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Abstract

The growing popularity of ubiquitous computing devices, such as smartphones, wristbands and
smartwatches, has caused an increase in the scale of collecting physiological and psychological
data on their growing number of users. This availability of digital health data outside the normal
confines of hospitals and other institutions provides a fundamental opportunity for researchers
to infer individual behaviour and health at the scale. An application of ubiquitous computing
for digital health is the development of automated systems that are robust enough to monitor
sleep stages noninvasively outside the sleep laboratory. However, turning the data into actionable
insights requires computational methods that can infer sleep stages from physiological time-series
data related to parts of the brain’s activity.

This thesis describes the novel deep-learning methods that leverage wearable sensing data
for non-invasive sleep stage monitoring in large-scale populations. Firstly, the study performs
a systematic evaluation of the sleep stage classification based on traditional machine learning
models and neural networks using actigraphy and cardiac sensing data. The proposed deep
ensemble model outperforms traditional algorithms and the deep learning baselines. However,
the performance of the automated sleep stage monitoring algorithm can be affected by personal
attributes such as age, BMI and sleep disorders, etc. Therefore, this work proposes a novel
network based on the variational autoencoder, which can disentangle the feature space into
personal attribute-specific features that are irrelevant to sleep stage classification and personal
attribute-free features that only contain the sleep stage-relevant information. The proposed
network can effectively reduce the effects of personal attributes on model performance. Finally,
multimodal fusion strategies and methods are systematically investigated. The proposed fusion
methods can significantly improve the performance of three-stage sleep classification on a
large clinical sleep study dataset. The proposed methods have also experimented on a small
sleep dataset collected from consumer-grade wearables. The empirical results demonstrate that
wearable sensors can classify three stages of sleep with 78 % accuracy. These proposed methods
generate robust predictions and may be used for long-term free-living sleep stage monitoring.
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Chapter 1. Introduction

The latest development in Ubiquitous technology, such as wearable devices and mobile comput-
ing, along with new types of sensors, provides a new platform for long-term sleep and health
monitoring. Consumer-grade and research-grade electronics such as wearable, nearable and
mobile devices are now capable of supporting objective, inexpensive human activity monitoring,
and can also provide clinically relevant data for scalable behaviour research on a large scale.
For example, the UKBiobank accelerometer study included more than 85,670 subjects, each
subject wearing an actigraph (a device equipped with accelerometers used for measuring body
movement) over a recording period of 7 days [7]. Through analysis of UKBiobank data, a
previous study identified 26 genetic associations related to sleep quality measurements and
10 genetic associations related to night sleep duration [8]. Another longitudinal sleep study
involving more than 120,000 individuals with up to 2 years of monitored sleep duration data
concluded that shorter sleep duration (hours slept at night) and greater day-to-day variability of
sleep duration (standard deviation of hours slept at night) are positively associated with body
mass index (BMI) [9]. These studies demonstrate that long-term sleep monitoring using wearable
sensors is essential to understanding the relationship between behaviour and health, which will
ultimately benefit public health research.

Physiological signal data extracted from commercial wearable devices are now used to
develop sleep/wake and sleep stage classification algorithms to overcome limitations of ques-
tionnaires and laboratory measurements, with the goal of linking the sleep data to clinical
observations. The studies based on wearable sensing data will eventually accelerate the advance-
ment of preventive and predictive medicine. This chapter will first describe the implications of
monitoring sleep in longitudinal free-living scenarios. Secondly, the state-of-the-art methods
for sleep sensing research using ubiquitous computing techniques will be discussed, and the
discussion will also illustrate how machine learning and deep learning techniques can be used
for sleep monitoring outside the laboratory. Finally, this chapter will discuss the outstanding
challenges in human sleep monitoring using wearable sensor data and illustrate the contributions
of the original research presented in this thesis in addressing these challenges.

1.1. Sleep, Health and Society

Sleep is a reversible physiological state that is essential for life, health, and performance. The
functions of sleep are not yet fully understood. It is well known that it can restore energy,
promote healing, rejuvenate the body system, interact with the immune system, consolidate
memory and maintain mental health [10–13]. As a result of its importance to vital human
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processes and the incomplete understanding of its function, accurate sleep monitoring is of
interest to the understanding of human health and is becoming an active area of research for
the ubiquitous computing community [14–17]. Insufficient sleep or poor quality of sleep can
have a negative impact on our judgment and cognitive performance. Long-term sleep deprivation
or irregular sleep pattern are associated with the development of diseases [18, 19]. Therefore,
the study of sleep characteristics represents a public health priority [20–22]. In addition, diet and
physical activity have been shown to correlate with sleep quality [23], and they are interrelated
and affect each other. In the past few decades, public health organisations in many countries
have promoted healthy eating and regular exercise. Recently, poor sleep has also attracted public
health attention [24].

So far, mounting evidence has shown that human sleep is regulated by circadian rhythm,
homeostatic and behavioural factors [25, 26]. Regarding the behavioural factors, poor sleep
quality [27] is often related to stress, smoking, consumption of sugary beverages, work and
financial pressure, long and excessive work hours, insufficient physical activity and poor sleep
hygiene [20, 28]. Clinical sleep studies have found other factors that interfere with sleep, such as
ageing factors, chronic disease (e.g., cardiovascular disease or obesity), mood disorders (e.g.,
depression or anxiety) and sleep-related disorders, such as insomnia and obstructive sleep apnoea
(OSA) [29]. The mental and physical damage caused by a single night of sleep deprivation may
exceed the damage caused by the same lack of exercise or food [30].

Besides its ramifications for the health of individuals, sleep can also affect different areas of
society and the economy. A study conducted by RAND in 2016 quantified the combined cost of
insufficient sleep in five OECD (the organisation for economic co-operation and development)
countries (Canada, USA, UK, Germany and Japan) is estimated at $600 billion a year [20]. The
two main consequences of insufficient sleep and poor sleep quality are cognitive impairment and
fatigue. Between 2005 and 2009, there was an estimated average of 83,000 car accidents related
to driving when drowsy, resulting in more than 6000 deaths in the United States each year [31].
In certain professions, such as operating construction cranes or driving public transport vehicles,
poor sleep can increase life-threatening risks [32]. The odds of work accidents were found to be
nearly double in workers with OSA [32].

Given the fact that the role of sleep is related to well-being, personal health, disease and
mortality and that it has significant social and economic impacts, researchers are increasingly
interested in automated continuous sleep monitoring. The latest developments in digital con-
sumer/commercial electronic products provide a less intrusive way to continuously monitor
our physiological status. In addition, advanced deep learning tools have paved the way for the
design of advanced sleep monitoring algorithms that may recognise patterns of sleep/wake or
different stages of sleep based on physiological signals. The advances in computational methods
have accelerated objective and non-invasive sleep monitoring for large-scale populations in a
free-living fashion, which may improve our understanding of the impact of sleep on health and
diseases [33].
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1.2. Sleep and Well-being

The rise in life expectancy in the 21st century is continuing or even accelerating, not only in
developed countries but also in developing countries. Although the increase in lifespan is indeed
a great achievement in human history, it has brought some practical and economic challenges
to individuals, families and society, such as the quality of later life. If it is a life of illness and
disability, the benefits of a longer life cannot be realised. Neurodegenerative diseases such as
Parkinson’s and Alzheimer’s may lead to various forms of disability and loss of independent
living ability [34]. Early detection, treatment or continuous care may reduce the severity or delay
disease onset.

A society with an ever-increasing population of elderly or disabled people will impair social
productivity and limit the growth of the economy, and elderly care will increase the financial
burden on public finances as well as families. The early onset of several neurodegenerative
diseases may be accompanied by abnormal sleep behaviour. Such as, the rapid eye movement
(REM) sleep behaviour disorder has been discovered as one of the early symptoms of Parkin-
son’s [34–36]. This clinical phenotype demonstrated the potential of developing automated
algorithms based on the physiological signals that may be collected from everyday wearable
electronics [37].

In recent years, with the continuous development of digital health and preventive medicine,
the pre-screening of diseases and monitoring of health status through consumer electronics has
become prevalent in health research. One objective of preventative medicine is to delay the
severity of disability through pre-screening so that the elderly can remain independent for as
long as possible. Another goal is to delay the onset of disease through preventative care at an
earlier age (e.g., childhood and early adulthood) [38]. Digital phenotype monitoring may provide
an alternative method to pre-screening for early symptoms of neurodegenerative disease [38].
The physiological signals collected from wearable devices can provide ambulatory and real-time
monitoring of our body and health status, which is essential to personalised healthcare. It can
also support longitudinal studies to understand the correlation between sleep and disease.

1.3. Sleep Stage Monitoring

Sensors have been used to study sleep for decades. Traditionally, polysomnography (PSG) is the
gold standard and the de-facto technique for sleep monitoring and assessment in clinical and
laboratory settings as well as for diagnosing a subset of sleep disorders [39]. PSG recording
can be classified into five stages, i.e., wake, REM and three types of non-rapid eye movement
(NREM) sleep, including N1, N2 and N3 (More details regarding these sleep stages will be
introduced in chapter 2) [40]. According to the American Academy of Sleep Medicine (AASM)
rules [41], each stage lasts 30 seconds (i.e., a sleep epoch). Deep non-rapid eye movement sleep
(N3) or slow wave sleep (SWS) is known to be the most “restorative” sleep stage, which controls
hormonal changes that affect glucose regulation [42]. Long-term reduction in NREM sleep
may adversely affect glucose homeostasis and increase the risk of type 2 diabetes [43]. REM
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sleep dysregulation has played a central role in depression and Parkinson’s studies [44, 45]. For
instance, reduced REM sleep latency, along with increased REM sleep duration and REM sleep
density, have been considered to be objective indicators of depressive disorder and inversely
correlated to its severity [46, 47, 34]. The increased health research density in digital phenotypes
by using inexpensive, mass-produced consumer wearables requires reliable algorithms that can
classify sleep stages in longitudinal settings [48]. Beyond health and clinical applications, sleep
monitoring has also been welcomed by self-trackers in the past decades [49].

Understanding the relationship between sleep stages and health can bring huge benefits to
society. However, PSG study is expensive and burdensome, it is not suitable for more than two
consecutive nights of sleep monitoring. Without using PSG equipment, the Actigraphy (embed-
ded with accelerometers) provides a valid method for detecting sleep/wake and is commonly
used for ambulatory monitoring of sleep time or rhythms [50, 51]. However, it is limited to
monitoring sleep-wake as the actigraphy data may not contain sufficient information to discern
sleep stages. The wrist movement does not reflect all the brain activities.

Heart motion can be monitored by the electrocardiogram (ECG), which can be used to
derive heart rate (HR). HR is characterised differently in different sleep stages due to the
substantial difference in the regulation of the autonomic nervous system (ANS) [52, 53]. The
ANS system is regulated by sympathetic activity and parasympathetic (or vagal) activity which
has ’opposite’ actions where one activates a response in physiology while the other suppresses
the stimulation [54]. The heart rate variability analysis is a well-established tool to characterise
the cardiac autonomic activity [55]. Previous sleep physiological studies have demonstrated
some characteristics vary over sleep stages [52]. This means that cardiac and movement activity
can, in turn be used to separate sleep stages, which is of significant clinical relevance. Recent
studies also demonstrated the feasibility of using these two modalities with machine learning and
deep learning models for sleep stage classification [56]. These studies were based on non-open
source data sets, which became an obstacle to developing new algorithms and reproducing results.
Therefore the prospects of using these algorithms in real-world applications are further limited.

Many consumer electronics can monitor sleep stages, such as the Apple Watch, Fitbit band
and Xiaomi band. Other ubiquitous sensing technologies were studied, including actigraphy [50],
smart watches [6], WiFi [57], bed sensors [58] and radio signal based equipments [59], etc.
Among them, in terms of reliability and usability, cardiac and movement (upper limb) sensing
are considered promising modalities. The HR or heart rate variability (HRV) and limb movement
data can be easily collected from lightweight research/consumer-grade devices (e.g., Apple
Watch [6]). More detailed discussions regarding the emerging sleep monitoring technologies
will be introduced in chapter 2.

These consumer wearables are capable of communicating with smartphones, which facilitates
data collection and storage when used in large-scale research. However, due to the algorithms
and data processing pipeline not being transparent to researchers, they were excluded from use
in clinical sleep monitoring settings [60]. Lack of transparency can have an impact on the results,
which may potentially make previous research irrelevant and incomparable, especially for open
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science research. But the easy-to-collect nature of cardiac and movement sensing provided a
potentially scalable method for large-scale and long-term sleep monitoring [1]. Longitudinal
sleep monitoring with accurate details of sleep stages can be valuable for health and medical
research. Therefore, the development of sleep stage algorithms based on wearable sensors can
better serve the development of sleep science.

1.4. Problem Statement

The development of sufficiently robust sleep stage classification algorithms that can be compatible
with wearable devices to discern human sleep/wake and sleep stages is an essential component
of health applications in the area of ubiquitous computing and medical engineering. Long-term
non-invasive sleep monitoring would provide a valuable solution for clinical applications, with
the potential to improve human well-being. In practice, monitoring the sleep stage without using
electroencephalogram (EEG), electrooculogram (EOG), and electromyography (EMG) signals
poses a major challenge for sensor technology and algorithm development.

Recent research demonstrated that sleep stages could be discerned using handcrafted features
that describe the physiology of cardiac activity and body movement activity [61]. In comparison
with PSG scoring results, the performance of these methods remains low, suggesting a strong
need for further improvement in terms of the model robustness and generalisation. In addition,
many of these studies are not based on open-source datasets and code, the data pre-processing
pipeline is also inconsistent between studies, which makes it impossible to conduct further
comparable studies or reproduce the results. This is the first challenge for long-term free-living
sleep monitoring using wearable sensing technology. In order to allow more health researchers
to use sleep stage monitoring algorithms and to better serve algorithmic democracy, there is a
need to develop advanced algorithms for sleep stage monitoring with adequate accuracy through
open-source solutions.

Sleep stage classification based on wearable sensing data may present additional challenges.
The proportion of each sleep stage duration is imbalanced and the amount of annotated sleep
data is often insufficient. In addition, cardiac sensing data is known to contain personalised
information such as health conditions. The inter-subject and intra-subject variability pose
challenges to developing robust models. Demographic factors, including age, gender and
body mass index, and breath-related sleep disorders, can be factors that cause differences in
signals between subjects [62, 63]. These factors are also called personal attributes and can
have a significant negative impact on the model’s performance. This is the second challenge in
algorithm development, which is to address the distribution differences among subject groups. It
is necessary to develop models that can extract invariant features or make the model less affected
by personal attributes.

Sleep stage classification monitoring can be realised by using multimodal sensing techniques,
and how to best combine these modalities is the third challenge of this thesis. The third work of
this thesis is to investigate whether recent advances in machine learning have shown promising
performance in similar health applications, especially the use of deep learning is suitable for
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sleep/wake and sleep stage classification using wearable sensors; and to explore how algorithm
design can extract the most relevant information for sleep stage classification tasks. The general
objective of this thesis is to achieve performance improvement with respect to the reliability and
robustness of classifying sleep stages using movement and cardiac sensing data. It is important
to note that the population used in this thesis consists primarily of adults with varying health
conditions, while sleep in teenagers, children and infants is not covered.

1.5. Contributions and Thesis Outline

This section provides an overview and outline of the chapters in this thesis. Since most of the
research in this thesis is the result of collaborations, this chapter will also introduce relevant
published papers and the author’s contributions to each paper.

1. Introduction
This chapter focuses on how ubiquitous computing techniques can be used to monitor
sleep/wake and sleep stages, and the main challenges of monitoring sleep outside the sleep
lab. It is imperative that these challenges should be overcome in order to develop practical
tools that can monitor the human sleep process outside of the sleep laboratory.

2. Sensing and Analysis of Sleep/Wake and Sleep stages
In chapter 2, the author introduces the sleep physiology background, and the definition of
each sleep stage, and summarises different commercial products and research prototypes
together with their roles in sleep research. Each sensing approach was investigated with
respect to usability, infrastructure requirements, performance, and limitations in different
practical scenarios. Moreover, the capabilities of several traditional machine learning
methods and deep learning methods to discern sleep/wake and sleep stages are investigated.
Finally, the challenges of developing multi-modal sensing algorithms based on wearable
sensors are summarised, especially using accelerometer and electrocardiogram (ECG).
The author’s contribution can be seen below:

Perez-Pozuelo, I., Zhai, B., Palotti, J., Mall, R., Aupetit, M., Garcia-Gomez, J.
M., ... & Fernandez-Luque, L. (2020). The future of sleep health: a data-driven
revolution in sleep science and medicine. NPJ digital medicine, 3(1), 1-15

The author of this thesis wrote the manuscript of data curating, data pre-processing, feature
extraction, machine learning and data-driven methods. The author also contributed to the
sleep-sensing section.

3. Benchmarking Sleep/Wake and Sleep Stages Using Wearable Sensors
In chapter 3, the author benchmarked the capabilities of several traditional machine
learning methods and deep learning methods to discern sleep/wake and sleep stages using
limb movement data and ECG-derived heart rate data. It serves as a benchmark study
and an example implementation of the pipeline approach using multimodal data. This
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approach advocates for model transparency, alongside reproducibility by exploring these
methods in the only open-access dataset, which includes participants with sleep disorders.
The performance metrics of specific algorithms are presented in this work, along with
guidance on algorithm selection based on classification tasks. Moreover, in this chapter, a
deep ensemble model architecture was introduced that shows promising improvements in
performance across different sleep stage classification tasks. The final output also includes
an open-source toolkit to facilitate the reproducibility of experiments. The work in this
chapter is mainly to address the first challenge. The author’s contribution can be seen
below:

Zhai B.*, Perez-Pozuelo, I.*, Clifton, E. A., Palotti, J., Guan, Y. (2020). Mak-
ing sense of sleep: Multimodal sleep stage classification in a large, diverse
population using movement and cardiac sensing. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(2), 1-33. * Equal
contribution to this work

In this work, the author of this thesis co-planned the project and designed the models and
experimental plans in collaboration with collaborators. The author generated the python
scripts for data curating, data pre-processing, feature extraction, traditional machine
learning models, deep learning models, sleep stage and sleep metrics evaluation, and
conducted all the experiments. The author proposed the deep ensemble model architecture
and the time deviation metric. The author also wrote the related work, methodology, and
results sections, and contributed to the writing of other sections.

The results of this work suggest that three-stage sleep classification is the most promising
task, based on data collected from wearable sensing devices and that the performance
of sleep/wake classification can be improved. However, it is difficult to distinguish the
NREM sleep stages of the four-stage and five-stage sleep classification tasks without using
EEG, EOG and EMG.

4. DisSleepNet
The work in chapter 4 aims to address the second challenge. This chapter aims to explore
the use of disentanglement learning to extract personal attributes-free (e.g., age, sleep
apnoea) representations for three-stage sleep classification using ubiquitous sensing. One
of the common approaches is to manually extract clinically relevant descriptors and then
feed them to deep learning models to learn high-level abstractions. However, cardiac
and movement sensing can be affected by personal attributes such as age, BMI and sleep
disorders (e.g. sleep apnoea). To mitigate the effects of these personal attributes, this
chapter investigates the use of novel methods to identify representations that are less
affected by personal attributes.

In preparation to submit to International Joint Conference on Artificial Intelligence:
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Zhai, B., Guan, Y., DisSleepNet: Disentanglement Learning for Personal
Attribute-free Three-stage Sleep Classification Using Wearable Sensing Data

In this work, the author of this thesis conducted the planning, coding, and experimenting
under the supervision of co-authors.

5. Ubi-SleepNet
Although the deep learning methods achieved a higher performance compared with tradi-
tional machine learning methods, learning and summarising effective representations from
multi-modal wearable sensing data, in a way that takes advantage of the complementary
and redundancy of multimodal data, is a challenging task for sleep stage classification.
This is because there are no established clinical rules for using HR/HRV features and
activity counts for sleep stage annotation in sleep physiology research.

To address this third challenge, in chapter 5, the author systematically evaluates the
prevalent multimodal fusion techniques for wearable sensor fusion. The proposed fusion
approaches have significantly improved the model’s robustness. Furthermore, the author
also adopted a gradient-based visualisation method on deep learning models to suppress
less relevant information from the handcraft features. Experimental results conducted with
human subjects demonstrated that the final simplified visualisation results increased the
understanding of the decision-making process, based on the wearable signals, with respect
to each sleep stage. The author’s contribution can be seen below:

Zhai, B., Guan, Y., Catt, M., & Plötz, T. (2021). Ubi-SleepNet: Advanced
Multimodal Fusion Techniques for Three-stage Sleep Classification Using
Ubiquitous Sensing. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 5(4), 1-33.

In this work, the author of this thesis carried out project planning, coding, and experimen-
tation.

6. Summary In chapter 6, the author provides a summary of the challenges, insights and
results of the research presented in this thesis. It highlights the current progress with
respect to sleep stage monitoring using wearable sensors and explores how future work
could extend such approaches to improve sleep stage monitoring performance.
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Chapter 2. Background and Literature Review

Human beings spend about one-third or more of their lives sleeping. Sleep is vital to homeostasis,
memory, cognitive capability and behavioural performance. In clinical sleep practice, overnight
polysomnography (PSG) paired with clinical evaluation is deemed the gold standard as well as
the de-facto technique for objective assessment of sleep architecture/pattern and for diagnosing
sleep-related disorders such as parasomnia, sleep-disorder breathing (apnea and hypopnea), and
REM sleep behaviour disorder [64, 40]. PSG-based sleep assessments are often recorded in a
controlled environment, such as a sleep lab, which requires sleep clinicians to set up the PSG
recording equipment. The sleep recordings also require professional annotations [40]. Over the
past two decades, various portable devices have developed to monitor sleep in less obtrusive
ways [65]. The motivation is to reduce the cost of monitoring and the burden of acquiring
data, which can ultimately be used in the long-term, more natural environment. However, data
acquisition is a profound challenge, despite the inclusion of less obtrusive and stigmatising
long-term sensing mechanisms. Long-term sleep monitoring may be compromised by missing
data, which may mislead pre-screening for sleep-related health problems. This chapter begins
with a discussion of sensing techniques for sleep data acquisition in clinical and free-living
settings, including an overview of traditional and novel approaches and their advantages and
disadvantages. Secondly, data pre-processing and feature extraction methods are introduced.
Finally, the strengths and limitations of emerging algorithms are discussed with a particular focus
on novel data-driven technologies, including machine learning and deep learning approaches.

2.1. Traditional Sleep Monitoring in Laboratory Settings

PSG study has been adopted in clinical sleep assessment since the 1960s [66]. It consists
of the various type of sensors (e.g., electrodes attached to the skin) that can measure: (1)
brain activity through electroencephalogram (EEG), (2) airflow (e.g., using thermistors or nasal
pressure transducers), (3) breathing effort and rate through respiratory inductive plethysmograph
(RIP), (4) blood oxygen levels (e.g., using pulse oximeters), (5) body position (e.g., using
accelerometers), (6) eye movement through electrooculography (EOG), (7) electrical activity
of muscles through electromyography (EMG) and (8) heart rate through electrocardiogram
(ECG) or pulse oximeters. Figure 2.1 and figure 2.2 show the PSG equipment used in the sleep
laboratory and the collected signals.

Traditionally, PSG studies are expensive and require participants to sleep in a laboratory
setting. The data are then scored by sleep experts. Due to its limitations, PSG remains impractical
for long-term sleep monitoring. As a result, the scalability of this technique for large-scale
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Figure 2.1 A typical polysomnography (PSG) equipment used in sleep laboratory
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population-based studies is very limited, particularly when the aim is to assess typical sleep
patterns in a free-living, naturalistic condition.

Ambulatory PSG is an alternative device that typically uses a smaller number of sensors,
such as by reducing EEG channels. This device can be used not only in the laboratory but also
for sleep monitoring at home [41, 67, 68]. However, although the Ambulatory PSG provides a
simpler solution to address some issues, it remains both expensive and burdensome [69].

Another conventional method used to assess sleep in clinical settings is the videosomnography
(VSG). VSG uses cameras to record sleep activities during PSG studies. These video recordings
and the PSG data were then used to assess sleep disorders in clinical settings. Recent advances in
telemedicine have made the use of home VSG increasingly possible [70]. However, VSGs suffer
from similar scalability issues to PSGs, as they often require experts to score in a time-consuming
manner.

Figure 2.2 An example of PSG data for a sleep epoch (30s) base on the selected channels (Sampling Rate
at 256Hz). Given these PSG signals, a red dot that appears on the hypnogram indicates the corresponding
sleep stage.
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2.2. Sleep Architecture

Human sleep can be divided into two categories, which include rapid eye movement sleep (REM)
and non-rapid eye movement sleep (NREM). REM sleep is often associated with dream activities
[71]. According to the AASM guidance, NREM sleep can be further categorised into three stages:
N1, N2, and N3, each owning to its own specific characteristics and distinct EEG patterns [41].

2.2.1. NREM Sleep

The N1 stage is the state in which the brain transitions from wakefulness to sleep. It is the lightest
stage of sleep, with a frequency of 4-7 Hz and an abundance of theta waves, accompanied by
reduced alpha waves (8-12 Hz), often seen during wakefulness [40]. The N2 stage can last 20
minutes. It often has a unique characteristic, including bursts of waves with a frequency of 11-16
Hz [71]. It can also often be recognised by the appearance of k-complexes, which are brain
waves with a duration greater than 0.5 seconds [40]. Compared to N1 and N2, N3 is the deepest
stage of sleep in NREM sleep. During this time, our body relaxes further, and our heartbeat and
breathing decrease further [40]. The pattern in the EEG signal is characterised by the presence
of slow waves with a frequency of 0.5 - 3 Hz, also known as delta sleep or slow-wave sleep
(SWS) [40]. Research has shown that this stage is critical for the recovery and growth of bodily
tissues. In the early sleep cycle, stage N3 usually lasts 20 to 40 minutes [71].

2.2.2. REM Sleep

The REM sleep stage is characterised by sharp theta waves or patterns that appear in the EEG
signal, like an awakening. It may account for a quarter of total sleep time [71]. It is also associated
with the lowest muscle tone, and our bodies are often temporarily paralysed in addition to the
muscles that control eye movement and those that control cardiorespiratory activity [40]. During
this stage of sleep, although our eyes are closed, the eyeballs sometimes move rapidly, so it is
often referred to as REM sleep.

The alternate appearance of NREM sleep and REM sleep constitutes a sleep cycle. A
healthy person typically has 4-5 sleep cycles in one night [40]. As the sleep cycle increases, the
proportion of REM sleep increases, and the proportion of NREM sleep decreases. Five sleep
stages can be annotated by human experts from the recorded PSG signals, i.e., by analysing the
characteristics of EEG, EMG and EOG.

2.3. Sleep Monitoring Outside the Laboratory

Accurate long-term sleep monitoring in natural environments could help researchers understand
the impact of sleep on our health. Recent advances in miniaturised sensors present an excel-
lent opportunity to develop wearable sensing solutions for the sleep monitoring of free-living
individuals at the population level. Several studies investigated sleep monitoring outside the
lab, including the use of actigraphy, heart rate sensors and other wearable technologies [72–
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77]. Several previous works suggest that using a single modality such as heart rate may not
be sufficient to accurately identify detailed sleep stages [78]. In some cases, REM sleep and
wakefulness may appear to have a similar range of values on HRV features, but hands may not
move during REM sleep. The availability and scope of digital products for measuring sleep have
expanded significantly over the past few decades. Consumer-grade devices that can monitor
sleep are becoming smaller and more affordable [1]. However, comparing the performance
of consumer devices and clinical devices, using consumer products for clinical-grade sleep
monitoring remains a challenge. To date, few studies have validated or systematically evaluated
the reliability of these products against gold standard PSGs [79].

2.3.1. Sleep Diary and Actigraphy

In clinical sleep monitoring settings, in addition to PSG devices, sleep diaries, actigraphy and
accelerometers are also widely accepted in the study of human activity and circadian cycles
in free-living environments [80]. Sleep diaries are also a widely accepted tool for subjective
sleep/wake and sleep quality assessment. However, it suffers from strong recall bias and may
contain less accurate sleep measurement, and cannot record sleep stage duration.

Actigraphy is a method for detecting sleep/wake and is commonly used for ambulatory
monitoring of sleep time or rhythms [50, 51]. It is a type of wearable wristband that consists
of various sensors that can monitor the light-off time and the movement of the limbs (using an
accelerometer) [50, 51]. However, it is limited to monitoring sleep-wake, as the actigraphy data
may not contain sufficient information to discern sleep stages.

Recent advances in artificial intelligence and larger studies combined with PSG have led to
algorithm improvements in sleep monitoring [81]. However, Two limitations of actigraphy and
accelerometry are: (1) the lack of standardisation of approaches for sleep stage monitoring and (2)
the lack of assessment techniques for daytime sleep. Nowadays, Wearables are often embedded
with a combination of various types of sensors (such as heart rate monitors, miniaturised
ECG/EEG, pulse oximetry, blood pressure monitors, galvanic skin conduction, light sensors,
gyroscopes, and barometric altimeters) [1]. Sleep can also be monitored through a combination
of sensing devices, such as wrist-worn accelerometers, microphones, and pressure sensors
under the mattress, wireless communication systems and video cameras [82]. However, this
increases usability issues such as synchronising data collected from multiple sensing devices and
interpreting prediction results from multiple applications [79].

2.3.2. Emerging Sleep Sensing Technologies

The ultimate goal of studying ubiquitous computing in sleep monitoring is to achieve non-invasive
sensing solutions capable of monitoring sleep-related physiological signals. Incorporating
different types of sensors into the objects we interact with every day is more appealing than
using multiple redundant sensors to gather homogeneous information. Over the past few decades,
various sensing technologies such as under-mattress pressure sensors, microphones, image
sensors and radio frequency (RF)-based sensors have been developed to track different sleep-
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related information such as time spent in bed, movement, breathing, snoring, heartbeat, body
and room temperature [83–85]. While these sensors have potential value for clinical and
epidemiological studies as well as sleep health education, little is known about their performance
compared to gold-standard PSG annotations, and more research is needed to assess their reliability
and usability. Especially the sleep stage sensing technology based on audio and video signals
has strong privacy concerns when used in the bedroom. Several techniques have been discovered
in recent years for sleep monitoring but are still in the early stages of development (such as
radio wave-based methods [72]), while others have been around for a longer time (such as
smartwatches) [86, 87].

Figure 2.3 Sensing technologies can be used for sleep/wake or sleep stages monitoring [1].

Bed sensors: Bed sensors normally refer to the sensing technology that can sense pressure
changes when the subject is lying on a mattress. Some researchers have developed highly
sensitive pressure sensors which can be mounted on mattresses to record body movements and
heart rate (also called ballistocardiography (BCG)) during sleep [88]. The small-scale body
movements can reflect breathing, limb movement, and cardiac activities. A typical sensing
method can monitor changes in air pressure beneath an individual while the subject is lying
in bed [89–91]. In the work of Sadek et al. [92], researchers have developed micro-bend fibre
optic sensors underneath the mattress to monitor pressure changes. Movement monitored by
bed sensors (either on a mattress or bed frame) includes limb motion, breathing motion, and
cardiac motion, which can be used to develop sleep monitoring models. Several commercially
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Figure 2.4 The usability and performance trade-off over different devices [1].

available products have been developed by Apple (Beddit), Nokia and Withings. However,
several covariates affect the performance of these methods, ranging from differences in a posture
to inter-subject variability in body mass index (BMI) and pre-existing clinical conditions [91].

Consumer-graded wireless EEG and reduced-array EEG: EEG is an important tool for
sensing brain activity during sleep, although the number of sensors mounted on the scalp makes
it a cumbersome device. Compared to PSG studies, the recent development of reduced-array
EEG (wireless recording) has been used for various neuropsychiatric tests and applications
due to its ease of use [93, 94]. The main disadvantage of these devices is that the electrodes
embedded in the cap are visible, and the form factor limitations prevent comfortable, continuous,
and long-term sleep monitoring. Furthermore, once the electrode gel dries, the signal quality
decreases, and the gel leaves residues [95], which may impact the wearing experience. The
lightweight headband EEG (e.g., Sleep ProfilerTM and DreemTM) can monitor sleep in a natural
environment. But it takes extra effort each time of wearing to adjust the equipment position to
reduce the skin impedance to an acceptable level [96]

Furthermore, a recent study has shown that the ensemble model trained on data collected
from a single-channel EEG can achieve a concordance rate of 0.87 when compared to the expert
ratings on the same signal [97]. However, the research was conducted in clinical settings, the
usability and signal quality remains unknown when deploying this equipment in a free-living
environment. The positive impact of this study demonstrates the feasibility of automated scoring
in long-term sleep monitoring applications.

15



Background and Literature Review

In-ear EEG is unconventional EEG equipment that has shown promise in recent years. For
example, in the work of Mikkelsen et al. [98], sleep stages were predicted by a machine learning
model based on in-ear mobile EEG data, showing promising results compared to manually scored
PSGs, although experiments were limited to laboratory setting.

Wireless EEGs have gained attention in recent years, with several established companies,
as well as start-ups, launching products [99]. Their performance for sleep monitoring has been
compared to conventional EEG, which is a part of PSG and has demonstrated strong results
[93, 94]. Further, Koley and colleagues showed that automatic scoring using ensemble models
on a single channel EEG could yield agreement rates of 0.87 when compared to expert scoring
of the same signal [97]. Whilst this study was conducted in a clinical environment and hence
lacked the validation of free-living conditions, together, these investigations show that the results
of conventional EEG can be approximated by simpler devices and automated scoring algorithms.
Likewise, in 2017, a prototype based on an in-ear EEG sensor showed 74% agreement with
hypnogram annotated from PSG data [100].

While the performance of these wireless, miniaturised, and in-ear EEG devices is promising,
more extensive studies are needed to determine their feasibility in sleep epidemiology and
free-living settings and in applied sleep research. In addition, these ear EEG devices commonly
adopt around-ear or/and in-ear style and are made of silicone materials, which offer a bearable
wearing experience, making them less popular than the mass-produced wearables [101].

Smartwatches and fitness trackers:
Smartwatches and smart wristbands have demonstrated that consumer-grade sleep monitoring

products could be accepted in everyday life. These devices estimate sleep metrics and sleep
stages through the use of motion signals (accelerometers, as described in previous sections)
and heartbeat sensing data. Although several studies have evaluated the sleep stage prediction
performance for these consumer products (Fitbit, Garmin, Misfit, Apple, Polar, Samsung,
Withings and Mio) with respect to expert PSG annotations, the data processing pipeline and the
algorithms used in the study remain largely undisclosed [102].

Mobile phone sensing: In addition to wearable electronics, smartphone-based sleep moni-
toring applications have also attracted a lot of attention from sleep researchers. Many of these
applications estimate sleep parameters and sleep stages using onboard sensors, including gy-
roscopes, microphones, accelerometers and light sensors. For example, in the work of Hao et
al. [103], the researcher developed an application called iSleep which adopts the smartphone’s
built-in microphone to detect events that occur during sleep, such as body movement, coughing,
and snoring. The software classifies events (snoring, coughing, sleep) with over 90% accuracy
under different environmental conditions. However, processing high sampling rate data poses a
big issue for battery life due to the significant energy consumption. In recent years, applications
using onboard sensors on smartphones have also become very popular in the consumer market,
such as the Sleep Time applications. However, the accuracy of these applications is very low.
In the work of Bhat et al. [104], compared with PSG’s epoch-wise annotations, the app only
achieved 45.9% accuracy.

16



2.3 Sleep Monitoring Outside the Laboratory

Ultrasound sensors, WiFi and radio signal approaches: Ultrasonic sensors can be used
to detect object motion and surface changes, which can partly represent body movement and
breathing patterns during sleep [91, 105, 106]. These Doppler ultrasound sensors measure sound
waves that are reflected from moving objects or the changes on the surface of the object (e.g.,
chest movement during breathing ). The biggest benefit of this technology is that it avoids the
radio interference problem. This technique mirrors that used in conventional radar systems and
uses signal processing methods to extract the information related to breathing rate, heart rate and
body motions. The method has been shown to be able to detect physical motion with 86% recall
and less than 10% error [107].

However, wireless-based approaches face some challenges when deploying them in clinical
research owing to a) the non-standardised measurement methods; b) the lack of precise under-
standing of the physiological origins that influences the signal waveform; c) comparatively low
reliability and specificity of these signals to the existing clinical methods (for example, WiFi
signals may be scattered by multiple subjects), which may hamper its wide applications in health
and medical research [108].

Figure 2.5 The evaluation of each sensing technology with respect to their performance metrics [1].

Likewise, high-frequency and submillimeter-wave radio technology has been shown to cap-
ture physiological activities. Similar to the ultrasound, the bouncing back radio waves could be
used to extract the breathing patterns, heart rate and body movement [109–111, 107]. These radio
signals can be used to determine sleep stages, as shown by Zhao and colleagues [112], as well as
to monitor insomnia [113]. The technology encounters the same challenges as ultrasound, which
are sensitive to environmental changes. Moreover, it is subject to electromagnetic interference.
In addition, measurement performance is highly dependent on the individual being monitored,
sleeping position, objects in the bedroom and radio interference [114].
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Figure 2.3 provided an overview of the latest technologies that can be used for sensing
sleep/wake or sleep stages. To summarise the usability and performance of each sensing
technology for sleep monitoring, Figure 2.4 and Figure 2.5 demonstrated the user acceptance,
usability versus the performance of each technology.

2.4. Data Pre-processing and Feature Extraction

Once the sleep sensing data has been collected, it should be pre-processed before the modelling
stage. In recent years, integrating data collected from various types of sensors has become
a trend in order to develop non-invasive sleep monitoring solutions [1]. However, several
challenges should be considered in data preprocessing; for example, the sampling rate may vary
depending on the quality of the sensing system, sensors, amplifiers, electrode materials used,
and engineering and manufacturing processes may also lead to differences in noise topology. In
addition, data measurement, processing and storage may also differ between sensing systems.
For example, depending on the application and device, it might store r-wave to r-wave interval
(RRI) instead of raw ECG. Therefore, before any feature extraction or modelling, the data needs
to be cleaned and filtered to remove artefacts that are specific to the modality employed.

2.4.1. Data Pre-processing

Several aspects should be considered in terms of pre-processing the data before it can be used
for analysis. The preprocessing depends largely on the type of application being built and
the characteristics of the data itself (e.g., data quality, standardisation of data formats). Pre-
processing signal data includes two main operations: (1) fusing signals provided by different
sensor types; (2) missed data detection and imputation. The missing sensor data may be caused
by one or more of the following reasons: 1) The user did not wear it, 2) A battery power supply
issue, 3) System function errors (for example, program bugs, running out of memory space,
or communication problems). Missing data can be detected by various algorithms, such as
threshold-based methods and smoothness detection.

Artefacts in physiological data are another common phenomenon. Depending on the nature
of the data, several pre-processing approaches can be applied. Smoothing and de-noising-based
tools can remove unwanted spikes, trends and outliers from the signal [115]. For example,
polynomial detrending methods can remove continuous quadratic or linear trends that may be
caused by changes in skin impedance which often appear in ECG signals [116]. Similarly, the
rolling median filter can also remove unwanted spikes from inter-beat signals. To remove the
influence of external electromagnetic interference, band-pass filters are commonly used for
removing such artefacts. The ultimate goal of denoising is to ensure that the noise follows a
specific distribution, such as a Gaussian distribution [116].

Besides denoising and smoothing, re-sampling is also an essential technique in preprocessing
stage to ensure the consistency of the data collected from different types of sensors in the
temporal dimension. Linear or polynomial interpolation can be used to fill missing or corrupted
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Figure 2.6 An example of using sliding window method on activity counts and HRV features for sleep
stage classification

data [116]. These methods can suppress the noise level and variability in the signal and transform
the data into a predefined range without changing its distribution.

2.4.2. Sliding Window Method

Sleep sensing data usually consists of multimodal time series data. Sliding window methods are
commonly used to segment time series data into a finite set of data frames which can be used to
extract heuristic features that can be used for machine learning (ML) models and/or deep learning
(DL) models. Figure 2.6 demonstrated an example of a sliding window method, taking a period
of night sleep data that corresponded to NREM sleep. The sliding window method consists
of two hyperparameters: a window length and a stride. Window length refers to how long the
time series data should be split. A stride parameter indicates how far the window should move
at each step, and this usually determines the redundant information contained in the window.
The hyperparameters of the sliding window are usually determined by domain knowledge or
convention. For example, in sleep monitoring, EEG is the gold-standard signal for sleep stage
classification. In sleep monitoring, EEG is the gold standard signal for sleep stage classification.
The window length of processing EEG signals for sleep stage classification is usually set to 30
seconds, and the stride is set to the same value as the window length, which means there is no
overlap [41].

2.4.3. Heuristic Method Based Feature Engineering and Sleep Physiology

Once the data has been preprocessd, feature extraction takes place to deal with unstructured
data. Feature extraction from signals can be performed through a variety of methodologies that
may fall under heuristic-based approaches or statistic feature-based approaches. For time series
data, sliding window methods are commonly used to segment the data with finite lengths into
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Figure 2.7 Example of HRV data for the entire night sleep based on the selected features

frames. The statistic feature approach could extract features such as mean, standard deviation,
energy, quantile, and entropy from the data segmented by the sliding window method. Heuristic
methods usually extract features based on domain knowledge. For example, during sleep,
cardiorespiratory activity is regulated by the autonomic nervous system (ANS) [54, 117–121].
Due to the differences in ANS manifestations, including sympathetic and parasympathetic (or
vagal) tone, heart rate variability (e.g., low frequency and high frequency) is characterised
by different sleep stages [122]. Usually, the parasympathetic and sympathetic actions have
"opposite" effects where one activates a response in physiology while the other suppresses
it [123].

Cardiovascular autonomic control plays a vital role in sleep, varying among the transition
to different sleep stages. The modulation of the ANS regulates cardiovascular functions during
sleep onset and sleep stages [125, 126]. Heart rate variability (HRV) analysis is a classic tool
for ANS analysis. Table 2.1 listed the most frequently used heart rate variability features.
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Time Domain Features

Mean HR Mean heart rate for that window
Maximum HR Maximum heart rate for that window
Minimum HR Minimum heart rate for that window
Std HR Standard deviation for the heart rate for that window
SDNN Standard deviation of Normal-to-Normal interval (NNi)
SDSD Standard deviation of NNi differences
NN50 Number of NNi differences greater 50ms
pNN50 Ratio between NN50 and total number of NNi
NN20 Number of NNi differences greater 20ms
pNN20 Ratio between NN20 and total number of NNi
RMSSD Root mean of squared NNi differences
Median NNi Median of NNis
Range NNi Range between smallest NN intervals to largest NN intervals
CVSD The coefficient of variation of successive differences , the RMSSD divided by mean NNi
Coeff. of Variation of
NNI

The Coefficient of Variation of NNi, i.e. the ratio of sdNN divided by mean NNi

Geometrical Domain Features

Triangular Index The HRV triangular index measurement is the integral of the density distribution (that is, the
number of all NN intervals) divided by the maximum of the density distribution (class width of
8ms)

Frequency Domain Features

Low Frequency Low Frequency is the variance (i.e., power) in HRV in the Low Frequency (.04 to .15 Hz). Reflects
a mixture of sympathetic and parasympathetic activity

High Frequency High Frequency is the variance (i.e., power) in HRV in the High Frequency (.15 to .40 Hz).
Reflects fast changes in beat-to-beat variability due to parasympathetic (vagal) activity

Variance in Low Freq. VLF is the variance (i.e., power) in HRV in the Very Low Frequency (.003 to .04 Hz). Reflect an
intrinsic rhythm produced by the heart which is modulated by primarily by sympathetic activity

Low/High Freq. Ratio The LF/HF ratio is sometimes used by some investigators as a quantitative mirror of the
sympathy/vagal balance

Norm. Low Freq. Ratio Normalized low frequency ratio calculated from the raw values of low frequency band (LF or
HF) divided by the total spectral power

Norm. High Freq. Ratio Normalized high frequency ratio calculated from the raw values of high frequency band (LF or
HF) divided by the total spectral power

Mean NNi Mean over the NN intervals
Total Power Total power of the density spectral

Non-linear Domain Features

Cardiac Sympathetic In-
dex

Cardiac Sympathetic Index [124]

Mod. Cardiac Symp. In-
dex

A modified cardiac sympathetic index calculated by SD22

SD1

Cardiac Vagal Index Cardiac Vagal Index [124]
SD1 Poincaré plot standard deviation perpendicular to the line of identity
SD2 Poincaré plot standard deviation along the line of identity
SD1/SD2 Ratio Ratio of SD1 to SD2

Table 2.1 Full set of cardiovascular related features grouped by cardiovascular domain [5].

HRV is typically higher during the night, reflecting the fact that sleep is a state in which
vagal activity, characterised by rapid fluctuations in activity controlling coronary artery tone, HR
and systolic blood pressure, is dominant [127–129]. Thus, HRV shows a nocturnal increase in
the deviation of mean RR intervals. These deviations also differ between sleep stages. During
the NREM sleep, the HRV analysis illustrated a higher parasympathetic tone compared to the
REM sleep, which is characterised by likely sympathetic hyperactivity associated with a vagal
withdrawal [130–132]. The sympathetic activity can be reflected in heart rate (HR) and standard
deviation of normal-to-normal heartbeat/interbeat intervals (SDNN). The spectral power in
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the high-frequency (HF) band of 0.15-0.4 Hz indicates parasympathetic modulation, which is
activated by the stretch receptors via respiratory stimulation [133]. In contrast, the spectral
power in the low frequency (LF) band of 0.04-0.15 Hz is assumed to reflect the sympathetic
tone [134, 135, 133, 123].

The wakefulness-sleep transition is accompanied by about 15% decrease in blood pressure,
HR and accompanied by increased HF power and decreased LF power and LF/HF ratio [130,
52, 131]. HRV analysis has also demonstrated that the HF band doubles in relative power when
going from quiet wakefulness to non-REM sleep [136]. The REM sleep is accompanied by
increased HR, LF power, and LF/HF ratio and reduced HF power, rising toward wakefulness,
showing the increased and predominant sympathetic heart modulation [130, 52, 131]. Not all
sleep stages are associated with brain activity. A study performed by Desseilles et al. found that
HRV analysis combined with brain imaging has identified close connectivity between autonomic
cardiac modulation and activity in brain areas such as the amygdala and insular cortex during
REMS, but no connectivity between the brain and cardiac activity during different non-REMS
stages [52]. Figure 2.7 demonstrated an example of a typical night’s sleep of the same adult in
terms of using HRV features and activity counts.

2.4.4. Machine Learning Methods

Once the features have been extracted, the classification model can learn the underlying difference
of each sleep stage from a given corpus and infer the new cases/instances. This is a typical task
in the field of ML and DL, and a significant number of models have been developed. ML and DL
models have been broadly used in real-world applications. For example, in computer vision, deep
learning-based models achieved state-of-the-art performance on object recognition, segmentation,
and generation, while in the field of natural language processing, machine translation and
sentiment analysis have been embedded into commercial services in our daily lives. Especially
the DL models are used to mimic human cognitive functions, reasoning, and problem-solving
abilities and have brought about a paradigm shift in digital medicine research too. Increasingly,
ML is changing research methodology and facilitating the personalisation of sleep medicine
through its advancements [137].

Regarding sleep science, the use of ML and DL is multifaceted. First, it makes it possible for
us to understand our sleep habits and sleep health. For example, it can suggest an appropriate
bedtime according to the user’s preferences and improve sleep hygiene [138, 139]. Secondly, it
can speed up the pre-screening of sleep-related health problems, expand population coverage, and
enable the automation of analysis with lower computing resource costs. For example, converting
sensor data into predefined knowledge (e.g., categorical labels), thereby providing an inexpensive
and objective alternative to manual sleep stage scoring [140].

Since the main objective of this thesis is to develop ML solutions for sleep stage classification,
discriminative-based models are the main focus in terms of modelling. The rule-based methods
(e.g., threshold methods) require the programming of pre-conceived rule sets and exhibit limited
flexibility. By contrast, ML methods provide a more flexible alternative to data modelling,
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especially when applied to structured tabular data. This section will first introduce two ML
models generally recognised in the sleep and health research community, which include support
vector machines and random forest models.

Support Vector Machine

The support vector machine (SVM) extends the linear model by introducing kernel tricks.
The use of kernel methods with linear models can form non-linear decision boundaries while
using convex optimisation for computational convenience [141, 142]. It projects the input data
implicitly from a low-dimensional feature space into a higher-dimensional kernel space (often
infinite) to reproduce a kernel Hilbert space (RKHS), where a linearly separable hyperplane is
estimated [143]. The support vector has several advantages: it is a convex optimisation problem
that can be solved by using existing optimisation tools; for small datasets, it is relatively fast to
train; the sparseness is reserved in solution representation. However, the performance is highly
dependent on the kernel function, and the noise distribution in the training dataset impacts the
choice of hyperparameters. SVMs have been used in a wide range of settings in sleep stage
classification based on PSG data [144].

Random Forest

Using a series of simple classifiers to divide the feature space in a sequence is an alternative
approach to explicitly constraining the decision boundary. Examples of such methods include
boosting, which partitions the data in the process of sequence optimisation, which itself weights
the data based on the predictions from the previous step before classifying it. The ensemble
of multiple classifiers of this type can make the solution more generalisable, an example is the
random forest which consists of a bunch of trees and each tree in the forest is trained on a random
subset of the training dataset. As discussed in [145], each tree may exhibit low bias and high
variance. In the forest, each tree is derived from a subset of the training data to decorrelate their
predictions. The variance of the entire forest is much lower than the variance of a single tree,
even if there is increased bias, leading to better predictions of unseen data [145]. The advantages
of the random forest lie in two aspects. First, given the limited training data, the bagging process
randomly splits the training dataset into subsets. Many hypotheses may be equally applicable to
the training data, which increases the diversity of the hypotheses. By combining predictions from
multiple good and diverse predictors, an ensemble reduces the risk of making wrong assumptions.
Secondly, from the computation perspective, each tree in the forest tends to be one of the local
optimal solutions. Combining the results of multiple random searches may provide a better
approximation of the real unknown function. Random Forest and their extensions have been
applied to a wide range of problem settings in sleep medicine research [146, 147].
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2.4.5. Deep Learning Based Feature Extraction and Discriminative Methods

The rapid development of applications in the field of computer vision and natural language
processing in recent years mainly benefited from the powerful representation learning ability
of deep learning models [148, 149]. Traditional handcrafted features may not contain the best
discriminative information that is applicable to every task, as the task-specific information may be
selected during the feature extraction process. Deep neural networks can learn optimised feature
extractors based on objective functions. For example, convolutional neural network (CNN) can
extract latent features from images by training a set of kernel filters [150]. For time-series data,
the mainstream method is to first use the sliding window method to segment the data into pieces,
then use CNNs to learn representations based on the segmented raw data [151, 152]. For example,
in sleep stage classification, some researchers have demonstrated the effectiveness of using deep
neural network on EEG data [153–156]. While the learned representations can achieve higher
performance than the handcrafted features, the disadvantage is that this representation is dataset
and task-dependent. In the past decade, deep learning-based methods have attracted a lot of
attention in digital medicine research.

Convolutional Neural Network

A neural network normally consists of many small interconnected computing units (neurons) to
form a large network that can learn a function to map the inputs and the labels [150]. Among
all neural networks, the CNN usually consists of convolutional layers, which consist of a
set of convolutional kernels that can extract abstract information related to the task whilst
filtering irrelevant information [151]. The convolutional layers are usually inter-weaved with
pooling layers to reduce the dimension of data [157]. Depending on the kernel shape, the data
passed through layers are normally in multi-dimensional tensors or specifically called feature
maps [157].

CNN was broadly adopted in multimedia and time series analysis, such as image recogni-
tion [158] and speech recognition [149]. For image recognition, the input data is usually an
entire image, and convolutional layers can extract hierarchical abstract representations in the
form of feature maps, benefited by the increased feature maps in the first few layers [150]. A
poling layer divides each input feature map into regions by strides (e.g., a m×n shape of stride
for 2D feature maps) and calculates a statistical value for each region as the output. A pooling
layer is applied after one or more convolutional layers to reduce the spatial size of the feature
maps. The final output of a set of convolution and pooling operations is a sufficient small feature
vector which is often flattened or pooled into one single vector. One or more fully connected
layers take feature vectors as input to perform the classification or regression tasks.

Convolutional Neural Network For Time Series Data Analysis

CNN can be used for physiological signals in two ways. The first way is to input the raw signals
directly to convolutional networks, as the network will extract hierarchical representations that
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are relevant to the tasks. The benefits of CNNs used on time series data include shift-invariance
and local correlation (or permutation invariant) properties [159, 150]. For image recognition,
the shift-invariant or equivariant means the network is somewhat resistant to the location of the
object of interest in an image [157]. Such property is also useful when using EEG signals for
sleep stage classification. Certain signatures of the sleep stage (e.g., sleep spindle) could be
recognised in the EEG signal, and a limited shift along the time axis should not significantly
undermine the prediction performance [157]. As the same convolutional kernel scans all sections
of the signal. Local correlation enforces a sparse local connectivity pattern between neurons of
adjacent layers, so the network can discover the concept of topology via learning and the models
that are trained to parameterise this spatial relationships [151]. However, this method normally
requires abundant samples to learn robust and generalised representations.

The second method is more effective when the training dataset is significantly smaller, where
the CNN may not be able to extract robust latent features. The raw signal data can be segmented
by the sliding window method into multiple pieces. For each segment (a data frame), the first
way is to extract the spectrogram, filter banks or handcraft features as the inputs of CNN. In this
case, the input is treated either as an image (e.g., a time and frequency feature map) or a summary
of time series physiological signals. For the feature map representations, a 2D convolutional
neural network can be used to learn the latent features. For the handcraft features, the order
of features can be combined in various ways, a 1-D convolution can be used for each feature
to avoid the combination dependency. This section will only explain the basic 1-dimensional
convolutional functions; extra operations such as striding and padding will not be covered here.

Suppose a time series feature vector v ∈ RT where T denotes the temporal steps. We then
conduct convolutions on it using linear filters. A filter vector can be denoted as the weight vector
w ∈ RL with the length L. The adjacent temporal feature from i to j can be denoted vi: j. The
convolution operation ∗ between v and w results in the output vector o ∈ RT−L+1 where

oi = (v∗w)i =
L

∑
l=1

(vi:(i+L−1)⊙w) (2.1)

In Equation 2.1, ⊙ denotes the element-wise multiplication. After the convolution operation,
an activation function σ will normally apply to each oi to get the new feature ai which can be
denoted as:

ai = σ(oi +b) (2.2)

Here, b ∈ R is a bias term. The activation function can be a variety forms, such as ReLU [160]
or sigmoid [150].

Recurrent Neural Network and Long-short Term Memory

Although the convolutional neural network has been successfully applied in several time series
tasks [161, 153, 162], the lack of inferring long-term temporal dependencies is a dispensable
disadvantage in time series analysis. recurrent neural network (RNN) is specifically designed to
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model such a prior, in which the hidden layers not only depend on the inputs of the current time
step but also depend on the outputs of the hidden layers of a previous time step [163]. Recurrent
neural networks using nonlinear functions in the hidden layers often suffer the gradient vanishing
or gradient explosion phenomenon during the training process, especially when the time steps
become too long [164]. This is due to the gradient of the RNN’s loss function with respect
to the model parameters calculated using back-propagation through time (BPTT) [164]. The
error is propagated backwards through time, it is repeatedly multiplied by the hidden layer’s
weight matrix. During this process, the spectral radius (e.g., the maximum absolute value of its
eigenvalues) determines the multiplication outputs. If the spectral radius is below one, then the
error will varnish [164]. If it is greater than one then the error will “explode”. This made the
training process difficult and unstable.
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Figure 2.8 The structure of the LSTM neural network [2].

The gradient explosion problem can be solved by applying gradient clipping, a threshold
method that forces the gradient to be within a certain range [165]. However, the gradient
explosion can be elevated by designing "memory" cells to preserve information over a long
time. Among all the derivations of recurrent neural networks, the long short-term memory
(LSTM) is the one that could effectively reduce the vanishing gradient problem by designing
an advanced neural network structure, which has been successfully used in natural language
processing tasks [166]. The network is capable of selectively reserving information via the input
gate, forget gate and output gate as described in Fig. 2.8. The cell state takes the information
calculated from the current inputs ĉ(i)t and the previous cell state c(i)t−1. The input gate and forget
gate learn to select the information based on the current inputs and previously hidden outputs.
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The detailed structure of the LSTM cell is described by the following equations:

it = σ(Wi[ht−1,xt ]+bi) (2.3)

ft = σ(W f [ht−1,xt ]+b f ) (2.4)

ot = σ(Wo[ht−1,xt ]+bo) (2.5)

ĉt = tanh(Wc[ht−1,xt ]+bc) (2.6)

ct = ft⊙ ct−1 + it⊙ ĉt (2.7)

ht = ot⊙ tanh(ct), (2.8)

where σ is the sigmoid activation function, the ⊙ stands for the element-wise multiplication.
The input gate i, forget gate f, and output gate o along with the sigmoid function to produce values
between 0 and 1. ĉt and ht stand for the candidate cell state and the hidden state respectively. W
and b are the weight matrices and the bias vectors in a gate. The LSTM is successfully applied
in the PSG signal-based sleep stage classification. Huy et al. [153] demonstrated that using
multimodal data with LSTM models can improve five sleep stage classification performance.

2.4.6. Variational Autoencoder Model And Disentangled Representation Learning

Many existing end-to-end deep learning models can learn a highly discriminated representation
in a supervised manner, as the deep neural networks generate such representations at every layer
to maximum a posterior (MAP) of p(y|x). Typically, no additional restrictions are placed on the
latent feature learning process, so the learnt features are usually more useful for tasks specified
on the training data set but may be performing poorly on different datasets or tasks, that is,
poor generalisation. A practical approach is to employ disentanglement learning methods to
separate the feature space and only retain more generalised features for downstream tasks [167].
To achieve this objective, models based on variational autoencoder (VAE) have attracted the
attention of researchers. Unlike the CNN and LSTM, which learn a direct mapping of y = f (x),
these variational framework-based models sample features from known distributions, which
helps encourage richer representations through unsupervised learning [168]. They often assume
that there is a “bottleneck” representation layer. Autoencoders are one of the prevalent models
in unsupervised learning. They are deep neural networks which consist of two components, an
encoder and a decoder. The encoder learns a function f to map the input data into a latent feature z
in the bottleneck representation layer z= f (x), while the decoder learns a function g to reverse the
representation z to the input space x̂ = g(z). The autoencoder learns a mapping that can encode
the input data into a low dimensional manifold [169]. Such representation could retain high-level
abstraction while ignoring the nuisance factors [170]. By extending autoencoders to variational
autoencoders (VAE), instead of using the deterministic autoencoder that encodes the input data
into a latent instance (a vector or a matrix), the VAE could map it as a distribution over the
latent space to incorporate variations of the input data. VAE framework consists of two networks,
a probabilistic encoder and a probabilistic decoder. The encoder maps samples from the data
distribution to the latent variables, z∼ p(z|x), while the decoder maps the prior latent distribution
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z ∼ p(z) to samples of the data distribution x ∼ p(x|z). VAEs are probabilistic model which
assumes the data are generated by sampling a likelihood x∼ p(x|z) from unknown distribution
of latent factors z∼ p(z) [171]. The input data has been embedded into a smooth manifold of
latent variables. The VAE framework is capable of learning to disentangle representation through
its inherent properties. However, the posterior p(z|x) is intractable because of high-dimensional
data or because of complex forms of distributions. Therefore, the variational methods are
employed using the stochastic encoder q(z|x) to approximate the true posterior, which could
converge to a Gaussian prior distribution z ∼ N(0, I) with a diagonal covariance matrix that
each dimension is factorised or independent [170]. The factorisation is achieved when the
factors of variation are aligned with the axes of the Gaussian posterior [171]. The framework
also provides the opportunity to add additional constraints on latent representation space. A
disentangled representation can be considered as the changes of a specific latent dimension
which will only influence the changes of a single factor in the generated data [171]. The
recent works demonstrate that using the disentanglement learning methods with the adversarial
training, the distribution-specific (or domain specific) factors or attributes can be removed to
some extent during the training process [172–174]. It has been suggested that generative learning
factors which were disentangled can be useful for a large variety of tasks and domains [173].
A disentangled representation could boost the performance of state-of-the-art (SOTA) machine
learning approaches in which the models are still struggling but where humans excel [175].
These scenarios may require knowledge transfer, where reasoning new data can be facilitated
by recombining learned factors. Many applications in computer vision tasks (e.g., human pose
representation learning [176], and face recognition [177], etc.) have demonstrated that the
disentangled representation can achieve higher performance.

2.5. Multimodal Fusion

Data collected from different modalities to represent diverse physiological information may have
varying predictive power and noise topology [1]. The way these signals are integrated could have
significant implications for downstream tasks. Fuster-Garcia et al., tested two actigraphy raw data
fusion methods to perform non-linear regression of signals using artificial neural networks [178].
The first fusion method proposed in their study is a centralised architecture assuming all signals
may be present in a common system, the second fusion method allows a distributed fusion of
the signals [178]. In both methods, the signal with the highest quality (e.g., its completeness,
sensitivity to patient motion or signal-to-noise ratio) is used as the reference signal, and the rest
of the signals from the other devices are transformed to the representation space before linearly
combining them with the reference model. As a result, a single-modality signal with quasi-linear
decrements of error with respect to the number of input signals is generated [178]. In practice,
multi-sensor fusion methods at the raw data level can compensate for acquisition errors and are
more tolerant of errors and missing data

From an information-sharing perspective, complementary fusion means that the modalities
do not directly depend on each other but instead combine the outputs, leading to collective
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measurement estimates. Some examples of this would be combining pressure sensor data,
tri-axial accelerometer data and plethysmography (PPG) data for monitoring sleep quality [56].
These complementary fusion protocols can significantly improve the classification performance
of sleep stages [74, 56].

Multimodal fusion in machine learning has been extensively studied in pattern recognition
applications, such as in image and video captioning [179], visual question answering [180],
audio-visual speech recognition [149] and emotion recognition [181]. In the field of ubiquitous
computing, multimodal fusion has also been adopted for human activity recognition [182], sleep
stage classification [5], fatigue assessment [183] and person identification [184].

These studies demonstrated that multimodal representation learning could extract valuable
information from complementary data sources for classification tasks. Traditional fusion strate-
gies include feature level fusion (e.g., [185]), score-level fusion (e.g., [186]) and decision-level
fusion (e.g., [187]). In the end-to-end DL era, the boundary between multimodal representation
and fusion has been blurred. Representation learning is interlaced with classification (or regres-
sion) objectives. Nevertheless, the fusion strategy for DL models may still be carried out in three
stages, such as early fusion, late fusion and hybrid fusion [188].

Fusion at different stages may influence the results of representation learning. For example,
early and late fusion may inhibit intra-modal or inter-modal interaction [188]. Neverova et
al. noted that highly correlated modalities should be fused together [189]. Hazirbas et al.
demonstrated that the performance of fusion is highly affected by choice of which layer to
fuse [190].

Based on the complexity of fusion methods, the operation can be divided into three types:
simple operations, attention-based methods and tensor-based methods [191]. For feature vectors
from different modalities, concatenation and addition are two commonly used simple opera-
tions [188]. The simple concatenation method was also commonly adopted to combine the raw
inputs or combine the representations obtained from the pre-trained model of each modality [192].
Other researchers have explored more advanced fusion methods, such as the attention-based
fusion scheme for human activity recognition [182]; the attention mechanism is widely used for
multimodal fusion. This usually refers to dynamically calculating a weight vector for each time
step (or spatial position) and weighting a set of feature vectors [162].

In the case of tensor-based methods, more advanced tensor-based fusion only demonstrated
the usefulness of fusing image and text-based tasks, such as bilinear pooling, which is a method
of fusing two unimodal representations to a joint presentation by calculating their outer product.
This method can capture the multiplicative interaction between all elements in two vectors [193].
But this method may result in a large number of model parameters, and the inference time is
often questionable when they are deployed on wearable and mobile devices.

In the case of sleep monitoring using the modalities that may be derived from wearable
sensors, several previous works (e.g., [194]) have achieved promising results for sleep stage
classification by concatenating multimodal intermediate features and feeding them into DL mod-
els. However, these studies focus on the choice of modalities rather than the fusion techniques.
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Different modalities may contain complementary information. The way to fuse heterogeneous
intermediate features is worthy of exploration. In terms of movement sensing and cardiac sensing,
they are different in signal-to-noise ratio, data generation process and measurement frequency.
Moreover, the activity count is better in sleep/wakefulness classification, but it is difficult to
discern different sleep stages [50]. For healthy adults, the difference in heart rate variability
between REM sleep and wake is less than the difference in NREM and REM sleep [52].

2.6. Data Visualisation and Explainability

One of the challenges of using deep learning models on health or life-critical systems is the
lack of transparency or incomprehension by humans regarding the model decision processes.
When intelligent systems fail, they often give incorrect results or stop working without warning
or explanation, leaving users staring at the incoherent output and wondering why the system is
doing it [3]. Visualisation and interpretation of model decision-making processes are critical
to building intelligent systems that humans can trust and integrate meaningfully into their daily
lives. It is clear that one must build "transparent" models that explain the reasons behind mode
prediction [3].

Figure 2.9 The three images to the right are heat maps generated by Grad-CAM based on the dense
captioning model. [3].

Humans have varying levels of understanding regarding different types of data. For example,
images and text represent the most common and natural forms of communication that people use
in daily life [195]. Abstract data, such as large data tables or Excel tables of handcraft features
(for example, heart rate variability features) organised in time series format, are less intuitive for
users to understand [195].

Visualisations can use visual objects to represent abstract data in point, line, and bar formats
that are easier for humans to understand and interpret. Graphical representation relies on human
high-throughput visual perception channels and the ability to connect data representations to
human knowledge and expertise. This makes the time series data more intuitive to understand,
such as identifying repeating patterns and trends [196]. Sleep data is usually presented in a time
series format, usually visualised using a line chart. The horizontal x-axis represents time. Raw
signal visualisation is mainly meaningful for domain experts to interpret complex patterns. For
example, PSG recordings mostly contain the time series data that recorded the electrical changes
by electrodes, which reflects certain physiological activities (e.g., saturation of peripheral oxygen
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(SpO2), breath, cardiac activities, eye movements, muscle movements and neuron activities
in the brain). Specific patterns can be automatically detected by algorithms or highlighted by
experts on the chart, such as the sleep spindles appearing in the EEG waves [99].

CNN has achieved unprecedented breakthroughs in various computer vision tasks, so the
transparency of the decision-making process has attracted the attention of many researchers. A
saliency mask (SM) based method can unveil where a CNN looks into a time series data for
recognising their predictions. A representative method is gradient-weighted class activation
mapping (Grad-CAM) which uses the gradients of any target class in a classification neural
network flowing into the final convolutional layer to produce a coarse heat map that highlights
the important regions in the input data for predicting the class [3]. An example of Grad-CAM
based visualisation can be seen in Figure 2.9. The highlighted area is highly consistent with the
area marked by the bounding box, even though the captioning model and Grad-CAM technology
do not use any bounding box annotations. A CAM for a specific label is first used to calculate the
gradients with respect to the final convolutional layer’s feature map activations. Then the method
calculates the average value for each activation unit over time steps to build up a weighted vector
which is considered as the “importance” score. Afterwards, the algorithm interpolates these
weights into a full scale of the input data dimension to generate a heatmap [3]. For time series
data with a CNN, the method is defined as follows:

α
c
k =

1
Z ∑

i, j

∂yc

∂Ak
i j

(2.9)

where Z is the number of time steps times the number of features; yc is a one-hot vector
representing the c-th class; αc

k is a weighted scalar with respect to each activation unit of the
last convolutional layer; Ak

i j represents the i-th time index, the j-th input signal (or channel) and
the k-th activation of feature map. After obtaining the weighted vector, an activation function is
applied to obtain the forward activation maps, followed by a rectified linear unit (ReLU) function,
which is denoted as follows:

Lc
Grad−CAM = ReLU(∑

k
α

c
k Ak) (2.10)

A ReLU function is applied to the linear combination of maps, as this chapter is only interested
in the features that have a positive impact on the class of interest, that is, on certain time steps,
the inputs of handcraft features whose value should be increased in order to increase yc. The
negative values are likely to belong to other classes. For example, the inputs of physiological
signals (e.g. Heart Rate, LF/HF ratio) on time steps should be increased in order to increase
the probability of the predicted sleep stage. Grad-CAM can provide a local explanation at the
instance level by invoking the backpropagation with respect to classes and/or the activation,
which generates aesthetically pleasing and heuristic explanations of a time series saliency map.
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In addition to Grad-CAM-based decision process visualisation tools, many traditional ma-
chine learning methods can also produce feature importance scores. The main disadvantage
of these methods is that these scores usually work at the task level rather than the class level.
In [197], they proposed the shapley additive explannations (SHAP) model that produces class-
specific feature importance scores in classification tasks. This is of significant importance in
health machine learning applications. In addition, it could also provide instance-level explana-
tions. SHAP is a unified framework for value estimation of additive feature attributes that can
be generalised to many models by producing SHAP values. SHAP values make it possible to
explain the output of a function f as the sum of the effects φi of each individual feature that
is introduced to a conditional expectation [197]. The SHAP function is designed to assess the
impact of missing features on model predictions. Suppose we have a function f and a mapping
function hx that maps the binary pattern of missing features represented by z′ to the input space
of the original function. Given such a mapping, we can evaluate f (hx(z′)) to calculate the
effect of when a specific feature is presented or not. To obtain SHAP values, the function of
fx(z′) = f (hx(z′)) = E([ f (z)|zS]) is the expected value calculated based on the missing values
for features not in the set S [198], where S is the set of non-zero indexes in z′. And z′ ⊆ x′

represents all z′ vectors where non-zero entries are a subset of the non-zero entries in x′, which
is a simplified input [198]. SHAP values are calculated based on combining these conditional
expectations with Shapley values from game theory to attribute φi values to each feature [198].
The Shapley values are denoted as:

φi = ∑
S⊆M\{i}

|S|!(|M|−|S|−1)!
|M|!

[ fS∪{i}(xS∪{i})− fS(xS)] (2.11)

where M is the number of simplified input features [198]. By using Shapley, SHAP returns
individual contributions to the full feature set, which allows us to understand individual feature
contributions not only for a particular task but also for each class. Figure 2.10 shows an example
use of SHAP on a tree-based model to investigate the top ten most important features with respect
to the behavioural changes induced by seasonal flu. The SHAP method can calculate feature
importance scores based on handcrafted features and traditional machine learning models with
acceptable computational time. For time series data, it has to calculate the perturbation of the
feature combination to summarise the feature importance with respect to time steps. Therefore,
it could be very slow when applied to time series data with deep learning models.

Visualising the signal segments that matter to decision-making is imperative for researchers
and clinicians. In this thesis, sleep monitoring uses wearable sensing data, including the ECG
data that reflects the ANS activities which are partially influenced by the brain activities during
sleep. So cardiac sensing and movement sensing may contain useful information to discern all
the sleep stages and there are no established rules for using these signals to distinguish sleep
stages. This poses significant challenges for visualisations involving the model decisions.
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Figure 2.10 An example of using SHAP to interpret feature importance with respect to the behavioral
changes induced by the seasonal flu [4].

2.7. Evaluation Metrics

Evaluating the performance of the sleep stage classification pipeline is crucial to its design,
as the different components are selected from a large set of possible combinations guided by
performance. The way of modelling sleep stage classification tasks is therefore tightly linked to
the choice of evaluation metric. Most of the performance metrics listed here have been adopted
in sleep stage classification using PSG signals. The most common performance metric in sleep
stage classification is the overall accuracy, i.e. the fraction of correctly classified instances.

To assess class imbalance and evaluate performance, several popular metrics based on True
Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN) classifications
should also be adopted. These evaluation metrics can be summarised as follows:

• Accuracy counts the number of correctly classified sleep epochs, normalised over the total
number of sleep epochs (Acc = T P+T N

T P+T N+FP+FN ).

• Recall measures the proportion of positives that are correctly identified as the given stage
(R = T P

T P+FN ).

• Specificity, also known as true negative rate, measures the proportion of negatives that are
correctly identified as the given stage (S = T N

FP+T N ).

• Precision is the fraction of correctly classified instances among the overall positive predic-
tions (P = T P

T P+FP ).

• F1 score (F1) conveys the balance, with the harmonic mean, between precision and recall
(F1 = 2× P×R

P+R ).
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• Cohen’s Kappa (κ) measures inter-rater reliability/agreement, comparing observed accu-
racy with an expected accuracy (κ = Po−Pe

1−Pe
, where Po the observed proportional agreement

and and Pe the expected proportion of agreement). In this context, Cohen’s κ factors
out the agreement by chance arising from the class imbalance of different sleep stages
throughout the night.

Due to the sleep stage class imbalance issues, these performance metrics should be calculated
in a class-wise manner and reported as the mean values. And the two-tailed t-tests can be used to
calculate statistical significance with respect to model performance improvement.

Many sleep classification studies used accuracy or F1 to measure their model’s performance,
yet these are high-level metrics which do not consider class-wise performance. Confusion
matrices, on the other hand, provide class-wise predictions and corresponding error types.
However, for clinicians and other health practitioners, these matrices are not the most obvious
way to represent the time deviation of sleep stages, as they include too many low-level details.

2.8. Summary

This chapter investigated different sensing approaches and their advantages and limitations
when used for sleep stage monitoring outside the laboratory. Several classical machine learning
methods and deep learning models were introduced for the supervised learning tasks regarding
the different granularity of the sleep stage classification tasks. The sensing approach that is
most suitable for a free-living environment is body-worn sensors, especially wearable bands and
smartwatches as they are inexpensive compared to research-grade wearables and are generally
available to large-scale studies.

The data collected from wearable sensors are typically processed in a pipeline approach,
with the components tuned to extract the most discriminative information that benefits the sleep
stage classification tasks. The design of feature extraction and classification methods both
rely on a large amount of available wearable data and gold ground truth annotations, which
remains a major challenge for building a robust machine learning model. The availability level of
data granularity determines the signal processing pipeline. For instance, many consumer-grade
wearable devices do not provide raw signal access to all their sensors, so the use of clinical
features (e.g., heart rate) would be realistic solution in this case. The empirical studies in
chapter 3 demonstrate the feasibility of designing efficient data processing pipelines to classify
sleep stages at different levels of granularity. To alleviate the model generalisation issues when
using these handcrafted features, in chapter 4, a VAE-based disentangled representation learning
model is proposed to learn invariant features with respect to personal attributes, which can
achieve better performance on unseen populations for three-stage sleep classification. Moreover,
the multimodal data poses inherent challenges for learning effective representation. In chapter 5,
a set of proposed multimodal fusion approaches demonstrate that advanced fusion techniques
can result in significant improvement in three-stage sleep classification. Moreover, this chapter
will explore the use of Grad-CAM on cardiac and movement-sensing data to make the decision-
making process transparent for deep learning.
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Chapter 3. Multimodal sleep stage classification in a large, diverse
population using movement and cardiac sensing

3.1. Introduction

Traditionally, human sleep has been monitored in laboratory settings using polysomnography
(PSG) which has been described in chapter 2. Whilst PSG is considered the gold-standard for
sleep monitoring, as a result of the need for sensing equipment, its use is limited to laboratory
settings and typically to just one or two nights. These single nights of observed sleep in an
unfamiliar environment may not reflect normal sleep. Further, it is impractical to measure sleep
using this method for more than two consecutive nights as it is burdensome to patients or study
participants. PSG is also expensive and requires expert set-up and analysis. For these reasons,
efforts to monitor individuals’ typical sleep duration and quality longitudinally in large, free-
living populations have generally relied upon sleep diaries or self-reported questionnaire data.
Whilst sleep diaries are cost-effective, scalable and able to collect information regarding typical
sleep patterns, there are concerns as to the validity and reliability of participant responses [199].
Wearable sensors offer a potential solution. Such sensors provide valuable, unobtrusive tools
through which to objectively monitor physical activity in large population studies, with potential
applications for sleep monitoring.

Conventional approaches to monitoring sleep using wearable devices are primarily based on
actigraphy (count-based movement information) and accelerometry (raw, high frequency data
which is often in tri-axial) [200–203]. However, recent technological and battery life advances
increasingly facilitate multimodal sensing (e.g., combining accelerometry with HR sensing). Mul-
timodal sensing facilitates more intricate human activity recognition (HAR) tasks and has shown
promise for sleep-stage classification [204]. The validity of actigraphy for the classification of
sleep-wake transitions has been demonstrated over the past three decades [200, 203, 201, 202].
Algorithms applied to actigraphy for this purpose exploit differences in body movement be-
tween wakefulness and sleep. Recent work has demonstrated how different methods for binary
sleep-wake classification using actigraphy compare when applied to the same, standardised
dataset [205]. Furthermore, HRV metrics could be valuable for multistage classification as
autonomic function fluctuations occur between non-REM sleep and Wake/REM sleep, whilst
these same functions are consistent when comparing Wake to REM [206, 207, 136, 208].

Understanding time spent in different sleep stages (beyond binary sleep-wake classification)
in free-living environments has important implications for commercial applications, as well as
for research. For example, accurate sleep architecture inferences may provide better information
to guide sleep-related behavioural changes and recommendations [209]. PSG is the gold standard
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for sleep stage assessment, but it is not scalable to large, population-based studies of free-living
individuals with the power to make inferences regarding the implications of sleep for health
and illness. Wearable devices are a potentially inexpensive and scalable solution to monitor
sleep in large populations. Limited literature exists regarding the performance of multimodal
sensing using wearable technologies in sleep-wake and sleep-stage classification [61]. Moreover,
the code and dataset for most of these studies are not publicly available, and these studies are
usually conducted on small datasets. This becomes an obstacle to reproducing and improving
sleep monitoring using wearable computing devices. The development of a set of benchmarks to
evaluate the performance of sleep-wake and sleep-stage classification methods on multimodal
data using movement and cardiac sensing would address a major gap in the existing literature.

In order to address this gap, this chapter focused on five major contributions:

1. This chapter introduces a framework for pre-processing and analysing multimodal sensor
data from movement (actigraphy) and cardiac (RR intervals from ECG) sensors. These
sensor data are derivable from research-grade ECG or photoplethysmogram (PPG) devices.

2. This chapter systematically compares single modality to combined sensing (actigraphy +
HR/HRV) approaches for classifying sleep-wake using different machine learning models.

3. This chapter extends this systematic comparison to explore the performance of single
modality approaches and combined sensors across three different multistage classification
tasks: (A) Conventional three-stage classification (NREM, REM, Wake), (B) Four-stage
classification (light sleep, deep sleep, REM and Wake) and (C) Five-stage classification
(AASM-standard), also using traditional machine learning and deep learning models.

4. This chapter introduces an easy-to-interpret evaluation metric, namely, time deviation,
which aims to be accessible to sleep practitioners. This chapter also studies the modal-
ity/feature importance by using Random Forest with SHAP, yielding some interesting
findings (e.g., high frequency HRV is the most important feature in recognising REM
sleep).

5. This chapter introduces an ensemble structure for multistage classification of sleep based
on multi-timescale and multimodal DL ensembles. This architecture aims to exploit
the individual contributions and strengths of different classifiers. This approach can
significantly improve the performance of the three-stage sleep classification task.

This chapter presents a systematic multimodal and multistage evaluation of sleep-wake cycles
and the sleep stages in a large, diverse population. Each individual method and modality
is experimentally explored, and approaches to improve classification performance through
modality fusion are explored. Additionally, feature importance for different classification tasks
is investigated, leading to a deeper understanding of the physiological underpinnings of each
model.
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3.2. Related work

Since the 1980s, a vast number of studies have explored new methods and techniques to infer
sleep-wake cycles using actigraphy with either single-axial [202, 200, 203] or, more recently, tri-
axial accelerometry [77]. While these methods have proven valuable, they were often derived in
small cohorts or by using non-clinical grade equipment or sleep diaries. The recent availability of
large datasets, provided by initiatives such as the National Sleep Research Resource [210, 211]1,
makes it possible for researchers to create large standardised benchmarks. For example, Palotti
et al. leveraged one of the available datasets, the Multi-Ethnic Study of Atherosclerosis (MESA)
Sleep Study2, to compare the performance of the most relevant heuristic approaches and ML
methods for binary sleep-wake classification [205]. Whilst novel, their work was limited by: (1)
exclusively comparing methods for sleep-wake classification rather than multistage classification;
(2) only using actigraphy data. This chapter addresses these limitations in the MESA Sleep Study
dataset, the largest dataset suitable for such experiments until the year 2022.

Beyond actigraphy data, this chapter also investigated the use of HR and HRV data. HR
can be defined as the average number of heartbeats per minute, while HRV is a measure of
the variability in beat-to-beat intervals, known as RR intervals. The denoised and filtered RR
interval includes the normal R peak, often referred to as the Normal-to-Normal interval (NNI).
These measurements are powerful biomarkers that have been used to understand training and
recovery, address chronic disease and monitor stress and sleep [127–129]. Several studies
demonstrated the HRV features are different during sleep stages in nocturnal sleep as previously
discussed in chapter 2 [127–132]. Conversely, several studies have shown that HR does not
change significantly between sleep stages, although some work has suggested a rise during
REM sleep [212, 213]. Hence, it is worth investigating whether sleep stage classification can be
performed on the comprehensive HRV features [214]. Recently, Radha et al. have reported that
HRV has great potential to classify sleep stages [215]. However, their work was performed on a
private dataset and conducted using some features that are often not present on wearable devices.
In this chapter, HR/HRV features are extracted from research-grade wearable sensors and their
performance is evaluated on the largest public dataset.

Aside from ML and DL models, ensemble architectures are becoming increasingly prevalent
for HAR tasks. For instance, in 2015, Single et al. adopted an approach consisting of three
variants of long-short term memory (LSTM) networks that worked in parallel to tackle a biologi-
cal sequence analysis task and then used majority voting to decide upon the final classification
prediction [216]. In [186], Guan and Ploetz developed an LSTM ensemble model via epoch-wise
bagging for efficient training. They injected several random factors to increase the diversity
of the classifiers and improve performance in several HAR tasks. Recent work has explored
the application of ensemble models for automatic sleep stage classification using PSG/EEG
signals. These studies have shown promising results, improving the performance of shallow ML
and even DL approaches [217–219]. Koley et al. used an ML ensemble architecture approach

1https://sleepdata.org
2https://sleepdata.org/datasets/mesa
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consisting of five binary support vector machine (SVM) classifiers to classify different sleep
stages [217]. Using a “winner-takes-all” ensemble method [220] the researchers managed to
extract more discriminant patterns from EEG. Recently, [153] applied an ensemble method to
multimodal PSG data (EOG, EEG and EMG) by fusing classifiers. All these previously reported
models are based on sleep epoch (30 seconds) level feature extraction protocols and use classifier
ensembles derived in sensors which often exceeded 100Hz sampling rates (EEG data, etc). These
methods demand high specifications with regard to computing power. Currently, the limited data
storage and processing capabilities of wearable devices mean that using methods based on a high
sampling rate is unlikely to be possible in long-term free-living environments.

In summary, the development of sleep stage monitoring methods based on wearable tech-
nology is still stagnant in traditional ML methods due to a) the lack of large-scale open-source
multimodal datasets, b) closed-source pipelines for data preprocessing and modelling, and c)
non-standard evaluation criteria. Moreover, we don’t know which sleep stages can be realistically
detected from the cardiac and movement-sensing data. These problems hindered the develop-
ment of sleep monitoring using ubiquitous computing techniques. The work in this chapter is
considered the first systematic study of sleep stage classification using large-scale sensing data
that may be available from wearable devices

3.3. Methods

The MESA Sleep dataset is introduced and described in the first part of this section [210, 211].
All experiments reported here were conducted based on this dataset. Section 3.3.2 provides an
overview of the data pre-processing and feature extraction method for modalities which consist
of cardiac sensing (HR and HRV) and movement sensing (actigraphy). All tasks explored,
including the ensemble method, are introduced in Section 3.3.3. In Section 3.3.4, the models
used for the benchmark study are presented. Section 3.3.5 describes how these experiments were
designed. Finally, in Section 3.3.6, the metrics used to evaluate the classification models are
discussed.

3.3.1. Dataset Description

The Multi-Ethnic Study of Atherosclerosis (MESA) dataset is a multi-centre longitudinal study
designed to investigate the characteristics of sub-clinical cardiac disease. The study comprises
6814 asymptomatic men and women of black, white, Hispanic and Chinese-American ethnicity,
of which 2,237 were also enrolled in the MESA Sleep Study. As part of the MESA Sleep Study,
all participants wore an actigraphy device for one week and underwent concurrent PSG for one
night. Data for this study was acquired in six different centres across the US and followed the
appropriate Institutional Review Board approvals and written informed consent for participant
data acquisition [210, 211].

The MESA Sleep Study was conducted using a Compumedics Somte System for PSG,
which includes the ECG signals here used to derive HR and HRV and their associated features,
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Dataset Total Female Male Black Chinese-American White Hispanic Age (µ±σ ) Min Age Max Age

Training 1395 752 (54%) 643 (46%) 383 (28%) 153 (11%) 511 (37%) 348 (25%) 69.29 ± 8.73 54 94
Test 348 198 (57%) 150 (43%) 103 (30%) 39 (11%) 128 (37%) 78 (22%) 68.52 ± 9.21 55 89

*Numbers are N, N(%) or mean (SD). Age is given in years.

Table 3.1 Breakdown of population based on sex, age and demographic characteristics, by dataset (training
or test).

Dataset Total Sleep Time (TST) Total Time in Bed (TIB) Sleep Efficiency (%) Wake After Sleep Onset (WASO) N1 N2 N3 REM

All 359.0±80.7 475.0±85.3 76±13.1 90.3±62.7 49.42±30.9 207.0±60.1 40.0±33.4 66.9±28.9
Training 357.5±80.2 473.5±84.9 75.9±13.1 90.5±62.7 49.3±31.1 206.6±60.4 39.6±33.3 66.6±29.3
Test 365.1±82.5 480.9±87.0 76.4±12.8 89.2±62.6 49.8±30.4 208.5±58.9 41.68±33.7 68.3±27.4

*Numbers are minutes except sleep efficiency measured in percentage(mean ± SD)

Table 3.2 Sleep statistics of participants in the study.

alongside an Actiwatch Spectrum from Philips Respironics to record actigraphy data. This device
captures measurements of movements defined as “activity counts”3 and aggregates them into
30-second epochs. The Actiwatch was securely fastened to the participant’s non-dominant wrist.
These actigraphy signals and their associated features can be derived from most research-grade
wearable devices. The sensors for the Compumedics PSG comprised: cortical EEG, bilateral
EOG, chin EMG, abdominal and thoracic respiratory inductance plethysmography, airflow,
ECG, leg movement sensor and finger pulse oximetry. These sensors collected three types of
signals: bioelectrical potentials (EEG, EOG, EMG, ECG), waveforms received from transducers
(thermistors on the airflow devices, inductance respiratory bands, piezo leg sensors and position
sensors from the leg device) and auxiliary devices (oximetry measures of oxyhemoglobin
saturation and nasal pressure records). Full details of the setup, protocol and sampling rates
are available 4,5. All participants included in the study had at least one full night of PSG
recording with concurrent actigraphy and ECG. An illustration of the experimental set-up is
provided in Figure 3.1. All nocturnal recordings were transmitted to a centralized reading centre
at the Brigham and Women’s Hospital (Boston, MA, USA), and data were scored by trained
technicians using AASM guidelines. For the training labels, the expert scoring and epoch staging
annotations on PSG data are provided by Bild et al. [221]. Note that the MESA Sleep dataset is
the only large open-access dataset combining gold-standard measures of sleep through PSG
with wearable sensor data from actigraphy as well as ECG (HR/HRV) and thus the only existing
dataset appropriate for the purposes.

Table 3.1 summarises the main demographic characteristics of the participants by training
and test splits.

3https://www.salusa.se/Filer/Produktinfo/Aktivitet/TheActiwatchUserManualV7.2.pdf
4https://sleepdata.org/datasets/mesa/pages/equipment/montage-and-sampling-rate-information.

md
5https://sleepdata.org/datasets/mesa/files/documentation
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Polysomnography (PSG) is the 
gold standard to measure sleep 
stages and diagnose sleep 
disorders. 

Actigraphy is a noninvasive 
method to monitor gross motor 
activity, commonly found on 
smartwatches.

Electrocardiogram (ECG) 
measures the electrical activity 
and rhythm of the heart using 
electrodes placed on the 
participants skin.

Figure 3.1 Experimental setup and tasks: the models are trained using a combined-sensing, multimodal
approach which incorporates two time-series signals: actigraphy and ECG-derived HR and uses Gold-
Standard PSG labels for training

3.3.2. Data Pre-processing and Feature Extraction

In this chapter, PSG, ECG and actigraphy records are synchronised into 30-second sleep epochs
for 1,743 of the 2,237 participants included in the study. A total of 494 participants were excluded
on the basis of: (1) lack of concurrent PSG, ECG and actigraphy data; (2) lack of enough quality
standard data (< 1.5 h of usable data from the concurrent three sensing methods); or (3) lack of
data integrity or misalignment of data, the actigraphy outlier epochs have been removed based
on human expert annotations. These outliers are either non-wearing periods or equipment failure
periods. For actigraphy epochs labelled as outliers, their corresponding HR/HRV epochs were
also removed [222].

The experiments in this chapter include participants with sleep disorders to thoroughly
evaluate the performance of different methods; full details are presented in Supplementary
Table S1. Similarly, this chapter did not exclude a total of 30 subjects (about 2% of the total
cohort) who do not have any REM epochs at all, although these sleep patterns are physiologically
very unlikely. The sleep stages for subjects in this dataset were scored by individual sleep
technicians, blind to the disease status of the participants, into five classes (wake, N1, N2, N3,
REM) according to AASM guidelines [221].

For the ECG signal, the derived features are only based on RR intervals instead of using the
raw ECG signal. The rationale behind this was to make this work as transferable as possible to
data collected from research-grade devices such as miniaturised ECGs or wrist wearables that
incorporate PPG sensors (i.e., the Empatica E4 wristband). Participants whose ECG records
did not include a full night of sleep or whose data was corrupted were excluded from further
analysis.
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QRS complexes (R-points) were detected using Compumedics Somte (Abbotsford, VIC,
Australia) software Version 2.10 (Builds 99 to 101). The R-points were classified as normal
sinus, supraventricular premature complex or ventricular premature complex. Data cleaning,
filtering and noise removal took place during this step of the process using the Python package
HRV-analysis6. First, RR interval outlier data was filtered using a threshold method with a range
between 300 to 2000 ms following the method previously described by Tanaka et al. [223], then
the ectopic beats were removed by the methods described in Malik et al. [224]. Second, for
the removed R-points, the data has been linearly interpolated. In this chapter, the RR intervals
have been grouped into 30 seconds to match the time interval of actigraphy data. Recalling the
description in Section 3.2, the HRV describes the physiological variation of the beat-to-beat
interval that can be extracted from the time distance between adjacent R wave peaks. Thus, 30
cardiac features were calculated from each 30-second window that matches the epoch of the
actigraphy data. Following the approach used by Radha et al. [215], the features haven been
extracted in four domains (time, geometrical, frequency and non-linear domains). Table 3.4
details the full set of cardiac features used in this chapter.

This chapter adopted two strategies for extracting actigraphy-related features. For DL
approaches, which can automatically extract high-level features, the activity counts have been
used as input, which can be directly extracted from the device (at a sampling rate of 1/30 Hz). For
the other ML models, a total of 370 handcrafted time-series features were extracted, as described
in Table 3.3. These features have been commonly used in the literature (i.e., [225, 226, 205]).

For each sleep epoch T , the statistics (i.e., mean, variance, median, kurtosis) have been
calculated for actigraphy data that consider both centred and non-centred sliding windows of N

sleep epochs (with N = {1,2, ...,19}), where each sleep epoch contains a scalar value. The other
commonly used metrics have been calculated, such as the raw and natural logarithm values of
the activity counts for each epoch T . These features are listed in Table 3.3.

The full feature set (i.e., both activity and cardiac features) were normalised using the z-score
method. A summary of the pipeline used in this chapter is shown in Figure 3.2.

3.3.3. Sleep Stage Classification Tasks

The objectives in this chapter structured five different tasks and tested several hypotheses based
on multimodal fusion and new model development. The first task, Task 1, aims to establish
benchmarks for sleep-wake (binary) classification using single modality (either actigraphy
or HR/HRV) and multimodality approaches (combining both modalities). In doing so, this
chapter compares conventional statistical learning methods and simple neural network methods
across modalities. This task is the most explored one among the research community in this
area [202, 200, 201, 226, 227] and this chapter also aimed to augment the benchmarks previously
reported by Palotti et al. [205].

Task 2 consisted of the same systematic evaluation, but this time, the simplest sleep staging
paradigm was introduced (Wake, NREM, REM). Here, the AASM scores provided in the MESA

6https://pypi.org/project/hrv-analysis/
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Feature name Description

Activity Count Raw activity count from the actigraphy device

Log Activity Count Natural Logarithm of the activity count

Mean Activity Mean value for the window of activity of size N. 1≤ N < 20

Median Activity Median value for the window of activity of size N. 1≤ N < 20

Std Activity Standard deviation value for the window of activity of size N. 1≤ N < 20

Variance Activity Variance value for the window of activity of size N. 1≤ N < 20

Minimum Activity Minimum value for the window of activity of size N. 1≤ N < 20

Maximum Activity Maximum value for the window of activity of size N. 1≤ N < 20

NAT Activity Number of epochs, in a window of size N, which the value for the activity
count is larger than 50 and lower than 100. Devised from [200]. 1≤N < 20

Any Activity Number of epochs that contain any activity in the window of size N. 1≤ N <
20

Skewness of Activity Skewness for the window of activity of size N. 4≤ N < 20

Kurtosis of Activity Kurtosis for the window of activity of size N. 4≤ N < 20

Table 3.3 Full set of features extracted from the actigraphy signal.
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Figure 3.2 Multimodal data processing pipeline: after removing low-quality data, the signals from the
actigraphy device and ECG are synchronised and features are extracted and normalised.

dataset are simplified and collapsed into a simpler representation of sleep staging. Wake and
REM remain the same, but N1, N2 and N3 are grouped together to become NREM sleep as an
entity. The feasibility of this task has also been tested by other studies [215, 61].

Taking a step further in the level of granularity, Task 3 classifies the data into Wake, REM,
Light Sleep and Deep Sleep. Here, light sleep captured both N1 and N2, which is often considered
a transition state between light and deep sleep and usually takes up the largest percentage of
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Time Domain Features

Mean HR Mean heart rate for that window
Maximum HR Maximum heart rate for that window
Minimum HR Minimum heart rate for that window
Std HR Standard deviation for the heart rate for that window
SDNN Standard deviation of Normal-to-Normal interval (NNi)
SDSD Standard deviation of NNi differences
NN50 Number of NNi differences greater 50ms
pNN50 Ratio between NN50 and total number of NNi
NN20 Number of NNi differences greater 20ms
pNN20 Ratio between NN20 and total number of NNi
RMSSD Root mean of squared NNi differences
Median NNi Median of NNis
Range NNi Range between smallest NN intervals to largest NN intervals
CVSD The coefficient of variation of successive differences , the RMSSD divided by mean NNi
Coeff. of Variation of
NNI

The Coefficient of Variation of NNi, i.e. the ratio of sdNN divided by mean NNi

Geometrical Domain Features

Triangular Index The HRV triangular index measurement is the integral of the density distribution (that is, the
number of all NN intervals) divided by the maximum of the density distribution (class width of
8ms)

Frequency Domain Features

Low Frequency Low Frequency is the variance (i.e., power) in HRV in the Low Frequency (.04 to .15 Hz). Reflects
a mixture of sympathetic and parasympathetic activity

High Frequency High Frequency is the variance (i.e., power) in HRV in the High Frequency (.15 to .40 Hz).
Reflects fast changes in beat-to-beat variability due to parasympathetic (vagal) activity

Variance in Low Freq. VLF is the variance (i.e., power) in HRV in the Very Low Frequency (.003 to .04 Hz). Reflect an
intrinsic rhythm produced by the heart which is modulated by primarily by sympathetic activity

Low/High Freq. Ratio The LF/HF ratio is sometimes used by some investigators as a quantitative mirror of the
sympathy/vagal balance

Norm. Low Freq. Ratio Normalized low frequency ratio calculated from the raw values of low frequency band (LF or
HF) divided by the total spectral power

Norm. High Freq. Ratio Normalized high frequency ratio calculated from the raw values of high frequency band (LF or
HF) divided by the total spectral power

Mean NNi Mean over the NN intervals
Total Power Total power of the density spectral

Non-Linear Domain Features

Cardiac Sympathetic In-
dex

Cardiac Sympathetic Index [124]

Mod. Cardiac Symp. In-
dex

A modified cardiac sympathetic index calculated by SD22

SD1

Cardiac Vagal Index Cardiac Vagal Index [124]
SD1 Poincaré plot standard deviation perpendicular the line of identity
SD2 Poincaré plot standard deviation along the line of identity
SD1/SD2 Ratio Ratio of SD1 to SD2

Table 3.4 Full set of cardiovascular related features grouped by domain.

time during a full sleep cycle [228]. Given the heterogeneity and prevalence of N2, the difficulty
of the task has risen significantly. The models are expected to perform worse than they did on
previous tasks.

Task 4 explored the classification of sleep stages based on AASM rules (Wake, REM, N1,
N2, N3). This task has the highest level of granularity, and it is, in fact, a task in which even the
current state-of-the-art DL approaches on gold-standard PSG recordings often do not achieve
satisfactory performance [219]. This task faces two challenges. The first is the class imbalance,
as N1 and N3 sleep epochs account for only 11% and 7% of the data, respectively. The second
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challenge is the nature of modalities that do not capture direct cortical signals, compromising the
performance in more granular classification tasks.

3.3.4. Models and Settings

Conventional heuristic approaches have been readily used in the past 30 years for Task 1 (binary
sleep-wake classification). It has recently been shown that feature-based ML and DL approaches
greatly outperform all these methods [205].

ML and DL techniques are increasingly used in medical sciences [219, 61]. In this chapter,
supervised learning techniques on time-series data have been adopted. This entails generating
models that learn mappings between input and output spaces. For instance, Random Forest (RF)
approaches have shown strong performance on activity recognition tasks [229]. Similarly, Radu
et al. [192] showed promising results using DL approaches on multimodal sensor data for activity
and context recognition tasks. Indeed, wearable sensors exploiting multimodal approaches have
shown the advantages of these methods over single-modality approaches for human activity
recognition tasks [230]. Going beyond traditional activity recognition tasks, ML and DL models
have been shown to outperform conventional heuristic approaches for actigraphy-based sleep-
wake classification [205, 225]. DL models have also shown great promise in the automatic
classification of sleep stages using EEG or multimodal sensor data [153]. This chapter expands
that work to multimodal wearable and minimally obtrusive sensors by systematically evaluating
how the most well-established ML and DL models perform when using combined sensing.

For all included tasks and modalities, this chapter explores the common shallow ML and
DL architectures, which include linear support vector machines, logistic regression, random
forest, perceptrons, convolutional neural networks (CNN) and long-short term memory networks
(LSTM). CNN and LSTM are commonly used neural network models in sleep-wake [231] and
sleep stage classification research based on EEG signals [153, 154, 156]. Finally, this chapter
introduced an ensemble method which aims to combine the unique perspectives and capabilities

of DL classifiers with different window sizes containing discriminant power from different
temporal dependencies that could be characteristic of different sleep stages.

This chapter hypothesised that given the large amounts of data, DL models would be better
suited. Details on the ML and DL classifier settings can be found in Table B.1. Deeper
architectures (more layers) are explored in the Appendix A.3, Figure A.1 and A.2, but for
comparison purposes, this chapter only employed single layer architectures in the main results
section.

3.3.5. Experimental Design

Once the feature sets were built for the two input modalities, the dataset has been randomly split
into training and test sets following an 80/20 split where 80% (1,395 subjects) went to the training
set and 20% (348 subjects) went to the test set. More details, including demographic information,
can be found in Table 3.1, and a summary of sleep statistics is introduced in Table 3.2 .
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Algorithm
Type Modality Input Dimension Features Used (Full list on Tables 3.3 and 3.4)

ML

[Actigraphy] x ∈ R370 370 features were derived from Activity Counts

[HR/HRV] x ∈ R30 30 features were derived from RR intervals

[HR/HRV, Actigraphy] x ∈ R400 Concatenation of the two modalities above

DL

[Actigraphy] x ∈ Rl Activity Counts

[HR/HRV] X ∈ Rl×8

8 features were derived from RR intervals: Mean NNi,
Standard Derivation of RR interval (SDNN),
RR interval differences (SDSD), Very Low Frequency, Low Frequency,
High Frequency Bands, Low Frequency to High Frequency Ratio and Total Power.

[HR/HRV, Actigraphy] X ∈ Rl×9 Concatenation of the two modalities above

Table 3.5 Experiment settings based on input modalities, where l is the window length of the input
(l = {21,51,101}), the inputs are for each sleep epoch

The inputs to the single modality and multimodal experiments can be found in Table 3.5.
When using multimodal approaches, a channel-wise stacking approach was adopted prior to
inputting the resulting matrix into each model. The channel-wised stacking method is widely
used for time series studies [232, 151, 152]. All benchmark tasks adopt these methods. Following
the method used in [205], the hyperparameter search is described below:

• ML hyperparameter search: This chapter employed 5-fold cross-validation on the
training set.

• DL hyperparameter search: This chapter employed a hold-out method to randomly split
the training dataset into a validation set of 279 subjects (20%) and a training set of 1,116
(80%).

The full detailed list for the hyperparameter tuning can be found in Table A.3. Furthermore,
the hyper-parameter tuning results of CNNs and LSTMs and the best hyper-parameter settings
used in this chapter can be found in Figure A.1 and Figure A.2 in Appendix A.3. The Scikit-learn7,
Keras8 and Tensorflow9 were used to implement models. For the feature set, this chapter adopted
previously used approaches [215, 205] for movement and cardiac sensor feature extraction in
traditional ML and DL setups, which were mentioned in Section 3.2. In the ML experiments,
each input vector contains 400 features that combined 370 statistical features extracted from
actigraphy and 30 HR/HRV features, as described in the feature engineering section. As such, the
single modality approaches for actigraphy input 370 features, whereas for HR/HRV, 30 features
for each sleep epoch were included for each input vector. These were used as inputs for the
feature-based ML benchmarks.

In DL experiments, ECG signals are expensive and may not be available in most wearable
sensors, in order to make this chapter as transferable and device-agnostic as possible, the input

7https://scikit-learn.org
8https://keras.io
9https://tensorflow.org
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of the study did not consider the use of ECG raw signals. Thus, instead, this chapter used an 8-
dimensional HR/HRV feature set (see Table 3.5) that can be derived from many wearable cardiac
sensors, such as Epatica10, or ActiHeart11. For movement data, this chapter simply uses the
activity counts that can be acquired directly from the wrist-worn actigraphy device. In the deep
learning experiments, following the convention of previous studies, we tested window lengths
of 21, 51, and 101 sleep epochs, corresponding to 10.5, 25.5, and 50.5 minutes, respectively.
For PSG annotation in clinical settings, sleep technicians and physicians often look at adjacent

information as well as contextual temporal information to inform their decisions in scoring
sleep epochs (sleep stages and/or sleep events). They may look at information and trends within
a 30-minute or 1-hour period as well as contextual information regarding the distribution of
previous sleep stages to reach a decision [233].

Motivated by this, in this chapter, the ensemble model combines DL classifiers (a combination
of CNNs and LSTMs) with various sliding window lengths (21, 51 and 101 sleep epochs, equating
to 10.5,25.5, and 50.5 minutes, respectively). Following the previously described ensemble
model pipelines, this chapter explored two score-level fusion methods model-averaging and
maximum posterior selection.

The sleep stage ensemble classification model is based on standard single-layer CNN and
LSTM networks. Figure 3.3 illustrates the structure for individual classifiers and their score-level
fusion mechanism. At the training stage, each classifier is trained independently, given the
hypothesis that data from sliding windows of different lengths carry different discriminative
information for each sleep-stage class.

This chapter used highly overlapping sliding windows with sleep classified at each sleep
epoch (i.e., sample-wise classification). Assuming at timestamp (i.e., sleep epoch) t, the mth

classifier’s output is a K-dimensional probability vector pm
t ∈RK , where K is the total sleep class

number (for a certain task). Probability vectors from all M = 6 models can then be combined
using the two different fusing strategies. For model-averaging, the fused score can be calculated
via:

p f usion
t =

1
M

M

∑
m=1

pm
t

and label k̂t can be assigned to the class with the highest probability, i.e.,

k̂t = argmax
k

p f usion
t .

The second strategy maximum posterior selection simply assigns labels k̂t to the class with the
largest probability among all the M classifiers:

k̂t = argmax
k

Pt , where Pt = [p1
t ,p

2
t , ...p

M
t ].

10https://www.empatica.com
11www.camntech.com
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Figure 3.3 Ensemble model illustration. The model starts by taking inputs from different window lengths
(l) from the multimodal sensors. A total of six different classifiers are used, combining a mixture of
CNNs and LSTMs and exploiting their individual strengths. This produces a probability matrix which is
formed by the concatenation operation, which becomes part of the ensemble architecture. Finally, the
decision-making layer takes place by either (A) using a maximum calculation or (B) a mean calculation
across all classifiers

An example of these two fusing strategies can be found in Figure 3.3.

3.3.6. Evaluation Metrics

This chapter adopted commonly used metrics in machine learning and medical sciences to
evaluate the performance of the different classification algorithms based on task and modality
combinations. The performance metrics were derived at both a subject level (first derived on an
individual-by-individual basis and then averaged across the population) and a group level.

To assess class imbalance and evaluate performance, several popular metrics were adopted
based on True Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN)
classifications. These evaluation metrics can be seen in chapter 2, which include accuracy, recall,
specificity, precision, mean F1 score and Cohen’s Kappa (κ):

With the exception of Task 1 (binary sleep-wake classification), all other tasks are multi-class
classifications. The performance metrics are calculated in a class-wise manner and reported as
the mean values. This chapter generates confusion matrices (corresponding to the best classifiers)
for each task to further understand error types, and computed Cohen’s Kappa to evaluate the
agreement across the whole population. Two-tailed t-tests were used to calculate statistical
significance. This chapter also proposed a measure, namely Time Deviation, to intuitively
understand how long (in minutes), a classifier is either under or over-estimating a certain sleep
stage across the whole population.
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cardiac sensing

Task 1 Task 2 Task 3 Task 4

Sleep Stages # Epochs % Sleep Stages # Epochs % Sleep Stages # Epochs % Sleep Stages # Epochs %

Wake 652,509(314,784) 34%(20%) Wake 652,509(314,784) 34%(20%) Wake 652,509(314,784) 34%(20%) Wake 652,509(314,784) 34%(20%)
Sleep 1,251,391 66%(80%) NREM 1,022,346 54%(65%) Light 893,472 47%(57%) N1 171,027 9%(11%)

REM 229,045 12%(15%) Deep 128,874 7%(8%) N2 722,445 38%(46%)
REM 229,045 12%(15%) N3 128,874 7%(8%)

REM 229,045 12%(15%)
Total 1,903,900(1,566,175) 100% Total 1,903,900(1,566,175) 100% Total 1,903,900(1,566,175) 100% Total 1,903,900(1,566,175) 100%

Table 3.6 Number of 30-second sleep epochs for each of the four tasks studied in this chapter.
(*The numbers in parentheses were obtained within sleep period time which measured from the first to
the last non-wake detected sleep epoch.)

Given N participants, for sleep class k the time deviation T Dk can be expressed as:

T Dk =
1
N

N

∑
i=1

(Predi
k−GT i

k ),

where Predk is the classifier’s prediction and GTk refers to the ground truth for sleep class k.
Both Predk and GTk were measured in minutes. This metric can help to better understand the
classifier’s performance/bias for a certain sleep class at the population level.

Many sleep classification studies used accuracy or F1 to measure their model’s performance,
yet these are high-level metrics which do not consider class-wise performance. Confusion
matrices, on the other hand, provide class-wise predictions and corresponding error types.
However, for clinicians and other health practitioners, these matrices are not the most obvious
way to represent the time deviation of sleep stages, as they include too many low-level details.
This chapter proposed Time Deviation, is a mid-level metric, which summarises the class-wise
performance in an intuitive manner. As such, it can be used as a complementary metric to
what is offered by traditional metrics (confusion matrix, accuracy, and F1), allowing healthcare
practitioners to gain an intuitive understanding towards a classifier’s reliability.

3.4. Results

The experiments were conducted on a total of 1,743 nights of sleep, representing 1,903,900
sleep epochs of 30 seconds. The prevalence of sleep stages (AASM convention used) within
these epochs is reported in Table 3.6. For consistency, all of the architectures and models were
evaluated during the sleep recording period across tasks, with performances reported in Table 3.7
for binary classification and Table 3.8 for multistage classification. For the performance within
the sleep period, the results can be found in Appendix A.2, Table A.2. Within each table, results
were sorted by mean accuracy in descending order. The performance of the benchmark study
during the sleep period for all tasks can be found in Table A.2 of Appendix A.2. For each task, a
full breakdown of all classifiers is presented in the supplementary materials. This section only
shows the top three DL classifiers alongside the best classifier from ML. Table 3.10 provides
a summary of sleep measured by PSG and the time spent in different sleep stages for the best
classifier in each task.
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3.4 Results

Sleep-Wake Classification Benchmarks*

Method Specifics Performance Metrics Time Deviation**

Modality Sensors Top 3 Classifiers Accuracy Specificity Precision Recall F1 Cohen’s κ Sleep (mins)

Multimodality
[HR/HRV, Actigraphy]

CNN (101) 84.4 ± 1.0 67.9 ± 2.0 84.8 ± 1.3 92.4 ± 1.2 87.6 ± 1.1 62.0 ± 2.0 36.2 ± 7.3
LSTM (101) 84.4 ± 1.0 67.4 ± 1.9 84.7 ± 1.2 92.5 ± 1.1 87.8 ± 1.0 61.6 ± 2.1 36.0 ± 6.7
CNN (51) 84.3 ± 1.0 67.3 ± 2.0 84.5 ± 1.3 92.7 ± 1.2 87.6 ± 1.1 61.7 ± 2.1 39.0 ± 7.2
Random Forest (300) 82.3 ± 1.0 65.7 ± 2.1 83.7 ± 1.3 90.6 ± 1.1 57.6 ± 2.1 57.1 ± 2.1 32.9 ± 7.3

Single
Modality

[HR/HRV]
LSTM (101) 79.5 ± 1.2 62.2 ± 2.1 81.8 ± 1.4 88.9 ± 1.3 84.1 ± 1.1 51.5 ± 2.2 35.3 ± 4.4
CNN (101) 79.1 ± 1.2 57.0 ± 2.1 79.9 ± 1.5 91.0 ± 1.4 83.9 ± 1.3 49.8 ± 2.1 54.4 ± 4.7
LSTM (51) 78.6 ± 1.2 61.1 ± 2.0 81.2 ± 1.4 88.2 ± 1.3 83.4 ± 1.2 49.5 ± 2.1 34.5 ± 4.6
Random Forest (300) 70.3 ± 1.2 39.2 ± 2.3 73.6 ± 1.4 86.7 ± 1.9 77.6 ± 1.5 27.1 ± 1.7 70.4 ± 12.5

[Actigraphy]
CNN (101) 84.9 ± 1.0 67.1 ± 2.0 84.7 ± 1.3 93.8 ± 1.0 88.3 ± 1.0 63.0 ± 2.0 43.0 ± 6.9
CNN (51) 84.4 ± 1.0 67.6 ± 2.0 84.6 ± 1.3 92.9 ± 1.1 87.8 ± 1.1 62.2 ± 2.1 39.0 ± 7.1
LSTM (101) 84.3 ± 1.0 69.7 ± 1.8 85.5 ± 1.2 91.2 ± 1.1 87.6 ± 1.0 62.0 ± 2.0 26.5 ± 6.6
Random Forest (300) 81.2 ± 1.0 63.4 ± 2.0 82.9 ± 1.3 89.7 ± 1.1 85.4 ± 1.0 54.1 ± 2.1 32.6 ± 7.2

Table 3.7 Sleep wake classification results (mean ± standard error at 95% confidence interval) and
predicted minutes by multimodal and single modality approaches (full recording period); (*Full Table
available on supplementary, **Average time deviation from ground truth across all subjects ± standard
error )

3.4.1. Task 1: Sleep-Wake Classification

The best-performing algorithms for Task 1 are presented in Table 3.7, and a full breakdown of all
classifiers are presented in the supplementary tables for this task. The baseline approaches were
used here, namely, Always Sleep and Always Wake, which showed that 66.5% of the epochs is
sleep. Given the fact that for the purpose of this chapter, the classification during the night period
was explored. The minimum accuracy threshold which is 66.5% was established as the baseline
performance, as the dataset is imbalanced. Furthermore, although not reported in this chapter,
several of the well-established heuristic algorithms were tested such as Cole-Kripke [202] and
Sadeh [200] on single-modality actigraphy data. The results agree with what was reported by
Palotti et al. [205]. All of these approaches were outperformed by both the feature-based ML
and DL models explored in this chapter.

All traditional ML modalities showed similar performance. Corroborating what had been
shown in the related work that, when these algorithms are applied to actigraphy data, they
result in high sensitivity but poor specificity [205]. Interestingly, for this task, adding HR and
HRV to actigraphy for a combined sensing modality on the top classifier of CNN (101) did
not significantly improve F1 (p = 0.347), accuracy (p = 0.499) or Cohen’s κ (p = 0.506). As
expected, HR/HRV alone did not yield comparable performance to actigraphy alone or the
combined sensing approach.

3.4.2. Task 2: Wake, Non-REM sleep, REM Sleep Classification

Task 2 evaluated sleep stages from a low granularity perspective by aggregating the different
partitions of NREM. As observed in the supplementary table for this task, although some ML
models had reasonable performance, the DL approaches were superior. It is important to note
that at this level of granularity, NREM is overestimated while REM is underestimated for almost
all models except for CNN (51) and CNN (101). In contrast to what was observed in Task 1, all
models explored have a higher specificity than sensitivity and accuracy higher than F1 score due
to the imbalanced dataset.
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cardiac sensing

Modality Sensors Top 3 classif. Accuracy Specificity Precision Recall F1 Cohen’s κ Wake REM NREM

Multimod.
LSTM (51) 76.2 ± 1.0 85.6 ± 0.5 72.2 ± 1.3 68.8 ± 1.2 67.9 ± 1.3 58.4 ± 1.8 -13.2 ± 6.8 -10.7 ± 3.8 23.9 ± 7.1
LSTM (101) 76.1 ± 0.9 85.1 ± 0.5 71.9 ± 1.4 66.8 ± 1.2 66.4 ± 1.3 57.4 ± 1.9 -3.2 ± 6.8 -23.3 ± 3.4 26.5 ± 7.0
CNN (101) 76.0 ± 1.0 85.6 ± 0.6 72.2 ± 1.2 69.7 ± 1.3 68.1 ± 1.3 58.6 ± 1.9 -32.7 ± 7.2 2.5 ± 4.5 30.2 ± 7.7
Random Forest (300) 70.5 ± 0.9 79.9 ± 0.5 59.2 ± 1.5 53.0 ± 0.7 50.3 ± 0.7 47.6 ± 1.7 -20.0 ± 7.6 -63.6 ± 2.9 83.5± 7.8

Single
Modality

LSTM (101) 73.8 ± 1.2 84.3 ± 0.6 69.8 ± 1.5 66.1 ± 1.3 64.9 ± 1.5 50.0 ± 2.2 -27.8 ± 8.5 -8.6 ± 4.2 36.4 ± 8.1
LSTM (51) 72.9 ± 1.1 83.8 ± 0.6 67.9 ± 1.4 64.1 ± 1.3 62.9 ± 1.4 45.5 ± 2.1 -17.9 ± 8.5 -16.2 ± 4.3 34.1 ± 8.3
CNN (101) 71.0 ± 1.2 83.6 ± 0.6 66.3 ± 1.4 65.4 ± 1.4 62.7 ± 1.4 46.1 ± 2.0 -12.9 ± 9.4 2.3 ± 5.0 10.6 ± 9.1
Random Forest (300) 59.6 ± 1.0 73.8 ± 0.4 48.4 ± 1.4 43.4 ± 0.6 39.2 ± 0.8 19.7 ± 1.4 -26.8 ± 13.5 -65.3 ± 3.1 92.0 ± 13.2

LSTM (101) 71.4 ± 0.9 80.1 ± 0.6 51.7 ± 1.1 52.9 ± 0.7 49.8 ± 0.8 49.7 ± 1.7 -16.8 ± 7.3 -67.0 ± 3.0 83.8 ± 7.7
CNN (101) 71.0 ± 1.0 79.5 ± 0.6 50.1 ± 0.8 52.1 ± 0.8 49.1 ± 0.8 48.0 ± 1.8 -34.9 ± 7.5 -67.6 ± 3.0 102.5 ± 7.9
LSTM (51) 70.9 ± 0.9 79.7 ± 0.6 49.0 ± 0.8 52.4 ± 0.7 49.2 ± 0.8 48.3 ± 1.7 -20.3 ± 7.4 -67.6 ± 3.0 87.9 ± 7.8
Random Forest (300) 68.6 ± 0.9 78.8 ± 0.5 53.4 ± 1.1 51.0 ± 0.7 48.5 ± 0.8 44.3 ± 1.7 -20.5 ± 7.2 -60.7 ± 2.9 81.2 ± 7.4

Task 3: Wake, Light Sleep, Deep Sleep, REM

Method Specifics Performance Metrics Time Deviation*

Modality Sensors Top 3 classif. Accuracy Specificity Precision Recall F1 Cohen’s κ Wake REM Deep Sleep Light Sleep

Multimod.
LSTM (51) 70.3 ± 1.0 87.4 ± 0.4 57.9 ± 1.3 54.0 ± 1.0 51.9 ± 1.0 53.8 ± 1.9 -1.0 ± 6.9 -5.6 ± 4.0 -36.2 ± 3.5 42.8 ± 7.4
LSTM (101) 70.2 ± 1.0 86.9 ± 0.4 59.9 ± 1.5 52.4 ± 1.0 51.3 ± 1.1 51.7 ± 1.8 -18.9 ± 6.6 -24.7 ± 3.7 -32.4 ± 3.5 76.0 ± 7.3
CNN (101) 69.0 ± 1.0 87.0 ± 0.4 58.0 ± 1.4 53.7 ± 1.0 51.2 ± 1.1 51.6 ± 1.8 -15.9 ± 7.5 4.4 ± 4.8 -34.5 ± 3.5 46.1 ± 8.1
Random Forest (300) 63.6 ± 1.0 83.3 ± 0.4 44.7 ± 1.3 40.1 ± 0.6 36.7 ± 0.6 34.4 ± 1.3 -15.2 ± 7.6 -61.3 ± 2.9 -38.9 ± 3.6 115.3 ± 8.3

Single
Modality

LSTM (101) 67.4 ± 1.2 86.2 ± 0.4 56.2 ± 1.6 51.3 ± 1.1 49.5 ± 1.2 44.6 ± 2.2 -13.1 ± 8.4 -13.5 ± 3.8 -33.7 ± 3.5 60.4 ± 8.1
LSTM (51) 66.2 ± 1.1 85.6 ± 0.4 54.4 ± 1.5 49.5 ± 1.1 47.4 ± 1.1 41.2 ± 2.1 -15.0 ± 8.1 -14.6 ± 4.1 -36.4 ± 3.5 65.9 ± 7.9
CNN (101) 64.3 ± 1.1 85.3 ± 0.4 54.4 ± 1.6 50.2 ± 1.1 47.1 ± 1.1 40.9 ± 2.1 -23.0 ± 9.5 8.2 ± 5.1 -34.8 ± 3.5 49.6 ± 8.9
Random Forest (300) 53.3 ± 1.0 79.2 ± 0.4 35.5 ± 1.1 33.2 ± 0.5 28.6 ± 0.6 12.6 ± 1.1 -4.3 ± 14.0 -64.7 ±3.0 -39.0 ± 3.6 -39.0 ± 3.6

LSTM (101) 64.1 ± 1.0 82.9 ± 0.5 35.6 ± 0.7 39.6 ± 0.7 35.8 ± 0.7 33.5 ± 1.4 -32.5 ± 7.4 -67.6 ± 3.0 -39.3 ± 3.6 139.4 ± 8.5
CNN (101) 63.9 ± 1.0 83.0 ± 0.4 36.3 ± 0.9 39.6 ± 0.7 35.7 ± 0.7 33.5 ± 1.4 -26.4 ± 7.6 -67.5 ± 3.0 -39.3 ± 3.6 133.2 ± 8.7
LSTM (51) 63.6 ± 1.0 82.7 ± 0.4 35.6 ± 0.8 39.3 ± 0.7 35.5 ± 0.7 33.0 ± 1.4 -36.3 ± 7.1 -67.3 ± 3.0 -39.3 ± 3.6 143.0 ± 8.2
Random Forest (300) 61.4 ± 1.0 82.6 ± 0.4 39.6 ± 0.9 38.1 ± 0.5 35.0 ± 0.6 31.2 ± 1.3 -15.6 ± 7.3 -59.3 ± 2.9 -37.1 ± 3.6 112.1 ± 8.1

Task 4: Wake, REM, N1,N2,N3

Method Specifics Performance Metrics Time Deviation **

Modality Sensors Top 3 classif. Accuracy Specificity Precision Recall F1 Cohen’s κ Wake REM N3 Sleep N2 Sleep N1 Sleep

Multimod.
LSTM (51) 63.7 ± 1.0 88.7 ± 0.3 47.1 ± 1.4 43.0 ± 0.8 39.9 ± 0.8 56.3 ± 1.8 22.2 ± 7.1 -12.9 ± 3.9 -35.2 ± 3.5 71.9 ± 7.5 -46.0 ± 3.0
LSTM (101) 63.6 ± 1.0 88.7 ± 0.3 47.8 ± 1.3 43.3 ± 0.8 40.5 ± 0.9 57.0 ± 1.8 -3.3 ± 6.8 -15.9 ± 3.9 -32.3 ± 3.5 97.7 ± 7.5 -46.2 ± 3.0
CNN (101) 63.1 ± 1.1 88.8 ± 0.3 51.5 ± 1.4 44.7 ± 0.9 41.9 ± 0.9 56.2 ± 1.8 -26.2 ± 7.1 8.2 ± 5.0 -34.3 ± 3.5 92.4 ± 8.0 -40.2 ± 3.1
Random Forest (300) 56.9 ± 1.0 86.2 ± 0.3 36.4 ± 1.2 33.1 ± 0.5 28.8 ± 0.5 46.3 ± 1.6 18.6 ± 8.1 -54.9 ± 3.1 -38.7 ± 3.6 123.6 ± 8.4 -48.6 ± 3.2

Single
Modality

CNN (21) 55.6 ± 1.1 86.4 ± 0.3 40.4 ± 1.2 37.3 ± 0.8 33.6 ± 0.9 36.2 ± 1.8 -15.6 ± 10.1 -3.9 ± 5.8 -39.1 ± 3.6 103.0 ± 9.8 -44.4 ± 3.0
CNN (101) 55.6 ± 1.1 86.7 ± 0.3 44.9 ± 1.4 38.9 ± 0.9 35.9 ± 1.0 37.1 ± 1.8 1.1 ± 10.7 -12.0 ± 4.8 -29.5 ± 3.6 81.2 ± 9.4 -40.8 ± 3.1
CNN (51) 54.2 ± 1.1 86.0 ± 0.3 41.2 ± 1.3 35.6 ± 0.8 32.1 ± 1.0 32.3 ± 1.9 35.7 ± 12.1 -28.2 ± 5.1 -36.4 ± 3.5 69.5 ± 11.0 -40.6 ± 3.1
Random Forest (300) 46.6 ± 1.0 83.1 ± 0.3 29.9 ± 1.0 27.1 ± 0.4 22.3 ± 0.5 17.6 ± 1.4 48.5 ± 14.3 -61.3 ±3.1 -38.9 ± 3.6 97.8 ± 13.7 -46.2 ± 3.2

LSTM (51) 56.9 ± 1.0 85.7 ± 0.4 26.1 ± 0.8 32.2 ± 0.6 27.1 ± 0.7 46.9 ± 1.7 -12.9 ± 7.5 -67.6 ± 3.0 -39.3 ± 3.6 169.2 ± 8.5 -49.4 ± 3.2
LSTM (101) 56.9 ± 1.0 85.7 ± 0.4 25.3 ± 0.7 32.3 ± 0.6 27.1 ± 0.7 47.1 ± 1.7 -3.3 ± 7.5 -67.6 ± 3.0 -39.3 ± 3.6 159.7 ± 8.7 -49.4 ± 3.2
CNN (101) 56.8 ± 1.1 85.8 ± 0.3 27.7 ± 0.9 32.2 ± 0.5 27.2 ± 0.6 46.9 ± 1.7 9.6 ± 8.3 -65.6 ± 3.0 -39.3 ± 3.6 144.7 ± 9.1 -49.4 ± 3.2
Random Forest (300) 54.4 ± 1.0 85.6 ± 0.3 31.7 ± 0.8 31.1 ± 0.4 27.2 ± 1.6 42.7 ± 1.6 16.2 ± 7.6 -56.0 ±2.8 -36.7 ± 3.5 120.8 ± 8.0 -44.3 ± 3.3

Table 3.8 Sleep stage classification results (mean ± standard error at 95% confidence interval and
predicted minutes by multimodal and single modality approaches (full recording period); (*Full Table
available on supplementary, **Average time deviation from ground truth across all subjects ± standard
error)

As reflected in the top part of Table 3.8, the best classifiers for this task were all DL models
for all sensor modalities. These models were significantly better than the best traditional ML
model (Random Forest), with p < 0.001 for all metrics evaluated. The best DL algorithm with
respect to accuracy was LSTM (51) which was also statistically better than CNN (21) (p < 0.001)
achieving an accuracy of 76.2%. However, it was not significantly better than CNN (101) in terms
of F1, sensitivity and specificity (p = 0.364, p = 0.138, p = 0.063 and p = 0.399). Nevertheless,
CNN (101) achieved the lowest mean time deviation with a 2.5-minute overestimation of REM
sleep. Interestingly, for this task, most algorithms’ specificity significantly improved (e.g. LSTM
(51) p < 0.001, reaching a specificity of 86%) when compared to Task 1 with the exception of
the perceptron model.

In this task, it becomes apparent that multimodality is required for better performance at
multistage classification, with the single modality approaches being significantly (p < 0.001)
outperformed in all performance metrics and yielding much larger time deviations.

3.4.3. Task 3: Wake, Light Sleep, Deep Sleep and REM-sleep Slassification

Task 3 explored sleep staging at a higher level of granularity than Task 2, with class imbal-
ances being perhaps more apparent, as shown in Table 3.6. Here, DL approaches continued to
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3.4 Results

Ground Truth (PSG) 5 Stage Prediction (LSTM)

Figure 3.4 Classification performance for multimodal, 5-stage classification using LSTM. The top figure
is the ground truth PSG, and the figure at the bottom is the predicted stages by the model. Highlighted in
red are areas where the model does poorly.

outperform all feature-based ML models except for the Random Forest, which was not signif-
icantly worse than the CNN (21). The full results are available in supplementary tables. The
best-performing model was LSTM (51), although it was closely followed by LSTM (101) and
CNN (101). Multimodal approaches were significantly better (p < 0.001) across all metrics
upon the comparison of the best classifiers for each category explored, depicting the value of
these combined sensing approaches for multistage classification. Across all sensing modalities
and all algorithms, deep and REM sleep were underestimated, with the exception of CNN (101)
in the multimodal setup. In contrast, light sleep was overestimated, with Wake being slightly
underestimated across all setups, due to the class imbalance, except for LSTM (51).

3.4.4. Task 4: Wake, N1, N2, N3, REM Sleep Classification

Finally, Task 4 aimed to classify sleep stages following AASM rules (N1, N2, N3, REM and
Wake). This task is the most complex due to its level of granularity and high-class imbalance,
and as expected, the models performed worse here than in the previous tasks. An example of the
best-performing model LSTM (101) and the mistakes it makes is highlighted in Figure 3.4.

Like in previous tasks, the performance of DL algorithms was significantly better than
feature-based ML algorithms as depicted in Table 3.8. The three best-performing DL algorithms
were not significantly different from each other with respect to accuracy(p > 0.05) and F1
scores (p > 0.05). The best-performing algorithm was LSTM (51), with an accuracy of 63.7%
and an F1 score of 39.9%. Even in the best-performing multimodal approach, N2 tended to
be severely overestimated (71 minutes more on average across the population). Nevertheless,
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cardiac sensing

(a) Task 1: Wake, Sleep (CNN (101)) (b) Task 2: Wake, NREM, REM (LSTM (51))

(c) Task 3: Wake, Light Sleep, Deep Sleep, REM
(LSTM (51)) (d) Task 4: Wake, N1, N2, N3, REM (LSTM (51))

Figure 3.5 Confusion matrix for the best classifier per Task

the multimodal and HR/HRV approaches were good at classifying Wake and REM, with only
moderate deviations in time for those classes.

It is important to note that although the performance in terms of accuracy for the single
modality approaches was comparable, each method struggled or had strengths at very different
things. For instance, HR/HRV was significantly better at classifying REM sleep in this modality
than actigraphy. Similarly, upon evaluation of the algorithms only during the sleep period only
(Table A.2, multimodal approaches were significantly better at detecting awakenings, yielding a
more accurate wake after sleep onset (WASO) metric. In this thesis, we consider the wake-up
minutes as the value of WASO which is between sleep onset and sleep offset.

Figure 3.5 shows the confusion matrix for the best classifiers per task, allowing us to observe
how models have an easier time classifying REM and Wake and struggle to classify N1 and N3
(NREM). The observed time deviation in minutes substantiates this finding.

Finally, this chapter evaluated the performance of different ensemble methods for each task.
To validate the performance of the proposed ensemble model, a t-test was conducted on both the
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Figure 3.6 Performance (accuracy, F1) per Task and model. Task 5 (ensemble architectures) are depicted
against all benchmarks per each task on green

subject level as well as the group of subjects level. The difference between the two experiments
lies in that the second approach, randomly divides all test subjects into 29 groups, each group
containing 12 individuals. The purpose is to test whether the benefits of using ensemble methods
are due to random chance.

The results of the two ensemble architecture models explored (based on different score-level
fusion approaches) are shown in Table 3.9. The results show that there is no significant difference
between the two ensemble models for all evaluated performance metrics. However, they achieve
better accuracy than single-classifier approaches for all tasks and are significantly better on
several performance metrics.

In Task 2, the ensemble approaches significantly outperformed LSTM (51) in terms of
accuracy (p < 0.05), F1 score (p < 0.05) and Cohen’s κ (p < 0.05) and CNN (101) in terms
of accuracy (p < 0.05) and Cohen’s κ (p < 0.05) based on both subject and group level t test.
These models were the best two performers for that task prior to the introduction of the ensemble
approach. Interestingly, on Task 4 (highest level of class granularity) the ensemble models only
outperformed the best classifier (LSTM (51)) in terms of Cohen’s κ and accuracy (for both
subject and group level t test).

A summary of results per class and model is presented in Figure 3.6.

3.4.5. Feature Importance Analysis

To understand how different modalities contribute to the prediction of each sleep stage, models
that rank feature importance can be implemented. Many traditional ML approaches can provide
feature importance ranking, such as logistic regression, linear Support Vector Machine or Random
Forests. Of those, Random Forest is one of the most powerful traditional ML models, and it can
rank feature importance by calculating the mean Gini impurity or mean information gain over
all its decision trees. However, these approaches only yield features that are important to the
holistic classification task and do not provide information on how these features contribute to
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Ensemble method Accuracy Cohen’s κ F1 Precision Recall Specificity Time Deviation (mins)

Task 1 (2 Stages) Sleep

Maximum selection 85.3 ± 1.0 64.4 ± 2.0 88.4 ± 1.1 85.7 ± 1.2 92.8 ± 1.1 70.1 ± 1.9 33.4 ± 6.7
Mean over classifiers 85.4 ± 1.0 64.3 ± 2.1 88.5 ± 1.0 85.4 ± 1.3 93.4 ± 1.1 69.1 ± 2.0 37.5 ± 6.8

Task 2 (3 stages) Wake REM sleep NREM sleep

Maximum selection 77.9 ± 1.0 61.4 ± 1.8 69.6 ± 1.3 74.5 ± 1.3 70.6 ± 1.2 86.5 ± 0.5 -16.1 ± 6.8 -11.1 ± 4.2 27.3 ± 7.5
Mean over classifiers 78.2 ± 0.9 61.9 ± 1.8 69.8 ± 1.3 75.2 ± 1.3 70.7 ± 1.3 86.5 ± 0.5 -21.7 ± 6.8 -13 ± 4.2 34.7 ± 7.5

Task 3 (4 stages) Wake REM sleep Deep sleep Light sleep

Maximum selection 71.1 ± 1.0 55.7 ± 1.8 52.4 ± 1.0 58.3 ± 1.3 54.8 ± 1.0 87.7 ± 0.4 -11.1 ± 6.7 -3.5 ± 4.6 -37.4 ± 3.5 52.0 ± 7.8
Mean over classifiers 71.6 ± 1.0 56.1 ± 1.8 52.1 ± 1.0 57.1 ± 1.2 54.3 ± 1.0 87.6 ± 0.4 -17.8 ± 6.7 -8.9 ± 4.4 -38.5 ± 3.5 65.2 ± 7.8

Task 4 (5 stages) Wake REM sleep N3 sleep N2 sleep N1 sleep

Maximum selection 65.2 ± 1.0 59.6 ± 1.8 41.4 ± 0.8 49.7 ± 1.4 45.2 ± 0.8 89.3 ± 0.3 3.0 ± 6.9 4.7 ± 5.1 -37.1 ± 3.5 76.4 ± 7.8 -47 ± 3.1
Mean over classifiers 65.4 ± 1.0 60.1 ± 1.8 41.2 ± 0.8 48.6 ± 1.4 44.9 ± 0.8 89.2 ± 0.3 -5.1 ± 6.9 -2.1 ± 4.8 -38.4 ± 3.5 91.9 ± 7.8 -46.3 ± 3.1

Table 3.9 Results (mean ± standard error at 95% confidence interval) of different ensemble methods for
each task.(Mean over classifiers and Maximum selection are ensemble models)

Minutes of Sleep Stages

Task Methods Wake Sleep

1
Ground truth 187.8±81.6 (179.2-196.4) 365.7±81.8 (357.1-374.3)
Mean over classifiers 150.2±73.2 (142.5-157.9) 403.3±92.0 (393.6-413.0)

Wake REM NREM

2
Ground truth 187.8±81.6 (179.2-196.4) 68.6±27.2 (65.7-71.5) 299.7±66.5 (292.7-306.7)
Mean over classifiers 166.1±77.2 (158.0-174.2) 57.4±39.0 (53.3-61.5) 332.7±87.8 (323.5-341.9)

Wake REM Deep Sleep Light Sleep

3
Ground truth 187.8±81.6 (179.2-196.4) 68.6±27.2 (65.7-71.5) 41.8±33.7 (38.3-45.3) 258.8±65.7 (251.9-265.7)
Maximum selection 176.7±78.3 (168.5-184.9) 65.4±43.1 (60.9-69.9) 5.2±6.2 (4.5-5.9) 310.6±85.4 (301.6-319.6)

Wake REM N1 N2 N3

4
Ground truth 187.8±81.6 (179.2-196.4) 68.6±27.2 (65.7-71.5) 50.1±30.5 (46.9-53.3) 209.1±58.7 (202.9-215.3) 41.8±33.7 (38.3-45.3)
CNN (101) 161.6±79.1 (153.3-169.9) 76.7±46.8 (71.8-81.6) 9.6±14.6 (8.1-11.1) 301.5±87.0 (292.4-310.6) 7.7±8.7 (6.8-8.6)

Sleep Parameters

Task Methods Total Sleep Time Wake After Sleep Onset Sleep Period Duration Sleep Efficiency
(Recording Period)

Sleep Efficiency
(Sleep Period)

Ground truth 365.7±81.8 (357.1-374.3) 89.4±62.5 (82.8-96.0) 455.1±90.0 (445.6-464.6) 66.5±12.9 (65.1-67.9) 80.9±11.8 (79.7-82.1)
1 Mean over classifiers 360.7±84.0 (351.9-369.5) 70.9±57.4 (64.9-76.9) 474.2±92.9 (464.4-484.0) 65.5±13.2 (64.1-66.9) 76.9±14.0 (75.4-78.4)
2 Mean over classifiers 359.5±84.3 (350.6-368.4) 81.7±60.1 (75.4-88.0) 469.1±93.0 (459.3-478.9) 65.3±13.2 (63.9-66.7) 77.4±13.9 (75.9-78.9)
3 Maximum selection 358.2±84.1 (349.4-367.0) 86.5±61.4 (80.0-93.0) 463.3±92.3 (453.6-473.0) 65.0±13.2 (63.6-66.4) 78.1±13.7 (76.7-79.5)
4 CNN (101) 361.1±83.3 (352.3-369.9) 94.6±68.6 (87.4-101.8) 486.5±90.7 (477.0-496.0) 65.6±13.1 (64.2-67.0) 75.0±14.2 (73.5-76.5)

Table 3.10 Sleep parameters and predicted minutes of each sleep stage in the test dataset. Numbers are
minutes except for the sleep efficiencies which are reported as percentages.
(*Results are in mean +- SD/ and numbers in parentheses indicate the range in 95% CI (Mean over
classifiers and Maximum selection are ensemble models))

recognising certain classes (e.g., a sleep stage like REM sleep). This chapter used SHAP [197]
with Random Forest, which can generate class-wise feature importance. More technical details
of SHAP can be found in [197].

By using this SHAP implementation with Random Forest, the feature importance score can
be calculated per class, as shown in Figure 3.7. This chapter reports the top 20 features on Tasks
1-4, respectively. It is interesting to see how the top-ranked features differ from task to task,
pointing towards what contributes to more granular levels of classification. For instance, in
Task 1 (i.e., binary sleep-wake classification), the most informative features are from movement
sensors (15 features out of 20), in contrast to those obtained from cardiac sensing (5 out of
20). However, cardiac features become more and more important as multi-stage classification
tasks get more granular. In Tasks 2-4, with the increased class granularity, the most important
features are cardiac features (8, 10, and 13 cardiac features, respectively) indicating the key role
of cardiac sensing in distinguishing detailed sleep patterns.
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(a) SHAP for Task 1 : Wake, Sleep (b) SHAP for Task 2 : Wake, NREM, REM

(c) SHAP for Task 3 : Wake, Light Sleep,
Deep Sleep, REM

(d) SHAP for Task 4: Wake, N1, N2, N3,
REM

Figure 3.7 SHAP values (Random Forest) for class-wise feature importance ranking in Task 1-4

In multi-stage sleep classification (i.e., Tasks 2-4), it is also interesting to see feature impor-
tance associated with the different classes. Specifically, this chapter observed high frequency
HRV is the most discriminant feature in recognising REM sleep, a finding that is consistent
across all 3 multi-stage classification tasks. However, high frequency HRV is not as valuable in
recognising wake status. In Tasks 3 and 4, the non-linear HRV features such as SD2 which is
then normalised Poincare plot parameter, SDNN, and coefficient of variation of NNI become
more important than time domain features of HRV. Among these features, SD2 is ranked higher
than many of the other HRV features except high frequency HRV in Task 4.
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3.5. Discussion

3.5.1. Summary

This chapter presents the first systematic analysis of sleep-wake and sleep-stage classification
using multimodal sensor data in a large, diverse population of both healthy and sleep-disordered
participants. The main aim of this chapter was to understand how different models performed
based on details of the task (sleep-wake or multistage sleep classification) and sensor combi-
nation. To achieve this, a series of traditional ML and DL approaches were tested for each
individual modality (i.e., actigraphy, ECG) and sensor combination (multimodal sensor fusion).
Furthermore, four different tasks were performed to gain a deeper understanding of the strengths
and limitations of the different approaches.

These tasks include sleep-wake (Task 1); wake, NREM and REM (Task 2); wake, light sleep,
deep sleep and REM (Task 3); and wake, N1, N2, N3 and REM (Task 4). The framework and
analysis provided were based on sensor modalities and signals that can be obtained from research-
grade wearable devices. Hence, RR-based metrics were used instead of raw ECG signals. Unlike
raw ECG, these metrics may be derived from commercial research-grade wearable devices and
in the near future also from non-clinical smartwatches that use both actigraphy/accelerometers
and photoplethysmogram (PPG) [234, 235]. This chapter aims to provide a set of benchmarks
for commercial and research studies and to inspire others to create open-access large population
repositories to study the role of sleep and other physical behaviours in health and disease.

This chapter systematically evaluated how sensor modality affects classification outcomes
and how model choice leads to differences in performance. Yuda et al. also explored a mul-
timodal approach to sleep classification. Although their work is strong methodologically, the
cohort is much smaller than that presented here, almost 70% of their cohort is male and the
majority of their subjects had sleep disorders, limiting the generalisability of their findings [61].
Furthermore, they only explored the classification of three sleep stages. This chapter shows
that although multimodal sensor approaches do not lead to great improvements in classification
performance for sleep-wake classification tasks, they are essential to classify sleep stages. For
instance, actigraphy by itself struggles to classify REM sleep in Tasks 2-4 (Table 3.8), but
its performance improves when combined with HR/HRV. To date, conventional sleep-wake
classification algorithms have mostly exploited count-based movement data [200, 203] and
models that combined HR information have mostly been confined to commercial devices based
on device-specific algorithms.

Furthermore, this chapter highlights the strengths and limitations of the different models
used, for instance, while CNN models do well at classifying high frequency transitions, LSTMs
excel at classifying smooth patterns. LSTMs outperformed all other classifiers at multistage
classification due to their deep temporal modelling characteristics which align well with the
multi-class, time-series classification problem that sleep stages introduce. Meanwhile, CNNs
were the best performers for binary sleep-wake classification tasks due to their ability to track
exponentially longer sequences, such as those used in this type of task where the objective is
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less granular and has lower transition frequencies than the multi-class scenario. As such, the
ensemble approach aimed to exploit individual model strengths to achieve better performance.

In sum, this chapter presents the first systematic analysis of single modality (actigraphy,
HR/HRV) and multimodal sensing approaches for sleep-wake and sleep-stage classification
using the most common feature-based ML and DL frameworks. Furthermore, a new ensemble
architecture is introduced, outperforming all other models.

3.5.2. Transparency in Algorithm Development in Machine Learning for Sleep Health

All analyses were performed in MESA [210, 211], a publicly available dataset for which access
can be requested through https://sleepdata.org/datasets/mesa. The experimental code is also
available on GitHub: https://github.com/bzhai/multimodal_sleep_stage_benchmark.git. The
open-source approach aims to create transparency and promote reproducibility in human sleep
science, and encourage others to use the resource to develop novel, more accurate models that
leverage multimodal data. Here this chapter provides an example of how the performance
of well-established methods can be surpassed by an ensemble architecture of DL models of
different window sizes. Similarly, the experimental results found that the model performance
was influenced by optimal hyperparameter search, as reflected in the Appendix A.3. In particular,
the experimental results observed that although there was no significant improvement in terms of
accuracy and F1 on the search space, certain patterns did emerge. For most CNNs and LSTMs,
increasing the length of the sliding window improved performance (except for Task 1, sleep-wake
only).

This chapter advocates for and demonstrates the value of including performance metrics
beyond the conventional accuracy, specificity, precision, recall and F1 scores. For instance,
introducing time deviation metrics allowed us to understand what precisely each model over- or
underestimated. This is of particular value for the translational applications of this chapter which
may be implemented by HCI researchers, clinicians or epidemiologists and have an impact on
the field of digital health. These metrics are more interpretable for non-machine learning experts
who may seek to understand how certain inferences should be interpreted. Clear, interpretable
measures that allow non-specialists to understand the limitations of models is critical both to the
development of better study cohorts and to understanding the inferences made by these models.

3.5.3. Sleep Classification Performance by Task

Binary sleep-wake classification (Task 1) using actigraphy had been previously explored by
Palotti et al. in the same cohort [205]. The experimental results corroborate this study, with the
CNN architecture narrowly outperforming the LSTM architecture. Interestingly, the multimodal
approach did not add much to this binary classification task when exploring conventional metrics
but did yield a lower time deviation of overall sleep time than actigraphy alone. Models based
only on cardiac signals had a slightly worse performance than both actigraphy alone and the
multimodal approach, with accuracy estimates in the high 70s (79% for the LSTM (101)).
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Task 2 consists of Wake, NREM and REM classification. This represents a valuable yet
holistic overview of sleep stages and is what most free-living commercial devices aim to measure.
Actigraphy and HR/HRV yielded an accuracy of around 74% and F1 scores between 49% and
65%. The time deviation metrics demonstrated that the actigraphy cannot accurately determine
REM sleep, whilst HR/HRV perform better. Both sensor modalities tend to overestimate time
spent in NREM sleep. This finding also pertained to the multimodal approach, where NREM
overestimation was the most error-prone estimate of the three states classified, at around 24
minutes mean deviation from gold-standard measures per participant on average when using
the LSTM (101) and 24 minutes deviation when using the LSTM (51). NREM could be
overestimated because it is the most common state among all participants on average, meaning
that errors could be magnified. Accuracy estimates for the multimodal approach were in the high
70s for the majority of the classifiers, with LSTM (51) reaching 76% accuracy. These results are
in line with the best performance previously reported in the literature. However, none of these
previous studies had the scale and diversity that the MESA dataset offers [221].

Task 3 explored classification into Wake, REM, light sleep and deep sleep. In this classi-
fication, N1 and N2 were considered part of light sleep and N3 was classified as deep sleep.
Actigraphy and HR/HRV reached accuracies of around 67% through LSTM (101). However, F1

scores for the single modality approaches were between 35-50%. Similarly, both approaches
overestimated time spent in light sleep and also struggled to pick up REM sleep. The multimodal
approach outperformed the single modality approach with a higher accuracy of around 70% and
an F1 score of 52% for LSTM (51) (the highest performing model). Interestingly, LSTM (51) has
a very strong performance at classifying wake and REM but struggles to discern light sleep and
deep sleep, overestimating light sleep. There are two speculative reasons for this phenomenon.
First, this may be caused by model bias, as LSTM predictions appear smoother in terms of sleep
continuity. Secondly, it may also be due to the high prevalence of light sleep nested in the night
causes the class imbalance.

Task 4 aimed to evaluate classifiers that followed AASM scoring rules of Wake, REM, N1, N2
and N3. This task is the most complex of the four, given the high level of granularity required and
the imbalance severity between sleep stages increased. Actigraphy and HR/HRV performances
at this task were poor, with F1 scores ranging from 27-36%. Both heavily overestimated the most
prevalent state, N2. The multimodal approach struggled to discern among the different NREM
stages and, again, overestimated time spent in N2. Its performance on Wake and REM was
much better but, intriguingly, worse than what had been observed in Task 3. Accuracy did not
exceed 64% and F1 scores were between 40-42%. A visual illustration of this task is presented
in Figure 3.4, where overestimation of N2 can be observed, alongside how the model struggles
to discern transitions between N1, N2 and N3.

Across all multistage classification tasks, LSTMs outperformed every other modelling
approach. This is most likely due to its ability to learn temporal dependencies from longer
window sizes, contrasting with CNN models which focus on local dependencies. This makes
LSTMs a particularly attractive candidate for multistage sleep classification given the intrinsic
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transitional nature of the task. The ensemble model approach serves as an example of how
multistage classification benchmarks ought to be improved by new model architectures. The
example approach is a rather simple one and thus only improves the performance marginally.
Nevertheless, the results are promising. By incorporating different temporal domains and
classifier types, these new models are able to pick up nuances that may have been tougher to
identify by using a single convolutional or recurrent neural network.

Understanding sleep stage dynamics at a population level could be of value for digital health,
epidemiology and clinical studies. The research on behavioural change (i.e., [209]) can take
advantage of ubiquitous systems for sleep stage classification to recommend changes for better
sleep hygiene and healthier sleep architectures.

3.5.4. Physiological Underpinnings of Classifiers and Sensor Modality Contributions

The classification tasks aimed to explore how the different modalities performed with regard to
the level of granularity and detail generated. Physiologically, sleep stages are quite different and
one objective of this chapter was to understand the individual contributions of each sensor, as
well as model biases and preferences. Following the AASM staging convention:

1. N1 (the first stage of NREM sleep) is the stage in which the change between wakefulness
and sleep occurs. During this stage, heart rate, breathing and eye movement slow, with
occasional muscle twitches. Similarly, slow-wave activity starts to appear on the PSG’s
EEG signal.

2. N2 (the second stage of NREM sleep) is the transition period between light and deep
sleep. Heartbeat and breathing slow, muscles relax even further and body temperature
drops. This stage is the most repeated across all sleep cycles. Together with N1, it is often
referred to as light sleep.

3. N3 (the third stage of NREM sleep) is often referred to as deep sleep. Heart rate and
breathing are at their lowest, muscles are very relaxed and it is rare for the person to
awaken during this stage. These changes are also observed on the PSG’s EEG signal,
where the lowest frequency and highest amplitude waves can be found. Together with N1
and N2, this stage constitutes NREM sleep.

4. Finally, as explored in the introduction, REM sleep occurs in a cyclical fashion, approx-
imately every 90 minutes. Breathing is faster and irregular, heart rate increases and, in
healthy people, the body is in a state of temporary paralysis that prevents sharp movements
related to dreams.

Given the physiological differences between sleep stages, depending on the sensors used,
the performance at classifying certain sleep stages may differ. This is of high importance when
considering the deployment of these technologies in clinical settings or for the exploration of the
association between sleep characteristics and disease end-points in population-based research.
Understanding time spent at different stages over a long-term period is of great importance
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for the greater sleep scientific community. For instance, during non-REM sleep, slow-wave
activity has been shown to support memory consolidation [236] and reduce next-day anxiety [12].
In [236], for example, these slow-wave oscillations have been shown to affect the way the brain
cerebrospinal fluid dynamics work, leading to oscillations in blood volume that draw this fluid
across the blood-brain barrier.

This chapter used SHAP to further understand how different sensor features contribute to
the individual classification of sleep stages. Through this method, it became apparent that
whilst actigraphy features were the most informative for sleep-wake classification, when moving
to multistage classification tasks, HR/HRV features were also important. This is reflected in
Figure 3.7 where the top features contribute more to the model than the bottom ones, indicating
their higher predictive power. For example, frequency domain features were very informative
for recognizing non-REM sleep. Similarly, the application of this method to the different
tasks allows for the direct comparison of feature importance across different levels of sleep
architecture granularity. When exploring SHAP results, for Task 1, the results show that the
most informative features came from actigraphy, although maximum HR and NN intervals
were also notable contributors. Activity coming from the wrist actigraphy was particularly
important for Wake classification. This finding carried through all 4 tasks and makes sense
given the considerably higher amount of movement present during wake than in any sleep stage
unless a sleep disorder is present. For Tasks 2–4, SHAP results helped us understand why the
multimodal approach performs significantly better (p < 0.001) than individual sensors at sleep-
stage classification. The results show that although HRV features are not particularly useful for
the Wake classification, they added a lot of value to NREM and REM predictions. Interestingly,
the empirical experimental results demonstrated that frequency domain HRV features were
amongst the most informative for light and REM sleep classification, confirming the initial
hypothesis derived from previous clinical reports [129, 212]. These findings emphasise the
importance of including HR/HRV measurements combined with the movement for multistage
classification tasks using wearable devices.

3.5.5. Summary

The strengths of this chapter derive from its novelty, population size and generalisability. It is
the first systematic assessment of multistage sleep classification using non-obtrusive sensors.
This makes an important contribution to the literature with potential applications for clinicians,
researchers and the wellness industry. The population used is uniquely diverse, including a
breadth of racial backgrounds, balanced sex and a representative sample of sleep-disordered
participants. This enhances the generalisation capabilities of the findings in contrast to previous
studies [215, 61].

In conclusion, this chapter introduces a systematic benchmark approach to sleep-wake and
sleep stage classification using ML and DL approaches in single-modal and multimodal settings.
This approach advocates for model transparency, alongside reproducibility by exploring these
methods in the only open-access dataset, which includes participants with sleep disorders. The
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findings indicate that multimodal approaches combining movement with HR and HRV data
were a valuable tool for the monitoring of sleep stages when those stages were aggregated to
the level of NREM, REM, and Wake. This chapter further provides information regarding the
performance of specific algorithms and guidance regarding algorithm selection depending on the
classification tasks. Moreover, this chapter introduces a deep ensemble model architecture which
shows promising improvements in performance across the different multistage tasks explored.
Overall, the findings highlight the promise of using wearable sensors as a low-burden, cheap and
scalable approach for large, population-based studies.

The main purpose of this chapter is to investigate the feasibility of using a wearable device
with a similar pattern to detect sleep and the performance of the baseline experiments. Based on
this scope, this chapter only explored benchmark models, but more complex networks can be
designed, for example, by training deeper architectures, adding residual-connections [158] or
using attention mechanisms [162]. Given the temporal dependencies of these tasks, attention
mechanisms may be well suited to improve model performance [237]. Another architecture
that may yield interesting results is the addition of a dense layer to merge representations
learned by RNNs and CNNs, also exploiting the unique contributions of each classifier (temporal
representations by the RNNs and spatial representations by CNNs). Furthermore, this chapter has
only explored a way to combine activity features and cardiac sensing features by concatenating
them before sending them to a deep-learning neural network. Chapter 5 will systematically
address these outstanding research questions using advanced multimodal fusion approaches
with deep learning architectures. The experiments in this chapter were performed on datasets
collected using gold-standard equipment in sleep labs. It does not guarantee that wearables such
as smart bands or smartwatches will achieve similar performance. Therefore, in Chapter 5, the
author will also carry out a further study of sleep stage classification based on wearable devices.
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Chapter 4. DisSleepNet: Disentanglement Learning for Personal
Attribute-free Three-stage Sleep Classification Using Wearable

Sensing Data

4.1. Introduction

In Chapter 3, the findings demonstrated that sleep stage monitoring can be achieved using activity
counts and HRV features. Through a large-scale benchmark study, we tested various task settings
and modality combinations. Empirical results suggested that three-stage sleep classification is a
feasible task based on these two modalities. However, the MESA dataset was collected from
medical studies that involved large numbers of ageing and disease participants. The cardiac
sensing data could strongly be affected by personal health conditions, such as ageing, body mass
index (BMI), and sleep breathing disorders (e.g., sleep apnoea), which are considered as personal
attribute (PA).

If a deep learning model for sleep stage classification is trained on data from healthy people,
it will inevitably suffer from performance degradation when tested on subjects with ageing,
disease, or underlying health conditions, and the opposite process may hold true as well. The
model works well when the difference in data distribution between training and testing datasets
is small. In real-world scenarios, the target cohort data that the model attempts to predict may
be completely inaccessible during training, let alone some annotated sleep data. Therefore, the
latent representations learnt by these methods through supervised learning will inevitably be
affected by these factors.

Several approaches could mitigate the influence of covariates during the training process,
and most of those works have been investigated in computer vision applications, such as person
re-identification [238], face recognition [239], gait recognition [240] and visual navigation [241].
An efficient approach is to use transfer learning methods to reduce the model performance
degradation on different datasets. This way, the model is trained on the data collected from
several similar datasets and fine-tuned on the data collected from the target distribution [242, 243].
A notable limitation of these methods is their need to fine-tune the model each time to deal
with the covariates. Introducing auxiliary information and adversarial learning loss terms into
the training pipeline is another efficient approach to extracting invariant representations of the
individual attributes [244, 173, 177]. These discriminative architectures can learn effective
representations that are invariant to dataset-specific PAs, thus increasing the robustness of the
model [245, 246, 72]. For automated, large-scale sleep stage monitoring using wearable devices,
these methods require PAs from the target population during the testing phase, which may be
hard or costly to acquire in real-world scenarios, such as the apnoea hypopnoea index. In contrast,
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Figure 4.1 The proposed disentanglement model used in this study. The multimodal handcraft features x
in the input data for the two probabilistic encoders that comprise a PA-specific encoder qτ(zτ |x) and a
PA-free encoder qs(zs|x). The PA-specific encoder learns (µτ ,στ) that are more dependent on the PAs, and
the PA-free encoder learns (µs,σs) related to sleep stage classification. The dotted line implies that each
experiment will only disentangle one personal attribute at a time. Two disentanglers were introduced to
further encourage the decorrelation of PA-specific and PA-free representations as shown by the dotted line.
In the inference stage, only the PA-free encoder qs(zs|x), and the µs are used for sleep stage classification.

the approach proposed in this chapter is more flexible and does not require this information
during the testing stage.

Another less-exploited but the potentially more promising approach might be to use disentan-
glement representation learning. This method can be used to learn less inter-correlated features
where a single latent unit is sensitive to the changes in a single generative factor while being
relatively invariant to the changes of the other factors [167]. Several recent works demonstrated
that using disentangled representation learning with adversarial learning together can remove
unwanted information to a certain extent during the training process [172–174]. It has been
suggested that learning disentangled generative factors can be useful for a large variety of tasks.
A disentangled representation could boost the performance of state-of-the-art (SOTA) machine
learning approaches where although the models still struggle, humans excel [175]. These scenar-
ios may require knowledge transfer, where the reasoning of the new data can be facilitated by
recombining the learnt factors. Numerous applications in computer vision tasks (for example,
human pose representation learning [176], gait recognition [240] and face recognition [177],
etc.) have demonstrated that disentangled representation can achieve higher performance. How-
ever, many of these methods have been designed for computer vision tasks. For sleep stage
classification, limited studies have explored the solutions to the covariate problem using EEG
signals [154, 155].

For three-stage sleep monitoring using cardiac and actigraphy data, personal health conditions,
for instance, atrial fibrillation and restless leg syndrome, can be considered as the factors that
influence model generalisation. The modulation of the autonomic nervous system (ANS)
regulates cardiovascular functions, which can be measured by ECGs during sleep onset and
various sleep stages. HRV is a non-invasive indicator of ANS activity. Particularly, the HRV
and brain imaging analysis demonstrated close connectivity between the autonomic cardiac
modulations and activities of certain brain areas during REM sleep [54]. Nevertheless, the sleep
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stage is one of many factors correlated to the modulation of the ANS. Other factors such as
ageing, obesity that were measured with BMI, and sleep apnoea such as obstructive sleep apnoea
(OSA) can influence the modulation of ANS [247, 248]. Additionally, for the ageing population,
OSA and severe obesity are normally accompanied by autonomic dysfunction [249, 250]. These
risk factors may affect the use of ECG data for sleep stage monitoring and cause conditions like
abnormal ECG waves compared to healthy adults [247].

Furthermore, these risk factors or PAs may cause the models to be biased towards specific
populations. Previous works have shown that the classification performance can be improved
by combining the embedded representation of PAs and medical imaging representations [251].
However, some PAs may be unavailable during the testing phase and must be obtained from
the medical diagnosis process. For instance, in some countries, sleep apnoea diagnosis often
requires a PSG study [51]. Thus, a feasible solution is to learn the disentangled representation
that does not require PAs in the testing phase, as the features related to PAs have been reduced
during the training process.

The empirical evidence in this work demonstrated that traditional CNNs suffer from per-
formance degradation when the distributions of training and test datasets are diverse. Thus,
this chapter proposes DisSleepNet to learn the disentangled representations that contain fewer
PA-related features, which can lead the model to SOTA performance, compared to the previous
work [5].

Specifically, this work employed the beta-variational auto-encoder (VAE) structure to learn
the variations across different personal attributes [168, 170]. The constraints proposed in beta-
VAE can push the model to learn more efficient latent representations that are disentangled if
the data contains some underlying factors that may be less correlated with each other. However,
the PA-free latent representations may still contain PA-specific information as long as these
features do not significantly influence the decision boundaries. To further separate the two
representations, inspired by [252], two probabilistic encoders are proposed to produce less
correlated representations in the feature space to encourage PA-free latent representations that
separate it from PA-specific representations.

4.2. Related Work

4.2.1. Impacts of Personal Attributes on Sleep Stage Classification

Long-term sleep monitoring with ambulatory PSG devices is time-consuming and a very chal-
lenging task if monitored for more than two consecutive nights. Actigraphy and wearable
ECG devices provide a viable solution to monitor the three sleep stages, as shown in several
previous studies [5]. Autonomic nervous activity varies greatly from wakefulness to sleep, for
example, sympathetic tone decreases gradually as sleep changes from wakefulness to NREM
sleep and increases in the REM sleep stage [253, 254]. This evidence shows that the ANS system
modulation can reflect the changes in sleep stages.
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Modulation of the ANS is affected not only by different sleep stages but also heart dis-
ease/disorders such as the severity of obesity and respiratory disorders [255]. Comparison of the
subjects with sleep apnoea and healthy subjects can show several varying HRV characteristics.
OSA is one of the most prevalent sleep-breathing disorders and is characterised by upper-airway
obstruction in adults during sleep [256, 51]. It affects HRV during sleep, which reflects in the
periodic changes of heart rate [257].

The cyclical changes in heart rate are affected not only by the sleep stage but also by sleep
apnoea. In [255], their study demonstrated that subjects with moderate and severe sleep apnoea
had reduced high frequency (HF) values during sleep and wake after sleep onset (WASO),
compared to healthy controls. Moreover, a study investigated by Wikulnd et al. [258] discovered
a significant decrease in HF activity in patients with sleep apnoea when awake. This may indicate
the presence of autonomic dysfunction in patients with sleep apnoea.

OSA can be seen in obese patients. BMI is a common unit to measure the severity of obesity
(e.g., BMI >30kg/m2 is considered as obesity). Studies have found that obesity relates to the
imbalance of ANS activity. This is characterised by an increase in parasympathetic tones and
inappropriate activation of the sympathetic nervous system [259, 53]. This indicates that the
adaptation of HR may be faulty in response to the changing requirements in obese subjects.
In [53], the study results suggest that the HRV complexity exhibited significant reductions during
NREM sleep in the obese patient group, compared to the control group.

4.2.2. Learning Disentangled Representation

Transfer learning in computer vision has been well-studied to alleviate the problem of model
degradation caused by dataset differences. One of the most common solutions is to fine-tune the
model with a proportion of data from the test dataset. Most of these works focus on methods for
learning dataset-invariant feature representations [260–262].

Adversarial learning has been investigated for representation learning in various applica-
tions of computer vision. It has been mainly adopted in generative models such as generative
adversarial network (GAN) [263] and VAEs [168]. Its objective is to minimise the divergence
between the distribution of real and counterfeit images. To address distribution discrepancy, the
key idea is to use a discriminator that classifies whether a data point is drawn from the source
or target distributions [264]. This method encourages the learning of invariant features to the
datasets through an adversarial objective to minimise the distance between the source and target
distributions [265].

In human activity recognition (HAR), users usually perform the same class of activities
differently due to their varied personal characteristics, such as habits, age and physical strength,
and this makes the corresponding sensory data highly disparate. Bai et al. [266] designed a Dis-
criminative Adversarial MUlti-view Network (DAMUN) for HAR to minimise the discrepancies
between the wearable sensing data representations of different subjects. The model explicitly
decreases the subject divergence, thereby ensuring that all subjects are presented in a consistent
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representation space. It improves the generalisation ability of the feature extractor that can
produce subject-invariant features.

Aside from HAR based on the accelerometer data, other bio-signals also carry the information
of PAs to some extent. In [267], they proposed an adversarial inference approach in deep
learning models to learn session-invariant person-discriminative representations that can improve
the robustness of the model in terms of longitudinal usability. Zhao et al. [72] adopted
an adversarial learning regime that could remove extraneous information that is specific to
individuals or measurement conditions while retaining all information relevant to the sleep stage
classification task. The adversary discriminator ensures conditional independence between the
learned representation and the training dataset-specific characteristic(a.k.a, the measurement
conditions and personal health conditions).

4.3. Method

This section will first present the technical description of the disentanglement methods used
for the study. This includes the baseline methods, network structures, evaluation metrics and
implementation details. this chapter then describes the experimental design on the largest sleep
dataset with actigraphy and cardiac sensing data so far. This includes the data pre-processing,
feature extraction methods and experimental settings to investigate the impacts of different
personal attributes on three-stage sleep classification.

4.3.1. Problem Statement

Personal attributes, for example, age, obesity, and sleep apnoea may restrain the neural network
to learn a more generalised representation. To alleviate these challenges, the work in this chapter
proposes to use disentanglement learning to reduce the impact of PA on the model.

Following previous work [5], given an ith frame-wise multimodal time-series data that
corresponds to a sleep epoch, a joint distribution can be denoted as p(X,y) on X ×Y ,
where X ,Y denote the sleep data instance space and sleep label instance space, and τ ∈
{age,obesity,sleep apnoea} denotes the PA, respectively. This chapter aims to train a deep
learning model f (·), such that the trained model is less influenced by these three personal factors
during the inference stage. In real-world scenarios, this setting is more challenging than the
conventional transfer learning setting. Firstly, it’s an arduous task to collect enough data for
training that covers all different PA values, for example, the ageing population over 80 years.
Secondly, for the unseen population, the model does not access any information other than the
sensing data. This may be due to the limited resources of the sleep laboratory. Compared to
standard machine learning settings, the proposed model does not need PAs during the inference
process.
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4.3.2. Personal Attribute-Free Feature and Personal Attribute-Specific Feature

Age, obesity, and sleep apnoea affect our cardio-respiratory systems and inevitably affect the use
of body movement and heart-sensing data. To reduce the influence of these factors during model
training, the model is designed to generate two kinds of representation features, namely PA-free
features and PA-specific features. PA-free features included commonalities related to three-stage
sleep. The PA-specific features could be attributable to age, obesity, and sleep apnoea severity.

For each training sample X(i) ∈ RC×L, where C is the number of intermediate features (e.g.,
activity counts, and heart rate) and L is the temporal length. The network consists of two
probabilistic encoders, namely qτ(zτ |X(i)) and qs(zs|X(i)) to extract latent features zτ and zs

that denote the PA-specific (subscript τ represents PAs) and PA-free latent variables (subscript s

represents sleep stages). Compared to the deterministic auto-encoder structure, the VAE model
these latent variables as joint distributions between the feature space z ∈Z and observation
space X ∈X instead of a single value. This way, changes in data can be captured. Suppose we
have a prior distribution p(z) placed over the latent variables, a simple assumption for the prior
is a multivariate Gaussian distribution N (0,I), which technically model the PA uncertainty.

In this chapter, as shown in Figure 4.1, the proposed network tries to make the latent
representation zs to be sensitive to sleep stage classification and more invariant to the PAs.
Meanwhile, the design makes the PA-specific latent units zτ , to be sensitive to changes in a single
generative factor (e.g., changes in one dimension of the latent feature vector) and less sensitive
to sleep stage classification. After computing the latent representation, the latent features are
then concatenated and fed into the decoder p(X̂|zτ ,zs) that can reconstruct the input X.

As the generated data X̂ is influenced by variations of latent factors. If the true distribution
of p(X) can empirically be approximated on the training data set, then the training objective is
to maximise the marginal likelihood as:

E[logp(X)] = Ep(X)[logEp(Z)[p(X|zs,zτ)]] (4.1)

However, direct estimation of the likelihood typically becomes intractable. As it is often
computationally challenging especially if the model has more than a couple of interconnected
layers, whether in the directed or undirected graphical model frameworks [167]. A widely
adopted method is to estimate the posterior via an amortised inference distribution q(z|X) and
jointly optimise a lower bound of the log-likelihood as:

LELBO(x) =−αDKL(qs(zs|X)||p(zs))

−βDKL(qτ(zτ |X)||p(zτ))+Eqs(zs|X),qτ (zτ |X)[log(p(X|zs,zτ))] (4.2)

Where the first two terms calculate the Kullback–Leibler (KL) divergence between the estimated
distribution of latent variable and the commonly assumed prior, which regulates the variables in
the latent space as close as possible to Gaussian prior. The last item is the reconstruction error.
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The above optimisation process is deemed to be unsupervised. This means that the learnt
representation is not optimised for three-stage sleep classification. Additionally, the latent
variables, zτ and zs, are designed to be "independent" of each other. However, in an unsupervised
manner, using two encoders may be insufficient to guarantee that the disentangled latent features
do not overlap. Therefore, incorporating the PAs τ(i) and sleep stages y(i) to guide the learning
of features during the training process can be a viable approach. To realise it, a disentangling
regressor, Dτ , is introduced to regress the PAs, and a disentangling classifier Dy is introduced to
predict sleep stages. This work considers the estimation of personal attributes as a regression
task. The loss function is denoted as:

LDy,Dτ
(zτ ,zs,y(i),τ(i)) =

1
N ∑

i
[ℓCE(y(i),Dy(zs))+∑

τ

ℓMSE(τ
(i),Dτ(zτ))] (4.3)

Where the τ represents the value of corresponding PA (e.g., age), N is the total number of training
samples, and ℓ represents the loss function. In 4.3, the mean absolute error (MSE) loss function
is adopted for the PA regression task and the cross-entropy (CE) loss is adopted for the sleep
stage classification task.

4.3.3. The Independent Excitation Mechanism

Dy and Dτ enable the learning of the PA-specific latent features and PA-free latent features. The
disentangled learning process still can not entirely reduce the feature-overlapping phenomenon.
It is still possible that PA-free features contain PA-specific information if these features do
not influence the decision boundary significantly, and the same may happen in PA-specific
latent space as well. To further maximise the independence of these two features, inspired by
[268, 252], their proposed method can encourage the zs to be more sensitive to sleep stage
classification. Meanwhile making zτ less irrelevant to the sleep stages. The independence
excitation mechanism increases the error of Dτ when zs is fed into Dτ . In another situation, the
PA-free features were encouraged to be irrelevant to PAs. The independence excitation objective
function for multivariate PA is denoted as:

LIEm(zτ ,zs,y(i),τ(i)) =−
1
N ∑

i
[ℓCE(y(i),Dy(zτ))+∑

τ

ℓMSE(τ
(i),Dτ(zs))] (4.4)

The independence excitation objective function for univariate PA is denoted as:

LIEu(zτ ,zs,y(i),τ(i)) =−
1
N ∑

i
[ℓCE(y(i),Dy(zτ))+ ℓMSE(τ

(i),Dτ(zs))] (4.5)

where the loss function of the first part of the equation is the cross-entropy loss, and the MSE
loss is used for the second loss term.
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4.3.4. Full Objective

All these objectives, i.e., representation disentanglement (LELBO), PA-specific and PA-free
training and independent excitation can be used together, and in doing so the full objective
function can be denoted as:

L = LELBO +ηLDs,Dτ
+ γLIE (4.6)

Where η and γ are positive parameters that control the balance between the independent exci-
tation loss and the sleep stage classification and the PA regression tasks. This study fixed the
weights during the entire training process in all experiments. The PA-specific latent features are
not beneficial to the prediction task as they are not designed for three-stage sleep classification.
Therefore, during the testing/inference stage, the test data samples X( j) are fed into the proba-
bilistic encoder q(zs|X j) to obtain PA-free latent features zs. The zs comprises two vectors µzs

and σzs , where only the µzs is used for the classifier DCy to predict the sleep stages.

4.3.5. Dataset Description

The Multi-Ethnic Study of Atherosclerosis (MESA) is a multi-site prospective study that includes
6,814 men and women. The study had 2,237 participants enrolled in the sleep exam, which
included seven days of wrist-worn actigraphy; they underwent concurrent PSG for one night
(wrist-worn actigraphy collected concurrently) [269] The actigraphy recorded the activity counts
at 1/30Hz and ECG at 100Hz. The data processing pipeline is consistent with the previous
chapter [5]. After the data pre-processing, 1,743 of 2,237 participants met the data quality
criteria. The full details of the study setup, protocol and sampling rates are available at [5, 269].
According to the feature set used in previous research [5], this study used the same features,
including activity counts and eight HRV features derived from the NN interval data in each sleep
epoch [5]. The feature set comprises the mean NNi, standard derivation of NN interval (SDNN),
NN interval differences (SDSD), very low frequency (VLF), low frequency (LF), high frequency
(HF) bands, low frequency to high frequency ratio (LF/HF) and total power.

For each sleep epoch, the intermediate feature vector is constructed based on eight HRV
features and the activity counts (a scalar value per sleep epoch). In addition to these handcraft
features, the personal attributes are extracted, which include age, BMI, and apnoea hypopnoea
index (AHI).

For the age attribute, the minimum and maximum ages were 54 and 94. The age bin was set
to every 10 years, which is a commonly used bin size in epidemiological sleep research [270].
As in Figure 4.2 (a), the majority of participants were between the ages of 54 and 79, which
represents 85% of the total number of subjects. The smallest group was between 90 and 99
years. Since there were too few participants in this group, this group has been combined with
the group whose ages were between 80 and 99 years. To investigate the effect of age on model
performance, two groups with a wide span were selected: subjects for training were between 50
and 69 years and for testing were between 80 and 95 years old.
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(a) Age (b) BMI (c) AHI

Figure 4.2 The number of subjects in each subgroup is organised by personal attributes. (a) the proportion
of subjects group by the age attributes, (b) the proportion of subjects group by the BMI attribute, (c) the
proportion of subjects group by the OSA severity attribute which is measured in AHI.

In terms of obesity, the subjects were segmented into four groups according to the settings of
the National Heart, Lung, and Blood Institute, on the basis of BMI as follows: no obesity where
BMI was less than 25; grade 1 obesity where BMI was between 25 and 30; grade 2 obesity where
BMI was between 30 and 40; and grade 3 obesity where BMI was 40 or greater [271]. These
standard categories have been increasingly used in public health studies [272]. To understand
the negative impact of BMI on the model, the subjects were further divided into non-obesity and
obese groups and used their BMI score as the corresponding PA value.

For sleep apnoea, AHI is commonly used to measure the severity of sleep breathing disor-
ders. According to the MESA study protocol, the dataset was segmented into four subgroups
corresponding to the current definitions used by Medicare for reimbursement and includes all
apnoeas plus hypopnoeas with a ≥4% desaturation [271]. The clinical cutoffs rather than distri-
butional ones were used, a set of commonly used AHI clinical cut-off points (number of events
per hour) were adopted to divide the subjects into four groups that were defined as follows: no
sleep-disordered breathing where AHI was <5; a mild severity where AHI was between 5 and
15; a moderate severity where AHI was between 15 and 30; and a severe where AHI was 30 or
greater [273]. The AHI scores were used in regression tasks.

For the segmentation of each PA, the subjects have been divided into training and testing
datasets based on the PA combinations. The training dataset is further randomly divided so that
20% of the samples are used as the validation set and the remaining 80% of the samples are used
for training. The validation set is used to select the best model for testing.

4.3.6. Baselines and Implementation Details

This work adopted a four-layer CNN used in [5] based on the window length of 101 as a
closely related baseline. The same network structure was also used for the encoders qs and
qz. Furthermore, the input feature set includes activity counts and 8 HRV features. Due to
the class imbalance problem in the MESA dataset, the mean F1 (average over classes) is used
as the measurement of the robustness of the model. The details of the backbone network
structure are shown in Figure 5.2. For the hyper-parameters of α,β ,η , and γ , the hyperparameter
values are tested based on the following settings: η ∈ 1e4,1000,100,10, γ ∈ 1e4,1000,100,10,
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β ∈ 0.002,0.02,0.2,2,10,100, and α ∈ 0.1,1,10,100. The hyperparameter set to the values of
η = 1000,γ = 1000,β = 10,α = 10 for the DisSleepNet model. The batch size was set to 1024
to speed up the training process, changing the batch size did not make any significant difference.
The Adam optimiser with a learning rate of 1e-4 is utilised, the validation set is used to select the
best model for testing and the maximum training epoch is set to 20. The VAE network with two
auxiliary tasks is also considered as an additional baseline mode.

4.4. Results

This section first explains how each factor may influence the model performance, experiments
were conducted on each PA, and the results of each model are shown in Table 4.1 4.2, and 4.3
Secondly, to understand the effect of the three personal factors combined namely age, obesity
and sleep apnoea, and the results are shown in Table 4.4. The random seed for all experiments
was fixed, and each experimental setting was run ten times to calculate the mean F1 score. The
t-test was conducted to compare the performance of DisSleepNet and the baseline methods.

4.4.1. Experimental Results for Sleep Apnoea

(a) CNN (b) DisSleepNet

Figure 4.3 The confusion matrices derived from the prediction results of moderate/severe OSA subjects’
data, where the models were trained on the healthy and mild OSA subjects’ data

OSA is an important factor negatively affecting cardiorespiratory function in clinical sleep
medicine. As shown in Table 4.1, the results demonstrated that the use of the DisSleepNet can
achieve a higher improvement on the mean F1 by 7.68 (p < 0.05) if it was trained on the normal
and mild groups and tested on the moderate and severe group subjects. In contrast, training the
DisSleepNet on the moderate and severe groups and testing it on the normal and mild groups
improved F1 by 3.96 (p < 0.05).

Figure 4.4 shows the change in the loss in the setting of training on patient data with AHI ≥
15 and testing on patients with AHI < 15. This setup achieved the biggest improvement.
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Training AHI Range (# of subjects) Testing AHI Range (# of subjects)
Mean F1 (µ±σ )

CNN VAE + Ancillary Tasks DisSleepNet

AHI<15 OSA (907) AHI≥15 OSA (836) 60.99 ± 0.17 59.41 ± 0.29 64.95 ± 0.31

AHI≥15 OSA (836) AHI<15 OSA (907) 60.98 ± 0.64 65.46 ± 0.31 68.66 ± 0.34

Table 4.1 Three-stage sleep classification prediction results based on the obesity groups (mean ± std)

(a) CNN

Figure 4.4 Reduction of different types of loss during training to disentangle AHI attributes (AHI ≥15).
(Note: The x-axis represents the number of per thousand batches trained)

4.4.2. Experimental Results for Age

To better understand the influence of age on the model generalisation, two settings were tested.
The first setting is to train the network on data from subjects aged between 50 and 69 and
tested the model on a population aged between 80 and 99 years. Several previous studies have
suggested that sleep patterns in older adults can vary widely within a 10-year gap, compared to
younger adults [274]. Additionally, the inverse setting was tested using subjects aged between
80 and 99 years for the training data set and subjects between 50 and 69 years for the testing data
set. As shown in the second row of 4.2, the DisSleepNet achieved the highest mean F1 score.

In a real-world scenario, the data from the group aged between 50 and 79 years are more
relatively convenient to collect than the group aged between 80 and 99 years. This way, the
entire dataset was used for the study. Thus, the confusion matrices demonstrated results trained
on the group aged between 50 and 79 years and tested on the group aged between 80 and 99
years, as shown in Figure 4.5.

The confusion matrices derived from the last row experiment in Figure 4.5 show that the
DisSleepNet improved the classification performance of REM sleep and wake stages.

Training Age Range (# of subjects) Testing Age Range (# of subjects)
Mean F1 (µ±σ )

CNN VAE + Ancillary Tasks DisSleepNet

50s-69s (954) 80s-99s (268) 61.26 ± 0.31 60.36 ± 0.1 62.1 ± 0.39

80s-99s (268) 50s-69s (954) 59.73 ± 0.21 58.05 ± 0.74 62.16 ± 0.19

60s-99s (1452) 50s-59s (291) 69.25 ± 0.43 68.9 ± 0.11 70.9 ± 0.22

50s-79s (1475) 80s-99s (268) 63.01 ± 0.36 62.1 ± 0.11 64.44 ± 0.09

Table 4.2 Three-stage sleep classification prediction results based on various age groups

The third setting is to train the model on data from the group aged between 60 and 99 years
and test it on the group aged between 50 and 59 years. The rationale behind this setup is to
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(a) CNN (b) DisSleepNet

Figure 4.5 The confusion matrices derived from the prediction results of the group aged between 80 and
90 years, where the models are trained on the group aged between 50 and 79 years

(a) CNN

Figure 4.6 Reduction of different types of loss during training to disentangle age attributes (50s-79s). The
x-axis represents the number of per thousand batches trained.

understand the effect of age factors on the model training of large datasets. As can be seen
in the third row of the table 4.2, models trained on the group aged between 60 and 99 years
achieved a higher F1 score, compared to the training on the group aged between 50 and 79
years and testing on the group aged between 80 and 90 years. Finally, the t-test results between
the DisSleepNet and the CNN revealed that all the improvements are statistically significant
(p < 0.05). Figure 4.6 shows the change in the loss in the setting of training on patient data with
age ≥ 60s and testing on patients with age between 50s and 59s. This setup achieved the highest
average F1 score and modest improvement.

4.4.3. Experimental Results for Obesity

Training Obesity Range (# of subjects) Test Obesity Range (# of subjects)
Mean F1 (µ±σ )

CNN VAE + Ancillary Tasks DisSleepNet

BMI < 25 (457) BMI ≥ 25 (1286) 60.97 ± 0.38 61.74 ± 0.34 64.88 ± 0.44

BMI ≥ 25 (1286) BMI < 25 (457) 66.8 ± 0.24 66.38 ± 0.3 68.95 ± 0.17

Table 4.3 Three-stage sleep classification prediction results based on the obese subjects (mean ± std)
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(a) CNN

Figure 4.7 Reduction of different types of loss during training to disentangle BMI attributes (BMI ≥ 25).
The x-axis represents the number of per thousand batches trained.

To examine whether BMI affects the performance of the three-stage sleep classification,
the MESA dataset was divided into two groups, namely a normal group and an obese group.
Table 4.3 shows that when training on the healthy group and testing on the obese group, the
improvement of mean F1 is higher than when training on the obese group and testing on the
healthy group. The first setting achieved a 3.91 (p < 0.05) improvement. The mean F1 of the
second setting achieved a 2.15 (p < 0.05) improvement.

(a) CNN (b) DisSleepNet

Figure 4.8 The confusion matrices derived from the prediction results of obese subjects’ data, where the
models are trained on the subjects with a normal range of BMI.

Figure 4.7 shows the change in the loss in the setting of training on patient data with BMI
≤ 25 and testing on patients with BMI > 25. This setup achieved the largest mean F1 score.
Figure 4.8 shows the confusion matrices for understanding the performance improvements by
removing the BMI factor. These figures were derived from the models that were trained on
the subjects with a normal range of BMI and tested on the obese subjects. The performance
improvement is mainly due to the DisSleepNet alleviating the misclassification of REM sleep.
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Training PAs Range (# of subjects) Testing PAs Range (# of subjects)
Mean F1 (µ±σ )

CNN VAE + Ancillary Tasks DisSleepNet

Age<=79, BMI<30, AHI<15 (556) Age>79, BMI≥30, AHI≥15 (40) 59.59 ± 0.39 57.96 ± 0.44 59.67 ± 0.05

Age<=79, BMI≥30, AHI≥15 (326) Age>79, BMI<30, AHI<15 (99) 60.38 ± 0.43 51.66 ± 0.74 61.6 ± 0.26

Table 4.4 Three-stage sleep classification prediction results based on joint disentanglement of gender, age,
BMI and AHI

(a) CNN (b) DisSleepNet

Figure 4.9 The confusion matrices were derived from the second joint disentanglement setting

4.4.4. Experimental Results for Joint Disentanglement of PAs

The joint disentanglement experiments aim to understand how multiple PAs affect model per-
formance. In this work, two scenarios were tested. The first scenario assumes that the subjects
in the training dataset are aged between 50 and 79 years, with a BMI less than 30 (normal and
grade 1 obesity), and an AHI between 0 and 15 (normal and mild sleep apnoea). Under this
setting, the test dataset comprised an elderly population with high BMI and AHI scores. This
chapter did not test the settings where the training dataset comprised only healthy people, as the
number of subjects was too small. Moreover, an alternative setting was tested where the training
dataset comprised moderate-to-severe obesity and moderate-to-severe OSA populations, and the
test dataset comprised of healthy and mild subjects. As shown in Table 4.4, the DisSleepNet
could improve the mean F1 score by up to 1.22 (p < 0.05) compared to the baseline method.
The results show that the effect of PAs can be jointly reduced using the DisSleepNet, although
the improvement is marginal. Figure 4.10 shows the change in the loss in the second set. This
setup provides the biggest improvement.

4.5. Discussion

As can be seen in the results, the DisSleepNet has achieved higher or comparable mean F1
scores on all settings of PAs. This greatly illustrates that the use of DisSleepNet could reduce the
influence of PAs on the model. For the age factor, the models were tested on the data collected
from very distinct groups. Particularly, when training models on higher age groups and testing
them on lower age groups, we see that the DisSleepNet achieves larger mean F1 margins than the
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(a) CNN

Figure 4.10 Reduction of different types of loss during training to jointly disentangle attributes. The
x-axis represents the number of per thousand batches trained.

models trained on the reverse setting. In Figure 4.5, the confusion matrices demonstrated that
the improvement actually came from correcting the misclassified NREM sleep as REM sleep.
This may indicate that different age values may affect the model performance differently.

Obesity is usually associated with several chronic diseases, such as hypertension, cardiovascu-
lar diseases and diabetes. Further, it is associated with shorter sleep duration and increased sleep
disturbance. In Table 4.3, DisSleepNet can reduce the effect of obesity on model performance
as tested by these various settings. Training DisSleepNet on the healthy group improves model
performance more than training on the obese group. One possible reason is that the training
sample size of the first setting is smaller than that of the second setting, and future work should
investigate different datasets and possibly use sufficient training samples from healthy subjects.

OSA is an important factor that affects model performance when the test dataset does not
contain patients with the same severity of OSA. As several previous studies have shown, model
test performance may degrade if the model is trained on a dataset with limited OSA severity
patients [275]. The baseline model and DisSleepNet trained on the normal and mild OSA groups
achieved higher performance on the test dataset, compared to training on the moderate/severe
OSA group. The improvement of the mean F1 score in this study corroborates previous studies [6],
which suggested that sleep breath disorders could negatively influence the model performance.
By comparing different PAs, the empirical evidence suggests that not all PAs have the same
effect on the model performance. This work showed that sleep apnoea had the largest negative
impact on the model, followed by BMI, and age had the least impact on model performance.

The proposed DisSleepNet can successfully learn the representation that is less influenced
by PAs. The t-distributed stochastic neighbour embedding (t-SNE) embedding of the PA-free
representation, zs, and the PA-specific representation, zτ , are shown in Figure 4.11. Figure 4.11
(b) depicts that no obvious pattern divides the representation into clusters, compared to the
PA-free representation shown in Figure 4.11 (a), where the clusters of embedding are more
distinct and samples with the same sleep stage tend to be grouped into the same cluster. The
number of clusters is the same as the number of sleep stages.
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(a) t-SNE plot of PA-free features (b) t-SNE plot of PA-specific features

Figure 4.11 Visualisation of the t-SNE embedding of learnt PA-free features zs (a) and PA-specific
features zτ . Each sleep stage is represented by a distinct colour.

4.6. Summary

In this chapter, the author proposed a novel disentangling network to reduce the influence of
PAs on three-stage sleep classification. The proposed method effectively makes the model less
susceptible to PA by disentangling the representation into PA-specific and PA-free features.
Empirical results show that obesity and sleep apnoea is common challenging factors that affect
model performance. The proposed method outperformed the baseline network under various
different settings on the MESA dataset. In addition, this study set out to explore the effects
of three PAs on model performance. Insights from this study may help health researchers in
the ubiquitous computing community to develop deep learning models that are less affected by
individual attributes or covariates.
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Chapter 5. Ubi-SleepNet: Advanced Multimodal Fusion Techniques for
Three-stage Sleep Classification using Ubiquitous Sensing

5.1. Introduction

In chapter 3, experimental results suggested the feasibility of using these two modalities for three-
stage (wake/REM/NREM) sleep classification, and the findings corroborate sleep physiology
studies [52, 126] NREM sleep was not deemed to be easily separated into N1/N2/N3 without em-
ploying EEG signals. The results of the three-stage sleep classification look promising. However,
the network architecture and the way of combining the two modalities are only tested on baseline
methods and may not achieve optimal performance. Moreover, the HRV features derived from
the MESA dataset are based on RR intervals that are calculated from ECG signal which is still
expensive and impractical for long-term sleep monitoring. Nowadays, many consumer wearable
sensing devices are available on the market for entertainment and health self-tracking purposes.
These devices often sense human activities using accelerometers [50], photoplethysmography
(PPG) [6], pressure sensors [58] and radio signals [57, 59], etc. Among them, cardiac and
movement (upper limb) sensing data are considered promising modalities in terms of reliability
and availability. They can be easily collected from lightweight research/consumer-grade devices
(e.g., Apple Watch [6]).

The easy-to-collect nature of cardiac and movement sensing data provided a scalable method
for large-scale and long-term sleep monitoring. Longitudinal sleep monitoring with accurate
details in (three) sleep stages is meaningful to health and medical research. For instance, deep
NREM sleep (or slow wave sleep - SWS) is known to be the most “restorative” sleep stage, which
controls hormonal changes that affect glucose regulation [42]. Long-term reduction in NREM
sleep may adversely affect glucose homeostasis and increase the risk of type 2 diabetes [43].
REM sleep dysregulation has played a central role in depression and Parkinson’s studies [44, 45].
The phenomenon includes reduced REM sleep latency, along with increased REM sleep duration
and REM sleep density, which have been considered to be an objective indicator of depressive
disorder and inversely correlated to its severity [46, 47, 34]. The increased health research
density in digital phenotype by using inexpensive, mass-produced consumer wearables demand
reliable algorithms that can classify sleep stages in longitudinal settings [48].

Benchmarks in chapter 3 and a study by [6] used cardiac and movement sensing data for
three-stage sleep classification based on publicly accessible sleep datasets. Both works used
very basic multimodal fusion techniques (i.e., feature concatenation [6, 5]) in neural networks,
which tested the feasibility of classifying three-stage sleep. However, the models used in these
benchmark studies did not achieve good performance due to overestimating NREM sleep time
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Figure 5.1 An overview of the three-stage sleep classification system. Features were extracted for each
sleep epoch (30s). The sliding window method divides the sleep data into multiple segments with window
length T and stride S, where T = 101, and S = 1.

and underestimating wake time. The simple fusion technique may not fully utilise the advantages
of multimodal data, especially in heterogeneous multimodal data scenarios. Given that, it is
desirable to explore advanced fusion techniques to boost performance further.

Firstly, this chapter systematically studied three fusion strategies for three-stage sleep classi-
fication, including early-stage fusion, late-stage fusion and hybrid fusion, to answer the question,
"At what stage should the cardiac and movement sensing representation be merged?"

Secondly, this chapter employed three fusion methods (simple operations, attention mecha-
nism, tensor methods) to answer the question, "How to better combine cardiac and movement

sensing representations?" The simple baseline operations (concatenation and addition) as well
as the advanced fusion methods (the attention mechanism-based method [180] and bi-linear
pooling-based method [276]) were studied. The pipeline of this study is demonstrated in Fig-
ure 5.1.

These fusion techniques were comprehensively evaluated on two public datasets, which are
the Apple Watch dataset [6] and the Multi-Ethnic Study of Atherosclerosis (MESA) dataset [269,
5, 271]. The Apple Watch dataset includes cardiac and movement signals collected from
consumer-grade devices from a cohort of 31 young and healthy adults. For the MESA dataset,
only the cardiac and movement sensing signals were used, which can be acquired from research-
grade devices. The dataset consists of 1743 subjects from the ageing population.

For these two representative datasets, the results suggested that three-stage sleep classification
can be reliably achieved by employing advanced fusion techniques on the cardiac and movement
sensing data, which can be easily acquired from consumer/research-grade devices. Several
models developed in this chapter achieved state-of-the-art performance for three-stage sleep
classification. This chapter also evaluated the module parameter size and its corresponding
inference time, which may play a vital role in ubiquitous computing applications.

Moreover, this chapter also investigated a visualisation method to explore the decision-making
process of the multimodal fusion model for three-stage sleep classification. The exploratory user
research demonstrated that the gradient class activation map (Grad-CAM) [3] based sleep data

80



5.2 Ubiquitous Sensing Techniques for Sleep Monitoring

visualisation can be understood and used by humans, which facilitates the transparency of using
DL in sleep health research.

The work in this chapter contributes to the long-term non-intrusive three-stage sleep mon-
itoring solution that may be deployed with mass-produced and inexpensive consumer-grade
wearables, which may potentially be used for large-scale population-based sleep health studies
and long-term sleep self-tracking.

5.2. Ubiquitous Sensing Techniques for Sleep Monitoring

5.2.1. Cardiac Activities and Sleep Physiology

The autonomic nervous system (ANS) and sleep are closely related in anatomical, physiological,
and neurochemical bases [277]. Cardiovascular autonomous control plays an essential role in
sleep, and it will be different when transitioning to different sleep stages. The modulation of
the ANS regulates cardiovascular functions during sleep onset and sleep stages [125, 126].HRV
analysis is a classical tool for ANS analysis. Research on HRV in sleep stages noted that REM
sleep was characterised by a likely sympathetic predominance, while NREM sleep followed an
opposite trend [130–132]. The transition between Wake, NREM and REM sleep is accompanied
by changes of several HRV characters, such as the HR, Low-Frequency (LF) power, High-
Frequency (HF) power and LF/HF ratio [130, 52, 131].

Not all sleep stages are associated with brain activity. A study conducted by Desseilles et
al. [52] through HRV and brain imaging analysis found close connectivity between autonomic
cardiac modulations and the activity of certain brain areas during REM sleep. There is no
conclusive connectivity between the brain and cardiac activity during NREM sleep. Therefore, it
may not be easy to discern each NREM sleep stage accurately without EEG signals.

5.2.2. Consumer and Research-grade Wearables for Sleep Monitoring

Traditionally, gold-standard human sleep assessment was conducted in laboratory settings using
PSG, which commonly involved EEG, EMG and EOG, as shown in Chapter 2. It is impractical
to measure sleep using this method for more than two consecutive nights. Recent advances in
miniaturised sensing technologies have enabled the deployment of these simplified array EEG
devices in clinical trials. Compared to consumer wearables such as smartwatches, these devices
are often expensive and still uncomfortable to wear for long-term sleep monitoring.

Consumer-grade wearable devices with diverse modalities offer a potential solution to
ambulatory sleep tracking. Such sensors provide valuable, inexpensive, unobtrusive measurement
tools to collect biological signals. Many of these wearables can communicate with smartphones,
facilitating data collection and storage during large-scale population studies. Therefore, exploring
the use of consumer-grade wearables in sleep and health studies becomes prevalent as the
HR/HRV data and movement sensing data are generally available on these wearables [6].

Many leading consumer products such as FitbitTM and XiaomiTM band provide sleep stage
tracking services. However, these consumer products commonly lack minimal validation, with

81



Ubi-SleepNet: Advanced Multimodal Fusion Techniques for Three-stage Sleep
Classification using Ubiquitous Sensing

poor algorithm transparency on data processing/sleep stage classification, resulting in these
devices being precluded in clinical, research, or occupational settings [278]. Nevertheless,
another consumer product, Apple Watch, provides access to the accelerometer data and heart
rate data, making it feasible to develop an algorithm for sleep health studies and self-trackers.

The sleep stage classification based on ECG/PPG signals has also been investigated by [279,
280]. The results demonstrated promising performance. However, PPG data is generally
unavailable on many consumer wearables, and ECG requires the skin electrodes to be placed near
the heart. Collecting these raw signals may require research-grade wearables (e.g., Empatica™
E4 ), which demand additional financial costs for daily sleep monitoring.

Several previously published studies demonstrated that using HR/HRV features and move-
ment sensing together could discern three sleep stages and achieved promising results [194, 6, 5].
Heterogeneous modalities may carry supplementary information for sleep stage classification.
There is still much to be understood regarding how to construct this fusion architecture and
which fusion method will be the most effective for sleep-stage classification. This work adds to
this knowledge. Exploring multimodal fusion strategies and methods to better integrate different
physiological signals is of great significance for health research and self-monitoring of sleep
using ubiquitous computing technology.

5.3. Advanced Fusion Techniques for Three-stage Sleep Classification

This section will first discuss the current progress of multimodal fusion strategies and methods
and their applications in sleep monitoring. Secondly, this section will then presents the study
structure, followed by a technical description of three fusion strategies (early-stage, late-stage
and hybrid fusion) and three methods (simple operation, attention mechanism and tensor-based
method)

5.3.1. Overview of Multimodal Fusion

Multimodal fusion in machine learning has been extensively studied in pattern recognition
applications, such as in image and video captioning[179], visual question answering [180],
audio-visual speech recognition [149] and emotion recognition [181]. In the field of ubiquitous
computing, multimodal fusion has also been adopted for human activity recognition [182], sleep
stage classification [5], fatigue assessment [183] and person identification [184]. The simple
concatenation method was commonly adopted in these studies to combine the raw inputs or
combine the representations obtained from the pre-trained model of each modality [192]. Other
researchers explored more advanced fusion methods, such as the attention-based fusion scheme
for human activity recognition [182]

For monitoring sleep, several previous works achieved promising results for sleep stage
classification by concatenating multimodal intermediate features and feeding them into DL
models [5, 194]. However, these studies focus on the choice of modalities rather than the fusion

82



5.3 Advanced Fusion Techniques for Three-stage Sleep Classification

techniques. Different modalities may contain complementary information. It is difficult to
explicitly identify the best suitable cross-modal fusion architectures.

In terms of movement sensing and cardiac sensing, they are different in signal-to-noise ratio,
data generation process and measurement frequency. Moreover, the activity count is better in
sleep/wakefulness classification, but it is difficult to discern different sleep stages [50]. For
healthy adults, the difference in heart rate variability between REM sleep and wake is less than
the difference in NREM and REM sleep [52].

The choice of fusion strategy and fusion method may thus influence the model classification
performance. In recent years, the DL-based computational models have outperformed shallow
machine learning models for sleep stage classifications, not only on unimodal data but also on
the multimodal data [5, 281, 153]. Therefore, this work will only focus on multimodal fusion
techniques based on DL networks.

5.3.2. Problem Statement

Based on the movement sensing and cardiac sensing data, the goal of this work is to compre-
hensively study how to use advanced fusion techniques to reliably classify three-stage sleep.
As demonstrated in Fig. 5.1, a sliding window method was adopted with window size T and
stride S to segment sleep recordings into frames. In each frame, one common approach is to
extract the handcraft features (e.g. heart rate features that were deemed to be intermediate /
mid-level features) from each sleep epoch that can provide physiologically meaningful features
to the model [5, 280], or to use neural networks to extract the deep features. The time steps t

represents one sleep epoch (i.e. every 30 seconds). Given that, this work aims to map the data in
a sliding window to a sleep stage that corresponds to the centre point of the window (e.g., the
purple point in the hypnogram in Fig. 5.1).

Suppose the ith frame-wise time-series input data for cardiac sensing can be denoted as
X(i)

car ∈ RCcar×T , where Ccar denotes the number of features/input channels and T denotes the
sliding window length. For movement sensing, the input data can be denoted as X(i)

mov ∈ RCmov×T .
The details of feature extraction will be introduced in Section 3.3. The goal of deep multimodal
fusion is to determine a multilayer neural network f (·) whose output ŷ(i) is expected to be the
same as the target y(i) as much as possible for each sample (X(i)

mov,X
(i)
car). This can be implemented

by minimising the empirical loss L for classification denoted as:

min
f

1
N

N

∑
i=1

L
(

ŷ(i) = f (X(i)
mov,X

(i)
car),y(i)

)
(5.1)

5.3.3. Fusion Strategy

Traditional fusion strategies include feature level fusion (e.g., [185]), score-level fusion (e.g.,
[186]) or decision-level fusion (e.g., [187]). In the end-to-end DL era, the boundary between
multimodal representation and fusion has been blurred. Representation learning is interlaced
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with classification (or regression) objectives. Nevertheless, the fusion strategy for DL models
may still be carried out in three stages, such as early fusion, late fusion and hybrid fusion [188].

Fusion at different stages may influence the results of representation learning. For example,
the early and late fusion may inhibit intra-modal or inter-modal interaction [188]. Neverova
et al. noted that highly correlated modalities should be fused together [189]. Hazirbas et al.
demonstrated that the performance of fusion is highly affected by the choice of which layer to
fuse [190]. For sleep stage classification, the way to fuse heterogeneous intermediate features is
worthy of exploration. It is meaningful to gain a comprehensive understanding at what stage the
model should fuse these inputs to achieve the most performance improvements on the three-stage
sleep classification task. Three commonly used fusion strategies were evaluated, including
early-stage fusion, late-stage fusion and hybrid fusion, as shown in Figure 5.1.

Early-stage Fusion

In the early-stage fusion, data from different modalities (e.g., intermediate features) are concate-
nated (stacked) in the input stage. It is popular because of its simplicity, yet it is sub-optimal [156].
Early-stage fusion firstly concatenates the cardiac (denoted as subscript car) and movement
(denoted as subscript act) sensing data then feeds them into neural networks h to make a
corresponding prediction.

ŷ(i) = h(concatenate(X(i)
car,X

(i)
mov)). (5.2)

where the concatenate(·) is the matrix concatenation function.

Late-stage Fusion

Late-stage fusion is another prevalent way to fuse (high-level) representation from multiple
sources. This fusion strategy allows high-level representations to have better intra-modal coher-
ence. Late-stage fusion processes each modality’s cth channel input data with a network q and
then combines all their high-level representations via an aggregation operation followed by the
classification layers. It is denoted as:

ŷ(i) = ϕ(Agg(q(x(i)mov,1), · · · ,q(x
(i)
mov,Cmov

),q(x(i)car,1), · · · ,q(x
(i)
car,Ccar

))) (5.3)

where Agg(·) is the aggregation function and ϕ denotes the classifier (e.g. fully connected
layers), and x(i) ∈ R1×T and T is the window length. The cardiac intermediate features are
denoted as X(i)

car = [x(i)car,1,x
(i)
car,2, · · · ,x

(i)
car,Ccar

]. In this study, the aggregation function represents
various fusion methods that will be introduced in the next section. q denotes neural networks
that learn the latent representation (e.g., for CNNs, it is the feature maps) of the cth intermediate
feature, where Ccar and Cmov are the numbers of the intermediate features for cardiac sensing
and movement sensing respectively.
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Hybrid Fusion

With hybrid fusion, the fusion may occur at multiple stages/layers of the DL models [192]. It
is commonly understood that the DL model hierarchically encodes features at different levels,
starting from low-level to higher-level features as the layers go deeper [157]. This study did
not cover all possible combinations of fusion architecture. Therefore, following previous work
[192], the work in this chapter considers a simple scenario, which is firstly to fuse different
input channel data belonging to the same modality (sharing a representation learning network)
and then to fuse the high-level features from both modalities at the later stage. Formally, the
hybrid-fusion strategy can be written as:

ŷ(i) = ϕ(Agg(gmov(X
(i)
mov),gcar(X

(i)
car))) (5.4)

where ϕ is the classifier (e.g., fully connected neural networks) and g denotes the modality-
specific networks (e.g., CNNs) that can learn representation from a specific modality such that
the gmov does not share network parameters with gcar. Agg(·) is the aggregation function that can
be implemented as concatenation, attention mechanism [180] and tensor-based method [282].

5.3.4. Fusion Method

Based on their complexity, fusion methods can be divided into three types: simple operations,
attention-based methods and tensor-based methods. For feature vectors from different modalities,
concatenation and addition are two commonly used simple operations [188]. The attention
mechanism is widely used for multimodal fusion. This usually refers to dynamically calculating
a weight vector for each time step (or spatial position) and weighting a set of feature vec-
tors [162, 283]. For tensor-based methods, bilinear pooling is a method of fusing two unimodal
representations into a joint presentation by calculating their outer product. This method can
capture the multiplicative interaction between all elements in two vectors [193].

For the early-stage fusion, this chapter only adopted concatenation as the only fusion method
in this study. For the late-stage fusion, two commonly used simple methods were selected, which
are concatenation and element-wise addition. Hybrid fusion provides aggregated representations
for each modality, which facilitates flexible fusion methods. Apart from the simple operation
methods, this chapter also evaluated the attention mechanism and the tensor-based method. The
choice of the fusion method may be influenced by the application context.

Concatenation

For early-stage fusion, the concatenation method concatenates inputs of all modalities into one
matrix, which can be denoted as:

K(i)
early = concatenate(X(i)

car,X
(i)
mov) (5.5)
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where K(i)
early ∈ R(Cmov+Ccar)×T . X(i)

car ∈ RCcar×T is the intermediate feature matrix of cardiac

sensing, X(i)
mov ∈ RCmov×T is the intermediate feature matrix of movement sensing. The Ccar

represents the number of intermediate features of cardiac sensing and T represents the number
of temporal steps.

For late-stage fusion, suppose we have the cardiac latent representation denoted as X′(i)car,c ∈
RU×L, which is learned from a neural network g via X′(i)car,c = g(x(i)car,c). The movement represen-
tation matrix is computed in the same way, which can be formally denoted as X′(i)mov = g(x(i)mov)

where the X′(i)mov ∈ RU×L is the latent representation of movement sensing. L is the temporal
length and U is the representation’s dimension. For example, in a convolutional neural network,
U is the number of feature maps. At the late stage, as the feature maps of each input intermediate
feature were kept separately, the concatenation operation concatenates these representations
together, as follows:

K(i)
late = concatenate(X′(i)mov,1, · · · ,X

′(i)
mov,Cmov

,X′(i)car,1, · · · ,X
′(i)
car,Ccar

) (5.6)

In this study, for the activity counts (handcraft feature) and cardiac features, the late-stage
fusion’s representation is denoted as K(i)

late ∈ R(Cmov+Ccar)×U×L

For the hybrid fusion, the high-level representation of each modality is obtained from their
own sub-network. The movement sensing representation is denoted as X′′(i)mov = gmov(X

(i)
mov) and

the cardiac sensing is formally denoted as X′′(i)car = gcar(X
(i)
car). The concatenation method for the

hybrid fusion can be written as:

K(i)
hybrid = concatenate(X′′(i)car ,X

′′(i)
mov) (5.7)

where K(i)
hybrid ∈ R2U×L

Addition

The second simple operation is the element-wise addition denoted as ⊕. For the late-stage
fusion, the addition operation is to integrate the high-level representation of each channel from
each modality. The method is formally denoted:

Q(i)
late = X′(i)mov,1⊕, · · · ,X

′(i)
mov,Cmov

⊕X′(i)car,1, · · · ,⊕X′(i)car,Ccar
(5.8)

where Q(i)
late ∈ RU×L.

For the hybrid fusion, the addition method will aggregate the high-level representation of
each modality. Formally, it can be denoted as:

Q(i)
hybrid = X′′(i)car ⊕X′′(i)mov (5.9)

where Q(i)
hybrid ∈ RU×T .
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Attention Mechanism

Attention methods have been broadly adopted in multimodal fusion tasks. For example, in VQA
tasks the method used is to fuse the visual representations with the language representation [180].
In this study, the attention vector in the attention model will weigh one modality according to the
context of the other modality. The meaning behind this is to filter the most significant information
from a unimodal, which is jointly relevant for three-stage sleep classification. Therefore, two
attention fusion methods were adopted. The first one is Attention-on-Movement (Attention-
on-Mov) and the second one is Attention-on-Cardiac (Attention-on-Car). Given the cardiac
representation matrix X′(i)car and the movement representation matrix X′(i)mov, First, they are fed
through a single-layer neural network and then a softmax function is applied to generate the
attention distribution over the temporal dimension, which is denoted as:

H(i)
att = tanh(WcarX

′(i)
car⊕WmovX′(i)mov +bh) (5.10)

P(i)
att = softmax(WattH

(i)
att +batt) (5.11)

where X′(i)mov ∈RU×L. Suppose we have linear transformation matrices that include Wmov,Wcar ∈
RD×U and Watt ∈ RL×D, then H(i)

att ∈ RD×L and P(i)
att ∈ RL×L, where D is the dimension of

attention embedding space. The attention weight matrix is denoted as P(i)
att = [p(i)

att,1, · · · ,p
(i)
att,L]

and each temporal step has an attention vector p(i)
att,l , where ∑p(i)

att,l = 1. The subscript att stands
for attention and l is the temporal step index.

A reasonable approach is that applying attention weights on different modalities will have an
impact on the results. Therefore, two scenarios were studied in this work. The first method is to
weigh cardiac sensing representations based on the attention distribution and concatenate them
to build the joint feature representation matrix. It can be written as:

V(i)
car = X′(i)carP

(i)
att (5.12)

K(i)
car = concatenate(V(i)

car,X
′(i)
mov) (5.13)

This chapter refer to this method as Attention-on-Car and K(i)
car ∈ R2U×L

The second method is to weight the latent feature of movement sensing using the attention
distribution, then concatenate them to build the joint representation matrix, which can be denoted
as:

V(i)
mov = X′(i)movP(i)

att (5.14)

K(i)
mov = concatenate(V(i)

mov,X
′(i)
car) (5.15)

This chapter refers to this method as Attention-on-Mov and K(i)
mov ∈ R2U×L is the merged joint

representation.

87



Ubi-SleepNet: Advanced Multimodal Fusion Techniques for Three-stage Sleep
Classification using Ubiquitous Sensing

Bilinear Pooling Method

Bilinear pooling is a method to compute the outer product of matrices that can facilitate mul-
tiplication interaction between all elements in both matrices. It is a method often used to fuse
visual feature vectors with textual feature vectors to create a joint representation space, even
though their distribution may vary dramatically[276, 282]. During the NREM sleep period,
the cardiac system is co-modulated by peripheral and sympathetic neural systems. The heart
rate is generally below the average for the wake and REM sleep period and is accompanied
by tiny tremors in limb movement. A hypothesis proposed in this chapter assumes the bilinear
model may be able to capture such tiny differences between REM and NREM sleep. Given its
superior representation learning capacity, it has achieved remarkable performance in fine-grained
image classification tasks [284]. The bilinear model calculates the outer product of two matrices.
In this work, suppose the two feature representation matrices X′(i)car and X′(i)mov, and the bilinear
representation can be written as:

k(i)
bi = vec(X′(i)car⊗X′(i)mov) (5.16)

The symbol of ⊗ denotes the Kronecker product of two matrices, and the vec denotes the
matrix vectorisation. After the vectorisation, an element-wise signed square root is performed as
denoted:

k(i)
bi ← sign(k(i)bi )

√
|k(i)bi | (5.17)

and then apply l2 normalisation on the vector k(i)
bi . Afterwards, the normalised vector was passed

to a linear function to reduce the feature dimension before feeding it into the classifier.

5.4. Experiment Design

This section describes the experimental design of advanced multimodal fusion strategies and
methods for the three-stage sleep classification using wearable devices. Firstly, two open-access
datasets used in the study are introduced, including the data collection, data pre-processing and
feature extraction. Secondly, four backbone networks used with advanced multimodal fusion
techniques are illustrated. Finally, the evaluation metrics used in the study are discussed.

5.4.1. Dataset Description

Apple Watch Sleep Dataset

The first dataset used in this chapter is the Apple Watch Sleep Study1, which is an open-access
dataset collected at the University of Michigan between 2017 and 2019 [6, 285]. The dataset
consists of 31 healthy subjects with no known sleep disorders or cardiovascular diseases and
neurological or psychiatric impairment disorders[6]. All subjects wore Apple Watch (Apple Inc.
series 2 and 3) and performed continuous recording for 7 to 14 days, and then joined the PSG

1https://physionet.org/content/sleep-accel/1.0.0/
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study in the sleep laboratory on the last day [6]. During the PSG study, all subjects wore Apple
Watch, which recorded heart rate and triaxial acceleration [6]. The acceleration and heart rate
were measured by Apple Watch and recorded by a custom-developed watch application using
the built-in functions of the iOS Watch kit and HealthKit by creating a “Workout Session” in
app [285]. The PSG recordings were annotated according to the AASM rules [6].

The heart rate is measured by the PPG sensor of the Apple Watch and recorded as beats per
minute (BPM), and a sample is returned from the Apple API every few seconds. The heart rate
data is timestamped and the interval is between 2s and 5s. After the data cleaning process, the
feature engineering process was performed on triaxial acceleration data; following [76, 6], the
activity counts were used as the movement feature. The final activity counts were added for each
sleep epoch. Since the heart rate collected from Apple Watch is calculated in two to five seconds,
this data may be deemed as “pseudo” instantaneous heart rate (IHR). In each sleep epoch, the
summary statistics of the heart rate data were calculated (called HR statistics or HRS for short),
which includes the mean, standard deviation, minimum, maximum, skewness and kurtosis of
the heart rate. Together with the activity counts, a seven-dimensional vector was constructed for
each sleep epoch from these intermediate summary features and called it the Apple ACT-HRS
feature set.

MESA Dataset

Following the work in previous chapters, the MESA dataset is used for the experiments in
this chapter. The data processing pipeline is consistent with the chapter 3. After the data
pre-processing, 1,743 of 2,237 participants satisfied the data quality condition. Full details
of the study setup, protocol and sampling rates are available in [5, 269, 271]. According to
the feature set used in previous research [5, 6], this chapter used the same features, including
activity counts and eight HRV features derived from the NN interval data in each sleep epoch [5].
The feature set consists of the Mean NNi, Standard Derivation of RR interval (SDNN), RR
interval differences (SDSD), Very Low Frequency, Low Frequency, High Frequency Bands, Low
Frequency to High Frequency Ratio and Total Power. These features have been investigated in
several sleep physiology studies [214, 280, 286, 126, 52]. For each sleep epoch, the intermediate
feature vector was constructed based on eight HRV features and the activity counts (a scalar
value per sleep epoch), which is named the MESA ACT-HRV feature set.

In addition, the NN intervals were converted into IHR data, and the statistical features of
IHR and combined activity counts were calculated as the second intermediate feature set. The
purpose is to study the feature effects on the choices of fusion strategies and methods. In this
chapter, this feature set is named the MESA ACT-HRS feature set.

5.4.2. Evaluation Metrics

For performance evaluation, accuracy, Cohen’s κ , mean F1 and time deviation( [5]) were used.
The time deviation that was used in chapter 3 is denoted as (T Dk =

1
N ∑

N
i=1(Predi

c−GT i
c )). For

a sleep stage c, the Predc refers to the predicted minutes and GTc refers to the ground truth sleep
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minutes. The superscript i represents the ith subject. The time deviation summarises the mean
bias of the total minutes of each sleep stage predicted by the classifier in the population. To
understand the impact of individual differences in performance evaluation, this study adopted
the subject-level evaluation. The metrics of each subject were calculated individually and the
mean value and 95% confidence interval of each metric were obtained for the population.

5.4.3. Experimental Procedure

Following the approaches in previous chapters, a highly overlapping sliding window method was
adopted with S = 1 to segment the input time-series data. In chapter 3, the hyperparameter tuning
results showed that the window length can impact the prediction performance. For convolutional
neural networks, a longer window produced better results compared with a shorter window.

For each sleep epoch, the data of 50 adjacent (forward and backward) sleep epochs were
selected to construct the inputs with a window length of 101. The details are shown in Figure 5.1.
The hypnogram represents the stages of sleep over time in each sleep epoch. The prediction
process was performed for each sleep epoch. The backbone network has the same structure for
early-stage fusion and hybrid fusion. For the sliding window at the beginning and end of the
recording, the empty sleep epoch inputs were filled with a value of -1. For the training, validation
and testing, the experimental settings are as follows:

• Apple Watch Sleep Dataset Following the experiment setting of previous work [6],
instead of using leave-one-subject-out-cross-validation, this chapter adopted leave-two-
subjects-out cross validation. Each fold had two subjects for testing, except for the last
fold, which only contained one subject (total 31 subjects and 16 folds). In each fold, the
data in the training dataset were randomly split into a validation dataset (20%), and the
rest 80% were used for training. The validation set was used to select the best model for
the test dataset.

• MESA Sleep Dataset The dataset contains 1743 valid sleep records of subjects. This
chapter employed the hold-out method to divide the entire dataset into a test set of 348
subjects (20%) and a training set of 1,395 subjects (80%) following the experimental
protocol in chapter 3 The training set was further randomly split into a validation set (20%)
and a training set (80%). Again, the validation set was used to select the best model for
the test dataset.

All experiments conducted in this paper adopted the above setting for each dataset respectively.
In chapter 3, it was found that the performance improvement of three-stage sleep classification

was more related to increasing the number of LSTM networks instead of increasing the number
of CNN layers for the three-stage sleep classification task. Therefore, this study focused on the
design of CNN architecture. All experiments in this work adopted the Adam gradient update rule
[287] with learning rate α = 10−4,β1 = 0.9, and β2 = 0.99. No early-stopping or weight decay
was adopted in training processing. The batch size was set to 1024 except for the experiments
containing the bilinear method, which were set to 512. This setting is due to the GPU memory
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limitation. For the attention method, the attention embedding dimension was set to 256. For the
bilinear method, the size of the feature dimension was reduced to 1024 using a linear layer. The
training epoch corresponding to both datasets was set to 20. The training was completed on a
single GPU-equipped (Nvidia RTX 3090) machine, and each epoch took approximately three
minutes.

5.4.4. Implementation Details

Hyperparameter Tuning and Backbone Networks

The fusion strategies and fusion methods may not benefit from a single-layer convolutional
neural network. To find a feasible backbone deep CNN that was capable of serving the study,
inspired by [148], a backbone network was designed and a hyperparameter search was conducted
on 3-5 convolutional layer blocks (corresponding to 7-13 convolutional layers). From the
hyperparameter tuning results, the network from the highest F1 validation score group was
selected. The number of hidden units was further gradually reduced in fully connected layers
and the experimental results showed slight improvements in model performance. This network is
named DeepCNN. To better understand the impact of modality fusion strategies and methods in
different CNN architectures, inspired by [288, 289], this chapter further added a skip connection
in each convolutional block and called it ResDeepCNN, as the skip connection became an
indispensable component in a variety of neural architectures that could boost representation
learning. Figure 5.2 lists the details of two network structures. The stride and padding values
were set to 1 for all convolutional (Conv) layers, and the kernel size was set to 3. The kernel
size and stride were set to 2 for all max pooling (Max-Pool) layers. A dropout layer was applied
after each fully connected (FC) layer, and the dropout rate was set to 0.25. The DeepCNN
network was selected from the hyperparameter search results. The skip connection inside each
convolutional block is added and it is referred to as ResDeepCNN. As this chapter focuses on
the fusion strategy and methods, the backbone network was merely designed to conduct feasible
experiments. More details on the hyperparameter search of the backbone network can be seen in
the appendix section B.1

Backbone Network Setting

For the early-stage fusion and hybrid fusion, DeepCNN and ResDeepCNN were the main
networks for the experiments. This chapter slightly adapted the DeepCNN and the ResDeepCNN
for the late-stage fusion experiments according to [152], which allowed each input channel to
share the convolutional kernels but kept the feature representation separate. This means that, for
a convolutional layer, the feature maps extracted from each input channel would not be fused
with the feature maps of other channels. Instead, each input channel’s feature maps would be
fused before the classification module (fully-connected layers). For instance, for DeepCNN in
the Apple Watch dataset, if the input was an intermediate feature matrix that contained cardiac
and movement sensing and was denoted as S(i)

0 ∈ R7×101 ( one movement feature and six HRS
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Figure 5.2 Backbone network used in this study.

features), the feature map function Fl+1 : S(i)
l 7→ S(i)

l+1 was realised by a convolutional layer,
where l denotes the lth convolutional layer. The output of the first convolutional layer was the
feature map denoted as S(i)

1 = F1(S
(i)
0 ) ∈ RC1×7×101, where C1 was the number of feature maps

of the first CNN layer. In this way, the intermediate feature of each input channel was kept
separate.

5.5. Results

This section empirically compares each combination of multimodal fusion strategies and methods
based on two scenarios. The first scenario is the MESA dataset which contains multimodal data
that can be extracted from research grade-wearable devices. The second scenario is the Apple
Watch dataset derived from consumer-grade smartwatches (Apple Watch Series 2 and 3) with
the sleep stages annotated using the gold-standard PSG study.

The performance is reported in the order of three fusion strategies which included early-stage
fusion, late-stage fusion, and hybrid fusion, and three fusion methods, including simple operation
(concatenation and addition), attention mechanism, and bi-linear pooling method. The effects of
different window lengths (51 and 21) were also investigated, and the corresponding results can
be seen in Appendix B.3.1. The experiments using raw accelerometer data and HR statistical
features can be seen in Appendix B.2.2.

For consistency, all fusion strategies and methods in each dataset were evaluated on the
subject level during the sleep recording period. Accuracy, Cohen’s κ , the mean F1 score and
time deviation (minutes) were calculated based on the predictions during the sleep recording
period. In the end, this chapter compared the model parameter size and inference time for each
strategy and method. These factors are important for model selection in the context of ubiquitous
computing.

5.5.1. Apple Watch Dataset

Activity Counts and HRS Features

The first experiment was performed based on activity counts and the HRS feature set (ACT-HRS)
derived from the consumer wearables.
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Fusion Specifics Performance Metrics Time Deviation(min.)

Fusion Strategy Network Fusion Method Accuracy(%) Cohen’s κ Mean F1(%) Non-REM sleep REM sleep Wake

Early-Stage Fusion
DeepCNN Concatenation 72.3 ± 2.5 40.0 ± 5.8 59.0 ± 3.6 -0.6 ± 22.3 11.8 ± 22.5 -11.2 ± 6.9

ResDeepCNN Concatenation 76.0 ± 2.4 45.7 ± 6.1 63.4 ± 3.5 12.3 ± 17.2 -4.0 ± 17.1 -8.2 ± 7.3

Late-Stage Fusion
DeepCNN

Concatenation 76.2 ± 2.7 47.0 ± 7.1 63.7 ± 4.5 8.4 ± 16.5 1.3 ± 19.4 -9.7 ± 7.1
Addition 78.2 ± 2.1 49.9 ± 6.9 65.2 ± 3.8 11.4 ± 10.4 -0.6 ± 11.2 -10.8 ± 6.6

ResDeepCNN
Concatenation 75.5 ± 2.9 47.0 ± 6.5 63.4 ± 4.2 10.4 ± 18.5 -2.1 ± 19.6 -8.3 ± 7.0

Addition 78.2 ± 2.3 52.0 ± 5.8 66.5 ± 3.8 1.9 ± 11.7 4.7 ± 12.6 -6.5 ± 7.3

Hybrid Fusion

DeepCNN

Concatenation 72.9 ± 3.0 40.1 ± 6.6 60.6 ± 3.8 10.7 ± 20.1 0.6 ± 19.5 -11.4 ± 6.4
Addition 72.1 ± 2.9 38.6 ± 6.5 58.9 ± 3.9 8.8 ± 20.4 1.3 ± 19.9 -10.2 ± 7.3

Attention-on-Mov 73.5 ± 2.9 41.3 ± 6.2 60.4 ± 3.9 1.2 ± 18.7 5.0 ± 18.9 -6.2 ± 7.7
Attention-on-Car 71.1 ± 3.4 37.4 ± 6.7 58.1 ± 4.1 7.5 ± 24.3 0.7 ± 23.1 -8.2 ± 7.5

Bilinear 69.5 ± 3.5 29.5 ± 7.5 53.0 ± 4.2 1.2 ± 25.7 10.0 ± 25.0 -11.3 ± 8.5

ResDeepCNN

Concatenation 74.4 ± 2.4 44.2 ± 5.7 62.0 ± 3.3 2.5 ± 16.7 5.3 ± 16.9 -7.8 ± 7.0
Addition 74.9 ± 2.3 44.3 ± 5.4 62.3 ± 3.7 12.8 ± 14.2 -7.6 ± 15.6 -5.2 ± 8.2

Attention-on-Mov 75.2 ± 2.6 45.0 ± 5.6 63.1 ± 3.4 10.4 ± 19.4 -2.0 ± 19.5 -8.4 ± 7.2
Attention-on-Car 72.2 ± 3.0 41.5 ± 6.8 59.7 ± 3.8 -2.9 ± 25.3 12.0 ± 26.4 -9.1 ± 6.7

Bilinear 70.8 ± 3.5 38.4 ± 7.5 58.1 ± 4.4 -2.8 ± 22.9 6.4 ± 24.8 -3.5 ± 8.0

Table 5.1 Three-stage sleep classification results (mean ± standard error at 95% confidence interval) for
each combination of fusion strategies and methods with the Apple Watch dataset using ACT-HRS feature
based on a window length of 101.

Table 5.1 lists the subject-level evaluation results of the Apple Watch dataset based on the
window length of 101 during the sleep recording period. Since Apple Watch sampled the heart
rate data with an unknown resolution and method, the experiments were only performed based
on the ACT-HRS feature set.

Overall, the ResDeepCNN achieved the highest mean F1 score of 66.5%, Cohen’s κ of 52
and an accuracy of 78.2% using the addition method in late-stage fusion. The same methods
used on DeepCNN were higher than those in early-stage fusion too.

In the hybrid fusion strategy, using the Attention-on-Mov method achieved the highest
scores irrespective of backbone networks. The experimental results demonstrated a similar
pattern in the experiments using window lengths 51 and 21. For window lengths 51 and 21, the
highest-performed models in each category were lower than the highest-performed models using
the window length of 101. This chapter listed these results for window lengths 51 and 21 in
Appendix B.3.1.

5.5.2. MESA Sleep Dataset Results

The second experiment was conducted on the MESA dataset. It was by far the largest sleep
dataset that contained activity counts and instantaneous heart rates, which might be extracted
from research-grade wearable devices. Again, this chapter performed experiments on two
different feature sets. The first feature set included activity counts and HRV features (ACT-
HRV) [5], while the second feature set was ACT-HRS derived using the same feature extraction
method in the Apple Watch dataset.

MESA Activity Counts and HRV Features

The reason for using the HRV features was that they had sleep physiological meaning. Table 5.2
shows the subject-level evaluation results based on the window length of 101. For the early-stage
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and late-stage fusion, the results of the two backbone networks were comparable, which showed
the skipping connections did not improve the classification performance.

Fusion Specifics Performance Metrics Time Deviation(min.)

Fusion Strategy Network Fusion Method Accuracy(%) Cohen’s κ Mean F1(%) Non-REM sleep REM sleep Wake

Early-Stage Fusion
DeepCNN Concatenation 78.6 ± 0.9 62.8 ± 1.8 71.1 ± 1.3 27.1 ± 6.9 -6.5 ± 3.6 -20.7 ± 6.4

ResDeepCNN Concatenation 78.0 ± 1.1 60.2 ± 2.0 71.1 ± 1.4 54.1 ± 7.0 1.2 ± 3.8 -55.3 ± 6.6

Late-Stage Fusion
DeepCNN

Concatenation 79.6 ± 0.9 64.3 ± 1.8 72.5 ± 1.3 12.9 ± 6.6 0.1 ± 3.5 -13.0 ± 6.2
Addition 78.5 ± 0.9 62.3 ± 1.8 71.1 ± 1.3 25.7 ± 6.4 -6.8 ± 3.3 -18.9 ± 6.4

ResDeepCNN
Concatenation 79.3 ± 0.9 64.4 ± 1.7 72.6 ± 1.2 8.9 ± 6.4 4.2 ± 3.4 -13.1 ± 6.1

Addition 78.6 ± 1.0 62.8 ± 1.9 71.4 ± 1.3 2.4 ± 6.9 -3.0 ± 3.5 0.6 ± 6.7

Hybrid Fusion

DeepCNN

Concatenation 77.6 ± 1.1 62.7 ± 1.8 71.4 ± 1.3 -12.7 ± 7.3 7.2 ± 3.9 5.5 ± 7.0
Addition 79.0 ± 0.9 62.9 ± 1.7 70.7 ± 1.3 53.6 ± 6.9 -15.0 ± 3.3 -38.6 ± 6.3

Attention-on-Mov 79.0 ± 1.0 63.9 ± 1.8 72.1 ± 1.3 2.3 ± 7.0 -4.9 ± 3.5 2.6 ± 6.9
Attention-on-Car 78.1 ± 1.0 63.0 ± 1.7 71.6 ± 1.3 -2.1 ± 6.8 6.5 ± 4.0 -4.4 ± 6.3

Bilinear 75.7 ± 0.9 58.6 ± 1.8 68.8 ± 1.2 3.7 ± 6.8 16.6 ± 4.0 -20.3 ± 6.3

ResDeepCNN

Concatenation 79.7 ± 0.9 65.3 ± 1.7 72.7 ± 1.3 6.4 ± 6.7 -7.7 ± 3.4 1.3 ± 6.7
Addition 79.8 ± 0.9 64.1 ± 1.7 72.7 ± 1.3 24.1 ± 6.9 -9.7 ± 3.2 -14.4 ± 6.5

Attention-on-Mov 79.6 ± 1.0 65.5 ± 1.8 73.3 ± 1.3 -0.9 ± 6.4 6.1 ± 3.7 -5.1 ± 6.3
Attention-on-Car 78.5 ± 1.0 62.7 ± 1.7 70.5 ± 1.3 37.6 ± 7.0 -9.5 ± 4.0 -28.1 ± 6.2

Bilinear 75.7 ± 0.9 58.6 ± 1.8 68.8 ± 1.2 3.7 ± 6.8 16.6 ± 4.0 -20.3 ± 6.3

Table 5.2 Three-stage sleep classification results (mean ± standard error at 95% confidence interval)
for each combination of fusion strategies and methods with the MESA test dataset using the ACT-HRV
feature set based on a window length of 101.

For the hybrid fusion strategy, the ResDeepCNN achieved the highest accuracy, the Cohen’s
κ and the mean F1 score of 79.6%, 65.5 and 73.3%, respectively, using the Attention-on-Mov
method. The results were statistically significant (p < 0.05) and higher than the models in the
early-stage fusion. Those metrics were higher than the Attention-on-Car models too. Similar to
the Apple Watch dataset, the performance of models based on window lengths 51 and 21 tends
to be worse than experiments performed with window length 101. These experimental results
can be seen in Appendix B.3.1.

In terms of time deviation, DeepCNN achieved the optimal time deviation using the Attention-
on-Mov method. The mean value of the NREM sleep time deviation was 0.9, and the mean value
of the REM sleep time deviation was 6.1.

MESA Activity Counts and HRS Features

The heart rate statistical features were derived from the instantaneous heart rate (IHR) data in the
MESA dataset. The purpose was to understand whether the type of intermediate feature would
cause a difference in results.

The subject-level evaluation is shown in Table 5.3. In the early-stage fusion, similar to
the ACT-HRV feature setting, the results of the two backbone networks were comparable.
The ResDeepCNN, using the Attention-on-Mov fusion method, achieved the highest accuracy,
Cohen’s κ , and the mean F1 score of 80.3%, 65.6, and 72.9%, respectively. However, the
Attention-on-Mov model based on the ACT-HRS feature set highly overestimated the NREM
sleep time and underestimated the wake minutes. Again, the models with window lengths 51 and
21 achieved lower performance than 101. Therefore, these results were listed in Appendix B.3.1
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Fusion Specifics Performance Metrics Time Deviation(min.)

Fusion Strategy Network Fusion Method Accuracy(%) Cohen’s κ Mean F1(%) Non-REM sleep REM sleep Wake

Early-Stage Fusion
DeepCNN Concatenation 78.0 ± 1.0 63.4 ± 1.8 72.0 ± 1.2 2.7 ± 7.0 15.6 ± 4.0 -18.2 ± 6.4

ResDeepCNN Concatenation 76.9 ± 1.1 61.9 ± 1.9 71.1 ± 1.3 -36.7 ± 7.8 12.1 ± 4.2 24.5 ± 7.5

Late-Stage Fusion
DeepCNN

Concatenation 79.1 ± 1.0 64.7 ± 1.7 72.8 ± 1.3 0.6 ± 6.9 7.5 ± 3.7 -8.1 ± 6.4
Addition 78.1 ± 0.9 62.8 ± 1.6 70.6 ± 1.2 23.1 ± 6.6 -4.5 ± 3.7 -18.5 ± 6.3

ResDeepCNN
Concatenation 77.8 ± 1.0 62.5 ± 1.7 71.0 ± 1.3 -1.1 ± 7.3 -0.7 ± 3.5 1.8 ± 6.8

Addition 77.7 ± 1.0 62.6 ± 1.7 70.7 ± 1.2 24.3 ± 7.0 3.7 ± 3.9 -28.0 ± 6.4

Hybrid Fusion

DeepCNN

Concatenation 78.2 ± 0.9 64.4 ± 1.7 70.2 ± 1.2 18.5 ± 7.1 -14.6 ± 3.3 -3.9 ± 6.5
Addition 78.1 ± 0.9 62.2 ± 1.8 71.2 ± 1.2 14.7 ± 7.4 1.4 ± 3.6 -16.1 ± 6.8

Attention-on-Mov 79.2 ± 0.9 63.8 ± 1.8 71.8 ± 1.3 28.1 ± 7.3 -4.3 ± 3.5 -23.9 ± 6.5
Attention-on-Car 76.6 ± 1.0 61.4 ± 1.7 70.4 ± 1.2 -7.4 ± 7.9 17.7 ± 4.7 -10.3 ± 6.7

Bilinear 75.6 ± 0.9 58.0 ± 1.8 67.7 ± 1.2 6.3 ± 7.6 -8.1 ± 3.7 1.8 ± 7.1

ResDeepCNN

Concatenation 79.4 ± 1.0 64.4 ± 1.7 72.7 ± 1.2 31.7 ± 6.9 4.9 ± 3.6 -36.6 ± 6.3
Addition 78.9 ± 0.9 63.6 ± 1.8 72.2 ± 1.2 24.6 ± 7.0 4.9 ± 3.5 -29.5 ± 6.5

Attention-on-Mov 80.3 ± 0.9 65.6 ± 1.7 72.9 ± 1.3 35.5 ± 6.9 0.8 ± 3.6 -36.3 ± 6.2
Attention-on-Car 79.3 ± 0.9 62.8 ± 1.7 71.1 ± 1.2 29.1 ± 7.1 -2.4 ± 3.7 -26.7 ± 6.3

Bilinear 74.1 ± 0.9 56.8 ± 1.7 66.9 ± 1.2 6.2 ± 7.1 11.7 ± 4.2 -17.9 ± 6.5

Table 5.3 Three-stage sleep classification results (mean ± standard error at 95% confidence interval)
for each combination of fusion strategies and methods with the MESA test dataset using the ACT-HRS
feature set based on a window length of 101.

5.5.3. Inference Efficiency

Fusion Strategy Network Fusion Method Total Parameters (M) Inference Time (ms per sample)

Early-Stage
DeepCNN Concatenation 9.44 3.52±0.08

ResDeepCNN Concatenation 9.44 3.54±0.08

Late-Stage Fusion
DeepCNN

Concatenation 48.75 22.9±0.17
Addition 9.43 32.25±5.53

ResDeepCNN
Concatenation 48.75 31.16±5.06

Addition 9.43 22.11±0.25

Hybrid Fusion

DeepCNN

Concatenation 18.80 7.13±0.12
Addition 12.24 7.01±0.12

Attention-on-Act 19.07 7.32±0.12
Bilinear 274.65 10.09±0.11

ResDeepCNN

Concatenation 18.80 7.02±0.16
Addition 12.24 7.0±0.14

Attention-on-Act 19.07 7.27±0.17
Bilinear 274.65 10.22±0.17

Table 5.4 The number of model parameters and inference time of each combination of fusion strategies
and methods evaluated in millions of parameters and milliseconds respectively with the Apple Watch
dataset, using the ACT-HRS feature sets based on a window length of 101.

In the mobile computing scenario of three-sleep stage classification, the model based on the
deep learning architecture may require sufficient computing resources. This may be a challenge
for many inexpensive or low-end smartwatches and smartphones. Table 5.4 shows the model
parameter size and inference time of each combination of fusion strategies and methods. In
addition, the number of trainable parameters was counted and the time required for forward
propagation (running on CPU) is also calculated. All experiments were conducted using Pytorch
1.6 and the hardware platform consisting of 8 cores AMD-7 3700X with 4.4GHz and 64GB
DDR4 memory. This chapter independently ran each model 10 times on the Apple Watch dataset.
Each time, 500 samples (sleep epochs) were inferred using the Pytorch profiling module to
calculate the statistical summary of the inference time.

Overall, the models using the addition method in late-stage fusion, hybrid fusion, and
concatenation in early-stage fusion had the least model parameters. As a result, the models
in early-stage fusion achieved the shortest inference time. The addition method in the late-
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stage fusion had the same number of parameters as the models in early-stage fusion, but the
inference time was increased by 7-10 times. This was because the late-stage fusion calculated
the feature maps of each input channel separately and fused them before the classifier module
(fully connected layers). Consequently, the feature matrix extracted by the convolutional module
was a 3D tensor (e.g., the number of input feature dimensions × number of feature maps ×
temporal steps) in the late-stage fusion. In contrast, the early-stage fusion generated a 2D tensor
(e.g., number of feature maps × temporal steps). The convolution operation requires additional
time to calculate the feature maps of each input channel.

The bilinear model had the largest model parameters. Most model parameters belonged to the
feature representation module, which contained a fully connected layer to reduce the dimension
of feature representation at an order of two magnitudes. Since the calculation speed of the fully
connected (FC) layer was much faster than the convolutional layer, the inference time did not
increase as much as the model parameter size.

5.5.4. Visualisation and Interpretation

The top three channels of each sleep stage were retained to simplify the visualisation as shown
in Figure 5.5. To obtain a clear graph, the highlighted areas are the activation values over the
threshold of 0.8 and the light colour areas represent activation values below the threshold of 0.8.
To test whether this visualisation is useful and can be understood by humans, A game system2

was designed that could conduct the exploratory study with users. The game system serves the
purpose of engaging users to read and understand these visualisations. The study consists of two
phases, which investigate the accuracy of sleep stage classification by humans based solely on
the input signals in the cases of Non-CAM and CAM visualisation, respectively. For each phase,
a continuous period of sleep data (intermediate feature data and hypnogram) was encoded for
each sleep stage into videos to speed up the training process.

(a) Wake (b) NREMS (c) REMS

Figure 5.3 The mean of total class activation value for each sleep stage from MESA dataset (ACT-HRV
feature) using ResDeepCNN (Addition) in the late-stage fusion.
*Note: ACT : Activity Counts, MNNI : Mean NNI, SDNN: Standard Deviation of NNI, SDSD : Successive
RR Interval Differences,VLF: Very-Low-Frequency Band, LF: Low-Frequency Band, HF: High-Frequency
Band, LF/HF: The ratio of Low Frequency to High Frequency, SPI: The Signal Power Intensity

2https://gradcamvisual1.azurewebsites.net/
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(a) (b) (c)

Figure 5.4 (a) A user study of three-stage classification accuracy calculated per participant-wise for
Non-CAM and CAM assisted visualization. (b) The answer of The machine-assisted visualization helped
me to understand the difference between each sleep stage. (c) The breakdown of classification accuracy
calculated for each sleep stage.

(a) Wake (b) NREMS (c) REMS

Figure 5.5 The Grad-CAM plot of three selected examples from MESA dataset (ACT-HRV feature) using
ResDeepCNN (Addition) in the late-stage fusion. Each row is the activation map for the input clinical
features.

In each phase, users would first watch the training videos; then they would be asked to
recognise nine randomly selected sleep epochs that did not belong to the training videos. At the
end of the test, users will be informed of their sleep stage classification accuracy.

There are no established rules for sleep stage classification using movement and cardiac
sensing data. To conduct a pilot study, 25 participants were recruited from Amazon’s Mechanical
Turk. The task took, on average, 20-45 minutes to complete and participants were compensated
USD 7.00. All procedures received ethical approval from the University’s ethical review board
and the Research Ethics Committees (RECs). A total of 25 subjects responded to the question-
naire. Figure 5.4 (a) shows the classification accuracy of CAM-assisted sleep stage classification
is higher than the Non-CAM sleep stage classification. This chapter further analysed the results
in detail by sleep stages in Figure 5.4 (c). As can be seen, CAM-assisted visualisations improved
human recognition accuracy in all sleep stages. This chapter also designed a five-point Likert
scale question to test whether the system can improve the user’s understanding of visualisation.
The results showed that the majority of participants either Strongly Agree or Agree that the
machine-assisted visualisation helped them to understand the difference between each sleep
stage.
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5.6. Discussion

5.6.1. Simple Fusion Method and Fusion Strategy

All three fusion strategies adopted the concatenation method. In the early-stage fusion, the
backbone network fused the latent features from each modality at every convolutional layer.
All models studied in this paper surpassed previous studies, except for the models using the
bilinear method. With the Apple Watch dataset, the skip connection numerically improved
the performance for models in early-stage fusion, but the performance with the MESA dataset
decreased. A possible explanation for this might be that simply adding a skip connection may
not benefit the model prediction performance in early-stage fusion when the training data is
sufficient.

In the late-stage fusion, the concatenation method numerically improved the prediction
performance of all metrics for ResDeepCNN compared with the early-stage fusion. In terms of
the concatenation method, parameter size and reasoning time increased by five times and six
times, respectively, but the performance did not increase by that much. The addition method
in late-stage fusion achieved the highest performance with the Apple Watch dataset. This
may indicate the benefit of keeping latent features separate, and fusing them at a higher level
might produce better results. Another possible explanation for this is the increase in network
parameters.

For the hybrid fusion, the intermediate cardiac features are first fused using the early stage
and then fused with movement sensing representation at a later stage. With the Apple Watch
dataset, the simple operation method produced the same or better results compared with early-
stage fusion. The methods in this category increased model parameters and inference time, but
the classification performance hardly improved. The addition method aggregated the modal
representation at the later stage, and similarly, it only obtained comparable results. A similar
pattern was observed with the MESA dataset. These findings suggest that the effectiveness of
simple operation methods may be affected by fusion strategies.

5.6.2. Complex Fusion Method and Fusion Strategy

Bilinear pooling turned out to be the weakest fusion method in the hybrid fusion strategy. This
is a particularly interesting result because the tensor-based methods showed improvements in
the multimodal fusion literature, such as with the task of visual question answering [193]. It
is possible that these results could be due to the failure to use the CNN network to learn about
a post-bilinear latent feature. The model parameters were too large to be suitable for mobile
computing scenarios. The cost of exploring the potential solutions exceeded the benefits.

With the attention mechanism, with the MESA dataset using the ACT-HRV feature set, the
mean F1 and Cohen’s κ of ResDeepCNN using the Attention-on-Mov method were statistically
higher than those in early-stage fusion. With the Apple Watch dataset, the same method can also
produce comparable results to the highest-performing method in the late-stage fusion, and the
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inference speed is three times faster. Moreover, the time deviation value was balanced in the
prediction of each sleep stage.

Compared to the Attention-on-Car method, the results demonstrated a similar pattern with the
MESA dataset, that is, applying attention weights to the latent features of movement produced
higher results. It can therefore be assumed that the attention method improved the network’s
ability to learn better representations that can benefit three-stage sleep classification by adjusting
the weights of movement sensing representations, as it was difficult to discern REM sleep and
NREM sleep using movement sensing alone.

5.6.3. Model Selection

The model parameters, model architecture, model inference time and model performance were
the key considerations for the model selection in ubiquitous computing. In addition to these
factors, the time deviation should also be considered. It reflected the bias of the model prediction
for each sleep stage. With imbalanced sleep data sets, biased models may constantly overestimate
the duration of certain sleep stages and may lead to unreasonable health decisions. The mean
and standard error of time deviation should be as close to zero as possible. In terms of inference
time, predicting sleep data for a whole night using the late fusion strategy was 6.2 times slower
than when using the early-stage fusion strategy. As the model calculates the feature maps of each
input channel individually using the convolution method, the time consumption of this method
was related to the number of intermediate input features. In addition, for the design of the fusion
strategy, the ratio of model parameters to inference time is also a consideration for performance
evaluation. For instance, the parameters of the bilinear model were 77 times larger than the
early-stage fusion models, but the speed was only three times slower. because most of the model
parameters belonged to a fully connected layer in the bilinear module, which reduced the feature
dimension of the feature matrix (the results of the outer product).

Since sleep is generally considered a nocturnal behaviour, most people are used to charging
their phones at night. In addition, sleep analysis does not need to generate real-time feedback, so
sleep analysis algorithms are less constrained by computing resources. But the trade-off between
performance improvement and computing resource consumption is still an important considera-
tion. From the results in Appendix B.2.2, using raw accelerometer data yields comparable results
but increases model parameters and inference time compared to using handcrafted features. It is
considered a sub-optimal solution for long-term sleep stage monitoring.

In summary, if the movement and cardiac sensing data can be transmitted to the smartphone,
the ResDeepCNN with the addition method in the late-stage fusion may be a feasible model
for everyday use. Since it achieved the highest F1 score and with a balanced time deviation on
each sleep stage. In scenarios with limited computing resources, such as smartwatches, using the
ResDeepCNN model in the early-stage fusion may be a practical choice. The cost of using the
late-stage fusion has increased by nine times in inference time. In mobile computing scenarios,
power consumption is also a key consideration. In real-world deployments, sleep mostly occurs
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at night, and data collected via smart wristbands or smartwatches can be processed on the phone.
Power consumption can be easily solved by plugging in the charging cable.

5.6.4. Cross Dataset Comparison

Based on activity counts and HRS features, the highest-performing model for the MESA dataset
achieved higher performance than the highest such model for the Apple Watch dataset. Not
only were the classification metrics of the MESA dataset higher than these of the Apple Watch
dataset, but the standard error on the MESA dataset was smaller. Furthermore, in terms of
fusion strategies and methods, none of the methods outperformed the others by large margins on
both datasets. But some improvements are still statistically significant. It seems possible that
these differences were due to two reasons. The first reason was that the Apple Watch dataset
contained far fewer subjects compared with the MESA dataset. The second possible reason was
the differences in data acquisition equipment and data pre-processing methods. The HR sensing
module of Apple Watch dynamically calculated the HR data within two-five seconds, whereas
the cardiac sensing used in the MESA dataset is IHR. The higher resolution IHR data might
provide more discriminant information in order to discern three sleep stages.

5.6.5. Exploratory Research of Visualisation

One of the objectives of this work is to better understand in what way the decision-making
process of neural networks using multimodal fusion techniques on sleep stage classification can
be understood by humans. Based on Grad-CAM scores, a simplified visualisation method was
adopted in this study and an exploratory study with users was performed. The visualisation
tool can highlight both the key temporal signal segments and the most discriminant feature
channels, and by providing essential clues/patterns for users it can serve as an assistant tool in
understanding different sleep stage signals.

Compared with highlighting the temporal steps, the channel dimension reduction retained
the minimum number of discriminant channels for sleep stage classification, which showed a
combined reduction that could improve user understanding. Based on the repeated patterns
of activity count and HRV features during a continuous sleep period, the results demonstrated
that reducing information overload could improve human understanding of three-stage sleep
recognition performance. The visualisation increased users’ understanding in terms of the neural
network decision-making process to some extent.

Wake recognition accuracy was higher than in the other two sleep stages, which indicates
wrist movement is obvious to classify wake. This result is consistent with the known capability
of actigraphy can be used to distinguish between wake and sleep. The highlighted patterns that
appeared in the continuous sleep stage agreed with previous sleep physiology findings to some
extent.

The modelling process has window bias and Grad-CAM modelling bias. For example,
this study adopted a window length of 101 (50.5 minutes). The highlighted areas will move
backwards as the window moves forwards. The network is capable of locating signatures in a
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window that are meaningful for the current sleep stage recognition. This is very different to the
annotation process using high-resolution (over 100Hz) PSG data. An interesting question for
future work is to investigate whether these patterns have physiological meaning.

Many existing interpretation and visualisation techniques have been developed for visual
data, yet it is unclear whether these methods are suitable for explaining sleep time-series data.
This is a pilot study to investigate whether Grad-CAM applied to sleep time-series wearable data
may be useful to humans. It is one of the mainstream methods used in visual and text data but is
subject to the network structure. For instance, it is difficult to highlight the important areas in
channels in early-stage fusion models without substantial changes to the method. On the other
hand, it is difficult for humans to understand the highlighted patterns in the time dimension.

The results demonstrated an interesting phenomenon, e.g., three out of 25 users experienced
negative impacts on their understanding. In addition, the questionnaire data also highlighted that
not everyone agreed that the system helped them to understand the difference in the patterns
between sleep stages. A possible explanation for this might be that the visualisation may not
be understood by every person, or the training and testing process may be problematic. Future
studies may consider conducting experiments with more detailed personalised questions.

The visualisation was designed as a pilot study to understand the decision-making process
of multimodal fusion for sleep stage classification. So, this chapter did not investigate other
mainstream interpretation methods, nor did it conduct large-scale user research. Future work
may consider investigating the other interpretation methods such as SHAP, Anchor, etc. or even
create a special algorithm for time-series data to facilitate intuitive understanding by humans.

5.6.6. Comparison with Previous Work and Implications

Fusion Specifics Performance Metrics Time Deviation (min.)

Dataset and Feature Set Fusion Stage Model Accuracy (%) Cohen’s κ Mean F1 (%) Non-REM sleep REM sleep Wake

MESA (ACT-HRV)
Early-stage Fusion CNN (101) (Zhai, 2020) 76.0 ± 1.0 58.6 ± 1.9 68.1 ± 1.3 14.9 ± 6.7 -0.5 ± 4.3 -14.4 ± 5.8

Hybrid Fusion
ResDeepCNN

( Attention-on-Mov) 79.8 ± 0.9 65.5 ± 1.8 73.3 ± 1.3 -0.9 ± 6.4 6.1 ± 3.7 -5.1 ± 6.3

Apple Watch
(Activity Counts, HR, Time) Early-stage Fusion MLP (Walch, 2019) 72.1 ± 2.4 23.7 ± 4.4 47.8 ± 3.6 84.2 ± 17.2 -65.4 ± 15.0 -18.8 ± 6.1

Apple Watch
(Activity Counts, HRS) Late-stage Fusion

ResDeepCNN
Addition 78.2 ± 2.3 52.0 ± 5.8 66.5 ± 3.8 1.9 ± 11.7 4.7 ± 12.6 -6.5 ± 7.3

Table 5.5 Three-stage sleep classification prediction results compared with previous work evaluated at
subject level (mean ± standard error at 95% confidence interval) during the recording period.

Table 5.5 and Figure 5.6 show the results compared with previous works. The results
demonstrated that the use of multimodal fusion strategies and fusion methods can improve model
prediction performance. With the three-stage sleep classification dataset, the class imbalance
issue causes the classifier to be biased towards the majority class, which is NREM sleep.

To compare with the works in previous chapters, this chapter conducted ten runs of the model
with the highest mean F1 and the baseline model for each dataset, respectively. Each run used a
different random number seed. Compared with the work completed in chapter 3 for the MESA
dataset, the accuracy (p<0.001), Cohen’s κ (p<0.001) and mean F1 score (p<0.001) improved
statistically significantly based on the ACT-HRV feature set. There were also statistically signifi-
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(a) (b)

(c) (d) (e)

Figure 5.6 (a) The CNN(101) and early-stage fusion based on the MESA (ACT-HRV) dataset used in [5].
(b) Hybrid fusion using ResDeepCNN (Attention-on-Act) based on the MESA (ACT-HRV) dataset (c)
Walch et al. using multiple layer perception based on activity counts, HR and circadian time [6] (d)
Late-stage fusion using ResDeepCNN (Addition) based on the Apple Watch Dataset (e) Late-stage fusion
using ResDeepMixCNN (Concatenation) using raw accelerometer data and HRS based on the Apple
Watch dataset.

cant improvements in accuracy (p<0.001), mean F1 score (p<0.001), and Cohen’s κ (p<0.001)
for the Apple Watch dataset [6]. These improvements suggest that the proper multimodal fusion
strategy and method can improve the robustness of the model, which is a step towards automated
three-stage sleep classification. The findings reported here suggest that reasonable performance
may be achieved using the movement and cardiac features derived from consumer/research-grade
wearable devices.

5.7. Summary

Using actigraphy to monitor sleep-wake has existed for many decades. But, for sleep stage
classification, the sleep study has relied on the PSG equipment, which is an expensive, bur-
densome, laboratory sleep monitoring method. This limits many research advances in sleep
and health. In recent years, more and more new products using ubiquitous computing tech-
nology have passed FDA clearance, such as the Apple Watch irregular heart rate detection
function [290]. The achievements of these wearables provide important instrumental tools for the
study of longitudinal sleep and health. The core contribution of this chapter lies in the systematic
study on how to better integrate multi-modal data to monitor three-stage sleep that may use
consumer/research-grade wearables. Through the study, the performance of several new models
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exceeded the previous benchmark studies significantly. This chapter provided a new multimodal
fusion benchmark for the ubiquitous computing community, which has provided the potential for
the use of consumer wearables to study the sleep health of large-scale populations in the future.
One of the motivations for this work was to respond to previous research that called for more
accurate and transparent sleep stage sensing algorithms on consumer wearable devices [6]. The
implication of this chapter’s work is to encourage more researchers, consumers, and application
developers to use consumer/research-grade wearables to study and understand sleep and health.
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6.1. Discussion

Long-term, low-cost, large-scale sleep monitoring has profound implications for health and medi-
cal research. Chronic non-communicable diseases such as neurodegenerative diseases will impair
social productivity and limit the growth of the economy, and elderly care will increase the finan-
cial burden on public finances as well as families. The early onset of several neurodegenerative
diseases may be accompanied by abnormal sleep behaviour such as Parkinson’s [34, 291]. REM
sleep disorder has been found to be one of the early symptoms of Parkinson’s disease [35, 291].
Using wearable sensors to detect sleep stages could enable early-onset detection, treatment, or
ongoing care that may reduce the severity or delay disease onset.

Moreover, in genetic epidemiology studies, assessing genetic susceptibility to complex
human diseases and locating disease markers in genetic variation has profound implications
for medicine [292, 293]. Population-wide genome-wide association study (GWAS) is one of
the commonly used methods for conducting analyses [294]. This approach typically requires
a large number of cases and controls to obtain sufficient statistical power, which is critical in
the design phase of genetic associations [295, 293, 294]. Therefore, a user-acceptable solution
for large-scale sleep architecture assessment is an important tool to address research gaps to
explain genetic differences in sleep. To accurately assess sleep architecture, wearable sensing
technologies may play a key role. The outputs of this paper could serve as a starting point for
revolutionising sleep monitoring at the population level.

One of the main goals of digital health is to develop an automated monitoring system for
long-term non-intrusive sleep stage monitoring, which is sufficient and robust to be deployed in a
free-living environment. In most cases, the target application needs to be integrated into people’s
daily lives, where systems have to abide by practical usability and privacy constraints. In recent
years, the development of consumer/commercial wearable devices (e.g., Huawei Watch and Fitbit
Band) has provided unparalleled opportunities for large-scale measurement of physiological
parameters and human activities. Many of these devices use undisclosed algorithms and the data
processing pipeline is not under user control. These obstacles make clinical validation of these
devices difficult. The lack of clinical validation limits their application in studying the impact of
lifestyle and sleep stages in free-living scenarios as well as in clinical and occupational settings.
Throughout the work, this thesis systematically demonstrates the feasibility of using commercial
and research-grade multi-modal wearable devices for sleep stage inference. The work conducted
in this thesis can be summarised in Figure 6.1. The details are given as follows.
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Make Sense of Sleep

1. Benchmarked ML & DL models based
on the proposed pipeline

2. Proposed an effective deep ensemble
model to tackle the window length
uncertainty

3. Requires further research on complex
models

4. Requires further research to increase
model robustness

DisSleepNet

1. Proposed a disentanglement learning 
network that can effectively reduce the 
influence of personal attributes on latent 
representations.

2. Explained how different personal 
attributes can influence the model 
performance

UbiSleepNet

1. Proposed advanced multimodal fusion
approaches that can improve the
robustness of model

2. Provided visualisation methods which
increased the human understanding of the
model decision making process

Multimodal FusionDisentanglement 
Learning

Figure 6.1 Thesis Road Map

In chapter 2, a comprehensive review covered the state-of-the-art sleep tracking technolo-
gies, ranging from consumer/commercial products to the latest research prototypes that can
monitor sleep outside the sleep laboratory. This chapter also analyses the strengths and limita-
tions of each technology. Then, the author reviewed state-of-the-art machine learning and deep
learning algorithms that may be used for sleep stage classification. Chapter 3 systematically
investigated the classical machine learning and deep learning models in the largest sleep stage
dataset, which includes the movement and cardiac sensing data to date. This chapter demon-
strated the feasibility of using multimodal sensing data to classify sleep stages at different levels
of granularity. The experimental results also revealed the important score of each clinical feature
for different stages. This chapter also proposed an ensemble model that can significantly improve
classification performance by combining neural network models.

Chapter 4 investigated how personal attributes (PAs) may affect model performance. How-
ever, it is impractical to collect data covering all sleep disorders and health conditions of all
severity with ground-truth annotations. Compared with healthy adults, PAs such as age, obesity,
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and sleep-related breathing disorders may cause sensor data to have different patterns. A big
challenge for supervised machine learning models is that the model’s performance can degrade in
populations with unseen health conditions. To alleviate the impacts of PAs, this chapter proposed
a novel disentangled representation learning network, namely DisSleepNet (detailed information
is shown in Chapter 4). The model can learn representations that are invariant to specific PAs,
thereby reducing model performance degradation when applying the trained model to subjects
with completely different ranges of PAs. The DisSleepNet is developed on the framework of
variational autoencoders, which can encourage independence between different latent factors
in the representation space. This reduces the influence of personal attributes on features. To
learn PA free features, two disentanglers were introduced to separate the representations into
PA-specific features and PA-free features. As the independence of two features is not always
guaranteed, This chapter then proposed to use the modified independence excitation mechanism
to further maximise the independence of these two features. Compared with the use of the
backbone neural network in chapter 3, DisSleepNet can significantly reduce the PA effects on
model performance.

For long-term sleep monitoring, ubiquitous sensing may be a solution, since the cardiac and
movement sensing data can be easily acquired from research-grade or consumer-grade devices
(e.g., Apple Watch). In chapter 3, the results revealed that among all granularities of sleep stages,
the three-stage sleep classification was considered the most promising task. The performance of
representation learning can be further improved with the use of multimodal fusion techniques.
However, how best to fuse the data for the greatest accuracy remains an open question. In
chapter 5, this thesis comprehensively studied DL-based advanced fusion techniques consisting
of three fusion strategies alongside three fusion methods for three-stage sleep classification based
on two datasets where the evaluation was done with respect to PSG, including a study where
the evaluation was carried using a commercial device (Apple Watch). Two deep convolutional
neural networks were introduced that could capture high-level representations and outperform the
networks used in the benchmark study. Secondly, this chapter evaluated three fusion strategies
including the early-stage, mid-stage and late-stage fusion, and three fusion methods, including
the simple operations, attention-based methods and tensor-based methods. The attention method
proposed in the hybrid fusion strategy can capture complementary inter-modality information
and filter out less important information. Its performance is higher or comparable to other
baseline methods. In terms of transparency, there are no established rules for three-stage
sleep classification using cardiac and motion-sensing data. This chapter also investigated the
visualisation methods to explore the decision-making process of the multimodal fusion model for
three-stage sleep classification. The exploratory user research demonstrated that the Grad-CAM
based sleep data visualisation can be understood and used by humans, which facilitates the
transparency of using DL in sleep health research.

This chapter systemically demonstrated that the three-stage sleep classification is the most
realistic and promising task by using the cardiac and movement sensing data that are generously
available on many profound smart wearables, such as the Apple Watch. The experimental results
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demonstrated important evidence indicating that the three-stage sleep can be reliably classified
by fusing cardiac/movement sensing modalities, which may potentially become a practical tool
for large-scale sleep stage assessment studies or long-term self-tracking on sleep.

6.2. Limitation and Future Work

The main contribution of this thesis is to show that with novel computational methods, commercial/consumer-
grade wearables could be used for sleep stage monitoring with a certain degree of accuracy and
robustness. This work unlocked the potential of using ubiquitous computing technologies to
conduct large-scale sleep and health studies with transparent open-source sleep stage monitoring
algorithms. However, more work is yet to be done in order to bring the sleep monitoring system
to a greater level.

Given the scope of objectives for this thesis, in chapter 3, the experimental design did
not explore in detail how different models perform in participants with sleep disorders versus
healthy populations or highlight the differences between them. Similarly, the model design did
not exploit the well-known reciprocal interaction model which was introduced by McCarley,
and Hobson [296], which describes ultradian periodicity, the approximately 90-min sleep
cycle, which indicates that NREM-REM stage transitions are regulated by both cholinergic and
monoaminergic neuronal structures. This inherent sleep architecture shall be explored in future
work to improve model performance. Furthermore, the ensemble model used in this paper is just
an example of how advanced machine-learning approaches can be improved by using a novel
approach tool.

Furthermore, the data processing pipeline for the entire thesis did not enforce strict quality
control on the polysomnography data, which could have led to the models performing more
poorly than if those practices and more stringent exclusion criteria had been applied. For
instance, the empirical results found that a total of 30 subjects (about 2% of the total cohort)
did not have any REM epochs at all. Similarly, on a small percentage of participants (less than
1%), accuracy scores were very low (< 45%). After the post-hoc visual inspection of those
cases, the visualisation suggests their sleep patterns were abnormal, and five of them had a
reduced number of sleep transitions. However, for the purposes of this chapter, those participant
results were included in the final performance metrics. To exclude non-wear time and activity
measurement failure from actigraphy data, the human expert annotated tags are considered as
the selection criteria. Full processing pipelines shall integrate automated non-wear time and
data corruption detection algorithms in the preprocessing phase. In this chapter, the Grad-CAM
based visualisation increases the user’s understanding of the neural network decision-making
process to a certain extent. However, this thesis didn’t perform a sleep physiological analysis of
highlighted regions because these regions change dynamically over time. Future work should
investigate the physiological significance behind these patterns.

A number of limitations need to be noted regarding the chapter 4. In addition to the VAE
framework, there are tools and models that can disentangle features in the representation space,
such as GANs which typically require large amounts of training data to ensure the convergence
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of the training process. In this work, the model is limited to VAE-based disentanglement
frameworks, and future research can consider investigating GAN-based models to disentangle
PA-specific and PA-free features. Another limitation is that this thesis did not test other variants of
CNNs or recurrent neural network based models. Since the purpose of this work is to understand
whether the use of disentanglement learning can reduce the influence of personal attributes on
the model. In the future work, these models will be investigated and the unsupervised domain
adaptation methods will be investigated too. Furthermore, aside from factors such as age, obesity,
and sleep apnoea, REM sleep disorders and heart diseases may also negatively influence model
performance, which should also be investigated.

In spite of its limitations, the proposed model performed well on a single PA, but the effect
was not significant when jointly disentangling multiple PAs. One of the reasons is that age
may negatively affect the learning of other PAs during multi-label learning. In addition, the
distribution of individual PAs in the training samples is non-uniform, and this work did not
explore whether the influence of the values of PAs on the model is linear. In future work, the
author plans to investigate new loss functions to ensure that those trivial PAs do not affect
the overall performance during the training. In addition, the sample size based on the final
experimental setting of this work is small. Future work should consider conducting experiments
on other datasets, if available.

6.2.1. Domain Adaptation for Wearable Sensing Based Sleep Monitoring

One of the most interesting and important challenges still to be solved in the field of ubiquitous
computing for health monitoring is addressing domain discrepancy. This challenge means
that models trained on a specific device experience performance degradation when applied to
other devices that may have different sensing mechanisms or slightly different data processing
pipelines.

This is especially important considering that current models learned using a specific device
or a specific population may not generalise well when the target data distribution is too different.
As shown in chapter 4, machine learning models derived from healthy adult data may not be
suitable for diseased populations (different distributions), which may produce misleading results.
Personal attribute-invariant feature learning via disentanglement approaches is just one way to
alleviate the problem of domain discrepancy. Future work might consider using appropriate
domain adaptation methods to address this issue by leveraging multiple datasets collected from
different populations. For example, several previous works on human activity recognition have
applied methods to reduce the distributional differences between source and target domains
while respecting the learned discriminant information by establishing maximum mean difference
(MMD) and discriminant distance [297, 298].

6.2.2. Data Driven Approaches

Another limitation of this thesis is that the MESA and the Apple Watch dataset only include adult
participants. Thus the results cannot be generalised to teenagers or children. Further, as with all
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Conclusion

studies in this area to date, all inferences are derived in laboratory settings, whilst the potential
applications are in a free-living environment. Good quality ’ground truth’ data collection in
free-living environments is complex and expensive, although it is interesting to explore the
possibility of larger studies using ambulatory PSG or wireless EEG for this purpose. Thus, this
thesis encourages these companies to be more transparent about the way they collect data and the
algorithms they use. In this thesis, the author only tested handcrafted features that are derived
using sliding window methods based on sensing signals. The greatest advantage of deep learning
approaches is that they can automatically extract the most effective representation for the task
from raw data through an end-to-end learning method. The use of handcrafted features may not
maximise the advantages of multi-modal fusion. Since these handcrafted features are limited
to human knowledge, they may not be the best features to represent different sleep stages. The
additional experiments conducted in chapter 5 demonstrated that three-stage sleep classification
can be further improved using raw accelerometer data and HRV features which demonstrates the
potential of end-to-end approaches. Although the improvement has not yet reached statistical
significance. Future work may consider the possibility of learning deep representations from
ECG and accelerometer raw data in an end-to-end learning manner. Using raw sensing data may
reduce the window length and thus reduce ambiguity in the learning process.

110



Appendix A. Benchmark Study Performance By Modalities And Methods

A.1. Epoch By Epoch Performance Metrics

Task 1: Wake, Sleep

Method Specifics Performance Metrics

Modality Sensors Top 3 classif. Accuracy Specificity Precision Recall F1 Cohen’s k

Multimodality
[HR/HRV, Actigraphy]

LSTM (51) 84.2 67.2 84.7 93.0 88.6 63.1
LSTM (101) 84.2 67.1 84.6 93.0 88.6 63.1
CNN (101) 84.1 66.2 84.3 93.3 88.6 62.7

Maximum selection 85.2 68.2 85.2 94.0 89.4 65.3
Mean over classifiers 85.2 69.3 85.6 93.4 89.3 65.5

Single Modality

[HR/HRV]
LSTM (101) 79.4 60.2 81.4 89.2 85.1 51.8
LSTM (51) 78.8 54.3 79.6 91.4 85.1 49.2
CNN (101) 78.4 59.0 80.8 88.4 84.4 49.6

[Actigraphy]
LSTM (101) 84.7 66.0 84.4 94.3 89.1 63.9
CNN (101) 84.3 66.4 84.4 93.5 88.7 63.1
LSTM (51) 84.3 69.7 85.5 91.7 88.5 63.6

Task 2: Wake, NREM, REM

Method Specifics Performance Metrics

Modality Sensors Top 3 classif. Accuracy Specificity Precision Recall F1 Cohen’s k

Multimodality
[HR/HRV, Actigraphy]

LSTM (51) 76.3 85.7 72.3 69.3 70.6 60.9
LSTM (101) 76.1 85.4 72.9 67.3 69.3 60.2
CNN (101) 75.9 85.6 71.5 70.0 70.4 61.0

Mean over classifiers 78.2 86.6 75.1 70.8 72.6 64.4
Maximum selection 77.9 86.6 74.2 70.8 72.2 63.9

Single Modality

[HR/HRV]
LSTM (101) 73.7 84.1 69.1 66.1 67.3 51.2
LSTM (51) 72.7 83.6 68.3 64.3 65.9 47.3
CNN (101) 71.0 83.3 65.3 65.2 65.2 47.7

[Actigraphy]
LSTM (101) 71.3 80.8 58.5 52.9 50.5 52.5
CNN (101) 70.9 80.2 76.5 52.0 49.8 51.0
LSTM (51) 70.8 80.4 48.4 52.3 49.8 51.0

Task 3: Wake, Light Sleep, Deep Sleep, REM

Method Specifics Performance Metrics

Modality Sensors Top 3 classif. Accuracy Specificity Precision Recall F1 Cohen’s k

Multimodality
[HR/HRV, Actigraphy]

LSTM (51) 70.4 87.7 65.5 54 54 56.8
LSTM (101) 70.4 87.2 66 52.1 54.2 54.4
CNN (101) 69.1 87.3 63.2 53.6 53.6 54.4

Mean over classifiers 71.7 87.9 67.5 53.8 53.5 58.8
Maximum selection 71.3 88 68 54.4 54.1 58.1

Single Modality

[HR/HRV]
LSTM (101) 67.4 86.3 62.9 50.9 52.2 46.9
LSTM (51) 66.2 85.8 61.9 48.9 49.4 43.4
CNN (101) 64.4 85.5 59.2 49.8 49.6 43.4

[Actigraphy]
LSTM (101) 64.1 83.7 34.4 38.8 35.6 35.1
CNN (101) 64.0 83.7 42.5 38.8 35.6 35.1
LSTM (51) 63.6 83.4 36.3 38.4 35.3 34.6

Task 4: Wake, REM, N1,N2,N3

Method Specifics Performance Metrics

Modality Sensors Top 3 classif. Accuracy Specificity Precision Recall F1 Cohen’s k

Multimodality
[HR/HRV, Actigraphy]

LSTM (51) 63.9 89.0 55.9 43.4 42.5 59.0
LSTM (101) 63.8 89.0 55.6 43.3 43.2 59.7
CNN (101) 63.2 89.0 55.6 44.8 44.1 58.4

Mean over classifiers 65.6 89.6 59.9 44.7 42.8 62.3
Maximum selection 65.3 89.6 58.4 45.1 43.0 61.7

Single Modality

[HR/HRV]
CNN (101) 55.6 86.7 48.3 38.4 38.8 38.1
CNN (21) 55.5 86.6 47.0 36.8 35.0 37.6
CNN(50) 54.3 86.1 47.1 35.0 34.6 32.9

[Actigraphy]
LSTM (101) 57.0 86.4 24.4 31.7 27.0 50.0
CNN (101) 57.0 86.4 32.1 31.8 27.2 49.5
LSTM (51) 57.0 86.3 29.8 31.6 27.0 49.9

Table A.1 Task 1-4 classification results by multimodal and single modality approaches, using epoch-by-
epoch performance metrics. This table complements what was found on the main text and reported in
Figures 6 and 7; Actigraphy modality: , HR/HRV modality: ; Three different tasks: Task 2: 3 stages,
Task 3: 4 stages, Task 4: 5 Stages
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Benchmark Study Performance By Modalities And Methods

A.2. Sleep Stage Classification Results Measured In Sleep Period

Task 1: Wake, Sleep

Method Specifics Performance Metrics Time Deviation*

Modality Sensors Top 3 classif. Accuracy Specificity Precision Recall F1 Cohen’s κ Wake Sleep

Multimodality
CNN (51) 85.1 ± 1.1 50.1 ± 2.5 88.7 ± 1.0 92.8 ± 1.2 90.0 ± 1.0 44.7 ± 2.2 -19.6 ± 5.8 19.6 ± 5.8
CNN (101) 85.1 ± 1.1 50.9 ± 2.5 88.9 ± 1.0 92.5 ± 1.2 90.0 ± 1.0 44.8 ± 2.2 -17.4 ± 5.9 17.4 ± 5.9
CNN (21) 84.9 ± 1.0 48.9 ± 2.2 88.3 ± 1.0 93.1 ± 1.0 90.1 ± 0.9 44.0 ± 2.0 -22.2 ± 5.4 22.2 ± 5.4

Single
Modality

CNN (51) 81.7 ± 1.2 43.0 ± 2.3 86.3 ± 1.2 91.3 ± 1.3 87.9 ± 1.1 35.3 ± 1.9 23.2 ± 7.3 -23.2 ± 7.3
CNN (101) 81.7 ± 1.3 43.7 ± 2.3 86.5 ± 1.1 91.0 ± 1.4 87.8 ± 1.2 35.7 ± 2.0 21.4 ± 7.4 -21.4 ± 7.4
LSTM (21) 80.9 ± 1.1 48.4 ± 2.2 87.1 ± 1.2 89.0 ± 1.2 87.3 ± 1.0 35.4 ± 1.8 8.9 ± 6.8 -8.9 ± 6.8

CNN (101) 85.5 ± 1.0 46.9 ± 2.5 88.3 ± 1.0 93.9 ± 0.9 90.5 ± 0.8 43.5 ± 2.2 25.5 ± 5.5 -25.5 ± 5.5
CNN (51) 85.3 ± 1.1 50.7 ± 2.4 88.8 ± 1.0 92.9 ± 1.1 90.2 ± 0.9 45.4 ± 2.2 19.7 ± 5.7 -19.7 ± 5.7
LSTM (101) 83.9 ± 1.0 46.2 ± 2.5 88.5 ± 0.9 91.3 ± 1.1 89.4 ± 0.9 38.6 ± 2.3 13.3 ± 5.4 -13.3 ± 5.4

Task 2: Wake, NREM, REM

Method Specifics Performance Metrics Time Deviation*

Modality Sensors Top 3 classif. Accuracy Specificity Precision Recall F1 Cohen’s κ Wake REM NREM

Multimodality
CNN (101) 74.9 ± 1.1 82.1 ± 0.8 68.7 ± 1.3 64.5 ± 1.3 62.9 ± 1.3 47.0 ± 2.0 -14.4 ± 5.8 -0.5 ± 4.3 14.9 ± 6.7
LSTM (51) 74.2 ± 1.1 81.7 ± 0.8 66.5 ± 1.4 62.8 ± 1.2 61.5 ± 1.3 45.1 ± 2.1 0.3 ± 5.6 -12.5 ± 3.7 12.2 ± 6.2
CNN (51) 73.6 ± 1.2 82.5 ± 0.8 67.7 ± 1.3 65.5 ± 1.3 62.6 ± 1.4 47.0 ± 2.1 -4.7 ± 5.7 7.5 ± 5.8 -2.9 ± 7.5

Single
Modality

LSTM (101) 72.9 ± 1.3 81.0 ± 0.8 64.7 ± 1.5 60.1 ± 1.3 58.7 ± 1.5 37.2 ± 2.4 -6.6 ± 7.0 -11.8 ± 4.0 18.4 ± 6.9
LSTM (51) 72.4 ± 1.2 81.1 ± 0.8 63.0 ± 1.5 59.4 ± 1.3 57.6 ± 1.4 32.9 ± 2.3 5.7 ± 6.9 -19.1 ± 4.1 13.4 ± 6.8
CNN (51) 71.1 ± 1.2 80.3 ± 0.8 63.6 ± 1.5 59.3 ± 1.3 56.6 ± 1.4 33.2 ± 2.1 -5.5 ± 7.3 -12.0 ± 5.5 17.5 ± 7.9

Linear SVM 68.7 ± 1.0 71.5 ± 0.7 43.3 ± 1.1 43.9 ± 0.9 40.8 ± 0.9 25.1 ± 1.8 -24.3 ± 6.1 -67.4 ± 3.0 91.7 ± 6.7
CNN (51) 68.4 ± 1.0 71.6 ± 0.7 42.2 ± 1.1 43.8 ± 0.9 40.4 ± 1.0 24.5 ± 2.0 -17.4 ± 6.2 -67.3 ± 3.0 84.7 ± 7.0
CNN (101) 68.4 ± 1.0 71.4 ± 0.7 42.5 ± 1.1 43.5 ± 0.9 40.1 ± 1.0 24.1 ± 2.0 -19.4 ± 6.3 -67.3 ± 3.0 86.7 ± 7.1

Task 3: Wake, Light Sleep, Deep Sleep, REM

Method Specifics Performance Metrics Time Deviation*

Modality Sensors Top 3 classif. Accuracy Specificity Precision Recall F1 Cohen’s κ Wake REM Deep Sleep Light Sleep

Multimodality
LSTM (51) 66.5 ± 1.1 84.1 ± 0.7 53.8 ± 1.4 50.2 ± 1.0 47.4 ± 1.1 44.8 ± 2.2 10.5 ± 5.8 -7.5 ± 3.9 -36.2 ± 3.5 33.2 ± 6.7
LSTM (101) 66.5 ± 1.1 82.9 ± 0.6 55.5 ± 1.6 47.5 ± 1.1 46.2 ± 1.2 40.6 ± 2.1 -7.3 ± 5.5 -25.7 ± 3.6 -32.5 ± 3.5 65.5 ± 6.8
CNN (101) 65.6 ± 1.2 83.7 ± 0.7 54.8 ± 1.5 49.8 ± 1.1 47.1 ± 1.1 42.6 ± 2.0 -1.7 ± 6.3 1.5 ± 4.7 -34.6 ± 3.5 34.7 ± 7.5

Single
Modality

LSTM (101) 64.5 ± 1.3 83.2 ± 0.6 51.8 ± 1.6 47.0 ± 1.1 44.7 ± 1.3 35.0 ± 2.3 4.7 ± 7.0 -16.1 ± 3.6 -33.7 ± 3.5 45.2 ± 7.2
LSTM (51) 64.3 ± 1.2 83.1 ± 0.6 51.0 ± 1.5 46.5 ± 1.0 43.7 ± 1.2 33.2 ± 2.3 8.9 ± 6.6 -18.1 ± 3.9 -36.3 ± 3.5 45.5 ± 6.9
LSTM (21) 62.8 ± 1.2 82.7 ± 0.6 47.9 ± 1.4 45.5 ± 0.9 42.0 ± 1.0 30.5 ± 2.0 16.7 ± 6.9 -18.8 ± 4.0 -38.5 ± 3.6 40.6 ± 7.2

ENMO
LSTM (101) 60.1 ± 1.1 77.3 ± 0.6 30.1 ± 1.0 33.5 ± 0.8 29.5 ± 0.9 15.9 ± 1.3 -21.6 ± 5.5 -67.3 ± 3.0 -39.2 ± 3.6 128.1 ± 7.3
CNN (101) 60.0 ± 1.1 77.3 ± 0.6 29.9 ± 1.0 33.4 ± 0.8 29.3 ± 0.9 16.2 ± 1.4 -18.2 ± 5.7 -67.2 ± 3.0 -39.2 ± 3.6 124.6 ± 7.5
LSTM (51) 60.0 ± 1.1 77.3 ± 0.6 30.3 ± 1.0 33.8 ± 0.8 29.7 ± 0.9 16.7 ± 1.4 -18.2 ± 6.2 -67.3 ± 3.0 -39.2 ± 3.6 124.7 ± 7.7

Task 4: Wake, REM, N1, N2, N3

Method Specifics Performance Metrics Time Deviation*

Modality Sensors Top 3 classif. Accuracy Specificity Precision Recall F1 Cohen’s κ Wake REM N3 Sleep N2 Sleep N1 Sleep

Multimodality
CNN (101) 59.2 ± 1.2 86.5 ± 0.6 49.7 ± 1.4 42.0 ± 1.0 39.1 ± 1.0 45.1 ± 1.9 -8.6 ± 5.8 5.0 ± 4.8 -34.3 ± 3.5 78.2 ± 7.4 -40.3 ± 3.1
CNN (51) 58.8 ± 1.2 86.4 ± 0.6 46.6 ± 1.4 41.5 ± 0.9 37.8 ± 1.0 44.7 ± 2.0 -4.7 ± 5.7 11.5 ± 5.7 -37.9 ± 3.5 73.1 ± 7.9 -42.0 ± 3.1
LSTM (101) 58.4 ± 1.1 85.9 ± 0.6 44.3 ± 1.4 39.9 ± 0.9 36.7 ± 1.0 43.5 ± 2.0 7.7 ± 5.7 -17.5 ± 3.8 -32.3 ± 3.5 88.0 ± 7.1 -45.9 ± 3.0

Single
Modality

CNN (21) 53.8 ± 1.3 85.0 ± 0.6 38.9 ± 1.3 36.7 ± 0.9 32.1 ± 1.0 28.7 ± 1.8 18.8 ± 8.2 -9.4 ± 5.4 -39.0 ± 3.6 74.0 ± 8.7 -44.4 ± 3.0
CNN (101) 52.4 ± 1.3 85.1 ± 0.6 42.8 ± 1.4 37.6 ± 1.0 33.6 ± 1.1 26.8 ± 1.9 28.9 ± 9.0 -15.7 ± 4.5 -29.8 ± 3.5 57.6 ± 8.4 -41.0 ± 3.1
CNN (51) 50.4 ± 1.3 84.6 ± 0.6 39.2 ± 1.4 35.2 ± 0.9 30.0 ± 1.1 22.9 ± 1.9 62.0 ± 10.4 -30.8 ± 4.8 -36.4 ± 3.5 46.2 ± 9.8 -40.9 ± 3.0

LSTM (51) 51.3 ± 1.1 82.0 ± 0.6 21.8 ± 0.9 28.2 ± 0.8 22.7 ± 0.8 27.8 ± 1.9 2.3 ± 6.2 -67.3 ± 3.0 -39.2 ± 3.6 153.3 ± 8.1 -49.1 ± 3.2
CNN (21) 50.9 ± 1.2 82.0 ± 0.6 21.5 ± 0.9 28.1 ± 0.7 22.5 ± 0.8 27.4 ± 1.8 4.6 ± 6.5 -67.1 ± 3.0 -39.2 ± 3.6 150.7 ± 8.1 -49.1 ± 3.2
LSTM (21) 50.9 ± 1.1 82.0 ± 0.6 21.1 ± 0.9 28.3 ± 0.8 22.7 ± 0.8 27.8 ± 1.8 5.1 ± 6.1 -67.4 ± 3.0 -39.1 ± 3.6 150.5 ± 7.9 -49.1 ± 3.2

Table A.2 Sleep stage classification results during sleep period (mean ± standard error at 95% confidence
interval and predicted minutes by multimodal and single modality approaches; Actigraphy modality:

, HR/HRV modality: ; Three different tasks: Task 2: 3 stages, Task 3: 4 stages, Task 4: 5 Stages
(*Average time deviation from ground truth across all subjects ± standard error)
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A.3 Hyperparameters Tuning And Results

A.3. Hyperparameters Tuning And Results

Tree Approaches

Algorithms Task Number of trees Number of Features For the Best Split Criterion Use Out-of-bag Samples
Random Forest All tasks 100, 200, 300 20 Gini No

Best Hyperparameters
Random Forest All Tasks 300 20 Gini No

Shallow Machine Learning Approaches

Algorithms Task Alpha (Regularisation’s multiplier) Fit Intercept Max Iteration (aka epochs) Classifier Penalty Sliding Window Length
Linear SVM
Perceptron
Logistic Regression

All tasks
1.e-01, 1.e-02, 1.e-03,
1.e-04, 1.e-05, 1.e-06 True, False 5, 10 , 20

L1, L2
L1, L2, Elastic net
L1, L2, Elastic net

Actigraphy = 20 sleep epochs
HR/HRV = 1 sleep epoch

Best Hyperparameters Used In Study

Linear SVM All tasks 1.e-3 True 5 L2
Actigraphy = 20 sleep epochs
HR/HRV = 1 sleep epoch

Perceptron All tasks 1.e-1 False 5 L2
Actigraphy = 20 sleep epochs
HR/HRV = 1 sleep epoch

Logistic Regression All tasks 1.e-4 True 20 L2
Actigraphy = 20 sleep epochs
HR/HRV = 1 sleep epoch

Deep Neural Network Approaches

Algorithms Task Number of Layers Number of Kernels (CNN)
Hidden Units (LSTM) Kernel Length Optimiser Window Length

CNN (1D-Conv) All tasks 1, 2, 3 32, 64, 128 3, 5, 7 RMSprop 21, 51, 101
LSTM (Many-to-one) All tasks 1, 2, 3 64, 128, 256 N/A RMSprop 21, 51, 101

Best Hyperparameters
CNN (1D-Conv)

Task1
1 128 7 RMSprop 101

LSTM (Many-to-one) 3 128 N/A RMSprop 51

CNN (1D-Conv)
Task2

3 64 5 RMSprop 101
LSTM (Many-to-one) 3 64 N/A RMSprop 101

CNN (1D-Conv)
Task3

3 64 3 RMSprop 101
LSTM (Many-to-one) 3 128 N/A RMSprop 101
CNN (1D-Conv)

Task4
3 64 5 RMSprop 101

LSTM (Many-to-one) 3 64 N/A RMSprop 101
Hyperparameters Used In Study

CNN (1D-Conv)
All tasks

1 64 2 RMSprop 21, 51, 101
LSTM (Many-to-one) 1 32 N/A RMSprop 21, 51, 101

Table A.3 Hyper-parameters for ML and DL algorithms

A.4. Sleep Disorders within MESA

Total subjects Healthy Sleep apnea Insomnia Restless Legs Syndrome

1743 1469(84.3%) 132(7.6%) 109(6.2%) 78(4.5%)

Table A.4 Sleep Disorder Population details

A.5. Benchmark of Different Combinations of Modalities By Tasks

algorithms accuracy specificity precision recall F1 Cohen’s κ Sleep Wake
CNN (101) 84.4 ± 1.0 67.9 ± 2.0 84.8 ± 1.3 92.4 ± 1.2 87.6 ± 1.1 62.0 ± 2.0 36.2 ± 7.3 -36.2 ± 7.3
LSTM (101) 84.4 ± 1.0 67.4 ± 1.9 84.7 ± 1.2 92.5 ± 1.1 87.8 ± 1.0 61.6 ± 2.1 36.0 ± 6.7 -36.0 ± 6.7
CNN (51) 84.3 ± 1.0 67.3 ± 2.0 84.5 ± 1.3 92.7 ± 1.2 87.6 ± 1.1 61.7 ± 2.1 39.0 ± 7.2 -39.0 ± 7.2
LSTM (51) 84.0 ± 1.0 72.7 ± 1.7 86.3 ± 1.2 89.2 ± 1.2 87.0 ± 1.1 62.0 ± 2.0 14.8 ± 6.7 -14.8 ± 6.7
CNN (21) 83.2 ± 1.0 63.8 ± 2.0 83.1 ± 1.3 93.0 ± 1.0 87.1 ± 1.0 58.8 ± 2.0 46.8 ± 7.1 -46.8 ± 7.1
LSTM (21) 83.2 ± 1.0 71.0 ± 1.8 85.4 ± 1.2 89.3 ± 1.1 86.6 ± 1.0 60.2 ± 1.9 18.8 ± 7.0 -18.8 ± 7.0
Random Forest 82.3 ± 1.0 65.7 ± 2.1 83.7 ± 1.3 90.6 ± 1.1 86.2 ± 1.0 57.1 ± 2.1 32.9 ± 7.3 -32.9 ± 7.3
Logistic Regression 82.1 ± 1.1 64.1 ± 2.1 83.3 ± 1.3 91.0 ± 1.2 86.0 ± 1.1 56.4 ± 2.2 37.3 ± 7.9 -37.3 ± 7.9
Linear SVM 81.8 ± 1.1 60.2 ± 2.1 82.1 ± 1.3 92.5 ± 1.1 86.2 ± 1.0 54.9 ± 2.2 49.0 ± 7.6 -49.0 ± 7.6
Perception 78.6 ± 1.1 65.2 ± 1.9 82.5 ± 1.3 85.1 ± 1.4 82.7 ± 1.2 49.8 ± 2.0 13.8 ± 8.2 -13.8 ± 8.2
Always sleep 66.5 ± 1.4 0.0 ± 0.0 66.5 ± 1.4 100.0 ± 0.0 79.1 ± 1.1 0.0 ± 0.0 187.4 ± 8.6 -187.4 ± 8.6
Always wake 33.5 ± 1.4 100.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 -365.1 ± 8.7 365.1 ± 8.7
ground truth 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 365.1 ± 8.7 187.4 ± 8.6

Table A.5 Sleep wake classifiers performance for combined modality sensing using Actigraphy and
HR/HRV
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Figure A.1 CNN hyper-parameters tuning results

algorithms accuracy specificity precision recall F1 Cohen’s κ Sleep Wake
ground truth 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 365.1 ± 8.7 187.4 ± 8.6
CNN (101) 84.9 ± 1.0 67.1 ± 2.0 84.7 ± 1.3 93.8 ± 1.0 88.3 ± 1.0 63.0 ± 2.0 43.0 ± 6.9 -43.0 ± 6.9
CNN (51) 84.4 ± 1.0 67.6 ± 2.0 84.6 ± 1.3 92.9 ± 1.1 87.8 ± 1.1 62.2 ± 2.1 39.0 ± 7.1 -39.0 ± 7.1
LSTM (101) 84.3 ± 1.0 69.7 ± 1.8 85.5 ± 1.2 91.2 ± 1.1 87.6 ± 1.0 62.0 ± 2.0 26.5 ± 6.6 -26.5 ± 6.6
LSTM (51) 83.9 ± 1.0 72.5 ± 1.7 86.2 ± 1.2 89.4 ± 1.2 87.0 ± 1.0 62.0 ± 2.0 15.6 ± 6.7 -15.6 ± 6.7
LSTM (21) 81.6 ± 1.0 63.7 ± 2.0 83.0 ± 1.2 90.2 ± 1.1 85.7 ± 1.0 55.1 ± 2.1 34.1 ± 7.2 -34.1 ± 7.2
Logistic Regression 81.6 ± 1.1 60.6 ± 2.1 82.2 ± 1.3 91.8 ± 1.2 85.9 ± 1.1 54.5 ± 2.3 45.3 ± 7.7 -45.3 ± 7.7
Linear SVM 81.5 ± 1.1 57.9 ± 2.1 81.4 ± 1.3 93.0 ± 1.0 86.1 ± 1.0 53.6 ± 2.2 54.7 ± 7.5 -54.7 ± 7.5
CNN (21) 81.4 ± 1.1 58.7 ± 2.1 81.5 ± 1.3 92.5 ± 1.1 85.9 ± 1.0 53.6 ± 2.2 51.8 ± 7.3 -51.8 ± 7.3
Random Forest 81.2 ± 1.0 63.4 ± 2.0 82.9 ± 1.3 89.7 ± 1.1 85.4 ± 1.0 54.1 ± 2.1 32.6 ± 7.2 -32.6 ± 7.2
Always sleep 66.5 ± 1.4 0.0 ± 0.0 66.5 ± 1.4 100.0 ± 0.0 79.1 ± 1.1 0.0 ± 0.0 187.4 ± 8.6 -187.4 ± 8.6
Perception 66.0 ± 1.0 73.5 ± 1.3 81.3 ± 1.3 62.2 ± 1.6 69.2 ± 1.3 30.7 ± 1.6 -85.9 ± 8.3 85.9 ± 8.3
Always wake 33.5 ± 1.4 100.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 -365.1 ± 8.7 365.1 ± 8.7

Table A.6 Task 1: Sleep wake classifiers performance for Actigraphy
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Figure A.2 LSTM hyper-parameters tuning results

algorithms accuracy specificity precision recall F1 Cohen’s κ Sleep Wake
ground truth 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 365.1 ± 8.7 187.4 ± 8.6
LSTM (101) 79.5 ± 1.2 62.2 ± 2.1 81.8 ± 1.4 88.9 ± 1.3 84.1 ± 1.1 51.5 ± 2.2 35.3 ± 8.7 -35.3 ± 8.7
CNN (101) 79.1 ± 1.2 57.0 ± 2.1 79.9 ± 1.5 91.0 ± 1.4 83.9 ± 1.3 49.8 ± 2.1 54.4 ± 9.2 -54.4 ± 9.2
LSTM (51) 78.6 ± 1.2 61.1 ± 2.0 81.2 ± 1.4 88.2 ± 1.3 83.4 ± 1.2 49.5 ± 2.1 34.5 ± 8.9 -34.5 ± 8.9
CNN (51) 78.2 ± 1.2 54.0 ± 2.1 78.9 ± 1.5 91.3 ± 1.3 83.5 ± 1.2 47.1 ± 2.1 61.2 ± 9.2 -61.2 ± 9.2
LSTM (21) 77.7 ± 1.1 57.0 ± 1.8 79.5 ± 1.4 88.9 ± 1.2 83.0 ± 1.2 46.7 ± 1.9 45.2 ± 8.4 -45.2 ± 8.4
CNN (21) 75.7 ± 1.2 50.3 ± 2.2 77.4 ± 1.5 89.4 ± 1.4 81.7 ± 1.2 41.0 ± 2.0 61.0 ± 9.8 -61.0 ± 9.8
Logistic Regression 70.3 ± 1.3 34.7 ± 2.6 73.0 ± 1.5 89.1 ± 2.0 78.1 ± 1.5 25.5 ± 1.9 87.9 ± 12.9 -87.9 ± 12.9
Random Forest 70.3 ± 1.2 39.2 ± 2.3 73.6 ± 1.4 86.7 ± 1.9 77.6 ± 1.5 27.1 ± 1.7 70.4 ± 12.5 -70.4 ± 12.5
Linear SVM 70.1 ± 1.3 18.6 ± 1.9 70.1 ± 1.4 96.5 ± 1.0 80.1 ± 1.1 17.6 ± 1.5 142.8 ± 10.1 -142.8 ± 10.1
Always sleep 66.5 ± 1.4 0.0 ± 0.0 66.5 ± 1.4 100.0 ± 0.0 79.1 ± 1.1 0.0 ± 0.0 187.4 ± 8.6 -187.4 ± 8.6
Perception 49.5 ± 1.5 59.7 ± 2.1 65.8 ± 1.7 44.2 ± 2.8 49.1 ± 2.3 4.8 ± 1.6 -128.1 ± 15.3 128.1 ± 15.3
Always wake 33.5 ± 1.4 100.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 -365.1 ± 8.7 365.1 ± 8.7

Table A.7 Task 1: Sleep wake classifiers performance for single modality sensing using HR/HRV
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Benchmark Study Performance By Modalities And Methods

algorithms accuracy specificity precision recall F1 Cohen’s κ Non-REM sleep REM sleep Wake

ground truth 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 297.5 ± 7.1 67.6 ± 3.0 187.4 ± 8.6
LSTM (51) 76.2 ± 1.0 85.6 ± 0.5 72.2 ± 1.3 68.8 ± 1.2 67.9 ± 1.3 58.4 ± 1.8 23.9 ± 7.1 -10.7 ± 3.8 -13.2 ± 6.8
LSTM (101) 76.1 ± 0.9 85.1 ± 0.5 71.9 ± 1.4 66.8 ± 1.2 66.4 ± 1.3 57.4 ± 1.9 26.5 ± 7.0 -23.3 ± 3.4 -3.2 ± 6.8
CNN (101) 76.0 ± 1.0 85.6 ± 0.6 72.2 ± 1.2 69.7 ± 1.3 68.1 ± 1.3 58.6 ± 1.9 30.2 ± 7.7 2.5 ± 4.5 -32.7 ± 7.2
CNN (51) 75.2 ± 1.1 85.7 ± 0.6 71.7 ± 1.3 70.2 ± 1.3 67.6 ± 1.3 58.4 ± 1.9 10.2 ± 8.4 10.8 ± 6.0 -21.0 ± 7.1
LSTM (21) 75.0 ± 0.9 84.9 ± 0.5 70.7 ± 1.2 67.2 ± 1.1 66.2 ± 1.2 55.6 ± 1.8 25.6 ± 7.2 -12.9 ± 4.1 -12.7 ± 6.9
CNN (21) 73.5 ± 1.0 83.9 ± 0.5 70.1 ± 1.2 66.0 ± 1.2 64.7 ± 1.2 54.4 ± 1.8 43.7 ± 8.3 -1.3 ± 5.4 -42.5 ± 7.0
Random Forest 70.5 ± 0.9 79.9 ± 0.5 59.2 ± 1.5 53.0 ± 0.7 50.3 ± 0.8 47.6 ± 1.7 83.5 ± 7.8 -63.6 ± 2.9 -20.0 ± 7.6
Logistic Regression 70.3 ± 1.0 79.5 ± 0.6 49.0 ± 0.8 52.2 ± 0.7 48.8 ± 0.8 46.9 ± 1.7 89.4 ± 8.6 -67.6 ± 3.0 -21.8 ± 8.3
Linear SVM 70.2 ± 1.0 79.1 ± 0.6 49.5 ± 0.8 51.5 ± 0.8 48.5 ± 0.8 46.7 ± 1.8 105.3 ± 8.1 -67.6 ± 3.0 -37.7 ± 7.8
Perception 65.8 ± 0.9 77.9 ± 0.5 49.8 ± 0.6 48.2 ± 0.7 46.6 ± 0.7 31.2 ± 1.6 85.2 ± 8.0 -36.8 ± 3.8 -48.4 ± 7.7
Always Non-REM sleep 54.2 ± 1.1 66.5 ± 0.2 18.2 ± 0.4 33.5 ± 0.2 23.3 ± 0.3 0.0 ± 0.0 255.0 ± 8.1 -67.6 ± 3.0 -187.4 ± 8.6
Always wake 33.5 ± 1.4 66.5 ± 0.2 11.3 ± 0.5 33.5 ± 0.2 16.4 ± 0.5 0.0 ± 0.0 -297.5 ± 7.1 -67.6 ± 3.0 365.1 ± 8.7
Always REM sleep 12.3 ± 0.5 66.7 ± 0.0 4.1 ± 0.2 33.0 ± 0.4 7.2 ± 0.3 0.0 ± 0.0 -297.5 ± 7.1 484.8 ± 8.5 -187.4 ± 8.6

Table A.8 Task 2: Non-REM, REM sleep and wake for combined sensing sensing using Actigraphy and
HR/HRV.

algorithms accuracy specificity precision recall F1 Cohen’s κ Non-REM sleep REM sleep Wake
ground truth 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 297.5 ± 7.1 67.6 ± 3.0 187.4 ± 8.6
LSTM (101) 71.4 ± 0.9 80.1 ± 0.6 51.7 ± 1.1 52.9 ± 0.7 49.8 ± 0.8 49.7 ± 1.7 83.8 ± 7.7 -67.0 ± 3.0 -16.8 ± 7.3
CNN (101) 71.0 ± 1.0 79.5 ± 0.6 50.1 ± 0.8 52.1 ± 0.8 49.1 ± 0.8 48.0 ± 1.8 102.5 ± 7.9 -67.6 ± 3.0 -34.9 ± 7.5
LSTM (51) 70.9 ± 0.9 79.7 ± 0.6 49.0 ± 0.8 52.4 ± 0.7 49.2 ± 0.8 48.3 ± 1.7 87.9 ± 7.8 -67.6 ± 3.0 -20.3 ± 7.4
CNN (51) 70.6 ± 1.0 79.3 ± 0.6 49.6 ± 0.8 51.7 ± 0.8 48.7 ± 0.8 47.0 ± 1.8 103.1 ± 8.0 -67.6 ± 3.0 -35.5 ± 7.6
Logistic Regression 69.9 ± 1.0 79.0 ± 0.6 48.7 ± 0.8 51.3 ± 0.8 48.2 ± 0.8 46.2 ± 1.8 98.9 ± 8.0 -67.6 ± 3.0 -31.3 ± 7.7
LSTM (21) 69.7 ± 0.9 79.0 ± 0.6 48.2 ± 0.8 51.5 ± 0.7 48.3 ± 0.8 46.0 ± 1.7 91.1 ± 7.7 -67.6 ± 3.0 -23.5 ± 7.4
Linear SVM 69.6 ± 1.0 78.5 ± 0.6 49.5 ± 0.8 50.6 ± 0.8 47.7 ± 0.8 45.1 ± 1.8 116.8 ± 7.8 -67.6 ± 3.0 -49.2 ± 7.6
CNN (21) 69.5 ± 0.9 78.6 ± 0.6 48.9 ± 0.8 50.8 ± 0.7 47.8 ± 0.8 44.8 ± 1.8 107.8 ± 7.8 -67.6 ± 3.0 -40.2 ± 7.5
Random Forest 68.6 ± 0.9 78.8 ± 0.5 53.4 ± 1.1 51.0 ± 0.7 48.5 ± 0.8 44.3 ± 1.7 81.2 ± 7.4 -60.7 ± 2.9 -20.5 ± 7.2
Perception 56.7 ± 1.1 76.7 ± 0.5 54.8 ± 0.9 48.2 ± 0.9 47.2 ± 1.0 26.3 ± 1.7 6.1 ± 9.4 73.3 ± 7.6 -79.4 ± 7.1
Always wake 33.5 ± 1.4 66.5 ± 0.2 11.3 ± 0.5 33.5 ± 0.2 16.4 ± 0.5 0.0 ± 0.0 -297.5 ± 7.1 -67.6 ± 3.0 365.1 ± 8.7
Always REM sleep 12.3 ± 0.5 66.7 ± 0.0 4.1 ± 0.2 33.0 ± 0.4 7.2 ± 0.3 0.0 ± 0.0 -297.5 ± 7.1 484.8 ± 8.5 -187.4 ± 8.6

Table A.9 Task 2: Non-REM, REM sleep and wake for single modality sensing using Actigraphy

algorithms accuracy specificity precision recall F1 Cohen’s κ Non-REM sleep REM sleep Wake
ground truth 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 297.5 ± 7.1 67.6 ± 3.0 187.4 ± 8.6
LSTM (101) 73.8 ± 1.2 84.3 ± 0.6 69.8 ± 1.5 66.1 ± 1.3 64.9 ± 1.5 50.0 ± 2.2 36.4 ± 8.1 -8.6 ± 4.2 -27.8 ± 8.5
LSTM (51) 72.9 ± 1.1 83.8 ± 0.6 67.9 ± 1.4 64.1 ± 1.3 62.9 ± 1.4 45.5 ± 2.1 34.1 ± 8.3 -16.2 ± 4.3 -17.9 ± 8.5
CNN (101) 71.0 ± 1.2 83.6 ± 0.6 66.3 ± 1.4 65.4 ± 1.4 62.7 ± 1.4 46.1 ± 2.0 10.6 ± 9.1 2.3 ± 5.0 -12.9 ± 9.4
LSTM (21) 70.4 ± 1.0 82.3 ± 0.6 65.3 ± 1.4 60.8 ± 1.2 59.6 ± 1.3 39.3 ± 1.9 36.9 ± 8.0 -20.4 ± 4.1 -16.4 ± 8.6
CNN (51) 70.3 ± 1.1 82.2 ± 0.6 66.6 ± 1.4 62.2 ± 1.3 60.1 ± 1.4 42.9 ± 2.0 46.0 ± 9.5 -7.9 ± 5.8 -38.2 ± 9.2
CNN (21) 67.9 ± 1.1 80.8 ± 0.6 63.5 ± 1.4 59.0 ± 1.2 57.0 ± 1.3 37.3 ± 1.9 41.9 ± 9.9 -14.4 ± 5.3 -27.5 ± 9.9
Logistic Regression 59.8 ± 1.1 73.1 ± 0.5 44.3 ± 0.9 42.7 ± 0.7 37.7 ± 0.9 19.4 ± 1.6 123.2 ± 13.9 -67.6 ± 3.0 -55.5 ± 14.2
Random Forest 59.6 ± 1.0 73.8 ± 0.4 48.4 ± 1.4 43.4 ± 0.6 39.2 ± 0.8 19.7 ± 1.4 92.0 ± 13.2 -65.3 ± 3.0 -26.8 ± 13.5
Linear SVM 59.4 ± 1.1 71.8 ± 0.5 45.6 ± 0.8 41.1 ± 0.6 35.8 ± 0.8 18.0 ± 1.5 166.7 ± 12.3 -67.6 ± 3.0 -99.0 ± 12.6
Always Non-REM sleep 54.2 ± 1.1 66.5 ± 0.2 18.2 ± 0.4 33.5 ± 0.2 23.3 ± 0.3 0.0 ± 0.0 255.0 ± 8.1 -67.6 ± 3.0 -187.4 ± 8.6
Perception 39.6 ± 1.5 69.6 ± 0.4 40.9 ± 0.8 36.0 ± 0.6 30.9 ± 0.8 2.5 ± 1.1 -36.9 ± 16.7 137.3 ± 16.1 -100.4 ± 9.6
Always wake 33.5 ± 1.4 66.5 ± 0.2 11.3 ± 0.5 33.5 ± 0.2 16.4 ± 0.5 0.0 ± 0.0 -297.5 ± 7.1 -67.6 ± 3.0 365.1 ± 8.7
Always REM sleep 12.3 ± 0.5 66.7 ± 0.0 4.1 ± 0.2 33.0 ± 0.4 7.2 ± 0.3 0.0 ± 0.0 -297.5 ± 7.1 484.8 ± 8.5 -187.4 ± 8.6

Table A.10 Task 2: Non-REM, REM sleep and wake for single modality sensing of HR/HRV

algorithms accuracy specificity precision recall F1 Cohen’s κ Deep sleep Light sleep REM sleep Wake
ground truth 100.0 +- 0.0 100.0 +- 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 39.3 ± 3.6 258.2 ± 7.0 67.6 ± 3.0 187.4 ± 8.6
LSTM (51) 70.3 ± 1.0 87.4 ± 0.4 57.9 ± 1.3 54.0 ± 1.0 51.9 ± 1.0 53.8 ± 1.9 -36.2 ± 3.5 42.8 ± 7.4 -5.6 ± 4.0 -1.0 ± 6.9
LSTM (101) 70.2 ± 1.0 86.9 ± 0.4 59.9 ± 1.5 52.4 ± 1.0 51.3 ± 1.1 51.7 ± 1.8 -32.4 ± 3.5 76.0 ± 7.3 -24.7 ± 3.7 -18.9 ± 6.6
CNN (101) 69.0 ± 1.0 87.0 ± 0.4 58.0 ± 1.4 53.7 ± 1.0 51.2 ± 1.1 51.6 ± 1.8 -34.5 ± 3.5 46.1 ± 8.1 4.4 ± 4.8 -15.9 ± 7.5
LSTM (21) 68.3 ± 1.0 86.5 ± 0.4 55.0 ± 1.2 51.6 ± 0.9 49.5 ± 0.9 50.0 ± 1.7 -37.8 ± 3.5 55.7 ± 7.7 -6.6 ± 4.1 -11.2 ± 7.0
CNN (51) 68.0 ± 1.1 86.9 ± 0.4 54.8 ± 1.3 53.5 ± 1.0 49.9 ± 1.0 51.6 ± 1.9 -37.8 ± 3.6 32.5 ± 8.8 18.5 ± 6.2 -13.2 ± 7.1
CNN (21) 67.0 ± 1.0 85.9 ± 0.4 52.2 ± 1.1 50.5 ± 0.9 47.8 ± 0.9 48.3 ± 1.7 -38.9 ± 3.6 69.9 ± 8.5 1.1 ± 5.4 -32.1 ± 6.9
Random Forest 63.6 ± 1.0 83.3 ± 0.4 44.7 ± 1.3 40.1 ± 0.6 36.7 ± 0.6 34.4 ± 1.3 -38.9 ± 3.6 115.3 ± 8.3 -61.3 ± 2.9 -15.2 ± 7.6
Logistic Regression 63.5 ± 1.0 82.8 ± 0.4 35.6 ± 0.8 39.5 ± 0.7 35.5 ± 0.7 32.9 ± 1.3 -39.2 ± 3.6 132.6 ± 8.8 -67.6 ± 3.0 -25.9 ± 8.1
Linear SVM 63.4 ± 1.1 82.7 ± 0.4 35.2 ± 0.8 39.4 ± 0.7 35.4 ± 0.7 32.9 ± 1.3 -39.3 ± 3.6 137.9 ± 8.6 -67.6 ± 3.0 -30.9 ± 7.9
Perception 50.6 ± 1.1 80.7 ± 0.3 36.8 ± 0.5 31.3 ± 0.5 30.0 ± 0.6 0.6 ± 1.4 35.6 ± 6.9 96.5 ± 9.6 -28.6 ± 4.3 -103.5 ± 7.7
Always light sleep 47.0 ± 1.1 74.3 ± 0.3 12.1 ± 0.3 25.7 ± 0.3 16.2 ± 0.4 0.0 ± 0.0 -39.3 ± 3.6 294.3 ± 8.2 -67.6 ± 3.0 -187.4 ± 8.6
Always wake 33.5 ± 1.4 74.3 ± 0.3 8.7 ± 0.4 25.7 ± 0.3 12.6 ± 0.5 0.0 ± 0.0 -39.3 ± 3.6 -258.2 ± 7.0 -67.6 ± 3.0 365.1 ± 8.7
Always REM sleep 12.3 ± 0.5 74.5 ± 0.2 3.1 ± 0.1 25.1 ± 0.3 5.4 ± 0.2 0.0 ± 0.0 -39.3 ± 3.6 -258.2 ± 7.0 484.8 ± 8.5 -187.4 ± 8.6
Always deep sleep 7.2 ± 0.7 74.9 ± 0.1 1.8 ± 0.2 23.6 ± 0.6 3.2 ± 0.3 0.0 ± 0.0 513.2 ± 9.4 -258.2 ± 7.0 -67.6 ± 3.0 -187.4 ± 8.6

Table A.11 Task 3: Wake, light sleep, deep sleep and REM-sleep classifiers performance for combined
modality sensing sensing using Actigraphy and HR/HRV
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A.5 Benchmark of Different Combinations of Modalities By Tasks

algorithms accuracy specificity precision recall F1 Cohen’s κ Deep sleep Light sleep REM sleep Wake
ground truth 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 39.3 ± 3.6 258.2 ± 7.0 67.6 ± 3.0 187.4 ± 8.6
LSTM (101) 67.4 ± 1.2 86.2 ± 0.4 56.2 ± 1.6 51.3 ± 1.1 49.5 ± 1.2 44.6 ± 2.2 -33.7 ± 3.5 60.4 ± 8.1 -13.5 ± 3.8 -13.1 ± 8.4
LSTM (51) 66.2 ± 1.1 85.6 ± 0.4 54.4 ± 1.5 49.5 ± 1.1 47.4 ± 1.1 41.2 ± 2.1 -36.4 ± 3.5 65.9 ± 7.9 -14.6 ± 4.1 -15.0 ± 8.1
CNN (101) 64.3 ± 1.1 85.3 ± 0.4 54.4 ± 1.6 50.2 ± 1.1 47.1 ± 1.1 40.9 ± 2.1 -34.8 ± 3.5 49.6 ± 8.9 8.2 ± 5.1 -23.0 ± 9.5
LSTM (21) 63.9 ± 1.0 84.7 ± 0.4 50.3 ± 1.3 47.1 ± 0.9 44.7 ± 1.0 36.3 ± 1.9 -38.6 ± 3.6 65.6 ± 8.3 -13.9 ± 4.3 -13.2 ± 8.4
CNN (51) 63.4 ± 1.2 84.6 ± 0.4 51.6 ± 1.4 48.1 ± 1.0 44.9 ± 1.1 38.4 ± 2.1 -37.5 ± 3.5 70.8 ± 9.5 3.1 ± 6.0 -36.3 ± 9.4
CNN (21) 61.3 ± 1.1 83.5 ± 0.4 46.8 ± 1.1 44.9 ± 0.9 41.8 ± 1.0 33.3 ± 1.8 -39.1 ± 3.6 75.7 ± 10.4 -10.9 ± 5.5 -25.7 ± 10.2
Linear SVM 53.4 ± 1.2 78.6 ± 0.5 31.8 ± 0.8 32.6 ± 0.6 27.1 ± 0.8 11.5 ± 1.3 -39.3 ± 3.6 150.1 ± 15.3 -67.6 ± 3.0 -43.2 ± 15.7
Logistic Regression 53.4 ± 1.2 78.9 ± 0.5 31.2 ± 0.8 33.0 ± 0.6 27.7 ± 0.7 12.3 ± 1.3 -39.3 ± 3.6 133.2 ± 15.2 -67.6 ± 3.0 -26.3 ± 15.6
Random Forest 53.3 ± 1.0 79.2 ± 0.4 35.5 ± 1.1 33.2 ± 0.5 28.6 ± 0.6 12.6 ± 1.1 -39.0 ± 3.6 108.0 ± 13.9 -64.7 ± 3.0 -4.3 ± 14.0
Always light sleep 47.0 ± 1.1 74.3 ± 0.3 12.1 ± 0.3 25.7 ± 0.3 16.2 ± 0.4 0.0 ± 0.0 -39.3 ± 3.6 294.3 ± 8.2 -67.6 ± 3.0 -187.4 ± 8.6
Always wake 33.5 ± 1.4 74.3 ± 0.3 8.7 ± 0.4 25.7 ± 0.3 12.6 ± 0.5 0.0 ± 0.0 -39.3 ± 3.6 -258.2 ± 7.0 -67.6 ± 3.0 365.1 ± 8.7
Perception 24.0 ± 1.3 76.6 ± 0.2 31.2 ± 1.0 27.3 ± 0.7 17.9 ± 0.8 -0.7 ± 1.1 105.1 ± 16.6 -141.8 ± 15.7 172.9 ± 18.4 -136.2 ± 9.0
Always REM sleep 12.3 ± 0.5 74.5 ± 0.2 3.1 ± 0.1 25.1 ± 0.3 5.4 ± 0.2 0.0 ± 0.0 -39.3 ± 3.6 -258.2 ± 7.0 484.8 ± 8.5 -187.4 ± 8.6
Always deep sleep 7.2 ± 0.7 74.9 ± 0.1 1.8 ± 0.2 23.6 ± 0.6 3.2 ± 0.3 0.0 ± 0.0 513.2 ± 9.4 -258.2 ± 7.0 -67.6 ± 3.0 -187.4 ± 8.6

Table A.12 Task 3: Wake, light sleep, deep sleep and REM-sleep classifiers performance for single
modality sensing of HR/HRV

algorithms accuracy specificity precision recall F1 Cohen’s κ Deep sleep Light sleep REM sleep Wake
ground truth 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 39.3 ± 3.6 258.2 ± 7.0 67.6 ± 3.0 187.4 ± 8.6
LSTM (101) 64.1 ± 1.0 82.9 ± 0.5 35.6 ± 0.7 39.6 ± 0.7 35.8 ± 0.7 33.5 ± 1.4 -39.3 ± 3.6 139.4 ± 8.5 -67.6 ± 3.0 -32.5 ± 7.4
CNN (101) 63.9 ± 1.0 83.0 ± 0.4 36.3 ± 0.9 39.6 ± 0.7 35.7 ± 0.7 33.5 ± 1.4 -39.3 ± 3.6 133.2 ± 8.7 -67.5 ± 3.0 -26.4 ± 7.6
LSTM (51) 63.6 ± 1.0 82.7 ± 0.4 35.6 ± 0.8 39.3 ± 0.7 35.5 ± 0.7 33.0 ± 1.4 -39.3 ± 3.6 143.0 ± 8.2 -67.3 ± 3.0 -36.3 ± 7.1
CNN (51) 63.4 ± 1.0 82.8 ± 0.4 35.2 ± 0.8 39.3 ± 0.6 35.3 ± 0.7 33.1 ± 1.4 -39.3 ± 3.6 126.3 ± 8.8 -67.5 ± 3.0 -19.4 ± 7.8
Logistic Regression 62.9 ± 1.1 82.5 ± 0.4 35.2 ± 0.8 38.9 ± 0.7 35.0 ± 0.8 32.2 ± 1.4 -39.2 ± 3.6 140.9 ± 8.6 -67.6 ± 3.0 -34.1 ± 7.7
Linear SVM 62.8 ± 1.1 82.3 ± 0.4 35.3 ± 0.8 38.7 ± 0.7 34.9 ± 0.8 32.0 ± 1.4 -39.3 ± 3.6 148.2 ± 8.5 -67.6 ± 3.0 -41.2 ± 7.7
LSTM (21) 62.7 ± 1.0 82.3 ± 0.4 35.4 ± 0.8 38.6 ± 0.7 34.8 ± 0.7 31.3 ± 1.3 -39.3 ± 3.6 152.2 ± 8.0 -67.5 ± 3.0 -45.4 ± 7.0
CNN (21) 62.6 ± 1.0 82.3 ± 0.4 35.1 ± 0.8 38.6 ± 0.7 34.8 ± 0.7 31.3 ± 1.3 -39.3 ± 3.6 148.1 ± 8.4 -67.6 ± 3.0 -41.2 ± 7.4
Random Forest 61.4 ± 1.0 82.6 ± 0.4 39.6 ± 0.9 38.1 ± 0.5 35.0 ± 0.6 31.2 ± 1.3 -37.1 ± 3.6 112.1 ± 8.1 -59.3 ± 2.9 -15.6 ± 7.3
Always light sleep 47.0 ± 1.1 74.3 ± 0.3 12.1 ± 0.3 25.7 ± 0.3 16.2 ± 0.4 0.0 ± 0.0 -39.3 ± 3.6 294.3 ± 8.2 -67.6 ± 3.0 -187.4 ± 8.6
Perception 41.3 ± 0.9 79.7 ± 0.3 37.3 ± 0.6 31.1 ± 0.6 31.0 ± 0.6 11.1 ± 1.1 57.6 ± 5.2 -32.5 ± 8.6 57.2 ± 4.5 -82.3 ± 7.3
Always wake 33.5 ± 1.4 74.3 ± 0.3 8.7 ± 0.4 25.7 ± 0.3 12.6 ± 0.5 0.0 ± 0.0 -39.3 ± 3.6 -258.2 ± 7.0 -67.6 ± 3.0 365.1 ± 8.7
Always REM sleep 12.3 ± 0.5 74.5 ± 0.2 3.1 ± 0.1 25.1 ± 0.3 5.4 ± 0.2 0.0 ± 0.0 -39.3 ± 3.6 -258.2 ± 7.0 484.8 ± 8.5 -187.4 ± 8.6
Always deep sleep 7.2 ± 0.7 74.9 ± 0.1 1.8 ± 0.2 23.6 ± 0.6 3.2 ± 0.3 0.0 ± 0.0 513.2 ± 9.4 -258.2 ± 7.0 -67.6 ± 3.0 -187.4 ± 8.6

Table A.13 Task 3: Wake, light sleep, deep sleep and REM-sleep classifiers performance for single
modality sensing of Actigraphy

algorithms accuracy specificity precision recall F1 Cohen’s κ N1 sleep N2 sleep N3 sleep REM sleep Wake
ground truth 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 49.4 ± 3.2 208.7 ± 6.2 39.3 ± 3.6 67.6 ± 3.0 187.4 ± 8.6
LSTM (51) 63.7 ± 1.0 88.7 ± 0.3 47.1 ± 1.4 43.0 ± 0.8 39.9 ± 0.8 56.3 ± 1.8 -46.0 ± 3.0 71.9 ± 7.5 -35.2 ± 3.5 -12.9 ± 3.9 22.2 ± 7.1
LSTM (101) 63.6 ± 1.0 88.7 ± 0.3 47.8 ± 1.3 43.3 ± 0.8 40.5 ± 0.9 57.0 ± 1.8 -46.2 ± 3.0 97.7 ± 7.5 -32.3 ± 3.5 -15.9 ± 3.9 -3.3 ± 6.8
CNN (101) 63.1 ± 1.1 88.8 ± 0.3 51.5 ± 1.4 44.7 ± 0.9 41.9 ± 0.9 56.2 ± 1.8 -40.2 ± 3.1 92.4 ± 8.0 -34.3 ± 3.5 8.2 ± 5.0 -26.2 ± 7.1
CNN (51) 62.9 ± 1.1 88.8 ± 0.3 48.7 ± 1.3 44.2 ± 0.8 40.6 ± 0.9 56.0 ± 1.9 -42.0 ± 3.1 86.6 ± 8.5 -37.9 ± 3.6 14.8 ± 5.9 -21.5 ± 7.1
LSTM (21) 62.6 ± 1.0 88.5 ± 0.3 43.6 ± 1.1 43.1 ± 0.7 39.2 ± 0.7 54.2 ± 1.7 -45.6 ± 3.0 68.3 ± 7.3 -37.8 ± 3.5 3.8 ± 4.4 11.3 ± 7.0
CNN (21) 61.3 ± 1.1 88.3 ± 0.3 44.7 ± 1.1 42.8 ± 0.7 38.8 ± 0.8 53.0 ± 1.8 -43.3 ± 3.1 80.8 ± 8.4 -39.1 ± 3.6 18.5 ± 6.0 -16.9 ± 7.2
Random Forest 56.9 ± 1.0 86.2 ± 0.3 36.4 ± 1.2 33.1 ± 0.5 28.8 ± 0.5 46.3 ± 1.6 -48.6 ± 3.2 123.6 ± 8.4 -38.7 ± 3.6 -54.9 ± 3.1 18.6 ± 8.1
Logistic Regression 56.7 ± 1.1 85.8 ± 0.4 29.2 ± 0.9 32.4 ± 0.5 27.1 ± 0.6 45.6 ± 1.7 -47.7 ± 3.1 135.8 ± 9.3 -39.2 ± 3.6 -67.2 ± 3.0 18.3 ± 8.9
Linear SVM 56.1 ± 1.1 85.9 ± 0.3 31.4 ± 0.9 32.1 ± 0.5 27.3 ± 0.5 44.2 ± 1.7 -44.8 ± 3.1 113.8 ± 9.6 -38.7 ± 3.6 -63.3 ± 3.0 33.0 ± 9.1
Always N2 sleep 38.0 ± 1.0 79.4 ± 0.4 7.9 ± 0.3 20.6 ± 0.4 11.2 ± 0.3 0.0 ± 0.0 -49.4 ± 3.2 343.7 ± 8.3 -39.3 ± 3.6 -67.6 ± 3.0 -187.4 ± 8.6
Perception 37.6 ± 0.9 83.3 ± 0.2 32.0 ± 0.5 25.7 ± 0.5 23.5 ± 0.5 6.8 ± 1.4 -6.2 ± 4.1 79.3 ± 9.6 33.5 ± 6.5 26.8 ± 6.1 -133.4 ± 7.6
Always wake 33.5 ± 1.4 79.4 ± 0.4 7.0 ± 0.4 20.6 ± 0.4 10.1 ± 0.4 0.0 ± 0.0 -49.4 ± 3.2 -208.7 ± 6.2 -39.3 ± 3.6 -67.6 ± 3.0 365.1 ± 8.7
Always REM sleep 12.3 ± 0.5 79.6 ± 0.2 2.5 ± 0.1 20.0 ± 0.3 4.3 ± 0.2 0.0 ± 0.0 -49.4 ± 3.2 -208.7 ± 6.2 -39.3 ± 3.6 484.8 ± 8.5 -187.4 ± 8.6
Always N1 sleep 9.0 ± 0.6 79.6 ± 0.2 1.8 ± 0.1 20.0 ± 0.3 3.3 ± 0.2 0.0 ± 0.0 503.0 ± 8.8 -208.7 ± 6.2 -39.3 ± 3.6 -67.6 ± 3.0 -187.4 ± 8.6
Always N3 sleep 7.2 ± 0.7 79.8 ± 0.1 1.4 ± 0.1 18.9 ± 0.5 2.6 ± 0.2 0.0 ± 0.0 -49.4 ± 3.2 -208.7 ± 6.2 513.2 ± 9.4 -67.6 ± 3.0 -187.4 ± 8.6

Table A.14 Task 4: Wake, N1 sleep, N2 sleep, N3 and REM-sleep classifiers performance for combined
modality sensing sensing using Actigraphy and HR/HRV

algorithms accuracy specificity precision recall F1 Cohen’s κ N1 sleep N2 sleep N3 sleep REM sleep Wake
ground truth 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 49.4 ± 3.2 208.7 ± 6.2 39.3 ± 3.6 67.6 ± 3.0 187.4 ± 8.6
LSTM (51) 56.9 ± 1.0 85.7 ± 0.4 26.1 ± 0.8 32.2 ± 0.6 27.1 ± 0.7 46.9 ± 1.7 -49.4 ± 3.2 169.2 ± 8.5 -39.3 ± 3.6 -67.6 ± 3.0 -12.9 ± 7.5
LSTM (101) 56.9 ± 1.0 85.7 ± 0.4 25.3 ± 0.7 32.3 ± 0.6 27.1 ± 0.7 47.1 ± 1.7 -49.4 ± 3.2 159.7 ± 8.7 -39.3 ± 3.6 -67.6 ± 3.0 -3.3 ± 7.5
CNN (101) 56.8 ± 1.1 85.8 ± 0.3 27.7 ± 0.9 32.2 ± 0.5 27.2 ± 0.6 46.9 ± 1.7 -49.4 ± 3.2 144.7 ± 9.1 -39.3 ± 3.6 -65.6 ± 3.0 9.6 ± 8.3
CNN (51) 56.5 ± 1.1 85.7 ± 0.3 25.4 ± 0.7 32.0 ± 0.5 26.7 ± 0.6 46.0 ± 1.7 -49.4 ± 3.2 138.2 ± 9.2 -39.3 ± 3.6 -67.3 ± 3.0 17.8 ± 8.5
Logistic Regression 56.1 ± 1.1 85.5 ± 0.4 25.2 ± 0.7 31.8 ± 0.6 26.7 ± 0.7 45.9 ± 1.7 -49.4 ± 3.2 163.3 ± 8.8 -39.2 ± 3.6 -67.6 ± 3.0 -7.1 ± 8.0
LSTM (21) 56.0 ± 1.0 85.5 ± 0.4 25.2 ± 0.7 31.7 ± 0.6 26.6 ± 0.7 45.1 ± 1.7 -49.4 ± 3.2 170.0 ± 8.4 -39.2 ± 3.6 -67.6 ± 3.0 -13.7 ± 7.4
CNN (21) 55.9 ± 1.0 85.5 ± 0.3 25.5 ± 0.7 31.5 ± 0.5 26.5 ± 0.6 44.8 ± 1.7 -49.4 ± 3.2 170.4 ± 8.6 -39.3 ± 3.6 -67.4 ± 3.0 -14.4 ± 7.8
Linear SVM 54.8 ± 1.1 85.6 ± 0.3 31.3 ± 0.7 31.1 ± 0.5 26.8 ± 0.5 43.8 ± 1.7 -44.5 ± 3.2 114.3 ± 9.2 -37.7 ± 3.6 -60.3 ± 3.0 28.2 ± 8.8
Random Forest 54.4 ± 1.0 85.6 ± 0.3 31.7 ± 0.8 31.1 ± 0.4 27.2 ± 0.5 42.7 ± 1.6 -44.3 ± 3.3 120.8 ± 8.0 -36.7 ± 3.5 -56.0 ± 2.8 16.2 ± 7.6
Always N2 sleep 38.0 ± 1.0 79.4 ± 0.4 7.9 ± 0.3 20.6 ± 0.4 11.2 ± 0.3 0.0 ± 0.0 -49.4 ± 3.2 343.7 ± 8.3 -39.3 ± 3.6 -67.6 ± 3.0 -187.4 ± 8.6
Always wake 33.5 ± 1.4 79.4 ± 0.4 7.0 ± 0.4 20.6 ± 0.4 10.1 ± 0.4 0.0 ± 0.0 -49.4 ± 3.2 -208.7 ± 6.2 -39.3 ± 3.6 -67.6 ± 3.0 365.1 ± 8.7
Perception 32.9 ± 0.9 82.9 ± 0.2 31.0 ± 0.5 29.1 ± 0.7 23.2 ± 0.6 21.8 ± 1.4 -13.3 ± 3.5 5.9 ± 8.1 151.6 ± 8.3 -26.4 ± 4.5 -117.8 ± 7.6
Always REM sleep 12.3 ± 0.5 79.6 ± 0.2 2.5 ± 0.1 20.0 ± 0.3 4.3 ± 0.2 0.0 ± 0.0 -49.4 ± 3.2 -208.7 ± 6.2 -39.3 ± 3.6 484.8 ± 8.5 -187.4 ± 8.6
Always N1 sleep 9.0 ± 0.6 79.6 ± 0.2 1.8 ± 0.1 20.0 ± 0.3 3.3 ± 0.2 0.0 ± 0.0 503.0 ± 8.8 -208.7 ± 6.2 -39.3 ± 3.6 -67.6 ± 3.0 -187.4 ± 8.6
Always N3 sleep 7.2 ± 0.7 79.8 ± 0.1 1.4 ± 0.1 18.9 ± 0.5 2.6 ± 0.2 0.0 ± 0.0 -49.4 ± 3.2 -208.7 ± 6.2 513.2 ± 9.4 -67.6 ± 3.0 -187.4 ± 8.6

Table A.15 Task 4: Wake, N1 sleep, N2 sleep, N3 and REM-sleep classifiers performance for single
modality sensing using Actigraphy
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Benchmark Study Performance By Modalities And Methods

algorithms accuracy specificity precision recall F1 Cohen’s κ N1 sleep N2 sleep N3 sleep REM sleep Wake
ground truth 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 49.4 ± 3.2 208.7 ± 6.2 39.3 ± 3.6 67.6 ± 3.0 187.4 ± 8.6
CNN (21) 55.6 ± 1.1 86.4 ± 0.3 40.4 ± 1.2 37.3 ± 0.8 33.6 ± 0.9 36.2 ± 1.8 -44.4 ± 3.0 103.0 ± 9.8 -39.1 ± 3.6 -3.9 ± 5.8 -15.6 ± 10.1
CNN (101) 55.6 ± 1.1 86.7 ± 0.3 44.9 ± 1.4 38.9 ± 0.9 35.9 ± 1.0 37.1 ± 1.8 -40.8 ± 3.1 81.2 ± 9.4 -29.5 ± 3.6 -12.0 ± 4.8 1.1 ± 10.7
CNN (51) 54.2 ± 1.1 86.0 ± 0.3 41.2 ± 1.3 35.6 ± 0.8 32.1 ± 1.0 32.3 ± 1.9 -40.6 ± 3.1 69.5 ± 11.0 -36.4 ± 3.5 -28.2 ± 5.1 35.7 ± 12.1
LSTM (101) 50.6 ± 1.0 83.9 ± 0.3 25.7 ± 0.8 28.9 ± 0.5 23.8 ± 0.6 29.6 ± 1.7 -49.4 ± 3.2 189.7 ± 10.4 -39.3 ± 3.6 -66.0 ± 2.9 -34.9 ± 10.3
LSTM (51) 50.4 ± 1.1 84.1 ± 0.4 23.8 ± 0.9 29.2 ± 0.5 23.4 ± 0.6 27.0 ± 1.7 -49.3 ± 3.2 107.0 ± 13.3 -39.3 ± 3.6 -67.0 ± 3.0 48.6 ± 13.4
LSTM (21) 50.1 ± 1.0 83.8 ± 0.3 30.7 ± 1.0 29.2 ± 0.5 24.6 ± 0.6 28.0 ± 1.6 -48.3 ± 3.1 199.2 ± 10.7 -39.3 ± 3.6 -58.2 ± 3.2 -53.4 ± 10.7
Logistic Regression 46.7 ± 1.1 82.8 ± 0.4 22.6 ± 0.8 26.8 ± 0.5 21.2 ± 0.6 18.4 ± 1.7 -48.5 ± 3.2 128.0 ± 15.8 -39.3 ± 3.6 -67.6 ± 3.0 27.4 ± 16.2
Random Forest 46.6 ± 1.0 83.1 ± 0.3 29.9 ± 1.0 27.1 ± 0.4 22.3 ± 0.5 17.6 ± 1.4 -46.2 ± 3.2 97.8 ± 13.7 -38.9 ± 3.6 -61.3 ± 3.1 48.5 ± 14.3
Linear SVM 43.2 ± 1.3 82.4 ± 0.4 24.4 ± 1.0 25.6 ± 0.6 19.9 ± 0.7 13.5 ± 1.6 -45.9 ± 3.1 -1.7 ± 16.1 -30.8 ± 4.1 -62.1 ± 3.2 140.5 ± 17.5
Always N2 sleep 38.0 ± 1.0 79.4 ± 0.4 7.9 ± 0.3 20.6 ± 0.4 11.2 ± 0.3 0.0 ± 0.0 -49.4 ± 3.2 343.7 ± 8.3 -39.3 ± 3.6 -67.6 ± 3.0 -187.4 ± 8.6
Always wake 33.5 ± 1.4 79.4 ± 0.4 7.0 ± 0.4 20.6 ± 0.4 10.1 ± 0.4 0.0 ± 0.0 -49.4 ± 3.2 -208.7 ± 6.2 -39.3 ± 3.6 -67.6 ± 3.0 365.1 ± 8.7
Perception 19.2 ± 1.1 81.0 ± 0.1 27.6 ± 0.7 23.6 ± 0.6 13.2 ± 0.5 7.6 ± 1.2 60.7 ± 13.2 -87.5 ± 16.0 188.3 ± 15.3 13.3 ± 7.5 -174.8 ± 8.5
Always REM sleep 12.3 ± 0.5 79.6 ± 0.2 2.5 ± 0.1 20.0 ± 0.3 4.3 ± 0.2 0.0 ± 0.0 -49.4 ± 3.2 -208.7 ± 6.2 -39.3 ± 3.6 484.8 ± 8.5 -187.4 ± 8.6
Always N1 sleep 9.0 ± 0.6 79.6 ± 0.2 1.8 ± 0.1 20.0 ± 0.3 3.3 ± 0.2 0.0 ± 0.0 503.0 ± 8.8 -208.7 ± 6.2 -39.3 ± 3.6 -67.6 ± 3.0 -187.4 ± 8.6
Always N3 sleep 7.2 ± 0.7 79.8 ± 0.1 1.4 ± 0.1 18.9 ± 0.5 2.6 ± 0.2 0.0 ± 0.0 -49.4 ± 3.2 -208.7 ± 6.2 513.2 ± 9.4 -67.6 ± 3.0 -187.4 ± 8.6

Table A.16 Task 4: Wake, N1 sleep, N2 sleep, N3 and REM-sleep classifiers performance for single
modality sensing of HR/HRV
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Appendix B. UbiSleepNet: Appendix

B.1. HYPERPARAMETERS TUNING AND RESULTS FOR UBISLEEPNET

The hyperparameter tuning was performed based on the designed backbone network from three
to five convolutional blocks (7-13 convolutional layers). The first two blocks consisted of
two convolutional layers. The third, fourth and fifth convolutional blocks consisted of three
convolutional layers. The hyperparameter search aimed to reduce the search space and maintain
suitable temporal lengths of the latent features. The hyperparameter tuning only focused on the
number of kernels for each convolutional block. The convolutional layer kernel length has been
investigated in the previous study [5]. We set the kernel length of all convolutional layers to 3.

The number of hidden units in the fully connected layers was all set to the same value during
the hyperparameter tuning process to reduce the search space. Furthermore, we performed the
hyperparameter tuning based on the MESA dataset - the largest dataset containing the cardiac
and activity data to date. Therefore, we expected the hyperparameter tuning could discover
robust backbone networks for this study.

Figure B.1 DeepCNN backbone network hyper-parameters tuning results
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UbiSleepNet: Appendix

Block/Group Layer Kernel size Number of Kernels Padding Stride Hidden Units Drop out Rate

Convolutional Block 1
Convolutional Layer 1 & 2 3 128, 256, 512 1 1

Maxpooling 2 2

Convolutional Block 2
Convolutional Layer 3 & 4 3 128, 256, 512 1 1

Maxpooling 2 2

Convolutional Block 3 Convolutional Layer 5, 6 & 7 3 128, 256, 512 1 1

Maxpooling 2 2

Convolutional Block 4 Convolutional Layer 8, 9 & 10 3 128, 256, 512 1 1

Maxpooling 2 2

Convolutional Block 4 Convolutional Layer 11, 12 & 13 3 128, 256, 512 1 1

Maxpooling 2 2

FC Block
Fully Connected Layer 1, 2 128, 256, 512

Drop Out 0.25, 0.75

Table B.1 Hyper-parameters tuning for backbone networks

B.2. HEART RATE STATISTIC FEATURES COMBINED WITH DEEP MOVEMENT
FEATURES

In our study, we also tested whether using the raw accelerometer data could achieve better results.
Therefore, we designed two feasible CNNs that could extract the compatible deep features
fused with the HR statistic features.The rational behind the network design was to produce a
compatible representation of the HR intermediate feature. To match up the dimension of latent
feature, we firstly reduced the accelerometer data sampling rate from 50Hz/20Hz to 1Hz. We
then designed two CNNs to bridge the sampling gap between movement and cardiac sensing
features, one for the early stage fusion and another for the late-stage and hybrid fusion. Each
consisted of six convolutional layers (two convolutional blocks) to extract the deep movement
feature used for fusion study. For the early-stage fusion, the network was called AccCNN-1. The
hybrid and late-stage fusion used the same network to extract the latent representations, and we
called it AccCNN-2. We referred to the entire network as DeepMixCNN and ResDeepMixCNN,
respectively. The network structure and the experiment setting details can be seen in Figure B.2
and Figure B.3. We adopted the leave-two-subjects-out cross validation experimental setting
on Apple Watch dataset. The training, validation and testing process used the same settings
as the main content. However, we did not conduct the hyperparameter search together with
the backbone network. Therefore, the network designed in the study merely served as feasible
networks for the study, yet it might not be the best performing CNN. We focused on the fusion
techniques rather than the contribution of network structure.

The MESA dataset contained the activity counts sampled at 1/30 Hz, which technically was
no the raw data. In addition, cardiac sensing was acquired via the PSG equipment, which may be
difficult to wear everyday. Therefore, the HRV features derived from the RR intervals were most
likely to be available from the commercial wearable devices (e.g., photoplethysmogram data), so
we did not conduct the experiments on the raw PSG data.The details of this experiment are listed
in Table B.2
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B.2 HEART RATE STATISTIC FEATURES COMBINED WITH DEEP MOVEMENT
FEATURES
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Figure B.2 An overview of the three-stage sleep classification system using the raw accelerometer data
with HR statistics features. The raw accelerometer data and HR statistic features were extracted for each
sleep epoch (30s). The sliding window method divides the sleep data into multiple segments with window
length T and stride S. In this experiment, we have T = 101, and S = 1. We firstly use the AccCNN to
learn deep features then fuse them with HR statistic features. The hypnogram represents the stages of
sleep over time. Two fusion strategies and four fusion methods were studied.

Input

(k=3, s=3) conv, 512

(k=3, s=3) conv, 512

(k=12, s=1) conv, 128

(k=3, s=1) conv, 128

(k=3, s=1) conv, 512

D
rop O

ut

AccCNN-1

(k=3, s=3) conv, 512

D
rop O

ut

Input

(k=3, s=3) conv, 512

(k=3, s=3) conv, 512

(k=3, s=2) conv, 128

(k=3, s=2) conv, 128

(k=3, s=1) conv, 512

D
rop O

ut

(k=3, s=3) conv, 512

D
rop O

ut

AccCNN-2

Figure B.3 An overview of the two subnets used to extract the deep features from the raw accelerometer
data.

B.2.1. Raw Accelerometer Data and HRS Features

The highest performed model was ResDeepMixCNN in late-stage fusion, using the concatenation
method. Its accuracy, the Cohen’s κ score and the mean F1 reached 79.1 %, 51.4 and 66.7 %
respectively. Thus, the results were comparable to the handcraft features.

B.2.2. Comparison of Raw Data and Intermediate Features

We compared the performance difference between using the raw accelerometer data and using
the clinical/handcraft features based on the window length of 101. The ResDeepMixCNN has
achieved the comparable performance on the Apple Watch dataset in terms of accuracy, Cohen’s
κ and mean F1, using the concatenation method in the late-stage fusion. The confusion matrices
shown in Figure 5.6 demonstrated the model prediction using raw accelerometer data is biased to
NREM sleep. Three reasons might cause the increased bias. The first reason may be the Apple
Watch dataset has class imbalance issue. The second reason may be the modality bias of the raw
accelerometer data because the wrist movement may not reflect the sleep stage (mainly NREM
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UbiSleepNet: Appendix

Fusion Specifics Performance Metrics Deployment Metrics

Fusion Strategy Network Fusion Method Accuracy (%) Cohen’s κ Mean F1 (%) Model Size (M) Inference Time (ms)

Early-Stage
DeepMixCNN Concatenation 74.8 ± 2.7 34.0 ± 5.9 57.2 ± 3.5 11.9 18.86±1.19

ResDeepMixCNN Concatenation 79.8 ± 3.1 48.9 ± 7.1 64.5 ± 4.5 11.9 16.45±0.43

Late-Stage Fusion
DeepMixCNN

Concatenation 79.2 ± 2.8 48.9 ± 7.6 66.0 ± 4.6 50.8 37.03±0.34
Addition 76.7 ± 2.1 38.7 ± 5.9 58.0 ± 3.7 11.5 32.75±0.19

ResDeepMixCNN
Concatenation 79.1 ± 3.3 51.4 ± 8.0 66.7 ± 4.7 50.8 31.19±0.72

Addition 78.9 ± 2.8 48.4 ± 6.4 63.9 ± 4.0 11.5 33.11±0.33

Hybrid

DeepMixCNN

Concatenation 77.3 ± 3.3 43.9 ± 7.3 63.6 ± 4.3 18.0 15.94±0.22
Addition 75.8 ± 2.6 36.7 ± 7.3 59.0 ± 4.0 11.5 16.28±0.57

Attention-on-Mov 75.8 ± 3.1 39.4 ± 7.9 60.8 ± 4.8 18.3 15.7±0.18
Attention-on-Car 71.9 ± 3.1 30.4 ± 8.1 55.7 ± 4.8 18.3 15.7±0.18

Bilinear 73.1 ± 3.4 31.4 ± 8.2 52.3 ± 5.2 273.9 18.89±0.43

ResDeepMixCNN

Concatenation 77.7 ± 2.6 42.8 ± 6.0 62.6 ± 3.5 18.0 15.6±0.48
Addition 80.3 ± 2.9 48.0 ± 7.3 64.4 ± 4.3 11.5 15.65±0.31

Attention-on-Mov 77.1 ± 2.4 44.8 ± 5.9 62.7 ± 3.6 18.3 16.24±0.32
Attention-on-Car 75.9 ± 3.0 37.0 ± 7.7 57.7 ± 4.4 18.3 16.24±0.32

Bilinear 72.8 ± 3.2 29.8 ± 6.5 52.1 ± 4.4 273.9 18.88±0.4

Table B.2 Three-stage sleep classification results (mean ± standard error at 95% confidence interval)
using raw accelerometer data and HRS features based on DeepMixCNN and ResDeepMixCNN with
the Apple Watch Dataset for each combination of fusion strategy and method. The experiments were
performed using the same experimental setting as in the main content and evaluated at the subject level
during recording period based on window length of 101.

and REM) that much. The third reason may be caused by the lacking of hyperparameter search
on the network.

Our observations corroborate a study using raw PSG signals for sleep stage classifica-
tion [156]. That is using intermediate features instead of raw accelerometer data may alleviate
the modality bias in the three-sleep stage classification task, while reducing the model parameters.

B.3. THREE SLEEP STAGE CLASSIFICATION PERFORMANCE ON 21, 51 WIN-
DOW LENGTH

B.3.1. The Effects of Sliding Windows Length

In addition to the window length of 101, we also conducted experiments based on the window
lengths 51 and 21 followed the previous work [5]. For the Apple Watch dataset, the models with
the highest mean F1, accuracy and Cohen’s κ score in each fusion strategy were all based on
the window length of 101. For the MESA dataset, we observed similar patterns on all feature
settings. One possible explanation was when the time step of the input data became shorter,
the intermediate features around the time point of the prediction might not contain enough
information for three-stage sleep classification. This phenomenon corroborated the previous
findings [5].
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B.3 THREE SLEEP STAGE CLASSIFICATION PERFORMANCE ON 21, 51
WINDOW LENGTH

Fusion Specifics Performance Metrics Time Deviation (min.)

Fusion Strategy Network Fusion Method Accuracy (%) Cohen’s κ Mean F1 (%) Non-REM sleep REM sleep Wake

Early-Stage Fusion
DeepCNN Concatenation 73.1 ± 3.1 40.5 ± 6.7 58.7 ± 4.4 9.1 ± 22.5 -0.1 ± 23.5 -9.0 ± 8.8

ResDeepCNN Concatenation 75.4 ± 2.9 43.9 ± 6.4 61.1 ± 3.9 23.0 ± 24.1 -12.5 ± 23.7 -10.5 ± 7.2

Late-Stage Fusion
DeepCNN

Concatenation 74.1 ± 2.7 41.9 ± 6.1 59.8 ± 3.7 12.0 ± 21.6 -1.1 ± 22.1 -10.9 ± 7.9
Addition 78.0 ± 2.3 50.1 ± 7.0 65.5 ± 3.6 1.3 ± 16.7 11.6 ± 16.8 -12.9 ± 6.6

ResDeepCNN
Concatenation 76.6 ± 2.5 45.9 ± 6.9 62.6 ± 4.2 20.1 ± 18.8 -13.5 ± 19.6 -6.7 ± 7.8

Addition 77.7 ± 2.2 48.1 ± 6.8 64.6 ± 4.0 7.6 ± 19.5 3.4 ± 19.6 -11.0 ± 5.8

Hybrid Fusion

DeepCNN

Concatenation 72.5 ± 3.2 39.0 ± 6.2 58.8 ± 3.9 7.5 ± 24.6 5.3 ± 24.6 -12.8 ± 6.8
Addition 73.3 ± 3.0 39.2 ± 6.3 58.4 ± 3.6 17.1 ± 24.1 -0.8 ± 24.1 -16.3 ± 5.5

Attention-on-Mov 72.6 ± 3.0 39.0 ± 6.0 59.4 ± 3.4 15.1 ± 23.6 -1.7 ± 23.6 -13.4 ± 6.6
Attention-on-Car 72.7 ± 2.9 37.2 ± 6.4 58.3 ± 3.7 23.7 ± 21.0 -8.6 ± 20.3 -15.2 ± 6.1

Bilinear 72.3 ± 2.6 38.2 ± 5.5 58.5 ± 3.2 1.4 ± 20.7 12.3 ± 20.7 -13.7 ± 6.3

ResDeepCNN

Concatenation 73.6 ± 2.9 41.5 ± 6.5 60.7 ± 4.1 8.8 ± 23.1 1.4 ± 24.9 -10.2 ± 7.4
Addition 73.1 ± 3.1 40.5 ± 6.5 59.7 ± 3.9 11.5 ± 23.8 -0.8 ± 24.4 -10.7 ± 6.8

Attention-on-Mov 74.4 ± 3.3 43.8 ± 6.1 61.7 ± 3.8 11.6 ± 20.9 -1.5 ± 21.5 -10.1 ± 6.9
Attention-on-Car 73.1 ± 3.0 40.6 ± 7.1 60.4 ± 4.1 2.1 ± 24.0 6.9 ± 24.3 -9.0 ± 7.9

Bilinear 74.9 ± 2.6 42.2 ± 6.5 60.2 ± 3.9 22.2 ± 21.9 -12.2 ± 22.0 -9.9 ± 7.1

Table B.3 Three-stage sleep classification results (mean ± standard error at 95% confidence interval) for
each combination of the fusion strategy and method with the Apple Watch dataset using the ACT-HRS
feature and evaluated at subject level during the recording period based on the window length of 51.

Fusion Specifics Performance Metrics Time Deviation (min.)

Fusion Strategy Network Fusion Method Accuracy (%) Cohen’s κ Mean F1 (%) Non-REM sleep REM sleep Wake

Early-Stage Fusion
DeepCNN Concatenation 71.9 ± 2.1 35.2 ± 5.5 54.9 ± 3.5 22.9 ± 16.6 -13.9 ± 16.8 -9.0 ± 8.3

ResDeepCNN Concatenation 73.4 ± 2.4 38.7 ± 5.8 58.0 ± 3.6 17.3 ± 15.2 -9.6 ± 16.0 -7.7 ± 9.2

Late-Stage Fusion
DeepCNN

Concatenation 72.4 ± 2.5 38.1 ± 6.1 55.9 ± 3.9 21.9 ± 18.2 -7.4 ± 18.0 -14.6 ± 8.6
Addition 75.3 ± 2.4 39.7 ± 7.7 59.2 ± 4.2 14.6 ± 13.9 -1.4 ± 15.4 -13.1 ± 7.2

ResDeepCNN
Concatenation 72.7 ± 2.6 38.3 ± 6.8 57.3 ± 4.2 11.9 ± 20.3 -4.5 ± 21.0 -7.4 ± 8.8

Addition 74.3 ± 2.7 38.9 ± 7.5 58.9 ± 4.2 6.2 ± 16.6 4.5 ± 17.6 -10.7 ± 7.9

Hybrid Fusion

DeepCNN

Concatenation 71.6 ± 2.5 35.8 ± 6.2 55.6 ± 4.0 17.7 ± 23.5 -0.0 ± 23.4 -17.7 ± 6.4
Addition 71.6 ± 2.6 35.0 ± 5.7 55.8 ± 3.6 22.9 ± 19.7 -5.9 ± 19.7 -17.0 ± 6.7

Attention-on-Mov 72.2 ± 2.6 37.3 ± 5.4 56.6 ± 3.4 20.5 ± 19.6 -3.6 ± 20.8 -16.9 ± 6.3
Attention-on-Car 73.2 ± 2.3 35.4 ± 5.9 56.6 ± 3.6 31.1 ± 20.6 -13.3 ± 20.1 -17.8 ± 6.4

Bilinear 71.5 ± 2.9 37.3 ± 6.0 57.2 ± 3.7 5.0 ± 19.1 6.9 ± 17.7 -11.9 ± 7.7

ResDeepCNN

Concatenation 72.3 ± 2.7 36.6 ± 6.5 57.3 ± 4.0 21.3 ± 23.8 -5.3 ± 23.3 -15.9 ± 6.5
Addition 71.6 ± 2.2 35.2 ± 5.2 55.5 ± 3.4 24.7 ± 18.2 -11.6 ± 19.1 -13.2 ± 6.9

Attention-on-Mov 73.3 ± 2.3 38.0 ± 5.4 57.9 ± 3.3 33.5 ± 17.3 -19.3 ± 17.7 -14.2 ± 6.4
Attention-on-Car 72.1 ± 2.7 37.8 ± 5.5 57.8 ± 3.6 17.5 ± 19.2 -5.8 ± 18.8 -11.7 ± 7.9

Bilinear 70.5 ± 2.7 35.7 ± 5.8 55.9 ± 3.6 3.1 ± 19.2 1.2 ± 19.5 -4.3 ± 9.8

Table B.4 Three-stage sleep classification results (mean ± standard error at 95% confidence interval) for
each combination of fusion strategy and method with the Apple Watch dataset using the ACT-HRS feature
and evaluated at subject level during the recording period based on the window length of 21.

Fusion Specifics Performance Metrics Time Deviation (min.)

Fusion Strategy Network Fusion Method Accuracy (%) Cohen’s κ Mean F1 (%) Non-REM sleep REM sleep Wake

Early-Stage Fusion
DeepCNN Concatenation 78.1 ± 0.9 60.1 ± 1.8 69.3 ± 1.3 14.6 ± 7.3 -18.7 ± 3.6 4.1 ± 6.9

ResDeepCNN Concatenation 76.7 ± 1.0 60.2 ± 1.9 70.3 ± 1.3 -15.6 ± 7.4 12.6 ± 5.0 3.0 ± 6.8

Late-Stage Fusion
DeepCNN

Concatenation 78.4 ± 1.0 62.5 ± 1.8 71.4 ± 1.3 9.9 ± 7.3 0.2 ± 4.1 -10.0 ± 6.4
Addition 76.5 ± 0.9 58.8 ± 1.7 66.7 ± 1.2 62.3 ± 7.4 -21.7 ± 3.7 -40.6 ± 6.9

ResDeepCNN
Concatenation 77.7 ± 0.9 61.0 ± 1.8 69.9 ± 1.2 17.3 ± 7.6 -4.6 ± 4.2 -12.6 ± 6.6

Addition 74.8 ± 1.0 55.7 ± 1.8 66.2 ± 1.3 -21.0 ± 7.7 -16.0 ± 4.2 37.0 ± 7.5

Hybrid Fusion

DeepCNN

Concatenation 76.4 ± 1.1 61.1 ± 1.8 70.0 ± 1.3 -9.4 ± 8.0 17.9 ± 5.0 -8.5 ± 6.9
Addition 77.2 ± 1.0 61.3 ± 1.7 70.6 ± 1.2 -17.9 ± 7.5 2.5 ± 4.3 15.4 ± 7.0

Attention-on-Mov 74.6 ± 1.1 59.1 ± 1.8 69.0 ± 1.2 -24.0 ± 8.1 39.2 ± 5.7 -15.3 ± 6.6
Attention-on-Car 77.8 ± 0.9 60.7 ± 1.8 69.8 ± 1.2 5.4 ± 7.4 -9.2 ± 4.1 3.8 ± 6.7

Bilinear 77.1 ± 0.9 60.1 ± 1.8 70.2 ± 1.2 6.8 ± 8.0 13.9 ± 5.0 -20.8 ± 6.5

ResDeepCNN

Concatenation 77.7 ± 1.0 62.4 ± 1.7 71.0 ± 1.2 8.3 ± 7.7 15.5 ± 5.0 -23.8 ± 6.3
Addition 78.5 ± 0.9 62.0 ± 1.7 71.3 ± 1.2 30.4 ± 7.3 4.1 ± 4.3 -34.5 ± 6.5

Attention-on-Mov 76.1 ± 1.1 60.7 ± 1.8 70.4 ± 1.3 -9.9 ± 8.2 31.3 ± 5.7 -21.4 ± 6.8
Attention-on-Car 76.6 ± 1.1 61.2 ± 1.8 70.7 ± 1.2 -0.3 ± 7.6 25.8 ± 5.1 -25.6 ± 6.2

Bilinear 76.7 ± 0.9 60.2 ± 1.7 69.7 ± 1.2 -9.5 ± 7.6 9.4 ± 4.6 0.1 ± 6.6

Table B.5 Three-stage sleep classification results (mean ± standard error at 95% confidence interval)
for each combination of fusion strategy and method with the MESA test dataset using the ACT-HRS
evaluated at subject level during the recording period based on the window length of 51.
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Fusion Specifics Performance Metrics Time Deviation (min.)

Fusion Strategy Network Fusion Method Accuracy (%) Cohen’s κ Mean F1 (%) Non-REM sleep REM sleep Wake

Early-Stage Fusion
DeepCNN Concatenation 75.3 ± 1.0 55.2 ± 1.8 66.7 ± 1.2 61.4 ± 7.7 -4.3 ± 4.2 -57.0 ± 6.8

ResDeepCNN Concatenation 75.0 ± 0.9 56.6 ± 1.7 68.3 ± 1.1 13.3 ± 7.4 16.7 ± 4.6 -30.0 ± 6.5

Late-Stage Fusion
DeepCNN

Concatenation 76.6 ± 0.9 57.8 ± 1.6 68.0 ± 1.2 29.8 ± 7.0 -13.9 ± 3.7 -15.9 ± 6.4
Addition 74.4 ± 0.9 56.9 ± 1.6 66.8 ± 1.1 13.7 ± 7.5 6.9 ± 4.8 -20.7 ± 6.4

ResDeepCNN
Concatenation 75.9 ± 0.9 58.1 ± 1.6 68.8 ± 1.1 7.8 ± 7.1 6.8 ± 4.1 -14.7 ± 6.4

Addition 74.7 ± 0.9 56.6 ± 1.6 66.6 ± 1.1 33.4 ± 7.4 2.7 ± 4.7 -36.1 ± 6.4

Hybrid Fusion

DeepCNN

Concatenation 76.0 ± 0.9 57.1 ± 1.7 68.6 ± 1.2 33.8 ± 7.6 8.2 ± 4.4 -42.0 ± 6.7
Addition 74.8 ± 1.0 55.7 ± 1.8 67.9 ± 1.2 22.6 ± 7.8 21.7 ± 4.9 -44.3 ± 6.6

Attention-on-Mov 74.2 ± 1.0 56.8 ± 1.7 67.9 ± 1.2 -25.4 ± 7.9 18.4 ± 4.7 7.0 ± 7.0
Attention-on-Car 76.1 ± 0.9 57.4 ± 1.6 68.3 ± 1.1 13.1 ± 7.5 -1.0 ± 4.3 -12.1 ± 6.7

Bilinear 76.9 ± 0.9 57.6 ± 1.7 68.0 ± 1.2 26.4 ± 7.2 -20.1 ± 3.6 -6.3 ± 6.8

ResDeepCNN

Concatenation 76.5 ± 0.9 57.6 ± 1.7 68.6 ± 1.2 47.2 ± 7.4 -0.2 ± 4.1 -47.0 ± 6.6
Addition 76.2 ± 0.9 57.7 ± 1.7 68.8 ± 1.2 25.0 ± 7.4 7.6 ± 4.3 -32.6 ± 6.6

Attention-on-Mov 75.9 ± 0.9 58.1 ± 1.7 69.0 ± 1.1 -0.2 ± 7.5 10.0 ± 4.3 -9.8 ± 6.7
Attention-on-Car 75.5 ± 0.9 58.2 ± 1.7 68.8 ± 1.2 -5.1 ± 7.5 13.2 ± 4.6 -8.2 ± 6.6

Bilinear 77.0 ± 0.9 58.7 ± 1.6 68.6 ± 1.1 39.9 ± 7.1 -13.1 ± 3.9 -26.8 ± 6.5

Table B.6 Three-stage sleep classification results (mean ± standard error at 95% confidence interval)
for each combination of fusion strategy and method with the MESA test dataset using the ACT-HRS
evaluated at subject level during the recording period based on the window length of 21.

Fusion Specifics Performance Metrics Time Deviation (min.)

Fusion Strategy Network Fusion Method Accuracy (%) Cohen’s κ Mean F1 (%) Non-REM sleep REM sleep Wake

Early-Stage Fusion
DeepCNN Concatenation 75.7 ± 1.0 56.7 ± 1.8 67.2 ± 1.3 40.0 ± 6.9 -11.1 ± 3.9 -28.9 ± 6.5

ResDeepCNN Concatenation 76.0 ± 0.9 56.9 ± 1.8 66.8 ± 1.3 63.1 ± 7.3 -17.3 ± 3.6 -45.9 ± 6.8

Late-Stage Fusion
DeepCNN

Concatenation 78.4 ± 0.9 61.7 ± 1.8 70.2 ± 1.3 20.8 ± 6.9 -10.9 ± 3.7 -9.8 ± 6.4
Addition 77.6 ± 0.9 60.5 ± 1.8 69.2 ± 1.2 34.3 ± 6.9 -8.6 ± 3.9 -25.7 ± 6.5

ResDeepCNN
Concatenation 78.0 ± 1.0 62.4 ± 1.7 71.1 ± 1.2 2.8 ± 7.2 3.3 ± 4.1 -6.1 ± 6.4

Addition 77.5 ± 0.9 61.1 ± 1.8 70.3 ± 1.2 16.8 ± 6.9 2.4 ± 4.0 -19.2 ± 6.5

Hybrid Fusion

DeepCNN

Concatenation 77.2 ± 1.0 60.3 ± 1.7 69.7 ± 1.3 12.5 ± 7.5 -0.5 ± 4.4 -12.0 ± 6.5
Addition 76.6 ± 1.0 59.7 ± 1.8 69.7 ± 1.3 14.2 ± 7.4 13.4 ± 4.6 -27.6 ± 6.5

Attention-on-Mov 77.5 ± 1.0 61.2 ± 1.7 70.5 ± 1.3 35.3 ± 7.3 5.7 ± 4.8 -40.9 ± 6.4
Attention-on-Car 77.8 ± 0.9 60.4 ± 1.7 68.5 ± 1.3 45.2 ± 7.1 -20.6 ± 3.8 -24.7 ± 6.4

Bilinear 77.1 ± 1.0 60.8 ± 1.7 70.6 ± 1.2 5.4 ± 6.9 12.2 ± 4.4 -17.7 ± 6.2

ResDeepCNN

Concatenation 76.7 ± 1.1 60.7 ± 1.9 70.6 ± 1.3 6.2 ± 7.9 23.4 ± 5.4 -29.6 ± 6.3
Addition 76.7 ± 1.1 61.3 ± 1.8 70.9 ± 1.3 -27.4 ± 7.2 23.5 ± 4.8 3.8 ± 6.6

Attention-on-Mov 78.7 ± 0.9 62.2 ± 1.7 70.0 ± 1.3 43.9 ± 6.9 -17.6 ± 3.8 -26.3 ± 6.4
Attention-on-Car 78.3 ± 0.9 62.2 ± 1.7 70.6 ± 1.3 37.7 ± 7.1 -4.7 ± 4.4 -33.0 ± 6.2

Bilinear 76.8 ± 1.0 59.1 ± 1.8 69.6 ± 1.2 24.0 ± 7.0 6.7 ± 4.2 -30.6 ± 6.2

Table B.7 Three-stage sleep classification results (mean ± standard error at 95% confidence interval) for
each combination of fusion strategy and method in the MESA test dataset using the ACT-HRV feature set
evaluated at subject level during the recording period based on the window length of 51.

Fusion Specifics Performance Metrics Time Deviation (min.)

Fusion Strategy Network Fusion Method Accuracy (%) Cohen’s κ Mean F1 (%) Non-REM sleep REM sleep Wake

Early-Stage Fusion
DeepCNN Concatenation 75.9 ± 0.9 57.0 ± 1.7 67.5 ± 1.2 34.7 ± 7.0 -10.2 ± 3.7 -24.6 ± 6.6

ResDeepCNN Concatenation 75.4 ± 0.9 56.0 ± 1.7 67.2 ± 1.2 8.5 ± 7.1 -10.9 ± 3.7 2.4 ± 6.7

Late-Stage Fusion
DeepCNN

Concatenation 76.0 ± 0.9 57.5 ± 1.7 68.0 ± 1.1 12.1 ± 7.1 -4.5 ± 3.9 -7.6 ± 6.5
Addition 74.4 ± 0.9 54.4 ± 1.7 64.0 ± 1.2 26.7 ± 7.7 -21.6 ± 3.8 -5.1 ± 7.2

ResDeepCNN
Concatenation 76.2 ± 0.9 58.2 ± 1.7 68.0 ± 1.2 16.7 ± 6.9 -7.1 ± 3.8 -9.6 ± 6.5

Addition 75.3 ± 0.9 56.0 ± 1.7 65.4 ± 1.2 38.7 ± 7.6 -19.2 ± 3.8 -19.5 ± 7.0

Hybrid Fusion

DeepCNN

Concatenation 75.8 ± 1.0 57.5 ± 1.7 68.5 ± 1.2 21.2 ± 7.7 3.6 ± 4.4 -24.8 ± 7.0
Addition 75.2 ± 1.0 57.0 ± 1.8 68.5 ± 1.2 11.3 ± 7.4 21.4 ± 5.2 -32.7 ± 6.7

Attention-on-Mov 75.4 ± 1.0 56.7 ± 1.7 67.7 ± 1.2 15.3 ± 7.5 3.9 ± 4.9 -19.3 ± 6.7
Attention-on-Car 74.3 ± 1.0 56.6 ± 1.7 67.8 ± 1.2 -14.6 ± 7.5 14.7 ± 4.6 -0.1 ± 6.5

Bilinear 74.9 ± 1.0 57.4 ± 1.8 68.3 ± 1.2 -13.4 ± 7.9 8.6 ± 4.3 4.7 ± 7.2

ResDeepCNN

Concatenation 75.5 ± 1.0 57.1 ± 1.8 68.7 ± 1.2 19.8 ± 7.4 20.8 ± 5.0 -40.6 ± 6.6
Addition 76.2 ± 0.9 58.4 ± 1.7 69.0 ± 1.2 19.6 ± 7.1 -0.9 ± 4.1 -18.7 ± 6.6

Attention-on-Mov 76.0 ± 1.0 58.7 ± 1.8 69.0 ± 1.2 18.5 ± 7.4 10.3 ± 4.9 -28.8 ± 6.4
Attention-on-Car 75.4 ± 1.0 58.0 ± 1.7 68.6 ± 1.2 1.5 ± 7.5 12.9 ± 4.8 -14.4 ± 6.5

Bilinear 76.4 ± 0.9 58.7 ± 1.8 68.8 ± 1.2 37.8 ± 7.1 -0.8 ± 4.1 -36.9 ± 6.5

Table B.8 Three-stage sleep classification results (mean ± standard error at 95% confidence interval)
for each combination of fusion strategy and method with the MESA test dataset using the ACT-HRV
evaluated at subject level during the recording period based on the window length of 21.
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