
Compositional Techniques and
Tools for Constructing and

Analysing Boolean Networks

Hanin Abdulrahman

School of Computing
Newcastle University

This dissertation is submitted for the degree of
Doctor of Philosophy

March 2023

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this thesis are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university.
Throughout this thesis, I used plural pronouns, which does not indicate multiple
authorship unless stated explicitly.

Hanin Abdulrahman
March 2023

Acknowledgements

First and foremost, I gratefully acknowledge the deepest gratitude to my supervisor,
Jason Steggles, for his great guidance and wise supervision. He always made time
for meetings to ensure that my work was proceeding smoothly. Without his great
and continuing support and encouragement, this research would never have become a
reality. I would also like to thank Hanadi Alkhudhayr for many interesting discussions
on Boolean network composition.

During this journey, I could not have survived without my family. My husband
KHALED and my two wonderful daughters TALA and SEBA, you gave me the strength
to continue through your absolute love, support, understanding and patience. My
parents Yahya and Horeyah, your unconditional love, continuous support and prayers
influence my life. My sisters and brothers, Ebtihal, Rahaf, Yasser, Marwan and Amer,
you have given me nothing but love and support throughout this work. I thank God
for all the things that have happened to me in my life.

I would like to thank my friends who shared the happiness with me and supported
me through all of the hard times on this journey: Aisha Blfageh, Aisha Alarfaj,
Amal Khalifah, Badreyah Almutairy, Ebtisam Abdulqader, Hadeel Alateeq, Hanadi
Alkhudhayr, Malak Alharbi and Shaimaa Bajouda.

Finally, I gratefully acknowledge that this research has been supported by Princess
Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia, through their scholarship
programme, allowing me to further my studies experience.

Abstract

Boolean networks are an important qualitative modelling approach that are widely
used in biological modelling. In particular, attractor analysis (i.e. finding key cyclic
behaviour) has been a crucial tool for analysing biological systems. The practical
application of Boolean networks is limited by the state space explosion problem. To
address this, researchers have considered applying compositional analysis techniques
to Boolean networks. Recently, a new compositional framework for constructing and
analysing Boolean networks was developed at Newcastle University. This framework
provides a foundation for both engineering Boolean networks and decomposing them
to aid analysis. While the initial results for this framework are interesting, its practical
application currently has some important limitations: the definition of a composition
is too restrictive, and it lacks support for compositional attractor analysis.

In this thesis, we set out to address these practical limitations of the existing
compositional framework for Boolean networks. We significantly strengthened and
extended this compositional framework by developing a new general structure for
compositions and by providing new results and techniques to compositionally identify
the attractors of a Boolean network. Our attractor analysis approach is based on
using strongly connected components to identify potential cyclic behaviour, taking into
account the interference arising from a composition, and then merging these cyclic
behaviour using an important new property called interference alignment. We began
by identifying attractors in a composition involving a set of two BNs and a set of three
BNs. However, it became clear that extending the results to multiple Boolean networks
with multiple entities to be merged was constrained by the complexity of the existing
compositional framework. Therefore, a new generalised version of a composition was
developed and the compositional attractor analysis techniques were then extended to
this new compositional approach.

To support the practical applications of our techniques of compositionally identifying
the attractors, a prototype support tool was developed. This involved developing

viii

a new algorithmic approach based on the underlying theoretical results we have
developed. During the development of the tool, two small case studies were undertaken
to gain insight into its practical application. The final tool was implemented, and its
performance was evaluated by using a series of compositional tests. Moreover, the
tool’s performance was compared to the performance of three mature tools from the
literature, and the results were very promising.

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Aim . 3

1.4 Overview of Objectives . 4

1.5 Contributions . 5

1.6 Awards, Presentations and Publications 7

1.7 Thesis Structure . 7

2 Background 11

2.1 Qualitative Modelling Approaches . 11

2.1.1 Boolean Networks (BNs) . 12

2.1.2 Multi-Valued Networks (MVNs) 12

2.1.3 Petri Nets (PNs) . 13

2.1.4 Process Algebras (PAs) . 14

2.2 Boolean Network . 14

2.2.1 Basic Definitions . 15

2.2.2 Existing Tool Support for BNs 19

x Contents

2.3 Boolean Networks and Biology . 24

2.3.1 Gene Regulatory Networks (GRNs) 24

2.3.2 Modelling GRNs Using BNs . 25

2.3.3 Attractor Analysis . 27

2.4 Boolean Network Composition . 28

2.4.1 Key Definitions and Results . 28

2.4.2 Behaviour Preservation . 31

2.4.3 Interference State Graph . 34

2.5 Related Work . 36

2.5.1 Compositional Techniques . 37

2.5.2 Decompositional Techniques . 39

2.5.3 Attractor Identification . 40

2.6 Conclusion . 41

3 Identifying Attractors for Basic Compositions 43

3.1 Introduction . 43

3.2 Compositionally Identifying Attractors 44

3.3 Developing Tool Support . 51

3.4 Case Study . 55

3.4.1 Qualitative Model for Cell Differentiation 55

3.4.2 Application of Our Approach 57

3.5 Extending Attractor Identification to Arbitrary Compositions 59

3.6 Conclusions . 61

4 Identifying Attractors for Generalised Compositions 65

4.1 Introduction . 65

4.2 New Formulation of Composition . 66

4.3 Identifying Attractors in a Composition 74

Contents xi

4.4 Conclusion . 83

5 Practical Application: Tool Support and Experimental Studies 87

5.1 Introduction . 87

5.2 Developing Tool Support . 88

5.2.1 Algorithm for Compositionally Analysing Attractors 89

5.2.2 Generating the Set of Aligned State Tuples 93

5.2.3 Computing Interference Aligned Next State Tuples 96

5.2.4 Complexity Analysis . 100

5.2.5 A Prototype Support Tool . 103

5.2.6 Improving the Efficiency of the Tool 106

5.3 Testing and Evaluating the Tool . 107

5.3.1 Performance Testing . 107

5.3.2 Performance Comparison . 113

5.4 Case Study . 115

5.5 Conclusions . 120

5.5.1 Algorithm . 120

5.5.2 A Prototype Support Tool . 121

5.5.3 Performance Testing and Evaluation 122

5.5.4 Case Study and Decomposition 122

6 Concluding Remarks 125

6.1 Summary . 125

6.2 What has been achieved . 127

6.3 Challenges . 130

6.4 Future Work . 131

Bibliography 135

xii Contents

Appendix A Test Models 153

A.1 Submodels’ SCCs . 153

A.2 Compositions . 157

List of Figures

2.1 Example of a Boolean Network BN Ex consisting of: (A) interaction
graph; (B) next–state functions; and (C) state transition graph 15

2.2 State transition graph represents the asynchronous update semantics of
BN Ex in Figure 2.1. 18

2.3 Sample regulatory network consisting of four genes X, Y, Z1 and Z2.
Regulation of gene expression occurs at different levels, adapted from [1]. 25

2.4 A logical model of the fission yeast cell cycle (based on [2] and transcribed
using GINsim [3]). 26

2.5 Pictorial representation of composing two Boolean networks on entities
BN 1 and BN 2 to form a new Boolean network C by merging entities
g1

1 ∈ BN 1 and g2
1 ∈ BN 2 into a new entity gc (based on [4]). 29

2.6 The interaction graph, next–state functions and state graphs for two
example Boolean Networks BN Ex1 and BN Ex2. 31

2.7 Composed model C(BN Ex1,BN Ex2, g
1
1, g

2
1) resulting from composing

BN Ex1 with BN Ex2 on g1
1 and g2

1 using conjunction. 32

2.8 The interference state graphs for BN Ex1 and BN Ex2 induced by the
composition C(BN Ex1,BN Ex2, g

1
1, g

2
1). 35

3.1 The SCCs for the composition C(BN Ex1,BN Ex2, g
1
1, g

2
1), where φ1

1 and
φ1

2 are from SGg1
1
(BN Ex1), φ2

1 is from SGg2
1
(BN Ex2). 45

xiv List of Figures

3.2 Interference aligning a path in φ1
2 with a path in φ2

1 starting with the
pair (011, 00) followed by (000, 00), then we end with the repeated pair
(011, 00), which means we found the attractor. Then by merging the
cyclic paths on g1

1 in BN Ex1 and g2
1 in BN Ex2 using AND, we identify

the composed model attractor [0110, 0000, 1010, 0110]. 54

3.3 The BN model BN Cc based on the model of the regulatory network for
cell differentiation in C. crescentus developed by [5, 6]. 56

3.4 Subnetworks BN Cc1 and BN Cc2 of the qualitative model BN Cc (based
on [5, 6]), where a node CtrA is shared between them and named CtrAa

in BN Cc1 and CtrAb in BN Cc2. 57

3.5 The identified SCCs φ1
1 and φ1

2 for SGCtrAa(BN Cc1)) (state order is
CtrAa , GcrA, DnaA, CcrM, SciP), and φ2

1 and φ2
2 for SGCtrAb

(BN Cc2))
(state order is CtrAb, DivK, P leC, DivJ, DivL, CckA, ChpT, CpdR,

ClpXP −RcdA). 58

3.6 Pictorial representation of composing BN 1, BN 2 and BN 3 by merging
g1

1, g2
1 to form gc

1 and then merging gc
1 with g3

1 which resulted in a merged
entity gc

2 in the final model. 60

3.7 Pictorial representation of composing BN 1, BN 2 and BN 3 by merging
g1

1, g2
1 to form a first merged entity gc

1 and merging g2
2 and g3

1 to form a
second merged entity gc

2. 60

3.8 Pictorial representation of sequentially composing multiple Boolean
networks BN 1, ...,BN v to form a composed system Cv, adapted from
[4]. We consider tow cases of merging entities: (1) merging distinct
entities from each BN j that for each j ∈ {1, ..., v} we have hj

1 ̸= hj
2.

We end up with multiple new merged entities, such as gc
2, ..., g

c
v; and (2)

merging same entities from each BN j that for each j ∈ {1, ..., v} we
have hj

1 = hj
2. This composition results in a single new merged entity

called gc
v. 61

4.1 Pictorial representation of a composition involving five Boolean networks
BN 1, ...,BN 5 where thick blue edges represent the entities used in the
composition. 67

4.2 Six further example Boolean networks MEx1, MEx2, MEx3, MEx4,
MEx5 and MEx6. 68

List of Figures xv

4.3 An example composition ΣEx in which the six Boolean networks MEx1, . . . ,

MEx6 are composed (where the thick blue edges represent entity com-
position) resulting in the composed entities gc

1 = {g1
1, g

3
2, g

4
2, g

5
2}, gc

2 =
{g2

1, g
5
1, g

6
1}, gc

3 = {g3
3, g

6
2}. 69

4.4 The interference state graphs for MEx1, MEx2, MEx3, MEx4, MEx5

and MEx6 induced by the composition ΣEx. 73

4.5 The SCCs that arise for the example composition ΣEx. 75

5.1 Labelling the four possibilities for the next state in the SCCs. 97

5.2 Example of the next steps for the three aligned states 00, 00 and 00 in the
SCCs of three Boolean networks BN 1, which has one composed entity g1

1,
BN 2, which has two composed entities {g2

1} and BN 3, which composed
on g3

1. It assumes that its composed model entities are gc
1 = {g1

1, g
2
1}

and gc
2 = {g2

2, g
3
1}. 100

5.3 Logical implementation steps of the tool. 103

5.4 A series of test models BN 1
T est, BN 2

T est, BN 3
T est, BN 4

T est, BN 5
T est,

BN 6
T est, BN 7

T est, BN 8
T est and BN 9

T est which are then composed to create
test cases. 108

5.5 Graph to represent the relationship between the number of entities and
runtime of the findAtt algorithm based on the results summarised in
Table 5.4. 110

5.6 Graph to represent the relationship between the number of entities and
runtime of the findAtt algorithm based on the results summarised in
Table 5.5. 111

5.7 Graph to represent the performance comparison between four tools,
findAtt, BoolNet, BoolSim andBNS, based on the results summarised
in Table 5.7. 115

5.8 A Boolean network BN T LGL modelling the signalling pathways involved
in T-LGL based on the model constructed in [7]. 116

5.9 The composition ΣT LGL consisting of the three Boolean networks BN 1
T LGL,

BN 2
T LGL, and BN 3

T LGL and the set of composed entities {{S1P1, S1P2},
{DISC1, DISC2}}. 117

xvi List of Figures

5.10 The SCCs identified for BN 1
T LGL, BN 2

T LGL, and BN 3
T LGL based on the

composition ΣT LGL. 118

A.1 The SCCs identified for BN 1
T est, BN 2

T est, BN 3
T est, BN 4

T est, BN 5
T est and

BN 6
T est. 154

A.2 The SCCs identified for BN 7
T est, where the composed entities are g7

1 and
g7

3. 155

A.3 The SCCs identified for BN 8
T est, where the composed entities are g8

1. . 155

A.4 The SCCs identified for BN 9
T est, where the composed entities are g9

1. . 156

List of Tables

2.1 Summary of available tools and their features 23

5.1 The data structure ΦEx which contains the information for the SCCs
associated with ΣEx (see Figure 4.5). 91

5.2 Summary of the generation of aligned state tuples for ΣEx. The first
column shows the resulting T , the second column shows the aligned
key states based on T , and the final one illustrates the total number of
aligned state tuples for each row. 96

5.3 Pre-processing step of labelling each state in the SCCs data structure
ΦEx which contains the information for the SCCs associated with ΣEx

(see Figure 4.5). 98

5.4 Test Results for the first experiment, where series of test cases created
using the test models of BN 1

T est, BN 2
T est, BN 3

T est, BN 4
T est, BN 5

T est and
BN 6

T est. 109

5.5 Test Results for the second experiment, where series of test cases created
using the test models of BN 1

T est, BN 2
T est, BN 3

T est, BN 4
T est, BN 5

T est,
BN 6

T est and BN 7
T est. 110

5.6 Test Results for the third experiment, where series of test cases created
using the test models of BN 1

T est, BN 2
T est, BN 3

T est, BN 4
T est, BN 5

T est,
BN 6

T est, BN 7
T est, BN 8

T est and BN 9
T est. 112

5.7 Performance comparison between four tools findAtt, BoolNet, BoolSim
and BNS, where the test models are based on the first experiment. . . 114

5.8 Summary of the SCCs identified for BN 1
T LGL, BN 2

T LGL, and BN 3
T LGL

based on the composition ΣT LGL. 117

xviii List of Tables

A.1 Test models used in the first experiment. 157

A.2 Test models used in the second experiment. 163

Chapter 1

Introduction

1.1 Context

Qualitative modelling techniques [8, 9] have increasingly represented a key tool in
modelling and analysing biological systems since they avoid the need for problematic
quantitative data concerning reaction rates. Such techniques afford useful approaches
to enabling development methods and tools for analysing and synthesising large
biological systems such as gene regulatory networks (GRNs) [10, 9], signal transduction
networks (STNs) [11, 12] and metabolic pathways (MPs) [13, 14]. A wide range of these
approaches, including Boolean networks (BNs) [15, 16], multi-valued networks (MVNs)
[17–19] and Petri nets (PNs) [20–22], have been successfully used to gain important
insights into biological systems.

BNs are a qualitative modelling approach that has been widely used to model and
analyse biological systems (e.g. [23–27, 2]). The modelled systems can be analysed by
identifying their attractors (i.e. key cyclic behaviour) and this can provide important
biological insights [28, 7]. BNs were first introduced by Kauffman (1969) to study the
dynamical properties of GRNs [15, 16], then by Thomas (1973), who described the
complex dynamics of GRNs by developing an asynchronous logical approach [29, 24].
In recent years, they have been successfully used to model and analyse GRNs in the
context of expression pattern prediction [23], cellular states (e.g. proliferation, apoptosis
and differentiation) [28] and evolution [30]. A wide range of biological regulatory
networks have been modelled and analysed by BNs, such as the mammalian cell cycle
[25], the expression of Drosophila segment polarity genes [23], the yeast cell cycle [31]
and the differentiation of T-helper cells [32].

2 Introduction

In structure, a BN is a qualitative formalism consisting of a set of entities (e.g.
genes, proteins and mRNAs) whose states are either 0 (i.e. inactive) or 1 (i.e. active),
and whose regulatory interactions among the entities are based on specified next-
state Boolean functions. Transitions between states are normally either asynchronous,
meaning that each entity updates its state separately or synchronous, meaning that
all entities update their states simultaneously. A range of other update semantics,
such as sequential and block-sequential asynchronous, have also been considered in the
literature [33]. In this research, we focus on synchronous BNs, which are considered to
be important and helpful in studying the dynamics of modelled biological systems, as
they are simple to interpret [34] and are appealing for automated analysis, because
there is a deterministic pathway through the state space. Furthermore, synchronous
BNs have been well studied in the literature to date [15, 10, 35–37].

In a synchronous BN, any sequence of consecutive state transitions of a BN even-
tually converges to cycles called attractors. They represent an important dynamical
property of modelled systems, which can subsequently be linked to biological phenom-
ena. Attractors are widely considered in analysing biological systems (see for example
[38–41]). They correspond to different cellular phenotypes, including proliferation
(cell cycle), apoptosis (programmed cell death) and differentiation (execution of tissue-
specific tasks) [42, 43, 28]. For example, in [44], attractors of the Arabidopsis thaliana
flower organ specification GRN correspond to the wild-type gene expression patterns
of inflorescence, sepal, petal, stamen and carpel primordial cells during the different
stages of flower development.

Modelling and analysing large-scale regulatory systems using BNs is a key challenge
due to the state space explosion problem [45]. For n entities in a BN, the state space
has 2n states. This exponential growth in states severely restricts size of the models
from being practical to analyse. This has motivated many researchers to investigate
new techniques and tools to address the state space explosion problem and practical
analysis (e.g. [46, 47, 36, 48]).

1.2 Motivation

Developing new approaches to overcome the exponential growth of the state space
problem is crucial to enabling the practical application of BNs for modelling and
analysing complex systems [28, 7]. To address this limitation researchers have considered
applying compositional and decompositional techniques to BNs (for example, see

1.3 Aim 3

[47, 36, 49–51]). The compositional approaches allow complex models to be constructed
from smaller ones, such that their properties can be analysed without considering
the entire model. This approach also allows the inference of the composed model’s
behaviour from the underlying BNs in order to address the limitations imposed by the
state space explosion problem. It provides a potential way to decompose models by
breaking a model into sub-models, and referring to its properties in light of distinct
components which can accommodate the complexity of analysing and gaining insights
into complex systems’ dynamics.

An interesting new compositional framework for BNs was proposed by Alkhudhayr
and Steggles [48, 49, 4]. The basic idea of that framework is composing synchronous
BNs by merging entities using logical connectives (e.g. conjunction and disjunction).
The compositional techniques in this framework allow the construction of BNs to aid
in engineering large models, and from an analytical point of view, so far, the focus
has been on behaviour preservation [49, 48, 4]. However, more work is required to
facilitate its practical application. This thesis considers using this developed framework
practically to engineer and analyse biological systems. We identified two limitations
that need to be addressed in this framework. First, it does not support BN attractor
analysis, which is a crucial point of interest in analysing biological systems [28, 7].
Second, the form of compositions is currently restricted to a sequential structure of a
composition. Therefore, we focus on extending the existing framework by developing
new techniques and tools to identify BN attractors compositionally, and generalising
the concept of a composition to facilitate the engineering and analysing biological
systems.

1.3 Aim

The aim of this PhD research is to:

Develop practical compositional techniques and tools to support engineering and analysing
BNs by extending an existing compositional framework [48, 49, 4].

This project focuses on extending an existing compositional framework [48, 49, 4].
During this work, it became clear that there were two main limitations which needed
to be addressed for this framework:

4 Introduction

• Lack of techniques and tools for compositional attractors analysis.
The existing framework provides analysis techniques based on behaviour preser-
vation and does not provide facilities for compositionally identifying attractors.

• Restricted compositional structure.
The current one is based on two BNs or a sequence of BNs being composed
together and that places some restrictions and limits the practical application.

1.4 Overview of Objectives

Based on the aim and the ideas introduced in Section 1.3, the following objectives were
identified:

1. Research

1.1. To study BNs and produce a comprehensive introduction to BNs.

1.2. To research the existing compositional framework with focus on its practical
limitations.

1.3. To research existing work on attractors identification and analysis.

2. Theory

2.1. To develop new definitions and results for compositional attractor analysis based
on the existing compositional framework (where a composition is restricted to
two BNs).

2.2. To generalise the existing compositional framework to support arbitrary com-
positions involving multiple BNs and entities.

2.3. To extend the definitions and results of attractor analysis in Objective 2.1 to
apply them to the generalised composition structure.

3. Tools

3.1. To develop techniques and algorithms for implementing the results of Objective
2.1 and Objective 2.3.

3.2. To develop a prototype support tool for applying the techniques and algorithms
of Objective 3.1.

3.3. To evaluate the practical performance of the developed techniques and tools.

1.5 Contributions 5

1.5 Contributions

The following are the key contributions of this PhD project:

1. Develop a novel compositional approach for attractor analysis
A significant contribution of this PhD thesis is the development of a new theoretical
basis for compositionally identifying attractors in an arbitrary composition involv-
ing multiple BNs. This new approach is an important extension to the existing
framework, and significantly different to other approaches that exist in the literature
(see the discussion of related work in Section 2.5.3). The basic idea of this approach
is based on analysing the interference state graph [49], a state graph that extends a
BN’s normal behaviour with additional dynamics that can occur due to interference
from a composition. We identify the strongly connected components (SCCs) [52]
associated with the interference state graphs for the underlying BNs, and then
selectively merge their cyclic behaviour using an important new property called
interference alignment.

The initial work focused on a set of two BNs and a set of three BNs involved in a
composition, and developed theoretical definitions and results to identify attractors
of a composed model. We formally show that our approach is correct by proving that
it is sound (all attractors found are present in the composed model) and complete
(every attractor in the composed model is found using the approach).

The initial work on attractor analysis was extended to consider an arbitrary com-
position consisting of multiple BNs merged on multiple entities. This has resulted
in a new approach to defining a composition (see Contribution 2), and involved
extending the results.

2. Generalise the compositional definition to allow arbitrary compositions
Another significant contribution is the generalisation of the definition of a composi-
tion to allow arbitrary compositions based on an underlying graph structure. In
association with that, we set new definitions and notations to support the generalised
composition. This is very important in taking the step from identifying attractors
in a composition consisting of two BNs to an arbitrary structure of a composi-
tion consisting of multiple BNs. In addition, this work facilitates the practical
application of the existing framework to real biological systems. Importantly, the
generalised definition simplifies the presentation of key definitions and results for
the compositional framework.

6 Introduction

3. Develop a prototype support tool for attractor analysis
We develop algorithms for the new theoretical basis for attractor analysis (see
Contribution 1). Initially, an algorithm was developed for an attractor identification
in the composed model involving two BNs. Then, based on this algorithm we
develop a new algorithm to support the identification of attractors in a composed
model of multiple BNs based on the extended theoretical results. Our algorithmic
approach uses a new notion of aligned state tuples, that is, a collection of states
for the underlying BNs’ SCCs, which are consistent with each other. We make a
transitional step to a new aligned state tuple based on the new definition of an
interference aligned next state tuple. We then prove that there is, at most, one
interference aligned next state tuple for each aligned state tuple. We consider how
to efficiently generate aligned state tuples, and maximise efficiency by ordering
underlying BNs heuristically based on a new formula called impact factor. We
attempt to generate a sequence of interference aligned next state tuples until a
repeated aligned state tuple is reached, indicating that the set of interference aligned
cyclic paths required to form attractors has been found. We also consider how
to efficiently compute the interference aligned next state tuple to ensure that the
algorithm developed is practical. We analyse the complexity of the key parts of the
algorithm.

We place a strong emphasis on ensuring that we have a support tool to automate our
developed approach and assist our investigations and results. We use the developed
algorithms for identifying attractors to implement a prototype support tool in
Python. This tool takes BNs’ state graphs in a DOT format [53] with details of
composed entities and return composed model attractors. The tool development
involved several iterations to improve its efficiency. Two case studies are considered
to apply the techniques and tools developed. The first case study is based on a BN
model of a regulatory network responsible for cell differentiation in the bacteria
Caulobacter crescentus [5, 6]. The second case study is based on a BN model [7]
for the signalling network underpinning T cell large granular lymphocyte (T-LGL)
leukemia [54]. Although these models are small, they provide important initial
insights into how we could apply our techniques to biological examples.

4. Evaluate tools and techniques developed
We evaluate the developed tool using a series of performance tests by undertaking
three experiments based on scalable test models. We utilise a set of nine submodels
and using them to create a series of compositional tests. The first experiment looks
at the general performance of the tool while the second one considers how the

1.6 Awards, Presentations and Publications 7

performance is impacted by using models with more complex behaviour designed to
stress the tool. In the third experiment, we attempt to increase the size of attractors
between sizes five and 14 to observe how our tool performs. The results show that
our tool performed better in the first experiment than in the second one. The third
one suggests that the size of the attractors does not affect the performance of the
tool. We compare the results of the first experiment to results obtained with three
existing attractor identification tools BoolNet [55], BNS [35] and BoolSim [56]. The
initial performance results were poor, and the tool underwent several improvements,
as a result of the testing results. The final performance results show that our tool
performs well in comparison with other tools, but the tests 16–20 indicate that
further efficiency improvements must be considered in the future.

1.6 Awards, Presentations and Publications

During the research journey, the initial results of this project, along with some chapters
of this thesis, have been presented in the following ways:

• The PhD Poster Presentation day for the School of Computing at Newcastle
University, being awarded the prize for the best poster.

• Research work was presented at BCTCS & AlgoUK 2019 (35th British Colloquium
for Theoretical Computer Science 2019 conference).

• A paper based on the work presented in Chapter 3 has been accepted to the
international conference workshop BIBM 2021 Workshop, IWBNA (Interna-
tional Workshop on Biological Network Analysis and Integrative Graph-Based
Approaches)1.

• A journal paper based on the work presented in Chapter 4 and Chapter 5 is in
preparation to be submitted to the journal Biosystems2.

1.7 Thesis Structure

This thesis consists of six chapters which are organised as follows.

1https://ieeebibm.org/BIBM2021/
2https://www.sciencedirect.com/journal/biosystems

8 Introduction

Chapter 2 Background
This chapter provides an overview of the qualitative modelling approaches. In par-
ticular, it focuses on the basic definitions for BNs, and summarises various existing
tools which provide support for BNs. Following that, it explores their application
in biology. Then, we discuss the importance of attractor analysis in biology, and its
algorithms and techniques. Moreover, it introduces the key definitions and results of
the computational framework developed at Newcastle University. Finally, we discuss
related work, considering compositional and decompositional techniques for identifying
attractors and for BNs.

Chapter 3 Identifying Attractors for Basic Compositions
The third chapter presents a new approach for identifying attractors in a composed
model involving two BNs and the proofs of its soundness and completeness. Next, it
formulates the algorithm and develops support tool for compositionally identifying
attractors. Then, it illustrates the practical application of the developed tool support
with a case study. Finally, it provides an overview of extending the approach into
compositions of three BNs and a sequence of pairwise BNs based on the existing
framework.

Chapter 4 Identifying Attractors for Generalised Compositions
This chapter introduces the general definition of a composition involving multiple BNs
based on a graph structure. It presents the extended theoretical approach developed for
compositionally identifying attractors based on the general definition of a composition,
and this theoretical approach is illustrated by a composition example. We then prove
the correctness of the approach by showing its soundness and completeness.

Chapter 5 Practical Application: Tool Support and Experimental Studies
Here we formulate an algorithm based on the theoretical results to compositionally
identify attractors in an arbitrary structure of a composition. In addition, this chapter
presents the algorithm for generating aligned state tuples and the idea of computing
interference aligned next state tuples. Then, we discuss the implementation of the
prototype tool support and its efficiency challenges. Furthermore, we illustrate the
conducted experimental study, including its test models, experiments results and eval-
uation, and performance comparison to three existing tools. Finally, we illustrate the
practical application of the developed tools and techniques using a biological case study.

1.7 Thesis Structure 9

Chapter 6 Concluding Remarks
The conclusion of this thesis provides a brief summary of the key results. We discuss
what has been achieved, and some of the challenges we faced during this work. We
review a number of interesting areas of future research that can be explored to take
this work forward.

Chapter 2

Background

This chapter provides an overview of the background details required for this thesis.
We start with an overview of the existing qualitative modelling approaches. Next, we
introduce the background on BNs, which is the key formalism we use throughout this
thesis. This section starts by introducing the BN’s basic definitions. Subsequently, we
summarise the existing tool support for BNs. It follows by presenting their applications
in biology, in particular,the modelling of Gene Regulatory Networks (GRNs). Then, we
establish the importance of attractor analysis in biology and explore their identification
techniques. Following that, we introduce the background on the existing compositional
framework, which we are going to use throughout this thesis. Finally, we review
various works that are related to our work including compositional and decompositional
techniques and attractor identification.

2.1 Qualitative Modelling Approaches

Modelling biological systems as networks provides valuable insights into the dynamical
and structural properties of the modelled systems. One model used is quantitative
modelling, such as the differential equations model [57], enabling the modelling of
systems’ execution precisely, but requiring a number of parameters that are not always
available for many biological systems. The other approach involves qualitative modelling
approaches that operate on a high-level abstraction of the system’s dynamics. This
relies on the interactions between systems’ components, and represents them in graphs.
Furthermore, the approach allows the prediction of important properties, even when
some quantitative data of modelled systems are unknown [58]. Besides, it can cope with

12 Background

the complex network, and simplifies the biological reality. However, it cannot be used
to predict and explain the results of biological experiments that produce quantitative
data. For a comprehensive study of qualitative and quantitative modelling approaches,
see [59].

Qualitative modelling approaches have a wide range of techniques proposed in
the literature to address the complexity of biological systems [60], such as Boolean
networks (BNs) [15, 16, 29], Multi-valued Networks (MVNs) [61, 62], Petri nets (PNs)
[20, 63, 64] and Process Algebra (PA) [65].

2.1.1 Boolean Networks (BNs)

BNs [15, 16, 29] represent a qualitative modelling approach that is widely used to
model the interactions of biological systems. They were first introduced by Kauffman
[15, 16] as a formalism for modelling natural complex systems. His work influenced
Thomas [29, 66] to develop a sequential logical approach, based on Boolean formalising,
for describing asynchronous logic of gene regulatory networks (GRNs). The dynamic
interaction between entities is captured using next-state Boolean functions and these
are applied either synchronously [16] (all entities update their state simultaneously) or
asynchronously [67] (entities update their state independently).

BNs are based on using Boolean states (0 and 1) to model regulatory entities.
They have been shown to be an important tool for modelling and analysing biological
regulatory networks [31, 11, 68], and, in particular, attractor analysis (i.e. identifying
key cyclic behaviour) can provide important insights [28]. In practice, the application
of BN techniques is limited by the state space explosion problem, where the exponential
growth of the state space severely limits the size of the model. This limitation has
led to the development of compositional techniques to support BNs (for example, see
[47, 36, 49]). An overview of the BN extension formalism can be be found in [69, 70].
GINsim [71, 3], BNS [35] and BoolNet [55] are examples of tools for analysing BNs in
systems biology.

2.1.2 Multi-Valued Networks (MVNs)

MVNs [61, 62] are an extension of BNs, allowing the entity’s state to be with in range
of discrete values instead of just 0 or 1. Thus, they allow models different levels of
abstraction in biological systems to represent gene expression and protein activity

2.1 Qualitative Modelling Approaches 13

levels. Furthermore, they capture a large number of interactions between biological
components rather than merely activation and inhibition. For example, the active
components can take several values corresponding to different levels of gene expression
and protein activity, such as high, medium and low.

MVNs have been successfully applied to model biological systems, [70, 72, 19] and
have been well studied in circuit design [61, 73]. However, they suffer from the state
space explosion problem. Thus, in [74], an abstraction theory was developed to reduce
the state space of the original model. Other studies abstract MVN models by reducing
the number of regulatory entities (see for example [75, 76]). The above abstraction
models preserve the underlying dynamics of the systems. GINsim [71, 3] is an example
of tool support that provides an impressive array of techniques for modelling and
analysing asynchronous MVN models.

2.1.3 Petri Nets (PNs)

PNs were introduced by Carl Adam Petri in 1962 [77]. The theory of PNs [20, 64]
combines formal mathematical semantics and graphical representation for the modelling,
design, analysis and verification of concurrent distributed systems. A PN is a bipartite
graph consisting of places which contain tokens to indicate the presence of a resource,
and transitions, which represent actions. The distribution of tokens represents the
state of the PN, called a marking. The state space of a PN is, therefore, the set of all
possible markings. Tokens can then be moved around the net by firing transitions.
Thus, the behaviour of a system is simulated by using tokens.

PN representation of a system allows the analysing of its properties. Their be-
havioural properties [20], such as reachability, boundedness and liveness, are of interest
when formally analysing PN models of biological systems. One of the PN structural
properties based on the incidence matrix, aims to determine the invariants of the
net [78, 79]. Furthermore, they are able to model a system both qualitatively and
quantitatively [22]. As a consequence, they have been successfully applied in several
domains, such as biological systems [80, 81], hardware design [82], cyber attacks [83, 84],
and communication networks [85]. PNs have extensions formalism including Coloured
Petri nets (CPNs) [86], Stochastic Petri nets (SPNs) [87] and Time Petri nets (TPNs)
[88] which have been used to model metabolic pathways. Pathway Logic Assistant [89],
Snoopy [90] and GreatSPN [91, 92] are examples of important tools for PNs used in
biology.

14 Background

2.1.4 Process Algebras (PAs)

PAs are formal modelling languages for concurrent computation, and have been widely
used in the modelling and analysis of biological systems [93–96]. They provide tools
for describing the communication and synchronisation between a collection of agents or
processes which execute atomic actions. There is a wide variety of well-known process
algebras, such as CCS [97], CSP [98], PCCS [99], π-calculus [100] and Beta-binders
[101]. The classical ones are CCS and CSP, which are used for qualitative analysis
rather than quantitative. These PAs have many extensions to capture more information
about the system, such as probabilistic process algebras (e.g. PCCS) and stochastic
process algebras (e.g. PEPA [102]).

In biological systems, PAs can analyse and describe a biological system, and reason
about the interactions of the components. In particular, genes and proteins can be
abstracted as processes, and their interactions can be modelled as actions. They have
useful features that allow them to study biological systems. One such feature is that they
allow the formal specification of a system. Furthermore, they support compositionality
(i.e. defining the whole system from the properties of its subcomponents). In addition,
they offer different levels of abstractions for a system. Their effective techniques can
be used for simulation and reasoning about the possible behaviour. CADP [103] and
CWB (Concurrency Workbench) [104] are examples of tools for process algebra.

The remaining part of the chapter will provide an in-depth discussion of BNs, which
represent the focus of this research.

2.2 Boolean Network

Despite the conceptual simplicity of BNs, they have received much attention over the
last few decades in Bioinformatics [105, 14, 8, 10, 25], circuit theory and computer
science [106, 107], physics [108–110], geosciences [111, 112], social sciences [113–115]
and robotics [116, 117]. In this section, we introduce the basic definitions for BNs
required in the sequel, supported by illustrative examples. We then summarise a
selection of existing tool support related to the Boolean dynamic of regulatory systems.

2.2 Boolean Network 15

2.2.1 Basic Definitions

Boolean networks (BNs) [15, 16] represent a qualitative model that consists of a set
of regulatory entities which have a Boolean value, where 1 indicates that an entity is
active (e.g. a gene is expressed or a protein is present), and 0 indicates that an entity
is inactive (e.g. a gene is not expressed or a protein is absent). The state of each entity
is regulated by its neighbourhood entities (i.e. those entities which directly affect it).
The behaviour of each entity is determined by applying a next-state Boolean function
to the current state of its own neighbourhood (where an entity may or may not be a
member of its neighbourhood).

A BN is a directed graph BN = (G,N, F), where G = {g1, g2, ..., gn} is a set of
entities; N = {N(g1), N(g2), ..., N(gn)} is a finite set of neighbourhoods, where N(gi)
contains the entities that regulate the behaviour of gi; and F = {F (g1), F (g2), ..., F (gn)}
represents the next-state functions for each entity, where F (g1) : B|N(g1)| → B, B =
{0, 1}.

We define a BN more formally as follows ([118, 18]).

Definition 1. A Boolean Network BN is a tuple BN = (G,N, F) where:
i) G = {g1, ..., gn} is a non-empty, finite set of entities;
ii) N = (N(g1), ..., N(gn)) is a tuple of neighbourhoods, such that N(gi) ⊆ G is the
neighbourhood of gi; and
iii) F = (F (g1), ..., F (gn)) is a tuple of next-state functions, such that the function
F (gi) : B|N(gi)| → B defines the next state of gi.

g2

g3

g1 [g1] = g2
[g2] = g1 ∧ g3
[g3] = g1

000 001110 100

011 101

111

010

(A) (B) (C)

Figure 2.1 Example of a Boolean Network BN Ex consisting of: (A) interaction graph;
(B) next–state functions; and (C) state transition graph

A Boolean network BN consisting of n entities has a global state (s1 ... sn), where si

is a Boolean value representing the state of entity gi ∈ BN . The state space SBN = B|G|

of a Boolean network BN is defined to be the set of all possible global states. It is

16 Background

clear that if BN has n entities, then SBN = 2n. Transitions between global states
are either synchronous, meaning that all entities update their state simultaneously,
or asynchronous, meaning that individual entities update their own state separately
[119]. While there is one synchronous updating scheme, several asynchronous updating
schemes exist, such as the random order asynchronous updating scheme, the general
asynchronous updating scheme and the deterministic asynchronous updating scheme
[120].

We consider the synchronous update semantics here and we let S1
BN−→ S2 represent

a (synchronous) update step where S2 ∈ SBN is the global state that results from
simultaneously updating the state of each entity gi by applying its associated update
function F (gi) to the appropriate neighbourhood of states from S1. Note that for
any global state there is only one possible next state under the synchronous update
semantics.

As an example, consider a Boolean network BN Ex = (GBN Ex
, NBN Ex

, FBN Ex
)

defined in Figure 2.1, which contains three entities GBN Ex
= {g1,g2,g3}. Figure 2.1.

(A) shows the interaction graph of the entities and directed edges that specify the
neighbourhoods for activation or inhibition. For example, g1 activates g2, whereas g1

inhabits g3. The neighbourhood of N(g2) is {g1, g3} and the next-state function is
[g2] = g1 ∧ g3 as represented in Figure 2.1. (B), where the notation g1 ∨ g2, g1 ∧ g2, and
g1 are used to illustrate the logical operators OR, AND, and NOT, respectively. Given
a global state such as 101 (denoting that entity g1 = 0, g2 = 1, and g3 = 1) we can
apply the next–state functions to make a synchronous update step 101 BN Ex−→ 010.

Given SBN , a sequence of global states from some initial state in a model is called a
trace. This sequence is infinite under a synchronous update since they must ultimately
enter a cycle which we refer to as the attractor cycle [16, 29]. One such a trace of
BN Ex in Figure 2.1 is

111 BN Ex−−−→ 101 BN Ex−−−→ 010 BN Ex−−−→ 101 BN Ex−−−→ 010 BN Ex−−−→ 101 BN Ex−−−→ ...

which falls in the attractor 101 BN Ex−−−→ 010 BN Ex−−−→ 101 BN Ex−−−→ 010 BN Ex−−−→ We denote
an attractor by using this notation

[101, 010, 101]

2.2 Boolean Network 17

It should be noted that as the attractor is a cycle this attractor can be also represented
by [010, 101, 010]. We represent a trace σ(111) as

σ(111) = ⟨111, 101, 010, 101⟩

which specifies a trace up to the first repeated state. We let Tr(BN) refer to a set
of traces in a BN that capture all the behaviour under synchronous semantics. For
example, BN Ex (Figure 2.1) has |SBN Ex| = 8 traces as the following:

σ(011) = ⟨011, 101, 010, 101⟩
σ(101) = ⟨101, 010, 101⟩
σ(010) = ⟨010, 101, 010⟩
σ(111) = ⟨111, 101, 010, 101⟩

σ(110) = ⟨110, 100, 000, 001, 001⟩
σ(100) = ⟨100, 000, 001, 001⟩
σ(000) = ⟨000, 001, 001⟩
σ(001) = ⟨001, 001⟩

Attractor cycles capture the key behaviour of a BN and are important in biological
modelling, where they can be associated with biological phenomena (such as different
cellular types [28]). Thus, being able to identify the attractors of a BN is an important
analytic step. As mentioned above, traces must ultimately enter an attractor. There are
two attractors, as depicted in the state transition graph in Figure 2.1. (C): [010, 010],
which is called a point attractor and [101, 010, 101], which is called a cyclic attractor.
The number of states presented in the cycle is called a period. For example, the period
of this cyclic attractor [101, 010, 101] is two.

A state transition graph SGBN = (SBN ,
BN−→) is a graphical presentation of BN

dynamics which can be synchronous or asynchronous updates. An example of a state
transition graph under synchronous semantics is given in Figure 2.1. (C) for the Boolean
network BN Ex. Global states are represented by nodes and, edges denote transactions
between global states. A path α is a set of infinite or finite steps S1

BN−−→ S2
BN−−→

We use
α = ⟨S1, S2, S3, . . .⟩

such that Si ∈ SBN and Si
BN−→ Si+1, for i ∈ N, to represent an infinite steps path

in SGBN . One such path in Figure 2.1 is ⟨011, 101, 010, 101, ...⟩. Under synchronous
semantics, such paths are deterministic and infinite. We let Path(SG(BN)) represent
the set of all such (infinite) paths. It can be seen that infinite paths and traces are
equivalent under the synchronous update semantics. A path comes from a graph theory
perspective, and a trace comes from the standard notion of executing the model. For

18 Background

example, we have the infinite path ⟨000, 000, ...⟩ ∈ Path(SG(BN)) is equivalent to the
trace σ(000) = ⟨000, 000⟩ ∈ Tr(BN).

As mentioned above, in an asynchronous update semantic, each node updates
its status independently, and there are one or more possible states for each one.
Thus, multiple pathways can exist in the asynchronous dynamics, which leads to non-
determinism. As an example, consider the state transition graph under an asynchronous
update semantics represented in Figure 2.2. There are three possible next–states for
the global state 101 by applying next–state functions: 001 if we apply [g1]; 111 if we
apply [g2]; and 100 if we apply [g3]. It assumes that at each time step, only one entity
could be updated [56]. Point attractors could occur in synchronous and asynchronous
update semantics [56]; however, cyclic attractors rarely exist in asynchronous models
[67]. The asynchronous update semantics could reveal a complex attractor, which is
formed by overlapping loops [121]. It can be seen that the cyclic attractor [101, 010, 101]
in the synchronous model of the state transition graph in Figure 2.1. (C) has been
disappeared the asynchronous dynamics, as shown in Figure 2.2, but it has several
point attractors such as [000, 000] and [111, 111].

000

001

110

100

011

111

101

010

Figure 2.2 State transition graph represents the asynchronous update semantics of
BN Ex in Figure 2.1.

It has been argued that asynchronous updating is more representative of biological
systems [67]. However, asynchronous updating is complex to analyse, as it captures
too much behaviour that might be unrealistic in practice. In contrast, a synchronous
updating has a deterministic pathway, so it is simple to model and analyse. Furthermore,

2.2 Boolean Network 19

a substantial amount of research has been conducting regarding synchronous BNs (see
for example [35, 36, 122, 123, 37]).

2.2.2 Existing Tool Support for BNs

BNs have proven to be useful tools to analyse and simulate regulatory networks in a
qualitative manner [124]. Thus, numerous BN support tool have been produced to
help scientists to gain insight into the dynamical behaviour of regulatory networks. In
this section, we briefly review some of the existing software support for constructing
and analysing models of biological systems related to BNs.

GinSim

GinSim [71, 125, 3] is a Java software program for the qualitative modelling, analysis
and simulation of GRNs based on the logical formalism developed by Thomas and
colleagues [17, 70]. It leans on both Logical Regulatory Graphs (LRG), which model
regulatory networks and State Transition Graphs (STG), which represent their dynam-
ical behaviour. GinSim is a user-friendly program that enables editing, simulating and
analysis of the resulting behaviour. The graph editor allows the user to specify the
regulatory graph’s nodes and interactions, and to visualise it as a directed graph. For
each node, the maximal level and logical parameter can be defined. Once the genes
and interactions are specified, the simulation on the LRG results in an STG under
both the synchronous and asynchronous update semantics, as well as priority classes.
GinSim allows modification of the defined LRG in many different ways, such as reducing
LRG, reversing synchronous dynamics, defining perturbations of regulatory graphs and
compositing LRGs. The core of the analysis of an STG consists of attractors and the
stationary states identification, and determines the strongly connected components, as
well as the paths going through specific states. Static analysis for the LRG includes
circuit analysis, stable search analysis, trapspace search, and highlighting the local
graph. GinSim implements algorithms to decompose the complex regulatory graph
into elementary circuits and analyse their functionality (see [126] for more details). It
provides a feature to compose identical individual logical modules to obtain models of
inter-cellular regulation [50]. GinSim allows the export of the LRG to other modelling
formats (e.g. BoolSim [56], Truth table and Petri net) and allows the export of graph
structures to GraphViz [127], BioLayout [128] and Cytoscape [129].

20 Background

One of GinSim’s important features is that it provides a large number of functions
for Boolean and multi-valued logical models. In particular, to overcome the state
space explosion problem, they focus on a specific part of the STG by allowing the
user to choose a depth-first or a breadth-first search algorithm to explore the state
transition graph by specifying the maximal depth or limit for the nodes during the
search. Furthermore, an efficient algorithm computes all stable states using a Multi-
valued Decision Diagram (MDD). In addition, the size of a STG can be reduced
by grouping a set of states that belong to the same strongly connected components
into hyper-nodes. Interestingly, to increase STG compression, they introduce another
acyclic graph, called a hierarchical transition graph (HTG), which is based on merging
linear chains of states (in addition to cycles) into single nodes [130]. The resulting
graph conserves the important behavioural properties (e.g. attractors), but does not
fully preserve reachability properties. In addition, they provide an option to reduce
the regulatory graph by specifying the nodes to be reduced and recomputing their
functions. Although they provide many solutions to address the state space explosion
problem, their applications are limited to the size of the model.

BoolNet

BoolNet [55] is an R package for constructing, analysing and visualising synchronous,
asynchronous and probabilistic BNs. It includes reconstructing networks from time
series and natural-language statements. Its functions also include generating vari-
ous types of random networks, conducting robustness analysis via perturbation and
conducting Markov chain simulations. BoolNet supports several methods to identify
attractors of synchronous, asynchronous and probabilistic BNs. An exhaustive search
of all state-space or a heuristic search starting from several predefined or random states
are methods to find synchronous attractors. To calculate potential attractor states
and probabilities of reaching certain states for synchronous and probabilistic networks,
Markov chain simulations are used [69].

BoolNet includes the positive feature of providing some interesting tools for at-
tractor analysis such as providing a new random walk algorithm to identify complex
asynchronous attractors. Another interesting feature of the tool is its ability to integrate
well with existing modelling tools, such as BioTapestry [131] and Pajek [132]. Moreover,
the transition of attractors and a network wiring diagram can be visualised. To ensure
high performance for time-critical algorithms such as attractor identification, these
algorithms were implemented in ANSI C, which uses bit vectors. One disadvantage of

2.2 Boolean Network 21

BoolNet is that it requires programming skills. Another limitation is that this tool
does not provide any compositional or decompositional support. BoolNet is accessible
from 1.

BooleSim

BooleSim [133] is an open-source tool that can be run in a browser to simulate and
manipulate a synchronous BN. This tool was developed in Google’s Summer of Code
2012 (GSoC’12). It can be used to model and simulate GRN and signal transduction
networks. In addition, it supports the importing and exporting BNs in different formats,
including Python BooleanNet, R BoolNet and jSBGN formats [134]. These formats
are text-based and identify the nodes and their rules. When the user imports the
network, a BN graph is displayed using a force-directed graph layout algorithm from
the D3.js JavaScript library 2. The imported or constructed model can be simulated
and manipulated by virtue of its on-click functionality and the visualisation of a given
network’s dynamic properties. BooleSim allows inline editing of the functions of the
network and visualising of time series. During simulation, nodes change colour in
the interface and stop when a steady state appears. Once the system enters a cyclic
attractor, the simulation stops when the user clicks the simulate/pause button.

Unlike BoolNet, BooleSim is a highly interactive web-based tool, accessible online,
and requires no installation, downloading or basic programming skills. However, for
appropriate rendering, it does require a recent version of a browser that is compatible
with HTML5. One notable drawback is that it is difficult for the user to know exactly
the states involved in each attractor and it needs time to identify their sequence
transitions because they are represented as a grid or as an animation. Furthermore,
this online tool cannot visualise the state space. Generally, the tool is not affected
when the number of entities exceeds 20. BooleSim is open-source software and exists
in the GitHub repository at 3, and its online version is available at 4.

VisiBool

VisiBool [135] is a Java application for modelling, organising, simulating and visualising
BNs. VisiBool introduces optional time delays for synchronous BNs in the form of

1https://CRAN.R-project.org/package=BoolNet
2(http://d3js.org/)
3https://github.com/matthiasbock/BooleSim
4https://rumo.biologie.hu-berlin.de/boolesim/

22 Background

temporal predicates to model latency periods that might be more than one step between
gene expression. BNs can be constructed from scratch; loaded from different options
that exist in VisiBool files in XML format, BoolNet format (i.e. a text-based format) or
SBML format (i.e. based on the SBML-qual package); and saved in any of those formats.
VisiBool has a network panel to display a BN model as a graph representation, where
its nodes represent the regulatory factors and edges represent nodes’ dependencies.
The network is represented as a graph in five different layouts [136–138], with regular
entities as the graph’s nodes. The user is allowed to add or delete nodes and update
their Boolean functions via a text editor or through a tree-based graph representation.
VisiBool allows the running of several simulators in parallel. The simulator is based
on initial states that can be set by the user to compute attractors. VisiBool searches
for attractors in synchronous models and for steady state attractors in asynchronous
models for different experimental setups like knock-out experiments.

One of the tool’s advantages is its capacity to be run on different operating systems,
including OS X, Windows and Linux. In addition, the tool does not require the
installation of a specific version of Java, because the required JRE is included in the
executable file, and can interact with different BN tools because it is supported by
different file formats. However, the edges cannot be moved easily, and to make a
connection with other nodes, the manual function has to be entered. Furthermore,
the response time for some actions (e.g. adding a new node or showing a simulation)
increases as the number of nodes increases, especially when greater than 20. ViSiBooL
(Java 8) is freely available at 5.

PNST

PNST (Peckham’s Network Support Tool) [139] is a toolkit that supports generating and
visualising BNs and multi-valued networks. Users can construct and visualise a network
wiring diagram and its synchronous and asynchronous behaviour, including traces,
attractors and a state transition graph. The tool applies a state clustering technique
and asynchronous priority-based networks to address the state space explosion problem.
It was initially developed as part of an MSc dissertation project. Since then, it has been
expanded to incorporate the compositional framework results and techniques developed
at Newcastle University [48, 49, 4]. PNST automates the compositional construction
for two BNs and supports projection, alignments checks and compatibility checks

5http://sysbio.uni-ulm.de/?Software:ViSiBooL

2.2 Boolean Network 23

during the composition. PNST allows the importing of JSON Based Graph-Exchange
Formate (jSBGN) files, and supports exporting to Latex and GraphViz.

PNST is a user-friendly program that allows the generation, manipulation and
virtualisation of networks. It provides important tools to analyse the behaviour of a
BN. The user can either visualise traces and attractors in the state transition graph or
see them in the form of text. In addition, attractors can be highlighted in both text and
graph format. Besides, the analysis results can be exported into Latex or GraphViz.
The tool allows comparison of the results of the compatibility, alignment and weak
alignment by displaying the two networks compared, and through the settings can
be used to display the missing behaviour or errors in the system. However, the tool
performance is limited by the size of a BN, especially when the number of nodes is
more than 10 for opening a BN or more than 13 nodes when merging two BNs.

Table 2.1 Summary of available tools and their features

Features/Tool Support GinSim BoolNet BooleSim VisiBool PNST
Graphical User Interface ✓ ✓ ✓ ✓
Synchronous updates ✓ ✓ ✓ ✓ ✓
Asynchronous updates ✓ ✓ ✓ ✓
Construction ✓ ✓ ✓ ✓ ✓
Visualisation ✓ ✓ ✓ ✓ ✓
Attractors Identification ✓ ✓ ✓ ✓ ✓
Composition ✓ ✓
Decomposition ✓
Solutions for the state space
explosion problem ✓ ✓

Summary

In summary, the reviewed tools provide all the essential required functions to construct,
simulate and visualise BNs. However, GinSim produces advanced features, including
the ability to compose multiple LRGs and algorithms for decomposition. Further, it
addresses the state space explosion problem by compressing and specifying the search
limit of the STC and using MDD. BooleSim, VisiBool and PNST are easy-to-use tools
and do not require basic programming skills, unlike BoolNet. Attractors identification
is one of the main features on which previous tools have focused; however, some of them
use special algorithms to increase the performance in regard to finding the attractors.
GinSim uses MDD to compute stable states, and BoolNet implements attractors

24 Background

identification algorithms in ANSI C. Other tools such as Genetic Network Analyser
[140], SQUAD [141], CellNetAnalyzer [142], and Jimena [143], have implemented
algorithms for attractors identification. Table 2.1 provides a summary of the main
functions of the tools described here.

2.3 Boolean Networks and Biology

Modelling approaches such as Boolean network models [15, 16], multi-valued logical
models [61, 62] and Petri nets [20, 64] provide qualitative dynamic descriptions of system
behaviours. These approaches have been widely used to model large systems such as
biological networks. Among these models, BNs are very common in biology. They
have been successfully applied in modelling gene regulatory and signal transduction
networks [144, 145, 23, 54]. Using BNs to analyse human signalling networks associated
with diseases allows prediction of therapeutic targets [145, 7]. Besides, BNs have been
successfully used to identify specific regulatory interactions in gene regulatory networks
[146]. In addition, Boolean models have been used in reverse engineering, which focuses
on analysing and constructing biological networks (e.g. inferring regulatory interactions
from gene expression [147–149]).

The BN model is among the most common models for GRNs. One of the BNs’
properties is their simple nature, yet they are able to capture the complex dynamics
of GRNs. The dynamics of GRNs can be described by the state transitions in the
BN, and the activation and inhibition of the gene interactions are modelled as a set of
Boolean functions.

2.3.1 Gene Regulatory Networks (GRNs)

Proteins are the main players in cells, consisting of chains of amino acids, and attending
to various tasks essential for the survival of cells. The information that is required
to produce proteins is encoded in the genome, the entirety of genes located in DNA
(deoxyribonucleic acid). The process of gene expression to produce proteins has two
stages, transcription and translation, and it is highly regulated at different levels.
During the transcription stage, information from a gene is transcribed into messenger
RNA (mRNA), which is used to produce protein in the translation step. This process
is highly regulated and can be different in a wide range, allowing the organism to
adapt to external influences and environmental changes, and survive by maintaining

2.3 Boolean Networks and Biology 25

the metabolic processes [150]. For more details about GRNs and gene expression, see
[1, 151].

GRNs describe how cells control gene expression to produce proteins that are
essential for cellular function. This regulatory network consists of a set of genes and
their regulators, which are connected by physical or/and regulatory interactions that
control specific cell functions.

The regulation of gene expression occurs at different levels. A sample of a GRN
adapted from [1] is depicted in Figure 2.3, consisting of four genes X, Y, Z1 and Z2. As
an example of regulation, ProteinX binds to an operator O, and thus has a negative
influence on the transcription rates of genes X and Y . Operator is a DNA area with
binding sites for repressor, a molecule that inhibits gene expression.

DNA
O PX Gene X PY Gene Y PZ Gene Z1 GeneZ2

mRNA X mRNA Y mRNA Z1 mRNA Z2

Protein X Protein Y Protein Z1 Protein Z2

Transcription

Translation

activated Protein Z2

−P

Figure 2.3 Sample regulatory network consisting of four genes X, Y, Z1 and Z2.
Regulation of gene expression occurs at different levels, adapted from [1].

2.3.2 Modelling GRNs Using BNs

Biologists use GRNs to understand the relationships between genes that have similar
phenotypes. In addition, these networks can be employed to understand how infor-
mation flows in a biological system, and to model gene expression under different
conditions [152].

GRNs represent as directed graphs in computer models. Models such as Boolean
networks, differential equation models, Petri nets and Bayesian networks are examples
of computer models that have been used in the literature to model GRNs (see [15, 16, 1,
10, 8, 153]). In the BN model, genes (nodes) are treated as binary variables; therefore,
there can be only two states of expression: active or inactive (Figure 2.4 represents
the BN model of the fission yeast cell cycle, in which directed edges represent positive
interactions (activation), and flat edges represent negative interactions (inhibition)). A

26 Background

Start

SK

Cdc2_Cdc13

Ste9 Rum1

Slp1

Cdc2_Cdc13_A

Wee1_Mik1

Cdc25
PP

05/10/2021file:///C:/Users/b6001133/My-phd-thesis%202-9-21/Chapter2/Figs/fissionYeast.svg

Figure 2.4 A logical model of the fission yeast cell cycle (based on [2] and transcribed
using GINsim [3]).

study of the dynamical behaviour of BNs has provided insights into the dynamics of
real cellular systems. Many biologically relevant phenomena can be explained by this
Boolean model, such as homeostasis, multistationarity, differentiation, hysteresis and
epigenesis [42, 70].

Modelling GRNs using BNs were initially proposed by Stuart Kauffman in 1969 [15],
from which point it gained great attention in the literature (see [154, 16, 155–157] for
reviews). For example, a BN for the budding yeast cell cycle has been used to identify
a four node core regulatory circuit underlying cell cycle regulation [158]. Analysing
the Boolean model of the T-LGL survival signalling network serves to identify the
therapeutic targets of a disease [7]. The Boolean model of the regulation of host
immune responses provides new insights into the virulence, pathogenesis, and host
adaptation of disease-causing microorganisms [145]. The topology of the regulatory
interactions in the Boolean model of the Drosophila segment polarity genes predicts the
expression pattern [23]. As a result, BNs provide reliable results for different organisms,
as illustrated by these examples.

2.3 Boolean Networks and Biology 27

2.3.3 Attractor Analysis

The attractors in GRNs usually correspond to the activation states of components
that relate to cellular phenotypes [56, 31]. In biology, analysing attractors can help in
comparing experimental data with systems dynamics. In the 1960s, Kauffman claimed
that attractors can be revealed in a complex network of GRNs under specific conditions
[159, 15]. In the same vein, Kauffman found that attractors correspond to the gene
expression profiles for each cell type [15, 16].

Analysing attractors in BN models has received significant attention amongst
biologists for several reasons. For one, such analysis can identify potential therapeutic
strategies for treating cancer in a simplified protein network, which is referred to as
p53 [40]. For another, attractors of the Boolean model of oestrogen transcriptional
regulation represent the proliferative or antiproliferative state within cells [160]. Beyond
that, attractors help in studying cell differentiation and plasticity in the CD4+ T-cell
regulatory network [161]. For more examples of attractor analysis in biology, see
[162, 40, 160, 161, 163, 164].

Detecting attractors in large BN models is challenging. It needs to consider 2n

states when the network has n nodes. Thus, attractor detection has been well studied
in the literature. Although an approach to simulating the activation and inhibition
for each initial condition has been proposed in [23, 140, 142], it may not find all
possible attractors, as the initial states are chosen at random. By comparison, another
technique applied to detect attractors is based on a binary decision diagram (BDD)
data structure, [165, 166, 141, 56], which compactly represent the state space of the BN
and support the efficient analysis of system dynamics. Even so, the size of the BDD
structure is based on the Boolean operations and the order of the variables, which it is
exponential to the order in the worst case. Algorithms based on a SAT-based bounded
model checking support another approach to find attractors [167, 35], namely by using
the SAT-solver to identify path p in the state transition graph. The algorithms unfold
transitions by p times steps by generating a propositional formula and solve it by a
SAT solver to identify the valid paths in the STG. In each step, a new variable in the
propositional formula is used to represent a state of an entity in a BN. The process
is repeated for larger number of p steps until all attractors are detected, which can
increase the computation complexity owing to the large number of entities and steps.
However, SAT-based model checking is more efficient than the BDD-based approach
because it can detect attractors without searching the entire state space [168].

28 Background

To address the state space explosion problem for large BNs that standard methods
could have some limitations due to it, decompositional and compositional approaches
were proposed. These approaches will be discussed in detail in the related work in
Section 2.5.3.

The above shows that analysing attractors is necessary for our compositional
framework, and we aim to address this area in our thesis.

2.4 Boolean Network Composition

Analysing and understanding the dynamics of large-scale biological systems is a central
challenge for biologists. Consequently, the modularity advantage of biological networks
has encouraged several researchers to propose compositional approaches for analysing
the behaviour of the network occurring in separate network modules. Over the past
decade, most research has focused on how to reveal attractors by composing the
sub-networks. For instance, Guo et al. [51] proposed an algorithm to find attractors by
composing the local attractors of the strongly connected components of the decomposed
parts. In the same vein, [47] proposed the aggregation algorithm, which can reveal
attractors with little computational cost. Many compositional approaches focus on
analysing BNs [169, 51, 47]; in contrast, the formal compositional framework developed
by Alkhudhayr and Steggles [48, 49, 4] supports construction models and develops
results regards the preservation of behaviour (compatibility) of BNs under composition.
However, as mention earlier, it has no support for attractor analysis, and its composition
structure is too limited. More details about composition techniques will be discussed
in related work in section 2.5.

In the following sections, we introduce the compositional framework developed by
Alkhudhayr and Steggles [48, 49, 4] which was used as the basis for our thesis.

2.4.1 Key Definitions and Results

The formal compositional framework is based on composing synchronous BNs by
merging entities using logical connectives, such as conjunction and disjunction. Note
that there are 16 Binary Boolean operators [204] that can be chosen. However,
this compositional framework restricted the Boolean operator used to be idempotent

2.4 Boolean Network Composition 29

Boolean operators (AND, OR, transfer and complement) since the idempotency is
needed for the following results.

In the following we focus on using conjunction, but the results are easily applied it
disjunction for example [48, 49, 4].

See Figure 2.5 for a pictorial example of the idea behind the compositional frame-
work.

g11BN 1

g21 BN 2gcBN 1

C(BN 1,BN 2, g
1
1 , g

2
1)

BN 2g21
∧

Figure 2.5 Pictorial representation of composing two Boolean networks on entities
BN 1 and BN 2 to form a new Boolean network C by merging entities g1

1 ∈ BN 1 and
g2

1 ∈ BN 2 into a new entity gc (based on [4]).

In the sequel, let BN 1 = (G1, F1, N1) and BN 2 = (G2, F2, N2) be Boolean networks,
where G1 = {g1

1, g
1
2, ..., g

1
n} and G2 = {g2

1, g
2
2, ..., g

2
m} are disjoint sets, for some n,m ∈ N.

For simplicity, we assume the entities g1
1 and g2

1 are always used in the composition of
BN 1 and BN 2.

We formally define the composition of two Boolean networks BN 1 and BN 2 by
using conjunction to merge the behaviour of entities (see Figure 2.5).

Definition 2. (Composition) Let C (BN 1,BN 2, g
1
1, g

2
1) denote the Boolean network

constructed by composing BN 1 and BN 2, which must have disjoint entities, on entities
g1

1 and g2
1 defined as follows:

1. Entities: the finite set of entities G = (G1 \ {g1
1}) ∪ (G2 \ {g2

1}) ∪ {gc}, where gc

denotes the new entity created by merging g1
1 and g2

1.
2. Neighbourhood: for any entity hi ∈ G, the neighbourhood N(hi) is defined as
follows:

N(hi) =

N1(hi)[g1

1/g
c], if hi ∈ G1

N2(hi)[g2
1/g

c], if hi ∈ G2

N1(g1
1)[g1

1/g
c] ∪N2(g2

1)[g2
1/g

c], if hi = gc

30 Background

where S[f/e] represents set S with all occurrences of element f replaced by e.
3. Functions: for any hi ∈ G, the next-state function F (hi) is defined:

F (hi) =

F1(hi), if hi ∈ G1

F2(hi), if hi ∈ G2

F , if hi = gc

where F : B|N(gc)| → B is defined using four cases as follows:
i) If g1

1 /∈ N1(g1
1) and g2

1 /∈ N2(g2
1), where N1(g1

1) = {l1, . . . , lp} and N2(g2
1) = {l′1, . . . , l′q},

then
F(l1, . . . , lp, l′1, . . . , l′q) = F1(g1

1)(l1, . . . , lp) ∧ F2(g2
1)(l′1, . . . , l′q);

ii) If g1
1 ∈ N1(g1

1) and g2
1 /∈ N2(g2

1), where N1(g1
1) = {g1

1, l1, . . . , lp} and N2(g2
1) =

{l′1, . . . , l′q}, then

F(gc, l1, . . . , lp, l
′
1, . . . , l

′
q) = F1(g1

1)(gc, l1, . . . , lp) ∧ F2(g2
1)(l′1, . . . , l′q);

iii) If g1
1 /∈ N1(g1

1) and g2
1 ∈ N2(g2

1), where N1(g1
1) = {l1, . . . , lp} and N2(g2

1) =
{g2

1, l
′
1, . . . , l

′
q}, then

F(gc, l1, . . . , lp, l
′
1, . . . , l

′
q) = F1(g1

1)(l1, . . . , lp) ∧ F2(g2
1)(gc, l′1, . . . , l

′
q);

iv) If g1
1 ∈ N1(g1

1) and g2
1 ∈ N2(g2

1), where N1(g1
1) = {g1

1, l1, . . . , lp} and N2(g2
1) =

{g2
1, l

′
1, . . . , l

′
q}, then

F(gc, l1, . . . , lp, l
′
1, . . . , l

′
q) = F1(g1

1)(gc, l1, . . . , lp) ∧ F2(g2
1)(gc, l′1, . . . , l

′
q).

Note, in finding the functions, it should be observed that if the composed entity is
part of the input function, this is handled matching by updating the neighbourhood.

In the sequel, we let gc denote the new entity created by merging g1
1 and g2

1. We
assume that a global state S ∈ SC in the composed model C = C (BN 1,BN 2, g

1
1, g

2
1)

has the form S = (s s1
2 . . . s1

n s
2
2 . . . s2

m) ∈ SC, where s is the state of the new merged
entity gc and si

j is the state of entity gi
j.

To illustrate the composition approach, consider composing BN Ex1 and BN Ex2 (Fig-
ure 2.6) on entities g1

1 ∈ BN Ex1 and g2
1 ∈ BN Ex2 represented by C (BN Ex1,BN Ex2, g

1
1, g

2
1)

(see Figure 2.7). The new merged entity gc is produced by composing the next-state

2.4 Boolean Network Composition 31

g11

g12

g13

BNEx1

[g1
1] = g1

2 ∧ g1
3

[g1
2] = g1

1 ∧ g1
3

[g1
3] = g1

2

011

000

101

110

001

100

111

010

g21 g22

BNEx2

[g2
1] = g2

2
[g2

2] = g2
1 ∧ g2

2

00

10

11 01

Figure 2.6 The interaction graph, next–state functions and state graphs for two example
Boolean Networks BN Ex1 and BN Ex2.

functions of g1
1 and g2

1 using conjunction resulting in

[gc] = (g1
2 ∧ g1

3) ∧ g2
2

2.4.2 Behaviour Preservation

The compositional approach allows the inference of the behaviour of the composed
model from the underlying BNs to address the limitations imposed by the state space
explosion problem. Thus, they introduce a notion of compatibility which considers
what it means to preserve the behaviour for each BN in the composed model. The
following definitions formalise the idea of behaviour preservation under the underlying
BNs.

Alkhudhayr and Steggles begin by defining a projection operator [49, 4], which
extracts the state and traces from a composed BN.

Definition 3. (Projections) Let C = C (BN 1,BN 2, g
1
1, g

2
1) be the BN constructed

by composing BN 1 and BN 2 (where G1 = {g1
1, g

1
2, ..., g

1
n}, G2 = {g2

1, g
2
2, ..., g

2
m}), on

entities g1
1 and g2

1. Let SC denote the global state space for C, and assume that
global states have the following entity ordering (gc g1

2 ... g1
n g2

2 ... g2
m). Let S =

(s s1
2 . . . s1

n s
2
2 . . . s2

m) ∈ SC be an arbitrary global state. Then we define the projection
operators

PBN 1 : SC → SBN 1, and PBN 2 : SC → SBN 2

32 Background

g11

g12

g13

g22

g21

gc

[gc] = (g1
2 ∧ g1

3) ∧ g2
2

[g1
2] = gc ∧ g1

3
[g1

3] = g1
2

[g2
2] = gc ∧ g2

2

1000

1010

0110

1011

0111

0000

1110

0100 1100

1111

0101 0001

0010

1001

0011

1101

Figure 2.7 Composed model C(BN Ex1,BN Ex2, g
1
1, g

2
1) resulting from composing BN Ex1

with BN Ex2 on g1
1 and g2

1 using conjunction.

by PBN 1(S) = (s s1
2 . . . s

1
n), and PBN 2(S) = (s s2

2 . . . s
2
m) We can extend the projection

operators to traces σ = ⟨S1, S2, ...⟩ ∈ Tr(C) by

PBN 1(σ) = ⟨PBN 1(S1),PBN 1(S2), ...⟩, and

PBN 2(σ) = ⟨PBN 2(S1),PBN 2(S2), ...⟩

and let PBN 1(Tr(C)) and PBN 2(Tr(C)) represent the sets of projected traces derived by
projecting each trace in Tr(C).

To illustrate the idea of projection operator, consider the composed model C (BN 1,BN 2, g
1
1, g

2
1),

where the entities order is (gc, g1
2, g

1
3, g

2
2) as depicted in Figure 2.7. Then,

PBN Ex1(⟨0011, 0010, 0010⟩)) = ⟨001, 001, 001⟩

Notably, the projected trace may not be a proper trace in its corresponding BN, i.e.
Tr(BN 1) ̸⊆ PBN 1(C).

For any BN with entities G = {g1, g2, ...gn} and global state S = (si ... sn) ∈ SBN ,
they define the projected state on any entity gi ∈ BN by Pgi

(S) = si. Then Pgi
(σ)

denotes the projected trace on trace σ = ⟨S1, S2, ...⟩ ∈ Tr(BN) defined by Pgi
(σ) =

⟨Pgi
(S1),Pgi

(S2), ...⟩.

2.4 Boolean Network Composition 33

In [49, 4], Alkhudhayr and Steggles are interested in situations where composing
two BNs preserves their underlying behaviour and denote a notion of compatibility to
formalise this.

Definition 4. (Compatibility) Let C = C(BN 1,BN 2, g, g
′) be the new Boolean network

constructed by composing BN 1 and BN 2 on entities g and g′. Then we say that BN 1

and BN 2 are compatible on g and g′ iff Tr(BN 1) ⊆ PBN 2(Tr(C)) and Tr(BN 2) ⊆
PBN 1(Tr(C)).

Compatibility ensures that an individual BN’s behaviour is preserved under the
composition (i.e. Tr(BN 1) ⊆ PBN 2(Tr(C))). In particular, any behaviour exhibited in
the individual BN must be presented in the composed model. However, the composed
model could exhibit more behaviour which could not exist in the underlying BNs.
The problem here is how to verify the compatibility without referencing the whole
behaviour of the composed model and so it is limited by the state-space explosion
problem. Therefore, they develop the notion of alignment which is a property that can
predict whether an individual BN’s behaviour is preserved under the composition by
focusing on underlying BNs’ behaviour only.

The alignment property is the exact matching of the state transitions when we map
two projected traces on an entity in certain states, and is defined as follows.

Definition 5. (Alignment) Let C = C(BN 1,BN 2, g, g
′) be the new Boolean network

constructed by composing BN 1 and BN 2 on entities g and g′. We say that BN 1 and
BN 2 are aligned on g and g′ iff

Pg(Tr(BN 1)) ⊆ Pg′(Tr(BN 2))

In order to analyse the behaviour of the composed model they define how to merge
global states and paths from the models underlying a composition (taken from [49, 4]).

Definition 6. Let C = C (BN 1,BN 2, g
1
1, g

2
1), and S1 = (s1

1 . . . s1
n) ∈ SBN 1 and

S2 = (s2
1 . . . s2

m) ∈ SBN 2. Then we define S1 ∧g1
1 ,g2

1
S2 ∈ SC by merging the state of g1

1

with g2
1

S1 ∧g1
1 ,g2

1
S2 = ((s1

1 ∧ s2
1) s1

2... s
1
n s

2
2 ... s

2
m)

For any paths α1 = ⟨S1
1 , S

1
2 , ...⟩ ∈ Path(SG(BN 1)) and α2 = ⟨S2

1 , S
2
2 , ...⟩ ∈ Path(SG(BN 2))

we define
α1 ∧g1

1 ,g2
1
α2 = ⟨S1

1 ∧g1
1 ,g2

1
S2

1 , S
1
2 ∧g1

1 ,g2
1
S2

2 , . . .⟩

34 Background

In a slight abuse of notation, we use S1 ∧ S2 and α1 ∧ α2 to represent S1 ∧g1
1 ,g2

1
S2

and α1 ∧g1
1 ,g2

1
α2 respectively, when the entities involved in the composition are clear

from the context.

The Alignment property is a sufficient property to ensure the compatibility of the
underlying BNs, but it is not a required condition for compatibility. Consequently,
they extend the alignment property to fully characterise the compatibility. To do so,
they develop an important notion, interference, which occurs of merged entities in the
composition by extending the behaviour of the state transition graph.

2.4.3 Interference State Graph

One important notion developed in the existing work is that the interference for merged
entities can be occur when two BNs are composed, resulting in new behaviour. To
illustrate this, consider the global state 1001 in the composed model depicted in Figure
2.7. Then, BN Ex1 and BN Ex2 (Figure 2.6) want to make the following transitions:
100 BN Ex1−−−−→ 101 and 11 BN Ex2−−−−→ 01. The merged entities g1

1 in BN Ex1 would like to
transition from 1 to 1 and g2

1 would like to transition from 1 to 0. The conjunction
operator has been used for the composition, and therefore gc will transition from 0
to 0 ∧ 1 = 0. This shows that the interference behaviour of the merged entity using
conjunction will occur when the next step is 1 in the underlying BN.

It is interesting to know that the interference state graph can be defined for the
other Boolean operators, and this is discussed in [4]. For example, if disjunction is
used instead of conjunction, then in an interference state graph, interference will occur
with the underlying behaviour of a merged entity whenever it wants to transition to 1,
but its merged counterpart wants to transition to 0. Note for the interference state
graph to be used for the results that follow, it is important for the Boolean operator
to be idempotent. It turns out that there are four idempotent Boolean operators.

To formalise the possible interference that can occur between composed BNs, they
develop the notion of the interference state graph [48] by adding additional edges
to a BN’s state transition graph to represent interference. In a composition using
conjunction, if the entity to be merged in the state transition graph of the underlying
BN transitions to 1, we will add a new edge to represent the step 0 in order to capture
the interference.

They define an interference state graph as follows [49, 4].

2.4 Boolean Network Composition 35

Definition 7. (Interference State Graph) Let BN be a Boolean network with entities
g, g1, . . . , gn. Then we define the interference state graph SGg(BN) for BN on g by

SGg(BN) = (SBN ,
BN−−→

g
)

The extended edge relation BN−−→
g

is defined by BN−−→
g

= BN−−→ ∪ E where

E = {((s s1 . . . sn), (0 s′
1 . . . s′

n)) | (s s1 . . . sn) BN−−→ (1 s′
1 . . . s′

n)}

000

101001

011

110 111010

100

11

01

00

10

SGg1
1
(BN Ex1) SGg2

1
(BN Ex2)

Figure 2.8 The interference state graphs for BN Ex1 and BN Ex2 induced by the compo-
sition C(BN Ex1,BN Ex2, g

1
1, g

2
1).

To illustrate this idea, consider the interference state graphs depicted in Figure
2.8 for the BNs BN Ex1 and BN Ex2 introduced above (see Figures 2.6), where dashed
edges are added to the state transition graphs to represent the interference that occurs
for g1

1 and g2
1 when we compose them using the AND operator.

A crucial result has been established that an interference state graph captures all
the possible behaviours that could occur for the underlying BN in the composition, as
the following result from [49] shows.

Theorem 1. Let C = C (BN 1,BN 2, g
1
1, g

2
1). Then we have:

i) Path(PBN 1(C)) ⊆ Path(SGg1
1
(BN 1)); and

ii)Path(PBN 2(C)) ⊆ Path(SGg2
1
(BN 2)).

Recalling the compatibility definition (Definition 4), it can be seen that Alkhud-
hayr and Steggles consider the full behaviour of the composed model to confirm the
compatibility. Therefore, they introduce a new property, denoted as weak alignment,

36 Background

to ensure compatibility when using an idempotent Boolean operator. They prove that
the weak alignment property is a sufficient and necessary condition for compatibility.

The weak alignment property is based on the interference state graph. They consider
the interference occur in the composition to verify the alignment of the projected paths
of the underlying BNs. The alignment property is the exact matching of the state
transitions when we map two projected traces on an entity in certain states.

The following definition formalise the weak alignment property [49].

Definition 8. (Weak Alignment) Let BN 1 and BN 2 be Boolean networks, and let
g1

1 ∈ BN 1 and g2
1 ∈ BN 2. Then we say that BN 1 and BN 2 are weakly aligned on g1

1

and g2
1 iff

Path(SGg1
1
(BN BN 1)) ⊆ Pg2

1
(Path(SGg2

1
(BN 2))), and

Path(SGg2
1
(BN BN 2)) ⊆ Pg1

1
(Path(SGg1

1
(BN 1)))

The weak alignment property is a crucial result for the compositional framework.
It allows fully characterising compatibility for underlying BNs without referring to
all behaviours in the composed system. Fully characterising compatibility means it is
sound and complete, where sound means when BN 1 and BN 2 are weakly aligned on
g1

1 and g2
1, then they are compatible, and completeness means when BN 1 and BN 2 on

g1
1 and g2

1 are compatible, then they are weakly aligned.

Theorem 2. Let BN 1 and BN 2 be two Boolean networks and let g1
1 ∈ BN 1 and

g2
1 ∈ BN 2. Then BN 1 and BN 2 are fully compatible on g1

1 and g2
1 iff BN 1 and BN 2

are fully weakly aligned on g1
1 and g2

1.

Extending the above definitions and results to allow the compositions of multiple
BNs over multiple entities has been investigated. However, the results produced in [4]
were only partial, and several constraints had to be input due to the complexity of the
approach.

2.5 Related Work

In this thesis, we focus on developing compositional techniques to facilitate the con-
struction and analysis of the BN approach. In this section, we review several of the

2.5 Related Work 37

related works considering compositional and decompositional techniques and attractor
identification approaches. We justify research into compositional techniques by showing
their importance in biology and model checking; then, we present some related works
on composing BNs. We then review several decomposition techniques in biology and
BNs. Finally, we review the related works on attractor analysis using compositional
and decompositional approaches.

2.5.1 Compositional Techniques

Compositional techniques have been used to model and analyse biological systems
[170–172, 50]. Constructing and analysing models of GRNs is difficult, as they grow in
size and complexity. These large models are constructed from submodels that contain
subsets of reactions within the large model. For instance, dynamical models have
been built from parts such as budding yeast cells, which model the cell cycle [170]
and the response to osmotic shock [173]. The importance of constructing models has
inspired a number of studies to develop formal composition approaches. Randhawa
et al. [174] developed a formal approach for model composition and implementing
the approach to assist modellers in the composition process. Furthermore, in [172], a
compositional approach allowed the analysis of the autocatalytic pathways, which are
a part of core metabolism. Moreover, a novel compositional approach that depends on
using process algebra framework has been developed to support the logical modelling
of interconnected cellular networks [50]. Developing such composition frameworks
could be useful in the field of synthetic biology [175–177] which aims at designing new
biological systems.

Biological networks, which are an abstract representation of biological systems, have
a modulator property [178, 179]. For example, proteins are known to work in slightly
overlapping, coregulated groups such as pathways and complexes. The modularity
allows the identification of the functionality of modules to be analysed, and then
composed, to build a comprehensive model. Further, it can overcome the challenge
of analysing large and complex regulatory networks. For example, the composition
of the logical models of three regulatory modules of the mitotic cell cycle in budding
yeast developed by Faure´ et al. [180], produces a single comprehensive model that
preserves the characteristics of the original modules. In [181], the logical model was
applied to compose three cross regulatory models to build the hierarchical system in
Drosophila melanogaster.

38 Background

The above two composed models were manually defined from smaller modules.
Hence, a number of tools have been developed to aid composition processes. Randhawa
et al. [182] developed a compositional framework and implemented the approach. They
defined three operators to combine Systems Biology Markup Language (SBML) models
[183], namely Fusion, Composition, Aggregation and Flattening [171]. However, they
faced an issue in analysing the resulting model. The framework developed by Chaouiya
et al. [184] addresses the model composition and provides systematic procedure. A
prototype tool for their developed approach has been implemented, which also calculates
all stable states of the composed model. However, the composed model needs to be
analysed in a monolithic manner, which raises scalability issues.

Compositional approaches have been used in model checking to limit the state
space explosion, and to reduce its complexity (see for example [185–188]). In [186], the
compositional techniques have been used to reduce the complexity of model checking in
composed systems consisting of concurrent processes. They modelled the environment
of a process using another process, called the interface process, which provided the
basis for their compositional model checking techniques. Besides, they could guarantee
the preservation of the behaviour at the global level by checking the properties of the
composition. The work in [188] provides a compositional model checking framework,
with a number of state graph reduction techniques to verify complex highly concurrent
systems.

A range of related work on compositional techniques developed for BNs can be
found in the literature, where the main interest in this regard is analysing BN models
by identifying their attractors. For example, attractors are revealed by the composition
of the input-state cycles of subnetworks generated by an aggregation algorithm to
reduce the computational cost [47]. Moreover, Dubrova et al. [169] showed that the
attractors of the random Boolean networks can be identified compositionally from the
connected components of the reduced subgraph. More compositional approaches will
be discussed in Section 2.5.3.

The compositional approach of the existing compositional framework, on which our
thesis is focused, is based on composing synchronous submodels by merging entities
using logical connectives to support engineering and analysing the final model, and
subsequently, characterising behavioural preservation using interference which appears
to be different from the above approaches. However, it lacks support for attractor
analysis, and its composition structure is too restricted. Thus, we focused on addressing
these issues in this thesis.

2.5 Related Work 39

2.5.2 Decompositional Techniques

Model decomposition [189–191] is an approach to breaking down a large model into
submodels. Analysing and understanding large and complex models could be a challenge.
More precisely, each submodel might derive all the properties and characteristics
of original models, or at least part of their properties, which makes it easier to
understand what happens in the entire model without referring to it. Therefore, model
decomposition can be seen as a way to reduce the difficulty of gaining insight into
these models, solving the problems and extracting the information. In addition, these
submodels might reduce the computational cost for seeking specific knowledge, or
simplifying the representation or simulation.

A wide range of studies in biology have considered decomposition approaches to
simplify analysis and understand behaviours. They have been used for biochemical
network models that have hundreds or thousands of variables, which increase complex-
ity and become barriers to analysing such models (see for example [192–194]). A work
in [195] focuses on the dynamic characteristics of transcriptional components to define
functional submodels. A manual decomposition, induced by the underlying biological
structure for autocatalytic pathways proposed to subsystems with complicating nonlin-
earities dynamics, is proposed in [172]. This work provides a compositional analysis
framework to construct Lyapunov functions for autocatalytic pathways. The above
approaches are based on an assumed network’s structure. In contrast, an algorithmic
decomposition approach presented in [191], which does not require prior knowledge,
has been developed to identify weakly interacting submodels in a signalling network,
which are called functional modules.

To date, a range of works in the literature have focused on developing decomposition
approaches for BNs. A compositional approach for Boolean automata networks (BANs)
was developed in [196], which are a generalisation of Boolean cellular automata, to aid
decomposing them into parts called modules. These modules have external inputs to
encode information, and can be linked to other module inputs and automata using
wiring operations. To overcome the challenge of identifying attractors in large BN
models, a number of studies in the literature propose a decomposition approach for BNs,
which will be discussed in the following section (see for example [36, 122, 123, 51]).

In the future, we will consider developing a decompositional approach for BNs
based on the theoretical results developed in this thesis (see Section 6.4).

40 Background

2.5.3 Attractor Identification

Given the practical limitations imposed by the state space explosion problem, there has
been a range of work assessing compositional/decompositional techniques for identifying
attractors. We briefly review some relevant examples from the literature, below and
relate them to our presented the approach.

A compositional approach for computing the attractors of large random BNs was
considered in [169]. An approach based on identifying independent subnetworks of a
BN, whose composed behaviour can infer attractors, was developed. Prior to that, they
reduced the state space by removing the vertices that did not influence the network’s
dynamics.

An interesting attractor identification approach was developed in [47] based on
decomposing a synchronous BN into a set of Boolean control networks. The idea is
that Boolean control networks are subnetworks that contain input entities duplicated
from other subnetworks. An approach for aggregating the input-state cycles of these
control networks was used to calculate the attractors of the original BN. The approach
considers using the strongly connected components (SCCs) of a BN’s interaction graph
to optimise the decomposition.

The above approach was further developed in [36, 122, 123] with the refinement of
the SCC decomposition of a BN into blocks and the iterative recombination of blocks,
to calculate attractors. Yuan et al. [123] proposed a new decomposition approach based
on the SCCs suitable for large average in-degree networks. Their previous work in
[122] does not consider the dependency relation among different subnetworks, resulting
in many unnecessary states. However, the work in [123] considered the dependency
relation among subnetworks, which can potentially improve the performance of their
approach.

A similar approach for decomposing a BN into subnetworks was also developed
in [51], where the underlying attractor identification technique was based on a SAT-
based approach and a parallel version of their attractor identification algorithm was
considered. A key issue with this approach is that it becomes inefficient for BNs with
high in-degree. This issue was considered in [197], where the researchers investigated
techniques for finding the smallest optimal partition for decompositionally applying a
SAT solver and introducing the concept of a minimum essential block.

In [196] a compositional/decompositional theoretical approach for Boolean Automata
Networks (BANs) was developed based on adding external inputs to models and then

2.6 Conclusion 41

allowing these to be wired together. Interesting initial theoretical work on developing
attractor analysis techniques for this framework is presented in [198] but the complexity
of the approach appears to be an issue for its practical application.

While the approaches above have basic similarities to the techniques developed
here there are some significant differences. The approach of attractor identification
in this thesis is based on an existing compositional framework, which focuses on the
construction and analysis of BN models [4, 49], wheres the work in [36, 122, 123, 51, 47]
are based on the decompositional approach for wiring diagrams. The notion of merging
subnetworks in the above work does not make use of logical operators to merge entities,
as the compositional framework presented in here does, and is instead based on the idea
of simple input entities (see for example [47]). In particular, our work focuses on the
behavioural interference generated when subnetworks are composed using the notion
of an interference state graph. The use of SCCs is also significantly different, since we
use them to identify potential cyclic behaviour in a subnetwork’s behaviour, rather
than as a basis for decomposing a BN’s structure such as the work in [36, 122, 123, 47]
(see Chapter 3 and Chapter 4 for more details regarding our new approach).

2.6 Conclusion

In this chapter, we have reviewed and discussed different background areas and related
works. We provided an overview of several qualitative modelling approaches. We
then introduced BNs’ definitions and we briefly review some of existing tool support
for BNs. Following that, we provided an overview of BNs and their applications
in biology. We then introduced the compositional framework for BNs developed at
Newcastle University [48, 49, 4]. We also reviewed related works on compositional and
decompositional techniques and identifying attractors.

Our investigation has revealed that our approach to identifying attractors differs
from others reported in the literature. The approach is based on an existing com-
positional framework, which focuses on the construction and analysis of BN models
[49, 4]. Therefore, we are able to use the compositional structure inherent with these
engineered models as the basis for our analysis techniques, and indeed, our techniques
can be used to help guide the construction of a model. The development of automatic
decompositional techniques for our approach is an interesting topic for further work
to support the analysis of existing large-scale models. It is also important to note
that the compositional attractor identification techniques and the generalised form

42 Background

of a composition developed in this thesis form an important addition to the existing
framework.

Chapter 3

Identifying Attractors for Basic
Compositions

3.1 Introduction

In this chapter, we present initial work on extending the compositional framework
presented in [48, 49, 4] with techniques and tools for compositionally identifying the
attractors in a composed model. In those recent studies [48, 49, 4] (see Section 2.4), a
novel compositional approach was proposed based on composing two BNs by merging
entities using idempotent Boolean operators such as conjunction. This compositional
framework provides a range of interesting results as a foundation for both engineering
BNs and decomposing them to aid analysis. However, it focuses on the preservation of
the behaviour of subnetworks in a composition. One of the areas for which it does not
currently provide support is attractor identification. Given the importance of attractor
analysis [28, 7], this is a key area that motivates us to extend the existing framework
by developing new techniques for attractor analysis to support the practical application
of the compositional framework. In the following, we focus on conjunction, but it
should be noted that the results will hold if disjunction is used in a composition. This
is discussed further in section 3.6.

The attractor analysis approach we have developed is based on analysing each
subnetwork’s interference state graph [49], a state graph that extends a BN’s normal
behaviour with the additional dynamics arising from interference in a composition. We
use the strongly connected components (SCCs) [52] in the interference state graphs to
identify cyclic behaviour, which is then selectively merged based on a new property

44 Identifying Attractors for Basic Compositions

called interference alignment. We formally show that our approach is correct by proving
that it is sound (any identified attractor is valid) and complete (all valid attractors are
identified) for attractor identification.

We used the theoretical techniques we developed to formulate an algorithm for
compositional attractor identification, and discuss how this was used to develop tool
support. The idea behind the algorithm is based on finding an interference aligned
next state pair to pair up the cyclic paths in the SCCs associated with the interference
state graphs of the submodels.

The practical application of the developed techniques and tools is illustrated by
applying them to a case study from the literature that is based on a regulatory network
for cell differentiation [5, 6], found in the bacteria Caulobacter crescentus [199]. We
applied the two submodels of the regulatory network to the developed tool support
and the attractors were identified correctly.

This chapter is organised as follows. In Section 3.2, we extend the existing com-
positional framework by developing a new approach for compositionally identifying
attractors and we prove that our approach is correct by showing that it is sound and
complete. In Section 3.3, we consider developing tool support based on the developed
algorithm to identify attractors compositionally. In Section 3.4, we illustrate our
approach using a case study from the literature. In Section 3.5, we extend the results to
a composition of a set of three BNs and a sequence of pairwise BNs structure. Finally,
in Section 3.6, we make some concluding remarks and discuss further work.

3.2 Compositionally Identifying Attractors

In this section we develop a technique for compositionally identifying the attractors in
a composed model by finding cyclic behaviour in each subnetwork’s interference state
graph that can be merged.

Recall that a strongly connected component (SCC) [52] is a maximal set of vertices
in a graph such that any two vertices are mutually reachable. We define formally what
we mean by an SCC for an interference state graph as follows.

Definition 9. Let SGg(BN) = (SBN ,
BN−−→

g
) be an interference state graph for BN

and let φ = (Sφ,
φ−→) be a non-empty subgraph of SGg(BN) (i. e. Sφ ⊆ SBN is a

non-empty set of global states and φ−→⊆ BN−−→
g

is a non-empty edge relation). Then φ is

3.2 Compositionally Identifying Attractors 45

a Strongly Connected Component (SCC) for SGg(BN) iff the following holds: i) for
any two states S, T ∈ Sφ there is a directed path from S to T ; and ii) φ is maximal
(adding any further nodes or edges from SGg(BN) to φ breaks the above connectivity
property).

We let SCC(SGg(BN)) denote the set of all SCCs for an interference state graph
SGg(BN).

As an example, consider the SCCs depicted in Figure 3.1 for the interference state
graphs SGg1

1
(BN Ex1) and SGg2

1
(BN Ex2).

We use the SCCs in a subnetwork’s interference state graph to identify cyclic
behaviour that can be merged to generate attractors in the composed model. Let
φ ∈ SCC(SGg(BN)) and let α be an infinite path over φ. Then we say that α is a
cyclic path iff there exists k ∈ N and S1, . . . , Sk ∈ Sφ such that

α = ⟨S1, . . . , Sk, S1, . . . , Sk, S1, . . . , Sk, . . .⟩

We let CPaths(φ) denote the set of all cyclic paths for an SCC φ.

The cyclic paths that are associated with SCCs represent a basis for potential
attractors generated in a composed model. Using a new property called interference
alignment to check when cyclic paths can be merged, we merge the cyclic paths
generated from the SCCs for the subnetworks to identify attractors.

001

011

000

101

00

10

φ1
1 φ1

2 φ2
1

Figure 3.1 The SCCs for the composition C(BN Ex1,BN Ex2, g
1
1, g

2
1), where φ1

1 and φ1
2

are from SGg1
1
(BN Ex1), φ2

1 is from SGg2
1
(BN Ex2).

Before we can define the interference alignment property, we need the following
notions. Given two states S1, S2 ∈ SBN , we refer to a state transition step S1

BN−−→
g

S2

as a normal step iff S1
BN−−→ S2 (i.e. it does not require interference). A step S1

BN−−→
g

S2

is referred to as an interference step iff it is not a normal step (i.e. it does require
interference). For a Boolean network BN We define the entity state projection

46 Identifying Attractors for Basic Compositions

Pgi
(S) = si, for any entity gi in BN and S = (s1, . . . , sn) ∈ SBN . The projection

operators can be lifted to a path α ∈ Path(SG(BN)) and a set of paths in the standard
way.

Definition 10. Let α1 = ⟨S1, S2, ...⟩ ∈ Path(SGg1
1
(BN 1)) and α2 = ⟨T1, T2, ...⟩ ∈

Path(SGg2
1
(BN 2)). Then we say that α1 and α2 interference align iff Pg1

1
(α1) =

Pg2
1
(α2) and for any i ∈ N, we have Si

BN 1−−→
g1

1

Si+1 and Ti
BN 2−−→

g2
1

Ti+1 are not both

interference steps.

Interference alignment captures when paths can be merged to create a path in the
composed model by checking to ensure that interference actually occurs at the points
required in each path. This is formally shown by the following result.

Lemma 3. Let α1 ∈ Path(SGg1
1
(BN 1)) and α2 ∈ Path(SGg2

1
(BN 2)). Then if α1 and

α2 interference align then

α1 ∧ α2 ∈ Path(SG(C(BN 1,BN 2, g
1
1, g

2
1))

Proof. Let C = C (BN 1,BN 2, g
1
1, g

2
1). Let α1 = ⟨S1, S2,⟩ ∈ Path(SGg1

1
(BN 1)) and

α2 = ⟨T1, T2,⟩ ∈ Path(SGg2
1
(BN 2)) such that α1 and α2 interference align. To show

α1 ∧ α2 ∈ Path(SG(C)) it suffices to show that for any i ∈ N

Si ∧ Ti
C−→ Si+1 ∧ Ti+1 (3.1)

For any i ∈ N we have Si
BN 1−−→

g1
1

Si+1 and Ti
BN 2−−→

g2
1

Ti+1, where Si = (si
1 . . . si

n),

Si+1 = (si+1
1 . . . si+1

n), Ti = (ti1 . . . tim) and Ti+1 = (ti+1
1 . . . ti+1

m). Then by our
assumption and definition of merging states we have

Si ∧ Ti = (si
1 ∧ ti1 s

i
2 . . . si

n t2
i . . . tim)

Si+1 ∧ Ti+1 = (si+1
1 ∧ ti+1

1 si+1
2 . . . si+1

n t2
i+1 . . . ti+1

m)

By the definition of interference alignment we know that si
1 = ti1 and so by idempotency

of ∧ we have
si

1 ∧ ti1 = si
1 = ti1 (3.2)

Given the assumption of interference alignment, there are three cases in which we
must consider focusing on where the interference can occur (note that the update steps
cannot both be interference steps by the definition of interference alignment).

3.2 Compositionally Identifying Attractors 47

Case 1: Suppose Si
BN 1−−→

g1
1

Si+1 is an interference step and Ti
BN 2−−→

g2
1

Ti+1 is a nor-

mal step. Then by the above assumptions and the definition of SGg1
1
(BN 1) we know

si+1
1 = 0 and

Si
BN 1−−→ (1 si+1

2 . . . si+1
n)

Then by (3.2) and the definition of C we know that

(si
1 ∧ ti1 s

i
2 . . . s

i
n t2

i ... tim) C−→ (1 ∧ ti+1
1 si+1

2 . . . si+1
n ti+1

2 . . . ti+1
m)

To prove (3.1) we have to show si+1
1 ∧ ti+1

1 = 1 ∧ ti+1
1 . This follows by the definition

of conjunction since we know si+1
1 = 0 and by interference alignment we have si+1

1 = ti+1
1 .

Case 2: Suppose Si
BN 1−−→

g1
1

Si+1 is a normal step and Ti
BN 2−−→

g2
1

Ti+1 is an interfer-

ence step. Then this follows along similar lines to Case 1 above.

Case 3: Suppose Si
BN 1−−→

g1
1

(si+1
1 . . . si+1

n) and Ti
BN 2−−→

g2
1

(ti+1
1 . . . ti+1

m) are both normal

steps. Then by (3.2) and definition of C we have

(si
1 ∧ ti1 s

i
2 . . . si

n t2
i . . . tim) C−→ (si+1

1 ∧ ti+1
1 si+1

2 . . . si+1
n t2

i+1 . . . ti+1
m)

and so (3.1) holds as required.

We now have a basis for compositionally identifying attractors. Suppose we have
two SCCs, φ1 ∈ SCC(SGg1

1
(BN 1)) and φ2 ∈ SCC(SGg2

1
(BN 2)), and cyclic paths

α1 ∈ CPaths(φ1) and α2 ∈ CPaths(φ2). Then if these cyclic paths interference align
then they can be merged α1 ∧ α2 producing a path that must represent an attractor in
the composed model C (BN 1,BN 2, g1, g2).

To illustrate this idea consider the SCCs φ1
1 and φ2

2 for SGg1
1
(BN Ex1) and SGg2

1
(BN Ex2)

(see Figure 3.1) and the cyclic paths ⟨011, 000, 101, 011, 000, 101, 011, . . .⟩ ∈ CPaths(φ1
2)

and ⟨00, 00, 10, 00, 00, 10, 00 . . .⟩ ∈ CPaths(φ2
1). These two cyclic paths can be seen

to interference align, and so by Lemma 3, we know that the path that results from
merging them

⟨0110, 0000, 1010, 0110, 0000, 1010, 0110 . . .⟩

is in the composed model. It follows that [0110, 0000, 1010, 0110] is an attractor for
the composed model C(BN Ex1,BN Ex2, g

1
1, g

2
1).

48 Identifying Attractors for Basic Compositions

We formally prove that our approach for compositionally identifying attractors is
correct by showing that it is sound (any attractor found is valid) and complete (all
valid attractors are found).

Theorem 4. (Soundness) Let φ1 ∈ SCC(SGg1
1
(BN 1)) and φ2 ∈ SCC(SGg2

1
(BN 2))

be SCCs. Let α1 ∈ CPaths(φ1) and α2 ∈ CPaths(φ2) be cyclic paths such that α1 and
α2 interference align. Then α1 ∧ α2 represents an attractor in the composed model
C (BN 1,BN 2, g1, g2).

Proof. Let φ1 ∈ SCC(SGg1
1
(BN 1)) and φ2 ∈ SCC(SGg2

1
(BN 2)) be SCCs. Let α1 ∈

CPaths(φ1) and α2 ∈ CPaths(φ2) be cyclic paths such that α1 and α2 interference
align. By above assumptions and Lemma 3 it follows

α1 ∧ α2 ∈ Path(SG(C(BN 1,BN 2, g
1
1, g

2
1)))

By the definition of cyclic paths we know there must exist minimal k1, k2 ∈ N and
states S1, . . . , Sk1 ∈ SBN 1 and T1, . . . , Tk2 ∈ SBN 2 such that

α1 = ⟨S1, . . . , Sk1 , S1, . . . , Sk1 , . . .⟩, α2 = ⟨T1, . . . , Tk2 , T1, . . . , Tk2 , . . .⟩

Let LCM(k1, k2) represent the lowest common multiple of k1 and k2. Then it fol-
lows that the first LCM(k1, k2) + 1 states of α1 ∧ α2 must represent an attractor in
C (BN 1,BN 2, g

1
1, g

2
1).

We now consider showing that the proposed approach is complete, and begin with
some necessary preliminary results about projecting and merging paths in a composed
model.

Lemma 5. Let β ∈ Path(SG(C (BN 1,BN 2, g
1
1, g

2
1))). Then

PBN 1(β) ∧ PBN 2(β) = β

Proof. Let C = C (BN 1,BN 2, g
1
1, g

2
1). Let β = ⟨F1, F2, ...⟩ ∈ Path(SG(C)).

It is sufficient to show that, for any i ∈ N

Fi = PBN 1(Fi) ∧ PBN 2(Fi)

Let i ∈ N and let Fi = (d s2 ... sn t2... tm), where d is the state of the merged entity
gc = g1

1 ∧ g2
1. Then PBN 1(Fi) = (d s2 ...sn) and PBN 2(Fi) = (d t2 ... tm).

3.2 Compositionally Identifying Attractors 49

So by idempotency of ∧, we know that d ∧ d = d as required.

We now show that any path in the composed model projected over the entities of an
underlying BN will produce a path in the interference state graph of that underlying
BN.

Lemma 6. Let β ∈ Path(SG(C (BN 1,BN 2, g
1
1, g

2
1))). Then we must have:

i) PBN 1(β) ∈ Path(SGg1
1
(BN 1))

ii) PBN 2(β) ∈ Path(SGg2
1
(BN 2))

Proof. i) Let C = C (BN 1,BN 2, g
1
1, g

2
1). Let β = ⟨F1, F2, ...⟩ ∈ Path(SG(C)). Then,

we need to show that PBN 1(β) ∈ Path(SGg1
1
(BN 1)). It suffices to show that for any

i ∈ N there exists a step
PBN 1(Fi) BN 1−−→

g1
1

PBN 1(Fi+1) (1)

in the interference state graph SGg1
1
(BN 1). Let i ∈ N and let

Fi = (di si
2 ... s

i
n t

i
2 ... t

i
m) ∈ SC

where di is the state of the merged entity gc = g1
1 ∧ g2

1. By the definition of projection
we know that

PBN 1(Fi) = (di si
2 ... s

i
n) and PBN 2(Fi) = (di ti2 ... t

i
m)

Suppose that
(di si

2 ... s
i
n) BN 1−−→ (si+1

1 ... si+1
n) (2)

(di ti2 ... t
i
m) BN 2−−→ (ti+1

1 ... ti+1
m) (3)

Then, by the definition of composition we have

Fi+1 = (si+1
1 ∧ ti+1

1 si+1
2 . . . si+1

n t2
i+1 . . . ti+1

m)

To show (1) holds, we therefore need to show

(di si
2 ... s

i
n) BN 1−−→

g1
1

(si+1
1 ∧ ti+1

1 si+1
2 ... si+1

n) (4)

We have two cases to consider with respect to si+1
1 ∧ ti+1

1 .

50 Identifying Attractors for Basic Compositions

Case 1: Suppose there is no interference between si+1
1 and ti+1

1 . Then we must
have si+1

1 ∧ ti+1
1 = si+1

1 = ti+1
1 . It therefore follows from (2) and definition of ∧ that (4)

holds.

Case 2: Suppose there is interference between si+1
1 and ti+1

1 . Then, there are two
sub-cases to consider based on which BN generated the interference.

Case 2.1: Suppose si+1
1 = 1 and ti+1

1 = 0, then by definition of ∧ we must have
si+1

1 ∧ ti+1
1 = 0 = ¬si+1

1 (i.e. BN 2 interfered with BN 1). Then by definition of
projection we have

PBN 1(Fi+1) = (¬si+1
1 si+1

2 ... si+1
n)

By definition of the interference state graph, we must have the interference edge

(di si
2 ... s

i
n) BN 1−−→

g1
1

(¬si+1
1 si+1

2 ... si+1
n)

in SGg1
1
(BN 1) as required.

Case 2.2: Suppose si+1
1 = 0 and ti+1

1 = 1, then by definition of ∧ we must have
si+1

1 ∧ ti+1
1 = si+1

1 (i.e. BN 1 interfered with BN 2). Then by definition of projection we
have

PBN 1(Fi+1) = (si+1
1 ... si+1

n)

Then we must have the normal edge

(di si
2 ... s

i
n) BN 1−−→ (si+1

1 ... si+1
n)

in SGg1
1
(BN 1) as required.

ii) Follows along similar lines to i) above.

We can now prove the proposed compositional attractor identification approach is
complete.

Theorem 7. (Completeness) Let α = [F1, F2, ...Fn, F1] be an attractor in C (BN 1,BN 2, g
1
1, g

2
1).

Then there must exist φ1 ∈ SCC(SGg1
1
(BN 1)) and φ2 ∈ SCC(SGg2

1
(BN 2)), and cyclic

paths α1 ∈ CPaths(φ1) and α2 ∈ CPaths(φ2) such that α1 and α2 interference align,
and α1 ∧ α2 results in the attractor α.

3.3 Developing Tool Support 51

Proof. Let α = [F1, F2, . . . Fn, F1] be an arbitrary attractor in the composed model
C (BN 1,BN 2, g

1
1, g

2
1). Then α can be viewed as representing the infinite path ⟨F1, . . . Fn,

F1, . . . Fn, . . .⟩. Let α1 = PBN 1(α) and α2 = PBN 2(α). Let α1 = ⟨S1, ..., Sn, S1, ..., Sn, ...⟩
and α2 = ⟨T1, ..., Tn, T1, ..., Tn, ...⟩.

First, by Lemma 5, it follows that α1 ∧ α2 must result in α.

Next, we need to consider showing that α1 and α2 interference align. By definition they
must align, so it suffices to show that each corresponding step Si → (si+1

1 . . . si+1
k) and

Ti → (ti+1
1 . . . ti+1

m) cannot both be interference steps. This clearly must be true by the
definition of composition because otherwise we would have Si

BN 1−−→ (¬si+1
1 si+1

2 . . . si+1
k)

and Ti
BN 2−−→ (¬ti+1

1 ti+1
2 . . . ti+1

m), resulting in a contradiction, since ¬si+1
1 ∧ ¬ti+1

1 ̸=
si+1

1 ∧ ti+1
1 .

Finally, we need to show that α1 and α2 are cyclic paths resulting from an SCC
in SCC(SGg1

1
(BN 1)) and SCC(SGg2

1
(BN 2)), respectively. It follows by Lemma 12

that α1 ∈ Path(SGg1
1
(BN 1)) and α2 ∈ Path(SGg2

1
(BN 2)). Furthermore, since α1 and

α2 are clearly cyclic paths, it can be seen that they must result from an SCC structure
in their corresponding interference state graphs as required.

3.3 Developing Tool Support

In this section, we use the theoretical approach outlined in the previous section as the
basis to develop tool support for compositionally identifying attractors in a composed
model consisting of two BNs.

The theoretical approach introduced above is based on identifying two cyclic paths
over SCCs in the submodels’ interference state graphs, which are interference aligned
and therefore can be merged. We are interested here in developing an algorithm for
finding such cyclic paths. Our algorithmic approach starts from an aligned state pair
(i.e. they have the same value on the entities to be merged) over an SCC in each
submodel. Then, we transition from the state pair to the next one until a repeated
state pair occurs, indicating that cyclic paths have been formed. When making a
transition to a new state pair, we ensure that the two states align and are not both
interference steps; we refer to this as an interference aligned next state pair.

We formally define an interference aligned next state pair as follows.

52 Identifying Attractors for Basic Compositions

Definition 11. Let S1, S2 ∈ SBN 1 and T1, T2 ∈ SBN 2 such that S1
BN 1−−→

g1
1

S2 and

T1
BN 2−−→

g2
1

T2. Then we say (S2, T2) is an interference aligned next state pair for (S1, T1),

iff Pg1
1
(S2) = Pg2

1
(T2) and at least one of the state transitions S1

BN 1−−→
g1

1

S2 and T1
BN 2−−→

g2
1

T2

is a normal step.

Note that for any state pair (S1, T1), there is at most one interference aligned next
state pair.

Now, we formulate an algorithm for identifying and merging cyclic paths from
the given SCCs for the subnetworks. The pseudocode given below outlines Al-
gorithm 1 findAttTwo which given two SCCs φ1 ∈ SCC(SGg1

1
(BN 1)) and φ2 ∈

SCC(SGg2
1
(BN 2)) finds all the attractors associated with these cyclic structures. The

algorithm makes use of the following auxiliary functions:

• alignSet(φ1, φ2) returns the set of all aligned state pairs for the given SCCs, and
is defined by

alignSet(φ1, φ2) =

{(S, T) | S ∈ Sφ1 , T ∈ Sφ2 , Pg1
1
(S) = Pg2

1
(T)};

• noStep((S, T), φ1, φ2) is a Boolean function that checks if a state pair (S, T) does
not have an interference aligned next state pair with respect to φ1 and φ2;

• doStep((S, T), φ1, φ2) returns, if it exists, the interference aligned next state pair
for (S, T) with respect to φ1 and φ2;

• extCP (listSP) returns the attractor that listSP must end with.

The idea is to apply findAttTwo(φ1, φ2) to each possible pair of SCCs φ1 ∈
SCC(SGg1

1
(BN 1)) and φ2 ∈ SCC(SGg2

1
(BN 2)). There are standard algorithms based

on a depth-first search for finding SCCs, such as Tarjan’s algorithm [200], which runs
in linear time O(|V | + |E|) for a graph (V,E). The overall performance of the proposed
algorithmic approach depends on the number of SCCs and their states. Assuming that
the number of combined states for the SCCs in any subnetwork is bounded by k gives
an upperbound of k2 state pairs to consider.

To illustrate how the algorithm works, consider applying it to the composition
C(BN Ex1,BN Ex2, g

1
1, g

2
1) (Figure 2.7). In this example, we have two SCCs φ1

1 and φ1
2

for BN Ex1, and one SCC φ2
1 for BN Ex2 (see Figure 3.1). We therefore have 2 × 1 = 2

3.3 Developing Tool Support 53

Algorithm 1: findAttTwo(φ1, φ2)
Input :φ1 ∈ SCC(I1);φ2 ∈ SCC(I2)
Output : attSet : Set of Attractors
Variables : S1, S2 ∈ Sφ1 ;T1, T2 ∈ Sφ2 ; listSP : List of State Pairs Sφ1 × Sφ2 ;

seen : Set of State Pairs Sφ1 × Sφ2

1 Begin
2 attSet := {}; seen := {}
3 foreach (S1, T1) ∈ alignSet(φ1, φ2) do
4 listSP := []
5 Loop
6 if (S1, T1) ∈ seen then
7 Exit Loop
8 else
9 seen := seen ∪ {(S1, T1)}

10 if noStep((S1, T1), φ1, φ2) then
11 Exit Loop
12 else
13 listSP := listSP + +[(S1, T1)]
14 (S2, T2) := doStep((S1, T1), φ1, φ2)
15 if (S2, T2) ∈ listSP then
16 attSet := attSet ∪ {extCP (listSP + +[(S2, T2)])}
17 Exit Loop
18 else
19 (S1, T1) := (S2, T2)
20 end
21 end
22 end
23 EndLoop
24 end
25 return attSet

26 End

possible pairs of SCCs (φ1
1, φ

2
1) and (φ1

2, φ
2
1) to apply findAttTwo to.

findAttTwo(φ1
2, φ

2
1): We have |(Sφ1

2
× Sφ2

1
)| = 6 possible state pairs but there are

only three state pairs that align

alignSet(φ1
2, φ

2
1) = {(011, 00), (000, 00), (101, 10)}

The following is a trace for findAttTwo(φ1
2, φ

2
1):

1) Suppose findAttTwo processes (011, 00) first.

54 Identifying Attractors for Basic Compositions

00

10

00011

011

000

101

00

−→

0110

0000

1010

φ1
2 φ2

1 attractor

Figure 3.2 Interference aligning a path in φ1
2 with a path in φ2

1 starting with the pair
(011, 00) followed by (000, 00), then we end with the repeated pair (011, 00), which
means we found the attractor. Then by merging the cyclic paths on g1

1 in BN Ex1 and g2
1

in BN Ex2 using AND, we identify the composed model attractor [0110, 0000, 1010, 0110].

2) Clearly we have (011, 00) ̸∈ seen and so we set seen = {(011, 00)}.
3) We have noStep((011, 00), φ1

1, φ
2
2) is false and so we set listSP = [(011, 00)].

4) We then set (S2, T2) = (000, 00) since doStep((011, 00), φ1
1, φ

2
2) = (000, 00) is the

interference aligned next state pair for (011, 00).
5) Since (000, 00) ̸∈ listSP we set (S1, T1) = (000, 00).
6) Since (000, 00) ̸∈ seen we set seen = {(011, 00), (000, 00)}.
7) We have noStep((000, 00), φ1

1, φ
2
2) is false and so we set listSP = [(011, 00), (000, 00)].

8) We then set (S2, T2) = (101, 10) since doStep((000, 00), φ1
1, φ

2
2) = (101, 10) is the

interference aligned next state pair for (000, 00).
9) Since (101, 10) ̸∈ listSP we set (S1, T1) = (101, 10).
10) Since (101, 10) ̸∈ seen we set seen = {(011, 00), (000, 00), (101, 10)}.
11) We have noStep((101, 10), φ1

1, φ
2
2) is false and so we set list = [(011, 00), (000, 00)

, (101, 10)].
12) We then set (S2, T2) = (011, 00) since doStep((101, 10), φ1

1, φ
2
2) = (011, 00) is the

interference aligned next state pair for (101, 10).
13) Since (011, 00) ∈ listSP , extCP (listSP) will then return the attractor [0110, 0000, 1010,
0110]. The above steps are illustrated in Figure 3.2.
14) We now return to the outer loop to process the remaining two aligned state pairs
(000, 00) and (101, 10), but they have already been considered in the process above.

3.4 Case Study 55

findAttTwo(φ1
1, φ

2
1): We have |(Sφ1

1
× Sφ2

1
)| = 2 possible state pairs, but there is

only one state pair (001, 00) that aligns. So findAttTwo will process (001, 00) result-
ing in listSP = [(001, 00), (001, 00)] and extCP (listSP) returns the point attractor
[0010, 0010]. It can be seen that the algorithm has correctly identified the attractors
for C(BN Ex1,BN Ex2, g

1
1, g

2
1).

In order to make our approach practical, the algorithm findAttTwo has been used
as the basis for developing a prototype support tool1 for compositionally identifying
attractors. The tool is implemented in Python and makes use of the NetworkX package
[201] which has tools to represent and manipulate network structures. The support
tool reads in state graphs for the subnetworks using the DOT file format [53], and
takes the position of the merged entities of each submodel as inputs. The tool then
generates the required interference state graphs by adding the necessary interference
edges based on the composed entities. It then uses an implementation of Tarjan’s
algorithm [200], with a modification of it [202] in the NetworkX package to find the
required SCCs. The support tool then applies an implementation of the findAttTwo
algorithm to each of the possible pairs of SCCs, and returns all the attractors found.

3.4 Case Study

In this section, we illustrate the application of our techniques and tools with a case
study based on analysing a BN modelling the regulatory network for cell differentiation
in the bacteria Caulobacter crescentus [5, 6].

3.4.1 Qualitative Model for Cell Differentiation

The bacteria C. crescentus [199] is a model organism for studying cellular differentiation
and asymmetric division in bacteria, as its division cycle generates two phenotypes: the
stalked and the swarmer cell types. A set of BN models for analysing the regulatory
network behind cell differentiation in C. crescentus were proposed in [5, 6], and we use
these models as the basis for the Boolean network BN Cc presented in Figure 3.3.

Based on the approach suggested in [5, 6] we decompose this BN into two subnet-
works BN Cc1 and BN Cc2 (see Figure 3.4) by splitting the entity CtrA into two entities

1For more information about the tool and to obtain a copy, please email the authors.

56 Identifying Attractors for Basic Compositions

CtrA

GcrA

CcrM

SciP

DnaA

ChpT

CpdR

ClpXP-RcdA

DivJ

DivK

PleC

DivL

CckA

CtrA = ((CtrA ∨GcrA)∧
¬CcrM ∧ ¬SciP)∧
(ChpT ∧
¬ClpXP −RcdA)

GcrA = DnaA ∧ ¬CtrA
DnaA = CtrA ∧ CcrM∧

¬GcrA ∧ ¬DnaA
CcrM = CtrA ∧ ¬CcrM∧

¬SciP
SciP = CtrA ∧ ¬DnaA
DivK = DivJ ∧ ¬PleC
P leC = ¬DivK
DivJ = DivK ∧ ¬PleC
DivL = ¬DivK
CckA = DivL
ChpT = CckA
CpdR = ChpT
ClpXP −RcdA = ¬CpdR

Figure 3.3 The BN model BN Cc based on the model of the regulatory network for cell
differentiation in C. crescentus developed by [5, 6].

CtrAa and CtrAb with corresponding next-state functions

CtrAa = ((CtrA ∨GcrA) ∧ ¬CcrM ∧ ¬SciP),

CtrAb = (ChpT ∧ ¬ClpXP −RcdA)

It can be shown that the composition C(BN Cc1,BN Cc2, CtrAa, CtrAb) of the two
subnetworks on the entities CtrAa and CtrAb using conjunction does correctly result
in the original BN BN Cc.

This decomposition can be seen to dramatically reduce the state space that needs to
be considered; the original model had 213 = 8192 global states, while the two submodels
have 25 = 32 and 29 = 512.

3.4 Case Study 57

CtrAa

GcrA

CcrM

SciP

DnaA

ChpT

CtrAb

CpdR

ClpXP-RcdA

DivJ

DivK

PleC DivL

CckA

BN Cc1 BN Cc2

Figure 3.4 Subnetworks BN Cc1 and BN Cc2 of the qualitative model BN Cc (based on
[5, 6]), where a node CtrA is shared between them and named CtrAa in BN Cc1 and
CtrAb in BN Cc2.

3.4.2 Application of Our Approach

In this section we explain how we apply our tool support to BN Cc1 and BN Cc2 to
identify the attractors of the composed model BN Cc. We note that the purpose of this
work is not to produce any new biological insight but to provide a clear example of the
practical application of the developed techniques and tools.

The process starts by generating dot files for the state graphs corresponding to
BN Cc1 and BN Cc2 (this is achieved using standard tools such as GinSim [3]). These dot
files are then used to input the state graphs to our support tool which then generates
the corresponding interference state graphs. The support tool then identifies the SCCs
in the interference state graphs: there are two SCCs φ1

1 and φ1
2 in SGCtrAa(BN Cc1);

and two SCCs φ2
1 and φ2

2 in SGCtrAb
(BN Cc2) (see Figure 3.5). The total number of

possible state pairs is 15, but the tool only considers the eight state pairs that align
(see below).

We are then able to apply the implementation of findAttTwo to the four possible
SCC pairs. The result is that the support tool correctly identifies the three attractors
for BN Cc (this was verified using existing tools such as BoolNet [55]).

58 Identifying Attractors for Basic Compositions

00101

01000

10000

10011

00000

001011110

101011110

010100001

φ1
1 φ1

2 φ2
1 φ2

2

Figure 3.5 The identified SCCs φ1
1 and φ1

2 for SGCtrAa(BN Cc1)) (state order is CtrAa

, GcrA, DnaA, CcrM, SciP), and φ2
1 and φ2

2 for SGCtrAb
(BN Cc2)) (state order is

CtrAb, DivK, P leC, DivJ, DivL, CckA, ChpT, CpdR, ClpXP −RcdA).

The following summarises the results produced by the tool:

1) findAttTwo(φ1
1, φ

2
1): There are four aligned state pairs to consider. Starting with

the state pair (00101, 001011110) the result is the single list of state pairs
{[(00101, 001011110), (01000, 001011110), (10000, 101011110), (10011, 10101110),
(00101, 001011110)]}
which are merged to produce the attractor
[0010101011110, 0100001011110, 1000001011110, 1001101011110, 0010101011110].
The other aligned state pairs {(01000, 001011110), (10000, 101011110), (10011, 10101110)}
would produce the same attractor but are not processed as they have already been
added to the seen list.

2) findAttTwo(φ1
1, φ

2
2): There are two aligned state pairs to consider. The algorithm

returns {} and no attractors are found.

3) findAttTwo(φ1
2, φ

2
1): There is one aligned state pair (00000, 001011110) that re-

sults in the single list of state pairs
{[(00000, 001011110), (00000, 001011110)]}
which are merged to produce the attractor
[0000001011110, 0000001011110].

4) findAttTwo(φ1
2, φ

2
2): There is one aligned state pair (00000, 010100001) that re-

3.5 Extending Attractor Identification to Arbitrary Compositions 59

sults in the single list of state pairs
{[(00000, 010100001), (00000, 010100001)]}
which are merged to produce the attractor
[0000010100001, 0000010100001].

Note that the genes in the composed model are encoded in the following order:
CtrA, GcrA, DnaA, CcrM, SciP, DivK, P leC, DivJ, DivL, CckA, ChpT, CpdR,

ClpXP −RcdA.

3.5 Extending Attractor Identification to Arbitrary
Compositions

In practice, we would like to generalise our approach to identify attractors in an
arbitrary composition consisting of multiple BNs by merging multiple entities. To gain
insight to arbitrary compositions, we started to consider composing three BNs based
on a sequence of pairwise BNs structure presented in the existing framework [4]. It
turned out that there are two main cases which we have investigated:

• Case 1 is composing three BNs on the same entities from each submodel (see
Figure 3.6). Let C∧(BN 1,BN 2,BN 3, (g1

1, g
2
1), (g2

1, g
3
1)) represent the composition

of BN 1, BN 2 and BN 3 by merging g1
1, g2

1 to form gc
1 and then merging gc

1 with
g3

1 which resulted in only one merged entity gc
2 in the final model.

• Case 2 is composing three BNs on different entities from each submodel (see
Figure 3.7). Let C∧(BN 1,BN 2,BN 3, (g1

1, g
2
1), (g2

2, g
3
1)) represent the composition

of a BN 1, BN 2 and BN 3 by merging g1
1 and g2

1 to form a first merged entity gc
1

and merging g2
2 and g3

1 to form a second merged entity gc
2.

That leads to two extended definitions for interference alignment. First, we provide
a formal definition of interference alignment for a composition of three BNs composed
of the same entities as follows.

Definition 12. Let α1 = ⟨S1, S2, ...⟩ ∈ Path(SGg1
1
(BN 1)), α2 = ⟨T1, T2, ...⟩ ∈

Path(SGg2
1
(BN 2)) and α3 = ⟨V1, V2, ...⟩ ∈ Path(SGg3

1
(BN 3)). Then we say that α1, α2

and α3 interference align iff Pg1
1
(α1) = Pg2

1
(α2) = Pg3

1
(α3) and for any i ∈ N, we have

at least one step of Si
BN 1−−→

g1
1

Si+1, Ti
BN 2−−→

g2
1

Ti+1 or Vi
BN 3−−→

g3
1

Vi+1 is not an interference
step.

60 Identifying Attractors for Basic Compositions

g11BN 1 g21 BN 2

gc1

BN 3

g31

gc2

Figure 3.6 Pictorial representation of composing BN 1, BN 2 and BN 3 by merging g1
1,

g2
1 to form gc

1 and then merging gc
1 with g3

1 which resulted in a merged entity gc
2 in the

final model.

g11BN 1 g21 BN 2

gc1

BN 3g22 g31

gc2

Figure 3.7 Pictorial representation of composing BN 1, BN 2 and BN 3 by merging g1
1,

g2
1 to form a first merged entity gc

1 and merging g2
2 and g3

1 to form a second merged
entity gc

2.

Then, we provide a formal definition of interference alignment for a composition of
three BNs composed of different entities as follows.

Definition 13. Let α1 = ⟨S1, S2, ...⟩ ∈ Path(SGg1
1
(BN 1)), α2 = ⟨T1, T2, ...⟩ ∈

Path(SGg2
1 ,g2

2
(BN 2)) and α3 = ⟨V1, V2, ...⟩ ∈ Path(SGg3

1
(BN 3)). Then we say that α1,

α2 and α3 interference align iff Pg1
1
(α1) = Pg2

1
(α2), Pg2

2
(α2) = Pg3

1
(α3) and for any

i ∈ N, we have:
i) Si

BN 1−−→
g1

1

Si+1 and Ti
BN 2−−−→
g2

1 ,g2
2

Ti+1 are not both interference steps on g1
1 and g2

1.

ii) Ti
BN 2−−−→
g2

1 ,g2
2

Ti+1 and Vi
BN 3−−→

g3
1

Vi+1 are not both interference steps on g2
2 and g3

1.

The difference between the two definitions above is that the submodel in the middle
of a composition on different entities can experience interference in two entities, while
each submodel in the other form of composition experiences interference in one entity.

For both composition forms, we have proved that the interference alignment property
captures when three paths in interference state graphs can be merged to create a path
in a constructed model. Following that, we proved that the extended approach is
correct by showing its soundness and completeness. We extended the preliminary
results concerning projecting and merging paths in a composed model to show that

3.6 Conclusions 61

the extended approach is complete. Based on the theoretical approach, we formulated
and implemented an algorithm to identify attractors in three BNs.

We then started to consider multiple BNs based on a restricted composition structure
of a sequence of pairwise BNs building on the idea is presented in [4] (see Figure 3.8).
We partially proved the results corresponding to the above lemmas and theorems,
but we started to experience difficulties. First, the representation of definitions and
notations became too complex. In addition, it was difficult to keep track of the names
of composed entities that appeared in the final model, and the submodels’ entities
were merged together. We also wanted to expand the types of compositional structure
allowed, which was difficult to do with the current definitions. Therefore, it became
clear that we needed to develop a new general definition of a composition to support
arbitrary compositions and simplify the representation of definitions and results to
extend our attractor identification approach. This is considered in detail in the next
chapter.

. . .h1
1 h1

2BN 1 h2
1 h2

2BN 2 BN v−1 hv
1 hv

2
BN vhv−1

1

gc2 gcv

hv−1
2

h3
2BN 3h3

1

gc3

Figure 3.8 Pictorial representation of sequentially composing multiple Boolean networks
BN 1, ...,BN v to form a composed system Cv, adapted from [4]. We consider tow cases of
merging entities: (1) merging distinct entities from each BN j that for each j ∈ {1, ..., v}
we have hj

1 ̸= hj
2. We end up with multiple new merged entities, such as gc

2, ..., g
c
v; and

(2) merging same entities from each BN j that for each j ∈ {1, ..., v} we have hj
1 = hj

2.
This composition results in a single new merged entity called gc

v.

3.6 Conclusions

In this chapter we took an existing compositional framework for BNs [48, 49] and
extended it by developing new compositional techniques and tools for attractor identifi-
cation in a composed model involving two BNs. This work was important as providing
support for compositional attractor analysis is crucial in addressing the state space
explosion problem, and in ensuring the practical applicability of the compositional
framework for analysing BNs.

The initial work presented here focused on the composition of two subnetworks and
introduced important new concepts and ideas for attractor analysis. Our theoretical
approach is based on merging cyclic paths in each submodel’s interference state graph.

62 Identifying Attractors for Basic Compositions

The key idea is to use the SCCs in the interference state graphs to identify cyclic
paths that can be merged to form attractors. We defined a crucial new property
called interference alignment, and we proved that this property captures when paths in
interference state graphs can be merged to create a path in a composed model. As a
result, merging interference aligned cyclic paths in the identified SCCs forms attractors
in the composed model. We proved that our approach of identifying attractors is
correct by proving its the soundness and completeness.

It is important to note that while this chapter focuses on using a conjunction
to merge the behaviour of entities in a composition, all the results presented can
straightforwardly be adapted to the use of disjunction. It turns out that the key
property for the results is the idempotency. In addition, the algorithm will not be
changed when we use the disjunction for merging entities because the algorithm works
on state graphs.

Developing tool support is important in automating our developed approach, and
allowing its practical application. An interesting challenge of this work is how to find
an algorithmic way to implement our theoretical approach, as cyclic paths represent
infinite objects. We developed a key new concept of interference aligned next state
pair to form cyclic paths compositionally. We formulated an algorithm for a function
findAttTwo, which given the SCCs from the interference state graphs for the two
subnetworks can find all attractors associated with the composed model based on
the idea of interference aligned next state pairs. We used findAttTwo algorithm to
implement the support tool using Python. We applied the tools developed for attractor
analysis to a case study based on analysing a BN modelling the regulatory network for
cell differentiation in the bacteria Caulobacter crescentus [5, 6]. While the case study
is small, it gave important initial insight into the applicability of the approach, and
motivated us to consider generalising the existing composition definition to support
multiple submodels of large biological systems.

The work in this chapter is significant because it provides a new fundamental
idea for compositionally identifying attractors; however, more work is required to
develop a technique into a practical approach. Thus, we would like to extend the
attractor analysis approach conducted in this chapter to an arbitrary composition
(i.e. a composition involving multiple BNs, which are composed over multiple entities).
However, the initial work on extending the results to three and a sequence of pairwise
BNs structures (Section 3.5) showed that the current definition of a composition could
not be used as the basis of such a development. This is because of the complexity of

3.6 Conclusions 63

the underlying definitions and notations, and the difficulty of finding a way of tracking
composed entities. It has become clear in this chapter that a new definition for a
composition is required, specifically focused on the idea of an arbitrary composition.
In the subsequent chapter, we set out to develop such a new general formulation of a
composition, and to extend our initial results from the attractor identification approach
to this.

A range of work on compositionally identifying attractors exists in the literature
(see the related work given in Section 2.5.3). However, the framework we have begun to
develop in this chapter is fundamentally different from the existing work in the literature.
To begin with, the compositional approach we used is designed to compositionally
construct BN models and not just for analysis. Moreover, we use the SCCs associated
with the behaviour of a subnetwork’s interference state graph, while in the literature,
the SCCs appear to be used to decompose the wiring diagram. The new approach we
are developing here is novel because it allows the compositional construction models
and at the same time the compositional analysis.

The interesting ideas introduced in this chapter are now further extended and
developed into practical techniques and tools in Chapter 4 that follows.

Chapter 4

Identifying Attractors for
Generalised Compositions

4.1 Introduction

In the previous chapter, we developed a new approach to identify attractors in a model
resulting from a composition of two BNs. We proved that the approach is correct by
showing that it is sound and complete. We developed a prototype support tool, and
illustrated its application using a biologically relevant case study from the literature.
The results were promising, but to be practically useful, we need to expand the type of
composition allowed so that a large BN could be constructed from small components
simultaneously. At the end of Chapter 3, we started to investigate extending the
approach to a composition involving multiple BNs, in particular, three BNs and a
sequence of pairwise BNs structure based on the existing framework. This investigation
highlighted the limitations of the current formulation of a composition when considering
arbitrary compositions. In particular, the notations and definitions became complex
and this prevented the formulation of results for arbitrary compositions. It is therefore
clear that a new definition for arbitrary composition was required.

In this chapter, we develop a new general formulation of an arbitrary composition
involving a set of BNs based on the underlying ideas of the original compositional
framework. The new formulation of a composition is based on a graph structure to
represent arbitrary compositions. It has led to a more concise formal definition of a
composition and remove the need for multiple cases. The new formulation requires us to
update the definition of an interference state graph and reprove an important theorem in

66 Identifying Attractors for Generalised Compositions

order to show that an interference state graph captures all possible behaviour that can
result for a BN. It is important to note that this new formulation is not straightforward.
We have to introduce definitions and notations for reasoning about a composition. In
particular, we must find a way to define the entities used in a composition for each
BN. Furthermore, we must define the group of entities used in a composition and the
BN to which each entity belongs. The most important aspect is defining the set of
entities that merged together and experienced interference.

We take the developed approach for identifying attractors in Chapter 3 and extend
the key ideas to the new general formalisation of a composition. We follow this approach
of identifying the strongly connected components associated with the interference state
graphs for the underlying BNs, and then merged their cyclic behaviour; in doing so,
there are a number of areas that needed to be considered. Subsequently, we analyse
an interference state graph based on having a set of entities that can experience
interference, rather than just one entity. Therefore, we extend the definitions of a
normal step and an interference step to an interference state graph for multiple entities.
In addition, we have to indicate when potential paths from underlying BNs could
be merged on multiple entities to produce attractors in a composed model. As a
consequence, we extend the key property interference alignment. We then formally
prove that it is correct by showing that it is sound and complete.

We note that while this thesis focuses on using a conjunction to merge the behaviour
of entities in a composition, all the results presented can straightforwardly be adapted
to the use of disjunction. This is further discussed in Section 4.4.

This chapter is organised as follows. In Section 4.2, we present a new general
definition of a composition. In Section 4.3, we extend our new theoretical approach for
compositionally identifying attractors to support an arbitrary composition, which we
prove is correct by showing that it is sound and complete. Finally, we make concluding
remarks and discuss the future work in Section 4.4.

4.2 New Formulation of Composition

In order to simultaneously construct a composition from multiple BNs, a new formula-
tion for a composition is required. In this section, we develop a new general formulation
of a composition based on using a graph structure that extends the existing approach

4.2 New Formulation of Composition 67

of composing two BNs [48, 49, 4]. This work represents a significant step forward in
the original compositional framework.

g11 g12BN 1

g21

BN 2

BN 3

g41 BN 4g51 BN 5 g22

g31

{g21 , g31}{g21 , g12}
{g11 , g51}

{g22 , g41}
g52

{g52 , g22}

Figure 4.1 Pictorial representation of a composition involving five Boolean networks
BN 1, ...,BN 5 where thick blue edges represent the entities used in the composition.

The idea is that each BN involved in the composition is a node in the graph. The
composition of two BNs is then represented using an edge connecting the two BNs,
which specifies the entities used in the composition.

To illustrate the idea behind this graph structure to specify a general composition,
consider composing five Boolean networks BN 1, ...,BN 5 as shown in Figure 4.1. The
composition of BN 1 and BN 2 is specified by the edge {g2

1, g
1
2} and the composition of

BN 2 and BN 3 by the edge {g2
1, g

3
1} (note that a set is used as there is no order in the

composition).

This leads to the following new general definition of a composition, which signifi-
cantly extends the definition given in [49].

Definition 14. (Composition) A composition Σ is defined to be a pair Σ = (M,E),
where M = {BN 1, . . . ,BN n} is a set of BNs for some n ∈ N, n > 1, and

E ⊆ {{g1, g2} | BN i,BN j ∈ M, BN i ̸= BN j and g1 ∈ BN i, g2 ∈ BN j}

is a set defining the entities merged which satisfies the following condition: for each
BN i ∈ M there must exist an entity g1 ∈ BN i such that {g1, g2} ∈ E, for some
BN j ∈ M , BN i ̸= BN j and g2 ∈ BN j.

Recall six example Boolean networks MEx1, MEx2, MEx3, MEx4, MEx5 and MEx6

(see Figure 2.6). Consider composing MEx1, MEx2, MEx3, MEx4, MEx5 and MEx6

using conjunction as follows:

• MEx1, MEx3, MEx4 and MEx5 are composed by merging entities g1
1, g3

2 , g4
2 and

g5
2.

68 Identifying Attractors for Generalised Compositions

MEx1 g11 g12

[g1
1] = g1

1 ∨ g1
2

[g1
2] = g1

1 ∨ g1
2

MEx2 g21 g22
[g2

1] = g2
2

[g2
2] = g2

1

MEx3

g32

g31g33

[g3
1] = g3

1
[g3

2] = g3
1

[g3
3] = g3

1 ∧ g3
2

MEx4 g42 g41

[g4
1] = g4

1 ∨ g4
2

[g4
2] = g4

1

MEx5 g52g51

[g5
1] = g5

2
[g5

2] = g5
1

MEx6

g62

g63g61

g64

[g6
1] = g6

3
[g6

2] = g6
2 ∧ g6

3 ∧ g6
4

[g6
3] = g6

3
[g6

4] = g6
1 ∧ g6

3 ∧ g6
4

Figure 4.2 Six further example Boolean networks MEx1, MEx2, MEx3, MEx4, MEx5
and MEx6.

• MEx2, MEx5 and MEx6 are composed by merging entities g2
1, g5

1 and g6
1.

• MEx3 and MEx6 are composed by merging entities g3
3 and g6

2.

The resulting composition ΣEx is depicted in Figure 4.3 and can be formally specified
by ΣEx = (MEx, EEx), where

MEx = {MEx1, . . . ,MEx6} and

EEx = {{g1
1, g

5
2}, {g1

1, g
3
2}, {g3

2, g
4
2}, {g5

1, g
2
1}, {g2

1, g
6
1}, {g3

3, g
6
2}}

It is worth noting that an entity can be used in more than one composition as is
the case for entity g2

1 which is used to compose MEx2 with MEx5 and MEx6.

The representation of a global state which we used in Chapter 3 is based on a
tuple of a Boolean states (s1 ... sn), where si ∈ B represent the state of gi ∈ BN and
a global state in the composition has the form S = (s s1

2 . . . s1
n s2

2 . . . s2
m) ∈ SC,

where s is the state of the new merged entity gc (see Section 2.4). However, this

4.2 New Formulation of Composition 69

g12

g32

g31

g41 g42

g33

BN 1

BN 4

BN 3
g22

g21

BN 2

g52

g51

BN 5

g62

g63g61

BN 6

g11

g64

gc
1 = (gc

1 ∨ gc
2) ∧ g2

2
∧ (gc

3 ∧ gc
2)

gc
2 = (gc

1 ∨ gc
2) ∧ gc

3
gc

3 = gc
3 ∧ (gc

3 ∨ g4
2)

Figure 4.3 An example composition ΣEx in which the six Boolean networks MEx1, . . . ,
MEx6 are composed (where the thick blue edges represent entity composition) resulting
in the composed entities gc

1 = {g1
1, g

3
2, g

4
2, g

5
2}, gc

2 = {g2
1, g

5
1, g

6
1}, gc

3 = {g3
3, g

6
2}.

representation becomes problematic to use when developing theoretical results for the
new formulation of a composition because the exact position of an entity cannot be
identified. It therefore became clear that a new representation of a global state was
needed.

In order to facilitate the theoretical results developed in this chapter we use the
following alternative approach of representing global states as functions instead of
tuples. For any Boolean network BN = (G,N, F), we define a global state to be a
function S : G → B and let S(g) represent the state of entity g ∈ G in global state S.
As normal we let SBN = [G → B] represent the set of all global states. It should be
clear that representing global states as functions, or by using tuples, is equivalent and
we move between the two approaches as required to support our formal development.

Given a non-empty subset X ⊆ G we let S[X] : X → B represent the global state
S ∈ SBN projected over X, where S[X](g) = S(g), for any g ∈ X. Given a path
α = ⟨S1, S2, . . .⟩ ∈ Path(SG(BN)) we let α[X] = ⟨S1[X], S2[X], . . .⟩.

In the sequel, assume we have n ∈ N, n > 1 BNs to compose and we let BN i =
(Gi, Ni, Fi) be an arbitrary BN for i = 1, . . . , n. We assume that the sets of entities

70 Identifying Attractors for Generalised Compositions

G1, . . . , Gn are disjointed. We let Σ = (M,E) be an arbitrary composition with
M = {BN 1, . . . ,BN n}.

We introduce the following important definitions and notation for reasoning about
a given composition Σ = (M,E).

• We let gc(Σ,BN i) be the set of all entities from BN i ∈ M involved in the
composition Σ defined by

gc(Σ,BN i) = {g | g ∈ BN i and {g, g′} ∈ E}

• We let gc(Σ) = gc(Σ,BN i) ∪ . . . ∪ gc(Σ,BN n) be the set of all entities used in
the composition.

• We define λ(g) to be the index of the BN entity g belongs to, i.e. if g ∈ Gi, for
some i ∈ {1, . . . , n}, then λ(g) = i.

• For any g ∈ gc(Σ) we define ∆(g) to be the set of entities that entity g is
composed with (i.e. the entities that can interfere with the behaviour of g).
This set is important, since an entity can be used in more than one composition.
We will see later that it is useful to include g itself in this set. We define ∆(g)
formally by

∆(g) = (
⋃
i∈N

Hi(g)) ∪ {g}

where Hi(g) is defined recursively as follows:

1) Base Case: H0(g) = {g′ | {g, g′} ∈ E}
2) Recursive case: let i ∈ N and define

Hi+1(g) = {g′′ | g′ ∈ Hi(g), {g′, g′′} ∈ E}

For any entity g ∈ gc(Σ) we use ∆(g) as the name of the composed entity in the
Boolean network BN(Σ) that results from the composition.

This is a crucial idea to be able to name entities to be merged in a composition.
In Chapter 3, the name of a newly merged entity is gc. However, here, we have
multiple newly merged entities, and need a way to uniquely name them.

4.2 New Formulation of Composition 71

• Given an entity g ∈ (G1 ∪ . . . ∪Gn) we define

Σ(g) =

g, if g ̸∈ gc(Σ);
∆(g), otherwise

Given a set of entities X ⊆ (G1 ∪ . . . ∪Gn) we define Σ(X) = {Σ(g) | g ∈ X}.

We let BN(Σ) be the BN that results from a composition Σ. We can define BN(Σ)
formally, as follows.

Definition 15. (Composed Model) Let Σ = (M,E) be a composition. Then, we define
the Boolean network BN(Σ) = (G(Σ), N(Σ), F (Σ)) that results from Σ as follows.
1. Entities: G(Σ) = Σ(G1 ∪ . . . ∪Gn).
2. Neighbourhood: for any entity h ∈ G(Σ), the neighbourhood N(Σ)(h) is defined
by

N(Σ)(h) =

⋃

g∈h Σ(Nλ(g)(g)), if h = ∆(g′), for some g′ ∈ gc(Σ);
Σ(Nλ(h)(h)), otherwise

3. Functions: For any g ∈ G(Σ) we define the next–state function F (Σ)(g) on any
S ∈ SBN(Σ) by

F (Σ)(g)(S[N(Σ)(g)]) =
∧

h∈∆(g′) Fλ(h)(h)(S[Σ(Nλ(h)(h))]), if g = ∆(g′), for some g′ ∈ gc(Σ);
Fλ(g)(g)(S[Σ(Nλ(g)(g))]), otherwise

This definition is illustrated by the example shown in Figure 4.3 where the Boolean
network BN(ΣEx) results from the composition ΣEx.

Recall that, in order to formalise the possible interference that can occur between
composed BNs, the interference state graph for a BN was introduced (see Definition
16 in Chapter 2). The idea is to extend a BN’s state graph with additional edges
representing the behaviour that could result from interference caused by a composition.
In particular, whenever an entity used in the composition transitions to 1, then we add
another edge to the state graph to represent that the entity could instead transition to
0 due to interference (this is assuming conjunction is used in the composition). Since
any given BN can have a number of entities involved in the composition, we need to
define the set of all possible next states that can occur based on the possibility of
interference, as follows.

72 Identifying Attractors for Generalised Compositions

Let BN = (G,N, F) be a BN and S ∈ SBN . For any entity g ∈ G and b ∈ B we
define S[g → b] to represent an update to state S so that g now has state b. More
formally, for any h ∈ G define

S[g → b](h) =

b, if g = h;
S(h), otherwise

Let υ : B → P(B) be defined by υ(0) = {0} and υ(1) = {0, 1}.

υ is the set of the possible next state values and there are only two possibilities
based on the use of conjunction.

Let X = {g1, . . . , gk} ⊆ G be a non–empty subset of entities. Then we define
ΥX : SBN → P(SBN) for any S ∈ SBN by

ΥX(S) = {S[g1 → b1] · · · [gk → bk] | b1 ∈ υ(S(g1)), . . . , bk ∈ υ(S(gk))}

ΥX(S) is the set of all possible states that can result from interference (including
S itself).

To illustrate the idea, consider the global state 011 ∈ SG{g3
2 ,g3

3}(MEx3) (see Figure
4.4) that experience interference for entities {g3

2, g
3
3} using conjunction. We have

Υ{g3
2 ,g3

3}(011) = {011, 010, 001} representing all possible states that can result from
interference.

We can now define the interference state graph based on having a set X of entities
that can experience interference (we build our definition based on [4]).

Definition 16. (Interference State Graph) Let BN = (G,N, F) be a Boolean network
and let X ⊆ G. Then we define the interference state graph SGX(BN) by

SGX(BN) = (SBN ,
BN−−→
X

)

The extended edge relation BN−−→
X

is defined by BN−−→
X

= BN−−→ ∪ E, where

E = {S1
BN−−→
X

T | S1, S2 ∈ SBN , S1
BN−−→ S2, T ∈ ΥX(S2)}

4.2 New Formulation of Composition 73

As illustrative examples, consider the interference state graphs depicted in Figure
4.4 for the Boolean networks MEx1, MEx2, MEx3, MEx4, MEx5 and MEx6 introduced
previously (see Figure 4.2).

11

01

00

10

00

11 01

10
000

011

010

001

111

101

100

110

SG{g1
1}(MEx1) SG{g2

1}(MEx2) SG{g3
2 ,g3

3}(MEx3)

00

01

10

11

00

11

01

10
1000

0000

1011

0010

1110

0011

10100101

1100 0100

1101

01100001 1001 0111 1111

SG{g4
2}(MEx4) SG{g5

1 ,g5
2}(MEx5) SG{g6

1 ,g6
2}(MEx6)

Figure 4.4 The interference state graphs for MEx1, MEx2, MEx3, MEx4, MEx5 and
MEx6 induced by the composition ΣEx.

In the sequel, we let Ii represent the interference state graph SGgc(Σ,BN i)(BN i)
when the composition Σ and Boolean network BN i ∈ M are clear from the context.

The following is an important result which shows that an interference state graph
captures all the possible behaviour that can result for a BN if it is used in a composition
Σ. (Note that this is an updated version of the theorem presented in [49, 4].)

Theorem 8. Let β ∈ Path(SG(BN(Σ))). Then for i = 1, . . . , n we have

β[Σ(Gi)] ∈ Path(Ii)

74 Identifying Attractors for Generalised Compositions

Proof. Let β = ⟨S0, S1, . . .⟩ ∈ Path(SG(BN(Σ))). Then it suffices to show that for
any i ∈ {1, . . . , n} and any k ∈ N we have

Sk[Σ(Gi)]
BN i−−−−−−→

gc(Σ,BN i)
Sk+1[Σ(Gi)] (4.1)

Let Sk[Σ(Gi)]
BN i−−→ T , for some T ∈ SBN i

. Clearly, for any g ∈ Gi, g ̸∈ gc(Σ,BN i) we
have by the definition of BN(Σ) (Definition 15) that

T (g) = Sk+1[Σ(Gi)](g)

For any g ∈ gc(Σ,BN i) we know by the definition of BN(Σ) (Definition 15) that
Sk+1(Σ(g)) ∈ υ(T (g)) and so it follows that

Sk+1[Σ(Gi)] ∈ Υgc(Σ,BN i)(T)

Then, by the definition of the interference state graph (Definition 16), it follows that
(4.1) must hold.

4.3 Identifying Attractors in a Composition

In this section, we develop theoretical results for compositional identifying attractors for
a general composition (introduced in the previous section). The results and techniques
are based on adapting and extending the results introduced in the previous chapter
(see section 3.2). However, here, we have to consider multiple cyclic paths in the
interference state graphs for the underlying BNs to be merged. In addition, we can
have multiple composed entities that experience interference. Thus, the interference
alignment property needs to be updated. We formally prove that the extended approach
is sound and complete for attractor identification.

Recall the definition of an SCC φ for an interference state graph (see Definition 9).
We let φ denote an SCC for an interference state graph SGX(BN), where X is the set
of entities involved in a composition. As an illustrative example, consider the SCCs
depicted in Figure 4.5 for the interference state graphs SG{g1

1}(MEx1), SG{g2
1}(MEx2),

SG{g3
2 ,g3

3}(MEx3), SG{g4
2}(MEx4), SG{g5

1 ,g5
2}(MEx5) and SG{g6

1 ,g6
2}(MEx6).

Let X ⊆ G, φ ∈ SCC(SGX(BN)) and we use α ∈ Path(φ) again to denote an
infinite path over φ. Then we say that α is a cyclic path iff there exists k ∈ N, k > 0

4.3 Identifying Attractors in a Composition 75

11

01

00 01 00

11

10

000

011

001

010

100

SG{g1
1}(MEx1) SG{g2

1}(MEx2) SG{g3
2 ,g3

3}(MEx3)

00

01

10

11

00 01

10

11 1000

0000

0010

SG{g4
2}(MEx4) SG{g5

1 ,g5
2}(MEx5) SG{g6

1 ,g6
2}(MEx6)

Figure 4.5 The SCCs that arise for the example composition ΣEx.

and S1, . . . , Sk ∈ Sφ such that

α = ⟨S1, . . . , Sk, S1, . . . , Sk, . . .⟩

We use CPaths(φ) again to denote the set of all cyclic paths for an SCC φ.

Given the sets of SCCs for the BNs that are to be composed, we can consider
merging the cyclic paths the SCCs generate to identify attractors in the composed
model. In order to facilitate this process, we extend the definition of the interference
alignment property that indicates when potential paths from submodels can be merged
to produce paths in the composed model.

We begin by extending the definitions of a normal step and an interference step
(see Section 3.2) to an interference state graph SGX(BN).

Definition 17. Let BN = (G,N, F) be a Boolean network, let g ∈ G and let X ⊆ G.
Suppose Si

BN−−→ Si+1 and Si
BN−−→
X

S ′
i+1, for some Si, Si+1, S

′
i+1 ∈ SBN . We say Si

BN−−→
X

S ′
i+1 is a normal step for g iff Si+1(g) = S ′

i+1(g). We say Si
BN−−→
X

S ′
i+1 is an interference

step for g iff it is not a normal step for g.

76 Identifying Attractors for Generalised Compositions

As an example, consider the SG{g3
2 ,g3

3}(MEx3) depicted in Figure 4.4. Then the
step 011 MEx3−−−−→

{g3
2 ,g3

3}
010 is an interference step for g3

3 and a normal step for g3
2.

Next, we define how states and paths can be merged in the context of a composition
Σ.

Definition 18. (Merging States and Paths) Let Si ∈ SBN i
, for i = 1, . . . , n. We define

∧Σ(S1, . . . , Sn) ∈ SBN(Σ) to be the composed state where for any g ∈ G(Σ) we have

∧Σ(S1, . . . , Sn)(g) =

∧

h∈∆(g′) Sλ(h)(h), if g = ∆(g′), for some g′ ∈ gc(Σ);
Sλ(g)(g), otherwise

Let αi = ⟨Si
0, S

i
1, ...⟩ ∈ Path(Ii), for i = 1, . . . , n. We define ∧Σ(α1, . . . , αn) to be the

composed path defined by

∧Σ(α1, . . . , αn) = ⟨∧Σ(S1
0 , . . . , S

n
0),∧Σ(S1

1 , . . . , S
n
1), . . .⟩

We now extend the important definition of interference alignment on paths involved
in a composition.

Definition 19. (Interference Alignment) Let αi = ⟨Si
0, S

i
1, ...⟩ ∈ Path(Ii), for i =

1, . . . , n. We say α1, . . . , αn interference align (for Σ) iff for each g ∈ gc(Σ) and each
k ∈ N the following hold:

1) Sλ(g)
k (g) = S

λ(h)
k (h), for all h ∈ ∆(g);

2) There exists h ∈ ∆(g), such that Sλ(h)
k

BN λ(h)−−−−−−−−→
gc(Σ,BN λ(h))

S
λ(h)
k+1 is a normal step for h.

The idea behind interference alignment is that it captures when paths from the BNs
involved in a composition can be merged to create a path in the resulting composed
model. It does this by checking to ensure that interference actually occurs at the points
required in each path. This is formally shown by the following result.

Lemma 9. Let α1 ∈ Path(I1), ..., αn ∈ Path(In). Then if α1, . . . , αn interference align
then

∧Σ(α1, . . . , αn) ∈ Path(SG(BN(Σ)))

Proof. Let αi = ⟨Si
0, S

i
1, ...⟩ ∈ Path(Ii), for i = 1, . . . , n, such that α1, . . . , αn interfer-

ence align. To show ∧Σ(α1, . . . , αn) ∈ Path(SG(BN(Σ))) it suffices by the definition

4.3 Identifying Attractors in a Composition 77

of merging paths (Definition 18) to show for any k ∈ N that

∧Σ (S1
k , . . . , S

n
k) BN(Σ)−−−−→ ∧Σ(S1

k+1, . . . , S
n
k+1) (4.1)

By Definition 15, to prove (4.1) we need to show that for any g ∈ G(Σ) we have

∧Σ (S1
k+1, . . . , S

n
k+1)(g) = F (Σ)(g)(∧Σ(S1

k , . . . , S
n
k)[N(Σ)(g)]) (4.2)

Note that by interference alignment, the definition of merging states (Definition 18) and
idempotency of conjunction, it follows that for any p ∈ {1, . . . , n} and any non-empty
subset X ⊆ Gp we know

∧Σ (S1
m, . . . , S

n
m)[Σ(X)] = Sp

m[X] (4.3)

for any m ∈ N. To show (4.2), there are two cases to consider for each g ∈ G(Σ)
depending on whether or not g is a composed entity.

Case 1: Suppose g ∈ (G1 ∪ . . . ∪ Gn) \ gc(Σ) (i.e. g is not used in the composi-
tion). Then we show each side of (4.2) reduces to Sλ(g)

k+1 (g). By (4.3) we know

∧Σ(S1
k+1, . . . , S

n
k+1)(g) = S

λ(g)
k+1 (g)

By definition of BN(Σ) (Definition 15), given the assumption that g is not used in the
composition and (4.3) it follows

F (Σ)(g)(∧Σ(S1
k , . . . , S

n
k)[N(Σ)(g)]) = Fλ(g)(g)(Sλ(g)

k [Nλ(g)(g)])

Then, by assumptions on αλ(g) and the assumption that g is not used in the composition,
we have

Fλ(g)(g)(Sλ(g)
k [Nλ(g)(g)]) = S

λ(g)
k+1 (g)

Case 2: Suppose g = ∆(g′), for some g′ ∈ gc(Σ) (i.e. g is a composed entity).

By definition of merging states (Definition 18) and by assumption that g = ∆(g′) we
have

∧Σ(S1
k+1, . . . , S

n
k+1)(g) =

∧
h∈g

S
λ(h)
k+1 (h)

78 Identifying Attractors for Generalised Compositions

By definition of BN(Σ) (Definition 15) and (4.3) it follows

F (Σ)(g)(∧Σ(S1
k , . . . , S

n
k)[N(Σ)(g)]) =

∧
h∈g

Fλ(h)(h)(Sλ(h)
k [Nλ(h)(h)])

It now remains to show that

∧
h∈g

S
λ(h)
k+1 (h) =

∧
h∈g

Fλ(h)(h)(Sλ(h)
k [Nλ(h)(h)])

There are two cases to consider:

Case 2.1: Suppose ∧
h∈g Fλ(h)(h)(Sλ(h)

k [Nλ(h)(h)]) = 1.
Then by conjunction it follows that for any h ∈ g we have

Fλ(h)(h)(Sλ(h)
k [Nλ(h)(h)]) = 1

It then follows by interference alignment that there must exist a normal step resulting
in

S
λ(h′)
k+1 (h′) = 1

for some h′ ∈ g. Then by interference alignment it follows that for all h ∈ g we have

S
λ(h)
k+1 (h) = 1

and so by conjunction it follows that

∧
h∈g

S
λ(h)
k+1 (h) = 1

Case 2.2: Suppose ∧
h∈g Fλ(h)(h)(Sλ(h)

k [Nλ(h)(h)]) = 0. Then by conjunction there
must exist h ∈ g such that

Fλ(h)(h)(Sλ(h)
k [Nλ(h)(h)]) = 0

Then, since αλ(h) ∈ Path(Iλ(h)) and by definition of the interference state graph we
must have

S
λ(h)
k+1 (h) = 0

4.3 Identifying Attractors in a Composition 79

and so by definition of conjunction we have

∧
h∈g

S
λ(h)
k+1 (h) = 0

Combining the formal definitions and results above provides a basis for compo-
sitionally identifying attractors in a composed BN model. Suppose we have SCCs
φi ∈ SCC(Ii) and cyclic paths αi ∈ CPaths(φi), for i = 1, . . . , n. Subsequently, if
these cyclic paths interference align then they can be merged to create a cyclic path
∧Σ(α1, . . . , αn) that must exist in the composed model BN(Σ) and so represents an
attractor cycle.

To illustrate this idea consider the following cyclic paths that result from the SCCs
associated with the composition ΣEx (see Figure 4.5):

⟨11, 01, 11, . . .⟩ ∈ CPaths(SG{g1
1}(MEx1)),

⟨00, 11, 00, . . .⟩ ∈ CPaths(SG{g2
1}(MEx2)),

⟨010, 000, 010, . . .⟩ ∈ CPaths(SG{g3
2 ,g3

3}(MEx3)),

⟨01, 10, 01, . . .⟩ ∈ CPaths(SG{g4
2}(MEx4)),

⟨01, 10, 01, . . .⟩ ∈ CPaths(SG{g5
1 ,g5

2}(MEx5)),

⟨0000, 1000, 0000, . . .⟩ ∈ CPaths(SG{g6
1 ,g6

2}(MEx6)).

These cyclic paths interference align (for ΣEx) and when merged produce the cyclic
path ⟨100100000, 010110100, 100100000, . . .⟩. It follows by Lemma 9 that this path is
in Path(SG(BN(ΣEx))) and therefore that

[100100000, 010110100, 100100000]

is an attractor for BN(ΣEx).

We now consider showing formally that the approach for compositionally identifying
attractors in a composed model based on a new formulation is correct. To do this we
need to show that it is: sound – all attractors found are present in the composed model;
and complete – every attractor in the composed model is found using the approach.

80 Identifying Attractors for Generalised Compositions

This idea for compositionally identifying attractors is formally shown to be sound
by the following theorem.

Theorem 10. (Soundness) Let φi ∈ SCC(Ii) and let αi ∈ CPaths(φi), for i =
1, . . . , n. Then if the cyclic paths α1, . . . , αn interference align then the path ∧Σ(α1, . . . , αn)
represents an attractor in the composed model BN(Σ).

Proof. Let φi ∈ SCC(Ii) and let αi ∈ CPaths(φi), for i = 1, . . . , n. Suppose that the
cyclic paths α1, . . . , αn interference align. Then, by the above assumptions and Lemma
9, it follows

∧Σ(α1, . . . , αn) ∈ Path(SG(BN(Σ)))

By the definition of cyclic paths we know that for each i = 1, . . . , n there must exist a
minimal ki ∈ N and states Si

1, . . . , S
i
ki

∈ SBN i
such that

αi = ⟨Si
1, . . . , S

i
ki
, Si

1, . . . , S
i
ki
, . . .⟩,

Let LCM(k1, . . . , kn) represent the lowest common multiple of k1, . . . , kn. Then it
follows that the first LCM(k1, . . . , kn) + 1 states of ∧Σ(α1, . . . , αn) must represent an
attractor in BN(Σ).

We now consider showing that the proposed approach is complete, and begin with
some necessary preliminary results about projecting and merging paths in a composed
model. The first of these results shows that the composition of projected paths in the
composed model must result in the original path.

Lemma 11. Let β ∈ Path(SG(BN(Σ))). Then

∧Σ(β[Σ(G1)], ..., β[Σ(Gn)]) = β

Proof. Let β = ⟨T0, T1, ...⟩ ∈ Path(SG(BN(Σ))). Then, it suffices to show that

Ti(g) = ∧Σ(Ti[Σ(G1)], ..., Ti[Σ(Gn)])(g)

for any i ∈ N and any g ∈ G(Σ). We do this using the following two cases.

Case 1: Suppose g ∈ (G1 ∪ . . . ∪ Gn) \ gc(Σ) (i.e. g is not used in the composi-
tion). Then, by definition of state projection, we know

Ti(g) = Ti[Σ(Gλ(g))](g)

4.3 Identifying Attractors in a Composition 81

and so by definition of merging states (Definition 18) we have

Ti[Σ(Gλ(g))](g) = ∧Σ(Ti[Σ(G1)], ..., Ti[Σ(Gn)])(g)

Case 2: Suppose g = ∆(g′), for some g′ ∈ gc(Σ) (i.e. g is a composed entity). By the
definition of merging states (Definition 18), we have

∧Σ(Ti[Σ(G1)], ..., Ti[Σ(Gn)])(g) =
∧

h∈∆(g′)
Ti[Σ(Gλ(h))](h) (I)

Also by the definition of state projection we have

Ti[Σ(Gλ(g′))](g′) = Ti[Σ(Gλ(h))](h)

for all h ∈ ∆(g′), and so it follows from (I) and the idempotency of conjunction that

∧Σ(Ti[Σ(G1)], ..., Ti[Σ(Gn)])(g) = Ti[Σ(Gλ(g′))](g′)

Then, by definition of projection, we have

Ti[Σ(Gλ(g′))](g′) = Ti(g)

We now show that any path in the composed model projected over the entities of
an underlying BN will be a valid path in the interference state graph for that BN.

Lemma 12. Let β ∈ Path(SG(BN(Σ))). Then for any i ∈ N we have

β[Σ(Gi)] ∈ Path(Ii)

Proof. Let β = ⟨T0, T1, ...⟩ ∈ Path(SG(BN(Σ))). Then, it suffices to show that for
any i ∈ {1, ..., n} and any k ∈ N we have

Tk[Σ(Gi)]
BN i−−−−−−→

gc(Σ,BN i)
Tk+1[Σ(Gi)] (I)

Suppose Tk[Σ(Gi)]
BN i−−→ S, for some S ∈ SBN i. Then, by definition of the interference

state graph Ii (Definition 16) to show (I), we need to prove

Tk+1[Σ(Gi)] ∈ Υgc(Σ,BN i)(S)

82 Identifying Attractors for Generalised Compositions

We do this by showing that for each g ∈ gc(Σ,BN i) we have

Tk+1[Σ(Gi)](g) ∈ υ(S(g))

using the following two cases.

Case 1: Suppose S(g) = 1. Then υ(S(g)) = {0, 1} and so it follows that

Tk+1[Σ(Gi)](g) ∈ υ(S(g))

Case 2: Suppose S(g) = 0. Then by the definition of BN(Σ) and conjunction we
must have

Tk+1[Σ(Gi)](g) = 0

Since υ(S(g)) = {0} it then follows that

Tk+1[Σ(Gi)](g) ∈ υ(S(g))

We can now prove that the proposed attractor identification approach is complete
(i.e. every attractor in the composed model is identified by the approach).

Theorem 13. (Completeness) Let ψ be an attractor for the composed Boolean network
BN(Σ). Then there must exist φi ∈ SCC(Ii), for i = 1, ..., n, and cyclic paths φi ∈
CPaths(φi), for i = 1, ..., n, such that φ1, ..., φn interference align and ∧Σ(α1, . . . , αn)
results in the attractor ψ.

Proof. Let ψ = [T1, T2, . . . Tk, T1] be an arbitrary attractor in the composed model
BN(Σ). Then, ψ can be viewed as representing the infinite cyclic path

ψ = ⟨T1, . . . Tk, T1, . . . Tk, . . .⟩

It follows by Lemma 12 that for i = 1, ..., n we have

ψ[Σ(Gi)] ∈ Path(Ii)

4.4 Conclusion 83

Furthermore, it is clear that each path ψ[Σ(Gi)] must be a cyclic path and thus results
from an SCC φi in the interference state graph Ii. By Lemma 11 it follows that

∧Σ(ψ[Σ(G1)], ..., ψ[Σ(Gn)]) = ψ

Given the above, it remains to show that φ1, ..., φn interference align. To do this, first
note that for any g ∈ gc(Σ) we clearly have by the definition of projection that

ψ[Gλ(g)](g) = ψ[Gλ(h)](h), (I)

for all h ∈ ∆(g). So it remains to show that for any g ∈ gc(Σ) there exists h ∈ ∆(g)
such that

Tj[Σ(Gλ(h))]
BN λ(h)−−−−−−−−→

gc(Σ,BN λ(h))
Tj+1[Σ(Gλ(h))]

is a normal step. This must hold by the definition of F (Σ) in the composed model
BN(Σ) (Definition 15), since it composes normal steps together using conjunction,
and this means at least one normal step cannot be interfered with, given the resulting
Boolean value.

4.4 Conclusion

This chapter set out to address the limitations in the initial work on attractor analysis
presented in Chapter 3. In particular, we considered a challenging problem of extending
compositional attractor identification techniques and results to an arbitrary composition.
A crucial first step was to reformulate a new definition of composition that allows
multiple BNs to be composed simultaneously over multiple entities. We then extended
the results of Chapter 3 significantly with this new framework. The new techniques and
results we have developed significantly advance this compositional framework providing
practical new techniques and tools for attractor analysis.

A significant contribution of this chapter is the formulation of a new general
definition for the compositional construction of BNs based on using a graph based
structure to allow arbitrary compositions. This addressed one of the major challenges
we have faced during the process of extending our attractor analysis results to multiple
BNs because the original notations and definitions became too complex to handle.
Importantly, this simplifies the presentation of key definitions and results for the
compositional framework. Providing a way of naming the new merged entities, using

84 Identifying Attractors for Generalised Compositions

the functions to return the state of specific entities and defining functions to return
the index of the BN to which an entity belongs are significant steps in the extended
work results. Notably, the new formulation is much more applicable to compositionally
constructing models which supports engineering biological systems and aiding the
development of decomposition techniques.

Using the new generalised definition of a composition, we were then able to sig-
nificantly extend the compositional approach presented in Chapter 3. This involved
dealing with analysing multiple SCCs in the subnetwork’s interference state graphs
to identify potential cyclic behaviour. Multiple entities can experience interference
under composition, resulting new edges in state graphs. Thus, we provided extended
definitions for normal and interference edges. Furthermore, we extended the property
of interference alignment, which indicates when cyclic paths generated by SCCs can be
composed to form attractors. We formally showed that the extended approach was
correct by proving that it is both sound and complete.

Again, as noted in Chapter 3 the results clearly still follow for the OR operator,
where the key change is that 0 now interferes with 1. In an interference state graph,
interference will occur with the underlying behaviour of a merged entity whenever it
wants to transition to 1, but its merged counterpart wants to transition to 0. The
definition of the interference state graph can be straightforwardly changed by updating
the definition of υ : B → P(B) to be υ(0) = {0, 1} and υ(1) = {1} (see Section 4.2).
In fact, idempotency is the main property for AND and OR Boolean operators (note
that there are four such binary operators). The property of idempotence is needed in
Lemma 3, Lemma 5, Lemma 9 and Lemma 11. It is worth noting that the attractor
identification techniques and tools are being applied over the state graphs, therefore
the findAtt algorithm can be applied over the interference state graph generated when
the merge operator used in the composition is OR.

Developing tool support to make attractor analysis techniques practical to realistic
models is an important focus in this research. Thus, in the subsequent chapter,
we develop a prototype support tool and investigate its practical performance. We
formulate an algorithm based on the theoretical results developed in this chapter
to involve multiple BNs. We then implement the developed algorithm and conduct
experimental studies to evaluate the performance of the tool, and to compare the
performance result to existing tools in the literature.

The original compositional framework was developed to support the engineering of
BNs from basic parts in order to help address current challenges in synthetic biology

4.4 Conclusion 85

[175–177]. In the future, it would be interesting to use this framework as a basis for
developing techniques for automatically decomposing a large BN into parts in order to
aid its analysis and the identification of key subnetworks. Moreover, the behaviour
preservation results of the original framework [48, 49] need to be extended to the new
general setting in this chapter to support the analysis.

The developed new framework provides a basis for considering many interesting
problems in BNs. For example, in future work, it would be interesting to consider
synthesising BNs with given behaviour using this compositional framework.

Chapter 5

Practical Application: Tool Support
and Experimental Studies

5.1 Introduction

In the previous chapter, we developed a new general formulation of composing multiple
BNs to support arbitrary compositions. The new formulation clearly simplified the
theoretical results and definitions of the original framework. This work significantly
advances the original compositional framework, using it as a basis for decomposing and
engineering biological systems aimed at addressing the current practical limitations
imposed by the state space explosion problem. Then, we extended the compositional
attractor analysis results developed in Chapter 3 to support multiple BNs composed
by merging multiple entities. In order to make the attractor identification approach
practical, we need to develop an algorithm based on the theoretical approach, and
implement it to automate our results and conduct experimental studies.

In this chapter, based on our theoretical results, we extend the developed algorithm
from Chapter 3 to support arbitrary compositions that involve multiple BNs. The
algorithmic approach we take uses a new notion of aligned state tuples, that is, a
collection of states for the underlying BNs in the composition which are consistent
with each other and which are realisable in practice. We must consider the issue of
having multiple next states for each global state in the SCCs while pairing up states to
form cyclic paths. Thus, we provide the definition of an interference aligned next state
tuple, which is a key property in our algorithmic approach. We formally show that
there is, at most, one interference aligned next state tuple for any state tuple processed

88 Practical Application: Tool Support and Experimental Studies

in the algorithm. We carefully consider how to efficiently generate aligned state tuples
to ensure that the algorithm developed is practical. We present an interesting idea of
computing interference aligned next state tuple efficiently by focusing on composed
entities in each BN. The algorithm developed is then used as the basis for a prototype
support tool, and we discuss the implementation of this tool.

We evaluate the new techniques and tools we have developed by conducting three
experimental studies, using a series of compositional models that range from using 10
entities to 233 entities. We compare the performance of the first experiment to the
performance of three existing attractor identification tools: BoolNet [55], BNS [35] and
BoolSim [56]. Finally, we utilise our tool to identify attractors of an existing BN model
[7] for the signalling network underpinning T cell large granular lymphocyte (T-LGL)
leukemia [54].

This chapter is organised as follows. In Section 5.2, we formulate an extended
algorithm for compositionally identifying attractors based on the approach presented
in Section 4.3, and present our approach for generating the set of aligned tuples
and computing the interference aligned next state tuple. We then briefly discuss the
implementation of the tool support and improving its efficiency. In Section 5.3, we
evaluate the tool by performing a range of performance tests. We start with our test
model and then we present the results and performance evaluation. We then compare
our approach to three existing tools for attractor identification using the last 16 tests
performed in the first experiment. In Section 5.4, we illustrate the practical application
of our techniques for analysis with a case study.

5.2 Developing Tool Support

Objective 3 is very important in ensuring that we develop tool support for our developed
results. Hence, in this section, we take the theoretical approach outlined in the previous
chapter and use it as the basis to extend the algorithm introduced in Section 3.3. The
extended algorithm identifies attractors compositionally in a generalised form of a
composed model. We then use this to develop a prototype support tool and in particular,
consider efficiently addressing the key challenges that arise.

5.2 Developing Tool Support 89

5.2.1 Algorithm for Compositionally Analysing Attractors

The theoretical approach we presented was based on identifying cyclic paths over the
SCCs in the subnetworks’ interference state graphs. In each step, we ensure that the
states align over the entities to be merged, and that there is at least one normal step
for one of these merged entities. In the algorithmic approach we consider constructing
cyclic paths one step at a time. We focus on tuples of states over the SCCs which align
(i.e. they have the same state values on the entities that are merged), and consider
how to make a step from one aligned tuple of states to the next in order to ensure that
well-defined interference aligned cyclic paths are constructed.

More formally, let Σ = (M,E) be an arbitrary composition with subnetworks
M = {BN 1, . . . ,BN n}. Then, we say that a state tuple (S1, . . . , Sn), for S1 ∈
SBN 1 , . . . , Sn ∈ SBN n is an aligned state tuple (for Σ) iff for each g ∈ gc(Σ) we have
Sλ(g)(g) = Sλ(h)(h), for all h ∈ ∆(g).

When making a transitional step to a new aligned state tuple we need to ensure
that at least one normal step occurs for each composed entity in order ensure that the
step is realisable in practice. This leads to the following definition of an interference
aligned next state tuple, an adaptation of the definition of interference alignment on
paths (see Definition 19).

Definition 20. Suppose Si
BN i−−−−−−→

gc(Σ,BN i)
S ′

i for some Si, S
′
i ∈ SBN i

, for i = 1, . . . , n. Then
we say (S ′

1, . . . , S
′
n) is an interference aligned next state tuple for (S1, . . . , Sn) iff for

every g ∈ gc(Σ) we have:

1) Sλ(g)(g) = Sλ(h)(h), for all h ∈ ∆(g); and

2) There exists h ∈ ∆(g) such that Sλ(h)
BN λ(h)−−−−−−−−→

gc(Σ,BN λ(h))
S ′

λ(h) is a normal step for

h.

Interestingly, it can be shown that for any state tuple (S1, . . . , Sn), there is at most
only one interference aligned next state tuple.

Lemma 14. Let (S1, ..., Sn) be a state tuple for Σ, where Si ∈ SBN i
, for i = 1, ..., n.

Then (S1, ..., Sn) has at most one interference aligned next state tuple.

Proof. Let (S1, ..., Sn) be a state tuple, where Si ∈ SBN i, for i = 1, ..., n. Assume
(S ′

1, ..., S
′
n), where S ′

i ∈ SBN i, is the interference aligned next state tuple for (S1, ..., Sn).

90 Practical Application: Tool Support and Experimental Studies

Then, we need to show that the interference aligned next state tuple (S ′
1, ..., S

′
n) is

unique.

To show that this interference aligned next state tuple is unique, it suffices to show
that for every g ∈ gc(Σ), the state S ′

λ(g)(g) is unique. Let g ∈ gc(Σ) and (WLOG)

assume that Sλ(g)
BN λ(g)−−−−−−−→

gc(Σ,BN λ(g))
S ′

λ(g) is a normal step for g as required by definition of

the interference aligned next state tuple. Then, we have two cases to consider for the
value of S ′

λ(g)(g) using the key properties given in Definition 20:

Case 1: Suppose S ′
λ(g)(g) = 1. Then, it follows that for any h ∈ ∆(g) we must

have by the definition of the interference aligned next state tuple

S ′
λ(h)(h) = 1

Then it is clear that all entities in ∆(g) have normal steps in the truth values being 1.
Therefore there is no other choice in this case.

Case 2: Suppose S ′
λ(g)(g) = 0. It follows that for any h ∈ ∆(g) we must have

by definition of the interference aligned next state tuple

S ′
λ(h)(h) = 0

Then, there are two possibilities:

1. It was a normal step, in which case there is no other choice for it.

2. It was an interference step, and in that case there is only one possible step for
that entity.

Therefore, there is only one value for ∆(g), then the interference aligned next state
tuple has to be unique.

The SCCs in the interference state graphs can be found using standard algorithms
based on depth-first search, such as Kosaraju’s algorithm [203] and Tarjan’s algorithm
[200], which run in linear time O(|V | + |E|) on a graph (V,E). In order to efficiently
deal with these SCCs we create a data structure ΦΣ which combines all the information
needed from the SCCs. For each BN i we store in ΦΣ[i] all the possible states that
appear in an SCC associated with BN i along with the set of next states to which they

5.2 Developing Tool Support 91

can transition. As an example, consider the ΦEx presented in Table 5.1 for ΣEx (see
Figure 4.5 for the corresponding SCCs).

Table 5.1 The data structure ΦEx which contains the information for the SCCs associated
with ΣEx (see Figure 4.5).

BN SCC Next

MEx1

00 00
01 01, 11
11 01

MEx2

00 11
01 01
10 10
11 00

MEx3

000 000, 001, 010, 011
001 000, 001, 010, 011
010 000, 001, 010, 011
011 000, 001, 010, 011
100 100

BN SCC Next

MEx4

00 00, 01
01 10
10 00, 01
11 11

MEx5

00 00
01 10
10 01
11 11

MEx6

0000 0000, 1000
0010 0010
1000 0000, 1000

We can now formulate an algorithm for a function findAtt, which takes the SCC
data structure ΦΣ associated with a composition Σ and then returns all the attractors
in the resulting merged model. The algorithm works by iterating through the set of
all aligned state tuples over ΦΣ. For each one, it attempts to generate a sequence of
interference aligned next state tuples until a repeated aligned state tuple is reached,
indicating that a set of interference aligned cyclic paths have been found. If at any
point we have an aligned state tuple that has previously been generated, then we skip
the current state tuple sequence, since it has already been considered. The pseudo code
for this algorithm is given in Algorithm 2, and it makes use of the following functions:

• alignSet(ΦΣ) returns the set of all aligned state tuples generated by the SCC
information in ΦΣ.

• doStep((S1, ..., Sn),ΦΣ) returns the interference aligned next state tuple for
a given state tuple (S1, ..., Sn) based on the SCC information in ΦΣ. If no
interference aligned next state tuple exists, then it returns a Null value.

• extCP (listST) merges the list of state tuples listST into a path (which is
straightforward as the algorithm ensures that they align), and extracts the
attractor in which the path must end.

92 Practical Application: Tool Support and Experimental Studies

Algorithm 2: findAtt(ΦΣ)
Input : ΦΣ : SCC Data Structure
Output : attSet : Set of Attractors
Variables :ST, ST ′ : StateTuple; listST : List of StateTuples;

seen : Set of StateTuples
1 Begin
2 attSet := {}
3 seen := {}
4 foreach ST ∈ alignSet(ΦΣ) do
5 listST := []
6 Loop
7 if ST ∈ seen then
8 Exit Loop
9 else

10 seen := seen ∪ {ST}
11 ST ′ := doStep((ST),ΦΣ)
12 if ST ′ = Null then
13 Exit Loop
14 else
15 listST := listST + +[ST]
16 if ST ′ ∈ listST then
17 attSet := attSet ∪ {extCP (listST + +[ST ′])}
18 Exit Loop
19 else
20 ST := ST ′

21 end
22 end
23 end
24 EndLoop
25 end
26 return attSet

27 End

5.2 Developing Tool Support 93

To illustrate how the algorithm works consider applying it to the example composi-
tion ΣEx given in Figure 4.3. The SCCs for ΣEx result in 2880 possible state tuples,
but only 60 of these align. Suppose the findAtt algorithm has selected the aligned
state tuple ST = (01, 11, 000, 00, 10, 1000). Then the following interference aligned
next state tuples are generated:

listST = [(01, 11, 000, 00, 10, 1000), (11, 00, 010, 01, 01, 0000),
(01, 11, 000, 10, 10, 1000), (11, 00, 010, 01, 01, 0000)]

Applying extCP to listST returns the attractor [100100000, 010110100, 100100000]. It
can be verified that the algorithm for findAtt correctly identifies the nine attractors
contained by the composed model BN(ΣEx) resulting from ΣEx.

The overall performance of the proposed algorithmic approach is impacted by the
number of subnetworks used, and the number of corresponding SCCs and their size.
The algorithm should perform well in practice if a good compositional structure is used,
and we explore this experimentally in Section 5.3 using a series of scalable tests. There
are two main functions used by the algorithm that need to be carefully considered:
1) generating the set alignSet(ΦΣ) of all aligned state tuples; and 2) computing the
interference aligned next state tuple doStep((S1, ..., Sn),ΦΣ) for a given state tuple
(S1, ..., Sn). We now consider how to efficiently implement these key functions.

5.2.2 Generating the Set of Aligned State Tuples

The algorithm for findAtt is based on iterating through the set of all aligned state
tuples over ΦΣ. If the number of SCC states for each BN i is ki, for i = 1, . . . , n, then
there are k1 × · · · × kn possible state tuples to check for alignment. However, the
number of actual aligned state tuples is normally much smaller, and it is therefore
essential to consider how to efficiently generate the set alignSet(ΦΣ).

We begin by observing that only the entities merged in the composition need to be
considered when checking tuple alignment. For each BN, we can therefore focus on the
entities it contains which are used in the composition, and we refer to this as its key.
For example, in the composition ΣEx the Boolean network MEx4 has two key states, 0
and 1, associated with the entity g4

2 which forms part of the composed entity gc
1. It

can be seen that key state 0 represents two SCC states, 00 and 10, and that key state
1 represents states 01 and 11.

94 Practical Application: Tool Support and Experimental Studies

Let BN i be a BN in a composition Σ. We let key(BN i) = gc(Σ,BN i) and for any
state S ∈ SBN i

, we let key(S) = S[key(BN i)]. We let key(ΦΣ[i]) = {key(S) | S ∈
ΦΣ[i]} be the set of key states it contains. The definition of the SCC data structure ΦΣ

can straightforwardly be extended so that each key state is linked with the corresponding
full states in the SCCs with which it is associated.

Since a key state may form part of many states within the SCCs for a BN, we can
reduce the number of combinations to check by focusing on key states when computing
aligned tuples. It is straightforward then to use the identified key state tuples to
generate all the aligned state tuples. The aligned key state tuples are constructed by
considering each BN involved in the composition in turn, and by incrementally assigning
values to the composed entities. We iterate through a BN’s key states recursively,
applying the procedure to the next BN entities.

It can be seen that the order in which the BNs are considered can impact the
efficiency of this approach. We therefore attempt to maximise the efficiency by using
the following heuristic to order the BNs: place the BNs in descending order of how
many entities they influence which are involved in the composition. More formally, for
each Boolean network BN i, we calculate its impact factor using the following formula:

Σgc∈{∆(g) | g∈gc(Σ,BN i)} |gc|

We select the BN with the highest impact factor to be the first one to be considered
(if there is more than one BN with the same impact factor, then we simply randomly
choose one). We then update the remaining impact factors by subtracting from them
the entities they included, which are now covered by the composed entities in the
selected BN. We then repeatedly apply the above process to the remaining BNs to
generate an order index Or, where BN Or[i] is the ith BN in the order.

To illustrate this idea, consider applying the above procedure to ΣEx. The composed
entities have the following values: gc

1 = 4, gc
2 = 3 and gc

3 = 2. Consequently, we have the
following initial impact factors: MEx1 = 4, MEx2 = 3, MEx3 = 4 + 2 = 6, MEx4 = 4,
MEx5 = 4+3 = 7, and MEx6 = 3+2 = 5. We therefore select MEx5 to be the first BN
and then recalculate the impact factors for the remaining BNs by removing the values
associated with gc

1 and gc
2 as follows: MEx1 = 0, MEx2 = 0, MEx3 = 2, MEx4 = 0,

and MEx6 = 2. Both MEx3 and MEx6 now have the same largest impact factor and
so we simply choose one to be the next BN, say MEx3. Now all the remaining BNs
have an impact factor of 0 and so we can place them in any relative order. The result
is the following processing order: MEx5, MEx3, MEx1, MEx2, MEx4, and MEx6.

5.2 Developing Tool Support 95

The following recursive algorithm (Algorithm 3) uses the order index Or and the
ideas above to recursively identify the collection of the aligned states’ values of the
composed entities T . The algorithm makes use of the following two functions:

• The function cons(k, i, Or,A) checks whether the key state k for BN Or[i] is
consistent with the corresponding values already assigned to the composed
entities.

• The function set(A, key(BN Or[i]), k) updates A by setting the values given by k
for any composed entities covered by BN Or[i] whose values have not yet been set.

Algorithm 3: genAST (i,ΦΣ, Or,A, t, T)
Input : i : Nat,ΦΣ : SCC Data Structure, Or : OrderIndex,

A : Key States, t : Nat
Output :T : Array of Aligned Key States
Variables : k : KeyState

1 Begin
2 foreach k in key(ΦΣ[Or[i]]) do
3 if cons(k, i, Or,A) then
4 set(A, key(BN Or[i]), k)
5 if i < (n− 1) then
6 genAST (i+ 1,ΦΣ, Or,A, t, T)
7 else
8 T [t] = A
9 t = t+ 1

10 end
11 end
12 end
13 End

The set of aligned state tuples can be generated straightforwardly using a recursive
based algorithm based on the collection T .

To illustrate the above idea, consider applying the above processes to ΣEx. The
resulting T with the aligned states for the composed entities is shown in Table 5.2.
Then, we use T to generate aligned key states, and each key state is associated with a
number of full states. For example, the key state 00 in the submodel MEx3 is associated
with the two full states 000 and 100. The total number of the aligned state tuple for
the first row is 32 tuples, because the key states of MEx3, MEx1, MEx2, MEx4 and

96 Practical Application: Tool Support and Experimental Studies

MEx6 are associated with two full states, while the key state of MEx5 is associated
with only one full state (see Figure 4.5).

Table 5.2 Summary of the generation of aligned state tuples for ΣEx. The first column
shows the resulting T , the second column shows the aligned key states based on T ,
and the final one illustrates the total number of aligned state tuples for each row.

T Aligned key states No of aligned
state tuples

gc
1 gc

2 gc
3 MEx5 MEx3 MEx1 MEx2 MEx4 MEx6

0 0 0 00 00 0 0 0 00 32
1 0 0 01 10 1 0 1 00 8
0 1 0 10 00 0 1 0 10 16
1 1 0 11 10 1 1 1 10 4

5.2.3 Computing Interference Aligned Next State Tuples

The findAtt algorithm attempts to generate a sequence of interference aligned next
state tuples for each aligned state tuple until a repeated sequence occurs, which
indicates that the set of interference aligned cyclic paths has been identified. Each state
included in the tuple must have one or multiple next states in its associated SCC. Thus,
if the number of next states for each state in the tuple (S1, ..., Sn) is ki, for i = 1, ..., n,
then there are k1,×...× kn possible next state tuples that need to considered in the
algorithm. Lemma 14 has shown, that, for any state tuple there is at most one
interference aligned next state tuple. Therefore, the function doStep((S1, ..., Sn),ΦΣ)
needs to be efficiently implemented.

We can focus on the composed entities to generate the next state tuple because
only their states can vary in a step. It turns out that for any BN, for each of its entities
used in the composition there are only four possibilities for its next state and we can
label those possibilities. By examining the labels, we can then determine what the
next state for composed entities should be, and from this we generate the next state
tuple. We now formalise this idea below.

For each state Sk for a Boolean network BN i given in ΦΣ and g ∈ gc(Σ,BN i),
there are four possibilities for the next step for g (see Figure 5.1):

1. The state of g is updated to 0 (i.e. Sk+1(g) = 0) using a normal step.

5.2 Developing Tool Support 97

0 01 01

Label=1 Label=2 Label=4Label=3

Figure 5.1 Labelling the four possibilities for the next state in the SCCs.

2. The state of g is updated to 1 (i.e. Sk+1(g) = 1) using a normal step and
interference is not possible.

3. The state of g is updated to 1 (i.e. Sk+1(g) = 1) using a normal step or it can be
updated to 0 (i.e. Sk+1(g) = 0) using an interference step.

4. The state of g is updated to 0 (i.e. Sk+1(g) = 0) using an interference step and
no normal step can be applied.

Our interesting idea to compute the interference aligned next state tuple starts with
pre-processing the states in the SCCs by labelling them with one of the four possible
next state categories listed above. We label the states before running the findAtt
algorithm. As an example, Table 5.3 presents the assigned labels for each state in the
SCCs data structure ΦEx containing the information for the SCCs associated with ΣEx

(see Figure 4.5).

The crucial idea is that counting the number of labels across all BNs for a particular
composed entity can be used to deduce the states of the composed entities in an
interference aligned next state tuple. We let ∆(Σ) = {∆(g) | g ∈ gc(Σ)} be the set of
all composed entities that occur in the composed model. Let gc ∈ ∆(Σ), then count(gc)
is an array with four elements, and each position refers to the count representing each
category of the next state’s labels. The idea is that count(gc)[i] counts the number of
occurrences of label i, for i = 1, 2, 3, 4, for each h ∈ gc. We iterate through BN labels
in the SCC data structure and increment the count for each composed entity based on
the categories identified.

We can use these counts count(gc) to determine the value of the composed entity
gc for the interference aligned next state tuple. According to the results of counting
the labels, we have four scenarios:

1. When count(gc)[1] > 0 and count(gc)[2] = 0, then the next state value of g will
be 0. It can be noticed that count(gc)[1] + count(gc)[4] = k, where k is the total

98 Practical Application: Tool Support and Experimental Studies

Table 5.3 Pre-processing step of labelling each state in the SCCs data structure ΦEx

which contains the information for the SCCs associated with ΣEx (see Figure 4.5).

BN SCC gc
1 gc

2 gc
3 Next

MEx1

00 4 00
01 3 01, 11
11 1 01

MEx2

00 2 11
01 1 01
10 2 10
11 1 00

MEx3

000 3 3 000, 001, 010, 011
001 3 3 000, 001, 010, 011
010 3 3 000, 001, 010, 011
011 3 3 000, 001, 010, 011
100 1 1 100

MEx4

00 3 00, 01
01 1 10
10 3 00, 01
11 2 11

MEx5

00 1 1 00
01 1 2 10
10 2 1 01
11 2 2 11

MEx6

0000 3 1 0000, 1000
0010 1 1 0010
1000 3 1 0000, 1000

number of ∆(gc). If there is one normal edge that steps to 0, then the value of
gc has to be 0 in the aligned next state tuple, if it exists. All of the other edges
can be interference aligned with it because they have either normal steps to 0 or
interference edges.

2. When count(gc)[1] = 0 and count(gc)[4] = 0, then the next state value of gc will
be 1. This is equivalent to the scenario when count(gc)[2] + count(gc)[3] = k,
where k is the total number of |∆(gc)|.

3. When count(gc)[1] > 0 and count(gc)[2] > 0, then there is an inconsistent
situation and no possibility for generating an interference aligned next state tuple.
Although we require at least one step to be updated to 0 for gc, the other edges
must be updated to one.

5.2 Developing Tool Support 99

4. When count(gc)[1] = 0 and count(gc)[4] > 0, then there is an inconsistent
situation, and no possibility for generating an interference aligned next state
tuple. This is because the interference required to create a 0, is missing since
count(gc)[1] = 0.

The above conditions indicate when an interference aligned next state tuple can
potentially occur, and what values the associated composed entities will have in it.
The other entities that are not used in the composition will have the same values for
the next states as in their submodels. Thus, we can focus on the composed entities
because only composed entities’ states can be changed due to interference. Having
these values of composed entities allows us to calculate the interference aligned next
state tuple.

It is important to note that, in some cases, the interference aligned next state
tuple will not be possible due to the interaction between different composed entities.
As an illustrative example, consider applying our algorithm to three BNs composed
on gc

1 = {g1
1, g

2
1} and gc

2 = {g2
2, g

3
1}, and their SCCs as represented in Figure 5.2.

Suppose we start from the three aligned states (00, 00, 00) and count(gc
1) = [1, 0, 1, 0]

and count(gc
2) = [0, 1, 1, 0], then the composed entities have the following values: gc

1 = 0
and gc

2 = 1. Because gc
1 in the first state is updated to 0 as a normal step and updated

to 1 in the second state, but has an interference step, we can set the value of gc
1 to 0.

By contrast, gc
2 is updated to 1 in the second state, but has an interference step to 0

and is updated to 1 in the third state, so we can set the value of gc
2 to 1. The problem

is that we need to use two different edges in the BN 2, and thus cannot generate the
next state tuple.

As a result, the above process has been used to determine the values of the composed
entities, but the results of the interference aligned next state tuple will not be feasible
because of the interaction in different composed entities. To take account of this,
we need to perform a final check upon generating the next states tuple to check the
interaction between entities. To do so, we pre-process key states for the next states
in the SCC data structure ΦEx before ahead. During the algorithm, we generate key
states for the next state for each BN using composed model values, and determine
whether the key states already exist in the SCC data structure.

To illustrate the idea, consider applying it to the example composition ΣEx

given in Figure 4.5. Suppose the algorithm selected the aligned state tuple ST =
(01, 11, 000, 00, 10, 1000). There are 64 possible next state tuples for this tuple, but

100 Practical Application: Tool Support and Experimental Studies

00

00

11 00

00

11

00

BN 1 BN 2 BN 3

Figure 5.2 Example of the next steps for the three aligned states 00, 00 and 00 in the
SCCs of three Boolean networks BN 1, which has one composed entity g1

1, BN 2, which
has two composed entities {g2

1} and BN 3, which composed on g3
1. It assumes that its

composed model entities are gc
1 = {g1

1, g
2
1} and gc

2 = {g2
2, g

3
1}.

only one tuple is an interference aligned next state tuple. The following steps are used
in our algorithm to compute the interference aligned next state tuple:

1. Count labels for each composed entity based on Table 5.3:

count(gc
1) = [0, 1, 3, 0]

count(gc
2) = [2, 0, 1, 0]

count(gc
3) = [1, 0, 1, 0]

2. Set composed entities’ values based on the conditions:
– count(gc

1)[1] = 0 and count(gc
1)[4] = 0, then the next state value of gc

1 will be 1.
– count(gc

2)[1] > 0 and count(gc
2)[2] = 0, then the next state value of gc

2 will be 0.
– count(gc

3)[1] > 0 and count(gc
3)[2] = 0, then the next state value of gc

3 will be 0.

3. Final Check:
The set of key states for the next states is {1, 0, 10, 1, 10, 00}, which given by the
composed entities’ values, are exist in the SCC state structure ΦEEx

. Thus, the
interference aligned next state tuple is (11, 00, 010, 01, 01, 0000).

5.2.4 Complexity Analysis

In this section, we discuss the complexity of the algorithm presented in Section 5.2.1.
We highlight key areas that impact the performance of the algorithm and consider
worst-case situations. A detailed experimental evaluation of the tool is conducted in
Section 5.3 to provide further insight into its performance.

5.2 Developing Tool Support 101

The overall performance of the algorithm is impacted by the size of SCCs associated
with a composition Σ and the number of entities that are composed. We discuss this
in more detail by considering each main part of the algorithm below.

• Constructing the SCC data structure ΦΣ: The SCCs in the interference state
graphs can be identified by using standard algorithms based on a depth-first
search, such as Kosaraju’s algorithm [203] and Tarjan’s algorithm [200], which
run in linear time O(|V | + |E|) on a graph (V,E). The worst-case scenario for
the algorithm is when all sub-networks states are involved in the SCCs. A state
graph has 2k states and edges, where k is the number of entities in a BN. The
worst-case for the number of edges in the interference state graph is that each
composed entity state is updated to one. Then, we need to add 2j edges, where j
is the number of composed entities in a BN. For example, suppose a BN has three
entities and two entities involved in a composition, and the state of the composed
entities is updated to one in all global states in the state graph; then, each state
needs to be updated to three different states, and the total number of newly added
edges will be 8×3 = 24. The total number of edges in the interference state graph
for that BN would be 24 (i.e. interference edges) + 8 (i.e. normal edges) = 32,
which is equivalent to 23+2.

Suppose k ∈ N is an upper bound for the number of entities in the Boolean
network sub-models and j is the upper bound of the number of composed entities
in the Boolean network sub-models. Then, the upper bound of the total number
of edges in an interference state graph is 2k+j, while the upper bound of the
number of edges in the worst-case scenario considered for m BNs will be 2k+j ×m.

• alignSet(ΦΣ): This part depends on the set of key states associated with the
global states in the SCC data structure ΦΣ. The worst-case occurs when the
extracted key states are equivalent to the number of global states of the SCCs.
Note that involving all entities in a BN in a composition is unlikely to happen
in practice. Based on this worst-case scenario, the complexity of ordering BNs
increases when the number of composed entities resulting in the final model
increases. Note that this process still maximises the efficiency of the algorithm.

Suppose we have a composition Σ = (M,E), where M = {BN 1, . . . ,BN n} is a
set of BNs for some n ∈ N, n > 1. The possible number of the state tuples is
l1 × l2 × ...× ln, where li is the number of states for each BN i.

Recall that the definition of the set of all composed entities that occur in the
composed model is ∆(Σ) = {∆(g) | g ∈ gc(Σ)}, while the definition of the set

102 Practical Application: Tool Support and Experimental Studies

of all entities used in the composition is gc(Σ) = gc(Σ,BN i) ∪ . . . ∪ gc(Σ,BN n).
Let X be the total number of entities in the sub-models defined by

X = Σi=1,...,n |Gi|

and let Q be the number of entities in the sub-models involved in the composition
minus the number of compositions defined by

Q = |gc(Σ)| − |∆(Σ)|

It is clear that 2X is the upper bound of the number of possible aligned state
tuples if we do not have composed entities. In a composition, we need to take out
the number of constrained entities Q from X, which are the number of composed
entities that have been constrained with a chosen value in the getAST algorithm.
In this algorithm, for each composed entity in ∆(Σ), we know that one of its
merged entities will not be constrained. This means that |∆(Σ)| entities involved
in the composition are not constrained and this result in the given definition for
Q. Thus, we subtract the |∆(Σ)| from the |gc(Σ)|.

The upper bound of the number of the aligned state tuples used in the findAtt
algorithm is

2X−Q

The findAtt algorithm iterates through the collection of aligned state tuples to
construct the interference aligned cyclic paths in sub-models. The algorithm
visits each aligned state tuple only once, as the seen list records all visited tuples
during the algorithm’s execution. As a result, the total number of those tuples
greatly affects the algorithm’s performance in large models. Note that though the
above formula considers all of the global states in each BN, in practice, the SCCs
are subgraphs resulting from the interference state graph that do not contain all
of the global states in the state graphs.

• doStep((S1, ..., Sn),ΦΣ): The counting labels process is bounded by the number
of composed entities gc(Σ) since we focus on them to generate the next state
tuple. The worst case of counting the labels for each composed entity is that the
composed entity involves merged entities from each BN. However, the counting
label is performed linearly by incrementing the count for each composed entity
based on the categories identified.

5.2 Developing Tool Support 103

• extCP (listST): The worst case occurs when all the entities are involved in the
composition, which increase the complexity of merging the states of the composed
entities to generate the composed model attractors.

5.2.5 A Prototype Support Tool

In order to make our approach practical, the algorithm findAtt has been used as the
basis for developing a prototype support tool for compositionally identifying attractors
in a generalised form of a composed model. The tool is implemented in Python and
makes use of the NetworkX package [201], which has tools to represent and manipulate
network structures. The support tool reads in state graphs for the subnetworks using
the DOT file format [53], the merged entities of each submodel and the set of all
composed entities as inputs. Then, the tool performs several functions to generate
attractors. Figure 5.3 demonstrates the logical implementation steps for identifying
attractors1.

Inputs

- State Graphs
- Composition

Generate Interference

State Graphs

Pre-processing Step

- Find SCCs
- Generate SCCs’ data Strcture
- Generate Key states
- Assign Counters

Order Boolean Networks

Generate Aligned States Tuples
Identify Attractors

Computing Interference Aligned Next State Tuple

Extract Cycle

Figure 5.3 Logical implementation steps of the tool.

The following section describes the implementation logic of the tool by listing the
main steps to identify attractors compositionally:

1. Inputs
The inputs to our tool support include:

• Submodels’ state graphs: the state graphs are in a DOT format, which can
be generated by existing tools such as GinSim [71, 125, 3] and PNST [49].

1For more information about the tool and to obtain a copy, please email the authors.

104 Practical Application: Tool Support and Experimental Studies

• BN’s composed entities: we need to add information on the composed entities
for each BN, such as their IDs and their positions within the state.

• Composition: we need to specify a set of composed entities that are merged
together.

2. Generate interference state graphs
Based on the state graphs and BN’s composed entities inputs, we add interference
edges to state graphs. Edges have properties such as normal or interference steps,
and the composed entities that experience interference.

3. Pre-processing step
These functions are required for the next steps:

• Find SCCs: we find the SCCs for each interference state graph using an exiting
function in NetworkX package.

• Create SCCs’ data structure: for each BN, we store the next state edges for
each state in its SCCs.

• Generate key states: we generate key states that are linked to full states in
the SCCs they are associated with. Key states are used to generate aligned
state tuples.

• Set the labels for each state in SCCs: using SCC’s data structure, for each
state, we label the state with one of the four categories to be used later in the
computing interference aligned next state tuple.

4. Order Boolean networks
This step orders BNs based on the impact factor formula, and it has the following
functions:

• Set up initial impact factor: to calculate the impact factor for each BN based
on the formula introduced in Section 5.2.2. Then, we store the BN that has
the highest impact factor in Or.

• Update impact factor: we repeatedly update the impact factors to store the
BN that has the highest impact factor. We stop when the highest impact
factor is zero, then we add the remaining BNs, which have an impact factor
of 0 in any relative order.

5. Generate aligned state tuples
This step uses the ordered BNs stored in Or to generate aligned key state tuples,

5.2 Developing Tool Support 105

which are stored in T. It is based on Algorithm 3 (see Section 5.2.2), and it has
the following functions:

• Create A and assign -1 to each composed entity value.

• Check consistency: to check whether the key state for each BN is consistent
with the corresponding values in A.

• Set A: to update A by setting the values given by the key state for any
composed entity in the BN.

We use T to generate aligned state tuples recursively using the following functions:

• Generate key states from A: to generate key states for each BN using A’s
value in T.

• Get full states: to retrieve the corresponding full states that we already
generated in Step 2 based on the generated keys in the previous function.

6. Find attractors
This step returns a set of attractors, which is based on Algorithm 2 (see Section
5.2.1). For each aligned state tuple, it attempts to generate a sequence of
interference aligned next state tuples until the repeated tuple is reached, indicating
that a set of interference aligned cyclic paths has been found. This step uses the
following functions:

• Get interference aligned next state tuple

– Increment counters values: to increment the counter for each composed
entity based on the labels that have already been set for each state in Step
2.

– Generate composed entities’ values from counters: to generate a value for
each composed entity based on the counters.

– Generate key states: to generate a key state for each BN from the generated
values.

– Get full states: to retrieve the corresponding full states that we already
generated in Step 2 based on the generated keys in the previous function.

• Extract cycle: to extract cyclic paths from interference aligned next state
tuples. Then, we merge state tuples on the composed entities to form an
attractor and add it to a set including all the attractors.

106 Practical Application: Tool Support and Experimental Studies

5.2.6 Improving the Efficiency of the Tool

During implementation, we faced several challenges with regard to improving the
efficiency of the code. Initially, the tool was inefficient, and the results produced were
poor. To address this, we had to carefully consider each component of the tool, and
refine the implementation of the functions to improve their performance. This process
definitely needs to be continued, and further improvements can be considered in the
future.

One of these challenge was identified in the genAST recursion function. In response,
we need to undo the change in A made by the set function in line 4. As, when the
recursion ends and returns after the call at line 6, we want the previous values of A
to be processed for a new key. Both the actual and formal parameters of A refer to
exact locations; any changes made in A are reflected in the actual A parameter of the
genAST . Thus, we can either make a copy of A and send it after the recursion ends,
or we need some way of undoing any changes that we have made. Otherwise, if we
set values in A, then those values will remain there when the algorithm returns from
recursion. We have chosen to make a copy of the last change of A and save it in B, so
that it will be sent when the recursion returns in line 6. To do that, we have used the
built-in copy.deepcopy() function in Python. However, during testing, we discovered
that the function was externally slow. Thus, we defined our copy method, and the
performance improved as a result. Nevertheless, the copying solution used is inefficient,
and we intend to identify alternative solutions in the future.

Yet another challenge faced was that computing interference aligned next state
tuples was a slow process. Initially, the function had to call another function to set
the counters for the subsequent state edges, in order to identify the values of the key
states of the interference aligned with the next state tuple. However, this turned out
to be problematic, and had an impact on the efficiency of the tool. We conducted a
careful investigation, and this problem was fixed by setting the labels for the states in
the sub-models’ SCCs and returning their values later.

Adding interference edges to state graphs is done independently for each state
graph. The function could decelerate the performance of the tool with a large number
of submodels. One option to improve the function’s effectiveness, which can be
investigated in the future, is using multi-threading to add state edges in parallel.
Another option is to build a library for preprocessed models that already have their
interference state graphs, so that they can be simply read in the tool.

5.3 Testing and Evaluating the Tool 107

5.3 Testing and Evaluating the Tool

In this section, we evaluate our tools and techniques for identifying attractors in multiple
BNs by performing a series of performance tests. We conduct three experiments using
compositional models that employed between 12 and 233 entities to investigate when
the tool performs effectively and when it does not and how the tool performs with
a big size of attractors. The performance results of the first experiment from Test 5
to Test 20 are then compared to results obtained using BoolNet [55], BNS [35] and
BoolSim [56].

In order to allow a range of model sizes to be considered, we constructed 35 models
from nine artificial BNs by merging entities. Figure 5.4 provides a summary of the
submodels BN 1

T est, BN 2
T est, BN 3

T est, BN 4
T est, BN 5

T est, BN 6
T est, BN 7

T est, BN 8
T est and

BN 9
T est used in the test. These models were chosen to allow models to be produced,

and in particular, some were designed to have complex behaviour such as BN 7
T est,

and some were chosen to create the big size of attractors ranges between five and 14
states such as BN 8

T est and BN 9
T est. The submodels’ SCCs, and an overview of the

constructed models, are omitted for brevity, and are shown in full in Appendix A.

All the experiments are performed on a laptop that contains an Intel(R) Core(TM)
i7-8650U 1.90 GHz processor and 16.0 GB of memory.

5.3.1 Performance Testing

We conducted three different experimental studies to test our developed tool on 35
composed models. We constructed 20 models in the first experiment, using submodels
BN 1

T est, BN 2
T est, BN 3

T est, BN 4
T est, BN 5

T est and BN 6
T est as depicted in Figure 5.4. In the

second experiment, we constructed another 15 models, and we attempted to increase
the complexity of the constructed models by using BN 7

T est which has 24 SCC states
and a high number of cycles. Furthermore, we attempted to make the tool performs
badly by using a poor compositional structure; this was achieved by increasing the
number of complex SCCs with several states and cycles and selecting specific merged
entities to be used in the composition. In the third one, we constructed six tests to
discover how the tool performs when the resulted attractors are big, between five and
14 states.

The results are summarised in Table 5.4 and Table 5.5. Columns 1, 2, 3, 4 and 5
indicate the number of the test, the number of entities in the composed model, the

108 Practical Application: Tool Support and Experimental Studies

BN 1
T est

g14

g13g12

g11

[g1
1] = g1

1 ∧ g1
4

[g1
2] = g1

3 ∨ g1
1

[g1
3] = g1

1 ∧ g1
2

[g1
4] = g1

1 ∧ g1
4

BN 2
T est

g22

g23

g21

g24

[g2
1] = g2

3
[g2

2] = g2
1 ∧ g2

3 ∨ g2
4

[g2
3] = g2

1
[g2

4] = g2
4 ∧ g2

3

BN 3
T est

g31

g34
g32 g36

g35

g33

[g3
1] = g3

1 ∧ g3
4

[g3
2] = g3

5 ∨ g3
1

[g3
3] = g3

6
[g3

4] = g3
5

[g3
5] = g3

2 ∨ g3
3

[g3
6] = g3

4 ∧ g3
2

BN 4
T est

g45

g44

g43

g46

g41
g42

[g4
1] = g4

3 ∧ g4
6

[g4
2] = g4

4 ∧ g4
3

[g4
3] = g4

5
[g4

4] = g4
1

[g4
5] = g4

5 ∧ g4
3

[g4
6] = g4

2 ∨ g4
5

BN 5
T est

g53

g57

g51

g58g54

g55

g52

g56
[g5

1] = g5
3

[g5
2] = g5

6
[g5

3] = g5
3 ∧ g5

1
[g5

4] = g5
7

[g5
5] = g5

1 ∧ g5
2

[g5
6] = g5

3 ∧ g5
4

[g5
7] = g5

8 ∨ g5
5

[g5
8] = g5

4 ∧ g5
3

BN 6
T est

g68

g64

g67

g66

g65
g63

g62

g61

[g6
1] = g6

3
[g6

2] = g6
1

[g6
3] = g6

4 ∧ g6
7 ∨ g6

8
[g6

4] = g6
2

[g6
5] = g6

2 ∧ g6
7

[g6
6] = g6

2 ∧ g6
4

[g6
7] = g6

7 ∨ g6
6

[g6
8] = g6

5 ∧ g6
1

BN 7
T est

g78g74

g77

g76

g75

g73

g72

g71 [g7
1] = g7

2 ∨ g7
5

[g7
2] = g7

2 ∨ g7
3 ∧ g7

7
[g7

3] = g7
7 ∧ g7

1
[g7

4] = g7
8

[g7
5] = g7

3 ∧ g7
5

[g7
6] = g7

4 ∨ g7
6

[g7
7] = g7

6
[g7

8] = g7
6 ∨ g7

4 ∧ g7
1

BN 8
T est

g82

g83
g81

g84

g85

[g8
1] = g8

2
[g8

2] = g8
3

[g8
3] = g8

4 ∨ g8
5

[g8
4] = g8

5
[g8

5] = g8
1

BN 9
T est

g94

g96g93

g95

g91g92 g97

g96g
9
6

[g9
1] = g9

2
[g9

2] = g9
3

[g9
3] = g9

4
[g9

4] = g9
5 ∧ g9

4
[g9

5] = g9
6 ∨ g9

1
[g9

6] = g9
7

[g9
7] = g9

1

Figure 5.4 A series of test models BN 1
T est, BN 2

T est, BN 3
T est, BN 4

T est, BN 5
T est, BN 6

T est,
BN 7

T est, BN 8
T est and BN 9

T est which are then composed to create test cases.

number and length of attractors computed by the tool, the number of generated aligned

5.3 Testing and Evaluating the Tool 109

state tuples, and the number of SCCs’ states, respectively. In column 6, we show the
runtime of the tool in seconds, which includes all logical steps of the implementation
provided in Figure 5.3, except generating interference state graphs step, which needs
further work in the future to increase its speed.

Table 5.4 Test Results for the first experiment, where series of test cases created using
the test models of BN 1

T est, BN 2
T est, BN 3

T est, BN 4
T est, BN 5

T est and BN 6
T est.

No No of
entities

No of attractors x
length of attractors

No of aligned
tuples Size of SCCs time, sec

1 12 3 x 1, 1 x 2 5 10 0.003
2 24 2 x 2, 2 x 1 25 19 0.009
3 36 4 x 2 107 28 0.015
4 44 6 x 2 936 54 0.028
5 54 12 x 2 1460 74 0.037
6 62 6 x 2 1400 95 0.044
7 70 14 x 2 1224 97 0.080
8 80 12 x 2 3100 110 0.094
9 90 16 x 2 8100 138 0.182
10 102 24 x 2 15600 151 0.361
11 112 24 x 2 18840 176 0.438
12 122 28 x 2 21744 233 0.575
13 130 32 x 2 14576 267 0.740
14 142 48 x 2 30288 285 1.330
15 152 96 x 2 51480 388 1.594
16 167 32 x 2 70560 460 2.488
17 182 32 x 2 93600 544 3.702
18 197 32 x 2 108000 691 5.592
19 215 24 x 2 129600 848 6.682
20 233 12 x 2 172800 984 9.230

As shown in Table 5.4 and Table 5.5, the number of entities in the first experiment
ranges from 12–233 entities and in the second experiment ranges from 14–152. The
number of SCC states in the first tables ranges from 10–984 states and in the second
one ranges from 30–308. The total number of attractors ranges between 4–96 in the
first experiment and between 12–384 in the second one. The number of aligned state
tuples in the first table ranged from 5–172800, and the number of states tuples in
the second experiment ranged from 32–537600. It can be noted that the difference
grows rapidly between aligned state tuples in both tables; for example, in Test 15 in
both experiments was 486120. As expected, it can be seen that the runtime for both
experiments increased as the number of entities increased.

110 Practical Application: Tool Support and Experimental Studies

Table 5.5 Test Results for the second experiment, where series of test cases created using
the test models of BN 1

T est, BN 2
T est, BN 3

T est, BN 4
T est, BN 5

T est, BN 6
T est and BN 7

T est.

No No of
nodes

No of attractors x
length of attractors

No of aligned
tuples Size of SCCs Time, sec

1 14 12 x 2 32 30 0.009
2 21 2 x 1, 20 x 2 157 39 0.015
3 38 24 x 2 800 48 0.028
4 46 48 x 2 1800 62 0.052
5 56 69 x 2 5248 86 0.112
6 64 28 x 2, 2 x 4 36480 105 0.472
7 76 48 x 2 38164 116 0.557
8 86 112 x 2 66520 126 1.099
9 90 192 x 2 68628 147 2.003
10 104 192 x 2 148800 163 3.255
11 116 192 x 2 299480 194 6.585
12 126 288 x 2 289408 250 8.125
13 132 192 x 2 362880 258 12.144
14 146 192 x 2 405696 280 14.395
15 152 384 x 2 537600 308 19.819

0

1

2

3

4

5

6

7

8

9

10

12 24 36 44 54 62 70 80 90 102 112 122 130 142 152 167 182 197 215 233

Ti
m

e,
 se

c

Entities

Testing Results 1

Figure 5.5 Graph to represent the relationship between the number of entities and
runtime of the findAtt algorithm based on the results summarised in Table 5.4.

5.3 Testing and Evaluating the Tool 111

0

2

4

6

8

10

12

14

16

18

20

14 21 38 46 56 64 76 86 90 104 116 126 132 146 152

Ti
m

e,
 se

c

Entities

Testing Results 2

Figure 5.6 Graph to represent the relationship between the number of entities and
runtime of the findAtt algorithm based on the results summarised in Table 5.5.

When comparing Tables 5.4 and 5.5, our tool performed faster in the first experiment
than in the second one; evidently, the complex submodel that we added to the second
experiment affected the tool’s performance. There were significantly higher numbers of
aligned state tuples and attractors in the second experiment, and even the numbers
of entities and SCC states were relatively similar in both experiments. This indicates
that the performance of our tool was strongly influenced by the structure and size
of submodels’ SCCs; this is likely due to our method iterating through the set of
aligned state tuples, and the effect of SCCs structure when generating a sequence of
interference aligned next states tuples to form interference aligned cyclic paths. The
relationship between the number of entities and the execution time summarised in
Table 5.4 and Table 5.5 is visualised in the graphs presented in Figure 5.5 and Figure
5.6, respectively. It shows that the tool appears to work efficiently, but there is a
definite increase in time for the model with a large number of entities.

The set of tests presented in Table 5.6 focuses on identifying the bigger size of
attractors than in previous tests, we use the sub-models BN 8

T est and BN 9
T est alongside

the sub-models shown in Figure 5.4 to generate the size of attractors ranges between
5 and 14. A few sub-models used in the previous tests presented in Tables 5.4 and

112 Practical Application: Tool Support and Experimental Studies

Table 5.5 have been replaced by the BN 8
T est and BN 9

T est sub-models to generate long
attractors. A comparison of the runtime results of those tests to the original ones
suggests that the size of attractors does not affect performance. Although the number
of entities in Tests 5 and 6 is identical; the tool takes a longer time to identify attractors
in Test 6 than in Test 5 due to the complex sub-models used in the test and the large
difference in the number of aligned state tuples.

Table 5.6 Test Results for the third experiment, where series of test cases created
using the test models of BN 1

T est, BN 2
T est, BN 3

T est, BN 4
T est, BN 5

T est, BN 6
T est, BN 7

T est,
BN 8

T est and BN 9
T est.

No No of
nodes

No of attractors x
length of attractors

No of aligned
tuples Size of SCCs Time, sec

1 25 10 x 2, 2 x 1, 7 x 14 676 54 0.019
2 35 2 x 2, 2 x 10 390 43 0.018
3 47 2 x 2, 1 x 14 10224 62 0.124
4 71 6 x 1, 4 x 5 2400 98 0.067
5 131 16 x 2, 8 x 14 20828 287 1.169
6 131 32 x 2, 32 x 10 369600 286 12.433

The practical experiments above show that the size and structure of the SCCs
affect the performance. In addition, the composition structure (i.e. the submodels used
in the compositions and their selected entities to be merged) used in the experiments
can affect the tool’s performance. Although the number of attractors in the larger
models in Test 19 and 20 presented in Table 5.4 is less than the number of attractors
that resulted in Test 12–18, the former tests are slower than the latter tests due to the
number of aligned state tuples and their SCCs size. This situation indicates that the
number of aligned state tuples influences the performance in large models. It can be
noted that the number of aligned state tuples and identified attractors did not usually
increase as the number of entities in the model increased. For example, the number of
aligned tuples in Test 12 is higher than the number of aligned state tuples in Test 13,
as shown in Table 5.4. This situation was affected by the submodels and the structure
of the composition.

To summarise, we applied our tool to a range of constructed model sizes, using
artificial BNs to evaluate its performance. The results seem to be very promising, and
it appears that the tool will scale to allow large models to be considered. Despite
these promising results, the second experiment indicated that further improvements are
needed for our tool to be faster when applied to a complex structure of submodels and

5.3 Testing and Evaluating the Tool 113

compositions. In addition, testing our tool for larger constructed models is desirable in
order to further assess the efficiency of this tool.

5.3.2 Performance Comparison

After conducting the experiments described above, we compared the performance of
our developed tool to three existing tools utilised for attractor identification: BoolNet
[55], BNS [35] and BoolSim [56].

• BoolNet [55] is an R package used for the construction, simulation and analysis of
BNs. It provides methods to identify and analyse the attractors of synchronous,
asynchronous and probabilistic BNs. In the ’exhaustive’ attractor identification
method, the maximum number of entities allowed is 29. In our experiment, we
use the ’sat.exhaustive’ method, which is based on the satisfiability problem.

• BNS is a tool based on the algorithm presented in [35] for finding Attractors in
synchronous BNs. They use MiniSAT SAT-solver [204] in their implementation.

• BoolSim is software that provides algorithms based on reduced ordered binary
decision diagrams (ROBDDs) to evaluate attractors and perform perturbation
experiments on BNs, using synchronous or asynchronous network dynamics [56].
In our experiment, the BoolSim is configured in the synchronous mode.

We demonstrated the efficiency of these tools by conducting experiments on the
last 10 constructed models employed in the first experiment.

Table 5.7 reports the runtime in seconds of those tools when finding attractors.
Columns 1, 2, and 3 present the number of the test, the number of entities in the
composed model, and the number and length of attractors computed by the tool,
respectively. To clarify how our tool compares to the existing tools, we include the
runtime for findAtt, BoolNet, BoolSim and BNS to find all attractors in columns 4,
5, 6 and 7, respectively.

The data of Table 5.7 is illustrated in Figure 5.7, where the horizontal axis represents
the number of entities in each test, and the corresponding runtime in seconds is on
the vertical axis. The results showed that our tool was faster than BoolNet overall.
Moreover, findAtt was faster than BNS and BoolSim in Tests 1–13 and faster than
BoolSim in Test 15, but the tool was slower than BNS and BoolSim in Test 14 and

114 Practical Application: Tool Support and Experimental Studies

Table 5.7 Performance comparison between four tools findAtt, BoolNet, BoolSim
and BNS, where the test models are based on the first experiment.

No No of
nodes

No of attractors x
length of attractors

findAtt
(time,sec)

BoolNet
(time,sec)

BNS
(time,sec)

BoolSim
(time,sec)

5 54 12 x 2 0.037 0.154 0.166 0.162
6 62 6 x 2 0.044 0.208 0.106 0.187
7 70 14 x 2 0.080 0.361 0.180 0.260
8 80 12 x 2 0.094 0.571 0.183 0.211
9 90 16 x 2 0.182 1.088 0.319 0.329
10 102 24 x 2 0.361 1.313 0.553 0.402
11 112 24 x 2 0.438 1.700 0.628 0.556
12 122 28 x 2 0.575 2.231 0.693 0.919
13 130 32 x 2 0.740 2.451 0.794 1.100
14 142 48 x 2 1.330 2.766 0.954 1.150
15 152 96 x 2 1.594 3.610 1.480 2.170
16 167 32 x 2 2.488 4.243 0.963 1.74
17 182 32 x 2 3.702 5.317 1.2 1.76
18 197 32 x 2 5.592 5.942 1.12 4.32
19 215 24 x 2 6.682 7.605 0.983 6.23
20 233 24 x 2 9.230 6.991 0.547 5.39

slower than BNS in Test 15. We notice that in the larger models in Tests 16–20,
BNS and BoolSim are faster than our tool. It appears that BNS is affected more by
the number of attractors than the amount of entities in the models, while BoolSim is
impacted by the number of attractors and the structure of the models. On the other
hand, the runtime of findAtt and BoolNet increase as the number of entities increases.

In general, the results of the comparison indicate that our tool performs extremely
well against the three mature tools. The results also indicate that our tool works well
with large models, although the outcome was slightly behind that of BoolSim and
BNS in Tests 16-20. Thus, the tool’s efficiency needs to be further refined.

In the future, we will apply BoolNet, BoolSim and BNS to the models in the
second experiment in which the structure of SCCs are more complex than in the first
experiment, because the performance of solvers relates to the network’s structure, and
it is not proportional to the number of nodes. A potential future work could involve
creating larger models, and applying our tool in those contexts as well. Comparing our
tool with decomposition approaches (e.g. [36]) is also planned for the future.

5.4 Case Study 115

0

1

2

3

4

5

6

7

8

9

10

54 62 70 80 90 102 112 122 130 142 152 167 182 197 215 233

Ti
m

e,
 se

c

Entities

Performance Comparison

findAtt BoolNet BNS BoolSim

Figure 5.7 Graph to represent the performance comparison between four tools, findAtt,
BoolNet, BoolSim and BNS, based on the results summarised in Table 5.7.

5.4 Case Study

In this section, we illustrate the application of the tools and techniques developed for
attractor identification by applying them to an example biological regulatory network.
We consider the signalling pathway underpinning T cell surval in T cell large granular
lymphocyte leukemia (T-LGL) [54], and use a BN based on the model presented in [7].
We begin by decomposing this BN and then applying our techniques to the resulting
composition to identify all of the model’s attractors.

Our aim here is to simply illustrate the developed techniques for a biological model,
and that does not involve discovering new biological insights into the T-LGL pathway.
Although the model is small, it shows the practical application of our approach and
its correctness. Furthermore, it provides important insight into how a model could be
decomposed. At present, we have decomposed the model manually, but in the future,
we will examine decomposing models automatically. We conducted the case study
in the early stages of our research, and we found it to be insightful. Thus, we have
included it here as an important illustration. In the future, we intend to apply our
approach to a larger biological model.

116 Practical Application: Tool Support and Experimental Studies

A BN, modelling the signalling pathways involved in T-LGL based on the model
constructed in [7], is presented in Figure 5.8. The model focuses on T cell survival,
and the key output determines whether or not apoptosis [54] (cell death) occurs. The
model contains 16 entities, and so has 65536 global states.

sFas Fas

Ceramide

DISC

S1P

FLIP

Caspase

MCL1

GPCR

SMAD IFNG

P2CREB

BID

IAP

Apoptosis

CREB = IFNG

IFNG = (SMAD ∨ P2)
P2 = IFNG ∨ P2
GPCR = S1P
SMAD = GPCR
Fas = sFas
sFas = S1P
Ceramide = Fas ∧ S1P
DISC = (Ceramide ∨ (Fas ∧ FLIP))
Caspase = ((BID ∧ IAP) ∨DISC)
FLIP = DISC
BID = MCL1
IAP = BID
MCL1 = DISC
S1P = Ceramide
Apoptosis = Caspase ∨ Apoptosis

Figure 5.8 A Boolean network BN T LGL modelling the signalling pathways involved in
T-LGL based on the model constructed in [7].

In order to apply our tool, we first need to decompose the Boolean network
BN T LGL (Figure 5.8) in to a composition. The BN naturally decomposes into the three
subnetworks presented in Figure 5.9, where the entities S1P and DISC in BN T LGL

are decomposed into S1P1, S1P2 and DISC1, DISC2, respectively.

Note that since the entities S1P1 and DISC1 have no inputs in their subnetworks
BN 1

T LGL and BN 3
T LGL, respectively, we use the constant function which always returns

1. The reason for this approach is that 1 is the identity value for conjunction, and
so this ensures the composition of S1P1 and S1P2, and DISC1 and DISC2 results
in the original next state functions for S1P and DISC, respectively. Indeed, it is
straightforward to show that BN(ΣT LGL) = BN T LGL. It is important to note that
although S1P1 and DISC1 have their next states fixed, we are able to capture all the
possible behaviours for these entities due to incorporating interference. Recall that a
state transition to 1 can always be interfered with to result in a transition to 0 and
this behaviour is captured in a BN’s interference state graph.

5.4 Case Study 117

BN 1
T LGL BN 2

T LGL BN 3
T LGL

S1P1

GPCR

SMAD IFNG

P2CREB

sFas Fas

Ceramide

S1P2

FLIP

DISC2

DISC1

Caspase

MCL1

BID

IAP

Apoptosis

S1P2 = Ceramide
S1P1 = 1 DISC2 = DISC1 = 1

(Ceramide ∨ (Fas ∧ FLIP))

Figure 5.9 The composition ΣT LGL consisting of the three Boolean networks
BN 1

T LGL, BN 2
T LGL, and BN 3

T LGL and the set of composed entities {{S1P1, S1P2},
{DISC1, DISC2}}.

Now, we apply our tool to the submodels’ state graphs. The tool then identifies all
the SCCs in the interference state graphs for BN 1

T LGL, BN 2
T LGL and BN 3

T LGL given
the composition ΣT LGL. We summarise information about the SCCs that are found for
these subnetworks in Table 5.8, and the SCCs identified for subnetworks are presented
in Figure 5.10.

Table 5.8 Summary of the SCCs identified for BN 1
T LGL, BN 2

T LGL, and BN 3
T LGL based

on the composition ΣT LGL.

BN 1
T LGL BN 2

T LGL BN 3
T LGL

SCC Size SCC Size SCC Size
φ1

1 8 φ2
1 4 φ3

1 20
φ1

2 1 φ2
2 10 φ3

2 1
φ2

3 6
φ2

4 10

The identified SCCs for ΣT LGL result in 384000 possible aligned state tuples
but only 1400 of these align. The findAtt function identifies the seven attrac-
tors for BN T LGL as follows: (where the genes are encoded in the following order:
S1P, DISC, CREB, IFNG, P2, GPCR, SMAD, Fas, sFas, Ceramide, Caspase,

FLI,BID, IAP, MCL1, Apoptosis).

118 Practical Application: Tool Support and Experimental Studies

001101

001111

001110

001011

001010

001100

001001

001000

000111

101110

101100

101000

101010

100010

101011

110110

110010

101001

001001 001000

001010001011

100110

φ1
1 φ1

2 φ2
1 φ2

2

000011

110011

010011

010010

000010

100011

001111

110100

110000

001100001101

001110

101101

100100

100000

101111

010101

101111

001111

110001

010001

100011000011

111101

011101

011001

111001

001011101011

110011

010011

110101

100111

000111

011011111011

000110

φ2
3 φ2

4 φ3
1 φ3

2

Figure 5.10 The SCCs identified for BN 1
T LGL, BN 2

T LGL, and BN 3
T LGL based on the

composition ΣT LGL.

1) Suppose ST = (001010, 100100, 110001). Then, the following interference aligned
next state tuples are generated:

listST = [(001010, 100100, 110001), (001001, 101101, 111101),
(001100, 110100, 111001), (001011, 001101, 111001), (001100, 110100, 111001)]

Applying extCP to list returns the attractor
[0100110110011001, 1100101001011001, 0100110110011001]

5.4 Case Study 119

2) Suppose ST = (001010, 101100, 110001). Then, the following interference aligned
next state tuples are generated:

listST = [(001010, 101100, 110001), (001000, 101100, 111101),
(001000, 101100, 111001), (001000, 101100, 111001)]

Applying extCP to list returns the attractor [0100100101011001, 0100100101011001].

3) Suppose ST = (001010, 100110, 110001). Then, the following interference aligned
next state tuples are generated:

listST = [(001010, 100110, 110001), (001001, 101001, 011101)
(001100, 110110, 101011), (001011, 001001, 010001)
(001100, 110110, 101111), (001011, 001001, 010001)]

Applying extCP to list returns the attractor
[1000101001010001, 0100110110101111, 1000101001010001].

4) Suppose ST = (001010, 010010, 000111). Then, the following interference aligned
next state tuples are generated:

listST = [(001010, 010010, 000111), (001001, 000011, 000111)
(001101, 110011, 000111), (001111, 010011, 000111)
(001111, 010011, 000111)]

Applying extCP to list returns the attractor [1000111010100111, 1000111010100111].

5) Suppose ST = (001010, 010010, 000110). Then, the following interference aligned
next state tuples are generated:

listST = [(001010, 010010, 000110), (001001, 000011, 000110)
(001101, 110011, 000110), (001111, 010011, 000110)
(001111, 010011, 000110)]

Applying extCP to list returns the attractor [1000111010100110, 1000111010100110].

6) Suppose ST = (000111, 100011, 000111). Then, the following interference aligned
next state tuples are generated:

120 Practical Application: Tool Support and Experimental Studies

listST = [(000111, 100011, 000111), (000111, 110011, 000111)
(000111, 010011, 000111), (000111, 010011, 000111)]

Applying extCP to list returns the attractor [1000011010100111, 1000011010100111].

7) Suppose ST = (000111, 100011, 000110). Then, the following interference aligned
next state tuples are generated:

listST = [(000111, 100011, 000110), (000111, 110011, 000110)
(000111, 010011, 000111), (000111, 010011, 000111)]

Applying extCP to list returns the attractor [1000011010100110, 1000011010100110].

5.5 Conclusions

In this chapter, we set out to develop tool support for the new compositional approach of
attractor identification detailed in Chapter 4. This involved developing a new algorithm
based on extending the initial algorithm presented in Chapter 3. We carefully considered
implementing the key functions of generating the set alignSet(ΦE) of all aligned tuples
and computing the interference aligned next state tuple doStep((S1, ..., Sn),ΦΣ) for a
given state tuple (S1, ..., Sn) efficiently. In turn, we developed a prototype support tool
based on the algorithm. Then, we evaluated it by undertaking a range of performance
tests and comparing it to three existing attractor identification tools. In particular,
this chapter covered four main areas, which we discuss below.

5.5.1 Algorithm

Using the definitions and results developed in Section 4.3, we formulated an extended
algorithm named findAtt to identify attractors related to the given SCCs in the new
formation of a composition. The algorithmic approach uses the new notion of aligned
state tuples (for E), which refers to a collection of states for the underlying BNs in
the composition that are aligned on composed entities. Given the possibility of having
several next states for each global state in each submodel, we generalised a definition of
a step based version of interference alignment. We proved that we could have at most
one interference aligned next state tuple. That outcome provides a basis for developing
tool support to compositionally identify attractors.

5.5 Conclusions 121

The crucial step in the developed algorithm is its ability to generate aligned state
tuples efficiently. We focused on key states to generate the values of the composed
entities, knowing that the heuristic order of BNs would impact the efficiency of our
approach.

The counter idea used to compute interference aligned state tuples appears to have
improved the algorithm’s performance significantly. Adding operations based on the
pre-processed state labels seems to be rather quick and that affects the support tool’s
performance.

The algorithm’s overall performance is impacted by the size and the structure of
SCCs associated with a composition and the number of composed entities (for more
detail, see Section 5.2.4).

5.5.2 A Prototype Support Tool

The support tool was crucial in making the described techniques practical. We
implemented the findAtt algorithm using Python by taking submodels’ state graphs,
and composed entities as inputs and returning the composed model attractors.

Initially, the performance results of the developed tool were poor for large models.
We had to improve the tool’s efficiency through several iterations. During the test, we
noticed that by changing the build-in function deepCopy() in Python to our defined
function, the performance of generating aligned state tuples increased. In addition,
computing the interference aligned next state tuple involved several steps to improve
its performance. Moreover, choosing data structures also required careful consideration
during the implementation. Several challenges were discussed in Section 5.2.6.

Further improving the tool’s efficiency and features should be considered in the
future. For example, we could change the idea of copying A to undoing its change to
increase the performance of generating aligned state tuples. In addition, it would be
interesting to have a graphical user interface (GUI) to allow users to construct, analyse
and visualise models. One constraint in the implementation, which can be relaxed in
the future, is the assumption that the composed entity gc contains one entity from
each BN.

122 Practical Application: Tool Support and Experimental Studies

5.5.3 Performance Testing and Evaluation

We investigated the practical application of our technique and tools by conducting
three experiments, with 31 tests, each using compositional models that range between
12 and 233 entities. The results clearly indicate that our tool performs well, and it
appears that it could be scaled to large models. Our tool exhibited greater efficiency in
the first experiment than in the second one, which suggests that its efficiency largely
relies on the structure and size of the SCCs, the number of aligned states tuples and
the composition’s structure.

We compared the results of the last 16 tests in the first experiment to results
obtained with three advanced tools used to identify attractors in synchronous BNs.
Our tool performed well compared with those tools. However, the tests 16–20 indicate
that further improvement for the tool’s efficiency is needed for large models. The third
experiment suggests that the size of attractors does not affect the performance. The
structure of the SCCs and the number of aligned state tuples heavily affect the tool’s
performance.

Despite those promising results, we need to apply our tool to larger composed models
and compare the results to the three above mentioned tools. Due to time constraints,
we did not consider other tools based on decomposition approaches (e.g. [36]); however,
we intend to include them in a performance comparison in the future. We also plan to
perform intensive experiments involving large constructed models and real biological
networks.

5.5.4 Case Study and Decomposition

We illustrated the application of the developed techniques for compositional attractor
analysis by considering a biologically inspired case study based on a BN for the
signalling pathway involved in T cell large granular lymphocyte leukemia (T-LGL)
[7]. The case study considered the early stages of this work, and it provides good
insights into how our approach can be used in submodels generated by a decomposition
approach. In fact, this case study is small; however, we intend to apply our tool to a
large biological network, either by decomposing it into submodels or constructing it
from subparts.

In the future, it would be interesting to develop automatic decomposition techniques
and tools based on the existing compositional framework. Work has already started

5.5 Conclusions 123

to investigate what could make a good decomposition, and we have developed several
metrics to measure the quality of decompositions. Anther issue to be considered
concerns ways of partitioning a BN’s entities, which involves identifying a suitable set
of entities for the partition and, in turn, splitting those entities by decomposing their
Boolean functions. That task will likely be challenging and require techniques from
graph theory. Another aspect of partitioning entities that warrants consideration is
having a BN with a disconnected partition. Decomposing entities’ Boolean functions
is another important issue, one that may be approached in various ways, including the
use of decomposition charts [205] or a binary decision diagram (BDD) [206].

Chapter 6

Concluding Remarks

6.1 Summary

In this thesis, we have set out to extend and strengthen an existing compositional
framework for BNs based on using logical connectives to merge entities [48, 49, 4]. One
key area to be addressed was attractor analysis to support BNs’ practical application.
The attractors are the stable and robust operating mechanisms of functioning a
cell—such as cell types or cell behavioural modes like growth, quiescence, differentiation
and apoptosis—that result from the constraints within the regulatory networks. Due
to the importance of identifying attractors in biology [28, 7], we developed theoretical
results and techniques to identify attractors compositionally in stages. First, we
developed a novel approach for identifying attractors based on merging the cyclic paths
identified in each subnetwork’s interference state graph. We used SCCs to identity
these cyclic paths, and merged them based on a key property called interference
alignment. We provided a formal correctness argument, where we formally showed that
our approach was correct. In our argument, we proved the soundness and completeness
of our approach. We formulated an algorithm based on the techniques that we developed
for compositional attractor identification. Then, we used the algorithm to develop
a prototype support tool. We illustrated the practical application of the developed
techniques and tools by applying them to a case study based on a regulatory network
for cell differentiation [5, 6] found in the bacteria Caulobacter crescentus [199].

In order to make our compositional attractor identification technique more prac-
tically applicable, we extended our approach to apply it to an arbitrary form of
composition. In fact, the existing framework provides a restrictive way of composing

126 Concluding Remarks

multiple BNs, and its notations and definitions limit the extension of the results due
to their complexity [4]. Therefore, we provide a new formulation and definitions of a
composition to allow arbitrary compositions based on an underlying graph structure.
This is a significant step forward in the original compositional framework that supports
constructing models and decomposing them to aid analysis. Then, we extended our
new approach and its results to identify attractors compositionally based on the new
formulation. In an arbitrary composition, we analysed multiple interference state
graphs that represent interference occurring in a composition to identify SCCs. We
formally extended the key property interference alignment to be used in merging cyclic
paths to identify attractors. We formally proved that the extended approach was
correct by showing it is sound and complete.

A significant focus of this work was the development of a prototype support tool
for our developed techniques and results in order to automate and evaluate them. We
formulated the algorithm findAtt for attractor analysis in an arbitrary composition.
We considered efficiently implementing the functions of generating aligned state tuples
and computing interference aligned next state tuples. We proved that we have, at most,
one interference aligned next state tuple. We implemented the formulated algorithm
using Python to automate and evaluate our results related to identifying attractors
compositionally in an arbitrary composition. We considered applying our techniques
to an existing biological system.

We evaluated the support tool by conducting a series of performance tests. We
addressed this by defining nine artificial BNs and using them to construct models
ranging from 12 to 233 entities. We conducted three experiments, and, in the second
one, we aimed to construct complex models by having SCCs with a high number of
cycles. We obtained higher performance results in the first experiment than in the
second one. The third experiments attempted to observe the performance of the tool
when the generated attractors are in a big size. The test results indicated that our
tool was affected by the size and structure of the submodels’ SCCs and the number
of the aligned state tuples. We noticed also that the submodels’ entities used in
the composition, and the entities that merged together can affect performance. We
compared the runtime of the first experiment to three advanced tools for identifying
attractors. Overall, we achieved superior results with our tool, but the last five tests
(16 to 20) indicated that more efficiency improvement for the tool is needed.

6.2 What has been achieved 127

6.2 What has been achieved

This thesis aimed to develop compositional techniques and tools to support the prac-
tical analysis and engineering of BNs by addressing the limitations in the existing
compositional framework [48, 49, 4]. Therefore, we believe that the research work
presented in this thesis represents an original and significant contribution to this aim.

This research has resulted in the following key contributions, which are linked to
the objectives listed in Section 1.4:

1. Developed compositional attractor identification techniques
A key contribution of this work is developing compositional techniques for attractor
analysis in an arbitrary structure of a composition. The approach presented is based
on using the SCCs of a subnetwork’s interference state graph to identify potential
cyclic behaviour based on an important property called interference alignment,
which is then used to construct the attractors of the composed model. We proved
that this property captures instances in which paths in interference state graphs can
be merged to create a path in a composed model. Since multiple entities in a BN
can experience interference under composition, we provided generalised definitions
for normal and interference edges added in an interference state graph. We formally
proved the correctness of this approach by showing its soundness and completeness.

It was crucial to initially developing attractor analysis techniques for a basic com-
position involving two BNs, as presented in Chapter 3. Moreover, we extended
the attractor identification approach to a composition consisting of three BNs, and
we partially extended it into the composition structure of a pairwise sequence of
BNs presented in [49, 4]. The results and proofs became too complex based on
the existing definition provided. Therefore, it became clear that developing a more
general arbitrary compositional theory was needed. This work provided a unique
insight into the approach and without this step we could not have extended it for a
general composition, defined in the next contribution.

The work above was conducted in Chapter 3 and Chapter 4, fulfilling Objective 2.1
and Objective 2.3.

2. Generalised the compositional definition to allow arbitrary compositions
Another key contribution of this thesis is the development of a new general definition
of a composition to allow an arbitrary composition involving multiple BNs based
on an underlying graph structure. The motivation to generalise the composition

128 Concluding Remarks

formulation emerged from the difficulties which arose during the extending of
attractor identification techniques. In fact, this work represents a significant step
forward in the original compositional framework, because it made the composition
approach more practical and simplified the representation of definitions and results.
Consequently, it allowed us to develop a general compositional approach for attractor
identification in an arbitrary composition.

We provided new definitions and notions to facilitate the theoretical results developed
for the extended attractor identification techniques. One of them used the alternative
approach of representing global states based on functions instead of tuples. Another
important definition involved naming the composed entity in a BN that results
from a composition. We updated the definition interference state graph [4] based
on our new definitions and notations. In addition, we provided an updated version
for an important theorem showing that an interference state graph captures all the
possible behaviour that can result from a BN if it is used in a composition.

This work was conducted in Chapter 4, and fulfilled Objective 2.2.

3. Developed tool support for the attractor identification approach
It was a crucial step to develop tool support to automate and illustrate the practical
application of the compositional attractor identification techniques and results that
we have developed. We formulated the algorithm findAtt to identify attractors from
a set of BNs based on the theoretical approach developed. The initial idea of the
algorithm came from formulating and implementing the findAttTwo algorithm to
identify attractors in two submodels. The findAtt algorithm takes the submodels’
SCCs data structure and returns the attractors in the resulting composed model.
The algorithm repeats for each aligned state tuple, finding an interference aligned
next state tuple until the repeated state tuple appears again, indicating that a set
of interference aligned cyclic paths have been found.

We carefully considered implementing its key functions efficiently. Therefore, to
generate aligned state tuples efficiently, we formulated the algorithm genAST , which
recursively iterates through key states to assign the values to composed entities if
they are consistent (i.e. the values of the entities merged together have the same
value). Interestingly, ordering BNs heuristically by calculating their impact factor
leads to much better performance. Thus, we considered key states based on the
resulting order. In addition, we produced an interesting idea to compute interference
aligned state tuples, rather than considering each possible next state tuple. The
idea is to count the labels for each composed entity gc ∈ ∆(Σ) in each state in the

6.2 What has been achieved 129

tuple to generate the next state values for each composed entity and use them to
determine the interference aligned next state tuples.

We implemented the formulated algorithms to identify attractors compositionally
using Python. The tool takes the BNs’ state graphs in a DOT format, which can
be generated with existing tools such as GinSim [71, 125, 3], and the details of
composed entities. The main implemented functions of the tool are generating
interference state graphs, finding SCCs, labelling states, ordering BNs, generating
aligned state tuples, finding interference aligned next state tuples, and generating
composed model attractors.

We applied the tool to two biological case studies from the literature. The first
one was a biologically relevant case study for cell differentiation in the bacteria
Caulobacter crescentus [5, 6]. The second case study that we considered was the
signalling pathway underpinning T cell surval in T cell large granular lymphocyte
leukemia (T-LGL) [54]. These case studies provide important insight for anyone who
would like to apply the developed techniques to biological networks and investigate
the decomposition approach.

These achievements were realised in Chapter 3 and Chapter 5, and linked to Objective
3.1 and Objective 3.2.

4. Practical evaluation of the tool support
We developed a scalable test model to conduct a formal investigation into the devel-
oped tool’s performance. We started our analysis using three submodels generating
12 entities in a composed model. We then scaled our model by constructing larger
models, with up to 233 entities resulting from the composition. We conducted three
experiments to test the performance, and to investigate how the SCCs and the size of
resulted attractors influenced the tool. The results were promising, and revealed that
our tool was affected by the SCCs’ size and structure, the number of aligned state
tuples and the composition structure. During the test, we discovered performance
issues in some components, and we worked to improve their speed through several
iterations. We compared the final tool’s performance in terms of speed to three
existing tools BoolNet [55], BNS [35] and BoolSim [56]. The comparison results
show that the tool performs well against them, but further efficiency improvement
is needed for large models.

This was considered in Chapter 5, and fulfilled Objective 3.3.

130 Concluding Remarks

6.3 Challenges

During the research reported in this thesis, many interesting challenges arose that
needed to be addressed. Some important challenges are discussed below.

• Moving from a basic composition of two BNs to an arbitrary version
Dealing with the complexity of moving from a simple composition, involving two
BNs, to an arbitrary composition was challenging. The existing notations and
definitions for the basic compositional framework became complicated when we
extended the attractor identification approach to a set of three BNs and a set of
multiple BNs in a composition. We were not able to represent arbitrary compositions
using the original definitions that are in the existing theory. Therefore, the challenge
was to develop a new definition for a composition that allows arbitrary compositions
over multiple BNs. This new definition was needed to provide a basis for developing
attractor identification techniques for a general composition. It was addressed by
developing a new form of a composition, based on using a graph structure and a set
of new definitions. This new formulation simplified the representation of definitions
and results, and it was a key step to extend our developed approach for identifying
attractors compositionally.

• Extending attractor analysis results to an arbitrary composition
Dealing with the complexity of these arbitrary compositions and constructing proofs
was challenging. The arbitrary composition has a large number of models and
interference state graphs; thus, the proofs need to be carefully formulated. Changing
the way of representing global states was associated with that. To explain that,
instead of using them as tuples, we treated them in the new general formulation as
functions and that was a crucial change which eased the process of producing results.
Furthermore, the newly composed entities that were generated by merging multiple
entities from different BNs were difficult to track. Thus, we named the entities used
in the composition as ∆(g), and identify a set of entities that merged with any given
entity used in a composition. It was also important to retrieve the BN to which a
given entity belongs, and so we defined λ(g) to be the index of the BN entity to
which g belongs. The approach was based on analysing the submodels’ interference
state graphs, which have additional edges to represent interference. Hence, we need
to distinguish between normal edges and interference edges for a given composed
entity. This step is important in identifying the interference aligned cyclic paths to

6.4 Future Work 131

be merged be merged. Therefore, we extended the interference alignment definition
for multiple paths involved in a composition.

• Developing the efficiency of tool support
Initially, the performance of the tool in terms of speed was poor, and showed
that further work to improve its speed efficiency was required. In fact, the tool
development went through several iterations to improve its efficiency, especially
in generating aligned state tuples and computing interference aligned next state
tuples. Initially, we considered the aligned tuples in all SCCs combinations to
identify attractors. By observing this process, we found that we had repeated
the exact aligning process for different states. To solve this issue, we avoided
passing all possible combinations of SCCs, and we only focused on key states in
the SCCs data structure to generate aligned state tuples based on the ordered
BNs. Meanwhile, computing the interference aligned state tuple took a long time,
as we considered all possible next state tuples. Then, we discovered the idea of
computing the interference aligned next state tuple by examining the pre-processed
labels to determine the next state values for composed entities. Choosing a data
structure required careful consideration, and involved several iterations to produce
data structures. During performance comparison, we wrote files in BoolNet format,
and we had to be careful when we composed functions to create a composed model
for each test. Then, we converted the format of BoolNet files to GinSim files, and
passed them to BNS and BoolSim tools for analysis.

6.4 Future Work

This thesis has focused on extending and strengthening an existing compositional
framework for BNs by developing attractor identification techniques and generalising
the composition definition. With our developed tools and techniques, a number of
interesting areas of future work are required to addressed in order to take our work
forward.

• Generalising the Boolean operators
While this thesis focuses on using conjunction to merge the behaviour of entities in
a composition, all the results presented can straightforwardly be adapted to the use
of disjunction. It turns out that the key property for the results is idempotency, and
so any for Boolean operator which is idempotence, the result could be proved or

132 Concluding Remarks

developed for it. Note that four binary Boolean operators are idempotent: transfer,
complement, OR and AND. It would be interesting in future work to consider fully
integrated conjunction and disjunction in a composition, so that both can be used.

• Extending compatibility results to the new formulation of composition
There is a range of existing results around behaviour preservation in the basic
composition framework [48, 49, 4], which appear to hold in a new compositional
approach. It would be interesting to formally prove these results for the new general
framework.

• Decompositional framework based on our generalised composition
The current work supports the engineering of biological systems by constructing
them from subparts. It would be beneficial to use it as a basis for developing
techniques to decompose large models to aid analysis [207, 208, 191]. Constructing
a decomposition of a BN raises some issues that need to be considered. One key
issue is how to partition the set of entities and find suitable entities for this partition.
Another issue is decomposing the Boolean functions of the entities that need to
be split between partitions. It is clear that there may be more than one possible
decomposition for a BN. Therefore, the third issue is how to measure the quality of
the decomposition. Defining quality measures for the decomposition could help in
identifying the optimal decompositions.

• Developing compositional attractor analysis techniques for asynchronous
BNs
Another interesting area to consider in the future is the development of an attractor
identification approach for asynchronous BNs [67]. Prior to undertaking such a task,
the development of a compositional theory for asynchronous BNs is required. In
addition, an updated version of an interference state graph, which is a key element
in the attractor identification algorithm is needed. It is generally thought to be
more realistic to model biological networks using asynchronous BNs due to the
distinct kinetics between nodes. However, asynchronous BNs are complex, and many
algorithms of attractor identification focus on synchronous BNs. An interference
state graph provides an initial insight into non-deterministic in an asynchronous
semantics update. This topic is ongoing research work at Newcastle University
and is being prepared for publication (therefore the detail of this work cannot be
discussed in detail here).

6.4 Future Work 133

• Creating a library of parts
Biologists use biological parts to build genetic devices and systems, and they refer to
this as synthetic biology [175–177]. There are libraries for biological parts to be used
in constructing new models such as GenoLIB [209]. Designing and constructing
synthetic a gene circuit helps in understanding the behaviour of biological systems.
The ability to construct biological systems provides powerful tools to address various
needs in the areas of health, energy and environment. For example, researchers have
engineered immune cells to be safer and easier to produce the therapy to attack
tumours [210], and engineered gene networks to provide treatment strategies for
obesity [211] and diabetes [212]. One technique in synthetic biology which has
gained attention is the Biobricks method for the physical composition of biological
parts [213], which allows the composition of systems using standard biological parts.
A standard biological part is a genetically encoded biological function that meets
specific rules and guidance to support composition [214].

It would be interesting to create a library of BNs models representing biological
parts that can be used in the composition. These models are important in investi-
gating further applications of our techniques and tools. This library would provide
information on the parts before composing them. For example, by using a part’s
interference state graph, we can know the maximum behaviour in a composition
[49, 4]. Interference state graphs do not show behaviour that does not occur in the
composed model. Thus, if we want some behaviour to occur in the composed model,
an interference state graph must show this behaviour. These are some ideas that
can be investigated in the future.

• Model synthesis
Model synthesis [215–217] is an important area that involves creating models
that have certain behaviour. For example, several works have already considered
synthesising models that have a certain type of attractors (e.g. [218–220]). In
future work we would like to consider applying our techniques to this area. We can
use submodels to predict behaviour that is going to occur. For example, we might
need to build a model with particular attractors. By using our techniques, we can
identify the final attractors from the behaviour of submodels.

• Tool support
Our tool produces good results, but we would like to further increase its speed in
the future. In addition, it would be interesting to have a GUI interface with which
to construct BNs models using their functions or truth tables, or by importing

134 Concluding Remarks

other known file formats such as GinSim [71, 125, 3], BoolSim [56] and Systems
Biology Markup Language (SBML) [183]. We would like to add more features to
the tool support, such as composing, analysing, simulating and visualising models.
In addition, we could like to create a repository of BN models to facilitate applying
the results in the tool.

• Case studies
Further testing in large case studies is required in order to investigate the practical
application of the tool. We would like to identify a proper case study based on a
real biological system in order to perform further tests for the techniques that have
been developed in this study.

Bibliography

[1] L. Kaderali and N. Radde, “Inferring gene regulatory networks from expression
data,” in Computational intelligence in bioinformatics, pp. 33–74, Springer, 2008.

[2] M. I. Davidich and S. Bornholdt, “Boolean network model predicts cell cycle
sequence of fission yeast,” PloS one, vol. 3, p. e1672, 2008 2008.

[3] A. Naldi, C. Hernandez, W. Abou-Jaoudé, P. T. Monteiro, C. Chaouiya, and
D. Thieffry, “Logical modeling and analysis of cellular regulatory networks with
ginsim 3.0,” Frontiers in physiology, vol. 9, p. 646, 2018.

[4] H. Alkhudhayr, Developing a Compositional Framework for the Construction
and Analysis of Boolean Networks. PhD thesis, School of Computing, Newcastle
University, 2020.

[5] I. Sánchez-Osorio, C. A. Hernández-Martínez, and A. Martínez-Antonio, “Mod-
eling asymmetric cell division in caulobacter crescentus using a boolean logic
approach,” in Asymmetric Cell Division in Development, Differentiation and
Cancer, pp. 1–21, Springer, 2017.

[6] C. Quiñones-Valles, I. Sánchez-Osorio, and A. Martínez-Antonio, “Dynamical
modeling of the cell cycle and cell fate emergence in caulobacter crescentus,”
PloS one, vol. 9, no. 11, p. e111116, 2014.

[7] A. Saadatpour, R.-S. Wang, A. Liao, X. Liu, T. P. Loughran, I. Albert, and
R. Albert, “Dynamical and structural analysis of a T cell survival network
identifies novel candidate therapeutic targets for large granular lymphocyte
leukemia,” PLOS Computational Biology, vol. 7, no. 11, p. e1002267, 2011.

[8] H. de Jong, “Modeling and simulation of genetic regulatory systems: a literature
review,” Journal of Computational Biology, vol. 9, pp. 67–103, 2002.

[9] R. Barbuti, R. Gori, P. Milazzo, and L. Nasti, “A survey of gene regulatory net-
works modelling methods: from differential equations, to boolean and qualitative
bioinspired models,” Journal of Membrane Computing, vol. 2, pp. 207–226, 2020.

[10] L. J. Steggles, R. Banks, O. Shaw, and A. Wipat, “Qualitatively modelling and
analysing genetic regulatory networks: a Petri net approach,” Bioinformatics,
vol. 23, no. 3, pp. 336–343, 2007.

136 Bibliography

[11] T. Helikar, J. Konvalina, J. Heidel, and J. A. Rogers, “Emergent decision-making
in biological signal transduction networks,” Proceedings of the National Academy
of Sciences, vol. 105, no. 6, pp. 1913–1918, 2008.

[12] A. Saadatpour, I. Albert, and R. Albert, “Attractor analysis of asynchronous
boolean models of signal transduction networks,” Journal of theoretical biology,
vol. 266, no. 4, pp. 641–656, 2010.

[13] K. Voss, M. Heiner, and I. Koch, “Steady state analysis of metabolic pathways
using Petri nets,” In silico biology, vol. 3, no. 3, pp. 367–387, 2003.

[14] T. Akutsu, S. Miyano, and S. Kuhara, “Inferring qualitative relations in genetic
networks and metabolic pathways,” Bioinformatics, vol. 16, no. 8, pp. 727–734,
2000.

[15] S. A. Kauffman, “Metabolic stability and epigenesis in randomly constructed
genetic nets,” Journal of Theoretical Biology, vol. 22(3), pp. 437–467, 1969.

[16] S. A. Kauffman, The origins of order: Self organization and selection in evolution.
Oxford University Press, USA, 1993.

[17] R. Thomas, “Regulatory networks seen as asynchronous automata: a logical
description,” Journal of theoretical biology, vol. 153, no. 1, pp. 1–23, 1991.

[18] L. J. Steggles, “Abstracting asynchronous multi-valued networks: An initial
investigation,” arXiv preprint arXiv:1108.3433, 2011.

[19] M. A. Schaub, T. A. Henzinger, and J. Fisher, “Qualitative networks: a symbolic
approach to analyze biological signaling networks,” BMC systems biology, vol. 1,
no. 1, pp. 1–21, 2007.

[20] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of
the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[21] A. Carl, “Petri. kommunikation mit automaten,” PhD, University of Bonn, West
Germany, 1962.

[22] M. Heiner, D. Gilbert, and R. Donaldson, “Petri nets for systems and synthetic
biology,” in International school on formal methods for the design of computer,
communication and software systems, pp. 215–264, Springer, 2008.

[23] R. Albert and H. Othmer, “The topology of the regulatory interactions predicts
the expression pattern of the segment polarity genes in drosophila melanogaster,”
Journal of Theoretical Biology, vol. 223(1), pp. 1–18, 2003.

[24] R. Thomas and M. Kaufman, “Multistationarity, the basis of cell differentiation
and memory. II. Logical analysis of regulatory networks in terms of feedback
circuits,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 11, no. 1,
pp. 180–195, 2001.

[25] A. Fauré, A. Naldi, C. Chaouiya, and D. Thieffry, “Dynamical analysis of a generic
boolean model for the control of the mammalian cell cycle,” Bioinformatics,
vol. 22(14), p. 124–131, 2006.

Bibliography 137

[26] J. Saez-Rodriguez, L. Simeoni, J. A. Lindquist, R. Hemenway, U. Bommhardt,
B. Arndt, U.-U. Haus, R. Weismantel, E. D. Gilles, S. Klamt, et al., “A logical
model provides insights into t cell receptor signaling,” PLoS Comput Biol, vol. 3,
no. 8, p. e163, 2007.

[27] P. Bloomingdale, J. Niu, D. E. Mager, et al., “Boolean network modeling in
systems pharmacology,” Journal of pharmacokinetics and pharmacodynamics,
vol. 45, no. 1, pp. 159–180, 2018.

[28] S. Huang and D. E. Ingber, “Shape-dependent control of cell growth, differentia-
tion, and apoptosis: switching between attractors in cell regulatory networks,”
Experimental cell research, vol. 261, no. 1, pp. 91–103, 2000.

[29] R. Thomas, “Boolean formalization of genetic control circuits,” Journal of
theoretical biology, vol. 42, no. 3, pp. 563–585, 1973.

[30] S. Bornholdt and T. Rohlf, “Topological evolution of dynamical networks: Global
criticality from local dynamics,” Physical Review Letters, vol. 84, no. 26, p. 6114,
2000.

[31] F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang, “The yeast cell-cycle network is
robustly designed,” Proceedings of the National Academy of Sciences, vol. 101,
no. 14, pp. 4781–4786, 2004.

[32] L. Mendoza and I. Xenarios, “A method for the generation of standardized
qualitative dynamical systems of regulatory networks,” Theoretical Biology and
Medical Modelling, vol. 3, no. 1, pp. 1–18, 2006.

[33] J. Aracena, E. Goles, A. Moreira, and L. Salinas, “On the robustness of update
schedules in boolean networks,” Biosystems, vol. 97, no. 1, pp. 1–8, 2009.

[34] F. Dellaert and R. D. Beer, “Toward an evolvable model of development for
autonomous agent synthesis,” in Artificial Life IV, Proceedings of the Fourth
International Workshop on the Synthesis and Simulation of Living Systems,
pp. 246–257, Citeseer, 1994.

[35] E. Dubrova and M. Teslenko, “A SAT-based algorithm for finding attractors
in synchronous boolean networks,” IEEE/ACM transactions on computational
biology and bioinformatics, vol. 8, no. 5, pp. 1393–1399, 2011.

[36] A. Mizera, J. Pang, H. Qu, and Q. Yuan, “A new decomposition method for
attractor detection in large synchronous boolean networks,” in International Sym-
posium on Dependable Software Engineering: Theories, Tools, and Applications.
SETTA 2017, vol. LNCS 10606, pp. 232–249, Springer, 2017.

[37] S. Kochemazov and A. Semenov, “Using synchronous boolean networks to model
several phenomena of collective behavior,” Plos one, vol. 9, no. 12, p. e115156,
2014.

[38] S. Huang, G. Eichler, Y. Bar-Yam, and D. E. Ingber, “Cell fates as high-
dimensional attractor states of a complex gene regulatory network,” Physical
review letters, vol. 94, no. 12, p. 128701, 2005.

138 Bibliography

[39] S. Huang, I. Ernberg, and S. Kauffman, “Cancer attractors: a systems view
of tumors from a gene network dynamics and developmental perspective,” in
Seminars in cell & developmental biology, vol. 20, pp. 869–876, Elsevier, 2009.

[40] M. Choi, J. Shi, S. H. Jung, X. Chen, and K.-H. Cho, “Attractor landscape
analysis reveals feedback loops in the p53 network that control the cellular
response to DNA damage,” Science signaling, vol. 5, no. 251, pp. ra83–ra83,
2012.

[41] S. Von der Heyde, C. Bender, F. Henjes, J. Sonntag, U. Korf, and T. Beissbarth,
“Boolean ErbB network reconstructions and perturbation simulations reveal
individual drug response in different breast cancer cell lines,” BMC systems
biology, vol. 8, no. 1, pp. 1–22, 2014.

[42] S. Huang, “Gene expression profiling, genetic networks, and cellular states: an
integrating concept for tumorigenesis and drug discovery,” Journal of molecular
medicine, vol. 77, no. 6, pp. 469–480, 1999.

[43] S. Huang, “Genomics, complexity and drug discovery: insights from boolean
network models of cellular regulation,” Pharmacogenomics, vol. 2, no. 3, pp. 203–
222, 2001.

[44] Y.-E. Sanchez-Corrales, E. R. Alvarez-Buylla, and L. Mendoza, “The arabidopsis
thaliana flower organ specification gene regulatory network determines a robust
differentiation process,” Journal of theoretical biology, vol. 264, no. 3, pp. 971–983,
2010.

[45] R. Edwards and L. Glass, “Combinatorial explosion in model gene networks,”
Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 10, no. 3, pp. 691–
704, 2000.

[46] F. Ay, F. Xu, and T. Kahveci, “Scalable steady state analysis of Boolean biological
regulatory networks,” PloS one, vol. 4, no. 12, p. e7992, 2009.

[47] Y. Zhao, J. Kim, and M. Filippone, “Aggregation algorithm towards large-scale
boolean network analysis,” IEEE Transactions on Automatic Control, vol. 58,
no. 8, pp. 1976–1985, 2013.

[48] H. Alkhudhayr and J. Steggles, “A formal framework for composing qualitative
models of biological systems,” in Theory and Practice of Natural Computing,
TPNC2017, LNCS 10687 (C. Martin-Vide, R. Neruda, and M. Vega-Rodriguez,
eds.), pp. 25–36, Springer, 2017.

[49] H. Alkhudhayr and J. Steggles, “A compositional framework for boolean networks,”
Biosystems, vol. 186, p. 103960, 2019.

[50] N. D. Mendes, F. Lang, Y.-S. Le Cornec, R. Mateescu, G. Batt, and C. Chaouiya,
“Composition and abstraction of logical regulatory modules: application to
multicellular systems,” Bioinformatics, vol. 29, no. 6, pp. 749–757, 2013.

Bibliography 139

[51] W. Guo, G. Yang, W. Wu, L. He, and M. Sun, “A parallel attractor finding
algorithm based on boolean satisfiability for genetic regulatory networks,” PloS
one, vol. 9, no. 4, p. e94258, 2014.

[52] B. W. Miller and D. L. Ranum, Problem Solving with Algorithms and Data
Structures Using Python. Franklin, Beedle and Associates Inc, 2 ed., 2011.

[53] E. Koutsofios and S. C. North, “Drawing graphs with dot,” 1996.

[54] R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert,
and T. P. Loughran, “Network model of survival signaling in large granular
lymphocyte leukemia,” Proceedings of the National Academy of Sciences, vol. 105,
no. 42, pp. 16308–16313, 2008.

[55] C. Müssel, M. Hopfensitz, and H. A. Kestler, “BoolNet—an R package for
generation, reconstruction and analysis of boolean networks,” Bioinformatics,
vol. 26, no. 10, pp. 1378–1380, 2010.

[56] A. Garg, A. Di Cara, I. Xenarios, L. Mendoza, and G. De Micheli, “Synchronous
versus asynchronous modeling of gene regulatory networks,” Bioinformatics,
vol. 24, no. 17, pp. 1917–1925, 2008.

[57] M. Ilea, M. Turnea, M. Rotariu, et al., “Ordinary differential equations with
applications in molecular biology,” Rev Med Chir Soc Med Nat Iasi, vol. 116,
no. 1, pp. 347–352, 2012.

[58] M. L. Wynn, N. Consul, S. D. Merajver, and S. Schnell, “Logic-based models
in systems biology: a predictive and parameter-free network analysis method,”
Integrative biology, vol. 4, no. 11, pp. 1323–1337, 2012.

[59] A. Saadatpour and R. Albert, “A comparative study of qualitative and quan-
titative dynamic models of biological regulatory networks,” EPJ Nonlinear
Biomedical Physics, vol. 4, no. 1, pp. 1–13, 2016.

[60] J. M. Bower and H. Bolouri, Computational modeling of genetic and biochemical
networks. MIT press, 2001.

[61] R. L. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued minimization for
PLA optimization,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 6, no. 5, pp. 727–750, 1987.

[62] R. Thomas and R. d’Ari, Biological feedback. CRC press, 1990.

[63] P. Baldan, N. Cocco, A. Marin, and M. Simeoni, “Petri nets for modelling
metabolic pathways: a survey,” Natural Computing, vol. 9, no. 4, pp. 955–989,
2010.

[64] W. Reisig, Petri nets: an introduction, vol. 4. Springer Science & Business Media,
2012.

[65] J. A. Bergstra and J. W. Klop, “Process algebra for synchronous communication,”
Information and control, vol. 60, no. 1-3, pp. 109–137, 1984.

140 Bibliography

[66] R. Thomas, A.-M. GATHOYE, and L. Lambert, “A complex control circuit:
Regulation of immunity in temperate bacteriophages,” European Journal of
Biochemistry, vol. 71, no. 1, pp. 211–227, 1976.

[67] I. Harvey and T. Bossomaier, “Time out of joint: Attractors in asynchronous
random boolean networks,” in Proceedings of the Fourth European Conference
on Artificial Life, pp. 67–75, MIT Press, Cambridge, 1997.

[68] S. Pandey, R.-S. Wang, L. Wilson, S. Li, Z. Zhao, T. Gookin, S. Assmann, and
R. Albert, “Boolean modeling of transcriptome data reveals novel modes of
heterotrimeric g-protein action,” Molecular Systems Biology, vol. 6(1), pp. 2375–
2387, 2010.

[69] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang, “Probabilistic Boolean
networks: a rule-based uncertainty model for gene regulatory networks,” Bioin-
formatics, vol. 18, no. 2, pp. 261–274, 2002.

[70] D. Thieffry and R. Thomas, “Dynamical behaviour of biological regulatory
networks—II. Immunity control in bacteriophage lambda,” Bulletin of Mathe-
matical Biology, vol. 57, no. 2, pp. 277–297, 1995.

[71] A. G. Gonzalez, A. Naldi, L. Sanchez, D. Thieffry, and C. Chaouiya, “GINsim: a
software suite for the qualitative modelling, simulation and analysis of regulatory
networks,” Biosystems, vol. 84, no. 2, pp. 91–100, 2006.

[72] R. Banks and L. Steggles, “A high-level petri net framework for multi-valued
genetic regulatory networks,” School of Computing Science Technical Report
Series, 2007.

[73] A. Mishchenko and R. Brayton, “Simplification of non-deterministic multi-valued
networks,” in Proceedings of the 2002 IEEE/ACM international conference on
Computer-aided design, pp. 557–562, 2002.

[74] R. Banks and L. J. Steggles, “An abstraction theory for qualitative models of
biological systems,” Theoretical Computer Science, vol. 431, pp. 207–218, 2012.

[75] A. Naldi, E. Remy, D. Thieffry, and C. Chaouiya, “A reduction of logical
regulatory graphs preserving essential dynamical properties,” in International
Conference on Computational Methods in Systems Biology, pp. 266–280, Springer,
2009.

[76] A. Veliz-Cuba, “Reduction of Boolean network models,” Journal of theoretical
biology, vol. 289, pp. 167–172, 2011.

[77] C. A. Petri, “Kommunikation mit automaten,” 1962.

[78] D. Gilbert and M. Heiner, “From Petri nets to differential equations–an integrative
approach for biochemical network analysis,” in International Conference on
Application and Theory of Petri Nets, pp. 181–200, Springer, 2006.

[79] I. Koch and M. Heiner, “Petri Nets, in Junker BH and Schreiber, F.(eds.),
Biological Network Analysis, chapter 7,” 2008.

Bibliography 141

[80] J.-P. Comet, H. Klaudel, and S. Liauzu, “Modeling multi-valued genetic regulatory
networks using high-level Petri nets,” in International Conference on Application
and Theory of Petri Nets, pp. 208–227, Springer, 2005.

[81] P. J. Goss and J. Peccoud, “Quantitative modeling of stochastic systems in
molecular biology by using stochastic Petri nets,” Proceedings of the National
Academy of Sciences, vol. 95, no. 12, pp. 6750–6755, 1998.

[82] O. Roig, J. Cortadella, and E. Pastor, “Verification of asynchronous circuits
by BDD-based model checking of petri nets,” in International Conference on
Application and Theory of Petri Nets, pp. 374–391, Springer, 1995.

[83] B. Jasiul, M. Szpyrka, and J. Śliwa, “Detection and modeling of cyber attacks
with petri nets,” Entropy, vol. 16, no. 12, pp. 6602–6623, 2014.

[84] T. M. Chen, J. C. Sanchez-Aarnoutse, and J. Buford, “Petri net modeling of
cyber-physical attacks on smart grid,” IEEE Transactions on smart grid, vol. 2,
no. 4, pp. 741–749, 2011.

[85] J. Billington and M. Diaz, Application of Petri nets to communication networks:
Advances in Petri nets. No. 1605, Springer Science & Business Media, 1999.

[86] K. Jensen, Coloured Petri nets: basic concepts, analysis methods and practical
use, vol. 1. Springer Science & Business Media, 1997.

[87] M. K. Molloy, “On the integration of delay and throughput measures in distributed
processing models.,” 1982.

[88] P. Merlin and D. Farber, “Recoverability of communication protocols-implications
of a theoretical study,” IEEE transactions on Communications, vol. 24, no. 9,
pp. 1036–1043, 1976.

[89] C. Talcott and D. L. Dill, “The pathway logic assistant,” in Third International
Workshop on Computational Methods in Systems Biology, vol. 3, pp. 228–239,
Citeseer, 2005.

[90] M. Heiner, M. Herajy, F. Liu, C. Rohr, and M. Schwarick, “Snoopy–a unifying
Petri net tool,” in International Conference on Application and Theory of Petri
Nets and Concurrency, pp. 398–407, Springer, 2012.

[91] S. Baarir, M. Beccuti, D. Cerotti, M. De Pierro, S. Donatelli, and G. Franceschinis,
“The GreatSPN tool: recent enhancements,” ACM SIGMETRICS Performance
Evaluation Review, vol. 36, no. 4, pp. 4–9, 2009.

[92] L. Napione, D. Manini, F. Cordero, A. Horváth, A. Picco, M. De Pierro, S. Pavan,
M. Sereno, A. Veglio, F. Bussolino, et al., “On the use of stochastic Petri nets
in the analysis of signal transduction pathways for angiogenesis process,” in
International Conference on Computational Methods in Systems Biology, pp. 281–
295, Springer, 2009.

142 Bibliography

[93] A. Regev, W. Silverman, and E. Shapiro, “Representation and simulation of
biochemical processes using the π-calculus process algebra,” in Biocomputing
2001, pp. 459–470, World Scientific, 2000.

[94] M. Calder, S. Gilmore, and J. Hillston, “Modelling the influence of RKIP on
the ERK signalling pathway using the stochastic process algebra PEPA,” in
Transactions on computational systems biology VII, pp. 1–23, Springer, 2006.

[95] O. Tymchyshyn and M. Kwiatkowska, “Combining intra-and inter-cellular dy-
namics to investigate intestinal homeostasis,” in International Workshop on
Formal Methods in Systems Biology, pp. 63–76, Springer, 2008.

[96] M. Bernardo, P. Degano, and G. Zavattaro, Formal Methods for Computational
Systems Biology: 8th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems, SFM 2008 Bertinoro, Italy,
June 2-7, 2008, vol. 5016. Springer, 2008.

[97] R. Milner et al., “A calculus of communicating systems,” 1980.

[98] C. A. R. Hoare, “Communicating sequential processes,” Communications of the
ACM, vol. 21, no. 8, pp. 666–677, 1978.

[99] C.-C. Jou and S. A. Smolka, “Equivalences, congruences, and complete axiomati-
zations for probabilistic processes,” in International Conference on Concurrency
Theory, pp. 367–383, Springer, 1990.

[100] R. Pucella, “Communicating and mobile systems: The π-calculus,” 2000.

[101] P. Degano, D. Prandi, C. Priami, and P. Quaglia, “Beta-binders for biological
quantitative experiments,” Electronic Notes in Theoretical Computer Science,
vol. 164, no. 3, pp. 101–117, 2006.

[102] J. Hillston, “A compositional approach to performance modelling,” 1996.

[103] H. Garavel, F. Lang, and R. Mateescu, “An overview of CADP 2001,” 2001.

[104] F. Moller and P. Stevens, “Edinburgh concurrency workbench user manual
(version 7.1),” 1999.

[105] P. D’haeseleer, S. Liang, and R. Somogyi, “Genetic network inference: from
co-expression clustering to reverse engineering,” Bioinformatics, vol. 16, no. 8,
pp. 707–726, 2000.

[106] P. E. Dunne, The complexity of Boolean networks. Academic Press Professional,
Inc., 1988.

[107] R. J. Tocci, Digital systems: principles and applications. Pearson Education
India, 1991.

[108] B. Drossel, T. Mihaljev, and F. Greil, “Number and length of attractors in a
critical Kauffman model with connectivity one,” Physical Review Letters, vol. 94,
no. 8, p. 088701, 2005.

Bibliography 143

[109] I. Shmulevich and S. A. Kauffman, “Activities and sensitivities in Boolean
network models,” Physical review letters, vol. 93, no. 4, p. 048701, 2004.

[110] J. E. Socolar and S. A. Kauffman, “Scaling in ordered and critical random
Boolean networks,” Physical review letters, vol. 90, no. 6, p. 068702, 2003.

[111] D. Wright, T. Stocker, and L. Mysak, “A note on quaternary climate modelling
using Boolean delay equations,” Climate dynamics, vol. 4, no. 4, pp. 263–267,
1990.

[112] I. Zaliapin, V. Keilis-Borok, and M. Ghil, “A boolean delay equation model
of colliding cascades. Part I: Multiple seismic regimes,” Journal of Statistical
Physics, vol. 111, no. 3, pp. 815–837, 2003.

[113] G. Easton, R. J. Brooks, K. Georgieva, and I. Wilkinson, “Understanding the
dynamics of industrial networks using Kauffman boolean networks,” Advances in
Complex Systems, vol. 11, no. 01, pp. 139–164, 2008.

[114] J.-W. Gu, W.-K. Ching, T.-K. Siu, and H. Zheng, “On modeling credit defaults:
A probabilistic Boolean network approach,” Risk and decision analysis, vol. 4,
no. 2, pp. 119–129, 2013.

[115] B. Coluzzi, M. Ghil, S. Hallegatte, and G. Weisbuch, “Boolean delay equations on
networks in economics and the geosciences,” International Journal of Bifurcation
and Chaos, vol. 21, no. 12, pp. 3511–3548, 2011.

[116] A. Roli, M. Manfroni, C. Pinciroli, and M. Birattari, “On the design of Boolean
network robots,” in European Conference on the Applications of Evolutionary
Computation, pp. 43–52, Springer, 2011.

[117] A. Roli, M. Villani, R. Serra, S. Benedettini, C. Pinciroli, and M. Birattari,
“Dynamical properties of artificially evolved Boolean network robots,” in Congress
of the Italian Association for Artificial Intelligence, pp. 45–57, Springer, 2015.

[118] R. A. Banks, Qualitatively modelling genetic regulatory networks: Petri net
techniques and tools. PhD thesis, Newcastle University, 2009.

[119] J. L. Apostel, “Classification of random boolean networks,” Artificial Life 8,
vol. 8, p. 1, 2003.

[120] A. Poret, C. M. Sousa, and J.-P. Boissel, “Enhancing boolean networks with
continuous logical operators and edge tuning,” arXiv preprint arXiv:1407.1135,
2014.

[121] M. Hopfensitz, C. Müssel, M. Maucher, and H. A. Kestler, “Attractors in boolean
networks: a tutorial,” Computational Statistics, vol. 28, no. 1, pp. 19–36, 2013.

[122] Q. Yuan, H. Qu, J. Pang, and A. Mizera, “Improving BDD-based attractor
detection for synchronous boolean networks,” Science China Information Sciences,
vol. 59, no. 8, pp. 1–16, 2016.

144 Bibliography

[123] Q. Yuan, A. Mizera, J. Pang, and H. Qu, “A new decomposition-based method
for detecting attractors in synchronous boolean networks,” Science of Computer
Programming, vol. 180, pp. 18–35, 2019.

[124] L. E. Chai, S. K. Loh, S. T. Low, M. S. Mohamad, S. Deris, and Z. Zakaria, “A
review on the computational approaches for gene regulatory network construction,”
Computers in biology and medicine, vol. 48, pp. 55–65, 2014.

[125] A. Naldi, D. Berenguier, A. Fauré, F. Lopez, D. Thieffry, and C. Chaouiya,
“Logical modelling of regulatory networks with GINsim 2.3,” Biosystems, vol. 97,
no. 2, pp. 134–139, 2009.

[126] A. Naldi, D. Thieffry, and C. Chaouiya, “Decision diagrams for the representation
and analysis of logical models of genetic networks,” in International Conference
on Computational Methods in Systems Biology, pp. 233–247, Springer, 2007.

[127] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull,
“Graphviz—open source graph drawing tools,” in International Symposium on
Graph Drawing, pp. 483–484, Springer, 2001.

[128] A. J. Enright and C. A. Ouzounis, “Biolayout—an automatic graph layout
algorithm for similarity visualization,” Bioinformatics, vol. 17, no. 9, pp. 853–854,
2001.

[129] M. E. Smoot, K. Ono, J. Ruscheinski, P.-L. Wang, and T. Ideker, “Cytoscape
2.8: new features for data integration and network visualization,” Bioinformatics,
vol. 27, no. 3, pp. 431–432, 2011.

[130] D. Bérenguier, C. Chaouiya, P. T. Monteiro, A. Naldi, E. Remy, D. Thieffry,
and L. Tichit, “Dynamical modeling and analysis of large cellular regulatory
networks,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 23,
no. 2, p. 025114, 2013.

[131] W. J. Longabaugh, E. H. Davidson, and H. Bolouri, “Computational represen-
tation of developmental genetic regulatory networks,” Developmental biology,
vol. 283, no. 1, pp. 1–16, 2005.

[132] V. Batagelj and A. Mrvar, “Pajek-program for large network analysis,” Connec-
tions, vol. 21, no. 2, pp. 47–57, 1998.

[133] M. Bock, T. Scharp, C. Talnikar, and E. Klipp, “BooleSim: an interactive boolean
network simulator,” Bioinformatics, vol. 30, no. 1, pp. 131–132, 2014.

[134] F. Krause, M. Schulz, B. Ripkens, M. Flöttmann, M. Krantz, E. Klipp, and
T. Handorf, “Biographer: web-based editing and rendering of SBGN compliant
biochemical networks,” Bioinformatics, vol. 29, no. 11, pp. 1467–1468, 2013.

[135] J. Schwab, A. Burkovski, L. Siegle, C. Müssel, and H. A. Kestler, “ViSi-
BooL—visualization and simulation of boolean networks with temporal con-
straints,” Bioinformatics, vol. 33, no. 4, pp. 601–604, 2016.

Bibliography 145

[136] T. M. Fruchterman and E. M. Reingold, “Graph drawing by force-directed
placement,” Software: Practice and experience, vol. 21, no. 11, pp. 1129–1164,
1991.

[137] T. Kamada, S. Kawai, et al., “An algorithm for drawing general undirected
graphs,” Information processing letters, vol. 31, no. 1, pp. 7–15, 1989.

[138] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual understanding
of hierarchical system structures,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 11, no. 2, pp. 109–125, 1981.

[139] W. Peckham, “A support tool for boolean network,” 2017.

[140] H. De Jong, J. Geiselmann, C. Hernandez, and M. Page, “Genetic Network
Analyzer: qualitative simulation of genetic regulatory networks,” Bioinformatics,
vol. 19, no. 3, pp. 336–344, 2003.

[141] A. Di Cara, A. Garg, G. De Micheli, I. Xenarios, and L. Mendoza, “Dynamic
simulation of regulatory networks using squad,” BMC bioinformatics, vol. 8,
no. 1, pp. 1–10, 2007.

[142] S. Klamt, J. Saez-Rodriguez, and E. D. Gilles, “Structural and functional analysis
of cellular networks with cellnetanalyzer,” BMC systems biology, vol. 1, no. 1,
pp. 1–13, 2007.

[143] S. Karl and T. Dandekar, “Jimena: efficient computing and system state iden-
tification for genetic regulatory networks,” BMC bioinformatics, vol. 14, no. 1,
pp. 1–11, 2013.

[144] S. Li, S. M. Assmann, and R. Albert, “Predicting essential components of signal
transduction networks: a dynamic model of guard cell abscisic acid signaling,”
PLoS biology, vol. 4, no. 10, p. e312, 2006.

[145] J. Thakar, M. Pilione, G. Kirimanjeswara, E. T. Harvill, and R. Albert, “Modeling
systems-level regulation of host immune responses,” PLoS computational biology,
vol. 3, no. 6, p. e109, 2007.

[146] G. Karlebach and R. Shamir, “Modelling and analysis of gene regulatory networks,”
Nature reviews Molecular cell biology, vol. 9, no. 10, pp. 770–780, 2008.

[147] W.-P. Lee and W.-S. Tzou, “Computational methods for discovering gene networks
from expression data,” Briefings in bioinformatics, vol. 10, no. 4, pp. 408–423,
2009.

[148] J. Saez-Rodriguez, L. G. Alexopoulos, M. Zhang, M. K. Morris, D. A. Lauffen-
burger, and P. K. Sorger, “Comparing signaling networks between normal and
transformed hepatocytes using discrete logical models,” Cancer research, vol. 71,
no. 16, pp. 5400–5411, 2011.

[149] J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffen-
burger, S. Klamt, and P. K. Sorger, “Discrete logic modelling as a means to
link protein signalling networks with functional analysis of mammalian signal
transduction,” Molecular systems biology, vol. 5, no. 1, p. 331, 2009.

146 Bibliography

[150] J. Collado-Vides and R. Hofestädt, Gene regulation and metabolism: postgenomic
computational approaches. MIT Press, 2004.

[151] X. Zhang, X.-M. Zhao, K. He, L. Lu, Y. Cao, J. Liu, J.-K. Hao, Z.-P. Liu, and
L. Chen, “Inferring gene regulatory networks from gene expression data by path
consistency algorithm based on conditional mutual information,” Bioinformatics,
vol. 28, no. 1, pp. 98–104, 2012.

[152] B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, P. Walter,
J. Wilson, and T. Hunt, Molecular biology of the cell. WW Norton & Company,
2017.

[153] B. Ristevski, “A survey of models for inference of gene regulatory networks,”
Nonlinear Analysis: Modelling and Control, vol. 18, no. 4, pp. 444–465, 2013.

[154] S. A. Kauffman, “Antichaos and adaptation,” Scientific American, vol. 265, no. 2,
pp. 78–85, 1991.

[155] R. Somogyi and C. A. Sniegoski, “Modeling the complexity of genetic networks:
understanding multigenic and pleiotropic regulation,” complexity, vol. 1, no. 6,
pp. 45–63, 1996.

[156] Z. Szallasi and S. Liang, “Modeling the normal and neoplastic cell cycle with ‘re-
alistic Boolean genetic networks’: Their application for understanding carcinogen-
esis and assessing therapeutic strategies,” in Pacific Symposium on Biocomputing,
vol. 3, pp. 66–76, Citeseer, 1998.

[157] G. Weisbuch, “Networks of automata and biological organization,” Journal of
theoretical Biology, vol. 121, no. 3, pp. 255–267, 1986.

[158] D. Irons, “Logical analysis of the budding yeast cell cycle,” Journal of theoretical
biology, vol. 257, no. 4, pp. 543–559, 2009.

[159] S. Kauffman, “Homeostasis and differentiation in random genetic control net-
works,” Nature, vol. 224, no. 5215, pp. 177–178, 1969.

[160] G. d. Anda-Jáuregui, J. Espinal-Enríquez, S. Sandoval-Motta, and E. Hernández-
Lemus, “A boolean network approach to estrogen transcriptional regulation,”
Complexity, vol. 2019, 2019.

[161] M. E. Martinez-Sanchez, M. Hiriart, and E. R. Alvarez-Buylla, “The CD4+ T
cell regulatory network mediates inflammatory responses during acute hyperin-
sulinemia: a simulation study,” BMC systems biology, vol. 11, no. 1, pp. 1–12,
2017.

[162] Y.-K. Kwon and K.-H. Cho, “Boolean dynamics of biological networks with
multiple coupled feedback loops,” Biophysical Journal, vol. 92, no. 8, pp. 2975–
2981, 2007.

[163] I. Shmulevich, E. R. Dougherty, and W. Zhang, “From Boolean to probabilistic
Boolean networks as models of genetic regulatory networks,” Proceedings of the
IEEE, vol. 90, no. 11, pp. 1778–1792, 2002.

Bibliography 147

[164] J. Barnat, N. Beneš, L. Brim, M. Demko, M. Hajnal, S. Pastva, and D. Šafránek,
“Detecting attractors in biological models with uncertain parameters,” in Inter-
national Conference on Computational Methods in Systems Biology, pp. 40–56,
Springer, 2017.

[165] A. Garg, I. Xenarios, L. Mendoza, and G. DeMicheli, “An efficient method for
dynamic analysis of gene regulatory networks and in silico gene perturbation
experiments,” in Annual International Conference on Research in Computational
Molecular Biology, pp. 62–76, Springer, 2007.

[166] D. Zheng, G. Yang, X. Li, Z. Wang, F. Liu, and L. He, “An efficient algorithm
for computing attractors of synchronous and asynchronous boolean networks,”
PloS one, vol. 8, no. 4, p. e60593, 2013.

[167] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking using
satisfiability solving,” Formal methods in system design, vol. 19, no. 1, pp. 7–34,
2001.

[168] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic model
checking using SAT procedures instead of BDDs,” in Proceedings of the 36th
annual ACM/IEEE Design Automation Conference, pp. 317–320, 1999.

[169] E. Dubrova and M. Teslenko, “Compositional properties of random boolean
networks,” Physical Review E, vol. 71, no. 5, p. 056116, 2005.

[170] K. C. Chen, L. Calzone, A. Csikasz-Nagy, F. R. Cross, B. Novak, and J. J. Tyson,
“Integrative analysis of cell cycle control in budding yeast,” Molecular biology of
the cell, vol. 15, no. 8, pp. 3841–3862, 2004.

[171] R. Randhawa, C. A. Shaffer, and J. J. Tyson, “Model aggregation: a building-
block approach to creating large macromolecular regulatory networks,” Bioinfor-
matics, vol. 25, no. 24, pp. 3289–3295, 2009.

[172] G. Buzi, U. Topcu, and J. C. Doyle, “Compositional analysis of autocatalytic
networks in biology,” in Proceedings of the 2010 American Control Conference,
pp. 5929–5935, IEEE, 2010.

[173] E. Klipp, B. Nordlander, R. Krüger, P. Gennemark, and S. Hohmann, “Integrative
model of the response of yeast to osmotic shock,” Nature biotechnology, vol. 23,
no. 8, pp. 975–982, 2005.

[174] R. Randhawa, C. Shaffer, and J. Tyson, “Model composition for macromolecular
regulatory networks,” IEEE/ACM Transactions on Computational Biology and
Bioinformatics, vol. 7, no. 2, pp. 278–287, 2008.

[175] M. Heinemann and S. Panke, “Synthetic biology—putting engineering into
biology,” Bioinformatics, vol. 22, no. 22, pp. 2790–2799, 2006.

[176] L. Serrano, “Synthetic biology: promises and challenges,” 2007.

148 Bibliography

[177] K. Channon, E. H. Bromley, and D. N. Woolfson, “Synthetic biology through
biomolecular design and engineering,” Current opinion in structural biology,
vol. 18, no. 4, pp. 491–498, 2008.

[178] L. Hartwell, J. Hopfield, S. Leibler, and A. Murray, “Nature 402 suppl,” C47–C52,
1999.

[179] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L. Barabási,
“Hierarchical organization of modularity in metabolic networks,” science, vol. 297,
no. 5586, pp. 1551–1555, 2002.

[180] A. Fauré, A. Naldi, F. Lopez, C. Chaouiya, A. Ciliberto, and D. Thieffry,
“Modular logical modelling of the budding yeast cell cycle,” Molecular BioSystems,
vol. 5, no. 12, pp. 1787–1796, 2009.

[181] L. Sánchez, C. Chaouiya, and D. Thieffry, “Segmenting the fly embryo: logical
analysis of the role of the segment polarity cross-regulatory module,” International
journal of developmental biology, vol. 52, no. 8, pp. 1059–1075, 2002.

[182] R. Randhawa, C. A. Shaffer, and J. J. Tyson, “Fusing and composing macromolec-
ular regulatory network models,” in Proceedings of the 2007 spring simulation
multiconference-Volume 2, pp. 337–344, Citeseer, 2007.

[183] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P.
Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden, et al., “The systems
biology markup language (SBML): a medium for representation and exchange of
biochemical network models,” Bioinformatics, vol. 19, no. 4, pp. 524–531, 2003.

[184] C. Chaouiya, H. Klaudel, and F. Pommereau, “A modular, qualitative modeling
of regulatory networks using Petri nets,” in Modeling in Systems Biology, pp. 253–
279, Springer, 2011.

[185] S. d. Putter and A. Wijs, “Compositional model checking is lively,” in Inter-
national Conference on Formal Aspects of Component Software, pp. 117–136,
Springer, 2017.

[186] E. M. Clarke, D. E. Long, and K. L. McMillan, “Compositional model checking,”
1989.

[187] J. J. Hooman and W.-P. de Roever, “An introduction to compositional methods
for concurrency and their application to real-time,” Sadhana, vol. 17, no. 1,
pp. 29–73, 1992.

[188] H. Zheng, Z. Zhang, C. J. Myers, E. Rodriguez, and Y. Zhang, “Compositional
model checking of concurrent systems,” IEEE Transactions on Computers, vol. 64,
no. 6, pp. 1607–1621, 2014.

[189] A. Varga and R. K. Moore, “Simultaneous recognition of concurrent speech signals
using hidden markov model decomposition,” in Second European Conference on
Speech Communication and Technology, 1991.

Bibliography 149

[190] J. Saez-Rodriguez, S. Gayer, M. Ginkel, and E. D. Gilles, “Automatic decomposi-
tion of kinetic models of signaling networks minimizing the retroactivity among
modules,” Bioinformatics, vol. 24, no. 16, pp. i213–i219, 2008.

[191] J. Anderson, Y.-C. Chang, and A. Papachristodoulou, “Model decomposition
and reduction tools for large-scale networks in systems biology,” Automatica,
vol. 47, no. 6, pp. 1165–1174, 2011.

[192] P. Holme, M. Huss, and H. Jeong, “Subnetwork hierarchies of biochemical
pathways,” Bioinformatics, vol. 19, no. 4, pp. 532–538, 2003.

[193] J. Saez-Rodriguez, A. Kremling, H. Conzelmann, K. Bettenbrock, and E. D.
Gilles, “Modular analysis of signal transduction networks,” IEEE control systems,
vol. 24, no. 4, pp. 35–52, 2004.

[194] D. Del Vecchio and E. D. Sontag, “Engineering principles in bio-molecular
systems: from retroactivity to modularity,” in Control Conference (ECC), 2009
European, pp. 658–664, IEEE, 2009.

[195] D. Del Vecchio, A. J. Ninfa, and E. D. Sontag, “Modular cell biology: retroactivity
and insulation,” Molecular systems biology, vol. 4, no. 1, p. 161, 2008.

[196] K. Perrot, P. Perrotin, and S. Sené, “A framework for (de) composing with
Boolean automata networks,” in International Conference on Machines, Compu-
tations, and Universality, pp. 121–136, Springer, 2018.

[197] C. Hong, J. Hwang, K.-H. Cho, and I. Shin, “An efficient steady-state analysis
method for large Boolean networks with high maximum node connectivity,”
PLOS ONE, vol. 10, no. 12, p. e0145734, 2015.

[198] K. Perrot, P. Perrotin, and S. Sené, “Optimising attractor computation in boolean
automata networks,” in International Conference on Language and Automata
Theory and Applications, pp. 68–80, Springer, 2021.

[199] M. T. Laub, L. Shapiro, and H. H. McAdams, “Systems biology of caulobacter,”
Annu. Rev. Genet., vol. 41, pp. 429–441, 2007.

[200] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM journal on
computing, vol. 1, no. 2, pp. 146–160, 1972.

[201] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics,
and function using NetworkX,” tech. rep., Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2008.

[202] E. Nuutila and E. Soisalon-Soininen, “On finding the strongly connected compo-
nents in a directed graph,” Information processing letters, vol. 49, no. 1, pp. 9–14,
1994.

[203] M. Sharir, “A strong-connectivity algorithm and its applications in data flow
analysis,” Computers & Mathematics with Applications, vol. 7, no. 1, pp. 67–72,
1981.

150 Bibliography

[204] N. Een, “MiniSat: A SAT solver with conflict-clause minimization,” in Proc.
SAT-05: 8th Int. Conf. on Theory and Applications of Satisfiability Testing,
pp. 502–518, 2005.

[205] N. Scott, “A new approach to the design of switching circuits,” Proceedings of
the IEEE, vol. 51, no. 2, pp. 413–413, 1963.

[206] C. Yang, V. Singhal, and M. Ciesielski, “BDD decomposition for efficient logic
synthesis,” in Computer Design, 1999.(ICCD’99) International Conference on,
pp. 626–631, IEEE, 1999.

[207] D. J. Clancy and B. Kuipers, “Model decomposition and simulation: A component
based qualitative simulation algorithm,” in AAAI/IAAI, pp. 118–124, 1997.

[208] A. Varga and R. Moore, “Hidden Markov model decomposition of speech and
noise,” in Acoustics, Speech, and Signal Processing, 1990. ICASSP-90., 1990
International Conference on, pp. 845–848, IEEE, 1990.

[209] N. R. Adames, M. L. Wilson, G. Fang, M. W. Lux, B. S. Glick, and J. Peccoud,
“GenoLIB: a database of biological parts derived from a library of common
plasmid features,” Nucleic acids research, vol. 43, no. 10, pp. 4823–4832, 2015.

[210] D. Chakravarti and W. W. Wong, “Synthetic biology in cell-based cancer im-
munotherapy,” Trends in biotechnology, vol. 33, no. 8, pp. 449–461, 2015.

[211] K. Rössger, G. Charpin-El-Hamri, and M. Fussenegger, “A closed-loop syn-
thetic gene circuit for the treatment of diet-induced obesity in mice,” Nature
communications, vol. 4, no. 1, pp. 1–9, 2013.

[212] H. Ye, M. Daoud-El Baba, R.-W. Peng, and M. Fussenegger, “A synthetic
optogenetic transcription device enhances blood-glucose homeostasis in mice,”
Science, vol. 332, no. 6037, pp. 1565–1568, 2011.

[213] T. Knight, “Idempotent vector design for standard assembly of biobricks,” 2003.

[214] B. Canton, A. Labno, and D. Endy, “Refinement and standardization of synthetic
biological parts and devices,” Nature biotechnology, vol. 26, no. 7, pp. 787–793,
2008.

[215] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev,
Logic Synthesis for Asynchronous Controllers and Interfaces: With 146 Figures,
vol. 8. Springer Science & Business Media, 2002.

[216] S. Uchitel, J. Kramer, and J. Magee, “Synthesis of behavioral models from
scenarios,” IEEE Transactions on Software Engineering, vol. 29, no. 2, pp. 99–
115, 2003.

[217] A. S. Koksal, Y. Pu, S. Srivastava, R. Bodik, J. Fisher, and N. Piterman,
“Synthesis of biological models from mutation experiments,” in Proceedings of the
40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 469–482, 2013.

Bibliography 151

[218] R. Pal, I. Ivanov, A. Datta, M. L. Bittner, and E. R. Dougherty, “Generating
Boolean networks with a prescribed attractor structure,” Bioinformatics, vol. 21,
no. 21, pp. 4021–4025, 2005.

[219] X. Zhou, X. Wang, R. Pal, I. Ivanov, M. Bittner, and E. R. Dougherty, “A
bayesian connectivity-based approach to constructing probabilistic gene regula-
tory networks,” Bioinformatics, vol. 20, no. 17, pp. 2918–2927, 2004.

[220] K. Kobayashi and K. Hiraishi, “Design of Boolean networks based on prescribed
singleton attractors,” in 2014 European Control Conference (ECC), pp. 1504–
1509, IEEE, 2014.

Appendix A

Test Models

In this section, we illustrate the SCCs of the submodels’ interference state graphs
used to identify attractors for the performance tests. After that, We summarise the
compositional test models by illustrating the underlying BNs and the composed entities.

A.1 Submodels’ SCCs

Figure A.1 presents the SCCs of the submodels’ interference state graphs identified
for BN 1

T est, BN 2
T est, BN 3

T est, BN 4
T est, BN 5

T est and BN 6
T est based on the entities used

for a composition. The SCCs of the submodel’s interference state graph identified for
BN 7

T est are depicted in Figure A.4.

154 Test Models

0000

0010 1010

0000

1100 1101

BN 1
T est composed on g1

1 BN 2
T est composed on g2

1

010110

011110

110110

111110

01010111

00101100

11010111

00000110

00110110

01110110

11100110

BN 3
T est composed on g3

1 and g3
3 BN 6

T est composed on g6
1

010101

010100

000100

000101

101111

101011

001011

001111

01010110

00010110

10000011

00110000

BN 4
T est composed on g4

1 and g4
2 BN 5

T est composed on g5
1, g5

2 and g5
3

010010

011111

011011

010110

010111

010011

011110

011010

111110 00101100

11010111

01010111

00100100

00101110

01010110

00100110

11010110

00110110

01110110

11100110

00000110

BN 3
T est composed on g3

1 and g3
4 BN 6

T est composed on g6
1 and g6

5

Figure A.1 The SCCs identified for BN 1
T est, BN 2

T est, BN 3
T est, BN 4

T est, BN 5
T est and

BN 6
T est.

A.1 Submodels’ SCCs 155

01010101

10010101

00000101

00010101

10000101

11000101

11010101

01000101

10000010

11100011

01100011

01000010

11000010

00000010

0010001110100011

00011101

01011101

01001101

1000110100001101

10011101

01001010

00001010

Figure A.2 The SCCs identified for BN 7
T est, where the composed entities are g7

1 and g7
3.

00101

01010

00100

10100 01100

11100

01111

1111001110

11101

01101

01011

10110

00110

11011

11010

10111

00111

11111

Figure A.3 The SCCs identified for BN 8
T est, where the composed entities are g8

1.

156 Test Models

00101

01010

00100

10100 01100

11100

01111

1111001110

11101

01101

01011

10110

00110

11011

11010

10111

00111

11111

Figure A.4 The SCCs identified for BN 9
T est, where the composed entities are g9

1.

A.2 Compositions 157

A.2 Compositions

Tables A.1 and A.2 summarise the composed test models in terms of their test numbers,
the submodels used to construct the model, and the composed entities1.

Table A.1 Test models used in the first experiment.

Test Models Composition

1 BN1(MEx1), BN2(MEx2) and BN3(MEx3)
gc

1 = {g1
1, g

3
1}

gc
2 = {g2

1, g
3
3}

2 BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4) and BN 5(MEx5)

gc
1 = {g1

1, g
3
1}

gc
2 = {g2

1, g
3
3, g

5
1}

gc
3 = {g5

2, g
4
1}

3
BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6)
and BN7(MEx3)

gc
1 = {g1

1, g
3
1, g

7
1}

gc
2 = {g2

1, g
3
3, g

5
1}

gc
3 = {g5

2, g
4
1}

gc
4 = {g5

3, g
6
1}

4
BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2) and BN9(MEx3)

gc
1 = {g1

1, g
3
1, g

7
1}

gc
2 = {g2

1, g
3
4, g

5
1}

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1}

5

BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx1) and BN11(MEx6)

gc
1 = {g1

1, g
3
1, g

7
1}

gc
2 = {g2

1, g
3
3, g

5
1}

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1}

gc
5 = {g4

2, g
10
1 }

gc
6 = {g10

3 , g
11
1 }

6

BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx3), BN11(MEx2), BN12(MEx1)
and BN13(MEx5)

gc
1 = {g1

1, g
3
1, g

7
1}

gc
2 = {g2

1, g
3
3, g

5
1}

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1}

gc
5 = {g4

2, g
10
1 , g

13
1 }

gc
6 = {g10

3 , g
11
1 , g

12
1 }

Continued on next page

1For more information about the test models; please email the authors.

158 Test Models

Table A.1 – continued from previous page
Test Models Composition

7

BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx3), BN11(MEx2), BN12(MEx1),
BN13(MEx3), BN14(MEx1)
and BN15(MEx4).

gc
1 = {g1

1, g
3
1, g

7
1}

gc
2 = {g2

1, g
3
3, g

5
1}

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1}

gc
5 = {g4

2, g
10
1 , g

13
1 }

gc
6 = {g10

3 , g
11
1 , g

12
1 }

gc
7 = {g12

2 , g
14
1 }

gc
8 = {g14

2 , g
15
1 }

8

BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx1),
BN10(MEx3), BN11(MEx3), BN12(MEx1),
BN13(MEx3), BN14(MEx1), BN15(MEx6),
BN16(MEx1) and BN17(MEx3).

gc
1 = {g1

1, g
3
1, g

7
1}

gc
2 = {g2

1, g
3
3, g

5
1}

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1}

gc
5 = {g4

2, g
10
1 , g

13
1 }

gc
6 = {g10

3 , g
11
1 , g

12
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 }

9

BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx5), BN5(MEx1),
BN6(MEx6), BN7(MEx3), BN8(MEx2),
BN9(MEx3), BN10(MEx6), BN11(MEx3),
BN12(MEx1), BN13(MEx3), BN14(MEx1),
BN15(MEx4), BN16(MEx1),
BN17(MEx5)(MEx4), BN18(MEx3)
and BN19(MEx3).

gc
1 = {g1

1, g
3
1, g

7
1}

gc
2 = {g2

1, g
3
3, g

5
1}

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1}

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 }

gc
6 = {g10

5 , g
11
1 , g

12
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 }

gc
9 = {g13

2 , g
19
1 }

Continued on next page

A.2 Compositions 159

Table A.1 – continued from previous page
Test Models Composition

10

BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx3), BN11(MEx3), BN12(MEx1),
BN13(MEx3), BN14(MEx1), BN15(MEx4),
BN16(MEx1), BN17(MEx5), BN18(MEx3),
BN19(MEx1), BN20(MEx6)
and BN21(MEx3).

gc
1 = {g1

1, g
3
1, g

7
1}

gc
2 = {g2

1, g
3
3, g

5
1, g

20
1 }

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1}

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 }

gc
6 = {g10

3 , g
11
1 , g

12
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 }

gc
9 = {g13

2 , g
19
1 , g

21
1 }

11

BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx3), BN11(MEx3), BN12(MEx1),
BN13(MEx3), BN14(MEx1), BN15(MEx4),
BN16(MEx1), BN17(MEx5), BN18(MEx3),
BN19(MEx3), BN20(MEx5), BN21(MEx1),
BN22(MEx3) and BN23(MEx4).

gc
1 = {g1

1, g
3
1, g

7
1, g

22
1 }

gc
2 = {g2

1, g
3
3, g

5
1, g

20
1 }

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1, g

23
1 }

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 }

gc
6 = {g10

3 , g
11
1 , g

12
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 }

gc
9 = {g13

2 , g
19
1 , g

21
1 }

12

BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx3), BN11(MEx3), BN12(MEx1),
BN13(MEx3), BN14(MEx1), BN15(MEx4),
BN16(MEx3), BN17(MEx5), BN18(MEx3),
BN19(MEx1), BN20(MEx5), BN21(MEx3),
BN22(MEx3), BN23(MEx4), BN24(MEx1)
and BN25(MEx5).

gc
1 = {g1

1, g
3
1, g

7
1, g

22
1 }

gc
2 = {g2

1, g
3
3, g

5
1, g

20
1 }

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1, g

23
1 }

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 }

gc
6 = {g10

3 , g
11
1 , g

12
1 , g

24
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 , g

25
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 }

gc
9 = {g13

2 , g
19
1 , g

21
1 }

Continued on next page

160 Test Models

Table A.1 – continued from previous page
Test Models Composition

13

BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx5), BN9(MEx4),
BN10(MEx3), BN11(MEx3), BN12(MEx1),
BN13(MEx5), BN14(MEx1), BN15(MEx1),
BN16(MEx1), BN17(MEx5), BN18(MEx3),
BN19(MEx3), BN20(MEx3), BN21(MEx3),
BN22(MEx3), BN23(MEx4), BN24(MEx3),
BN25(MEx1), BN26(MEx1)
and BN27(MEx3).

gc
1 = {g1

1, g
3
1, g

7
1, g

22
1 }

gc
2 = {g2

1, g
3
3, g

5
1, g

20
1 }

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1, g

23
1 }

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 }

gc
6 = {g10

3 , g
11
1 , g

12
1 , g

24
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 , g

25
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 , g

26
1 }

gc
9 = {g13

2 , g
19
1 , g

21
1 , g

27
1 }

14

BN1(MEx1), BN2(MEx1) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx3), BN11(MEx1), BN12(MEx1),
BN13(MEx5), BN14(MEx1), BN15(MEx4),
BN16(MEx1), BN17(MEx5), BN18(MEx3),
BN19(MEx3), BN20(MEx1), BN21(MEx3),
BN22(MEx3), BN23(MEx6), BN24(MEx3),
BN25(MEx5), BN26(MEx5), BN27(MEx3),
BN28(MEx3) and BN29(MEx1).

gc
1 = {g1

1, g
3
1, g

7
1, g

22
1 }

gc
2 = {g2

1, g
3
3, g

5
1, g

20
1 }

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1, g

23
1 }

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 }

gc
6 = {g10

3 , g
11
1 , g

12
1 , g

24
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 , g

25
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 , g

26
1 }

gc
9 = {g13

2 , g
19
1 , g

21
1 , g

27
1 }

gc
10 = {g27

3 , g
28
1 , g

29
1 }

15

BN1(MEx1), BN2(MEx1) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx3), BN11(MEx1), BN12(MEx1),
BN13(MEx5), BN14(MEx1), BN15(MEx4),
BN16(MEx1), BN17(MEx3), BN18(MEx3),
BN19(MEx3), BN20(MEx4), BN21(MEx3),
BN22(MEx3), BN23(MEx3), BN24(MEx3),
BN25(MEx5), BN26(MEx5), BN27(MEx3),
BN28(MEx3), BN29(MEx3), BN30(MEx6)
and BN31(MEx1).

gc
1 = {g1

1, g
3
1, g

7
1, g

22
1 }

gc
2 = {g2

1, g
3
3, g

5
1, g

20
1 }

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1, g

23
1 }

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 }

gc
6 = {g10

3 , g
11
1 , g

12
1 , g

24
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 , g

25
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 , g

26
1 }

gc
9 = {g13

2 , g
19
1 , g

21
1 , g

27
1 }

gc
10 = {g27

3 , g
28
1 , g

29
1 , g

30
1 , g

31
1 }

Continued on next page

A.2 Compositions 161

Table A.1 – continued from previous page
Test Models Composition

16

BN1(MEx1), BN2(MEx1) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx3), BN11(MEx1), BN12(MEx1),
BN13(MEx5), BN14(MEx1), BN15(MEx4),
BN16(MEx1), BN17(MEx3), BN18(MEx3),
BN19(MEx3), BN20(MEx4), BN21(MEx3),
BN22(MEx3), BN23(MEx3), BN24(MEx3),
BN25(MEx5), BN26(MEx5), BN27(MEx3),
BN28(MEx3), BN29(MEx3), BN30(MEx6),
BN31(MEx1), BN32(MEx3), BN33(MEx5)
and BN34(MEx1) .

gc
1 = {g1

1, g
3
1, g

7
1, g

22
1 , g

32
1 }

gc
2 = {g2

1, g
3
3, g

5
1, g

20
1 , g

33
1 }

gc
3 = {g5

2, g
4
1, g

8
1, g

34
1 }

gc
4 = {g5

3, g
6
1, g

9
1, g

23
1 }

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 }

gc
6 = {g10

3 , g
11
1 , g

12
1 , g

24
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 , g

25
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 , g

26
1 }

gc
9 = {g13

2 , g
19
1 , g

21
1 , g

27
1 }

gc
10 = {g27

3 , g
28
1 , g

29
1 , g

30
1 , g

31
1 }

17

BN1(MEx1), BN2(MEx1) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx3), BN11(MEx1), BN12(MEx1),
BN13(MEx5), BN14(MEx1), BN15(MEx4),
BN16(MEx1), BN17(MEx3), BN18(MEx3),
BN19(MEx3), BN20(MEx4), BN21(MEx3),
BN22(MEx3), BN23(MEx3), BN24(MEx3),
BN25(MEx5), BN26(MEx5), BN27(MEx3),
BN28(MEx3), BN29(MEx3), BN30(MEx6),
BN31(MEx1), BN32(MEx3), BN33(MEx5),
BN34(MEx1),BN35(MEx1), BN36(MEx5)
and BN37(MEx3).

gc
1 = {g1

1, g
3
1, g

7
1, g

22
1 , g

32
1 }

gc
2 = {g2

1, g
3
3, g

5
1, g

20
1 , g

33
1 }

gc
3 = {g5

2, g
4
1, g

8
1, g

34
1 }

gc
4 = {g5

3, g
6
1, g

9
1, g

23
1 , g

35
1 }

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 , g

36
1 }

gc
6 = {g10

3 , g
11
1 , g

12
1 , g

24
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 , g

25
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 , g

26
1 }

gc
9 = {g13

2 , g
19
1 , g

21
1 , g

27
1 , g

39
1 }

gc
10 = {g27

3 , g
28
1 , g

29
1 , g

30
1 , g

31
1 }

Continued on next page

162 Test Models

Table A.1 – continued from previous page
Test Models Composition

18

BN1(MEx1), BN2(MEx1) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx3), BN11(MEx1), BN12(MEx1),
BN13(MEx5), BN14(MEx1), BN15(MEx4),
BN16(MEx1), BN17(MEx3), BN18(MEx3),
BN19(MEx3), BN20(MEx4), BN21(MEx3),
BN22(MEx3), BN23(MEx3), BN24(MEx3),
BN25(MEx5), BN26(MEx5), BN27(MEx3),
BN28(MEx3), BN29(MEx3), BN30(MEx6),
BN31(MEx1), BN32(MEx3), BN33(MEx5),
BN34(MEx1),BN35(MEx1), BN36(MEx1),
BN37(MEx3),BN38(MEx3), BN39(MEx3)
and BN40(MEx5).

gc
1 = {g1

1, g
3
1, g

7
1, g

22
1 , g

32
1 }

gc
2 = {g2

1, g
3
3, g

5
1, g

20
1 , g

33
1 }

gc
3 = {g5

2, g
4
1, g

8
1, g

34
1 }

gc
4 = {g5

3, g
6
1, g

9
1, g

23
1 , g

35
1 }

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 , g

36
1 }

gc
6 = {g10

3 , g
11
1 , g

12
1 , g

24
1 , g

37
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 , g

25
1 , g

38
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 , g

26
1 , g

39
1 }

gc
9 = {g13

2 , g
19
1 , g

21
1 , g

27
1 , g

40
1 }

gc
10 = {g27

3 , g
28
1 , g

29
1 , g

30
1 , g

31
1 }

19

BN1(MEx1), BN2(MEx1) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx4), BN8(MEx3), BN9(MEx3),
BN10(MEx3), BN11(MEx1), BN12(MEx1),
BN13(MEx5), BN14(MEx1), BN15(MEx4),
BN16(MEx1), BN17(MEx3), BN18(MEx3),
BN19(MEx3), BN20(MEx5), BN21(MEx3),
BN22(MEx3), BN23(MEx3), BN24(MEx3),
BN25(MEx5), BN26(MEx5), BN27(MEx3),
BN28(MEx3), BN29(MEx3), BN30(MEx4),
BN31(MEx1), BN32(MEx3), BN33(MEx5),
BN34(MEx3),BN35(MEx1), BN36(MEx1),
BN37(MEx3),BN38(MEx3), BN39(MEx3),
BN40(MEx5), BN41(MEx1), BN42(MEx5),
and BN43(MEx3).

gc
1 = {g1

1, g
3
1, g

7
1, g

22
1 , g

32
1 }

gc
2 = {g2

1, g
3
3, g

5
1, g

20
1 , g

33
1 }

gc
3 = {g5

2, g
4
1, g

8
1, g

34
1 }

gc
4 = {g5

3, g
6
1, g

9
1, g

23
1 , g

35
1 }

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 , g

36
1 }

gc
6 = {g10

3 , g
11
1 , g

12
1 , g

24
1 , g

37
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 , g

25
1 , g

38
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 , g

26
1 , g

39
1 }

gc
9 = {g13

2 , g
19
1 , g

21
1 , g

27
1 , g

40
1 }

gc
10 = {g27

3 , g
28
1 , g

29
1 , g

30
1 , g

31
1 , g

41
1 }

gc
11 = {g41

1 , g
42
1 , g

43
1 }

Continued on next page

A.2 Compositions 163

Table A.1 – continued from previous page
Test Models Composition

20

BN1(MEx1), BN2(MEx1) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx4), BN8(MEx3), BN9(MEx3),
BN10(MEx3), BN11(MEx1), BN12(MEx1),
BN13(MEx5), BN14(MEx1), BN15(MEx4),
BN16(MEx1), BN17(MEx3), BN18(MEx3),
BN19(MEx3), BN20(MEx5), BN21(MEx3),
BN22(MEx3), BN23(MEx3), BN24(MEx3),
BN25(MEx5), BN26(MEx5), BN27(MEx3),
BN28(MEx3), BN29(MEx3), BN30(MEx5),
BN31(MEx1), BN32(MEx3), BN33(MEx5),
BN34(MEx3),BN35(MEx1), BN36(MEx1),
BN37(MEx3),BN38(MEx3), BN39(MEx3),
BN40(MEx5), BN41(MEx1), BN42(MEx5),
BN43(MEx3),BN44(MEx5), BN45(MEx1),
and BN46(MEx3).

gc
1 = {g1

1, g
3
1, g

7
1, g

22
1 , g

32
1 }

gc
2 = {g2

1, g
3
3, g

5
1, g

20
1 , g

33
1 }

gc
3 = {g5

2, g
4
1, g

8
1, g

34
1 }

gc
4 = {g5

3, g
6
1, g

9
1, g

23
1 , g

35
1 }

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 , g

36
1 }

gc
6 = {g10

3 , g
11
1 , g

12
1 , g

24
1 , g

37
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 , g

25
1 , g

38
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 , g

26
1 , g

39
1 }

gc
9 = {g13

2 , g
19
1 , g

21
1 , g

27
1 , g

40
1 }

gc
10 = {g27

3 , g
28
1 , g

29
1 , g

30
1 , g

31
1 , g

41
1 }

gc
11 = {g41

1 , g
42
1 , g

43
1 , g

45
2 }

gc
12 = {g44

1 , g
45
1 , g

46
1 }

Table A.2 Test models used in the second experiment.

Test Models Composition

1 BN1(MEx1), BN2(MEx2) and BN3(MEx7)
gc

1 = {g1
1, g

3
1}

gc
2 = {g2

1, g
3
4}

2 BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4) and BN 5(MEx7)

gc
1 = {g1

1, g
3
1}

gc
2 = {g2

1, g
3
3, g

5
1}

gc
3 = {g5

4, g
4
1}

3
BN1(MEx1), BN2(MEx2) ,BN3(MEx7),
BN4(MEx4), BN5(MEx5), BN6(MEx6)
and BN7(MEx3)

gc
1 = {g1

1, g
3
1, g

7
1}

gc
2 = {g2

1, g
3
4, g

5
1}

gc
3 = {g5

2, g
4
1}

gc
4 = {g5

3, g
6
1}

4
BN1(MEx1), BN2(MEx2) ,BN3(MEx7),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2) and BN9(MEx3)

gc
1 = {g1

1, g
3
1, g

7
1}

gc
2 = {g2

1, g
3
4, g

5
1}

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1}

Continued on next page

164 Test Models

Table A.2 – continued from previous page
Test Models Composition

5

BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx7) and BN11(MEx3)

gc
1 = {g1

1, g
3
1, g

7
1}

gc
2 = {g2

1, g
3
3, g

5
1}

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1}

gc
5 = {g4

2, g
10
1 }

gc
6 = {g10

4 , g
11
1 }

6

BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx1), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx7), BN11(MEx5), BN12(MEx1)
and BN13(MEx6)

gc
1 = {g1

1, g
3
1, g

7
1}

gc
2 = {g2

1, g
3
4, g

5
1}

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1}

gc
5 = {g4

2, g
10
1 , g

13
1 }

gc
6 = {g10

4 , g
11
1 , g

12
1 }

7

BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx1), BN9(MEx3),
BN10(MEx7), BN11(MEx2), BN12(MEx1),
BN13(MEx5), BN14(MEx3)
and BN15(MEx6).

gc
1 = {g1

1, g
3
1, g

7
1}

gc
2 = {g2

1, g
3
3, g

5
1}

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1}

gc
5 = {g4

2, g
10
1 , g

13
1 }

gc
6 = {g10

4 , g
11
1 , g

12
1 }

gc
7 = {g12

2 , g
14
1 }

gc
8 = {g14

2 , g
15
1 }

8

BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx7), BN11(MEx3), BN12(MEx1),
BN13(MEx5), BN14(MEx1), BN15(MEx6),
BN16(MEx1) and BN17(MEx5).

gc
1 = {g1

1, g
3
1, g

7
1}

gc
2 = {g2

1, g
3
3, g

5
1}

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1}

gc
5 = {g4

2, g
10
1 , g

13
1 }

gc
6 = {g10

4 , g
11
1 , g

12
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 }

Continued on next page

A.2 Compositions 165

Table A.2 – continued from previous page
Test Models Composition

9

BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx7), BN11(MEx3), BN12(MEx1),
BN13(MEx6), BN14(MEx1), BN15(MEx4),
BN16(MEx1), BN17(MEx3),
BN18(MEx1) and BN19(MEx1).

gc
1 = {g1

1, g
3
1, g

7
1}

gc
2 = {g2

1, g
3
3, g

5
1}

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1}

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 }

gc
6 = {g10

4 , g
11
1 , g

12
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 }

gc
9 = {g13

5 , g
19
1 }

10

BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx7), BN11(MEx3), BN12(MEx1),
BN13(MEx3), BN14(MEx1), BN15(MEx4),
BN16(MEx1), BN17(MEx5), BN18(MEx3),
BN19(MEx3), BN20(MEx6)
and BN21(MEx1).

gc
1 = {g1

1, g
3
1, g

7
1}

gc
2 = {g2

1, g
3
3, g

5
1, g

20
1 }

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1}

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 }

gc
6 = {g10

4 , g
11
1 , g

12
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 }

gc
9 = {g13

2 , g
19
1 , g

21
1 }

11

BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx7), BN11(MEx3), BN12(MEx1),
BN13(MEx5), BN14(MEx1), BN15(MEx6),
BN16(MEx1), BN17(MEx5), BN18(MEx3)
BN19(MEx3), BN20(MEx5), BN21(MEx1),
BN22(MEx3) and BN23(MEx4).

gc
1 = {g1

1, g
3
1, g

7
1, g

22
1 }

gc
2 = {g2

1, g
3
3, g

5
1, g

20
1 }

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1, g

23
1 }

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 }

gc
6 = {g10

4 , g
11
1 , g

12
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 }

gc
9 = {g13

2 , g
19
1 , g

21
1 }

Continued on next page

166 Test Models

Table A.2 – continued from previous page
Test Models Composition

12

BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx1), BN11(MEx3), BN12(MEx1),
BN13(MEx5), BN14(MEx7), BN15(MEx4),
BN16(MEx3), BN17(MEx5), BN18(MEx3),
BN19(MEx1), BN20(MEx5), BN21(MEx1),
BN22(MEx3), BN23(MEx6), BN24(MEx3)
and BN25(MEx1).

gc
1 = {g1

1, g
3
1, g

7
1, g

22
1 }

gc
2 = {g2

1, g
3
3, g

5
1, g

20
1 }

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1, g

23
1 }

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 }

gc
6 = {g10

3 , g
11
1 , g

12
1 , g

24
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 , g

25
1 }

gc
8 = {g14

4 , g
15
1 , g

17
1 }

gc
9 = {g13

2 , g
19
1 , g

21
1 }

13

BN1(MEx1), BN2(MEx2) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx5), BN9(MEx4),
BN10(MEx3), BN11(MEx1), BN12(MEx7),
BN13(MEx6), BN14(MEx1), BN15(MEx4),
BN16(MEx1), BN17(MEx3), BN18(MEx1),
BN19(MEx3), BN20(MEx5), BN21(MEx1),
BN22(MEx3), BN23(MEx5), BN24(MEx3),
BN25(MEx3), BN26(MEx5)
and BN27(MEx1).

gc
1 = {g1

1, g
3
1, g

7
1, g

22
1 }

gc
2 = {g2

1, g
3
3, g

5
1, g

20
1 }

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1, g

23
1 }

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 }

gc
6 = {g10

3 , g
11
1 , g

12
1 , g

24
1 }

gc
7 = {g12

4 , g
14
1 , g

16
1 , g

25
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 , g

26
1 }

gc
9 = {g13

5 , g
19
1 , g

21
1 , g

27
1 }

14

BN1(MEx1), BN2(MEx1) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx1),
BN10(MEx7), BN11(MEx1), BN12(MEx1),
BN13(MEx5), BN14(MEx1), BN15(MEx4),
BN16(MEx1), BN17(MEx5), BN18(MEx3),
BN19(MEx3), BN20(MEx5), BN21(MEx1),
BN22(MEx3), BN23(MEx6), BN24(MEx3),
BN25(MEx5), BN26(MEx5), BN27(MEx3),
BN28(MEx3) and BN29(MEx1).

gc
1 = {g1

1, g
3
1, g

7
1, g

22
1 }

gc
2 = {g2

1, g
3
3, g

5
1, g

20
1 }

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1, g

23
1 }

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 }

gc
6 = {g10

4 , g
11
1 , g

12
1 , g

24
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 , g

25
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 , g

26
1 }

gc
9 = {g13

2 , g
19
1 , g

21
1 , g

27
1 }

gc
10 = {g27

3 , g
28
1 , g

29
1 }

Continued on next page

A.2 Compositions 167

Table A.2 – continued from previous page
Test Models Composition

15

BN1(MEx1), BN2(MEx1) ,BN3(MEx3),
BN4(MEx4), BN5(MEx5), BN6(MEx6),
BN7(MEx3), BN8(MEx2), BN9(MEx3),
BN10(MEx7), BN11(MEx1), BN12(MEx1),
BN13(MEx5), BN14(MEx1), BN15(MEx4),
BN16(MEx1), BN17(MEx5), BN18(MEx3),
BN19(MEx3), BN20(MEx5), BN21(MEx3),
BN22(MEx3), BN23(MEx6), BN24(MEx3),
BN25(MEx5), BN26(MEx1), BN27(MEx3),
BN28(MEx3), BN29(MEx1),
BN30(MEx5) and BN31(MEx1).

gc
1 = {g1

1, g
3
1, g

7
1, g

22
1 }

gc
2 = {g2

1, g
3
3, g

5
1, g

20
1 }

gc
3 = {g5

2, g
4
1, g

8
1}

gc
4 = {g5

3, g
6
1, g

9
1, g

23
1 }

gc
5 = {g4

2, g
10
1 , g

13
1 , g

18
1 }

gc
6 = {g10

3 , g
11
1 , g

12
1 , g

24
1 }

gc
7 = {g12

2 , g
14
1 , g

16
1 , g

25
1 }

gc
8 = {g14

2 , g
15
1 , g

17
1 , g

26
1 }

gc
9 = {g13

2 , g
19
1 , g

21
1 , g

27
1 }

gc
10 = {g27

3 , g
28
1 , g

29
1 , g

30
1 , g

31
1 }

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Aim
	1.4 Overview of Objectives
	1.5 Contributions
	1.6 Awards, Presentations and Publications
	1.7 Thesis Structure

	2 Background
	2.1 Qualitative Modelling Approaches
	2.1.1 Boolean Networks (BNs)
	2.1.2 Multi-Valued Networks (MVNs)
	2.1.3 Petri Nets (PNs)
	2.1.4 Process Algebras (PAs)

	2.2 Boolean Network
	2.2.1 Basic Definitions
	2.2.2 Existing Tool Support for BNs

	2.3 Boolean Networks and Biology
	2.3.1 Gene Regulatory Networks (GRNs)
	2.3.2 Modelling GRNs Using BNs
	2.3.3 Attractor Analysis

	2.4 Boolean Network Composition
	2.4.1 Key Definitions and Results
	2.4.2 Behaviour Preservation
	2.4.3 Interference State Graph

	2.5 Related Work
	2.5.1 Compositional Techniques
	2.5.2 Decompositional Techniques
	2.5.3 Attractor Identification

	2.6 Conclusion

	3 Identifying Attractors for Basic Compositions
	3.1 Introduction
	3.2 Compositionally Identifying Attractors
	3.3 Developing Tool Support
	3.4 Case Study
	3.4.1 Qualitative Model for Cell Differentiation
	3.4.2 Application of Our Approach

	3.5 Extending Attractor Identification to Arbitrary Compositions
	3.6 Conclusions

	4 Identifying Attractors for Generalised Compositions
	4.1 Introduction
	4.2 New Formulation of Composition
	4.3 Identifying Attractors in a Composition
	4.4 Conclusion

	5 Practical Application: Tool Support and Experimental Studies
	5.1 Introduction
	5.2 Developing Tool Support
	5.2.1 Algorithm for Compositionally Analysing Attractors
	5.2.2 Generating the Set of Aligned State Tuples
	5.2.3 Computing Interference Aligned Next State Tuples
	5.2.4 Complexity Analysis
	5.2.5 A Prototype Support Tool
	5.2.6 Improving the Efficiency of the Tool

	5.3 Testing and Evaluating the Tool
	5.3.1 Performance Testing
	5.3.2 Performance Comparison

	5.4 Case Study
	5.5 Conclusions
	5.5.1 Algorithm
	5.5.2 A Prototype Support Tool
	5.5.3 Performance Testing and Evaluation
	5.5.4 Case Study and Decomposition

	6 Concluding Remarks
	6.1 Summary
	6.2 What has been achieved
	6.3 Challenges
	6.4 Future Work

	Bibliography
	Appendix A Test Models
	A.1 Submodels' SCCs
	A.2 Compositions

