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Abstract

Post Quantum cryptography are defined as public key crypto algorithms whose pub-

lic keys are generated from hard computational problems that are complex to solve

in polynomial time by a quantum computer given worst case instances. The hard

problems which have been proven to be quantum resistant include the shortest vec-

tor problem of lattices, the syndrome decoding problem of certain error correcting

codes and the isomorphism of polynomial problem of multivariate quadratic poly-

nomials. Solutions to these problems have been proposed which in turn have impact

on the security and storage cost of such algorithms to protect information systems

in the future. In this thesis, alternative solutions are proposed which are based on

robust and complex vector space mappings. Firstly, Dimensionality mapping is pro-

posed to reduce the basis into its linear independent vectors at low dimensionality

by constructing a collapse function as an optimization problem. This optimization

problem can be solved on the condition that a projection of the basis vectors from the

High dimensional space to low dimensional manifold would have nearly orthogonal

constitution. These eliminates the need for pre-processing using Gram-Schmidt Or-

thogonalization process. Implementing this approach on a channel basis, showed an

improved BER performance over the Lenstra-Lenstra-Lovatsz algorithm for about

1db and 4db in the 4 × 4 and 6 × 6 uncoded system using 4QAM constellation.

Secondly, the solution of the syndrome decoding problem is generalized to codes

associated with the totally non-negative Grassmannian. The solution was reduced

to an instance of finding a subset of the Plücker coordinates with the minimum

Grassmann distance from the subspace containing the encrypted message symbols.

Furthermore, bounds where derived which showed that the complexity scales up on

the size of the Plücker coordinates. In addition, experimental results on decoding

failure probability and complexity based on row operations where presented and

compared to Low Density parity check codes in the Hamming metric. Finally, the

kernel function of the New Mersenne number transform was applied to hide the
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structure of the core map(central polynomial) of a multivariate polynomial based

cryptosystem. This is in order to mitigate the interpolation of the rank of the

quadratic form by an adversary. The implementation of this new isomorphism from

the New Mersenne Number Transform showed an average of 69% reduction in secret

key size. Further implementation of the isomorphism against key recovery attacks

from the MinRank instance where carried out and it was shown that for lower field

sizes the new isomorphism had an average success time of 13.8%.
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Chapter 1

Introduction

1.1 Introduction
Classical computers provide solutions to hard problems on the input of a

parameter that grows polynomially as function of the number of digits of the input.

This computation is hastened with the introduction of random number generator

imbued with succinct precision. The Quantum computer carries out computation

within a 2n dimensional vector space without the need of a random number gen-

erator. The basis of these vector space is made up of quantum states. However,

its unique vector space mapping properties makes its solution to hard problems to

pan out asymptotically with input size. These unique mapping properties can be

generalized to the classical case as an alternative to the classical approaches pro-

posed in literature. The kernel of the mapping is represented by a unitary matrix

which is constructed using discrete Fourier transform. This is analogous to the ker-

nel of the isomorphism used in Multivariate cryptography [1]. These mapping vis

a vis transformation centred solutions to problems inspired the ideas behind the

algorithms proposed in this PhD thesis. In addition, hard problems are randomized

to its instance, that is reduced to an instance of the bigger problem. A solution

to an instance will ultimately lead to a solution to the bigger problem albeit with

negligible error. In other words, the solution is an approximation and not an exact

solution. For example, to break the RSA cryptosystem which is based on the hard-

ness of factorizing a prime number, firstly, the problem is reduced to the problem

of finding the order of an element in the multiplicative group (modular of the prime

number) [2]. Subsequently, to find a factor of the prime number with certain prob-

ability, the greatest common divisor of an exponential of the element as a function

15



of the order and the prime number is computed.

Hard computational problems are the mathematical requirements neces-

sary to construct the key generation scheme of cryptosystem. This is because they

are the central ingredient necessary to generate the two keys; public key and private

key used in Public key cryptography. It has been proved from research that classical

mathematical problems such as the Shortest Vector Problem for lattices, Syndrome

Decoding problem for codes and Isomorphism of polynomial problem from Hidden

Field equations are strong against Shor’s Quantum based algorithm [2]. This algo-

rithm hitherto has been successful in solving the Integer factorization problem of

the RSA and the discrete logarithm problem of Elliptic curve cryptography. These

algorithms have finally passed standardization and is expected to be deployed into

the Openssl framework for data encryption, decryption and authentication [3]. How-

ever, research on the cryptanalysis of these Post quantum algorithms are ongoing

and this PhD thesis is building on that to expand the techniques used in analyz-

ing these algorithms. One of the proposal is that the mathematical problem to be

solved can be re-constructed into an optimization problem which can be solved by

statistics based theoretic methods, graph based methods, machine learning based

methods and signal processing methods. The performance of this approach would be

compared with methods that have been employed in literature to solve the problem.

This application moves away from the application-centred nature of some of these

methods but rather extract its mathematical construction and re-tune them to serve

the purpose of increasing the discourse in the subject matter till a robust mecha-

nism is in place just in time for the deployment of a super quantum computer. The

research is heavily analytical and this time consuming process has made hardware

implementation practically impossible.

The first contribution of the PhD research was to propose a more effi-

cient way of decomposing the basis in order to solve the shortest vector problem

for lattices. The novel method employed was the use of dimensionality mapping

[4]. Shortest Vector problem is an intractable mathematical basis for the design of

Learning with error-based Lattice cryptography which is a cryptographic primitive

that has the capability to secure data against quantum threats [5] [6]. The method

was compared to Lenstra-Lenstra-Lovasz method [7] and applied to reduce a lattice

basis with rank ≤ n where n is the dimension of the lattice. The result showed

good bit error rate performance as result of the quality of the reduced basis. The

major benefit of the proposed method is that it provides an efficient method of
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cryptanalyzing lattice based cryptosystems with reduced parameters. The second

contribution of the thesis was to generalize the syndrome decoding problem [8] [9]

[10] to the Grassmann metric [11] [12] [13] [14] by applying the generalized infor-

mation set decoding method [15] [16] [9] to find the Plücker coordinates containing

the lowest coset of a totally non negative Grassmannian. Furthermore, the shortest

vector problem was generalized to the syndrome decoding problem using the prob-

ability distribution as the metric for determining the coset with the lowest weight.

Copula functions [17] [18], [19] were used to analyze these distributions. The major

benefit of this is to advance codes that would be an alternative to Hamming weight

based codes. The third contribution of the thesis was to apply the New Mersenne

number transform [20] [21] as an isomorphic map in the Isomorphism of Polynomial

problem. This was compared to the Affine transform used in literature [22], [23]

[24]. The multivariate based cryptosystem are those constructed with Hidden field

equations. The benefit of this is the reduction in computational complexity.

Lattices are linear, efficient in implementation and are based on the dif-

ficulty of finding the shortest vector in a lattice when given a reference Gaussian

distribution. Many lattice based construction require what is called an SVP oracle

[25] which is efficient and fast to sample lattice points given a basis and a vector.

In this thesis, the SVP oracle of importance is the Gaussian sampler. They are

used in generating random numbers as private keys for encryption and for security

proof because of its ease of approximation. The lattice vector is distributed with

a centre c and a standard deviation that is close to the centre. Given the basis,

it is possible to produce the vector without disclosing information about the basis.

Also [26] convolution of the probability density function for q-ary lattices has been

employed to prove statistical indistinguishability. The Lenstra-Lenstra-Lovastz re-

duction method for lattices is basically a pre-code method to process the lattice

which has a matrix structure that is oblivious to the polynomial time adversary.

The lattice basis is decomposed into its Gram-Schmidt equivalent which is highly

sparse and consumes so much memory. However, the theory of Dimensionality map-

ping is proposed which reduces the lattice into its linearly independent equivalent

after some level of approximation. The mathematical properties of the noise gen-

erated from the Gaussian sampler to scramble the basis is interesting as well as

the correctness of these sampler which can be proved using a convolution theorem.

The complexity of Gaussian sampling can also be attributed to the standard de-

viation of the distribution where σ ≥ ω(
√

log n).max1 ≤ i ≤ n||B|| where ||B|| is
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the norm of the basis [27]. To improve algorithmic complexity, the Gram-Schmidt

basis should pre-computed and stored before the sampling process which will lead

to O(n2) operations[28]. In the course of the research, it was discovered that there

was a connection between the theory of lattices and the theory of error correcting

codes. The lattice points can be modelled just as codewords. Proving the security

of a lattice based construction is more efficient in terms of public key size, signature

size and computation in the random oracle model than in the standard model[29].

Notably master public key sizes on input of a security parameter λ is exponentially

equivalent to O(λ). Furthermore, this can be transformed through a function that

employs the tangential plane from the reference plane of the vector. These planes

are actually orthogonal subspaces. This has been studied extensively by Klein who

proposed a random function[30] which is an improvement of Babai’s approach [31].

It is usual that a system samples from a distribution statistically close to the Gaus-

sian distribution to within 2100 by employing floating point operations that have

precision of at least 100 bits[32]. Using standard (53 bit) double precision floating

point numbers is efficient as compared to the use of multi-precision arithmetic num-

bers, but not up to 80bit or 100bit security levels. Floating point arithmetic require

pre-computed tables which increase computation time.

Code based cryptography which relies on hardness of decoding syndromes

as its security metric has proven to be resilient to quantum attacks. The first real

effort to formalize it was the technique by McEliece[33] which employed binary

Goppa codes whose security metric relied on the hardness of decoding a linear code

and the difficulty in differentiating Goppa codes from other random codes. Despite

the advantages, the storage requirements in terms of the public key size are still

an open problem. Research into applying some other family codes like the Quasi-

cyclic codes, Low density parity check codes and a concatenation of both to solve

this problem have been pursued vigorously[34]. The weight of the rows and advent

of structural cryptanalysis have made them impractical for use. Also Quasi-cyclic

Moderate density parity check code has also been proposed[35]. Using Low Rank

Parity check codes has been proposed to reduce the decoding error probability. This

employs the rank metric instead of the Hamming metric associated with Low Parity

Density Codes. The Hamming metric specifies the number of vector coordinates that

distinguishes one vector from another. The approach of using Rank Parity check

codes was to mitigate against structural attacks which stems from the algebraic

nature of syndromes. For a small key size and appropriate choice of parameters, an
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equivalent of 280 bits of security can be achieved. Gabidulin introduced the rank

metric and the Gabidulin codes over finite field with qm elements, and constructed

the first rank-based cryptosystem (GPT)[36] with much smaller key size compared

to McEliece on Goppa codes. The syndrome decoding problem is defined as thus

for a parity check matrix H , given an error vector e to find a syndrome of low

hamming weight such that HeT = sT . Efficient decoding of random linear codes in

polynomial time is very important because it ensures practical implementation of

code based cryptography. This is because knowledge of the cryptanalytic process

through information set decoding methods can enhance the choice of parameters in

order to enhance efficiency. The complexity of Chabaud and Stern[8] information

set decoding method was reported to be O(q(mr)(r1)) and while that of Ourivski

and Johansson [37] has an exponential term in O(q(k+1)(r1)) where n is the length

of the code, k is the dimension and r is the rank.

Multivariate polynomials are made up of non-linear polynomials with sev-

eral variables. These polynomials can be used to construct homogeneous equations.

In order to solve problems from these polynomials, techniques like the Gröbner ba-

sis and its variant [38] are used to reduce the equations to linear equations that

are solvable using sparse solutions. The hardness of the multivariate cryptosystem

stems from the intractability of solving random non-linear homogeneous equations

over finite fields and the isomorphism of polynomial problem [39] which is exponen-

tial on the structure of the map. These maps can either be bijective which depicts

randomness or injective. The inversion of the injective map is more efficient than

the inversion of the bijective map [40]. An example of the bijective map is the affine

transform. These maps hide the structure of the core map from an adversary from

making an inference and breaking the system. Patarin [22] developed an encryption

scheme using Hidden Field equation after breaking the Matsumoto-Imai cryptosys-

tem [41]. This involves a univariate polynomial map over the degree n extension

field which generates a public key where the map is masked by two invertible trans-

formations over a finite field. Patarin proposed a signature scheme called QUARTZ

which was reported slow in performance because of the high degree over an exten-

sion field and was also bedevilled by inefficient invertible transformations [42]. Tao

suggested that the degree should be q2 + 1 where q is the cardinality of the finite

field. The finite is ususally small for example GF (2) [40]. This is in expense to large

public key size from large design parameters.
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1.2 Motivation and Problem Statement
One of the issues that mitigate the continued deployment of public key

cryptography to secure information and communication infrastructure is the limita-

tion of the mathematical and engineering tools used in breaking and analyzing the

key security mechanism. The key security mechanism is based on Computational

hard problems which increase in complexity for certain circumstances that depend

on the parameters of the problem. Breaking classical public key cryptography algo-

rithms using quantum mathematical tools has expanded the science and technology

of cryptography to encompass principles from algebraic geometry, combinatorics,

signal processing, optimization, discrete mathematics, polynomials, coding theory

and so on. In some cases these limitations can have implication on the security of

the cryptosystem and also key storage. Therefore the problems and limitations, this

thesis seeks to investigate and proffer solutions are as follows:

• Complexity in decomposing the basis of the lattice which leads to complexity

in computing the subset sum in the Gaussian sampling based solution of the

shortest vector problem in lattice cryptography. This complexity can also be

attributed to the limitations of pre-processing the orthornormal vectors using

the Gram-Schmidt Orthogonalization process. The proposed solution which is

explained in Chapter three is to use the theory of Dimensionality mapping in

a manifold where an arbitrary projection is constructed which uses an affine

transformation to map these points into a linearly independent subspace of

lower dimensionality. This method eliminates the need for orthornormal vec-

tors with its attendant computation overhead. Furthermore, to test the perfor-

mance of this method in generating a high quality basis that can approximate

this problem, the method was employed to reduce a Gaussian based channel

basis and the BER result was compared with Lenstra–Lenstra–Lovász method.

[7]. The sampling process is guided by the precision of the arithmetic used.

Floating point arithmetic is recommended and bounds as a consequence of the

security parameter have been derived in literature. However, in this thesis,

there is further improvement to the bounds derived.

• Complexity in isomorphism from the isomorphism of polynomial problem for

multivariate cryptography which leads to large private keys and longer time in

generating signatures for authentication. This can be due to the dense nature
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of the representative matrix of the inherent isomorphism. Also, limitation

in isomorphism can lead to less robustness of the trapdoor function to key

recovery attacks. The proposed solution is to use New Mersenne Number

transform function as a masking function. The function has a kernel made

up of primitive root of unity and imbued with an orthogonal property. Also,

the transformed polynomial is invertible with the necessary condition that the

inverse of the polynomial degree belongs to the ideals in the ring. The result

was applied to the Gui cryptosystem [43] and the Sidon cryptosystem [44] and

compared to the Affine transform.

• Limitations of information set decoding methods as a solution to the syndrome

decoding problem for code based cryptography in the Grassmann metric. This

is because in constructing the generator matrix of the code, the isomorphism

of the system should be taken into account. The proposed solution was to

derive a method for detecting the Plücker coordinate of totally non-negative

Grassmanian. The Plücker coordinate are so chosen because the maximal

minor is non-zero which makes it easier to construct the coordinates in a

set. The failure probability of a solution to the problem was computed and

compared to Low Density parity check codes. Furthermore, the sum over all

transitional probabilities is not adequate to estimate the dependence of the

positroid cells of the Non negative Grassmannian code. Therefore, copula

functions were proposed in thesis to model the dependence of the Schubert

cells of the Grassmannian in terms of subspaces.

1.3 Scope
The thesis studied the Computational hard problems and mathematical

framework that are intractable for a quantum computer to solve. These mathemat-

ical problems have been employed to design the key generation method of certain

crypto algorithms. The thesis also studied the mathematical solutions that have

been proposed to solve these problems. The major aim of this thesis is to propose

alternative solutions that will create a plethora of mathematical tools that would as-

sist cryptanalysts to analyze the security of Post quantum public key cryptography

algorithms in the future. These public key algorithms can withstand the threat of

quantum computing capabilities. There are majorly two hard problems for encryp-

tion and two hard problems for authentication. The thesis studied three problems,

shortest vector problem and syndrome decoding problem used in encryption and
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multivariate quadratic problem used for authentication. The three solutions pro-

posed in literature for the problems which are the LLL reduction, Information set

decoding and Minrank solution which were also studied. The performance of the de-

rived functions are tested with different programming languages; C/C++, Python,

Sagemath and MATLAB. Solving the multivariate quadratic equation using Gröbner

basis was beyond the scope of the Thesis. This is because this thesis targets solu-

tions that borders on the key generation and recovery process and not algebraic

attacks by means of reducing the core map to make it solvable by linearization.

In addition, computing Gröbner basis involves studying the structure of Macaulay

matrices which has tendency to stretch the thesis beyond its main focus considering

the available time resource.

1.4 Publication
Substantial part of this work has been presented and published at confer-

ence venues and also archived in Arxiv pre-print platform.

• Kelechi Chukwunonyerem Emerole, Said Boussakta, Post Quantum Cryptog-

raphy for IOT, Annual Research Conference,Newcastle University, Newcastle

UK, 2019.

• Kelechi Chukwunonyerem Emerole, Said Boussakta, Optimizing Gaussian mea-

sure of lattices using Dimensionality Reduction, IEEE International Confer-

ence on Communications,Dublin Ireland, 2020. The beginning part of Chapter

3 was presented at this conference.

• Emerole, K. C., Said Boussakta (2021). Generalizing Syndrome Decoding

problem to the totally Non-negative Grassmannian. arXiv preprint arXiv:2106.

15526. The beginning part of chapter 4 was archived at this pre-print portal.

• Kelechi Emerole, Optimizing information set decoding for the totally non neg-

ative Grassmanian, Postgraduate Research Conference, Newcastle University,

Newcastle, UK, 2021.

• Kelechi Chukwunonyerem Emerole, Said Boussakta, Isomorphism in Multi-

variate Cryptography using the New Mersenne Number Transform, IEEE In-

ternational Conference on Communications, Seoul South Korea, 2022. The

beginning part of Chapter 5 was presented at this conference.
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1.5 Chapter summary
The introduction of a random number generator with the appropriate pre-

cision enables the solution of NP problems. The vector spacing mapping capabilities

of a quantum computer provides the tooling needed to solve hard problems without

the need for random number generator. Hard problems can be solved by reducing

the problem to an instance and using appropriate mapping of parameters to solve the

instance of the bigger problem. Classical mathematical problems like the shortest

vector problem in lattices of abelian groups, isomorphism of Polynomial problem of

multivariate polynomials and syndrome decoding problem of error correcting codes

are useful in designing the key generation algorithm of public key crypto algorithms

that are presumed to be strong against attack by a quantum computer. These

crypto algorithms can be attacked by reducing the solution to these problem as a

solution to an optimization problem which is solvable using different techniques.

The state-of-the-art techniques studied in this thesis to solve these problems include

the Lenstra Lenstra Lovasz method for reducing lattice basis, Information set decod-

ing methods for finding the coset weight of a codeword and the Affine isomorphism

used in masking the core map of hidden field equations. The thesis seeks to propose

alternative methods to solve these hard problems. Alternative approaches proposed

in the thesis was briefly summarized in this chapter. For example, to decompose the

basis of a lattice, dimensionality mapping was proposed, to generalize the solution

to the syndrome decoding problem to the Grassmann metric, Plucker coordinate of

the Grassmann based solution was proposed and finally to solve the isomorphism of

polynomial problem, a new Isomorphism from the New Mersenne Number Trans-

form was proposed. Due to the fact that this thesis focuses on key generation based

attacks, discourse on algebraic attacks using Grobner basis was not carried out in

this Thesis. This chapter ended with a record of the conference venues were this

work was presented.
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Chapter 2

Post Quantum Cryptography

In this chapter, the quantum resistant encryption construction from lattices, codes

and hidden field equations are expounded. In addition, this chapter discusses con-

cepts in lattice cryptography such as lattice basis, discrete Gaussian, basis reduction,

basis delegation and a new concept of using triangularization to construct basis. The

security analysis of such schemes as a consequence of games between an adversary

and a challenger was also discussed in this chapter as well as information set de-

coding methods from linearized polynomials that form a set of quadratic equations.

Finally, different constructions of hidden field equations for the core map of multi-

variate schemes was discussed as well.

2.1 Lattices
The advent of fast computation arising from the development of a quan-

tum computer has made it imperative to develop algorithms that would mitigate

sophisticated attacks to information systems due to the limitation of classical crypto

algorithms based on intractable mathematical problems. One of such algorithms is

constructed from lattices and it is based on the problem of finding the vector with

the shortest Euclidean distance without knowing the structure of the basis. Lat-

tices are linear and efficient in implementation. There are Ideal lattices which are

parameters in a ring Z[x]/(x)〉 for some irreducible polynomial f . They are useful

in decreasing parameters for generating the lattice basis. They are also efficient in

matrix arithmetic such as multiplication [45]. Despite these apparent advantages,

it is less secured as compared to standard lattice based construction[46]. Security

analysis of a lattice based construction is more efficient in terms of public key size,

signature size and computation in the random oracle model than in the standard
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model. In fact, on the input of a security parameter λ, master public key sizes is

exponentially equivalent to (λ) [47]. Triangularization is a fast processing algorithm

applied to matrix vector arithmetic which can be likened to subset sum in lattice

cryptography. By reducing the structure of the lattice basis into its Toeplitz variant,

it can be shown that operations on such a matrix leads to a quasi linear complexity.

This is based on the assumption of [48] [49].

2.1.1 Review of works on lattice based encryption
A lattice based encryption was constructed using cover free families and

the analysis of its security was done under the learning with error security assump-

tion. The adversary in this system compromises a legitimate entity by possessing the

decryption key [50]. The attack is carried out by querying the challenger to extract

the keys for a bounded number of times. It is assumed that the system is secured

even when the number of queries is increased. The system also employed Micciancio-

Peikert’s gadget matrix [51] in order to work with smaller parameters. The gadget

matrix employed is sparse which makes storage inefficient and its inversion process

has logarithmic complexity O(n). Furthermore, a scheme was constructed using the

subset difference method. This method is based on the technique of using binary

trees and the security is analysed in the standard model. It is stated that the ad-

vantage of the subset difference method is that for a certain number of revoked leaf

nodes r out of total leaf nodes N in a binary tree, the size of covering set is at

most 2r − 1 in the worst case scenario as compared to the covering set method[52].

This has a logarithmic complexity that increases the set from (logN) to (log2N).

However, when analyzing the security using games, a condition was stated that if

a certain function hid = 0, the simulator leaves the game and terminates the pro-

gramme. It also leaves the game during its response to creating a ciphertext [53].

A hierarchical based broadcast encryption method was proposed using the Basis

delegation approach. To reduce the complexity of the algorithm, node identities are

deleted during encryption. This approach reduces the ciphertext to (km+ t)logq for

positive integers k,m, t, q where q ≥ 2 and m ≥ 2nlogq. Using the indistinguisha-

bility from random oracle, the security of the scheme was analyzed against adaptive

chosen-plaintext attacks and chosen identity attacks in the random oracle model

[54]. A signcryption method was developed using the Basis delegation approach

to maintain the dimension of the lattice and the scheme also employed Micciancio

and Pierkert’s trapdoor function. It was also proved that the scheme is unforgeable
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against adaptive chosen message attacks under the small integer solution assump-

tion. To reduce the complexity of the algorithm, node identities were deleted during

encryption. This approach resulted in a ciphertext of size k+ l+ (m+n[logq]) [55].

A lattice based identity encryption with security proof against chosen identity and

chosen message attack was constructed under the hardness of learning with errors

assumption in the standard model. l + 1 vectors were chosen to encode identities

which served as the public key of the system. The basis delegation technique was

not used. This is in order to extract keys from newly generated lattices which im-

proves the efficiency of the system[56]. A lattice based identity encryption under

the security assumption of learning with errors was proposed with a vector of length

m. A function rot was used to construct matrices in order to reduce public key size

from (mn) to (n) and to reduce the encryption complexity by employing a circular

matrix with faster multiplication as the basis for the lattice[45]. Least parameter

estimation was employed to generate a decodable lattice with least complexity as

compared to the gadget basis whose sparse nature imposes serious storage cost.

2.1.2 Notation
Z is denoted as the set of integers and Zq as set of integers modulo q in

(−q
2
, q

2
) for any prime q ≥ 2. Zn×m

q is denoted as a set of n×m matrices with entries

in Zq. poly(n) is denoted as the polynomial function of a security parameter n. For

a large security parameter λ, a function ngl : R → R is negligible if ngl(λ) ≤ 1
P

(λ)

for any polynomial P (λ). B is denoted as a matrix and b as its column vector.

Finally denote (y1, . . . , ym) ←− B(x1, . . . , xm) as a function that takes the set of

variables (x1, . . . , xm) as inputs and outputs the set of variables (y1, . . . , ym).

2.1.3 Lattice Basis
An n-dimensional full rank lattice Λ ∈ Zm is an additive subgroup of

Zm. A lattice is constructed by a basis B ∈ Zn
q with linearly independent vectors

b1, . . . bn that generate the rows of B. For B ∈ Zn
q , u ∈ Zm

q and where q is a prime

and m ≥ 2n, it can be written as [6]

Λq(B) = {e ∈ Zm,∃s ∈ Zn
q , B

T s = e( mod q)} (2.1)

Λ⊥q (B) = {e ∈ Zm, Be = 0( mod q)} (2.2)

Λu
q (B) = {e ∈ Zm, Be = u( mod q)} (2.3)
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In equation (2.1), the lattice points in an n-dimensional space are generated by the

transposed rows of the basis, In equation (2.2) the vectors that generate the basis

are orthogonal modulo q to its rows while in Equation (2.3), the bijective map is

defined as (e+Λ⊥) 7→ Be mod q. This means that decoding a codeword Be mod q

is computed by reducing emoduloΛ⊥(B). In other words, for every codeword u ∈ Zn
q

there is an error e ∈ {0, 1}m such that the subset sum Be = u mod q where m ≥ 2n.

This is expounded further in the lemma 1[57]. The structure of a lattice is shown

in Figure 2.1. The orthogonal coordinate vectors forms a basis of the lattice. It can

also be seen that the orthogonal basis vectors have a shorter length than the basis

vectors that are not orthogonal.

1, 2

1,−1

2, 1

3, 3

Figure 2.1: Dimension 2 Lattice with basis vectors at coordinate (1, 2) and (1,−1)
orthogonal while basis vectors at coordinate (2, 1) and (3, 3) not orthogonal but
linearly independent

Lemma 1. The distribution u = Be mod q is within statistical distance 2ε of uni-

form distribution over Zm
q , if the subset sum of column of B ∈ Zn×m

q generate Zn
q

assuming ε ∈ (0, 1
2
) and ηε(Λ

⊥(B)) ≥ s with the error sampled close to the distribu-

tion DZm,s.
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Let t ∈ Zm be a solution to Bt = u mod q where u ∈ Zn
q is arbitrary,

then the conditional distribution e ∼ DZm,s given Be mod q is t + DΛ⊥,s,−t. The

set of all syndromes {Be mod q : e ∈ Zm} = Zn
q . By lemma 1, e ∼ DZm,s. It then

holds that the distribution of e mod Λ⊥ is within statistical distance 2ε of distribu-

tion (Zm \ Λ⊥). This distribution is isomorphic to Zn
q via mapping (e + Λ⊥ 7→ Be

mod q). Writing e = t+ v, and making a random choice u ∈ Zn
q with the e sampled

from a distribution close to DZm,s and given the subset sum Be = u mod q, the

input to the distribution D is t+ Λ⊥ satisfies

D(e) =
ρs(e)

ρs(t+ Λ⊥)
=
ρs,−t(e− t)
ρs,−t(Λ⊥)

= DΛ⊥,s,−t(e− t) (2.4)

The Gram-Schmidt orthogonalization is also defined as B̃ = {b̃1, . . . , b̃n} ⊂
Zm where ri = ‖b̃i‖ is the Euclidean norm. The bound on the Euclidean norm is

summarized in the lemma 2

Lemma 2. The Euclidean norm of a pair |eTx| ∈ (O, q
2
) satisfies |eTx| ≤ ‖e‖.(αq.ω(

√
+

√
m
2

) with high probability on input of m where e ∈ Zm and x is sampled from the

distribution Ψα ∈ Zq.

The error vector x is chosen randomly from a set of real numbers according

to a random distribution with 0 mean and standard deviation α√
2π

with random

mod q. The distribution of Be = u( mod q) is statistically close to uniform over Zn
q

where e is the sampled from the discrete Gaussian distribution. This holds for 3q−n

fractions of the basis B ∈ Zn
q and for the Gaussian parameter σ ≥ ω(

√
logm). With

a vector sampled from a distribution DZm,σ, the conditional distribution is given as

DΛuq (B),Λ. The n-dimensional lattice Λ is defined by Λ = L(B) = {Bx : x ∈ Zm}.
When m ≥ 2 the basis of a lattice are concatenated by unimodular transformations

U ∈ Zn× n. In other words, lattices generated by a basis B ∈ Zn
q and another

basis B̀ ∈ Zn
q are related by the expression B̀ = BU .

2.1.4 Discrete Gaussian

A Gaussian function ρσ,c(x) = e
−π‖x−c‖2

σ2 is defined with a target vector

c ∈ Zn
q and Gaussian parameter σ ∈ Zn

q where n ≥ 0 and Λ ∈ Zm
q is an n-dimensional

lattice of points generated by a basis. The discrete Gaussian distribution is defined

as follows
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∀z ∈ Zn
q , DΛ,σ,c(z) =

ρσ,c(z)

ρσ,c(Λ(B))
(2.5)

ρσ,c(Λ(B) =
∑
c∈Λ

ρσ,c(z) (2.6)

ρσ,c(Bz)

ρσ,c(Λ)
=

e
−‖Bz−c‖2

2σ2∑
z∈Zn e

−‖Bz−c‖2
2σ2

(2.7)

Definition 1. There exists a smoothing parameter ηε(Λ) which is a lower bound on

the Gaussian parameter such that ρ1\σ(Λ∗ \ {0}) ≤ ε for ε > 0 and Λ ∈ Zn
q .

To construct a Gaussian distribution DΛ+c,
√

Σ by a support with coset Λ + c then

the distribution becomes

DΛ+c,
√

Σ(x) =
ρ√Σ(x)

ρ√Σ(Λ + c)
∝ ρ√Σ(x) (2.8)

where Σ = BTB. For any orthogonal matrix L,Σ = (LB)T (LB) and for any set

of integers Zn, the Gaussian function ρB,c(Z) =
∑

x∈Λ+c ρB,c(x). The cumulative

distribution function (cdf)σ,c(x) =
∑x

i=−∞Dσ,c(i).

2.1.5 Learning with error
The Learning with Error assumption processes a noisy pseudo-random sam-

pler Θs that generates a random uniform vector s ∈ Zn
q from a distribution χ ∈ Ψα

where q ≥ 2. The LWE instance also employs a random sampler Θ$ that generates a

random fresh pair (wi, vi) where vi = (wTi s+yi) ∈ Zn
q ×Zq are uniformly distributed

over the domain with a noisy vector yi ← Ψα. The LWE problem outputs a toss of

coin l ∈ {0, 1} as a function of poly(n) number of instances which is generated from

a noisy pseudo-random sampler or a random sampler. The hardness of the LWE

problem is summarized in theorem 1[58]

Theorem 1. If there exists a quantum algorithm that solves the LWE instance then

there exists an efficient quantum algorithm that finds the solution to the shortest

vector problem to within Θ(n \ α) in the worst case scenario given n, α with q ≥ 2

and bounded on input such that αq ≥ ω(
√

logm).
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The theorem is an improvement on [59]proposition which states that solv-

ing the shortest vector problem on a lattice point is equivalent to solving a problem

on a lattice of n dimension to the value poly(n) factors and improved to Θ(n) factors.

There is also the ring variant where the lattice is over a set of real numbers.

2.1.6 Basis reduction
The LLL algorithm [7] approximates a solution to the shortest vector prob-

lem by using the Gram-Schmidt orthogonalized equivalent of the basis of the lattice

and non-negative integers. Through a series of swaps with introduction of appro-

priates indices k ∈ {1, 2, . . . n + 1}, the Euclidean distance of the real number is

reduced to less than half of its length |µi,j| ≤ 1
2

for 1 ≤ j < i ≤ n. Also the con-

dition |b̃i + µi,i−1
˜bi−1|2 ≥ 3

4
|bi−1|2 for 1 < i ≤ n is met if k = n + 1. The swapping

process depends on the size of k. If k ≤ n then bk, µk,j, µk,k−1 is swapped with

bk − sbk−1, µk,j − sµk−1,j, µk,k−1 − s respectively, where s is a non-negative integer.

If k ≥ 2 then ˜bk−1, µk,k−1, µk−1,j, µk, j, µi,k−1µi,k is swapped with b̃k + µk,k−1
˜bk−1 for

j < k − 1. The projection of the basis on the orthogonal complement is given by
˜dk−1 = b̃k + µk,k−1

˜bk−1 . The square of the Euclidean distance of the Gram-Schmidt

orthogonalization is less than the square of the Euclidean distance of the basis of

the lattice for 1 ≤ i ≤ n. This is because the square of the Euclidean distance of

the projection is less than three quarter of the complement of the Gram-Schmidt or-

thogonalization. If k ≥ 2 and some aspects of the Gram-Schmidt orthogonalization

is changed, the overall sum of the determinant of the lattice changes.

2.1.7 Basis Delegation
This method is employed to generate lattice basis for cryptosystem

construction[60]. They can be categorized into SampleBasisLeft and SampleBasis-

Right. In literature, a short basis is used but the definition of the basis delegation

method can be extended by replacing it with the Gram-Schmidt orthogonalization

SampleBasisLeft(B,U, B̃, σ) → T : This probabilistic method outputs a basis T ∈
Zn×m
q when given a reduced basis B̃ of Λ⊥q (B) , a random matrix U ∈ Zn×m

q , a

Gaussian parameter σ and basis B ∈ Zn×m
q with full rank on the condition that

the Gaussian parameter σ > ‖B̃‖.ω(
√

logm) where n,m and q are integers and

m > 2n.

SampleBasisRight(B,U, B̃, σ) → T : This randomized algorithm outputs a basis

T ∈ Zn×m
q when given a reduced basis B̃ of Λ⊥q (B) , a random matrix U ∈ Zn×m

q , a
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Gaussian parameter σ and basis B ∈ Zn×m
q of Λq(B) with full rank on the condition

that the Gaussian parameter σ > ‖B̃‖.
√
m.ω(

√
logm) where m > n and q > 2.

2.1.8 Least square Error based Basis construction
By finding the square of the error given as ||s−Bh||2 = ||Dmβ||2 = ||H∗m||2

using the solution given as h = B
′
s = (BHS)−1SHx = [Rnβ

T
n+1 + Zmαn], the mini-

mum squared error function using the least square method can be estimated. Since

the basis vectors of a lattice occupy orthogonal positions in the Euclidean space, an

orthogonal matrix whose Hermitian transpose H∗m performs a faster computation

on the basis is constructed. It can also be shown that an arbitrary augmented ma-

trix [61] is equivalent to the household transformation of the basis vectors[48] which

reinforces its geometric properties. Rn
... αn

. . . . . . . . . . . .

βTn+1

... Θn

 =

Rn
... Zm

. . . . . . . . . .

0
... gm

 = H∗m

ωBm−1

. . .

ΓTm



H∗m =


Rn

. . .

βTn+1


B =

αn. . .
Θn

 (9)

where βTn+1
1 = [ lT : 0T ] ∈ Zn, H∗m ∈ Zm×m with entries modulo q and ω is a

weighting factor.

1padding n-m zeros to l
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ωBm−1

. . .

ΓTm

 = (10)


ωb1,1(0) ωb2,2(−1) . . . −ωb(−m+ 1)

ωb1,1(1) ωb2,2(0)
. . . −ωb(−m+ 2)

...
... ωbn,n(m− 1)

...

m(n− 1) m(2) m(N) Λq(n−m)


Expanding H∗m further a basis that has a triangular structure is given as

b1,1 b1,2 . . . b1,N

b2,2 . . . b2,N

. . .

bn,n

 (11)

From (11), it can be seen that the basis is in a Hermite normal form. The triangu-

Algorithm 1 Household Triangularization[48]

1: for i=1:N do
2: αi =

√
(ωbi,i)2 + (Πi−1Ψm)2

3: σi = αi + |ωbi,i|
4: ρi = 1− Πi−1Ψm)2

σi
5: etai = ωbi,i +max{|Zn|, |Λq|}αi
6: Ψ

′
i = Ψi

σi

7: µ
′
i = Πi−1Ψm

σi
ωbi,i = max{|Zn|, |Λq|}αi

8:9: ω
′
= −ωb+ eta

′
i(ηiωs+ Πi−1ΨΛq)

10: δ =
−ωbi,iΠ2

i−1Ψm

αi

11: Λ
(i+1)
q = Λ

(i)
q + µ

′
i(ηiωb+ Πi−1ΨmΛ

(i)
q )

larization algorithm requires n square roots, 16n multiplications and 9n additions.

The norm of the basis S is expressed as ||S|| ≤
√

2n− 1||αn||

2.1.9 Lattice Based Construction
In this section, the methods employed to encrypt data using lattice based

method is enumerated. The methods constitutes the steps used in identity based

encryption were a master secret key is generated from identities[62]. The process of

generating the master secret key is shown in Algorithm 2. A list UL is initialized

to null to enable the storage of identities in the key generation phase. The key

generation phase is shown in Algorithm 3, were the discrete Gaussian sampler is used
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to generate short vectors that is used as secret key for encryption. The encryption

process is shown in Algorithm 4 were a noise vectors are added to the subset sum

to generate the ciphertext. Finally, the message is decrypted as shown in Algorithm

5.

Algorithm 2 Setup

Require: security parameter λ maximal number of users, N = poly(λ), identity
space ID = Zn

q ← {0, 1} Parameters q, n,m, σ, α, dimension ID = {1} × Z l−1
q

Ensure: (PP, MSK, UL)
1: set lattice parameters q, n,m, σ, α where q ≥ 2,m > 0,m > 3n, σ =
L.ω(
√

)α
√
m ≥ ηepsilon(Λ⊥)

2: Compute TB, (B, TB) ∈ Zn×m
q × Zq ← TrapGen(q, n, m, λ) where ‖TB‖ < L

3: Set hash functions {0, 1}l ← H∗h : Zn×m
q

4: Compute C(R) and D(R)

5: select s ∈R Zn
q where B = Rotf(s)

6: set MSK = TB PP = (H∗h, B, C(R), D(R), s) UL := �
7: if i = i+ 1 then
8: Return (PP,MSK,UL)

Algorithm 3 Key Generation

Require: ID ∈ {0, 1}, public parameters
Ensure: SKid = {el}l∈[d]

1: set the bound on the tailcut parameter Psiε and store ID in UL
2: Choose random vector {C}l∈[d] ∈ Zn

q

3: Compute D(R) ∈ Zn×m
q from D(R) ← B +H∗h(ID)G

4: for l ∈ [d] do
5: el ← SampleDiscGaus (B, B̃, σ, c, r∗i , D(R)) where r∗i = ‖b∗i ‖ is the norm
6: Return SKid
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Algorithm 4 Encryption

Require: M ∈ {0, 1}, public parameters (B,D,H∗h), identity ID =
(1, ID1, . . . IDl)

Ensure: CTID = (C1, C2) ∈ Zq × Z3m
q

1: select Ri ← {−1, 1}l×m
2: choose s← Zn

q

3: set C(ID) = BRID −H∗hD(R)

4: Compute RID =
∑l

i=1 biRi where bi is a linearly independent vector of the basis
5: select x, y ← Ψα where Ψα ← Zm

q and x, y noise vectors
6: Compute C1 = BT s+ y +M [ q

2
] ∈ Zq

7: Compute C2 = CT
(ID)wi+

[
x

RT
IDx

]
∈ Z3m

q

8: Return CTID =0

Algorithm 5 Decryption

Require: CTID ∈ Zq × Z3m
q , e ∼ DZ,

√
Σ,ti
, s← Zn

q

Ensure: {0, 1} ←M
′ ∈ Zq

1: Compute M
′ ← C1 − sT e

[
C1

C2

]
2: for i = i+ 1 do
3: if |M ′ − [ q

2
] | < [ q

5
] then

4:

5: Return 1
6: else
7:

8: Return 0

2.1.10 Correctness
Let e be the vector sampled from the discrete Gaussian distribution, let{

y ← Ψα

x← Ψα

}
. Let s ∈ Zn

q be the secret vector from the noisy pseudorandom sampler

Θs and a fresh vector wi from random sampler Θ$, then the secret key becomes

wTi s ∈ Zn
q ,. Consider the ciphertext (C1, C2) = (BTwTi s+y+M [ q

2
] ∈ Zq, CT

(ID)wi+[
x

RT
IDx

]
∈ Z3m

q ) and the decryption algorithm becomes M
′ ← C1− sT e

[
C1

C2

]
which

is equivalent to BTwTi s(1−sT e)+y(1−sT e)+M [ q
2
] (1−sT e−CT

IDwis
T e+xT sT e−

RT
IDs

T ex). By lemma ‖e‖ ≤ σ
√
m and Be = H1(ID), therefore M

′ ← xT sT e −
RT
IDs

T ex + M [ q
2

] . Consequently, the algorithm outputs M , if xT sT e − RT
IDs

T ex

is close to q
5

from the origin of the n-dimensional space modulo q and outputs 0 if
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otherwise. From Lemma xT e is distributed with zero mean and standard deviation

σ
√
mαqω(

√
log n) with high probability and the norm of the random uniform RID is

bounded by Θ(
√
m). Therefore, resulting to xT sT e = ‖xT sT e‖ ≤ σ

√
mαqω(

√
log n)

with high probability and RID = ‖RID‖ ≤ Θ(
√
m) with high probability. This

follows that ‖RT
IDs

T ex‖ ≤ Θ
√
m and σ

√
m.αqω(

√
log n) ≤ Θ(σαmω). The error

term is bounded by ‖xT sT e‖+ ‖RT
IDs

T ex‖ ≤ αω
√
mqω(

√
log n) + Θ(ωσαm) where

αq is the ciphertext noise addition.

2.1.11 Security Analysis
The security of the proposed construction would be analyzed as a set of

hybrid interactions between the adversary and the challenger in what constitutes

indistinguishability against chosen ciphertext attack(IND-CPA).

Hybrid 1: This is the original IND-CPA game

Hybrid 2: Let (id∗) ∩Q = � be the challenge id set. This is the same with Hybrid

1 but the key generation algorithm is modified given matrices βTn−1 and B(R) chosen

at random, the Simulator selects R∗i ∈ {−1, 1}l which is sent and generates C(R)

and D(R) as follows R∗nβ
T
n−1 − Hm(B(R)) = C(R) and R∗nβ

T
n−1 + Hm∗B(R) = D(R)

where C(R) and D(R) are uniformly distributed in Zn×m
q . The adversary A select t =

dlogq(2|Q|)ide and q ≥ 2|Q|id+ |T | where |Q|id is the maximal number of queries for

A(R) and B(R) and |T | size of time space and passes it to the simulator C. C aborts if

Pr[ 1
ωij

] = Hh
∗. By lemma, distributions (A(R),A(R)R

∗
i , (R

∗
i )
Ty) is statistically close

to (A(R), C(R)| . . . |C(R)|D(R)| . . . |D(R)) consequently (A(R), C(R)| . . . |C(R)|D(R)| . . . |D(R),

(R∗i )
Ty)), thus Pr[W0] = Pr[W1]

Hybrid 3: This is the same with the previous game except in A’s view the vec-

tor vo +
∑n

i=1 idi(zibi) is seen as a private key for identities id = (idi, . . . , idn) ∈
{0, 1}n. The simulator C then chooses n + l + k public key vectors vi according

to distribution Ds(n+l+k),σ and generate linearly independent vectors ci by comput-

ing Bvi( mod q) = ci. Distribution of vo +
∑n

i=1 idi(zibi) is statistically close to

Ds
√
m

∑n
i=1

idi
(n+l+k),σ

where s
(n+l+k)

= ω ≥ η ∈ (Λ⊥q (B) where B is a public parameter

matrix.

Hybrid 4: For a secret randomly chosen vector s ∈ Zn
q , a LWE problem is defined

by sampling an oracle Θ which can be sampled from either random distribution Θ$

or a noisy pseudo random distribution Θn. The adversary A is used to construct

a simulator S to solve the problem. The simulator S requests from the oracle Θ

unassigned vectors (ui, vi) ∈ Zn
q × Zn

q for mi instances where i = 0, . . . ,m + 1. It
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constructs the model as follows, transform C(R) ∈ Zn×m
q from mi instances by fix-

ing the ith columns with linearly independent vectors vi ∈ Zn
q . It also transform

D(R) ∈ Zn×m
q from mi instances by fixing the ith columns with linearly independent

vectors ui ∈ Zn
q . Then C(R) and D(R) is constructed for i ∈ [m] as in the previ-

ous game using Hh
∗ and R∗i ∈ {−1, 1}l. Also, the rth row of the LWE instance

is assigned to vo ∈ Zn
q . Thereafter, send (A, {C1, . . . , Cn, {D1, . . . Dn}, TB, vo} to

the adversary. A responds with id∗ = (b∗1, . . . , b
∗
l ∈ {−1, 1}l and the message bit

M∗ ∈ {0, 1}. The game is aborted in the previous game if id = id∗. In the chal-

lenge phase, the challenger queries the linearly independent vectors vo, . . . , vn ∈ Zn
q

from the LWE instance and gets v∗ =

[
v1

vn

]
∈ Zn

q and v∗∗ =

[
v1

vm+1

]
∈ Zn

q . It

employs R∗i ∈ {−1, 1}l to compute R∗id ←−
∑n

i=1 bi
∗R∗i ∈ Zn×2m

q , CT ∗ as C∗i =[
v∗

(R∗id)
Tv∗

]
∈ Z2n

q and C∗2 =

[
v∗∗

(R∗id)
Tv∗∗

]
∈ Z2n

q . Adversary A makes queries

b ∈ {0, 1}, then S returns CT ∗ = {C∗i , C∗2} as response if b = 0 and returns uniform

values CT ∗ ← Z2n+k
q if b = 1. When the oracle Θ is noisy in the distribution Θs,

v∗ is uniform in Zn
q and v∗∗ is uniform in Zn

q and (C∗i , C
∗
2) is uniform in Z2n×2n

q

thus Fid∗ = (A \ AR∗ \ B). By distribution v∗ = AT s + y and v∗∗ = BT s + e

for some random vectors y, e ∈ Zn
q distributed in DΛ,s,ω. Finally, resulting to

C∗1 =

[
AT s+ y

(R∗id)
TAT s+ (R∗i )y

]
=

[
AT s+ y

(AR∗i )
T s+ (R∗i )

Ty

]
= (Fid∗)

T s+

[
y

(R∗i )
Ty

]
C∗2 =[

BT s+ e

(R∗id)
TBT s+ (R∗i )e

]
=

[
BT s+ e

(BR∗i )
T s+ (R∗i )

T e

]
= (Fid∗)

T s+

[
e

(R∗i )
Ty

]
.

Hybrid 5: Given the parameters A(R), C(R), D(R) and pk∗ = (e∗, A∗2) and id∗ =

(id∗i , . . . id
∗
l ) 6= IDi. S picks equal message bit (M0,M1) ∈ {0, 1} and gener-

ate C∗0 , C
∗
1 ∈ Z2m

q × Zq as follows uT s + e∗ + [ q
2
]1 and AT2 e

∗ + e∗ + [ q
2
]0 where

u = v0 +
∑l

i=1 idivi and e∗ distributed according to Dul,A0/G/RID,ω where TG is a

trapdoor for the basis G if (H(ID)) − H(ID∗))G and ID 6= ID∗. If A outputs a

valid ciphertext C0, C1 = C∗0 , C
∗
1 , then S aborts.

2.1.12 Parameters
For the trapdoor generation algorithm, the dimension of the lattice should

be bounded by m ≥ (1 + 4ε)n where q ≥ 2. The norm of the reduced basis B̃ is

bounded by ‖B̃‖ ≤ Θ
√
m(n) with a noise error vector bounded by α < 2

√
m
q

where

q ≥ βω(
√
m) and the constant β = 3m(1 + ε)σω(

√
log n). This proves the worst

case hardness of the construction. The sampling algorithm works perfectly if the
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Gaussian parameter is set σ ≥ ‖B̃‖
√
m(1 + ε) log qω(

√
log n). The error term is

less than q
5
, if the error rate is bounded as α ≤ ω

√
nm

3
2ω(
√

log n) + σ ≤ q
5
. The

error vector can increase the probability of decryption failure if it is too large. If the

lattice dimension n is assigned as the security parameter λ that is n = poly(λ), then

the column of the lattice m is expressed as m = n1+α where nα ≥ logq. The leftover

hash lemma satisfies m ≥ (n+ 1) log q+ω(log n). From the analysis, the dimension

of the basis plays a role in the storage cost and efficiency of the construction at

the expense of security. It is very important to keep it in focus when designing the

algorithm and choosing appropriate parameters that would guarantee performance.

Table 2.1: Storage cost with lattice dimension m, security parameter n and prime q
Public key Parameters Secret Keys Ciphertext Security
(3mn+ n+ n2N/2)log2q (2m) (2m+ 1)log2q 128 [63]

3n n 3n 128 [64]

2n log2 q(2n+ 1) 2n log2 q 2n log2 + 128 [65]

(mn+ (l + 1)n) m2 3m log2 q 128 [56]
mn mn log 2q mn log(12σ) 128 [66]
mn mn 3m 128 Ours

2.2 Codes
Cryptosystems have been designed that employ the Hamming metric, which

specifies the number of vector coordinates that distinguishes one vector from an-

other. A digital signature generation algorithm whose security is dependent on

decoding codes with rank metric called RankSign [67] have also been developed. An

encryption scheme using Gabidulin codes based on the security assumption of the

hardness of the Rank syndrome decoding problem and Decisional Rank Syndrome

decoding problem was developed with the scheme achieving 2140 bits of security at

a smaller public key. Furthermore, it was reported that the cryptosystem has small

public key size than public key sizes from Moderate Parity Density Check codes

[68]. The effect of algebraic attacks on the parameters of the RankSign algorithm

in polynomial times and its vulnerability is due to the fact that the Augmented

Low Rank Parity Check codes have low Hamming weight. The algebraic attacks

tend to expose the trapdoor function employed in constructing the cryptosystem. A

code based encryption scheme with rank metric and whose selective security proof

is in the random oracle model was constructed. Its security lies on the hardness
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of solving the Rank Syndrome Decoding (RSD) problem, Rank Support Learning

(RSL) problem and the Augmented Low Rank Parity Check Code (LRPC+) prob-

lem. The RankSign Algorithm was employed to generate the trapdoor function and

the binary tree was used for key updates with the complexity of the key updates in-

creasing logarithmically[69]. By finding low weight codewords distinguishable from

a random code, the cryptosystem can be broken [67].

2.2.1 Notation
Table 3.1 gives a summary of some notations used in this section.

Table 2.2: Notations
Symbols Meaning

q power of prime
Fq finite field of q elements
Fqm extension field of degree m
F n
q vector spaces of dimension n

over Fq
A n×m matrix
a vector

Gq(n) set of subspaces belonging
to F n

q

ker(A) kernel of matrix A
ω matrix multiplication com-

plexity exponent
E Subspace code E(minimum

entropy subset of Gq(m))
F Subspace code F (minimum

entropy subset of Gq(m))
ds(E,F ) subspace distance between

E and F
E ⊕ F Smallest subspace
rk(A) rank of A over Fq
〈A〉 Fq span of A

2.2.2 Syndrome Decoding Problem
The breaking of the public key in code based cryptography under the rank

metric depend on the solution to the syndrome decoding problem in the rank metric

which is defined as
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Definition 2. Find a vector xi with rank weight w, and an integer which represent

the ith column of a vector that lifts a codeword from X to X
′

, if HTx = s where

s ∈R F n−k
qm is a syndrome and H is a parity check matrix over Fqm.

The definition can be extended to the low rank codeword problem as

rank(A − C) = w where A ∈ Fm×n
q is a matrix, C is a linear matrix code and

w is the rank weight. Furthermore, the computational syndrome decoding problem

which relates the negligible advantage of probabilistic polynomial time adversary to

find the vector x given the parameters (H, s, w) is defined as

Definition 3 (Computational Syndrome decoding problem). The advantage of a

probabilistic polynomial time adversary A to find a vector x ∈ Fqm such that HTx = s

after making adaptive queries qτ to obtain a syndrome s where H ∈ F n×m
q and w is

the rank weight is with negligible advantage ε.

It is very important that the probability of an algorithm that would solve

the rank syndrome decoding problem is to be bounded by 1. Two other security

assumptions employed in the rank syndrome problem are stated as follows.

Definition 4 (Decisional Rank Syndrome decoding problem). A probabilistic poly-

nomial time adversary has negligible advantage to compute G a generator matrix

where G ∈ F k×n
qm and x

′
from MG + x given a message bit M ∈ F k

qm and a vec-

tor x ∈ F n
qm with row weight w. In other words, Advdrsdm,n,k = Pr[ A(G,mG ⊕ x) =

(G, x
′
] ≤ ε where x

′ ∈ F n
qm.

The definition of the Decisional Rank Syndrome decoding problem can be

extended as

Definition 5. A probabilistic polynomial time algorithm has negligible advantage to

compute H
′

from an augmented LRPC code H
′

with a homogeneous parity check

matrix H ∈ F n−k×n
q and x

′
from MP T s

′
+ x given a message bit M ∈ F k

qm, a

syndrome s
′ ∈ F n

qm a vector x ∈ F n
qm and square invertible matrix P ∈ F n−t×n

qm . In

other words, (Pr[ A(H,MP T s
′
+ x) = (H

′
, x
′
)] ≤ ε

In the chosen plaintext attack, the adversary makes adaptive key generation

queries and the challenger responds by running a key generation algorithm with

input of a security parameter and responds with a master public key. The adversary

chooses two equal message bits |M1| = |Mo| and sends to the challenger who responds

39



by running the encryption algorithm to generate ciphertexts. The Adversary chooses

random bits b ∈ {0, 1} and outputs a bit b
′ ∈ {0, 1}. The adversary wins if b = b

′
.

2.2.3 Code based construction
Setup: Let H

′
be a parity check matrix of Augmented LRPC code with a parity

check matrix H of weight d ≥ 4w + 1 and P is a square and invertible matrix with

weight w
2
. Given a security parameter λ, a function K : {0, 1}∗ 7→ F k+t

qm is selected. A

generator matrix G ∈ F k×n
qm with syndrome s is constructed. This generator matrix

is decodable if d ≤ 2w where w is the weight of the vector x ∈ F n
q . Then a random

vector u← F n
qm is generated with rank ||u|| = n. The master public key is T = (P, s)

and public parameters; (RP T , G, u) where R ∈ F (n−t)×t
qm .

Key Generation: Compute the square and invertible matrix P as P ← K(ID)

where P ∈ F k+t
q . Then choose u ∈R F n+l

qm and compute a syndrome s = H
′
xT where

x ∈ F n
′
+t

q . Finally, sA = P −x is computed which follows s
′
= P−x

A
and then return

SKID = {s′i}.
Encryption Compute the square and invertible matrix P by P ← K(ID) with the

message bit m ∈ F n
′

qm − k
′
. Then compute the ciphertext C1 = m(H

′
G+ P T s

′
) + x

and C2 = C1

(
RPT

x

)
+C1

(
I
s′G
m

)
and return CT = (C1, C2) where R ∈ F t×n

qm .

Decryption

(s
′ | − 1)(

C2

C1

) = s
′
C2 − C1 = s

(
C1(

RP T

x
) + C1(

I

s′G
)m

)
−C1

= s
′
C1(

RP T

x
) + s

′
C1(

I

s′G
)m−m(H

′
G+ P T s

′
) + x

= s
′
C1(

RP T

x
) + C1(

I

G
)m−mH ′G+MP T s

′
+ x

Since H
′

can be expressed as its constituent identity matrix and G is the generator

matrix ofH then it follows that s
′
C1(RP

T

x
)+mP T s

′
+x. Since d ≤ 2w thenmP T s

′
+x

can be solved with an efficient algorithm to recover the message.

2.2.4 Security Analysis
Theorem 2. The Advantage of a probabilistic polynomial time adversary to win the

IND-CPA game after making adaptive qH and qKG queries to the random oracle is

ε ≤ (qH + qKG)εSDP + εffvp where ε, εsdp, εcsdp are negligible functions.

Proof. The game is the same with the original IND-CPA game except the adversary

A makes adaptive queries to the oracle K : {0, 1} 7→ F k
q for the challenge set id∗j .
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A makes adaptive query for the secret key and the challenge responds with the pa-

rameter (P, s, u) and runs the key generation algorithm KG(PP,msk, id)→ SKID

which sends SKID to A

In the challenge phase A makes more queries on the challenge id not queried and

outputs 2 equal messages M0 and M1. If id∗ = idi the challenger C aborts the game

even though the guess bit β is hidden from A otherwise A returns a bit c∗ and wins

if c∗ = c. The bit c is generated at the random toss of a coin by the challenger and

used to compute the ciphertext CT which is sent to A. This game is indistinguish-

able from the original game by the hardness of the syndrome decoding problem that

is

|Pr[ G1] − Pr[ G0] | ≤ εsdp(qH + qKG)

After an adaptive queries by the challenger on the identity id∗, A generates a chal-

lenger ciphertext CT ∗ = (C∗1 , C
∗
2) from a random matrix R.

Since x∗ is sampled from a discrete Gaussian distribution, the second game is in-

distinguishable from the first game by the hardness of the computational syndrome

decoding problem that is

|Pr[ G2] − Pr[ G1] | ≤ εcsdp

2.2.5 Information set decoding from linearized polynomials
The solutions to the syndrome decoding problem is reviewed in the rank

metric. The problem is modeled and solved using linearized polynomials that form

a set of quadratic equations.

2.2.5.1 Hauteville-Tillich

In the Hauteville-Tillich algorithm, the linear matrix code C is lifted to C
′′

by multiplying two n×m invertible matrices P and Q to become C
′′

= QCP with the

same rank weight w and C
′′

=
∑l

j=1 βl where βl is a basis of the subspace and xi has

zero entities with its ith entry equals to 1. Then choosing a random space V which

is expressed as V =
∑r

j=1 Vj and entries chosen uniformly for j.{l+1, . . . , r} and the

basis chosen in this manner Vj = 0∀j ∈ [ 1′l] ;Vj = 0∀j ∈ [ l+1, r] , Vi = 1∀i ∈ [ 1, l] .

Then the error vector x is expressed as xj =
∑
j = 1rαijVj for i ∈ {1, . . . ,m}. The

number of variables that make up the equation becomes (m− l)(r− l) + l(n− l)∀i ∈
{l + 1, . . . ,m}, {l + 1, . . . , r} and j ∈ [ 1, a] and the dimension of C

′′
is given as
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km. Therefore the number of equations is equivalent to nm − km. For a solution

to occur, the number of equations should be (n− k)m ≥ (m− a)(r− a) + a(n− a).

This results to r = b m
m−l(n − k) + am−n

m−l c and the resulting complexity becomes

O(n− k)3m3q(w−l)b m
m−l(n− k) + lm−n

m−l c) [70].

2.2.5.2 Gaborit-Ruatta-Schrek

In the first phase, the linear matrix code C with parity check matrix H is

lifted to C
′

by the expression C
′
= C+Fqmx where C

′
contains the codeword x. To

generate the linear matrix code, the parity check matrix H is computed from the

solution of the rank decoding problem HxT = sT , then the generator matrix G of the

matrix code C is used to transform it into C
′
. Since the dimension of the subspace

F is α, then x
′

is of the form αx where α ∈ Fqm . Consequently, employing the sup-

port trapping approach, a codeword x such that 1 ∈ support(x) = E can be found,

which follows that 1 ∈ F = E where E is a space and F ⊃ support(x). When

the codeword as a function of a basis is represented it becomes xj =
∑r

j=1 αijβj

where βi is a basis of the subspace and αij is the column space of the codeword

xj. Consequently, this results to dimψ(F ) = dimF − 1 where ψ = V
Fq

and V is a

random subspace. Furthermore, expressing the subspace F as a function of its basis

becomes F =
∑n

l=1 ψlβl. Therefore setting up the number of variables nr with m

equations results to

n∑
l=1

r∑
j=1

ψlαijH
′

lβj+, . . . ,
n∑
l=1

r∑
j=1

ψlαijH
′

n−k−lβj = 0 (2.9)

Since F ⊃ supp(x) , there must be one solution and for this to hold, m > n that is

m(n−k− l) ≥ nr which results to r = bm(n−k−l)
n
c = m−dm(k+1)

n
e. Since dimψ(F ) =

dimF − 1 and dimψ(E) = dimE − 1, then the number of subspaces of dimensions

w becomes w − 1 and the number of subspace of dimension r becomes r − 1, then

the Gaussian probability becomes P =

w − 1

r − 1


qw − 1

m− 1


q

= q(w−1)(m−r). The complexity of

decoding x where H
′
x
′T = HαxT = s becomes O((n− k)3m3q(w−1) (k+1)m

n
[10].

2.2.5.3 Gaborit-Ruatta-Schrek Algorithm

Given a multivariate polynomial Fm(f1, . . . , fm) =
∑r

i=0 fix
qi and another

multivariate polynomial Fy = (f1, . . . , fm) =
∑r

i=0 fiy
qi all of degree r, based on
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the linearity principle F (αx + βy) = αFx + βFy∀α, β ∈ Fq. if x̄ and ȳ are roots of

the equation then Fx̄ = Fȳ = 0. For a matrix code C ∈ Fqm with generator matrix

G =
∑k

i=1,j=n gij and rank(x) = r then y = XG + x where X ∈ C is a codeword.

Given a random subspace V =
∑
j = 1rVj, X =

∑k
j=1Xj, there is xj =

∑r
j=1 αijVj

that gives k+r variables of the polynomial Fy. There exist a random subspace V ⊂ E

where Fȳ ∈ E. Then for ∀j, 1 ≤ j ≤ m, y = XG+x = F (yj = F

(∑k
j=1Xjgij+xj

)
=

0 where F (xj) =
∑r

j=0 fjx
qj

j . The unknowns are chosen in this manner; for k + r

unknowns fjx
qj

j ∀i ∈ [ 1, k] and j ∈ [ 0, r−1] , for k unknowns xq
r

j ∀j ∈ [ 1, k] and for r

unknowns fj∀j ∈ [ 0, fr−1](corresponding to scalar coordinate of y). Consequently

the number of equations m ≥ (r + 1)(k + 1)− 1, if xj = 0, then Xj is decreased by

one and then the variables are decreased by (r + 1) terms [10].

2.2.6 LDPC codes
Given an edge e of the coordinate i of a subgraph shown in Figure 2.1 and Log

likelihood ratio(LLR) of the channel message as it moves from the vertex of the

LDPC coder to the LT coder at iteration t; L
(i,t)
cj→νj , an edge e at the origin of the

subgraph and its LLR at iteration t + 1; L
(t+1)
cj→νj and an edge e at coordinate i and

coordinate j and its LLR of the channel message at iteration t as L
(i,j,t)
cj→νj . The LLR

can be related as follows [71]

L(i,t)
cj→νj =

1

2
(1−

d−1∏
j=1

(1− 2L(i,j,t)
cj→νj)L

(t+1)
cj→νj = G(Lc1→ν1 , . . . , Lcj→νj)

where G =
∏n
i=1 ν

(t)
j∏n

i=1 νj+
∏n
i=1(1−νj) is the parent tree. For a subgraph with depth 2, the

path along the edges for the vertex cj of the LT code moving in a cyclic manner and

terminating at the originating vertex cj with girth is given by 2(2) + 2 = 6. A trellis

of t ≥ 2k can locate vertex cj if and only if 2k ≤ 10 that is if the girth increases

beyond 10.

If the bipartite graph with vertices V projects into the factor graph[72] G,

then the block length is expressed as n = |V ′ |2
4

+ |V ′ | and the length of the infor-

mation bits is expressed as k = |V ′ |2
4

. The serial concatenation used in generating

erasure codes is modelled using factor graphs which is actually a bipartite graph

with edges and vertices. The degree of the individual vertices which is sampled

from an output degree distribution Ω(x) =
∑i=1d Ωdx

d by randomly selecting an in-

teger m ∈r {1, . . . d} should be less than or equal to the number of output symbols.
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This implies that Ω(x)R→∞ = eα(x−1) where α = R and β is the average degree of

the vertex that represents the source codewords given as β =
∑d

i=1 dΩd. In other

words, the average degree of the vertex that represent the output codewords. The

edges that connects the vertices of the intermediate symbol and the output symbol is

sampled from a distribution expressed as ω(x) =
∑d

i=1 ωdx
d−1 where ωd is the finite

number of edges linking the output vertices. To optimize ω(x), density evolution

is employed[73] . The posteriori rate of the code design[74][73] is expressed as the

rate by which the degree of the edges are sampled from the distribution spanning

from the intermediate vertex edges to the outer vertex and given as Rpost = 1
α
∑ ωd

i

.

The goal of the code design is to minimize Rpost by employing the edge distribution

of the output vertex. Consequently, the individual intermediate symbols is XORed

to generate the codes which are transmitted over erasure channels 2. The arbitrary

Figure 2.2: Non-planar bipartite structure from factor graph for erasure codes

number of symbols δ introduced to the source symbols during transmission generates

a successful decoding τ succ [74], which is analogous to the LLR of the intermediate

vertices whose LLR Lνj→cj = 0 and its probability density function is a function of

the dirac delta function ∆j[75]. The receiver overhead can be expressed as a func-

tion of a finite number of the output codewords ξ = δ
k
. The complexity of decoding

2BIAWGN channel modeled as yj = xj + ej where xj = (−1)−2cj and channel estimate
L(cj) = 2yjSNR where SNR = 1

σ2
e

and σ is the variance of the distribution N (−1, σ2).

The channel estimate can be extended to represent the channel log likelihood ratio as follows

L(cj) = log
ρcj (0/yj)

ρcj (1/yj)
where ρcj is the probability density function as a function of the channel

output symbol
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is a function of τ succ and inversely proportional to each other. The source generator

matrix G relates the source vector ~D to the intermediate vector as
#»

C = G1.
#»

D where

G1 ∈ F k×n
qm while the intermediate generator matrix relates the intermediate vector

to the output vector as
#»

E = G2.
#»

C .

It can be seen that the distribution is Gaussian with mean 2SNR. Em-

ploying the sum product approach[76], the number of output symbols k is increased

at each iteration in order to recover the message. A problem arises when the sym-

bols from the output vertex are exhausted, the transmission is aborted. In order

to remedy the situation, a technique termed inactivation decoding[77] is employed

which deactivates the remaining intermediate vertices from the selected decoding

graphs which have not been processed on the condition that the maximum vertex

in the generator matrix with the highest degree is selected and in the process the

decoding operation continues. An increase in inactivation, leads to an increased

received bits and the received bits is equivalent to deleting the intermediate vertex

from the bipartite graph. In order to reduce the receiver’s overhead, the symbols

received must be used to generate linear systems whose generator matrix is full

rank. In edge deletion decoding[78], the edges and vertices of the inactivated inter-

mediate symbols are deleted to generate output vertices with a degree of one. Also,

the output vertices are employed in the decoding graph which requires the degree

distribution of the intermediate vertices from the unprocessed bipartite graph. The

resulting output symbol degree distribution is given as [79]

Ωd(x) =
d∑
i=1

Ωd,ix
i =

d∑
i=1

(
d−1∑
αk=0

Ωφ+αk

(
φ+ αkαk

)
(1− d)φdαk)xi = nΩ((1− d)x+ d)

where ψ is the set of random degrees αk. If the degree of the output vertex is one,

then the average degree of the vertex of the source symbol goes to infinity. The LLR

of the channel as the message moves from the source vertex νLPDC precoded by the

source code LDPC to the intermediate vertex νLT at iteration i is given as

Lνj→cj = 2tanh−1

(
tanh

(
L(c

(i)
j

2

)
(2.10)

∏
ν
′
LDPC 6=ν

′
LDPC

tanh

(
L(c

(i−1)
j

2

))
the LLR message of the first term can be expanded thus in relation to the mean of

45



the message[80]

E

[
tanh

(
L(c

(i)
j

2

)]
=

∫∞
−∞ tanh

u
2
e−

(u−µ)2

4µ du
√

4πµ
(2.11)

The LLR of the channel as the message moves from the vertex of the LT coder νLT

to the vertex of the LPDC coder νLDPC at iteration i is given as [80]

Lcj→νj = L(νi) +
∑

νLT 6=ν
′
LT

Lνj→cj (2.12)

where L(cj)
(i) and L(cj)

(i−1) are mutually and statistically independent. The mean

of the message at ith iteration of the Belief propagation based message passing is

given as [74]

µ(i+1) = α
d∑
i=1

ωdLνj→cj(µ
(i)) (2.13)

In sum product algorithm, to approach Shannon capacity in binary erasure channels

and converge the decoding error probability to zero, limk→∞Ω(x) = 0. This implies

that the decoded block length must approach infinity.

Density Evolution is applied to the intermediate and outer symbol ver-

tices in the bipartite graph to asymptotically model the density of messages as it

moves from the edge distribution to the vertex distribution which determines the

bound on the SNR. The BER is related to the code rate by the expression [75],

BER = 10 log10( 1
2σ2 ). 1

R
and the output vertices are selected uniformly at random.

In order to estimate marginals, Pr(X = x), the statistical distance between the pre-

code output vertex distribution and the marginal distribution should be minimized.

In other words,

∑
i=1

Ωix
i−1 =

1

zi

∑
tiΩ

′
(x) (2.14)

where ti is a variable in the marginal distribution and Ω
′
(x) is the partial belief state

of the precode output vertex.

The following distributions is defined as follows;

Π(x) =
∑

i Πix
i; the intermediate vertex degree distribution

ω(x) =
∑

i=1 ωix
i−1; output edge degree distribution

λ(x) =
∑

i=1 λix
i−1; precode intermediate nodes/intermediate edge degree distribu-

tion
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Ω(x) =
∑

i=1 Ωix
i−1; precode output vertex distribution. The distributions relate

to each other as follows [73]

ωi =
iΩi∑k
j=1 jΩj

λi =
iΠi∑n
j=1 jΠj

(2.15)

The Binomial distribution of the intermediate symbol encoding is given as

Π1 =

(
n

i

)(
Ω
′
(1)

k′

)i(
1− Ω

′

k′

)n−i
(2.16)

After each iteration, the LLR of the message converges with the distribution of the

intermediate symbol edges, that is LνjLT → cjLT =
∑

i=1 Ωix
i−1 in the bipartite

graph. This ensures that the message is decoded, given that BER ≤ LνjLT→cjLT .

The whole essence of the design is to mitigate the scenario where the recorded bits

are not enough to decode the message due to inactivation.

By employing density filtering[76] an update rule on the message of the vertex of

the source coder can be given as follows

LνjLT =
k∑
i=1

Ω
′
i

Ω
′
i + 1

+ z[
∑
d

‖1− LcjLT ‖(LνjLT )(i−1)]LνjLPDC =
k∑
i=1

λ
′
i

d(λ
′
j + 1)2

+

z[
∑
d

‖1− LcjLPDC‖(LνjLT )(i−1)]

where z is the E[tanh(
L(c

(i)
j )

2
)]

2.2.7 Finite design
By employing a function that maps the shaping matrix A to the Galois

field of q elements, the parent tree can be coloured through L
(t+1)
cj→νj . The func-

tion is defined as Γk : A → GF (q)(1 ≤ k ≤ d) and the colouring is defined as

ej ∈ E → Γk(ν
(t)
j ) 6= Γ(νtj)∀j, s, k(O ≤ j, s ≤ m− 1) and the width of the path the

edge follows $T (p) is expressed using a function [81]

$T (p) =
$L

‖$‖
.

1

degG.Np

.
∏

q∈Prefix

1

deg(q)− 1
(2.17)

where L = d |P |
2
e is the radius of the path. This bounds the number of vertices that

have degree 0 assuming the subgraph is a null set. Let the absolute value of the

eigenvalues of the parent tree be ∆ = |λ1| ≥ |λ2| ≥, . . . ,≥ |λd| and let the lower

bound on the eigenvalues be ≤ 2
√

∆− 1, resulting to [82]
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Nd=0 ≤
4(∆− 1)(1− b)n

b∆2
≤ 4n

b∆
(2.18)

At the ith coordinate of n dimensional lattice, the coding gain can be related to the

parent tree in the assumption that the subgraph can be projected to the subspace

[83] which implies that

φ$TP ∈F (Λ)

A$TP
= [

√
γ(Λ)γ(Λ)] (2.19)

This implies that the mapping that characterizes the weight function of the path of

the edges is a function of the coding gain and the area of the lattice subspace(resp.

Babai nearest plane)[31]. It can be shown that the optimal weight coefficients of

the code is equivalent to the capacity of the channel. By simplicity, denote the

signal-to-noise ratio by SNR. Then the optimal weight coefficients is defined [84] as

follows

wi−1 =
√

(1 + SNRo)i
SNRo
SNR

(2.20)

Squaring both sides, (26) becomes

w∗2i−1 = (1 + SNRo)
2iSNRo
SNR

= (1 + SNRo)(1 + SNRo)
SNRo
SNR

= (1 + SNRo + SNRo + S2
NRo)

SNRo
SNR

= (1 + 2SNRo + S2
NRo)

SNRo
SNR

= (1 + µo + S2
NRo)

SNRo
SNR

Let the signal-to-noise ratio be a function of an ideal[74] as follows SNRo = info(I∩
(µo

2α
)). Therefore, we have

w∗2i−1 = (1 + µo + S2
NRo)info(I ∩ (

µo
2α

)) (2.21)

In theory, the bound by fraction of output bits of degree 2 is given Ω2 ≥ β
2αµ

. then

w∗2i−1 = (1 + µo + S2
NRo)info(I ∩ Ωi) (2.22)

Lemma 3. Given an arbitrary integer η ∈ R and as n→∞, the degree is scaled by

a factor 1 + 1.08
n

Proof. For a constant expressed as δ =
∑∞

n=3(dn − 1
n
)∀n, dn = deg(νn) there exist∑

δn = log x + (γ + δ − 3
2
) + O( 1

x
). It can be seen that for values of n ≤ m where
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m ∈ [ 0, 1] there is η ∈
[

(m−1)(m+1)
(m−2)

, 1

]
. This means that for an edge e of the

parent tree, wn = dn = be(n − 2)! − η
n
c where en =

∑n
k=0

1
gn

and gn is the girth

of the vertex ν. Given that
∑∞

k=1

∏k
j=1

1
n+j

< 1
n!

∑∞
k=1

1
(n+k)k

and for a depth of

2 of the subgraph, this reduces to
∑∞

k=1

∏
1

n+2
< dn < 1

n−2
. From theorem [85](

n

e

)n−1√
2π
n

(1 + 1.08
n

) < wn <

(
n

e

)n−1√
2π
n

(1 + 1.28
n

) since n→∞, the width path

will converge to the degree.

2.2.8 Information Set decoding from Optimization
To find the lifted codeword belonging to the transformed matrix code,

an optimization based approach can be deciphered where the objective function

|x′|R = w is minimized such that H
′
x
′T = 0 holds, where H

′
is the parity check

matrix of a lifted code C
′
. Given the error vector that lifts codeword X to X

′
, the

decoding problem can be redefined as; to find a codeword x > 0 that minimizes an

optimization problem. In other words, the objective is to find a codeword x ∈ F n
q

such that the function 〈w, x〉 is minimized with respect to H ∈ F n×m
q such that

HTx = s is satisfied. Such a codeword x is a solution to the problem. Assuming

the syndrome is also lifted by an error vector e then there exist s = HeT , where

H ∈ F n×m
q is a parity check matrix and e ∈ G where G ∈ F k×m

qm is a generator

matrix. X a codeword such that HTx = HeT can be deduced which means that if

HeT = 0, then, X can be found. It can also be seen that this satisfies the maximal

decoding problem where wt(xG + s) ≤ w where w is the weight function of the

edges..

Lemma 4. Let E be a random subspace and F a subspace where F ⊂ Fqm then for

any set of subspaces containing the restricted positions of the codeword x, there is

supp(x) ⊂ F =
r∑
j=1

xj (2.23)

where supp(x) = E

Proof. The subspace E is equivalent to the set of coordinates of the codeword which

is set in the subspace F over Fqm . Let xj be a solution to the problem F (yj =

F (
∑k

j=1 xjgij + xj) = 0. This is true by deduction.

The following proposition can be expounded as, let x be such that the

rank(C) = r where x ∈ C, let βj be the jth coordinate of the basis βi of the space
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F ⊂ Fqm . Then the following holds dimφ(β) = dimF−dimE = dimF−
∑r

j=1 βj = r.

Let w1, w
′
2 be the dimensions of the space F and E where w1 = w−1

2 , then by lin-

earity w1φ(w2) = w−1
2 (FqmE) ≤ qm−1

q−1
.

The linear code can be transformed with the augmented LRPC code H
′

which is a

function of the parity check matrix H of the linear matrix code. The codeword x

is decoded optimally for a minimum ||x|| where ||x|| is the Euclidean norm of the

codeword and ||y−x′|| ≤ ∞. The objective function ||x|| is minimized with respect

to the augmented LRPC code H
′
such that H

′
yT ( mod q) is satisfied where y0−y =

mod q gives a lifted codeword x
′

and the supp(x
′
) ⊂ V is a random subspace such

that x − x′ = mod q. This implies that x mod q = x
′
. If xj =

∑r
j=1 αijVj∀j ∈

[ 1, n] and αij ∈ Fqm then degFq(α(xi), . . . α(xn)(w−xi) ≤ 2r+k [theorem15] [86]].

This results to (x1, . . . , V1, . . . V2r+k). For an injective isomorphism
φ : Fm

q 7→ F n
q

x 7→ γn
where γn ∈ E and supp(γn) ⊂ V then dim(φ) = dim(F )− dim(V ) = γ− (2r+ k) =

k − r. A random choice of the basis is given as follows Vj ∈ {1, . . . , n} and

Vj ∈ {n+ 1, . . . , n} where
∑n

i=1 αiV (yi − xi) = 0. The syndrome decoding problem

becomes

H
′
xT =

∑n
l=1

∑k
j=1 αijH

′

lVj = 0. This implies that

Prob(V ⊂ F ) =

[
r − (n+ k)

w − n

]
q[

m− n
w − n

]
q

= q(w−n)(m−r) (2.24)

For a solution to be found, r− (n+ k)(w−n) +m(2r+ k) = m(n− k) which results

in a complexity of O(n+ k)3m3q(w−n)

⌊(
m
k−1

)
−1

⌋
. From the injective isomorphism

φ : Fm
q 7→ F n

q , employing multivariate polynomial perspective, it follows from lemma

5,

Lemma 5. Let X ∈ C generated by a Generator matrix with parity check matrix H

and let h1, . . . , hn be the coordinates of H, then X =
∑n

i=1 φXjhij = Jx where Jx is

a function of x where x = xiβi, . . . xnβ and φ : Fq 7→ Fqm.

Proof. if there exist a solution xj to the multivariate polynomial then
∑n

i=1 φF (xj) =

0 satisfied resulting to
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n∑
i=1

αiF (yj − xj) =
n∑
i=1

αi(F (yjhij)− Jx(hij)

= F (yj

n∑
i=1

φihij)− J(
n∑
i=1

φihij) = F (yj(xi)− J(xi)

= F (yj)(xi)− F (xi) + J(xi).

By linearity principle F (yj)(xi) + F (αxi + βxi). Since F (xi) = 0 which reduces to

F (αxi + βxi) = αFxi + βJxi

2.3 Multivariate polynomials
Multivariate polynomial and its irreducibility has been studied in litera-

ture [87]. This irreducible property defines its security against quantum cryptanal-

ysis thereby making it a good candidate for designing Post quantum cryptosystems.

The security of Multivariate cryptography is based on the hardness of solving ran-

dom nonlinear multivariate quadratic equations over finite fields. An instance of

these equations is the Hidden Field equations(HFE). Due to its weakness, variants

of the HFE have been developed which employ vinegar equations [88]. It has been

recommended that the finite field should be small, a finite field of characteristic 2

GF(2) is appropriate. However, this comes at an expense in public key size which

arises from large design parameters. It has been discovered that it is easier to

hide the structure of an injective mapping into a large codomain than to hide the

structure of a bijective map into a codomain of the same size as the domain [40].

Key-recovery based on eliminating redundant polynomials were carried out with

success in breaking a multivariate scheme of 80-bit security level, albeit at increased

computational overhead. [89].

In the hybrid approach [24] involving exhaustive search and Gröbner ba-

sis, small k variables are chosen and they are evaluated based on values chosen at

random, in order to reduce the system to a zero dimensional set of multivariate

equations. The XL algorithm [90] reduces the system to a linear system by mul-

tiplying the monomials up to an algebraic degree D − 2. If the degree is large,

then a probable solution can be found. For a degree that is less than D − 2 the

system is reduced by the Crossbred algorithm [91] to a linear system in which the

first k variables has a degree D. The k variables generate k equations in which

degk > 1 are removed and those whose degk ≤ 1 are stored. To solve the resulting
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linear system, the remaining n − k variables is solved recursively using Gaussian

elimination. This is prior to the n− k variables being inserted using the Fast Eval-

uation approach. In the Unbalanced vinegar approach [88] approach, the variables

are divided into fixed variables and the variables for determination. If the resulting

linear system has most coefficients that is equal to zero then the system is solv-

able. For k columns of the linear system, m equations of the form
∑m

i=1 βijy
2
i +

yiLi,j(ym+1, . . . , ym+v)+, . . .+ymLmj(ym+1, . . . , ym+v)+Qj(ym+1, . . . , ym+v) after the

first column of the linear system are fixed with random values. This method is inef-

ficient when compared with Grover’s search. To determine a bound, a set of solution

such that the linear system is a member is usually searched and if a permutation de-

fined as

{
y1, . . . ym 7→ y1, . . . ym

y1, . . . yn 7→ F
is found, then the linear equations becomes zero [92].

Mapping the variables for insertion to variables for determination would lead to gen-

eration of quadratic terms. An instance of the Fast Evaluation technique is the Gray

code enumeration where a function f(x1, . . . , xn) with coefficients b and b
′ ∈ F n

2 that

differ at their ith columns are evaluated. For the expression f(b) = f(b
′
) + δf

δx
(a
′
)

to be satisfied, O(1) machine instructions would be executed. The goal is to reduce
δf
δx

(a
′
) to a constant. Gröbner basis computation generally has a tight exponential

bound as the degree of the polynomial increases. In homotopy continuation compu-

tation, initial values of the root are not employed which guarantees a solution if the

solution is close to the final approximated solution. However, they are advantageous

in giving global solutions which are usually complex. Infact, 2n initial values are

usually considered. Also, it usually fails when the parameter t is varied between

0 and 1, in trying to move from the starting point to the solution. However, gra-

dient descent proposed in Chapter 5 as a sparse solver is computational tractable.

To the best of our knowledge, numerical methods like the gradient descent method

proposed have not been studied extensively as an approach to cryptanalyze cryp-

tosystem based on multivariate polynomials even when such polynomials have been

reduced to its ideal. The basis of the polynomial is transformed to an unconstrained

optimization problem that can be solved iteratively when a starting value close to

the solution is appropriately guessed.

2.3.1 Medium Field multivariate equation
In this section, a core map would be recreated. The original core map

was created from the approach by Wang [93] called Medium Field equations. In

Wang’s core map, the input variables are uniformly distributed and used to con-
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struct the constituent matrices. However, this approach makes the system vul-

nerable to attacks. To solve this, the variables would be scrambled. This mea-

sure diffuses the core map as much as possible. The core map from the first in-

stance is defined as F : F 12
q 7→ F 16

q where the map is made up of 12 variables

that would form 16 output equations. Let X1, . . . , X16 = φ−1
1 ◦ S(x1, . . . , x16r)

and Y1, . . . , Y22 = φ ◦ T (y1, . . . , y22r). Let X1, . . . , X12 = φ−1 ◦ S(x1, . . . , x12t) and

Y1, . . . , Y16 = φ ◦ T−1(y1, . . . , y16t) where φ−1 : F 12
q 7→ F 12t

q and φ : F 16
q 7→ F 16t

q . A

2× 2 matrices N1, N2 and N3 is constructed as

N1 =

(
X1 X5

X7 X11

)
, N2 =

(
X2 X6

X8 X12

)
, N3 =

(
X3 X4

X10 X9

)
(2.25)

If the output matrices is constructed as A1 = N1N2, A2 = N2N3 and A3 = N1N3,

this results to

A1 =

(
Y5 Y6

Y7 Y8

)
, A2 =

(
Y9 Y10

Y11 Y12

)
, A3 =

(
Y13 X14

X15 X16

)
(2.26)

Expanding the matrices further, becomes

A1 =

[
X1X2 +X5X8 X5X6 +X11X12

X7X2 +X7X8 X11X6 +X11X12

]
(2.27)

A2 =

[
X2X3 +X6X10 X2X4 +X6X9

X8X3 +X12X10 X8X4 +X12X9

]

A3 =

[
X1X3 +X5X10 X1X4 +X5X9

X7X3 +X7X10 X11X4 +X11X9

]

The variables Y1, Y2, Y3 and Y4 is now expressed as follows

Y1 = X1 +X5X8 +X6X7 +Q1

Y2 = X2 +X9X12 +X10X11 +Q2

Y3 = X3 +X1X4 +X2X3 +Q3

Y4 = X1X5 +X2X5X7 +X3X6X7 +Q4

where Q1, Q2, Q3 and Q4 are maps. The expression for the remaining variables from

(15)can be found as follows
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Y5 = X1X2 +X5X8

Y6 = X5X6 +X11X12

Y7 = X7X2 +X7X8

Y8 = X11X6 +X11X12

Y9 = X2X3 +X6X10

Y10 = X2X4 +X6X9

Y11 = X8X3 +X12X10

Y12 = X8X4 +X12X9

Y13 = X1X3 +X5X10

Y14 = X1X4 +X5X9

Y15 = X7X3 +X7X10

Y16 = X11X4 +X11X9

(2.28)

which satisfies the following condition
det(A1) = det(N1).det(N2)

det(A1) = det(N1).det(N3)

det(A3) = det(N1).det(N3)

(2.29)

2.3.2 Zuang-Zi HFE(ZHFE)
In the ZHFE scheme [94] constructed from two HFEs, the affine trans-

formation are constructed as S : F n
q 7→ F n

q and T : F 2n
q 7→ F 2n

q and the public key

becomes Pk = T ◦(φ×φ)◦(F1, F2)◦φ−1◦S : F n
q 7→ F 2n

q while the private key param-

eters are (Ψ, S, T,ΨD). To encrypt the plaintext x ∈ F n
q and generate a ciphertext

y ∈ F − q2n, (y1, . . . , y2n) = Pk(x1, . . . , xn) is computed. If four polynomials were

chosen at random Q11, Q12, Q21, Q22 where Qkl(Y ) =
∑n−1

i=0 υkl,iY
qi , (1 ≤ k, l ≤ 2),

the map results to

Ψ(X, f1, fm) = X.[ L11(F1) + L12(F2] +Xq[ L21(F1) + L22(F2)]

The coefficients of f1, fm satisfy the conditions degΨ(X, f1(x1), fm(x1 ≤ D) where
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D is the degree of regularity. Furthermore, the map parameterized at D is defined

as

ΨD(X) = Ψ(X,F1(X), F2(X)) = (2.30)∑
0≤i≤1

∑
qi+qj+qk≤D

αIIijkX
qi+qj+qk +

∑
qi+qj≤D

βIIij X
qi+qj+

∑
qi≤D

γIIi X
qi (2.31)

Further deduction, shows that it is hard to solve the following equations

f1(X) = Y1 (2.32)

fm(X) = Y2

given Y1 and Y2 ∈ F n
q . However to solve for X with complexity O(nD2logqD +D3)

then the following condition must be satisfied

ΨD(X) = Ψ(X, Y1, Y2) = 0 (2.33)

In order to decrypt the plaintext, an inverse isomorphism is constructed as (x1, . . . , x2n)

= T−1(y). Computing (Y1, Y2) = (φ−1(x1, . . . , xn), φ−1(xn+1, . . . , x2n)) and substi-

tuting in Equation 2.33 results to

ΨD(X) = T−1(y).(φ−1(x1, . . . , xn), φ−1(xn+1, . . . , x2n)) (2.34)

This can be solved with an efficient algorithm. Finally, S−1(φ(X)) is computed to

check whether it is a solution to y = Pk(x) and each solution derived for x ∈ Z

reduces the set of non- solutions.
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2.3.3 Tame Maps
Tame multivariate schemes are constructed with Triangular Maps [95] of

the form

Γ(x) =


x1

x2 + γ1(x1)
...

xn + γn−1(x1, . . . , xn−1)

 (2.35)

where γ1, . . . , γn−1 are random polynomials. Since a triangular map is a bijective

map then Γ(x) = y has a solution which is gotten by mathematical induction. A

triangular perturbation can be constructed by the addition of triangular maps as

follows

Γ(x) = Γ(x1, x2) =


xn+1 + γ1(x1)

xn+2 + γ2(x1, xn+1)
...

xn+s + γs(x1, . . . , xn+s−1)

 (2.36)

The core map becomes F
′
(x) = F (x1) + B.Γ(x1, x2) where B is a randomly cho-

sen matrix. The triangular perturbation is a surjective map which means that

Γ(x1, x2) = y has a solution which is computed through mathematical induction.

2.3.4 Construction
In this section the encryption process used in Multivariate polynomial cryp-

tography is outlined. It involves three processes; Key generation, Encryption and

Decryption. The key generation process is shown in Figure 2.2.

Key Generation Let Fq be a finite field with q elements and Fqd be a degree d

extension field over Fq. A vector space isomorphism is defined as φ : Fqd 7→ Fqd . Let

k, l, v and n be integers and let u = {u1, . . . , uk}. A degree n irreducible polynomial

is chosen where d > n, g(X) ∈ F [X] and Fqd = Fq[X] /〈g(X)〉 . The public identity

idi = H(Pi) is computed using a hash function H. Let n = d+ l+ v. Two invertible

affine transformations S : F n
q 7→ F n

q and T : F n
q are chosen. An isomorphic map is

defined as φ(u1 + u2x+, . . . , unx
n−1) =

∑n
i=1 xiX

i−1. An n variable quadratic poly-

nomial public key is constructed as P = T ◦φ◦F ◦φ−1◦S(x1, . . . , xn). A core map is

defined as follows Pk(x) =
∑n−1

i=0 α
(k)
i xixj+

∑n−2
i=0

∑n−1
j=i+1 β

(k)
ij xixj+

∑n−1
i=0 γ

(k)
i xi+δ

(k)

where α
(k)
i , β

(k)
ij , γ

(k)
i , δ(k) are chosen at random over Fq. Pk is a HFE map which is
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Figure 2.3: Key Generation

invertible. The private key are two invertible affine transformations S and T , scalars

α1, . . . , α2n, β1, . . . , β2n and an index i. Finally two mappings are defined; the pro-

jection onto the finite field of d coordinates π : F k+l
q 7→ F d

q and the linear embedding

τ : F n+v
q 7→ F d

q . 
x1

...

xn

→

S1,1 . . . S1,n

...
. . .

...

Sn,1 . . . Sn,n

→

∑
s1ixi
...∑
snixi

→ (2.37)


F1,1 . . . F1,n

...
. . .

...

Fn,1 . . . Fn,n

→

f1(
∑
x1, . . . ,

∑
xi)

...

fm(
∑
xi, . . . ,

∑
xi)

→

T1,1 . . . T1,n

...
. . .

...

Tn,1 . . . Tn,n

→

∑
fj(
∑
x1, . . . ,

∑
xi)

...∑
fj(
∑
xi, . . . ,

∑
xi)


Encryption Given a plaintext m = (m1, . . . ,mn) ∈ F n, to generate a ciphertext

CT = (c1, . . . , cn) ∈ Fm, the core map Pk(xi) is used to mask the plaintext as

CT = Pk(m).

Decryption Given a ciphertext CT = (C1, . . . , Cn) where CT ∈ Fm. By employing

an inverse affine transformation S−1, y = (y1, . . . , yn) = S−1(CT ) is computed.

Also, Y = φ−1(y1, . . . , yn) ∈ F n
q is computed. Consequently, an efficient algorithm is

applied to compute solutions X
′

and X
′′

for F (X
′
) = Y and F (X

′′
) = Y

′
. For each

solution x = φ(x1, . . . , xn) ∈ F n
q is computed. Finally, the ciphertext is decrypted

by computing (m1, . . .mn) = T−1(x).

2.3.5 Solvability using Quantum Approximations
An important process in cryptosystems especially quantum safe algorithms

that involves irreducible polynomials is the effectiveness of finding solutions to the
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polynomials in order to extract the original message. In this section, quantum

approximation methods used in reducing the polynomial to a form where it can be

solved iteratively to get the root of equations is discussed.

2.3.5.1 Grover’s Search

The Grover’s search is employed to generate M items of size N space

in which the search problem is defined by a factor h : {0, 1}n → {0, 1} such that

h(x) = 1 [38]. In Reversible XL algorithm [96], the algorithm scans through 2n−1qf

of possible values of the n variables of a polynomial f before the Reversible XL

process is applied. If there is a solution to the linear system, the search method

returns random solutions to choose from. The time complexity of the process is

given as qf/2+O(1) quantum computations of the algorithm. This search method can

be employed to quantize a function F and generate a variable a2 ∈ F k
2 such that

F cons(a2 = 1) where a2 = (an−b+1, . . . , an) in the ClassicalBooleanSolve algorithm

[97]. Search is faster than the brute force method, if the time required holds for

tver > tSAT2−(n−g). Consequently, F cons(a2) = (f1(x1, . . . , xn, an−b+1, . . . , an), . . . ,

fm(x1, . . . , xn, an−b+1, . . . , an). This means that the search is done on the last b vari-

ables spreading in an−b+1, . . . an all mapping into the last b properties of a solution.

By substituting f
(i)
2 +f

(i
3 with these variables, m.2b linear equations can be generated

in the pre-processing phase which defines the search procedure. It also evaluates the

exhaustive search algorithm and improves classical complexity in the process. The

total cost equivalent to the concatenation of the query complexity together with

quantum circuit complexity and the diffusion step as given in Equation(2.38) [98]

π

4
.

√
N

M
.(Quantumcircuitcost) + (Diffusionstepcost) (2.38)

Furthermore, the quantum circuit construction employs NOT gates and (m + 1)-

bit Toffoli gates. Also, the number of classical queries is given as O(N/M). The

Grover’s search queries the quantum circuit and then carries out the diffusion process

on the n-qubits. Thereby inverting the mean of the amplitude of the M items being

searched in a space size of N . By iterating a single search procedure, the number

of search processes is reduced to its square root [98]. The Quantum circuit is also

called the quantum oracle or the blackbox.

2.3.5.2 Macaulay Matrices

To determine the consistency of Macaulay Matrices, sparse system solvers

are employed due to sparse nature of the matrices. The algorithm outputs a cer-
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tificate of inconsistency u when given a random matrix A ∈ F n
q and a vector b

to give a solution to the linear system Ax = b. This algorithm performs matrix-

vector multiplications with complexity of O(n) and other operations with complex-

ity of O(n2 log n log n log n) [38]. For homogeneous polynomials, the columns of the

Macaulay matrix are indexed by the coordinates of the polynomial by decreasing

monomial order. For non-homogeneous polynomials, the columns are indexed by

the terms of the function over the finite field of q element while the reverse is the

case for the rows. This is expounded by the lemma [38].

Lemma 6. Let F = (f1, . . . , fm) ∈ Fq[ x1, . . . , xn] and for 1 < d < n
2

then CMAC <

1− x
1− 2x

(
n

d

)
, rMAC < m.

x2

(1− 2x)(1− x)

(
n

d

)
, SMAC < mn2.

x2

(1− 2x)(1− x)

(
n

d

)
where x =

d

n
and CMAC is the number of columns of the Macaulay matrices, rMAC

is the number of rows of the Macaulay matrices and SMAC is the number of non zero

entries of the Macaulay matrices.

The XL algorithm checks the consistency of the Macaulay matrices by try-

ing to determine whether vector b is a non-zero linear combination of the rows of

these Macaulay matrices up to degree 2 and these reduces to an equation that can

be solved recursively with a fast root finding algorithm [99]. The random solve algo-

rithm employs a quantum circuit to determine the consistency of Macaulay matrix.

It produces a solution x = −
∑n

i=1
f [ i]

f [ o]}Airbr
where br = b+Aw, w a random vector,

r = deg(f) and a Boolean Hilbert series Sm,n. This series gives a 1 if a solution is

found and 0 if otherwise. The quantum circuit is constructed as

|a11〉 . . . |ann〉|f [ 0]−̂1〉|f [ 1] . . . |f [ n] 〉|r〉w1〉 . . .

|wn〉|b1〉 . . . |bn〉|0〉 . . . |0〉 → |a11〉 . . . |ann〉|f [ 0] −1〉

f [ 1] 〉 . . . |f [ n] 〉|r〉|w1〉 . . . |wn|b1〉 . . . |bn〉|0〉 . . . |0

〉|b1〉 . . . |b
′

1〉x1〉 . . . |xn〉|SA〉

2.3.5.3 Quantum Circuit

Data stored in a quantum computer is approximated in qubits and the stor-

age register is a function of the computational bases states |x〉 which is defined as [98]

|Ψ〉 =
∑

x∈{0,1}n
αx|x〉
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where αx ∈ C is the amplitude. The probability of measuring the state is a function

of the square of the amplitude such that

∑
x∈{0,1}n

|αx|2 = 1 (2.39)

For a quantum circuit constructed from a Boolean function h : {0, 1} → {0, 1} with

input n bits, output m bits and working memory w bits, the transformation is given

as

h|x〉|y〉|)〉w 7→ |x〉|y ⊕ h(x)〉|g(x)〉

Chapter Summary
It can be concluded that the geometric properties of the lattice was rein-

forced using the householder transformation. Furthermore, the LLL approach which

carries out unimodular transformation of the lattice basis was presented. Ideal lat-

tices are useful in decreasing parameters due to their ring structure and secured due

to irreducibility. Master public key sizes are exponential on the input of the security

parameter. Triangularization can also be employed to construct lattice basis. Lat-

tice basis are spanned by linearly independent vectors. The vectors are orthogonal

to its rows. The vector from the subset sum creates a distribution that is statistical

distant to a theoretical Gaussian distribution with negligible value. This error vector

scrambles the lattice basis thereby obfuscating it from a quantum computer. The

smoothing parameter forms a lower bound on the Gaussian parameter that defines

the Gaussian distribution. This error vector is a basis for the Learning with error

assumption and solving this instance is a prelude for a quantum computer to solve

the shortest vector problem. By employing a series of swaps, the LLL algorithm

reduces the Euclidean distance of the vectors to less than half of its norm. The

swapping depends on the size of the index set. Basis delegation can be used to con-

struct a lattice basis using a reduced basis and are categorized into SampleBasisLeft

and SampleBasisRight. In the Key generation step, a discrete Gaussian sampler is

used to generate short vectors for encryption. The security of a lattice construc-

tion is modelled as a set of interaction between the polynomial bounded adversary

and a challenger under the IND-CPA attack. The game is aborted if both entities

have equal identities. Furthermore, the error vector can increase the probability of

decryption if is too large, so therefore there should be a range. Algebraic attack
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on codes in the Hamming metric exposes the one-way function used in designing

the system. By decoding low weight codewords given a parity check matrix and a

syndrome, a rank, metric based cryptosystem can be broken. By multiplying two

permutation matrices, a codeword can be lifted to be a function of a subspace and

by solving overdetermined equations, a bound on the rank weight can be computed.

The security of Multivariate schemes is based on the hardness of solving non linear

equations over finite fields. By multiplying the monomials up to a certain degree

defined by the degree of regularity, the system can be reduced to its ideal thereby

making it a linear system. Examples of algorithms that reduce the system are the

XL and Crossbred algorithm. A map can be bijective or injective and such maps

are used in hiding the structure of the core map from interpolation by an adversary.

For homogeneous polynomials, the columns of the Macaulay matrix are indexed to

enable solvability of the linear systems containing ideals.
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Chapter 3

Shortest vector problem: Solution

using Dimensionality Mapping

3.1 Introduction
Lattice based cryptography has been the forefront of schemes that are

designed to withstand attacks as a result of quantum computation [100]. The se-

curity of lattice cryptography is based on approximating vectors that lie in an n-

dimensional space of discrete subgroups which has been proven hard in worst case

scenarios as proposed by [59]. The public key size is a quadratic function of the se-

curity parameter where security is in the order of 512bits. This large key size makes

it unpractical to employ lattice cryptography for energy constrained devices. This

has led to the development of ideal lattices which are based on worst case scenar-

ios which are equivalent to the hardness of average case instances over polynomial

rings [101]. Many lattice based construction require a Gaussian sampling algorithm

which is efficient and fast to sample lattice points given a basis and a vector. The

vector is distributed with a centre c and a standard deviation that is close to the

centre. It is possible to produce the vector without disclosing information about

the basis. This reinforces its security proof in the midst of a quantum adversary. A

solution to the shortest vector problem has been proposed using Klein’s approach

[30] which is a variant of Babai’s nearest plane algorithm [31]. The complexity of

Klein’s approach was given as Õ(n3log2B) while that of Babai’s algorithm, is given

as O(n4log2B), where n is the lattice dimension, and B is the size of lattice ba-

sis made up of Gram-Schmidt vectors [102]. This complexity is as a result of not

employing fast integer arithmetic but longer integer arithmetic which is based on
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Gram-Schmidt orthogonalization. The drawback of floating point arithmetic is that

floating point arithmetic require pre-computed tables which increase computation

time[103]. The complexity of Gaussian sampling can also be attributed to the stan-

dard deviation of the distribution bounded by σ ≥ ω(
√
logn).max1≤i≤n||B|| [27].

Markov chain based Monte Carlo algorithm has been proposed for sampling. This

employs Markov chain constructed from Gibbs sampling algorithm [27] to gener-

ate samples from previous samples. Ducas suggested that to improve algorithmic

complexity the Gram-Schmidt basis should pre-computed and stored before the sam-

pling process which will lead to O(n2) operations [104]. It is usual that a system

samples from a distribution statistically close to the theoretical Gaussian distribu-

tion to within 2100 by employing floating point operations that have precision of at

least 100 bits[32]. Using standard (53 bit) double precision floating point numbers

is efficient as compared to the use of multi-precision arithmetic numbers, but not

up to 80bit or 100bit security levels.

Gaussian sampling is employed in lattice cryptography as an approach that

solves the Shortest Vector problem (SVP). The shortest vector problem which states

that finding a short vector in a given secret basis that has the same Euclidean norm

as the shortest vector in a lattice is hard. This is because a basis is defined by the

norm of its longest vector rather than the norm of the shortest vector. A solution to

this problem is done by providing the best approximation to error vectors modulo

lattice Z(Learning with errors) that lie in a uniform distribution when given a normal

distribution with narrow width as shown in Figure 3.1.

This uniform distribution belongs to the Euclidean space Rn that is un-

bounded. A lattice is an n- dimensional space that is isomorphic to an Euclidean

space and also its discrete subgroup. The basis lies in the lattice while the coefficient

of the basis lies in the Euclidean space. The polynomial time adversary seeks the

best approximation at different values of the standard deviation of the distribution.

If the vectors are sampled accurately, a computational bounded adversary would

be incapacitated to distinguish a simulated distribution of the Ciphertext from a

uniform distribution. Consequently, intractability in distinguishing a Ciphertext

from a plaintext when given a fixed message in a Chosen Ciphertext attack game.

The Gaussian sampling algorithm involves an efficient reduction algorithm to re-

duce the lattice basis before a Monte Carlo based sampling method is employed to

generate the vectors. The complexity of the lattice reduction algorithm depends
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Figure 3.1: Approximation from normal to uniform with µ = 10, σ = 1

on the magnitude of the uniform error vectors. The vectors have large Euclidean

norms to makes it difficult for computationally bounded adversary to approximate

an exponentially bounded uniform distribution on the input of a security parameter.

This Euclidean norms are increased by raising the standard deviation of the distri-

bution which transfers the probability density to the vectors which is discretized

[105]. To limit decryption errors, the inner product term between the secret basis

and the uniform error vectors would be bounded by a negligible n for some n. The

angle of separation of the vectors is sampled from an interval [ −1/2, . . . 0, . . . 2/3]

which satisfies condition of accurate approximation. This implies that vectors must

be orthogonal to each other in space in order to converge exponentially to uni-

form distribution when given a normal distribution. In order to employ a ‘cutting’

mechanism to remove portions of the tail of the normal distribution, the Euclidean

norm of the sampled vectors should be greater than the standard deviation of the

distribution. If the distribution is uniform, the probability mass would be constant

thereby distributing the norm evenly among the vectors. The tail of the distribution

is the point where the discrete probability density magnitude is negligible while the

continuous probability mass is infinite. It is intractable sampling at this point and

is bounded by |x| < βσ. A smoothing parameter is parsed to remove this point and

make cryptanalysis possible. The metrics of statistical indistinguishability described

in this chapter are given as the statistical distance and the floating point precision

defines the accuracy of sampling. Given the statistical distance, the polynomial
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time algorithm cannot distinguish the simulated distribution from the perfect dis-

tribution by a probability bounded by the statistical distance. The precision defines

the extent by which, given an adaptive adversary query, an approximation to the

uniform distribution in polynomial time can be made. This is proportional to the

inverse of the security parameter 2λ. This implies that as the security increases

in magnitude, the database of adversarial queries drops exponentially. In another

variant of the Learning with errors(Ring-LWE), the coefficient of the error vectors

are orthogonal to the canonical embedding by a factor. The significance of precision

as a function of the security parameter has been studied in literature[106]. The

lattice reduction reduces the basis to its Gram-Schmidt orthogonalization by using

the LLL algorithm [7] which has the objective of constructing a basis with short

Euclidean norms and orthonormal vectors. The LLL reduction has some drawbacks

which has been mentioned in literature. They employ integers which have enormous

precision and floating point arithmetic numbers which consume storage [107]. It

also suffers from complexity and lack of constant time implementation [108] and

finally difficulty in generating samples because the canonical embedding is made up

of non-integer vectors [109]. In this chapter, a solution to this problem is proposed

by employing Dimensionality mapping in which an embedding is constructed that

transforms the basis from a point of high dimension to low dimension. Therefore, in

the sampler, the dimension of the basis is exploited and not its orthogonality. This

will offer tighter security proof and approximation.

3.1.1 Review of Works on Gaussian Sampling
Floating point arithmetic(FPA) approach to speed up Klein’s algorithm

involves producing quasi linear output which is a function of the size of input basis.

This is usually small[110] when the ring is set at R = Xn ± 1. This technique em-

ploys high and low precision FPA. The algorithm ran in O(n2) for optimized Klein’s

algorithm and O(n) for Peikert’s offline algorithm. The complexity was as a result

of the higher precision[111]. An algorithm to compute the Gram-Schmidt orthog-

onalization basis using (n2) arithmetic operations was developed. It was combined

with Klein/GPV [112] sampling algorithm in which there is no pre-computation of

the basis. However, the algorithm is slow because of the additional time in com-

puting the basis and also sampling process. Furthermore, it was suggested that for

the sampled distribution of vectors to be close statistically to the discrete Gaussian

distribution, the precision of the Gram-Schmidt basis should be more than q bits.
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However, it should not be too high to avoid numerical instability [113] . A practical

Gaussian sampler that employed the cumulative distribution table algorithm was

developed. In addition, an approach was proposed to reduce computation of the

CDT by pre-computing for small number of centres in O(n3) which are not known

prior to sampling. Furthermore, employing a lazy technique to compute the cumu-

lative distribution function in double precision FPA when it is required. However,

the proposed technique is not constant time making it impracticable[28][103]. How-

ever, by avoiding data dependent branching this problem can be solved. The output

samples was expressed as a Boolean function of the input random bits. This is in

order to generate them in constant time using bit slicing technique. The results were

implemented using AVX vector software[114]. Metropolis-Hastings Klein algorithm

has been proposed where the Markov chain is statistically close to the desired Gaus-

sian distribution[27]. An efficient Hardware-based Cumulative distribution function

inversion sampler was designed which samples with high precision and tail cut pa-

rameter. The statistical distance of the distribution was given as 2−90. A small look

up table was used to carry out faster operation. 9.44 random bits and 2.28 clock

cycles were used to generate one sample [115]. A trapdoor sampling algorithm was

implemented based on cyclotomic rings modulo prime using double precision float-

ing point arithmetic [116]. The sampling procedure was categorized into an offline

phase where the standard deviation and the centre of the distribution are not known

and an online phase which was carried out in constant time[117].

In practice, sampling from discrete Gaussian distribution consumes more

than 50% of the running time of a signature generation algorithm. Therefore, there is

need to develop techniques to sample from discrete Gaussian distribution accurately

and efficiently. Klein suggested a Gaussian parameter σ ≥ max1≤i≤n‖b̃‖ω(
√

log n)

for his randomized version of Babai’s nearest plane algorithm which samples from

1-dimensional Gaussian distribution while they proposed a Gaussian parameter

σ ≤ max1≤i≤n‖b̃‖ω(
√

log n) [27] The target distribution approximates to a uni-

form random vector x ∈ Z, 0 ≤ x < 1 by finding the shortest vector i ∈ R, i ≥ 0

that is sampled from the interval
∑x
i=−∞Dσ,c(i)∑x
i=−∞Dσ,c(∞)

≤ x <
∑x
i=−∞Dσ,c(i+1)∑x
i=−∞Dσ,c(∞)

. The simu-

lated distribution approximates to a uniform vector j ∈ Z, 0 ≤ j < 2λ with high

precision λ by finding the shortest vector i ∈ R that is sampled from the interval∑x
i=−∞Dσ,c(i)∑x
i=−∞Dσ,c(∞)

≤ 2−λj <
∑x
i=−∞Dσ,c(i+1)∑x
i=−∞Dσ,c(∞)

. Furthermore for accuracy, the vectors must

be sampled at this interval 2−λj ≤
∑x
i=−∞Dσ,c(i)∑x
i=−∞Dσ,c(∞)

≤ 2−λ(j + 1)[106] .
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3.1.2 Contribution
This chapter proposes to reduce the basis using dimensionality mapping

where the problem of reducing the norm of the basis vectors is considered as an

optimization problem. In high dimensionality, approximation to the shortest vector

problem is intractable and previous approaches on reduction only give a square

root of the approximation[118]. Furthermore, there is reported loss of orthogonality

during the reduction process[119] and at high dimensionality the deviation between

the basis and an identity matrix increases[120]. This thesis solves the problem by

constructing a low dimensional space of points B̃ and an affine transformation which

is assumed to be rounded up integer belonging to a low dimensional set of integers

Zd. Then, an optimization problem is formulated which defines the shortest vector

as a function of the Frobenius norm which would be the extended to the norm of

the constituent vectors that make up the basis. The variants of Klein and Babai

is extended by showing that the next iterate of the vectors would be an orthogonal

function of the reduced center of the distribution and not an increment. Also, [26]

convolution process is extended by reducing the covariance matrix using single value

decomposition and then for a success probability greater than a negligible function

ε, it is shown that the statistical distance between the theoretical and simulated

distribution is close to 2ε.

3.2 Preliminaries

3.2.1 Gaussian Distribution

A Gaussian function is defined as ρσ,c(x) = e
−π‖x−c‖2

σ2 with a target vector

c ∈ Zn
q and Gaussian parameter σ ∈ Zn

q where n ≥ 0 and Λ ∈ Zm
q is an n-dimensional

lattice of points generated by a linear combination of a basis. The discrete Gaussian

distribution is defined as

∀z ∈ Zn
q , DΛ,σ,c(z) =

ρσ,c(z)

ρσ,c(Λ(B))
(3.1)

ρσ,c(Λ(B) =
∑
c∈Λ

ρσ,c(z) (3.2)

ρσ,c(Bz)

ρσ,c(Λ)
=

e
−‖Bz−c‖2

2σ2∑
z∈Zn e

−‖Bz−c‖2
2σ2

(3.3)
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whereQ =
∑

z∈Zn e
−‖Bz−c‖2

2σ2 =
∑∞

Zn→∞ e
−‖Bz−c‖2

2σ2 is called the normalization factor[121].

Definition 6. There exists a smoothing parameter ηε(Λ) which is a lower bound on

the Gaussian parameter such that ρ1\σ(Λ∗ \ {0}) ≤ ε for ε > 0 and Λ ∈ Zn
q .

3.2.2 Linear Algebra
A symmetric matrix Σ can be decomposed to LD2LT where LTL = I and

I is the identity matrix, D is the diagonal matrix of square roots of eigenvectors

and L an orthogonal matrix. The column vectors of L which is orthogonal are the

eigenvectors of the symmetric matrix Σ. The symmetric matrix Σ is positive definite

if xTΣx > 0 for positive x > 0. Given two positive semidefinite matrices, Σ1 and

Σ2, if Σ ≥ 0 and Σ1 > Σ2 then (Σ1−Σ2) > 0 . If Σ = BBT then B =
√

Σ for Σ > 0

where B is a singular matrix B ∈ Zn×m. When B is decomposed by single value

process, it becomes LDMT where L and M are orthogonal matrices and D is the

diagonal matrix with positive entries. The expression ρ√Σ1
(x − c1).ρ√Σ2

(x − c2) =

ρ√Σ(c2 − c1).ρ√Σ3
(x − c3) holds if Σ−1

3 c3 = Σ−1
1 c1 + Σ−1

2 c2, Σ−1
3 = Σ−1

1 + Σ−1
2 > 0

and Σ0 = Σ1 + Σ2 > 0 where x, c1, c2 are chosen uniformly from a distribution

D√Σ[116]. If z is sampled from a distribution with spherical structure then xTΣx =

xTΣ1x+ xTΣ2x =
√

Σ. I
2π
.
√

Σ
T

= Σ
2π

where I
2π

is the covariance of the vector z.

3.2.3 Gram-Schmidt Orthogonalization
In this section,the properties of the Gram Schmidt Orthogonalization is

defined in Definition 7 and Lemma 7[113].

Definition 7. Let Spanl(B) be an l vector space with elements which are linearly in-

dependent and B is a basis with linearly independent vectors B = {b1, . . . , bl} ∈ Zn

is the root {
∑

1≤i≤l xibi, xi ∈ X}. For any x ∈ Zn, the projection of x over Λ

is proj(x, Spanx(B)) = xB̃(BB̃)−1B and for y ∈ Zm, the projection of x over

Spany(B) = proj(x, Spany(B)) = 〈x,y)Z
〈y,y〉Z .y.

Lemma 7. Let B = {b1, . . . , bn} ∈ Zn be a basis for l ∈ [ 1, n] and Λl = Spanl{B},
there is a reduced basis B̃ = {b̃1, . . . b̃n} ∈ Zn that can be defined with the properties

as
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∀l ∈ [ 1, n] b̃n = bn − proj(bn,Λn−1) (3.4)

∀l ∈ [ 1, n] b̃n = bn −
n−1∑
i=1

〈bn, ñ〉l
〈b̃n, ñ〉l

b̃n (3.5)

where ∀l ∈ [ 1, n] b̃n ⊥ Λl−1 and (bn−b̃n) ∈ Λl−1 which follows from Λ̃l = Spanl(b̃1, . . . b̃n)

to give ∀l ∈ [ 1, n] Λ̃l = Λl.

3.2.4 Smoothing parameter
The smoothing or tailcut parameter τ ∈ ηε(Λ) for > 0 is the smallest

value of the Gaussian parameter such that ρ 1
σ
,0(Λ∗ \ 0). This means a level of

smoothness on the lattice Λ. Given computation r > 4.72 and σ > 1, the proba-

bility of the smoothing parameter in the Gaussian distribution becomes less than

2−100 [32]. The discrete Gaussian distribution with large radius that is equiva-

lent to the tailcut parameter can generate a noise value over the lattice point to

produce a uniform distribution. Due to the fact that the Gaussian parameter is

transformed into a positive definite covariance matrix Σ, we have the expression

ρ 1
σ
,0(Λ∗ \ 0) = ρ√Σ(Λ∗ \ 0) = ρ(

√
ΣΛ∗ \ 0) ≤ ε. Given infinite tail and high pre-

cision, a smoothing parameter that produces a uniform distribution can result in

high computational operations. To solve this problem, a random bit is added after

sampling which extracts the distribution for x ≥ 0. In the process ρσ,0 is reduced

by half. Lemma 8 defines the parameter further

Lemma 8. For any ε > 0, σ > Ψε(Λ) and c ∈ Zn then the condition holds
ρσ,c(Λ)

ρσ,0(Λ)
≤ 1− ε

1 + ε
= ρσ,c(Λ) ∈ [

1− ε
1 + ε

, 1] .ρσ,0(Λ) (3.6)

From the Gaussian sampling, z is sampled from a perfect distribution

Pr((‖z‖)cσ
√
n) < cnen/2(1−c2 where n is the dimension of the lattice [122]. The

result from this Lemma[123] is improved in Proposition 1

Proposition 1. Let x1 ← DZ,σ1 , x2 ← DZ,σ2 be sampled for some σ1, σ2 and let

σ−2
3 = σ−2

1 + σ−2
2 and σ2 = σ2

1 + σ2
2 for any ε ∈ (0, 1

2
). If σ1 ≥ ηε(Z)/

√
2pi and

σ3 ≥ ηε(KZ)/
√

2pi then the distribution P of x1 + x2 satisfies

DKl(P‖DZ,σ) ≤ 2(1− (
1 + ε

1− ε
)2)2 ≈ 322 (3.7)
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3.2.5 Statistical distance
Two random variables sampled from a proposed distribution χ ∈ Ψα for a

specified n dimensional space are statistically distant if the following holds

∆(t, z) =
1

2

∑
v,c∈Ψα

|Pr[ t = c] − Pr[ z = v] | (3.8)

The variable t defined over a distribution Ψα, its minimum entropy is given as

H∞(t) = −log(maxc∈ΨαPr[ t = c] ) where maxc∈ΨαPr[ t = c] defines the prob-

ability of detecting the random variable over the distribution Ψα. Wu defines the

conditional minimum entropy as H̄∞(t, z) = −log(Ev∈Z [ 2−H∞(t,z)] ) [124]. A proba-

bilistic polynomial time adversary have a negligible advantage to distinguish between

a variable sampled from a perfect distribution and a proposed distribution with a

statistical distance bounded by 2
−∆(t,z)

2 which is usually 2−90 to 2−128 [5].

3.2.6 Markov chain
When variables in a target distribution are not transformed into other

variables with the same properties but different algebraic structure, a sampler can

be used to build a Markov Chain which uses the previous state of a sample to

generate the next state of the next sample. This sampler employs Markov Chain

Monte Carlo algorithm for this purpose [27]. The term ergodicity is employed to

denote the relationship between its rate of convergence or in other words how fast

it decays the exponential that defines its statistical distance from the target to the

proposed distribution and it is defined with the expression[27].

lim
T→∞

‖T T (x, .)−Dπ(.)‖TV = 0 (3.9)

where T is a transition matrix with vector x, Dπ(.) a stationary distribution and

‖‖TV is the rate of decay in the exponential or asymptotic statistical distance. It is

also uniform if this convergence is bound by M(1−)T for 0 < δ < 1 and M < ∞
where δ is the exponential decay coefficient.

3.3 Dimensionality Mapping
The Euclidean space is assumed to be separated into cells made up of

linearly dependent basis called the linear subspace. It is assumed, the projection

would map the basis into a linearly independent subspace of lower dimensionality

than the linear subspace that spans it. This is analogous to the Generative topo-

graphic mapping [4] where the goal is to find a model of the linear subspace. In

this new approach, the advantages of an affine transformation would be combined
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to that of the projection. The addition of the affine transformation would make the

projection degenerate, which would keep the knowledge of the basis secret from the

adversary. The rate of approximation of the error vectors from the uniform distri-

bution to random distribution depends on the geometry of the linearly independent

subspace. This subspace is embedded tangentially from the linear subspace with

complexity of approximation given as O(cd) where c is the coordinate axis of the

linear subspace. For a linear subspace divided into grids of sides L with parameter

2L with a constant 2n, the volume is given by [125]

V = 2nγ

(
n

2
+ 1

)
(3.10)

while the area of the linearly independent subspace is given by√
(2πL)2 + γ2(B̃i) (3.11)

and the affine transformation is related to the area by

f = (Lsin2πB̃, Lsin2πB̃, γB)T (3.12)

where γ ∈ {0, 1
2
}. The dimensionality of the space of points that make up the lattice

plays a role in the reduction of the basis vectors into its linearly independent variants

by deriving a projection matrix that would map the basis vectors accordingly. There

is also a corresponding mapping of the diagonal coefficients of the basis vectors to

the dimensionality of the reduced linearly independent vectors after it has been

projected by the Projection map into a low dimensional grid of lattice points as

shown in Figure 3.2.

Figure 3.2: Geometric illustration of projection from a high dimensionality plane to
a low dimensionality sub-plane
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The algebraic structure would be retained to create a tighter reduction to a

worst case assumption. In contrast to the LLL reduction approach which reduces the

basis to vectors that have an orthogonal property, dimensionality mapping reduces

the basis vector to its linearly independent variant with its coefficients being elements

of a set of non-negative integers Z at minimal complexity.

There has been several approaches to basis reduction using the dimension-

ality property. For instance, a randomized variant of Latent factor model was em-

ployed to reduce high dimensional sparse matrices[126]. Also, a non linear injective

map based on a supervised manifold learning algorithm was constructed to reduce

radial basis function[127]. Furthermore, a 2 dimensional unsupervised reduction

process was employed to reduce a similarity matrix[128]. Finally, a dimensionality

reduction algorithm was proposed to reduce symmetric positive definite matrices

belonging to a Riemannian space with variance in the vectors in an unsupervised

scenario[129].

Let a basis B =
∑N

i=1 bi where B ∈ Rn connected Zn space of feasible

classes. The goal is to construct a basis in a low dimensional space of points

B̃ =
∏N(Bi)

i=1 B̃i which is expressed as linear combination of an affine transfor-

mation and a probability distance function. These parameters are expressed as

B̃i(x) = Pijf(x) where Pij and affine transformation f(x) are defined as f : Zn → Zd

where Zd belongs to a low dimensional distribution and Pij : Bi × B̃i → Zd. The

probability distance function describes the distance between the basis Bi and its

dimensionality reduced variant B̃i belonging to different classes. It also computes

their dot product respectively. The separation between the classes is expressed using

KL divergence[130] KL(Dq||Dπ =
∫
ρqlogρq/ρπdµ. The affine transformation can

also give the Bayesian inference of Zn. The number of sampled basis N ⊂ N(Bi)

where N(Bi) is the set of the samples belonging to an n-dimensional space with

distance from Zn described by the KL divergence. The affine transformation can

be categorized in two types; for points in Zn and in points Zn−m where Zm is the

space of feasible classes containing B̃i.

fn(Bi, Bj) =
N∑
i=1

Ki(Bi −Bj)(Bi −Bj) (3.13)

fn− d(Bi, B̃i) =
N∑
i=1

Ki(Bi −Bj)(Bi −Bj) (3.14)

where Ki is the kernel function. The choice of kernel is the sigmoid function of a

support vector machine [131] where K = tanh(iBiBj + θ) which defines the non-
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linear separability of the points in Zm and the points in Zn−m. If this is expanded

to Pij, it becomes;

Pij(Bi, Bj) =
N∑
i=1

Nifc||Bi −Bj||F ||Bi −Bj||F + ϕ = (3.15)

Tr(BTΨB)

where ϕ is a solution to the linear system[132][
0

y

∣∣∣∣ yT

Ψ + τ−1I

] [
c

α

]
=

[
0

y

]
(3.16)

(y1, α1), . . . (yN , αN) and αi is a positional scalar.

To generate a maximal variance on the condition of orthonomality and that would

achieve uniform ergodicity, (3.13) is expanded as follows

fn(Bi, Bj) =
N∑
i=1

Ki(Bi −Bj)(Bi −Bj) (3.17)

=
N∑
i=1

Ki(Λx
−1
i −Bj)(Λx

−1
i −Bj)

=
N∑
i=1

Ki(Λ
2x−2

i − Λx−1
i Bj − Λx−1

i Bj −B2
j )

=
N∑
i=1

Ki(Λ
2x−2

i − 2Λx−1
i Bj −B2

j )

=
N∑
i=1

Ki(B
2
i − 2Λx−1

i Bj −B2
j )

=
N∑
i=1

Ki(B
2
i − 2Λx−1

i )

=
N∑
i=1

KiB
2
i − 2

N∑
i=1

KiΛx
−1
i

= Tr(BTB)− Tr(ΣTΣ)

Lets define Ψ as a collapse function that transforms and quantifies the endomorphic

distance between fn and fn−d where Ψ ∈ Zm×n, B = [ BT
1 , B

T
2 , . . . B

T
N ] ∈ ZN×n,

given a decay coefficient;

δ = Tr(∂ΣTD∗) + ||Pij − xi||+ ||Pij− (3.18)

xj||+ ||Bi||
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further expansion of the collapse function becomes

Ψ = min
fn,i,j

N∑
i=1

fn(Bi, Bj)(Tr(∂HTD∗) + ||Pij − xi||+

||Pij − xj||+ ||Bi||

subject toBTPiB = I, ∂ΣTPj∂Σ = I

(3.19)

where Pij is a sparse approximation of a projection function P and B̃ = fP which

implies that Tr(B̃TPijB̃)+ ||f ||F . This further confirms the fact that the variance of

the Hessian matrix as regards to the Newton Direction, defined by the KL divergence

must meet the conditions of orthonomality of the subset sum of the basis and the

dimensionality of the projection mapping which will in turn lead to resulting low

dimensionality vectors being linearly independent. The objective of the reduction

process is to minimize the class factor of the collapse function Ψ. The optimization

problem is formulated as

min
Ψ

max
f

Tr(B̃TΨB̃) + ||f ||F

subject toBTPiB = I&∂ΣTPj∂Σ = I
An arbitrary noise matrix W ∈ Rn is chosen. This noise term is equivalent to the

dimensionality of the space that contains the dimensionality reduced basis. This

would expand the Newton Direction function, which is a function of the log likelihood

ratio. This ratio realigns the direction of the collapse function from the linear

subspace to the low dimensional linearly independent subspace, the noise term and

is given as

D∗ = arg min log

∫
ρq
ρπ
dµ+ Tr(W TBiW )+ (3.20)

1

2

∑
j

fbW T

It can be seen that realignment is enhanced by the orthonormal columns of the

arbitrary noise matrix W . To further test for invertibility, a regularization parameter

is employed as follows

maxTr[ (fn +DIµ)−1fn−d] ≤ ∆ (3.21)

where ∆ is a regularization parameter and Iµ is the rate function . The overall
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optimization problem becomes

min
Ψ

max
f

N(xi)∑
i=1

Tr(BTΨB)fn(Bi, Bj)(Tr(∂HTD∗)+

||Pij − xi||+ ||Pij − xj||+ ||Bi||) + Tr(B̃TΨB̃) + ||f ||F
subject toBTPiB = I,

∂ΣTPj∂Σ = I

||Pij − x|| can be solved using lemma 3[133]
N(xi)∑

||Pij − xi|| = min||P −B||2F (3.22)

= min||P 2||F + min
x∈Z/Λ

2xTP + ||B||2F
then the trace samples of the input point is solved as follows

Tr(BTΨB) =
N∑
i,j

f(Bi, Bj) + Ψ(log(Bi)− (log(Bj)) (3.23)

Finally, the trace samples of the product of the hessian matrix and the Newton

Direction is solved using lemma 2[134]

minminTr(5HTD∗) ≤ −vec(D∗TBT sign(σ)vec(D∗)− (3.24)

||Pij +D∗||F + ||Pij||F
subject toD∗PD∗ = I

where sign(σ)

{ = 1 if ri > 0

∈ [ −1, 1] if ri = 0

= −1 if ri < 0

Algorithm 6 Dimensionality Mapping

Require: Basis B = (b1, . . . bn) ∈ Zn×n, Random Matrix W ∈ Rn,Affine Transfor-
mation f

Ensure: Dimensionally Reduced Basis B̃ = B̃ = {b̃1, . . . , b̃n} ∈ Zn×m

1: D = Tr(W TBW ) + 1
2

∑
j fbW

T

2: for i, j ← n do
3: ComputeEmbeddingPij(Xi, Xj) =

∑
Nif ||Xi − Xj||F .||Xi − Xj||F+ =

Tr(BTΨB)
4: SolveOptimization Tr(B̃TΨB̃) + ||f ||F
5: checkforConvergence
6: Return B̃

In line 1, computing the trace of the weight matrix would require n2 scalar

operations and adding the noise term would amount to O(n2log2n) operations. Com-

puting a sparse approximation of the projection as a function of the affine function

75



would result to O(n2) operations while in line 5, computing an approximation of

the optimization problem would result to O(log2
B
n

) operations. This gives a total

complexity of O(n2 + n2 + logB
n

)

3.3.1 Ergodicity
In this section, the extent to which the lattice reduction process from di-

mensionality mapping achieves uniform ergodicity to the theoretical approximation

of the shortest vector problem is analyzed. The Lebesgue measure is chosen as

µ ∈ (0, 1
2
). It is expected that after an infinite number of iterations, the asymp-

totic distance between the high dimensional space of the distribution converges on

the condition that the concatenation of the projection matrix and the affine trans-

formation generate a product that would force the collapse function to return a

solution. This solution maps the vectors from linear dependency to linear indepen-

dency. In other words, satisfy this condition lim
i→∞
||λk,i − xk,i|| = 0∀k, i ∈ Fq, if

lim
i→∞
||λi − Pij(fj)|| = 0. In clear terms, uniform ergodicity can be achieved if the

vector are linearly independent. It can be shown that the L2 norm of the error be-

tween the sparse approximation of the projection operator and the lattice basis can

be defined in terms of the affine transformation f and the preimage of the lattice

basis xk,i. Inspired by the approach [135], this becomes,

||Pij − xi|| = ||Bi(xk,i − µk,j
fk,i(xk,i)

||f ′k,i(xk,i)||2
f
′

k,i(xk,i))− xk,i|| (3.25)

= ||Bixk,i − µk,j
fk,i(xk,i)Bi

||f ′k,i(xk,i)||2
f
′

k,i(xk,i))− xk,i|| (3.26)

≤ ||Λk,i − µk,j
fk,i(xk,i)

||f ′k,i(xk,i)||2
f
′

k,i(Λk,i)− xk,i|| (3.27)

= ||µk, j fk,i(xk,i)

||f ′k,i(xk,i)||2
(Λk,i)|| (3.28)

=
||µk,jfk,i(xk,i)(Λk,i)||
||f ′k,i(xk,i)||

(3.29)

= µk,j
〈fk,i,Λk,i〉
||f ′k,i||F

(3.30)

This shows that the error and linearly independent vectors results in an affine trans-

formation that is orthogonal. This affine transformation can be said to be an image

of the original lattice basis. If the condition of (3.15), BTPiB = I holds true that

means that lim
i→∞

BTPiB − I = 0. This further becomes lim
i→∞
||Λk,i − xk,i|| = 0.

Therefore,it follows that if ||Λk,i − xk,i|| = BTPiB = I, the expected solution would
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converge at some point. If an update parameter is constructed to force the collapse

function to return a solution as the iterations increases in size, it can be seen that

the Newton direction moves in tandem with the regularization parameter in (17),

||Λk,i − Pij
(
log

∫
ρq
ρπ
dµ+ Tr(W TBiW )+ (3.31)

1

2

∑
j

fbW T

)
||

= ||Λk,i − Pij
(
log

∫
dµ

ρπ
ρq +Bi(W ⊕W )+ (3.32)

1

2

∑
j

fbW T

)
||

≤ ||Λk,i − Eµ[ 〈ωµ(xk,i), v(xk,i)] log
ρq
ρπ

+ (3.33)

(
1

2

∑
j

fb+Bi)W
2)|| = ||Λk,i − E[ ||ωµ(xk,i)− v(xk,i)||2]

log
ρq
ρπ

+
W 2

2
(
∑
j

fb+Bi)||

= ||Λk,i +
∂2J(xk,i)

∂2Hω,k

ρq
ρπ

+
W 2

2
(
1

2

∑
j

fb+Bi)|| (3.34)

where J(xk,i) is a special convex set that defines the convex property of the Projec-

tion map and can be expressed in terms of the update term as follows

J(xk,i) =
υTk,i
∆

(
n∑
j=1

αjΨj)− (
1

n

n∑
i=1

Ψi) (3.35)

where αj is a smoothing parameter and υTk,i determines the geometry of the linear

subspace. The role of the smoothing parameter is to limit the amount rate of change

of the Legendre measure which would affect the divergence between classes and in

the process keep the dimensionality reduced basis in a fixed point. The probability

density function of the theoretical distribution can be expressed as a function of the

absolute value of a covariance matrix Σ which is usually expressed in relation to a

transition matrix T whose column is orthonormal as follows

logρq = −1

2
log((2π)d|Σ|)− 1

2
(x− µ)T (Σ)−1(x− µ) (3.36)

3.3.2 Experiment
The ideal lattice chosen are usually subsets of Zn. At high dimensionality,

samples of the subsets is projected to exponentially many lattice vectors which leads
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to losses in the signal-to-noise ratio. The total number of vectors that leads to this

losses is given by [136]

Nk =
k∑
k=1

SNR
εT
k (3.37)

where εT
k

is the multiplying gain of the MIMO detector. The logarithm of the or-

thogonal diagonal coefficient as a function of Equation 3.10 can be used to define and

parameterize the quality of basis [118]. To analyse the quality of the reduced basis

using dimensionality mapping method, its Bit Error Rate(BER) performance when

applied to reduce a parity check matrix is presented. This lattice reduction approach

is applied to a MIMO(Massive Input Massive Output) detector systems. Its BER

performance is compared with other lattice basis reduction methods. The signal-

to-noise ratio is given as SNR = NT ∗ ES/No where the average bit is ES. A good

performance implies the capability to approximate the basis vectors to a uniform

distribution in essence solving the shortest vector problem with lesser complexity.

The MIMO detector systems used are the 4× 4, 6× 6, 8× 8 uncoded system with

4QAM, 16QAM and 64QAM constellation in a Zero-Forcing(ZF) detector system.

The lattice reduction method considered are the LLL, Modified-LLL(MLLL)[137],

Gram Schmidt Orthogonalization based reduction ,QR decomposition. During the

process of reducing the basis, the symbols of the constellation are shifted and scaled

by an integer orthogonal matrix before projecting the zero forcing vector back to the

constellation [138]. For a given signal-to-noise ratio, the projections are sparse and

random at low dimensionality. For both the LLL and MLLL method, the trade-off

factor δ is assigned a value 3
4
. The lattice based channel matrix used as basis in

the simulation had entries from a complex i.i.d discrete Gaussian distribution with

regularization parameter µ = 0, variance σ = 1 generated over 100000 Monte Carlo

runs. In addition, for the QR decomposition reordering the columns of the gener-

ator matrix of the lattice downgrades its performance overtime. From the Results,

it can be seen that the Modified-LLL(MLLL) gives a better BER performance than

dimensionality mapping due to the number of column swaps in the MLLL method.

Furthermore, the condition of using the orthogonality of the basis vectors with the

Projection as a means of finding a solution to the optimization problem impacts on

the the BER performance of using dimensionality Mapping. However, dimensional-

ity reduction gives a performance improvement of about 1db on the 4× 4 uncoded

system using 4QAM constellation over the LLL algorithm for a Bit error ratio of

10−4 as shown in Figure 3.4 and a performance improvement of about 4db on the
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6 × 6 uncoded system using 4QAM constellation over the LLL algorithm for bit

error ratio of 10−4 as shown in Figure 3.5. It also outperformed other basis reduc-

tion methods; Orthogonalization and QR decomposition. It can be said that at

lower signal-to-noise ratio, the optimization problem that is formulated to extract

the mapping function is prone to more unknowns. This would lead to complexity

in convergence thereby making the proposed method not ideal for reducing basis.

It can be inferred that the proposed dimensionality mapping/reduction supports

linear transformation rather than unimodular transformation. Also, the bit error

rate result can be attributed to the proposition that the dimensionality mapping

processes a certain number of independent vectors of the lattice that varies in a

given permutation without breaking the constraints of the optimization problem.

Furthermore, it would be stated that LLL performance degrades with increase in

the orthogonality factor at high dimensional subspaces [139]

Figure 3.3: Bit Error Rate of various Basis reduction methods for Gaussian Sampler
applied to ZF-MIMO detectors in 4× 4 uncoded system using 16QAM constellation
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Figure 3.4: Bit Error Rate of various Basis reduction methods for Gaussian Sampler
applied to ZF-MIMO detectors in 4× 4 uncoded system using 4QAM constellation

Figure 3.5: Bit Error Rate of various Basis reduction methods for Gaussian Sampler
applied to ZF-MIMO detectors in 6× 6 uncoded system using 4QAM constellation
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Figure 3.6: Bit Error Rate of various Basis reduction methods for Gaussian Sampler
applied to ZF-MIMO detectors in 6× 6 uncoded system using 64QAM constellation

Figure 3.7: Bit Error Rate of various Basis reduction methods for Gaussian Sampler
applied to ZF-MIMO detectors in 8× 8 uncoded system using 16QAM constellation

3.4 Gaussian Sampler
A modified variant of the nearest plane approach is given in Algorithm

7. The single value decomposition is employed to reduce the covariance matrix Σ

expressed as Σ1 = σ2DCDT where D is a diagonal matrix and C a correlation
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coefficient matrix. The lattice points are sampled from an ellipsoidal discrete Gaus-

sian distribution with covariance σ2DDTC. This makes the resulting sample z to

be sampled in a spherical discrete Gaussian distribution, thus making the comple-

mentary covariance matrix to become Σ2 = σ2I. Then it is translated by adding

a small distribution with covariance (σ2I − σ2DCD
T ) + σ2DDTC = σ2 for some

σ = ω(
√

log n). In [26] the bound on the diagonal matrix D was stated as (2(D)+1),

which results to the positive definite covariance matrix Σ1 = σ2DCDT = σ2 and

Σ2 = σ2I + σ2DCDT = σ2(DCDT + I). The matrix D and C should have small

entries to enable easier computation and eliminate the need for offline computation.

The first k−1 columns of C are orthogonal basis of Σ1 column space. Consequently,

the norm of Σ1 approaches σ2 as k tends to infinity. The orthogonal structure of

C is in far contrast to the triangular structure because reduction with a triangular

structure is not straightforward making computation exponentially high on input.

Algorithm 7 Gaussian Sampler

Require: Basis B = (b1, . . . bn) ∈ Zn×n, parameter σ, target center c ∈ Zn, Low
dimensional basis B̃ = {b̃1, . . . , b̃n} ∈ Zn×m, norm ri = ‖b∗i ‖

Ensure: zi drawn from a distribution statistically close to DΛ,σ,c

1: vn ← (0, . . . , 0), cn ← c

2: for i ← n, . . . , 1 do ti = 〈ci,b̃i〉
‖bi‖2 −

∑m
j>i ai,jzj −

∑n
j′>i ai,j′zj where ai,j is an

integer coefficient close to ci
3:4: compute a covariance and complementary covariance matrix as a function of

Gaussian parameter Σ1 = σ2BBCT ,Σ2 = σ2I + Σ1 = σ(BCBT + I)
5: zi ← DZ,

√
Σi,ti

6: ti−1 : (αi,j + zi)b
∗
i ← ti

7: ti−1 : (αi,j + zi)b
∗
i ← Zn

8: vi−1 : zib
∗
l ← vi

9: Calculate probability rate
10: if r < probability rate then
11: Set y = t0 − v0

12: Return y

It is very important that the statistical distance between the proposed dis-

tribution where the lattice points are sampled from and the target distribution where

the lattice points are ideal be minimized as possible. This can also be described us-

ing the concept of convergence. When the range of the center c of the distribution is

denoted by [ −0.5, 0.5] and σ > 0, the probability rate λ(x, y) increases for c fixed

at [ 0, 0.5] [140]. In this proposed design c ∈ Zn would be chosen at [ 0, 1] . The

input to the proposed sampler would be a basis B, Gaussian parameter σ, the center
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of the distribution c ∈ Zm, the initial sample x of the Markov chain and the tail cut

parameter τ . A new sample would be generated if U a random number generated

from a uniform distribution [ 0, 1) meets the following condition U > �[ t] where

�[ t] is the cumulative distribution function and t is the result of the reduced basis

b̃i and the center with a norm ‖b̃i‖. The final sample is accepted if U ≤ λ(x, y).

Based on the Gaussian sampler, the hardness of the learning with error problem

can be redefined to finding v ∈ Λ such that the distance between c and (zib
∗
i ) is

short and also |ci − ti| ≤ |t0 − v0|. This is because the target vector is sampled

from the required distribution zi ← DZ,
√

Σi,ti they are spaced at the norm ri. Also,

|ci− ti| is the distance of ci from a plane in the distribution. From Babai’s theorem,

|ci − ti| ≤ ‖bi‖2
2

. If z ← DZ,
√

Σi,ti , then c0 − v0 is close to zib
∗
i . Therefore,

|ci − ti| = |ci − y + v0| ≤ ξ(ti − zi) ≤ ξ|ci − zi|
‖bi‖2

2
(3.38)

|ci − ti| = (|ti − ti−1|2 + |ci − ti|2 ≤ |ci − zi|(1 + ξ)

< ξ(ci − zi) (3.39)

Lemma 9. Let B be a basis of a lattice, let Σ = DDTσ2 for σ > 0 and c ∈ Zn

over dimensionality Reduced basis B̃ to generate convolute t. The probability of out-

putting v has distribution statistically close to DZ,
√

Σ,ti
.

Proof. Let Σ = BB−1σ2 for σ > 0, the probability that zi = z̄i is satisfied if Λ+ti = x̄

where Λ + ti is the support of y = x− v0 which is a solution to the shortest vector

problem. This resolves to y = x̄ − zibi. From Lemma 3[26], x̄ = t − Bz̄, which

results to y = t − Bz̄ − z̄BB−1. This satisfies the Gaussian distribution given as

ρ√Σi,ti(x̄− zibi) = ρ√Σi,ti(t−Bz̄ − z̄BB
−1) = ρ√Σi,ti(Bz̄) = ρ√Σi,ti,Z(v)

3.4.1 Statistical distance
This algorithm as expected samples the entire variable as a block zi. This is

because sampling a component at each step leads to inefficiency towards closing the

gap in the statistical distance. Inspired by the convolution theorem [26], Theorem

3 is used to test for correctness of the constructed sampler. Readers are encouraged

to reference it for more details

Theorem 3. For ε ∈ (0, 1
2
), let Σ1 and Σ2 be a positive definite matrices where Σ1 =

σ2BBTC and Σ2 = σ2(BCBT + I) ∈ η2
ε (Λ1 + Λ2), Λ1(B) ∈ Zn and Λ2(B) ∈ Zm.
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Given a basis B = {b1, . . . bn} and with two arbitrary distributions x2 ← DΛ2,c2,
√

Σ2

and x1 ← DΛ1,
√

Σ1
(c1 + x2) that produces a vector x = (x1, x2) ∈ (Λ1 + Λ2),the

statistical distance DΛ2+c1,x is bounded by 1 + 4ε.

Proof. It would be shown that the output distribution of the sampler is statisti-

cal close to the target discrete Gaussian distribution, x2 ← DΛ2,c2,
√

Σ2
and x1 ←

DΛ1,
√

Σ1
(c1 + x2) which follows that Pr[ x1 = x/,1, x2 = x/,2]

ρ√Σ1
(x1 − c1).ρ√Σ2

(x2 − c2)

ρ√Σ1
(Λ1 +BC−1(c1 + x2).ρ√Λ2(x2−c2)

ρ√Σ1
(x1 − c1).ρ√Σ2

(x2 − c2)

ρ√Σ1
(Λ1 − c1 −BC(c1 − x2).ρ√Λ2(x2−c2)

ρ√Σ1
(x1 − c1).ρ√Σ2

(x2 − c2)∑
x2∈Λ2

ρ√Σ1
(x2 − c1) +BC(c1 − x2).ρ√x2(x2−c2)

ρ√Σ1
(x1 − c1).

∑
x2∈Λ2

(Λ2 − c2)∑
x2∈Λ2

ρ√Σ1
(Λ2) +BC(c1 + Λ2).ρ√x2(x2−c2)

∝
ρ√Σ1

(x− c1).[ 1, 1−ε
1+ε

]∑
x2∈Λ2

ρ√Σ1
(Λ2) +BC(c1 + Λ2).ρ√x2(x2−c2)

∈
[

1− ε
1 + ε

]
,

[
1− ε
1 + ε

]
.
ρ√Σ1

(x− c1)

ρ√Σ2
(x− Λ2)[

1− ε
1 + ε

] [
1− ε
1 + ε

]
.DΛ2,c1(x)[

1− 4ε, 1 + 4ε] .DΛ2,c1(x)

The preimage of the target center c would be computed after z is sampled

from a distribution statistically close to DZ,
√

Λi,ti . The required sample y from the

sampler shown is accepted if the probability of acceptance λ(x, y) is minimal.

Theorem 4. Let Λ(B) ∈ Z and ε ∈ (0, 1
2
]. Let there be a support Λ+c where |x−c| <

kσ for k > 0, the bound on the probability rate of accepting a sample y = x−v0 from

the discrete Gaussian sample is given as min

{
1,

DΛ+c,σ(y)

DΛ+c,σ(x)
.
DZ,σi,y(x)

DZ,σi,x(y)

}
≤ 16ε+ 8e−

k2

2

Proof. The probability of acceptance is given by min

{
1,

DΛ+c,σ(y)

DΛ+c,σ(x)
.
DZ,σi,y(x)

DZ,σi,x(y)

}
which

follows that
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min

{
1,
DΛ+c,σ(y)

DΛ+c,σ(x)

.
DZ−y,

√
Σi,y−c

DZ−x,√σi,x−c

}

Expanding the distribution into its constituent Gaussian functions

= min

{
1,
ρσ,0(Λ)

ρσ,c(y)
.
ρσ,c(x)

ρσ,0(Z)
.
ρ√Λ,c(y − x)

ρ√Λ,ti
(Λ)

.
ρ√Σ,ti

(Z)

ρ√Σ,c(x− y)

}
Rearranging likely terms

= min

{
1,

ρσ,0(Λ)

ρ√Σi,ti(Λ)
.
ρ√Σi,ti(Λ)(Z)

ρσ,0(Z)
.
ρσ,c(x)

ρσ,c(y)
.
ρ√Σ,c(y − x)

ρ√Σ,c(x− y)

}
which satisfies

min

{
1, (1 + 4ε+ 8e−

k2

2 )2(1 + 4ε2)

}
since k ≤ ∞ and ε is ngl(n) then

min{1, (1 + 16ε+ 8e−
k2

2 )2(1 + 4ε2)

3.4.2 Precision analysis
In this section, the bound on the floating point precision is shown, if the

adversary makes q private key queries to the challenger with a reduction factor ε.

This reduction factor enables the discrete probability density functions to be stored

in a fixed table size in memory. This reduction factor is lower bounded as follows

|εi| ≤ 2−mρσ,0 [141]. Employing [111] theorem ,the correctness of precision can be

tested as follows

k = m
′ − (Cε+ 2log2(‖B−1‖) + log2(µ2n3τσ2q)

k = m
′ −
(√log(2k(1 + 1

ε
)

π

)
+2log2(‖B−1‖) + log2(µ2n3τσ2q)

k = m
′ −
(√log(2k(1 + 1

ε
)

π

)
+2log2

√
n.√ ∑

i∈[ n]

g2
i,i + log2(µ2n3τσ2q)

= m
′ −
(√log(2k(1 + 1

ε
)

π

)
+3log2.

√ ∑
i∈[ n]

g2
i,i(µ

2n3/2τσ2q)

k = m
′
+ 3log2

√
n.

√ ∑
i∈[ n]

g2
i,i + 3log2(µ2n3/2τσ2q)
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To ensure λ-bits of security, the floating point precision should be bounded by

m
′ ≥ λ+ log2

∑
gi,i(µ

2τsqn3/2) where µ2 is the precision of the perfect sampler and

n is the number of samples from the uniform vectors. Table 3.1 compares the bound

on precision.

Table 3.1: Bounds on the Precision of Floating point arithmetic
Bound

m ≥ log(lmq/ε) [141]

m ≥ log(lmqe−2π/s2/ε) + 1 [141]
m ≥ ε+ 2.3 + log2(smq) [103]

m ≥ ε+ log2

∑
gi,i(µτsqn

3/2) This work

3.4.2.1 Simulation result

The performance of the precision of the sampler was tested with 105 sam-

ples. These samples is assumed to guarantee the success probability. The plot is

shown in Fig 3.8. The parameters employed where from the BLISS[142] signature

scheme. The tail cut parameter is expressed as τ = 13.4/
√

2π = 5.36, the precision of

the perfect sampler was taken as 1024 bits, the Gaussian parameter was taken as 254.

Consequently, computing the standard deviation becomes s =
√

2π215.75 = 541.

Also, the success of probability of 2−128 for a security level of 2256 was taken into

consideration. Finally, adversary adaptive queries to an oracle was given as q = 264.

Figure 3.8: Precision of Gaussian sampler for 1400 samples per second, tail cut
parameter τ = 5.36, σ = 541, adaptive queries q = 264
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From the result it can be observed that at a sampling size of 1020, a preci-

sion of 105 bits was recorded. For the same sampling size, [141] recorded a precision

of 188 and 180 bits while [103] recorded a precision of 100 bits. The precision is in-

versely proportional to the success probability of the system withstanding an attack

and directly proportional to the security parameter.

Chapter Summary
Gaussian sampling is one of the schemes that are employed in Lattice cryp-

tography to approximate a vector with the shortest norm in Euclidean space. In

other words to solve the shortest vector problem in a lattice. This method is a basis

for the Learning with errors concept which is intractable in polynomial time. In or-

der to approximate a solution to this problem, a Gaussian sampling pre-processing

method where a basis is mapped from a high dimensional subspace to a Low dimen-

sional subspace using a projection function is proposed. This method is analogous

to the LLL method which reduces the basis to its Gram-Schmidt orthogonal equiv-

alent with its attendant complexity. The security of these scheme is based on the

adversary’s lack of knowledge of the basis that generated the vectors. It is assumed

the Gaussian distribution has the probability mass centred around vectors with huge

norms. The random sampling of the basis vectors from a distribution depends on

the geometry of linear subspace. The algebraic structure of the lattice points is

still maintained for reduction to worst case assumptions using random oracles. The

sampled vectors is a subset of the n-dimensional space. Its statistical distance is

parameterized by the KL divergence.In order to further this approach, a ”collapse”

function was constructed as an optimization problem together with an affine trans-

formation that would enable a smooth projection. BER performance of the reduced

basis show that the proposed method outperforms the LLL method. However, with

slightly less than the expected result compared the modified variant. Pierkert’s Con-

volution theorem was extended to improve on Poppleman’s approach to investigate

the correctness of a proposed variant of Babai’s plane algorithm where the next

iteration of the center is a mapping process. On input of success probability 2ε, the

statistical distance between the simulated distribution and an ideal distribution is

reduced from 32ε to 2ε. Also tighter bounds on the precision of the distribution was

derived and simulated using parameters from BLISS signature [142]. This shows

our approach is efficient for algorithmic complexity purposes.
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Chapter 4

Syndrome Decoding problem:

Solution using Plücker coordinate

of the Grassmannian

4.1 Introduction
In the key generation process of code based cryptosystem, the generator

matrix G is scrambled to G‘ using a combination of permutation matrices. Given

a message bit to be encrypted m, the generated ciphertext can be represented as

a syndrome s = mG‘ + x. The vector x indexes the columns of the parity check

matrix H of the code. In other words, HsT = H(mG‘ + x) = HxT . The goal

of the adversary is to recover the vector x of minimum weight w, then G can be

extracted using some form of interpolation thereby revealing m. To compute the

vector x given the syndrome s and the parity matrix H is an NP complete problem

termed the syndrome decoding problem. Most approaches to solve this problem

is to first lift this vector into a basis of a vector space. Then, construct a set of

indices containing linearly independent columns of the parity matrix [143] or create

a support containing the minimum codewords of a certain rank [10]. The dimension

of the set corresponds with the dimension of the code. To prune the set, Gaussian

elimination is employed. For the Grassmann, the parity matrix are parameterized

by the Plücker coordinates. In addition, the scrambled generator matrix is a matrix

representation of an isomorphism. In other words, the isomorphism hides the struc-

ture of the message symbol and in the process forms a code with minimum distance

dmin. The minimum Grassmann weight of the vector x is given as Gwt(x) ≤ dmin
2

.

88



Furthermore, the vector would be lifted as a basis of a subspace of a projective space.

Therefore, the solution to the syndrome decoding problem reduces to a situation of

creating set of linearly independent coordinates and iterating over this set to find a

minimum distance dmin ≤ n− k + 1 of a lifted code. This thesis is more especially

interested in the probabilities of enumerating this basis to find linearly independent

Plükcer coordinates that will compute this minimum distance .

The hardness of decoding the syndrome of a linear code [144] has been use-

ful in designing quantum safe encryption in the Hamming metric using Goppa codes

[145] and in the rank metric using Gabidulin codes [67]. The syndrome decoding

problem is the basis of cryptanalysis in code based cryptography. This is because on

the input of certain code parameters and with the knowledge of the structure of the

code, an attacker can decrypt the ciphertext and reveal the message in the process.

This can also be done by the adversary, if it can find a vector of length n and also

if it has the ability to correct k errors. Solutions to the problem in the Hamming

metric have been presented using a set of indices [15] and its variants [146] to find

the codeword with the smallest weight. Also, these solutions has been extended to

the rank metric to guess the support that contains the error coordinates [10].

However, with available literature, no Post quantum based cryptosystem

has been designed using codes associated with the Grassmannian under the Grass-

mann metric. Nevertheless, there is ample evidence that points to the fact there is

a connection between the construction of a cryptosystem using a Grassmann based

code and a Hamming based code. This is because of the link between the struc-

ture of these two codes as explained in this paper [147]. Also, no solution to the

problem in the Grassmann metric has been proposed as regards to its use in cryp-

tography. However, for coding applications, research on finding the minimum weight

of codewords in the Grassmann metric has been proposed [148].

The Grassmannian can be divided into positive or negative depending

whether the maximal minor of the generator matrix, in other words the determinant,

is positive or negative. In other words, a negative Grassmannian has a negative mi-

nor while a positive Grassmannian has a positive minor. Furthermore, the positive

Grassmannian has positive Plücker coordinates as well and the essence of using the

positive Plücker coordinates as a solution to the syndrome decoding problem is to

avoid changing the minor which would lead to erroneous results when swapping the

columns of the generator matrix. Consequently, in the Grassmann metric, sets of

Plücker coordinates are analogous to index sets used in the Hamming metric.
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The Grassmannian defines a system of k-dimensional subspaces in an n

-dimensional vector space of a finite field of Characteristic 2. It also includes a

projection of n-k dimensional subspace that form unique pivot positions. These

subspaces can be seen as vertices connected by edges, if and only if there is a trivial

intersection between the subspaces. In the process a unit Grassmann distance is

generated. Furthermore, for such a graph, sparse bi-adjacency matrix represents the

nodes and the edges which can be decomposed into a set of positive Grassmannian

Schubert cells [12]. These cells can be represented by a canonical matrix in a row

echelon format with a leading one in each row. The missing element in each row can

be modelled using Ferrer’s diagram [149] which represents it as partitions. A relevant

research question is this, are there codes associated to Grassmannian varieties with

robust theoretical background that can be categorized as a sub family of Tanner

graph codes? The synopsis to this question comes from the idea of using Grassmann

support and its mathematical framework [10] on code based based cryptography in

the rank metric. This parameter is usually used as a parameter for codes associated

to Grassmann varieties. This inspires the thesis to connect the dot by expounding on

the Grassmann support and its derivatives. Finally, in the theory of toric geometry

[12], the planar graph that illustrates the totally non negative Grassmannian can be

redesigned into a graph similar to a Tanner graph [150] and possessing the properties

of such a graph. Consequently, Non-negative Grassmann codes is a graph based code

that can be represented with vertices and nodes just like Tanner graph based codes.

These nodes represent k dimensional subspaces and their intersections .

The solution of the syndrome decoding problem is generalized to the Grass-

mann metric by using Plücker coordinate. This is done by finding the subset of

Plücker coordinate of codewords of minimum Grassmann weight and with minimum

subspace distance. The Plücker coordinates of the totally positive Grassmnannian

cells are the the columns of the Generator matrix of the code C(k, n) ⊂ Gr(n, k)

whose maximal minor is non-zero . As stated earlier, this matrix is a representation

of an isomorphism. Such isomorphism has been studied in literature [151]. Fam-

ilies of codes associated to Grassmann varieties can be employed in the quantum

safe code based cryptosystem because of its efficient decoding procedure [151] and

probability to correct low weight codewords [149].

The adversary requires knowledge of the isomorphism in order to decom-

pose the Generator matrix into its row echelon form. The boundary map would be
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used as an isomorphism to map the k subset elements of the generator matrix into

a point in the Grassmannian in order to find non-negative Plücker coordinates with

minimum Grassmann distance. Furthermore, an a priori approach is proposed to

find the low Grassmann weight vector by enumerating the basis based on a bound

that is expressed as function of the number of positroid cells in the Grassmannian

Grk,n with weight k.

4.1.1 Contribution
The contribution of this chapter is to propose an alternative solution to the syn-

drome decoding problem in the Grassmann metric using Plücker coordinates. First,

the theory of Plücker coordinates is extended with the transformation of planar

graphs to non planar graph. Then, Gaussian decomposition is employed to reduce

the generator matrix to form pivot columns of the parity check matrix. Thereafter,

analytical bounds on the enumeration of the basis are presented together with nu-

merical results on the failure probability and the cost of row operations. Finally,

the shortest vector problem is generalized to the syndrome decoding problem and

the probability mass distribution of the elements of the Grassmannian in their co-

ordinate positions is analyzed using copula functions.

4.2 Preliminaries

4.2.1 Notation
In this section, a brief summary of some of the notation used in this chapter

is provided. Fq represents finite field of q elements, Fqm represents extension field

of degree m, F n
q represents vector spaces of dimension n over Fq, A represents

n×m matrix, a represents a vector, Gq(n) represents set of subspaces belonging to

F n
q (Grassmann), E ⊕ F represents smallest subspace ,〈A〉 represents Fq span of A.

4.2.2 Coding Theory in the Rank Metric
Given a bijective mapping between a vector a and a matrix A ∈ Fm×n

q ,

with a subspace of size n− k, the complexity of a combinatorics solution is given by

O(n − k)3m3q(n−k)

[
(k+1)m

n

]
−m [10]. Lifting can be performed on an interleaved

code by transforming the linear matrix code to a subspace by multiplying its trans-

pose with an identity matrix. The linear matrix code C[ m×n, k] ∈ Fqm is a linear

code generated by (m × n) matrices. The linear matrix code can be represented

as a function of its basis by Cj =
∑m

i=1Xijβi∀j ∈ {1, . . . , n} where βi is a basis
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of a subspace F over Fqm . The basis of a subspace over Fq multiplies C by a non

zero element which does not affect the rank distance between codewords. The basis

can also be a row of a generator matrix G ∈ F k×n
qm which has the complexity of

k(n − k)m2 log2 q bits [8]. The dimension of the subspace determines the weight

of the codeword and the number of subspaces is given by the Gaussian coefficient

expressed as (
n

w

)
q

=
k−1∏
i=0

qn − qi

qw − qi
(4.1)

w is the weight and qm and qi are monomials over Fqm .

In information set decoding, the probability of finding the codeword given

a [ n, k, t+ 1] matrix code is given by

Pdec =

(
n− k
t

)
(
n

t

) (4.2)

with complexity Pdec = O(1).2nH2(t/n)−(1−k)H2(t/(n−k)) where H2(x) = −x log2(x) −
(1 − x) log2(1 − x) [16]. If the parity check matrix H is expressed with respect to

(n−k)×n identity matrix, an m×k zero matrix and (n−k−n)×k random matrix

code chosen uniformly as H = (I/0/R) then the linear matrix code is called a simple

code. The probability of decoding such a matrix when m <
m+n−

√
(m−n)2+4km

2
is

given by Pf ∼ 1
qm−w+1 as q →∞. The bound on the weight of the error vector x is

given by the Gilbert-Varshamov bound [152] which is defined as

Definition 8. The number of elements of a sphere S given integers n,m, q, t with

radius t ∈ F n
qm is equal to the number of spaces with m×n basis of dimension t. For

t ≥ 1, it follows that

S =
t−1∏
j=0

(qn − qj)(qm − qj)
qt − qj

(4.3)

For a ball of radius t, the volume becomes V =
∑t

i=0 S(i). Also, for a

matrix code C, if V ≥ qm(n−k) and
∑d−2

j=0

(
n− 1

j

)
< 2n−k then the smallest integer
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t is referred to as the Gilbert-Varshamov bound.

4.2.3 Syndrome Decoding Problem
The Syndrome decoding problem is defined here in terms of complexity

theory

Definition 9. The a priori probability of finding a codeword xi with non-zero code-

words ≤ w given an integer which represent the ith column of an error that permu-

tates Code C to C
′
,such that HTx = s, where s ∈R F n−k

qm is a syndrome and H is a

parity check matrix over Fqm.

Consequently, to generalize this problem to the Grassmannian metric, it

has to be reduced to an instance of finding the Plücker coordinates of codewords

with lowest Grassmann weight.

Definition 10. Let Plücker coordinates be denoted as ∆I,J(G) > 0 which forms the

columns of the generator matrix. The syndrome decoding problem is to find linearly

dependent subset of Plücker coordinate with w columns such that Gi,j−k ∧ vj = ui

where a basis B is defined thus; B = {ui, vj|i ∈ I, j ∈ J}, a k × n − k matrix Mv

and a k × n− k generator matrix G with rank k.

4.2.4 Grasmmaninan theory
Definition 11. Totally non-negative Grassmanninan [12] is the point in the Grass-

mannian with positive Plücker coordinates ∆I 6= 0

In other words its maximal minor is positive and it can be combinatorially

modelled into planar bipartite graph. The matroid of the totally positive Grass-

mannian is termed a positroid.

Definition 12. The boundary measurement map [12] is defined as b : R>0 →
GLk .A ∈ Grn,k where A is a k × n biadjacency matrix with a rank k which are

represented by incoming boundary edges. The map depends on the coloring of the

vertices.

The matrix has a maximal minor ∆I = 1 that forms the Plücker coordinates

on Grn,k with column vectors I
A

that gives the basis of the subspace. Furthermore,

the coordinates of A can be defined as follows with slight abuse of notation as

ϕ(A) = 〈(ui +
∑n−k

j=1 Aijvj)〉∀1 ≤ i ≤ k.

93



R>0 is characterized by the set of all the biadjacency matrix A. The sub-

space in this set is a graph of a map from a projection to its orthornormal. In other

words, V → V ⊥. The direct sum expression is given by V ⊕ V ⊥ ∼= Rn with a basis

V = {v1, . . . , va}.
Let the map of a subspace U to its local diffeomorphism be given as φ(u) =

(φ1, . . . , φn)(u1, . . . , uk), then it follows that the tangential space at any point of

the map has a basis with coordinates { ∂φ
∂u1
, . . . , ∂φ

∂uk
}. In other words, the tangential

space can also be represented by the derivative of the Grassmann. If there is an open

subspace in the Grassmannian Grn,k, then U = {W : W ∩ V ⊥ = {0}} ⊂ Rk ×Rn−k

for any W ∈ U .

There are complex numbers cij such that vi +
∑b

j=1 cijvj ∈ W which is

linearly isomorphic. This implies that U(S) = {v + Sv : v ∈ V } such that v 7→
(V, S(v)). If v = 0, then U(C) = 0 from the nullity of maps. If V is decomposed

to subspaces P and Q where Q ∈ UA and UA is a set of all subspace P ⊂ V such

that V ∩ UA = {0}, then there exist P = (P ∩Q)⊕ P ′) for some P
′

isomorphic to

P/(P ∩Q).

Furthermore, for a direct sum decomposition, the intersection of P and Q

is trivial which now becomes P + ((P ∩ Q) ⊕ P ′) = P ⊕ Q′ . If the subspace E is

decomposed, there exist E = (E ∩V )⊕E ′ for some E
′ ⊂ Rn where the intersection

E ∩ V [151].

Finally, a function Fk(V ) is equivalent to the injective transformation T :

Rk 7→ V and an open subset of L(Rk, V ) with a subspace of dimension dim(Fk(V )) =

kn. In other words, Fk(V ) is the projective geometry of V and its quotient space

generates the Grassmannian space.

Proposition 2. Let V be a linear subspace and V ⊥ its orthonormal projection. Let

UA be a set of all projections PV ⊂ V through a map U = v + Sv. Then UA lies in

L(V,E), if a linear isomorphism T ∈ π−1(UA) exists.

.

Proof. If there is an open subspace in the Grassmannian Gn−k, then the following

holds

U = {E ∩ V ⊥ = {0}} (4.4)

U(S) = {v + Sv : v ∈ V } : v 7→ (v, S(v)) (4.5)

94



where a subspace S ⊂ V ⊕ E. This implies that S ∩ E = {0}. Lets define two

projections PV ′ : V
′ 7→ V and PV : V 7→ V

′
where PV (v) is related to PV ′ by the

expression

PV (v) = (PV ′ )
−1(v)− v (4.6)

. Given UA a set of all projections PV ⊂ V , there is a linear isomorphism T ∈
π−1(UA) and a projective geometry FK(v) = π−1(UA) where π−1 is an invertible

function. Then it follows that the intersection of T and the biadjacency A is trivial

that is π(UA ∩ A = {0}, if the function π can be inverted and if a map f(T ) =

0. For v ∈ V , it is assumed that the k dimensional subspace is equivalent to its

transformation for some v
′ ∈ V that is v + S(v) = v

′
+ S

′
(v
′
). It follows that

v − v′ = S
′
(v
′
) = S(v) ∈ E ∩ V ⊥ = {0}, =⇒ S(v) = S

′
(v
′
) (4.7)

. Concatenating the linear isomorphism T with the projections PV ′ and PV , results

to

fT (v) = (PV ′ ◦ T ) ◦ (PV ◦ T )−1∀v ∈ V (4.8)

and if f restricts S = S
′

on L(V,E) then it becomes

fT : π−1(UA) 7→ L(V,E) =⇒ PV (v) = (PV ′ )
−1(v)− v = v + Sv (4.9)

. This results to

PV (v) = Sv (4.10)

fT (v) = (PV ′ ◦ T ) ◦ (PV ◦ T )−1 = idV,V ⊥ (4.11)

4.3 Extending the theory on Non negative Grass-

mann
In this section, the totally non negative Grassmann would be illustrated

using Tanner graph like constructions by transforming it from its planar structure

to non-planar structure. This can be seen as intersecting the theory of distance

transitive graph and coding theory based on the framework of Grassmann variety.

First, the concept of boundary measurement maps is redefined and thereafter, a log-

ical breakdown of how this map can be represented as a binary matrix is presented.

The boundary measurement maps are designed as a mapping or transformation of

vertex set in a planar bipartite graph to edge weights defined as a set of vertices in a

cell in the Grassmannian graph. Given a set If ⊂ I, removing an element from the

set, an embedding can be constructed from the bipartite to the Grassmannian as
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Grk,n(R)→ RP

(
n

k

)
−1

which forms a gauge transformations expressed as a function

of matroids Meas : R>0 → Grk,n(R) where Grk,n(R) is k planes on an n-dimensional

space which is not affected by the ratios of k × k minors of a k × n code. Further-

more, an arbitrary edge function is selected such that e : u→ v and if the vertex is

coloured, another edge function is selected such that e
′

: v → w by maximum rev-

olution. Depending on the coloring, this maximum revolution can be clockwise or

anticlockwise. This maximum revolution induces self intersections through the path.

The boundary measurement can be defined as as Mij =
∑

P :e→e′ (−1)wind(R)wt(P, y)

where the factor (−1)wind(R) is bound by the number of connection between sources

to the planar bipartite graph which is made up of n external nodes of perfect orien-

tation and k sources of perfect orientation. wt(P, y) is the weight of the path.

The planar bipartite graph structure with perfect orientation[11],[12] would

be employed to buttress the idea. This is shown in Figure 4.1 and Figure 4.2. First,

the planar bipartite graph is transformed into non-planar bipartite graph taking

note of the sources and external nodes while labelling them accordingly for conve-

nience purposes. If the row and column are of the same node, the code entry is

set to 1, if there is no path connecting the nodes, the map code entry is set to 0.

Finally, the condition in literature is modified to support the objective of the idea

by stating that if there is a negative sign then the entry is set to 0 and set to 1 if

otherwise. Consequently,a boundary measurement mapping A and B produces the

Grassmannian Gr>0(2, 4) and Gr>0(2, 6) respectively which is constructed using the

flows as regards to whether it is clockwise or anticlockwise as follows;

A =

[
1 0 −t+ x −(y + xzt)

0 1 y zt

]
=⇒

[
1 0 0 0

0 1 1 1

]
→ Gr>0(2, 4)

(4.12)

The same procedure is extended to B as well

B =

[
1 1 0 0 0 0

1 0 0 0 1 1

]
→ Gr>0(2, 6)

(4.13)
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Figure 4.1: Non planar bipartite graph with perfect orientation containing 2 bound-
ary vertices, 2 external nodes and a face transformed to its non planar structure

Figure 4.2: Non planar bipartite graph with perfect orientation containing 2 bound-
ary vertices, 6 external nodes and 9 faces transformed to its non planar structure

The dimension of the Grassmanian parameterized from Gr>0(2, 4) is given as 4, then

the number of boundary vertices k is computed as follows k(n− k) = 4; k = 2 while

that of the Grassmannian parameterized Gr>0(2, 4) is given as 6, then the number

of boundary vertices k is computed as follows k(n− k) = 6; k = 2

For a set I = {1, 2} and a minor J = 2, 6,a modified Plücker coordinate

for ∆2,6 can be computed as follows
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∆26 = f/g =
(1b+ C2)(1b+ ab)

1 + C2
(4.14)

4.4 Solution using Plücker coordinates
In this section, the concept of solving the syndrome decoding problem in

the Grassmann metric using Plücker coordinates is presented.

Let C ⊂ G+
r (n, k) ∈ F k+l

2 be a code associated to the totally non-negative

Grassmannian with a generator matrix G ∈ F
(k+l)×l
2 and a subset of the matroid

space Mat. Therefore, we have the matrix

G =


g0 g1 g2 . . . gn

gq0 gq1 gq2 . . . gqn
...

...
... . . .

...

gq
k−1

0 gq
k−1

1 gq
k−1

2 . . . gq
k−1

n

.

The element of the Grassmannian are the Fq linear span of the columns

of the generator matrix which contains the subspace V = 〈gi, . . . , gq
k−1

n 〉 ∈ Rk and

the Fq linear span of the rows of the generator matrix contains the subspace U =

〈gi, . . . , gn〉 ⊂ Rn. The subspace V represents the isomorphism space while the

subspace U represents the syndrome space. By employing Gaussian elimination and

taking an instance of the boundary map τ ∈ b, the code is lifted to C
′

= τ(C)

with generator matrix G
′

in row echelon form G
′

=

(
I l Ol H

′

On−k−l In−k−l H
′′

)
where

H
′ ∈ F

(k+l)×(k+l)
2 ,H

′′ ∈ F
(2k+l)×(k+l)
2 are formed with pivot columns of dimension

k + l and 2k + l respectively. In addition, In−k−l, I l are identity matrices of size

n − k − l and l respectively. 0n−k−l, 0l are zero matrices of size n − k − l and l

respectively.

The identity matrix Iu and the zero matrix OV are both restricted to

n − k − l Plücker coordinate positions, IU =

[
I l

In−k−l

]
and OU =

[
Ol

On−k−l

]
.

The matrices IU and OV are permutated by the parity check matrix H as fol-

lows IUH =

[
H
′

I l

H
′′

In−k−l

]
and OVH =

[
H
′

Ol

H
′′

On−k−l

]
. Furthermore permutation

with error vector x to both matrices where x is generated by k + l entries results

to IUHx
T =

[
H
′
x
′T + x

′′T

H
′′
x
′T + x

′′T

]
and OVHx

T =

[
H
′
x
′T

H
′′
x
′T

]
. Concatenating the matrices

becomes
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IUOVHx
T =

[
(H

′
x
′T .H

′
x
′T ) + (H

′
x
′T .x

′′T )

(H
′′
x
′T .H

′
x
′T ) + (H

′′
x
′T .x

′′T )

]
(4.15)

let s = (s
′
, s
′′
) be the pivot of the syndrome then we have

IUOV s
T =

[
H
′
x
′T +Ol

H
′′
x
′T s

′
+Ol

]
=

[
H
′
x
′T

H
′′
x
′T s

′

]
Consequently, Plücker coordinates ∆I,J(G) with size k + l for H

′
are cho-

sen and another Plücker coordinate ∆I,J for H
′′

where I = {i1 <, . . . , < ik} are k

elements of G in monomial order. Thereafter, cycle shift to the columns of H
′

are

implemented. Consequently,indices i ∈ I is removed to form a basis of the subspace

V
′
= 〈g2, . . . (−1)k−1gq

k−1

n , g1〉. The process is repeated for the columns of H
′
to form

the basis of the extended subspace U
′
= 〈g2, . . . , gn, gi〉. A linear combination of the

the k − 1 columns of the subspace V
′

will form a vector τ(V
′
) and a linear combi-

nation of the n columns of the subspace U
′

will form a vector τ(∆U ′ ) with a pivot

centered around τ ∈ b. τ(V
′
) + τ(∆U ′ ) is added. Finally, the Grassmann weight is

checked if it satisfies the distance criteria d(V
′ ∩ U ′) ≤ w − n+ k − 1 and the algo-

rithm terminates if it does. if the condition is not satisfied, the process is repeated.

It can be said that if the cyclic shift is applied, I becomes I
′
. The Gaussian de-

composition operation is a function of the ordering of the Plücker coordinate vectors.

Let ∆B(k,n) be the Plücker coordinate of all subspaces with restriction in

the first k Plücker coordinates g1, . . . g
q2k−n

k . The k × k minor ∆B(n,k) of the gen-

erator matrix G
′

is the set of k Plücker coordinates in G+
r (k, n). The instance of

the boundary measurement map is validated by the adversary on the condition that

∆B(n,k)(G) 6= 0. It can be said that B(k, n) which is the bounded affine permutations

constitute the set of information sequences. The instance of the boundary measure-

ment map can be represented by a Vandermonde matrix such that the Plücker

coordinate is the column set of In−k−l ∈ G′ . Afterwards, the adversary selects an

arbitrary subspace V with basis V = 〈0, v1, . . . vk+t〉 ⊂ C
′

and choose the codewords

with minimum weight w ≤ q
k(k−1)

2 . Finally, the Adversary checks if d(U ∩ V ) ≤ w

and stops. By induction, it can be seen that there are q
k(k−1)

2 .

[
k

r

]
q

ways of choosing

the basis of the subspace V and q
k(k−1)

2 .

[
n− r
k − r

]
q

ways of choosing subspace U .The

proof of this claim is presented in Theorem 3. Therefore the probability of guessing
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correctly the error free Plücker coordinates is given as

[
n− r
k − r

]
q[

k

r

]
q

.

4.5 Bounds on Enumeration
In this section, bounds on the probability of enumeration of the basis of

a lifted codeword V
′ ∈ V an element of the syndrome space and a lifted codeword

U
′ ∈ U an element of the isomorphism that is a subset of the Grassmannian space in

order to find the coordinates that indexes the elements of the vector with a minimum

distance up to a Grassmann weight w are presented. In proposition 3, the bound on

the Grassmann distance that is close to the distance of the error vector is derived,

given subspaces U and V and a projection Pv that represents the isomorphism.

Proposition 3. Let U, V ∈ Fqm. As q 7→ 1 and defining a map Pv : F n
q 7→ F n−1

q /V
′

then d(U, V ) ≤ 2q
[ n
k

]
q

Proof. Given k dimensional subspaces U, V of Fqm , the Grassmann distance is given

as d(U, V ) = k − dim(U ∩ V ). For vector spaces over the same field, there exist

dim(V ∩G) = dim(V ) + dim(G)− dim(V ∪G). Therefore it follows that

d(U, V ) = k − (dim(U) + dim(V )− dim(U ∪ V )) ≤ k − (k + k − (k − r) = r where

r is the rank of the representative matrix. Given a subspace with dimension k,[
n

k

]
q =

k−1∏
i=0

qn − qi

qk − qi
, and selecting a k − 1 dimensional subspace V

′
of F n−1

q , the

goal is to construct an arbitrary k dimensional subspace such that V ∩ V ′ = {0}.
A basis v ∈ V

′
, given as v

′
= {v1 < . . . vk−1} ⊂ N of a linear map defined as

Pv : F n
q → F n−1

q /V
′

is chosen to construct a bundle φ−1(1) = V . If dimV
′

= r,

then the number of bundles is equivalent to the number of enumerated basis of size

{1, . . . , n− k} over Fq which is qn−k. This results in the identity

[
n

k

]
q

=
k−1∏
i=0

qn − qi

qk − qi
=

[
n− 1

k

]
q

+qn−k
[
n− 1

k − 1

]
q

(4.16)

(4.17)
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It follows that for 0 < k < n, it becomes

≤ qn−1 − 1

qk − 1
+ qn−k.

qn−1 − 1

qk−1 − 1
≤ qn−1 − 1

qk − 1
+

(qn−k)(qn−1 − 1)

qk−1 − 1
(4.18)

Using a generalized identity [153] and doubling the right hand side of Equation

(4.18), vectors except one of the q multiples of v can be computed as[
n

k

]
q

=
k−1∑
i=0

q(n−k)(k−i)
[
n− i
i

]
q

≤ (4.19)

k−1∏
i=0

qn−i+1 − q
qi − 1

(4.20)

factorize q based on cardinality [154] Equation (4.12) becomes
k−1∏
i=0

q
qn−i − 1

qi − 1
(4.21)

Remark 1. It can be seen that the error codewords can be formed by evaluating the

monomials qn−1 with degree at most given in (4.21).

Lemma 10. The basis of the intersection of given subspaces U and V , induces a

subset in ∆I(G) that is linearly independent .

Proof. The minimum distance of the total path of the subset is equivalent to the

Plücker coordinate of the Grassmannian in projective space. Given a permutation

fx(i) = min{y ≥ i/vi ∈ span{vi+1, vi+2, . . . vj}} where vi are the columns of the

arbitrary space of S, taking basis {vi+1, vi+2, . . . vj}} and extend it to U ∩ V as

follows vi+1, vi+2, . . . , vj, ei−m+1, . . . , ei and {vi+1, . . . , vj, fi−m+1, . . . , fk} through the

path of the disk divided by a face f ∈ U then, P = {ei−m+1, fi−m+1, . . . , ei, fi} which

forms a basis. The Plücker coordinate now becomes ∆I(G) =
∑∏

Pi
wt(Pi), which

implies that ∆I(G) divides the vertex set ∆I indexed by I an identity matrix such

that each elements e ∈ E and f ∈ F induces a subset in ∆I(G)

It is necessary to use the analogy of section 4.3 to support the proof of Lemma 10.

Theorem 5. The probability that k dimensional subspaces with a minimum dis-

tance dmin has qi(i−1)/2 codewords in the Grassmannian Gr is bounded by brk ≤

qi(i−1)/2

[
n

k

]
q.
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Proof. Intersecting k dimensional subspaces to k + 1 dimensional subspaces with a

minimum distance dmin will give the the isomorphism that maps of a point within

a sphere that meets the Gilbert-Varshamov bound from the planar bipartite graph

G to non-planar Grassmannian Gr, if k + 1 ∈ I. For k 6∈ I and with Plücker

coordinate given as ∆I(G) = ∆I(Gr) +w∆I −{k+ 1} ∪ {k}(Gr). This implies that

∆(I {r})∪{k} = (−1)tbrk ≥ 0 where t = |I ∩ [ w + 1, k − 1] |. This results in the

probability given as

(−1)i
i∏

j=1

qj−1qm− i+ 1− 1

qi − 1
= (−1)iqi(i−1)/2

[
m

i

]
(4.22)

Remark 2. It can be seen from Theorem 5 and by induction that this probability

depends on the the set that contains m−i elements of the syndrome space containing

codeword spanned by the basis of subspace V . Iterating over this set increases the

probability that there are qi(i−1)/2 neighbours in Gr for 0 ≤ r ≤ D where D is

the maximum rank. Also, each row operation of the Gaussian elimination process

preserves this probability.

Given lifted codewords C1 and C2 with rank k1 and k2 respectively. C1 and C2 have

subspaces V and U with basis V = {v1, . . . , vk1} and U = {u1, . . . , uk2}. The the

product of the spaces is bounded by 〈V U〉 ≤ k1k2 where k1 and k2 are the dimen-

sions of the support of V and U . If k1k2 < m then there exist a probability that the

dimension of this support is Pr(dim〈V U〉) < k1k2 ≤ qk1k2

qm
.

Corollary 1. If the basis of a permutated codeword V
′

is random and the basis of

a permutated codeword U
′

is fixed, then the probability that a projective space Pu

and V
′

generates a random support with dimension k1 is at least 1 − k1
qk1k2

qm
where

dim〈V ′Pu〉 = k1k2.

Proof. There exist a codeword C ∈ Pu where Pu is a space and C /∈ Fq. Given

dim〈V ′P 2
u 〉 = k1k2 and a vector x ∈ 〈U ′V ′〉 with x /∈ V ′ then the product CPu is an

element of the space Pu.

Theorem 6. Let V
′

be a subspace generated by a basis with dimension k1 and U
′

is

a subspace generated by a random basis such that the dimension k
′
2 = k

′
1(1− k2). If

V
′ ∪ 〈U ′V ′〉 = β then its probability of enumeration is given as 1− k2

q2k1k
2
2+k2(k2+1)

qm
.
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Proof. Let ∩iβ−1
i s = V

′
, then V

′ ∪ 〈U ′V ′〉 = β where 〈U ′V ′〉 is the product of the

space with basis V
′

and U
′

and which generates a new basis β. If V
′

is random

the dimension becomes k
′
1k2 − k2 = k2(k

′
1 − 1). Therefore, a random space with a

basis U
′

has a dimension k
′
2 = k

′
1(1− k2) as given. If 〈U ′V ′〉 ∩ 〈U ′V ′〉−1 = V

′
such

that the dimension of a fixed basis U
′

is given as dimU
′

= dim(k2) + U
′
β−1, then

it becomes equivalent to k2(k2+1
2

+ U
′
β−1. Multiplying both sides by 2 results to

k2(k2 + 1) + 2k1k
2
2 with the given probability

Remark 3. It can be seen from Theorem 6 that the probability scales with increase

in the k2 positions permutated by the enumerator.

Theorem 7. Given U, V ∈ Gr(n, k) and d(U, V ) = dim(U) + dim(V ) − 2dim(U ∩
V ) = k− r where k is the dimension of the subspace and r is the rank with integers

l, p,m then the bound from the Gaussian coefficient on d(U, V ) given by[
n

k

]
q

=
∞∑
k=0

q
k(k−1)

2

(1− q)(1− q)2 . . . (1− qk)
.

[
n− r
k − r

]
q

.

[
r

k −m

]
q

.

[
k

r

]
q

(4.23)

Proof. Starting with a basis for U , B1 = (e1, . . . , em), picking randomly linearly

independent vector xUi ∈ U . Then a coordinate of xUi is accessed by permutation

and replaced to produce a new basis for U after repetitive iterations to give B1 =

e
′
1, . . . e

′
m, xU1 , . . . xUk . The count is updated as

CountU =

Ui−1∏
k=0

qk =

Ui∑
k=0

q
k−1

2

(
n

k

)
q

. (4.24)

The process repeats for subspace V with basis B2 = (f1, . . . , fm). Random linearly

independent vectors yVi ∈ V are selected and yVi is permuted for coordinates. This

is replaced to produce a new basis for V after repetitive iterations to give B2 =

f
′
1, . . . f

′
m, yV1 , . . . yVk . The count is updated to yield

CountV =

Vi−1∏
k=0

qk − qk−r =

Vi∑
k=0

q
k(k−r)

2

(
k

r

)
q

(4.25)

Finally, starting with a basis for the intersection of the subspaces, U ∩ V , B3 =

(g1, . . . , gm), random linearly independent vector zi ∈ U∩V are chosen to generate a

new basis after repetitive iterations which are given as B3′ = (g
′
1, . . . g

′
m, xU1 , . . . , xUk)

and B3′′ = (g
′
1, . . . g

′
m, yV1 , . . . , yVk). Sampling an integer li ∈ L where L = Vect(xU)
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and pi ∈ P where P = Vect(yV ) and updating the count results to

Count∗ =

Ui−Vi−1∏
k=0

qk − qk−r+t − qk−r+p =

Ui−Vi−1∑
k=0

q
k(k−r)

2

[
n− r
k − r

]
q

. (4.26)

[
r

k − t

]
q

.

[
k

r

]
q

The bound can be computed from the total of the counts as, Count = CountU +

CountV +Count∗. It follows that U = span{gi, xUi}, V = span{gi, yVi} and U ∩V =

span{gi}

Corollary 2. Let the linear parity check equation of a lifted Grassmann code with

basis αij be H
′
xT =

∑n
l=1

∑k
j=1 αijH

′

lVj = 0, there exist a probability

Pr(U ∩ V ) =

q
k−1

2

(
n

k

)
q

q
k(k−r)

2

(
k

r

)
q

∝ q
k(k−r)

2
(n−k) (4.27)

with complexity O( (n−k)2

2
q
k(k−r)

2
(n−k)).

Theorem 8. if the dimension of the vector space ∀d ≤ 2, then the number of

monomials to be evaluated by the enumerator is given by
∑d

α=1

(
n

l

)(
α

n

)d(
1 −

α
n

)n−l
xd .

Theorem 8 gives a closed form expression for the average number of itera-

tions and the proof is given in Appendix C.

4.6 Experiment on failure probability and cost of

enumeration
In this section, we test the failure probability of enumerating these basis

and compare the results with code that employs the hamming metric. It is also

important the algorithm runs with as much sets as possible to make the iteration

process smooth and efficient. Data collection through simulations had an impact

on the memory of the Computer used. In these experiments, an AMD Ryzen 3

2200U laptop was used with Radeon Vega Mobile Gfx graphic card. The processor

speed of the computer was 2500MHz with 2 cores and 4 logical processors. The
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clock speed was 2.5GHz. Due to the limitation of the memory, the experiments

were conducted with little amount of code sizes. However, these experiments can

be scaled up without much impact on the fidelity of the result obtained.

4.6.1 Probability of failure
In this section, the results of experiments on the probability of failure while

finding codewords of minimum distance are presented. The implementation [155]

was optimized for this purpose. Theoretical analysis on the comparison between

codes from the Grassmann and Hamming metric has been studied [147]. This thesis

goes further by experimentally analysing the implication of this comparison on the

security of a code based cryptosystem. The importance of this property on semantic

security based on Indistinguishability using a Chosen ciphertext attack cannot be

overemphasized. This is due to the presence of negligible error patterns in the re-

ceived word. The lower this probability, the higher chance of the quantum adversary

to distinguish between random instances of the ciphertext. In this experiment, the

number of coordinate sets is given as 2l for each level of security under investigation

where l is the size of the set. For 128-bit security level, it becomes 32, 768 and the

result is shown in Figure 4.3. For 256-bit, the number of coordinate sets becomes

1048576 and the result is shown in Figure 4.4. For 512-security level, it becomes

33, 554, 432 and the result is shown in Figure 4.5. Finally, for 1024-security level, it

becomes 1073741824 and the result is shown in Figure 4.6. The standard deviation

of the distribution σ for all security levels is varied from 0.30 to 0.85 for cryptog-

raphy purposes. To compute the amount of Gaussian elimination operation carried

out, the formula 1
2
(n−k)k2 is used. This is shown in Table 4.1. This formula relates

the number of coordinate sets to the Gaussian decomposition operations. It can be

seen from Table 4.1, that the number of rows to be reduced increases as the security

level increases. This is due to size of the coordinate set for each security level which

is bounded by n− k. The reason for this, is to limit the frequent failure of the algo-

rithm due to the probabilistic approach of permutating the columns. However, this

comes at a great computational cost. From the result shown, It can be seen that the

failure probability of the Non-negative Grassmannian code is smaller than the fail-

ure probability of the LDPC code. The implication of this is that the Non-negative

Grassmannian code based cryptosystem is more secured than the LDPC code based

cryptosystem under the IND-CPA(Indistinguishability under the Chosen Plaintext

Attack) model. This is because in the IND-CPA model, the probability error must
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be negligible in order for the probability polynomial adversary to find it hard to be

able to distinguish a message symbol sampled from a theoretical distribution from

that sampled from an arbitrary distribution. In Figure 4.3, at a standard deviation

of 0.50, the failure probability of the Non-negative Grassmann code is less than that

of the LDPC code by 1.18 percent, In Figure 4.4, at a standard deviation of 0.50,

the failure probability of the Non-negative Grassmann code is less than that of the

LDPC code by 3.23 percent. In Figure 4.5, at a standard deviation of 0.50, the fail-

ure probability of the Non-negative Grassmann code is less that of the LDPC code

by 2.34 percent. Finally in Figure 4.6 at a standard deviation of 0.50, the failure

probability of the Non-negative Grassmann code is less than that of the LDPC code

by 3.17 percent. As the security level increases, the probability that k subspace has

qi(i−1)/2 connected subspaces increases which induces some level of randomness on

the choice of Plücker coordinates and in the process expanding the probability that

a zero error pattern is contained in the syndrome space. This can be seen in the

reduction in the error floor as the security level increases.

Table 4.1: Row reduction operations as a function of Security level
Security level Row reduction

128 131072
256 1048576
512 8388608
1024 67108864

Figure 4.3: Probability of failure for 128-bit security, security parametr l = 15
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Figure 4.4: Probability of failure for 256-bit security,security parameter l = 20

Figure 4.5: Probability of failure for 256-bit security,security parameterl = 25
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Figure 4.6: Probability of failure for 1024-bit security, security parameter l = 30

4.6.2 Cost of Enumeration
The experiment continues in this section were the implementation [156]

was optimized to test the cost of iterating over the rows of the code with increase in

code length. The results are presented in Figure. 4.7 for finite field of characteristic

2 and in Figure 4.8 for a finite field of characteristic 2 and extension 2. The result

shows that the cost of iterating over rows of the Non negative Grassmann code is

higher than of the LDPC code with increasing code length. At a code length of

n = 100, the cost of row operations is higher by 5.81 percent. This shows that Non

negative Grassmann code based cryptosystem is stronger against ISD attack than

LDPC code. This is good for Post quantum security. In Figure 4.8, the field size was

extended by 2 and a difference of 29.4 percent was recorded. The huge difference

is a result of the large size of the coefficients of the polynomial linear equations

with variable q, the field size which in turn increases the size of the basis of k + 1

subspaces of dimension n = 1.

Quantum security can be obtained by dividing the security bits by 2. This

implies that for 128 bit security, the equivalent quantum security is 56 bits and in

order to make the density of the syndrome close to 1, the parameters must satisfy the

conditions specified by Bernstein et al [157]. The data size and computational time

are linear in logq while the complexity of combinatorics are polynomial on q making

it difficult to break the encryption key. The decoding error with failure probability

is equivalent 1

ql
′−2wr+1

[158] and the key size increase inversely to an increase in the
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Figure 4.7: Cost of row ISD operations,field size q = 2

Figure 4.8: Cost of ISD row operations,field size q = 22
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probability of the decoding failure. In the presence of cyclic vectors, classical attacks

makes it possible to obtain the Plücker coordinates of the permutated codewords.

In Table 4.2, proposed parameters are presented for code in the rank metric where

n is the code length, k is the code dimension, m is the degree of extension field,

q is the prime, w is the error weight which is compared to other parameters from

related works. The works compared in the table were variants of ISD employed in

cryptanalyzing Code based cryptography in the rank metric. From the complexity

derived from Theorem 3 and Remark 2, it can be deduced that the complexity of the

ISD decomposition on the input of the proposed parameters is 223 which is below the

claimed security level of 2128. This proves that the complexity of using the Plücker

coordinates depends on the minimum distance as derived from proposition 2.

Table 4.2: Comparison with Parameters in the Rank metric
n k m q w Security
67 7 89 2 5 128 [159]
100 80 96 2 5 192 [158]
100 80 96 2 5 192 [69]
67 22 71 2 11 133 [160]
110 7 18 2 12 128 proposed parameters

4.7 Generalizing from the Shortest Vector Prob-

lem
The syndrome decoding problem can be transformed to an instance of the

shortest vector problem. In this case, the shortest vector is the vector with the small-

est weight that produces a syndrome in a code. The enumeration process of finding

this vector is transformed to decoding the vector using the probability distribution

of the vector. It is assumed the vector is transmitted through a communication

channel. In this section, the probability distribution of the coordinate positions are

modelled using copula functions. This analogous to the weight distribution property

used in Information set decoding to analyze different coordinate positions in order

to find the minimum weight vector. The assumption is that the vector with the

minimum weight vis a vis distance must also have the lowest probability of being

decoded for all instances. Consequently, the probability of failure results obtained in

the previous section depends on the probability distribution of the random vectors

of the generator matrix of the code. There is the possibility of linking the theory

of probability with the weight finding problem of the syndrome decoding problem
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which would be a focal point for future study. This stems from the dependency be-

tween coordinate positions with various weight distributions. Here, the probability

of either failure or success depends on the probability distribution of the columns

with the weight distribution of the vector that solves the problem. The elements

of the Non negative is assumed to be dependent and also sampled from a Gaussian

distribution. In order to estimate the distribution of the coordinate positions, cop-

ulas are employed. The disadvantage of using Markov chains is because the sum

over all transitional probabilities is not adequate to estimate the dependence of the

positroid cells of the Non-negative Grassmann code. However, in experimentation,

Markov chain are used for comparison. From research carried out, the probability

distribution of graph based codes cannot be neglected in analyzing its usefulness

for cryptographic purposes. The tail dependence coefficient is uniformly distributed

and if the Legendre measure λu = 0, then the component are independent. The

partial derivatives of the marginal cumulative distribution acts as a function of the

elements of the transformation. This results in the product of the copula density and

the marginal probability density function of the positive Grassmannian cells given as

∂F (x1, . . . , xn)

∂(u1, . . . , un)
= (4.28)

∂nC(x1, . . . , xn)

∂(u1, . . . , un)
×

n∏
i=1

fi(xi)

Families of copulas are defined based on the underlying distribution vis a vis stan-

dard multivariate normal distribution. This is defined by a correlation matrix RG

denoted as follows C(φRG(x1), . . . , φRG(xn)) and given by

C(φ(x1), . . . , φ(xn)) =

1

(2π)
n
2
√
|Σ|

exp(−x
T x

2Σ
))∏n

i=1
1√
2π

exp(−x2
i

2
)

= (4.29)

1√
|Σ|

exp(−1

2
xT (R−1 − I)x)

Given 2 distributions, the divergence can be modelled using Kullback Leiber diver-

gence as [17]

KLD(f(x;φ1)||g(x;φ2)) =
d∑
i=1

KLD(fi(xi;φi,1)||gi(xi;φi,2))+ (4.30)

0.5(Trace(Σ−1
2 Σ1 + log

|Σ2|
|Σ1|
− d)
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The properties of copula can be defined as follows; if there exists k ∈ {1, . . . , n} such

that the component of the transformation at the kth position is equal to zero, then

C(u) = 0. This is for all component of the transformation sampled from a uniform

distribution. Also, if all the components of the transformation are approximated

as unity, except the kth position, then C(u) = uk. Finally if each component

of the transformation in the kth position is increasing, then C(u) increases by an

equal amount. Furthermore, the conditional posterior distribution of the marginal

of the syndrome space in the rank metric is given as fx/y(x1, . . . , xn) =
∏m

i=1 fyi/x×∏n
i=1 fxi/xi where Hij 6= 0,∀E = 0 and

∏n
i=1 fxi/xi is the independent realization.

By exploiting the dependency between subspaces as shown in Figure 4.9, copula

function can be applied to approximate the joint distribution of the coordinate

positions. The following lemma supports this idea;

Lemma 11. Given quotient space of the projective geometry as Pv, FK(v) is or-

thogonal to the support of the copula sup(C), if there exists a Legendre measure λn

that is stochastic based on the magnitude of the copula function.

Figure 4.9: Dependency modeling of subspaces given a basis with span 〈xU〉 and
〈yV 〉 using Copula functions

Proof. Given a subset, FK(v) ⊆ Rn+m such that λn(PV (G ∩ F )) = 0, for some

subspace F , then we have PV (G ∩ F ) ⊃ PV ′ (G ∩ F ) = {0}. ∃ a subspace V ⊆
Rn such that PV (V ∩ F ) ⊆ U where U parameterizes the Grassmannian space.

Consequently, the copula is defined as the function that characterizes the dependency
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as C = CU,F . This implies that the volume that spans the copula, V ol(C) = P (U ∈
PV (FK(v) ∩ F ) = P ((U, F )) ∈ FK(v) where λn << V ol(C), if n ≥ 2. By definition,

supp(C) ⊆ F [161] which follows that for a subspace E, λn(PV (V ∩ F )) > 0. This

implies that FK(v) ∩ suppC 6= 0

From the above proof, it can be concluded that if FK(v) ∈ UA such that

λ(PV ′ (FK(v))∩supp(C)) = 0 is satisfied, then for a random point of the Grassman-

nian, x 6⊂ supp(C). The dependency property states the intersection cannot be a

subset of the k − 1 dimensional projection orthornormal to the subspace V .

The conditional distribution would be utilized as a smoothing function to

find the coordinate with zero error positions.

ζ(x(k)) = Ey/x,x̂ ln f(x; x̂, P (y/x) = −n
2

ln |x̂|{Tr[R−1
G − I]+ (4.31)

P (y)

∫
exp Trace

(−1
2
yTx(SNRI − vx(1− π))y)−1

−1
2
yTy + 1

2
yTxxTy + ||π||2

dπ(x)}

and update on the kth position is given by

x̂(k+1) = x(k) + ∆k(

∫
f(x; x̂)dπ(x)) (4.32)

if the corresponding message is proportional to the conditional probability defined,

each update in the iteration process leads to a better approximation of the coordinate

with zero error positions. If x̂k+1 ≥ xk+1 the copula monotonically reaches a point

of convergence to its global maxima.

4.7.1 Distribution estimation
The approach in this paper by Gohary [13] was adapted to approximate

the conditional distribution. This was done by estimating the reliable positions

that maximizes the probability of estimating the codeword through splitting the

generator matrix . By splitting the matrix, the upper triangular structure contains

the information that enables the location of coordinate positions of minimum dis-

tance. With an arbitrary reference point, the distance between the positions that

maximizes the conditional distribution is computed. The probability of avoiding de-

coding failure is if the codewords with minimum distance is within a bound Q̂i− Q̂j

where Q̂i and Q̂j are the chosen threshold values. By employing Cauchy Schwartz

inequality, the probability that the codewords is within the subspace can be com-

puted as follows;
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Given a set of codewords {Xi}i=1 generated by h0 = ÊS−
1
2ωo, then we have

||ωl − xl|| = ||ωl − ÊS−
1
2ωl|| ≤ ||(I − ÊS−

1
2 ||||ωl|| ≤ (4.33)

max{|1− Ê

Q̂i

|, |1− Ê

Q̂j

}

It is proposed in this thesis that the optimal values of Q̂i and Q̂j contain

the codewords that maximizes the conditional distribution. The conditional distri-

bution of y with respect to x as a function of projection πT is given as follows

P (y/x) = P (y)

∫
exp Tr

(−1
2
yTxxTy(SNR

−1dπ(x))

−1
2
(y − x)T (y − x) + ||π||2

= (4.34)

P (y)

∫
exp Tr

(−1
2
yTx(SNRI − vx(1− π))y)−1

−1
2
yTy + 1

2
yTxxTy + ||π||2

The codeword that maximizes the probability of decoding success can be found by

solving the equation

x̂ = arg min Tr(−1

2
yTxxTy + ||π||2) (4.35)

where π = H(H
′
S−1
NRH)y is the projection onto the column space of yT

Lemma 12. Given the decomposition of the received codeword y = QyR, the corre-

lation R is given by (XλXT + µrI) if I(X,R) = 0 and I(H,Qy) = 0,

Proof. It follows by induction that

R = X[µI + λ]−1 − Ĝ(λ)−1XT + λ)−
1
2 (4.36)

= XµrI +
Xλ

Gλ
−
√
XT + λ =

[XµI +X(G)−1 −XT ] + λ = ϕ+ λ.

where Ĝ is the orthonormal basis for R while λ is signal eigenvalue and ϕ is the

projection.

The projection onto column space defines a spherical ball with a radius

characterizing the projective distance. This can also be generalized to be the min-

imum distance between the reference point and the codeword close to it. This

codeword maximizes the distribution which can correct up to µ−1 errors where µ is

the radius. If the radius is large, the decoding failure occurs which results in finding

the codeword with the minimum distance inefficient.

Lemma 13. The probability of finding the coordinate positions for a received code-

word with minimum distance based on the expectation of the BIAWGN channel,
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if the nth central moment is about the mean of the distribution is given by µn =
x−µ
4µ
.e
−(x−µ)2√

4µ dx

Lemma 14. Given the syndrome, the probability of generating an output vertex is

bounded by the discrete analog of the derivative of the dimension of the vector space

∀d ≥ 2.

The proof of lemma 13 and lemma 14 is found in Appendices A and B

respectively.

Theorem 9. Given the marginals of the basis that span the subspaces U and V as

x =
[
x1 x2

]
and the correlation coefficient ρ, 0 < ρ < 1 sampled from a Gaussian

distribution in unit cube
[
0 1

]
, the bound on the probability density function of the

syndrome for the codewords is given by∫ ∞
−∞

N(ρx, 1− ρ2)dx =
1√

1− ρ2
exp

(
−ρ2x2

1 + 2ρx2x

2(1− ρ2)

)
. (4.37)

The proof is found in Appendix D.

4.8 Experiment
Bit error rate performance experiment was carried out to simulate the

probability distribution of the codewords of the Non negative Grassmann code

based on coordinate positions using copula functions. The probability distribution

of LDPC code using Markov chain for index sets and the probability distribution

of fountain codes using marginals from belief propagation was also simulated. The

simulations were carried out over 10000 Monte Carlo iterations. A bi-adjacency

matrix of size 32 and dimension 64 was used. The Constellation size M was in-

creased in steps of 5 to a maximum of 20. From the results, it could be seen that

increasing the size improves the error correction capability. Furthermore,it can be

observed from the plots that using marginals from belief propagation [162] has a

slightly better BER performance than the Copula based simulation. In Figure 4.10,

at a bit error rate 10−3, the BER of using marginals performs at 0.6dB better than

that of using copula. However, using copula performs within 0.4dB better than

using index set based Markov chains. This is due to the complexity of modeling the

dependency between the subspaces using the copula function. This also means that

the subspaces might not be dependent, however further methods of improving the

performance based on the dependence criteria might be considered.
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Figure 4.10: BER performance with constellation size M=5

Figure 4.11: BER performance with constellation size M=10
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Figure 4.12: BER performance with constellation size M=15

Figure 4.13: BER performance with constellation size M=20

In the first subset of coordinates with size k× k, the Bit error rate value is

directly proportional to the p columns of the lifted Non negative Grassmann code .

As the weight of the columns increases, the bit error rate increases. It can be seen

that the weight of the Non Grassmann code is higher than that of the fountain code

but slightly less than that of LDPC code. This is due to the presence of cycles in

the LDPC code. This weight translates to the weight of the vectors. In order words,

finding the smallest weight codeword depend on the bit error rate. The lower the
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bit error rate, the higher the probability of finding the lowest codeword and solving

the syndrome decoding problem.

4.9 Chapter Summary
The syndrome decoding problem as a computationally hard primitive has

been used in code based cryptosystem to secure information systems from quantum

based solutions. In this chapter, solution to the problem using Plücker set is gener-

alized to the Grassmann metric for codes associated with the totally non negative

Grassmanninan. To visualize the rows and columns of the parity matrix of the

totally non negative Grassmannian, a planar framework is employed. This planar

structure can be transformed to non planar structure which is akin to a Tanner

graph. The Boundary measurement mapping can be seen as gauge transformations

expressed as a function of matroids. To form this image, edge weights are selected

at random and grouped using a colouring function. The bounds on probability of

finding the vector coordinates with the smallest Grassmann weight using exhaustive

search of the basis by enumeration was presented. Consequently,the Generator ma-

trix was decomposed into positroid cells using Gaussian elimination to find linearly

dependent subsets of the Pl”̈ukcer coordinates with minimal non-zero coordinates

and in which the the maximal minor is totally positive. Finally, numerical results

presented showed that the Non negative Grassmann code had a low probability of

failure when compared with an LDPC code. This implies that the error floor of the

LDPC code is higher than that of the Non-negative Grassmann code. Also, for in-

crease in the code length, the decoding cost for the totally non negative Grassmann

code was higher than the LDPC code. This validates the notion that the Non neg-

ative Grassmann code in the Grassmann metric was more secure under the Chosen

ciphertext model when compared to the LDPC code in the Hamming metric. Due

to its robust security credentials, this code is recommended to construct future post

quantum encryption schemes.
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Chapter 5

Isomorphism of Polynomial

problem : Solution using New

Mersenne Number transform

5.1 Introduction
Isomorphism is defined as a vector space mapping that preserves the unique

mathematical properties of the space. A multivariate quadratic polynomial is de-

fined as a system of univariate equations and variables that lie in a base field or

an extension field. Isomorphism of polynomial problem is a computational hard

assumption employed in multivariate polynomial cryptography[23]. The compu-

tational hardness assumption of Multivariate polynomial cryptography lies in the

hardness of solving random non-linear multivariate quadratic equations over finite

fields. An instance of the multivariate encryption scheme using Hidden Field equa-

tion has been developed which employs a small field of characteristics 2 and a degree

extension m[22]. These schemes involves translating the multivariate polynomial to

a univariate polynomial over the degree m extension field in order to generate a

public key. The core quadratic map that makes up the public key is masked by two

invertible affine transformations over a finite field[22]. The system of equations in n

variables that make up the public key is constructed using functional composition

of the affine transformation with the core map. However, such polynomial systems

can be easily decomposed if the degree d of the core map is known[163]. Due to

its vulnerability to attacks, variants of the HFE have been developed which employ

layers of vinegar equations[88]. Unfortunately, the map of the variants suffers from
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the limitations of bijectiveness. This is because of the randomness of the affine

transformations which is bounded by the degree of the extension field. Due to the

bijective property of the map, it becomes difficult to invert. An injective map with

large codomain have been proposed as an alternative leading to efficient masking

and inversion . Techniques have been proposed to increase the codomain size of the

public key using specialized matrices with a large algebraic structure. This makes it

simple to hide the structure of the injective map[40]. Key recovery attacks exploit

the rank of the representative matrix of the quadratic form that make up the core

map. They also exploit the ease of inverting the injective affine map. The disad-

vantage of using affine transformation as a trapdoor that preserves the isomorphism

of polynomial problem is its ease of inversion (which makes the core map easy to

attack) and its density (which leads to increase in key size) [164].

In this chapter, an isomorphism is constructed using the orthogonal kernel

function of the New Mersenne Number transform[20] to hide the structure of the

core map. This process works efficiently for core maps from monic polynomial se-

quence with rational coefficients. Using functional composition of the New Mersenne

Number transform with the core map, the public key can be generated. Using the

New Mersenne Number Transform provides an efficient method of evaluating the n

coordinates of the core map which is the secret key of the multivariate cryptosys-

tem. It can be said that the multivariate polynomial is orthogonal if and only if

the polynomial is isomorphic. This is because the rank of the kernel matrix is equal

to the rank of its transpose. Also the kernel matrix is of full rank and is equal to

the dimension of the vector space. However, the reverse of the statement is not

always the case. The security of the isomorphism proposed in this chapter is based

on the orthogonality of the kernel matrix which makes it full rank. Furthermore, It

is shown that the Q-rank of the quadratic form is bounded by the rank of the kernel

matrix. This increases the difficulty of interpolating the coefficients of the core map.
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5.2 Preliminaries

5.2.1 Core Map
The core map is a multivariate quadratic map defined mathematically as

f1(x1, . . . , xn) =
n∑
i=1

n∑
j=1

f
(1)
ij xixj +

n∑
i=1

f
(1)
i xi + f (1)

o

f2(x1, . . . , xn) =
n∑
i=1

n∑
j=1

f
(2)
ij xixj +

n∑
i=1

f
(2)
i xi + f (2)

o (5.1)

...

fm(x1, . . . , xn) =
n∑
i=1

n∑
j=1

f
(m)
ij xixj +

n∑
i=1

f
(m)
i xi + f (m)

o

They can also be defined as a function of the coefficients and univariate monomials as

f1(x1, . . . , xn) =
∑

0≤i,j<n

αijX
qi+qj +

∑
0≤i<n

βiX
qi + γ (5.2)

...

fm(x1, . . . , xn) =
∑

0≤i,j<n

α
(m)
ij Xqi+qj +

∑
0≤i<n

β
(m)
i Xqi + γ(m)

where Xqi+qj are univariate monomials and Xqi is the Frobenius automorphism over

Fq.

5.2.2 Multivariate Quadratic problem
Definition 13 (MQ Problem). Given a polynomial f = f (1)(x1, . . . , xn), . . . , f (m)(x1,

. . . , xn) ∈ Fq[ x1, . . . , xn] where Fq is a finite field of size q and Fq[ x1, . . . , xn] is

a polynomial ring with m equations of degree 2 and n variables, the goal is to find

x̄ ∈ F n
q such that f(x̄o) = 0.

The MQ problem has proven to be NP-Hard for quadratic polynomials over

the field GF (2)[165]. If an invertible quadratic map is defined as F : F n 7→ Fm where

F ∈ F n
q , then two invertible affine transformations S : Fm 7→ Fm and T : F n 7→ F n

can be constructed to hide the algebraic structure of the map F . This map is a core

component of the public key. By employing functional composition the public key is

generated as Pk = S ◦F ◦T . Furthermore, constructing a canonical isomorphism of

vector spaces as φ : F n 7→ F n
q , F is transformed into a quadratic map. Consequently,
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this quadratic map is defined as F̃ = φ−1 ◦ F ◦ φ. The result is a public key with

the structure Pk = S ◦ F̃ ◦ T = S ◦ φ−1 ◦ F ◦ φ ◦ T : F n 7→ F n.

5.2.3 NTT
The Number Theoretic transform is a transform where the twiddle factors

are sampled from a finite field. Point wise multiplication of a polynomial f and a

polynomial g can be computed using number theoretic transform as

f.g = NTT−1ω(NTTω(f
′
) ◦NTTω(g

′
)) mod M (5.3)

where ω is the primitive nth root of unity. Furthermore, the primitive root of unity

can be written as ωn = 1 where gcd(ω, q) = gcd(N, q) = 1 and M is the modulo

of the polynomial. The modulo of the polynomial can assume any form. f
′

and

g
′

are transformed from a degree n polynomials to 2n degree polynomials defined

as f =
∑n−1

i=0 αiX
i where αi ∈ Fq . For a transformed polynomial the invertibility

probability is given as 1− q−n[166]. The primitive root of unity can be expressed as

ω = (a+ ib)
2m+1

N where a ≡ 22m−2
, b ≡ −32m−2

mod(2m−1) [167]. Furthermore, NTT

can be generalized to a set of integers of a finite field of q elements as follows[168];

Definition 14. If the modulo is given as q ≡ 1(mod2n) were n is a power of 2 then

Fq has 2n-th roots of unity ωi where i = 1, 3, . . . , 2n − 1 indexes the coefficients of

polynomials x− ωi ∈ Fq.

Example 1. Let an irreducible polynomial be given as 1 + 3x2 + 6x4 + 3x6 + x8,

where the highest degree is d = 8. A prime given as q = nk + 1 where k = 1 is

chosen. Zero padding the coefficients of the polynomial to length q − 1 results in

(1, 3, 6, 3, 1, 0, 0, 0). This is to make the reverse of the transform to be congruent to

the original array of coefficient with a given choice of nth root of unity. Selecting

the 8th root of unity in Z9. Consequently, the forward NTT is given by Equation

5.11, 5.12 and 5.13.
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20 20 20 20 20 20 20 20

20 21 22 23 24 25 26 27

20 22 24 26 28 210 212 214

20 23 26 29 212 215 218 221

20 24 28 212 216 220 224 228

20 25 210 215 220 225 230 235

20 26 212 218 224 230 236 242

20 27 214 221 228 235 242 249





1

3

6

3

1

0

0

0


≡9 (5.4)



1 1 1 1 1 1 1 1

1 2 4 8 7 5 1 2

1 4 7 1 4 7 1 4

1 8 1 8 1 8 1 8

1 7 4 1 7 4 1 7

1 5 7 8 4 2 1 5

1 1 1 1 1 1 1 1

1 2 4 8 7 5 1 2





1

3

6

3

1

0

0

0


=

(5.5)



14

62

62

56

56

86

14

62


≡9



5

8

8

2

2

5

5

8


(5.6)

To recover the array, the modular inverse is computed using Euler’s theorem [169]

where a−1 ≡ aq−2 mod q. The inverse NTT is applied with bit ordering. Removing

the extra padded bits recovers the original vector.
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7−1



1 1 1 1 1 1 1 1

1 2−1 4−1 8−1 7−1 5−1 1−1 2−1

1 4−1 8−1 1−1 4−1 7−1 1−1 4−1

1 8−1 1−1 8−1 1−1 8−1 1−1 8−1

1 8−1 4−1 1−1 7−1 4−1 1−1 7−1

1 5−1 7−1 8−1 4−1 2−1 1−1 5−1

1 1−1 1−1 1−1 1−1 1−1 1−1 1−1

1 2−1 4−1 8−1 7−1 5−1 1−1 2−1


(5.7)



5

8

8

2

2

5

5

8


≡9



1 1 1 1 1 1 1 1

1 2 4 8 7 5 1 2

1 4 7 1 4 7 1 4

1 8 1 8 1 8 1 8

1 7 4 1 7 4 1 7

1 5 7 8 4 2 1 5

1 1 1 1 1 1 1 1

1 2 4 8 7 5 1 2





5

8

8

2

2

5

5

8


≡9

7−1



7

3

4

6

1

0

7

3


≡9



1

3

1

6

7

0

1

3


≡9



1

3

6

3

1

0

7

1
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5.3 Key recovery attacks
In this section, key recovery attacks employed to recover the affine isomor-

phism are reviewed and in the process a multivariate quadratic polynomial cryp-

tosystem can be broken.

5.3.1 Linearization attack
Given a polynomial f = (f1, . . . , fm) ∈ Fq[ x1, . . . , xn] m that forms a lin-

earization equation given as
∑n

i=1

∑m αijxixj+
∑n

i=1 bixi+
∑m

i=1 ciyi+d ∈ Fq. Given

a multivariate polynomial based encryption algorithm, we have
∑n∑n αijyiyj +∑

n b
(k)
i yi+

∑n−b∑n α
(k)
ij yiyj+c

(k)
i = 0 where αij, b

(k)
i , α

(k)
ij are unknown coefficients of

the core map. The number of these coefficients are given in [170] as n
n∑
j=0

(
m

j

)
+m+

1 = n

(
m+ n

n

)
+m+ 1 with a complexity of O

(
n

(
m+ n

n

)
+m+ 1

)ω
. To break an

encryption scheme, the algebraic constant ω should be ≤ 2.8.

5.3.2 Minimum Rank Attack
The central polynomial F = f (k)(x1, . . . , xn) ∈ Fq[ x1, . . . , xn] m can be

exploited through Min. Rank attack with information on the rank of the linear

combination of variables that make up F [171]. The goal is to find a solution x ∈ Fm
q

such that the rank of F =
∑m

i=1 xifi ≤ 2. In other words, F = f (k)(x1, . . . , x2n).

The affine transformation S can be extracted if the number of equations m of F and

P with low rank are computed. Extracting S can give the adversary the opportunity

to retrieve the public key. If the variables that make up the two isomorphic maps

T and S are small, an adversary can employ high rank attack to detect the last

n− b variables and the algebraic structure of the affine map S. For security against

high rank attack , the number of queries of the last variable should be bounded

by qn ≥ 280 for 280 bit security[172]. The high rank attack sets the kernel of the

central map to zero and checks for solution. Thereafter, it sets the transformed

kernel for the coefficient that has dimension n− 2n. If the kernel has a probability

that an inverse of the affine transformation T of a variable with rank n − 2n gives

the solution then T can be extracted, consequently the private key. The complexity

of the Min. Rank attack on a core map is given as O(qn.(r+v+a−1).(n− a)3) where v

is the number of vinegar variables.
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5.4 New approach using NMNT
The New Mersenne number transform of the central polynomial f(n) for a

transform length N = 2k chosen for efficient random butterfly operation is given as

NTT (x) =
N−1∑
n=0

f(n)ω
n(2k+1)

2
N mod(xn + 1) (5.8)

where F (x) =

[∑N−1
n=0 αij(ω

q
N)i
]N−1

n=0

. This is composed with the core map to gener-

ate the public key as follows Pk = NTT (X) ◦F . Such a multivariate cryptosystem

can be described as an Isomorphism of polynomial with one secret[173]. The kernel

matrix made up primitive root of unity and imbued with an orthogonal property is

represented as follows

Td =



ω0
N ω0

N ω0
N ω0

N . . . ω
0
N

ω
1
2
N ω

3
2
N ω

5
2
N ω

7
2
N . . . ω

2N−1
2

N

ωN ω3
N ω5

N ω7
N . . . ω

2N−1
N

ω
3
2
N ω

9
2
N ω

15
2
N ω

21
2
N . . . ω

3(2N−1)
2

N
...

...
...

...

ω
N−1

2
N ω

3(N−1)
2

N ω
5(N−1)

2
N ω

7(N−1)
2

N . . . ω
(2N−1)(N−1)

2
N


(5.9)

The rank of Td is N − 1 if and only if Td has at least N − 1 rows. To invert the

transform, the transpose of the kernel matrix is multiplied by the inverse of the

transform length to generate the original polynomial sequence given by

NTT−1(x) = N−1

N−1∑
n=0

F (x)ω
n(2k+1)

2
N mod(xn + 1) (5.10)

The maximum degree of the polynomial sequence for transform length N = 2k−1

is equivalent to d = 2k+1

k−1
and it is expected that the rank of the polynomial se-

quence should be bounded by the logarithm of the degree of the core map logqd.

However, this condition makes it easier to attack the core map. The Chinese

remainder theorem describes the NMNT as natural ring isomorphism where the

monomials Xqi+qj are mapped into non linear orthogonal univariate polynomials

Xωi+ωj over Zq. In the nth iteration,
∑n

i=0 αoω
qi+qj , . . . ,

∑n−1
in−1=0 αn−1ω

qin−1+qjn−1
is

transformed into
∑n

i=0 αoω
qi+qj , . . . ,

∑n−1
in−1=0 αnω

qin+qjn which results in a complex-

ity of N logN for polynomial sequence of size N + 1[174]. It can be inferred that,

f 7→ f(ω), f(ω3), . . . , f(ω2n−1)) for coefficients (α0, . . . , αn−1). To find the interpo-

lation of f(n) at ω(X ≡ ω mod (X − ω)) the decomposition of the primitive root
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of unity given in[167] is used as follows

f(x) ≡ bkmod(X − ak) : f(x) ≡
n−1∑
k=0

∏
j 6=k

(X − aj)) (5.11)

∏
j 6=k

(ak − aj))−1bkmod
n−1∏
k=0

(X − ak)

Furthermore, reducing f(n)mod(X−ω) is equivalent to evaluating f(n) at ω(X ≡ ω

mod (X − ω)). A key recovery attack on the orthogonality of the isomorphism can

only be successful if the complement of the orthogonal kernel is projected to the

codimension one subspace of the kernel with complexity O(qlogq+a+1) where a is a

vinegar variable[175]. In masking the core map for security purpose, the Number

theoretic transformed polynomials must be invertible. The necessary condition is

that the inverse of the degree of the polynomial belongs to the ideals in the ring of

the form Z[x]/(f) where f is the degree n irreducible polynomial and the primitive

root of unity ω satisfies the orthogonality condition[176] Ω.

Ωq =
n−1∑
i=0

ωq
i

= nδ(q)(modxn + 1), q = 0, 1, . . . , n− 1 (5.12)

In other words, if q 6= 0, then (ωq − 1) must be a zero divisor of Ωq(ω). This means

that the relation (ωq − 1)Ωq(ω) = 0 where (ωq − 1) ∈ Z[x]/(f). The implications of

this is that if there was an actual zero divisor then the transform is non-invertible

which leads to consequence in cryptanalysis. To reinforce its invertibility, then non

of the representatives r
′

are zero divisors in Z[x]/(f). This leads to the theorem

which seeks to explain the impact of applying the full rank NMNT isomorphic map

to the rank of the representative matrix of the quadratic form that make up the core

map.

Theorem 10. The Q-rank of the quadratic form is bounded by the rank of the

orthogonal kernel Td, if the dimspan(F (0), . . . , F (d−1)) ≥ d− 1 where d is the degree

of the core map.

Proof. A matrix representation of the public key is defined as

F̂d =

[
Td 0

0 Io

]
(5.13)

The matrix representation of the core map is represented by the ith Frobenius

power f i. Let F (0), . . . F (d−1) ∈ F (d+o)×(d+o) be the row vector of the matrix rep-

resentation of the functional composition. If the row vector is multiplied by the

orthogonal kernel matrix, it will produce the product of the matrix representa-

tion of the ith Frobenius power and the coordinate matrix representation of the
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public key[177]. In other words, (F (0), . . . , F (d−1))Td = (F̂df
iF̂ T
d , . . . , F̂df

d−1F̂ T
d ).

Recall that the functional polynomial composition of the public key is given as P =

NTT (x) ◦ F which is equivalent to and as a function of the kernel (P0, . . . , Pn−1) =

(TdF
(o)T Td , . . . , TdF

(d−1)T Td ). Combining it with its matrix representation becomes

(P0, . . . , Pm−1F̂d) = (TdF̂df
iT Td F̂

T
d , . . . , TdF̂df

d−1T Td F̂
T
d ). This results to

∑m−1
i=0 f̂dPi =

V f iV T where V = TdF̂d and V f iV T is termed an identification of the form Xi =

φ(x̂)q
i
.

Using an iterative approach in designing NTT algorithm, the coefficients

of the polynomial are reversed using the function Bitreverse(α). This means that

the structure of the coefficients are maintained while checking if the degree of the

product of the monomial and the core map is bounded by an arbitrary degree us-

ing consistency check of Macaulay matrices. During the process of reducing the

modulo, the Hensel remainder is congruent to αM mod q where M is the modulo.

In Montgomery reduction, input coefficients are greater than q2 and less than qM .

qM is a product of two unreduced words mapped to a residue which is less than

2q where M > q. In the process, the mod q operation is converted to mod M

operation in which the scaling factor n−1 leads to efficient implementation up to n
2

modular multiplication. The standard representation can be produced by rounding

up and multiplying with the prime number. The implementation can be done in

constant time, If the representative less than 2q is subtracted from q. Thereafter, an

arithmetic shift N − 1 where N is the length of one word signed integer is then used

to compute logical AND and the result is added to the representative[168]. If n is a

coprime to the prime q and if two signed words x and y are transformed then there

exist x
′
= xn−1 mod q, y

′
= yn−1 mod q. The high product becomes x

′
y
′
= xyn−1

mod q. This is if and only if x ≡ y( mod q) where x is a representative of the class

y mod q. This translates to x−y
q

= E where E is a multiple of q[168],[178].

5.4.1 Modulo reduction
In reducing the modulo of the polynomial, a modulo M = 2Nk + 1 and

a prime q < M is selected. This leads to wide choices for word length where

N is the transform length. The coefficient α is expressed as a product of two

words α = x.y such that for word x,there is a range 0 ≤ x ≤ M
2

and for word

y, there is a range 0 ≤ y ≤ q. Let a coefficient α ∈ Fq, there exist a range

0 ≤ α < qM
2

= k2N + 1 where k is the odd positive integer Proth number, N is
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Algorithm 8 NTT

Input: f ∈ Rp, ω ∈ Zp
Output: f

′ ∈ Rp in bit reversed order

m← 0
for (i← 0, i < m

2
, i+ +) do

ω ← (2.i)
n
m

if m is even then
for (j = −m, j < m, j + +) do

A1 ← ReductA[ −j + m
2α

+ 1] ω2
n
2

mod (x
n

2α + 1)

B1 ← ReductB[ l + j + m
2α

+ 1]ω2
n
2

mod (x
n

2α + 1)

else
A2 ← ReductA[ −j + m

2α
− 1] ω2

n
2

mod (x
n

2α + 1)

B2 ← ReductB[ l + j + m
2α
− 1]ω2

n
2

mod (x
n

2α + 1)

f
′
[ −j + m

2
] = A1 −B1

f
′
[ l + j +m] = A1 −B1

Return f
′

Algorithm 9 INTT

Input: f
′ ∈ Rp, ω

−1 ∈ Zp, β−1

Output: Tx
m← 1
for (i← 0, i < m

2
, i+ +) do

ω ← (2.i)
n
m

if m is even then
for (j = −m, j < m, j + +) do

A1 ← ReductA[ −j + m
2α

+ 1] ω2
n
2

mod (x
n

2α + 1)

B1 ← ReductB[ l + j + m
2α

+ 1]ω2
n
2

mod (x
n

2α + 1)

else
A2 ← ReductA[ −j + m

2α
− 1] ω2

n
2

mod (x
n

2α + 1)

B2 ← ReductB[ l + j + m
2α
− 1]ω2

n
2

mod (x
n

2α + 1)

Tx[ −j + m
2

] = A−B
Tx[ l + j +m] = (A−B)−2nl

for l← 0, l < i2, l = i+ n do
Tx[l] ← Tx[l] β

−1 mod q
Return Tx
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the transform length and M is the modulo. If f = dM + r
′
q where d ∈ Fq is the

quotient, then the Hensel representative satisfies −q < r
′
< M

2
for 0 ≤ d < M

2
q.

The goal is to reduce fM mod q and to compute r
′
. This will eventually make

the result congruent to f mod q. First, it is pre-computed with M−1 mod q which

gives f = dM( mod q). Consequently, fM−1 = d( mod q) becomes d = fM(

mod q) and further computation results to M−1d = f( mod q) = βm. Also, there

exist k2N = −1( mod q), which implies that k2N is prime and −M−1d−k2N = 0(

mod q). This leads to r
′

= a−βm
q

> Mq
2M

= −q. Assuming α is split into two words,

then α = αo+αiM2N where 0 < α0 < M.2N .Therefore, the representative becomes

r
′
=
α− d
qM

>
βqk2N + 1

2M.2N
= −q (5.14)

5.5 Experiment

5.5.1 Key generation
The NMNT was implemented in the Key generation and signature gener-

ation algorithm of the Round 1 Post Quantum submission for Gui algorithm[179]

against the affine transform implemented in the algorithm using Array manipulation

methods and bit-wise shift operations. The implementation was done in an AMD

Ryzen 3 2200U with Radeon Vega Mobile Gfx graphic card with processor speed of

2500MHz, 2 cores, 4 logical processors and clock speed of 2.5GHz. The Operating

system used was the Microsoft Windows 10 Home version 10.0.18362 with Build

18362 and there was no use of special instruction set. The results were recorded

from the Windows Power shell. The variables of the core map were stored in blocks

and copied to the temporary buffer of the output block before swapping the blocks

in the reverse order. The transform size and the variables of the core map is declared

as an unsigned integer type with 64bits size where the representative r = 264 for

compiler optimization. The twiddle factors and the irreducible polynomials were

pre-processed offline before feeding them into the algorithm. The parameters for

implementing the signature generation scheme include; the degree extension m, the

degree of the core map d, the number of equations a, the number of variables v

and the repetition factor k. These parameters were adapted from [179]. The rep-

etition factor k was chosen in order to reduce the rank of the linear combination

of the variables that make up central polynomial. This would speed up the sig-

nature computation time. However, care was taken in order to make the rank as

small to be easily decomposed by a Minimum rank attack. The hash function for
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the signature generation algorithm was implemented using the Openssl Secure hash

function library [180]. To avoid overflow during multiplication of the polynomials,

the size of the array for storing the coefficients ranged from −9007199254740992

to 90071992547401894. From the results, it can be seen that the public key size

using NMNT isomorphism is bigger than using affine isomorphism by a difference

that increases with increasing field size. The increase in the public key size is due

to the complexity of the butterfly operation in NMNT as a result of modular mul-

tiplication. This in turn increased the number of variables in the core map. In

other words, NMNT modification of the core map comes at a cost of increased key

size. There are different butterfly operations which can be applied and is effect on

the key size noted. However, this is beyond the scope of the thesis. Furthermore,

the verification time increased due to the complexity of field arithmetic as result

of the number of variables in the core map and the selected prime. This can be

reduced by using specialized processor instruction set. However, because of the

absence of specialized instruction set in the implementation, we proposed reducing

the complexity of butterfly operation by employing efficient modular reduction and

multiplication methods like the Russian peasant multiplication [181]. In addition,

the modular reduction process can be improved further and the twiddle factors and

irreducible polynomials should be further reduced. Nevertheless, applying NMNT

isomorphism performs better than affine isomorphism in terms of the secret key size

and signature bits. The smaller key size is as a result of the sparse nature of the

coefficient matrix of the core map. Finally, the public key size can be determined

by the storage of equations and variables over the extension field. Generally, for

reduction in the key size, the number of variables of the core map should be reduced

as possible while keeping the degree constant. The timings of execution was also

recorded and presented in Table 2. The time results is categorized by the platform

of implementation.

Table 5.1: Key Sizes and Signature bits
Isomorphism m d a v k pk(KB) sk(KB) signature bits

Affine 184 33 16 16 2 416.3 19.1 360 [43]
Affine 312 129 24 20 2 1955.1 59.3 504 [43]
Affine 448 513 32 28 2 5,789.2 155.9 664 [43]
NMNT 184 33 16 16 2 422.1 15.0 45 This work
NMNT 312 129 24 20 2 1990.0 41.8 63 This work
NMNT 448 513 32 28 2 5,903.4 94.7 83 This work
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Table 5.2: Timings
Isomorphism m d a v k Key gen. Sig. Ver.

Affine 184 33 16 16 2 343ms 16.1ms 0.057ms [43]
Affine 312 129 24 20 2 2360ms 864ms 0.256ms [43]
Affine 448 513 32 28 2 71,485ms 42,156ms 0.542ms [43]
NMNT 184 33 16 16 2 43.72ms 20.0ms 58.889ms This work
NMNT 312 129 24 20 2 61.02ms 45.2656ms 38.406ms This work
NMNT 448 513 32 28 2 73.75ms 67.0491ms 31.484ms This work

5.5.2 Minrank attack
To test the complexity of key recovery attacks on isomorphism, the Sidon

cryptosystem was attacked and the implementation given in [44] was optimized for

this purpose. The platform of implementation was the SageMathCloud [182] with

16GB of Random Access Memory, 3 shared CPU clusters and 20GB of hard disk.

The mean success times of each computation was recorded for different prime values

2, 3 and 5 with degree k ≤ 12. This implies that the number of variables v = 21

and number of equations m = 24. The plot is shown in Figure 5.1, 5.2 and 5.3

respectively. The execution of the attack was difficult to terminate at degree k ≥ 12

after several hours. To compute the ideal of the linearized system using Gröbner

basis, the F4 library [183] was used. From the results, it can be seen that at field

with prime 2, the NMNT isomorphism performs better than the affine invertible

isomorphism in terms of complexity to the Minrank attack with increase in the de-

gree of the polynomial. However, on increase of the field size, both isomorphism

have equivalent performance, for increasing degree. The presence of isomorphism

with large kernel introduces some element of complexity when reducing the homoge-

neous equations to a linear equation where the ideal is generated through Gröbner

basis operation. Homogeneous equations with degree 3 monomials are equivalent to

multiples of leading monomials with non zero coefficients. A homogeneous polyno-

mial F (k, xi) can be reduced to xi+1 = λxdi + λn−1x
d−1
i + ∧(x) where ∧(x) is the

vectorized representation of the isomorphism. If gcd(k, 2n − 1) = 1, then the non

leading monomial of an element of the ideal becomes the permutation in the field

F2n and also forms a basis to Fqn over Fq. This also forms a linear combination with

the central map. This permutation forms the number of solutions. The number of

equations that lie in the plane of the isomorphism for 1 ≤ i, j ≤ k − 2 is given by

F (k, xi) − yi = k2 − 2k −
(
k

2

)
where

(
k

2

)
is the number of leading monomials of

the form xiyj. If the coefficient of the leading term is not zero then F (k, xi) reduces

to zero [44]. Further complexity is due to computing degree of regularity which is
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explained in the next section. It can be said that for field size with prime p = 2,

elements of the true solution with basis (βiβj) for i ≤ j lies in the span of the kernel

of the linearized equation for affine isomorphism than for NMNT isomorphism for

increasing degree. This is shown in Figure 5.1

Figure 5.1: Complexity of Key recovery attack,field size p = 2

Figure 5.2: Complexity of Key recovery attack,field size p = 3
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Figure 5.3: Complexity of Key recovery attack,field size p = 5

5.6 Multivariate Quadratic Solvability
In this section, we expound on the approaches of interpolating the core map

of a quadratic polynomial cryptosystem. This approach works if the polynomial has

been reduced to its ideal using an efficient reduction process [184].

5.6.0.1 Degree of Regularity

The definition of the maximal degree of m equations of a multivariate

polynomial for an index i ⊂ {1, . . . m} is given as

Definition 15. For an index i, 1 ≤ i ≤ m, the maximal algebraic degree of the

product of the coefficients of a map F : F n
2 7→ Fm

2 is given as

δk(F ) = maxi⊂{1,...,m}deg(
∏
i

Fi)

Given a homogeneous polynomial h1(x1, . . . xn), . . . hm(x1, . . . xn)) ∈ Fq[ x1, . . . xn] m

and a non-homogeneous polynomial f1(x1, . . . xn, . . . fm(x1, . . . xn)) ∈ Fq[ x1, . . . xn] m,

a homogeneous ideal is defined as I = 〈h1, . . . , hm〉 and a non-homogeneous ideal

is defined as Ĩ = 〈f1, . . . fm〉. The degree of regularity of a polynomial ideal I is

defined as

134



δi(F ) = {hi ∈ Fq[ x1, . . . xn] m/h ∈ I, deg(f)

≤ d

(
n+ d− 1

d

)}
The degree of regularity of a polynomial ideal I in a semi regular sequence can be

related to the first negative coefficient in the Hilbert series [185] Hs as

Hs =
∑
i≥0

cikz
i =

∏m
i=1(1− zdi)
(1− z)n

(5.15)

when given degrees of regularity di∀1 < i < m and where
∏m

i=1(1−zdi) is equivalent

to the Hilbert function HFm,n. For an invertible matrix G(a) over Fq, the distribu-

tion of the degree of variables in G(a) is given by

λ(n) =
m∏
i=1

(
1− 1

qi

)
(5.16)

The expression that defines the relation between the dimension of the kernel and the

differential of the function f with respect to the solution x is given in Lemma 17 [39]

Lemma 15. The probability that the differential Dxf has kernel of dimension i ≥ 1

given a function f : (Fq)
n 7→ (Fq)

k and where F k
q is a k dimensional vector space

with qk elements and a solution x ∈ Fq is given by

λ(n)λ(n− 1)

λ(k)λ(k − 1)λ(n− k)
q−k(k−1) (5.17)

A semi regular sequence is a sequence in which the homogeneous ideal does not

belong to the finite field with q elements. For random undetermined systems, the

sequence is regular. In multivariate cryptography, applying a generic change of co-

ordinates to affine transformations that make up the private key or overdetermined

systems with zero dimensions specifies the ideal. This is defined in Theorem 11 [185]

Theorem 11. Let I ⊆ Fq[ x1, . . . , xn] be a homogeneous ideal and Ĩ ⊆ Fq[ x1, . . . , xn]

a non homogeneous ideal with I defined by coordinates that are modified in generic

terms in zero dimensions(overdetermined) then

solv.degDRL(I) ≤ δ(Ĩ) (5.18)
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The degree of regularity of Gröbner basis is given by Theorem 12

Theorem 12. Let dreg be the degree of regularity of the polynomial F of ZHFE(q, n,D).

If q > 2, D ≤ q + 2qs, then

dreg ≤
(q − 2)(s+ 2)

2
+ 2 ≤ (q − 1)blog2Dc+ 3

2
+ 2 (5.19)

If q = 2, D ≤ 2 + 2s−1 + 2s then

dreg ≤
s+ 3

2
+ 2 ≤ blog2Dc+ 4

2
+ 2 =

1

2
blog2Dc+ 4. (5.20)

Theorem 13 improves on the bound of the algebraic degree from the result in [186]

which states that for F a permutation over F n
2 , there is an integer k and l such that

δk(F ) < n − l. Review of the algorithm is given as follows; Let h : 7→
∏

i∈k Fi(x)

with |k| ≤ k then for any l ⊂ {1, . . . , k}, show that αijk = 0 for a monomial∏
j /∈l xj. It follows that αijk =

∑
h(x) where x ∈ F n

2 is such that xj = 0 for

j ∈ l and the permutation F (x) = 1 mod 2 for i ∈ k. Since y = F (x) where

y ∈ F n
2 then Fj−1(y) = 0 for j ∈ l. Consequently, a function πk,l is defined as

πk,l :

{
xi∈k 7→ F2

x 7→
∏

i∈l(F
−1
i (x))

where πk,l is a function of n−l variables and δk(F ) < n−l.

Theorem 13. Given a function h : F n
q 7→ Fi(x) A multivariate system with m

equation and n variables can be solved with degree bounded by degFi(x) ≤ n− k, if

δk(F ) ≥ n−1
n−k ∀monomialxj.

Proof. Let x ∈ F n
2 such that xj = 0, Fj(x) = 0 and for 0 ≤ i, j ≤ k. Let a function

h :

{
F n
q 7→ Fi(x)

F n
q 7→

∏k
n(fi(xi), . . . , fm(xn))

where Fi(x) =
∑n

i,j≤k αijkxjxk +
∑n

j βijxj + γi

for coefficients αijk, βij, γi ∈ Fq and degree degFi(x) ≤ n − k. From theoretical

results in [186],

Fi(x) =
∑
x∈Fnq

(−1)βijF (x)+αijk.x (5.21)

This defines the Walsh coefficient and dividing the equation with 2k gives

Fi(x) =
∑
x∈Fnq

(−1)
βijF (x)

(
mod 2

dn−1e
degF (x)

+1

)
(5.22)
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It follows that a linear combination of the quadratic form becomes

αijk.x :

{∏n
j Fi(x) 7→ mod 2 dn−1e

degF (x)
+ 1∀xj = 0

x 7→ Fj(x)
(5.23)

This results to

mod 2
dn− 1e
degF (x)

+ 1 = 0 (5.24)

n− 1

n− k
≤ 1 mod 2 (5.25)

5.6.0.2 Evaluation of f & F

Let a set of multivariate polynomials be defined as f (k)(x1, . . . , xn) =∑n
i=1

∑n
j=i+1 α

(k)
ij xixj +

∑n
i=1 β

(k)
i xi+c

(k)
i where F = (f1, . . . , fm) ∈ Fq[ x1, . . . , xn] m

and the coefficients α
(k)
ij xixj, β

(k)
i xi, c

(k)
i ∈ Fq. The function f with variables y1 =

yn−b+1, . . . , yn containing the last b variables where f (k)(yn−b+1, . . . , yn) =
∑n

i=n−b+1∑n
j=i+1 α

(k)
ij yiyj +

∑n
i=n−b+1 β

(k)
i yi+ c

(k)
i where f (k)(yn−b+1, . . . , yn) ∈ F n

q can be eval-

uated which gives an isomorphic map . The function F again with y2 = y1, . . . , yn

containing the first n−b variables and the last b variables can be evaluated. It follows

that f (k)(y1, . . . , yn) =
∑n−b

i=1

∑n
j=n−b+1 α

(k)
ij yiyj. Transforming the function F with

yi now becomes F̃ = (f1(yn−b+1, . . . , yn), . . . fm(yn−b+1, . . . , yn)) ∈ Fq[ x1, . . . , xn] .

This results to,

F̃ = (f1(x1, . . . xn−b, y1, . . . yn), . . . fm(x1, . . . fm(x1, . . . , xn−b, y1, . . . yn) ∈ Fq[ x1, . . .

(5.26)

xn−b]
m

which satisfies the equation

n∑∑
nα

(k)
ij yiyj +

n∑
β

(k)
i yi +

n−b∑ n∑
α

(k)
ij yiyj + c

(k)
i = 0 (5.27)

where 1 ≤ i, j ≤ nb(b+1)
2

. Let the coefficients α
(k)
ij , β

(k)
i , c

(k)
i be the linear combination

equations of the columns of the Macaulay matrices A, the condition is checked

whether uA = (F ◦ F̃ ) = 1

5.6.0.3 Complexity

The F5 algorithm is employed to cryptanalyze multivariate cryptosystem

after reducing the non linear system to a linear determined system through extrac-

tion of variables in as many iterations as possible. The complexity of solving the
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system of n(n − b) equations n − b + 1 variables over Fq is given as qn−bO((n(n −

b)

(
n+ dreg − 1

dreg

)))ω
where ω is the measure of entropy with 2 ≤ ω ≤ 3. The

linear algebra constant and qn−b is the probability of guessing a solution to n− b+ 1

variables. If the number of equations is equivalent to the number of variables for

any positive ε, in a semiregular system, a deterministic approach to testing consis-

tency of the Macaulay matrices and employing the quantum oracle gives a bound on

the complexity as O(2(0.47+ε)n) quantum gates while a probabilistic approach gives

a bound as O(2(0.462+ε))n quantum gates [38]. By extension, based on the com-

plexity for an r string, a semiregular system is given by O(2(1−2r+2Fα(r)ε)n) for a

deterministic approach. The probabilistic approach is given by O(2( 1−r
2

+2Fα(r)+ε)n)

where γ = 1 − k
n
, Fα(r) = r log(Dd(1 − D)(1−D)) with D = M(α

r
) and M(x) =

−x + 1
2

+ 1
2

√
2x2 − 10x− 1 + 2(x+ 2)

√
x(x+ 2). Therefore, the complexity be-

comes

O(qn−b(n(n− b)nω + 20.47+ε)n) = O(qn−b(n(n− b)(0.4+ε)ω) = O(qn−bm(0.4+ε)ω)

(5.28)

The asymptotic cost component of employing brute force search to guess a vari-

able when a function belonging to a quadratic map is given by log2q while that

of the Grover’s algorithm is given by 0.5log2q which is half of the cost exponent

obtained when using brute force search. In the probabilistic approach, the cost

component is given by 2(0.4+ε)n as n towards infinity, therefore the complexity be-

comes O(qn−bm0.5(log2q)
ω).

5.6.1 Sparse Approximation Solution
In this section, a sparse approximate approach to solve the reduced basis

using the gradient descent method is presented. The major operation is to compute

fm(x̄), where fm is the sparse matrix which is a row echelon form of the matrix

representing the non-linear system. If the number of non-zero elements is given

by [fm(x̄)]>0, then the complexity of solving the sparse system using the gradient

method becomes O([fm(x̄)]>0).
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5.6.1.1 Problem Formulation

The optimization problem is formulated as

||fm(x̄)||F =
1

2
xTx+ ∂f(x)Tx+ ||u(x)v(x)||2F =

1

2
xTx+ (5.29)

∂f(x)Tx+
1

N

N∑
i=1

ui(x)vi(x)− 2
∑

ui(x)vi(x)

=
1

2
xTx+ Tr(D(x)TxD(x)) +

1

N

N∑
i=1

ui(x)vi(x)−

2
N∑
i=1

ui(x)vi(x)

whereD(x) is convex and differentiable which signifies that ∀x, y ∈ X, ∀t ∈ [ 0, 1] P (tx+

(1 − t)y ≤ tf(x) + (1 − t)f(y). If P (x) is differentiable, it signifies that ∂F (x) has

a definite gradient at x [187]. The term u(x)v(x) defines the gradient vector.

5.6.1.2 Convergence

The Wolfe-Powell’s rule [188] is employed to compute the descent and test

for convergence. The descent direction dk can be obtained for the objective function

||f (m)(x̄)||F which is a trace of the multivariate polynomials that contain the root

of the equation. This is done by finding the negative definiteness of the differential

of the core map F (x) which is −∂F (x). In order to converge to a solution, the opti-

mization problem formulated would need to be reduced accordingly by employing a

factor (step length) which describes the difference between the original and reduced

objective function. The optimization problem is further mapped to a tangent line at

the root x̄, where the tangent line points in the direction of the decent dk. A choice

of step length is paramount in order to ensure convergence. The reduced objective

function is bounded by

||f (m)(x̄) + αdk)||F ≤ ||f (m)||F + βα∂f (m)(x̄)Tdk (5.30)

where α is the step length and 0 < β < 1. A check for optimal solution is carried out

as a consequence of the updated optimization problem as the step length increases.
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f (m)(x̄+ αdk) = f (m)(x̄) + βα∂f (m)(x̄)Tdk (5.31)

dk = f (m)(x̄+ αdk)− (fm(x̄) + βα∂f (m)(x̄)T ) (5.32)

∂dk
∂fm

= ∂fm(x̄+ αdk)− ∂fm(x̄) + βα∂2f (m)(x̄)T (5.33)

= ∂fm(x̄+ αdk)− ∂f (m)(x̄) + βαHT (5.34)

= ∂f (m)(x̄) + ∂fm(αdk)− αfm(x̄) + βαHT (5.35)

= ∂fm(αdk) + βαHT (5.36)

= α(∂fmdk + βHT ) (5.37)

For optimal solution ∂dk
∂fm

= 0. This results in

α(∂fmdk) = αβHT (5.38)

where H is the hessian matrix. This verifies the assertion that if the step length

α is controlled and given suitable choice of β ∈ {0, 1}, an optimal descent can be

computed. This improves the distance of deviation of the Hessian matrix from O(p3)

flops to O(p). The condition of optimality can be extended to the Mercer’s theorem

[189] in which α&β will solve the linear system[
0

~1

∣∣∣∣ 1T

Ψ + τ−1I

] [
β

α

]
=

[
0

y

]
(5.39)

where (y1, α1), . . . (yN , αN) and αi is the step length. Since the core map is differen-

tiable, it can be written that

∂fm(x̄+ αdk)− ∂fm(x̄) + βα∂2f (m)(x̄)T ≤ δ||(x̄)− (x̄+ αdk)||22 (5.40)

Consequently,

∂fm(x̄+ αdk) ≥ ∂fm(x̄) + βα∂2f (x)(x̄)T (x̄+ αdk)− (x̄) +
δ

2
||(x̄+ αdk)− (x̄)||22

(5.41)

The choice of the 2-norm is to improve convergence in the presence of variables in

the input space of a set of solutions. If the hessian matrix H was to deviate by a

distance ||Λ||2F , then the variable δ would satisfy δ ≤ ||Λ||2F
(NM)2 . It is recommended that

the standard deviation in relation to the distance ||Λ||2F be kept minimum. This is

analogous to the proposal by [190]. The update of the descent dk as an expression

of the Hessian matrix can be computed as follows.
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1

2
(H2

ij +HiiHjjϕ
2 + (xij −Hij + hTi Dhj)ϕ+ λ|x̄ij + dk + ϕ| (5.42)

which results to

Tr(Hd
′

kHd
′

k) = Tr(HdkWdk) + 2ϕiw
T
i dkwi + ϕ2(Hii)

2 (5.43)

.

The optimization problem is therefore reduced as a result of the step length as follows

||xT∂Fx||(1− α

β
− ||uvT ||( α

1 + β
) (5.44)

≤ ||x∂Fx||(1− α

β
)− ||u||( α

1 + β
.||v||( α

1 + β
) (5.45)

≤ ||sTv||2F (
β + α

β
)− ||∂F Tv||2F (

β − α
β

) (5.46)

≤ ||xv||2F εo(α + β)− ||∂F Tv||2F (5.47)

≤ εo(β
2 − α2)(||xv||2F − ||∂F Tv||2F ) (5.48)

≤ εo(α + β)(α− β)(||xv||2F +
∑
i,j

∂F T ||v||− (5.49)

Ξ

2

∑
i,j

||xv||2F ||∂F Tv||

≤ εo(α + β)(α− β)(||xv||2F +
∑
i,j

∂F T ||V || − Ξ

2
Tr(xT∂Fv) (5.50)

5.6.1.3 Minimizer

The minimizer defines a point where the solution exists. It can be con-

structed from Tr(ST∂PV ) and Tr(∂P TV ). Let variables A = 1
2
(S + V T ) and

B = 1
2
(∂F + V T ) be defined and a Jacobian matrix J = B−1A. Consequently, A

and B is transformed to new variables a and b as follows

a = Tr(x̄TAx̄)b = Tr(x̄TBx̄) (5.51)

The new variables are differentiated as follows

da = 2|Ax̄||dx̄| (5.52)

db = 2|Bx̄||dx̄|

By constructing a function Ξ = ab, further differentiation results in
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dΞ = b(da− Ξdb) = 2b|Ax̄||dx̄| − 2Ξ|Bx̄||dx̄| (5.53)

Consequently, the descent becomes

∂Ξ

∂x̄
= 2b|Ax̄| − 2Ξ|Bx̄| (5.54)

On conditions of optimality

∂Ξ

∂x̄
= 0 (5.55)

it follows that

2b||Ax̄|| = 2Ξ||Bx̄|| (5.56)

bJ ||x̄|| = Ξ||x̄|| (5.57)

bJλ~1 = Ξλ~1 (5.58)

where λ is the eigenvector and ~1 ∈ [ 1, . . . 1N ] . Equation (5.66) must satisfy the

following conditions

bJ

{ = λij if x̄ij > 0

∈ [ −λij, λij] if x̄ < 0

= −λij if x̄ij = 0

(5.59)

Figure 5.4: Quadratic map function f(x) in (32) and (33) reduced to 1.3614e − 12
with gradient method after reduction to its ideal after iterations n = 365
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Chapter Summary
In this chapter, the New Mersenne Number transform was used as a mask-

ing function in the key generating process of multivariate based cryptosystem to

hide the structure of the quadratic forms that make up the core map. The kernel

function of the New Mersenne Number transform can be functionally composed with

the central core map to generate the public key used for encryption in a multivariate

polynomial cryptosystem. This can be termed as a cryptosystem with one secret.

The kernel function is orthogonal and can be inverted, if the inverse of the transform

length is multiplied with it. The rank of the kernel is a function of the degree of

the core polynomial sequence. However, because of this bound, it can be easily in-

ferred, if the linear combination of the kernel is equal to its rank. This is a necessary

condition for its attack by key recovery algorithms. Furthermore, another condition

worthy of note is the image of the codimension one subspace of the kernel. The in-

verse of the degree of the core polynomial sequence belongs to the ideals in the ring.

This would enable the kernel of the New Mersenne Number transform to be invert-

ible. In addition, the residue must not be zero divisors in the ring. An isomorphism

which is robust against key recovery attacks was generated. This isomorphism is

complex against permutation and inversion as compared to affine isomorphism. It is

also robust against key recovery attacks by reason of its orthogonal property which

makes it full rank. A modified version of Montgomery approach was applied to re-

duce the modulo of the form M = 2nk+1. From the result of applying the proposed

method as a map to the Gui Post quantum algorithm, a considerable reduction in

secret key size and signature bits was observed. Furthermore, the complexity of

using the key recovery attacks on isomorphism was presented using an implemen-

tation of the Sidon cryptosystem. It was discovered that both transforms realized

equivalent performances against the attack with increasing degree as the field size

scales up. This is due to the nature of the homogeneous non-linear equations whose

ideal has been reduced using variant of Gröbner basis. Also, the degree of regularity

parameter also plays a significant role in this observation. This parameter was ana-

lyzed and discussed in detail in this chapter. Finally, a sparse approximate solution

of the ideal using gradient descent method was proposed. If the number of non-zero

elements is given by [fm(x̄)]>0, then the complexity of solving the sparse system

using the gradient method is given as O([fm(x̄)]>0).
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Chapter 6

Conclusion and Further work

6.1 Conclusion
The sigmoid function of support vector machine kernel is chosen which

defines the non-linear separability of the points in Zn. The columns of an arbi-

trary chosen noise matrix was employed to expand the log likelihood ratio. This

constructs a function that maps the vectors from the linear subspace to the low

dimensionality linearly dependent subspace. Approximating this function would re-

sult to O(n2) operations. The lattice basis vectors converges if the projection and

the affine transformation concatenate to find a solution to the optimization prob-

lem. Consequently, the basis vectors are projected into linear dependent positions,

to meet the condition lim
i→∞
||λk,i−xk,i|| = 0∀k, i ∈ Fq. Bit Error rate results of using

the proposed method was obtained. The results were compared with variants of

the LLL reduction method. The lattice basis in this experiment was a Quadrature

Amplitude Modulation channel matrix. From the results, the proposed approach

gave a 1db improvement over the LLL algorithm. It also outperformed the Orthog-

onalization and QR lattice reduction methods. Furthermore, It was noted that the

statistical distance between the lattice point distribution and the ideal Gaussian

distribution should be as minimum as possible in order to analyze the scheme’s se-

curity under the indistinguishability criterion. This can be achieved, if the target

vector is sampled from a distribution zi ← DZ,
√

Σi,ti , spaced at the norm ri and

|ci− ti|. |ci− ti| is the distance of ci from a plane in the distribution. In addition, a

new basis vector can be sampled, if U a random number generated from a uniform

distribution [ 0, 1) satisfies the condition U > �[ t] where �[ t] is the cumulative

distribution function and t is the result of reduction of the basis b̃i with a norm
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‖b̃i‖. Furthermore, to ensure λ-bits of security, the floating point precision should

be bounded by m
′ ≥ λ+ log2

∑
gi,i(µ

2τsqn3/2) where µ2 is the precision of the per-

fect sampler and n is the number of uniform vector samples. Finally, the precision

is inversely proportional to the success probability of withstanding an attack and

directly proportional to the security parameter.

It was observed that by employing Gaussian elimination and taking an

instance of the boundary map, the generator matrix that represents the isomorphism

can be reduced into its row echelon form. Furthermore, this reduction is a function of

the ordering of the Plücker coordinates. The enumeration over the basis terminates,

if the codewords with minimum distance dmin ≤ q
k(k−1)

2 is found. Given the size of the

coordinate, there is a bound on the enumerator with respect to the number of vectors

that are indexed in a linearly independent set. In order words, using the analogy

of section 4.3, there is a bound on the path weight of the subgraph induced by the

intersection of the subspaces. Subsequently, the probability that k vertices with

rank r has qi(i−1)/2 adjacent vertices is given by brk ≤ qi(i−1)/2[
n

k
] q. This was proved

in Theorem 5. This probability depends on the set that contains m− i elements of

the syndrome space. Theorem 8 was employed to derive the bound on the number

of monomials to be evaluated. The complexity of solving the syndrome decoding

problem in the Grassmann metric was given by O( (n−k)2

2
q
k(k−r)

2
(n−k)). From the

results on the experiment on probability of failure, the non-negative Grassmannian

code performed better than the LDPC code under IND-CPA model. This is because

of the random choice of Plücker coordinates and the better pruning of the generator

matrix that represents the isomorphism. Furthermore, on cost of Enumeration, Non-

negative Grassmannian performed better than the LDPC code for smaller field sizes.

The Plücker coordinates of the codewords of the parity matrix of the Non-negative

Grassmannian code is assumed to be linearly independent and the vector with the

minimum distance are also assumed to be sampled from a Gaussian distribution.

The dependence between subspaces is modelled using copula functions. The function

can be expressed as the degree distribution of the boundary measurement map as

follows.

f(x/Gi) =
n∏
i=1

fi(xi)×
∏
i,j∈E

Ci,j(Ui, Uj) (6.1)

From Lemma 12 in chapter four, it was shown that if x 6⊂ supp(C), then λ(PV ′ (FK(v)∩
supp(C)) = 0. From the results, the number of errors is directly proportional to the

p columns of the Non negative Grassmann code. Also, the lower the bit error rate,
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the higher the probability of solving the syndrome decoding problem. The shortest

vector problem can be generalized to the syndrome decoding problem. To find the

syndrome using its probability distribution, the distribution of the error coordinate

positions is modeled using copula functions. For a copula function, if there exists

index k such that the component of the transformation sampled from a uniform

distribution at the kth position is zero, then the copula function becomes zero.

It was proven that the q-rank of the quadratic form of the core map is

bounded by the rank of the kernel function, if the dimension of the map is greater

or equal to its degree. Using solution check of the Macaulay matrices, the bound

on the product of the degree of the monomial and the core map can be derived. A

variant of Montgomery reduction was employed to reduce the modulus of the poly-

nomial sequence. It was also noted that this transform works for monic polynomial

sequence with rational coefficients. The coefficients is expected to have a size that is

greater than the square of the field size and less than the product of two unreduced

words. The selected modulo was M = 2Nk+ 1 where N is the transform length. In

reducing the modulus, the rational coefficients are expressed as the product of two

words with varied ranges. The reduction process reduces fM mod q and computes

a Montgomery residue. Experiments comparing the affine isomorphism with the

kernel of New Mersenne Number transform was conducted using the Key genera-

tion algorithm of a variant of the Hidden Field scheme. From the result, NMNT

performed less than the affine transform in terms of the cost of the public key which

is due to the complexity of the butterfly operation. However, it performs better in

terms of the secret key cost and signature bits. This is because of the size of the ker-

nel of the NMNT as compared to the size of the affine matrix. The size of the kernel

can be reduced further by manipulating the primitive roots of unity. Furthermore,

the complexity of the Min-rank attack using the kernel of the NMNT isomorphism

was compared to that of the affine isomorphism. Sidon spaces based cryptosystem

was used in this experiment. The ideal of the linear system was computed using

Gröbner basis. From the results, it can be seen at small field sizes, the kernel of the

NMNT isomorphism performs better than the affine isomorphism. This is because

of the size of the kernel of the affine isomorphism which scales poorly when system

of non-linear equations is transformed to a linear system. Also, the computation of

the degree of regularity can impact on its complexity to the Min-rank attack. These

non-linear equations have multiples of leading monomials with non-zero coefficients.

A basis in the field can be formed if gcd(k, 2N − 1) = 1 where k is an index. The
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relationship between the degree of regularity and the first negative coefficient in the

Hilbert series was defined. The last b variables of the core map was evaluated which

generates an isomorphism. If the number of equations in the linear system is equal

to the number of variables, there are different bounds on the quantum oracle which

depends on the approach. In other words, whether the approach is deterministic or

probabilistic. The cost of guessing a solution to the n− b+1 variable using Grover’s

search is twice that of guessing using brute force method. This leads to complexity

in computing the Gröbner basis using the F5 algorithm. To solve the sparse reduced

basis, a gradient descent method was employed. The gradient descent method used

Wolfe-Powell’s rule to test for convergence. The complexity of using this iterative

method was obtained as O([fm(x̄)]>0).

6.2 Future work
In this thesis, the shortest vector oracle has been the Gaussian sampler and

its precision has been analyzed using the convolution theorem [26]. Further research

effort will concentrate on applying the dimensionality mapping lattice reduction

algorithm to other oracles such as enumeration with pruning [191] over mapping sets

given random basis. Most importantly, the dimensionality mapping approach using

linear programming approach whereby a mapping function is reduced to solving an

optimization problem might not be the best approach as was observed from the result

of the BER experiment. This is because such equations contains several variables

and unknowns which affects computation time. In the future, the proposed method

would be modified so as to eliminate the solution to an optimization problem step

completely.

Furthermore, parameters for the basis norm where derived in Equations

3.10, 3.11, 3.12 and 3.17. Further derivation of the norm will take into consideration

how the Hermite constant γ and the lattice volume scales with each block of the

lattice vector. Future experimentation will take into consideration the orthogonality

factor of the basis as a criteria of the quality of basis which is very important for

cryptography. This is because the BER experiment basically tests the capacity of the

basis to be used in solution to signal processing problems. In addition, other lattice

reduction algorithms that are most especially applicable to cryptography would

be considered most especially the Blockwise Korkine-Zolotarev (BKZ) reduction

method [192]. The BKZ approach uses a block-size parameter that scales with

reduction in lattice dimension or the rank of the lattice basis to produce clean basis
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with better approximation factor. Furthermore, the convolution theorem needs some

improvement to produce significant results on statistical distance.

In the solution to the syndrome decoding problem, probabilities of enu-

merating the bases as a function of the number of codewords was derived. There

is a possibility that a linearly independent Plücker coordinates can be selected us-

ing specialized methods without necessary creating such columns using Gaussian

elimination method. These selection methods would be studied further. This is be-

cause eliminating the Gaussian elimination process leads to reduction in complexity.

The criteria for enumerating the basis would be expanded from success probability

distribution to the probability of convergence or ergodicity.

In the creation of isomorphic map from the New Mersenne number trans-

form, it was observed with the increase in the field, the degree of the leading mono-

mials increased. This degraded the performance of the isomorphism to withstand

key recovery attacks. In the future, the New Mersenne number isomorphism would

be strengthened using a reduction process in order to reduce the degree of the mono-

mials due to evaluation from functional composition. In addition, the effect of the

butterfly operation on the key size will be a focus of further experimentation. This

thesis, spent effort on the sparse solution of multivariate polynomials when the poly-

nomials have been reduced to its ideal. In the future, improved variant of Gröbner

basis computation would be studied extensively in order to create ideals that are

solvable using linearization methods.
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Rényi divergence rather than the statistical distance”. In: Journal of Cryptology

31.2 (2018), pp. 610–640.
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Appendix

6.A Appendix A
Proof. The expectation of the BIAWGN channel that defines the distribution be-

tween the intermediate vertex and output vertex is dependent on the expansion of

the mean of the distribution to its central of origin where the mean is given by

µn = x−µ
4µ
.e
−(x−µ)2√

4µ dx

E(BIAWGN)(σ)) =
1

2
√
πµ

∫ ∞
−∞

ζ(x(k))e
−(x−µ)2

4µ dx (6.2)

For simplicity we take Pζ(x(k)) = X, then we have

=
1

2
√
πµ

(∫ ∞
−∞

eX − e−X

eX + e−X
e
−(x−µ)2

4µ dx− (6.3)∫ ∞
−∞

e−X

eX + e−X
.e
−(x−µ)2

4µ dx

)
=

1

2
√
πµ

(∫ ∞
−∞

1

1 + e−2X
e
−(x−µ)2

4µ dx−∫ ∞
−∞

1

e2X + 1
.e
−(x−µ)2

4µ dx

)
=
√

4µ
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−∞

1

1 + e
−2(
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+µ
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4µ dx+

√
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ln(e
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taking the nth central moment about the mean of the distribution

µn =
x− µ

4µ
.e
−(x−µ)2√

4µ dx (6.4)
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then expanding the central moment to its centroid of origin[193], we have

= Ein +
n∑
j=0

(
n

j

)
(−1)n−jµ

′

jµ
n−j (6.5)

where Ein is the decoding error probability and

µ
′
j =

(
1− α

n

)n−l

6.B Appendix B
Proof. Given the probability of generating an output vertex as follows∑d

α=1

(
n

l

)(
α

n

)d(
1− α

n

)n−l
xd where

(
n

l

)
is the parametrization of the subspace,

in which n is the dimension of the vector space and l is the initial dimension of the

output subspace and

(
α

n

)
is the parametrization of the received syndrome space .

This follows that
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∀d ≥ 2 (6.6)

=
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where ∆kαd is the discrete analog.

6.C Appendix C
Proof. We start with a basis for U , B1 = (e1, . . . , em), picking randomly linearly

independent vector xUi ∈ U . Then search for a coordinate of xUi and replace to pro-
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duce a new basis for U after repeated procedures to give B1 = e
′
1, . . . e

′
m, xU1 , . . . xUk

and update count as

CountU =

Ui−1∏
k=0

qk =

Ui∑
k=0

q
k−1

2

(
n

k

)
q

. (6.8)

Then the same process follows for V as we start also start with a basis, B2 =

(f1, . . . , fm). Then we pick random linearly independent vectors yVi ∈ V and search

for coordinate of yVi and replace to produce a new basis for V after repeated proce-

dures to give B2 = f
′
1, . . . f

′
m, yV1 , . . . yVk and update count as

CountV =

Vi−1∏
k=0

qk − qk−r =

Vi∑
k=0

q
k(k−r)

2

(
k

r

)
q

(6.9)

Then, finally we start with a basis for U ∩ V , B3 = (g1, . . . , gm), then we pick ran-

dom linearly independent vector zi ∈ U ∩ V to produce a new basis after repeated

procedures B3′ = (g
′
1, . . . g

′
m, xU1 , . . . , xUk and B3′′ = (g

′
1, . . . g

′
m, yV1 , . . . , yVk). Sam-

pling an integer li ∈ L where L = Vect(xU) and pi ∈ P where P = Vect(yV ) and

updating the count as

Count∗ =

Ui−Vi−1∏
k=0

qk − qk−r+t − qk−r+p =

Ui−Vi−1∑
k=0

q
k(k−r)

2

[
n− r
k − r

]
q

.

[
r

k − t

]
q

.

[
k

r

]
q

(6.10)
From the total of the Counts, Count = CountU + CountV + Count∗, we can compute

the bounds. It follows that U = span{gi, xUi}, V = span{gi, yVi} and U ∩ V =

span{gi}

6.D Appendix D
Proof. ∫ ∞

0

C1(1− u1n)(1− u2n)du1

∫ ∞
0

C2(1− u1n)u2ndu2+ (6.11)∫ ∞
0

C3u1n(1− u2n)du1

∫ ∞
0

C4(u1n)(u2n)du2

taking partial derivatives and sampling the copulas from a uniform distribution pa-

rameterized by the coordinates

169



u1n[
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] du1+ (6.12)
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du1du2

taking Equation (24) and normalizing the other terms we have∫
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integrating the exponential term∫
exp

(
−ρ2(x2

1 + x2
2)− 2ρx1x2

2(1− ρ2)

)
dx (6.14)

∂C(u, v)

∂u
=
dx2

du

1√
2π

exp

(
−(ρx2)2

2

1

x2

x1 − ρx2√
(1− ρ2)

)
= (6.15)

√
2π exp

(
2

(ρx2)2

)
1√
2π

exp

(
−(ρx2)2

2

1

x2

x1 − ρx2√
(1− ρ2)

)
=

1

x2

x1 − ρx2√
(1− ρ2)

(6.16)

∂2

∂u∂v
C(u, v) =

1√
1− ρ2

dx1

dv

1√
2π

x1 − ρx2√
1− ρ2

= (6.17)

1√
1− ρ2

(
1√
2π

exp

(
−(ρx1)2

2

1√
2π

(
−x2 + 2ρx2x1 − ρ2x2

2

2(1− ρ2)

)
= (6.18)

1√
1− ρ2

exp

(
−(ρx1)2)

2

−x2
1 + 2ρx2x1 − ρ2x2

2

2

)
= (6.19)

1√
1− ρ2

exp

(
−ρ2x2

1 + 2ρx2x

2(1− ρ2)

)
. (6.20)
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