6). Here, S. gordonii was the 

most abundant species, with 2.86 x 1012 cells L-1. There were 3.08 x 108 A. oris cells, the least 

on this day despite being inoculated into the system 24 h before the other species. By day 3, 

S. gordonii was still the most abundant species, with 1.60 x 1012 cells L-1, however S. mutans 

had established within the system with 9.78 x 1011 cells L-1. By the end of the 9-day 

experiment, S. mutans had dominated the planktonic bulk, increasing in cell concentration 

over time to 3.60 x 1012 cells L-1. S. gordonii was the second most abundant species by day 9, 

although reduced in cell concentration to 2.47 x 1010 cells L-1, as also occurred for A. oris, which 

had a cell concentration of 5.60 x 108 cells L-1 on day 9.  N. subflava decreased in cell 

concentration, from 2.59 x 1011 on day 2, to 1.83 x 109 by day 9). This also occurred for V. 

parvula, with a cell concentration of 1.74 x 1011 cells L-1 on day 2, and 6.98 x 108 cells L-1 on day 

9. 
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Figure 4.6. Relative abundance of each synthetic community member in the reactor bulk for 
reactor experiment 1 (high glucose, high lactic acid). S. mutans (red) dominated the bulk from 
day 5 onwards, whilst the other species reduced in number over time. Each point represented 
the average of triplicate values from three CDC reactor systems. Error bars represent the 
standard deviation from the mean. 
 

In reactor experiment 2 (high glucose, intermediate lactic acid), S. gordonii dominated the 

number of cells on day 2, with 2.03 x 1013 cells L-1 (Figure 4.7). Again, A. oris was the least 

abundant species in the system on day 2, with 3.08 x 1010 cells L-1. By day 3, the cell 

concentration for S. gordonii was 7.32 x 1012 cells. There were 3.98 x 1012 cells L-1 on day 9.  S. 

mutans dominated the bulk by day 9, as with reactor experiment 1 (high glucose, high lactic 

acid), with 1.43 x 1013 cells L-1. S. gordonii had reduced in cell concentration to 4.43 x 1010 cells 

L-1 by day 9. There were 8.08 x 108 A. oris cells L-1 by day 9. N. subflava had reduced in cell 

concentration from 1.50 x 1012 cells L-1 on day 2, to 5.25 x 108 cells L-1 by day 9.  V. parvula was 

the least abundant species by day 9 in this experiment, with 5.86 x 108 cells L-1. This was a 

reduction from day 2, where 2.59 x 1011 cells L-1 were measured. These results showed that in 

both experiments where the glucose concentration was high, S. mutans dominated the bulk, 

with over 99% of the cells number by day 9. The other species reduced in cell concentration 

over time, with A. oris struggling to grow in this mixed-culture system, despite being the first 

species inoculated into the reactor. 
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Figure 4.7. Relative abundance of each synthetic community member in the reactor bulk for 
reactor experiment 2 (high glucose, intermediate lactic acid). Patterns in species abundance 
were similar for reactor condition 1 (high glucose, high lactic acid).  S. mutans (red) dominated 
the bulk from day 5 onwards, whilst the other species reduced in number over time. Each 
point represented the average of triplicate values from three CDC reactor systems. Error bars 
represent the standard deviation from the mean. 
 

In reactor experiment 3 (low glucose, high lactic acid), the lower glucose concentration 

significantly impacted the abundance of the synthetic community in the reactor bulk. S. 

gordonii was the most abundant species on day 2, with 5.37 x 1011 cells L-1 (Figure 4.8). Here, 

N. subflava was the least abundant species with 7.64 x104 cells L-1. On Day 3, S. mutans was 

the most abundant species, despite only being in the system for 24 h, with 3.20 x 1011 cells L-

1. V. parvula was the least abundant species on day 3, with 5.35 x 1011 cells L-1. By day 9, S. 

mutans was the most abundant species, with 8.72 x 1012 cells L-1. V. parvula had increased 

significantly in cell concentration to 5.03 x 1012 cells L-1, the second most abundant in the 

synthetic community. A. oris had decreased in cell concentration, from 8.95 x 1010 cells L-1 on 

day 2, to 1.03 x 1010 cells L-1 on day 9. S. gordonii had also reduced in cell concentration to 8.44 

x 109 cells L-1 by day 9. N. subflava was the least abundant species by day 9, with 7.00 x 107 

cells L-1. This showed that in reactor experiment 3 (low glucose, high lactic acid), S. mutans 

and V. parvula dominated the planktonic bulk, with the relative abundance by day 9 being 

63.40% and 36.46% respectively. 
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Figure 4.8. Relative abundance of each synthetic community member in the reactor bulk for 
reactor experiment 3 (low glucose, high lactic acid). S. mutans (red) and V. parvula (yellow) 
dominated the bulk by the end of the experiment. N. subflava (purple) in particular struggled 
to grow, reducing in number over time. Each point represented the average of triplicate values 
from three CDC reactor systems. Error bars represented the standard deviation from the 
mean. 

 

In reactor experiment 4 (low glucose, low lactic acid) N. subflava was the most abundant 

species after day 2, wit 8.30 x 1012 cells L-1 (Figure 4.9). A. oris was the least abundant species 

in the reactor bulk, with 1.12 x 1010 cells L-1. By day 3, N. subflava had remained the most 

abundant species, with 5.12 x 1012 cells L-1, and S. mutans had become the second most 

abundant, with 3.26 x 1012 cells L-1. By day 9, S. mutans was the most abundant species, with 

a cell concentration of 1.29 x 1013 cells L-1 . V. parvula was the second most abundant species 

at 6.84 x 1012 cells L-1. This was an increase from 1.86 x 1012 cells L-1 on day 2. S. gordonii had 

reduced in cell concentration, from 3.06 x 1012 cells L-1 on day 2, to 1.12 x 1011 cells L-1 on day 

9. The abundance of N. subflava was 8.35 x 108 cells L-1 on day 9, this was a 4-log reduction 

compared to day 2 than on day 2. A. oris was the least abundant species by the end of the 

experiment, with 1.69 x 109 cells L-1. 
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Figure 4.9. Relative abundance of each synthetic community member in the reactor bulk for 
reactor experiment 4 (low glucose, low lactic acid). Patterns in species abundance were similar 
for reactor condition 3.  S. mutans (red) and V. parvula (yellow) dominated the bulk by day 9, 
whilst S. gordonii (blue) and N. subflava (purple) reduced in number over time. Each point 
represented the average of triplicate values from three CDC reactor systems. Error bars 
represented the standard deviation from the mean. 
 

In reactor experiment 5 (low sucrose, low lactic acid), the use of sucrose in AFMC instead of 

glucose resulted in S. gordonii still being the most abundant species on day 2 with 2.92 x 1012 

cells L-1 (Figure 4.10). A. oris was the least abundant species with 8.78 x 1010 cells L-1. This 

meant that A. oris was the least abundant species on day 2 across all reactor experiments. By 

day 3, V. parvula had become the most abundant species with 1.78 x 1012 cells L-1. The second 

most abundant species on day 3 was S. mutans, with 1.55 x 1012 cells L-1. A. oris was the least 

abundant species with 1.03 x 1011 cells L-1. By day 9, S. mutans had become the most abundant 

species in the reactor bulk, with 1.56 x 1013 cells L-1. V. parvula was the second most abundant 

species, with 6.81 x 1012 cells L-1. This meant that S. mutans and V. parvula dominated the 

planktonic bulk in all low glucose/sucrose conditions (reactor experiments 3-5), even when 

the lactic acid concentrations had been reduced. S. gordonii had reduced in cell concentration 

to 3.00 x 1011 cells L-1 on day 9. A. oris had also reduced in cell concentration to 4.49 x 109 cells 

L-1 by day 9. N. subflava was the least abundant species in the synthetic community on day 9. 

The cell concentration had reduced to 2.02 x 109 cells L-1 on day 9, down from 3.09 x 1011 cells 

L-1 on day 2. 
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Figure 4.10. Relative abundance of each synthetic community member in the reactor bulk for 
reactor experiment 5 (low sucrose, low lactic acid). Patterns in species abundance was similar 
for reactor conditions 3 (low glucose,high lactic acid) and 4 (low glucose, low lactic acid).  S. 
mutans (red) and V. parvula (yellow) dominated the bulk by day 9, whilst S. gordonii (blue), A. 
oris (green) and N. subflava (purple) reduced in number over time. Each point represented 
the average of triplicate values from three CDC reactor systems. Error bars represented the 
standard deviation from the mean. 

 

4.3.7 Quantifying the relative abundance of the synthetic community species in biofilms 

I quantified the abundance of each oral bacterial species in the synthetic community biofilm. 

This was necessary to understand the microbial composition of the biofilm and to what extent 

S. mutans was able to invade/dominate the biofilm. These invasion experiments were done 

with different substrate concentrations in the AFMC medium to better understand the drivers 

behind S. mutans invasion into dental biofilms in vivo. Here, qPCR was also used with species-

specific primers to quantify cell concentration over 9 days. The cell concentrations in these 

sections were those collected from each hydroxyapatite coupon, factoring in a total of 21 

coupons within the reactor. Biofilms were observed to have grown on the coupon holders but 

were not taken into consideration within qPCR sampling. 

In reactor experiment 1 (high glucose, high lactic acid), S. gordonii was the most abundant 

species on day 2 with a cell concentration of 4.48 x 108 cells cm-1 (Figure 4.11). There were 

5.44 x 107 cells cm-1  for N. subflava on day 2 A. oris was the least abundant species, with a cell 
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concentration of 3.06 x 105 cells cm-1, despite being introduced into the reactor first. On day 

3, S. gordonii remained the most abundant species, with 2.23 x 109 cells cm-1. S. mutans was 

the second most abundant species, with a cell concentration of 5.42 x 108 cells cm-1. A. oris 

remained the least abundant species in the biofilm on day 3, with 1.52 x 106 cells cm-1. By the 

end of the 9 days, S. mutans had dominated the biofilm, increasing in number to 1.57 x 1011 

cells cm-1. S. gordonii was the second most abundant, with 6.79 x 108 cells cm-1. A. oris also 

increased in cell concentration to 2.21 x 107 cells cm-1  but was still the least abundant species 

by day 9. For N. subflava, there were 4.88 x 107 cells cm-1 on day 9. V. parvula had increased 

in cell concentration over time, from 1.77 x 107 cells cm-1  on day 2, to 1.16 x 108 cells cm-1  on 

day 9.  The dominance of S. mutans in the biofilm and the relatively low cell concentration of 

A. oris was similar to the patterns seen in the planktonic phase of reactor experiment 1 (high 

glucose, high lactic acid) (Figure 4.5). 

Figure 4.11. Relative abundance of each species in the synthetic community for reactor 
experiment 1 (high glucose, high lactic acid). S. mutans (red) dominated the bulk from day 5 
onwards. A. oris (green) increased in cell concentration over time. Each point represented the 
average of triplicate values from three CDC reactor systems. Error bars represented the 
standard deviation from the mean. 
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In reactor experiment 2 (high glucose, intermediate lactic acid) S. gordonii was the most 

abundant species within the biofilm on day 2, with 4.87 x 109 cells cm-1  (Figure 4.12). There 

were 7.16 x 108 cells cm-1  of N. subflava on day 2, and 3.36 x 107 cells cm-1  for V. parvula. A. 

oris was the least abundant species with 2.34 x 107 cells cm-1. S. gordonii was also the most 

abundant species on day 3, with 6.98 x 109 cells cm-1  whilst S. mutans was the second most 

abundant species with 1.82 x 109 cells cm-1. By day 9, S. mutans had dominated the biofilm, 

with a cell concentration increasing over time to 1.62 x 1012 cells cm-1 . The number of S. 

mutans cells was significantly higher than in any of the other reactor experiments (p<0.05). S. 

gordonii was the second most abundant species, increasing to 5.59 x 109 cells cm-1  on day 9. 

A. oris had increased in cell concentration from day 3, with a cell concentration of 8.98 x 108 

cells cm-1. On day 9, there were 4.17 x 108 cells cm-1  for N. subflava, and 7.54 x 107 cells cm-1  

for V. parvula. This meant that V. parvula was the least abundant species in the synthetic 

community biofilm by day 9. 

Figure 4.12. Relative abundance of each species in the synthetic community for reactor 
experiment 2 (high glucose, intermediate lactic acid). S. mutans (red) dominated the bulk from 
day 5 onwards. A. oris (green) increased in cell concentration over time. V. parvula (yellow) 
was the least abundant species but did increase in cell concentration. Each point represented 
the average of triplicate values from three CDC reactor systems. Error bars represent the 
standard deviation from the mean. 
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In reactor experiment 3 (low glucose, high lactic acid), V. parvula was the most abundant 

species on day 2, with 2.14 x 108 cells cm-1  (Figure 4.13). A. oris was by far the least abundant 

species in this experiment, where there were only 1.37 x 105 cells cm-1  measured. By day 3, V. 

parvula remained the most abundant species in the biofilm, with 7.19 x 108 cells cm-1. S. 

mutans was the second most abundant species, with 1.76 x 108 cells cm-1. By day 9, V. parvula 

had continued to dominate the synthetic community biofilm, comprising 2.16 x 1011 cells cm-

1. S. gordonii was the second most abundant species, with a cell concentration of 1.13 x 1010 

cells cm-1. This was an increase from day 2, where there were 1.16 x 108 cells cm-1. S. mutans 

had also increased in cell concentration, with 8.27 x 109 cells cm-1  by day 9. N. subflava had 

increased in cells cm-1, from 5.89 x 107 cells cm-1  on day 2, to 1.88 x 108 cells cm-1  on day 9. 

Whilst A. oris remained by far the least abundant species in the synthetic community biofilm 

on day 9, it still increased over time, with 7.57 x 106 cells cm-1  recorded on day 9. Overall, this 

showed that all species increased in number over time, and that V. parvula dominated the 

synthetic community biofilm in a low glucose, high lactic acid environment. The number of V. 

parvula cells in the biofilm was significantly higher than in any of the other reactor 

experiments (p<0.05). 

Figure 4.13. Relative abundance of each species in the synthetic community for reactor 
experiment 3 (low glucose, high lactic acid). V. parvula dominated the bulk from day 5 
onwards. S. gordonii (blue) and S. mutans (red) were in similar abundances in the biofilm by 
day 9.. A. oris (green) increased in cell concentration over time but was the least abundant 
species. Each point represented the average of triplicate values from three CDC reactor 
systems. Error bars represent the standard deviation from the mean. 
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In reactor experiment 4 (low glucose, low lactic acid), N. subflava was the most abundant 

species on day 2, with 1.13 x 109 cells cm-1. A. oris was the least abundant species with 5.10 x 

107 cells cm-1  (Figure 4.14). N. subflava was still the most abundant species on day 3, with 

5.36 x 108 cells cm-1. S. mutans was the second most abundant species, with 3.69 x 108 cells 

cm-1. A. oris remained the least abundant species with 7.12 x 107 cells cm-1. By day 9, V. parvula 

was the most abundant species, with the cell concentration increasing to 1.06 x 1010 cells cm-

1. S. gordonii was the second most abundant species, with the cell concentration increasing 

from 7.03 x 108 cells cm-1  on day 2, to 4.18 x 109 cells cm-1  on day 9. S. mutans cell 

concentration also increased, with a count of 3.71 x 109 cells cm-1  on day 9. The cell 

concentration for N. subflava was 7.60 x 108 cells cm-1 on day 9. A. oris remained the least 

abundant species in the synthetic community biofilm on day 9, with the cell concentration 

decreasing to 3.35 x 107 cells cm-1 on day 9. This meant that V. parvula still dominated the 

synthetic community, despite a reduction in lactic acid concentration, but in both 

experiments, S. mutans was able to invade and establish itself in the biofilm. Overall, there 

was a more balanced abundance between species, due to a higher pH, lower glucose 

concentration and lower lactic acid concentration preventing S. mutans or V. parvula from 

dominating the synthetic community. 

Figure 4.14. Relative abundance of each species in the synthetic community for reactor 
experiment 4 (low glucose, low lactic acid). V. parvula (yellow) was the most abundant species 
by day 9. A. oris (green) was the least abundant species. Each point represented the average 
of triplicate values from three CDC reactor systems. Error bars represent the standard 
deviation from the mean. 
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In reactor experiment 5 (low sucrose, low lactic acid), N. subflava became the most abundant 

species on day 2, with a cell concentration of 1.59 x 108 cells cm-1. A. oris was the least 

abundant species, with 5.10 x 107 cells cm-1  (Figure 4.15). This meant that A. oris was the least 

abundant species in the synthetic community biofilm on day 2 across all experiments, despite 

being introduced into the reactor system first. By day 3, S. mutans had become the most 

abundant species, with a cell concentration of 1.36 x 109 cells cm-1. There were 1.13 x 109 cells 

cm-1  for S. gordonii on day 3.  A. oris was again the least abundant, decreasing in cell 

concentration to 2.85 x 106 cells cm-1. By day 9, V. parvula was the most abundant species in 

the biofilm, increasing from 3.09 x 107 cells cm-1  on day 2, to 7.64 x 1010 cells cm-1  on day 9. 

S. mutans was the second most abundant species, increasing over time to 2.68 x 1010 cells cm-

1  on day 9. The cell concentration on day 9 for S. gordonii was 5.57 x 109 cells cm-1, and for N. 

subflava it was 2.21 x 108 cells cm-1. A. oris was the least abundant synthetic community 

member on day 9, with 2.47 x 107 cells cm-1. This meant that changing the carbon source to 

sucrose led to an increase in cell concentration for all synthetic community species, with V. 

parvula still the most abundant species at the low substrate concentration. S. mutans, 

however, was the second most dominant species in the presence of sucrose, overtaking S. 

gordonii, when compared to reactor experiment 4. 

Figure 4.15. Relative abundance of each species in the synthetic community for reactor 
experiment 5 (low sucrose, low lactic acid). V. parvula (yellow) was the most abundant species 
by day 9. S. mutans (red) overtook S. gordonii (blue) as the second most abundant species 
when compared to condition 4 (low glucose, low lactic acid). Each point represented the 
average of triplicate values from three CDC reactor systems. Error bars represent the standard 
deviation from the mean. 
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4.3.8 Imaging the synthetic community biofilm using fluorescence in situ hybridization 

I used FISH to visualise the dental biofilm growing on the hydroxyapatite coupons in the CDC 

reactor. This was to identify that the species had all been established and to determine any 

qualitative shift in species prevalence over time or between reactor experiments. 

Furthermore, FISH was used to try to determine any structural pattern shifts of the synthetic 

community biofilm resulting from substrate change. Here, FISH was used to qualitatively 

validate qPCR results, rather than being used to quantify bacterial abundance within the 

biofilm. I used spectral fingerprinting to reduce any false signal and bleed of fluorescence from 

one channel into another (See Chapter 3). 

In reactor experiment 1 (high glucose, high lactic acid) at day 2 (Figure 4.16A), I observed that 

the biofilm formed was immature and primarily comprised of S. gordonii (grey), as was also 

seen in the qPCR abundance data (Figures 4.11-4.15). N. subflava (blue) and V. parvula (red) 

were also observed in this biofilm.  It was difficult to identify the signal from A. oris. On day 3 

(Figure 4.16B), S. mutans (green) had already started to colonise the biofilm and appeared to 

be the most abundant species. Over time, S. mutans dominated the biofilm, and by day 9 

(Figure 4.16E) the FISH images were primarily showing green fluorescence. The biofilms 

appeared to become greater in bacterial number over time. No structural changes were 

identified throughout the experiment, but a greater amount of autofluorescence and bleed-

through from the blue channel appeared as the biofilm matured. 
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Figure 4.16. Imaging of the synthetic community biofilm over time for reactor experiment 1 (high glucose, high lactic acid) using fluorescence in 
situ hybridization (FISH).  S. gordonii was the most visible species on day 2, but by day 3, S. mutans had already invaded the biofilm. S. mutans 
dominated the biofilm over time, whilst the presence of other species declined. Images were taken using the LSM 880 confocal microscope with 
spectral fingerprinting used to minimise fluorophore overlap. Images were representative of multiple images taken per biofilm. Colour- S gordonii   
(grey), S. mutans (green), A. oris (yellow), N. subflava (blue) V. parvula (red). Day- 2 (A), 3 (B), 5 (C), 7 (D), 9 (E). 

A) B) C) 

D)
) 

E) 
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I compared FISH images on day 9 across reactor experiments to identify any structural 

differences and species presence change as a result of substrate concentration change. S. 

mutans dominated the biofilm in reactor experiment 1 (high glucose, high lactic acid) (Figure 

4.17 A) by the end of the experiment. This was evident by the green chain cocci cells seen in 

the image. There was a signal recorded from S. gordonii (grey) within the biofilm, but far less 

than there were in previous days of this reactor experiment (images not shown). This was also 

seen in reactor experiment 2 (high glucose, intermediate lactic acid) (Figure 4.17 B), showing 

that S. mutans dominated the synthetic community at high glucose concentrations. The 

presence of the other species was not as prevalent as it had been earlier in the experiment 

(not shown), and there was no observable signal of N. subflava (blue) within this biofilm. 

In reactor experiment 3 (low glucose, high lactic acid), where the glucose had been reduced, 

S. mutans was still seen to have invaded the biofilm (Figure 4.17 C). There was a significant 

amount of green signal observed. At this lower glucose concentration, there was far more 

signal from V. parvula, which appeared orange in areas where both green and red signals were 

recorded. There was very little signal observed from A. oris (yellow) or N. subflava (blue). For 

reactor experiment 4 (low glucose, low lactic acid) (Figure 4.17 D), there was still a significant 

level of S. mutans, but more V. parvula could be seen. There was also more A. oris (yellow) 

and N. subflava present, indicating a more balanced composition of the synthetic community 

species than in the high sugar experiments. In reactor experiment 5 (low sucrose, low lactic 

acid), S. mutans formed large islands of cells, rather than spread out chains (4.17 E).  This 

morphology was more prominent than in the other experiments. V. parvula (red) was also 

present, although as with experiments 3 (low glucose, high lactic acid) and 4 (low glucose, low 

lactic acid), there was much less signal than expected when compared to the qPCR results. 

There was more bleed-through of the Alexa 405 (blue) into other channels and from 

autofluorescence, therefore I used background bleeding reduction for this fluorophore. Figure 

4.17F was a positive control used during imaging to stain all bacterial cells using a universal 

EUB338 probe. 
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Figure 4.17. Imaging of the synthetic community biofilm over time for each reactor condition using FISH. S. mutans invaded the biofilm in all 
conditions by day 9. It dominated the biofilm, with a signal difficult to identify from other species in reactor experiments 1 (high glucose, high 
lactic acid) and 2 (high glucose, intermediate lactic acid). V. parvula was more prominent in reactor experiment 3 (low glucose, high lactic acid), 
4 (low glucose, low lactic acid) and 5 (low sucrose, low lactic acid). Images were taken using the LSM 880 confocal microscope with spectral 
fingerprinting used to minimise fluorophore overlap. Images were representative of multiple images taken per biofilm. Colour- S gordonii (grey), 
S. mutans (green), A. oris (yellow), N. subflava (blue) V. parvula (red). Reactor condition- 1 (A), 2 (B), 3 (C), 4 (D), 5 (E), F=positive control.

A) B) C) 

D) E) F) 
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4.3.9 Assessing the viability of bacteria within the reactor system 

 
I assessed the viability of the synthetic community at the end of the 9-day invasion 

experiments. This was done by using flow cytometry and live-dead staining to quantify the 

number of live and dead cells, within the bulk and biofilms. I did this across all experiments, 

to see how altering the substrate concentrations, the resulting pH, species rank abundance 

etc, affected the viability of the system. In reactor experiment 1 (high glucose, high lactic acid), 

there were 3.40 x 1010 dead cells in the bulk, accounting for 57.35% of the overall planktonic 

cell number (Figure 4.18). There were 2.53 x 1010 live cells in the bulk, accounting for 42.65 % 

of the overall planktonic cells. In the biofilm, there were 5.52 x 108 dead cells, equalling 24.97% 

of the overall number of cells. There were an overall cell number of 6.15 x 1010 cells. Overall, 

this showed that there were a significant number of dead cells in the system, particularly in 

the bulk when compared to the biofilm (p<0.05), and that most of the cells in the system were 

accounted for by the planktonic phase. 

 

Figure 4.18 Viability of the synthetic community in both the reactor bulk and biofilm for 
reactor experiment 1 (high glucose, high lactic acid). There were a significant number of dead 
cells in the bulk (blue) and biofilm (purple) in this condition. Numbers were counted and gated 
using the Attune NxT flow cytometer, with the average of triplicate samples across three 
reactors taken. The error bars represented the standard deviation from the mean. Asterix 
indicated a significant difference between dead cells in the bulk and biofilm (p <0.05). 
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In reactor experiment 2 (high glucose, intermediate lactic acid), the percentage of dead cells 

in the reactor bulk dropped significantly to 24.92 %, at a cell number of 2.63 x 1010 (Figure 

4.19). The number of live cells in the bulk was 7.92 x 1010, accounting for 76.55% of the bulk. 

In the biofilm, there were 3.14 x 108 dead cells, equating to 23.45% of the biofilm cell number. 

The other 76.55%, equalling 1.02 x 109 cells, were live. This indicates that the system, 

particularly the bulk, had a higher viability at the lower lactic acid concentrations, although 

there were still a significant number of dead cells in both the bulk and biofilm. The overall cell 

number was 1.07 x 1011 cells. The results from reactor experiments 1 (high glucose, high lactic 

acid) and 2 (high glucose, intermediate lactic acid), demonstrate that the low pH as a result of 

high glucose concentration, led to cell stress, particularly in the bulk. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.19 Viability of the synthetic community in both the reactor bulk and biofilm for 
reactor experiment 2 (high glucose, intermediate lactic acid).  Similar to reactor experiment 1 
(high glucose, high lactic acid), there were a significant number of dead cells in the bulk (blue) 
and biofilm (purple) in this condition. Numbers were counted and gated using the Attune NxT 
flow cytometer, with the average of triplicate samples across three reactors taken. The error 
bars represented the standard deviation from the mean. 
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In reactor experiment 3 (low glucose, high lactic acid), there were 1.69 x 109 dead cells in the 

bulk of the reactor, accounting for 5.78% of the overall cell number (Figure 4.20). There were 

4.38 x 1010 live cells, which was 94.22% of the overall cell number. In the biofilm, there were 

1.35 x 108 dead cells, accounting for 3.72% of the biofilm cell number. The other 96.28% of 

the biofilm cell number, at 2.21 x 109 cells, were live. The overall cell number was 4.78 x 1010. 

These results show that the viability of both the synthetic community biofilm and bulk was 

significantly higher at the low glucose (and higher pH) concentration than at the high glucose 

(lower pH) concentration. 

Figure 4.20 Viability of the synthetic community in both the reactor bulk and biofilm for 
reactor experiment 3 (low glucose, high lactic acid).  The percentage of live cells in both the 
bulk (green) and the biofilm (red) were significantly higher than at the high glucose conditions. 
Numbers were counted and gated using the NxT flow cytometer, with the average of triplicate 
samples across three reactors taken. The error bars represented the standard deviation from 
the mean. 
 

For reactor experiment 4 (low glucose, low lactic acid), where there was a low concentration 

of both glucose and lactic acid in the AFMC medium, the viability of the system was reduced 

from reactor experiment 3. There were 3.62 x 1010 dead cells in the bulk (Figure 4.21), which 

represented 23.26% of the total number of cells in the planktonic phase. There were 1.22 x 

1011 live cells, which accounted for 77% of the bulk. In the synthetic community biofilm, there 

were 4.62 x 108 dead cells, which was 10.05% of the total biofilm cell number. There were 4.13 

x 109 live cells in the biofilm, which was 89.95%. The total cell number of the reactor was 1.62 
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x 1011 cells. The viability of both the biofilm and bulk were lower than for reactor 3 (low 

glucose, high lactic acid). This was possibly due to a lactic acid limitation leading to cell stress 

for V. parvula, the most abundant species during this reactor experiment. The viability of both 

the bulk and biofilm was higher than in reactor experiment 1 (high glucose, high lactic acid). 

The planktonic phase viability was similar to experiment 2 (high glucose, intermediate lactic 

acid), whilst the percentage of dead cells in the synthetic community biofilm was less than 

half. 

Figure 4.21 Viability of the synthetic community in both the reactor bulk and biofilm for 
reactor experiment 4 (low glucose, low lactic acid).  Similar to reactor experiment 3 (low 
glucose, high lactic acid), the system had higher viability compared to the high glucose 
conditions. Most of the cells in the biofilm were live (red), although there were significantly 
more dead cells in the bulk (blue) than in reactor condition 3 (low glucose, high lactic acid). 
Numbers were counted and gated using the NxT flow cytometer, with the average of triplicate 
samples across three reactors taken. The error bars represented the standard deviation from 
the mean. 
 

In reactor experiment 5 (low sucrose, low lactic acid), the viability of the system after 9 days 

for both the bulk and the biofilm was high. There were 4.01 x 109 dead cells in the bulk (Figure 

4.22), accounting for 4.59% of the total cell number. There were 8.34 x 1010 live cells in the 

bulk, accounting for 95.41% of the total cell number in the planktonic phase of the model. In 

the synthetic community biofilm, there were 3.35 x 108 dead cells after 9 days. This was 9.64% 
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of the total biofilm cell number. There were 3.14 x 109 live cells in the biofilm, accounting for 

90.36% of the total biofilm cell number. The overall number of cells in the reactor was 9.09 x 

1010 cells. These results show that the viability of the planktonic phase was greater when the 

synthetic community was grown on sucrose, than in any experiment tested using glucose in 

AFMC (p<0.05). This could be because S. mutans had better tolerance to the acidic conditions 

in the bulk when grown on sucrose due to an ATR and EPS formation (see Chapter 1). 

Furthermore, this was the only experiment where the viability was greater for the bulk than it 

was for the biofilm. The viability of the biofilm remained high also, second only to reactor 

experiment 3 (low glucose, high lactic acid). 

Figure 4.22 Viability of the synthetic community in both the reactor bulk and biofilm for 
reactor experiment 5 (low sucrose, low lactic acid).  Most of the cells in the biofilm were live 
(red), and there was a greater percentage of live cells in the reactor bulk (green) than in any 
other condition. Numbers were counted and gated using the NxT flow cytometer, with the 
average of triplicate samples across three reactors taken. The error bars represent the 
standard deviation from the mean. 
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4.4 Discussion 

In this Chapter, I aimed to use my defined in vitro model to investigate factors underpinning 

S. mutans invasion into a commensal community of oral bacteria, and how those factors and 

invasion affected the early colonisers. My results demonstrated that a high glucose 

concentration led to S. mutans dominating the planktonic phase at a high glucose 

concentration, regardless of the lactic acid concentrations tested, and resulted in a large pH 

drop in the bulk. The higher glucose concentration also led to a decrease in the abundance of 

the commensal species over time. At the lower glucose and high lactic acid concentration, V. 

parvula dominated the biofilm at high lactic acid concentrations, with a more balanced species 

abundance observed when the lactic acid concentration was also lowered. Switching to 

sucrose from glucose increased the abundance of S. mutans in the biofilm, although V. parvula 

was still the most dominant species. Using flow cytometry, I also observed that the viability of 

the biofilm increased significantly at low glucose concentration experiments compared to high 

glucose concentrations.  

I quantified the pH of the reactor bulk over time under different substrate concentrations. 

There was a significant drop in pH, across all experiments, as the synthetic community 

developed. This was not surprising as these species, especially the oral Streptococci, are 

known to produce significant amounts of acids (e.g., lactic acid) as they ferment sugars 

(Dashper & Reynolds, 2000). The pH dropped within the first 24 h across all experiments, 

where A. oris is known to produce acids from the fermentation of glucose (Könönen & Wade, 

2015). The pH dropped to a low of 5.23 at reactor experiment 1 (high glucose, high lactic acid) 

on day 2, where there was an excess of glucose. A similar drop in pH in vivo would likely cause 

tooth demineralisation (Dawes, 2003). This decrease from pH 7 to 5.3 was significant, as pH is 

a log scale and so this meant there was 100 times more H+ present. The reduction in glucose 

concentration conditions during experiments 3 (low glucose, high lactic acid) and 4 (low 

glucose, low lactic acid), led to a much higher pH at the end of the experiment. This can be 

explained by a shift of the bacterial abundance away from S. mutans and towards V. parvula, 

which is known to consume lactic acid to produce weaker acids, rather than ferment sugars 

to produce strong acids (Palmer et al., 2006). Whilst the pH on day 9 was similar for glucose 

and sucrose, there was a much lower pH by day 3 compared to glucose. The production of 

more acid from bacteria grown on sucrose has been observed before. It is also known to cause 

a shift towards aciduric species  (Matsui & Cvitkovitch, 2010b).  The in vitro model, therefore, 
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replicated in vivo findings that the fermentation of sucrose is more acid-contributing than 

glucose. 

Significant growth was observed in the reactor bulk by measuring the optical density. This was 

expected as the species reached high OD600nm values in monoculture (Chapter 3). The 

significant drop in OD600nm over time during reactor experiments 1 (high glucose, high lactic 

acid) and 2 (high glucose, intermediate lactic acid), where there was a high glucose 

concentration, was likely due to the low pH of the reactor bulk, caused by fermentation of 

glucose by the oral species (excluding V. parvula). It is known that a low pH causes cell stress 

and creates a suboptimal environment for growth. This can lead to cell death.  (Guan & Liu, 

2020b). This also explained why decreasing the substrate concentrations in reactor 

experiments 3 (low glucose, high lactic acid), 4 (low glucose, low lactic acid), and 5 (low 

sucrose, low lactic acid), led to a higher end OD600nm value at day 9, as it resulted in higher pH 

of the bulk, therefore less cell stress. Whilst there was still a high lactic acid concentration in 

reactor experiment 3 (low glucose, high lactic acid), consumption of lactic acid by V. parvula 

did not contribute as much to an acidic environment, as it was breaking this acid down into 

weaker acids, specifically propionic acid and formic acid (Seeliger et al., 2002.) 

I intended to study the invasion of S. mutans into the pre-formed dental biofilm in both a 

glucose-rich and glucose-limiting system. My results showed that reactor experiments 1 (high 

glucose, high lactic acid) and 2 (high glucose, intermediate lactic acid) contained an excess of 

glucose, whilst experiments 3 (low glucose, high lactic acid) and 4 (low glucose, low lactic acid) 

were glucose limiting. The significant amount of glucose consumed, as seen in Figure 4.3, can 

be explained by the substrate utilisation experiments in Chapter 3, where 4 of the species 

consume a large amount of glucose in monoculture. In this Chapter, the bacteria were in 

mixed-culture, therefore glucose consumption could be different from the monoculture 

experiments in Chapter 3.  This is because species were competing for the same substrate and 

behave differently in a mixed-species environment (Elias & Banin, 2012). The glucose 

consumption can be attributed to the known findings that glucose is used as a preferential 

carbon source by oral species, particularly the Streptococci (Willenborg & Goethe, 2016b). This 

explained why the glucose concentration depleted so quickly, especially as S. gordonii 

dominated the bulk by day 2 and A. oris, the species that grew in the first 24 h, also uses 

glucose for growth (Norimatsu et al., 2015). 
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I quantified the lactic acid concentration in the reactor bulk to understand the potential 

impact on pH. Also, to understand the balance between lactic acid producers i.e., Streptococci, 

which played an important role in the acidification of the environment, as shown by the 

significant pH decrease, and the lactic acid consumer V. parvula. The oral Streptococci are 

known to produce significant amounts of lactic acid in sugar-rich, oxygen-limiting 

environments (Willenborg & Goethe, 2016c), which explained the lactic acid increase seen in 

reactor experiment 2 (high glucose, intermediate lactic acid). Especially, as the qPCR results 

here show that S. mutans dominated this system. The significant drop in lactic acid seen within 

the first 24 h in reactor experiment 1 (high glucose, high lactic acid) was surprising as A. oris, 

the only species present, consumed glucose as a primary substrate according to results in 

Chapter 3 and literature (N. Takahashi & Yamada, 1999). One explanation is that whilst A. oris 

is known to produce lactic acid in an anaerobic environment, it has also been shown to utilise 

lactic acid in oxygen-rich environments (van der Hoeven & van den Kieboom, 1990; N. 

Takahashi & Yamada, 1999), and there is likely to be more oxygen present in the first day of 

the invasion experiment. This was because N. subflava is an aerobe and would have consumed 

oxygen within the reactor when it was inoculated on day 2. The lactic acid concentration 

decrease seen in reactor experiments 3 (low glucose, high lactic acid), 4 (low glucose, high 

lactic acid) and 5 (low sucrose, low lactic acid) can be explained by V. parvula dominance. This 

species has been shown to consume lactic acid from the substrate consumption experiments 

in Chapter 3 and what was known in the literature (Gronow et al., 2010b). Overall, I have 

observed from these results that lactic acid concentrations made a difference in the synthetic 

community biofilm composition, as seen by the drop in relative abundance of V. parvula 

between reactor experiments 3 (low glucose, high lactic acid) and 4 (low glucose, low lactic 

acid), from 91.60% to 54.81% respectively. 

The dominance of S. mutans in the bulk of reactor experiments 1 (high glucose, high lactic 

acid) and 2 (high glucose, intermediate lactic acid), as seen in the qPCR results, was likely due 

to the significant pH drop and the ability of S. mutans to adapt to this harsh environment. This 

is more likely to be a contributing factor than direct substrate availability or growth rates. This 

is because both S. gordonii and N. subflava grew to high turbidity on excess glucose, and S. 

gordonii had a faster growth rate than S. mutans (Chapter 3), yet S. mutans still dominated. S. 

mutans is well known to be able to cope with acidic conditions (Baker et al., 2017) which gave 

it a competitive advantage over other synthetic community species. The decrease in the 
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relative abundance of the other bacteria was likely to be down to the pH drop, where acidic 

conditions are known to lead to cell stress (Guan & Liu, 2020c). The excess of glucose and 

lactic acid in reactor experiments 1 and 2, compared to experiments 3 and 4, lead to greater 

growth and therefore a lower pH. V. parvula increases significantly in abundance in reactor 

experiments 3, 4, and 5, explained by the fact that it consumes lactic acid (Mashima & 

Nakazawa, 2015b) rather than glucose and sucrose like the other species do, so it is not 

competing for the same nutrients. In all experiments, N. subflava decreases in abundance over 

time. This is likely due to the oxygen limitation in the reactors, with N. subflava generally 

requiring oxygen for growth. It has been observed that some Neisseria species can grow in 

oxygen-limiting systems by reducing nitrate (Rock et al., 2007), so further work could be done 

to see if supplementing with nitrate would help N. subflava establish better in this reactor 

model. 

The dominance of species in the in vitro model biofilm correlates well with those seen in the 

reactor bulk for experiments 1 and 2. The S. mutans dominance, accounting for 99% of cell 

number occurred in both the biofilm and planktonic. This S. mutans dominance, in the reactor 

experiments with the lowest pH, is likely to be due to the competitive advantage of S. mutans 

in acidic environments, seen in Chapter 3, as well as literature (Matsui & Cvitkovitch, 2010b). 

In reactor experiment 3 there were significant differences in species abundance between the 

biofilm and the bulk, where V. parvula to comprised 91% of the biofilm, but only 36.46% of 

the planktonic phase, while S. mutans comprised 63.40% of the bulk in reactor 3, but only 3.51 

% of the biofilm. This could be explained by the greater availability of glucose in the planktonic 

bulk than in the biofilm, where S. mutans may not have a sufficient amount of glucose. The 

excess lactic acid seen in Figure 4.4 showed that lactic acid was likely in abundance for V. 

parvula to grow. The difference in nutrient availability between the bulk and the biofilm can 

affect species growth (Reddersen et al., 2021). Changing the carbon source from glucose to 

sucrose in reactor experiment 5 (low sucrose, low lactic acid) led to a greater ratio of S. mutans 

to S. gordonii in the biofilm. S. mutans was not able to dominate the biofilm, with V. parvula 

comprising 70.12 % abundance. This contradicts findings in the literature, where sucrose gives 

S. mutans a competitive advantage in vivo and in vitro due to EPS production and attachment 

(Costa Oliveira et al., 2021b; van der Hoeven et al., 1985; Tanzer et al., 2012). One explanation 

for this could be the limited concentration of sucrose testing, leading to a limited substrate 

source. S. gordonii, A. oris and N. subflava all consumed sucrose in Chapter 3, likely reducing 



152 
 

the amount of sucrose available to S. mutans even further. This could be tested in future work 

by increasing the sucrose concentration supplemented in AFMC. Whilst low lactic acid 

concentration was fed in this experiment, V. parvula faces less competition for this substrate 

and consumes lactic acid produced by the other species (Dashper & Reynolds, 1996.). 

The use of FISH proved useful in imaging the synthetic community species. The dominance of 

S. mutans was confirmed through FISH in these images, particularly at the high glucose 

concentrations, but the prevalence of V. parvula at the lower sugar concentrations, as seen in 

the qPCR results, was not as evident. This meant that the technique was only in partial 

agreement with what was seen with the qPCR. The structural difference seen on sucrose, 

where large islands of S. mutans were seen in the FISH images for reactor experiment 5 (low 

sucrose, low lactic acid), was also observed by Kreth (2002). Using spectral fingerprinting and 

optimising steps seen in Chapter 3 helped reduce autofluorescence, background noise, and 

bleed-through from emission channels. This did not reduce all of this though, and in particular 

there was bleed-through of the Alexa 405 blue dye, attached to N. subflava, indicating far 

more of this species than what was quantified in the qPCR. These concerns limit FISH as a 

quantitative tool in its current form. There has been extensive work done in other labs, notably 

from Borisey’s group (2012), which developed a “CLASI-FISH” approach, including the use of 

refined spectral fingerprinting and attaching two fluorescent probes to each species, to 

accurately image 15 taxa (Valm et al., 2012). This showed that it is possible to use FISH more 

effectively, given more time to refine the technique.  Furthermore, there have been recent 

techniques that improve on using basic fingerprinting to circumvent the issues regarding 

spectrally overlapping fluorophores (Seo et al., 2022). 

The significant difference in viability between the high glucose concentrations (reactor 

experiments 1 and 2) and low concentrations of sugar (reactor experiments 3,4 and 5) was 

likely to do with the stress of the high pH in those experiments. This can affect the viability of 

synthetic community members, as seen with S. gordonii (N Takahashi & Yamada, 1999).  The 

viability of the planktonic phase at day 9 for reactor experiment 1 being only 42.64% shows 

how stressed a mixed culture can become as the pH drops to approximately 5.2. Not only is it 

well known that biofilms are more resistant to such stresses (Singh et al., 2017; Lories et al., 

2020; Lee et al., 2014a; Rath et al., 2021), but there is research done showing that mixed-

species biofilms show unique resilience not seen in mono-species biofilms or mixed-species 

planktonic cultures due to community level interactions (Lee et al., 2014b). Biofilm 
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quantification with qPCR and flow cytometry only accounted for growth on hydroxyapatite 

coupons, despite biofilm also having been observed to grow on the coupon holders. This 

meant that cell counting only approximated that in the system. Future work to quantify the 

viability changing over time would help correlate this with the pH of the bulk. 

The synthetic community species established in a biofilm in all cases, but with N. subflava 

struggling in an environment that was oxygen-depleted, future work should consider 

controlling oxygen or at least feeding in a nitrate source, as the nitrate reduction by N. 

subflava (Prasetianto Wicaksono et al., 2020; Rock et al., 2007) would help it fare better in the 

synthetic community. The numerous sampling opportunities provided by the CDC reactor (21 

in total), were very useful considering the abundance of techniques used in this section. The 

ability to control as many variables and sample as many biofilms is not something that would 

have been possible in more simple in vitro devices e.g., microtiter plates. Development of this 

model helped inform on the conditions needed to protect commensal species, such as 

lowering sugar concentration to prevent a significant pH drop. The ability to change one 

parameter at a time i.e., sugar concentration, was possible by using AFMC. Other models, 

using the CDC reactor to grow dental biofilms on a rich medium, did not offer the same control 

and simplification of the chemical environment (Rudney et al., 2012). Finally, the ability to 

replace a coupon holder in the CDC reactor allowed the continuous recording of pH. This 

allowed me to determine that a significant pH drop led to S. mutans dominance from day 5 

onwards in the CDC reactors the experiments with low pH (high glucose), and V. parvula 

dominance at the higher pH (low glucose) conditions. This benefit has also been used in other 

CDC reactor models when characterising dental biofilms (An et al., 2022). 

The model has the potential to inform safe product development by testing the use of 

antimicrobial actives on S. mutans invasion. Having developed the in vitro model and 

understood the invasion into the biofilm under different conditions, the next section of work 

(Chapter 5) aimed to develop an in silico model to simulate S. mutans invasion and biofilm 

growth. The results from the in vitro model were compared to the results of the in silico model. 

The significant impact of pH on S. mutans invasion, and the commensal species, seen in this 

Chapter, provided evidence that pH considerations need to be made during in silico 

simulations. This was made more necessary by the results in Chapter 3, which demonstrate 

that the synthetic community species were all impacted differently by low pH conditions, with 

S. mutans having a competitive advantage. 
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Chapter 5- In silico modelling approaches to characterise the invasion of 

Streptococcus mutans into an oral commensal community 
 

 

5.1 Introduction 

It is important to characterise the transition of a health-associated dental biofilm, to one 

overpopulated by acidogenic species. This includes the invasion and activity of cariogenic 

species e.g., S. mutans, which is implicated in caries prevalence and progression (Nanda et al., 

2015). The abundance of bacteria and the numerous interspecies interactions in the mouth, 

where over 750 bacterial species have been identified (Chen et al., 2010; Verma et al., 2018), 

leads to challenges in disentangling the in vivo complexity. It is necessary to do so to 

understand the factors that contribute towards caries. 

Mathematical models are recognized to play a key role in characterising biofilms, and they 

have significantly contributed to the advancement of the field (Dzianach et al., 2019). There 

are limited reports of in silico models being used in dental biofilm research  (Dzianach et al., 

2019). The groundwork was set by the pioneering work of Dibdin and Reece (Dibdin, 1990; 

Dibdin & Reece, 1984), who developed 1-D and 2-D continuous models, to calculate the pH 

profiles in the dental biofilm. These models were pioneering in the application of 

mathematical modelling in dental biofilm research. Early continuous models did not 

differentiate between species, nor consider their interactions. The study by Wimpenny et al., 

(1997) focused on the diffusion of substrates within dental biofilms, rather than the role of 

individual bacteria. More recent models have better captured the complex interactions 

between species, including simulating lactic acid production/consumption, to understand 

their function in dental biofilms. This includes the work by Ilie et al., (2012). This continuous 

model considered four microbial species (aciduric Streptococcus; non-aciduric Streptococcus, 

Actinomyces and Veillonella), and several metabolic processes of these bacteria, including 

anaerobic glucose fermentation and lactate fermentation. The model hypothesised, and 

confirmed, that Veillonella had a protective effect against demineralisation, as it consumed 

the lactic acid produced by aciduric Streptococcus.  However, recent experimental results 

contradict this finding and suggested that Veillonella may participate in the development of 

caries through increased EPS production of S. mutans and reducing the inhibitory effect of 

lactic acid buildup (Liu et al., 2020). This showed that oral species can play varying functions 

within the dental biofilm, both beneficiary and detrimental. These contradictions between in 
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silico and in vitro models emphasise the need for validation of the in silico models with in 

vivo/in vitro experiments. 

The use of Individual-based models (IbM) has allowed for the studying of bacterial species on 

an individual agent basis in dental biofilm research. This is important as each bacterial cell has 

a biological, physical, and chemical impact on surrounding cells and the environment (and vice 

versa). IbM enables the characterising of these influences. Whilst limited in number, these 

types of models have shown promise in characterising dental biofilms. One such model was 

that developed by Head et al., (Head et al., 2014a). This model considered a dental biofilm 

formed by two competing types of acidogenic bacteria, with one being aciduric and therefore 

pathogenic. The two types of bacteria competed for space, but not for glucose, as there was 

no mass transfer limitation considered for this substrate in the model. Bacteria only interacted 

through acid production. This limitation of the model was later relaxed in their follow-up 

paper (Head et al., 2017), where glucose diffusion in the biofilm was considered. Head (Head 

et al., 2017) recommended that simulation models required validation with in vitro 

experiments, to better understand species behaviour i.e., substrate usage. A limitation of this 

study was the consideration of only two types of bacteria, which does not suitably represent 

the dental biofilm as well as the study by Ilie et al., (Ilie et al., 2012). As the dental biofilm 

responsible for demineralisation is surrounded by bacterial load in the saliva, both continuous 

modelling of planktonic cells and IbM modelling of biofilms are useful tools in combination. 

This would help better the known influence of saliva on biofilms and its role in caries 

progression (Belstrøm et al., 2014; Rusu et al., 2022). 

Studies utilising mixed in vitro and in silico approaches, to understand dental biofilm activity 

in caries, are limited. Rath et al., (2017) analysed S. gordonii biofilms by combining in vitro and 

in silico modelling strategies to predict dental biofilm formation. However, this model only 

considered a mono-species biofilm, so does not capture the complexity of dental biofilms, and 

the validation of the model was only based on the biofilm height. Even two species systems, 

such as that by Martin et al., (Martin et al., 2017) used to observe the interactions between P. 

gingivalis and S. gordonii, do not capture the complexity of dental biofilms in the mouth due 

to a lack of species considered. This model also did not consider a flow rate similar to that in 

the oral environment. This is important to mimic, as salivary flow directly affects dental biofilm 

formation (Sotozono et al., 2021). 
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An important environmental impact on bacteria within dental biofilms is the pH. The 

fermentation of sugars by bacteria produces acids e.g., lactic acid decreases the pH in dental 

biofilms. This decrease in pH is conserved in microenvironments for several hours (Schlafer et 

al., 2011). This leads to bacterial cell stress, including compromising the structural integrity of 

cell membranes (Guan & Liu, 2020a). Species have different optimum pH levels for growth, 

and gradients found within carious lesions have led to differing species abundance. This 

includes a high abundance of Lactobacilli in low pH ranges of 5.5-6.0. Species such as S. mutans 

have shown an acid tolerance response allowing them to thrive in low pH environments often 

associated in vivo with caries sites, relative to other species (McNeill & Hamilton, 2003b). This 

acid tolerance has been shown to be greater in biofilms than in planktonic cells (Boisen et al., 

2021b). With the importance of pH in the relationship of dental biofilms and caries 

progression, and the variation of behaviour between species at different pH, it becomes 

evident that this needs to be considered during simulation to understand dental biofilm 

behaviour in vivo. Whilst models have considered pH in the bacterial growth kinetics to 

characterise biofilms  (1995), this application has been limited in dental biofilm research. 

It is desirable to use in silico models, considering representative, multispecies communities, 

as a tool in dental biofilm research and caries development. This should also consider the 

direct impact of pH on species kinetics. By using a combination of in vitro and in silico 

approaches, including the use of a CDM, the influence of factors i.e., sugar concentration, on 

S. mutans invasion and commensal species growth, can be tested one parameter at a time. 

This includes the effect of sugar concentration on pH, species growth, and the transition of a 

healthy biofilm to a cariogenic-associated state. These in silico models should be informed 

with experimental work, including species-specific kinetic parameters i.e., maximum specific 

growth rate (µmax) and (Ks). This has previously resulted in models better reflecting in vivo 

and in vivo data, compared to those that do not consider species-specific kinetic parameters 

(1995). 
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5.2 Aims and objectives 

In this chapter, I aimed to characterise the factors driving S. mutans into a pre-formed, 4 

species oral commensal community. I also aimed to quantify the resulting effect on the local 

environment i.e., pH change, and the effect on the commensal bacterial community, to 

understand the transition of a commensal microbiome to a caries-associated one. To do this, 

I aimed to model the synthetic community bulk using continuous modelling, and the synthetic 

community biofilm using IbM. Simulations were run under the same glucose and lactic acid 

concentrations as those tested in the in vitro model.  This allowed for the direct connection 

and comparison between simulations and experimental data, which was facilitated by the 

experimental use of AFM. This underpinned the defined species stoichiometry. The models 

were also informed by experimentally collected kinetic parameters, µmax and Ks. The models 

were used with and without direct pH consideration in the bacterial growth kinetics, to 

understand the effect of pH on simulating invasion beyond chemical speciation. 

Objectives: 

1) Simulate the substrate concentration and pH profile of the bulk, using continuum 

modelling, as the synthetic community grew over 216 h. 

2) Simulate the relative abundance of the synthetic community species in the bulk at the 

same glucose and lactic acid concentrations tested in Chapter 4. 

3) Use the individual-based model to simulate the pH and substrate concentrations of the 

synthetic community biofilm. 

4) Simulate the invasion of S. mutans into the 4-species commensal dental biofilm, using 

the 2-D IbM. 

5) Investigate the effect of different seeding strategies, on invasion and species 

abundance. This included simulating S. mutans invasion when cells were seeded 

clustered bacteria by species and comparing invasion to when seeding mirrored the 

same inoculation strategy implemented in the in vitro experiments. 
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5.3 Results 

5.3.1 Description of in silico modelling experiments 

The invasion of S. mutans into a 4-species commensal oral community. was simulated 

concurrently with the glucose/lactic acid concentrations and pH change. A 0-D continuum 

model was used to simulate these in the bulk, whilst a 2-D IbM was used to simulate the 

synthetic community biofilm. The substrate concentrations in AFMC and starting pH were 

identical to the experiments in Chapter 4, so that simulation and experimental results could 

be compared. These conditions were detailed in Table 5.1 

Table 5.1 Simulation conditions mirrored those of the reactor experiments in Chapter 4. 
Reactor experiments 1 (high glucose, high lactic acid) and 2 (high glucose, intermediate lactic 
acid), were at high glucose concentrations. Reactor experiments 3 (low glucose, high lactic 
acid) and 4 (low glucose, low lactic acid) were at low glucose concentrations. The lactic acid 
concentrations were intermediate in reactor experiment 3 and low in reactor experiment 4. 
The starting pH was similar across all simulation runs. 

 

The continuous model simulations of the bulk in Section 5.3.2A-D followed the same seeding 

strategy as the experiments in Chapter 4. The order of inoculation was A. oris on day 1; S 

gordonii, N. subflava and V.  parvula on day 2; and S mutans on day 3. For IbM simulations of 

the biofilm in 5.3.4A-C, the domain was first seeded with 46 bacterial cells, such that the entire 

first row of the computational domain was filled with bacterial cells, placed at an equal 

distance from each other and from the walls of the computational domain. The five species 

 Glucose concentration 

(gL-1) 

Lactic acid 

concentration (gL-1) 

Starting pH 

Reactor 

experiment 1 

21.85 11.61 6.92 

Reactor 

experiment 2 

21.30 6.28 6.82 

Reactor 

experiment 3 

2.09 12.46 6.94 

Reactor 

experiment 4 

1.98 2.61 6.93 
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were seeded with the same initial number of agents, while the positions of the agents were 

randomly assigned. 

The flow rate was kept the same as the in vitro experiments, at 0.4 mL min-1, to mirror that of 

saliva (Iorgulescu, 2009), as was the temperature at 37 °C (Sund-Levander et al., 2002). The 

results of the simulations were plotted against experimental data from Chapter 4. A simplified 

stoichiometry (see Chapter 2) was proposed, where the facultative anaerobes S. gordonii, S. 

mutans and A. oris fermented glucose, producing lactic acid. The obligate anaerobe V. parvula 

consumed lactic acid as the primary carbon source and electron donor, producing acetate and 

propionate. Acetate, formate and propionate contributed to the pH calculation, being 

considered as soluble species as part of the species stoichiometry, mass and charge balances 

(see Chapter 2). Initially, pH was not considered directly in bacteria kinetics, only in chemical 

speciation. I then considered the pH corrections into µmax, as done by Rosso (Rosso et al., 

1995).  This involved considering three pH species-specific parameters (see Chapter 2). The 

pH for optimal growth (pHopt), the pH above which no growth occurred (pHmax), and the pH 

below which no growth occurred (pHmin). The aerobe N. subflava consumed glucose and had 

oxygen as the primary electron donor, producing acetate and formate (Bradshaw & Marsh, 

1998b). These chemical components were considered in the mass balance according to the 

stoichiometry of each species (Chapter 2). N. subflava was considered in the synthetic 

community as a scavenger for oxygen, to protect the strict anaerobes, as reported in 

chemostat experiments modelling dental biofilm species (Bradshaw et al., 1996). A constant 

oxygen concentration of 1 mg L-1 was assumed in the reactor and within the biofilms. This was 

to satisfy the stoichiometry of N. subflava and replicate the experimental micro-aeration 

conditions. 
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Figure 5.1 Overview of the in silico strategy and goals of this chapter to characterise S. mutans invasion. Starting substrate concentrations and 
pH mirrored in vitro conditions. Variables i.e., flow rate and temperature, were used to resemble the in vivo environment. Simulations were run 
over 216 h.
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5.3.2A The glucose concentration of the reactor bulk 

Glucose was the primary substrate consumed by all species of the synthetic community, 

excluding V. parvula. Fermentation of glucose produces biomass, resulting in waste products 

i.e. lactic acid, propionate, formate and acetate (see stoichiometry Chapter 2). Lactic acid was 

the main substrate consumed by V. parvula. The glucose, lactic acid pH and species abundance 

were simulated at the same time using continuum modelling. 

The glucose concentration of the bulk was simulated concurrently with biomass production. 

This was to understand the sugar consumption of the synthetic community and its relation to 

biomass development. The simulation results, both with and without pH consideration in 

bacterial growth kinetics, were presented in Figure 5.2. The glucose concentration in all 

simulations decreased over time as biomass grew. The simulated glucose concentration was 

almost identical in reactor experiment 1 (high glucose, high lactic acid) (Figure 5.2A) and 2 

(high glucose, intermediate lactic acid) (Figure 5.2B), which was not the case in the 

experimental data. The model did agree with experimental data that glucose decreased 

significantly in concentration over 48 h, followed by an increase until the end of the 

experiment.  Agreement between in silico results and the experimental data improved when 

pH considerations were implemented. Without pH in growth kinetics, the simulated glucose 

concentration in reactor experiments 1 (high glucose, high lactic acid) and 2 (high glucose, 

intermediate lactic acid) did not change up until 50 h, and then depleted rapidly. This was not 

the case in the experimental data, where the glucose concentration decreased from the start 

of the experiment. The increase in glucose concentration in the experimental data from 72h 

onwards, was because glucose was still being fed into the reactor whilst biomass decreased, 

leading to less glucose consumption. In reactor experiments 3 (low glucose, high lactic acid) 

(Figure 5.2C) and 4 (low glucose, low lactic acid) (Figure 5.2D), the glucose concentration was 

depleted in the first ~72 h, but did not start decreasing until ~50 h, which was not the case in 

the experimental data. When the effect of pH on bacteria growth kinetics was considered, the 

simulations agreed better with the experimental data. There was an excess of glucose by the 

end of the reactor experiments for reactor experiment 1 (high glucose, high lactic acid) and 2 

(high glucose, intermediate lactic acid) for simulations and experimental data. The simulated 

concentrations dropped steadily between ~50 h and ~120 h. The was a rapid decrease over 

~48 h in the experimental data. For reactor experiments 3 (low glucose, high lactic acid) and 
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4 (low lactic acid), the simulations showed that the glucose was fully consumed in simulations, 

although a significant decrease in concentration was seen after 50 h in simulation, as opposed 

to over the first 24 h in the experimental data. 
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Figure 5.2 Glucose concentrations with and without pH influence on the growth rate of synthetic community members. A) Reactor experiment 
1 (high glucose, high lactic acid), B) Reactor experiment 2 (high glucose, intermediate lactic acid), C) Reactor experiment 3 (low glucose, high 
lactic acid) and D) Reactor experiment 4 (low glucose, low lactic acid). Plots included experimental data (orange), simulation without pH 
consideration (blue dotted line) and with pH consideration (blue solid line). 
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5.3.2B The lactic acid concentration of the reactor bulk 

Lactic acid was the main by-product of glucose fermentation for all species excluding V. 

parvula, which used it for biomass growth. The lactic acid concentration of the bulk was 

simulated concurrently with species growth, glucose, and pH. This helped describe lactic acid 

production/consumption of the synthetic community. This was important as in vivo lactic acid 

is a significant contributor to pH lowering, which leads to demineralisation (Dashper & 

Reynolds, 1996.). Simulating lactic acid concentration allowed for a better understanding of 

species growth, as a result of substrate availability in the case of V. parvula. 

There were still discrepancies between the simulations and experimental data, despite pH 

corrections being implemented.  For reactor experiment 1 (high glucose, high lactic acid) (Figure 

5.3A) in simulations, the lactic acid concentration increased at ~50 h, but was depleted by ~100 

h when pH was not considered. In the experimental data, the lactic acid dropped over 24 h and 

then remained similar throughout the experiment. When pH was considered in kinetics in 

simulations, the lactic acid increased over time. This was as the species grew and S. mutans 

dominated the simulations. In the stoichiometry (see Chapter 2) S. mutans produces lactic acid 

as it grows. The simulation results for reactor experiments 1 (high glucose, high lactic acid) and 

2 (high glucose, intermediate lactic acid) (Figure 5.3B) were identical. In the experimental data 

for reactor experiment 2 (high glucose, intermediate lactic acid), there was still a lactic acid drop 

over 24 h, but the lactic acid concentration then increased over time, as it did in the simulations. 

In reactor experiment 3 (high glucose, high lactic acid) (Figure 5.3C), the lactic acid concentration 

remained constant until ~50 h, increased slightly and dropped to 0 by ~120 h. This contrasted 

with the experimental data, which showed the lactic acid concentration steadily decreasing over 

time. The simulation results for reactor experiment 4 (low glucose, low lactic acid) (Figure 5.3D) 

showed the lactic acid depleted completely with and without pH correction, with pH correction 

leading to depletion faster at ~100 vs 120 h. This decrease agreed with the experimental data, 

although this happened much sooner at around 50 h in the experiment.  The discrepancy 

between simulations and experimental data for reactor experiments 1 (high glucose, high lactic 

acid) and 2 (high glucose intermediate lactic acid), could be explained by the simplified 

stoichiometry for the bacterial species. This considered that S. gordonii, S. mutans and A. oris 

produced lactic acid, leading to an increase during simulations from they were introduced on 

day 2. The consumption of lactic acid over time in both the experimental data and simulations 
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for reactor experiments 3 (low glucose, high lactic acid) and 4 (low glucose, low lactic acid), could 

be explained by V. parvula dominance, as this species consumed lactic acid for growth. 
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Figure 5.3 Lactic acid concentrations with and without pH influence on the growth rate of synthetic community members. A) Reactor experiment 
(high glucose, high lactic acid), B) Reactor experiment 2 (high glucose, intermediate lactic acid), C) Reactor experiment 3 (low glucose, high lactic 
acid) and D) Reactor experiment 4 (low glucose, low lactic acid). Plots included experimental data (orange), simulation without pH consideration 
(blue dotted line) and with pH consideration (blue solid line).  
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5.3.2C The pH of the reactor bulk 

The pH is an important driver of cariogenic dental biofilm development and its role in enamel 

demineralisation (see Chapter 1). Furthermore, the experimental data in Chapter 4 indicated 

that pH was a primary driver of S. mutans invasion. 

The pH of the reactor bulk decreased across all simulations, regardless of whether pH 

corrections were implemented in bacterial kinetics. In all cases, the simulated pH was lower 

than the values recorded in experimental data. For reactor experiment 1 (high glucose, high 

lactic acid) (Figure 5.4A), the pH dropped to ~4 within 50 h, before increasing back up to 5 by 

~100 h. The pH remained constant throughout the rest of the experiment. With pH corrections 

implemented, the pH also dropped over the first 40 h, to a pH of ~4.7. The pH continues to 

drop to ~4.2 at 120 h and remained constant until 216 h. The pH of the reactor bulk in the 

experimental data never reached as low as 5. The simulated pH levels of the bulk for reactor 

experiment 2 (high glucose, intermediate lactic acid) (Figure 5.4B) were identical to those in 

reactor experiment 1 (high glucose, high lactic acid), so initial lactic acid concentration did not 

influence pH. 

Simulations for reactor experiment 3 (low glucose, high lactic acid) (Figure 5.4C) demonstrated 

that the pH patterns were very similar, with a lower pH in reactor experiment 3 (high glucose, 

high lactic acid than in reactor experiment 4 (low glucose, low lactic acid) (Figure 5.4D). In both 

simulations, the pH remained high until ~50 h, then dropped to ~ 5.7 in reactor experiment 3, 

and pH 6 in reactor experiment 4 (low glucose, low lactic acid). The pH increased back up 

further to ~6.30 in reactor experiment 3 at 130 h, before staying constant until the end of the 

experiment. In reactor experiment 4 (low glucose, low lactic acid) there was not a drastic 

change in pH between ~50-200 h. The pH simulations show a higher pH for reactor 

experiments 3 (low glucose, high lactic acid) and 4 (low glucose, low lactic acid), compared to 

1 (high glucose, high lactic acid) and 2 (high glucose, intermediate lactic acid). This was likely 

due to the dominance of V. parvula in the bulk. V. parvula produces less acid than the S. 

mutans, which dominated the bulk in reactor experiments 1 (high glucose, high lactic acid) 

and 2 (high glucose, intermediate lactic acid). The lower pH in simulations for reactor 

experiments 3 (low glucose, high lactic acid) and 4 (low glucose, low lactic acid) were in 

agreement with the experimental results. 
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Figure 5.4 The pH of the bulk with and without pH influence on the growth rate of synthetic community members. A) Reactor experiment 1 (high 
glucose, high lactic acid), B) Reactor experiment 2 (high glucose, intermediate lactic acid), C) Reactor experiment 3 (low glucose, high lactic acid) 
and D) Reactor experiment 4 (low glucose, low lactic acid). Plots included experimental data (orange), simulation without pH consideration (blue 
dotted line) and with pH consideration (blue solid line).
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5.3.2D Species relative abundance in the bulk 

The species relative abundance of the bulk was simulated concurrently with the glucose, lactic 

acid and pH. This was to determine the invasion of S. mutans invasion into the commensal 

bulk, and the community composition, at varying glucose and lactic acid concentrations. I used 

the simulated pH, glucose and lactic acid results to understand their influence on S. mutans 

invasion.  I compared these relative abundances to those from experimental data to 

determine if simulations reflected the experiments. 

There was a large discrepancy between the simulation results and the experimental data when 

pH was not considered in bacterial kinetics. For simulations of reactor experiment 1 (high 

glucose, high lactic acid) (Figure 5.5A), S gordonii initially dominated the bulk between 24 h 

and 50 h, before dropping in abundance until ~100 h and staying constant. V. parvula 

dominated the bulk from 70 h onwards, increasing up to ~90% abundance by ~100 h. The 

abundance did not change until the end of the experiment. The simulation results were the 

same for reactor experiment 2 (high glucose, intermediate lactic acid) (Figure 5.5B). In these 

simulations, S. mutans did not dominate the synthetic community bulk. These results differed 

significantly from the experimental data. Simulations and experiments corroborated that S. 

gordonii dominated the first 24 h in the bulk in reactor experiments 1 (high glucose, high lactic 

acid) and 2 (high glucose, intermediate lactic acid). In the experiments, S. mutans dominated 

the bulk, constituting over 99% of the relative abundance by the end of the experiment.  S. 

gordonii had the fastest growth rate (see Chapter 3) which explained why it dominated the 

first 24 h of simulation in reactor experiments 1 (high glucose, high lactic acid) and 2 (high 

glucose, intermediate lactic acid). The decrease in abundance of S. gordonii and the inability 

of S. mutans to invade the bulk can be explained by the depletion of glucose in the system by 

~50 h, whilst there was still lactic acid present for V. parvula to grow on. Simulations of reactor 

experiments 3 (low glucose, high lactic acid) (Figure 5.5C) and 4 (low glucose, low lactic acid 

(Figure 5.5D) were similar, with a slight decrease in S. gordonii at the low glucose 

concentrations and an increase in V. parvula abundance. This showed that altering the glucose 

concentration in the simulations was not enough in simulating the synthetic community 

growth patterns seen in the experiments, regarding the invasion and dominance of S. mutans. 

In all simulations without pH consideration, A. oris and N. subflava struggled to grow over 

time. 
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Figure 5.5 Relative abundance of S. gordonii (SGN), S. mutans (SMT), V. parvula (VPV), A. oris (ACO), and N. subflava (NSB) in the bulk.  Model 
results did not consider pH in growth rates. A) Reactor experiment 1 (high glucose, high lactic acid), B) Reactor experiment 2 (high glucose, 
intermediate lactic acid), C) Reactor experiment 3 (low glucose, high lactic acid) and D) Reactor experiment 4 (low glucose, low lactic acid).
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Considering pH effect on the bacterial kinetics at high glucose concentrations improved the 

agreement between simulations and experiments for species relative abundance. In 

simulations for reactor experiment 1 (high glucose, high lactic acid (Figure 5.6A), S. mutans 

dominated the bulk, reaching near 100% abundance by ~120 h. The species dominated the 

bulk for the remainder of the experiment. The pH consideration in growth kinetics led to 

difference from simulations without pH corrections, as it considered S. mutans ability to thrive 

in a low pH environment. S. gordonii dominated the first 24 h of simulation, as it did in the 

simulation not considering pH corrections, and in the reactor bulk, decreased in abundance. 

When considering pH, S. gordonii reached ~0% abundance at 216 h, whilst without considering 

pH, the abundance remained at ~15%. The simulations for reactor experiment 2 (high glucose, 

intermediate lactic acid) (Figure 5.6B) were identical to reactor experiment 1 (high glucose, 

high lactic acid), demonstrating that lactic acid did not affect simulation results at either of the 

high glucose concentrations. 

The rank abundance results for simulation of reactor experiments 3 (low glucose, high lactic 

acid) (Figure 5.6C) and 4 (low glucose, low lactic acid) (Figure 5.6D), were identical to each 

other. This showed that lactic acid reduction did not significantly hinder the ability of V. 

parvula to dominate the bulk. As with all other simulations, S. gordonii dominated the bulk in 

the first 50 h. In the experimental data, S. gordonii abundance at 48 h was 54.61% in reactor 

experiment 3 (low glucose, high lactic acid), and 23.10 % in reactor experiment 4 (low glucose, 

low lactic acid), so the models did not agree. This species decreased in abundance down to ~0 

in simulations by ~120 h for reactor experiment 3 (low glucose, high lactic acid) and 10% in 

reactor experiment 4 (low glucose, low lactic acid). Similar to the simulations not factoring pH, 

V. parvula dominated the bulk in reactor experiments 3 (low glucose, high lactic acid) and 4 

(low glucose, low lactic acid), comprising ~90% of the bulk by the end of the simulation. During 

these simulations, glucose was limiting (Figure 5.3 C/D) which led to reduced growth of the 

species not including V. parvula. Lactic acid availability allowed V. parvula to dominate the 

system, as it did in the experimental data These results showed that pH consideration made 

an impact, by allowing S. mutans to thrive better relative to the other species in the low pH 

(Figure 5.4 A/B) environment. As it did in the experimental data, A. oris and N. subflava 

struggled to grow in simulations at low pH. 
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Figure 5.6 Relative abundance of S. gordonii (SGN), S. mutans (SMT), V. parvula (VPV), A. oris (ACO), and N. subflava (NSB) in the bulk.  
Model results considered pH in growth rates. A) Reactor experiment 1 (high glucose, high lactic acid), B) Reactor experiment 2 (high 
glucose, intermediate lactic acid), C) Reactor experiment 3 (low glucose, high lactic acid) and D) Reactor experiment 4 (low glucose, low 
lactic acid). 
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5.3.3A The pH and substrate concentrations of the synthetic biofilm 

I used an individual-based model to characterise S. mutans invasion into the dental biofilm 

and the growth of the other commensal species, at different glucose and substrate 

concentrations.  I also investigated the pH, which was difficult to do in the reactor, to 

understand biofilm behaviour and the local effect of species growth. These were all part of 

the same simulation. Biofilm growth was considered inside a 100 x 100 µm computational 

space with a maximum biofilm height of 80 µm, representing the growth of the synthetic 

community biofilm on the hydroxyapatite disks. An equal number of particles for each species 

was randomly distributed at the base of the computational domain in a monolayer at the start 

of the simulation. 

A snapshot of the biofilm was taken at 100 h for reactor experiment 4 (low glucose, low lactic 

acid) to demonstrate growth within the domain (Figure 5.7A) in reactor experiment 4 (low 

glucose, low lactic acid). S. mutans (orange) and V. parvula (green) dominated the biofilm, 

with S. gordonii (blue) populating the biofilm. A. oris (yellow) and N. subflava (purple) 

struggled to grow within the biofilm, as they did in the experimental data. A snapshot of the 

glucose concentration (Figure 5.7B) showed that glucose was consumed within the biofilm, 

with a low concentration at the bottom and a gradient, with no consumption at the top 

boundary where biomass was not generated. All species, excluding V. parvula, were 

responsible for glucose consumption according to their stoichiometry. This was the inverse of 

the pattern seen with lactic acid. Here, lactic acid concentration was greatest at the bottom 

of the biofilm (Figure 5.7C), as those species produced lactic acid when fermenting glucose.  

V. parvula consumed lactic acid in its stoichiometry. Finally, the pH dropped significantly 

(Figure 5.7D). This drop in pH can be explained by the growth of the biofilm, consuming 

glucose, and producing lactic acid in the process, with the acid production decreasing the pH. 

A spatial variation in pH was observed within the biofilm as opposed to the homogenous bulk, 

which influenced the species relative abundance.
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Figure 5.7 Representation of a biofilm (A) and its corresponding glucose (B), lactic acid concentration (C), and pH profiles (D). The snapshot 
corresponded to reactor experiment 4 (low glucose, low lactic acid) and simulation time of 100 h. Panel A: blue - S.gordonii;  red - S.mutans; 
green - V. parvula; yellow – A. oris; magenta – N. subflava.
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5.3.3B The relative abundance of bacterial species in the synthetic biofilm 

Simulating the relative abundance of the biofilm helped describe how the species grew on 

high and low glucose/lactic acid concentrations over time. The species were seeded with the 

same number of cells to begin with, which were randomly distributed, and growth was 

simulated over 216 h, with starting conditions matching those of the in vitro experiments in 

Chapter 4. 

In simulations of reactor experiment 1 (high glucose, high lactic acid) (Figure 5.8A) without pH 

correction, S. gordonii dominated the biofilm, ranging from 50-70 % abundance. This did not 

agree with the experimental data, where S. gordonii had a species abundance of 29.80% after 

48 h, but then decreased to 3.51 % by 216 h.  An explanation for S. gordonii dominance in 

simulations could be due to the superior growth rate (see Chapter 3).  S. mutans was the 

second most abundant species in the simulation, ranging between 15-30%. This did not reflect 

the results from the experimental data, where. S. mutans dominated the reactor biofilm, 

constituting over 99% of the abundance by 216 h. The simulation results for reactor 

experiment 2 (high glucose, intermediate lactic acid) (Figure 5.8B) were similar to that of 

reactor experiment 1 (high glucose, high lactic acid), and therefore also did not represent the 

experimental data. This again showed S. gordonii being the most abundant species in 

simulations, but S. mutans dominated the biofilm in experimental data. the model simulated 

that A. oris, N. subflava and V. parvula struggled to grow within the synthetic community 

biofilm, with none of the 3 species ever reaching a relative abundance of over 15%.  This also 

occurred in the experimental data. 

The simulation results from reactor experiments 3 (low glucose, high lactic acid) (Figure 5.8C) 

and 4 (low glucose, low lactic acid) (Figure 5.8D) corroborated more with the experimental 

results Simulations showed V. parvula dominated the biofilm at these low glucose 

concentrations. This was also the case in the experimental data. Furthermore, the simulated 

abundance for V. parvula decreased between reactor experiments 3 (low glucose, high lactic 

acid) and 4 (low glucose, low lactic acid), as it did in the experimental data. This was likely due 

to the lactic acid concentration decrease. The relative abundance of S. mutans was similar in 

reactor experiments 3 (low glucose, high lactic acid) and 4 (low glucose, low lactic acid), 

whereas, in the experimental data, the abundance increased from 3.51% at 216h in reactor 

experiment 3 (low glucose, high lactic acid), to 19.29 % in experiment 4 (low glucose, low lactic 
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acid). For simulations of reactor experiments 3 (low glucose, high lactic acid) and 4 (low 

glucose, low lactic acid), A. oris and N. subflava struggled to grow, as they did in the 

experimental data. Overall, these results demonstrated that without pH corrections in species 

growth rates, the simulations struggled to simulate the invasion and dominance of S. mutans 

into the biofilm at high glucose concentrations, as was the case in the experimental data. 
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Figure 5.8 Relative abundance of S. gordonii (SGN), S. mutans (SMT), V. parvula (VPV), A. oris (ACO), and N. subflava (NSB) in the biofilm. Model results 
without pH correction for growth rates and experimental data. A) Reactor experiment 1 (high glucose, high lactic acid), B) Reactor experiment 2 (high 
glucose, intermediate lactic acid), C) Reactor experiment 3 (low glucose, high lactic acid) and D) Reactor experiment 4 (low glucose, low lactic acid). 
Simulation results were presented from 48 h, corresponding with the first experimental point. At 0 h, the five species had equal relative abundance. 

R
e

la
ti

ve
 a

b
u

n
d

an
ce

 (
%

) 
 

Time (h-1) Time (h-1) 

Time (h-1) Time (h-1) Time (h-1) Time (h-1) 

Time (h-1) Time (h-1) 

A) 

D) C) 

B) 

R
e

la
ti

ve
 a

b
u

n
d

an
ce

 (
%

) 
 

R
e

la
ti

ve
 a

b
u

n
d

an
ce

 (
%

) 
 

R
e

la
ti

ve
 a

b
u

n
d

an
ce

 (
%

) 
 

R
e

la
ti

ve
 a

b
u

n
d

an
ce

 (
%

) 
 

R
e

la
ti

ve
 a

b
u

n
d

an
ce

 (
%

) 
 

R
e

la
ti

ve
 a

b
u

n
d

an
ce

 (
%

) 
 

R
e

la
ti

ve
 a

b
u

n
d

an
ce

 (
%

) 
 

Reactor experiment 1 

Reactor experiment 3 

Reactor experiment 2 

Reactor experiment 4 



178 
 

When considering pH correction for the bacterial growth rates, the simulations of reactor 

experiment 1 (high glucose, high lactic acid) (Figure 5.9A) and 2 (high glucose, intermediate 

lactic acid) (Figure 5.9B) were identical. Both resulted in S. mutans dominating at high glucose 

concentrations, with all other species struggling to grow. This matched the results from 

experimental data. The identical nature of simulations for reactor experiments 1 (high glucose, 

high lactic acid) and 2 (high glucose, intermediate lactic acid) demonstrated that lactic acid 

concentration did not affect the dominance of S. mutans in simulation. This was also the case 

in the experimental data. 

Simulation results for reactor experiment 3 (low glucose, high lactic acid) (Figure 5.9C) better 

resembled the experimental data. V. parvula dominated simulation at low glucose 

concentration, ranging between 50-70% abundance. This was lower than the experimental 

data, where the abundance was 91.60% at 216 h, but corroborated that the abundance was 

far higher than any other species. The simulation showed that S. mutans struggled to grow in 

simulations, despite the pH correction. This was similar to the experimental data. The 

abundance decreased from ~30% at 48 h, to 10% at 216 h in simulations. In the experimental 

data, the abundance in all samples taken was below 9%. S. gordonii was the second most 

abundant in simulations for reactor experiment 3 (low glucose, high lactic acid), with the 

abundance ranging between 10-20%. A. oris and N. subflava struggled to grow in this 

simulation. In simulations of reactor experiment 4 (low glucose, low lactic acid) (Figure 5.9D), 

S. mutans struggled to dominate the biofilm, making up ~10% abundance. S. gordonii 

abundance decreased over time, from ~30% at 48 h, to ~15% at 216 h. This was similar to 

experimental data, where the abundance decreased from 33.34% at 48h, to 21.72% at 216 h. 

In this simulation, V. parvula was the most dominant species, with an abundance of ~60% by 

216 h. The decrease in lactic acid concentration decreased the abundance of V. parvula, in 

both simulations and experimental data, between reactor experiments 3 (low glucose, high 

lactic acid) and 4 (low glucose, low lactic acid. The abundance of V. parvula in simulations and 

experimental data were almost identical to each other when pH corrections were 

implemented. Overall, these simulations showed that considering pH was important when 

comparing the simulation results to the reactor results, particularly the dominance of S. 

mutans at high glucose concentrations and the dominance of V. parvula at low glucose 

concentrations. 
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Figure 5.9 Relative abundance of S. gordonii (SGN), S. mutans (SMT), V. parvula (VPV), A. oris (ACO), and N. subflava (NSB) in the biofilm. Model 
results considered pH in growth rates. A) Reactor experiment 1 (high glucose, high lactic acid), B) Reactor experiment 2 (high glucose, intermediate 
lactic acid), C) Reactor experiment 3 (low glucose, high lactic acid) and D) Reactor experiment 4 (low glucose, low lactic acid). Results were presented 
from 48 h, corresponding with the first experimental point measured. 
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5.3.4 Influence of bacterial seeding on species relative abundance in the community biofilm 

The simulations in 5.3.3A-C considered an equal number of individuals for each of the 5 

species, in the seeding of the dental biofilm. These were randomly distributed at the base of 

the computational domain. I investigated the effect of initial seeding distribution on S. mutans 

invasion, and on the abundance of the commensal species, at the same conditions tested in 

the experimental data (Chapter 4).  This was done by i) clustering the initial individuals by 

species type, and ii) altering the initial number of individuals to match the relative 

abundances, quantified from the biofilms on the hydroxyapatite coupons using qPCR. This was 

on the second day of the experimental data. In this instance, this was to mimic the invasion of 

S. mutans into the biofilms, as it was inoculated into the reactor on day 2. All simulations were 

performed considering pH correction in species growth rates. 

Clustering the initial individuals by species did not significantly change the final rank 

abundance of the synthetic community members, compared to random distribution. S. 

mutans dominated the biofilm in the simulation of reactor experiment 1 (high glucose, high 

lactic acid) (Figure 5.10A), with a relative abundance of almost 100% by 72 h. S. mutans 

continued this dominance throughout the rest of the simulation, whilst all other species 

struggled to grow. In reactor experiment 2 (high glucose, intermediate lactic acid) (Figure 

5.10B) S. mutans also dominated the biofilm, although in this instance, by 48 h. This 

dominance was seen in the experimental data, but the abundance did not reach above 90% 

until 120 h. Clustering the initial seeding did not affect rank abundance at low glucose 

concentrations, where V. parvula also dominated simulations for both reactor experiment 3 

(low glucose, high lactic acid) (Figure 5.10C) and 4 (low glucose, low lactic acid) (Figure 5.10D). 

A difference was observed in the simulated abundance of V. parvula in reactor experiment 3 

(low glucose, intermediate lactic acid) when cells were clustered, compared to randomly 

distributed. The abundance increased over time, from ~45% to 70%, similar to experimental 

data. In Section 5.3.3B, the abundance ranged from 60-80% throughout the remainder of the 

experiment.  Clustering the cells also led to an almost identical trend between the simulation 

of reactor experiment 4 (low glucose, low lactic acid), and the experimental data. Only at        

168 h did the values between the simulation and experiments differ. 
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Figure 5.10 Relative abundance of each synthetic community member simulated in the biofilm, plotted with abundances from experimental data.  
The results consider pH correction for growth rates, with seeding of cells clustered by species. Simulation results are presented from 48h to 
correspond with the first experimental points measured. A) Reactor experiment 1 (high glucose, high lactic acid), B) Reactor experiment 2 (high 
glucose, intermediate lactic acid), C) Reactor experiment 3 (low glucose, high lactic acid) and D) Reactor experiment 4 (low glucose, low lactic acid). 
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Changing the seeding strategy to match that of the experiments in Chapter 4, also led to S. 

mutans dominating the biofilm in simulations of reactor experiment 1 (high glucose, high lactic 

acid) (Figure 5.11A). This was even if the starting density was one individual. The relative 

abundance in simulations reached ~90% after 120 h, so took longer to dominate the biofilm 

than when clustering species. Regardless of seeding, all other species struggled to grow. The 

growth pattern of S. mutans more closely resembled the experimental data, when following 

a similar seeding strategy. The trend in simulations of S. mutans growth was similar in reactor 

experiments 1 (high glucose, high lactic acid) and 2 (high glucose, intermediate lactic acid) 

(Figure 5.11B). This demonstrated that decreasing lactic acid at high glucose concentrations 

did not affect invasion. In simulations of reactor experiment 3 (low glucose, high lactic acid), 

V. parvula still dominated the biofilm abundance (Figure 5.11C) but more closely resembled 

the experimental data. The abundance in simulations was ~85% and was 91.60 % in the 

experimental data. For S. gordonii, the simulated abundance was ~50% after 72 h (Figure 

5.11C), closer to the value of 47.37% recorded from the experimental data, compared to 

clustering. The simulated abundance of S. gordonii decreased between 72 h and 120 h, similar 

to the experimental data. All other species struggled to grow. In simulations of reactor 

experiment 4 (low glucose, low lactic acid) (Figure 5.11D), V. parvula was still the most 

abundant species, with an abundance of ~55%, similar to the random distribution simulation 

value and the experimental data abundance of 54.87%. S. mutans, A. oris and N. subflava 

struggled to grow, although there was more growth in simulation for S. gordonii compared to 

when the cell seeding was clustered. After 72 h, the abundance in simulations of S. gordonii 

was ~75%, far higher than the experimental data or the simulations from cell clustering. 
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Figure 5.11 Relative abundance of each synthetic community member simulated in the biofilm, plotted with abundances experimental data.  The results 
consider pH correction for growth rates, with seeding matching the reactor strategy. Simulation results are presented from 48h to correspond with the 
first experimental points measured. A) Reactor experiment 1 (high glucose, high lactic acid), B) Reactor experiment 2 (high glucose, intermediate lactic 
acid), C) Reactor experiment 3 (low glucose, high lactic acid) and D) Reactor experiment 4 (low glucose, low lactic acid). 
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5.4 Discussion 

In this Chapter, I aimed to use both continuum and IbM modelling approaches to simulate the 

invasion of S. mutans into a pre-formed oral commensal community. I aimed to compare 

findings to the experimental data in Chapter 4 and determine factors that increased 

influenced S. mutans invasion, including factoring in pH to bacterial growth kinetics and 

testing the clustering of species upon initial seeding. Considering pH was important due to it 

having a known profound effect on bacterial growth (Guan & Liu, 2020a), as validated by 

findings in Chapter 3. My results show that pH consideration was important in modelling S. 

mutans invasion. When considering the pH correction for the growth rates, simulations 

showed S. mutans dominance at high glucose concentrations, whilst V. parvula dominated at 

low glucose concentrations. This was the case for both the bulk and biofilm, and the modelling 

results agreed with the experimental data. I also observed that whilst clustering cells during 

initial seeding still led to the same invasion patterns as random distribution, it did influence 

species abundance in the biofilm, including an increase in abundance for S. gordonii. 

The simulated glucose concentration in the bulk demonstrated that the substrate decreased 

over time as the biomass grew, in all simulations. Simulation results agreed better with reactor 

findings when pH was considered. The consumption of glucose by these species, to produce 

biomass, is known. S. gordonii, S. mutans, A. oris and N. subflava all consumed glucose for 

biomass production (Dame-Teixeira et al., 2016b; Solsi et al., 2020; Decker et al., 2014). This 

explained the large amount of glucose consumed during simulations of reactor experiments 1 

(high glucose, high lactic acid) and 2 (high glucose, intermediate lactic acid), as S. mutans 

dominated the simulation, which would require a large amount for growth. The glucose 

consumption was also demonstrated by my results in Chapter 3. The lower glucose 

concentrations in reactor experiments 3 (low glucose high lactic acid), and 4 (low glucose, low 

lactic acid) also led to the inability of S. mutans to dominate. The limiting nutrient here likely 

led to less growth, as glucose concentration has shown to correlate to species growth in 

literature (Dutra De Oliveira et al., 2016). The decrease in glucose concentration was also seen 

in the biofilm as biomass generation led to consumption. Modelling substrate concentration 

by the IbM was beneficial in understanding the characteristics of the dental biofilm, as this is 

difficult to measure in vitro, and was not done in Chapter 4. 
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The pH decreased across all simulations as biomass grew. This was also the case with 

experimental data and was expected, as these species produced acid. This explained why the 

greatest decrease in both the biofilm and the bulk was seen in simulations of reactor 

experiments 1 (high glucose, high lactic acid) and 2 (high glucose, intermediate lactic acid), as 

S. mutans, the most abundant species according to simulation results, is very acidogenic 

(Bedoya-Correa et al., 2021). The pH decrease mirrored the lactic acid production (Figure 5.3a-

d), as lactic acid is known to be one of the main acids produced in fermentation (Egland et al., 

2004). The higher pH in simulations where V. parvula dominated, can be explained by this 

species consuming lactic acid to produce weaker acids (Zhou et al., 2021c). These 

corroborated with the experimental data in Chapter 4. Even at low glucose concentrations, 

there was still a drop in pH of the bulk and the biofilm. The IbM was able to simulate the local 

pH in the biofilm, difficult to do experimentally and not done during the experiments in 

Chapter 4. This is one example where the IbM can help predict characteristics of biofilm 

further than that accomplished in the reactor system. The pH corrections in species growth 

rates showed to have a significant effect on the modelling of S. mutans invasion at higher 

glucose concentrations. This led to better agreement of the pH, glucose, and lactic acid 

concentrations when compared with experimental results. The optimum pH defined for S. 

mutans also had a significant effect on its ability to invade the oral community. In one 

simulation (data not shown), changing the pHopt parameter in the pH correction to 7, rather 

than 6 and starting the relative abundance on day 2, resulting in S. mutans failing to invade 

the biofilm. In the absence of a more detailed representation of the metabolic process for 

species beyond anabolic and catabolic reactions, the pH correction for growth rates was a 

representation of the acid tolerance response in bacteria. The lower pHmin of S. mutans 

represented the known ATR response (Matsui & Cvitkovitch, 2010b), giving it a competitive 

advantage at low pH over the other synthetic community species. The sensitivity to the pHopt, 

pHmin and pHmax in the pH corrections, do limit the predictive capacity of the models to the 

quality of the experimental data informing the model. The integration of pH here differed 

from other models, e.g., that by Head (Head et al., 2014b) who used inhibition terms with the 

same value for aciduric and non-aciduric species. I implemented a more realistic 

representation of biofilm development better reflecting the localised pH variation in the 

biofilm, particularly compared to models that do not consider the pH influence or chemical 

speciation (Rath et al., 2017; Ilie et al., 2012; Martin et al., 2017). In my model, acetate was 

part of the pH calculation and catabolism for N. subflava and V. parvula. Future work could 
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focus on quantifying this in the in vitro reactor and comparing to simulated concentrations 

using the continuous model and IbM. 

I have observed that S. mutans dominated simulations led to an increase in lactic acid, which 

can be explained by the known lactic acid production from this species (Guo et al., 2013). The 

reduction in lactic acid when V. parvula dominated i.e., reactor experiments 3 (low glucose, 

high lactic acid) and 4 (low glucose, low lactic acid), can be explained by lactic acid metabolism 

(Luppens et al., 2008b). The production and consumption dynamics in the synthetic 

community underlined the importance of quantifying this acid. This is evident in the IbM 

concentration simulations showing an inverse pattern with glucose concentration as V. 

parvula had opposite metabolism with S. mutans in terms of lactic acid production/ 

consumption, leading to the known synergism in vivo (Abram et al., 2022). To better 

understand the acid profile of the synthetic community would require measuring the products 

of lactic acid consumption by V. parvula, known to include propionate and formate (Seeliger 

et al., 2002). 

The continuous model allowed control of the environment that could be varied 

independently. This was done with the glucose and lactic acid concentration. The continuous 

model demonstrated that S. mutans dominated at high glucose concentrations when pH was 

considered in kinetics. The acid tolerance response (N Takahashi & Yamada, 1999) was likely 

responsible for the discrepancy when pH was not considered. Simulation patterns then 

corroborated with reactor results on ranked relative abundance similarity, showing the 

usefulness of the continuous model. It was difficult to directly compare results with literature 

due to the unique combination of species in this synthetic community, substrate conditions 

and medium as well as simulation time. The liquid phase considered here was important as 

the bulk constituted most of the biomass in the system, and in vivo salivary microbiome and 

composition is important in the oral microbiome overall and impact on health (Lynge Pedersen 

& Belstrøm, 2019b). To an extent, this was reflected in the simulation results and the 

experimental work. The rank abundance of species within the biofilm and bulk were identical 

across all simulations and experimental work. I can therefore consider that the bulk plays the 

role of saliva (also mirroring the flow rate) and is a source for biofilm formation and 

replenishment of bacteria. Furthermore, simulation results indicated that shifts in the dental 

biofilm result from pH generated from carbohydrate fermentation rather than carbohydrate 

availability (Bradshaw & Marsh, 1998a). A limitation of the bulk simulations was that whilst 
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the homogenous assumption matches that of the CSTR, this is not the case in vivo (Proctor et 

al., 2018). Simulations did consider the average salivary flow rate to help represent that in the 

mouth. Another limitation was not considering the impact of the biofilm on the bulk, which 

has been remarked by Wimpenny et al., (Wimpenny & Colasanti, 1997). This explained the 

lack of a clear steady state in the experimental data, as seen in the simulations, leading to a 

discrepancy between the two modelling approaches. 

The simulation of the IbM showed similar rank abundances to both the bulk simulations, 

produced by the continuum model, and the experimental data in Chapter 4. The pH correction 

in species growth rates was also needed to simulate S. mutans invasion. The pH is vital in 

representing the in vivo dental biofilm as species were known to react differently to pH 

(Senneby et al., 2017a). It is therefore an advantage to represent the pH gradients in the 

biofilm which also occurs in vivo (Schlafer et al., 2011) and has a varying effect on caries 

development and demineralisation, often acting as a biomarker (Kalhan et al., 2019). The 

simulation of the biofilm allowed for yield variation as a function of the glucose and lactic acid 

concentration, differentiating itself from other models that keep yields constant (Head et al., 

2014b). Yield calculations based on stoichiometry and local concentration are important in 

biofilm modelling as it links thermodynamics and environmental conditions to microbial 

growth (Gogulancea et al., 2019b). This better reflects the different conditions bacteria face 

in heterogeneous biofilms. The consideration of the defined stoichiometry for each species 

allowed for studying microbial composition over time and for comparison with experimental 

data. Not modelling the transition between aerobic and anaerobic metabolism is a limitation, 

but the inclusion of N. subflava as part of the synthetic community, acting as a sink for the 

oxygen concentration, helped offset this. This occurs naturally in the mouth, where both 

aerobes and anaerobes were present (Arweiler & Netuschil, 2016), with aerobes helping 

protect anaerobes in biofilms from oxygen-related stress (Bradshaw et al., 1996). A difficulty 

in comparing biofilm simulations to those in the reactor was the lack of consideration for the 

impact of the bulk on the biofilm. The biofilm also lacks aspects of interspecies interactions 

and the impact of EPS which is a known important part of biofilm development, support and 

protection for the species involved (Cugini et al., 2019). To improve on this would need the 

translation to a 3D model as done by Gogulancea et al., (2019). This would allow for better 

research into phenomena such as the effect of sucrose pulsing on polymer production, which 

is influential in S. mutans invasion (Matsumoto-Nakano, 2018). 
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Clustering cells by species type and altering the initial number of cells to match those of the 

reactor, still led to S. mutans dominating high glucose and V. parvula dominating low glucose 

conditions. Bacterial species have interspecies interactions that help them thrive in dental 

biofilms. One such example is the S. mutans-V. parvula interaction, where S. mutans produces 

lactic acid for V. parvula to consume, which itself protects S. mutans from oxidative stress (Liu 

et al., 2020). Understanding these relationships better would require further implementation 

of mechanical and chemical interspecies interactions within the model. Whilst there was no 

significant change in rank abundance, a better correlation between the simulated abundance 

of S. mutans in reactor experiment 1 (high glucose, high lactic acid) to those from the 

experimental data, showed that matching the seeding strategy led to more agreement. This 

was also the case for V. parvula abundance in reactor experiment 3 (low glucose, high lactic 

acid).  Overall, the results showed that the effect of pH and substrate concentration far 

outweigh bacterial positioning for the conditions tested. 

The model has contributed to the overall knowledge of biofilm behaviour, including the 

glucose, lactic acid, pH, and species abundance changes under different substrate 

concentrations. The model has the potential to inform safe product development by 

simulating the invasion of disease-associated bacterial species, and the effect on health-

related microbiomes, under different conditions. Two potential uses of the IbM are the 

simulation of antibiotic resistance and probiotic integration in the dental biofilm. Antibiotic 

resistance characteristics of biofilms are of interest as the bacterial cells within dental biofilms 

are far more resistant to antibacterial compounds (Høiby et al., 2010). This model can predict 

the diffusion of such actives into the biofilm over time. Probiotic research has been of interest 

in dental biofilm research, including the studying the antibacterial activity of Lactobacillus 

species against oral Streptococci, including S. mutans, which was determined to be pH-

dependant (Wasfi et al., 2018; Lee & Kim, 2014). This model is suitable for simulating the 

integration of probiotic species into the dental biofilm. The simulations could also help inform 

in vitro experimental strategies, including the testing of antimicrobial actives, in a cost and 

time-efficient manner. As shown here, it was important to consider pH corrections for 

bacterial kinetics and further work is needed to improve the correlation of results to that in 

vivo and in vitro. This includes better defining the impact of pH on the growth of these species. 

Combining in vitro and in silico modelling approaches showed promise in characterising the 

dental biofilm and invasion. The use of a CDM allowed for studying the influence of one 
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parameter at a time. Informing simulations with species-specific kinetic parameters, collected 

in Chapter 3 and validating simulations with in vitro data from Chapter 4, helped better 

understand factors that may contribute towards oral dysbiosis in vivo. Further work to 

improve this model should include incorporating the appropriate kinetic parameters, 

including pH-specific growth rates, and considering mechanical interactions between species 

as part of a 3-D modelling approach. 
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Chapter 6.  Conclusions 

 

6.1 General discussion 

I successfully developed in vitro and in silico models for characterising the invasion of S. 

mutans into a pre-existing, 4-species early coloniser biofilm. This allowed me to understand 

factors leading to the commensal community transitioning to a disease-associated state, and 

the impact on the local environment, including pH change, and the production/utilisation of 

glucose and lactic acid. 

The research in Chapter 3 was essential in laying the foundation for the in vitro modelling in 

Chapter 4, and the in silico modelling in Chapter 5. A key step was the development of a 

chemically defined medium (AFMC) that supported the growth of all 5 species. This helped 

untangle the complexity of the chemical environment. AFMC supported the growth of all 

species, which was not the case for A. oris and V. parvula on FMC (Terleckyj et al., 1975). It is 

well understood that bacteria have different abilities to grow in acidic conditions (Svensäter 

et al., 1997), and my research in Chapter 3 showed this, confirming that S. mutans was the 

best adapted of my species to acidic environments. Finally, the development of the techniques 

in Chapter 3 proved necessary for collecting the information in Chapter 4 regarding invasion, 

allowing me to quantify the bacterial abundance and track S. mutans invasion over time using 

qPCR. The development of a multispecies FISH protocol allowed me to confirm presence of 

the species within the synthetic community biofilm in Chapter 4. It also helped identify the 

spatial-temporal differences when the community was grown on AFMC supplemented with 

sucrose, which was the formation of dense microcolonies, known from previous work (Kreth 

et al., 2008). This was not observed when the community was grown on AFC supplemented 

with glucose. Whilst I optimised FISH to be able to visualise all 5 species, more needs to be 

done to refine this technique, and to reduce the bleed through from fluorescence channels. 

This development of a multiplex qPCR protocol allowed me to quantify, S. mutans invasion 

and abundance change over time. Quantifying the abundance of the commensal species also 

allowed me to understand the impact that substrate concentrations, and the resulting pH, had 

on the commensal species.  I was able to determine S. mutans dominance and the reduction 

in commensal species abundance at high glucose/low pH conditions due to qPCR. Collecting 

the kinetic parameters (µmax and Ks) for my species, was essential for informing the in silico 



191 
 

model, as the medium developed was novel and so these kinetic parameters on AFMC had 

not been reported. 

The development of the in vitro model was essential in studying the invasion of S. mutans at 

varying glucose/lactic acid conditions, as well as on sucrose. The CDC reactors allowed for 

controlling the temperature, flow rate and growth material (hydroxyapatite) of the coupons, 

which all helped more closely mimic the in vivo environment, compared to other in vitro 

systems (Ammann et al., 2012; Roberts et al., 2002.). The model improved on previous work 

by characterising the transition of a commensal biofilm, to a cariogenic-associated one, in a 

defined environment. This was possible due to the use of the synthetic community and CDM. 

Complex oral communities have been used in the past (Thurnheer et al., 2004b; Ammann et 

al., 2012a), but without the combined use of the CDM and quantifying species composition 

over time using qPCR. My results showed S. mutans dominance at high glucose 

concentrations, in a low pH environment. My in vitro model was able to show the change in 

abundance over time of this species and the commensals, and the glucose and lactic acid 

concentration variance during this period using the defined AFMC.  The use of the CDM 

allowed for testing invasion with one variable changed at a time, which helped demonstrate 

the effect of substrate concentration on shifts in species abundance. The nature of the 

synthetic medium meant that variance between runs was less than would have been the case 

with using an animal-derived medium. The use of flow cytometry for live-dead testing at the 

end of the experiment was also useful to test the viability of the synthetic community. This 

was an important aspect of the transition to a disease-associated state. The drop in viability 

at low pH, which is known to occur in vivo (Senneby et al., 2017b), demonstrated that this 

should be used alongside qPCR to understand the effect of substrate concentration and the 

resulting pH on biofilm health. 

The use of Monod kinetics in the modelling of the synthetic community included several 

assumptions and limitations. Using Monod only considered one limiting substrate, whereas 

bacteria can use more than one at the same time. There are models that can consider two 

limiting substrates at the same time, including that by Bertolazzi et al., (2005). I decided on 

the Monod-thermodynamic approach as I needed to consider one main carbon and energy 

source to define the stoichiometry considered for the species with the use of a chemically 

defined medium. The Monod-thermodynamic approach was therefore suitable in this 

instance, whereas models such as the Logistic model, is substrate independent and has been 
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reported to have a poor fit for predicting growth rates  (Muloiwa et al., 2020). The use of 

Monod kinetics in this form, considering single-species growth rates, is also a simplification. 

Competition for nutrients in a multi-species environment and antagonistic interactions (See 

1.2.3) are likely to reduce growth rates compared to single-species cultures. Future work 

should improve upon these limitations by observing the growth rates of each synthetic 

community member in the mixed-culture environment that occurs within the in vitro reactor 

systems. 

I demonstrated in Chapter 5 the importance of considering pH in bacterial kinetics, to model 

the invasion of S. mutans into an dental biofilm, as seen in Chapter 4. I was able to simulate 

invasion in both the bulk, using a 0-D continuum model, and the biofilm using a 2-D model. 

These pH corrections have been shown to improve model fitting previously (Rosso et al., 

1995), but this has not been done in dental biofilm simulations. The use of pH corrections was 

vital in correctly simulating S. mutans invasion in a high glucose/low pH environment. The 

inability to simulate this without pH corrections in bacterial kinetics demonstrated how 

important it was to consider pH in kinetics, as well as substrate speciation, which has not been 

done in other dental biofilm models (Head et al., 2017; Ilie et al., 2012). The known impact 

that pH has on bacterial growth rates (Ratzke & Gore, 2018), also underlines that this aspect 

of the model is key to characterising dental biofilm activity that may occur in vivo. My findings 

that S. mutans dominated the biofilm at high glucose/low pH conditions, and the dominance 

of V. parvula at low glucose concentrations, corroborated with in vitro findings in Chapter 4. I 

also demonstrated that bacterial seeding led to minor changes in species abundance (Chapter 

5), including an increase in growth of S. gordonii if species were clustered together. The IbM 

was able to simulate the local pH of the biofilm, something that is difficult to measure 

experimentally without invasive methods. The drop in glucose concentration simulated by 

both models was also seen in vitro and was expected due to the consumption of glucose by 4 

of the species. The lactic acid increase observed was also expected as species i.e., S. gordonii 

and S. mutans produce lactic acid (Dashper & Reynolds, 1996.). There were limitations with 

this model, including not modelling the mechanical interactions of the species and assuming 

a constant concentration of oxygen at 1 mg L-1. The use of N. subflava as a carbon sink, to 

reduce oxygen concentration and protect anaerobic species, helped offset the limitation of 

not modelling the transition between aerobic and anaerobic metabolism.  
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It is evident that there are limitations to both the in vitro and in silico models. The assumptions 

made within the in vitro model, including the use of single-species growth rates rather than 

those taken from a mixed-species environment, limit the ability of the model to more 

accurately model mixed-biofilm growth in vivo. Furthermore, the assumption in the in silico 

model, including not self-determining the pH boundaries used in pH correction for species 

kinetic parameter, do reduce the ability to accurately simulate S. mutans invasion. Finally, I 

did not use the analytical techniques from synthetic community samples as efficiently as 

possible due to time constraints. The use of FISH could have been used quantitatively to 

compare against the qPCR results if the technique had been further optimised. Whilst live-

dead quantification was used to understand the general viability of the biofilms under each 

condition, use at different time points would have allowed for the understanding of the 

viability change over time as a result of the pH as part of caries-associated biofilm 

development. Future work should address such issues and are detailed in Section 6.2. The key 

findings from this research are summarised in Table 6.1. 
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Table 6.1 Summary of key findings and applications from each results chapter. Characterising the synthetic community species and refining 
analytical techniques, allowed for the in vitro and in silico models to characterise S. mutans invasion as high and low glucose/lactic acid 
concentrations. 

Chapter Key findings/achievements Progress from previous findings Application of findings 

3 i) Development of AFMC 

ii) Kinetic parameters for 

synthetic community species 

iii) Substrate profile and acid 

tolerance of species 

iv) Development and refinement 

of analytical techniques and 

inoculation strategy 

i) FMC did not support the 

growth of A. oris or V. 

parvula 

ii) There are no µmax or Ks 

values for species grown 

on AFMC as the medium 

was produced in this 

research 

iii) Direct comparison of 

synthetic community 

species acid tolerance 

iv) Methods such as FISH had 

to be refined for my 

synthetic community 

i) AFMC supported a more varied oral 

species community. Allowed for 

untangling of the complex chemical 

environment in vitro and testing of 

one variable at a time. 

ii) Inform the in silico modelling 

simulations and inoculation strategy 

iii) Understood species growth in 

different acidic environments in a 

mixed-culture environment later in 

Chapter 4 

iv) Technique development for 

characterising invasion in vitro 

quantitatively and imaging biofilm. 
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4 i) Development of a defined in 

vitro model for testing 

invasion. 

ii) Significant pH drop and 

viability drop at high glucose 

concentrations. 

iii) S. mutans dominated at high 

glucose concentrations, and 

commensals suffered. V. 

parvula dominated at low 

glucose concentrations. There 

was a more balanced 

community at low substrate 

concentrations, with V. 

parvula most abundant. 

i) Lack of models that track 

the progress of a complex, 

commensal consortium to 

a cariogenic-associated 

one in a defined 

environment. 

ii) S. mutans ability to thrive 

at low pH validated by the 

model. 

iii) Successfully established 

complex commensal 

community on a defined 

medium in a growth 

model. Understood and 

quantified factors that led 

to S. mutans invasion. 

i) The model can be used to test 

antimicrobial actives, probiotics, and 

to validate in silico model. 

ii) Agreement with in vivo findings 

validated the use of the in vitro model 

in characterising factors that 

contribute towards dysbiosis in vivo. 

iii) Ability to establish a synthetic 

community of multiple oxygen 

preferences and nutritional 

requirements promising in testing 

other species communities. Inform 

necessary conditions to prevent 

cariogenic species dominance and 

protect commensal species. 

5 i) The pH consideration in 

bacterial kinetics were 

needed to predict invasion. 

ii) S. mutans dominated at high 

glucose concentrations and 

i) Demonstrated the 

importance of considering 

pH corrections in bacterial 

kinetics, and substrate 

i) The model can be used to test 

probiotic uptake into the biofilm and 

antimicrobial effect on species 

ii) Species activity better mimics in vivo 

and in vitro systems with corrections, 
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commensals suffered. V. 

parvula dominated at low 

glucose concentrations. There 

was a more balanced 

community at low substrate 

concentrations with V. 

parvula most abundant 

iii) Decrease in pH of biofilm and 

increase in lactic acid 

simulated using IbM. 

iv) Clustering cells leads to 

similar dominance of S. 

mutans at high glucose and V. 

parvula at low glucose, with 

both values closer to in vitro 

data, but S. gordonii growth 

increased. 

 

.speciation, to correctly 

simulate invasion 

ii) Findings with pH 

correction mirrors that of 

in vitro model, showing 

that the model can 

simulate invasion. 

iii) IbM able to simulate 

biofilm activity that is 

difficult to determine 

experimentally 

iv) Showed that substrate 

concentration and pH were 

greater factors in invasion 

than bacterial positioning 

in this model. 

so can be used to predict invasion and 

effect on healthy microbiome through 

commensal species. 

iii) Local pH and substrate simulations of 

biofilm allow for testing effect of 

compounds within biofilm i.e., 

diffusion. Important as species within 

a biofilm are more resistant to 

chemicals than planktonic cells. 

iv) Demonstrated testing of seeding 

strategies in species invasion. This can 

be considered for the integration of 

probiotic species in antimicrobial 

active development. 
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6.2 Future work 

The models developed at the core of this research can characterise dental biofilms, inform 

microbial risk assessment and the development of safe products. The mixed in vitro-in silico 

approach could be used in the following ways: 

1) Testing of antimicrobial actives/probiotics on dental biofilms and intervention studies 

The antimicrobial-resistant properties of bacteria within biofilms leads to difficulties in the 

treatment of biofilm-related disease. The IBM could be used to simulate the exposure of 

dental biofilms to oral care products such as fluoride-based treatments, to see how bacteria 

respond to treatment. The IbM can simulate the diffusion of chemicals throughout the biofilm, 

to understand the access of chemicals to cells within deep layers of the structure. The use of 

the CDM allows for changing one variable at a time, so the effect of antimicrobials can be 

simulated under different conditions and strengths, by addition to AFMC. The in vitro model 

can be used to grow the synthetic community in planktonic and biofilm forms, whilst being 

exposed to these antimicrobials, to test their effect on the synthetic community in the 

different phenotypes. This can be tested through addition to AFMC for continuous exposure, 

or addition to the reactors at times reflecting treatment plans. Furthermore, the rate of 

exposure to the synthetic community in the reactor can be altered by changing the flow rate 

of AFMC. Through using the analytical tools i.e., FISH and qPCR, species abundance change 

can be quantified over time and any resulting structural changes to the biofilm can be 

understood. The in vitro data could then be used to validate the in silico models. Probiotic 

uptake into the synthetic community could also be tested. The exposure of the community to 

Lactobacillus species or other bacteria that have beneficial benefits to treat disease-

associated states could be tested. Monitoring the resulting effects of pre/probiotics on the 

local environment i.e., substrate concentration, pH, and species abundance, can be quantified. 

Furthermore, intervention studies could be carried out by exposing the synthetic community 

to pulses of sucrose and other sugars during the reactor experiments. This would allow for the 

mimicking of eating  that occurs in vivo, where dental biofilms are exposed to sugar. The 

resulting effect on the synthetic community over time could then be quantified similar to what 

has been done in this research. Such study would require the clearance of sugars from the 

bulk to prevent saturation with sugar, without exposing the synthetic community to shear 

force that can influence results.  
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The use of the in vitro and in silico models in intervention studies and to test antimicrobial 

actives, will help the development of novel oral hygiene products. This is because oral 

microbiota compositional changes can be quantified without the use of invasive, in vivo 

studies. By exposing these compounds in a defined environment to a synthetic community, 

products that are desired to protect a commensal biofilm, can be tested for their ability to 

preserve early colonisers. Furthermore, novel oral hygiene products can be tested at different 

concentration to understand minimum inhibitory concentrations for cariogenic species i.e., S. 

mutans. The in silico model should be used to direct the in vitro concentrations tested, by 

simulating the diffusion and perturbation of different product concentrations before running 

the experiments. This would be cost and time effective. 

2) Characterising the invasion of an altered synthetic community of oral bacteria 

The synthetic community that was selected as part of this research was relevant to dental 

biofilm and caries research, in terms of reported in vivo abundance, species role and function 

(Chapters 1 and 3). A variety of different species have been selected in oral research, and 

those species can be used instead of, or in addition to, the bacteria in this work. Using more 

species would further mirror the complexity of the dental biofilm. This would require adapting 

AFMC to support the growth of additional species. One example would be the integration of 

S. wiggsiae, which is associated with many cases of childhood caries and could be tested for 

invasion instead of S. mutans. It would also be possible to contain both species and test the 

competition of cariogenic species into a commensal biofilm.  The bacteria selected should be 

appropriate to the disease of interest, for example, P. gingivalis could be chosen if gingivitis 

was the subject of interest, rather than caries. Any species used should be characterised 

similarly to what has been done here in Chapter 3. This includes collecting the kinetic 

parameters to inform the in silico model, define the carbohydrate utilisation and understand 

the pH profile of each species. As pH correction in growth rates was essential in the simulation 

of S. mutans, the pH optimum values for all species should also be determined, to improve 

simulation work. The invasion of S. mutans into the synthetic community could also be tested 

under different conditions. The use of the CDM allows for changing one chemical variable at 

a time in both in vitro and simulation testing. AFMC could be altered i.e., completely remove 

lactic acid to see if V. parvula still grows or increase the buffering capacity so there is not as 

big a pH drop. The ability of S. mutans to invade can be quantified using qPCR. 
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3) Investigating interspecies interactions and the effect of different substrates 

Interspecies interactions are important in biofilm structure, function, and activity.  This 

includes the production of lactic acid by the S. gordonii, S. mutans, and A. oris, and 

consumption by V. parvula. These interactions could be investigated further, where 

mechanical interactions and the role of EPS production could be included in the IbM, which 

could be built in 3D to better characterise dental biofilms. V. parvula dominated the synthetic 

community biofilm at low sucrose concentrations in Chapter 4. Testing if higher 

concentrations of sucrose lead to dominance by S. mutans will be better understood if IbM 

models the potential EPS production. Metabolic modelling approaches could also be used to 

better understand bacterial metabolism and interactions between species. FBA would allow 

for understanding metabolite sharing between species and help inform on the antagonistic 

effects of species on the commensal biofilm i.e., reduction in A. oris growth seen in Chapter 4 

simply down to low pH, or the production of hydrogen peroxide by S. gordonii. As both N. 

subflava and V. parvula are capable of denitrification and this has shown to be capable of 

denitrifying nitrate to nitrite, and then to nitrogen, which has shown to help regulate blood 

pressure, this could also be investigated in the future. Supplementing AFMC with nitrate and 

quantifying the nitrite and nitrogen after the growth of the synthetic community will help 

understand if this process occurs in this synthetic community. 

4) Refining the models by reducing assumptions and limitations 

Models in biofilm research are subject to several assumptions that limit the characterisation 

of the in vivo environment. The flexibility of parameter control that the CDC reactor provided, 

including matching flow rate to saliva flow in the mouth, helped offset some of these 

assumptions. There are, however, more that need to be considered to improve the use of the 

models. Oxygen is known to have a large effect on oral species in dental biofilms. Within the 

synthetic community is a range of oxygen requirements: aerobes (N. subflava); facultative 

anaerobes (S. gordonii, S. mutans and A. oris); obligate anaerobes (V. parvula). N. subflava 

would not have grown in a completely anaerobic environment on AFMC. The in silico model 

simulations considered a constant oxygen concentration of 1 mg L-1 so that N. subflava would 

grow, to respect its stoichiometry and replicate the experimental micro-aeration conditions.  

N. subflava is a scavenger of oxygen, so the inclusion of this species protects obligate 

anaerobes. To this end, oxygen could be monitored continuously in the reactor bulk by 
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replacing a hydroxyapatite coupon holder with an oxygen probe, as was done with the pH 

probe. This would allow for correlating oxygen concentration/consumption over time with 

species abundance to understand the effect on invasion. The downside is the foregoing of 

biofilms samples, which are required if numerous analytical techniques are used. Therefore, I 

decided to forego the use of a dissolved oxygen probe and focused on the importance of 

continuously monitoring the pH. It is also possible to test the reactor anaerobically by either 

purging reactor with nitrogen, using reducing agents, or purchasing the anaerobic CDC 

reactor. This was not done for this research as there is oxygen present in dental biofilms and 

therefore this would not have been as representative.  The stoichiometry of the species is also 

a simplification of bacterial metabolism. Currently, the only VFA considered from the 

fermentation of glucose was lactic acid, but there are other acids produced by species e.g., S. 

gordonii.  Currently, acetate, propionate and formate are considered in pH calculations and 

the catabolism of N. subflava and V. parvula.  Quantifying these during the in vitro system, 

simulation production with the in silico models and comparing the results from the models, 

would help better explain the contribution of species to pH and metabolite exchange. The use 

of FBA would help understand acid production by the species in the synthetic community. 

5) Rigorous statistical analysis to determine model agreement and experimental 

variability. 

I was able to directly compare values of substrate concentration and species absolute 

abundance between the in vitro and in silico models. It is important to assess the 

agreement between these models which could be done with further regression analysis. 

The  use of MANOVA could be done to quantify how close the values from the in silico 

simulations are for species abundance, substrate concentration and pH,  to those from the 

in vitro experiments. A correlation coefficient between the models and the effect of 

changing substrate variable on S. mutans abundance, would help determine the 

robustness of the model. It would also help determine the relationship between changing 

substrate concentration on species invasion and the effect on the chemical environment 

within the reactor. Furthermore, this analysis would help better determine the predictive 

ability of the in silico model, which is important in directing in vitro strategy before 

conducting experiments. These in vitro systems are also subject to variability and 

conducting further repeats would help improve the robustness of conclusions on the 

ability of S. mutans to invade the commensal biofilm under different conditions. This 
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would require more experimental time. The use of MANOVA would help accounting for 

variation in growth between these repeats and experimental variability. 

 

6.3 Concluding remarks 

I have achieved my research aims of characterising the invasion of S. mutans into a 4-species 

oral commensal community, the factors underpinning invasion and the effect on the 

commensal biofilm. This work succeeded in combining in vitro and in silico approaches to 

understand the progression of the biofilm to a cariogenic state, in a defined environment 

which has not been done before in dental biofilm research.  Agreement between the in silico 

and in vitro findings, particularly the dominance of S. mutans at high glucose concentration 

and V. parvula at low glucose concentration, demonstrates that models attempting to 

implement this strategy must consider pH in bacterial growth kinetics. This research and 

known literature underline the effect of pH on species behaviour. These models provide the 

option to test antimicrobial actives on the synthetic community and expand our 

understanding of the sensitive nature of a commensal biofilm in suboptimal environments. 

This would involve the synthetic community being exposed to antimicrobials and 

characterising the change in the community with the analytical techniques used in this 

research, including qPCR and viability testing. This would be used to validate in silico 

simulations of antimicrobial testing or integration of probiotic species within the biofilm using 

the IbM. The models, therefore, provide a powerful framework for informing safe product 

development in dental biofilm and caries research (Figure 6.1).  Better defining the complex 

relationship between species through metabolic modelling and informing the in silico models 

with more data collected experimentally i.e., growth rates at different pH or different acid 

productions, will improve the model’s ability to characterise dental biofilms. To conclude, I 

successfully developed combinatorial in vitro and in silico models using a defined synthetic 

community and a defined chemical environment, considering the influence of pH, to provide 

a powerful tool in understanding S. mutans invasion into a commensal oral community. 
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Figure 6.1 Strategy for using the modelling approaches to combat caries development. The continuum and IbM will be used to characterise in 
vivo findings, being informed by kinetic parameters of the bacteria species, and validated by the in vitro model. This will help inform safe product 
development and microbial risk assessment through testing antimicrobials and better understanding drivers of dysbiosis.
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Appendix A- AFMC medium components 
 

Chemical Concentration (g L-1) Concentration (mol L-1) 

Monopotassium phosphate 0.44 3.23 x 10-3 

Dipotassium phosphate 0.30 1.72 x 10-3 

Ammonium sulfate 0.60 4.54 x 10-3 

sodium phosphate 3.15 1.92 x 10-2 

Sodium dihydrogen 
phosphate monohydrate 

2.67 
1.93 x 10-2 

Sodium citrate 0.26 9.93 x 10-4 

Magnesium sulfate 
heptahydrate 

0.39 
3.24 x 10-3 

Sodium Chloride 0.01 1.71 x 10-4 

Iron (II) Sulfate heptahydrate 0.02 7.91 x 10-5 

Manganese Sulfate 
heptahydrate 

0.01 
5.23 x 10-5 

Na acetate 6.12 7.46 x 10-2 

L-aspartic acid 0.10 7.51 x 10-4 

L-phenylalanine 0.10 6.05 x 10-4 

L-serine 0.10 9.52 x 10-4 

L-proline 0.20 1.74 x 10-3 

L-hydroxyproline 0.20 1.53 x 10-3 

Glycine 0.20 2.66 x 10-3 

L-methionine 0.10 6.70 x 10-4 

L-leucine 0.10 7.62 x 10-4 

DL-alanine 0.10 1.12 x 10-3 

L-isoleucine 0.10 7.62 x 10-4 

L-threonine 0.10 8.39 x 10-4 

L-arginine.HCl 0.24 1.38 x 10-3 

L-histidine.HCl.H2O 0.27 1.26 x 10-3 

L-valine 0.10 8.54 x 10-4 

L-lysine.HCl 0.14 9.41 x 10-4 

L-glutamine 0.01 3.42 x 10-5 

Nicotinamide 9.00 x 10-4 7.37 x 10-6 

D-pantothenate 7.20 x 10-4 2.98 x 10-6 

Thiamine.HCl 3.36 x 10-4 9.96 x 10-7 
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p-aminobenzoic acid 9.00 x 10-5 6.56 x 10-7 

Pyridoxamine.2HCl 1.04 x 10-3 6.16 x 10-6 

L-glutamic acid 0.27 1.84 x 10-3 

L-tyrosine 0.18 9.94 x 10-4 

L-tryptophan 0.20 9.79 x 10-4 

L-cystine 0.20 8.32 x 10-4 

Riboflavin 4.00 x 10-4 1.06 x 10-6 

Biotin 1.00 x 10-4 4.09 x 10-7 

Folic acid 1.00 x 10-4 2.27 x 10-7 

Adenine sulphate 0.02 6.29 x 10-5 

Guanine 0.01 8.70 x 10-5 

Uracil 0.01 1.17 x 10-4 

Calcium chloride 0.01 1.32 x 10-4 

Pimelic acid 1.00 x 10-3 6.24 x 10-6 

Putrescine (1-4 
Diaminobutane) 

0.01 
1.13 x 10-4 

Lactic acid 12.10 1.34 x 10-1 

Thioctic acid 1.00 x 10-3 4.85 x 10-6 

Cysteine 1.00 8.25 x 10-3 

Inositol 2.00 x 10-3 1.11 x 10-5 
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Appendix B- Gibbs free energy of formation for chemical species 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 

Component ΔG0
f (kJ/mol) Reference 

Glucose -915.9  
 

 
 

(Heijnen and Kleerebezem 
2010) 

Perry and Green (2008) 

Acetic acid 
(CH3COOH) 

ΔGf, CH3COOH = -396.5 
ΔGf, CH3COO

- = -369.3 

Lactic acid 
(CH₃CHCOOH) 

ΔGf, CH3CHCOOH = -430.62 
ΔGf, CH3CHCOO

- = -403 

Formic acid 
(HCOOH) 

ΔGf, HCOOH = -493.96 
ΔGf, HCOO

- = -463 

Propionic acid 
(CH₃CH2COOH) 

ΔGf, CH3CH2COOH = -291.36 
ΔGf, CH3CH2COO

- = -263 

NH3 - ΔGf, NH3 = -26.57 
ΔGf, NH4+ = -79.37 

O2 16.40 

CO2 ΔGf, hydrolysis = -386.00 
ΔGf, H2CO3 = -623.16 
ΔGf, HCO3- = -586.85 
ΔGf, CO32- = -527.8 
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Appendix C- Stoichiometry table for synthetic community species 

  
S. gordonii 

(SGN) 
S. mutans 

(SMT) 
      A.Oris 
      (ACO)  

N.  subflava 
(NSB) 

V. parvula 
(VPV)  

Cat Ana Cat Ana Cat Ana Cat Ana Cat Ana 

Glu -1 -0.175 -1 -0.175 -1 -0.175 -1 -0.175 - - 

AcH - - - - - - 2 - 0.333 - 

LacH 2 - 2 - 2 - - - -1 -0.35 

ForH - - - - - - 1 - - - 

PropH - - - - - - - - 0.667 - 

NH3 - -0.2 - -0.2 - -0.2 - -0.2 - -0.2 

O2 - - - - - - -1.5 - - - 

CO2 - 0.05 - 0.05 - 0.05 2 0.05 0.333 0.05 

H2O - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 

H+ 2 0.05 2 0.05 2 0.05 4 0.05 0.333 0.05 

CH1.8O0.5N0.2 - 1 - 1 - 1 - 1 - 1 
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Appendix D- Dissociation constants for chemical species 

 

Component Dissociation constant Reference 

Lactic acid 
 

10-3.86 (Ilie, van Loosdrecht et al.,. 
2012) 

Acetic acid 
 

10-4.76 

Formic acid 
 

10-3.75 

Propionic acid 
 

10-4.86 

NH3 5.6204 · 10-10 

H2O 10-14 

CO2 
,1eqk  = 1.0081 

,2eqk  = 5.0 · 10-7 

,3eqk  = 7 · 10-11 

 

Phosphoric acid 
,1eqk  = 7.1 · 10-3 

,2eqk  = 6.3 · 10-8 

,3eqk  = 4.2 · 10-13 

 

Washington edu website 
(‘Table of Acid and Base 

Strength’, 2022) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



235 
 

Appendix E- Code and functions for in silico models 
 
 
0-D continuous model 
 
Link to files: 
https://drive.google.com/file/d/1365wQn5FOngzuw36O63g6cn87yl8ar19/view?usp=sharing 
 
List of functions: 
 
Assemble- Assembles the metabolic matrix and selects the species that participate in the 
reactor 
MainStaggeredpH- Solves the reactor model 
ReactorExtnopH- Solves pH (no pH correction) 
ReactorExtpH- Solves pH (pH correction) 
Read_conc- Reads chemicals from AFM in Repository excel sheet 
Read_param- Reads kinetic parameters and chemical parameters from Repository excel 
Solve- Solves the pH 
Repository- Excel spreadsheet, including species stoichiometry, species charges, kinetic 
parameters etc. 
 
2-D individual based model 
 
Link to files: 
https://drive.google.com/drive/folders/1ZNInMNP8pB0x0GnDuqKej7xD2B-
Tzu6p?usp=share_link 
 
List of functions: 
Call.m - This file initialises the simulation and calls the numerical solver. 
loadModelXslx.m - Loads the parameters from the excel sheet and generates the structure 
of the model  
R.mat- Contains the code for initial seeding of bacterial cells 
integTime.m - Solver function. Solves the mass balance equations for: 

• Liquid species: diffusion-reaction eq. 
• Bacterial species: Monod growth eq. 

out_integTime – Saves all the info after an integration step has been successfully completed 
DiffMatrices.m – Computes the boundary layer position using the b_layer.m function. 
Creates the domain decomposition for solving the diffusion equations (only the diffusion 
term, according to the numerical method) 
massBal.m – Calls mykinetics.m to calculate the reaction term for the liquid species 
mykinetics.m –Computes the yields, pH (solve_pH-embedded function), liquid reaction rates 
and bacteria growth rates 
bacteria.m – Checks for division (bac_division.m), maximum height of the biofilm 
(bac_elim.m) and over-lapping (bac_shovingloops.m)  
Updates the field with bacterial attributes in the R structure 
boundary.m –Updates the boundary conditions in accordance with the CSTR performance 
draw.m – Result processing function. Draws the bacteria position, number, concentration, 
liquid species concentration field, concentration in one grid cell, pH over computational 
domain, pH in a grid cell (function of time). 


