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Abstract 

Precise Point Positioning (PPP) is a Global Navigation Satellite System (GNSS) 

processing technique for obtaining decimetre level accuracy in real-time applications 

within a Kalman filter. PPP is based on knowledge of the GNSS orbits and requires 

access to precise GNSS ephemerides and clocks.  As orbital errors are long-

wavelength, GNSS orbits can be predicted with high accuracy, but GNSS clocks are 

highly variable and not deterministic. The limiting factors of PPP are therefore GNSS 

clock, as well as inability to fix ambiguities to integer values. The latter is due to 

Uncalibrated Phase Delays (UPDs), which exist in the hardware of the receivers and 

satellites, and destroy the integer nature of the undifferenced ambiguities.  

In Network Real-Time Kinematic (NRTK) positioning, UPD errors cancel when double 

differencing the observations. But NRTK requires a dense network of base stations 

close to the user, which is not practical offshore. However, the stability of the UPDs 

over large distances and in time can allow a network of receivers to be employed to 

estimate the UPDs, which can be broadcast to the user. Various models exist to 

estimate UPDs, enabling a user, ambiguity fixed solution to be produced, in a method 

known as Precise Point Positioning Real-Time Kinematic (PPP-RTK).  

This study will use L1 and L2 frequencies independently in a measurement model 

capable of estimating the UPD and satellite clock parameters simultaneously. The 

estimated parameters can be transmitted to the user to acquire an ambiguity fixed 

position in real time.  

A series of tests show how factors such as the number of stations in the network, 

interstation distances and location of the user with respect to the network affect the 

accuracy of the user position. Tests show by using satellite clock and UPD 

corrections at a rover station it is possible to obtain position estimates with a root 

mean square error of 16 mm in plan and 23 mm in height.   
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Chapter 1. Introduction 

1.1 Background 

In the offshore industry, position is vitally important for many applications in surveying 

and navigation including; monitoring oil rig subsidence, bathymetric surveys and 

pipeline route surveys. The main positioning method in recent years has employed 

Global Navigation Satellite Systems (GNSS) in a variety of modes but increasingly 

the technique of Precise Point Positioning (PPP) has been employed. This has led to 

decimetre level accuracy positioning with the use of just a single receiver. However, 

both time and accuracy are critical for the majority of offshore applications such as 

pipeline surveys and oil rig monitoring. The cost of an offshore rig is between 

£500,000 and £1 million per day (Allinson, 2012). Therefore, time and accuracy is 

essential to deliver a project on budget. Consequently, if PPP accuracies can be 

further increased and convergence times decreased it would provide improvements 

for the offshore industry.  

One of the main limitations of undifferenced PPP processing is the inability to 

undertake Integer Ambiguity Resolution (IAR). The ability to correctly fix the 

ambiguities to integer values has the effect of making the carrier phase observations 

into a precise range measurement between the satellite and the receiver. IAR is not 

possible in undifferenced PPP due to the existence of Uncalibrated Phase Delays 

(UPDs), which corrupt the integer nature of the ambiguities (Geng et al., 2011), 

making fixing impossible. Therefore, to allow IAR the UPDs need to be either 

removed or estimated.  

Processing strategies that allow IAR exist for onshore or nearshore applications such 

as relative Real-Time Kinematic (RTK). This method employs double differenced 

observations to cancel out the UPDs, along with other GNSS errors, such as, the 

ionosphere and troposphere. Hence, restoring the integer nature of the ambiguities. 

This method is capable of achieving centimetre level precision with decreased 

convergence times compared to PPP. However, to achieve these high accuracies the 

required reference receiver must be within 10-20 km of the rover (Wanninger, 2004). 

This is not practical for the majority of offshore applications. Therefore, a processing 

technique that is able to employ more distant reference receivers is required.  
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Over the past few years, multiple studies such as Ge et al. (2008) and Geng et al. 

(2010a) have been conducted into PPP accuracy and convergence time. Some of 

these studies have been able to show that through the calculation and application of 

UPDs, the accuracy and convergence time can be significantly improved. The UPDs 

originate as hardware delays in both the receiver and the satellites, but are 

potentially stable over time and location. Therefore, there is an opportunity to 

calculate the UPDs, which are then transmitted to a receiver so that they can be 

incorporated into the rover solution. The incorporation of UPDs into the solution 

should remove the fractional part of the non-integer phase offset, which will then 

allow a fixed integer ambiguity solution to be obtained at the zero difference level. 

This will provide benefits to the accuracy and the convergence time, allowing Precise 

Point Positioning Real-Time Kinematic (PPP-RTK) to be a viable alternative to 

existing offshore processing techniques. 

The viability of PPP-RTK has already been demonstrated using the GPS LC 

frequency, which is a combination of the L1 and L2 frequencies  (Geng et al., 2011; 

Laurichesse, 2011). However, this project will concentrate on using the L1 and L2 

frequencies separately. One advantage of calculating the UPDs in this way is that the 

addition of other satellite systems (e.g. Galileo/GLONASS/Beidou), as well as, 

additional frequencies on the GPS satellites can be easily accommodated into the 

calculations. The incorporation of more observations would also allow further 

redundancy to be incorporated within the system potentially, providing more accurate 

results.  

The use of L1 and L2 frequencies separately to calculate UPDs has previously been 

studied (Zhang et al., 2011; de Jong et al., 2016). However, existing methods have 

never been able to estimate UPD parameters and true satellite clock parameters 

simultaneously. If this is achieved it will lead to improved convergence time, as well 

as, improved accuracies for a rover receiver in an offshore environment.  

1.2 Aim and Objectives 

The aim of the project is to design a method of processing GNSS observations in 

order to simultaneously calculate UPD and satellite clock corrections from a wide 

ranging network of receivers. These UPDs can then be used to calculate a user’s 

PPP solution with IAR.  
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In order to achieve the project aim the following objectives are addressed: 

1. Literature review of the current methodologies used in the calculation of 

UPDs. 

2. Understand the theoretical differences and challenges of trying to calculate 

UPDs for L1 and L2 instead of LC.  

3. Investigate the parameters required to be broadcast to a user from a network 

(e.g. satellite clocks and UPDs).  

4. Computation of UPDs and pure satellite clock corrections at a high temporal 

rate. 

5. Develop a generic software approach, which is capable of handling GPS and 

other GNSS data. 

6. Test the accuracy and convergence times of a PPP system with UPDs and 

satellite clocks from data obtained from a range of networks based in the UK.  

7. Test the ability to fix ambiguity parameters to integers at the network and rover 

receivers.  

1.3 Thesis Outline 

The thesis comprises seven chapters. Chapter 1 sets out the historical background to 

the research along with the motivation for further research. The aims and objectives 

are also presented.  

Chapter 2 reviews the background to GNSS positioning and its processing 

techniques. The measurement models for GPS observations are introduced along 

with the multiple error sources, such as the troposphere, ionosphere and UPDs 

within the signals. The importance of each error is outlined along with how they will 

be dealt with within this study. Additionally, several existing GNSS processing 

techniques capable of varying degrees of accuracy are discussed. Within these 

techniques, methodologies to estimate UPDs are presented along with their 

respective advantages and disadvantages 

Chapter 3 presents the derived measurement models used throughout the study. The 

measurement models are derived a priori from the original observation equations for 

both the network and the user. These measurement models can be used to calculate 
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UPD and satellite clock values from a network of receivers and hence, can enhance 

estimation of the position of an unknown receiver.  

The Kalman filter (Kalman, 1960) is the subject of Chapter 4. In this chapter the 

Kalman filter equations are outlined, which enable the estimation of the parameters 

presented in Chapter 3. The Kalman filter uses the weighted observations and 

different process noise values to produce the best parameter estimation at each 

epoch.  

Chapter 5 outlines the testing methodology that will be been undertaken. This 

includes the proposed tests to be completed during the study and why each of these 

is important. This chapter will also use another existing methodology to compare the 

methods developed in this thesis.  

Subsequently, Chapter 6 presents results of the tests outlined in Chapter 5. These 

results are presented as a series of plots and statistics to show whether the 

application of UPD and satellite clock corrections improve the position estimates of a 

rover receiver.  

Finally, Chapter 7 outlines conclusions about the estimation of UPDs and satellite 

clocks from a network and subsequent position estimates at a rover. It identifies how 

each of the objectives set out in Chapter 1 has been met and also shows how future 

work could progress the research further.  
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Chapter 2. GPS Background 

2.1 Introduction 

It shall be assumed for the purpose of this thesis, that the reader has a basic 

knowledge of GNSS. Therefore, this will not be presented here. More information on 

the basic background to GPS can be gained from a number of resources such as 

Wells (1986), Kleusberg and Teunissen (1998) and Xu (2003) amongst others. 

A number of different processing strategies will be outlined within this chapter. These 

include PPP, RTK and Network Real-Time Kinematic (NRTK). Once these highly 

developed methods have been outlined, the more recent concept of PPP-RTK will be 

introduced. All of these approaches will be critically analysed, to show their 

advantages and disadvantages, leading to the creation of the PPP-RTK approach, 

which combines the advantages, into a new improved system. 

2.1.1 Measurement Model  

Prior to detailing various processing strategies, the signals received from GPS 

satellites and consequently the measurement model created, must be analysed. 

There are two primary signals received from the GNSS satellites; the pseudorange 

and carrier phase observations, which are transmitted on all frequencies. The carrier 

phase observation is more precise, with accuracies in the millimetre range, compared 

to the metre level precision of the code observations (Hofmann-Wellenhof, 2008). 

However, the high precision of the carrier phase observations can only be realised 

once the initial integer ambiguities have been solved. This is one of the key features 

when comparing processing strategies and is essential for high accuracy positioning.  

The measurement model for a code observation p  and a carrier observation   at 

station r  to satellite s , s=1,…, n, at frequency i , i =1,…, f , and time t ,both expressed 

in metres, reads: 

          , , ,( ) ( ) ( ) ( ) ( ) ( ) ( )
i i i

s s s s s s s
r r r i r p r p r p

s
i r rp t R t c t t c t t T t I t m t d d   

                                 (2.1) 

 



6 

 

                  , , , , ,( ) ( ) ( ) ( ) ( ) ( ) ( )
i i i

s s s s s s s s s
i r r r r i r r r i i r i r i

s
rt R t c t t c t t T t I t m t d d N          

    (2.2) 

where R  is the geometric distance between the station and satellite, c  the speed of 

light,  rt  the receiver clock bias,  st  the satellite clock bias, T  the tropospheric delay, 

   2 2
1/ii

, i
 the carrier wavelength at frequency i, I  the ionospheric effect,  ,i

s
rm  the 

multipath effect, d  the UPDs (Uncalibrated Code and Phase Delays), N  the integer 

ambiguity,   the non-integer initial carrier ambiguity and   the measurement error 

including orbit error (Leick, 2015). 

In the phase observation equation (2.2), the initial carrier biases  ,i r
and  s

i
 cannot be 

separated from the UPD terms  ,i r
d  and i

sd as they are linearly dependent. Therefore, 

the initial carrier biases are lumped into the UPD terms resulting in the modified 

phase observation given by equation (2.3). 

              , , , ,( ) ( ) ( ) ( ) ( ) ( ) ( )
i i i

s s s s s s s s
i r r r r i r r r i i r

s
rt R t c t t c t t T t I t m t d d N

    

             (2.3) 

2.1.2 Geometric Distance 

The first term within the measurement model, equations (2.1) and (2.3) is R the 

geometric distance. This range computation is given by equation (2.4). 

2 2 2( ) ( ) ( )s S S S

r r r rR X X Y Y Z Z          

    (2.4) 

where SX , SY , SZ  are the satellite coordinates and rX , rY , rZ are the receiver 

coordinates. Approximate values for the receiver coordinates must be available, as it 

is these receiver coordinates that are estimated in the linearised observation 

equations within the GPS processing of a rover site.  
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2.1.3 Receiver and Satellite Clock Biases 

The receiver clock term,  rc t , and satellite clock term,  sc t , are important parameters 

to counter mis-synchronization between the clocks. GPS observations rely on exact 

time measurements to compute the satellite-receiver range. Therefore, even small 

timing errors can lead to large range errors, when multiplied by the speed of light.  

Receiver clocks are not as accurate as satellite clocks as this would be too 

expensive and energy intensive to each individual user. The receiver clocks still 

include biases like the satellite clocks, which can be estimated to within 1 μsec or 

better (Leick, 2015). For high accuracy applications the receiver clock bias must be 

estimated as a parameter. It is assumed that the bias is white noise and therefore 

independent at each epoch. Therefore, it does not use previous estimates to predict 

the value at future epochs.  

Satellite clocks are also highly accurate but drift away from standard GPS time. This 

drift is kept within one millisecond (Wells, 1986; Leick, 2015), which is equivalent to 

approximately 300 km of range error. The amount of drift is accurately known and 

corrected for in the broadcast message, which keeps the clock accurate to about 

20 nanoseconds. However, there are external factors such as temperature variations 

and random drift, which also affect the clock and need to be considered. These 

parameters, like the receiver clocks, are assumed to be independent from one epoch 

to the next. Therefore, cannot be modelled and must be estimated, unconstrained at 

each epoch. 

2.1.4 Ionosphere 

The ionosphere is the layer of the atmosphere from approximately 50 km to 1000 km 

(Kleusberg and Teunissen, 1998). The electrons present in this part of the 

atmosphere affect the propagation of the GPS signal. The ionosphere is a dispersive 

medium, which means waves of different frequency will travel through at different 

velocities. In terms of GPS observations, this has the effect that carrier phase 

observations are advanced, making the range shorter, and the pseudorange 

measurements are delayed, making the range longer. Crucially, the amount the 

carrier phase is advanced is the same as the amount the pseudorange is delayed. 

Therefore, it is possible to remove the ionosphere by combining the frequencies.  
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When using dual frequency data it is possible to remove the effect of the ionosphere, 

by creating a linear combination of the L1 and L2 observations called LC. The 

ionosphere free linear combinations for carrier phase and pseudorange respectively 

are given by equations (2.5) and (2.6) (Sanz Subirana et al., 2011). 

  
 



2 2
1 1 2 2

2 2
1 2

L L
C

f f

f f
 

(2.5) 






2 2
1 1 2 2

2 2
1 2

P P
C

f p f p
p

f f
 

(2.6) 

Alternative methods for removing the effect of the ionosphere include single 

difference observations and ionosphere models. For baselines of <30-50 km 

(Awange, 2012) the ionosphere to 1st order will cancel to within a few mm (Dekkiche 

et al., 2010) when observations are differenced. Alternatively, ionospheric models are 

capable of removing 50-60% Root Mean Square (RMS), of the ionospheric effect  

(Kleusberg and Teunissen, 1998). However, single differences are not possible in 

PPP and the accuracy of ionospheric models are not sufficient for PPP applications. 

Consequently, ionospheric parameters are estimated in PPP positioning. It is 

possible to propagate ionosphere values from epoch to epoch, although this may not 

account for particularly rapid changes in the ionosphere caused by ionospheric 

scintillations.  

2.1.5 Troposphere 

Unlike the ionosphere, the troposphere is a non-dispersive medium, and has the 

same effect for all frequencies. However, the effect of the troposphere is smaller and 

more predictable than the ionosphere. The tropospheric delay at the zenith is 

approximately 2 m but increases for satellites at lower elevations up to approximately 

20 m (Xu, 2003).  

The delay caused by the troposphere “depends on temperature, pressure, humidity 

as well as the location of the GPS antenna” (Xu, 2003). Consequently, the 

troposphere is more easily modelled as these parameters can be easily measured. It 
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can be split into wet and dry parts, which depend on water vapour and the dry 

atmosphere respectively. The dry part which accounts for about 90% of the error can 

be estimated with an accuracy of about 99.8% (Wells, 1986). However, the wet part 

is harder to model, as it depends on the atmospheric conditions between the receiver 

and the satellite. Tropospheric models calculate the zenith delay at a location. 

Subsequently, mapping functions can be used to estimate the delay at various 

elevation angles.  

The residual tropospheric error that has not been modelled, mainly the wet 

troposphere, must be estimated in the measurement model. This delay is slowly 

changing, and therefore can be tightly constrained and propagated from epoch to 

epoch. When using short baselines of 10-20 km (Dai et al., 2003), the tropospheric 

delay can be assumed equal at both stations to obtain the cm level accuracy required 

in many applications. However, in many applications a tropospheric parameter must 

be estimated for each receiver independently; due to the baseline lengths or 

significant height differences between the stations.  

2.1.6 Multipath 

GPS observations rely on uninterrupted and direct signal, between the receiver and 

the satellite. However, this is not always the case, especially in urban areas or in 

offshore environments. Multipath is the error caused by the GPS signal reflecting off 

a surface before reaching the receiver, instead of going direct to the receiver. The 

additional time it takes to reach the receiver after the reflection, leads to an error in 

the range observation.  

There are only limited ways to mitigate or reduce multipath, but many attempts have 

been made. Firstly, the location of the GPS receiver must be as far away as possible 

from obstacles that could cause a reflection, such as buildings. Secondly, the signal 

to noise ratio of the signal, once reflected, will be about a 1/3 of the direct signal (Xu, 

2003). This can be used to try to identify multipath, as they are likely to have much 

weaker signals. Thirdly, antenna beam shaping can be used to block signals from 

certain directions (Wells, 1986). Finally, GPS signals are right-hand circularly 

polarised (RHCP) and consequently antennas are designed to receiver RHCP 

signals. When a signal is reflected, the polarisation is changed and therefore would 

not be received by the antenna.  
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Despite many efforts to mitigate multipath it remains one of the main error sources in 

GPS observations, as there are few accurate methods to model the expected 

multipath in real time.   

2.1.7 Uncalibrated Code and Phase Delays 

The terms ,ip rd , 
i

s
pd ,  ,i r

d and i

sd  from equation (2.3) are the receiver and satellite 

UPDs. These terms originate in the hardware of the antennas and the satellites. 

These are uncalibrated, meaning the value is unknown and unmonitored.  The 

existence of these components of code and phase delay, have been studied for 

many years and it is known that “their presence prevents the resolution of the integer 

cycle biases” (Blewitt, 1989). However, it has been shown that they are quite stable 

over time and space (Ge et al., 2008). The accurate estimation of these parameters 

could realise the potential to fix ambiguities to their integer values.  

2.1.8 Ambiguities 

The carrier phase observations (2.3) include ambiguity terms ,
s
i rN . The carrier phase 

signal from the satellite is sent as a sinusoidal wave. Hence, the difference in phase 

between when the signal was sent and when it was received can be accurately 

measured. However, the integer number of cycles, N , between the satellite and the 

receiver cannot be measured. It is this integer value that is corrupted by the presence 

of UPDs, but the accurate calculation of the integer ambiguities holds the key to 

achieving centimetre level precision.  

2.1.9 Orbit Errors 

Range measurement between the satellite and the receiver depend on knowing the 

position of the satellite to high accuracy, at the time of the signal transmission. Due to 

the large number of forces acting on the satellite, it is difficult to precisely know the 

positon in real time. Consequently, the broadcast ephemeris is accurate to 

approximately 100 cm (International GNSS Service, 2017b). 

However, by using a large network of IGS stations worldwide it is possible to improve 

the accuracy of the orbit corrections. Ultra-rapid orbits, first computed in November 

2000, were developed for use in real time or near real time. The ultra-rapid orbits use 
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the latest GPS observations to improve the predictions of the orbits, resulting in 

accuracies of approximately 5 cm (International GNSS Service, 2017b). These orbit 

products are realised every six hours to ensure the data is as up to date as possible.  

In addition to the ultra-rapid orbits, which are used in near real time applications, 

there are rapid orbits, which are produced with a latency of approximately one day. 

These products are no longer predicting the orbits ahead of time, but instead use the 

actual observations to more accurately inform the user where the satellite was over 

the previous 24 hours. By using the network of base stations to correct the orbits, the 

rapid orbits are accurate to approximately 2.5 cm (International GNSS Service, 

2017b). 

Although the rapid orbits, which are available one day after the observations, are 

accurate estimates of the orbits, the IGS also provides final orbits, which have a 

latency of approximately two weeks. These orbits are quoted at the same 2.5 cm 

accuracy as the rapid orbits and for most applications there will be no difference 

between the applications of the final or rapid orbits (International GNSS Service, 

2017b). The accuracies of these orbit products has been independently tested to 

verify the values given by the IGS (Hadas and Bosy, 2015).  

2.1.10 Additional Measurement Errors 

There are a number of additional errors that affect GNSS observations including 

satellite antenna phase centre, phase wind up, solid earth tides and ocean tide 

loading. 

Satellite antenna phase centre errors are caused by a difference in locality of the 

phase centre of the satellite and its centre of mass. Orbit parameters are referenced 

to the centre of mass of the satellite, whereas the range measurement, calculated by 

the receiver is relative to the antenna phase centre. The difference between these 

values can reach approximately 1 m depending on the phase centre model of the 

satellite employed. To achieve high accuracy PPP solutions, which are accurate to 

the cm level in static mode and sub decimetre in kinematic mode (Øvstedal et al., 

2006), these errors need to be accounted for. This is done by accessing a satellite 

antenna phase centre correction in the ANTenna EXchange (ANTEX) file, which is 

capable of removing the error at the sub millimetre level (Kouba, 2009).  
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Phase wind up errors result from the satellite or receiver rotating around its vertical 

axis. The GPS signal is transmitted as a RHCP radio wave. Consequently, if the 

satellite or receiver rotates relative to the other the carrier phase signal will change 

by up to one whole cycle (Kouba, 2009). Fixed GPS receivers should not undergo 

any rotation. However, satellites do slowly rotate to allow the solar panels to face the 

sun. Therefore, a small error is introduced by this rotation; this error is negligible and 

will be ignored during this thesis.  

The sun and the moon impart large gravitational forces on the Earth, which result in 

ocean tides and solid earth tides, which can both affect precise positioning. The 

effect of solid earth tides on an area depends on the latitude and the frequency of the 

tides. Additionally, “the periodic vertical and horizontal site displacements caused by 

tides are represented by spherical harmonics of degree and order (n, m) 

characterized by the Love number nmh  and the Shida number nml  ” (Kouba, 2009). 

Over short baselines the effect of solid earth tides can be ignored but for precise long 

baseline solutions the effect must be modelled.  

As stated above, the sun and moon create ocean tides, which lead to ocean tide 

loading. This displacement is caused by the ocean tides rising around an area and 

creating downward pressure on the seafloor. The amount of displacement depends 

on the location of the receiver, especially its proximity to the ocean as these areas 

are most affected. For high accuracy applications, in particular for stations near the 

sea, the effect of ocean tide loading must be modelled. The ocean tides are highly 

predictable through a series of constituents such as the M2, S2 and K2 (Clarke and 

Penna, 2010). Each of these constituent parts has a period and amplitude dependant 

on the latitude and longitude of a given point. From this information an accurate 

estimation of the tides can be computed and therefore accurate ocean tide loading 

calculations can be undertaken. A number of models exist to correct for the ocean 

tides such as  Lyard et al. (2006) and Matsumoto et al. (2000). 

2.2  Precise Point Positioning (PPP) 

PPP is a common processing method used in GNSS positioning. The approach uses 

precise satellite orbits and clocks, calculated from a global network of ground 

stations, which enables accuracies of decimetre to a few centimetre level when 
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observing in kinematic mode. However, PPP suffers from the limitation that the 

convergence time to reach decimetre precision levels is typically around                  

20 - 30 minutes (Li and Zhang, 2014) and can take up to 24 hours to stabilise at the 

centimetre level in static mode (Kouba and Héroux, 2001).  

One of the main advantages of PPP is that there is no requirement for a local base 

station and therefore it is a reliable and robust method of positioning anywhere in the 

world. However, the accuracy of the position is limited by the accuracy of satellite 

clock and orbit estimates received.  

2.3  Real-Time Kinematic (RTK) 

The second common processing technique is RTK. This differs from PPP as it 

requires the use of a local base station, which must be within 10–20 km of the rover 

(Kleusberg and Teunissen, 1998). This reference receiver transmits its raw 

observations and its known position to the rover in real time, allowing double 

differenced observations to be created. Double difference observations allow IAR to 

take place, as the UPDs, which usually prevent this will cancel out in the differencing 

process.  

The most significant disadvantage of RTK is the requirement of a local base station, 

which may not be possible depending on the location, for example in an offshore 

environment, or it may be cost prohibitive. Furthermore, if the reference base station 

exceeds the 10-20 km guideline, ionosphere, troposphere and orbit errors become 

de-correlated and therefore residual errors will remain following differencing.  

2.4 Network Real-Time Kinematic (NRTK) 

To overcome the requirement of a second GPS receiver within 10-20 km to act as a 

reference station, NRTK has been developed. As the name suggests, a network of 

ground based reference stations are distributed over a large area, often country wide 

e.g. OS Net (Ordnance Survey, 2017).  These stations are permanently installed and 

run constantly by a third party, allowing a rover user to pay to receive the corrections 

from the network when required.  

The way in which NRTK generates these corrections is quite different to RTK. Firstly, 

the network of stations must be processed so that all the integer ambiguities are 
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correctly solved. This is easier than solving ambiguities at a rover in the RTK method, 

as the reference receiver is stationary at a known point so the receiver coordinates 

do not have to be simultaneously estimated. Once the ambiguities are solved, each 

reference station can accurately estimate corrections for parameters, such as the 

ionosphere, troposphere and orbits.  

When the rover wishes to receive these corrections, its approximate position is 

analysed, to identify which reference stations are nearby. The corrections from a 

series of nearby reference stations, surrounding the rover, can then be interpolated 

to create a Virtual Reference Station (VRS) next to the rover. This VRS can then be 

used in the same way as RTK, to calculate the rover coordinate and solve integer 

ambiguities.  

Unlike PPP, NRTK requires the use of a number of local reference stations. In many 

applications, such as offshore positioning, this makes the use of NRTK impossible. 

NRTK on the other hand can achieve cm precision levels, with just a few epochs of 

data (Odijk et al., 2010) unlike the 10s of minutes required for PPP. Therefore, if the 

advantages of the two methods could be combined, it could aid fast real-time 

positioning, particularly in the offshore environment.   

2.5  Precise Point Positioning Real-Time Kinematic (PPP-RTK) 

PPP-RTK is a relatively new concept (Ge et al., 2008), which combines the 

advantages of the PPP and the NRTK methods. PPP-RTK does not require 

additional ‘local’ base stations used in NRTK making the method particularly useful in 

remote areas or offshore. However, PPP-RTK does require a larger regional network 

of base stations, to allow the method to achieve accuracies and convergence times 

closer to that of NRTK. This regional network allows for PPP-RTK IAR to be 

performed, where IAR is facilitated through the calculation and broadcast of UPDs.  

UPDs exist in the hardware of both receivers and satellites and “destroy the integer 

nature of undifferenced ambiguities” (Geng et al., 2012) preventing IAR from being 

performed.  This is only an issue in PPP, as in NRTK the UPD errors cancel in the 

double differencing of the observations during the processing. However, the stability 

of the UPDs means a network of receivers can be employed to estimate UPDs, which 

can then be broadcast to users. 
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2.6 Recent Developments in PPP-RTK 

A number of different methods have been proposed to recover UPDs that can be 

utilised to obtain a fixed, ambiguity resolved solution (Geng et al., 2011; Zhang et al., 

2011; de Jong et al., 2016). A number of these methods are outlined in this chapter 

along with their advantages, disadvantages and limitations. These limitations will 

then be examined in more detail, to identify the key objectives required for the 

development of an improved PPP-RTK system.  

In the various PPP-RTK processing techniques, the observations are 

reparameterised and combined in different ways depending on the method being 

employed. Equations (2.1) and (2.3) for pseudo range and phase respectively are 

both singular and rank deficient meaning that all the parameters cannot be solved for 

individually. The mathematical techniques by which these equations are made non-

singular are one of the main differences between the various methods for obtaining a 

PPP-RTK solution.  

2.6.1 GeoForschungsZentrum (GFZ) Method 

This method was developed and methodologies proposed by GFZ (Geng et al., 

2011) and will be referred to as the GFZ approach throughout this document. In this 

approach the first step combines the L1 and L2 GPS observations into an ionosphere 

free combination (LC) as shown in equations (2.5) and (2.6). 

The ionosphere free combination has the advantage that ionospheric terms in the 

observation equations (2.1) and (2.3) are removed. The ionosphere free approach 

reduces the number of observation equations from four to two for each satellite 

observed. This is critical in the remainder of the processing as the reduced data 

availability makes it more difficult to estimate the required UPDs. Furthermore, the 

GFZ approach cannot directly calculate the UPDs on L1 and L2 because of the use 

of the ionosphere free combination. Therefore, the Wide lane (WL) and Narrow Lane 

(NL) combinations are used. The WL and NL combinations are given by equations 

(2.7) and (2.8).    

 1 2WLL L L             

(2.7) 
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 1 2NLL L L    

         (2.8) 

The WL and NL UPDs cannot be estimated simultaneously because of the rank 

deficiencies in the observation equations (Ge et al., 2008). Instead the WL solution is 

calculated first and subsequently this calculation is used to estimate the NL UPD 

solution. 

Equation (2.7), also known as the Melbourne-Wubbena WL, provides a signal 

wavelength of 86.2 cm (Melbourne, 1985). This is much longer than the 19 cm and 

24 cm for the L1 and L2 frequencies respectively (Sideris, 2009), effectively making 

the WL UPDs easier to fix than the L1 and L2 UPDs. This is due to the relative levels 

of measurement noise not being as high, making integer fixing more robust. 

Additionally, the use of the WL ambiguities reduces the solution convergence time. 

For example, Geng et al. (2011) report that “at least 10 minutes of observations are 

required for most receiver types to reliably fix about 90% of wide-lane ambiguities”.  A 

further advantage of the WL UPDs is their superior temporal stability, meaning that 

once computed they can be predicted for several days allowing for a single daily 

update rate (Geng et al., 2011).  

In contrast the NL ambiguities are harder to determine and therefore, take 

considerably longer to compute. The narrow 10 cm wavelength results in the 

requirement for a much longer observation period, to smooth out observation noise. 

The slowly changing geometry of the satellites further increases the time taken for NL 

ambiguity resolution (Geng et al., 2011).  Additionally, the NL counterparts are much 

more temporally unstable resulting in the requirement for an update rate of 

~15 minutes to achieve high precision results (Geng et al., 2012). A number of 

studies (Geng et al., 2010a; Geng et al., 2011), have employed NL UPDs estimated 

once per satellite pass showing it to be “rather stable” (Geng et al., 2010b) during this 

period.  

When calculating the UPDs using the GFZ method, it is the NL UPDs that are critical 

to the positioning accuracy. This is because “even a slightly biased NL UPD estimate 

… is likely to deteriorate the positioning accuracy” (Geng et al., 2012). Therefore, it 

was proposed (Geng et al., 2012) that these NL UPDs should be derived from an 
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ambiguity fixed network instead of ambiguity float. In order to achieve this, double 

differenced ambiguity resolution needs to be carried out over the network. Using this 

double differenced network, the accuracies of the NL UPDs were improved. The 

accuracy of the PPP-RTK positions improved the RMS values from 3.6 mm, 2.3 mm 

and 6.4 mm in the East, North and Up directions respectively for daily positions using 

a float solution to 2.6 mm, 2.2 mm and 6.1 mm using the fixed solutions (Geng et al., 

2012). Hence, using an ambiguity fixed network solution is desirable for highly 

accurate UPDs, especially “when only a small number of reference stations are 

involved” (Geng et al., 2012). 

2.6.1.1 UPD Calculation in the GFZ method 

The methodology adopted in the network processing of the GFZ method to calculate 

the required UPDs is to simply average the fractional parts of all the ambiguity 

parameters, for all the reference stations within the network. The fractional parts of 

the UPDs are the critical factors, as the integer parts cannot be separated from the 

integer ambiguities. These undifferenced ambiguity estimates are then single 

differenced between satellites, to remove the receiver dependent UPDs, resulting in 

the remaining UPD being referenced to a satellite pair (Geng et al., 2010b).  

   

     (2.9) 

where ckb  is the ionosphere free carrier phase bias, nkn   is the NL integer ambiguity, 

n  is the between satellite differenced NL UPD and w  is the between satellite 

differenced WL UPD.   

Once the WL and NL UPDs have been estimated using the network of reference 

receivers these estimates are transmitted to the user. These estimates are then used 

to correct the float single difference ambiguities at the user station. Sequential bias 

fixing and the Least-squares AMBiguity De-correlation Adjustment (LAMBDA) 

(Teunissen, 1993) method are then used to fix the WL and NL ambiguities in 

sequence as for the network ambiguities.  
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2.6.1.2 GFZ Network Testing 

Geng et al. (2011) used a European-wide network of 91 stations to obtain UPD 

estimates. They show that by employing more stations, the robustness of the 

averaging technique increases, with at least 10 stations required to obtain precise 

results. Using these precise UPD estimates, hourly positional estimates of East, 

North and Height coordinate components could be improved from 13.7 cm, 7.1 cm 

and 11.4 cm to 0.8 cm, 0.9 cm and 2.5 cm respectively as a result of the ambiguity 

resolution.  

Additional studies (Ge et al., 2008; Geng et al., 2012) employed a similar network of 

180 global International GNSS Service (IGS) stations to calculate UPDs. Using this 

global network it was found that the density of the network affects the accuracy of the 

UPDs calculated. In North America and Europe, where the network of ground 

stations is very dense, the RMS values are small: 0.6 mm on average. In contrast, 

East Africa and Central Asia, which have sparse networks, have RMS values in the 

region of 0.8-1.6 mm (Geng et al., 2012). Hence it is important, when developing a 

system, to consider the density and location of the network to ensure it is capable of 

obtaining the results that are required for the application.  

2.6.1.3 GFZ Review 

Liu (2010) reviewed the GFZ approach, making four main observations about the 

methodology and outlining ways it could be improved. Firstly, the UPD terms being 

estimated are not pure UPD terms but instead contain additional code delay. 

Secondly, the single difference observation equations are unnecessary as it can be 

shown that zero difference measurements can achieve the same results. Thirdly, 

simple averaging of the fractional parts of the ambiguities to estimate UPDs can lead 

to errors when the fractional parts are close to ± 1 or 0. For example, averaging the 

fractional parts of 0.96 and 1.04 gives 0.5, instead of the 0 value required. This is 

alluded to in the original work by GFZ but the solution is never fully discussed. 

Finally, the formation of double difference ambiguities between reference stations will 

not only avoid the incorrect averaging problem but also make the estimate more 

precise and shorten the convergence time for the user.  
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2.6.2 Centre National d’Etudes Spatiales (CNES) Method 

A method similar to the GFZ method has been developed at the Centre National 

d’Etudes Spatiales (CNES) in France. The CNES method followed the GFZ 

methodology in using the LC ionosphere free combination to remove ionospheric 

delay and then employing the Melbourne-Wubbena combination to solve the WL 

ambiguities using equation (2.10) (Laurichesse, 2011). However, the methods differ 

when the GFZ method attempts to solve the NL ambiguities. At this stage the CNES 

method uses the WL ambiguities to fix the L1 ambiguities. This can be achieved by 

solving equation (2.11) presented in Laurichesse (2011). 
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                  (2.10) 
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       (2.11)

          

where cQ  is the ionosphere free combination,   is 
2

1

2

2

f

f
 where f is the GPS 

frequency,  is 
c

f
where c is the speed of light, L is the phase measurement in 

cycles,  W is the wind-up effect in cycles,  wN  is the WL ambiguity, cD  is the satellite-

receiver range, ih  is the receiver clock, jh  is the satellite clock, c  is the wavelength 

of the ionosphere free combination and 1N  is the L1 ambiguity.         

When these have been fixed, the UPDs generated through the calculation are 

broadcast as part of the ‘integer’ satellite clock. This clock correction is then applied 

at the user end to fix the L1 ambiguities, “leading to centimetre level PPP” 

(Laurichesse, 2011).  
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Since the publication of the GFZ and CNES approaches, there have been further 

attempts to compare the methods. It has been demonstrated that theoretically and 

practically the two methods are equivalent (Geng et al., 2010b). 

2.6.3 Jet Propulsion Laboratory (JPL) Method 

In addition to the approaches developed by GFZ and CNES, JPL have developed 

their own approach, which is compatible with the JPL software package GIPSY-

OASIS (Bertiger et al., 2010). JPL use a globally distributed set of GPS receivers to 

compute orbits and clock products for the IGS. Alongside these products, WL phase 

biases are estimated and saved in a WLPBLIST file. A WL bias estimate is computed 

for each GPS satellite arc that is processed in the global solution.  

These WL estimates allow single ground receivers, which run the GIPSY-OASIS 

software to compute an ambiguity resolved solution. In a similar manner to that 

outlined in section 2.6.2, the WL biases are first used to estimate the WL ambiguities 

and then subsequently the L1 ambiguities can be fixed to integers. Additionally, the 

JPL approach only applies a soft constraint to the ambiguities upon fixing rather than 

a hard constraint. This allows the solution to change its ambiguity fix value as “the 

probability of mis-resolution is typically fairly high” (Bertiger et al., 2010). 

2.6.4 Regional Network Method  

A fourth approach to PPP-RTK positioning (Teunissen et al., 2010; Zhang et al., 

2011) utilises smaller ‘regional’ networks of  reference stations, comprising as few as 

four receivers in the network with inter-station distances ranging from 60-100 km 

(Zhang et al., 2011). This approach is similar to the standard network RTK method. 

However, in standard network RTK, the user requires the network corrections and 

the raw data from one of the Continuously Operating Reference Stations (CORS) 

stations. Whereas, in this approach only the network parameter estimates are 

required to obtain an ambiguity fixed solution.  

The key assumption is that both the troposphere and ionosphere remain constant 

within the network extents, negating the need to use the ionosphere free (LC) 

combination as employed by the GFZ, CNES and JPL methods. One of the main 

advantages of not using the LC combination is that it is possible to calculate user 
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corrections in a single step, instead of the step-wise processing in the GFZ, CNES 

and JPL methods. This speeds up the process of obtaining UPDs considerably and 

hence the time to the first ambiguity fixes. However, despite having twice the number 

of original observation equations in the process, there is still insufficient data to 

directly solve for all the parameters.  Additionally, the small spatial extent of the 

reference network allows satellite orbit error parameters to be ignored, as the effect 

of these on each receiver will be similar and therefore common to each station.  

2.6.4.1 UPD Calculation in the Regional Network Method 

In these approaches, a number of reparameterisation steps are required to make the 

equations non-singular. In this reparameterisation, the UPD and satellite clock term 

equations are modified, so that they are no longer pure UPD and satellite clock 

terms. For example, the satellite clock terms have receiver clock and troposphere 

parameters lumped into the solution (Zhang et al., 2011). For the UPD terms, 

additional receiver biases and integer ambiguity terms are integrated (Zhang et al., 

2011). Thus, the UPD and satellite clock terms are said to be biased in order to 

distinguish them from the pure terms. Using these biased UPD and satellite clock 

terms instead of the pure corrections should not affect results, so long as the user 

observations are reparameterised in the same manner. However, it does mean that 

the corrections obtained from this method will not be directly comparable or 

interchangeable with the corrections from an alternative method, for example GFZ.  

Despite the reparameterisation of the satellite clock and UPD terms not affecting the 

results directly, it can impact on the area the corrections can be used in. For 

example, the satellite clock term has been reparameterised to include the 

troposphere from the reference network receiver (Zhang et al., 2011). In theory, 

when the user solution is calculated, the troposphere parameter at the user will be 

relative to the troposphere at the network reference receiver. However, if the network 

is sufficiently distant from the user, the mapping functions will be significantly 

different. Therefore, the troposphere values will not fully cancel out in the user 

solution. This limits the applications of the method, as the network stations must be 

relatively (100 km in this study) close to the user, which is often not possible in an 

offshore application.  
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To further improve the IAR speed of this approach the ionosphere is interpolated 

using the Kriging method (Zhang et al., 2011). This interpolation method provides a 

relatively precise value for the ionospheric delay due to the small size of the network. 

However, Kriging could not be successfully extended to larger networks due to the 

spatial variability of the ionosphere. For example, when the method was tested in 

Perth, Australia, where interstation distances reached up to 180 km, the IAR success 

rate fell from 99.7% to 92.4% (Zhang et al., 2011).  

Other corrections sent to the user in this processing strategy are the biased satellite 

clock correction and the biased satellite UPD. These corrections are subsequently 

applied to the user’s observation equations. Finally, the linear dependence between 

the receiver UPD and the receiver ambiguity must be addressed through 

reparameterisation. This results in full-rank observation equations with double 

difference integer ambiguity terms, which can be solved for, to obtain precise 

positions.  

The accuracies achieved through this process were of the order of 1 cm and 5 cm for 

the horizontal and vertical coordinate components when positioning in kinematic 

mode (Zhang et al., 2011). These results are comparable to those obtained by the 

GFZ method. However, the method achieved IAR in under 5 minutes on the majority 

of occasions and always under 15 minutes (Zhang et al., 2011), which is 

considerably faster than the GFZ approach. 

2.6.5 Global Ionospheric Map (GIM) Method  

A fifth method only recently developed also deals directly with the L1 and L2 UPDs 

(Li et al., 2013). This PPP-RTK algorithm uses the raw L1 and L2 observations in 

conjunction with a Global Ionospheric Map (GIM) to provide a priori estimates of the 

ionospheric effect. This GIM approach is capable of producing “real time ionospheric 

products with an accuracy of a few decimetres” (Li et al., 2013). While insufficiently 

accurate to solve for the ionosphere, the approach is accurate enough to tightly 

constrain the ionospheric parameters in the observation equations. This allows the 

Kalman filter process noise values to be reduced and consequently allows a solution 

to be determined.  
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Combining the raw observations with the GIM data, real-time orbits and clocks, a 

PPP float solution is obtained for all stations in the network. The coordinates of all 

reference stations are held fixed, allowing the undifferenced L1 and L2 float 

ambiguities to be obtained. Once the ambiguities are known, one UPD is fixed to 

zero and the other UPDs can be estimated through a least squares computation. 

These UPDs can then be used to correct the undifferenced ambiguities, allowing 

ambiguity fixing over the network to be attempted. This fixing will improve the 

accuracies of the UPDs obtained, allowing more ambiguities to be fixed in the next 

iteration. Once sufficient iterations have been completed, the UPDs can be broadcast 

to the user together with precise orbits, clocks and GIMs to allow PPP ambiguity 

fixing at that location. The UPD estimates are updated epoch-by-epoch and 

broadcast at five second intervals.  

2.6.5.1 GIM Network Testing 

In the method outlined in 2.6.1 it was found that the accuracy to which the UPDs 

could be estimated was dependent on the density of the reference station network in 

the region that the user was obtaining the correction. The problem of network density 

has also been found to be an issue in the GIM method, because of the lack of 

reference stations in some areas. A sparse reference network is the limiting factor on 

the accuracy of the GIM as small scale ionospheric variations cannot be estimated 

(Li et al., 2013). The GIM accuracy not only affects the convergence time for IAR but 

also the ability to adopt this method successfully.  

To test the method, 80 IGS stations were used globally to estimate UPDs and 150 

IGS stations to generate the GIMs. When compared to the GFZ method this new 

method appeared to provide results with better accuracies and faster convergence 

times. The time required for ambiguity fixing is decreased by 25% from 20 to 15 

minutes (Li et al., 2013). 

2.6.6 Fugro Intersite Methodology 

Current methods employed by Fugro Intersite to compute UPDs are based on the 

direct estimation of the hardware delays on the L1 and L2 frequency in a program 

called E-HP (de Jong, 2013). These UPDs are computed by employing a relatively 

sparse reference station network of four or five stations. Test networks capable of 
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estimating UPDs are currently running for the North Sea and the Gulf of Mexico. 

These networks are larger than those in the regional method outlined above, where 

inter-station distances ranged from 100-1000 km. Therefore, atmospheric errors such 

as the troposphere and the ionosphere cannot be ignored, but must be incorporated 

into the parameter list for estimation. However, it is assumed the stations are 

sufficiently close for the satellite orbit errors to be equal at each of the reference 

stations.  

As in previous approaches (e.g. Teunissen et al., 2010), it is not possible to solve for 

all the parameters in the observation equations and again the equations require 

reparameterisation. At this stage, it is assumed that the major part of the satellite 

clock and satellite orbit parameters can be removed through the use of precise orbit 

and clock data obtained from Fugro Intersite’s G2 service (Fugro, 2017). The G2 

service employs a global network of receivers and transmits the estimated values to 

receivers allowing just a slowly changing residual part of the parameter to remain: 

εs(t) and νr
s(t) for clocks and orbits respectively. A model is also used to estimate the 

troposphere whilst multipath terms are ignored. This results in the reparameterisation 

given by equations (2.12) and (2.13). In these equations, a reference satellite and 

reference station are used to remove singularities from the measurement model. A 

full description of how reference satellites and stations are introduced is shown in 

section 3.2.1. 

    
1

, ,
, , , ,( ) ( ) T ( ) b ( ) ( ) ( )
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s s s ref s ref s ref
i r r r pi r p p r i rp t R t t t d t I t      

           (2.12) 
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where  ,b ( )ref
i r t and ,b ( )ref

pi r t are the biased receiver clocks and 

, ( )s ref
rd t , along with 

1

,
, , ( )

i

s ref
p p rd t , 

are the biased UPD parameters.  

Using these equations it is possible to obtain estimates for the UPDs by assuming 

the reference station position is known and held fixed. The UPD parameters, together 

with tropospheric and ionospheric terms, are transmitted to the user. However, these 
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atmospheric parameters only provide improved a priori values, thus reducing 

convergence times. The application of the UPD term should however allow the 

ambiguities to be fixed to integer values.  

2.6.7 Proposed Methodology 

The aim of this study will be to develop and test a new method that will provide 

further improvements on those outlined above to yield a fast, reliable and precise 

PPP-RTK position. To achieve this, a combination of a number of other proposed 

methodologies will be employed. This will be developed in section 3.2. The 

overarching aim will be to estimate UPDs from a sparse global network of reference 

stations allowing an IAR solution to be obtained anywhere on the globe. The 

difference between the proposed method and the methods in use at GFZ and CNES 

will be that the UPDs will be estimated directly on the L1 and L2 frequencies.  

Data from stations globally is processed by the IGS to calculate the satellite orbit 

parameters, which will be removed from the observations processed in this method in 

accordance with the Fugro Intersite methodology shown in section 3.2.1. Alternative 

stations over a regional network can then be used to obtain the UPD and satellite 

clock estimates. These UPD and satellite clock parameters can then be sent to the 

user, together with the precise satellite orbits, allowing accurate IAR after 10s of 

minutes at the user location.  
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Chapter 3. Measurement Model 

3.1 Introduction 

To create a system capable of calculating UPDs and satellite clocks for all GNSS 

simultaneously, a different measurement model to the ones given in equations (2.12) 

and (2.13)  must be developed. This measurement model will use the raw GNSS 

observations shown in equations (2.1) and (2.3) from a number of reference stations, 

combining them such that the system is non-singular and therefore solvable. While 

creating this measurement model it is important to keep in mind the stochastic nature 

of the parameters being combined. For example, combining parameters such as 

tropospheric errors with receiver clock errors will destroy the slowly changing 

stochastic property of the troposphere, as the receiver clock will change in value 

significantly quicker. Consequently, this would make the parameters more difficult to 

solve for within a Kalman filter. 

Currently there are a number of differing approaches to solve for UPDs and satellite 

clocks as outlined in Chapter 2. A number of papers such as Ge et al. (2008) create 

the ionosphere free combination frequency LC. This allows the UPDs to be estimated 

on the wide-lane frequency and then the narrow lane as discussed in section 2.6.1. 

Whereas, the regional network method outlined in Teunissen et al. (2010) uses a 

small dense network with only single troposphere and ionosphere terms calculated 

for the network.  

Current approaches employed by Fugro Intersite to calculate satellite clocks and 

UPDs involve two separate programs. Firstly, the G2 service provides satellite clock 

corrections along with satellite orbits. This data is subsequently employed to estimate 

the UPDs separately in the E-HP program. As stated in de Jong (2013), ‘it would be 

more efficient if the UPDs could be estimated together with the satellite clock 

corrections’. The satellite orbits can be accurately predicted through various services 

such as the IGS. These orbit parameters are compatible with the measurement 

model so do not need to be estimated alongside the UPDs and satellite clock 

corrections. This chapter outlines the theoretical development of a methodology to 

accomplish this. 
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3.2 Standard Measurement Model 

The standard measurement model for all GPS observations is given in section 2.1.1 

in equations (2.1) and (2.3).  

However, equations (2.1) and (2.3) must be reparameterised to be solved. An 

existing reparameterisation developed by Fugro Intersite is outlined in section 3.2.1. 

Section 3.2.2 then further develops this reparameterisation into a proposed 

measurement model, which will be used in this thesis to simultaneously compute 

satellite clocks and UPDs.  

3.2.1 Fugro Reparameterisation 

The reparameterisation developed by Fugro Intersite starts by using equations (2.1) 

and (2.3). However, to simplify these equations and all further equations in this thesis 

multipath will be ignored.  

In equations (2.1) and (2.3) the receiver UPD parameters ,i rpd  and  ,i r
d  cannot be 

separated from the receiver clock parameter  rc t  and are therefore combined as 

seen in equations (3.3) and (3.4). Additionally, the parameters i

sd  cannot be 

separated from the ambiguity parameters ,
s
i rN  and also combined as shown in 

equation (3.5). This results in equations (3.1) and (3.2):  

       , ( ) ( ) ( ) ( ) ( ) ( )
i i

ss s s s s s
r p r rr rr pi ip t R t c t t c t t T t I t d                

         (3.1) 

          , , ,( ) ( ) ( ) ( ) ( ) ( )
i

s s s s s ss
i r r r r i r i r rit R t c t t c t t T t I t N              

         (3.2) 

where 

t is the current epoch, 

   ,i ip r r p rc t c t d                 

         (3.3) 
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   , ,i ir r rc t c t d                  

         (3.4) 

 , , i

s s s
i r i rN N d                     

         (3.5) 

Equations (3.1) and (3.2) are not solvable due to singularities. One such singularity is 

between the receiver clocks and the satellite clocks. To remove this singularity a 

reference satellite, n, is selected and this applies for all satellite dependent 

parameters. The reference satellite has been taken, for simplicity of notation, to 

correspond to the nth satellite; in practice the reference satellite would be chosen 

based on the satellite with the highest elevation at that epoch. This results in 

equations (3.6) and (3.7): 
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                    (3.6) 
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                           (3.10) 
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The reparameterised form given in equations (3.6) and (3.7) is still not solvable. 

There is a linear dependency between the satellite clock term  sc t  and the orbit error 

term  s
r .Therefore, the orbit errors are combined into the satellite clock terms. 

Additionally, there is a linear dependency between the satellite clocks  sc t  , the code 

satellite UPDs 
i

s
pd  and the ambiguities ,

ˆ s
i rN . To remove the linear dependency a 

separate code satellite clock parameter and phase satellite clock parameter are 

created. Both of these changes are shown in equations (3.17) and (3.18). The 

resultant equations are shown in equations (3.15) and (3.16): 
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where 
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                  (3.18) 

The final stage to make the equations solvable is to remove the linear dependency 

between the ionosphere terms s
rI  and the satellite clock terms 

,

,

i r

s n
pk  and  ,

,

i

s n
rd  . This 

can be removed by selecting a reference frequency on the code observations as 

shown in equations (3.21), (3.22) and (3.23). Therefore, the full rank observation 

equations developed by Fugro Intersite are given as equations (3.19) and (3.20): 
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3.2.2 New Reparameterisation 

The approach developed in this thesis and outlined here uses a reparameterised set 

of observation equations, as it is not possible to solve the equations (2.1) and (2.3), 

as previously discussed. The measurement model, equations (3.19) and (3.20), 

developed by Fugro Intersite, is designed to be a theoretical reparameterisation and 

is not practically solvable due to the stochastic properties of the equations. For 
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example, the slowly varying ionosphere parameter is lumped in with the rapidly 

varying satellite clock parameters. Therefore, the Fugro Intersite measurement model 

will be further reparameterised in this chapter to create a new measurement model.             

                 

To aid readability and completeness the elements in equations (3.19) and (3.20) 

derived in section 3.2.1 are defined by: 
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where              ,
, , ,( ) ( ) ( ) ( ) ( )

i i i

n s n ns n s s s
r i i r i i r

nt d d c t t c t t t t N Nd          

            (3.29) 

  
1

,n ,
,( ) ( ) ( ) ( )s s s n

r r r
n

p rI t I t I t k t    

                          (3.30) 

By employing equations (3.19) and (3.20) at a single reference station, denoted as 

station, a, it is theoretically but not practically possible to determine a float solution. 

From a theoretical basis, the measurement model for one epoch of data, assuming 
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the station position is known, and the tropospheric delay consists of a zenith delay 

(ZD) only, is given by equation (3.31). 

In equation (3.31), the vectors 1,a ap R ,  1,a aR etc. contain Observed Minus 

Computed (OMC) distances. These are computed by inputting RINEX files into a 

program called GenOMC provided by Fugro Intersite for the purpose of this thesis. 

These are used instead of raw GPS observations in this thesis, to allow errors, such 

as cycle slips to be ignored.  
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         (3.31) 

where ne  is n-vector of all unity values, the matrix 
( 1)nx n

I  is given by equation (3.32) and 

the vectors 1,a ap R  are given by equation (3.33). 



 
 
 
 
 
 
 
 
 
 

( 1)

1

.

.

.

1

0 . . . 0

nx n
I

     

               (3.32) 

 
 

  
 
 

  

1 1
1,

2 2
1,

1,

1,

...

a a

a a
a a

n n
a a

p R

p R
p R

p R
   

                (3.33) 
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The vector 
,n af   has the tropospheric mapping function for each satellite. Throughout 

this thesis, the tropospheric mapping function is computed within the Fugro OMC 

program.  

The zeroes in the final row of equation (3.32) are associated with the usage of the 

final satellite as the reference. As stated previously, this choice is for the simplicity of 

the notation only. 

3.2.3 Satellite Clocks 

In the measurement model provided in section 3.2.2, the parameters in equation 

(3.25) are estimated. When using GPS data the frequency, i, is equal to either 1 or 2. 

However, when i = 1 the parameter 
1

,n
, , ( ) 0

i

s
p p rk t . Therefore, 

1

,n
, , ( )

i

s
p p r tk  is just a single 

parameter per satellite provided by 
2 1

,n
, , ( )s

p p r tk . 

The orbit errors,  s
r
, included in this and other parameters in the measurement model 

are considered to be small and will therefore be ignored for the remainder of this 

thesis. This results in the parameter, 
2 1

,n
, , ( )s

p p r tk  becoming receiver independent. 

Therefore, it will be now written as 
2 1

,n
, ( )s

p pk t .  

Expanding the parameter 
2 1

,n
, ( )s

p pk t  from equation (3.25) with the use of equation (3.26) 

results in equation (3.34): 

          
2 2 2 1 11

,n
,p 2 2 2 2( ) (1 ) (1 )n s ns s s

p p p p
n

pt d d c t d dk c t    

                                        (3.34) 

Therefore, the parameter 
12

,n
,p ( )s

pk t  is a biased satellite clock. However, in equation (2) 

of Zhang et al. (2011) the satellite clock parameter provided by the IGS is given by 

equation (3.35): 




 
  

 1 2

2

2 2

1
( ) ( )

1 1
s s s s
I p pdt t c t t d d

   

              (3.35) 
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The biased satellite clock equation (3.34) can be rearranged using equation (3.35) to 

give:  





2 1

,n
,

2

)
)

( )
(

1
(

s
p s n

I I

pk
dt t dt t

t

    

               (3.36) 

Thus, the parameter 
2 1

,n
, ( )s

p pk t  can be written in terms of the IGS products.  

If the measurement model is adapted to include this biased satellite clock parameter 

in the phase observations, it will be possible to estimate unbiased satellite clocks and 

UPDs simultaneously.  

3.2.4 UPD Estimation 

The calculation of UPDs in the previous model, outlined in section 3.2.1, is performed 

by the estimation of the parameters provided by equation (3.28). Using equations 

(3.29) and (3.26) this can be expanded and simplified to give equation (3.37): 

                
1 11

,n
, , , ,( ) ( ) ( ))(1 )(

i i i

s s s s s n
p r i i r i i r

n n n
p i ipit d d N N d d c t t c t td   

          (3.37) 

The parameter  1

,n
, , ( )

i

s
p rd t  is a biased UPD, transmitted to the user to correct the 

observations. However, the UPD includes the terms  ( )sc t t  and  ( )nc t t , which would 

destroy the slowly changing stochastic property of the UPD. Equation (3.34) can 

however be rearranged to give equation (3.38):  

   


     
 2 1

,n
, 2 2 2 1 2 1

2

1
( ) ( ) (k ( ) d d d d )

1
s n s s n s n

p p p p p pc t t c t t t

  

            (3.38) 

This rearrangement can then be utilised to substitute in the biased satellite clock 

parameter from equation (3.37), namely: 
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  

 
     

 

 
       


  




1 1 2 2 1 11 2 12
,n ,n
, , , , 2

2 2

,

(1 )
( )

(1 )
( )

( 1) ( 1)
( )

i i i

n n n n n
p p p p p

s s s s s s si i
p r i i r i i r i ppi pd t d d N N d d d d kd d t

  

                    

(3.39) 

It is now possible to calculate the biased satellite clock alongside a biased UPD, 

although the UPD is now biased in an alternative way, specifically: 

    
1 1

,n ,n
, , , , (1 )( ( ) () ))(

i i

s s
p r p r i

s n
I Idt t dtd tt d

   

              (3.40) 

where  

  


     




        




1 1 2 2 11 1

,
2 2

n
, , ,

2

,

(1 )
( )

( 1)i i i

s s s sn n n n n
p p p p

s si
p r i i r i i r pi pid d d N N d d d d d d

                 

          (3.41) 

Using IGS products as shown in equation (3.36) it is possible to write equation (3.40) 

as equation (3.42): 

 











1 1 2 1

,n ,n ,n
, , , , ,

2

( ) )
1

(
1i i

s s si
p r p r p pd t d tk

            

        (3.42) 

The parameterisation of equation (3.40) can be employed in a new measurement 

model that can be theoretically used to calculate the satellite clocks and UPDs 

simultaneously, using a single reference receiver or a network of receivers. The new 

measurement model is given by equations (3.43) and (3.44) using the original 

satellite clock definition and equations  (3.19), (3.20) and (3.40):  

    
1

,n ,n
, , ,( ) ( ) ( ) ( ) ( ) ( )

i i

ns s s s s
i r r r p r p p i rp t R t T t b t k t I t

  

                        (3.43) 
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  








    

2 1 1

,n ,n ,n
, , , ,p

2

,

(1
( ) ( ) ( ) ( ) ( ) (

)
)

( 1)
( )

i i

s s s s s si
i r r r r p p r i r

nt R t T t b t t d t I tk

    

(3.44) 

The matrix form of the observation equations on the L1 and L2 frequency for the 

single station, a, can be written as equation (3.45): 

 








 








 

  

  

 
 
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         
      


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1, , 2 ( 1) ( 1)
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22,
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2
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0 0 0 0 0

(1 )
0 0 0 0

1

(1 )
0 0 0 0

1

n n a nx n
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1 ,
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,n
, ,

,n
, ,a

a

a

a

a

n
p

n
p

n

n

a

s
a

s
p p

s
p a

s
p

b

b

b

b

ZD

I

k

d

d

         

(3.45) 

Although the measurement model, equation (3.45), is theoretically solvable, the 

stochastic properties of the ionosphere parameter still prevent the model being 

optimised practically.  

3.2.5 Ionospheric Issues 

In the measurement model, equation (3.45), the ionospheric parameter, 
,ns

aI ,contains 

satellite clock terms. Theoretically, this may not be a problem and all the parameters 

can be estimated. However, in practice, as the ionospheric parameters will be 

considered as slowly varying, they can be calculated with the use of a Kalman filter, 

to predict and correct the values. This will currently not be possible in this case as the 

introduction of a satellite clock value into the parameterisation will cause the 

parameter to vary stochastically in response to the satellite clock. To rectify this, the 

satellite clock values must be taken out of the reparameterised form and placed 

within another parameter. Equation (3.30) can be written as:  
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      
1 1

,n( ) ( ) ( )s s s n s n
r r

n
r p pI t I t I t d d c t c t

    

              (3.46) 

Within equation (3.46) the satellite clocks,  sc t  and  nc t , cause difficulties 

stochastically. By using equation (3.38) we can rewrite equation (3.46) as: 

 


        
1 1 2 1

,n ,n
, 2 2 2 1 2 1

2

1
( ) ( ) ( ) (k ( ) d d d d )

1
ns s s n s s n s n

r r r p p p p p p p pI t I t I t d d t

    

           (3.47) 

which reduces to:  

    
      

    1 1 2 1

,n ,n
2 2 ,

2 2 2 2 2

1 1 1 1 1
( ) ( ) ( ) d d ( )

1 1 1 1 1
s s s n s n s

r r r p p p
n

p p pI t I t I t d d k t

             

(3.48) 

The satellite clocks are contained within the parameter, 
2 1

,n
, ( )s

p pk t , but this is being 

estimated separately within the measurement model. Therefore, this term can be 

removed from the estimated ionospheric parameter, by a reconfiguration of the 

measurement model. This results in a new ionospheric term given as equation (3.49): 

   
     

   1 1

,n
2 2

2 2 2 2

1 1 1 1
( ) ( ) ( ) d d

1 1 1 1
s s s n s n
r r r p p p p

nI t I t I t d d

    

                 (3.49) 

where (c.f. equation(3.47)) 


 

 2 1

,n ,n ,n
,

2

1
( ) ( ) ( )

1
s s s

r r p pI t I t k t

  

       (3.50) 

The final measurement model can now be formulated to estimate satellite clock and 

UPD values simultaneously. The measurement model works both theoretically as the 

equations are non-singular and practically as all the parameters within the model 
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have the correct stochastic properties. From equations (3.43), (3.44) and (3.50) the 

required measurement model is given as equations (3.51) and (3.52) :  




    
 12

,n ,n
, , ,

2

1
( ) ( ) ( ) ( ) ( ) ( )

1i

s s s s s
i r r r p i

n
r p p rp t R t T t b t k t I t

     

                     (3.51) 

  





    
2 1 1

,n ,n ,n
, , , ,

2

, p( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1i i

s s s s s s
i r r r r p p r i r

nt R t T t b t Ik t d t t                

 (3.52) 

where 
s
rR is the satellite range, 

s
rT is the troposphere, bn is the effective receiver clock, 

2 1

,n
,

s
p pk  the effective satellite clock,  1

,n
,p ,i

s
rd  the effective UPDs and 

,ns
rI  the effective 

ionosphere. 

In matrix form the observation equations in equations (3.51) and (3.52) on L1 and L2 

frequencies for a single station can be written as:  
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(3.53) 

Equation (3.53) can be extended to a network of receivers by extending the 

parameter dataset to include: the station clock/hardware parameters, the zenith delay 

and the ionospheric term from the additional stations. The satellite clock parameters, 

2 1

,n
,

s
p pk , are station independent and common to all stations to which the satellite is 

visible. However, multiple stations for UPD estimation, introduces integer arithmetic 

as from equation (3.41):  
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    
1 1

,n ,n
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ˆ
i i
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p r p i i

n
r i i rd d N N

   

                        (3.54) 

where 

  


   




       
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,n
,

(
)

(
ˆ 1 )

(
1)i i i

ns s s s si
p i i

n n n
p p p p p pd d d d d d d d d

   

                    (3.55) 

and hence 

   
1 1

,
, ,

,n ,n
, , , ,i i

s s
p b p

s n
ia i b ad d N

   

                (3.56) 

where 
,

, ,
s n
i b aN is the integer double difference  

   ,
, , , , , ,
s n s n s n
i b a i b i b i a i aN N N N N

        

                   (3.57) 

Thus, for two stations the extended UPDs’ state vector includes  1

,n
, ,i

s
p ad , for example 

and the double differences, 
,

, ,
s n
i b aN ,  for i=1, 2.  The equations for stations a and b can be 

represented in matrix form as: 
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(3.58) 
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3.3 Mobile Receiver Solution  

The reference network of receivers can be utilised to estimate the relative biased 

satellite clocks, 
2 1

,n
,

s
p pk , as well as the new biased UPDs, 1 1

,n
, ,

s
p ad  and 2 1

,n
, ,a

s
pd . These are 

subsequently transmitted to the mobile receiver, to allow an integer ambiguity 

resolved solution to be achieved. 

At the mobile receiver, in addition to the remaining parameters: receiver clocks, 

troposphere, ionosphere and ambiguities, the position of the receiver must be 

calculated. To achieve this, three parameters, X, Y and Z, must be solved for at each 

epoch. The partial derivative value for the A matrix, 
s
r ,  is computed using the 

position of each satellite at the given epoch and the approximate position of the 

mobile receiver. The position of the satellite must be taken at the time of signal 

transmission and not signal received, as the satellite is moving during the time the 

signal is travelling. For the X partial relating to the s satellite the partial can be 

calculated using equation (3.59): 

2 2 2

( )

( ) (Y ) (Z )

s
s r
r s s s

r r r

X X

X X Y Z





    
     

                       (3.59) 

where rX , Yr  and Zr  are the coordinates of the mobile receiver and sX , sY  and sZ

are the coordinates of the s satellite.  

By transmitting the UPDs from the network, it should allow integer ambiguity 

resolution at the mobile receiver. Due to the stable nature of the UPDs over time and 

space, the UPDs at the network should be the same as at the mobile receiver. 

Therefore, double difference ambiguities can be created in the same manner as 

those in the network when a second receiver was introduced in section 3.2.5 and 

equation (3.56).  

The resulting user measurement model can be seen in equation (3.60) where 
s
r  is 

the partial derivative of the distance between the satellite and the receiver and x is a 

vector of the unknown corrections to the initial position estimate in X, Y and Z. 
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                                      (3.60) 

3.4 Measurement Model Conclusion 

This chapter has presented a theoretical method for estimating satellite clocks and 

UPDs in a single step. Neither the satellite clock parameters nor the UPDs are pure 

corrections, but instead are a biased form of the parameter. However, as long as the 

same biased forms of the corrections are used at the mobile receiver as were used in 

the network, this will not affect the results.  

The satellite clocks and UPDs estimated through this method can be obtained using 

a single receiver and a float solution as shown in equation (3.53). However, if a 

network of reference receivers is available, it is possible to combine the observations 

to create a more robust system. Therefore, improving the accuracy of the system.  

3.5 Alternative Measurement Model 

In section 6.12, comparisons will be made between the measurement models 

presented in this study and those in the approach outlined in section 2.6.4 (Zhang et 

al., 2011). For comparison, the equations and measurement models used in this 

alternative approach will now be outlined.  

The reparameterised code and phase observations used to compute satellite clocks 

and UPDs with a reference network are given in equations (3.61) and (3.62) 

respectively:  
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    , ( ) ( )s s s s
i r r r r r I i

s
rt R t mf T d dtp It    

(3.61) 

          1
, 1, ,( ) ( ) s s s

r
s s s s
i r r r i r ir r I i i r it R t mf T dt t Nd I   

(3.62) 

The elements of equations (3.61) and (3.62) are defined by: 

  1rT T T   

(3.63) 

  1r rdt dt dt   

(3.64) 

where 
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(3.65) 
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where  ,2 ,1
S s sD d d   

(3.69) 



45 

 

and  ,2 ,1r r rD d d   

(3.70) 

    1
, 1,i 1,i r r i r iN   

(3.71) 

where    1, , 1,r i r i i  

(3.72) 

and 
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i i

d d
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(3.75) 

In this approach, the elements given in equations (3.66) and (3.74) are the satellite 

clock and UPD parameters, respectively. These will subsequently be transmitted to 

the user as corrections as is done in this study. Equations (3.61) and (3.62) can be 

used to develop a measurement model for a network of reference receivers, similar 

to the one developed for this study, as shown in equation (3.58). The measurement 

model for a network of two stations is presented in equation (3.76): 
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 (3.76) 

where I   is the unit matrix, ( 1)nx nI   and 
ne   are the same as previously described in 

section 3.2.2. 

The satellite clock and UPD corrections computed from this measurement model are 

used to compute a user solution in which IAR is possible. The equations developed 

in this alternative approach, developed by Zhang et al. (2011), for the user receiver 

are given in equations (3.77) and (3.78): 

       ,u( ) ( )s s s s s
i I u u u

s
u uu it R t dt x mf T d Itp   

(3.77) 

         ,
1
1 ,u , u( ) ( )s s s s s

i I u u
s s s

u i u i u u iu i it R t dt x m I Nf T dt   

(3.78) 

where uT , udt , 
s

uI  and  ,ui  are similar to those presented in the network equations. 

These equations can be written as a measurement model, equation (3.79), to allow 

comparisons with the measurement model given in this study, as shown in equation 

(3.60): 
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Chapter 4. Kalman Filter 

4.1 Introduction 

GNSS observations contain a series of errors, which have been outlined previously in 

Chapter 2. Some of these are systematic errors that change slowly over time and can 

be modelled or estimated, while other errors are random errors that vary with a 

normal distribution with a mean of zero. At each epoch, least squares could be used 

to estimate a series of parameters, with the aim of achieving the smallest mean 

square error possible in all the observations.  

This process could be expanded and improved by applying weighted least squares. 

This has the advantage of applying different weights to the input observations 

depending on their relative accuracies. For example, phase observations are 

significantly more precise than code observations from GNSS satellites. Additionally, 

observations from satellites at higher elevations are, in general, more accurate than 

lower elevation satellites, as the signal must pass through less of the Earth’s 

atmosphere. The weighted least squares can take these differences into account to 

estimate the best solution for all the parameters. 

The least squares methodology is good at achieving a solution at any given epoch of 

data. However, the results from each epoch are independent of each other and 

therefore do not utilise the stochastic properties of the estimated parameters to 

improve the estimation process. To utilise previous epochs of data into the current 

epoch the Kalman filter must be implemented.  

The Kalman filter is an algorithm developed to estimate a series of unknowns from 

measurements over a period of time. It allows measurement accuracies and 

statistical noise to be incorporated to achieve the best possible solution at each 

epoch (Kalman, 1960). The filter is widely used within engineering and other 

disciplines, but particularly within the field of navigation.  

Estimation using a Kalman filter is a two-step process at each epoch. Firstly, the 

current estimates of the parameters along with their accuracies are used to create a 

prediction of the parameters at the next epoch. New observations are then 

incorporated into the filter along with their accuracies and statistical noise. This 
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allows the second step, the estimation, to take place where a weighted solution of the 

predicted state and new observations are used to calculate a new set of values for 

the variables. This process is recursive as each new set of observations becomes 

available meaning the solution at each epoch uses all the data beforehand to 

calculate the best solution possible. This process is illustrated in the flowchart in 

Figure 4-1. 

 

 

 

 

 

 

 

 

 

 

4.2 Kalman Filter Equations 

The filter consists of a vector of observations, y , and a vector of parameters, x , 

known as the state vector. These are combined into a measurement model at epoch,

k , given by: 

k k k ky A x    

         (4.1) 

where  is the random measurement error and A  the design matrix of dimension (m 

x n), where m is the number of observations and n is the number of parameters. 

Figure 4-1 - Kalman Filter Process 

Initial State Vector Predicted State Vector 

Predicted Observations Process Noise 

Estimate Parameters 

Test for Bad Data 

No 

New Observations 

Updated State Vector and Variances 

Remove Bad Data 

Yes 
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To begin a Kalman filter, an initial state vector and corresponding variances must be 

created. In the majority of applications, the initial state vector is likely to consist of all 

zeros, as there is no information about each parameter to improve the estimate. 

Additionally, the corresponding variance-covariance matrix is likely to have large 

values along the leading diagonal, representing a high uncertainty in the current state 

vector, with zeros elsewhere, representing unknown levels of covariance. Exceptions 

to this are, for example, the XYZ position of a receiver in GNSS positioning, where it 

may be possible to estimate the position in the initial state vector. However, the 

corresponding variances are still likely to remain high, as the accuracy of the initial 

estimate is limited. The initial values used in this work will be discussed later in the 

chapter.  

Once an initial state vector has been established for the epoch k-1, it can be used to 

calculate the predicted state vector and corresponding predicted variance-covariance 

matrix at epoch k. To convert the previous epoch’s state vector into a predicted state 

vector, a transition matrix, , 1k k ,  must be used. This transition matrix accounts for 

any velocities and accelerations estimated by the Kalman filter, to accurately predict 

the value of the parameters one epoch later. In many cases, where velocities are not 

measured or do not exist, the transition matrix is taken to be the unit matrix, as the 

predicted state will be assumed equal to the previously estimated state vector. The 

formula to estimate the predicted state vector is given by: 

| 1 , 1 1| 1
ˆ ˆ

k k k k k kx x       

                                      (4.2) 

The predicted matrix, 
| 1ˆk kxQ


, consists of two components. Firstly, with the use of the 

transition matrix, the previous variance-covariance matrix, 
1| 1ˆk kxQ
 

,  is used to calculate 

the accuracies of predicted parameters.  Secondly, statistical process noise, 
kwQ , is 

added to the variances in the matrix. This noise is added to allow each variance to 

change in value between each epoch. The stochastic properties of each parameter 

dictate the amount of process noise that is added at each epoch. For example, 

parameters, which change rapidly, such as the satellite clock, will have a large 

process noise, whereas, slowly varying parameters, such as the troposphere will 
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have smaller process noise values added. The formula for the predicted variance-

covariance matrix is given by: 

| 1 1| 1ˆ ˆ, 1 , 1k k k k k

T

x k k x k k wQ Q Q
        

       (4.3) 

Once the predicted state vector has been calculated it is possible to compute 

predicted observations, | 1k ky  . To compute these observations the design matrix is 

used to turn the predicted parameters into observations as can be seen in equation 

(4.4). With the introduction of the actual new observations, ky , it becomes possible to 

obtain the innovation residuals, N , which are the difference between the true 

observations and the predicted observations as shown in equation (4.5). 

| 1 | 1
ˆ

k k k k ky A x    

         (4.4) 

| 1
ˆ

k k k kN y A x          

    (4.5) 

The next stage within the Kalman filter is to estimate the parameters, |
ˆ

k kx , using the 

new observations and predicted parameters. The first step is to calculate the Kalman 

gain matrix, kK . This is calculated using the design matrix, predicted variance-

covariance matrix and finally the observation weight matrix, 
kyQ , which gives more 

weight to higher precision observations. This observation weight matrix, 
kyQ , is a 

diagonal matrix consisting of weighted variance and will be discussed in more detail 

in section 4.3.3.2.  The Kalman gain equation is given by equation (4.6). The Kalman 

gain matrix can subsequently be used to calculate the update to the predicted state 

vector and therefore achieve the new state vector, |
ˆ

k kx ,  as shown in equation (4.7): 

| 1 | 1

1

ˆ ˆ( )
k k k k k

T T

k x k y k x kK Q A Q A Q A
 

     

      (4.6) 
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| | 1 | 1
ˆ ˆ ˆ( )k k k k k k k k kx x K y A x       

      (4.7) 

To correspond with the new state vector, a new variance-covariance matrix must be 

computed to give variances and covariances to the newly estimated parameters. This 

matrix is computed using: 

| || 1ˆ ˆ( )
k k k kx k k xQ I K A Q


     

       (4.8) 

Once a new state vector and new variance-covariance matrix have been computed it 

is possible to determine the post fit residuals. These residuals show how well the 

observations fit the new estimate of the parameters. Post fit residuals, v ,  can be 

computed using: 

 

|
ˆ

k k k k kv y A x     

         (4.9) 

4.2.1 Error Detection 

At each epoch during the Kalman filter, there are errors in the observations, which 

contribute to the solution. In the majority of cases, the size of these errors are 

consistent with the accuracy of the observations. However, in some cases the errors 

can be large and consequently start to negatively affect the overall accuracy of the 

solution. In these instances the observations need to be removed so as not to 

deteriorate the solution. The method for statistically removing these observations is 

the Detection, Identification and Adaptation (DIA)  procedure (Kleusberg and 

Teunissen, 1998). 

The first step of this procedure is the detection. The post fit residuals must be 

analysed to see if any epoch is anomalous and a statistical outlier. To test for 

outliers, a kT  value must be calculated. This value is a weighted average of all the 

post fit residual values, to assess, as a whole, if the parameters fit the epoch of data. 
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A critical value must then be chosen by the user, which dictates at what point the T 

value is considered anomalous. The kT  value can be computed using equation (4.10)

. 

1

k

T

k y k

k

v Q v
T

m n






   

                (4.10) 

where m is the number of observations and n  is the number of parameters. 

The result of the overall model test is given by the value kT . Hypothesis can then be 

set up to decide if, as a whole, the epoch of observations will be accepted or not. The 

null hypothesis is that the T value has a central F distribution with m-n and   

degrees of freedom. This is tested using α as the level of significance. The alternative 

hypothesis is therefore:        

  , ( , ,0)k m nT F m n    .     

              (4.11) 

The critical value for accepting the null hypothesis is dependent on the application 

and the accuracy of the observations being used. If the kT  value computed fails the 

critical value test, then the epoch of data has been labelled as anomalous and the 

alternative hypothesis must be accepted. In this situation, it is essential to locate the 

anomalous observation(s) that are the root cause and to remove them. This second 

step is the identification stage and is known as the slippage test.  

In the slippage test a   value or the normalised residuals is computed for each 

observation at the epoch and is calculated as: 

k

k

y

v

Q
      

                (4.12) 

where kv  is given in equation (4.9) and 
kyQ  is first used in equation (4.6). 



55 

 

These  values will follow a normal distribution. Therefore, it is the observation with 

the largest  value that is most erroneous. In the final adaptation stage, the 

observation that has the largest  value is considered for removal. The Kalman filter 

may then be rerun at the current epoch to obtain a new solution without this 

observation. If the observation removed is the reference satellite then a new 

reference satellite must be selected and the transformations discussed in         

section 4.3.2 applied. This whole process is then repeated with the new solution until 

the kT  value passes the null hypothesis.  

4.3  Applied Kalman Filter 

The Kalman filter described above can be applied to the measurement models 

presented in the previous chapter. MATLAB was used to develop the Kalman filter.  

4.3.1 Observation Files 

Before the Kalman filter was developed, observation files are required. For this Fugro 

Intersite developed a small program that created OMC files to speed up the creation 

of the Kalman filter program. The program requires RINEX, satellite orbit, satellite 

clock and antenna files as inputs and outputs a single OMC file per station per day. 

The OMC file consists of phase and code observations on the L1 and L2 frequencies, 

the elevation angle of the satellite, the partial derivative values of the troposphere 

and the partials of the X, Y and Z position if required. The advantage of the OMC 

program is that factors such as cycle slips, dry tropospheric error and poor signal to 

noise ratio observations are already removed and therefore could be ignored in the 

later stages of program development. This allowed more time to be committed to 

developing the novel ideas presented in this thesis, instead of recreating existing 

code.   

4.3.2 Reference Satellite 

Once the OMC residual observations have been read in by the program at each 

epoch, a reference satellite needs to be selected. This reference satellite is important 

to set up the measurement model presented in the previous chapter. The reference 

satellite is selected per epoch as the satellite at the highest elevation, as 






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theoretically, this will be the most accurate observation due to it travelling through the 

fewest slant distances in the Earth’s atmosphere.  

If the reference satellite at any epoch is different from the previous epoch, further 

actions must be performed. The majority of the parameters calculated in the 

measurement model use this satellite as reference. Therefore, if this reference 

satellite changes, all the parameters will change in value. However, this change can 

be accurately calculated by combining existing parameters. For example, if the 

reference satellite was satellite 1 at the previous epoch and the new reference is 

satellite 2 then the parameters for satellite 3 will be calculated using 

 3,2 3,1 2,1k k k      

                              (4.13) 

where the first superscript refers to the satellite and the second the reference 

satellite. 

Calculating the change in the estimated parameters means the parameters can still 

be accurately predicted in the Kalman filter and the process noise does not have to 

be increased. The receiver clock parameters cannot be updated in the same way as 

they are not a difference between two satellites. However, an accurate prediction of 

the receiver clock is not important as the process noise is high and therefore is 

unconstrained by the Kalman filter. 

In addition to the predicted state vector being updated when a reference satellite 

change occurs, the corresponding variance-covariance matrix must also be 

transformed. To achieve this, the variance-covariance matrix computed at the 

previous epoch, 
1| 1ˆk kxQ
 

,  must be pre and post multiplied by the matrix M  and TM  

respectively in a variance propagation process. This matrix  is a series of 1’s and  

-1’s, which transforms the state variance covariance matrix so that it denotes the new 

parameter set, which are referenced to the changed reference satellite.  

There is one exception to the rule that the reference satellite is always the satellite 

with the highest elevation, as will be further discussed in section 4.3.4. Double 

difference ambiguities are not fixed to integers instantaneously and in some cases 

not fixed at all. If some of the double difference ambiguities have been fixed to 

M
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integers, but the highest satellite has not, then that satellite cannot become the 

reference. Instead the highest satellite that has been fixed to an integer is selected. 

This is required because if the reference satellite is changed to a satellite with a 

floating ambiguity then when the updated predictions are computed for ambiguities 

that have already been fixed, they will no longer be integer values so will have to be 

recomputed as integers.  

4.3.3 Kalman Filter Settings 

During the development of the Kalman filter a number of settings must be applied, 

which affect how the Kalman filter works. These settings include the initial values, the 

process noise and the observation weighting. The settings have variable effects on 

the results, with some having more effect than others. The following sections will 

outline the values, which were used throughout this project and the rationale behind 

the selection of those values. 

4.3.3.1 Initial Values 

As described in section 4.2, at the first epoch, initial values for all the parameters 

must be chosen. As there is no prior information about the value of any of the 

parameters, it is impossible to accurately predict these values. Therefore, all the 

parameters usually have initial values of zero. Along with initial values, the initial 

variance covariance matrix must be set, which gives the confidence level of the initial 

values. As discussed, the initial values are imprecise and consequently the variance 

values in the matrix must be high. These high values will apply a low weight to the 

predicted parameter values, thus letting the Kalman filter calculate the parameters to 

whatever value fits the data best. The variances, , selected for the initial variance 

covariance matrix in the network and user Kalman filter programs are shown in  

Table 4-1 and Table 4-2 respectively. 
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Table 4-1 - Network Initial Variances 

Network Initial Variances  (m) 2
 (m2) 

Receiver Clock 9 81 

Troposphere 0.1 0.01 

Ionosphere 9 81 

UPD 9 81 

Satellite Clock 9 81 

Ambiguity 9 81 

 

Table 4-2 - User Initial Variances 

User Initial Variances  (m) 2
 (m2) 

XYZ Position 9 81 

Receiver Clock 9 81 

Troposphere 0.1 0.01 

Ionosphere 9 81 

Ambiguity 9 81 

 

4.3.3.2 Observation Weighting 

The observation weight matrix, 
kyQ , allows multiple observations, each with different 

levels of precision to be integrated simultaneously. For GPS there are two types of 

observations as outlined in section 2.1.1, the precise phase and the coarse code 

measurements. Additionally, each observation is transmitted from a satellite at a 

different elevation angle, which also has an impact on the accuracy of the 

observations. Signals from low elevation satellites will have to pass through more of 

the Earth’s atmosphere, such as the troposphere. Therefore, these signals will be 

less accurate than those at high elevations and must be weighted accordingly. The 
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standard deviation and variances for satellites at 90° elevation can be seen in    

Table 4-3. The values in the table have been found to be the maximum residual 

values for the respective observations over a range of receiver types (Bona, 2000). 

These values are then adapted for all elevation angles using equation (4.14) where e  

is the elevation angle. 

Table 4-3 - Observation Weights 

Observation Weights   (m) 2  (m) 

Code  0.5 0.25 

Phase 0.005 0.000025 

 

2sin( )
e

e


                               

           (4.14) 

Low elevation satellites are much less reliable, not only because they travel through 

more of the Earth’s atmosphere, but also due to loss of lock as the line of sight is 

often obscured. Nearby buildings and trees can frequently block the signal reaching 

the receivers for a period of time. Therefore, it is common to apply an elevation mask 

to the data, which excludes all the observations from satellites below a certain 

elevation. For the purpose of this thesis the elevation mask was set at 7° to mask the 

majority of this poor data and for accurate comparisons with similar research studies 

(Fang et al., 1998).  

Another factor that can affect the accuracy and reliability of observations is signal to 

noise ratio. Each GNSS receiver measures the signal to noise ratio of the data from 

every satellite. The ratio measures how much of the signal is coming directly from the 

satellite and how much is from a reflected source or interfered version of the direct 

signal. The ratio is given in the RINEX file and has a value between 1 and 9, where 9 

is the maximum signal strength and 1 the weakest. A value of 5 is seen as the 

threshold value for good signal to noise ratio (Gurtner, 2007). Therefore, all data with 



60 

 

a signal to noise ratio of below 5 is excluded from the observations to prevent that 

data from corrupting the solution.  

4.3.3.3 Process Noise 

Within the measurement model, the different parameters that are being estimated 

have different stochastic properties. These stochastic properties dictate the 

probability of random movement in the parameter over time. For example, the 

receiver clock parameters can change rapidly and randomly from one epoch to the 

next. Conversely, the troposphere is a slowly varying parameter that stays quasi 

stationary from one epoch to the next. Hence, the Kalman filter can make use of 

these stochastic properties to bias certain parameters towards their predicted or 

previous value instead of the incoming observations. 

The process noise, 
kwQ , is added into the Kalman filter as shown in equation (4.3). 

The amount of process noise is dictated by the parameter’s stochastic properties. 

Firstly, parameters likely to vary greatly will have a very large   value, resulting in 

those parameters being essentially unconstrained. These parameters can be 

considered as unconstrained because the noise applied results in the solution being 

so biased towards the new observations, that the effect of the predicted parameters 

value can be considered negligible. Secondly, parameters which are fairly stable over 

time are given lower process noise values. Consequently, the predicted parameters 

values have a larger effect on the result.  

The values chosen for each parameter were determined based on literature from 

similar existing programs and through the initial testing phases of the program. As 

previously discussed, the receiver and satellite clock parameters can vary rapidly and 

consequently should be unconstrained in the Kalman filter, resulting in the value of   

9 ms-1/2 being assigned. The value of 9 ms-1/2 was found to be significantly large to 

consider the parameter as unconstrained, whilst not being so large that it reduced 

computational efficiency. Likewise, the user position is a parameter that can change 

rapidly and unpredictably so needs to be unconstrained, with the same value of        

9 ms-1/2.  

The zenith ionosphere value can change rapidly especially in areas close to the 

equator. Additionally, the ionosphere parameter varies with elevation so both these 
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factors must be considered in the process noise value. Previous work has shown that 

maximum changes in the slant ionosphere values are approximately 0.3 mmin-1/2 , 

although this could potentially treble in  size during years of high solar activity 

(Doherty et al., 1994). As a result, a value of 0.01 ms-1/2 or 0.6 mmin-1/2 was chosen 

to take into account potential solar activity.  

The UPD and ambiguity process noise values must be low to tightly constrain the 

Kalman filter and consequently keep the UPD and ambiguity values stable. Studies 

have found the UPD values are stable, up to 0.1 of a cycle per day (Zhang et al., 

2017). Therefore, a value of 1x10-6 ms-1/2 was decided upon for both the UPD and 

ambiguity parameters.  

Finally, the troposphere varies slowly and has been found to vary approximately       

1 cmh-1/2 (Leick, 2015), which equates to 3x10-6 ms-1/2. This value has also been 

validated during testing by comparing the wet zenith tropospheric delay obtained 

using the approach outlined in this thesis with the values obtained from the      

GIPSY-OASIS v6.4 PPP software package. The same RINEX files were processed 

by both software packages over the same 24 hour period to compare the wet 

troposphere values. 

Figure 4-2 and Figure 4-3  show the results of this test for four different stations 

within the network on two separate days. The offset between the two sets of the 

values is caused by the difference in the dry troposphere estimates, but this will not 

affect the amount the two data sets are correlated. The tests were repeated over 

various stations and days. After ignoring the first 30 minute stabilisation period, a 

correlation of between 0.85 and 0.96 was observed between GIPSY-OASIS and the 

Kalman filter solutions. Therefore, it was concluded that this is the correct process 

noise value to use in the Kalman filter. The process noise values for the network 

program and the user program are shown in Table 4-4 and Table 4-5 respectively.  
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Figure 4-2 - Troposphere Comparison to GIPSY-OASIS for DOY 060 

 

 

 

 

 

Figure 4-3 - Troposphere Comparison to GIPSY-OASIS for DOY 152 
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Table 4-4 - Network Process Noise 

Network Process Noise   (ms-1/2) 2
 (m2s-1 ) 

Receiver Clock 9 81 

Troposphere 0.000003 9x10-12 

Ionosphere 0.01 0.0001 

UPD 0.000001 1x10-12 

Satellite Clock 9 81 

Ambiguity 0.000001 1x10-12 

 

Table 4-5 - User Process Noise 

User Process Noise   (ms-1/2) 2
 (m2s-1) 

XYZ Position 9 81 

Receiver Clock 9 81 

Troposphere 0.000003 9x10-12 

Ionosphere 0.01 0.0001 

Ambiguity  0.000001 1x10-12 

4.3.4 LAMBDA Program 

In Chapter 3, the measurement model was presented, in which double difference 

ambiguities were calculated. These double difference ambiguities are integer in value 

and will remain at the same integer value throughout the visibility of the satellite, as 

long as the reference satellite does not change. In reality though, cycle slips can 

occur where the integer value will change. However, it can be assumed these have 

been removed during the OMC observation generation.  

If it is possible to fix the double difference ambiguities to their correct integer, then 

this would result in fewer parameters being estimated in the Kalman filter and less 
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error in the ambiguity parameter. Therefore, in theory, this would result in a more 

accurate solution due to increased redundancy.  

Within the Kalman filter it is not possible to set a certain parameter to an integer 

value whilst simultaneously estimating other non-integer parameters. Therefore, the 

double difference ambiguities computed by the Kalman filter at each epoch are 

floating, non-integer values. These floating ambiguities can subsequently be input to 

a LAMBDA program, which will attempt to fix the parameters to integers.  

The LAMBDA method has been developed since 1993 (Teunissen, 1993; Teunissen, 

1994; Teunissen, 1995)).  The LAMBDA method has subsequently been 

implemented in various software packages, including MATLAB (De Jonge and 

Tiberius, 1996). The latest version of the software in MATLAB is LAMBDA 3.0 and is 

freely available (Verhagen, 2012). The program requires the floating ambiguity 

values and the corresponding parts of the variance covariance matrix for each 

satellite. There are six different options within the LAMBDA program, which decide 

the method the program will use to try to fix the ambiguities. These six methods are 

outlined in Verhagen (2012). The method that was chosen for the thesis was the 

Integer Least Squares (ILS) ratio test as this applies statistical testing to the fixing 

procedure. This testing allowed some of the ambiguities to be rejected, when it may 

not be fixing to the correct values. This is critical within the Kalman filter as incorrect 

ambiguity fixing will result in a significantly worse solution than not fixing at all.  

For the ILS ratio test in the LAMBDA program, the float ambiguities, â , and 

corresponding variances and covariances, ˆ ˆaaQ ,  are required as inputs. The final 

state vector, |
ˆ

k kx ,  is separated into two parts, the float ambiguities that have just 

been fixed, â , and the remaining parameters, b̂ ,. The variance covariance matrix 

|ˆk kxQ  is also split into parts corresponding to the float ambiguities and other 

parameters. This can be represented as: 

 

ˆˆ ˆ ˆ

ˆ ˆ ˆˆ

ˆ

ˆ

aa ab

ba bb

a Q Q

Q Qb

   
   
  

   

 (4.15) 
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It is possible to pass all the ambiguities simultaneously to the LAMBDA program to 

attempt to fix all the ambiguities to integers. However, the statistical test within the 

ILS ratio test is only capable of accepting the whole solution or rejecting the whole 

solution. Consequently, this can often result in some ambiguities being fixed 

incorrectly or no ambiguities being fixed at all. Alternatively, the ambiguities are 

passed to the LAMBDA program in pairs of L1 and L2 ambiguities for the same 

satellite-station pair. These two ambiguities are highly correlated with each other and 

will have been estimated for the same period of time so should be fixed 

simultaneously.  

The L1 and L2 ambiguities are highly correlated, this can cause the LAMBDA 

program to become inefficient and result in large search times for integer ambiguities. 

Therefore, the first stage within the LAMBDA program is to undertake a 

decorrelation.  The float ambiguities, â ,  are transformed using the Z transformation 

to create new ambiguities, ẑ  (Verhagen, 2012). 

ˆˆ Tz Z a     

                 (4.16) 

The corresponding parts of the variance covariance matrix are also updated within 

the decorrelation using:  

ˆ ˆˆˆ

T

zz aaQ Z Q Z       

              (4.17) 

 

ˆ ˆ ˆˆbz ba
Q Q Z    

                 (4.18) 

Once the decorrelation has taken place, an efficient search using ILS can be 

undertaken. This process uses a least squares solution but with the additional 

constraint that the ambiguities can only have an integer nature. The value of the fixed 

ambiguities, a , are estimated using: 
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1

ˆ ˆ
ˆ ˆmin( ) ( )T

aa
z zn

a a z Q a z


      

               (4.19) 

When applying the ILS procedure there may not be a unique solution as there are 

often multiple integers that the ambiguities could be fixed to. The LAMBDA program 

is capable of estimating the two most likely solutions that satisfy equation (4.19). The 

two solutions can subsequently be tested using the ratio test to decide how likely it is 

that one of the solutions will be correct. Equation (4.20) finds the ratio between the 

minimised ILS value for the most likely solution, ( )F a , and the minimised ILS value 

for the second most likely solution, ( ')F a .  This ratio is then tested against a critical 

value,   (Verhagen, 2012). 

( )

( ')

F a

F a
    

                 (4.20) 

where 

1

ˆ ˆ
ˆ ˆ( ) ( ) ( )T

aaF a a a Q a a        

              (4.21) 

The critical value   is a user defined value between 0 and 1. This value dictates 

when the most likely ILS solution is accepted or rejected and therefore the float 

ambiguities remain. For the purposes of this study a critical value of 0.2 was used, 

which as a ratio results in the most likely solution needing to be five times more 

accurate than the second most likely solution. This value of 0.2 is a tight constraint 

on the LAMBDA program to ensure that incorrect ambiguity fixing is kept to a 

minimum as this would cause large errors in the solution.  

When attempting to fix ambiguities to integer values, it is critical to wait a period of 

time before the fixing processing begins. As each satellite becomes visible, the 

parameters (including the ambiguity parameters) must initialise and stabilise. Until 

this point, the values of the parameters are not reliable and therefore should not be 

fixed to an integer. During testing carried out using the MATLAB program it was 
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found that the ambiguities stabilised after approximately 30 minutes, i.e.1800 epochs 

at 1 Hz. Therefore, a limit was set that each set of floating ambiguities only become 

eligible for fixing in the LAMBDA program after they have been visible for at least 

1800 epochs. Additionally, the elevation of each satellite undergoing IAR must be 

greater than 30°. This is because observations from satellites at low elevations are 

less accurate than those at high elevations and therefore the potential for incorrect 

ambiguity fixing is much greater.  

If the LAMBDA program is successful in fixing any ambiguities to integer values then 

these parameters no longer need to be estimated in the Kalman filter. Therefore, the 

integer values can be moved to the left hand side of the measurement model and 

subtracted from the observations. Consequently, there will be increased redundancy 

in the solution, leading theoretically to a more accurate solution.  

When the ambiguities are fixed to integers the change in the value of the ambiguity 

parameters could be 10’s of cm. This sudden change in the value of the ambiguity 

parameter has to result in a change in other parameters to ensure the solution 

remains a good fit to the observations. Due to the way the measurement model 

(described in section 3.2.5) is set up it is not possible to force this change into any 

single parameter or set of parameters. Instead all parameters must change slightly in 

order to account for the shift in the ambiguity parameter.  

The method for adjusting the parameters when ambiguities have been fixed is 

outlined in Verhagen (2012). Once the state vector and corresponding variance 

covariance matrix have been separated using equation (4.15), it is possible to update 

the remaining parameters, b̂ . Using the float ambiguities, â ,  and the newly 

computed fixed ambiguities, a ,  the updated solution, b ,  can be calculated using 

equation (4.22): 

1

ˆ ˆ ˆˆ

ˆ ˆ( )aaba
b b Q Q a a      

               (4.22) 

The equation takes into account the difference between the float ambiguities and 

fixed ambiguities, along with the covariance between all parameters, to adjust all the 

parameters accordingly. In addition to the state vector being updated, it is essential 
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to update the variance covariance matrix. The matrix, ˆ ˆbb
Q ,  can be updated using 

equation (4.23) to give the new variance covariance matrix, 
bb

Q : 

1

ˆ ˆ ˆ ˆˆ ˆˆ ˆaabb bb ba ab
Q Q Q Q Q    

                (4.23) 

The newly updated solutions, b  and 
bb

Q , can then be used at the following epoch to 

predict the parameters going forward in the Kalman filter.  

4.3.5 Detection Identification and Analysis 

As discussed in section 4.2.1,  error detection is required at each epoch to check for 

anomalous data and to remove the data following the DIA procedure (Kleusberg and 

Teunissen, 1998). Through testing, a critical value for the overall model test must be 

decided upon. It is critical to remove all erroneous observations that corrupt the 

solution, whilst not removing too much data that the accuracy of the solution is 

compromised due to lack of redundancy.  

Experiments undertaken have shown that a critical T value of unity allows the 

erroneous data to be removed effectively, while also minimising the amount of data 

that is removed. If the T value exceeds the value of unity, the Kalman filter is rerun at 

that epoch with the bad observations removed.  

Within the program, only one observation will achieve the maximum  value 

required to remove that observation. However, when an observation is removed, its 

corresponding code and phase observations on both L1 and L2 for that satellite-

station pair are also removed. At the following epoch if the satellite is still visible a full 

reset of the parameters associated with that observation is undertaken.  

 

 

 

 


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Chapter 5. Testing Methodology 

5.1 Proposed GNSS Data 

The measurement models, described in section 3.2.5 and 3.3, must be tested to 

assess their accuracy and precision. A series of tests will be established to estimate 

the UPDs and the satellite clocks, using a network of static receivers for use at a 

rover or user station. At the user station, the positional coordinates will be computed 

and the ambiguity parameters will be fixed to integer values.  

The measurement models describe a method of estimating the position of an 

unknown kinematic rover in real time. However, to allow the accuracy of results to be 

calculated, it is not practical to test the models in a real-time kinematic mode to an 

unknown receiver. Instead, the models will be tested using historical static time series 

but in a pseudo real-time mode.  The use of historical static data means that the ‘true’ 

position of the receiver will be known to a higher level of accuracy than predicted 

achievable using the methodology in this study. Therefore, it will be possible to test 

both the accuracy of the results as well as their precision.   

Conversely, the data required to create the network capable of estimating the UPDs 

and satellite clocks must be derived from static receivers. These static receivers will 

need to have precise known coordinates so that the network parameters can be 

estimated accurately. For the UPD and satellite clock corrections to be relevant to the 

rover, the data must be from a similar geographical region and have been measured 

simultaneously, which would be the case in a RTK application.  

The UPDs consist of both satellite dependent error and receiver dependent error (Ge 

et al., 2008). The receiver dependent error is common to all receivers of the same 

type. Therefore, it is crucial when developing a network of receivers to ensure all 

stations are of the same receiver type. The satellite dependent parts are estimated 

by the network and can be utilised at the rover, provided the rover is receiving signals 

from the same subset of satellites.  

The data used to test the measurement models will be downloaded from the British 

Isles GNSS Facility (BIGF) archive. This is a large collection of historical static data 

from about 160 CORS throughout mainland Britain (The University of Nottingham, 

2017). Most of these CORS stations are part of OS Net maintained by Ordnance 
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Survey.  This collection of data will allow numerous sites to be selected to act as both 

network and rover stations, ranging over distances from 10s km to 100s km. The 

station metadata will allow a check to be completed, guaranteeing all selected 

stations have the same receiver type.  When choosing stations to use, a number of 

selection criteria will be considered.  

5.2 Selected GNSS Data 

There were a number of deciding factors when selecting which GNSS data to use for 

the measurement model.Firstly, as mentioned previously, receiver types were chosen 

to be consistent throughout the base network and rover station. After analysis of the 

various receivers in the OS Net and stored in the BIGF data archive it was concluded 

that the LEICA GRX1200 receiver type would be used due to its prevalence.   

Secondly, all the stations needed to have 1 Hz epoch data available. This high rate, 

one observation per second data allows fast and accurate estimation of the UPDs 

and the satellite clocks within the network. It also allows the rover user to update 

position every second, which is vital in the offshore industry when the rover is in a 

kinematic mode, as the receivers are likely to be moving constantly. Fortunately, the 

majority of the data available through the BIGF archive was offered at the 1 Hz level, 

so this requirement did not limit station selection.  

Finally, all the stations used in the tests must have where possible a 24 hour period 

of uninterrupted observations on the same Universal Time (UT) day. The day 

selected must also have IGS final orbits and clocks available. As discussed in    

section 2.1.9,  these are not generally available for up to two weeks after the day of 

observation (International GNSS Service, 2017a). To provide a good sample of data 

with various atmospheric and multipath conditions, RINEX files were carefully 

selected. The RINEX files chosen were the first day of the month for each of the first 

8 months of the year in 2014 (days of year 001, 032, 060, 091, 121, 152, 182 and 

213).  The approximate locations of the BIGF data files that were acquired and 

subsequently used to test the measurement models are shown in Figure 5-1. 

 

 



71 

 

 

5.3 Observed Minus Computed 

As previously mentioned in section 4.3.1  the RINEX files will not be processed 

directly in with the testing methodology. Instead, OMC files will be generated through 

a program, GenOMC, developed and provided by Fugro Intersite. The program will 

read individual RINEX files together with precise coordinates, precise satellite clock 

and orbit information to determine the OMC values.  

Figure 5-1 - Locations of GNSS Stations 
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The major disadvantage of using the OMC program to obtain the input data files is 

that the satellite clock parameters have already been removed with the use of the 

IGS satellite clocks. Therefore, all that will remain in the OMC output is a small slowly 

varying residual satellite clock value. This slowly varying residual satellite clock will 

consequently have different stochastic properties to an actual satellite clock 

parameter, which tends to vary rapidly. Therefore, when estimating the parameters 

within the Kalman filter, the different stochastic properties will mean it is not an 

accurate representation of the method’s ability to compute precise satellite clock 

values. An accurate representation can only be achieved when the stochastic 

properties are similar to those using raw observations and the process noise values 

within the Kalman filter are representative of the data.  

To overcome this shortcoming, artificial satellite clock values will be added to the 

observations prior to the processing.  To generate these artificial satellite clocks, a 

random number generator will be used to give each satellite, a clock error equivalent 

to a range error of between ±50 m. This random number will be generated at each 

epoch, allowing the satellite clock values to change both rapidly and unpredictably. 

The same satellite clock values will be used at each station in the network and at the 

user station to replicate the errors that would be present, if the OMC program were 

not to be used.  

5.4 Number of Stations 

The measurement model is capable of estimating UPDs and satellite clock 

parameters from a network of any number of static receivers. However, for double 

difference ambiguities to be calculated, for a fixed solution, at least two stations must 

be used to make up a minimum network. The number of stations employed in the 

network will have an effect on the redundancy within the model, i.e. the more stations 

used, the greater redundancy it creates. However, the greater the number of stations 

used, the more computational power is required to obtain a solution. Table 5-1 shows 

how the number of parameters estimated changes, as the number of stations in the 

network increases when using the measurement model presented in equation (3.58). 

This is based on nine satellites being visible at the current epoch as this is 

approximately the average number of GPS satellites in view at any one time.  
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Table 5-1 - Number of Network Stations Effect on Model Redundancy 

Number of stations Observations Parameters Redundancy 

2 72 66 6 

4 144 95 49 

6 216 124 92 

8 288 153 135 

It is clear from Table 5-1 that the size of the network has a direct effect on the 

amount of redundancy. In theory, this should result in more accurately estimated 

UPDs and satellite clocks, therefore a better user solution. To test this theory, a 

series of networks will be processed varying from two stations to eight stations. The 

results will subsequently be compared to determine the optimum number of stations.  

For a two station network, the CORS stations NCAS (Newcastle) and LOFT (Loftus) 

will be selected, with an interstation distance of 66 km. To increase the network to a 

four station network, the additional stations of ESKD (Eskdale) and KIRK 

(Kirkcudbright) will be added. The interstation distances between this network of 

stations will range between 66 km (NCAS-LOFT) and 206 km (LOFT-KIRK). The third 

test, involving six network stations, will employ the use of the stations HOLY 

(Holyhead) and MANR (Manchester) increasing the maximum interstation distance to 

270 km. The location of all of these stations can be seen on the map in Figure 5-1.  

In all tests, the user station will remain the same station to provide a consistent set of 

coordinate results for subsequent intercomparison. The user ‘rover’ station selected 

will be CARL (Carlisle) as the station is located most centrally to the network of 

stations used to compute the corrections. This station can also be seen in Figure 5-1.  

5.5 Interstation Distances 

In section 5.4, the optimum number of stations to include within the network was 

discussed. However, in this test all the stations were relatively close to each other 

and also close to the user station receiving the corrections. In many environments, 

especially offshore, it will not be possible to have such a dense network of static base 

stations close to the rover ‘user’. Therefore, further tests are required to ascertain 

whether the accuracy of the corrections degrades as the interstation distances are 

increased.  
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For this test, two, four, six and eight station networks will be selected. The first 

network will be a two station network consisting of DUDE (Dundee) and PMTH 

(Plymouth) with an interstation distance of 680 km. The four station network will 

consist of the two stations above with the addition of KEYW (Keyworth) and WEYB 

(Weybourne). The largest interstation distance will still be the 680 km between DUDE 

and PMTH but the network will now be denser. The test with six stations will have the 

additional stations HOLY and LOFT and finally the eight station network will include 

ABEP (Aberporth) and KIRK.  

With all networks, station CARL will be retained as the user station due to its central 

location geographically. This approach will be adopted to ensure that the location of 

the user station within the network did not bias results.  

5.6 User Location  

Previously mentioned in section 5.5, the location of the user station within the 

network could potentially impact on the accuracy of the solution. In an ideal 

environment, the user would be located centrally between all the network stations 

being used to compute the corrections. However, in practice, rarely will it be possible 

to achieve this. It may be that the user is much closer to one station within the 

network or on the edge of the network. Additionally, it may be possible for the user 

station not to be within the network at all and to be located near the region of the 

network but outside of its bounds.  

To test how much of an effect the user location can have, a series of four and six 

station networks will be again used. The first two networks will be a repeat of the 

tests outlined in section 5.5  with the stations DUDE, PMTH, KEYW and WEYB used 

in the four station network and DUDE, PMTH, KEYW, WEYB, HOLY and LOFT used 

in the six station network. For these two networks, the user CARL will remain in a 

central position.  In the third and fourth networks, the user CARL will be outside of 

the extents of the network by approximately 250 km. The four station network will 

consist of PMTH, KEYW, WEYB, and ABEP. The six station network will utilise the 

four stations above with the addition of SHRE (Shrewsbury) and MANR.  
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5.7 Network Station Drop Out 

All the testing will use historical data and by selection, minimal problems with a 

station becoming unavailable for a period of time were encountered. However, in a 

real time and a real life environment, a station may become either temporarily or 

permanently unavailable, for example, if the antenna is being changed or there is a 

power loss. Hence, it is important to test what effect this may have on the accuracy of 

the corrections and consequently the accuracy of the user position.  

For this test, it is likely that the fewer stations there are in the network to begin with 

the more impact the loss of a station will have on the results. Therefore, to begin 

with, the network will comprise just four stations, DUDE, PMTH, KEYW and WEYB. 

For the first 18 hours, all four stations will be fully operational and for the remaining 

6 hours the station WEYB will be removed from the observation list. The user CARL 

will then be assessed to see if the accuracy of the position is detrimentally affected 

by the loss of the fourth network station. 

5.8  IAR at the Network 

In the tests outlined in sections 5.4 to 5.7, the UPD and satellite clock corrections will 

be computed using a float solution. This means that the double difference 

ambiguities within the network are not fixed to their integer values. If these 

ambiguities are correctly fixed to their integer values, there are fewer parameters 

being estimated in the network solution and no error within the ambiguity parameter. 

Thus, theoretically making the solution more accurate.  

This can be tested in part by analysing the T values described in section 4.2.1, which 

will show how well the solution fits to the data. If the T value decreases when 

ambiguities are fixed, it implies an improved fit to the data. However, this does not 

prove whether the UPD and satellite clock corrections computed are more accurate. 

To analyse this, the tests in section 5.5  will be repeated with a fixed network solution 

instead of a float solution. Therefore, the tests undertaken will use stations DUDE, 

PMTH, KEYW, WEYB, HOLY, LOFT, ABEP and KIRK. The corrections achieved will 

then be transmitted to the user to test whether the position of the rover is improved 

through the application of fixed corrections.  
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As described in section 4.3.4, the LAMBDA program is used to undertake IAR. 

However, there are multiple settings within the LAMBDA program, which can affect 

the reliability of the ambiguities being fixed.  

Firstly, when using ILS with the ratio test it is important to select an appropriate 

critical value for the test. The critical value dictates how confident the LAMBDA 

program must be in its solution in order to fix the ambiguities to an integer. If the 

critical value is set too low, it will result in fewer ambiguities being fixed, therefore not 

realising the full potential of IAR. However, if the critical value is set too high, some 

ambiguities may be incorrectly fixed, which could result in large errors in other 

parameters. For these tests, a critical value of 0.2 will be used which means the most 

likely set of integers must be five times more likely than the second most likely set of 

integers for the program to accept the solution.  

Secondly, it is not reliable to attempt to fix ambiguities to integer values at the first 

epoch as the solution needs time to converge. It is often advisable to wait a set 

number of epochs, before attempting any IAR for a given satellite, to allow the 

parameters associated with the given satellite to converge. In a similar manner to the 

ratio test, it is important to select an appropriate value for the number of epochs to 

wait before undertaking IAR. Too few epochs could result in incorrectly fixed 

ambiguities as the solution has not fully converged. Too many epochs will result in 

less ambiguities being fixed and therefore a sub optimal solution. 

In these tests, a time of 1800 epochs or 30 minutes will be used to allow the 

ambiguities to converge. This value is a compromise between accuracy and speed of 

convergence. However, the ambiguities might not necessarily be fixed to integers 

after this number of epochs, as the ambiguities still have to pass the ratio test within 

the LAMBDA program. 

5.9 IAR at the User 

In all the tests outlined above, the ambiguities in the user solution will be computed 

based on a float value. As with the network solution, fixing ambiguities to their integer 

values should improve the solution and therefore improve the rover position. 

However, if any of the ambiguities are fixed incorrectly, this will cause a large error in 

the solution and hence the coordinated position. The implication here is that fixing 
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ambiguities may not always be advantageous. To ensure ambiguities are fixed to the 

correct values, it is critical that the UPD and satellite clock corrections are as 

accurate as possible.  

To test the user’s ability to correctly fix the ambiguities, the optimum float network 

and optimum fixed network solutions will be utilised. This is required to provide the 

rover with the best possible opportunity to undertake successful IAR. Again, the rover 

station will be retained as CARL throughout this test to aid comparison.  

5.10 PPP-RTK Comparison  

The existing methodology most comparable to that presented in this study is given by 

Zhang et al. (2011). To compare the accuracy of the corrections calculated here to 

those presented in the Zhang approach, this alternative approach will also be tested. 

The measurement models presented in Zhang et al. (2011), will be used alongside 

the approach in this thesis. Using the data obtained from BIGF, it will be possible to 

directly compare the two approaches.  

The UPD and satellite clock corrections obtained from the two approaches will be 

different, due to the different parameterisations used in the methodologies. However, 

when used in conjunction with the different user measurement models, both will 

provide a user position solution. These user position solutions are comparable, so it 

will be possible to identify which methodology gives a significantly improved solution 

compared to the other.  

To allow direct comparison with the models presented in this study, the tests outlined 

in section 5.5  will be repeated using this alternative measurement model. This 

includes processing the two, four and six station networks using the network stations 

DUDE, PMTH, KEYW, WEYB, HOLY and LOFT, whilst maintaining CARL as the 

rover receiver. Additionally, to aid direct comparisons, the same observation 

weightings, process noise values and initialisation periods will be used.  

The comparison will also compare the two solutions abilities to fix integer ambiguities 

at the network and the rover. It can then be analysed to see if fixing these 

ambiguities has a positive impact on the accuracy of the rover position. The same 

three sets of network stations will be used to compute three fixed network solutions, 
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as in the float tests listed previously. Additionally, two of the networks will be used to 

analyse the rover ability to undertake IAR. 

5.11 User Position 

In the majority of the tests outlined in this chapter, the user position will be used to 

quantify the accuracy of the solution. To fully analyse the computed position, a 

statistical analysis needs to be undertaken for the east, north and up components. 

The correct user position is known to a higher degree of accuracy and the OMC 

program uses these coordinates to compute the OMC output file. Therefore, the 

computed user position should be equal to (0, 0, 0).  

To analyse the position estimate accuracy, the Root Mean Square (RMS) value will 

be computed using the position components east, north and up separately to show 

which component is the most accurate. Additionally, a 3D RMS value will be 

computed to give an overall accuracy of the position over time.  

The formula to compute the RMS for each component of position is given by 

equation (5.1): 

2(e e)
RMSe

n



     

                (5.1) 

where e  is the east position at each epoch, e  is the true east position, which will be 

equal to zero in these examples and n  is the number of epochs. Similar expressions 

exist for north and up.  

For the 3D RMS value the 3D error in positon will be first computed prior to 

application of equation (5.1). The 3D position error can be computed as shown in 

equation (5.2): 

2 2 23D e n u      

                 (5.2) 
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The 3D position error will then substituted for the east error in equation (5.1) to give 

the 3D RMS error, allowing direct statistical comparison between the different testing 

procedures. 
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Chapter 6. Results 

6.1 Standard Settings 

The results presented in this section test a number of different program settings, 

which affect the accuracy and precision such as number of network stations and 

interstation distance. However, there are a number of additional settings, which can 

have a significant impact on the results, including process noise and observational 

weight. These are not presented here, as these settings have been chosen based on 

previous literature and some basic tests within the program as outlined in Chapter 4. 

This has ascertained that the values chosen are sensible and provide the optimum 

solution. 

Firstly, the observation weighting follows an elevation dependent weighting as 

outlined in section 4.3.3.2. Secondly, the process noise values have been tested to 

achieve the most appropriate values, which are outlined in section 4.3.3.3. Thirdly, 

the reference satellite is selected as the satellite at the highest elevation and the 

elevation mask is set as 7° as is common within literature (Fang et al., 1998). Finally, 

the network solution is allowed a period of 12 hours to stabilise and compute 

accurate corrections, before the corrections are transmitted to the user. This 

stabilisation period does not affect the user convergence time as the network would 

be a constantly running program so this 12 hour period would only ever occur once 

on initialisation.  

The observations that will act as the rover station are from static GNSS receivers. 

However, the coordinates of the receiver will be unconstrained within the Kalman 

filter. Therefore, this will simulate a kinematic solution being computed for the rover.   

6.2 Baseline Computation 

To assess how successful the measurement model is and how much of a difference 

applying UPD and satellite clock corrections makes, a series of baseline tests have 

been run. These tests use the OMC files generated with satellite clock and orbit 

corrections obtained from the IGS. Thus, the satellite clock and UPD corrections 

obtained from the network approach are not utilised and a conventional PPP solution 

is applied at the rover. These PPP solutions are obtained using the same program 
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and measurement model as the latter PPP-RTK tests to allow direct comparison. 

This will result in a solution where the ambiguities cannot be double difference 

integer values, and can be computed in a float solution. The rest of the measurement 

model stays the same as that presented in equation (3.60) in section 3.3.  

To allow accurate comparison with the results in the remainder of this chapter, the 

user program is initialised after 12 hours to simulate the 12 hour stabilisation period 

of the network program. The positon is subsequently estimated at each epoch from 

12 hours to 24 hours and the RMS values computed using the formula presented in 

section 5.11.  

Figure 6-1 shows the results of the user position between 12 and 24 hours in east, 

north and up for DOY 001. The convergence time is approximately 1 hour, between 

12 and 13 hours, before the positon estimate errors are below 5 cm in each 

respective direction. For the period between 13 and 24 hours, the RMS values for all 

the days tested are shown in Table 6-1.  

 

Figure 6-1 - Rover Positional Errors with No Corrections (DOY 001) 
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Table 6-1 - Rover Positional RMS Errors with No Corrections 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 12.1 10.5 29.3 33.4 

032 12.5 15.3 23.4 30.7 

060 13.3 10.2 35.9 39,7 

091 21.2 20.8 34.5 45.5 

121 20.4 19.3 23.1 36.4 

152 75.8 18.2 52.3 94.4 

182 30.3 26.7 48.0 62.7 

213 9.9 17.5 29.5 35.7 

Average 28.9 15.7 33.1 48.1 

 

The RMS values in Table 6-1 show that for DOY 152 and DOY 182 the data quality is 

poor and not representative of the typical expected accuracies. Inspection of the 

RINEX files for these days reveals multiple data gaps of up to an hour in length. This 

causes the Kalman filter to restart and reconverge multiple times resulting in a much 

less accurate solution. As a result, DOY 152 and 182 will be omitted from all further 

testing to avoid biasing the results. Table 6-2 shows the average of the results once 

these two anomalies have been removed. 
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Table 6-2 - Rover Positional RMS Errors with No Corrections (No DOY 152 and 182) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 12.1 10.5 29.3 33.4 

032 12.5 15.3 23.4 30.7 

060 13.3 10.2 35.9 39,7 

091 21.2 20.8 34.5 45.5 

121 20.4 19.3 23.1 36.4 

213 9.9 17.5 29.5 35.7 

Average 15.9 15.2 29.2 36.5 

 

These positions estimated without UPD corrections are not directly comparable to 

real-time PPP positioning as the satellite clock and orbit corrections applied are final 

orbits and clocks, computed two weeks after the data is collected. Thus, the 

accuracies are equivalent to post processed results. If the following tests can provide 

user positions that are equivalent, or an improvement, on those presented in       

Figure 6-1 then it demonstrates that the measurement model presented in this thesis 

is a viable methodology for computing satellite clock and UPD corrections.  

6.3 Network Results 

Prior to presenting positioning for the user results, a series of results from the 

network processing are shown. The network results are visually similar for the 

majority of tests undertaken and will only be presented once. The graphs will follow 

the same pattern in subsequent tests, unless otherwise stated.  

The network results presented here are a subset of the results from the six station 

network consisting of LOFT, NCAS, KIRK, ESKD, HOLY and MANR.  
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Figure 6-2 and Figure 6-3 are plots of the zenith tropospheric correction as computed 

from two stations within the network on DOY 001. The two stations are 105 km apart; 

therefore the plots should differ, as the troposphere will vary over such distances. 

There is a convergence period where the Kalman filter initialises. Initialisation only 

has to be done once as the network would run constantly after an initial set up. 

Consequently, the time the convergence takes is not relevant. Both plots are realistic 

estimates of the zenith wet troposphere component, with slow variance over the day 

and an overall change of less than 5 cm. In section 4.3.3.3 these troposphere 

estimates have been compared against independent processing software        

GIPSY-OASIS v6.4. The dry troposphere is not included in these plots as this has 

already been removed by the OMC program. However, there will be residual dry 

tropospheric error in the wet troposphere due to incorrect estimation of the pressure 

at the station within the OMC program.  Similar plots can be obtained for the other 

four stations in the network but are not presented as they are similar to Figure 6-2 

and Figure 6-3 and do not add any additional insight. 

 

Figure 6-2 – Zenith wet troposphere delay of LOFT (DOY 001) 
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Figure 6-3 – Zenith wet troposphere delay of NCAS (DOY 001) 

The estimate of the ionosphere from one network station, LOFT, to satellite Pseudo 

Random Noise 4 (PRN 4) is shown in Figure 6-4. Figure 6-4 shows a series of jumps 

in the time series, most notably between 12 and 17 hours. These jumps are caused 

by a change in reference satellite and not a change in the parameter. To aid visual 

inspection of the parameter estimation, the jumps can be removed to provide a 

smoother graph. The same jumps appear in parameter estimation of the UPDs, 

satellite clocks and ambiguities. For the remainder of the thesis, all the jumps will be 

removed to aid visual inspection. Finally, there are periods where the parameter 

estimation is equal to zero, for example, between 2 hours and 12 hours. These are 

periods where the satellite is not visible to the receiver and therefore no estimation is 

undertaken.  
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Figure 6-4 - Ionosphere delay at LOFT for Satellite PRN 4 (DOY 001) 

Figure 6-5 has been smoothed to remove the jumps caused by the reference satellite 

changes. The plot now clearly shows the ionosphere change over time, with 

dependence on the elevation angle of the satellite. When the satellite rises in the sky, 

the ionosphere estimate decreases, due to the reduction in slant range. The 

ionosphere then increases again, as the satellite falls to the horizon.  
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Figure 6-5 - Smoothed Ionosphere delay at LOFT for Satellite PRN 4 (DOY 001) 

Figure 6-6 displays the smoothed float ambiguity estimates between network station 

LOFT and NCAS to satellite PRN 4. In this test, the ambiguity values remain float 

estimates throughout and no attempt is made to fix to integer values. It is important, 

however, to note the stability of the float estimates, as this will be key when trying to 

fix the values to integers. After initial convergence periods of approximately 

30 minutes or 1800 epochs, the stability of the parameters is good. Figure 6-7 shows 

the period between 11 and 17 hours in more detail to show the convergence period 

and the parameter stability.  
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Figure 6-6 - Smoothed L1 Ambiguity between LOFT and NCAS for Satellite PRN 4 (DOY 001) 

 

Figure 6-7 - Smoothed L1 Ambiguity between LOFT and NCAS for Satellite PRN 4 (11-17 hours) 

(DOY 001) 
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Figure 6-8 shows the satellite clock estimate for satellite PRN 4 over the day. The 

satellite clock parameter varies rapidly due to the applied random clock error. This 

rapid variation can be seen more clearly in Figure 6-9, which shows the estimation 

between 13 hours and 14 hours. Although the applied random clock error is between         

±50 m, the parameter being estimated included a reference satellite. Consequently, 

Figure 6-9 has values in the region of ±65 m. Visually, it is hard to assess how 

accurately the measurement model is estimating the satellite clock correction. 

However, the rapidly changing values on the graph do show the Kalman filter is 

correctly modelling the parameter, as it allows the parameter estimation to freely 

move at each epoch, instead of being tightly constrained.  

 

 

Figure 6-8 - Satellite Clock for Satellite PRN 4 (DOY 001) 
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Figure 6-9 - Satellite Clock for Satellite PRN 4 (13-14 hours) (DOY 001) 

Finally, Figure 6-10 shows the UPD estimates throughout the day. These estimates 

are slowly changing like the ambiguity estimates, but unlike ambiguities will never be 

fixed. A convergence time of approximately 30 minutes or 1800 epochs is again 

visible each time the satellite becomes visible to the receiver at 0 hours, 12 hours 

and 23 hours.  
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Figure 6-10 - Smoothed L1 UPD for Satellite PRN 4 (DOY 001) 

Plots have been generated for each one of the parameters in the measurement 

model and to each satellite in the constellation but are not included here. For 

example, in a six station network there are over 600 parameters estimated, each with 

a corresponding graph. Instead, a selection of the results with respect to a randomly 

selected satellite, (PRN 4), have been shown to display the general pattern of the 

data.  

6.4 Number of Network Stations 

In section 5.4, it was discussed that the number of network stations can have an 

impact on the accuracy of the estimation of the satellite clock and UPD parameters. 

At this stage, the network stations selected were close to the rover and spread 

evenly about the rover to attempt to achieve the best possible results. For these 

reasons, the network will be referred to as a local network. 

The first network used the two stations, NCAS and LOFT. Figure 6-11 shows the 

resultant differences to the station coordinates when the satellite clock and UPD 

corrections calculated from the network are applied to the rover on DOY 001.  
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Figure 6-11 - Rover Positional Errors with Corrections from Two Local Stations (NCAS LOFT) 

(DOY 001)  

The average RMS values computed for the rover are 13.7 mm, 14.2 mm and 

30.3 mm in east, north and up respectively and can been seen in Table 6-3. The 3D 

RMS is calculated to be 36.4 mm between 13 hours and 24 hours. These results 

show no improvement or deterioration to the position, when compared to the baseline 

solution. Consequently, corrections from two network stations are not enough to 

improve the user’s solution.  
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Table 6-3 - Rover Positional RMS Errors with Corrections from Two Local Stations  (NCAS 

LOFT) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 10.4 10.0 26.1 29.8 

032 15.7 14.4 37.2 42.9 

060 12.0 12.5 18.4 25.2 

091 21.8 21.1 34.2 45.7 

121 7.9 10.6 30.5 33.2 

213 14.6 16.4 35.1 41.4 

Average 13.7 14.2 30.3 36.4 

 

To attempt to improve the position further, more redundancy is required in the 

network, which can be achieved by introducing additional stations. The local network 

stations KIRK and ESKD were added to enhance the network solution. 

The results in Figure 6-12 are the rover error after using the corrections from four 

local stations on DOY 001. The RMS values show an improvement of approximately 

12% compared to using no correction with values of 11.9 mm, 11.3 mm, 27.6 mm  

and 32.4 mm in east, north, up and 3D respectively as seen in Table 6-4.  
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Figure 6-12 - Rover Positional Errors with Corrections from Four Local Stations (NCAS LOFT 

KIRK ESKD) (DOY 001) 

Table 6-4 - Rover Positional RMS Errors with Corrections from Four Local Stations  (NCAS 

LOFT KIRK ESKD) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 7.0 8.6 18.8 21.9 

032 11.8 12.4 36.1 40.0 

060 7.2 7.8 27.7 29.6 

091 18.3 10.6 24.4 32.3 

121 11.9 9.1 27.3 31.1 

213 15.4 19.1 31.1 39.6 

Average 11.9 11.3 27.6 32.4 
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Further increasing the number of stations in the network to six, results in the rover 

position presented in Figure 6-13. It can be seen from Figure 6-13 that the 

convergence time has been improved compared to Figure 6-11 and Figure 6-12. This 

is due to the increased redundancy in the network and the reduction of some linear 

dependencies, which occur with a small number of network stations. For direct 

comparison, the RMS values have been computed over the same 13 to 24 hour 

range. The results of the average RMS are 13.4 mm, 13.0 mm, 24.2 mm and 

31.2 mm and are presented in Table 6-5. There is no result available for DOY 032 

due to network station MANR being unavailable on that day.  

 

Figure 6-13 - Rover Positional Errors with Corrections from Six Local Stations (NCAS LOFT 

KIRK ESKD HOLY MANR) (DOY 001) 
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Table 6-5 - Rover Positional RMS Errors with Corrections from Six Local Stations (NCAS LOFT 

KIRK ESKD HOLY MANR) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 8.9 8.5 22.9 26.0 

032 NA NA NA NA 

060 6.0 7.8 24.2 26.1 

091 26.4 20.2 26.5 42.5 

121 11.9 9.2 24.8 29.0 

213 13.6 19.1 22.6 32.6 

Average 13.4 13.0 24.2 31.2 

 

These RMS values are approximately 4% better than when applying corrections from 

four local stations. Therefore, the increased redundancy has further improved the 

solution. The results of this first series of tests are summarised in Table 6-6. The 

table shows that the number of stations in the network has a positive impact on the 

accuracy of the satellite clock and UPD corrections computed.  
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Table 6-6 – Rover Positional RMS Errors for Local Stations Summary 

 No 

Corrections 

Two Local 

Stations 

Four Local 

Stations 

Six Local 

Stations 

East (mm) 15.9 13.7 11.9 13.4 

North (mm) 15.2 14.2 11.3 13.0 

Up (mm) 29.2 30.3 27.6 24.2 

3D (mm) 36.5 36.4 32.4 31.2 

 

6.5 Linear Dependencies 

A major factor that causes an improvement to the satellite clock and UPD parameters 

when the number of network stations is increased is the reduction in the linear 

dependencies in the measurement model. Throughout testing it was apparent that 

there were strong correlations between certain parameters in the measurement 

model, mainly between the satellite clocks and the troposphere. The same 

correlation between the satellite clocks and the tropospheric mapping  function was 

found in Zhang et al. (2011). This correlation implies that it is difficult to accurately 

estimate all parameters simultaneously. When more stations are included in the 

network, the leakage from one parameter to another within the measurement model 

is reduced, facilitating a solution for all parameters. 

One way in which this aliasing can be visualised is with the variances within the 

Kalman filter.  Each parameter is assigned an initial variance with additional process 

noise added at each epoch depending on the stochastics of the given parameter. For 

parameters such as the troposphere and the UPDs, the initial large variance should 

decrease rapidly and stabilise at a value just above the process noise. However, if 

correlations exist between parameters the initial large variance takes significantly 

longer to reduce, leading to longer convergence time and also less accurately 

estimated parameters. Figure 6-14 and Figure 6-15 show how the troposphere and 

UPD variances from the final variance covariance matrix, 
|ˆk kxQ ,  at each epoch 

change over the first hour of observations for a two station network compared to a six 

station network. 
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Figure 6-14 and Figure 6-15 show that the variances associated with the six station 

network reduce faster than those for the two station network. This pattern continues 

over the whole day of observations, resulting in the variances from the two station 

network always being higher than those in the six station network. Consequently, the 

accuracies of the parameters computed from the six station network are better than 

those from the two station network. The time taken to reduce the standard deviation 

also has an impact and demonstrates why the convergence time for the network 

parameters is improved, when more network stations are used.  

 

Figure 6-14 - Troposphere Variance Comparison (DOY 001) 
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Figure 6-15 - UPD Variance Comparison (DOY 001) 

6.6 Interstation Distances 

It is unlikely in an offshore environment that it would be possible to utilise a local 

network with similar spatial distribution to those in the four and six station local 

network tests in section 6.4. Therefore, further tests will be carried out using a 

regional network, where the interstation distances are much larger.  

In section 5.5, tests were outlined to assess the measurement model in a more 

realistic environment where the interstation distances must exceed 100-200 km. 

Consequently, a series of two, four, six and eight station networks were processed to 

compute satellite clock and UPD corrections. The stations used are outlined in 

section 5.5 and can be viewed in Figure 5-1. Due to the larger interstation distances, 

these networks will be referred to as regional networks. 

The rover error for CARL, using corrections from a regional two station network, 

DUDE and PMTH, on DOY 001 can be viewed in Figure 6-16. The average RMS 

values computed from these results are 13.4 mm, 15.8 mm, 29.0 mm and 35.8 mm 

for east, north, up and 3D respectively and are also shown in Table 6-7. The 
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convergence time has increased to over one hour, although it is difficult to define an 

exact point where the position has converged. These results are similar to those with 

no corrections with just a 2% improvement compared to when no UPD corrections 

are sent. This is further indication that the correlations between the parameters are 

too high when only two network stations are used and the measurement model is too 

highly correlated.  

 

Figure 6-16 - Rover Positional Errors with Corrections from Two Regional Stations (DUDE 

PMTH) (DOY 001) 
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Table 6-7 - Rover Positional RMS Errors with Corrections from Two Regional Stations (DUDE 

PMTH) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 14.4 13.7 32.7 38.2 

032 17.5 13.6 24.4 32.9 

060 7.3 9.6 21.3 24.5 

091 17.9 21.0 35.8 45.2 

121 10.9 15.0 29.3 34.7 

213 12.6 22.0 30.3 39.5 

Average 13.4 15.8 29.0 35.8 

 

The results for a network of four stations, DUDE, PMTH, KEYW and WEYB, are 

shown in Figure 6-17. The average RMS values for four stations are approximately 

19% improved compared to using only two regional stations with values of 11.3 mm, 

12.4 mm, 25.0 mm, and 30.2 mm respectively as shown in Table 6-8. These results 

are an improvement on the baseline testing using no UPD corrections in section 6.2, 

with a 21% improvement. This demonstrates that with the measurement model 

presented in this thesis and a large regional network of at least four stations it is 

possible to improve the user position.  
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Figure 6-17 - Rover Positional Errors with Corrections from Four Regional Stations (DUDE 

PMTH KEYW WEYB) (DOY 001) 

Table 6-8 - Rover Positional RMS Errors with Corrections from Four Regional Stations (DUDE 

PMTH KEYW WEYB) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 11.2 13.8 25.4 31.0 

032 8.7 9.4 21.6 25.1 

060 6.2 7.4 15.9 18.6 

091 15.4 15.0 35.6 41.6 

121 11.4 12.4 22.1 27.8 

213 15.1 16.6 29.4 37.0 

Average 11.3 12.4 25.0 30.2 
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However, the improvement between the baseline test and the four station network 

could still be improved by adding further redundancy. Increased network redundancy 

should theoretically make the satellite clock and UPD estimates more accurate and 

consequently the user position more accurate.  Therefore, the addition of further 

network stations will be tested to attempt to further improve the solution. Figure 6-18 

shows the results when a network consisting of six network stations on DOY 001, 

DUDE, PMTH, KEYW, WEYB, HOLY and LOFT were used. The average RMS 

values computed for these results are 11.1 mm, 12.7 mm, 22.9 mm and 28.6 mm as 

shown in Table 6-9. This results in an approximate 6% improvement compared to the 

four station network and a 28% improvement from the baseline solution with no 

corrections applied. 

 

Figure 6-18 - Rover Positional Errors with Corrections from Six Regional Stations (DUDE PMTH 

KEYW WEYB HOLY LOFT) (DOY 001) 
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Table 6-9 - Rover Positional RMS Errors with Corrections from Six Regional Stations (DUDE 

PMTH KEYW WEYB HOLY LOFT) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 10.1 13.1 24.0 29.4 

032 8.6 9.4 22.4 25.8 

060 6.2 8.5 14.4 17.8 

091 16.0 14.6 25.9 33.7 

121 11.1 13.2 21.5 27.6 

213 14.7 17.2 29.4 37.1 

Average 11.1 12.7 22.9 28.6 

 

The final test in this section uses an eight station regional network. The results of the 

rover position using these corrections are presented in Figure 6-19. The RMS values 

show a minor improvement, approximately 1%, over the six station regional network 

with values of 10.2 mm, 12.7 mm, 23.1 mm and 28.3 mm respectively as shown in 

Table 6-10.  

The small improvement between six and eight stations shows that although 

increasing the number of stations in the network does provide an improved solution 

there is a limit to the benefits. As additional stations are used in the network solution, 

the computational power required to obtain the solution increases. Therefore, this is a 

factor that must be considered when computing the network corrections. For this 

reason either six or eight stations appear sufficient to obtain an accurate solution 

without expending too much processing power. Consequently, the number of network 

stations tested in this study will not exceed eight.  
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Figure 6-19 - Rover Positional Errors with Corrections from Eight Regional Stations (DUDE 

PMTH KEYW WEYB HOLY LOFT ABEP KIRK) (DOY 001) 

Table 6-10 - Rover Positional RMS Errors with Corrections from Eight Regional Stations (DUDE 

PMTH KEYW WEYB HOLY LOFT ABEP KIRK) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 10.2 14.7 22.8 29.0 

032 8.5 9.7 24.3 27.5 

060 6.6 9.5 15.9 19.7 

091 10.9 12.1 26.2 30.8 

121 13.8 15.4 25.4 32.7 

213 11.2 14.6 23.9 30.2 

Average 10.2 12.7 23.1 28.3 
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Table 6-11 summarises the results from the regional network. These 3D RMS results 

can be compared to those achieved in the local network tests in Table 6-12. When 

the results of the two, four and six station regional networks are compared to those 

achieved from the local networks the regional network results are better.  However, 

the small difference between the results shows that the distance between the 

network stations and the user has little impact on the results. These results are to be 

expected as the UPDs are stable over large distances and the satellite clocks are not 

spatially variable.  

Table 6-11 – Rover Positional RMS Error for Regional Stations Summary 

 No 

Corrections 

Two 

Regional 

Stations 

Four 

Regional 

Stations 

Six 

Regional 

Stations 

Eight 

Regional 

Stations 

East (mm) 15.9 13.4 11.3 11.1 10.2 

North (mm) 15.2 15.8 12.4 12.7 12.7 

Up (mm) 29.2 29.0 25.0 22.9 23.1 

3D (mm) 36.5 35.8 30.2 28.6 28.3 

 

Table 6-12 - Local and Regional Network RMS Comparison 

 Local Network Regional Network 

Two Stations 3D RMS (mm) 36.4 35.8 

Four Stations 3D RMS (mm) 32.4 30.2 

Six Stations 3D RMS (mm) 31.2 28.6 

6.7 User Location  

So far the tests located the user near the centre of the network used to compute the 

corrections. However, it is not always possible when positioning offshore to have a 

good spatial distribution of network stations. Therefore, this section will examine 

whether the accuracy of the corrections is dependent on where the user is located in 

relation to the network.  



108 

 

This chapter previously established that the results from a two station network are 

not reliable. Therefore, a two station network will not be tested further. Instead, four 

and six station networks will be processed. In both cases, the user CARL is located 

approximately 250 km outside the extents of the network.  

The user results for the four station network, PMTH, KEYW, ABEP and WEYB, on 

DOY 001 are presented in Figure 6-20. The average RMS values computed from the 

results are 21.2 mm, 17.5 mm, 39.5 mm and 48.8 mm for east, north, up and 3D 

respectively.  These results can be compared to the four station regional network that 

surrounds the user, where the RMS values were 11.3 mm, 12.4 mm, 25.0 mm and 

30.2 mm. Locating the user receiver outside of the extents of the network leads to the 

position estimates deteriorating by approximately 60%, compared to when the 

receiver is located centrally within the network. 

 

Figure 6-20 - Rover Positional Errors with Corrections from Four Regional Stations (not in 

close proximity to the user) (PMTH KEYW WEYB ABEP) (DOY 001) 
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Table 6-13 - Rover Positional RMS Errors with Corrections from Four Regional Stations (not in 

close proximity to the user) (PMTH KEYW WEYB ABEP) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 22.5 17.2 25.6 38.2 

032 20.5 13.5 53.8 59.2 

060 15.2 14.1 20.9 29.4 

091 20.7 19,8 49.1 56.9 

121 26.2 18.1 40.2 51.3 

213 22.4 24.4 47.3 57.7 

Average 21.2 17.5 39.5 48.8 

 

An assessment was undertaken for a theoretically more accurate six station network, 

PMTH, KEYW, ABEP, WEYB, MANR and SHRE. The results of the user using 

corrections from these six regional stations can be viewed in Figure 6-21. The RMS 

values for the rover in this test are 15.9 mm, 14.4 mm, 27.5 mm, and 35.2 mm in 

east, north, up and 3D. Again, as in the four station test the RMS values are worse 

than those achieved when the user was located centrally. An approximately 23% 

deterioration is seen compared to when the user to located centrally. Unfortunately, 

MANR data was not available for DOY 032 and SHRE data was unavailable for DOY 

091 so these results have been omitted. 
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Figure 6-21 - Rover Positional Errors with Corrections from Six Regional Stations (not in close 

proximity to the user) (PMTH KEYW WEYB ABEP SHRE MANR) (DOY 001) 

Table 6-14 - Rover Positional RMS Errors with Corrections from Six Regional Stations (not in 

close proximity to the user) (PMTH KEYW WEYB ABEP SHRE MANR) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 7.6 14.2 25.2 29.9 

032 NA NA NA NA 

060 15.7 12.5 19.9 28.3 

091 NA NA NA NA 

121 23.6 15.6 36.4 46.1 

213 16.7 15.3 28.6 36.5 

Average 15.9 14.4 27.5 35.2 
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There are a number of potential reasons for the deterioration in the user results when 

the network is not located around the user. Firstly, any errors linked to the estimation 

of the troposphere and ionosphere are less likely to cancel when the network is 

further away from the user site. Secondly, the visibility periods of the satellites are 

likely to be different. When a satellite is not visible to the network, no corrections can 

be computed. Therefore, the observations from that satellite cannot be used by the 

rover. This will limit the number of satellites the user can use to compute the position, 

therefore reducing redundancy and potentially also accuracy. This limitation will be 

small for a regional network in the UK but will likely become significant for continental 

size networks. Finally, any residual orbit error in the IGS orbits will have a larger 

effect: the further the stations are apart as the angle of elevation will be different for 

each receiver.  

For these reasons it is important to try to locate the network stations at the extents of 

the network where possible. This will result in the user never being outside of the 

network providing the corrections. If this is not possible, it is important to have a large 

number of stations in the network to mitigate these issues.  

6.8 Network Station Drop Out 

In section 5.7, it was discussed that it is important to assess the capabilities of the 

measurement model under real world scenarios. One such scenario is that a station 

in the network used to compute the satellite clock and UPD corrections, becomes 

non-operational. To test this scenario, a network is programmed to drop from four 

stations to three stations after 18 hours of the day.  

One method of assessing the accuracy of the network solution is examining the T 

values computed using equation (4.10) in section 4.2.1. These T values computed 

each epoch show how well the observations fit the data. The lower the T value the 

better the estimated parameters fit the data. Figure 6-22 show the T value on DOY 

001 computed for this network when one station drops out. Figure 6-23 shows the T 

value if the network had remained as four stations. It can be seen that the period 

after 18 hours has an average T value greater than the previous hours. This is 

confirmed by computing the average T value between 12 and 18 hours (0.31) and 

the average between 18 and 24 hours (0.42). This difference shows that the extra 
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station in the network contributes to additional redundancy and therefore allows the 

parameter estimates to fit to the data better.  

 

Figure 6-22 - T Value for Network of Four Stations Dropping to Three Stations (DUDE PMTH 

KEYW WEYB) (DOY 001) 
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Figure 6-23 - T Value for Network of Four Stations (DUDE PMTH KEYW WEYB) (DOY 001) 

The UPD and satellite clock corrections, computed from this network will be 

transmitted to the rover. The rover results for DOY 001 can be seen in Figure 6-24 

and the RMS values in Table 6-15. The overall RMS values from 13 to 24 hours are 

11.3 mm, 12.7 mm, 27.2 mm, and 32.2 mm respectively. These results can be 

subdivided in the period between 13 and 18 hours (Table 6-16), where four network 

stations are used to compute the corrections and between 18 and 24 hours (Table 

6-17), when just three were used. For the period with four stations, the RMS values 

are 11.7 mm, 12.9 mm, 22.7 mm and 29.2 mm respectively, whereas, for the three 

station network, the RMS values were 10.7 mm, 12.4 mm, 28.5 mm and 33.1 mm 

respectively. Therefore, when the four station network was operational, a better 

solution was achieved, especially in the up direction. However, a point to note is that 

the measurement model and program were capable of a smooth transition from four 

stations to three. Previous tests have shown that larger station networks produce 

more accurate results. Therefore, the loss of a station will have a reduced effect on 

the accuracy of the corrections. If more stations are used to begin with, a loss of one 

station will not be 25% of the observations. 
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Figure 6-24 - Rover Positional Errors with Corrections from Four Stations Dropping to Three 

Stations (DUDE PMTH KEYW WEYB) (DOY 001) 

Table 6-15 - Rover Positional RMS Errors with Corrections from Four Stations Dropping to 

Three Stations (DUDE PMTH KEYW WEYB) (13 – 24 hours) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 11.6 14.3 33.6 38.3 

032 8.7 9.5 22.0 25.5 

060 6.7 7.6 17.7 20.4 

091 15.7 15.8 39.1 45.0 

121 9.9 12.7 21.7 27.1 

213 15.3 16.2 29.2 36.7 

Average 11.3 12.7 27.2 32.2 
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Table 6-16 - Rover Positional RMS Errors with Corrections from Four Stations Dropping to 

Three Stations (DUDE PMTH KEYW WEYB) (13 – 18 hours) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 13.0 15.0 27.3 33.8 

032 9.3 8.3 22.8 26.0 

060 5.5 6.4 14.8 17.1 

091 17.3 17.9 14.5 28.8 

121 7.0 12.8 21.7 26.2 

213 18.3 17.2 34.9 43.0 

Average 11.7 12.9 22.7 29.2 

Table 6-17 - Rover Positional RMS Errors with Corrections from Four Stations Dropping to 

Three Stations (DUDE PMTH KEYW WEYB) (18 – 24 hours) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 10.3 13.6 38.1 41.7 

032 8.1 10.5 21.4 25.1 

060 7.3 8.1 19.1 22.0 

091 14.7 14.4 47.7 52.0 

121 12.0 12.7 21.7 27.9 

213 12.0 15.2 22.7 29.8 

Average 10.7 12.4 28.5 33.1 
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6.9 IAR at the Network 

When the network consists of two or more stations, the measurement model creates 

ambiguities that are double differenced. The ambiguities can be fixed to integers, 

theoretically making the measurement model more accurate.  

To assess whether fixing ambiguities to integer values resulted in a set of parameters 

that better fits the data, the T value can be examined. Figure 6-25 shows the T value 

for the two station fixed network on DOY 001. There is no IAR for the first 10 hours to 

initialise the Kalman filter, while each satellite must be visible for 1800 epochs before 

it is eligible for IAR. This 10 hour initialisation is not critical to the convergence times 

for users, as it will only have to be done once at the initialisation of the network.  After 

this 10 hour initialisation, the T value decreases (Figure 6-25), showing the IAR has a 

positive impact on the solution in terms of fitting to the observations.   

 

Figure 6-25 - T Value for Two Station Fixed Network (DUDE PMTH) (DOY 001) 

Additionally, to assess how well the IAR has been undertaken, the percentage of 

ambiguities fixed can be computed. Ambiguities are not eligible for IAR until they 

have been visible for over 1800 epochs and have an elevation angle greater than 
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30°. The number of ambiguities fixed and the number eligible for IAR but not fixed at 

each epoch can be computed. These can then be combined to give a fixed 

percentage over the time series. For this two station network the percentage of fixed 

ambiguities is 36%. This percentage is lower than what would be ideal, due to the 

tight constraint applied on the LAMBDA program, with a critical value of 0.2.  

However, it was found that loosening the constraint to allow more ambiguities to be 

fixed, resulted in more incorrectly fixed ambiguities and consequently a less accurate 

solution.  

The UPD and satellite clock corrections are used at the user in the same manner as 

if computed from a float solution. Figure 6-26 shows the user solution for DOY 001, 

which was computed using the corrections from the two station fixed network. 

However, as in all previous tests the user test does not undertake IAR, so this 

remains a float solution to aid comparison. The average RMS values obtained in this 

solution are 17.1 mm, 20.2 mm, 37.3 mm and 46.2 mm as shown in Table 6-18. If 

this is compared to the 13.4 mm, 15.8 mm, 29.0 mm and 35.8 mm obtained when 

using the two station float network, it can be seen to be less accurate by 

approximately 29%.  

This lower accuracy shows that strong correlations between the parameters when 

only using a two station network can impact the undertaking of IAR. The correlations 

between the parameters make the estimation of the float ambiguity parameters 

difficult and consequently can lead to incorrect fixing of the ambiguities. Therefore, 

the potential to fix the ambiguities to the incorrect integer is high, making the solution 

unreliable.   
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Figure 6-26 - Rover Positional Errors with Corrections from Two Fixed Stations (DUDE PMTH) 

(DOY 001) 

Table 6-18 - Rover Positional RMS Errors with Corrections from Two Fixed Stations (DUDE 

PMTH) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 12.8 19.2 43.6 49.3 

032 17.5 13.6 24.4 32.9 

060 12.5 15.7 44.3 48.6 

091 21.1 26.8 41.3 53.6 

121 16.8 19.1 37.8 45.5 

213 22.1 26.5 32.5 47.4 

Average 17.1 20.2 37.3 46.2 
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To reduce the correlations between the parameters and potentially make the 

ambiguity resolution more reliable, the network is increased to four stations.      

Figure 6-27, once again, shows how the T value is reduced, upon the start of the IAR 

process at 10 hours into the observations. Other peaks in the T value plot, such as 

between 15 and 17 hours correspond to when the fewest number of satellites are 

visible on DOY 001. Therefore, during this period, the Kalman filter struggles to fit the 

parameter estimates to the data with the same accuracy, as the redundancy in the 

measurement model is much lower. 

 

Figure 6-27 - T Value for Four Station Fixed Network (DUDE PMTH KEYW WEYB) (DOY 001) 

The fixed corrections from the four stations, with an ambiguity fixed percentage of 

40%, are utilised at the rover (Figure 6-28). The average RMS values associated with 

this network are shown in Table 6-19, with average values of 14.5 mm, 15.3 mm, 

28.7 mm and 35.9 mm. Compared to the four station float solution, where RMS 

values were 11.3 mm, 12.4 mm, 25.0 mm and 30.2 mm, the fixed corrections give a 

worse user solution. The fixed user solution was approximately 19% worse than its 

float counterpart, using exactly the same four station network. This was not the 

anticipated result after undertaking IAR, but could have a number of causes. 
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Figure 6-28 - Rover Positional Errors with Corrections from Four Fixed Stations (DUDE PMTH 

KEYW WEYB) (DOY 001) 

Table 6-19 - Rover Positional RMS Errors with Corrections from Four Fixed Stations (DUDE 

PMTH KEYW WEYB) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 8.9 20.1 37.7 43.6 

032 14.3 11.6 24.5 30.6 

060 9.7 8.8 19.6 23.6 

091 14.0 14.9 30.5 36.7 

121 19.5 15.4 23.5 34.2 

213 20.5 20.7 36.4 46.7 

Average 14.5 15.3 28.7 35.9 



121 

 

Firstly, one or more ambiguities in the network, could have been fixed to a wrong 

value, causing an error of at least 19 cm in those observations. There is no facility 

within the MATLAB program, created for this thesis, to further check whether 

previously fixed ambiguities are incorrectly fixed. This error will continue within the 

observations until the satellite in question no longer becomes visible. In more 

sophisticated software, this can be implemented as a method of error detection but 

this is beyond the scope of this study. 

Secondly, when the ambiguities are fixed to an integer value the remaining 

parameters are updated, as described in section 4.3.4. This update step must take 

into account the correlations between the parameters, when trying to adjust the 

parameter estimations for the newly fixed ambiguities. As already discussed some 

correlations between parameters can be strong. Consequently, the update step can 

lead to unrealistic, centimetre level jumps in certain parameters, such as the 

troposphere. Due to the process noise values in the Kalman filter, any incorrect jump 

in parameters can take a number of minutes to resolve. This error in the troposphere 

estimation can directly lead to an error in the up component of the user position and 

may explain why the majority of the deterioration is in the up component. 

Thirdly, the rover receiver is currently not undertaking any IAR in this test and 

consequently is just a float solution. When the rover attempts to undertake IAR, as 

shown later in this chapter, it may be shown that, although the fixed network 

corrections do not improve the float user solution, they may improve the user’s ability 

to undertake IAR. Therefore, this could then lead to an improved user solution.   

Finally, there are still errors that exist with all of the GPS observations and the 

parameter estimation, as the measurement model is not perfect. Therefore, some 

error is likely to be in the estimation of the float double difference ambiguities. If the 

ambiguities are fixed to the correct integer value the error within that parameter will 

be pushed into other parameters in the measurement model, for example the satellite 

clocks and the UPDs. However, this error is likely to small in most cases and will not 

be the main cause of the differences between the solutions.  

The results from a six station network including IAR with an ambiguity fixed 

percentage rate of 45% are presented in Figure 6-29 and Figure 6-30. Similar to the 

previous two tests, Figure 6-29 shows the T value decreases upon the commencing 
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of the IAR at 10 hours. The average RMS values computed for the position are 

13.9 mm, 17.4 mm, 31.4 mm and 38.8 mm as seen in Table 6-20. These values are 

approximately 8% worse compared to those in the previous four station fixed network 

test. As with the previous test, these results have a lower accuracy when compared 

to the float solution achieved in section 6.6, for the same reasons discussed 

previously.  

 

Figure 6-29 - T Value for Six Station Fixed Network (DUDE PMTH KEYW WEYB HOLY LOFT) 

(DOY 001) 
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Figure 6-30 - Rover Positional Errors with Corrections from Six Fixed Stations (DUDE PMTH 

KEYW WEYB HOLY LOFT) (DOY 001) 

Table 6-20 - Rover Positional RMS Errors with Corrections from Six Fixed Stations (DUDE 

PMTH KEYW WEYB HOLY LOFT) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 8.8 20.0 37.4 43.3 

032 12.5 11.7 27.1 32.0 

060 10.5 11.5 22.0 26.9 

091 10.2 14.2 31.6 36.1 

121 21.5 16.6 30.1 40.5 

213 20.0 30.1 40.4 54.2 

Average 13.9 17.4 31.4 38.8 
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The tests using eight network stations while undertaking IAR with an ambiguity fixed 

percentage of 45% are presented in Figure 6-31 and Figure 6-32. The results follow 

the pattern established by the previous three tests. The T value decreases upon 

commencing of the IAR at 10 hours and the RMS values for the rover position are 

13.6 mm, 17.0 mm, 30.5 mm and 38.2 mm as shown in Table 6-21. These results are 

highly comparable with the previous six station fixed network, with less than 1% 

improvement with the addition of the two extra stations. Finally, compared to the 

eight station float solution the results show an approximate 35% deterioration in the 

rover position. 

 

Figure 6-31 - T Value for Eight Station Fixed Network (DUDE PMTH KEYW WEYB HOLY LOFT 

ABEP KIRK) (DOY 001) 
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Figure 6-32 - Rover Positional Errors with Corrections from Eight Fixed Stations (DUDE PMTH 

KEYW WEYB HOLY LOFT ABEP KIRK) (DOY 001) 

Table 6-21 - Rover Positional RMS Errors with Corrections from Eight Fixed Stations (DUDE 

PMTH KEYW WEYB HOLY LOFT ABEP KIRK) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 6.9 20.6 37.4 43.2 

032 10.4 11.9 33.0 36.6 

060 14.3 15.3 29.8 36.4 

091 12.7 17.6 31.4 38.2 

121 23.9 18.3 20.5 36.5 

213 13.6 18.1 31.0 38.4 

Average 13.6 17.0 30.5 38.2 
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Despite all the tests showing that using an ambiguity fixed network provides inferior 

UPD and satellite clock corrections, the tests do show that using at least four stations 

in the network provides better results. Table 6-22 shows a summary of the results 

from this test compared to the float tests undertaken in section 6.6.  

Table 6-22 - RMS Comparison of Float and Fixed Networks 

 Float Network Fixed Network 

Two Stations 3D RMS (mm) 35.8 46.2 

Four Stations 3D RMS (mm) 30.2 35.9 

Six Stations 3D RMS (mm) 28.6 38.8 

Eight Stations 3D RMS (mm) 28.3 38.2 

 

6.10 IAR at the User  

All the tests undertaken so far have used a rover solution without any attempt to 

undertake IAR. However, to realise the full potential of this study and potentially 

provide a further improvement to the rover position solution, the ambiguities need to 

be fixed to their integer values. However, it is critical that when IAR is undertaken the 

ambiguities are fixed correctly. Any ambiguities that are incorrectly fixed will 

adversely affect the rover position and provide a solution that will be inferior to the 

float solution.  

For the user to correctly fix the ambiguities, precise UPD and satellite clock 

corrections must be used. In the tests outlined in this chapter, the best rover RMS 

values were obtained when using the eight station regional float network, with a 3D 

RMS of 28.3 mm.  

The UPD and satellite clock corrections from the eight station float network are used 

at the rover in the same manner. As previous tests have shown convergence times of 

approximately one hour, the IAR process is not started until after one hour of 

observations, to limit the chances of incorrect ambiguity fixing. The same LAMBDA 

method of ILS with the ratio test is used to try to fix the user ambiguities, but with a 

critical value of 0.05. This value is a tighter constraint than in the network solution, as 
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the chance for incorrect fixing and the impact of incorrect fixing is higher in the user 

solution. The rover is a single receiver, so there is much less redundancy in the 

Kalman filter and consequently the chances of parameters being poorly estimated 

are higher.  

The T value for the user during this test is shown in Figure 6-33. There is no 

noticeable drop in the T value when IAR commences, as occurs in the network tests. 

This shows that although IAR has been undertaken, it has not had a positive effect 

on the fit of the solution to the data. The peaks in the T value correspond to when 

there are fewer satellites visible to the receiver and therefore less redundancy.  

 

Figure 6-33 - T Value for User with Corrections from Eight Station Float Network (DUDE PMTH 

KEYW WEYB HOLY LOFT ABEP KIRK) 

The results of the user position in this test are displayed in Figure 6-34. The 

ambiguity fixed percentage is 55%, which is higher than during the network tests. 

The RMS values from this test are 18.3 mm, 18.7 mm, 36.0 mm and 44.7 mm in east, 

north, up and 3D.  
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Figure 6-34 - Fixed Rover Positional Errors with Corrections from Eight Stations (DUDE PMTH 

KEYW WEYB HOLY LOFT ABEP KIRK) (DOY 001) 

Table 6-23 - Fixed Rover Positional RMS Errors with Corrections from Eight Stations (DUDE 

PMTH KEYW WEYB HOLY LOFT ABEP KIRK) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 35.8 34.2 71.9 87.3 

032 8.7 9.7 23.5 26.9 

060 6.6 9.5 15.9 19.7 

091 19.4 25.3 36.1 48.2 

121 14.8 15.7 28.3 35.6 

213 24.3 17.8 40.2 50.2 

Average 18.3 18.7 36.0 44.7 
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It is clear that these results are inferior to the float solution presented in section 6.6, 

where the RMS values were 10.2 mm, 12.7 mm, 23.1 mm and 28.3 mm. Figure 6-34 

on DOY 001 shows some epochs where IAR has taken place and has a detrimental 

effect on the solution. For example, at 20 hours there is a jump in the up direction of 

approximately 20 cm, which directly corresponds to when an ambiguity is fixed. 

These jumps, caused by ambiguity fixing, result in the RMS values for the various 

days being much more varied. For example, DOY 060 3D RMS is 19.7 mm, whereas 

DOY 001 3D RMS is 87.3 mm, showing the detrimental effect incorrect ambiguity 

fixing can have on the results.  

When a pair of ambiguities on the L1 and L2 frequencies are fixed, the difference 

between the float and fixed ambiguity values must be spread into different parts of 

the measurement model. If the difference between the L1 fixed ambiguity and its float 

counterpart and the difference between the L2 fixed ambiguity and its float 

counterpart is in the ratio of 1:1.649, then this jump can be absorbed within the 

ionosphere term. This is because the values in the measurement model for phase 

ionospheric terms are in this ratio. Additionally, the phase observations are precise 

compared to the code observations and a large error in code is not overly important. 

However, if the differences are not in this ratio, then additional parameters must 

accommodate some of the change. When this occurs, a jump in the troposphere or 

the east, north and up components can occur.  

Theoretically, to undertake IAR at a user receiver the network providing corrections 

must also have fixed ambiguities. Therefore, despite the fixed network tests 

(discussed in section 6.9) providing inferior position estimates when using a float 

user solution, they may provide benefits when trying to compute a fixed user solution. 

Therefore, a second test was completed, using the six station fixed test described in 

section 6.9. The T value for this test is shown in Figure 6-35. When IAR commences 

at 13 hours, there is a drop in the T value, showing an improvement in the fit to the 

observations. The T value is maintained at this lower value, apart from some small 

peaks when fewer satellites are visible such as at 20 hours.  
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Figure 6-35 - T Value for User with Corrections from Six Station Fixed Network (DUDE PMTH 

KEYW WEYB HOLY LOFT) (DOY 001) 

Figure 6-36 shows the rover position as a result of using these corrections on       

DOY 001. The ambiguity fixed percentage in this test is increased to 65% and the 

average RMS values were an improvement compared to the previous eight station 

float network with values of 13.2 mm, 13.2 mm, 27.1 mm and 33.0 mm. Compared to 

the RMS of 13.9 mm, 17.4 mm, 31.4 mm and 38.8 mm when using a float user 

solution with the same corrections there is a 17% improvement. This may show that 

to achieve a reliable fixed user solution, a fixed network is required to provide a 

double difference solution. However, these results are still inferior to using a float 

network solution and float user solution. Therefore, this indicates that although fixing 

ambiguities can have a positive impact on the user position, currently the number of 

incorrectly fixed ambiguities at either the network or the user is causing the solution 

to deteriorate.  
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Figure 6-36 - Fixed Rover Positional Errors with Corrections from Six Fixed Stations (DUDE 

PMTH KEYW WEYB HOLY LOFT) (DOY 001) 

Table 6-24 - Fixed Rover Positional RMS Errors with Corrections from Six Fixed Stations (DUDE 

PMTH KEYW WEYB HOLY LOFT) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 21.0 17.1 33.0 42.7 

032 8.7 9.8 21.9 25.5 

060 6.2 8.5 14.4 17.8 

091 16.0 14.6 35.9 42.0 

121 12.6 13.5 24.8 30.9 

213 14.6 15.8 32.7 39.1 

Average 13.2 13.2 27.1 33.0 
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6.11 Proposed Measurement Model Results Summary 

Table 6-25 shows a summary of the 3D RMS results presented in this chapter when 

testing the approach outlined in this thesis. Here it can be seen that using networks 

of more than two stations either locally or regionally can improve the user solution. 

However, it is clear that introducing IAR to either the network or the user can have a 

detrimental effect on the accuracy of the position.  
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Table 6-25 - Summary of Results from Proposed Measurement Model 

 3D RMS (mm) 

No Corrections 36.5 

Two Local Stations 36.4 

Four Local Stations 32.4 

Six Local Stations 31.2 

Two Regional Stations 35.8 

Four Regional Stations 30.2 

Six Regional Stations 28.6 

Eight Regional Stations 28.3 

Four Regional Stations (Away from User) 48.8 

Six Regional Stations (Away from User) 35.2 

Four Regional Stations (Dropping to 3) 32.2 

Two Fixed Regional Stations 46.2 

Four Fixed Regional Stations 35.9 

Six Fixed Regional Stations 38.8 

Eight Fixed Regional Stations 38.2 

Eight Regional Stations – Fixed User 44.7 

Six Fixed Regional Stations – Fixed User 33.0 
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6.12 PPP-RTK Comparison 

A comparison with an alternative methodology (Zhang et al., 2011), as described in 

section 5.10, was undertaken to assess the accuracy of this study. The measurement 

models developed in this approach are outlined in section 3.5. The first test used a 

two  station  float  network,  with   the  rover  position  for  DOY  001 presented in         

Figure 6-37. The average RMS values computed from these results are 16.1 mm, 

19.3 mm, 26.7 mm and 37.1 mm in east, north, up and 3D as seen in Table 6-26.  

 

Figure 6-37 - Zhang Rover Positional Errors with Corrections from Two Stations & Alternative 

Model (DUDE PMTH) (DOY 001) 
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Table 6-26 - Zhang Rover Positional RMS Errors with Corrections from Two Stations & 

Alternative Model (DUDE PMTH) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 19.2 17.7 26.9 37.4 

032 8.3 12.0 19.6 24.4 

060 22.8 29.2 32.7 49.4 

091 15.7 21.0 27.5 40.0 

121 12.3 15.6 24.9 31.9 

213 18.2 20.4 28.3 39.3 

Average 16.1 19.3 26.7 37.1 

 

Figure 6-38 shows the same rover position but with satellite clock and UPD 

corrections computed from four network stations. The position estimates have 

improved by approximately 12% compared to those previously shown in Figure 6-37, 

with average RMS values of 15.0 mm, 16.3 mm, 24.3 mm and 33.0 mm as seen in 

Table 6-27.  
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Figure 6-38 - Zhang Rover Positional Errors with Corrections from Four Stations & Alternative 

Model (DUDE PMTH KEYW WEYB) (DOY 001) 

Table 6-27 - Zhang Rover Positional RMS Errors with Corrections from Four Stations & 

Alternative Model (DUDE PMTH KEYW WEYB) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 16.2 17.3 23.2 33.1 

032 9.0 11.8 19.4 24.4 

060 21.2 17.9 28.9 40.1 

091 14.2 15.6 25.6 33.2 

121 19.3 20.4 27.1 39.0 

213 10.1 14.9 21.3 27.9 

Average 15.0 16.3 24.3 33.0 
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When the network is increased to include six stations, the RMS values remain similar 

to the previous four station test at 15.5 mm, 17.2 mm, 23.1 mm and 32.7 mm. The 

rover position, computed in this test for DOY 001, can be seen in Figure 6-39 and the 

RMS values in Table 6-28.  

 

Figure 6-39 - Zhang Rover Positional Errors with Corrections from Six Stations & Alternative 

Model (DUDE PMTH KEYW WEYB HOLY LOFT) (DOY 001) 
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Table 6-28 - Zhang Rover Positional RMS Errors with Corrections from Six Stations & 

Alternative Model (DUDE PMTH KEYW WEYB HOLY LOFT) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 15.3 18.6 23.5 33.6 

032 10.3 12.1 19.1 24.9 

060 19.2 17.6 26.7 37.3 

091 17.2 21.0 22.3 35.1 

121 18.5 19.6 26.1 37.5 

213 12.3 14.5 20.6 28.0 

Average 15.5 17.2 23.1 32.7 

 

The three tests undertaken using this alternative measurement model, provide the 

results shown in Table 6-29. Similar to the results from the tests on the measurement 

model developed in this study, there is an improvement when more stations are 

included. However, there is little improvement when increasing the network from four 

to six. This shows that the measurement model developed in the Zhang study may 

not have the same correlation problem between parameters that exist in this study. 

Consequently, it appears that four stations is sufficient to achieve an optimum 

solution, as increasing to six stations has a minor deterioration in the results.  
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Table 6-29 - RMS for Zhang Methodology 

 Two Regional 

Stations 

Four Regional 

Stations 

Six Regional 

Stations 

East (mm) 16.1 15.0 15.5 

North (mm) 19.3 16.3 17.2 

Up (mm) 26.7 24.3 23.1 

3D (mm) 37.1 33.0 32.7 

 

It is important to compare the Zhang results to those in this study. Table 6-30 shows 

how the 3D RMS values computed in these three tests, compare to those achieved in 

section 6.6, using the same network stations. In all three comparative tests the 

methodology developed in this thesis outperformed the Zhang approach when 

comparing user accuracies. Additionally, the percentage of improvement that can be 

seen increases with the number of stations that were used in the network. A 4% 

difference in 3D RMS using just two network stations increases to 14% when six 

stations are used.  

Table 6-30 - RMS Comparison between Methodologies 

 Pearson Zhang 

Two Stations 3D RMS (mm) 35.8 37.1 

Four Stations 3D RMS (mm) 30.2 33.0 

Six Stations 3D RMS (mm) 28.6 32.7 

6.12.1 PPP-RTK Comparison IAR at the Network 

In section 6.9, it was shown that when using the measurement model developed in 

this study, the fixing of double difference ambiguities at the network had a detrimental 

effect on the user solution. However, in the Zhang method being compared, it has 

been demonstrated that fixing ambiguities can have a positive effect on the solution 

(Zhang et al., 2011). Therefore, this section will test if a comparable solution can be 

achieved using the same data as in the previous tests.  



140 

 

To allow direct comparisons, the same two, four and six station networks were 

processed. The settings used within the Kalman filter and within the LAMBDA 

program were the same as in section 6.9.  

The rover results when using corrections from the two station fixed network are 

presented in Figure 6-40 and Table 6-31. In this test the ambiguity fixed percentage 

is 40%. The corresponding RMS values were 25.7 mm, 29.1 mm, 43.2 mm and 

58.1 mm. When this is compared to the 16.1 mm, 19.3 mm, 26.7 mm and 37.1 mm 

when using the same two network stations and not fixing ambiguities, IAR at the 

network adversely affects the solution, as it did in the tests for the measurement 

model in this study.  

 

Figure 6-40 - Zhang Rover Positional Errors with Corrections from Two Station Fixed Network 

(DUDE PMTH) (DOY 001) 
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Table 6-31 - Zhang Rover Positional RMS Errors with Corrections from Two Station Fixed 

Network (DUDE PMTH)    

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 25.7 29.1 43.2 58.1 

032 12.7 13.9 22.3 29.2 

060 20.2 31.5 44.7 58.3 

091 23.5 19.4 34.5 46.0 

121 27.3 24.1 38.9 53.3 

213 19.0 28.3 41.8 53.9 

Average 21.4 24.4 37.6 49.8 

 

The results for the four and six station fixed networks are presented in Figure 6-41 

and Figure 6-42. The ambiguity fixed percentages for these tests are 44% and 42% 

respectively. The average RMS values for these results were 15.7 mm, 20.9 mm, 

24.7 mm and 36.1 mm for the four station network and 15.5 mm, 21.4 mm, 23.2 mm 

and 35.4 mm for the six station network, as shown in Table 6-32 and Table 6-33. 

These values are an approximate 37% improvement compared to the two station 

network, as would be expected, due to the increased redundancy. However, as in the 

two station test, these results are inferior to those presented for the float solution in 

section 6.12.  
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Figure 6-41 - Zhang Rover Positional Errors with Corrections from Four Station Fixed Network 

(DUDE PMTH KEYW WEYB) (DOY 001) 

Table 6-32 - Zhang Rover Positional RMS Errors with Corrections from Four Station Fixed 

Network (DUDE PMTH KEYW WEYB) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 14.6 24.7 24.8 38.0 

032 10.6 17.4 21.4 29.5 

060 21.4 19.2 21.6 35.9 

091 18.2 22.9 29.8 41.8 

121 15.6 19.7 25.2 35.6 

213 13.7 21.2 25.3 35.7 

Average 15.7 20.9 24.7 36.1 
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Figure 6-42 - Zhang Rover Positional Errors with Corrections from Six Station Fixed Network 

(DUDE PMTH KEYW WEYB HOLY LOFT) (DOY 001) 

Table 6-33 - Zhang Rover Positional RMS Errors with Corrections from Six Station Fixed 

Network (DUDE PMTH KEYW WEYB HOLY LOFT) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 14.5 23.9 23.4 36.5 

032 10.6 16.7 22.0 29.6 

060 21.1 20.3 18.6 34.7 

091 18.1 26.3 29.1 43.2 

121 16.1 21.3 24.5 36.2 

213 12.7 19.8 21.6 31.9 

Average 15.5 21.4 23.2 35.4 
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6.12.2 PPP-RTK Comparison IAR at the User 

To compare how well the Zhang measurement model compares to the model in this 

study when undertaking IAR at the kinematic rover, two further tests will be 

undertaken. The six station networks that have been calculated, when ambiguities 

have been fixed and when they remain float, will be used to attempt an ambiguity 

fixed user solution.  

The results presented in Figure 6-43 and Table 6-34 use the six station float network. 

It is clear that the rover position has deteriorated as a result of attempting to 

undertake IAR. In this test, 35% of the ambiguities were fixed. The average RMS 

values of 17.8 mm, 18.2 mm, 25.1 mm and 36.3 mm show that error in east, north, 

up and 3D has deteriorated by approximately 3% compared to the float solution using 

the same corrections.   

 

Figure 6-43 - Zhang Fixed Rover Positional Errors with Corrections from Six Station Network 

(DUDE PMTH KEYW WEYB HOLY LOFT) (DOY 001) 
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Table 6-34 - Zhang Fixed Rover Positional RMS Errors with Corrections from Six Station 

Network (DUDE PMTH KEYW WEYB HOLY LOFT) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 23.7 21.2 33.4 46.1 

032 10.2 13.9 18.8 25.5 

060 19.0 17.7 24.8 35.9 

091 21.3 19.2 28,9 40.7 

121 17.8 16.4 21.8 32.6 

213 14.5 20.7 26.9 36.9 

Average 17.8 18.2 25.1 36.3 

 

The ambiguity fixed rover position when using the six station fixed network can be 

seen in Figure 6-44 for DOY 001 and Table 6-35. The RMS values for these results 

were 18.3 mm, 20.2 mm, 31.1 mm and 41.6 mm when 34% of the ambiguities were 

fixed. These results show deterioration compared to when using the six station float 

network in the previous test, approximately 15%, and when using a fixed six station 

network solution but a float user, approximately 18%.  
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Figure 6-44 - Zhang Fixed Rover Positional Errors with Corrections from Six Station Fixed 

Network (DUDE PMTH KEYW WEYB HOLY LOFT) (DOY 001) 

Table 6-35 - Zhang Fixed Rover Positional RMS Errors with Corrections from Six Station Fixed 

Network (DUDE PMTH KEYW WEYB HOLY LOFT) 

DOY East (mm) North (mm) Up (mm) 3D (mm) 

001 21.4 19.7 44.4 53.1 

032 11.0 16.9 24.4 31.7 

060 21.6 20.7 25.8 39.5 

091 18.5 23.4 31.2 43.2 

121 20.4 22.4 35.6 46.7 

213 16.8 18.3 25.1 35.3 

Average 18.3 20.2 31.1 41.6 
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These tests show that, as with the approach developed in this study, the Zhang 

approach does not provide an improvement with IAR. Instead, at the rover, the 

results are better when ambiguities are left as float values. This is contrary to what is 

shown in literature (Zhang et al., 2011). 

There could be a number of reasons why both methods have been unable to reliably 

fix integer ambiguities. Firstly, the data obtained from BIGF may contain some 

additional errors, which cause the ambiguities to be incorrectly estimated. However, 

this is unlikely as various stations have been used and there is no metadata 

indicating any problems with the data.  

Secondly, the process noise values applied in the Kalman filter may be incorrect and 

result in parameter estimates that are under or over constrained. However, various 

values have been tested throughout this study based on existing literature, as 

discussed in section 4.3.3.3. The values used in these tests were found to provide 

the best results.  

Thirdly, the fixing of the ambiguity parameters to integers, in the LAMBDA program, 

may be causing errors. Settings, such as the critical value, affect the number of 

ambiguities fixed and hence affect the potential accuracy. Various critical values 

have been tested and the ones used here provided the most realistic solutions.  

Finally, the manner in which the remaining parameters are updated after IAR could 

introduce errors. As previously discussed, if the ambiguity parameters change on the 

L1 and L2 frequencies and they are not in the ratio of 1:1.649, unrealistic jumps in 

other parameters, such as the troposphere can occur. This could lead to errors in the 

estimation of parameters after undertaking IAR.  

This alternative PPP-RTK approach was previously tested with a four station network 

in China, with interstation distances of 60 – 100 km and a 30 sec sampling rate. 

During the Zhang approach, ambiguity fixed positioning achieved accuracies of about 

1 cm and 5 cm for the horizontal and vertical components respectively. While 

ambiguity float positioning accuracies were in the range of 2 – 4 dm (Zhang et al., 

2011). The results presented in this thesis during ambiguity float testing, show similar 

accuracies to the ambiguity fixed positioning outlined in the previous Zhang study. 
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However, as discussed, the improvement shown when undertaking IAR could not be 

replicated.  

6.13 PPP-RTK Comparison Results Summary 

Table 6-36 shows a summary of the 3D RMS results presented in section 6.12. 

These results show that increasing the number of stations in the network has a 

positive impact on the accuracy of the user position. However, IAR has a negative 

effect on the solution.  

Table 6-36 - PPP-RTK Comparison Summary of Results 

 3D RMS (mm) 

Two Regional Stations 37.1 

Four Regional Stations 33.0 

Six Regional Stations 32.7 

Two Fixed Regional Stations 49.6 

Four Fixed Regional Stations 36.1 

Six Fixed Regional Stations 35.4 

Six Regional Stations – Fixed User 36.3 

Six Fixed Regional Stations – Fixed User 41.6 
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Chapter 7. Conclusions and Future Work 

This study set out to present a novel method for computing high rate UPD and 

satellite clock corrections from a network of reference receivers. It was then 

anticipated that these corrections could then be used to improve the position 

estimates of an unknown kinematic receiver. By using these corrections the 

ambiguities at the kinematic rover receiver should become integer in nature. 

Therefore, allowing IAR and consequently a further improvement in the position 

estimate of the unknown rover.  

7.1 Conclusions 

Chapter 6 outlined the results of a number of tests, which showed that it is possible 

to compute satellite clocks and UPDs simultaneously, using a large regional network 

of reference stations. Using these computed values as corrections at a rover site also 

showed that using these corrections provides an improvement to the rover position 

estimate, compared to using IGS final orbits alone and no UPDs. This is a major 

advance and of real benefit to the offshore community, as it could realise potentially 

faster centimetre level precision, on a global scale. 

PPP requires precise satellite orbits and clocks. The orbits are derived by a number 

of external agencies and can be predicted ahead by 12 hours due to the long 

wavelength characteristics of orbital perturbations. However, availability of real-time 

clocks is more of an issue. The IGS provide a real-time service but this is not 

guaranteed nor is its integrity ensured. An offshore provider needs in-house 

capability to provide real-time GNSS clocks. The fact they can be computed along 

with UPDs, for transmission to customers, will have highly significant impact.  

Section 6.6 showed that the number of stations used to compute the UPD and 

satellite clock corrections can have an impact on the results. It has been determined 

that at least four stations are required in the network to compute accurate 

corrections, which will provide a benefit to the rover positon. However, increasing the 

number of stations to six provides a further 5% improvement compared to four 

stations. Once the number of stations included in the network has reached six, little 

improvement can be seen by adding further stations. The six station network 
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provided RMS values for the rover position of 11.1 mm, 12.7 mm, 22.9 mm and 

28.6 mm in east, north, up and 3D respectively.  

The tests in section 6.4 confirmed that the distance between the network stations 

does not have a negative impact on the kinematic rover’s position. Using a six station 

local network, with interstation distances of approximately 150 km, provided RMS 

values of 13.4 mm, 13.0 mm, 24.2 mm and 31.2 mm in east, north, up and 3D. 

Therefore, these results are actually 9% inferior to the six station regional test. For 

many applications, it will not be possible to have such a dense network so close to 

the rover, so it is important that it does not have a detrimental effect on the result.  

Further testing showed that it is also beneficial to locate the rover centrally within the 

network. However, as the number of stations in the reference network is increased, 

the location of the user becomes less important to the accuracy of the position. 

Hence, there was 23% deterioration in the rover position solution when the user was 

located outside of the network when using a six station network compared to 60% 

when using a four station network. 

If the methods proposed here were to be used to provide corrections to users in real 

time, it is important that the system is robust. One factor to this is that the system 

must be capable of losing the observations from one or more stations, while 

continuing to seamlessly compute satellite clock and UPD corrections. Tests showed 

that it is possible to continue computing the corrections. However, it must be noted 

that due to the reduction in observations and therefore the decrease in redundancy, 

the accuracy of the corrections may be negatively affected.  

One main objective of the project was to improve both the accuracy of the corrections 

and the user position using IAR. However, multiple tests have shown that this has not 

been possible using the existing program. In all tests undertaken at the network and 

user components the fixing of ambiguities to integer values had a negative effect on 

the rover position. Potentially, there were multiple reasons for this deterioration, 

which were set out in section 6.9. However, in this instance, it is unclear what the 

exact reason for the failure is. Therefore, this is one area where further work would 

be required to improve the application of this study. 
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Comparisons with a similar PPP-RTK approach (Zhang et al., 2011) were made in 

section 6.12. These showed that when undertaking ambiguity float solutions on both 

approaches, the measurement model developed in this study performed favourably. 

For the same six station network, the measurement model presented in this study 

performed over 14% better when the RMS values were compared.  

During the comparisons with the alternative PPP-RTK approach, IAR was also 

undertaken on this measurement model. The ability to undertake IAR had already 

been proven to be possible using a four station network in China. However, the 

positive impact that would be expected when undertaking IAR could not be 

replicated. Undertaking IAR on this approach had the same negative impact on the 

results, as occurred when undertaking IAR on the measurement model developed in 

this study.  

A further aim of the project was to develop an approach that could result in similar 

convergence times to those in existing approaches. Existing approaches have 

convergence times of several tens of minutes at a mobile receiver (Laurichesse et 

al., 2008; Mervart et al., 2008; Geng et al., 2011). During testing of the approach in 

this study, a convergence time of one hour was assumed for all tests to allow 

comparable statistics to be computed. In some cases, such as when corrections were 

computed from just a two station network, the convergence time required nearly the 

full hour to create a fully converged solution. However, in other tests when additional 

network stations were used, the convergence time was reduced, to approximately 

45 minutes. Further work could lead to improved process noise values, which could 

in turn improve the convergence. In addition, the reliable undertaking of IAR could 

reduce convergence times, if explored further in the future.  

7.2 Future Work 

There are a number are factors that could further improve this study. Some of these 

are elements of the study that currently could be improved upon and others are 

factors that have been beyond the scope of this study. 

Firstly, the successful integration of IAR has not been possible. One reason for this 

may be the unsophisticated error detection within the program. DIA is used to detect 

if each observation fits to the parameter estimates. However, there are no tests to 



152 

 

see if ambiguities have been correctly fixed to integers, once they have been initially 

fixed. This means if the ambiguities are incorrectly fixed, they will remain so until the 

satellite disappears from view. More sophisticated software has a second Kalman 

filter running alongside the initial filter, which permanently runs an ambiguity float 

solution. This can be used to constantly check if the ambiguities in the primary 

Kalman filter have been correctly fixed.  

Secondly, as previously mentioned the convergence time for the rover solution is sub 

optimal, compared to similar existing methods. It is likely that this can be improved 

upon, especially if the successful integration of IAR can be undertaken. Further 

testing with different process noise values may also lead to small improvements to 

the convergence times of the user solution. 

Thirdly, the testing undertaken in Chapter 6  showed that the satellite clock and UPD 

corrections can be computed and transmitted over 100s of km. If the network of 

reference stations could be increased sufficiently across the globe, it would 

theoretically be possible to compute a global solution. This global set of UPD and 

satellite clock estimates could then be used to correct a rover position anywhere on 

the globe. However, testing would have to be done to assess the level of accuracy 

these corrections could achieve. Additionally, if this approach was taken, the amount 

of computational power required to process a global set of network stations would 

have to be considered.  

One benefit of the methodologies presented in this study is the use of the L1 and L2 

frequencies independently, instead of the LC linear combination. By using these GPS 

frequencies separately, the integration of additional frequencies becomes easier. The 

L5 frequency that is currently being phased into the GPS constellation, would deliver 

additional observations and redundancy to the measurement model, therefore 

providing the potential for increased accuracy. Further to this, additional GNSS, such 

as Galileo, could be utilised easily with their frequencies added to the measurement 

model. This would result in the receivers in the network and at the user, receiving 

observations from more satellites. Consequently, adding further redundancy to the 

measurement model.  

Finally, all the testing undertaken in this study has used static GNSS sites acting as a 

kinematic rover, to allow the accuracy of the corrections to be easily testing against 
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the known truth. However, to fully test the methodology’s capability to correct a 

kinematic rover receiver, observations would have to be collected for a kinematic 

receiver. If the true position of the kinematic receiver could be computed, this could 

subsequently be tested against the GPS computed rover solution. 



154 

 

 

  



155 

 

References 

Allinson, C. (2012) Hydrofest. Available at: 
http://www.ths.org.uk/documents/ths.org.uk/downloads/hydrofest_2012_(1)_overview
_-_survey_support_in_the_o&g_industry.pdf. 

Awange, J.L. (2012) 'Environmental monitoring using GNSS global navigation 
satellite systems'. New York ; London: New York ; London : Springer. 

Bertiger, W., Desai, S.D., Haines, B., Harvey, N., Moore, A.W., Owen, S. and Weiss, 
J.P. (2010) 'Single receiver phase ambiguity resolution with GPS data', Journal of 
Geodesy, 84(5), pp. 327-337. 

Blewitt, G. (1989) 'Carrier Phase Ambiguity Resolution for the Global Positioning 
System Applied to Geodetic Baselines up to 2000 Km', Journal of Geophysical 
Research-Solid Earth and Planets, 94(B8), pp. 10187-10203. 

Bona, P. (2000) 'Accuracy of GPS phase and code observations in practice', Acta 
Geodaetica et Geophysica Hungarica, 35(4), pp. 433-451. 

Clarke, P.J. and Penna, N.T. (2010) 'Ocean Tide Loading and Relative GNSS in the 
British Isles', Survey Review, 42(317), pp. 212-228. 

Dai, L., Wang, J., Rizos, C. and Han, S. (2003) 'Predicting atmospheric biases for 
real-time ambiguity resolution in GPS/GLONASS reference station networks', Journal 
of Geodesy, 76(11), pp. 617-628. 

de Jong, C.D. (2013) Satellite clocks and UPDs. Fugro Intersite, Internal Document. 

de Jong, K., Goode, M., Liu, X. and Stone, M. (2016) 'New Developments in Precise 
Offshore GNSS Positioning', in Zerr, B., Jaulin, L., Creuze, V., Debese, N., Quidu, I., 
Clement, B. and Billon-Coat, A. (eds.) Quantitative Monitoring of the Underwater 
Environment: Results of the International Marine Science and Technology Event 
MOQESM´14 in Brest, France. Cham: Springer International Publishing,  pp. 3-12. 

De Jonge, P. and Tiberius, C. (1996) 'The LAMBDA method for integer ambiguity 
estimation: implementation aspects', Publications of the Delft Computing Centre, 
LGR-Series, 12(12), pp. 1-47. 

Dekkiche, H., Kahlouche, S. and Abbas, H. (2010) 'Differential ionosphere modelling 
for single-reference long-baseline GPS kinematic positioning', Earth, planets and 
space, 62(12), pp. 915-922. 

Doherty, P., Raffi, E., Klobuchar, J. and El-Arini, M.B. (1994) Proceedings of ION 
GPS-94, part. 

Fang, P., Bevis, M., Bock, Y., Gutman, S. and Wolfe, D. (1998) 'GPS meteorology: 
Reducing systematic errors in geodetic estimates for zenith delay', Geophysical 
Research Letters, 25(19), pp. 3583-3586. 

Fugro (2017) Starfix. Available at: https://www.fugro.com/our-services/marine-asset-
integrity/satellite-positioning/starfix (Accessed: 12/4/17). 

http://www.ths.org.uk/documents/ths.org.uk/downloads/hydrofest_2012_(1)_overview_-_survey_support_in_the_o&g_industry.pdf
http://www.ths.org.uk/documents/ths.org.uk/downloads/hydrofest_2012_(1)_overview_-_survey_support_in_the_o&g_industry.pdf
http://www.fugro.com/our-services/marine-asset-integrity/satellite-positioning/starfix
http://www.fugro.com/our-services/marine-asset-integrity/satellite-positioning/starfix


156 

 

Ge, M., Gendt, G., Rothacher, M., Shi, C. and Liu, J. (2008) 'Resolution of GPS 
carrier-phase ambiguities in Precise Point Positioning ( PPP) with daily observations', 
Journal of Geodesy, 82(7), pp. 389-399. 

Geng, J., Meng, X., Teferle, F. and Dodson, A. (2010a) 'Performance of precise point 
positioning with ambiguity resolution for 1 to 4 hour observation periods', Survey 
Review, 42(316), pp. 155-165. 

Geng, J., Shi, C., Ge, M., Dodson, A., Lou, Y., Zhao, Q. and Liu, J. (2012) 'Improving 
the estimation of fractional- cycle biases for ambiguity resolution in precise point 
positioning', Journal of Geodesy, 86(8), pp. 579-589. 

Geng, J., Teferle, F.N., Meng, X. and Dodson, A.H. (2011) 'Towards PPP-RTK: 
Ambiguity resolution in real- time precise point positioning', Adv. Space Res., 47(10), 
pp. 1664-1673. 

Geng, J.H., Meng, X.L., Dodson, A.H. and Teferle, F.N. (2010b) 'Integer ambiguity 
resolution in precise point positioning: method comparison', Journal of Geodesy, 
84(9), pp. 569-581. 

Gurtner, W. (2007) RINEX: The Receiver Independant Exchange Format Version 
2.11. Available at: ftp://igs.org/pub/data/format/rinex211.txt (Accessed: 11/12/17). 

Hadas, T. and Bosy, J. (2015) 'IGS RTS precise orbits and clocks verification and 
quality degradation over time', GPS Solutions, 19(1), pp. 93-105. 

Hofmann-Wellenhof, B. (2008) GNSS--global navigation satellite systems GPS, 
GLONASS, Galileo, and more. Wien ; New York: Wien ; New York : Springer. 

International GNSS Service (2017a) IGS Product Avaliability. Available at: 
https://igscb.jpl.nasa.gov/components/prods_cb.html. 

International GNSS Service (2017b) Products. Available at: 
http://www.igs.org/products. 

Kalman, R.E. (1960) 'A New Approach to Linear Filtering and Prediction Problems', 
Journal of basic engineering., 82(1), pp. 35-45. 

Kleusberg, A. and Teunissen, P.J.G. (1998) GPS for geodesy. 2nd, completely rev. 
and extended ed.. edn. Berlin ; New York: Berlin ; New York : Springer. 

Kouba, J. (2009) A Guide to Using International GNSS Service Products. 

Kouba, J. and Héroux, P. (2001) 'Precise point positioning using IGS orbit and clock 
products', GPS solutions, 5(2), pp. 12-28. 

Laurichesse, D. (2011) 'The CNES Real-time PPP with undifferenced integer 
ambiguity resolution demonstrator', Proceedings of the 24th International Technical 
Meeting of the Satellite Division of the Institute of Navigation (Ion Gnss 2011), pp. 
654-662. 

Laurichesse, D., Mercier, F., Berthias, J. and Bijac, J. (2008) Proceedings of the 
2008 National Technical Meeting of The Institute of Navigation. 

ftp://igs.org/pub/data/format/rinex211.txt
http://www.igs.org/products


157 

 

Leick, A. (2015) GPS satellite surveying. Fourth edition / Alfred Leick, Lev Rapoport, 
Dmitry Tatarnikov.. edn. Hoboken : John Wiley & Sons. 

Li, P. and Zhang, X. (2014) 'Integrating GPS and GLONASS to accelerate 
convergence and initialization times of precise point positioning', GPS Solutions, 
18(3), pp. 461-471. 

Li, X.X., Ge, M.R., Zhang, H.P., Nischan, T. and Wickert, J. (2013) 'The GFZ real-
time GNSS precise positioning service system and its adaption for COMPASS', 
Advances in Space Research, 51(6), pp. 1008-1018. 

Liu, X. (2010) Global PPP IAR: GFZ approach. Fugro Intersite, Internal Document. 

Lyard, F., Lefevre, F., Letellier, T. and Francis, O. (2006) 'Modelling the global ocean 
tides: modern insights from FES2004', Ocean Dynamics, 56(5), pp. 394-415. 

Matsumoto, K., Takanezawa, T. and Ooe, M. (2000) 'Ocean Tide Models Developed 
by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A 
Global Model and a Regional Model around Japan', Journal of Oceanography, 56(5), 
pp. 567-581. 

Melbourne, W. (1985) Proceedings of the First Symposium on Precise Positioning 
with the Global Positioning System, Positioning with GPS-1985, Ed. CC Goad, 
Rockville, Maryland, pub. US Department of Commerce, NOAA. 

Mervart, L., Lukes, Z., Rocken, C. and Iwabuchi, T. (2008) Proceedings of ION 
GNSS. 

Odijk, D., Verhagen, S., Teunissen, P., Hernandez-Pajares, M., Juan, J.M., Sanz, J., 
Samson, J. and Tossaint, M. (2010) Proceedings of the 2010 International Technical 
Meeting of the Institute of Navigation. 

Ordnance Survey (2017) OS Net. Available at: 
https://www.ordnancesurvey.co.uk/business-and-government/products/os-net/ 
(Accessed: 12/4/17). 

Øvstedal, O., Kjørsvik, N. and Gjevestad, J. (2006) 'Surveying using GPS precise 
point positioning', XXII International FIG Congress, Munich, Germany. 

Sanz Subirana, J., Juan Zornoza, J.M. and Hernandez-Pajares, M. (2011) 
Ionosphere-free Combination for Dual Frequency Receivers. Available at: 
http://www.navipedia.net/index.php/Ionosphere-
free_Combination_for_Dual_Frequency_Receivers. 

Sideris, M.G. (2009) Observing our changing earth. Springer. 

Teunissen, P. (1993) Invited lecture, section IV theory and methodology, IAG general 
meeting, Beijing, China. 

Teunissen, P.J. (1994) Position Location and Navigation Symposium, 1994., IEEE. 
IEEE. 

Teunissen, P.J. (1995) 'The least-squares ambiguity decorrelation adjustment: a 
method for fast GPS integer ambiguity estimation', Journal of geodesy, 70(1-2), pp. 
65-82. 

http://www.ordnancesurvey.co.uk/business-and-government/products/os-net/
http://www.navipedia.net/index.php/Ionosphere-free_Combination_for_Dual_Frequency_Receivers
http://www.navipedia.net/index.php/Ionosphere-free_Combination_for_Dual_Frequency_Receivers


158 

 

Teunissen, P.J.G., Odijk, D. and Zhang, B. (2010) 'PPP-RTK: Results of CORS 
network-based PPP with integer ambiguity resolution', Journal of Aeronautics, 
Astronautics and Aviation, 42(4), pp. 223-230. 

The University of Nottingham (2017) BIGF - NERC British Isles continuous GNSS 
Facility. Available at: http://www.bigf.ac.uk/ (Accessed: 20/4/17). 

Verhagen, S.a.L., B. (2012) LAMBDA - Matlab implementation version 3.0. Delft 
University of Technology and Curtin University [Computer program]. 

Wanninger, L. (2004) Introduction to Network RTK. Available at: 
http://www.wasoft.de/e/iagwg451/intro/introduction.html (Accessed: 23/6/16). 

Wells, D.E., N. Beck, D. Delikaraoglou, A. Kleusberg, E.J. Krakiwsky, G. Lachapelle, 
R.B. Langley, M. Nakiboglu, K.P. Schwarz, J.M. Tranquilla and P. Vanicek (1986) 
Guide to GPS positioning. Fredericton, New Brunswick: Fredericton, New Brunswick : 
Canadian GPS Associates. 

Xu, G. (2003) GPS : theory, algorithms, and applications. New York: New York : 
Springer. 

Zhang, B.C., Teunissen, P.J.G. and Odijk, D. (2011) 'A Novel Un-differenced PPP-
RTK concept', Journal of Navigation, 64, pp. S180-S191. 

Zhang, Y., Wang, Q. and Jiang, X. (2017) 'Property Analysis of the Real-Time 
Uncalibrated Phase Delay Product Generated by Regional Reference Stations and 
Its Influence on Precise Point Positioning Ambiguity Resolution', Sensors, 17(5), p. 
1162. 

 

 

 

 

 

 

 

 

 

 

 

http://www.bigf.ac.uk/
http://www.wasoft.de/e/iagwg451/intro/introduction.html


159 

 

 

 

 

 

 

 

 

 

 

 

 

 


