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ABSTRACT

Improving the driving range of a battery-powered electric vehicle (EV) has been a sig-
nificant concern in the automotive industry. The driving range is the actual distance
an EV travels on a single charge. It strongly relies on the battery capacity and several
other factors, such as road topology, traffic density, and weather conditions. These
factors also influence the velocity profile or driving cycle of an EV which countries or
organisations use as the standard procedure to assess the performance of vehicles. In
contrast, less work was conducted to improve estimating the potential velocity pro-
file for the vehicle based on the real-time traffic situation before the journey started.
Estimating the driving profile or driving cycle on a particular route will enhance the
state-of-charge (SOC) estimation accuracy. Hence, it will improve studying the influ-
ential factors towards battery behaviours and discharge processes. This thesis used
public data from different resources related to the range estimation to predict the bat-
tery’s remaining charge in a single trip. We further conducted several experiments to
understand the battery behaviour of different models and used industrial open-source

data to analyse the battery performance.

The state-of-charge (SOC) is crucial in predicting battery life, defined as the charge
level relative to the battery’s capacity. In this thesis, the determining factors of SOC
are examined using traffic data obtained from Google Maps, HERE Maps and Tom-
Tom routing data providers. Some data were collected using the API for these three
map information providers based on two different routes on the map, including time,
distance and road segments. The data were collected at different times to better under-
stand the route traffic situation. The route segmentation was first performed manually
by specifying the waypoints on the map to separate the road parts where the speed is
likely to be reduced due to possible stops. Furthermore, the waypoints were specified

by the API dynamically to provide more route segments and to avoid API restrictions.

This approach helps us construct realistic driving profiles to a certain extent despite

lower accuracy due to insufficient data. This step neglected the traffic light’s waypoints
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due to insufficient data, which has been applied as a random process. We added some
noise to the velocity profile to emulate the driving behaviour since the data returned
from the API is for the average velocity for each segment. The final driving profiles
were used to discharge the batteries, and the results were investigated. Moreover,
another approach was conducted to construct reliable driving profiles based on the
route information. In this approach, we collected real-time data from different APIs,
including route information, weather data, traffic light coordinates, and electric vehicle
model. We incorporated these datasets into the SOC estimation algorithm. MATLAB
and Simulink code was implemented, using the different datasets from different sources

to estimate the real-time remaining range calculation.

Throughout this thesis, we have investigated different battery models used in electric
vehicle applications and analysed the battery behaviours under various conditions.
In addition, we explored the public data in different scenarios, integrated different
APIs to predict driving behaviours in different routes, and analysed and compared
the results of the data sources. As a result, we generated different power demand
profiles based on different data sources to estimate the energy consumption of electric
vehicles. Some of the representative driving cycles were further analysed and validated
using an actual battery in the lab. The validation results showed that our battery’s
estimation is within the range of the actual battery in terms of power demand and
energy consumption. It also showed that the battery model dynamics are similar to
the real one, which gives the model more validity to conduct further experiments and

rely on its results.
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Chapter 1: Introduction

Introduction

1.1 Motivation

Primarily due to the zero-emissions characteristics of battery-powered electric vehi-
cles (EVs), changes are expected over the immediate term regarding EVs acquiring a
significant role in transportation markets. However, lengthening the life span of the
batteries and their charge duration is crucial to the most efficient use of the batter-
ies, which requires improvement due to their limited storage capacity. Attempting to
restrict energy use at specific points is not necessarily successful in attaining a longer
battery life span. Rather, battery life span is crucially affected by the existing levels
and extraction patterns utilised, which influence how power is used up. Ultimately, a
battery model is required to understand the effects on a battery and its characteristics
stemming from energy usage. Live simulation of formulation, alongside state-of-charge
(SOC) and state-of-health (SOH) predictions, are typically aspects and features of bat-
teries. Consequently, models are crucial to ensure risk-free charging and discharging,
maximum battery performance, and effective estimation of battery performance in

various situations.

1.2 Introduction

The Paris agreement of 2015 [6] resulted in targets for reducing CO, emissions world-
wide. In addition, it has led to governments and businesses investing in low-carbon
technology for electricity generation and transport. For many years electric vehicles
(EVs) were a niche technology used only for indoor or short distances, e.g. golf carts
and milk floats. However, the development of more efficient high-speed motors and
improvements in storage and charging technology for lithium-ion batteries have led to
much more widespread use of electric vehicles for business and personal use. Figure
1.1 shows the electric vehicle ownership in the last few years in the United Kingdom,

from 2012 until 2020..

There are several advantages in utilising the technology of the electric vehicle, includ-

ing:
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Figure 1.1: Electric vehicle ownership in the UK [4]

e Environmental friendly with zero-emission.

Most of the countries have declared tax exempted.

Smooth drive at cheap rates.

The maintenance is minimal due to fewer moving parts.

Even though electric vehicles have significant advantages, many obstacles and chal-
lenges exist. These challenges have delayed the spread of utilising this technology for

some years, such as:

The limited range coverage varies depending on the vehicle’s model and capacity.

Extended charging time varies according to the battery and the charger capabil-

ity.

Batteries replacement after a few years, typically 5-10 years.

Required a vast range of charging point networks in all parts of the country.

The internal combustion engine almost entirely led the transportation sector until the
recent advances in electric vehicles in the last century. The improvements in this

technology have been attracting both governments and the vehicle industry because

-3
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it is a green technology that decreases the dependence on fossil fuels and encourages
the use of renewable energy [7]. The conversion to electric-powered vehicles started
many years ago when hybrid vehicles were introduced, followed by plug-in-electric
vehicles (PEV) until full EVs existed, which entirely depend on the battery [8]. Many
countries improved the related infrastructure of electric vehicles as it will influence the
attraction of both manufacturers and consumers [7]. This attention and consideration
is mainly because of the impact of EVs use towards public health and safety as well

as the environmental sustainability [7].

1.3 Aim of this thesis

This thesis aims to develop a method to estimate the energy consumption for electric
vehicles using available public data. We investigate the existing battery models and
energy consumption estimation methods and techniques. In addition, we will show how
such methods and models can be used to generate realistic driving cycles for specific
journeys over selected routes; hence, we can estimate the power demand for each trip.
This process will involve integrating various factors into the models we implement,
such as weather condition forecasting and road elevation degrees, to improve the power
demand estimation. These parameters directly influence the driving profiles and the

acceleration; therefore, they impact the energy consumption for EVs.

1.4 Problem Statement and Research Questions

Although electrical vehicle batteries work adequately, many studies in the literature
[9-11], show that there are critical issues with battery life. However, battery life de-
pends on different factors such as battery type, charge and discharge, charging current,
battery temperature and battery usage patterns. There are outside factors that impact
the driving modes, such as traffic, changes in road elevation and weather; thus, due to
the influence of the driving patterns, there will be a different load on the battery. This
study will investigate how significant this impact is by estimating the power demand

of electric vehicles after taking these factors into account.

The research questions can be formed as follows:

_4 -
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e What factors most influence predictions of power demand and state-of-charge?
e How can these factors be determined from publicly available data?

e Hence, can we accurately predict power demand and reliably identify uncertain-

ties in prediction?

To answer these research questions, we investigate publicly available data to find out
how to generate a driving cycle without performing a single physical journey. Map
service API data is very reliable nowadays. A Huge amount of data is collected from
users every day to improve their services, including estimating the traffic and arrival
times. We will use the API provided by maps service providers to generate speed
profiles over the selected routes and then expand this process throughout the data
to get the most realistic driving cycle. Other APIs will be investigated and used to
integrate other factors that directly influence the driving patterns and energy calcula-
tions. For instance, weather data have significant impacts that directly affect energy
consumption and driving patterns. These data include but are not limited to ambient
temperature and wind speed/direction. In addition, we will obtain the road elevation
information using the data provided from the map service providers to enhance the

driving profiles and the energy consumption estimation.

1.5 Research Hypothesis

Our primary research hypothesis is that we can improve the remaining range estimation

of electric vehicles by introducing API data.

1.6 Research Objectives

This thesis aims to investigate and study the traffic, map, and publicly available
weather data and integrate them into an energy consumption estimation model for
electric vehicles. It also aims to analyse their impact on the SOC and battery be-
haviour. This research seeks to address the abovementioned issues and answer the

research questions. The thesis objectives are as follows:
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e Investigation and understanding of the existing battery models using existing

literature.

e Comparison of the most appropriate lithium-ion battery models for electric ve-

hicles.

e Developing a generic energy consumption model that considers outside factors,
including traffic data, route information and weather conditions and understand

their influence on driving cycles.

e Using the constructed driving cycles as an input to generate the battery current

for the electric vehicle.

e Investigating the battery dynamics and the SOC of the battery.

1.7 Research Methodology

While investigating and analysing existing related work in this thesis, the following

methods were followed to achieve the research objectives:

e Understand how battery-powered vehicles perform under different conditions.

e Understand the battery models and how they function by looking at the estab-

lished literature and meeting the battery modelling experts.
e Review the existing models implemented in the past.

e Experiment with some battery models to evaluate them and compare their out-

puts to determine which model is more stable and efficient.

e Explore traffic, map and weather data to identify what factors could influence

the power demand for the battery.

e Integrate the data that could be influential by developing a model that processes

these data from different sources to estimate the vehicle’s power demand.

e Evaluate the battery model outputs to determine how much power would be

consumed when these factors are taken into account.
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1.8 Research Contributions

The contribution of this research can be broken down into the following points.

Experiment with different battery models, use industrial open-source data to

discharge the battery and analyse the results.

Review of the related approaches that have been conducted to generate similar

data using different sources.

Investigate and evaluate publicly available map service APIs and generate veloc-

ity profiles for sample journeys based on their data.

Generate scripts to collect data from map service providers such as Google Map,
Here Map and Tom-Tom map. Capture and apply manual data segmentation so

that the data collection methods meet our purposes.

Develop an automated data capturing from different APIs, analyse the data’s
reliability, and then select the most accurate source API to generate our model’s

inputs.

Generate power demand profiles based on these data and evaluate the effect of

each type of data.

Validate the generated profiles after using them to discharge batteries. The

validation occurs in a lab using actual battery cells for electric vehicles.

1.9 Thesis structure

Chapter 1 Introduces the problem and emphasises the motivation behind the idea of

this research. It also describes the research aims and objectives, the contributions,

and how these objectives can be achieved.

Chapter 2 Highlights the importance of the transportation sector and gives an overview

of batteries issues and previous studies related to batteries in EVs. It also provides an
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overview of the map services API and what kind of data can be extracted and used

for research purposes.

Chapter 3 Investigates the battery modelling techniques and evaluates the previous
models for EVs. It also explains how the battery model can be implemented and
tested. This chapter involves experiments of some battery models using some existing

data.

Chapter 4 Focuses on the publicly available data, especially maps and related traffic
information. It investigates previous studies on this domain, and it shows how we can
obtain the data and how we can process them and use them with the battery inputs

to estimate the state of charge.

Chapter 5 Integrates different data sources with the EV model and applies all mechan-
ical and electrical parameters to generate the power demand profiles. It generates the
velocity profiles but in more automated and efficient ways than the previous chapter’s
approach. In addition, it analyses the impact of considering the traffic lights on the

route, which might impact the acceleration and deceleration rate.

Chapter 6 Discusses some of the generated profiles above and the battery estimation
outputs. Moreover, it analyses the most reliable results and validates them using the
existing battery to determine how reliable these data are. It also analyses the validated

results using different approaches.

Chapter 7 Evaluates the entire thesis, including the data sources used to achieve the
research goals. Additionally, it will present the limitation on developing such models

and extracting the data. Moreover, it suggests possible future work in this field.
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Summary
2.1 Summary

This chapter introduces the technology of electric vehicles. It outlines the different
technologies, including hybrid, plug-in hybrid, and fully electric cars. It also describes
the EV fundamentals and outlines the challenges associated with this technology’s
adoption. This chapter will review the existing research on the remaining range esti-
mation for EVs and classify different approaches. In addition, it reviews their strengths

and drawbacks.

2.2 Introduction

This chapter will overview electric vehicle technology and its promising future. It ex-
plains the differences between battery-powered vehicles. It also involves reviewing the
existing challenges in attracting consumers. Moreover, it illustrates the related issues
that face EVs industry consumers and introduces possible solutions. This chapter
highlights the gaps concerning the data extraction that can be useful for battery SOC

and remaining range estimation and how this thesis tries to overcome these gaps.

2.3 Battery Powered Vehicles

The transportation industry consumes much energy and contributes to air pollution.
Governments all around the globe are making attempts to decrease transportation-
related energy and air pollution. A range of measures should be implemented to
decrease transportation-related air pollution and its reliance on fossil fuels [12]. Elec-
trifying transportation is one of the methods suggested by industrial, public agencies
and research groups. Electric vehicles (EVs) are a viable alternative for achieving
a low-emission and cleaner transportation system. Countries worldwide are setting
ambitious goals to promote EV distribution among consumers, and some are even
suggesting prohibiting the sales of conventional vehicles in the future [13]. China, for

instance, plans to sell seven million electric vehicles per year by 2025, which is one-fifth
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of all its local market demands. The United Kingdom and France declared that sales of
conventional vehicles would cease by 2040. Norway wants electric vehicles to account
for 100 per cent of new automobile sales by 2025. The automotive industry anticipates

that EVs will be the primary transportation in the car market by 2030 [14].

Although the market has seen rapid growth in electric vehicles (EVs) due to the many
environmental benefits they offer, there are still some concerns about range anxiety
(the limited range to complete a trip or reach a charging station), that limits the
broad adoption of EVs [15]. Estimating EV energy usage may help reduce range
anxiety and assist EV users to plan their routes [16]. In addition, researchers and the
industry have devoted considerable attention to electric vehicle-to-grid integration in
recent years. This technology enables electric vehicles to interact with the power grid
and offer services to help balance power loads [17]. In this instance, modelling the
energy consumption for electric vehicles may help optimise charging and discharging

operations while balancing energy usage and transportation requirements.

2.3.1 Electric vehicle history

The first electric vehicle, a tricycle powered by a battery, was developed in the 18th
century. However, as the internal combustion engine (ICE) improved, ICE vehicles
have taken a greater part of the market; pure electric vehicles (PEVSs) have nearly
vanished since the 1930s. With the rapid growth of the human population, if all
vehicles are powered by internal combustion engines, gasoline and diesel oil will be
overused and possibly depleted soon, as well as resulting in greenhouse gas emissions.
As a result, energy saving and environmental protection are becoming increasingly
important concerns all over the world [18]. An electric vehicle (EV) is a road vehicle
that runs on electricity [18, 19]. Pure electric vehicles (PEVs), hybrid electric vehicles
(HEVs), and plug-in hybrid fuel vehicles (PHEVSs) are the three categories of electric
cars. Due to current technology, they are currently in various stages of development;
the major characteristics and features of three categories of EVs are shown in Table

2.1.
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Types PEV HEV PHEV
- Battery/ultra-capacitor - Larger battery
Source of energy - Battery v/ P . & v .
> - Internal combustion engine - Internal combustion engine
. . - Electric motor - Electric motor
Propulsion system - Electric motor . . . .
- Internal combustion engine - Internal combustion engine
- Zero emission - Low emission - Low emission
Features and characteristics | - Short driving range - Long driving range - Longer range
- High initial cost - Low initial cost - Medium initial cost
. . - Electric motor control
- Electric motor control - Electric motor control
. . - Battery management system
Major techniques - Battery management system | - Battery management system : . .
. . 2. . - Motor regenerative braking charge
- Charging device - Motor regenerative braking charge . .
- External charging device
Regenerative braking - Yes - Yes - Yes

Table 2.1: Comparison of the main features of the three types of electric vehicles

2.3.2 Hybrid FElectric- Vehicles

The hybrid electric vehicle is a technology where the vehicle combines both an engine
and batteries to run the vehicle [20]. Hybrid vehicles feature two or more energy
sources and/or two or more power sources on board. A battery, a flywheel, or other
energy sources can be used. An engine, a fuel cell, a battery, an ultracapacitor, and
other power sources are possible. Two or more of these power or energy sources may
be employed depending on the vehicle design. Hybrid cars economize energy and
reduce pollution by combining an electric motor with an (ICEs) in a way that takes
use of each’s best features. Series hybrids and parallel hybrids are the two types of
hybrid cars. The engine of a series hybrid vehicle powers the generator, which then
powers the electric motor. The engine and the electric motor are linked to operate
the vehicle in a parallel hybrid car. In a city driving cycle, a series hybrid vehicle can
save fuel consumption by ensuring that the ICE operates at its most efficient level
during frequent stops and starts. In the highway driving cycle, when the ICE is at
its most efficient and the car is travelling at constant speed, a parallel hybrid vehicle
can consume less gasoline. Mild hybrids, power hybrids, and energy hybrids are the
different categories of hybrid cars, based on the role of the engine and electric motor,

as well as the mission that the system is meant to accomplish [21].

2.3.3 Plug-in Hybrid Electric- Vehicles

In both the industry and academia [22], as well as by different government organi-
sations across the world, PHEVs have been regarded as a significant development in

hybrid vehicle technology. PHEVs have a high-energy-density battery pack that can
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be externally charged, allowing them to run on electric power for longer periods of time
than standard HEVs, resulting in longer range and more efficiency [23]. The battery
pack may be recharged in the garage or at a nearby AC outlet charger. Because the

batteries are charged at night, PHEVs enhance the efficiency of utility power usage.

2.3.4 Full Electric- Vehicles

The first electric vehicle (EV) was developed in 1828, and the first manufactured
electric vehicle was presented in 1884 [24]. Full EVs are a recent and mostly new
technology that will help to decrease pollution and gas emissions. Fuel cells, traction
motors, and electric motors are used to power these vehicles. This kind of vehicle
should not be equipped with gasoline ICE or diesel engines. Rechargeable battery
packs, as well as flywheels or ultra capacitors (UCs), are used to supply electricity.
External charging stations or power points located in parks, as well as ordinary elec-
trical outlets at home, can be used to recharge the battery pack. When compared to
HEVs and PHEVs, the FEV does not produce any gas emissions when it operates.
In comparison to PHEVSs, FEVs have a considerably greater potential for emission re-
duction [25]. Because the battery packs can drive the EV motor with greater torque,
the car accelerates considerably more quickly. In comparison to traditional diesel and
gasoline cars, the performance of FEV is superior [26]. In today’s market, there are a
variety of manufacturers offering various types of EVs, as shown in Table 2.2. In com-
parison to previous batteries like NiMH, earlier versions of Li-ion, and so on, recent

FEVs use state-of-the-art Li-ion batteries for greater performance.

Vehicle type | Battery type | Battery capacity
Renault Twizzy Li-Ton 6.1 kWh

VW E-Golf Li-Ton 24.2 kWh
Hyundai Ioniq Li-Ion 28 kWh

Nissan Leaf Li-Ton 30 kWh
Tesla Model S Li-Ion 100 kWh

Table 2.2: Comparison of some of electric vehicle’s battery available in the market
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2.4 EVs Challenges

A variety of problems and obstacles obstruct the adoption of the use of electric vehicles.

Some of these factors are listed and discussed below.

2.4.1 Driving range

There are some disadvantages to EVs, like less driving range and lengthier charging
time. Therefore, this issue might affect the advancement of the market penetration
of EVs and may be a vital obstacle. Despite an increase in the number of electric
vehicle sales, they are still not widely accepted by a more significant segment of the
population of targeted buyers. Except for Sweden, China, and Norway, most nations
have an average EV share of less than 1 per cent [27]. This statistic demonstrates
that, despite the rise in popularity of electric vehicles, growing environmental concerns,
and technological progress, electric vehicles are still not as prevalent on the road as
they should be. Several pieces of research are being conducted in order to solve this
particular EV adoption issue. For example, a phenomena known as range anxiety is
the most critical factor in determining whether or not to purchase an electric vehicle
[28]. In the context of electric vehicles, range anxiety is described as the worry of
running out of energy before reaching a nearby charging station or final destination

[29].

2.4.2 Cost

The economics of electric vehicles is one of the essential factors in determining their
societal acceptability. It is critical for the widespread adoption of electric cars (EVs)
to be economically competitive with conventional internal combustion engines vehicles
(ICEs). One of the most severe issues with this is a problem with the battery. Some
automobile manufacturers sell this battery together with the vehicle, whereas others
(such as Renault) just rent the battery. The market policy adopted here differs from
the previous one and is dictated by the local area and market needs. Battery cost
now accounts for 23-58 per cent of the overall cost of a electric vehicles [30]. The

advancement of electric mobility is closely connected to technological advancement in
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general. The characteristics of batteries are presently one of the critical challenges
to the widespread adoption of electric vehicles. Battery prices vary according to the
characteristics of their storage systems and operating models. As a result, the costs of
batteries for passenger vehicles and those for buses vary considerably. It is expected
that within this decade, battery technology will improve enough to address one of the
major disadvantages of current electric vehicles, namely their short operational range.
Furthermore, batteries are expected to be considerably cheaper than they are now. A
reduction in battery costs is one of the reasons anticipated to minimise the price gap

between an electric car and an internal combustion vehicle [31].

2.4.3 Charging points

Even though EVs have very low greenhouse gas emissions and excellent energy ef-
ficiency, there are still issues with charging infrastructure [32]. A sufficient number
of charging stations in convenient places is required for widespread adoption of this
technology. The charging site infrastructure issue is divided into two stages: first, the
cost of the charging infrastructure is reduced, and then the network flow is optimised.
Decent research and modelling work has been done in this area, but each model is
overly narrow in how it addresses certain issues, and there is an urgent need for a
more comprehensive solution that addresses all of the challenges that are preventing

the large-scale adoption of electric vehicles [33].

2.5 Background

The need for reducing global emissions and making the use of energy more efficient
have become essential for the entire globe [25]. Therefore, electric vehicles (EVs) are
gaining global attention and more popularity mainly because they have smaller impact
to the environment than the internal combustion vehicles (ICVs). Additionally, EVs
have zero emission when they operate [34]. Many countries have set EV achievement
goals for the next few years. However, some challenges and barriers for consumers
reduce their trust in purchasing EVs. As mentioned above one of these challenges

is known as range anxiety where the user is not assured to have enough energy in

- 15 -



Chapter 2: Background and Related Work

the battery to drive in a certain route [35]. This makes it difficult to travel through
unknown routes, therefore, every trip should be well planned taking into consideration
the remaining charging and the availability of the charging stations. Nevertheless,
EV travel ranges vary dramatically due to road gradients and traffic situations. As a
consequence, average users struggle to come up with an accurate plan for unfamiliar

roads [36].

One of the features of EVs is regenerative braking. This mechanism allows the vehicle
to retrieve the energy while braking [37]. In particular, the wheels generate the energy
during the excessive braking and pass it back to the motor which returns it to the
battery. Past investigations found that EVs were substantially more effective when
driving on urban roads than driving in motorways as the regenerative braking helps
in energy recovery. The opposite occurs in ICE vehicles where they exert extra energy

in urban driving due to braking and thermal energy losses [38].

The energy consumption estimation of vehicles has been an intense research topic glob-
ally as the dominance of EVs will substantially reduce transportation fuel dependency
and emission levels [39]. In this chapter, we will identify and review the existing studies
conducted in energy consumption estimation for electric vehicles. We have identified
a strategy to review the relevant studies to achieve this goal. We first searched for
relevant research papers published in recent years in scientific databases. Then we
used a set of keywords, including EVs energy consumption estimation, state-of-charge
estimation for EVs and electric vehicle power demand estimation, to find the relevant
papers. Then we scanned the titles and excluded the irrelevant studies; this step is
followed by scanning the abstract of the collected paper and then excluding any ir-
relevant study. In addition, irrelevant papers include but are not limited to charging
infrastructure, grid integration and hybrid electric vehicles related papers. The process

for this strategy is depicted in Figure 2.1.

2.5.1 Battery Management System (BMS)

BMS is developed to handle and manage battery pack control and activities, as well
as the energy, flows from the pack to the motor [40]. The main features of BMS are

as follows:
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Studies found in the Final number of

scientific database identified studies Data extraction

Studies excluded
Studies excluded after because they are not . "
scanning the abstract focussing on the main Sl TCELL T
topic

Figure 2.1: The review process workflow

e Voltage and current measurements at the input and output.
e Charge equalisation for the battery cells.
e Controlling voltage in electrochemical cells for monitoring and balancing.

e Preventing the risk of overcharging and/or over-discharging in electrochemical

cells.

e Control of battery charging and discharge depending on the powertrain’s energy

requirement and available energy.
e Diagnose, analyse, and show defects and flaws.

e Electrical and electronic systems control and command.

Temperature monitoring and control.

A BMS is composed of hardware modules such as sensors and actuators, thermal man-
agement components, protection circuits, and a communication network. In addition,
a software module including models for predicting, estimating, and computing state-of-
charge (SOC), state-of-health (SOH), cell balance, and fault detection [41]. Some BMS
technological solutions regulate the functioning of hardware elements/subsystems and
assess the condition of battery cells. The BMS software controls the cell load /discharge,
actuators, and safety circuits. In addition, the BMS software analyses data for continu-
ous process management and updating of battery operations, estimating the in-service

(currently operational) state (a crucial determinant for successful battery operation)
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and identifies potential problems. The evaluation of two fundamental parameters pri-
marily assesses the battery’s functional condition: the state-of-charge SOC level and
the internal degradation level state-of-health SOH. The SOC parameter is computed
using voltage, current and operating temperature data, while the SOH parameter is
determined based on the deterioration of the electrochemical process performance in
battery cells, which decreases charging/discharging capacity and available energy. Be-
cause the battery discharge and charge operations include complicated chemical and
physical processes, estimating the SOC parameter’s value correctly is a critical task.
SOC and SOH are calculated using various mathematical models and methods, in-

cluding conventional, non-linear, hybrid, neural networks, fuzzy logic etc [41].

2.5.2 General concepts

The estimation of the potential EV range is usually based on three main factors: vehi-
cle design, driving behaviours and the surrounding environment as shown in Figure 2.2.
According to studies on this area, each of these groups is dependent on the change
of direct or indirect factors [42-44]. Some parameters are fixed, such as vehicle type,
transmission type, number of seats, vehicle’s mass, weight, battery type, road infras-
tructure and available battery charging infrastructure. In addition, others are variable
such as battery state-of-charge SOC, battery state-of-health SOH, driver behaviours
[45], traffic flow [46], EV dynamic performance and battery management system. How-
ever, the majority of the work in this area that analyses and addresses these problems
is directly linked to the linear estimation of the maximum that an electric vehicle may

accomplish based on real-time SOC battery estimation [47].
| 3 r,/".. - -.-...‘\\\
Driving | Environment | Vehicle |
! k\‘\ "/.’

i

Driving Range Estimation

Figure 2.2: Main variables that influence the remaining range estimation
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2.5.3 FEYV design

An electric vehicle’s total energy efficiency is linked to the design of the car, which
is influenced by many variables including consumer’s preferences in the automative
industry. These variable includes the capacity of passengers, the vehicle’s body type,
volume capacity for baggage, wheels, frontal area, type of tyre and type of cooling and
heating system. An electric vehicle’s design and construction begins with consideration

of physical forces following Newton’s second law of motion.

e H
Y Constant C . e ! Variables
Weight of vehicle Driving behaviours
Battery type Traffic conditions
Road characteristics Remaining charge
Passengers Battery pack condition
Recharging mode Ambient environment
Motor Type internal environment

Figure 2.3: Main influential factors on EV energy consumption

2.5.4 Driwving behaviour

The impact of drivers on EV energy efficiency when driving the vehicle in real-world
traffic may be divided into two categories. First, an EV’s energy efficiency is affected
by its usage or how aggressive the driving behaviours are. Second, it is mainly related
to how the accelerator pedal is used. A study by Mruzek et al. [48] discovered that
an EV’s range is affected not just by designing factors but also by driving patterns.
Real-world driving cycles were used in simulations to evaluate how these variables
affect the range of EVs. Four acceleration instances were compared, with the starting
condition being the vehicle’s continuous departure until it reached 50 km/h after 10,
15, 26, and 36 seconds. There was a difference in the estimated energy consumed by
4% between the quickest and slowest acceleration at the EV’s estimated weight of 1000
kg and about 2.7% when the estimated weight of the vehicle is 1500,

The driver’s psychology may be considered an influential factor through the impression

of the travel distance that the electric vehicle may have reached (range anxiety) [49].
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Consumers deliberately avoid critical range circumstances by conserving an extensive
range of safety buffers since it has been demonstrated that range and range of anx-
iety are strongly linked notions (on average, only about 80 per cent of their actual
range available). According to Eisel et al. findings [50], experienced EV drivers had
substantially lower negative range ratings and range stress than novice EV drivers.
As a result, the EV driver’s experience directly impacts range anxiety on behavioural,

cognitive, emotional levels.

Other influential factors on the energy efficiency of an EV include those linked to how
the driver uses the vehicle in various traffic situations (with negligible effect on the
energy consumption and efficiency of the battery). These factors include the proper
usage of the brake, being harsh to accelerate and decelerate in traffic congestion, usage
of auxiliary equipment such as air conditioning and lights. It is very challenging to
develop precise algorithms that correctly predict the impact of these variables on an
EV’s range estimation since the driver’s behaviours and the psychological response for

each driver is different.

2.5.5 Environment

The EV range is closely related to the external environment, such as ambient tem-
perature, wind speed/direction, and the interior environment, such as temperature in
the passenger chamber and auxiliary systems. Additionally, the presence of minimum
thermal comfort throughout an EV’s operation is a critical requirement for consumers’
fast and widespread adoption of this technology. For this reason, EVs must be fitted
with proper heating, ventilation and air conditioning systems. The total thermal load
of an EV is the sum of the thermal loads generated by the environment, both internal
and external. The total thermal load of an EV can be expressed by the following

equation:

Ltotal - LAC’ + Lamb + Lrad + Lvent + Linh (21)

Where L;nq represents the entire heat gained in the cabin, L ¢ is the thermal load

produced by the AC or heating system, Lg,,;, is the ambient temperature load, L,.q
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is a load of solar radiation, L., is a load of ventilation, Lj;,j, is the interior thermal

load for passengers.

Air conditioning and heating systems have been demonstrated in some studies to
produce substantial range reductions in hot and cold conditions. For example, under
various simulation circumstances, the load of AC showed a reduction of 17-37% in
summer, while a load of the heating system reduced the range by 17-54% in cold
conditions [51]. Furthermore, considering Nissan Leaf, the impact of the variety of
ambient conditions was investigated in [52]. Finally, the author experimented with
various industrial driving cycles (NEDC, FUDS and SFUDS) to consider different
driving behaviours, such as rural and motorway driving patterns. The findings revealed
that the EV’s range was extended to 150km when the ambient temperature was at

20°C. Furthermore, the range drops to 85km at 0°C and drops again to 60km at -15°C.

When developing predictive tools, high values of range loss due to this factor must be
considered, along with the necessity of further research in this area. In addition, the
usage of heating pumps and the correlation between battery thermal management, air
conditioning and heating systems in vehicles should also be considered. Additionally,
it is feasible to explore utilising energy-independent auxiliary equipment from the EV
energy source to generate heating and cooling systems. Furthermore, an independently
fuelled air heating system may be utilised to accomplish this idea. However, there is a
tradeoff between energy efficiency and weight, simplicity of use, and safety which are

regarded as obstacles to consumers’ acceptance of EVs.

The battery thermal management directly affects the external environment, either via
its operation or by other heat sources. The amount of heat produced by the running
battery is proportional to the amount of energy needed by the powertrain. The greater
the energy demand, the greater the power transmitted and, as a result, the occurrence
of higher temperature in the battery pack. The general conclusion is that limiting a

battery pack’s operating temperature is essential and leads to an enhanced lifespan

[47].
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2.5.6 FEVs Configuration

EVs are defined broadly to include battery electric cars (BEVs), hybrid electric vehi-
cles (HEVs); plug-in hybrid electric vehicles (PHEVs); and fuel cell electric vehicles
(FCEVs). The typical energy flow within EV is shown in Figure 2.4, which is made up
of three main subsystems: electric propulsion, energy source, and auxiliary. As shown
in Figure 2.5, the electric propulsion subsystem comprises a motor(s), transmission,
power converter, and electronic control units. The energy source subsystem is com-
posed of three components: an energy storage unit, an energy management unit, and
an energy replenishment unit. In reality, the most often used energy storage technol-
ogy for EVs is a battery, owing to its high energy density, small size, and dependability
[53]. Additionally, an ultracapacitor, flywheel, and hydrogen tank may be used as an
auxiliary or hybrid energy source [54, 55]. Finally, the auxiliary subsystem is made up
of three components: an auxiliary power supply unit, a power steering unit, and an

air conditioning control unit.

Battery Electric motor H Transmission H To wheels ‘
converter

Figure 2.4: The flow of energy within the EV
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Figure 2.5: The configuration of electric vehicle
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2.5.6.1 Regenerative braking and energy consumption

Estimating BEV energy consumption is crucial for environmental sustainability and
marketplace acceptance due to restricted charging infrastructure and battery capacity
and long charging periods. Energy consumption for BEVs is an integration of the
power output measured at the battery’s terminals (unit in kWh), with the battery
charging and discharging modes handled independently [56].

It is possible to estimate the power output P,, (W) when in the propulsion mode.
The power output is determined by dividing the tractive power at the wheels P, e
(W) by the powertrain’s efficiency, which may take into account the loss of power in
the motor drive and gearbox. Traction power at the wheels is calculated as the result
of vehicle speed v (m/s) and tractive force at the wheels Fipee; (N), which may be
estimated as the sum of rolling resistance F).. (N), aerodynamic force F,4 (N), road

slope force F}, (N), and acceleration force Fc.; (N).

The battery output power is given as:

pw ee
P, = —whe (2.2)
nmnt

Where n,, and 7, represent the motor and transmission efficiency, The tractive power
at the wheel in terms of speed and tractive force is given as: Pypeer = v.Fiyneer- The
tractive force at the wheel is used to compensate the rolling resistance F}.,., aerodynamic

force F,4, road gradient F,, and acceleration force Fpccer, so:

theel = Fad + Frg + Frr + Faccel (23)

All these forces can be individually defined as:

Fad = %CdAf’lP

F,, = mgsin(«)

(2.4)
F,. = C.mgcos(a)
dv
Faccel - mé%
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Rolling resistance and aerodynamic drag coefficients are represented by C, and Cjy,
m is the mass of the vehicle in (kg), g is the gravitational acceleration, « is the road
slope, p, is the air density, Ay is the frontal area of the vehicle and § is the rotational

inertial factor of the vehicle.

Equations 2.3 and 2.4 can be expressed by:

theel:Fad+Frg+Frr+Faccel

Pa dv <25)
Fheel = ?C’dA]nﬂ = mgsin() + C,mg cos(a) + méa
All the above equations can be rearranged as:
Pwheel = U~theel
(2.6)
Pheet = v. [%”CdAfv? + mgsin(a) + C.mg cos(a) + mé%}
Therefore:
v. [”—“C’dAfUQ + mgsin(a) + C,mg cos(a) + méﬁ}
Powt = & at (2.7)

Nm Tt

Battery charging in electric vehicles takes place during coasting and braking. During
these modes the kinetic energy of EV is restored and regenerated as electrical power.
During regenerative braking, the motor of electric vehicle which drives the vehicle is
acting as a generator so it returns the energy back to the battery. The input power at

the battery terminal can be defined in terms of output power as:

-Pin - kpout

So,

— LeCyAsv® + mysin(a) + Cymg cos(a) + méL (2.8)

Where £ is the braking factor varies from 0 and 1 and determines how much percentage

of overall braking energy is recovered by electric motor. Regenerative braking cannot

Y/
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alone stop the electric vehicle safely so the friction brake is also connected to the

wheels.

The battery energy can be determined from power as:

T
Ebatt - / Pbattdt (29)
t
But in traction mode
Pbatt = Pout (210)
While in braking mode
Pbatt - -Pm (211)

2.5.7 FEYV energy consumption influential variables

2.5.7.1 Variable classification

Variables linked to vehicle energy consumption may be categorised into four groups: (a)

components of the vehicle, (b) vehicle dynamics, (c) traffic, and (d) the environment.

2.5.7.2 EV components variables

Several factors associated with vehicle components control significant propulsion op-
erations components such as the motor, transmission, and energy flow in the auxiliary
system and energy storage. For instance, the efficiency of the motor and transmissions
determines the proportion of produced energy from the source that may be utilised for
propulsion [44, 57-61]. They vary depending on the particular designs of EVs and the
motor, and the technology of transmission. In addition, the state-of-charge (SOC) is
observed to influence the energy consumption rate in electric vehicles [44, 62-65]. Sev-
eral studies have shown that the battery SOC may affect the instantaneous efficiency
and mechanism of the charging and discharging for the battery; as a result, it is re-
garded as a key explanatory variable [44, 65]. Other studies have shown that the initial
battery SOC may exacerbate or alleviate range anxiety in EV drivers, leading them
to alter their driving habits, influencing energy consumption on their vehicles [62, 64].

According to [66], variations in battery quality, for instance, degradation rate, is used
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to predict changes in the trip-level energy consumption rate for electric vehicles as they
age. Under certain climatic circumstances, the auxiliary power required to support the
feed conditioning, radio, monitor panel, and lights is not simple to generate. Therefore,
the auxiliary load has been considered constant or approximated based on real-time
observed auxiliary load data in many studies [57, 63, 66-69]. The new technologies
in modern vehicles such as safety sensors, cameras, and wireless devices may impact
energy consumption. In the future, academics and engineers may pay more attention
to this subject due to its importance. Studies have also been conducted to directly
establish statistical connections between vehicle characteristics (such as the size of the
vehicle’s engine and its engine technology and the kind and efficiency of its transmis-
sion) and energy usage [70]. The coefficients of rolling resistance and aerodynamics
are incorporated in models that predict EV energy consumption at each moment of

operation according to the principles of physics [71-74].

2.5.7.3 EV dynamics variables

Variables in vehicle dynamics encompass motion-related factors, including speed, ac-
celeration, and tractive or braking torque. These variables directly connect to kinetic
energy used by vehicles, and the laws of physics control them. For this reason, the
variables are utilised often in electric vehicle energy estimate models. The current
literature offers data on vehicle dynamics in many ways, including on an immediate
or aggregated basis, for instance, every second, every segment or every trip. Speed
is a critical metric for estimating road loads since it is physically linked to aerody-
namic drag, rolling resistance and road slope [44, 57, 58, 75]. Furthermore, instan-
taneous speed correlates significantly with instantaneous electric vehicle energy usage

[61, 65, 73, 76-T78].

Energy consumption is calculated at the trip level by considering the average speed
[62, 79-81] and its higher-rate of speed [82-86]. In addition to speed and acceleration
data, researchers have also utilised other indicators to estimate the energy consump-
tion of electric vehicles. Drivers’ maximum instantaneous speed and acceleration, for
example, were utilised in research [87, 88] to estimate the trip-level energy consump-

tion of electric vehicles. Based on the speed distribution throughout a journey, one
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may estimate EV energy consumption by looking at drivers’ driving behaviour [39)].
Estimating the regenerative braking capability of EVs is based on the speed trajectory
profile [89]. As with kinetic energy, the energy used by EVs when in motion is closely

linked to the change in kinetic energy.

2.5.7.4 Traffic variables

Traffic signals operation, traffic density levels and types of vehicles on the road may all
impact the consumption of EVs as described by Fetene et al.. These factors are con-
sidered to predict and validate the dynamics of the vehicles within the route segment
or the whole route, therefore improve the energy estimation. The traffic condition
variables can be categorised as interval and categorical variables. Trip time such as
rush-hours, the day of the month or the week the trip was performed are categori-
cal. Fetene et al. developed a multiple linear regression model using “rush hour” as a
dummy variable to determine if a journey occurred during peak times (in the morning

or afternoon).

Masikos et al. [63] developed a model based on a general regression neural network [90]
using categorical variables to show the journey time during the day, during the week,
month, and hour. Their mode findings revealed that those factors were statistically
significant in predicting EV energy consumption. They depict traffic conditions as a
consequence of a vehicle’s dynamics or overall traffic circumstances. For example, idle
time and stops ratio over time may indicate the traffic state, denser if the ratio is
greater during the travel time. Several studies have shown that this variable is very
significant statistically in their EV energy modelling [79, 87, 91, 92]. The creation of
indices of congestion, which might be used to measure the energy consumption of EVs,
has been attempted. Other studies [79, 93, 94] defined and found importance in the
model of a congestion index, dividing the standard deviation by the vehicle’s average

speed, and they noticed its significance in their model.

2.5.7.5 Environmental variables

Weather conditions and road characteristics are considered to be environmental factors.

These factors influence energy consumption on EVs by adding extra loads into the
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battery, for instance, AC or heating power. The road gradient [60, 61], road type
(62, 65, 95], wind speed and direction [62, 68, 95], humidity and ambient temperature
[63, 64], have an impact on the energy consumption to some extent and were considered
and examined in these studies. One example of this is how the slope of the road may
influence tractive forces required to overcome the resistance of the road gradient. Some
of global positioning systems technologies GPS provides real-time road gradient data,
and several researches have used it in implementing energy estimation models for
EVs at either instantaneous level [58, 59, 67] or a trip level [63, 68, 77, 79, 84, 96,
97] Another variable related to the road characteristics in current research is the road
class, for instance, city and motorway roads [62, 65, 95, 98]. Furthermore, to estimate
the energy consumption of EVs while driving, road infrastructure characteristics such
as traffic signals and speed limit control are considered independent variables that

influence the estimation [99].

Ambient temperature and weather humidity are climatic factors that influence the
power demand of heating and cooling and the operational efficiency of the EV battery
pack. The exact consequences of climatic conditions on power demand are generally
difficult to estimate, but as a rule, trip-level models are designed to incorporate cer-
tain factors, including the usage of auxiliary power [52, 62, 63, 68, 100]. Sun et al.
attempt to analyse the connection between battery performance and climatic factors
by monitoring the battery cell thermal effects; however, these variables were not in-
volved in their proposed model. Liu et al. adopted a dummy variable on their model
to represent the needs of the light depending on the time of the day, and they found
that lighting situation correlates strongly with energy estimation on EVs. In order to
assess prospective energy consumption for cooling and heating, humidity and ambient
temperature are estimated or calculated depending on the geolocation of the route

[43, 52, 77].

2.5.8 FEnergy consumption estimation approaches

The energy efficiency of an EV also tends to vary less from component to component.
In addition, Newton’s Law was followed to estimate the energy consumption by cal-

culating the tractive power at the EV’s wheels, which was assumed to be constant
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Table 2.3: Summary of most related papers and the considered factors in the literature
for EV energy consumption estimation

| Year/Ref | Factors | Data Source |
‘ ‘ components ‘ dynamics ‘ traffic ‘ environmental ‘ ‘
| 2017 [62] | v v | v v | Real world |
| 2017 [77) | v 2 Y S X | Real-world |
| 2017 [82] | v v X X | Real-world |
| 2017 [86] | v v X v | Real-world |
| 2017 [97] | X 2 Y S v | Real-world |
| 2017 [102] | v v X X | Real-world |
| 2017 [77] | X 2 Y S v | Real-world |
| 2018 [67] | X 2 Y S v | Real-world |
| 2018 [103] | X 2 Y S X | Simulation |
| 2018 [104] | X 2 e S v | Simulation |
| 2018 [80] | v v X X | Real-world |
| 2018 [83] | v 2 e S v | Real-world |
| 2018 [87] | X v v X | Real-world |
| 2018 [105] | X 2 e S v | Real-world |
| 2018 [95] | v v X X | Real-world |
| 2018 [106] | X 2 Y S v | Real-world |
| 2019 [64] | v v X X | Real-world |
| 2019 [107] | v v X X | Simulation |
| 2019 [108] | v | v X v | Simulation |
| 2019 [109] | v v X X | Real-wold |
| 2019 [52] | X x| x| v | Real-wold |
| 2019 [70] | v x| x| X | Real-wold |
| 2019 [66] | v x| x| X | Real-wold |
| 2019 [110] | X v | v v | Simulation |
| 2019 [111] | v v X X | Simulation |
| 2020 [112] | v 2 Y S X | Real-world |
| 2020 [78] | v v X v | Real-world |
| 2020 [113] | v 2 S v | Simulation |
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for the powertrain efficiency [58, 59, 67]. Another group of researchers implemented
EV energy estimation algorithms based on car-following approach and downstream
traffic data [57]. In some studies, fuzzy logic [103] was applied to simulate the effect
of regenerative braking, while others assumed a direct relationship with the speed of

the vehicle [114].

2.5.8.1 Predicting the driving behaviour

A discrete classification system, in which drivers are categorised into various efficiency
levels, is one approach to deal with driving behaviours. For example, in studies [115,
116], driving behaviour was classified into ten levels from optimal driver corresponding
to 0% to 60% of influence to battery efficiency. If the driver is in the tenth class, then
the range prediction is reduced by 60%. The categorisation is based on the driving
style such as velocity, acceleration and preferences of using AC and heating systems.
However, this technique may not be effective for modelling driver’s behaviour in real-
world scenarios. Furthermore, the driver category is assumed to be constant and is
not a time-dependent variable as other factors such as traffic status may change the

driver’s response.

A second method is using a data-driven approach to simulate the behaviour of the
driver. Bér et al. gathered individualised route preferences by studying the driving
behaviours of the observed users, applying an inverse reinforcement learning technique
[118]. The model can forecast drivers’ preferred routes. However, it does not predict
the usage and the effect of the AC and heating systems. This technique does allow
for a probability-based route to be planned. This approach, however, incorporates
a probabilistic map of the destinations; therefore the chance of reaching any given
destination is given. Data-driven approaches have shown high predictive accuracy and
ease of use. Therefore, a data-driven energy consumption estimation technique for EVs
was developed [119]. Furthermore, this method was produced to address the problem of
energy-efficient routing. The proposed model can differentiate between variables that
influence energy consumption (such as road features, weather, and altitude variations),
making it well-suited to predict energy consumption for any particular route. Cascade

of neural networks (NN) and multiple linear regression (MLR) models are used to
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create this model. They used MLR model to estimate the energy consumption given
multiple predictor factors, whereas NN model is used to forecast MLR model input

variables that are unknown.

In contrast with the above method, there are other techniques for simulating the impact
of the driver’s response on the efficiency of EV usage based on a limited quantity of
experimental data. The findings related to driver behaviour’s effect on decreasing fuel
consumption for an ICE vehicle by creating and implementing a control-based driving

style model [120] provide an approach to this.

2.5.8.2 Several factors combination methods

Many factors may be handled concurrently by assigning them to road segments, i.e.
splitting the route into multiple chunks. In Google Maps, for instance, this kind of
discretisation technique is often employed. In addition, the road network may then
be seen as a graph. To help with the range prediction issue, characteristics such as
traffic density, temperature, road slope are given to each road segment. An algorithm
to process road networks was created to deal with large-scale road networks effectively
[121]. Additionally, other authors modified the method to account for negative cycle
costs generated by energy recovery, which is unique to EV exploitation circumstances
[122].  Another model was developed for remaining range prediction using Markov
chains and particle filter [123]. A probability distribution function approximates the
range prediction, described as a collection of weighted particles. This model only
contains a comprehensive battery model, vehicle dynamics model and electric motor.
It considers various sources of uncertainty, such as the unpredictability of the driv-
ing profile, noise measurement and inaccuracies in the battery status estimation. A
simulation was used to verify the model’s accuracy, and the authors claim that the
method forecasts the EV’s remaining range with an acceptable level of precision and
computation. Another approach uses fuzzy c-means clustering method to estimate
the battery state-of-function (SOF) [124]. The parameters of SOF specifies the power
output capacity of the battery and its ability of transfers to the electric motor. The
SOF parameter is highly correlated with the battery’s state of charge and may be an

indirect parameter for the remaining charge prediction problem. The fuzzy c-means
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(FCM) algorithm was used to optimise the fuzzy prediction algorithms considering
(SOC, SOH and charge-discharge rate) as the inputs. The average estimate error was
about 8.69 per cent, and the authors reported that the prediction method has the
benefits of being simple to build, quick to respond, and capable of future accuracy

improvement.

Fetene et al. considered real-world driving data, another research analysed EVs’ energy
consumption rate and driving range and offered insight into the elements that influence
energy consumption. Some data for 741 drivers were collected and analysed, including

driving characteristics, type of road, driving patterns and weather conditions.

In addition, according to their results, EV energy consumption rates are at 0.183 kW
h/km, with a 34% increase in winter driving distance and a 25% drop in summer-
time distance. Driving speed and acceleration have a nonlinear influence on energy
consumption, while season and precipitation levels have a significant linear influence

[62].
2.5.8.3 Machine learning approach

The state of charge (SOC) estimation is one of the essential factors that helps to solve
an important problems of safety and monitoring for a battery of an electric vehicle.
Several studies have been conducted to improve the SOC estimation and energy con-
sumption on EVs considering different approaches. Zahid et al. [125], developed an
advanced machine learning algorithm under diversified driving cycles was implemented
to estimate the power consumption of an electric vehicle. They have implemented sub-
tractive clustering based on the neuro-fuzzy system that is evaluated and presented
through simulation experiments with the aid of vehicle simulator. Some of the inputs
in this study include temperature, current, battery thermal effect, cooling air temper-
ature and power demand. The data were collected from 10 different standard driving
cycles that have been created for testing purposes. The results from the experiments
revealed that their proposed model shows more accurate state of charge estimation
than both Elman and neural network techniques when compared to them. In addi-
tion, their proposed model shows significant advancement in state of charge estimation

under varies driving cycles with high potential to address the drawbacks in existing

- 32



Chapter 2: Background and Related Work

methods [125].

Besides, eco-driving reduces the braking energy loss of conventional vehicles and en-
ables the vehicles to reduce the loss of engine mechanical energy. Another research
in implementing machine learning with the main focus on real-time range estimation
method with no destination knowledge for BEVs conducted by Yavasoglu et al. [126].
They proposed an advanced estimation model based on test data, including dynamic
vehicle parameters and environmental factors with road type and driver predictions.
Their focus was to predict the remaining range without knowing the future driving
profiles and giving ideas on the distance that a car can travel with the amount of energy
left. They utilised periodogram and decision tree techniques to estimate driver profile
and road type, respectively. The utilised decision tree made an accurate classification
of a road type. In addition, they used a machine-learning algorithm to estimate vehicle
range based on train data sets through chassis dynamometer tests. For real-world ver-
ification, the car is driven 50.4 kilometres on a road with predominantly urban driving
characteristics. They established that the outcomes of the real-life evaluation indicate
that the proposed technique predicts a range with a lower error than the rated one.
Accurate estimation of EVs consumption of power in the future will assist in reducing
the range anxiety of users that results from an electric range of EVs, and inadequate
charging facilities. Real-world tests indicate that the suggested approach forecasts
range with a narrow margin of error and estimates the ultimate remaining capacity

11.3 per cent better than the rated method. [126].

Qi et al. used a machine learning model to estimate the trip energy consumption.
They analysed the EV’s usage data to estimate the consumption and claimed that
this method could be used in a larger EVs fleet in the future. They concluded that
the distance of trips, vehicle’s velocity, temperature, and the initial SOC influence
energy consumption at different levels. Although the effect on energy consumed when
the trip distance is changed is stable, they also claimed that the initial SOC does not

significantly influence energy consumption [80].

De Cauwer et al. used real-world data to predict energy consumption on EVs. How-
ever, their main objective was to detect and quantify the relationship between energy

consumption and the vehicle’s kinematic parameters and to use the energy consump-
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tion data to create consumption models. They used multiple linear regression based
on the dynamics equation of the vehicle as a physical base model to establish three
models. All three models use a unique level of aggregation that allows predictions to
use different input parameters. One of the three models allows prediction with basic
available parameters such as temperature, travel time, and distance by using the trip’s
kinematic parameters. The second model is a little bit advanced as it encompasses
detailed acceleration data, while the third model predicts energy consumption using

the raw data of the kinematic parameters as input parameters [72].

2.5.8.4 Modelling and measurements approach

A modelling approach was employed by Fiori et al. as they developed a model that
can show how electric vehicles consume energy. The authors claimed that the limited
driving range is one of the manufacturer’s issues they have been trying to overcome
in the EVs industry. Thus there is a need to develop a simple and accurate energy
consumption model, and it is essential to develop real-time driving and eco-routing to
improve the energy efficiency in EVs, hence extend the driving range. Even though
they have limited themselves to the existing industrial driving cycles, they developed
an energy model that computes instantaneous energy consumption using acceleration,
vehicle velocity and road gradient information. In addition, the braking energy regen-
eration function is implemented in their model [58]. They found that their model can
be well used in smartphones, eco-routing, transportation simulation, and eco-driving.
Their proposed energy consumption model uses instantaneous variables of a vehicle to

compute the regenerative braking efficiency of EVs.

As people agree that the EVs will reduce the dependency on oil and reduce the carbon
emissions to the environment, Wu et al. studied the measurement and evaluated the
energy consumption rate of electric vehicles. Both the local and federal governments
have looked at some of the potential benefits of electric vehicles and allocated funds,
and taken regulatory and legislative steps to enhance the deployment and adoption of
EVs. This momentum shows a high possibility for EVs to gain excellent market pene-
tration in the future, particularly in highly populated urban centres that experience air

quality issues. Soon, people will experience issues concerning the right way to improve
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the efficiency of the transport system [59]. They have taken a step to reduce the issue
by focusing on the right way to measure and estimate the energy consumption of EVs.
Their research first presented a system to collect vehicle driving data and in-use EVs
by installing it on the vehicle for research and experiments purposes. The authors
collected about five months of electric vehicle data to analyse driver behaviours and
EV performance. Furthermore, they argued that the car is more efficient when the
driving is more in-city roads than driving on motorways. They have investigated fur-
ther and found that the driver route selection balances the trade-off between energy
consumption and travel time. They claimed that more data is needed to make their
findings more generic. However, they emphasised the importance of their study and
that their observation could change traffic and transportation in the future concern-
ing EVs. In addition, they have analysed the relationship between EV’s acceleration,

power demand, vehicle’s velocity and road slope [59].

Hu et al.demonstrate that distinct patterns in power consumption exist throughout a
route, which is partially related to variations in infrastructure design, traffic situation
and individual driving habits. In the future, the suggested technique for evaluating

time series data on energy usage along routes may be utilised to research with bigger

fleets of EVs [100].

The accurate prediction of electric vehicles’ energy consumption is essential in remov-
ing the anxiety that drivers experience. Moreover, it is an essential foundation for
managing charging infrastructures and spatial planning [77]. Therefore, Wang et al.
focused on improving estimation accuracy for electric vehicle’s energy consumption by

developing a model that considers the impact of ambient temperature.

Their observation of sparse GPS in 68 electric vehicles in Japan, then proposed and
verified an energy consumption model through multilevel linear regression and tradi-
tional linear regression. Based on the outcomes of their study, their proposed energy
consumption model indicates an effective performance of estimation. For a steeper
road gradient, the parameters show a higher difference between downhill energy re-
generation and uphill energy consumption. They claimed that the relationship between
ambient temperature and energy efficiency produced an asymmetrical U’ shape, and

the best energy efficiency occurred at about 17.5 degrees Celsius [77].
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In addition, Qi et al. developed a model to estimate and analyse how electric vehicle
consumes energy under the real-world traffic situations. The research investigated EV
power consumption in Shanghai, China. Their study made use of a database that was
collected from 50 EVs. They started by examining the travel patterns of the driver’s
usage data and analysed the influence of initial SOC, speed, ambient temperature and
trip distance on energy consumption. Since traffic conditions, infrastructure design
and driving behaviour affect energy consumption; they chose three routes with enough

vehicle in-use information as the test objects for the study [80].

Hu et al. investigated the differences in energy use in electric vehicles. They explored
how individual driving styles, driving behaviour, infrastructure design, and traffic con-
ditions affect the energy efficiency of electric vehicles. Their tests were done in Beijing
road network under a typical driving cycle using Nissan LEAF to understand varia-
tions among drivers in different urban traffic situations. The operation parameters and
energy consumption were monitored and recorded in both off-peak and peak hours for

13 drivers [100].

The development of a driving cycle was introduced by Brady and O’Mahony to evalu-
ate the economy of electric vehicles in urban areas. They discussed that knowing real-
world driving needs in driving cycles is essential in developing efficient energy storage
systems and powertrains for electric vehicles. Moreover, driving cycles facilitate the
evaluation of the life-cycle and economic costs of vehicle technologies. However, there
are deviations in real-world driving conditions and measured driving cycles due to
some factors such as inadequate data, inadequate methodologies, and techniques for
assessing developed driving cycles [127]. They used real-world data from EVs gathered
for more than six months to develop a driving cycle appropriately for the EVs assess-
ment. They used a statistical and stochastic methodology to develop and assess the
optimum driving cycle compared to real-world driving cycles data. The used datasets
consist of six months velocity versus time record collected in Dublin, Ireland. They
used this data to develop a driving cycle considering the same parameters, such as the
driving style, road and traffic conditions. They claimed that real-world driving style
varies significantly from the industrial driving cycles developed to design EVs in Japan,

Europe and the United States. They noticed that the standard driving cycles have
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lower velocity rates and higher acceleration in general, making them not the optimal
choice to design purposes of EVs. In addition, they emphasised that the driving cycles
developed in their study would help in allowing electricity grid economic, analysis and

life-cycle studies to be performed with more confidence [127].

Qiu et al. used the past energy consumption rate and variations of electric vehicles
to predict energy consumption. They discussed that an electric vehicle should have
a data storage module that can keep high energy consumption rates and a controller
to calculate the energy consumed depending on the energy across the range. There-
fore, the operation of an EV should be configured to respond to the predicted energy

consumed [128] .

The adoption of connected and automated vehicle technologies (CAV) can enhance
the development of innovative systems and applications that promote the efficiency
of vehicles and improve transportation systems. Moreover, Gao et al. [129] present
an evaluation of the performance of an electric vehicle performance based on the eco-
driving cycles was performed. They presented simulation research on various EVs
and compared performance when EV is driven on a real road cycle to when driven
on a highly optimised e-driving cycle using CAV technologies. The EVs under their
investigation included seven standard delivery trucks, a transit bus, and a compact

vehicle.

An estimation model was developed by Xu and Wang of mileage power-based con-
sumption for EVs. Their proposed method was based on prediction and driving cycle
identification. First, the driving cycles and their respective energy consumption were
categorised through screening, component analysis, fuzzy C clustering, and sectioning.
Then, they predicted future car speed curves based on past information, real-time
congestion data, and the estimation mileage model and elevation information. Finally,
they carried out real-time vehicle tests on the experimental vehicle. As a result, based
on ten groups of vehicle testing, the average error between the predicted value of the
mileage power consumption and the test value is about 4.15%, and they claimed that

it meets the standards for everyday usage of electric cars [87].

Zhu and Gonder used map service API to detect the driving cycles. The authors es-

tablished that GPS and smartphones have improved studies and surveys in the trans-
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portation sector. However, detecting driving cycles from wearable GPS devices has
not been well researched. They focused on distinguishing driving cycles from trips of
motorists like taking a bus [130]. They claimed that API route data may be obtained
using a driving detection approach that uses APIs and a trajectory segmentation al-
gorithm to determine the best potential API route. In addition, a logistic regression
machine learning model can be trained with probability methods for car and non-car

modes using actual route data and API information [130].

2.6 Conclusion

EV range anxiety may be decreased in the following ways for EV consumers:

e The EV user must understand the EV’s technical specifications to assess its

energy efficiency.

e Installation of an interactive map on-board that shows the areas that can be

covered by the vehicle while travelling.

e Apart from interactive maps, an ideal solution could advise an energy-efficient
path and indicate accessible places near the destination if the destination is
known. Additionally, if the range of the vehicle is less than the distance to the
nearest charging station after reaching the destination, the system should warn

the driver and create a new route that includes a stop at a charging station.

Numerous studies are being conducted presently on the prediction of the remaining
range for EVs efficiency usage. However, it is worth noting that most of this research
examined a limited number of factors that impact the EV range. SOC estimation
is given special attention for range prediction, and relatively fewer studies have been
conducted to integrate a complex combination of all possible influential variables of
the EV’s range estimation into a single mathematical model. The current research
integrates multiple Maps API to generate representative driving cycles at trip and
segment levels in a specific route. Furthermore, it analyses the possible APIs to ob-

tain detailed route information in real-time and adapt it to any road covered by the
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map service. In addition, since the instantaneous vehicle’s speed is very significant
on energy consumption, this thesis aims to obtain the traffic information and route
information from several APIs to predict the car’s speed along the route. Moreover,
it will retrieve the weather data on the selected journey and applies its variables to
the energy consumption calculation. Finally, these variables will be integrated with a
generic electric vehicle model that includes a lithium-ion battery to generate the power

demand for multiple journeys.
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Chapter 3: Battery modelling for electric vehicles

Summary

This chapter investigates the dynamics and performance of lithium-ion battery used
in Electric Vehicles (EVs). We evaluate the impact of different driving patterns on the
energy consumed. The investigation discussed in this chapter was based on a power
demand obtained using four different standard driving cycles, representing driving
patterns corresponding to different geographical areas and road topology. In our in-
vestigation we used an equivalent circuit battery model and a mathematical battery
model, which were configured using MATLAB and Simulink. The findings show that
the equivalent circuit model emulates the dynamics of the real battery more accurately
than the mathematical model, However, both models show almost similar estimation

of the battery state-of-charge.

3.1 Introduction

This chapter will explore the battery modelling techniques. In addition it will demon-
strate some of the generic battery models. The battery components will be presented
along with the battery behaviours. The inputs and the outputs of the batteries will be
identified. This chapter will discuss early stage experiments performed to understand
the battery behaviours and the influential factors that play a significant role on the

SOC estimation and the energy consumption.

In full battery-powered vehicles, the key component is the battery, and it is the only
source of power that stores the vehicle’s energy. As a result, it requires a signifi-
cant portion of the vehicle’s volume and weight, as well as influencing the vehicle’s
price [8]. Every electric vehicle now has a rechargeable battery consisting of many cells
connected to each other that convert the chemical energy on the battery into electrical
energy. Each cell contains positive electrodes and negative electrodes connected by an
electrolyte. The chemical reaction between the electrolyte and the electrodes produces
the battery current that generates the direct current electricity (DC) on the battery
for discharging. The same chemical reaction can happen in reverse while charging

the battery to store the energy on it [8]. Numerous forms of battery technology have
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been adopted in EVs since their development. However, the majority of major bat-
tery types that are widely adopted in EVs are Lithium-ion and nickel metal hydride
(NiMH). Presently, the majority of Hybrid Electric Vehicles (HEVs) use nickel metal
hydride batteries [131]. Certain HEVs that were produced until 2010, for example the
General Motor EV-1, Toyota Prius, Ford Escape and Nissan Altima, utilised Nickel

Metal Hydride Batteries due to their mature technology.

Nevertheless, lithium-ion battery has been expanding rapidly since 2010, growing in
popularity as a battery technology compared with previous period, particularly for use
in EVs. This is largely because of the advantage posed in obtaining higher energy den-
sity. The main modern EVs utilising this battery technology are: the Tesla-Roadster;
the Daimler Benz Smart EV; the Nissan Leaf EV, as well as the Think EV [132].

3.2 Battery modelling

From complex stochastic models to in-depth electrochemical models, the body of the
existing academic research covers numerous forms of battery models. Electrochemical,
electrical circuit and mathematical models are three major classifications of battery

models that may be distinguished [133].

3.2.1 Flectrochemical modelling

The first approach of battery modelling is an electrochemical models, in this approach
the batteries may be modelled on the basis of electrochemical process, as proposed in
[133] and [9]. The battery’s inner electrochemical characteristics can be comprehen-
sively outlined through such models. Two joined partial differential equations (PDES)
comprise a standard electrochemcial battery model. The means through which the
cell’s electrochemical reactions are contributing to and influencing the potential of the

cell are illuminated by these equations.

3.2.2 Equivalent circuits modelling

Secondly, a battery’s electrical characteristics were initially explored by Hageman

[134] through an electrical circuit model commonly adopted in electrical engineering.
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Therefore, precise explanations of the battery can be provided through such models.
However, the impracticality of the combined model is a problem due to the in-depth
explanations provided, meaning that establishing performance models requires an al-

ternative approach [135].

Equivalent-circuit models provide a comprehensible interpretation of battery electrical
characteristics. The open-circuit voltage (OCV) is represented by the voltage source
U,. and the cell internal resistance is represented by the resistor R, both common to
all models presented in Table 3.1 [5]. However, while the Rint model in 3.1 performs
well with continuous-current loads, the addition of the cell internal resistance in par-
allel (Thevenin and GNL model) increases voltage-prediction accuracy. In addition,
as they represent time constants during transients, conferring on the model the ex-
pected nonlinear behaviour [136]. Essentially, the networks composed by R; and C;

are equivalent to the diffusion process [5].

By including the capacitance C.,p to the Thevenin model in Table 3.1, which accumu-
lates the discharge current, the Partnership for a New Generation of Vehicle (PNGV)
model in Table 3.1 is able to better represent the OCV variation. Furthermore, the
General Nonlinear (GNL) model adds on RC branch to the PNGV model, describing
the concentration polarisation effect [5]. Overall, the battery dynamics can be satis-
fyingly represented with one or two RC blocks. With larger numbers of blocks, the
increment in accuracy becomes insignificant compared to the increase computational

effort [137].

One of the great advantages of equivalent-circuit models is flexibility, as they can
be implemented with multiple components in different ways [5]. Furthermore, it is
possible to describe how their parameters are influenced by multiple factors such as

ambient temperature and inner heat generated in the cell [137].
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Model Expression
Rint model [138]
e\ P\ )
R, 1
T U Uy = Upe — I - Ry
o U, is the terminal voltage, U,. indicates the OCV.

I is the discharging current
Ry is the Ohm resistance.

Thevenin model [139] [140]

R I
Ry mm
-t Ci I
T ' uy =Upe —U1 — I Ry
o R is the polarization resistance and

(1 is the polarization capacitance,
U, is the voltage of the RC network.

PNGV model [141]
FAR

Ry
=
[
T o Uy = Use — Usap — Us = I - Ry
Cleap 1s the bulk capacitance.

GNL model [142]

R R II

Ry
[C©1 C2 -
1 Ve Ut:Uoc_Ucap_Ul_U2_I'RO
O Ry, Cy are the concentration polarization
resistance and capacitance.

Table 3.1: The expressions of the four common ECMs [5]

3.2.3 Mathematical modelling

Thirdly, mathematical modelling of batteries may be undertaken. Rakhmatov and
Vrudhula [143] have introduce diffusion based model, as well as Manwell and McGowan
[144] kinetic battery model (KiBaM), are examples of this approach, where the crucial
battery characteristics and impacts are assessed through an abstract model. Little
practical understanding of the battery is required, while application and incorporation
of other models is possible, when utilising the KiBaM [10] and other sophisticated

analytical models. Another example of incorporated model introduced by Oliva et al.
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[123], which simulates battery load, and combined it with this type of model.

Consequently the defined load patterns can be used to determine the probability of the
depletion of the battery through the combined model. The KiBaM battery model has
been adopted in order to explore the manner in which the model captures the battery
degradation, as well as to comprehend how the battery’s efficiency evolves during the

battery’s life cycle [145].

This investigation was extended in [11] to assess and quantify the risk of premature
battery depletion. Despite sound results being achieved while using the KiBaM or its
variations for modelling lithium-ion batteries, this model is affected by significant lim-
itations that remain unresolved. Firstly, the Kinetic battery model does not consider
how the battery degrades, so it is uncertain how the parameters are affected. Battery

wear-out, which is a trend of decreasing capacity over time, should be factored into

the KiBaM model [133].

The basic mathematical models aim to describe the terminal voltage of the battery
in terms of the state of charge (SOC) and the current [136]. They are simplified
representations of electrochemical models; therefore, although estimation accuracy is

compromised in a certain level, they require lower computing power [5].

Table 3.2 presents three well-known empirical models and their equations, in which &
is the time index, y; is the terminal voltage, E, is the open-circuit voltage (OCV) for
a fully-charged cell, R is the cell internal resistance, 7; is the output current, z; is the

state of charge (SOC), and K; is a constant for curve fitting [136], [5].

Model Type Model Equations
Shepherd [146] ye = Eo— R iy — fzf_kl
Unnewehr universal model [147] [5] ye = FEo— R -1, — Ky - 2
Nernst model [148] yp = Eo — R -1, — Ky - In(zy) + K3 - In(1 — 2)

Table 3.2: Generic mathematical models

3.2.4 Comparative analysis

The electrochemical models describe in detail the battery internal dynamics, presenting

an appropriate approach for cell design [149]. Due to the complexity of their equa-
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tions, they offer high estimation accuracy but are computationally expensive, time-
consuming and, therefore, unsuitable for real-time applications [137]. Mathematical
and equivalent-circuit models consist of simpler, more comprehensible representations
of the electrochemical modes. As mentioned in the previous sections, the simplicity of
their equations provide an increase in computational efficiency but also incurs lower
estimation accuracy [5]. The pros and cons of the different modelling approaches are

illustrated in Figure 3.1. Also Figure 3.2 shows the connection of different modelling

approaches.
Modeling .. Equivalent Circuit Electrochemical
Methods Empirical Model Model Model
Modeling U = U Ut
expression f(Uoe, SOC, I) = f(Uyc(SOC), LLR,C) =n- fppEs
Simple expr.ession, Egsily under_stood, High accuracy of
Pros computational widely used in SOC .
efficiency estimation voltage calculation
o - Require prior
Limited ?apabﬂlty Complex parameter knowledge of the
Cons of describing the . e .
. identification process battery, time
terminal voltage .
consuming

Figure 3.1: Pros and cons of battery modelling approaches

Represents the electrochemical process by
mathematics and expressions > Mathematical
Models

Electrochemical
Models

Replaces the chemical reactions

by circuit components 5| Equivalent circuit
models

Figure 3.2: The connection of different modelling techniques

3.3 Battery state estimation

Primarily, there are two main types of estimation for battery state: state-of-charge

and state-of-health. In addition, the most commonly used methods to estimate the
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battery state are column counting, voltage, and the Kalman filter method. All of these

approaches apply to all battery systems.

3.3.1 State-of-charge estimation

The state-of-charge estimation know as SOC is a technique of capturing the remaining

level of the battery during the battery discharging process.

e Coulomb Counting method: Also known as ampere hour counting and current
integration, is the most common technique for calculating the SOC. The inte-

gration of the current over time is known as the Coulombic counting method

[150].

e Voltage Method: The SOC of a battery is its remaining capacity. It can be
calculated using a discharging test under unknown measuring conditions. The
voltage method uses the battery’s voltage vs state-of-charge (SOC) curve to con-
vert the voltage reading to a state-of-charge value. Nevertheless, the battery
current influences the voltage more significantly. Mainly because of the elec-
trochemical kinetics and temperature of the battery. This method can be more
accurate by considering lookup tables of the battery open-circuit voltage vs tem-
perature. However, this method is challenging because the battery voltage range
is unstable. Moreover, the discharging tests include continuous recharging, which

makes the task very time-consuming [150].

e Kalman Filter Method:

To estimate the SOC Kalman filter is another algorithm that estimates any dy-
namic system’s inner state; this method can also be used to estimate the SOC of
the battery. Compared to other estimation approaches, the Kalman filter auto-
matically provides dynamic error bounds on its state estimates. By modelling the
battery system to include the wanted unknown quantities (such as SOC) in its
state description, the Kalman filter estimates their values and gives error bounds
on the estimates. It then becomes a model-based state estimation technique that

employs an error correction mechanism to provide real-time predictions of the
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SOC. It can be extended to increase the capability of real-time SOH estimation
using the extended Kalman filter. Notably, the extended Kalman filter is ap-
plied when the battery system is nonlinear, and a linearisation step is needed.
Although Kalman filtering is an online and dynamic method, it needs a suitable
model for the battery and precise identification of its parameters. It also needs

a large computing capacity and an accurate initialisation.[150].

3.3.2 State-of-health estimation

Compared to a new battery, the State of Health is a measurement that indicates
how well a battery is performing in general and its capacity to provide the desired
performance. In addition to charge acceptance, internal resistance, voltage, and self-
discharge, it takes into consideration other variables as well. When it comes to the
long-term capabilities of the battery, it provides an indication rather than an exact
assessment, of how much of the battery’s potential lifetime energy throughput has

been used and how much is remaining.

3.4 Experiments set-up for existing models

Several experiments have been performed with some existing models using standard

driving cycles to estimate the SOC. These experiments have been published in 2019.

In order to undertake these experiments, we have selected two different battery models

to investigate their performance based on the demand we generated.

3.4.1 Battery models

The experiment of this chapter used MATLAB for the driving cycle power demand
calculations, and SIMULINK for the two existing models that simulated the lithium-
ion battery. In order to investigate the impact of the driving cycles on EV’s battery,

several assumptions have been made:

e The temperature dependency is not considered in the first model and ignored in

the second model.
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e The battery self-discharge phenomenon is not implemented.

e Gain blocks in SIMULINK are used to modify the number of cells in paral-

lel/series to simulate the battery pack characteristics in EVs.

e Regenerative breaking, which provides energy restoration to the battery, is not

considered.
3.4.1.1 Shepherd’s Model

Shepherd’s model is a mathematical representation of the battery’s components such
as internal resistance, open circuit voltage, terminal voltage and the state of charge

[136]. The general Shepherd’s Equation is given as

0
SOCy

U = Eo — RIk — (31)

where k is a time index, u; is the model voltage, Ej is a DC gain, R is the cell internal

resistance, [ is the cell current and p is a constant used for fitting the curve.

3.4.1.2 The Equivalent Circuit Model

The Equivalent Circuit model is a very common solution for battery modelling. It
works by simulating the battery’s electrical components such as resistor, capacitors

and voltage sources [151, 152].

This modelling technique can be easily parameterised in such a way that when the
battery block is stimulated, it responds as a real battery. This process relies on creating
a model correlation with the experimental data [153]. In this paper, a battery model
was obtained from [154] which is an EC model. It can be represented by modelling
the terminal voltage of the battery as an open circuit. The battery terminal voltage

of the model is given by:

U=0CV —Us — U (3.2)

where OC'V is the open circuit voltage, Ug is the transient response voltage and Uj is

the voltage drop over the internal resistance.

- 50 -



Chapter 3: Battery modelling for electric vehicles

Ug can be obtained from the following equation.

dUs -1 1
s _ Ust -1 3.3
ait  ReCs ST s (3.3)

and

Uy = Rol (3.4)

The State Of Charge (SOC) of the battery refers to the amount of energy in the battery
compared to its nominal capacity. There are several methods to estimate the SOC.
The method used to estimate the SOC in both models mentioned above is known as
Coulomb counting. The Coulomb counting algorithm works by measuring the current

while the battery is discharging, then it integrates it over time:

1 t

SOC(t) = S0C(0) - &

I(t)dt (3.5)

where @) is some constant to relate the current with charges. The amount SOC(t) is

an estimate of energy consumed based on the open circuit voltage of the battery.

3.4.2 FExtracting the power profiles

This section presents the method applied to generate the power demand from the
available driving cycles. Velocity and acceleration data from the existing driving cycles
were used to generate the power demand for each cycle. The power consumed by the
EV is based on the mechanical energy generated during the journey, which is directly
influenced by the driving patterns of the vehicle. In EVs, this energy will then transfer
through the electric drive as the load on the battery. To calculate the power of the
driving cycle, we have to convert the speed into metres per second instead of kilometres
per hour. Then find the acceleration at each point to define the initial parameters

derived from each driving cycle using the following formula:

a=Ay/A = (v — )/t — 1) (3.6)
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Where a is the acceleration of the vehicle at every second of the cycle in mps, vy is
the final velocity of the journey, v; is the initial velocity, ¢y is the ending time of the
journey and ¢; is the starting time.

15 UDDS Acceleration Profile [m/szl
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Figure 3.3: Acceleration of the EV for UDDS driving cycle

Note that acceleration and speed of the vehicle are known at every single point of the
driving cycle. We can now express the input parameters in MATLAB and use them to
calculate the propulsion force required for the vehicle to move, which we do as follows:

1
Fy= fp,Ma+ MgC,, cos + §pACd(V — V)2 + Mgsin6 (3.7)

where f,,, is the mass factor, M is the vehicle mass in kg, C... is the coefficient of rolling
friction between the road surface and the vehicle’s tires, p is the air density, A is the
frontal area of the vehicle expressed m?, Cj is the air drag coefficient, v,, is the speed
of the wind in the moving direction of the vehicle, ¢ is the acceleration due to gravity
and 6 is the road elevation or angle, which is positive for going uphill, negative for
going downhill and 0 on a flat road, as it is assumed to be in this experiment.

The total power P needed to drive the vehicle at speed V' is as follows:

P - FtV -
1
P = f,MaV + MgC,,V cosf + 5pACdV(v — V)2 + MgV sinf (3.8)

In order to use the above equations, some input parameters of the EV that affect the
propulsion power in Table 3.3 should be defined. In addition, this will enable us to
estimate the battery dynamics of EVs using any battery model. Some input param-
eters are needed from the below table to generate the power needed for each cycle.
These particular values were selected from previous experiments in the literature, as
mentioned in [52] and [131].
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Table 3.3: The static parameters from typical vehicle used to generate the power profile

Mass 1,360 kg
Mass Factor 1.05
Coefficient of rolling resistance 0.02

Air density 1.225 kg/m3
Frontal area of the vehicle 2m?

Air drag coefficient 0.5

3.4.3 Standard driving cycles

Driving cycles have been developed in recent decades as a standard tool for estimating
fuel consumption and air pollution from vehicles by measuring the emissions for a
certain journey profile [155]. There are many standard international driving cycles
such as NYCC, UDDS, HWFET and FTP-75, which have been used to generate
the power demand profile of an EV in this chapter. A driving cycle is a series of
points of velocity versus time plots reflecting the driving pattern of the vehicle and the
driver under given conditions. Figure 3.4 illustrates the Urban Dynamometer Driving
Schedule (UDDS) driving cycle. Moreover, New York City cycle (NYCC), Federal
Test Procedure (FTP-75) and Highway Fuel Economy Test (HWFET) were also used
in this chapter. Creating driving cycles requires several set-ups and arrangements, so
it can be a relatively costly task [156]. The driving cycles analysed in this article were
selected to cover most of the typical driving modes and distances that can be obtained
by drivers. That includes short distances which can occur in small cities, frequent
stops that are common in urban areas, urban driving with high acceleration phase and
motorway cycle.

The driving cycles used in this chapter are as follows:
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FTP-75 uDDS
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Figure 3.4: Velocity profile for all selected driving cycles

Urban Dynamometer Driving Schedule (UDDS), simulates an urban route with a
distance of 12.07 km with several stops. A sample of the driving cycle is depicted
in Figure 3.4 for UDDS. It has a maximum velocity of 91.25 km/hour and 31.5
km /hour average velocity [157].

New York City Cycle (NYCC) is a driving test performed for light-duty vehicles
which simulates the vehicle dynamics at low speed in urban driving with multiple

stops. This driving cycle has a short distance of 1.89 km with an average speed
of 11.4 km/hour and the maximum speed of 44.6 km/hour [158].

Federal Test Procedure (FTP-75) is derived from the UDDS by adding a third
phase of 505 seconds. The distance travelled by this cycle is 17.77 km with an
average speed of 34.12 km /hour and the maximum speed of 91.25 km /hour [159].

Highway Fuel Economy Test (HWFET) is a driving cycle performed by the US
EPA to measure the fuel consumption of light-duty vehicles. This cycle has total
distance of 16.45 km, with the average speed of 77.7 km /hour in a total time of
765 seconds [160].

3.5 Battery discharge

3.5.1 Driving cycle load based

This section investigates the impact of each driving cycle used on the battery’s dis-
charging current, voltage measured and the SOC prediction. The driving cycles have
been developed over various time limits, which means every driving cycle has a dif-
ferent distance travelled. They have therefore been implemented repeatedly for one

- 54 -



Chapter 3: Battery modelling for electric vehicles

hour as a single journey, regardless of how many times they are repeated. The power
profiles extracted from the driving cycles will be used as a power demand for the EV
to investigate the battery discharging behaviour.
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Figure 3.5: UDDS driving cycle voltage profiles
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Figure 3.6: UDDS driving cycle current profile
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Figure 3.7: UDDS driving cycle state-of-charge
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The first phase of the experiment was obtained using UDDS driving cycle parameters,
followed by power demand calculations to measure the energy consumption for both
models according to this driving cycle. The parameters were set for a typical journey
as mentioned in Table 3.3, which shows the fixed parameters for the power calculations.
We confirmed that the parameters of the driving cycles had been obtained correctly
after validating the acceleration and velocity profiles. These profiles show that the
speed is converted from the original speed of the UDDS. The discharge current of the
UDDS shows 80 Amp as the highest discharge rate due to the acceleration attained
at the beginning of this cycle. The voltage drop for the EEC model during the ac-
celeration time is also noted with realistic voltage dynamics as in Figure 3.5 whereas,
the Shepherd’s model did not capture the voltage dynamics accurately. The SOC of
the UDDS profile shows almost 18.4% of energy consumed, which was similar in both
models due to the same method being used to estimate the state of charge as shown
in Figure 3.7.
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Figure 3.8: NYCC driving cycle current profile
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Figure 3.9: NYCC driving cycle voltage profile
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NYCC SOC
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Figure 3.10: NYCC driving cycle state-of-charge

The second phase of this experiment is for the NYCC driving cycle. The same pro-
cedures were implemented in this cycle as for UDDS; in order to produce the power
demand profile and to test the impact on the EV’s battery.

This cycle shows a discharging current rate of almost 62 Amp and less significant
voltage drop as shown in Figures 3.8 and 3.9, compared to the UDDS cycle. This is
due to the city driving patterns with the frequent stops and the lower speed limits.

The SOC prediction for this profile is around 6.3% from the initial capacity for both
models as in Figure 3.10. However, the frequent stops can be noticed as it works as a
rest time for the battery where the battery can recover.

City driving, with lower speed limits and frequent stops could potentially increase
the battery’s life span for a single charge if the road topology is flat and the weather
conditions are normal. Shepherd’s model did not capture the voltage dynamics again
due to the rapid changes in the load of this driving cycle. Compared to this cycle during
the portion of time in which there are no pauses, Shepherd’s model demonstrates better
performance in terms of its ability to capture the battery dynamics throughout the
UDDS driving cycle load.
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Figure 3.11: FTP-75 driving cycle current profile
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FTP75 Voltage
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Figure 3.12: FTP-75 driving cycle voltage profile
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Figure 3.13: FTP-75 driving cycle state-of-charge

In this phase, the FTP-75 driving cycle was considered; this shares some of the char-
acteristics with the UDDS.

This experiment shows almost the same discharging current rate as in the UDDS for
both models because of the added phase of this cycle matches the first 505 seconds in
the UDDS cycle. The energy consumed is almost 19.7% of the initial capacity. This
makes a difference in the SOC prediction of only 1.3% compared to the UDDS and
this is because the time scale of 1 hour while the UDDS and FTP-75 profiles are long
compared to the other cycle profiles used in this paper.

The dynamics of the FTP-75’s current and voltage profiles are very similar to those
of the UDDS. However, the effect of the additional period added to the FTP-75 cycle
can be seen in how the voltage behaves in the EC model, as shown in Figure 3.12.

- b8 -



Chapter 3: Battery modelling for electric vehicles
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Figure 3.14: HWFET driving cycle current profile
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The last phase considers the power profile of the HWFET cycle, which is obtained for
motorway driving. In this cycle no stops were performed during the entire journey,
except at the end of each cycle before we repeated it. The maximum speed of this jour-
ney was almost 90 km/hour, however the maximum current rate was almost 75Amp
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and this is because there was no excessively high acceleration during this cycle. The
voltage dropped at a lower rate compared to the other cycles due to the energy con-
sumed from the battery which was in this journey profile almost 54% for both models
as shown in Figure 3.16.
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Figure 3.17: state-of-charge for all cycles

Figure 3.17 shows the energy consumption for the cycles used in this experiment. The
impact of the NYCC city driving can be seen in the SOC for this cycle, which is very
small compared to the other three cycles. The UDDS cycle is considered to be an
urban test; however, it has a higher speed than the NYCC. Therefore, it involves quite
high and sudden acceleration, which can consume high energy. Since both the UDDS
and FTP-75 share the same characteristics, similarity in the battery state of charge
can be seen, but when the difference accrues we can see that the SOC of FTP-75
drops more than that of the UDDS. In the HWFET SOC, it is noticed that motorway
driving consumes a huge amount of energy compared to city and urban driving, where
the stops provide a rest time for the battery to recover.

3.6 Conclusion

This chapter presents power profiles for four standard driving cycles. It processes the
driving cycle data, which consists of velocity versus time, in order to find the parame-
ters to calculate the power profile for each cycle. The power profiles were generated to
show the differences in the SOC when the traffic conditions influence the driving pat-
terns. Each profile were used as power inputs for two generic battery models, namely
the Equivalent Circuit model and the Shepherd’s mathematical model. These models
were configured using MATLAB scripts and SIMULINK blocks to estimate the SOC
and capture the voltage and current dynamics of the battery. Some adjustments have
been made to the models to represent the battery pack for EVs by replicating the
number of cells in series and in parallel. The models were explained in detail along
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with their limitations. The results of the simulation, SOC estimation and the voltage
measurement were discussed and analysed.

The SOC prediction of the experiments were varied depending on the cycle profile.
For instance, the city driving NYCC cycle shows less energy consumption due to the
continuous stops, low speed and less excessive acceleration, which can be classified as
efficient driving patterns, whereas the UDDS and FTP-75 cycles show a drop in the
SOC at the beginning of the journey due to the high acceleration.

Since the data provided from the driving cycles is only velocity and time, the generated
power profile would not be exactly the same as in real life. This limitation could lead
to inaccuracy, especially if we consider other factors that could potentially affect the
power profile such as the traffic density on the road, the road elevation or weather
conditions.

These experiments could be validated using the same power profile as an input to
lithium-ion battery in the lab to estimate the SOC and the battery dynamics. It
also can be extended by using more recent driving cycles provided by the battery
manufacturers or by combining two or more driving cycles to represent a more detailed
journey.

Generating a power demand profile using some existing traffic data and map services
such as Google maps, Here maps or open street map could be considered. This will
simulate the driving cycle based on the traffic conditions and road topology for a given
origin and destination, which will help to produce a journey profile for a specific route.
This would capture the sequences of a real-time journey, which could be converted to

power, thus providing a more realistic driving cycle to estimate the performance of the
EV battery.
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Summary

This chapter introduces a velocity model based on route information for the range
estimation of electric vehicles. It uses publicly available data sets obtained from several
map services APIs and incorporates this data in the range estimation algorithm. Three
map services APIs were used to collect the data for an extended period, and then we
analysed this data to extract the most representative data to generate the velocity
profiles. It uses MATLAB code and python libraries to process the representative
data and apply the velocity model. Moreover, we have integrated it into an electric
vehicle model, including the battery, to estimate the power demand for each trip and
the remaining driving range. We observed that producing realistic driving cycles using
public data is possible; furthermore, it simulates the driving patterns and satisfies the
constraints of the vehicle.

4.1 Introduction

In addition to the enormous advantage of reducing the levels of pollution EVs have, this
invention has some other benefits over conventional vehicles. These benefits include
energy recovery when the battery restores some of the energy due to braking and
the noise-freeness [161]. Regenerative braking is a crucial characteristic of EVs when
the generator returns the energy to the battery system due to braking. According
to previous studies, this feature is practical, especially in city driving and the daily
commute. However, it is less effective on motorways, and long journeys [162]. In
addition, conventional vehicles consume more energy in city driving because of the
heat loss due to braking in contrast with EVs [59].

This chapter aims to develop a velocity model using publicly available routing data
on specific routes. It attempts to construct the speed profile for a specific journey
between origin and destination using the map APIL. After generating the potential
realistic driving profile, we used a generic EV model to generate the potential power
demand for the trip. Hence we apply the state of charge estimation method to analyse
the impact of the route and traffic on the battery efficiency. This chapter concentrates
on developing a data collection process using multiple maps service API. Many drivers
rely on the GPS data provided by map services to navigate to their destinations [130].
This chapter uses the data collected from the drivers using the map API. The first
step of this chapter involves exploring the routing information and using it to estimate
energy consumption and improve the battery-powered vehicles’ efficiency. It explores
the data of three different map information providers through their API. Google Maps
API [163], HERE Maps API [164], and TomTom Maps API [165] are the primary data
sources in this chapter.

The amount of data collected from vehicles and drivers can significantly improve the
range of electric vehicles [166]. The battery management system (BMS) installed in
electric vehicles senses the battery’s state of charge. It predicts the remaining range
based on the battery status and other data installed on the system, such as the vehicles’
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specifications. However, these data sets do not consider the route information ahead.
Therefore, it uses the range values for its estimation. The proper use of the available
data can improve driving range prediction and energy consumption estimation. In this
chapter we construct near to real-time velocity profiles to allow us to generate power
profiles and estimate the power consumption before performing the journey.

4.2 Route information

Many factors influence the energy consumption of EVs including road characteristics,
topography information, traffic lights, roundabout, change in speed and road gradient.
The information of the route needs to be obtained from different sources, hence, the
energy consumption of the EV can be estimated. In this chapter, we will obtain similar
data from different API sources, Google Map, HERE Map and Tom-Tom map. The
data can be accessed manually by breaking the route into smaller chunks to get the
most accurate data possible.

These three APIs allow developers to obtain the journey profile between two points,
selecting different travel modes. In this case, we set the travel mode to (CAR) and
send a query to get the average time taken between the origin and destination in
regular traffic. In addition, it provides the distance in metres between these points
and the time of the journey considering the real-time traffic situation. This approach
was implemented to understand the route information and to study its feasibility for
estimating the energy consumption of electric vehicles. Figures 4.1 and 4.2 show the
selected routes, and the route selection will be justified in the forthcoming section.
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Figure 4.1: The first Route on the map with the way-points selected
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Figure 4.2: The second Route on the map with the way-points selected
4.3 Data collection process and analysis

4.3.1 Traffic data exploration

This section illustrates the process and the purpose of exploring the traffic data. In
addition, the data collection process and the challenges faced are also presented.

1. Route Selection:

The main objective of collecting the data from the map service providers is to
create a generic script that gathers time-specific traffic data between two different
Geographical locations following a specific route. We have specified the origin
and destination on the map for two different routes with different road structures.
These routes were sliced into multiple chunks to collect more accurate data for
each chunk. Collecting the data for smaller segments is to separate the parts of
the route with possibilities of speed reduction from more continuous high-speed
such as motorways. Both routes use the main road but have different speed limit
variations.

2. Data Analysis:

APIs provide duration, distance, and segment information. Every segment pro-
file contains time and distance information. Moreover, because distance and
duration are known, we can determine the average speed for each segment and,
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therefore, for the whole journey. The plots for these raw gathered data depict
the average speed for each part of the trip, providing us with an understanding
of the speed profile.

3. Data Manipulation:

Since the data obtained from the APIs are only average speed based on the
duration in traffic and distance of the segment, it provides a constant speed for
each chunk of the road. Therefore, the speed transition between the segments
should be identified to mimic the actual velocity.

4.3.2 Data collection

1. Data collection methodology.

e Extracting the data from the API provider.
e Collecting data from the API response.
e Scheduling the collection process for specific times.

e Loading the data into a CSV format.

2. Source of traffic data.

e Google Maps API
The API products provided from Google Maps were used as follows:
— Distance Matrix API: This API allows us to get the travel distance and

time for the entire route and each identified segment. In addition, it
allows us to obtain the estimated duration within the current traffic.

— Directions API: Allows introducing the way-points which helps force
the API to follow the route we specify; it is also responsible for the
mode of transportation, which is "Car” in our case.

e TomTom Maps API
The API products provided from TomTom were used as follows:

— Traffic Flow API : This allows developers to request the travel time

from the origin and destination with respect to the real-time traffic.

— Maps API: This product gives an access to the API data every time we
make a request.

— Routing API : This API gives highly detailed information about the
route, with respect to directions and travel mode.

e HERE Maps API
The API products provided from HERE Maps were used as follows:

— Routing API: This product informs the estimated arrival time between
the origin and destination.
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— Traffic API: This API is responsible for reporting the traffic flow, its
consequences and the incidents information.

— Way-points sequence API: This allows us to specify the way-points on
the route to divide it to the segments we require.

3. Extracting the time and speed data

e The data of the time taken during current traffic and the average speed
calculated are added into separate files for each journey. These files are for-
matted in two columns that show the time in seconds for the whole journey
versus the average speed at each second. These files are then processed to
generate possible velocity profiles.

In Table 4.1, the main features of the used map services API are illustrated.

Table 4.1: The main features of the used map services API are illustrated

Google map HERE map TomTom map
Free transactions 40000 requests per month 250000 requests per month 2500 requests per day
Pricing $5 for up to 100,000 requests $1 for 1000 ruquests $0.5 for 1000 requests
Technology Direction and distance matrix APIs are called. Routing API is called. Routing API is called.
Response in JSON format Response in JSON format Response in JSON format
Way-points limit 23 way-point in each request 50 way-points in each request No way-point limits

The data was collected at multiple time-slots for each API. These slots were at 8:15,
12:00, 16:45 and 12:00. This time selection was done to evaluate and analyse the
differences between the peak traffic hours and when it is quiet.

During each time slot, the data is requested for an hour; then, the data is loaded
into a CSV file in several rows. The row length depends on how many intermediate
points are distributed throughout the route. Many columns start from the time of
data collection until the journey’s average speed is loaded. Figure 4.3 illustrates a step
by-step-process of collecting the data through the APIs.

4.3.3 Data collection issues

Even though the data collection scripts were implemented to check the local time every
minute and run on the specific times, the APIs dropped the connection due to unknown
issues. Therefore, we had to check that our data collection was in progress regularly
and the connection is not dropped. Another issue was selecting the way-points in
terms of accuracy, as some of them seemed to be accurate with Google Maps, but not
with others. To overcome this issue, the way-points were manually obtained from each
map provider and used them for its API requests. Figure 4.4 shows the preliminary
velocity profile profile obtained from the map API.
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Figure 4.4: Mean velocity obtained from HERE Maps API

4.4 Data analysis

This section analyses the data collected using various methods and selects the repre-
sentative profiles to generate the velocity profiles and use them to compute the energy

consumption.

The script used to call the APIs and process their returns generates CSV files con-
taining data from one or more calls. Table 4.2 presents the coordinates of origin and

destination and the number of non-empty CSV files for each route.

To identify the route and the call, each API call — or sample — contains the date,
coordinates of origin, coordinates of destination, departure time and arrival time. The
route calculation data, which follows the arrival time, includes the distance, duration
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Number of files

Route Origin Destination Number of samples
Google Maps HERE TomTom
1 54.97°) -1.63° 55.04°, -1.44° 159 344 337 3818
2 55.04°, -1.71°  54.89°, -1.56° 248 339 337 3605

Table 4.2: Coordinates and number of files of studied routes

without considering the current traffic, duration within the traffic and average speed
for the entire route and for each way point. The data was collected between September
6, 2019 and February 26, 2020, allowing the recording of seasonal variations in traffic.

The purpose of this study is to select samples that are representatives of the data set.
The selected samples are later converted to time series and used to generate driving
cycles and power profiles.

The CSV files are loaded and analyzed separately by route. Samples in which the date,
origin or destination are empty or corrupted, as well as empty files are excluded from
the dataset. Data types are converted according to the information they represent.

4.4.1 Data outliers

Outliers are the abnormal data points that appear unusual from most of our dataset.
In this context, the outliers are detected on the entire route and are affected by mul-
tiple reasons. For example, one of the significant reasons severe accident forces for
alternative routes result in longer distances. Furthermore, we consider the overall dis-
tance in our dataset to be within acceptable differences to make our samples more
consistent. Therefore we established a range around the average distance where the
inliers are located, and we excluded the data samples affected by the outliers from our
analysis. In Route 1 Figure 4.5 (left), the majority of samples are located around 18
km and 20 km. In Figure 4.5 (right), for Route 2, we observe that most distances are
around 26 km, while a small number of samples, the outliers, are above 28 km.

4.4.1.1 Data visualisation

Table 4.3 presents the mean and standard deviation of the main full-route variables,
considering data from the three APIs.We observe that distance and duration present
low standard deviation, which we aim to achieve with outlier filtering for route con-
sistency. Duration in traffic and average speed, which is function of this last variable,
present higher variation, reflecting traffic conditions in the respective routes.
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Figure 4.5: Histogram of full-route distance for each route.

Route Distance [m] Duration |s] Duration in Traffic [s] Average Speed [m/s]
1 18897.29 £ 263.52  1579.81 £ 180.09 1869.31 + 370.28 10.46 + 1.87
2 26300.22 + 54.36  12938.80 + 80.166° 1517.43 4+ 409.26 18.23 + 3.54

Table 4.3: Summary of main variables for each route (all APIs)

Figures 4.6 and 4.7 show the histograms of duration in traffic of each API for Route 1
and Route 2, respectively. Compared to HERE and TomTom, the Google Maps dataset
presents less samples, as shown in Table 1, and its distributions have a lower range.
We observe that, for both routes, peaks are located between 1000 s and 2000 s. Fur-
thermore, the majority of samples are concentrated around low values of duration in
traffic, which is a result of API call time parameters. The relation between traffic and
departure time is explored in the next section.

500 500 500

Count
Count

)
Figure 4.6: Histogram of duration in traffic for Route 1 on (a) Google (b) HERE (c)
TomTom data
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Figure 4.7: Histogram of duration in traffic for Route 2 on (a) Google (b) HERE (c)
TomTom data

4.4.1.2 Traffic time vs departure time

Departure time values are between 12:00am and 5:37pm, and samples are not uniformly
distributed in this interval. To represent the traffic in terms of time variation, we
introduce the variable traffic time, which is calculated using Equation 4.1. Table 4.4

presents the mean and standard deviation of the traffic time for routes 1 and 2 of the
three APIs.

(4.1)

traffic time = duration in traffic - duration

| Route | Traffic Time [s] |

1 289.49 + 351.37
2 278.63 £ 405.77

Table 4.4: Summary of traffic travelling time for each route (all APIs)

In Figure 4.8, the scatter plots of traffic time in function of the departure time for
Route 2 of Google Maps are shown. The time gap between samples is not represented;
instead, they are organised in ascending order of departure and plotted sequentially.

It has been observed that the traffic is more intense from 8 am to 9 am and then from
4:30 pm to 5:30 pm. Overall, the high-traffic time intervals coincide with the beginning
and ending of workdays, while in between these intervals, traffic is less intense.
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Figure 4.8: Traffic time in function of departure time for Route 2 from HERE Maps,
in collection period (a) from 00:00 to 1:00 (b) from 8:15 to 9:00 (c) 12:00 to 13:00 (d)
16:45 to 17:30.

4.4.2 Selecting representative cycles

Before generating the driving cycles that will be further analysed, we select samples
that are representatives of the APIs data-sets. We are not only interested in the
average samples, but also in the ones that represent the variations in traffic observed
throughout the day. Therefore, three samples were chosen for each API corresponding
to low, average, and high traffic. The following steps are performed for each route and
APL

4.4.2.1 Data classification

As showed in Figure 4.9, we clearly observe that the traffic time varies along the day.
To help highlighting the patterns in these two variables, we assign four classes to the
samples according to the departure time vs traffic time graphic. The classes correspond
to the data collection intervals, starting at 00:00, 8:15, 12:00 and 16:45, as shown.
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Figure 4.9: Traffic time in function of departure time for Route 2 of HERE, colored
by class.

4.4.2.2 Statistical analysis of classes

With the datasets divided in classes, we can extract the representatives considering the
identified patterns of traffic and time. As the aim was to capture the traffic variation
within a typical-value range, the selection is based on the traffic time quartiles. From
the table of quartiles and classes assembled for each API in Table 4.5, the upper-
bound, average, and lower-bound samples (highlighted in blue) were selected. We
establish that the samples must belong to different classes, which helps diversifying

the representatives. The values of average speed corresponding to the selected samples
are verified not to be outliers.

e The upper-bound sample: the highest value of the third quartile row (75%);
e The lower-bound sample: the lowest value of the first quartile row (25%);

e The average sample: the value in the second quartile row (50%) which is the
closest to the average of upper and lower bounds.

By applying this method, we are able to select samples with diversified traffic condi-

tions. Tables 4.6 and 4.7 present a summary of the representative samples’ data per
API for routes 1 and 2, respectively.
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] Clusters \ Classl \ Class2 \ Class3 \ Class4 ‘
3rd quartile (75%) 65 478 191 818
2nd quartile (50%) 47 230 153 564
Ist quartile (25%) 31 53 128 264

Table 4.5: Quartiles for traffic time for classes on HERE data for Route 2

API Sample Distance [m] Departure time Duration in traffic Average speed [m/s]
Google Maps  Upper bound 18699 17:09 2443 7.65
Average 18699 09:04 1714 10.91
Lower bound 18699 00:37 1294 14.45
HERE Maps  Upper bound 18796 16:57 2403 7.82
Average 18796 08:39 1995 9.42
Lower bound 18796 00:12 1625 11.57
TomTom Maps Upper bound 18785 17:09 2455 7.65
Average 18785 09:03 1747 10.75
Lower bound 19738 00:00 1607 12.28

Table 4.6: Summary of representative samples per API from Route 1

API Sample Distance [m] Departure time Duration in traffic Average speed [m/s]
Google Maps  Upper bound 26368 16:46 2116 12.46
Average 26366 08:42 1370 19.25
Lower bound 26368 00:29 11960 22.05
HERE Maps  Upper bound 26261 16:58 2146 12.24
Average 26261 08:28 1530 17.16
Lower bound 26261 00:13 1331 19.73
TomTom Maps Upper bound 26290 16:45 2145 12.26
Average 26290 08:55 1342 19.59
Lower bound 26290 00:00 1131 23.24

Table 4.7: Summary of representative samples per API for Route 2

4.5 Route-based driving cycle construction

This section shows how the acceleration and deceleration approach calculates the speed
transitions between route segments. Furthermore, it illustrates how the noise values
are added to the constant speed of each segment, as well as how the sharp edges are
addressed using the smoothing function.

4.5.1 Applying acceleration and deceleration between route
segments

We applied the acceleration and deceleration rates to the beginning and ending inter-
vals to smooth the velocity transition between segments. We determine the maximum
acceleration on the car based on the Nissan leaf’s 2019 [52] acceleration rate for 0/100
km/h. Furthermore, we consider that the acceleration and deceleration rates are the
same. Therefore, even though that car can decelerate under braking faster than ac-
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celeration, the maximum speed transition only occurs if the speed difference between
the two segments is very significant and rarely happens in the case of acceleration.

N

M| $ $3 )

Figure 4.10: The initial driving cycle before the speed transition between segments

Using the data retrieved from the API, we obtain the initial driving cycle as shown in
Figure 4.10. It is characterised by sharp edges, corresponding with unrealistic signifi-
cant speed changes. In addition it does not take into account the technical constraints
imposed by the vehicle and the road characteristics. Therefore, the final driving cycle
needs to be developed realistically before performing the energy consumption estima-
tion.

The process of developing the driving cycle is implemented in iterative manner. In
Figure 4.11, the driving cycle shows three different segments which constant speeds.
The velocity on the first segment is assumed to be at speed Vi, and since the recorded
velocity on the second segment is higher than the vehicle’s velocity on the second
segment, the vehicle needs to accelerate gradually after exceeding point A. the deter-
mination of the acceleration is based on the speed difference between Vi and V5 using
the following equation:

. — v > 10km
a={135’ vy — vy > 1047 (4.2)
2

(UQ — ’01)71}2 - < 10kTm

After determining the acceleration, The time At needed for the vehicle to accelerate
from the velocity in the first segment V; to the following velocity V5 can be calculated
as:

Vo — U1

At =

(4.3)
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Figure 4.11: The gradual acceleration added to the driving cycle

Calculating the distance As the vehicle needs during the accelerating process leads to
the division of the following segment into separated segments as shown in Figure 4.12

a\t?

As = v At + (4.4)

V3

v

| S
| [ [ [

Figure 4.12: Final driving cycle after applying the acceleration method

The first segment has the length ds where the vehicle acceleration is applied until
it reaches the speed V5. The second segment has the length Sy - ds when the vehi-
cle’s velocity is constant and equals V5. The API data speed data are often imper-
fect and inconsistent; it deviates from real-life conditions and constraints. Herefore,
the acceleration between velocities is only sometimes feasible; in other words, for the
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above-analysed case of the acceleration from V; to V5, sometimes the distance that the
vehicle needs to accelerate is longer than the length of the following segment itself.
To overcome this issue, the acceleration V5 will not take place; moreover, we reduce
the speed on the following segment by a small step A, and repeat the process where
the speed on the next segment is V5 - A. This process is repeated until it satisfies the
feasibility of yielding the final driving cycle, as shown in Figure 4.12.

4.5.2 Introducing noise to the speed profile

To mimic a real driving cycle, we add noise to the intervals in which the speed is
constant. The noise is generated as Gaussian distributed random numbers in the
interval [a,b]. Considering that small variations in speed are accepted, a and b are
defined as functions of the maximum and minimum speeds of an interval 7.

1 1
4=-5x —— and b=5x —— (4.5)
manimum(v;) maximum(v;)

The introduced noise slightly changes the constant speed; it is a speed variation to
the average speed we obtained from the API. Therefore, it will impact the distance
travelled. To keep the distance unchanged or with an acceptable difference, after the
noise n is generated for N samples, it is corrected as follows.

N corrected = Ny — N, 1= 17 2a R N (46)

4.5.83 Smoothing the sharp edges

As abrupt variations in speed remain after the acceleration method and noise adding,
the last step consists of smoothing the speed curve. We apply the LOESS (locally
estimated scatter plot smoothing) method, using 4% of the samples for calculating
smoothed values.

LOESS is a method of non-parametric regression that produces a smooth curve by
locally fitting polynomial functions. Thus, the fitted values are determined with neigh-
bouring subsets of data. LOESS, among other methods, and the percentage of samples
are chosen based on a qualitative evaluation of the final driving cycle — the main criteria
are the decrease of sharp edges, preservation of noise-induced variations and preserva-
tion of the cycle when compared to its pre-processing shape. We determine that the
cycle starts and ends at 0 m/s. The speed curve is linearly interpolated from zero to a
speed point near the first and last segment’s speed. Figure 4.13 illustrates the general
framework of the entire process in this chapter, starting from the data collection to
the state of charge estimation in electric vehicles.
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Figure 4.13: Data collection and energy consumption estimation framework

After applying the previous methods, the represented driving cycles are generated as
shown in the Figures 4.14 to 4.16. These figures present the velocity profiles for all
APIs after the representative driving cycles are selected for both routes. It is clear
that the driving cycle for each API is different at some points on the route and quiet
similar at other points along the routes. The generated driving cycles will be used in
the next section to develop the power profile for the electric vehicle. Therefore, the
energy estimation can be performed and the battery dynamics can be captured.
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Figure 4.14: Google Maps driving cycles
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Figure 4.16: TomTom Maps driving cycles
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4.6 Generating the power demand using electric vehicle’s
dynamics

This section considers an electric vehicle model based on existing Nissan Leaf to per-
form the power demand generation and the state of charge estimation based on the
data used on this chapter. With the vehicle speed determined in the driving cycle,
we calculate the power consumed to generate the vehicle, or, in case of braking, the
power provided back to the battery pack [52].

Py Pin
> Motor/
‘ Battery i" --r1--- Gen(;r(z);cor """""" Fe
TNm, TMbrake Ntr
Battery discharge
Accessories (motoring)
4 ______
Battery charge
(regenerative braking)
Figure 4.17: Electric vehicle power transition diagram
Fy(t) = F.(t) + F,(t) + Fa(t) + Fu(t) (4.7)

Starting at the wheels, the traction force F; required for the vehicle’s motion is ex-
pressed by the sum of opposing forces, which is the rolling friction, grade resistance,
aerodynamic drag, and acceleration force [52, 167]. We consider the road slope o = 0
for the full extension of the routes. Even though the road slope data is available from
some API map providers, it was impossible to obtain it accurately in this approach.
Elevation was affected by the waypoint’s manual selection. Therefore, obtaining the
road slope has been a complex task in this approach due to the uneven route segment
length. In addition, the road elevation data is obtained and considered in the following
chapter.

e The rolling resistance, force resisting the movement of the tires on the road
surface:

F.(t) = pymygcosa = pmy,g (4.8)

e Grade resistance, gravitational force acting on the vehicle when it travels along
a sloping road:

F,(t) =mygsina =0 (4.9)
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Aerodynamic drag, force opposing the vehicle motion through the air, in which
the wind speed is not considered:

Fult) = 5pCaAugo(t) (4.10)

Acceleration force, in which the rotational acceleration is expressed with an
additional mass m,., representing the inertia of rotating components:

F.(t) = (m, +my)a(t) (4.11)
Where:
m, = (0.04 + 0.0025G?) x m,. (4.12)

The traction power at the wheels is function of the traction force and the vehicle
speed.

Vehicle’s and environment parameters

Abbreviation Parameter

« road slope

a acceleration [m/s]?

Ay Vehicle frontal area [m?|

Cy Drag coefficient

F, acceleration force [N]

Fy aerodynamic drag [N]

F, grade resistance [N]

F, rolling resistance [N]

F, traction force [N]

g gravity acceleration [m/s]?

G gear ratio

Me curb weight, vehicle mass including battery pack [kg]

my vehicle mass increase representing the inertia of rotating compo-
nents

My total vehicle mass, including passengers [kg]

Norake efficiency of regenerative braking

Mm motor efficiency

Nns transmission system efficiency

p acceleration force [N]

P, traction power [W]

P, motor input power [W]

P motor output power [W]

Ly rolling resistance coefficient

V speed of the vehicle

Table 4.8: vehicle and environmental parameters
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P(t) = F(t) x o(t) (4.13)

To calculate the output power of the motor, we consider the efficiency of the
transmission system 7;s. Therefore, in case of motoring (battery discharge), P,
is positive, and P,,; is expressed by:

(4.14)

In case of battery charge, when P, is negative, the efficiency of the regenerative
braking ny,.x. must be considered in P,,; as well. ny,.q.xe is a function of the speed,
as proposed in [44].

Pout(t) - F)t X Nts X Nbrake (415)
Nbrake = k?l X U(t) + k?g lf ll < ’U(t) < lg

1 if o(t) > 1

where [; and [y are speed thresholds, based on the characteristics of the vehicle,
and ky and ko are fitting constants. [; is the speed from which the vehicle starts
recuperating energy. For higher speeds [,, the regenerative factor reaches its
maximum value, 1. Between [; and [y, the behavior of 7.4 is assumed to be
linear, starting at 0 and finishing at 1.

The input power of the motor is function of its output power and efficiency as
motor or generator, determined with look-up tables proposed in [52]. In case of
motoring, P,,; > 0 and P;, is expressed by:

Pt
Pl = Lt (4.16)
Mm
In case of regenerative braking, P,,; < 0 and P, is:
Py (t) = Pout(t) X 1, (4.17)

Finally, the power provided or received by the battery P, is the sum of the
motor input power and the power consumed by vehicle accessories P,,, such as
air conditioner and light system, which is considered constant.

Py(t) = Pin(t) + Poa(t) (4.18)
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Abbreviation Parameter

SOoC state of charge [%]

Ve open-circuit voltage [V]

I battery current [A]

t,T time [s]

F, acceleration force [N]

C, battery rated capacity

R, internal resistance, in series with load

Table 4.9: Battery parameters

4.6.1 Battery model dynamics and energy consumption es-
timation

The implementation of the battery model, was considering the Rint model proposed in
[37]. This model includes a voltage source V.., representing the open-circuit voltage,
in series with the parallel branch of internal resistance. Any battery model can be
implemented in this part of the research to estimate the state of charge based on our
power profiles. The current model is less complex and validated in previous studies
such as in [37].

Rcharge
—@ [ o =
I
V + _l>|_/\/\/\/_ V
oc C> Rdischarge load

Figure 4.18: The equivalent circuit model based on Rint with two resistors in parallel

Ideal diodes represent the current flow in the resisting branch. For example, when the
battery is discharging, the diode in series with the discharging resistance (Raischarge)
conducts the current; contrarily, in the case of battery charge, the diode conducting the
current is in series with charging resistance (Reparge). Given an initial state-of-charge,
we start by calculating open-circuit voltage V,. in terms of the state-of-charge (SOC),
where [n is the natural logarithm, K, a, b, ¢ and d are constants that were taken from
[52] and adjusted for a better response. This adjustment was empirical and can be
improved in the future.
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Voe(t) = K — a x SOC(t) — bspep (4.19)
+ex In(SOC()) = d x In(1 — SOC(t)) '

The charging or discharging resistance R in the following equation is a function of the
SOC and is determined based on look-up tables obtained from [52]. Then, the battery
current is calculated by:

o ‘/oc(t> - \/‘/;C(t>2 _ 4R3Pb(t)
N 2R,

I(t) (4.20)
The current is positive if the battery is discharging, and negative if it is charging.
Finally, the SOC is estimated with the coulomb counting method [150], in which the
battery current is integrated over time to calculate the transferred charge.

SOC(#) = SOC(to) — Ci 1A (4.21)
SOC(t) = SOC(t—1) + 1 (gm (4.22)

Where SOC(t) is the current state-of-charge, SOC(ty) is the initial state-of-charge,
C, is the rated capacity, I is the current flowing in or out of the battery, t; is the
initial time and ¢, the current time. Alternatively, the SOC' can be expressed in terms

of its previously estimated value SOC(t — 1) and the current for the time interval of
AT = [t —1,1].

The equations of V., I and SOC are applied iteratively over time to obtain the profiles
for a full driving cycle.

4.7 Results

This section presents the power needed for each journey based on each API and route.
It also shows the battery voltage and the state of charge estimation.

4.7.1 Google Maps API

The results in Figure 4.19, show the power profiles needed for cycles obtained using
data from the Google Maps API. The first graph (a) shows the power profile for the
lower bound in the first route, and as a result of many segments containing traffic lights
and roundabouts, we notice the power profile fluctuating due to change in speed and
excessive acceleration. It also contains segments in higher speed limits where there is
a higher power demand.

The state of charge estimation for the lower bound shows that the fully charged battery
dropped to 92% in almost 23 minutes, this was the lower bound in using Google Maps
data, and it involves higher speed due to less dense traffic.
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Figure 4.19 (b), illustrate the power profiles for the same route but for the upper bound
with a high traffic density. This journey consumes an almost similar amount of energy
as the lower bound; however, this is mainly because of the driving at lower speeds and

the regenerative braking functionality. This journey time was around 41 minutes.

Voltage [V]

SOC [%]

Figure 4.20 show the same plots presented for route two illustrating that motor driving
leads to higher power demand; hence, the efficiency is less due to the higher speed.
Figure 4.20 (a), shows the state of charge in lower bound dropped from 100% to 86%
even though the time taken for this journey is approximately 18 minutes. Unlike in
Figure 4.20 (b), the journey duration was almost 34 minutes; however, in the upper
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Figure 4.19: Lower and Upper bounds for Google Maps data Route 1

bound the state of charge was captured at nearly 88% from fully charged cycle.
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4.7.2 HERE Maps API

Figure 4.21, show the power profiles and SOC estimation for the experiments based on
the data obtained from HERE Maps API. As for the power profile in the first route,
the data shows a slightly similar appearance to the previous API profiles. In addition,
the state of charge for that profile dropped to 93% in the lower and lower bounds.
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Figure 4.22: Lower and Upper bounds for HERE Maps data Route 2

Figure 4.22, shows the profiles for the second route, and it is slightly different compared
to Google and TomTom, where it shows less power consumption, but it has more
variation, mainly when the speed is restricted by traffic. This variations in the lower
bound led the SOC to drop from fully charged to almost 87%.
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4.7.3 TomTom Maps API

Figure 4.23, shows the results based on TomTom Maps API for the first route. The
power profiles generated for the first route is quite similar to the same profiles using
Google Maps API data for both bounds. However, the journey time was slightly longer
with slightly less power consumption. The SOC estimation for the upper bound of the
first route was 92% in 44 minutes. The next power profiles in Figure 4.24 showed more
energy consumption on the motorway in the lower bound as a result of driving at the

highest speed limit.

=)

Power [kW]
= N
o o o

Voltage [V]
w
a
N

w
2
T

L —

~ 98
[ 96 F
94t
92

SOC [%

500
Time [s]

(a) Lower bound

S15f
Z10t 1
g 5]
g of
5k " L " L L
0 500 1000 1500 2000 2500
Z352F T
= -
o
£ .
Ssstp T
0 500 1000 1500 2000 2500
e — .
< 98F T
=
o % e
Qoear T
92 L 1 L 1 1 L
0 500 1000 1500 2000 2500
Time [s]

(b) Upper bound

Figure 4.23: Lower and Upper bounds for TOMTOM Maps data Route 1

400 600

800 1000

0 200

400 600
Time [s]

(a) Lower bound

Power [kW]

w
a
)

w
@
=}

NooB
o o

Voltage [V]
w
Q

o

o
S

SOC [%]

©
a

©
=]

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000
Time [s]

(b) Upper bound

Figure 4.24: Lower and Upper bounds for TOMTOM Maps data Route 2



Chapter 4: Driving cycle construction based on map data API

4.8 Conclusion

This chapter constructed different driving cycles based on three API data and two
routes. A data collection framework was developed, which gathered the same data
from different APIs and processed the data to generate representative driving cycles.
We divided the routes into segments using the route segmentation technique. The data
contained the distance, the time taken for the whole journey, the average speed for
the entire journey, and the way-points. We developed a velocity model algorithm and
introduced variations using a random function based on Gaussian normal distribution.

After introducing some randomness to the mean data extracted from the APIs, we
used the locally-weighted scatter-plot smoothing function "LOWESS” in MATLAB
to fit a smooth curve to the randomised data and eliminate any sharp edges. The
data selection was based on data classification and statistical analysis. Finally, an
electric vehicle model based on the Nissan Leaf was implemented to calculate the
power demand and the remaining range for each cycle.

The results showed that the driving cycles are within the range of the existing indus-
trial driving cycles, and the vehicle’s constraints are satisfied. Moreover, it stimulated
the driving patterns for each cycle. The results also show the variation between the
different data sources and the times for the data collection. The state of charge estima-
tion for each cycle and route varies for each route and data source. The route includes
motorway driving, shows massive energy consumption when the vehicle manages to
drive at the highest speed limit and shows less energy consumption when the traffic
density restricts the speed. By contrast, the results also show less energy efficiency for
city driving when the traffic is dense because the journey time is longer.

The proposed velocity model in this chapter work with any dataset that includes
the average speed and road segments. It can produce a real-time velocity profile
construction without collecting more data for extended periods. Unfortunately, it was
almost impossible to integrate weather API and traffic lights detection techniques due
to the restrictions in the map service provider. This drawback makes the accuracy
of the constructed velocity less; however, adding these features will not require any
significant modification to the proposed velocity model. The following chapter aims
to overcome these limitations and consider more data over the route.
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5.1 Summary

This chapter implements another approach to obtain the data from map services API.
This approach retrieves the API data and processes at the run-time. The route seg-
mentation in this approach is more dynamic and applied by the API algorithm, which
results in more segmentation for the route. In addition, we can use it for any road as
long as the API source has the information we require for the road. The data we obtain
includes speed, average time, time considering traffic, way-points and road slope.

5.2 Introduction

Many APIs in this chapter have demonstrated the concept of using external APIs in
pairs with map APIs to obtain more information. The main one is the HERE Maps
API, which retrieves detailed route information. In addition, another OpenStreetMap-
based API is used in conjunction with the Overpass API to obtain traffic light coor-
dinates. This API only allows us to obtain the vehicle’s maximum speed on a specific
route. However, it cannot be used because it does not take into account real-time
traffic. In addition, as they both collect data from the same server, this API works
seamlessly with the Overpass API. As a result, we examined the impact of traffic
lights and how much they affect energy consumption. Finally, we used OpenWeather
to gather wind speed and direction data. The weather data was combined with the
HERE Maps information, and the data was then prepared and processed in order to
construct the driving cycles using various techniques. As a result, we generated the
power profiles and estimated the SOC for each driving cycle using the EV and battery
models implemented in the previous chapter.

5.3 Dynamic data collection

The data collected in this chapter is different from the one in the previous chapter. It
contains more information about the route, and it processes the data and constructs
the driving cycle as soon as the data returns from the API. Furthermore, the API
applies the route segmentation and is not restricted to our desire, which means that
the waypoints can differ in each API call. This technique makes the driving cycle gen-
eration more generic, and we can apply it to any route on the map. In the forthcoming
sections, we will explain the data collection process and the driving cycles generation.
Figure 5.1 illustrates the overview of the data collection along with the data process.
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Data Collection Driving Cycle Vehicle Model
and Processing Construction
* Route * Acceleration and » Energy
information deceleration consumption
« Weather data intervals prediction
« Data formatting * Speed variation + SOC estimation

* Curve smoothing

Figure 5.1: The general workflow for the data collection, driving cycle development
and the energy consumption estimation

5.3.1 Impact of traffic lights on electrical energy balance

In order to assess the limitation of API usage for retrieving traffic lights” geographical
locations, we aim to evaluate their impact on electrical energy balance numerically.
For simplification, we simulate a driving cycle with a constant speed, considering ac-
celeration and deceleration at the beginning and end of the route. The exact vehicle
and battery parameters applied in the previous chapter are used. Regarding the route
information, we consider the road slope and the wind speed equal to zero and the
temperature at 20°. We set the constant speed for the first simulation at 15 m/s and
the travel duration at 2000 s. Without the stops, the travelled distance is 27 km, and
for each stop corresponding to the traffic lights, the vehicle decelerates, stops for 30 s
and accelerates, returning to the speed of 15 m/s. It is essential to mention that,
with stops, the route duration increases to conserve the travel distance. Therefore, the
time required for the vehicle to finish the route at constant speed is added before the
deceleration at the end of the driving cycle. Figures 5.2 and 5.3 show the simulated
driving cycles along with their respective power profiles and SOC estimations. Finally,
we calculate the energy balance from the power profiles, which is the sum of the energy
provided and received by the battery, for the two presented cases and simulations with
one and three stops, Table 5.1. Each stop represents an increase in energy consump-
tion, which, in this simulation, is equivalent to approximately 11 Wh. By simulating
different values of constant speed, we notice that, between 5 and 20 m/s, the balance
increases with the number of stops, while between 25 and 45 m/s, it decreases. There-
fore, we conclude that the impact of stops on energy balance depends primarily on
the travelling speed and the number of stops in the route; nonetheless, it represents a
small portion of energy balance (less than 1 per cent) in all cases of our simulation.
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Furthermore, the status of traffic lights is not provided by the APIs, which makes it
necessary to consider the probability of them being green or red. Thus, considering
traffic lights or not, we admit uncertainty in energy prediction and SOC estimation.
Given the liability of APIs and the low impact on energy balance, traffic lights are
not considered in our latest implementation. However, strategies for overcoming these
limitations in routes can be investigated in future work.
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Figure 5.2: Simulated driving cycle (constant speed of 15 m/s) and the respective
power profile with SOC estimation without traffic lights
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Figure 5.3: Simulated driving cycle (constant speed of 15 m/s) and the respective
power profile with SOC estimation with two traffic lights

‘ Number of traffic lights ‘ Energy balance [kWh] ‘
| 0 2.1185 |
| 1 | 2.1295 |
| 2 | 2.1405 |
| 3 | 2.1515 |

Table 5.1: Energy balance for simulated routes with and without stops at a constant

speed of 15 m/s
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5.3.2 Data collection

In this part HERE Map and OpenWeather APIs were used to collect the relevant
data to construct the driving cycles and consider the weather conditions that possibly
influence the energy consumption for electric vehicles.

5.3.2.1 Graphhopper API data (OSM)

Graphhopper is a Java-based open-source routing library and server that offers a web-
based Maps interface and a routing API via HTTP. It uses OpenStreetMap data for
routing information and elevation data. This API is fast and efficient and works with
Overpass API to obtain the coordinates for any traffic light in a given route. However,
the drawback of this API is that it doesn’t consider real-time traffic and only returns
the maximum possible speed. The real-time traffic can be only considered when routing
applications purchased from graphhopper for business purposes such as good’s delivery.
The speed profile using this API in conjustion with Overpass API for the traffic light
is shown in figure 5.4
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Figure 5.4: Driving cycle obtained from graphhopper API showing the maximum speed
and the traffic lights on the route

5.3.2.2 HERE Map API

The HERE Routing API is a JSON RESTful HTTP API that calculates routes be-
tween two or more places in various areas across the globe. The HERE Routing API
enables users to provide parameters that affect route computation and request extra
information about a route to meet particular requirements [164]. The HERE Maps
API documentation is provided in the Appendix section.
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5.3.2.3 OpenWeatherMap API

OpenWeatherMap API is one of the most popular options for accessing free weather
data. Users may make up to 60 requests per minute using the API’s extensive free
plan. It includes access to current weather data, predictions, and weather maps for
many cities around the globe [168]. The inputs for this API and the other related
documentation are illustrated in the Appendix section.

5.3.2.4 Comparison with previous implementation

B Definition on way points:

The manual segmentation performed on the first implementation was based on
prior knowledge of the route. Due to the extension of the segments the resolution,
and therefore, the accuracy of road data, such as the slope, are compromised.
Therefore, the average speed is not returned by the API, but calculated based on
time and distance, and the road slope is not applied in the power calculations.
With the automatic segmentation, performed by the API at the request, the small
length of segments allow the road slope to be considered and the average speed
to be returned along with other solicited variables. In this case, we admit the
possibility of minor changes in the route according to the traffic at the requested
time. These variations are considered acceptable, although a point of attention
when validating results. Overall, the number of segments in automatic way-point
selection is substantially higher than the one in manual selection. For instance,
in Route 1 the number of segments in automatic selection is approximately 5
times the one in manual selection.

B Integration of data collection and processing:

In the current application, API data are processed immediately after collection
on MATLAB. In the previous implementation, data collection is executed on
Python, and the API response is saved in a csv file. The driving cycle generation
and power calculations are processed in MATLAB. The need to manipulate data
and execute scripts between the two platforms is a disadvantage compared to
the current application. Table 5.2 and Table 5.3 illustrate the main differences
between the data collection in Chapter 4 and Chapter 5.

Data Previous Current
Collection Implementation Implementation
. Version 7 8
APT Calling Defining waypoints Manual Automatic\Dynamic
Platform Python MATLAB
Output Format .csv Files MATLAB array/matrix
Integration of
data collection No Yes
and processing

Table 5.2: API data collection main differences between two different implementation
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API response Previous Implementation | Current Implementation
Departure time Yes Yes
Departure coordinates Yes Yes
Arrival time Yes Yes
Arrival coordinates Yes Yes
Average speed without traffic No Yes
Average speed with traffic No Yes
Length Yes Yes
Duration without traffic Yes Yes
Duration with traffic Yes Yes
Road elevation No Yes
Speed limit No Yes

Table 5.3: API data responses comparison between two different implementation

5.3.3 HERE API response

5.3.3.1 Polyline

e Data decoding (flexible polyline) in Python to obtain list of coordinates.

e Data type conversion (Python tuple to MATLAB matrix containing coordinates
"latitude and longitude” and route elevation).

5.3.3.2 Data formatting

e Relevant information is extracted from the Data structure and stored in arrays
to facilitate indexing.

e Road slope is calculated based on route elevation for each segment.

5.3.4 OpenWeatherMap response

e Wind speed in driving direction

e Ambient temperature
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Segment 1 2 3 .. N-1 N
Distance [m] 5 | 25 | 449 | ... | 63 | 38
Speed[lff;srj[‘rafﬁc 78 | 7.8 233 ..| 81 |64

HERE API Road Elevation
100 | 100 | 110 | ... 95 90

[
Wind Speed 9 9.9 9 1.9 | 1.8
[m/s]

Wind Direction
OpenWeather [o] 30 30 31 27 27
Map API Ambient ’[Io‘gl]nperature 90 | 20 | 20 | | 21 | 21

Table 5.4: Data samples obtained from each API for each segment along the route

5.4 Driving cycle construction and energy estimation

5.4.0.1 Speed profile

The acceleration method used in Chapter 4 is applied in this chapter. To smooth
the transition of speed between intervals, we apply acceleration and deceleration rate
to the beginning and end of intervals. Based on Nissan Leaf’s 2019 performance for
acceleration from 0 to 100 km/h, we determine the maximum acceleration on the car
(Electric vehicle database). In the equation below, the variables v; and vy are the
speeds of two consecutive intervals. The speed variation A, denotes if the vehicle is
accelerating - A, > 0,a > 0 - or decelerating - A, < 0,a < 0. If the speed remains
constant between intervals (A, = 0), the acceleration is zero.

It is determined that, for a speed variation equals or greater than 10 km/h, the ac-
celeration function saturates at its maximum value, 3.5 m/s?. In case of deceleration,
the saturation occurs at -3.5 m/s?. For a variation between 0 and 10 km/h, the ac-
celeration function is linear, in which the coefficient multiplying A, ensures the curve
continuity at A, = £100km/h.

28.49

A0 m/s if [Av| < 100 km/h
a= { +3.51 m/s if |Av| > 100 km/h for Av = vy — vy (5.1)

For each segment, the acceleration and deceleration intervals are based on the speeds
from the previous ¢ — 1, the actual ¢ and the next ¢ + 1 segments. The acceleration
occurs at the beginning of the segment, while the deceleration occurs at the end. If
none of the conditions below are satisfied, the speed along the segment is constant.

{ if v; > v;_; then accelerate (a > 0)
)

if v; > v; 41 then decelerate (a < 0 (5-2)
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Acceleration [m/s?]
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Figure 5.5: Acceleration (a) in function of speed variation (Av)

In case there is an acceleration, deceleration, or both, we calculate the distance (s,)
and time (t,) required in acceleration/deceleration. If s, or t, are lower than the length
of (ss) or duration (ts) of the segment, the remaining time of the segment (5 —¢,) has
a constant speed (v;).

If s, or t, are higher than the length or duration of the segment, t, becomes the
duration of the segment. In case of acceleration, the speed of actual segment is reduced
to the value reached by the end of the segment. In case of deceleration, the speed of
the next segment is increased to the value reached by the end of the previous segment.
For both cases, we consider the acceleration/deceleration calculated with the original
speed values.

=== if a > 0 (acceleration)
22 if g < 0( deceleration ) (53)

2
Sq = Vj_1t, + a%

5.4.1 Adding noise to the speed profile

To simulate the real driving cycle, we add noise to the intervals in which the speed has
low variation. The noise is generated as a random numbers based on Gaussian normal
distribution in a range [a, b]. Given that we admit low variations in speed, a and b are
defines as functions of the maximum and minimum speeds in an interval i. The noise
addition method was used in Chapter 4 and it can be expressed as:
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1
minimum (v;)
1

maximum (v;)

(5.4)

To ensure that the noise addition does not interfere in the travelled distance and the
average speed we used the same equation in Chapter 4 to correct it as follows:

N corrected = Mi — N, 1= 17 2’ T N (55>

5.4.2 Smoothing function

Moreover, the smoothing function used in the previous chapter was used to deal with
sharp edges on the speed profile due to speed change or noise addition to representing
the actual driving patterns. Figure 5.6 shows the initial driving cycle of untreated
data from the API and the one after processing using the above methodology. It can
be noticed that this driving cycle was performed in the early morning when the route
is busier than usual, and that appears when the speeds drop down in the Motorway.
Moreover, we receive more segments from the API when we apply the dynamic segmen-
tation selected by the API instead of manually configuring the waypoints to identify
the route segments, such as the one in chapter 4. This method enhances the accuracy
of the average speed of each segment and enables us to obtain the road slope for them.
LOESS (locally estimated scatterplot smoothing) is a method of non-parametric re-
gression that produces a smooth curve by locally fitting polynomial functions. Thus
the fitted values of the velocity over time, in this case, are determined with neighbour-
ing subsets of data [169]. This method and its percentage of samples are chosen based
on a qualitative evaluation of the final driving cycle. The main criteria are the de-
crease of sharp edges, preservation of noise-induced variations and preservation of the
cycle when compared to its pre-processing shape. The cycle must start and end at or
near the speed of 0 m/s, which is only sometimes possible in the smoothing function.
Furthermore, to overcome this situation, the speed curve is linearly interpolated from
zero to the speed value of the nearest speed provided in the first and last segments at
the start and the end of the route.
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Figure 5.6: Driving cycles for Route 2 using HERE Map Data
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5.5 Power profile generation

Fi(t) = F.(t) + F,(t) + Fu(t) + Fu(t)

In Figure 4.17 in chapter 4; the diagram of components, power, and force on the applied
EV model is depicted. With the vehicle’s speed determined in the driving cycle, we
calculate the power consumed to propel the vehicle or, in the case of braking, the power
provided to the battery. In the previous implementation, we considered the road slope
a = 0. However, we obtain the road slope at every segment in this chapter. The
traction force F} is composed of rolling friction, grade resistance, aerodynamic drag,
and acceleration force. We can obtain the total force by using the following equation:

(5.6)

e The rolling resistance, force resisting the movement of the tires on the road

surface:

F.(t) = p,mug cosa

(5.7)

e Grade resistance, gravitational force acting on the vehicle when it travels along

a sloping road:

F,
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e Aerodynamic drag, force opposing the vehicle motion through the air, where the
wind speed is considered this time:

Filt) = £pCaddos(0(t) — W(1))? (5.9)

e Acceleration force, in which the rotational acceleration is expressed with an
additional mass m,., representing the inertia of rotating components:

Fo(t) = (me + my)a(t) (5.10)

Where:

m, = (0.04 + 0.0025G?) x m, (5.11)

In Addition to the list of variables used in Chapter 4, Table 4.9 we added the following
variables:

Environment parameters
Abbreviation Parameter
P air density
T average ambient temperature along the route
w wind speed in driving direction [m/s]

Table 5.5: environmental parameters obtained from OpenWeatherMaps API

e The traction power at the wheels is function of the traction force and the vehicle
speed.

P, = F(t) x o(t) (5.12)

e To calculate the output power of the motor, we consider the efficiency of the
transmission system 7;s. Therefore, in case of motoring (battery discharge), P,
is positive, and P,,; is expressed by:

Py(t)
Nts

Pout(t) = (5.13)

5.5.1 Regenerative braking

In case of battery charge, when P, is negative, and a regeneration factor nmy.qr. must
be considered in P,,; as well. Expressed in terms of the speed, nMy.qre denotes the
power available for recuperation in regenerative braking, considering torque and speed
condition [44].
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Pout(t> = Pt X Nts X Nbrake (514)
Nbrake = kﬁl X U(t) + k?g if 11 < ?J(t) < lQ

1 it w(t) >y

where [; and [, are speed thresholds, based on the characteristics of the vehicle, and k;
and ky are fitting constants. [y is the speed from which the vehicle starts recuperating
energy. For higher speeds ls, the regenerative factor reaches its maximum value, 1.
Between [; and ls, the behavior of ny.qre is assumed to be linear, starting at 0 and
finishing at 1.

e The input power of the motor is function of its output power and efficiency as
motor or generator, determined with look-up tables proposed in [52]. In case of
motoring, P,,; > 0 and P;, is expressed by:

P (t) = (5.15)
e In case of regenerative braking, P,,, < 0 and P, is:

Pyp(t) = Pout(t) X 0 (5.16)

e Finally, the power provided or received by the battery P, is the sum of the
motor input power and the power consumed by vehicle accessories P,,, such as
air conditioner and light system.

By(t) = Ppn(t) + Poa (5.17)

5.5.2 Awuxiliary system and ambient temperature

The power consumed by the auxiliary system is considered as a function of the average
ambient temperature along the route (T,,,;,) as it is associated with heating and air
conditioning. Between —15° and 20°, the power varies linearly from 6000 W to 200 W
[52]. In order to cover a wider range of ambient temperature, we consider the samve
variation of temperature and power and determine a symmetric linear function for the
interval from 20° to 55°. For temperature values outside the range from —15° to 55°,
the power is considered constant at its maximum.

if —15 <Tym < 20then P,, = —165.71 x Ty, + 3514.3
if 20 < T < 55 then Py, = 165.71 X Ty, — 3114.3
if Torp < —15 or Tomp > DD then P,, = 600
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Figure 5.7: Power consumed by accessories (P,,) in function of ambient temperature
along the route (T},,,s)

5.5.83 Temperature and auxiliary power

In order to demonstrate the impact of auxiliary consumption during a trip, we run the
application for Route 2 with different levels of average ambient temperature as shown
in Tables 5.6 and 5.7. The tests are executed sequentially to achieve a low variation
of average speed, which allows us to compare the energy balance and final SOC values
obtained. Comparing the results for maximum and minimum values auxiliary power,
we observe a variation of 2.07 kWh in the energy balance. This variation represents
approximately 66% of the basic energy balance (not considering auxiliary power) for
this route. The percentage impact of auxiliary consumption is less substantial in
situations where the basic energy balance higher in longer routes, or in higher levels of
average speed, for example. Nonetheless, with a higher basic consumption, the power
consumed by accessories can became an important contribution and a concern in terms
of driving range. Therefore, it is important to consider the auxiliary power, especially
as a function of driving conditions, when predicting the EV energy consumption.

Test (~6 pm GMT) Duration [s] Length [m] Average Speed [m/s] Temperature [°C] _Auxiliary Power [kW] Bnergy Balance [KWh] SOC [%] Balance variation [kWh] SOC Variation [%]
1 1313 26033.24 19.83 -15 6.000 5.36 78.11 0.31 -1.26

1321 26040.76 19.71 -10 5.171 5.05 79.37 0.30 -1.23

1317 26054.06 19.78 -5 4.343 4.75 80.60 0.30 -1.26

1299 ): 20.04 0 3.514 4.45 81.86 0.29 -1.15

1300 20.03 5 2.686 4.16 83.01 0.27 -1.12

1291 20.16 10 1.857 3.89 84.13 0.29 -1.17

1278 26069.51 20.40 15 1.029 3.6 85.30 0.31 -1.26

3 1285 26077.53 2029 20 0.200 320 8656 - -

AVERAGE 1300.5 26045.94 20.03 - - - 82.37 0.30 -1.21

STD DEVIATION 15.53 19.00 0.25 - - - 2.93 0.01 0.06

0| 1| & en| | co| 1o

Auxiliary Consumption [kWh] Max Power Min Power
2.1883 0.0714

Table 5.6: Tests on evaluating the auxiliary consumption in kWh by tuning the tem-
perature from the lowest to the optimal temperature.

- 105 -



Chapter 5: Remaining range estimation based on dynamic route data retrieval

Test (~6 pm GMT) Duration [s] Length [m] Average Speed [m/s] Temperature [°C] Auxiliary Power kW] Energy Balance [kWh] SOC [%] Balance variation [kWh] SOC Variation [%]

8 1285 26077.53 20.29 20 0.2 3.29 86.56 -0.31 1.26
9 1286 26134.15 20.32 25 1.028 3.60 85.30 -0.35 1.42
10 1261 26085.97 20.69 30 1.857 3.95 83.88 -0.29 1.22
11 1272 26005.87 20.44 35 2.685 4.24 82.66 -0.27 1.09
12 1272 26013.09 20.45 40 3.514 4.51 81.57 -0.29 117
13 1276 26008.26 20.38 45 4.343 4.80 80.40 -0.28 1.15
14 1274 26016.31 20.42 50 5.171 5.08 79.25 -0.31 1.29
15 1273 26023.49 20.44 55 6 5.39 77.96
AVERAGE 1274.875 26045.58 20.43 - - - 82.20 -0.30 1.23
STD DEVIATION 7.94 47.61 0.12 - - - 2.98 0.03 0.11

Table 5.7: Tests on evaluating the auxiliary consumption in kWh by tuning the tem-
perature from the optimal to the highest temperature.

5.5.3.1 SOC estimation

For the state-of-charge estimation we used the model proposed in [37]. This model was
used also in Chapter 4, and it has been validated against a real battery experiments.
The battery model characteristics shown in Figure 4.18. Figure 5.8 shows the power
profile and the SOC estimation for Route 1, this journey was captured during the
afternoon when the traffic is smooth and quiet.
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Figure 5.8: Power profile and SOC estimation for Route 1 during the middle of the
day

5.6 Results and discussion

In this section, three driving cycles were constructed using HERE Maps API. We
considered an extended route to the previous routes as this implementation does not
need previous way-points configuration.
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5.6.1 Route 1

Figure 5.9 illustrates the driving cycle for Route 1. Compared to the driving cycles
of the same route presented in the previous chapter Figure 4.15, we can notice a
slight similarity in the speed patterns; however, there is a higher variation due to the
intensive route segmentation. Contrarily to manual segmentation, which requires prior
knowledge from the user, the routing technique in this section is route-independent and
follows the fastest route in every execution. Therefore, this method leads to variations
in the speed profile, as we notice in Figure 5.9.

Processed driving cycle
T T

25

20

Speed [m/s]
o
T

o
T

0 I I I I I I
0 200 400 600 800 1000 1200

Time [s]

Figure 5.9: Route 1 driving cycle performed in early morning using HERE Maps API

The power consumption and the SOC estimation for the above journey are depicted
in Figure 5.10. The power profile presents higher variation due to many factors, such
as regenerative braking, road slope resistance and wind direction/speed consideration.
Moreover, the higher number of segments on this implementation also contributes to
the power variation. The higher and lower power are similar to the ones for the same
journey performed using previous implementation in Figure 4.21.
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Figure 5.10: Power profile and energy consumption estimation for Route 1 driving

cycle

5.6.2 Route 2

For Route 2, the driving cycle is shown in Figure 5.11. It presents close resemblance
to the lower bound profile, shown in Figure 4.15, in terms of shape, although it has
different speed limits. We observe higher levels of acceleration and deceleration due to
the increased number of segments provided by the API and the presence of a motorway
in the route. Therefore, the power profile in Figure 5.12 shows higher variation and
higher power consumption compared to the power profile in Figure 4.22.

Processed driving cycle

Speed [m/s]

. . . . . .
0 200 400 600 800 1000 1200
Time [s]

Figure 5.11: Route 2 driving cycle performed in early morning using HERE Maps API
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Figure 5.12: Power profile and energy consumption estimation for Route 2 driving
cycle

5.6.3 FExtended Route

The following route demonstrates the flexibility of adapting the application to any
route covered by HERE Maps. It shows a long route with various road structures
involving a motorway, city driving, dual and single carriageways. It also has different
road characteristics, such as different road gradients and many direction changes. For
instance, the driving cycle in Figure 5.13 shows a lower speed at the beginning and the
end of the route with significant variations due to the city, village driving, different
speed limits and traffic. However, the middle of the route shows higher speed and lower
variation where the journey passes through the motorway. The power profile and the
SOC estimation show this journey’s intensive power demand and energy consumption
Figure 5.14. The length of the journey is 64.17 miles, and it consumes more than
60% of a fully charged battery considering the Nissan Leaf EV’s battery model, as
considered in the previous chapter.

Processed driving cycle

. . . . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time [s]

Figure 5.13: The extended Route driving cycle performed in early morning using
HERE Maps API
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Figure 5.14: Power profile and energy consumption estimation for the extended Route
driving cycle

5.7 Conclusion

This chapter uses HERE Map API as the primary data source to request and re-
trieve the routing and traffic-related required data for developing driving cycles and
calculating electric vehicles” energy consumption.

With the methods discussed in chapter 4 for the driving cycle construction, acceler-
ation/deceleration, noise and smoothing, we can approximate the retrieved API data
to a real driving cycle. The generated speed profile is feasible in speed transition and
considers slight variations through the noise and curve smoothing, keeping a low error
in travelled distance and route duration. We managed to improve the results by col-
lecting data at execution time and processing more variables, such as wind speed and
ambient temperature. These improvements allow us to have more precise accuracy in
energy consumption prediction and SOC estimation. This accuracy can be validated
by performing real journeys using the actual EV. In addition, we have faster responses
and more reliable applications to retrieve and process the required data.

The results validated the driving cycles’ range in chapter 4 and introduced more vari-
ations within the journey. This chapter also presented and examined the impact of
traffic lights on the route and evaluated their influence. It also evaluated the impact
of using the auxiliary systems on the EV when using the AC and the heating system
on several journeys. Even though the traffic lights consideration does not contribute
significantly to energy consumption, it was impossible to integrate the Overpass API
with HERE Map API to allocate the traffic lights within the route and predict whether
they are green or red. This process might limit the driving cycles from being more
accurate and realistic. Therefore, finding a reliable, more compatible data source that
works with maps API to identify the traffic lights on any route on the map on the
run-time will be interesting.
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Chapter 6: Experimental results for all generated driving cycles

6.1 Summary

This chapter illustrates part of the laboratory experiments for battery dynamics and
SOC estimation. In addition, it presents an overview of the equipment used for valida-
tion, including batteries, software and hardware. Finally, these results are compared
to SOC and power profiles generated with the implemented battery model.

In the experiments, the battery experts extract the current profiles of the driving
cycles considering their battery characteristics. Then, they import the current as
an urban driving cycle load to discharge the battery. The output, which consists of
battery voltage and current, is recorded with the EC-Lab software and exported to a
spreadsheet.

The experimental data are compared to our model’s power, SOC and energy balance
results. We estimate the SOC from both sources with the Coulomb counting methods.
The analysis of the validation will be discussed in the forthcoming sections.

6.2 Introduction

Even though the constructed driving cycles in this research are realistic and within
the range of the current standard driving cycles, we can validate them using several
techniques. One validation approach is to analyse and evaluate the generated driving
cycles against the driving cycles in the literature. Another approach is to generate
a real journey physically using the same route and the exact vehicle’s specification
and trip time. However, this approach is time-consuming and can add congestion to
the traffic, which is not efficient and environmentally friendly. Therefore, the driving
cycle’s validity is possible when used to discharge a real battery available in some
laboratories; then, we can analyse the battery’s outputs and compare them to the
model’s output, including power demand and SOC estimation.

6.3 Testing tools and equipment

6.3.1 Battery specifications

The battery module used for these experiments is from first generation Nissan Leaf
EV with 56 Ah capacity and up to + 100 A. The driving cycles were converted to
current profiles for each cycle, then imported to EC-lab software as urban profile to
cycle the module. The data was recorded in the EC-lab, exported to Excel files, and
plotted in terms of voltage, energy and capacity. Figure 6.1 shows the battery module
used for performing the validation tests.
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Figure 6.1: Battery module from first generation Nissan Leaf EV (li-ion)

6.3.2 Software

The software used to control the validation process is called: BioLogic EC-Lab Software
[170]. EC-Lab helps to control multiple devices using a single interface, providing
centralised experiments control. It is mainly used to analyse the performance of energy,
fuel cells and batteries. The software is user-friendly; it simplifies the workflow and
helps the user to work more efficiently.

6.4 Battery dynamics, power profile and SOC validation
for driving cycles based on three APIs data

This section will provide insight into the validated results carried out at the lab using
the above techniques and tools. It will illustrate the battery dynamics for one cycle for
each API, including the voltage, current, power and SOC profiles. Furthermore, it will
focus on the energy statistical data and show the differences in energy consumption on
each cycle. This section includes the driving cycles produced in Chapter 4 based on
three different APIs. The SOC and the power profiles were considered in the following
comparisons for four driving cycles. The other driving cycles and the battery dynamics,
such as voltage and current profiles, will be added to the appendices. The driving
cycles generated using dynamic route data retrievals, as described in chapter 5, can be
validated using the same techniques and equipment. The longer route driving cycles
need further analysis before performing any validation process.
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Figure 6.3: Model and experiment output for Route 1 on February 11", 2020, at 00:00
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Google API)
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Figure 6.5: Model and real experiment output for Route 1 on October 23", 2019, at
16:45 (Data source: Google APT)
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Figure 6.6: Speed profile for Route 1 on September 19", 2019, at 00:30 (Data source:
HERE Maps API)
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Figure 6.7: Model and real experiment output for Route 1 on September 19", 2019,
at 00:30 (Data source: HERE Maps API)
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Figure 6.8: Speed profile for Route 2 on October 3™, 2019, at 16:45 (Data source:
TomTom API)
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Figure 6.9: Model and real experiment output for Route 2 on October 3'¢, 16:45 (Data
source: TomTom API)

6.4.1 Comparison analysis

This section compared theoretical and experimental results for some of the driving
cycles with high and low traffic (Upper and lower bounds for speed). The theoretical
results refer to the data obtained with the presented model. Experimental data was
generated in the university laboratory using the EC-Lab software. Figures 6.2, 6.4,
6.6 and 6.8 above present the speed profiles for the corresponding driving cycles we
validated. In addition, power profiles and SOC estimation of the above driving cycles
are illustrated in Figures 6.3, 6.5, 6.7 and 6.9.

Theoretical and experimental battery power and SOC curves present very similar be-
haviour in all the studied cycles. Overall, by comparing the speed cycle with the power
profile and the SOC estimation, we observe that power peaks coincide with the most
significant variations in speed. In high deceleration, we notice negative peaks in power
and ceases in SOC provided by the regenerative braking. Contrarily, in the case of
high acceleration, the power profile shows positive peaks, while the SOC estimation
varies.
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Route | API Traffic | Median Absolute Percentage Error (%]
Current | Power Energy Balance

Google High 11.24 11.00 5.14
Low 7.16 10.01 9.44
1 High 8.87 10.08 6.46
udtine Low 9.13 12.04 8.54
TomTom | Low 6.87 8.71 7.59
Google Low 5.94 9.70 4.90
2 HERE Low 5.91 5.91 2.66
TomTom | High 6.22 7.68 2.77

Table 6.1: Median Absolute Percentage Error in Power Profiles by Drive Cycle.

In the SOC estimation, the curves grow apart throughout the route as our SOC esti-
mation decreases faster than the experimental curve. This variation is explained by
the difference in battery capacity values considered in the model and the experiment.

Due to memory limitations of the testing device used in the experiments, two of the
upper-bound speed cycles - Google’s data for Route 1 Figures 6.4 and 6.5 and Tom-
Tom’s data for Route 2 Figures 6.8 and 6.9 are partially analysed. The respective
power and SOC profiles present 61% and 73% of the total route duration.

6.4.2 Statistical analysis

To assess the model performance, we start by calculating the absolute percentage error
between validation and model values for each point in a cycle. Then, given the resulting
right-skewed error distributions, we choose the median as a central tendency measure,
allowing us to summarise these calculations for each cycle. This choice also reduces
the impact of extreme error values, derived mainly from power peaks, beginnings, and
ending of cycles. Table 6.1 presents the median absolute percentage errors for current,
power and energy balance. Across all cycles, the average error is 7.7% for current, 9.4%
for power, and 5.9% for energy balance. Furthermore, this shows that power curves
represent the most significant area for development. However, considering that several
functions and parameters in the model are approximations, we consider these accept-
able ranges of error. Finally, comparing our results with the experimental data allows
us to validate the model response. It also provides a reference for future improvements,
such as adjusting parameters and refining or adding auxiliary functions, for instance,
estimating the rolling resistance coefficient and power consumed by accessories.

6.5 Conclusion

This chapter used four driving cycles from 3 different map APIs, twelve in total, to
compare the battery model output to the actual experiments performed. In addition,
eight driving cycle outputs were used for the statistical analysis to illustrate an insight
into the percentage error and behaviour similarity between the model and the actual
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battery. Finally, we generated battery current and power demand for each journey,
and the battery experts used these profiles to discharge the Nissan Leaf battery in the
laboratory. In addition, comparing our results with the experimental data allows us to
confirm the model’s consistency. This validation will also support us as a reference for
further improvements, such as adjusting parameters and refining or adding auxiliary
functions, i.e. the estimation of the rolling resistance coefficient and power consumed
by accessories. Furthermore, the software used to capture the battery dynamics in
the lab has limited memory leading to some inconsistency in some of the validation
results; therefore, some validation will be repeated. In addition, more driving cycles
can be validated using the method we implemented in chapter 5 after we studied the
possible approach to avoid any memory issues or data inconsistency caused by longer
routes.
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CONCLUSIONS, LIMITATIONS AND
FUTURE WORK

7.1 Summary

This chapter summarises the whole thesis, emphasises the contributions and outlines
the work achieved in each chapter. In addition, it will present the limitations and
challenges of this domain. Finally, it outlines and discusses the potential future work.

7.2 Thesis summary

Chapter 2: This chapter provided an overview of the technology behind electric ve-
hicles, discussing its history and the obstacles it faces. In addition, it has analysed
the previously conducted research on this area. Finally, it focused on research that
considers outside factors in predicting the energy consumption of EVs.

Chapter 3 This chapter presented power profiles for four standard driving cycles.
First, it processed the driving cycle data, which consists of velocity versus time, to
find the parameters to calculate the power profile for each cycle. Then, it generated
power profiles to show the differences in the SOC when the traffic conditions influence
the driving patterns. Each profile was used as power inputs for two generic battery
models, namely the Equivalent Circuit and Shepherd’s mathematical models. These
models were configured using MATLAB scripts and SIMULINK blocks to estimate
the SOC and capture the voltage and current dynamics of the battery. The models
were explained in detail, along with their limitations. Finally, the simulation, SOC
estimation and voltage measurement results were discussed and analysed.

Chapter 4 This chapter constructed different driving cycles based on three API data
and two routes. It presented a data collection framework to gather the same data from
different APIs and process the data to generate realistic driving cycles. We divided
the routes into slices using the route segmentation technique. The data contain the
distance, the time taken for the whole journey, the average speed for the whole journey,
and the waypoints. We developed a velocity model algorithm and introduced variations
using a random function based on Gaussian normal distribution. After introducing
randomness to the mean data extracted from the APIs, we used the locally weighted
scatterplot smoothing function "LOWESS” in MATLAB to fit a smooth curve to the
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randomised data and eliminate any sharp edges. The data selection is based on data
classification and statistical analysis. An electric vehicle model based on the Nissan
Leaf was implemented to calculate each cycle’s power demand and the remaining range.

Furthermore, this chapter shows that the generated driving cycles are within the range
of the existing ones, and the vehicle’s constraints are satisfied. Moreover, it stimulates
an acceptable driving pattern for each cycle. The results also show the variation
between the different data sources and the times for the data collection. The state of
charge estimation for each cycle and route varies for each route and data source. The
route includes motorway driving, shows massive energy consumption when the vehicle
manages to drive at the highest speed limit and shows less energy consumption when
the traffic density restricts the speed. In contrast, the results also show less energy
efficiency for city driving when the traffic is dense because the journey time is longer.

Chapter 5 and retrieve the routing and traffic-related required data for developing
driving cycles and calculating electric vehicles’ energy consumption.

With methods discussed in chapter 4 for the driving cycle construction, accelera-
tion/deceleration, noise and smoothing, we can approximate the retrieved API data
to a real driving cycle. The generated speed profile is feasible in speed transition and
considers slight variations through the noise and curve smoothing, keeping the minimal
error in travelled distance and route duration. We improved the results by collecting
data at execution time and processing more variables, such as wind speed and am-
bient temperature, which have a less significant impact in normal conditions. These
improvements allow us to achieve higher energy consumption prediction and SOC esti-
mation accuracy. In addition, we have faster responses and more reliable applications
to retrieve and process the required data. The results validated the driving cycles’
range in chapter 4 and introduced more variations within the journey. This chapter
also presented and examined the impact of traffic lights on the route and evaluated
their influence. It also evaluated the impact of using the auxiliary systems on the EV
when using the AC and the heating system on several journeys.

Chapter 6 This chapter used four driving cycles from 3 different map APIs, twelve in
total, to compare the battery model output to the actual experiments performed. In
addition, eight driving cycle outputs were used for the statistical analysis to illustrate
an insight into the percentage error and behaviour similarity between the model and
the actual battery. Finally, we generated battery current and power demand for each
journey, and the battery experts used these profiles to discharge the Nissan Leaf battery
in the laboratory. In addition, comparing our results with the experimental data allows
us to confirm the model’s consistency. This validation will also support us as a reference
for further improvements, such as adjusting parameters and refining or adding auxiliary
functions, i.e. the estimation of the rolling resistance coefficient and power consumed
by accessories. Furthermore, the software used to capture the battery dynamics in
the lab has limited memory leading to some inconsistency in some of the validation
results; therefore, some validation will be repeated. In addition, more driving cycles
can be validated using the method we implemented in chapter 5 after we studied the
possible approach to avoid any memory issues or data inconsistency caused by longer
routes.

The proposed approach could also be improved by applying different techniques to
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enhance the estimation accuracy. For instance, machine learning techniques can be
considered to use the real world for driving and traffic and energy consumption mea-
surements. In addition, combining the presented model with other techniques could
also improve the accuracy of the proposed approach. These techniques include but are
not limited to, using deep learning to detect vehicle speed based on video streams and
neural network methods to predict vehicle velocity based on real-traffic information.
It is also possible to investigate and study the driving behaviours of multiple regions
and cities. The driving patterns of each driver are different; therefore, it significantly
impacts energy consumption. Understanding how the driver reacts to the traffic situ-
ation is an exciting area; this could be combined with existing models to estimate the
power demand for EVs better. However, this involves many challenges, such as access-
ing the drivers’ data and sensing the driving behaviours. In addition, the map service
providers are expanding and improving the data quality and reliability. Therefore, it
can help improve EV estimation by providing more detailed data for the routes and
traffic.

7.3 Limitations

The limitations in this thesis can be classified in five categories:

7.3.1 Capturing the real-time traffic precisely

The map’s real-time traffic situation can only be obtained using the existing maps
service providers. The existing maps information providers are competing with one
another, and they are careful of collecting their data; therefore, they have introduced
some obstacles to avoid any competitors from gathering the data regularly. They
offered to sell some of their historical data; however, it is less valuable since they are
minimal. This limitation made it quite difficult for us to collect more data that can
allow us to study the traffic patterns to improve the velocity estimation within the
route.

7.3.2 Predicting the driving behaviours

This is one of the most challenging parts of this domain, even with conventional vehi-
cles. Although the roads are restricted with speed limits and traffic congestion, it has
been vital to estimate the driver’s behaviours over the route. Every driver is unique,
and the driving patterns can be influenced by multiple factors, including emotional,
psychological and cultural behaviours. These factors might significantly impact the
rate of acceleration and deceleration. Hence, this will significantly affect the battery
discharging rate and energy consumption.
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7.3.3 Smooth integration of different data sources

The data needed to have a better estimation on electric vehicles, including but not
limited to; traffic status, speed limits, route information, weather information. These
parameters cannot be obtained using a single data source to achieve real-time esti-
mation or estimate the energy consumption for the route ahead before starting the
journey. For instance, the route and traffic information can be collected using Tom-
Tom Maps. However, it is challenging to integrate another API to collect the weather
data for the same route. Another example can be integrating another API besides
HERE Maps to collect the coordinates for every traffic light on the route, as discussed
in chapter 5.

7.3.4 Accessing historical data

Many organisations can cooperate in providing historical data recorded for a single or
multiple routes. These data might include the number of cars passing in a particular
street, vehicle’s speed, and much more. This kind of data can only be analysed within
the road or city where the data was collected; therefore, it is less helpful to apply to
other routes.

7.3.5 Making more generic estimation

Estimating the energy consumption for an electric vehicle can be challenging even if
we have the necessary data for the estimation parameters. This challenge includes the
variations on the current models of electric vehicles, and this variation includes the
maximum range of each model that it can travel. Thus, if we managed to estimate
the energy consumption for an average vehicle that can travel for 200 miles within a
single charge, then the estimation can be less accurate for vehicles with less range.

7.4 Future direction

There are several future directions beyond the scope of this thesis; however, they are
related directly or indirectly to the energy consumption estimation and the energy
efficiency of EVs. These directions may address many existing challenges in addition
to the energy estimation accuracy. These challenges include but are not limited to the
following.

7.4.1 Behavioural-based energy consumption estimation anal-
YS1S
One of the main unanswered questions for energy consumption estimation of EVs is

how to predict driving patterns. The driver behaviour may have a degree of relevance
to energy consumption. Attaching sensory devices to a sufficient number of actual
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vehicles may reveal behavioural patterns of interest. For instance, real-time sensors
are attached to the battery management systems on the vehicles for a sufficient amount
of time helps understand drivers’ driving patterns. Thus, future work will consider the
impact of driving behaviours on the energy consumption estimation. Predicting the
driver’s behaviours will improve the accuracy of the energy consumption estimation.
However, this will need a considerable amount of data collected from many drivers and
vehicles.

7.4.2 The influence of energy consumption estimation on
planning the power generation

The concept of electric vehicles is one of the main components of a typical smart grid
architecture [171]. Therefore, it would be interesting to see how energy consumption is
relevant to other components. For instance, energy consumption may increase planning
and estimating power generation accuracy and reliability. In addition, Integrating
a significant number of EVs into the power grid can help the power generators to
understand the energy consumption levels in EVs. However, some complex issues
associated with this process need to be further investigated and assessed to analyse
the economic consequences. For instance, the distribution of charging stations and
faster chargers is expanding inside cities and workplaces. As a result, the effects
of EV charging are likely to impact the power grid systems’ distribution directly.
These consequences vary from overheated power transformers to the need for additional
facilities of power distribution infrastructure.
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