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General Abstract 

Implicit statistical learning, whereby predictable relationships between stimuli are detected 

without conscious awareness, is important for language acquisition. Although a defining 

feature of implicit learning is that we are unaware that learning has occurred, implicit statistical 

learning is often assessed using measures that require explicit reflection (e.g., judgements about 

the grammaticality of a sequence of stimuli). However, implicit statistical learning can also be 

assessed without requiring conscious reflection, using ‘processing-based’ tasks, that instead 

measure other processes that are facilitated by implicit statistical learning such as reaction times 

or serial recall. Processing-based measures would be particularly valuable for measuring 

implicit statistical learning in populations such as children (who may be less adept at explicitly 

reflecting on implicitly learned knowledge) or individuals with dyslexia (which has been 

associated with a specific deficit in implicit statistical learning, rather than in explicitly 

reflecting on implicitly learned information). In this thesis, I developed and tested novel 

processing-based measures of implicit statistical learning that do not require conscious 

reflection and combined them with traditional reflection-based measures of learning to 

investigate the nature of the knowledge acquired by way of implicit statistical learning. I found 

evidence of implicit statistical learning across a number of experiments, which also suggest 

that the complexity of the grammar being learned may affect the extent to which implicit and 

explicit processes are recruited during the tasks. I then applied this novel serial visual recall 

paradigm to provide evidence that implicit statistical learning abilities are consistent across 

children aged 8 to 15 years and that serial visual recall may capture differences between 

children and adults that are not reflected in traditional measures of learning. Finally, I applied 

these paradigms across a number of experiments to assess differences in implicit statistical 

learning between individuals with and without dyslexia or other reading difficulties, and found 

no evidence that dyslexia is associated with a deficit in implicit statistical learning. Overall, 

these experiments suggest that processing-based measures are a valuable tool for measuring 

implicit statistical learning across a number of different populations and highlight the 

importance of using a combination of both processing- and reflection-based tasks to gain a 

more detailed insight into the nature of the knowledge acquired through implicit statistical 

learning.   
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Chapter 1: General Introduction to Implicit Statistical Learning 

Across Development and Language Ability 

 

Our environment is full of rich statistical information in the sense that some events predict 

others. For example, rain can typically be predicted by the presence of dark clouds. We detect 

and extract these regularities through the process of implicit statistical learning, which critically 

occurs without conscious awareness or any intention to learn. This process of acquiring and 

processing structure based on distributional cues is central to many aspects of cognition, 

including musical processing (Tillmann & McAdams, 2004), visual search (Baker et al., 2004) 

and visuomotor learning (Hunt & Aslin, 2001). However, implicit statistical learning is 

particularly important for language learning, where knowledge of the underlying grammatical 

structure is often acquired implicitly, without conscious awareness (Kidd, 2012). 

Although implicit statistical learning typically occurs outside of conscious awareness, the tasks 

that are used to measure this learning often require explicit reflection. However, implicit 

statistical learning can also be measured using ‘processing-based’ tasks, which do not require 

explicit reflection, and instead measure other processes that are facilitated by implicit statistical 

learning. This thesis aims to develop novel processing-based measures of learning and combine 

them with traditional reflection-based tasks to assess implicit statistical learning. I also used 

these tasks to study adults with and without dyslexia, and in children, to better understand the 

processes that occur during implicit statistical learning in these populations.  

This introduction aims to provide an overview of the relevant fields of research, and to address 

a number of key points. First, implicit statistical learning processes underpin the acquisition 

and processing of many of the different types of relationship found in language (Section 1.1). 

Second, novel paradigms may reflect implicit statistical learning more accurately than the tasks 

that have traditionally been used, which may be affected by conscious processing (Section 1.2). 

Third, these novel paradigms may help address issues in investigating the developmental 

trajectory of implicit statistical learning, where findings have been contradictory (Section 1.3). 

Finally, it is unclear whether individuals with developmental dyslexia show impaired implicit 

statistical learning (Section 1.4). This thesis aims to develop and test novel measures of implicit 

statistical learning that better reflect these mechanisms and apply these tasks to investigate the 

implicit/explicit nature of the knowledge acquired (Chapter 2), the developmental trajectory of 

implicit statistical learning (Chapter 3), and the proposed deficits in implicit statistical learning 

in dyslexia (Chapter 4).  
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1.1. Implicit Statistical Learning and Language 

1.1.1. Defining Implicit Statistical Learning 

The ability to detect and extract patterns from our environment plays an important role in many 

aspects of cognition (Batterink et al., 2019). Multiple lines of research have investigated this 

phenomenon using different terms. For example, “implicit learning” (Reber, 1967) refers to the 

process by which knowledge about the regularities within the environment is acquired outside 

of conscious awareness. Similarly, the term “statistical learning” (Saffran et al., 1996) refers to 

the process of detecting and extracting patterns within our environment and is characterised by 

the lack of instruction or awareness required for learning to occur, along with an inability to 

report any of the learned information (Conway, 2020). These different fields appear to be 

investigating a remarkably similar phenomenon (Christiansen, 2019), despite using different 

paradigms and approaches (Perruchet & Pacton, 2006). Given the similarities between implicit 

and statistical learning, it is unsurprising that they are often taken to refer to the same 

underlying mechanism, which has been termed “implicit statistical learning” (Conway et al., 

2010; Conway & Christiansen, 2009; Emberson et al., 2011). Throughout this thesis I will use 

‘implicit statistical learning’ to refer to the ability to extract regularities from the environment 

through automatic learning mechanisms operating outside of immediate awareness 

(Cleeremans et al., 1998; Reber, 1967; Saffran et al., 1996). 

Implicit statistical learning theories of language acquisition originally emerged as a domain-

general opposition to more traditional domain-specific accounts of language acquisition 

(Chomsky, 1965; Reber, 1967). Implicit learning was commonly viewed as a single cognitive 

process, thought to underlie the acquisition of regularities of a range of stimuli, across a number 

of different domains. Therefore, implicit statistical learning was traditionally conceptualised as 

a unitary, domain general mechanism (Bulf et al., 2011). Indeed, many studies have indicated 

that implicit statistical learning can underpin the learning of regularities within a range of 

stimuli, such as linguistic (e.g. Pelucchi et al., 2009) and non-linguistic (e.g. Saffran et al., 

1999) stimuli, across a number of domains, including visual (e.g. Fiser & Aslin, 2001), auditory 

(e.g. Saffran et al., 1996) and motor (e.g. Nissen & Buellmer, 1967) domains. Whilst implicit 

statistical learning underpins the learning of regularities across a range of stimuli and domains, 

studies have continually shown that patterns of modality and stimulus specificity that cannot 

be accounted for by unitary theories. For example, there is often limited transfer of learning 

across modality and learning in one modality can proceed in the presence of interference in 

another modality (Conway & Christiansen, 2006). Furthermore, qualitative differences in 
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implicit statistical learning patterns have been reported across modalities (Conway & 

Christiansen, 2005), and performance in tasks measuring implicit statistical learning across 

modalities are often uncorrelated (Frost et al., 2015).  

To account for these findings, there has been increased interest in the development of 

multimodal theories of implicit statistical learning (Batterink et al., 2019; Conway, 2020; Frost 

et al., 2019; Frost et al., 2015). Frost et al. (2015) suggested that implicit statistical learning 

involves a number of neurobiological mechanisms that detect and encode a range of 

distributional properties within a given modality or type of input. They argue that these 

mechanisms are not supported by a single unitary system, but instead reflect separate neural 

networks in distinct cortical areas. When an internal representation is encoded, the process is 

constrained by the specific properties of the input and the cortical areas these are processed in. 

For example, auditory cortex exhibits poorer sensitivity to spatial information, and improved 

sensitivity to temporal information, meaning that adjusting these parameters will lead to 

different patterns of learning in the auditory domain compared to the visual domain (Emberson 

et al., 2011). Whilst modality may affect learning at the point of encoding, and at lower levels 

of processing, other prefrontal cortical areas are often recruited during implicit statistical 

learning irrespective of modality, which suggests that beyond the initial stages of processing 

stimuli, implicit statistical learning may operate as a domain general mechanism. These 

frameworks highlight the importance of studying implicit statistical learning across a range of 

different modalities (e.g. auditory, visual) in order to gain a greater understanding of the 

mechanisms that underlie these processes. 

1.1.2. Implicit Statistical Learning of Artificial Grammars 

Many of the rules that govern language can be learned through implicit statistical learning. For 

example, identifying word boundaries within a continuous speech stream involves detecting 

relationships between syllables. In English, the words ‘prettydolly’ can easily be separated 

within a speech stream because the phoneme ‘pre’ is often followed by ‘tty’, but ‘tty’ is rarely 

followed by ‘do’. The frequency with which pairs of phonemes (A and B) co-occur in a corpus 

of speech can be calculated, and is typically reported as the Transitional Probability (TPAB). 

This is calculated as: 

TP of A to B = frequency of AB / frequency of A 

In the example ‘prettydolly’, the transitional probability of the within-word transition is much 

higher than the between-word transition. In a seminal study, Saffran et al. (1996) designed an 
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experiment to compare learning of high versus low transitional probabilities and demonstrated 

that 8-month-old infants can detect word boundaries within a continuous speech stream based 

only on statistical regularities generated by an artificial grammar. In this experiment, the infants 

were exposed to a speech stream containing syllables (e.g., ‘pu’, ‘ti’, ‘ba’) arranged into four 

predictable trisyllabic ‘words’ (i.e., ‘putiba’). The syllables within a word always occurred 

together in the same order, whereas the words themselves could appear within the speech 

stream in any order. As such, the transitional probabilities within a word were higher than those 

between words. The ability to detect word boundaries based only on statistical regularities 

within the input has been replicated consistently in both the auditory (Aslin et al., 1998; 

Saffran, 2002) and visual domain (Kirkham et al., 2002) using artificial grammars, and also 

when using natural languages (Pelucchi et al., 2009). 

These studies are examples of artificial grammar learning paradigms, which are the most 

common measure of implicit statistical learning. These tasks typically consist of two parts: an 

exposure phase and a testing phase. In the exposure phase, the participant is presented with 

structured sequences of stimuli, typically auditory or visual, and the order of these stimuli is 

governed by certain rules. These rules mean that the ‘grammatical’ sequences contain statistical 

regularities and predictable transitions between stimuli, in that some stimuli co-occur more 

frequently than others. In the exposure phase, participants may be asked to attend to the stimuli, 

but they are not informed about the presence of rules underlying the sequences. The testing 

phase consists of a task that measures learning that has occurred during the exposure phase and 

differs depending on the population being tested. For example, Saffran et al. (1996). used a 

preferential looking time task, which is suitable for infants. In these tasks, infants are presented 

either with many grammatical sequences of sounds or continuous streams of phonemes 

generated by the grammar, until they habituate to these stimuli. They are then presented with 

both grammatical and ungrammatical sequences. If infants show a dishabituation response, 

indicated by increased looking times towards ungrammatical sequences, then this is taken as 

evidence that the learning has occurred. In adults and older children, learning is typically 

assessed using a grammaticality judgement task, in which participants are presented with 

sequences of stimuli, some of which are grammatical and follow the same rules as those in the 

exposure phase and some which violate these rules (‘ungrammatical’ sequences). Participants 

are asked whether a sequence follows the same patterns as those in the exposure phase, and 

often asked to respond based on their ‘gut feeling’ (Reber, 1967). Different responses to the 

grammatical sequences compared to the ungrammatical sequences can be taken as evidence 

that the participant learned (at least some of) the rules during the initial exposure phase. The 
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inability to report the rules of the grammar in any detail has been taken as further evidence that 

the learning that has occurred is implicit, rather than explicit (Dienes & Berry, 1997).  

The flexibility of artificial grammar learning paradigms make them suitable for investigating 

how many different aspects of syntax can be learned through implicit statistical learning, as 

language consists of much more than just simple deterministic adjacent relationships, such as 

those learned in Saffran et al.’s (1996) study. For example, implicit statistical learning is also 

thought to support the learning of more probabilistic adjacent relationships, such as those that 

are found between words. A considerable amount of research has demonstrated that the more 

variable between word relationships within an artificial grammar can be learned by way of 

implicit statistical learning (Fiser & Aslin, 2002; Gebhart et al., 2009; Gomez & Gerken, 1999; 

Reber, 1967; Saffran et al., 2008).  

Language also contains more complex relationships between word and phrases, such as 

nonadjacent relationships, where the regularities between words or phrases are separated by 

some intervening material. For example, in English, nonadjacent relationships can be found in 

tense agreement (e.g., is walking, vs has walked). For these relationships to be learned and 

processed, the first element must be held in memory until further in the sequence. Previous 

research has indicated that these more complex relationships can also be learned using similar 

paradigms as adjacent relationships (Gómez & Maye, 2005; Newport & Aslin, 2004), which 

suggests that implicit statistical learning can also support the acquisition of more complex 

relationships. Furthermore, phrases within sentences are often structured hierarchically (e.g., 

the dog [the cat chased] barked). Artificial grammars of the form AnBn (which generate 

sequences such as “A[AB]B”, in which one AB phrase is embedded within another) have been 

used to assess learning of these more complex hierarchical relationships (Bahlmann et al., 

2008; Friederici et al., 2006; Friederici et al., 2011; Petersson et al., 2012; Uddén et al., 2009). 

Due to their complexity, previous research has primarily measured learning in adults, however 

there is some more recent evidence that suggests that children show learning of these artificial 

grammars as well (Ojima & Okanoya, 2020; Winkler et al., 2018). These various types of 

relationship are fundamental to language and can be learned by way of implicit statistical 

learning, which highlights the importance of these processes in language acquisition and 

processing. 

1.1.3. Neural Processes Underpinning Implicit Statistical Learning 

Artificial grammar learning paradigms also tap into language-relevant neural processes. For 

example, processing syntactic violations in natural language is often associated with a number 
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of neural responses, including early left anterior negativity (ELAN), negativity around 400ms 

following baseline (N400; Hagoort & van Berkum, 2007;  Hagoort, 2008; Hagoort et al., 2004) 

and positivity around 600ms following baseline (P600; Hahne & Friederici, 2002; Osterhout 

et al., 1994; Friederici et al, 2002). Such responses are also found in response to syntactic 

violations during artificial grammar learning paradigms (Abla & Okanoya, 2009; Christiansen 

et al., 2012; Tabullo et al., 2013).  

Evidence from neuroimaging studies have also suggested that artificial grammar learning tasks 

recruit similar brain regions to natural language processing (Christiansen et al., 2012). Namely, 

the involvement of left inferior frontal gyrus (BA 44/45, or Broca’s area; Friederici, 2011; 

Hagoort et al., 2004; Karuza et al., 2013; Udden et al., 2008), striatum (Turk-Browne et al., 

2009) and medial temporal lobe (Schapiro et al., 2014) has been highlighted in implicit 

statistical learning of artificial grammars. It is well established that the left inferior frontal gyrus 

plays an important role in language production (Broca, 1861; Friederici, 2002; Hickok & 

Poeppel, 2007; Sahin et al., 2009; Vigneau et al., 2006) and comprehension (Bogen & Bogen, 

1976; Homae et al., 2002; Zurif, 1980) particularly when processing syntactic complexity 

(Friederici, 2011). Furthermore, the striatum and medial temporal lobe have also been shown 

to play a substantial role in language processing (Chan et al., 2013; Meyer et al., 2005). 

Similar neural processes underlying artificial grammar learning and natural language learning 

highlights that the implicit statistical learning processes that are being measured in artificial 

grammar learning paradigms likely play an important role in language acquisition and 

processing.  

1.1.4. Individual Differences in Implicit Statistical Learning 

Beyond the similarities between the neural systems recruited by artificial grammar learning 

paradigms and natural language processing, further evidence that similar cognitive systems 

underlie these processes comes from the study of individual differences in language and 

implicit statistical learning.  

Previous research has demonstrated that performance on implicit statistical learning tasks is 

positively correlated with sentence comprehension tasks (Misyak & Christiansen, 2012), and 

speech perception abilities, even after controlling for other cognitive abilities such as memory 

and IQ (Conway et al., 2010). These relationships between implicit statistical learning and 

language ability are also relevant for more complex nonadjacent relationships: performance in 

implicit statistical learning tasks containing nonadjacent dependencies predicted individual 
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differences in processing sentences containing long-distance dependencies (Conway et al., 

2010). Conway and colleagues showed a positive correlation between visual implicit statistical 

learning and auditory sentence processing, and also between auditory implicit statistical 

learning and audio-visual sentence processing, demonstrating that across domains, implicit 

statistical learning is associated with language ability. Such correlations between implicit 

statistical learning and language ability have also been demonstrated in children aged between 

4 and 14 years (Evans et al., 2009; Kidd, 2012; Kidd & Arciuli, 2016). Furthermore, 

performance on implicit statistical learning tasks has also been shown to relate to reading in 

both children and adults (Arciuli & Simpson, 2012; von Koss Torkildsen et al., 2019). Based 

on these findings, implicit statistical learning plays an important role in language acquisition 

and processing.  

However, studies assessing how individual differences in implicit statistical learning relate to 

language ability have been criticised for their lack of replicability. A number of recent studies 

have found no correlation between implicit statistical learning and language ability  in children 

and adults (Schmalz et al., 2019; West et al., 2018), whereas others have only reported small 

correlations (Spencer et al., 2015). Other studies have also found correlations only when using 

auditory implicit statistical learning tasks  (Qi et al., 2019). Siegelman (2020) suggested that 

poor reliability across measures of implicit statistical learning (Erickson et al., 2016) may 

account for the lack of replicability of the relationship between individual differences in 

implicit statistical learning and language ability. There is a clear need for the refinement in the 

current tasks used to measure implicit statistical learning, with a particular focus on developing 

tasks that accurately capture variability in these abilities.  

As well as examining individual differences within the general population, the link between 

implicit statistical learning and language can also be investigated by comparing implicit 

statistical learning abilities between individuals with and without language disorders. Implicit 

statistical learning deficits have been found across a number of developmental language 

disorders, as well as acquired language difficulties. For example, children with Specific 

Language Impairment (SLI) have been found to perform more poorly in artificial grammar 

learning tasks (e.g. Evans et al., 2009) and other measures of implicit statistical learning (e.g. 

Hsu & Bishop, 2014) compared to children without language difficulties. Indeed, a meta-

analysis of studies investigating implicit statistical learning deficits in SLI reported a 

substantial difference in the ability to detect statistical regularities associated with SLI 

(Lammertink et al., 2017). Whilst the evidence of an implicit statistical learning deficit in 

dyslexia is less clear (see Section 1.4.2 for a detailed overview of this literature), several studies 
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have reported implicit statistical learning deficits in dyslexic children (e.g., Pavlidou et al., 

2009) and adults (Katan et al., 2017). Finally, evidence of implicit statistical learning deficits 

has been found in individuals with acquired language difficulties, for example agrammatic 

aphasia (Christiansen et al., 2010).  

Taken together, these separate lines of evidence investigating the neural basis of implicit 

statistical learning, individual differences in these abilities and potential deficits in these 

abilities in language disorder provide strong evidence of a link between implicit statistical 

learning and language. 

1.2. Implicit Statistical Learning in Adults Without Language Difficulties 

1.2.1. Traditional Approaches to Measuring Implicit Statistical Learning 

During language acquisition, many of the rules underlying language are learned implicitly 

(Arciuli, 2018; Arciuli & Simpson, 2012; Arnon, 2019; Dienes, 2012). Indeed, Dienes (2012) 

highlights that the core grammatical rules that underlie our native language are typically 

learned at a young age, before we are even aware of the existence of a grammar.  Therefore the 

original artificial grammar learning paradigms pioneered by Reber (1967, 1976) were also 

designed to elicit implicit learning. According to Dienes and Berry’s (1997) framework, 

knowledge can be considered implicit if participants do not acquire conscious awareness of the 

acquired knowledge, either because their performance in a grammaticality judgement task is 

above chance despite their belief they are guessing, or because their confidence in the accuracy 

of their response is unrelated to their performance. Many studies have used these criteria to 

demonstrate that the learning that results from artificial grammar learning paradigms is implicit 

(Batterink, Reber, Neville, et al., 2015; Curran, 1997; Dienes & Altmann, 1997; Reber & 

Squire, 1994; Scott & Dienes, 2008; Tunney & Altmann, 2001; Willingham & Goedert-

Eschmann, 1999). Studies measuring artificial grammar learning in amnesic patients provide 

further support for the learning in these tasks resulting in implicit knowledge: amnesic patients 

perform above chance in grammaticality judgement tasks despite declarative memory 

impairments (Knowlton et al., 1992; Knowlton & Squire, 1994).  

However, if the aim of artificial grammar learning paradigms is to assess knowledge that is 

outside of conscious awareness, then the grammaticality judgement tasks that are typically used 

to measure learning in these paradigms may not be appropriate. These ‘reflection-based’ tasks 

rely on making explicit decisions that require conscious reflection about what has been learned. 

This presents some issues, as these tasks can only measure learning that an individual can 
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explicitly access, and therefore performance on these tasks may not reflect the implicit 

knowledge that has been acquired, instead reflecting more explicit, decision-making processes 

(Christiansen, 2019). Furthermore, these reflection-based tasks are often limited in that they 

only assess the final outcomes of the complex chain of cognitive processes underlying task 

performance and provide little information about how learning is occurring during the exposure 

phase. 

Alternatively, more implicit, ‘processing-based’ tasks can be used that do not require explicit 

decision making and are therefore less confounded by these other cognitive processes. These 

processing-based tasks often rely on less direct methods of assessing learning, by measuring 

other variables that are facilitated by implicit statistical learning. These tasks also provide 

additional benefits over reflection-based tasks in that they can measure learning over the course 

of the task, as responses are required for every trial, even while learning is taking place. This 

is in contrast to reflection-based tasks, which involve passive exposure where no data are 

collected. There are a number of processes that are facilitated through implicit statistical 

learning that can be measured, which will be discussed in turn in the next section. 

1.2.2. Reaction Times as a Processing-Based Measure of Implicit Statistical 

Learning 

One of the reasons that it is adaptive to learn statistical regularities in our environment is 

because it allows us to better predict upcoming events. Serial Reaction Time (SRT) tasks have 

exploited this facet of implicit statistical learning and showed that when participants are asked 

to make sequences of responses (e.g., touch stimuli in different spatial locations), they become 

faster at producing sequences that contain predictable relationships than randomly ordered 

sequences (Nissen & Bullemer, 1987; Reber & Squire, 1994; Thomas et al., 2004). In these 

tasks, faster reaction times demonstrate implicit learning, in this case of sequences of motor 

action.  

However, the learning observed in traditional SRT tasks may be somewhat different to the 

implicit statistical learning found in artificial grammar learning tasks, in which participants 

must learn dependencies between sensory stimuli rather than between spatial locations. These 

tasks are thought to rely on a different cognitive and neural mechanisms than artificial grammar 

learning tasks (Conway, 2005). However, these SRT tasks have been combined with artificial 

grammar learning tasks to show that reaction time benefits of implicit statistical learning that 

are not linked to specific motor responses (Misyak et al., 2009, 2010; Vuong et al., 2011). This 

removes the reliance on motor learning of action sequences and requires that participants learn 
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the relationships between the nonsense words themselves, rather that specific spatial locations. 

In Chapter 2, Experiment 2.1, I developed a visual SRT-AGL task along with a number of other 

reflection-based measures, to assess whether reaction times can be used to measure implicit 

statistical learning, and if processing- and reflection-based tasks measure similar processes. 

However, I found no evidence of learning across the processing- and reflection-based tasks, 

which suggests that other processes that are facilitated by implicit statistical learning, such as 

recall, may provide a more suitable measure of learning.  

1.2.3. Serial Recall as a Processing-Based Measure of Implicit Statistical Learning 

In addition to enabling faster responses to predictable events, implicit statistical learning can 

facilitate the rapid processing of large amounts of incoming information (Christiansen & 

Chater, 2016). Working memory, particularly for rapidly serially presented information is very 

limited (Cowan, 2010; Miller, 1956; Vogel et al., 2001). Therefore, when presented with even 

modest sequences of stimuli the limits of working memory can quickly be exceeded. This 

cognitive limitation can be overcome by combining frequently co-occurring stimuli into larger 

“chunks”, to reduce working memory demands. This process of chunking incoming 

information is critical for language learning and processing, to allow sufficiently rapid 

processing of the large amount of information contained within human language (Christiansen 

& Chater, 2016). This process of ‘chunking’ frequently co-occurring information is the 

mechanism by which the infants in Saffran et al.’s (1996) experiment learned to detect the 

boundaries between 'words’ in a stream of syllables (see Section 1.1.2).  Beyond the initial 

acquisition of language, this process is used throughout life in language processing. For 

example, it allows the processing of rapid speech, as chunks can quickly be formed and passed 

to higher levels of linguistic representation (from phonemes to words, then to phrases, and 

finally to sentences): when processing speech we do not have to store every phoneme that is 

processed in order to recall the semantic meaning of the sentence.  

Based on this reasoning, if participants are presented with sequences which contain predictable 

regularities (e.g., certain stimuli always occur in a fixed order), frequently co-occurring stimuli 

should be more easily combined into chunks. This in turn should reduce the demands on 

working memory, and allow for more efficient chunk-and-pass processing (Christiansen & 

Chater, 2016). We can use this aspect of cognition to our advantage to measure implicit 

statistical learning: artificial grammars can be used to generate predictable and unpredictable 

sequences, and because predictable sequences contain more frequently co-occurring elements, 

these sequences may be more easily chunked and recalled than unpredictable sequences. I 
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conducted a number of experiments using this reasoning to assess the extent to which serial 

visual recall can be used as a processing-based measure of implicit statistical learning 

(Experiments 2.2 – 2.6). From these experiments, I have demonstrated that serial visual recall 

can successful measure implicit statistical learning of both highly predictable and more variable 

relationships, and that the complexity of the grammar being learned may affect the extent to 

which explicit processes are recruited during reflection-based tasks. 

1.3. Implicit Statistical Learning in Children 

1.3.1. The Importance of Assessing Implicit Statistical Learning in Children 

Although implicit statistical learning is thought to play an important role in language 

acquisition, the majority of research in this area has focused on the learning of infants (e.g. 

Saffran et al., 1996; Gomez & Gerken, 1999, 2000) and adults (Fiser & Aslin, 2002; Reber, 

1967; Saffran et al., 1999), rather than older children. Language learning occurs beyond 

infancy, and examining implicit statistical learning abilities in older children as well as infants 

and adults is critical to understand the developmental trajectory of these abilities and how they 

may relate to language acquisition and processing (Arciuli & Conway, 2018). Furthermore, 

examining implicit statistical learning abilities in children older than infants could provide 

support for the hypothesis that these abilities play a causal role in language development 

(Arciuli & Torkildsen, 2012; Conway et al., 2010). Finally, assessing implicit statistical 

learning abilities in children is important for understanding the nature of potential deficits in 

implicit statistical learning in developmental language disorders such as dyslexia, which are 

typically identified during childhood (Deocampo et al., 2018; Saffran, 2018). 

1.3.2. The Developmental Trajectory of Implicit Statistical Learning  

Previous research has suggested that the ability to acquire certain aspects of language declines 

with age, with older individuals being less adept in reaching fluency than younger learners 

(Johnson & Newport, 1989; although see Newport et al., 2001 for a discussion). There is 

relatively little research focusing on the developmental trajectory of implicit statistical learning 

abilities, despite the importance of these questions in understanding the mechanisms 

underlying implicit statistical learning and its role in language acquisition. 

There are several possible predictions about how implicit statistical learning abilities may 

change with age. First, it has been suggested that implicit statistical learning abilities are age-

invariant, with some studies showing that performance on measures of implicit statistical 
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learning were unaffected by age (Jost et al., 2015; Raviv & Arnon, 2018; Saffran et al., 1997; 

Thiessen et al., 2013). Second, like many other cognitive abilities, implicit statistical learning 

many improve with age. Furthermore, as implicit statistical learning is a domain-general 

mechanism, it may be supported by other cognitive abilities such as memory, which are known 

to improve with age (Gathercole et al., 2004). There is some evidence for an improvement in 

implicit statistical learning across development (Arciuli & Simpson, 2011; Kirkham et al., 

2002; Kirkham et al., 2007; Lukács & Kemény, 2015; Thomas et al., 2004; Vaidya et al., 2007). 

There is also some suggestion that the developmental trajectory of implicit statistical learning 

is affected by modality, with improvements in visual but not auditory implicit statistical 

learning being found across age (Raviv & Arnon, 2017). Third, given the importance of implicit 

statistical learning in language acquisition, it has been argued that infants and children show 

improved implicit statistical learning compared to adults. Infancy and early childhood are 

where the majority of language learning typically takes place, and as previously mentioned, 

there is some suggestion that language learning abilities decline with age (Birdsong, 1999; 

Newport, 1990). The largest study investigating age-related changes in implicit statistical 

learning found no differences in such abilities in children aged between 4 and 12 years, 

however following this there was a decrease in implicit statistical learning abilities which 

remained constant until aged 60, where there was another decrease (Janacsek et al., 2012). 

These conflicting findings suggest that we do not have a clear understanding of the 

developmental trajectory of implicit statistical learning. More research is required in 

populations without language difficulties to better understand implicit statistical learning as a 

concept, but also to provide a benchmark to distinguish between deficits and delays in children 

with language disorders.  

1.3.3. Processing-Based Measures of Implicit Statistical Learning Across 

Development 

The few studies assessing the developmental trajectory of implicit statistical learning have 

typically compared performance on grammaticality judgement tasks across a range of ages. 

However, as discussed in Section 1.2.1, these traditional tasks require additional abilities such 

as understanding the task instructions, or decision-making skills, which are unlikely to be as 

well developed in children as they are in adults (Lammertink et al., 2019). Therefore, when 

comparing performance on these tasks across children and adults, it is possible that we 

underestimate the implicit statistical learning abilities of the children. Processing-based 

measures of learning would be particularly suitable for comparing the developmental trajectory 
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of implicit statistical learning abilities, as both adults and older children could complete the 

same tasks that would not rely on explicit decision making.  

These issues in avoiding explicit judgements when assessing implicit statistical learning have 

previously been navigated within the literature relating to infant implicit statistical learning. As 

infants do not have the capacity to provide explicit judgements on their implicitly learned 

knowledge, other methods have been used to assess learning. The seminal Saffran et al. (1996) 

study used a preferential-looking paradigm to show the learning of word boundaries in infants, 

and indeed other studies have demonstrated learning in infants using similar paradigms (for a 

review, see Saffran & Kirkham, 2018). However, such paradigms are not effective in 

measuring learning beyond infancy (Wilson et al., 2015), and therefore these tasks would not 

be suitable for assessing the developmental trajectory of implicit statistical learning. Although 

neuroimaging methods, such as electroencephalography (EEG), can be used to compare 

learning across age, these experiments are considerably more time-consuming than typical 

behavioural experiments. Therefore, behavioural processing-based measures may offer some 

benefits over these neuroimaging methods in terms of their ease of completion.  

Based on the current literature, the developmental trajectory of implicit statistical learning is 

unclear. However, these studies do suggest that stimulus modality and the tasks used, among 

other factors, may play an important role in determining performance across age (Conway et 

al., 2010). Current tasks may be underestimating children’s performance relative to adults, as 

traditional reflection-based grammaticality judgement tasks rely on other cognitive abilities 

that may be less developed in childhood (Anderson, 2002; Gathercole et al., 2004). It is crucial 

to examine developmental trajectory of implicit statistical learning further using more intuitive 

processing-based measures, not only to gain a better understanding of implicit statistical 

learning as a phenomenon, but also to provide benchmarks for investigating implicit statistical 

learning deficits in developmental disorders such as dyslexia. To address these issues, in 

Chapter 3, I conducted an online study with children aged between 8 and 15 years which aimed 

to measure implicit statistical learning using the processing-based Visual Recall task I had 

previously developed and tested with adults (Experiments 2.4 and 2.5). There was no difference 

in performance across the sample of children. Although there were similarities between the 

performance of children and adults, there was some evidence that the time-course of learning 

differed between age groups. However, there was some suggestion that this may have been due 

to differences in attention and/or motivation between children and adults.  
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1.4. Domain-General Theories of Dyslexia 

1.4.1. The Phonological Deficit Theory of Dyslexia 

Developmental dyslexia is the most common specific learning disability (Roongpraiwan et al., 

2002), characterised by deficits in learning to read and spell (Lyon et al., 2003). Given that the 

issues with dyslexia primarily relate to difficulties in reading and spelling, the most prominent 

theory of dyslexia relates to a deficit in phonological processing (Snowling, 1998). 

Phonological processing involves accessing and manipulating phonemes, and is critical for 

word identification, and therefore reading (e.g. Vellutino et al., 1996). More specifically, 

studies investigating the phonological deficit suggest that the deficits associated with dyslexia 

fit into three key facets: poor phonological awareness, verbal short-term memory and slow 

lexical access (for a review, see Vellutino et al., 2004). Much of the research has demonstrated 

impaired performance in dyslexia across tasks that measure these abilities. For example, 

individuals with dyslexia show poorer performance in tasks that require the rapid and/or precise 

manipulation of phonemes, such as spoonerism and phoneme deletion tasks (Farquharson et 

al., 2014; Rispens & Been, 2007), rapid automatized naming tasks (Denckla & Rudel, 1976; 

Jones et al., 2009) and nonword repetition tasks (Melby-Lervåg et al., 2012). These findings 

are also reflected in the data from neuroimaging studies, which suggest that individuals with 

dyslexia show different patterns of activation during phonological processing tasks than 

controls (see Demb et al., (1999) , for a review). 

However, there are a wider constellation of sub-clinical differences associated with dyslexia 

that cannot be explained by the phonological deficit theory, for example differences in motor 

skills (Fawcett & Nicolson, 1995), auditory processing (Tallal, 1984; see Farmer & Klein, 1995 

for a review), visual processing (Stein, 2001, 2019), and implicit statistical learning (Folia et 

al., 2008; Gombert, 2003; Menghini et al., 2006; Ullman & Pierpont, 2005). As these 

differences cannot be explained by an impairment in phonological processing specifically, 

alternative theories have been proposed which highlight more domain-general deficit 

associated with dyslexia.  

1.4.2. Implicit Statistical Learning in Dyslexia 

Given the importance of implicit statistical learning in language acquisition and processing, 

there has been a considerable amount of research investigating potential implicit statistical 

learning deficits in dyslexia using a variety of tasks. Thus far, the findings have been mixed 

(for a review, see Schmalz et al., 2017). Some studies have shown poorer performance for 
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children with dyslexia in artificial grammar learning tasks (Pavlidou et al., 2009), and there is 

some evidence that adults with dyslexia are impaired in artificial grammar learning tasks, but 

only those which require the learning of more complex grammars (Katan et al., 2017). These 

findings have not been consistently replicated across the literature: Nigro et al. (2016) found 

no evidence of a statistical learning deficit in children, although there may have been some 

evidence that the children with dyslexia had difficulties in generalising the rules to novel 

stimuli. Inácio et al. (2018) also found no difference between children with and without 

dyslexia using a grammaticality judgement task, providing further evidence against a statistical 

learning deficit in dyslexia. Overall, there is mixed evidence for differences in implicit 

statistical learning in dyslexia when using artificial grammar learning paradigms.   

Although fewer studies have investigated statistical learning deficits in dyslexia using SRT 

tasks, the resulting findings are as inconsistent as those from artificial grammar learning 

studies. Support for a statistical learning deficit in dyslexia using SRT tasks is typically 

evidenced by faster reaction times for predictable sequences over random sequences in 

individuals without dyslexia, but less so in individuals with dyslexia. This effect has been 

demonstrated in both adults (Stoodley & Stein, 2006) and children (Stoodley et al., 2008). 

However, these findings are not unanimous: other studies have found no group differences 

between dyslexic and control participants (Menghini et al., 2010). In fact, the largest SRT study 

investigating statistical learning in dyslexia recruited over 400 children, and found no group 

differences in statistical learning, although children with dyslexia had slower RTs overall 

(Waber et al., 2003). It was suggested that these differences in speed could be accounted for 

by attentional difficulties, and indeed once these difficulties had been accounted for, the 

differences disappeared.  

A meta-analysis of studies investigating artificial grammar learning in dyslexia suggested that 

dyslexic individuals showed impairments in implicit statistical learning, and that these deficits 

may be more pronounced in children compared to adults (van Witteloostuijn et al., 2017). 

However, the authors also highlighted that there was evidence of publication bias within the 

literature, and that unpublished data may null the effect. In a systematic review on implicit 

statistical learning deficits in dyslexia, Schmalz et al. (2017) highlighted that drawing 

conclusions about the nature of implicit statistical learning deficits in dyslexia is difficult due 

to the lack of high-quality data. Indeed, given the conflicting findings within the literature, it 

is clear that more research is required to understand any differences in implicit statistical 

learning in individuals with dyslexia.  
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1.4.3. Processing-Based Measures of Implicit Statistical Learning in Dyslexia 

Although previous research has provided invaluable insights into the conditions in which 

people with dyslexia may show differences in implicit statistical learning, there remains little 

clarity within the literature relating to the nature of this proposed deficit. One of the reasons 

for the mixed findings throughout the literature may be due to the tasks that are typically used 

to measure performance. Previous research has highlighted that tasks measuring implicit 

statistical learning are poorly defined, and often do not correlate well with one another 

(Schmalz et al., 2019). These reflection-based measures may be less suitable for addressing the 

question of whether there is a specific deficit in implicit statistical learning dyslexia, as these 

tasks are likely measuring explicit decision-making processes as well as implicitly acquired 

knowledge. Instead, one avenue that is worth exploring is whether processing-based measures, 

which do not require explicit decision-making, can offer any additional insights into any 

differences in implicit statistical learning in individuals with and without dyslexia. Whilst SRT 

tasks are often used to assess implicit statistical learning deficits in dyslexia (see Section 1.4.2), 

these tasks rely on motor responses, in which individuals with dyslexia may also show 

differences to individuals without dyslexia (e.g., Fawcett & Nicolson, 1995). In Chapter 4, I 

assess implicit statistical learning in adults with dyslexia using a range of processing- and 

reflection-based tasks and compare performance to adults without dyslexia. Across these 

experiments, there was little evidence of differences in implicit statistical learning between 

participants with and without dyslexia based on performance across both processing-based and 

reflection-based tasks, which provides some evidence against differences in implicit statistical 

learning in dyslexia.  

Conclusions 

In this introduction I have provided an overview of implicit statistical learning and its relevance 

in language and language disorders, whilst highlighting the need for more appropriate 

processing-based measures of learning. Such tasks do not require conscious reflection (e.g., 

decision-making processes) and therefore are likely to provide a more accurate measure of 

knowledge that has been acquired through implicit statistical learning. Such measures are 

particularly relevant when measuring implicit statistical learning across development and in 

individuals with language difficulties, such as dyslexia. In Chapter 2, I developed and tested 

novel processing-based measures of learning using reaction times (Experiment 2.1) and visual 

serial recall in both in-person (Experiments 2.2 and 2.4) and online (Experiments 2.3, 2.5 and 

2.6) samples of adults without language difficulties. In Chapter 3, I examine the developmental 

trajectory of implicit statistical learning across children aged 8 to 15 years using visual serial 
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recall (Experiment 3.1). In Chapter 4, I investigate implicit statistical learning deficits in 

dyslexia using the visual serial recall task (Experiment 4.1 and 4.2) and directly compare 

language-specific and domain-general theories of dyslexia using Nonword and tone artificial 

grammar learning tasks (Experiments 4.3 and 4.4). 
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Chapter 2: Processing-Based Measures of Implicit Statistical 

Learning 

Abstract 

A defining feature of implicit statistical learning is that it occurs without conscious awareness; 

however, implicit statistical learning is often assessed using measures that require explicit 

reflection. ‘Processing-based’ tasks can measure learning without requiring conscious 

reflection, by measuring processes that are facilitated by implicit statistical learning. In Chapter 

2, I aimed to combine a novel processing-based measure of implicit statistical learning with 

traditional reflection-based tasks to gain further insight into the processes that occur during 

implicit statistical learning. We first assessed the efficacy of reaction times as a measure of 

implicit statistical learning, by leveraging the fact that participants should respond more 

quickly to predictable compared to unpredictable stimuli. However, we found no evidence of 

learning using the serial reaction time artificial grammar learning task (Experiment 2.1). 

Therefore, we shifted focus towards the development of a serial visual recall task. We 

conducted a series of 5 serial visual recall experiments, based on the premise that frequently 

co-occurring stimuli may be “chunked” into a single cognitive unit, reducing working memory 

demands and facilitating recall. In these experiments, we predicted that when participants were 

asked to remember and recreate sequences of serially presented images, they would show 

improved recall for grammatical sequences, which can be chunked, over ungrammatical 

sequences that cannot. In Experiments 2.2 and 2.3 using methods based on previous visual 

artificial grammar learning paradigms we saw no evidence of learning based on serial recall 

but did replicate prior learning effects using the other reflection-based measures. In 

Experiments 2.4 and 2.5, we adapted the method away from a traditional exposure-test 

paradigm to use a blocked design, as well as developing a novel artificial grammar more 

susceptible to chunking. In these experiments, strong learning effects were observed across 

tasks. To assess whether this learning was due to the changes in procedure or the new grammar, 

we conducted one further study using the new methods and the original artificial grammar. 

Experiment 2.6 also showed substantial learning effects in both the serial recall task and 

subsequent more reflection-based measures of learning. These data demonstrate that serial 

recall is a valuable approach to measure implicit statistical learning and highlights some 

conditions under which this approach is and is not successful. 
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Experiment 2.1: Serial Reaction Times as a Measure of Implicit Statistical 

Learning  

Introduction 

Implicit statistical learning is typically measured using artificial grammar learning paradigms 

in which participants are exposed to grammatical sequences, and then tested on their learning 

of the rules underlying these sequences using a grammaticality judgement task. However, as 

previously discussed, these reflection-based tasks may not accurately reflect implicit statistical 

learning and may instead be a reflection of the more explicit decision-making processes that 

are required to make responses. Processing-based measures, which do not rely on explicit-

decision-making, typically measure other variables that are facilitated by implicit statistical 

learning. For example, serial reaction time tasks are often used to demonstrate implicit learning 

of motor sequences, as participants typically become faster at producing predictable sequences 

over randomly ordered sequences. (Nissen & Bullemer, 1987; Reber & Squire, 1994; Thomas 

et al., 2004).   

However, the learning observed in traditional SRT tasks may be somewhat different to the 

implicit statistical learning found in artificial grammar learning tasks, in which participants 

must learn dependencies between sensory stimuli rather than between spatial locations. These 

tasks are thought to rely on a different cognitive and neural mechanisms than artificial grammar 

learning tasks (Conway, 2005). However, these SRT tasks have been combined with artificial 

grammar learning tasks to create “SRT-AGL” tasks that have shown that the reaction time 

benefits of implicit statistical learning are not necessarily linked to specific motor responses. 

For example, Misyak et al. (2009) presented participants with a visual array containing two 

rows of three nonsense word stimuli (see Figure. 2.1 for a similar design). Participants were 

then presented with a sequence of three auditory nonsense words, each corresponding to one 

of the nonsense words on screen and asked to click on the matching nonsense word stimulus 

as quickly as possible. Unbeknownst to the participants, the first nonsense word of the sequence 

always predicted the final nonsense word, by way of a nonadjacent dependency. Over the 

course of the experiment participants got faster at responding to this final predictable nonsense 

word, and reaction times were slower in a Testing Block when they were presented with 

randomised sequences containing no predictable dependencies (Misyak et al., 2009). 

Importantly, in this task although the nonsense word sequences always unfolded from left to 

right across the screen, the vertical position of the stimuli was randomised, and was not 

predictable based on the previous nonsense words. This removes the reliance on motor learning 
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of action sequences and requires that the participants learn relationships between the nonsense 

words themselves.   

Although beyond the scope of the current experiments, we aimed to design an SRT-AGL task 

that could in future be used to measure implicit statistical learning in individuals with language 

difficulties, such as dyslexia, where visually presented nonsense words might not be 

appropriate (Catts et al., 2005). Moreover, we combined this processing-based task with a range 

of other reflection-based measures of learning to assess whether these tasks capture different 

facets of learning. If SRT-AGL task is an effective measure of implicit statistical learning, then 

we would predict that participants would show faster reaction times to the predictable 

sequences than to unpredictable sequences. We would also predict that participants would 

perform above chance in the subsequent reflection-based tasks. If processing-based measures 

of learning measure different processes than reflection-based measures, then we predict no 

correlation between performance on the SRT-AGL task and performance across the subsequent 

reflection-based tasks. 

Method 

Participants 

32 participants (23 female, 9 male; mean age: 21.86) were recruited using both the School of 

Psychology and Institute of Neuroscience participant pools at Newcastle University. This 

sample size was similar to the 30 participants recruited by Misyak et al. (2009), which this 

study was based on. 17 participants completed the adjacent version of the task, and 15 

participants completed the nonadjacent version. All participants were native English speakers. 

Participants were not excluded based on their ability to speak any additional languages. 

Stimuli 

We assess learning of both adjacent and nonadjacent dependencies (Gomez, 2002; Misyak et 

al., 2009, 2010). In the nonadjacent task, three elements of the form ‘AXB’ were generated, 

where the initial ‘A’ element (e.g., ‘A1’) predicts the final ‘B’ element (‘B1’) forming a 

nonadjacent dependency (‘A1XB1’) while the intervening ‘X’ element is not dependent on 

either the ‘A’ or the ‘B’ stimuli. In the adjacent task, we also used a similar grammar of the 

form ‘XAB’, where the ‘A’ elements still predicted the ‘B’ elements, but these items occurred 

adjacent to one another in a sequence, rather than being separated by the intervening ‘X’ 

element.  

We used 28 abstract shapes (2 ‘A’, 2 ‘B’ and 24 ‘X’ stimuli) based on shapes from Fiser and 

Aslin (2001), shown in Figure 2.1.
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Figure 2.1. Experiment 1 stimuli. The ‘A’ and ‘B’ elements always co-occurred, and sequences 
are presented in the form ‘AXB’ in the nonadjacent version of the task, and ‘XAB’ in the 
adjacent version. There are 2 ‘A’ and ‘B’ elements, and 24 ‘X’ elements. 24 sequences were 
presented per block, with each ‘X’ element presented once per Learning Block. 20 of the 
sequences in each block were grammatical (e.g., A1XB1), and for the 4 ungrammatical 
sequences, the dependencies between the ‘A’ and ‘B’ elements were swapped around (e.g., 
A1XB2; A2XB1). 
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Procedure 

This experiment was based on previous Serial Reaction Time-Artificial Grammar Learning 

(SRT-AGL) experiments (Misyak et al., 2009, 2010; Vuong et al., 2011). The experiment took 

place in a testing lab within the Institute of Neuroscience at Newcastle University and was 

coded using MATLAB and Psychtoolbox. Participants were seated approximately 60cm in 

front of a computer monitor (24-inch Dell U2412M, screen resolution 1920*1200 pixels). 

Responses were made either with the mouse (in the SRT-AGL and Sequence Completion tasks) 

or by pressing one of two keys on the keyboard (in the Grammaticality Judgement tasks, see 

below).  

To assess the relationship between implicit statistical learning and language abilities, in 

Experiment 2.1 we conducted a battery of standardised cognitive and language tests before and 

after the main experiment. Before the experiment, the TOWRE Words and Nonwords, 

Backwards Digit Recall and the Recalling Sentences Task were administered (see Appendix 

2.1.). After completing the SRT-AGL, Grammaticality Judgement, Sequence Completion and 

Sequence Generation tasks, the WASI Block Design, Rapid Automatized Naming Digits and 

Objects tasks were administered.  

First, participants completed the SRT-AGL task, followed by the Sequence Completion, 

Grammaticality Judgement and Sequence Generation tasks.  

SRT-AGL task 

In the visual SRT-AGL task, participants completed 8 blocks of 24 trials, consisting of 20 

grammatical and 4 ungrammatical sequences. In each trial, 6 abstract shapes were presented 

on the screen (Figure 2.2). For each of the three horizontal positions in the sequence in turn, a 

cue stimulus matching one of the target shapes appeared between the targets after a 500ms 

delay (Figure 2.2). Participants were told to click on the matching shape as quickly as possible. 

The cue remained on the screen until the participant had selected a shape. Feedback on the 

speed of participant’s responses was given after every trial in the form of happy or unhappy 

‘smiley faces’. Participants were provided with the opportunity to take a break half-way 

through the experiment between blocks 5 and 6. 

In the SRT-AGL task the final element of the sequence was predictable based on the previous 

elements in the sequence (see Experiment 2.1. Stimuli). Therefore, if participants had learned 

the dependency, they should be able to respond more quickly to this predictable element than 

the preceding, unpredictable stimuli (Misyak et al., 2009, 2010).We calculated the decrease in 

reaction time to these final elements by subtracting the reaction time in response to the first 
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element (RTA) from the final element (RTB). The difference between these reaction times (RTA-

B) gives a measure of the speed increase provided by the predictable stimulus. Participants were 

also presented with ungrammatical sequences in which the final ‘B’ element in the sequence 

did not correspond to the ‘A’ element (e.g., ‘A1XB2’). In this experiment we used an oddball 

design, in which the ungrammatical sequences were infrequently presented throughout the 

experiment. We predicted that if participants had learned the dependencies (e.g., A1 → B1), 

they should implicitly anticipate the predictable B stimulus and therefore when they are asked 

to click on an unexpected element (e.g., B2) they should show increased reaction times. 

In all trials, if participants made an error the trial was omitted from the reaction time analysis 

(<4% of trials contained an incorrect response). We predicted that participants may also make 

more errors in their selection of the final ‘B’ elements for the ungrammatical sequences than 

for the grammatical sequences, although analysis of the data from this task showed that errors 

were minimal.  To remove outliers, we also omitted trials with reaction times that exceeded the 

mean reaction time + 3SDs. 

Sequence Completion task 

The SRT-AGL task was immediately followed by the Sequence Completion task. Each trial in 

this task began identically to the SRT-AGL task: the participants were presented with an array 

of 6 visual stimuli, after which the first two cue stimuli were presented and participants 

responded by clicking on the matching stimuli, as before. However, instead of presenting the 

final cue stimulus (corresponding to the final element in the sequence), participants were 

presented with a question mark in place of the final cue stimulus. They were instructed to guess 

which of the two possible final stimuli they thought completed the sequence. Participants 

completed 24 trials: each of the ‘X’ elements was presented once, and half of the sequences 

contained A1 (with the correct response being B1) and the other half of the sequences containing 

A2 (with the correct response being B2). 

We predicted that if the participants had learned the sequence dependencies in the earlier part 

of the task, they should be more likely to select the correct stimulus. As the participants were 

asked to make an explicit decision in this task, this may rely on more explicit processes, similar 

to grammaticality judgement tasks. However, unlike the Grammaticality Judgement task, the 

participants were not informed that there were rules underlying the sequences prior to this task, 

and therefore this might offer a more implicit alternative to the Grammaticality Judgement task. 

Grammaticality Judgement task 
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In this task, participants were presented with a sequence of three stimuli and asked whether or 

not this sequence ‘followed the same pattern’ as the sequences they had heard or seen 

previously, by pressing one of two keys on the keyboard. They were told that if they were not 

certain they should respond based on their gut feeling. This approach is similar to many other 

artificial grammar learning studies, particularly testing adult participants. The Grammaticality 

Judgement task consisted of 24 trials in total, half of which were grammatical and half 

ungrammatical.  

Sequence Generation task 

In this task participants were instructed to create their own 3 element long sequences. In each 

of 24 trials, the participants were presented with 8 elements arranged in a circle on the screen: 

the 2 ‘A’ and ‘B’ elements were always shown, as well as 4 randomly selected, non-repeating 

‘X’ elements. Participants created their sequences by clicking on stimuli in order. Each trial 

was separated by a 500ms inter-trial interval. No feedback was given.  
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two target stimuli in the left column (corresponding to an ‘A’ element), and the participant 
clicked on the matching target stimulus as quickly as possible. After a 500ms delay, they were 
presented with the second auditory cue stimulus (‘X’ element) and clicked on the matching 
stimulus in the middle column, then the final cue stimulus corresponding to the predictable ‘B’ 
element in the right column. Following their final response, they were given a score 
corresponding to their total reaction time across the whole sequence. In the adjacent version of 

Figure 2.2. Experiment 2.1 trial design. A) Visual SRT-AGL task. On each trial, participants 
were presented with an array of 6 visual abstract shapes. Every trial contained 2 ‘A’ elements 
in the left column, 2 randomly selected ‘X’ elements in the middle column, and 2 ‘B’ items in 
the right column. The vertical position of the stimuli (upper or lower) was pseudo-randomised 
so that all items occurred equally frequently in the upper and lower positions, and so that the 
matching ‘A’ and ‘B’ elements occurred in the same row 50% of the time, so the correct 
responses could not be predicted based on the position of the stimuli. 500ms after the visual 
stimuli appeared the participants were presented with a visual cue corresponding to one of the  
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this task, the target stimuli were presented in XAB format. B) Sequence Completion task. As 
in the SRT-AGL task, participants were presented with a visual array of stimuli and responded 
to the first two visual cue stimuli as before. However, the final visual cue stimulus was replaced 
with a question mark, and the participants were asked to guess the shape that they felt 
completed the sequence. C) Sequence Generation task. In each of the 24 trials, the participants 
were presented with 8 elements arranged in a circle on the screen: the 2 ‘A’ and ‘B’ elements 
were always shown, as well as 4 randomly selected, non-repeating ‘X’ elements. Participants 
created their sequences by clicking on the desired elements in order. Each trial was separated 
by a 500ms inter-trial interval.
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Data Analysis 

For the SRT-AGL task, a repeated measures ANOVA was used to compare reaction time 

differences to grammatical and ungrammatical sequences across blocks. Performance in the 

Sequence Completion and Grammaticality Judgement task was compared to chance (50%) 

using one sample t tests. To correlate performance on the SRT-AGL task with the reflection-

based tasks, Pearson’s correlation coefficients were calculated. 

Results 

In this experiment, there was no evidence of learning of the adjacent or nonadjacent 

dependencies across any of the tasks. We hypothesised that implicit learning would result in 

quicker responses to the predictable ‘B’ element than to the unpredictable ‘A’ element on 

grammatical trials relative to ungrammatical trials. Within each block of the SRT-AGL task, 

for both the non-adjacent and adjacent conditions, we calculated reaction time differences: 

RTDifference = ungrammatical RTA-B – grammatical RTA-B. If learning had occurred, then this 

difference would increase across blocks. We conducted a 2x8 AVOVA, with blocks 1 to 8 as 

within-subject factors, and the task (nonadjacent or adjacent) as between subject factors. We 

found no significant effect of run (F4,135 = .498, p = .758) or task (F1,30 = .431, p = .516), or a 

run*task interaction (F4,135 = 1.133, p = .345), which suggests that there was no decrease in A-

B reaction times to grammatical over ungrammatical sequences in either version of the task. 

Participants did not perform above chance in any of the explicit tasks. In the non-adjacent 

condition, participants did not perform significantly above chance in either the Sequence 

Completion task (t14 = 1.438, p = 0.172) or Grammaticality Judgement task (t14 = 1.00, p = 

.334). In the adjacent condition, participants performed slightly below chance on the Sequence 

Completion task (t16 = -2.27, p = .037). In the subsequent Grammaticality Judgement task, 

participants performed at chance levels (t16 = -.965, p = .348). Only one of the participants who 

completed the nonadjacent task (shown in green in Figure. 2.3) performed above chance in the 

reflection-based tasks. This single participant who performed above chance did not show the 

predicted pattern of performance in the SRT-AGL task, suggesting that any learning occurred 

after the SRT-AGL task.
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Figure 2.3. Experiment 2.1. SRT-AGL Sequence Completion and Grammaticality Judgement 
task performance. A) Difference plot showing the difference in mean reaction time differences 
(RTA-B ± SEM) between grammatical and ungrammatical sequences in the nonadjacent 
condition across blocks. Individual data is shown in grey. B) Mean (± SEM) performance in 
the nonadjacent sequence completion task. Individual performance is shown in circles. Good 
learners are shown in green (based on individual binomial tests, p < 0.05), non-learners are 
shown in red (p > 0.05). C) Mean performance (± SEM) in the nonadjacent Grammaticality 
Judgement task, including learners and non-learners. D) Difference plot showing the difference 
in mean reaction time differences (RTA-B ± SEM) between grammatical and ungrammatical 
sequences in the adjacent condition across blocks. Individual data is shown in grey. E) Mean 
(± SEM) performance on the sequence completion task. Individual performance is shown in 
circles. There were no ‘good learners’ in this task, therefore non-learners are shown in red (p 
> 0.05). F) Mean performance (± SEM) on the Grammaticality Judgement task.  
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In the Sequence Generation task, we examined whether participants who showed good 

performance on the reflection-based tasks were also more likely to produce grammatical 

sequences in the Sequence Generation task. We found no correlations between performance in 

the Sequence Generation task and performance in either the Sequence Completion (adjacent: r 

= .28, p = .269; nonadjacent: r = .24, p = .395) or Grammaticality Judgement (adjacent: r = .16, 

p = .529; nonadjacent: r = .479, p = .071) tasks, which was unsurprising given that only one 

participant showed evidence of learning across the experiment. We also calculated composite 

measures of SRT-AGL performance based on the RT(A-B) difference between grammatical and 

ungrammatical trials between Learning Block 1 and Learning Block 8, and explicit task 

performance (based on the mean performance in the Sequence Completion and Grammaticality 

Judgement tasks). These measures were not highly correlated in either the nonadjacent (r = -

.242, p = .385) or adjacent tasks (r = .102, p = .689), although this is again not surprising given 

the lack of learning across all tasks. 

Discussion 

In this experiment we aimed to assess implicit statistical learning using a visual serial reaction 

time task that did not rely on any prior semantic or linguistic knowledge, with the hope of 

developing a task that could be used in other groups, including children or people with language 

difficulties. However, we found little evidence of learning in either the SRT-AGL task or the 

Sequence Completion, Grammaticality Judgement and Sequence Generation tasks for either 

the nonadjacent or adjacent versions of the task. Moreover, we only identified a single 

participant who showed good performance across the reflection-based tasks, and this 

participant showed no evidence of learning in the SRT-AGL task. This may suggest that 

participating in the SRT-AGL task may inhibit learning that may have otherwise occurred 

during a standard artificial grammar learning task. 

The lack of learning in the reflection-based measures that is typically found during artificial 

grammar learning tasks could be attributed to the lack of exposure phase that is typically found 

in artificial grammar learning paradigms. It is possible that completing the SRT-AGL task may 

act as a distraction, and draw attention away from the dependencies, resulting in a lack of 

learning and therefore poor performance across tasks. Although the lack nonadjacent 

dependency learning in this task could be attributed to the more general inconsistency of 

learning of these dependencies reported in the literature (for a review, see Wilson et al., 2020), 

the lack of learning of simple adjacent relationships during this task strongly suggests that the 

complexity of nonadjacent relationships is not responsible for the lack of learning across these 
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experiments. Instead, as outlined above, completing the SRT-AGL task itself may have inhibit 

learning of both types of dependency. 

SRT-AGL tasks aim to use reaction times to provide a processing-based measure of implicit 

statistical learning which is not confounded by spatial information. Previous research has 

shown that they can be effective measures of implicit statistical learning (Misyak et al., 2009, 

2010; Vuong et al., 2011), and in these experiments we aimed to replicate and adapt the task 

to be more suitable for testing individuals with language difficulties in the future. We failed to 

show learning at a group level in all three experiments, despite a small number of participants 

showing predicted patterns of learning. The findings from these experiments raise the question 

of why these SRT-AGL tasks do not accurately measure implicit statistical learning for the 

majority of individuals. In traditional serial reaction time (SRT) tasks, participants are required 

to respond based on spatial positions (Nissen & Bullemer, 1987), where one location predicts 

another, which relies on motor learning (Conway, 2005; Heyes & Foster, 2002; Robertson, 

2007). However, in SRT-AGL tasks, whilst the participants must still locate the elements on 

the screen, it is the stimuli that predict one another, not the location. This design was to ensure 

that participants learned the relationships between the stimuli, however it also means that the 

participants only need to attend to the shapes enough to identify their key features, which could 

be less salient. It is possible that matching auditory or visual cues to their respective visual 

stimuli in the SRT-AGL task did not require participants to take note of the dependencies 

between stimuli, resulting in a lack of learning in the SRT-AGL tasks compared to more 

traditional SRT tasks.  

Although we found no evidence of learning in the SRT-AGL task, there is still a need for 

processing-based measures of implicit statistical learning that are not affected by conscious 

reflection. Recently, serial recall tasks have been used to as a processing-based measure of 

implicit statistical learning (Isbilen et al., 2017). In the following experiments (Experiments 

2.2 - 2.6), we outline a novel serial visual recall task that can be used to measure implicit 

statistical learning of variable, language-like grammars. 
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Experiments 2.2 – 2.6: Serial Visual Recall as a Measure of Implicit 

Statistical Learning 

 

In addition to enabling faster responses to predictable events, implicit statistical learning can 

facilitate the rapid processing of large amounts of incoming information (Christiansen & 

Chater, 2016). Working memory, particularly for rapidly serially presented information is very 

limited (Cowan, 2010; Miller, 1956; Vogel et al., 2001). Therefore, when presented with even 

modest sequences of stimuli the limits of working memory can quickly be exceeded. This 

cognitive limitation can be overcome by combining frequently co-occurring stimuli into larger 

“chunks”, to reduce working memory demands. This process of chunking incoming 

information is also critical for language learning and processing, to allow sufficiently rapid 

processing of the large amount of information contained within human language (Christiansen 

& Chater, 2016). These processes are important in artificial grammar learning tasks, for 

example, in Saffran et al.’s (1996) seminal study, from a rapid stream of syllables, predictable 

combinations of syllables are chunked to form ‘words’ based only on statistical regularities. 

This process makes rapid speech processing more efficient, as chunks can quickly be formed 

and passed to higher levels of representation: when processing speech we do not have to store 

every phoneme that is processed in order to recall the semantic meaning of the sentence.  

Based on this reasoning, if participants are presented with sequences which contain predictable 

regularities, frequently co-occurring elements should be more easily combined into chunks. 

This in turn may reduce the demands on working and allow for more efficient chunk-and-pass 

processing, in which input is rapidly, incrementally chunked at multiple levels of linguistic 

structure (from phonemes to words, then to phrases and sentences) in order to process this input 

before new information arrives (Christiansen & Chater, 2016). We can use this facet of 

cognition to our advantage to design a processing-based measure of implicit statistical learning. 

Artificial grammars can be used to generate predictable and unpredictable sequences. 

Predictable sequences contain more frequently co-occurring elements, therefore these 

sequences can be chunked and recalled more easily than unpredictable sequences. This has 

recently been demonstrated in visuo-motor tasks (Conway et al., 2007), in auditory (Isbilen et 

al., 2017; Kidd et al., 2020) and visual statistical learning tasks (Isbilen et al., 2020) and in 

natural language (McCauley & Christiansen, 2015). In Isbilen et al.’s (2020) experiment, 

participants first completed a passive exposure phase, where they were presented with 

sequences of syllables arranged into predictable trisyllabic ‘words’, before completing both a 

novel Serial Implicit Chunking Recall task and a more explicit reflection-based task. In the 
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recall task, participants were presented with a sequence of nonword syllables consisting of 

either predictably or randomly ordered syllables and asked to verbally recall the sequence. The 

reflection-based task was a two-alternative forced-choice (2AFC) task, in which participants 

are presented with both a predictable and random sequences and asked to select the sequence 

that follows the pattern they had previously heard during the exposure phase. They found that 

participants had improved verbal recall of syllables in predictable sequences over random 

sequences and performed above chance in the 2AFC task. However, performance on these two 

tasks were not correlated, suggesting that the 2AFC task, which relies on conscious decision 

making, may be measuring different processes to the more implicit recall task.  

The Serial Implicit Chunking Recall task has also been adapted to assess implicit statistical 

learning of nonword stimuli in the visual domain, using written transcriptions of the nonword 

syllables from the original auditory experiment. As in the auditory version of the task, 

participants were shown to have improved recall of predictable over random sequences, as well 

as above chance performance in the reflection-based task. However, in the visual domain, they 

did find evidence of a positive correlation between performance across the tasks that was not 

found in the auditory domain. The authors attributed this to the fact that the visual recall task 

may involve more reflection than the auditory recall task, as participants were able to revisit 

and revise their responses more easily than in the auditory recall task, where any amendments 

had to be made from memory. The findings from these tasks demonstrate that processing based-

measures of implicit statistical learning work and may be measuring something substantially 

different from more reflection-based measures. 

Serial recall tasks have been shown to effectively measure implicit statistical learning and may 

prove to be a more reliable measure of learning than more traditional reflection-based tasks 

(Isbilen et al., 2020). However, it is currently unclear what constraints are placed on measuring 

learning using these tasks. Both the auditory and visual SICR tasks are based on the seminal 

statistical learning paradigm introduced by Saffran et al., (1996), in which the stimuli consist 

of syllables arranged into predictable trisyllabic ‘words’. As the syllables within a word always 

co-occur together, it is cognitively efficient to ‘chunk’ these items together in working memory, 

rather than storing each phoneme separately, meaning the representations for these words are 

different to those of ‘part-words’. This ability to chunk frequently co-occurring stimuli appears 

to facilitate the serial recall effect in both the auditory and visual SICR tasks (Isbilen et al., 

2022; Isbilen et al., 2017, 2020; McCauley & Christiansen, 2015). However, implicit statistical 

learning has been shown to extend far beyond learning of word boundaries, in fact, similar 
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processes have been shown to underlie learning of more variable relationships between words 

in artificial grammars (Newport & Aslin, 2004).  

In a series of 5 experiments, we aimed to extend previous research to investigate if visual serial 

recall can be used to measure implicit statistical learning of more variable, language-like 

grammars. In each experiment, following the serial visual recall task, participants completed a 

number of reflection-based tasks: a traditional Grammaticality Judgement task, Sequence 

Generation and Sequence Completion task. The Sequence Generation and Sequence 

Completion tasks were included to assess the extent to which any sequence knowledge that 

was obtained was available to consciousness, as the ability to generate and complete sequences 

would suggest more explicit knowledge of the structure (Destrebecqz & Cleeremans, 2001; 

Wilkinson & Shanks, 2004). Across all 5 experiments, we predicted that we would see evidence 

of learning across the both the processing-based tasks and the reflection-based tasks. If 

processing-based measures of learning are measuring different processes than reflection-based 

measures, then there will be no correlation between performance in the Visual Recall task and 

performance across the subsequent reflection-based tasks.  

In Experiments 2.2 and 2.3 (in-person and online, respectively), using methods based on 

previous visual artificial grammar learning paradigms we saw no evidence of learning based 

on visual serial recall, but did replicate prior learning effects using the subsequent reflection-

based measures. In Experiments 2.4 and 2.5 (in-person and online, respectively), we adapted 

the serial visual recall task away from a traditional exposure-test paradigm to use a blocked 

design, where participants complete many recall blocks containing predictable sequences, 

before completing a block containing unpredictable sequences followed by a final block 

containing predictable sequences. We also developed a novel artificial grammar designed to be 

more susceptible to chunking. In these experiments, strong learning effects were observed in 

the serial visual recall task, as well as the subsequent reflection-based measures, and 

performance across these tasks was positively correlated. To assess whether the facilitation of 

learning in the visual serial recall task was due to the changes in procedure or the new grammar, 

in Experiment 2.6 we conducted one further online using the new methods from Experiments 

2.4 and 2.5 and the artificial grammar from Experiments 2.2 and 2.3. In Experiment 2.6 we 

again found strong evidence of learning across all measures of learning, however performance 

across processing- and reflection-based tasks was not correlated. Taken together, these findings 

suggest that the success of the visual serial recall task measuring learning is not dependent on 

the grammar being learned or based on whether the experiment takes place in-person or online. 

However, the design of the visual serial recall task is an important factor in successfully 
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measuring learning, with blocked designs proving to be effective where oddball tasks are not. 

Furthermore, these findings suggest that the complexity of the grammar may affect the extent 

to which explicit processes can be used, and therefore whether processing- and reflection-based 

measures capture similar mechanisms of learning.
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Experiments 2.2 & 2.3: Visual Artificial Grammar Learning Recall Task 

Introduction 

In Experiments 2.2 & 2.3, we aimed to investigate whether serial visual recall could be used to 

effectively measure learning of the between-word relationships found in artificial grammars 

which has previously used in both the auditory and visual modalities in humans and nonhuman 

primates (Milne et al., 2018; Saffran et al., 2008; Wilson et al., 2015). To do this, we adapted 

the design and stimuli of a previous AGL study (Milne et al., 2018), and integrated it with a 

novel Visual Recall task, alongside the existing Grammaticality Judgment task and new 

Sequence Generation and Sequence Completion tasks.  The artificial grammar consists of five 

stimuli, in this case abstract visual shapes, which were presented serially in sequence. After 

exposure to “grammatical” sequences generated by the artificial grammar, the participants were 

presented with novel testing sequences, and, after a brief pause, were asked to recall the 

sequence by clicking on the visual symbols on the screen in order. In Experiments 2.2 and 2.3 

we predicted that participants would show evidence of learning in the Visual Recall task, 

evidenced by an increase in recall accuracy of grammatical, but not ungrammatical sequences 

across blocks. We also predicted that participants would perform above chance in the 

subsequent Grammaticality Judgement task, and that performance in this task would be 

positively correlated with other reflection-based tasks. Finally, we predicted that there would 

be no correlation between performance in the visual recall task and performance across the 

subsequent reflection-based measures.  

Methods 

Participants 

In Experiment 2.2, 22 adult participants (15 female, 7 male, mean age = 30.1) were recruited 

using the Institute of Neuroscience participant pool at Newcastle University. We aimed to test 

approximately 40 participants – similar numbers to previous experiments using recall as a 

measure of implicit statistical learning, which recruited between 26 and 69 participants (e.g. 

Isbilen et al., 2017) – however due to the impact of COVID-19 we were forced to complete 

recruitment prematurely. All participants were native English speakers, and had normal or 

corrected-to-normal vision and hearing. Participants were not excluded based on their ability 

to speak any additional languages. Ethics was approved by the Faculty of Medical Sciences 

Ethics Committee at Newcastle University. 
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Experiment 2.2 was carried out in-person prior to the pandemic. Due to the COVID-19 

lockdown, further in-person data collection was not possible. Therefore, we recoded the 

experiment to enable them to run online. In Experiment 2.3, 43 participants (26 female, 17 

male; mean age = 30.98 years) were recruited using Prolific, an online recruitment platform. 

As previously mentioned, this sample size was similar to previous experiments using recall as 

a measure of implicit statistical learning (Isbilen et al., 2017). Participants were pre-screened 

to include native English speakers, and to exclude participants who had language disorders, as 

previous research has suggested that there may be deficits in implicit statistical learning in 

these populations (Folia et al., 2008; Hsu & Bishop, 2014; Obeid et al., 2016). Participants 

were not excluded based on their ability to speak any additional languages. An additional 7 

participants completed the experiment but were excluded from analysis for failing attention 

checks. Ethics was approved by Emory University IRB.  

Stimuli 

The sequences for the Visual Recall task in both Experiments 2.2 and 2.3 were generated using 

an artificial grammar developed by Saffran et al. (1999, 2008), using abstract white shapes 

inspired by previous artificial grammar stimuli (Conway & Christiansen, 2006; Milne et al., 

2018; Osugi & Takeda, 2013; Seitz et al., 2007). The grammar consisted of 5 elements (A, C, 

D, F, G), each represented by an abstract shape (see Figure. 2.4). In all phases of the task these 

stimuli were presented as white shapes (200*200) pixels on a black background (see Figure. 

2.4). The recall task itself was split into exposure and testing phases. The exposure phases 

consisted of 8 different grammatical sequences presented 8 times, totalling 64 sequences (see 

Figure 2.4). This included all possible grammatical sequences, except those which were 5 

elements long, which were not presented during the exposure phase so they would remain novel 

to the participants in the testing phase.  

In the testing phase, participants were presented with 5-element-long grammatical and 

ungrammatical sequences, none of which had previously appeared in the exposure phase. There 

were 4 grammatical sequences and 8 ungrammatical sequences (see Figure. 2.4.), so each 

grammatical sequence was presented twice per phase to ensure the number of grammatical and 

ungrammatical sequences was balanced. Each ungrammatical sequence contained at least one 

illegal transition, that is, a transition between elements that had not occurred during the 

exposure phase and therefore had a TP of 0
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Figure 2.4. Experiments 2.2 and 2.3 Artificial Grammar and Exposure Stimuli. A) Illustration 
of the artificial grammar and the exposure sequences used in Experiments 2.2 and 2.3. 
Sequences are produced by following the arrows from the start to the end. The grammar 
contains 5 elements which are represented by abstract shapes. B) The testing sequences 
consisted of 4 grammatical sequences (shown in blue), each of which was repeated twice per 
block, and 8 ungrammatical sequences (shown in red), each presented once per block. The 
mean TP of the ungrammatical sequences was lower than the grammatical sequences, meaning 
ungrammatical sequences contain fewer frequently co-occurring transitions and are therefore 
harder to chunk. 
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Procedure 

Experiment 2.2 took place in-person, in a testing lab with the same set up as Experiment 2.1. 

Responses were made either with the mouse (in the Visual Recall, Sequence Generation and 

Sequence Completion tasks) or by pressing one of two keys on the keyboard (in the 

Grammaticality Judgement tasks). To assess the relationship between implicit statistical 

learning and language abilities, we conducted the same battery of standardised cognitive and 

language tests before and after the main experiment as in Experiment 2.1. Before the 

experiment, the TOWRE Words and Nonwords, Backwards Digit Recall and the Recalling 

Sentences Task were administered (see Appendix 2.1.). After completing the Visual Recall, 

Grammaticality Judgement, Sequence Generation and Sequence Completion tasks, the WASI 

Block Design, Rapid Automatized Naming Digits and Objects tasks were administered.  

In Experiment 2.3 the Visual Recall, Grammaticality Judgement, Sequence Generation and 

Sequence Completion tasks were adapted from MATLAB to PsychoPy (version 2021.2.3) to 

enable them to run online through Pavlovia. Participants completed the experiment on their 

own desktop or laptop computer. No standardised cognitive and language tasks were conducted 

as part of this experiment, as these require in-person contact. 

As in traditional artificial grammar learning paradigms, in both Experiments 2.2 and 2.3 the 

Visual Recall task was split into two phases: exposure and testing. In both of these phases, each 

sequence was presented serially across the screen (Figure 2.5). Each element was presented on 

the screen for 450ms before being removed, and the elements were separated by an inter-

element interval of 300ms. In both exposure and testing phases, each sequence was separated 

by an inter sequence interval of 1000ms. 

Exposure phase 

In the exposure phase, the participants were asked to pay attention to the sequences but were 

not asked to make any responses. Participant were not told about the presence of any patterns 

in the sequences. In the first exposure phase (following the baseline recall test) participants 

were presented with 64 grammatical sequences, consisting of all 8 possible grammatical 

sequences repeated 8 times. This phase lasted approximately 5 minutes. Subsequent exposure 

phases were designed to refamiliarize the participants with the grammatical sequences, so were 

shorter, presenting 24 sequences and lasting approximately 2 minutes. 

In the online version of the task (Experiment 2.3), attention checks to the exposure phase to 

ensure participants were paying attention to the sequences. One in eight of the exposure 

sequences was randomly selected to be an attention check sequence. In an attention check 
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sequence, one element in the sequence was randomly selected and replaced with a star shape. 

Participants were instructed to attend to the sequences as in Experiment 2.2, and to press the 

“space” key whenever they saw a star within a sequence. 

Testing phase 

In the testing phase, each testing sequence was presented in the same way as in the exposure 

phase. After the sequence was presented, there was a 1000ms retention period. Following this, 

the stimulus elements were presented simultaneously in a circle on the screen (see Figure. 2.5). 

The position of each element was randomised on each trial, so that participants could not rely 

on positional cues or motor sequence learning. The participant was asked to recreate the 

sequence by clicking on the appropriate elements in the correct order. No feedback was given. 

An inter-trial interval of 1200ms separated the participant’s response from the presentation of 

the next sequence. Participants completed 4 testing phases in total. The experiment began with 

a baseline testing phase to assess working memory in each participant. This phase was identical 

to the other testing phases, except that it was not preceded by an exposure phase, and therefore 

we would predict no differences in recall accuracy between the ‘grammatical’ and 

‘ungrammatical’ sequences. All subsequent testing phases were separated by a short exposure 

phase.
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sequence of 5 shapes was presented serially across the screen. Each shape was presented for 
450ms, and each shape was separated by a 300ms inter-stimulus interval. After the sequence 
had been displayed, there was a 1000ms retention period. Following this, participants were 
presented with all 5 possible stimuli simultaneously on the screen. Participants were asked to 

Figure 2.5. Experiments 2.2 and 2.3 procedure and trial design. A) Procedure. In each trial, a  
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recreate the sequence by clicking on the desired elements in order. Each trial was separated by 
a 1500ms inter-trial interval. B) Grammaticality Judgment task trial. Participants were 
presented with grammatical and ungrammatical sequences. Following this, participants pressed 
one of two keys on the keyboard to indicate whether they felt that the sequence followed the 
same pattern as the sequence they had seen previously or not. Each trial was separated by a 
1500ms inter-trial interval. C) Sequence Generation task. In each of the 8 trials, participants 
were presented with all 5 possible elements arranged in a circle on the screen. Unlike the other 
tasks, no sequence was presented for recall or completion. Instead, participants created their 
own 5-element-long sequences by clicking on the desired elements in order. Each trial was 
separated by a 1500ms inter-trial interval. D) Sequence Completion task. In each of the 24 
trials, participants were presented with a 5-element long sequence in which one of the elements 
was replaced by a question mark. Participants were asked to complete the sequence by clicking 
on the desired shapes to fill in the gap. Each trial was separated by a 1500ms inter-trial interval. 
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Grammaticality Judgement Task 

After the Visual Recall task, the participants then completed the Grammaticality Judgement 

task. Prior to this task participants were re-familiarised with the grammatical sequences through 

a short exposure phase lasting 2 minutes, as described above. The participants were then 

informed that the sequences that they had just seen followed a pattern, and that they would see 

new sequences, some of which follow the same pattern and some that would not. The same 8 

grammatical and 8 ungrammatical sequences that were used in the testing phase of the recall 

task were presented in a random order. For this task, once the sequence was presented, 

participants were asked to judge if the sequence followed the pattern or not by pressing one of 

two keys on a keyboard. Participants completed two runs of the Grammaticality judgement 

task, separated by a short 2-minute exposure phase.  

Sequence Generation Task  

In the Sequence Generation task, all elements were displayed on the screen, as shown in Figure 

2.5. In each trial, participants were asked to create their own 5 element long sequences that fit 

the pattern they had seen previously. Participants created the sequences by clicking on the 

desired elements in order, in the same way that sequences were recalled in the testing phase of 

the Visual Recall task. Once the sequence had been created, it remained on screen for 1000ms, 

after which participants were presented with a black screen for 1000ms between trials. The 

Sequence Generation task consisted of 8 trials. 

Sequence Completion Task 

In the Sequence Completion task, participants were presented with a 5-element-long 

grammatical sequence with one element missing and instructed to try to select the appropriate 

element to fill in the gap. The Sequence Completion task consisted of 20 trials, and the 

sequences were counterbalanced so that for each of the grammatical test sequences, the missing 

element occurred once in each of the 5 positions within the sequence. 

The Sequence Generation task provides more information regarding the extent to which 

participants are consciously aware of any implicitly acquired knowledge, as the ability to 

generate sequences relies on gaining explicit access to knowledge of the dependencies 

(Destrebecqz & Cleeremans, 2001; Wilkinson & Shanks, 2004). As in Experiment 2.1, this 

task was included to assess the extent to which participants had access to the information they 

had (presumably) learned implicitly, in order to make more explicit decisions. Although at face 

value both the processing-based Visual Recall task and reflection-based Sequence Generation 

task both involve creating sequences, the completion of these task relies on different processes. 
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The Visual Recall task is a simple working memory task: participants were asked to remember 

and recreate sequences, which does not require participants to be aware of any of the rules 

underlying the sequences they are recalling, and indeed participants are not told about the 

presence of rules when completing the task. In the Visual Recall task, implicit statistical 

learning is assessed indirectly by comparing recall of grammatical and ungrammatical 

sequences, with the prediction that if learning has taken place, that recall of grammatical 

sequences should be improved relative to ungrammatical sequences. Conversely, prior to the 

Sequence Generation task, participants are told about the presence of rules underlying the 

sequences they have seen and asked to create sequences that follow this pattern. Success in this 

task requires participants to have at least some awareness of the rules, and therefore is likely to 

rely on different, more explicit processes compared to the Visual Recall task. 

Data Analysis 

In the Visual Recall task, there were two measures of performance. The first method was to 

score a trial as correct if the participant recalled the entire sequence correctly (henceforth 

absolute correct score). The second method was to calculate the proportion of each sequence 

that was correctly recalled (henceforth proportion correct score). In the Grammaticality 

Judgement task, a trial was scored as correct if the participants successfully classified it as 

grammatical or ungrammatical, and performance on this task was compared to chance levels 

(50%). In the Sequence Generation task, a trial was marked correct if the participant generated 

a sequence that was completely correct. In the Sequence Completion task, a trial was scored as 

correct if the participant chose the correct element to complete the sequence. This task cannot 

be solved based on exclusion alone (if 4 shapes are present, it must be the remaining shape) as 

the grammar allows for some repetition.  As only one element out of each 5-element long 

sequence was missing, chance performance was 20%. 

In the online version of the task, we calculated the percentage of stars correctly identified in 

the exposure phase. As we expected the majority of learning to occur in the longer initial 

exposure phase, it was particularly important to ensure that participants were paying attention 

in this block. Therefore, any participants who failed to score above 75% in responding to the 

attention checks within the initial exposure phase were excluded from the analysis. In the 

subsequent shorter exposure phases, any participants who did not correctly identify over 60% 

of stars in more than one block were excluded from the analysis. 
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Results 

In both the in-person and online Visual Recall tasks, we predicted that recall accuracy would 

improve across testing blocks for the grammatical sequences relative to the ungrammatical 

sequences, as participants learned the statistical relationships between the elements leading to 

higher levels of chunking in these more predictable sequences. We first analysed the data based 

on absolute correct scores (2x4 repeated measures ANOVA with factors: Condition 

(grammatical and ungrammatical) and Run (4 runs). For the in-person experiment, there was a 

main effect of run (F3, 63 = 47.389, p < .001), indicating an improvement in recall accuracy of 

both grammatical and ungrammatical sequences over the course of the experiment. Post-hoc 

tests (Bonferroni corrected) indicated significant differences in recall accuracy between the 

baseline run and subsequent testing runs (p < .001 in all cases), and between testing run 1 and 

the final testing run (p = .006), but not between testing run 1 and testing run 2 (p = .101). There 

were no significant differences in recall accuracy between other runs. Moreover, there was a 

significant main effect of condition, however this indicated that recall of grammatical strings 

was poorer than ungrammatical strings (F1, 21 = 6.73, p = .017). We also found a significant 

interaction between condition and run (F3, 63 = 6.09, p = .001), indicating that recall of 

grammatical sequence improved across runs to a greater extent than recall of ungrammatical 

sequences. These findings were also reflected in the absolute correct scores in the online 

experiment: there was a main effect of run (F3, 87.58 = 41.38, p < .001). Bonferroni corrected 

post-hoc tests indicated significant differences in recall accuracy between baseline run and 

subsequent testing runs (p < .001), between testing run 1 and testing run 3 (p = .013) but not 

testing run 2 (p = .454). There were no significant differences in recall accuracy between other 

runs. There was no main effect of condition (F1, 42 = .056, p = .814), and a significant interaction 

between condition and run (F3, 126 = 3.77, p = .012). A similar pattern of results was observed 

when using proportion correct scores in the in-person experiment: there was a main effect of 

run (F2.23, 46.74 = 41.10, p < .001). Post-hoc tests (Bonferroni corrected) indicated similar 

significant differences in recall accuracy between the baseline run and subsequent testing runs 

(p < .001), and between testing run 1 and the final testing run (p = .004), but between testing 

run 1 and testing run 2 (p = .053). There were no significant differences in recall accuracy 

between other runs. There was no main effect of condition (F1,21 = 2.07, p = .165), and an 

interaction between run and grammaticality (F2.17, 45.47 = 6.79, p = .002). In the online 

experiment, there was a main effect of run (F3,80 = 34.76, p < .001). Post-hoc tests (Bonferroni 

corrected) showed significant differences in recall accuracy between the baseline run and 

subsequent testing runs (p < .001), but no significant differences between other testing runs. 
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There was no main effect of condition (F1, 42 = .088, p = .768), and no interaction between run 

and condition (F3, 126 = 1.88, p = .136). 

Although there is some evidence of an interaction between condition and run in both in-person 

and online experiments, this effect was driven by particularly poor recall accuracy of 

grammatical sequences in the baseline block (Figure. 2.6), before any exposure to grammatical 

sequences had taken place. This could be due to the participants, prior to seeing the exposure 

sequences, wanting to avoid repetition of elements within a sequence. In these experiments, 

grammatical sequences are more likely to contain repeating elements than ungrammatical 

sequences, which means that if before exposure participants are avoiding repetition, this will 

negatively impact performance on grammatical but not ungrammatical strings. Following 

exposure, where participants have seen many examples of repetition within a sequence, they 

may be less likely to avoid repetition, and indeed, in the remaining runs of both experiments, 

there was no difference in recall accuracy between grammatical and ungrammatical sequences, 

as we would predict if learning had occurred.  

 

  Experiment 2.2 (In-person) Experiment 2.3 (Online) 

  Grammatical Ungrammatical Grammatical Ungrammatical 

  Mean SEM Mean SEM Mean SEM Mean SEM 

Baseline 0.12 0.03 0.33 0.05 0.27 0.04 0.36 0.04 

Run 1 0.54 0.07 0.55 0.05 0.59 0.05 0.58 0.04 

Run 2 0.61 0.05 0.67 0.06 0.65 0.04 0.62 0.05 

Run 3 0.70 0.06 0.66 0.06 0.71 0.04 0.69 0.05 

Table 2.1. Descriptive statistics for the Visual Recall tasks in Experiments 2.2 and 2.3 
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Figure 2.6. Experiment 2.2 in-person Visual Recall and Grammaticality Judgement task 
performance. In all panels, error bars represent +/- 1 SEM. A)  Mean absolute recall accuracy 
for grammatical and ungrammatical sequences across testing blocks 1 to 3. B) Mean proportion 
correct recall accuracy for grammatical and ungrammatical sequences across testing blocks. In 
both A and B there was no evidence of a difference in recall accuracy between the grammatical 
and ungrammatical sequences across runs. Performance on the Grammaticality Judgement task 
showed above chance performance (indicated by the dashed line) in both runs. Individual 
performance is shown in white.  
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Figure 2.7. Experiment 2.3 online Visual Recall and Grammaticality Judgement task 
performance. In all panels, error bars represent +/- 1 SEM. A)  Mean absolute recall accuracy 
for grammatical and ungrammatical sequences across testing blocks 1 to 3. B) Mean proportion 
correct recall accuracy for grammatical and ungrammatical sequences across testing blocks. In 
both A and B there was no evidence of a difference in recall accuracy between the grammatical 
and ungrammatical sequences across runs. Performance on the Grammaticality Judgement task 
showed above chance performance (indicated by the dashed line) in both runs. Individual 
performance is shown in white.  
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In Experiment 2.2, participants were significantly better than chance at correctly classifying 

the testing sequences as grammatical or ungrammatical across both runs of the Grammaticality 

Judgement task (run 1: M = 0.59, SEM = 0.031; t21 = 2.796, p = .011; run 2: M = 0.65, SEM = 

0.025; t21 = 6.156, p < .001). There was some indication that performance improved across 

runs, however this difference did not reach significance (t21 = -1.879, p = .074). In the online 

experiment, participants were close to performing above chance in run 1, however this did not 

reach significance (M = 0.55, SEM = 0.03; t42 = 2.01, p = .051). In run 2, participants did 

perform significantly better than chance (M = 0.58, SEM = 0.03; t42 = 2.93, p = .005). Similarly 

to Experiment 2.3, whilst performance in run 2 was better than run 1 in the online task, this 

difference was not significant (t42 = 1.15, p = .257). These findings suggest that across both in-

person and online experiments, there may be some improvement in performance once 

participants have been informed about the presence of rules and been given an opportunity to 

look for these rules during exposure.  

In the Sequence Generation task, we examined whether participants who showed good 

performance on the explicit tasks were more likely to create grammatical sequences in the 

Sequence Generation task. In Experiment 2.2, performance on the Sequence Generation task 

was positively correlated with performance on the second run of the Grammaticality Judgement 

task (r = .539, p = .009), but not the first run (r = .148, p = .511). In the Sequence Completion 

task, participants performance was compared to chance (20%) using a one sample t test. 

Participants were significantly more likely to choose the correct element to fill in the gap (t21= 

18.835, p < .001). Similarly to the Sequence Generation task, performance in the Sequence 

Completion task was positively correlated with performance in the second run of the 

Grammaticality Judgement task (r = .531, p = .011), but not the first run (r = .145, p = .519). 

Performance in the Sequence Completion task was also positively correlated with performance 

on the Sequence Generation task (r = .727, p < .001), which we would expect given the 

similarity between these tasks. These findings were replicated in the online experiment: we 

found a positive correlation between performance in run 2 of the Grammaticality Judgement 

task and both the Sequence Generation (r = .428, p = .004), and Sequence Completion (r = 

.635, p < .001) tasks, but no correlation between performance in run 1 of the Grammaticality 

Judgement task and the Sequence Generation (r = .203, p = .191) and Sequence Completion (r 

= .214, p = .169) tasks. Performance on the Sequence Completion task was above chance (t42 

= 26.33, p < .001), and there was a positive correlation between performance on the Sequence 

Generation and Sequence Completion tasks (r = .452, p = .002). Correlations between 

performance in run 2, but not run 1 of the Grammaticality Judgement task with the other 
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reflection-based measures may suggest that being told about the presence of rules underlying 

the sequences after run 1 of the Grammaticality Judgement task may result in the recruitment 

of more explicit processes during the second run of the Grammaticality Judgement task, similar 

to those participants are likely to use when generating their own sequences.  

To assess whether the processing-based visual recall task and subsequent reflection-based tasks 

are measuring similar processes, we calculated composite measures of Visual Recall task 

performance based on the difference in recall accuracy for grammatical and ungrammatical 

trials between blocks 2 and 4. We correlated this with composite reflection-based task 

performance (based on the mean performance in the Grammaticality Judgement, Sequence 

Generation, and Sequence Completion tasks). There was no correlation between these 

measures either in-person (r = -.175, p = .436) or online (r = .165, p = .277) which is 

unsurprising given that the Visual Recall task failed to measure any learning. We also examined 

whether performance in the Visual Recall task and subsequent reflection-based tasks was 

correlated with performance on the battery of language tasks, however we did not find any 

consistent correlations (see Appendix 2.2.), although this may also be in part due to the failure 

of the Visual Recall task in measuring learning.  

To compare performance between the in-person and online versions of the task, we added the 

between-subjects factor of task (in-person or online) to the previous ANOVAs using absolute 

and proportion correct scores. We found no differences in performance based on whether the 

tasks were completed in-person or online. In the Visual Recall task, we found no main effect 

of task when using either absolute correct (F1, 63 = .391, p = .534) or proportion correct (F1, 63 

= .336, p = .564) scores, and no interactions between task and the other variables. We also 

compared in-person and online performance in the Grammaticality Judgement task using a 2x2 

mixed ANOVA, with run (2 runs) as a within-subjects factor and task (in-person or online) as 

a between-subjects factor. We found no main effect of task (F1, 63 = .2.20, p = .143), and no 

additional interactions. Independent t tests show no differences between in-person and online 

performance in either the Sequence Generation task (t63 = 1.08, p = .2.82) or Sequence 

Completion task (t63 = 1.21, p = .230). 

Discussion  

In this experiment we saw no evidence of implicit statistical learning in the visual recall task, 

despite good performance across subsequent reflection-based measures.  Performance in the 

second run of the Grammaticality Judgement task was positively correlated with performance 

in both the Sequence Generation and Sequence Completion tasks, further suggesting that 



Chapter 2: Processing-Based Measures of Implicit Statistical Learning 

50 
 

learning has taken place during the experiment.  Despite learning having occurred, it is clear 

that the Visual Recall task was not an effective measure of learning in this experiment. 

There are two possible explanations for why there is evidence of learning in the explicit tasks, 

but not the Visual Recall task: either learning occurred during the Visual Recall task that was 

not reflected in improved recall performance, or learning did not occur until after the Visual 

Recall task. It is likely that learning did occur during the Visual Recall task, because, similarly 

to traditional AGL paradigms, the task consisted of exposure and testing phases, meaning 

participants were given similar opportunities to learn the regularities as in traditional AGL 

experiments where learning has previously been found (e.g., Reber, 1967; Saffran et al., 1996). 

Furthermore, participants show above chance performance in the first run of the 

Grammaticality Judgement task, and at this stage of the task, they have not had the chance to 

complete an exposure phase whilst knowing about the presence of rules. Therefore, any 

learning that has occurred at this point is more likely to be a reflection of learning that has 

occurred during the preceding exposure phases by implicit statistical learning, than by explicit 

processes seeking of rules during the exposure phases. From this, we can conclude that learning 

likely occurred during the Visual Recall task, but this was not reflected in improved recall of 

grammatical over ungrammatical sequences.  

Although not significant, participants show a trend towards performing better in the second run 

of the Grammaticality Judgement task than the first. Furthermore, performance in the second 

run, but not the first run, was positively correlated with performance across the other reflection-

based tasks. Both findings may be explained by the fact that the second run of the 

Grammaticality Judgement task is completed after the participant has had the chance to 

complete an exposure phase after being explicitly told about the presence of rules underlying 

the sequences. Being able to adopt more explicit processes to aid in rule learning during this 

exposure phase may facilitate performance in the second run. Furthermore, it is possible that 

this more explicit, top-down approach to rule learning may account why there is a positive 

correlation between performance in the second run of the Grammaticality Judgement task and 

performance in the other explicit tasks, but not the first run.  

There are several methodological reasons that may explain why recall was not an effective 

measure of learning in this experiment. First, ungrammatical sequences were interspersed 

within each Recall Block, which may have interfered with learning of the grammar. Second, in 

the (Saffran et al., 2008) grammar being learned in these experiments, the majority of 

transitions were more variable than the within-word transitions from previous recall tasks, 

which had a TP of 1 (e.g., Isbilen et al., 2017). In Experiments 2.3 and 2.4, only one transition 
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(element “D” to element “C”) had a TP of 1, which means it is possible that recall did not 

reflect learning because the grammatical sequences could not be reliably chunked. 

Furthermore, the ungrammatical sequences used in this experiment only contain subtle 

violations, rather than consisting of random transitions, as in previous serial auditory recall 

tasks (Isbilen et al., 2022; Isbilen et al., 2017, 2020; Kidd et al., 2020). Therefore, these 

ungrammatical sequences consist primarily of legal transitions that can be chunked, potentially 

providing a memory benefit for these sequences in addition to the grammatical sequences. This 

may explain why we do not see any differences in recall of grammatical and ungrammatical 

sequences in this experiment. It is possible that recall may only be an effective measure of 

learning when the ungrammatical sequences consist primarily of illegal transitions. 

Furthermore, these ungrammatical sequences were interspersed within each Recall Block, 

which may have interfered with the learning of the regularities: participants may have been 

more engaged with the task during the Recall Blocks compared to the exposure phases, which 

means that some learning of ungrammatical transitions may have been learned. In Experiments 

2.4 and 2.5, we made changes to the design of the Visual Recall task to understand which 

conditions were best for measuring learning. 
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Experiments 2.4 & 2.5: Chunking Visual Recall Task 

Introduction 

In Experiments 2.2 and 2.3, using methods based on previous visual artificial grammar learning 

paradigms, we saw no evidence of learning based on visual serial recall, but did replicate prior 

learning effects using the subsequent reflection-based measures. In Experiments 2.4 and 2.5, 

we made some changes to the design of the Visual Recall task to facilitate learning. In 

Experiments 2.2 and 2.3, ungrammatical sequences were included in each Recall Block. The 

aim of this design was to gain more information on the time-course of learning across the Visual 

Recall task, as opposed to more traditional grammaticality judgement tasks, where learning is 

assessed at the end of the experiment following exposure to grammatical sequences. However, 

it is possible that interspersing ungrammatical sequences throughout the experiment may have 

interfered with learning of the regularities. Therefore, in Experiments 2.4 and 2.5, we adopted 

a blocked design: participants completed an initial baseline block, followed by 6 Recall Blocks 

consisting of only grammatical trials. They then completed a Testing Block of random, 

ungrammatical trials, before finishing with a final “Recovery” Block of grammatical trials.  

We also introduced a novel grammar to be learned during the experiment. Isbilen et al.’s (2017) 

task involved learning the tri-syllabic nonwords, where the transitional probabilities within a 

“word” was 1, but the transitions between words were more variable (0.33). In Experiments 

2.3 and 2.4, we examined whether recall tasks were also effective at measuring learning of 

between word relationships that are typically found in artificial grammars. However, as the 

Visual Recall task in Experiments 2.2 and 2.3 showed no evidence of learning, it is possible 

that recall tasks are only effective measures of implicit statistical learning of highly regular 

relationships. Therefore, in Experiment 2.4, we developed a novel artificial grammar that was 

specifically designed to contain elements that can be chunked together to investigate if Visual 

Recall tasks are able to measure implicit statistical learning of less variable regularities. Finally, 

in Experiments 2.4 and 2.5, we used randomly generated sequences containing many illegal 

transitions as ungrammatical sequences, as opposed to ungrammatical sequences containing 

more subtle violations to the grammar. Isbilen et al.’s (2017) SICR task found differences in 

recall accuracy between grammatical and random nonword triplets, where the difference in TP 

between the grammatical and random sequences was much larger than in our Experiments 2.2 

and 2.3. By including ungrammatical sequences with considerably lower TPs than the 

grammatical sequences, we aimed to emphasise the legal transitions and facilitate learning.  
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We predicted predict 3 key findings in the Visual recall task: recall accuracy would improve 

across Recall Blocks; recall accuracy would be significant higher in the final Recall Block 

compared to the Testing Block and finally, recall accuracy would be significantly higher in the 

Recovery Block compared to the Testing Block. Similarly to Experiments 2.2 and 2.3, 

following the Visual Recall task, participants completed Grammaticality Judgement, Sequence 

Generation and Sequence Completion tasks, where we predict similar findings to Experiments 

2.2 and 2.3. 

Methods 

Participants 

30 participants (23 female, 7 male; mean age = 26.83), were recruited using the Newcastle 

University Neuroscience Participant Pool and the School of Psychology Student Participant 

Pool. Previous studies using serial recall tasks to a measure implicit statistical learning report 

effect sizes between 0.4 and 1 (Isbilen et al., 2017, 2020, 2022) from which we predicted an 

average effect size of approximately 0.7. Based on this expected effect size, we conducted a 

power analysis, which indicated that 30 participants would be appropriate. All participants 

were native English speakers, and had normal or corrected-to-normal vision and hearing. 

Participants were not excluded based on their ability to speak any additional languages. Ethics 

was approved by the Faculty of Medical Sciences Ethics Committee at Newcastle University.  

Experiment 2.4 was carried out in-person in May 2019 - March 2020 and was disrupted due to 

the COVID-19 lockdown. As such, the task was recoded to allow for online data collection 

(Experiment 2.5). In Experiment 2.5, 36 participants (17 female, 19 male; mean age = 25.74 

years) were recruited for this study from Prolific. This sample size was selected as it was similar 

to the in-person version of the task and previous experiments (Isbilen et al., 2017, 2020, 2022). 

As in Experiment 2.3, we pre-screened participants to include native English speakers and to 

exclude individuals with language disorders. In this experiment we also ensured not to recruit 

participants who had participated in Experiment 2.3. Participants were not excluded based on 

their ability to speak any additional languages. An additional 3 participants were excluded 

from the analysis for failing attention checks present throughout the task. Ethics was approved 

by Emory University IRB. 
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Methodological Changes 

In an attempt to improve performance in the Visual Recall task, we made a number of 

methodological changes. First, we changed the artificial grammar that was being learned during 

the experiment. In Experiments 2.2 and 2.3, we used an artificial grammar consisting of 5 

stimuli, containing a wide variety of possible transitions between these stimuli, resulting in 

sequences containing a range of transitional probabilities. By contrast, previous successful 

serial recall tasks (and many other implicit statistical learning tasks, e.g. Saffran et al., 1996) 

have used grammars with more predictable structure, in which certain elements consistently 

occur in ‘chunks’, with a transitional probability of 1. Chunking facilitates recall because it is 

more efficient to chunk elements that always occur together rather than processing each 

element separately. However, if the elements co-occur with more variability, as in Experiments 

2.2 and 2.3, then chunking may not occur. It is possible that previous serial recall experiments 

have successfully measured implicit statistical learning because the artificial grammars being 

learned contained more predictable transitions. Therefore, we used a new artificial grammar 

(see Artifical Grammar) that contained more predictable transitions. However, between word 

transitions remain an important feature of natural language, and therefore we designed this 

novel artificial grammar to contain both highly predictable chunks, and more variable between 

chunk transitions.  

Second, we made changes to the stimuli used across the tasks. In Experiments 2.2 and 2.3, 

participants recalled 5-element-long sequences of abstract shapes. However, as the novel 

artificial grammar consisted of several two-element-long chunks, we could only generate 

sequences that were an even number in length to avoid violating the rules of the grammar. 

Therefore, we chose to generate 6-element-long sequences in Experiments 2.4 and 2.5. 

However, performance in the Visual Recall task in Experiments 2.2 and 2.3 was relatively poor 

with 5-element-long sequences, and therefore we were concerned that creating 6-element-long 

sequences of abstract shapes may result in floor effects. As such in Experiments 2.4 and 2.5, 

we decided to use pictures of animals instead of abstract shapes, as we expected memory of 

familiar objects to be better than abstract shapes.  

Finally, we changed the procedure of the Visual Recall task. In Experiments 2.2 and 2.3, each 

block of the Visual Recall task contained both grammatical and ungrammatical sequences. 

However, it is possible that including ungrammatical sequences may have interfered with 

learning of the grammatical transitions. Therefore, in Experiments 2.4 and 2.5, we changed the 

Visual Recall task to use a blocked design, similar to traditional SRT tasks. In these 

experiments, participants complete many blocks of grammatical sequences only, before 
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completing a ‘testing’ block containing only ungrammatical sequences, before completing a 

final grammatical ‘recovery’ block. By adopting this new design we aimed to avoid any 

interference from ungrammatical sequences in the learning of the structure. 

Artificial Grammar 

As previously mentioned, it is possible that recall tasks are not an effective measure of implicit 

statistical learning when the grammar being learned contains relatively variable transitions 

between stimuli.  Therefore, we designed a novel grammar that would be more susceptible to 

chunking (hereafter Chunking grammar; see Figure. 2.8). The Chunking grammar consists of 

8 elements (A-H), pairs of which always co-occur (i.e., AB, CD, EF, GH), resulting in 4 

chunks. The transitional probabilities between the elements in a chunk are 1.0, (i.e., element 

‘A’ can only be followed by element ‘B’), and the elements within a chunk can only appear in 

this order. In addition to these within chunk relationships, there are also relationships between 

the 4 chunks. There are two types of possible grammatical transitions between chunks: one 

high TP transition (e.g., AB→CD; TP = 0.66) and one low TP transition (e.g., AB→GH; TP = 

0.33). 
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Figure 2.8. Chunking grammar and stimuli. A) Illustration of the artificial grammar used in 
Experiments 2.4 and 2.5. Sequences are generated by following the arrows to produce 6-
element long sequences. B) The recall sequences were grammatical sequences. To establish 
the high and low TP sequences, the high TP sequences were repeated twice per block, whereas 
the low TP sequences were only presented once per block, totalling 12 sequences per block. C) 
The grammar contains 8 elements which are represented by images of animals. A different set 
of animals was used in the initial random block to familiarise participants with the task without 
affecting their learning of the stimuli or the grammar.   
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The structure of the grammar allows us to examine the learning of the different types of 

relationships underlying the grammar separately: we can investigate whether the within chunk 

relationships are learned (e.g., the relationship between ‘A’ and ‘B’), if the between chunk 

relationships are learned (e.g., that ‘AB’ is more likely to be followed by ‘CD’ than ‘GH’, and 

is never followed by ‘EF’), or if both of these relationships are learned. As the transitional 

probabilities within elements in a chunk are considerably higher than the TPs between chunks, 

we would predict that the within chunk relationships will be learned before the between chunk 

relationships, if the between chunk relationships are learned at all. 

Stimuli 

The stimuli in this task consisted of two sets of 8 images of animals (Figure 2.8), each 200x200 

pixels. The first set was used in the initial training block, whereas the second set was used for 

the remainder of the experiment. In the Visual Recall task, in order to create high TP and low 

TP grammatical sequences, 6-element-long high TP sequences (TP = .66) were presented twice 

per grammatical block. 4 low TP sequences (TP = .33) were presented once per block, resulting 

in 12 sequences per grammatical block. 12 randomly generated sequences were presented in 

the random blocks.  

Because the Visual Recall task was comparing grammatical with random sequences, in order 

to further examine types of rules participants may pick up on, for the subsequent explicit tasks 

we designed ungrammatical sequences with more specific violations (similarly to the 

ungrammatical testing sequences from Experiments 2.2 and 2.3). For example, if a participant 

has correctly learned that certain elements are chunked together, they should perform better at 

judging sequences with violations to these chunks as ungrammatical. For the Grammaticality 

Judgement task, a total of 48 6-element long sequences were created, half of which were 

grammatical. There are only 8 possible 6-element long grammatical sequences that do not 

include repetition of chunks within a sequence (the same grammatical sequences from the 

Visual Recall task). These 8 sequences were repeated 3 times to equal the number of 

ungrammatical sequences. The ungrammatical sequences contained equal numbers of three 

types of violation: within chunk violations (e.g., AB CF GH), between chunk violations (e.g., 

AB CD GH) and both within and between chunk violations (e.g., AB DC EF). The sequences 

were balanced so that violations were equally likely to occur in each position and with each 

element (Table 2.1).   
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Grammatical 
Sequences 

Sequences With 
Within Chunk 

Violations 

Sequences With 
Between Chunk 

Violations 

Sequences 
With Both 
Violations 

High TP 
Sequences 

AB CD EF AB CF GH AB CD GH AB DC EF 

CD EF GH CD EH AB EF GH CD CD FE GH 

EF GH AB EF GB CD CD AB EF EF HG AB 
GH AB CD GH AD EF GH EF AB GH BA CD 

Low TP 
Sequences 

AB GH EF AB GF CD CD GH AB AB HG EF 
CD AB GH CD AH EF GH CD EF CD BA GH 

EF CD AB EF CB GH AB EF CD EF DC AB 

GH EF CD GH ED AB EF AB GH GH FE CD 
 

Similarly to the Grammaticality Judgement task, the Sequence Completion task can provide 

more detailed information regarding the types of relationships that have been learned. 

Depending on the location of the gaps in each sequence, knowledge of the different 

relationships between elements can be tested (see Table 2.2). Eight sequences were included 

to test knowledge of each type (within chunk, between chunk and both within and between 

chunk) of relationship, totalling 24 sequences in the Sequence Completion task. 

 

 Within Chunk 
Sequences  

Between Chunk 
Sequences  

Both Sequences * 

High TP Sequences 

A_ C_ E_ AB CD __ AB __ EF 

C_ E_ G_ EF GH __ CD __ GH 

_F _H _B __ EF GH EF __ AB 
_H _B _D __ AB CD GH __ CD 

Low TP Sequences 

G_ E_ C_ __ GH EF __ CD __ 

E_ C_ A_ __ CD AB __ EF __ 
_D _B _H CD AB __ __ GH __ 

_B _H _F GH EF __ __ AB __ 
*Note: there are no high or low sequences for the “both” condition, both high and low TP 
sequences can be made in these trials depending on the elements that the participant choses. 

Table 2.2. Experiment 2.4 and 2.5 Grammaticality Judgement task sequences. Grammatical, 
within violation, between violation, and both within and between chunk violation sequences 
used in the Grammaticality Judgement task. Illegal transitions are shown in bold. To balance 
the number of grammatical and ungrammatical sequences, the grammatical sequences were 
repeated three times. 

Table 2.3. Experiment 2.4 and 2.5 Sequence Completion sequences. These sequences were 
used to test knowledge of within, between and both within and between chunk relationships.  
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Procedure 

In Experiment 2.4, the lab set up and procedure were identical to Experiment 2.2: the same 

cognitive tests were administered, and participants completed the Visual Recall, 

Grammaticality Judgement, Sequence Generation and Sequence Completion tasks in the same 

order as Experiment 2.2. In Experiment 2.5, because the experiment took place online, 

participants completed the computer tasks on their own desktop computer or laptop, and no 

standardised cognitive or language tasks were completed. In both in-person and online 

computer tasks, 6-element-long sequences were presented serially across the computer screen. 

Each image was displayed on the screen for 450ms, before being removed. The inter-stimulus 

interval was 300ms.  

Visual Recall Task 

The recall task consisted of two types of blocks: recall blocks, where the sequences were 

structured based on the Chunking Grammar, and random blocks, where the elements in the 

sequences were randomly shuffled. The recall task consisted of 9 blocks, with each block 

containing 12 sequences. The participants were not aware of the transitions between blocks. In 

each block, after the sequence was presented, there was a 1000ms retention period. Following 

this, the elements were presented simultaneously on the screen (see Figure 2.9). The position 

of each element was randomised on each trial, so that participants could not rely on positional 

cues or motor sequence learning. The participant was asked to recreate the sequence by clicking 

on the appropriate elements in the correct order. No feedback was given. An inter-trial interval 

of 1500ms separated the participant’s response from the presentation of the next sequence. 

The task began with an initial random block, using the first set of stimuli, was included to 

familiarise participants with the task without affecting their learning of either the stimuli or the 

grammar. The second set of stimuli were then used for the remainder of the experiment. The 

initial random block was followed by 6 blocks of sequences structured in accordance with the 

chunking grammar (Recall Blocks), followed by a Testing Block consisting of random 

sequences. The final Recovery Block consisted of sequences in which the structure was 

restored. In the online version of the task used in Experiment 2.5, participants were offered two 

opportunities to take a short break during the visual recall task, between Recall Blocks 2 and 3 

and Recall Blocks 5 and 6.  

Grammaticality Judgement Task 

The Grammaticality Judgement task was identical to Experiments 2.2 and 2.3.  

Sequence Generation Task 
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In this task participants were instructed to create their own 6-element-long sequences. In each 

of the 8 trials, the participants were presented with all 8 elements arranged in a circle on the 

screen (Figure 2.9). Participants created their sequences by clicking on stimuli in the desired 

order. Each trial was separated by a 1500ms inter-trial interval. No feedback was given.  

Sequence Completion Task 

In the Sequence Completion task, participants were presented with incomplete 6-element-long 

sequences, where the missing elements were replaced by question marks. As in the Sequence 

Generation task, all 8 possible elements were also arranged in a circle on the screen. In each of 

the 24 trials, participants were asked to fill in the gaps in the sequence by clicking on the stimuli 

in the desired order.
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arranged in a circle on the screen. Participants created their own 6-element-long sequences by 
clicking on the desired elements in order. Each trial was separated by a 1500ms inter-trial 
interval. D) Sequence Completion task. In each of the 24 trials, participants were presented 

Figure 2.9. Experiments 2.4 and 2.5 trial design. A) Visual Recall task. In each trial, 
participants were presented with a 6-element-long sequence: each element was displayed on 
screen for 450ms before being removed, with an inter-stimulus interval of 300ms. After the 
sequence had been displayed, there was a 1000ms retention period. Following this, participants 
were presented with all 8 possible stimuli simultaneously on the screen. Participants were asked 
to recreate the sequence by clicking on the desired elements in order. Each trial was separated 
by a 1500ms inter-trial interval. B) Grammaticality Judgment task trial. Participants were 
presented with grammatical and ungrammatical sequences and then pressed one of two keys 
on the keyboard to indicate whether they felt that the sequence followed the same pattern as 
the sequence they had seen previously or not. Each trial was separated by a 1500ms inter-trial 
interval. C) Sequence Generation task. Participants were presented with all 8 possible elements  
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with all 8 possible elements and were a partially completed sequence, where some elements 
were replaced by question marks. Participants were tasked with filling in the gaps in these 
sequences by clicking on the desired stimuli in order. Each trial was separated by a 1500ms 
inter-trial interval. 
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Data Analysis 

In Experiments 2.4 and 2.5, the data were analysed in the same way as Experiments 2.2 and 

2.3. In both experiments, we also compared performance of high and low transitional 

probability sequences across the Visual Recall, Grammaticality Judgement, Sequence 

Generation and Sequence Completion tasks. As Experiment 2.5 was completed online, to 

ensure participants were completing the task properly, we included several quality checks prior 

to analysis. If a participant created two or more sequences within a block that consisted of only 

one element repeatedly, then they were excluded from the analysis. We also used participants 

responses times to ensure quality: for incorrectly recalled sequences, if participants took longer 

than 10 seconds to begin recreating the sequence, or if they took a break of longer than 5 

seconds whilst recreating the sequence then this sequence was flagged. Participants who had 

more than three flags per block were excluded from the analysis. 

Results 

The results from Experiments 2.4 and 2.5 provide strong evidence that learning had occurred 

in both the Visual Recall tasks and subsequent more explicit tasks. In-person, when using 

absolute correct scores, recall accuracy was significantly higher in Recall Block 6 was than in 

Recall Block 1 (t29 = 6.570, p < .001). Recall accuracy was also significantly higher in Recall 

Block 6 compared to the Testing Block (t29 = 3.916, p = .001). Finally, recall accuracy 

significantly improved between the Testing and Recovery Blocks (t29 = 4.094, p < .001). This 

pattern was also reflected in the proportion correct scores: recall accuracy was significantly 

higher in Recall Block 6 compared to Recall Block 1 (t29 = -7.53, p < .001); Recall accuracy 

was significantly higher in Recall Block 6 compared to the Testing Block (t29 = 4.48, p = .001). 

Finally, recall accuracy significantly improved between the Testing and Recovery Blocks (t29 

= -4.659, p < .001). This same pattern was observed in the online experiment when using both 

absolute (Recall Block 6 > Recall Block 1: t35 = 4.72, p < .001; Recall Block 6 > Testing Block: 

t35 = 5.04, p < .001; Recovery Block > Testing Block: t35 = 4.85, p < .001) and proportion 

correct (Recall Block 6 > Recall Block 1: t35 = 4.01, p < .001; Recall Block 6 > Testing Block: 

t35 = 4.86, p < .001; Recovery Block > Testing Block: t35 = 5.12, p < .001) scores. These 

findings strongly suggest that implicit statistical learning has occurred during the Visual Recall 

task, and that the Visual Recall task is an effective measure of this learning.  

 

Table 2.4. Descriptive Statistics for the Visual Recall Task in Experiments 2.4 and 2.5. 
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 Experiment 2.4 (In-Person) Experiment 2.5 (Online) 

 Absolute Correct Proportion Correct Absolute Correct Proportion Correct 

 Mean SEM Mean SEM Mean SEM Mean SEM 

Baseline 0.20 0.03 0.58 0.03 0.26 0.03 0.62 0.03 

Recall 1 0.23 0.04 0.62 0.03 0.26 0.04 0.63 0.03 

Recall 2 0.32 0.06 0.66 0.04 0.34 0.05 0.69 0.03 

Recall 3 0.43 0.06 0.73 0.04 0.38 0.05 0.71 0.03 

Recall 4 0.44 0.07 0.76 0.04 0.41 0.06 0.74 0.03 

Recall 5 0.49 0.07 0.78 0.04 0.46 0.06 0.75 0.04 

Recall 6 0.53 0.06 0.79 0.04 0.55 0.06 0.79 0.04 

Testing 0.29 0.05 0.66 0.03 0.30 0.04 0.66 0.03 

Recovery 0.52 0.07 0.79 0.04 0.51 0.06 0.78 0.03 

 

Participants also showed evidence of learning in the Grammaticality Judgement task, both in-

person (M = 0.59, SEM = 0.02; t29= 4.13, p < .001) and online (M = 0.59, SEM = 0.02; t35 = 

3.58, p = .001). Performance on the Grammaticality Judgment task can also be broken down 

by condition to compare performance across grammatical and ungrammatical sequences 

containing within chunk, between chunk and both within and between chunk violations (see 

Table 2.1). In the in-person experiment (Experiment 2.4), participants perform above chance 

on the grammatical sequences only (M = 0.66, SEM = 0.04; t29 = 4.211, p < .001), but not in 

any of the ungrammatical conditions (Within: M = 0.56, SEM = 0.05; t29= 1.191, p = .243; 

Between: M = 0.42, SEM = 0.05; t29 = -1.561, p = .129; Both: M = 0.57, SEM = 0.05; t29 = 

1.426, p = .165). In the online experiment (Experiment 2.5), participants performed above 

chance for the Grammatical condition (M = 0.69, SEM = 0.05; t35 = 4.05, p < .001), and 

significantly below chance in the Between condition (M = 0.33, SEM = 0.05; t35 = -3.48, p = 

.001). Participant’s performance in the Within and Both conditions did not differ from chance 

(Within: M = 0.58, SEM = 0.05; t35 = 1.55, p = .131; Both: M = 0.57, SEM = 0.05; t35 = 1.22, 

p = .232). Repeated measure ANOVAs with Condition (Grammatical, Within, Between or 

Both) as a within-subjects factor indicated that there was a main effect of Condition in the in-

person  experiment (F3,87 = 4.14, p = .016), with post-hoc (Bonferroni corrected) tests 

indicating significant differences in performance between the Grammatical and Between 

conditions (p = .045), but not between any other conditions. There was also a main effect of 

condition in the online experiment (F3,105 = 9.03, p < .001), with post-hoc (Bonferroni 

corrected) tests indicating significant differences in performance in the Between condition 

compared to the Grammatical (p = .002), Within (p = .013) and Both (p = .031) conditions, but 

not between other conditions (p > 0.05, in all cases).
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correct scores. Orange bars indicate blocks of random sequences, whereas blue bars indicate 
blocks of grammatical sequences. Recall increases across grammatical Recall Blocks, before 
significantly decreasing in the Testing Block. In the final Recovery Block, performance is 
significantly higher than in the Testing Block. This pattern of results provides clear evidence 
that implicit statistical learning has taken place. B) The same pattern was observed when using 
proportion correct scores. C) Performance on the Grammaticality Judgement task showed 
above chance performance (indicated by the dashed line). Individual performance is shown as 
white circles. D) Breakdown of performance across the different types of sequences in the 
Grammaticality Judgement task. Participants performance above chance (shown by the dashed 
line) at correctly classifying the grammatical sequences only. 

Figure 2.10. Experiment 2.4 in-person Visual Recall and Grammaticality Judgement task 
performance. A) Mean recall (+/- SEM) accuracy in the Visual Recall task, based on absolute 
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Performance on both the Sequence Generation and Sequence Completion tasks was positively 

correlated with performance on the Grammaticality Judgement task in the in-person (Sequence 

Generation: r = .512, p = .004; Sequence Completion: r = .624, p < .001) and online (Sequence 

Generation r = .695, p < .001; Sequence Completion: r = .775, p < .001) experiments, which 

may indicate that participants who perform better in the Grammaticality Judgement task have 

some explicit access to the knowledge of the structure that is needed to create their own 

sequences. Performance on the Sequence Generation task was also positively correlated with 

performance on the Sequence Completion task in both in-person (r = .647, p < .001) and online 

experiments (r = .724, p < .001). 
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correct scores. Orange bars indicate blocks of random sequences, whereas blue bars indicate 
blocks of grammatical sequences. Recall increases across grammatical Recall Blocks, before 
significantly decreasing in the Testing Block. In the final Recovery Block, performance is 
significantly higher than in the Testing Block. This pattern of results provides clear evidence 
that implicit statistical learning has taken place. B) The same pattern was observed when using 
proportion correct scores. C) Performance on the Grammaticality Judgement task showed 
above chance performance (indicated by the dashed line). Individual performance is shown as 
white circles. D) Breakdown of performance across the different types of sequences in the 
Grammaticality Judgement task. Participants performance above chance (shown by the dashed 
line) at correctly classifying the grammatical sequences only. 

Figure 2.11. Experiment 2.5 online Visual Recall and Grammaticality Judgement task 
performance. A) Mean recall (+/- SEM) accuracy in the Visual Recall task, based on absolute  
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In order to investigate the extent to which participants gained knowledge of the differing 

transitional probabilities of the between chunk transitions, where possible we compared 

performance between high and low transitional probability sequences in each of the tasks. We 

conducted a 2x7 repeated measures ANOVA with within subject factors of run (only runs 

containing grammatical sequences, and therefore both high and low TP sequences, were 

included in this analysis, resulting in 7 runs in total) and the TP of the sequence (high and low 

TP) to determine whether participant’s recall of high TP sequences was improved compared to 

low TP sequences. In Experiment 2.4 we found no differences in recall accuracy of high 

compared to low transitional probability sequences across the Visual Recall task when using 

absolute correct scores (F1,29 = 3.61, p = .067). There was a significant main effect of run (F6,174 

= 15.73, p < .001), with Bonferroni corrected post-hoc tests indicating significant differences 

in recall accuracy between Recall Block 1 and all other blocks (p < .05) except Recall Block 2 

(p = .309), and between Recall Block 2 and Recall Blocks 5 and 6 and the Recovery Block (p 

< .05). There were no other significant differences in recall accuracy between blocks (p > .05 

in all cases). There was no interaction between Run and the TP of the sequence (F6,174 = 1.06, 

p = .387).  

There was no significant difference in recall accuracy of high and low TP sequence when using 

proportion correct scores (F1,29 = 0.80, p = .378). There was a significant main effect of run 

(F6,174 = 23.50, p < .001), with Bonferroni corrected post hoc tests indicating significant 

differences in recall accuracy between Recall Block 1 and all other blocks (p < .05) except 

Recall Block 2 (p = 1.00), and between Recall Block 2 and all subsequent blocks (p < .05). 

There was no significant difference in recall accuracy between the other runs (p > .05 in all 

cases). There was no significant interaction between Run and the TP of the sequence (F6,174 = 

.022, p = .883).  

In Experiment 2.5 we also found no difference in recall accuracy for high and low TP sequences 

in the Visual Recall task when using absolute correct scores (F1,35 = 0.22, p = .644). There was 

a main effect of run (F6,210 = 9.05, p < .001). Bonferroni corrected post hoc tests indicated that 

there were significant differences in recall accuracy between the Recovery Block and other 

Recall Blocks (p < .05) except Recall Blocks 5 and 6 (p > .05). There were also differences in 

recall accuracy between Recall Block 6 and Recall Blocks 1, 2, 3 and 4 (p < .05). There were 

no other significant differences in recall accuracy between blocks (p > .05 in all cases). There 

was no interaction between Run and the TP of the sequence (F6,210 = 1.55, p = .143). 
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We found similar results when using proportion correct scores: there was no difference in recall 

accuracy for high and low TP sequences (F1,35 = 1.27, p = .267). There was a main effect of 

Run (F6,210 = 6.45, p < .001).  Post hoc tests (Bonferroni corrected) indicated significant 

differences in recall accuracy between Recall Block 1 and Recall Block 6 and the Recovery 

Block only (p < .05). There were no other significant differences in recall accuracy between 

blocks (p > .05 in all cases). There was no interaction between Run and the TP of the sequence 

(F6,210 = 1.93, p = .078).    

In Experiment 2.4, conducted in-person, we found no difference in performance for high and 

low TP sequences in the Grammaticality Judgement task (t35 = 0.76, p = 0.455). However in 

Experiment 2.5, conducted online, participants performed significantly better at classifying the 

high TP grammatical sequences compared to the low TP grammatical sequences (t35 = 3.02, p 

= 0.005), which suggests that participants completing the online task learned more detailed 

information regarding the frequency of the between chunk transitions.  

This pattern was similar in the Sequence Generation task: in Experiment 2.4, a repeated 

measures ANOVA (with transition type: high TP, low TP and illegal) showed that participants 

did not differ in the mean number of high TP, low TP, or illegal between chunk transitions that 

they created per sequence (F2,58 = 2.45, p = 0.095). However, in Experiment 2.5, there was a 

significant difference in the mean number of times each transition type was created per 

sequence (F2,70 = 5.35, p = 0.007). Post-hoc tests (Bonferroni corrected) indicated that 

participants generated significantly more high probability transitions than low probability 

transitions (p = 0.034) or illegal transitions (p = 0.011). However, there were no differences in 

the mean number of low probability transitions made compared to violation transitions (p > 

.05).  

In the Sequence Completion task, the Within and Between chunk sequences were designed to 

include sequences with both high and low probability between chunk transitions (see Table 

2.3). Furthermore, sequences in the Both condition were designed to test knowledge of Both 

Within and Between chunk transitions (see Table 2.3) and allowed participants to create either 

high or low transitional probability sequences. In both Experiments 2.4 and 2.5, there was no 

difference  in performance for high and low TP sequences testing knowledge of Within chunk 

transitions (in-person: t29 = 0.53, p = 0.602; online: t35 = 1.64, p = 0.110). However, participants 

showed improved performance on high TP sequences testing knowledge of Between chunk 

transitions compared to low TP sequences (in-person: t29 = 2.65, p = 0.013; online: t35 = 2.57, 

p = 0.015), and were more likely to complete sequence testing knowledge of Both Within and 
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Between chunk transitions with a high TP chunk compared to a low TP chunk (in-person: t29 = 

2.57, p = 0.016; online: t35 = 2.63, p = 0.013).  

Taken together, these findings suggest that in the Visual Recall task, participants are not aware 

of the more subtle variations in the transitional probabilities of the grammatical sequences. 

However, in the reflection-based tasks, there is some evidence that participants have gained 

improved knowledge of the varying transitional probabilities within the grammatical sequences 

(e.g., that high TP sequences are more common than low TP sequences). This may be due to 

increased familiarity with the grammar, as participants complete the reflection-based tasks later 

in the experiment. Additionally, when the participants are completing the reflection-based 

tasks, they are told that there are rules underlying the grammar, and this awareness may 

encourage participants to seek out rules they may otherwise not have gained awareness of. 

Similarly to Experiments 2.2 and 2.3, we calculated composite measures of Visual Recall task 

by averaging performance across the 3 key indicators of learning (the difference between 

Recall Block 6 and Recall Block 1; the difference between Recall Block 6 and the Testing 

Block; the difference between the Recovery Block and the Testing Block), meaning that 

participants with more positive composite Visual Recall task scores show more learning across 

this task that participants with negative composite scores. Composite explicit task performance 

was calculated based on the mean performance in the Grammaticality Judgement, Sequence 

Generation, and Sequence Completion tasks. These measures were positively correlated in both 

the in-person (r = .485, p = .006) and online (r = .603, p < .001) experiments, which may 

indicate that the processing-based Visual Recall task and subsequent reflection-based tasks are 

measuring similar processes. As in Experiment 2.2, in Experiment 2.4 we also examined 

whether performance in the Visual Recall task and subsequent explicit tasks was correlated 

with performance on the battery of language tasks. However, we did not find any consistent 

correlations between performance on the language tasks and composite performance in the 

Visual Recall or reflection-based tasks (see Appendix 2.3.) 

To compare performance between the in-person and online versions of the task, we conducted 

two mixed 2x9 ANOVAs based on either absolute or proportion correct scores in the Recall 

task. In both ANOVAs we included run (9 runs) as a within-subjects factor and task (in-person 

or online) as a between-subjects factor. When using absolute correct scores, we found a 

significant main effect of run (F3.7,241.6 = 24.505, p < .001). Bonferroni corrected post hoc tests 

indicated that there were significant differences in recall accuracy between the Baseline Block 

and all other blocks (p < .05) except the Testing Block (p > .05). Additionally, there were 

further significant differences in recall accuracy between Recall Block 1 and all other blocks 
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(p < .05) except the Testing Block. There were significant differences between Recall Block 2 

and Recall Block 5 and 6 only (p < .05). There were significant differences in performance 

between Recall Block 6 and all Recall Blocks (p < .05) except Recall Block 5 (p < .05), and 

between the Testing Block and Recall Blocks 4, 5, 6 and the Recovery Block (p < .05). Finally, 

there were significant differences in recall accuracy between the Recovery Block and all other 

blocks (p < .05) except for Recall Blocks 5 and 6 (p > .05). There were no other significant 

differences between blocks (p > .05 in all cases). There was no main effect of task (F1, 64 = 

.002, p = .967) or interaction between run and task (F3.7,241.6 = .568, p = .676), indicating that 

there was no difference in performance between participants completing the in-person and 

online versions of the task.  

These findings were also reflected in the proportion correct scores: we found a significant main 

effect of run (F4.2, 270 = 26.191, p < .001), with Bonferroni corrected post hoc tests indicated 

that there were significant differences in recall accuracy between the Baseline Block and all 

other blocks (p < .05) except for Recall Block 1, Recall Block 2 and the Testing Block (p > 

.05). Additionally, there were further significant differences in recall accuracy between Recall 

Block 1 and all other blocks (p < .05) except the Baseline block, Recall block 2 and the Testing 

Block (p > .05). There were further significant differences between Recall Block 2 and Recall 

Blocks 4, 5 and 6, as well as the Testing Block (p < .05), and between Recall Block 3 and 

Recall Block 6, the Testing Block and the Recovery Block (p < .05). Finally, there were 

significant differences between the Testing Block and all other blocks (p < .05) except the 

Baseline Block and Recall Blocks 1, 2 and 3 (p > .05). There were no other significant 

differences between blocks (p > .05 in all cases). There was no main effect of task (F1, 64 = 

.001, p = .990) or interaction between run and task (F4.2, 270 = .875, p = .484).  

We also compared performance between in-person and online versions of the Grammaticality 

Judgement, Sequence Generation and Sequence Completion tasks using t-tests. We found no 

significant difference between performance on the in-person and online versions of the 

Grammaticality Judgement (t64 = .007, p = .995) and Sequence Completion Tasks (t64 = -1.22, 

p = .227). However, participants completing the online version of the Sequence Generation 

tasks performed significantly better than those completing the tasks in-person (t64 = -2.62, p = 

.011).  

Discussion 

In Experiments 2.4 and 2.5, we found evidence of learning in both the processing-based Visual 

Recall task and across subsequent reflection-based measures, indicating that visual serial recall 
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is an effective measure of implicit statistical learning. Positive correlations between the 

processing- and reflection-based measures suggest that these tasks may be measuring similar 

mechanisms. We found no difference in performance between Experiment 2.4 (in-person) and 

Experiment 2.5 (online), which suggests that performance across the Visual Recall and 

subsequent reflection-based measures is not affected by completing the task online as opposed 

to in-person. The learning effect found in the Visual Recall task also shows that the efficacy of 

recall paradigms to assess learning extends beyond the use of nonword stimuli and therefore, 

the Visual Recall task could be an appropriate measure to investigate the proposed deficits in 

implicit statistical learning in individuals with language difficulties (for a review, see Schmalz 

et al., 2017), where nonword stimuli would not be appropriate. 

Previous studies have shown that serial recall paradigms, both in the auditory and visual 

domain, can effectively measure implicit statistical learning (Isbilen et al., 2022; Isbilen et al., 

2017, 2020; Kidd et al., 2020). The findings from Experiments 2.4 and 2.5 provide further 

support for using serial visual recall as a processing-based measure of learning. Although some 

previous recall tasks have found no correlations between performance on recall tasks and 

reflection-based tasks (Isbilen et al., 2017), the fact that performance correlated across these 

tasks may suggest that in Experiments 2.4 and 2.5, participants have gained some explicit 

knowledge of the structure which aids in explicit decision-making processes during the 

reflection-based tasks. Some studies using visual stimuli have previously reported positive 

correlations between processing- and reflection-based tasks (Dale et al., 2012; Isbilen et al., 

2020), which may suggest that serial recall in the visual domain requires more reflection than 

in the auditory domain (Isbilen et al., 2020). Despite findings evidence of learning across both 

the Visual Recall and more explicit tasks, we found no reliable correlations between task 

performance and performance across the standardised cognitive and language tasks. However, 

implicit statistical learning is thought to play a role in many facets of language learning and 

processing (Conway & Christiansen, 2005; Turk-Browne et al., 2005), including word 

segmentation (Saffran et al., 1996) and syntax acquisition (Gómez & Gerken, 2000). Although 

there is less research specifically investigating individual differences in implicit statistical 

learning and variations in language ability, previous studies have found evidence of 

correlations between performance on implicit statistical learning tasks and language (Conway 

et al., 2010; Evans et al., 2009; Isbilen et al., 2022; Kidd, 2012; Misyak & Christiansen, 2012). 

However, questions have been raised regarding the replicability of these findings: two recent 

studies found no correlation between implicit statistical learning and language ability in 

children and adults (Schmalz et al., 2019; West et al., 2018). Further studies have noted small 
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correlations (Spencer et al., 2015) or correlations only when using specific implicit statistical 

learning tasks (Qi et al., 2019). These mixed findings have previously been attributed to the 

lack of reliability across measures of implicit statistical learning (Siegelman, 2020), which may 

explain the lack of consistency within the literature. 

In Experiments 2.2 and 2.3, we found no evidence of learning in the Visual Recall task, 

therefore in Experiments 2.4 and 2.5 we made a number of changes to the design of the task. 

We utilised a blocked design whereby ungrammatical sequences were not interspersed 

throughout Recall Blocks to ensure learning of the regularities was not disrupted. We also 

developed a novel artificial grammar designed to facilitate chunking of elements, to whether 

the lack of learning in Experiments 2.2 and 2.3 was due to the variability within the artificial 

grammar and generated ungrammatical sequences containing random transitions rather than 

ungrammatical sequences with subtle violations to ensure that chunking could not be used to 

aid recall of ungrammatical as well as grammatical sequences. Given that in Experiments 2.4 

and 2.5 we found evidence of learning in the Visual Recall task, it is clear that at least one of 

these changes was important to ensure learning was reflected in improved recall for 

grammatical over ungrammatical sequences. However, based on the data from Experiments 

2.4 and 2.5, we cannot conclude which of these design changes were necessary for the Visual 

Recall task to successfully measure learning. Therefore, in Experiment 2.6 we aimed to see if 

the Visual Recall task from Experiments 2.4 and 2.5 would be able to measure learning the 

artificial grammar from Experiments 2.2 and 2.3. 
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Experiment 5: Online Hybrid Recall Task 

Introduction 

In Experiments 2.2 and 2.3, we found no evidence of learning in the Visual Recall task. 

However, following several design changes, in Experiments 2.4 and 2.5 the recall task showed 

strong evidence of learning of a novel artificial grammar containing pairs of stimuli which 

always co-occurred as chunks. It is not clear from these findings whether the success of the 

recall task in Experiments 2.4 and 2.5 was due to the changes in design, or due to the novel 

chunking grammar. In Experiment 2.6, we aimed to assess whether the efficacy of the Visual 

Recall task extends beyond the learning of grammars that are designed to be susceptible to 

chunking. To test this, we used the recall task design that successfully measured learning in 

Experiments 2.4 and 2.5 and used it to measure learning of the more variable artificial grammar 

from Experiments 2.2 and 2.3. We predicted similar performance across the visual recall task 

and subsequent reflection-based measures as in the previous experiments.  

Methods 

Participants 

40 participants (20 female, 20 male; mean age = 30.46 years) were recruited from Prolific. This 

sample size was selected as it was similar to previous experiments (Isbilen et al., 2017, 2020, 

2022; Experiments 2.3 and 2.5). As in Experiments 2.3 and 2.5, participants were pre-screened 

via Prolific to include native English speakers only, and to exclude individuals with language 

disorders, and participants who has completed Experiments 2.3 or 2.5. Participants were not 

excluded based on their ability to speak any additional languages. No participants were 

excluded from this experiment for failing attention checks. 

Methodological Changes 

In Experiment 2.6, we made some methodological changes based on the results of our previous 

experiments. In Experiments 2.2 and 2.3, we used Saffran et al.’s (1996) grammar, which 

contained more variable transitions, and measures learning of this grammar using a Visual 

Recall task which contained both grammatical and ungrammatical sequences of abstract shapes 

in every Recall Block. As we did not see evidence of learning in these experiments, in 

Experiments 2.4 and 2.5, we developed a novel grammar that contained more predictable 

transitions, and measured recall of sequences of animals using a Visual Recall task with a 

blocked design. To understand why we found evidence of learning in Experiments 2.4 and 2.5 

but not Experiments 2.2 and 2.3, in Experiment 2.6, we measuring learning of the same 
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artificial grammar from Experiments 2.2 and 2.3 (Saffran et al., 1996), but using the blocked 

design and images of animals from Experiments 2.4 and 2.5. In Experiment 2.6 we aimed to 

determine whether the success of Experiments 2.4 and 2.5 was due to the use of a more 

predictable grammar, or due to the various other changes in design. 

Stimuli 

The grammar was the same as in Experiments 2.2 and 2.3. Each element was represented by 

an image of an animal drawn from those used in Experiments 2.4 and 2.5 (Figure 2.12. A). 

Similarly to Experiments 2.4 and 2.5, the first set of images were used for the initial baseline 

block, and the second set were used for the remainder of the experiment. The grammatical 

sequences included in the Learning and Recovery Blocks consisted of three 4-element-long 

and three 6-element-long sequences (Figure 2.12. B). The Baseline and Testing Blocks 

consisted of randomly generated sequences: three 4 elements long and three 6 elements long. 

In all blocks, each sequence was presented twice, totalling 12 sequences per block.  

The Grammaticality Judgement task was identical to Experiments 2.2 and 2.3, except instead 

of being split into two runs, separated by an exposure phase, all 32 sequences were presented 

in one run. The sequences in the Sequence Generation and Sequence Completion tasks were 

identical to Experiments 2.2 and 2.3.
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Figure 2.12. Experiment 2.6 stimuli and recall sequences. A) Stimuli used in Experiment 2.6. 
As in Experiments 2.4 and 2.5, a different set of animals was used in the initial random block 
to familiarise participants with the task without affecting their learning of the stimuli or the 
grammar. B) The recall sequences were 3- and 4-element-long grammatical sequences. In the 
ungrammatical blocks, the same number of 3- and 4-element-long sequences were randomly 
generated, and therefore did not follow the rules of the Saffran et al. (2008) grammar. In all 
blocks, each sequence was presented twice, totalling 12 sequences per block. 
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Procedure 

The procedure was identical to Experiment 2.5. 

Data Analysis 

The visual recall task was analysed in the same way as in Experiments 2.4 and 2.5, and the 

Grammaticality Judgement, Sequence Generation and Sequence Completion tasks were 

analysed in the same way as Experiments 2.2 and 2.3. As this study was conducted online, we 

applied the same quality checks as in Experiment 2.5.   

Results 

We found strong evidence of learning in the visual recall task. Based on absolute scores, recall 

accuracy was significantly higher in Learning block 6 compared to Learning Block 1 (t39 = 

7.76, p < .001), recall accuracy was significantly higher in Learning Block 6 compared to the 

Testing Block (t39 = 6.92, p < .001), and recall accuracy was significantly higher in the 

Recovery Block than the Testing Block (t39 = 5.25, p < .001). When using proportion correct 

scores, we find a similar pattern: recall accuracy was significantly higher in Learning Block 6 

compared to Learning Block 1 (t39 = 6.05, p < .001), recall accuracy was significantly higher 

in Learning Block 6 compared to the Testing Block (t39 = 6.19, p < .001), and recall accuracy 

was significantly higher in the Recovery Block compared to the Testing Block (t39 = 5.37, p < 

.001). These findings strongly suggest learning has occurred during the recall task, and that 

visual recall can measure learning of artificial grammars containing more variable transitions.  

 

  
Absolute Correct Proportion Correct 

  Mean SEM Mean SEM 

Baseline 0.48 0.03 0.73 0.02 

Recall 1 0.57 0.03 0.81 0.02 

Recall 2 0.64 0.04 0.84 0.02 

Recall 3 0.71 0.04 0.87 0.02 

Recall 4 0.74 0.04 0.88 0.02 

Recall 5 0.74 0.04 0.89 0.02 

Recall 6 0.79 0.03 0.91 0.02 

Testing 0.59 0.04 0.80 0.02 

Recovery 0.76 0.03 0.90 0.02 

 

 

Table 2.5. Descriptive Statistics for the Visual Recall task in Experiment 2.6. 
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Participants also performed significantly above chance (50%) in the Grammaticality 

Judgement task (M = 0.62, SEM = 0.02; t39 = 5.60, p < .001), and above chance (20%) in the 

Sequence Completion task (M = 0.79, SEM = 0.03; t39 = 23.10, p < .001) indicating that the 

implicitly learned information was available for conscious processing. Performance across the 

reflection-based tasks were highly correlated: There was a positive correlation between 

performance in the Grammaticality Judgement task and performance in the Sequence 

Generation (r = .408, p = .009) and Sequence Completion (r = .321, p = .043) tasks, and a 

positive correlation between performance in the Sequence Generation and Sequence 

Completion tasks (r = .434, p = .005). These findings suggest that participants who had learned 

the grammar during the recall task were able to access this information more explicitly to create 

their own sequences.
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Figure 2.13. Experiment 2.6 Hybrid Visual Recall and Grammaticality Judgement task 
performance. In all panels, error bars represent +/- 1 SEM. A) Mean recall accuracy in the 
Hybrid Visual Recall task, based on absolute correct scores. Orange bars indicate blocks of 
random sequences, whereas blue bars indicate blocks of grammatical sequences. Recall 
increases across grammatical Recall Blocks, before significantly decreasing in the Testing 
Block. In the final Recovery Block, performance is significantly higher than in the Testing 
Block. This pattern of results provides clear evidence that implicit statistical learning has taken 
place. B) The same pattern was observed when using proportion correct scores. C) Performance 
on the online Grammaticality Judgement task showed above chance performance (indicated by 
the dashed line). Individual performance is shown as white circles. 
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In Experiments 2.4 and 2.5, there was a positive correlation between performance in the Visual 

Recall task and performance across the subsequent reflection-based tasks. However, in this 

experiment performance in the reflection-based tasks was not correlated with performance in 

the Visual Recall task based on either absolute correct (r = .163, p = .315) or proportion correct 

(r = -.134, p = .408) scores, which may suggest that in this experiment, the tasks are not 

measuring the same underlying processes. 

Discussion 

In Experiment 2.6, we aimed to investigate why we found evidence of learning in the Visual 

Recall task in Experiments 2.4 and 2.5 but not in Experiments 2.2 and 2.3, by using the Visual 

Recall task from Experiments 2.4 and 2.5 to measure learning of the grammar from 

Experiments 2.2 and 2.3. We found strong evidence of learning across both the Visual Recall 

and subsequent reflection-based tasks, which indicates that the Visual Recall task is not limited 

to measuring learning of highly regular chunks.  

In this experiment, unlike Experiments 2.4 and 2.5, we found no correlation between 

performance in the Visual Recall task and performance across the reflection-based tasks. 

Previous research has suggested that the lack of correlation between processing- and reflection-

based measures suggests that the tasks are measuring different processes, with reflection-based 

tasks tapping into more explicit-decision making processes as opposed to implicit statistical 

learning (Isbilen et al., 2017). The findings from Experiment 2.6 suggest that in this case, the 

Visual Recall and subsequent reflection-based tasks may be capturing different aspects of 

learning, which we did not find in Experiment 2.5, using a different grammar. This may suggest 

that the complexity of the grammar affects the extent to which processing- and reflection- based 

tasks measure similar processing (see General Discussion).  

Previous research using serial recall as a measure of implicit statistical learning has 

demonstrated learning highly regular relationships in both the auditory and visual domains 

(Isbilen et al., 2022; Isbilen et al., 2017, 2020; Kidd et al., 2020; Experiments 2.4 and 2.5, 

Chapter 2), however there has been little research examining whether serial recall can 

effectively measure learning of grammars containing more variable transitions. The findings 

from Experiment 2.6 demonstrate that recall can provide a more implicit method of measuring 

more variable transitions as well as highly regular relationships. This finding has relevance for 

how regularities are learned in both artificial grammars and in natural language. The Visual 

Recall task relies on the learning of chunks to facilitate recall, and therefore evidence of 

learning of more variable transitions in this task supports the idea that artificial grammar 



Chapter 2: Processing-Based Measures of Implicit Statistical Learning 

81 
 

learning relies at least in part on the learning of chunks (Perruchet & Pacton, 2006). 

Furthermore, whilst natural languages do contain many highly predictable relationships, the 

majority of regularities are more variable. As the Visual Recall task can successfully measure 

learning of more variable transitions, this suggests that in future, serial recall tasks can be used 

to measure the learning of relationships with varying degrees of predictability, as in natural 

language. 

General Discussion 

The aim of these experiments was to develop a processing-based measure of implicit statistical 

learning and combine it with more traditional reflection-based tasks to investigate the nature 

of the knowledge acquired during implicit statistical learning. Although we did not effectively 

measure learning using reaction times in the SRT-AGL task (Experiment 2.1), the findings 

from the subsequent experiments (Experiments 2.2 – 2.6) suggest that serial visual recall tasks 

can effectively measure implicit statistical learning of both highly predictable and more 

variable relationships without requiring conscious reflection or explicit decision-making. 

However, based on the design changes made between Experiments 2.2 and 2.3 and 

Experiments 2.4 and 2.5, we can highlight some key factors that affect learning.  First, the 

findings from these experiments suggest that serial visual recall can be used to measure 

learning of grammars irrespective of the variability of the transitions they contain. Previous 

research (Isbilen et al., 2022; Isbilen et al., 2017, 2020; Kidd et al., 2020), and the findings 

from Experiments 2.4 and 2.5 have demonstrated that serial recall can be used to measure 

learning of highly predictable relationships. The findings from Experiment 2.6 indicate that 

this extends to the learning of more variable transitions, such as those typically found in 

artificial grammar learning paradigms. Second, the design of the Visual Recall task plays an 

important role in whether learning is measuring successfully, with blocked designs consisting 

of active exposure being more effective than oddball designs. Finally, these experiments 

suggest that performance does not differ based on whether the task is completed in-person or 

online, and therefore online artificial grammar learning experiments may provide a useful 

alternative to in-person testing.  

Across these 5 experiments, we find mixed evidence of a correlation between processing- and 

reflection-based tasks. In particular, we found a positive correlation between these tasks in 

Experiments 2.4 and 2.5, using the more simple and predictable Chunking Grammar, but not 

in Experiment 2.6, using the more variable Saffran et al. (2008) grammar. It is possible that the 

complexity of the grammar affects the processing that occurs during the tasks. When learning 

a simple grammar (as in Experiments 2.4 and 2.5), participants are more likely to gain some 
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explicit knowledge of the structure during the Visual Recall task, which can be used to aid 

explicit decision-making processes in the in the reflection-based task, resulting in highly 

correlated performance across tasks. However, when the grammar contains more variable 

transitions, and is therefore more complex (as in Experiment 2.6), participants are less likely 

to gain explicit knowledge of the rules. Therefore, they are less able to rely on this explicit 

knowledge to aid in decision-making processes in the reflection-based tasks, which results in 

uncorrelated performance across processing- and reflection-based tasks. Indeed, previous 

research has shown that if explicit knowledge is available, then participants are more likely to 

rely on this than implicit knowledge (Batterink, Reber, & Paller, 2015). These findings suggest 

that the complexity of the grammar may affect the extent to which explicit knowledge of the 

regularities is acquired during the Visual Recall task, and therefore whether more explicit 

learning processes are recruited during this task. 

The Visual Recall task using a blocked design appears to provide some additional benefits to 

learning over an oddball design. When using a blocked design, the participant is exposed to 

grammatical sequences in an active task where they are required to attend and interact with the 

stimuli, meaning they are constantly engaged throughout the learning process. This is in 

contrast to typical artificial grammar learning paradigms (including the Visual Recall task from 

Experiments 2.2 and 2.3 using an oddball design), in which the exposure phase, when learning 

occurs, is entirely passive. Furthermore, when using oddball designs, following passive 

exposure, participants completed the Visual Recall task, where they recalled both grammatical 

and ungrammatical sequences. Implicit statistical learning of regularities occurs because legal 

transitions occur more frequently than illegal transitions. Therefore, if legal and illegal 

transitions occur equally frequently, as they did in the Visual Recall tasks with the oddball 

design, then we may not see differences in recall of grammatical and ungrammatical sequences, 

particularly if participants are more attentive and engaged in this phase of the task compared 

to passive exposure. This may suggest that passive exposure is less important than active 

exposure when both are included in the experiment and explain why we found evidence of 

learning when using a blocked design but not an oddball design. This also highlights the 

benefits of using processing-based measures of learning: it is not possible to use active 

exposure within grammaticality judgement tasks, as it would require all testing sequences to 

be grammatical, and therefore provide no measure of learning. 

Processing-based tasks also provide additional benefits over traditional paradigms in that they 

allow for the measurement of learning throughout a task, rather than after learning has occurred 

during an exposure phase. Post-exposure measures of learning, such as grammaticality 
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judgement tasks, can be problematic as they only provide information on what is ultimately 

learned, as opposed to how learning occurs (Lammertink et al., 2019; Siegelman, 2020). For 

example, processing-based measure provide insight into other interesting aspects of learning, 

such as speed. The findings from the experiments where the Visual Recall task has shown 

evidence of learning (Experiments 2.4, 2.5 and 2.6) indicate that learning improves consistently 

across grammatical blocks, suggests that learning is gradual and occurs throughout the Visual 

Recall task. This provides a benefit over the reflection-based measures: whilst these measures 

indicate that learning has taken place, they provide little information regarding the speed or 

trajectory of learning throughout exposure.  

Conclusion 

These experiments demonstrate that serial visual recall is a valuable approach for measuring 

implicit statistical learning without requiring conscious reflection and highlights some of the 

conditions under which this approach is and is not successful. Furthermore, these findings 

suggest that the complexity of the grammar being learning plays an important role in the 

processes that underlie performance in these tasks. 
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Chapter 3: Assessing Implicit Statistical Learning in Children 

Abstract 

Examining the developmental trajectory of implicit statistical learning is not only important to 

better understand implicit statistical learning as a phenomenon, but also to provide benchmarks 

for investigating implicit statistical learning deficits in developmental disorders such as 

dyslexia. Previous research has typically compared children and adult’s performance using 

reflection-based tasks. These tasks may not accurately reflect implicit statistical learning in 

children, as they rely on additional cognitive abilities that are likely less developed than in 

adults. Processing-based measures would provide an intuitive method for measuring implicit 

statistical learning irrespective of age, without relying on more conscious decision-making 

processes. In this experiment, we conducted an online study with 89 children aged between 8 

and 15 years which aimed to measure implicit statistical learning using the processing-based 

Visual Recall task we had previously developed and tested with adults. Children showed 

evidence of implicit statistical learning across the tasks, and there was no difference in 

performance based on age across the sample of children. There were similarities in 

performance of children and adults across the Visual Recall task, which may indicate that 

implicit statistical learning is an age-invariant mechanism. However, the processing-based 

Visual Recall task provided some suggestion that the time-course of learning may differ 

between children and adults, which was not captured by traditional reflection-based tasks.  

These findings highlight the importance of measuring learning using both processing- and 

reflection-based measures. 
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Experiment 3.1: Investigating Implicit Statistical Learning in Children 

Using Processing-Based Measures 

Introduction 

Implicit statistical learning is critical for language acquisition, and therefore a considerable 

amount of research has investigated implicit statistical learning in infancy, when the majority 

of language learning takes place. However, despite this, there is considerably less research 

investigating implicit statistical learning in older children and adolescents. Furthermore, there 

are surprisingly few studies investigating the developmental trajectory of implicit statistical 

learning abilities across development and into adulthood. These studies have found mixed 

outcomes: there is some suggestion that implicit statistical learning is age-invariant (Raviv & 

Arnon, 2018; Saffran et al., 1997; Thiessen et al., 2013), while other studies have shown that 

implicit statistical learning abilities improve alongside other cognitive abilities (Arciuli & 

Simpson, 2011). It has also been suggested that implicit statistical learning is better in children 

compared to adults (Jost et al., 2015). It is currently unclear why there are conflicting findings 

within the literature, although many of the studies use different methods of assessing implicit 

statistical learning, some of which may not be appropriate for measure learning in children.  

Most research investigating implicit statistical learning in children and across development 

have used artificial grammar learning paradigms that consist of an exposure phase followed by 

a testing phase, typically a grammaticality judgement task. Although the issues with these 

traditional reflection-based measures have been highlighted in previous chapters (See General 

Introduction and Chapter 2), there are limitations that are associated with these tasks that are 

specific to measuring implicit statistical learning in children. Specifically, it is widely 

acknowledged that the additional cognitive abilities that these tasks rely on (e.g., understanding 

task instructions, decision-making skills) improve across development (Lammertink et al., 

2019). Furthermore, whilst ‘yes’ biases (in this case, specifically a “grammaticality” bias: a 

preference for categorising sequences in a grammaticality judgement task as grammatical) are 

sometimes found in adult samples (e.g., (Dienes et al., 1991), they are more commonly reported 

in artificial grammar learning tasks with children (Ambridge & Lieven, 2011; Gillis et al., 

2022; Lammertink et al., 2020; van der Lely et al., 2011). This may suggest that children may 

require a lower threshold for classifying sequences as grammatical or pick up on irrelevant 

features of the sequences as use these to determine grammaticality. For example, children may 

think that most sequences are grammatical because they contain the same stimuli as in the 

exposure phase, or the sequences are a similar length, which is unrelated to knowledge of the 
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dependencies between stimuli that grammaticality judgement tasks are meant to be probing. 

Therefore, when using these paradigms to assess implicit statistical learning in children, it is 

possible that these tasks do not accurately reflect children’s abilities.   

Processing-based measures of implicit statistical learning may provide a more intuitive method 

for measuring learning that is more suitable for children. As previously discussed, (see General 

Introduction for more detail), processing-based measures typically measure other variables that 

are facilitated by implicit statistical learning, and therefore these tasks do not require explicit 

reflection on what has been learned. For this reason, processing-based tasks may allow for 

more appropriate comparison of implicit statistical learning abilities between adults and 

children. Processing-based tasks also offer additional advantages over reflection-based tasks, 

as they can be used to measure learning ‘online’ - that is, over the course of the task - rather 

than post-exposure. This provides information about the time-course of learning, which may 

also differ across development. There is some evidence that processing-based tasks (Cleary et 

al., 2001; Cleary et al., 2000; Conway et al., 2007), can be used to measure implicit statistical 

learning in children. However, these tasks often contain a spatial component requiring motor 

responses, which may involve additional mechanisms than are typically found in implicit 

statistical learning (Conway, 2005).  

There are few studies that have used processing-based measures to assess the developmental 

trajectory of implicit statistical learning. Bertels et al. (2015) compared the performance of 

children and adults on both a processing-based task (using reaction times) and a reflection-

based task (a forced-choice task). For each sequence in the forced-choice task, participants 

were also asked to rate their confidence in their choice, as above chance performance in the 

absence of increased confidence is typically taken as additional evidence that implicit, as 

opposed to explicit, learning has occurred (Chan, 1991; Dienes et al., 1995). In this experiment, 

children and adults both showed learning across both the processing- and reflection-based tasks 

(Bertels et al., 2015). However, although group level performance was above chance in the 

reflection-based measure, approximately half of both the children and adults did not perform 

above chance, despite evidence of learning in these participants in the processing-based task. 

This indicates that processing-based measures may be a more accurate measure of implicit 

statistical learning irrespective of age. Although both children and adults showed evidence of 

implicit statistical learning, there were some differences in the nature of the knowledge 

acquired. While adults performed above chance in the reflection-based task even when their 

confidence was low (indicating implicit knowledge), children showed no such relationship, 
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which may indicate that reflection-based tasks may not accurately represent the implicit 

statistical learning abilities of children.  

Auditory serial recall tasks that were previously used as a processing-based measure of learning 

in adults (Isbilen et al., 2017) have since been shown to measure learning in children aged 5 to 

7 years. Kidd et al. (2020) showed that similarly to adults, children showed improved verbal 

recall of predictable nonword sequences over unpredictable sequences. Performance in this 

task was weakly correlated with performance in a reflection-based measure of learning, which 

the authors suggest reflects a difference in the precision of how processing- and reflection-

based tasks measure knowledge acquired during the experiment. However, although these tasks 

demonstrate that serial recall can effectively measure implicit statistical learning in children, 

such tasks have yet to be used to assess learning over a broader range of ages, in order to assess 

the developmental trajectory of implicit statistical learning across development. Furthermore, 

it is not clear whether the efficacy of serial recall tasks in children extend beyond auditory 

phonological stimuli, which would be required to create a task that is suitable for measuring 

learning in children with language difficulties. 

In this experiment, we aimed to use the same Visual Recall task we have previously used to 

measure learning in adults (Experiment 2.5) to measure learning in children aged 8 to 15 years. 

As the tasks used to measure learning in adults and children were identical, we then aimed to 

compare the performance of children to the previously recruited sample of adults (Experiment 

2.5). We predicted that we would see evidence of learning across both the processing-based 

Visual recall task and subsequent reflection-based tasks. We also predicted that we would see 

no difference in implicit statistical learning in the Visual Recall task based on age, but if 

reflection-based tasks do not provide an accurate reflection of learning in children, then adults 

would show improved performance in the reflection-based tasks. Based on the findings of 

previous experiments, we predicted that there would be positive correlations between 

performance in the Visual Recall task and the reflection-based measures, and that performance 

across the reflection-based measures would be positively correlated. 

Methods 

Participants 

89 native English speaking children aged between 8 and 15 years (44 female, 45 male; mean 

age = 12.08, see Appendix 3.1. for more details) were recruited to complete the online version 

of the Visual Recall task using the Chunking grammar. Prior to the pandemic, we aimed to 

recruit children in schools within 2 age groups: children aged between 8 and 11 years (primary 
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school), and children aged between 12 and 15 years (secondary school). We wanted to recruit 

children between these ages as we were interested in investigating whether implicit statistical 

learning abilities improved across development similarly to language skills (Rowe, 1992). We 

aimed to recruit 40 children per group, to provide a similar sample size to previous experiments 

(Experiments 2.3, 2.5 and 2.6). Due to the pandemic, we altered the recruitment strategy to 

instead recruit as many children as possible between the ages of 8 and 15 years. The age 

demographics of the children can be found in Appendix 3.2. We recruited children aged 8 years 

or older to ensure they would be able to understand the task instructions in an online 

environment, without the researcher present. The children were not pre-screened based on their 

ability to speak any additional languages. The study was advertised to parents on social media 

and through school newsletters. Parents who were interested in their child completing the study 

completed a form on Qualtrics which involved providing their name and email address, along 

with their child’s name and date of birth. Parents were then emailed a link to the study which 

directed their child to complete on a desktop or laptop computer in a quiet area, free from 

distractions. An additional 14 children completed the experiment but were excluded from the 

analysis for failing attention checks.  

Stimuli 

The artificial grammar and stimuli were the same as in Experiments 2.4 and 2.5.  

Procedure 

At the start of the experiment, the child was asked if they were happy to complete the computer 

tasks; if not, then the experiment was aborted, although no children declined to take part. The 

tasks were identical to those from Experiment 2.5: The Visual Recall, Grammaticality 

Judgement, Sequence Generation and Sequence Completion tasks had previously been coded 

in PsychoPy (version 2021.2.3) and were completed online through Pavlovia. Similar to 

Experiment 2.5, the children were offered two opportunities to take a short break during the 

recall task, between Recall Blocks 2 and 3 and Recall Blocks 5 and 6.  

Data Analysis 

As this experiment was completed online, to ensure the children were completing the task 

properly we included the same quality checks prior to analysis as in Experiment 2.5. 

Furthermore, the data from the Visual Recall, Grammaticality Judgement, Sequence 

Generation and Sequence Completion task were analysed in the same way as Experiment 2.5. 

Although as in previous experiments, we calculated both absolute and proportion correct scores 

in the Visual Recall task, because absolute correct scores reflect the mean number of trials 

where the whole sequence was correctly recalled, poorer working memory in children may 
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mean that this method of scoring is less appropriate than using proportion correct scores when 

comparing the performance of children and adults. Therefore, although we conduct the analysis 

of the Visual Recall task using both methods of scoring, it is likely that proportion correct 

scores in the Visual Recall task provide the fairest comparison of implicit statistical learning 

ability between children and adults. Due to errors in saving the data files online, the Sequence 

Completion data from 11 children was incomplete, and therefore not included in the Sequence 

Completion task analysis. We first analysed performance across tasks from all 89 children, and 

then compared their performance to the performance of adults. However, we found that a large 

number of children (30 out of 89) responded to all 48 trials with the same response in the 

Grammaticality Judgement task (i.e., exhibited a very strong grammaticality bias). Therefore, 

we removed the data from these children and re-ran the analysis.  

Results 

Learning occurred in the Visual Recall and subsequent reflection-based measures: when using 

absolute correct scores, recall accuracy was significantly higher in Recall Block 6 compared to 

the Testing Block (t88 = 4.60, p < .001), and significantly higher in the Recovery Block than 

the Testing Block (t88 = 3.74, p < .001). However, we found no improvement in recall accuracy 

between Recall Block 1 and Recall Block 6 (t88 = 1.06, p = .290). This pattern was reflected in 

the proportion correct scores: recall accuracy was significantly higher in Recall Block 6 

compared to the Testing Block (t88 = 4.822, p < .001), and higher in the Recovery Block than 

the Testing Block (t88 = 3.98, p < .001), although there was no improvement in recall accuracy 

between Recall Block 1 and Recall Block 6 (t88 = .304, p = .762). As there was no improvement 

in recall accuracy across the Learning Blocks, these results differ from our previous 

experiments (see Experiments 2.4, 2.5 and 2.6). The children’s lack of improvement across the 

Visual Recall task may be due to the bimodality of the data in this task (see Figure 3.1. A. and 

B.). Unlike adult’s performance in previous experiments, children’s performance is highly 

consistent across the Visual Recall task: children who show high levels of recall accuracy do 

so from the beginning of the task, whereas those who do not do not show any improvement 

across the task. However, given that at the end of the task recall accuracy is significantly higher 

for predictable sequences over unpredictable sequences, there is still strong evidence that 

learning has taken place during the Visual Recall task, and therefore that visual serial recall 

can effectively measure implicit statistical learning in children. 
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Absolute Correct Proportion Correct 

  Mean SEM Mean SEM 

Baseline 0.12 0.03 0.30 0.03 

Recall 1 0.20 0.03 0.35 0.03 

Recall 2 0.21 0.04 0.35 0.03 

Recall 3 0.21 0.04 0.35 0.04 

Recall 4 0.20 0.04 0.34 0.04 

Recall 5 0.20 0.04 0.33 0.03 

Recall 6 0.23 0.04 0.35 0.04 

Testing 0.09 0.02 0.26 0.03 

Recovery 0.19 0.03 0.33 0.03 

 

 

The children performed significantly above chance (50%) in the Grammaticality Judgement 

task (M = 0.55, SEM = 0.01; t88 = 3.97, p < .001; Figure 3.1. C). However, this above chance 

performance was strongly driven by good performance in classifying the grammatical 

sequences only (M = 0.90, SEM = 0.02; t88 = 24.08, p < .001; Figure 3.1. D.). Performance 

across the three ungrammatical conditions was significantly below chance (within: M = 0.23, 

SEM = 0.03; t88 = - 8.44, p < .001; between: M = 0.12, SEM = 0.02; t88 = - 16.79, p < .001; 

both: M = 0.25, SEM = 0.03; t88 = - 7.51, p < .001). These findings indicate a bias for classifying 

sequences as grammatical. Performance was correlated across the reflection-based measures: 

Performance in the Grammaticality Judgement was positively correlated with performance in 

both the Sequence Generation (r = .626, p < .001) and Sequence Completion tasks (r = .559, p 

< .001), which suggests that children that perform well in the Grammaticality Judgement task 

have some explicit knowledge of the regularities, which is needed to create their own 

sequences. Performance on the Sequence Generation and Sequence Completion tasks were also 

positively correlated (r = .428, p < .001). Taken together, these findings provide further 

evidence that learning has occurred during the experiment and suggests that some explicit 

knowledge of the structure has been acquired. 

Table 3.1. Descriptive Statistics for the Visual Recall task in Experiment 3.1. 
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Figure 3.1. Children’s Visual Recall and Grammaticality Judgement task performance. A) 
Mean recall (+/- SEM) accuracy in the Visual Recall task, based on absolute correct scores. 
Individual performance is shown as white circles. Orange bars indicate blocks of random 
sequences, whereas blue bars indicate blocks of grammatical sequences. While recall does not 
increase across grammatical Recall Blocks, there is a significant decrease in recall accuracy 
between the final Recall Block and the Testing Block. In the final Recovery Block, 
performance is significantly higher than in the Testing Block. This pattern of results provides 
clear evidence that implicit statistical learning has taken place. B) The same pattern of 
performance was observed during the Visual Recall task when using proportion correct scores. 
C) Children showed above chance performance in the Grammaticality Judgement task 
(indicated by the dashed line). D) Breakdown of performance across the different types of 
sequences in the Grammaticality Judgement task. Participants performance above chance 
(indicated by the dashed line) at correctly classifying the grammatical sequences only and 
performed below chance at classifying the ungrammatical sequences.  
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As in previous experiments, we calculated composite measures of learning across the Visual 

Recall task and subsequent reflection-based tasks. There was a positive correlation between 

performance in the Visual Recall task and performance across the reflection-based tasks (r = 

.523, p < .001), which suggests that, similarly to Experiments 2.4 and 2.5 with adult 

populations, in this experiment the Visual Recall and subsequent reflection-based measures 

may tap into the same mechanisms.  

To assess the developmental trajectory of implicit statistical learning, we first determined 

whether there were age-related variations in implicit statistical learning across children. There 

was no correlation between the age of the children and composite performance across the 

Visual Recall task when using absolute correct scores (r = .063, p = .556; Figure 3.2. A.) or 

proportion correct scores (r = .065, p = .545; Figure 3.2. B.), or between age and composite 

performance across the reflection-based tasks (r = -.035, p = .744; Figure 3.2. C.). This 

indicates that implicit statistical learning did not differ based on age in the sample of children.  

To assess whether this extends into adulthood, we also compared children and adult’s 

performance across the Visual Recall task (using absolute and proportion correct scores) with 

the online data from an adult population (Experiment 2.5). We may expect to see some 

differences between children and adults in both the time-course of learning and in the amount 

of learning that has occurred at the end of the Visual Recall task. Therefore, to examine age-

related differences in the time-course of learning, we first compared children and adult’s 

performance across Recall Blocks 1 to 6 of Visual Recall task using a mixed 2x6 ANOVA, 

with age group (child or adult) as a between subjects factor, and run (Recall Blocks 1 to 6) as 

a within-subjects factor. When using absolute correct scores we found a significant main effect 

of age group (F1,123 = 97.05, p = .002), with adults showing improved recall accuracy across 

the Recall Blocks compared to children, which is unsurprising given that working memory is 

thought to be better in adults compared to children (Gathercole et al., 2004). There was also a 

main effect of run (F5,615 = 13.01, p < .001), with post-hoc (Bonferroni corrected) tests 

indicating significant difference in recall accuracy between Recall Block 6 and the previous 

Recall Blocks (Recall Block 1: p = .003;  Recall Block 2: p = .044; Recall Block 3: p = .069; 

Recall Block 4: p = .008; Recall Block 5: p = .006), but no differences between other blocks. 

There was an interaction between run and age group (F5,615 = 10.40, p < .001), indicating that 

there is a greater improvement in performance for adults than for children over the course of 

the learning period. This may indicate that there are differences in implicit statistical learning 

between children and adults. 
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These results were also reflected when using proportion correct scores: there was a main effect 

of age group (F1,123 = 42.80, p < .001) and run (F5,615 = 6.26, p < .001), with post-hoc 

(Bonferroni corrected) tests showed significant differences in recall accuracy between Recall 

Block 6 and Recall Block 5 (p = .043) only. There was also an interaction between age group 

and run (F5,615 = 6.98, p < .001), further suggesting that there may be age-related differences 

in the trajectory of learning.  

To examine any differences in learning at the end of the Visual Recall task, we then compared 

performance across the final three blocks using a mixed 2x3 ANOVA, with age group (child 

or adult) as a between subjects factor, and run (Recall Block 6, and Testing and Recovery 

Blocks) as a within-subjects factor. Using absolute correct scores, there was a main effect of 

age group (F1,123 = 27.03, p < .001), indicating that similarly to the previous blocks in the Visual 

Recall task, adults showed improved recall accuracy across the final three blocks compared to 

children. There was also a main effect of run (F2,246 = 36.84, p < .001); post-hoc (Bonferroni 

corrected) tests indicated that performance in the Testing Block was significantly poorer than 

in Recall Block 6 (p < .001) and the Recovery Block (p < .001), however there was no 

difference in performance between Recall Block 6 and the Recovery Block (p = .066). There 

was also an interaction between age group and run (F2,246 = 4.44, p = .013), indicating that there 

was a more pronounced learning effect in adults compared to children and suggesting that 

adults implicit statistical learning was better than children’s in the Visual Recall task. When 

using proportion correct scores, there was a similar main effect of age group (F1,123 = 62.92, p 

< .001) and run (F2,246 = 29.95, p < .001), with post-hoc (Bonferroni corrected) tests again 

showing significant differences in recall accuracy between the Testing Block and Recall Block 

6 (p < .001) and the Recovery Block (p < .001), but no differences between Recall Block 6 and 

the Recovery Block (p = .364). There was no interaction between age group and run (F2,246 = 

1.19, p = .306). This may suggest that when using proportion correct scores, there may not be 

any difference between children and adults in the final amount of implicit statistical learning 

that has taken place.  
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Figure 3.2. Correlations between age and performance in the Visual Recall and reflection-based 
tasks. A) There was no correlation between age and performance in the Visual Recall task 
based on absolute correct scores. B) There was no correlation between age and performance in 
the Visual Recall task based on proportion correct scores. C) There was no correlation between 
age and performance across the reflection-based tasks. 
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As previously highlighted, there was evidence that children exhibited a bias for categorising 

sequences as grammatical in the Grammaticality Judgement task; in fact, 30 out of 89 children 

categorised all 48 Grammaticality Judgement trials as grammatical. As children were informed 

at the start of the Grammaticality Judgement task that they would see sequences that both 

follow and break the pattern, we can conclude that these children were either unmotivated to 

complete the task accurately or did not understand the task instructions. If the data across all 

tasks are reanalysed without these children who showed pronounced bias, there is still strong 

evidence that children show learning across the tasks (see Appendix 3.2.). To compare the 

performance of children who do not show a pronounced bias with adults, we repeated both the 

mixed ANOVAs assessing differences between non-biased children and adults in the time-

course of learning and the final amount of implicit statistical learning in the Visual Recall task.  

When assessing differences in the time-course between non-biased children and adults, when 

using absolute scores there was no main effect of age group (F1,93 = 1.99, p = .161) indicating 

that there was no difference in recall accuracy across the Recall Blocks between the non-biased 

children and adults when using this method of scoring. There was also a main effect of run 

(F5,465 = 10.91, p < .001), with post-hoc (Bonferroni corrected) tests indicating significant 

difference in recall accuracy between Recall Block 6 and the previous Recall Blocks (p < .05), 

but no differences between other blocks. There was an interaction between age group and run 

(F5,465 = 6.02, p < .001), indicating that adults’ recall accuracy improves to a greater extent than 

the non-biased children across the learning period. When using proportion correct scores, there 

was a main effect of age group (F1,93 = 18.72, p < .001), indicating that when we consider 

proportion correct scoring adults showed improved recall accuracy compared to the non-biased 

children. There was a main effect of run (F5,465 = 6.45, p < .001), and post-hoc (Bonferroni 

corrected) tests showed significant differences in recall accuracy between Recall Block 6 and 

Recall Blocks 1 and 5 (p < .05), however there were no significant differences between the 

other Recall Blocks. There was also an interaction between age group and run (F5,465 = 3.94, p 

= .012), further indicating that adults showed greater improvement across the learning period 

than the non-biased children, and that there may be differences in implicit statistical learning 

between adults and children in the learning period. 

When comparing performance of non-biased children and adults across the final three blocks 

of the Visual Recall task, using absolute scoring there was a main effect of age group (F1,93 = 

10.35, p = .002), with adults again showing improved recall accuracy over the children who 

did not show a pronounced bias. There was also a main effect of run (F2,186 = 34.04, p < .001); 

post-hoc (Bonferroni corrected) tests indicated that performance in the Testing Block was 
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significantly poorer than in Recall Block 6 (p < .001) and the Recovery Block (p < .001), 

however there was no difference in performance between Recall Block 6 and the Recovery 

Block (p = .086). There was no significant interaction between age group and run (F2,186 = 1.15, 

p = .320), which suggests that there are no differences between non-biased children and adults 

in the amount of implicit statistical learning that has occurred during the Visual Recall task. 

These findings were also reflected in the proportion correct scores: there was a main effect of 

age group (F1,93 = 30.59, p < .001) and run (F2,186 =28.48, p < .001), with post-hoc (Bonferroni 

corrected) tests again showing significant differences in recall accuracy between the Testing 

Block and Recall Block 6 and the Recovery Block (p < .05), but no differences between Recall 

Block 6 and the Recovery Block (p > .05). There was no significant interaction between age 

group and run (F2,186 = .271, p = .763). This further suggests that by the end of the Visual Recall 

task there was no difference in the amount of implicit statistical learning that had occurred 

between non-biased children and adults.  

 Taken together, these findings suggest that any differences in implicit statistical learning 

between children and adults in this experiment may have been driven by a number of children 

that showed a pronounced bias for classifying sequences as “grammatical” only in the 

Grammaticality Judgement task, and therefore either did not understand the instructions or 

were not paying attention throughout the tasks. After removing these biased children from the 

analysis, we no long see any differences between children and adults in implicit statistical 

learning towards the end of the Visual Recall task. However, there remains some differences 

between children and adults in the time-course of learning, with adults showing improvement 

across the Recall Blocks, but non-biased children showing no such improvement. This may 

highlight that there are still some differences in the nature of implicit statistical learning across 

the task, which is only revealed when using processing-based measures.  

After reanalysing the reflection-based tasks without children with pronounced bias, we no 

longer found a difference between children and adults in the Sequence Completion task (t93 = 

1.60, p = .112). There was still no difference in performance in the Grammaticality Judgement 

task based on age (t93 = 0.56, p = .579), and adults still performed significantly better than 

children in the Sequence Generation task (t93 = 2.74, p = .007). Differences in performance 

between children and adults in the Sequence Generation task may indicate that children are less 

able to explicitly access the knowledge they have acquired during the experiment and use this 

to create their own sequences. We did not find any differences in the performance of children 

and adults in the Grammaticality Judgement task, which may suggest that this task is not 

underestimating implicit statistical learning abilities in children. However, as this task 
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measures implicit statistical learning post-exposure, it may not capture any differences between 

children and adults in the time-course of learning. Indeed, while we may see similarities in the 

performance of children and adults towards the end of the Visual Recall task, the time-course 

of learning across the Recall Blocks is different between children and adults, even after 

excluding children who show a pronounced bias in the Grammaticality Judgement task. This 

suggests that there may be differences between children and adults in the time-course of 

learning across the task that is not captured by traditional reflection-based tasks. Furthermore, 

given that a considerable proportion of our sample of children showed a profound bias in the 

Grammaticality Judgement task, this suggests that these tasks are not the most suitable measure 

of implicit statistical learning in children.
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Figure 3.3. Children and adult’s Visual Recall Task and reflection-based task performance. A) 
Mean recall (+/- SEM) accuracy of children who show bias (yellow), children who do not show 
bias (blue) and adults (pink, from Experiment 2.5, Chapter 2) in the Visual Recall task, based 
on absolute correct scores. B) Mean recall (+/- SEM) accuracy of children who show bias 
(yellow), children who do not show pronounced bias (blue) and adults (pink, from Experiment 
2.5, Chapter 2) in the Visual Recall task, based on proportion correct scores. C) Performance 
in the Grammaticality Judgement task for children who show bias (yellow), children who do 
not show bias (blue) and adults (pink). All groups showed above chance performance 
(indicated by the dashed line). Individual performance is shown as white circles. D) Adults 
(pink) show improved performance in the Sequence Generation task compared to biased 
children (yellow) and children who do not show bias (blue). Individual performance is shown 
as white circles. E) Adults (pink) show improved performance in the Sequence Generation task 
compared to biased children (yellow), but not compared to children who do not show bias 
(blue). Individual performance is shown as white circles.  
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Discussion 

We aimed to use the same Visual Recall task we have previously used to measure learning in 

adults (Experiment 2.5) to measure learning in children. In children aged between 8 and 15 

years, we found evidence of learning across the Visual Recall task and subsequent reflection-

based measures, which indicates that the Visual Recall task is a suitable processing-based 

measure of implicit statistical learning in children. Performance in the Visual Recall tasks was 

positively correlated with performance across the reflection-based measures, which suggests 

that like adults, children may be gaining some explicit knowledge of the rules and using this to 

aid explicit decision-making in the reflection-based tasks.  

We found no difference in performance across the experiment based on children’s age, which 

mirrors previous studies suggesting that implicit statistical learning abilities are stable across 

childhood (Raviv & Arnon, 2018; Saffran et al., 1997). Regarding the developmental trajectory 

of implicit statistical learning beyond childhood, there was some evidence of a difference in 

implicit statistical learning ability between children and adults in the Visual Recall, Sequence 

Generation and Sequence Completion tasks, but not the Grammaticality Judgement task. 

However, after removing children who showed a pronounced bias in the Grammaticality 

Judgement task, there was little evidence of a difference in implicit statistical learning between 

children and adults in the Visual Recall task, although there was still some indication that the 

time-course of learning across the task differed based on age group. The findings suggest that 

any differences in implicit statistical learning between children and adults in this experiment 

may have been due to differences in attention and or motivation, or a lack of understanding of 

the reflection-based task instructions. This reflects the findings of a number of previous studies 

that suggest that implicit statistical learning is age-invariant (g., Thiessen et al., 2013).  

While the Grammaticality Judgement task did not appear to underestimate children’s implicit 

statistical learning abilities in this experiment, performance in this task did not capture the 

potential differences in the time-course of learning indicated by the processing-based Visual 

Recall task. Despite clear evidence of learning towards the end of the Visual Recall task, the 

children showed no improvement in recall accuracy over the grammatical Recall Blocks, which 

differed from the performance of adults across a number of our previous experiments (e.g., 

Experiments 2.4, 2.5, and 2.6). This lack of improvement at a group level may be due to the 

bimodal distribution in performance across the Visual Recall task: children who are engaging 

with the task show high levels of recall accuracy from the first Recall Block and continue to 

perform well across the task, meaning they do not show an improvement in performance across 
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Recall Blocks, because recall accuracy is already high. Children who show poor recall accuracy 

do not improve across the Recall Blocks, which may be due to a lack of attention and/or 

motivation to complete the task. In fact, poor attention has been suggested to influence implicit 

statistical learning in previous studies (Emberson et al., 2011; Pacton & Perruchet, 2008; Toro 

et al., 2005), and may explain the different time-course of learning between children and adults 

in the Visual Recall task.  

In this experiment, we found consistent differences between children and adult’s performance 

in the Sequence Generation task. This task requires participants to create their own sequences, 

therefore it is thought to require more explicit awareness of the structure underlying the 

sequences. Age-related differences in performance in this task may suggest that there may be 

differences between children and adults regarding the extent to which they can access any 

implicitly learned knowledge. These findings reflect those of Bertels et al. (2015), although 

there is a clear need for more research investigating any differences between children and adults 

in the nature of the knowledge acquired during these tasks. To accomplish this, future research 

should combine processing- and reflection- based measures of learning to provide a 

comprehensive overview of the nature of the knowledge acquired through implicit statistical 

learning.  

These findings suggest that the effectiveness of recall paradigms as a measure of learning in 

children extend beyond the auditory domain, and critically, beyond the use of nonword stimuli, 

which is essential for the development of a processing-based measure that is suitable for 

children and adults with language difficulties. Furthermore, these findings suggest that the 

Visual Recall task is an effective measure of learning in online samples; however, the extent 

to which children’s performance may differ between online and in-person testing is yet to be 

seen. It is possible that the potential lack of motivation, attention or understanding that is 

present across our sample is a result of completing the experiment online, as opposed to in a 

more controlled environment. 

The results mirror those of a previous experiment using auditory serial recall to measure 

implicit statistical learning in children. Kidd et al. (2020) found that children showed improved 

recall of predictable over random sequences of nonwords in their auditory serial recall task, 

and above chance performance in a subsequent reflection-based measure. Similarly to the 

findings of our experiment in children, and our previous experiments with adults, performance 

across these two tasks was positively correlated. As both our sample of children and adults 

show correlations between performance across tasks, this may suggest that similar mechanisms 

underpin performance on these tasks irrespective of age (Bertels et al., 2015). These findings 
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provide further support for the idea that whilst reflection-based measures may be affected by 

additional explicit processes, they are still to some extent measuring underlying implicit 

statistical learning mechanisms. 

While parents were instructed to have their child complete the experiment in a quiet space, 

given that this study took place online, it is not possible to ensure that the children were free of 

distractions whilst completing the tasks. Additionally, the differences in implicit statistical 

learning at a group level may reflect differences in motivation between the children and adults. 

To recruit the sample of children, we advertised the study to parents, and whilst they may have 

been motivated for their child to take part, their child may have lacked this. By contrast, the 

adult sample was recruited from Prolific, where participants actively seek out studies to 

complete, and are therefore likely to be more motivated than our child sample. Due to the 

impact of the COVID-19 pandemic, data collection was only possible through online tasks, and 

therefore it would be useful to replicate this study in-person, where distractions can be 

minimised, and attention ensured. While we did not see any difference in adult’s performance 

based on in-person or online completion, there is some suggestion that a poor performance 

across some children may be the result of a lack of attention, motivation, or the presence of 

distractions, rather than a lack of implicit statistical learning. This would provide additional 

information as to whether online tasks are a suitable substitute for in-person studies in children, 

in the same way that our previous experiments have indicated that they are for adults.  

This experiment suggests that visual serial recall can measure implicit statistical learning in 

children, and that implicit statistical learning abilities remain stable across childhood. Although 

there were similarities in performance of children and adults across the Visual Recall task, 

there was some evidence that time-course of learning may differ between children and adults, 

which was not captured by traditional reflection-based tasks.
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Chapter 4: Implicit Statistical Learning Deficits in Dyslexia 

Abstract 

Dyslexia is associated with a deficit in phonological processing. However, as dyslexia is also 

commonly associated with difficulties that are unrelated to language, alternative theories, such 

as implicit statistical learning deficits, have been proposed. In these experiments, we aimed to 

investigate the nature of implicit statistical learning deficits in dyslexia. In Experiments 4.1 and 

4.2 we assessed implicit statistical learning of individuals with dyslexia (Experiment 4.1, in-

person) and individuals with reading difficulties (Experiment 4.2, online) using the Visual 

Recall task, and compared performance to adults who had previously completed the same task 

in-person (Experiment 2.4) and online (Experiment 2.5). Across both experiments, we 

demonstrated that individuals with dyslexia or reading difficulties showed evidence of implicit 

statistical learning across both the Visual recall and subsequent reflection-based tasks. We 

found no evidence of impaired implicit statistical learning in individuals with dyslexia or 

reading difficulties; however it is possible that any deficits in dyslexia are associated with the 

processing of phonological stimuli only, and therefore would not result in impaired 

performance in Experiments 4.1 and 4.2. To directly examine whether any deficits in dyslexia 

are associated with processing phonological stimuli, In Experiments 4.3 and 4.4 we compared 

performance of individuals with and without dyslexia (Experiment 4.3, in-person) and 

individuals with and without reading difficulties (Experiment 4.4, online) in auditory artificial 

grammar learning tasks using both nonword and tone stimuli. Across both in-person and online 

experiments, we see evidence of learning in the nonword and tone artificial grammar learning 

tasks in all groups. Although in the in-person experiment (Experiment 4.3) there was some 

indication that individuals with dyslexia showed poorer performance across both nonword and 

tone tasks relative to controls, the COVID-19 pandemic resulted in recruitment being 

concluded prematurely, and therefore this experiment was underpowered due to a small sample 

size. In the online experiment (Experiment 4.4), conducted with a larger sample, we found no 

evidence that individuals with reading difficulties were impaired in either nonword or tone 

artificial grammar learning tasks. Across these 4 experiments, we found little evidence of a 

deficit in implicit statistical learning in individuals with dyslexia or reading difficulties. These 

findings reflect the conflicting nature of the literature in this field, which is likely a result of 

the considerable heterogeneity associated with dyslexia. 
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General Introduction 

Dyslexia is characterised by difficulties in reading and spelling (Lyon et al., 2003), which rely 

on the efficient access and manipulation of phonemes. Therefore, the most prominent theory 

of dyslexia suggests that deficits in reading and spelling are due to difficulties in phonological 

processing, which is characterised by poorly specified phonological representations (Griffiths 

& Snowling, 2002; Snowling, 1998). Indeed, previous research has shown that individuals with 

dyslexia perform more poorly on tasks requiring the manipulation of phonemes (Denckla & 

Rudel, 1976; Farquharson et al., 2014; Jones et al., 2009; Melby-Lervåg et al., 2012; Rispens 

& Been, 2007; Vellutino et al., 1996). Furthermore, poor phonological processing is thought 

to be associated with other issues that may contribute to reading difficulties, such as the storage 

and retrieval of printed words (Gathercole & Baddeley, 1990; Vellutino et al., 1994). 

Difficulties in storing and retrieving printed words could interfere with successful mapping of 

grapheme-phoneme relationships, which in turn has a negative impact on the quality of word 

representations and the fluency of word identification (Vellutino et al., 2004). Taken together, 

there is strong evidence that dyslexia is associated with difficulties in phonological processing.  

However, dyslexia is also associated with differences across other non-language related facets 

of cognition, including motor skills (Fawcett & Nicolson, 1995; Fawcett et al., 1996), auditory 

processing (Farmer & Klein, 1995; Tallal, 1984), and visual processing (Stein, 2001, 2019). 

Phonological theories of dyslexia are unlikely to account for these non-language related 

differences, therefore alternative theories have proposed that a more domain-general deficit, 

for example in in implicit statistical learning, may explain both the difficulties with language 

and differences in non-language related abilities often associated with dyslexia. However, 

previous research investigating implicit statistical learning deficits in dyslexia have yielded 

mixed results, with some studies providing evidence of a deficit (Katan et al., 2017; Pavlidou 

et al., 2009; Stoodley et al., 2008; Stoodley & Stein, 2006), and other showing no differences 

in implicit statistical learning between individuals with and without dyslexia (Inácio et al., 

2018; Menghini et al., 2010; Nigro et al., 2016; Waber et al., 2003). As such, it is currently 

unclear whether any differences in dyslexia are restricted to the processing of phonological 

stimuli or can instead be attributed to a domain-general deficit in implicit statistical learning.  

 

In a series of 4 experiments, I aimed to investigate the nature of implicit statistical learning 

deficits in dyslexia and assess whether any differences in dyslexia are restricted to processing 

of phonological stimuli. In Experiment 4.1, I used the Visual Recall and subsequent reflection-
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based tasks from previous experiments (Experiments 2.4, 2.5 and 3.1) to investigate the 

proposed deficits in implicit statistical learning in dyslexia in an in-person experiment.  To 

assess whether any differences in dyslexia are due to a specific deficit in processing 

phonological stimuli, in Experiment 4.3 I aimed to compare performance in auditory nonword 

and tone tasks using traditional artificial grammar learning paradigms between individuals with 

and without dyslexia in an in-person experiment. However, due to the restrictions placed on 

testing in-person during the COVID-19 pandemic, I was forced to conclude recruitment for 

these studies prematurely. As such, this resulted in small sample sizes of individuals who we 

confirmed had dyslexia in Experiments 4.1 and 4.3. The data from these experiments have been 

included for completeness, however any findings should be interpreted with respect to the small 

sample size.  

To address the issues with small sample sizes in Experiments 4.1 and 4.3, I adapted both 

experiments to run online in Experiments 4.2 and 4.4 respectively. In both online experiments, 

we recruited participants online through Prolific, which allows for the pre-screening of 

participants to only recruit individuals with reading difficulties. However, Prolific does not 

provide a method of specifically recruiting individuals with dyslexia. Although we asked 

participants during the experiment if they had dyslexia, there was no way to confirm this as 

participation was anonymous and standardised tasks cannot be administered online through 

Prolific. Therefore, in Experiments 4.2 and 4.4, we grouped individuals with reading 

difficulties and individuals that specifically indicated that they had dyslexia under broader term 

of “individuals with reading difficulties”. Although there is much debate regarding whether 

there are differences between individuals with dyslexia and ‘garden-variety’ poor readers 

(Elliott & Grigorenko, 2014; Gibbs & Elliott, 2020; Kirby, 2020), a number of studies have 

highlighted differences in implicit statistical learning between individuals with dyslexia and 

individuals with reading difficulties more generally (Badian, 1994; Stanovich, 1988). 

Therefore, it is important to note that individuals with dyslexia and individuals with reading 

difficulties may represent two distinct populations, and any deficits associated with dyslexia 

may not extend to those with reading difficulties more generally. 
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Experiments 4.1 & 4.2: Measuring Implicit Statistical Learning in Dyslexia 

Using Serial Visual Recall 

Introduction 

Deficits in implicit statistical learning have been proposed as a domain-general explanation for 

both the language and non-language related deficits in dyslexia (Folia et al., 2008; Gombert, 

2003; Menghini et al., 2006; Ullman & Pierpont, 2005), although the findings from the 

literature are mixed (see Schmalz et al., 2017, for a review). However, the artificial grammar 

learning paradigms that are typically used to assess implicit statistical learning in dyslexia may 

not be the most appropriate method for testing these populations for several reasons. In order 

to explore potential differences in implicit statistical learning in dyslexia, it is important that 

measures are not confounded by other cognitive processes, such as decision-making, which are 

also thought to be impaired in dyslexia (Manning et al., 2022; Stefanac et al., 2021). As 

previously discussed, reflection-based tasks that are typically used to measure learning in 

artificial grammar learning paradigms require conscious decision-making, and therefore 

performance on these tasks may be more of a reflection of these explicit processes than they 

are of implicit statistical learning. This means that poorer performance of individuals with 

dyslexia relative to controls in reflection-based tasks may not indicate differences in implicit 

statistical learning, but differences in other, more explicit cognitive processes. Indeed, there is 

some indication that children with language difficulties show comparable implicit statistical 

learning to children without language difficulties in a processing-based measure of learning, 

but show impairments based on reflection-based measures of learning (Lukács et al., 2021). 

Processing-based measures provide additional advantages over reflection-based measures 

when investigating implicit statistical learning in dyslexia. In addition to measuring learning 

without requiring more explicit decision-making, processing-based measures allow the time-

course of learning to be assessed over the course of the experiment, as opposed to simply 

assessing whether learning has occurred after the fact (Siegelman et al., 2018). Assessing the 

time-course of learning is particularly important for investigating implicit statistical learning 

differences in dyslexia, as this may reveal differences in how learning occurs compared to 

controls (Lukács et al., 2021). For example, some studies have shown that while implicit 

statistical learning was intact in participants with dyslexia, these individuals provided slower 

responses (Kelly et al., 2002). Although processing-based measures such as serial reaction time 

tasks have previously been used to investigate differences in implicit statistical learning in 

dyslexia (with mixed findings; see Inácio et al, 2018; Menghini et al., 2010; Nigro et al., 2016; 
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Waber et al., 2003), these tasks may rely on different cognitive and neural mechanisms, as they 

rely on learning relationships between spatial locations rather than between sensory stimuli 

(Conway & Christiansen, 2005). Furthermore, these tasks require fast motor responses, which 

provides additional issues when investigating implicit statistical learning in dyslexia, in which 

motor (Fawcett & Nicolson, 1995; Fawcett et al., 1996) and processing-speed (Stoodley & 

Stein, 2006) deficits have been reported. More recently, processing-based measures of serial 

recall have been developed (Isbilen et al., 2017, 2020). However, all previous versions of these 

tasks require learning dependencies between phonological stimuli, which is not appropriate for 

exploring implicit statistical learning in dyslexia, due to the deficits in phonological processing 

that are associated with dyslexia (Demb et al., 1999; Farquharson et al., 2014; Rispens & Been, 

2007; Vellutino et al., 1996). The serial Visual Recall task we have developed (Chapters 2 and 

3) does not require processing of phonological stimuli, and therefore would be appropriate to 

measure implicit statistical learning in individuals with dyslexia.  

In Experiment 4.1, we conducted an in-person study measure implicit statistical learning of 

adults with dyslexia using the serial visual recall task from Experiments 2.5 and 3.1. We 

compared their performance to the individuals without dyslexia who completed the same tasks 

in Experiment 2.5. As previously discussed, due to the COVID-19 pandemic, we were not able 

to recruit as many dyslexic participants as we had hoped. Therefore, we adapted the experiment 

to run online in Experiment 4.2. This sample was recruited through Prolific, and whilst we 

could specifically screen for individuals with reading difficulties, we could not confirm which 

of these individuals had dyslexia specifically. Therefore, although in Experiment 4.1 we 

specifically compared individuals with and without dyslexia, in Experiment 4.2 we compared 

individuals with reading difficulties to a previously recruited online sample of individuals 

without reading difficulties (see Experiment 2.5). For clarity and conciseness, in this chapter 

the results of these two experiments will be presented in the same section. Across both in-

person and online experiments, we predicted that we would see evidence of learning across 

both the Visual Recall task and subsequent reflection-based measures, and that performance 

across the Visual Recall and reflection-based tasks would be correlated. If dyslexia or reading 

difficulties are associated with deficits in implicit statistical learning, then we would predict 

that these individuals would show poorer performance across the tasks than individuals without 

dyslexia or reading difficulties. If there is no implicit statistical learning deficit, then we would 

expect no differences in performance across groups.  
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Methods 

Participants 

In Experiment 4.1, 16 adults with dyslexia (9 female, 6 male, 1 other; mean age = 25.38) were 

recruited using the Newcastle University Neuroscience Participant Pool and the School of 

Psychology Student Participant Pool. Although I originally aimed to recruit 40 participants for 

this study, I was unable to complete recruitment for this experiment due to the COVID-19 

pandemic. Although this is a very small sample size, the data are reported for completeness 

and transparency. All participants were native English speakers, and had normal or corrected-

to-normal vision and hearing. Participants were not excluded based on their ability to speak 

any additional languages. Ethics was approved by the Faculty of Medical Sciences Ethics 

Committee at Newcastle University.  

In Experiment 4.2, 38 adults (15 female, 21 male, 2 other; mean age = 25.88) were recruited 

from Prolific to complete the online version of the Chunking recall task. This sample size was 

selected based on previous online experiments (Experiments 2.3, 2.5, 2.6 and 3.1). We pre-

screened participants using Prolific to recruit native English speakers with reading difficulties, 

and also included a question within the experiment asking whether the participant had dyslexic 

specifically. Participants were not excluded based on their ability to speak any additional 

languages. Of the 38 participants, 19 reported that they had dyslexia. An additional 3 

participants completed the experiment but were excluded from the analysis for failing attention 

checks.  

Stimuli 

The stimuli were the same as in Experiments 2.4, 2.5 and 3.1. 

Procedure  

Experiment 4.1 took place in a testing lab within the Institute of Neuroscience at Newcastle 

University and was coded using MATLAB and Psychtoolbox. Participants were seated 

approximately 60cm in front of a computer monitor (24-inch Dell U2412M, screen resolution 

1920*1200 pixels). The procedure was identical to Experiment 4: the same standardised 

cognitive and language tasks were administered (Appendix 2.1.), and participants completed 

the Visual Recall, Grammaticality Judgement, Sequence Generation and Sequence Completion 

tasks in the same order as Experiment 2.4. 

In Experiment 4.2, the procedure was identical to Experiment 2.5.  
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Data Analysis 

The data from the in-person (Experiments 4.1) and online (Experiment 4.2) experiments were 

analysed in the same way as Experiments 2.4 and 2.5 respectively. In Experiment 4.1, we 

compared scores on the standardised cognitive and language tasks across control and dyslexic 

participants in order to determine whether the participants with dyslexia performed more 

poorly on the language tasks. As such, we predicted that the participants with dyslexia would 

perform more poorly in the TOWRE Words and Nonwords, Recalling Sentences, RAN Digits 

and Objects tasks, but not in the WASI Blocks task: a measure of nonverbal IQ. Dyslexia is 

also commonly associated with deficits in working memory, and therefore we may also expect 

that the participants with dyslexia show poorer performance in the Backwards Digit Recall task 

as well. Controls showed better performance in the TOWRE Nonword (t43 = 3.00, p = .004) 

and Recalling Sentences (t43 = 2.63, p = .012) tasks only. We found no differences across the 

other standardised tasks (TOWRE Word: t43 = 1.53, p = .134; Backward Digit Recall: t43 = 

1.71, p = .094; WASI Block Design: t43 = .084, p = .934; RAN Digits: t43 = -.725, p = .472; 

RAN Objects: t43 = -1.59, p = .118). This may suggest that there were no differences in 

language ability between the two groups, due to our dyslexic sample also being drawn from 

university students who generally show good language ability. Alternatively, the lack of 

differences may also be a consequence of the small size of our dyslexic sample.  

In Experiment 4.2, which was conducted online, it was not possible to collect the same 

standardised cognitive and language task data. As analyses showed no differences in 

performance across any of the tasks between participants who reported reading difficulties and 

those who reported that they had dyslexia, we combined these groups to form a single group 

of individuals with reading difficulties. As previously discussed, it is worth noting that 

individuals with dyslexia may show distinct differences to individuals who report having more 

general reading difficulties, and therefore comparisons between the in-person and online 

experiment should be considered with this in mind.  

Results 

We found strong evidence of learning across all tasks in both the in-person and online versions 

of the experiment. In the in-person Visual Recall task, we saw the predicted pattern of 

performance based on both absolute and proportion correct scores: recall accuracy was 

significantly higher in Recall Block 6 compared to Recall Block 1 (absolute correct: t15= 2.78, 

p =  .014; proportion correct: t15= 5.17, p < .001, Figure 4.1); higher in Recall Block 6 compared 

to the Testing Block (absolute correct: t15= 2.72, p =  .016; proportion correct: t15= 3.54, p =  
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.003); and higher in the Recovery Block than the Testing Block (absolute correct: t15= 3.07, p 

=  .008; proportion correct: t15= 3.78, p =  .002).  

The online experiment showed the same pattern of learning: Recall accuracy was higher in 

Recall Block 6 compared to Recall Block 1 (absolute correct: t37 = 4.76, p = < .001; proportion 

correct: t37 = 5.02, p < .001); higher in Recall Block 6 compared to the Testing Block (absolute 

correct: t37 = 3.32, p = .002; proportion correct: t37 = 3.49, p = .001) and higher in the Recovery 

Block compared to the Testing Block (absolute correct: t37 = -3.07, p = .004; proportion correct: 

t37 = 2.75, p = .009). These results provide strong evidence that implicit statistical learning has 

occurred during the Visual Recall task.  

 

 Experiment 4.1 (In-Person) Experiment 4.2 (Online) 

 Absolute Correct Proportion Correct Absolute Correct Proportion Correct 

 Mean SEM Mean SEM Mean SEM Mean SEM 

Baseline 0.10 0.02 0.51 0.03 0.21 0.03 0.55 0.02 

Recall 1 0.08 0.03 0.51 0.03 0.22 0.05 0.57 0.03 

Recall 2 0.16 0.04 0.55 0.04 0.30 0.05 0.64 0.04 

Recall 3 0.22 0.05 0.62 0.04 0.38 0.06 0.67 0.04 

Recall 4 0.19 0.07 0.62 0.05 0.42 0.06 0.70 0.04 

Recall 5 0.25 0.06 0.65 0.04 0.40 0.06 0.68 0.04 

Recall 6 0.26 0.07 0.66 0.05 0.46 0.06 0.73 0.04 

Testing 0.10 0.03 0.56 0.03 0.30 0.05 0.63 0.04 

Recovery 0.30 0.08 0.69 0.04 0.45 0.06 0.70 0.04 

Table 4.1. Descriptive Statistics for the Visual Recall Task in Experiments 4.1 and 4.2. 
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Recall task, based on absolute correct scores. Orange bars indicate blocks of random sequences, 
whereas blue bars indicate blocks of grammatical sequences. Recall increases across 
grammatical Recall Blocks, before significantly decreasing in the Testing Block. In the final 
Recovery Block, performance is significantly higher than in the Testing Block. This pattern of 
results provides clear evidence that implicit statistical learning has taken place. B) The same 
pattern was observed when using proportion correct scores. C) Performance on the 
Grammaticality Judgement task was above chance (indicated by the dashed line). Individual 
performance is shown as white circles. D) Breakdown of performance across the different types 
of sequences in the Grammaticality Judgement task. Participants performed above chance 
(indicated by the dashed line) at correctly classifying the within sequences only. 

Figure 4.1. Visual Recall and Grammaticality Judgement task performance for individuals with 
dyslexia recruited in-person (Experiment 4.1). A) Mean recall (+/- SEM) accuracy in the Visual  
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In the in-person experiment (Experiment 4.1), while participants were close to performing 

above chance in the Grammaticality Judgement task (M = 0.56, SEM = 0.03; t15= 1.99, p = 

.065; Figure 4.1), although it is perhaps unsurprising that this did not reach significance given 

the small sample size. When examining the breakdown of performance across within, between 

and both sequence conditions, participants performed above chance only in classifying the 

sequences containing violations within chunks (M = 0.70, SEM = 0.05; t15 = 3.93, p = .001). 

Performance across the other conditions did not differ from chance (grammatical: M = 0.51, 

SEM = 0.06; t15 = .20, p = .842; between chunks: M = 0.51, SEM = 0.08;  t15 = .10, p = .919; 

both between and within chunks: M = 0.61, SEM = 0.06; t15 = 1.73, p = .105).  

In the online version of the experiment, with a larger sample size, performance in the 

Grammaticality Judgement task was above chance (M = 0.62, SEM = 0.02; t37 = 5.34, p < .001; 

Figure 4.2), suggesting that learning had occurred in this experiment. Participants performed 

above chance in classifying the grammatical (M = 0.70, SEM = 0.05; t37 = 4.36, p < .001), 

within (M = 0.64, SEM = 0.04; t37 = 3.32, p = .002) and both (M = 0.64, SEM = 0.05; t37 = 

3.10, p = .004) sequences, but below chance in classifying the between sequences (M = 0.35, 

SEM = 0.05; t37 = -2.82, p = .008) in the online version of the task. This pattern of performance 

suggests that participants were learning the within chunk relationships, but not the between 

chunk relationships. 



Chapter 4: Implicit Statistical Learning Deficits in Dyslexia 

113 
 

 

Figure 4.2. Visual Recall and Grammaticality Judgement task performance for individuals with 
reading difficulties recruited online (Experiment 4.2). A) Mean recall (+/- SEM) accuracy in 
the Visual Recall task, based on absolute correct scores. Orange bars indicate blocks of random 
sequences, whereas blue bars indicate blocks of grammatical sequences. Recall increases 
across grammatical Recall Blocks, before significantly decreasing in the Testing Block. In the 
final Recovery Block, performance is significantly higher than in the Testing Block. This 
pattern of results provides clear evidence that implicit statistical learning has taken place. B) 
The same pattern was observed when using proportion correct scores. C) Performance on the 
Grammaticality Judgement task was above chance (indicated by the dashed line). Individual 
performance is shown as white circles. D) Breakdown of performance across the different types 
of sequences in the Grammaticality Judgement task. Participants performed above chance 
(indicated by the dashed line) at correctly classifying the grammatical sequences, as well as the 
within and both violation sequences, but below chance in the between violation sequences. 
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As in previous experiments, we predicted that participants who performed well in the 

Grammaticality Judgement task would also perform well in the Sequence Generation and 

Sequence Completion tasks. For completeness, I report these correlational tests for both in-

person and online experiments, although it is clear that the sample size for the in-person 

experiment is too small to draw any reliable conclusions from these results. In the in-person 

experiment, we did not find a correlation between performance in the Grammaticality 

Judgement task and performance in either the Sequence Generation (r = .334, p = .206) or 

Sequence Completion task (r = .355, p = .177), although performance in the Sequence 

Generation and Sequence Completion tasks was positively correlated (r = .520, p = .039).  

In the online version, performance in the Grammaticality Judgement task was positively 

correlated with performance in the Sequence Generation (r = .462, p = .004) and Sequence 

Completion (r = .861, p < .001) tasks as predicted, which suggests that participants who 

performed well in the Grammaticality Judgement task had acquired some explicit knowledge 

of the structure which was needed to create their own sequences.  Performance in the Sequence 

Generation and Sequence Completion tasks was also positively correlated (r = .636, p < .001). 

As in our previous experiments (Experiments 2.2 – 2.6 and Experiment 3.1) using serial visual 

recall paradigms, to investigate whether the processing- and reflection-based measures were 

assessing similar processes, we calculated composite measures of both performance in the 

Visual Recall task and performance across the reflection-based tasks (see Experiment 2.4). 

These measures were positively correlated in both the in-person (r = .611, p = .012), and online 

(r = .545, p < .001) versions of the experiment, which reflects the findings across our previous 

experiments and suggests that the processing- and reflection-based measures may be assessing 

similar processes in these experiments. 

In the in-person experiment, we also conducted a number of standardised cognitive and 

language tasks, to assess whether language ability was correlated with implicit statistical 

learning, as measured by either the Visual Recall or subsequent reflection-based tasks. 

Composite performance in the Visual Recall task was correlated with performance in the WASI 

Block Design task only (Appendix 4.1). Composite performance across the reflection-based 

tasks was correlated with performance in the Backwards Digit Recall and WASI Block Design  

tasks (Appendix 4.1); however, given the small sample size, we cannot draw strong conclusions 

based on these findings.   

To assess whether dyslexia is associated with differences in implicit statistical learning across 

the in-person and online versions of the Visual Recall task, we conducted a 9x2x2 mixed 
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ANOVA, with run (9 runs) as a within-subjects factor, and group (control or reading 

difficulties) and task (in-person or online) as between-subjects factors (Figures 4.3 and 4.4). 

There was no main effect of task (F1,116 = 2.89, p = .092) or interaction between any of the 

variables, indicating that performance did not differ based on whether the experiment was 

completed in-person or online. There was a main effect of group (F1,116 = 5.69, p = .019), with 

individuals with reading difficulties showing poorer memory overall compared to individuals 

without reading difficulties. However, memory deficits are often reported in dyslexia and 

poorer recall accuracy across the Visual Recall task is not indicative of a deficit in implicit 

statistical learning. Instead, differences in implicit statistical learning between groups may be 

reflected in an interaction between run and group, but most importantly, through a difference 

in composite performance across the Visual Recall task. There was a main effect of run (F3.9,458 

= 32.17, p < .001). Bonferroni corrected post hoc tests indicated that there were significant 

differences in recall accuracy between the Baseline Block and all other blocks (p < .05) except 

Recall Block 1 and the Testing Block (p > .05). There were also differences between Recall 

Block 1 and all other blocks (p < .05) except the Testing Block (p > .05). There were significant 

differences in recall accuracy between Recall Block 2 and Recall Blocks 5 and 6, and the 

Recovery Block (p < .05) but not with other blocks (p > .05). There were further significant 

differences between recall accuracy in Recall Block 3 and Recall Block 6 and the Recovery 

Block (p < .05), and similarly between Recall Block 4 and Recall Block 6 and the Recovery 

Block (p < .05). There was a significant difference between Recall Block 5 and the Testing 

Block, between Recall Block 6 and the Testing Block, and between the Recovery Block and 

the Testing Block (p < .05). There were no other significant differences in recall accuracy 

between blocks (p > .05 in all cases).  

There was no interaction between run and group (F1,116 = 2.71, p = .102). This suggests that 

individuals with reading difficulties did not show any differences in implicit statistical learning 

in these experiments, including in the time-course of learning. Indeed, when comparing 

composite performance across the Visual Recall task between individuals with and without 

reading difficulties, there was no difference in implicit statistical learning either in-person (t44 

= .973, p = .336) or online (t72 = 1.14, p = .259). Furthermore, there was no difference in 

composite performance across the reflection-based measures between individuals with and 

without reading difficulties in the in-person (t44 = .853, p = .398) or online (t73 = -0.19, p = 

.852) experiments. These findings suggest that reading difficulties do not impact implicit 

statistical learning across the processing- and reflection-based tasks. 
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Figure 4.3. Performance of individuals with and without dyslexia across the in-person Visual 
Recall and reflection-based tasks (Experiment 4.1). A) Mean recall (+/- SEM) accuracy of 
individuals without dyslexia (blue, from Experiment 2.4) and individuals with dyslexia 
(purple) in the Visual Recall task, based on absolute correct scores. B) Mean recall (+/- SEM) 
accuracy of accuracy of individuals without dyslexia (blue) and individuals with dyslexia 
(purple) in the Visual Recall task, based on proportion correct scores. Based on both methods 
of scoring, there is no difference in implicit statistical learning between individuals with and 
without dyslexia. C) Performance in the Grammaticality Judgement task for individuals 
without dyslexia (blue) and individuals with dyslexia (purple). Both groups showed above 
chance performance (indicated by the dashed line). Individual performance is shown as white 
circles. D) There was no difference between performance of individuals without dyslexia (blue) 
and individuals with dyslexia (purple) in the Sequence Generation task. Individual performance 
is shown as white circles. E) There was no difference between performance of individuals 
without dyslexia (blue) and individuals with dyslexia (purple) in the Sequence Completion 
task. Individual performance is shown as white circles. 
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Figure 4.4. Performance of individuals with and without reading difficulties across the online 
Visual Recall and reflection-based tasks (Experiment 4.2). A) Mean recall (+/- SEM) accuracy 
of individuals without reading difficulties (blue, from Experiment 2.5) and individuals with 
reading difficulties (purple) in the Visual Recall task, based on absolute correct scores. B) 
Mean recall (+/- SEM) accuracy of accuracy of individuals without reading difficulties (blue) 
and individuals with reading difficulties (purple) in the Visual Recall task, based on proportion 
correct scores. Based on both methods of scoring, there is no difference in implicit statistical 
learning between individuals with and without reading difficulties. C) Performance in the 
Grammaticality Judgement task for individuals without reading difficulties (blue) and 
individuals with reading difficulties (purple). Both groups showed above chance performance 
(indicated by the dashed line). Individual performance is shown as white circles. D) There was 
no difference between performance of individuals without reading difficulties (blue) and 
individuals with reading difficulties (purple) in the Sequence Generation task. E) There was no 
difference between performance of individuals without reading difficulties (blue) and 
individuals with reading difficulties (purple) in the Sequence Completion task. 
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Discussion 

In Experiments 4.1 and 4.2 we found that individuals with reading difficulties show evidence 

of learning in the processing-based Visual Recall task. In Experiment 4.1, conducted in-person, 

performance in the Grammaticality Judgement task just failed to reach significance, although 

this is likely a reflection of the very small sample size (16 participants) that resulted from 

stopping in-person testing during the COVID-19 lockdown. This idea is supported by the 

findings from Experiment 4.2, conducted online with a larger sample (38 participants), which 

showed good evidence of learning across the reflection-based tasks. The findings from these 

experiments suggests that the Visual Serial Recall task is suitable for measuring implicit 

statistical learning in individuals with reading difficulties. However, we found no difference in 

performance across any of the tasks between individuals with and without reading difficulties, 

including no differences in the time-course of learning across the task, which may provide 

evidence against an impairment in implicit statistical learning in these populations.  

The findings from these experiments do not provide support for differences in implicit 

statistical learning in individuals with reading difficulties such as dyslexia. Whilst previous 

literature has found some evidence of an impairment in these populations (Kahta & Schiff, 

2016, 2019; Katan et al., 2017; Pavlidou et al., 2009; Stoodley & Stein, 2006), there is also a 

considerable number of studies that do not report any differences between individuals with and 

without dyslexia (Inácio et al., 2018; Menghini et al., 2010; Nigro et al., 2016; Samara & 

Caravolas, 2017; Waber et al., 2003). Many of the studies that report differences in implicit 

statistical learning in dyslexia have measured learning using traditional artificial grammar 

learning paradigms involving passive exposure followed by a reflection-based task. It is 

possible that poor performance in previous studies may be a consequence of differences in 

other aspects of cognition, such as difficulties with attention, which are commonly found in 

individuals with dyslexia (Facoetti & Molteni, 2001; Facoetti et al., 2000; Marzocchi et al., 

2009). If such differences affect dyslexic individuals’ attention in the passive exposure phase, 

poorer performance in the reflection-based task may be a result of these attentional difficulties 

as opposed to a deficit in implicit statistical learning. This would explain the findings of 

Experiments 4.1 and 4.2, where we find no evidence of implicit statistical learning deficits in 

individuals with dyslexia. Furthermore, in these experiments there is no passive exposure. 

Instead, participants are exposed to grammatical sequences whilst completing the Visual Recall 

task, which may result in improved attention during learning. If poorer performance of 

individuals with dyslexia in traditional artificial grammar learning tasks can be attributed to a 

lack of attention during passive exposure, then processing-based tasks containing active 



Chapter 4: Implicit Statistical Learning Deficits in Dyslexia 

119 
 

exposure may be particularly beneficial for individuals with dyslexia, as this increased attention 

may facilitate performance and account for the lack of differences in performance across the 

reflection-based tasks between individuals with and without dyslexia in these experiments.  

However, it is possible that we did not find any differences in implicit statistical learning 

between individuals with and without dyslexia in Experiment 4.1 because there were no 

differences in language ability between the two groups, which may be due to both groups 

consisting of university students, who generally have good language ability. It could be argued 

that if the groups show no differences in language ability, then we may not expect to see any 

differences in implicit statistical learning between groups. Furthermore, due to the inability to 

recruit participants for in-person testing over the course of the pandemic, we were not able to 

recruit as many individuals with dyslexia as originally planned, and therefore the sample size 

in Experiment 4.1 is very small. Although we have reported this for completeness, to address 

this, in Experiment 4.2 we ran the same tasks online, however this resulted in other issues. 

First, although Prolific did allow pre-screening to recruit individuals with reading difficulties 

only, it did not provide an option to specifically recruit individuals with dyslexia. As previously 

discussed, although in Experiment 4.2 we grouped participants who reported reading 

difficulties and those who reported that they had dyslexia, these groups may represent distinct 

populations, and any deficits associated with dyslexia may not extend to those with reading 

difficulties more generally. As the experiment was completed online, we could not administer 

the standardised cognitive and language tasks. Therefore, it is difficult to determine whether 

there was a difference in language ability between individuals with and without reading 

difficulties, which raises the same issues as in Experiment 4.1.  

Despite these issues, we provide evidence that the Visual Recall task can be used to measure 

implicit statistical learning in individuals with reading difficulties. However, we do not find 

evidence of a deficit in implicit statistical learning in individuals with dyslexia or reading 

difficulties. However, dyslexia may be characterised by a deficit in processing phonological 

information only, and the lack of group differences could be due to the tasks relying on the 

processing of non-phonological stimuli. Therefore, in Experiments 4.3 and 4.4, we aimed to 

investigate whether any deficits in dyslexia are restricted to the processing of phonological 

information. 
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Experiments 4.3 & 4.4: Is Dyslexia Associated with Language-Specific or 

Domain-General Deficits? 

Introduction 

Experiments 4.1 and 4.2 suggest that there is no difference in implicit statistical learning 

between individuals with and without reading difficulties, including dyslexia. These 

experiments were designed to avoid the need to process phonological stimuli and ensure any 

group differences could be attributed to differences in implicit statistical learning. However, it 

is possible that any difficulties associated with dyslexia are domain-specific, that is, restricted 

to the processing of phonological information (Griffiths & Snowling, 2002; Snowling, 1998; 

Vellutino et al., 2004), as opposed to a more general domain-general difference in implicit 

statistical learning (Folia et al., 2008; Gombert, 2003).  

Despite contrasting evidence, few studies have sought to directly address whether dyslexia is 

associated with a domain-specific deficit in processing phonological information or a domain-

general deficit in implicit statistical learning. Gabay et al. (2015) compared the performance of 

individuals with and without dyslexia in two artificial grammar learning paradigms: one using 

nonword stimuli (phonological) and one using tone stimuli (non-phonological). A deficit in 

phonological processing specifically would impair dyslexic individuals’ processing of 

nonword stimuli only (Denckla & Rudel, 1976; Farquharson et al., 2014; Jones et al., 2009; 

Melby-Lervåg et al., 2012; Rispens & Been, 2007; Vellutino et al., 1996)., whereas a domain-

general statistical learning deficit would result in an impairment in both nonword and tone 

stimuli (Katan et al., 2017; Pavlidou et al., 2009; Stoodley et al., 2008; Stoodley & Stein, 2006). 

Both control and dyslexic participants performed above chance on both the linguistic and non-

linguistic versions of the task, however participants in the control group performed 

significantly better on both tasks compared to the individuals with dyslexia, providing evidence 

supporting a domain-general deficit in implicit statistical learning. 

Although Experiments 4.1 and 4.2 aimed to assess implicit statistical learning deficits in 

dyslexia using processing-based measures, in Experiments 4.3 and 4.4, conducted in-person 

and online respectively, we aimed to directly compare domain-specific and domain-general 

theories of dyslexia. To do this, we used similar auditory nonword and tone artificial grammar 

learning paradigms as Gabay et al. (2015) to measure learning of the Chunking grammar we 

had previously developed (Figure 2.8, or Experiment 2.4 for more details).  
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In Experiments 4.3 and 4.4, conducted in-person and online respectively, we aimed to extend 

these findings using the Chunking Grammar that we had previously developed (see Chapter 2, 

Experiments 2.4 and 2.5), by comparing the performance of adults with and without dyslexia 

or reading difficulties using both nonword and tone tasks. As in Gabay et al. (2015), we used 

a traditional artificial grammar learning paradigm. This consisted of passive exposure to a 

continuous stream of either nonword syllables or sine-wave tones generated by the Chunking 

grammar. This stimulus stream therefore contained both within and between chunk transitions 

which aimed to mimic speech in natural language. Following this, participants completed a 

traditional grammaticality judgement task. If dyslexia is caused by a specific deficit in 

phonological processing, then we would expect dyslexic individuals to be impaired on the 

nonword artificial grammar learning (AGL) task relative to controls, but not the Tone AGL 

task. If there is a more domain-general deficit in implicit statistical learning, then we would 

predict that individuals with dyslexia would be impaired relative to controls on both the 

Nonword and Tone AGL tasks.  

Methods 

Participants 

In Experiment 4.3, conducted in-person, 26 participants (12 female, 14 male, mean age = 

21.62), were recruited using the Newcastle University Neuroscience Participant Pool and the 

School of Psychology Student Participant Pool. 16 participants did not report any language 

difficulties (controls), and 10 reported that they had dyslexia. As in Experiment 4.1, although 

we originally aimed to recruit 40 participants for this study, data collection for this experiment 

was concluded prematurely due to COVID-19. Although this is a very small sample size, the 

data are reported for completeness and transparency. All participants were native English 

speakers and had normal or corrected-to-normal vision and hearing. Participants were not 

excluded based on their ability to speak any additional languages. 

In Experiment 4.4, conducted online, we recruited 99 participants (36 female, 62 male, 1 other; 

mean age = 23.40) through Prolific. This sample size was selected to result in similar numbers 

of participants per group as in previous online experiments (Experiments 2.3, 2.5, 2.6, 3.1 and 

4.2). As in Experiment 4.2, we were able to selectively recruit individuals who were native 

English speakers and who reported that they had reading difficulties through Prolific. We also 

included a question within the experiment asking whether the participant had dyslexic 

specifically. 45 participants did not report any language difficulties (controls) and 54 

participants reported that they had reading difficulties. Of these 54 participants, 26 reported 
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that they had dyslexia. As we could not pre-screen participants who had dyslexia specifically, 

we recruited more participants with reading difficulties compared to those without, to try and 

increase the number of participants with dyslexia specifically in this experiment. Participants 

were not excluded based on their ability to speak any additional languages. An additional 7 

participants were recruited but subsequently excluded from the analysis for failing attention 

checks. Ethics was approved by the Faculty of Medical Sciences Ethics Committee at 

Newcastle University for both experiments. 

Stimuli 

In both Experiments 4.3 and 4.4, the stimuli were generated based on the Chunking Grammar 

(Figure 2.8, see Experiment 2.4 for more details). For the nonword task, 8 mono-syllabic 

nonwords corresponding to each of the elements in the grammar were generated using 

MBROLA (Dutoit et al., 1996; see Table 4.1.). For the tone task, 8 pure tones based on Conway 

and Christiansen (2006) were generated using MATLAB. The frequencies of these tones were 

deliberately chosen to avoid musical notes and intervals between musical notes. In both the 

nonword and tone tasks, the duration of each of the elements was 250ms. 

 

Element Nonword Tone 

A Tor 180 Hz 

B Li 389 Hz 

C Mo 210 Hz 

D Ku 333 Hz 

E Di 454 Hz 

F Ga 286 Hz 

G Nu 531 Hz 

H Fay 245 Hz 

 

 

Both tasks were split into exposure and testing phases. There were two types of exposure phase: 

initial exposure phases, which were a longer period of exposure which occurred at the start of 

each AGL task, and short exposure phases, which were spread throughout the AGL tasks to 

Table 4.2. Experiments 4.3 and 4.4 nonword and tone stimuli. 8 mono-syllabic nonwords were 
generated using MBROLA for the nonword task, and 8 pure tones were generated using 
MATLAB for the tone task. The frequencies of the tones were deliberately chosen to avoid 
musical notes or the intervals between musical notes. 
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refamiliarise participants with the grammatical transitions. In both types of exposure phase, the 

nonword or tone elements were combined in MBROLA in accordance with the rules of the 

grammar to form a continuous stream of stimuli, containing within and between chunk 

transitions, that aimed to mimic natural speech. In the longer initial exposure phases, 720 

elements were presented, resulting in 3 minutes of exposure. In the short exposure phases, 60 

elements were presented, resulting in 30 seconds of exposure. The testing phase consisted of a 

Grammaticality Judgement task, which consisted of the same 48 sequences that we had 

previously used in the Visual Recall task using the Chunking Grammar (see Chapter 2, Table 

2.1).  

Procedure 

In Experiment 4.3, the lab set-up was identical to previous in-person experiments. First, the 

TOWRE Words and Nonwords, Backwards Digit Recall and the Recalling Sentences Task 

were administered (see Appendix 2.1). Following this, participants completed both the 

Nonword and Tone AGL tasks, with the order of completion of these tasks counterbalanced 

across participants. The nonword and tone tasks were identical, apart from the stimuli used. 

Participants completed two runs of each task. In each run, participants were first exposed to a 

3-minute-long continuous stream of stimuli which were generated in accordance with the 

grammar. Participants were told to pay attention to the stimulus stream but were not informed 

about the existence of rules within the stimulus stream. Following the initial exposure phase, 

participants were told that the sequences they had just heard followed a pattern, and that they 

would be presented with new sequences and asked if they fit the pattern they had previously 

heard. After each of the sequences was presented, participants were told to press the “c” key if 

they thought the sequence fit the pattern, or the “m” key if the sequence did not fit the pattern. 

The Grammaticality Judgement task was split into 6 blocks, each containing 8 sequences, half 

of which were grammatical. The ungrammatical sequences were split into three types of 

violation: within, between and both within and between chunk violations (see Table 2.1., 

Chapter 2). Each block only contained two of the three types of violations, and the types of 

violation that occurred in each block were balanced so that each violation type occurred with 

the other violation types equally. Each block was separated by a short exposure phase lasting 

30 seconds, which was designed to re-familiarise the participants with the grammatical 

sequences. Finally, the WASI Block Design and Rapid Automatized Naming Digits and 

Objects tasks were administered. 

In Experiment 4.4, we were not able to administer the standardised cognitive and language 

tasks, as this experiment took place online. Participants completed the same computer tasks as 
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Experiment 4.3 on their own desktop computer or laptop. To ensure participants were paying 

attention in the exposure phases, we included attention checks. Participants were instructed to 

press the ‘space’ key if they heard a ‘click’ sound during the exposure phase. In the initial 

exposure phase, 16 nonword or tone stimuli were randomly selected and replaced with a click 

sound. The same process was repeated for the short exposure phases, however only 3 nonword 

or tone stimuli were replaced by a click sound.  

Data analysis 

In Experiment 4.3, we compared scores on the standardised cognitive and language tasks across 

control and dyslexic participants which showed that controls scored significantly better than 

the dyslexic participants in the TOWRE Words (t24 = 3.04, p = .006) and Nonwords (t24 = 6.11, 

p < .001) and Backwards Digit Recall (t24 =2.49, p = .020), and the difference between 

performance on the Rapid Automatized Naming Digits (t24 = 1.86, p = .075) and Objects (t24 = 

1.94, p = .065) tasks was close to significant. Although this suggests that there was a difference 

in language ability between participants with and without dyslexia in this experiment, this is 

still based on a small sample size. As in Experiment 4.2, Experiment 4.4 was conducted online 

and therefore it was not possible to collect the same standardised cognitive and language task 

data. 

The data were analysed in the same way for both Experiments 4.3 and 4.4. The Nonword and 

Tone AGL tasks were counterbalanced across participants to account for order effects. In the 

Grammaticality Judgement task, a trial was scored as correct if the participants successfully 

classified it as grammatical or ungrammatical, and performance on this task was compared to 

chance levels (50%). In the online experiment, if participants missed over 50% of clicks in any 

exposure phase, then they were removed from the analysis. Similarly to Experiments 4.1 and 

4.2, the analyses showed no difference in performance across the tasks between participants 

who reported reading difficulties and those who reported that they had dyslexia. As in 

Experiment 4.2, we combined these groups into a single group with reading difficulties for 

analysis. 

Results 

In the in-person experiment (Experiment 4.3), controls performed above chance in both runs 

of the Nonword task (Run 1: t15 = 9.75, p < .001; Run 2: t15 = 5.044, p < .001) and the Tone 

task (Run 1: t15 = 6.642, p < .001; Run 2: t15 = 4.85, p < .001). The dyslexic group performed 

above chance in both runs of the Nonword task (Run 1: t9 = 4.961, p < .001; Run 2: t9 = 3.807, 
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p < .0042), and above chance in run 1 of the Tone task (t9 = 2.898, p = .018), but not run 2 (t9 

= 2.03, p = .055), although performance in this run was approaching significance.  

The findings were somewhat similar in the online version of the task comparing the 

performance of individuals with and without reading difficulties: individuals without reading 

difficulties performed above chance in both runs of the Nonword task (Run 1: t44 = 12.84, p < 

.001; Run 2: t44 = 10.46, p < .001), but above chance in run 2 of the Tone task only (Run 1: t44 

= 0.64, p = .526; Run 2: t44 = 3.84, p < .001). Individuals with reading difficulties performed 

above chance in both runs of the Nonword (Run 1: t53 = 2.87, p = .006; Run 2: t53 = 3.81, p < 

.001), and Tone task (Run 1: t53 = 2.87, p = .006; Run 2: t53 = 3.81, p < .001). Taken together, 

these results suggest that learning occurred in both Nonword and Tone versions of the task in 

individuals with and without reading difficulties.  

We aimed to compare performance of individuals with and without reading difficulties. In 

Experiment 4.4, we conducted a mixed 2x2x2 ANOVA with stimuli (nonword and tone), run 

(run 1 and 2) as within-subject factors, and group (control or dyslexic) as a between-subject 

factor. In the in-person Experiment, we found some evidence of a significant main effect of 

group (F1,24 = 4.52, p = .044), which indicates that there was a difference in performance on 

the nonword and tone tasks between the control and dyslexic participants. We found a main 

effect of stimuli (F1,24 = 22.03, p < .001), with participants performing better at the nonword 

task than the tone task. We found some evidence for a main effect of run (F1,24 = 4.48, p = 

.045), and a significant interaction between stimuli and run (F1,24 = 5.96, p = .022), which 

reflected a decrease in performance across runs for the nonword task but not the tone task. 

There were no other significant interactions. The findings from Experiment 4.3 may provide 

some suggestion of a domain-general deficit in implicit statistical learning in dyslexia; 

however, given the small sample size, it would be sensible to treat these conclusions with 

caution. 

In Experiment 4.4, we conducted the same 2x2x2 ANOVA, except the between-subjects factor 

was changed to assess differences between controls and individuals with reading difficulties, 

rather than dyslexia specifically. We found a main effect of stimuli (F1,97 = 237.961, p < .001), 

with participants performing better in the Nonword than the Tone task, but no main effect of 

group (F1,97 = .073, p = .787), suggesting no difference in performance across runs or between 

individuals with and without reading difficulties. Whilst we found no main effect of run (F1,97 

= .718, p = .399), there was a significant interaction between run and stimuli (F1,97 = 18.01, p 

< .001), which reflected a decrease in performance across runs in the Nonword task, but an 

increase in performance across runs in the tone task. There were no other significant 
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interactions. The results from Experiment 4.4 suggest that there is no difference in performance 

between individuals with and without reading difficulties across the Nonword and Tone task 

and provide evidence against an implicit statistical learning deficit in individuals with reading 

difficulties.  

To assess whether there was a difference in performance between the in-person and online 

experiments, we added an additional between-subjects factor of task (in-person or online) to 

the previous ANOVA. We found no main effect of task (F1,121 = 3.10, p = .081), however there 

was a significant interaction between task and stimuli (F1,121 = 7.17, p = .008), which reflected 

a decrease in performance between in-person and online experiments in the Tone AGL task 

but not the Nonword AGL task, which may suggest that performance in the Tone task is less 

suitable for online testing, perhaps due to factors outsider the experimenters control, such as 

differences in audio equipment across participants. Furthermore, we found a significant 

interaction between task and group, (F1,121 = 3.96, p = .049), although this only just reached 

significance. This interaction reflected poorer performance of controls in the online version of 

the task compared to the in-person task, whereas individuals with reading difficulties 

performance did not differ. 
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Figure 4.5. In-person Nonword and Tone auditory AGL performance. A) Nonword AGL 
performance for control (blue) and dyslexic (purple) participants. Individual performance is 
shown in circles. Both controls and individuals with dyslexia performed above chance 
(indicated by the dashed line) in both runs of the Nonword AGL task. B) Tone AGL 
performance for control (blue) and dyslexic (purple) participants. Individual performance is 
shown in circles. Both controls and individuals with dyslexia both performed above chance 
(indicated by the dashed line) in run 1 of the Tone AGL task, but only control participants 
performed above chance in run 2 of the tone task. There was some suggestion that control 
participants performed better than dyslexic participants across both Nonword and Tone AGL 
tasks.  



Chapter 4: Implicit Statistical Learning Deficits in Dyslexia 

128 
 

 

 

 

 

 

Figure 4.6. Online Nonword and Tone auditory AGL performance. A) Nonword AGL 
performance for control participants (blue) and participants with reading difficulties (purple). 
Individual performance is shown in circles. Both controls and individuals with reading 
difficulties performed above chance (indicated by the dashed line) in both runs of the Nonword 
AGL task. B) Tone AGL performance for control participants (blue) and participants with 
reading difficulties (purple). Individual performance is shown in circles. Both controls and 
individuals with reading difficulties performed above chance in run 2 of the Tone AGL task, 
however only individuals with reading difficulties performed above chance in run 1. Across 
both Nonword and Tone AGL tasks, there was no evidence of a difference in performance 
between individuals with and without reading difficulties.  
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To investigate whether an individual’s performance is related to language ability, in 

Experiment 4.3 we correlated performance on the Nonword and Tone tasks with performance 

on the battery of standardised cognitive and language tasks (Figure 4.8). The language tasks 

were chosen because they require the rapid and/or precise manipulation of phonemes, an 

impairment in which is characteristic of dyslexia (Appendix 2.1). Performance in the Nonword 

task was correlated with performance on the TOWRE Word and Nonword tasks, as well as the 

Recalling Sentences task and Rapid Automatized Naming Objects task, with individuals who 

performed better in the Nonword AGL task performing better in the language tasks. 

Performance on the tone task was correlated with some of the language tasks: the TOWRE 

Word and Recalling Sentences tasks. These correlations may suggest that the Nonword and 

Tone AGL tasks are tapping into mechanisms that are similar to those that underpin 

performance in the standardised language tasks. Performance on the language tasks was more 

highly correlated with performance on the Nonword AGL task than the Tone AGL task; 

however, given that the Nonword AGL task used phonological stimuli, this is unsurprising.  
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Figure 4.7. Correlations between Nonword and Tone AGL task performance and standardised 
cognitive and language tasks across participants with and without dyslexia. Only significant r 
values are shown (p < 0.05). The r values are colour-coded according to the correlation 
statistics, with negative correlations being shown in blue and positive correlations shown in 
red. Performance in the Nonword task was correlated with performance on the TOWRE Word 
and Nonword, Recalling Sentences and Rapid Automatized Naming Objects tasks, with 
individuals who performed better in the Nonword AGL task performing better in the language 
tasks. Performance on the Tone AGL task was correlated with the TOWRE Word and Recalling 
Sentences tasks. Performance in the Nonword and Tone AGL tasks were not correlated.  
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Discussion 

In Experiments 4.3 and 4.4, we aimed to investigate whether dyslexia is associated with 

domain-specific differences in processing phonological information specifically, or a domain-

general deficit in implicit statistical learning. In Experiment 4.3, we used a paradigm similar to 

Gabay et al. (2015) to test individuals with and without dyslexia in-person. There may have 

been some indication of a difference in performance between individuals with and without 

dyslexia across both nonword and tone tasks. However, due to the restrictions placed on in-

person recruitment during the COVID-19 pandemic, the sample size for this study was much 

smaller than we had originally planned and therefore the study was underpowered. As such, 

we adapted the experiment to run online and recruited a larger sample. In Experiment 4.4, we 

compared the performance of individuals with and without reading difficulties and found no 

differences in performance across the Nonword and Tone AGL tasks between these groups. 

Overall, there is little evidence of a deficit in implicit statistical learning in individuals with 

reading difficulties, including dyslexia. 

The findings from the in-person experiment somewhat mirror those of previous experiments 

using similar designs, which also found evidence of a domain-general implicit statistical 

learning deficit (Gabay et al., 2015). However, it is important to note that due to the issues 

surrounding in-person testing during the pandemic, a small number of participants were 

recruited in Experiment 4.3, meaning that this study is underpowered. Experiment 4.4 was 

conducted online, with a larger sample of individuals with and without reading difficulties and 

did not show any differences between groups. However, this experiment faces similar issues to 

Experiment 4.2: first, it is possible that the predicted differences in performance are specific to 

dyslexia and would not be reflected in the performance of individuals with reading difficulties 

who are not dyslexic. Second, we cannot confirm that the group with reading difficulties have 

poorer language ability compared to controls, as we have in Experiment 4.3. 

Across both in-person and online versions of the experiment, participants perform better in the 

Nonword AGL task compared to the Tone AGL task. This does not reflect the findings from 

Gabay et al. (2015), where no difference was found between performance in Nonword and 

Tone AGL tasks. This is likely because in their experiment, the tones were presented at a slower 

rate compared to the nonwords, as previous research has suggested that a slower presentation 

rate is required to achieve comparable performance to nonwords (Saffran et al., 1999).  In the 

current experiments, the presentation rate was kept consistent across Nonword and Tone AGL 

tasks, and differences in performance of participants across tasks highlights that there may be 
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potential constraints on implicit statistical learning depending on the perceptual features of the 

stimuli (Conway, 2020; Conway & Christiansen, 2006).  

The findings from Experiments 4.3 and 4.4 reflect the current state of the literature in that 

mixed findings are common when investigating the underlying causes of dyslexia. Indeed, 

regarding implicit statistical learning deficits, although there are a number of studies that 

suggest an impairment in implicit statistical learning in dyslexia (Katan et al., 2017; Pavlidou 

et al., 2009; Stoodley et al., 2008; Stoodley & Stein, 2006), there are as many that do not show 

any difference in implicit statistical learning between individuals with and without dyslexia 

(Inácio et al., 2018; Menghini et al., 2010; Nigro et al., 2016; Samara & Caravolas, 2017; 

Waber et al., 2003). Several meta-analyses have concluded that while there is some evidence 

of an implicit statistical learning deficit in dyslexia, there was also evidence of a publication 

bias, and that unpublished data may well null the result (van Witteloostuijn et al., 2017). A 

systematic review of this literature stressed the difficulty in drawing conclusions regarding 

implicit statistical learning deficits in dyslexia due to the lack of high quality data (Schmalz et 

al., 2017). The contradictory findings associated with the dyslexia literature also extend beyond 

those examining implicit statistical learning deficits. Meta-analyses of studies investigating 

two separate deficits in dyslexia - auditory processing (Witton et al., 2020) and visuo-spatial 

deficits (Chamberlain et al., 2018; Tafti et al., 2014) – both highlight that there is considerable 

heterogeneity within dyslexia. This heterogeneity may be an important factor that accounts for 

the mixed findings associated with most of the proposed deficits in dyslexia and suggests that 

dyslexia is unlikely to be the consequence of a single cause. It is more likely that there are 

multiple factors that interact in more complex ways to result in the reading impairments that 

characterise dyslexia (Castles et al., 2010). 

Conclusions 

The findings from the in-person and online Visual Recall tasks (Experiments 4.1 and 4.2 

respectively) suggest that there is no deficit in implicit statistical learning. Experiment 4.3 

provided some evidence of impaired implicit statistical learning in dyslexia when measuring 

learning using traditional AGL paradigms but was underpowered due to issues with recruitment 

during the COVID-19 pandemic. We did not replicate these findings in an online version of 

the task in Experiment 4.4 in which we recruited individuals with and without reading 

difficulties. Taken together, these experiments do not provide convincing evidence for an 

impairment in implicit statistical learning in dyslexia.
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Chapter 5: General Discussion 

 

Implicit statistical learning is thought to play an important role in language acquisition 

(Romberg & Saffran, 2010). While implicit statistical learning in adults and older children is 

typically measured using tasks that require explicit reflection regarding the grammaticality of 

a sequence, it can also be measured using processing-based tasks which do not require 

conscious reflection, and instead measure processes that are facilitated by implicit statistical 

learning (Isbilen et al., 2022; Isbilen et al., 2017, 2020; Kidd et al., 2020; Lammertink et al., 

2019). The aim of this thesis was to develop and test novel processing-based measures of 

implicit statistical learning and combine these with traditional reflection-based tasks to further 

investigate the processes that occur during implicit statistical learning in children and adults 

with and without dyslexia. 

To assess the efficacy of processing-based measures, in Chapter 2, I developed and tested both 

reaction time and serial visual recall tasks as measures of implicit statistical learning. Previous 

research suggested that implicit statistical learning can be measured using processing-based 

SRT-AGL tasks (Misyak & Christiansen, 2012; Misyak et al., 2009, 2010; Vuong et al., 2011) 

and serial recall (Isbilen et al., 2022; Isbilen et al., 2017, 2020; Kidd et al., 2020). The findings 

from Experiment 2.1 suggest that the SRT-AGL task was not an effective measure of learning. 

However, the Visual Recall task did show evidence of learning across a number of experiments, 

but only when the task required using active exposure.  

The lack of learning in the SRT-AGL task may be due to participants not completing a passive 

exposure phase, which is thought to be an important feature of implicit statistical learning  

(Aslin, 2017). Instead, the SRT-AGL task contained active exposure in the form of a simple 

matching task. However, the data from the experiments using Visual Recall tasks suggest that 

active exposure may facilitate learning over passive exposure, as this method more accurately 

reflects how natural language is acquired (Heyes, 2018). These contradictory findings may be 

explained by differences in the tasks that participants were engaging with during active 

exposure. In the Visual Recall task, participants completed a cognitively demanding memory 

task, whereas the SRT-AGL task involved a less engaging matching task. Krishnan et al. (2021) 

have provided some evidence that passive and active exposure can lead to similar levels of 

performance; however, this study also demonstrated that knowledge acquired from passive 

exposure does not transfer during active recall. This may explain why in our experiments 

involving both passive and active exposure (Experiments 2.2 and 2.3), performance appears to 
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be most influenced by active exposure. Taken together, these experiments suggest that active 

exposure can facilitate learning over passive exposure, but only when the task itself is 

engaging. Previous research demonstrated that serial recall can be used as a processing-based 

measure of highly regular transitions, such as those found within words (Isbilen et al., 2022; 

Isbilen et al., 2017, 2020; Kidd et al., 2020). The experiments within Chapter 2 indicate that 

the Visual Recall task can measure learning of grammars containing both highly regular and 

more variable transitions. Whilst it is generally understood that increasing complexity is 

associated with poorer performance in artificial grammar learning tasks (Pothos, 2010; Schiff 

& Katan, 2014), these experiments suggest that that the complexity of the grammar may also 

affect the way in which these regularities are processed during learning. Participants are more 

likely to gain explicit awareness of simpler predictable relationships, and this explicit 

awareness can be used to aid performance in the reflection-based tasks. Conversely, complex 

grammars containing more variable transitions are less likely to be learned explicitly, and 

therefore do not result in explicit knowledge that can be relied on in reflection-based tasks. 

Indeed, previous research has shown performance in artificial grammar learning tasks is 

facilitated by explicitly informing participants of the rules prior to exposure (Reber et al., 

1980). Furthermore, Batterink, Reber and Paller (2015) showed that participants are more 

likely to rely on explicit knowledge if it is available. Given that the method by which learning 

occurs has important implications regarding learning, future research should focus on 

systematically varying complexity across experiments to further assess how such factors 

influence the cognitive processes underlying implicit statistical learning.  

The findings from these experiments suggest that the Visual Recall task is a valuable 

processing-based measure of implicit statistical learning. However, the Visual Recall tasks 

from Chapter 2 focused on demonstrating that implicit statistical learning had occurred and 

provided less detail on what knowledge had been acquired. Instead, the subsequent reflection-

based tasks were used to gain further insight into which regularities participants had become 

sensitive to during the Visual Recall task and suggested that participants learned the salient 

within chunk transitions but not the more variable between chunk transitions. Although future 

research should expand on these experiments to investigate whether serial visual recall can 

reveal more about what has been learned, these findings highlight the importance of utilising 

both processing- and reflection-based measures when investigating learning. Previous research 

has suggested that processing- and reflection-based measures tap into different processes 

(Isbilen et al., 2017; Lammertink et al., 2019), and therefore both types of tasks can provide 

useful information regarding the learning that occurs through implicit statistical learning. 
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Previous literature investigating the developmental trajectory of implicit statistical learning has 

yielded mixed results: some studies have suggested that implicit statistical learning is age-

invariant (Raviv & Arnon, 2018; Saffran et al., 1997; Thiessen et al., 2013), while other studies 

have shown that implicit statistical learning abilities improve alongside other cognitive abilities 

(Arciuli & Simpson, 2011). It has also been suggested that implicit statistical learning is better 

in children compared to adults (Jost et al., 2015). To investigate implicit statistical learning in 

children, in Chapter 3, I recruited children aged 8 to 15 years to complete the Visual Recall and 

subsequent reflection-based tasks. There was evidence of implicit statistical learning across the 

tasks, and no difference in implicit statistical learning based on age within the sample of 

children. These findings suggest that implicit statistical learning abilities remain stable over 

this period of childhood. When comparing the performance of these children with adults, there 

was some indication that implicit statistical learning was poorer in children compared to adults 

in the Visual Recall task, but there was no difference in performance in the Grammaticality 

Judgement task. However, differences in implicit statistical learning may have been driven by 

differences in attention or motivation. After removing children who showed a pronounced 

grammaticality bias (and therefore either did not understand or engage with the task), there was 

little evidence of a difference in implicit statistical learning in the Visual Recall or 

Grammaticality Judgement tasks. These findings provide some suggestion that implicit 

statistical learning is an age-invariant mechanism (Kirkham et al., 2002; Raviv & Arnon, 2018; 

Saffran et al., 1997). If implicit statistical learning is age-invariant from childhood through to 

adulthood, then this may have important implications for the role of such mechanisms in second 

language learning, in which implicit statistical learning may play an important role (Frost et 

al., 2013; Godfroid & Kim, 2021; Onnis, 2012). Specifically, this may affect how second 

languages are taught, with an emphasis being placed on presenting the learner with input 

containing specific distributional properties to accelerate learning (Onnis, 2012; Smith, 1991). 

The Visual Recall task revealed differences in the time-course of learning between children 

and adults that were not captured by the reflection-based tasks, in that there is no improvement 

in performance across the grammatical Recall Blocks in the Visual Recall task. Indeed, these 

differences remained even after removing the children who showed pronounced bias. Previous 

research has typically used SRT tasks to compare children and adult’s performance on 

processing-based measures. These studies have generally shown that children and adults learn 

at a similar rate (Bertels et al., 2015; Du et al., 2017; Karatekin et al., 2007; Meulemans et al., 

1998; Weiermann & Meier, 2012). It is possible that the children’s lack of improvement across 

Recall Blocks can again be attributed to differences in attention and/or motivation that may 
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arise from completing the experiment online. Children who were motivated and engaged with 

the task showed high levels of recall accuracy from the first Recall Block and continued to 

perform well across the task, meaning they do not show an improvement in performance across 

Recall Blocks. Children who showed poor recall accuracy did not improve across the Recall 

Blocks, which may be due to a lack of attention and/or motivation to complete the task. 

Although little research has been done comparing performance on in-person versus online 

implicit statistical learning tasks, there is some evidence suggesting that adults report more 

distractions when completing experiments in an online setting (Clifford & Jerit, 2014). As 

attention improves with age (Plude et al., 1994), it is sensible to suggest that children may be 

more affected by these additional distractions during online experiments compared to adults. 

Therefore, it would be useful to replicate this Experiment 3.1 in-person in order to determine 

whether any differences in the time-course of learning between children and adults are a 

consequence of running the study online.  

The experiments with adults from Chapter 2 highlight that participants may be more likely to 

gain explicit awareness of more simple, predictable relationships compared to more complex 

relationships, which results in explicit knowledge that can be used to aid performance in the 

reflection-based tasks. However, it is currently unclear whether these findings extend to 

children. Previous research has indicated that similarly to adults, children can readily learn 

simple patterns (Cassar & Treiman, 1997; Fayol, 2002; Treiman, 1993), but more complex 

regularities take much longer to acquire (Caravolas et al., 2005). This may suggest that like 

adults, children may also rely on different forms of processing depending on the complexity of 

the grammar being learned. However, the findings from Experiment 3.1 and previous 

experiments (Bertels et al., 2015; Hickey et al., 2019; Meulemans et al., 1998) suggest that 

children are less likely to gain explicit awareness of any implicit learned information, which 

may indicate that children may be less likely to rely on explicit knowledge even when learning 

more simple relationships. Future research, preferably using longitudinal approaches, should 

examine whether there are any developmental differences in the mechanisms that support 

learning of regularities of varying complexity (Conway, 2020).  

One of the key debates within dyslexia research relates to whether dyslexia is associated with 

a domain-specific deficit that is restricted to the processing of phonological stimuli (Griffiths 

& Snowling, 2002; Snowling, 1998; Vellutino et al., 2004), or whether a domain-general deficit 

in implicit statistical learning may underlie dyslexia (Folia et al., 2008; Gombert, 2003; 

Menghini et al., 2006; Ullman & Pierpont, 2005). In Chapter 4, I aimed to investigate the nature 

of implicit statistical learning deficits in dyslexia using the Visual Recall task and then 
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subsequently assess whether any differences in dyslexia are restricted to processing of 

phonological stimuli. Across a number of in-person and online experiments, there was no 

difference in implicit statistical learning between individuals with and without dyslexia or 

reading difficulties. Although there were some limitations associated with conducting some of 

these experiments online (discussed below), these findings likely reflect the heterogeneity of 

dyslexia. In fact, the literature relating to the majority of the proposed deficits in dyslexia is 

contradictory. For example, there is evidence for and against differences in auditory processing 

(for a meta-analysis, see Witton et al., 2020), visuo-spatial processing (for a meta-analysis, see 

Chamberlain et al., 2018) and implicit statistical learning (for a meta-analysis, see van 

Witteloostuijn et al., 2017) in dyslexia. As such, the lack of a difference between individuals 

with and without dyslexia or reading difficulties in the experiments from Chapter 4 is not out 

of place within the wider literature and likely implies that any differences associated with 

dyslexia are caused by multiple interacting factors, rather than a single cause (Castles et al., 

2010). Future research should move beyond characterising dyslexia in terms of a “core-deficit” 

and instead develop methods that capture the complexity that exists with and between the 

diagnostic boundaries of the disorder (Astle & Fletcher-Watson, 2020).  

The conflicting findings within the literature investigating implicit statistical learning deficits 

in dyslexia specifically may also be a consequence of inadequate methods for measuring 

implicit statistical learning. Tasks that are developed to measure differences in implicit 

statistical learning between groups (e.g., between individuals with and without dyslexia) are 

characterised by poor reliability in adults (Bogaerts et al., 2018; Hedge et al., 2018; Siegelman, 

2020; Siegelman & Frost, 2015), and this may be exacerbated in children (Arnon, 2019; West 

et al., 2018). The development of more reliable implicit statistical learning tasks has been 

recognised as an important avenue for research. Siegelman (2020) highlighted a number of 

factors that may improve reliability, most notably the development of processing-based tasks, 

which measure the time-course of learning across exposure by assessing changes in cognitive 

processes that are facilitated by implicit statistical learning. Therefore, the Visual Recall task 

may provide a promising method of reliably assessing implicit statistical learning and future 

research should extend these findings to directly assess the reliability of this task across 

populations.  

Implicit statistical learning plays an important role in language acquisition (Romberg & 

Saffran, 2010). Although language learning is typically associated with the auditory domain, 

by adulthood, the language system is more multimodal, and many of the different facets of 

language (for example reading and listening) engage similar neural systems (Malik-Moraleda 
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et al., 2022). Therefore, it is important to consider the role of implicit statistical learning across 

different sensory modalities in language processing. Recent multicomponential frameworks 

have highlighted that as well as domain general processes that occur similarly across 

modalities, there are also modality-specific constraints that influence the implicit statistical 

learning of regularities across domains (Conway, 2020; Frost et al., 2019; Frost et al., 2015).  

Therefore, examining implicit statistical learning, ideally using processing-based measures, 

across multiple domains is important in order to gain a comprehensive understanding of the 

nature of these mechanisms and their role in language acquisition and processing. Previous 

research has explored these processes in the auditory domain using speech stimuli (Isbilen et 

al., 2017). Here, I have adapted and developed these methods for the visual domain, and 

identified the conditions under which implicit statistical learning occurs. While directly 

comparing visual and auditory implicit statistical learning within the same experiment was 

beyond the scope of this project, such comparisons could represent a valuable future research 

direction. Moreover, this research has explored the role of implicit statistical learning in 

language acquisition, by taking a developmental approach to assess learning in children using 

the same tasks as adults. Future research should further investigate how implicit statistical 

learning contributes to language acquisition (including in those with language difficulties) 

using these tasks, for example, by examining the learning of more complex dependencies 

across development. Much recent discussion in the field of implicit statistical learning has 

focused on the importance of considering how implicit learning processes contribute to 

language learning and processing (Conway, 2020; Frost et al., 2019; Frost et al., 2015). The 

development of effective, processing-based measures of statistical learning represents an 

important step forward in resolving aspects of these debates, and clarifying the role of implicit 

statistical learning in language acquisition and processing.  

These experiments also provide some interesting insight into the differences in conducting 

experiments online as opposed to in-person. Although this thesis was not planned to contain 

both in-person and online studies, the COVID-19 pandemic meant that experiments had to be 

adapted to run online in order to collect data. There were no differences in performance 

between in-person and online versions of the Visual Recall task when testing adults, which 

provides some suggestion that performance in visual experiments may not be affected by 

conducting the experiments online. However, when testing children, performance may have 

been affected by a lack of attention and/or motivation. However, from this data, it is unclear 

whether this was due to conducting the experiment online, or simply as facet of collecting data 

in children. There was some indication that participants performed more poorly in the online 
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version of the auditory AGL task compared to the in-person experiment; however, this was 

specific to AGL task using tone stimuli. This may be due to differences in performance between 

tone and Nonword AGL tasks being exaggerated in the online experiment. For example, if the 

Tone AGL task is more difficult, it may become less engaging to complete. Therefore, when 

completing the experiment online, without an experimenter present, participants may be less 

motivated to maintain attention. As there were differences between in-person and online 

performance in auditory, but not visual tasks, this may suggest that performance in auditory 

tasks may not be comparable between in-person and online settings. Indeed, when comparing 

multiple online packages with equivalent in-person setups, the presentation of visual stimuli 

appears to be more precise compared to auditory stimuli, as currently none of the available 

online packages can provide precisely timed onsets for auditory stimuli (Bridges et al., 2020). 

Furthermore, previous research has highlighted the challenges associated with online auditory 

testing. It has been suggested that results may rely on factors that are outside of the 

experimenter’s control, such as sound presentation level, or perceptual thresholds (Milne et al., 

2021; Zhao et al., 2022), which may not affect the perception of nonwords. These findings 

suggest that visual tasks may provide more consistent results when conducting online 

experiments.  

Although adapting these experiments to run online enabled me to continue collecting data in 

the midst of a global pandemic, there were some limitations associated with these experiments. 

Most notably, there were issues in the recruitment of individuals with dyslexia specifically for 

the online experiments. As discussed in Chapter 4, Prolific, the online platform I used for 

recruitment, only allowed for the recruitment of individuals with reading difficulties, rather 

than dyslexia specifically. Furthermore, there was no method of confirming that participants 

had reading difficulties, as the standardised cognitive and language tasks that would typically 

be administered to assess language ability cannot be conducted online. This presented a number 

of issues. First, and any deficits associated with dyslexia may not extend to those with reading 

difficulties more generally. As previously discussed (see Chapter 4, General Introduction), 

there is much debate regarding whether individuals with dyslexia and individuals with reading 

difficulties more generally are distinct populations (Badian, 1994; Elliott & Grigorenko, 2014; 

Gibbs & Elliott, 2020; Kirby, 2020; Stanovich, 1988). If implicit statistical learning deficits 

are specific to dyslexia, then it may not be sensible to expect poorer performance in participants 

with reading difficulties. Second, we were not able to administer the standardised cognitive 

and language tasks through Prolific, therefore it was not possible to determine whether 

participants with reading difficulties had poorer language ability than our control sample. If 
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deficits in implicit statistical learning are associated with poorer language ability, then 

differences between individuals with and without reading difficulties across the tasks may not 

be expected if there is not difference in their language ability. Despite these limitations, online 

experiments provided a valuable tool for recruiting a large number of participants and enabled 

the collection of data during a time when in-person testing was not possible. 

Conclusion 

The aim of this research was to develop novel processing-based measures of implicit statistical 

learning and combine them with traditional reflection-based tasks to assess implicit statistical 

learning in children and adults with and without dyslexia. The findings from these experiments 

indicate that a multimodal approach, incorporating both processing- and reflection-based tasks, 

provides a valuable method of assessing implicit statistical learning across a range of 

populations. These methods have provided further detail on the processes that occur during 

implicit statistical learning, as well as the developmental trajectory of these mechanisms and 

the role they play in dyslexia. 
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Appendix 

Appendix 2.1. Standardised Cognitive and Language Tasks 

Test of Word Reading Efficiency (TOWRE): Words and Nonwords 

These tasks are a popular measure of an individual’s ability to pronounce printed words and 

phonemically regular nonwords accurately and fluently (Torgesen, Wagner & Rashotte, 2012). 

The TOWRE consists of two tests: Sight Word Efficiency (SWE), which measures the ability 

to read familiar words aloud quickly, and Phonemic Decoding Efficiency (PDE), which 

measures proficiency in sounding out nonwords. The SWE task consists of 108 items in total, 

arranged into four columns. The PDE consists of 66 items arranged into three columns. Both 

lists were presented sequentially on an A4 sheet of paper, and the participant was asked to read 

as many of the items as possible in 45 seconds.  

Backwards Digit Recall 

Backwards digit recall (taken from the Wechsler Adult Intelligence Scale (WAIS); Wechsler, 

2008) was used as a measure of verbal working memory. Although both forward and backward 

digit span tasks rely on short-term memory (Rosen & Engle, 1997), backwards digit span also 

recruits working memory systems (Alloway et al., 2006). For this task, participants were 

instructed to listen to the experimenter say a sequence of numbers and repeat these numbers in 

reverse order. The task consisted of 6 blocks of numbers; each block contained 6 sequences of 

digits ranging from 2 to 7 digits in length. Participants scored 1 mark per correct response, and 

a discontinue rule was implemented: the participants had to score 4 marks per block to progress 

to the next block. 

Recalling Sentences 

The recalling sentences subtask was taken from the Clinical Evaluation of Language 

Fundamentals (CELF-5; Wiig, Secord & Semel, 2013), and requires the participant to repeat 

sentences of increasing length and grammatical complexity. There are 26 sentences in total, 

however as all of the participants in this study were older than 15 years, only sentences 16 

through to 26 were administered. The maximum score for each sentence is 3 points, and for 

each mistake the participant makes one point is deducted until they reach 0 points.  

WASI Block Design 
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We assessed nonverbal intelligence using the Block Design task from the Weschler Scale of 

Abbreviated Intelligence, Second Edition (WASI-II; Weschler, 2011). The task consists of 13 

trials in which the participant is shown two-dimensional red and white geometric designs, and 

then asked to recreate each design using the top of  red and white cubes. The task is standardised 

for ages 6 to 90 years. Each item has a specified time limit, and participants are given higher 

scores for completing the trials more quickly. Trials are scored as 0 if the design is not 

successfully recreated. The task is discontinued if the participants fail 2 consecutive trials.    

Rapid Automatised Naming (RAN) 

RAN was used as a measure of processing speed in two domains: digit and object processing. 

Therefore, two types of RAN task, taken from the York Adult Assessment Battery – Revised 

(YAA-R; Warmington, Stothard & Snowling, 2013) were used in this study. The RAN digits 

task consisted of 10 practice digits and 50 test digits, arranged in a 5x10 matrix on an A4 sheet 

of paper. The RAN objects consisted of a selection of four line drawings of objects (duck, shoe, 

car, frog) which were organised randomly on the page. 7 practice items and 50 test items were 

presented to the participant on an A4 sheet of paper, organised in a 5x10 matrix.  
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Appendix 2.2. Experiment 2.2 Correlations Between Standardised Cognitive 

and Language Tasks and performance in Composite Visual Recall and 

Reflection-Based tasks in Individuals Without Dyslexia 

 

 

 

 

Figure 6.1. Correlations between standardised cognitive and language tasks and composite 
Visual Recall task performance and composite performance across reflection-based tasks in 
individuals without dyslexia in Experiment 2.2 
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Appendix 2.3. Experiment 2.4 Correlations Between Standardised Cognitive 

and Language Tasks and performance in Composite Visual Recall and 

Reflection-Based tasks in Individuals Without Dyslexia 

 

 

 

 

 

 

Appendix 3.1. Number of children recruited by age in Experiment 3.1. 

Figure 6.2. Correlations between standardised cognitive and language tasks and composite 

Visual Recall task performance and composite performance across reflection-based tasks in  

individuals without dyslexia in Experiment 2.4 
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Age Number Recruited 

8 4 

9 4 

10 12 

11 15 

12 12 

13 21 

14 10 

15 11 

Table 6.1. Number of children recruited by age in Experiment 3.1.  
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Appendix 3.2. Performance Across Visual Recall and Reflection-Based 

Tasks After Excluding Children Who Show Pronounced Bias in Experiment 

3.1 

 

We reanalysed the data from Experiment 7 after excluding the 30 children (mean age = 11.67) 

who showed a very strong grammaticality bias in the Grammaticality Judgement task. Based 

on the 59 remaining children (mean age = 12.56 years), we still see evidence of learning in the 

Visual Recall task when using absolute scores: recall accuracy was still higher in Recall Block 

6 compared to the Testing Block (t58 = 4.68, p < .001), and significantly higher in the Recovery 

Block than the Testing Block (t58 = 3.75, p < .001), although we still found no improvement in 

recall accuracy across Recall Blocks (t58 = 1.58, p = .119). A similar pattern was found when 

using proportion correct scores (Recall Block 6 > Testing Block: t58 = 4.78, p < .001; Recovery 

Block > Testing Block: t58 = 3.68, p < .001; no difference between Recall Block 2 and Recall 

Block 6: t58 = 1.06, p = .294). Performance in the Grammaticality Judgement task 

unsurprisingly remained above chance (t58 = 4.16, p < .001), and we still found positive 

correlations between performance in the Grammaticality Judgement task and performance in 

the Sequence Generation (r = .609, p < .001) and Sequence Completion (r = .623, p < .001), 

and between the Sequence Generation and Sequence Completion tasks (r = .470, p < .001). 
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Appendix 4.1. Experiment 4.1 Correlations Between Standardised Cognitive 

and Language Tasks and performance in Composite Visual Recall and 

Reflection-Based tasks in Individuals with Dyslexia 

 

 

Figure 6.3. Correlations between standardised cognitive and language tasks and composite 

Visual Recall task performance and composite performance across reflection-based tasks in 

individuals with dyslexia in Experiment 4.1 
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Appendix 6.1. Descriptive Statistics for Standardised Cognitive and 

Language Tasks. 

 

 

TOWRE 
Words 

TOWRE 
Nonwords 

Backward Digit 
Recall 

Sentence 
Recall 

WASI 
Blocks 

RAN 
Digits 

RAN 
Objects 

94.42 57.61 22.30 66.07 53.88 15.55 25.48 

11.20 5.63 7.48 9.69 11.93 3.81 3.76 

 

TOWRE 
Words 

TOWRE 
Nonwords 

Backward Digit 
Recall 

Sentence 
Recall 

WASI 
Blocks 

RAN 
Digits 

RAN 
Objects 

90.46 54.60 19.90 68.03 50.36 17.80 29.62 

13.32 7.19 6.02 5.84 11.40 5.21 9.18 

 

TOWRE 
Words 

TOWRE 
Nonwords 

Backward Digit 
Recall 

Sentence 
Recall 

WASI 
Blocks 

RAN 
Digits 

RAN 
Objects 

84.85 45.57 16.28 64.00 46.00 19.16 33.86 

7.42 2.99 7.11 7.78 12.34 4.42 22.44 

 

TOWRE 
Words 

TOWRE 
Nonwords 

Backward Digit 
Recall 

Sentence 
Recall 

WASI 
Blocks 

RAN 
Digits 

RAN 
Objects 

92.25 57.81 25.37 67.68 52.25 16.13 28.66 

TOWRE 
Words 

TOWRE 
Nonwords 

Backward Digit 
Recall 

Sentence 
Recall 

WASI 
Blocks 

RAN 
Digits 

RAN 
Objects 

92.93 57.00 20.00 66.25 47.09 16.42 27.65 

10.01 7.23 5.79 8.26 10.89 3.19 3.63 

Table 6.2. Descriptive Statistics for Standardised Cognitive and Language Tasks in Experiment 
2.1. 

Table 6.3. Descriptive Statistics for Standardised Cognitive and Language Tasks in Experiment 
2.2.  

Table 6.4. Descriptive Statistics for Standardised Cognitive and Language Tasks in Experiment 
2.4. 

Table 6.5. Descriptive Statistics for Standardised Cognitive and Language Tasks in Experiment 
4.1. 

Table 6.6. Descriptive Statistics for Standardised Cognitive and Language Tasks for 
Individuals without Dyslexia in Experiment 4.3. 
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11.40 4.80 6.72 5.12 14.28 4.27 3.84 

 

TOWRE 
Words 

TOWRE 
Nonwords 

Backward Digit 
Recall 

Sentence 
Recall 

WASI 
Blocks 

RAN 
Digits 

RAN 
Objects 

78.40 43.20 18.80 64.30 53.90 19.29 31.58 

11.08 7.43 6.26 6.25 10.58 4.08 3.57 

 

Table 6.7. Descriptive Statistics for Standardised Cognitive and Language Tasks for 
Individuals with Dyslexia in Experiment 4.3. 
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Appendix 6.2. Sequence Generation and Sequence Completion Descriptive 

Statistics 

Sequence Generation Sequence Completion 

Mean Standard Error Mean Standard Error 

0.27 0.04 0.48 0.02 

 

Sequence Generation Sequence Completion 

Mean Standard Error Mean Standard Error 

0.35 0.07 0.80 0.03 

 

Sequence Generation Sequence Completion 

Mean Standard Error Mean Standard Error 

0.27 0.03 0.76 0.01 

 

Sequence Generation Sequence Completion 

Mean Standard Error Mean Standard Error 

0.05 0.02 0.29 0.05 

 

Sequence Generation Sequence Completion 

Mean Standard Error Mean Standard Error 

0.15 0.03 0.38 0.05 

 

Table 6.8. Experiment 2.1 Sequence Generation and Sequence Completion Descriptive 
Statistics 

Table 6.9. Experiment 2.2 Sequence Generation and Sequence Completion Descriptive 
Statistics 

Table 6.10 Experiment 2.3 Sequence Generation and Sequence Completion Descriptive 
Statistics 

Table 6.11. Experiment 2.4 Sequence Generation and Sequence Completion Descriptive 
Statistics 

Table 6.12. Experiment 2.5 Sequence Generation and Sequence Completion Descriptive 
Statistics 
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Sequence Generation Sequence Completion 

Mean Standard Error Mean Standard Error 

0.27 0.04 0.79 0.03 

 

Sequence Generation Sequence Completion 

Mean Standard Error Mean Standard Error 

0.03 0.01 0.27 0.03 

 

Sequence Generation Sequence Completion 

Mean Standard Error Mean Standard Error 

0.04 0.02 0.22 0.06 

 

Sequence Generation Sequence Completion 

Mean Standard Error Mean Standard Error 

0.13 0.03 0.39 0.05 

 

Table 6.13. Experiment 2.6 Sequence Generation and Sequence Completion Descriptive 
Statistics 

Table 6.14. Experiment 3.1 Sequence Generation and Sequence Completion Descriptive 
Statistics 

Table 6.15. Experiment 4.1 Sequence Generation and Sequence Completion Descriptive 
Statistics 

Table 6.16. Experiment 4.2 Sequence Generation and Sequence Completion Descriptive 
Statistics 
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