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Abstract 

Acoustic scene classification is the ability to automatically detect the vicinity based on the 

sound produced by the environment. The current framework uses a log Mel spectrogram with 

a convolution neural network. There is an advancement toward low complexity modeling where 

the convolution neural network is compressed. Log Mel-spectrogram suffers from Heisenberg 

Uncertainty Principle, where the representation is based on a fixed timescale and becomes 

unstable to time-wrapping deformation when the timescale is greater than 25ms. Hence, instead 

of using log Mel-spectrogram, this thesis investigates the viability of using wavelet scattering. 

Wavelet scattering is the cascade of wavelet transform and provides a scaling factor based on 

wavelet theory. It is stable to deformation when the timescale is greater than 25ms. However, 

the averaging operation in the wavelet scattering has a limiting effect on the maximum scaling 

factor of the wavelet. Hence, wavelet scattering also suffers from Heisenberg Uncertainty 

Principle. In addition, it is observed that the first and second-order coefficients have a 

considerable difference in magnitude, making the acoustic classification model difficult. The 

huge disparity in data representation can cause an internal covariate shift, leading to a slower 

convergence rate and even poor classification accuracy. 

Hence, this thesis proposed a multi-timescale using genetic algorithm for feature selection on 

the limitation of ‘fixed’ timescale and a two-stage convolution neural network architecture 

framework to tackle the magnitude disparity between first and second-order coefficients in 

wavelet scattering. Despite the challenge of designing low complexity models, this thesis 

adapted the model compression technique to compress the convolution block of the two-stage 

convolution neural network architecture. In the feature representation, using wavelet scattering 

and multi-timescale are not a viable option as having multiple timescales will increase the 

model size and the time complexity. Hence, a simple ‘mixing’ of first and second-order to 

increase the variety of timescale slightly is being proposed. In addition, the genetic algorithm 

for feature selection is adapted to reduce the size of the second-order frequency dimension due 

to a large frequency dimension (e.g., > 500) as compared to first-order (e.g., <100) and fine-

scale resolutions which can result in unnecessary over-representation of acoustic profiles.  
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Chapter 1: Introduction 
 

 

 

1.1.  Acoustic Scene Classification 

Acoustic Scene Classification (ASC) or Environmental Sound Classification (ESC), is the task 

of recognizing the vicinity you are in, based on the sound produced by the scene. The scene, in 

this case, is a pre-defined semantic description of a location like “beach” or “airport”. Hence, 

the audio recordings in these locations are called acoustic scenes (Mesaros et al., 2018, Abeßer, 

2020). ASC originated from the topic of auditory scene analysis (ASA) (Bregman and 

McAdams, 1994, Sawhney and Maes, 1997), which later branches into Computational Auditory 

Scene Analysis (CASA) (DeLiang and Guy, 2006). The specification of having the word 

computational is intended for the entire classification process to be handled or automated by an 

artificial intelligent (A.I.).  

However, it is challenging, as a sound recording from the scene is a collective of sound sources 

with varying acoustic characteristics (Uzkent et al., 2012). They further categorize the 

characteristics of environmental sounds into three groups. Stationary sounds: are sounds that 

produce constant, with little to no changes to the frequencies over time (e.g., a train moving at 

constant speed); Quasi-stationary sounds: are sounds that are produced from the combination 

of multiple stationary sounds where the frequencies pattern can be observed over time (e.g., sea 

wave, orchestral); Non-stationary sounds: are sounds that have erratic frequencies over time 

(e.g. conversation between a group of people). These sound sources are usually interleaving 

and overlapping in a single audio recording, proving it difficult to identify the number of sound 

sources, and even if we can separate the sound source, recognizing the quasi-stationary and 

non-stationary sounds is also challenging due to their changing nature. Adding on to the 

challenges, some sound sources might be an event present only in a certain period. The random 

occurrence of such events might confuse the classifier. In addition, different scenes can share 

similar sound events or profiles, making it extremely difficult to differentiate. Hence, right from 



 

2 
 

the beginning (Sawhney and Maes, 1997, Clarkson et al., 1998), proposed a general framework 

on how to tackle ASC or ESC. The framework can be simplified into two steps as illustrated in 

Figure 1.1: 1) Pre-processing of an audio signal or feature extraction (assuming that the raw 

signal is digitized); 2) These features extracted from the pre-processing steps will act as an input 

to a classifier to determine the class it belongs. This framework is also called machine learning 

(ML) approach as the classifier employed are usually machine learning algorithm and even till 

date, this paradigm is still producing state-of-the-art algorithms for ASC and is being used by 

many researchers as observed in various review papers (Heittola et al., 2020, Gharib et al., 2018, 

Mesaros et al., 2018, Chandrakala and Jayalakshmi, 2019, Abeßer, 2020) and research 

platforms such as Detection and Classification for Audio Scene and Events (DCASE). 

(DCASE).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1.  ASC framework from raw waveform. 

 

While the framework remains intact, the classifier algorithm has evolved tremendously into 

newer algorithms such as deep learning (DL). One DL technique heavily utilized for ASC is 
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the convolution neural network (CNN). The CNN is a family of artificial neural networks (ANN) 

that learn through updating the weights through backpropagation (Rumelhart et al., 1986). 

Unlike the other ANN, CNN was initially exclusively built for image classification. The input 

representation is usually a picture source or a 2-Dimensional model with multiple channels 

reflecting the RGB of an image. Hence, CNN is generally fed with a 3-Dimensional 

representation of (H x W x C), where H denotes the height of the image, W denotes the width 

of the image, and C denotes the RGB channels of the image. CNN has grown tremendously due 

to the extensive research in image classification and the advancement of hardware technologies 

such as the Graphical Processing Unit (GPU) which enable the acceleration of this research. 

While other deep learning techniques are used for ASC, CNN is still the most popular choice 

(Chandrakala and Jayalakshmi, 2019, Gharib et al., 2018, Mesaros et al., 2018, Abeßer, 2020). 

As aforementioned, this can be attributed to the extensive research on CNN in either image 

domain (Alzubaidi et al., 2021, Khan et al., 2020) or ASC, and what contributes to the extensive 

research on CNN is the advancement of hardware and the way of computing DL. Notably, the 

ability to process CNN algorithm using GPU has sped up the progress of CNN, coupled with 

open-source deep learning frameworks such as TensorFlow (Abadi et al., 2016), and PyTorch 

(Paszke et al., 2019) further accelerate this process. However, one caveat of CNN or DL is the 

need for adequate training data; they tend to overfit and generalize poorly (Alzubaidi et al., 

2021). 

Hence, another essential element is the availability of large open datasets such as ImageNet 

(Deng et al., 2009) for image classification, COCO (Lin et al., 2014) for object detection, 

DCASE (DCASE) for a variety of acoustic challenges. AudioSet (Gemmeke et al., 2017) is 

another extensive acoustic dataset. It has provided a platform for researchers to benchmark their 

models while relieving the pain of self-curating datasets. 

In addition, with the effort to advance DL, by coupling open-source deep learning framework 

and open datasets, the research communities and framework’s owners have released tutorials 

and pre-trained DL models (Han et al., 2021), leading to an easy uptake for both the industry 

and the academia using CNN. Pre-trained CNN are models that have a fixed CNN architecture 

based on some of the state-of-the-art (SOTA) presented in Chapter 3 and undergone the training 

phase, usually over a considerable amount of data; hence, the models have already captured a 

wealth of knowledge. Pre-trained models can be used directly if the tasks are similar to the 

image domain. Therefore, one downside of transfer learning is it can be quite a domain specified, 

and the transfer learning from image classification to audio classification is hardly implemented 

as exhibited in ESC-50, US8K, and DCASE. However, there is an immergence towards transfer 
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learning with pre-trained learning using the large-scale audio dataset, such as Audioset in the 

ESC-50 (Piczak, 2015) and US8K (Salamon et al., 2014).  

In DCASE 2016 ASC challenge (Valenti et al., 2017, DCASE), where several challengers 

adapted to the current ASC framework using CNN as shown in Figure 1.2. It achieved a 

considerable performance advantage against classical approaches (Barchiesi et al., 2015, 

Abeßer, 2020, Chandrakala and Jayalakshmi, 2019) such as hidden makrov machine (Clarkson 

et al., 1998), artificial neural network, support vector machine (Jia-Ching et al., 2006)  and K-

nearest neighbour (Piczak, 2015). 

As aforementioned, CNN is designed specifically to tackle image classification and for it to be 

applicable to sound classification such as ASC, we need to pre-process the raw waveform into 

a 2-D representation. In this case, a time-frequency representation such as log mel-spectrogram 

is an ideal candidate to be the input representation. In fact, a time-frequency representation is 

an image with a single channel, hence, the adaptation from image domain is rather 

straightforward, thus, empowering the popularity of time-frequency representation. In summary, 

the current trend of ASC is the conversion of the raw signal into log mel-spectrogram, then 

feeding it to CNN, as depicted in Figure 1.2. (Refer to Chapter 3 for description of the CNN 

topology) 

 

Figure 1.2.  Current SOTA framework for ASC.  
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1.2. Limitation of Wavelet Scattering a Time-frequency representation 

Considering this development, this thesis looks at other possible time-frequency representations 

that can serve as an alternative to log mel-spectrogram. Log mel-spectrogram is locally 

translation invariant and stable to deformation when the timescale or window size is below 

25ms (Andén and Mallat, 2014). Translation invariant means that a slight shift in time should 

not result in a new label. For example, the opening and closing the bus’s door can happen 

anytime in a 10s recording. Hence, regardless of when the event is captured in the 10s, the 

desired representation should be able to relate this event to a scene recorded in a bus. Stability 

to deformation in this context means that the translation from the audio signal to the feature 

representation should satisfy Lipschitz continuous condition. Hence, a slight deformation in the 

raw signal should reflect a small change to the output representation based on the Euclidean 

norm.  

These two properties are the reason why the log mel-spectrogram is so successful. However, 

log mel-spectrogram suffers from deformation instability when the timescale is larger than 

25ms and the effect of Heisenberg Uncertainty Principle due to having a fixed window size or 

timescale. Hence, (Andén and Mallat, 2014, Mallat, 2012, Bruna and Mallat, 2013) developed 

wavelet scattering (WS) to combat these two weaknesses. In simplicity, wavelet scattering is 

constructed by cascading wavelet transform of a given signal (Andén and Mallat, 2014, Mallat, 

2012, Bruna and Mallat, 2013) and has the property of both local translations invariant and 

stable to time-wrap deformation even when timescale is larger than 25ms. 

However, WS also has a few limitations which this thesis intends to resolve: 

• A scattering transform usually produces two useful sets of coefficients  (Andén and 

Mallat, 2014, Mallat, 2012, Bruna and Mallat, 2013), namely the first and second-order 

coefficients. As the cascading term suggests, the second-order is derived from the first 

order. Hence, due to the multiplicative operations of first-order coefficients with 

wavelet transformation, second-order coefficients have a sparse representation, and 

their magnitude is extremely small compared to first-order ones. This thesis termed this 

huge magnitude disparity between first and second-order as a ‘magnitude disparity 

problem.’ Hence, there is a need to give consideration when using WS. Notably, second-

order is needed to capture high-frequency resolution. 

o A two-stage CNN architecture framework and ‘batch normalization’ is proposed 

to tackle the magnitude disparity problem. 
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• While wavelet scattering comprises wavelet transform with multiple wavelet scales, the 

averaging operation to make the wavelet scattering invariant to translation limit the 

maximum timescale. Hence, wavelet scattering is affected by Heisenberg Uncertainty 

Principle, and there is a need to increase the timescale resolution. With the addition of 

CNN as the classifier, one can quickly build an ensemble model with a different 

timescale of WS and perform late fusion methods (Goodfellow et al., 2016), which 

combines the classification scores of all the models via averaging. Even though this is 

a straightforward method, it requires high computational cost during deployment as the 

server or devices need to perform inference on multiple models. 

o The solution is to leverage on two-stage CNN approach to adapt an early fusion 

technique where WS with different timescales is combined during the feature 

level extraction phase of the CNN. By combining multiple timescales, the 

possibility of redundancy and irrelevancy is very high. Thus, genetic algorithm 

for feature selection (GAFS) is used to get the optimal subset of the combined 

multi-timescales of WS. The choice of genetic algorithm is related to the initial 

problem of magnitude disparity. Fortunately, the by-product of using a reduced 

feature size directly impacts the model's time complexity. 

• In addition to the need for multi-timescales WS, the second-order has a large frequency 

dimension (e.g., > 500 rows). The large frequency is due to the addition of fine-scale 

resolution to capture high-frequency acoustic profiles. Hence, similar to the multi-

timescales problem, there lies a possibility of redundancy and irrelevancy even in WS 

itself, which might impede the performance of the CNN.  

o  Hence, the solution is similar to ‘multi-timescaling’, by applying genetic 

algorithm for feature selection (GAFS) onto WS. 

1.3. Towards low-complexity Modelling 

In recent event in DCASE challenge (Heittola et al., 2020, DCASE), there is a focus on 

developing low complexity model that can be deployed into IoT or consumer portable devices 

such as wireless earpieces or smartphones. The use case of the low computational complexity 

model is in line with the advancement and mass adaptation of the Internet of Things and robotics, 

such as in hearing-aid (Tchorz et al., 2017, Hüwel et al., 2020), autonomous surveillance using 

environmental audio scene and sound event recognition (Chandrakala and Jayalakshmi, 2019), 

and even navigation system for autonomous vehicles (Barchiesi et al., 2015, Gharib et al., 2018). 

In addition, if deployed in a video recording device, there can improve general scene 

classification with aided audio-visual classification (Heittola et al., 2020, DCASE, López-
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Cifuentes et al., 2020). For these use cases to work efficiently, on-node detection is paramount 

to making near real-time decisions. 

However, one of the challenges in deploying into mobile devices or small IoT or consumer 

wearables devices is the limitation of hardware capabilities that the devices can afford. 

Therefore, low latency and less memory models are desired. Due to the size of these devices, 

they usually do not have the computational power similar to that of a high-performance 

computational machine (HPC) or even a ‘consumer-level’ high-end computer. Hence, for such 

applications, the CNN model is trained in the HPC or high-end computers and later deployed 

into the small devices for inference purposes. This makes sense as there is only a need to 

compute the feed-forward portion. However, even as an inference model, it might still be too 

computationally intensive for these small devices. In addition, most of these devices run on 

standalone power sources, and energy conservation is paramount for the devices. Hence, there 

is a need and use case to compress the model or inference model into a ‘light-weight’ model, 

known as ‘model compression’ (Cheng et al., 2017).  

While model compression is one way to reduce model complexity, another option is to reduce 

the dimensionality of the input representation. The larger the input, the more matrix-

multiplication and additive operations are required to cover the entire input and a reduction in 

the input representation can help save time complexity.  

In summary, the proposed approach reduces both time and size complexity of the model in three 

folds: 

• With the adaptation of genetic algorithm for feature selection, the high-frequency 

resolution of WS can be reduced. (See Section 4.2). By lowering the input representation 

dimension, it has a direct impact to time complexity of the model. It is noted on the 

heavy computational cost of using GA, similar to how ‘pretraining’ the model on a very 

large audio dataset such as Audioset, has a heavy computational overhead prior to the 

actual training of the model. While both techniques improve accuracy of the model, the 

outcome is different. The outcome of GA is an ‘optimal’ feature subset and potentially 

lowering of the time complexity, while ‘pretraining’ provides a model with ‘trained’ 

weights that allows the model to start learning with a boarder knowledge. As it requires 

tremendous resource and time to analysis the heavy computational cost of possible pre-

computational overhead described above, in this thesis, time complexity is only 

calculated on the model training and the pre-computational overhead is excluded. 
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• However, for the application of a low complexity model, 'multi-time scaling is not a 

great option as the additional resolution will increase model size complexity. Hence, 

this thesis investigated a simple mixing of different timescales of the first and a single 

second-order to enrich the multi-timescale capability of WS. By coupling just, the first 

and second-order together, the number of input representation in the first stage remain 

similar to how WS is being handled, while providing a soothing relief on the timescale 

limitation. In this thesis, it is termed as ‘Interleaved’ wavelet scattering (IWS). 

• While the first two folds help reduce the time complexity of the model, the final fold is 

to reduce the CNN model size complexity. By using model compression techniques, 

being convolution factorization and quantization as discussed in Chapter 4, this thesis 

developed a small-sized CNN model that can be deployed into low computational 

powered devices.  

On a site note, with the advancement of network infrastructure to 5G, one can tap into cloud 

computing to perform training, reinforced learning, and even inference. The 5G enables the 

high-speed transfer of large data files, which can offload heavy computational power and offer 

energy conservation. It provides more options and flexibility on deploying CNN or DL-capable 

devices. Unfortunately, this thesis will not dwell further into the topic of CNN deployment as 

it will be another domain in internet of things (IoT). 

1.4. Datasets 

As briefly mentioned in Section 1.1, one can tap onto open datasets to evaluate and benchmark 

the proposed model. As such, this thesis trained and experimented the proposed models and 

approaches mainly on DCASE 2020/2021 dataset (Heittola et al., 2020). In addition, we also 

evaluated our models on two other popular ASC datasets, being Environmental Sound 

Classification (ESC-50) (Piczak, 2015) and Urban Sound Dataset (US8K) (Salamon et al., 

2014).  The details of the datasets are presented in Table 1.1 and The column “Fold” describes 

the number of predefined cross-validation folds provided by the authors who curated the dataset. 

As DCASE 2021 has only provided a single training/testing setup, instead of cross-validation, 

the setup is being iterated over five times and the classification result is the average of the five 

tests.  

ESC-50 

ESC-50 curated by (Piczak, 2015) consists of 2000 environmental audio recordings, each with 

a 5s duration. The recordings are organized into 50 classes and are equally balanced. While the 

dataset is categorized as ASC, the recordings consist of classes of sound events and are more  
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DETAILS OF THE DATASETS 

No Dataset No of Data #Classes Duration (s) Fold(s) 

1 ESC-50 2000 50 5 5 

2 US8K 8732 10 <=4 10 

3 DCASE 

2021 
23040 10 10 1 

Table 1.1.  Details of the datasets. This Table presents the details of the datasets used to evaluate our 

proposed models. 
 

 

related to Sound Event Recognition (SER) for this case. Hence, this dataset provides a variety 

of SER and ASC recordings which can be broadly categorized into animal sounds, natural 

soundscapes, human non-speech sounds, interior/domestic sounds, and exterior/urban noises. 

US8K 

As for US8K, it consists of 8732 audio recordings, and each recording has a duration of less or 

equal to 4s. The recordings are organized into 10 classes: “air conditioner”, “car horn”, 

“children playing”, “dog barking”, “drilling”, “engine idling”, “gunshot”, “jackhammer”, 

“siren”, “street music”. Based on the classes, US8K is deemed as a pure SER task as the 

recordings are mainly events rather than the scene.  

DCASE 2021 

While US8K is mainly Sound Event Recognition (SER), DCASE 2021 is an example of pure 

ASC recordings, recorded from 10 European cities in 10 different acoustic scenes. Each 

recording has a duration of 10s and are given a label based on the following classes: ‘airport’, 

‘shopping mall’, ‘metro station’, ‘street pedestrian’, ‘public square’, ‘street traffic’, ‘tram’, 

‘bus’, ‘metro’, ‘park’. In a real-world scenario, most of the time, the audio devices are recorded 

in various devices such as smartphones, consumer video cameras, surveillance cameras, and 

IoTs, and are usually recorded in different audio resolutions. Hence, to increase the robustness 

of the DCASE 2021, (Heittola et al., 2020) included recordings from 9 devices. The breakdown 

of the devices is as follow and given names of (A, B, C, S1-S6): Device A forms the main bulk 

of the dataset and is recorded using either Soundman OKM II Klassik/studio A3 or Zoom F8 

audio recorder using 48kHz sampling rate and 24-bit resolution. Device B is recorded by a 

smartphone, Samsung Galaxy S7. Device C also a smartphone, iPhone SE. Lastly, S1 to S6 are 

synthetic data.   

In summary, this thesis evaluated on both ASC and SER in relation to the urban sound dataset. 

One of the reasons why these set of datasets are being selected is that it provides a well-rounded 
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mix of ASC and SER. In addition, it also provides insight on how the model reacts to different 

dataset sizes, 2000, 8732, and 23040. Though the largest draw in selecting these datasets is that 

it is heavily used by researchers to benchmark their ASC models (Heittola et al., 2020, Gao and 

McDonnell, 2020, McDonnell and Gao, 2020, Gharib et al., 2018, Mesaros et al., 2018, 

Barchiesi et al., 2015, Guzhov et al., 2022, Koutini et al., 2019, Ren et al., 2018, Zhang et al., 

2019, Suh et al., 2020, DCASE, Mohaimenuzzaman et al., 2021, Abeßer, 2020), providing a 

solid platform to gauge the competitiveness of the proposed models. Hence, these provide a 

well-rounded empirical study on the proposed methods described in Chapter 4.  

1.5. Contributions and Structure of the Dissertation 

Lastly, in this section, a summary of the contribution of this thesis is being listed out, follow by 

a description of how the thesis is being organized. In addition, the chapters in the thesis 

comprise published works from the following publications: 

1. X. Y. Kek, C. S. Chin and Y. Li, “Acoustic Scene Classification Using Bilinear Pooling 

on Time-liked and Frequency-liked Convolution Neural Network.” in IEEE Symposium 

Series on Computational Intelligence (SSCI 2019), Xiamen, China, 2019. 

2. X. Y. Kek, C. S. Chin, and Y. Li, “An Investigation on Multiscale Normalised Deep 

Scattering Spectrum with Deep Residual Network for Acoustic Scene Classification,” 

22nd IEEE/ACIS International Fall Virtual Conference on Software Engineering, 

Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPDI), pp. 

29-36, 2021. 

3. X. Y. Kek, C. S. Chin and Y. Li, "Multi-Timescale Wavelet Scattering with Genetic 

Algorithm Feature Selection for Acoustic Scene Classification," in IEEE Access, vol. 

10, pp. 25987-26001, 2022. 

4. X. Y. Kek, C. S. Chin, Y. Li, “An Intelligent Low-complexity Computing Interleaving 

Wavelet Scattering based Mobile Shuffling Network for Acoustic Scene Classification” 

in in IEEE Access, vol. 10, pp. 82185-82201, 2022. 

In summary, the main contributions in the thesis are as follows. 

• In light of the magnitude disparity problem, a two-stage CNN architecture framework 

is being proposed such that the initial convolution layers explicitly extract features from 

first and second-order coefficients from WS. 

• Typically, ‘renormalization’ technique described in Section 2.2.3 is used to mitigate the 

magnitude disparity problem between first and second-order coefficients in WS. This 

thesis proposed to tap into the normalization technique that is integrated into the 
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convolution neural network (such as batch normalization) to relieve the problem. The 

outcome has shown that any type of normalization techniques helps with relieving the 

problem. In addition, the proposal of using Batch Normalization turns out to perform 

better than renormalization technique.  

• WS is identified to still be affected by Heisenberg Uncertainty Principle due to the 

averaging operation performed on the first and second-order. Hence, a multi-timescale 

WS is developed to improve the timescale resolution. 

• Prior to constructing multi-timescale WS, an investigation is being put up to find an 

optimal range for the timescale as it is prudent to haphazardly combine WS of various 

timescales. As a result, the proposed multi-timescale WS is constructed with first-order 

with a timescale of 46ms, and second-order(s) with timescale of 92ms, 185ms, and 

371ms. 

• A comparative analysis of log Mel-spectrogram and wavelet scattering with different 

timescales is being studied. This study shows that log Mel-spectrogram does not 

perform well when timescale is greater than 46ms. In addition, the optimal timescale 

for wavelet scattering for ASC is 92ms.  

• In regard to multi-timescale WS, two challenges have been identified when combining 

various WS with different timescales. The first is that the second-order coefficient has 

a large frequency dimension. The second is that the first and second-order coefficients 

are governed by an energy dispersion theorem. This theorem states that as the timescale 

get larger, more energy is dispersed into the higher-order, in this case, more energy is 

dispersed from the first-order to the second-order. 

• Hence, this thesis tackles the problems in two parts. The first part involves analyzing 

the optimal timescale range and the impact of energy dispersion for each timescale to 

orchestral the proposed multi-timescale WS. The second part uses the genetic algorithm 

for feature selection to remove redundancy and to reduce the size of second-order 

coefficients. 

• Building towards low complexity modelling, the current two-stage CNN convolution 

layers are being redesigned into a ‘light-weights’ version adapted from mobile network 

described in Chapter 4. In addition, this paper proposed the incorporation of shuffling 

modules into the new two-stage CNN architecture. 

• The proposed shuffling modules differ from existing works where shuffling is 

performed either channel-wise or spatial-wise. The primary purpose is to create a more 

dedicated time-frequency representation. Hence, the shuffling is performed on the 
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feature map ‘frequency-wise’ and ‘temporal-wise’. Frequency-wise shuffling shuffles 

the feature map along the frequency axis with concept of binning. Each bin is being 

shuffled such that the high-frequency spectrum is shuffled to low-frequency spectrum 

position allowing the model to learn the general acoustic profile of a scene rather than 

memorizing what is happening at the low-frequency or high-frequency spectrum, which 

is erratic for ASC. As for temporal-wise shuffling, the shuffling is applied along the 

time axis of the feature map.  

• As for the input features, a simple ‘mixed’ wavelet scattering termed ‘Interleaved’ 

wavelet scattering (IWS) is being introduced. 

• the low complexity model is being evaluated on three different ASC datasets and has a 

rather competitive results, scoring 82.15% for ESC-50, 81% for US8K, and 70.4% for 

DCASE 2021. In addition, the inclusion of the shuffling modules has shown to improve 

the model ability to generalize based on the observation of improved logloss. 

• Various combination of IWS is being evaluated to understand the impact of the energy 

dispersion theorem. The investigation affirmed that the larger the timescale, the more 

information is being transferred to the higher order. In this case, energy is transferred 

from first-order to the second-order. Taking note of this finding, a rule is set when 

configuring IWS such that the timescale of the first-order should always be smaller than 

the timescale of the second-order. 

The thesis is organized into the following Chapters: Chapter 2 discussed on wavelet scattering 

and the construction of IWS. In chapter 3, the CNN architecture is first being described in detail 

and the discussion leads to the development of the two-stage CNN architecture framework. As 

there is a trend toward low complexity computing, the topic is shifted towards dimensionality 

reduction using genetic algorithm for feature selection on the carefully constructed multi-

timescale WS, which is described in chapter 4. While also in chapter 4, the new ‘light-weights’ 

two-stage CNN model, termed two-stage mobile shuffling network is being discussed. The 

proposed models and approaches are being experimented on the ASC datasets presented in 

Section 1.4., the results and findings from the experiment is being evaluated and discussed in 

chapter 5. Lastly, in chapter 6, this thesis is being concluded with possible future directions.  
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Chapter 2: Wavelet Scattering 

 
2.1. Introduction 

Time-frequency representation is a signal processing technique that retains both time and 

frequency resolution. The raw signal waveform by itself is a time representation and the 

maximum time resolution you can get. The representation is a 1-Dimensional vector of time-

amplitude of the signal. Plotting it usually looks like a sinusoid (sine wave). Unfortunately, the 

raw waveform has very high resolution and tends to be noisy (Barchiesi et al., 2015, 

Chandrakala and Jayalakshmi, 2019). Especially for acoustic scenes where multiple sound 

sources interleaved and overlapped, constructing a new single time-amplitude representation. 

However, more recent research is trending toward an End-to-End system, where 1-Dimensional 

CNN is employed to learn the modulation of the raw waveform instead of using a predefined 

signal processing technique to extract the features (Aytar et al., 2016). 

Understanding the time representation is complex and somewhat useful in signal processing 

related applications. The signal is usually pre-processed into the frequency domain (Jaitly and 

Hinton, 2011, Barchiesi et al., 2015). One of the most popular and common approaches is the 

Fourier Transform. The Cooley-Tukey algorithm (Cooley and Tukey, 1965) is the most widely 

used due to the efficiency of computing the frequency of a signal. The algorithm is typically 

known as fast Fourier transform (FFT). This algorithm decomposes time resolution to 

frequency components (spectral components) based on Fourier’s theorem that every signal can 

be decomposed into sine and cosine waves. The frequency spectrum shows what frequencies 

exist in the signal and is measured in cycles/second, commonly known as ‘Hertz’.  

However, by just analyzing the signal in the frequency domain, we fully lose the temporal 

information. Temporal information is essential to capture the occurrence of transient or sound 

events. As aforementioned, it consists of quasi-stationary and non-stationary acoustic profile. 

In addition, with just frequency representation, we assume that the signals in a scene are 

stationary, which is not the case. Hence, there is a need to include both temporal and spectral 
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information to distinguish ASC better and combine them to provide the time-frequency 

representation. 

As per Section 1.1, the most popular time-frequency representation used in ASC is log mel-

spectrogram. The log mel-spectrogram is constructed by applying mel-scale filters onto a 

spectrogram, and then rescale it with a logarithm. The spectrogram is built from “Short-Time 

Fourier Transform” (STFT) (Mallat, 2009, Polikar, 2006), which means converting time 

domain to the frequency domain with Discrete-Time Fourier Transform (DFT) with a given 

time window, instead of the entire signal. Hence, STFT can be seen as an action to segment a 

signal into a sequence of DFT of a windowed signal. 

Next, applying mel-scale filterbanks: for two reasons, one is to reduce the high resolution of 

STFT, next is to provide a certain degree of stability to deformation (Andén and Mallat, 2014). 

The Mel-scale is a transformation that converts signal frequency to how a human perceives 

various frequency ranges. Base on the Mel-scale equation below: 

                                                        𝑚 = 1127. log (1 +  
𝑓

700
)                                                (1) 

the mel-scale rescales the frequency components in a logarithmic fashion; hence, low frequency 

bandwidths have better resolution and high frequency bandwidths have lower resolution, as 

depicted in Figure 2.1. 

 

 

 

 

 

 

 

 

 

Figure 2.1.  Graph of mel-scale algorithm based on 44.1kHz 
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The most common way to convert a spectrogram into a mel-scale is by applying mel-scale 

filterbanks. The filterbanks can be described as a set of bandpass filters and each filterbank 

consists of a range of frequency (e.g., between 100Hz to 250Hz). Hence, a mel-scale filterbank 

divides the signal into multiple bins based on the mel-scale as illustrated in Figure 2.2. 

 

 

 

 

    

 

 

Figure 2.2.  Example of 20 triangular mel-scale filterbanks using Librosa (McFee et al., 2015). The x-

axis is the frequency in Hz, while the y-axis is the amplitude scaled between 0 and 1. 

Previously, the more common approach was to adapt signal processing techniques from the 

speech domain as it is one of the most popular topics and the more matured acoustic domain. 

Researchers from the speech domain will continue to apply a Discrete Cosine Transform (DCT) 

onto log mel-spectrogram, producing Mel-frequency cepstral coefficients (MFCC).  

Initially, MFCC has been used as the signal processing technique for ASC tasks (Barchiesi et 

al., 2015), but the growth of CNN has pushed the popularity back to log mel-spectrogram. This 

can be attributed to the capability of learning more complex structures by the CNN, especially 

for ASC, where both the ambient and foreground sounds can be used to define an acoustic scene. 

Thus, further decomposition of the feature is not required. 

While log mel-spectrogram is the most popular time-frequency representation for ASC, their 

backbone algorithm, the STFT only computes based on fixed window size. Having a fixed 

window size limits the profiling of high-frequency resolution. The window function is a trade-

off between high frequency and temporal resolution. Based on the Heinsberg Uncertainty 

Principle, one does not know the best resolution or, in this case, window size for a given 

acoustic signal. Hence, having a fixed window size will result in missing some sound 

characteristics (Mallat, 2009, Polikar, 2006).  
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This resulted in the development of the wavelet transform (Mallat, 2009, Polikar, 2006) that 

uses a set of wavelet, which is a wave-like oscillation, to convolute on the signal, resulting with 

the correlation coefficients between the wavelet and the signal. 

However, wavelet transform is stable to deformation but not translation invariant (Mallat, 2012, 

Bruna and Mallat, 2013), which resulted in the development of Wavelet Scattering (WS). WS 

is a good option for ASC. However, based on the review on various ASC challenges described 

in Section 1.1, their usage is limited compared to the vastly used log mel-spectrogram. As such, 

in this thesis, WS is being choosen as the signal processing technique to convert the raw signal 

into time-frequency representation before setting it as an input for the CNN model.  

WS is the focus of this thesis for the pre-processing phase. Hence, the following section will 

provide a detailed explanation of WS and is organized as follow. In Section 2.2. an explanation 

on the development of WS is provided, leading to the identification of its limitation. In Section 

2.3, this thesis proposed the solution to resolve the limitations of WS specified in Subsection 

2.2.3. 

2.2. Wavelet Scattering 

In Section 1.1, it is reviewed that log mel-spectrogram is the most popular time-frequency 

representation for ASC. However, one of the reasons for their popularity can be linked to the 

enormous research in using log mel-spectrogram to solve a myriad of acoustic domain 

challenges (Heittola et al., 2020, McDonnell and Gao, 2020, Gharib et al., 2018, Mesaros et al., 

2018, Tchorz et al., 2017, Valenti et al., 2017, Hu et al., 2020, Chandrakala and Jayalakshmi, 

2019). The other part resides in its algorithm, which has the property of being translation 

invariants and stable to deformation. However, log mel-spectrogram suffers from having a fixed 

timescale as explained in Section 2.1, which means that there are affected by Heisenberg 

Uncertainty Principle. In addition, (Andén and Mallat, 2014) observed that log mel-

spectrogram is only stable to deformation when their timescale is limited to < 25ms. In light of 

this two disadvantages, (Mallat, 2012) developed Wavelet Scattering. 

The intuition on how WS is being developed can start from the basic construction knowledge 

of log mel-spectrogram. Hence, in Section 2.2.1, how log mel-spectrogram is being constructed 

and how it leads to the development of wavelet scattering is being explained. Subsequently, in 

Section 2.2.2, the working mechanism of the scattering transform is further elaborated. Lastly, 

with the established knowledge of WS, in Section 2.2.3, the limitation of WS is being discussed. 

Notably, the discussion of Section 2.2. wavelet scattering is heavily adapted from (X. Y. Kek, 

C. S. Chin, and Y. Li, “An Investigation on Multiscale Normalised Deep Scattering Spectrum 
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with Deep Residual Network for Acoustic Scene Classification,” 22nd IEEE/ACIS 

International Fall Virtual Conference on Software Engineering, Artificial Intelligence, 

Networking and Parallel/Distributed Computing (SNPDI), pp. 29-36, 2021) 

2.2.1.  From log-mel spectrogram to the development of wavelet scattering 

Recalled that Log mel-spectrogram start with the Fourier transform, which as discussed in 

Section 2.1, is the backbone algorithm and has an essential attribute of providing translation-

invariant transformation. Following the explanation of (Andén and Mallat, 2014), the Fourier 

transform of a given signal x can be written as: 

                      �̂�(𝑤) =  ∫ 𝑥 (𝑢)𝑒−𝑖𝑤𝑢𝑑𝑢                                                  (2) 

and if 𝑥𝑐(𝑡) = 𝑥(𝑡 − 𝑐) then �̂�𝑐(𝑤) = 𝑒−𝑖𝑐𝑤�̂�(𝑤), thus, proofing Fourier transform algorithm 

is indeed invariant to translation. 

                          |�̂�𝑐(𝑤)| = |�̂�(𝑤)|                                                           (3) 

Since the algorithm to construct STFT is basically a windowed DFT, STFT has also inherited 

the property of being invariant to translation but at a localized level: 

                   �̂�𝑡, (𝑤)𝑇𝑆 =  ∫ 𝑥𝑡, (𝑢)𝑒−𝑖𝑤𝑢𝑑𝑢𝑇𝑆                                              (4) 

If |𝑐| ≪ 𝑇𝑆 then proofing |�̂�𝑐(𝑡𝑠, 𝑤)| ≈ |�̂�(𝑡𝑠, 𝑤)|, thus STFT is locally time-shift invariant 

based on a window size/timescale, TS (Andén and Mallat, 2014, Andén and Mallat, 2011).  

While the above equation (1) to (3) has demonstrated that STFT is locally time-shift invariant, 

it is still 1 characteristic lacking from being a desirable feature representation. As mentioned in 

Section 1.2, being stable to time-wrapping deformation is also important. Stable to deformation 

means that for a representation Φ(𝑥), a small change to the signal x should reflect a small 

deformation to the representation such that the transformation abides to Lipschitz continuity 

property. This can be expressed as: 

                                                ‖Φ(𝑥) − Φ(𝑥𝑟)‖ ≤ 𝐶 𝑠𝑢𝑝𝑡|𝑟′(𝑡𝑠)|‖𝑥‖                                      (5) 

where 𝑥𝑟(𝑡𝑠) = 𝑥(𝑡 − 𝑟(𝑡)) with |𝑟′(𝑡𝑠)| < 1 represent a time-warped in signal x, and the 

calculation of the deformation, the Euclidean norm of the representation denotes as 

‖Φ(𝑥) − Φ(𝑥𝑟)‖, is small and there exists a Constant C > 0 such that for 𝑥(𝑡𝑠) and all r with 

𝑠𝑢𝑝𝑡|𝑟′(𝑡𝑠)| < 1. 𝑠𝑢𝑝𝑡|𝑟′(𝑡𝑠)| denotes the deformation size with 𝑠𝑢𝑝𝑡 a time support equal to 

TS, and the constant C > 0 is a measure of stability. However, the Fourier transform is not stable 
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to deformation due to the dilation shifts at the frequency component, resulting in distortion at 

high frequencies when small deformation occurs.  

As such, to make STFT stable to deformation, mel-scale filters �̂�𝜆 , where 𝜆  is the centre 

frequency of each �̂�𝜆(w), averages the spectrogram along the frequency component to get log 

Mel-spectrogram. The result of mel-frequency averaging centres the frequency support at 𝜆 

with a bandwidth of the order of 𝜆/𝑄 at high frequencies spectrum, similar to constant-Q and 

2𝜋/𝑇𝑆 at lower frequencies spectrum. Hence, removing deformation instability that occurs at 

high frequencies due to dilations and satisfying Lipschitz deformation stability condition 

(Andén and Mallat, 2014, Andén and Mallat, 2011). 

However, Mel-scale averaging will result in the loss of fine-scale information such as vibratos 

and transient attack, and it gets more severe when the window duration TS >25ms as explained 

by (Andén and Mallat, 2014, Mallat, 2012, Bruna and Mallat, 2013). Hence, log mel-

spectrogram is usually optimal with a timescale of about 25ms, resulting in the poor 

understanding of large-scale structures. 

Hence, (Andén and Mallat, 2014, Mallat, 2012, Bruna and Mallat, 2013) developed a strategy 

to recover the lost information when TS is increased. They presented wavelet scattering, which 

is locally translation invariant and stable to deformation while reducing information loss when 

T is large (e.g., T > 25ms). 

2.2.2.  Wavelet Scattering Algorithm 

Wavelet Scattering, an algorithm developed by (Mallat, 2012), has a similar computational 

architecture as CNN, depicted in Figure 2.3. In this illustration, X is the input signal (waveform) 

which is being convolute with ‘morlet’ wavelets computed in a different scale. By cascading 

the convolution process, higher-order coefficients is being calculated. The final output is the 

concatenation of all the orders after averaging each order over a given time interval. 

Instead of a set of filters that tries to learn the modulation of the signal x through convolution 

operations and backpropagation, wavelet scattering uses a set of filters with a fixed coefficient 

constructed from a ‘mother’ wavelet, particularly ‘Morlet’ wavelet. These filters are termed as 

wavelet filterbank, symbolized as 𝜓𝜆 and this convolution operation is also called constant-Q 

transform, where 𝜆 is the centre frequency of the wavelet, and Q denotes the number of wavelet 

filters per octave for a wavelet filterbank.  
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Figure 2.3.  Wavelet Scattering transforms an adaptation from (Andén and Mallat, 2014, Mallat, 2012, 

Bruna and Mallat, 2013).  

Wavelet Transform is translation covariant (Mallat, 2012). Hence, an averaging function is 

required to make WS invariant to translation at a local level, similar to how STFT does it. In 

addition, a complex modulus function | ⋆ | is chosen to optimize stability to deformation [9], 

where ⋆ denotes convolution operation. The averaging function is in fact a lowpass filter, 

typically Gaussian filter, represented as 𝜙 is being applied on the output of each layer to ensure 

translation invariant. The first layer (or order) is expressed as follow: 

                             𝑆1𝑥(𝑡𝑠, 𝜆1) = |𝑥 ⋆ 𝜓𝜆1
| ⋆ 𝜙(𝑡𝑠)                                                 (6)                          

Although the averaging of the modulus wavelet coefficient will result in translation invariant, 

it has a negative effect of causing information loss from the higher frequency spectrum. Hence, 

to recover this loss, another convolution, complex modulus, and average filtering is being 

performed on the modulus wavelet coefficient |𝑥 ⋆ 𝜓𝜆1
| to form the second layer: 

                                            𝑆2𝑥(𝑡𝑠, 𝜆1, 𝜆2) = ||𝑥 ⋆ 𝜓𝜆1
| ⋆ 𝜓𝜆2

| ⋆ 𝜙(𝑡𝑠).                                     (7)      

Similar to CNN architecture, DSS can be computed by m-th layers and is written as: 

                                     𝑆𝑚𝑥(𝑡𝑠, 𝜆1, … , 𝜆𝑚) = |||𝑥 ⋆ 𝜓1| ⋆ … | ⋆ 𝜓𝑚| ⋆ 𝜙(𝑡𝑠)                                (8) 

where 𝑆𝑚 denotes the m-th order(layer) coefficients, and for the rest of the thesis, the order will 

be used instead of the layer when describing WS (‘layer’ is used to illustrate how similar is WS 

as compared to CNN). 𝜓𝑚 denotes the m-th wavelet filterbank, and ts represents a window 

length for the averaging filter.  

The studies by (Andén and Mallat, 2014, Peddinti et al., 2014, Mallat, 2012, Bruna and Mallat, 

2013, Andén and Mallat, 2011) indicate that just computing the first and second-order 

coefficients will be sufficient to capture most of the signal energy. Consequently, this thesis 
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will only use first-order scattering coefficients, denote as 𝑆1𝑥 , and second-order scattering 

coefficients, denote as 𝑆2𝑥, as such:  

                                                            𝑊𝑆 =  (
𝑆1𝑥(𝑡𝑠, 𝜆1)

𝑆2𝑥(𝑡𝑠, 𝜆1, 𝜆2)
).                                                     (9) 

Hence, this thesis also redefined Q that denotes the number of wavelet filters per octave for a 

wavelet filterbank, into 𝑄1 and 𝑄2. 𝑄1 is a quality factor that denotes the number of wavelet 

filters per octave for 𝑆1𝑥(𝑡𝑠, 𝜆1) , based on (6). Meaning that 𝑆1𝑥  has a time support of 

𝜓𝜆1
centred in  𝜆1 with a frequency bandwidth of  𝜆1 𝑄1⁄  for 𝜆1 ≥ 2𝜋𝑄1/𝑇𝑆 and 2𝜋/𝑇𝑆 for 

𝜆1 < 2𝜋𝑄1/𝑇𝑆. Likewise, 𝑄2 is used for 𝑆2𝑥, 𝜆2 in (7). 

2.2.3 Limitation of Wavelet Scattering 

Magnitude Disparity Problem 

In Section 1.2, the first and second-order coefficients have a huge difference in magnitude (see 

Figure 2.4). The large disparity of magnitude is mainly due to the cascading effect. To resolve 

the issue, (Andén and Mallat, 2014) proposed ‘renormalization’ to increase their invariance and 

decorrelates the coefficients between the lower order to the higher order. This can be achieved 

by performing a division of a current order against an earlier order, such that 𝑆1𝑥 becomes: 

                                  𝑆1̃𝑥(𝑡𝑠, 𝜆1) =  
𝑆1𝑥(𝑡,𝜆1)

|𝑥|⋆𝜙(𝑡𝑠) 
                                                         (10) 

where 𝑆0𝑥 = |𝑥| ⋆ 𝜙(𝑡𝑠) and 𝑆2𝑥 becomes: 

                  𝑆2̃𝑥(𝑡𝑠, 𝜆1, 𝜆2) =  
𝑆2𝑥(𝑡𝑠,𝜆1,𝜆2)

𝑆1𝑥(𝑡𝑠,𝜆1)
 .                                                     (11) 

Instead of adapting ‘renormalization’, this thesis investigates on two-stage CNN architecture 

and ‘batch normalization’ described in Chapter 3 to tackle this problem. Based on quantitative 

analysis by evaluating the DCASE 2021 dataset, the findings are then presented in Sections 5.2 

and 5.3. Notably, the two-stage deep neural network (DNN) architecture approach to tackle the 

magnitude disparity problem has been explored (Peddinti et al., 2014). 

Heisenberg Uncertainty Principle 

Next, WS is still affected by Heisenberg Uncertainty Principle. It is much more apparent in the 

case of log mel-spectrogram due to the use of a fixed timescale, while WS is much less obvious. 

As the building block of WS is the wavelet transform, WS itself has a scaled timescale based 

on the scaling functions in the theory of wavelets. However, due to an averaging operation on 

the wavelet transform coefficients observed in (6), (7) and (8), make the representation locally 

invariant to translation. The timescale (TS) that determines the size of the averaging function  
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a) Box plot comparison of 𝑆1𝑥 against 𝑆2𝑥 where the  

   magnitude of the coefficients is between 0 to 350000. 

 

b) Box plot comparison of 𝑆1𝑥 where the magnitude of the coefficients  

is between 310000 to 320000.

 

c) Box plot comparison of 𝑆2𝑥 where the magnitude of the coefficients is  

between 1950 to 2050. 

Figure 2.4. Box plot of the coefficients of 𝑆1𝑥 and 𝑆2𝑥 demonstrating the magnitude disparity problem. 

(The box plot depicts the total averaged coefficients of 𝑆1𝑥 and 𝑆2𝑥 using DCASE 2021 Task1a dataset.) 

𝑆1𝑥 𝑆2𝑥 

𝑆1𝑥 𝑆2𝑥 

𝑆1𝑥 𝑆2𝑥 
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limits the maximum scaling factor of the wavelet. Hence, the reason for multi-timescales/ multi-

resolution will be discussed in Section 2.3. 

 

Large Frequency Dimension 

The second-order has a large frequency dimension (e.g., > 500 rows). The large frequency is 

due to the addition of fine-scale resolution to capture high-frequency acoustic profiles. While 

aforementioned that to relieve the effect of Heisenberg Uncertainty Principle is to have 

multiscale, this solution can be a double-edged sword as more scales give rise to the possibility 

that certain wavelets transform do not capture any acoustic characteristics. Thus, these wavelet 

transformed coefficients are redundant. To make matters worse, the large frequency dimension 

of second-order coupled with redundancy can be detrimental to WS for a low complexity model.  

2.3. Towards Multi-timescales and the construction of Interleaved Wavelet Scattering 

Notably, the problem with fixed timescale is not just limited to time-frequency representation. 

The studies of scaling properties have also been used in the image domain (Huan et al., 2021, 

Shahrezaei and Kim, 2020). The work of (Shahrezaei and Kim, 2020) involves the exploitation 

of discrete wavelet transform scaling properties to decompose synthetic aperture radar sec-ice 

texture providing multiscale/ multiresolution. While (Huan et al., 2021)  uses the concept of 

multi-scaling on the convolution filter size (M×N) and dilation rate to create multiple feature 

maps with different receptive fields to improve the reconstruction of super-resolution remote-

sensing images. The dilation rate is a control for dilated convolution filter, where the dilation 

is 1, it is like a standard convolution filter. When the dilation rate increase to above 1, the size 

of the convolution filter (M×N) will increase except the number of weights. Hence, dilation can 

be understood as the distance between each weight. Likewise, the concept of ‘multi- 

convolution filters’ is relatable to InceptionNet (Szegedy et al., 2015) design, where the 

problem they address is similar to Heisenberg Uncertainty Principle on convolution filter size. 

As for making a multi-timescale/multiresolution for WS, (Peddinti et al., 2014, Li et al., 2019) 

investigated the various 𝑄1. 𝑄1 is the quality factor that determines the number of wavelet 

filters per octave and also the centred frequency and the frequency bandwidth. Coupling with 

the observation in Figure 2.5b, having various configurations of 𝑄1 does increase the number 

of scaling 

However, the maximum scaling of WS is still limited by TS, where the coefficients from the 

above wavelet transforms will undergo gaussian filtering illustrated in Figure 2.6, further 

expressed in (6) and (7). Notably, the increase in TS on the number of wavelet scale is only 

visible in the fine-scale resolution illustrated in Figure 2.5d, which is in accordance to (Andén 

and Mallat, 2014, Mallat, 2012, Bruna and Mallat, 2013) analysis of increasing TS. 
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a) 𝑄1 = 9, 𝑇𝑆 = 92𝑚𝑠 

 
b) 𝑄1 = 4, 𝑇𝑆 = 92𝑚𝑠 

 
c) 𝑄1 = 9, 𝑇𝑆 = 371𝑚𝑠 

 
d) Zoom-in scale of 𝑄1 = 9, 𝑇𝑆 = 371𝑚𝑠 

 

Figure 2.5. ‘Morlet’ Filter banks with different 𝑄1and TS. (The morlet Wavelets in graph (a) is the 

main wavelet filterbank used for comparison in (b), (c). While (d) is the magnified fine-scale wavelets 

of (c).) 
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Figure 2.6. Gaussian filter, 𝜙(𝑡𝑠), where 𝑇𝑆 = {46,92,185,371}𝑚𝑠. Each line represents the gaussian 

filter and the shaded area is the area that is being kept. 

It is important to investigate TS instead of 𝑄1.   In this thesis, an exhaustive evaluation of TS 

prior to creating a proper multi-timescale WS is being setup. Notably, the investigation of TS 

has been performed (Andén and Mallat, 2014, Andén and Mallat, 2011). However, their studies 

are driven towards the analysis of energy dispersion between the first and second-order as TS 

change, instead of multi-timescale approach. 

Indeed, by relating Figure 2.6 with Figure 2.7, an observation can be made such that the smaller 

the timescale, TS, the wider the time support, results in lesser high frequency acoustic profiles 

captured by the WS. In addition, the wider gaussian filter also corresponds to less energy 

captured in the second order coefficient and the study of (Andén and Mallat, 2014, Andén and 

Mallat, 2011)  shed lights to the need to strategically choose an ideal group of TS for multi-

timescale. 

Hence, there is a need to investigate how TS affects the classification model. As such, this thesis 

has performed an exhaustive evaluation of TS and the discussion is presented in Section 5.4. 

The evaluation of TS provides a stage to choosing the range of timescales for multi-timescale 

WS. 

As aforementioned in Section 1.3, the application of multi-timescale WS for low complexity 

model is not ideal due to the nature of higher resolution on the input representation usually 

means higher computational cost. Hence, an investigation on a simple mixing of different 

timescales of the first and a single second-order to enrich the multi-timescale capability of WS 

is being conducted. 

Lowpass filter 

Area of  

interest 

 𝜙(𝑡𝑠) 

 Time (𝑡𝑠) 
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a) Full Morlet wavelet filters with 4 different timescales 

 

 

b) Zoom-in and focuses on fine-scale Morlet filters.  

Figure 2.7.  Morlet wavelet filters with different timescale before averaging. Figure b is the zoom-in 

view of the red box markup in Figure a. 

By coupling just the first and second-order together, the number of input representations in the 

first stage remains similar to how WS is being handled with a soft relief on the timescale 

limitation. The idea is to bring diversity to the feature representation without overcompensating 

on time complexity and size complexity. This is termed as ‘Interleaving’ WS (IWS).  IWS can 

be expressed as: 

                                                      𝐼𝑊𝑆 =  (
𝑆1𝑥(𝑡𝑠1, 𝜆11)

𝑆2𝑥(𝑡𝑠2, 𝜆21, 𝜆22)
)                                                 (12) 

where 𝑡𝑠1 is the timescale for the first order, and 𝑡𝑠2 is the timescale for second-order. As seen 

in Figure 2.3, WS is being redrawn to provide a better linkage to IWS in Figure 2.8 and 2.9, 

respectively. 

The investigation of various TS provides an appropriate range of timescale for IWS namely: 

𝑇𝑆1, 𝑇𝑆2  ∈ {92𝑚𝑠, 185𝑚𝑠, 371𝑚𝑠} . Tentatively, this also extend the study of energy 

dispersion theorem (Andén and Mallat, 2014, Andén and Mallat, 2011) through exhaustively 

combining various first and second-order with different TS . Thus, providing an empirical study 

on energy dispersion theorem, in Section 5.5. 

 𝜓𝑚(𝑡𝑠) 

 Time(ts) 

 𝜓𝑚(𝑡𝑠) 

 Time(ts) 
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Figure 2.8.  The construction of WS where x is a given signal. WS is the result of concatenating 

(1) and (2). 𝜙(𝑡)  is the gaussian filter illustrated in Figure 2.6 𝜓𝜆1
and 𝜓𝜆2

 are the set of 

wavelets with 𝑄1 = 9 and 𝑄2 = 1, where 𝑄 denotes the number of wavelet per octave, for first 

and second-order, respectively. 

 

Figure 2.9.  The construction of IWS where x is a given signal. 𝑡𝑠1is a time index based on 𝑇𝑆1 

and 𝑡𝑠2is a time index based on 𝑇𝑆2. In other word,  𝑇𝑆1, 𝑇𝑆2  ∈ {92𝑚𝑠, 185𝑚𝑠, 371𝑚𝑠} and 

𝑇𝑆1 ! = 𝑇𝑆2. 
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 2.4. Chapter Summary 

This chapter introduced the Wavelet Scattering and touched on how it is developed from 

understanding the properties of Log Mel-Spectrogram. Through this understanding, this paper 

identified and addressed three weaknesses of Wavelet Scattering being, magnitude disparity 

problem, Heisenberg Uncertainty Principle, and large frequency dimension. Companying the 

weaknesses is a proposed solution(s). 

In short, magnitude disparity problem suggests the awareness of choosing an appropriate 

algorithm or classifier when dealing with the first and second-order as they have a huge 

difference in magnitude. While renormalization is proposed by (Andén and Mallat, 2014), this 

paper proposed a two-stage CNN architecture and ‘batch normalization’. 

In this context, the Heisenberg Uncertainty Principle suggests that given a sound recording, we 

do not know the number of acoustic characteristics present. In order to capture various acoustic 

characteristics, one need to use multiple timescales. For the case of wavelet scattering, this 

paper identifies that the averaging function used to make wavelet scattering invariant to 

translation will limit the maximum scale of the wavelet. Thus, resulting in the possibility of not 

capturing all the acoustic characteristics. While multi-resolution (concatenation of WS with 

different 𝑄1)  for wavelet scattering is proposed by (Peddinti et al., 2014, Li et al., 2019), this 

paper proposed multi-timescale coupled with genetic algorithm for feature selection. 

Lastly, the large frequency dimension of the second-order becomes a problem when designing 

a low complexity model. A larger input representation means more convolution operations are 

required to convolute over the feature maps. This result in an increase in time complexity. 

Genetic algorithm for feature selection is being proposed again to reduce the frequency 

dimension. In addition, an enhanced wavelet scattering called Interleaved Wavelet Scattering 

is also proposed to slightly increase number of scaling of the WS.   
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Chapter 3. Convolution Neural 

Network (CNN) 

 

 
3.1. Introduction 

While the development of the algorithm that drives CNN can be dated before 1990s 

(Krizhevsky et al., 2017, Khan et al., 2020), such as “LeNet” an earlier stage of convolution 

network (Lecun et al., 2000) for handwritten digit recognition. The fully developed ‘framework’ 

and architecture for CNN with practical usage only appeared in 2012, by (Krizhevsky et al., 

2017). They combined various algorithms and concepts to create the CNN. The founding CNN 

model is known as ‘AlexNet’ for image classification and achieved SOTA for ILSVRC-2012 

competition (Russakovsky et al., 2015). Taking the industry and academia by storm, CNN is 

now a renown deep learning techniques. CNN development is not only restricted to 

development in application on other domains, but they have also grown into more advanced 

architectures (Khan et al., 2020, Alzubaidi et al., 2021).  

The CNN is not just limited to a 3-Dimensional input, there are expansion towards 1D-CNN 

which take in an input with 2-Dimensional, and 3D-CNN (Ahmed et al., 2018), which take in 

4-Dimensionl input. Notably, 3D-CNN are for medical-image classification, chest CT Scans 

for COVID-19 (Morozov et al., 2020), CT scans for Tuberculosis prediction (Morozov et al., 

2020) and real-time object recognition (Maturana and Scherer, 2015).  

In this thesis, the focus is on CNN approaches and for the sake of brevity, CNN will stand for 

2DCNN, while 1-Dimensional CNN is referred as 1DCNN and 3-Dimensional CNN as 3DCNN. 

In this section, the architecture of CNN is being described, followed by the orchestrating of the 

proposed CNN architecture for WS. The discussions are organized as Section 3.2 and Section 

3.3, respectively. 
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Notably, the contents in Section 3.3 are fully adapted from the following papers. 

• X. Y. Kek, C. S. Chin, and Y. Li, “An Investigation on Multiscale Normalised Deep 

Scattering Spectrum with Deep Residual Network for Acoustic Scene Classification,” 

22nd IEEE/ACIS International Fall Virtual Conference on Software Engineering, 

Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPDI), pp. 

29-36), 2021 

• X. Y. Kek, C. S. Chin and Y. Li, "Multi-Timescale Wavelet Scattering with Genetic 

Algorithm Feature Selection for Acoustic Scene Classification," in IEEE Access, vol. 

10, pp. 25987-26001, 2022 

 

3.2. The Skeleton of Convolution Neural Network Architecture 

A more modern construct of CNN will consist of multiple components, and in this Subsection, 

the functionality of each element will be described. The Subsection will be organized as follows: 

Section 3.2.1 describes the most crucial component of CNN, or what defines a DL algorithm as 

CNN, which is the convolution layer. In Subsection 3.2.2, we described the pooling layer, which 

is an algorithm that is commonly used for down sampling the feature map. In Subsection 3.2.3, 

a discussion on the activation function, which is another essential component of CNN or other 

DLs, as it allows the network to learn features in multiple dimensional spaces or in other words, 

provide non-linearity to the networks. Other parts of the network include the loss function, 

optimizer for the backpropagation algorithm, and weight initialization and regularization, 

discussed in subsections 3.2.4, 3.2.5, and 3.2.6, respectively. Lastly, two additional components 

exclusive to the CNN design for ASC to improve the network's performance are included. They 

are namely: Data Augmentation and Normalization, in Subsection 3.2.7, and 3.2.8, respectively. 

3.2.1. Convolution Layer 

Following the explanation from (Goodfellow et al., 2016, Alzubaidi et al., 2021), a convolution 

operation on a 2D representation is the idea of convoluting a filter/kernel over it, hence 

producing a new output, or more commonly known as feature map. As the convolution layers 

are being stacked together to form the entire CNN architecture, the input and output of a 

convolution operation are in fact, the feature map (except the first layer, where the feature map 

is commonly named as input representation).  The convolution operation usually works on a 3-

dimensional representation. Hence, the feature map for the input and output is usually 
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represented as a matrix with 3-dimension, (H x W x C) denotes the height, weight, and channel, 

respectively. Similarly, for the filters, they also have a dimension of (H x W x C).  

The properties of the convolution layer: 

• The kernels/filters of the convolution layer are the ones that carry the weights of the 

network. In relation to an ANN architecture, the weights are the network's connections, 

which means that these are the learnable parameters, usually called the trainable 

parameters.  

• For the case of CNN, it has 3-dimension, and there are cases where C=1. 

• Currently, it works well on image-liked input representations or information that can be 

nicely represented in 2-dimension. 

• As the filters are being convoluted around the input representation, the weights are being 

shared for the input feature map. Hence, it is less computationally complex as compared 

to the fully connected layers while providing the same level or higher level of 

discriminative power. 

• The size of the filters is usually denoted as (M x N). The larger the size, the more 

connection it establishes with the feature map. Notably, (Simonyan and Zisserman, 

2014) have discovered that stacking two (3 x 3) filters together, it provides the same 

discriminative power as a (7 x 7) filter. Hence, most of the standard CNNs design have 

fixated the filter size to (3 x 3) (Simonyan and Zisserman, 2014), though there are some 

exceptions to the case in Section 3.3. 

• C denotes the number of filters. Hence, the more filters the network has, the more 

learnable parameters the network will have, and this constitute the learning capability 

of the network. The configuration for the number of filters has to be carefully considered 

for each stack as it will have an impact on both the complexity and performance of the 

model.  While the more common configuration for the number of filters is to start off 

with a smaller C in the initial layers, then a gradual increment of 2 x C as the network 

goes deeper (e.g., C=32,64,128,256,512,1024), there is also other form of configuration 

discussed in Section 3.3.  

• Stride determines the number of steps the convolution filter will move when 

convoluting around the feature map. As in this thesis, the focus is on 2DCNN, and the 

stride will have a tuple of values, (m,n).  In addition, the default value is usually (1,1), 

which means that the filters will shift 1 pixel at a time. 
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• Padding is an option to retain the size of the output after convolution operation such that 

it has the exact size of the input through padding the edges of the input feature map with 

zero(s) evenly.  

• Dilation controls the distance between each weight. It is determined by the dilation rate 

with an integer value ≥ 1. Hence, if the dilation rate is set to 1, it is equivalent to 

standard convolution layer. An example for a filter of size (3,3), with dilation rate set to 

2, the filter size will increase to (5,5). But the number of weights remain the same. 

3.2.2. Pooling Layer 

Pooling is an algorithm that reduces the output of the convolution layers, which is the feature 

map such that they achieve local translation invariance (Goodfellow et al., 2016). Translation 

invariance is important as overfitting may occurs if the model starts to learn fine-grain details 

of the features. We want the network to learn the structure of the features and focus on the 

essential features. Hence, average pooling (AVP) and max pooling (MaxP) are usually applied 

after a convolution operation or a series of convolution operations.  

3.2.3. Activation Function 

The activation function is also one of the most crucial components of a CNN. It decides whether 

this feature in the feature map is important for model learning or not. In other words, it makes 

the network understand the complex structure in different dimensional spaces or distinguish 

features that cannot be linearly separated. Of course, the most direct activation function is 

referred to as the linear function. However, they are only useful if the data can be separated 

linearly (or separated by a straight line). Hence, in the earlier development, the most common 

activation function is the logistic sigmoid function, and its extension is the hyperbolic tangent 

(tanh) function. However, the problem with this function is that stacking multiple Sigmoid or 

TanH functions can result in a vanishing gradient due to saturation, especially when the network 

goes deeper (Goodfellow et al., 2016, Krizhevsky et al., 2017). 

Hence, to resolve this issue, (Krizhevsky et al., 2017) utilized Rectified Linear Units ‘ReLU’ 

that only ‘fire’ gradients with positive value, which was introduced by (Hahnloser et al., 2000). 

The activation function ‘ReLU’ can be expressed as follow: 

                                             𝜎(𝑥𝑖) = max(0, 𝑥𝑖) {
𝑥𝑖,    𝑖𝑓 𝑥𝑖 ≥ 0
0,     𝑖𝑓 𝑥𝑖 < 0

                                                    (13) 

Doing so mitigates the gradient saturation problem, thus impeding the effect of vanishing 

gradient occurring as the network gets deeper. Of course, this comes with a caveat that the 

network becomes bias over positive values and negative values are not meaningful. Even 
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though ReLU has this biasness, it is still the most popular and standard activation function for 

CNN [cite all the papers that still use ReLU]. However, there is development in this area notably 

such as variants of ReLU (e.g., Leaky ReLU (Heittola et al., 2020), ELU (Clevert et al., 2016), 

and SELU (Klambauer et al., 2017)), Swish (Ramachandran et al., 2017), and Mish (Misra, 

2020). 

Apart from the activation function used in convolution layers, there is specified activation for 

the classification layer. The choice of activation function used in the classification layers 

depends on the type of solution or the objective of the task.  

In this thesis, the ASC task is a multi-class classification. Hence, ‘softmax’ activation function 

is used for the ‘final’ layer or the classification layer. For ease of differentiating between the 

activation function used in convolution layers and the activation function used in classification 

layer, the latter will be referred as ‘classification activation function’. Notably, the classification 

activation function is tightly connected to the loss function as the output is the logits calculated 

from the softmax function.  

3.2.4. Loss Function 

The loss function is simply the algorithm to calculate the model's performance. Before the 

network learns through backpropagation, it needs to know how accurate there are when 

predicting the given classes. Only with this information can the model start learning by 

correcting what is wrong. In the case of ASC, it is usually a multi-class classification problem. 

Hence, typically the loss is calculated using categorical cross-entropy. Other loss functions that 

are not being covered in this thesis are namely: binary cross-entropy, precision-recall area under 

the curve (PR-AUC) and mean square error (MSE).   

3.2.5. Optimizer 

Backpropagation is the mechanism behind the learning process of all neural networks or the 

backbone of the neural network, with earlier recognition of the work from 1986 to 1989 (Lecun 

et al., 2000, Rumelhart et al., 1986). The idea behind backpropagation is to teach computers 

how to understand a complex problem by providing feedback. As such there are strategies to 

optimize learning behaviour and the highly used approaches are RMSprop by Geoffrey Hinton, 

Adaptive Moment Estimation (Adam) (Kingma and Ba, 2015) and Stochastic Gradient Descent 

(SGD) (Loshchilov and Hutter, 2017). In particular, (Heittola et al., 2020, McDonnell and Gao, 

2020, Phaye et al., 2019) used stochastic gradient descent (SGD) (Loshchilov and Hutter, 2017) 

with warm restart scheduled at a set of epoch indexes being (3, 7, 15, 31, 63, 126, 254) and 

learning rate covering from 0.1 (max) to 0.00001 (min). Hence, the learning rate will gradually 
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decrease at each step based on half a cosine curve called 'cosine annealing'. This provides 

adequate learning with a high learning rate to quickly approach local minimum, then a gradual 

decrease in learning rate to narrow into the local minimum. The learning rate is being restarted 

to the maximum learning rate to ensure the model does not get stuck at the local minimum.  

3.2.6. Weight initialization and Regularization  

L1 and L2 regularization are two weight regularization techniques commonly used in the CNN 

model (Goodfellow et al., 2016, Khan et al., 2020) and usually called weight decay. Like all 

regularization techniques, its main objective is to alleviate the problem of overfitting by 

applying a penalty on the weights through the loss function. 

As the name suggests, weight initialization is the procedure of setting the starting point of the 

weight before the network start learning through backpropagation. It determines the ability of 

the model to converge (Goodfellow et al., 2016). The ‘he’ weight initialization strategy (He et 

al., 2015) will be used.  

3.2.7. Data Augmentation 

Data Augmentation is a technique that helps to prevent overfitting and helps the network to 

generalize better (Goodfellow et al., 2016, Abeßer, 2020, Alzubaidi et al., 2021). It is usually 

performed on the training dataset, and it modifies the data to prevent strong imprint on the 

network. In addition, data augmentation is also used to address the lack of data, especially for 

the case of ASC (refer to Section 5.8.1), where CNN tends to overfit for a small dataset. Notably, 

the curation of AudioSet dataset with roughly 2.1 million audio recordings and 527 sound event 

classes (Gemmeke et al., 2017), researchers have moved toward transfer learning exhibited in 

Section 5.8.2. However, the caveat of training a large dataset such as AudioSet, is the need for 

enormous computing power. Hence, data augmentation is still a very viable option.  

The two most popular approaches used in most of the ASC papers (Heittola et al., 2020, 

McDonnell and Gao, 2020, Mesaros et al., 2018, Valenti et al., 2017, DCASE, Hu et al., 2020, 

Chandrakala and Jayalakshmi, 2019, Abeßer, 2020), especially for the 3 ASC datasets, are 

‘Mixup’ and ‘SpecAugment’. Mixup data augmentation, proposed by (Zhang et al., 2018a) is 

the mixing of data features and corresponding labels between one another. For example, if an 

‘airport’ scene sound is mixed with a ‘metro’ scene sound, the new input representation will be 

a mix of predominately ‘airport’ and a small part of ‘metro’ sound. Mixup is also applicable 

between individual classes/labels. Hence, by mixing similar scenes, we stand a chance to 

understand the distinction of sound events for that scene and bring some balance to the dataset. 

(For example, a beach scene recording can have human’s speech or no human’s speech.) 
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Ultimately, providing better representation for the classes/labels. The formulation of Mixup can 

be seen as follows: 

                                              𝑥′ =  𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗,                                                              (14) 

                                              𝑦′ = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗,                                                                 (15) 

where 𝑥𝑖 , 𝑥𝑗  are the raw data, and 𝑥′ is the new data output based on the mixing algorithm. 

Similarly, for 𝑦𝑖, 𝑦𝑗, and 𝑦′. The 𝜆 values denote the amount of mixing using Beta distribution. 

Typically, 𝜆 has a value range of [0,1]. Mixup for data augmentation is only used in all the 

experimentation discussed in Chapter 5. 

SpecAugment is a technique adopted from the image domain and redesigned for audio domain. 

This technique performs a random masking in both the time axis and frequency axis, based on 

a predefined number of time and frequency axis to masked. The final output dimension after 

SpecAugment will still be the same as before. However, it was not used in the experimental 

setup as the preliminary examination has resulted in poorer classification performance with WS. 

Other data augmentation techniques include time stretching, pitch shifting, dynamic range 

compression, and random noise (Abeßer, 2020, Hu et al., 2020).  

3.2.8. Normalization 

Normalization is a common technique usually applied to the input features before feeding it to 

the network to improve convergence speed during the training phrase (Goodfellow et al., 2016). 

This normalization application is usually called ‘Data Normalization’, where the process 

ensures equal distribution of the features. Since, normalizing the features does speed up the 

convergence time, (Ioffe and Szegedy, 2015) incorporated the normalization technique into the 

CNN architecture and termed it ‘Batch Normalization’ (BN) as the normalization is seamlessly 

integrated into the mini-batch training setup. BN is applied on the feature map(s) of the network 

and is used to address the issue of internal covariate shift cause by the increase variation 

between the weights of the network during training. If a network suffers from internal covariate 

shift, other than slower convergence time, the network may experience vanishing or exploding 

gradients, which is the Achilles’ heel of any neural network. Hence, BN has been used by 

several CNN networks described in Section 3.3. 

In fact, BN is a feature regularization technique; unlike the usual normalization algorithm, it 

has additional learnable parameters. The formulation of BN is somewhat similar to the data 

normalization as: 
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                                            𝑦𝑖 =
𝛾(𝑥𝑖−𝜇)

𝜎
+ 𝛽                                                                                  (16) 

 

where y is the output of the normalization, x is the input representation, and i represents a feature 

of x. The learning parameters 𝛾 and 𝛽 are the scaling factor and offset factor, respectively. 

While 𝜇 and 𝜎 are the mean and standard deviation (std) computed by: 

                                      𝜇 =  
1

𝑚𝑏
∑ 𝑥𝑘𝑘∈𝑆𝑖

,   𝜎 =  √
1

𝑚𝑏
∑ (𝑥𝑘 − 𝜇)2 + 𝜖𝑘∈𝑆𝑖

,                                            (17) 

 

with 𝜖 as a small constant, 𝑆𝑖 is the set of pixels in which the mean and std are computed, and 

mb is the size of this set which is the size of the mini-batch. In addition, 𝑆𝑖 is a 4D Vector with 

(N, F, T, C) which reflects a typical CNN feature output size when training by mini-batch. 

Lastly, i is an index of the features (𝑖𝑁, 𝑖𝐹, 𝑖𝑇 , 𝑖𝐶).  

Besides applying BN on feature map, the BN algorithm can also be directly used onto the input 

representation, as exhibited in the works of (Chang et al., 2021, He et al., 2016b) . This 

technique of applying BN on feature map is known as ‘input norm’. Both BN and input norm 

are essential for WS, as there lies a huge disparity in magnitude between the first and second-

order coefficients explained in Chapter 2. Hence, BN and input norm can be used to balance 

the distribution of the coefficients throughout the network, and an investigation on the 

effectiveness of BN and input norm is presented in Section 5.3. In addition, an exploration is 

being performed on other normalization techniques such as ‘Layer Normalization’ (Ba et al., 

2016), ‘Instance Normalization’ (Ulyanov et al., 2016)   and ‘SubSpectral Normalization’ 

(Chang et al., 2021). Their differences are illustrated in Figure 3.1. 

 

Figure 3.1.  Illustration of the set 𝑆𝑖 for the input normalization, an adaptation from (Kek et al., 2021) 
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In summary, the success of CNN architecture is a precise combination of the algorithms 

presented above. In particular, an investigation on various normalization techniques on WS is 

conducted due to the vast disparity of magnitude between the first and second order, in addition 

to adopting a two-stage CNN architecture framework.  

3.3. Two-stage Convolution Neural Network Architecture Framework 

Before the introduction of the two-stage convolution neural network architecture approach, the 

combination of WS with CNN has already been well established (Ren et al., 2018, Zhang et al., 

2019, Peddinti et al., 2014, Li et al., 2019). In addition, the framework of two-stage CNN is 

being featured (Peddinti et al., 2014, Li et al., 2019). In Simplicity, a two-stage CNN is 

theoretically split into two stages. The first stage analyzes different features individually, and 

the second combines them to build an overall understanding. In the case of (Peddinti et al., 

2014),  share a similar ideology about solving the magnitude disparity problem. Indifferent, 

they use a combination of CNN and Deep neural network (DNN) architecture. DNN in this 

context refers to stacks of fully-connected layers or neural network with more than one hidden 

layer. The CNN is used to learn the first-order coefficients, and the DNN is used to learn the 

second-order coefficients. They (Li et al., 2019) used the first stage to train two features: WS 

and frequency scattering. Frequency scattering is introduced in (Andén and Mallat, 2014) with 

the intention to make WS transposition invariance in frequency. 

Inspired by the success of residual network design for ASC by (McDonnell and Gao, 2020, 

Phaye et al., 2019), the CNN topology is emulated onto WS to resolve the huge disparity in 

magnitude between the first and second-order coefficients that is believe to impede the learning 

process of CNN. This thesis termed it as two-stage CNN (TSCNN) architecture framework.  

The inituition of (McDonnell and Gao, 2020, Phaye et al., 2019) is to split the log mel-

spectrogram into frequency bins. The binning process divides the log mel-spectrogram into 

large groups of low, mid, and high-frequency spectrum. Then, in the first stage, the CNN digests 

this set of frequency bins concurrently parallel, as illustrated in Figure 3.2. In the context of 

CNN architecture design, this process is called 'group convolution' (Krizhevsky et al., 2017). 

In the first stage, instead of splitting the frequency into different bins, it is conveniently split 

into first and second-order. Furthermore, the first stage is named ‘specialized learning’ as the 

purpose of the first stage is to allow the network to have independent learning of the first and 

second-order. The second stage is then named ‘centralized learning’, where learning takes place 

after the concatenation of the two features illustrated in Figure 3.2. The concept of specialized 

learning and centralized learning is set up when explaining the configuration of TSCNN and 
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extending TSCNN as a framework instead of a CNN architecture. The ratio of specialized and 

centralized learning for TSCNN framework can be highly dependent on the feature 

representation such as log mel-spectrogram and wavelet scattering and the convolution block 

used (e.g., residual convolution block or mobileNet convolution block design). Notably, the 

essence of TSCNN framework is being used in all the proposed models. (The term ‘TSCNN’  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Two-stage CNN (TSCNN) architecture. The first two boxes are the input representation of 

the network and represent the first and second-order, respectively. The rest of the boxes reflect the 

feature maps after each convolutional layer or convolution block (CB), except for the last box being 

the feature map after FCN. 

means the model, and ‘TSCNN framework’ means the two-stage CNN architecture framework) 

With the introduction of TSCNN architecture, let's deconstruct TSCNN and examine the 

convolution block (CB) design which is the fundamental building block of CNN. In other words, 

CNN is typically built with stacks of similar convolution blocks, except that the number of 

channels increases as the network goes deeper.  

Following (McDonnell and Gao, 2020) designs, the convolution block is pieced together with 

the below components as shown in Figure 3.2: 

3-by-3 convolution layer (3x3Conv) design has revolutionized most of the current CNN 

architecture (McDonnell and Gao, 2020, Huang et al., 2018, He et al., 2015, Srivastava et al., 

2015, He et al., 2016b, Howard et al., 2017, Li et al., 2019, Howard et al., 2019, Ma et al., 2018, 

Zhang et al., 2018c, Iandola et al., 2016, Phaye et al., 2019, Khan et al., 2020), which usually 

follows the combination of stacking 2 3x3Conv.  (Simonyan and Zisserman, 2014) developed 

3x3Conv to reduce the computational complexity of the model. They investigated the 
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possibility of reducing the filter size from (7 × 7) or (5 × 5) to (3 × 3) and discovered that a 

stack of 2 3x3Conv has the same discriminative capability as a larger counterpart while 

reducing the computational complexity of the model. Hence, all CB uses a 3x3Conv as the 

convolution layer in Figure 3.2. Notably, zero padding is applied for all 3x3Conv(s).  

Average pooling (AvgP) is mainly used to reduce the dimensionality of the feature map as the 

network goes deeper, as explained in Section 3.2.2. Notably, average pooling does not involve 

learning or trainable weights. An average pooling with a filter size of (3 × 3) is used. 

Residual Network is another revolutionary design created by (He et al., 2016b). In simplicity, 

a residual network is a network where right after each convolution action, there is a propagation 

of gradient from the previous feature map to the new feature map. Let x be a feature map, and 

the output of BN+ReLU+3x3Conv is 𝑥′, the result of a residual network will be depicted in 

Figure 3.3: 

                                                            𝐹(𝑥) = 𝑥 + 𝑥′.                                                               (2) 

While average pooling is abbreviated as AvgP and the product of average pooling is represented as 

AvgP(x). By propagating the previous gradient forward, degradation no longer happens, even 

when the network goes extremely deep (e.g., 1000 layers). 

 

Figure 3.3. Convolution Block (CB) design following pre-Normalization residual module approach 

proposed by (He et al., 2016b).  
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Batch normalization (BN) to accelerate and smoothen the learning process. BN applies a 

standard normalization on a batch of feature maps using mean and standard deviation and is 

discussed in Chapter 3, Section 3.2.8. 

Fully convolution network, better known as FCN (Shelhamer et al., 2017), is the last 

convolution block that graciously completes the CNN before the softmax classification layer. 

It earns its name as FCN as no fully connected or dense layer is used to complete the CNN, 

commonly found in older models (Krizhevsky et al., 2017, Simonyan and Zisserman, 2014, He 

et al., 2016b). FCN is constructed with a convolution layer with a filter size of (1×1), and the 

channels are compressed such that it is numerically similar to the number of classes. It is 

followed by a global average pooling (GAP) that flattened the feature map channel-wise into a 

vector as the softmax layer. 

Lastly, TSCNN framework is also extended for multi-timescale WS and named it TSCNN-2 as 

illustrated in Figure 3.4. Subsequently, only the TSCNN-2 architecture is presented in a tabular 

format in Table 3.1 as it has rather similar architecture as TSCNN. In Table 3.1, 

 𝑆1𝑥1, 𝑆2𝑥2, 𝑆2𝑥3, 𝑆2𝑥4 represents first order with a 𝑇𝑆1 = 46𝑚𝑠, second-orders with 𝑇𝑆2 =

92𝑚𝑠, 𝑇𝑆3 = 185𝑚𝑠, 𝑇𝑆4 = 371𝑚𝑠 , respectively. The column “Strides” determine the 

number of strides is performed during the convolution operation and column “C” determine the 

number of channels. Lastly, column “output feature map” presents the dimension of feature 

maps after the convolution block. SCB stands for stacked Convolution Block or CB.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. TSCNN-2 architecture extended from TSCNN. TSCNN-2 can accommodate 4 WS of 

different timescales.  
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TSCNN-2 ARCHITECTURE 

Convolution Block Strides C OUTPUT FEATURE MAP 

Input: 𝑆1𝑥1, 𝑆2𝑥2𝑆2𝑥3, 𝑆2𝑥3  
-                 - 

(87,248,3), (256,120,3), 

(306,120,3), (361,120,3) 

BN+3x3Conv 
(1,2) for 𝑆1𝑥1 

(2,2) for 𝑆2𝑥2, 

𝑆2𝑥3 & 𝑆2𝑥4 

32 (87,124,32), (128,60,32), 

(153,60,32), (181,60,32) 

SCB1 

1a (1,1) for all 32 
(87,124,32), (128,60,32), 

(153,60,32), (181,60,32) 

1b (1,1) for all 32 
(87,124,32), (128,60,32), 

(153,60,32), (181,60,32) 

SCB2 

2a 

(1,2) for 𝑆1𝑥1 

(2,2) for 𝑆2𝑥2, 

𝑆2𝑥3 & 𝑆2𝑥4 

64 
(87,62,64), (128,30,64), 

(153,30,64), (181,30,64) 

2b (1,1) for all 64 
(87,62,64), (64,30,64), 

(77,30,64), (91,30,64) 

SCB3 
Same as SCB2 

128 (87,31,128), (32,15,128), 

(39,15,128), (46,15,128) 

SCB4 
Same as SCB2 

256 (87,16,256), (16,8,256), 

(20,8,256), (23,8,256) 

AvgP for 𝑆1𝑥1 (1,2) - (87,8,256) 

Concat - - (87+16+20+23,8,256) 

BN+ReLU 

+1x1Conv 
- 512 (146,8,512) 

FCN+softmax - 10 10 

Table 3.1.  TSCNN-2 Architecture. This Table presents the proposed TSCNN-2 architecture design. 

The first row is the input representation which is fed to TSCNN-2.  

 

Each stack consists of 2 series of CBs with different strides, and each CB is applied onto each 

input feature, 𝑆1𝑥1, 𝑆2𝑥2, 𝑆2𝑥3, 𝑆2𝑥4. Other than SCB1, which has a different strides setup, the 

rest of the SCBs follow a stride of (1,2) for 𝑆1𝑥1 and (2,2) for the rest, 𝑆2𝑥2,3,4. For the first 

series and stride is equal to 1 for all features for the second series (refer to SCB2a,2b). 

 

 

 

 

 

 

 

 

 

 



 

41 
 

3.4. Chapter Summary 

This chapter introduce the building blocks of Convolution Neural Network with an emphasis 

on the ‘Batch Normalization’ algorithm. In Chapter 2, it is discussed that BN can be used to 

tackle the magnitude disparity problem. The next part of this chapter described the proposed 

two-stage CNN architecture which consists of stacks of residual convolution block and end 

with a FCN. In this thesis, it is extended as a framework where the first stage is termed as 

specialized learning and the second stage is termed as centralized learning. In addition, an 

ablation is conducted to determine the optimal ratio between specialized and centralized 

learning for wavelet scattering. Two CNN architectures, being TSCNN and TSCNN-2 is built 

with the concept of the two-stage CNN framework. TSCNN supports wavelet scattering as the 

input representation, while TSCNN-2 supports multi-timescale wavelet scattering. 
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Chapter 4. Low-Complexity 

Modelling 

 

 
4.1. Introduction 

In this section, the proposed approaches are further elaborated. In Section 4.2, a discussion on 

how genetic algorithm for feature selection is being used to tackle the large frequency 

dimension of WS, IWS, and multi-timescales WS. Subsequently, in Section 4.3, while 

presenting GA for Feature Selection ‘wrapper’ approach’, the entire implementation of WS(s), 

GA, and CNN is incorporated. In Section 4.4, the construct of the new low complexity CNN 

which includes convolution factorization, stochastic manipulation, especially shuffling 

modules, and two-stage CNN architecture is being elaborated. In Section 4.5, a hypothetical 

design is drafted, suggesting that GAFS could be easily implemented with the mobile shuffling 

network. 

Notably, the discussion of Section 4.2 and Section 4.3 are adapted from the following 

publication. 

• X. Y. Kek, C. S. Chin and Y. Li, "Multi-Timescale Wavelet Scattering With Genetic 

Algorithm Feature Selection for Acoustic Scene Classification", in IEEE Access, vol. 10, 

pp. 25987-26001, 2022 

The discussion of Section 4.4 is adapted from the submitted publication. 

• X. Y. Kek, C. S. Chin, Y. Li, "An Intelligent Low-complexity Computing Interleaving 

Wavelet Scattering based Mobile Shuffling Network for Acoustic Scene Classification", in 

IEEE Access, vol. 10, pp. 82185-82201, 2022. 
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4.2. Genetic Algorithm for Feature Selection 

In this thesis, feature selection (FS) (Liu and Zhao, 2014, Vergara and Estévez, 2014, Tang et 

al., 2014, Blum and Langley, 1997, Dash and Liu, 1997) is selected as the methodology to 

reduce the dimensionality of WS. Feature selection comes under a broader topic called 

dimensionality reduction, and the other common method under this topic is feature construction 

technique (e.g., Principal Component Analysis (PCA)).  The difference between these two 

methods is that feature construction technique compute relationship among the features in a 

separate feature space, and the final output is usually the newly mapped features. In contrast, 

feature selection returns a subset of the original features. 

The reason can be broken down into three factors: Firstly, WS is locally translation invariant 

and stable to deformation (Andén and Mallat, 2014, Mallat, 2012, Bruna and Mallat, 2013). 

These properties are paramount to acoustic classification tasks. Hence, it is vital to retain the 

feature as what it is. Secondly, WS consists of first and second-order coefficients, and the first 

and second-order coefficients have relatively huge differences in magnitude as explained in 

Section 1.2 (Peddinti et al., 2014, Kek et al., 2021). Thus, the translation algorithm might create 

a bias towards the first-order coefficients as their magnitude is larger. In addition, to suffering 

from internal covariant shift (Ioffe and Szegedy, 2015). Thirdly, the second-order presents a 

sparse representation (Mallat, 2012; Bruna and Mallat, 2013; Andén and Mallat, 2014), leading 

to carefully selecting the translation algorithm. 

Feature selection is broadly studied and has been used in many domains (Liu and Zhao, 2014, 

Vergara and Estévez, 2014, Tang et al., 2014, Dash and Liu, 1997, Uysal, 2018). A traditional 

approach such as an exhaustive search, is practical for a small number of features but not 

feasible with many features. Exhaustive search requires 𝑂(2𝑝) computational costs, where p is 

the number of features. Hence, employing a heuristic technique (de la Iglesia, 2013) is more 

effective in finding the optimal feature subset without searching through every single 

combination or NP-Hard problem. Common Heuristic search techniques such as sequential 

forward/backward selection, "plus-l-take away-r" is an algorithm that combines sequential 

forward selection and sequential backward selection where l determines the number of steps 

going forward. The r determines the number of steps going backward after moving forward 

(XUE et al., 2013, Xue et al., 2016, Saeys et al., 2007). In addition, sequential 

forward/backward floating selection can be easily implemented. However, they can only 

provide local decisions without a globally optimal solution. Hence, to expand the search space 

into a global decision, genetic algorithm (GA) (Goldberg and Shakespeare, 2002, Holland, 1984, 

Goldberg, 1988, Xue et al., 2016) is being adapted, which is a type of evolutionary algorithm 
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(EA), and it emulates biological evolution to find the optimal feature subset. The application of 

GA for feature selection (GAFS) has been well studied (Uysal, 2018, Oreski and Oreski, 2014, 

XUE et al., 2013, Saeys et al., 2007, Xue et al., 2016, Sloss and Gustafson, 2020, Yang and 

Honavar, 1998, Jung and Zscheischler, 2013, Siedlecki and Sklansky, 1993, Hong and Cho, 

2006, Zhang et al., 2018b, Ansari et al., 2021, Alexandre et al., 2007, Ibrahim et al., 2020, 

Nguyen et al., 2021). 

Genetic algorithm (GA) is an adaptive heuristic search and optimization algorithm that is 

designed to influence Darwinism or Darwinian theory (Goldberg, 1988, Goldberg and 

Shakespeare, 2002, Holland, 1984, Duzdevich and Darwin, 2014) and is the most common form 

of EC. GA finds the best solution by a “survival of the fittest” concept, much like how nature 

evolves through mixing and selecting the best individuals for the reproduction of the next 

generation. The major draw to implementing GA is it simplicity of operation while yielding 

great results (Uysal, 2018, Oreski and Oreski, 2014, XUE et al., 2013, Saeys et al., 2007, Xue 

et al., 2016, Sloss and Gustafson, 2020, Yang and Honavar, 1998, Jung and Zscheischler, 2013, 

Siedlecki and Sklansky, 1993, Hong and Cho, 2006, Zhang et al., 2018b, Ansari et al., 2021, 

Alexandre et al., 2007, Ibrahim et al., 2020, Nguyen et al., 2021). Hence, GA can be applied 

for specified use cases, and in this thesis, GA for feature selection is the ideal framework to 

reduce the dimensionality of WS, which has been around since 1990s (Xue et al., 2016, 

Siedlecki and Sklansky, 1989).  

GAFS has the same framework as GA, but with the specified objective to maximize or maintain 

classification accuracy while using a subset of the original features. In Chapter 1 and Chapter 

2, it is observed that the second-order of a wavelet scattering has a relatively large frequency 

dimension (e.g., 500 to 1000 features), which translates to higher time complexity when 

coupled with the CNN model. In line with the direction toward building a lower complexity 

model, there is a need to perform dimensionality reduction in the second-order. In addition, a 

hypothesis is realized such that there is redundancy or irrelevancy in the second-order due to 

the ‘fine-scale’ resolution.  The occurrence of redundancy or irrelevancy can impede the 

learning capability of the CNN, while also adding unnecessary time complexity. Hence, getting 

an optimal subset of the features has two advantages; improve classification accuracy and 

decrease computational time. Following (Goldberg and Shakespeare, 2002, Holland, 1984, Xue 

et al., 2016, Kek et al., 2022), the algorithm of GA for feature selection when applied on WS is 

presented in Table 4.1. 
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GA  FOR FEATURE SELECTION (WRAPPER ALGORITHM 

1. 

Initialized Population: 

For each h in total_number_of_population do 

(a)    WS = (F,T`)  and T` /= T.  

(b)    For each i in F do 

         (i)     chromosome[i] = random(0,1)            

2. For each i in total_number_of_generations do 

 (a) For each j in set_of_chromosomes do 

 (i) Evaluate the classification accuracy (result is based 
on cross-validation) 

 (b)     Sort Population by classification accuracy  

          Delete i number of chromosomes starting from the    

          bottom.                                (i = number_of_offspring) 

(c)     Crossover operation: 

          For each k in number_of_offspring do 

(i) offspring[k] = parent[k]*0.5 + parent[k+1]*0.5       
 (d)     Mutation operation: 

           For each k in number_of_offspring do 

 (a) Randomly select genes in offspring[k] based on a 
given mutation rate. 

 (b) For each q in selected_genes do 
(a) if gene == 1, gene = 0, else gene = 1 

     (e)    Append Population with offspring 

Table 4.1.  GA for Feature Selection (Wrapper) Algorithm. This Table presents the algorithm for GA 

for the Feature selection wrapper approach fully adapted from (Kek et al., 2022). 
 

In Table 4.1, The proposed GA consists of two main loops. The first loop is the initialization of 

the Population. The chromosome is created based only on a binary mapping on the frequency 

axis. Hence, each row of WS is represented by a binary, 0 means not selected, and 1 means 

selected. (Refer to Figure 5). The second loop is an iterative process to find an optimal feature 

subset. The second loop consists of 5 steps: (2a) Evaluate the fitness value of the Population, 

(2b) Remove the weaker chromosomes from the Population, (2c) and (2d) are operations used 

to reproduce offspring. (2e) Add the offspring to the Population. The loop stops upon reaching 

the total number of generations. The implementation is very similar to a typical GA framework 

as GA naturally visualizes the features as a set of binary string encoding, where 1 form the final 

subsets and 0 for those not selected. In addition, a more detailed explanation of the GA 

processes is described below: 

1) INITIALIZATION of population 

The first step of GA is usually the creation of the population (Refer to Table 4.1, (1)), which is 

the pool of selected different combinations of features. Each set of features represents an input 

representation, and each feature represents an attribute of the input representation. Relating to 

GA and biology, a feature is termed a gene, and a set of features is termed as a chromosome. 
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The initial step involves the creation of a pool of chromosomes. The chromosomes are created 

through a random process of combining various genes. Thus, a population is formed containing 

variants of the chromosome. The Population will then undergo evolution, which is the 

continuous process of weeding out the weaker chromosomes while encouraging reproduction 

between the fittest chromosomes, aiming to achieve the chromosome with the 'best' genes. As 

such, the Population will evolve continuously from the initial Population until it meets an end 

condition. 

2) FITNESS FUNCTION 

The fitness function is the evaluation algorithm to determine the strength of the chromosomes. 

Hence, the product of the fitness function is the fitness value. In this case, the fitness function 

is based on the model classification accuracy, corresponding to Table 4.1, row 2.a.i. 

3) CROSSOVER 

Both crossover and mutation are techniques used to create new chromosomes based on the 

selected group of stronger chromosomes from the population. Hence, the concept of parent and 

offspring, where the offspring are the newly created chromosomes. Crossover is the technique 

of mixing the genes of a pair of parents to produce offspring. 

4) MUTATION 

Next, mutation is the changes on the offspring genes, such that given a chromosome represented 

in binary format, [0,0,0,1,1, 1], when mutation occurs, the mutated chromosome or offspring 

will become [1,0,0,0,1,1]. Mutation is crucial to prevent the GA from getting stuck at local 

optimal, however, high mutation rate might impede the GA from finding an optimal. 

5) END CONDITION 

Lastly, the end condition or termination criteria is the algorithm to determine the convergence 

of GA operation. This can be set as the number of iterations or generations. A generation is the 

process of step 2 to step 4. 

While the algorithm for GAFS using wrapper approach is depicted in Table 4.1, it is noteworthy 

that there lies other GAFS approaches such as ‘filter’ approach (Blum and Langley, 1997), 

‘embedded’, and ‘hybrid’ approaches (Tang et al., 2014, Yang and Honavar, 1998, Xue et al., 

2016). While the hybrid technique utilized a combination of filter and wrapper approaches 

(Dash and Liu, 1997, Uysal, 2018), the embedding approach performs feature selection as part 

of the pattern recognition algorithm (Spolaôr et al., 2011). 
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The wrapper approach is commonly adopted (Xue et al., 2016) to evaluate the goodness of the 

selected features based on the classification model, usually the model's classification accuracy. 

Hence, in GA wrapper approach context, the fitness function directly relates to the choice of 

the classification algorithm. 

The objective of the filter approach is to drastically reduce the computational cost of the 

wrapper approach caused by multiple training and evaluation of the classification model such 

as deep CNN models. Although it reduces the time taken to get the optimal feature subset, their 

accuracy performance is still inferior compared to the wrapper approach based on the 

comparative studies of (Saeys;Inza and Larrañaga, 2007; de la Iglesia, 2013; Xue et al., 2016). 

This can be attributed to the core algorithm that evaluates the chromosome's fitness. On the 

other hand, the filter approach uses an independent and less computationally intensive 

algorithm to evaluate the fitness of the features subset; only after finding the optimal features 

subset based on the filter-based algorithm will it be evaluated on the classification algorithm. 

Filter algorithms such as information theory, correlation-based approach, or distance measure 

approach might only provide limited interaction between the features (de la Iglesia, 2013). 

Furthermore, what is deemed insignificant to the filter approach algorithm might be considered 

useful by the wrapper approach.  

In the case of WS, the first and second-order coefficients have a large disparity in magnitude. 

In addition, getting a viable filter-based algorithm to be sparse representation of the second-

order coefficients is a challenge. Hence, driven by the disadvantage of using a filter approach, 

this thesis uses the wrapper approach, which provides a seamless framework to integrate WS 

with CNN, tapping into the discriminative prowess of CNN (Kek et al., 2021). 

4.3. Genetic Algorithm with CNN architecture 

Following the framework (Siedlecki and Sklansky, 1989), this thesis proposed the 

implementation of GA for WS, which has a meta-heuristic nature to find the global optimal 

feature subset. WS has a specified feature structure (Tang;Alelyani and Liu, 2014) (Time-

frequency representation). Unlike image classification, where features can be flattened into a 

1D array and selected pixel-wise, it does not work well for time-frequency representation such 

as wavelet scattering. Hence, the feature selection is being performed on the frequency axis. 

In WS context, a subset of WS coefficients ‘frequency-wised’ is being selected as illustrated in 

Figure 4.3, where each modulation represents a single bit gene. Hence each gene is a vector 

with a single frequency axis and the entire temporal axis (1 x Time). Each bit has a value of 0 
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or 1, and 0 means not selected while 1 means selected. Only the selected genes will be fed to 

the Two-stage convolution neural network (TSCNN) and (TSCNN-2). 

In the signal processing context, it is similar to performing bandpass filters at a very fine level. 

Usually, bandpass filters are used to cut-off signal based on a range (e.g., 0-30Hz, 10kHz – 

20kHz, or more relatable in log mel-spectrogram context, 118 bins to 128 bins, assuming it has 

128 bins) instead on the specified frequency in signal context or specified bin in log mel-

spectrogram as exhibited in Figure 4.3. As for WS, GA is used to pinpoint the exact wavelet 

transformed coefficients based on a data-driven approach. In a way GA present a next level of 

bandpass filtering instead of depending on experts’ domain knowledge. Even with expert 

knowledge, one might filter out important information. In the case of ASC, it is even more 

challenging to decide which frequency spectrums are vital as it consists of multiple sound 

sources and events with various frequency profiles. 

 

Figure 4.3.  GA representation of WS second-order coefficients. GA visualized second-order 

coefficients as a binary string chromosome. 

As aforementioned, the data-driven approach to select the optimal WS is the combination of 

GAFS with CNN as the fitness function based on the wrapper approach. As explained in 

Chapter 3, CNN is one of the current leading neural networks that can learn complex structures 

such as time-frequency representation and images, but not limited to 2-Dimension images 

(Alzubaidi et al., 2021, Khan et al., 2020). Hence, the collective combination of WS for feature 

extraction, GAFS wrapper approach or ‘fine’ bandpass filtering, and CNN as the classifier is 

depicted in Figure 4.4, and the entire process flow is illustrated in Figure 4.5. The proposed 

system is termed ‘GATSCNN’ for the first configuration and ‘GATSCNN-2’ for the second 

configuration. 
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Figure 4.4.  Integrated system of WS, GAFS with TSCNN and TSCNN-2.  

Based on the illustration in Figure 4.5, the entire system starts with the initialization of the 

Population described in Table 4.1. Next, the fitness of all the chromosomes is being evaluated, 

and depending on the configuration, different CNN models will be selected. Subsequently, a 

checking mechanism is used to determine whether the system has already selected a set of 

parents. This argument caters to the first iteration, where no parents have chosen yet. Hence, 

the rest of the iteration will always flow to combining parents and offspring. Then, based on 

the classification accuracy, only the top-performing chromosomes is kept, and this batch of 

chromosomes will be the next parents. This leads to the next step of creating the offspring based 

on Table 4.1, step 2. Prior to continuing to the next iteration, a verification process is defined 

to check whether the stopping criterion is being satisfied. In this case, the stopping criteria 

depend on the total number of generations. If it is not met, another round of evaluation, selection 

of new parents, and breeding offspring will start. Upon reaching the stopping goal, the best 

optimal feature subset based on classification accuracy is being selected for training and 

evaluation with Mix Up. Finally, the classification result is presented in Section 5.6. 
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Figure 4.5.  Process Flow of GATSCNN and GATSCNN-2 implementation.  

The first configuration is the system design of GAFS for WS and IWS, which is rather 

straightforward as the inputs consist of single first-order coefficients and single second-order 

coefficients. Furthermore, based on evaluation of WS and IWS discussed in Section 5.5, the 

first order is fixated with a timescale of 46ms, while the second-order has a timescale of either 

(92, 185, 371)ms per GATSCNN run. Notably, during the runs for GATSCNN, both first and 

second-order coefficients undergo GAFS. However, during preliminary evaluation, it is 
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discovered that the first-order coefficients do not require feature selection. Hence, in the second 

configuration, GATSCNN-2, GAFS is only applied on the second-order(s). In GATSCNN-2, 

we proposed to resolve the problem of concatenating using GAFS. The result is that the  input 

representation is a concatenated multi-timescale of WS(s) consisting of a 46ms first-order, 

92ms second-order, 185ms second-order, and 371ms second-order, with only the second-

order(s) undergoing GAFS. Based on the workflow described in Figure 4.5, the hyper-

parameters for GA is listed in Table 4.2, where 8 parents or 8 fittest chromosomes is selected 

for the reproduction process. The parents will produce 12 offspring and 2 offspring have a 

mutation rate of 0.35 to alleviate the chances of reaching local optimal while preventing the 

network from the inability to converge. The number of generations is set at 10 due to limited 

resources and based on preliminary experiment with the no. of generations set at 20, the fitness 

score starts to plateau after the 10th run. Hence, 200 models are being trained for each GA 

implementation. 

GA PARAMETERS 

PARAMTERS 𝑉𝐴𝐿𝑈𝐸 

POPULATION SIZE 20 

No. of PARENTS 8 

CROSSOVER RATE 0.5 

MUTATION RATE 0.005 

MUTATION RATE for 

LAST 2 OFFSPRING 
0.35 

No. of GENERATIONS 10 

Table 4.2.  GA Parameters. The GA parameters are used for both GATSCNN and GATSCNN-2 

implementation. The stopping criterion here is by limiting the no. of generations to 10. 

Setting the ‘right’ hyper-parameters for GA is crucial to achieve global optimal (Sloss and 

Gustafson, 2020, Yang and Honavar, 1998, Oreski and Oreski, 2014, Jung and Zscheischler, 

2013, XUE et al., 2013, Siedlecki and Sklansky, 1989, Saeys et al., 2007, Xue et al., 2016, 

Goldberg, 2000, Goldberg, 1988, Duzdevich and Darwin, 2014). The first setting is to 

determine the population and the number of parents. The population initialization strategy is 

relatively straightforward, and the decision is based on observation from the preliminary 

experimentations and the limitation of hardware. Deriving from an earlier experimentation, it 

is possible to work with a population size of 20 and 8 parents. Based on the sentiment of  (Uysal, 

2018, Oreski and Oreski, 2014, XUE et al., 2013, Saeys et al., 2007, Xue et al., 2016, Sloss and 

Gustafson, 2020, Yang and Honavar, 1998, Jung and Zscheischler, 2013, Siedlecki and 

Sklansky, 1993, Hong and Cho, 2006, Zhang et al., 2018b, Ansari et al., 2021, Alexandre et al., 

2007, Ibrahim et al., 2020, Nguyen et al., 2021), crossover rate is set as 0.5. This means that the 

offspring will consists of a mix of 50% of each parent.  



 

52 
 

A mutation operation can be described as changing the binary bit representation from 0 to 1, 

which means that the selected features inherited from parents will be flipped. For the mutation 

rate, (Siedlecki and Sklansky, 1989; Yang and Honavar, 1998; Jung and Zscheischler, 2013) 

cautioned that this has to be carefully selected. The higher the rate, the more indifferent the 

offspring are to their parents. Hence, if a high mutation rate is being applied for all the offspring, 

the offspring are more likely to lose important genes from their parents that made them fit in 

the first place. In other words, there lies a possibility of nullifying the crossover effect, where 

offspring are created based on the best-performing parents, thus, crippling the heuristic nature 

of GA. Hence, this thesis proposed using a high mutation rate of 0.35 only for the last two 

offspring to enhance the global search effect, based on the study of (Siedlecki and Sklansky, 

1989; Yang and Honavar, 1998; Jung and Zscheischler, 2013). A mutation rate of 0.005 is 

applied for the rest of the offspring to provide stability to the GA process. 

Lastly, the number of generations is set at 10 due to the resource limitation of evaluating over 

a combination of 1000 TSCNN and TSCNN-2 models. In addition, based on a separate 

experiment, with 20 iterations, the GA no longer demonstrates any gain after the 10th iteration 

or its 'plateau'. 

While most of the parameters are being defined, there is another crucial decision for GAFS, 

which is to determine the size of the feature subset. Using the proposed GA parameters, an 

evaluation is conducted on the size of the feature subset by limiting the number of features 

selected for each independent run. 25%, 50%, 60%, and 70% is set as the size of the feature 

subset for each run, notably, the initial testing is only performed on GATSCNN configuration. 

The experimentation provided an insight on a trend towards an increase in the number of 

features selected for the case of 25%, 50% and 60%. Generally, at 70% of feature subset, the 

incremental of the number of features has plateau. Hence, for GATSCNN, a subset size 

consisting of 70% the total features is being selected.  

While for the second configuration GATSCNN-2, based on the preliminary study of 

GATSCNN, on the hypothesis that combining multiple timescales will result in features 

overlapping. Hence, GATSCNN-2 is set with feature selection size to 50% for each second 

order. 

4.4. Proposed Two-stage Mobile Shuffling Network 

GAFS tackles the problem with large input representation and reducing the input size has shown 

to reduce time complexity, as proven in Section 5.6. Notably, GAFS or the feature selection 

process only affects the input representation that is being fed to the CNN and does not alter the 
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architecture of the CNN, such as the convolution block design. What it does is it reduce the 

number of convolution operations required to convolution around the feature maps. As one of 

the benefits of convolution neural network is weight sharing, additional convolution operations 

does not constitute to lesser weights. As such, another criterion for low complexity modelling 

is the size of the model. In terms of CNN, by counting the number of parameters of the network 

and based on the data type of the parameters, the memory size of the model can be calculated. 

Hence, the size of the model means the ‘File size’ measured in byte.  

As mentioned in Chapter 1, the technique to downsize or build a low complexity CNN model 

is termed as ‘Model Compression’. Notably, (Cheng et al., 2017) have provided a survey 

covering various strategies and techniques. The current strategy include parameter pruning 

(Molchanov et al., 2016), knowledge distillation (Hinton et al., 2015), quantization (Jacob et 

al., 2018), and convolution factorization (Sifre and Mallat, 2014). 

Convolution factorization and quantization are the model compression chosen to ‘down-size’ 

the TSCNN model. Indeed, one could have utilized the current TSCNN model and performed 

parameter pruning and knowledge distillation. However, taking advantage of this problem, the 

thesis is able to demonstrate the flexibility of the two-stage CNN framework by integrating the 

framework with other possible convolution block. 

Following the two-stage CNN framework proposed in Section 3.5, the proposed model T-

MSNet, which is based on the compilation of MobileNet (Howard et al., 2019, Howard et al., 

2017), ShuffleNet (Zhang et al., 2018c, Ma et al., 2018) and two-stage CNN is illustrated in 

Figure 4.6. The heavy adaptation of MobileNet is due to the depthwise separable convolution 

layer design (Sifre and Mallat, 2014). The computation cost analysis depicted in Table 4.3 

shows that the depthwise separable convolution layer can deliver the lowest model cost. While 

shuffling modules presented by (Zhang et al., 2018c, Ma et al., 2018) account to zero model 

size cost. Lastly, following the two-stage CNN framework is unavoidable as we are dealing 

with WS with a large disparity in magnitude between the first and second-order. 

Notably, the shuffling modules presented by (Ma et al., 2018, Fan et al., 2021, Zhang et al., 

2018c) are not designed with time-frequency representation in mind. The shuffling modules 

proposed are channel shuffle (Zhang et al., 2018c), which shuffles channel-wise and spatial 

shuffle (Fan et al., 2021) that shuffles pixel-wise. Indeed, both shuffling modules have little 

interaction between frequency spectrum (low, mid, high). In addition, WS has a relatively large 

frequency dimension. Hence, to leverage this property, we proposed a new shuffling module 
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called 'sub-spectral shuffle' (SSS) that shuffles the feature maps 'frequency-wised'. Instinctively, 

we also studied temporal shuffling which shuffles the feature map ‘temporal-wised’ (TPS). 

Subsequently, in Subsection 4.4.1, a brief discussion is made on various model compression 

techniques. In Subsection 4.4.2, the overall T-MSNet architecture and the possible 

configuration is being described. Then Subsection 4.4.3 entails a detailed elaboration on the 

mobileNet convolution block design. In addition, an analysis of the convolution operations 

complexity cost is presented. Lastly, in Subsection 4.4.4, the proposed ‘sub-spectral shuffling’ 

modules and the reason behind this design is being discussed. 

4.4.1. Model Compression Technique 

Parameters pruning, which deletes nodes deemed least important by the algorithms. The most 

popular approach is based on the magnitude of the nodes' weight or the gradients. The 

magnitude signifies the importance of the node to the model (Large magnitude means more 

important). This is a very popular technique in Section 5.7 for ASC.  

Knowledge distillation tackles low complexity with a "teacher" and "student" network concept. 

In simplicity, the concept involves the teacher guiding the student, and corresponding to the 

neural network context, the teacher network calculated loss has an impact on the student final 

loss function and the level of influence is usually determined by a rate between 0 and 1. The 

student network is the desired low complexity model, and the teacher network is a larger 

network with the desired classification accuracy. 

Quantization technique usually reduces computer memory size based on the data type. 

Commonly, the default data type for training deep networks is 32-bit floating points, which 

translate to each parameter in the network has memory upkeep of 4 bytes. Hence, by converting 

to a smaller memory data type (e.g., 16-bit floating points, 8-bit integer) will drastically reduce 

the overall memory size of deep networks. As exhibited in Section 5.7, this technique is 

prevalent as it can easily complement other model compression techniques. As mentioned in 

Chapter 3, the discriminative power of the network has a relation to the number of parameters 

when the CNN is constructed correctly. Hence, quantization is used to increase the number of 

parameters essential to building an effective CNN.  

Convolution factorization is the concept of adapting matrix factorization to the convolution 

layer filters and is the focus of this thesis. Such design has been around in the image domain 

with state-of-the-art models, such as InceptionNet (Szegedy et al., 2015), MobileNet (Howard 

et al., 2017, Howard et al., 2019), and ShuffleNet (Ma et al., 2018, Zhang et al., 2018c). 

InceptionNet suggested that the convolution operations are a matrix multiplication between two 
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tensors and have the same properties as the matrix. Hence, it can be decomposed/factorized. 

The proposed ‘filter-wise’ factorization, which breakdown an M×N×C×D convolution layer 

(we can view this as the dimension of the convolution layer where M×N denotes the filter size, 

C and D denotes the number of filters for input and output, respectively), into two convolution 

layers, consisting of a M×1×C×D convolution layer followed by a 1×N×C×D convolution layer. 

This is similar to the 3×3 matrix = (3×1) × (1×3). Whereas the low complexity convolution 

layers used in both MobileNet (Howard et al., 2017, Howard et al., 2019) and shuffleNet (Ma 

et al., 2018, Zhang et al., 2018c) are mainly depthwise separable convolution layer (Sifre and 

Mallat, 2014), converting M×N×C×D into C+( M×N×1×D) follow by 1×1×C×D. In fact, 

1×1×C×D is the development of (Lin et al., 2013) to improve cross-channel relations, initially 

termed as 'mlpconv'. In addition, shuffleNet integrates low complexity convolution layers with 

stochastic algorithm, which is channel shuffling, to improve model generalization at zero model 

size cost. 

While the decomposition technique mentioned above works with the dimension of the 

convolution layers, SqueezeNet (Iandola et al., 2016) and ResNet (He et al., 2016a) leverage 

on mlpconv to construct their ‘fire module’ and ‘bottleneck module’, respectively. Their 

proposed ideas are more towards how to utilize mlpconv to expand or contract the number of 

output filters, corresponding to D of 1×1×C×D, without overly increasing the size of the model 

as the network gets deeper. In addition, this technique has also been used in CondenseNet 

(Huang et al., 2018) and ResNeXt (Xie et al., 2017). Moreover, (Xie et al., 2017, Huang et al., 

2018, Iandola et al., 2016) adapted group convolution that divide the convolution layer 

operation channel-wise, corresponding to C and D of M×N×C×D. Let G denotes the factor to 

divide the convolution layer. The convolution layer will transform to G+(M×N×C/G×D/G). 

Notably, the proposed model heavily adapts MobileNet (Howard et al., 2019, Howard et al., 

2017) architecture design. However, the inclusion of shuffling modules (Ma et al., 2018; Zhang 

et al., 2018c) and TSCNN design is indifferent to their network. 

It is challenging to distinguish which model compression method is superior as other factors 

will affect the model's accuracy, such as the CNN architecture design, applications, and 

requirements. Parameter pruning is the most popular approach as it can be directly applied to 

an existing network and when transfer learning is highly desired.  

Knowledge distillation allows configuration of their networks (both teacher and student). 

However, they generally achieve less competitive performance as compared to pruning and 

convolutional factorization. The other broadly used technique is quantization, as it can be easily 
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implemented with other compression methods, as aforementioned. With prior knowledge of 

CNN architecture design, one can have the flexibility to construct the CNN using convolution 

factorization. Overall, all the model compression discussed above can be combined to maximize 

the model performance. 

 

4.4.2. T-MSNet topology and configuration 

The collective components of the MobileNet convolution block described in Subsection 4.4.3 

and shuffling modules described in Subsection 4.4.4 present T-MSNet. In Section 3.5, it is 

explained that the two-stage approach is crucial in tackling the huge disparity in magnitude of 

the first and second-order coefficients. However, due to the computational complexity 

constraint setup by DCASE 2021, the first stage only consists of a single convolutional layer to 

separately process  𝑆1𝑥 and 𝑆2𝑥, with stride (1,1) and (2,1) respectively. Following the two-

stage CNN architecture framework, downsampling is performed on  𝑆2𝑥, with a stride of 2, on 

the frequency axis as aforementioned. This is to reduce biases of the model on 𝑆2𝑥 caused by 

being a larger input representation (The larger the feature map the more convolution operations 

will be performed on the map, which will result in increased learning on the feature map). The 

second stage concatenates the features to enable cross-spectral learning, which is further 

enriched when SSS is applied. The base architecture of T-MSNet after the first convolution 

layer follows a ‘lite’ version of mobileNet. The model has 8 stacks of MobileNet convolution 

blocks (MBloc) and the channels configuration for each convolution block is stacked as follows: 

C = [16,24,24,32,32,64,64,96]. Next, the shuffling modules, which include a combination of 

SSS, TPS, and CS, or in singularity, are slotted after the MBloc before each incremental of C 

except for the first incrementation. Based on the findings of (Fan et al., 2021), there is a need 

to strategically position shuffling modules so that their maximum potential can unleash. 

Hence, the location of shuffling modules is predetermined at C = [16,24,24,S1,32,32,S2,64, 

64,S3,96,S4], where S1,S2,S3, & S4 are the indexed of their location as illustrated in Figure 

4.6, and Table 4.5. While the location of the application of shuffling modules is set, it does not 

mean that shuffling will be applied. Inspired by (Fan et al., 2021), an analysis on the ‘activation’ 

of various combinations of shuffling modules at the predetermined location in Section 5.7 is 

being conducted. Finally, T-MSNet is completed with FCN described in Subsection 4.4.3. 

Apart from the location of the shuffling modules, the number of segments for SSS, TPS and CS 

is a set of hyperparameters. Based on the preliminary experiments, the configuration of the 

number of segments for SSS, TPS, and CS should be different. For ease of referencing, the  
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Figure 4.6.  Overall, Two-stage Mobile Shuffle Network (T-MSNet) Architecture. SConv stands for 

Standard Convolution, MBloc stands for the convolution block of MobileNet. S1, S2, S3 and S4 are the 

predefined position of the shuffling modules. TS1 and TS2 are timescale used to construct WS first and 

second-order. 

 

 

number of segments for SSS, TPS and CS are termed as GBins, GTim and GChan, respectively. 

The dimension of the time-frequency feature map is represented as (F × T × C) where F 

denotes the frequency axis, T denotes the time axis, and C denotes the number of channels. For 

the case of SSS, the number of segments used in S1 and S2 is more effective if it differs from 

S3 and S4. 

The experimentation has shown a relationship that when GBins has the same size as F, it will 

result in poorer classification result. Having GBins=F means that the entire spectral information 

is being distorted. Another relationship is that GBins are best set at 10 for both S1 and S2 and 

5 for both S3 and S4, for the proposed configuration. As for TPS, we set GTim=T as IWS has 

a small temporal dimension. Lastly, GChan is most effective at 8, which might be due to the 

number of channels of T-MSNet, which is relatively small to ensure the model size is within 

the given constraint. The configuration is tabulated in Table 4.3, where the parameters relate to 

the number of segments, and indexed relates to the predefined position of the shuffling modules. Lastly, 

the value is T denotes the same size as the Time axis. Notably, the configuration in this Table will be 

used for the experimentation in Section 5.7. The overview of the system includes the pre-processing 

to IWS and T-MSNet is illustrated in Figure 5.6, and the T-MSNet architecture is described in 

Table 4.6. 
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CONFIGURATION OF THE NUMBER OF SEGMENTS FOR SSS, TPS, AND CS 

PARAMTERS INDEXED VALUE 

GBins S1,S2 10 

GBins S3,S4 5 

GTim S1,S2,S3,S4 T 

GChan S1,S2,S3,S4 8 

Table 4.3.  Configuration of the number of segments for SSS, TPS, and CS.  The Table shows the 

configuration of the number of segments for SSS, TPS, and CS.  

 

4.4.3. Adapting from Mobile Network Convolution Block 

The adaptation from MobileNet in this thesis is a combination of mobile network components 

that have carefully considered the extremely low computational cost. MobileNet convolution 

block (MBloc) is designed with convolution factorization in mind, and the adapted distinction 

can be summarized into three key components. The first component, which is the core 

convolution layer of MobileNet, uses depthwise separable convolution to reduce the complexity 

cost in two steps. The first step focuses on capturing spatial relationships using a single filter 

per channel concept, called depthwise convolution, depicted in Figure 4.7b. The second step 

employs a pointwise convolution as depthwise convolution does not capture a channel-wise 

relationship. To better understand how depthwise separable convolution help in the reduction 

in model complexity, a side-by-side comparison is illustrated in Figure 4.7 and a list of 

convolution layers and their computational analysis is compiled in Table 4.4.  

For ease of referencing, a standard convolution layer is represented as a tensor of M×N×C×D 

where M×N represents the size of the filters, C is the number of filters, also called channels, 

and D is the number of output filters. The depthwise convolution layer is the first convolution 

layer of depthwise separable convolution design in Figure 4.7b. Instead of filter-wise 

factorization, they break down the convolution layer channel-wise, such that M×N×C×D 

becomes M×N×1×D and a condition of D=C. This considerably reduces model size as C is 

always larger than M and N, especially when the network goes deeper. 

The output of the depthwise convolution layer results from overly focused feature-wised 

learning and lacks understanding of the cross-channel relationship. Hence, a 1×1×C×D is 

employed to cover this semantic. In a depthwise separable convolution setup, conv(1,1) is 

termed a pointwise convolution as it focuses on a single point of the feature map instead of a  
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Figure 4.7.  Comparison of standard convolution layer, depthwise convolution layer and pointwise 

convolution layer. (F x T x C) denotes the dimension of time-frequency representation with channels.  

spatial relationship. The conv(1,1) was designed by (Lin et al., 2013), and they intend to 

enhance the cross-channel relationship. The design of Conv(1,1) is also depicted in Figure 4.7c.  

Lastly, the comparison between standard convolution against depthwise convolution and 

pointwise convolution is depicted in Figure 4.7. The examples in Figure 4.7 are based on a 

feature map with a channel size of 32, undergoing convolution with a filter size of (3 x 3), and 

a) Standard convolution layer 

b) Depthwise convolution layer 

c) Pointwise/(1 x 1) convolution layer 
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the number of output channels is 64. Typically, Figure 4.7b is usually accompany with Figure 

4.7c. 

In addition to understanding the construct of depthwise separable convolution operations, it is 

crucial to understand the computational complexity of these convolution operations as they 

directly impact the model's size and the calculation of the number of parameters is reflected in 

Table 4.4. This Table presents the computational complexity of various convolution operations 

discussed in Section III, A, based on the number of parameters. The number of parameters 

translates to the size of the model. The examples used in Row 1 to 9 reflect a convolution 

operation on a feature map with 32 channels, and the number of output channels is also 32. 

While for Row 11 to 13, the output feature map size is similar to the proposed model. (Refer to 

Table 4.5). Based on the comparison analysis, depthwise separable convolution has shown to 

be the best candidate for low complexity modelling, especially when the limitation is set at 

128Kb (Based on DCASE 2021 Task1a criteria). 

The second component incorporates an inverted residual and linear bottleneck structure 

(Howard et al., 2017), which signified the MobileNet convolution block design (MBloc) as 

illustrated in Figure 4.8. The design follows an inverted residual and linear bottleneck structure. 

x is a feature map, and the output after MBloc is x'. The first convolution layer of MBloc is 

called the ‘expansion layer’ and has a similar structure as the 1x1Conv = conv(1,1). A 

hyperparameter termed ‘expand’ determines the number of output channels, denoted as D. 

Batch Normalization (BN). Followed by an activation function “ReLU” is being used right after 

the expansion layer (1x1Conv) and depthwise convolution layer (3x3DWConv). No activation 

function is required after the pointwise convolution layer (1x1PWConv) as it shows to impede 

learning. If the stride of the Mbloc operation is equal to 2, there will be a residual connection 

between x and x'. 

The whole convolution block is defined by stacking expansion convolution, which is a 

conv(1,1), followed by depthwise separable convolution, then a projection layer, which is also 

a conv(1,1). As the name suggests, the expansion convolution is designed to increase the 

number of feature maps. It elevates the effectiveness of depthwise separable convolution. The 

expanded channels provide a higher-dimensional feature space, leading to more expressiveness 

of the non-linear spatial-wised learning delivered by the depthwise convolution layer. The 

pointwise convolution condenses this information channel-wised into a sparse representation, 

maintaining a compact model for the subsequent convolution operations (Howard et al., 2017, 

Howard et al., 2019). The projection layer reflects the actual number of output channel and act. 
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as both a consolidator and a dimensionality reduction layer, producing a sparse set of feature 

maps. 

COMPUTATIONAL COMPLEXITY OF VARIOUS CONVOLUTION OPERATIONS 

No Convolution 

layer 
Filter Dim Parameters 

1 Standard 3 x 3 x 32 x 32 9,216 

2 Filter-wise 3 x 1 x 32 x 32 +  

1 x 3 x 32 x 32 6,144 

3 Depthwise 3 x 3 x 1 x 32 288 

4 1x1Conv 1 x 1 x 32 x 32 1,024 

5 Group(4) 3 x 3 x 8 x 8 x 4 2,304 

6 
Depthwise 

separable 
(3)+(4) 1,312 

7 Shuffle *Permutation 0 

Convolution Block 

8 VGGCB 2 x (1) 18,432 

9 2 x MBloc 

(4) = 1 x 1 x 32 x 

(32 x 6) 

(3) = 3 x 3 x 1 x 

192  (4) = 1 x 1 x 

32 x 32 

2 x 8,896 = 

17,792 

Classifier Layers 

11 
Flatten+ 

Dense 

Flatten(30,4,96)+ 

Dense(96) 

Dense(96) 

1.1(mil) 

12 GAP+ Dense 
GAP(30,4,96)+ 

Dense(96) 

Dense(96) 

19,594 

13 FCN 

(4) = 1 x 1 x 96 x 

96 

(4) = 1 x 1 x 96 x 

10 

GAP(30,4,10) 

10,176 

Proposed Model 

14 TSCNN   

15 TSCNN-2   

16 T-MSNet Appendix, Table I 64,788 

Table 4.4.  Computational complexity of various convolution operations.  
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Figure 4.8. MobileNet Convolution Block (MBloc) design adapted from (Howard et al., 2017, Howard 

et al., 2019).  

 

Lastly, to reduce the computational cost caused by classifying with a fully connected layer, 

(Shelhamer et al., 2017) proposed Fully-Convolution (FCN). Before FCN is developed, the 

CNN model typically ends with a fully-connected layer(s) or dense layer(s) before the softmax 

layer. For this dense layer(s) to be effective, it requires a sizable number of hidden nodes, 

resulting in extremely high computational costs (e.g., D2). Hence, (Shelhamer et al., 2017) 

redesigned this portion by eliminating all dense layer(s) and instead of connecting the final 

convolution layer with a conv(1,1) followed by a 1×1×C×D, where D, in this case, is the number 

of classes. Global average pooling (Lin et al., 2013) is applied before the softmax layer. The 

result is a significant reduction in computational cost, as shown in Table 4.4.  

The classification layer used for the low complexity model is undisputedly FCN as seen in 

Table 4.4. The FCN has the best computational complexity compared to the other 2 

classification layer designs described in Chapter 3, Section 3.3.2.  

Apart from the three components, to provide greater flexibility, mobileNet offers two 

hyperparameters to throttle the complexity: alpha and expansion ratio. The alpha value controls 

the “width” of the T-MSNet architecture, affecting the number of channels of every Mbloc. On 

the other hand, the expansion ratio is a hyperparameter setting for each Mbloc, and it controls 

only the size of the expansion layer. Based on an initial empirical study, alpha is set to 0.5 and 

all the expansion ratios is set to be 6. 
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4.4.4. From Channel and Spatial Shuffle to Sub-spectral and Temporal Shuffle for 

Time-Frequency Representation 

To further exploit IWS, sub-spectral shuffling (SSS) module inspired by channel shuffle (CS) 

designed by (Zhang et al., 2018c) and spatial shuffle (SS) by (Fan et al., 2021) is being proposed. 

In Chapter 3, Section 3.3.2, shuffling is categorized as a stochastic manipulation approach and 

this type of convolution block design tends to improve the network performance without 

increasing the number of model parameters. Hence, it is very applicable to designing a model 

with size restrictions. Shuffling channel-wise, pixel-wise, or sub-spectral-wise encourages the 

filters to encompass information of different features. Temporal shuffling (TPS), which is the 

shuffling along the time axis is also being investigated. The difference between CS, SS, SSS, 

and TPS is illustrated in Figure 4.9, where the feature maps represented in the figure have a 

dimension of (F x T x C) (time-frequency representation with channels). 

Given an input representation with dimension size of (𝐹 × 𝑇 × 𝐶), where (𝐹 × 𝑇) represents 

the feature map which is a time-frequency representation. F is the frequency axis, and T being 

the time axis. C is the number of feature maps and usually termed as a channel. CS performed 

shuffling on-axis C, allowing cross-learning of feature maps. SS visualized feature map, 

( 𝐹 × 𝑇 ), pixel-wise and randomly scrambled the individual pixels to destroy spatial 

memorization by the network. Thus, allowing the network to generalize more effectively. 

Although this makes sense for image classification, it has an adverse effect on acoustic scene 

classification. The poorer performance can be attributed to time-frequency representation, 

where a degree of temporal sequence and frequency locality are essential. Only SSS will be 

used for examples and explanations. In addition, the algorithm is applicable to TPS and CS. 

Using SSS as an example, the feature maps are grouped into bins of feature maps with (F/GBins 

x T x C) dimensions. During SSS operations, all the bins will undergo a random process of 

repositioning while satisfying this condition 1 < GBins ≤ F, as illustrated in Figure 4.9. As 

when GBins=1, it means that no SSS is used, while GBins cannot be larger than the original 

input dimension F. The combination of Mbloc with shuffling modules is illustrated in Figure 

4.10d.  

In addition, Figure 4.10 also illustrates the difference between the proposed convolution block 

over shuffleNet and MobileNet. T-MSNet is constructed by adding of shuffling modules into 

mobileNetV2 convolution block design. The shuffling modules are accentuated to illustrate 

their position for different convolution block designs. While ShuffleNet and ShuffleNetV2 use 

channel shuffle (CS), we proposed the inclusion of various shuffling modules, being SSS, TPS, 

and CS. 'GConv' denotes group convolution. 'EConv' denotes the expansion layer explained in  
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Figure 4.9.  Variants of shuffle module. With (a) being channel shuffle (CS), (b) being spatial shuffle 

(SS), (c) being sub-spectral shuffling (SSS), and lastly, (d) being temporal shuffling (TPS).  

Figure 4.8. 'DWConv' denotes Depthwise convolution, and 'str’ denotes the stride value of the 

convolution layers. 'Channel Split' breaks down the feature maps into two groups.  

Finally, we present the detailed T-MSNet architecture in Table 4.5, where the first convolution 

layer is a standard convolution operation. The rest of the Table are divided into Mbloc(s), 

shuffling modules of either TPS, SSS, CS or a combination of them,  and the last layer is FCN. 

Mbloc is represented by 1x1Conv, Depthwise convolution (DWConv) and pointwise 

T 

F 

C a) CS 

b) SS 

c) SSS 

d) TPS 
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convolution (PWConv). The BN and ReLU for Mblock are omitted from this Table as they are 

illustrated in Figure 4.8. 

4.5. Hypothetical combination of GAFS with T-MSNet 

While the setup of GAFS and T-MSNet is isolated, it is possible to combine both together. We 

can easily swap out the TSCNN with T-MSNet as both possess similar two-stage CNN 

framework. Just with this minor change, the entire workflow for GAFS becomes operatable, 

thus demonstrating the flexibility and robustness of the GAFS implementation. In addition, the 

proposed GAFS for WS, should not just be limited to WS. This approach can be extended to 

other time-frequency representations such as log mel-spectrogram or STFT. 
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Figure 4.10.  Comparison of convolutional blocks of ShuffleNet (Zhang et al., 2018c), ShufflNetV2 

(Ma et al., 2018), mobileNet (Howard et al., 2019), and the proposed T-MSNet. 
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T-MSNET ARCHITECTURE DESIGN 

Ops Stride Filter Shape Input Size 

Conv 
(1,1), 

(2,1) 
3 x 3 x 16 

105 x 56 x 3, 

724 x 56 x 3 

Concat+BN 
  

105 x 56 x 16, 

362 x 56 x 16 

1x1Conv (1,1) 1 x 1 x 16 467 x 56 x 16 

DWConv  (1,1) 3 x 3 x 16 467 x 56 x 16 

PWConv (1,1) 1 x 1 x 8 467 x 56 x 16 

1x1Conv (1,1) 1 x 1 x 48 467 x 56 x 8 

DWConv  (2,2) 3 x 3 x 48 467 x 56 x 48 

PWConv (1,1) 1 x 1 x 16 234 x 28 x 48 

1x1Conv (1,1) 1 x 1 x 96 234 x 28 x 16 

DWConv  (1,1) 3 x 3 x 96 234 x 28 x 96 

PWConv (1,1) 1 x 1 x 16 234 x 28 x 96 

S1   234 x 28 x 16 

1x1Conv (1,1) 1 x 1 x 96 234 x 28 x 16 

DWConv  (2,2) 3 x 3 x 96 234 x 28 x 96 

PWConv (1,1) 1 x 1 x 16 117 x 14 x 96 

1x1Conv (1,1) 1 x 1 x 96 117 x 14 x 16 

DWConv  (1,1) 3 x 3 x 96 117 x 14 x 96 

PWConv (1,1) 1 x 1 x 16 117 x 14 x 96 

S2   117 x 14 x 16 

1x1Conv (1,1) 1 x 1 x 96 117 x 14 x 16 

DWConv  (2,2) 3 x 3 x 96 117 x 14 x 96 

PWConv (1,1) 1 x 1 x 32 59 x 7 x 96 

1x1Conv (1,1) 1 x 1 x 192 59 x 7 x 32 

DWConv  (1,1) 3 x 3 x 192 59 x 7 x 192 

PWConv (1,1) 1 x 1 x 32 59 x 7 x 192 

S3   59 x 7 x 32 

1x1Conv (1,1) 1 x 1 x 192 59 x 7 x 32 

DWConv  (2,2) 3 x 3 x 192 59 x 7 x 192 

PWConv (1,1) 1 x 1 x 48 30 x 4 x 192 

S4   30 x 4 x 48 

1x1Conv+B

N+ReLU 
(1,1) 1 x 1 x 96 30 x 4 x 48 

1x1Conv (1,1) 1 x 1 x 10 30 x 4 x 96 

GAP   30 x 4 x 10 

Softmax   10 

Table 4.5. T-MSNet architecture design.  

 

4.6. Chapter Summary 

This chapter topic revolve around tackling low complexity modelling such that the model can 

be deployed into a less computational powerful devices such as IoT and smartphone. Low 

complexity modelling can be broken down into two problems, being time complexity and size 

complexity. Time complexity is explained as the time taken for the model to predict, while size 

complexity deals with the size of the model in bytes. 
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One way to reduce the time complexity is by reducing the size of the input representation or 

dimensionality reduction. However, it is important to inherit or preserve the properties of 

wavelet scattering, hence, feature selection is preferred over feature construction. In addition, 

dealing with large set of features (over 500 features set) is rather challenging and this paper 

handled this problem by using genetic algorithm, which is has a meta-heuristic nature. Hence, 

in the first part of this chapter, an overview on genetic algorithm is delivered before drilling 

down into genetic algorithm for feature selection. Tapping onto the expressive power of 

convolution neural network and the ease of implementation, wrapper approach is selected to 

integrate WS, CNN, and GAFS together.  

The second part of this chapter talks about resolving size complexity and the most popular 

technique to reduce the size of the CNN model is called model compression technique. Hence, 

in the second part, an overview is given to describe various model compression techniques 

before going deeper into convolution factorization. While this thesis selected convolution 

factorization and quantization as the choice for model compression, it is notable that all the 

model compression techniques can work together and compliment one another. In addition to 

model compression techniques, this paper also proposed the inclusion of shuffling modules 

which is a stochastic algorithm to improve the model ability to generalize at “zero-size” model 

cost. Particularly, this paper developed sub-spectral shuffling and temporal shuffling. Notably, 

the proposed sub-spectral shuffling work extremely well with wavelet scattering as compared 

to channel-wise shuffling and temporal shuffling. 
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Chapter 5. Experiment and Results 

 

 
5.1. Introduction 

In this section, an evaluation is performed on all the proposed approaches over 3 ASC datasets 

described in Section 1.4. Notably, DCASE 2021 dataset is the primary dataset considered with 

all the proposed models. Specifically, ESC-50 and US8K is only evaluated in Section 5.5.2 to 

provide timescale analysis of WS and IWS, and when doing an ablation study of T-MSNet in 

Section 5.7.  

In this section, the experiment discussions are adapted from the 3 papers:  

1. X. Y. Kek, C. S. Chin, and Y. Li, “An Investigation on Multiscale Normalised Deep 

Scattering Spectrum with Deep Residual Network for Acoustic Scene Classification,” 

22nd IEEE/ACIS International Fall Virtual Conference on Software Engineering, 

Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPDI), pp. 

29-36, 2021 

o for Section 5.2, 5.3, and 5.4 

2. X. Y. Kek, C. S. Chin and Y. Li, "Multi-Timescale Wavelet Scattering with Genetic 

Algorithm Feature Selection for Acoustic Scene Classification," in IEEE Access, vol. 

10, pp. 25987-26001, 2022 

o for Section 5.5.1, 5.6, and 5.8.1 

3. X. Y. Kek, C. S. Chin, Y. Li, “An Intelligent Low-complexity Computing Interleaving 

Wavelet Scattering based Mobile Shuffling Network for Acoustic Scene Classification”, 

Unpublished. (Resubmitted to IEEE ACCESS) 

o for Section 5.5.2, 5.7 and 5.8.2 
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5.1.1. Hardware Specification and software packages 

All the models are trained and tested on a Window Desktop with Intel i7-11700F Processor, 32 

GB of RAM, and RTX 3090. Python is the programming language used to develop the models 

and implementation. Subsequently, Kymatio (Andreux et al., 2020) is used to perform 

scattering transform. Librosa (McFee et al., 2015) which is a python package for music and 

audio analysis. Lastly, the CNN network is built using Tensorflow 2.1 framework (Abadi et al., 

2016). 

5.1.2. Feature Extraction Implementation 

In the entirety of the experimentation, the signal is only pre-processed into two time-frequency 

representations, being log mel-spectrogram and wavelet scattering. The two time-frequency is 

the point of interest in this thesis as log mel-spectrogram is the current SOTA features and 

wavelet scattering while not commonly used for ASC, provides a better representation.  One 

major part of these studies is the setting of timescales. Hence, timescales, TS, is customized to 

fit the experiments described in the rest of the section, and the configuration for TS will be 

shared at the start of each Section. While TS is highly dependent on the experiment, the number 

of wavelets per octave for 𝑄1 𝑎𝑛𝑑 𝑄2 need to be predefined. Prior to defining 𝑄1 𝑎𝑛𝑑 𝑄2, it is 

notably that the mother wavelet used in this experimentation is ‘Morlet’ wavelet, as suggested 

by (Andén and Mallat, 2014). 

For the value of 𝑄1, it was initially recommended by (Andén and Mallat, 2014) to set it as 8. 

Theoretically, they prove that it reflects a representation with a similar attribute as mel-scale 

spectrogram, which is essential for environmental sound classification. While based on the 

empirical studies (Salamon and Bello, 2015, Li et al., 2019, Ren et al., 2018, Zhang et al., 2019), 

where they exhaustively evaluated a series of 𝑄1, has demonstrated that 𝑄1 is in fact optimal 

when set to 9. This has led us to a preliminary study of choosing the value of 𝑄1 between 8 and 

9, and based on that, 𝑄1 is set as 9 for both WS and IWS. As for 𝑄2, (Ren et al., 2018, Zhang 

et al., 2019, Andén and Mallat, 2014, Peddinti et al., 2014, Salamon and Bello, 2015, Li et al., 

2019, Andén and Mallat, 2011) is in unison of setting it to 1. In addition, (Peddinti et al., 2014, 

Andén and Mallat, 2011) have found positive effect with the addition of the deltas and delta-

deltas and concatenating them channel-wise, giving C=3.  

For log mel-spectrogram, similar to WS setup, the timescales or window size, in this case, is 

not fixed. The predefined constant parameters are the number of mel-filter banks set to 128, 

‘hamming’ window is used as the window function, and the hop length set to 50%. The hop 

length determines the number of overlaps between each window.  
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5.1.3. Hyper-parameters setup  

Learning Strategy: Following (McDonnell and Gao, 2020, Chang et al., 2021) learning 

strategy,  stochastic gradient descent (SGD) (Loshchilov and Hutter, 2017) with warm restart 

scheduled at a set of epoch indexes being (3, 7, 15, 31, 63, 126, 254) and learning rate covering 

from 0.1 (max) to 0.00001 (min) is adapted. Hence, the learning rate will gradually decrease at 

each step based on half a cosine curve called 'cosine annealing'. This provides adequate learning 

with a high learning rate to quickly approach local minimum, then a gradual decrease in learning 

rate to narrow into the local minimum. Based on the indexes above, the learning rate is being 

restarted to the maximum learning rate to ensure the model does not get stuck at the local 

minimum. (Loshchilov and Hutter, 2017) further proposed restarting the learning rate with 

shorter intervals at the beginning of the training phase to accelerate the learning process.   

Weight Initialization and Regularization: 'He normalization' (He et al., 2015) is being used 

for weights initialization, and subsequently, L2 regularization is being applied. 

Batch size and Epoch: The setup for batch size and epoch differs between GAFS runs and 

usual model training. For usual model training, a mini-batch size of 32 with 254 epochs is 

chosen. An epoch in this context is defined as a single cycle of learning the entire training data. 

As the learning strategy is SGD with warm restart, a save point is configured which only keeps 

the weights of the best model based on the logloss or classification accuracy. Hence, the models 

will be trained with a total of 254 epochs, but only the weights saved will be picked.    

To speed up the process for GAFS runs, an investigation on the possibility of reducing the total 

number of epochs is conducted. Based on the observation, the best result can be achieved by 

the 62nd Epoch. The reason for this phenomenon can be described in two parts. The first part is 

the effective learning strategy of SGD with a warm restart. The second reason is that we are 

training without Mixup, which might have led to overfitting caused by a longer learning 

duration. Hence, for the GAFS run and in the essence of speed, we set a mini-batch size of 64 

and total epochs of 63.   

Cross-Validation Setup: For ESC-50, following the cross-validation setup proposed by 

(Piczak, 2015), the dataset is split into 5 predefined folds for cross-validation and ease of 

benchmarking. In addition, for each fold, we performed 3 additional training, which bring us to 

a total of 15 trainings and testing to evaluate a single model setup. Next, the average of all the 

15 trainings tests classification results and logloss is tabulated as the metrics for comparison. 

For US8K, (Salamon et al., 2014) also provided a predefined 10 folds cross-validation setup. 

Instinctively, this thesis just follows the predefined setup without additional training for this 
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dataset. Lastly, for DCASE 2021, the organizers (DCASE) recommended a single fold with a 

predefined 70/30 (training/testing) split. As the data size for this dataset is a lot larger, a cross-

validation setup is unnecessary. The model will be trained and evaluated at least 5 times over 

the same fold. The final score is calculated based on the average of the 5 training results.  

Data Augmentation: Based on analyzing DCASE (Heittola et al., 2020, Mesaros et al., 2018) 

and suggestions from (McDonnell and Gao, 2020, Chang et al., 2021), this thesis adopted the 

use of Mixup (Zhang et al., 2018a) for data augmentation with an alpha of either 0.2 or 0.4 for 

evaluation on most of the models.  For some models, the addition of Mixup has shown to impede 

the model's ability to learn in each section. Hence, for the case of GAFS run, which we deemed 

it unnecessary as the objective of GAFS is to find the optimal feature subset. Lastly, the value 

for the alpha is selected based on an exhaustive search where an evaluation is conducted on the 

alpha ranging from 0.1 to 1 for each model.  

Performance Metric: In this thesis, two metrics is used to evaluate the models. The reason for 

the choice of metric is the ease of benchmarking with other models. The first metric is the 

classical way of measuring the performance of a model, which is based on classification 

accuracy. The next metric is logloss. Logloss is the measure of the confidence level of the model 

when making the prediction. (e.g., high confidence means that the logits on the ‘true’ label are 

nearing 1, and it has a logloss value approaching 0. Low confidence means that the logits on 

the ‘true’ label are far from 1, for example, 0.5, this will result in a higher logloss value) 

5.2. Ablation study of the two-stage CNN Architecture Framework 

The first investigation is the proposal of the two-stage CNN architecture framework for wavelet 

scattering. Inspired by (McDonnell and Gao, 2020, Chang et al., 2021), who use a TSCNN on 

log mel-spectrogram, this thesis emulates the CNN architecture design and applied it on WS 

and the rationale behind it was the challenge of effectively combining first and second-order 

coefficients described in Chapter 2. While (McDonnell and Gao, 2020, Chang et al., 2021) 

discussion is fixated on the effectiveness of binning/grouping process between low and high-

frequency spectrum in convolution operations. A different perspective is being provided and is 

termed as two-stage CNN, where the first stage focus on specialized learning and the second 

stage focus on centralized learning (Refer to Chapter 3, Section 3.5).  

With this new perspective, a study is setup to analyze the proportion of specialized and 

centralized learning illustrated in Figure 5.1. For Figure 5.1, the number index 1,2,3 & 4 

correspond to the index number of the convolution block described in Table 3.1, also termed as 

‘stack’. The last stack is omitted. FCN is the classification layer. The tabulated result is  
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Figure 5.1.  TSCNN setup for ablation study on the proportion of specialized and centralized learning. 

S1x and S2x denotes first and second-order of WS. 

presented in Table 5.1 which shows the classification accuracy result of TSCNN based on 

DCASE 2021 dataset based on TS=92ms, and LMS is abbreviation of log mel-spectrogram 

with TS=46ms. Based on the result, the best setup for TSCNN differs between log mel-

spectrogram and WS. It seems that different input representation will affect the proportion. In 

addition, the inclusion of T-MSNet has also demonstrated that the differences in CNN 

architecture will also affect the proportion of specialized and centralized learning. For the case 

of T-MSNet which is a combination of mobile convolution block and shuffling modules, an 

improvement in classification can be noticed right stack 1. However, this is not the case for 

TSCNN for both features, log mel-spectrogram and wavelet scattering. Combining both 

observation, both the input representation and the CNN architecture has shown to have an 

impact on the proportion of specialized and centralized learning. Hence, the suggestion to 

perform an ablation study on the proportion of specialized and centralized learning made sense. 

While comparing a standard approach, the standard approach just means that there is no 

splitting between the first and second-order before feeding it to CNN, against a two-stage 
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approach, which has shown to improve the network by a slight margin. Based on this 

observation, two possibilities can be inferred. The first is that a deep CNN model can learn  

CLASSIFICATION RESULT OF TSCNN WITH VARYING RATIO OF SPECIALIZED AND CENTRALIZED 

LEARNING 

No Stack LMS WS T-MSNet 

1 
Standard 

ResNet 
68.37% 69.75% 

66.80% 

2 Stack 1 68.00% 69.65% 67.10% 

3 Stack 2 68.58% 70.24% - 

4 Stack 3 68.78% 70.36% - 

5 Stack 4 69.40% 69.29% - 

Table 5.1.  Classification result of TSCNN with varying ratio of specialized and centralized learning.  

complex input representations such as the combined first and second-order coefficients with a 

huge disparity in magnitude. The next is that the inclusion of BN which performs a ‘learning’ 

normalization on the feature map during training, has replaced the need for a two-stage 

framework, which is further backed by the study on normalization in Section 5.2. 

In summary, even though the improvement based on classification accuracy between standard 

and two-stage approaches is not very significant, it still does elevate the problem with the 

disparity of magnitude between first and second-order. The best configuration is stack 3 where 

there strikes a balance between specialized and centralized learning. Hence, a subsequent 

experiment for TSCNN is setup with this configuration unless otherwise stated differently. 

5.3. The importance of Normalization 

Other than employing a two-stage CNN framework to ease the learning process of first and 

second-order, the inclusion of input normalization demonstrated to be even more important than 

having a two-stage CNN design. In addition to the study on the importance of normalization, 

various normalization strategies have also being analysed and stated in Section 3.2.8. The result 

is tabulated in Table 5.2. The Table shows the classification accuracy result of TSCNN based 

on DCASE 2021 dataset based on TS=92ms. ‘Renorm’ is the shortform of renormalization, a 

technique introduced by (Andén and Mallat, 2014) to tackle the magnitude disparity problem. 

To reiterate, BN stands for Batch Normalization, LN stands for Layer Normalization, IN stands 

for Instance Normalization and SSN stands for Sub-Spectral Normalization. 

Based on the observation, it undisputedly shows the need to perform any sort of normalization 

on WS, which is in accordance with (Ioffe and Szegedy, 2015), who stress the importance of 

having equally distributed coefficients such that it will improve the network ability to generalize 

more efficiently. Furthermore, the addition of input norm renormalization seems needless with 
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this setup. Hence, BN is a much more effective and robust option than renormalization designed 

just for WS. 

CLASSIFICATION RESULT OF DIFFERENT NORMALIZATION TECHNIQUE 

No Input Norm ACC Renorm 

1 None 67.31% 68.01% 

2 BN 70.36% 70.35% 

3 LN 69.06% 68.16% 

4 IN 68.19% 68.08% 

5 SSN 70.19% 70.28% 

Table.5.2.  Classification result of different normalization technique.  

While this investigation of various normalization techniques has shown that BN is still the best 

option, with the next runner up as SSN, there is a need to understand this phenomena. Base on 

how CNN process each mini-batch of data, the dimension of an output of any convolution layers 

will have the size of (B×F×T×C), where B is the number of data(e.g., 32 acoustic scene 

recordings in WS representation), (F×T) relates to the time-frequency representation, and C 

denotes the number of channels which accumulate as the network gets deeper. Indeed, their 

succession can be attributed to how each normalization works. The worst performing 

normalization is IN. IN is in fact a normalization based on normalizing each (F×T), hence, it is 

rather similar to renormalization. Further supporting this claim is the relatively close 

classification score. If C is included in the normalization process such that normalization is 

based on (F×T×C), it similar to LN. The channels, C, are the output of the feature maps based 

on the filters. Hence, in simplicity, the normalization is performed on many versions of a single 

WS. This has shown to be more effective than just normalizing a single data version. However, 

normalization based on various data has been demonstrated to be far superior in this case, where 

(B×F×T) is normalized together. The variety of data-based normalization is none other than 

BN and SSN. It makes total sense as the different acoustic scenes can exhibit very different 

levels of energy. In addition, this applies even to the similar acoustic scene, such as transient 

events. Hence, learning to get the correct scale to normalize this dataset will help with the 

model's ability to discriminate. 

Furthermore, DCASE 2021 dataset are recorded with different devices, and other devices have 

different frequency response. Hence, how one device perceives sound can be different from 

another device. Normalization can equalize the data distribution, showing why BN and SSN 

work much better.  

Another observation is that combining renormalization with SSN will improve the model 

performance. While this paper did not further study various combinations of normalization 
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techniques, the concept of combining normalization technique is not new. Such as combining 

batch and instance normalization by (Choi et al., 2021).  

5.4. Timescale analysis between log mel-spectrogram and WS 

The limitation of log mel-spectrogram (LMS) is that it is no longer stable to deformation when 

the timescale is larger than (25ms). Hence, log mel-spectrogram will perform worst given a 

large timescale. An investigation is established to see whether this is the case for ASC and 

whether WS can take advantage of having a larger timescale. In this experimentation, TS = 

[23,46,92,185,371,743,1480]ms and the result is presented in Figure 5.2. While it is noted that 

in the discussion of (Andén and Mallat, 2014, Mallat, 2012), Log mel-spectrogram is always 

emphasised to be configured best under 25ms, this thesis uses 23ms. This is due to the 

configuration of WS where the wavelet transform is built based on octave or 2𝑛  and the 

sampling rate of the datasets.  

It is observed that LMS performs well with a smaller time scale of between 23ms and 46ms, 

while DSS strives with a larger time scale between 92ms and 185ms. This reaffirmed (Andén 

and Mallat, 2014, Mallat, 2012) theories that LMS is optimal given small window size, though 

for the case of ASC, it can be deduced that the TS of LMS could be stretched to at least 46ms 

instead of being conservative and capping it at 25ms. This study correspond to the competitors 

in DCASE ASC competition (Heittola et al., 2020, Gao and McDonnell, 2020, McDonnell and 

Gao, 2020, Gharib et al., 2018, Mesaros et al., 2018, DCASE) where they usually choose a 

timescale of >25ms for log mel-spectrogram.  

This is also a reflection of the Heisenberg uncertainty principle. Different time scales are better 

at capturing different acoustic profiles, and the loss of information caused by mel-averaging 

does impede the classification result. Notably, LMS with the timescale of 46ms perform the 

best with accuracy of 69.4% while DSS come just in by 69.29% which is 0.11% poorer.  

Perhaps for the case of ASC, LMS has a slight advantage over DSS due to the acoustic 

characteristic found in the scene, which is important. Another possibility is getting a suitable 

model for WS, as shown in Section 5.2.   

The result of the timescale has also shown that a fixed time window using STFT works well 

with small timescale while a varying timescale using wavelet transform works well with a larger 

time scale. However, both features have poorer results when the time scale goes very large and 

time resolution diminishes greatly. This finding suggested that for both cases, a certain degree 

of temporal resolution is required for ASC. Hence, the CNN model might learn patterns of mid-
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transient liked or quasi-stationary acoustic behaviors or events to help differentiate the scene 

instead of just the spectra component. 

 

Figure 5.2. Classification result of LMS and WS with different Timescale, TS. (For WS where 

TS=1480ms no delta and deltas and deltas-deltas is being calculated due to limited time dimension). 

 

Based on the exhaustive search, the optimal range of TS for WS is between (46ms to 371ms). 

Hence, this range of TS will be used for multi-timescale WS. 

5.5. Timescale analysis between WS and IWS 

5.5.1 Timescale analysis between WS and IWS using TSCNN 

This experimentation is conducted to exhaustively searched through a combination of the first 

and second-order of different timescales identified in Section 5.3. The classification results are 

tabulated in Table 5.3, where 𝑇𝑆1 & 𝑇𝑆2 denotes the timescale for the first and second-order, 

respectively. The first 4 rows are WS, and the rest of the tests are the combination of mixing 

first and second-order, IWS. The highlighted group of mixed first and second-orders have the 

best classification performance. However, we noticed that the classification result plateau at 

around ~70%. This finding solidifies the hypothesis that acoustic scene requires even more 

diversification of timescales, and just mixing two timescales is not enough. 
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Hence, in this experiment, we paired a set of first-order with timescales, 𝑇𝑆1 = 

{46,92,185,371}ms with a set of second-order with 𝑇𝑆2 having a similar value as 𝑇𝑆1. Based 

on the observation of Table 5.3, the best combination occurs when a small 𝑇𝑆1  (46ms) is 

combined with any 𝑇𝑆2 > 46𝑚𝑠. While combining the first and second-order the other way  

CLASSIFICATION RESULT OF WS AND IWS WITH TSCNN 

No 𝑇𝑆1 FOR 𝑆1𝑥 

(ms) 

𝑇𝑆2 FOR 𝑆2𝑥 

(ms) 
ACCURACY 

1 46 46 65.80% 

2 92 92 70.36% 

3 185 185 70.15% 

4 371 371 69.14% 

5 46 92 70.72% 

6 46 185 70.42% 

7 46 371 70.51% 

8 92 46 69.14% 

9 92 185 70.13% 

10 92 371 69.53% 

11 185 46 68.50% 

12 185 92 70.03% 

13 185 371 69.52% 

14 371 46 68.35% 

15 371 92 68.42% 

16 371 185 69.33% 

Table 5.3.  Classification result of WS and IWS with TSCNN. This is the classification result of an 

exhaustive search of the mixed first and second-order with TSCNN. 

around, where 𝑇𝑆1 > 𝑇𝑆2 , in most cases, it will result in poorer performance than not 

combining them (Table 5.3, rows 1, 2 & 3). This finding is consistent with the theory of energy 

dispersion from first to second-order as TS gets larger. In addition, the combination of 

timescales with the first order being the smallest TS, presents better result (Table 5.3 rows, 5, 

6 & 7). While the combination of timescales with the first order having the largest TS, present 

poorer result (able 5.3 rows, 11, 14, 15 & 16). Hence, based on this observation, a general rule 

that 𝑇𝑆1 < 𝑇𝑆2 when constructing IWS is derived. Another observation is that mixing of the 

first or second-order of timescale of 46ms with larger timescale will result in a considerable 

boost of approximately ~4% in classification performance, as shown in Table 5.3, row 1, 

compared to Table 5.3, rows 5, 6, 7, 8, 11, 14. This phenomenon can be attributed to the acoustic 

profile of the acoustic scene, where important acoustic information is mainly captured by a 

larger timescale, TS>46ms. Contrary to the findings of (Andén and Mallat, 2014, Andén and 

Mallat, 2011), who state that the effective timescale of WS is around the range of ~300ms. 
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Perhaps this is highly dependent on the kind of acoustic profiles that will be tackled. Evidently 

so for ASC, as log mel-spectrogram with a timescale of 46ms has performed comparably as 

discussed in Section 5.4.  

5.5.2 Timescale analysis between WS and IWS using T-MSNet 

While Subsection 5.5.1 show the result of WS and IWS based on a single perspective, the 

inclusion of this experiment will further expand the quantitative analysis. This is done by 

evaluating IWS and WS with a new CNN model, T-MSNet, and other ASC datasets, being 

ESC-50 and US8K. 

Similarly to Subsection 5.5.1, an exhaustive evaluation is being conducted on IWS where the 

timescale 𝑇𝑆1, 𝑇𝑆2 ∈ {92𝑚𝑠, 185𝑚𝑠, 371𝑚𝑠}. The result is featured in Table 5.4, where Rows 

1,2 and 3 are the results of WS. Row 7 is chosen as the baseline for ease of concatenation and 

consistency in scoring second best for both shuffling and non-shuffling results. Column ‘RMS’ 

is the root mean square of the combined accuracy score of the three datasets (excluding with 

shuffling). Based on the RMS, having a timescale of 371ms seem to be the most optimal and 

the best IWS is combination 7. Based on the root means square (RMS) of the combined 

accuracy of DCASE 2021, ESC-50, and US8K, mixing of the first and second-order based on 

this rule 𝑇𝑆1 < 𝑇𝑆2   shown to improve the classification performance of WS. Hence, the 

finding is in line with the analogy of energy dispersion of the first and second-order based on 

the timescale discussed by (Andén and Mallat, 2014, Bruna and Mallat, 2013, Andén and Mallat, 

2011).  

As scattering transform is contractive, (Andén and Mallat, 2014, Bruna and Mallat, 2013, 

Andén and Mallat, 2011) calculated the energy of dispersion based on the fraction of the 

squared Euclidean norm of a vector of coefficients of the raw signal x against both 𝑆1𝑥 and 𝑆2𝑥 

(e.g., ‖𝑆1𝑥‖2/‖𝑥‖2). Their calculation review that as TS gets larger, there will be a shift of 

energy dispersion from first order to second order. Considering this analysis, the log-scalogram 

of the first and second-order of the sound of bird chirping is plotted in Figure 5.3 and Figure 

5.4. Furthermore, in Section 2.3, there is an illustration of the gaussian filters in Figure 2.6 to 

illustrate the reason for this phenomenon. TS affects the scale of the gaussian filter, which in 

this context is a low-pass filter. 

Hence, building on this concept, simple mixing of first and second-order with different 

timescales is being proposed. The effectiveness of IWS has been demonstrated based on the 

experimental results of all the datasets, especially for ESC-50, which consists of both SER and 

ASC recordings. For DCASE 2021 and US8K, slight improvement is observed. In addition, the  
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CLASSIFICATION RESULT OF WS AND IWS WITH T-MSNET 

No 𝑆1𝑥 𝑆2𝑥 
WO/ 

Shuffle 

W/ 

Shuffle 

ESC-

50 
US8K RMS 

1 92 92 67.10 68.52 64.69 78.72 70.4 

2 185 185 67.47 69.36 68.40 78.39 71.6 

3 371 371 66.73 69.19 72.57 78.36 72.7 

4 92 185 68.45 69.6 68.15 78.05 71.7 

5 92 371 67.74 70.57 73.02 79.97 73.7 

6 185 92 68.05 68.75 62.98 78.74 70.2 

7* 185 371 68.28 70.37 73.75 79.76 74.1 

8 371 92 67.14 66.3 62.55 77.08 69.2 

9 371 185 67.76 68.45 68.21 77.91 71.4 

Table 5.4.  Classification result of WS and IWS. The classification accuracy of IWS and WS on DCASE 

2021, ESC-50 and US8K datasets. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.  First-order coefficients presented in log-scalogram of different timescales of acoustic 
scene in a shopping mall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.  Second-order coefficients presented in log-scalogram of different timescales of bird 
chirping sound.  
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logic of 𝑇𝑆1 < 𝑇𝑆2 does increase the number of wavelet transforms, especially for fine-scale 

resolution. Figuratively, the second-order resolution increase as TS increase from 92ms to 

371ms is by at least 100s over additional wavelet transform as illustrated in Figure 5.4. This 

tentatively means an increase in the wavelet filter’s variation, which result in capturing more 

acoustic characteristic, as explained in Section 2.3. More wavelets with different scales can 

reduce the effect of Heisenberg Uncertainty Principle. In contrast, setting 𝑇𝑆2 < 𝑇𝑆1 does not 

work well. Typically, this pairing of IWS will always result in a poorer performance against 

their WS counterpart, as reflected in Section 5.5.1, Table 5.3, and Table 5.4, further backing 

the energy dispersion theorem. 

However, a caveat appears when mixing first and second-order with different timescales. There 

is a possible occurrence of feature redundancy or irrelevancy. The possibility of redundancy is 

further grounded by the energy dispersion theorem (Andén and Mallat, 2014, Bruna and Mallat, 

2013, Andén and Mallat, 2011), where scattering transform is contractive, i.e. ‖𝑆0𝑥‖2 +

‖𝑆1𝑥‖2 + ‖𝑆2𝑥‖2 + ⋯ + ‖𝑆𝑚𝑥‖2  = ‖𝑥‖2 for 𝑚 =  ∞. Hence, there will be a possibility of 

overlapping where the signal is captured by both first and second orders. Coupling with CNN 

that thrive in complex representation might build a stronger relationship between the overlapped 

wavelet scattering coefficients. 

Thus, IWS can seem to be a double-edged sword without thorough experimentation. For this 

setup, the best combination of IWS for this setup is the combination of 𝑇𝑆1 =

185𝑚𝑠 𝑤𝑖𝑡ℎ 𝑇𝑆2 = 371𝑚𝑠. While the timescales of the best IWS in this setup are different 

from Section 5.5.1, the rules of 𝑇𝑆1 < 𝑇𝑆2 still applies. Notably, GAFS is only evaluated on 

TSCNN. 

5.6. Multi-Timescale with GA for Feature Selection Analysis 

5.6.1 GA for Feature Section on IWS 

The earlier findings of Subsections 5.5.1 and 5.5.2 perpetuate the study of GA for feature 

selection for IWS. The entire system is called GATSCNN, and the experimentation results are 

tabulated in Table 5.5 where the first to third row are the result from Table 5.3, row 5,6 & 7 and 

is used for comparison between with GA and without GA runs. Row 7,8 & 9 is the combination 

of models by averaging the final logits. In rows 4,5 & 6 under column “feature subset”, the 

value in the bracket is the number of features not being selected. Notably, the experiments 

demonstrated that GA with the first order did not amount to any improvement. As such, GA for 

the first order is not being evaluated further. Hence, for experiments GATSCNN and 

GATSCNN-2, GA is only applied in the second-order.  
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CLASSIFICATION RESULT OF GATSCNN 

No Features FEATURE SUBSET GA ACCURACY 

1* 46-92 FULL 513 No 70.72% 

2* 46-185 FULL 614 No 70.42% 

3* 46-371 FULL 724 No 70.51% 

4 (1) 362 out of 513 Yes 70.41% 

5 (2) 445 out of 614 Yes 71.12% 

6 (3) 524 out of 724 Yes 70.14% 

7 (4+5) - - 73.00% 

8 (4+5+6) - - 72.70% 

9* (1+2+3) - - 71.30% 

Table 5.5.  Classification result of GATSCNN. This is the classification result of GATSCNN and only 

the second-order is of interest while the first order is left untouched for all the experiments.  

The application of GA has shown optimistic results for Table 5.5, row 5, while for Table 5.5, 

rows 4 & 6, there is a slight decrease in accuracy of approximately 0.3%. However, for all cases, 

Table 5.5, rows 4, 5 & 6, GA has managed to reduce the dimension of the features by at least 

~27%, which translates to a reduction in model training cost of 20s-25s per epoch presented in 

Table 5.7. Hence, reaffirming that the second-order coefficients of WS consist of redundancy 

and, for the case of Table 5.5, row 5, irrelevancy too. 

Redundancy can likely occur in second-order coefficients as it is a more refined representation 

of first-order coefficients. Hence, there lies a possibility that a sound source is captured in 

multiple second-order coefficients. On the other hand, irrelevancy occurs when no important 

sound sources reside in that frequency spectrum, or a frequency spectrum shares similar second-

order coefficients with the rest of the data. Thus, rendering the second-order coefficients not 

useful when discriminating different acoustic scenes. 

Irrelevancy is evident when combining the models by averaging the final logits from the 

softmax layer, as shown in Table 5.5, rows 8 & 9. In the comparison of Table 5.5, rows 8 & 9 

have shown an improvement of 1.30% classification accuracy, on top of a combined 

computational cost reduction of 30s to 45s per epoch. While combining just Table 5.5, rows 4 

& 5, models have shown the best result for GATSCNN implementation. 

5.6.2 GA for Feature Section on Multi-timescale WS 

In this experiment, the Multi-timescale WS is created based on the findings of Section 5.4, 

being 46ms, 92ms, 185ms, and 371ms. While evaluating a single second-order coefficient in 

Section 5.6.1 has highlighted the existence of redundancy and irrelevancy, the effect is greater 
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when all the timescales is being combined, as shown in Table 5.6. This table provides a 

tabulated perspective on the comparative study of FS1 vs FS2 vs FSALL. FS1 is constructed 

by concatenating the feature subsets from Table 5.5, rows 4, 5 & 6. Following Table 5.5, the 

feature subset only reflects the total number of features for the second-order. The algorithm for 

the construction of FS1 is described in Section 4.2. FS2 is the best solution from GATSCNN-

2. Lastly, FSALL is the full set of features from the three timescales. 

Prior to evaluating GATSCNN-2, another feature is constructed with all the timescales based 

on the second-order feature subsets from Table 5.5, rows 4, 5 & 6, and termed it as 'FS1'. FS1 

is constructed using a statistical-based approach on each timescale.  

CLASSIFICATION RESULT OF GATSCNN-2 

No Features MODEL FEATURE SUBSET GA ACCURACY 

1 FS1 TSCNN 920  - 72.60% 

2 FS2 TSCNN 923 Yes 72.89% 

3 FSALL TSCNN 1851 No 72.32% 

4 FS1 TSCNN-2 920 - 71.55% 

5 FS2 TSCNN-2 923 Yes 73.32% 

6 FSALL TSCNN-2 1851 No 72.36% 

Table 5.6. Classification result of GATSCNN-2. This is the classification result of GATSCNN-2 and a 

comparative study of FS1 vs FS2 vs FSALL.  

Let use Table 5.5, row 4, as an example. The final product of GATSCNN provides the best 

solution and a set of parents. This set of parents has the ‘best solutions’ from the GA run, and 

the best solution can be expressed as ‘the best of the best’. With the best solutions or parents, a 

frequency model is built based on the number of occurrences each feature or gene is being 

selected. Hence, in this context, a highly desired feature will have a frequency count of 8, and 

the worst case will have a frequency count of 0. After calculating the number of occurrences, 

only the top 50 percentile of the features is being retained. This process is also emulated on 

Table 5.5, rows 5 & 6. Notably, a trail is conducted with various retention percentages and in 

this thesis, only the ‘retention policy’ with the best classification accuracy is being presented. 

Lastly, all 3 timescales are concatenated together along the frequency axis. 

Next, FS1 is compared against 'FS2'. 'FS2' is the optimal feature subset output from running 

GATSCNN-2. The difference between FS1 and FS2 is that FS2 has feature interaction between 

the second-order of different timescales during the feature selection process. The selection 

based on the three timescales directly constitutes the classification accuracy. Hence, based on 

Table 5.6, FS2 has the best performance for all the outputs, whether it is evaluated on TSCNN 

or TSCNN-2. While comparing FS1 and FS2, this paper reconfirms the importance of feature 



 

84 
 

interaction (de la Iglesia, 2013, Oreski and Oreski, 2014). The lack of feature interaction is even 

more apparent in Table 5.6, row 4. 

Indeed, the combination of the four timescales has produced features with high redundancy and 

irrelevancy, which resonate with the plot shown in Figure 2.7. Thus, the application of GA has 

removed redundancy and irrelevancy while achieving better performance in Table 5.6, row 5, 

yielding 73.32% accuracy, which is almost 1% gain in accuracy, while ~50% reduction in 

feature dimension, translating to saving ~40% of the computational time as shown in Table 5.7. 

The computational time is recorded based on the average time to train each epoch with a batch 

size of 32. (~80s per epoch faster of the usual ~200s per epoch, which can be expressed as 

80𝑠/200𝑠 ∗ 100% = 40% ) 

COMPUTATIONAL TIME ANALYSIS 

No Features TIME(S) FS TIME (S) 

1 46-92 75  53 

2 46-185 84 57 

3 46-371 98 77 

4 ALL 200 120 

Table 5.7.  Computational time analysis. This Table presents the computational time required before 

and after feature selection, column TIME, and FS TIME, respectively. 

 

5.7. Ablation study of the proposed Two-stage Mobile Shuffling Network 

The main scope of this evaluation is targeted at the analysis of shuffling modules. In Subsection 

5.7.1, this section performed an ablation study of SSS, TPS, and CS. The ablation study is 

broken down into two parts: the first part is an evaluation of the individual type of shuffling 

modules. In this experiment setup, an investigation on the relationship between the position of 

the shuffling module and the number of shuffling modules that will influence the performance 

of the T-MSNet is being performed. Subsection 5.7.2 involves the study of the synergy of 

collectively combining SSS, TPS, and CS. Lastly, the robustness of shuffling modules on all 

the ASC datasets is evaluated. 

5.7.1. Ablation study of SSS, TS amd CS 

This experimentation investigates the effectiveness of the individual type of shuffling modules 

when ‘activated’ in different locations of T-MSNet, being S1, S2, S3 & S4 termed in Chapter 

4, Section 4.4. Individual type of shuffling modules means that SSS, TPS, and CS are evaluated 

separately. Overall, SSS has the best performance in classification accuracy and logloss as 

illustrated in Figure 5.5. This exhibits that SSS is more effective for a time-frequency 

representation, especially IWS (due to its high-frequency dimension). The first operation of 
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SSS, which splits the feature maps ‘frequency-wise’, corresponds to the signal processing 

technique of applying equal frequency binning or using linearly scaled filters on the 

spectrogram. (The more common practice is applying spectrogram with mel-scale filterbanks) 

Hence, a slice of the feature maps has similar characteristics to a frequency bin. Next, the 

shuffling operations mix the frequency bins around such that the feature maps are no longer 

ordered based on frequency magnitude (e.g., 0-100Hz, then 101-200Hz, then 201-300Hz, …). 

This forces the network to learn the general “shape” of the acoustic rather than the pitch. E.g., 

It no longer matters to the network whether it is a female voice or male voice since it just 

generalized that this is a speech. Hence, the general consistency in the improvement of logloss 

is demonstrated by SSS. The improvement of logloss is also reflected in other datasets. (Ref. 

Figure 5.5b) 

However, the effect of improved model generalization is lost when applying SSS on S4. The 

inclusion of SSS on S4 has been demonstrated to result in a higher logloss. We attributed the 

cause of this observation to the relatively smaller dimensional size of F, which is 30. (Refer to 

Table 4.6) The poorer performance observed when shuffling with a low-dimension size is in 

unison with the findings (Fan et al., 2021). They concurred that channel shuffling is ineffective 

at earlier layers because of limited channels. Another observation made is that the classification 

accuracy dips when SSS is activated on S1. One possibility is that the network needs to learn 

initial spatial relationships and to shuffle better on feature maps with higher dimensional space. 

(a few layers of CNN with non-linear activation function) The same setup is also being 

performed on TPS and CS. However, their classification accuracy performances are erratic and 

do not improve the logloss. Furthermore, in some cases, the classification accuracy worsens 

with the inclusion of TPS or CS. This observation is again supported by the findings of (Fan et 

al., 2021), where shuffling does not work effectively on low-dimension sizes. 

The proposed SSS works best on a low-complexity model with IWS with a high dimension size 

of F. Hence, there is a need to evaluate the effectiveness of GAFS with T-MSNet proposed in 

Chapter 4, Section 4.5 to analyze whether shuffling modules work with GAFS. On top of that, 

including a single SSS on S2 provides the best overall performance. 
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a)  Classification accuracy. 

 

b)  Logloss 

Figure 5.5.  Result of various position of SSS, TPS and CS on T-MSNet. Index 1,2,3 & 4 relates to 

S1,S2,S3 & S4 termed in Chapter 4, Section 4.4. 

 

 

 

 

65

66

67

68

69

70

71

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy
(%

)

Positioning index of shuffling modules

SSS TPS CS

0.500

0.700

0.900

1.100

1.300

1.500

0 1 2 3 4 12 23 34 123 234 1234

Lo
gl

o
ss

Positioning index of shuffling modules

SSS TPS CS



 

87 
 

5.7.2. Ablation study of combining SSS, TPS and CS 

While the study of Subsection 5.7.1 provides an insight into the individual effectiveness of each 

shuffling module, this Subsection explored the possible synergy when combining all of them. 

It is incredibly time-consuming to evaluate all the types of combinations. Based on the 

observation from Subsection 5.7.1, some rules are being drawn to reduce the number of possible 

tests. The rules are as follows:  

• SSS must always be included as it provides significant improvement to logloss. 

• There should not be a combination where SSS is solely activated in S1, S4 and S34 (S34 

stands for SSS activated on both S3 and S4), due to poor logloss performance. 

Based on the rules, the focus is shifted to SSS being the lead shuffling module and how TPS 

and CS can enhance it. Even with the rules, there are still several combinations. Hence, a 

random search is used. (more than 20 combinations, the results are presented in Appendix A) 

As no particular findings can be observed, this thesis presents the top 3 combinations in Table 

5.8. With Row 1 having the best shuffling performance. The overall performance of the 

combinations is relatively close. Hence, other datasets is used to establish consistency and test 

the robustness of shuffling modules. 

 BEST RESULT OF VARIOUS COMBINATION OF SSS,TS AND CS 

No Combination Accuracy Logloss 

1 SSS2 70.50% 1.185 

2 SSS234,CS234 70.39% 1.148 

3 SSS234,CS4 70.25% 1.149 

4 SSS2,TS34,CS3 70.60% 1.162 

Table 5.8.  Best result of various combination of SSS,TS and CS. This Table presents the top 3 best 

combinations of SS, TS and CS based on a set of rules and a random search.  

 

 

5.7.3. Robustness of Shuffling Modules on ASC 

In this Subsection, to examine the robustness of shuffling modules, it is evaluated with 

additional datasets and the results can be seen in Figure 5.6. A slight progressive improvement 

is observed when we mixed first and second-order to form IWS for the US8K and DCASE 2021 

datasets, while a significant improvement is observed for ESC-50. This can be attributed to the 

number of classes needed to be classified. The variety of sounds recorded for ESC-50 is larger 

than US8K and DCASE 2021 (the number of classes is 5 times larger). Thus, it has a richer 

acoustic characteristic, and by mixing different timescales, the model can distinguish the other 

acoustic profiles better. 
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Yet another observation is noticed when comparing the model performance on ESC-50 against 

US8K and DCASE 2021. A significant increase in performance is observed when IWS was 

applied and further alleviated when shuffling modules were activated on ESC-50. This can be 

attributed to the size of the dataset. ESC-50 is a small dataset, and CNN is known for overfitting 

when the sample size is small. Hence, this finding reaffirmed that the shuffling algorithm could 

improve the generalization of the model, as mentioned by (Fan et al., 2021, Ma et al., 2018, 

Zhang et al., 2018c). Another tell-tale of better generalization can be observed by the consistent 

improvement of logloss when shuffling modules are applied, as exhibited in Figure 5.6b. 

Shuffling modules can improve classification accuracy and logloss performance for all the 

datasets. Generally, the top 3 T-MSNet configurations presented in Table 5.8 have very close 

performance rating. While the combination of SSS, TS and CS has been shown to provide the 

best classification accuracy, the activation of a single SSS offers a less complex model 

(complexity means that it has fewer hyperparameters to configure). In summary, sub-spectral 

shuffling is the most effective shuffling module for the proposed system setup. 
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a) Classification accuracy 

 

b) Logloss 

Figure 5.6.  Result of the top 3 variant shuffling modules evaluated on other datasets. WS and IWS are 

models without shuffling modules. The tabulated result is in Appendix, Table IV (classification accuracy) 

and Table V (logloss).  
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5.8. Comparative Analysis 

5.8.1. Comparing GATSCNN-2 with SOTA(s) models presented in DCASE 2020 

Table 5.9 tabulated the top 3 models from DCASE 2020 Task1a, being ‘Suh’ relates to (Suh et 

al., 2020), ‘Hu’ relates to (Hu et al., 2020), and ‘Gao’ relates to (Gao and McDonnell, 2020). 

Starting after the index column, 'Ref' points to the reference of the paper. 'FEAT' stands for 

feature, and under feature, LMS stands for log mel-spectrogram. Next column, 'DATA AUG', 

stands for Data Augmentation and column 'EVAL/DEV ACC' stands for classification accuracy 

for the evaluation dataset and development dataset. Under column 'DATA AUG', 'SpecAug' 

stands for spectrum augmentation, which involves randomly masking of the frequency axis and 

time axis before training. The DRC stands for Dynamic Range Compression. We denote '*Etc' 

for (Hu et al., 2020), as they used several data augmentation techniques. Under column 

“MODEL”, we included the result of a single model labelled ‘SINGLE’, VGG-liked refers to 

similar model as (Simonyan and Zisserman, 2014), and ’McDonnell’ is the CNN model from 

(McDonnell and Gao, 2020).  This is to provide another perspective when comparing the 

Genetic Algorithm with Two-stage Convolution Neural Network (GATSCNN-2) model.  

COMPARISON WITH DCASE 2020 TASK1A MODELS 

No Ref FEAT DATA AUG MODEL 
EVAL/DEV 

ACC 

1 ‘Suh’ LMS Mix Up 

Temporal Crop  

Ensemble 

TSCNN-liked 

Frequency-wise 

dilated conv 

76.5%/74.2% 

    SINGLE 75.5%/73.7% 

2 ‘Hu’ LMS Reverberation 

+ DRC  

Mix Up 

SpecAug 

*Etc. 

Ensemble of 

VGG-liked and 

TSCNN-liked  76.2%/81.9% 

    SINGLE -/74.6% 

3 ‘Gao’ LMS Mix Up 

Temporal Crop 

Ensemble of 

‘McDonnell’, 

‘McDonnell’+ 

focal loss and 

‘McDonnell’+ 

auxiliary binary 

classifier 

75.2%/72.5% 

    SINGLE 75.0%/71.7% 

4 Prop* WS Mix Up GATSCNN-2 -/73.3% 

Table 5.9.  Comparison with DCASE 2020 Task1a models. This Table presents the top 3 models from 

DCASE 2020 Task1a.  
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Notably, most of the models adapted a Two-staged Convolution Neural Network (TSCNN)-

liked or TSCNN variants approach, and all of them uses log mel-spectrogram. While not stated 

in the Table, all the models use the same learning strategy of SGD with warm restart. The 

models are ranked based on the evaluation dataset set classification result. Notably, all the 

authors (Hu et al., 2020, Suh et al., 2020, Gao and McDonnell, 2020) and this paper adopted a 

two-stage convolutional architecture. While their best performing models are all ensemble 

models, results on their single model are also provided to have a better perspective when 

comparing against the proposed model. 

Based on Table 5.9, the proposed model has the edge over (Gao and McDonnell, 2020), 

regardless of comparing against a single model or the ensemble model. Adding the comparison 

of (Gao and McDonnell, 2020, Suh et al., 2020, Hu et al., 2020) to the analysis, GATSCNN-2 

comes short of 0.4%. The combined comparison analysis between GATSCNN-2, (Suh et al., 

2020), and (Gao and McDonnell, 2020), further established the need for higher frequency 

resolution. While (Gao and McDonnell, 2020), only uses 128 frequency bins, while (Suh et al., 

2020) have double the frequency bins (256). Likewise, in the experiment, the need for multi-

timescale is being observed, which also has the same effect as increasing the frequency 

resolution to improve the classification accuracy (Refer to Table 5.5, row 5 against Table 5.6, 

row 5).  

In the case of (Hu et al., 2020), they approached this problem using a myriad of data 

augmentation techniques. Their single model architecture is quite similar (Gao and McDonnell, 

2020), and the only difference is that the number of channels after each convolution has doubled. 

The application of various data augmentation techniques resulted in a dramatic classification 

accuracy of 74.6% and 81.6% on the development dataset (single and ensemble models, 

respectively). However, their accuracy dipped from 81.6% to 76.2% on the evaluation 

dataset.  When compared with a single model (Hu et al., 2020) against (Gao and McDonnell, 2020), 

the model suppressed by 2.9% on the development dataset. The estimated gain can range from 

0.7% to 1.2% as there is no classification accuracy recorded for the single model (Gao and 

McDonnell, 2020). By estimating using the available ensemble results, there is a possibility of 

the higher classification accuracy contributed by the multiple data augmentation techniques 

despite increasing the training time leading to higher computing resources. 

In short, GATSCNN-2 fall short compared to the first and second models due to having an 

ensemble model. While comparing against single model, the gap become closer with 0.4% 

differences against the top model and 1.3% differences against the second place. The possible 
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reason is the change in convolution layers design expedited in ‘Suh’ model and the used of 

more advance data augmentation techniques such as ‘SpecAug’ observed in ‘Hu’ model.  

Based on the comparative study, the best way to improve the classification accuracy is to 

enhance the frequency resolution. However, doing so will have a caveat, the increase in 

frequency resolution will directly translate to an increase in computational cost in Table 5.10, 

row 2 compared to row 1, and for WS, row 4 to row 6. While Table 5.10 presented a  

COMPUTATIONAL TIME ANALYSIS WITH DIFFERENT FEATURE SIZE  

No Ref FEAT 
FEAT SIZE (C IS 

EXCLUDED) 

FLATTEN 

SIZE 
TIME(S) 

1 ‘Suh’ LMS 

1. 64 x 423  

108,288 160 2. 64 x 423 

3. 128 x 423 

2 ‘Hu’, ‘Gao’ LMS 
1. 64 x 423 

54,144 86 
2. 64 x 423 

3 GATSCNN 46-185 
1. 87 x 248 

74,976 57 
2. 445 x 120 

4 GATSCNN 
46-185 

FULL 

1. 87 x 248 
95,256 84 

2. 614 x 120 

5 
GATSCNN

-2 
FS2 

1. 87 x 248 

135,090 120 
2. 306 x 129 

3. 256 x 120 

4. 361 x 120 

6 
GATSCNN

-2 
FSALL 

1. 87 x 248 

243,696 200 
2. 614 x 120 

3. 513 x 120 

4. 724 x 120 

Table 5.10.  Computational time analysis with different feature size. This Table presents a 

computational time analysis of DCASE 2020 Task1a top 3 features shown in TABLE VIII and the 

proposed models. 

 

computational time complexity comparison between the features, it is still not ‘fair’ to directly 

compare LMS against WS as the CNN architecture significantly contributes to the 

computational time complexity. Hence, the comparison is made based on the size of the input 

representation. As mentioned in Chapter 4, the size of the input representation does contribute 

to the time complexity. Presented in Table 5.10 is a comparison of the feature size of LMS 
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against WS with GA feature selection and providing a reference towards the computationally 

time competitiveness of the proposed GATSCNN-2. This Table presents a computational time 

analysis of DCASE 2020 Task1a top 3 features shown in Table 5.9 and the proposed models. 

C denotes the number of channels, and in this case, between (Hu et al., 2020, Suh et al., 2020, 

Gao and McDonnell, 2020) and our features all have 3 channels, being the original feature map 

followed by the deltas and deltas-deltas. Hence, we excluded it for brevity. Next, the feature 

map is split into groups and fed to TSCNN, hence, column ‘FEAT SIZE’ shows the dimension 

of the input representation of TSCNN. Under column ‘FEAT’, row 4 and row 6 address the full 

features of the first and second-orders. Providing a ‘fair’ computational time comparison 

between (Hu et al., 2020, Suh et al., 2020, Gao and McDonnell, 2020) and the proposed models 

is rather challenging. The computation time complexity of training a model is impacted by 

various factors, such as the number of data augmentations being used, differences in CNN 

model architecture, number of epochs per training and whether it is an ensemble model. Hence, 

the attention is drawn towards analyzing the input representation. The controlled setup is 

described below. The time complexity recorded is based on a single model run (not ensemble 

model) and based on the average time to train each epoch with a batch size of 32. A restriction 

is placed on the data augmentation, such that only Mix Up is applied, and the feature size for 

LMS is the result after temporal crop. As for the model, a TSCNN-liked architecture proposed 

by (McDonnell and Gao, 2020) for (Suh et al., 2020) & (Gao and McDonnell, 2020) is adapted, 

except that we increase the number of initial channels to 32 for the first convolution layer. For 

(Suh et al., 2020), the TSCNN-liked architecture proposed by them without dilated convolution 

layer is used. (with dilation, the time per epoch increases to 183s) The distinct difference 

between the TSCNN models and (Hu et al., 2020, Suh et al., 2020, Gao and McDonnell, 2020) 

is that there is frequency downsampling for the second-order(s). Hence, WS has a larger flatten 

dimension than LMS but a faster computational time. Overall, this Table presents the 

importance of employing GA for feature selection to make multi-timescale WS computationally 

time competitive on top of the improved classification result. 

In summary, a fresh approach is presented on using GA feature selection to combine multi-

timescales WS. It has shown that it improves the classification accuracy performances and 

makes multi-timescales WS computationally time competitive. This approach was not realized 

(Hu et al., 2020, Suh et al., 2020, Gao and McDonnell, 2020). The proposed methods include a 

direct increase in frequency resolution, improved CNN architecture, improved loss function, 

incorporating, and an ensemble model. All proposed approaches improve the classification 

accuracy at the price of added computational time. 
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5.8.2. Comparing T-MSNet with SOTA(s) models presented in various datasets. 

In this section, a comparison between the proposed T-MSNet and SOTA(s) models on various 

datasets is tabulated in Table 5.11 where [1] relates to (Arandjelovic and Zisserman, 2017), [2] 

relates to (Lopez-Meyer et al., 2021), [3] relates to (Mohaimenuzzaman et al., 2021), [4] relates 

to (Piczak, 2015), [5] relates to (Zhang et al., 2018d), [6] relates to (Mohaimenuzzaman et al., 

2022), [7] relates to (Kim et al., 2022), [8] relates to (Yang et al., 2021),  [9] relates to (Koutini 

et al., 2019), [10] relates to (Mart'in-Morat'o et al., 2021), and * denotes the proposed model T-

MSNet. Logloss is not recorded for ESC-50 and US8K as models are compared based on 

classification accuracy. AVC stands for Audio-visual correspondent, a self-supervised learning 

approach to build audio and image embeddings. End-to-end means that the network take in the 

raw waveform as the input representation. CF stands for convolution factorization. KD stands 

for knowledge distillation. Generally, all the models are CNN. Furthermore. the differences 

between T-MSNet and theirs is being discussed. 

ESC-50 

T-MSNet has an advantage over human classification accuracy presented (Piczak, 2015). L3-net 

developed by (Arandjelovic and Zisserman, 2017) uses self-supervised learning with an 

unlabeled video dataset to build audio and image embeddings. In the case of  (Heittola et al., 

2020), they have demonstrated the effectiveness of embeddings on the DCASE 2021 dataset. 

However, the model size complexity cost of embeddings is too high. Hence, it is not 

recommended for low complexity modeling.  

 While compared to (Lopez-Meyer et al., 2021), the addition of pretraining the model with a 

very large dataset, AudioSet (Gemmeke et al., 2017), has improved performance dramatically. 

However, a lesser gain is observed when the same setup is applied on US8K. This can be 

attributed to the dataset size; transfer learning from an extensive dataset is more effective when 

the dataset is small. The effect diminishes when applied to a larger dataset. Although transfer 

learning from a very large dataset has shown to be very useful, it requires massive resources 

and training time first to learn the semantics of the very large dataset.  

Lastly, (Mohaimenuzzaman et al., 2021) proposed a model that has nearly the same model size 

as T-MSNet. Pruning and quantization are used to bring down the model's parameters 

drastically. T-MSNet has a slight edge over the pruning technique in this scenario. Overall, 

themodels used in ESC-50 are not geared towards low-complexity modeling. Hence, the best 

benchmark is against (Piczak, 2015) and (Mohaimenuzzaman et al., 2021). Notably, without 

the limitation on model size, (Gong et al., 2021, Guzhov et al., 2022) are current SOTA models 
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ACCURACY COMPARISON OF T-MSNET WITH STATE-OF-THE-ART 

 
Method Accuracy/Logloss Parameters/Size 

ESC-50 

[1] L3-net 

Self-supervised with 

AVC 

CNN(8 layer standard) 

External Dataset 

79.3% ~4.7M/- 

[2] CNN 

AudioSet 
Audioset: 88.64% 

Scratch: 72.71% 
635,002/- 

[3] CNN 

Pruning Quantization 

with 8-bit 
81.50% 131K/157kB 

[4] Human accuracy 81.30% - 

* 

CNN 

CF 

Quantization 
73.75% 64,788/126KB 

* With shuffling 82.15% 64,788/126KB 

US8K 

[2] Same as ESC-50 
Audioset: 81.80% 

Scratch: 74.77% 
635,002/- 

[5] CNN 

CF 
79% ~508K /2.05MB 

[6] CNN of [3] 

Pruning 

Quantization 

70.93% 130K/133.12KB 

* Same as ESC-50 79.76% 64,788/126KB 

* With shuffling 81.00% 64,788/126KB 

DCASE 2021 

[7] 

CNN 

Pruning 

Mix Quantization 

KD 

EVAL: 76.1%/0.724  

DEV: 75.9%/0.716 

66.1K, 8-bit+ 29.4K, 

16-bit/122.5KB 

[8] 

CNN 

KD 

Pruning (LTH) [53] 

Quantization 

EVAL: 72.9%/0.758 

DEV: ~79.4%/0.640 
-/125KB 

[9] 
CNN 

Pruning 

Quantization 

EVAL: 72.1%/0.834 

DEV: 69.5%/0.890 
64,625/126.22KB 

[10] 
Official Baseline  

using CNN 

EVAL: 45.6%/1.730 

DEV: 46.9%/1.461 
46,246/ 90.3KB 

* Same as ESC-50 DEV: 68.28%/1.148  

* With shuffling DEV: 70.39%/1.148 64,788/126.6KB 

Table 5.11.  Acuuracy comparison of T-MSNet with state-of-the-art. The Table presents the 

consolidated SOTA of 3 datasets. 
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that achieve ~95% and ~97% classification accuracy, respectively. The standard technique used 

by both models is pre-learning semantics from the external dataset(s). In the research (Gong et 

al., 2021), they adapted ‘Transformer’ network and modified it to be suitable for audio 

classification. ImageNet and AudioSet are used to pretrain the network. Researchers have 

incorporated a CLIP framework (Guzhov et al., 2022) with a CNN model dedicated to audio 

classification. In short, the CLIP framework is the joined learning of multi modalities, typically 

visual and textual. They extended the number of modalities to include audio modalities. The 

output of CLIP is a shared multimodal embedding space. Similar to (Arandjelovic and 

Zisserman, 2017), (Gong et al., 2021, Guzhov et al., 2022) requires tremendous resources and 

training time. 

US8K 

Similar to ESC-50, US8K is not geared towards low-complexity modeling. Hence, T-MSNet 

remains competitive against the models presented in Table IV. While comparing to 

(Arandjelovic and Zisserman, 2017), the inclusion of an additional dataset only shows a slight 

advantage against T-MSNet. The work (Zhang;Zou and Wang, 2018) uses convolution 

factorization and shares the same approach as T-MSNet. However, T-MSNet has the edge over 

their model in terms of both performance and model size. T-MSNet differentiation lies with the 

inclusion of shuffling modules, which has improved the generalization of the model. Lastly, 

(Mohaimenuzzaman et al., 2022) reused the CNN model proposed by (Mohaimenuzzaman et 

al., 2021) and performed a series of pruning and quantization. Their best result that pushes the 

model size to 133.12KB only stands at 70.93%. In addition, (Guzhov et al., 2022) have also 

been evaluated with US8K and achieved a SOTA result of 90.07%.  

DCASE 2021 

Lastly, Table V shows the comparison of the top 3 models against T-MSNet. The models are 

ranked based on DCASE 2021 Task1a challenge result. The main difference between T-MSNet 

against theirs is the use of a parameters pruning strategy. Parameters pruning removes weights 

that the employed pruning strategy deemed less important. This strategy has proved to be 

extremely effective in compressing the size of a very large model (Kim et al., 2022, Yang et al., 

2021, Koutini et al., 2019, Mart'in-Morat'o et al., 2021), hence, the popularity of applying this 

technique. In addition to pruning, (Kim et al., 2022, Yang et al., 2021) uses knowledge 

distillation to transfer ‘learning’ from the larger model to the pruned network.  

Although T-MSNet falls short compared to logloss, the classification accuracy put us in third 

place. Furthermore, this thesis presents a different approach to carefully constructing the CNN 
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architecture using convolution factorization and design patterns. Instead of pruning and 

knowledge distillation, shuffling modules, a zero-model size cost algorithm, is proposed to 

improve model generalization. 

Table 5.11 shows that pruning, convolution factorization, knowledge distillation, and 

quantization effectively compress the model. However, supporting pruning and knowledge 

distillation is the requirement of a well-constructed CNN. In contrast, convolution factorization 

requires careful planning for each layer, and hence, both have their disadvantages. In addition 

to the above-stated techniques, shuffling modules, a stochastic method, improves model 

generalization and favours low-complexity modelling as it does not constitute model size. 

5.9. Chapter Summary 

This chapter provides results and evaluations on the experimentation of the proposed model 

and the datasets presented in Section 1.4 and can be divided into three parts. The first part 

begins with the sharing on how the experimentation is being executed. In this discussion the 

hyper-parameters setting, and feature extraction process is further elaborated.  

The second part of the chapter revolves around investigation and ablation studies of the 

proposed models. The first investigation is an ablation study of TSCNN. TSCNN is designed 

to tackle the magnitude disparity problem of the first and second-order coefficients. The results 

shows that by adjusting the proportion between specialized and centralized learning to an 

optimal position, the TSCNN can slightly elevate the magnitude disparity problem. In addition, 

the optimal ratio of specialized and centralized learning is highly dependable on the CNN 

architecture, specially convolution block design, and the input representation, in this case, log 

mel-spectrogram and wavelet scattering.  

The second investigation is a study on normalization. While magnitude disparity problem is 

typically resolved by performing renormalization, this paper proposed that normalization 

technique such as batch normalization, that is incorporated in the CNN architecture can replace 

the renormalization procedure. The results shows that generally, normalization is required to 

improve the performance of the model, and batch normalization is the most effective 

normalization technique and can be used to replace renormalization.  

Moving on to the next study is an analysis on the timescale of both log-mel spectrogram and 

wavelet scattering. A range of timescale, TS = [23,46,92,185,371,743,1480]ms is evaluated in 

this study. It is evident that Heisenberg Uncertainty Principle affects both log-mel spectrogram 

and wavelet scattering. In addition, the study highlighted the optimal range of timescales, being 

46ms, 92ms, 185ms, and 371ms for WS, which is a crucial information when constructing IWS 
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and multi-timescale WS. Hence, the subsequent investigation continues with the analysis of 

timescale for IWS, where it is observed that regardless of CNN architecture, TS for the first 

order must always be smaller than the TS of the second-order when constructing IWS. 

Next, is the experimentation on the GA for feature selection, which is delivered in two sessions, 

first is on GAFS for IWS, and second is on GAFS for Multi-timescale WS. For both cases, 

GAFS has generally improved the performance of the model in accuracy and time complexity. 

Hence, a conclusion is drawn stating that there lies redundancy and irrelevancy for IWS and 

Multi-timescale WS. While a slight improve in accuracy is observed, the reduction in feature 

dimension and time complexity is obvious. GAFS helps to downsize IWS by ~27% and Multi-

timescales WS by 50%, which directly translate to 30% and 40% decreased in computational 

time, respectively. 

While the earlier study is on time complexity, the next set of experimentations study the 

proposed model T-MSNet, which is a low complexity model with 64,788 parameters and has a 

size of 126KB. This model fits the profile of deploying in a less computationally powerful 

devices such as smartphones. T-MSNet is embedded with shuffling modules which is heavily 

studied as there is a lot of possible combination involve when curating the ‘best’ T-MSNet. 

From choosing the type of shuffling modules, being channel shuffling, the proposed sub-

spectral shuffling, and temporal shuffling, to in which layer should the shuffling module(s) be 

activated. This paper tackles this problem, by first experimenting with isolated type of shuffling 

modules. This means that the T-MSNet will only be embedded with a type of shuffling modules 

and based on the result, a set of rules is constructed before performing a random search with a 

mix of shuffling types. Based on the ablation study, sub-spectral shuffling has shown to be the 

most effective shuffling modules. In addition, sub-spectral shuffling when embedded correctly 

is the only shuffling module to improve logloss. 

Lastly, this chapter wraps up by comparing the proposed model, GATSCNN-2, and T-MSNet 

with SOTA(s) models presented in DCASE 2020, DCASE 2021, ESC-50, and US8K. 

GATSCNN-2 comfortably beats the third place, while the score closely matched the first place 

based on a single model comparison. For T-MSNet, it stands in the third place in DCASE 2021 

based on classification accuracy but falls short when comparing with logloss. Low complexity 

modelling is a rather new area for ASC, hence, researchers who benchmarked their model with 

ESC-50 and US8K do not usually head towards the direction of developing low complexity 

model. Therefore, this paper compares models that have low complexity modelling in mind, 

while noting that there are other more superior models. In both cases, T-MSNet is able to 

perform rather well, except if it is compares to those models that uses pretraining with Audioset.  
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Chapter 6. Conclusion and Future 

Works 
 

 

6.1. Summary of findings 

In the first part of this thesis, an investigation is conducted on wavelet scattering coupled with 

CNN to tackle ASC task and has resulted in the identification of three weaknesses of wavelet 

scattering. The three weakness are magnitude disparity problem, Heisenberg Uncertainty 

Principle, and large frequency dimension.  

Magnitude disparity problem is a nature characteristic of wavelet scattering as the cascading 

wavelet transform operations will cause a huge different in magnitude between the lower and 

higher orders. In this case, the problem is fixated at first and second-order. Typically, a 

technique called renormalization is introduced to elevate this problem. However, this thesis 

proposed a two-stage convolution neural network architecture coupled with batch 

normalization to ease off this problem. Batch normalization is commonly used to indicate that 

the normalization is part of the CNN architecture, however, there are also other type of ‘network’ 

normalization techniques. The outcome of the proposed TSCNN shows a slight improvement 

in elevating the problem, while normalization really does the work. Overall, the ablation study 

of various normalization techniques has pointed out that batch normalization works best for WS 

and ‘network’ normalization techniques can be used to replace renormalization. 

Heisenberg Uncertainty Principle is often used to describe the problem faced by log mel-

spectrogram which uses a fixed timescale to construct the time-frequency representation. The 

Heisenberg Uncertainty Principle simply means that one do not know the number of sound 

characteristic residing in a given acoustic scene recording, hence, it is prudent to assume that 

all the sound characteristic can be captured with a single timescale. While wavelet scattering 

uses the wavelet theorem to construct the time-frequency representation, it is still slightly 

affected by Heisenberg Uncertainty Principle as it is constraint by an averaging function which 

limits the maximum scaling factor the wavelet scattering can achieve. The averaging function 

is crucial to make the wavelet scattering coefficients invariant to translation. While one way to 

resolve this issue is to concatenate multiple timescales or resolution, typically called 
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multiresolution/multi-timescale, this will leads to irrelevancy and redundancy which might 

impede the model from learning correctly. In light of this, this thesis proposed the adaptation 

of genetic algorithm for feature selection, to select the optimal subset of the multi-timescale 

WS. The outcome is a reduction of feature dimension by ~50% and an improvement of 

classification accuracy, that position the model in the third place in DCASE 2020. This finding 

reaffirmed the hypothesis of the occurrence of irrelevancy and redundancy. 

Lastly, large frequency dimension posts the same problem of having the possibility of 

irrelevancy and redundancy. In addition, this becomes a much more pressing problem when 

designing a low complexity model, where time is of the essence. The reduction in feature 

dimension means lesser convolution operations is required, hence, this has a direct impact on 

the time complexity. The solution to this problem is rather straight forwards as GAFS can be 

used to tackle this problem. Similarly, the outcome is positive too, a reduction in feature 

dimension by ~27% with a slight improvement in accuracy. 

Touching on low complexity model, the reason for this application is due to the advancement 

of technology towards IoT and smart devices. Hence, there is an upward trend towards 

developing low complexity models such that it can be deployed into a less computational 

powerful hardware. While GAFS is used to reduce the time complexity, the second part of this 

thesis, elaborate about model compression techniques employed to reduce the size complexity. 

Before moving on to the proposed T-MSNet built using model compression techniques, this 

thesis proposed an enhanced WS called ‘Interleaved Wavelet Scattering’. The idea is a simple 

mixing of the first and second order with a different timescales as it is not possible to build a 

low complexity model with multi-timescale WS. Hence, mixing the first and second order will 

potentially increase the number of timescales, thus, reducing the effect of Heisenberg 

Uncertainty Principle. An ablation study is conducted to understand the relationship of mixing 

first and second order with different timescales. Notably, IWS must be mixed with the first 

order having a smaller timescale than second order, which is in accordance with energy 

dispersion theorem. Energy dispersion theorem states that more energy is transferred to the 

higher order as the timescale increases in size. Overall, the study shows that a well configured 

IWS works. 

Back to T-MSNet, the proposed T-MSNet is built with a combination of mobile convolution 

block and shuffling modules. The pinpoint of this model is the development of sub-spectral 

shuffling and temporal shuffling. Unlike channel shuffling, sub-spectral shuffling and temporal 

shuffling is designed for time-frequency representation, where sub-spectral shuffling is 

shuffling along the frequency axis, and temporal shuffling is shuffling along the time axis. The 
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advantage of including the shuffling modules is that it does not contribute to the size of the 

model while improving the model ability to generalize. The experimentation result shows that 

sub-spectral shuffling has an edge over other shuffling modules for WS and IWS. With the 

correct positioned sub-spectral shuffling modules, the models are sure to show an improvement 

in logloss, which suggests that the model ability to generalize has improved.  

6.2. Future works 

6.2.1. Testing of robustness for GAFS with TSCNN framework 

Besides acoustic scene classification, GAFS with TSCNN framework can also be applied to 

other acoustic domains or acoustic tagging tasks. In addition, the proposed GAFS for wavelet 

scattering should work for most of the time-frequency representation. Hence, it can be extended 

to other time-frequency representations such as log mel-spectrogram. 

6.2.2. Evaluating the robustness and flexibility of sub-spectral and temporal shuffling 

modules 

Similarly, the proposed T-MSNet can be applied to other audio tagging tasks to evaluate the 

robustness. In addition, our proposed sub-spectral and temporal shuffling modules are modular 

and can be integrated into different CNN architectures. It should not be limited to wavelet 

scattering; we believe this should also work for other time-frequency representations. The 

proposed shuffling modules can be expanded by exploring the integration with other CNN 

architecture and different input representations. 

6.2.3. Better Search Optimization Approach to find the Optimal Configuration for 

Shuffling Modules 

In this thesis, we presented a random search approach with defined criteria to find the ‘optimal’ 

configuration for the combination of shuffling modules. Hence, there are many possibilities to 

tap into search optimization techniques, such as using an evolutionary algorithm to improve 

finding the optimal configuration. 

6.2.4. Accelerating GAFS with TSCNN framework 

The daunting high computational runtime is one major downside of using a genetic algorithm 

for the feature selection wrapper approach with a convolution neural network. Hence, there is 

a research space to improve this aspect. Future studies can be developed into two paths: the first 

path is more towards creating a more efficient genetic algorithm for feature selection (e.g., 

‘hybrid’ approach). The second path is rethinking the possibility of using model compression 

techniques to speed up the CNN, indirectly speeding up the entire GAFS system runtime. 
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6.2.4. Integration of WS with CNN 

Another possibility is the integration of scattering transform as part of the algorithm in CNN. 

Our idea mainly touches on improving frequency transposition invariance (Andén and Mallat, 

2014) on the CNN feature maps. Such as changing the CNN ‘attention’ modules pooling 

operation to scattering transform. In addition, we can add learning parameters to scale the 

wavelet scattering such that it becomes adaptive to how the network learns the enhanced feature. 

Notably, this thesis does not discuss the attention module (Hu et al., 2018) as it is not part of 

our proposed model design. In simplicity, the attention module extracts information either from 

the spatial dimensions, in this case, time-frequency representation, and embeds this information 

into the channel dimensions or vice versa. Notably, the attention module is constructed with a 

series of convolution operations.  
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Appendix, A 
 

RESULT OF VARIOUS COMBINATIONS OF SSS, TPS AND CS 

No SSS TPS CS Accuracy Logloss 

1 4 0 4 67.67 1.437 

2 34 0 34 68.90 1.292 

3 0 4 234 67.75 1.375 

4 2 34 3 70.60 1.162 

5 234 0 234 70.39 1.148 

6 234 0 4 70.25 1.149 

7 2 34 0 70.24 1.171 

8 234 0 23 70.15 1.159 

9 2 4 3 70.15 1.179 

10 2 0 3 70.12 1.181 

11 234 34 234 70.00 1.149 

12 23 0 1234 69.88 1.163 

13 23 0 234 69.84 1.158 

14 2 0 234 69.77 1.189 

15 23 0 4 69.52 1.168 

16 2 0 4 69.52 1.176 

17 2 234 3 69.50 1.166 

18 23 0 24 69.48 1.169 

19 234 0 34 69.14 1.163 

20 234 0 34 69.14 1.163 

21 234 34 0 68.87 1.162 

22 123 0 1234 67.66 1.174 

23 1234 0 1234 67.43 1.181 

Table Appendix A. Result of various combinations of SSS, TPS and CS. This table presents 20 different 

combinations from random search. The first 3 examples demonstrated the performances result if the 

rules are not followed. Their logloss result is not competitive. The rest of the table is then arranged based 

on classification accuracy in descending order (meaning the top performance models will be placed at 

the top of the table). 
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