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Abstract

Quantum groups arose in the mid 1980s in the study of certain integrable models in mathematical
physics. Fundamental objects in the theory of quantum groups, as developed by V. Drinfeld and
M. Jimbo, are certain deformations of universal enveloping algebras of semisimple Lie algebras.
The resulting quantised enveloping algebras depend on a deformation parameter ¢ which, for
the purpose of this thesis, is assumed not to be a root of unity. Crucially, quantised enveloping
algebras retain the structure of a Hopf algebra from universal enveloping algebras. Moreover,
the finite-dimensional representations of quantised enveloping algebras are classified in terms of
highest weights, similar to the classification of finite-dimensional representations of semisimple

Lie algebras.

There exist other deformations of universal enveloping algebras which are not Drinfeld-Jimbo
quantum groups. One of the earliest classes of examples is that of the non-standard quantum so,,-
algebras introduced by A. Gavrilik and A. Klimyk. These algebras appear as special examples in
the theory of quantum symmetric pairs developed by G. Letzter in the late 1990s. This theory
provides quantum group analogues of Lie subalgebras fixed under an involutive automorphism.
Quantum symmetric pairs are given in terms of a coideal subalgebra of a quantised enveloping
algebra. The representation theory of these coideal subalgebras is not known in general, having

only been determined for certain classes of examples.

The present thesis is devoted to the representation theory of the coideal subalgebra corresponding
to the symmetric pair of type DII in the Cartan classification. In this case, soon_1 is realised
as a Lie subalgebra of sosn fixed under an involutive automorphism. The resulting coideal
subalgebras are not isomorphic to the Gavrilik-Klimyk algebras, and we hence call them very

non-standard quantum soox_1-algebras.

In this thesis, we classify the finite-dimensional irreducible representations of the very non-
standard quantum sosx_1-algebras. Importantly, these algebras have a very simple analogue of
a Cartan subalgebra, and every finite-dimensional module is a weight module. We show that
(up to a choice of signs) the irreducible representations of very non-standard quantum sogn_1-
algebras are uniquely determined by a highest weight. We construct root vectors and prove a
Poincaré-Birkhoff-Witt theorem which supports a triangular decomposition. The root vectors
then allow us to introduce a notion of Verma modules, and we show that every simple module
is obtained as a quotient of a Verma module. The arguments to this point mimic the known
approach to the representation theory of quantised enveloping algebras. The weights also need
to be dominant integral for the simple quotients of Verma modules to be finite-dimensional.
However, in the coideal case, it is harder to show that dominant integral weights are actually
sufficient to obtain finite-dimensional simple quotients. The reason for this is a missing sls-triple
which, when found, acts only on a subspace of the representation, and hence cannot be used
to obtain Weyl-group invariance. Instead, we use a filtered-graded argument to show that a
(possibly larger) quotient of the Verma module, which can be considered as a module for the

ambient Hopf algebra, is finite-dimensional.
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Chapter 1

Introduction

In the theory of quantum groups, one deals with quantum deformations Uy(g) of the universal
enveloping algebra U(g) of a complex semisimple Lie algebra g. The algebras U(g) have an
additional structure, namely a coproduct, and it is crucial that the deformations are compatible
with this additional structure. The algebras U,(g) were introduced by V. Drinfeld and M.
Jimbo in the mid-1980s, see [Dri87] and [Jim85], and are often called quantised enveloping
algebras. They have found many applications in areas ranging from representation theory to

low-dimensional topology and knot theory.

The algebra U,(g) depends on a deformation parameter ¢ and is usually written in terms of
generators and relations. More precisely, the generators of U,(g) are denoted by E;, Fj, Kiil
for each ¢ which labels a node of the Dynkin diagram of g. There are automorphisms 7; of the
algebra Uy(g) intoduced by G. Lusztig which satisfy braid relations, see [Lus94]. These Lusztig

automorphisms 7; are essential for constructing a Poincaré-Birkhoff-Witt-type basis for U,(g).

1.1 Quantum symmetric pairs

Let g be a complex semsimple Lie algebra, and let U,(g) be the corresponding Drinfeld-Jimbo

quantised enveloping algebra. Let 68: g — g be an involutive Lie algebra automorphism, and let

t={zecg|bl(x)=2a} (1.1)

be the corresponding fixed Lie subalgebra. We call g a symmetric Lie algebra and the pair (g, £) a
symmetric pair. Up to conjugation, involutive automorphisms are parametrised by combinatorial
data attached to the Dynkin diagram of g known as Satake diagrams (X, 7). Here, X denotes
a subset of the index set I which labels the nodes of the Dynkin diagram of g, and 7 denotes a
diagram automorphism. We obtain a classification for symmetric pairs through Satake diagrams,
see [Ara62, p. 32/33].

Quantum symmetric pairs provide quantum group analogues of the universal enveloping algebra

U(%). In particular, families of subalgebras B. C U,(g) are constructed which depend on a set of
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parameters c, see [Let99], [Let02] and [Koll4]. Such subalgebras are quantum group analogues
of U(#) in the sense that B. specialises to U(¥) as ¢ tends to 1. The crucial property of the
algebra B is that it is a right coideal subalgebra of Uy(g), meaning that

A(Be) C Be @ Uy(g) (1.2)

where A denotes the coproduct of U,(g). We call the pair (Uq(g),Bc) a quantum symmetric

pair.

A comprehensive theory of quantum symmetric pairs was developed by G. Letzter in [Let99]
and [Let02] for all finite-dimensional symmetric semisimple Lie algebras. The construction
of quantum symmetric pairs in this setting only relies on the Drinfeld-Jimbo presentation of

quantised enveloping algebras, see [Dri87] and [Jim85], and on involutive automorphisms of g.

In [GK91], A. Gavrilik and A. Klimyk introduced a non-standard quantum deformation U,(s0y)
of the universal enveloping algebra of the special orthogonal Lie algebra so, for n > 3 in terms
of generators and relations. These algebras have the desirable property that there are natural
inclusions U, (s0,-1) € U, (s0,) which do not exist for the Drinfeld-Jimbo quantum groups.
Gavrilik and Klimyk did not observe that their algebras could be realised as coideal subalgebras
of Uy(sly).

In the early 1990s, M. Noumi, T. Sugitani and M. Dijkhuizen constructed quantum group
analogues of all classical symmetric pairs with the aim to perform harmonic analysis on quantum
group analogues of symmetric spaces. In his influential paper [Nou96], Noumi constructed
quantum group analogues of the symmetric pairs (sln,ﬁon) and (5[2 N, 5Ps N). In the first case,
this reproduced Gavrilik and Klimyk’s non-standard quantum deformation U (s0,). In the
second case, he obtained a non-standard quantum deformation U, (spsy) of U(spyy). Up to
some conventional differences, Noumi’s non-standard quantum deformations coincide with those

obtained in Letzter’s theory for these symmetric pairs.

A detailed classification of finite-dimensional irreducible representations of U(s0,) has been
obtained by N. Iorgov and Klimyk for when ¢ is not a root of unity, see [IK05]. Similarly, A.
Molev gave a classification of finite-dimensional irreducible representations of Uy (spyy) in terms
of their highest weights, see [Mol06]. More recently, H. Wenzl studied the representation theory

of Uy (s0,,) via a Verma module approach and obtained new results at roots of unity, see [Wen20].

The general classification of finite-dimensional representations of the coideal subalgebras B is
an open problem. One difficulty is to construct a suitable analogue of a Cartan subalgebra for
B.. This problem has essentially been solved by Letzter in [Let19]. The next difficulty is to
construct suitable analogues of (simple) root vectors for B.. To this end, a general approach
has been developed by H. Watanabe in [Wat21]. However, Watanabe’s approach hinges on a
crucial construction [Wat21, Conjecture 3.3.3]. Once this conjecture is verified, a Verma module
approach leads to a classification of finite-dimensional simple B.-modules. Specialisation (that
is, the limit ¢ — 1) forms an essential ingredient in this classification, and also allows it to

determine the characters of irreducible representations and to prove complete reducibility.
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In the present thesis, we study the case of the symmetric pair (502 N, 502 N—1), which is the case
DII in Araki’s table [Ara62, p. 32/33]. In this case, the Satake diagram is illustrated below

N-1

T2 N-2
O—@—: - N
— X =

and B contains a large Hopf subalgebra U,(gx) for X = {2,...,N}. It turns out that the
subalgebra generated by the elements K Z-il for i € X is a suitable analogue of a Cartan subalgebra
of soon_1. This case has not been studied in [Wat21]. Moreover, we wish to avoid specialisation
arguments in the classification of finite-dimensional representations of B.. We refer to B as the
very non-standard quantum sosn_1-algebra to distinguish it from the non-standard quantum
deformation of U (502 N—l) that was introduced by A. Gavrilik and A. Klimyk in [GK91]. The
algebra B is generated by U,(gx) and an additional element which we denote by B;.

1.2 Poincaré-Birkhoff-Witt-type basis for B,

By a careful investigation of the classical case, we manage to define analogues of root vectors
for B.. Let ay,...,ay denote the simple roots of the Lie algebra soon. Define reduced words
in the Weyl group of sosn by

87;"'SN_QSTi(N)STi(Nil)SN_Q"'SZ‘ for 1 < 1 < N—Q, (1 3)

0; = ' .

STi(N)STi(Nfl) ifi=N— 1,
where the s; for 1 < j < N denote the simple reflections for soox, and we have the transposition
7= (N —1 N). Then,

wy) = 0102 -"ON—-1 (14)

is a reduced expression of the longest element in the Weyl group. Write this reduced expression

as Wo = i+ Siyy_y)- We obtain the N(N — 1) distinct positive roots of soan as

Bj = si - Sij71(ai]’)' (1.5)

The algebra U, (so2n) is generated by the elements E;, F; and Kiil for 1 <14 < N, and exhibits
a triangular decomposition Uj(soan) = U™ ® U @UT. Let Ty: Uq(soan) — Ug(soan) be the
algebra automorphism defined in [Lus94] for 1 <14 < N. Define the root vectors

ELq if j =1,
Eﬁj = -1 -1 . (16)
T; "'Tij_l(Eij) for2<j < N(N-1)
in Ut
inl™", and P i =1,
Fg, = ' (1.7)
T - Ty, (F;) for2<j< N(N-1)
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in U~. By the Poincaré-Birkhoff-Witt Theorem [Jan96, 8.24], the ordered monomials

_ RiN(N-1) i _ RIN(N-1) J1
Er = EBN(N_U o ~Eﬁl1 and Fr= FBN(N_1) . 'FB1 (1.8)
. " _ . Iy . N(N-1)
form a vector space basis of U™ and U™ respectively, for 7T = (21, ey ’LN(N_l)) eNy and
J = (jl, - ,jN(N,l)) € NéV(N_l). In analogy to the root vectors in U™, we define root vectors
of B¢ by
By if j =1,
Tt T, Y4B for2<j<N-—1,
By, =40 F (11)1 1 . (1.9)
Ton_j Iy Ty Ty (Bi) for N < j <2(N —1),
Fp, if j > 2(N —1).
Let v1,...,vn—1 be the simple roots of soon_1, and denote the Chevalley generators of soon_1

by ey, f+;, and h,, for 1 <7 < N — 1. It turns out that the elements E; 1 and F;; are positive
and negative root vectors corresponding to the simple roots ~;, respectively for 1 <i < N — 2.
Moreover, a comparison with the classical case shows that the elements Bg, , and Bg, defined
by (1.9) are suitable analogues of the positive and negative root vectors corresponding to the
simple root yny_1, respectively. Finally, it turns out that the root vectors Bg; are positive for
1 <j < N —1 and are negative for j > N, see Proposition 5.7. Similarly to the monomials Fy
in (1.8), we define

_ pINw-1) J1
By = By~ .- Bj, (1.10)

(N-1)

for J = (jl, ... ,jN(N_l)) € Név . Section 5.4 is dedicated to proving the following result.

Theorem A (Theorem 5.11). The ordered monomials By KpEz form a basis for the algebra B,
where T € N VN2 7 e NV and Kp = K9 .. K& for D = (dy, ..., dy) € ZV1.

Observe that the monomials in Theorem A are ordered in such a way that all of the positive
root vectors are on the right-hand side (since the root vectors Bg, for 1 < j < N — 1 commute

with the K; up to a power of q), whilst all of the negative root vectors are on the left-hand side.

1.3 Classification of finite-dimensional simple B.-modules

By trying to mimic [Jan96, Chapter 5|, we classify all of the finite-dimensional irreducible
representations of the algebra B, (up to a choice of signs). Firstly, if V' is a finite-dimensional
Bc-module, then the subalgebra consisting of the elements K; is always diagonalisable by the
representation theory of Uy(gx). Therefore, V must decompose into weight spaces and, since
there are only finitely many weights for which the weight spaces are non-zero, there must exist
a weight vector v € V' of highest weight A such that E;v = 0 for all ¢« € X, and Bg, ,v = 0.
Furthermore, such a weight A is dominant integral in the sense that A(h,,_,) > 0 for all i € X.



Chapter 1. Introduction

The representations of B. may be constructed by Verma modules. Similarly to [Jan96, 5.5],
we are now able to define Verma modules since we have a triangular decomposition supported
by Theorem A and have also defined root vectors for Be. Thus, the Verma module of highest
weight A is the quotient B.-module

M) = Be (1.11)
I
where J) is the left ideal of B, defined by
N
J)\ = (ZBcEi+Bc(Ki _qm>> +BCBBN71 (1‘12)
i=2
for the non-negative integers
Alh, for2<i< N -1,
n; = (i) T (1.13)
)\(hWNfz) + )\(hw\_l) if i = V.

By definition, we know that E;vy = 0 and K;vy = ¢"v) for all i € X, and also Bg, v\ =0,
where the coset vy = 1+ J) generates the Verma module M ()). It turns out that the elements
Bz in (1.10) where j; = --- = jy—1 = 0 form a basis of M (\) on vy, see Theorem 6.9.

Given any Be-module V' and highest weight vector v € V' of weight A, there exists a unique
homomorphism of Bc-modules ¢: M (A) — V such that vy + v. This is the universal property
of the Verma module M ()\). By this universal property, and by the existence of a highest weight
vector, each finite-dimensional simple B.-module must be a homomorphic image of some M (\)

and, hence, is isomorphic to a simple quotient module of the form
M(X

L(\) = N((A)) (1.14)
where N()) is the unique proper maximal submodule of M (A). It is not clear at this stage that
the quotient module L()\) is finite-dimensional. To show finite-dimensionality, we manage to
find submodules of M (\) using an analogue of [Jan96, Lemma 5.6] which are Verma modules
themselves, and by which we may take quotients of M (\). More precisely, we find N — 2 of these
submodules, namely for each v; for 1 <4 < N —2. The root vectors Bg,, , and Bg, do not form
an slp-triple, however, for some non-zero subspace H (V') of V, we show that these root vectors
satisfy the relations of Ug(slz), see Proposition 6.6. From this, we obtain another submodule of

M()), namely for the simple root yy_1, by which we may also take a quotient of M(\).

We cannot use the Weyl-group invariance argument from [Jan96, 5.9] since the last sla-triple only
acts on the subspace H (V). Instead, we consider an algebra A, generated by U,(gx) and the
element [}, which is in fact isomorphic to the associated graded algebra of B, via a filtration
of the algebras A and B. (defined by a degree function on the generators), see Proposition
5.3. Using a filtered-graded argument (see Section 6.5) this enables us to take an even larger
quotient of the Verma module M () and we show that this quotient is finite-dimensional. Since
this quotient is at least as large as the simple quotient module L()), the module L(\) must also

be finite-dimensional. Hence, we obtain the following main result.
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Theorem B (Theorem 6.18). For each dominant weight A, the simple Be-module L(\) has
finite-dimension. Moreover, each finite-dimensional simple Be-module is isomorphic to exactly

one L(\) with dominant weight \.

We deduce that there is a one-to-one correspondence between the dominant integral weights A
and the finite-dimensional simple Bc-modules L(A). Moreover, each finite-dimensional simple

B.-module is uniquely determined by an (N — 1)-tuple of non-negative integers.

1.4 Organisation

The thesis is organised as follows. In Chapter 2, we provide necessary background material on
algebras, more specifically, Hopf algebras and universal enveloping algebras of Lie algebras. In
particular, we recall the PBW-Theorem in Section 2.4.4. We then discuss the theory of finite-
dimensional complex semisimple Lie algebras, and information such as the roots, generators and

Dynkin diagram are given explicitly in Section 2.6 for the Lie algebras soon, s0on_1 and spsp.

In Chapter 3, we review general theory of symmetric semisimple Lie algebras and then discuss
symmetric pairs. The fixed Lie subalgebra is given in terms of generators in Section 3.2. We
study examples of symmetric pairs and, in particular, we give an explicit construction of the

symmetric pair (502N,502N_1) in Section 3.3.3.

Chapter 4 provides an overview of the theory of quantum groups, more specifically, quantised
enveloping algebras of semisimple Lie algebras. In Section 4.2, we review the most fundamental
example, the quantised enveloping algebra of the Lie algebra sls, and recall the classification of
its finite-dimensional irreducible representations. In Section 4.5, we introduce notions of root
vectors and state the PBW-Theorem for U,(g) in general. We make this explicit in Section 4.5.1
for the Lie algebra sosn. At the end of the chapter, we introduce quantum symmetric pairs and
give an explicit general presentation of quantum symmetric pair coideal subalgebras B, in terms

of generators and relations.

The main results of this thesis are contained in Chapters 5 and 6. In Chapter 5, we give a
formal presentation of the very non-standard quantum sosy_1-algebra in terms of generators
and relations following [BK15]. We justify a choice of root vectors for the algebra B, and then
give a PBW-type basis of B¢ in terms of ordered monomials of these root vectors. This proves
Theorem A. We provide a list of all of the positive and negative root vectors of B¢ in the tables

in Appendix A.

The representation theory of B is studied in Chapter 6. We prove the existence of a highest
weight vector in finite-dimensional B¢-modules in Section 6.1. In Section 6.2, we find the missing
sly-triple acting on the subspace H (V). We construct the Verma modules M () in Section 6.3,
and show that the highest weights need to be dominant integral for simple quotients to be finite-
dimensional. After we quotient by the submodules of M(\) found in Section 6.4, we use the
filtered-graded argument in Section 6.5 to obtain (up to a choice of signs) a classification of the

finite-dimensional irreducible representations of B¢ and, hence, prove Theorem B.
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Background

2.1 Notions from linear algebra

We begin by giving a summary of the results we need from linear algebra. We assume that
the reader is familiar with the definition (and examples) of vector spaces, bases, subspaces and
direct sums. Although we provide the general theory, we will only deal with finite-dimensional

vector spaces over the complex field, so the main example to bear in mind here is C™.

2.1.1 Isomorphism theorems and dual spaces

Fix a field IF, and let V and W be finite-dimensional vector spaces over F. From [EWO06, 16.1]

we recall that, for some vector v € V, a coset of a subspace W C V is a set of the form
v+ W={v+w|weW}. (2.1)

The set of all cosets of W in V is called the quotient space of V by W and is denoted by
% / W. This is itself a vector space, with the zero element 0+ W = W, if we define addition by

(u+W)+@w+W)=ut+v+W (2.2)
for u,v € V, and scalar multiplication by
Av+W)= +W (2.3)

for v € V and A € F. From [EWO06, 16.2] we also recall that, for any two finite-dimensional
F-vector spaces V and W, a map f: V — W is linear if it satisfies

FOu+ ) = Mf(w) + pf (v) (2.4)

for all u,v € V and A\, p € F. Additionally if it is bijective, then the map f is called an

isomorphism, and we write V' = W to indicate that the vector spaces V and W are isomorphic.
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We now state (without proof) the isomorphism theorems for vector spaces.

Theorem 2.1 ([EW06, Theorem 16.1]). Let V' and W be vector spaces over a field F.

(a) If f: V — W is a linear map, then ker(f) is a subspace of V, im(f) is a subspace of W,

and
4 = im .
/ker(f) = m(f)

(b) If V and W are subspaces of the same vector space, then

(V+W)/W = V/(VmW) '

(c) If V and W are subspaces of a vector space U such that W C 'V, then V/W is a subspace

of U/W, and UW -
v/ /V/W =Y/,

The following result is deduced from Theorem 2.1 (b) and (c), and will be crucial later on when
proving the main classification theorem (see Theorem 6.18) for finite-dimensional irreducible

representations of the very non-standard quantum sosy_1-algebra.

Corollary 2.2. If U is a vector space and V,W C U are two subspaces, then

(U/V)/(W/(vmw)) = U/(V+W) = (U/W)

are isomorphisms of quotient spaces.

/<V/(Vmw)> '

Proof. By symmetry, it is only necessary to prove one of the isomorphisms, so we shall check

the one on the right.

Suppose that V' and W are two subspaces of the vector space U. Theorem 2.1 (b) tells us
that V/ (VOW) = (V+W)/W is an isomorphism of quotient spaces given by v+ (VHW) —
v+ W. Additionally, since VW C U we have W C V + W C U. By Theorem 2.1 (c) it
follows that (V + W) / W is a subspace of U/W and, futhermore, we obtain a canonical

isomorphism
Uu/w ~ U
/(V+W)/W B /(V+W)

by mapping the coset (u+W) + (V+W) /W, a coset in U/W by the subspace (V+W)/W,
to u+ V + W. Putting the isomorphisms together, we are done. O

Definition 2.3 ([EW06, 16.7.1]). The dual space of V, denoted by V*, is defined by

Vi={f:V—F ’ f is linear}.

If V has a vector space basis {v1,...,v,}, then the associated dual basis of V consists of the

linear maps f;: V — F defined on the basis elements by f;(vj) = 6; ;. Here, § is the Kronecker

8
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delta defined by
1 if i = 7,
dij = (2.5)
0 if i # j.
In other words, {fi,..., fn} is a basis for V* and, in particular, dim(V') = dim(V™).
Remark 2.4. The dual space of V*, denoted V**, can be identified with V' in a natural way.

Given v € V, we may define a linear map ¢,: V* — F (known as the evaluation map) by

e (f) = f(v) (2.6)

for all f € V*. Notice that, by definition, we have ¢, € V**. Moreover, one may show that

the map e: V. — V**; v+ ¢, is linear, and, in fact, an isomorphism, see [EW06, 16.7.1].

2.1.2 Bilinear forms

Definition 2.5 ([EW06, Definition 16.9]). A bilinear form on an F-vector space V is a map
(—,—): V xV =T such that

(AM1v1 4+ Ava, piwn + powsa) = A (o1, wi) + Agp (ve, w1) + A1 pe(vi, we) + Agpe(va, wa)

for all vi,vo, w1, we €V and Ay, Ag, p1, o € F, that is, the map is linear in each component.

Ezample 2.6. If F = C and V = C", then the usual dot product is a bilinear form on V.

We can represent bilinear forms by matrices. Suppose that V' is an n-dimensional F-vector space

with ordered basis B = {v1,...,v,}, and let (—, —) be a bilinear form on V. The n X n-matrix
n n
Ap = (al}j)m‘:l = ((Uiavj»i,j:l' (2.7)
is referred to as the matrix of the form (—, —) with respect to the ordered basis B.

Remark 2.7. A bilinear form is completely determined by such a matrix of the form (2.7).
Moreover, any n X n-matrix over I is the matrix of some bilinear form on an F-vector space

V.

Proposition 2.8 ([Rom08, Theorem 11.2]). Let V' be an F-vector space with ordered basis
B = {v1,...,v,}, and let (—, —) be a bilinear form on V represented by the matriz Ag in (2.7).

(a) Ifu= 31 \jv; and w = 3%, pujv; where \;, p; € IF, the form can be recovered from the

matrix by the formula
(u,0) = M Ap (2.8)

where A, u € " denote the column vectors with entries A;, j1; respectively.
(b) If B" = {v},...,v],} is also an ordered basis for V, then the new matrix of the form is
Ap = P'AgP (2.9)

where P = (pi’j)Zj:I is the invertible n x n-matrix defined by v; =Y Dijvi
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Proof.  (a) Since (—, —) is a bilinear form over a field IF, from direct computation we obtain
n n n n n
(u, w) = <Z>\zvi, ZHjUj> = ZMZW (vi,v) = Z Niaij i = ANAgp.
i=1 j=1 =1 j=1 ij=1

(b) We may now write u = Y 1" Nvj and w = 7 plv; where A, u € T, and let

N, H/ € F" denote the column vectors with entries A/, u; respectively. Then
(u,w) = NApp = (N'P)Ap(P') = X' (P'ApP)
and so Apr = P'AgP as required. ]
Remark 2.9. Two matrices such as Ap and Ap/ that are related by (2.9) in Proposition 2.8

(b) are said to be congruent. Moreover, any two matrices are congruent if and only if they

represent the same bilinear form on a vector space. A proof is provided in [Rom08, 11.2].

Definition 2.10 ([EWO06, 16.7.2]). The orthogonal complement of a subset U of a vector

space V' is the subspace

Ut={veV |(uv)=0YVueU}CV (2.10)
given a bilinear form (—,—) on V. Furthermore, the form (—, —) is non-degenerate if
v+ ={0}. (2.11)

Lemma 2.11 ([EW06, Lemma 16.11]). Suppose that (—, —) is a non-degenerate bilinear form

on a finite-dimensional vector space V. For all subspaces U C V', we have
dim(U) + dim(U~) = dim(V). (2.12)

Additionally, if U N U+ = {0} then
V=UaU"* (2.13)

and, furthermore, the restrictions of (—, —) to U and to U are non-degenerate.
Proof. For (2.12) we need to show that
dim(U) = dim(V) — dim(U*) = dim(V /U™).
The image of the map U — V* given by u + (u, —) is 0 on U*. Hence, we get a map

gD:U—>(V/UL)*; u ' (—,u)

10
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which is an isomorphism. Indeed, injectivity of ¢ follows from the non-degeneracy of (—, —),
and the map ¢: V — V*; v — (—,v) = f is an isomorphism. We consider the restriction

map r: V* — U* given by f — f|y. By the isomorphism ¢, observe that
ker(r) ={feV*| flu =0} ={veV| (u,v) =0, Yu e U} = UL,
Theorem 2.1 (a) also implies that
dim (ker(r)) + dim(U*) = dim(V"™*)

and we deduce that this is equivalent to dim(U+) + dim(U) = dim(V).

Now, let {uy,...,u;} be a basis of U and {w1,...,w;} be a basis of U+. We assume that
UNU+ = {0}, and claim that {uy,...,us, wy,...,w;} is a basis of V. It suffices to show
that this set is linearly independent. Indeed, suppose u = Zle Aiu; and w = Zé‘:1 iy
such that v + w = 0. This implies that

u=-welUnU"

and hence, by the assumption, we get u = w = 0. O

Definition 2.12 ([EW06, Definition 16.12]). A bilinear form (—, —): VxV — F is symmetric
if
(v, 0) = {w,0) (2.14)

for allv,w € V, and skew-symmetric if

<v,w> = —<U),’U> (215)
for allv,w e V.
Corollary 2.13. Let V be a finite-dimensional F-vector space with basis vectors vy, ..., vy, and
let (—,—): VXV — T be a (skew-)symmetric, non-degenerate bilinear form. For any two vectors

u,w € V with respective coefficient vectors A, n € F", there exists an invertible (skew-)symmetric

n X n-matriz S such that
(u,w) = A'Sp. (2.16)

Proof. The formula (2.16) itself follows directly from (2.8) in Proposition 2.8 (a). Moreover,

if the form (—, —) is symmetric, by definition we know that
AtSH — HtSA — (HtSA)t — Atstﬁ

for A\, g € F™ and this implies that A'(S — S)u = 0. Since dim(V) = n and V has a basis

{v1,..., v}, there exists a canonical isomorphism V' — F” given by v; — e; for each i. Now

11
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let M € Mat,(F) and assume that A'Myu = 0 for all A, u € F". If we write M = (m; ;)
then

n
Lj=11

n
AMp =y Aimijp; =0
ij=1
for all A, p € F". However, setting A = e; and pu = e; with ¢ # j implies that m; ; = 0, and
hence M = 0,,. Therefore, we deduce that S —S* = 0, or equivalently S = S* so S is indeed
a symmetric matrix. The case that (—, —) is skew-symmetric is similar; instead we obtain
that A'(S + S*)u = 0 and therefore deduce that S = —S* as expected.

It remains to show that S is invertible. Indeed, assume that p € F" satisfies Sy = 0. This
implies that AtSH = 0 for all A € F"* and, moreover, for the corresponding u,w € V we
have (u,w) = 0. However, since (—, —) is non-degenerate, we must have w = 0, and hence
= 0. In other words, the linear equation Sy = 0 has only the trivial solution y = 0, or

equivalently, the matrix S is invertible. O

Proposition 2.14 ([EW06, Lemma 16.14]). Let V' be an F-vector space with char(F) # 2. If

(—,—) is a non-degenerate symmetric bilinear form on V', then there is a basis {vi,...,v,} of
V' such that

<’Ui, Uj) =0
ifi# 7, and

{vi, vi) # 0.

Proof. We use induction on n = dim(V'). The result is clear if n = 1; if (v1,v1) = 0 then

vy € VE, but (—, —) is non-degenerate and v; # 0 so we get a contradiction.

Assume now that dim(V') > 2, and for v,w € V observe the identity
(v+w, v+ w) = (v,v) + (w,w) + 2(v,w) (2.17)

since (—, —) is symmetric. If (v,v) = 0 for all v € V, then since char(F) # 2 we have
that (v,w) = 0 for all v,w € V which would contradict the assumption that (—,—) is

non-degenerate.

We may choose v € V such that (v,v) # 0. If we let U = Span{v}, then

UnuUt = {0} (2.18)
by hypothesis. It follows by Lemma 2.11 that

V=UeaU"

and, moreover, the restriction of (—, —) to U~ is non-degenerate. Hence, by the inductive

hypothesis, there exists a basis {v1,...,v,—1} of UL such that (v;,v;) = 0 for i # j and

12
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(vi,v;) 0 for 1 <i<n—1. Also, since
(v,v5) =0 (2.19)
for j # n, if we set v, = v then the basis {v1,...,v,} has the required properties. O

Remark 2.15. We can be more precise about the diagonal entries d; = (v;,v;). If F = C,
then we can find )\; € C so that

N =4, (2.20)
and hence we may assume that
(viyvi) =1 (2.21)
for all i. In this case, the matrix representing (—, —) is the n x n identity matrix.

Proposition 2.16 ([EW06, Lemma 16.15]). Let V be a finite-dimensional F-vector space. If
(—,—) is a non-degenerate skew-symmetric bilinear form on V', then we have dim(V') = 2N for
some N € N and, moreover, there is a basis of V such that
(vi,uNi) # 0
for1<i< N, and
(vi,v5) =0

ifli—jl # N.

Proof. Since (—, —) is non-degenerate, for 0 # v € V we may find some w € V such that
(v,w) # 0. Since (v,v) = 0 = (w,w), we know that v and w are linearly independent, so

set v1 = v and vo = w. If dim(V') = 2, then we are done.

Otherwise, if we let U = Span{v;, v2}, then one can show that UNU+ = {0} and V = UgU*
by Lemma 2.11. Now the restriction of (—, —) to U* is non-degenerate (and also skew-

symmetric). The result follows by induction on N. O

Remark 2.17. If F = C, one may arrange that the matrix representing (—, —) has the form

0 Iy
—Ixn O

where Iy is the N x N identity matrix.

2.1.3 Tensor products

Let U, V, W be vector spaces. A map U x V — W is bilinear if it is linear in each component.

Theorem 2.18 ([Kas95, Theorem I1.1.1]). Given vector spaces U and V', there exists a vector
space U @ V' and a bilinear map p: U xV — U @V such that, for every vector space W and
bilinear map ¢: U x V — W, there is a unique linear map h: U @ V. — W so that ¢ = h o .

13
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FEquivalently, the diagram
UxV 25UV

X lh (2.22)
W

commutes. Moreover, URV is the unique vector space up to isomorphism satisfying this property.

The vector space U ® V characterised in Theorem 2.18 is called the tensor product of U and
V. Tensor products are useful objects to study in algebra since the universal property (2.22)
reduces the study of bilinear maps to that of linear maps. The following result, stated without

proof, provides a few canonical isomorphisms for tensor products of vector spaces.

Lemma 2.19 ([Kas95, Proposition 11.1.3]). Let U, V and W be vector spaces over a field F.

(a) There exists an isomorphism (UQV)@W = U® (VW) given by (u@v)@w — u®(vQw).

(b) There exists a natural isomorphism FQV =V given by AQv — v, also referred to as the
standard scalar multiplication map on V. Similarly, there exists a natural isomorphism

VRFXZV given by v ® A — Av.

(c) The linear map Tyyv:U®V =V U given by Tyyv(u®v) = v & u is an isomorphism.

One can define a general element of the tensor product space as follows, see [EW06, 15.1.3].
Suppose that U and V are finite-dimensional vector spaces over a field F. Let {uy,...,un} be

a basis of U and {v1,...,v,} be a basis of V. The tensor product U ® V has a basis given by
{ui®@v; [1<i<m,1<j<n}

and, in particular, we have dim(U ® V') = mn = dim(U) dim(V). Then for v = >, \ju; and
v = Zj p;v;, with scalars A;, p; € IF for all 4, j, we define an element u @ v € U ® V' by

uRV = Z)\mj(ui(@vj). (2.23)
4,3

Now suppose that U, U’, V and V' are vector spaces, and let f: U — U’ and g: V — V' be
linear maps. The tensor product f ® ¢g: U ® V — U’ ® V' is the unique linear map given by

(fog)(uv) = flu) @ g(v) (2.24)

for all w € U and v € V, studied further in [Kas95, II.2]. This map arises naturally from the
universal property (2.22). Indeed, there is a bilinear map f x g: U x V — U’ ® V' defined by

(f x g)(u,v) = f(u) ®g(v)
which induces the map (2.24) following Theorem 2.18, by setting W =U’'®@ V' and ¢ = f X g.

14
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2.2 Algebras and modules

2.2.1 Algebras

By paraphrasing the definition in [Kas95, I.1], we first recall that an algebra over a field F is
an [F-vector space A that is equipped with a linear map p: A® A — A known as multiplication.
Let id = ids: A — A denote the identity map of A. We say that an algebra A is associative

if the diagram 2id
AAA S A A

id®ui iu (2.25)

ARA ——— A

commutes, that is, if po (u®1id) = po (id® p). We also say that an algebra A is unital if there
exists a linear map n: F — A so that the diagram

Fod "% AgA " AgF

B (2.26)

commutes, that is, if po (n®id) = po (id ®n). The isomorphisms in diagram (2.26) are given
by the standard scalar multiplication maps in Lemma 2.19(b).

Notation 2.20. From now on, all algebras are assumed to be associative and unital. One may
write the triple (A, pu,n) to express an algebra A together with its multiplication p and unit 7).
Multiplication will generally be written as juztaposition: p(a @ b) = a-b = ab for all a,b € A.
Thus, diagram (2.25) amounts to the associative law (ab)c = a(be) for all a,b,c € A, whilst
diagram (2.26) expresses the unit laws n(1p) a = a = an(lp) for all a € A; so A has the identity

element n(1g) = 14, also called a unit of A (and we may refer to n as the unit map).

Additionally, we say that an algebra A is commutative if the diagram

AQA —T— 5 AR A

e

commutes, that is, if y = p o7, where 7 = 74 4 denotes the flip map given in Lemma 2.19(c).

Following Notation 2.20, diagram (2.27) amounts to the commutative law ab = ba for all a, b € A.
Definition 2.21 ([Lorl8, 1.1.1 (1.2)]). Let (A, u,n) and (A, 1',n') be F-algebras. A linear map
f: A— A is called an algebra homomorphism if the two diagrams

Ao A 19 pg A F_—" 44

a |w N |# (2.28)
A ﬁ A Al

15
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commute, that is, if ' o (f ® f) = fou and n = fon. These diagrams are equivalent to the

flab) = f(a)f(b)

for all a,b € A. Moreover, if f is also bijective, then f is called an algebra isomorphism.

equations f(14) = 14 and

Ezample 2.22 ([Kas95, 1.1(7)]). The space Endp(V) of linear endomorphisms of an F-vector
space V is an algebra, called the endomorphism algebra of V, with multiplication given
by the composition of endomorphisms and unit being the identity map idy of V. If V is

n-dimensional, one may show that Endp(V') is isomorphic to Mat, (IF), the n x n-matrix

algebra over F.

An F-subspace B of a given [F-algebra A that is itself an F-algebra such that the inclusion map
B — A is an algebra homomorphism is called a subalgebra of A. Moreover, B is called a

two-sided) ideal of A if
( ) uA(A® B) C B D ua(B® A)

(and a left or right ideal if just the left or right inclusion above is satisfied, respectively). If B
is an ideal of A, then there exists a unique algebra structure on the quotient space A / B such

that the canonical projection map A — A/B is an algebra homomorphism, see [Kas95, 1.1(3)].

2.2.2 Graded and filtered algebras

Definition 2.23 ([Kas95, Definition 1.6.1]). An algebra A is graded if there exist subspaces

As)i h that

(As)ieno such tha A=P A and  A-AjC Ay (2.29)
i€Np

for alli,j € Ng. The elements of A; are said to be “homogeneous of degree i”. For convention,

set 14 € Ap.

Ezample 2.24. Free algebras are graded by the length of words; for A = F{X} where X has

elements of degree 1, the subspace A; is linearly generated by all monomials of degree 4.

Proposition 2.25 ([Kas95, Proposition 1.6.2]). Let A = @y, Ai be a graded algebra, and

consider a two-sided ideal I generated by homogeneous elements. Then
I=@Iina (2.30)
i€Np
and the quotient algebra A/I is graded with

vl (A/1); = A/ (11 A) (231)

Ezample 2.26. A polynomial algebra F[zq,...,z,], where the generators 1, ...,x, are of
degree 1, is graded as the quotient of the free algebra A = k{z1,...,2,} by the ideal T

generated by all the homogeneous elements x;x; — z;x; for all 4,5 € {1,...,n}.

16



Chapter 2. Background

Definition 2.27 ([Kas95, Definition 1.6.3]). An algebra A is filtered if there exists an increasing
sequence of subspaces {0} C Fo(A) C --- C Fi(A) C --- C A such that

A= JF)  and  Fi(A) Fi(A) C Fiy (A). (2.32)
1€Ng

The elements of F;(A) are said to be “of degree at most i”.

Any algebra A has a trivial filtration: F;(A) = A, for all i.

Ezample 2.28. Let A be an algebra generated by the set of elements X = {x1,...,z,}. Let
deg: X — Ny be a degree function. Then, we may define a filtration F on A as follows: let
Fi(A) be the subspace generated by monomials in the generators z1,...,x, such that the

sum of the degrees of the generators in each monomial is at most .

Definition 2.29. For any filtered algebra A, there exists a graded algebra gr(A) = ey,

Si = Fi(A)/Fi-1(A) (2:33)

Si

where

for all i. We call gr(A) the associated graded algebra of A. For each f; € F;(A), we write
the coset x; = fi + Fi—1(A) in S;. Then, for each x; € S; and xj € Sj, we define
;- x; = (fi + Fie1(A) (fj + Fj—1(A)) = fifj + Firj-1(A). (2.34)

Remark 2.30. We filter any graded algebra A = ®16N0 ; by

A= P 4 (2.35)

0<j<i
for i,j € Ny. Then, gr(A) = A.

Ezample 2.31. Take a filtered algebra A O --- D Fi(A) D Fo(A) and two-sided ideal I of
A, then the quotient algebra A/I is filtered with

FAAJT) = FA)/ (10 Fi(A), (2.36)
The associated graded algebra of A/I is then defined by

gr(A/I) = P Fi(A) /(Fi-1(A) + F(A) N T). (2.37)

1€Ng

2.2.3 Modules

Let (A, u,n) be an F-algebra. Recall that a (left) A-module is an F-vector space V' together
with a linear map v: A® V — V given by a ® v +— a - v = av such that the two diagrams

A9 ARV "% AoV FoVv "% Agy
idA®1/i J,V 2 iu
ARV —— 5V %

17



Chapter 2. Background

commute, or equivalently,

a-(b-v)=(ab)-v, la-v=0 (2.38)
for all a,b € A and v € V. Then, the map vop: A xV — V given by (a,v) — av is called a
(left) action of A on V, where we denote the canonical bilinear map p: AxV — A® V.

Remark 2.32. One similarly defines a right A-module using a linear map from V ® A to V,
however this is essentially the same as a left module over the so-called opposite algebra A°P,
the algebra identical to A as a vector space but equipped with the multiplication u°? = por.
Moreover, right A°P-modules become left modules over A°P°P = A, and, in particular, if A

is commutative then A = A°P. Therefore, we shall only consider left modules which, for

simplicity, we just refer to as “modules” from now on.

Given any two A-modules V and W, an A-module homomorphism is a linear map f: V — W
such that

flav) =a- f(v)
for all a € A and v € V. Moreover, a subspace U C V with an A-module structure is called an

A-submodule of V' if the inclusion map u +— u € V is an A-module homomorphism.
Given A-modules Vi, ..., Vy, recall that the direct sum Vi & --- @V}, has an A-module structure

given by
a(vy,...,v) = (avy,...,avg)

where a € A and v; € V; for each 1.

Definition 2.33 ([Kas95, Definition 1.1.1]). An A-module V' is called simple if it has no other
submodules than {0} and V.. Moreover, an A-module V' is called semisimple if it is isomorphic

to a direct sum of simple A-modules.
Remark 2.34. An A-module V defines an algebra homomorphism p: A — End(V') given by

pla)(v) = av

which is called a representation of A on V. In the language of representations, simple
modules are called irreducible representations (and semisimple modules are called completely

reducible representations). This connection enables us to transfer the module-theoretic

notions into the context of representations.

2.2.4 Graded and filtered modules

For graded algebras, there is a corresponding notion of graded modules.

Definition 2.35. Let A = @ZENO A; be a graded algebra. Then, a graded A-module is an
A-module V' such that
V=@V, and A;-V;CViy,
J€No
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Similarly, there is a corresponding notion of filtered modules over filtered algebras.

Definition 2.36. Let A =J;cy, Fi(A) be a filtered algebra. Then, a filtered A-module is an
A-module V' such that there exists an increasing sequence {0} C Go(V) C ---C Gj(V)C---CV

of subspaces of V' satisfying the relations

V=] G() and  Fi(A)-Gi(V) C Gy (V). (2.39)

J€Ng

For any filtered module V' over a filtered algebra A, we can form the associated graded gr(V)
as a vector space. The vector space gr(V) is itself a module over gr(A). Its structure (2.40) is

given in the proof of the following important result.

Lemma 2.37 ([KL85, Chapter 6]). Let A be a filtered algebra, and let V' be a filtered A-module.
Then, gr(V') is a graded gr(A)-module.

Proof. Suppose that A = |J; Fi(A) is a filtered algebra and V' = J;G;(V) is a filtered
A-module. We denote the associated graded spaces of A and V' respectively by

gr(A) = P F(A)/Fia(4)  and  g(V) = D Gi(V)/G (V).

1€Np J€No

The gr(A)-module structure on gr(V) is defined by
(ai + Fici(A)) - (vj + Gj—1(V)) = avj + Giyj—1 (V) (2.40)

for any a; € F;(A) and vj € Gj(V). By (2.39), this operation is well defined. We now need
to check that this operation satisfies the properties in (2.38). Since 14,4) = 14 € Fo(A),

we have
Ly v =14 (v;+G-1(V)) = (1a-v)) + Gj1(V) =v; + Gj1(V) =v
for all v =v; + G;—1(V) € gr(V). Additionally, consider
a=a;+ Fi—1(A) and b="br+ Fr_1(A)
as elements of gr(A). Then, making use of either (2.34) or (2.40) in each step, we get

(a-b)-v= (Gz‘bk =+ .7:i+k—1(14)) : (Uj + gj—l(v))
= a;bpvj + Givrrj-1(V)
= (ai + -7:1'—1(14)) . (bkvj + gk+j—1(v)) =a-(b-v).

Hence, both relations in (2.38) are satisfied and indeed gr(V') is a module over gr(A). O
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2.3 Hopf algebras

2.3.1 Coalgebras and coideals

The definition of a coalgebra is dual to that of an algebra in the sense that we systematically

reverse all of the arrows in diagrams (2.25)-(2.28).

Definition 2.38 ([Kas95, Definition I11.1.1(a)]). A coalgebra over a field F is a triple (C, A, )
where C' is an F-vector space and the maps A: C — C® C and e: C — F are linear such that

the diagrams

c—2 LcoecC

Al lid@A (2.41)

C®CWC®C’®C

and
£ oo M R

\ T / (2.42)
commute, that is, we have (z'd ® A) oA = (A ® id) oA and (5 ® id) oA = (id ® 8) oA.

The map A is called the coproduct (or comultiplication) of the coalgebra, while the map ¢ is
called the counit of the coalgebra. The diagrams (2.41) and (2.42) express that the coproduct A

is coassociative and counital respectively. Additionally, a coalgebra (C, A, €) is cocommutative

/ \ (2.43)

CeC ————— (CxC

if the diagram

commutes, that is, if A =70 A where 7 = 7¢ ¢ denotes the flip map given in Lemma 2.19(c).

Definition 2.39 ([Kas95, Definition III.1.1(b)]). Let (C,A,e) and (C',A’,€") be F-coalgebras.

A linear map f: C — C' is called a coalgebra homomorphism if the two diagrams

cC—-—2.,.00C C —=:t5F

fl lf@f fl / (2.44)
o

c’ T> C'ecC
commute, that is, if (f®@ f)oA=A'of ande=¢"of.

Another important concept we will make use of is that of a coideal.

Definition 2.40 ([Kas95, Definition II1.1.5]). Let (C, A, ) be an F-coalgebra. A subspace I C C
is a coideal of C if e(I) =0, and
AN CI®C+Co®I.
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Given an F-coalgebra (C, A, ¢) and a coideal I, we can construct a new coalgebra in the following

way. The coproduct A factors through a map A from C / I to

C®C/(I®C+C®I) - C/I @ C/I'

Similarly, the counit e factors through a map &: C / I — . Together, this gives a coalgebra
structure on the quotient space C / 1. We call the triple (C / I A, 5‘) the quotient coalgebra.

Remark 2.41. We also have the notions of a left coideal and a right coideal. In particular,

a subspace I C C'is called a right coideal if

A)CIaC.

2.3.2 Bialgebras and Hopf algebras

We now let H be an F-vector space equipped simultaneously with an algebra structure (H, i, n)

and a coalgebra structure (H, A, ¢).

Definition 2.42 ([Kas95, Definition II1.2.2]). An F-bialgebra is a 5-tuple (H, p,n, A, e) where
the triple (H, u,n) is an F-algebra, the triple (H, A, ) is an F-coalgebra and the maps A and e

are algebra homomorphisms, that is, all of the diagrams

HoH 2% (Heo H)o (He H) N
" l l(u@#)o(id®7®id) % l A
H ﬁ H®H FQF W HoH
and
HoH =25, FgF F_". g
i |= x |
H——F—F F
commute.

Remark 2.43. The condition that A and ¢ are algebra homomorphisms is equivalent to the
dual condition that p and 7 are coalgebra homomorphisms, see [Kas95, Theorem III1.2.1].
Therefore the four commutative diagrams in Definition 2.42 are identical to those whose

commutativity expresses the fact that p and 1 are coalgebra homomorphisms. This gives a

compatibility between the algebra and coalgebra structures on H.

Naturally, a homomorphism of bialgebras is an F-linear map between F-bialgebras that is a

homomorphism of both algebras and coalgebras.

Example 2.44. The dual vector space H* of a finite-dimensional bialgebra H has a natural

bialgebra structure.
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Ezample 2.45 ([Kas95, II1.2, Example 2]). Let X be a set with a unital monoid structure,
that is, an associative map p: X X X — X having a unit e. The map p induces an algebra
structure on the coalgebra F[X] with unit e. The coalgebra structure of F[X] is given by
A(x) = x @ ¢ and e(x) = 1p, for all z € X. The maps A and e for F[X] are algebra

homomorphisms since

Alry) =zy@ay = (r@)(y @y) = Alr)Ay)
and
e(zy) = Iy = e(x)e(y)
for all z,y € X, and hence F[X] has the structure of a bialgebra.

Definition 2.46 ([Kas95, Definition 111.3.2]). An F-Hopf algebra is a 6-tuple (H, p,n, A, e, S)
where the 5-tuple (H, u,n, A, e) is an F-bialgebra and S: H — H is an F-linear map such that
the diagram

HoH —5%4 pgeH

N A

_—
HoH id®S HeH

H £ F H

commutes. The map S: H — H is called the antipode for H.

Example 2.47 ([Kas95, Definition II1.3, Example 2]). Recall the bialgebra F[X| of Example
2.45. For an antipode S to exist, by definition we must have
xS(z) = S(x)r =e(x)lp = 1

for any € X. Hence, the bialgebra F[X| has an antipode if and only if each 2 € X has an
inverse (denoted by x~ 1), that is, X is a group and then S(x) = 2! for all x € X.

2.4 Lie algebras

2.4.1 The definition of a Lie algebra

Let F be a field. We begin by recalling the definition Lie algebras and some important examples.

Definition 2.48 ([Kas95, Definition V.1.1 (a)]). A Lie algebra over F is an F-vector space g
with a bilinear map
[ —lrgxg—g,
called the Lie bracket, satisfying the alternating law, that is, [X, X]| =0 for all X € g, and
(X, [Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]] = 0

for all X,Y, Z € g, also referred to as the Jacobi identity.
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Since the Lie bracket is bilinear, the alternating law for Lie algebras implies that
[X’ Y] = _[Y7 X]

for all X,Y € g, called the anticommutativity rule and is an equivalent condition if char(F) # 2.

In our setting, we will take the base field F = C of complex numbers which has characteristic 0.

Ezample 2.49 ([EW06, 1.2(2)]). Any vector space V over I can be made into an abelian Lie
algebra by defining [X,Y] = 0 for all X,Y € V. Any 1-dimensional Lie algebra is abelian,
by the alternativity of the Lie bracket. In particular, the field F may be regarded as a

1-dimensional abelian Lie algebra.

Ezample 2.50. On an algebra A over a field F with multiplication (a, b) — ab, a Lie bracket

may be defined by the commutator
[a,b] = ab— ba (2.45)

for all a,b € A. Then A together with this bracket is a Lie algebra. For all a,b,c € A, we

also have the identity
[a, be] = [a, blc + bla, c].

Ezample 2.51 ([Kas95, V.1(5)]). For any F-vector space V', consider the algebra End(V') of
all endomorphisms of V' as a Lie algebra with the commutator (2.45), which we denote by

gl(V). If V is of finite dimension n, then gl(V') is isomorphic to the Lie algebra gl,, (F) of nxn-
matrices with entries in F and matriz commutator [X,Y] = XY —Y X for X,Y € gl,(F).

Let g be a Lie algebra. We define a Lie subalgebra of g to be a subspace g’ C g such that
(X,Y]eg (2.46)

for all XY € ¢’. In other words, g’ is closed under the Lie bracket of g. Moreover, if (2.46)
holds for all X € gand Y € ¢/, then ¢’ is called an ideal of g. Recall that a simple Lie algebra

is a Lie algebra that is non-abelian and contains no non-zero proper ideals.

Ezample 2.52. The commutator of two matrices with zero trace must have zero trace itself.
Consequently, the vector space sl, (F) of traceless n x n-matrices is a Lie subalgebra of gl,,(F)
defined in Example 2.51. By [EWO06, 1.15(i)], for any n x n-matrix S € gl,(F), the subspace

gls.,(F) = {X € gl,(F) | X'S =-5X}

is a Lie subalgebra of gl,(F). Moreover, for all invertible S € gl,,(F) and X € glg,(IF) we

have
tr(X) = tr(=S71X'S) = —tr(X?) = —tr(X)

and so tr(X) = 0. Hence, glg, (F) is also a Lie subalgebra of sl,,(F) for all invertible
S e gl (F).
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Definition 2.53 ([Kas95, Definition V.1.1 (c¢)]). Let g and ¢’ be Lie algebras. A linear map

f:g— g is a homomorphism of Lie algebras if

for all X, Y € g. We say that f is an isomorphism of Lie algebras if it is also bijective.

Ezample 2.54 ([EW06, 1.4]). Given a Lie algebra g, the adjoint homomorphism is the linear
map ad: g — gl(g) defined by
(adX)(Y) = [X,Y]

for all X, Y € g. Since the map X — adX is also linear, to verify that ad is a homomorphism
one needs that ad[X,Y] = ad(X) ocad(Y) — ad(Y’) o ad(X) which coincides with the Jacobi
identity.

2.4.2 Representations of Lie algebras

Given any F-vector space V, recall from Example 2.51 the Lie algebra gl(V') consisting of all
endomorphisms of V' with Lie bracket given by the commutator [X,Y] = XY — Y X for all
X, Y € gl(V).

Definition 2.55 ([EW06, Definition 7.1]). Let g be a Lie algebra over a field F, and let V' be
an F-vector space. A representation of g onV is a Lie algebra homomorphism p: g — gl(V).

The vector space V', together with the representation p, is called a g-module.

Equivalently, one can define a g-module as a vector space V together with a bilinear map

g x V — V given by (X,v) — X - v such that
X, Y] vo=X-(Y-v)=Y (X -v)
for all X,Y € g and v € V. This is related to Definition 2.55 by setting
X -v=pX)) (2.47)

for all X € g and v € V. For ease of notation, we use module-theoretic concepts from now on.

Definition 2.56. Given any g-module V, a g-submodule of V is a subspace W C V which is
invariant under the action (2.47) of g, that is, for each X € g and for each w € W, we have

X - weW.

Moreover, a g-module V is called simple if it is non-zero and the only g-submodules are {0}
and V.

To observe the representation theory of Lie algebras more explicitly, one can refer to [FH91].

24



Chapter 2. Background

2.4.3 Universal enveloping algebras

Let g be a finite-dimensional Lie algebra over F with vector space basis {X1,..., X, }. Let ¢;j

be the structure constants for this basis such that
n
[Xi, Xj] = Zciijk-
k=1

Then, the universal enveloping algebra U(g) of g is the unital, associative F-algebra generated

by the elements x1, ..., z,, subject to the relations
n
l‘il'j - l‘jSL’i = Zcijk$k-
k=1
Ezample 2.57. The Lie algebra sly(C) is spanned by the matrices
0 1 1
E— Fo 0 0 - 0
00 1 0 0 —1
which satisfy the commutation relations [H, E] = 2E, [H,F] = —2F, and [E,F] = H.

Then, the universal enveloping algebra of sl3(C) is the algebra generated by the elements
e, f, h subject to the relations he — eh = 2e, hf — fh = —2f, and ef — fe = h.

The essence of the above technical definition of the universal enveloping algebra becomes clearer
if one defines U(g) in terms of the tensor algebra of g. Every Lie algebra g is in particular a
vector space defined over some field F. Thus, we can construct the tensor algebra 7'(g) from

it, namely, the space

[o¢]
T(g)=Pe* =Fege (g & (0909 & ...
k=0

where ® is the tensor product, and @ is the direct sum of vector spaces. Observe that the

equality g®* @ g® = g®**! induces an associative product on T'(g) given by the concatenation
(1@ Qap)(Tht1 @ @ Tpg) =1 Q- QT D Tpy1 @ -+ @ Tpyy

where x1,...,Zk, Ty, ..., Ty are elements of g. The tensor algebra T'(g) is a free algebra;
it contains all possible tensor products of all possible vectors in g, without any restrictions on
those products. The universal enveloping algebra of g is then obtained by taking the quotient

and imposing certain relations for elements in the embedding of g in 7'(g).

Definition 2.58. The universal enveloping algebra of a Lie algebra g is the quotient space

where I is the two-sided ideal of the tensor algebra T(g) generated by elements of the form
XY -Y®X - [X,)Y]ego (gog) CT(g).
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The crucial property of the universal enveloping algebra U(g) is that it actually has the same

representation theory as the Lie algebra g.

Lemma 2.59 ([EW06, Lemma 15.10]). Let g be a Lie algebra and let U(g) be its universal
enveloping algebra. There is a bijective correspondence between g-modules and U(g)-modules.

Under this correspondence, a g-module is simple if and only if it is simple as a U(g)-module.

The proof of this Lemma, provided in [EW06, 15.2.1], demonstrates a certain universal property
of the universal enveloping algebra U(g). This is stated, without proof, in the following Theorem.
Recall that any associative algebra can be considered as a Lie algebra with the commutator

bracket, see Example 2.50.

Theorem 2.60 ([Kas95, Theorem V.2.1]). Let g be a Lie algebra and let U(g) be its universal
enveloping algebra. For any associative algebra A and homomorphism f: g — A of Lie algebras,

there exists a unique homomorphism of associative algebras f: U(g) — A such that the diagram
g L) A
| A~
Ul(g)
commutes, that is, we have fo v = f, where we define the Lie algebra map v: g — U(g);

X — X + I as the composition of the embedding g — T(g) with the canonical epimorphism
T(g) - U(g)-

The universal enveloping algebra U(g) of any Lie algebra g is not only an algebra, but also a

Hopf algebra. In particular, U(g) is given the Hopf algebra structure defined by
AX)=1X+X®1,
e(X) =0,
S(X) =X

for all X € g.

2.4.4 The Poincaré-Birkhoff-Witt Theorem

Given a basis of g, we can write down a basis of U(g). This is the important Poincaré-Birkhoff-
Witt Theorem (or PBW-Theorem), which is stated in [Kas95, Theorem V.2.5(a)].

Theorem 2.61 (Poincaré-Birkhoff-Witt Theorem). Let g be a Lie algebra over IF, and suppose
that {X1,...,Xn} is a totally ordered basis of g. Then the universal enveloping algebra U(g)

has a basis
{:Eclll xfl” ‘dl,...,dn > 0}.
An important corollary is that the elements z1,...,z, are linearly independent, and therefore

the Lie algebra g can be found as a subspace of its universal enveloping algebra U(g).
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Ezxample 2.62 ([EW06, Lemma 15.9]). Consider again the Lie algebra sl(C). From the
PBW-Theorem, take 1 = f, xo = h and x3 = e. Then, the universal enveloping algebra

U (5[2(((3)) has as a C-vector space basis
{fh%=e® | dy,dy,ds > 0}.

Note that one could equally well have taken the basis elements in a different order.

2.5 Complex semisimple Lie algebras

The classification of finite-dimensional Lie algebras proceeds in several steps. Firstly, recall from
[EW06, Definition 4.2] that a Lie algebra g is called solvable if g™ = {0} for some m € N.
Here g(™) forms part of the derived series defined inductively by g(® = g and

= [g(m1), gtm1]

)

for all m € N. Every finite-dimensional Lie algebra g contains a unique solvable ideal rad(g) of

maximal dimension, see [EW06, Corollary 4.5]. A Lie algebra g is called semisimple if

rad(g) = {0}.

For any finite-dimensional Lie algebra g, the quotient g / rad(g) is a semisimple Lie algebra. To

understand finite-dimensional Lie algebras in general, one can hence proceed in three steps:

e Firstly, one needs to understand arbitrary solvable Lie algebras. Over the complex field C,
this is achieved by Lie’s Theorem [EW06, Theorem 6.5] which states that every solvable Lie

algebra is isomorphic to a Lie subalgebra of gl(V') consisting of upper triangular matrices.

e Secondly, one needs to classify semisimple Lie algebras. For complex Lie algebras, this
reduces to the classification of simple Lie algebras since every finite-dimensional semisimple
Lie algebra is a direct sum of simple Lie algebras by [EW06, Theorem 9.11]. Then, the

simple Lie algebras in turn are classified in terms of their root systems, see Section 2.5.2.

e The final question in the classification of finite-dimensional Lie algebras is how to extend
a semisimple Lie algebra g by a solvable Lie algebra b. In other words, one would have to

describe all Lie algebras [ which fit into a short exact sequence
0—b—I[—g—0.

This question, however, is not relevant for the present thesis.

Throughout this section, we will discuss the theory of finite-dimensional complex semisimple
Lie algebras and hence understand the classification of simple Lie algebras. Several important

examples of simple Lie algebras will be discussed explicitly in Section 2.6.
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2.5.1 Root space decomposition

Let g be a complex semisimple Lie algebra containing an abelian Lie subalgebra b consisting
of semisimple elements. Recall that, by definition, an element H € g is called semisimple if
ad(H) is diagonalisable, see [EW06, p.87]. In fact, h acts diagonalisably on the Lie algebra g in

the adjoint representation. We observe a decomposition of g for the action of ad(H) for H € b.

Since b is abelian, the elements of ad(h) must commute. By [EW06, Lemma 16.7], we know that
g has a basis of common eigenvectors for the elements of ad(h). Given a common eigenvector

X € g, the eigenvalues are given by the associated weight a: h — C defined by
(ad H)(X) = [H, X] = a(H)X

for all H € h. Note that weights are elements of the dual space h*, see Definition 2.3. For each

a € h*, we denote the corresponding weight space by
ga={X€g|[H X]=aH)X, forall HEh}.

Let ® denote the set of non-zero a € h*, for which g, is also non-zero. For a = 0, we have the
zero weight space
go={Xeg|[H X]=0, forall H € b}.

Then, the Lie algebra g decomposes into the direct sum of the weight spaces g, for all « € ®U{0}.
Consequently, if g is finite-dimensional, then ® is finite. Additionally, since § is abelian, we have
h C go. For the decomposition of g into weight spaces to be as useful as possible, §h should be
as large as possible. In the following definition, we describe h as mazimal in the sense that, if

b’ D b is another abelian Lie subalgebra of g consisting of semisimple elements, then h = §'.

Definition 2.63 ([EWO06, Definition 10.2]). A Lie subalgebra b of a Lie algebra g is called a
Cartan subalgebra of g if by is abelian and every element H € by is semisimple, and moreover

b is mazximal with these properties.

Ezample 2.64. Let g = sly11(C). For a Cartan subalgebra h), we may take the algebra of all

traceless (N + 1) x (N + 1)-matrices which are diagonal. For example, a Cartan subalgebra

of sl3(C) can be
a 0

One can show that, for any complex semisimple Lie algebra g, there exists a non-zero Cartan

subalgebra. Moreover, if b is a Cartan subalgebra of g, then
b= go
by [EW06, Theorem 10.4]. Hence, g has the following decomposition into weight spaces for b.
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Definition 2.65 ([EW06, Section 10.3]). The root space decomposition of a semisimple Lie

algebra g with Cartan subalgebra by is the direct sum decomposition
s=hoPa.
aced

where ® is the set of a € b* such that a # 0 and go # 0. Fach a € ® is called a root of g, and

do 18 called the corresponding root space.

Remark 2.66. If g is finite-dimensional, then the set ® must be finite. Moreover, the roots

and root spaces of a semisimple Lie algebra g depend on the choice of Cartan subalgebra §.

We may associate to each root a € ® a Lie subalgebra sl(«) of g isomorphic to sla(C). Suppose
that o € ® and that e, is a non-zero element in g,. By [EW06, Lemma 10.5], there exists a root
—a € ® and non-zero element f, € g_, such that Span{ea, fas [€a fa]} is a Lie subalgebra of g
isomorphic to sla(C). In particular, note that he = [eq, fa] € h. For a € @, let sl(a) denote the
Lie subalgebra of g with basis {eq, fo, ha} such that e, € ga, fo € 9—a, ha € b and a(hy) = 2.

Proposition 2.67 ([EW06, Exercise 10.3(ii)]). For each root c, the map sl(a)) — sla(C) given

b
Y arr e, farr [ ha—h
1s a Lie algebra isomorphism.

We call the triple (eq, fa, ha) the sla(C)-triple corresponding to the root a.

2.5.2 Root systems

Let E denote a Fuclidean space, that is, a finite-dimensional R-vector space that is equipped

with an inner product (—, —). For all non-zero «, 8 € E, the notions of length and angle are
given by
el = V(a,a)  and  (a,B) = [|a|[|8]| cos(8)
where 6 denotes the angle between a and 3. As it will be a useful convention, we shall write
2(a, B) 18]l
(B,a) = =2 cos(6) (2.48)
(a, @) [lev|]

for all non-zero o, B € E. Note that (—, —) defined in (2.48) is not an inner product; it is not
necessarily symmetric and is only linear in the first argument. For each non-zero a € E, let s,

denote the reflection in the hyperplane normal to « given by

sa(B8) =B — (B, a)a (2.49)

for all § € E. Note, in particular, that s,(a) = —a. Moreover, each reflection s, preserves the

inner product (—, —), that is,

(Sa(ﬁ)a Sa(’}’)) = (8,7)

for all 8,y € E. With this notation, we can now formally define root systems.
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Definition 2.68 ([EW06, Definition 11.1]). A root system ® is a subset of a Euclidean space

FE satisfying the following azioms:

R1 ® is finite, it does not contain 0, and it spans E;

R3
R4

(R1)

(R2) If o € ®, then the only scalar multiples of o in ® are £ «;
(R3) If a € ®, then the reflection s, permutes the elements of ®;
(R4)

If a, B € @, then (B,a) € Z.

Ezample 2.69 ([EW06, Example 11.2]). Let g be a complex semisimple Lie algebra. Recall
the root space decomposition from Definition 2.65, and let ® be the set of roots of g with
respect to some fixed Cartan subalgebra h. Let E be the R-span of ®. The symmetric
bilinear form (—,—) on E induced by the so-called Killing form of g, given explictly in
[Lorl8, p.331 (6.18)], is an inner product by [EW06, Proposition 10.15]. One can show that

® is a root system in F.

If ® is a root system, we will find it useful to define the coroot " of a root a« € ® by o

Definition 2.70 ([EW06, Definition 11.9]). A base for a root system ® is a subset II C ® which

18 a vector space basis for E, such that every 8 € ® can be written as

8= Z M (2.50)

acll

with my, € Z, where all of the non-zero coefficients m,, have the same sign.

By [EW06, Theorem 11.10], there exists a base II for every root system ®. Usually, there are
many possible bases for a root system. For example, if II is a base for ®, then so is the set
{—a | a € IT}, as well as the set {sg() | a € II} for any 5 € ®.

A root 8 € ® is positive with respect to II if the coefficients m,, in (2.50) are non-negative,
otherwise 3 is negative with respect to II. Let ®™ and &~ denote the set of all positive roots

and negative roots respectively in ® with respect to II. Then, we have the disjoint union
&=t UD

and, moreover, the set II is contained in ®T. The elements of II are called the simple roots,

and the reflections s, for a € II given by (2.49) are known as the simple reflections.

Consider the group of all invertible linear transformations of I generated by the reflections sg
for § € ®. This is called the Weyl group of ®, and is denoted by W. One may show that W
is finite, and by [EW06, Lemma 11.15] we may restrict the generators to the simple reflections,
that is, we can write

W= <sa ‘ o € H>.
The following result, stated without proof, tells us geometrically that all of the bases of a root

system are essentially the same. For a technical proof, refer to [EW06, Chapter 19].
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Proposition 2.71 ([EW06, Theorem 11.16]). Suppose that II and II' are two bases of a root
system ®, and let W be the Weyl group of ®. Then, there exists an element w € W such that
II' = {w(a) | a € I}.

Fix an order on the simple roots of II in ®, say {a1,...,an}. Then, the Cartan matrix of ®
is defined to be the N x N-matrix with i entry a;j = (o, ;) € Z, called a Cartan integer.
Observe that
oy, Qg

(Oéi, Oéj) = diai,j where di = (121) € {1, 2, 3}

by [Jan96, 4.1(1)]. The Dynkin diagram of ® is a graph, with nodes labelled by the simple
roots, and between the nodes labelled by «a;, a; € II we draw exactly a; ja;; € {0,1,2,3} lines,
following [EW06, Lemma 11.4]. When q; ja;; € {2,3}, an arrow points to the “shorter” root.

The Dynkin diagram determines the root system ®, and is independent of the choice of base.

Ezample 2.72. Let g = sly4+1(C). Its root system has the Dynkin diagram of type Ay given

o, a Oy

2.5.3 The Serre presentation

below.

Let g be a complex semisimple Lie algebra. Choose a set of simple roots Il = {ai |z el } with
respect to a Cartan subalgebra h C g, where I C N denotes an indexing set for the nodes of
the Dynkin diagram of g. For each i € I, let (e;, fi, h;) be the sly(C)-triple corresponding to the
root «;, see Section 2.5.1. One may show that the Lie algebra g is generated by the elements e;,
fi and h; for all ¢ € I, which we refer to as the Chevalley generators for g, since every element of

g can be obtained by repeatedly taking linear combinations and Lie brackets of these elements.

Example 2.73 ([EW06, Example 14.3]). Let g = sly4+1(C). The elements e; = E; ;41 and
fi = Eiy1; for 1 <7 < N already generate g as a Lie algebra. Indeed, a basis for the Cartan
subalgebra b of diagonal matrices is obtained by taking the commutators [E; 11, Eit14] =
Eii — Eit141 =hi for 1 <i < N. For i +1 < j, we have [E; ;11, Eit1;] = E; j, and hence

we get all F; ; with ¢ < j by induction. Similarly, we may obtain all F; ; with i > j.

The following relations, satisfied by the Chevalley generators e;, f; and h;, only involve infor-

mation which can be obtained from the Cartan matrix. In particular, we write a; ; = (a;, o).

Lemma 2.74 ([EW06, Lemma 14.5]). The elements {e;, f;,hi | i € I} satisfy the relations

S1
52
S3
S4

[hi,hj] =0 for all i,j,
[hisej] = aije; and [hi, fj] = —aijf; for alli,j,
lei, fi] = 0ijhi for alli,j where 6 is the Kronecker delta,

(
(
(
( ad(e;)) " (e;) =0 and (ad(f;)) " (f;) =0 ifi#j.

)
)
)
)

Note that a;; < 0 for all ¢ # j since the angle between any two simple roots is obtuse, see
[EW06, Exercise 11.3]. The relations (S1)-(S4) in Lemma 2.74 are known as the Serre relations.
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The following Theorem says that the relations (S1)-(S4) completely determine the Lie algebra.

Theorem 2.75 (Serre’s Theorem [EWO06, Theorem 14.6]). Let A be the Cartan matriz of a
root system. Let g be the complex Lie algebra which is generated by the elements e;, f; and h;
for i € I, subject to the relations (S1)-(S4). Then g is finite-dimensional and semisimple with

Cartan subalgebra b spanned by all of the elements h;, and its root system has Cartan matriz A.

For a detailed proof of Serre’s Theorem, refer to [EW06, Section 14.2]. An immediate corollary
of Theorem 2.75 is that, up to isomorphism, there is just one Lie algebra for each root system.
Moreover, one can show that the root system of a semisimple Lie algebra is uniquely determined
by its Cartan matrix, up to isomorphism. Hence, complex semisimple Lie algebras with different

Dynkin diagrams must not be isomorphic. We therefore deduce the following important result.

Corollary 2.76 (Classification of simple Lie algebras). There is a one-to-one correspondence

between the isomorphism classes of complex simple Lie algebras and the list of Dynkin diagrams.

For any complex semisimple Lie algebra g, Serre’s Theorem gives a description of the universal

enveloping algebra U(g) in terms of generators and relations, also called its Serre presentation.

Ezample 2.77. Let g = sly11(C). The universal enveloping algebra U (sly41(C)) is the
C-algebra generated by elements e;, f; and h; for 1 < i < N subject to the Serre relations
(S1)-(S4) in Lemma 2.74. Explicitly, (S4) becomes

efej — 2eieje; +ejel =0 if i —j| =1,

eiej—ejei:() if ’i—j’>1,
fify=2fififi+ fiff =0 ifli—jl=1,
flfj_fjfl:() if ’Z—j’>1

2.6 The classical Lie algebras

With five exceptions, every finite-dimensional complex simple Lie algebra is isomorphic to one

of the classical Lie algebras, namely the Lie algebras which, from now on, we denote by

sl, (C) = sl,, 50,(C) = so,, sp,,(C) = sp,,
for n > 2, see [EW06, Theorem 4.12]. The five exceptional Lie algebras are known as ¢g, ¢7, es,
f4 and go. Constructions of their corresponding root systems are described in [EW06, 13.2].

We have already discussed the family of special linear Lie algebras, sly1 for NV > 1, throughout

Section 2.5. We define the remaining families as certain subalgebras of gl,,(C) = gl,, as follows.

Let (—,—) be a (skew-)symmetric, non-degenerate bilinear form on the vector space C", and

consider the subspace

glo, = {X €gl, | (Xu,v)+ (u, Xv) =0, Vu,v € C"}. (2.51)
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By Corollary 2.13, there exists an invertible, (skew-)symmetric matrix S € gl,, such that
(Xu,v) + (u, Xv) = (Xu)'Sv+u'SXv =u"(X'S + SX)v

for all u,v € C" and X € gl,,. Since this holds for all u,v € C", the defining property of glg,, in
(2.51) becomes XS + SX = 0, or equivalently, X! = —SXS~!. We deduce that olg , is equal
to the subspace

alg, ={X egl, | X'S=-5X}. (2.52)

Recall from Example 2.52 that, for any matrix S € gl,,, the subspace glg,, is a Lie subalgebra
of sl,,.

Proposition 2.78. For any matriz S € gl,, and matriz T = P'SP where P € gl,, is invertible,
the map
gls, > alp,; X—P'XP

s an isomorphism of Lie algebras.

Proof. We first need to check the defining property of the Lie algebra gl ,,. Forall X € glg,,

we have

(P7XP) =PiX{(P1 = —PiSXS~YPH ! = —PISX(P!'S) = —TP X PT™!

and therefore the map in Proposition 2.78 is well-defined. It is clear that the map is injective

by its definition, and moreover the map is surjective.

It remains to check that we have a homomorphism of Lie algebras. Indeed, for all X,Y € gl,

we have

[PIXP, P l'yYP|=P 'XYP-P'YXP=P'[X Y|P

as required. O

Following Proposition 2.78, suppose that we take an arbitrary non-degenerate matrix S with an
associated bilinear form. If S is also symmetric, then by Proposition 2.14 (and Remark 2.15) we
can find a basis of the vector space C" such that the corresponding matrix of this bilinear form
with respect to this basis is the identity matrix I,,. Together with Proposition 2.8(b), we now
see that glg,, = gl;, ,. In other words, each Lie subalgebra glg,, for any invertible symmetric
matrix S € gl,, is isomorphic to gl; ,,, and hence they are all isomorphic subalgebras regardless
of the choice of S. In particular, by taking S = I,, we obtain the set of all skew-symmetric
n X n-matrices which is often given as the definition of the Lie algebra so,. We prefer to work
with a different matrix S, see (2.53) and (2.62), which we discuss in Sections 2.6.1 and 2.6.2.

Similarly, suppose that we take an arbitrary non-degenerate skew-symmetric n X n-matrix and
its associated bilinear form, where n = 2N for some N € N. Then, by Proposition 2.16 (and
Remark 2.17), we can find a basis of the vector space C™ such that the corresponding matrix of

this bilinear form with respect to this basis is the matrix S in Section 2.6.3, see (2.70).
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2.6.1 The Lie algebra sosy

We review the construction of so,, for even n = 2N following [EWO06, Section 12.4]. Take S to
be the matrix with NV x N-blocks

(2.53)

and define soon = glg oy as in (2.52). By calculation, we obtain a block matrix realisation

M P
woe{(45)

where M, P and @ are N x N-matrices. Note that the Lie algebra sooy has dimension 2N2 — N.

In particular, the Lie algebra so0s is 1-dimensional, and therefore not semisimple. For this reason,

P=-P' Q= —Qf} (2.54)

we assume that N > 2. For a Cartan subalgebra, we choose the set hay of all diagonal matrices

in s09y, namely the semisimple elements

N
H=> a;H,
i=1
where a; € C and
Hz' = EM — EN+i,N+i fOI‘ 1 S 7 S N (255)

with the matrix entries labelled from 1 up to 2N. The elements (2.55) form a basis of hay,

which we extend to a basis of soo with the matrices

M;;=FE;; — EnyjN+i for1<i#j <N,
Pij=FEiNnyj— EjNyi for1<i<j<N, (2.56)
Qji = jjit,j = ENtji — EN+ij for1 <i<j<N.

The basis elements (2.56) are in fact simultaneous eigenvectors for the action of han. Moreover,

for H € by, calculation shows that
[H, M; ;] = (a; —aj)M;j, [H,P;j]=(ai+a;)P; [H,Qji=—(a;i+a;)Qji  (2.57)

We can now list the roots. For 1 < ¢ < N, let ¢; € b3, be the map sending the element
H to a;, its entry in position ¢. Then, (2.57) implies that the eigenvectors M; ;, P;; and Q;;
have corresponding roots €; — ¢;, €; + ¢; and —(e; + €;) respectively. One sees that the set

{a;]1 <i < N} is a base for the root system of soax, where

€i — Ei+1 for1<i<N-1
Q; = (258)

EN—1+teny fori=N

are refered to as the simple roots. If N = 2, the base has two orthogonal roots only and hence
the root system is reducible (see [EWO06, Definition 11.7]). In fact, one sees that soy = sly @ slo.
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We therefore assume that N > 3. For 1 <i < N — 1, we take

eai - Mi,’i-}—la foci = Mit’H»la hOéi - Hl - Hi+17 (259)

and then
eay = PN—1,N, fax =QNnN-1, hay = Hy_1+ Hn. (2.60)
In particular, notice that h,, = [eai, fai] for all 7. By calculating [haj,eai] for each pair of

simple roots, the Cartan integers «;(H;) are determined to be

2 fori=j
(i) =< =1 if [i—j|=1fori,j #N, or {i,j} = {N —2,N} (2.61)

0 otherwise.

Importantly, the Cartan integers (2.61) describe the Dynkin diagram of the root system of the
Lie algebra. If N = 3, the Dynkin diagram is the same as that of Az, the root system of sly,
and indeed sog =2 sy as one might expect. In general, the Lie algebra soon for N > 4 has the
Dynkin diagram

QAN-1

(e8] QR QN-2

of type Dy. If we remove the node corresponding to (and edge connecting to) the simple root
a1, the remaining diagram is of type Dy _1 with a shifted numbering. In other words, one sees

that a copy of Dy _1 sits inside Dy . This justifies that soon_o C s0on.

2.6.2 The Lie algebra sosy

Now assume that n = 2N + 1, and refer to [EW06, Section 12.3]. For this case, take the matrix

0---0l0---0
0
10 In

S=1o0 (2.62)
0
In 0
0

and define soan 11 = glgan41 as in (2.52). One calculates that

0 ct —bt
SN 41 = { by M P poptg= —Qt} (2.63)
—c| @ —M?!
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writing elements as block matrices of sizes adapted to the blocks of S from (2.62). The Lie
algebra soon 1 has dimension 2N? + N. Since so03 = sly, we assume that N > 2.

It is convenient to label the matrix entries from 0 up to 2/N. Take the Cartan subalgebra hop 1
of diagonal matrices in soon 1. With our convention, the matrices H; in (2.55) provide a basis

for hant1. We now extend the elements (2.55) and (2.56) to a basis of s0ay41 by the matrices
bi = E;p — EonNyi, ¢ = FEo;— Entio (2.64)

for 1 <i < N. For H=>,a;H; € han1, in addition to (2.57), calculation shows that
[H,b;] = a;b;, [H,ci] = —ac (2.65)

and again these basis elements are simultaneous eigenvectors for the action of han 1. We deduce
from (2.65) that the eigenvectors b; and ¢; have corresponding roots €; and —e; respectively.
Moreover, the set {% ! 1<i< N} is a base for the root system of sosn 1 if we set v; = «; for
1<i< N —1asgiven in (2.58), and define vy = ey.

In addition to the Chevalley generators e,, fy,, hy, for 1 <i < N —1 from (2.59), we take
ey = V2by, foy =V2en, hy =2Hy. (2.66)

Then, as well as the Cartan integers from (2.61), by calculating [hy,, e, | and [hy,, ey, ] we get

2 fori=N—1, 1 fori=N-—1,
(YisIN) = and (YN, V) = (2.67)
0 fori<N—2, 0 fori<N—2.
Note that
[fyibi] =bix1,  [ey,bis1] =bi,  [fy,civ1] = —ciy  [eynai] = —cip (2.68)

for 1 <i < N — 1, and if we consider the Chevalley generators (2.60) for the copy of the Lie

algebra soo inside soon 41, then

[fan>bn—1] = —cn,  [ean.cn—1] =bn,  [fan,bN] =cn—1,  [ean,cn] = —by—1.  (2.69)

Formulas (2.68) and (2.69) reflect the fact that the matrices (2.64) form a basis of the vector
representation of the Lie subalgebra soon C 5025 4+1 under the adjoint action. This is also evident
from the block matrix representation (2.63) of soony1. In general, the Lie algebra sosn 1 for

N > 2 has the Dynkin diagram of type By which is illustrated below.

Y1 YN-1 YN
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2.6.3 The Lie algebra sp,y

The Lie algebra sp,, is defined only for even n = 2N, see [EW06, Section 12.5]. Take S to be
the matrix with NV x N-blocks

(2.70)

and then we may define spyy = glgon as in (2.52). By calculation, we obtain a block matrix

M P
o ={ (5-0)

where M, P and QQ are N x N-matrices. Note that dim(spyy) = dim(sogn11) = 2N? + N, and

in particular, spy is the same as the Lie algebra sly. In what follows, we assume that N > 2.

realisation

P=rP Q= Qt} (2.71)

As a Cartan subalgebra, let h be the set of all diagonal matrices in spyp. Recall the elements
H; in (2.55) which again form a basis of h, and we extend to a basis of sp,y with the matrices
in (2.56) and the additional 2N matrices

Pii=EiN+i and Qii = Pli = Enqi, (2.72)
for 1 <14 < N. The calculations in (2.57) hold, and additionally for H =), a; H; we note that
[H,P;;| =2a;P,, [H,Qii] = —2a; Qi;. (2.73)

We can now list the roots. For 1 < i < N, let ¢; € h* be the map sending the element H to a;, its
entry in position 7. Then, (2.73) implies that the eigenvectors P;; and @;; have corresponding
roots 2¢; and —2¢; respectively. One sees that the set {ai | 1<i<N-— 1} U {BN} is a base for
the root system of spyp, where we define the simple roots «; in (2.58) for 1 < i < N — 1 and
By = 2epn. For 1 <i < N —1 we have the Chevalley generators in (2.59), and additionally we

take
€5N = PN,N7 fﬁN = QN,N; th = HN. (2.74)

We obtain the Cartan integers

—1 fori=N-—-1, -2 fori=N—1,
(i, Bn) = (Bn,ay) = (2.75)

0  otherwise, 0  otherwise.

In general, the Lie algebra sp,n for N > 2 has the Dynkin diagram of type Cpy which is

illustrated below.

(o (] ON-1 BN
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Chapter 3
Symmetric Semisimple Lie Algebras

Suppose that g is a Lie algebra, and let #: g — g be an automorphism of g such that
0% = id,. (3.1)

A Lie algebra automorphism 6 of g satisfying this property is said to be involutive, and 6 is often

called an involution of g. Moreover, we call such a pair (g,6) a symmetric Lie algebra.

The main focus of this chapter is to introduce the notion of a symmetric pair, that is, a symmetric
Lie algebra g together with a fixed Lie subalgebra £, see Section 3.1. For semisimple g, symmetric
Lie algebras can be classified in terms of combinatorial data called Satake diagrams. In Section
3.2, we recall how to obtain a Satake diagram from an involution 0. Finally, in Section 3.3, we
discuss the main examples of symmetric pairs considered in this thesis, for which we give the

generators and relations explicitly. The results of this chapter follow mostly the paper [Koll4].

3.1 The fixed Lie subalgebra

Let 6 be an involution of a Lie algebra g. Recall Equation (3.1) for the defining property of 6.

Then, g has the so-called symmetric decomposition
g=tdp (3.2)

where we denote
t=g’={zecg|b() =1} (3.3)

and similarly
pz{xég’@(m):—x}.

For all z,y € p, we have

0z, y]) = [0(2),0(y)] = [-2, —y] = [2,9]

and hence [p,p] C £. On the other hand, one similarly shows that [¢,¢] C ¢ and, in particular,
we deduce that £ is a Lie subalgebra of g. We refer to £ as the fixed Lie subalgebra of g.
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Lemma 3.1. For any element x € g, we have v + 6(z) € &.
Proof. Tt is clear that x + 6(x) € g, since 6 is an automorphism of g. It suffices to show
that, as an element, = 4 6(x) is invariant under the involution . Indeed, we calculate that
0(z+60(x)) = 6(x) +0(6(z)), by the linearity of ¢
0(x) + 6% (z)
0

(x) + =, since 62 = id
as necessary. O

3.2 Involutions of semisimple Lie algebras

Now suppose that a Lie algebra g is semisimple. As in Section 2.5, let Il = {ai ‘ 1€ I} be the
set of simple roots with respect to a Cartan subalgebra h C g, where I C N denotes the indexing
set for the nodes of the Dynkin diagram of g. Recall from Section 2.5.3 the Chevalley generators
for g denoted by e;, fi, h; for i € I, where the elements h; correspond to the generators of the

Cartan subalgebra f. Now, we let
nt={(e|iel) and wT=(fi|iel) (3.4)

denote the Lie subalgebras of g generated by the elements e; and f; respectively. Then, the Lie
algebra g has the triangular decomposition [EW06, Section 15.1]

g=n &hent. (3.5)

For any subset X C I, let gx be the Lie subalgebra of g generated by the set {ei, fishi ‘ 1€ X }
Let 6 be an involution of g, for which the defining property is given in Equation (3.1). Following

[Let02, Section 7] we may assume, up to conjugation, that

0(h) = (3.6)

and that there exists a subset X C I such that

0|9X = idgy (3.7)

and
O(e;) €n~ and O(f;) ent ificl\X. (3.8)

Let @ denote the root system of g. Define the root lattice of ® by () = Z®, and denote its
corresponding positive part by QT = No®. Additionally, for any root p = Y icr ity € QT,
define the height of u by
ht(p) = an (3.9)
el
Let Qx be the subgroup of the root lattice ) generated by the simple roots «; for all ¢ € X.
Effectively, (Qx is the root lattice for the Lie algebra gx, and we denote its positive part by

Q% = Q" NQx. (3.10)
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For involutions of semisimple Lie algebras satisfying assumptions (3.6)-(3.8), one can give a

description of the generators of the fixed Lie subalgebra €.

Proposition 3.2 ([Koll4, Lemma 2.8]). Let 6 be an involution of a semisimple Lie algebra g
satisfying assumptions (3.6)-(3.8). Then, the fizved Lie subalgebra € is generated by the elements

e, fi forie X, (3.11)
h €t with (h) = h, (3.12)
fi+0(f;) foriel\X. (3.13)

Proof. Let  denote the Lie subalgebra of g generated by the elements (3.11), (3.12) and
(3.13). By assumptions (3.6) and (3.7), the generators (3.11) and (3.12) are invariant under
0. The remaining generators (3.13) are also invariant under 6 following Lemma 3.1, and
hence € Ct

Conversely, assume that x € £. By the triangular decomposition (3.5) of g, we may write
r=a" +a2°+a*
with 2~ € n™, 20 € h, and 2+ € nt. Since z~ € <fi ‘z € I>, we can write

T = Z az[filﬁ["'7[fik—l’fik]"']] S @ J—a
T=(41,.-sik) acedt, ht(a)<m

for some coefficients a7 and index set Z € I* for k < m where m € N is minimal. Let us
define the element R

w= > azlbi, [ [, bi].. )] €F

T=(i1,.,ix)

where b;; = f;, for i; € X, and b;; = f;, +0(f;;) fori; € I\ X. Ifi; € X for 1 < j <k, then
uw =1z~ and, hence, u —x~ =0 € h +nT. On the other hand, assume that some i; € I\ X.
Then, u =2~ +y~ +y°+y" withy® € b, y" e n, and y~ € @ cqp+ 9—a for ht(a) < m—1,
since (f;;) € nt for i; € I'\ X by assumption (3.8). We may now consider the element
u—2" =y +13°+yt €t and by induction on ht(a) we eventually get that y~ = 0. This

shows that there always exists an element u € £ such that
u—z" €hdnt,

Such an element u € € is a linear combination of elements of the form (3.11), (3.13) and all
possible Lie brackets between these elements. Hence, we may assume that = = 0. Further,

since 0(2°) = ¥ we have 2° € £, and therefore we can also assume that 20 = 0.
We can write x = 2 € n™ as a sum of weight vectors z = EaeQ+ To. Since
0(9&) = J—wxor(a)

the relation x, # 0 implies that o = Zie y Nooy;. Hence, the element x is contained in the

Lie subalgebra generated by {ei ‘ 1€ X }, and therefore z € € as required. O
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By assumption (3.6), the map 6 induces an involution ©: h* — bh* which leaves ® invariant.
Hence, by construction, we have

0(ga) = 96(a) (3.14)

for all roots o € ®. Moreover, if assumptions (3.6) to (3.8) hold, then there exists an involutive

map 7: I — I where a;j = a,(;) ;) for all 4,5 € I, called a diagram automorphism for the
Dynkin diagram of g, such that

O(—;) — ar) € Q% (3.15)

for all ¢ € I, see also [Let02, (7.5)]. We can also view 7 as an automorphism of g by setting

T(ei) = ery,  T(fi) = fray,  T(hi) = heg (3.16)
for all i € I. The induced map of h* further satisfies 7(c;) = ;) for all i € I.

Let Wx be the parabolic subgroup of the Weyl group W of g generated by the simple reflections
s; for all ¢ € X. Effectively, Wx is the Weyl group of the Lie algebra gx. Let wx € Wx denote
the longest element of Wyx. Additionally, let px € R® and p% € (R®)* denote the half sum of

the positive roots and coroots for gx, respectively.

Definition 3.3 ([Sat60, p.109], [Koll4, Definition 2.3]). Let X C I and let 7: I — I be a
diagram automorphism such that 7(X) = X. The pair (X, 7) is called a Satake diagram if it

satisfies the following properties:
(1) 72 =1idy,
(2) The action of T on X coincides with the action of —wx,
(3) If j € I\ X and 7(j) = j, then aj(p¥%) € Z.
Any such Satake diagram (X, 7) determines an involution € of g uniquely up to conjugation, see

[Kol14, Theorem 2.7]. The restriction of 6 to b is given by

0|, =—-wxor. (3.17)

b

Graphically, the components of a Satake diagram are recorded in the Dynkin diagram of g.

The nodes labelled by X are coloured black and we indicate the diagram automorphism 7 by a

double-sided arrow. A complete list of Satake diagrams for simple g is found in [Ara62, p.32/33].
Remark 3.4. There exists a diagram automorphism 7p: I — I such that the longest element
wp € W of the Weyl group of g satisfies wo(;) = —ay () for all i € I. Tt follows from this,
and Definition 3.3, that the pair (X = I,7 = —wx) is always a Satake diagram.

By inspection of the list of all Satake diagrams, one sees that the set X is always rg-invariant.

3.3 Symmetric pairs

For any Lie algebra g, let § be an involution of g with corresponding fixed Lie subalgebra ¢ as

defined in Section 3.1. Then, the pair (g, ) is called a symmetric pair.
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For the remainder of this chapter, we will study examples of symmetric pairs where g is a complex
semisimple Lie algebra. More specifically, we first consider the symmetric pair (5(n,50n), and
then give explicit constructions of the symmetric pairs (slgN,spQN) and (502N7502N—1)7 the

latter of which is of main interest in this thesis.

3.3.1 The symmetric pair (5[n,50n)

Recall the Lie algebra g = sl,, of traceless n x n-matrices where n > 2, and the Lie subalgebra

50, C sl, of skew-symmetric n X n-matrices. Here, we take the involution

0: sl, — sl,, z — —at.

In terms of the Chevalley generators, the involution 8 sends e; — —f;, f; — —e; and h; — —h;.
The fixed Lie subalgebra is then

t={zesl, |s'=—-a}=9g0 ,

which we have seen is just the standard realisation of so,,. This means that the Satake diagram
corresponding to the symmetric Lie algebra (sl,,6) coincides with the Dynkin diagram of sl,,,

see below.
1 2 n-1

Indeed, for (X, 7) = (0,id) the assumptions (3.6) to (3.8) are satisfied, and moreover we have
@(O&l) = —Q4

for 1 <4 <n — 1. Since the fixed Lie subalgebra ¢ = gl; , is isomorphic to so,, we obtain the

symmetric pair (5[n, 50n).

3.3.2 The symmetric pair (ﬁ[gN,spQN)

Recall the definition of the Lie algebra spyp for N > 2 from Section 2.6.3. We have some
freedom with the choice of the matrix S, see (2.70). Take the skew-symmetric 2N x 2N-matrix

0 1
o |...] o
-1 0
o |0 1] . .
S = -1 0 = Z Eok—12k — Eog2k-1- (3.18)
: . . 0 k=1
0 1
0 0
-1 0
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Notice that the matrices S and S’ can be obtained from each other by some permutation of their
rows and columns. This means that there exists an invertible 2N x 2N-permutation matrix P
such that S’ = P~1SP = P'SP, since P! = P!. Moreover, by Proposition 2.78, the map

spon — Sphy 3 o+ PloP (3.19)

is an isomorphism of Lie algebras. Hence, we can replace S by S’ in the definition of spsyy to

alternatively define the isomorphic Lie algebra

sphy = {z € sloy | z'S = —-S'z}. (3.20)

Remark 3.5. Explicitly, the permutation matrix P in the isomorphism (3.19) is, in fact, the
2N x 2N-matrix

1 0/0 0 00
0 0/1 0
0
o o0l ---10 o0l1 0 N 9N
F=1o 1o ol To o :;Ek,Qk—l‘f‘l_%;lEl’Q(l_N)'
0 0/0 1
0
0 0 0 0[0 1

From now on, we choose only to work with the realisation (3.20) of spyy. For notational

purposes, we may therefore write sp,y instead of sp,, moving forward.

Lemma 3.6. The map
0: sloy — sloy:  z— —S'ats"
1s an tnvolution of the Lie algebra slay .

Proof. Let z,y € slon. Firstly, for any a,b € C we have
O(az + by) = —S'(ax + by)'S" = —aS'2'S" — bS"y'S" = aO(zx) + bO(y)

so @ is linear. Also, for any z,y € slon we have

[0(2),0(y)] = [(=5"2"S"), (=S"y"S™)]
— Sty St — §lytat St
— ' (ztyt — ytat)S"
= —5"((zy)" — (ya)')S"
— —S,(ZL'y _ yx)tslt
= —5'[x,y)"'S" = 0([z,y])
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so 0 is a Lie algebra homomorphism. Furthermore, since 0 is a linear map from slsy to itself
and has zero kernel, it is also bijective and hence 0 is indeed a Lie algebra automorphism.

Additionally, for any = € slyn we have

02 (x) = 0(6(z)) = 0(—S'2'S") = -5 (—S'2'8")S" = §'S' 2 §"S" = w
N
—Ioy  —Ian
since S”> = —Iy. Hence, 62 = idsy,, and the Lie algebra automorphism 6 is involutive. [J

For any x € sla, observe that

T € spyy = —Sz=21'9, by definition, see (3.20),
— S’z =2'9", since S’ is skew-symmetric,
— Sz =-5"ts", since — S = Iy,

— r=-52'5"=0(x)

where 6 is the involution of slyn from Lemma 3.6. This implies that sp,y = slo ~? is exactly the

fixed Lie subalgebra of slay, as expected. In other terms, we have shown that

and therefore, by definition, we obtain the symmetric pair (5[2 N, SPo N).

From Example 2.73, recall that the Chevalley generators of the Lie algebra slon are defined by
ei=FEiiv1, fi=FEy;, hi=FE;— Ei (3.22)

fori e {1,...,2N —1}. Recall that, for every i € I, the triple (ei, fis hi) spans a Lie subalgebra
isomorphic to the Lie algebra sly. Now, for even j € {2, vy 2(N — 1)} we define the element

bj = Ejr1j + Ej1j42 = fi + [eje1, -1, ¢5]]. (3.23)

Proposition 3.7. The Lie algebra spyy is generated by the elements (3.22) for odd i and (3.23),
that is, by the set
{ei, fi,hi,bj | 1<i,j <2N —1, i odd, j even}.

Proof. We first need to show that the Lie algebra spyy contains the elements e;, f;, h; for
all odd 4, as well as the elements b; for even j € {2,4,6,...,2(N —1)}. To this end, we check
that

0(ei) = 0(Eiiv1) = (—Eiiv1)Eiy1i(—FEiiy1) = Eiip1 = €
for odd 7, and similarly one calculates that §(f;) = f;. Since 6 is a Lie algebra automorphism,

we also have that

0(hi) = 0([es, fi]) = [0(ei), 0(fi)] = [ei, fil = hi
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for odd i. Finally, we check that

0(bj) = 0(Eji1,j + Ej-1,5+2)
= (= Ej1;— Ejr1j12) (Ejjr1 + Ejyaj1) (= Ejprjre — Ej1y)
=Ej1j+2+ Ejr1
= b

for even j. It remains for us to see that spyy is generated by the elements e;, f;, h; and b;.

Indeed, these are exactly the elements (3.11) to (3.13) listed in Proposition 3.2, since
bj — fj = Ej-15+2 = 0(f;)

for even j, taking the subset X = {i € I | i odd} of the indexing set I = {1,...,2N—1}. O

The involution 6 of the Lie algebra sp,, from Lemma 3.6 satisfies assumptions (3.6) to (3.8) in
with X ={1,3,...,2N — 1}. Indeed, for even j we calculate that

0(ej) = 0(Ejj+1) = (—Ejy2541) Ejr15(—Ej 1)
= Lj42,5-1
= [fi+1, [fi-1, f5]]
and
0(f;) = 0(Ejt15) = (Ej-15)Ejj+1(Ejt1,42)
= Lj—1,5+42
= [ejr1, [ej-1,€5]]-

This shows that, for even j where 2 < j < 2N — 2, we have
@(—aj) —Qj = Q-1+ Q541 € Q}

as expected, and the involution 6 defined in Lemma 3.6 corresponds to the Satake diagram of
type AII in [Ara62, p.32/33], illustrated below.

1 2 2N-3 2N-2 2N-1

Example 3.8. We may give a non-standard presentation of the Lie algebra sp, in terms of
generators and relations. By Proposition 3.7, we know that the Lie algebra sp, is generated
by the elements

e1, f1,h1, b2, €3, f3, h3.
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Moreover, one can verify that such generators of the Lie algebra satisfy the defining relations

[ei,b2] =0

[hi, ba] = b2
[fi, [fisb2]] =0
(b2, [b2, f1]] = —2e3
[bg, [bg,fg]] = —2¢;

together with the sly-relations of the triples (e1, f1, k1) and (es, f3, hg). This presentation is
useful for studying the classification of irreducible representations in the quantum setting.
One can extend to a presentation of spyy by exchanging the elements by, fi and f3 for by,

fj—1 and fj41 (for even j) in the above relations, respectively. This case, however, is not

the focus of the present thesis.

3.3.3 The symmetric pair (502N,502N,1)

Recall that, following Proposition 2.78 in Section 2.6, the Lie algebras glg,, are all isomorphic,
where S is a non-degenerate, symmetric matrix. If we take S = I,,, then gl; ,, is just the space

of skew-symmetric n x n-matrices x!

= —x for x € gl,,. In this realisation, is it clear that
50, C §0,41 because one can embed the space of skew-symmetric n x n-matrices into the space

of skew-symmetric (n 4+ 1) x (n + 1)-matrices.

Instead, we work with the different realisations (2.54) and (2.63) of the Lie algebras soay and
509N +1, respectively. One can see an immediate embedding of the Lie algebras soon C 502n5+1
as the lower right 2V x 2N block. However, the embedding sosny_1 C s09y is less obvious in this
realisation. In the following, we will realise sooy_1 C 09 as a symmetric pair for an involution

6 satisfying assumptions (3.6)-(3.8). Consider the symmetric 2N x 2N-matrix

o --- ololo -~ o0
0
0 In—1
N
0
L= = (Bri+Eviinver) + Y (Enrp+ Eenan). (3.24)
0 010 0 —
0
In_q : 0
0 0

Observe that L and the matrix S in (2.53) commute, and recall that

sooy = {z € glyy: 2’ = —SzS™1}. (3.25)

46



Chapter 3. Symmetric Semisimple Lie Algebras

Lemma 3.9. The map
0: soon — soon; x> —La'L™1

s an tnvolution of the Lie algebra sosp .

Proof. Let = € sooy. Then, using that L=! = L!, 7! = S and LS = SL, we have
O(z)! = (~La' LYY = (LSxST'L™ N = LS2'S™ L7t = S(La'L™1)S™! = -5 0(x)S™ !,

hence 6 is well-defined, and 0(502 N) does indeed lie in so9p. Moreover, for all x,y € soon

the map 6 satisfies the homomorphism property

[0(2),05)] = [ - La'L", ~Ly' L]
— L(xtyt . ytxt)Lfl
= —Lizy — y2)' L = —L{z,y)' L™ = 0([x,y)-

Hence, 0 is a Lie algebra homomorphism. It remains to verify that € is an involution. For

all z € sogp, one sees that

0%(z) = 0(—La'L™Y) = —L(—La' L)' L™t = L(LH) " () LIL™ =2

since L = L*, and hence 6% = id. ]

Under the involution 6, by Lemma 3.9 we see that the fixed Lie subalgebra of sooy is
502]\79 = {JJ S S09 N ‘ Tr = 9(:5)} - g[S,QN N g[L,QN' (326)

Now, consider the 2N x 2N-matrix

a ct 0 —pt
b M P P

X = 0 _qt . _bt & 9[5,2]\7 (327)
q Q —c —M?

for a € C, b,e,p,q € CN=1 and M, P,Q € CW-Dx(N=1) where P = —P! and Q = —Q*. Note
that L = L™, since L? = Ioy. We already know that §(X) is a general element of glg oy and,

moreover, that 0(glgan) = glgax, see Lemma 3.9. By definition of the involution 6, we have
O(X) = —LX'L™L
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Calculating this explicitly, we get

“1]lo---0l 0 ]o0---0 a bt 0 q' 0---0/0/0---0
0 0
0 —In— c M| —q Q' 0 In_1
8(0) = 0 0
0---0|—=1]0---0 0 o | —al| ¢ 0---0 0---0
0 0
_IN—l O —p pt —b —-M IN—l O
0 0 0 0
—a| —q¢* |0 —bt

p M b P

_ 3.28
0 ct a —pt ( )
—c Q q — Mt
and thus, under the Lie algebra automorphism 6, we obtain an element of the form
M| P
0(X) = (3.29)
Ql _Mlt

now consisting entirely of N x N-blocks where P’ = —P"* and Q' = —Q'"*. Crucially, observe
that if we take an element x € glg ox of the form (3.27) then, following Equation (3.28), we have

f(z)=2 <= a=0, b=pand c= —q. (3.30)

The following result gives an embedding of soox_1 inside soon as the fixed Lie subalgebra.

Proposition 3.10. The linear map 7: s0an—1 — S0on defined by

. p Ly 0 %ct 0 —%bt

o » 75b M 5 P
o Ned 0 — 5

—c| Q —M! _%c 0 _%C gt

forb,ce CN=1 and M, P,Q € CN-DXWN=1) yhere P = —Pt and Q = —Q?, is an injective Lie

algebra homomorphism with image soan’ .
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Proof. Suppose x,y € soon_1, that is, let

0 Clt —blt 0 CQt —bgt
Tr = b1 M1 P1 and Yy = b2 M2 P2
—c1 | Q1 | —My! —co | Qo | —My'

Since ¢ty + bilea = calby + boley, their matrix commutator is

0| c | —b
[z,yj=1 b | M| P
—c| Q| —M?
where
b= (Miby — Maby) + (Paci — Pica),
¢ = (Qa2b1 — Qub2) + (Ma'cr — Mi'ey),
M = (bica' — bacr®) + (MyMs — Mo M) + (PiQ2 — P2Q1),
P = (boby" — b1bo') + (M1 Py — Mo Py) + (P My' — PiMY),
Q = (c2cr' — c1e2') + (Ma' Q1 — Mi'Q2) + (Q1 M2 — Q2M))

taking products of the entries as their appropriate vector/matrix multiplication. On the

other hand, one calculates that

0 et | 0| —b
b M| b | P
—¢| Q| —e| —Mt

where b = - b, ¢ = ¢, M= M, pP= P, and Q = (). Therefore, we obtain the equation

V2 V2
0 %Ct 0 —%bt
1o | M| Lob P
[n(x),n(y)] = ‘/g T ‘/g Y =n([z,y])
ok 2
| Q | —pe| M

and hence the map 7 is a Lie algebra homomorphism. Injectivity is clear from the way 7 is

given explicitly on the matrix elements of soapn_1. 0

The above result shows that (502N,502N71) is indeed a symmetric pair. We will now identify
the Chevalley generators of soon_1 inside soon via the embedding 7. Observe first that

77(6%‘) = eOéi+1’ ﬁ(fvl) = fa¢+17 n(h%) = hCVi+1 (331)
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for 1 <7 < N — 2. Next, recall the elements b; € sooy_1 defined by (2.64) for 1 <i < N — 1.

We have

Hence,

and

Moreover, we have

far +0(far) = V2n(b1). (3.32)

N(eyy_,) = V2n(by_1)
= ﬂn([fwv—zv [fwv-ga SE) [f"nvbl] )
= V2 fay_1s [fan-zs- s [faosn(01)] - ]]
= fan_1> fan 2>+ [faz, far +0(far)] - -] (3.33)

N(frny) = V20(cn-1)
\[n([faz\m bN*Q])

Il
S

= \/in([focz\m [f’YN—:s? sy [f%vbl] .- H)

= \/i[faN, [fOéwa R [fa2777<b1)] - H

= [faz\m [fOthm R [faga fou + H(foq)] .. H (3-34)
N(hyy_1) = N2(EN-1,N-1 — Fan-—22N-2)) = hay — Pay_,- (3.35)

The involution 6 of the Lie algebra soyn from Lemma 3.9 satisfies assumptions (3.6) to (3.8) in
Section 3.2 with X = {2,...,N —2, N — 1, N}. Indeed, by Equation (3.28) we have

0(ea;) = 0(E12 — Enya,n+1)

and

= ENt12 — ENng2i

= (=D for o [fv—as (v [fN—ts [fn—as - [ ] 00

0(far) = 0(E21 — Ent1,n+2)

This shows that

=FEoni1— B ngo

= (—I)N_l [62, e [eN_Q, [eN, [eN_l, [eN_Q, e [62, 61] e HH .. ]

@(—Oq) -] = 2(042 + -4 OéN_Q) +any-1+oan € Q;r(

as expected, and the involution 6 defined in Lemma 3.9 corresponds to the Satake diagram of

type DII, see below.

N-1

1 2 N-2
O—@—-- N
\X_//
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Chapter 4
Quantum Groups

This chapter is dedicated to studying quantised enveloping algebras, which will ultimately enable

us to introduce the notion of a quantum symmetric pair.

We begin by giving a definition of a quantised enveloping algebra in terms of generators and
relations. Following [Koll4] we define the quantised enveloping algebra over the field K(q)
of rational functions in ¢ over a field of characteristic zero. More generally, it would suffice
to assume that ¢ is not a root of unity in a field of characteristic zero. We refer to [Jan96]

frequently during this chapter for general theory of quantum groups, see also [CP94].

4.1 The quantised enveloping algebra U, (g)

Let g be a complex semisimple Lie algebra, and recall the indexing set I C N for the nodes of
the Dynkin diagram of g. Fix a base II = {ai ‘ i€ I} for the root system ® of g with respect to
a fixed Cartan subalgebra, and recall the Cartan integers a; ; (i,j € I) of ®, see Section 2.5.2.
For all i € I, let (op.0q) .

G=q 2 =4q" (4.1)

where we recall the integer d; from Section 2.5.2. Following the notation in [Jan96, Chapter 0],

define a g-number i
" —q " (r—1)—2k
Mo ="—+=> a (4.2)
qi — 4 =0

for any r € N and i € I. Set [0],, = 0 for convention, and notice that [1],, = 1 for all i € I.
Naturally, a g-factorial, a g-analogue of the ordinary factorial, is defined recursively using

g-numbers by '

[r]ql = [1]%' e [T]Qi (4'3)

for any r € N and 4 € I. For convention, we set [0]!

q

r] - % (4.4)

. = 1. Then, for all r > s € Ny, we define

the g-binomial coefficients [
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Remark 4.1. If all roots o € @ are of the same length, then we may write [r]4, [T]lq and [’;]q.
In particular, this is the case when (a,a) = 2 for all @« € ® (and hence ¢; = ¢ for all i € I)
if the root system @ is of type An or Dy, that is, if g is the Lie algebra sly1 or sogp.

For all 4,5 € I, let Q; j(x,y) denote the non-commutative polynomial in two variables = and y
defined by l—ai,

2 1—a;;

Qi,j(xvy) = Z (-1)° [ ) (2%

] R Vi (4.5)
s=0 qi

Recall the Kronecker delta function §; ; for all 7,7 € N in Section 2.1.1. Set IV = {hi ‘ 1€ I},
and let QY = ZITY be the coroot lattice of g. The algebra U(g) has the following deformation.

Definition 4.2 ([Jan96, Definition 4.3]). The quantised enveloping algebra Uq(g) is the
associative K(q)-algebra with generators E;, F;, and Ky, for alli € I, h € Q" satisfying relations

(U1) Ko=1 and KpKp =Kpyp foral h, B €QV,
(U2) KpE; = ¢*WEK), forallicl, heQV,

(U3) KyFy=q¢ “MWEK, foralicl, heQV,

K, —K! :
(U4) E;F; — F;E; = 5i7j17f1 foralli,j €I, and where K; = Kdz_,

i — 4q;
(U5) Q;;(Ei,Ej) =0  fori,j el wherei# j,
=0

(U6) Q,;(Fi, Fy) fori,j € I where i # j.

The relations (U5) and (U6) are referred to as the quantum Serre relations. The quantised
enveloping algebra U,(g) has a Hopf algebra structure which is a deformation of the Hopf
algebra structure of U(g), see [HK02, Section 3]. The formulas for the coproduct A, counit ¢,
and antipode S of U, (g) can be given explicitly.

Proposition 4.3 ([Jan96, Proposition 4.11]). There is a unique Hopf algebra structure on U, (g)
such that

AE)=E®1+K;®E, e(E) =0, S(E)=-K 'E,
AF)=E®K '+1®F, e(F;) =0, S(F;) = —FK;,
A(Ky) = K, @ Kp, e(Kp) =1, S(Kp)=K;*

forallicI, he@V.

Sketch of Proof. A complete and detailed proof is provided in [Jan96, 4.8-4.11]. For this,
one considers the algebra ﬁq(g) defined by the same generators FE;, F;, and K}, for all i € I,
h € @V but where we impose only the relations (U1)-(U4). There is a canonical surjection
Uq(g) — Uy(g). One first shows that Uq(g) has a Hopf algebra structure given by the same
formulas by verifying that the relations are preserved under A, ¢ and S. To then show that

U,(g) has a Hopf algebra structure, one takes the quotient of U, (g) over a suitable two-sided
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ideal Z C U,(g) which adds in the quantum Serre relations (U5) and (U6). Such an ideal
satisfies the properties

AZ) CUy(9) ®IT+I®Uy(g), e(T)=0, S@IT)CT

which means that 7 is a Hopf ideal, and hence induces a Hopf structure on Uy(g). O

The following lemma is proved by a check using the relations (U1)-(U6).
Lemma 4.4 ([Jan96, Lemma 4.6]).

a) There is a unique algebra automorphism w of Uy(g) such that w(E;) = F;, w(F;) = Ej,
and w(Ky) = K_p, for alli € I, h € QV. Additionally, one has w? = idy, (g)-

b) There is a unique algebra antiautomorphism v of Uq(g) such that o(E;) = E;, o(F;) = Fj,
and 1(Kp) = K_y, for alli € I, h € QV. Additionally, one has 1*> = idy, (g)-

For all i € I and r € Z, set

T — g "KL

k' e (4.6)
qi — q;

[Kir] =

Proposition 4.5 ([Jan96, 4.4(6),(7)]). For alli € I and r € N, we have

E;F] = F'E; + [r], F/ ' [Ki; 1 — 7], (4.7)

and
FE! = E[F; — [r]g Bl [Kir — 1. (4.8)

Proof. Tt suffices to give a proof of Equation (4.7) by induction on r € N. We will require a
generalisation of the formula in [Jan96, 1.3(2)], that is, for all r,s,t € Z and ¢ € I one has

[s + tlg, [Kis 7] = [slq, [ 7 + 1] + [tlg, [Kis7 — 5] (4.9)
Additionally, relations (U2) and (U3) respectively imply that (for all r € Z)
[Ki;r]Ei = F; [Ki;r+2] and [Ki;r]Fi = F; [Ki;r—Q].
Firstly, notice that Equation (4.7) holds when r = 1 since, from relation (U4), we can write
E,F;, — F,E; = [K;;0]
for all i € I. If we now assume that Equation (4.7) holds for some r € N, then inductively
K1)
= F(FE + [Ki0 ) + o By (R —(r +1)])
oIy [ K

-]

we get
EiFir+1 — (FTE +

FT+1E + [T+
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using Equation (4.9), since [r]q, [K;; —(r 4+ 1)] = [r + 1]q, [Ki; —r] — [K;;0]. We can then
apply the automorphism w from Lemma 4.4 a) to deduce Equation (4.8). In particular, we
use that (for all r € Z)

o([Kr]) = =[5 1) :
Let U be the Hopf subalgebra of U,(g) generated by the elements E;, F;, and KZ.jEl for alli € 1.

Remark 4.6. The Hopf algebra U coincides with the Hopf algebra Ug(g) in the case that the
root system @ is of type Ay or Dy, that is, if g is the Lie algebra slyy1 or soon.

Now, let Uy(g)", U,(g)~ and U,(g)® denote the subalgebras of U,(g) generated by the sets of
elements {El ‘ 1€ I}, {FZ } 1€ I}, and {Kh ’ h € QV} respectively. Moreover, let ° denote
the subalgebra of U generated by the set of elements {Klil ‘ S I}. By [Jan96, 4.21], the
algebras U,(g) and U both have a triangular decomposition, similar to that of the Lie algebra g

in Equation (3.5), in the sense that the multiplication maps give isomorphisms of vector spaces

Ug(g)” @ Ug(0)’ @ Uy(g)t = Uylg) and  Uy(a)” @U@ Uy(g)" = U. (4.10)

It follows from relation (U1) that U° is a commutative algebra.

Remark 4.7. Let K(q)[Q] be the group algebra of the root lattice @ = ZII of g. By [Koll4,
3.1, p.410], there exists an algebra isomorphism K(q)[@Q] — U such that o; — K;. Hence,
for any p € @, we write

K, =[[ &> (4.11)
el

if =) ;c;nia; for n; € Z. With this notation, the relations (U2) and (U3) take the form

K,Ei=¢»*EK, and K,F,=q "9EK, (4.12)

respectively, for all i € I, p € Q.

For each i € I, let w; € h* denote the fundamental weight which, by definition, is given by

for all 4,7 € I. Define the weight lattice of ® by A = . _; Zw;. For any U,(g)-module V' and
weight A € A, let

VE={veV| Kw=+¢"y, vheQ'} (4.14)

denote the corresponding weight space. In particular, with respect to the left adjoint action of

Uy(g) on itself, one obtains a @-grading of U,(g) (and of U). For instance, we obtain

Ue)" = @ Uyla)f  and  Uye)” = P Uslo)=,. (4.15)
peQt peQt
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Using Proposition 4.3 explicitly, one calculates that

ad(F;)(u) = Bju — KjuK; ' E;, (4.16)
ad(F;)(u) = (Fju — uF;) K;, (4.17)
ad(K;)(u) = KjuK; ! (4.18)

for all i € I, u € Uy(g). Hence, from Equation (4.18), we can define
Ug(9)y = {u € Ug(g) | KiuK; " = ¢¥u,Vi € I} (4.19)

for all u € Q. We also write Uq(g)iE = Uy(9), NUy(g)*. The algebra U, is defined analogously.

4.2 Representations of U, (5[2)

In this section, we restrict to the quantised enveloping algebra of the Lie algebra sly. In this
case, we have I = {1} since the root system of sly contains only one simple root, namely «; € II.
To simplify notation, we write the elements E, F', K instead of Eq, Fi, K}, in Definition 4.2.
Then, the algebra U, (5[2) is generated by the set {E, F, K, K~'} with the relations

(U1) KK '=1=K"K,

(U2 KEK™' = ¢°E,
(U3 KFK' =¢%F,
K- K1

U4’ EF - FE =
1) o

which are special cases of the relations (U1)-(U4). The algebra U, (sl2) is the most fundamental

example of a quantised enveloping algebra. Indeed, for any semisimple Lie algebra g and i € I,
the subalgebra of U, (g) generated by the set {E;, F;, Kzﬂ} is isomorphic to Uy, (5[2).

By [Jan96, Lemma 1.4], the algebra U, (5[2) is spanned as a K(q)-vector space by the set of

monomials

{F'KE" | a,be Ny, d € Z} (4.20)

Moreover, the set (4.20) becomes a basis of Uy (sl) by the Poincare-Birkhoff-Witt Theorem, see
[Jan96, Theorem 1.5]. We will observe this Theorem for a general algebra U, (g) in Section 4.5.

The weight lattice for the Lie algebra sly is Zw;, where w; denotes the fundamental weight
corresponding to the simple root a;. Hence, for any U, (5[2)—module V and m € Z, we define

the weight spaces
Vi={veV | Kv==+q"} (4.21)

of V. In particular, for all m € Z, the defining relations (U2') and (U3') of U, (5[2) imply that

EVEcVE, and FVEcVE, (4.22)
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Theorem 4.8 ([Jan96, Theorem 2.6]). For each n € Ny, there are simple Ugy(sly)-modules

V(n,+) with basis {vF,... v} such that, for 0 <i <n, we have
+ o . a4+ .p
n o 4 n viy, i<, " :t[z] [n—l—l—z] vy ifi>0,
Kv =+¢"""v", Fv=(" Ev; = q at

0 if i =n, 0 if i = 0.
Moreover, each simple U, (5[2)-m0dule of dimension n+ 1 is isomorphic to V(n,+) or V(n,—).

If the sign in the first formula of Theorem 4.8 is always a plus, the U, (5[2)—module is type-1.

Let V be a finite-dimensional U, (5[2)—rnodule. By [Jan96, Proposition 2.3], V' is the direct sum
of its weight spaces. In addition, by [Jan96, Theorem 2.9], V' is a semisimple U, (5[2)-module.

4.3 Lusztig automorphisms of U,(g)

Definition 4.9 ([Jan96, 8.6(1)]). The divided powers of the elements E; and F; fori € I are

B0 _ E;" @ B

B P O

(4.23)
respectively, for each r € Ny.

For each finite-dimensional Uj(g)-module V, there exist linear isomorphisms 7; on V for i € I.
These isomorphisms and their inverses are defined explicitly in [Jan96, 8.6(2),(5)]. Observe by
[Jan96, Proposition 8.13] that the isomorphism 7; induces an automorphism of U,(g) (which is
also denoted T;) such that, for all u € Uy(g) and v € V, one has

Ty(uv) = Th(u)Ti(v). (4.24)

Definition/Proposition 4.10 ([Jan96, 8.14]). For each i € I, the Lusztig automorphism
T; is the algebra automorphism of Uy(g) satisfying the relations

Ti(Kp) = Ko,y = T, (Kn)

for allh € QV, and
Ty(E:) = -FK;, T, '(E)=-K 'F,
T,(F)) = —-K; 'E;, T YF) = —E;K;.

)

Additionally, for all i,j € I with i # j we have

_a/L"j _0/17]
R = S B OEED, T = S e
r=0 r=0
—a;,; —Qai,j
TZ(FJ> _ Z (_1)rq:Fi(7")FjFi(*ai,j*T)7 Tz_l(F]) _ (_UTQIF;(*“LJ‘*T)FjFi(T).
r=0 r=0
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Note also that the inverse satisfies
T-'=10T,0. (4.25)

(2

where ¢ is the algebra antiautomorphism defined in Lemma 4.4 b). Lusztig shows that the

algebra automorphisms T;: Uy(g) — Ug,(g) satisfy certain braid relations.

Lemma 4.11 ([Jan96, 8.15(1)]). For all distinct i,j € I, the Lusztig automorphisms T; and Tj
of Uqy(9) satisfy the equality

where the number of factors on both sides is equal to the order of s;s; € W.
Remark 4.12. If a; j = 0, then T; and T} commute. For a; ; = —1, we have T;T;T; = T;T;T}.

We may deform the Lie bracket [—, —] of g to the s-commutator [—, —| in the algebra U,(g), for
any s € K(q). In most cases, we have s € {qp ‘p =-1,0, 1}. For any two elements x,y € Uy,(g),

we define
[x,y]s = zy — syz. (4.26)

By Definition/Proposition 4.10, for i,j € I with a;; = —1, we have

Ti(E)) = [Ei, Bj) 0 = T} (B, (4.27)
and

T,(Fy) = [Fy, F], = T; ' (F). (4.28)

For any w € W with reduced expression w = s;, ---s;, for t € N, we obtain the well-defined

algebra automorphism
Tw =T - Tit (4.29)

of Uy(g). It follows from the formulas in Definition/Proposition 4.10 that
Tw(Kh) = Kw(h) (430)

for any w € W and h € QV. Now, suppose that X C I is a finite subset. Consider the Lusztig
automorphism 7},, where wx denotes the longest element in the parabolic subgroup Wx C W.

One determines the action of T3, on the generators corresponding to the subset X as follows.

Lemma 4.13 ([Kol14, Lemma 3.4]). Let (X, 7) be a Satake diagram, with wx (o) = —a(;) for
all i € X. Then, for all i € X, one has

Tux (Ei) = —FriyBKopy,  Tux(F) = K 3 Eray, T (K) = K,
For any finite, strictly ascending (or descending) sequence of integers i1, ...,i; € I such that

Tjy1 — ij| =1 for 1 < j <k, it will be convenient to introduce the notation

Til,...,i = j—lil e le

and 1! =TT (4.31)

k 11500k
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4.4 Lusztig-Kashiwara skew derivatives

The defining relation (U4) of the quantised enveloping algebra U, (g) implies that, for any element
u € Uy(g)™, there exist elements 7;(u), ;7(u) € Uy(g)™* for each i € I such that

ri(u)K; — Ki_ll-'r(u).

u, F;| = -
[u, ;] =

(4.32)

We refer to the linear maps ry,;r: Uy(g)™ — Uy(g)™ as the Lusztig-Kashiwara skew derivatives,

see [Lus94, 1.2.13]. As the name suggests, the maps r; and ;r both satisfy a skew derivation
property.

Lemma 4.14 ([Jan96, Lemma 6.14 a)]). For each i € I, the maps ri,;v: Uy(g)™ — Uy(g)™ are
uniquely determined by r;(1) = 0 = ;r(1), r(E;) = 6, ; = ;v(Ej) for all j € I, and the relations

ri(un) = wr (') + ¢* 0D (u)! (4.33)

and
ir(uu') = q(“’ai)uﬁ(u/) +ir(u)d’ (4.34)

for allw € Uy(g); and v’ € Uq(g):, where w, 1’ € Q, pu,p’ > 0.

Proof. The relation 7;(1) = 0 = ;r(1) for all i € I follows immediately from the trivial
commutator [1, F;] = 0 and Equation (4.32). Similarly, if u = E; for some j € I, then using
Equation (4.32) the defining relation (U4) implies that r;(E;) = 0;; = ;r(E;) for all i € I.
Let u € Uy(g)} and v’ € Uq(g); for some p, 1’ € Q, p, 1/ > 0. For all i € I, observe that

[uu', FZ] = wu'F; — Fyuu' = u[ul, FZ] + [u, FZ] o
and, hence, using Equation (4.32) we get

ri(ud ) K; — K e (ud) = u(ri(ul)Ki - K;Hr(u’)) + (ri(u)Ki - Ki_lir(u))u/

(u ri(u)K; + m(u)Kiu') - (uKi_lir(u’) + Kflir(u)u')

= (u ri(u') + q(ai’“/)m(u)u’> K; — Ki_l (q(ai’“)uir(ul) + ﬂ’(u)ul)

since uK; ! = q(“’ai)Ki_lu and K;ju' = ¢-*)u/'K; by (4.19). We then deduce Equations
. . -1 .
(4.33) and (4.34) by comparing the coefficients of the elements K; and K; * on both sides. []

One shows that the following result holds, by an inductive argument.

Lemma 4.15 ([Jan96, Lemma 10.1]). For alli,j € I and u € Uy(g)™, we have
riojr(u) = jrori(u). (4.35)
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Proof. Both sides of Equation (4.35) coincide for u = 1 (since r;(0) = 0 = ;7(0) for all
1el ) and also for uw = Ejy for any k € I, by Lemma 4.14. Now, since both sides are linear
in u, we only need to show that, if Equation (4.35) already holds for some u € U,(g),; and
u € Uq(g);“, where u, 1/ € Q, p, 1/ > 0, then it holds for the element uu’. Indeed, using
Equations (4.33) and (4.34) and the induction hypothesis, for all i,j € I, we get
r; 0 jr(un) =1 (q(aj”u)UjT'(Ul) + jr(u)u’>
— g (ury o r)(u) + g (a)yr(u)) + gr(u(a) + g0 i o) )
= ) + g u(r o ) (w) + @) (e o )l + g () e
= jr(u ri(u') + q(a"’“/)m(u)u'>
= jror;(uu')

-, O

when u € Uy(g),} and v’ € Uq(9),

since 7;(u) € Uy(g)7_,,. and jr(u') € Uq(g):/

n—oy —ay

Using the antiautomorphism ¢ of U,(g) from Lemma 4.4 b), the skew derivatives r; and ;r can

be related by a similar inductive argument to the one in the proof of Lemma 4.15.

Lemma 4.16 ([Jan96, Lemma 6.14 c)]). The map ¢ intertwines the skew derivatives r; and ;r,
that is, for alli € I and u € Uy(g)* we have

vori(u) =;rou(u). (4.36)

4.5 The Poincaré-Birkhoff-Witt Theorem for U,(g)

Recall the Weyl group W of g. Let the word wy = s;, ---s;, be a reduced expression for the
longest element of W, where ¢ € N is the length of wyg € WW. Each subword s;, ---s;, for 1 <j <t

is a reduced expression in W, since it is an interval within a reduced expression. By (4.29), and
_7 -1 _ -1
i ﬂ1,,..,z and Tsil“'s = ITih“

using the notation in (4.31), we have T, ...s . ;, for all j.
J

i j i

Using the subwords of wg € W, we may now write the ¢ distinct positive roots of g explicitly as
a;, if j =1,

b = . (4.37)
Siy o+ Sy, (o) for 2 < j <t

Then, following [Jan96, Proposition 8.20], we may define positive root vectors Eg, € U,(g)" by

E; if j =1,
Eg, = (4.38)
71! (B;,) for2<j<t,

Ulyenlj—1

and similarly, we may define negative root vectors F, € Uy(g)~ by

F; if j =1,
Fs, = | (4.39)
Tiy,.i; (Fy;)  for2<j <t
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For all integers m > 0, one sees that Egj € Uy(g)* and F, gz € Uy(g)~. Moreover, for all sequences

mi,...,m; of non-negative integers, there are also products
Egt--Ept e Uhg)t  and  Fgt--- Fp' € Uy(e)™

By the Poincaré-Birkhoff-Witt Theorem [Jan96, 8.24], such products form a PBW-type basis of
U,(g)™ and Uy(g)~ respectively. For a proof of the following Theorem, refer to [Jan96, 8.21-8.24].

Theorem 4.17 (PBW-Theorem for U,(g)* and U,(g)~). The ordered monomials

Er=E} - B} (4.40)
for T = (il, e ,it) € N form a K(q)-vector space basis of Uy(g)". Analogously, the ordered
monomials ; ;
Fg=1Fg-Fp (4.41)
for T = (j1,-..,jt) € N§ form a K(q)-vector space basis of Uy(g)™ -

In view of our application in Chapters 5 and 6, for the remainder of this section, we only observe

the special case where g = sogy for fixed N > 4 and determine the root vectors of U = Uy(so2n).

4.5.1 Root vectors of U,(s02y)

Consider the set I = {1,...,N}, and let 7: I — I be the non-trivial diagram automorphism
given by
1 for1<i< N -2,
(i) ={N ifi=N-—1, (4.42)

N -1 if i = N.
Define reduced words o; for 1 <4 < N — 1 in the Weyl group W of the Lie algebra sosn by

b Si* ' SN-28ri(N)Sri(N—1)SN—2 8 for 1 <i < N —2, (4.43)
SN_1SN ifi=N-—-1.

Lemma 4.18. The word
Wg =01 ""ON—20N_-1 (4.44)
is a reduced expression for the longest element in V.

Proof. We need to show that the element wg € W maps all of the positive roots to negative
roots in soon. It suffices to show that all of the positive simple roots, namely «; for

1 <7 < N, map to the negative simple roots. Firstly, we have

—a if j € {N—1,N}
on-1(aj) = {an—2+an_1+ay ifj=N—2
a; if j < N —2.
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The action of each reduced word o; on the positive simple roots is given by

a1+ 2(a; + - +an_2) Fan—1 +an ifj=i-1

oi(aj) = § —oi —2(vip1 + - +ay2) —ay1—ay  ifj=i
aT(j) ifj ¢ {’L - 1, Z}
In particular, observe that oj0;41(j) = —a; for 1 < j < N —2. Then, on the simple roots

aj for 1 < j < N — 2, we calculate
o1+ oN—20N-1(aj) = 01+ 0j0j11(ag) = o1+ 051 () = —ay.
———
=id if j=1
Alternatively, for j € {N — 1, N} we get
o1 ON—20N-1(0¢j) =01 ON—_2(—0) = —QN-2(j).

This implies that
U)g(Oéj) == —OéTN—z(j)

for the diagram automorphism 7, and hence by [Hum72, p.51, Lemma A], the reduced

expression oy - - on_20n_1 for wy is indeed the longest element of W. ]

Recall that we may write the reduced expression (4.44) as wog = $;, - where each i; € I

©Sin(N—1y

for 1 < j < N(N —1). Rewriting formula (4.37), we obtain the N(N — 1) distinct positive roots

o ifj=1,

B; =
T sy () for2 < SNV - 1),

of soon. This can now be made more explicit. For all ¢ € I, define the non-negative integers
M;=(i-1)2N —i) and P =M;+ (N —1). (4.45)

In particular, notice that My =0, P = (N —1), My =2(N —1), Py_1 = N(N —1) — 1, and
My = N(N — 1) = Py. Additionally, for M; + 1 < j < M;;q for some ¢ < N — 1, define the

integers
P—3j for M; +1 < j < P,
ni,j = ' J ‘ ‘ (4.46)
j—(Pi+1) for P+1<7< M.
Notice that n; j € {0,..., (IN—1)—i} for all j. Using (4.45) and (4.46), we may write the distinct
positive roots ; more explicitly as a sum of the simple roots with non-negative coefficients.
Indeed, for M; +1 < j < M4, for some i« < N — 2, we calculate that

OZ++OZ AN fOFM+1§§P,
BJ _ 1 (N 1) Ny, 5 ! ] ! (447)
(Oéq; —I—---—i—OéN_Q) + (OCN—ni,]- +"'—|—04N) for P, +1 <7 < Miyq,

and then we always have By(y_1)-1 = ay-1 and By(ny_1) = an.
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Ezxample 4.19. Consider the Lie algebra sog, that is, let N = 4. The root system of sog
contains the simple roots ai, s, as, and a4, and has a Dynkin diagram of type D4. By

Lemma 4.18, the longest element in W is the word with the reduced expression
wo = 010203 = (815253545251)(52545352)(8354).
The 12 distinct positive roots, which can be obtained directly from formula (4.47), are

B1 = aq, Ba = o1 + ag + oy, Br = az, Bio = az + a3 + ay,
P2 = a1 + ag, Bs = a1 + az + ag + ou, Bs =as+a3, P11 =as,

fs=ar+as+as, Pe=o1+20+az+as, Po=ar+as, [i2=au.

We want to rewrite the root vectors (4.38) and (4.39) in the case where 3; contains a1 with a

non-zero coefficient, see Corollary 4.21. To prove this, we need to apply the following Lemma.

Lemma 4.20. For 1 <k <I< N —2, we have

Tk_,},,N—2TJ§,1.,.,l+1(El) =T, NTn-2,. k+1(Ex) (4.48)

and _ _
Tho..v—2TN 01 (F) = T3 NTNLo i (FR). (4.49)

Proof. We prove Equation (4.49) by induction on [, and then the proof of Equation (4.48)
is analogous. Firstly, since TiTij1 = Tfﬁﬂ}- for a; ; = —1 by Remark 4.12, observe that

TN-oTNTN-1(Fn—2) = Tn2INTR o (Fno1) = Ty Tn—2(Fn-1) = T Ty (F—2)
which verifies Equation (4.49) for k =1 = N — 2. Then, for 1 < k < N — 3, we have
Tio....N-2TNTN-1(Fn-2) = T n-sTR 1 Ty (F-2) = TyL TR TRL, g (F).

This completes the proof of Equation (4.49) for the case I = N —2. Inductively, now assume
that (4.49) holds for all k£ <, for some [ > 2. Then, for 1 <k <[—-1< N — 3 we get

Ty, .N—2Tn, 1(Fi—1) = Th, . N—2Tn. 41T (F)
=T, i1 T i1, NT—2,. 141 (F)
=77 (Tk,...,N—QTN,...,l-H(Fl))

—1 -1
= ﬂ,...,NTN72,...,k+1(Fk)

as required, using our inductive assumption. This finishes the proof. O

Since o;(a;) = aq(j for ¢ < j, one sees that the simple root a; is contained with a non-zero
coefficient only in the roots §; for 1 < j < 2(N — 1). Moreover, the corresponding root vectors

can be rewritten as a composition of (inverse) Lusztig actions on E; (or FY).
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Corollary 4.21. For 2 < j <2(N — 1), the root vector Eg, can be written as

Tj..o(E for2<j<N-1,
By =] " 2(E1) ' (4.50)
Ton—j. . NIN—2,. 2(E1) for N<j<2(N-1),

and the root vector Fﬁj can be written as

T ! (F or2<j<N -1,
Fp, = 112( 1) 1 f >J = (4.51)
T, NT]§72M’2(F1) for N <j<2(N-1).

2N—j,...,
Proof. Tt follows from (4.27) and (4.28) that formulas (4.50) and (4.51) hold for 1 < j < N.
Then, by setting k¥ = 1 in Lemma 4.20, formulas (4.48) and (4.49) give us the remaining
root vectors for N +1 < j < 2(N —1). O

Crucially, all of the remaining root vectors in U* (and U ~) may be expressed without writing
E; (respectively Fy) or T 111' We generalise Corollary 4.21 to a complete list of the positive and

negative root vectors in U as follows.

Recall the integers M;, P; and n; ; given by formulas (4.45) and (4.46), where ¢ < N —1 is fixed,
and M; +1 < j < M;yq. For each of the 2(N — ) distinct positive roots j3;, the root vectors
Eg, and Fp, defined in (4.38) and (4.39) may be rewritten. For i < N — 2, we have

E; if = M;+ 1,
Eg =14 " T (4.52)
TN (n; ;+1),..i+1(Ei)  for Mi +2 < j <P,
and
F, if =M +1,
Fg=93__, (4.53)

F;) for M; +2<j <P,

Also, for i < N — 3 and P; < j < M;;1, we have the root vectors

Eg, =TN_n, ;.. .NTN—2, . i+1(Es), (4.54)
and _ _
Fp, = TNini,j,...,NTN£2,...,1'+1(Fi)' (4.55)

Finally, we always have the root vectors

EBN(Nfl)fB =TNn(En-2), E5N<N71)71 =EN_1, (4.56)
EﬁN(N—l)—Q = TN*lTN(EN*2)7 EﬁN(N—l) = EN)
and .
F,BN(N—l)_g = TN (FN—2)7 FIBN(N—l)—l = FN—l; (4 57)
—1 -1 .
FBN(N71)72 =Ty Ty (Fn-2), FﬁN(Nfl) = Fy.
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Ezample 4.22. We continue Example 4.19, in which we observed the 12 distinct positive
roots (3; of the algebra U = U,(sog). Using formulas (4.52)- (4.57) directly, we now obtain

the positive root vectors
Eg, = En, Eg, = TyTy(Er), Eg, = E, Eg,, = 15Ty (Es),
Eg, = Ty(E1), Eg, = T3TyTo(Er), Egy =T5(E2),  Eg, = Ej,
Eg, = T3T5(Ey), Eg, = ToT3TyT5(Ey), Eg, = Ty(E»), Eg,, = Eu,

and, similarly, the negative root vectors

Fg, = I, F/34:T4_1T2_1(F1)7 Fg, = F3, F,310:T3_1T4_1(F2>7

Fﬁz = T2_1(F1)7 Fﬁ5 = T?;_ITZL_ITZ_I(FI)v Fﬂs = T?)_I(F2)7 Fﬁu = F3,
Fgy =Ty ' Ty ((F1),  Fpg =Ty T3 ' T, Ty (R, Fgy =Ty '(Fa),  Fp,, = Fu.

4.6 Quantum symmetric pairs

Let g be a complex semisimple Lie algebra, and recall that I C N denotes the indexing set
for the nodes of the Dynkin diagram of g. Recall the notion of a Satake diagram (X, 7) from
Definition 3.3, where we consider a subset X C I and let 7: I — I be an involutive diagram
automorphism. In particular, let

T(X)=X (4.58)
and
wx (aj) = =) (4.59)
for all j € X, where wx € Wx denotes the longest element of the parabolic subgroup Wy of
the Weyl group W of g corresponding to the subset X.

Recall the map H‘h = —wx o7 in (3.17) where 6 is an involution of g determined by the Satake
diagram (X, 7). By (3.17), the involution # maps the coroot lattice QY to itself. Define

@) ={heQ"|0o(h) =h} (4.60)
and let U,(g)) denote the subalgebra of U,(g)? generated by the elements K, for all h € (QV)°.

Equivalently if U,(g) = U, for the involution © induced by 6 in (3.14), we may denote

ug = K(Q)<KiKT‘§

L K ‘ieI\X,jeX>. (4.61)

Let Mx be the subalgebra of U generated by all Ej, F}, K;El for j € X.

Definition 4.23 ([Koll4, Definition 5.1]). Let (X,7) be a Satake diagram. For any set of
parameters ¢ = (¢;)ien\ x € (K(q)*)"\X, let B, denote the subalgebra of Uq(g) generated by Mx,

Uqy(9)) and the elements
Bi = F; — ¢Tuy (Ero) K" (4.62)
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forallie I\ X.
The main property of the algebra B is that it is a right coideal subalgebra of U,(g), which by

Remark 2.41 means that
A(Be) € B. @ Ugy(g). (4.63)

In order for B. to be a quantum analogue of U (&), where € = g% is the fixed Lie subalgebra of

the Lie algebra g as defined in Section 3.1, it must satisfy the property
Be N Uy(9)° = Uy(9)g- (4.64)
By [Koll4, Lemma 5.3/5.4], this property holds only if the parameter c is contained in the set

NX ¢i = Co(p if (ai,wX (aT(i))) = O}. (4.65)

C= {C = (c)ienx € (K(9)*)

The algebra B for ¢ € C is called a quantum symmetric pair coideal subalgebra of U,(g),

and the pair (Uq(g), Bc) is often referred to as a quantum symmetric pair.

Remark 4.24 ([KY21, Remark 2.8]). Quantum symmetric pairs additionally depend on a
second family of parameters s = (s;);cr\x in a certain subset S C K(q)"\X, as given in
[Kol14, (5.11)]. The corresponding coideal subalgebras are then denoted by B.s. Using
[Kol14, Theorem 7.1], the algebra Bcs is isomorphic to B for any s € S. It suffices to
consider the case where s = 0, that is, s; = 0 for all ¢ € I\ X, and Be = Bc is often

referred to as standard.

We extend the definition of the elements B; in (4.62) to all i € I by writing B; = Fj for j € X.

Theorem 4.25 ([Let02, Theorem 7.4]). Let ¢ € C. The algebra Be is generated over Uy(g)IM x
by the elements B; for i € I subject to the relations

KiB; = ¢ “MWB,K, forallheQV,iel,

Kj—K;! . .

E;B; — BiEj = i j———1 forallje X, iel,
i — 4,

Qi (Bi, Bj) = Cij(c) foralli,jel,i#j.

The formulas for the elements C; j(c) in Theorem 4.25 have been explicitly determined in general,
see [BK15, Theorems 3.6-3.9]. In particular, if we assume that ¢ € I\ X with 7(i) = 4, and
j € I\ {i} so that a;; = —1, then, by [BK15, Theorem 3.9, Case 2], we have

q?CiT‘j(Zi)Kj + quqi_QCijT(Zi)Kj_l

(@ —a ") (e —a; ") (4.66)

Cij(c) = qiBjciZ; +

where we define
2i =~y (T (Br) ) K K7 (4.67)
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Very Non-Standard Quantum soopn_1

In Proposition 3.10, we saw that the Lie algebra sosn_1 may be embedded into the Lie algebra
s0on as the fixed Lie subalgebra with respect to an involution 6 given in Lemma 3.9. The
universal enveloping algebra of sogny_1 already has a standard quantum analogue U,(soan—1),
see Section 4.1. However, this algebra is not a subalgebra of U = U,(sozy) in any canonical
way. More precisely, one may show that U,(soan—1) cannot be embedded as a Hopf subalgebra

into U. We therefore look for an alternative quantum analogue inside U.

Recall the theory of quantum symmetric pairs that we developed in Section 4.6. In particular, we
obtain an algebra B, which is a quantum analogue of the enveloping algebra U (). For g = soa
and € = soon_1, we take the subset X =T\ {1} of I ={1,..., N}. Let Mx be the subalgebra
of U generated by all F;, F; and Kjil for 7 € X which, by construction, is isomorphic to the
algebra U, (soan_2). By Definition 4.23, the algebra B, is the coideal subalgebra of U generated
by Mx and the element

By = F — 1Ty, (B1)K[ ! (5.1)
depending only on a parameter ¢; € K(g)*. The algebra B, satisfies the coideal property (4.63).

Definition/Remark 5.1. We refer to the algebra B, as the very non-standard quantum
deformation of U (502 N—1), distinguishing it from the non-standard quantum deformation
of U (502]\/,1) that was introduced by A. Gavrilik and A. Klimyk in [GK91]. Indeed, the

Gavrilik-Klimyk algebra is also a quantum symmetric pair coideal subalgebra, but inside

Uy(sIn). It corresponds to the Chevalley involution on sly.

5.1 Generators and relations of B,
In terms of its generators, the coideal subalgebra B, of U can be written as the algebra
B = <Bl,Ej,Fj,Kf1 ’ je X>. (5.2)

Recall, from Section 4.4, the Lusztig-Kashiwara skew derivatives ;r,r;: U™ — U™ for each i € I,

and from (4.67) define
Z1 = —r1(Twy (E1)). (5.3)
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By Theorem 4.25, the algebra B, is generated over M x by the element B; subject only to the
relations X;B; = B1X; for j € X \ {2} where X € {E, F, K*'} and, more interestingly,

F3B1 = B1Es, (5.4)

KBy = qB1 Ko, (5.5)

FIB) — (¢+ ¢ YFyB1Fy + B1F2 =0, (5.6)
B ZVKo + g Lor(Z)) KT

B2F, — (q+q ) B1FyBy + FB? = qey (ng1 4 ar2(21) (2q _z_f‘)’; L ) ..

Note that relation (5.7) is obtained from formula (4.66) since it is equal to the element C} 2(cq).
One can show that the algebra B is invariant under the Lusztig automorphisms 7} for all j € X.
Additionally, the elements By and Z; defined in (5.1) and (5.3) can be given more explicitly by
observing that

Twy(Er) =T, NTN—2,. 2(E1). (5.8)
Lemma 5.2 ([BW18, Theorem 4.2]). For j € X, we have

[B1, oy if j =2,

Bi otherwise,

>, B if j =2,
and T._I(Bl) = [Fo, By 5 _ (5.9)
By otherwise.

Tj(B1) =

Proof. Using (5.1) and (5.8), we write the element
By =F —caTs. NTn-o. 2(E1)K;
Using Lemma 4.11 (and Remark 4.12), for all j € X \ {2}, we have

+1 +1
;7 ol NTN-2,.2= T2 NTN-2. 20T .

Then, since TjjEl (%1) = X for all j € X \ {2} where X € {E, F, K*'}, it follows that
T:-'(B)) = B.

This proves the formulas in (5.9) for j # 2. Now, it remains to consider the case for j = 2.
By direct calculation, we have
To(B1) = To(Fi — a1Te, NTn—2,. 2(E1) K )
=Ty(Fy) — ClTQ([Ez, T3,...,NTN—2,‘..,2(E1)]q71K171)

= [Fl,F2]q —c1| = FoKo, To, NTN-2,. 2(E1)] Ky 'K

g-1
= (FM\F — g Fy) — (¢ T, T2, 2(EV)Fs — Ty NTn—o,. 2(E1)) K !
= (F - Csz,...,NTN—z,...,2(E1)Kfl)F2 —qFy(Fy — 61T2,...,NTN—2,...,2(El)Kfl)

= B1Fy — qFy By

and hence Ty(Bi) = [Bi, Fa),. A similar calculation proves that T, '(B;) = [Fp, B1],e O
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5.2 The standard filtration on B,

Let A be the subalgebra of U generated by M x and the element F}, that is, define the algebra
.A:<@JQK?1¢eLjeX>. (5.10)

The algebra A is generated over Mx by Fi subject to X;F1 = F1X; for j € X \ {2} where
X € {E,F, K*'} and, similar to (5.4)-(5.7),

EyFy = Fy By, (5.11)
KyFy = qF1 K, (5.12)
FiF — (q+q¢ YRR F+ Fi1F =0, (5.13)
F2Fy — (q+ ¢ YR FRF + FyFE = 0. (5.14)

Recall graded and filtered algebras in Section 2.2.2. The algebra A is Np-graded by the degree

function deg given b
unction deg given by deg(F1) =1, and deg(fj) =0

for all j € X where X = {E,F, K*'}. On the other hand, the algebra B, has an Ny-filtration
F, which we often refer to as the standard filtration, defined by the degree function on the

tors given b
generators given by deg(By) =1, and  deg(%;) =0

for all j € X where X = {E, F, K*'}. Let gr(.) denote the associated graded algebra of B, see
Definition 2.29. For any « € Fj(Bc) where k € N, we denote the image of z under the canonical
projection by the element Fiu(Be)

(¢

T E ———.
TS Fe1(Bo)

Now, similar to the triangular decomposition of U given in (4.10), the algebra A also exhibits a

triangular decomposition via the vector space isomorphism
AZU™ @ U@ MY (5.15)

for the subalgebras U = (KF'|i € {2,...,N}) and M¥ = (E;|i € {2,...,N}) of A. By

(5.15) we are able to write a basis of A using the following notation.

For any multi-index L = (l1,...,l,) € I"™, we denote the corresponding elements

FL::Fll"‘Flm and BL::Bll"'Blm

where we set B; = Fj for all j € X. Now, fix a subset
Lc|JIrm=ourvru...
m>0

such that {FL | L € L} is a basis of «/~. Note that there is some freedom when choosing £. By
the triangular decomposition (5.15) of the algebra A, the set {Fr|L € L} forms a basis of A
as a right U3 M%-module. Moreover, by [Koll4, Proposition 6.2], the set {By, | L € L} forms a
basis of B, as a right L{gM}L(—module. The defining relations of B¢ imply the following result.
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Proposition 5.3. There exists an isomorphism of algebras ¢: A — gr(Be) such that

p(F1)=B1, and  o(X)=X%;
for j € X where X € {E,F, K*'}.

Proof. We first verify that the defining relations (5.11)-(5.14) of A are preserved for the
associated graded algebra gr(B.) via the map . Indeed, we see that

EsBy = E3By = B1Ey = B By, KBy = KyBy = qB1 K2 = ¢B1 Ko,
and

FiBi — (q+q YRBIFy+ BiF; = F$B, — (¢+q¢ ) FRB1Fa + B1F =0=0.

Finally, we have

— R — —2
BI F—(q+ ¢ YBiFRB + ,B; = BiF>, — (¢ + ¢ \)B1 2By + FyB?

qra(21) Ko + q_lzr(zl)K21>
(q—q71)?

=qa <F231 +

=0=0.

Since the map ¢ is defined on the generators of A and extends multiplicatively, the defining
relations of A being preserved implies that ¢ is a well-defined algebra morphism. Moreover,
 is surjective since its image contains all of the generators of the algebra gr(B.). We now
claim that the set of all elements B;, where the multi-index L € £ contains a “1” k times
is a basis of the k" component of gr(B.) as a module over Ug/\/l}. It is sufficient to show

that the set
B, ={Br | L € L, L contains a “1” at most k times}

is a basis of the filtered subspace Fi(B.). Equivalently, for every k € Ny, we must have

Fi(Be) = Spanyo B (5.16)

By definition of the subspace Fj,(B.), one sees that the right side of (5.16) must be contained
in the left. We prove the opposite inclusion using the following induction argument. By
definition, the case k = 0 is true, so suppose now that k& > 1 and assume that the inclusion
holds for 0,...,k — 1 as an induction hypothesis. Now, consider an arbitrary monomial
which contains the element B; at most k times. This monomial can be written as a linear
combination of the By, for L € L, which consists of the element By at most k£ times, plus an
error term which must contain the B; fewer than k times, by the quantum Serre relations.
By the induction hypothesis, we can already write the error term as a linear combination,

and thus Fj(B.) must be contained in the right side. This proves our claim.

Then, since gr(B.) is a direct sum of all of its components, the set {By | L € L} is a
basis of gr(Bc) over UM %. Moreover, since the bases of A and gr(B.) have a one to one
correspondence, they must be isomorphic. Hence, the algebra homomorphism ¢ is injective

and, therefore, an isomorphism. ]
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By Lemma 5.2, the algebra isomorphisms T;: B, — B, for i € X restrict to linear isomorphisms
Fm(Be) = Fin(Be) for any m € Ny. Hence, the maps T;: B — B induce algebra isomorphisms
gr(T;): gr(Be) — gr(Be). Equation (4.25) and Lemma 5.2 now imply the following result.

Corollary 5.4. For any i € X, the algebra isomorphism ¢: A — gr(Be) is compatible with the

Lusztig automorphism T; in the sense that
poT;=gr(Ti)oe.

5.3 Root vectors for B,

Recall from Lemma 5.2 that the Lusztig automorphisms T; for i € X leave the algebra B,
invariant. In analogy to formula (4.51) for the root vectors of U ~, we define root vectors of B,
for je{1,...,N(N —1)} by

By ifj =1,
B if2<j<N-1,
B,Bj - Ji 2 ( 1) . ' =7 ‘_ (517)
T2N*j7~..,NTN72,...,2(Bl) if N <j<2(N-1),
s it j > 2(N 1),

By construction, the root vectors Bg, have lowest weight component Fp, with respect to the left
adjoint action of U". Moreover, the terminology root vector for Bg; is justified by the following

Proposition and comparison with the classical case in Section 3.3.3.
Proposition 5.5. For j € {2,...,2(N — 1)}, the root vectors Bg, in (5.17) can be written as

Fj,...[F2,Bi]g...], if2<j<N-1,
Fy,[Fn-2,...[F2, Bilg...]], ifj=N

Fn,[Fno1, [N, [F2, Bilg. . Jalg],  #i=N+1,

I, on—r1(Fan—j) Tnty  5(B1)], if N+2<j<2(N-1).

oy
=
I

(5.18)

[
il
S

q

Proof. For 2 < j < N + 1, Equation (5.18) follows from Equation (4.25) and Lemma 5.2.
In the case that N +2 < j < 2(N — 1), we get
- -1
Bﬁ T2N —4y, N—2 N (Bl)
-1 1 -1
=THn_ —j,.,N— 2([TNN 1(FN 2), TN—B,...,Q(Bl)]q)
———

=id if N=4
= T;]\}—j,...,N—Z% ([TN,Nfl(FN%)vTﬁiQ,...,z(Bl)](J
————
=id when j=N+2
= [Tw,..on—j+1(Fan—j), Ly 5(B1)],

making repeated use of Equation (4.25). O
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Proposition 5.5 allows us to identify the limit of the root vectors Bg, for ¢ — 1. We will only
provide an informal discussion, but the mathematical arguments can be made precise using the

notion of non-restrictive specialisation [CK90], [HK02], see also [Koll4, Section 10].

Recall the notation from Sections 2.6.1, 2.6.2, and 3.3.3. By Equation (3.32), the generator
B; € B, (with ¢ — 1) is a g-analogue of the root vector V2by € s09N_1 corresponding to the
root 1. Similarly, the generators F; € B, for i € X are g-analogues of the Chevalley generators
fa; € 502y, and hence of f,, | € sogn_1, if i < N — 1. Therefore, the first equation in (2.68)
shows that ng for 1 < j < N —1 are g-analogues of the elements \/ibj € s0on_1. In particular,

Bgy_, = T&£1,...,2(Bl) (5.19)

is a g-analogue of the Chevalley generator e, , € soan_1, see also Equation (3.33). Similarly,
by Equation (3.34),
By =Tx'Tyly »(B1) (5.20)

is a g-analogue of the Chevalley generator f,, , € soony—_1. Then, by the third equation in
(2.68), the root vector Bg,, has the limit

[fny,Q,ny,l] = _\/§CN—2 € 502N -1

for ¢ — 1. Moreover, for 2 < k < N — 2 the element T, +1(F)) specialises for ¢ — 1 to

()N BN, — Enyron, fax)

(~)N*(Enspn—1 — Ban-14)

(DN "*n(Eni(h-2)n—2 — EBan—3-1)

[" ' [fak7fak+1] N -afaN]

in sopy. Hence, the root vector Bg, for N +2 < j < 2(N — 1) specialises for ¢ — 1 in s0ay_1

to
(DN [ Exy o v — Ban—a o1, V20y_o] = (-1)N"ED/2¢; 4

where we take k = 2N — j. The above discussion is now summarised in the following Corollary.
Corollary 5.6. Letl € {1,...,N —1}. In the limit ¢ — 1, one sees that:

(i)  the root vector Bg, specialises to the element V2b; in soon_1, and;

(1)  the root vector Bﬁ(N_1)+z specialises to the element (—1)""'/2cn_; in soan_1.

Let QYy = Z{hai ‘ 1< < N} and Qyy_; = Z{hw | 1<j<N- 1} be the coroot lattices of
509 and s09N_1, respectively. By the third formula in (3.31) and also by (3.35), the embedding

ajpq for 1 <j <N —2, and
= hay — hay_,- Corollary 5.6 (i) shows that the element Bg, , € Bc is a g-analogue of

7 induces a group homomorphism 7: Qyy_; — Q3 where h,, — h
h'YN—l
the positive simple root vector of soon_1 corresponding to the root yy_1. Similarly, Corollary
5.6 (i7) shows that the element Bg, € B. is a g-analogue of the negative simple root vector
of soon_1 corresponding to the root —yy_1. This interpretation is confirmed by the following

Proposition, which also identifies g-analogues of the remaining simple root vectors.
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Proposition 5.7. Fori € {2,...,N — 1} and for any h € Q3y_,, we have the relations

(h)E K, ( )= q')’i—l(h)_E'i7 KT](h)BﬁNflKni(}l) = q'YN—l(h)BﬂN71’ (521)
Ky Fil gy = a " WE, Ky Bay Koy = a7V By, (5.22)
and, moreover, we have

n(h)FNK n(h) = q_(wﬂﬁw’l)(h)FN- (5.24)

Proof. We first check the relations (5.21), and the relations (5.22) will follow analogously. It
suffices to verify the relations (5.21) for h = h,; for1 <j < N—1. Indeed, for 1 <j < N-2,
we have

oy, Eily, ) = 4" (1029) g, = s By = g1

and, moreover, we have

K

() B

(hw 1

)= qo‘i (”(hWNA))EZ- = qo‘i(haN_haNﬂ)Ei — qVi—l(h'YNﬂ)Ei_
This proves the first relation in (5.21). Next, using the definition of the root vector Bg, ,
in Equation (5.19), we calculate

K’r/(h)BﬁN 1K_ q_sl"'sN—Q(O‘N—l)( ( )) BIBN 1 (a1+“.+OCN_1)(77(h)) BﬁN—l (525)

n(h) —

where, for 1 < j < N — 1, we have

2 ifj=N—1
—(+--+an1)(n(hy) =8 -1 ifj=N-2
0 otherwise
:"YN—l(th)'

Inserting this into Equation (5.25), we obtain the second relation in (5.21). Finally, we need
to verify Equation (5.23), and then (5.24) follows from (U3). For 1 < j < N — 2, we have

Ko, ) ENE ), ) =™ (109) gy = gVt By — g Ssn-3 By (5.26)

n(hqy,)
and

K

n(hy = ¢ (b)) By = "N enThen ) By = By (5.27)
N—1

DENE G

On the other hand, we obtain
~1 ifj=N-3

(Yw—2 +2yn-1)(hy;) = { 2 ifj=N-1
0 otherwise
and comparing this to Equations (5.26) and (5.27) proves Equation (5.23). O
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5.4 Ordered monomials in B,

Recall from (4.41) in Theorem 4.17 that, for any multi-index J = (j1,...,jinn-1)) € NoVIN=1),
the set of all F;y = ngzz:i; Féi is a basis of U™, where each of the root vectors Fj, for
1 < j < N(N —1) can be given explicitly in terms of inverse Lusztig actions. Moreover, by
the triangular decomposition (4.10) of the algebra U, the set {F7 | 7 € No™ V=11 also forms

a basis of U as a right 4° U *-module.

Similarly, for any multi-index J = (j1,...,Jin(v-1)) € NoNV=1 e now define the elements
— piNvw-n Ji
By = BBN(N_n -+ By, (5.28)

where in (5.17) we defined Bg, := By = F1 — c1Twy (E1)K{ ! and, for 2 < j < N(N — 1),

T 2(B1) ifj=N-1
B, = Ton_j NTnlo. o(B1) i N—-1<j<2(N-1)
Fp, if j >2(N—1)

The difference between the elements F7 and B depends on the choice of J.

N(N-1)

Lemma 5.8. For any multi-index J € Ny , we have

Fj:Bj—i-GJ with €7 € Z Z/{:MUOZ/{—i—.
lul<|T|

Proof. For each 1 < k <2(N — 1), let the element w() € Wx be the word

id fork=1
W(k) = Sk S2 for2<k<N-1

SON—k* " "SNSN—2* 82 fOI“NSkSQ(N—l).

Then for all £ < 2(N — 1), the elements Bg, defined in (5.17) may be rexpressed as

Bﬁk = TUJ(}C) (Bl)
where conventionally we let Til = 1id for the case £k = 1. In particular, notice that
Twy (E1) = Twgyy_yy (E1), and moreover TTE(}C)TU)@(N—U) = Twen—uiy forall k < 2(N —1).

This implies that
By, = Ty (Fy — Ty (EOKT)

-1 -1
= Fa, — 1T (BTl (K7

:F,Bk + €

where ¢, € UOUT for all k < 2(N — 1). Note that Bg, = Fp, for all k > 2N — 1.
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N(N—-1)
Let J = (j1,---,jnv-1)) € No V(=1 Recall that ‘j| = Z jl‘ﬁl‘ and assume |J| > 0.
=1
Then,
Boyn " Bor = Fa' Faggoy Fayyy + @au-p)?70 - (Fgy +e)”!
=Bt
where €7 € Z u-, U°UT. Hence, we have B; = F7 + €4 as required. O
lul<|T|

Define a filtration F* of U~ by

FU") = span{ Fy j JenNg' ™V, |7 <nf (5.29)
for all n € Nyg. Observe that, since the quantum Serre relations (U5) and (U6) are homogeneous
(see Section 4.1), the set

{Fj ’ Je NON(N—1)7

J\Sn}

in fact forms a basis of (U~ ). The following two results are special cases of [Kol14, Proposi-

tions 6.1, 6.2].

Proposition 5.9. The set {By|J € NON(N_I)} is a basis of U as a right U U -module.
Proof. Let J € NON(N_l) and assume !j ‘ =n € N. We first show by induction on n
that F7 is contained in the right 4°U*-module generated by the set {BJ | T € NON(Nfl) }
Indeed, by Lemma 5.8 we have Fiy — By € F*" YU~ )U°UT. Using the quantum Serre
relations for U/, we hence obtain that F.;7 — B is contained in the right 4 U -submodule
of U generated by the set {FI ‘ T e NON(N_D, ‘I‘ <n-— 1}. The induction hypothesis

implies the desired result.
It remains to show that the set {B 7 ’ J € NON(NA)} is linearly independent over U°U*.
To this end, assume that

Z Bra7 =0

JeNON(Nfl)

for some a7y € U U where all but finitely many as are zero. Lemma 5.8 tells us that
By = F7 + €z with
ege > UUUt.
ul<|T

(N=1) with ‘J} = m. Then,

Z Bragz = Z Brag + Z Brag

Jen N1 |7|=m |7|<m

Choose m maximal such that as # 0 for some J € NON
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and therefore by our assumption, we get
0= Z Frag + Z €Egsarg + Z Brayg.
|T|=m |T|=m |TI<m

e > U uut
ul<|T|

However, since the set {Fj } |T| = m} is a basis of Z u-, U°UT, this implies that
lul<|71

CLJZO

if | 7| = m. This contradicts our choice of m, and hence we are done. O

By Proposition 5.9, we know that any element in the algebra B. can be written as a linear
combination of elements in the set {BJ ‘ J € NéV(Nfl)} with coefficients in U%UT. We now

see that it is actually sufficient to permit coefficients from Z/lg)./\/l} where
U = (K |ie{2,...,N}) and M} = (E|ic{2,...,N}).
Proposition 5.10. The set {Bj ‘ J e NON(N_I)} is a basis of Be as a right Z/l(%./\/l}-module.

Proof. The set {B 7 ‘ J € NON(N_l)} is linearly independent over 4°U* by Proposition
5.9. Hence, it is also linearly independent over Z/I(%M}. It remains to prove that the set
{Bg ‘ J e NON(N_l)} spans B as a right Z/{g./\/l}—module.

Let Z € IV, and then define BZ = By, --- B;,. We can write

Be= Y Brud M}
ZelN

and we get that {Bz | Z € TN} is a spanning set of the right U3 M %-module Bc. Tt suffices

to show that B
Bre Y ByujMi.
jeNON(Nﬂ)
Observe that BI = 1*:'1 + €7 with €7 € Z Z/L_“ Uu° U, and
[u1<|Z]

FIZ Z Fjbj
|T1=IT]

for some b7 € K(g). Then,

BI = Z Brbs + ér
|T1=IT]
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with €7 € Z u-, U UT N Be. Hence, one obtains that

lul<IZ|
fe Y BrulMy
|71<IZ]
N
and thus, by induction on |Z| = Z ir, we are done. O
k=1
(N-1)

Notice that the elements By for J € NON

root vectors Bg, given explicitly in (5.17). Specifically, these root vectors are ordered so that

defined in (5.28) are ordered monomials in the

all of the negative root vectors are on the left (sending the positive root vectors to the right).
In fact, the order in which each of the root vectors appear within these ordered monomials can
be obtained directly from the order of the corresponding root using the reduced expression for

the longest word wg € W written in Lemma 4.18. Thus, the order of the root vectors (5.17) is

Fp,y... Fy, T27,..1.N,N—2,...,2(Bl)7 e ’Tﬁ,lN—z...,Q(Bl)’ Tﬁil,...,z(Bl) s ,T;l(Bl), B .

N—1 negative root vectors N—1 positive root vectors

Moreover, we can write any element of the algebra B. as a linear combination of ordered

monomials in the root vectors of Bc. Proposition 5.10 then tells us that the elements By

for J € NON(N_l) defined in (5.28) are a basis over the algebra Z/lg./\/l;. Now, we consider the

multi-indices D = (da, ...,dy) € ZV ' and T = (ian_1, . . . VIN(N—1)) € NO(Nfl)(NJ), and define
the monomials .
KD — K2d2 . K]\C;N and EI — E/;ZE]]:,’:S ..,E2z21v71' (5‘30)

By the PBW-Theorem for U, the elements F7 form a basis of M}, and the Kp form a basis of

L{g. Hence, Proposition 5.10 implies the following important theorem.

Theorem 5.11 (PBW-Theorem for B.). The ordered monomials By KpEz constructed by the
elements (5.28) and (5.30) form a basis for the algebra Be.

5.5 Commutation of root vectors

For use in the final chapter, we shall determine some specific g-commutators of root vectors.
Recall the subalgebra M7 of Mx generated by the set {E; | i € X}. Now, let M7 . denote
the augmentation ideal of M7, that is, the ideal generated by the set {E; | i € X}.

Lemma 5.12. For 1 <k <j <N —1, we have [ng,ng]q € MXM},JH

Proof. We assume that k > 2. The argument for k£ = 1 is similar (and only requires that

we omit the expressions T} 1 o and s - - - s2). By definition of the root vectors, we have
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[Bsy» Bs, ], = [Tt o(B1), T 5(B1)],

= Tk_,}.,zTg:.l.,:%([BlvT2_1(Bl)]q> (5.31)

using the braid relations ETZ:_llTl_l = 1}:_11]—;_11—;'_’_1 inductively for 2 < ¢ < k to show that

]7~-'7i+1 _77"'72
=id, ifi=2

Ty, kT, o(B1) =T; ' i1 To, i1 Tp 5(B1) = T; ! 5(B).
———

By relation (5.7) and Lemma 5.2, we know that
[B1, T 1(B1)], € K(a)F221 + K(q) Kar2(21) + K(q) Ky 'or(21)

where Z1 € (MX)wy (a1)—a; and 72(Z21),27(21) € (MX)wy (a1)—a1—as- Combining this with
Equation (5.31) shows that

[B:BIN Bﬁj]q € MX(MX)u + Mx(Mx),
where, since wxs; = Sr(H)WX for all i € X, we calculate that

'LL = Sk‘ o e SQSJ' R SB(WX(al) — al)
= wx (Sk‘ e Sz(al)) — Sg - 52(a1)
=2(ag41+ - tan—2) +an-1 +ay

and
V=S85 -53(wX(oq) — o — Oég)

:/J’_SkSQSjSS(QZ)
= p— (g1 + -+ ).

Since p,v € Q} are non-zero, the triangular decomposition of My implies that (Mx),

and (Myx), are contained in My M3 - Hence, we are done. O

As an immediate consequence of Lemma 5.12, we obtain the following important result.
Corollary 5.13. For each j € {N —1, N}, we have [BBNQ,B@J.L € MxM% ..

Proof. The case j = N — 1 is a special case of Lemma 5.12. The case j = N then holds by
symmetry between N — 1 and . O

The commutators in the next Lemma follow immediately from the defining relations (5.4)-(5.7)

of the algebra B, and from Proposition 5.5, hence we omit the proof.

Lemma 5.14. Forie X and1 < j < N — 1, we have

Bs. K:' ifi=j,

[EiaB,Bj] _ Bi—11}j f J
0 ifi # j.

By symmetry between N — 1 and N, Lemma 5.14 gives [Ei, BBN] = 5,-7NB[3N72K]§1. Similarly,

we need commutation relations between the root vectors Bg, and the generators F; for i € X.
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Proposition 5.15. (i) For j € X, we have
85, ], =0
(ii) For1<j <N —2, we have
(B, Ej1] ;1 =~ ' Bg,-
(131) Leti€ X and1<j < N where j ¢ {i—1,i}. Additionally, let j # N ifi = N —1, or let

j# N —=21ifi=N. Then, we have
[BﬁwFi]:O'

Proof. By symmetry between N — 1 and N, we may assume that j # N. To verify (i), we

[Bsy 1), = Tt o ([B1 T ()],

— 71 ([Bl,KQ_I : "Kj_lTZ...,j—l(Ej)]q)

calculate

j:"'72
=—qT ' (K;'  K7'[By, T, i 1(E;
=gl o\ By Yy [ 1,1, j-1(Ej)
= gk, T ([T (B0 B]) =0
(taking Ty, . j-1 =id= Tji—ll,...,Q above for the case j = 2) which vanishes by Lemma 5.14.

The relation in (i7) follows from Proposition 5.5. For j < ¢ — 1, the relation in (i) follows

from the defining relations of B.. On the other hand, for j > 7, we calculate

[Bs,, Fi] = Tj_ag([BlaTQ,...,i,i—i-l(Fi)]) = TJ:.I.’Q([BlaFi—Q—l]) =0

oo

which vanishes by (iii) for the case j < ¢ — 1 we have already justified. O

By symmetry between N — 1 and N, Proposition 5.15 (ii) gives [BBN%,FN] -1 = —q ' Bg,.

More generally, the following Lemma, given by induction over m, will be useful in the next

Chapter, in particular, for the proof of Proposition 6.12 in Section 6.4.
Lemma 5.16. For all m € N, for each j € {N — 1, N}, we have

BﬁN72F]m = q_mF]mBﬁz\uQ - q_l[m]qF]milBﬁj'

Proof. We know that the case m = 1 follows directly from Proposition 5.15 (7). Inductively,
now assuming that the relation holds for some m € N, we calculate
BﬁN—ngm—H = (B/J’N—2ij)Fj
= ¢ "F}" By, ,Fj — "' [m]gF}" " By, F
= ¢ " (FiBsy_, — Bg,) — [mlgF}" By,
— q—(m+1)FJ(m+1)B — g Ym + 1),FI" By,

N—-2

since [m + 1], = ¢~™ + ¢|m], for all m € N. Hence, the relation holds for all m € N. O
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Chapter 5. Very Non-Standard Quantum soon_1

5.5.1 The pivot commutator

We now investigate the commutator
Q= [BﬁN—NB/J’N] (5.32)

which we shall refer to as the pivot commutator of B, as it plays a pivotal role in our
classification. By the discussion in Section 5.3, the pivot commutator is a quantum analogue
of the Cartan element hyy |, = [eyy_1s fyy_,] i0 S0an_1. However, Q ¢ U°. In this section, we
determine the image of {2 under a natural projection map U, (so2n) — U° with respect to the
triangular decomposition (4.10). Recall the root vectors Eg, and Fp, of U defined in Section
4.5.1, for 1 < j < N(N —1). For each i € I, we denote the commutator

Q; = [Es,, Fa,]. (5.33)
Lemma 5.17. The pivot commutator (5.32) can be given in terms of commutators (5.33) by

Q= C1 (QN_lK]?fl — QNK]?flil)Kl_l ce K;,172

Proof. From Definition 4.23 and Equation (5.1), since Eg, ., = T, . 2(F1), we may write
the element By = F; — cngp._’N_g(E/gNH)Kfl, and hence we get
~1 ~1
By oy = Fpy_y —c1Epy K- Ky

Before we can determine the pivot commutator, we need to make a few observations. Firstly,

note that
[Py Fo) = 0= [ [N, Boyon]r [Fw, Boya], )

Additionally, for each j € {N — 1, N}, using the relations of ¢/ in Definition 4.2 we have
|:F/3j7 [FT(j)7E,3N+1K1 '“KN—Q][]] = |:Fﬁj7 [FT(j)’E/BN+1]:|qK1 ”‘KN—Q

and, moreover,

-1
[Fﬁj, [Ff(j),EBNH]L = [Fs;, Eg; | K}y
Putting everything together, we calculate
Q= |:|:FN—1; BﬁNfz]qa [FNa BBN,Q] q]

- [[FN_l’FﬁN72 - 01E5N+1K1_1 ) ”K]?ll—z]q’ [FN7F5N72 - ClEﬁNHKl—l o 'K;fl—Q]q]
=—c1| [Fon 1o [FNy Epy KTt Knto] | = [Fons [Fno1, gy Kt Kyt

1 BN-1> [Ny EBN111M 1 N-2lq By [PN=1, EBn 1 N-2lq
— _Cl<[F,8N_17 [FN?EﬁN-&-lHq — |:F,3N’ [FN_I’EBN+1H(1>K1_1 .. K;]I_Q

= _Cl<|:F/8N—17E6N—1:|KNI - [FﬁNv EﬁN]K]:fl—l)Kl_l e KJTTI—Q
= (v Ky — QKK KL,

as required, and this completes the proof. ]
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Chapter 5. Very Non-Standard Quantum soon_1

Observe that Q; € Uy for all ¢ € I. Following Lemma 5.17, this implies that
Qe B.NUy = (MX)O-

Recall the triangular decomposition of U given in (4.10). Consider the projection map 7 onto

the subalgebra U/ °. The goal is now to calculate (), or equivalently, to prove Proposition 5.20.

In the rest of this section, we make repeated use of the following notation. For any i € I, define

an algebra homomorphism ‘ KiosqK, U - uo; by

K; qK; and K;

= K, forall j #1.

Ki%in = Kl'*)in
Lemma 5.18. For 1 <i < N — 2 we have the iterative formula

Kip1— Kt
i+1 - i+l qflﬂ_(ﬂi)K—l
q—q

7(Qis1) = (m(Q) = gm() 1 "y

Ki—)in>
Proof. For 1 <i < N — 2, we may write
Qiy1 = [[Ei—i-l,EBi]q—l) [Fi—&-laFﬂi]q]
and notice that [Ei+1, Fﬁi] =0= [Egi, Fi+1]. Hence, under the projection map 7, we have
T(Qiy1) = W([Ei—o—l: Eg,] ;1 [Fit, F/Bi]q)
= W(Ei-&-lFi—i-lEﬁiFBi — ¢ 'Eg B Fiy1 F, — qBiy1 B Fg Fiiq + EﬁiFﬁiEi-i-lE—&-l)

= 7T<[E1+1, Fi1|m(4) — 7' Ep, [Eiy1, Fi1] Fg, — qEipam(Q) Fir + 71(4) [Eiga, Fi+1])

-1 -1 -1
_ (K’Zl__quw(gi) ! EﬁK;__qfiH Fi, — qEsp1m(Q0) Frpt + w(QQ%)
— ZW(QZ)Kl;_l__qthll - <q17T(Qi)in+; : ;ijiJrll + QW(Qi)|Ki_)in [Eit1, FZ-+1]>
—oy -1 -1
— (o) q(z_qql it (@) Ki;_qu“
and, by simplifying the coefficients, we obtain the required result. O
Lemma 5.19. For 1 <i< N — 1, we have the formula
m(Q;) — qm(§) KioqK, = (-1)'¢'K, - - - K.
Proof. Firstly, we verify that
K —K{'  ¢Ki—q¢'K;' (1-¢{)K,
() — QW(Q1)|K1_>[1K1 = ¢ —L = = gk,

q—4q q—4q

as necessary. Now suppose that the formula holds for some i < N — 2. Inductively, using

the iterative formula in Lemma 5.18, we know that
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Chapter 5. Very Non-Standard Quantum soon_1

qKi1 —q 'K,
q—q!

(i) iy = (70 = 7@ e e, ) — g7 ()KL,

and, hence, we calculate

) (1-¢*)Kin
Ki—)qKz‘ q _ qfl
(-1)'¢'Ky - K;) - (—qKiy1)
(_1)’i+1qi+1K1 L. Ki+1

m(Qit1) — qm(Qit1)

Kit1—qKit1 (W(QZ) N qﬂ-(Qi)

as required. By the induction hypothesis, this completes the proof. O
By symmetry between N — 1 and N, Lemma 5.18 gives

Ky — Ky'

P g m(QUv_2) Ky (5.34)

(Qn) = (W(QN—z) - QW(QN—2)’KN72H(1KN72)
and, moreover, Lemma 5.19 gives
() = am( Q)| oy yqrey = (DY 2V KL Ky oK.

The following Proposition will be useful later, particularly in the proof of Proposition 6.6.

Proposition 5.20. The image of the pivot commutator Q) under the projection map m is given

by the formula

-1 -1
N—2 Ky KN — KnaKy

7(@) = (- g pp——

Proof. Following Lemma 5.18 and formula (5.34), for each j € {N — 1, N}, observe that

Q)KL — 7 (Q ) K = (m(0 0 Kok = KooK
”( j) (5) _77( T(j)) i = (77( N-2) = a7 ( N_2)‘KN_2—>qKN_2> q—q 1 :
Hence, applying Lemmas 5.17 and 5.19, we calculate
7(9) = e (7 () KR = T QW) KR KT KR
KEnaKy' = KnvKy!y .
= o1 (m(Qv-2) = ar (2| s arcr ) p—— K KL
I KnKyl, — Kn o Kyt _
:_Cl<(_1)N 2qN 2K1---KN_2) qu_ = N (Kl-"KN_z) 1
vo1 . nooBNL KN — v Ky
= (_1) 19 1
q9—q

as required. O

We now end this section with an example which gives an explicit computation of the pivot

commutator {2 for small dimension, specifically in the algebra B, when N = 4.
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Ezample 5.21. Consider the coideal subalgebra B. of Uj(s0g) which is generated by the elements
E;, F;, Kjil for j € {2,3,4} and the element (5.1)

By = Fi — ei b Ty T3To(Fy ) Kt

Taking the simple root vectors (5.19) and (5.20), the pivot commutator (5.32) of B is defined
Q= [Ty (By), Ty ' Ty N (By)]

which, by Lemma 5.17, can be given in terms of commutators of the form (5.33) by

Q= c1([TgTQ(El),Tnggl(Fl)]Kgl — [TyTo(Ey), T;ngl(Fl)]Kgl)Kl—lK;l.
For each i € {3,4}, observe that
(17175 (F), T(B) = a7 ((a = ) [T T (R), BTa(B)] - 17 ([T (R). To(E)))
=g’ (<q —q (- g T R BEE] - 17T (R), BT (B) )

-1 (0= a7 (), ) - 13 (L)) )
e (qlf-l) ~(a—a (v + v — (- q‘l)‘I’z@))

where v = 17 (B, BA)) v = (1715 (), BTy (By)]
o — 1 ([ R) BE), Y = [T (), B
Now, if o) — = (‘I’S)Kgl - \Ilgl)Kjl)KflKgl,
\I,<2>_q 2(q—q ) (WP K - PR KRG
=q (¢ — 71)(‘1’(3)—’(4 ‘I’ELB)K:s )K K
U = g (g - g P (U Ry - w R KRG
then

4
Q=c; ) vk, (5.35)
k=1

To compute Q explicitly, we consider each U*) individually. Firstly, for each i € {3,4} we have

T\ (K7 - K) KKy 1K* *KKK
W1 i) = S e - S SRR

and therefore

1 g1 -1 -1 1 g1 -1 -1
‘y(l):q—2<(K4 Ky KT — KyKo K ) K3 — (K3 Ky KT — K3 KoK ) K )KllKl

q—q* 2

=2 <K3K4_l - K3,_1K4)
q—q1
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Chapter 5. Very Non-Standard Quantum soon_1

Next, one can check the commutation relation
Ky — Ky DK
q—q!

(15 (), BoBr] = PRy By + & L REK;'E

and using this, for each i € {3,4} we have

]

vl =17 (17 (), BBy
¢(KiKy — K, 'KoY K

7
1

- L RK KB
q-q

= T, (Fo) KaT; ' (Es) +

Then,
VO = (¢ — ¢ ) (T (BT (B Ky = T (B) Kn Ty (Bo) Ky ) KU

+q (KK — K3 'Ky WK K — (KuKy — KK DK KKK
g g — g VW AK K BIK - KK B K ) KRG
=0
=q ! <(q — g ) (T (R Ky K Ty (By) — Ty N (Fo) K VK T (By)) + KK b — K3_1K4>
—(1-q?) <K3K41 — Ky 'K
q—q

and similarly the remaining components can be calculated as

Ty () Ky KTy () — T41<F2>K21K31T41<E2>),

-1 -1
v = (1-¢72) (K3K4 By K\ poi; e, - F4K3‘1E4)
q—q

and

KiK' — K; 'K,y
q—q*

+ (T4_1(F2)K2_1K3_1E2E4 - Tgl(FQ)Kr;lK;lEQEg)

v = (224 q—2)< i <F3K4—1E3 _ F4K3_1E4>

(15 ) T () = T () T () )

Hence, using (5.35) we compute

B B B K3K' - KK
Q=(q2+2(1—q2)+(q2—2+q2))( - z_q_f’ 4)

+(L=q¢ )+ (* =2+ ¢ ) (T " (Fo) Ky ' K Ty Y (Bs) — Ty N (F) Ky K VT (E))
+((1=q )+ (*—2+q?)(F3K{'Es — FyK; ' Ey)
(¢ =2+ ¢ ) (I () Ky Ky En By — Ty (Fo) Ky ' K B )

which simplifies to

KsK;' - Ki'K _ _ _
0= q2< 3 4q_ q_f 4) +q(q— ¢ ") (FK;'E; — FyK; 'Ey)

+qlqg—q )Ty (R) Ky 'K Ty N (By) — Ty () Ky Ky M Ty (Es))
+ (g — ¢ O (T () Ky 'Ky ' By By — Ty (F) Ky ' K ' By By).
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Chapter 6
Representation Theory of 5.

We now have all of the ingredients to perform the classification of finite-dimensional simple
modules for the algebra B.. To do this, we will define the Verma module and show that it has a
highest weight and is dominant integral for simple quotients to be finite-dimensional. Ultimately,

we prove Theorem 6.18 using a filtered-graded argument in Section 6.5.

6.1 Highest weight vectors

Let V be a finite-dimensional Bc-module, and denote the weight lattice for the Lie algebra
s0on—1 by Aoy_1. We begin by formulating the notion of a weight vector for the algebra B..

Definition 6.1. For any weight X € Asn_1, the corresponding weight space of V is the
subspace

Ww={veV ‘ Kynyv = @M, Vhe Qiy_1} CV (6.1)
and any v € V) \ {0} is called a weight vector of weight \.

Remark 6.2. Recall the definition of a weight space (4.14) for a ¢/-module in Section 4.1, in
comparison to Definition 6.1 for a Be-module. Notice that in (6.1) we have assumed that
the elements K ) act only as M on V, and not as —¢*M. In general, for any Be-module

V and group homomorphisms o: Qyy_; — {+1}, we may actually write
Vio = {v eV |Kymv=o(h)d*Pv, Vhe Qyy_1} CV

for the corresponding weight space of any weight A € Aony_1. One may show that, for any
finite-dimensional Bc-module V, the sum of all of the weight spaces V) , is direct. Then,
we say that a Be-module V' is of type-o if V = @AeAgN_l V),0. Moreover, we say that a
Be-module V is of type-1if V is of type-o and, additionally, o(h) =1 for all h € Q3 _;.

In Definition 6.1, we assume that all Be.-modules are of type-1, in which case we write
Vi, = V). For convention, we disregard modules whose weight spaces are defined so that

o(h) = —1 for some h € QYy_4, as the classification of these modules is similar to type-1
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Chapter 6. Representation Theory of B,

modules. Indeed, we can write
v= & W (6.2)
AEAaN -1
For justification, V' can be regarded as a Uy(slz)-module, and there is a Uy(slz)-triple for
each K, ) which acts as some @ on V for h e Q3n_1, and so can be diagonalised. The
other K, ;) commute, so are simultaneously diagonalisable on V. Therefore, V' must have

a basis which consists of weight vectors. The group algebra of the coroot lattice of soon_1

is just the subalgebra generated by the K iil fori e 1.

Lemma 6.3. Let V be any Be-module. For each i € {2,...,N — 1}, and for all A € Aan_1, we

have the inclusions

EZ'V)\ C VA+fyi71, BﬁN_1V>\ C V)\Jr»yN_l, (6.3)

F;Vy C V)\,%il, BﬂNV)\ C V)\*’YN—N (6.4)

and, futhermore, EnNVy C Vagyn at29n 1> (6.5)
FNVA CVayn s—2yn 1 (6.6)

Proof. The inclusions (6.3)-(6.6) follow directly from relations (5.21)-(5.24) in Proposition

5.7, respectively. Indeed, for all h € QY5 _; and A € Agy_1, and for each i € {2,..., N —1},

we have , .
KymEiVy = q%’l(h)EiKn(h)V)\ = (A0 g

using (6.1) in Definition 6.1 of the weight space V). Hence, by definition, this implies that

E;V)\ C Vajy,_,- The remaining inclusions are shown using a similar calculation. ]

We may now use Lemma 6.3 to prove the existence of a so-called highest weight vector in V.

Proposition 6.4. Let V be a finite-dimensional Be-module. There exists a weight vector v € V
such that, for alli € {2,..., N}, we have

EZ"U =0= BgN_l’U.

Proof. Suppose that V is a finite-dimensional Be-module. By (6.2), we know that V' can be
written as a direct sum of its weight spaces V) for A € Asy_1. Furthermore, the set of A
with V) # {0} is finite. This means that for V' # {0}, there exists some weight A\ € Aan_;
such that V) # {0} and V) = {0} for all ' > A. In particular, for such A, this implies that
Vaty = {0} for all v € IL.

For any A € Agy_1, we have E;V\ C Viy,, | forie {2,...,N =1}, Bg, Vi C Vagyy
and EnVy C Vayqyy_o42vy_, Dy the inclusions (6.3) and (6.5) in Lemma 6.3. Therefore,
there exists some A € Ayn_1 such that

E;Vy = {0} = Bgy_, W,

for all ¢ € {2,..., N} and, hence, E;v = 0 = Bg,_, v for some weight vector v € V\, C V. O
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Typically, for a highest weight vector, it suffices to know that the simple root vectors vanish.
However, it is not obvious how to deduce, from the fact that Ex_jv = 0 and Bg, ,v =0, that
Env = 0. Hence, we include (and prove) that En does indeed vanish on a highest weight vector

in Proposition 6.4.

6.2 Induced U,(slz)-module on an invariant subspace

In Section 4.2, we saw that (E;, F;, K;™') is a U,(sla)-triple corresponding to the simple root
vi—1 for i € {2,...,N —1}. A sensible question now would be to ask whether we also have
such a triple for the remaining simple root yy_1. We will discover that this is indeed the case,
however the U, (sly)-triple for yn_ satisfies the Ugy(slz) relations only on certain subspaces of

finite-dimensional Uy, (s02n)-modules.

Let V be a finite-dimensional B¢-module, and consider the subspace
H(V)={veV|Ev=0=Bg, ,v, Vi€{2,...,N}} CV. (6.7)

Firstly, observe that H (V') # {0} by Proposition 6.4, since Bg,,_, = Tn—_1(Bg,_,). Moreover, in
the subspace (6.7), any vector v € H(V') is annihilated by all of the positive root vectors except
for the root vector Bg, , which corresponds to the simple root yx_1. Motivating the decision
to consider the subspace H(V'), we now observe the action of both Bg, , and its corresponding

negative root vector Bg, on H(V).

Lemma 6.5. The subspace H(V) of a finite-dimensional Be-module V', defined in (6.7), is

invariant under the root vectors Bg, , and Bg, .

Proof. Let j € {N — 1, N}. Firstly, observe that for all v € H(V'), we know that
ngv = F; Bgy _,v—qBgy ,Fjv
5
and hence it suffices to check for each j that, for all i € {2,..., N}, we get
E;Bgs, ,Fjv =0, (6.8)

and )
BBN_ZFjU =0. (6.9)

We first consider the equations of the form (6.8). Notice that, for i € {2,..., N}, we get
the commutation relations
KN 4By,  ifi=N-2,

EiaB _a] &
B Do) 0 if i £ N — 2.
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For the case i = N — 2, this implies that

ENn_2Bgy ,Fjv = Bgy ,F; Ex v + ¢Ky',Bsy ,Fjv = Ky 3 Fj Bgy v =0
H?)—/ N—_——
= =0
and similarly, if ¢ < N — 3, then
E;iBg,_,Fjv = Ba,_,Fj Ejv = 0.

=0
Now, if we suppose that i = j € {N — 1, N}, then

E;jBgy ,Fjv= Bgy ,E;jFjv
Kj— K
= Bgy ,Fj Ejv + Bgy ,| ———=1|v
—~—

q—q!
=0

-1 ~1

¢ Kj—qK;

= (__1]> Bpy_,v =0.
q—4q ——

=0
It remains to consider the equations of the form (6.9). For each j € {N — 1, N}, it follows
from Corollary 5.13 that [BBNQ, ng]q v = 0. Therefore,

2
BﬂN—szU = Bgy _, (B,BN—QFJ'U)
—1
=4q B/BN—Q (Fj B/J’N—zv _B/ij)
=0
= _Bﬂj BBN—QU - qil [Bﬁwa B,Bj]qv =0.
=0 =0

Hence, we have shown that Bg, - H(V) C H(V) for j € {N — 1, N} as necessary. O

The following result shows that, for suitable coefficients ax,ay € K(g)*, the operators
X =axBg,_, and Y =ayBs, (6.10)
provide a representation of U, (5[2) on the subspace H(V) C V.

Proposition 6.6. Choose the operators X and Y in (6.10) such that ayay = (=1)N "1 tg> N,
Then, the subspace H(V') carries a representation of Uy (5[2) via X and Y by mapping

EwX; FeY, Ko Ky Ky.

Proof. Recall the pivot commutator (5.32) which is denoted by

Q= [BﬁNfl’ BBN]

in Section 5.5. We saw that Q € Be N Uy = (Mx)o, meaning that the terms of the
commutator {2 have weight 0 and lie in the algebra Mx. Moreover, we know that this
algebra exhibits a triangular decomposition, Mx = My ® MOX ® M}L( Let 7 denote the
projection map onto the subalgebra ./\/lg(. Then, for all v € H, we see that

Qu =n(Q)v

87



Chapter 6. Representation Theory of B,

and, moreover, we have an explicit formula for 7(£2), see Proposition 5.20. Now observe
that XY — YX = (—1)N_1cf1q2_NQ. Putting this all together, we get
(XY = YX)v = (—D)N et N r(Q)w
Kyt Kn — Kno1 Kyt
B ( q—q! >U

and this corresponds exactly to the Uy (sly)-relation (U4) in Section 4.2, namely

K- K1t

EF - FE = .
q—q

It remains to check the Uy (sl2)-relations (U1')-(U3') which we recall are given by
KK'=1=KK, KEK™ ' = ¢’F, KFK~'=¢%F.
For the relation (U1’), we immediately see that
KL En(Ky- Ky = (Kt Evoa)(BvEy') =1

and similarly one gets the other side. Finally, for the relations (U2') and (U3'), we deduce

respectively from
[Bay_1, Kn-1],=0=[Bgy_,, K]

g1
and
[Bpy: Kn-1] 1 = 0= [Bgy, Kn],
that
(KN KX (B Ky') = ¢* X and  (Ky' Ky)V(En- 1Ky =q72)
and we are done. O

Theorem 6.7. The weight A € Aan_1 of a highest weight vector in any finite-dimensional
simple Be-module is dominant integral, that is, A(hy,) >0 for 1 <i < N — 1.

Proof. Recall the representation theory for Ug(slz) in Section 4.2. By the first formula in
Theorem 4.8, we have that
Alhy,) > 0

for 1 <4 < N —2. For the root yy_1, Proposition 6.6 now implies that A(h,,_,) > 0 and

we are done. O

By Theorem 6.7, we have that each finite-dimensional simple B.-module has a highest weight
vector of dominant integral weight. Conversely, we would now like to show that, for each

dominant integral weight, there exists a finite-dimensional irreducible Be-module.
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6.3 Constructing Verma modules

We now want to construct a representation of the algebra B, that is generated by a single
non-zero vector of highest weight. One particular such highest-weight module is the Verma
module, that is, the one that is maximal in the sense that every other highest-weight module
with the same highest weight is a quotient of the Verma module. Guided by the classification of
finite-dimensional irreducible representations of quantised enveloping algebras Uy(g) in [Jan96,

Chapter 5], we now construct a Verma module for Be.

Let A € Agy_1. For alli € {2,..., N — 1}, we now denote the integers

n; = A hqy,_,), and my = Ahyy_,)- (6.11)

We consider the left ideal of B generated by the elements F; and K; —q¢™ fori € {2,..., N —1},
and also the elements Bg, , and Kjf,l_lK ~N — ¢"N. More precisely, this is the left ideal

I = <N21 BeEi + Bo (K — q")> + BeBay, + Be( Ky K —a™). (6.12)
=2

It is not clear from (6.12) if the ideal I contains the root vector Ex, however the rest of the
positive root vectors are indeed contained in Iy. Since we want to construct a Verma module and
hence a highest-weight module, it would be desirable to extend this left ideal so that the element
FEn is also contained in the ideal. One sees that this is entirely possible, since by Proposition
6.4 every finite-dimensional B.-module has a highest weight vector. In addition to the integers
in (5.11), let us denote the integer

nN ‘= NN-1+Mmny. (6.13)

Then, we may consider a more unnatural left ideal of B, written as

N
Jy = (Z B.E; + B (K — q”)> + BeBgy_, - (6.14)
=2

Observe that the ideal Jy is essentially the same as the ideal Iy given in (5.12) with the addition
of the element Ey as a generator (and notice that, for neatness, we also replace the generator

involving the Kg,l_lK ~ with that of the Ky ). We may consider J as a left Be-module.

Definition 6.8. The Verma module (or universal highest weight module) of highest
weight X € Aon_1 is the quotient module

B

Since Jy is a left ideal, the natural left action of B¢ on itself carries over to the quotient.
Therefore, the Verma module M () is a Be-module. In fact, M (\) is an infinite-dimensional
Be-module generated by the coset of 1; we denote this coset by vy := 1 + Jy. By definition, we

have
Eivy=0 and K;vy = q™vy (6.15)
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for all i € {2,..., N}, and
Bgy_ ,ua=0 and  Ky' Kyuy=¢™ o, (6.16)

The Verma module M(A) should be spanned by elements obtained by “lowering” vy by the
action of the negative root vectors. In particular, the weights of M (\) will consist only of those
that can be obtained from the highest weight A by subtracting integer combinations of positive
roots. If we choose an ordering of all the roots, and hence of the negative root vectors of B,
then by the PBW-Theorem for B, one can show that every element of M (A) can be written as
a linear combination of ordered monomials in the negative root vectors on the highest weight

vector v .

Theorem 6.9 (PBW-Theorem for M(\)). The ordered monomials

IN(N-1)  piaN—1pl2(N-1) | pin
F/J’N(NA) F/82N—1'852(N71) B,BN (6.17)

where (jn,...,Jt) € N[()Nfl)2 form a basis of M(X) on vy.

Proof. The PBW-Theorem for B, (Theorem 5.11) tells us that the algebra B has a basis
of PBW-type monomials of the form By KpFz for appropriate multi-indices J, D and Z.
We want to show that the ordered monomials (6.17) are not elements of the left ideal Jy.
Equivalently, it suffices to show that any element of Jy rewritten in terms of the PBW-basis
of B cannot be of the form in (6.17), and therefore must have at least one positive root
vector on the right-hand side. To do this, let us assume that such a monomial is written
as a linear combination of terms in Jy. For any element b € B, terms of the form bF; for
i € {2,...,N} are already given as PBW-type monomials (subject to commuting the FE;
with themselves) so will maintain a positive root vector on the right-hand side. Similarly,
terms of the form b(K; — ¢") are also suitable since one can always bring any E; to the

right (and the K; commute with themselves).

It remains to consider the final term of the form b Bg, , rewritten in the PBW-basis, for
any b € Bc. Firstly, observe that the KpFEz-part of b € B, always (¢g-)commutes with the
element Bj, and hence bB; in the PBW-basis is always an element of Jy. Inductively, now
suppose that, for some fixed i € {2,..., N — 1}, we have shown that KpE7Bg, , in the
PBW-basis is an element of Jy. Then, KpFE7 also moves to the right-hand side of Bg,, but

if it contains the element F; we must use the commutation relation
[Eiv Bﬂz‘] = Bﬁi—lKi_l'

Therefore, it is now necessary to consider terms of the form By Bg, foralli € {2,...,N—1}.
It suffices to look at the monomials Bg, Bg, for k < i. Ultimately, we want to show that,
for 2 <k <i< N —1, the commutator

[Bﬁkv B/Bi] P Tk—,.l..,2Ti:1.,3 [Bl’ T2_1(Bl)}q
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involves some positive root vectors on the right-hand side when rewritten in the PBW-basis.
Recall the element Z; = r1(Tyy (E1)) from (5.3) in Section 5.1. By the properties of the
Lusztig actions in Section 4.3, we know that T, (E1) € U

wx (1)’ where we calculate

wx (o) =o2(a1) = a1 +2(ag + -+ ay—2) + any—1 + an,

and, moreover, in (5.8) we saw that T, (E1) = T NTn—2,. 2(E1). Therefore, we deduce

that

Z € Z/fzj;x and 7“2(21),2’/“(21) S Z/l+

(1)—0 wx (o1)—ar—az”
Returning to the commutator in question, firstly observe that

[Bl,Tz_l(Bl)]q ceU Z +Ury(2)) + U or(2)).

Hence the commutator T} 12T[13 [B1, Ty 1(31)]q must involve terms where the right-hand

side is either an element of Mx , where

W= Sk ---898;" "S?,(U)X(Oél) — al) =

=2(ags1+ - +an—2)+an_1+an
or an element of Mx , where

V:Sk"'SQSZ'"‘Sg(wX(Oél)—Oél—QQ) :u—sk-~523i-~33(a2)

=p— (g1 + -+ )

(Ozk+1—I—---—i—ozi)—1—2(0414_1—1---'—!-04]\1_2)—!-041\1_1—I—aN ifi<N-3

=9 (agr1 + -+ an—2) +an_1 +an ifi=N—-2
(A1 + - +an—2) +an ifi=N-—1.
Crucially, we see that both p > 0 and v > 0. This proves the statement. O

The ordered monomials (6.17) in Theorem 6.9 are equivalent to the elements in the set
{Bs 17 €M)V i, jva = 0.
The Verma module M () of highest weight A € Ayn—1 has the following universal property.

Lemma 6.10 ([Jan96, 5.5]). Let V' be any B.-module and let v € Vx\\ {0} be a weight vector such
that Esv =0 for alli € {2,...,N} and Bg, ,v=0. Then, there exists a unique homomorphism

Be-modul
of Be-modules ¢: M(A) = V; Uy V.

We have seen that, for every weight A € Ay _1, we can construct a Verma module M () over
B.. Each submodule of M (\) is the direct sum of its weight spaces; a submodule of M (\) which
is proper must be contained in the direct sum of all of the weight spaces M (\)x—, with u # 0.
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This means that there exists a unique proper maximal submodule of M ()), which we denote
by N(\). From this, we may define a simple quotient module for each Verma module M ()),
namely the unique simple factor module

M(X)

(\) = m (6.18)

By Proposition 6.4 and the universal property of M(\) in Lemma 6.10, each finite-dimensional
simple Be-module is a homomorphic image of some M (\) and hence is isomorphic to some simple
quotient module L(\). Note that the weight A € Agny_1 must be unique, since it is the largest
weight of the module. In order to complete the classification of all finite-dimensional simple

Bc-modules, and thus prove Theorem 6.18 in Section 6.5, it remains for us to show that

dim(L(\)) < oo (6.19)

for any dominant integral weight A € Aan_1 (by Theorem 6.7), that is, where n; > 0 for all
i€{2,...,N} and my > 0. This is our goal from now on.

6.4 Proper submodules of M(\)

At this stage, it is unclear whether the unique simple factor module L()) is finite-dimensional or
not; it is difficult to tell if we have found the maximal submodule N () exactly. Instead, we can
find an approximate of this module L(A) by constructing another sufficiently large submodule
which is contained in N(A) and hence must be proper. By the way the Verma module M (X)
is defined, this new proper submodule must be generated by monomials consisting only of the
negative root vectors. Indeed, we first consider submodules of M () generated by powers of the

root vectors corresponding to the negative simple roots.

Recall the integers na,...,ny_1, and my defined in (6.11), which are non-negative since we

assume now that the weight A € Asy_1 is dominant integral.

Proposition 6.11 ([Jan96, Lemma 5.6]). Let A € Aay—_1 be a dominant integral weight. Then,
there exist Be-module homomorphisms ¥;: M (X — (n; + 1)vi—1) = M(X) fori € {2,...,N —1}

such that
n;+1
Ux—(ni+1)yi1 F; Ux,

and Yy : M (X — (my +1)yn-1) = M () such that
Ur—(my+D)yy_1 B?NN+IU)"

Proof. Let A € Aany—1 be dominant integral. Then, since n; > 0 for all i € {2,..., N — 1},
we have .
F" Ty € M()‘))\—(nﬁ-l)%fl

for vy € M(X). Hence, by the universal property of M()\ — (ni + 1)%_1) for each ¢, it is
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sufficient to show that
E;jF"t vy = 0= B, ,F"" vy (6.20)

for all j € {2,...,N}. Note that EjFi”iHv)\ = 0 for all j # i, since Ej and F; commute
and Ejvy = 0 for all j. For j = 4, using [Jan96, 4.4(6)] observe that

EiF oy = (FiniJrlEi + [ng + 1o B [ K —nz‘])v,\

n; +1 e R
[ 1 ]1(1};11;112 (q TLZKi 7qanl 1),0)\

= F" ! By +

=0, since K;vy = ¢™vy.

For the right side of formula (6.20), we know that [BﬁN,l,FN—l]q =0 and [BﬁN,l,Fi] =0
when ¢ # N — 1. Since Bg,_,v) = 0, this implies that, for all ¢ € {2,..., N — 1}, we have

BﬁNszerlU)\ =0.

Now, see that my > 0, again since A € A is dominant integral. Then, similarly, for

vy € M(X) we have —
BﬁNN U\ € M(A))\f(mNJrl)'YN_l

This time, using the universal property of M()\ — (my + 1)’yN_1), it is now sufficient to

show that ) )
E;ByN oy = 0= Bg,_, By oy (6.21)

for all j € {2,...,N}. Note that F; and Bg, commute for j # N, whilst
[EN’ BﬁN] = qKﬁlBﬁN72'

We know that E;vy = 0 for all j and T&iz_._g(Bl)v)\ = 0. Therefore, using Corollary 5.13,
it remains only for us to prove the right side of formula (6.21). However, it is necessary
that we restrict to the subspace H (V') here, which we defined in (6.7). This is so we can
use Proposition 6.6, which states that the subspace H (V') carries a U, (5[2)—representation
via operators the X = axBg, , and J = ayBg,, for suitable coefficients ax,ay € K(q)*.
Then, applying [Jan96, 4.4(6)] again, we obtain

axay™ ™ Boy By vy = XY™ oy
= ymN+1X’U>\ + [my + 1], Y7V [KNI_IKN; —mN]v,\
= axa;nNJrlB/gnNNJrl B,BN—1U)\ + ag,nN [mN + 1]qulNN [K&l_lKN; —mN} U\
———

=0
and since (K;,l_lKN)UA = ¢"™N vy, we get

(7™ (KNt KN) — ¢™ (K" Kn) ™ vy = 0.
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This implies that [K;,IAKN; —mN] vy = 0, and therefore
BﬁN_lBg”NN“UA -0

as required. This finishes the proof. O

Following Proposition 6.11, we have found a proper submodule of M (\) that is generated by
Fmitly, for i € {2,...,N — 1} and BZP‘NNHUA. Unfortunately, due to our restriction to the
subspace H (V') in the proof, this submodule is not yet sufficiently large enough for us to use to
construct a new simple quotient which contains the unique simple factor module L(\) and show
that it has finite dimension using [Jan96, Proposition 5.9]. For this, we additionally require a

proper submodule generated by some power of the negative root vector Fy.

Our strategy for the remainder of this section is as follows. Consider the submodule of M (A)
generated by Fy¥ y A, where we recall the integer ny > 0 defined in (6.13). Note that the weight
of the root vector Fy is —yn_2—2yn_1, so the weight of F]T\L,NHUA isA—(ny+1)(yN—2+2vN-1).

To show that the submodule generated by Fy/Y *ly, is in fact a proper submodule, it suffices to

show that, for any b € BI of weight (ny + 1)(yv—_2 + 27n_1), we get
bFRN Ty, = 0.

Observing the tables of roots and root vectors for B in Appendix A, we see that the necessary
weight for the element b € BI can only be reached with a non-negative linear combination of
the positive roots yn—2, YN—1, YN—2 + Yn—1 and yny_2 + 2v7ny—1. By this inspection, such an
element b € B must therefore be a monomial only in the root vectors En_1, Bg, ,, Bgy_, and
Ey. Using the PBW-Theorem for M (\) (see Theorem 6.9), we may choose an ordering for the
root vectors in b; we choose to send the Ex_; and En to the right. Note that Fy_1 commutes
with Fl, whilst Ey also moves past by using the U, (5[2)—relati0n (U4), and both En_; and
FEn annihilate the highest weight vector vy. This means that the element b can now only consist
of specific powers of the other two root vectors, namely Bg, , and Bg, , which are of weight
Yn—1 and yn_2 + Yn—1 respectively.

Crucially, we need to prove the following result for our highest weight vector vy € M(A).

Proposition 6.12. In M(\), we have

BANTIgINtLpaNtly, — 0. (6.22)

BN-1 T~ BN_2

This is the goal for the rest of the section. We begin by observing what happens when we try

to move one of the root vectors Bg,, , to the right side. We first need the following Lemma.

Lemma 6.13. For all r € Ny, we have

Bgy ,Bj v =0. (6.23)
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Proof. Assume that vy € M () is the highest weight vector of weight A € Ayn_;. Then, for
all r € Ny, we know that By, v\ must be of weight A — ryny_1. However, we also know that
the root vector Bg, , is of weight yx_2 + yny—1. Therefore, we deduce that the weight of
B5N72BENU)\ is

A= ((r=1)ywn-1—v-2) #X—p

where p is a non-negative sum of the positive simple roots of soon_1. The result follows. [

Using both Lemma 5.16 and Lemma 6.13, we can now prove the following crucial formula.

Lemma 6.14. For all r,s € N where r > s, we have

Bp, Fyuon=(-1)°¢" ( [Tle+1- k]q) F}°Bj, vx. (6.24)
k=1

Proof. We give a proof by induction on s. For s = 1, and for any r» € N, using Lemma 5.16
we get,
By _,Fyva=q "Fy Bgy_,va _qil[r]qFJT\I_lBﬁNUA
=0
as required. Assume that the result now holds for some s < r as an induction hypothesis.
Then,

Bg;l_QF}\}U)\ = Bg,_, (B3, ,Frvn)

=(—-1)%° ( H [(T +1) - k]q) Bay ,FN° BENUA

k=1 use Lemma 5.16

k=1

= (_1)sq—r < H [(1" + 1) — k‘]q) F](Fs B,BN—QBZ’NU/\
—_—

=0, by Lemma 6.13

(s+1)
+ (_1)(s+1)q—(s+1) ( H [(T + 1) o k] q) F]Qf(s+1)BgV+1)U>\
k=1

again, as required. Hence, the result holds for all r, s € N where r > s. ]

Observe from Lemma 6.14 that, if we set r = s = ny + 1, then this becomes

ny-—+1
By Y oy = (1) g ( [T tnw+2- k:]q> BN oy (6.25)
k=1

and we know that BEVNHU,\ = 0. Clearly ny +1 > my + 1 by definition of ny, and hence
we deduce the following for the highest weight vector vy € M(\) which is sufficient to prove
Proposition 6.12.
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Corollary 6.15. In M()), we have

BN RNty — . (6.26)

BN—2

Following Corollary 6.15, we see that the submodule generated by Fn"N*t!

vy is indeed a proper
submodule and does not contain the highest weight vector. We are now ready to define a new
simple quotient module which contains, and is a good approximation for, the unique simple

factor module L(\).

6.5 Classifying the finite-dimensional irreducible B.-modules

Let A € Aony_1 be a dominant integral weight, and again recall the non-negative integers n; for
each i € {2,...,N} and my given in (6.11) and (6.13). Directly from the results in Section 6.4,

we now know that the subspace

N
N(\) = (ZBJ?%‘“) + BBy (6.27)

=2

is a proper submodule of the Verma module M()\). Indeed, if N(A) is the unique maximal
proper submodule, then N(\) € N(\). Consider the simple factor module
. M\
P = MY (6.28)
N(A)
as an approximation of the unique simple factor module L()\), the quotient module (6.18) which
we aim to show is finite-dimensional, see (6.19). However, since the submodule N () is contained
in the submodule N ()), the quotient L()\) is a quotient module of L(\). Importantly, this also
means that dim(L(})) < dim(i}()\)) and therefore it is now sufficient to only show that the

module L()) is finite-dimensional. This is much easier since we can define L()) explicitly.

Remark 6.16. Equivalently, we may define this quotient module as the B.-module

L) = Be (6.29)
I
where we define the left ideal
Iy = Jy+ N\ (6.30)

of B, and recall the ideal Jy from the definition of M ()\) in Section 6.3.

To determine the dimension of this new module (6.28), it will be necessary for us to look at its

associated graded. We first want to consider a filtration on the module L(\). Specifically, for
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m > 0 we define the filtered subspaces

S Fu(Be)

Gm(L(N)) = C L\ (6.31)

where F is the standard filtration on the algebra B¢ given by a degree function defined in Section
5.2. Then, the module L()\) becomes a filtered module over the algebra B, by the filtration G.
By definition, the associated graded of the module L()\) is

) = @ Rons where R; == &

& G (0V) fori >0 (6.32)

and with G_; (i}()\)) := {0} for convention. For the following result, we now denote

j)\ N fi(BC)

L= Lo, where £; = =————~—2
@ J)\ N E—l(Bc)

m>0

for i > 0. (6.33)

Lemma 6.17. The subspace L is a left ideal of the associated graded algebra gr(BC). Moreover,

we have
- gr(Be)
gr(L(N)) o

12

(6.34)

Proof. Since Jy is a left ideal of the algebra Be, it must also be a left ideal of each of its

filtered subspaces. Recall that the associated graded algebra gr (BC) is the direct sum of the

quotient spaces S; = ]:( (B)) Following the property of these filtered subspaces, for every

1,7 > 0 we must have that
S; - ,Cj C ;ciJrj

and therefore gr(B.)- L C L. Hence, L is a left ideal of gr (BC). Furthermore, since F;_1(Be)
and J, N Fi(B.) are subspaces of F;(B.) for all ¢ > 0, and we have

<j)\ N .FZ<BC)) N E—I(Bc) = j)\ N fi_1<Bc)

for all 7 > 0, one can apply Corollary 2.2 directly (setting U= Fi(B.), V = F_1(Bc) and
W= JyN Fi(Be) in the formula of the corollary) to get
Gi(LW) S

=~

Gi— 1@()\ ) Li

for all ¢ > 0. Hence, )

N S, gr(Be
- Q.= @i o)

m>0 m>0 0

Since L()) is a filtered module over the filtered algebra B, it follows that the associated graded
gr (E()\)) is a graded module over the associated graded algebra gr(B.). By the isomorphism ¢
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in Proposition 5.3, this means that we can consider it as a module over the algebra A defined

in (5.10) in Section 5.2, and hence

gr(L(N) “Zl. (6.35)

12

By the definitions of both the ideal Jy in (6.14) and the proper subspace N(\) in (6.27), we
know that
E;, (K — q"), Bgy_,, B1, Fl"* BIN T e ) (6.36)

for all i € {2,..., N} by (6.30). Recall that the isomorphism ¢ sends the element F; to B;. If

we set n; = 0, then we see that

iy (Ki = q"), Tty o(F0), F T TR, o(F)™ e L (6.37)

foralli e {2,...,N} and j € {1,...,N}. Let us now define a subspace L C L by

N
L= (Z AE; + A(K; — qni)> + 'AT]gil,...,Z(Fl)
i=2 (6.38)

N
+ (ZAF}”“) + AT TR, S (F)™ T

=1

Recall that the algebra A exhibits a triangular decomposition A 2= U~ @ M% ® M¥. From this

we see that the quotient space A/L’ is isomorphic to the quotient space

U-
— ~ ] p— T (6.39)

U TNy o(F1)+ 3 UTE T +U Ty Ty o(F1)™NT
In particular here, notice that (to some positive integer power) all of the F}j for j € {1,..., N} are

contained in the factor of (6.39). By [Jan96, Proposition 5.9], this means that this quotient is, in
fact, finite-dimensional. We now only need to work backwards; since A/L’ is isomorphic to (6.39)
it must also have finite dimension and, since £’ C £, this implies that A/L is finite-dimensional
as well. By the isomorphism (6.35), the graded module gr (I:()\)), too, has finite-dimension, and
since this is the associated graded of the Be-module L(\) we finally see that L()) is indeed
finite-dimensional. This was the last step necessary to prove the following classification theorem

for the finite-dimensional irreducible representations of the algebra Be.

Theorem 6.18 (Classification Theorem of finite-dimensional simple Be-modules of type-1). For
each dominant weight X\ € Aon_1, the simple Be-module L(\) has finite-dimension. Moreover,
each finite-dimensional simple Be-module is isomorphic to exactly one L(X) with dominant weight
A€ Aon_1.

Corollary 6.19. There is a one-to-one correspondence between the dominant weights A\ € Aoy _1
and the finite-dimensional simple Be-modules L(X). Moreover, each finite-dimensional simple

B.-module is uniquely determined by an (N —1)-tuple of non-negative integers (na, ..., nN—1, my).
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Appendix A

Tables of Root Vectors for B, C U

The following two tables provide a complete list of all of the positive and negative roots of the
Lie algebra soon respectively, and the corresponding root vectors for the algebra Be, depending

on a fixed N > 3. The asterisk % appears in the third column to distinguish simple root vectors.

positive root of soon_1 corresponding root vector of B, N total
Yi—1 E; * N -2
(2<i<N-1)
TN-1 Tﬁll ..... »(B1) * 1
N
2%—1 B it i = 1
k=i
(2<i<N-1) T, o(B)  ifi>3 N -3
J
N —3)(N -2
> s T,...i1(E) W92
k=i

(2<i<j<N-1)

Ex ifi=N—1 1

N-1

S oi+2wo1 | Tn(En—2) ifi=N—2 1

k=i

2<i<N-1) TnTn—s. is1(E) fi<N-3 || >5 N-—4
7j—1 N
Z%—l + QZ Yi—1 | I, (Ey) ifj=N-1 N -3
k=i I=j
(N —4)(N —-3)

2<i<j<N-1) |Tj N-2In, i+1(E;) ifj<N—-2]|>5
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negative root of soon_1 corresponding root vector of B, N total
—Yi—1 FZ * N — 2
(2<i<N-1)
~IN-1 TN TS, o(B1) * 1
N
=D M Ty (By) ifi=N-1 1
k=1
(2<i<N-1) T, ' v 0Ty o(B1) ifi <N =2 N -3
j
_ (N —3)(N —2)
=DM T i (F) 2
k=1
(2<i<j<N-1)
Fy ifi=N-1 1
N—-1
> o1 —2v-1 | Ty (Fn—s) ifi=N-2 1
k=1
(2<i<N-1) TN'TyLy ia(F) ifi<N-=3|>5 N —4
j—1 N
D1 =2 o1 | Ty (F) if j =N -1 N -3
k=i I=j
N —4)(N -3
2<i<j<N-1) |T; 'y ,Ty (F) fj<N-2|>5 ( )2( )
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