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Abstract 

With the ever-increasing global competition and customer requirement, chemical industrial 

processes face increasing pressure of maintaining high product quality and reducing production 

costs. To reduce the production cost and limit the amount of off-specification products 

production, close control of polymer product quality is required. The melt index (MI) of 

polymer is an important product quality indictor that needs to be closely monitored and 

controlled. However, it is difficult to measure MI in real-time. To overcome these issues, a 

reliable data-driven soft sensor for MI using deep belief network (DBN) is developed in this 

study. The training of DBN involves two phases: initial unsupervised training using input data 

only and supervised fine-tuning. It can capture profuse information from latent operational 

inputs. It is shown that DBN gives better performance in estimating MI than conventional 

neural networks. To further enhance the accuracy and robustness of DBN models, a bootstrap 

aggregated deep belief network (BAGDBN) is developed in this study. Several DBN models 

are developed from bootstrap resampling replications of the original modelling data and are 

combined to form a BAGDBN model. The effectiveness of the proposed model is demonstrated 

on two application examples, inferential estimation of polymer MI in an industrial 

polypropylene polymerization process and dynamic modelling of water level in a conical water 

tank. It is shown that BAGDBN has a much better generalisation capability than a single DBN 

model.  

A reliable optimal control strategy for a batch process is developed using BAGDBN model. To 

enhance the reliability of the optimal control policies, the model prediction confidence bound 

is incorporated into the optimisation objective function. Wide model prediction confidence 

bounds are penalised in order to enhance the reliability of the obtained optimal control policy. 

Application to a batch reactor demonstrates the effectiveness of the proposed reliable 

optimisation control strategy.  
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Chapter 1. Introduction 

1.1 Background  

Modern chemical industries face great pressure of the increase of energy cost and strict 

environmental regulation. To improve the competitiveness of industries among the world-wide 

competitors, advanced process control technology becomes more and more important during 

industrial production. Industrial chemical process operability, cost reduction, energy efficiency, 

control performance and waste minimisation are all the key parts to be concerned in the past 

decades. With the great development of computing techniques, many efficient modelling 

techniques and successful applications of modelling are carried out for complex chemical 

processes.  

As an important part of industrial process control, soft sensors attract much attention.  Soft 

sensors are predictive models based on historical industrial chemical process operational data. 

Most of the quality data of products predicted by soft sensors are responsible for the product 

safety and these indispensable variables cannot be measured by the hardware measurements. 

Some important variables which affect the process are difficult to be measured online and the 

cost of hardware measuring instruments is too high (Tham et al, 1991). For example, the 

polypropylene polymerization process is a typical industrial process. Polypropylene is one of 

the most widely used products in the world. The characteristics of polypropylene products are 

tough. The products include packaging, films, healthcare, pipes, textiles, fibres, automotive and 

electrical applications. The products of polypropylene have hundreds of grades and almost ten 

thousand types. In such a highly nonlinear process, the polypropylene polymerization process 

is difficult to be modelled by using mechanistic modelling approaches. And the quality of 

products is sensitive to the operating conditions. The temperature of reactors, the conditions of 

feeding and mixing affect much in the process of production. In a single manufacturing process, 

many different grades of products need to be produced. Therefore, the grades transition needs 

to change the operating conditions. During the time of transition, many undesirable products 

can be produced. Therefore, the key quality variable melt index (MI) of the polymer needs to 

be measured to reduce the production of undesirable products. In practice, the MI of the 

polymer can be measured by the MI measuring device in the laboratory when the products are 

already finished. However, it cannot be monitoring online. This problem increases the cost of 

the whole industrial process. To overcome this issue, the approach of soft-sensor is a good 

choice to estimate the MI of polymer products. Modern chemical processes are highly 

automated due to the advanced process control systems. The research of chemical processes is 



2 
 

focused on the computational modelling, scale-up and optimisation of real chemical 

manufacturing processes. The operational process variables which affect the key quality 

attributes are measured and monitored to achieve the objective of quality control. Advanced 

control and supervision of industrial processes require accurate process models. Among the 

various types of process models, data-driven models are the most widely used for process 

monitoring and control applications.  

Process models can typically be classified into three types, mechanistic model, data-driven 

empirical model and hybrid model. Mechanistic models are also known as first-principle 

models. The development of mechanistic models requires solid physical and chemistry 

knowledge of the specific chemical process, in the form of differential and algebraic equations. 

The advantage of mechanistic models is that they are valid for a wide range. However, the 

development of a detailed mechanistic model for a complex industrial chemical process, such 

as the polypropylene polymerization process, requires hundreds of equations need to be used. 

The computation with mechanistic models is also time demanding and they are usually not 

suitable for online optimisation even though the computing technique has been developed 

greatly in recent decades. Compared with mechanistic models, data-driven empirical models 

are easier to be developed. They are based on process operational data and experimental data. 

Their development does not need detailed physical and chemistry knowledge. Their 

independence on a priori knowledge makes data-driven empirical models much more popular 

than before for the industrial processes (Kadlec, Gabrys & Strandt, 2009; Kano & Ogawa, 2010). 

They are less computationally demanding than mechanistic models. Therefore, they are suitable 

for the online optimisation of industrial chemical processes. The third type of process model is 

the hybrid model. A hybrid model combines mechanistic model and data-driven model in one 

model. Hybrid models intends to combine the advantages of both mechanistic models and data-

driven models. The development of hybrid models is often specific to the modelled process and 

depends on the available first principle knowledge and the process operational data. 

Since the last century, numerous successful studies have been conducted on process modeling 

using multivariate statistical techniques. Principal component analysis (PCA) was proposed by 

Karl Pearson (Pearson, 1901) and was further developed by Harold Hotelling in the 1930s 

(Hotelling, 1933; Hotelling, 1992). Based on PCA, principal component regression (PCR) and 

partial least squares (PLS) have emerged as useful modelling methods to address the problem 

of co-linearity among the input variables. Herman O. A. Wold first introduced PLS and Svante 

Wold further developed it (Wold, Sjöström & Eriksson, 2001). As an improvement of PCR, 

PLS regression can model both the process data and quality data at the same time. There were 
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many applications based on the PLS technique in processes modelling. Data-driven soft sensors 

based on PCR can be developed by using principal components as the predictor variables 

(Zhang, 2001; 2006). One limitation of PLS and PCR is that they are both linear techniques. 

They are not very effective when applied to nonlinear process modelling.  

With the development of machine learning, many studies on developing soft sensors based on 

machine learning techniques have been reported in the past few years. There are many 

successful process modelling techniques based on machine learning, such as support vector 

machines (SVM) and artificial neural networks (ANN). W. Pitts and W. McCulloch proposed 

the original neural network, called perceptron, in the 1940s (McCulloch & Pitts, 1943). After 

20 years, with the vast improvement of computer capability, the neural network became a 

popular research topic. The back-propagation algorithm was applied to ANN by Werbos 

(Werbos, 1974). The advantage of ANN is that it can be used to approximate any nonlinear 

functions. ANN gives very good performance on estimation and prediction of quality data. The 

original perceptron contains just one layer and cannot solve the exclusive-or (XOR) problems 

due to it cannot deal with nonlinear separable problems. Multi-layer perceptron with hidden 

layer was proposed later. Trained by the backpropagation algorithm, a multi-layer perceptron 

neural network with at least one hidden layer can solve the XOR problem. The hidden layers in 

neural networks improve the network representation capability. However, conventional ANN 

suffers from problems of local optima and lack of generalisation capability. SVM can achieve 

accessible optima of training even if the amount of training data is small (Desai, Badhe, Tambe 

& Kulkarni, 2006). However, when apply SVM to processes with large amount of modelling 

data, the pressure of computation will increase. In 2006, Hinton first introduced deep learning 

method (Hinton, Osindero & The, 2006). deep belief network (DBN) is one kind of the most 

well-known data-driven modelling techniques based on deep learning. It shows strong 

generalisation capability in modelling highly nonlinear processes. This model is established 

with a deep architecture. Deep learning has many applications in speech recognition and images 

classification (Mnih & Hinton, 2009). It has shown significant performance in many other 

applications (Li et al, 2018; Yao, Bi & Chen, 2018). 

Despite the availability of advanced models proposed, there are still many issues of 

development and applications for the industrial chemical processes that need to be researched 

and studied.  
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1.2 Motivation 

For the SVM and conventional neural networks, they can approximate nonlinear processes. 

However, they can lack of generalisation capability due to the problems of overfitting and 

under-fitting (e.g. training terminated in a local optima). To enhance the stability and accuracy 

of the model, an advanced data-driven model, DBN, is carried out for the predictions of quality 

variables of highly nonlinear processes in this study. When modelling a specific industrial 

process, how to construct a reliable structure of a DBN model? How to balance the relationship 

between different amounts of input variables and output variables? How to improve the 

robustness of the empirical model? Can the DBN model be used for the optimisation of batch 

processes and how to optimise the model?  

This thesis concentrates on the development of advanced data-driven empirical models based 

on deep learning techniques for the modelling and optimisation of industrial chemical processes. 

The novel data-driven models are developed and their applications are the focuses of this 

research.   

  

1.3 Aim and Objectives 

The aim of this research is to develop accurate and reliable computational intelligence-based 

data-driven models for nonlinear process modelling and optimal control. In order to achieve 

this aim, the following objectives are set:  

1 Developing reliable data-driven models using deep learning methods, such as deep belief 

network (DBN) models, for chemical processes. 

2 Investigation of methods for improving model reliability and generalisation capability 

through the aggregation of multiple DBNs (i.e. BAGDBN). 

3 Integration of the above models with nonlinear process optimisation and control for 

chemical processes.  

 

1.4 Contributions 

This thesis contributes to developing data-driven models based on deep learning techniques and 

optimisation for chemical processes. Empirical models based on machine learning have had 
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many successful applications in the past few decades. This study focuses on developing reliable 

and efficient data-driven models for chemical processes. A DBN model has been developed and 

applied to an industrial polypropylene polymerization process. The performance of the DBN 

model has been compared with a conventional neural network. It demonstrates that DBN with 

a deep structure has better performance than a single hidden layer neural network.  

A bootstrap aggregated deep belief network (BAGDBN) has been developed and applied to an 

industrial polypropylene polymerization process and a batch reactor process. The approach of 

bootstrapping improves the robustness and accuracy of the DBN model significantly.  

Significant optimal control performance improvement has been achieved through the 

incorporation of model prediction confidence bounds into a reliable optimal control system. 

 

1.5 Structure of the Thesis 

Chapter 2 presents a literature review of relevant techniques of empirical data-driven models, 

relevant techniques of learning algorithms and techniques of machine learning. Related 

knowledge gaps are also highlighted. 

In Chapter 3, inferential estimation of the polypropylene polymerization process using DBN is 

introduced. A DBN model with a deep structure is developed and applied to the industrial 

polypropylene polymerization process of a real plant in China. Both feedforward neural 

network and DBN models are developed and compared. Compared with the conventional neural 

network, more latent information of process variables can be discovered by the DBN model. A 

reliable structure of DBN model is discussed.  

Chapter 4 is focused on developing a bootstrap aggregated deep belief network (BAGDBN) 

model for the inferential estimation of MI of the polypropylene polymerization process and 

multi-step ahead prediction of the level of a water tank. Several DBN models are developed 

from bootstrap re-sampling replications of the process training data and are combined. The 

accuracy and reliability of DBN are enhanced. The results of both applications are compared 

and discussed. BAGDBN achieves reliable and robust estimation and prediction on both 

applications.  

Chapter 5 is focused on developing a reliable data-driven modelling and optimisation strategy 

for a batch reactor using BAGDBN. BAGDBN improves the generalisation capability than that 

of a DBN model for the prediction of product quality variable. For the optimisation of a batch 

reactor, model prediction confidence bounds calculated from individual DBN predictions are 
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involved to achieve a reliable optimal control policy. Wide model prediction confidence bound 

is penalised to enhance the reliability of optimisation. The results of the application indicate the 

advantages of the proposed BAGDBN model. 

Chapter 6 presents the conclusions from the research and recommendations for future works. 

 

1.6 Publications 

Published journal papers  

1. Zhu C, Zhang J. Developing Soft Sensors for Polymer Melt Index in an Industrial 

Polymerization Process using Deep Belief Networks. International Journal of Automation 

and Computing, 2020, 17(1), 44-54. 

2. Zhu C, Zhang J. Developing Robust Nonlinear Models through Bootstrap Aggregated Deep 

Belief Networks. AIMS Electronic and Electrical Engineering 2020, 4(3), 287–302. 

Conference papers 

1. Zhu C, Zhang J. Inferential Estimation of Polymer Melt Index Using Deep Belief Networks. 

In: 24th International Conference on Automation and Computing (ICAC 2018). 2018, 

Newcastle upon Tyne, UK: IEEE. 

2. Zhu C, Zhang J. Developing Robust Nonlinear Models through Bootstrap Aggregated Deep 

Belief Networks. In: 25th International Conference on Automation and Computing 

(ICAC’19). 2019, Lancaster University, Lancaster, UK: IEEE. 

3. C. Zhu and J. Zhang, “Reliable data-drive modelling and optimisation of a batch reactor 

using bootstrap aggregated deep belief networks”, Book of Short Papers SIS2021, the 50th 

Meeting of the Italian Statistical Society (SIS 2021), 21-25 June 2021, Pisa, Italy, pp. 94-99. 
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Chapter 2. Literature Review 

2.1 Artificial Intelligence Technology Relevant to Process Control  

In the past almost thirty years, artificial intelligence (AI) drew much attention in the research 

areas of chemical engineering, in particular process systems engineering. Many research works 

relevant to process control based on AI technology have been carried out and achieved many 

successful applications for the control strategies in chemical and biochemical engineering. The 

characteristic of AI technique has its advantages of ‘understanding and learning’ the information 

from external data and using that knowledge to adapt the varying conditions of task and achieve 

the goal. This notable feature of systems based on AI has many potential application areas 

within process control. An optimised process control policy ensures the processes run optimally 

despite upsets.  

Figure 2.1 gives the classification of AI techniques which have been applied to process control 

applications for chemical, biochemical, and biomedical processes. The AI techniques have been 

divided into two categories, stand-alone and hybrid technologies (Ye et al., 2020). The first 

group contains expert systems whose development is based a solid knowledge base or rule base 

of the process. Fuzzy logic and expert systems suffer from high development costs/effort 

needed (Venkatasubramanian, 2019). ANN models based on historic process data have achieve 

satisfied results of regression modelling and fault classification. In general, the training of ANN 

is supervised training. This stand-alone group also includes reinforcement learning, and other 

techniques with supervised and unsupervised learning (Silva & Parpinelli, 2019). 

The second group contains hybrid technologies, such as adaptive neuro-fuzzy inference system, 

hybrid neuro-fuzzy systems, etc. These techniques are a combination of two or more stand-

alone techniques to overcome the limitations of a stand-alone AI technique (Ali et al., 2015). In 

AI based soft sensor development (Ali et al., 2015), the AI technologies use the supervised 

training, unsupervised training and reinforcement learning to find the relationship between 

process variables and quality variables. To estimate the quality variables, the model can be 

trained in a supervised way (Chen, 2019). The models trained in an unsupervised way can be 

utilised for the data clustering (Hinton & Sejnowski, 1999). Rewards and penalties are used by 

reinforcement learning to make the model learn adequate actions in environments with varying 

conditions (Sucar, 2011). 
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Figure 2.1 Classification of AI technologies utilised toward process control applications 

(Dutta and Upreti, 2021) 

 

2.2 Regression Analysis 

To estimating the relationship between variables, regression analysis can be carried out in 

statistical modelling. It finds the relationship between the independent variables and the 

dependent variables from a set of data. Actually, regression analysis is a set of statistical process 

for estimating the conditional expected value of the dependent variables when the independent 

value is fixed.  

It is widely used in forecasting and prediction. By using regression analysis to find the 

relationship between independent and dependent variables, many techniques have been carried 

out, such as least squares, principal component regression and partial least squares regression, 

etc.  
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2.2.1 Single Variable Linear Regression 

Single variable linear regression can be used to build a linear model between a dependent 

variable, y, and an independent variable, x. It establishes a relationship between the dependent 

variable and the independent variable by using a best fit line. The least squares method is the 

well-known method to perform linear regression.  

Simple linear regression estimates the best fit line by minimizing the sum of the squares of the 

model prediction errors. When the errors are serially uncorrelated, the ordinary least squares 

regression is optimal in the class of linear unbiased estimators. The formula of model with one 

predictor variable and one response variable is given by, 

𝑦 = 𝛼 + 𝛽𝑥 + 𝜀                        (2.1) 

where 𝑥 is the independent value, 𝑦 is the dependent value, 𝛽 is the slope of the model, 𝛼 

is the intercept, and 𝜀 represents the error term. Then the equation of prediction is given by, 

 𝑦̂ = 𝛼̂ + 𝛽̂𝑥                           (2.2) 

Where 𝑦̂ is the model prediction, 𝛼̂ 𝑎𝑛𝑑 𝛽̂ are the estimated intercept and estimated slope 

respectively.  The residuals between the prediction value 𝑦̂  and actual response y can be 

formulated by,     

𝑟 = 𝑦 − 𝑦̂ = 𝑦 − 𝛼̂ − 𝛽̂𝑥                      (2.3) 

To estimate the model parameters, the sum of squared residuals should be minimized. The sum 

of squared residuals is calculated below, 

      𝐽 = ∑ 𝑟𝑖
2𝑁

𝑖=1 = ∑ (𝑦𝑖 − 𝛼̂ − 𝛽̂𝑥𝑖)
2𝑁

𝑖=1                (2.4) 

Then J is differentiated with respect to 𝛼̂ 𝑎𝑛𝑑 𝛽̂,  

  
𝜕𝐽

𝜕𝛼̂
= 2𝑁𝛼̂ − 2 ∑ 𝑦𝑖

𝑁
𝑖=1 + 2𝛽̂ ∑ 𝑥𝑖

𝑁
𝑖=1                        (2.5) 

𝜕𝐽

𝜕𝛽̂
= −2 ∑ 𝑦𝑖𝑥𝑖

𝑁
𝑖=1 + 2𝛼̂ ∑ 𝑥𝑖

𝑁
𝑖=1 + 2𝛽̂ ∑ 𝑥𝑖

2𝑁
𝑖=1                (2.6) 

At the best values of 𝛼̂ 𝑎𝑛𝑑 𝛽̂, the above gradients should be zero. Then we have, 

𝜕𝐽

𝜕𝛼̂
= 0,

𝜕𝐽

𝜕𝛽̂
= 0                              (2.7) 

𝛽̂ =
∑ 𝑦𝑖𝑥𝑖

𝑁
𝑖=1 −

∑ 𝑦𝑖
𝑁
𝑖=1 ∑ 𝑥𝑖

𝑁
𝑖=1

𝑁

∑ 𝑥𝑖
2𝑁

𝑖=1 −
(∑ 𝑥𝑖

𝑁
𝑖=1 )

2

𝑁

                          (2.8) 
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𝛼̂ =
∑ 𝑦𝑖

𝑁
𝑖=1 −𝛽̂ ∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
                          (2.9) 

Therefore, the best fitting line is found. However, outliers affect the estimated model parameters. 

It means linear regression is very sensitive to outliers. 

 

2.2.2 Multiple Linear Regression 

The multiple linear regression can be used to find the relationship between two or more 

independent variables and one or more dependent variables by fitting a linear equation to the 

observed data. The formula of the model is given by, 

𝑦 = ∑ 𝜃𝑖𝑥𝑖
𝑛
𝑖=1 + 𝜀                       (2.10) 

where y is the dependent value, 𝑥1, 𝑥2, … , 𝑥𝑛  are the independent values, 𝜃1   to 𝜃𝑛   are 

model parameters, and 𝜀 represents the error term. The prediction of y is shown below, 

𝑦̂ = ∑ 𝜃𝑖̂
𝑛
𝑖=1 𝑥𝑖                       (2.11) 

where 𝜃𝑖̂ is the estimate of 𝜃𝑖. Therefore, the residual between actual value and predicted value 

is, 

𝑒 = 𝑦 − 𝑦̂ = 𝑦 − ∑ 𝜃𝑖̂
𝑛
𝑖=1 𝑥𝑖                   (2.12) 

Then the matrix equation of the model is given by, 

𝒀̂ = 𝑿𝜽̂                             (2.13) 

𝑬 = 𝒀 − 𝒀̂ = 𝒀 − 𝑿𝜽̂                       (2.14) 

In the above equations, 𝒀  is a vector of observed variable values, 𝒀̂  is a vector of model 

predictions, X is a matrix of predictor values, E is a vector of model residuals, and 𝜽̂ is a vector 

of model parameters. 

To estimate the model parameters, the sum of squared residuals is minimized. 

𝐽 = 𝑬𝑇𝑬 = (𝒀 − 𝑿𝜽̂)
𝑇

(𝒀 − 𝑿𝜽̂) = 𝒀𝑇𝒀 − 2𝒀𝑇𝑿𝜽̂ + 𝜽̂𝑇𝑿𝑇𝑿𝜽̂         (2.15) 

Then, 
𝜕𝐽

𝜕𝜃̂
 is calculated as 

𝜕𝐽

𝜕𝜽̂
= −2𝑿𝑇𝒀 + 2𝑿𝑇𝑿𝜽̂                      (2.16) 

To optimise the model parameters, 
𝜕𝐽

𝜕𝜽̂
 should be a zero vector. The solution is given as, 
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−2𝑿𝑇𝒀 + 2𝑿𝑇𝑿𝜽̂ = 𝟎                     (2.17) 

𝜽̂ = (𝑿𝑇𝑿)−1𝑿𝑇𝒀                        (2.18) 

From Eq(2.18), 𝜽̂ can be calculated. For the extension to model with multiple outputs 𝒚1,

𝒚2, … , 𝒚𝑖, Y will be a matrix of the observed responses.    

 

2.2.3 Principal Component Analysis 

Principal component analysis (PCA) was first described by Karl Pearson in 1901 (Pearson, 

1901). It is a statistical procedure that transform a set of correlated observations into a set of 

values of linearly uncorrelated variables. Harold Hotelling developed the principal component 

analysis independently in the 1930s (Hotelling, 1933, 1936).  

The data samples are defined as a matrix X, which is a 𝑛 × 𝑚 matrix. Here n represents the 

number of samples and m the number of variables. And let 𝒕𝑖 ∈ 𝑹𝑛 be the ith score vector of 

X and 𝒑𝑖 ∈ 𝑹𝑚 be the ith loading vector. Then, the formula of PCA is given by,  

𝑿 = 𝒕1𝒑1
𝑇 + 𝒕2𝒑2

𝑇 + ⋯ + 𝒕𝑚𝒑𝑚
𝑇 = 𝑻𝑷𝑇              (2.19) 

In the above equation, for any 𝑖 𝑎𝑛𝑑 𝑗, if 𝑖 ≠ 𝑗, 𝒕𝑖𝒕𝑗
𝑇 = 0 and  𝒑𝑖𝒑𝑗

𝑇 = 0. If 𝑖 = 𝑗,  𝒑𝑖𝒑𝑗
𝑇 =

1. It means that score vectors are mutually orthogonal. So as loading vectors. Then multiply X 

by 𝒑𝑖, we have 

𝑿𝒑𝑖 = 𝒕1𝒑1
𝑇𝒑𝑖 + 𝒕2𝒑2

𝑇𝒑𝑖 + ⋯ + 𝒕𝑚𝒑𝑚
𝑇 𝒑𝑖            (2.20) 

Then, the score vector 𝒕𝑖 is given by, 

𝒕𝑖 = 𝑿𝒑𝑖                           (2.21) 

The length of 𝒕𝑖  reflects the variation of X in the direction of 𝒑𝑖 . The score vectors are 

arranged in descending order of their lengths as, 

‖𝒕1‖ > ‖𝒕2‖ > ⋯ > ‖𝒕𝑚‖                   (2.22) 

The first loading vector 𝒑1  represents the largest direction of variation in X and 𝒑𝑚 

represents the smallest direction of variation in X. When the variables of X are correlated, the 

variation of X will be represented by the first a few score vectors (e.g. the first k score vectors), 

𝑿 = 𝒕1𝒑1
𝑇 + 𝒕2𝒑2

𝑇 + ⋯ + 𝒕𝑘𝒑𝑘
𝑇 + 𝑬                (2.23) 

where E is a matrix of the minor principal components which are mainly noise. The last a few 

score vectors does not affect the variation X much. The variation of E mainly reflects noise and 
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k is typically much smaller than m. By ignoring E, the data set X can be approximated as, 

𝑿 ≈ 𝒕1𝒑1
𝑇 + 𝒕2𝒑2

𝑇 + ⋯ + 𝒕𝑘𝒑𝑘
𝑇                   (2.24) 

The PCA of X is equivalent to eigenvector analysis of the covariance of 𝑿, 𝑿𝑇𝑿 in that 𝒑𝑖 is 

the ith eigenvector of 𝑿𝑻𝑿, 𝑎𝑛𝑑𝜆1 > 𝜆2 > ⋯ > 𝜆𝑚 are the eigenvalues of XTX. 

 

As mentioned before the variation of X can be represented by the first a few principal 

components when the variables of X are correlated. The PCA of X is used to transform a high 

dimensional matrix into several principal component plots. The structure of data can be 

observed from the plots of the first a few principal components. In practice, the data will be 

scaled to zero mean and unit variance before applying PCA.  

 

2.2.4 Principal Component Regression 

Principal component regression (PCR) is a regression approach which is based on the theory of 

PCA to overcome the problem with MLR when the predictor variables are correlated.  

In regression analysis, when the predictor variables are correlated, the matrix 𝑿𝑇𝑿 will be 

singular. However, due to the existence of noise, 𝑿𝑇𝑿 can still be of full rank but will be very 

close to singular. In such case, MLR will give significant errors in model parameter estimation. 

Principal component regression can solve this problem. 

The major score vectors are represented by T, 

𝑻 = 𝑿𝑷                               (2.25) 

By using the major principal components as the predictor variables, the model becomes, 

 𝒀 = 𝑻𝑩 + 𝑬                           (2.26) 

where B is a vector of model parameters associated with the major principal components, and 

E is a vector of model errors. 

The estimation of B is given by, 

𝑩 = (𝑻𝑇𝑻)−1𝑻𝑇𝒀                        (2.27) 

In PCR, X are replaced by new variables which are mutually orthogonal. Due to orthogonality 

of the score vectors, 𝑻𝑇𝑻  will not be close to singular. To solve the problem of 

multicollinearity, the score vectors corresponding to small eigenvalues can be ignored. The 
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estimation of B is converted into 𝜽̂, 

𝜽̂ = 𝑷𝑩 = 𝑷(𝑻𝑇𝑻)−1𝑻𝑇𝒀                     (2.28) 

where P is a matrix of loading vectors. The appropriate number of principal components can be 

found by building a number of PCR models with different numbers of principal components 

and the model with the smallest error on the testing data will be selected. The data sets need be 

divided as training data and testing data.    

The approach of principal component regression can solve the multicollinearity problem. When 

a set of explanatory variables is close to being collinear, PCR excludes some of the low-variance 

principal components in the regression (Dodge, 2003). 

 

2.2.5 Partial Least Squares Regression 

Herman O. A. Wold first described the partial least squares (PLS) and contributed this approach 

with Svante Wold (Wold, Sjöström & Eriksson, 2001). 

The method of partial least square regression utilises the variation in X which is most predictive 

of Y. By using this method, the input data is considered as a matrix X and is decomposed as, 

𝑿 = 𝑻𝑷𝑇 + 𝑬 = ∑ 𝒕ℎ𝒑ℎ
𝑇𝑎

ℎ=1 + 𝑬                 (2.29) 

The output Y is decomposed as, 

𝒀 = 𝑼𝑸𝑇 + 𝑭 = ∑ 𝒖ℎ𝒒ℎ
𝑇𝑎

ℎ=1 + 𝑭                 (2.30) 

If enough latent variables are used in the model, then E and F can be made small to be ignored. 

PLS is used to make ‖𝐹‖ as small as possible. The inner relationship can be given by, 

𝒖̂ℎ = 𝑏ℎ𝒕ℎ                            (2.31) 

where 𝑏ℎ =
𝒕ℎ

𝑇𝒖ℎ

𝒕ℎ
𝑇𝒕ℎ

  is the inner model parameter. The objective of PLS is to explain Y by X 

maximally. 

Partial least squares regression projects the dependent variables and the independent variables 

to a new space. Then a linear regression model will be found by partial least squares. Partial 

least squares regression has good performance when the independent variables have 

multicollinearity among them and there are fewer variables in observations than predictors. It 

has less restriction than other methods in multiple linear regression.  
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2.3 Artificial Neural Networks 

For the past 3 decades, there have been many applications of ANN for industrial process control. 

The objective of ANN is fulfilled through training the network by adjusting the connection 

parameters between neurons. An ANN model is constructed by several layers of neurons. The 

information in process operational data is transferred through the neurons in each layer to the 

output layer. The inputs variables are multiplied by the parameter of connections and added to 

a bias to obtain the neuron output. It can be given as,  

𝑦 = 𝑓(∑ 𝑤𝑖
𝑛
𝑖=1 𝑥𝑖 + 𝑏)                       (2.32) 

where 𝑥𝑖 represents the input variables, 𝑤𝑖 is the weight between the neuron and the ith input, 

b is a bias need, 𝑓 is an activation function (Bagheri, 2019; Jarmulak, 1997; Haykin, 2004), n 

is the number of inputs and y represents the output of the neuron.  

 

Figure 2.2 A simple perceptron invented by McCulloch and Pitts 

McCulloch and Pitts (1943) invented the initial form of simple perceptron and used threshold 

function as the activation function in their model shown in Figure 2.2. The weighted sum of 

input variables is calculated and passed to an activation function to achieve the neuron output. 

McCulloch and Pitts (1943) proved universal computations can be performed by simple 

perceptron if weights are chosen appropriately. However, a lot of complicated systems cannot 

be represented by this method (Jain, 1996). Many other activation functions can be used, such 

as Heaviside step function, sigmoid function and Gaussian function (Honkela et al, 2011, 

Costarelli & Spigler, 2013, Gundogdu et al, 2016). These activation functions are sometimes 

also named as transfer function in ANN research. The most popular activation function is the 
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sigmoid function. 

The characteristic of sigmoid function is that it is an ‘S’-shaped curve as shown in Figure 2.3  

 

 

Figure 2.3 The S-shaped curve of sigmoid function 

Sigmoid function maps its input values into a region from 0 to 1. In Figure 2.3, the output value 

approaches to 1 when x approaches to +∞, whereas the output approaches to 0 when x 

approaches to -∞. It has the appropriate asymptotic properties. The sigmoid function is given 

by (2.33),  

                              𝑆(𝑥) =
1

1+𝑒−𝛽𝑥                          (2.33) 

where x represents the sum of weighted input values and β is a slope parameter.  

The most widely used ANN contains an input layer, a hidden layer and an output layer. Figure 

2.4 shows an architecture of ANN. The weights and biases are initialized randomly at the 

beginning of training. During the procedure of neural network training, the key parameters, 

weights and biases between layers, will be adjusted to minimize the output error. The output 

error can be represented as sum of squares errors between true output values and the 

corresponding predictions. These errors represent the current status of the training of networks. 

The training uses the backpropagation algorithm and the weights and biases between neurons 

are calculated in a sequential way backward from the last layer (Haykin, 2004). These 

parameters are improved by a method base on gradient optimisation. Repeat the sequence of 

forward pass and improvement of weights and biases until the error is tolerable or achieve the 

set number of training iterations (Haykin, 2004). 
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Figure 2.4 The architecture of ANN (Dutta and Upreti, 2021) 

The ANN can approximate a nonlinear process based on historic data and achieve accurate and 

reliable predictions even under certain condition of operations. However, this approach requires 

very precise and formatted data to achieve the best performance (Ali, 2005; Jarmulak, 1997; 

Tu,1996). As the results, ANN is effective and fault tolerant for industrial process modelling.  

 

2.3.1 Different Types of ANN 

There are three most widely used ANN in industrial applications and other areas:  

1 Feedforward neural networks. 

2 Radial basis function neural networks. 

3 Recurrent neural networks. 

Feedforward neural network are the traditional type of neural network model mentioned before. 

Radial basis function (RBF) neural networks use radial basis functions as the activation function 

in the hidden layer (Du, 2018). This network usually only has one hidden layer and there are no 
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weights in the hidden layer. The training of RBF neural network uses a method of two-step 

training algorithm. The first step is unsupervised and involves selections of the center vectors 

of radial basis functions. Then, the output layer weights will be fitted using regression approach. 

A recurrent neural network has feedback from the network outputs or hidden neuron outputs to 

the inputs. The training of recurrent neural network involves a key parameter, time. The most 

typical types of recurrent neural network are long-short-term-memory model (LSTM) and 

Elman networks. 

There are some other types of ANN, such as self-organizing radial basis function-based neural 

network, ANN using the technique of nonlinear auto-regressive exogenous (NARX), and ANN 

using the approach of nonlinear auto-regressive moving average (NARMA). Self-organizing 

radial basis function-based neural network adjusts the weights of hidden neurons and keep the 

model attuned with the real-time dynamics to improve the accuracy of predictions (Han, 2012). 

In the ANN using NARX, the model output variables are related to its past values in a time 

series. The input and output variable values of the externally determined driving series 

supplemented by the ANN inference model (Billings, 2013). NARMA is similar as NARX. The 

approach of auto-regressive regresses past values and the method of moving average involves 

error modelling to effectively represent general discrete-time nonlinear systems (Chetouani, 

2008; Erguzel & Akbay ,2014). 

In summary, the advantages of ANN model are listed below, 

1 ANN can achieve accurate and consistent solutions in different conditions of processes 

based on historic process operational variables and approximate nonlinear process.  

2 ANN is effective and fault tolerant.  

3 ANN can store information in continuous memory locations, which have a high potential 

for real-time implementations.  

However, ANNs have some disadvantages. Conventional neural networks always suffer from 

the issue of overfitting, local optimal and slow convergence.  

 

2.3.2 Applications of ANN 

ANN has many successful applications in many chemical, biochemical, and biomedical 

engineering. ANN has been utilised in PID schemes (Chen & Huang, 2004; Du et al., 2018), 

internal model control (IMC) (Nahas, 1992; Lim, 2010), and predictive control schemes 
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(Gomm, 1997). Bhat and McAvoy (1989) presented a work on using traditional neural network 

to model the response of pH in a continuous stirred tank reactor (CSTR). Compared with auto-

regressive moving average (ARMA) model, ANN gave better performance in that application 

than ARMA model. Nahas et al. (1992) introduced a nonlinear internal model control strategy 

based on neural network models. They demonstrate that the proposed strategy using neural 

network outperform the conventional PID control. Normandin et al. (1994) presented an 

approach of control of a continuous stirred tank fermenter using a neural network model in a 

predictive control strategy where the inlet substrate flow rate is selected in order to maximize 

an objective cost function. Neural network gave very good performance in this predictive 

strategy. Lightbody and Irwin (1995) presented the adaptive ANN-based control for non-

isothermal CSTR process to control the product concentration. The adaptive ANN-based 

controller outperformed the PI controller in terms of set-point tracking. Macmurray and 

Himmelblau (1995) proposed an externally recurrent ANN model for model predictive control. 

The results of externally recurrent ANN model indicate it has better performance than first 

principle model for model predictive control. Shah and Meckl (1995) proposed a strategy of 

adaptive ANN based model by using radial basis function-based ANN for non-isothermal CSTR. 

Bittanti and Piroddi (1997) proposed the application for shell and tube heat exchanger by using 

a control strategy based on ANN. ANN performed better than PID and linear controller. Syu 

and Chang (1997) presented a recurrent backpropagation neural network (RBPN) for the on-

line adaptive pH control of penicillin acylase fermentation with Arthrobacter viscous. A 

moving-window type of training data was provided to train RBPN to enhance the effective on-

line learning of this network. The RPBN achieved successful performance for the pH control 

of penicillin fermentation. A model based on the neural network with using the technique of 

spread encoding is proposed by Gomm et al. (1996) and it can achieve accurate long-range 

predictions and better control performance compared with conventional PI controller.  

Díaz et al. (2001) presented the investigation of the use of adaptive ANNs to control the 

temperature of air exit of a compact heat exchanger. The controller based on IMC scheme can 

be adapted online based on different performance criteria, energy consumption, minimisation 

of target error and controller stabilization criteria. The neurocontroller can adapt to major 

structural changes as well as to minimize the amount of energy cost. Engell and Fernholz (2003) 

proved the predictive controller based on the technique of radial-basis functions networks have 

improved the process control for at a real plant. The controller using neural network 

outperformed the linear controller. Ou and Rhinehart (2003) used neural networks for each sub-

model, and terms the prediction model as a grouped neural network (GNN). GNN was 

incorporated into a general nonlinear model predictive control (NMPC) structure to control a 
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distillation column. They demonstrated the effectiveness of this approach for a highly nonlinear 

process. Chu et al. (2003) proposed an MPC using recurrent ANN models. The comparison with 

linear controller and PI controller indicates the strong performance of recurrent ANN models. 

Chen and Huang (2004) presented an improved conventional PID control scheme using 

linearized neural network model. This controller outperformed recursive linear model- based, 

and self-tuning PID controllers for a pH neutralization process. Varshney and Panigrahi (2005) 

proposed a controller based on multilayer neural network for a heat exchanger in a closed flow 

air circuit. They demonstrated the controller based on multilayer neural network is more robust 

than conventional PID controller. Xiong and Zhang (2005) introduced a batch-to-batch iterative 

optimal control strategy using recurrent neural network for a methyl methacrylate 

polymerization process. They demonstrated the effectiveness of the proposed approach for the 

issue of model plant mismatches and unknown disturbances. Åkesson and Toivonen (2006) 

proposed a novel controller based on neural networks for optimal MPC of constrained nonlinear 

systems. This controller achieved optimal performance with different structure of controller, 

such as centralized structure and decentralized structure. Nagy (2007) introduced the enhanced 

Optimal Brain Surgeon algorithm for the determination of the optimal ANN topology. The 

controller based on this novel neural network outperformed the linear controller and traditional 

PID controller for alcoholic fermentation process. A novel controller based on multi-rate pseudo 

linear RBF neural networks was proposed by Yu and Yu (2007). It reduced the CPU time and 

achieved desired long-range predictions. Ekpo and Mujtaba (2007) proposed ANN-based 

predictive control utilised control vector parameterization and sequential quadratic 

programming-based optimisers for the batch polymerization of methyl methacrylate. It 

achieved better performance than controller based on ANN. Gonzaga et al. (2009) developed a 

feed-forward ANN to predict the polyethylene terephthalate viscosity for the polymerization 

process. The proposed model was integrated in the process control system and achieved robust 

performance. The control system based on ANN can be applied in servo and regulatory 

problems of the process.  

Yu et al. (2010) presented an ANN model to control the Fenton process for textile wastewater 

treatment. The accurate predictions of pH and effluent COD achieve by ANN are helpful to the 

process control and biological process. Alshehri et al. (2010) developed an ANN controller to 

predict and control the salt concentration in the treated oil for a crude oil desalting process. 

Damour et al. (2010) proposed a nonlinear predictive controller based on neural networks for 

an industrial crystallization process. It achieved better efficiency than conventional PID 

controller. Robustness and stability for the neural closed loop control system are discussed by 

Fernandez De Canete et al. (2010) by using the harmonic balance equations. Lim et al. (2010) 
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developed a controller based on ANN with decentralized structure for a hydrolyzation process. 

The proposed controller achieved better control performance than conventional PID controller. 

Han et al. (2011) proposed a MPC method based on a self-organizing RBF neural network to 

control dissolved oxygen concentration in activated sludge wastewater treatment processes. The 

self-organizing RBF neural network can adjust the hidden neurons and keep the model adapted 

with the dynamic of the process. Paengjuntuek et al. (2012) developed a controller based on 

multi-layer feed forward ANN for batch crystallization process and outperformed linear cooling 

control and theoretical model-based optimal control. Imtiaz et al. (2013) developed an inverse 

neural network for temperature control of a biochemical CSTR and its effect on ethanol 

production. And the performance of the controller is better than traditional PID controller. Rani 

et al. (2013) proposed adaptive linear network (ADALINE) based soft sensors and the 

application in inferential control of a multicomponent distillation process. ADALINE achieved 

better performance than Levenberg-Marquardt controller in terms of accuracy, training time 

and memory space required for training. Porrazzo et al. (2013) presented an optimizing control 

system based on neural network for a seawater-desalination solar-powered membrane 

distillation unit. Tayyebi and Alishiri (2014) developed an ANN-based inverse model controller 

that achieves results without overshoot and reduced computational burden for multi-stage flash 

distillation process. Li and Li (2016) developed a neural network Wiener model and applied for 

an intensified continuous reactor. The Wiener model is a hybrid model which contains two parts: 

a linear state space model identified based on nonlinear first-principal model and a neural 

network to predict the nonlinear controlled quality variables. Du et al. (2018) an introduced 

radial basis function-based neuro controller for activated sludge process. They demonstrate the 

effectiveness and stability of the proposed controller. Wu and Christofides (2019) proposed an 

economic model predictive control system based on technique of control Lyapunov-barrier 

function for non-isothermal CSTR. To ensure the systems stability, recurrent neural network 

was used in this controller. Carvalho et al. (2020) proposed a feedback control system based on 

neural network and compared with conventional PI controller-based feedback control loop for 

heat exchangers. The proposed controller achieved better performance than PI controller. 

Monticeli and Ornaghi Júnior (2021) proposed an ANN approach for the prediction of the TG 

behavior of vegetal fibers. The results of the study indicate that the application of ANN for a 

highly non-linear application requires large amount of training data in order to achieve accurate 

predictions. An artificial neural network was developed for the estimation of the thermal 

conductivity of multi-walled carbon nanotubes (MWCNTs)-CuO/water nanofluid by Rostami 

et al (2021). They used ANN as a new approach to predict the thermal conductivity leading a 

contribution in achieving more accurate predictions of the process states. Esfe et al. (2021) 
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developed a well trained artificial neural network using Bayesian regularization back 

propagation algorithm. The model was used to predict the dynamic viscosity of MWCNT −

Al2O3/oil SAE40 nanofluid at different concentration of inputs and temperatures. ANN gave 

good performance on prediction with > 99.9% correlation coefficient. Wang et al. (2021) 

developed a novel hybrid method of ANNs with response surface methodology for the 

optimisation of dark fermentation.  This approach was applied to a complex system with 

significant variation among different critical operational conditions and achieved reliable 

optimisation of dark hydrogen fermentation process. Fan et al. (2022) presented a study on the 

dynamic viscosity of water – ethylene glycol/WO3 – MWCNTs hybrid nanofluid with the 

influence of nanoparticle and temperatures. The process data were modeled by ANN and ANN 

achieved reliable and robust performance. A study of optimisation of fertilizer rates and water 

table levels for different crops and fields by feedforward neural networks was introduced by 

Grenon et al. (2022). The effectiveness of neural networks was demonstrated with the 

comparison between feed-forward neural network, deep feed-forward neural network, general 

regression neural network, bi-directional LSTM (Bi-LSTM), LSTM, gated recurrent unit and 

radial basis function neural network. Hassan et al. (2022) built an ANN model for the prediction 

of the thermal degradation and flexural strengths of the Bi2O3- polybenzoxazine matrix and its 

nanocomposite. The value of correlation coefficients is above 0.99 which demonstrated that 

accuracy of ANN model. Glosh et al. (2022) developed an ANN-based fiber optic hybrid multi-

grating sensor for the measurement of 𝑃𝑏2+ ions concentration. The sensor achieved a high 

sensitivity as 2.55±0.06365 nm/nM. It indicated that the high generalisation capability of ANN 

approach. Sahoo & Biswal (2022) introduced using ANN model to predict mechanical 

properties of acrylic acid and monomers acrylonitrile with reinforcement of fish bone powder 

(FBP). The result of the predictions was close to the experimental results. Dam et al. (2022) 

introduced an approach for determination of the superficial velocity and volume fraction in a 

simulated two-phase (oil–water) flow system by using ANN model. The predictions of the ANN 

model are close to the experimental results of the process. 
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2.4 Bootstrap Aggregated Neural Networks 

Model robustness is one of the most important criteria that need to be considered when applying 

advanced modelling techniques to actual industrial processes. Model robustness is crucial in 

real industrial applications. To improve the robustness and stability of neural networks, 

combining several developed neural networks into one model were investigated by many 

researchers (e.g. Cho & Kim, 1995; Hashem, 1997; Jacobs et al., 1991; Ji & Ma, 1997; Jordan 

& Jacobs, 1994; Perrone & Cooper, 1993; Raviv & Intrator, 1996; Rosen, 1996; Sharkey, 1996; 

Sridhar, Seagrave & Bartlett, 1996; Taniguchi & Tresp, 1997; Wolpert, 1992; Xu et al., 1992). 

In early 90s, Breiman (1996) proposed a novel approach to aggregate multiple forecasting 

models based on the technique of bootstrap resampling to enhance the robustness of model. The 

model accuracy was significantly improved (Breiman, 1996). The bootstrap resampled data can 

be considered as a replication of the original modelling data. There will be various performances 

of neural network when they are trained by different sets of bootstrap resampled data, even 

these networks are correlated and model the same process. Beyond this work, bootstrap 

aggregated neural network was proposed by Zhang (1999b).  

  

2.4.1 Structure of Bootstrap Aggregated Neural Networks 

 

Figure 2.5 The structure of bootstrap aggregated neural networks 
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The structure of bootstrap aggregated neural networks is given in Figure 2.5. Bootstrap 

aggregated neural networks contain multiple individual neural networks. These neural networks 

are independently developed to each other, even they model the same chemical process, because 

they are developed from different sets of bootstrap resampled data, there are differences among 

these networks. Predictions achieved by those individual neural networks will be weighted and 

combined to achieve a more reliable and robust prediction of the model output variables. The 

combination of the bootstrap aggregated neural network outputs can be formulated as, 

𝑓(𝑿) = ∑ 𝑤𝑖𝑓𝑖(𝑿)𝑛
𝑖=1                          (2.34) 

where 𝑓𝑖(𝑿)  represents the ith neural network’s predictive function, 𝑤𝑖  is the aggregating 

weight for combing the ith neural network, X is a vector of model inputs. 

Selecting an appropriate value of aggregating weight, 𝑤𝑖, can achieve accurate and reliable 

results for the application. The method of multiple linear regression could be applied to adjust 

the weights of bootstrap aggregated neural networks. However, the approach of multiple linear 

regression will lead to undesirable and unreliable estimation because of the high correlation 

between these individual neural networks (Zhang, 1999b). Consider y as a vector of desired 

target values and 𝒚𝑖̃ as the prediction of ith neural networks, and n is the number of neural 

networks in the bootstrap aggregated neural network, the predictions of all individual neural 

networks can be given as, 

𝒀̃ = [ 𝒚1̃ 𝒚2̃ … 𝒚𝑛̃]                         (2.35) 

where 𝒀̃  is a matrix of predictions from individual neural networks. The prediction of 

bootstrap aggregated neural network, 𝒚̃𝑏, can be calculated by, 

𝒚̃𝑏 =  𝒀̃𝒘 = 𝑤1𝒚1̃ + 𝑤2𝒚2̃ + ⋯ + 𝑤𝑛𝒚𝑛̃                (2.36) 

Using the linear regression to adjust the aggregating weights, w, the least squares estimation is 

given by, 

𝒘 = (𝒀̃𝑇𝒀̃)−1𝒀̃𝑇𝒚                          (2.37) 

Because the individual neural networks are highly correlated to each other, 𝒀̃𝑇𝒀̃  will be 

singular or very close to singular. Therefore, the aggregating weights, w, will be very sensitive 

to the errors between predictions and actual values and noises of data. The multiple linear 

regression approach will lead to poor performance. This situation also occurs in the work by 

Breiman (1994) and constrains need to be added to the adjustment of aggregating weights.  

The aggregating weights of bootstrap aggregated neural networks can be obtained by the 

approach of PCR, due to the high correlation among individual neural networks. The 
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predictions of individual neural networks, 𝒀̃, can be decomposed using PCA as,  

𝒀̃ = 𝒕1𝒑1
𝑇 + 𝒕2𝒑2

𝑇 + ⋯ + 𝒕𝑛𝒑𝑛
𝑇                       (2.38) 

where 𝒕𝑖 and 𝒑𝑖 are ith score vector and loading vector respectively.  

The bootstrap aggregated neural networks output can be obtained as a linear combination of the 

first a few principal components of 𝒀̃ using PCR. The prediction, 𝒀̃𝑏 can be represented as, 

𝒀̃𝑏 = 𝑻𝑘𝜽 = 𝒀̃𝑷𝑘𝜽                          (2.39) 

where 𝑻𝑘 is the matrix of the first k score vectors, 𝑷𝑘 is a matrix of the first k loading vectors.  

The least squares estimation of 𝜽 is shown below, 

𝜽 = (𝑻𝑘
𝑇𝑻𝑘)−1𝑻𝑘

𝑇𝒚 = (𝑃𝑘
𝑇𝒀̃𝑇𝒀̃𝑷𝑘)−1𝑷𝑘

𝑇𝒀̃𝑇𝒚            (2.40) 

The aggregating weight, w, can be calculated by using PCR as, 

𝒘 = 𝑷𝑘𝜽 = 𝑷𝑘(𝑷𝑘
𝑇𝒀̃𝑇𝒀̃𝑷𝑘)−1𝑷𝑘

𝑇𝒀̃𝑇𝒚               (2.41) 

The performance of adjusted aggregating weights through PCR performed well (Zhang, 1999b). 

The appropriate number of principal components can be found through the method of cross-

validation. Several numbers of principal components are selected and the modelling 

performance is tested on the testing data set. The bootstrap aggregated neural network has the 

smallest testing error is considered as having the most appropriate number of principal 

components.     

This approach of developing a bootstrap aggregated neural network can be summarised as the 

follow steps, 

1. Using the approach of bootstrap re-sampling with replacement (Efron & Tibshirani,1993) 

to generate new replications of training data set from the original training data set. The 

distribution of replications of training data is similar to that is the original training data set. 

2. A neural network with appropriate structure is developed from each set of bootstrap 

replications.  

3. After training these individual neural networks, the predictions of individual networks are 

combined together through PCR. 

The confidence bounds can also be calculated by calculating the standard errors of individual 

models in bootstrap aggregated neural networks (Zhang, 1999b). The confidence bounds 

provide more information to the process operator about the reliability of model predictions.  
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2.4.2 Bootstrap Aggregated Neural Network Applications 

Zhang (1999a) proposed the bootstrap aggregated neural networks with the approach of PCR 

for nonlinear process modelling including inferential estimation of polymer quality in a 

simulated batch polymerization process. Because of the strong generalisation capability of 

neural networks for nonlinear process, the bootstrap aggregated neural network achieved more 

accurate and robust estimations than a single neural network. The confidence bounds for the 

model predictions can be computed. It can be considered as an evaluation criterion to decide 

the predictions are acceptable or not. A novel bootstrap aggregated neural network using a 

sequential training algorithm was introduced by Zhang (2002). The sequential training 

algorithm minimize the training errors and the correlations among individual neural networks 

to address the question of how many neural networks should be combined. The computational 

effort of bootstrap aggregated neural network had been reduced due to this sequential training. 

The effectiveness of the new sequential training algorithm was illustrated by modelling a water 

tank.  

The bootstrap aggregating neural network using the Levenberg-Marquardt optimisation 

algorithm and the sequential training algorithm was applied to an industrial polypropylene 

polymerization process for the inferential estimation of polymer MI (Zhang et al., 2006). The 

correlation analysis for the process operational data and quality data had been carried out. The 

model achieved significantly improved performance on estimate the polymer MI with reduced 

computation costs.  

Al-Mahrouqi and Zhang (2008) proposed a control strategy using bootstrap aggregated neural 

networks and ant colony optimisation for a fed-batch fermentation process. The confidence 

bounds estimated from individual neural networks are incorporated in the optimisation 

objective function and wide confidence bounds are penalised. The improvement of optimal 

control policy is demonstrated. This approach also was applied to a reactive polymer composite 

moulding process (Mohammed & Zhang, 2003). Kaunga et al. (2013) developed a bootstrap 

aggregated neural network for the modelling of the chemical durability of HLW glass in a 

nuclear waste processing process. They indicated that developed bootstrap aggregated neural 

network can give accurate and reliable prediction of chemical durability.  

Khaouane et al. (2017) reported a bootstrap aggregated neural network (BANN) model for the 

rejection process of charged and uncharged organic compounds by nanofiltration and reverse 

osmosis membranes. To develop the BANN model, 436 rejections of 42 charged and uncharged 

organic compounds were selected as process data set. Different training data were resampled 
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from original data by using the bootstrap resampling technique. Each individual neural network 

was built, validated and tested with the resampled training data. The predictions were achieved 

by combining the predictions of different neural networks through simple averaging. Good 

performance of BANN was demonstrated in this study.  

Osuolale and Zhang (2018) developed bootstrap aggregated neural networks for estimations of 

exergy efficiency and product qualities and the developed models were used to maximize 

exergy efficiency and product quality. The confidence bounds from the individual neural 

network predictions were incorporated in the optimisation. The results of the application for a 

crude distillation system indicated the improvement in the exergy efficiency with no additional 

costs of equipment.  

Szafranek (2019) estimated the quality of the out-of-sample short-term headline inflation 

forecasts achieved by a combination of bagged ANN models. This study utilised a thick 

modelling approach to improve the accuracy of the models and prevent the issue of overfitting 

with bootstrap aggregation. The results were remarkable. 

Lian et al. (2020) introduced a novel bootstrap aggregated classification tree neural network 

(BACT-ANN) for the prediction of rainfall occurrences and amounts over the Langat River 

Basin, Malaysia. The daily rainfall series for the years 1975–2012 at four rainfall stations were 

selected as the training data. The simulation of the rainfall occurrence had been achieved 

appropriately by BACT-ANN with critical requirements. This approach outperformed the 

stochastic nonhomogeneous hidden Markov model in simulating variance, distribution and 

correlation of rainfall amount. 

Lu et al. (2021) developed a novel bagging fuzzy neural networks for 72 hours forecast of low 

temperature chilling injury. To develop the capability of single fuzzy neural network, the 

playback extracted training data subsets were utilised for the development of the bagging model. 

The novel bagging fuzzy model can reduce the uncertainty of the predictions of the single 

forecasting model. It gives lower mean absolute error than result of single fuzzy network. 

 

2.5 Deep Learning 

As a more recent research area of AI, deep learning becomes a very promising area for research 

and industry. It has already been applied to many areas related to our life (Goswami, 2020), 

such as 

1. Image and voice recognition using the technique of deep leaning by Google. 
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2. Deciding which video and movie is being popular in the future and provide the valuable 

content to customers. 

3. Predicting future actions for advertisers by Facebook. 

4. Identification of cancer cells in tissue samples. 

5. Face recognition. 

6. Driver assistance systems. 

Deep learning is a subcategory of machine learning in which a model is developed from process 

data set (Goswami, 2020). Model based on the technique of deep learning has a deep structure 

with many layers in the network. Deep network always contains multiple hidden layers as 

shown in Figure 2.6. 

 

Figure 2.6 Diagram of a deep learning network (Goswami, 2020) 

There is no evaluation criterion to define how many layers in the network that it can be consider 

as deep learning (Deng & Yu, 2014). Compared with the conventional data-driven models, deep 

learning can achieve more accurate and reliable results. Deep learning-based models can deal 

with massive amount of data and the performance increase significantly when training by large 

amount of data, and advanced GPUs can reduce the training time of deep learning network 

models rapidly (Goswami, 2020).  
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2.5.1 Commonly Used Deep Learning Methods 

The restricted Boltzmann machine (RBM) is widely used in deep learning models. RBM is a 

building block of deep belief networks (DBN). The parametrization can be shared by RBM with 

DBN layers. And there are very effective training algorithms for training RBM. Figure 2.7 

shows the structure of RBM and DBN is illustrated in Figure 2.8. 

 

Figure 2.7 Undirected diagram of a RBM model (Bengio, 2009) 

 

Figure 2.8 Deep belief network (Bengio, 2009) 

In Figure 2.7, x is the input units, h is the hidden units. There is no connection between the 

neurons in the same layer which is the difference with Boltzmann machine. In Figure 2.8, the 
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top two layers can be considered as a RBM model. 𝑃 (𝒉2, 𝒉3) means the joint conditional 

probability function of the top two layers. It can be considered that a DBN model is constructed 

with stacking RBMs (Bengio, 2009). The DBN models was invented by Hinton (2006) for 

image recognition, cluster and generation and motion capture data. 

Another popular model based on the technique of deep learning is DBN based autoencoder. A 

DBN based autoencoder is comprised of two DBN models. It is shown in Figure 2.9. 

    

Figure 2.9 Structure of a DBN based autoencoder 

The first DBN is called encoding DBN which does the encoding operation to compress the 

input variables into low dimension feature vectors. The second DBN model decodes the 

compressed feature vectors to the original data set. It means that the target outputs of an 

autoencoder are its inputs. Autoencoder has been successfully used in data compression, picture 

search and information retrieval (Bengio, 2009; Goswami, 2020).  

 

2.5.2 Deep Learning for Chemical Processes  

The technique of deep learning has been widely used in many high-tech areas. In this section, 

some applications for industrial processes are introduced. 

Data-driven model based on deep learning have some applications in chemical industry for fault 

classification and monitoring. A novel chemical fault diagnosis model using stacked denoising 

autoencoder was proposed by Jiang et al. (2016). A DBN model was proposed by Zhang et al. 
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(2017) for the fault classification in Tennessee Eastman (TE) process. The fault classification 

model achieved outstanding performance, the diagnosis rate of fault 3 which is one of the most 

difficult to diagnose achieved to 95%. Li et al (2018) developed a novel method based on deep 

reinforcement learning to control molecular weight distribution of polymer. The learned control 

policies achieved by deep reinforcement learning are reliable and robust for the optimisation. 

Wu et al. (2018) presented a study on using the technique of convolutional neural network 

(CNN) for fault classification application in TE process. The proposed model reached average 

fault diagnosis rate 88.2% of all the 20 fault types. In 2019, a novel approach based on deep 

reinforcement learning with deep deterministic policy gradient was presented for a semi-batch 

polymerization process by Yan et al (2019). This approach was illustrated to perform 

multivariate control policies over non-linear polymerization process in simulation environment. 

It indicated that deep reinforcement learning has better capability of handling complicated 

chemical process than traditional controller. You and Arumugasamy (2020) presented an 

adaptive neural fuzzy inference system (ANFIS) model to predict the polycaprolactone 

molecular weight of enzymatic polymerization process. ANFIS achieved better performance on 

predicting polycaprolactone molecular weight than conventional models. Karg and Lucia (2021) 

demonstrated the advantage of capability of deep neural networks for an industrial 

polymerization process to overcome the problems of moving horizon estimation and nonlinear 

model predictive control. Yuan et al (2021) introduced a predictive model, STA-ConvBiLSTM, 

which combines the techniques of Bi-LSTM and CNN. Spatiotemporal attention (STA) was 

further introduced to this method to avoid high target relevant interactions from being discarded. 

This novel method improved the accuracy of temperature predictions of a delayed coking unit. 

Zapf and Wallek (2022) presented a study to developed deep learning based models for multi-

objective optimisation of maximizing production margin while minimizing CO2emissions. The 

deep artificial neural network can handle large numbers of inputs and achieved reliable 

optimisation.   

Deep learning shows great performance for industrial processes. The data-driven empirical 

models based on deep learning will be investigated in this work.  

2.6 Process Control 

The development of process control approaches based on AI does not require the detailed 

physical and chemistry knowledge about the applications. Process control approaches based on 

data-driven soft sensor can achieve accuracy and optimal control policy from the historic 

process data. It adds effectiveness of control strategy in real-time implementations (MacMurray 
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& Himmelblau, 1995). Data-driven models can provide commendable predictive performances 

and robustness when dealing with varying dynamics and uncertainty in most chemical 

processes (Boroushaki, 2003; Chen & Huang, 2004; Galluzzo & Cosenza, 2010). Figure 2.10 

shows an AI-based controller.  

 

Figure 2.10 A basic implementation of an AI-based controller (Dutta and Upreti, 2021) 

From Figure 2.10, the error term, e, together with the process variables (X) and output (feature), 

is transferred to model identifiers, such as ANN, fuzzy system, etc. The errors are calculated by 

output 𝑌𝑎 and desired output 𝑌𝑠𝑝. The model identifiers use gradient algorithms to fine-tune 

the model to achieve accurate predictions 𝑌𝑝 from the process variables X. The objective of 

model is to minimize the error between 𝑌𝑝 and 𝑌𝑎. Then the controller will need to optimise 

a performance index J utilising traditional optimiser. The controller may be based on NMPC 

(Sarimveis & Bafas, 2003), IMC (Varshney & Panigrahi, 2005), PID control (Hojjati, 2003), or 

fuzzy logic-based control (Galluzzo, 1991). The calculated control action U is applied to the 

process and, as a result, the system is expected to move toward the desired state of minimum e 

or optimum J. The subsequent output 𝑌𝑎 gets directed to the controller, which in turn identifies 

the model as needed, and determines the next control action U. After several iterations, the 

process will reach the optimal status. 
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2.6.1 Single-objective Optimisation 

The single-objective optimisation is to achieve the optimal control policy to minimize or 

maximize a value of key quality variable through an objective function. This type of 

optimisation only has one optimisation objective.  

  

The nonlinear optimisation can be formulated as  

min
𝑢𝑗

𝑓(𝑥)                            (2.42) 

subject to:  

 

𝑑(𝑥) = 0                            

𝑘(𝑥) ≤ 0                              

𝑢𝐿  ≤ 𝑢𝑗 ≤ 𝑢𝑈                           

where 𝑓(𝑥)  is the optimisation objective function, the control policy 𝑢𝑗   is constrained 

between the lower bound 𝑢𝐿  and the upper bound 𝑢𝑈 , 𝑘(𝑥)  and d(𝑥)  are the nonlinear 

inequality and equality constrains respectively.   

For common nonlinear process optimisation, sequential quadratic programming (SQP) is 

normally used (Schittkowski, 1986).  

2.6.2 Reliable Multi-objective Optimisation of Batch Processes  

Mukherjee and Zhang (2008) propose a reliable multi-objective optimisation control strategy 

for batch processes using bootstrap aggregated neural networks. In terms of batch process 

optimisation control, 𝒀𝒑 represents the predicted quality variables, U = [𝑢1, 𝑢2, … , 𝑢𝑁] is a 

vector of control actions (manipulated variables), 𝑡𝑓 is the end time of the batch process, and 

function f is the trained prediction function of data-driven empirical model. The network model 

can be formulated as, 

𝒀𝒑(𝑡𝑓) = 𝒇(𝑼)                          (2.43) 

After the training of the network the standard error of the model can be predicted as, 

𝜎𝑒(𝑡𝑓) = 𝑔(𝑼)                          (2.44) 

where 𝑔(𝑼) is the formula to calculated the prediction standard errors. The smaller 𝜎𝑒 is the 
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more reliable the model prediction is.  

Therefore the multi-objective optimisation function can be given as, 

𝑭(𝑼) = [
ℎ[𝑌𝑝(𝑡𝑓)]

𝜎𝑒(𝑡𝑓)
]                         (2.45) 

min
𝑈

𝛾  

 

subject to                      𝑭𝒊(𝑼) −  𝑾𝒊𝛾 ≤  𝑭𝒊
∗ 

𝒀𝒑(𝑡𝑓) = 𝑓(𝑼) 

𝜎𝑒(𝑡𝑓) = 𝑔(𝑼) 

𝑢𝐿  ≤ 𝑢𝑗 ≤ 𝑢𝑈     𝑗 = 1, 2, … , 𝑁   

where h[Y(tf)] is the process optimal objectives, 𝛾 represents a scalar variable (an auxiliary 

variable making the new single objective function), Wi is the weighting parameter for the ith 

objective, 𝐹𝑖
∗ is the desired goal value for the ith objective, and the control policy has a value 

constrains between the lower bound 𝑢𝐿 and the upper bound 𝑢𝑈 .    

𝑭𝒊
∗ = [𝐹1

∗, 𝐹2
∗, … , 𝐹𝑚

∗ ]  contains several objectives which are associated with the objective 

function, F(x) = {F1(x), F2(x) ..., Fm(x)}, where m is the number of objectives. The problem 

formulation allows the objectives to be under- or over-achieved enabling the designer to be 

relatively imprecise about the initial design goals. The weighting coefficients, W = {W1, W2 ..., 

Wm}, control the relative degree of goals. The weighting vector, 𝑊𝑖, enables the optimiser to 

express a measure of the relative trade-offs between the objectives. The optimisation can also 

incorporate hard constrains into the design by setting a particular weighting factor to zero (i.e., 

Wi = 0). 

Accurate predictions of quality variables can be obtained by using bootstrap aggregated neural 

network models. The control actions calculated by the multi-objective optimisation are reliable 

because enhancing the model prediction confidence is incorporated as addition optimisation 

objectives (Mukherjee and Zhang, 2008).  
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2.7 Summary 

A review of AI technology and statistical modelling has been carried out. With the great 

development of AI technology and computational ability, many advanced AI techniques are 

applied to process control systems for industrial chemical and biochemical processes. 

Regression models were reviewed, such as single variable linear regression, multiple linear 

regression, PCR, PLS and ANN. Advanced techniques have been applied with conventional 

empirical models. There are many successful ANN applications utilised in process control 

methods such as PID schemes, IMC and predictive control schemes. However, there are 

limitations of ANNs. It suffers the issues of overfitting, under fitting due to training trapped in 

local optima and slow convergence. 

The enhanced bootstrap aggregated neural network was introduced. It improves the robustness 

and accuracy of neural network. The confidence bounds can be incorporated in the optimisation 

of industrial processes. It enhances the reliability of the optimisation function and improves the 

control policy for actual industrial processes. A sequential training algorithm can be used to 

reduce the computation costs in training bootstrap aggregated neural network. Bootstrap 

aggregated neural network has many successful applications, such as on a crude distillation 

system, nuclear waste process, a fed-batch fermentation process, etc.  

A brief introduction of deep learning was given. The advanced deep learning technique has the 

ability to be used in process control for complex chemical processes. However, there are few 

models and applications based on deep learning for regression and optimisation in chemical 

processes. The single-objective optimisation and multi-objective optimisation has been 

introduced. It provides the knowledge for optimisation control based on deep learning.  
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Chapter 3. Inferential Estimation of Polymer Melt Index Using Deep Belief 

Network 

3.1 Introduction 

Deep learning has drawn a lot of attention in recent years. Hinton (2006) gave the first 

introduction of deep learning to solve the issue of lack of generalisation capability of 

conventional data-driven modelling techniques. According to research, neural networks with 

shallow structure can lack of representation capabilities and demonstrate limitations in certain 

learning tasks (Bengio et al. 2005). Specifically, these networks struggle with approximating 

highly-variable functions that have extreme changes in specific regions. To accurately represent 

such regions, numerous neurons need to be added to layers. And an adequate amount of training 

samples is required to ensure desirable generalisation, i.e. giving good performance on unseen 

data. However, if the training samples are limited, shallow networks may not be able to correctly 

represent highly varying functions. Recently, it has been suggested that deep neural networks 

with more than two layers of nonlinearities can effectively represent highly varying functions 

(Bengio et al. 2005). Many industrial chemical processes are highly nonlinear and difficult to 

be modelled by first principle models. Conventional neural networks suffer the problem of lack 

of generalisation capability due to over-fitting or under-fitting due to training trapped in local 

optima. To overcome this issue, the technique of deep learning can be utilised. Deep belief 

network (DBN) is one kind of well-known data-driven deep learning model. Compared with 

conventional feed-forward neural networks, deep belief network has a deep structure with 

advanced learning algorithms. It has shown strong generalisation capability and many 

successful applications in many areas such as speech recognition, image classification and fault 

diagnosis (Jiang et al., 2016; Toledano et al., 2018; Abdul et al., 2020). Few applications of 

DBN for industrial processes have been reported. In this chapter, a DBN model is developed 

for the inferential estimations of polymer MI in an industrial polypropylene polymerization 

process. By using deep learning technique, large amount of industrial process data samples 

without the corresponding labels (i.e. the corresponding target values) can also be used by DBN 

model in the learning procedure. It improves the performance of DBN and achieves accurate 

estimations of MI.  

This chapter is organized as follows, Section 3.2 presents DBN model and the main principles 

of restricted Boltzmann machines (RBMs) and back-propagation are introduced. In Section 3.3, 

the case study of an industrial polypropylene polymerization process is given. The selection of 

DBN model architectures is discussed and the polymer melt index estimation results are given 
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in Section 3.4. Section 3.5 summarises the conclusions of this chapter. 

3.2 Deep Belief Network 

3.2.1 Structure of Deep Belief Network 

The limitation of traditional neural networks is that they usually have shallow structures. There 

are typically no more than three layers in a conventional neural network model. Many actual 

industrial processes are commonly highly nonlinear. The shallow architecture of feed-forward 

neural network could lead to the lack of representation capability when modelling highly 

complex nonlinear processes (Bengio et al 2006; 2007). To approximate various operating 

regions of a process, the model needs more hidden neurons added to the hidden layers. It is 

suggested that networks with deep structures can achieved reliable results in recent research 

(Bengio et al, 2006). DBN has been successfully applied to many research areas, such as 

classification and recognition (Tang, Salakhutdinov & Hinton 2012). In a DBN model, several 

restricted Boltzmann machines (RBMs) are stacked and combined as one learning network. 

DBN is developed with a deep structure based on deep learning technique. Figure 3.1 presents 

the basic architecture of DBN.  

 

Figure 3.1 The architecture of DBN 

 

The DBN shown in Figure 3.1 has five layers, an input layer, an output layer and three hidden 

layers. In this figure, W1 to W4 are the weights of the network, b1 to b3 and c1 to c4 are bias of 

the network. It can be considered that DBN is a combination of stacking RBMs. Each hidden 

layer of DBN is regarded as one single RBM. Compared with traditional Boltzmann machine, 
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the neurons in a hidden layer of DBN are not connected to each other. However, the layers in a 

network have symmetrical connections with each other. The units in hidden layers are binary 

units and the visible input layer units are Gaussian units. The first phase of training is 

unsupervised training and the process operational data are used to train the DBN model without 

any target variables involved. RBMs are generative models that learn to model the joint 

probability distribution of process variables. They are initially trained by an unsupervised 

learning algorithm to learn the latent feature representations of the input data. The training 

objective of RBMs is to maximize the likelihood of the observed data. The likelihood function 

is given by the product of the probabilities of each training example (Hinton et al. 2006). The 

unsupervised training helps the DBN to mine more correlations than the conventional feed-

forward neural network. The weights are adjusted in a desired region before the supervised 

training phase. After unsupervised training, DBN is fine-tuned by the backpropagation 

algorithm in the supervised training phase.  

 

3.2.2 Restricted Boltzmann Machines 

In the 1980s, Paul Smolensky developed Restricted Boltzmann machine (Smolensky, 1986). 

Hinton et al. (2006) developed DBN by stacking RBMs as the layers of DBN. A DBN contains 

stacked RBMs as shown in Figure 3.1.  

To understand the basics of RBM, the probability function between visible units and hidden 

units needs to be introduced first. Equation (3.1) shows the probability function,  

                𝑃(𝒗, 𝒉) = (exp {−𝐸(𝒗, 𝒉)})/𝑍                   (3.1) 

where Z represents a normalizing factor, v represents the vector of visible layer, h represents 

the vector of hidden layer. The probability P(v) increases when the energy function decreases. 

In the RBM, the energy function is given by, 

     𝐸(𝒗, 𝒉) = −𝒃𝑇𝒗 − 𝒄𝑇𝒉 − 𝒉𝑇𝑾𝒗                (3.2) 

where, W, b and c are parameters of the function. It should be noticed that the vector v and the 

vector h are both binary-valued. The state of 𝒗𝒊 is 1 if unit i is on and 0 otherwise. Binary 

RBMs are used as hidden layers in a DBN model. When v and h are known, the conditional 

probability can be calculated by, 

𝑃(𝒉𝒋|𝒗𝒊, 𝜃) = 𝑠𝑖𝑔𝑚(∑ 𝑾𝒊𝒋𝒗𝒊 + 𝒃𝒋
|𝒗|
𝑖=1 )               (3.3) 

𝑃(𝒗𝒊|𝒉𝒋, 𝜃) = 𝑠𝑖𝑔𝑚(∑ 𝑾𝒊𝒋𝒉𝒋 + 𝒄𝒊
|𝒉|
𝑗=1 )               (3.4) 

where 𝑠𝑖𝑔𝑚(𝑥) = 1/(1 + 𝑒−𝑥) is the sigmoid function.  
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However, binary RBM cannot be used to deal with continuous variables. To overcome this issue, 

(3.2) can be extended to energy function of Gaussian RBM, 

           𝐸(𝒗, 𝒉) = ∑
(𝑣𝑖−𝑎𝑖)2

2𝜎𝑖
2𝑖 − 𝒄𝑇𝒉 − 𝒉𝑇𝑾𝒗               (3.5) 

where 𝑎𝑖  is the mean of Gaussian distribution, σ𝑖  is the standard deviation of Gaussian 

distribution for input neuron. The samples of input data are commonly normalized to zero mean 

and unit variance in practical applications. Therefore, (3.5) can be changed to, 

               𝐸(𝒗, 𝒉) =
𝟏

𝟐
𝒗𝑇𝒗 − 𝒃𝑇𝒗 − 𝒄𝑇𝒉 − 𝒉𝑇𝑾𝒗           (3.6) 

Hinton also described other forms of RBMs (Hinton 2012), but the DBN in this chapter only 

uses Gaussian RBM and binary RBM.   

 

3.2.3 Learning Algorithm for RBM 

The objective of training RBM is to maximize the probability P(v), which can be achieved by 

minimizing the energy function. From Gibbs sampling, h can only be sampled from v of visible 

layers. the gradient at a visible point v can be formulated as: 

𝜕𝑙𝑜𝑔𝑃(𝒗)

𝜕𝜃
=

𝜕𝑙𝑜𝑔 ∑ 𝑃(𝒗,𝒉)ℎ

𝜕𝜃
  =

∑ 𝑒−𝐸(𝒗,𝒉)
ℎ (

𝜕[−𝐸(𝒗,𝒉)]

𝜕𝜃
)

∑ 𝑒−𝐸(𝒗,𝒉)
ℎ

−
∑ ∑ 𝑒−𝐸(𝒗̃,𝒉)

𝒉𝒗̃ (
𝜕[−𝐸(𝒗̃,𝒉)]

𝜕𝜃
)

∑ ∑ 𝑒−𝐸(𝒗̃,𝒉)
𝒉𝒗̃

  

       = ∑ 𝑃(𝒉|𝒗)ℎ
𝜕[−𝐸(𝒗,𝒉)]

𝜕𝜃
− ∑ ∑ 𝑃(𝒗̃, 𝒉)

𝜕[−𝐸(𝒗̃,𝒉)]

𝜕𝜃ℎ𝑣̃                          (3.7) 

where θ={W,b,c} is a vector of the network parameters. The positive part of the equation is 

conditional expectation of 
𝜕[−𝐸(𝒗,𝒉)]

𝜕𝜃
. Computing the positive term in (3.7) is easy because the 

visible vector v has been known. The conditional probabilities for the binary RBM can be given 

by,  

𝑃(ℎ𝑗 = 1|𝑣) =
𝑒

𝐶𝑗+𝑊𝑗𝑣

1+𝑒
𝐶𝑗+𝑊𝑗𝑣 = 𝑠𝑖𝑔𝑚(𝑐𝑗 + 𝑊:,𝑗𝒗)              (3.8) 

𝑃(𝑣𝑖 = 1|ℎ) =
𝑒𝑏𝑖+𝑊𝑖

𝑇ℎ

1+𝑒𝑏𝑖+𝑊𝑖
𝑇ℎ

= 𝑠𝑖𝑔𝑚(𝑏𝑖 + 𝑊𝑖,:
𝑇𝒉)              (3.9) 

𝑊:,𝑗 is the jth row of W, 𝑊𝑖,: is the ith column of W It can be seen that the weights for binary 

RBM input units v and hidden units h are symmetrical. For the Gaussian RBM, these two terms 

can be formulated by, 

𝑃(ℎ𝑗 = 1|𝑣) =
𝑒

𝑐𝑗+𝑊𝑗𝑣

1+𝑒
𝑐𝑗+𝑊𝑗𝑣 = 𝑠𝑖𝑔𝑚(𝑐𝑗 + 𝑊:,𝑗𝒗)               (3.10) 

𝑃(𝑣𝑖|ℎ) =
1

√2𝜋
{−

1

2
(𝑣𝑖 − 𝑏𝑖 − 𝑊𝑖,:

𝑇𝒉)2} ~𝑁(𝑏𝑖 + 𝑊𝑖,:
𝑇𝒉, 1)         (3.11) 
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𝑃(𝑣𝑖|ℎ) can be considered as following a normal distribution with mean of 𝑏𝑖 + 𝑊𝑖,:
𝑇𝒉 and 

unit variance. 

The other part of learning algorithm, the negative term in equation (3.7), is the 
𝜕[−𝐸(𝒗,𝒉)]

𝜕𝜃
 of 

joint distribution 𝑃(𝒗̃, 𝒉) with parameter 𝜃. There is an intractable problem to calculate it. To 

overcome this issue, an approach of contrastive divergence (CD) was presented by Hinton et al. 

(2006). 

The CD deals with the approximation of negative terms of Equation (3.7): 

                             ∑ ∑ 𝑃(𝒗̃, 𝒉)
𝜕[−𝐸(𝒗̃,𝒉)]

𝜕𝜃ℎ𝑣̃                          (3.12) 

The method of Gibbs sampling can solve this problem effectively. Figure 3.2 shows the Markov 

chain and CD for RBM. The first step of sampling is to sample 𝒉(t) from 𝑃(𝒉|𝒗 = 𝒗(𝑡−1)), 

then sample 𝒗(t) from 𝑃(𝒗|𝒉 = 𝒉(𝑡)). After the infinite iterations of sampling steps, the 𝒗(∞) 

and 𝒉(∞) are the ideal results from the Markov chain. However, in practical situation, just one 

iteration of Gibbs sampling can achieve a satisfied result and the learning algorithm works well. 

Therefore, to obtain 𝒗(1) and 𝒉(1) is adopted by CD algorithm. 

 

Figure 3.2 Markov chain in two-stage Gibbs sampler and CD 
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For both binary and Gaussian RBMs, the term 
𝜕[−𝐸(𝒗,𝒉)]

𝜕𝜃
 is computed as: 

𝜕[−𝐸(𝒗,𝒉)]

𝜕𝑊𝑖𝑗
= ℎ𝑗𝑣𝑖                           (3.13) 

𝜕[−𝐸(𝒗,𝒉)]

𝜕𝑏𝑖
= 𝑣𝑖                            (3.14)   

                 
𝜕[−𝐸(𝒗,𝒉)]

𝜕𝑐𝑗
= ℎ𝑗                            (3.15) 

And the gradient of log-likelihood function is given as, 

∆𝑊𝑖𝑗 =
𝜕logP(𝐯)

𝜕𝑊𝑖𝑗
= ∑ 𝑃(𝒉|𝒗) ∙ ℎ𝑗𝑣𝑖ℎ − ∑ 𝑃(𝑣̃, 𝒉) ∙ ℎ𝑗𝑣̃𝑖𝑣̃,ℎ ≈  𝐸(ℎ𝑗

(0)
|𝒗(0)) ∙ 𝑣𝑖

(0)
− ℎ𝑗

(1)
𝑣𝑖

(1)
≈

 𝐸(ℎ𝑗
(0)

|𝒗(0)) ∙ 𝑣𝑖
(0)

− 𝐸(ℎ𝑗
(1)

|𝒗(1)) ∙ 𝐸(𝑣𝑖
(1)

|𝒉(0)) = 𝑠𝑖𝑔𝑚(𝑐𝑗 + 𝑊:,𝑗𝒗(0)) ∙ 𝑣𝑖
(0)

− 𝑠𝑖𝑔𝑚(𝑐𝑗 +

𝑊:,𝑗𝒗(1)) ∙ 𝑠𝑖𝑔𝑚(𝑏𝑖 + 𝑊𝑖,:
𝑇𝒉(0))                                             (3-16) 

∆𝑏𝑖 =
𝜕logP(𝐯)

𝜕𝑏𝑖
= ∑ 𝑃(𝒉|𝒗) ∙ 𝑣𝑖ℎ − ∑ 𝑃(𝑣̃, 𝒉) ∙ 𝑣̃𝑖𝑣̃,ℎ ≈  𝑣𝑖

(0)
− 𝐸(𝒗𝑖

(1)
|𝒉(0)) =  𝑣𝑖

(0)
−

𝑠𝑖𝑔𝑚(𝑏𝑖 + 𝑊𝑖,:
𝑇𝒉(0))                                                      (3-17) 

∆𝑐𝑗 =
𝜕logP(𝐯)

𝜕𝑐𝑗
= ∑ 𝑃(𝒉|𝒗) ∙ ℎ𝑗ℎ − ∑ 𝑃(𝑣̃, 𝒉) ∙ ℎ𝑗𝑣̃,ℎ ≈  𝐸(𝒉𝑗

(0)
|𝒗(0)) − 𝐸(𝒉𝑗

(1)
|𝒗(1)) =

 𝑠𝑖𝑔𝑚(𝑐𝑗 + 𝑊:,𝑗𝒗(0)) − 𝑠𝑖𝑔𝑚(𝑐𝑗 + 𝑊:,𝑗𝒗(1))                                   (3-18) 

where 𝒉(0), 𝒗(1) 𝑎𝑛𝑑 𝒉(1) are sampled from Markov chain. In Eq (3-16,17,18), the conditional 

expectation is used instead of the binary states sampled from the one-step Markov chain. 

For the Gaussian units, the equations can be formulated as,  

∆𝑊𝑖𝑗 =
𝜕logP(𝐯)

𝜕𝑊𝑖𝑗
= ∑ 𝑃(𝒉|𝒗) ∙ ℎ𝑗𝑣𝑖ℎ − ∑ 𝑃(𝑣̃, 𝒉) ∙ ℎ𝑗𝑣̃𝑖𝑣̃,ℎ ≈  𝐸(ℎ𝑗

(0)
|𝒗(0)) ∙ 𝑣𝑖

(0)
− ℎ𝑗

(1)
𝑣𝑖

(1)
≈

 𝐸(ℎ𝑗
(0)

|𝒗(0)) ∙ 𝑣𝑖
(0)

− 𝐸(ℎ𝑗
(1)

|𝒗(1)) ∙ 𝐸(𝑣𝑖
(1)

|𝒉(0)) = 𝑠𝑖𝑔𝑚(𝑐𝑗 + 𝑊:,𝑗𝒗(0)) ∙ 𝑣𝑖
(0)

− 𝑠𝑖𝑔𝑚(𝑐𝑗 +

𝑊:,𝑗𝒗(1)) ∙ (𝑏𝑖 + 𝑊𝑖,:
𝑇𝒉(0))                                         (3-19) 

∆𝑏𝑖 =
𝜕logP(𝐯)

𝜕𝑏𝑖
= ∑ 𝑃(𝒉|𝒗) ∙ 𝑣𝑖

ℎ

− ∑ 𝑃(𝑣̃, 𝒉) ∙ 𝑣̃𝑖

𝑣̃,ℎ

≈  𝑣𝑖
(0)

− 𝐸(𝒗𝑖
(1)

|𝒉(0)) =  𝑣𝑖
(0)

− (𝑏𝑖 + 

𝑊𝑖,:
𝑇𝒉(0))                                                                 (3-20) 

∆𝑐𝑗 =
𝜕logP(𝐯)

𝜕𝑐𝑗
= ∑ 𝑃(𝒉|𝒗) ∙ ℎ𝑗ℎ − ∑ 𝑃(𝑣̃, 𝒉) ∙ ℎ𝑗𝑣̃,ℎ ≈  𝐸(𝒉𝑗

(0)
|𝒗(0)) − 𝐸(𝒉𝑗

(1)
|𝒗(1)) =

 𝑠𝑖𝑔𝑚(𝑐𝑗 + 𝑊:,𝑗𝒗(0)) − 𝑠𝑖𝑔𝑚(𝐶𝑗 + 𝑊:,𝑗𝒗(1))                                     (3-21) 
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3.2.4 Supervised Training through Back-propagation 

Back-propagation is the most commonly used supervised training approach to train neural 

networks. After the unsupervised training phase, back-propagation algorithm will fine tune the 

whole network weights in the supervised training phase. The errors between the network 

outputs and the corresponding labels (targets) are computed and back propagated to the 

previous layer. Equation (3.22) shows the error terms, 

        𝑬𝒓𝒓𝑗 = 𝑶𝑗(1 − 𝑶𝑗)(𝑻𝑗 − 𝑶𝑗)                   (3.22) 

where 𝑶𝑗 represents the network output for a training sample, 𝑻𝑗  is the corresponding target 

value for the jth output neuron. The error term of hidden layers is formulated as, 

                𝑬𝒓𝒓𝑗 = 𝑶𝑗(1 − 𝑶𝑗) ∑ 𝑬𝒓𝒓𝑘𝒘𝑗𝑘𝑘                     (3.23) 

where 𝒘𝑗𝑘 is the vector of weights connecting output layer and the last hidden layer, 𝑬𝒓𝒓𝑘 is 

the error term of output layer. During training, the weight updating is transferred from the output 

layer to the input layer. The formulas of weight updating are given as,  

                               𝒘𝑖𝑗 = 𝒘𝑖𝑗 + 𝜂𝑬𝒓𝒓𝑗𝑶𝑖                  (3.24) 

 𝒄𝑗 = 𝒄𝑗 + 𝜂𝑬𝒓𝒓𝑗                        (3.25)  

where η is learning rate of the training process, 𝒘𝑖𝑗 and 𝒄𝑗  are the vectors of weights and bias 

respectively. The learning rate needs to be properly selected. A large learning rate may miss the 

minimum whereas a small learning rate usually leads to slow training speed.  

   As described earlier, the training of DBN contains an unsupervised training phase and a 

supervised training phase. The initial weights are adjusted to an appropriate region in the 

unsupervised training procedure. The whole network is then fine-tuned by backpropagation in 

the supervised training phase to achieve accurate modelling results. The profuse latent 

information extracted from input variables during the unsupervised training is more 

interpretable. This semi-supervised method improves the robustness and generalisation 

capability of model with a deep architecture.  

 

3.3 Polypropylene Polymerization Process 

Advanced monitoring, control, and optimisation techniques are essential in modern industrial 

chemical processes to overcome the issue of high cost and improve the efficiency of production 

(Gao et al. 2018). In this chapter, DBN is used to develop soft sensors for a polypropylene 

production plant in China. In this plant, two continuous stirred tank reactors (CSTR) and two 
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fluidized-bed reactors (FBR) are used to produce polypropylene as shown in Figure 3.3. 

Propylene, hydrogen, and catalyst are fed to reactors. Reactants for the growing polymer 

particles are these gases and liquids fed to the reactors. They are also the provider of the heat 

transfer media. Melt index of polymer is a key polymer quality variable and should be closely 

monitored and controlled. MI of polypropylene depends on many factors like catalyst, reactor 

temperature and concentration of the reaction materials. For example, hydrogen can increase 

the polymerization rate of polypropylene. It mainly increases the initial polymerization rate of 

propylene (Soares & Hamielec, 1996). The hydrogen concentration regulates the molecular 

weight of polypropylene. Hydrogen can also delay the decay rate of catalyst. Due to the 

difficulty of measuring polymer MI in this process, the relationship between MI and some 

process variables which can be measured easily during the process need to be found. The 

inferential estimation of MI can be obtained by soft sensors. As this industrial process is very 

complicated, it is difficult to develop first principle models linking polymer MI with easy-to-

measure process variables. Therefore, nonlinear data-driven models need to be utilised in 

developing soft sensors for this process.  

 

Figure 3.3 The propylene polymerization process 

 

   The polypropylene grades are related to some key variables, such as reactant composition, 

reactor temperature and catalyst properties. Based on the researches of Zhang et al. (2006), the 

feedstock of D201 are propylene, hydrogen and catalyst. The co-monomer is added to D204. 

Several grades of polymers were produced within one month. Industrial process operational 

data covering this time period are available for this study. In this process, polymer MI were 

measured by offline analysis and logged every two hours. On-line measurements of process 

variables were logged every half hour.  In fact, not all the process variables of the original data 

have high correlation with the MI of the polymer. In order to enhance the performance of the 
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model, the method of statistical correlation analysis had been carried out for this study. The 

correlation analysis of the process data and quality data are shown in Table 3.1. High 

correlations exist between MI of polymer in reactor D204 and hydrogen concentration in reactor 

D201 and reactor D202. MI of polymer in reactor D201 is highly relevant with the hydrogen 

concentration and feed rate in reactor D201. Feed rate of hydrogen, concentration of hydrogen 

in D201 and D202 and MI of polypropylene in reactor D201 and D204 are shown in Figure 3.4 

to Figure 3.6 respectively. Due to the industrial confidentiality, the units of these variables are 

not disclosed. 

 

 𝐻2 in reactor D201 Feed rate of 

hydrogen in reactor 

D201 

𝐻2 in reactor D202 

𝑀𝐼 in reactor D201 0.9618 0.8763 0.8615 

𝑀𝐼 in reactor D204 0.9219 0.8422 0.9358 

   Table 3.1 Correlation between hydrogen concentration, feed rate of hydrogen and MI. 

 

 

Figure 3.4 Feed rate of hydrogen 
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Figure 3.5 Concentration of hydrogen in D201 (top) and D202 (bottom) 
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Figure 3.6 Melt index in D201 (top) and D204 (bottom) 
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From Figure 3.6, it can be observed that the MI data cover quite wide range. Thus, the data are 

suitable for developing data-driven models. Soft sensor should extract the information from 

limited process data and quality data to obtain accurate estimation of MI. From the Table 3.1 

displayed, it can be seen that MI is highly correlated with hydrogen feed rate and concentration. 

The time delay of the industrial process can be found based on the cross-correlations analysis.  

Figures 3.7 to 3.10 show the cross-correlation analysis between hydrogen concentration, feed 

rate of hydrogen and MI of the polymer. From Figure 3.7, there is no time delay between the 

hydrogen concentration and MI in reactor D201. The maximum value of the cross-correlation 

is at 0-time lag. Figure 3.8 shows that there are 2 hours delay between the feed rate of hydrogen 

in reactor D201 and MI in reactor D201. Because the maximum value of the cross-correlation 

is at -2h. Figure 3.9 indicated that there was almost 1.5h time delay between the hydrogen 

concentration in reactor D201 and MI in reactor D204. From Figure 3.10, there was one and a 

half hour time delay exist between the hydrogen concentration in reactor D202 and MI in 

reactor D204. To improve the accuracy of estimation of MI, it is recommended to examine the 

cross-correlations between the MI and the process variables that have been shifted by multiple 

units of the smaller sampling interval (0.5 h). Figure 3.11 shows the maximum cross-

correlations between the hydrogen concentration, feed rate of the hydrogen and MI occur at 

zero time lag.  

 

Figure 3.7 Cross-correlation between hydrogen concentration and MI in D201 
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Figure 3.8 Cross-correlation between feed rate and MI in reactor D201 

 

 

Figure 3.9 Cross-correlation between hydrogen concentration in D201 and MI in D204 



48 
 

 

Figure 3.10 Cross-correlation between hydrogen concentration in D202 and MI in D204 

 

Figure 3.11 Cross-correlations between the time-shifted process variables and 

MI: (top) F (t – 9) and MI1(t); (middle) H1(t – 7) and MI2(t); (bottom) H2(t – 6) and MI2(t). 
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From a few attempts of different model constructions, the models which have the best 

performance are chosen. The data-driven model for inferential estimation of MI can be 

represented as, 

             𝑀𝐼1(𝑡) = 𝑓1[𝐻1(𝑡), 𝐻1(𝑡 − 1), 𝐻1(𝑡 − 2), 𝐹(𝑡 − 9), 𝐹(𝑡 − 10), 𝐹(𝑡 − 11)]      (3.26) 

𝑀𝐼2(𝑡) = 𝑓2[𝐻1(𝑡 − 7), 𝐻1(𝑡 − 8), 𝐻1(𝑡 − 9), 𝐻2(𝑡 − 6), 𝐻2(𝑡 − 7), 𝐻2(𝑡 − 8)]    (3.27) 

where MI1  and 𝑀𝐼2  are the MI in D201 and D204 respectively, 𝐻1  and H2  are the 

concentrations of hydrogen in D201 and D202 respectively, and 𝐹 is the hydrogen feed rate to 

D201 and the sampling interval of process variables are 0.5h 

The original process data set contains 1534 samples of process operational data and 383 samples 

of quality data (MI) which are available for the establishment of data driven DBN models. It 

can be seen that the amount of process variable samples is larger than the amount of quality 

variable samples. This is due to that fact that measurements of process variables were logged 

every half hour while MI data were logged every 2 hours. There are only 383 samples of process 

variables that have corresponding quality variables. However, the rest of process variable 

samples can be utilised by DBN in the unsupervised training phase. By such means, DBN can 

capture much valuable information from process data and, as a result, the estimation of MI 

achieved by DBN can be improved.  

The data set for the supervised training phase were separated into a training data set, a testing 

data set and an unseen validation data set. The partition of data sets for estimating MI1  is 

presented by Table 3.2. The partition of data sets for estimating MI2 is presented by Table 3.3. 

 

Data sets Percentage Number of samples 

Training data  50% 192 

Testing data  22% 85 

Unseen validation data  28% 106 

Table 3.2 Partition of data sets for estimating 𝑀𝐼1 

Data sets Percentage Number of samples 

Training data  52% 200 

Testing data  18% 68 

Unseen validation data  30% 115 

Table 3.3 Partition of data sets for estimating 𝑀𝐼2 
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The selections of model structure can be determined by training data set and testing data set 

through cross-validation. The unseen validation data are useful to test the performance of the 

final developed DBN models.  

It can be seen from Tables 3.2 and 3.3, 277 samples of training and testing variables were 

selected to fine tune DBN by backpropagation for MI1 and DBN only use 268 samples of 

training and testing variables to fine tune DBN in supervised training phase for MI2. During 

the unsupervised training phase of DBN models, only input data are required and target values 

are not required. Those input data samples without the corresponding output data are named as 

‘unlabeled’ process data. Therefore, in the unsupervised training phase of DBN models, samples 

of process variables without the corresponding MI data can also be utilised. However, those 

‘unlabeled’ process variables could not be used by other traditional neural networks for 

inferential estimation of product quality. For comparison, conventional neural network models 

were also developed. 

3.4 Results and Discussions 

The model structures need to be determined first. In this study, 25 DBN models with different 

architectures was developed and compared to each other. The one giving the best performance 

on the testing data set was regarded as having the appropriate structure. These DBN models 

have one visible layer (input layer), one additional top layer (output layer) and two hidden layers. 

Based on the systematic hyper-parameter optimisation, the learning rate in unsupervised 

training phase is selected as 0.01. The learning rate in supervised training phase is 0.0015. The 

structures of 25 DBN models are shown in Table 3.4. Figures 3.12 and 3.13 present the sum of 

squared errors (SSE) on training data set and testing data set respectively for these 25 DBN 

models for estimating MI1.  
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Figure 3.12 SSE on training data for estimating MI1 

 

 

Figure 3.13 SSE on testing data for estimating MI1 
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   Figure 3.12 shows a general trend that the model errors on the training data reduce as the 

number of hidden neurons increase. However, this trend is not shown on the testing data. Figure 

3.13 shows that the model errors decrease initially but later increase as more hidden neurons 

are used. Figure 3.13 shows that the 7th DBN model gives the best performance on the testing 

data set. The 6th DBN model gives the second lowest value of error on the testing data set. The 

12th to the 25th DBN models have lower training errors than the 7th DBN model. However, those 

models give larger testing errors than the 7th DBN model. Thus, the 12th to the 25th DBN models 

are likely have suffered from over-fitting and their structures are not appropriate to be selected. 

From the results given by Figures 3.12 and 3.13, the number of neurons in the first hidden layer 

can be considered as 5. From Table 3.4, it can be seen that these 25 DBN models have close 

numbers of neurons in the first and second hidden layers. The first step of this investigation is 

to confirm that the 7th DBN gave the best performance among these 25 DBN models. To avoid 

the situation that some DBN models not included in Table 3.4might give better performance, 

the second step is to further investigate the number of neurons in the second hidden layer. Nine 

additional DBN models with neurons in the second hidden layer ranging from 2 to 10 are 

developed. The SSE values on the training data and testing data of these DBN models are shown 

in Table 3.5. 

   From Table 3.5, it can be seen that the training error of the 7th DBN is the smallest. However, 

its testing error is not the smallest. The testing errors from the 6th to the 9th DBN increased. 

Therefore, it can be considered that the 6th to the 9th DBNs are over-fitted. The 4th DBN (i.e. the 

7th DBN model in Table 3.4) has the lowest testing error among all DBN models. This indicates 

that the 4th DBN model has better generalisation performance than other models and its 

structure should be adopted.  
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NO. Neurons in 1st 

hidden layer 

Neurons in 2nd 

hidden layer 

NO. Neurons in 1st 

hidden layer 

Neurons in 2nd 

hidden layer 

1 2 1 14 8 7 

2 2 2 15 9 9 

3 3 3 16 9 8 

4 3 2 17 10 10 

5 4 4 18 10 9 

6 4 3 19 11 11 

7 5 5 20 11 10 

8 5 4 21 12 12 

9 6 6 22 12 11 

10 6 5 23 13 13 

11 7 7 24 13 12 

12 7 6 25 14 13 

13 8 8    

Table 3.4 DBN models with different structures 

 

NO. Neurons in 1st 

hidden layer 

Neurons in 2nd 

hidden layer 

SSE (training) SSE (testing) 

1 5 2 0.7562 0.5819 

2 5 3 0.8204 0.6193 

3 5 4 0.7824 0.5945 

4 5 5 0.7696 0.5118 

5 5 6 0.8206 0.5773 

6 5 7 0.7271 0.5742 

7 5 8 0.6723 0.5859 

8 5 9 0.7628 0.6071 

9 5 10 0.7372 0.6322 

Table 3.5 The errors of DBN models with different structures for estimating MI1 
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NO. Neurons in 

hidden layer 

𝑀𝐼1 𝑀𝐼2 

SSE 

(training) 

SSE (testing) SSE 

(training) 

SSE (testing) 

1 2 1.3256 0.7446 1.6025 0.6855 

2 3 0.7949 0.8221 1.5185 0.7374 

3 4 0.7924 0.6527 1.5035 0.6564 

4 5 0.7675 0.6323 1.3650 0.6883 

5 6 0.6347 0.6532 1.1009 0.8214 

6 7 0.5124 1.1054 0.7844 0.8305 

7 8 0.4201 0.8895 0.5108 1.6024 

Table 3.6 The errors of neural networks with different structures  

 

In order to demonstrate the advantage of using those input data samples without corresponding 

target values as additional training data in the unsupervised training phase, a DBN model trained 

only using the input data samples with the pre-existing labels in the unsupervised training phase 

was also developed. This is represented by DBN No. 1 in Table 3.7, where DBN No. 2 was 

built by using ‘unlabeled’ process data without corresponding MI samples as well. DBN No. 2 

in Table 3.7 is in fact the 4th DBN model in Table 3.6. The two DBN models in Table 3.7 have 

the same structure. It can be seen that the first DBN model has larger SSE values on the training, 

testing and validation data set than the second DBN model. Therefore, DBN can extracted more 

features from the ‘unlabeled’ data. DBN NO. 2 gives better performance than DBN NO. 1. 

 

DBN NO. SSE (training) SSE (testing) SSE (validation) 

1 1.6203 0.8905 0.7024 

2 0.7696 0.5118 0.6851 

Table 3.7 The errors of DBN models for estimating MI1 with different input data 

 

Seven conventional single hidden layer feedforward neural network models were also 

established for the purpose of comparison. The SSE values of these conventional feedforward 

neural networks with different structures on the training and testing data are given in Table 3.6. 

From Table 3.6, the 4th neural network has the lowest SSE on the testing data set for estimating 
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𝑀𝐼1 and the 3rd neural network has the lowest SSE on the testing data for estimating 𝑀𝐼2.  

 

Figure 3.14 Estimation of MI1 by DBN and neural network (validation data) 

 

 

Models  SSE (training) SSE (testing) SSE (validation) 

Neural network  0.7675 0.6323 0.8243 

DBN 0.7696 0.5118 0.6851 

Table 3.8 SSE of estimating 𝑀𝐼1 

 

The estimations of 𝑀𝐼1 on the unseen validation data by DBN and conventional feedforward 

neural network are shown in Figure 3.14. In Figure 3.14, the solid, dashed, and dotted lines 

represent, respectively, the actual values of MI1, the estimations by DBN, and the estimations 

by the conventional feedforward neural network. It can be seen that the estimations by the DBN 

model are generally closer to the corresponding actual values of 𝑀𝐼1  than those by the 

feedforward neural network. The SSE values of both DBN and neural network are presented in 

Table 3.8. It can be seen from Table 3.8 that the SSE of DBN on training data set is larger than 

that of the neural network. However, the SSE values of DBN on testing and unseen validation 

data set are much smaller than those of the neural network. The strong generalisation capability 
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of DBN was proved by the inferential estimation of 𝑀𝐼1. It gives better performance than the 

conventional feed-forward neural network. The profuse latent information from process data 

were extracted by DBN during the unsupervised training phase. Overall, the DBN model gives 

more accurate estimations of MI1.  

Figure 3.15 compares the estimations of 𝑀𝐼2 by DBN and conventional feedforward neural 

network on the unseen validation data. In Figure 3.15, the solid, dashed, and dotted lines 

represent, respectively, the actual values of MI2, the estimations by DBN, and the estimations 

by the conventional feedforward neural network. From Figure 3.15, it can be seen that both 

models give similar performance when MI values are high. However, when MI values are low, 

the DBN model gives better estimations. Table 3.9 shows the SSE values in the estimation of 

MI2. The SSE of DBN on training data is larger than that of neural network. The SSE values of 

DBN on testing and unseen validation data set are much smaller than those of the neural 

network model. The results in Figure 3.15 and Table 3.9 indicate that the estimations of MI2 

achieved by DBN are more reliable and accurate than those from the conventional feedforward 

neural network.  

 

Figure 3.15 Estimation of MI2 by DBN and neural network (validation data) 
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Models SSE (training) SSE (testing) SSE (validation) 

Neural network 1.5035 0.6564 0.9915 

DBN 1.5170 0.4342 0.8560 

Table 3.9 SSE of estimating 𝑀𝐼2 

 

3.5 Conclusions 

DBN models for on-line inferential estimation of polymer melt index in an industrial 

polymerization process are developed in this chapter. DBN can be developed with a deep 

structure. The profuse latent information from the process variables can be extracted by DBN. 

The ‘unlabeled’ process data, which cannot be utilised by conventional neural network models, 

can be used in the unsupervised training stage of DBN. It is shown in this chapter that the 

accuracy of inferential estimation of polymer MI can be improved by this means. Selection of 

DBN structure is investigated in the chapter. The appropriate structures of DBN for the 

estimation of 𝑀𝐼1 and 𝑀𝐼2 are selected. DBN has much better performance compared with 

the results from conventional feedforward neural networks. The study demonstrates that DBN 

is very suitable for developing nonlinear data-driven models for the inferential estimation of 

polymer melt index. The proposed DBN model could be extended for developing multi-step 

ahead prediction models in the future. The network structure of DBN can be further optimised 

to improve the robustness. 
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Chapter 4. Developing Robust Nonlinear Models through Bootstrap 

Aggregated Deep Belief Networks 

 

4.1 Introduction 

As stated in Chapter 3, DBN based on the technique of deep learning shows strong generalisation 

capability on the actual industrial polypropylene polymerization process. However, the DBN 

model needs to be developed with an appropriate structure to achieve the desired results. 

Developing a reliable model with an appropriate structure for the different processes is very 

time-consuming as various network structures need to be evaluated. Although DBN can extract 

more latent information from process data, the unsupervised training phase cannot guarantee the 

latent features from process data is appropriate for the supervised training phase. It causes the 

model to be non-robust and the predictions could become unreliable. And the most important 

issue of the DBN model is that the model may not be robust or reliable when applied to complex 

nonlinear processes. Therefore, the robustness and accuracy of the DBN model need to be 

improved.  

When applying advanced modelling techniques to actual industrial processes, model robustness 

or reliability is one of the most important criteria that need to be considered. Model robustness 

can be used to judge the performance of models in real industrial applications. Among the 

various techniques for improving model robustness, Bates and Granger (1969) prove that the 

method of combining multiple forecasting models has been shown to be very effective. Wolpert 

(1992) proposed the stacked model through combination of several single neural networks. A 

linear combination of neural networks for chemical process was introduced by Sridhar et al. 

(1996) and the results show the accuracy of neural network has been improved through 

combining multiple neural networks. Bootstrap aggregated neural network was proposed by 

Zhang (1999b). Every neural network in that model is developed with different training data sets 

obtained bootstrap re-sampling of the original training data. With the comparison between 

bootstrap aggregated neural network and conventional neural network, it shows the performance 

of bootstrap aggregated neural network is much better. This type of aggregated models can 

achieve great performance in many applications with improved robustness such as fault 

diagnosis (Zhang, 2002), estimation of polymer quality variables (Zhang et al., 1997), and 

prediction of chemical and reaction yield (Monemian et al., 2010). It has been shown that 

bootstrap aggregated neural networks can also be utilised for many different chemical processes 

and achieve desired results (Khaouane et al, 2017; Zhang et al., 2008, 2011, 2013, 2018; 
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Osuolale and Zhang, 2018; Szafranek, 2019; Lian et al., 2020; Lu et al., 2021). Based on the 

idea of stacking several networks to enhance model performance, many approaches were 

proposed in recent years. Stacked extreme learning machines was given by Zhou et al. (2015) 

and deep analytic network  was proposed by Low and Teoh (2017).   

This chapter presents a bootstrap aggregated deep belief network (BAGDBN) to improve the 

robustness and accuracy of deep belief network (DBN) models. In the proposed approach, 

several replications of the original modelling data are generated by using bootstrap re-sampling 

with replacement. A DBN model is developed on each replication and these individual DBN 

models are combined to form a BAGDBN model. The effectiveness of the proposed approach 

is demonstrated on two application examples, modelling a conical water tank and inferential 

estimation of polymer melt index in an industrial polypropylene polymerization process. It is 

shown that BAGDBN models can give more accurate and reliable predictions than single DBN 

models. 

The chapter is organized as follows, Section 4.2 introduces BAGDBN model and the main 

algorithm. Modelling a conical water tank for multi-step prediction of water level which is 

presented in Section 4.3. Section 4.4 gives inferential estimation of MI in an industrial 

polymerization process. The chapter is summarised in Section 4.5. 

 

4.2 Bootstrap Aggregated Deep Belief Networks 

The main idea of BAGDBN is to develop multiple DBN models and then combine them to 

improve model prediction reliability and accuracy. In order to increase the diversity of these 

individual DBN models, each DBN model is developed from a replication of the original 

modelling data set generated through bootstrap resampling. For resampling a replication of 

process and quality data, the new data set need to be resampled from the original data set by 

using bootstrap resampling technique. Figure 4.1 demonstrates bootstrap resampling with 

replacement. It can be seen that sample 4 of the original data was resampled twice. However, 

sample 7 was not resampled in the particular case. It needs to be mentioned that the dynamic 

data need to be arranged in such a way as shown in Figure 4.2, where the quality variable is only 

related to the time lagged process variables in the same row. Each row in the matrix includes 

process variables and the related quality variables and is considered as a sample of the original 

data set. After this data arrangement, bootstrap re-sampling with replacement can be carried out 
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for the time-series data as shown in Figure 4.3. A DBN model is developed based on each of 

these replications.  

 

Figure 4.1 Bootstrap resampling: (a) Data samples in the original data set; (b) data samples in 

the resampled data set. 

 

 

Figure 4.2 Arrangement of time lagged process and quality data  
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Figure 4.3 Bootstrap resampling replications of the original data  

 

These developed DBN models are then combined. A figure of BAGDBN architecture is shown 

in Figure 4.4. These individual DBN models in a BAGDBN are trained to find the relationship 

between process data and quality data of processes. Predictions from these individual DBN 

models are then combined to obtain the final prediction of the BAGDBN model. The output of 

a BAGDBN can be formulated as,  

𝑓(𝑋) = ∑ 𝑤𝑖
𝑛
𝑖=1 𝑓𝑖(𝑋)                     (4-1) 

where 𝑓(𝑋) is the output of BAGDBN, 𝑓𝑖(𝑋) is the ith DBN output, 𝑤𝑖 is the aggregating 

weight for the ith BAGDBN, n is the number of DBN models in the BAGDBN model, and X is 

the vector of inputs. Aggregating weights 𝑤𝑖 can have big effects on overall prediction and 

need to be determined properly for good modelling performance. In this chapter, the aggregating 

weights, 𝑤𝑖, are set as the same value of 1/n for simplicity. It means the output of BAGDBN is 

an average of DBN outputs. It is shown in this study that this approach gives quite good 

performance. Principal component regression can also be used in determining the aggregating 

weights (Zhang, 1999b). 

The BAGDBN model shown in Figure 4.4 contains n (e.g. n = 30) individual DBN models. This 

would suggest that the training effort of a BAGDBN model is n times more than training a single 

DBN model. However, this is not the case. In developing a single DBN model, a number of 
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DBN models with different structures (e.g. different numbers of layers and hidden neurons) need 

to be developed and the one giving the best performance on the testing data is considered to have 

the appropriate structure. This is also known as the cross-validation based procedure for network 

structure determination. In developing a BAGDBN model, this cross-validation based procedure 

for network structure determination could just be done for the first DBN if training time is a 

concern. For the building of subsequent DBN models, the appropriate structure(s) identified in 

building the first DBN model could be used. Thus, the computation time for building a 

BAGDBN model containing n individual DBN models is much less than n times the computation 

time for building a single DBN model. MATLAB was used as the software of the development 

of BAGDBN models in this chapter. Table 4.1 shows the specification of the computer.  

 

Component Specification 

Processor 
Intel core i7-8650u cpu @ 

1.90GHz 

Ram 8GB DDR3  

Storage 256 GB SSD 

Operating system Windows 10 pro 

Table 4.1 Specification of the computer 

 

Figure 4.4 The structure of BAGDBN 
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4.3 Modelling of A Conical Water Tank 

4.3.1 A Conical Water Tank 

This conical water tank, shown in Figure 4.5, contains an inlet stream and an outlet stream. Inlet 

water flow rate regulates the water level of the tank. The rate of change in the volume of water, 

V, in the tank can be formulated using mass balance as: 

𝑑𝑉

𝑑𝑡
= 𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡                        (4.2) 

where 𝑄𝑖𝑛 is the inlet water flow rate and 𝑄𝑜𝑢𝑡 is the outlet water flow rate. The outlet flow 

rate, 𝑄𝑜𝑢𝑡, is determined by the tank level as shown in Equation (4.3): 

𝑄𝑜𝑢𝑡 = 𝑘√ℎ                        (4.3) 

where h represents the tank level and k is a parameter for a fixed value opening. The volume of 

water in the tank is given in (4.4): 

𝑉 = 𝜋ℎ(𝑟2 +
ℎ𝑟

𝑡𝑎𝑛𝜃
+

ℎ2

3(𝑡𝑎𝑛𝜃)2)                (4.4) 

where r is the radius of the bottom, 𝜃 is the angle between the tank boundary and horizontal 

plane. Therefore, the first principle dynamic model can be formulated as: 

𝑑ℎ

𝑑𝑡
=

𝑄𝑖−𝑘√ℎ

𝜋(𝑟2+
ℎ𝑟

𝑡𝑎𝑛𝜃
+

ℎ2

3(𝑡𝑎𝑛𝜃)2)
  (4.5) 

 

Figure 4.5 The water tank 
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Figure 4.6 Water level 

 

The first principle dynamic model is used to simulate the process operation using MATLAB. 

Figure 4.6 presents the trend of water level in the water tank. From Figure 4.6 and equation 

(4.5), the process is clearly nonlinear (Zhang & Morris, 2000). The parameters of the process 

model are set as fixed values, 𝑘 = 34.77𝑐𝑚2.5/𝑠,  𝑟 = 10𝑐𝑚 , and 𝜃 = 60°. The sampling 

time used in dynamic simulation is 10 seconds. Simulated measurement noises with the 

distribution N (0, 0.5) are added to the tank level. It is then assumed that the first principle 

model is unavailable and a data-driven model has to be developed. After experimenting with 

first-order, second-order, and third-order dynamic models, it is found that the second-order 

dynamic model gives good performance. The developed multi-step ahead prediction model of 

water level can be represented as, 

    𝑦̂(𝑡) = [𝑦̂(𝑡 − 1), 𝑦̂(𝑡 − 2), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2)]           (4.6) 

where 𝑦̂ is the prediction of water level of the tank, u is the inlet water flow rate, and t represents 

the discrete time.  

All the process operating data were auto scaled and divided into 3 parts. The first part of data is 

training data set which is used to train BAGDBN model. The second part is the testing data set 
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which is used to determine model structures and guard against overfitting. The last part is the 

unseen validation data set which is used to test the final BAGDBN model to confirm the model 

generalisation capability. Table 4.2 shows the partition of process operating data. 

 

Data set Percentage Number of samples 

Training data set 47% 188 

Testing data set  19% 77 

Unseen validation data set 34% 133 

Table 4.2 Partition of data sets for modelling water level 

 

4.3.2 Multi-step Ahead Prediction of Water Level 

In this case study, 30 different training and testing data sets were resampled from the original 

data sets by using bootstrap resampling techniques. A DBN model was developed on each 

replication of the training and testing data. These 30 DBN models are combined into a BAGDBN 

model. During the procedure of unsupervised training, the input variables of training and testing 

data were used to pre-train BAGDBN. After unsupervised training, BAGDBN was trained by 

the resampled training and testing data sets in the supervised training phase. Figures 4.7 and 4.8 

show the mean squared errors (MSE) of individual DBNs on the training and testing data set and 

on the unseen validation data set respectively. Note that the MSE values are for scaled data. 
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Figure. 4.7 MSE on the training and testing data of individual DBN models 

 

Figure 4.8 MSE on the validation data of individual DBN models 
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Figures 4.7 and 4.8 indicate that the individual DBN models give various performances and their 

performances on the training and testing data and on the unseen validation data are not 

consistent. The 10th and 13th DBN models give similar performances on the training and testing 

data sets. However, the MSE of the 10th DBN model on the unseen validation data is smaller 

than that of the 13th DBN model. The 28th DBN gives smaller MSE on the training and testing 

data than the 26th DBN, but it gives larger MSE on the validation data set than the 26th DBN. 

These results indicate the non-robust or unreliable nature of single DBN models.  

To improve the robustness of DBN model, BAGDBN models are developed by combining the 

individual DBN models. Figures 4.9 and 4.10 give the MSE of BAGDBN models on the training 

and testing data and on the unseen validation data respectively. Note that the MSE values are for 

scaled data. 

 

Figure 4.9 MSE on the training and testing data of BAGDBN models 
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Figure 4.10 MSE on the validation data of BAGDBN models 

 

In Figures 4.9 and 4.10, the x-axis represents the number of DBN models included in a 

BAGDBN model. The first bar represents the first DBN model, the second bar represents 

aggregating the first two DBN models, and the last bar represents aggregating all the 30 DBN 

models. It can be seen from Figures 4.9 and 4.10 that the MSE values decrease as more DBN 

models are combined. BAGDBN models give very consistent performances on the training and 

testing data sets and on the unseen validation data set. The results in Figures 4.9 and 4.10 

demonstrate that BAGDBN models are more robust or more reliable than single DBN models. 

It shows that, as long as sufficient number of DBN models are included (about 10), the 

performance of BAGDBN models is insensitive to the numbers of individual DBN models. 

Figure 4.11 shows the multi-step ahead predictions of water level and Table 4.3 compares the 

errors between BAGDBN model and DBN model. In the BAGDBN model, 30 DBN models are 

combined. It can be seen that the multi-step ahead predictions of water level achieved by 

BAGDBN are closer to the actual values than DBN model. From Table 4.3, it can be seen that 

the MSE of BAGDBN is smaller than that of DBN. It means that BAGDBN has ability to give 

more reliable and accuracy prediction than DBN. 
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Figure 4.11 Multi-step ahead predictions of water level 

Model MSE 

DBN 0.0008 

BAGDBN 0.0006 

Table 4.3 MSE of DBN and BAGDBN 

 

4.4 Inferential Estimation of MI in An Industrial Polymerization Process 

4.4.1 An Industrial Polypropylene Polymerization Process 

This industrial polypropylene polymerization process is the same as in Chapter 3. It contains two 

CSTR and two FBR. In this industrial process, MI indicates the polymer quality and need to be 

monitored. To reduce the costs of production and improve the efficiency of polypropylene 

polymerization process, advanced monitoring technique needs to be applied to industry. 

Inferential estimation of MI is thus required for the advanced monitoring and control of this 

process. 
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Because process data were logged every half hour while the MI data were logged every two 

hours, the amount of process data is larger than quality data. It means there are a lot of process 

data without corresponding quality data. 1151 process samples are without corresponding 

quality data. In this study, only 383 pairs of input and output samples can be used in the 

procedure of supervised training. The advantage of BAGDBN is a combination of DBN models. 

It can use the ‘unlabeled’ process data in unsupervised pre-training. The latent information 

behind the process data can be extracted by BAGDBN.  

The 383 operating data were separated into 3 data sets, training data set, testing data set and 

unseen validation set. Table 4.4 shows the partition of process operating data. 

 

Data set  Percentage Number of samples 

Training data set 57% 217 

Testing data set  15% 59 

Unseen validation data set 28% 107 

Table 4.4 Partition of data sets to estimate polymer melt index 

The single DBN model for inferential estimation of MI can be represented as, 

𝑀𝐼(𝑡) = 𝑓[𝐻(𝑡), 𝐻(𝑡 − 1), 𝐻(𝑡 − 2), 𝐹(𝑡 − 9), 𝐹(𝑡 − 10), 𝐹( 𝑡 − 11)]      (4.7) 

where MI1 is the MI of polymer in D201, H is the concentration of hydrogen in D201, and 𝐹 

represents the hydrogen feed rate to D201. As a part of BAGDBN, every DBN model is 

developed from each replication of the training and testing data.  

The number of hidden neurons for the individual DBN model is determined by the method of 

cross-validation as the same method given in Chapter 3. The DBN model which has lowest sum 

squared error on the validation data can be considered as the model with an appropriate structure.  

 

4.4.2 Inferential Estimation of Polymer Melt Index 

As with the previous case study, 30 replications of the original training and testing data sets were 

resampled from the original training and testing data set through bootstrap resampling with 

replacement. These data sets were used to train BAGDBN models. During the procedure of 

unsupervised training, the input variables without corresponding target samples were used to 

pre-train BAGDBN. After that, BAGDBN was fine-tuned using resampled training and testing 
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data sets through supervised training. Figures 4.12 and 4.13 shows the MSE values on the 

training and testing data set and on the unseen validation data set respectively.  

 

Figure 4.12 MSE of training and testing by DBN models 

 

Figure 4.13 MSE of validation by single DBN models 
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It shows the MSE values of individual DBN models on the training and testing data and unseen 

validation data. Note that the MSE values are for scaled data. It can be seen from Figures 4.12 

that the 1st, 2nd and 18th DBN models give similar performance on the training and testing data 

set. However, the MSE values of the 2nd and 18th DBN models on the unseen validation data 

are much smaller than that of the 1st DBN model. The 28th DBN gives smaller MSE on the 

training and testing data than the 29th DBN, but it gives larger MSE on the unseen validation 

data set than the 29th DBN. These indicate that single DBN models lack robustness or reliability. 

 

Figure 4.14 MSE of training and testing data by BAGDBN model 
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Figure 4.15 MSE of validation data by BAGDBN model 

Figures 4.14 and 4.15 show, respectively, the MSE values on the training and testing data and 

on the unseen validation data from BAGDBN models with different number of DBN models 

combined. It can be seen from Figures 4.14 and 4.15 that the trend of decreasing MSE with the 

number of DBN models increasing is observed on both training and testing data and the unseen 

validation data. The results in Figures 4.12 to 4.15 indicate that BAGDBN models are more 

reliable than DBN models. 

Figures 4.14 and 4.15 show the MSE values of BAGDBN models with different numbers of 

DBN models combined. In Figures 4.14 and 4.15, the first bar represents the first DBN model, 

the second bar represents aggregating the first two DBN models, and the last bar represents 

aggregating all the 30 DBN models. Again, the MSE values are for scaled data. It can be seen 

from Figures 4.14and 4.15 that the MSE values on the training and testing data and on the unseen 

validation data have similar trends. These MSE values decrease with the number of DBN models 

and then stabilize. Figures 4.14 and 4.15 also shows that, as long as a sufficient number of DBN 

models are included (about 10), the performance of BAGDBN models is insensitive to the 

numbers of individual DBN models. The results in Figures 4.14 and 4.15 indicate that BAGDBN 

models are more reliable and robust than single DBN models. 
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Figure 4.16 shows the estimation of MI (on the original scale) achieved by DBN and BAGDBN. 

Table 4.5 gives the MSE (on scaled data) from a conventional feedforward neural network, 

BAGDBN and DBN on the unseen validation data. It can be seen from Figure 4.16 that the 

BAGDBN model gives more accurate estimations than DBN. Table 4.5 shows that DBN gives 

smaller MSE values than conventional neural networks on the unseen validation data. The MSE 

values from BAGDBN are smaller than those from the conventional neural network and DBN. 

Hence, the advantage of BAGDBN over DBN is clear. 

 

Figure 4.16 Estimation of polymer melt index 

 

Model MSE  

(training & testing) 

MSE 

(validation) 

DBN 0.0063 0.0068 

BAGDBN 0.0053 0.0038 

Table 4.5 MSE of DBN and BAGDBN
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4.5 Conclusions  

A novel data-driven modelling approach through integrating multiple DBN is proposed in this 

chapter. BAGDBN improves the accuracy and robustness of data-driven nonlinear models. In 

this study, multiple DBNs are established based on different bootstrap resampling replications 

from the original process modelling data set and are combined as one BAGDBN model. By 

aggregating multiple DBN models, the failure of a particular DBN model can be compensated 

by other DBN models. The effectiveness of BAGDBN is demonstrated on two application 

examples, dynamic modelling of a conical water tank and inferential estimation of MI in an 

industrial polypropylene polymerization process. A BAGDBN model gives better multi-step 

ahead prediction performance than a single DBN model. It is also more robust than a single DBN 

model in that it can give consistent good performance on different sets of data. In the estimation 

of polymer MI, the BAGDBN model gives more accurate and reliable estimations than DBN 

models. In the polypropylene polymerization process, there are a large number of process data 

samples without the corresponding quality data samples and they cannot be used by conventional 

supervised training models. However, these unlabeled data samples can be used in the 

unsupervised training phase of DBN and BAGDBN, which can extract more latent information 

to improve the estimation of polymer MI. One limitation of BAGDBN is the long training time 

required as more DBN models need to be trained. This could be improved in the future by 

developing new BAGDBN algorithms through sequential training and selective combination of 

individual DBN models.  
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Chapter 5.   Data Driven Modelling and Optimisation of A Batch Reactor 

Using Bootstrap Aggregated Deep Belief Networks 

5.1 Introduction  

Batch processes are suitable for the agile manufacturing of high value-added products such as 

pharmaceuticals and specialty chemicals as the same reactors can be used to produce different 

products or different grades of products (Bonvin, 1998). Batch chemical reaction processes are 

typically highly nonlinear due to the fact that batch process operation covers a wide range of 

operation conditions from the start to the end of a batch and batch to batch variations commonly 

exist in practice. Optimisation of batch process operation is essential for the enhanced 

production efficiency and product quality. Batch process optimisation usually requires an 

accurate process model that can accurately predict the end of batch product quality variables. 

Developing accurate mechanistic models for batch processes is typically very time consuming 

and effort demanding. This is because a chemical reaction network usually involves a large 

number of reactions and some reaction pathways and/or kinetic parameters are not readily 

available. To overcome this difficulty, data-driven models developed from process operation 

and plant testing data should be capitalised. As batch chemical reaction processes are typically 

very nonlinear, nonlinear data-driven modelling techniques should be utilised. Machine 

learning techniques including neural networks and more recently deep learning, e.g., deep belief 

network (DBN), are effective techniques for data-driven modelling of batch processes (Zhang, 

2004; Zhu & Zhang, 2020). 

This chapter presents a reliable data-driven modelling and optimisation strategy for a batch 

chemical reactor using BAGDBN model. BAGDBN has enhanced modelling accuracy and 

reliability due to the combination of multiple models. Through incorporating model prediction 

confidence bounds from BAGDBN into the optimisation objective function, optimisation 

reliability can be enhanced. 

This chapter is organized as follows. Section 5.2 presents the BAGDBN model. The case study 

is given in Section 5.3. Section 5.4 gives the results of simulation and data partition. Reliable 

optimal control through the incorporation of model prediction confidence bounds is introduced 

in Section 5.5. The results and discussions are given in Section 5.6. Conclusions of this study 

are drawn in Section 5.7.  
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5.2 Bootstrap Aggregated Deep Belief Network 

Because of limitations in the amount of available data, creating an accurate and reliable DBN 

model is considerably challenging. The primary concept behind BAGDBN is to develop various 

DBN models and combine them for enhanced accuracy and robustness for the modelling of 

highly nonlinear batch processes. To increase the diversity of these individual DBN models, 

each DBN model is developed from a replication of the original batch process data set generated 

through bootstrap resampling with replacement (Efron & Tibshirani, 1993). The effectiveness 

of BAGDBN has been illustrated in Chapter 3. These individual DBN models in a BAGDBN 

are trained to find the relationship between process input and output data. Predictions from these 

individual DBN models are then combined to obtain the final prediction of the BAGDBN model. 

The output of a BAGDBN can be formulated as,  

𝑓(𝑋) = ∑ 𝑤𝑖
𝑛
𝑖=1 𝑓𝑖(𝑋)                    (5.1) 

where 𝑓(𝑋)  is the output of BAGDBN, 𝑓𝑖(𝑋)  is the output of the ith DBN, 𝑤𝑖 is the 

aggregating weight of the ith BAGDBN, n is the number of DBN models in the BAGDBN 

model, and X is a vector of model inputs. Aggregating weights 𝑤𝑖  can have big effects on 

overall prediction and need to be determined properly for good modelling performance. In this 

Chapter, the aggregating weights, 𝑤𝑖, are set as the same value of 1/n for simplicity. It means 

the output of BAGDBN is an average of individual DBN outputs. It is shown in this study that 

this approach gives quite good performance. 

   

5.3 Case Study 

The batch chemical reactor presented by Arpornwichanop et al. (2005) is taken as a case study. 

In the reactor, two parallel highly exothermic reactions occur: 

𝐴 + 𝐵 
𝑘1
→  𝐶                            (5.2)  

𝐴 + 𝐶 
𝑘2
→  𝐷                            (5.3) 

where A and B are raw materials, C is the desirable product and D is the by-product, 𝑘1 and 

𝑘2  are the reaction rates with temperature dependence based on the Arrhenius relation. To 

simulate the reactor model, a mechanistic model based on the following equations are used. 

Material balance in the reactor, 

𝑑𝑀𝐴

𝑑𝑡
=  −𝑘1𝑀𝐴𝑀𝐵 −  𝑘2𝑀𝐴𝑀𝐶                     (5.4) 
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𝑑𝑀𝐵

𝑑𝑡
=  −𝑘1𝑀𝐴𝑀𝐵                          (5.5) 

𝑑𝑀𝐶

𝑑𝑡
=  𝑘1𝑀𝐴𝑀𝐵 − 𝑘2𝑀𝐴𝑀𝐶                     (5.6) 

𝑑𝑀𝐷

𝑑𝑡
=  𝑘2𝑀𝐴𝑀𝐶                          (5.7) 

Energy balances around the reactor,  

𝑑𝑇𝑟

𝑑𝑡
=

 𝑄𝑟+𝑄𝑗

𝑀𝑟𝐶𝑝𝑟
                              (5.8) 

𝑑𝑇𝑗

𝑑𝑡
=

 𝐹𝑗𝜌𝑗𝐶𝑝𝑗(𝑇𝑗𝑠𝑝−𝑇𝑗)−𝑄𝑗

𝑉𝑗𝜌𝑗𝐶𝑝𝑗
                      (5.9) 

𝑘1 = exp (𝑘1
1 −

𝑘1
2

𝑇𝑟+273.15
)                    (5.10) 

𝑘2 = exp (𝑘2
1 −

𝑘2
2

𝑇𝑟+273.15
)                    (5.11) 

𝑊 =  𝑀𝑊𝐴𝑀𝐴 + 𝑀𝑊𝐵𝑀𝐵 + 𝑀𝑊𝐶𝑀𝐶 + 𝑀𝑊𝐷𝑀𝐷           (5.12) 

𝑀𝑟 =  𝑀𝐴 + 𝑀𝐵 + 𝑀𝐶 + 𝑀𝐷                   (5.13) 

𝐶𝑝𝑟 =
 (𝐶𝑝𝐴𝑀𝐴+𝐶𝑝𝐵𝑀𝐵+𝐶𝑝𝐶𝑀𝐶+𝐶𝑝𝐷𝑀𝐷)

𝑀𝑟
                (5.14) 

𝑄𝑟 = −∆𝐻1(𝑘1𝑀𝐴𝑀𝐵) − ∆𝐻2(𝑘2𝑀𝐴𝑀𝐶)              (5.15) 

𝑄𝑗 = 𝑈𝐴(𝑇𝑗 − 𝑇𝑟)                         5.16) 

𝐴 =
2𝑊

𝜌𝑟
                             (5.17) 

In the above equations, 𝑀𝑖  is the amount of mole of component “i”, 𝑇𝑗  is the jacket 

temperature, 𝑇𝑗𝑠𝑝  is the set point value of the temperature control system, 𝑇𝑟  is the 

temperature of reactor. The other meaning of parameters is explained in the nomenclature.  

The dynamic model of the batch process is developed based on the equations shows above. The 

process parameter values are listed in Table 5.1. The initial values of 𝑀𝐴, 𝑀𝐵 , 𝑀𝐶  𝑎𝑛𝑑 𝑀𝐷 are 

selected as 12, 12, 0, and 0 kmol respectively. In this work the initial temperature of reaction 

mixture was assumed as 20℃ based on the previous work (Cott and Macchietto,1989; Aziz et 

al., 2000; Arpornwichanop et al., 2005; Karer et al., 2007). The sampling time of the process is 

1 min. The end time of the batch process is selected as 200 min.   

 

 

 

 



80 
 

Process parameter values 

MWA = 30 kg/kmol 

MWB = 100 kg/kmol 

MWC = 130 kg/kmol 

MWD = 160 kg/kmol 

𝑘1
1 = 20.9057 

𝑘1
2 = 10000 

𝑘2
1 = 38.9057 

𝑘2
2 = 17000 

r = 0.5 m 

Fj = 0.348 m3/min 

U = 40.842 kJ/(min m2 ℃) 

CpA = 75.31 kJ/(kmol℃) 

CpB = 167.36 kJ/(kmol℃) 

CpC = 217.57 kJ/(kmol℃) 

CpD = 334.73 kJ/(kmol℃) 

∆H1 = −41840 kJ/ kmol 

∆H2 = −25105 kJ/ kmol 

𝜌𝑗 = 1000 kg/m3 

𝜌 = 1000 kg/m3 

Cpj = 1.8828 kJ/(kg℃) 

𝑉𝑗 = 0.6912 m3 

Table 5.1 Process parameter values 

 

 

5.4 Results of Simulation and Data Partition. 

To develop the BAGDBN model, simulated process operation data are generated. This study 

assumes and employs piecewise constant control via manipulated variables, because the 

solution's form is appropriate for implementation on a digital computer. The piecewise constant 

control via temperature variables was widely applied for many chemical processes optimisation 

and different control policies were used for different objectives in many chemical processes 

(Xie et al.,2002; Arpornwichanop et al., 2005; Bouhenchir et al., 2006; Wang et al.,2015; 

Hemalatha et al., 2018). Base on the previous work, the optimal reaction temperature fell into 

the range from 90℃ to 100℃ and the process yields the best results at around 95℃ (Cott and 

Macchietto,1989; Aziz et al., 2000; Arpornwichanop et al., 2005; Karer et al., 2007). 120 

piecewise initial temperature profiles with 10 intervals each are selected to generate simulated 

process operational. The temperature changes between two consecutive intervals are limited to 

6℃ as temperature usually has slow dynamics and too large temperature change within a short 

time period is infeasible. The reason why 10 intervals of temperature profile are chosen for this 

optimasation is that as the number of intervals increases, the degree of freedom in optimisation 

increases and it is shown in (Arpornwichanop, 2005) that an optimal control profile with 10 
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intervals performs significantly better than those with 1 or 5 intervals but only marginally worse 

than those with 20 or 40 intervals. Figures 5.1 shows the temperature profiles for the 120 

batches. As it is difficult to identify the 120 control profiles from Figure 5.1, Figures 5.2 and 

Figure 5.3 present the control profiles of 18 batches. The final values of Mc of 120 batches are 

presented in Figure 5.4. The prediction of Mc at the final batch time (𝑡𝑓) can be formulated as, 

𝑦̂(𝑡𝑓) = 𝑓[𝑇𝑗𝑠𝑝1, 𝑇𝑗𝑠𝑝2, … , 𝑇𝑗𝑠𝑝10]                   (5.18) 

where 𝑦̂(𝑡𝑓) is the prediction of Mc at the end of batch, [𝑇𝑗𝑠𝑝1, 𝑇𝑗𝑠𝑝2, … , 𝑇𝑗𝑠𝑝10] are the 10 

intervals values of temperature setpoints, and 𝑓[𝑇𝑗𝑠𝑝1, 𝑇𝑗𝑠𝑝2, … , 𝑇𝑗𝑠𝑝10] is a nonlinear function. 

 

 

Figure 5.1 Temperature profiles for the 120 batches 
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Figure 5.2 Temperature profiles (batch 1 to batch 9) 

 

Figure 5.3 Temperature profiles (batch 10 to batch 18) 
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Figure 5.4 Mc at the end of batch  

 

Because the measurement noises always exist in a real plant, the quality data of Mc at the batch 

end are corrupted with zero mean Gaussian noise and a standard deviation of 0.015. All the 

input data and output data were scaled to zero mean and unit variance before they are used in 

developing BAGDBN. The generated process data needs to be split into 3 subsets, training, 

testing and unseen validation data sets to develop the BAGDBN model. The training data set is 

for DBN training and the testing data is for DBN structure selection. The unseen validation data 

are used to test the performance of the final developed BAGDBN model. Table 5.2 shows the 

partition of the process data. In this study, bootstrap re-sampling with replacement is applied to 

the original modelling data (i.e. the training and testing data) to generate multiple replications. 

Each replication data set is randomly partitioned into training and testing data sets for 

developing a DBN model.   

Data set Number of batches 

Training and testing data 95 

Validation data 25 

Table 5.2 Partition of data sets for BAGDBN modelling 
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5.5 Reliable Optimal Control through the Incorporation of Model Prediction Confidence 

Bounds 

The objective of this batch reactor is to produce a maximum amount of product C in the fixed 

batch time. The manipulated variable is 𝑇𝑗𝑠𝑝 . However there always are errors between 

predictions of the data-driven model and the process. To improve the performance of 

optimisation and reduce the impact of model errors on optimisation, the objective function can 

be formulated as: 

min
𝑈,𝑡𝑓

𝐽 = −𝑀𝐶(𝑡𝑓) + 𝜆𝜎 𝑒                   (5.19) 

s.t.  

                 Mc(tf) = fBAGDBN(U), 

                  𝑇𝐿 ≤ 𝑇𝑗𝑠𝑝 ≤ 𝑇𝑈 

where U is a control profile, i.e. a vector of control actions containing the 10 reactor temperature 

setpoints, 𝑇𝑗𝑠𝑝is the reactor temperature set point which is bounded within its lower bound, 𝑇𝐿, 

and upper bound, 𝑇𝑈, 𝑡𝑓is the final batch time, 𝜎𝑒 is the model prediction standard error, and 

𝜆 is the weight for model prediction standard error. The confidence bound of BAGDBN can be 

calculated from individual DBNs predictions. The standard error, 𝜎𝑒, of the individual DBN 

model predictions can be calculated as: 

𝜎𝑒 = 𝑠𝑡𝑑(𝑦̂(𝑡𝑓) − 𝑦̅(𝑡𝑓))                    (5.20) 

where 𝑦̂(𝑡𝑓) is the prediction of quality variables and 𝑦̅(𝑡𝑓) is the mean of the predictions. 

The predictions errors of BAGDBN are assumed as normally distributed, then the 95% 

confidence bound can be calculated as 𝑦̂(𝑡𝑓)+1.96𝜎𝑒. A narrow confidence bound of prediction 

indicates that the model prediction is reliable. In this objective function, the amount of Mc at the 

final batch time is maximized by the implementation of appropriate reactor temperature 

setpoints. The model predictions standard error 𝜎𝑒 is minimized in this objective function in 

order to penalise wide prediction confidence bound. The optimisation problem was solved by 

using the sequential quadratic programming (SQP) method implemented in the MATLAB 

Optimisation Toolbox. SQP is a numerical optimisation method for solving nonlinear 

programming problems with equality and inequality constraints. The basic idea of SQP is to 

approximate the nonlinear programming problem by a sequence of quadratic programming 

subproblems, which are easier to solve. The SQP approach iteratively solves a sequence of QP 

subproblems, where each subproblem involves finding a feasible search direction based on an 
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estimate of the constraints and objective function near the current iterate. This search direction 

is then used to update the current iterate, yielding a new candidate solution. Iterations are 

repeated until a satisfactory solution is reached or convergence cannot be achieved. One of the 

key advantages of the SQP method is that it can handle non-convex optimisation problems with 

general nonlinear constraints. However, it does require the computation of gradient and Hessian 

matrices, which can be computationally expensive, especially for large-scale problems. 

Additionally, it relies on the assumption that the optimisation problem is twice differentiable. 

Overall, SQP is a powerful optimisation method that can be very effective in certain settings, 

but its performance may vary depending on the specific problem at hand. After the optimisation, 

the model prediction will have a narrow confidence bound, indicating that the model prediction 

under the calculated optimal control policy is reliable. The optimal control policy is more robust 

than the result without considering the prediction confidence bounds (Zhang, 1999b).   

 

5.6 Results and Discussions  

5.6.1 Prediction Results 

In this study, a BAGDBN containing 30 DBNs are developed. 30 different replications of the 

original training and testing data set are produced by resampling from the initial training and 

testing data set by using bootstrap resampling with replacement. On each replication, a DBN 

model is developed.  

The mean-squared error (MSE) on scaled training & testing data and validation data of 

individual DBNs are given in Figure 5.5. Figure 5.5 indicates that the performances of DBNs 

on the training & testing data and validation data are not consistent. For example, the MSE of 

the 1st DBN is larger than that of the 2nd DBN on the training and testing data. However, the 

opposite results occur on the validation data achieved by the 1st and the 2nd DBNs. The situations 

between the 4th and the 5th DBNs, the 6th and the 7th DBNs, the 12th and the 13th DBNs, the 19th, 

the 20th and the 21st DBNs, the 23rd and the 24th DBNs, the 28th and the 29th DBNs are the same 

as the 1st and 2nd DBNs. It indicates the performance of individual DBNs is not reliable.   
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Figure 5.5 MSEs of individual DBNs 

 

Figure 5.6 MSEs of BAGDBNs 
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Figure 5.6 shows the MSEs of BAGDBNs containing different number of DBNs on training & 

testing data and validation data. The first bar represents the first DBN model, the second bar 

represents aggregating the first two DBN models, and the last bar represents aggregating all the 

30 DBN models. It can be observed that the MSEs on both data sets become more consistent 

with the number of DBNs in BAGDBN increases. And the MSEs are significantly decreased 

by combining more than 7 DBN models in a BAGDBN. BAGDBN gives better performance 

on prediction of Mc than individual DBNs. And from the comparison between Figure 5.5 and 

5.6, the BAGDBN model improves the robustness of DBN model. Figure 57 shows the 

prediction of Mc at end time (tf = 200 min) achieved by BAGDBN containing 30 DBNs. It can 

be observed that the prediction on validation data is very accurate. 

 

5.6.2 Optimisation Results 

Optimisation based on single DBN models are carried out for comparison. The objective of the 

optimisation is to maximize the amount of the desire product C at the end batch time. The 

function of the optimisation can be formulated as, 

                               𝑚𝑖𝑛
𝑈,𝑡𝑓

𝐽 = −𝑀𝐶(𝑡𝑓)                         (5.21) 

s.t.  

               Mc(𝑡𝑓) = fBAGDBN(U), 

                𝑇𝐿 ≤ 𝑇𝑗𝑠𝑝 ≤ 𝑇𝑈 

where 𝑀𝐶 is the amount of product C, 𝑡𝑓 is the final batch time. fBAGDBN(U) represents the 

function of prediction achieved by BAGDBN model via control profiles, U. The jacket 

temperature is given as 𝑇𝑗𝑠𝑝 . 𝑇𝐿 and 𝑇𝑈  are the temperature lower bound and upper bound 

respectively. To solve this optimisation problem, SQP methodology was employed in this study.  

From Figure 5.7, it can be observed that in validation data set, the 18th batch of process 

validation data has the largest value of Mc. The process input variables of the 18th batch data 

are selected as the initial values for optimisation. The lower bound and the upper bound of input 

were set as 85 ℃  and 105 ℃  respectively according to the Figure 5.1. The optimisation 

results of using 30 individual DBNs are shown in Figure 5.8. From Figure 5.8, the prediction 

of DBNs under each of the optimal control policies is larger than the actual value of simulation. 

The results are various and the optimisation result using the 23rd DBN, which gives best 

performance of prediction on the training and testing data as shown in Figure 5.5, is shown in 
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the Table 5.3. However, this optimal control policy does not lead to the best performance when 

applied to the actual process (i.e. mechanistic model based simulation) as indicated by Figure 

5.8.  

 

DBN NO. DBN model (kmol) Process simulation (kmol) 

23 7.142 6.945 

Table 5.3 Optimal results of the 23rd DBN 

 

 

Figure 5.7 Predictions of Mc at the end time achieved by BAGDBN 
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Figure 5.8 Optimisation results of 30 individual DBNs  

 

The optimal control policies from 30 DBNs are shown in Figure 5.9. It indicates that 30 DBNs 

give various control policies. When applying the optimal control policies in the simulation, the 

results are not consistent to the predictions achieved by DBNs. For example, the control policy 

from the 17th DBN gives the highest prediction of Mc on the DBN model but the lowest value 

of Mc when applied to the actual process (i.e. the mechanistic model based simulation). 

Therefore, the optimisation from individual DBNs is not reliable. Figure 5.8 shows that the 

optimal control policy obtained using the 5th DBN give the best performance on the actual 

process and this optimal control policy is shown in Figure 5.10.  



90 
 

 

Figure 5.9 Optimal control policies from 30 individual DBNs 

 

 

Figure 5.10 Optimal control policy from DBN 5 
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To optimise the batch process operation using BAGDBN through the incorporation of model 

prediction confidence bounds, the initial values of temperature control profile, the upper bound 

and lower bound are set as the same as the optimisation of single DBNs. Forty different weights 

for confidence bound within the range from 0 to 9.75 were tried. To show the robustness of 

optimisation using BAGDBN, four different BAGDBNs containing the first 20, 25, 28 and 30 

DBNs were used to optimise the batch process operation.  

 

Figures 5.11, 5.12 and 5.13 show the optimisation results of BAGDBN containing 20, 25 and 

30 DBNs with different values of weights for confidence bounds. From Figure 5.11, it can be 

observed that the predictions of BAGDBN containing 20 DBNs decreases when the weight of 

confidence bound increase. The confidence bound gets narrower and the differences between 

the BAGDBN predictions and the true values get smaller and, hence, optimisation reliability 

improves. The results of simulation are at a stable value when the weight of confidence bound 

increases. The lower confidence bound indicates the worst-case performance. The appropriate 

value of the weight for the confidence bound can be determined when the worst-case 

performance is the best. In this case, the appropriate value for the confidence bound is 3. Figure 

5.12 indicates the same situation of predictions of BAGDBN and errors between predictions 

and simulation as shown in Figure 5.11. However, the greatest value of Mc on the actual process 

(i.e. mechanistic model simulation) when the weight of confidence bound is around 4.5. In 

Figure 5.13, the actual value of Mc meets the largest value when the weight is around 3.75. 

Then error between predictions of BAGDBN and simulation and the width of confidence 

bounds becomes smaller with the weight increasing. The BAGDBN model containing 25 and 

30 gives similar results on prediction and simulations.  

 

Table 5.4 gives the best optimal results of BAGDBN. Comparing Table 5.3 with Table 5.4, it 

can be seen that the errors of BAGDBN between prediction and simulation are much smaller 

than those of DBNs. The amount of Mc under the optimal control policy from the BAGDBN 

containing 25 DBNs achieves the greatest value of 7.003 kmol on simulation. The results from 

BAGDBN containing 20, 25 and 30 are very closer when applying the optimal control policies 

in the process simulation. It indicates the optimisation from BAGDBN is very reliable.      
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Figure 5.11 Optimisation results of BAGDBN (containing 20 DBNs)  

 

Figure 5.12 Optimisation results of BAGDBN (containing 25 DBNs)  
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Figure 5.13 Optimisation results of BAGDBN (containing 30 DBNs)  

 

 

Number of DBNs 

in a BAGDBN 

BAGDBN (kmol) Simulation (kmol) Weight of 

confidence bound 

20 7.069 6.981 3 

25 7.054 7.003 4.5 

30 7.059 6.999 3.75 

Table 5.4 Best optimal results of BAGDBNs 

 

To illustrate the robustness of BAGDBN on the optimisation of the batch process. A BAGDBN 

containing 28 DBNs was used to achieve an optimal control policy for the comparison with 

BAGDBNs containing 25 and 30 DBNs. Figure 5.14 shows the optimisation results of 

BAGDBN containing 28 DBNs and simulation at different values of weight for confidence 

bound. From the figure, it can be observed that the result of simulation achieves the highest 

value of 6.999 kmol, when the weight of confidence bound is around 3.75. The bar chart of best 

optimisation results of Mc from different BAGDBNs containing 25, 28 and 30 DBNs is shown 

in Figure 5.15. The predictions of Mc and actual values of simulations are very similar and 
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consistent. Figure 5.16 gives the optimal control policies from these three BAGDBNs. It 

indicates that three similar control policies are obtained from the optimisations when the weight 

for confidence bound are selected appropriate values. From Figures 5.8, 5.9, 5.15 and 5.16, 

BAGDBN improve the accuracy and robustness of predictions of DBN. The results from 

individual DBNs are not reliable and consistent. The optimal control policies calculated by 

individual DBNs are various and lack of stability. Optimisation using a BAGDBN model can 

lead to a reliable optimal control policy for batch process to achieve the maximum results of 

Mc.  

 

Figure 5.14 Optimisation results of BAGDBN (containing 28 DBNs)  

5.7 Conclusions 

In this work, a BAGDBN model based optimal control strategy is introduced for batch reactor 

control. A BAGDBN model is developed by using a limited amount of process operational data 

to predict the amount of product Mc at the end of a batch. The modelling results demonstrate 

that BAGDBN are more reliable and robust than a single DBN model. The model prediction 

confidence bound is incorporated in the optimisation objective function so that a wide 

confidence bound at the end of a batch is penalised. Therefore, the reliability of calculated 

optimal control is significantly improved. The optimal control policies calculated by individual 

DBNs give various and inconsistent performances. This indicates that the optimal control 
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policies from individual DBN models are unreliable and may not be optimal at all on the actual 

process. BAGDBN model improve the reliability and robustness of data driven model and, 

through incorporating model prediction confidence in the optimisation objective function, 

reliable optimal control policy can be obtained for batch processes.  

 

Figure 5.15 Optimisation results of BAGDBN (containing 25, 28, 30 DBNs)  

 

Figure 5.16 Optimal control policies from BAGDBN (containing 25, 28 ,30 DBNs) 
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Chapter 6. Conclusions and Recommendations for Future Works 

6.1 Conclusions  

This study focuses on deep learning techniques for nonlinear process modelling, optimisation, 

and control. The main objective of this thesis is to develop reliable and robust computational 

intelligence-based data-driven models for nonlinear processes. The improvement of accuracy 

and robustness of the DBN model was investigated. The optimisation of the DBN model 

structure was investigated for the modelling of chemical processes. The development of DBN 

and BAGDBN based soft sensors for a key quality variable in an industrial chemical process 

was carried out in this thesis. Reliable optimisation of batch processes using BAGDBN models 

was investigated. Three different processes, industrial polypropylene polymerization process, 

water level control of a water tank, and a batch reactor process are the cases used to judge the 

performance of novel data-driven modelling approaches.  

Because of the lack of online measurement of polymer MI of the industrial polypropylene 

polymerization process, building soft sensors by finding the relationship between the easy-to-

measure process variables and the difficult-to-measure quality variables is an efficient approach 

to overcome this issue. This polypropylene polymerization process is a plant located in China. 

Several grades of polymer products were produced within a campaign period of one month. 

During this campaign period, the process operational data were logged every half hour and the 

quality data, polymer MI, were logged every 2 hours. In this study, 30 different process 

variables were measured. However, the polymer MI is only correlated to a few process variables. 

Through the sensitivity analysis, hydrogen concentration and the feed rate of hydrogen were 

selected as process variables for the estimation of polymer MI. DBN model was developed 

from the recorded process and quality variables identified by the cross-correlation analysis. A 

conventional neural network was also developed for comparison. Because the numbers of 

process data samples are much larger than that of the quality data, not every process data sample 

has corresponding polymer MI data because the quality variables are much more difficulty to 

obtain than process variables. This is common in many industrial processes. Conventional data-

driven models are usually developed from data sets with equal numbers of process data samples 

and quality data samples. Any process data samples without the corresponding quality data 

samples are usually discarded. Therefore, a large amount of process data that contain lots of 

profuse information are left and unused. The advantage of the DBN model is that it can extract 

the important profuse information from these unused process variables to improve the accuracy 

of estimation.  
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A reliable and accurate DBN model must be developed with appropriate architecture. The 

process and quality data samples are divided into three parts for the cross-validation to 

determine the number of neurons in each hidden layer. From the partition of the data, training 

data are used to train the network, testing data are used for preventing the overfitting of the 

model, and the unseen validation data are used to evaluate the final developed models. The SSE 

values were considered as the performance indicator to judge the performance of different 

models. DBN models with different structures were developed. The DBN which gives the 

lowest SSE on the testing data is considered to have the appropriate structure. 

From the comparison of polymer MI estimations, the DBN model has been proved to be capable 

of giving more accurate online inferential estimations of polymer quality than a conventional 

neural network. The DBN model with an appropriate structure can extract profuse latent 

information from unused process data samples without corresponding quality data samples. 

When applying the data-driven models to highly nonlinear and complex processes, the 

performance of the conventional neural network is shown to be poorer than that of the DBN. It 

demonstrated the DBN model has stronger and more reliable generalisation capability for the 

actual industrial chemical process than the conventional neural network. It provided a valuable 

reference for data-driven empirical model applications.  

The robustness of data-driven models is an important requirement for real industrial chemical 

process applications. Combining predictions from individual forecasting models is an effective 

and verified approach for improving the accuracy and robustness of conventional data-driven 

models. To improve the robustness of DBN models, a novel model named BAGDBN was 

developed in this thesis for the modelling of chemical processes. Several single DBN models 

with appropriate structures were developed and combined in one BAGDBN model. Because 

the quality data from many actual industrial chemical processes are often limited, the technique 

of bootstrap re-sampling with replacement was used to generate replications from the original 

data. These replications were used to develop the DBN models in the BAGDBN model. Each 

DBN model was developed on a bootstrap replication of the original modelling data set. 

Predictions of product quality variable from individual DBN models were combined to obtain 

the final prediction of BAGDBN. The failure of some DBN models can be compensated by 

other DBN models. Two application case studies were used for testing the performance of the 

BAGDBN model. The first case study was dynamic modelling of a conical water tank. The 

multi-step ahead predictions of water level were achieved by the BAGDBN model and single 

DBN model. From the results, the BAGDBN model gives more consistently accurate results on 

different data sets than the single DBN model. The multi-step ahead predictions of water level 
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achieved by BAGDBN were more accurate than the DBN model. The second application is the 

inferential estimation of polymer MI in an actual polypropylene polymerization process. The 

results also demonstrate the BAGDBN model is more accurate and robust than the DBN model. 

The inferential estimation of polymer MI from the BAGDBN model is more accurate and 

reliable than that from the DBN model.  

Batch reactors play a vital role in industrial production processes as they enable the production 

of high value-added products including pharmaceuticals and specialty chemicals. These 

reactors are versatile in nature. They can be utilised for the production of various products or 

different grades of the same product. It is usually effort demanding to develop a detailed 

mechanistic model for a batch chemical process. Because the issue of time-consuming in 

developing and utilising mechanistic models, this type of model may not be used for the on-

line optimisation of batch processes. To overcome this problem, BAGDBN can be developed 

for the optimisation of batch processes. A simulated batch reactor is used as a case study to 

demonstrate reliable optimisation control using BAGDBN models. The objective of the batch 

reactor is to produce a maximum amount of desired product in the fixed batch time. In this case 

study, 120 batches of simulated process data were obtained using different reactor temperature 

control profiles with 10 intervals. These data were divided into 3 parts, training data, testing 

data and unseen validation data. Because the measurement noises are always present in a real 

plant, the simulated quality data of Mc were corrupted with zero mean Gaussian noise. 

Comparisons were carried out between DBN and BAGDBN models. From the prediction of 

desired product at the final batch time achieved by both models, BAGDBN gives more accurate 

predictions than single DBN. This indicates that the technique of BAGDBN model enhances 

the accuracy and robustness of the DBN model. For obtaining better optimisation results and 

reliable control policy, the confidence bound of prediction calculated by the BAGDBN model 

is incorporated into the optimisation objective function. In addition to optimizing the process 

operation objectives, the width of model prediction confidence bound is minimized. By 

minimizing the width of model prediction confidence bound, the reliability of the optimal 

control policy is enhanced. From comparing the results between DBN models and BAGDBN 

models, it is demonstrated that BAGDBN is a more accurate and reliable data-driven model 

than single DBN model. From comparing the results of control policies between BAGDBN 

models with different numbers of DBN models, the control policies are very similar as long as 

BAGDBN include sufficient numbers of DBN models. It is shown that the three similar control 

policies from the optimisation using the BAGDBN models are reliable for the batch reactor 

process.  
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6.2 Recommendations for Future Works 

Based the knowledge from this work, the suggestions and recommendations of future works to 

expand the scope of the present work are listed as follow, 

1. To overcome the lack of online measurement for key quality variables, data-driven 

empirical models become very popular in past decades. Deep learning draws much 

attention in the research area of process control. In this work, the DBN model was 

developed and applied to an actual industrial chemical process. With limited process data 

supplied, the DBN model achieved significant performance for the estimation of key 

variable polymer MI. By using the method of cross-validation, the structure of the DBN 

model and BAGDBN model had been discussed and selected. This process can be time-

consuming and resource-intensive, but it is necessary for developing robust and accurate 

machine learning models. Automated machine learning automates the process of 

hyperparameter tuning, including choosing the optimal number of layers and neurons, by 

performing an exhaustive search over the hyperparameter space (Cai et al., 2020). Neural 

architecture search employs machine learning techniques to automate the architecture 

search process (Ren et al., 2021). The goal is to find an optimal architecture that balances 

accuracy, efficiency, and other desirable properties, like interpretability or transferability. 

These efficient methods can be utilised for the process of hyperparameter tuning of DBN 

and BAGDBN models. 

2. The training time of the DBN model for the modelled chemical process is impacted by the 

complexity of the chemical process and the amount of process data. The learning algorithm 

used in the supervised training phase of DBN training, the backpropagation algorithm, can 

be changed to other more efficient learning algorithms, such as the Levenberg-Marquardt 

algorithm. It may reduce the training time of the DBN model. The results of the predictions 

between this new model and conventional DBN should be compared and discussed in the 

future. DBN model with the Levenberg-Marquardt algorithm can be combined to develop 

a novel model. 

3. BAGDBN based on the technique of bootstrap resampling was developed in this work to 

enhance the robustness of the DBN model. The predictions are a combination of predictions 

from DBN models in BAGDBN by using the simple average method. The method of 

principal component regression can be used in the combination phase of BAGDBN to 

enhance the structure of BAGDBN. The generalisation capability of BAGDBN may be 

improved by this method.  
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4. For further work on multiple-step ahead predictions of dynamic models, the technique of 

deep recurrent neural networks (DRNNs) can be combined with the BAGDBN model. 

DRNNs have been shown to perform better than traditional feedforward networks on 

sequential data due to their ability to capture dependencies across time. In addition, they 

can be stacked to form deeper architectures, allowing for even more complex feature 

extraction and pattern recognition. The performance of BAGDBN on multiple-step ahead 

predictions can be enhanced.  

5. These new models mentioned can be used to predict the key quality variables and 

optimisation for other actual industrial chemical processes such as pharmaceuticals and 

food manufacturing processes. These methods and further application case studies should 

be investigated in future works. 
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