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Abstract

Gaussian process regression (GPR) is a kernel-based non-linear non-parametric model

which is widely used in many research fields. Functional data analysis handles data which

are in the form of functions, shapes or more general objects, such as a stochastic process.

A challenge in GPR is how to deal with non-Gaussian distributed data which has been

increasingly recorded in scientific and industrial fields. The thesis contains two main con-

tributions: (i) extensions of GPR for non-Gaussian data, and (ii) the development of a

Gaussian process functional regression (GPFR) model for manifold-valued data. First, we

review the GPR model and the GPFR model with their properties and inference methods,

followed by a summary of background mathematics for Riemannian manifolds, some spe-

cial probability distributions and some useful algorithms. After the literature review, we

introduce a truncated Gaussian process regression (TGPR) model which is an extension of

Gaussian process regression for data with a truncated normal distribution. We also study

a normal distribution with multi-truncation. In addition, Gaussian process regression is

extended to model Gamma-distributed data and this model is denoted as GPRG. After-

wards, we generalise the GPRG model to high-dimensional outputs. Simulation studies

are used to assess the performance of the TGPR and GPRG models have good prediction

accuracy. We then move on to consider more complex manifold-valued data. We introduce

a novel regression model for such data within a probabilistic framework, called wrapped

Gaussian process functional regression. We describe an algorithm in which mean structure

and covariance structure are estimated simultaneously and then updated iteratively. Var-

ious simulation experiments are presented, and these show our model outperforms some

other models. The proposed method is applied to some flight trajectory data and provides

accurate predictions for missing parts of the trajectories.
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Chapter 1

Introduction

1.1 Research motivation

Over the past decades, statistical regression models have attracted more attention in sci-

entific, engineering and social research. In these fields, Gaussian distributed data are

widely assumed (Salkind, 2010). It follows that Gaussian process regression (GPR) is nat-

urally a reasonable and essential technique for such data, which learns the non-linear rela-

tionship between one-dimensional or multi-dimensional predictor variables and Gaussian-

distributed response variables non-parametrically with Bayesian interpretation. However,

in the real world, many data are not normally distributed. One of challenging and impor-

tant contributions of this thesis is to consider some regression models for non-Gaussian

distributed data in which we use GP as a latent process and derive efficient algorithms

for inference, such as estimation and prediction. Specifically, we first extend the Gaussian

process regression model for truncated-Gaussian-distributed data and Gamma-distributed

data via different methods. In addition, with the development of technology, more complex

data can be recorded, such as manifold-valued functional data with replicated measure-

ments which are also called batch data (group data). For example, we suppose there are

two batches s1 = {X1,i(t), i = 1, ..., n1} and s2 = {X2,j(t), j = 1, ..., n2} where X1,i(t)s

refer to a set of similar stochastic processes and X2,i(t)s refer to another set of similar

stochastic processes. Due to lack of a vector space structure, it is not reasonable to apply

traditional regression methods, such as GPR and functional linear regression (FLR), on

a Riemannian manifold directly. Therefore, we introduce a novel regression framework
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within a probabilistic framework for functional batch data (as known as group data) on

Riemannian manifolds.

1.2 Gaussian process regression, functional data analysis

and extensions

Since Gaussian process regression has many attractive properties, such as probabilistic

prediction and a Bayesian framework, it is considered as an effective and essential model

for regression or classification problems (Williams and Rasmussen, 2006). In addition,

for non-linear problems, GPR is an alternative to unsupervised learning (MacKay, 1997).

There is also a connection between GPR and neural networks: a neural network with

one layer and an infinite number of neurons is equivalent to a Gaussian process (Neal,

2012). Moreover, by applying a Karhunen-Loéve orthogonal expansion (Wahba, 1990), a

Gaussian process can be decomposed to an infinite weighted sum of eigen-functions whose

coefficients follow independent normal distributions. Therefore, GPR is also an extension

of a standard linear regression model.

As an extensively used regression model, GPR can be also considered as a Bayesian

non-parametric model over stochastic process with a Gaussian process prior involving mean

function and covariance function. The posterior is still a Gaussian process which provides

a distribution of predictions. Flexible choices of covariance function, such as squared

exponential (SE) covariance function and Matérn class (MC) covariance function, enable

scholars to accommodate a wide range of non-linear regression problems. Furthermore,

researchers can incorporate their prior knowledge into the regression model which makes

GPR more efficient.

There are many applications of Gaussian process regression in the real world. For

example, in spatial statistics and geostatistics, researchers have used the same model for

some years under the name of kriging (Diggle et al., 2003). In addition, many regression

and classification problems in machine learning have been successfully treated by GPR

(Williams and Rasmussen, 2006). Moreover, some covariance functions are not restricted

to only univariate predictor variables, and so, Gaussian process regression can naturally

be applied to high-dimensional problems.
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In the last two decades, functional data analysis (FDA) has become an attractive

research field in statistics. On the one hand, functional data can be considered as realisa-

tions {X1(t), X2(t), ..., Xn(t)} of a stochastic process X(t) in a functional space, where n is

the sample size. In addition, the stochastic process X(t) is usually considered in L2[a, b],

which means E[
∫ b
a X

2(t)dt] < ∞. On the other hand, functional data can also be viewed

as realisations {X1(t), X2(t), ..., Xn(t)} of a stochastic process X(t) on a set T , such as the

time set [T1, T2]. The former is often applied for theoretical analysis and modelling, while

the latter is more consistent with the actual observed data in the real world. In addition,

functional data exist in many practical problems. For example, Xi(t), i = 1, ..., n, can

represent the temperature at time t in year i, the pollution index at time t in place i, the

spectral absorption rate of substance i where t refers to wavelength, the load of servers i

at time t and so on. More complex functional data include brain data and neuroimaging

data, which is one of the latest researches in neuroscience.

One essential tool in FDA is functional regression model which aims to capture the

relationship between response variables and predictor variables. Both response variables

and predictor variables could be functional or scalar. We focus on functional response

variables with both functional and scalar covariates in this thesis. In a random function

X(t), X(t1) and X(t2) will not generally be independent for t1 ̸= t2, and so we consider

mean structure and covariance structure simultaneously.

There is a challenge for implementation and theory in FDA since the random variable

is in the form a function which is intrinsically infinite-dimensional. On the other hand,

functional data brings information in abundance. Measurement errors of accuracy can be

viewed as a random noise around a smooth function which often contaminates observed

data. When replicated measurements for a functional response for a subject can be made,

measurement error can be accommodated (Wang et al., 2016).

There are many extensions of statistical methods to functional data, such as regression,

classification and clustering with a wide class of applications. For example, Abraham et al.

(2003), Serban and Wasserman (2005) extend k-means algorithm in FDA via B-spline basis

functions and Fourier basis functions respectively. Shi and Wang (2008) propose Gaussian

process functional regression (GPFR) for curve prediction and clustering. Müller et al.

(2005) introduce a functional classification model based on functional binomial regres-
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sion. McLean et al. (2014) provide a functional generalized additive model for regression

problems in which the smooth independent functions are bivariate.

The traditional applications of Gaussian process regression model are restricted by

some assumptions, such as the response variable following a normal distribution. Moreover,

the curves in FDA typically take values in a Euclidean space. However, many observed

data in the real world do not satisfy such assumptions.

To address this issue, Wang and Shi (2014) introduce a generalized Gaussian process

functional regression for data which follow an exponential family distribution. In addi-

tion, Dai et al. (2018) propose functional principal component analysis on Riemannian

manifolds, especially on spheres, which is carried out by the Riemannian logarithm map.

Gaussian process regression is extended to Riemannian manifolds by an exponential wrap-

ping function (Mallasto and Feragen, 2018). In this thesis, we further develop the model

in Wang and Shi (2014) by using an ABC algorithm for prediction in Section 3.3. We

also extend the model for multi-variate response variables. In Section 4.2.1, we combine

the ideas in Mallasto and Feragen (2018) and Wang and Shi (2014) to give a concurrent

regression model for functional data on Riemannian manifolds.

1.3 Statistical analysis on Riemannian manifolds

Regression is an ubiquitous and powerful tool in data analysis which reveals the rela-

tionship between predictor variables and response variables. Most well known regression

models require an underlying linear space structure, such as Gaussian process regression

(Shi and Choi, 2011), Bayesian lasso regression (Hans, 2009) and support vector regres-

sion (Smola and Schölkopf, 2004). However, statistical models for manifold-valued data

are gaining popularity in various fields of scientific analysis, such as computational social

science, medical imaging analysis and computer vision (Bronstein et al., 2017). As a re-

sult, it is desirable to develop methods which capture the complicated relation between

predictors and response variables by regression models in non-Euclidean spaces, such as

smooth Riemannian manifolds.

A popular topic in statistical analysis on Riemannian manifold is manifold learning

or subspace learning. If the dimension of covariates is very large, ranging from thousands
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to millions, it is important to reduce the dimension to avoid the curse of dimensionality.

For example, Guhaniyogi and Dunson (2016) introduce compressed Gaussian processes

which combine the low-rank Gaussian process and random feature compression. Calandra

et al. (2016) develop manifold Gaussian process regression. In their model, a neural

network is used to learn the low-dimensional latent feature space, and then the relationship

between the low-dimensional latent feature space and response variables is modelled by

a Gaussian process regression model. Landmarking with Gaussian processes is another

essential method to landmark a manifold which transforms the objective function by active

learning in Gaussian process. In addition, Moon and Pavlovic (2008) propose a dimension

reduction technique by reformulating kernel setting which is manifold kernel dimensionality

reduction in Gaussian process. In addition, Chen and Müller (2012) provide a manifold

learning procedure based on nonlinear dimension reduction method for functional data.

In this thesis, we mainly focus on another compelling research field which is regression

models for manifold-valued data. The lack of vector structure makes even straight forward

issues such as computing a sample mean, much more challenging. For instance, if we apply

an Euclidean statistical method to non-Euclidean data, the result might not even lie in the

target space. Hence, sophisticated techniques for data analysis on Riemannian manifolds

are needed. Geodesic regression (Fletcher, 2013) is a generalization of linear regression in

which the univariate predictor variables are considered in R and the response variables take

values on a Riemannian manifold. The author also derives a gradient descent algorithm

to fit the model via derivatives of exponential map and Jacobi fields, since the least

squares method has no analytical solution under this setting. Kim et al. (2014) extend

geodesic regression to the multivariate case in which the predictor variables are in Rn

and the response variables are still manifold-valued. In addition, the authors propose a

variational gradient descent method based on parallel transport which is more convenient

for high-dimensional input. Moreover, Cornea et al. (2017) introduce an intrinsic geodesic

regression for typical manifold-valued response variables lying in a Riemannian symmetric

space, with multiple covariates within Euclidean space. The authors also develop several

methods to estimate the coefficients in this model. Multiple linear regression is generalised

by Petersen and Müller (2019) for complex random objects in metric spaces and the authors

develop local linear or polynomial regression as well. To the analysis of varying shapes,
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Nava-Yazdani et al. (2020) provide an approach to decompose the tangent vectors into

vertical and horizontal vectors, which can be applied to geodesic regression in Kendall’s

shape space efficiently. In addition, Lin and Yao (2020) study functional regression for

scalar response variables and non-Euclidean predictors from an unknown manifold.

However, in the real world, non-Euclidean data do not always satisfy the assumption

of a linear relationship. Pelletier (2006) proposes a non-parametric regression approach

for response variables in Euclidean space and covariates in a closed Riemannian mani-

fold by extending kernel regression estimation. For trajectory analysis on Riemannian

manifolds, Su et al. (2014) provide a framework which registers automatically and pro-

motes the analysis for time-warped trajectory via transported squared-root vector field

and and L2 norm between these fields. Furthermore, Banerjee et al. (2016) introduce a

kernel-based nonlinear regression model for both manifold-valued independent variables

and manifold-valued dependent variables. In addition, Hinkle et al. (2012) extend polyno-

mial regression on Riemannian manifolds. Cornea et al. (2017) develop a regression model

for manifold-valued response variables in a Riemannian symmetric space and covariates in

Euclidean space with applications in medical imaging analysis. Nevertheless, these models

are restricted due to the lack of a probabilistic framework.

To break this limitation, Pigoli et al. (2016) introduce an additive linear model for

manifold-valued data which is based on the exponential map. In particular, they trans-

form the manifold-valued data into tangent spaces and then estimate the parameters of

the additive linear model by the generalised least squares methods. Moreover, kriging

prediction is also generalized into manifolds therein. Lin et al. (2018) discuss an extrinsic

Gaussian process for regression and classification on manifolds in which the covariates

have a manifold-valued structure and the response variables belong to Euclidean space.

Additionally, Mallasto and Feragen (2018) propose a wrapped Gaussian process regression

which is another non-parametric model with a probabilistic framework by linearizing the

Riemannian manifold to a tangent space via the inverse exponential map. Moreover, the

computation of wrapped Gaussian process regression is relatively cheap since the only

difference between Gaussian process regression and wrapped Gaussian process regression

is to calculate exponential map and logarithm map for each manifold-valued data point.

Other statistical analyses for manifold-valued data have been developed, especially
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variants of principal component analysis (PCA). For example, Fletcher et al. (2004) intro-

duce principal geodesic analysis which is a generalisation of principal component analysis

on Riemannian manifolds by requiring the geodesic principal components to pass through

the intrinsic mean, and calculate them approximately in Euclidean space. In addition,

Huckemann et al. (2010) propose a method to obtain sample geodesic principal component

for general quotients with computation on Riemannian manifolds directly rather than in

Euclidean space. Another extension of principal component analysis for nested spheres is

provided by Jung et al. (2012) via a decomposition method. In addition, Lila et al. (2016)

propose a PCA technique for functional data on 2-dimensional Riemannian manifolds and

the authors adopt a regularization method by a smoothing penalty coherent with geodesic

distances. Moreover, Dai et al. (2018) formulate Riemannian functional principal compo-

nent analysis by mapping data to the tangent space at the intrinsic Fréchet mean function,

and then performing multivariate functional principal component analysis within that tan-

gent space. Nonetheless, some manifolds cannot be embedded in Euclidean space in a

natural way, such as p×p SPD matrices. In order to analyse functional data on more gen-

eral Riemannian manifolds, Lin et al. (2019) introduce the theory to map manifold-valued

data to a tensor Hilbert space instead of an ambient Euclidean space. They also focus on

the foundational theory for functional data on Riemannian manifolds which paves a way

to develop functional linear regression for manifold-valued data and intrinsic Riemannian

functional principal component analysis. On the other hand, from a Bayesian perspective,

Bhattacharya and Dunson (2010) extend non-parametric Bayesian methods and theory,

including the Gibbs sampler for posterior computation, on manifolds and compact metric

spaces. For some other topics, Le (2001) calculates a Fréchet mean of probability mea-

sures by using Jacobi fields and the contraction mapping theorem on locally symmetric

Riemannian manifolds. Additionally, a gradient descent algorithm, named Competitive

Learning Riemannian Quantization, to approximate a probability measure over Rieman-

nian manifold is introduced (Le Brigant and Puechmorel, 2019). Moreover, Chakraborty

et al. (2019) present a sampling algorithm for the normal distribution and computation

of Fréchet mean recursively on Stiefel manifolds which are Riemannian homogeneous but

not symmetric.

To the best of our knowledge, there is little literature about regression models for
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the functional batch data on Riemannian manifolds within a probabilistic framework.

Therefore, we provide a novel scheme for nonlinear non-parametric regression with uncer-

tainty for batch data on smooth Riemannian manifolds. In this thesis, we construct this

regression model by estimating mean structure and covariance structure simultaneously.

Specifically, a functional regression model is used for mean structure with functional coeffi-

cients and scalar covariates, while a Gaussian process is used for covariance structure with

functional predictor variables. We also assume the existence and uniqueness of a Fréchet

population mean function for random curves on Riemannian manifold, as assumption B2

in Dai et al. (2018). In order to guarantee the exponential map and the inverse exponential

map exist almost everywhere on a Riemannian manifold, we assume the injectivity radius

of the Riemannian manifold is large enough 1. For batch data, which is also called group

data, we introduce a variation of WGPFR where all curves in a batch share a common

mean structure. In addition, the wrapped Gaussian process functional regression with

common mean structure plays an essential role in data analysis especially in long-term

forecasting of the manifold-valued stochastic process. When the test data are distant

from the training data, the output mainly depends on the mean structure. Therefore, the

estimation of common mean structure determines the extrapolating accuracy.

1.4 Contributions and outlines of thesis

There are two main contributions in this thesis. One is to extend Gaussian process regres-

sion model for data which follow a truncated normal distribution or Gamma distribution.

The second is a wrapped Gaussian process functional regression model for batch data

on Riemannian manifolds. The novel methodologies, inference schemes and simulation

studies are discussed in Chapter 3, Chapter 4 and Chapter 5.

The thesis is organised as follows.

In Chapter 2, we review the definition and inference of the Gaussian process regres-

sion model, convolved Gaussian process and Gaussian process functional regression model.

This chapter also contains mathematical concepts, computational tools and notation for

smooth Riemannian manifolds. In addition, a brief summary of some special probability

1The definition of injectivity radius is discussed in Section 2.4.1
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distributions, such as the truncated normal distribution and wrapped Gaussian distribu-

tion, are presented. We discuss the differential evolution algorithm (DE) and approximate

Bayesian computation (ABC) which are applied in hyper-parameter estimation and pre-

diction.

In Chapter 3, we study Gaussian process regression for non-Gaussian data which fol-

low a truncated normal distribution. Basically, we consider GPR as a latent process and

the prediction can be calculated by Gibbs sampling. Analogously, in Gaussian process

regression for Gamma-distributed data, GPR also plays a role as a latent process. The

analytical forms of estimation and prediction are derived based on Gaussian approximation

of the full conditional density p(f |y, k,θ) in Equation (3.18). However, since the Gamma

distribution is not symmetric, the Gaussian approximation brings an error leading to in-

accurate predictions. In prediction part, we use an approximate Bayesian computation

method instead, since ABC is likelihood-free which avoids the influence from the sym-

metric property of the Gaussian approximation of the full conditional distribution whose

real distribution is non-symmetric. In addition, the GPR for Gamma-distributed data is

extended to high-dimensional data by a convolved Gaussian process.

In Chapter 4, a wrapped Gaussian process functional regression for manifold-valued

functional batch data is introduced. We use a functional linear regression to model the

tangent vector functions from the intrinsic Fréchet mean function to the functional data

points, which is referred to as the mean structure. Then, we use a Gaussian process to

model the tangent vector functions from the mean structure to the functional data, which

is called the covariance structure. We propose an efficient iterative algorithm to update

the mean structure and covariance structure. The mean structure can be updated and

the covariance structure can be estimated iteratively until some convergence conditions

have been satisfied. In Chapter 5, we present some numerical experiments, on 2-sphere

and Kendall’s shape space, for this model compared to other models, which shows that

our model outperforms others. An application for flight trajectory data is also presented.

Additionally, the sensitivity of wrapped Gaussian process functional regression model with

various kernels is studied, which leads to the predictions of our model are accurate regard-

less of the choice of kernel.

In Chapter 6, we conclude this thesis and discuss future work.
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Chapter 2

Preliminaries

2.1 Gaussian process regression

A Gaussian process is a special stochastic process in which any finite collection follows a

multi-variate Gaussian distribution. Mean vector and covariance matrix specify a multi-

variate Gaussian distribution, thus, mean function and covariance function (as known

as kernel) determine a Gaussian process. In practice, people usually suppose the mean

function of a GP is zero. However, we can choose a non-zero mean function based on

specific context. For example, Shi et al. (2007), Wang and Shi (2014) use functional linear

regression model as the mean function. The main challenge in Gaussian process regression

or Gaussian process classification is to estimate the hyper-parameters in kernel, which is

often denoted as θ. In this section, we firstly review Gaussian process regression model

under weight-space and function-space. Afterwards, we discuss some methods to estimate

the hyper-parameters in kernel. In addition, some other attractive and useful research

fields on Gaussian process regression model are also discussed briefly, such as the selection

of covariance functions and Gaussian process latent variable models.

2.1.1 Weight-space view

The linear regression model is explored and used widely in which the response variable

can be represented as a linear combination of predictor variables (Montgomery et al.,

2021). We start from considering the linear regression model under Bayesian framework

(Bolstad and Curran, 2016). Suppose the training data set is denoted as D = {xi, yi|xi ∈
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Rp, yi ∈ R, i = 1, ..., n}, where xi refers to independent variables, yi refers to a dependent

variable and n refers to the number of data points. Our target is to derive the conditional

distribution of response variable given covariates. In addition, a linear regression model

with Gaussian white noise is

yi = f(xi) + ϵ, f(xi) = x
T
i w (2.1)

where w is a vector of coefficients. The error between function f(xi) and response variable

yi is defined by independent and identically distributed normal distribution with zero mean

and covariance σ2, which is denoted as

ϵ ∼ N (0, σ2)

where N (µ, σ2) refers to a normal distribution with mean µ and variance σ2.

Therefore, the likelihood function can be obtained directly

p(y|X,w) =

n∏
i=1

p(yi|xi,w)

=

n∏
i=1

1√
2πσ

exp
(
− (yi − xT

i w)2

2σ2
)

=
1

(2πσ2)n/2
exp

(
− |y −XTw|2

2σ2
)

∼ N (XTw, σ2I)

(2.2)

where | · | refers to Euclidean norm X = (xT
1 , ...,x

T
n )

T and y = (y1, ..., yn)
T .

The calculation of the posterior distribution over coefficient vectors in Bayesian linear

regression model is based on the Bayes’ rule, which is

posterior =
prior× likelihood

marginal likelihood
. (2.3)

Since the marginal likelihood in Equation (2.3) is independent of weights, we can
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formulate and simplify the Bayes’ rule as

p(w|X,y) = p(y|w, X)p(w)

p(y|X)

=
p(y|w, X)p(w)∫
p(y|w, X)p(w)dw

∝ p(y|w, X)p(w).

(2.4)

Suppose the prior distribution of coefficients vector w is a multi-variate Gaussian

distribution with zero mean and covariance matrix Σ, i.e. w ∼ N (0,Σ). Therefore, the

posterior distribution of coefficients vector w is

p(w|X,y) ∝ exp
(
− 1

2σ2
(y −XTw)T (y −XTw)

)
exp

(
− 1

2
wTΣ−1w

)
∝ exp

(
− 1

2
(w − µ)T ( 1

σ2
XXT +Σ−1)(w − µ)

) (2.5)

where µ = σ−2(σ−2XXT + Σ−1)−1Xy. By observing Equation (2.5), we can recognize

that the posterior distribution follows a multi-variate Gaussian distribution. Specifically,

we have

p(w|X,y) = N
(
σ−2(σ−2XXT +Σ−1)−1Xy, (σ−2XXT +Σ−1)−1

)
. (2.6)

For prediction, we integrate out all possible parameters by their posterior distribution

which is the crucial difference between Bayesian community and frequentist community.

The predictive distribution of a new input x∗ in the Bayesian context with respect to the

Gaussian posterior is given by

p(f(x∗)|X,y,x∗) =

∫
p(f(x∗)|x∗,w)p(w|X,y)dw

= N
( 1

σ2
x∗(σ−2XXT +Σ−1)−1Xy,x∗(σ−2XXT +Σ−1)−1x∗) (2.7)

As mentioned previously, the linear regression model learns the linear relationship

between predictor variables and response variables which is a restriction, since the real

relationship might be non-linear. To break this limitation, the predictor variables can

be projected into a high dimensional feature space by basis functions, such as B-splines

(Brigger et al., 2000) or power series (Niven, 1969), and in that space, the relationship
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might be linear. Besides, we model the mapped data rather than the original data.

We now consider the Bayesian linear regression model in the context of high-dimensional

feature space. Suppose the projected independent variables are referred to ϕ(x) and the

corresponding design matrix becomes Φ(X). The model with noise is

y = f(x) + ϵ = ϕ(x)Tw + ϵ. (2.8)

Moreover, the predictive distribution is

p(f(x∗)|X,y,x∗) ∼ N
( 1

σ2
ϕ(x∗)(σ−2Φ(X)Φ(X)T +Σ−1)−1Φ(X)y,

ϕ(x∗)(σ−2Φ(X)Φ(X)T +Σ−1)−1ϕ(x∗)
) (2.9)

The Equation (2.9) can be rewritten as

p(f(x∗)|X,y,x∗) ∼ N
(
ϕ(x∗)TΣΦ(X)(K + σ2I)−1y,

ϕ(x∗)TΣϕ(x∗)− ϕ(x∗)TΣΦ(X)(K + σ2I)−1Φ(X)TΣϕ(x∗)
)

(2.10)

where K = Φ(X)TΣΦ(X). Williams and Rasmussen (2006) show Equation (2.9) and

Equation (2.10) are equivalent. The feature space enters in the form of ϕ(x∗)ΣΦ(X),

ϕ(x∗)TΣϕ(x∗) and Φ(X)TΣϕ(x∗) whose entries are invariably of ϕ(x)TΣϕ(x′). In addi-

tion, x and x′ could either in the training data or the test data.

The kernel is defined as k(x,x′) = ϕ(x)TΣϕ(x′) which is an inner product with respect

to Σ. Since Σ is a positive definite matrix, we can define (Σ1/2)2 = Σ by applying singular

value decomposition. Suppose ψ(x) = Σ1/2ϕ(x), the kernel can be represented by a dot

product that is

k(x,x′) = ψ(x) · ψ(x′). (2.11)

We briefly reviewed an explanation of Gaussian process regression by Bayesian linear

regression, which is helpful for us to understand GPR in weight-space. Additionally,

another explanation (in functional space) of GPR will be reviewed in the next part and

the inferences of our models are derived based on it since we study the functional data.
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2.1.2 Function-space view

In this section, we discuss GPR under the view of function space which is more related to

our research in Chapter 3 and Chapter 4. We can derive the inference in function space

directly that is equivalent to the analysis in the context of weight-space view. A Gaussian

process f(·) is completely determined by mean function and covariance function

µ(x) = E[f(x)]

k(x,x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))] = Cov(f(x), f(x′))

Then, we can denote

f(x) ∼ GP(µ(x), k(x,x′)). (2.12)

Connecting to Section 2.1.1 in which the Bayesian linear regression model is assumed

as f(x) = ϕ(x)Tw and w ∼ N (0,Σ), we have

E[f(x)] = E[ϕ(x)Tw] = ϕ(x)TE[w] = 0

E[f(x)f(x′)] = ϕ(x)TE[wwT ]ϕ(x′) = ϕ(x)Σϕ(x′) = k(x,x′).

Suppose the training data is still D = {xi, yi|i = 1, , , ., n}, we have a multi-variate

Gaussian distribution that is

(
f(x1), ..., f(xn)

)
∼ N (µ,K) (2.13)

where µ = (µ(x1), ..., µ(xn))
T and K is a n × n covariance matrix and the entry of the

(i, j)-th element is k(xi,xj). To obtain the predictive distribution of a new input x∗, it

is convenient to the take advantage of properties of joint Gaussian distribution (Ahrendt,

2005)

 y

f(x∗)

 ∼ N

 µ

µ(x∗)

 ,

K + σ2I K(x∗, X)T

K(x∗, X) k(x∗,x∗)

 (2.14)

where X = (x1, ...,xn), y = (y1, ..., yn)
T and K(x∗, X) = (k(x∗,x1), ..., k(x

∗,xn)) is a
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1× n covariance vector. The predictive distribution has an analytical form which is

p(f(x∗)|D) ∼ N (K(x∗, X)T (K + σ2I)−1(y − µ) + µ(x∗),

k(x∗,x∗)−K(x∗, X)T (K + σ2I)−1K(x∗, X))
(2.15)

When we compare Equation (2.15) to Equation (2.10), we can see that they are equiv-

alent and the only difference is that the representation of lower dimensional feature space.

Specifically, a kernel function is used in the former while the product of covariance vector

and covariance matrix is used in the latter.

2.1.3 Estimation of hyper-parameters

There are many prediction problems in this thesis, such as in Section 2.2. In addition,

the prediction of Gaussian process regression model depends on covariance function when

the mean function is fixed or pre-trained and the value of covariance function depends

on hyper-parameters. In this section, we discuss how to estimate hyper-parameters by

empirical Bayesian approach.

The values of hyper-parameters θ control shape and variability of regression curve.

However, in practice, it is difficult to explain the physical meaning between hyper-parameters

and data clearly. Misspecified estimation may lead to poor predictions especially for

small sample size. Therefore, we use empirical Bayesian approach to estimate the hyper-

parameters θ by observed data rather than calculate the values directly.

The marginal distribution for response variables y given prior hyper-parameters θ is

p(y|θ) =
∫
p(y|f)p(f |θ)df (2.16)

where y|f =
∏n

i=1N (f(xi), σ
2) and f |θ = N (0,K). In addition, K is a n × n covari-

ance matrix computed by covariance function with hyper-parameters θ. According to

the definition of regression model with additive noise, the marginal distribution of y is

N (0,K + σ2I) = N (0,Ψ). Thus, the marginal log-likelihood function of θ is

l(θ|X,y) = −1

2
log(|Ψ(θ)|)− 1

2
yTΨ(θ)−1y − n

2
log(2π) (2.17)
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and its derivative with respect to each hyper-parameter is given as

∂l

∂θj
=

1

2
tr
(
(Ψ−1y(Ψ−1y)T −Ψ−1)

∂Ψ

∂θj

)
(2.18)

where tr(·) refers to trace of a matrix. The second derivative is given by

∂2l

∂θi∂θj
=

1

2

(
(Ψ−1y(Ψ−1y)T −Ψ−1)(

∂2Ψ

∂θi∂θj
− ∂Ψ

∂θi
Ψ−1 ∂Ψ

∂θj
)− (Ψ−1y(Ψ−1y)T

∂Ψ

∂θi
Ψ−1 ∂Ψ

∂θj

)
(2.19)

The hyper-parameters θ can be estimated by maximising the marginal log-likelihood

function (2.17) based on some iterative optimisation methods, such as the conjugate gra-

dient descent algorithm (Press et al., 2007) by using the first order gradient in Equation

(2.18) and the second order gradient (2.19). In Section 3.1.3, we use this method and these

gradients to estimate the hyper-parameters of a GPR. Another approach for estimation is

based on Markov Chain Monte Carlo (MCMC) when we know little knowledge about the

initial values. The details of the MCMC algorithm and efficient implementation can be

found in Chapter 3 of Shi and Choi (2011).

In Section 3.1, we used the minimization approach above, but in Section 3.3, a variant

of genetic algorithm is used since the marginal likelihood function is different from (2.17).

2.1.4 Different covariance functions

In GPR, the hyper-parameters in kernel is similar to smoothing parameters in a spline

model (Galway, 1992) and there are a variety of choices for covariance function. Based on

the linearity, we can classify them as linear covariance function such as

k(x,x′) =

p∑
i=1

aixix
′
i

and nonlinear covariance function such as squared exponential covariance function

k(x,x′) = v0 exp (−
1

2

p∑
i=1

wi(xi − x′i)
2)
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where the hyper-parameters of linear covariance function and non-linear covariance func-

tion are (a1, ..., ap) and (v0, w1, ..., wp) respectively. The linear covariance function is often

used as a component of a covariance function which is a sum of a few different covariance

function, such as the covariance function in Equation (2.20). In addition, the length scale

of each covariate can be measured by the inverse of wi. If the estimated value of wi, i.e.,

ŵi, is extremely small, it suggests that xi has little contribution to the covariance function.

Therefore, this covariate xi might be removed from the data set.

On the other hand, based on the stationarity (the kernel only depends on the difference

between covariates, i.e. k(x,x′) = k(x−x′)), we can classify them as stationary covariance

function such as powered exponential covariance function

k(x,x′) = v0 exp (−w∥x− x′∥γ)

and non-stationary covariance function such as linear covariance function.

Moreover, rational quadratic covariance function

k(x,x′) = (1 + sαw∥x− x′∥2)−α

where α,w ≤ 0 and Matérn covariance function

k(x,x′) =
1

Γ(v)2v−1
(w∥x− x′∥)vKv(w∥x− x′∥)

where w ≤ 0 and Kv is a modified Bessel function of order v, are also often used. More

examples and properties of different covariance functions can be found in Abrahamsen

(1997) and MacKay and Gibbs (1997).

A popular choice for GPR is

k(ti, tj) = v0 exp(−
1

2w0
(ti − tj)

2) + a0 + a1titj + σ2δij (2.20)

where δij is the Kronecker delta. Since GPR is actually a non-parametric model, it is not

very sensitive to different covariance functions and the covariance function (2.20) can be

used in most problems (Shi et al., 2007).
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One of differences among the covariance functions above is the distance function be-

tween covariates. For example, people use weighted sum of squared differences in squared

exponential convariance function and powered norm in powered exponential covariance

function. In addition, the hyper-parameters control the smoothness of a Gaussian pro-

cess. Therefore, people can select a suitable covariance function based on their knowledge

about the distance function between covariates and the smoothness of a Gaussian process.

In other words, the properties of different covariance functions can be used as a guideline

of selection, especially for low-dimensional covariates x. For properties of different kernels,

readers can see Shi and Choi (2011) and Adler and Taylor (2009). If the dimension of

covarites x is large (more than 2), we can use Bayes factor which is a method for model

selection under the view of Bayesian statistics. Based on the ratio of two marginal distri-

butions, the covariance function with higher Bayes factor can be considered as a choice.

However, in practice, the marginal distributions are often not analytically tractable except

for some simple regression models, such as linear regression model. To address this issue,

researchers develop some Monte Carlo methods. For instance, Meng and Wong (1996)

introduce a method to calculate the marginalizing constants which is named Bridge sam-

pling. Additionally, Chib (1995) propose Chib’s approximation to compute the marginal

distribution approximately.

As a non-parametric regression model, GPR should be not sensitive to different co-

variance functions and in Chapter 5, we compared the performances of different kernels,

such as squared exponential and rational quadratic, in wrapped Gaussian process function

regression model.

2.1.5 Some other topics

People are often unable to observe some potential variables or processes in the real world.

Therefore, models for latent variables are created to catch up the relationship between

observed manifest variables and unobserved latent variables, such as the latent class anal-

ysis model and item response theory (Lee, 2007). In the extension of GPR, Lawrence and
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Hyvärinen (2005) introduce Gaussian process latent variable model which is defined by

y(t) = f(z(t)) + ϵ(t)

f(z(t)) ∼ GPR(0, k(θ)|z(t))

where y refers to manifest variable, z refers to latent variable and ϵ refers to Gaussian

white noise. The latent variable z(t) is assumed to follow Gaussian prior. In addition,

some statistical inferences such as estimation and prediction can be derived by active set

and sparse greedy approximation1.

The prediction of Gaussian process regression is often accurate when the response

variable is normally distributed. However, in practice, many data follow non-Gaussian

distribution, such as binary distribution or Poisson distribution. Wang and Shi (2014)

introduce a generalized Gaussian process regression model for non-Gaussian functional

data. In this paper, the authors model the input of link function for response variable

via a concurrent regression model in which the mean model is structured by a functional

linear regression and the covariance model is structured by GPR with Gaussian process

prior, i.e.

E(y(t)|τ(t)) = h(µ(t) + τ(t))

τ(t) = τ(x(t)) ∼ GPR(0, k(·, ·;θ))

where h(·)−1 is a given link function, µ(t) denotes functional linear regression model, τ(t)

denotes latent variable, x(t) denotes functional covariates. This model is efficient for some

data from exponential family (particularly for some symmetrically distributed data).

There is a possibility that different batch has different features, such as smoothness.

Moreover, if the subjects and measuring equipment are different, heterogeneity might exist

among batches. Hierarchical mixture Gaussian process regression model (Shi et al., 2005)

is proposed to solve this problem in which the model is considered as weighted sum of a

few Gaussian processes with identical covariance function but different values of hyper-

1See Section 3.3.2 for detail about active set and sparse greedy approximation.
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parameters

y = f(x) + ϵ

f(x) ∼
K∑
k=1

πkGP (θk)

where these weights (π1, ..., πK) are assumed following Dirichlet distribution

p(π1, ..., πK) ∼ D(δ, .., δ)

and the hyper-parameters can be trained by a hybrid Markov Chain Monte Chain algo-

rithm (see more details in Appendix in Shi et al. (2005)).

We further develop the Gaussian process regression for non-Gaussian data, especially

for data following truncated Gaussian distribution and Gamma distribution in Chapter 3

and functional batch data on Riemannian manifolds in Chapter 4.

2.2 Convolved Gaussian process

In practice, the response variables are usually multi-dimensional. However, the response

variable is normally assumed to be one-dimensional in Gaussian process regression. In

Section 3.3, we introduce a regression model for gamma-distributed data by using Gaus-

sian process as a latent process and also extend this model to high-dimensional response

variable via convolved Gaussian process which is described as follows.

In this section, we consider a 2-dimensional dependent Gaussian processes which is

denoted as (y1(x), y2(x)). The difficulty is to define the cross-variance that ensures the

covariance matrix for the multi-variate response variables is still positive definite. Williams

and Rasmussen (2006) introduce multi-kriging by applying Gaussian process for each di-

mension independently. However, this method cannot capture the covaring of the binary

outputs. Higdon (2002) proves a Gaussian process ξ(x) can be constructed using convo-
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lution of a Gaussian white noise τ(x) and a smooth covariance function h(x) as follows:

ξ(x) = h(x) ⋆ τ(x)

=

∫
h(x−α)τ(α) dα

=

∫
h(α)τ(x−α) dα

(2.21)

where ⋆ denotes convolution.

Boyle and Frean (2005a) introduce an implementation for multi-variate Gaussian pro-

cesses based on convolution, which is a sum of three Gaussian processes Vi, Ui and Wi

where Vi is the convolution of a kernel hi and a noise source Xi unique to that output, Ui

is the convolution of a kernel ki and a separate noise source X0 that affects all outputs,

Wi is a stationary Gaussian white noise process, see Figure 2.1.

Figure 2.1: Two dependent Gaussian process by convolution.

Therefore, the dependent Gaussian processes can be defined as

Yi(x) = Ui(x) + Vi(x) +Wi(x), i = 1, 2

Ui(x) = ki(x) ⋆ X0(x), i = 1, 2

Vi(x) = hi(x) ⋆ Xi(x), i = 1, 2

(2.22)
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where

k1(x) = v1 exp
(
− 1

2
xTA1x

)
,

k2(x) = v2 exp
(
− 1

2
(x− µ)TA2(x− µ)

)
,

h1(x) = w1 exp
(
− 1

2
xTB1x

)
,

h2(x) = w2 exp
(
− 1

2
xTB2x

)
,

(2.23)

are parameterized Gaussian kernels and {v1, v2, w1, w2, A1, A2, B1, B2} are hyper-parameters.

The covariance matrix C is defined by

C =

C11 C12

C21 C22

 (2.24)

where

CY
11(d) = CU

11(d) + CV
11(d) + δxx∗σ21

CY
22(d) = CU

22(d) + CV
22(d) + δxx∗σ22

CY
12(d) = CU

12(d)

CY
21(d) = CU

21(d)

(2.25)

and δxx∗ is the Kronecker delta which is defined by

δxx∗ =


1, if x = x∗

0, otherwise
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Specifically, we define

CU
ii (d) =

π
Q
2 v2i√
|Ai|

exp
(
− 1

4
dTAid

)
CU
12(d) =

(2π)
Q
2 v1v2√

|A1 +A2|
exp

(
− 1

2
(d− µ)TΣ(d− µ)

)
CU
21(d) =

(2π)
p
2 v1v2√

|A1 +A2|
exp

(
− 1

2
(d+ µ)TΣ(d+ µ)

)
CV
ii (d) =

π
Q
2 w2

i√
|Bi|

exp
(
− 1

4
dTBid

)
(2.26)

where Q is the dimension of covariate, d = x−x∗ and Σ = A1(A1 +A2)
−1A2 = A2(A1 +

A2)
−1A1 (Boyle and Frean, 2005b). Σ is symmetric since A1 and A2 are symmetric

matrices. We get that (A1+A2)(A1+A2)
−1(A1−A2) is symmetric, since (A1+A2)(A1+

A2)
−1(A1 −A2) = A1 −A2. Thus

(A1 +A2)(A1 +A2)
−1(A1 −A2)

=A1(A1 +A2)
−1A1 +A2(A1 +A2)

−1A1 −A1(A1 +A2)
−1A2 −A2(A1 +A2)

−1A2,

we obtain that A2(A1+A2)
−1A1−A1(A1+A2)

−1A2 is symmetric, since A1(A1+A2)
−1A1−

A2(A1 +A2)
−1A2 is symmetric. Furthermore,

A2(A1 +A2)
−1A1 −A1(A1 +A2)

−1A2

=(A2(A1 +A2)
−1A1 −A1(A1 +A2)

−1A2)
⊤

=(A2(A1 +A2)
−1A1)

⊤ − (A1(A1 +A2)
−1A2)

⊤

=A1(A1 +A2)
−1A2 −A2(A1 +A2)

−1A1

⇒A1(A1 +A2)
−1A2 = A2(A1 +A2)

−1A1

In addition, it is not necessary that n1 = n2. Specifically, C11 in Equation (2.24) is

a n1 × n1 matrix, C12 is a n1 × n2 matrix, C21 is a n2 × n1 matrix and C22 is a n2 × n2

matrix. Therefore, the matrix C in Equation (2.24) can still be a cross-covariance matrix

for two dependent Gaussian processes even they have different data points.

We denote the set of hyper-parameters Θ = {v1, v2, w1, w2, A1, A2, B1, B2, µ, σ1, σ2},

which can be estimated by maximizing a likelihood function. The log-likelihood function
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is given by

L = −1

2
log |C| − 1

2
yTC−1y − N1 +N2

2
log 2π (2.27)

where N1 is the amount of the first response variable y1, N2 is the amount of the second

response variable y2 and yT = [y1,1, ..., y1,N1 , y2,1, ..., y2,N2 ]. The hyper-parameters Θ

can be found by either maximising a posterior or maximising the log-likelihood. Besides,

Markov Chain Monte Carlo can be used to simulate the predictive distribution for y (Neal,

1993). As a result, the predictive distribution is still a normal distribution

E[y∗] = kTC−1y

V ar(y∗) = κ− kTC−1k
(2.28)

where κ = CY
ii (0) = v2i + w2

i + σ2i and k = [CY
i1(x

∗ − x1,1) ... C
Y
i1(x

∗ − x1,N1) C
Y
i2(x

∗ −

x2,1) ... C
Y
i2(x

∗ − x2,N2)].

2.3 Gaussian process functional regression

The mean function in Gaussian process regression is supposed to be a constant or a known

function. In section, we discuss the a model in which the mean function is trainable

for functional data. Specifically, the response variables are considered as functional and

predictor variables are considered as functional or scalar. Suppose the training data are

{(ym(t),xm(t), um)|xm(t) ∈ RQ,um ∈ Rp, ym(t) ∈ R,m = 1, ...,M}, where t usually refers

to time. Shi et al. (2007) introduce Gaussian process functional regression for batch data

as follows

ym(t) = µm(t,um) + τm(xm(t)) + ϵm(t)

τm(xm(t)) ∼ GPRm(0, km(θm)|xm)

where µm(t) denotes the common mean structure of various curves, τm(x(t)) denotes the

dependent error within the identical curve which is called covariance structure and ϵm(t)

denotes independent random error. Gaussian process regression with zero mean function
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is applied to model the covariance structure and it is determined by covariance function

km(·) and hyper-parameter θm.

Scalar covariates um and time t determine the mean structure, meanwhile, functional

covariates xm(t) determines the covariance structure. The GPFR model is very flexible,

because it incorporates mean structure and covariance structure of functional relation-

ships. For instance, we can model the complex relationship of functional response variable

and functional covariates by Gaussian process regression non-parametrically with little

known physical connection between them. On the other hand, if we know the relationship

parametrically, we can consider these functional covariates in mean structure. Another

advantage of Gaussian process functional regression model is that it learns the mean struc-

ture and covariance structure simultaneously from all subjects or batch data; moreover,

predictions are based on the estimated mean structure and observed data in the particular

individual, which promotes the accuracy of prediction significantly. The choice of mean

structure could be parametric or non-parametric. For example, Shi and Choi (2011) con-

sider the functional linear regression as the mean structure in GPFR, whose predictions

are more accurate than that of conventional Gaussian process regression model.

In Chapter 4, we extend the Gaussian process functional regression model to the non-

Euclidean space, such as Riemannian manifolds. Specifically, a functional linear regression

model in tangent spaces is considered as the mean structure and a Gaussian process

regression model is considered as covariance structure.

2.4 Riemannian manifolds

Statistical and machine learning models are explored deeply in Euclidean space. However,

people are recording lots of data in non-Euclidean spaces, especially on Riemannian man-

ifolds. In this section, we review some concepts of Riemannian manifolds and present a

few examples of Riemannian manifolds which are used in Chapter 4 and Chapter 5. There

are more details in Chapter 4 in Do Carmo (1992) and Chavel (2006).
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2.4.1 Concepts and notations

A d-dimensional differentiable manifold can be seen as a topological space that is sim-

ilar to vector space structure locally and differentiable globally. Given a d-dimensional

differentiable manifold M and a tangent space TpM, for p ∈ M, a Riemannian metric

gp : TpM × TpM → R on M is a family of inner products which is smoothly varying

through all p ∈ M. Equipped with Riemannian metric, (M, g) is defined as a Rieman-

nian manifold. Geodesic γ(·) is the shortest path connecting two local points p ∈ M and

q ∈ M, corresponding to straight line in vector space, such that γ(0) = p, d
dtγ|t=0 = v and

γ(1) = q where v ∈ TpM refers to a tangent vector from p to q (Jayasumana et al., 2013).

The length of geodesic is named geodesic distance. Further, the geodesic metric dM is a

basic and essential metric on M and it can be parameterized by tangent vector v ∈ TpM

with the Riemannian exponential map or exponential map Exp : M× TpM → M. The

exponential map is locally diffeomorphic onto a neighbourhood of p, and let V (p) be the

largest such neighbourhood. The minimum distance from p to the boundary of a maximal

V (p) is called the injectivity radius of an exponential map. Then within V (p) the expo-

nential map has an inverse, i.e. the Riemannian logarithm map or inverse exponential

map Log : p × q → TpM. Under the view of operation, the inverse exponential map is

a generalization of subtraction from vector space to a Riemannian manifold. Meanwhile,

the classic addition operator can be extended onto a Riemannian manifold, leading to

exponential map. In statistics, we often calculate the expectation of random variables and

on a Riemannian manifold, we can define the expectation of a manifold-valued random

variable as Fréchet mean (Fréchet, 1948) which is written by

E[X] = {p|p ∈ arg min
q∈M

(E[dM(p,X)2])} (2.29)

where X refers to a manifold-valued random variable and E[X] is a set. When there is a

unique mean p̄, we denote E[X] = p̄ (Mallasto and Feragen, 2018).

If (M, dM) is a complete metric space, then these Riemannian manifolds are regarded

as geodesically complete. In other words, there almost surely exists a unique shortest

curve connecting any two points globally on a complete Riemannian manifoldexcept for

antipodes (Section 2.3 in Dai et al. (2018)). It can be also considered as Exp(·, ·) is
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defined on the entire tangent bundle TM and Log(·, ·) is defined on the entire complete

Riemannian manifold. It is one of the basic and widely used assumptions of data analysis

on Riemannian manifold which ensures almost sure existence and uniqueness of Fréchet

means and geodesics between any two points. Therefore, we suppose that this assumption

holds subsequently. Moreover, Karcher (1977) and Kendall (1990) introduce the conditions

of existence and uniqueness of Fréchet means

In addition, suppose c : I → M is a differentiable curve on M and V0 is a tangent

vector on Tc(t))M, where t0 ∈ I. There exists a unique parallel vector field V along c,

such that V (t0) = V0. Thus, we define V (t) is a parallel transport V (t0) along c.

2.4.2 Operators between Euclidean space and Riemannian manifolds

For the consistency with Euclidean space, we present some useful operations which have

very similar meaning between Riemannian manifolds and linear vector space (Kim et al.,

2014).

Suppose pM and qM refer to two different points onM and the tangent vector from the

former to the latter is denoted by pqM. Suppose there is a geodesic function γ(t), t ∈ [0, 1]

on M given γ(0) = p and γ(1) = q, a tangent vector can be considered as pqM = d
dtγ|t=0.

In other words, a tangent vector can be considered as in initial velocity of a moving particle

on M whose initial position is p and final position is q. In addition, pE and qE refers to

two Euclidean-valued data points and the vector from the former to the latter is given by

pqE . Some operations are shown in Table 2.1.

Euclidean Space Riemannian Manifold

Addition qE = pE + pqE qM = Exp(pM, pqM)

Subtraction pqE = pE − qE pqM = Log(pM, qM)

Distance ∥pE − qE∥ ∥Log(pM, qM)∥

Table 2.1: Some basic operators between Euclidean space and Riemannian manifold.

2.4.3 An example of Riemannian manifold: 2-Sphere

A simple example of a Riemannian manifold is the unit sphere S2 in R3. Given any

two points p and q on a S2, there are many curves which pass through these two points.
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As mentioned above, the shortest curve connecting p and q is exactly a geodesic γ :

[0, 1] → S2 and it is also known as the the great circle under the context of sphere. The

initial conditions of geodesic are γ(0) = p, γ(1) = q and γ′(0) = v. Besides, the inverse

exponential map of p and q is denoted as Log(p, q), which is a tangent vector in the

tangent space of p, say TpM. The norm of Log(p, q) equals to the geodesic distance from

p to q and the direction of Log(p, q) is the initial velocity of γ(·). That is dM(p, q) =

∥Log(p, q)∥ and Log(p, q) = γ′(0). Therefore, the inner product of inverse exponential

map provides a metric of S2 which ensures that the analysis of S2-valued data becomes

tractable. These concepts can be extend onto hyper-spheres Sn, where n > 2. Since S2 is

a typical Riemannian manifold which is geodesically complete, the exponential map and

inverse exponential map exist everywhere except antipodal pairs.

For a general spherical Riemannian manifold, supposing p, q ∈ Sn and n ∈ Z+, it is

necessary to formulate some mathematical tools for further computation in Chapter 5.

For further details about these formula below, please see Zhang and Fletcher (2013).

The formula of geodesic distance is

d1M(p, q) = cos−1(pT q). (2.30)

Moreover, since S2 can be embedded into R3, an alternative is to measure the distance

between p and q by the norm of their difference. That is

d2M(p, q) = ∥p− q∥. (2.31)

The distance (2.30) describes the intrinsic metric between p and q while the distance

function (2.31) describes the chordal metric. For simplicity, we use the latter to measure

the distance between predictions and real data.

The formula of inverse exponential map is

Log(p, q) =
u

∥u∥
dM(p, q), where u = q − (pT q)p, q ∈ Sn\{−p}. (2.32)
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The formula of exponential map is

Exp(p, v) = cos(∥v∥)p+ sin(∥v∥) v

∥v∥
, v = Log(p, q) ∈ TpM. (2.33)

With a given data set D = {xi ∈ R, yi ∈ M|i = 1, ..., N}, a geodesic regression model

(Fletcher, 2013) is defined by

yi = Exp(Exp(µ, xiτ), ϵ), i=1,..,N,

where xi is an independent variable, yi is a dependent variable, N is sample size, µ is a

manifold-valued point and τ is a tangent vector. The loss function with respect to µ can

be defined by

E(µ) =
1

2

N∑
i=1

d(Exp(µ, xiv), yi)
2.

For further computation, such as the gradient of a loss function with respect to the

manifold-valued data point µ is given by

∇µE = −
N∑
i=1

dµExp(µ, τ)
†Log(yi,Exp(µ, τ))

= −
N∑
i=1

(
cos (∥v∥)w⊥

i + w⊤
i

) (2.34)

where µ ∈ M, τ ∈ TµM, yi ∈ M, for i = 1, ..., N , wi = Log(yi,Exp(µ̂, τ)), w
⊥
i =

⟨wi,τ⟩
∥τ∥2 τ , w

⊤
i = Log(yi,Exp(µ, τ))− ⟨wi,τ⟩

∥τ∥2 τ , E refers to a loss function between predictions

and real data, † refers to an adjoint of a linear operator, i.e. < dµExp(µ, τ)a, b >=<

a, dµExp(µ, τ)
†b > and dµ refers to a differential operator on µ with respect to a tangent

vector on TµM.

In Chapter 4, we use Equation (2.34) for inference.

2.4.4 An example of Riemannian manifold: Kendall’s shape space

As a well-developed Riemannian manifold, Kendall’s shape space provides a very useful

space for many theories and applications in statistics and machine learning. Thus, we
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suppose there are no assumptions about the geometry of the objects after removing trans-

lation, scale and rotation. Moreover, Kendall’s shape space is also a symmetric Riemannian

manifold and then we can try to derive the gradient descent algorithm in estimation part.

In 2-dimensional shape analysis, landmarking is an approach to sketch a 2-dimensional

shape by k points which contours a shape and such a 2k-dimensional vector can be repre-

sented in a k-dimensional complex space Ck. Researchers neglect translation of shapes by

moving the centroid to be origin point. Thereafter, we obtain a linear complex subspace

V = {z = (z1, ..., zk) ∈ Ck|
∑k

i=1 zi = 0}. V can be considered as a subspace passing along

the origin of Ck which means V is identical to Ck−1. Two shapes in Ck−1 are equivalent if

they are scaling or rotation of each other. The equivalent classes form a complex projective

space denoted as CPk−2.

We also start from a fundamental 2-dimensional shape which is triangle. Obviously,

3 points are necessary to represent 3 vertexes of a triangle. Thus, there are 6 variables

of the 3 points which structure a random variable in C3. Suppose p and q are two points

in C3. After removing translation, scale and rotation, p and q would be in CP1 = S2.

Complex projective space can also be generalized to a high-dimensional case.

Analogously to Section 2.4.3, from Zhang and Fletcher (2013), we parameterize some

formulas, such as exponential map and inverse exponential map for shape space. Suppose

p and q are two data points in a general CPk−2, the geodesic distance can be computed

by

dM(p, q) = ∥p− q∥ (2.35)

The closed form of inverse exponential map is given by

Log(p, q) =
θ · (q − πpq)

∥q − πpq∥
, θ = arccos

|⟨p, q⟩|
∥p∥∥q∥

, πpq =
p · ⟨p, q⟩
∥p∥2

(2.36)

The exponential map is parameterized as follows

Exp(p, v) = cos θ · p+ ∥p∥ sin θ
θ

, θ = ∥Log(p, q)∥ (2.37)

For further details about basic formulae on S2 and Kendall’s shape space, see Zhang
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and Fletcher (2013).

2.4.5 Sample Fréchet mean

For a set of manifold-valued data y = (y1, y2, ..., yn), their sample Fréchet mean p is defined

as the minimizer of the sum of squared distance function

p = arg min
p∈M

n∑
i=1

dM(yi, p)
2 (2.38)

where dM(·, ·) denotes geodesic distance. In order to estimate the minimizer of (2.38),

it is natural to use gradient descent algorithm introduced by Pennec (1999). Moreover,

based on Do Carmo (1992), the gradient is given by

∇dM(p, yi)
2 = −2Log(yi, p) (2.39)

An implementation is shown in Algorithm 1.

Algorithm 1: Gradient Descend Algorithm for Sample Fréchet Mean.

1. Initialise a manifold-valued point p and set a step size ϵ and a small positive

number τ ;

2. ν = ϵ
n

∑n
i=1 Log(yi, p) ;

3. While ∥ν∥ > τ , do ν = ϵ
n

∑n
i=1 Log(yi, p) and p = Log(p, ν); else, end.

At the beginning of this optimization algorithm, the initialised p is often not a precise

estimation of Fréchet mean and its gradient is large. After it moves along the gradient,

p is closer to the “real” Fréchet mean. We repeat these steps above until the gradient is

small enough which leads to an approximate sample Fréchet mean of y. See Chapter 2 in

Pennec et al. (2019) for more details.

2.5 Some special distributions

Probability distributions are fundamental concepts and tools used in statistics, such as

normal distribution. We list some special probability distributions below with some helpful

formulas, which are used in this thesis.
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2.5.1 Truncated normal distribution

The truncated normal distribution is a normal distributed random variable which has up-

per boundary or lower boundary or both. There are extensively applications of truncated

normal distribution in statistics and econometrics (Greene, 2003; Botev, 2017).

To define a truncated normal distribution, we need identify the mean, the variance and

boundaries which could be infinite. As previously, suppose the mean is µ, the variance is

σ2, the lower boundary and upper boundary are denoted as l and u respectively. Hence,

a random variable X which follows a truncated normal distribution can be written as

X ∼ N (µ, σ, l, u) (2.40)

and its probability density function is given by

p(X;µ, σ, l, u) =
1

σ

ϕ(X−µ
σ )

Φ(u−µ
σ )− Φ( l−µ

σ )
(2.41)

where ϕ(·) refers to the probability density function of the standard normal distribution

and Φ(·) refers to cumulative distribution function. The expectation and variance of a

two-sided truncated normal distribution are

E[X|l < X < u] = µ+ σ
ϕ(α)− ϕ(β)

Φ(α)− Φ(β)
(2.42)

V ar(X|l < X < u) = σ2
(
1 +

αϕ(α)− βϕ(β)

Φ(β)− Φ(α)
− (

ϕ(α)− ϕ(β)

Φ(β)− Φ(α)
)2
)

(2.43)

where α = l−µ
σ and β = u−µ

σ . If l = −∞ or u = ∞, it is easy to derive the expectation and

variance for one-sided truncated normal distribution. When l = −∞, we can substitute

ϕ(α) by 0 and Φ(α) by 0; when u = ∞, we can substitute ϕ(β) by 0 and Φ(β) by 1. For

further details about how these formulas are derived, see Johnson et al. (1995).

2.5.2 Wrapped Gaussian distribution

Normal distribution has wide applications in practice. However, it limits the random

variable in Euclidean space which is not suitable for manifold-valued random variables.

Mardia and Jupp (2009) extend normal distribution to Riemannian manifolds via a wrap-
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ping function, which is called wrapped Gaussian distribution. In this part, we discuss the

wrapping function used in Mallasto and Feragen (2018) in which the authors linearize a

Riemannian manifold by a inverse Exponential map. In addition, some inferences, such

as conditional distribution and predictive distribution, are also shown.

Suppose M denotes a d-dimensional Riemannian manifold and X is a random variable

on M. For µ ∈ M and a symmetric positive definite matrix Kd×d, we can define a

wrapped Gaussian distribution as follows

X = Exp(µ,v)

v ∼ N (0,K)
(2.44)

where µ is called basepoint and v is a vector following a multi-variate Gaussian distribution

with zero mean and covariance matrix K. To generate a data from this distribution, we

sample a tangent vector v from N (0,K) and a generated data point is Exp(µ, v). The

wrapped Gaussian distribution is formally denoted as

X ∼ NM(µ,K) (2.45)

Based on the Proposition 2.11 in Oller and Corcuera (1995) and discussion in Mallasto

and Feragen (2018), µ ∈ E[X] when the injectivity radius is infinite, where E[·] denotes

the Fréchet mean. In this thesis, we consider the wrapped Gaussian process functional

regression model on some frequently-used and special Riemannian manifolds. Therefore,

the mean of wrapped Gaussian distribution NM(µ,K) is the Fréchet mean of manifold-

valued random variable X.

The jointly wrapped Gaussian distribution of two manifold-valued random variables

X1 and X2 is defined asX1

X2

 ∼ NM1×M2

µ1
µ2

 ,

K1 K12

K21 K2

 (2.46)

where X1 ∼ NM1(µ1,K1), X2 ∼ NM2(µ2,K2) and K12 = KT
21. Mallasto and Feragen

(2018) derived the conditional distribution of X1 given X2. Specifically, suppose p1 ∈ M1,

p2 ∈ M2 are manifold-valed points, B = Log(µ1, p1), A = log(µ2, p2) are tangent vectors,
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and K is covariance of (X1, X2). Thus, we have

P{X1 = p1|X2 = p2}

=
P{u ∈ B, v ∈ A}

P{v ∈ A}

=
∑

v∈A,u∈B

N (0,K2)

P{A}
N (0,K)

N (0,K2)

=
∑

v∈A,u∈B
λvN (µv,Kv)

= P{Z = p1}

where u and v are tangent vectors, Z ∼ Exp(µ1,
∑

v∈A,u∈B λvN (µv,Kv)), N (µv,Kv) is a

predictive distribution (2.15) and µ1 is the expectation of X1.

The conditional distribution is given by

X1|(X2 = p2) ∼ Exp(µ1,
∑
v∈A

λvN (µv,Kv)) (2.47)

where

N (µv,Kv) =
N (0,K)

N (0,K2)

µv = K12K
−1
2 v

Kv = K1 −K12K
−1
2 KT

12

λv =
N (0,K2)

P{A}

A = {v ∈ Tµ2M|Exp(µ2, v) = p2}

P{A} =
∑
v∈A

N (0,K2)

Within the assumption that the injectivity radius is infinite and since a Gaussian

mixture distribution can be approximated a Gaussian distribution, we have the following

approximation

X1|(X2 = p2) ∼ Exp(µ1,N (µLog(µ2,p2),KLog(µ2,p2))) (2.48)
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where

µLog(µ2,p2) = K12K
−1
2 Log(µ2, p2)

KLog(µ2,p2) = K1 −K12K
−1
2 KT

12.

The conditional distribution of functional wrapped Gaussian process in Chapter 4

is similar. We suppose that ym(t) is a functional wrapped Gaussian process, the mean

structure is µm(t), the covariance structure is τm(t) and t ∈ T . Then the conditional

distribution of ym(t1) given ym(t2) at t2 is

ym(t1)|(ym(t2) = p2) ∼ Exp(µm(t1), τm(t1)), t1, t2 ∈ T, (2.49)

where

τm(t1) ∼ N (µLog(µm(t2),p2),KLog(µm(t2),p2))

µLog(µm(t2),p2) = K12K
−1
2 Log(µm(t2), p2),

KLog(µm(t2),p2) = K1 −K12K
−1
2 KT

12,

K1,K12 and K2 are covariance matrices depended by a kernel k(·, ·).

We should notice that τm(t1) is about t1, since K1, K12 are about t1 and t2 is given.

2.6 Differential evolution

A challenging problem is statistics and machine learning is parameter estimation, since for

many models, it is difficult to obtain an analytical form of gradient. Differential evolution

(DE) is an evolution search strategy and it is able to optimize a multi-variate real-valued

function without using the gradient which is required by gradient descent algorithm or

Newton method. Moreover, the loss function or fitness function in DE is not necessarily

smooth, convex or even continuous. This algorithm often provides an outstanding solution

regardless of whether the objective function is smooth or even continuous (Storn and Price,

1997). Since it is computational expensively to calculate the gradient of log-likelihood

function (3.24) and (3.34), in this thesis, we use DE to estimate hyper-parameters by

minimizing these two function.
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In this iterative optimization technique, we firstly generate a lot of candidate solutions

and let them move in search-space by incorporating with another candidate based on

some formulae, which can be seen as evolution. If the evolution moves towards a correct

direction, such as a smaller value of loss function, the new candidate is accepted; otherwise,

it would be rejected (Price et al., 2006). This process is replicated for a given iterative

number and it might avoid the results from converging the local minimum. However, it is

not guaranteed the optimal solution would be discovered eventually.

We define f : Rn → R is the fitness value function (could be loss function or negative

likelihood function) which measures the goodness of candidate solutions. The goal of

differential evolution is to discover a solution which minimizes f(x). The formal DE

algorithm can be described as follows:

Algorithm 2: Differential Evolution Algorithm to Minimize f(·).
1. Initialise the population randomly in a search-space, suppose the population

size is P and set i = 1 ;

2. For candidate xi, randomly select three different candidate solutions a, b and c

from the population ;

3. Randomly select a number m from {1, ..., n} where n is the dimension of xi ;

4. For each j ∈ {1, ..., n}, generate rj ∼ U(0, 1). If rj < u, then a new candidate is

formed by xnew = a+ ν(b− c); otherwise, xnew = xi, where u ∈ [0, 1] is the

probability of crossover and ν ∈ [0, 2] is the differential weight ;

5. If f(xnew) < f(xi), replace xi by the better individual xnew; otherwise, do

nothing. i = i+ 1 ;

6. If i > P , go next; otherwise, go to Step 2 ;

7. If meet termination conditions, go next; otherwise, go back to Step 2 ;

8. Return the candidate solution x∗ with the best fitness value f(x∗).

2.7 Approximate Bayesian computation

In Section 3.3, we can make a prediction with an approximated full conditional distribu-

tion. However, the prediction is affected by the symmetric property of the approximation,

which results to a inaccurate prediction. In order to avoid such influence, we apply ap-

proximate Bayesian computation for prediction.
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In Bayesian statistics, a class of computational tools form approximate Bayesian com-

putation (ABC) which is an effective likelihood free algorithm to estimate the posterior

distribution of parameters. For statistical inference, the likelihood function plays an es-

sential role since it expresses information from available data with a given parametric

model. Analytic formula of likelihood function can be specifically derived for simple mod-

els. However, in the real world, most statistical models have complex structure leading to

likelihood function analytical intractably. As a likelihood free method, ABC is applied in

wide statistical realm, especially in parameter selection and model selection.

One important feature of approximate Bayesian computation is the reliance of data

generating mechanism based on which we can generate pseudo-observations. In other

words, ABC is a simulator-based method. Suppose we know the process of data-generating

and the observed data y = (y1, ..., yn). The pseudo-observations can be simulated by

ysim ∼ P (y|θ) since the generating mechanism is known, where θ refers to target parame-

ter. If the distance between simulation ysim and observed data y is within a tolerance, we

accept this θ as a sample of its posterior distribution; otherwise, we may consider another

θ. This rejection-ABC algorithm provides simulated data without closed form of proba-

bility density function, which is proposed by Tavaré et al. (1997). There are also some

extensions of ABC, such as MCMC-ABC (Marjoram et al., 2003) and sequential Monte

Carlo (Sisson et al., 2007).

Inspired by approximate Bayesian computation, in this thesis, we use the ABC algo-

rithm for prediction instead of estimation. Specifically, we firstly sample from a Gaussian

approximation to form full conditional distribution and then sample from a predictive

distribution to make a prediction. See Section 3.3.4 for more details.

2.8 Gibbs sampling

One challenge in Bayesian statistics is the estimation of posterior distribution which in-

volves calculation of integrals and for most models, the calculation is analytically in-

tractable. Markov chain Monte Carlo technique provides possible sampling algorithms

to obtain inferences from these posterior distribution without calculating the integrals

(Andrieu et al., 2003).
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The target expectation can be approximated by ergodic averages is the underlying logic

of MCMC sampling. Therefore, it is viable for us to compute any statistics of a posterior

distribution by lots of simulated samples. Now the problem is that how can we calculate

the simulated samples. Gibbs sampling is a suitable and efficient algorithm to address this

issue for random variables x = (x1, ..., xn) (Casella and George, 1992). Specifically, for

the first random variable, Gibbs sampling draws sample from its conditional distribution

when the other variables are fixed to their current values. After updating value of the first

variable by the simulated sample, we sweep to the second random variable. This iterative

process continuous until some convergence conditions have been satisfied.

The random variables are often initialized with random values which results in the

early iteration might not be the accurate representation of real posterior distribution.

These iterations are common to discarded and denoted as burn-in period. In addition, the

MCMC theory ensures that stationary distribution is the desired posterior distribution

(Yildirim, 2012). The Algorithm 3 describes the iterative processes of Gibbs sampling.

Algorithm 3: Algorithm for Gibbs Sampling.

1. Initialise the variables x(0) = (x
(0)
1 , ..., x

(0)
n ) randomly or by some prior

knowledge and set i = 0, where n refers to the number of variables ;

2. Draw

x
(i+1)
1 = p(X1 = x1|X2 = x

(i)
2 , X3 = x

(i)
3 , ..., Xn−1 = x

(i)
n−1, Xn = x

(i)
n )

x
(i+1)
2 = p(X2 = x2|X1 = x

(i+1)
1 , X3 = x

(i)
3 , ..., Xn−1 = x

(i)
n−1, Xn = x

(i)
n )

...

x
(i+1)
n−1 = p(Xn−1 = xn−1|X1 = x

(i+1)
1 , X2 = x

(i+1)
2 , ..., Xn−2 = x

(i+1)
n−2 , Xn = x

(i)
n )

x
(i+1)
n = p(Xn = xn|X1 = x

(i+1)
1 , X2 = x

(i+1)
2 , ..., Xn−2 = x

(i+1)
n−2 , Xn−1 = x

(i+1)
n−1 );

3. If convergence conditions have been satisfied, end; else i = i+ 1 and back to

Step 2.

In this thesis, we applied Gibbs sampling to draw samples following multi-variate

truncated Gaussian from a corresponding multi-variate Gaussian distribution which is

used for prediction.
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Chapter 3

Gaussian Process Regression

Model for Two Non-Gaussian

Distributed Data

One assumption of a Gaussian process is that any finite collection of random variables

follows a multi-variate normal distribution. However, in practice, it is unreasonable to

suppose random variables in any scenario satisfy such assumption. For example, in fi-

nancial mathematics, people use log-normal distribution for stock price (Knight et al.,

2001) which is always positive. Moreover, in actuarial science, people often use gamma

distribution to model the amount of insurance claims. Therefore, these applications of

models for non-Gaussian distributed data encourage us to develop statistical models for

such data set. Figure 3.1 shows that the age distribution of cancer incidence often follows

the Gamma distribution (Belikov, 2017). Moreover, the data is downloaded Centers for

Disease Control and Prevention Wide-ranging OnLine Data for Epidemiologic Research

(CDC WONDER) online database (http://wonder.cdc.gov/cancer-v2012.HTML).
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Figure 3.1: A Gamma-distributed real data set.

In this chapter, we study another two types of data which follow truncated normal

distribution and Gamma distribution. Specifically, we extend Gaussian process regression

to a truncated Gaussian process regression by assuming any collection of random variables

follows a multi-variate truncated normal distribution. Moreover, we consider GPR as a

latent process for Gamma-distributed data. In Section 3.1, we firstly highlight the defini-

tion of TGP, followed by the estimation and prediction. We also present the simulation

study, in which, although the predictions from Gaussian process regression model are more

accurate compared to truncated Gaussian process regression model, the predictions from

the latter are constrained in the target interval while the predictions from the former are

escaped from this interval. If people are not very sensitive to the accuracy of prediction

but more sensitive to the predictive interval, TGP might be a choice for such application.

In Section 2.2, we show how GPR is used for Gamma-distributed data and the inferences

for prediction with an analytical solution and an approximate solution.

In other words, we model non-Gaussian data which breaks an assumption of Gaussian

process regression and still in the framework of GPR.

3.1 Truncated Gaussian process regression

As discussed in Section 2.5.1, when a normally distributed random variable is constrained

by an upper boundary or a lower boundary or both, it is supposed to be a truncated normal
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distribution. There are also extensively applications of truncated normal distribution in

statistics and econometrics (Greene, 2003; Botev, 2017). In this section, we try to break

an assumption in Gaussian process regression that a response variable follows a normal

distribution by using GPR for normal-distributed data.

3.1.1 Truncated Gaussian process

Inspired by defining a truncated normal distribution based on a normal distribution, we

can define a truncated Gaussian process based on a Gaussian process. If we have a normal

distribution, a lower boundary and a upper boundary, it is not difficult to derive some

statistical formulae of such truncated normal distribution, such as probability density

function, cumulative distribution function. Thus, we try to define a truncated Gaussian

process based on a Gaussian process, lower boundaries and upper boundaries.

Analogous to the definition of Gaussian process, a truncated Gaussian process is a

stochastic process in which any finite collection of random variables follows multi-variate

truncated normal distribution and the boundaries are given smooth functions. We define

a TGP as follows

h(·) = TGP (f(·), µ(·), k(·, ·;θ); l(·), u(·)) (3.1)

where f(·) denotes a Gaussian process with mean function µ(·) and covariance function

k(·, ·;θ), θ is hyper-parameters in covariance function, l(·) and u(·) are given smooth lower

boundary function and upper boundary function respectively.

3.1.2 Truncated Gaussian process regression model

In order to derive the probability density function of a conventional truncated normal dis-

tribution, we firstly need to know the mean and variance of the related normal distribution

and then constrain the random variable within a given interval. Analogously to the sta-

tistical inference of truncated normal distribution, in this part, we present the estimation

for hyper-parameters in covariance function and prediction. Specifically, we estimate the

hyper-parameters in covariance function by applying Gaussian process regression model

to data directly and then constrain the prediction in a given interval by a Gibbs sampling
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algorithm.

Suppose the training data are given as D = {(xi, yi)|xi ∈ Rp, yi ∈ R, i = 1, ..., n}. A

truncated Gaussian process regression model can be defined by

yi(xi) ∼ h(xi), i = 1, ..., n. (3.2)

Instead of deriving the inference based on Bayesian scheme directly, we apply Gaussian

process regression model for training data D to estimate the hyper-parameters. For more

details about Gaussian process regression model, see Section 2.1.3. The expectation and

variance for a new input x∗ before constrain are given by

E[y(x∗)] = ϕ(x∗)TΨ−1y

V ar(y(x∗)) = ϕ(x∗)−ψ(x∗)TΨ−1ψ(x∗)
(3.3)

So far, the predictive distribution still follows a normal distribution and in practice,

it is often multi-variate normal distribution. To make a prediction of truncated Gaus-

sian process, the posterior Gaussian process should be constrained. Thus, the challenge

converts to how to sample random variables following a multi-variate truncated normal

distribution from a corresponding multi-variate normal distribution.

Kotecha and Djuric (1999) firstly introduce a Markov Chain Monte Carlo algorithm

to generate random variables from a multi-variate truncated normal distribution. Fur-

thermore, Wilhelm (2015) proposes a Gibbs sampler based on Geweke (1991) and Geweke

(2005). Specifically, the author uses precision matrix rather than the covariance matrix

which is more efficient in calculation, since the time-consuming computation of matrix

inversions is not needed. We present a Gibbs sampler algorithm based on Wilhelm (2015)

to yield a truncated Gaussian process from a Gaussian process.

The Gibbs sampler algorithm uses facts that the conditional distribution of trun-

cated normal distribution is truncated normal again (Horrace, 2005) and it is based

on full conditional distribution of multi-variate normal distribution. The full condi-

tional distribution of a n-dimensional multi-variate normal distribution is denoted as
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p(zi|z−i) = p(zi|z1, ..., zi−1, zi+1, ..., zn) which is a normal distributed with mean

µzi|z−i
= µi +Σi,−iΣ

−1
−i,−i(z−i − µ−i) = µi −H−1

i,i Hi,−i(z−i − µ−i)

and variance

Σzi|z−i
= Σi,i − Σi,−iΣ

−1
−i,−iΣ−i,i = H−1

i,i .

We can constrain the posterior Gaussian process to a truncated Gaussian process

by applying a Gibbs sampler. Suppose independent variables in training data are X =

(x1, ...,xn) and make a prediction at a new input x∗. The predictive expectation of

Gaussian process regression is

µ∗ = Σx∗,XΣ−1
X,Xy = ψ(x∗)Ψ−1y (3.4)

since we assume the mean function of Gaussian process prior is zero and the predictive

variance of Gaussian process regression is

σ∗ = Σx∗,x∗ − Σx∗,XΣ−1
X,XΣX,x∗ = ϕ(x∗)−ψ(x∗)TΨ−1ψ(x∗) (3.5)

where y = (y1, ..., yn).

Since data points on a Gaussian process (including training data points and test data

point) are related, it is not suitable to constrain the prediction at test data point only

regardless of the constrains at training data points. In other words, we must constrain

all predictions at training data points and test data point simultaneously. In addition,

this problem can be considered as how to sample from a multi-variate truncated Gaussian

distribution from a multi-variate Gaussian distribution.

To sample from multi-variate truncated normal distribution, we construct a Markov

chain which draws from p(f(x∗)|X,y) subject to l(x∗) ≤ f(x∗) ≤ u(x∗). In addition, there

is a transformation between sampling from a uni-variate truncated normal distribution and

a uni-variate normal distribution (Greene, 2003; Hurn and Becker, 2004). Suppose that

f (j)(·) denotes samples drawn at the j-th MCMC iteration. The Algorithm 4 describes
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the steps of the Gibbs sampler.

Algorithm 4: Algorithm for prediction from truncated Gaussian process.

1. Make a prediction at every xi including x
∗, we obtain

f̂ = (f̂(x1), ., , , f̂(xn), f̂(x
∗));

2. Since the conditional variance σ∗2 is independent from y, we can pre-calculate

it before running the Markov chain ;

3. Choose f̂ as a start value f (0) of the chain;

4. Set j = 1, we sample from the conditional density

f (j)(xi)|f (j)(x1), ..., f
(j)(xi−1), f

(j−1)(xi+1), ..., f
(j−1)(x∗) from xi = x1 to

xi = x
∗ ;

5. j = j + 1 and replicate Step 4 until a very large j ;

6. Draw a uniform random variate U ∼ Uni(0, 1) ;

7. We draw from uni-variate conditional normal distributions with mean µ∗ and

variance σ∗2. For each realization y we can find a x such as

P (Z ≤ z) = P (X ≤ x):

Φ(x−µ
σ )− Φ( l−µ

σ )

Φ(u−µ
σ )− Φ( l−µ

σ )
= Φ(

z − µ

σ
) = U

8. Draw h(x∗) from conditional uni-variate truncated normal distribution

TN(µ∗, σ∗2, li, ui) by:

h(x∗) = µ∗ + σ∗ × Φ−1

[
U

(
Φ(
ui − µ∗

σ∗
)− Φ(

li − µ∗

σ∗
)

)
+Φ(

li − µ∗

σ∗
)

]

Equipped with Algorithm 4, a truncated Gaussian process can be generated from a

corresponding Gaussian process. By setting a large iteration number, we can obtain a

number of samples which are drawn from a truncated normal distribution. Moreover, the

mean of these samples are our prediction at x∗ based on TGP.

3.1.3 Simulation study

We firstly show comparison of two sets of samples drawn from a bi-variate Gaussian distri-

bution and corresponding bi-variate truncated Gaussian distribution based on Algorithm
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4. Specifically, the random variable X following a bi-variate Gaussian distribution which

is

X ∼ N
(0

0

 ,

0.3 0.1

0.1 0.3

). (3.6)

10000 samples are drawn from the distribution above and we then run the Gibbs

sampling to drawn samples with lower boundary (−1,−0.9) and upper boundary (1, 0.9)

which is displayed below

Figure 3.2: An example of Algorithm 4, where the gery points are drawn from distribution
(3.6), black points are drawn from distribution (3.6) with boundaries and red lines are
boundaries.

From the plot above, it is capable to constrain a multi-variate Gaussian distribution

by a Gibbs sampler.

To show our model is able to constrain the predictions in a given interval, we test its

performance on a toy data set where the observed data points are missed totally in a given

interval. It is not necessary to compare some statistics such as root-mean-square-error,

between our TGP model and GPR model, because the most important target of TGP is

to constrain the predictions in a correct interval and then capture information based on

training data as much as possible.

Suppose the independent variable is 1-dimensional which is x ∈ R. Thus, a zero-mean
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Gaussian process τ(x) can be specified with a given covariance function

k(xi, xj) = v exp
(
− 1

2w
(xi − xj)

2
)
+ axixj + δijσ

2

where the hyper-parameters are θ = (v, w, a, σ). The toy data set is generated by y(x) =

sin (3x)3 + τ(x) for x ∈ (0.01, 0.35) ∪ (0.7, 1) and θ = (0.09, 0.49, 0.04, 0.09).

We use the method mentioned in Section 2.1.3 to estimate the hyper-parameters from

training data and make predictions for the missing data of x ∈ (0.35, 0.7) based on Algo-

rithm 4. The results are visualised in Figure 3.3 in which the predictions of GPR are out of

boundaries although its predictions near training data are more accurate than predictions

of TGP. However, the numerical results present that the TGP model has ability to make

a prediction within constrains. As discussed above, it is not reasonable to train an uncon-

strained model, make a prediction and then constrain the prediction, since all data points

on a stochastic process are correlated and we must consider all constrains with the data

together rather than just use a model and fit the data. Based on the formula in Algorithm

4, the consequences of Gibbs sampling have a strong relationship with the values of upper

boundary and lower boundary, which affects the predictions of both training data and

test data. In the future, a possible research could be the selection of boundaries based on

training data.
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Figure 3.3: Numerical results for comparison where the grey points are training data,
green curve is the prediction by Gaussian process regression, blue curve is the prediction
by truncated Gaussian process regression, red curves are the lower boundary and upper
boundary, respectively.

3.2 An extension of truncated normal distribution

The truncated normal distribution is well studied. However, in practice, a random variable

might locate in two intervals of a normal distribution. As shown in Figure 3.4, a random

variable locates in interval [−2,−1] and [1, 2] of a standard normal distribution. Since

there is little literature on such distribution, in this part, we derive some foundational

formulas.
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Figure 3.4: A random variable locates in [-2,-1] and [1,2] in a normal distribution.

To develop a truncated normal distribution satisfying the situation we discussed above,

a truncated normal distribution can be extended to multi-boundaries. For example, a

random variable x ∈ [l1, u1]∪ [l2, u2], where [l1, u1] and [l2, u2] are two intervals in a normal

distribution. We also derive some useful formulas on statistics, such as the probability

density function, cumulative distribution function, expectation and variance. The formal

definition of a multi-truncated normal distribution is given as follows

Definition 3.2.1. A multi-constrained Gaussian distribution is the probability distribu-

tion derived from a normal distributed random variable which is bounded by not only one

interval.

Analogous to the truncated normal distribution, we can write the distribution as

X ∼ MCN n(µ, σ; li, ui), i = 1, . . . , n. (3.7)

where n represents the number of constrained intervals where −∞ ≤ l1 < u1 < l2 < · · · <

un−1 < ln < un ≤ ∞. In addition, we suppose the boundaries are symmetric, for example,
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when n = 2, the distribution is shown in Figure 3.4 where the boundaries are [−2,−1] and

[1, 2] which is symmetric from the mean 0.

3.2.1 Probability density function

Naturally, the probability density function is the priority what we need. Inspired by the

idea of deriving the p.d.f. of a truncated normal distribution, we can try to infer the

formula of normal distribution with multi-boundaries:

f(x|µ, σ, l,u) = 1

nσ

ϕ(ξ)∑n
i=1(Φ(βi)− Φ(αi))

=
ϕ(ξ)

nσZ
, x ∈

n⋃
i=1

(
li, ui

) (3.8)

where ξ = x−µ
σ , αi =

li−µ
σ , βi =

ui−µ
σ and Z =

∑n
i=1

(
Φ(βi)− Φ(αi)

)
.

3.2.2 Cumulative distribution function

Cumulative distribution function also plays an important role in statistic. The c.d.f. of

multi-constrained normal distribution is given by

F (x|µ, σ, l,u) =
∫ u1

l1

f(x|µ, σ, l1, u1)dx+ · · ·+
∫ un

ln

f(x|µ, σ, ln, un)dx, x ∈
n⋃

i=1

(
li, ui

)
=

n∑
i=1

∫ βi

αi

ϕ(ξ)

nσZ
dξ

=
Φ(ξ)− Cm

nZ

(3.9)

where m represents the random variable x is in the m-th constrained interval (lm, um) and

Cm = Φ(αm)−
∑m−1

j=1

(
Φ(βj)− Φ(αj)

)
.
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3.2.3 Expectation

The expectation of a random variable is essential in prediction and it can be calculated

by:

E[x|µ, σ, l,u], x ∈ (li, ui)

=

∫ ui

li

x
ϕ(ξ)

nσZ
dx

=
1

nσZ

∫ ui

li

x
1√
2π

exp (
x− µ

σ
)2dx

=
1

nσZ

∫ ui

li

σ
x− µ+ µ

σ

1√
2π

exp (
x− µ

σ
)2dx

=
1

nZ

∫ ui

li

(
x− µ

σ
+
µ

σ
)

1√
2π

exp (
x− µ

σ
)2dx

=
1

nZ

∫ ui

li

(
x− µ

σ
)

1√
2π

exp (
x− µ

σ
)2dx+

µ

n

=
µ

n
+
σ(ϕ(αi)− ϕ(βi))

nZ

(3.10)

3.2.4 Variance

In practice, the variance is also a useful statistics especially in prediction with uncertainty.

It is derived by

E[x2|µ, σ, l,u], x ∈ (li, ui)

=

∫ ui

li

x2
ϕ(ξ)

nσZ
dx

=
1

nσZ

∫ ui

li

x2
1√
2π

exp (
x− µ

σ
)2dx

=
1

nσZ

∫ ui

li

σ2(
(x− µ)2

σ2
+

2xµ− µ2

σ2
)

1√
2π

exp (
x− µ

σ
)2dx

=
1

nσZ

∫ ui

li

σ2
(x− µ)2

σ2
1√
2π

exp (
x− µ

σ
)2dx+

2µ

nZ
E[x]− µ2

nZ

=σ2(αiϕ(αi)− βiϕ(βi) +
1

nZ
) +

2µ

nZ
E[x]− µ2

nZ

(3.11)
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and thus

V ar(x|µ, σ, l,u), x ∈ (li, ui)

=E[x2]− E[x]2

=σ2(αiϕ(αi)− βiϕ(βi) +
1

nZ
) +

2µ

nZ
E[x]− µ2

nZ
− (

µ

n
+
σ(ϕ(αi)− ϕ(βi))

nZ
)2

=σ2(1 +
αiϕ(αi)− βiϕ(βi)

nZ
)− σ2(

nZ

ϕ(αi)− ϕ(βi)
)2

(3.12)

For more details on the calculation of the expectation and variance, see Johnson et al.

(1995).

Researchers can try to develop the truncated Gaussian process with multi-boundaries

if interested. However, people should notice that a random variable might jump between

different constrained intervals. For example, suppose a random variable follows a trun-

cated Gaussian distribution with two boundaries (l1, u1) and (l2, u2), the expectation of

predictive distribution at t1 might locate in interval (l1, u1) while that of t2 might locate

in interval (l2, u2) and the expectation backs to interval (l1, u1) for the next time point.

In other words, the expectations of t1 and t2 might be far away even though t1 and t2 are

very close.

3.3 Gaussian process regression for Gamma-distributed data

Gamma distribution is a continuous probability function including two parameters, which

is a general case of exponential distribution, Erlang distribution and chi-squared distribu-

tion. As a member in exponential family, it plays an important role in many applications.

For example, the size of insurance claims can be modelled by gamma distribution (Boland,

2007) and rainfalls can also be modelled by gamma distribution (Aksoy, 2000). Addition-

ally, in bacterial gene expression, gamma distribution is used to represent the copy number

of constitutively expressed protein (Friedman et al., 2006). However, a basic assumption

in Gaussian process regression is that a response variable follows a normal distribution. In

this part, our motivation is to extend Gaussian process regression for Gamma-distributed

data.

In practice, people might use log-transformation which maps the data to an approx-
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imate Gaussian distribution and then apply GPR to fit the mapped data. Nevertheless,

the mapped data are still non-Gaussian and thus it is not reasonable to use GPR directly.

For comparison, we also shown the numerical result for this method in Section 3.3.4.

3.3.1 The model

We suppose the training data are D = {(xi, yi)|xi ∈ Rp, yi ∈ R, i = 1, ..., n} in which xi

refers to a p-dimensional vector of predictor variable and yi refers to a Gamma-distributed

response variable. Since a Gamma distribution depends on two parameters k and θ.

Parameters k and θ are appeared more common in econometrics while parameters k and

β = 1
θ are appeared more common in Bayesian statistics. Therefore, in both fields, people

seems pay more attention to θ in a Gamma distribution. That is the reason we model θ

by a GP and treat k as a constant. Therefore, we suppose k is a constant which can be

estimated by cross-validation and θ, a random variable, is estimated by Gaussian process

regression. In other words, θ can be considered as a latent process and thus, we use

Gaussian process to model this latent process.

Since the parameter θ is positive, we use an exponential form to represent it. We define

the Gaussian process regression model for Gamma-distribution data as

yi ∼ Gamma(k, θi)

= Gamma(k, ef(xi)), i = 1, ..., n
(3.13)

where f(·) refers to a Gaussian process. The mean function of f(·) is considered as zero

and the covariance function is selected in advance, such as squared exponential covari-

ance function or linear covariance function. Inspired from Wang and Shi (2014), since the

likelihood function is analytically intractable, we use Laplace method or Gaussian approx-

imation to approximate it and the predictive distribution has an analytical form which

is computational efficiently. However, the prediction is not accurate due to the Gaussian

approximation ignores the non-symmetric property of Gamma distribution. Therefore, in

order to improve the predictive performance of our model, we use approximate Bayesian

computation for prediction rather than the analytical form. The numerical results show

that with the application of ABC, the accuracy of prediction is improved.
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3.3.2 Inference based on Laplace method

One important goal in objective function optimization is to estimate the parameters in a

model. As a typical non-parametric model, we need to estimate the hyper-parameters in

covariance function of a Gaussian process regression model.

We firstly discuss an approach on model learning and predicting based on empirical

Bayesian method and Laplace approximation (Williams and Rasmussen, 2006). With the

assumption that response variables are independent pairwise, the likelihood function can

be derived by the products of probability density functions of all response variables:

p(y|f) = 1

Γ(k)ef1k
yk−1
1 e

− y1
ef1 × · · · × 1

Γ(k)efnk
yk−1
n e

− yn
efn

=

n∏
i=1

1

Γ(k)efik
yk−1
i e

− yi

efi

(3.14)

where Γ(·) is the Gamma function, fi is the short form of f(xi), y = (y1, ..., yn) and

f = (f1, ..., fn).

To estimate the hyper-parameters θ in covariance function of a Gaussian process f(·)

by empirical Bayesian learning, we need the marginal distribution of y which can be

computed by integrating the conditional distribution p(y|f) and the probability density

function p(f |X,θ) over f . Thus, the marginal distribution can be written by

p(y|X,θ) =
∫
p(y|f)p(f |X,θ) df (3.15)

where X = (x1, ...,xn).

The marginal log-likelihood is given as

l(θ) = log(p(y|X,θ))

= log(

∫
p(y|f)p(f |X,θ) df)

= log(

∫
eγ(f) df)

(3.16)

where γ(f) = log(p(y|f)) + log(p(f |X,θ)).

It is very difficult to derive an analytical form of the integral in Equation (3.16), which

is also a widely-existed problem in calculating a posterior distribution. In this section,
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instead of computing an analytical form of this marginal log-likelihood function, we use

Laplace method to approximate the integral, which is

l(θ) ≈ γ(f̂) +
n

2
log(2π)− 1

2
log |B +Ψ−1| (3.17)

where f̂ maximises the γ(f). The hyper-parameters θ can be estimated by empiri-

cal Bayesian learning which maximises the approximate marginal log-likelihood function

(3.17). However, it is noticeable that γ(f) depends on θ and l(θ) depends on γ(f̂).

Therefore, we can use an iterative algorithm to estimate θ.

Algorithm 5: Iterative algorithm for estimating hyper-parameters θ.

1. Select the initial value of hyper-parameters θ(j) and set j = 0 ;

2. Calculate f (j) by maximizing γ(f) given θ(j) ;

3. Calculate θ(j+1) by maximizing l(θ) in (3.17) given f (j) ;

4. j = j + 1, replicate Step 2 and Step 3 until both f and θ converge.

The first derivative and second derivative of γ(f) with respect to f and l(θ) with

respect to θ are essential to implement Step 2 and Step 3 efficiently in Algorithm 5. The

derivatives are given as

∂γ(f)

∂f
= (

y1
ef1

, . . . ,
yn
efn

)− k −Ψ−1f

∂2γ(f)

∂f∂fT
= −B −Ψ−1

where k = (k, k, . . . , k) is a n-dimensional vector, B = diag( y1
ef1
, . . . , yn

efn
) is a n×n diagonal

matrix and Ψ−1 is the inverse covariance matrix.

For simplicity, we suppose there are only two hyper-parameters θ = (θ1, θ2) in covari-

ance function and the first derivatives and second derivatives of l(θ) with respect to θ1

and θ2 are given as

∂l(θ)

∂θ1
= −1

2
tr(Ψ−1 ∂Ψ

∂θ1
) +

1

2
yΨ−1 ∂Ψ

∂θ1
Ψ−1y − 1

2
tr
(
(B +Ψ−1)−1Ψ−1 ∂Ψ

∂θ1
Ψ−1

)
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∂l(θ)

∂θ2
= −1

2
tr(Ψ−1 ∂Ψ

∂θ2
) +

1

2
yΨ−1 ∂Ψ

∂θ2
Ψ−1y − 1

2
tr
(
(B +Ψ−1)−1 ∂Ψ

∂θ2
Ψ−1

)

∂2l(θ)

∂θ21
=

1

2
tr(Ψ−1 ∂Ψ

∂θ1
Ψ−1 ∂Ψ

∂θ1
)− 1

2
tr(Ψ−1∂

2Ψ

∂θ21
)− 1

2
yΨ−1 ∂Ψ

∂θ1
Ψ−1 ∂Ψ

∂θ1
Ψ−1y

−1

2
yΨ−1∂

2Ψ

∂θ21
Ψ−1y +

1

2
yΨ−1 ∂Ψ

∂θ1
Ψ−1 ∂Ψ

∂θ1
Ψ−1y

+
1

2
tr
(
(B +Ψ−1)−1Ψ−1 ∂Ψ

∂θ1
Ψ−1(B +Ψ−1)−1Ψ−1 ∂Ψ

∂θ1
Ψ−1

−(B +Ψ−1)−1Ψ−1 ∂Ψ

∂θ1
Ψ−1 + (B +Ψ−1)−1Ψ−1∂

2Ψ

∂θ21

−(B +Ψ−1)−1Ψ−1 ∂Ψ

∂θ1
Ψ−1 ∂Ψ

∂θ1
Ψ−1

)

∂2l(θ)

∂θ1∂θ2
=

1

2
tr(Ψ−1 ∂Ψ

∂θ2
Ψ−1 ∂Ψ

∂θ1
)− 1

2
tr(Ψ−1 ∂2Ψ

∂θ1∂θ2
)− 1

2
yΨ−1 ∂Ψ

∂θ2
Ψ−1 ∂Ψ

∂θ1
Ψ−1y

−1

2
yΨ−1 ∂2Ψ

∂θ1∂θ2
Ψ−1y +

1

2
yΨ−1 ∂Ψ

∂θ1
Ψ−1 ∂Ψ

∂θ2
Ψ−1y

+
1

2
tr
(
(B +Ψ−1)−1Ψ−1 ∂Ψ

∂θ2
Ψ−1(B +Ψ−1)−1Ψ−1 ∂Ψ

∂θ1
Ψ−1

−(B +Ψ−1)−1Ψ−1 ∂Ψ

∂θ2
Ψ−1 + (B +Ψ−1)−1Ψ−1 ∂2Ψ

∂θ1∂θ2

−(B +Ψ−1)−1Ψ−1 ∂Ψ

∂θ1
Ψ−1 ∂Ψ

∂θ2
Ψ−1

)
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∂2l(θ)

∂θ22
=

1

2
tr(Ψ−1 ∂Ψ

∂θ2
Ψ−1 ∂Ψ

∂θ2
)− 1

2
tr(Ψ−1∂

2Ψ

∂θ22
)− 1

2
yΨ−1 ∂Ψ

∂θ2
Ψ−1 ∂Ψ

∂θ2
Ψ−1y

−1

2
yΨ−1∂

2Ψ

∂θ22
Ψ−1y +

1

2
yΨ−1 ∂Ψ

∂θ2
Ψ−1 ∂Ψ

∂θ2
Ψ−1y

+
1

2
tr
(
(B +Ψ−1)−1Ψ−1 ∂Ψ

∂θ2
Ψ−1(B +Ψ−1)−1Ψ−1 ∂Ψ

∂θ2
Ψ−1

−(B +Ψ−1)−1Ψ−1 ∂Ψ

∂θ2
Ψ−1 + (B +Ψ−1)−1Ψ−1∂

2Ψ

∂θ22

−(B +Ψ−1)−1Ψ−1 ∂Ψ

∂θ2
Ψ−1 ∂Ψ

∂θ2
Ψ−1

)
However, Rue et al. (2009) demonstrate that asymptotic error rate of Equation (3.17)

is O(1) since the dimension of f increases with the sample size n. Moreover, the derivatives

above contain many inverse matrices which are computational expensively. In order to

avoid these troubles, we use another approximate method to estimate hyper-parameters

θ which is based on Gaussian approximation.

3.3.3 Inferences based on Gaussian approximation

Instead of calculating the marginal log-likelihood l(θ) =
∑n

i=1 log{p(yi|k,θ)} via Laplace

method, we consider a more efficient method (Wang and Shi, 2014), which provides a

simpler form of likelihood function and thus requires less calculation in derivatives of

likelihood function. The assumption of data in their paper is different from us, which

leads to different likelihood function and predictive distribution.

Specifically, we represent p(y|k,θ) as follows

p̃(y|k,θ) ∆
=

p(f ,y|k,θ)
p̃G(f |y, k,θ)

∣∣∣∣
f=f̃

(3.18)

where p̃G(f |y, k,θ) is the Gaussian approximation to the full conditional density p(f |y, k,θ)

and f̃ is the mode of the full conditional density of f for a given θ.

The numerator of Equation (3.18), which is the joint distribution of response variables
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y and latent variables f , can be decomposed by

p(f ,y|k,θ) = p(y|f ,θ)p(f |θ)

= exp
(
log
(
p(f |θ)

)
+

n∑
i=1

log
(
p(yi|fi, k)

)) (3.19)

where p(y|f ,θ) is the product of gamma distributions and p(f |θ) is a multi-variate Gaus-

sian distribution. In order to maintain p(f ,y|k,θ) in the framework of Gaussian distri-

bution, we approximate log
(
p(yi|fi, k)

)
by Taylor expression to the second order at f

(0)
i ,

that is

gi(fi) ≈ gi(f
(0)
i ) +

g′i(f
(0)
i )

1!
(fi − f

(0)
i ) +

g′′i (f
(0)
i )

2!
(fi − f

(0)
i )2 (3.20)

where gi(fi) = log(p(yi|fi, k)). By defining

ai =
yi

ef
(0)
i

+ f
(0)
i

yi

ef
(0)
i

− k

di =
yi

ef
(0)
i

gi(fi) can be approximated as follows

gi(fi) ≈ gi(f
(0)
i ) + aifi −

1

2
dif

2
i (3.21)

Therefore, we obtain an approximation of the joint distribution p(f ,y|k,θ), i.e.

p(f ,y|θ, k) ∝ exp{−1

2
fTΨ−1f − 1

2
fTDf + aTf} (3.22)

where a = (a1, ..., an), D = diag(d1, ..., dn) and Ψ is the covariance matrix of multi-

variate normal distribution f with hyper-parameters θ. Then, based on the Fisher scoring

algorithm (Fahrmeir and Lang, 2001), the Gaussian approximation can be computed:
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Algorithm 6: Fisher scoring algorithm for estimating Gaussian approximation.

1. Select the initial value of every f
(j)
i and set j = 0 ;

2. Calculate f (j) from (Ψ−1 +D)f (j) = a ;

3. Update a and D by f (j) ;

4. j = j + 1, replicate Step 2 and Step 3 until this process converges at f̃ ;

5. We get the Gaussian approximation of the full conditional distribution which is

p̃G(f |y, k,θ) ∼ N (f̃ , (Ψ−1 +D)−1) (3.23)

Equipped with distributions in Equation (3.22) and (3.23), the hyper-parameters θ

can be estimated by maximising the approximate marginal log-likelihood (3.18) which can

be formulated as

l(θ) = log(p(y|X, k,θ))

≈ log(p̃(y|k,θ))

= log(
p(f̃ ,y|k,θ)
p̃G(f̃ |y, k,θ)

)

= log(p(f̃ ,y|k,θ))− log(p̃G(f̃ |y, k,θ))

∝ − log(|(Ψ−1 +D)−1|)

(3.24)

In practice, we use differential evolution algorithm to estimate θ. Another important

inference in statistics is to calculate the predictive expectation and predictive variance.

Suppose the independent variable for test data is given by x∗ ∈ Rp, thus, the expectation

is computed by

E[y∗|D] =

∫
E[y∗|f∗,D]p(f∗|D)df∗ (3.25)

where f∗ = f(x∗) and y∗ = 1
Γ(k)ef(x

∗)k y
k−1
i e

− yi
f(xi) . Since (f , f∗) is jointly Gaussian

distributed, f∗ still follows a normal distribution

f∗|D ∼ N(bT f̃ , bTΩb+ σ∗2) (3.26)
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where bT = ψ(x∗)TΨ−1, σ∗ = ϕ(x∗) − ψ(x∗)TΨ−1ψ(x∗) and Ω = (Ψ−1 + D)−1. As a

consequence, the integral in Equation (3.25) has an analytical form, that is

E[y∗|D] = k × exp
(−(bT f̃)2 + (bTΩb+ σ∗2 + bT f̃)2

2(bTΩb+ σ∗2)

)
(3.27)

The variance of y∗|D can be yielded by

V ar(y∗|D) = E[V ar(y∗|f∗,D)] + V ar(E[y∗|f∗,D]) (3.28)

where

E[V ar(y∗|f∗,D)] =

∫
V ar[y∗|f∗,D]p(f∗|D)df∗

V ar(E[y∗|f∗,D]) =

∫
E[y∗|f∗,D]2p(f∗|D)df∗ − E[y∗|D]2

Since y∗|f∗,D is gamma distributed, we have

E[y∗|f∗,D] = kef
∗

V ar(y∗|f∗,D) = ke2f
∗

Therefore,

E[V ar(y∗|f∗,D)] = k × exp
((2(aTΩa+ σ∗2) + aT f̃)2 − (aT f̃)2

2(aTΩa+ σ∗2)

)

V ar(E[y∗|f∗,D]) = k2 × exp
(−(bT f̃)2 + (bTΩb+ σ∗2 + bT f̃)2

bTΩb+ σ∗2

)
− k2 × exp

((2(bTΩb+ σ∗2) + bT f̃)2 − (bT f̃)2

bTΩb+ σ∗2

)
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And fortunately, we obtain an analytical form of predictive variance

V ar(y∗|D) = k × exp
((2(bTΩb+ σ∗2) + bT f̃)2 − (bT f̃)2

2(bTΩb+ σ∗2)

)
+ k2 × exp

(−(bT f̃)2 + (bTΩb+ σ∗2 + bT f̃)2

bTΩb+ σ∗2

)
− k2 × exp

((2(bTΩb+ σ∗2) + bT f̃)2 − (bT f̃)2

bTΩb+ σ∗2

)
(3.29)

The Gaussian approximation p̃G(f |y, k,θ) follows a normal distribution which is sym-

metric. However, according to empirical results, p(f |y, k,θ) shows a unsymmetric distri-

bution which leads to inaccurate predictions if we simply replace p(f |y, k,θ) by p̃G(f |y, k,θ).

To address this issue, we use approximate Bayesian computation to p(f |y, k,θ) rather than

using the Gaussian approximation directly.

3.3.4 Approximate Bayesian computation for prediction

Approximate Bayesian computation consists of many computational methods to estimate

the posterior distribution in Bayesian statistic, which can be traced back to Rubin (1984).

The most important advantage of ABC is that this algorithm bypasses the likelihood

function. Likelihood function is of central importance since it describes the probability

of data given a statistical model. People can derive an analytical form of likelihood

function for simple models. However, for complex models, the likelihood function is often

computational expensively or even elusive, such as l(θ) in Equation (3.16). Therefore, we

can use ABC to estimate the posterior distribution approximately without deriving the

likelihood function.

In ABC rejection algorithm, we first sample from the prior distribution of hyper-

parameters θ which is denoted by θ̂. Besides, the simulated training data set D̂ can be

specified by the given statistical model and θ̂. If the distance, such as Euclidean norm,

between the simulated training data D̂ and the real training data D is larger than a strictly

positive tolerance, the sampled hyper-parameters θ̂ is discarded; otherwise, we accept

θ̂. After a number of replications, without deriving the exact likelihood function, ABC

rejection algorithm provides an approximate posterior distribution of targeted parameters.

In this section, we aim to apply approximate Bayesian computation for prediction
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rather than estimation and as mentioned previously, the predictive expectation is given

by

E[y∗|D] =

∫
E[y∗|f∗,D]p(f∗|D)df∗

=

∫
kef

∗
p(f∗|D)df∗

≈
N∑

h=1

kef
∗h

and the predictive variance is

V ar(y∗|D) = E[V ar(y∗|f∗,D)] + V ar(E[y∗|f∗,D])

=

∫
V ar(y∗|f∗,D)p(f∗|D)df∗ +

∫
E[y∗|f∗,D]2p(f∗|D)df∗ − E[y∗|D]2

≈
N∑

h=1

ke2f
∗h

+

N∑
h=1

k2e2f
∗h −

N∑
h=1

k2e2f
∗h

=
N∑

h=1

ke2f
∗h

which depend on the sample of f∗. In addition,

p(f∗|D) =

∫
p(f∗|f ,D)p(f |D)df

≈
N∑

h=1

p(f∗|fh)

where p(f∗|f) is normal distributed and N refers to a large integer. Therefore, our aim

converges to find p(f |D) by approximate Bayesian computation.

Instead of sampling from prior distribution of θ, we draw f from its approximated full

conditional distribution (3.23). Then, the simulated training data ŷ can be calculated by

the expectation of Gamma distribution. The goodness of f is determined by the distance

between y and ŷ. If the distance is smaller than a positive tolerance, we suppose this

sample f might be drawn from the real posterior distribution and store the value of f

and repeat this process for a number of times, which leads to an approximate posterior

distribution of p(f |D). We can draw lots of samples from p(f |D) and calculate p(f∗|D)

which is used for prediction E[y∗|D]. Algorithm 7 summaries these steps.

61



Algorithm 7: Approximate Bayesian Computation for Prediction.

1. Draw f (j) = (f
(j)
1 , ..., f

(j)
n ) from the Gaussian approximation p̃G(f |y, k,θ) in

Equation (3.23) and set j = 0 ;

2. Draw ŷi form Gamma(k, exp (f
(j)
i )) ;

3. Calculate the distance between the simulated training data ŷ and the observed

data y. If d(y, ŷ) < ϵ, where ϵ is a strictly positive tolerance, we accept and

store f (j); else, we reject f (j). j = j + 1 and back to Step 1 until j reaches a

large number. The distribution of stored values is written by pABC(f |D) ;

4. Draw f (r) from pABC(f |D), then, p(f∗|D) ≈
∑R

r=1 p(f
∗|f (r)) with

appropriately large R ;

5. Repeat Step 4 N times, we get p(f∗(1)|D), ..., p(f∗(N)|D)’s. Then,

E[y∗|D] ≈
∑N

h=1 ke
f∗(h)

and V ar(y∗|D) ≈
∑N

h=1 ke
2f∗(h)

where f∗(h) is drawn

from p(f∗(h)).

We discussed the prediction of Gaussian process regression for Gamma-distributed data

by approximate Bayesian computation which neglects the exact form of likelihood function.

By taking advantage of Gaussian approximation of full conditional density p(f |y, k,θ), the

algorithm can be applied efficiently. Specifically, the accuracy of prediction is improved

via Algorithm 7 compared to the solution in Equation (3.27).

3.3.5 Convolved Gaussian processes regression for multi-variate Gamma-

distributed data

The Gaussian process regression for Gamma-distributed data can solve a class of re-

gression problems with probabilistic predictions. However, the response variable is re-

stricted to one dimension. To model multi-dimensional Gamma-distributed data by GPR,

we can model each dimension independently. Nevertheless, this idea cannot capture

the correlation between dependent variables in different dimensions. Therefore, we use

convolved Gaussian processes, see Section 2.2, to model the latent processes. In the

case of 2-dimensional response variables, suppose the training data are denoted as D =

{(x1,i, y1,i), (x2,j , y2,j)|x1,i ∈ Rp,x2,j ∈ Rq, y1,i ∈ R, y2,j ∈ R, i = 1, ..., n1, j = 1, ..., n2}

and k1, k2 are given for the first dimensional output and the second dimensional output

respectively. Moreover, it is not necessary to assume n1 = n2, since we model two cor-
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related stochastic process rather than a bi-variate random variable. However, for more

application, n1 is not necessarily equal to n2 as discussed in Section 2.2. The model is

defined as

y1(xi) ∼ Gamma(k1, exp (f1(xi))),

y2(xi) ∼ Gamma(k2, exp (f2(xi)))
(3.30)

where k1, k2 are constants and (f1(xi), f2(xi)) follows a convolved Gaussian process. The

likelihood function is written by

p(y|f) = 1

Γ(k1)ef1,1k1
yk1−1
1,1 e

−
y1,1

e
f1,1 × · · · × 1

Γ(k1)e
f1,n1k1

yk1−1
1,n1

e
−

y1,n1

e
f1,n1 ×

1

Γ(k2)ef2,1k2
yk2−1
2,1 e

−
y2,1

e
f2,1 × · · · × 1

Γ(k2)e
f2,n2k2

yk2−1
2,n2

e
−

y2,n2

e
f2,n2

=

n1∏
i=1

1

Γ(k1)ef1,ik1
yk1−1
1,i e

−
y1,i

e
f1,i ×

n2∏
i=1

1

Γ(k2)ef2,ik2
yk2−1
2,i e

−
y2,i

e
f2,i

(3.31)

where Γ(·) is the Gamma function, y = (y1,1, ..., y1,n1 , y2,1, ..., y2,n2) and f = (f1,1, ..., f1,n1 , f2,1, ..., f2,n2).

As discussed in Section 3.3.2, it is computational expensively to derive the first order

and second order of derivatives of likelihood function and the asymptotic error rate is

O(1). We do not use Laplace method and jump to the approximate the full conditional

distribution by a Gaussian distribution directly, the corresponding likelihood function is

p̃(y|k1, k2,θ)
∆
=

p(f ,y|k1, k2,θ)
p̃G(f |y, k1, k2,θ)

∣∣∣∣
f=f̃

(3.32)

where p̃G(f |y, k,θ) is the Gaussian approximation to the full conditional density p(f |y, k,θ)

and f̃ is the mode of the full conditional density of f for a given θ. Besides, the joint

distribution becomes

p(f ,y|k1, k2,θ) = p(y|f ,θ)p(f |θ)

= exp
(
log
(
p(f |θ)

)
+

n1∑
i=1

log
(
p(y1,i|f1,i, k1) +

n2∑
i=1

log
(
p(y2,i|f2,i, k2)

))
(3.33)

The Taylor expression to the second order of log
(
p(yi|fi, k1)

)
, denoted by g1,i, and
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log
(
p(yi|fi, k2)

)
, denoted by g2,i, are

g1,i(f1,i) ≈ g1,i(f
(0)
1,i ) +

g′1,i(f
(0)
1,i )

1!
(f1,i − f

(0)
1,i ) +

g′′1,i(f
(0)
1,i )

2!
(f1,i − f

(0)
1,i )

2, i = 1, ..., n1

g2,i(f2,i) ≈ g2,i(f
(0)
2,i ) +

g′2,i(f
(0)
2,i )

1!
(f2,i − f

(0)
2,i ) +

g′′2,i(f
(0)
2,i )

2!
(f2,i − f

(0)
2,i )

2, i = 1, ..., n2

By defining

a1,i =
y1,i

ef
(0)
1,i

+ f
(0)
1,i

y1,i

ef
(0)
1,i

− k1, i = 1, ..., n1

a2,i =
y2,i

ef
(0)
2,i

+ f
(0)
2,i

y2,i

ef
(0)
2,i

− k2, i = 1, ..., n2

d1,i =
y1,i

ef
(0)
1,i

, i = 1, ..., n1

d2,i =
y2,i

ef
(0)
2,i

, i = 1, ..., n2

g1,i(f1,i) and g2,i(f2,i) can be approximated as follows

g1,i(f1,i) ≈ g1,i(f
(0)
1,i ) + a1,if1,i −

1

2
d1,if

2
1,i, i = 1, ..., n1

g2,i(f2,i) ≈ g2,i(f
(0)
2,i ) + a2,if2,i −

1

2
d2,if

2
2,i, i = 1, ..., n2

Therefore, we obtain an approximation of the joint distribution p(f ,y|k1, k2,θ) which is

p(f ,y|θ, k1, k2) ∝ exp{−1

2
fTΨ−1f − 1

2
fTDf + aTf}

and

D =

D1 0

0 D2


where D1 is a n1×n1 diagonal matrix of d1,1, ...d1,n1 and D2 is a n2×n2 diagonal matrix of

d2,1, ..., d2,n2 and a = (a1,1, ..., a1,n1 , a2,1, ..., a2,n2). After using the Fisher scoring algorithm

, we get the Gaussian approximation of full conditional density p(f |y, k1, k2, ). Then,

based on the approximate method, the negative marginal log-likelihood of 2-dimensional
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Gaussian process regression model for Gamma-distributed data becomes

l(θ) =

n1∑
i=1

y1,i

exp(f̃1,i)
+

n2∑
i=1

y2,i

exp(f̃2,i)
+

1

2
log |Ψ|+ 1

2
f̃
T
Ψ−1f̃ − 1

2
log |(Ψ−1 +D)−1|

+n1 log Γ(k1) + n2 log Γ(k2)− (k1 − 1) log

n1∏
i=1

y1,i − (k2 − 1) log

n2∏
i=1

y2,i (3.34)

where f̃ = [f̃1, f̃2]. The estimated hyper-parameters can be obtained by optimising this

negative marginal log-likelihood.

We extend the approximate Bayesian computation for high-dimensional case and sup-

pose x∗ to be a new input. For simplicity, a 2-dimensional case has been considered as

before. This algorithm is also efficiently for prediction, since the numerical results show

that the prediction is more accurate than that of the analytical solution.

Algorithm 8: Approximate Bayesian computation for multi-variate prediction.

1. Draw f (j) = (f
(j)
1,1 , ..., f

(j)
1,n1

, f
(j)
2,1 , ..., f

(j)
2,n2

) from the Gaussian approximation

p̃G(f |y, k1, k2,θ) in Equation (3.23), j = 0 ;

2. Draw ˆy1,i form Gamma(k1, exp (f
(j)
1,i )) for i = 1, ..., n1 and ˆy2,i form

Gamma(k2, exp (f
(j)
2,i )) for i = 1, ..., n2 ;

3. Calculate the distance between the simulated training data ŷ and the observed

data y. If d(y, ŷ) < ϵ, where ϵ is a strictly positive tolerance, we accept and

store f (j); else, we reject f (j). j = j + 1 and back to Step 1 until j reaches a

large number. The distribution of stored values is written by pABC(f |D) ;

4. Draw f (r) from pABC(f |D), then, p(f∗|D) ≈
∑R

r=1 p(f
∗|f (r)) with

appropriately large R ;

5. Repeat Step 4 N times, we get p(f∗(1)|D), ..., p(f∗(N)|D)’s. Then,

E[y∗|D] ≈
∑N

h=1 kde
f∗(h)

and V ar(y∗|D) ≈
∑N

h=1 kde
2f∗(h)

where f∗(h) is drawn

from p(f∗(h)).

As discussed above, the parameter k in Gamma distribution is given. In practice, if

there is no prior knowledge about k, we can calculate it by cross-validation.
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3.3.6 Simulation study for one-dimensional outputs

In the simulation study of Gaussian process regression model for Gamma-distributed data,

we generate some data sets following gamma distribution and the parameter θ following

Gaussian process with sine mean function. Because of computational reasons, we choose

squared exponential covariance function which only includes two hyper-parameters.

In this section, we test our model on abundant toy data sets generated from

y(x) =
1

N

N∑
i=1

vi(x)

where x is covariate, vi(x) ∼ Gamma(k, exp (sin (x) + f)), N is the number of data points

sampled from Gamma distribution and f follows a zero mean Gaussian process with

squared exponential covariance function

k(xi, xj) = v exp
(
− 1

2w
(xi − xj)

2
)
+ δijσ

2.

Gaussian process regression is an effective model to capture the non-linear relationship

between high-dimensional independent variables and one-dimensional dependent variables.

However, for simplicity, in this simulation study, the independent variable is assumed to

be 1-dimensional. Without loss of generality, we choose an appropriate N that is 1000.

Suppose 30 data points are equally spaced in interval (0, 5) in which 25 data points are

randomly selected as the training data and the remaining 5 data points are used as test

data. The first step is to implement the method in Section 3.3.3 which approximates the

likelihood function and estimates the hyper-parameters via empirical Bayesian learning.

To compare the performances of two prediction methods, one is the analytical form in

Equation (3.27) and the other is based on approximate Bayesian computation (algorithm

7), we repeat this numerical experiment for 100 times. In other words, our model is trained

on thousands of training data points and tested on hundreds of test data points, which

leads to the numerical results are non-trivial. The root-mean-square-error and correlation

coefficient between true data and predictions are computed. In addition, we also consider

different parameter k (k = 0.5, k = 1 and k = 2) and different data sizes (30 data points,

50 data points and 70 data points) when we generate the data. To sum up, the data is
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generated by

yi =
1

1000

1000∑
l=1

vl(xi), i = 1, ..., n

vl(xi) ∼ Gamma(k, exp (sin (xi)) + f)

(3.35)

where xi is equally spaced in (0, 5), k ∈ [0.5, 1, 2], n ∈ [30, 50, 70], f is sampled from a

multivariate normal distribution with zero mean and the i, j-th entry of its covariance

matrix is k(xi, xj).

At the beginning of simulation study, we consider 20 different candidate ks which

are equally spaced in interval (0.5, 3). Then, cross-validation is applied to determine the

suitable k. In details, for each candidate k, we calculate corresponding root-mean-square-

error and correlation coefficient r between test data points and predictions from analytical

form. Among these 20 values of k, the one with minimal rmse is selected as the optimal

estimate, denoted as k̂. In order to make predictions from ABC algorithm based on k̂. We

calculate corresponding a, D, f̃ and θ. Moreover, ABC is able to improve the prediction of

our model, which is confirmed by the numerical results in Table 3.1. Due to the expensive

computation of differential evolution algorithm, we set the initial population size is 50 and

the number of evolution is 150.
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k = 0.5 k = 1 k = 2

rmse

25 train data
0.1921∗ 0.2003∗ 0.3690∗

0.2087† 0.2919† 0.4092†

45 train data
0.0881∗ 0.1349∗ 0.1823∗

0.1359† 0.1520† 0.1938†

65 train data
0.0797∗ 0.1123∗ 0.1794∗

0.0994† 0.1128† 0.1408†

r

25 train data
0.9377∗ 0.9874∗ 0.9834∗

0.9761† 0.9864† 0.9835†

45 train data
0.9904∗ 0.9942∗ 0.9958∗

0.9889† 0.9948† 0.9962†

65 train data
0.9879∗ 0.9954∗ 0.9957*

0.9829† 0.9960† 0.9970†

Table 3.1: Root-mean-squared-error and correlation coefficient of Gaussian process re-
gression for Gamma-distributed data with different ks and data sizes. Each numerical
experience has 5 test data points. The bold writing means minimal rmse.

The numerical results show that our model is effective for interpolation and its perfor-

mance improves with the increasing number of training data. It is clear that the predictions

of ABC algorithm (numbers labelled by ∗) are more accurate than that of analytical form

(numbers labelled by †) for most training data sets. In addition, for fixed k, such as

k = 0.5, k = 1 or k = 2, the rmse decreases with the increase of training data size. For

example, the rmse of approximate Bayesian computation for the 65 training data with

k = 0.5 is 0.0797 which is less than 0.1921 for 25 training data and 0.0881 for the 45

training data. However, for a fixed sample size, the accuracy of prediction performance

become worse with growing k. For instance, if we fix that k = 0.5, the rmse of ABC is

0.1921 for the 25 training data, 0.0881 for the 45 training data and 0.0797 for the 65 train-

ing data. It is not surprising that the decline of predictive error with rise of the training

data size, since our model is able to learn more information from more data. We can see
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that sometimes, the predictions with lower rmse may has low correction coefficient, such

as k = 0.5 and training data points are 25. The reason is that we formed an approximated

posterior distribution for ABC, and this distribution is generated based on the distance

between simulated data and real data. In other words, the prediction from ABC only

cares about the accuracy of prediction rather than the correction, while the prediction

from analytical solution is derived from its assumption which also focus on the relation

between real data and prediction.

Nonetheless, the interesting phenomenon that the reduction of predictive ability with

enlargement of k needs further exploration. The data visualisation for approximate

Bayesian computation and analytical solution with different ks and the training data

sizes are presented in Figure 3.5, 3.6 and 3.7.
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(a) Data visualisation for 1-dimensional Gamma-distributed data with k = 0.5.

(b) Data visualisation for 1-dimensional Gamma-distributed data with k = 1.

(c) Data visualisation for 1-dimensional Gamma-distributed data with k = 2.

Figure 3.5: Data visualization for 1-dimensional Gamma-distributed data with the 25
training data where blue curves refer to predictions from approximate Bayesian computa-
tion, red curves refer to predictions from analytical solution and black curves refer to real
data.
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(a) Data visualisation for 1-dimensional Gamma-distributed data with k = 0.5.

(b) Data visualisation for 1-dimensional Gamma-distributed data with k = 1.

(c) Data visualisation for 1-dimensional Gamma-distributed data with k = 2.

Figure 3.6: Data visualization for 1-dimensional Gamma-distributed data with the 45
training data where blue curves refer to predictions from approximate Bayesian computa-
tion, red curves refer to predictions from analytical solution and black curves refer to real
data.
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(a) Data visualisation for 1-dimensional Gamma-distributed data with k = 0.5.

(b) Data visualisation for 1-dimensional Gamma-distributed data with k = 1.

(c) Data visualisation for 1-dimensional Gamma-distributed data with k = 2.

Figure 3.7: Data visualization for 1-dimensional Gamma-distributed data with the 65
training data where blue curves refer to predictions from approximate Bayesian computa-
tion, red curves refer to predictions from analytical solution and black curves refer to real
data.
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We also show the numerical results for the method which maps the data via log-

transformation and uses GPR directly In Table 3.2. Compared to Table 3.1, the predictive

errors from GPRG are less for many cases, especially when the training data size is large.

For example, when training data size is 25, the predictions of GPR are more accurate than

that of GPRG, but when training data size is 45 or 65, the predictions of GPRG are more

accurate. We should notice that, even GPR could provide accurate predictions in many

cases but the distribution of data do not satisfy the assumption of GPR. Thus, it might

be not reasonable to use GPR directly.

k = 0.5 k = 1 k = 2

rmse

25 train data 0.1547 0.1696 0.2304

45 train data 0.1381 0.1670 0.1996

65 train data 0.1106 0.1563 0.1781

Table 3.2: Root-mean-squared-error and correlation coefficient of Gaussian process re-
gression for Gamma-distributed data with different ks and data sizes. Each numerical
experience has 5 test data points. The bold writing means minimal rmse.

3.3.7 Simulation study for two-dimensional outputs

Moreover, in practice, the outputs are often high-dimensional. Thus, we consider two-

dimensional dependent variables in this simulation study. Suppose there are 2N data

points by taking N from dimension 1 and N from dimension 2 respectively. The inde-

pendent variable is uniformly spaced in interval (0, 5). All samples are generated by the

formula as follows

yi(x) =
1

N

N∑
j=1

vij(x), for i = 1, 2

where v1j(x) ∼ Gamma(k1, exp (sin (x) + f1)), v2j(x) ∼ Gamma(k2, exp (sin (x) + cos (x) + f2)),

f1 and f2 follow a convolved Gaussian process with covariance function defined in Equa-

tion (2.24). We do not test the performance of high-dimensional model repeatedly since

it is very computational expensively to extimate the hyper-parameters by a differential

evolution method in CGP. Analogously to the simulation study of 1-dimensional case, we
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train this model on many date sets with various scenarios. We also use cross-validation to

select k1 and k2 which are equally spaced in interval [0, 5] with 10 steps. And the number

of training data points are 25 and 45 for each scenario. Due to the expensive computation

of differential evolution algorithm, we set the initial population size is 50 and the number

of evolution is 150. The numerical results are shown in Table 3.3 where we assume k1 = k2

and in Table 3.4 where we assume k1 ̸= k2.

k1 = k2 = 0.5 k1 = k2 = 1.5

rmse

25 train data
0.0704∗ 0.2556∗

0.1477† 0.6301†

45 train data
0.0629∗ 0.1589∗

0.1116† 0.4149†

r

25 train data
0.9918∗ 0.9975∗

0.9815† 0.9983†

45 train data
0.9782∗ 0.9989∗

0.9599† 0.9987†

Table 3.3: Root-mean-squared-error and correlation coefficient of Gaussian process re-
gression for Gamma-distributed data with same k1, k2 and data size. Each numerical
experience has 5 test data.
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k1 = 1, k2 = 2 k1 = 2, k2 = 1

rmse

25 train data
0.0989∗ 0.1019∗

0.1106† 0.4050†

45 train data
0.0642∗ 0.0868∗

0.3674† 0.2231†

r

25 train data
0.9937∗ 0.9983∗

0.9781† 0.9967†

45 train data
0.9997∗ 0.9990∗

0.9996† 0.9992†

Table 3.4: Root-mean-squared-error and correlation coefficient of Gaussian process re-
gression for Gamma-distributed data with different k1, k2 and data size. Each numerical
experience has 5 test data.

From tables above, we can see that our model leads to more precise predictions with

more training data points in both scenarios (k1 = k2 and k1 ̸= k2). For example, on the

one hand, when the training data is increased by 20 data points, the rmse of approximate

Bayesian computation algorithm is decreased from 0.0704 to 0.0629 with k1 = k2 = 0.5

and from 0.2556 to 0.1589 with k1 = k2 = 1.5. On the other hand, the error of prediction

has been declined form 0.0989 to 0.0642 with k1 = 1, k2 = 2 and from 0.1019 to 0.0868

with k1 = 2, k2 = 1. The phenomenon has occurred here as well that the predictions of

our model become inaccurate when the parameters k is increasing. Numerical results for

these two scenarios are visualised in Figure 3.8 and 3.9.
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(a) Data visualisation for 2-dimensional
gamma-distributed data with k1 = 0.5, k2 =
0.5 and 25 training data.

(b) Data visualisation for 2-dimensional
gamma-distributed data with k1 = 0.5, k2 =
0.5 and 45 training data.

(c) Data visualisation for 2-dimensional
gamma-distributed data with k1 = 1.5,
k2 = 1.5 and 25 training data.

(d) Data visualisation for 2-dimensional
gamma-distributed data with k1 = 1.5, k2 =
1.5 and 45 training data.

Figure 3.8: Data visualisation for 2-dimensional gamma-distributed data for identical
parameters k1 and k2 in which blue curves refer to predictions from approximate Bayesian
computation, red curves refer to predictions from analytical solution and black curves refer
to real data.
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(a) Data visualisation for 2-dimensional
gamma-distributed data with k1 = 1, k2 = 2
and 25 training data.

(b) Data visualisation for 2-dimensional
gamma-distributed data with k1 = 1, k2 = 2
and 45 training data.

(c) Data visualisation for 2-dimensional
gamma-distributed data with k1 = 2, k2 = 1
and 25 training data.

(d) Data visualisation for 2-dimensional
gamma-distributed data with k1 = 2, k2 = 1
and 45 training data.

Figure 3.9: Data visualisation for 2-dimensional gamma-distributed data for different
parameters k1 and k2 in which blue curves refer to predictions from approximate Bayesian
computation, red curves refer to predictions from analytical solution and black curves refer
to real data.
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Chapter 4

Wrapped Gaussian Process

Functional Regression for Batch

Data on Riemannian Manifolds

With development of technology, people have observed and recorded a variety of data

with complex structure, such as manifold-valued data, which provides ground for novel

statistical analysis. It is an attractive topic for scholars to consider models and inferences

for data on Riemannian manifolds. For example, Kim et al. (2014) propose a multi-

variate linear regression on Riemannian manifolds for diffusion weighted imaging data and

Banerjee et al. (2015) introduce a kernel regression on Riemannian manifolds for medical

data analysis. Flight trajectory data can also be considered on a Riemannian manifold,

i.e. S2. In this chapter, we try to model such data via GPR. Although Gaussian process

regression is a powerful non-parametric tool in statistics and machine learning, it is not

suitable for manifold-valued data directly. Therefore, we consider a variation of GPR in

the context of manifold-valued data. In Section 4.2.1, we introduce the main contribution

of this thesis: a wrapped Gaussian process functional regression (WGPFR) model on

Riemannian manifolds. Moreover, motivated by a special data set where the manifold-

valued curves in a batch share a common mean structure, we introduce a variation of

WGPFR which has common mean structure in Section 4.2.2. Then, in Section 4.3, an

approximate model is proposed which is computational efficiently and provides accurate
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predictions for both WGPFR with individual mean structure and common mean structure.

Additionally, in Chapter 5, we compare the numerical experiments which involves different

scenarios of prediction of different models, such as the model in Mallasto and Feragen

(2018).

4.1 A motivating data set

We begin this model by describing a data set which consists of repeated measurement

for different subjects. The earth is roughly a sphere and can be modelled as a copy

of S2. Certain data sets, for example hurricane trajectories, can be therefore consid-

ered as a manifold-valued random curve (Su et al., 2014). An actual application of our

model concerns data collected from flight trajectories (the data are downloaded from

https://data.variflight.com), which are shown in Figure 4.1, in which the red curves rep-

resent flights from Shanghai to London on British Airlines and the black curves represent

flight trajectories of Eastern China Airlines between the same destinations. Therefore,

these sets of trajectories can naturally be split into two batches and the model with com-

mon mean structure can be used to the flight trajectory data.

Figure 4.1: Some of original flight route data. The black trajectories are from British
Airways and the red curves are from Eastern China Airlines.

The original data includes time, height, speed, longitude and latitude of each flight.

We select the position of each airplane as the response variable, which can be transformed

onto S2 using longitude and latitude; in addition, the company and time are regarded as
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non-functional and functional covariates. For future research, the height and speed can

be added as functional covariates. The response variables y(t) are trajectories of airplanes

which are recorded as longitude and latitude and so is a continuous functional variable.

4.2 Wrapped Gaussian process functional regression

4.2.1 A model with individual mean structure

Before we introducing the model for batch data, such as the flight trajectories, we firstly

consider a simple model that there is only one curve in a batch. Suppose the data comprise

M continuously observed curves on M, so that the m-th curve is denoted as ym(t), t ∈

T , m = 1, . . . ,M , which is a set of M-valued random functions. Associated with the m-th

curve, we observe real-valued functional covariates xm(t) ∈ RQ and scalar covariates um ∈

Rp which are defined in a conventional way in a functional space of real-valued functions

and in an Euclidean space, respectively. In order to identify the non-linear probabilistic

relationship between response variables and the corresponding covariates by regression

model on Riemannian manifold, we propose the model for batch data on Riemannian

manifolds as follows

ym(t) = Exp(µm(t), τm(t)), ym(t) ∈ M, for m = 1, ...,M (4.1)

where µm(t) ∈ M refers to the mean structure and τm(t) ∈ Tµm(t)M refers to the covari-

ance structure. In addition, for a stochastic process, a mean structure can be considered

as its trend and a covariance stricture can be considered as a correlation between different

points on it.

Due to the curse of dimensionality, it is difficult to infer non-linear relationship non-

parametrically between a functional response variable and multi-dimensional functional

covariates even though both of them are observed in a space for real-valued functions (Shi

et al., 2007). Therefore, we assume that the mean structure µm(·) depends on the scalar

covariates um only, and the nonlinear concurrent relationship between ym(t) ∈ M and

xm(t) is modelled via a vector-valued function τm(t) in tangent space Tµm(t)M.

The data set is denoted as D = {ymi,um,xmi, tmi| ymi ∈ M,xmi ∈ RQ, tmi ∈ R, i =
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1, ..., Nm, um ∈ Rp,m = 1, . . . ,M}, in which ymi = ym(tmi) and xmi = xm(tmi) are

the observations of functional response variables and functional predictor variables for the

m-th curve at time point tmi respectively, um is the batch-specific scalar covariates.

As a common assumption, the existence and uniqueness of Fréchet mean µ0(t) for

ym(t),m = 1, ...,M , are pre-required for an intrinsic analysis (Dai et al., 2018; Bhat-

tacharya et al., 2003; Petersen and Müller, 2019). In addition, the injectivity radius is

supposed to be large enough so that the exponential map and inverse exponential map

exist almost everywhere on M.

Equipped with any manifold-valued curve µ∗(t), the mean structure for them-th curve,

µm(t), is defined via exponential map at µ∗(t) of a tangent vector uT
mβ(t)

µm(t) = Exp(µ∗(t),u
T
mβ(t)) (4.2)

where µ∗(t) is a pre-selected curve on Riemannian manifold playing a similar role of the

line y = 0 in a 2-dimensional Euclidean coordinate. In estimation part, we can just use

the intrinsic Fréchet population mean µ0(t), which is defined in the next section, as a

choice of µ∗(t) and it is more intuitive since µ0(t) is the “mean curve” of all ym(t). In

practice, we use sample Fréchet mean µ̂0(t) instead of population Fréchet mean µ0(t), and

the distance between µ̂0(t) and µ0(t) tends to 0 when sample size tends to infinity under

some assumptions1. Moreover, the definition of other parameters are given as follows,

um ∈ Rp is a p-dimensional vector of batch-specific covariates, β(t) = (β1(t), ...,βp(t))

where βj(t) ∈ Tµ0(t)M, j = 1, . . . , p, is a d-dimensional vector of functional coefficients.

For example, if we have one-dimensional indicator covariate, i.e. um = 1 stands for batch

A and um = 2 for batch B, then the second part of the right hand side in Equation (4.2)

is simplified to um
Tβ(t) = β1(t) + β2(t)um. Therefore, when t is fixed, each βj(t) is

a tangent vector in Tµ0(t)M. Since we assume M is a closed Riemannian submanifold

of a Euclidean space, which means the Riemannian manifold can be embedded into a

Euclidean space, it is reasonable to suppose that V (t) = (v1(t), · · · ,vd(t)) is a basis of

the tangent space Tµ0(t)M where each vl(t), l = 1, ..., d, denotes a d-dimensional vector

playing a similar role to a basis vector in coordinate systems. For example, when d = 2,

1See Assumption A1,B1,B2,B3,B4 and proposition 2 in Dai et al. (2018)
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v1(t) and v2(t) can be considered as basis vectors in a 2-dimensional vector space which

are (1, 0) and (0, 1) respectively. However, without loss of generality, it is not necessary to

assume (v1(t), ...,vd(t)) is orthonormal pairwise. We can calculate the Karhunen-Loéve

expansion of any component ν(t) in vl(t), that is

νq(t) =
∞∑
k=1

wqkϕk(t)

≈
K∑
k=1

wqkϕk(t)

(4.3)

where q refers to the q-th dimension of vl(t), ϕk(t) refers to the k-th element in a basis

function and, such as B-spline wqk refers to a weight of ϕk(t).

Hence, the tangent vector-valued function βj(t) can be approximated by a set of con-

vential Euclidean basis functions such as wavelet or B-splines,

βj(t) =
d∑

l=1

ajlvl(t)

=
d∑

l=1

ajl(
K∑
k=1

b1klϕk(t), ...,
K∑
k=1

bdklϕk(t))

=

d∑
l=1

ajl

K∑
k=1

bklϕk(t)

=
K∑
k=1

cjkϕk(t).

(4.4)

where cjk = (cj1k, ..., cjdk) and in the rest of the conv, we use cjk to represent a vector

of weights. But, we should notice that, in the inference part, each weight is estimated

independently.

Since βj(t) is modelled along the tangent spaces of µ0(t) which is a Euclidean subspace,
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we can parameterize the mean structure as follows

µm(t) = Exp(µ0(t),u
T
mβ(t))

= Exp(µ0(t),

p∑
j=1

umjβj(t))

= Exp(µ0(t),

p∑
j=1

umj

K∑
k=1

cjkϕk(t))

(4.5)

In addition, the covariance structure τm(·) is defined as a Gaussian process which mod-

els the tangent vectors from a mean structure to corresponding manifold-valued response

variables and it is also the covariance between manifold-valued data.

τm(·) = Cov(ym(·), ym(·)) ∼ GP (0, k(·, ·;θml)) (4.6)

where k(·, ·) refers to a kernel, such as squared exponential kernel and θ refers to the

hyper-parameters of the kernel. In other words, the covariance structure can be roughly

considered a zero mean Gaussian process.

The correlation of different elements in τm(t) = (τm,1(t), ..., τm,d(t)) could be computed

via a cross-covariance function model, such as the convolved Gaussian process. Neverthe-

less, the size of a covariance matrix in a GP is n × n while the size of a cross-covariance

matrix in CGP is nd × nd, which is computationally expensive. In the following of this

chapter, we still consider different elements independently.

Furthermore, the covariance structure models the tangent vectors from mean structure

to corresponding manifold-valued curve which is calculated via inverse exponential map

τm(t) = Log(µm(t), ym(t)), for m = 1, ...,M. (4.7)

Covariance structure can be represented by basis eigen-functions in Dai et al. (2018)

or wrapped Gaussian process in Mallasto and Feragen (2018). We adopt the latter since

it is capable to include the high-dimensional covariates xm(t) and provides a probabilistic

framework for prediction.

In this chapter,a stochastic process on a Riemannian manifold is considered as the

”sum” of two parts: a mean structure determines the trend and a covariance structure
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determines the randomness. For example, the flight trajectories (which are data on a S2)

from Shanghai to London are similar. But, there are some differences between them which

are caused by weather, air traffic control and so on. In this case, the main trend of these

flight routes are is modelled by a mean structure and the differences between them are

model by a covariance structure.

In order to explain the mechanism of the model with individual mean structure schemat-

ically, we use Figure 4.2 below. Specifically, a sample Fréchet mean µ∗ is shown as a blue

curve. After we add the covariate information uT
mβ(t) to µ∗, we get a mean structure µm

which is the green curve. A manifold-valued stochastic process can be generated if we add

random noise τm(t) to the mean structure µm, which is the black curve. Moreover, the

black points are observed data.

Figure 4.2: Schematic explanation of WGPFR with individual mean structure.

Estimation of mean structure

In this section, our aim is to estimate the functional tangent vector βj(t), j = 1, ..., p,

which can be computed by a sum of weighted Euclidean basis functions in Tµ0(t)M.

Therefore, it is necessary to define the distance function between manifold-valued

points. Since the inverse exponential map exists almost everywhere under the assump-
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tion that M is geodesically complete and then the norm of inverse exponential map is

reasonable to be considered as a distance function between points on such Riemannian

manifolds, that is

dM(·, ·) = ∥Log(·, ·)∥

see Table 1 in Kim et al. (2014) for more details about distance and other basic operations

on Riemannian manifolds.

For the m-th curve, The data are observed at time point tmi is denoted as D =

{ymi,um,xmi, tmi| ymi ∈ M,xmi ∈ RQ, tmi ∈ R, i = 1, ..., Nm, um ∈ Rp,m = 1, . . . ,M},

in which ymi = ym(tmi) and xmi = xm(tmi) are the observations of functional response

variables and functional predictor variables for the m-th curve at time point tmi respec-

tively, um is the batch-specific scalar covariates. For any time point t, we firstly define the

intrinsic population mean function µ0(t) for all ym(t),m = 1, ...,M , under the assumption

of existence and uniqueness:

µ0(t) = arg min
p∈M

M∑
m=1

E[dM(ym(t), p)2]. (4.8)

When t is fixed, µ0(t) refers to a point on a Riemannian manifold; when t is variable,

µ0(t) refers to a curve on a Riemannian manifold. Additionally, since each ym(t) ∈ M is

continuous, µ0(t) is also continuous.2

The population quantities of intrinsic Fréchet mean function are estimated by the

observations of all ym(t). Therefore, in practice, the value of intrinsic Fréchet means are

approximated by the sample Fréchet means:

µ̂0(t) ≈ arg min
p∈M

1

M

M∑
m=1

dM(ym(t), p)2 (4.9)

as discussed in Section 2.4.5, µ̂0(t) can be estimated by Algorithm 1.

With ideal tangent vector-valued function β(t), the mean structure should be as accu-

rate as possible and the accuracy is measured by the distance between µm(t) and ym(t). In

other words, given the observed data set D, the estimation of unknown functional tangent

2see equation (1) in Dai et al. (2018)
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vectors β(t) is converted to estimation of coefficients cjlk by minimising the loss function

below
1

2

M∑
m=1

Nm∑
i=1

dM(µm(tmi), ym(tmi))
2 (4.10)

where µm(t) is defined in Equation (4.5).

Therefore, the loss function can be expanded as

E(C) =
1

2

M∑
m=1

Nm∑
i=1

∥Log(µm(tmi), ym(tmi))∥2

=
1

2

M∑
m=1

Nm∑
i=1

∥Log(Exp(µ̂0(tmi),u
T
mβ(tmi)), ym(tmi))∥2

=
1

2

M∑
m=1

Nm∑
i=1

∥Log(Exp(µ̂0(tmi),

p∑
j=1

umj

K∑
k=1

cjkϕk(tmi)), ym(tmi))∥2

(4.11)

where C = (c11, ..., c1K , ..., cp1, ..., cpK).

As most optimization problems, we firstly attempt to use a gradient descent algorithm

to estimate the parameters in a loss function. The coefficients cjlk can be estimated by

descending the gradient of (4.11) with respect to cjlk, j = 1, ..., p, l = 1, ..., d, k = 1, ...,K,

which is given by

∇cjlkE = ∇umβ(tmi)E
∂uT

mβ(tmi)

∂cjlk

= −
M∑

m=1

Nm∑
i=1

duT
mβ(tmi)Exp(µ̂0(tmi),u

T
mβ(tmi))

†

Log(Exp(µ̂0(tmi),u
T
mβ(tmi)), ym(tmi))

∂uT
mβ(tmi)

∂cjlk

(4.12)

where duT
mβ(tmi)Exp(µ̂0(tmi),u

T
mβ(tmi))

† is an adjoint operator since the differential opera-

tor occurs on the tangent space of µm(tmi) but the tangent vector is on the tangent space of

Exp(µm(tmi), τm(tmi)) (see Equation (7) in Fletcher (2013)) and it is a self-adjoint operator

which plays a similar role to the parallel transport (Kim et al., 2014). Specifically, the gra-

dient∇umβ(tmi)E lies in Tµ̂0(tmi)M. However, Log(Exp(µ̂0(tmi),
∑p

j=1 umj
∑K

k=1 cjkϕk(tmi)), ym(tmi))

is a tangent vector on the tangent space of Exp(µ̂0(tmi),
∑p

j=1 umj
∑K

k=1 cjkϕk(tmi)).

Therefore, duT
mβ(tmi)Exp(µ̂0(tmi),u

T
mβ(tmi))

† is actually a parallel transport which brings
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each error (tangent vector) Log(Exp(µ̂0(tmi),
∑p

j=1 umj
∑K

k=1 cjkϕk(tmi)), ym(tmi)) from

Tŷm(tmi)M to Tµ̂0(tmi)M where ŷm(tmi) = Log(Exp(µ̂0(tmi),
∑p

j=1 umj
∑K

k=1 cjkϕk(tmi)), ym(tmi)).

Therefore, we can obtain the estimated coefficient ĉjlk by setting some convergence con-

ditions. However, duT
mβ(tmi)Exp(µ̂0(tmi),u

T
mβ(tmi))

†Log(Exp(µ̂0(tmi),u
T
mβ(tmi)), ym(tmi))

depends on the specific Riemannian manifold.

In order to avoid the derivatives of the exponential map of composite function, we

consider an alternative of the gradient descent algorithm by expanding the mean structure,

which is more convenient for functional manifold-valued data. We propose a two-stage

approach that in the first procedures, the estimation of mean structure, the covariance

structure is not considered, and in the second procedures, we estimate the covariance

structure based on the estimated mean structure.

The goal of minimizing Equation (4.11) is to find weights cjlk of a series of basis

functions which could model a tangent vector Log(µ̂0(tmi), ym(tmi)). In other words, at

each time point tmi, we aim to calculate a minimizer cjlk defined by

arg min
cjlk∈R

∥Log(Exp(µ̂0(tmi),

p∑
j=1

umj

K∑
k=1

cjkϕk(tmi)), ym(tmi))∥2 (4.13)

which is equivalent to

Exp(µ̂0(tmi),

p∑
j=1

umj

K∑
k=1

cjkϕk(tmi)) = ym(tmi)

⇔
p∑

j=1

umj

K∑
k=1

cjkϕk(tmi) = Log(µ̂0(tmi), ym(tmi))

(4.14)

Specifically, it is

um1ϕ1(t)c11 + · · ·+ umpϕK(t)cpK = Log(µ̂0(t), ym(t)) (4.15)

Since the batch-specific covariates umj , j = 1, ..., p, the basis functions ϕk(t), k =

1, ...,K, the response variables ym(t),m = 1, ...,M are given and the sample Fréchet mean

µ̂0(t) can be computed. Equation (4.15) shows that the optimization of mean structure is

a standard multiple linear regression model with no intercept. Thus cjlk can be estimated
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by a least square approach.

The estimated mean structure for the m-th curve is given by

µ̂m(t) = Exp(µ̂0(t),

p∑
j=1

umj

K∑
k=1

ĉjkϕk(t)) (4.16)

where ĉjk = (ĉj1k, ..., ĉjdk).

Estimation of covariance structure

From the section above, we obtain a mean structure µm(t) which is a continuous func-

tion on M. In this part, we estimate the covariance structure by supposing the data is

a manifold-valued function following a wrapped Gaussian process with functional mean

structure µm(t), which is defined as

ym(t) ∼ GPM(µm(t), τm(t)) (4.17)

where µm(t) ∈ M refers to the mean structure of Equation (4.2) and τm(t) ∈ Tµm(t)M

is a tangent vector-valued function modelling the tangent vector from mean structure

to random curves. The tangent vectors are usually multi-dimensional, therefore, the co-

variance matrix is supposed to be a block matrix and each block refers to a covariance

matrix for one dimension. For example, assume there is wrapped Gaussian process on a

2-dimensional Riemannian manifold and covariance matrices for the first dimension and

for the second dimensional are A and B respectively. Thus the covariance matrix for the

wrapped Gaussian process is

A 0

0 B


However, the correlation between different dimensions are ignored. One approach to

address this issue to apply the convolved Gaussian process (Boyle and Frean, 2005a). For

computational reasons, we use d independent Gaussian processes instead to model each

dimension of tangent vector respectively.

.From the discussion in Section 2.1.2, the hyper-parameters θ in kernel function for the
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l-th dimension of the m-th curve can be estimated by maximising the marginal likelihood

function

(2π)−
Nm
2 det(Σ)−

1
2 e−

1
2
Logl(µ̂m,ym)TΣ−1Logl(µ̂m,ym) (4.18)

where Logl(µ̂m,ym) refers to the l-th dimension of each element in Log(µ̂m,ym), µ̂m =

(µ̂m(tm1), ..., µ̂m(tmNm)) and ym = (ym1, ..., ymNm). In addition, Σ is covariance matrix

with a given kernel k(·, ·). Moreover, the kernel could be squared exponential kernel, linear

kernel or Matérn kernel. A suitable kernel is based on the specific application.

With the estimated hyper-parameters θ̂ in kernel, the estimation of covariance struc-

ture is given as

τ̂(t) ∼ GP (k(t,x)Tk(x,x)−1Log(µ̂,y), k(t, t)− k(t,x)k(x,x)−1k(t,x)|θ̂) (4.19)

where x is the vector of observed functional covariates.

Update mean structure and covariance structure

After obtaining the estimated mean structure and covariance structure, we are able to

make predictions with given new inputs. In order to improve the performance of our

model, we introduce an algorithm which can update the estimated mean structure and

update the estimated covariance structure iteratively.

The loss function of them-th curve at time point tmi with the estimated mean structure

and estimated covariance structure is given as

E =
M∑

m=1

Nm∑
i=1

dM(Exp(Exp(µ̂0(tmi),

p∑
j=1

umj

K∑
k=1

ĉjkϕk(tmi)), τ̂m(tmi)), ym(tmi))
2 (4.20)

For simplicity, we still use a vector ĉjk = (ĉj1k, ..., ĉjdk) to represent a set of weights of a

basis function. However, we should notice that the weights are calculated independently.
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Therefore, we can derive the gradient of (4.20) with respect to ĉjlk which is

∇ĉjlkE = −
M∑

m=1

Nm∑
i=1

dµm(tmi)Exp(µm(tmi), τ̂m(tmi))
†Log(ym(tmi),Exp(µm(tmi), τ̂m(tmi))))

∂Exp(µ̂0(tmi),
∑p

j=1 umj
∑K

k=1 cjkϕk(tmi))

∂
∑p

j=1 umj
∑K

k=1 cjkϕk(tmi)
umjϕk(tmi).

(4.21)

The coefficients cjlk can be updated by the gradient descent algorithm (4.21) directly.

However, the implementation is computationally expensive (as discussed in Section 4.2.1).

Thus, we can alternatively use another two-stage method to update the coefficients cjlk.

Specifically, in the first step, we update the mean structure with the given estimated covari-

ance structure; secondly, we estimate the coefficients cjlk by converting the optimization

to a multiple linear regression.

The mean structure can be updated by a gradient descent algorithm where the gradient

is

∇µm(tmi)E = −dµm(tmi)Exp(µm(tmi), τ̂m(tmi))
†Log(ym(tmi),Exp(µm(tmi), τ̂m(tmi)))).

(4.22)

In practice, a variational method for gradient descent algorithm (Kim et al., 2014) can

be used as a substitution for gradient in Equation (4.22), which perserves equivalence.

Thereafter, we update the mean structure from µ̂m(t) to µ̂
(1)
m (t) ((1) means the 1-st it-

eration). As discussed in Section 4.2.1, the estimation of mean structure converts to a

multiple linear regression, the coefficients cjlk can be estimated by least squares approach

where the model is

um,1ϕ1(tmi)c11 + · · ·+ um,pϕK(tmi)cpK = Log(µ̂0(tmi), µ̂
(1)
m (tmi))

With the updated mean structure µ̂
(1)
m (t), we can re-calculate the hyper-parameters in

covariance structure. The only difference from Section 4.2.1 is substituting the estimated

mean structure by the updated mean structure.
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4.2.2 A model with common mean structure

The response variables should be close if the predictor variables are identical. Therefore,

it is more reasonable to model a common mean structure for each subject (airline route)

instead of a mean structure for each curve (the model in Section 4.2.1). The common

mean structure means the curves in a batch share a mean structure. Thus, the model

with common mean structure is similar to the model for batch data. For simplicity, we

suppose there are two subjects for the flight trajectory example, corresponding to the two

airlines. The data is denoted as

D = {ys,ms(ts,ms,i), ts,ms,i,us}

where s = 1, 2 refers to the subject, ms = 1, ...,Ms refers to the curve of subject s, ts,ms,i ∈

R+ refers to a time point, us ∈ Rp refers to scalar covariates, ys,ms(ts,ms,i) ∈ M = S2

refers to a data point on Riemannian manifolds at time point ts,ms,i of the ms-th curve

and i = 1, ..., Nms .

Formally, the model can be defined as

ys,ms(t) = Exp(µs(t), τs,ms(t)) (4.23)

where µs(t) refers to the common mean structure of batch s and τs,ms(t) refers to the

covariance structure of the curve ms in batch s. We should notice that the Riemannian

manifold M is not necessarily a 2-sphere. The manifold M could be Kendall’s shape space

or any other Riemannian manifold whose injectivity radius is large enough.

For the sake of completeness, we will also express the procedure of estimating mean

structure, estimating covariance structure and updating part.

We also explain the mechanism of the model with individual mean structure schemat-

ically. As shown in Figure 4.3, a sample Fréchet mean µ∗ is shown as a blue curve. After

we add the covariate information uT
mβ(t) to µ∗, we get a mean structure µm which is the

green curve. Thress manifold-valued stochastic processes in batch s can be generated if

we add three different random noises τs,1(t), τs,2(t) and τs,3(t) to the mean structure µs

respectively, which are black curves. Moreover, the black points are observed data.
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Figure 4.3: Schematic explanation of WGPFR with common mean structure.

Estimation of common mean structure

In this section, we firstly estimate the common mean structure of each subject, so that

many manifold-valued curves of an identical subject share a single manifold-valued mean

function. In the instance of flight routes, we regard µ1(t) and µ2(t) as the proposed

common mean trajectories of Eastern China Airlines and British Airways from Shanghai

to London respectively, which can be estimated from recorded data points by sample

Fréchet means directly. The common mean structure µs(t) is different from our original

definition (4.1). For model (4.1), each curve has a mean structure and for model (4.23).

Meanwhile, the covariance structure is still a Gaussian process at this moment, which

models the dependent error in each individual trajectory.

Analogously to the mean structure in Equation (4.5), we define the common mean

structure of batch s as

µs(t) = Exp(µ̂0(t),

p∑
j=1

usj

K∑
k=1

cjkϕk(t)) (4.24)

where µ̂0(t) is sample Fréchet mean of all data.

The coefficients of basis functions ϕk(t) (which is defined in (4.5)) can be estimated by
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minimizing a loss function

1

2

2∑
s=1

Ms∑
ms=1

∫
dM(µs(t), ys,ms(t))

2dt

.

In practice, the loss function is approximated by

E =
1

2

2∑
s=1

M∑
ms=1

∫
dM(µs(t), ys,ms(t))

2dt

≈ 1

2

2∑
s=1

Ms∑
ms=1

Nms∑
i=1

dM(µs(ts,ms,i), ys,ms(ts,ms,i))
2

=
1

2

2∑
s=1

M∑
ms=1

Nms∑
i=1

∥Log(Exp(µ̂0(ts,ms,i),

p∑
j=1

usj

K∑
k=1

cjkϕk(ts,ms,i), ys,ms(ts,ms,i)))∥2.

(4.25)

Compare to Equation (4.11), the loss function (4.25) is defined as the sum of distances

between the common mean structure µs(t) and curve ym(t) instead of that between each

mean structure µm(t) and curve ym(t). Specifically, if there is only one curve in a batch,

we can use the model (4.1) and loss function (4.11); if there are many curves in a batch

and these curves share a mean structure, we can use the loss function (4.25).

Since a loss function is often optimized by gradient descent algorithm. We can estimate

the coefficient cjlk by moving along the gradient of E in Equation (4.25) with respect to

cjlk, which is

∇cjlkE = ∇µs(ts,ms,i)
E
∂Exp(µ̂0(ts,ms,i),

∑p
j=1 usj

∑K
k=1 cjkϕk(ts,ms,i))

∂cjk

= −
2∑

s=1

Ms∑
ms=1

Nms∑
i=1

dµs(ts,ms,i)
Exp(µ̂0(ts,ms,i),

p∑
j=1

usj

K∑
k=1

cjkϕk(ts,ms,i))
†

Log(Exp(µ̂0(ts,ms,i),

p∑
j=1

K∑
k=1

uscjkϕk(ts,ms,i)), ys,ms(ts,ms,i))

∂Exp(µ̂0(ts,ms,i),
∑p

j=1 usj
∑K

k=1 cjkϕk(ts,ms,i))

∂
∑p

j=1 usj
∑K

k=1 cjkϕk(ts,ms,i)
usϕk(ts,ms,i)

(4.26)

As we discussed above, to avoid the complicated calculation of gradient, the estimation
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of coefficients in mean structure can be implemented alternatively by a least squared

method. Suppose the estimated coefficient and the estimated mean structure are denoted

by ĉjlk and µ̂s(t) respectively.

The equation for estimating the common mean structure in wrapped Gaussian process

functional regression model is

µ̂s(t) = Exp(µ̂0(t),

p∑
j=1

usj

K∑
k=1

ĉjkϕk(t)) (4.27)

which can be used to make a prediction of a common mean structure.

Estimation of covariance structure

We use the estimated coefficients ĉjlk from the section above to estimate the hyper-

parameters θ in the kernel of the covariance structure for the m-th trajectory of subject

s, which is modelled by

τms(ts,ms,i) = Log(µ̂s(ts,ms,i), ys,ms(ts,ms,i)) (4.28)

We can suppose that ys,ms(t) follows a wrapped Gaussian process where the mean

function is defined as µ̂s(t). Thus, for the ms-the curve, the hyper-parameters θmsl, l =

1, ..., d in kernel function k : RQ × RQ → R can be approximated by maximizing the

marginal likelihood function that is

θmsl ≈ arg max
θmsl

1

|Σ|−
1
2

e−
1
2
Logl(µ̂s, ys,ms

)TΣ−1Logl(µ̂s, ys,ms
) (4.29)

where Logl(µ̂s, ys,ms
) refers to the l-th dimension of each element in Log(µ̂s, ys,ms

),

µ̂s = (µ̂s(ts,ms,1), ..., µ̂s(ts,ms,Nms
)) and ys,ms

= (ys,ms(ts,ms,1), ..., ys,ms(ts,ms,Nms
)).

The initially estimated coefficients Ĉ = (ĉ11, ..., ĉpK) in common mean structure and

initially estimated hyper-parameters θ̂ of kernel function in covariance structure are be

labelled as Ĉ(0) and θ̂
(0)

respectively.

The predictive distribution calculated from the common mean structure and covariance

94



structure is given by

ŷ(0)m (t) = Exp
(
µ̂(0)s (t), τ̂ms(t)|θ

(0)
1 , ...,θ

(0)
d

)
(4.30)

where τ̂ms(t) ∼ GP (k(t, t)Tk(t, t)−1Log(µ̂s,y), k(t, t)−k(t, t)k(t, t)−1k(t, t)|θ̂) and t refers

to observed functional covariates.

Updating mean structure and covariance structure

Furthermore, we try to update the coefficients Ĉ based on θ̂
(0)

l , l = 1, ..., d, from Step 2.

In other words, we aim to find new cjlk which minimizes a new loss function

E(0) =

2∑
s=1

Ms∑
ms=1

∫
dM(ys,ms(t), ŷ

(0)
s,ms

(t))2dt. (4.31)

Since the new loss function is also a composite function which involves an exponential

map in an exponential map, we can calculate the gradient of (4.31) with respect to ĉ
(0)
jlk.

In particular, we have

∇
ĉ
(0)
jlk

E(0) = ∇
µ̂
(0)
s (t)

E(0)
∂Exp(Exp(µ̂0(ts,ms,i),

∑p
j=1 usj

∑K
k=1 ĉ

(0)
jk ϕk(ts,ms,i)), τ̂ms(t)|θ̂

(0)

ms
)

∂ĉjlk

= −d
µ̂
(0)
s (t)

Exp(µ̂(0)s (t), τ̂ms(t)|θ̂
(0)

ms
)†Log(ys,ms(t),Exp(µ̂

(0)
s (t), τ̂ms(t)|θ̂

(0)

ms
))

∂Exp(Exp(µ̂0(ts,ms,i),
∑p

j=1 usj
∑K

k=1 ĉ
(0)
jk ϕk(ts,ms,i)), τ̂ms(t)|θ̂

(0)

ms
)

∂ĉjlk

(4.32)

The gradient ∇
ĉ
(0)
jlk

E(0) is actually on Tµ̂0(t)M, however the error between real data

(ys,ms(t)) and predictions (Exp(µ̂
(0)
s (t), τ̂ms(t)|θ̂

(0)

ms
)) are on Tµ̂s(t)M. By this argument,

d
µ̂
(0)
s (t)

Exp(µ̂
(0)
s (t), τ̂ms(t)|θ̂

(0)

ms
)† brings the error from Tµ̂0(t)M to Tµ̂s(t)M. After using

chain rule of
∑p

j=1 usj
∑K

k=1 ĉ
(0)
jk ϕk(ts,ms,i) with respect to c

(0)
jlk and

Exp(µ̂0(ts,ms,i),
∑p

j=1 usj
∑K

k=1 ĉ
(0)
jk ϕk(ts,ms,i)) with respect to

∑p
j=1 usj

∑K
k=1 ĉ

(0)
jk ϕk(ts,ms,i),

we can obtain the equation above.

Analogous to Section 4.2.1, in order to avoid the derivatives of the composite function

on Riemannian manifolds, c
(1)
jlk can be estimated by a two-stage method that we mentioned
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in Section 4.2.1. For some simple Riemannian manifolds, we can calculate the gradient

directly; for some complex Riemannian manifolds, we can use a variational gradient descent

algorithm (Kim et al., 2014). With the updated mean structure µ
(1)
s (t), we can also re-

estimate θ
(1)
msl

, l = 1, ..., d, by maximizing the likelihood function (4.29) given c
(1)
jlk, that

is

θ
(1)
msl

≈ arg max
θ
(1)
msl

1

|Σ|−
1
2

e−
1
2Logl(µ̂

(1)
s , ys,ms

)TΣ−1Logl(µ̂
(1)
s , ys,ms

) (4.33)

where µ̂(1)
s = (µ̂

(1)
s (ts,ms,1), ..., µ̂

(1)
s (ts,ms,Nm)). By repeating this procedure until some

convergence conditions have been satisfied (in practice, we use a early stopping mechanism

that is if rmse is not decreasing, we just stop training and select the parameters with

minimal rmse), a functional regression with a common mean structure and covariance

structure on Riemannian manifolds is achieved.

The algorithm 9 summarizes the steps about how to estimate the coefficients cjlk in

common mean structures and the hyper-parameters in covariance structure.

Algorithm 9: Algorithm to estimate and update coefficients cjlk and hyper-

parameters θmsl.

Input: ys,ms(ts,ms,i), ts,ms,i,us,ms = 1, ...,Ms, i = 1, ..., Nms , s = 1, 2, iterate = 1.

Output: ĉjlk and θ̂msl.

1. Compute sample Fréchet mean function µ̂0(t) for all curves;

2. Estimate the coefficient c
(0)
jlk;

3. Estimate the hyper-parameter θ
(0)
msl

by maximizing the likelihood function of

(4.29) ;

4. Update c
(iterate)
jlk ;

5. Update θ
(iterate)
msl

with the updated c
(iterate)
jlk from Step 4, iterate + = 1;

6. Repeat Step 4 and 5 until some convergence conditions have been satisfied.

4.3 A more practical approximate model

In the sections above, we introduce a regression model for manifold-valued response vari-

ables and Euclidean predictor variables within a probabilistic framework, which is named
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wrapped Gaussian process functional regression model. A mean structure (or the com-

mon mean structure) is considered on a Riemannian manifold and a covariance structure

is considered in a vector field along the corresponding mean structure.

However, in practice, the manifold-valued data are often located on some special Rie-

mannian manifolds, such as 2-sphere, hyper-sphere or Kendall’s shape space, which can be

embedded into a higher-dimensional Euclidean space. In addition, the exponential map

and inverse exponential map exist almost everywhere on these Riemannian manifolds.

Therefore, we can consider the mean structure and covariance structure within an identi-

cal tangent space of a manifold-valued point simultaneously, which is defined in Equation

(4.34). Actually, numerical experiments have shown that this model is an accurate ap-

proximation of the previous model in Equation (4.1). Moreover, the degree of numerical

rounding error may be less in this approximate model, since we must use exponential

map and inverse exponential map on two different spaces (tangent space along µ0(t) and

tangent space along µm(t) or µs(t)) in the original model but use exponential map and

inverse exponential map in one space (tangent space along µ0(t)). As a consequence, the

predictive error is better than that of the original model in some scenarios of simulation

study and this is confirmed in Chapter 5.

In the following, we will define the model, describe inference procedures and show that

the loss function for estimating mean structure can be converted to a standard multiple

linear regression. The calculation is efficient, since in the optimization problem, it is not

necessary to use the gradient descent algorithm.

4.3.1 An approximate model with individual mean structure

As previously, we suppose the m-th curve on a Riemannian manifold is denoted by

ym(t), t ∈ T , m = 1, . . . ,M , which forms a set of manifold-valued random functions.

Associated with the m-th curve, we have observed real-valued Q-dimensional functional

covariates xm(t) and batch-specific scalar covariates um ∈ Rp which are defined in a

conventional way in a functional space of real-valued functions and in Euclidean space,

respectively. In order to identify the nonlinear probabilistic relationship between response

variables ym(t) ∈ M and the corresponding covariates xm(t) and um in which the mean

structure and covariance structure are in the same space, we introduce an approximate

97



framework of wrapped Gaussian process functional regression model for batch data on

Riemannian manifolds as follows

ym(t) = Exp(µ0(t), ηm(t) + τm(t)), ym(t) ∈ M, for m = 1, . . . ,M. (4.34)

In practice, we estimate µ0(t) using the Fréchet sample mean of the data, under the

assumption that the Fréchet sample mean µ̂0(t) is either µ0(t) or close to µ0(t) when the

sample size is large, the sample mean is close to the population mean. Therefore, ηm(t) ∈

Tµ0(t)M refers to the functional tangent vectors from the intrinsic Fréchet population

mean function µ0(t) to mean structure of each curve µm(t) which is defined in Equation

(4.36). In addition, τm(t) ∈ Tµ0(t)M refers to the residual from Log(µ0(t), µm(t)) to

Log(µ0(t), ym(t)), i.e.

ηm(t) = Log(µ0(t), µm(t))

τm(t) = Log(µ0(t), ym(t))− ηm(t)
(4.35)

The main difference between model (4.34) and model (4.1) is the space of covariance

structure. Specifically, the covariance structure of model (4.34) is in Tµ0(t)M while that

of model (4.1) is in Tµm(t)M.

The l-th element of the unknown tangent vector-valued function τm(t) is modelled by

a zero mean Gaussian process with kernel k(·, ·;θml). When the dimension of x(t) is large,

we could use a parametric covariance function (Shi and Choi, 2011). We should notice

that the model is still in the framework of wrapped Gaussian process functional regression

and we cannot model the covariance structure by a standard GPR directly. Analogously

to the mean structure in Section 4.2.1, we define the mean structure of approximate model

as

µm(t) = Exp(µ0(t), ηm(t)) (4.36)

where tangent vector filed ηm(t) = uT
mβ(t) ∈ Tµ0(t)M, um ∈ Rp is a batch-specific p-

dimensional vector of scalar covariates, β(t) = (β1(t), ...,βp(t)) is a collection of p vector

fields along µ0(t) and must be estimated from the data, βj(t) ∈ Tµ0(t)M is a tangent
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vector field. For each t, suppose (v1(t), ...,vd(t)) is a basis of Tµ0(t)M (not necessarily

orthonormal). Beasides, for any component ν(t) in vl(t), we can calculate its Karhunen-

Loéve expansion as

ν(t) =
∞∑
k=1

wkϕk(t)

≈
K∑
k=1

wkϕk(t).

(4.37)

Furthermore, any tangent-vector valued function can be approximated by a set of

conventional Euclidean basis functions, e.g. B-spline:

βj(t) =

d∑
l=1

ajlvl(t)

=

d∑
l=1

ajl(

K∑
k=1

b1klϕk(t), ...,

K∑
k=1

bdklϕk(t))

=
d∑

l=1

ajl

K∑
k=1

bklϕk(t)

=

K∑
k=1

cjkϕk(t).

(4.38)

We can therefore parametrize the mean structure as follows

µm(t) = Exp(µ0(t), ηm(t))

= Exp(µ0(t),

p∑
j=1

umjβj(t))

= Exp(µ0(t),

p∑
j=1

umj

K∑
k=1

cjkϕk(t))

(4.39)

Thus, the estimation of unknown functional tangent vectors β(t) is converted to the

estimation of coefficients cjlk by minimising the loss function

M∑
m=1

∫
1

2
dM(µm(t), ym(t))2dt. (4.40)

Moreover, the covariance structure models the residual, which is also functional tangent
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vector in Tµ0(t)M, can be defined as

τm(xm(t)) = Log(µ0(t), ym(t))− ηm(t), for m = 1, ...,M. (4.41)

Inference

In this part, we firstly outline how to estimate ηm(t) in mean structure without consid-

ering the covariance structure. As mentioned previously, each element in a functional

tangent vector βj(t) can be represented by a weighted sum of basis functions in vector

space. In addition, the norm of inverse exponential map can be chosen as the distance

function between manifold-valued points, since the Riemannian manifolds are assumed to

be geodesically complete.

The intrinsic Fréchet population mean function µ0(t) is also estimated via the sample

Fréchet means µ̂0(t). We can parametrize the loss function (4.40) as

E =
M∑

m=1

∫
1

2
dM(µm(t), ym(t))2dt

≈ 1

2

M∑
m=1

Nm∑
i=1

∥Log(µm(tmi), ym(tmi))∥2

=
1

2

M∑
m=1

Nm∑
i=1

∥Log(Exp(µ̂0(tmi),u
T
mβ(tmi)), ym(tmi))∥2

=
1

2

M∑
m=1

Nm∑
i=1

∥Log(Exp(µ̂0(tmi),

p∑
j=1

umj

K∑
k=1

cjkϕk(tmi)), ym(tmi))∥2

=
1

2

M∑
m=1

Nm∑
i=1

∥
p∑

j=1

umj

K∑
k=1

cjkϕk(tmi)− Log(µ̂0(tmi), ym(tmi))∥2

(4.42)

Observing the loss function (4.42), the optimization problem of estimating mean struc-

ture converts to a standard multiple linear regression model, since uT
mβ(t) models the

functional tangent vector Log(µ0(t), ym(t)) ∈ Tµ0(t)M ⊂ Rd.

uT
mβ(tmi) = Log(µ̂0(tmi), ym(tmi))

um,1ϕ1(tmi)c11 + · · ·+ um,pϕK(tmi)cpK = Log(µ̂0(tmi), ym(tmi))

Thus cjk can be computed by a least square approach. The estimated mean structure
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for the m-th curve is written as

µ̂m(t) = Exp(µ̂0(t), η̂m(t))

= Exp(µ̂0(t),

p∑
j=1

umj

K∑
k=1

ĉjkϕk(t))
(4.43)

Equipped with the estimated mean structure, we can calculate the covariance struc-

ture by supposing the manifold-valued random function ym(t) follows a wrapped Gaus-

sian process with mean structure µ̂m(t). The random effect τm(xm(t)) ∈ Tµ̂0(t)M is a

zero mean Gaussian process prior modelling the residuals between Log(µ̂0(t), ym(t)) and

Log(µ̂0(t), µ̂m(t)). We use independent kernels for each dimension of the covariance struc-

ture. A more general method to consider the correlation between coordinates will be

discussed later.

Using the estimated tangent vector η̂m(t) ∈ Tµ0(t)M, we define zm(t) = Log(µ̂0(t), ym(t))−

η̂m(t). In other words, zm(t) refers to a tangent vector modelling the difference between

Log(µ̂0(t), µ̂m(t)) and Log(µ̂0(t), ym(t)) in Tµ̂0(t)M. We assume that zml(t) are uncorre-

lated pairwise and we have already observed data at tmi, i = 1, ..., Nm. Then, we can

calculate the values of zml(t) at t = tm1, ..., tmNm , we have

zml = (zml(tm1), ..., zml(tmNm))
T ∼ N (0,Kml) (4.44)

whereKl is a Nm×Nm covariance matrix depending on hyper-parameters θml. The hyper-

parameters for the l-th dimension, θl, can be estimated by maximising sum of marginal

likelihood functions for each batch, i.e.

(2π)−
Nm
2 det(Kml)

− 1
2 e−

1
2
zT
mlK

−1
l zml (4.45)

where Kml and zml are defined above.

Then for any new input t∗m, we know that zm(t∗m) = (zml(t
∗
m), ..., zmd(t

∗
m)) ∈ Tµ̂0(t∗m)M
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and the conditional distribution of z∗ml is

z∗ml|Dml ∼ N (µ∗ml,Σ
∗
l )

µ∗ml = k
∗T
mlK

−1
ml zml

Σ∗
ml = k∗∗ml − k∗TmlK

−1
ml k

∗
ml

(4.46)

where Dml = {zml(tm1), ..., zml(tmNm)}, k∗ml = (kml(tm1, t
∗
m), ..., kml(tmNm , t

∗
m)) and k∗∗ml =

kml(t
∗
m, t

∗
m).

We can also update the estimated mean structure by the estimated covariance structure

in Equation (4.44). Specifically, equipped with the estimated covariance structure, we can

update the coefficients cjlk of mean structure by minimizing the new loss function below

E(0) =
M∑

m=1

∫
1

2
dM(ym(t), ŷ(0)m (t))2dt

≈
M∑

m=1

Nm∑
i=1

1

2
dM(ym(tmi), ŷ

(0)
m (tmi))

2

=
1

2

M∑
m=1

Nm∑
i=1

∥Log(ym(tmi), ŷ
(0)
m (tmi))∥2

=
1

2

M∑
m=1

Nm∑
i=1

∥Log(ym(tmi),Exp(µ̂0(tmi),

p∑
j=1

umj

K∑
k=1

cjkϕk(tmi) + ẑm))∥2

=
1

2

M∑
m=1

Nm∑
i=1

∥
p∑

j=1

K∑
k=1

umjcjkϕk(tmi) + ẑm(tmi)− Log(µ̂0(tmi), ym(tmi))∥2

(4.47)

where ẑm = (ẑm1(tmi), ..., ẑmd(tmi)).

Thus, with observed data and estimated hyper-parameters Θ(0), the updated mean

structure should model Log(µ̂0(tmi), ym(tmi)) − ẑm as accuracy as possible for each time

point tmi, that is

uT
mβ(t) = Log(µ̂0(t), ym(tmi))− ẑm

um,1ϕ1(t)c11 + · · ·+ um,pϕK(t)cpK = Log(µ̂0(tmi), ym(t))− ẑm

Therefore, the updating procedure of the mean structure converts to a standard multiple

linear regression. By using the least square approach, we can obtain the updated functional

102



coefficients for mean structure, which we denote C(1). Additionally, with the updated

functional coefficients C(1) and mean structure µ̂
(1)
m (t), we can re-calculate the hyper-

parameters in covariance structure.

The mean structure and covariance structure can be updated iteratively until satisfying

some convergence conditions. For example, we could limit the number of iteration or stop

training when the root-mean-squared-error is not decreased.

4.3.2 An approximate model with common mean structure

In this part, the data set is also considered as the repeated measurements for different

subjects, such as the flight trajectories of Eastern China Airlines and British Airlines.

The data is denoted as

D = {ys,ms(ts,ms,i), ts,mi,us}

where s = 1, 2 refers to the subject, ms = 1, ...,Ms refers to the curve of subject s,

ts,ms,i ∈ R+ refers to a time point, us ∈ Rp refers to scalar covariates, ys,ms(ts,ms,i) ∈ M

refers to a manifold-valued point at time ts,ms,i and i = 1, ..., Nms . Hence, we can define

an approximate model where the common mean structure and covariance structure are in

the identical tangent space, i.e.

ys,ms(t) = Exp(µs(t), ηs,ms(t) + τs,ms(t)) (4.48)

For the sake of completeness, we will explain the estimation of common mean structure,

covariance structure and iterative procedure for updating.

Inference

We firstly estimate the common mean structure for the manifold-valued curves in a batch.

For instance, we can still regard µ1(t) and µ2(t) as the mean trajectories of Eastern China

Airlines and British Airlines from Shanghai to London respectively.
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The common mean structure can be estimated by minimizing the loss function

1

2

2∑
s=1

Ms∑
ms=1

∫
dM(ys,ms(t),Exp(µ̂0(t),u

T
s β(t))

2dt.

For some geodesically complete Riemannian manifolds, such as the sphere and Kendall’s

shape space, the distance function can be taken to be Euclidean norm of inverse exponen-

tial map. Therefore, loss function can be approximated by

E =
2∑

s=1

Ms∑
ms=1

∫
1

2
dM(ys,ms(t),Exp(µ̂0(t),u

T
s β(t)))

2dt

≈ 1

2

2∑
s=1

Ms∑
ms=1

Nms∑
i=1

dM(ys,ms(ts,ms,i),Exp(µ̂0(ts,ms,i),u
T
s β(ts,ms,i)))

2

=
1

2

2∑
s=1

Ms∑
ms=1

Nms∑
i=1

∥Log(ys,ms(ts,ms,i),Exp(µ̂0(ts,ms,i),

p∑
j=1

usj

K∑
k=1

cjkϕk(ts,ms,i)))∥2

=
1

2

2∑
s=1

Ms∑
ms=1

Nms∑
i=1

∥
p∑

j=1

usj

K∑
k=1

cjkϕk(ts,ms,i)− Log(µ̂0(ts,ms,i)− ys,ms(ts,ms,i))∥2

(4.49)

Analogous to the discussion in Section 4.2.2, the minimization problem converts to a

multiple linear regression. Suppose that the estimated tangent vector function in mean

structure is written by η̂s(t), the equation for estimating common mean structure of subject

s is given by

µ̂s(t) = Exp(µ̂0(t),

p∑
j=1

usj

K∑
k=1

ĉjkϕk(t))

= Exp(µ̂0(t), η̂s(t))

(4.50)

which provides a common mean structure for repeated measurements on Riemannian

manifolds.

We use the estimated functional tangent vectors η̂s(t) to estimate the hyper-parameters

θ in kernel of the covariance structure for the m-th trajectory in subject s. The covariance
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structure is also alternatively considered in Tµ̂0(t)M, which is modelled by

zs,ms(t) = Log(µ̂0(t), ys,ms(t))− η̂s(t) (4.51)

Therefore, we obtain

zs,ms,l = (zs,ms,l(ts,ms,1), ..., zs,ms,l(ts,ms,Nms
)) ∼ N (0,Kl) (4.52)

Then for any new input t∗s,ms
, zs,ms(t

∗
s,ms

) = (zs,ms,1(t
∗
s,ms

), ..., zs,ms,d(t
∗
s,ms

)) ∈ Tµ̂0(t∗s,ms
)M

and the conditional distribution of z∗s,ms,l
= zs,ms,l(t

∗
s,ms

) is

z∗s,ms,l|Ds,ms ∼ N (µ∗s,ms,l,Σ
∗
ml)

µ∗s,ms,l = k
∗T
mlK

−1
ml zs,ms,l

Σ∗
ml = k∗∗ml − k∗TmlK

−1
ml k

∗
ml

(4.53)

whereDs,ms = {zs,ms,l(ts,ms,1), ..., zs,ms,l(ts,ms,Ns,ms
)}, k∗ml = (kml(ts,ms,1, t

∗
s,ms

), ..., kml(ts,ms,Nms
, t∗s,ms

))

and k∗∗ml = kml(t
∗
s,ms

, t∗s,ms
). Thus the hyper-parameters θml, l = 1, ..., d, in kernel

k(·, ·;θml) can be obtained by maximizing the marginal likelihood function that is a mul-

tivariate normal distribution

θl ≈ arg max
θml

1

|Kml|−
1
2

e−
1
2
zT
s,ms,l

K−1
ml zs,ms,l (4.54)

where zs,ms,l and Kml are defined above.

The initially estimated coefficients ĉ
(0)
jlk in common mean structure and initially esti-

mated hyper-parameters Θ = (θ̂1, ..., θ̂d) in covariance structure could be labelled as C(0)

and Θ(0) respectively, since they have not been updated.

The predictive distribution calculated from the mean structure and covariance struc-

ture is given by

ŷ(0)s,ms
(t) = Exp

(
µ̂0(t), η̂s(t) + ẑs,ms(t)|Θ(0)

)
. (4.55)

Furthermore, we can update the functional coefficients c
(0)
jlk based on Θ(0). In other words,
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our goal is to find new cjlk which minimize a new loss function

E(0) =
2∑

s=1

Ms∑
ms=1

∫
1

2
dM(ys,ms(t), ŷ

(0)
s,ms

(t))2dt

≈
2∑

s=1

Ms∑
ms=1

Nms∑
i=1

1

2
dM(ys,ms(ts,ms,i), ŷ

(0)
s,ms

(ts,ms,i))
2

=
1

2

2∑
s=1

Ms∑
ms=1

Nms∑
i=1

∥Log(ys,ms(ts,ms,i), ŷ
(0)
s,ms

(ts,ms,i))∥2

=
1

2

2∑
s=1

Ms∑
ms=1

Nms∑
i=1

∥Log(ys,ms(ts,ms,i),Exp(µ̂0(ts,ms,i),

p∑
j=1

usj

K∑
k=1

cjkϕk(ts,ms,i) + ẑs,ms))∥2

=
1

2

2∑
s=1

Ms∑
ms=1

Ns,ms∑
i=1

∥
p∑

j=1

K∑
k=1

uscjkϕk(ts,ms,i) + ẑs,ms − Log(µ̂0(ts,ms,i), ys,ms(ts,ms,i))∥2

(4.56)

The problem of updating mean structure can be converted to a multiple linear regres-

sion. With the updated mean structure µ
(1)
s (t), we can also obtain θ

(1)
ml , l = 1, ..., d, by

maximizing the likelihood function given c
(1)
jlk, that is

θ
(1)
ml ≈ arg max

θ
(1)
ml

1

|Kml|−
1
2

exp
(
− 1

2
zTs,ms,lK

−1
ml zs,ms,l

)
. (4.57)

By repeating the iterative procedure until some convergence conditions have been satisfied,

a concurrent functional regression on Riemannian manifold with uncertainty has been

achieved.

We can see that the steps of inference are similar to the inference in Section 4.2.1.

However, the difference is the estimation of mean structures. The algorithm 10 summarizes

the steps above.
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Algorithm 10: Algorithm to estimate and update coefficients cjlk and hyper-

parameters θmsl.

Input: ys,ms(ts,ms,i), ts,ms,i,xs,ms(ts,ms,i),us,ms = 1, ...,Ms, i = 1, ..., Nms , s =

1, 2, iterate = 1.

Output: ĉjlk and θ̂msl.

1. Compute sample Fréchet mean function µ̂0(t) for all curves;

2. Estimate the coefficient c
(0)
jlk;

3. Estimate the hyper-parameter θ
(0)
msl

by maximizing the likelihood function of

(4.54) ;

4. Update c
(iterate)
jlk ;

5. Update θ
(iterate)
msl

with the updated c
(iterate)
jlk , iterate + = 1 ;

6. Repeat Step 4 and 5 until some convergence conditions have been satisfied.

The numerical comparison between model (4.1) and the approximate model (4.34) is

presented in the next section. From the experiments, we can see that in some special

Riemannian manifolds, such as sphere and Kendall’s shape space, it provides an accurate

approximation.
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Chapter 5

Simulation Study and Data

Application for Manifold-Valued

Models

We demonstrate the wrapped Gaussian process functional regression model on two simu-

lated manifold-valued data sets and one real data set. First, in Section 5.2, our model is

applied on the S2 which is a typical smooth Riemannian manifold with large injectivity

radius (see Section 2.4.1 for more details) and easy to visualize. Next, in Section 5.3, we

test its performance of prediction on Kendall’s shape space which is often used in com-

puter vision application. Finally, in Section 5.4, we study the relationship between some

real predictor variables (such as time and flight company) and the corresponding response

variables (flight routes). In addition, several other models are also used for comparison.

For example, we implement a functional linear regression model for manifold-valued data

(the mean structure of WGPFR) and wrapped Gaussian process regression with Fréchet

mean model, for various scenarios of predictions. We also compute the performance of the

approximate wrapped Gaussian process functional regression model in which we consider

the mean structure and covariance structure for each data point in the identical tangent

space (see Section 4.3). More details about numerical results and comparison are described

in the following sections.
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5.1 Wrapped Gaussian process Fréchet mean regression

The wrapped Gaussian process regression with Fréchet mean point can be seen as an

manifold-valued extension of a Gaussian process regression with constant mean and the

wrapped Gaussian process with geodesic regression can be considered as an extension of

GPR with linear regression mean function, respectively. We summarize this model in this

section.

Suppose there is a manifold-valued prior Gaussian process with given training data

(xi, yi), where xi ∈ R, yi ∈ M and i = 1, ..., n, for test data (x∗, y∗). The model is defined

as

y(x) = Exp(p, τ(·, ·;θ)) (5.1)

and the approximated predictive distribution of y∗ is given by

y∗|y ∼ Exp(m, v)

v ∼ N (k∗K−1Log(m,y), k∗∗ − k∗K−1k∗T )

k∗ = (k(x1,x
∗), ..., k(xn,x

∗))

k∗∗ = k(x∗,x∗)

(5.2)

where y = (y1, ..., yn), k(·, ·) denotes a covariance function, m denotes the Fréchet mean

of y, Log(m,y) = (Log(m, y1), ...,Log(m, yn)) and K denotes a n × n covariance matrix

in which the ij-th entry is k(xi,xj).

Although the predictive distribution of y∗|y cannot be guaranteed to follow a wrapped

Gaussian distribution, its expectation is a maximum a posterior and thus it is reasonable

to use the expectation of y∗|y as a prediction.

Compared to our wrapped Gaussian process functional regression model, the “mean

structure” of wrapped Gaussian process Fréchet mean regression is the Fréchet mean p of

all manifold-valued data which is only one point (under the assumption of existence and

uniqueness) on Riemannian manifolds. If there are more than one manifold-valued curve,

the wrapped Gaussian process regression is unable to capture the curve-specific informa-

tion while the mean structure µm(t) in WGPFR learns from curve-specific covariates. It
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is clearly that p is a fixed point but µm(t) is varying with t. As a consequence, in some

cases, such as the flight trajectory data, the predictive error of wrapped Gaussian process

functional regression model should less than that of wrapped Gaussian process Fréchet

mean regression model, since the mean structure in WGPFR can capture the trend.

5.2 S2

In this section, we consider two types of numerical experiments. In the first, there are eight

non-linear curves on a S2 and we delete some data points of the 8-th curve in different ways

to form different scenarios of prediction. On the one hand, the data points are deleted

uniformly at random or in a contiguous block to test the interpolating performance. On

the other hand, the last 10 data points of the 8-th curve are deleted to test the long-term

extrapolating performance and a small tail (5 data points) of the 8-th curve is deleted

to test the short-term extrapolation performance. In this case, each curve has a distinct

mean structure. The second kind of data is a little different. There are two groups of

batch data on a S2 in which each group has four similar curves. The difference from case

one is that we suppose each group shares a common mean structure. Some data points

are deleted on the 4-th curve in group two by same methods in the first kind of numerical

experiment. This type of manifold-valued data can be used to test the performance of the

model with common mean structure introduced in Section 4.2.2.

5.2.1 Data simulation for model with individual mean structure

The simulated data are shown in Figure 5.1 and in the remainder of this subsection we

explain how the data were generated.
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Figure 5.1: Visualization for a data set simulated from model with individual mean struc-
ture.

Specifically, the WGPFR model consists of two parts: the mean structure and the

covariance structure, see model (4.1) and (4.23). We firstly generate the mean structure

based on covariates defined by um = (1,m − 1) for each curve. All eight curves start

from an identical point p0 = (0, 0, 1) and the functional covariate x is supposed as time

t which is equally spaced in interval (0, 1). The mean structure for the m-th curve is

given by µm(t) = Exp(p0, (t, 0.1×m× sin(2.5× t)3, 0)). Then, we determine the kernel of

covariance structure which is discussed at Equation (2.20)

k(ti, tj) = v0 exp(−
1

2w0
(ti − tj)

2) + a0 + a1titj + σ2δij

Since S2 can be embedded into R3, for each dimension of tangent vector of covariance struc-

ture, the hyper-parameters (v0, 20, a0, a1, σ) are given as θ1 = (0.15, 1, 0.2, 0.01, 0.002),

θ2 = (0.08, 2, 0.17, 0.005, 0.0015) and θ3 = (0.11, 1.3, 0.07, 0.015, 0.0025). Given these
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three Gaussian processes with zero mean and kernel, we can generate a tangent vector for

the covariance structure. However, in practice, the tangent vector may not in the target

tangent space because of numerical rounding. For example, if the ideal tangent vector is

(1, 1, 0), but our generated tangent vector might be (0.99, 1, 0.01), which will result in the

exponential map and inverse exponential map incalculable (defined in Equation (2.33) and

Equation (2.32) respectively). Therefore, the tangent vector must be projected into the

correct tangent space, which is denoted as tv3(t)|θ1,θ2,θ3. The subscript 3 in tv3 refers

to 3-dimensional. The final part is a random error ϵ which is sampled from three indepen-

dent and identical distributions N (0, 0.02), we also must map the random error into the

correct tangent spaces. As a consequence, the formula to generate manifold-valued data

for numerical experiments is written as

ym(t) = Exp(Exp(µm(t), 0.1× tv3(t)|θ1,θ2,θ3), ϵ), m = 1, ...,M. (5.3)

The functional covariate t is equally spaced in interval (0, 1) with 60 points. We then

generate a data set for eight non-linear manifold-valued curves, that is M = 8.

In order to estimate the coefficients in mean structure, it is necessary to identify the

basis functions. Specifically, B-splines are used whose degree is 5 and 40 knots are equally

spaced in interval (0, 1.1).

5.2.2 Simulation study for model with individual mean structure

In this section, we firstly delete some data points from the 8-th curve in different ways and

then calculate the predictions for these deleted data points. The performance of WGPFR

model can be assessed by comparing the root mean square error between predictions and

real data points. We select all the data points of the first 7 curves and 45 random data

points of the 8-th curve as our training data set, so the remaining 15 data points in curve 8

are used for prediction. This scenario of prediction is denoted as Type 1 prediction. There

is another scenario of interpolation where all data points in a given contiguous block are

totally missing, which is denoted as Type 2 prediction. In practice, the entire data points

in the first 7 curves and the remaining of the 8-th curve are used as training data. For

example, if the 60 data points in the 8-th curve are written as (y8,1, y8,2, ..., y8,60), we
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can retain the data (y8,1, ..., y8,25) and (y8,45, ..., y8,60) as part of training data and use

(y8,26, ..., y8,44) as test data to form the Type 2 prediction. As to Type 3 prediction, the

long-term forecasting, data points (y8,1, ..., y8,50) in the 8-th curve and all 7 other curves

are supposed as training data which is a typical extrapolation and it is more difficult than

interpolation. Analogously to the long-term forecasting, we also test the performance of

WGPFR for short-term forecasting, the Type 4 prediction. In Type 4 prediction, we choose

(y8,1, ..., y8,55) in the 8-th curve as part of training data and the rest as test data. The

only difference of training data between these four scenarios of prediction is the training

data and test data in the 8-th curve, the differences are shown in Table 5.1.

training data points in the

8-th curve

test data points

Type 1 45 random data points in

the 8-th curve

the rest 15 data points in

the 8-th curve

Type 2 (y8,1, ..., y8,25)

∪ (y8,45, ..., y8,60)

(y8,26, ..., y8,44)

Type 3 (y8,1, ..., y8,50) (y8,51, ..., y8,60)

Type 4 (y8,1, ..., y8,55) (y8,56, ..., y8,60)

Table 5.1: The training data and the test data of the 8-th curve in different scenarios.

For comparison, in each scenario, the same training data set is used for several other

models, such as functional linear regression on Riemannian manifold(FLRM) and wrapped

Gaussian process Fréchet mean regression (WGFmR). Specifically, FLRM is the mean

structure (4.2) without covariance structure; WGPFmR consists of mean structure and

covariance structure in which the mean structure is the Fréchet mean point for all training

data. In addition, the WGPFmR model does not have the updating part.

We replicate each simulation study 100 times because of the randomness in optimiza-

tion. Thus, we test the performance of our model on thousands of test data points. We

use WGPFR∗ and WGPFR† to denote the original model (4.1) and approximate model

(4.34) respectively.

Table 5.2 shows the reference numbers linking to the different models we are going to

compare
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Equation Number

WGPFR∗ (4.1)

WGPFR† (4.34)

FLRM (4.5)

WGFmR (5.1)

Table 5.2: Different models used in numerical experiments.

The numerical results reported in Table 5.3 are the average of root-mean-square-error

in every single replication. Using the embedding S2 ⊆ R3, it is reasonable to use the

Euclidean norm between points as a distance function (chordal metric), which provides a

method to calculate the rmse. The correlation coefficient r between predictions and test

data is also calculated. Specifically, rmse is calculated by

rmse =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2

and r is calculated by

rmse =

∑N
i=1(ŷi − ¯̂y)

∑N
i=1(yi − ȳ)√∑N

i=1(ŷi − ¯̂y)2
∑N

i=1(yi − ȳ)2

where ŷi is the prediction of yi, ȳ = 1
N

∑N
i=1 yi and

¯̂y = 1
N

∑N
i=1 ŷi.
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Type 1 Type 2 Type 3 Type 4

rmse

WGPFR∗ 0.0180 0.0171 0.0138 0.0126

WGPFR† 0.0163 0.0134 0.0119 0.0115

FLRM 0.0357 0.0476 0.0474 0.0351

WGFmR 0.1249 0.1517 0.2878 0.2211

r

WGPFR∗ 0.9995 0.9779 0.9922 0.9870

WGPFR† 0.9996 0.9792 0.9924 0.9858

FLRM 0.9994 0.9939 0.9884 0.9860

WGPFmR 0.9740 0.6643 0.2149 0.1741

Table 5.3: Root-mean-square-error and correlation coefficient for several models with four
types of predictions and equally spaced data where bold number refers to the minimal
rmse.

In Type 1 and Type 2 prediction, WGPFR† provides the best result when the prediction

of WGPFR∗ is precise as well. In these two scenarios, the approximate model outperforms

the original model, which is because, in practice, there are some calculation errors when we

map the predictive tangent vectors to the target tangent spaces in the usage of exponential

map and inverse exponential map of mean structure in the original model. However,

there is no such error in the approximate model, since we consider the mean structure

and covariance structure in the same tangent spaces. FLRM provides a reasonably good

result for prediction while the performance of WGPFmR is relatively inaccurate (0.0357

compared to 0.1249), because FLRM only learns the mean structure of training data which

might be more useful to forecasting. This conjecture is confirmed empirically in Type 3

prediction and type 4 prediction.

In Type 3 prediction, the original WGPFR model and approximate WGPFR give

accurate predictions and the FLRM still performs well. However, WGPFmR is failed

to predict, since when test data are distant from the training data, the output of GRP

is usually inaccurate and then the mean structure mainly determines the accurate of

prediction. This is also the reason that WGPFR∗ and WGPFR† predict test data more
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precisely in Type 4 prediction. In Type 4 prediction which is also known as short-term

forecasting, these two WGPFR models outperform FLRM and WGPFmR. The prediction

of FLRM is still better than that of WGPFmR, since in forecasting, the results rely mainly

on the mean structure. In addition, the accuracy of both FLRM and WGPFmR become

better compared to Type 3 prediction. This is because, in short-term forecasting, the test

data are not so far away from the training data.

We present the 95% predictive interval for Type 3 prediction in Figure 5.2.

Figure 5.2: The predictive interval of Type 3 prediction in a numerical experiment. The
red curves are 95% predictive interval, the black curve is prediction and the gray curve is
real data.

5.2.3 Sensitivity of kernel for model with individual mean structure

To compare the sensitivity of our model with various choice of kernels, we use the Type 1

data set where the test data are randomly located in the 8-th simulated curve. Specifically,

we generate data using the kernel (2.20), but use different kernels in both estimation and
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prediction parts. The kernels are: squared exponential kernel (SE); piecewise polynomial

kernel (PP) with q = 2; Matérn class kernel(MC) with ν = 2 and rational quadratic kernel

(RQ). For more details of these kernels, see Section 2.1.4.

The values of rmse and correlation coefficient are calculated between test data and pre-

dictions, and average rmse of all replications for the original model (4.1) and approximate

model (4.34) are reported in Table 5.4 and Table 5.5 respectively.

From the numerical results, we can see that our model is not sensitive to kernel. Specif-

ically, squared exponential kernel provides the best predictions among the four different

kernels, while the performances of the other three kernels are still accurate. However, the

root-mean-square-errors of Matérn class kernel in both original model and approximate

model are not good. This consequence might suggest us that, in practice, the choice of

kernel would not affect the accuracy of prediction or analysis, except Matérn class kernel.

SE PP MC RQ

rmse 0.0162 0.0171 0.0300 0.0168

r 0.9995 0.9996 0.9919 0.9996

Table 5.4: Root-mean-square-error and correlation coefficient for different choices of ker-
nels with individual mean structure and equally spaced data.

SE PP MC RQ

rmse 0.0168 0.0256 0.0256 0.0174

r 0.9996 0.9997 0.9978 0.9996

Table 5.5: Root-mean-square-error and correlation coefficient for different choice of kernel
of approximate model with individual mean structure and equally spaced data.

From the tables above, we can see that SE kernel outperforms than others. The reason

might be that in the data-generating kernel (2.20) has some common parameters with SE

which have greater values while the other parameters have smaller values, which means

kernel (2.20) leads to similar covaraince with SE kernel.
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5.2.4 Data generation for model with common mean structure on S2

The simulated data are shown in Figure 5.3 and in the remainder of this subsection we

explain how the data were generated.

Figure 5.3: Visualization of a data set simulated from model with common mean structure.

As mentioned above, the WGPFR model consists of three parts, the mean structure,

the dependent error (covariance structure) and the independent error. We firstly consider

how to generate two mean structures based on covariates. The covariates for these two

mean structures are taken to be u1 = (1, 0) and u2 = (1, 1), respectively. All curves in

the two batches start from an identical point which is p0 = (0, 0, 1). The kernel of the

covariance structure is selected as

k(ti, tj) = v0 exp(−
1

2w0
(ti − tj)

2) + a0 + a1titj + σ2δij .

For the first element of tangent vector of covariance structure, the hyper-parameters
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are θ1 = (0.15, 1, 0.2, 0.01, 0.002). Analogously, the hyper-parameters of the second and

third element are θ2 = (0.08, 2, 0.17, 0.005, 0.0015) and θ3 = (0.11, 1.3, 0.07, 0.015, 0.0025)

respectively, which are the same as values of the hyper-parameters in the model with

individual mean structure. Once such three Gaussian processes with zero mean are deter-

mined, we can generate the covariance structure. We also project the tangent vector into

the correct tangent space, and the projection is denoted as tv3(t)|θ1,θ2,θ3. The final part

is a random error whose distribution is still N (0, 0.02), we map the random error into the

correct tangent space as well. As a consequence, the formula for generating the data is

ys,ms(t) = Exp(Exp(Exp(p0, (t, (1 +ms) ∗ sin(2t), 0)), 0.2× tv3(t)), ϵ) (5.4)

where s = 1, 2, m = 1, ...,Ms and N = 1, ..., Nms .

In addition, the functional covariate x is also supposed to be time t which is equally

spaced in interval (0, 1) with 60 points. For a given time point t, we can generate a

manifold-valued data point using formula (5.4). The same B-spline basis functions in the

simulation study 5.2.1 are used here.

5.2.5 Simulation study for model with common mean structure

We randomly select some data points on the 4-th curve in batch two as test data and we

use the same way in Section 5.2.2 to form four scenarios. We also replicate the simulation

study 100 times which means we have thousands of test data points for each type of

prediction. The average rmse of all replications are reported in Table 5.6.
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Type 1 Type 2 Type 3 Type 4

rmse

WGPFR∗ 0.0278 0.0147 0.0205 0.0157

WGPFR† 0.0325 0.0259 0.0273 0.0252

FLRM 0.0562 0.0636 0.0574 0.0445

WGFmR 0.1488 0.2688 0.5446 0.4072

r

WGPFR∗ 0.9990 0.9806 0.9840 0.9812

WGPFR† 0.9871 0.6695 0.6725 0.8777

FLRM 0.9988 0.9846 0.9997 0.9907

WGFmR 0.9727 0.5807 0.2947 0.3422

Table 5.6: Root-mean-square-error and correlation coefficient for several models with four
types of data sets with common mean structure and equally spaced data.

The qualitative consequences are similar to result in Table 5.3: WGPFR∗ andWGPFR†

give very precise predictions for both Type 1 prediction and Type 2 prediction, while the

performance of FLRM and WGPFmR are relative worse, since FLRM only models the

common mean structure and the mean structure of WGPFmR is only the Fréchet mean

point which cannot capture the mean trend over time. However, the performance of FLRM

in Type 2 prediction is more accurate than WGPFmR (0.0636 compared to 0.2688). The

reason is that the 4-th curve in group two is close to the common mean structure of group

and FLRM can learn this common mean structure from curves 1,2 and 3 in group two.

However, WGPFmR is unable to learn such mean trend from curves 1,2 and 3 in group

two.

For the forecasting scenarios (Type 3 prediction and Type 4 prediction), WGPFR∗

and WGPFR† still provide accurate outputs. Moreover, we can see that the performance

of FLRM is quite similar to that of WGPFR∗ (0.1333 vs 0.1251 and 0.0801 vs 0.5067). It

seems that the predictions of WGPFmR fail since prediction of GPR is not good when the

test data are distant from the training data and, Fréchet mean point is a poor model of

trend of mean structure. Since the test data point of short-term forecasting is closer to the

training data than that in long-term forecasting, the predictive error of WGPFmR in Type
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4 prediction is relatively better than the result in Type 3 prediction (0.5067 compared to

0.6437).

We also present the prediction for long-term forecasting in Figure 5.4. The figures of

other type of prediction are shown in supplementary materials.

Figure 5.4: The predictive interval of Type 3 prediction. The red curves are 95% predictive
interval, the black curve is prediction and the gray curve is real data.

When the number of measurements increases, the predictions should tend to the real

data. In other words, if we observe more curves of both batches, the error of predictions

would decrease. Thus, we extend the number of curves in each group to 5, 10 and 20

to verify this property. Additionally, we use the same time points, covariates, kernel and

hyper-parameters in the covariance function to generate these curves. We compute the

root-mean-square-error for each extension and replicate this procedure 20 times. Table

5.7 displays the numerical results.
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Type 1 Type 2 Type 3 Type 4

5 curves 0.0237 0.0235 0.0213 0.0166

10 curves 0.0180 0.0172 0.0183 0.0148

20 curves 0.0159 0.0112 0.0173 0.0143

Table 5.7: Root-means-square-error between predictions and real data with different num-
ber of curves for original model when the data is equally spaced.

Type 1 Type 2 Type 3 Type 4

5 curves 0.0238 0.0141 0.0199 0.0165

10 curves 0.0186 0.0080 0.0188 0.0150

20 curves 0.0153 0.0071 0.0191 0.0107

Table 5.8: Root-means-square-error between predictions and real data with different num-
ber of curves for approximate model when the data is equally spaced.

5.2.6 Sensitivity to kernel for model with common mean structure

We use the same training data, test data and kernel discussed above to investigate the

sensitivity of WGPFR model to different kernels. The average root-mean-squared-error

and correlation coefficient statistics are reported in Table 5.9 and Table 5.10 for the original

model and approximate model respectively.

SE PP MC RQ

rmse 0.0281 0.0286 0.0382 0.0285

r 0.9993 0.9993 0.9983 0.9993

Table 5.9: Root-mean-square-error and correlation coefficient for different choice of kernel
for original model with common mean structure and equally spaced data.

SE PP MC RQ

rmse 0.0358 0.0431 0.0325 0.0348

r 0.9874 0.7216 0.9937 0.9843

Table 5.10: Root-mean-square-error and correlation coefficient for different choice of kernel
for approximate model with common mean structure and equally spaced data.
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From this table, we can see that the performance of WGPFR model is excellent re-

gardless of which kernel we select, which suggests our model is not sensitive to changes in

the kernel of wrapped Gaussian process. Similar to Table 5.4 and Table 5.5, Matérm class

kernel is found to be relatively inaccurate.

5.2.7 Unequally spaced training data

In the above numerical experiments, we assume the data are equally spaced in a given

time interval and we have seen that our model outperforms some other models, such as

functional linear regression model on Riemannian manifolds and wrapped Gaussian process

Fréchet mean regression model under thus assumption. However, in the real world, the

assumption for equally spaced data set may not hold. In order to test the performance

of our model under more general scenarios, we set the response variables and functional

covariates to be denser in the first half and sparser in the second half. Specifically, we still

generate 8 curves on a S2. Each curve contains 50 data points in the first half and 10 data

points in the second half of the corresponding time interval. Thus, the unequally spaced

data set is generated via setting 50 data points, in time interval (0, 0.5) and 10 data points

in time interval (0.5, 1). The formulas for data generation are the same as (5.3) and (5.4).

Without loss of consistency, we use the same kernel and hyper-parameters to generate

the data. In order to form the various simulation scenarios, some data points are deleted

in the same ways as discussed above, which results in interpolating and extrapolating

problems. The simulation studies for the four types of prediction are replicated 100 times

respectively. In other words, we also compare the performance about interpolation and

extrapolation of various models on the generated dense-sparse data set.

The average root-mean-square-error and correlation coefficient of the model with indi-

vidual mean structure and unequally spaced data for all four Type predictions are given in

Table 5.11. The numerical results of model with common mean structure and unequally

spaced data for all four Type predictions are given in Table 5.12.
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Type 1 Type 2 Type 3 Type 4

rmse

WGPFR∗ 0.0165 0.0125 0.0193 0.0168

WGPFR† 0.0157 0.0104 0.0184 0.0146

FLRM 0.0231 0.0323 0.0301 0.0251

WGFmR 0.1147 0.0509 0.3648 0.3927

r

WGPFR∗ 0.9993 0.9937 0.9920 0.9645

WGPFR† 0.9990 0.9918 0.9874 0.9515

FLRM 0.9990 0.9945 0.9987 0.9954

WGFmR 0.9576 .9838 0.1977 0.0929

Table 5.11: Root-mean-square-error and correlation coefficient for several models with
four types of data sets with individual mean structure and unequally spaced data.

Type 1 Type 2 Type 3 Type 4

rmse

WGPFR∗ 0.0266 0.0542 0.0297 0.0243

WGPFR† 0.0324 0.0224 0.0430 0.0352

FLRM 0.0603 0.0637 0.0441 0.0371

WGFmR 0.1314 0.1123 0.6170 0.6965

r

WGPFR∗ 0.9994 0.7295 0.9812 0.9435

WGPFR† 0.9878 0.6894 0.9990 0.9985

FLRM 0.9986 0.9837 0.9812 0.9927

WGFmR 0.9741 0.6952 0.2662 0.2140

Table 5.12: Root-mean-square-error and correlation coefficient for several models with
four types of data sets with common mean structure and unequally spaced data.

Since the calculation error of exponential map and inverse exponential map inherent in

WGPFR† is less than that of WGPFR∗, the approximate wrapped Gaussian process func-

tional regression outperforms other models, while the results of original wrapped Gaussian
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process functional regression are still good. In addition, the wrapped Gaussian process

Fréchet mean regression model is better in interpolation compared to functional linear re-

gression model in model with individual mean structure. However, in model with common

mean structure where the data in the same batch share a common mean structure, the per-

formance of FLRM is relatively better than WGPFmR, since the FLRM can capture the

mean trend of different batch. It is not surprising that the performance of the predictions

for short-term forecasting are more accurate than that of long-term forecasting.

To sum up, our model is efficient in both equally spaced data set and unequally spaced

data set. Moreover, in many scenarios, the prediction of our model is better than some

other models. Because S2 is a special Riemannian manifold which can be embedded into

R3, the approximate wrapped Gaussian process functional regression model is a little bet-

ter than original wrapped Gaussian process function regression model. This also suggests

us that for some special and simple Riemannian manifolds, we may use WGPFR† instead,

which is more efficient and effective.

In addition, when the number of repeated measurements increases, the predictions

should converge to the real data, which means if we generate more curves for each batch,

the predictive error would decrease. Therefore, we also generate 5, 10 and 20 curves of

each batch for the original model and approximate model respectively. The numerical

results are shown in Table 5.13 and Table 5.14.

Type 1 Type 2 Type 3 Type 4

5 curves 0.0218 0.0122 0.0254 0.0235

10 curves 0.0149 0.0100 0.0253 0.0210

20 curves 0.0131 0.0097 0.0214 0.0162

Table 5.13: Root-means-square-error between predictions and real data with different
number of curves when the data is unequally spaced.
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Type 1 Type 2 Type 3 Type 4

5 curves 0.0218 0.0127 0.0251 0.0270

10 curves 0.0149 0.0106 0.0226 0.0266

20 curves 0.0131 0.0099 0.0222 0.0236

Table 5.14: Root-means-square-error between predictions and real data with different
number of curves of approximate model when the data is unequally spaced.

In the next sections, we present some complex data set (the shape data) and real data

set (the flight trajectory data).

5.3 Kendall’s shape space

S2 is a special Riemannian manifold which has many nice properties, such as the existence

of the exponential map and inverse exponential map everywhere except the antipole. In

this section, we are going to consider a more complex manifold-valued data set and test

the performance of our models on that. Shape analysis is one area in which Riemannian

manifolds are used in medical image analysis and computer vision. Kendall (1984) and

Bookstein et al. (1986) proposed groundbreaking work on modern shape analysis which

focus on the geometry of objects after removing scale, rotation and translation. Specif-

ically, the shape of an subject can be represented as a point in a Riemannian manifold.

Therefore, we consider our model in Kendall’s space shape.

Specifically, we use the wrapped Gaussian process functional regression model to fit

and predict the evolution of shapes which is typically batch data on Riemannian manifolds.

Based on Kendall’s shape space (Kendall, 1984), a 2-dimensional shape can be represented

as a point in a complex projective space. In other words, an evolution of a shape is a curve

in Kendall’s shape space and each shape of this evolution is a data point on that curve. For

computational reasons, we only generate data for the model with common mean structure

(defined in (4.23)) with equally spaced data. We generate 3 curves of each evolution of

shape and each curve consists of 10 points (10 shapes), so that each shape is evolved 10

times. In other words, there are 3 curves in every batch and 10 data points in every

curve. Each shape in the analysis corresponds to a configuration with 40 landmarks.
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Analogously to the various scenarios of numerical experiments of WGPFR on S2, we also

test the performance for interpolation by Type 1 prediction and Type 2 prediction, then

test the performance for extrapolation by Type 3 prediction and Type 4 prediction. The

details of these different types of prediction are discussed below.

5.3.1 Data generation of shape data for the model with common mean

structure

The WGPFR model consists of three parts, the mean structure, the dependent error

(covariance structure) and the independent error. We firstly consider generating mean

structure based on covariates. The covariates for two batches are u1 = (1, 0) and u2 =

(1, 1), respectively, as previously. All six curves start from an identical shape p that is

a regular 40-gon in R1 and the functional covariate x is supposed to be time t which is

sampled from interval (0, 1). The equation of generating mean structure is

µs(t) = Exp(p, (tvs,1, ..., tvs,80)), s = 0, 1 (5.5)

where tv0,l = sin(t0,i)
3 × sin(l), tv1,l = 2× sin(t1,i)

3 × sin(l)× cos(l), l = 1, ..., 80 and tms,i

refers to the i-th time point of group s.

For computational reasons, we use the squared exponential kernel in wrapped Gaussian

process which only has 3 hyper-parameters. In addition, we sample tangent vectors from

80 independent Gaussian processes since each configuration has 80 dimensions and then

project them into correct tangent spaces. The projected tangent vector is denoted as

tv3(t)|θ1, ...,θ80. Therefore, the formula of generating data is

yms(t) = Exp(Exp(µs, tv3(t)|θ1, ...,θ80), ϵ) (5.6)

where ϵ is independent random error in which each element follows a standard normal

distribution. A visualization of the generated data is shown in Figure 5.5.
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Figure 5.5: Evolution of red shapes is the first batch and evolution of blue shape is the
second batch.

5.3.2 Simulation study for the model with common mean structure

We estimate the mean structure and covariance structure as discussed in Section 4.2.1 and

Section 4.2.1. The training data consist of all data in batch one together with the first and

the second curve in batch two whereas the difference between these types of prediction is

the handling of the third curve in batch two. Specifically, for Type 1 prediction, 8 points

in Kendall’s shape space are randomly selected as part of training data and the remaining

2 points are used as the test data; for Type 2 prediction, 3 data points in a contiguous

block are supposed to be the test data, thus the remaining are part of training data; with

regard to Type 3 prediction, we add the first half into the training data and the remaining

for the test data; as for the Type 4 prediction, the last 3 points are considered as the

test data and the remaining are added into the training data. We can see that Type 3

prediction focus the a long-term of stochastic process (the evolution of a shape) while
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Type 4 prediction focus on a short-term. Thus we call them as long-term forecasting and

short-term forecasting, respectively.

Each numerical experiment is repeated for 100 times. In addition, to compare the

performances among different regression models, we also test wrapped Gaussian process

functional regression model, approximate wrapped Gaussian process functional regression

model, functional linear regression model on Riemannian manifold (the mean structure)

and wrapped Gaussian process Fréchet mean regression model.

The root-mean-squared-error and correlation coefficient are given in Table 5.15. WGPFR

model and its approximation achieve the best prediction results in not only interpolation

but also extrapolation. However, we can see that Type 4 prediction of FLR and WGPFR†

are worse than that of Type 3 prediction, which are the opposite of the examples in Section

5.2.2 and Section 5.2.5.

Type 1 Type 2 Type 3 Type 4

rmse

WGPFR∗ 0.0178 0.0175 0.0232 0.0217

WGPFR† 0.0153 0.0128 0.0080 0.0267

FLR 0.0435 0.0430 0.0453 0.0465

WGFmR 1.5016 1.5080 1.3732 1.2814

r

WGPFR∗ 0.7775 0.8041 0.8468 0.7056

WGPFR† 0.8038 0.8881 0.1329 0.6658

FLR 0.8250 0.6931 0.8311 0.7000

WGFmR 0.0106 -0.0012 0.0163 -0.1456

Table 5.15: Root-mean-squared-error and correlation coefficient of several models with
four types of shape data sets.

Some predicted shapes of long-term forecasting are presented in Figure 5.6a and Figure

5.6b.
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(a) 95% prediction interval for a predicted shape where the red shape is upper bound, the blue
shape is lower bound, gray shape is real data and the black shape is our prediction.

(b) 95% prediction interval for a predicted shape where the red shape is upper bound, the blue
shape is lower bound, gray shape is real data and the black shape is our prediction.

Figure 5.6: Data Visualization for Prediction of Shape Data

When the number of curves in each batch increases, the predictions should converge
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to the real data. We verify this property by calculating the root-mean-square-error with

different numbers of curves in each batch: 5, 10 and 20 curves. The numerical results are

displayed in Table 5.16.

Type 1 Type 2 Type 3 Type 4

5 curves 0.0138 0.0127 0.0159 0.0157

10 curves 0.0123 0.0099 0.0146 0.0125

20 curves 0.0107 0.0082 0.0140 0.0113

Table 5.16: Root-means-square-error between predictions and real data with different
numbers of curves.

5.4 Flight trajectory data

In the sections above, we presented the performance of WGPFR and its approximation

on various toy data sets on two Riemannian manifolds, S2 and Kendall’s shape space,

for different scenarios, such as short-term forecasting and long-term forecasting. Both

the original models and approximate models outperform the other models in prediction,

although there is no significant difference from predictive errors between these two models.

In this section, we will test our model on a real data set.

Before we train our model, it is necessary to pre-process the raw data. In this step, we

firstly set the takeoff time of each flight to be 0 and the landing time to be 1, excluding

taxi time. There are hundreds of flight trajectories of British Airlines and Eastern China

Airlines, but generally, it is common for curves to have missing data. As a result, 25

trajectories of each company in which the number of observed data points in every single

flight is greater than 600 were randomly selected. In order to obtain smooth manifold-

valued curves from the data, some kernel smoothing functions with small bandwidth were

applied to the longitude and latitude of the training data. For computational reasons, we

choose 100 data points of each smoothed trajectory as training data.

To model the mean structure for flight trajectory data, we use company as the batch-

specific covariate. In practice, for Easten China Airlines, the covariate is defined as 0; and

for British Airlines, the covariate is defined as 1. Estimation of the mean structure and

covariance structure were described in Section 4.2.1 and 4.2.1, respectively. The parame-
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ters of basis functions in mean structure and hyper-parameters in covariance structure can

be updated iteratively, which as proposed in Section 4.2.1. Afterwards, the predictions of

WGPFRs model has been compared to FLRM and WGFmR for the same flight trajectory

data.

The overall prediction of WGPFR model should be better than the other models,

since FLRM model only learns from mean structure and ignores the dependent error.

Meanwhile, the mean function of WGFmR is a point on S2 and the prediction should

have significant error when data are far away from the Fréchet mean. This is verified by

numerical results in Table 5.18.

We select another flight trajectory of British Airlines which satisfies the number of

observations. After the same pre-processing steps, 60 data points are added into the

training data and the remaining 40 data points are used as the test data. In order to

test the performance of interpolation and extrapolation for the real data set, we form the

Type 1 prediction by randomly choosing these 60 data points and form the forecasting

by selecting the first 60 points in the trajectory as training data. In addition, we test

the capability for short-term forecasting and long-term forecasting by supposing different

test data. Specifically, the 60-th to 70-th points and the 60-th to final data points of the

flight trajectory can be selected respectively to form two scenarios of prediction which are

denoted as short-term and long-term, respectively. The training data and test data on

this curve are shown in Table 5.17 of different scenarios for prediction.

The performance of WGPFR and approximate WGPFR are compared to FLR and

WGFmR on the flight trajectory data. In Table 5.18, the root-mean-squared-error of 20

repeated numerical experiments is displayed. We can see that WGPFR model outperforms

FLR and WGFmR for interpolation. For the long-term prediction, the rmse is much

smaller than that of the short-term prediction. As mentioned previously, the reason is

that GPR fails to predict well when the test data are distant from the training data. The

prediction of WGFmR is less accurate since the mean structure (Fréchet mean) is only a

manifold-valued point and the test data set are not close to that point. However, FLR

provides the best predictions in both short-term and long-term forecasting. The reason

is that flight trajectories are smoothed and then mean structure (FLR) might be enough

to such manifold-valued stochastic process. Furthermore, if we still consider a covariance
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structure, it may enlarge the predictive error.

training data test data

Type 1 60 random data points remaining 40 data points

Short-term 1 ∼ 60 data points 60 ∼ 70 data points

Long-term 1 ∼ 60 data points 60 ∼ 100 data points

Table 5.17: The training data and the test data for different scenarios of prediction.

Type 1 Short-term Long-term

WGPFR∗ 0.0050 0.0126 0.0492

WGPFR† 0.0049 0.0133 0.0521

FLR 0.0066 0.0092 0.0083

WGFmR 0.0187 0.0162 0.3569

Table 5.18: Root-mean-squared-error of several models for flight trajectory data.

We also visualize the results in Figure 5.7a for Type 1 prediction and Figure 5.7b for

Type 3 prediction. In these figures, we can see that the start point and end point of flight

routes are not in Shanghai and London, respectively. The reason is that in there is no

information about taking off time and landing time in the raw data set, thus we delete

100 data points at the beginning and 100 time points in the end.
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(a) 95% prediction interval for a flight in which the red curve is upper bound, the blue curve is
lower bound, gray curve is real data and the black curve is our prediction.

(b) 95% prediction interval for a flight in which the red curve is upper bound, the blue curve is
lower bound, gray curve is real data and the black curve is our prediction.

Figure 5.7: Data visualization for prediction of flight trajectory data.
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Chapter 6

Conclusion and Future Work

The main contribution of this thesis is to develop several regression models based on

Gaussian process for non-Gaussian distributed data, in particular for data with a truncated

Gaussian distribution, a Gamma distribution and manifold-valued data.

In Chapter 3, we defined a truncated Gaussian process and considered a truncated

Gaussian process regression model which used a Gibbs sampler for sampling multivari-

ate truncated Gaussian data from a multidimensional Gaussian distribution. As a conse-

quence, the predictions are located on the prescribed domain, which means we successfully

constrain the range of prediction. However, the expectation of the predictive distribution

has a strong relationship with the choice of upper boundary and lower boundary. We sug-

gest researchers select the boundaries carefully and some prior knowledge might be helpful.

Future work could involve the selection of suitable boundaries based on the combination of

training data and prior knowledge. Moreover, we could suppose the lower boundary and

upper boundary are unknown functions which can be estimated or approximated by data.

We also introduce an extension of the truncated Gaussian distribution which includes

multi-boundaries, with its probability density function, cumulative distribution function,

expectation and variance.

Gamma-distributed data are another example of data which frequently crop up in real

world application but which are non-Gaussian. We propose a regression model for Gamma-

distributed data by applying Gaussian process as a latent process. The hyper-parameters

in the covariance function can be estimated via a Laplace method. Nonetheless, due to the
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expensive computation and complicated gradients, it is more reasonable and suitable to

use a Gaussian approximation method to represent the likelihood function, which provides

a way to calculate the hyper-parameters through a differential evolution algorithm. The

probability density functions of Gamma distribution and Gaussian distribution provides

an analytical form for prediction. This closed form is very cheap for computation but

a little inaccurate, since the Gaussian approximation neglects the skewness of the true

distribution. In order to improve the performance of our model, approximate Bayesian

computation is used which draws samples from the posterior Gaussian approximation.

This trick accelerates convergence since the initial values are not generalised randomly.

For most numerical experiments in both univariate dependent variables and multivariate

dependent variables, approximate Bayesian computation outperforms the analytical solu-

tion. Nevertheless, as mentioned in Section 3.3.6, as k in Gamma distribution increases,

the performance of out model becomes worse. This phenomenon needs further exploration.

For data with more complex structure, especially the manifold-valued response vari-

ables and Euclidean-valued predictor variables, we introduce a novel probabilistic regres-

sion model for functional batch data on smooth Riemannian manifolds in which a mean

structure and a covariance structure are estimated simultaneously. Specifically, the mean

structure learns from the batch-specific covariates via a functional linear regression and the

covariance structure learns from other functional or scalar covariates based on a wrapped

Gaussian process. This framework also provides a method to model multi-dimensional

functional covariates. In order to improve the predictions of our model, we propose an it-

erative algorithm to update mean structure and covariance structure based on a variational

gradient descent algorithm. In practice, people often analyse data on some special Rieman-

nian manifolds, such as the sphere and Kendall’s shape space. Therefore, we can consider

tangent vectors in the tangent spaces along the intrinsic Fréchet population mean function

µ0(t), which is more efficient in computation while the numerical results are significantly

close compared to the original model. A variety of empirical results show an improvement

of performance of our models (the original model and the approximate model) compared

to another existing model (the wrapped Gaussian process regression model with Fréchet

mean). Our model could be tested on more real data sets, such as data from medical image

analysis. Furthermore, in the future, we could consider this model under more general
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situations, especially for non-complete geodesically Riemannian manifolds or non-smooth

spaces. Another direction of future work is that we could consider tangent vectors which

are dependent via a convolved Gaussian process.
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Petersen, A. and Müller, H.-G. (2019). Fréchet regression for random objects with eu-

clidean predictors. The Annals of Statistics, 47(2):691–719.

Pigoli, D., Menafoglio, A., and Secchi, P. (2016). Kriging prediction for manifold-valued

random fields. Journal of Multivariate Analysis, 145:117–131.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numerical

recipes 3rd edition: The art of scientific computing. Cambridge university press.

Price, K., Storn, R. M., and Lampinen, J. A. (2006). Differential evolution: a practical

approach to global optimization. Springer Science & Business Media.

Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the

applies statistician. The Annals of Statistics, pages 1151–1172.

Rue, H., Martino, S., and Chopin, N. (2009). Approximate bayesian inference for latent

gaussian models by using integrated nested laplace approximations. Journal of the

royal statistical society: Series b (statistical methodology), 71(2):319–392.

Salkind, N. (2010). Encyclopedia of Research Design. Number Vols. 1-0. SAGE Publica-

tions.

Serban, N. and Wasserman, L. (2005). Cats: clustering after transformation and smooth-

ing. Journal of the American Statistical Association, 100(471):990–999.

Shi, J., Wang, B., Murray-Smith, R., and Titterington, D. (2007). Gaussian process

functional regression modeling for batch data. Biometrics, 63:714–723.

145



Shi, J. Q. and Choi, T. (2011). Gaussian process regression analysis for functional data.

CRC Press.

Shi, J. Q., Murray-Smith, R., and Titterington, D. M. (2005). Hierarchical gaussian

process mixtures for regression. Statistics and computing, 15(1):31–41.

Shi, J. Q. and Wang, B. (2008). Curve prediction and clustering with mixtures of gaussian

process functional regression models. Statistics and Computing, 18(3):267–283.

Sisson, S. A., Fan, Y., and Tanaka, M. M. (2007). Sequential monte carlo without likeli-

hoods. Proceedings of the National Academy of Sciences, 104(6):1760–1765.

Smola, A. J. and Schölkopf, B. (2004). A tutorial on support vector regression. Statistics

and computing, 14(3):199–222.

Storn, R. and Price, K. (1997). Differential evolution–a simple and efficient heuristic for

global optimization over continuous spaces. Journal of global optimization, 11(4):341–

359.

Su, J., Kurtek, S., Klassen, E., Srivastava, A., et al. (2014). Statistical analysis of trajec-

tories on riemannian manifolds: bird migration, hurricane tracking and video surveil-

lance. The Annals of Applied Statistics, 8(1):530–552.
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