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ABSTRACT 

pH responsive hydrogels are increasingly gaining grounds in medical and pharmaceutical 

fields, because of their ability to respond to pH variations in the body or disease site. Design 

and optimization of these systems for controlled drug delivery, tissue engineering and other 

applications require insight into the dynamics of volume variation of these materials. The 

conformational change dynamics of these materials when they are in contact with environments 

with different pH depends on the nature of the functional group attached to the backbone of the 

hydrogel. For hydrogels with negative fixed charged group at the backbone (that is, anionic 

hydrogels) their response to pH variation in the surrounding medium has been previously 

reported and was used to initially validate the developed anionic model before moving on to 

chitosan-based hydrogels. However, for cationic hydrogels (those having positive fixed charge 

group at their backbone) most studies have been empirical due to the complexity associated 

with numerical modelling of their reversible swelling-shrinking dynamics. The deformation of 

hydrogel in aqueous environment is a multiphysics problem that involves the interactions of 

chemical, electrical and mechanical fields. To describe the conformational change dynamics 

of the hydrogel, the numerical model should capture adequately these interacting fields. 

Therefore, in this study numerical modelling of the dynamic volume variation behaviour of 

cationic hydrogels; particularly genipin crosslinked chitosan hydrogel was approached 

systematically. 

A multifield numerical model was first developed using COMSOL Multiphysics software to 

simulate the equilibrium swelling behaviour of anionic hydrogels. The performance capacity 

of the model was evaluated using experimental data for poly (2-hydroxyethyl methacrylate), 

PHEMA hydrogel. Further, the simulation platform developed for anionic hydrogels was 

adapted to cationic hydrogels. However, obtaining a dynamic simulation was difficult owing 

to numerical issues such as stability and stiffness. Although steady-state solutions were 

obtained, each time the pH of the surrounding medium changed from acidic to alkaline, it was 

required to manually change the boundary conditions especially during shrinking of the 

hydrogel. To circumvent this challenge, a systematic approach that combines thermodynamics 

modelling with chemo-mechanical modelling was adopted. The simulation results agreed with 

experimental data during validation. Thus, it is concluded that the model can predict the time-

evolution of the volume of cationic hydrogels.  
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H                                 Local hydration state of the hydrogel 

I              Identity tensor 

I                                  Ionic strength of the medium (mM) 

J                                  Determinant of the deformation gradient tensor. 

𝑱𝜶                           Jacobian of deformation gradient 

𝐾                                 Bulk Modulus (Pa) 

k                                  Boltzmann’s constant 

𝐾𝑎                               Dissociation constant (mM) 

𝐾𝐷                              Donnan coefficient of the mobile ions 

𝑀𝑐̅̅ ̅̅                               Average molecular weight between the crosslinks (g/mol) 

𝑀𝑡                               Amount of water uptake at time, t. 

𝑀∞                              Maximum amount of water uptake by the polymer gel 

𝑚𝑆𝑅                             Mass swell ratio 

𝑁𝐴                               Avogadro’s constant 

 𝑁𝑐                        Average number of segments in the chain network 

n                                  Diffusion index 

P                                 First Piola-Kirchoff stress tensors (Pa) 

𝑝𝐾𝑎              Acid dissociation constant for anionic hydrogel 

𝑝𝐾𝑏              Acid dissociation constant for cationic hydrogel 

Posmotic                       Osmotic pressure (N/m2) 

R   Universal gas constant 

T    Absolute temperature (K) 

𝑉𝑆𝑅                              Volume swelling ratio 

𝑉0    Volume before swelling (m3) 
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𝑉𝑠               Molar volume of the solvent 

𝑉𝑟̅               Molar volume of the polymer monomer 

𝐗𝛼   Reference position of the particles of a fluid-saturated porous solid 

𝐗𝑭   Reference position of the fluid phase 

𝐗𝑺    Reference position of the solid phase 

∆𝐺𝑡𝑜𝑡𝑎𝑙                        Change in total free energy (J) 

 ∆𝐺𝑚𝑖𝑥                         Change in free energy of mixing (J) 

∆𝐺𝑒𝑙𝑎𝑠𝑡𝑖𝑐                      Change in elastic free energy (J) 

∆𝐺𝑖𝑜𝑛                           Change in free energy of the ions (J) 

𝜋𝑚𝑖𝑥                            Osmotic pressure due to the mixing process (Pa) 

 𝜒                                 Polymer-solvent interaction parameter 

 𝜙                                Polymer volume fraction of the hydrogel 

𝜙0                               Polymer volume fraction of the hydrogel in the relaxed  

𝜋𝑒𝑙𝑎𝑠𝑡𝑖𝑐                        Osmotic pressure due to elastic free energy (Pa) 

𝜗0                                Polymer volume fraction of the hydrogel in the relaxed state  

𝜗𝑒                                Polymer volume fraction of the ionic hydrogel at equilibrium state, 

𝜀                                  Relative dielectric constant of the medium  

𝜏1              Collective diffusion coefficient of the polymer gel (m/s2)  

𝛼                Degree of dissociation 

𝛼12(𝑝𝐻)                      pH-induced deformation coefficient 

φ                                 Electric potential (V) 

𝜗                                 Specific volume of the polymer (m3/kg) 

𝑣0                                Number density of effective network strands (m−3) 

𝜇    Chemical potentials (J) 

𝜇𝑘                                Mobility of the diffusive species (m2s−1 V−1) 

𝑘𝑟                                Kinetic rate constant of swelling 

𝜎                                  Stress tensor (Pa) 

𝜑𝛼   Constituents of a fluid-saturated porous solid 

 

SUBSCRIPTS 

k                           kth-species ion  

f                                fluid  

s                               solvent 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background and Motivation 

Controlled drug delivery systems such as Nexplanon®-a hormonal implant (demonstrated in 

Figure 1.1) for contraception [1], transdermal patches (shown in Figure 1.2) for drug release 

through the skin and into the bloodstream [2, 3], liposomes as drug carriers [3, 4] have helped 

to maintain drug concentrations within the desired therapeutic range in the human body, 

thereby reducing the need for frequent drug administrations, leading to increased patient 

compliance and convenience [5]. Polymers have been used extensively in the pharmaceutical 

industries as binders in tablets, as film coatings to disguise the unpleasant taste of drugs and 

for controlled drug release applications [6, 7]. Among various kinds of polymeric materials 

that have been used to encapsulate drugs or used as drug release rate-controlling barriers, 

hydrogels have received considerable research interest [8–17]. Hydrogels are also pursued in 

wound healing, tissue engineering, gene delivery, ocular drug delivery, transdermal drug 

delivery and subcutaneous drug delivery in the form of implants [1, 17–19]. 

 

Figure 1.1: A flexible rod placed on the inside of the arm as a birth control implant [20]. 

 

 

Figure 1.2: Transdermal patch used for delivering a specific steady dose of drug into the skin 

[21].  
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Hydrogels are three-dimensional, frequently chemically or physically crosslinked hydrophilic 

polymeric materials, primarily composed of water. The volume variation behaviour of 

hydrogels in response to stimuli makes them considered as responsive materials [22]. When 

volume changes in reversible manner (as shown in Figure 1.3) in response to external stimuli, 

hydrogels are considered smart (intelligent) materials [23–25]. In contact with different 

environments (e.g., solutions that have different pH; different temperature, ionic strength, etc.), 

smart hydrogels are capable of swelling, thereby retaining large volume of liquid in their 

swollen state. Hydrogel’s ability to absorb water comes from the hydrophilic functional groups 

located at the backbone of the polymer network, while their inability to dissolve in water is due 

to the crosslinks between the polymer chains [14]. Based on the nature of bonds between 

polymeric chains, hydrogels are categorised into chemical or physical gels. The chemical 

hydrogels have permanent covalently bonded crosslinked networks while physical hydrogels 

have networks with transient junctions that are held together by molecular entanglements or 

physical interactions such as ionic interactions, hydrogen bonds, or hydrophobic interactions 

[14].  

 

Figure 1.3: Crosslinked hydrogel undergoing reversible volume change [26] 

Although hydrogels are generally prepared using hydrophilic monomers, hydrophobic 

monomers are sometimes used in hydrogel synthesis to tune the properties for specific 

applications [14]. For example, the mechanical stability of the hydrogel can be controlled by 

adjusting the concentration of the hydrophobic monomer used. This in turns impacts on the 

degradability and durability of the hydrogel [14]. Generally, hydrogels can be prepared from 

either synthetic polymers or natural polymers. Gels whose polymers have natural origins are 

called natural hydrogels, examples are gelatin and collagen. Hydrogels synthesized using 
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synthetic polymers such as polyamides and polyethene glycol are known as synthetic hydrogels 

[27]. Various natural and synthetic polymers have been studied in hydrogel-related research 

[28]. 

 

The hydrogel of interest in this study is chitosan-based. Chitosan is a natural cationic 

copolymer formed by the partial deacetylation of insoluble naturally available chitin [29–32], 

obtained from exoskeletons of crustaceans, fungi, and insects [28], crabs and lobsters, pens of 

squids, wings of insects and even nails of humans [33]. It is the second most abundant organic 

compound in nature after cellulose [34]. The shellfish (e.g., lobsters, shrimp, crab, etc.,) 

industry produces a lot of waste shell—an important source of chitin. Utilization of chitin via 

chitosan is therefore seen as a solution to the potential environmental problem of waste shell 

[33–35]. 

 

Chitosan is weakly soluble in acidic medium (specifically when the pH of the medium is less 

than the 𝑝𝐾𝑎 of the chitosan), a feature used in the preparation of chitosan-based hydrogels 

[36]. To stabilize them, chitosan solution is usually cross-linked by different methods aimed at 

tailoring their properties (porosity, mechanical strength, responsiveness) and creating a stable 

network for a period suitable for the application [36, 37]. Adding a suitable cross-linker does 

not only change the hydrogel’s structure but improves its mechanical properties [36]. The need 

for naturally occurring cross-linking agents is on the increase in recent time, due to their 

inherent biocompatibility and reduced cytotoxicity [38]. One such natural cross-linker that has 

attracted increased research interest in recent years is genipin [36–39]. Genipin is obtained 

from a compound traditionally used in Chinese medicine, geniposide, which may be isolated 

from the fruits of Gardenia jasminoides Ellis [37, 39]. 

 

Several studies have been done to elucidate the behaviour of chitosan-based hydrogel cross-

linked with genipin. For example, Damida and co-workers [36] studied the reaction kinetics of 

chitosan/genipin at different thermal conditions and with different cross-linker concentrations. 

Matcham and Novakovic [38] in their work showed how temperature and pH affect sol-gel 

transition in genipin crossed-linked chitosan hydrogels. The effect of cross-linker 

concentration on the rheological properties of chitosan-genipin hydrogels at body temperature 

and physiological pH was evaluated [37]. Although, much research works around chitosan 

cross-linked with genipin details the experimental and theoretical studies concerning 
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hydrogels, the dynamic responsiveness in relation to hydrogel composition remains poorly 

understood. For example, Jahren and co-workers at University of Cambridge have done a lot 

of experimental work on genipin crosslinked chitosan hydrogels with a recent work on 

modelling their equilibrium swelling behaviour from a thermodynamics standpoint. This thesis, 

on one hand, builds and improves on their work. In addition, Novakovic’s group at Newcastle 

University has done lots of experimental work on genipin crosslinked chitosan hydrogels with 

nothing on mathematical modelling prior to this study. This thesis on the other hand, uses data 

from this group for model validation. 

 

Moreover, designing these materials for the desired applications require mathematical models 

which can complement experimental studies. That is, models which can offer insights that 

cannot even be observed experimentally. For example, how the concentration of ions builds up 

or deplete within the hydrogel. How ions in solution and not just pH influence swelling or 

shrinking. Multifield-based numerical models describing the volume variation behaviour of 

swellable hydrogels with different degree and type of crosslinking while readily available in 

the literature for some hydrogels [40–43], particularly anionic hydrogels, are very few for 

studying the equilibrium swelling behaviour of cationic, specifically genipin cross-linked with 

chitosan hydrogels. These fast-responding hydrogels made from naturally available raw 

materials are sparking lots of research interest in recent times. For that reason, having 

numerical models to simulate the stimuli-responsive, dynamic behaviour of these hydrogels 

would be a significant contribution that would enhance understanding and accelerate their 

development for broad range of applications. 

 

1.2 Aim and Objectives  

This study is aimed at developing a numerical model that can predict dynamic volume variation 

behaviour of genipin crosslinked chitosan hydrogels, in response to changes in pH of their 

environment. 

The objectives to achieve this aim are: 

i. develop and validate a finite element model in COMSOL multiphysics software, for 

predicting the volume variation of pH responsive anionic hydrogels.  

ii. adapt the framework developed in (i) above to simulate and predict steady state volume 

variation of pH-sensitive cationic hydrogels. 
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iii. develop a numerical model to simulate and predict the dynamic volume variation 

behaviour of pH responsive genipin crosslinked chitosan hydrogels owing to the 

difficulty associated with obtaining transient response using the framework in (ii). 

iv. evaluate the performance of the model developed in (iii) by comparing model swelling 

(prediction) data with experimental swelling data for genipin crosslinked chitosan 

hydrogels. 

v. determine the optimum parameters for equilibrium swelling of genipin crosslinked 

chitosan hydrogels. 

 

1.3 Significance and Application 

The model developed in this study for cationic hydrogels is easy to use and can allow for the 

concentration of the crosslinking reagent to be tuned during dynamic studies to predict the 

effect of concentration variation on the volume variation behaviour of pH responsive cationic 

(genipin crosslinked chitosan) hydrogels. If the initial and final swell volumes of the 

crosslinked hydrogels are known, the chemo-mechanical model can be employed to predict the 

time-evolution of the volume of the hydrogel from its initial state to its final swollen state. In 

addition, the model developed in this study could be adapted to model the volume variation 

behaviour of other cationic hydrogels and be further deployed to model pH-sensitive swelling-

controlled drug delivery devices by including the drug molecule among the non-ionic diffusing 

species. 

 

1.4 Scope of Study and Contribution to Knowledge 

Since the nature of the fixed charge group at the backbone of the polymer network varies for 

different cationic hydrogels, the chemo-mechanical together with thermodynamics model 

developed in this study, is for predicting the conformational change dynamics of cationic 

genipin crosslinked chitosan hydrogels. However, the model can be adapted to simulate the 

conformational change dynamics of other cationic hydrogels. 

 

A multiphysics numerical model that couples Poisson Nernst Planck and mechanical equations 

was first developed and solved using COMSOL Multiphysics software to simulate the 

equilibrium swelling behaviour of anionic hydrogels. The performance capacity of the model 

was evaluated using experimental data for poly (2-hydroxyethyl methacrylate), PHEMA 

hydrogel. Switching from modelling anionic to modelling cationic hydrogels, the simulation 

platform developed for anionic hydrogels was adapted to cationic hydrogels. However, 
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obtaining a dynamic simulation of the model for cationic (genipin crosslinked chitosan) 

hydrogels was difficult owing to numerical issues such as stability and stiffness. Although 

steady-state solutions were obtained, each time the pH of the surrounding medium changed 

from acidic to alkaline, it was required to manually change the boundary conditions especially 

during shrinking of the hydrogel.  

 

To circumvent this challenge, a systematic approach that combines thermodynamics modelling 

with chemo-mechanical modelling was adopted. The thermodynamics model developed using 

statistical mechanics approach was used to determine the equilibrium swelling ratio, and by 

extension the final volume of the swollen hydrogel. With the values of initial and final volumes 

of the hydrogel, the chemo-mechanical model derived from first principle was used to 

determine or predict the time-dependent volume of the hydrogel from its initial state to its final 

swollen state. In essence, the modelling strategy provided in this study for modelling the 

dynamic response of pH-sensitive cationic hydrogels contributes to knowledge, as it helps to 

overcome the computational difficulties associated with applying the traditional approach used 

for modelling anionic hydrogels. A challenge that has restricted studies in cationic hydrogels 

to mainly experimentation. 

 

Furthermore, the model developed in this work offers the advantage of allowing for the 

concentration of the crosslinking reagent (a very important parameter that controls the 

mechanical property and swelling capability of the crosslinked hydrogel) to be tuned during 

dynamic studies to predict the effect of concentration variation on the volume variation 

behaviour of pH responsive cationic (genipin crosslinked chitosan) hydrogels. In addition, by 

incorporating pharmaceutical compounds, or combining cationic hydrogels with DNA through 

conjugation (to release the DNA) or varying the concentration of the crosslinking reagent to 

create scaffolds of new tissues, the model can be adapted to simulate applications such as 

targeted drug delivery, gene delivery, and tissue engineering respectively. 

 

1.5 Thesis Outline 

This thesis is divided into nine chapters. The first chapter provides the background and 

motivation for this research, while the second chapter deals with the review of related literature. 

The review covers stimuli responsive hydrogels, their types, and the theory behind their 

swelling. In addition, a review on the approaches employed for mathematical modelling and 

simulation of the response behaviour of pH-sensitive hydrogels was made. 
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Chapter 3 focuses on the modelling methodology employed in this research to simulate the pH 

responsive behaviour of ionic hydrogels. This was described in four separate sections covering 

multiphysics modelling of pH-sensitive anionic and cationic hydrogels, modelling equilibrium 

swelling of pH-sensitive hydrogels from a thermodynamics standpoint, modelling the dynamic 

swelling of pH responsive genipin crosslinked chitosan hydrogels, and optimization model for 

equilibrium swelling of pH responsive genipin crosslinked chitosan hydrogels. 

 

Chapter 4 presents the analysis and discussion of the results of the multiphysics simulation for 

equilibrium swelling of the case-studied pH-responsive anionic hydrogel. Comparison between 

model predictions and equilibrium swelling data for the case-studied anionic hydrogel is 

detailed in this chapter.   

 

The simulation framework deployed to model equilibrium swelling of anionic hydrogel was 

adapted to model equilibrium swelling of cationic genipin crosslinked chitosan hydrogel, and 

the results of the simulation are analysed and discussed in Chapter 5.  

 

In Chapter 6, the simulation result for the thermodynamic model developed from statistical 

mechanics approach (for equilibrium swelling of genipin crosslinked chitosan hydrogel) is 

analysed and discussed extensively. Comparison was made between model predictions and 

experimentally obtained values for equilibrium swell ratio. 

 

Chapter 7 highlights the achievement of this research in simulating the dynamic volume 

variation behaviour of pH-sensitive genipin crosslinked chitosan hydrogels. The simulation 

results of the dynamic model for studying the time-dependent volume variation behaviour of 

cationic, genipin crosslinked chitosan hydrogels were validated in this chapter using 

experimental (dynamic) swelling data.  

 

Chapter 8 focuses on statistical optimization of equilibrium swelling of pH-sensitive genipin 

crosslinked chitosan hydrogels to determine the optimum conditions for equilibrium swelling 

to be achieved in a typical drug delivery scenario.  

Chapter 9 concludes on the main outcomes of this research and highlights the suggestions for 

further studies. 
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CHAPTER TWO 

LITERATURE REVIEW  

 

2.1 Stimuli-Responsive Hydrogels 

Stimuli-responsive hydrogels are three-dimensional hydrophilic polymer-based materials 

capable of showing significant changes in their properties on exposure to external stimuli 

[44]. These stimuli could be physical, such as: pressure [45], temperature [46, 47], sound [48, 

49], light [50, 51], electric [52] and magnetic field [53, 54] or chemical, such as: pH [55–59], 

solvent composition, ionic strength [60], and molecular species [15, 40]. 

 

Temperature-sensitive hydrogels show distinctive changes in their mechanical properties in 

response to changes in the temperature of the surroundings [61–64]. Thermo-responsive 

hydrogels are finding applications in biomedical fields especially in drug delivery systems used 

for transdermal drug delivery, oral drug delivery and in cancer therapy [44, 61–63, 65]. 

Temperature sensitive hydrogels can exhibit Low Critical Solution Temperature (LCST) or 

Upper Critical Solution Temperature (UCST). LCST is the critical temperature below which 

the hydrogel is miscible in all proportions, while UCST is the critical temperature above which 

the hydrogel is miscible in all proportions [66].  

The swelling and shrinking of temperature-responsive hydrogels that corresponds with their 

critical solution temperature has been the mechanism behind their utilization in technologies 

such as drug delivery and membrane separation [67, 68]. Some common temperature-sensitive 

synthetic polymers employed in the fabrication of drug delivery systems include 

poly(organophosphazenes), polyoxazoline, poly(N-isopropylacrylamide) (pNIPAAm), while 

some thermo-responsive natural polymers are starch, cellulose, chitosan, gelatin/collagen [44]. 

The difference between natural and synthetic polymers are illustrated in Figure 2.1. 
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Figure 2.1: Natural (i.e., naturally occurring) vs synthetic (man-made) polymers and their 

applications. Adapted from [69]. 

 

pH-responsive hydrogels swell or shrink in response to changes in pH of the surrounding 

medium [70–72] and continues to draw interest in the development of various drug delivery 

systems [8, 67, 68, 72, 73]. These hydrogels play a major role in biomedical applications [74–

78] particularly in drug delivery systems [79–81] because, significant pH changes occur in 

various parts of the human body such as the blood vessels [82], female genital tract [83], the 

gastrointestinal tract [84], also in disease sites such as tumour [85], and inflammation [86].  

Materials used to induce pH-responsive behaviour in hydrogels can be synthetic or natural by 

origin. Among synthetic materials, the most common monomers employed in the development 

of pH-responsive hydrogels are acrylic acid (AA), acrylamide (AAm), methacrylic acid 

(MAA), dimethylaminoethyl methacrylate (DMAEMA), diethylaminoethyl methacrylate 

(DEAEMA) and ethylene glycol [87–89]. Natural polymers such as gelatin, albumin, chitosan, 

and alginate have been reported to demonstrate pH-responsive behaviour [88]. The major 

advantages of natural pH-responsive polymers, over their synthetic counterparts are 

biocompatibility, and majority of them have the ability to degrade overtime within the human 

body system, making them vey suitable for constructing devices that can be implanted in the 

human body or as vehicles for controlled drug delivery [71, 88].  

 

pH-sensitive hydrogels (whether from natural or synthetic polymers) respond reversibly to 

changes in the pH of the external environment. Their characteristic volume-variation behaviour 

makes them find applications in various areas like environmental remediation [15], control of 
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microfluidic flow, artificial muscles and biomaterials, Micro-Electro-Mechanical Systems 

(MEMS)/Bio-MEMS and controlled drug delivery systems [15, 90]. Advances in the 

utilization of these pH-responsive hydrogels have made accurate experimental analysis of their 

volume-variation behaviour for systems with complex geometry a challenging task [15]. 

Therefore, the need and interest in mathematical modelling and simulation has been increasing 

over the years with a potential to become a major tool for understanding the dynamics of 

swelling/shrinking and predicting the performance of stimuli-responsive hydrogels. 

 

2.2 Conformational Change of pH Responsive Hydrogels 

The ability of pH responsive hydrogels to swell or shrink in response to pH changes in the 

surrounding medium, is a function of the ionisable pendant groups in the polymer network 

chain [91]. The nature of the ionisable pendant group determines if the hydrogel is anionic or 

cationic or zwitterionic [92–95], depending on their ability to donate or accept protons in 

response to pH changes in the surrounding medium [91, 96, 97]. The volume-variation 

behaviour of pH-responsive hydrogels strongly depends on the dissociation constant of the 

pendant group.  

The pendant groups for anionic hydrogels ionize in solutions at a pH greater than their acid 

dissociation constant, 𝑝𝐾𝑎. Thus, the large osmotic pressure created on the surface of the 

hydrogel by the cloud of ions causes the anionic pH-sensitive hydrogels to swell at pH > 𝑝𝐾𝑎. 

Conversely, the pendant groups for cationic hydrogels ionize at a pH less than their base 

dissociation constant, 𝑝𝐾𝑏. Hence, cationic pH-responsive hydrogels (e.g., gels containing –

NH2 groups) swell at pH < 𝑝𝐾𝑏, where 𝐾𝑏 is the dissociation constant of the basic (amine or 

amino) group at the polymer backbone. These behaviours are depicted in Figure 2.2. 
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Figure 2.2: pH dependent equilibrium swelling behaviour of anionic and cationic hydrogels. 

Adapted from [98]. 

 

2.3 Anionic Hydrogels: poly (2-hydroxyethyl methacrylate) 

As mentioned in Section 2.2, anionic hydrogels have negatively charged ions as ionizable 

pendant group at the backbone of the polymer network (see Figure 2.3). These hydrogels often 

contain weakly acid groups such as sulfonic, –SO3H, or carboxylic, -COOH acid groups at the 

backbone of the network.  

 

Figure 2.3: Illustrative representation of anionic hydrogel. Adapted from [99] 
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Due to the ability of anionic hydrogels to swell when their 𝑝𝐾𝑎 is lower than the pH of their 

surroundings, they have found applications in areas where the materials made from them are 

expected to swell in alkaline environment.  To protect against drug release in the stomach where 

the pH is low, and to prevent the release of unpleasant-tasting drugs into the pH environment 

of the mouth [70], anionic hydrogels are employed as suitable excipients for oral delivery of 

therapeutics [100, 101]. 

Examples of anionic pH responsive hydrogels are poly (acrylic acid) (PAA), poly (methacrylic 

acid) (PMAA), pectin/poly (acrylamide-co-acrylamidoglycolic acid) (PPAA), poly (2-

hydroxyethyl methacrylate) (PHEMA), etc. 

Equilibrium swelling data for PHEMA hydrogels was used in this work for simulation studies 

involving anionic hydrogels because, PHEMA is a widely used material that has found 

applications in scaffolds for tissue engineering, artificial skin, contact lenses, and controlled 

drug delivery devices [102–104]. 

 

2.3.1 PHEMA hydrogels 

Poly (2-hydroxyethyl methacrylate) hydrogels are receiving increasing attention from the 

research community owing to their excellent biocompatibility, similar physical properties to 

living tissue [105], and suitability for medical and biomedical applications [106]. Witcherle 

and Lim [107] were the first to study about the hydrogels of PHEMA in the development of 

contact lenses. PHEMA hydrogels have shown great potential in bone tissue regeneration, 

wound healing, and cancer therapy [108]. Although there are different approaches for PHEMA 

synthesis Figure 2.4 illustrates the free radical crosslinking polymerization of PHEMA. 

 

Figure 2.4: PHEMA hydrogel network synthesised from the copolymerization of HEMA with 

crosslinking agent Ethylene glycol dimethylacrylate (EGDMA). Reprinted from [108] 
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The swelling behaviour of PHEMA hydrogels have been studied both experimentally [109–

111] and computationally [15]. However, this work builds on the computational approach 

available in the literature for anionic hydrogels and adapts it to model and simulate cationic 

hydrogels. 

 

2.4 Cationic Hydrogel: Chitosan-based Hydrogels 

Cationic hydrogels usually have fixed positively charged basic group as ionizable pendant 

group at the backbone of the polymer network (see Figure 2.5). They usually have amine, –

NH2 group bound to the polymer network. The reversible swelling-shrinking property in 

response to changes in external pH conditions makes cationic hydrogels attractive materials for 

a wide range of applications such as targeted drug delivery, gene delivery, and tissue 

engineering [112]. 

 

 

 

Figure 2.5: Diagrammatic representation of cationic hydrogel. Adapted from [99] 

 

As the pH of the environment becomes less than the 𝑝𝐾𝑏 of  the hydrogel, the amine group 

changes from −𝑁𝐻2 to 𝑁𝐻3
+ due to protonation, resulting in electrostatic repulsion leading to 

swelling of the hydrogel. The extent to which the cationic hydrogel swells (i.e., swelling ratio) 

depends largely on the 𝑝𝐾𝑏 of the fixed charge, crosslinking ratio, concentration of the 
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monomer, pH, and ionic strength of the surrounding medium [113, 114]. The ability of pH 

responsive cationic hydrogels to swell at pH lower than the pH of normal body tissue have 

made them find applications in targeted drug delivery technology and used as carriers for 

anticancer drugs [115–119]. 

Some examples of cationic hydrogels are based on poly(lysine), poly(amido-amine), poly 

(N,N-dialkylaminoethyl methacrylate), chitosan, etc.  For the purposes of biocompatibility, 

biodegradability, and non-toxicity, chitosan-based hydrogels are of interest to this study. 

Chitosan a natural copolymer of 𝛽 −(1–4)-linked 2-acetamido-2-deoxy-D-glucopyranose and 

2-amino-2-deoxy-D-glucopyranose, is formed by the partial deacetylation of insoluble 

naturally available chitin. Chitin is obtained from exoskeletons of crustaceans, fungi, and 

insects [28], crabs and lobsters, pens of squids, wings of insects and even nails of humans [33].  

Chitosan-based hydrogels swell in acidic medium when pH < 𝑝𝐾𝑏. So, to stabilize them, 

chitosan solution is usually cross-linked using different techniques aimed at enhancing their 

mechanical properties and creating a stable network for a period suitable for the application 

[36, 37].  

 

For biodegradable polymers such as chitosan to last long enough when in use as drug delivery 

device, their general properties must be regulated for the desired application by crosslinking 

chitosan with other reagents. Some crosslinking agents that have been used to modulate the 

general properties of chitosan are ethylene glycol, glutaraldehyde, tripolyphosphate, 

diisocyanate and diglycidyl ether [39]. Since synthetic crosslinking agents are cytotoxic and 

can affect biocompatibility of chitosan in drug delivery applications [120, 121], it is important 

to use crosslinking agents that have low cytotoxicity and that forms stable and biocompatible 

crosslinked compounds [39]. Therefore, the naturally occurring crosslinking reagent of interest 

to this study is genipin. Genipin is obtained from a compound traditionally used in Chinese 

medicine, geniposide, which may be isolated from the fruits of Gardenia jasminoides Ellis [37], 

[39]. The structure of genipin crosslinked chitosan hydrogel is shown is Figure 2.6. 
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Figure 2.6: Genipin crosslinked with chitosan hydrogel. Adapted from [122]. 

 

Studies have demonstrated that crosslinking genipin with chitosan improves the water 

resistance, swelling and mechanical properties of the final product [39, 123–126]. For example, 

Vukajlović, Bretcanu, and Novakovic [127] developed two composite materials, genipin 

crosslinked chitosan hydrogel with the addition of Bioglass 45S5 (BG) powder, and BG 

scaffolds coated with the genipin cross-linked chitosan hydrogel with a potential for low load-

bearing applications, and as an alternative to commonly used collagen and hydroxyapatite. 

Nwosu, Hurst, and Novakovic [128] studied the influence of composition of genipin-

crosslinked chitosan-polyvinylpyrrolidone hydrogels on their response to pH change in their 

surroundings with potential application in wound dressing and drug delivery. Chung, Birch, 

and Novakovic [129] used genipin-crosslinked chitosan-polyvinylpyrrolidone hydrogels in 

their studies to culture non-differentiated adult mesenchymal stem cells for cell viability. Vo 

et al. [130] in their in vitro biocompatibility and biodegradability studies, showed the potential 

of chitosan‐genipin hydrogels for vaccine delivery applications. Hurst and Novakovic [131] in 

their work, showed the suitability of techniques such as scanning electron microscopy, 

environmental scanning electron microscopy, and in situ Confocal Laser Scanning Microscopy 

(CLSM) for characterizing the network structure of genipin-crosslinked chitosan–poly(vinyl 

pyrrolidone) hydrogels. Where CLSM was used to track morphological changes as a function 

of time during swelling of the crosslinked hydrogel. 

However, the swelling ratio and kinetics of swelling are dependent on the concentration of 

genipin used for crosslinking with chitosan. Although several experimental works on the 
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swelling dynamics of chitosan-genipin hydrogels are available in the literature [132–134], only 

a few computational-based studies have attempted to model the equilibrium swelling of 

genipin-crosslinked chitosan hydrogels [135]. To understand the dynamics of their 

conformational changes with the potential of application in controlled drug delivery 

technology, food packaging, and wound dressing, mathematical models with the capability of 

simulating and predicting their responsive dynamic behaviour are undoubtedly important. 

 

2.5 Mechanical Properties of Hydrogels 

The mechanical properties of hydrogels are properties which reflect the response or 

deformation of the gel under applied load or stress. These properties can be tuned or controlled 

to suit the desired application. Important mechanical properties considered during simulation 

of the anionic (PHEMA) and cationic (genipin-crosslinked chitosan) hydrogels are elastic 

modulus, shear modulus, and Poisson’s ratio.  

The elastic or Young’s modulus is a measure of the stiffness of the hydrogel under stress (this 

implies that a stiffer hydrogel has a higher elastic modulus). It  represents the linear relationship 

of a stress-strain curve as  shown in Figure 2.7. 

 

Figure 2.7: Stress-strain curve for determination of elastic modulus 

Although some polymer-based materials have non-linear stress-strain behaviours, of which the 

modulus of elasticity cannot be determined from such plot. The hydrogels whose volume 
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transition behaviours are modelled in this study are assumed to undergo small deformations, 

hence are modelled as elastic materials. For pH responsive anionic hydrogels, the elastic 

modulus has been observed experimentally to vary with pH value of the surrounding medium. 

For pH ≤ 5  elastic modulus is 0.29 Mpa, for pH ≥ 7.5 elastic modulus is 0.21Mpa, and for 

the range 5.5 < pH < 7.5, the elastic modulus varies linearly from 0.29 to 0.21Mpa [15]. 

 

Shear modulus (also known as the modulus of rigidity) is defined as the ratio of shear stress to 

shear strain, and it is a measure of the hydrogel’s  response to shear deformation as shown in 

Figure 2.8. 

 

Figure 2.8: Illustration of shear modulus as a function of force, F, area, A, displacement, ∆x, 
initial length, l, and angle of displacement, θ [136] 

 

Poisson’s ratio is a measure of the ratio of the transverse contraction (or extension) of the 

hydrogel to the longitudinal extension (or compression) strain in the direction of the applied 

force. It is the ratio of the lateral strain to longitudinal strain. Its value for most rubber-like 

materials is in the range of 0 to 0.5.  

 

Figure 2.9: Measurement of Poisson’s ratio 
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Poisson's Ratio of 0 means there is no lateral contraction (i.e., no reduction in the diameter of 

the hydrogel) during material elongation. A value of 0.5 indicates that the volume of the 

hydrogel will remain constant during material elongation process. The value of Poisson ratio 

used in this study was obtained from the work of Li [15]. Poisson's ratio, 𝜈 is related to Young’s 

modulus E, shear modulus, G by the relation: 

𝐸 = 2𝐺(1 + 𝜈)               (2.1) 

 

2.6  Swelling Theories for pH-Sensitive Hydrogels 

When a pH-sensitive hydrogel is in contact with an aqueous medium, the pendant group at the 

backbone of the hydrogel undergoes protonation/ionization as the pH of the surrounding 

medium varies, resulting in a build-up of charge within the hydrogel. This charge build-up 

causes electrostatic repulsion which alters the osmotic balance between the hydrogel and the 

external medium causing moisture in the surrounding medium to penetrate the hydrogel 

thereby resulting in swelling of the hydrogel. This osmotic pressure, 𝑃𝑜𝑠𝑚𝑜𝑡𝑖𝑐, is represented 

mathematically as: 

𝑃𝑜𝑠𝑚𝑜𝑡𝑖𝑐 = 𝑅𝑇∑((𝑐𝑔𝑒𝑙 − 𝑐𝑠𝑜𝑙))                                                            (2.2) 

where 𝑐𝑔𝑒𝑙 and  𝑐𝑠𝑜𝑙 are the concentrations inside the hydrogel and within the surrounding 

medium respectively. R and T are the universal gas constant and the absolute temperature 

respectively. 

 

The swelling behaviour of hydrogels has been modelled over the years on microscale (scale at 

which the phases involved are distinguishable) or macroscale (scale at which the phases 

involved are indistinguishable) based on some theories known as the statistical theory, the 

porous media theory, the discrete element theory, the multiphase mixture theory [15, 40]. 

 

2.6.1 Statistical theory 

Statistical theory – a macroscale approach, is based on the original work of Flory [137, 138]. 

This theory uses change in Gibbs free energy, ∆𝐺, to describe the conditions in the hydrogel 

and in the surrounding medium [139]. The total free energy of the hydrogel-surrounding system 
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is the sum of the free energies due to mixing  ∆𝐺𝑚, elastic deformation of the hydrogel, ∆𝐺𝑒𝑙, 

and concentration difference between ions inside and those outside the hydrogel  ∆𝐺𝑖𝑜𝑛. 

The equilibrium state of the swollen hydrogel is defined at the minimum of the total free energy 

of the hydrogel-surrounding system. At equilibrium, the chemical potentials, 𝜇, of the fluid in 

surrounding medium and that in the hydrogel are identical, therefore:  

∆𝜇 = (
𝜕∆𝐺

𝜕𝑛
)
𝑝,𝑇
= (

𝜕 ∆𝐺𝑚

𝜕𝑛
)
𝑝,𝑇⏟      

𝑚𝑖𝑥𝑖𝑛𝑔 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 

+ (
𝜕 ∆𝐺𝑒𝑙

𝜕𝑛
)
𝑝,𝑇⏟      

𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 

+ (
𝜕 ∆𝐺𝑖𝑜𝑛

𝜕𝑛
)
𝑝,𝑇⏟      

𝑖𝑜𝑛𝑖𝑐 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 

= 0                   (2.3) 

Statistical theory has been employed to model the swelling of n-isopropyl acrylamide 

hydrogels in water and aqueous solutions of ethanol and acetone [140]. Although the theory 

can be utilized to model equilibrium swelling, it cannot be employed for studies involving 

dynamic response or swelling kinetics of pH-sensitive hydrogels.  

 

2.6.2 Multiphase mixture theory 

For the multiphase mixture theory, the hydrogel is considered a three-phase system comprising 

the polymer or solid phase, s, fluid or water phase, w, and the ionic phase (constituting the 

cations, +, and the anions, −). This theory assumes that the gradient of chemical or 

electrochemical potentials balanced by frictional forces between the phases, drives the volume 

variation of hydrogels [43].  

The system of equations describing the multiphase mixture theory are: 

momentum balance equation:    ∇. 𝜎 = 0                                                                  (2.4) 

system continuity equation (at steady state): ∇. (𝜌𝑖𝑣𝑖) = 0                        (2.5) 

continuity equation of the fixed charge group: ∇. (𝜗𝑤𝑐𝑓𝑣
𝑠) = 0                                 (2.6) 

condition of electroneutrality : ∑𝑧𝑖𝑐𝑖 + 𝑧𝑓𝑐𝑓 = 0                                   (2.7) 

where 𝑖 = 𝑠, 𝑤, +,−, 𝑣𝑖 is the velocity of component 𝑖, and 𝜌𝑖 its mass density. The stress is 

given within the hydrogel is given as: 

  𝜎 = 𝑷𝑰 + 𝜆𝑠𝑡𝑟(𝐸)𝑰 + 2𝜇𝑠𝑬                         (2.8) 
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where P is the first Piola-Kirchoff stress tensors, I and is the identity tensor and E the elastic 

strain tensor of the solid/polymer phase. Also, 𝜆 and  𝜇 are Lamé’s coefficient of the hydrogel 

material. 

Although the model developed from the multiphase mixture theory can describe both the 

equilibrium and swelling dynamics of hydrogel, its inability to capture variation of the elastic 

properties of the hydrogel during swelling or shrinking limits its general applicability [15]. 

 

2.6.3 Theory of porous media 

The theory of porous media (a macroscale continuum theory) is primarily an extension of the 

theory of mixtures by the concept of volume fractions [141]. This theory assumes that the 

porous solid (i.e., hydrogel) is a control volume in which the pores are filled with fluid, and 

that the pores are statistically distributed [142].  

Within the framework of the theory of porous media, a fluid-saturated porous solid is 

considered an immiscible mixture of the constituents 𝜑𝛼 with particles 𝑋𝛼. At time 𝑡 = 𝑡0, 

these particles move from different reference positions 𝐗𝛼. Thus, the motion of each 

constituent is described with an independent motion equation: 

𝐱 = 𝝌𝜶(𝐗𝜶, 𝑡)                                                                              (2.9) 

where x is an element of the porous solid at time t (in the current configuration). During 

deformation of the hydrogel, where the fluid phase exits the control volume of the solid, the 

reference position of the fluid phase, 𝐗𝐹 can be considered an element of the reference 

configuration. Eq. (2.9) written in terms of solid and fluid particle is: 

                 

𝐱 =𝝌𝑺(𝐗𝑺,𝑡)
=𝝌𝑭(𝐗𝑭,𝑡)

}                                                              (2.10) 

An illustrative diagram of the motion of a fluid and a solid particle is shown in Figure 2.10. 
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Figure 2.10: Schematic of the motion of a fluid and a solid particle in a fluid-saturated 

porous material. Adapted from [142]. 

The mechanical deformation suffered by the hydrogel as the constituents moves from the 

original position to a new position is mathematically defined as: 

𝐅𝜶 =
∂𝐱

∂𝐗𝜶
=
∂𝝌𝜶(𝐗𝜶,𝑡)

∂𝐗𝜶
                                                    (2.11) 

where 𝐅𝜶 is deformation gradient of the constituents 𝜑𝛼. The volume ratio is defined as:  

𝑱𝜶 = det(𝐅𝜶) =
𝑑𝑉

𝑑𝑉0
                                                 (2.12)                                    

The mathematical complexities involve in determining the change in volume of hydrogel when 

coupling of the chemical, mechanical, and electrical fields is required, limits the general use of 

the theory of porous media for studies involving swelling of pH responsive hydrogels.  

 

2.6.4 Discrete element theory 

The discrete element theory considers the hydrogel as a continuum and splits it into discrete 

particles of certain amount of mass, interacting with each other mechanically [139, 143, 144]. 

Newton’s equation of motion is employed to model the mechanical behaviour of the distributed 

system, while the chemical behaviour of the system is described using the diffusion equation 

for mobile ions. Wallmersperger et al. [139] employed the discrete element method to develop 

a model that describes the swelling behaviour of a polymer gel fibre in a bathing solution. 

Although this theory is suited for problems where the swelling behaviour of hydrogel alone is 

of interest, it does not capture explicitly the interaction between the hydrogel and the 

surrounding medium. 
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2.6.5 Coupled multi-field formulation 

The coupled multi-field formulation gives insight into how the degree of swelling or shrinking 

of the pH responsive hydrogel is affected by the interactions between chemical, electrical and 

mechanical fields [40, 41]. 

The multifield formulation describes the chemical field using the migration-diffusion equation 

for the different species inside the hydrogel and in the surrounding medium. The electric field 

is described by the Poisson equation, while the mechanical field which embodies the 

deformation of the hydrogel is formulated by conducting momentum balance around the 

hydrogel. Detailed information and equations describing the multifield formulation approach 

are provided in Section 2.7.3. 

The multi-field modelling strategy has been employed by various authors  [15, 40, 139] to 

model the swelling behaviour of hydrogels, because it is comprehensive and enables full 

dynamic and equilibrium simulations of the volume variation behaviour of hydrogels. The 

comprehensive nature of this modelling approach justifies the choice of this approach as the 

foundation for this study. Therefore, the model for predicting the swelling behaviour of pH-

sensitive anionic hydrogel was developed using the multifield approach detailed in Section 

2.7.3. In addition, the framework used for modelling anionic hydrogels was adapted to model, 

simulate, and predict the swelling or volume variation behaviour of pH-responsive cationic 

hydrogels. 

 

2.7  Mathematical Modelling of pH-Responsive Hydrogels 

Having discussed in the preceding section, the various theories behind the swelling of pH-

sensitive hydrogels. This section provides a review of the existing mathematical models 

formulated to describe the volume variation behaviour of pH-responsive hydrogels based on 

the theories described in Section 2.6. The volume variation behaviour of hydrogels is modelled 

in the literature using either statistical mechanics approach, or an empirical modelling 

approach, or from a first principle modelling approach that incorporates the various interacting 

fields. 
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2.7.1 Statistical mechanics of equilibrium swelling 

This approach to modelling equilibrium swelling of stimuli-responsive hydrogels is based on 

the original work of Flory [137, 138] for non-ionic polymer gels. The thermodynamic theory 

by Flory states that, a polymer gel immersed in a fluid and allowed to reach thermodynamic 

equilibrium with the surrounding fluid is acted upon by two opposing forces, the force due to 

mixing and elasticity of the chains. The equilibrium state of the neutral or non-ionic polymer 

gel can be described in terms of Gibbs free energy.  

∆𝐺𝑡𝑜𝑡𝑎𝑙 = ∆𝐺𝑚𝑖𝑥 + ∆𝐺𝑒𝑙𝑎𝑠𝑡𝑖𝑐                                                                     (2.13) 

where ∆𝐺𝑡𝑜𝑡𝑎𝑙  is the change in total free energy of the polymer gel, ∆𝐺𝑚𝑖𝑥  is the change in 

free energy due to mixing of the polymer chains with the fluid molecules, and ∆𝐺𝑒𝑙𝑎𝑠𝑡𝑖𝑐 is the 

change due to the elastic retractive forces within the polymer gel. 

Differentiating Eq. (2.13) with respect to the number of solvent molecules entering the polymer 

gel, 𝑛𝑠,  at constant temperature and pressure, gives the chemical potential of (or the osmotic 

pressure due to) the solvent entering the polymer gel:  

∆𝜇𝑡𝑜𝑡𝑎𝑙 = (
𝜕∆𝐺𝑡𝑜𝑡𝑎𝑙

𝜕𝑛𝑠
)
𝑇,𝑃
= ∆𝜇𝑚𝑖𝑥 + ∆𝜇𝑒𝑙𝑎𝑠𝑡𝑖𝑐                                               (2.14) 

At equilibrium, the chemical potential of the solvent inside the polymer gel, 𝜇𝑖𝑛 must be equal 

the chemical potential of the solvent in the surrounding medium, 𝜇𝑜𝑢𝑡. Therefore, Eq. (2.14) 

becomes: 

∆𝜇𝑚𝑖𝑥 + ∆𝜇𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =  0                                                                       (2.15) 

For ionic hydrogels, Eq. (2.15) can be extended to include change in osmotic pressure due to 

ionic interactions within the hydrogel, ∆𝜇𝑖𝑜𝑛𝑠 [145]: 

 ∆𝜇𝑚𝑖𝑥 + ∆𝜇𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + ∆𝜇𝑖𝑜𝑛𝑖𝑐 =  0                                                (2.16) 

 

From the Flory-Huggins polymer solution theory [138], the change in chemical potential due 

to mixing process is given as: 

∆𝜇𝑚𝑖𝑥 = −
𝑁𝐴𝑘𝑇

𝑉𝑠
[In(1 − 𝜙) + 𝜙 + 𝜒𝜙2]                                    (2.17) 
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where  𝜒 is the polymer-solvent interaction parameter, 𝑁𝐴 is Avogadro’s constant, 𝜙 is the 

polymer volume fraction of the hydrogel, k is the Boltzmann’s constant, and 𝑉𝑠 is the molar 

volume of the solvent.  

The change in chemical potential due to elasticity is based on rubber elasticity theory derived 

from the Gaussian chain model [146].  

∆𝜇𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = −
𝑁𝐴

𝑉𝑠
(
𝜕∆𝐺𝑒𝑙𝑎𝑠𝑡𝑖𝑐

𝜕𝑛𝑠
)
𝑛𝑝

                                                            (2.18) 

where the change in Gibb’s free energy due to elastic retractive forces of the polymer chains is 

given as: 

∆𝐺𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = −
𝑅𝑇

𝑉𝑠
𝑁𝑐

−1(𝜙1 3⁄ 𝜙0
2 3⁄ −

𝜙

2
)                                                        (2.19) 

 

where 𝜙0 is the polymer volume fraction of the hydrogel in the relaxed or at as-prepared state. 

 𝑁𝑐  is the average number of segments in the polymer chain network. In the case of highly 

crosslinked hydrogels, it is most appropriate to use expression that assumes the non-Gaussian 

chain statistics in determining osmotic pressure due to elastic forces, 𝜇𝑒𝑙𝑎𝑠𝑡𝑖𝑐 [146].  

Moreover, several statistical mechanics models have been proposed for crosslinked polymer 

networks following from the original derivation of elastic free energy, ∆𝐺𝑒𝑙𝑎𝑠𝑡𝑖𝑐, by Flory-

Rehner. These models include the affine network model proposed for describing the rubber 

elasticity of polymer networks by Kuhn [147], the phantom network model that takes into 

consideration the fluctuation around the crosslinking point in the network [148], and the 

percolate network model employed to determine the concentrations of the crosslinks and 

network strands in the polymer [149]. More detailed information about these models can be 

found elsewhere [150–154]. 

 

The change in chemical potential due to ionic interactions in the hydrogel, ∆𝜇𝑖𝑜𝑛𝑖𝑐, is given as 

[15]: 

∆𝜇𝑖𝑜𝑛𝑠 =
𝑓𝑅𝑇

𝑉𝑟̅̅ ̅
𝜙                                                                                     (2.20) 

where 𝑓 is the charge density of the hydrogel, (i.e., the fraction of segments bearing the ionic 

groups). 𝑉𝑟̅ is the molar volume of the polymer monomer. 
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Expressions that describe the contribution of ionic interactions to the change in chemical 

potential have been developed by Katchalsky et al. [155], Ricka et al. [156], and Brannon-

Peppas [157]. The swelling or shrinking of anionic and cationic hydrogels depend strongly on 

the ionic strength, and the nature of the ions present in the surrounding medium. To capture the 

influence of these parameters, Peppas et al. [114] have derived expressions for estimating the 

polymer volume fraction of anionic and cationic hydrogels. 

Anionic hydrogel: 

𝑉𝑠
4𝐼
(
𝜙2

𝜗
) (

𝐾𝑎
10−𝑝𝐻 − 𝐾𝑎

)
2

= [In(1 − 𝜙) + 𝜙 + 𝜒𝜙2] 

                                                    + (
𝑉𝑠

𝜗𝑀𝑐̅̅ ̅̅
) (1 −

2𝑀𝑐̅̅ ̅̅

𝑀𝑛̅̅ ̅̅̅
)𝜙0 [(

𝜙

𝜙0
)
1 3⁄

− (
𝜙

2𝜙0
)]                   (2.21)         

 

Cationic hydrogel:                    

 

𝑉𝑠
4𝐼
(
𝜙2

𝜗
) (

𝐾𝑏
10𝑝𝐻−14 − 𝐾𝑎

)
2

= [In(1 − 𝜙) + 𝜙 + 𝜒𝜙2] 

                                                         + (
𝑉𝑠

𝜗𝑀𝑐̅̅ ̅̅
) (1 −

2𝑀𝑐̅̅ ̅̅

𝑀𝑛̅̅ ̅̅̅
)𝜙0 [(

𝜙

𝜙0
)
1 3⁄

− (
𝜙

2𝜙0
)]                            (2.22) 

Caykara et al. [158] derived the following equation to predict the equilibrium swelling 

behaviour of hydrogels with monoprotic acid moieties.  

[
𝐾𝑎

10−𝑝𝐻+𝐾𝑎
]
2 𝑉𝑠𝑓𝑖

2

4𝐼𝑉𝑟̅̅ ̅
2 − 𝜙

−2𝐼𝑛(1 − 𝜙) − 𝜙−1 = 𝜒 +
(1−2 Ω⁄ )

𝑀𝑐̅̅ ̅̅
𝑉𝑠𝜌𝜙0

2 3⁄ 𝜙−5 3⁄           (2.23) 

where 𝑀𝑐̅̅ ̅̅  is the average  molecular weight between the crosslinks, 𝑀𝑛̅̅ ̅̅  is the molecular weight 

of the polymer chains prepared under identical conditions, 𝜗 is the specific volume of the 

polymer, 𝐾𝑎  and 𝐾𝑏 are the dissociation constants for the anionic and cationic hydrogels 

respectively, 𝑓𝑖 is the molar fraction of the ionic unit in the hydrogel system, 𝜌 is the density of 

the polymeric material, 𝑉𝑟̅ is the molar volume of the polymer monomer, pH and 𝐼 are the pH 

and ionic strength of the surrounding medium, and Ω  is the functionality at the crosslinking 

site.  

Since the model Equations (2.21), (2.22), and (2.23) captures the dependence of the swelling 

ratio on the nature of ions present in the solvent and the ionic strength of the surrounding media, 
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it can be used to predict the equilibrium volume variation behaviour of both anionic and 

cationic hydrogels. However, the major drawback of these models is the inability to predict 

time-dependent volume variation behaviour of hydrogels. Moreover, most of the parameters of 

these models (for example,  𝑀𝑐̅̅ ̅̅ , 𝑓𝑖, 𝑀𝑛̅̅ ̅̅ , Ω, 𝑉𝑟̅) are difficult to ascertain as they require lots of 

trial and error to estimate them using experimental data. 

 

Furthermore, this thermodynamic approach was employed by Jahren et al. [135] to model the 

equilibrium swelling behaviour of pH-sensitive genipin crosslinked chitosan hydrogel. For the 

first time, a model that captures the effect of change in concentration of the crosslinking reagent 

(and all ionizable groups present in the polymer) on the equilibrium swelling of the hydrogel 

was developed and validated against experimental equilibrium swelling data for pH-sensitive 

chitosan crosslinked with genipin, glutaraldehyde and polygenipin hydrogels [135]. 

Unfortunately, the discrepancy between the model prediction and the experimentally 

determined swelling ratio was consistently large by a factor of 30. This large error could be 

attributed to the choice of equations used to describe the contributions of the competing 

potentials. For example, the following equations were used for: 

i. Mixing potential 

          ∆𝜇𝑚𝑖𝑥 = 𝑅𝑇 [
In(1−𝜙)+𝜙+𝜒𝜙2

𝑉𝑠
]                            (2.24) 

Since the hydrogels under investigation are ionic, the mixing potential contributes little to the 

equilibrium swelling of the hydrogel. In addition, Eqn. (2.24) does not differ from the general 

Flory-Huggins equation used to describe the mixing potential. 

ii. Elastic potential 

∆𝜇𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = −𝐺′(

1

2
𝑟 −

(1−(1 𝑁⁄ )+(0.4 𝑁2⁄ )+(0.32 𝑁3⁄ ))

𝑟1 3⁄ + (−
1

𝑁
+
2.6

𝑁2
−
1.72

𝑁3
) 𝑟1 3⁄

+(−
2.2

𝑁2
−
8.84

𝑁3
) 𝑟 + (

6.84

𝑁3
) 𝑟5 3⁄

)          (2.25) 

r is the mass swelling ratio (see Section 2.9 for details),  𝐺′, is the shear elastic modulus, and 

N is the number of chitosan saccharide units per elastically active chain. Defined 

mathematically as:  

𝑁 =
𝑐𝑐

𝑐𝑔
                (2.26) 

where 𝑐𝑐 and 𝑐𝑔 are the molar concentrations of chitosan and genipin respectively. From Eqn. 

(2.25), and a series of experiments [135, 159] the authors derived a linear relationship between 

𝐺′  and r. The linearized form of Eqn. (2.25) was used to determine the contribution due to 

elastic potential. The error between the model predictions and the experimentally determined 
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swelling ratio could arise from this approximation or the linearization of the Eqn. (2.25). To 

circumvent this concern, this study builds on the work of Jahren et al. [135] but derives the 

elastic modulus differently following from Eqn. (2.19). 

  

iii. Ionic potential 

∆𝜇𝑖𝑜𝑛𝑖𝑐 = 𝑅𝑇∑ (𝑐𝑜𝑢𝑡
𝑖 − 𝑐𝑖𝑛

𝑖 )𝑖                                                             (2.27) 

where  𝑐𝑜𝑢𝑡
𝑖  and 𝑐𝑖𝑛

𝑖  are the concentration of each ionic species outside and within the hydrogel 

respectively. Thus, by substituting Eqns. (2.24), (2.25) and (2.27) into Eqn. (2.16) the 

equilibrium swelling ratio, r was determined. One major drawback of this approach is it cannot 

be used to determine the swelling kinetics of hydrogels.  

  

In general, models developed using this statistical mechanics approach predict the equilibrium 

volume variation behaviour of stimuli responsive hydrogels. However, their parameters of best 

fit are often estimated with lots of difficulties and uncertainties. This limits their general use 

and prediction accuracy. Although some level of agreement between numerical results and 

experimental data have been achieved in the literature by adjusting some parameters within the 

models [15].  

 

2.7.2 Empirical modelling  

Empirical modelling approach describes swelling as the diffusion of water into the polymer 

matrix, resulting in expansion of the polymer network due to polymer-chain relaxation. The 

swelling kinetics of hydrogel, modelled through this approach is based on experimental 

swelling data.  

Based on experimental observation, Schott [160, 161] described the rate of diffusion as a 

second order kinetics given as: 

𝑑𝑀𝑡

𝑑𝑡
= 𝑘𝑟(𝑀∞ −𝑀𝑡)

2                                                           (2.28) 

Integrating and rearranging parameters gives the following equation: 

𝑡

𝑀𝑡
= 𝐴 + 𝐵𝑡                                                                            (2.29)  

where  𝑀𝑡 is the amount of water uptake at time, t, 𝑀∞ is the equilibrium or maximum amount 

of water uptake by the polymer gel, 𝑘𝑟 is the kinetic rate constant of swelling, 𝐵 = 1 𝑀∞, ⁄ and 

𝐴 = 1 (𝑘𝑟𝑀∞
2)⁄ = 1 (𝑑𝑀𝑡 𝑑𝑡⁄ )𝑡=0⁄  is the reciprocal of the initial swelling rate.  



28 
 

The plot of 
𝑡

𝑀𝑡
 against t on the experimental swelling data gives a straight line with slope and 

intercept as B and A respectively.   Schott’s second order swelling kinetic model has been tested 

and shows good results [162] for hydrogels synthesised from acrylamide, acrylic acid, and n-

alkyl methacrylate esters cross-linked with 4,4’-di(methacryloyamide) azobenzene.      

       

In addition, power law model [15] proposed for diffusion of water into polymers is given as: 

𝑀𝑡 𝑀∞⁄ = 𝑘𝑟𝑡
𝑛                                                                    (2.30) 

where n is the diffusion index, which plays a vital role in determining the kinetics (i.e., the rate 

controlling step) of volume variation of hydrogels. The value of the diffusion index provides 

information about the phenomenon or mechanism controlling water uptake by the polymeric 

material. 

On one hand, if the rate of solvent diffusion is slower (i.e., the diffusion is the rate-controlling 

step) than the rate of polymer-chain relaxation, the diffusion index, 𝑛 = 0.5, and the system is 

considered to exhibit perfect Fickian behaviour or Case 1 transport. However, Wang and co 

[163] reported n values closer to or slightly above 0.5 for Fickian behaviour, while Bajpai and 

co-workers [164], Bajpai and Giri [165], Wang et al. [166], and Denizli et al. [167] have 

demonstrated the possibility of having 𝑛 < 0.5 for Fickian behaviour when the solvent 

penetration rate is far much slower than the polymer-chain relaxation. 

On the other hand, if the polymer-chain relaxation is slower than the diffusion of the solvent in 

the swollen state, the diffusion index, 𝑛 = 1, and the system is said to exhibit the non-Fickian 

or Case II transport (i.e., the rate of water uptake is directly proportional to time). The 

intermediate case (i.e., 0.5 < 𝑛 < 1 ) where the rate of water uptake is directly proportional to 

𝑡𝑛, is called the anomalous transport. The power law model describes the swelling behaviour 

of hydrogels very well for times where  
𝑀𝑡

𝑀∞
≤ 0.60, but fails above time values above this range 

[168]. To complement the power model for time values corresponding to 
𝑀𝑡

𝑀∞
> 0.60, a first 

order kinetic model was proposed [169]: 

𝑑𝑀𝑡

𝑑𝑡
= 𝑘′(𝑀∞ −𝑀𝑡)                                                            (2.31) 

where 𝑘′ is the relaxation rate constant (𝑚𝑖𝑛−1). Solving Eq. (2.31) gives: 
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𝑀𝑡 𝑀∞⁄ = (1 − 𝐷𝑒−𝑘
′𝑡)                                          (2.32) 

where the constants D and 𝑘′ are obtained from the slopes and intercepts of the graph of 

ln(1 − 𝑀𝑡 𝑀∞⁄ ) against time for t values corresponding to 
𝑀𝑡

𝑀∞
≥ 0.60. 

 

Furthermore, continuum mechanics approach was used [146] to derive a model for volume 

variation of spherical gel as a function of time: 

∆𝑎(𝑡)

∆𝑎
≅

6

𝜋
𝑒𝑥𝑝 (−

𝑡

𝜏1
)                                                                (2.33) 

where ∆𝑎(𝑡) is the deformation of the gel surface over time, ∆𝑎 is the deformation of the gel 

surface at equilibrium. Experimentally, 𝜏1, which is a function of the collective diffusion 

coefficient of the polymer gel [170], is obtained as the slope of the plot of log(∆𝑎(𝑡) ∆𝑎⁄ ) 

against 𝑡. For details of the derivation, refer to [146]. This model provides a simple method to 

correlate experimental data from swelling kinetics. Although the model shows good results for 

swelling studies involving spherically shaped Tetra-PEG gels [170], unfortunately, it cannot 

offer predictions for non-spherical polymer gels. 

 

The concerns surrounding these empirical models span from their range of accuracy [15, 168], 

and the fact that they do not account for the influence of electric field (created by the cloud of 

ions inside and around the hydrogel), and mechanical deformation of the hydrogel. 

 

2.7.3 Multifield modelling approach 

The multi-field approach to modelling swelling dynamics for hydrogel immersed in an aqueous 

medium is based on the laws of conservation of mass, charge, and momentum, where the 

chemical, electrical and mechanical effects are taken into consideration. This approach is based 

on the work of Wallmersperger and co-workers [41]. Since the volume variation of ionic 

hydrogels is driven by diffusion of ions between the hydrogel and the surrounding medium, 

the model developed from this approach couples the Nernst-Plank equation, together with the 

Poisson equation and the mechanical equation to simulate the diffusive ionic concentration, 

electric potential, and the deformation of the hydrogel respectively.  
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The unsteady state Nernst-Plank equation, the Poisson equation, and the unsteady state 

mechanical equation (for large deformation based on the concept of total Lagrangian) are given 

as follows: 

𝜕𝑐𝑘

𝜕𝑡
+ 𝐷𝑘

𝜕2𝑐𝑘

𝜕𝑥2
+ 𝜇𝑘𝑧𝑘𝐹 (𝑐𝑘

𝜕2𝜑

𝜕𝑥2
+
𝜕𝑐𝑘

𝜕𝑥
∙
𝜕𝜑

𝜕𝑥
) = 0        (𝑘 = 1,2,3, …𝑁)          (2.34) 

                                                                                                               

𝜕2𝜑

𝜕𝑥2
= −

𝐹

𝜀𝜀0
∑ (𝑧𝑘𝑐𝑘 + 𝑧𝑓𝑐𝑓
𝑁
𝑘=1 )                                                                    (2.35) 

∇. 𝑷 + 𝒃 − 𝒇 = 𝜌𝑼̇                                                                                        (2.36) 

where 𝐷𝑘 is the effective diffusivity (for isotropic diffusion), 𝑐𝑘 the concentration, 𝑧𝑘 valency,  

𝜇𝑘 is the mobility of the kth-species ion, 𝜀0 is the dielectric constant of vacuum, 𝜀 is the relative 

dielectric constant of the surrounding fluid, F is the Faraday constant, 𝑐𝑓 and 𝑧𝑓 are the density 

and the valence of the fixed charge ion inside the hydrogel, 𝒃 is the body force, 𝒇 is external 

force, 𝑼̇ is acceleration, 𝜌𝑼̇ is inertial force, and 𝜌 is the density of the hydrogel.  

The fixed charge density 𝑐𝑓 is related to the hydrogel volume variation for anionic and cationic 

hydrogel respectively [15]: 

𝑐𝑓 =
1

𝐻

𝑐𝑓,0𝐾𝑎

(𝐾𝑎+𝑐𝐻)
                                                                                    (2.37) 

𝑐𝑓 =
1

𝐻

𝑐𝑓,0𝑐𝐻

(𝐾𝑏+𝑐𝐻)
                                                                                    (2.38) 

where H is the local hydration state of the pH-responsive hydrogel, 𝐾𝑎 and 𝐾𝑏 are the acid and 

base dissociation constant of the fixed charged group, 𝑐𝑓,0 is the initial fixed charge 

concentration within the hydrogel in its relaxed state, and cH the concentration of the hydrogen 

ions inside the hydrogel. 

Based on this approach, Li [15] developed a Multi-Effect-Coupling pH-Stimulus (MECpH) 

model for one-dimensional shape anionic pH-sensitive hydrogels. Suthar [171] developed a 

multi-field numerical model for simulation of equilibrium swelling of a disc-shaped pH-

sensitive anionic hydrogel. However, Kang [172] developed a chemo-electro-mechanical field 

model by coupling the Nernst–Planck equation together with Donnan theory and elastic 

mechanics equation to investigate the swelling/deswelling dynamics of pH sensitive hydrogels. 
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Further, the presence of buffer in the surrounding medium influences the diffusion of hydrogen 

ion by providing an alternative pathway for the hydrogen ion between the hydrogel and the 

surrounding medium. To capture the influence of the buffer, Li [15] included additional terms 

in the continuity equation for hydrogen ions within the hydrogel to obtain the following chemo-

electro-mechanical model for swelling kinetics: 

 

Chemical field: Diffusion of hydrogen ion 

𝜕

𝜕𝑡
[𝐻𝑐𝐻 +

𝑐𝑓,0𝑐𝐻

(𝐾𝑏+𝑐𝐻)
+

𝐻𝑐𝑇𝑐𝐻

(𝐾𝐵+𝑐𝐻)
]  

= −
𝜕

𝜕𝑋
[𝛼 (

𝐻

1+𝐻
) (1 +

𝐷̅𝐻𝐵

𝐷̅𝐻

𝑐𝑇

(𝐾𝐵+𝑐𝐻)
) (𝐷̅𝐻

𝜕𝑐𝐻

𝜕𝑥
)]                       (2.39) 

 

Electric field: Electrostatic potential (Poison equation) 

𝜕2𝜑

𝜕𝑥2
= −

𝐹

𝜀𝜀0
∑ (𝑧𝑘𝑐𝑘 + 𝑧𝑓𝑐𝑓
𝑁
𝑘=1 )                                                                    (2.35′) 

Mechanical field (determines volume ratio in terms of hydration): 

𝜕

𝜕𝑡
=

𝜕

𝜕𝑋
[𝑎𝑘′ (−

𝜕(𝑀𝜀)

𝜕𝑥
+ 𝑧𝑓𝑐𝑓𝐹

𝜕𝜑

𝜕𝑥
)]                                                  (2.40) 

where H is the hydration, 𝑐𝑇 is the total buffer concentration, 𝑐𝐻 concentration of hydrogen ion 

in the hydrogel, 𝐾𝐵 is the dissociation constant of the buffer, 𝑐𝐵 , 𝐷̅𝐻 is the diffusivity of 

hydrogen ions within the hydrogel  𝐷̅𝐻𝐵 is the diffusivity of buffer in the hydrogel, M is the 

bulk modulus of the hydrogel, ε is the compressive strain and 𝑘′ is hydraulic permeability of 

the hydrogel.  

2.7.4 Comparison of the different modelling approaches 

The volume variation behaviour of hydrogels can be modelled using either statistical 

mechanics (thermodynamic modelling) approach, or empirical modelling approach based on 

experimental swelling data, or the more robust but complex multifield approach. Although the 

thermodynamic model developed from statistical mechanics standpoint can provide 

information about the equilibrium volume variation behaviour of hydrogel, they require 

experimental swelling data for parameters adjustment and cannot provide details about time-
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dependent swelling or shrinking behaviour of the hydrogel, which limits their application to 

only equilibrium swelling or shrinking of hydrogel. 

 

Further, with the availability of  time-dependent swelling (experimental) data for hydrogel, 

empirical models can be employed to predict the mechanism of swelling of the gel. However, 

their inability to capture influences due to electrostatic interaction for ionic hydrogels, and 

mechanical deformation due to chemical migration of ions from the surrounding medium to 

the interior of the hydrogel, limit their general use. 

 

In contrast to the thermodynamic and empirical modelling approaches, the multifield modelling 

approach can be employed for transient volume variation study of the hydrogel and can account 

for the influence of electrostatic interactions (between ions inside the hydrogel and the 

surrounding medium), and mechanical deformation of the hydrogel due to migration of ions. 

Hence, the reason this modelling approach was deployed in this study. 

 

2.8  Numerical Simulation of Multi-Effect-Coupling Models  

A review of the solution methods available in the literature for simulating the volume variation 

behaviour of stimuli-responsive hydrogels is highlighted in this section. The multi-field model 

for simulation of the swelling or shrinking behaviour of pH-responsive hydrogels are in the 

form of coupled Partial Differential Equations (PDEs), with constitutive relations and boundary 

conditions. The methods to solve this system of equations are largely numerical as the coupled 

PDEs do not yield themselves well to analytical methods. Usually, an approximation of the 

equations is formulated typically based on different types of discretization (i.e., numerical) 

method.  

The numerical methods available for solving PDEs are of different types: Finite Difference 

Method (FDM), Boundary Element Method (BEM), Finite Volume Method (FVM), Finite 

Element Method (FEM), and the Meshless Method.  

Among these methods, FEM and FVM are most widely used for determining the approximate 

solutions to PDEs for complex geometry. Although, FVM can be used to evaluate PDEs, it is 

most suited for Computational Fluid Dynamics (CFD) problems.  

Traditionally, FEM is employed for simulation of hydrogel deformation [171, 173, 174]. 

However, Li and co-workers [175] developed a novel approach called the Hermite-cloud 
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meshless technique for simulation of the response performance of pH-sensitive hydrogels 

based on one-dimensional domain [42]. The ease and flexibility of implementation of the FEM 

in commercially available finite element software informs the choice of FEM in this study. 

 

2.8.1 Basics of finite element method 

Finite Element Analysis (FEA) or FEM is a computational method employed to determine 

approximate solutions of field problems (i.e., Boundary Value Problems, BVP). The field is 

the computational domain, while the field variables are the dependent variables in the system 

of partial differential equations (PDEs). The boundary conditions are the specified values of 

the field variables or their derivatives on the boundaries of the field. FEM involves modelling 

a system/structure using small, interconnected elements called finite elements and it is typically 

characterized by the following steps: 

Step 1:  Pre-processing 

This step involves building the set of PDEs (which captures the physical problem), meshing 

(which involves discretizing the geometry into specific finite elements defined by nodes and 

their connections), specifying the material properties, and applying the loads and boundary 

conditions [176], [177]. Figure 2.11 illustrates the use of a triangular mesh for meshing or 

modelling a three-dimensional domain, where the points of intersections of the various 

triangular finite elements represents the node/nodal points. 

 

Figure 2.11: Meshing a 3-D geometry using a triangular mesh. Adapted from [178]  
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The finite elements commonly used for FEA can be one-dimensional (for these elements, 

one of the dimensions is very large compared with the other two dimensions, e.g., using a 

line to represent a rod, bar beam, pipe), two-dimensional (when two of the dimensions are 

very large compared with the third one, e.g., using a quadrilateral or a triangle to represent 

a plate, membrane etc.), and/or three-dimensional (these elements have all three dimensions 

comparable e.g., tetra, penta, hex, pyramid representing solids). These elements are shown 

in Figure 2.12. 

 

Figure 2.12: Element types with nodes employed for FEA [179] 

 

With these one-, two, and three-dimensional elements, 1D models (which can approximate 

swelling along the radius of the hydrogel under analysis), 2D models (can approximate 

swelling in a disc-shaped hydrogel for example, drug in tablet form), and 3D models (deployed 

for modelling organs and tissues in the body) can be developed and used for simulation studies. 

Step 2:  Processing 

Processing involves deriving a set of linear or nonlinear algebraic equations (from the 

discretized PDEs in step i above) which can be solved simultaneously to obtain the values of 

the dependent variables at the nodes. FEM calculates the values of the unknowns (degrees of 

freedom) at the nodes and then interpolates the results of the entire domain using an 

interpolation function.  

 

In FEM a continuous quantity such as concentration of a diffusing species or displacement 

throughout the body, is approximated (through meshing/discretization of the body) by a 
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discrete model composed of a set of piecewise-continuous functions defined within each finite 

element. The resulting linear system of algebraic equations is of the form: 

[𝐾][𝑢] = [𝑓]                                                             (2.41) 

where  [𝐾] is the system matrix (in stress analysis it is called the element stiffness matrix). 

[𝑢] is the response matrix or the vector of nodal field variables (i.e., the vector of the unknowns) 

[𝑓] is the system’s input or force vector (i.e., the matrix of the nodal forces). 

 

The processing step in FEM centres on the derivation of equations for each finite element, and 

calculation of the stiffness matrix. The methods employed for developing the element equations 

are three: the direct method, the work or energy method, and the methods of weighted residuals. 

Direct method is based on force balance on a static body, it is well suited to one-dimensional 

problems, easy to understand but difficult for computer programming. 

The work or energy methods include, the principle of virtual work, the minimum total potential 

energy, and the Castigliano’s theorem [180]. These methods are employed for solid mechanics 

problems.  

The methods of weighted residuals are based on minimizing the error/residual between the 

exact solution and the approximate solution. The methods include: the collocation, the least 

squares, the subdomain, and the Galerkin’s method. Most commercial software adopts the 

popular Galerkin’s method. 

In developing a FEM for hydrogel swelling, Blanco and co-workers [173] adopted the weighted 

residual method, particularly the Galerkin formulation (explained in detail in Appendix I). 

  

Step 3:  Post-processing  

This final step involves visualizing and manipulating the results obtained at the processing step. 

It could display results in form of graphs, surface, or contour plots etc. 

 

2.8.2 Software implementation of finite element method 

The volume variation behaviour of hydrogels is a multiphysics problem because, as discussed 

in Section 2.7.3, the swelling or shrinking response of ionic hydrogels in the presence of stimuli 

(e.g., pH, temperature, etc.,) is affected by the interaction between several distinct fields or 

physics such as chemical, electrical, and mechanical interactions. Although there are several 
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software packages (such as MATLAB, ANSYS, ABAQUS, COMSOL, SimScale, Autodesk, 

OpenFOAM, etc.,) that can be used to solve problems in the form of finite element analysis 

[181], COMSOL Multiphysics was chosen in this study because of its relative ease in coupling 

different physics [182]. Section 2.8.3 gives a brief introduction to COMSOL Multiphysics® 

software as used in this work. 

 

2.8.3 Introduction to COMSOL Multiphysics 

COMSOL Multiphysics is a versatile software package that offers a convenient means for 

implementing a wide range of finite element analysis problems. These problems can be solved 

as standard physics modalities such as chemical diffusion, fluid mechanics, structural 

mechanics, etc., or as coupled multiphysics problems, such as the case handled in this study. 

Its coupling capabilities justifies the choice for COMSOL in this study. 

In this work, the three physics coupled together were transport of diluted species (representing 

chemical diffusion), electrostatics under AC/DC interface, and solid mechanics. For details 

about the mathematics and coupling of these physics to simulate the swelling/shrinking of the 

anionic and cationic hydrogels in COMSOL Multiphysics, refer to Section 3.1.3.  

 

2.9 Swelling Data 

Experimental swelling data often use for model validation studies could come in form of mass 

swelling ratio, or volume swelling ratio. In other to convert from one form of ratio to the other, 

this section highlights the mathematical relationship between these ratios.  

 

2.9.1 Mass swelling ratio 

The mass swelling ratio, 𝑚𝑆𝑅 is defined as: 

𝑚𝑆𝑅 =
𝑚𝑡−𝑚0

𝑚0
                                                                         (2.42) 

where 𝑚𝑡 is mass of the hydrogel gel at time, t, 𝑚0 is mass of the hydrogel at as-prepared state. 

 

2.9.2 Volume swelling ratio  

The volume swelling ratio, 𝑉𝑆𝑅 is defined as: 

𝑉𝑆𝑅 =
𝑉𝑡

𝑉0
                                                                                  (2.43) 
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here 𝑉𝑡 is the volume of the hydrogel at time, t, 𝑉0 is the volume of the hydrogel at as-prepared 

state. There are other representations such as: 

𝑉𝑆𝑅 =
𝑉𝑡−𝑉0

𝑉0
                                                                                   (2.44) 

However, to avoid misinterpretation of Eqn. (2.44) as ratio of water uptake, all through this 

study, swelling ratio is defined using Eqn. (2.43).  

 

Furthermore, if the density of the fluid is assumed constant, then the mass swelling ratio can 

be converted to the volume swelling ratio through the relation:  

  

𝑉𝑆𝑅 =
𝑉𝑡
𝑉0
=
𝑉0 + 𝑉𝑓,𝑡
𝑉0

= 1 +
𝑉𝑓,𝑡
𝑉0

 

= 1 + (

𝑚𝑓,𝑡
𝜌𝑓⁄

𝑚0
𝜌𝑔⁄
) = 1 +

𝜌𝑔
𝜌𝑓

𝑚𝑓,𝑡
𝑚0

 

= 1 +
𝜌𝑔
𝜌𝑓
(
𝑚𝑡 −𝑚0

𝑚0
) 

         = 1 +
𝜌𝑔

𝜌𝑓
𝑚𝑆𝑅                                                                      (2.45) 

where 𝑉𝑓,𝑡 is volume of fluid uptake at time, t, 𝜌𝑔 is the density of the hydrogel at as-prepared 

state, 𝜌𝑓 is the density of the fluid (assumed constant). 

2.10 Engineering Applications of pH-Sensitive Hydrogels 

Mathematical or numerical modelling and simulations can aid in the design, construction, and 

investigation of the volume change behaviour of pH responsive hydrogels used for applications 

in numerous areas such as wound dressing, drug delivery, tissue engineering, etc. 

 

2.10.1 Wound dressing 

Microorganism invasion and proliferation can be enhanced by the pH of a wound [183]. For 

example, Streptococcus pyogenes, Pseudomonas aeruginosa, and Escherichia coli can grow in 

a wound of pH values 4.5, 4.4 and 4.3 respectively [184]. Open wounds typically are in the pH 

range of 6.5 − 8.5 while chronic wounds exist in pH range of 7.2 − 8.9 [185]. To enhance the 

biochemical processes of healing, it is important to monitor the pH of wounds [183, 186] to 

keep them under control. And one way to do this would be to use pH responsive hydrogels. To 

form composite products suitable for various kinds of wounds, hydrogels have been included 
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in the structure of some wound dressing materials [77]. As an example, Figure 2.13 shows 

different commercially available hydrogel-based wound dressings.  

 

 

 

Figure 2.13: Various forms of commercially available hydrogel-based wound dressings. 

Reprinted from [187]. 

 

The different sections in Figure 2.13 represents, (a) Neoheal® hydrogel sheet used for wound 

dressing, (b) Amorphous gel that can be used for necrotic wounds and burns, (c)  Hydrogel 

film and (d) Hydrogel impregnated gauze. 

 

2.10.2 Drug delivery 

Hydrogels used in drug delivery applications are either formed outside of the body and used to 

encapsulate drugs before the hydrogel–drug complex enters the body [9], or they are preformed 

into micro- or nanoparticles carrying drugs. In some applications, the hydrogels can also be 

formed in situ (i.e., in vivo). pH responsive hydrogels have been identified  as suitable carriers 

in the design of swelling-controlled-drug delivery devices. The ability of hydrogels to 

dynamically self-modulate and control their volume variation in response to changes in the pH 

value and ionic strength of the surrounding medium makes them suitable for drug release to 
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disease sites in the body. For example, in the gastrointestinal tract, pH variation is from 1− 3 

in the stomach, and 5 − 8 in the small intestine. This variation allows for the use of either 

anionic or cationic hydrogels to deliver drugs to the target site, while preventing drug release 

at other sites or healthy tissues.  Figure 2.14 shows hydrogel in drug delivery applications. 

 

Figure 2.14: Deploying hydrogel via different routes to deliver drugs to various parts of the 

body. Reprinted from [188]. 

 

2.10.3 Tissue engineering 

Over the past two decades, hydrogels have been used as tissue engineering scaffolds owing to 

their ability to maintain a distinct 3D structure, provide both mechanical support [24] and a soft 

tissue-like environment for the cells in the engineered tissues to grow, and allow diffusion of 

nutrients and cellular waste through the porous structure of hydrogel network [189]. 

Mathematical modelling and simulation of the volume variation behaviour of hydrogels can 

provide useful insights that can aid the design and fabrication of hydrogel scaffolds for tissue 

engineering. During numerical simulation, various hydrogel material properties such as 

mechanical stability, degree of crosslinking, concentration of crosslinking agent used etc., and 

the surrounding environmental conditions can be varied to study the response behaviour of 

hydrogel in vitro, with potential application in vivo. Figure 2.15 shows how hydrogels are used 

for cartilage defects repair. 
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Figure 2.15: Application of injectable hydrogel for cartilage defect repair [190]. 

 

 

2.11 Statement of Economic Impact of this Study 

As the experimental side of studying the equilibrium and dynamic swelling behaviour of pH 

responsive anionic and cationic hydrogels develop, there is a strong need to develop 

mathematical frameworks for studying the underlying mechanism of the swelling of these 

hydrogels. For over a decade, methodologies for studying the swelling behaviour of smart 

hydrogels from a mathematical standpoint are being developed, tested, and have been applied 

to model the swelling behaviour of stimuli-responsive anionic hydrogels [15]. However, a 

major challenge to progress in this field, especially in generalising the models to swelling 

behaviours both anionic and cationic hydrogels of complex geometry is the mathematical 

complexities behind their numerical solutions. 

 

Furthermore, that sufficient knowledge of some operating parameters (e.g., concentration of 

the fixed charge group at the backbone of hydrogel) is often lacking and the mathematical 

complexity behind the multiphysics chemo-electro-mechanical interaction between hydrogel 

and the surrounding pose a significant challenge for the simulation engineer. However, 

developing, analysing, and simulating numerical models can provide useful insight for 

understanding the interplay between the various physics behind swelling and/or shrinking of 

hydrogels. Ideally mathematical modelling and simulation is performed to complement 

experimental study, to allow the developed model to be tested, validated and where necessary 

recalibrated, and the results of the model predictions, could guide the simulation engineer to 

suggest protocols for improving experimental outcomes. 
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For example, mathematical modelling of the volume variation behaviour of hydrogels can be 

used to predict the time evolution of the volume of the different tissue constituents inside an 

engineered scaffold after implantation in the host tissue [191]. With the aid of mathematical 

models, one can explore the impact of varying the properties of the scaffold, nutrient and 

growth factor concentrations [192] in vitro, to gain insight into what may likely happen in vivo 

after implantation. 

 

Though in vivo studies are the standard for assessing the effectiveness of new treatments 

proposed for wound healing [193], mathematical modelling and simulation has helped offer 

insight into the underlying mechanisms behind each stage of the wound healing process [193], 

[194]. Nonhealing wounds are inconveniencing and are of considerable pain, immobility, 

leading to a decreased quality of life of patients [195]. Globally, wound healing constitutes the 

biggest challenge for public health systems, with total spending in the United States alone, for 

all wound types estimated to be up to $96.8 billion per annum [196]. 

 

Therefore, with mathematical modelling, a real-world problem (such as delivering drugs to a 

targeted disease site, repairing a damaged cartilage, wound healing, etc.,) is simplified to a 

working model in the form of a system of equations. Such models become a framework for 

exploring the roles played by individual components characterizing the real-world problem, 

and when solved, can potentially generate theoretical outcomes that may not have been 

anticipated otherwise. Thereby stirring further research, streamlining experiments, and saving 

cost. In addition, they can provide a means to study the impact of varying the values of some 

key elements/parameters on the real-world problem.  

 

Hence, it is intended that this study will benefits researchers in the field of smart hydrogel 

modelling, by providing a testbed for exploring the interplay of many parameters controlling 

the conformational change dynamics of hydrogels synthesised from naturally available 

polymers with high degree of biocompatibility, biodegradability, and non-toxicity, such as 

genipin-crosslinked chitosan hydrogels thereby benefitting the society at large by improving 

patient outcomes. 

 

 



42 
 

 

2.12 Summary of Findings on Literature Review  

pH-sensitive hydrogels have found promising applications in areas such as control drug 

delivery systems, biomaterials for biomedical applications, mechano-chemical sensor, owing 

to their abilities to swell or shrink in response to pH changes in their surroundings. Depending 

on the ionisable pendant groups in the polymer network chain, they can be classified as either 

anionic or cationic hydrogels. The swelling behaviour of hydrogels in general have been 

modelled in the literature using statistical mechanics, empirical, and multifield approaches for 

steady state and transient state simulations.  

The statistical mechanics or thermodynamics approach has been used to predict the equilibrium 

volume variation of pH-sensitive genipin crosslinked chitosan hydrogel with lots of adjustment 

of model parameters required. For example, most of the parameters of the thermodynamic 

models (for example,  𝑀𝑐̅̅ ̅̅ , 𝑓𝑖, 𝑀𝑛̅̅ ̅̅ , Ω, 𝑉𝑟̅) are difficult to ascertain as they require lots of trial 

and error to estimate them using experimental data. 

In modelling the swelling behaviour of chitosan crosslinked with genipin, glutaraldehyde and 

polygenipin hydrogels, Jahren et al. [135] developed a thermodynamic model whose parameter 

for example, the concentration of the crosslinking reagent (a parameter that controls swelling, 

water uptake, and mechanical properties of the hydrogel) can be tuned in the direction of the 

desired swelling/response. However, the major drawback of the model is the discrepancy 

(consistently large by a factor of 30) between the model predictions and the experimentally 

determined swelling ratios. Thus, limiting its application.  

 

For dynamic swelling of pH-sensitive hydrogels, the empirical modelling approach relies on 

swelling data and cannot be extrapolated beyond the conditions under which the experiment 

was performed. In addition, the concerns with empirical models are their range of accuracy (for 

example the power law model describes the swelling behaviour of hydrogels very well for 

times where  
𝑀𝑡

𝑀∞
≤ 0.60, but fails at time values above this range). Furthermore, their inability 

to describe the contributions of electrostatic and mechanical fields due to the deformation of 

the hydrogel limits their extent of application. 

Literature search reveals that by coupling the chemical, electrical, and mechanical field 

interactions, the multifield model has the potential to simulate the swelling dynamics of pH 

responsive hydrogels and provide good predictions for their volume variation. However, the 
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mathematical complexity associated with numerical simulations involving complex hydrogel 

geometry remains a challenge that limits their broader applications in real life. 

 

In reviewing the various models for equilibrium and dynamic swelling of pH responsive 

hydrogels, the gaps in the literature were identified. Thus, drawing from the strength of the 

thermodynamics model, and overcoming the mathematical complexities associated with the 

multifield model, a framework that combines a chemo-mechanical model with a 

thermodynamics model (derived from statistical mechanics approach) is developed in this 

study for simulation of the dynamic volume variation behaviour of pH responsive cationic 

(chitosan crosslinked with genipin) hydrogels.  
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CHAPTER THREE 

METHODOLOGY 

 

3.1 Multiphysics Modelling of pH-Sensitive Anionic and Cationic Hydrogels  

Hydrogels find applications in areas such as wound healing, drug encapsulating devices, food 

packaging etc. So, when in contact with external environments, the interplay of the various 

interacting fields (i.e., chemical, electrical, and mechanical fields) as mentioned in Section 

2.7.3 results in conformational changes of the hydrogel. To dynamically control the swelling 

characteristic property of hydrogels, mathematical models (that capture the underlying multi-

physics behind the deformation of the hydrogel) can offer insight that complements 

experimental studies [197]. This is no doubt the reason numerical modelling approach was 

employed in this study to simulate the volume variation behaviour of anionic and cationic pH 

responsive hydrogels in view of deploying these models in various applications where 

hydrogels play important roles. 

 

The pendant groups of the anionic, and cationic hydrogels whose deformation/volume-

variation behaviours were modelled and simulated in this work are carboxylic acid group (-

COOH, study 1) and amino group (-NH2, study 2), respectively. The nonlinear coupled Partial 

Differential Equations, PDEs with constitutive relation which characterizes the chemo-electro-

mechanical behaviour of the hydrogel-environment system were collated from the literature 

and solved as finite element model using COMSOL Multiphysics software. Values of operating 

conditions of process parameters, material properties, and boundary conditions obtained from 

the literature, were used to solve the finite element model. The processes that led to the 

development of the multiphysics model with which the physical process was simulated are 

outlined in the following subsections.  

3.1.1 Physical and computational domains 

The geometry or physical domain of the hydrogel used in this work (Figure 3.1a) is a 

cylindrical-shaped hydrogel immersed in aqueous (buffer) solution. For comparison with other 

studies, the size of the hydrogel under investigation in Study 1 (involving anionic hydrogel) is 

of initial diameter of 400𝜇𝑚. However, for Study 2 (involving cationic, genipin crosslinked 

chitosan hydrogels) the initial size of the hydrogel varied according to the experimental 

swelling data. 



45 
 

To reduce the computation, symmetry was assumed around the axis so that one half of the 

cylinder (2D-axisymmteric geometry) was chosen as the computational domain. That is, the 

region of the actual geometry where computations were performed (Figure 3.1b). 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.1: (a) Hydrogel immersed in a buffer solution (left) and (b) the computational 

domains reduced to 2D by axial symmetry (right). 

 

3.1.2 The governing equations 

Following from previous discussion in Section 2.7.3, the three most distinct physics considered 

in the simulation studies performed in this work are chemical transport of diluted ionic species 

(for conservation of mass), variation of electric potential (representing the conservation of 

charge), and the mechanical deformation (for conservation of momentum) of the hydrogel in 

the surrounding medium with varying environmental conditions. Some of these conservation 

equations were applied over the entire computational domains, while others were selectively 

applied over its subdomains. The details of how these equations were applied in this work to 

model the response behaviour of pH-sensitive anionic and cationic hydrogels are provided in 

the following subsections.  

3.1.2.1  Transport of diffusive ionic species 

Building from the multifield modelling approach described in Section 2.7.3, when hydrogel 

comes in contact with an aqueous solution, ions in the solution migrate towards the hydrogel 

due to gradients of ionic concentration, electric potential, and chemical potential in the 
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hydrogel-solution system. This behaviour is generally described using the Nernst Planck 

equation [40], [41], given as: 

𝜕𝐶𝑘

𝜕𝑡
+𝐷𝑘∇

2𝐶𝑘 + 𝜇𝑘𝑧𝑘𝐹∇𝐶𝑘∇𝜑 + 𝜇𝑘𝑧𝑘𝐹𝐶𝑘∇
2𝜑 = 0                         (3.1) 

                                                                              (𝑘 = 𝑁𝑎+, 𝐶𝑙−, 𝐻+, …𝑁)                                   

where 𝐷𝑘 (m2/s) is the diffusivity of the kth species,  𝜇𝑘 is the mobility of the kth-species ion.  

 𝐶𝑘 (mM) is the concentration of kth diffusive ionic species, 𝑧𝑘 is the kth-ionic valence number, 

𝜑 (V) is the electrostatic potential, N is total number of diffusive ionic species. F, R, T are the 

Faraday’s constant (9.6487 × 104𝐶/𝑚𝑜𝑙),  universal gas constant (8.314 J/mol K), and 

absolute temperature (K), respectively. 

The first term in Eq. (3.1) indicates the change in concentration of kth species within the 

hydrogel. The second term represents the ionic diffusion due to concentration gradient in the 

entire domain. The third and fourth terms together represent the migration of ions arising from 

the gradient of the electric potential in the system. Therefore, the concentration of each species 

in solution is a function of the bulk concentration and the distribution of electric potential across 

the entire system domain. 

 

3.1.2.2  Electrostatics 

The spatial distribution of electric potential in the domain can be described by the Poisson 

equation given as: 

∇2𝜑 = −
𝐹

𝜀𝜀0
(∑ 𝑧𝑘𝑐𝑘 + 𝑧𝑓𝑐𝑓

𝑁
𝑘=1 )                                          (3.2) 

where 𝜀0 is the dielectric constant of vacuum, 𝜀 is the relative dielectric constant of the medium, 

F is the Faraday constant, 𝑐𝑓 and 𝑧𝑓 are the concentration and the valence of the fixed charge 

in the hydrogel, respectively. The fixed charge concentration for anionic hydrogel is given as 

[15]: 

                        𝑐𝑓 =
𝑐𝑚𝑜
𝑠

𝐻

𝐾𝑎

(𝐾𝑎+[𝐻
+])

                                            (3.3)                                     

For the case of a cationic hydrogel, the fixed charge concentration 𝑐𝑓 is [15]: 

𝑐𝑓 =
𝑐𝑚𝑜
𝑠

𝐻

[𝐻+]

(𝐾𝑏+[𝐻
+])

                                                                      (3.4)   
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  where 𝐾𝑎 and 𝐾𝑏 are the acid and base dissociation constants of the fixed charged groups, 

𝑐𝑚𝑜
𝑠  is the initial concentration of the total ionizable fixed charged group within the 

unswollen hydrogel, determined by titration using Eqn. (3.6) [15]. In addition, [𝐻+] is the 

concentration of the hydrogen ions within the hydrogel, and H is the local hydration state of 

the hydrogel defined as:  

𝐻 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑙

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑜𝑙𝑖𝑑 𝑝ℎ𝑎𝑠𝑒 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑙
=
𝑉𝑓

𝑉𝑠
                              (3.5) 

𝑐𝑚𝑜
𝑠 =

moles of ionizable group

volume of solid polymer 
=

𝑛

𝑉𝑠
                                                     (3.6) 

It is worth noting that, genipin crosslinked chitosan hydrogel, for which the concentration of 

chitosan, 𝑐𝑐+, is far greater than that of genipin,  𝑐𝑔−, can be considered a cationic hydrogel. 

For such crosslinked hydrogel, the concentration of the total available ionizable fixed charge 

group is given as: 

 𝑐𝑚𝑜
𝑠 = 𝑐𝑐+ − 𝑐𝑔−                                                     (3.6b) 

 

3.1.2.3 Mechanical deformation 

The mechanical equations employed in this study are based on Lagrangian formulation as 

against the Eulerian formulation. The latter is based on a controlled volume fixed in space with 

flux in and out of it, while the former is based on a certain volume of the material being tracked 

as it translates and deforms [198, 199]. In addition, Lagrangian formulation is made in terms 

of material/reference coordinate (X) while the Eulerian formulation is made in terms of spatial 

coordinate (x). Since Lagrangian description is very suited for analysis of geometrically 

nonlinear problems, the mechanical equations deployed to describe the deformation of the pH-

sensitive hydrogels in this study are based on Lagrangian formulation. 

Let X denote the original position of a particle of the hydrogel in the undeformed state. At a 

time, t, say the particle has moved to a new position in space, 𝐱 = 𝐱(𝐗, t). this new position is 

given as: 

                                 𝐱(𝐗, t) = 𝐗 + 𝐮(𝐗, t)                            (3.7) 

where 𝐮(𝐗, t)  is the displacement (the vector that points away from the original position to the 

new position). As time, t increases, there will be local changes (called strains) in the shape or 

volume of the hydrogel. Information about changes is contained in the deformation gradient. 
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The deformation gradient, F is a measure of mechanical deformation [200 – 202] experienced 

by the hydrogel. Mathematically, F is defined as: 

    𝐅 = FiJ =
∂xi

∂XJ
=

∂𝐱

∂𝐗
=
∂(𝐗+𝐮)

∂𝐗
= 𝐈 +

∂𝐮

∂𝐗
= 𝐈 + 𝛁𝐮                           (3.8) 

 

where 𝐈 is the identity tensor. In matrix form, Eq. (3.8) is rewritten as: 

𝐅 =

[
 
 
 
 
∂x

∂X

∂x

∂Y

∂x

∂Z
∂y

∂X

∂y

∂Y

∂y

∂Z
∂z

∂X

∂z

∂Y

∂z

∂Z]
 
 
 
 

= [
1 0 0
0 1 0
0 0 1

] +

[
 
 
 
 
∂u

∂X

∂u

∂Y

∂u

∂Z
∂v

∂X

∂v

∂Y

∂v

∂Z
∂w

∂X

∂w

∂Y

∂w

∂Z]
 
 
 
 

=

[
 
 
 
 1 +

∂u

∂X

∂u

∂Y

∂u

∂Z
∂v

∂X
1 +

∂v

∂Y

∂v

∂Z
∂w

∂X

∂w

∂Y
1 +

∂w

∂Z]
 
 
 
 

                 (3.9) 

                                                                                                                           

Eq. (3.9) shows that the deformation gradient provides information about the local deformation 

of the hydrogel. The first column of the matrix shows that the deformation tensor can provide 

insight into the orientation of a line segment in the undeformed body, dX as it is stretched into 

a line segment on the deformed body, dx, since from Eq. (3.8) we have that: 

d𝐱 = 𝐅d𝐗                                           (3.10) 

Mathematically, the deformation gradient, F, is the Jacobian matrix of the transformation from 

the undeformed state X to the deformed state x [203, 204]. From this, we can define a local 

volume scale factor J, as the determinant of the deformation gradient tensor. 

   J(𝐗, t) = det(𝐅) =
𝑑𝑉

𝑑𝑉0
                                                                   (3.11) 

This determinant is a measure of how the volume of the hydrogel has changed with 

deformation. That is why it is called the volume ratio. J is equivalent to the local hydration 

defined earlier in Eq. (3.5).   

 

To develop the mechanical balance equation, consider an undeformed hydrogel of volume 

𝑉0, the momentum balance equation can be expressed in the following differential form: 

  ρgel
∂2ui

∂t2
= fv,i +

∂PiJ

∂𝐗J
                                                               (3.12) 

In tensor notation: 
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      ρgel
∂2𝐮

∂t2
= 𝐟𝐯 + 𝛁𝑿. 𝐏

𝐓                                      (3.13) 

where 𝐟𝐯 is the force per unit volume, ρgel is the mass density in the reference/material 

configuration (density of the hydrogel), and the velocity field is computed from the 

displacement field, u, as: 

           𝐯 =
∂𝐮(𝐗,t)

∂t
                                                                             (3.14) 

Further, P is the first Piola-Kirchoff (PK1) stress tensor, it relates forces acting in the current 

or deformed configuration to the elemental areas in the reference or undeformed configuration 

[205]. The first Piola-Kirchoff stress tensor, P is related to the Cauchy stress tensor, σ (or true 

stress tensor as it represents a true measure of the force per unit area in the current/deformed 

or spatial configuration) by the equation: 

                                            𝐏 = Jσ𝐅−𝐓                                                                                (3.15) 

Although Cauchy stress, σ is symmetric, deformation gradient F, is not. Thus, PK1 stress tensor 

is asymmetric. This lack of symmetry is the reason PK1 is not employed in modelling the 

deformation of materials. To get an alternative but symmetric stress measure explains the need 

for second Piola-Kirchoff (PK2) stress tensor, S, defined as [206, 207]: 

𝐒 = J𝐅−1σ𝐅−𝐓                                                           (3.16) 

From Eq. (3.16), since σ is symmetric, then PK2 stress tensor is symmetric, meaning that: 

𝐒 = 𝐒𝐓                                                                      (3.17) 

In terms of material moduli tensor, PK2 can take the form: 

𝑺 = 𝑪: 𝑬                          (3.18) 

where C is the material moduli tensor which for plane stress (the boundary load is applied only 

in the x-y plane) is given as: 

𝑪 =
𝐸

(1−𝑣2)
[
1 𝑣 0
𝑣 1 0
0 0 (1 − 𝑣) 2⁄

]                                                        (3.19) 

where the E is the Young’s modulus and v is the Poisson’s ratio. The Green-Lagrangian strain 

tensor E is given as: 
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𝑬 =
1

2
(𝑭𝑻. 𝑭 − 𝑰)                                 (3.20) 

Substituting Eqns. (3.15) into (3.16) gives that the first and second Piola-Kirchoff stress tensors 

are related thus: 

          𝐏 = 𝐅𝐒                                                       (3.21) 

Hence, the momentum balance equation, from Eqn. (3.12), becomes: 

ρgel
∂2𝐮

∂t2
= 𝐅𝐯 + 𝛁𝑿. 𝐅𝐒                                                                           (3.23) 

Substituting Eq. (3.8) into Eq. (3.23) gives the momentum balance equation as: 

ρgel
∂2𝐮

∂t2
= 𝛁𝑿. (𝐈 + 𝛁𝐮)𝐒 + 𝐅𝐯                                                           (3.24) 

The boundary load,  𝐅𝐯, is a function of the osmotic pressure due to counterions in the hydrogel-

solution system. This osmotic pressure can be calculated thus:   

𝑃𝑜𝑠𝑚𝑜𝑡𝑖𝑐 = 𝑅𝑇∑ (𝑐𝑘,𝑔𝑒𝑙 − 𝑐𝑘,𝑠𝑜𝑙
𝑁
𝑘=1 )                                  (3.25) 

where subscripts 𝑘, 𝑔𝑒𝑙 and 𝑘, 𝑠𝑜𝑙 represent the kth ionic species in the hydrogel and the 

surrounding solution, respectively. 

 

3.1.3 Modelling and simulation in COMSOL multiphysics 

A finite element model of the anionic and cationic pH-sensitive hydrogel in buffer solution was 

developed and simulated in a commercial finite element software, COMSOL Multiphysics. 

The field equations and the corresponding multiphysics modules employed in the simulation 

study to develop the FEA model are: 

3.1.3.1 Physics 

• Transport of Diluted Species (TDS): This physics defined for both domains, represents 

the Nernst Planck equation, Eq. (3.1). It solves for the concentration profiles of the ionic 

species in the system.  

• Electrostatics (AC/DC interface): This physics defined for both the hydrogel and the 

buffer solution subdomains, solves the Poisson equation, Eq. (3.2), for the distribution 

of electric potential (𝜑) in both domains, with electroneutrality assumed in the buffer 

solution: 
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• Solid Mechanics: This physics defined only for the hydrogel domain, solves the 

mechanical balance equation, Eq. (3.24) for the displacement/deformation (u) of the 

hydrogel. 

3.1.3.2  Boundary conditions 

The 2D axisymmetric domain (representing the physical geometry), the associated boundary 

conditions, and the meshed computational domains are shown in Figure 3.2.  

 

Figure 3.2: The modelling domains along with relevant boundary conditions (left) and the 

meshed domains (right). 

 

Boundary: Corners of the hydrogel 

Type    Mathematics    Physics equation 

Symmetry   
𝜕𝑐𝑘

𝜕𝑟
= 0    Nernst Planck 

Zero charge   
𝜕𝜑

𝜕𝑟
= 0     Poisson 

Rollers         Mechanical  

• vertical  𝑢𝑟 = 0, 𝑢𝑧 𝑖𝑠 𝑓𝑟𝑒𝑒    

• horizontal  𝑢𝑟 𝑖𝑠 𝑓𝑟𝑒𝑒, 𝑢𝑧 = 0 

To be able to compare computational results with published data (for the case where hydrogels 

were confined in a microchannel to allow for deformation in the radial direction only), roller 
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boundary conditions were imposed at the top and bottom of the hydrogel to constrain 

displacement in the axial direction. 

     

Boundary: Sides of the solution 

Type    Mathematics    Physics equation 

No flux   
𝜕𝑐𝑘

𝜕𝑟
= 0    Nernst Planck 

Zero charge   
𝜕𝜑

𝜕𝑟
= 0     Poisson 

 

Boundary: Hydrogel-Buffer interface  

Type    Mathematics    Physics equation 

Concentration   𝑐𝑘 = 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠   Nernst Planck 

Boundary load   𝑃𝑜𝑠𝑚𝑜𝑡𝑖𝑐 = 𝑅𝑇(∑ (𝑐𝑘
ℎ − 𝑐𝑘

𝑠𝑁
𝑘=1 )) Mechanical deformation 

Displacement   𝑟 = 𝑅 + 𝑢𝑟 , 𝑧 = 𝑍 + 𝑢𝑧  Moving mesh 

 

Boundary: Buffer end  

Type    Mathematics    Physics equation 

Concentration   𝑐𝑘 = 𝑐𝑘0    Nernst Planck 

Ground    𝜑 = 0     Poisson 

Displacement    𝑢𝑟 = 0, 𝑢𝑧 = 0   Moving mesh 

 

3.1.3.3 Material properties and process parameters 

The material properties and process parameters used for the simulation studies were obtained 

from the literature and experimental studies. For multiphysics simulation of the swelling 

behaviour of pH-sensitive anionic hydrogels (study 1) the parameters used are detailed in Table 

3.1, while parameters used for studying swelling behaviour of pH-responsive cationic 

hydrogels (study 2) are outlined in Table 3.2. 
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Table 3.1: Values of parameters used for simulation study 1 

Property/parameter Value Description Source 

r 200 𝜇𝑚 radius of the gel [15] 

𝝐 80 Dielectric constant [15] 

T 298 K Temperature  

𝒛𝒇 -1 Valency of fixed charge  

𝒄𝒎𝒐
𝒔  1800 mM 

initial fixed charge 

density 
[15] 

𝑲𝒂 10−4.5 mM 
Dissociation constant of 

Carboxylic acid group 
 [15] 

𝑫𝑵𝒂 9.31 × 10−9𝑚2/𝑠 
Diffusion coefficient 

𝑁𝑎+ 
 

𝑫𝑪𝒍 9.31 × 10−9𝑚2/𝑠 
Diffusion coefficient 

𝐶𝑙− 
 

𝑫𝑯𝟐  9.31 × 10−9𝑚2/𝑠 
Diffusion coefficient 

 𝐻+ 
 

𝒗 0.43 Poisson's ratio [15] 

F 9.6487 × 104𝐶/𝑚𝑜𝑙 Faraday Constant  

𝝆𝒈𝒆𝒍 1200 𝑘𝑔/𝑚3 Density of dry hydrogel  

pH 2 − 12 
pH of the bathing 

solution 
 

 

As mentioned previously, the same platform used to model the equilibrium swelling behaviour 

of pH-responsive anionic hydrogels was adapted and used for modelling the swelling behaviour 

of pH-sensitive cationic hydrogels. 

Table 3.2: Values of parameters used for simulation study 2 

Property/parameter Value Description Source 

r 200 𝜇𝑚 radius of the gel [15] 

𝝐 80 Dielectric constant [15] 

T 298 K Temperature  

𝒛𝒇 +1 Valency of fixed charge  

𝒄𝒎𝒐
𝒔  1800 mM 

initial fixed charge 

density 
[15] 

𝑲𝒃 
1.0x10-5 mol/m3 

Dissociation constant of 

amine group [135]  

𝑫𝑵𝒂 9.31 × 10−9𝑚2/𝑠 
Diffusion coefficient 

𝑁𝑎+ 
 

𝑫𝑪𝒍 9.31 × 10−9𝑚2/𝑠 
Diffusion coefficient 

𝐶𝑙− 
 

𝑫𝑯𝟐  9.31 × 10−9𝑚2/𝑠 
Diffusion coefficient 

 𝐻+ 
 

𝒗 0.43 Poisson's ratio [15] 

F 9.6487 × 104𝐶/𝑚𝑜𝑙 Faraday Constant  

𝝆𝒈𝒆𝒍 1200 𝑘𝑔/𝑚3 Density of dry hydrogel  

pH 2 − 12 pH of the medium  
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3.1.3.4 Choice of solver 

The two general approaches employed by COMSOL Multiphysics software to solve nonlinear 

systems of equations are the Fully Coupled or the Segregated approach [208]. The former being 

the default solver for most 2D and 2D-axisymmetrical problems, solves in a single iteration for 

all unknowns in the model by taking into consideration all coupling terms between all 

unknowns in the multiphysics problem. While memory intensive, it does results in the most 

robust convergence. 

 

The segregated approach on the other hand solves the problem sequentially, assuming each 

physics as a standalone problem thereby ignoring the coupling terms between the different 

physics. It offers the advantage of being less memory demanding. Although the segregated 

approach is cheaper in terms of memory, it is unsuitable for the problem under consideration 

due to the strong interaction within the various physics (i.e., the various physics are not 

standalone) describing the system under consideration, the Fully Coupled approach was 

adopted for this reason.   

Therefore, the transport of diluted species, electrostatics, and the solid mechanics interfaces in 

the software, representing the Nernst Planck, Poisson, and Mechanical deformation equations 

respectively, were fully coupled and solved as stationary problem using the PARDISO-Direct 

solver. This Fully Coupled approach uses the Newton-Raphson iteration scheme to converge 

at the desired solution.  

 

3.2 Modelling Equilibrium Swelling of pH-Sensitive Chitosan-Genipin Hydrogels 

Having modelled in Section 3.1, the equilibrium swelling behaviour of pH-sensitive anionic 

and cationic hydrogels using a multi-field approach, this section approaches the equilibrium 

swelling of cationic hydrogels (specifically genipin crosslinked chitosan hydrogel) from a 

statistical mechanics’ standpoint. The reasoning behind this approach is to incorporate the 

concentration of the crosslinking agent as a tuneable parameter in the model, and to study its 

influence on the equilibrium swelling ratio.  

 Consider a crosslinked electrically charged hydrogel in its as-prepared state, fully immersed 

in a bathing solvent, as shown in Figure 3.3. The hydrogel swells as a result a of the competition 

between three driving forces: the force that causes the solvent particle to mix with polymer 



55 
 

chain, 𝐹𝑚𝑖𝑥 , the force that prevents the polymer chain from stretching, 𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐 , and the force 

due to electrostatic interactions between ions in surrounding medium and those in the hydrogel. 

     

 

 

 

 

 

 

 

Figure 3.3: Pressures generated on an electrically charged hydrogel in aqueous environment 

From Figure 3.3, while the energy due to mixing and ionic interaction both drive the swelling 

of the hydrogel, the elastic energy prevents indefinite swelling of the gel which eventually 

balances the energy terms as equilibrium is reached. At equilibrium, the change in total free 

energy during swelling/deswelling of the gel is 0. That is, the osmotic pressure balance due to 

mixing, elastic deformation, and the counterions in the gel-solution system is given as: 

𝜇𝑚𝑖𝑥 + 𝜇𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝜇𝑖𝑜𝑛𝑖𝑐 = 0                                               (3.26) 

 

3.2.1 The mixing potential, 𝜇𝑚𝑖𝑥 

When the hydrogel is immersed in a bathing medium, the driving force, 𝐹𝑚𝑖𝑥, allows the 

hydrogel to take up solvent molecules (in the bathing medium) and swell. The osmotic pressure 

due to free energy of mixing (𝜇𝑚𝑖𝑥) is evaluated as a change in the free energy of mixing 

(∆𝐺𝑚𝑖𝑥) when changing the number of moles of solvent (𝑛𝑠) at a constant number of moles of 

polymers in the system (𝑛𝑝) [146].  
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Figure 3.4: Hydrogel-Solvent mixing 

𝜇𝑚𝑖𝑥 = −
𝑁𝐴

𝑉𝑠
(
𝜕∆𝐺𝑚𝑖𝑥

𝜕𝑛𝑠
)
𝑛𝑝

                                                             (3.27) 

where 𝑁𝐴 is Avogadro’s constant,  𝑉𝑠 is the molar volume of the solvent molecule. It is obvious 

from Eq. (3.27) that, the number of polymer molecules in the crosslinked hydrogel, 𝑛𝑝 does 

not change, but the number of solvent molecules, 𝑛𝑠 changes. The change in free energy of 

mixing is given as: 

∆𝐺𝑚𝑖𝑥 = ∆𝐻 − 𝑇∆𝑆                                                      (3.28) 

where ∆𝑆  is the difference in entropy before an after mixing, and ∆𝐻 is the enthalpy change 

due to mixing of the polymer and the solvents. 

Flory and Huggins [138] proposed that ∆𝐺𝑚𝑖𝑥 of the gel has the form: 

∆𝐺𝑚𝑖𝑥 = 𝑛𝑘𝑇[(1 − 𝜙)In(1 − 𝜙) + 𝜒𝜙(1 − 𝜙)]                                         (3.29) 

where n is the total number of molecules, k is the Boltzmann’s constant,  𝜒 is the Flory-Huggins 

interaction parameter, and 𝜙 is the polymer volume fraction of the swollen hydrogel (at 

equilibrium).  

Substituting Eq. (3.29) into Eq. (3.27), gives 𝜇𝑚𝑖𝑥 as: 

                           𝜇𝑚𝑖𝑥 = −
𝑁𝐴𝑘𝑇

𝑉𝑠
[In(1 − 𝜙) + 𝜙 + 𝜒𝜙2]                                                      (3.30) 

It is worth noting that as the hydrogel swells, the polymer volume fraction, 𝜙, changes during 

swelling, but the volume of the polymer phase of the hydrogel (that is the solid phase), 𝑉𝑝 does 

not change.  

This implies that the volume of the hydrogel at equilibrium swelling state is related to the initial 

polymer volume fraction in the following way: 
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                                     𝜙0 =
𝑉𝑝

𝑉(𝑡=0)
, and 𝜙𝑒𝑞 =

𝑉𝑝

𝑉(𝑡=∞)
                        (3.31) 

                                                        𝑉𝑒𝑞 = 𝜙0 𝜙𝑒𝑞⁄                                                                                   (3.32) 

where  𝜙0, 𝜙𝑒𝑞, and 𝑉𝑒𝑞  are the polymer volume fraction at as-prepared state, polymer volume 

fraction at equilibrium swelling, and the equilibrium volume swelling ratio (volume of the gel 

at equilibrium swelling, with respect to the original volume at as-prepared state).  

 

Since chitosan and genipin both contribute to the polymer volume fraction of the crosslinked 

hydrogel, then the polymer volume fraction of the crosslinked network at as-prepared state, 𝜙0 

is given as: 

𝜙0 =
(
%𝑐𝑐
𝜌𝑐
𝜐𝑐+

%𝑐𝑔

𝜌𝑔
𝜐𝑔)

[
%𝑐𝑐
𝜌𝑐
𝜐𝑐+

%𝑐𝑔

𝜌𝑔
𝜐𝑔+(

(100−(%𝑐𝑐+%𝑐𝑔))

𝜌𝑤
𝜐𝑤)]

                                  (3.33) 

Substituting Eq. (3.33) into Eq. (3.32) gives the equilibrium polymer volume fraction of the 

swollen hydrogel, 𝜙𝑒𝑞 as: 

𝜙𝑒𝑞 =
1

𝑉𝑒𝑞
{

(
%𝑐𝑐
𝜌𝑐
𝜐𝑐+

%𝑐𝑔

𝜌𝑔
𝜐𝑔)

[
%𝑐𝑐
𝜌𝑐
𝜐𝑐+

%𝑐𝑔

𝜌𝑔
𝜐𝑔+(

(100−(%𝑐𝑐+%𝑐𝑔))

𝜌𝑤
𝜐𝑤)]

}                      (3.34)                                  

where %𝑐𝑐 and %𝑐𝑔 are concentrations (% wt/v) of chitosan and genipin (crosslinking agent) 

solutions, respectively. 𝜐𝑐, and 𝜐𝑔, are and 𝜐𝑤 are the volumes of chitosan solution, genipin 

solution, and water used, respectively. 𝜌𝑐, 𝜌𝑔, and 𝜌𝑤 are densities of chitosan, genipin, and 

water, respectively. 

 

3.2.2 The Elastic potential,  𝜇𝑒𝑙𝑎𝑠𝑡𝑖𝑐 

In similar form to Eq. (3.27), the osmotic pressure due to elastic deformation is a function of 

the change in the elastic energy when the number of solvent molecules entering the hydrogel 

increase as the number of polymer network strands inside the hydrogel is constant:  

𝜇𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = −
𝑁𝐴

𝑉𝑠
(
𝜕∆𝐺𝑒𝑙𝑎𝑠𝑡𝑖𝑐

𝜕𝑛𝑠
)
𝑛𝑝

                                                                             (3.35) 

∆𝐺𝑒𝑙𝑎𝑠𝑡𝑖𝑐 can be obtained from the affine network model for idea chains as [146]: 
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∆𝐺𝑒𝑙𝑠𝑡𝑖𝑐 =
3𝑣0𝑉0𝑘𝑇

2
(𝜆2 − 1 − 𝑙𝑛𝜆)                                                                   (3.36) 

where 𝑣0 is the number of network strands in the polymer network, 𝑉0 is the original volume 

of the hydrogel, and 𝜆 is the uniaxial stretch (𝜆 = 𝑙 𝑙0⁄ ). 𝑙  and 𝑙0 are the new and original 

lengths of the gel, respectively. 

Differentiating Eq. (3.36) w.r.t 𝑛𝑠 gives: 

(
𝜕∆𝐺𝑒𝑙𝑠𝑡𝑖𝑐

𝜕𝑛𝑠
)
𝑛𝑝

= (
𝜕∆𝐺𝑒𝑙𝑠𝑡𝑖𝑐

𝜕𝜆
)
𝑛𝑝
(
𝜕𝜆

𝜕𝑛𝑠
)
𝑛𝑝

=
3𝑣0𝑉0𝑘𝑇

2
(2𝜆 −

1

𝜆
) (

𝜕𝜆

𝜕𝑛𝑠
)
𝑛𝑝

                              (3.37) 

𝜆3 = 𝑉𝑒𝑞 =
𝑉(𝑡=∞)

𝑉(𝑡=0)
=
𝑉(𝑡=0)+𝑛𝑠𝑉𝑠

𝑉(𝑡=0)
                                                                                               (3.38) 

Differentiating Eq. (3.38) w.r.t 𝑛𝑠 gives: 

3𝜆2 (
𝜕𝜆

𝜕𝑛𝑠
)
𝑛𝑝

=
𝑉𝑠

𝑉0
                                                                                                 (3.39) 

Substituting Eq. (3.39) into Eq. (3.37) gives: 

(
𝜕∆𝐺𝑒𝑙𝑠𝑡𝑖𝑐

𝜕𝑛𝑠
)
𝑛𝑝

=
𝑣0𝑉0𝑘𝑇

2
(2𝜆 −

1

𝜆
) 𝜆−2

𝑉𝑠

𝑉0
=
𝑣0𝑉𝑠𝑘𝑇

2
(𝜆−3 − 2𝜆−1)                                    (3.40) 

Substituting Eq. (3.40) into Eq. (3.35) gives: 

𝜇𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = −𝑁𝐴𝑣0𝑘𝑇(𝜆
−1 − 0.5𝜆−3)                                                                (3.41) 

In terms of equilibrium swelling volume, Eq. (3.41) can be rewritten as: 

𝜇𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝑁𝐴𝑣0𝑘𝑇(0.5𝑉𝑒𝑞
−1 − 𝑉𝑒𝑞

−1 3⁄ )                                                         (3.42) 

For affine network model, the number density of effective network strands,  𝑣0(m
−3) is related 

to the shear modulus, G in the following way: 

𝐺 = 𝑣0𝑘𝑇                                                (3.43)     

Substituting Eq. (3.43) into Eq. (3.42) gives: 

                           𝜇𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝑁𝐴𝐺(0.5𝑉𝑒𝑞
−1 − 𝑉𝑒𝑞

−1 3⁄ )                                                          (3.44)       
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3.2.3 The Ionic potential, 𝜇𝑖𝑜𝑛𝑖𝑐 

For ionic hydrogels, this potential is the most dominant of all the competing potentials. As the 

crosslinked hydrogel encounters the aqueous medium, the ionic interaction between ions in the 

hydrogel and those in the bathing medium causes the pores/mesh size of the gel network to 

increase (for swelling) allowing the solvent molecules in the bathing medium to drift into the 

hydrogel.  

Further, the functional groups at the backbone of the crosslinked gel (such as amine for 

chitosan, and carboxylic acid for genipin) become ionized, and the hydrophilic nature of these 

ionized groups tend to attract more water molecules from the aqueous medium into the 

hydrogel, thereby causing the hydrogel to further swell.  

The osmotic pressure due to counterions in the hydrogel-solution system as a function of the 

ionic strength of the environment is [15]: 

𝜇𝑖𝑜𝑛𝑖𝑐 = 𝑅𝑇𝑉𝑠 (
𝛼2𝑐𝑓

2

4𝐼
)                                                                                         (3.45) 

where  𝛼 is the degree of dissociation of the amino group on the chitosan chain, 𝑐𝑓 the 

concentration of the available ionizable group on chitosan chain, 𝐼 is the ionic strength of the 

surrounding medium. The degree of ionization, 𝛼, and ionic strength, 𝐼 can be evaluated using 

the relations: 

𝐾𝑎 = (
𝛼2𝑐𝑚𝑜

1−𝛼
)                                                                                 (3.46) 

where 𝐾𝑎 is the dissociation constant for the fixed charge (amine) group on the chitosan 

network. 

𝐶ℎ𝑖𝑡 − 𝑁𝐻2 + 𝐻
+ ⇋ 𝐶ℎ𝑖𝑡 − 𝑁𝐻3

+                                                     (3.47) 

Therefore, the equilibrium constant, for the reaction 𝐾𝑎 is: 

𝐾𝑎 =
[𝐶ℎ𝑖𝑡−𝑁𝐻3

+]

[𝐶ℎ𝑖𝑡−𝑁𝐻2][𝐻
+]

                                                                               (3.48) 

 

Rearranging Eq. (3.46) gives: 

𝛼2𝑐𝑚𝑜 + 𝐾𝑎𝛼 − 𝐾𝑎 = 0                                                       (3.49) 
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Solving Eq. (3.49) gives: 

𝛼 =
−𝐾𝑎+√𝐾𝑎

2+4𝐾𝑎𝑐𝑚𝑜

2𝑐𝑚𝑜
                                                                     (3.50) 

 

For cationic hydrogels, the concentration of the ionizable groups, 𝑐𝑓 in the swollen genipin 

crosslinked chitosan hydrogel is: 

𝑐𝑓 =
(𝑐
𝑐+
 − 𝑐𝑔−)

𝑉𝑒𝑞

𝐶
𝐻+

(𝐾𝑎+𝐶𝐻+)
                                                                    (3.51) 

The ionic strength of the surrounding medium is calculated thus: 

𝐼 =
1

2
∑ 𝑐𝑖𝑧𝑖

2𝑛
𝑖                                                                      (3.52) 

where 𝑐𝑖 is the molar concentration of ion 𝑖 (M, mol/m3), and 𝑧𝑖 is the charge number of that 

ion in the swelling medium. 

Therefore, the total pressure (𝜇) of the charged crosslinked hydrogel at equilibrium swelling 

condition is given by: 

𝜇 = −
𝑁𝐴𝑘𝑇

𝑉𝑠
[In(1 − 𝜙𝑒) + 𝜙𝑒 + 𝜒𝜙𝑒

2] + 𝑁𝐴𝐺(0.5𝑉𝑒𝑞
−1 − 𝑉𝑒𝑞

−1 3⁄ ) + 𝑅𝑇𝑉𝑠 (
𝛼2𝑐𝑓

2

4𝐼
) = 0   

                                                                                                                                            (3.53) 

However, the shear modulus, G of the swollen hydrogel is related to the equilibrium volume 

swelling ratio by the expression [146]: 

𝐺 = 𝐺0𝑉𝑒𝑞
−1 3⁄                                                                                       ((3.54) 

where, 𝐺0 is the shear modulus of the gel at as-prepared state. 

 

3.2.4 Parameters used for simulation of equilibrium swelling of chitosan-genipin 

hydrogel 

The parameters used for simulation of the equilibrium model developed for genipin 

crosslinked chitosan hydrogel are outlined in Table 3.3.  
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Table 3.3: Values of parameters used in the simulation of the statistical mechanics’ model 

Name Value Unit 
 

Description 

𝑁𝐴 6.02214076×10²³ mol−1  Avogadro’s constant 

k 1.380649 × 10-²³ J/K  Boltzmann’s constant 

𝐺0 15 kPa 
 

Shear modulus of the gel (for the starting gel) 

T 298 K 
 

temperature 

𝑧𝑐
𝑓
     1  

 
valence of fixed charge, chitosan (R − NH2

+) 

pH   2 -13  
 

pH range of the surrounding medium  

𝐾𝑏 1.0x10-5  

mol/m3 

 

Dissociation constant of Chitosan’s amine group 

[135] 

𝜌𝑔𝑒𝑙 1200  kg/m3 
 

density of the crosslinked starting gel 

  𝑅        8.3145         J. K−1mol−1    general gas constant 

  𝑉𝑠      0.00612  m3/mol           Molar volume of solvent [135] 

  𝜒              0.48              Interaction parameter [135] 

 

3.2.5 Solution algorithm 

Newton Raphson’s numerical scheme employed to obtain an approximate solution to the single 

variable nonlinear model equations developed in this section is detailed in Appendix II. 

 

3.3 Modelling the Swelling Kinetics of pH-Sensitive Chitosan-Genipin Hydrogels  

In Section 3.1, a multifield model for studying the equilibrium volume variation of anionic 

hydrogels (PHEMA) was developed. Further, the simulation platform for the anionic hydrogel 

was adapted to simulate the swelling behaviour of pH-responsive cationic hydrogels (genipin-

chitosan hydrogels). To circumvent the challenges associated with modelling the equilibrium 

volume variation during shrinking of the hydrogel (such as having to manually change the 

boundary conditions at the interface of the hydrogel and the surrounding medium), the 

equilibrium volume variation of cationic hydrogels (chitosan-genipin) was modelled 

thermodynamically from a statistical mechanics standpoint in Section 3.2.  

Having studied (in Section 3.2) how genipin crosslinked chitosan hydrogels swell or shrink to 

an equilibrium volume in response to pH variation in the environment. The next consideration 
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is how fast, and how long it takes the crosslinked cationic hydrogels to attain the equilibrium 

volume. To solve this problem, let us consider a crosslinked hydrogel of volume, 𝑉(𝒓, 𝑡) 

bounded by the closed surface (A), immersed in a bathing medium, deforming as the fluid in 

the surrounding medium permeates through the hydrogel. 

The mass of an elemental volume of the hydrogel (i.e., the differential mass of the hydrogel 

comprising the fluid and polymer phases) is: 

𝑑𝑚 = 𝜙𝜌𝑝𝑑𝑉 + (1 − 𝜙)𝜌𝑓𝑑𝑉                                                            (3.55)                                                     

where 𝜌𝑝 is the specific density of the polymer (assumed constant), 𝜌𝑓 is the specific density 

of the fluid within the hydrogel (assumed constant here, but not necessarily the density of the 

fluid in the surrounding medium), and 𝜙 is the polymer volume fraction of the hydrogel defined 

as: 

𝜙 =
𝑉𝑝

𝑉
                                                                                           (3.56) 

 

where  𝑉𝑝 is the volume of the polymer phase of the hydrogel, and 𝑉 is the total volume of the 

fluid phase, 𝑉𝑓 and the polymer phase, 𝑉𝑝. 

Dividing Eq. (3.55) by 𝑑𝑉 gives the density of the hydrogel, 𝜌𝑔 as: 

𝜌𝑔 = 𝜙𝜌𝑝 + (1 − 𝜙)𝜌𝑓                                                                         (3.57) 

3.3.1 The conservation of mass equation 

 The continuity equation (mass conservation) in differential form, written separately for the 

constituent parts of the hydrogel gives:  

The general form (continuity equation): 
𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝒖) = 0            (3.58) 

Polymer phase: 
𝜕𝜌𝑝

𝜕𝑡
+ ∇. (𝜌𝑝𝒗𝑝) = 0               (3.59) 

𝜕(𝜙𝜌𝑝)

𝜕𝑡
+ ∇. ((𝜙𝜌𝑝)𝒗𝑝) = 0               (3.60) 

where are 𝜌𝑝 and 𝒗𝑝 are the density of the polymer phase and the velocity of the polymer phase 

(or chain) respectively. Evaluating the derivative gives: 
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                                          𝜌𝑝
𝜕𝜙

𝜕𝑡
+ 𝜌𝑝∇. (𝜙𝒗𝑝) = 0              (3.61) 

Fluid phase: 
𝜕𝜌𝑓

𝜕𝑡
+ ∇. (𝜌𝑓𝒗𝑓) = 0               (3.62) 

       
𝜕((1−𝜙)𝜌𝑓)

𝜕𝑡
+ ∇. (((1 − 𝜙)𝜌𝑓)𝒗𝑝) = 0             (3.63) 

where are 𝜌𝑓 and 𝒗𝑓 are the density of the fluid phase and the velocity of the fluid phase 

respectively. Evaluating the derivative gives: 

𝜌𝑓
𝜕[(1−𝜙)]

𝜕𝑡
+ 𝜌𝑓∇. [(1 − 𝜙)𝒗𝑓] = 0              (3.64) 

Dividing both equations by their respective densities give: 

𝜕𝜙

𝜕𝑡
+ ∇. (𝜙𝒗𝑝) = 0                                                                                          (3.65) 

𝜕[(1−𝜙)]

𝜕𝑡
+ ∇. [(1 − 𝜙)𝒗𝑓] = 0                                                                           (3.66) 

Combining Eq. (3.65) and Eq. (3.66) gives the compressibility relation (i.e., the densities of 

the polymer, and the fluid phases are constant): 

 

∇. [𝜙𝒗𝑝 + (1 − 𝜙)𝒗𝑓] = 0                                                        (3.66) 

Therefore, the equation of continuity and its condition of incompressibility for the polymer 

network are: 

𝜕𝜙

𝜕𝑡
+ ∇. (𝜙𝒗𝑝) = 0                                                                     (3.65′) 

∇. [𝜙𝒗𝑝 + (1 − 𝜙)𝒗𝑓] = 0                                                        (3.66′) 

It is important to note that, although the polymer volume fraction, 𝜙, changes with time during 

swelling, the volume of the polymer phase of the hydrogel, 𝑉𝑝 does not change. This implies 

that: 

𝜙0=
𝑉𝑝

𝑉(0)

𝜙(𝑡)=
𝑉𝑝

𝑉(𝑡)

}              (3.67) 

where  𝜙0, 𝜙(𝑡), and 𝑉(𝑡) are the initial polymer volume fraction, polymer volume fraction at 

time, 𝑡, and the total volume of the hydrogel at any time, t, respectively. 

 



64 
 

3.3.2 The Darcy law 

To define a relationship between the velocity of the polymer, 𝑣𝑝, and that of the fluid, 𝑣𝑓, we 

apply the Darcy law for porous medium, given by: 

𝒗𝑓 − 𝒗𝑝 = −𝜅0(𝜙)∇𝑝                                                                          (3.68) 

where ∇𝑝 is the pressure drop, the Darcy velocity, 𝒗𝑓 − 𝒗𝑝, is written as the velocity of the 

fluid relative to the polymer, the Darcy constant is given as [209]:   

𝜅0(𝜙) =
(1−𝜙)

𝜁(𝜙)
                                                                                      (3.69) 

 

3.3.3 Mechanical balance equation 

The governing mechanical equation for nonlinear problems, such as large deformation of 

hydrogel is given as: 

𝜌
𝜕2𝒖

𝜕𝑡2
− ∇.𝑷 + 𝒃 − 𝒇 = 0                                                                  (3.70) 

where u is the displacement vector of a 3-dimensional body undergoing deformation, 𝜌 is the 

density of the hydrogel, P is the first Piola–Kirchhoff stress tensor, b is body force, f is the 

external force.  

Since the volume variation of hydrogel is a slow, and gradual process, with no external force, 

the first, third, and fourth terms in Eq. (3.70) can be ignored. Hence, 

∇. 𝑷 = 0                                                                                             (3.71) 

For simplicity, let us assume small deformation of the hydrogel. Then the elastic theory can be 

used to describe the hydrogel’s deformation. Thus, Eq. (3.71) is rewritten in terms of the 

Cauchy stress tensor, 𝝈 as: 

∇. 𝝈 = 0                                                                                             (3.72) 

Eq. (3.72) rewritten in terms of the stress components is given as: 

(

 
 

𝜕𝜎11

𝜕𝑥1
+
𝜕𝜎12

𝜕𝑥2
+
𝜕𝜎13

𝜕𝑥3
𝜕𝜎21

𝜕𝑥1
+
𝜕𝜎22

𝜕𝑥2
+
𝜕𝜎23

𝜕𝑥3
𝜕𝜎31

𝜕𝑥1
+
𝜕𝜎32

𝜕𝑥2
+
𝜕𝜎33

𝜕𝑥3)

 
 
= 0                                                                 (3.73) 
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Since the hydrogel under study is a porous material, Eq. (3.72) could be modified to give: 

∇. (𝝈 − 𝑝𝐈) = 0                                                                       (3.74) 

where p is the osmotic pressure acting at the surface of the hydrogel, because of the tendency 

of the hydrogel to absorb more surrounding solvent. 

Hence, the mathematical model for the coupled mass transport and mechanical deformation of 

the hydrogel are Eq. (3.65), (3.66), (3.68), and Eq. (3.74). 

3.3.4 Stress tensor 

The stress tensor (𝝈) is related to the displacement vector (u), shear modulus (G), and the bulk 

modulus (K) in the following way: 

𝝈𝑖𝑗 = (𝐾∇. 𝒖𝛿𝑖𝑗⏟    
𝑠𝑡𝑟𝑒𝑠𝑠 𝑑𝑢𝑒 

𝑡𝑜
𝑣𝑜𝑙𝑢𝑚𝑒 
𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

+ 2𝐺(𝑢𝑖𝑘 −
1

3
∇. 𝒖𝛿𝑖𝑗⏟            

𝑠𝑡𝑟𝑒𝑠𝑠 𝑑𝑢𝑒 𝑡𝑜 
𝑠ℎ𝑒𝑎𝑟 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

)                                              (3.75) 

where the component of the displacement is: 

𝑢𝑖𝑗 = (
𝜕𝑢𝑘

𝜕𝑥𝑖
+
𝜕𝑢𝑖

𝜕𝑥𝑗
)                                                                                (3.76) 

Substituting Eq. (3.76) into (3.75) gives a more compact form Eq. (3.72) or (3.73) as: 

(

 
 

(𝐾 + 𝐺 3⁄ )
𝜕

𝜕𝑥1
∇𝒖 + 𝐺∆𝒖

(𝐾 + 𝐺 3⁄ )
𝜕

𝜕𝑥2
∇𝒖 + 𝐺∆𝒖

(𝐾 + 𝐺 3⁄ )
𝜕

𝜕𝑥3
∇𝒖 + 𝐺∆𝒖)

 
 
= 0                                                      (3.77) 

Replacing the operation  ∆𝒖 by ∇2𝒖 gives: 

[(𝐾 + 𝐺 3⁄ )∇∇𝒖 + 𝐺∇2𝒖] = 0                                                            (3.78) 

 

3.3.5 The free energy density equation  

For a temperature induced swelling, the elastic free energy density is a function of deformation 

gradient and temperature [209]. That is: 

𝐴 = 𝐴(𝐹𝑖𝑗 , 𝑇)                                                                                       (3.79) 
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However, the hydrogel under study is pH responsive, which means Eq. (3.79) must be modified 

to the form: 

𝐴 = 𝐴(𝐹𝑖𝑗 , 𝑝𝐻)                                                                                    (3.80) 

This quite agrees with what is observed experimentally about the material properties of swollen 

hydrogel. The elastic and shear moduli of hydrogel during swelling depend on the pH of the 

surrounding fluid [210]. 

The free energy density for an isotropic material is given as: 

A =
1

2
𝐾 (

𝜕𝑢𝑘

𝜕𝑥𝑘
)
2
+
1

4
𝐺 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
−
2

3
𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
)
2

                                       (3.81) 

                                                                                                                                               

Changing the pH of the surrounding fluid from a value 𝑝𝐻1 to 𝑝𝐻2 will require that Eq. (3.81) 

be modified to the form: 

A = 𝐴0 +
1

2
𝐾 [

𝜕𝑢𝑘

𝜕𝑥𝑘
− 𝛼12(𝑝𝐻)]

2
+
1

4
𝐺 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
−
2

3
𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
)
2

                      (3.82) 

                                                                                                                                               

From Eq. (3.75), the stress tensor becomes: 

 

𝜎𝑖𝑗 = 𝐾 (
𝜕𝑢𝑘

𝜕𝑥𝑘
) 𝛿𝑖𝑗 − 𝐾𝛼12(𝑝𝐻)𝛿𝑖𝑗 + 𝐺 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
−
2

3
𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
)                                        (3.83) 

where the pH-induced deformation coefficient is given as:  

                          𝛼12(𝑝𝐻) =
𝑉𝑒𝑞(𝑝𝐻2)−𝑉(𝑡=0)

𝑉(𝑡=0))
                                                                 (3.84) 

Eq. (3.81) shows that, 𝛼12 requires the knowledge of the final equilibrium volume, 𝑉𝑒𝑞, and 

initial unswollen volume, 𝑉0, of the hydrogel. 

 

 

 

 



67 
 

3.3.6 Geometry 

Since the deformation of the hydrogel under study was measured by changes in the diameter 

of the hydrogel, we would assume a linearized elastic cylindrical hydrogel undergoing 

deformation in the radial direction only (that is, one-dimensional domain). 

 

Figure 3.5: Hydrogel submerged in fluid: Physical geometry (right), and computational 

domain (left) 

 

3.3.7 Model analysis 

The model equations for the dynamics of the hydrogel are: 

𝜕𝜙

𝜕𝑡
+ ∇. (𝜙𝒗𝑝) = 0                                                                      (3.65′) 

∇. [𝜙𝒗𝑝 + (1 − 𝜙)𝒗𝑓] = 0                                                        (3.66′) 

            𝒗𝑓 − 𝒗𝑝 = −𝜅0(𝜙)∇𝑝                                                                      (3.68′) 

∇. (𝝈 − 𝑝𝐈) = 0                                                                       (3.74′) 

Expanding Eq. (3.66′) gives: 

𝜙∇.𝒗𝑝 + 𝒗𝑝∇𝜙 − 𝒗𝑓∇𝜙 + (1 − 𝜙)∇.𝒗𝑓 = 0          (3.85) 

For small deformation, the polymer volume fraction does not change spatially (i.e., ∇𝜙 = 0), 

therefore Eq. (3.85) becomes: 

𝜙∇.𝒗𝑝 + (1 − 𝜙)∇.𝒗𝑓 = 0                     (3.86) 
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Let the displacement of the hydrogel at a point 𝒙 be 𝒖 (𝒙, 𝑡). Then the velocity, 𝒗𝑝, of the 

polymer phase of the hydrogel is: 

𝒗𝑝 =
𝜕𝒖

𝜕𝑡
                                                          (3.87) 

The velocity of the fluid phase, 𝒗𝑓, can be obtained from Darcy’s law by substituting Eq. (3.87) 

into (3.68′): 

𝒗𝑓 = −𝜅0(𝜙)∇𝑝 + (
𝜕𝑢

𝜕𝑡
)                                                                    (3.88) 

Substituting Eq. (3.88) into (3.86) gives: 

𝜙∇. (
𝜕𝒖

𝜕𝑡
) + (1 − 𝜙)∇. (

𝜕𝒖

𝜕𝑡
) − 𝜅0(𝜙)(1 − 𝜙)∇

2𝑝 = 0                                          (3.89)   

Rearranging Eq. (3.89) gives that: 

         ∇. (
𝜕𝒖

𝜕𝑡
) = κ∇2𝑝                                                                  (3.90)          

where κ is defined as: 

 κ = 𝜅0(𝜙)(1 − 𝜙) =
(1−𝜙)2

𝜁(𝜙)
                                                               (3.91) 

The governing mechanical balance equation is: 

∇. (𝝈 − 𝑝𝐈) = 0                                                                                  (3.74′)  

Expanding Eq. (3.74′) gives: 

∇. 𝜎 = ∇𝑝                                                                                             (3.92) 

Substituting Eq.(3.92) into the stress tensor, Eq. (3.78), gives: 

(𝐾 + 𝐺 3⁄ )∇∇𝒖 + 𝐺∇2𝒖 = ∇𝑝                                                                (3.93)                                                                                                                                            

Factorizing the LHS of Eqn. (3.93) for the one dimensional problem gives Eq. (3.93) as: 

𝜕𝑝

𝜕𝑥
= (𝐾 +

4𝐺

3
)
𝜕2𝑢

𝜕𝑥2
                                                                                 (3.94) 

Eq. (3.94) is not solvable in the current form, since there are two dependent variables in it. 
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3.3.8 Boundary conditions 

To solve the derived equation, Eq. (3.94), the following boundary conditions (depicted in Fig. 

3.6) are defined for the chemo-mechanical conditions of the hydrogel-solvent system. 

 

Figure 3.6: Hydrogel submerged in a solvent, showing boundary conditions. 

• Chemical boundary condition 

At the centre of the hydrogel, due to symmetry, the pressure gradient is zero. Mathematically: 

∇𝑝 = 0                                                                                     (3.95) 

At the other end of the hydrogel, since the fluid can move freely through the boundary, then, 

the pressure inside the gel, p must be equal to the pressure in the surrounding fluid at the 

hydrogel-solvent boundary. That is: 

𝑝 = 𝑝𝑓                                                                                      (3.96) 

• Mechanical boundary condition 

At the hydrogel-solution boundary, the force per unit area, 𝐹𝑏, acting at the surface of the 

hydrogel is given as: 

      (𝝈 − 𝑝𝐈). 𝐧 = 𝐹𝑏                                                           (3.97) 

 

From Eq. (3.94), the mechanical boundary condition for unaxial deformation of the hyrogel is: 
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(𝜎𝑖𝑖 − 𝑝) = 𝐹𝑏 = −𝑝𝑒𝑥𝑡                                                                      (3.98) 

where 𝜎𝑖𝑖 is the stress acting in the x-direction, and 𝑝𝑒𝑥𝑡 is the solvent pressure acting at the 

boundary between the solvent and the hydrogel. 

Therefore, from Eq. (3.98), the pressure, 𝑝, inside the hydrogel is: 

𝑝 = 𝜎𝑖𝑖 + 𝑝𝑒𝑥𝑡                                                              (3.99) 

From Eq. (3.83), for pH-induced swelling, the stress 𝜎𝑖𝑖, acting in the x-direction is given as: 

𝜎𝑖𝑖 = (𝐾 +
4𝐺

3
)
𝜕𝑢

𝜕𝑥
− 𝐾𝛼12(𝑝𝐻)                                                           (3.100) 

Combining Eq. (3.99) and (3.100) gives: 

 
𝜕𝑢

𝜕𝑥
=

1

(𝐾+
4𝐺

3
)
[𝑝 − 𝑝𝑒𝑥𝑡 + 𝐾𝛼12(𝑝𝐻)]                                                     (3.101) 

Differentiating Eq. (3.101) w.r.t time, gives: 

𝜕

𝜕𝑡
(
𝜕𝑢

𝜕𝑥
) =

1

(𝐾+
4𝐺

3
)

𝜕𝑝

𝜕𝑡
                                                                                 (3.102) 

Rearranging the LHS of Eq. (3.90) gives: 

𝜕

𝜕𝑡
(
𝜕𝑢

𝜕𝑥
) = κ∇2𝑝                                                                                    (3.103) 

Substituting Eq. (3.103) into Eq. (3.102) gives: 

𝜕𝑝

𝜕𝑡
= κ(𝐾 +

4𝐺

3
)
𝜕2𝑝

𝜕𝑥2
                                                                             (3.104) 

Eqn. (3.104) models the pressure distribution within the hydrogel in spatial and temporal 

coordinates. It is perceived to be the summation of the pressures due to mixing, elasticity, and 

ionic interaction between the hydrogel and the medium as explained in Section 3.2.  

In comparison with Eq. (3.94), Eq. (3.104) is solvable in its current form to obtain 𝑝(𝑥, 𝑡) using 

the following boundary and initial conditions. 

• Boundary conditions: 𝑥 = 0,  
∂𝑝

∂𝑥
= 0  (symmetry)             (3.105) 

𝑥 = 𝑎,  𝑝 = 𝑝𝑒𝑥𝑡 (free)          (3.106) 
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• Initial condition: In the initial state when the gel is immersed in the solvent, 
𝜕𝑢

𝜕𝑥
= 0. 

Therefore, from Eq. (3.101), the pressure inside the hydrogel, in the initial condition 

(i.e., 𝜕𝑢 𝜕𝑥 = 0⁄ ), is: 

𝑝(𝑥, 0) = 𝑝𝑒𝑥𝑡 − 𝐾𝛼12(𝑝𝐻)           (3.107) 

Assuming the external medium is very dilute that it can be considered an ideal solution, then 

the external solvent pressure can be obtained as follows: 

𝑝𝑒𝑥𝑡 = 𝜌𝑒𝑥𝑡𝑅𝑇 𝑀𝑓⁄                                                                     (3.108)               

where 𝜌𝑒𝑥𝑡, Mf , and T are the density, molecular weight, and the temperature, respectively of 

the surrounding medium (this could be alcohol, water, etc).  

 

3.3.9 Model simulation 

The partial differential equation, Eq. (3.104) with the associated boundary conditions, Eq. 

(3.105) – (3.107), was solved as a 1-dimensional axisymetrical problem using finite element 

method (in COMSOL Multiphysics software) to obtain the pressure inside the gel as a function 

of time,  𝑝(𝑥, 𝑡). 

The change in radius of the gel, ∆𝑎 is given by 𝑢(𝑎, 𝑡), which can be obtained from Eq. (3.101): 

∆𝑎(𝑡) = 𝑎(𝑡) − 𝑎(0) = 𝑢(𝑎, 𝑡) = ∫
𝜕𝑢

𝜕𝑥

𝑎

0

. 𝑑𝑥 

=
1

(𝐾+
4𝐺

3
)
∫ [𝑝(𝑥, 𝑡) − 𝑝𝑒𝑥𝑡 + 𝐾𝛼12(𝑝𝐻)]
𝑎

0
𝑑𝑥                         (3.109) 

At equilibrium swelling of the hydrogel, the pressure outside the gel is equal to the pressure 

inside the gel. Therefore, the change in the radius of the gel at equilibrium, calculated from Eq. 

(3.109) is: 

 ∆𝑎∞ = 𝑎(∞)
𝐾

(𝐾+
4𝐺

3
)
𝛼12(𝑝𝐻)                                               (3.110)        

From Eq. (3.110) the unaxial swelling ratio can be calculated: 
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∆𝑎∞
𝑎(0)

=
𝑎(∞) − 𝑎(0)

𝑎(0)
=
𝑎(∞)

𝑎(0)
[

𝐾

(𝐾 +
4𝐺
3
)
] 𝛼12(𝑝𝐻) 

𝑎(∞)

𝑎(0)
{1 − [

𝐾𝛼12(𝑝𝐻)

(𝐾 +
4𝐺
3
)
]} = 1 

Therefore, the equilibrium uniaxial swelling ratio is: 

𝑎(∞)

𝑎(0)
=

(𝐾+
4𝐺

3
)

[(𝐾+
4𝐺

3
)−𝐾𝛼12(𝑝𝐻)]

                                                                         (3.111) 

The solution steps are outlined below: 

Step 1: Pressure distribution within the hydrogel was obtained by solving Eq. (3.104), with 

finite element method using COMSOL Multiphysics Equation-based approach. 

For optimized time-step in the dynamic simulation, the three different time-stepping methods 

underneath transient operation in COMSOL multiphysics (the implicit Backward 

Differentiation Formula (BDF), Generalized Alpha Methods (GAM), and the explicit Runge–

Kutta) were considered. Of these three, the BDF method was adopted in this study because, 

this time-step implicit solver uses backward differentiation formulas with variable 

discretization order and automatic step-size selection with good stability and have been 

reported to be suited to problems involving diffusion, convection, and reactions [208, 211]. 

The time-step control scheme for the BDF method is given as: 

      ‖𝑒̅𝑘‖𝑊𝑅𝑀𝑆
2 =

1

𝑀
∑

1

𝑁𝑗
𝑗 ∑

|𝑒̅𝑘,𝑖(𝑞)|
2

(𝐴𝑖+𝑅|𝑈𝑖
𝑘|)2𝑖 < 1                                               (3.112) 

 

The criterion used in this work is: 

 |𝑒̅𝑘| ≤ 𝐴 + 𝑅|𝑈
𝑘|                                                               (3.113) 

for an absolute tolerance, A, and a relative tolerance, R. The local truncation error estimate, 𝑒̅𝑘,𝑖 

for the scaled or unscaled field component 𝑈𝑖
𝑘 at time 𝑡𝑘, and the scaled and unscaled absolute 

tolerance 𝐴𝑖 .  
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Step 2 

Numerical integration (composite Simpson’s rule) was employed to obtain the change in radius 

of the hydrogel as a function of time. That is, the area under the curve, of Eq. (3.109). 

∆𝑎(𝑡) = ∫ 𝑓(𝑥)
𝑎2
𝑎1

𝑑𝑥 ≈
∆𝑥

3
(𝑓(𝑥0) + 4𝑓(𝑥1) + 2𝑓(𝑥2) + ⋯+ 4𝑓(𝑥𝑛−1) + 𝑓(𝑥𝑛))      (3.114) 

The error in the integration method (3.114) is: 

𝜀 =
(𝑎2−𝑎1)

180
(∆𝑥)4𝑓𝑖𝑣(𝜉)                 (3.115)

    

where 𝜉 is some number between 𝑎1 and 𝑎2, and ∆𝑥 = 𝑎2 − 𝑎1 𝑛⁄  is the strip length of each 

subdivision. 

Therefore, the pressure distribution, 𝑝(𝑥, 𝑡), within the hydrogel obtained at step 1, was 

inserted into Eqn. (3.109) to determine the change in the radius of the hydrogel, ∆𝑎(𝑡), using 

step 2. 

 

 

3.3.10 Parameters and variables used for simulation of swelling kinetics 

The parameters used for simulation of the dynamic swelling/deswelling of genipin crosslinked 

chitosan hydrogels are given in Table 3.4. 

 

Table 3.4: Values of parameters used for simulation of the dynamic model 

Name Expression/Value Description 

a 2 - 20[mm] Radius of the gel (unswollen) 

T 20[℃] Temperature 

Mf 0.0180153[kg/mol] Molecular weight of the fluid (water) 

R 8.3145[J/mol/K] General gas constant 

𝜌𝑓 1000[kg/m3] Density of the fluid (water) 

G 15[kPa] Shear moduli  

K 80[kPa] Bulk moduli 

pext 𝜌𝑒𝑥𝑡𝑅𝑇 𝑀𝑓⁄  External (solvent) pressure 

𝐷𝑐𝑜𝑝 (𝐾 + 4𝐺 3⁄ ) Coperative diffusion constant 
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3.4 Optimization Model for Equilibrium Swelling of Chitosan/Genipin Hydrogel 

In most applications, it is desirable to know the optimum conditions for equilibrium swelling 

of the crosslinked hydrogel. We address such concern in this section by first identifying the 

parameters that affect equilibrium swell volume, then use central composite response surface 

design to develop an optimization model that connects those parameters with the equilibrium 

swell volume.  

Some key parameters that influence the equilibrium swelling of the crosslinked hydrogel are 

the concentration of the crosslinking agent, %𝑐𝑔, the polymer-solvent interaction parameter, 

𝜒, ionic strength, I, and pH of the surrounding medium. Therefore, the relationship between 

these parameters and the equilibrium swell ratio, 𝑉𝑒𝑞, is given as: 

𝑉𝑒𝑞 = f(%𝑐𝑔, 𝜒, 𝐼, 𝑝𝐻)                                                (3.116) 

 

3.4.1 Operating conditions of the parameters 

• Genipin concentration, %𝑐𝑔: Since chitosan concentration was set at 1 wt.%, that of 

genipin was in the range 0.2 wt.% − 0.6 wt.% . 

• Polymer-solvent interaction, 𝜒: The range of the operating conditions for this parameter 

was set 20% above and below the nominal value (i.e., 𝜒 = 0.48) obtained from the 

literature [135]. Therefore, the range used is: 0.384 − 0.576 

• Ionic strength of the surrounding medium, I: based on the work of Li [15], this was set 

in the range, 300mM− 900mM 

• pH of the surrounding medium: the range of pH used was set at 20% above and below 

the nominal value of the pH for simulated body fluid (𝑝𝐻 =  7.4). Therefore, the range 

used is: 5.92 − 8.88 (so that the pH of tumorous tissue, 6.4 – 7.0, is within this range 

in the case of targeted drug release. 

With these operating conditions, a central composite response surface design (full) was used 

to generate thirty (30) data sets. These data sets were then plugged into the equilibrium swelling 

simulation platform (developed in Section 3.2) to determine the value for the corresponding 

response variable, 𝑉𝑒𝑞. Furthermore, with the aid of Design Expert statistical software, a 

regression-based optimization model was developed. The operational or response surface 

(design) matrix is detailed in Appendix III.  
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3.4.2 Model development 

The regression model employed to study the optimum equilibrium swelling conditions of 

genipin crosslinked chitosan hydrogel, was developed using Response Surface Methodology 

(RSM) with the aid of Design Expert software following the steps outlined below.  

❖ The value of the response (for each design run) obtained from simulation of the 

thermodynamics model developed in Section 3.2 was plugged into the appropriate 

column design layout view of the software. 

❖ The response variable was transformed to obtain the best model statistics (i.e.,  

𝑅2,  𝑅𝐴𝑑𝑗
2 , 𝑅𝑃𝑟𝑒𝑑

2 , p-value, F-test, etc.). With F-test, we determined the group of 

variables that are jointly significant. P-value, which must be less than the alpha level 

(in this work, alpha = 0.05) is the probability that the results obtained happened by 

chance. Predicted Residual Error Sum of Squares (PRESS) statistic gives an estimate 

of how the model performs on hold-out data, using only in-sample data [212]. 

❖ To automatically eliminate undesirable model terms, backward elimination regression 

(with alpha = 0.05) was employed for model process order (such as, 2FI, quadratic, 

cubic). 

❖ With Analysis of Variance (ANOVA) the most suited coefficients of the quadratic-

type regression model were determined as: 

𝑉𝑆𝑅 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 +⋯+ 𝑎12𝑥1𝑥2 + 𝑎13𝑥1𝑥3  + ⋯+ 𝑎11𝑥1
2 + 𝑎22𝑥2

2 +⋯          

                                                                                                                                          (3.117) 

Where 𝑉𝑆𝑅 is the estimated volume swell ratio of the crosslinked hydrogel, 𝑥1, 𝑥2, 𝑥3,… are the 

factors/parameters (i.e., genipin concentration, polymer-solvent interaction parameter, pH, and 

ionic strength of the surrounding medium). The constants 𝑎0, represents the mean (intercept);  

𝑎1, 𝑎2, 𝑎3…,  are the linear effects; 𝑎12, 𝑎13, 𝑎23, … are the interaction effects, while 

𝑎11, 𝑎22, 𝑎33, … are the quadratic effects. 

 

3.5 Error Propagation and Uncertainties  

Uncertainties and errors can cause simulation results to deviate significantly from their true 

values. To substantiate the level of accuracy accompanying the simulation results in this work, 

errors and uncertainties in the modelling process or model parameters were taken into 

consideration. Uncertainty is a potential deficiency that arises from poor knowledge of the 

modelling process or model parameters. Whereas error is a recognizable deficiency that is not 

caused by poor knowledge of the modelling process. The important errors considered and taken 
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into consideration in this study include: the iterative convergence errors and the discretization 

errors.  

Iterative convergence errors come to play due to the stopping criteria of the iterative method 

adopted in the simulation study. Since the system of equations modelled in this work is 

nonlinear, the solution was arrived at using Damped Newton iterative method. Steady state 

simulation of hydrogel swelling in COMSOL Multiphysics was performed using the stationary 

direct linear system solver. The error convergence criteria were fixed at 1 × 10−5. 

Discretization errors occur because the continuum chemo-electro-mechanical field PDEs are 

represented by an approximate discrete finite element model. To achieve a consistent 

simulation result (such that the solution is insensitive to the mesh size) within reasonable 

computation time, finer mesh was used in both the hydrogel and solution (i.e., the external 

environment) domains, whereas extremely fine boundary layer mesh was employed at the 

hydrogel-solution interface (refer to Figure 3.2). The sharp concentration gradient at the 

interface between hydrogel and the buffer solution was modelled using a hyperbolic tangent 

profile to polish the variation in concentration. 

 

3.6 Performance Evaluation of the Developed Models 

In this work, models have been developed on one hand, for predicting the volume variation 

behaviours of pH-sensitive anionic and cationic hydrogels. On the other hand, to determine the 

optimum conditions for equilibrium swelling of cationic hydrogels. Further, to evaluate the 

performance or prediction capabilities of these models, the data used were obtained from 

swelling experiments performed in the laboratory and some from the literature. Furthermore, 

for the optimization model, validation data were generated (i.e., synthetic data) using 2-level 

factorial design of experiment. The details of the model validation procedure are provided in 

the following sub-sections. 

3.6.1 Validation with swelling experiment data 

Two sets of data obtained from the literature [15, 135], and from experimental swelling 

measurements for anionic, and cationic (genipin crosslinked chitosan) hydrogels, respectively 

were used to evaluate the performance of the numerical models developed in this work. The 

performances of the models were ascertained by comparing these datasets with simulation 

results.  
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3.6.2 Evaluation using interpolation and extrapolation datasets 

Two sets of data obtained by interpolation and extrapolation (of the range of operating 

conditions of the model parameters) through two (2)-level Factorial Design (Res V), resulting 

in twelve (12) runs, were used to evaluate the performance/robustness of the regression-based 

model developed in Section 3.4. 

3.6.2.1 Interpolation test 

Operating conditions for the interpolation dataset was created and plugged into the equilibrium 

swelling simulation platform to generate response data for the interpolation test. The upper 

boundary (UB) and lower boundary (LB) of the interpolation dataset are 10% below and 10% 

above the original upper and lower boundary operating conditions used to develop the model 

respectively.  

That is, the lower boundary (LB) for the interpolation dataset, was 110% LB of original while 

the upper boundary (UB) was 90% UB of the (original) operating conditions. The response 

data for the interpolation datasets were compared with the model predictions at the same design 

points. 

 

3.6.2.2 Extrapolation test 

In a bid to check the robustness of the regression model (developed for equilibrium swelling 

studies) outside the range of operating conditions, extrapolation dataset was generated and 

plugged into the equilibrium swelling simulation platform to generate response data for the 

extrapolation test. 

For the extrapolation test, the lower boundary (LB) for the interpolation dataset, was 95% LB 

of original while the upper boundary (UB) was 105% UB of the (original) operating conditions. 

The response data for the extrapolation datasets were compared with the model predictions at 

the same design points. 

 

In addition to the statistical criteria discussed in Section 3.4.2, the accuracy or acceptability of 

the models’ predictions was determined by evaluating the coefficient of determination 

(𝑅2) and the percent relative error (𝜖𝑟) produced when the models when compared with 

experimental data, trained and untrained datasets (for the regression-based model). The 

performance criteria are calculated using the following equations: 
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                              𝑅2 = 1 −
∑ (𝑦−𝑦𝑝)

2𝑛
𝑖=1

∑ (𝑦−𝑦̅)2𝑛
𝑖=1

                                         (3.118) 

𝜀𝑟 =
|𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡−𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛|

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡
× 100                              (3.119) 

where yp, is the predicted value of the dependent variable and y is the experimental value. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 Multiphysics Simulation for Equilibrium Swelling of pH-Sensitive Anionic Hydrogel  

 

The multiphysics model developed in Section 3.1 for equilibrium swelling of pH-sensitive 

anionic hydrogels are analysed, and the simulation results discussed in this chapter. The model 

incorporates the Poisson-Nernst-Planck (PNP) equations, which represents the diffusion and 

migration of ionic species in the system (i.e., hydrogel and the surrounding medium), together 

with the equilibrium mechanical equation for deformation of the hydrogel. The simulation 

results presented and discussed here are for the equilibrium swelling of a case-study anionic 

hydrogel (PHEMA) described in Section 2.3. 

 

4.1 Model Validation for pH-Sensitive Anionic Hydrogels 

To evaluate the performance of the numerical model developed in this study for equilibrium 

swelling of pH-sensitive anionic (PHEMA) hydrogels, steady state simulations were performed 

on a two-dimensional axisymmetric domain (representing the cylindrical shape hydrogel) and 

the results were compared with experimental data obtained from the work of Beebe et al. [213]. 

To justify this comparison, reference is made to the experimental procedure followed by Beebe 

et al. [213] to generate the data. The PHEMA hydrogel was synthesised in a microchannel 

covered at the top and bottom with two pieces of glasses to constrain axial displacement. 

Hence, the reason a cylindrical-shape hydrogel constrained at the top and bottom using rollers 

(refer to boundary conditions in Section 3.1.3.2) was chosen as the geometry for the simulation 

study.  

In the experiment, the PHEMA hydrogel formed in a microchannel had an initial diameter of 

400𝜇𝑚. Further, it was observed that, on submerging the hydrogel in a surrounding fluid of 

ionic strength 300mM, it instantaneously swelled to a certain degree (a condition referred to as 

initial hydration state) then attained equilibrium swelling state before being subjected to 

changes in the pH of the surrounding medium. In keeping track of the volume variation of the 

hydrogel, the diameter of the cylindrical hydrogel was recorded as a function of the pH of the 

surrounding fluid (see the diamond markers on Figure 4.1). To reproduce this swelling scenario 

mathematically, the multifield equations (discussed in Section 3.1) in their steady state form 

that is, Eq. (3.1), (3.2), and (3.24); together with the auxiliary equations, Eq. (3.3) and (3.25)  
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and the computational domain with its associated boundary conditions detailed in Section 

3.1.3.2, and parameters values provided in Table 3.1 were solved numerically as a finite 

element problem using COMSOL Multiphysics software. The simulation was performed to 

obtain the volume variation (in terms of diameter changes) as a function of pH (see the 

triangle markers on Figure 4.1, with the broken line plotted to aid visualization).  

 

Figure 4.1 Validation against experimental studies by Beebe et al. [213] for equilibrium 

swelling of PHEMA hydrogel as a function pH 

 

In the region of acidity (as seen in Figure 4.1), as the pH of the surrounding medium increases 

from 2 to 7, the hydrogel remains unchanged in size at very low pH, and slowly begins to swell 

in response to pH variation. However, the swelling becomes more pronounced as the pH value 

enters the range of 4 to 6.5. The swelling (which is due to charge build-up within the hydrogel) 

results from the protonation of the pendant carboxylic acid (RCOO−) groups at the backbone 

of the PHEMA hydrogel. This charge build-up causes electrostatic repulsion which influences 

the osmotic balance between the hydrogel and the external environment, causing moisture and 

positively charged ions in the surrounding medium to penetrate the hydrogel. As the pH of the 

surrounding medium approaches 7, the protonation of the carboxylic acid group of PHEMA 

approaches the saturation state, therefore, further increase in the pH does not result in 

significant volume variation of the hydrogel. In conclusion, from the analysis of Figure 4.1, it 

is obvious that the simulation results compare very well with the experimental data. Hence, the 

model has the potential to offer predictions for equilibrium swelling of anionic (PHEMA) 
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hydrogels and the simulation platform can be deployed or adapted to model the volume 

variation behaviour of pH responsive cationic hydrogels.  

 

4.2 Steady State Swelling of pH-Sensitive Anionic Hydrogels 

This section details steady state simulation for equilibrium swelling of the pH-sensitive anionic 

(PHEMA) hydrogels with a closer look at the influence of the properties of the hydrogel or 

conditions of the surrounding medium. Simulations were performed (using input data obtained 

from the literature as prescribed in Table 3.1) to highlight the effects of initial fixed charge 

concentration of the hydrogel and effects of pH variation of the surrounding medium on the 

equilibrium swelling of PHEMA hydrogels. 

4.2.1 Effect of initial fixed charge concentration on swelling of anionic hydrogel 

The degree of ionisation of the fixed charge groups at the backbone of the PHEMA hydrogel 

and the nature (i.e., positive, or negative) of the mobile ions in the surrounding medium, 

contribute to the overall swelling of the hydrogel. From Eqn. (3.2) and (3.3), it is clear that the 

initial fixed charge concentration, 𝑐𝑚𝑜
𝑠 , of the hydrogel contributes significantly to the Poison-

Nernst-Planck equation hence the need to study its effect on the swelling of anionic (PHEMA) 

hydrogels. The cylindrical pH responsive hydrogel under study is immersed in a medium that 

is made of sodium chloride (NaCl) and hydrochloric acid (HCl) solution with a slight buffer to 

stablize the solution pH and swelling rate (Fig. 3.1). Therefore, the mobile ions in solution are 

sodium (Na+), hydrogen (H+), and chloride (Cl-) ions. 

As the initial fixed charge concentration increase (calculated using Eqn. (3.6)) from 1200 

mol m3⁄  to 2400 mol m3⁄ , at the same pH of the surrounding medium, the affinity of the 

carboxylic acid group (RCOO−) for cations tends to increase leading to the diffusion of more 

mobile ions with opposite sign from the surrounding solution into the hydrogel. Fig. 4.2- 4.3 

show that the mobile cations, sodium (Na+) and hydrogen (H+) ions, tend to have higher 

concentrations within the hydrogel than in the surrounding solution, due to the negative fixed 

charge group bound to the backbone of the hydrogel attracting postively charged ions from the 

solution into the interior of the hydrogel.   

Since the concentration of the fixed charge group drops from an initially high value at the center 

of the hydrogel to a zero value at the surface of the hydrogel, the concentrations of the cations 

tend to be higher at the center of the hydrogel than it is at the surface of the hydrogel (3D plots). 

Even though the swelling of the hydrogel is not very pronouced for low pH values (the line 
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plots), the effect of increasing the initial fixed charge concentration at the backbone of the 

hydrogel could still be observed. 

 

 

Figure 4.2: 3D plots for concentration (mol/m3) distributions of Na+ in the system for initial 

fixed charge (RCOO-) concentration 1800 mol/m3(left) and 2400 mol/m3 (right), and 1D plot 

(down) in acidic medium of pH = 2. 
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Figure 4.3: 3D plots for concentration (mol/m3) distributions of H+ in the system for initial 

fixed charge (RCOO-) concentration 1800 mol/m3(left) and 2400 mol/m3 (right), and 1D plot 

(down) in acidic medium of pH = 2. 

 

Conversly, Fig. 4.4 shows that increasing the initial fixed charge concentration from 1200 

mol m3⁄  to 2400 mol m3⁄ , causes the mobile chloride (Cl-) anion to deplet within the hydrogel 

as a result of the repulsion between the negative fixed charge group and the mobile anions 

migrating from the surrrounding medium to the interior of the hydrogel. Hence, the 

concentration of the Cl- is higher in the solution phase than it is within the hydrogel.  
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Figure 4.4: 3D plots for concentration (mol/m3) distributions of Cl- in the system for initial 

fixed charge (RCOO-) concentration 1800 mol/m3(left) and 2400 mol/m3 (right), and 1D plot 

(down) in acidic medium of pH = 2. 

 

 

The trend of the plots (Figs. 4.2- 4.4) which shows that as the concentrations of the mobile 

cations decrease from the center of the hydrogel, that of the mobile anions increase from the 

center of the hydrogel to the surface of the hydrogel (as the initial fixed charge concentration 

at the backbone of the hydrogel increase) is intuitively correct and corroborate with the work 

reported elsewhere [41, 90] 
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It is obsereved from Fig. 4.5 that increasing the initial fixed charge concentration from 1200 

mol m3⁄  to 2400 mol m3⁄ , causes the electric potential within the hydrogel to drop in value 

but increase along the radius of the hydrogel. The electric field distribution in the surrounding 

medium is not taken into consideration since electroneutrality was assumed in the medium. 

The low electric potential at the center and high potential at the surface of the hydrogel may be 

due to the high interractions between the fixed charge group and the mobile counterions (e.g 

Na+) at the center and a low interraction at the surface of the hydrogel.  

 

Figure 4.5: Electric potential distribution profiles as a function of initial fixed charge 

concentration in in acidic medium of pH = 2  

 

Mechanically, increasing the initial fixed charge concentration from 1200 mol m3⁄  to 2400 

mol m3⁄ , causes an increase in displacement along the radius of the hydrogel. As shown in Fig. 

4.6, at constant pH, the hydrogel deforms more at high initial fixed charge concentration due 

to the increased affinity for mobile counterions diffusing from the surrounding medium into 

the interior of the hydrogel. The pull for more mobile ions increases the ionic cloud within the 

hydrogel leading to higher osmotic pressure which ultimately drives higher swelling of the 

hydrogel. 
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Figure 4.6: 3D plots for displacement as a function of initial fixed charge (RCOO-) 

concentration 1800 mol/m3(left) and 2400 mol/m3 (right), and 1D plot (down) in acidic 

medium of pH = 2. 

 

4.2.2 Effect of pH variation on equilibrium swelling of anionic hydrogel  

Varying the pH of the surrounding medium at a specific initial fixed charge concentration, 

influences the equilibrium swelling of the hydrogel more in the alkaline medium. As seen in 

Fig. 4.7 – 4.8, deformation is highest at alkaline pH. This is the idea behind the use of anionic 

hydrogel-based materials for controlled drug release to regions of the body that require release 

of therapeutics at alkaline pH. These materials encapsulating therapeutics will resist 

deformation/swelling in the stomach where the pH is acidic (i.e., varies from 1 to 3), and 

effectively transport the drugs through the small intestines to the target tissue with alkaline pH. 
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Figure 4.7: Displacement (1D) across the radius of the hydrogel at different pH of the 

bathing medium for ionizable fixed charge concentration of 2400 mol/m3 

 

Figure 4.8: Displacement (3D) across the radius of the hydrogel as a function of pH at 

ionizable fixed charge concentration of 2400 mol/m3 for pH =3 (left), 7 (right), and 9 (down). 
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Fig. 4.9 shows that the radius of the anionic hydrogel resist changes to environmental pH values 

less than 4 and begins to change significantly as the pH of the surrounding medium varies from 

4 to 8, thereafter remains almost unchanged. This behaviour results from the increase in 

ionization of the pendant group as the pH of the surrounding medium increase. 

 

Figure 4.9: Radius of the hydrogel as a function of pH of the surrounding medium  

 

 4.3 Reflection 

In this chapter, a multifield numerical model has been developed using COMSOL Multiphysics 

software package based on the famous Poisson-Nernst-Plank formulation in combination with 

mechanical (deformation) equation. The model describes the equilibrium swelling behaviour 

of anionic hydrogels, and its prediction capability was tested against experimental, equilibrium 

swelling data for PHEMA hydrogels. Though the model validation was performed for one-

dimensional equilibrium swelling of PHEMA hydrogel, the model, based on the chosen 

geometry/computational domain, can be adapted to predict two- or three-dimensional volume 

variation behaviour of other pH responsive hydrogels.  

 

Further, due to model stiffness (i.e., the solution of one or more equations in the system vary 
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behaviour of the hydrogel under study can be derived, and the framework can be adapted to 

model the volume variation behaviour of pH responsive cationic hydrogels. 
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

 Multiphysics Simulation for Equilibrium Swelling of pH-Sensitive Cationic Hydrogel  

 

The COMSOL multiphysics-based model developed in Section 3.1 for pH-sensitive anionic 

hydrogels was adapted for various operating conditions and applied to a case study pH-

sensitive cationic hydrogel. The cationic hydrogel studied and analysed is genipin (fixed 

charged group, -COOH) crosslinked with chitosan (fixed charged group, –NH2) hydrogel. 

Since genipin is anionic, chitosan is cationic, the hydrogel formed is cationic because the 

concentration of chitosan used all through was greater than that of genipin.  

 

The governing equations (3.1), (3.2), and (3.24) representing the Nernst Planck, Poisson, and 

momentum balance equations respectively were solved on the computational domain, Fig. 

3.1b, under steady state conditions.  

The constitutive relations used for the simulations were Eqns. (3.4), (3.5), (3.6), and (3.25) 

corresponding to the fixed charge concentration for cationic hydrogels, local hydration state of 

the hydrogel, total available ionizable fixed charge group in the network, and the osmotic 

pressure respectively. The results of the steady state simulation are analysed and discussed in 

this chapter. 

 

5.1 Steady State Swelling/Deswelling of pH-Sensitive Cationic Hydrogels 

In a similar fashion to the simulation of equilibrium volume variation of a pH responsive 

anionic hydrogel (PHEMA), discussed in Chapter 4. A one-dimensional (cylindrical) steady-

state simulations were performed for predicting the equilibrium volume variation behaviour of 

pH-sensitive genipin crosslinked chitosan hydrogel of initial diameter of 400𝜇𝑚.  

As stated previously, the pH-sensitive cationic hydrogel swells when the pH of the solution is 

less than the 𝑝𝐾𝑏 of the ionic group at the backbone of the hydrogel. The parameters used for 

the simulation are presented in Table 3.1. Before swelling, the hydrogel has a radius of 200 

𝜇𝑚, as seen in Fig. 5.1. As the hydrogel is placed in acidic medium, for example pH = 4, it 

swells to an equilibrium size of radius 352 𝜇𝑚 as shown by the elongation in the horizontal 

axis.  

Figures 5.1 and 5.2 give the distributive profile of the ionic concentrations of the diffusing 

species along the radius of the hydrogel for acidic and alkaline media respectively. 
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Figure 5.1: Concentration (mol/m3) distributions of ions in the system for acidic medium of 

pH  4 

From the distributive patterns of the concentrations of the mobile cations (Na+, and H+), and 

mobile anions (Cl−), it is obvious that the concentrations of the cations are lower at the center 

of the hydrogel and begins to increase towards the surface of the hydrogel. This could be 

attributed to the positively charged group at the backbone of the hydrogel network. This 

positive ion tends to repel cations from entering the interior of the hydrogel while attracting  

 

Figure 5.2: Concentration (mol/m3) distributions of ions in the system for alkaline medium of 

pH 9 

 

anions in the solution into the interior of the hydrogel, creating a cloud of ions within the 

hydrogel. The difference in concentrations of the ions within and outside the hydrogel 
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generates an osmotic pressure that causes the hydrogel to swell with the aim of redistributing 

the mobile ions within the hydrogel and the external medium until equilibrium is reached.  

In alkaline medium, for example pH 9, the hydrogel appears to shrink from an initial radius of 

0.2 mm to an equilibrium radius of 0.19 mm. In comparing the behaviour of the hydrogel in 

alkaline medium with that in acidic medium, the distributive concentrations profiles, show that, 

the concentration of sodium ion, Na+ is higher while that of chloride ion, Cl− is lower for the 

alkaline medium. 

5.2 Effect of Increasing Initial Fixed Charge Concentration of the Crosslinking Agent

  

Increasing the initial fixed charge density of genipin at a specific initial fixed charge density of 

chitosan can influence the swelling property of the hydrogel. To study this effect, Figures 5.3, 

5.4, 5.5, and 5.6 are the simulation plots for the mechanical displacement, sodium ion, chloride 

ion, and hydrogen ion concentrations profiles along the radius of the hydrogel as a function of 

genipin ionizable fixed charge concentration within the hydrogel. 

A 0.2 mm genipin crosslinked hydrogel submerged in an acidic medium of pH 4, experiences 

less swelling as the initial fixed charge density of genipin (at a constant chitosan fixed charge 

density) increases from an initial value of 500 mol/m3 to 1500 mol/m3. 

 

 

Figure 5.3: Displacement as a function of genipin’s initial fixed charge (RCOO-) concentration 

at a specific chitosan’s initial fixed charge (–NH2) concentration of 1800 mol/m3 for pH = 4 

 

0

0.04

0.08

0.12

0.16

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

D
is

p
la

ce
m

e
n

t 
( 

m
m

)

Distance across hydrogel radius (mm)

Genipin's initial fixed charge concentration(mol/m3)

1500 1000 500



93 
 

 

Figure 5.4: Concentration (mol/m3) distributions of Na+ in the system as a function of genipin’s 

initial fixed charge (RCOO-) concentration at a specific chitosan’s initial fixed charge (–NH2) 

concentration of 1800 mol/m3 for pH = 4 

 

 

Figure 5.5: Concentration (mol/m3) distributions of Cl- in the system as a function of genipin’s 

initial fixed charge (RCOO-) concentration at a specific chitosan’s initial fixed charge (–NH2) 

concentration of 1800 mol/m3 for pH = 4 
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Figure 5.6: Concentration (mol/m3) distributions of H+ in the system as a function of genipin’s 

initial fixed charge (RCOO-) concentration at a specific chitosan’s initial fixed charge (–NH2) 

concentration of 1800 mol/m3 for pH = 4 

 

Although increasing the initial fixed charge density increases the concentration of the diffusing 

ions entering the hydrogel, it leads to a decrease in the degree of swelling of the hydrogel. 

 

5.3 Effect of pH Variation on Equilibrium Swelling of Cationic Hydrogel 

The property of cationic hydrogels to reversibly swell or shrink in response to changes in the 

pH of the surrounding medium makes them useful in a wide range of applications such as the 

design of controlled drug delivery systems. 
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Figure 5.7: Radius of the hydrogel as a function of the pH of the surrounding medium for 

equilibrium swelling 

 

As can be seen in Fig. 5.7 and Fig 5.8, the cationic hydrogel swells in solutions whose pH is 

within the acidic range and shrink in solutions with pH within the alkaline range. In drug 

delivery applications, these materials can be used to prevent drug delivery in alkaline medium, 

but in acidic region such as tumour site they can swell to aid drug release. 

 

 

Figure 5.8: Displacement as a function of pH along the radius of the hydrogel 
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5.4 Limitations 

Following on from Chapter 4, the simulation platform developed for studying the equilibrium 

swelling behaviour of pH-sensitive anionic hydrogels was adapted and applied to simulate the 

equilibrium volume variation of pH responsive cationic hydrogels. The primary aim of this 

study was to model and simulate the dynamic volume variation behaviour of pH responsive 

cationic hydrogels. However, the difficulty associated with performing dynamic solutions for 

anionic hydrogels places a limitation on the use of this multifield chemo-electro-mechanical 

approach to simulate and predict time-dependent volume variation behaviour of pH responsive 

cationic, genipin-crosslinked chitosan hydrogels. 

 

Although steady state solutions were obtained for volume variation of pH responsive cationic 

hydrogels, the reversible swelling-shrinking property of cationic hydrogels makes it 

challenging to automate the model as the gel moves from acidic pH medium to alkaline pH 

medium. To generate equilibrium solutions for all pH values, it was required to manually 

change the mechanical boundary conditions at the hydrogel-surrounding interface, since 

osmotic pressure acting at the interface changes direction as the gel moves from acidic pH 

medium (where swelling occurs) to alkaline pH medium (where shrinking occurs).  
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CHAPTER SIX 

RESULTS AND DISCUSSION 

 Simulation of the Thermodynamics Model Developed for Equilibrium Swelling of 

Genipin Crosslinked Chitosan Hydrogels 

 

The multiphysics numerical model developed for studying the volume variation behaviour of 

anionic (PHEMA) hydrogels (results analysed and discussed in Chapter 4) was adapted to 

simulate the volume variation behaviour of cationic (genipin crosslinked chitosan) hydrogels 

(discussed in Chapter 5). However, to overcome the computational challenges encountered 

during simulation of the cationic (genipin crosslinked chitosan) hydrogels in alkaline region 

(where the hydrogel shrinks significantly), an alternative approach that uses thermodynamics 

was employed to model the equilibrium volume variation of the crosslinked hydrogel. The 

thermodynamics model developed from a statistical mechanics standpoint in Section 3.2 for 

equilibrium volume variation behaviour of genipin crosslinked chitosan hydrogel was 

simulated under various operating conditions, and the results are analysed, discussed, and 

validated in this chapter. 

6.1 Response of the Interacting Potentials to pH Variation of the Medium 

Genipin crosslinked chitosan hydrogel placed in a bathing medium will continue to swell until 

there is osmotic pressure balance due to mixing, elastic deformation, and the counterions in the 

system, according to Eqn. (3.26). The effects of varying the concentration of the crosslinker 

(i.e., genipin) and pH of the surrounding medium on the contributing potentials/pressures 

𝜇𝑚𝑖𝑥 , 𝜇𝑒𝑙𝑎𝑠𝑡𝑖𝑐 , and  𝜇𝑖𝑜𝑛𝑖𝑐, were studied, and the behaviour is shown in Fig. 6.1 – 6.2.  

Solving Eqns. (3.34) - (3.53) iteratively gives the equilibrium swell volume, 𝑉𝑒𝑞, which makes 

the summation of all the contributing potentials zero, satisfying the condition of Eqn. (3.26).  

As shown in Fig. 6.1, the mixing potential (circle marker) appears to have a negligible effect 

on the total potential of the hydrogel, whereas the elastic and ionic potentials decreased and 

increased (respectively) relative to each other. The crosslinked hydrogel under study is an 

electrically charged hydrogel. Therefore, as the potential due to ionic interactions increases, 

the potential due to elastic deformation will increase correspondingly to counteract its effect. 

The mixing potential has negligible effect on the overall swelling (as shown in Fig. 6.2) 

because, the potentials due to elastic deformation and ionic interactions are far much higher 

than the potential due to mixing. 
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Furthermore, increasing the concentration of genipin from (a) 5mM through (b) 7.5mM to (c) 

10mM at constant chitosan concentration tends to increase the potential within the hydrogel 

(see Fig. 6.1) due to increased ionic interaction between the mobile ions in solution and those 

bound to the polymer network. However, this increase in concentration of the crosslinking 

reagent tends to toughen the polymer network leading to a decrease in equilibrium swelling of 

the hydrogel as the concentration increase from (a) 5 mM through (b) 7.5 mM to (c) 10 mM as 

depicted in Fig. 6.2.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Potentials as a function of pH of the surrounding medium at different genipin 

concentration (a) 5 mM (b) 7.5 mM (c) 10 mM 
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Figure 6.2: Potentials as a function of equilibrium swell ratio at different genipin concentration 

(a) 5 mM (b) 7.5 mM (c) 10 mM. 
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6.2 Model Validation 

Two sets of data were used to evaluate the performance of the equilibrium model developed 

(from statistical mechanics approach) for swelling studies involving genipin crosslinked 

chitosan hydrogel. The first dataset was obtained from the experimental studies by Jahren et 

al. [159], involving hydrogels synthesised from chitosan crosslinked with genipin. In 

generating this data, Jahren, and co-workers [159] made stock solutions for chitosan (from 2 

and 3 wt.% chitosan dissolved in 1% acetic acid in deionized water) and for genipin (0.01M, 

0.015M, 0.020M, 0.050M, and 0.10M genipin solution in 1% acetic acid). 10ml of the stock 

chitosan solutions were mixed with 10ml of the genipin solution and poured into a 10 cm 

diameter Petri dish for gelling. After gelation, discs of 15mm diameter and 2.5mm depth were 

cut off from the parent gel for swelling studies. For the swelling experiments, large baths 

containing aqueous solutions of various pH were prepared. For the acidic baths the pH was 

adjusted by adding small amount of 1M laboratory-grade HCl while for the alkaline baths 2 M 

laboratory-grade NaOH was used. The hydrogel samples were monitored for twenty-four hours 

to equilibrate and attained a constant weight. The degree of swelling was determined using 

Eqn. (2.36). To convert the data to a form useable in this work, Eqn. (2.39) was used to 

transform the data from mass swelling ratio to volume swelling ratio. On the other hand, the 

second dataset was obtained from experimental swelling data (from our laboratory, 

Novakovic’s group) involving chitosan crosslinked with genipin hydrogels. The experimental 

procedure for the hydrogel synthesis and swelling experiments are detailed in the works by Vo 

et al. [133] and Vukajlović [214]. 

 

6.2.1 Performance evaluation using literature data 

The performance of the thermodynamics model (derived from statistical mechanics approach) 

developed in Section 3.2 for equilibrium swelling of genipin crosslinked chitosan hydrogels 

was evaluated using data obtained from the experimental work of Jahren et al. [135]. Fig. 6.3 

shows how the simulated equilibrium swelling ratio correlates with the literature values. The 

discrepancies in the profiles and the equilibrium swelling ratio between the experimental 

(literature data) and the model simulation values in acidic pH range may be attributed to the 

crosslinked hydrogel behaving like a network of stiff rods [215] in low pH of the surrounding 

medium. 



101 
 

 

Figure 6.3: Equilibrium swell ratio for experimental [135] versus simulated as a function of 

the surrounding pH for different concentration of genipin used. 

 

6.2.2 Performance evaluation using laboratory deswelling data 

Conformational change experiments were performed in three trials for genipin crosslinked 

chitosan hydrogels in Simulated Body Fluid, SBF (pH = 7.4). Table 6.1 compares the average 

equilibrium swell volume ratio obtained from experiment with that predicted by the model for 

different degree of crosslinking used.  

 

Swelling experiment was performed for chitosan-genipin hydrogels with different degree of 

crosslinking, as shown in Table 6.1. For example, x40, x80, x120, and x160 represent chitosan 

to genipin molar ratio of 1:40, 1:80, 1:120, and 1:160 respectively. 

 

Table 6.1: Comparison between experiment and model prediction for deswelling in SBF 

Gel Type VSR (Actual) VSR (Pred) Error (%) 

x40  0.837111639 0.836135 0.11667 

x80 0.417730389 0.420062 -0.55817 

x120 0.246110284 0.373562 -51.7862 

x160 0.196565682 0.358027 -82.1414 
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Figure 6.4: Plot of actual volume swell ratio against predicted volume swell ratio in SBF 

medium 

It is clear from Table 6.1 that the model gives good prediction at low concentration of the 

crosslinking agent. For x40, and x80 type hydrogels, percentage relative error is less than 1%, 

whereas, at high crosslinking concentration, the error between model predictions and 

experimentally observed swelling ratio becomes large. This behaviour is expected because the 

model assumes gaussian statistical behaviour (i.e., the rubber elasticity theory) for the 

crosslinked hydrogels. For this reason, this model is limited to applications requiring the use 

of genipin crosslinked hydrogels with low crosslink density, since the limitations have 

negligible effects on the model’s capability to predict accurately the response behaviour of the 

hydrogel. 

Figure 6.4 compares the average of the three trials of the equilibrium swell volume ratio 

obtained experimentally (at the pH of 7.4) with the value obtained from simulation at the same 

pH for the different degree of crosslinking. From Table 6.1 and Fig. 6.4, it can be deduced that 

the model can offer good predictions for equilibrium swell volume ratio involving low genipin 

concentration. 

 

6.3 Effects of Increasing Concentration of Crosslinking Agent 

Having validated the performance of the thermodynamics model developed for studying the 

volume variation behaviour of cationic (genipin crosslinked chitosan) hydrogels, let’s consider 
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parameter that has significant effect on the swelling behaviour of stimuli responsive hydrogels. 

Varying the concentration of the crosslinking reagent affects both the structure and elasticity 

of the hydrogels, which in turn controls the mechanical properties of the hydrogel. The degree 

of swelling of the hydrogel reduces significantly as the amount of crosslinker increases.  

 

Figure 6.5: Influence of concentration of crosslinking agent on equilibrium swell ratio as a 

function of pH 

Fig. 6.5 is plotted for the equilibrium swell ratio as a function of pH for various concentrations 

of genipin. It is obvious from the plot that, increasing the concentration of genipin increases 

the mechanical strength, which evidently decreases the swelling degree of the hydrogels. This 

increased mechanical strength is due to the weak van der Waals intermolecular bonds being 

partially replaced by the strong covalent bonds as the amount of crosslinking agent increase.   

 

6.4 Effect of Surrounding Media on Equilibrium Swelling 

The nature of the ions in the surrounding medium plays an important role in the swelling 

behaviour of the crosslinked hydrogel. The ions in the swelling medium can alter the polymer-

polymer, polymer-water, water-ion, and ion-polymer interactions in the system thereby 

affecting the degree of swelling in the different media. 

When the hydrogel is immersed in a buffered solution, the ions in the surrounding medium 

diffuse into the hydrogel leading to a chemical reaction between the diffusive mobile ions and 
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the ionizable groups attached on the backbone of the hydrogel. The redistribution of ionic 

concentrations within the interior of the hydrogel creates a cloud of ions inside the hydrogel 

leading to osmotic pressure build up due to the difference in ionic concentrations between the 

hydrogel and the surrounding medium. This osmotic pressure drives the swelling and shrinking 

of the hydrogel. The swelling/deswelling in turn leads to redistribution of ions within the 

hydrogel. This cycle continues until equilibrium swelling or shrinking is attained. 

 

Figure 6.6: Influence of environment/solution type on equilibrium swelling ratio as a 

function of pH. 

 

Fig. 6.6 shows that, although the crosslinked hydrogel tends to swell maximally in dilute 

hydrochloric acid solution (i.e., H2O/HCl medium), the response to pH variation was the fastest 

in dilute sodium chloride solution (i.e., NaCl/H2O) due to the affinity of sodium ions in solution 

for the polar groups at the backbone of the hydrogel.  The high equilibrium swelling ratio of 

the dilute hydrochloric acid solution could be attributed to the availability of more hydrogen 

ions for protonation of the fixed charged group at the hydrogel network. 

 

6.5 Effects of Increasing the Ionic Strength of the Surrounding Medium 

pH sensitive hydrogels respond differently to variations in the ionic strength of the surrounding 

medium. Figure 6.7 and 6.8 demonstrates theoretically the effect of ionic strength of the 
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genipin and chitosan concentration, and identical modulus of elasticity and initial fixed charge 

concentration. 

 

 

Figure 6.7: Influence of ionic strength on equilibrium volume swell ratio as a function of pH 

of surrounding dilute acid medium. 

 

The highest curves for both figures (i.e., Fig. 6.7 and 6.8) correspond to solution with ionic 

strength of 1000mM, while subsequently lower curves are associated with higher values of 

ionic strength, increasing from 2000 mM to 4000 mM. Increasing the ionic strength of the 

surrounding medium increases the tendency of the fixed charged group at the backbone of the 

hydrogel to repel the mobile cations in the solution from entering the interior of the hydrogel. 

This eventually leads to shrinking of the hydrogel, as evident in the Fig. 6.8. Although the 
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Figure 6.8: Influence of ionic strength on equilibrium volume swell ratio as a function of pH 

of surrounding sodium chloride solution 

an important role in the association and dissociation process of the fixed charge group for 

swelling/deswelling of hydrogels in dilute acid solution. 

 

6.6 Reflection 

To overcome the computational challenges encountered while trying to adapt the multifield 

numerical model (results in Chapter 4) for studying the volume variation behaviour of anionic 

hydrogels to suit the simulation of the swelling−shrinking behaviour of cationic hydrogels 

(Chapter 5), an alternative approach was employed. The alternative approach derived a 

thermodynamic model  (using statistical mechanics method) for the equilibrium volume 

variation behaviour of cationic crosslinked hydrogels. Besides overcoming the mathematical 

difficulties associated with the multifield approach, one major advantage of this modelling 

approach is the easy with which the concentration of the crosslinking reagent was incorporated 

into the model as a tuneable parameter. 

Moreover, one limitation of the thermodynamic model, Eq. (3.53), developed in Section 3.2,  

is the high dependence on laboratory data for model recalibration and validation. This is due 

to uncertainties in some of the model parameters such as 𝑁𝑐 , the average number of segments 
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its theoretical predictions offer some insight (such as influence of ions in the medium on 

equilibrium swelling) that could be difficult to observe otherwise.  
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CHAPTER SEVEN 

RESULTS AND DISCUSSION 

 Simulation for Dynamic Swelling of Genipin Crosslinked Chitosan Hydrogel 

 

The main goal of this work was to model and simulate the swelling/deswelling dynamics of 

cationic (genipin crosslinked chitosan) hydrogels. Due to numerical issues (bothering around 

stability and model stiffness) associated with the use of the multiphysics approach that involves 

coupled Poisson-Nernst-Planck and mechanical equation, an alternative approach that 

combines the thermodynamics model (developed in Section 3.2) with the chemo-mechanical 

model (developed in Section 3.3) to model the time-dependent swelling/deswelling of the 

cationic (genipin crosslinked chitosan) hydrogels was employed. The theoretical approach 

adopted in this study to determine the dynamic volume-variation of the crosslinked hydrogels, 

uses the initial and final/equilibrium states of the swollen or shrunk hydrogel to determine the 

time-dependent states/volumes of the hydrogel between initial and final volumes. Hence, 

results for simulation of dynamic volume-variation depend on either theoretically generated 

data from Chapter 6 (thermodynamics model data) or experimentally determined equilibrium 

swelling/shrinking data.  

 

7.1 Model Validation  

The swelling dynamics of genipin crosslinked chitosan hydrogels discussed in Section 3.3 is 

governed by the model equation, Eqn. (3.101) that describes the pressure distribution within 

the hydrogel due to chemo-mechanical interactions between species inside the hydrogel and 

those in the external medium. By using the initial condition, boundary conditions, and 

constitutive equation, an equation that describes the volume variation of the crosslinked 

hydrogel, Eqn. (3.106) was derived. This equation was solved numerically as a finite element 

problem using COMSOL Multiphysics software (refer to Section 3.3.9 for details). To examine 

the validity of the dynamic model developed (in Section 3.3), laboratory (time-dependent) data 

from swelling experiments (gravimetric) performed by Vo et al. [133] to examine the pH 

responsiveness of genipin crosslinked chitosan hydrogels in different buffer solutions: glycine 

(pH 2), phthalate (pH 4), and phosphate (pH 7) were used. For insight into how the data used 

for validation were generated, reference is made to the experimental procedure employed by 

Vo and co-workers [133] .  

Chitosan powder was dissolved in a 1% (v/v) acetic acid solution to obtain a solution with a 

concentration of 1.5% (w/v). Genipin was dissolved in distilled water to produce a 0.5% (w/v) 



109 
 

solution. Thereafter, hydrogels were prepared using 1ml chitosan solution (1.5 % w/v), and 0.2 

ml genipin solution (0.5% w/v). On gelation, the weight of each hydrogel was recorded, and 

the hydrogels placed in the bathing medium (buffer solution) for swelling. The weight of each 

hydrogel was recorded at time intervals (1, 2, 3, 4, 5, 6, 7, 8, 9,10, 24, 48, and 72hr) and the 

mass swelling ratio determined using Eqn. (3.36). The mass swelling ratio data were converted 

to volume swelling ratio data using Eqn. (3.39).  

 

The model for studying the conformational change dynamics of pH-responsive genipin 

crosslinked chitosan hydrogel was validated using experimental data for pH 2 (Figure 7.1), pH 

4 (Figure 7.2), and pH 7 (Figure 7.3).  

 

Figure 7.1: Comparison between laboratory data and simulation results for dynamic swelling 

of genipin crosslinked chitosan hydrogel in a medium of pH 2 
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Figure 7.2: Comparison between laboratory data and simulation results for dynamic swelling 

of genipin crosslinked chitosan hydrogel in a medium of pH 4 

 

 

Figure 7.3: Comparison between laboratory data and simulation results for dynamic 

deswelling of genipin crosslinked chitosan hydrogel in a medium of pH 7 
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7.2 Parametric Study of Dynamic Swelling/Deswelling of Chitosan Genipin Hydrogel 

Although the responsive performance of the crosslinked hydrogel under study is largely pH 

dependent, other effects also must be taken into consideration as they can affect the 

conformational change dynamics of hydrogels. 

7.2.1 Effect of initial size of the hydrogel 

Figure 7.4 compares the swelling behaviour of three hydrogel samples of same crosslinked 

densities but different sizes. Hydrogels of sizes 10 mm, 15 mm, and 20 mm with the same 

degree of crosslinking (Chit. 1: Gen 0.3% w/v) placed in the same bathing medium of pH 4, 

and allowed to swell to equilibrium, was studied for dynamic swelling behaviour. 

 

Figure 7.4: Influence of initial size on the swelling dynamics of genipin crosslinked chitosan 

hydrogel 

 

As seen in Figure 7.4, the 10 mm diameter hydrogel attained equilibrium swell volume in far 

much lesser time than the other larger sizes. Which agrees with Djabourov and co-workers 

[216] that, reducing the size of the hydrogel from macroscopic to micro-particles hydrogel can 

accelerate the swelling rate of the hydrogel. The implication of this is that, for some 

applications involving controlled drug delivery, it is better to use smaller size hydrogels 

because they will attain equilibrium swelling in a short time. Thus, releasing the drug at the 

targeted site quicker than the larger sized hydrogels. 
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7.2.2 Effect of initial polymer volume fraction of the hydrogel 

For the same initial size of the hydrogel (20 mm) but different polymer volume fraction 

(obtained using Eqn. (3.33)), the swelling dynamics of the crosslinked hydrogel was studied. 

As seen in Figure 7.5, the hydrogel with higher polymer volume fraction attains equilibrium in 

a shorter time compared with hydrogels of lower polymer volume fraction.  

 

Figure 7.5: Influence of initial polymer volume fraction on the swelling dynamics of genipin 

crosslinked chitosan hydrogel 

 

Therefore, in applications where the time to reach equilibrium swell volume is a key parameter, 

the polymer volume fraction of the crosslinked hydrogel must be carefully chosen alongside 

other parameters that can influence optimum swelling of the hydrogel. 

 

7.2.3 Effect of pH variation on dynamic swelling 

For the same size of the hydrogel (3.81mm), same chitosan concentration (0.9 ml of 1.5% w/v), 

and same genipin concentration (0.1ml of 0.5% w/v) used for the study, the time evolution of 

the diameter of the hydrogel at different pH values of the surrounding medium is shown in 

Figure 7.6.  
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Figure 7.6: Dynamic response of chitosan-genipin hydrogel as a function of pH of the 

surrounding medium 

Depending on the application, genipin crosslinked chitosan hydrogels can be tailored to swell 

or shrink significantly in response to pH variation in the surrounding medium. The swelling 

ability of the hydrogel decreased considerably at lower acidity. This can be attributed to the 

cationic nature of the crosslinked hydrogel. At a low pH, the polymer chains ionize to 

accommodate the diffusion of moisture-bearing-ions in the surrounding medium through the 

osmotic effect. 

 

7.2.4 Effect of varying crosslinker concentration on dynamic swelling 

The effects of varying genipin concentration on the equilibrium swell ratio of the hydrogel was 

studied in Section 6.3. For dynamic swelling/deswelling study, the values of the equilibrium 

swelling ratios taken from Section 6.3 for different concentrations of genipin (0.1, 0.3, 0.5, and 

0.7 % w/v) at constant chitosan concentration (as shown on Figure 6.5) were used to simulate 

the dynamic model for surrounding medium of pH 6.  
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Figure 7.7: Dynamic swelling/shrinking of the hydrogel as a function of genipin 

concentration at pH 6 

Figure 7.7 shows that the swelling capacity of the hydrogel decreased with increasing 

concentration of the crosslinking reagent. The swelling response is fastest for the hydrogel with 

the lowest crosslink density. This is attributed to the mechanical strength of the hydrogel being 

higher at high crosslink density, making the hydrogel’s response to swelling lowest at the 

highest crosslink density. 

 

7.3 Swelling Kinetics of Chitosan Genipin Hydrogels 

To describe the swelling kinetics of the cationic hydrogel under study (genipin crosslinked 

chitosan hydrogels), using the model developed for dynamic swelling study, a gel size 

3.808mm and composition (0.9 ml of 1.5 % w/v chitosan and 0.1 ml of 0.5 % w/v genipin) was 

simulated. The simulation results were compared with experimental data for same gel size and 

composition as shown in Table 7.1 (worst-case percent relative error in the model prediction is 

3.75%). Further, having validated the model’s performance in Figure 7.8, by plotting the actual 

versus predicted values (𝑅2 = 0.9919), the swelling kinetics was determined using the Schott 

second order model. 
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Figure 7.8: Plot of actual vs predicted diameter for dynamic swelling of genipin crosslinked 

chitosan hydrogel for swelling in pH 2 

 

 

Table 7.1: Error estimation in dynamic model prediction (swelling) 

Time, 

min 𝑑𝑝𝑟𝑒𝑑  (mm) 𝑑𝑎𝑐𝑡𝑢𝑎𝑙 (mm) error (%) 

0 3.808 3.808 0 

180 4.0646 4.193 3.0618 

360 4.1629 4.299 3.1655 

1440 4.4297 4.578 3.2398 

2880 4.4833 4.658 3.7502 

 

Applying the simulation swelling data to Schott [160] second order kinetic model, Eqn. (2.19), 

gives a linear relation between the inverse of swelling rate (𝑡 𝑀𝑡⁄ ) and the swelling time as 

shown in Figure 7.9. The results demonstrates that the swelling of genipin crosslinked chitosan 

hydrogels in buffer solution of pH 2 follows Schott’s theoretical model with kinetic rate 

constant of swelling (described in Section 2.6.2), 𝑘𝑟 = 0.349, calculated using Eqn. (2.19). 
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Figure 7.9: Reciprocal of rates of swelling as a function of the swelling time in a medium of 

pH 2 

 

For different initial size of the hydrogel, Figure 7.10 shows the variation of the inverse swelling 

rates as function of swelling time for the hydrogel (whose composition was earlier defined) 

swelling in a medium of pH 2. From Eqn. (2.19) the swelling behaviour of the hydrogels 

depends on two constants A and B, the initial swelling rate, and the equilibrium swell size, 

respectively. These constants control the entire swelling process. 

Figure 7.10 demonstrates how well the Schott’s model agrees with the model developed in this 

study for describing the swelling kinetics of genipin crosslinked chitosan hydrogels. The high 

R2 value indicates that the swelling process described by the developed model is of second 

order kinetics. The dotted trendlines (lines of best fits for the data sets) on Figure 7.10 are added 

to aid visualization, they do not represent actual data points. 
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Figure 7.10: Inverse of rates of swelling as a function of the swelling time for swelling in a 

medium of pH 2, for different initial gel size. 

 

Furthermore, kinetic rate constant of swelling (described in Section 2.6.2), 𝑘𝑟 for the different 

gel sizes are 0.04415, 0.1697, 1.5898 for the 20 mm, 15 mm, and 10 mm, hydrogels 

respectively. Hence, the smaller the hydrogel the faster the swelling response, a concept 

employed for nanoparticle drug delivery of pharmaceuticals. 

 

7.4 Take Away 

The primary goal of this study was to model and simulate the swelling−shrinking dynamics of 

cationic (genipin-crosslinked chitosan) hydrogels. Due to numerical issues mentioned in 

Section 7.1, an alternative approach that combines the strength of the thermodynamic model 

(developed in Section 3.2) with the chemo-mechanical model (developed in Section 3.3) to 

model the time-dependent swelling/deswelling behaviour of the cationic (genipin crosslinked 

chitosan) hydrogels was employed. This theoretical framework uses the initial and 

final/equilibrium states of the swollen or shrunk hydrogel to determine the pH-induced 

deformation coefficient (𝛼12), Eq. (3.84), which in turn is used to determine the time-

dependent states/volumes of the hydrogel between the initial and final volumes, Eq. (3.109). 

With the framework developed in this study for numerical simulation of the volume variation 

behaviour of pH responsive cationic hydrogels (though can be adapted to simulate the swelling 

behaviour of pH-sensitive anionic hydrogels) a software can be developed using the algorithm 
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depicted in Figure 7.11. The algorithm combines both the thermodynamic and chemo-

mechanical models on same platform for automation of the prediction of volume variation 

behaviour of crosslinked hydrogels. 
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Figure 7. 11: Algorithm for developing a software that automatically predicts the dynamic 

volume variation of pH-sensitive hydrogels. 
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In general, the thermo-chemo-mechanical model gives a fundamental knowledge of what is 

happening within the hydrogel (something that could be missed or overlooked during 

experimentation) such as:  

i. different bathing media of the same pH value yielding different degrees of hydrogel 

swelling.  

ii. the initial concentration of the fixed charge group at the backbone of hydrogel impacts 

on the swelling of the gel. 

iii. the initial polymer volume fraction of hydrogel impacting its swelling dynamics. 

iv. the concentration of ions varying radially, something that may impact on drug delivery 

through the gel. 

v. confirming that the initial size of hydrogel affects the swelling kinetics of the gel. 
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CHAPTER EIGHT 

RESULTS AND DISCUSSION 

 Optimum Equilibrium Swelling of Genipin Crosslinked Chitosan Hydrogel  

 

As discussed in Section 2.4, the swelling extent of chitosan-based hydrogels depends on some 

key parameters such as the pH of the environment, density of the crosslinking reagent, ionic 

strength of the surrounding medium, etc.  To determine the conditions of parameters for 

optimum equilibrium swell volume of genipin crosslinked chitosan hydrogel, these parameters 

were carefully selected as described in Section 3.4. 

The model developed in Section 3.2 for equilibrium swelling of genipin crosslinked chitosan 

hydrogel was simulated for various operating conditions of the above-mentioned parameters. 

Using the simulation data, central composite design-based optimization models were 

developed as described in Section 3.4 and the results are analysed, discussed, and validated in 

this chapter.  

8.1 Estimation of Model Capabilities 

For swelling or shrinking (of the crosslinked hydrogel) in a surrounding fluid that contains 

compounds such as NaCl, NaHCO3, KCl, K2HPO4.3H2O, MgCl2.6H2O, HCl, CaCl2, and 

Na2SO4 that constitute a simulated body fluid [217], a regression model was developed 

following the steps outlined in Section 3.4. The parametric model (quadratic) developed for 

predicting equilibrium volume swell ratio, 𝑉𝑆𝑅, is: 

1

√𝑉𝑆𝑅
= −18.41435 + 0.17587%𝑐𝑔 − 1.57033𝜒 − 1.05722 × 10

−3𝐼 + 5.23779𝑝𝐻

− 0.26710%𝑐𝑔𝑝𝐻 + 0.043395𝜒𝑝𝐻 − 4.77669 × 10
−5𝐼𝑝𝐻 + 2.72860%𝑐𝑔

2

+ 1.96805𝜒2 + 1.23321 × 10−6𝐼2 − 0.32601𝑝𝐻2 

                                                                                                                                              (8.1) 

Eqn. (8.1) shows that pH is the most sensitive factor, and the three response surfaces (in 

terms of untransformed variables) that can be constructed from this model are as shown in 

Figs 8.1, 8.2, and 8.3. 
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Figure 8.1: Response surface showing the influence of the pH and genipin concentration on 

the equilibrium swelling ratio. 
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Figure 8.2: Response surface showing the influence of the pH and solvent interaction 

parameter on the equilibrium swelling ratio. 
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Figure 8.3: Response surface showing the influence of the pH and ionic strength of the 

swelling medium on the equilibrium swelling ratio 

 

From the parametric model, the corresponding contours for the response surfaces are shown in 

Figs 8.4, 8.5, and 8.6. 
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Figure 8.4: Contour representation of the influence of the pH and genipin concentration on 

the equilibrium swelling ratio. 
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Figure 8.5: Contour representation of the influence of the pH and ionic strength on the 

equilibrium swelling ratio. 
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Figure 8.6: Contour representation of the influence of the pH and solvent interaction 

parameter on the equilibrium swelling ratio. 

 

 

Figures 8.1- 8.2 show the estimation capabilities of the developed model with respect to the 

data sets used to build the optimization model. Table 8.1 shows the model statistics and worst-

case absolute and relative error estimation. 

   

Table 8.1: Model statistics in terms of trained data 

Statistics Value 

𝑅2 0.9987 

𝑅𝐴𝑑𝑗
2  0.9979 

𝑅𝑃𝑟𝑒𝑑
2  0.9962 

Adeq. Precision 96.681 

PRESS 0.017 

Absolute error (worst-case) 0.0902 

Relative error (worst-case) 5.54% 
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With F-value = 1228.27, and p values (of "Prob > F") less than 0.0001 show that the model 

terms in Eq. (8.1) are significant.  The predicted versus actual plot, Fig 8.7, showing how well 

the optimization model Eqn. (8.1), in its untransformed variable state explains variation in the 

trained dataset. The normal probability plot, which shows the normality of residuals is shown 

in Fig. 8.8. 

 

 

   

 

Figure 8.7: Predicted vs Actual for the training dataset. 
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Figure 8.8: Normal probability plot of the studentized residuals 

 

8.2 Optimum Equilibrium Swell Ratio 

Based on the operating conditions (Section 3.4.1) used to develop the optimization model, Eqn. 

(8.1), the optimum conditions for swelling of genipin crosslinked chitosan hydrogel is shown 

on the response plots (Figs 8.1 – 8.3). The surrounding fluid is a medium whose pH is allowed 

to vary slightly from the pH of normal body tissue or simulated body fluid. 

The surface plots with their corresponding contour plots show that as the pH of the surrounding 

medium drops below the pH of simulated body fluid, the equilibrium swell ratio of the hydrogel 

approaches a maximum value at low concentration of the crosslinking agent. The optimum 

condition for equilibrium swelling ratio of the hydrogel for a specific case (for example, during 

drug delivery to tumorous site) is estimated to fall in the region: 𝑝𝐻 = 5.92,%𝑐𝑔 =

0.2 wt%, 𝐼 = 600mM, χ = 0.34. The implication of this is that the optimization model, on 

proper calibration with laboratory data (and well-defined range of operating conditions), has 

the potential to be used for studies involving targeted drug delivery. For example, at tumour 
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sites, where the pH is below that of healthy or normal body tissue, the parameters of the model 

can be tuned to stimulate enhanced swelling of the hydrogel for optimum release of the 

encapsulated drugs. 

8.3 Performance Evaluation of The Model 

The model’s estimation capabilities or robustness were evaluated with respect to untrained 

datasets obtained from simulation (with 2-factor design interpolation data and extrapolation 

data) as described in Section 3.6.2. 

 

8.3.1 Interpolation Test 

The behaviour of the regression model to untrained datasets within the range of original 

operating conditions is demonstrated in Figure 8.9.  

 

Figure 8.9: Interpolation test on regression model: Actual and predicted equilibrium volume 

swell ratio. 

 

The interpolation capability of the optimization model, Eqn. (8.1) was tested by evaluating its 

predictive capacity using a set of simulated data (described in Section 3.6.2) different from 

those used to develop the model. It is obvious from Fig. 8.9 that the model’s predictions are 

good in response to operating conditions different from, but within the range of the original 

operating conditions used to build the model. Thus, the model is both accurate and generally 

R² = 0.9335

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.4 0.6 0.8 1 1.2 1.4

P
re

d
ic

te
d

 V
o

lu
m

e 
sw

el
l 

ra
ti

o

Actual volume swell ratio



131 
 

adequate for the purpose of predicting equilibrium swelling ratio, and for estimating optimum 

conditions of equilibrium swelling of the crosslinked hydrogel. 

 

8.3.2 Extrapolation Test 

The extrapolation capability of the regression model was tested by evaluating its predictive 

ability using a set of simulated data (described in Section 3.6.2) outside the range of datasets 

used to develop the model. It is evident from Fig. 8.10 that, as the operating conditions of the 

swelling/deswelling process drift 5% outside the original conditions used to build the 

regression model, that the model prediction capabilities drop. 

 

Figure 8.10: Extrapolation test on regression model: Actual and predicted equilibrium 

volume swell ratio. 

 

The high sensitivity of the model’s response is explained by the erratic behaviour demonstrated 

by the model in estimating the equilibrium swell ratio outside the range of original operating 

conditions. Therefore, the model is inaccurate to handle ≥ 5% deviation from the original 

operating conditions used to build the optimization model, generally inadequate for estimating 

equilibrium swell ratio outside the original operating conditions. 
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8.4 Limitations 

Although the mathematical framework presented in this chapter can be improved further, the 

mathematical ideology behind it can potentially be applied to predict and optimize drug release 

from crosslinked hydrogels. The limitation to its use is hugely dependent on the robustness of 

the numerical model from which the optimization model was developed. For example, the 

optimization model analysed and discussed here was built from the thermodynamic model 

(discussed in Chapter 6) whose limitations have already been discussed in Section 6.6. 

 



133 
 

CHAPTER NINE 

CONCLUSION AND FUTHER WORK 

 

9.1 Synopsis 

The swelling property of pH responsive hydrogels is controlled by the chemical, electrical, and 

mechanical fields interaction. To describe the conformational change dynamics of genipin 

crosslinked chitosan hydrogels, a mathematical or numerical model that captures these 

interacting fields is required. Poisson Nernst Planck and mechanical equations have proven to 

be a suitable mathematical model(s) and have been adapted to anionic hydrogels and solved 

numerically under steady state conditions for equilibrium swelling studies [15, 40, 41, 171, 

218]. 

In Section 3.1 a methodology that employs Poisson Nernst Planck and mechanical equations 

to model the equilibrium swelling behaviour of anionic hydrogels was described. In Chapter 4, 

the performance of the numerical model developed for equilibrium swelling of pH-sensitive 

anionic (PHEMA) hydrogels was evaluated. Steady-state simulations were conducted on a two-

dimensional axisymmetric domain (representing a cylindrical-shape hydrogel constrained at 

the top and bottom using rollers) and the results were compared with experimental data 

obtained from the work of Beebe et al. [213]. The justification for the comparison is based on 

the method employed to synthesize the PHEMA hydrogel. The gel was synthesised in a 

microchannel covered at the top and bottom with two pieces of glasses to constrain axial 

displacement. The closeness between the simulation (model) results and the experimental data 

(refer to Figure 4.1) shows that the model has the potential to offer predictions for equilibrium 

swelling of anionic (PHEMA) hydrogels, and that the simulation platform could be adapted to 

model the volume variation behaviour of pH responsive cationic hydrogels. Moreover, the 

simulation/model platform can be deployed to model and simulate the responsive behaviour of 

other anionic hydrogels. In terms of application, the model can be deployed in pH sensing 

devices for monitoring and control purposes, and for design of drug delivery devices where the 

biomaterial (hydrogel) is expected to swell in alkaline medium. 

  

Moving from anionic to cationic hydrogels, the same model platform developed for anionic 

hydrogels was adapted (by altering the equation for fixed charge concentration) to cationic 

hydrogels. The results of the steady state simulations are presented in Chapter 5. However, 

obtaining a dynamic simulation was difficult owing to numerical issues such as stability and 
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stiffness of the model equations. Although steady state solutions were obtained, each time the 

pH of the surrounding medium changed from acidic to alkaline, it was required to manually 

change the boundary conditions especially during deformation due to shrinking of the hydrogel. 

To circumvent these challenges, a new approach that utilizes the initial and final equilibrium 

states of the crosslinked hydrogel to predict the time-dependent volume variation of the 

hydrogel between both states was adopted. 

 

Finally, to determine the optimum conditions for equilibrium swelling of genipin crosslinked 

chitosan hydrogel, statistical optimization was employed to develop a Response Surface 

Design model.  The methodology is described in Section 3.4 and the results for a case where 

the hydrogel is submerged in a simulated body fluid are presented in Chapter 8. 

 

9.2 Conclusions 

The main highlight of this study is the utilization of a novel modelling strategy as an alternative 

to the traditional modelling approach (i.e., coupling PNP with mechanical equation) for 

predicting the volume variation behaviour of smart hydrogels. Although the traditional 

approach suits anionic hydrogels well, there are accompanying challenges during 

implementation with cationic hydrogels owing to the strong reversible swelling behaviour of 

cationic hydrogels. The alternative approach provided in this study, which combines 

thermodynamic model with chemo-mechanical model, contributes to knowledge in the field of 

hydrogel modelling, as it helps to overcome the computational difficulties associated with 

applying the traditional approach used for modelling anionic hydrogels. A challenge that has 

restricted studies involving cationic hydrogels to mainly experimentation. 

 

The thermodynamic-based model developed using Statistical Mechanics approach described 

in Section 3.2, estimates the equilibrium swell ratio of cationic (genipin crosslinked chitosan) 

hydrogels. With the value of the equilibrium swell ratio, the chemo-mechanical model (derived 

in Section 3.3) then predicts the dynamic volume variation of  cationic (genipin crosslinked 

chitosan) hydrogels. One advantage of the numerical model is that it allows for the 

concentration of the crosslinking reagent (a very important parameter that controls the 

mechanical property and swelling capability of the crosslinked hydrogel) to be tuned during 
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dynamic studies to predict the effect of concentration variation on the volume variation 

behaviour of pH responsive cationic hydrogels.  

The simulation results (for equilibrium swelling) presented in Chapter 6 were compared with 

literature and laboratory data, and the model showed good agreement (R2 = 0.9542 and worst-

case percent relative error = 0.56 for hydrogels with low genipin crosslinked ratio). Therefore, 

the closeness between model predictions and experimental values does not only show that the 

model has the potential to be deployed for equilibrium studies involving cationic (genipin 

crosslinked chitosan) hydrogels, but it also shows that the approach employed in this study is 

an improvement on the original work of Jahren et al. [135]. 

 

Furthermore, dynamic simulation results presented in Chapter 7 were validated using 

experimental data for time-dependent studies involving genipin crosslinked chitosan hydrogel. 

The closeness between model predictions and experimental results confirms qualitatively, the 

potential of the model for predicting the dynamic volume variation of pH responsive cationic 

(genipin crosslinked chitosan) hydrogels. Therefore, by incorporating pharmaceutical 

compounds, or combining cationic hydrogels with DNA through conjugation (to release the 

DNA) or varying the concentration of the crosslinking reagent to create scaffolds of new 

tissues, the model can be adapted to simulate applications such as targeted drug delivery, gene 

delivery, and tissue engineering respectively. 

 

Moreover, the swelling kinetic studies performed in Section 7.3 revealed that the swelling of 

genipin crosslinked chitosan hydrogel (in a medium of pH 2) followed the Schott [160] second 

order kinetic model with kinetic rate constant of swelling, 𝑘𝑟 = 0.349, and R2 = 0.9969. In 

applications, this model can be deployed to predict the time-dependent volume variation 

behaviour of other cationic hydrogels. In addition, the model can be employed in the design of 

swelling-controlled drug release systems and chemical sensors where the hydrogel is expected 

to swell in acidic pH and shrink in alkaline pH of the surrounding. 

 

For hydrogel submerged in a simulated body fluid, the optimum condition for equilibrium swell 

ratio of the hydrogel for a specific case (e.g., during drug delivery to tumorous site) is estimated 

to fall in the region: 𝑝𝐻 = 5.92,%𝑐𝑔 = 0.2 wt%, 𝐼 = 600mM, χ = 0.34. The implication of 

this is that the optimization model, on proper calibration with laboratory data (and well-defined 

range of operating conditions), has the potential to be used for studies involving targeted drug 
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delivery. Hence, it is concluded that the model can be used to evaluate the influence of a range 

of parameters which can be tuned to stimulate enhanced swelling of the cationic, genipin 

crosslinked chitosan hydrogel for optimum release of any encapsulated therapeutics.  

 

9.3 Further Work 

This study provides a theoretical framework for predicting the conformational change 

dynamics of cationic hydrogels; a case study of genipin crosslinked chitosan hydrogels. 

Though the approach employed in this study is new and has been evaluated satisfactory via 

simulation, it is recommended for further study that the model be calibrated further with 

laboratory data to improve its performance. 

In addition, to measure the dynamics of volume variation in more than one direction, it is 

recommended that the model be extended to predict volume variation behaviour in more than 

one direction (i.e., for 2D or 3D models) to handle more complicated  scenarios. Further, a 

software could be developed that can handle simulations involving the thermodynamics and 

chemo-mechanical models together on one platform, using the algorithm in Figure 7.11.  

Furthermore, the model developed in this study could be adapted to model the volume variation 

behaviour of other cationic hydrogels and be further deployed to model pH-sensitive swelling-

controlled drug delivery devices by including the drug molecule among the non-ionic diffusing 

species.  
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APPENDIX I 

GALERKIN FINITE ELEMENT FORMULATION APPLIED TO HYDROGEL 

DEFORMATION 

 

I.1 General Concept 

Suppose a 1D problem modelled as a differential equation takes the form: 

𝑓(𝜑) = 𝑔,                                        0 ≤ 𝑥 ≤ 1 

subject to the boundary conditions 𝜑(0) = 0, 𝜑(1) = 𝑎 

Let us divide the domain of the equation using line elements with linear interpolation model 

and apply the various steps of the FEM to find the solution. 

Procedure: 

For the Galerkin Finite Element technique, 

∑∫[𝑁𝑒]𝑇

𝑥𝑗

𝑥𝑖

𝐸

𝑒=1

. 𝑅(𝑒)𝑑𝑥 = 0 

where 

R is the residual defined as: 

𝑅 = [𝑓 (𝜑) − 𝑔] 

Step1: Let us discretize the domain (𝑥 = 0 𝑡𝑜 𝑥 = 1)  using (a) three nodes and two elements 

of equal length and (b) four nodes and three elements. 

 

                                                      Figure I1: Solution domain 
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𝝋⃗⃗ 𝟏 = {
𝜑𝑖
(1)

𝜑𝑗
(1)} = {

𝜑1
𝜑2
};  𝝋⃗⃗ 𝟐 = {

𝜑𝑖
(2)

𝜑𝑗
(2)} = {

𝜑2
𝜑3
} 

Figure I1(a) Two element discretized domain [219] 

 

 

𝝋⃗⃗ 𝟏 = {
𝜑𝑖
(1)

𝜑𝑗
(1)} = {

𝜑1
𝜑2
};  𝝋⃗⃗ 𝟐 = {

𝜑𝑖
(2)

𝜑𝑗
(2)} = {

𝜑2
𝜑3
};  𝝋⃗⃗ 𝟑 = {

𝜑𝑖
(3)

𝜑𝑗
(3)} = {

𝜑3
𝜑4
} 

Figure I1(b) Two element discretized domain [219] 

Step2: Assume a linear interpolation model within element e for variation of the field variable, 

that is: 

𝜑(𝑥) = [𝑁(𝑥)]𝝋⃗⃗ 𝒆 = 𝑁𝑖(𝒙)𝜑𝑖
(𝑒) + 𝑁𝑗(𝒙)𝜑𝑗

(𝑒)
 

where   

𝑁𝑖(𝑥) =
𝑥𝑗−𝑥

𝑙(𝑒)
 ,  

 𝑁𝑗(𝑥) =
𝑥−𝑥𝑖

𝑙(𝑒)
,     

  𝝋⃗⃗ (𝒆) = {
𝜑𝑖
(𝑒)

𝜑𝑗
(𝑒)} is the vector of nodal unknowns or degrees of freedom 
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𝑙(𝑒) is the elemental length, 𝜑𝑖
(𝑒) and 𝜑𝑗

(𝑒)
 are the values of 𝜑(𝑥) at the nodes 𝑖(𝑥 = 𝑥𝑖) and 

𝑗(𝑥 = 𝑥𝑗), respectively; and i and j are the first and second (global) nodes of the element e. 

I.2 Application to Hydrogel Deformation 

The mathematical model describing the diffusion and migration of ions across the hydrogel 

and its environment is the Poisson Nernst Planck (PNP) given as: 

𝜕2𝐶𝑖
𝜕𝑥2

+
𝜇𝑖𝐹𝑧𝑖
𝐷𝑖

𝜕𝐶𝑖
𝜕𝑥

𝜕𝜑

𝜕𝑥
−
𝐹𝑧𝑖𝐶𝑖
𝐷𝑖

{
𝐹

𝜀𝜀0
(∑𝑧𝑖𝐶𝑖 + 𝑧𝑓𝐶𝑓)} 

                                                                                                i = 1, 2, 3       (I-1) 

subject to the boundary conditions  

𝜕𝐶𝑖(0)

𝜕𝑥
= 0,

𝜕𝜑(0)

𝜕𝑥
= 0,                                                            

𝐶𝑖(𝐿) =  𝐶𝑖0, 𝜑(𝐿)=0 

                                                                                              (I-2) 

where 

𝐶𝑓 =
𝐾𝑎𝐶𝑚𝑜

𝑠

𝐻(𝐾𝑎 + 𝐶𝐻
+)

 

                                                                                                                                               (I-3) 

The discretized domain is shown in Figure I2, below: 

 

Figure I2: Discretized domain for hydrogel, gel-solution interphase, and the solution 

 

The Galerkin technique requires that: 
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∭𝑅(𝑒)𝑁𝑗
(𝑒)𝑑𝑉(𝑒) = 0,   

                                       j = 1, 2, 3, …, n                              (I-4) 

where the residue: 

𝑅 = (
𝜕2𝐶𝑖
𝜕𝑥2

+
𝜇𝑖𝐹𝑧𝑖
𝐷𝑖

𝜕𝐶𝑖
𝜕𝑥

𝜕𝜑

𝜕𝑥
−
𝐹𝑧𝑖𝐶𝑖
𝐷𝑖

{
𝐹

𝜀𝜀0
(∑𝑧𝑖𝐶𝑖 + 𝑧𝑓𝐶𝑓)}) 

                                                                                                                                               (I-5) 

For a 1D problem, we have that: 

∫ 𝑅𝑁𝑘(𝑥)𝑑𝑥
𝐿

0
= 0           

                                                                                              k = i, j                                      (I-6) 

or 

                           

∑∫[𝑁(𝑒)]
𝑇
𝑅(𝑒)𝑑𝑥

𝑥𝑗

𝑥𝑖

𝐸

𝑒=1

= 0 

                                                                                                                                               (I-7)                                                                              

where 

E is the number of elements, and 𝑥𝑖 and 𝑥𝑗 are the values of x at the first and the second nodes 

of element e, respectively.  

Assuming a linear variation of concentration of each species in solution, 𝐶𝑖 within each finite 

element, that is: 

                                              𝐶𝑖
(𝑒)(𝑥) = 𝑁𝑘(𝑥)𝐶𝑘

(𝑒) + 𝑁𝑘+1(𝑥)𝐶𝑘+1
(𝑒)

                                     (I-8) 

where 

                                               𝑁(𝑒) = [𝑁𝑘(𝑥)  𝑁𝑘+1(𝑥)]                                                        (I-9) 

and 

                              𝑁𝑘(𝑥) = (𝑥𝑘+1 − 𝑥) 𝑙
(𝑒)⁄                                                (I-10) 

                                                      𝑁𝑘+1(𝑥) = (𝑥 − 𝑥𝑘) 𝑙
(𝑒)⁄                                               (I-11) 

I.2.1 Hydrogel domain 

Evaluating Eq.(I-7), for an element within the hydrogel domain gives: 
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∫ [𝑁(𝑒)]
𝑇
(
𝜕2𝐶𝑖

(𝑒)

𝜕𝑥2
+
𝜇𝑖𝐹𝑧𝑖
𝐷𝑖

𝜕𝐶𝑖
(𝑒)

𝜕𝑥

𝜕𝜑(𝑒)

𝜕𝑥
−
𝐹𝑧𝑖𝐶𝑖

(𝑒)

𝐷𝑖
{
𝐹

𝜀𝜀0
(∑𝑧𝑖𝐶𝑖

(𝑒)
+ 𝑧𝑓𝐶𝑓)}) 𝑑𝑥

𝑥𝑘+1

𝑥𝑘

 

                                                                                                                                            (I-12) 

Expanding the integral gives: 

∫ [𝑁(𝑒)]
𝑇 𝜕2𝐶𝑖

(𝑒)

𝜕𝑥2
𝑑𝑥

𝑥𝑘+1

𝑥𝑘

+
𝜇𝑖𝐹𝑧𝑖
𝐷𝑖

∫ [𝑁(𝑒)]
𝑇 𝜕𝐶𝑖

(𝑒)

𝜕𝑥

𝜕𝜑(𝑒)

𝜕𝑥
𝑑𝑥

𝑥𝑘+1

𝑥𝑘

−
𝐹2𝑧𝑖
𝜀𝜀0𝐷𝑖

∫ [𝑁(𝑒)]
𝑇
𝐶𝑖
(𝑒)
(∑𝑧𝑖𝐶𝑖

(𝑒)
+ 𝑧𝑓𝐶𝑓) 𝑑𝑥

𝑥𝑘+1

𝑥𝑘

 

                                                                                                                                             (I-13) 

Applying integration by parts to Eq. (I-13) gives, the first term: 

∫ [𝑁(𝑒)]
𝑇 𝜕2𝐶𝑖

(𝑒)

𝜕𝑥2
𝑑𝑥

𝑥𝑘+1

𝑥𝑘

= [𝑁(𝑒)]
𝑇 𝜕𝐶𝑖

(𝑒)

𝜕𝑥
|
𝑥𝑘+1
𝑥𝑘

− ∫
𝜕[𝑁(𝑒)]

𝑇

𝜕𝑥

𝜕𝐶𝑖
(𝑒)

𝜕𝑥
𝑑𝑥

𝑥𝑘+1

𝑥𝑘

 

                                                                                                                                             (I-14) 

second term: 

𝜇𝑖𝐹𝑧𝑖
𝐷𝑖

∫ [𝑁(𝑒)]
𝑇 𝜕𝐶𝑖

(𝑒)

𝜕𝑥

𝜕𝜑(𝑒)

𝜕𝑥
𝑑𝑥

𝑥𝑘+1

𝑥𝑘

=
𝜇𝑖𝐹𝑧𝑖
𝐷𝑖

∫ [𝑁(𝑒)]
𝑇 𝜕𝐶𝑖

(𝑒)

𝜕𝑥
{−

𝐹

𝜀𝜀0
∫ (∑𝑧𝑖𝐶𝑖

(𝑒)
+ 𝑧𝑓𝐶𝑓)

𝑥𝑘+1

𝑥𝑘

}𝑑𝑥

𝑥𝑘+1

𝑥𝑘

 

                                                                                                                                             (I-15) 

third term: 

 

 

−
𝐹2𝑧𝑖
𝜀𝜀0𝐷𝑖

∫ [𝑁(𝑒)]
𝑇
𝐶𝑖
(𝑒)
(∑𝑧𝑖𝐶𝑖

(𝑒)
+ 𝑧𝑓𝐶𝑓) 𝑑𝑥

𝑥𝑘+1

𝑥𝑘

 

                                                                                                                                             (I-16) 

I.2.2 Hydrogel-Buffer interface domain 

For an element within the interface (assuming linear variation of 𝐶𝑖
(𝑒)

 with Heaviside function 

for smoothing the sharp concentration gradient).  
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Recall Eq. (I-12); 

∫ [𝑁(𝑒)]
𝑇
(
𝜕2𝐶𝑖

(𝑒)

𝜕𝑥2
+
𝜇𝑖𝐹𝑧𝑖
𝐷𝑖

𝜕𝐶𝑖
(𝑒)

𝜕𝑥

𝜕𝜑(𝑒)

𝜕𝑥
−
𝐹𝑧𝑖𝐶𝑖

(𝑒)

𝐷𝑖
{
𝐹

𝜀𝜀0
(∑𝑧𝑖𝐶𝑖

(𝑒)
+ 𝑧𝑓𝐶𝑓)}) 𝑑𝑥

𝑥𝑘+1

𝑥𝑘

 

The concentration of the fixed charge drops from an initial value of 𝐶𝑠
𝑚𝑜 inside the gel to a 

value of zero at the boundary of the gel. Thus, we assume 𝐶𝑓 = 0 at the interface. Hence, Eq. 

(I-12) becomes: 

∫ [𝑁𝐼
(𝑒)
]
𝑇
(
𝜕2𝐶𝑖

(𝑒)

𝜕𝑥2
+
𝜇𝑖𝐹𝑧𝑖
𝐷𝑖

𝜕𝐶𝑖
(𝑒)

𝜕𝑥

𝜕𝜑(𝑒)

𝜕𝑥
−
𝐹𝑧𝑖𝐶𝑖

(𝑒)

𝐷𝑖
{
𝐹

𝜀𝜀0
∑𝑧𝑖𝐶𝑖

(𝑒)
}) 𝑑𝑥

𝑥𝑘𝐼+1

𝑥𝑘𝐼

 

                                                                                                                                             (I-17) 

The integration above gives for the first term: 

[𝑁𝐼
(𝑒)
]
𝑇 𝜕𝐶𝑖

(𝑒)

𝜕𝑥
|
𝑥𝑘𝐼+1
𝑥𝑘𝐼

− ∫
𝜕[𝑁𝐼

(𝑒)
]
𝑇

𝜕𝑥

𝜕𝐶𝑖
(𝑒)

𝜕𝑥
𝑑𝑥

𝑥𝑘𝐼+1

𝑥𝑘𝐼

 

                                                                                                                                             (I-18) 

second term: 

 

−
𝜇𝑖𝐹

2𝑧𝑖
𝜀𝜀0𝐷𝑖

∫ [𝑁𝐼
(𝑒)
]
𝑇 𝜕𝐶𝑖

(𝑒)

𝜕𝑥
{ ∫ ∑𝑧𝑖𝐶𝑖

(𝑒)

𝑥𝑘𝐼+1

𝑥𝑘𝐼

}𝑑𝑥

𝑥𝑘𝐼+1

𝑥𝑘𝐼

 

                                                                                                                                             (I-19)       

third term      

−
𝜇𝑖𝐹

2𝑧𝑖
𝜀𝜀0𝐷𝑖

∫ [𝑁𝐼
(𝑒)
]
𝑇
𝐶𝑖
(𝑒)
{ ∫ ∑𝑧𝑖𝐶𝑖

(𝑒)

𝑥𝑘𝐼+1

𝑥𝑘𝐼

}𝑑𝑥

𝑥𝑘𝐼+1

𝑥𝑘𝐼

 

                                                                                                                                             (I-20) 

I.2.3 Buffer domain 

Similarly, for an element within the buffer domain, the integrals are: 

first term: 

[𝑁𝐵
(𝑒)
]
𝑇 𝜕𝐶𝑖

(𝑒)

𝜕𝑥
|
𝑥𝑘𝐵+1
𝑥𝑘𝐵

− ∫
𝜕[𝑁𝐵

(𝑒)
]
𝑇

𝜕𝑥

𝜕𝐶𝑖
(𝑒)

𝜕𝑥
𝑑𝑥

𝑥𝑘𝐵+1

𝑥𝑘𝐵
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                                                                                                                                             (I-21) 

second term: 

 

−
𝜇𝑖𝐹

2𝑧𝑖
𝜀𝜀0𝐷𝑖

∫ [𝑁𝐵
(𝑒)
]
𝑇 𝜕𝐶𝑖

(𝑒)

𝜕𝑥
{ ∫ ∑𝑧𝑖𝐶𝑖

(𝑒)

𝑥𝑘𝐵+1

𝑥𝑘𝐵

}𝑑𝑥

𝑥𝑘𝐵+1

𝑥𝐵

 

                                                                                                                                             (I-22) 

third term      

−
𝜇𝑖𝐹

2𝑧𝑖
𝜀𝜀0𝐷𝑖

∫ [𝑁𝐵
(𝑒)
]
𝑇
𝐶𝑖
(𝑒)
{ ∫ ∑𝑧𝑖𝐶𝑖

(𝑒)

𝑥𝑘𝐼+1

𝑥𝑘𝐼

}𝑑𝑥

𝑥𝑘𝐵+1

𝑥𝑘𝐵

 

                                                                                                                                             (I-23) 

I.2.4 Evaluation of the integral for the hydrogel domain 

The integrals are all evaluated as follows: 

𝜕[𝑁(𝑒)]
𝑇

𝜕𝑥
=
𝑑

𝑑𝑥
{
(𝑥𝑘+1 − 𝑥) 𝑙

(𝑒)⁄

(𝑥 − 𝑥𝑘) 𝑙
(𝑒)⁄

} =
1

𝑙(𝑒)
{
−1
1
} 

                                                                                                                                             (I-24) 

𝜕𝐶𝑖
(𝑒)

𝜕𝑥
=
𝑑

𝑑𝑥
([𝑁(𝑒)]𝐶 𝑖

(𝑒)) = 𝐶 𝑖
(𝑒) 𝑑

𝑑𝑥
[𝑁(𝑒)] =

1

𝑙(𝑒)
[−1 1] {

𝐶𝑖,𝑘
(𝑒)

𝐶𝑖,𝑘+1
(𝑒)

} 

                                                                                                                                               (25) 

Using Eq. (I-24) and Eq. (I-25), Eq.(I-14) can be rewritten as: 

∫ [𝑁(𝑒)]
𝑇 𝜕2𝐶𝑖

(𝑒)

𝜕𝑥2
𝑑𝑥

𝑥𝑘+1

𝑥𝑘

= [𝑁(𝑒)]
𝑇 𝜕𝐶𝑖

(𝑒)

𝜕𝑥
|
𝑥𝑘+1
𝑥𝑘

− ∫ ([
1

𝑙(𝑒)
{
−1
1
}] . [

1

𝑙(𝑒)
[−1 1] {

𝐶𝑖,𝑘
(𝑒)

𝐶𝑖,𝑘+1
(𝑒)

}]) 𝑑𝑥

𝑥𝑘+1

𝑥𝑘

= [𝑁(𝑒)]
𝑇 𝜕𝐶𝑖

(𝑒)

𝜕𝑥
|
𝑥𝑘+1
𝑥𝑘

−
1

(𝑙(𝑒))2
∫ [

1 −1
−1 1

] [
𝐶𝑖,𝑘
(𝑒)

𝐶𝑖,𝑘+1
(𝑒)

] 𝑑𝑥

𝑥𝑘+1

𝑥𝑘

= [𝑁(𝑒)]
𝑇 𝜕𝐶𝑖

(𝑒)

𝜕𝑥
|
𝑥𝑘+1
𝑥𝑘

−
1

(𝑙(𝑒))2
. [
1 −1
−1 1

] [
𝐶𝑖,𝑘
(𝑒)

𝐶𝑖,𝑘+1
(𝑒)

] . ∫ 1𝑑𝑥

𝑥𝑘+1

𝑥𝑘

= [𝑁(𝑒)]
𝑇 𝜕𝐶𝑖

(𝑒)

𝜕𝑥
|
𝑥𝑘+1
𝑥𝑘

−
1

(𝑙(𝑒))2
. [
1 −1
−1 1

] [
𝐶𝑖,𝑘
(𝑒)

𝐶𝑖,𝑘+1
(𝑒)

] . (𝑥𝑘+1 − 𝑥𝑘) 
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                                                                                                                                             (I-26) 

The first term in Eq. (I-26) contributes to the assembled vector 𝑃⃗  if only the derivatives 

(𝜕𝐶𝑖 𝜕𝑥⁄ ) at the nodal points are specified otherwise they are neglected [219].  At 𝑥𝑘 = 0, there 

are no flux conditions, and since the values of the directives at nodal points is unknown, the 

first term is ignored. Hence Eq. (I-26) becomes: 

∫ [𝑁(𝑒)]
𝑇 𝜕2𝐶𝑖

(𝑒)

𝜕𝑥2
𝑑𝑥

𝑥𝑘+1

𝑥𝑘

=
1

𝑙(𝑒)
[
1 −1
−1 1

] [
𝐶𝑖,𝑘
(𝑒)

𝐶𝑖,𝑘+1
(𝑒)

] 

                                                                                                                                             (I-27) 

Rewriting Eq. (I-15) incorporating the integrals yield: 

𝜇𝑖𝐹𝑧𝑖
𝐷𝑖

∫ [𝑁(𝑒)]
𝑇 𝜕𝐶𝑖

(𝑒)

𝜕𝑥

𝜕𝜑(𝑒)

𝜕𝑥
𝑑𝑥

𝑥𝑘+1

𝑥𝑘

=
𝜇𝑖𝐹𝑧𝑖
𝐷𝑖

∫ ({
(𝑥𝑘+1 − 𝑥) 𝑙

(𝑒)⁄

(𝑥 − 𝑥𝑘) 𝑙
(𝑒)⁄

} ∙ {
1

𝑙(𝑒)
[−1 1] {

𝐶𝑖,𝑘
(𝑒)

𝐶𝑖,𝑘+1
(𝑒)

}}

𝑥𝑘+1

𝑥𝑘

∙ {−
𝐹

𝜀𝜀0
∫ (∑𝑧𝑖𝐶𝑖 + 𝑧𝑓𝐶𝑓)

𝑥𝑘+1

𝑥𝑘

})𝑑𝑥 

                                                                                                                                             (I-28) 

where 

∫ (∑𝑧𝑖𝐶𝑖 + 𝑧𝑓𝐶𝑓)

𝑥𝑘+1

𝑥𝑘

= ∫ (∑𝑧𝑖𝐶𝑖 + 𝑧𝑓𝐶𝑓) 𝑑𝑥

𝑥𝑘+1

𝑥𝑘

= (∑𝑧𝑖𝐶𝑖 + 𝑧𝑓𝐶𝑓) ∫ 1𝑑𝑥

𝑥𝑘+1

𝑥𝑘

= (∑𝑧𝑖𝐶𝑖 + 𝑧𝑓𝐶𝑓) 𝑙
(𝑒) 

                                                                                                                                             (I-29) 

From the conservation of total mass/charge, it has been assumed that the total concentration of 

the ions in the whole domain is constant. 

Eq. (I-28) rewritten as: 
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𝜇𝑖𝐹𝑧𝑖
𝐷𝑖

∫ [𝑁(𝑒)]
𝑇 𝜕𝐶𝑖

(𝑒)

𝜕𝑥

𝜕𝜑(𝑒)

𝜕𝑥
𝑑𝑥

𝑥𝑘+1

𝑥𝑘

=
𝜇𝑖𝐹𝑧𝑖
𝐷𝑖

∫ ({
(𝑥𝑘+1 − 𝑥) 𝑙

(𝑒)⁄

(𝑥 − 𝑥𝑘) 𝑙
(𝑒)⁄

} ∙ {
1

𝑙(𝑒)
[−1 1] {

𝐶𝑖,𝑘
(𝑒)

𝐶𝑖,𝑘+1
(𝑒)

}}

𝑥𝑘+1

𝑥𝑘

∙ {−
𝐹

𝜀𝜀0
(∑𝑧𝑖𝐶𝑖 + 𝑧𝑓𝐶𝑓) 𝑙

(𝑒)}) 𝑑𝑥

=
𝜇𝑖𝐹

2𝑧𝑖𝑙
(𝑒)

2𝜀𝜀0𝐷𝑖
{(∑𝑧𝑖𝐶𝑖 + 𝑧𝑓𝐶𝑓) [

1 −1
1 −1

] {
𝐶𝑖,𝑘
(𝑒)

𝐶𝑖,𝑘+1
(𝑒)

}} 

                                                                                                                                             (I-30) 

Revisiting Eq.(I-16) incorporating the integrals give: 

−
𝐹2𝑧𝑖
𝜀𝜀0𝐷𝑖

∫ [𝑁(𝑒)]
𝑇
𝐶𝑖
(𝑒) (∑𝑧𝑖𝐶𝑖 + 𝑧𝑓𝐶𝑓) 𝑑𝑥

𝑥𝑘+1

𝑥𝑘

= −
𝐹2𝑧𝑖
𝜀𝜀0𝐷𝑖

∫ [𝑁(𝑒)]
𝑇
[𝑁(𝑒)]𝐶 𝑖

(𝑒) (∑𝑧𝑖𝐶𝑖 + 𝑧𝑓𝐶𝑓) 𝑑𝑥

𝑥𝑘+1

𝑥𝑘

= −
𝐹2𝑧𝑖𝑙

(𝑒)

6𝜀𝜀0𝐷𝑖
(∑𝑧𝑖𝐶𝑖 + 𝑧𝑓𝐶𝑓) [

2 1
1 2

] {
𝐶𝑖,𝑘
(𝑒)

𝐶𝑖,𝑘+1
(𝑒)

} 

                                                                                                                                             (I-31) 

 

Therefore, the element characteristic matrix for the hydrogel domain obtained from the 

combination of Eq. (I-27), Eq. (I-30) and Eq. (I-31) is: 

[𝐾𝐻
(𝑒)
] =

1

𝑙𝐻
(𝑒)
[
1 −1
−1 1

] +
𝜇𝑖𝐹

2𝑧𝑖𝑙𝐻
(𝑒)

2𝜀𝜀0𝐷𝑖
{(∑𝑧𝑖𝐶𝑖 + 𝑧𝑓𝐶𝑓) [

1 −1
1 −1

]}

−
𝐹2𝑧𝑖𝑙𝐻

(𝑒)

6𝜀𝜀0𝐷𝑖
(∑𝑧𝑖𝐶𝑖 + 𝑧𝑓𝐶𝑓) [

2 1
1 2

] 

                                                                                                                                             (I-32) 

I.2.5 Evaluation of the integral for the interface and buffer domains 

The finite element equation for the hydrogel/buffer interface, Eq. (I-26) is: 

[𝑁𝐼
(𝑒)
]
𝑇 𝜕𝐶𝑖

(𝑒)

𝜕𝑥
|
𝑥𝑘𝐼+1
𝑥𝑘𝐼

− [𝐾𝐼
(𝑒)
] 

                                                                                                                                             (I-33) 
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where the characteristic matrix [𝐾𝐼
(𝑒)
], is: 

[𝐾𝐼
(𝑒)
] = ∫

𝜕[𝑁𝐼
(𝑒)
]
𝑇

𝜕𝑥

𝜕𝐶𝑖
(𝑒)

𝜕𝑥
𝑑𝑥

𝑥𝑘𝐼+1

𝑥𝑘𝐼

 

                                                                                                                                             (I-34) 

 Following similar procedure for the hydrogel domain with 𝐶𝑓 = 0 at the interface, the element 

characteristic matrix for the interface is: 

[𝐾𝐼
(𝑒)
] =

1

𝑙𝐼
(𝑒)
[
1 −1
−1 1

] +
𝜇𝑖𝐹

2𝑧𝑖𝑙𝐼
(𝑒)

2𝜀𝜀0𝐷𝑖
{∑𝑧𝑖𝐶𝑖 [

1 −1
1 −1

]} −
𝐹2𝑧𝑖𝑙𝐼

(𝑒)

6𝜀𝜀0𝐷𝑖
∑𝑧𝑖𝐶𝑖 [

2 1
1 2

] 

                                                                                                                                             (I-35) 

Similarly, for an element within the buffer domain, the characteristic matrix is: 

[𝐾𝐵
(𝑒)
] =

1

𝑙𝐵
(𝑒)
[
1 −1
−1 1

] +
𝜇𝑖𝐹

2𝑧𝑖𝑙𝐵
(𝑒)

2𝜀𝜀0𝐷𝑖
{∑𝑧𝑖𝐶𝑖 [

1 −1
1 −1

]} −
𝐹2𝑧𝑖𝑙𝐵

(𝑒)

6𝜀𝜀0𝐷𝑖
∑𝑧𝑖𝐶𝑖 [

2 1
1 2

] 

                                                                                                                                             (I-36) 

 

Accounting for the sharp concentration gradient of each species within the hydrogel/buffer 

interface will require that the left-hand side of Eq. (I-33) be evaluated for the element 

characteristic vector. Therefore, the LHS of Eq. (I-33) becomes: 

[𝑁𝐼
(𝑒)
]
𝑇 𝜕𝐶𝑖

(𝑒)

𝜕𝑥
|
𝑥𝑘𝐼+1
𝑥𝑘𝐼

= {
(𝑥𝑘+1 − 𝑥) 𝑙𝐼

(𝑒)⁄

(𝑥 − 𝑥𝑘) 𝑙𝐼
(𝑒)⁄

} ∙ 𝐶 𝑖
(𝑒) 𝑑

𝑑𝑥
[𝑁(𝑒)]

= {
(𝑥𝑘+1 − 𝑥) 𝑙𝐼

(𝑒)⁄

(𝑥 − 𝑥𝑘) 𝑙𝐼
(𝑒)⁄

} ∙
1

𝑙𝐼
(𝑒)
[−1 1] {

𝐶𝑖,𝑘
(𝑒)

𝐶𝑖,𝑘+1
(𝑒)

}

= {{
(𝑥𝑘+1 − 𝑥) 𝑙𝐼

(𝑒)⁄

(𝑥 − 𝑥𝑘) 𝑙𝐼
(𝑒)⁄

} ∙
1

𝑙𝐼
(𝑒)
[−1 1] {

𝐶𝑖,𝑘
(𝑒)

𝐶𝑖,𝑘+1
(𝑒)

}} |
𝑥𝑘𝐼+1
𝑥𝑘𝐼

 

                                                                                                                                             (I-37) 

Normalizing the concentrations of all species, and introducing a Heaviside step function to 

smoothen the sharp concentration gradient in the interface transforms Eq. (I-37) to: 
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[𝑁𝐼
(𝑒)
]
𝑇 𝜕𝐶𝑖

(𝑒)

𝜕𝑥
|
𝑥𝑘𝐼+1
𝑥𝑘𝐼

= {
(𝑥𝑘+1 − 𝑥) 𝑙𝐼

(𝑒)⁄

(𝑥 − 𝑥𝑘) 𝑙𝐼
(𝑒)⁄

} ∙
1

𝑙𝐼
(𝑒)
[−1 1]

{
 

 
1

(1 + 𝑒−𝑥𝑘)
1

(1 + 𝑒−𝑥𝑘+1)}
 

 

|
𝑥𝑘𝐼+1
𝑥𝑘𝐼

∙ 𝐶𝑖𝑜 

                                                                                                                                             (I-38) 

where 𝐶𝑖𝑜, is the reference concentration of species 𝑖. 

Rewriting Eq. (I-7) as a system of algebraic equations gives the hydrogel/buffer system 

equation as: 

∑[𝐾𝑒]

𝐸

𝑒=1

𝐶𝑖
(𝑒)(𝑥) =∑𝑃⃗ (𝑒)

𝐸

𝑒=1

 

                                                                                                                                             (I-39) 

where 

[𝐾𝑒] = [𝐾𝐻
(𝑒)
] + [𝐾𝐼

(𝑒)
] + [𝐾𝐵

(𝑒)
]; 

 𝐶𝑖
(𝑒)
(𝑥) is the element normalized concentration defined as: 

𝐶𝑖
(𝑒)(𝑥) =

𝐶𝑖
(𝑒)

𝐶𝑖𝑜
 

                                                                                                                                             (I-40) 

𝑃⃗ (𝑒) the element characteristic vector given by: 

𝑃⃗ (𝑒) =

{
 
 

 
 

{
(𝑥𝑘+1 − 𝑥) 𝑙𝐼

(𝑒)⁄

(𝑥 − 𝑥𝑘) 𝑙𝐼
(𝑒)⁄

} ∙
1

𝑙𝐼
(𝑒)
[−1 1]

{
 

 
1

(1 + 𝑒−𝑥𝑘)
1

(1 + 𝑒−𝑥𝑘+1)}
 

 

}
 
 

 
 

|
𝑥𝑘𝐼+1
𝑥𝑘𝐼

= −
1

𝑙𝐼
(𝑒)

{
 

 
1

(1 + 𝑒−𝑥𝑘)
−

1

(1 + 𝑒−𝑥𝑘+1)
1

(1 + 𝑒−𝑥𝑘)
−

1

(1 + 𝑒−𝑥𝑘+1)}
 

 

 

                                                                                                                                             (I-41) 
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I.3 Mechanical Equation for the Deformation of the Hydrogel  

The governing mechanical equation for the one-dimensional hydrogel deformation is: 

(𝜆 + 2𝜇) [
𝑑2𝑢

𝑑𝑋2
+ 3

𝑑𝑢

𝑑𝑋
(
𝑑2𝑢

𝑑𝑋2
) +

3

2
(
𝑑𝑢

𝑑𝑋
)
2 𝑑2𝑢

𝑑𝑋2
] −

𝑑𝑃𝑜𝑠𝑚𝑜𝑡𝑖𝑐
𝑑𝑋

= 0 

                                                                                                                                             (I-42) 

where 

𝑃𝑜𝑠𝑚𝑜𝑡𝑖𝑐 = 𝑅𝑇∑(𝐶𝑘,𝑔𝑒𝑙 −𝐶𝑘,𝑠𝑜𝑙) 

                                                                                                                                             (I-43) 

The Lamé elastic constants are: 

𝜆 =
𝜈𝐸

(1+𝜐)(1−2𝜐)
  and  𝜇 =

𝐸

2(1+𝜐))
 

where E is the Modulus of elasticity and 𝜐 is the Poisson ratio. 

Like Eqn. (I-5), the residue is:   

𝑅 = ((𝜆 + 2𝜇) [
𝑑2𝑢

𝑑𝑋2
+ 3

𝑑𝑢

𝑑𝑋
(
𝑑2𝑢

𝑑𝑋2
) +

3

2
(
𝑑𝑢

𝑑𝑋
)
2 𝑑2𝑢

𝑑𝑋2
] −

𝑑𝑃𝑜𝑠𝑚𝑜𝑡𝑖𝑐
𝑑𝑋

) 

                                                                                                                                             (I-44) 

The discretized displacement of the hydrogel is: 

𝑢(𝑒)(𝑥) = [𝑁(𝑒)(𝑥)]𝑢⃗ (𝑒) 

 

1where the shape function 𝑁(𝑒) had been defined earlier in Eqn. (I-9) as: 

 

  𝑁(𝑒) = [𝑁𝑘(𝑥)  𝑁𝑘+1(𝑥)]                                                             

and 

                              𝑁𝑘(𝑥) = (𝑥𝑘+1 − 𝑥) 𝑙
(𝑒)⁄                                                            

                                                      𝑁𝑘+1(𝑥) = (𝑥 − 𝑥𝑘) 𝑙
(𝑒)⁄                                                                 

Displacement across the whole hydrogel domain is obtained from the Galerkin formulation: 

∑∫[𝑁(𝑒)]
𝑇
((𝜆 + 2𝜇) [

𝑑2𝑢(𝑒)

𝑑𝑋2
+ 3

𝑑𝑢(𝑒)

𝑑𝑋
(
𝑑2𝑢(𝑒)

𝑑𝑋2
) +

3

2
(
𝑑𝑢(𝑒)

𝑑𝑋
)

2
𝑑2𝑢(𝑒)

𝑑𝑋2
] −

𝑑𝑃𝑜𝑠𝑚𝑜𝑡𝑖𝑐
(𝑒)

𝑑𝑋
)𝑑𝑋

𝑥𝑗

𝑥𝑖

𝐸

𝑒=1

= 0 

                                                                                                                                             (I-45) 
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Evaluating Eq.(I-45), for an element within the hydrogel domain gives: 

∫ [𝑁(𝑒)]
𝑇
((𝜆 + 2𝜇) [

𝑑2𝑢(𝑒)

𝑑𝑋2
+ 3

𝑑𝑢(𝑒)

𝑑𝑋
(
𝑑2𝑢(𝑒)

𝑑𝑋2
) +

3

2
(
𝑑𝑢(𝑒)

𝑑𝑋
)

2
𝑑2𝑢(𝑒)

𝑑𝑋2
] −

𝑑𝑃𝑜𝑠𝑚𝑜𝑡𝑖𝑐
(𝑒)

𝑑𝑋
)𝑑𝑋

𝑥𝑘+1

𝑥𝑘

 

Examining the integral term by term gives: 

𝑘1
(𝑒)
= (𝜆 + 2𝜇) ∫ [𝑁(𝑒)]

𝑇 𝑑2𝑢(𝑒)

𝑑𝑋2
𝑑𝑋

𝑋𝑘+1

𝑋𝑘

 

                                                                                                                                             (I-46) 

𝑘2
(𝑒)
= (𝜆 + 2𝜇) ∫ [𝑁(𝑒)]

𝑇

𝑋𝑘+1

𝑋𝑘

. 3
𝑑𝑢(𝑒)

𝑑𝑋
(
𝑑2𝑢(𝑒)

𝑑𝑋2
)𝑑𝑋 

                                                                                                                                             (I-47) 

𝑘3
(𝑒)
= (𝜆 + 2𝜇) ∫ [𝑁(𝑒)]

𝑇

𝑥𝑘+1

𝑥𝑘

.
3

2
(
𝑑𝑢(𝑒)

𝑑𝑋
)

2
𝑑2𝑢(𝑒)

𝑑𝑋2
𝑑𝑋 

                                                                                                                                             (I-48) 

𝑝 (𝑒) = (𝜆 + 2𝜇) ∫ [𝑁(𝑒)]
𝑇

𝑥𝑘+1

𝑥𝑘

. −
𝑑𝑃𝑜𝑠𝑚𝑜𝑡𝑖𝑐

(𝑒)

𝑑𝑋
𝑑𝑋 

                                                                                                                                             (I-49) 

Applying integration by parts to Eqn. (I-46) gives: 

𝑘1
(𝑒)
= (𝜆 + 2𝜇)([𝑁(𝑒)]

𝑇 𝑑𝑢(𝑒)

𝑑𝑋
|
𝑋𝑘+1
𝑋𝑘

− ∫
𝑑[𝑁(𝑒)]

𝑇

𝑑𝑋

𝑑𝑢(𝑒)

𝑑𝑋
𝑑𝑋

𝑋𝑘+1

𝑋𝑘

) 

                                                                                                                                             (I-50) 

 

Integrating Eqn. (I-47) by parts gives Eqn. (I-52): 
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∫ [𝑁(𝑒)]
𝑇

𝑋𝑘+1

𝑋𝑘

.
𝑑𝑢(𝑒)

𝑑𝑋
(
𝑑2𝑢(𝑒)

𝑑𝑋2
)𝑑𝑋

= [𝑁(𝑒)]
𝑇
. (
𝑑𝑢(𝑒)

𝑑𝑋
)

2

|
𝑋𝑘+1
𝑋𝑘

− ∫
𝑑𝑢(𝑒)

𝑑𝑋
([𝑁(𝑒)]

𝑇 𝑑2𝑢(𝑒)

𝑑𝑋2
+
𝑑[𝑁(𝑒)]

𝑇

𝑑𝑋

𝑑𝑢(𝑒)

𝑑𝑋
)

𝑋𝑘+1

𝑋𝑘

= [𝑁(𝑒)]
𝑇
. (
𝑑𝑢(𝑒)

𝑑𝑋
)

2

|
𝑋𝑘+1
𝑋𝑘

− ∫ [[𝑁(𝑒)]
𝑇 𝑑𝑢(𝑒)

𝑑𝑋
(
𝑑2𝑢(𝑒)

𝑑𝑋2
) +

𝑑[𝑁(𝑒)]
𝑇

𝑑𝑋
(
𝑑𝑢(𝑒)

𝑑𝑋
)

2

] 𝑑𝑋

𝑋𝑘+1

𝑋𝑘

 

Expanding the above and collecting like terms give: 

∫ [𝑁(𝑒)]
𝑇

𝑋𝑘+1

𝑋𝑘

.
𝑑𝑢(𝑒)

𝑑𝑋
(
𝑑2𝑢(𝑒)

𝑑𝑋2
)𝑑𝑋

=
1

2
[𝑁(𝑒)]

𝑇
. (
𝑑𝑢(𝑒)

𝑑𝑋
)

2

|
𝑋𝑘+1
𝑋𝑘

−
1

2
∫

𝑑[𝑁(𝑒)]
𝑇

𝑑𝑋
(
𝑑𝑢(𝑒)

𝑑𝑋
)

2𝑋𝑘+1

𝑋𝑘

 

                                                                                                                                             (I-51) 

Therefore, Eqn. (I-47) becomes: 

𝑘2
(𝑒)
= (𝜆 + 2𝜇) ∫ [𝑁(𝑒)]

𝑇

𝑋𝑘+1

𝑋𝑘

. 3
𝑑𝑢(𝑒)

𝑑𝑋
(
𝑑2𝑢(𝑒)

𝑑𝑋2
)𝑑𝑋

=
3

2
(𝜆 + 2𝜇) [[𝑁(𝑒)]

𝑇
. (
𝑑𝑢(𝑒)

𝑑𝑋
)

2

|
𝑋𝑘+1
𝑋𝑘

− ∫
𝑑[𝑁(𝑒)]

𝑇

𝑑𝑋
(
𝑑𝑢(𝑒)

𝑑𝑋
)

2𝑋𝑘+1

𝑋𝑘

] 

                                                                                                                                             (I-52) 

In similar manner, Eq. (I-48) will result in Eqn. (I-53): 
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𝑘3
(𝑒)
= (𝜆 + 2𝜇) ∫ [𝑁(𝑒)]

𝑇

𝑥𝑘+1

𝑥𝑘

.
3

2
(
𝑑𝑢(𝑒)

𝑑𝑋
)

2
𝑑2𝑢(𝑒)

𝑑𝑋2
𝑑𝑋

=
3

2
(𝜆 + 2𝜇) {[𝑁(𝑒)]

𝑇
. (
𝑑𝑢(𝑒)

𝑑𝑋
)

3

|
𝑋𝑘+1
𝑋𝑘

− ∫
𝑑𝑢(𝑒)

𝑑𝑋
{[𝑁(𝑒)]

𝑇
2
𝑑𝑢(𝑒)

𝑑𝑋

𝑑2𝑢(𝑒)

𝑑𝑋2
+
𝑑[𝑁(𝑒)]

𝑇

𝑑𝑋
(
𝑑𝑢(𝑒)

𝑑𝑋
)

2

}

𝑋𝑘+1

𝑋𝑘

} 

𝑘3
(𝑒)
=
1

2
(𝜆 + 2𝜇) [[𝑁(𝑒)]

𝑇
. (
𝑑𝑢(𝑒)

𝑑𝑋
)

3

|
𝑋𝑘+1
𝑋𝑘

− ∫
𝑑[𝑁(𝑒)]

𝑇

𝑑𝑋
(
𝑑𝑢(𝑒)

𝑑𝑋
)

3𝑋𝑘+1

𝑋𝑘

] 

                                                                                                                                             (I-53) 

The fourth term in Eqn. (I-45b), which represents the element characteristic vector is: 

𝑝 (𝑒) = (𝜆 + 2𝜇) ∫ [𝑁(𝑒)]
𝑇

𝑥𝑘+1

𝑥𝑘

. −
𝑑𝑃𝑜𝑠𝑚𝑜𝑡𝑖𝑐

(𝑒)

𝑑𝑋
𝑑𝑋 

                                                                                                                                             (I-54) 

 

I.3.1  Evaluation of the integrals 

Recall Eqn. (I-50), 

𝑘1
(𝑒) = (𝜆 + 2𝜇)([𝑁(𝑒)]

𝑇 𝑑𝑢(𝑒)

𝑑𝑋
|
𝑋𝑘+1
𝑋𝑘

− ∫
𝑑[𝑁(𝑒)]

𝑇

𝑑𝑋

𝑑𝑢(𝑒)

𝑑𝑋
𝑑𝑋

𝑋𝑘+1

𝑋𝑘

) 

 The first term is assumed zero since the values of the derivative at the elemental nodes are 

unknown. The  second term is given as: 

𝑘1
(𝑒) = (𝜆 + 2𝜇)(− ∫ (

1

𝑙(𝑒)
{
−1
1
})

1

𝑙(𝑒)
[−1 1] {

𝑢𝑘
(𝑒)

𝑢𝑘+1
(𝑒)
} 𝑑𝑋

𝑋𝑘+1

𝑋𝑘

) 

𝑘1
(𝑒) = (𝜆 + 2𝜇) {

1

𝑙(𝑒)
. [
1 −1
−1 1

] [
𝑢𝑘
(𝑒)

𝑢𝑘+1
(𝑒)
]} 

                                                                                                                                             (I-55) 

 

From Eqn. (I-52),  
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𝑘2
(𝑒)
=
3

2
(𝜆 + 2𝜇) [[𝑁(𝑒)]

𝑇
. (
𝑑𝑢(𝑒)

𝑑𝑋
)

2

|
𝑋𝑘+1
𝑋𝑘

− ∫
𝑑[𝑁(𝑒)]

𝑇

𝑑𝑋
(
𝑑𝑢(𝑒)

𝑑𝑋
)

2𝑋𝑘+1

𝑋𝑘

] 

Dropping the first term gives: 

𝑘2
(𝑒) = −

3

2
(𝜆 + 2𝜇)( ∫

𝑑[𝑁(𝑒)]
𝑇

𝑑𝑋
(
𝑑𝑢(𝑒)

𝑑𝑋
)

2𝑋𝑘+1

𝑋𝑘

)

= −
3

2
(𝜆 + 2𝜇) ∫ (

1

𝑙(𝑒)
{
−1
1
}) (

1

(𝑙(𝑒))2
[−1 1] [

−1
1
]) {

𝑢𝑘
(𝑒)

𝑢𝑘+1
(𝑒)
}

𝑋𝑘+1

𝑋𝑘

𝑑𝑋 

= −
3

(𝑙(𝑒))2
(𝜆 + 2𝜇) {

−1
1
} {
𝑢𝑘
(𝑒)

𝑢𝑘+1
(𝑒)
} 

From Eqn. (I-53), dropping the first term gives: 

𝑘3
(𝑒)
= −

1

2
(𝜆 + 2𝜇) ∫

𝑑[𝑁(𝑒)]
𝑇

𝑑𝑋
(
𝑑𝑢(𝑒)

𝑑𝑋
)

3𝑋𝑘+1

𝑋𝑘

 

= −
1

2
(𝜆 + 2𝜇) ∫ (

1

𝑙(𝑒)
{
−1
1
}) (

1

(𝑙(𝑒))3
[−1 1] [

−1
1
] [−1 1]) {

𝑢𝑘
(𝑒)

𝑢𝑘+1
(𝑒)
}

𝑋𝑘+1

𝑋𝑘

 

𝑘3
(𝑒) =

(𝜆 + 2𝜇)

(𝑙(𝑒))3
{[
−1 1
1 −1

] [
𝑢𝑘
(𝑒)

𝑢𝑘+1
(𝑒)
]} 

 

The displacement characteristic matrix becomes: 

 

[𝐾] = {
(𝜆 + 2𝜇)

𝑙(𝑒)
[
1 −1
−1 1

] −
3(𝜆 + 2𝜇)

(𝑙(𝑒))2
{
−1
1
} +

(𝜆 + 2𝜇)

(𝑙(𝑒))3
[
−1 1
1 −1

]} {
𝑢𝑘
(𝑒)

𝑢𝑘+1
(𝑒)
} 

                                                                                                                                             (I-56) 

For the displacement characteristic vector: 

 

                    𝑝 (𝑒) = (𝜆 + 2𝜇) ∫ [𝑁(𝑒)]
𝑇𝑥𝑘+1

𝑥𝑘
. −

𝑑𝑃𝑜𝑠𝑚𝑜𝑡𝑖𝑐
(𝑒)

𝑑𝑋
𝑑𝑋                                                  (I-57)                                                                                                                         
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I.4. Assemblage of System Equations 

Assembling the element characteristic matrices and vectors results in the overall system 

equations: 

 

                                                              [𝐾]𝐶 𝑖 = 𝑃⃗                                                               (I-58) 

where 

[𝐾] =∑[𝐾(𝑒)]

𝐸

𝑒=1

 

                                                                                                                                             (I-59) 

𝑃⃗ =∑[𝑃⃗ (𝑒)]

𝐸

𝑒=1

 

                                                                                                                                             (I-60) 

[𝐾] and 𝑃⃗  are obtained by placing the elements of the characteristic matrix [𝐾(𝑒)] and vector 

[𝑃⃗ (𝑒)] in the location of the global characteristic matrix [𝐾] and vector 𝑃⃗  respectively, whose 

row and column of the unknown variables correspond to the those of the element in the matrix 

[𝐾(𝑒)] and vector [𝑃⃗ (𝑒)]. As e changes from 1 to E, assembling [𝐾(𝑒+1)]  and [𝑃⃗ (𝑒+1)] is done 

by adding to the existing values of matrix [𝐾(𝑒)] and vector [𝑃⃗ (𝑒)] such that the global 

characteristic matrix and vector whose row and column degree of freedom correspond with the 

element of the matrix [𝐾(𝑒)] and vector [𝑃⃗ (𝑒)]. The overall assembled system characteristic 

matrix given in Table I.1, and characteristic vector in Table I.2. 
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Table I.1 Global Characteristic matrix of the Hydrogel /Solution System for a case of 13 nodal unknowns 

 

 

 

Global  

dof
1 2 3 4 5 6 7 8 9 10 11 12 13

1 K11
(1) K12

(1) 0 0 0 0 0 0 0 0 0 0 0

2 K21
(1) K22

(1)+K11
(2) K12

(2) 0 0 0 0 0 0 0 0 0

3 0 K21
(2) K22

(2)+K11
(3) K12

(3) 0 0 0 0 0 0 0 0 0

4 0 0 K21
(3) K22

(3)+K11
(4) K12

(4) 0 0 0 0 0 0 0 0

5 0 0 0 K21
(4) K22

(4)+K11
(5) K12

(5) 0 0 0 0 0 0 0

6 0 0 0 0 K21
(5) K22

(5)+K11
(6) K12

(6) 0 0 0 0 0 0

7 0 0 0 0 0 K21
(6) K22

(6)+K11
(7) K12

(7) 0 0 0 0 0

8 0 0 0 0 0 0 K21
(7) K22

(7)+K11
(8) K12

(8) 0 0 0 0

9 0 0 0 0 0 0 0 K21
(8) K22

(8)+K11
(9) K12

(9) 0 0 0

10 0 0 0 0 0 0 0 0 K21
(9) K22

(9)+K11
(10) K12

(10) 0 0

11 0 0 0 0 0 0 0 0 0 K21
(10) K22

(10)+K11
(11) K12

(11) 0

12 0 0 0 0 0 0 0 0 0 0 K21
(11) K22

(11)+K11
(12) K12

(12)

13 0 0 0 0 0 0 0 0 0 0 0 K21
(12) K22

(12)
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Table I.2: Assembled system characteristic vector 

Global dof Characteristic vector 

1 𝑃1
(1)

 

2 𝑃2
(1)
+ 𝑃1

(2)
 

3 𝑃2
(2)
+ 𝑃1

(3)
 

4 𝑃2
(3)
+ 𝑃1

(4)
 

5 𝑃2
(4)
+ 𝑃1

(5)
 

6 𝑃2
(5)
+ 𝑃1

(6)
 

7 𝑃2
(6)
+ 𝑃1

(7)
 

8 𝑃2
(7)
+ 𝑃1

(8)
 

9 𝑃2
(8)
+ 𝑃1

(9)
 

10 𝑃2
(9)
+ 𝑃1

(10)
 

11 𝑃2
(10)

+ 𝑃1
(11)

 

12 𝑃2
(11)

+ 𝑃1
(12)

 

13 𝑃2
(12)

 

 

 

 

I.5. Boundary Condition 

To solve the overall system equations for the entire domain, it is important to incorporate the 

boundary conditions else, the system characteristic matrix [𝐾], will be singular and thus its 

inverse will not exist. There are many approaches to the inclusion of boundary conditions to 

the assembled characteristic matrix. However, the approach adopted in this study (explained in 

detail by Rao [220]) outlined below, was preferred since it retains the symmetry of the system 

equation and allows the characteristic matrix to be stored in band format. 

Suppose 𝐶𝑗1 is the prescribed value for the nodal unknown (e.g., concentration), 𝐶𝑗 the 

procedure below followed to incorporate the boundary conditions. 

Insert the prescribed value of  𝐶𝑗 into the characteristic vector, such that 𝑃𝑗 = 𝐶𝑗1 

Modify the characteristic vector 𝑃⃗   such that the other elements take the form: 

                                                               𝑃𝑛𝑒𝑤 = 𝑃1 − 𝐾𝑖𝑗𝐶𝑗1  

Make the row and column of [𝐾] associated with  𝐶𝑗 all zero, except the diagonal elements, 

which should be unity; that is. 
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𝐾𝑖𝑗 = 1 

otherwise 

𝐾𝑖𝑗 = 𝐾𝑗𝑖 = 0 

To incorporate the entire specified nodal unknowns (e.g., 𝐶𝑗 for concentration, φ for potential 

and u for displacement), the steps above are repeated until all the boundary conditions are 

incorporated into the overall system characteristic matrix.  

I. 6. Solution of the System Equation 

Having incorporated the boundary conditions into the system of the governing differential 

equation (in its matrix form), the linear system of equations takes the tridiagonal and banded 

form: 

 

[
 
 
 
 
 
 
 
 
𝑎1

 
𝑐1       

𝑏1 𝑎2 𝑐2      
 𝑏2 𝑎3 𝑐3      
  𝑏3 ⋱ ⋱    
   ⋱ 𝑎𝑖  𝑐𝑖    
    𝑏𝑖 ⋱ ⋱  
     ⋱ 𝑎𝑛−1  𝑐𝑛−1
      𝑏𝑛−1 𝑎𝑛 ]

 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

 
𝑥1
𝑥2
𝑥3
⋮
𝑥𝑖
⋮

𝑥𝑛−1
𝑥𝑛 ]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

 
𝑑1
𝑑2
𝑑3
⋮
𝑑𝑖
⋮

𝑑𝑛−1
𝑑𝑛 ]

 
 
 
 
 
 
 
 

                    (I − 61) 

 

The system of equations can be solved using direct or iterative methods. Direct methods are 

methods that will yield the exact solution in a finite number of steps or operations in the absence 

of round-off and truncation errors. Whereas iterative methods are those that begin with an 

initial approximation or guess on a carefully chosen and well-suited algorithm to a successively 

better approximation [221]. For accuracy and ease of convergence with the use of digital 

computers, iterative method is advantageous. However, to describe the concept used in a clear 

manner, the direct method is chosen. Gaussian elimination and Choleski method are the two 

popular direct method employed for solving linear system of equations. However, since the 

characteristic matrix has banded structure, Gaussian Elimination, which handles banded matrix 

with ease, justifies the reason it was employed in the algorithm to solve the system of n linear 

equations in n unknowns. The steps in the algorithm are: 
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i. Subtract 𝑏1
 
𝑎1⁄  times row 1 from row 2, thus creating a zero element in the position of 

element 𝑏1. This does not affect 𝑐2 but changes the entries 𝑎2 and 𝑑2. That is: 

{
 
 

 
 𝑎2 =  𝑎2 − (

𝑏1 
𝑎1
)
 
𝑐1

 𝑑2 =  𝑏2 − (
𝑏1 
𝑎1
)
 
𝑑1

 

ii. Repeat the step (i) above using the new pivot row (i.e., the new row 2), to obtain the 

new 𝑎𝑖
′s and 𝑑𝑖′s. 

{
 
 

 
 𝑎𝑖 =  𝑎𝑖 − (

𝑏𝑖−1 
𝑎𝑖−1

)
 
𝑐𝑖−1

 𝑑2 =  𝑏𝑖 − (
𝑏𝑖−1 
𝑎𝑖−1

)
 
𝑑𝑖−1

 

After applying the forward elimination procedure above, the original system of equations 

eventually reduced to the form (different entries for the 𝑎𝑖
′s  and 𝑑𝑖

′s but same as previous for 

the 𝑐𝑖
′s): 

[
 
 
 
 
 
 
 
𝑎1

 
𝑐1       

 𝑎2 𝑐2      
   𝑎3 𝑐3      
   ⋱ ⋱    
    𝑎𝑖  𝑐𝑖    
     ⋱ ⋱  
      𝑎𝑛−1  𝑐𝑛−1
       𝑎𝑛 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

 
𝑥1
𝑥2
𝑥3
⋮
𝑥𝑖
⋮

𝑥𝑛−1
𝑥𝑛 ]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

 
𝑑1
𝑑2
𝑑3
⋮
𝑑𝑖
⋮

𝑑𝑛−1
𝑑𝑛 ]

 
 
 
 
 
 
 
 

           (I − 62) 

 

iii. The unknowns 𝑥𝑛, 𝑥𝑛−1, … , 𝑥1 obtained by using back substitution approach to solve 

Eqn. (I-62). That is:  

 {

𝑥𝑛 =
𝑑𝑛
 
𝑎𝑛

 𝑥𝑛−1 =
1
 
𝑎𝑛−1

(
 
𝑑𝑛−1 −  𝑐𝑛−1𝑥𝑛)
 

                                                (I − 63) 

In general, for any unknown: 

 𝑥𝑖 =
1
 
𝑎𝑖
(
 
𝑑𝑖 −  𝑐𝑖𝑥𝑖+1)                                                  (𝑖 = 𝑛 − 1, 𝑛 − 2,… ,1) 
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I.7 Summary of the Modelling Procedure 

I.7.1 Mathematical model 

The mathematical model that describes the hydrogel/solution interaction in response to pH 

changes in the environment are: 

The steady state Nernst-Plank equation given as: 

𝐷𝑘∇
2𝐶𝑘 + 𝜇𝑘𝑧𝑘𝐹∇𝐶𝑘∇𝜑 + 𝜇𝑘𝑧𝑘𝐹𝐶𝑘∇

2𝜑 = 0         (𝑘 = 1,2,3, …𝑁𝑖𝑜𝑛) 

The Poisson equation given as: 

∇2𝜑 = −
𝐹

𝜀𝜀0
(∑𝑧𝑘𝑐𝑘 + 𝑧𝑓𝑐𝑓

𝑁

𝑘=1

) 

The equilibrium mechanical/momentum equation given as follows: 

𝛁𝑿. [−J𝐅
−𝟏𝑝𝑜𝑠𝑚𝑜𝑡𝑖𝑐𝐈 + 𝐅𝐒] = 𝟎 

In addition, the constitutive relations are: 

The osmotic pressure 𝑝𝑜𝑠𝑚𝑜𝑡𝑖𝑐 given as: 

𝑃𝑜𝑠𝑚𝑜𝑡𝑖𝑐 = 𝑅𝑇∑(𝑐𝑘
ℎ − 𝑐𝑘

𝑠

𝑁

𝑘=1

) 

The fixed charge concentration 𝑐𝑓 for an anionic hydrogel given as: 

𝑐𝑓 =
𝑐𝑚𝑜
𝑠

𝐻

𝐾𝑎
(𝐾𝑎 + 𝑐𝐻)

 

I.7.2 Numerical model 

To develop a numerical model that approximates the behaviour of the continuum model 

outlined in Section I.4.1, the following steps were employed. 

a. Discretization of the mathematical model into a global system of algebraic 

equation of the general form: 

[𝐾]𝐶 𝑖 = 𝑃⃗  

where 

[𝐾] is the system/global characteristic matrix formed from the assemblage of the element 

(local coordinate) characteristic matrices for: 
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i. PNP equation 

 [𝐾𝑒] = [𝐾𝐻
(𝑒)
] + [𝐾𝐼

(𝑒)
] + [𝐾𝐵

(𝑒)
] 

where 

[𝐾𝐻
(𝑒)
] =

1

𝑙𝐻
(𝑒)
[
1 −1
−1 1

] +
𝜇𝑖𝐹

2𝑧𝑖𝑙𝐻
(𝑒)

2𝜀𝜀0𝐷𝑖
{(∑𝑧𝑖𝐶𝑖 + 𝑧𝑓𝐶𝑓) [

1 −1
1 −1

]}

−
𝐹2𝑧𝑖𝑙𝐻

(𝑒)

6𝜀𝜀0𝐷𝑖
(∑𝑧𝑖𝐶𝑖 + 𝑧𝑓𝐶𝑓) [

2 1
1 2

] 

[𝐾𝐼
(𝑒)
] =

1

𝑙𝐼
(𝑒)
[
1 −1
−1 1

] +
𝜇𝑖𝐹

2𝑧𝑖𝑙𝐼
(𝑒)

2𝜀𝜀0𝐷𝑖
{∑𝑧𝑖𝐶𝑖 [

1 −1
1 −1

]} −
𝐹2𝑧𝑖𝑙𝐼

(𝑒)

6𝜀𝜀0𝐷𝑖
∑𝑧𝑖𝐶𝑖 [

2 1
1 2

] 

[𝐾𝐵
(𝑒)
] =

1

𝑙𝐵
(𝑒)
[
1 −1
−1 1

] +
𝜇𝑖𝐹

2𝑧𝑖𝑙𝐵
(𝑒)

2𝜀𝜀0𝐷𝑖
{∑𝑧𝑖𝐶𝑖 [

1 −1
1 −1

]} −
𝐹2𝑧𝑖𝑙𝐵

(𝑒)

6𝜀𝜀0𝐷𝑖
∑𝑧𝑖𝐶𝑖 [

2 1
1 2

] 

 

ii Mechanical equation  

[𝐾𝑒]𝑀𝑒𝑐ℎ = {
(𝜆 + 2𝜇)

𝑙(𝑒)
[
1 −1
−1 1

] −
3(𝜆 + 2𝜇)

(𝑙(𝑒))2
{
−1
1
} +

(𝜆 + 2𝜇)

(𝑙(𝑒))3
[
−1 1
1 −1

]} {
𝑢𝑘
(𝑒)

𝑢𝑘+1
(𝑒)
} 

 

where 

𝑃⃗  is the system characteristic vectors derived from the assemblage of the element 

characteristic vectors for: 

i. PNP equation   

𝑃⃗ (𝑒) =

{
 
 

 
 

{
(𝑥𝑘+1 − 𝑥) 𝑙𝐼

(𝑒)⁄

(𝑥 − 𝑥𝑘) 𝑙𝐼
(𝑒)⁄

} ∙
1

𝑙𝐼
(𝑒)
[−1 1]

{
 

 
1

(1 + 𝑒−𝑥𝑘)
1

(1 + 𝑒−𝑥𝑘+1)}
 

 

}
 
 

 
 

|
𝑥𝑘𝐼+1
𝑥𝑘𝐼

= −
1

𝑙𝐼
(𝑒)

{
 

 
1

(1 + 𝑒−𝑥𝑘)
−

1

(1 + 𝑒−𝑥𝑘+1)
1

(1 + 𝑒−𝑥𝑘)
−

1

(1 + 𝑒−𝑥𝑘+1)}
 

 

 

 

ii. Mechanical equation 

𝑝 (𝑒) = 𝜆 + 2𝜇 ∫ [𝑁(𝑒)]
𝑇

𝑥𝑘+1

𝑥𝑘

. −
𝑑𝑃𝑜𝑠𝑚𝑜𝑡𝑖𝑐

(𝑒)

𝑑𝑋
𝑑𝑋 
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b. Incorporation of the prescribed boundary conditions  

c. Solving the linear system of equations 

d. Plug the values of the concentrations at the interface into the osmotic pressure 

relation to calculate the osmotic pressure at the interface between the hydrogel 

and the buffer. 

e. Use the osmotic pressure to couple the PNP equation with the mechanical 

equation to determine the deformation of the hydrogel as a function of changes 

in pH. 

 

These steps elucidated in the flowchart of Figure I.1 as shown below. 
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Figure I.1: Flowchart for Numerical modelling  
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APPENDIX II 

NEWTON RAPHSON’S NUMERICAL SCHEME 

Newton Raphson’s method provides a good approximation for solving single variable 

nonlinear equation of the form: 

𝑓(𝑥) = 0                                                                               (II-1) 

This numerical scheme consists of the following steps: 

i. An initial guess of the solution to Eq. (II-1) is: 𝑥0 

ii. The step size, ℎ = −
𝑓(𝑥)

𝑓′(𝑥)
 

iii. The new or next point, 𝑥1 = 𝑥0 + ℎ 

                            ⋮ 

iv. Other iteration points, 𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
               (II-2) 

v. Stopping criteria is: |𝑥𝑛+1 − 𝑥𝑛| |𝑥𝑛|⁄ < 𝜀 is reached                                           (II-3) 

 

Suppose the total osmotic pressure, 𝜇 due to mixing, elasticity, and ionic interaction is: 

𝜇 = 𝜇𝑚 + 𝜇𝑒𝑙 + 𝜇𝑖                                                                                        (II-4) 

𝜇𝑚 = −
𝑁𝐴𝑘𝑇

𝑉𝑠
[𝐼𝑛(1 − 𝜈2) + 𝜈2 + 𝜒(𝜈2)

2]                                                   (II-5) 

where 𝜈2 = 𝜈2
0𝑉𝑒𝑞

−1 

 𝜇𝑒𝑙 = 𝑁𝐴𝑣0𝑘𝑇(0.5𝑉𝑒𝑞
−1 − 𝑉𝑒𝑞

−1 3⁄ )                                                           (II-6) 

𝜇𝑖 = 𝑅𝑇𝑉𝑠 (
𝛼2𝑐𝑓

2

4𝐼
)                                                                                          (II-7) 

Differentiating Eq. (II-4) w.r.t  𝑉𝑒𝑞 gives: 

 

𝑑𝜇

𝑑𝑉𝑒𝑞
=
𝑑𝜇𝑚

𝑑𝑉𝑒𝑞
+
𝑑𝜇𝑒𝑙

𝑑𝑉𝑒𝑞
+

𝑑𝜇𝑖

𝑑𝑉𝑒𝑞
                                                                   (II-8) 

 

𝑑𝜇𝑚

𝑑𝑉𝑒𝑞
= (

𝑑𝜇𝑚

𝑑𝜈2
) . (

𝑑𝜈2

𝑑𝑉𝑒𝑞
)                                                                        (II-9) 

(
𝑑𝜇𝑚

𝑑𝜈2
) = −

𝑁𝐴𝑘𝑇

𝑉𝑠
[−

1

1−𝜈2
+ 1 + 2𝜒𝜈2]                                            (II-10) 

(
𝑑𝜈2

𝑑𝑉𝑒𝑞
) =

𝑑

𝑑𝑥
(𝜈2

0𝑉𝑒𝑞
−1) = −𝜈2

0. 𝑉𝑒𝑞
−2                                           (II-11) 

Substituting Eq. (II-10) and (II-11) into Eq. (II-9) gives: 
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𝑑𝜇𝑚

𝑑𝑉𝑒𝑞
=
𝑁𝐴𝑘𝑇

𝑉𝑠
[1 + 2𝜒𝜈2 −

1

1−𝜈2
] . 𝜈2

0. 𝑉𝑒𝑞
−2                                     (II-12) 

Therefore Eq. (II-9) becomes: 

𝑑𝜇𝑚

𝑑𝑉𝑒𝑞
=
𝑁𝐴𝑘𝑇

𝑉𝑠
[1 + 2𝜒 (

𝜈2
0

𝑉𝑒𝑞
) −

𝑉𝑒𝑞

(𝑉𝑒𝑞−𝜈2
0)
]           (II-13) 

From Eq. (II-6), the derivative is: 

 

𝑑𝜇𝑒𝑙
𝑑𝑉𝑒𝑞

=
𝑑

𝑑𝑉𝑒𝑞
(𝑁𝐴𝑣0𝑘𝑇(0.5𝑉𝑒𝑞

−1 − 𝑉𝑒𝑞
−1 3⁄ )) 

 

= 𝑁𝐴𝑣0𝑘𝑇 (−
1

2
𝑉𝑒𝑞

−2
+
1

3
𝑉𝑒𝑞

−4 3⁄ )                                     (II-14) 

Recall Eq. (II-7): 

𝜇𝑖 = 𝑅𝑇𝑉𝑠 (
𝛼2𝑐𝑓

2

4𝐼
) 

where 𝑐𝑓(𝑉𝑒𝑞) is given as: 

 𝑐𝑓 =
𝑐𝑚𝑜

𝑉𝑒𝑞

𝐶
𝐻+

(𝐾𝑎+𝐶𝐻+)
                                                                (II-15) 

Differentiating Eq. (II-7) w.r.t to 𝑐𝑓 gives: 

𝑑𝜇𝑖

𝑑𝑐𝑓
= 2(

𝑅𝑇𝑉𝑠𝛼
2

4𝐼
) 𝑐𝑓                                                              (II-16) 

Differentiating Eq. (II-15) w.r.t to 𝑉𝑒𝑞 gives: 

𝑑𝑐𝑓

𝑑𝑉𝑒𝑞
= −

𝑐𝑚𝑜𝐶𝐻+

(𝐾𝑎+𝐶𝐻+)
𝑉𝑒𝑞

−2                                                       (II-17) 

Therefore 

𝑑𝜇𝑖
𝑑𝑉𝑒𝑞

= (
𝑑𝜇𝑖
𝑑𝑐𝑓

) . (
𝑑𝑐𝑓
𝑑𝑉𝑒𝑞

) 

                = −2(
𝑅𝑇𝑉𝑠𝛼

2

4𝐼
)
𝑐𝑓
2

𝑉𝑒𝑞
                                                (II-18) 

Hence, the function and its derivative are Eq.(II-19) and (II-20): 

𝑓(𝑉𝑒𝑞) = −
𝑁𝐴𝑘𝑇

𝑉𝑠
[𝐼𝑛(1 − 𝜈2) + 𝜈2 + 𝜒(𝜈2)

2] + 𝑁𝐴𝑣0𝑘𝑇(0.5𝑉𝑒𝑞
−1 − 𝑉𝑒𝑞

−1 3⁄ ) + 𝑅𝑇𝑉𝑠 (
𝛼2𝑐𝑓

2

4𝐼
)    

                                                                                                                                          (II-19) 
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𝑓′(𝑉𝑒𝑞) =
𝑁𝐴𝑘𝑇

𝑉𝑠
[1 + 2𝜒 (

𝜈2
0

𝑉𝑒𝑞
) −

𝑉𝑒𝑞

(𝑉𝑒𝑞 − 𝜈2
0)
] + 𝑁𝐴𝑣0𝑘𝑇 (−

1

2
𝑉𝑒𝑞

−2

+
1

3
𝑉𝑒𝑞

−4 3⁄ )

− 2(
𝑅𝑇𝑉𝑠𝛼

2

4𝐼
)
𝑐𝑓
2

𝑉𝑒𝑞
 

                                                                                                                                                              

                                                                                                                                          (II-20) 

Applying Newton Raphson’s iteration scheme results in an equilibrium volume swelling ratio 

that makes the total osmotic pressure in the system zero. Thus, the equilibrium volume ratio is: 

𝑉𝑒𝑞𝑛+1 = 𝑉𝑒𝑞𝑛 −
𝑓(𝑉𝑒𝑞)

𝑓′(𝑉𝑒𝑞)
                                                                   (II-21) 
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APPENDIX III 

RESPONSE SURFACE DESIGN MATRIX 

  Factor 1 Factor 2 Factor 3 Factor 4 Response  

Std Run A:Cg B:X C:I D:pH 𝑽𝑺𝑹 

  wt.% - mM - - 

21 1 0.4 0.34 450 7.4 0.380295 

14 2 0.6 0.1 900 8.88 0.378759 

7 3 0.2 0.58 900 5.92 2.16177 

25 4 0.4 0.34 600 7.4 0.378772 

17 5 0.3 0.34 600 7.4 0.38386 

29 6 0.4 0.34 600 7.4 0.378772 

30 7 0.4 0.34 600 7.4 0.378772 

11 8 0.2 0.58 300 8.88 0.349358 

1 9 0.2 0.1 300 5.92 2.75395 

24 10 0.4 0.34 600 8.14 0.363853 

27 11 0.4 0.34 600 7.4 0.378772 

22 12 0.4 0.34 750 7.4 0.377507 

5 13 0.2 0.1 900 5.92 2.17083 

13 14 0.2 0.1 900 8.88 0.376784 

16 15 0.6 0.58 900 8.88 0.349015 

6 16 0.6 0.1 900 5.92 1.00249 

20 17 0.4 0.46 600 7.4 0.371847 

10 18 0.6 0.1 300 8.88 0.378759 

8 19 0.6 0.58 900 5.92 0.988009 

28 20 0.4 0.34 600 7.4 0.378772 

23 21 0.4 0.34 600 6.66 0.719661 

26 22 0.4 0.34 600 7.4 0.378772 

12 23 0.6 0.58 300 8.88 0.349015 

18 24 0.5 0.34 600 7.4 0.374452 

4 25 0.6 0.58 300 5.92 1.20343 

9 26 0.2 0.1 300 8.88 0.376784 

15 27 0.2 0.58 900 8.88 0.349357 

2 28 0.6 0.1 300 5.92 1.21646 

19 29 0.4 0.22 600 7.4 0.385581 

3 30 0.2 0.58 300 5.92 2.7458 
 

With the design matrix above a regression model whose response surface in transformed 

variable state/scale is given as shown in Figures. A3a, A3b, and A3c. 
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Figure A3a: Response surface (transformed scale) showing the influence of the pH and 

genipin concentration on the equilibrium swelling ratio. 
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Figure A3b: Response surface (transformed scale) showing the influence of the pH and 

solvent interaction parameter on the equilibrium swelling ratio. 
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Figure A3c: Response surface (transformed scale) showing the influence of the pH and ionic 

strength of the swelling medium on the equilibrium swelling ratio. 
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APPENDIX IV 

CONTINUUM APPROACH TO SWELLING KINETICS 

The focus here is to determine how fast the crosslinked hydrogel swells or shrinks in the 

surrounding medium. To do this, the following assumptions were made: 

i. The deformation or volume variation of the gel is a resultant effect of the chemo-

electro-mechanical interactions taking place between the gel and its surroundings.  

ii. The deformation (i.e., swelling/shrinking) process is based on the diffusion of the 

polymer network to the fluid phase, and not the diffusion of the surrounding fluid 

molecules to the gel phase.  

With these assumptions, the gel can be viewed as a continuum, and the kinetics of deformation 

modelled using a black-box approach (i.e., ignoring the interplay of the chemical, electrical 

and mechanical fields). Thus, the equation of motion for an elemental volume (of the polymer 

network) moving in the fluid phase can be used to model the gel’s deformation. 

The equation of motion of a unit volume of a solid moving in a fluid is given as: 

𝜌
𝜕2𝒖

𝜕𝑡2
− ∇. 𝜎̃ + 𝑓

𝜕𝒖

𝜕𝑡
= 0                                                       (IV−1) 

where u is the displacement vector of a 3-dimensional body undergoing deformation, 𝜌 is the 

density of the gel, f  is the coefficient of friction between the polymer network and the fluid. 

The stress tensor, 𝜎̃ whose component 𝜎̃𝑖𝑘, is the stress in the k-direction orthogonal to the i-

direction, and given as: 

𝜎̃𝑖𝑘 = (

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

)                                                            (IV−2) 

Since volume variation of the gel is a slowly, gradual process, the first term in Eq. (IV−1) 

which represents the inertia (i.e., the product of the weight of the elemental volume of the solid 

and its acceleration) can be ignored. Thus, Eq. (IV−1) reduces to : 

∇. 𝜎̃ = 𝑓
𝜕𝒖

𝜕𝑡
                                                                                 (IV−3) 

 

Eq. (IV−3) rewritten in terms of the stress components is given as: 
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𝜕𝒖

𝜕𝑡
=

1

𝑓
(

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

)

(

 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑦

𝜕

𝜕𝑧)

 
 
=

1

𝑓

(

 
 

𝜕𝜎11

𝜕𝑥
+
𝜕𝜎12

𝜕𝑦
+
𝜕𝜎13

𝜕𝑧

𝜕𝜎21

𝜕𝑥
+
𝜕𝜎22

𝜕𝑦
+
𝜕𝜎23

𝜕𝑧

𝜕𝜎31

𝜕𝑥
+
𝜕𝜎32

𝜕𝑦
+
𝜕𝜎33

𝜕𝑧 )

 
 

                            (IV−4) 

where the stress tensor (𝜎̃) is related to the displacement vector (u), shear modulus (G), and the 

bulk modulus (K) in the following way: 

𝜎̃𝑖𝑘 = (𝐾∇. 𝒖𝛿𝑖𝑘⏟    
𝑠𝑡𝑟𝑒𝑠𝑠 𝑑𝑢𝑒 

𝑡𝑜
𝑣𝑜𝑙𝑢𝑚𝑒 
𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

+ 2𝐺(𝑢𝑖𝑘 −
1

3
∇. 𝒖𝛿𝑖𝑘⏟            

𝑠𝑡𝑟𝑒𝑠𝑠 𝑑𝑢𝑒 𝑡𝑜 
𝑠ℎ𝑒𝑎𝑟 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

)                                                  (IV−5) 

where; 

 𝑢𝑖𝑘 = (
𝜕𝑢𝑘

𝜕𝑥𝑖
+
𝜕𝑢𝑖

𝜕𝑥𝑘
)                                                                                (IV−6) 

 

Substituting Eq. (IV−6) into (IV−4) gives a more compact form of Eq. (IV−4) as: 

𝜕𝒖

𝜕𝑡
=

1

𝑓

(

 
 

(𝐾 + 𝐺 3⁄ )
𝜕

𝜕𝑥
∇𝒖 + 𝐺∆𝒖

(𝐾 + 𝐺 3⁄ )
𝜕

𝜕𝑦
∇𝒖 + 𝐺∆𝒖

(𝐾 + 𝐺 3⁄ )
𝜕

𝜕𝑧
∇𝒖 + 𝐺∆𝒖)

 
 

                                                           (IV−7) 

For simplicity, assume the gel is spherical, so that the displacement vector takes the form: 

𝒖(𝒓, 𝑡) = 𝑢(𝑟, 𝑡). 𝑟̂                                                                                  (IV−8) 

where 𝑟̂ is the unit vector parallel to 𝒓. Therefore, Eq. (IV−7)reduces to: 

𝜕𝑢(𝑟,𝑡)

𝜕𝑡
=

1

𝑓
[(𝐾 + 𝐺 3⁄ )

𝜕

𝜕𝑟
∇𝑢(𝑟, 𝑡) + 𝐺∇2𝑢(𝑟, 𝑡)] . 𝑟̂                          (IV−9) 

Note: In Eq. (IV−9) the operation  ∆𝑢 = ∇2𝑢 

𝜕𝑢(𝑟,𝑡)

𝜕𝑡
=

1

𝑓
[(𝐾 + 𝐺 3⁄ )

𝜕

𝜕𝑟
∇𝑢(𝑟, 𝑡) + 𝐺

𝜕

𝜕𝑟
∇𝑢(𝑟, 𝑡)]                         (IV−10) 

𝜕𝑢(𝑟,𝑡)

𝜕𝑡
= (

𝐾+
4𝐺

3

𝑓
)
𝜕

𝜕𝑟
∇𝑢(𝑟, 𝑡) = 𝐷

𝜕

𝜕𝑟
∇𝑢(𝑟, 𝑡)                                        (IV−11) 

Applying  ∇ for a 3D polar coordinate system, ignoring the partial derivative of the angle of 

rotation due to the sphere’s symmetry, Eq. (IV−11) is rewritten as: 
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𝜕𝑢(𝑟,𝑡)

𝜕𝑡
= 𝐷

𝜕

𝜕𝑟
[
1

𝑟2
𝜕

𝜕𝑟
(𝑟2𝑢)]                                                                     (IV−12) 

where D is called the gel’s collective diffusion coefficient. 

Eq. (IV−12) which is called the “swelling equation” models the gel network diffusing into the 

solvent phase. Solving Eq. (IV−12), requires initial and boundary conditions. 

 

D−1. Initial condition 

D−1.1 Strain 

Assume the gel swells from an initial radius, 𝑙0 to a final equilibrium radius, 𝑙∞. To define the 

strain, the deformed configuration (i.e., the equilibrium state) is considered as the reference 

condition since the initial state (i.e., the undeformed configuration) is not a stable initial 

condition. This implies that the pressure acting on the gel’s surface compresses the radius of 

the gel from 𝑙∞ to 𝑙0 in the initial condition. Therefore, the strain of a point, which is at a 

distance r from the origin in the reference or equilibrium state is: 

𝜕𝑢(𝑟.0)

𝜕𝑟
=
(𝑙∞−𝑙0)

𝑙∞
=

∆𝑙

𝑙∞
                                                                (IV−13) 

Hence, the displacement of that point, r, from the origin, in the initial condition is: 

𝑢(𝑟. 0) =
∆𝑙

𝑙∞
. 𝑟                                                                         (IV−14) 

 

 

Figure A4a: The initial (left) and final/reference(right) states of the gel  
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D−1.2 Osmotic pressure 

The osmotic pressure, π0, that results from the strain can be derived in the following way: 

π0 = 𝑀
𝑑𝑉

𝑉
                                                                  (IV−15) 

π0 = 𝑀
𝑑(
4

3
𝜋𝑟3)

(
4

3
𝜋𝑟3)

= 3𝑀
𝑑𝑟

𝑟
                        (IV−16) 

Substituting Eq. (IV−14) into (IV−16) gives: 

π0 = 3𝑀
∆𝑙

𝑙∞
                                                                 (IV−17) 

where M is the Young’s modulus of the gel. 

D−2. Boundary Conditions. 

D−2.1 Initial state of the gel in solution. 

The stress acting on the surface of the gel in the initial state when the gel  is immersed in the 

solvent is: 

𝜎𝑟|𝑟=𝑙0 = 𝑀
𝜕𝑢(𝑟.𝑡)

𝜕𝑟
|
𝑟=𝑙0

= 0                                                    (IV−18) 

The implication of Eq. (IV−18) is that, as the gel is immersed in the solvent, the osmotic 

pressure acting on the surface of the gel is zero. 

D−2.2 Final swollen state of the gel. 

As the gel swells to equilibrium, the chain relaxation approaches completion, meaning the 

osmotic pressure approaches zero. 

𝜎𝑟|𝑟→𝑙∞ = 𝑀
𝜕𝑢(𝑟.𝑡)

𝜕𝑟
|
𝑟→𝑙∞

→ 0                                                (IV−19) 
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D−3. Solution  

Solving Eq. (IV−12) analytically, incorporating the accompanying initial and boundary 

conditions gives [222]: 

𝑢(𝑟. 𝑡) = ∑ 𝑄𝑛(𝑟)exp (−𝐷𝑘𝑛
2𝑡)∞

𝑛        (IV−20) 

where 𝑄𝑛 and 𝑘𝑛 are given as: 

𝑄𝑛(𝑟) = −6
∆𝑙

𝑙∞

(−1)𝑛

𝑘𝑛
[
𝑐𝑜𝑠𝑘𝑛𝑟

𝑘𝑛𝑟
−
𝑠𝑖𝑛𝑘𝑛𝑟

(𝑘𝑛𝑟)
2]       (IV−21) 

 

𝑘𝑛 =
𝑛𝜋

𝑙∞
                                                                                   (IV−22) 

To understand how the surface of the gel, 𝑙(𝑡), deforms with time. Let us relate the deformed 

configuration 𝑙(𝑡) to the reference configuration 𝑙∞in the following way: 

                      𝑙(𝑡) = 𝑙∞ + 𝑢(𝑙∞, 𝑡)                                                                          (IV−23)       

The deformation of the surface of the gel,  𝑢(𝑙∞, 𝑡), can be determined from Eq. (IV−20): 

  

𝑢(𝑙∞. 𝑡) = −6∆𝑙∑
1

𝑙∞

(−1)𝑛

𝑛𝜋
𝑙∞

[
𝑐𝑜𝑠

𝑛𝜋
𝑙∞
𝑙∞

𝑛𝜋
𝑙∞
𝑙∞

−
𝑠𝑖𝑛

𝑛𝜋
𝑙∞
𝑙∞

(
𝑛𝜋
𝑙∞
𝑙∞)

2] exp [−𝐷 (
𝑛𝜋

𝑙∞
)
2

𝑡]

∞

𝑛

 

𝑢(𝑙∞. 𝑡) = −6∆𝑙∑
(−1)𝑛

𝑛𝜋
[
𝑐𝑜𝑠𝑛𝜋

𝑛𝜋
−
𝑠𝑖𝑛𝑛𝜋

(𝑛𝜋)2
] exp {−𝐷 (

𝑛𝜋

𝑙∞
)
2

𝑡}

∞

𝑛

 

= −∆𝑙∑
6

(𝑛𝜋)2
exp {−𝑛2𝐷 (

𝜋

𝑙∞
)
2

𝑡}

∞

𝑛

 

𝑢(𝑙∞. 𝑡) = −∆𝑙 ∑
6

(𝑛𝜋)2
exp (−𝑛2 𝑡 𝜏⁄ )

∞
𝑛                                                            (IV−24) 

where the time constant referred to as the longest relaxation time,  𝜏 is: 

𝜏 =
𝑙∞
2

𝜋2𝐷
                                                                                                       (IV−25) 
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Rewriting Eq. (IV−24) in normalized form gives: 

𝑢(𝑙∞.𝑡)

∆𝑙
= −∑

6

(𝑛𝜋)2
exp (−𝑛2 𝑡 𝜏⁄ )

∞
𝑛                              (IV−26) 

The behaviour of the plot of displacement normalized with ∆𝑙 , that is, (𝑢 ∆𝑙⁄ ) against time 

normalized with the time-constant, (𝑡 𝜏⁄ ) for 𝑛 = 1, gives approximately the change in volume 

of the spherical gel. That is, combining Eq. (IV−20) and (IV−26), for 𝑛 = 1: 

−
𝑢(𝑙∞.𝑡)

∆𝑙
=
𝑙∞−𝑙(𝑡)

𝑙∞−𝑙0
≅

6

𝜋2
exp (− 𝑡 𝜏⁄ )        (IV−27) 

                                                                                                                                            

 

 

 

Figure A4b: The position of a particle on the surface of the gel in the initial (radius, 𝑟0), at 

any time t (radius, 𝑟 (𝑡)), and the final/reference (radius, 𝑟∞) states of the gel. 

 

From Eq. (IV−27), we can estimate the volume or radius of the gel at any time, r(t) if the 

volume or radius of the gel at equilibrium swelling, 𝑟∞ is known. Therefore: 

𝑟(𝑡) ≅ 𝑟∞ − [
6

𝜋2
exp(− 𝑡 𝜏⁄ )] (𝑟∞ − 𝑟0)        (IV−28) 

where  

                                    𝜏 =
𝑟∞
2

𝜋2𝐷
            (IV−29) 
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From Eq. (IV−28) and (IV−29) it is clear that 𝜏 is directly proportional to 𝑟∞
2, but inversely 

proportional to (
𝑢(𝑙∞.𝑡)

∆𝑙
). Thus, it is established that the rate at which the gel swells or shrinks 

(or the dynamic swelling ratio) at a constant collective diffusion coefficient, D, depends on the 

size of the gel (that is, the rate of swelling decreases as the size of the gel increases). 

Further, the time-evolutions of the volume or radius of the gel 𝑟(𝑡), by this approach, will 

require a knowledge of the size of the gel at equilibrium swelling state, 𝑟∞. This can be obtained 

from equilibrium swelling experimental data. 

 

D−4. Collective Diffusion Coefficient, D 

To study the pH sensitivity of hydrogel, it is important we establish the relationship between 

the ionic strength (or pH of the surrounding medium) and the mechanical/elastic properties of 

hydrogel such as: the bulk modulus, K, and the shear modulus, G. In addition, another 

important relationship to be considered is the frictional coefficient, f, between the gel and the 

surrounding medium. All these parameters collectively characterize the diffusion coefficient, 

D, defined as: 

𝐷 =
𝐾+

4𝐺

3

𝑓
                                                                                   (IV−30) 

Where these parameters are difficult to measure, the collective diffusion coefficient can be 

measured using either dynamic light scattering (DLS) method [223] or by rheological 

techniques [224].  

D−4.1 Shear modulus, G 

One way to determine shear modulus of a polymer, theoretically, is to use the crosslink density, 

𝜇(m−3) and number of network strands between each crosslink, 𝜈(m−3), through the following 

relation:  

𝐺 = (𝜈 − 𝜇)𝑘𝑇                                                                        (IV−31) 

where  𝑘 = 1.3 × 10−23 𝐽 𝑚3⁄ , is the Boltzmann constant, and T is the temperature. 
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Alternatively, the shear modulus, G, can be determined from known mechanical properties of 

the gel such as: Young’s Modulus, E (which is a pH-dependent property of the deformed gel), 

and poison ratio 𝜐𝑝, through the relation: 

𝐸 = 2𝐺(1 + 𝜐𝑝)                                                                      (IV−32) 

For Elastomers, 𝜐𝑝 ≅ 0.5, which implies that 𝐸 ≅ 3𝐺. 

Experimentally, G can be determined as a function of pH of the surrounding medium. Horkay 

et al. [225] observed an inverse relationship between shear modulus of crosslinked hydrogel 

(reported to increase from 29 ± 0.5 kPa to 32 ± 0.5 kPa) and the pH (reported to decrease 

correspondingly from 7.0 to 1.0) of the surrounding medium. Highlighting the importance of 

using pH-dependent shear modulus data for estimating the collective diffusion coefficient of 

pH responsive hydrogels.  

Thus, shear modulus data for estimation of D, at different pH of the surrounding medium can 

be obtained from uniaxial compression measurement at a fixed pH value. 

D−4.2 Bulk Modulus, B 

Bulk modulus of the gel can be obtained from the correlation of Poisson ratio with Young 

modulus and bulk modulus given as: 

𝐸 = 3𝐵(1 − 2𝜐𝑝)                                                                     (IV−33) 

D−4.3 Frictional coefficient, f 

The Frictional coefficient, 𝑓 of a crosslinked polymer molecule immersed in dilute solution as 

a function of the total concentration of the polymer takes the general form [226]: 

𝑓

𝑓0
= 1 + 𝑘𝑠𝑐 + ⋯           (IV−34) 

where  𝑓0 is the frictional coefficient at infinite dilution (i.e., the value of f in the limit of zero 

concentration), , and c is the total concentration of the crosslinked polymer. In addition, 𝑘𝑠 and 

other coefficients of the higher powers of c are  independent of the total polymer concentration 

(i.e., including both the main constituent and crosslinker). 
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For soft sphere, Pyun and Fixma [226] derived the frictional ratio as a function of polymer 

volume fraction before swelling as: 

𝑓

𝑓0
= 1 + [7.16 − 𝜅(𝐴)]𝜈2

0 +⋯                                                (IV−35) 

where  

𝜅(𝐴) = 6.39 √𝐴 + 2.6⁄                                                    (IV−36) 

where A is an adjustable parameter 

By Stoke’s law [226] 

𝑓0 = 6𝜋𝜂𝑟0                                                                              (IV−37) 

where 𝜂 is the dynamic viscosity of the surrounding fluid. Assume the surrounding fluid is 

water at 20℃, then the viscosity, 𝜂 = 0.001002𝑘𝑔 𝑚. 𝑠⁄ . 

The polymer volume fraction (i.e., the total weight concentration) of the unswollen crosslinked 

hydrogel, 𝜈2
0 at as prepared state is given as: 

   𝜈2
0 = (%𝑐𝑐𝜐𝑐 +%𝑐𝑔𝜐𝑔) (%𝑐𝑐𝜐𝑐 +%𝑐𝑔𝜐𝑔 + (100 − (%𝑐𝑐 +%𝑐𝑔)) 𝜐𝑤)⁄     (IV−38) 

 

Experimentally, the dependence of the frictional coefficient of poly(acrylamide) gel was 

studied by   under conditions of constant molar concentration of the crosslinking agent at 1 

mol%. The results showed that concentration of the gel depends on the frictional coefficient by 

a power law relation, given as: 

𝑓 = 𝐶𝑓(𝜈2
0)1.5                                                                              (IV−39) 

where 𝐶𝑓 is a numerical constant.  

Therefore, we can use either Eq. (IV−35), (IV−36), and (IV−37) or (IV−39) to estimate the 

value of frictional coefficient to be used in Eq. (IV−28) to predict the time-dependent swollen 

(or shrunk) volume of crosslinked hydrogel. 

 


