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Abstract

Assurance provides a Bayesian alternative to commonly used frequentist sample size cal-

culation methods. As part of sample size calculations, an estimate of a treatment’s effect

size or a test’s accuracy is typically required. When using Bayesian methods, these un-

known quantities can be represented with a prior distribution, rather than using a single

point estimate, allowing for more nuanced information about the unknown quantity to be

incorporated into the sample size calculation.

In this thesis, we first review common sample size calculation methods and elicitation

techniques. We consider the problem of aggregating expert prior beliefs to form a single

prior distribution, to be used in sample size calculations. Common methods of prior

distribution aggregation include mathematical methods, which use a mathematical rule

to combine priors, and behavioural methods, which provide experts with a framework to

assist them in creating an aggregate prior during a group discussion.

Though not a recent development, assurance is not commonly used in practice. We

provide a case study of a diagnostic study, investigating a novel diagnostic test for Motor

Neurone Disease, for which prior distributions are elicited and aggregated across experts,

and sample size calculations are conducted using both frequentist and assurance methods.

As a result of the requirements involved in using each method of aggregation, few

comparisons between behavioural and mathematical aggregation methods exist. In order

to make comparisons, we structured a series of elicitations as part of the case study. We

demonstrate how any method of aggregation outperforms individual experts, and that the

Sheffield Elicitation Framework and Classical Method perform best out of the aggregation

methods compared. We also demonstrate that all of the considered aggregation methods

perform better than a randomly selected individual expert.

In order to explore the behaviour of assurance, we provide a number of simulation

studies comparing assurance and power calculations. We investigate the sensitivity of

power and assurance to changes in input parameters, the effect of misrepresenting an effect

size, and the effect of using different prior distributions in the design and analysis stages

of assurance calculations. We consider these behaviours for both Normal and binomial

observations.

We use the resulting aggregated prior distributions for assurance and power calcula-

tions, to determine appropriate sample sizes within the case study and more generally. We

compare assurance calculations with different priors, analysis methods and target values

to further demonstrate differences between assurance and power, and their properties. We

demonstrate how the choice of model and prior distribution can have a large impact on

the final results of a sample size calculation.
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Chapter 1

Introduction

1.1 Background

An important step in the design of many experiments, including clinical trials and diag-

nostic accuracy studies, is the calculation of a required sample size. This number informs

researchers of the size of the sample they need to collect in order to make scientifically

valid conclusions. However, this is often challenging in practice.

In order to calculate a required sample size, most standard approaches require a value

for the effect size of interest. Of course, if the effect size of interest was known accurately

then there is little need for the experiment in the first place. As such, this effect size must

be estimated, or otherwise specified, for the sample size calculations. Often, this can be

done by selecting the minimum effect size the researchers deem practically significant, or

based on previous studies or expert knowledge.

If the effect size used in the sample size calculations does not correspond closely with

what is observed in the experiment, then the results of the analysis may not be sound. One

method which may provide a more robust sample size calculation is the use of Bayesian

assurance. Instead of a single point estimate for the effect size, a prior distribution is

placed on the effect. This means that a range of possible effect sizes are accounted for

within the assurance calculation.

While there has been much work developing and applying Bayesian assurance as a

method for sample size calculation, there has been less literature investigating the effect

of elicited prior distributions, whether from individual experts or aggregated priors. In this

thesis, through simulation and a case study, we investigate the effects of prior distributions

on assurance calculations, and make comparisons to commonly used statistical power

calculations.

In the wider elicitation literature, there have been few attempts to compare behavioural

and mathematical approaches of expert judgment aggregation. While many mathematical
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aggregation methods have been compared, we are not aware of any comparisons between

mathematical and behavioural aggregation methods. Furthermore, there are few com-

parisons between Bayesian and opinion pooling methods of aggregation. In this thesis,

we present novel comparisons between expert judgement aggregation methods for prior

distributions, some of which have been published in Williams et al. (2021).

1.2 Bayesian Inference

Frequentist statistics typically makes inferences based on hypothesis tests and confidence

intervals, and utilises only observations in parameter estimation. Parameters are assumed

to have some fixed value to be inferred, and uncertainty is confined to the observations.

As a result, testing involves the probability of the observations producing a test statistic

at least as extreme than the one observed, assuming a null hypothesis is true.

Bayesian inference, by contrast, considers inferences from an alternative point of view.

Instead of assuming parameters take fixed values to be estimated, they are regarded as

uncertain quantities to be given probability distributions. In our context, this allows for

a probability distribution to be placed on the possible effect sizes.

In order to do this, Bayesian inference utilises Bayes theorem which, for observations

X and a parameter θ.

P (θ | X) =
P (X | θ)P (θ)

P (X)
(1.1)

where P (θ | X) is the posterior distribution, P (X | θ) is the likelihood, P (X) is a normal-

ising constant, and P (θ) is the prior distribution.

The prior distribution represents the state of knowledge about θ before incorporating

the observations, the likelihood represents the probability of observing the data conditional

on θ and the posterior distribution represents the state of knowledge about θ having

observed the data.

The likelihood is determined by the type of data being collected. In the cases considered

within this thesis, we focus on binomial and normal observations. The form of the prior

distributions is typically chosen by the statistician performing the analysis.

There is a view that the requirement for the statistician to choose a prior distributions

brings bias and subjectivity to an analysis. One way that this is often addressed is through

uninformative priors. A common choice for an uninformative prior is a flat, or uniform,

prior distribution. The probability density function for this type of prior is

f(θ) =
1

b− a
(1.2)

where a and b are the minimum and maximum of the range for the parameter θ. In the case

of parameters with an infinite support, a flat distribution can still be used. Such a prior
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distribution, which does not integrate to one, is known as an improper prior distribution.

One common criticism of the use of uniform prior distributions as uninformative pri-

ors is that they do not always provide an impartial or unbiased representation of the

parameter. For example, a prior distribution which is uniform will not be uniform when

transformed, such as on a log or odds scale. The choice of whether the parameter should

be uniformly distributed, or the log or odds-transformed parameter should have a uniform

distribution, then influences the resulting posterior distribution.

Additionally, if we consider a parameter bounded between zero and one, for example,

a uniform distribution would suggest each parameter value is equally likely. However, if

interest lay in whether the parameter was greater than 0.01, this uniform prior would

provide a 99% probability of this being the case. This would then suggest there is strong

prior evidence in favour of a noteworthy result, despite the prior choice aiming to be

uninformative.

The subjectivity of a prior distribution can be instead viewed as a benefit of Bayesian

statistics (Goldstein, 2006). If there is information known prior to the analysis, it can

be included within the prior distribution. For example, this could be in the form of

results from previous experiments or, as outlined in Chapter 3, as elicited information

from experts in a relevant field.

An important consideration is whose beliefs or knowledge is being represented by the

prior distribution. Given a single expert, it makes sense that the prior represents their

beliefs. In the case of a group of experts, however, an aggregated prior distribution may

not be representative of any single expert’s personal views. In such a case, the aggregated

prior distribution may be thought to represent the views of a decision maker, who considers

information provided by the group. The prior does not necessarily have to belong to a real

individual. The Sheffield Elicitation Framework provides a method of elicitation, outlined

in Chapter 3, which aims to elicit the opinion of an imaginary third party who has taken

into account the evidence and opinions provided by a group of experts (O’Hagan, 2019).

1.2.1 Computation of Posterior distributions

In many of the analyses presented in this thesis, the prior distribution can be chosen

to be conjugate to the likelihood. Conjugacy means that the posterior distribution is

of the same form as the prior distribution, allowing for a tractable analytical solution.

For binomial observations, modelled with a binomial likelihood, the conjugate prior is a

Beta distribution. The parameters of the Beta posterior distribution can be calculated

analytically, given the prior distribution parameters and observed data.

However, when aggregating prior distributions together mathematically, the resulting

distribution is often a pool of multiple distributions. Such distributions may no longer

take the form of a simple parametric distribution, and instead require computational
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methods in order to obtain a posterior distribution (Gelman et al., 2013). One common

set of algorithms which are used to do this are Markov chain Monte Carlo, or MCMC,

algorithms.

MCMC methods construct a Markov chain, which has the posterior distribution as its

stationary distribution. When the Markov chain has reached this stationary distribution,

the MCMC is said to have converged to the posterior distribution. It is not known with

certainty, however, when the algorithm has reached this convergence. As such, a number

of diagnostic methods can be employed. The simplest methods may involve checking trace

plots to ensure there is no longer any drift in the sampled values, or checks for autocorre-

lation (Roy, 2020). There are many additional statistics which can also be calculated to

check for convergence (Cowles and Carlin, 1996; Plummer et al., 2006; Smith, 2007).

This thesis will utilise both the JAGS and Stan programs, through the ‘rjags’ package

(Plummer, 2016) and ‘stan’ package (Carpenter et al., 2017), in order to obtain posterior

samples when the prior distribution is not conjugate to the likelihood function.

JAGS, similar to the program BUGS (Lunn et al., 2000), obtains samples from the

posterior distribution using Gibbs sampling. Gibbs samplers work by taking draws of each

parameter from their full conditional distributions conditional on the most recent draws

of all the other parameters in the model.

For example, if we consider a model with data, y, and three parameters, θ1, θ2, and

θ3, the m’th draw of the posterior for each will be given by

θ
(m)
1 ∼ p(θ1 | θ(m−1)2 , θ

(m−1)
3 , y) (1.3)

θ
(m)
2 ∼ p(θ2 | θ(m)

1 , θ
(m−1)
3 , y) (1.4)

θ
(m)
3 ∼ p(θ3 | θ(m)

1 , θ
(m)
2 , y) (1.5)

By running the sampler for a large number of m iterations, a sample from the posterior

is obtained. Gibbs samplers requires initial starting values, when m = 1. It may take some

time for the sampler to converge to the posterior distribution from these initial values,

and so initial draws are often discarded from the posterior samples. By removing these

initial values, and keeping only those which have converged to the posterior distribution,

the sample should only contain draws from the posterior distribution.

Stan uses a Hamiltonian Monte Carlo (HMC) algorithm in order to obtain posterior

samples. HMC uses an additional momentum parameter to more efficiently sample the

parameter space (Neal, 2011). This efficiency comes at the cost of increased computational

complexity, and as such, both Stan and JAGS have particular advantages and disadvan-

tages for different classes of models.
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Figure 1.1: BIMC readings from patients with and without MND, log scaled. Patients known to
have MND are labelled 1, and those known not to have MND are labelled 0.

1.3 Clinical trial case study

Throughout this thesis, we utilise a diagnostic accuracy study as a case study for the

methods discussed. This study had been designed and submitted for review, with feedback

suggesting the designers should consider the inclusion of Bayesian methods.

The study focuses on the diagnosis of Motor Neurone Disease (MND). Presently, MND

is often diagnosed using the Awaji criteria (de Carvalho et al., 2008; Costa et al., 2012),

which involves looking for degeneration of both Upper Motor Neurones (UMN) and Lower

Motor Neurones (LMN). While evidence of UMN degeneration is often detected using

electromyography, the LMN are usually assessed physically by a clinician. This assessment

involves physical manipulation of limbs, and is susceptible to varying ability and experience

of clinicians, and difficulty in detecting early-stage or low levels of neurone degeneration.

A new diagnostic test has been developed, and is aimed to replace the clinician’s as-

sessment of the LMN. The Beta-band Intermuscular Cohesion (BIMC) test takes electrical

readings from pairs of muscles to assess the neurones. This allows for a more standardised

test, which may be able to detect deterioration before physical symptoms become severe.

It is proposed that BIMC could be used within the Awaji criteria to improve diagnoses.

Figure 1.1 provides initial results from a previous laboratory study. BIMC readings

between pairs of muscles, two pairs from the leg (MG.EDB and TA.EDB) and two pairs

from the arm (EDC.FDI and FDS.FDI), are provided from a group of patients known to

have, or not have, MND from a previous diagnosis. As the plot shows, those with MND

tend to have lower readings from the BIMC test.

While the BIMC test is designed to be used alongside further criteria for a diagnosis,
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Figure 1.2: BIMC receiver operating characteristic curve

Table 1.1: BIMC Readings

BIMC Reading Area under curve PPV NPV

MG.EDB 0.782 0.931 0.315
TA.EDB 0.759 0.931 0.239
EDC.FDI 0.775 0.967 0.25
FDS.FDI 0.820 0.902 0.391

we also consider how it may perform alone. Figure 1.2 provides receiver operating char-

acteristic (ROC) curves for each muscle pair measured. These curves show the sensitivity

and specificity achievable by the BIMC test for different cutoffs. The further the curves

are from the diagonal, the better the test is performing. This figure suggests that each of

the muscle pairs seems to perform similarly.

Table 1.1 provides further details. The area under an ROC curve can be used to

measure the performance of a test, with the range of possible values of the area between

0.5 and 1. As it shows, using the test on the FDS.FDI muscle combination performs best.

The table also considers positive predictive values (PPV) and negative predictive values

(NPV). The PPV is the proportion of positive results which are true positives, and the

NPV the proportion of negative results which are true negatives. The PPV and NPV

values in Table 1.1 have been found by choosing a cutoff which maximises the minimum

value of the sensitivity and specificity. It appears from these results that the BIMC test

may have some reasonable diagnostic ability, which may further be improved by being

used within the Awaji criteria.
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n patients enter trial

All patients are tested
with Awaji and BIMC

Negative Awaji Result Positive Awaji Result

Remaining patients
are retested after six
months

Positive Awaji Result
Patients leave for treat-
ment

Negative Awaji Result
Undiagnosed patients
leave study

Figure 1.3: Format of BIMC study.

1.3.1 Trial Design

The trial aims to compare current Awaji criteria diagnosis with an Awaji criteria diagnosis

including a BIMC test. The trial designers anticipate that the inclusion of the BIMC test

as part of the Awaji criteria will allow for MND to be diagnosed earlier in patients than

use of the Awaji criteria as it is currently used.

Figure 1.3 outlines the design of the study. Patients are initially tested using both the

Awaji criteria and the BIMC test. Those who receive a positive diagnosis from the Awaji

criteria will leave the study to receive treatment at this point. The results from the BIMC

test will not affect the treatment of patients during this study.

After a further six months, those patients who remain in the study will be tested under

the Awaji criteria again. Those who receive a positive Awaji criteria diagnosis will be pro-

gressed to treatment for the disease. Due to the speed at which MND usually progresses,

the researchers anticipate that any of the initial patients with MND will be diagnosed by

this stage. As such, for the purpose of this study, the Awaji criteria diagnosis after six

months is considered the reference standard against which BIMC will be compared. The

Awaji criteria can henceforth be referred to as the reference test (RT), while the BIMC

test alongside the Awaji criteria can be referred to as the experimental test (ET).

It is the aim of this study to investigate whether the BIMC test will be able to positively

identify patients with MND at the initial time point, who would otherwise have been

diagnosed at the later time point after six months. This earlier diagnosis has many positive

implications for the treatment of patients with MND and recruitment of patients to future

trials into new treatments for MND.

The results from the trial were to be analysed using McNemar’s test. We will also
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present Bayesian alternatives, to allow for a fully Bayesian design and analysis of the

study. In order to calculate a sample size based on McNemar’s test, estimates of the

number of patients receiving each combination of RT and ET results were required. The

Bayesian approaches are based around the proportion of patients who are diagnosed six

months earlier using BIMC than they would otherwise be with the Awaji criteria alone.

The model parameters which are to be elicited have been chosen so they can be used in

both sample size calculations.

McNemar’s test is outlined in Chapter 2, and the Bayesian model is as follows.

Of the n patients initially recruited for the trial, n1 will receive a positive Awaji

diagnosis at the first time point. We model n1 as coming from a binomial distribution,

with probability η,

n1 | η ∼ Binomial(n, η) (1.6)

Of the remaining n − n1 patients, n2 will receive a positive Awaji diagnosis at the

second time point. Again, we model n2 as coming from a binomial distribution, with

probability µ,

n2 | µ ∼ Binomial(n− n1, µ) (1.7)

The remaining n − n1 − n2 patients will then receive a negative Awaji diagnosis at

both time points in the trial, and thus not be diagnosed with MND during the course of

the trial.

We consider the total number of patients receiving a positive BIMC test, b, as belonging

to one of three groups. The first group, b1, is those who also received a positive Awaji

test at the first time point, the second, b2, those who received a positive Awaji test at the

second time point, and third, b3, those who did not receive a positive Awaji test at all.

These three groups are modelled as binomial distributions, with probabilities θ1, θ2, and

θ3 respectively,

b1 | θ1 ∼ Binomial(n1, θ1) (1.8)

b2 | θ2 ∼ Binomial(n2, θ2) (1.9)

b3 | θ3 ∼ Binomial(n− n1 − n2, θ3) (1.10)

We can alternatively express each count in terms of n, by combining the probabilities

above appropriately. That is,

9



Chapter 1. Introduction

Table 1.2: Model Terms

Parameter Definition

η P(positive RT at the first time point)
µ P(positive RT at the second time point| negative RT at the first time point)
θ1 P(positive ET result at first time point| positive RT at the first time point)
θ2 P(positive ET result at first time point| positive RT at the second time point)
θ3 P(positive ET result at first time point| negative RT for both time points)

Table 1.3: Total patients with each test result

Equation Expected number of...

n Total sample size
nη Total patients with a positive RT at the first time

point
n(1− η)µ Total patients with a positive RT at the second time

point
n(η + (1− η)µ) Total patients with a positive RT

nηθ1 Total patients with a positive ET with a positive RT
at the first time point

n(1− η)µθ2 Total patients with a positive ET with a positive RT
at the second time point

n(1− η)(1− µ)θ3 Total patients with a positive ET with negative RT at
both time points

n(ηθ1 + (1− η)µθ2 + (1− η)(1− µ)θ3) Total patients with a positive ET

n1 | η ∼ Binomial(n, η) (1.11)

n2 | η, µ ∼ Binomial(n, [1− η]µ) (1.12)

b1 | η, θ1 ∼ Binomial(n, ηθ1) (1.13)

b2 | η, µ, θ2 ∼ Binomial(n, [1− η]µθ2) (1.14)

b3 | η, µ, θ3 ∼ Binomial(n, [1− η][1− µ]θ3) (1.15)

The parameters of the model are summarised in Table 1.2. Prior distributions were

then elicited for each of these parameters. While each parameter may be modelled to

have a Beta prior distribution to ensure conjugacy, we also considered a number of other

distributions to allow for flexibility in the elicitations.

Based on Table 1.2, the expected number of patients within each group can also be

calculated. The results are presented in Table 1.3. These quantities were used during the

elicitations to present the experts’ information back to them, as a check of their values.

The Bayesian analysis has as its subject the parameter θ2, as this represents the im-

provement from the BIMC test, i.e. the proportion of patients who would be diagnosed
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six months earlier.

There are a number of ways that this trial could be analysed from a frequentist per-

spective. We focus on McNemar’s test, as it is the intended analysis method chosen by

the trial designers.

In order to calculate a sample size for a McNemar’s test, the expected proportions of

patients with a positive reference test and negative experimental test result, and negative

reference test and positive experimental test result, are required. These values can be

inferred from the elicited parameters.

The proportion of patients with a positive Awaji criteria diagnosis at the first time

point, but negative BIMC test result, is given by η(1 − θ1). The proportion of patients

with a negative Awaji criteria diagnosis at the first time point, but a positive BIMC test

result, is given by (1− η)µθ2 + (1− η)(1− µ)θ3. This contains patients from two groups,

namely those with a positive BIMC test and a positive Awaji diagnosis after six months,

and those with a positive BIMC test and no positive Awaji diagnosis.

1.4 Thesis Outline

The remainder of this thesis is comprised of six chapters.

Chapter 2 reviews methods of sample size calculation. In particular, we focus on the

minimum sample sizes required for a chosen statistical power or Bayesian assurance. We

review commonly used approaches to determining the inputs to power calculations, and

discuss issues which can arise from misspecification, where the chosen inputs do not cor-

respond with the observed effect sizes in the trial. We also review the inputs to assurance

calculations, in the form of prior distributions. The prior distributions chosen for the

design and analysis stages both affect the assurance. We also consider how the required

level of power or assurance is chosen, and some other additional considerations.

Chapter 3 reviews elicitation methodologies, and a number of prior aggregation meth-

ods. We outline the elicitation process and popular elicitation techniques, and the cog-

nitive biases which drive their use. We then review elicitation aggregation methods for

combining multiple expert judgments into a single prior distribution. We focus on common

mathematical aggregation methods, which use a predefined mathematical rule to aggre-

gate distributions, and a behavioural aggregation method, which provides a framework to

allow the group of experts to form a consensus view among themselves. We also implement

and discuss two elicitations for the aforementioned BIMC case study, which were designed

to allow comparisons between prior aggregation methods.

Chapter 4 compares prior aggregation methods using the BIMC case study. We first

consider results from the experts from two rounds of elicitation, comparing their perfor-

mance against each other. We then use cross-validation to compare aggregation methods
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against each other and the individual experts, across the two groups of experts separately

and combined. We finally present the aggregated model parameters required for assurance

calculations for the BIMC trial, for each aggregation method considered.

Chapter 5 investigates assurance using simulations. We first present simulations demon-

strating how power and assurance change as sample sizes or inputs vary. We then compare

assurance and power under similar parameter inputs, to discuss differences under compa-

rable scenarios. We also simulate assurances where the prior used for the design and

analysis stages differ, and discuss how this affects the assurance calculations. Simulations

considering inputs which do not correspond to observed effect sizes, and inputs from previ-

ous trials, are also presented. Finally, we compare aggregation methods at different stages

of an assurance calculation.

Chapter 6 investigates the calculation of sample sizes using power and assurance with

the aggregated prior distributions from Chapter 4. We use Minimal Clinically Important

Differences elicited from experts alongside the aggregated distributions from chapter three

as a basis for power and assurance calculations, incorporating both in a number of different

ways. We also consider an additional sceptical prior, and both a Bayesian and Frequentist

analysis, for assurance calculations and present the resulting sample sizes. Finally, we

consider a maximum number of feasibly recruitable patients, and some possible assurance,

power, and detectable effect size values which could be achieved for a study of that size.

Finally, we present conclusions and identify future work which could be completed in

this area.
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Chapter 2

Sample Size Calculations

2.1 Introduction

In this chapter we review sample size calculations, using statistical power and Bayesian

assurance. Sample size calculations are a necessary step in the design of experiments, and

are commonly required when designing and seeking approval for clinical trials.

We begin by outlining the importance of sample size calculations. We then review

statistical power, and how it is used to determine sample sizes. We discuss multiple options

for determining the required parameters for the calculations, and discuss the implications

of misspecifying these inputs. We then discuss Bayesian assurance, which takes the form

of the probability of success for a trial. We also consider how prior distributions can be

used in the calculations, for both the design and analysis.

Finally, we discuss how a level of power or assurance can be chosen for a trial, before

discussing other considerations such as dropout rates.

2.2 Sample Size Calculations

When planning and designing any experiment, the size of the sample to be collected is an

important consideration. The larger the sample size, the more accurate and robust the

results are likely to be. With this larger sample size, however, comes greater requirements

for the experiment. These are typically increased financial costs or additional difficulty in

recruiting subjects.

Sample sizes can be chosen to minimise these costs (Bacchetti et al., 2008). Such

methods can focus on cost efficiency, or selecting the sample size that minimises the

average cost per subject. Most commonly used methods focus on minimising the sample

size such that a certain result can be detected to some level of accuracy.

In clinical settings, sample size calculations are very important. From an ethical stand-

point, trials should only not be conducted with patients when they are not scientifically
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justified (WMA, 2001). A trial that does not have scientific justification or worth cannot

provide a benefit, and thus any potential risk of harm to patients through action or inac-

tion cannot be ethically justified (Rutstein, 1969). This scientific worth comes not only

from the validity of the hypothesis being tested, but also the manner in which it is being

tested.

Clinical equipoise refers to when a researcher does not believe that any treatment in

any arm of a clinical trial is superior to another. Should a researcher have reason to

believe one treatment is superior to the others, then ethically they should only provide

their patients with the superior treatment (Freedman, 1987). Some suggest an alternative

view should be taken to allow for treatments with different perceived effectiveness. For

example, Shamoo (2008) suggests clinical equipoise may not be adhered to in Phase 1

trials. Phase 1 trials occur early in the process of treatment development, meaning few

patients are enrolled and the outcomes are less well known. De Meulemeester et al. (2018)

propose that randomised clinical trials should have a clear hypothesis for which there is

still uncertainty, and that the uncertainty can be established through a systematic review.

In a review of literature, they found that over half, a total of 56%, of randomised clinical

trials did not fulfil these criteria.

The sample size of a clinical trial determines how many patients will be provided

with a new treatment. Exposing an unnecessarily high number of patients to treatment,

especially a less well understood treatment such as in a Phase 1 trial, is also unethical. In

order to minimise risks to patients, only the number which is required to should receive

the treatment.

This problem is not a new one for clinical trial statisticians, and so many methods

have been developed to design trials that balance the ethical considerations with collecting

strong evidence. Adaptive trials, for example, allow for researchers to adjust the allocation

of patients to treatments based on initial results, while still maintaining the scientific

quality of the results (Laage et al., 2017). Other options can include designing trials to

ensure all patients receive an effective treatment or ending trials early if it becomes clear

the treatment is not effective.

In general, the requirements to conduct a sample size calculation are similar irrespective

of the approach taken. The type of analysis to be used to analyse the data should be known

prior to calculating the sample size. In addition, information about the effect size being

investigated is also required. This information, which is used as an input to the sample

size calculation, can be an estimate of the true effect size, or a minimum clinically relevant

effect size.

Herein lies one of the main difficulties in calculating sample sizes. If the effect size is

already known with a high level of certainty, then a study is redundant. If the effect size

is not known, then the calculations may not accurately reflect data gathered in the study,
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and thus provide a poor estimate for the sample size needed.

The most common method of calculating the required sample size is to use statistical

power based on the test to be conducted in the analysis of the trial. In the following

sections, we will first consider statistical power, before reviewing a Bayesian alternative

known as assurance.

2.3 Power

When conducting hypothesis tests, there are two common errors (Cohen, 2013). Type I

errors, or false positives, occur when a null hypothesis is rejected when it was in fact true.

Type II errors, or false negatives, occur when a null hypothesis should have been rejected,

but was not.

Figure 2.1 provides a visual depiction of these errors. We take an example with a

hypothesis test, with a simple null and alternative hypothesis. The distribution of the test

statistic under the null hypothesis, here in a dashed line, has a critical value displayed by

the vertical line. This critical value is the cutoff where the null hypothesis is rejected if the

test statistic is greater than the critical value. Conversely, if the calculated test statistic

is below this critical value, the null hypothesis is not rejected.

The probability of a Type I error is the area of the distribution that is greater than the

critical value, shown in red. This represents the probability of rejecting the null hypothesis,

even if it is true. This area is also the significance level of the test, or α, which should be

chosen prior to the analysis.

The second distribution in the plot represents the distribution of the test statistic

under the alternative hypothesis, here displayed as a solid line.

The probability of a Type II error is the area under this curve which is below the

critical value, shown in dark blue. This represents the probability of not rejecting the null

hypothesis, even though the alternative hypothesis is true. This area is denoted by β.

The power of the test is 1 − β, and is displayed as the light blue area in the plot.

The power of the test is the probability that the null hypothesis is rejected, if the null

hypothesis is not true.

There is a trade-off between the selected values of α and β. As the critical value

changes, α and β will both change, in opposite directions to each other. For example,

in Figure 2.1, if the critical value was increased, the value of α would decrease while the

value of β would increase.

Commonly used values for α include 0.05 and 0.01, while commonly used values for

1 − β include 0.8 and 0.9. Generally, studies are to be designed around these values as

they provide a compromise between the minimisation of both errors. The selection of

target values can sometimes be influenced by the importance of avoiding Type I or Type
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Figure 2.1: Type I and II errors. The dashed line represents the distribution of the test statistic
under the null hypothesis, and the solid line the distribution of the test statistic under the alter-
native distribution. The vertical line represents the test statistic critical value for significance, the
red area is the Type I error, the dark blue area is the Type II error, and the light blue area is the
power.

II errors. For example, in cases where stronger evidence is required, a lower value of α

may be used, while early-stage trials may use larger α values such as 0.1.

As the true effect is unknown, the value of 1− β relies on estimates of the size of the

effect and sample standard deviation. The standard deviation of the estimate of the effect,

σeffect is related to the sample size, n, and sample standard deviation, σ, via

σeffect =
σ√
n

(2.1)

As the significance of an effect is related to its standard deviation, an increase in the

sample size will result in smaller effect sizes being found statistically significant, and vice

versa. This relationship allows for the sample size which provides a set level of power for

a given effect size to be calculated (Meinert, 2009; Friedman et al., 2010). Increasing the

sample size decreases the standard deviation of the estimate of the effect, which in turn

will narrow the confidence intervals for the estimate.

Problems surrounding sample sizes and p-values are commonly labelled as major con-

tributors to the replication crisis. The replication crisis refers to the lack of consistency

between initial study results and replications, where findings are not repeated in subse-

quent experiments (Ioannidis, 2005). These concerns are largely focused in psychology

articles, though they affect many other experimental-based disciplines (Maxwell et al.,

2015). Part of the issue could be as a result of Type I errors, as an α of 0.05 suggests a

5% probability of rejecting the null hypothesis when it is true.

Properly powered replications could, likewise, fail to find a significant effect when one

is truly there. For trials with low power the probability of failing to find an effect that
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Figure 2.2: The dashed line represents the distribution of the test statistic under the null hypoth-
esis, and the solid line the distribution of the test statistic under the alternative distribution as
observed. The vertical line represents the test statistic critical values for significance, the red area
is the probability of a significant result, the dark blue area is the Type II error, and the light blue
area is the power.

does exist can be very high. Figure 2.2 provides an example where the distribution of

the test statistic given the true effect size, shown as a solid curve, is very close to the

distribution of the test statistic under the null hypothesis, the dashed curve, which has

led to a power very close to the significance level. Equivalently, this means the probability

of a Type II error is close to 1− α. We further discuss consequences of low powered tests

in Section 2.3.3.

Button et al. (2013) estimate the median statistical power in neuroscience articles to

be between 0.08 and 0.31. They give an example of a trial that is attempting to replicate

a previous result.

Consider an initial trial that finds an effect size with an associated p-value of 0.05.

This corresponds to an effect size of 1.96σeffect.

If this effect is assumed to be the true effect, and a second trial attempts to replicate

it, there is only a probability of 0.5 of a significant result being found. Figure 2.3 shows

why. For simplicity, we will use σeffect = 1, and thus an effect size of 1.96. As the trial

will obtain a significant result if an effect is found with a corresponding p-value of less

than 0.05, then only the light blue area in the plot will provide a significant result. The

dark blue area then corresponds to a non-significant result.

In this scenario, the replication will not find a significant effect half of the time. This

would be true even if the effect size of 1.96 was correct, as the power of the test is 0.5. By

increasing the sample size in the second trial compared to the first, the estimate for σeffect

can be reduced, which in turn will increase the power, thus increasing the probability to

replicate the effect.
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Figure 2.3: The dashed lines represent a null hypothesis, and the solid line the true effect of 1.96
(with a standard deviation of 1). The light blue area is the probability of a significant result, and
the dark blue is the probability of making a Type II error.

If a trial is to be successful, and provide results that are conclusive and valid, then

it is important it has a high level of power. The following sections will outline how this

can be done through an example power calculation, and details about how the parameters

required for a power calculation can be chosen.

2.3.1 Power Calculations

Power can be defined as

Power = P (reject H0 | H1 true) (2.2)

As such, a power calculation is dependent on the type of statistical test which will be

used in the analysis stage. Machin et al. (2009) provide details for various tests.

We first consider a simple case, where a one sample Z-test is being used to test whether

the mean of a population is equal to a particular value. We can state the null hypothesis

H0 : µ = µ0, and suppose that the sample mean is x̄, the known population standard

deviation is σ, and the sample size is n. Then, the critical value for significance will

correspond to z, given by

z = µ0 + 1.96
σ√
n

(2.3)

The power is then the probability of observing a value greater than or equal to z, under

the alternative hypothesis H1 : µ = µ1.

Power = P (Z > z) =
z − µ1

σ√
n

(2.4)
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It is more often the case that the alternative hypothesis is specified as an inequality,

such as H1 : µ > µ0. In these cases, a value needs to be selected for µ1 by the researcher.

The typical approach is outlined in the following section.

2.3.2 Specification of Parameters

The choice of parameter values in power calculations is an important one. The required

sample size is entirely dependent on the inputs to the power calculations, and so the

researcher calculating a sample size needs to consider them carefully.

Cook et al. (2014) reviews clinical trial articles, and identifies a number of methods

used to estimate effect sizes. They identify two aims of these methods, to specify important

differences or to specify realistic differences.

The Anchor method evaluates a Minimal Clinically Important Difference (MCID).

Not all effect sizes are meaningful in a clinical setting, regardless of statistical significance.

The MCID is the smallest meaningful benefit to patients that a treatment would need to

provide in order for it to be deemed effective (Jaeschke et al., 1989; McGlothlin and Lewis,

2014). A detected effect size of less than the MCID may still be statistically significantly

different from zero, but does not represent a noticeable clinical benefit to patients.

The MCID can be based on the difference between the new treatment and no effect, a

control, or the current standard treatment. It can also be calculated as the mean difference

in effect between patients who had a clinically important change, and those who did not.

This approach is a little different as the ‘no clinically important change’ group could still

have some change. Likewise, the ‘clinically important change’ group could have a range

of effect sizes exceeding the minimum level of difference which is classified as clinically

important.

Variations can consider within-patient change, instead of between-patient change, when

such information is available. The scale of the MCID can vary. Some trials will use a

percentage change or improvement, while others will use an absolute change to measure

the difference.

By using the MCID as the effect size in a power calculation, the sample size is chosen

so that an effect at least as big as the MCID can be detected. As a smaller effect size

is not of interest to the researchers, it is determined that the trial does not need to be

powered to detect it.

This is not always easy to implement. As shown in Halme et al. (2015), the choice

between different health-related quality of life measurements, and their corresponding

MCIDs, could have a large influence on the sample size required. For a two sided test, the

example study could require 52, 172 or 500 patients. Van Walraven et al. (1999) surveyed

physicians for MCIDs and found the calculated sample sizes ranging between 116 and

3015. It seems clear that the value of the MCID is therefore somewhat subjective. The
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choice of scale and particular experts consulted will both impact the MCID.

This can sometimes be avoided. MCIDs are often published, to set a standardised

target for a particular treatment or test. The MCID or MCID selection advice can also

be set in protocols, guidance or funding requirements.

Another method to identify important differences is the distribution method, which

considers the imprecision in the measurement of a treatment’s effect. The chosen effect

size is then a value which is greater than the imprecision that would be expected in the

trial, and thus a result which has clinical importance.

A simple case would be to consider a 95% confidence interval for the mean, taken to

be Normal, with a standard error of σ̂. The distance from the estimate of the mean, µ̂, to

the upper bound, CIupper, is

CIupper − µ̂ = 1.96
√
σ̂2 (2.5)

If the observed difference is greater than this value, then the result can be considered

clinically important. The value of 1.96
√

2σ̂2, or approximately 2.77σ̂, varies in its use. For

example, a value of 1σ̂ may be used for some disease-specific quality of life measures.

Important differences can also be identified using health economics methods. These

consider the costs for a new treatment, and what the required outcomes would need to be

in order for the new treatment to be cost-efficient. This can consider the costs involved

with running the trial, or the costs of implementing and supplying the new treatment.

An example of how this could be applied would be to consider the Net Monetary

Benefit, or NMB, which is calculated using

NMB = RC∆E −∆C (2.6)

where ∆E is the expected difference in effectiveness between treatments, ∆C is the dif-

ference in costs between treatments, and RC is the willingness for the decision maker to

pay for a unit of effectiveness. The decision is in favour of the treatment if NMB > 0, or

is greater than a required level of improvement.

Cook et al. (2014) found that this method was rarely used in their review, with only

13 of the 777 trials implementing it.

In order to specify an estimated effect size, methods rely on using past studies or expert

opinions as a source of information. We review elicitation techniques and the aggregation

of multiple experts’ opinions in Chapter 3.

For clinical trials in later phases especially, pilot studies may be available to guide the

choice of effect size for the power calculation. The pilot study in this case can be run

specifically for that purpose, or could be an earlier study into the same treatment which

can be used as such.

A wider reaching alternative to a single pilot study is to use a review of the evidence
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base. This involves performing a literature review or meta-analysis of results for the

outcome of interest. For treatments with many previous studies, this can allow for a more

accurate and robust estimate of the effect size.

Browne (1995) demonstrates that using values directly from a pilot study often leads

to the future study having lower power than the sample size calculation would suggest.

As such, it is important to include inflation due to epistemic uncertainty on any estimates

from a pilot study, or within the wider literature, when using them to inform trial design.

Clark et al. (2013) reviews research protocols for sample size calculation methods used

in randomised clinical trials. Nearly a quarter of the protocols reviewed used previous

studies to form an estimate for the effect size, while under 10% cited literature reviews

and less than 1% used a meta-analysis. The use of previous studies or literature was much

more common than the MCID, which was reported 12% of the time. Over half of the

protocols did not mention how effect sizes were estimated for sample size calculations.

Effects can be compared across studies by standardising them to ensure they are on

the same scale, for example using Cohen’s d (Cohen, 2013). For example, in the case of

an independent samples two-sample design and Normal observations, this would take the

form

d =
x̄1 − x̄2√

(n1−1)s21+(n2−1)s22
n1+n2−2

(2.7)

where x̄i is the sample mean, si is the standard deviation, and ni is the sample size of group

i. The value of d then represents a standardised mean difference which can be directly

compared to a value of d for a different trial comparing the same treatments (Lakens,

2013). Standard guidelines suggest d values of 0.2, 0.5 and 0.8 represents differences of

small, medium and large magnitudes respectively (Cohen, 2013). This can be particularly

useful in cases with multiple pilot studies or reviews of evidence as it allows results with

different sample sizes and standard deviations to be compared. While they can be used

as comparisons to interpret other results, these standard effect sizes should not be used

as the basis of power calculations (Lenth, 2001).

2.3.3 Misspecification of Parameters for Power calculations

In order to choose a sample size to appropriately power a trial, it is important to use ap-

propriate parameter values in the calculation. Poorly chosen inputs can lead to insufficient

sample sizes, which may result in an inability to find effects that are present.

It is not easy to determine whether inputs have been misspecified. While power cal-

culations could be repeated once the data is collected, using values gained from the data,

this post hoc method of power calculation is generally advised against. Hoenig and Heisey

(2001) demonstrate how observed power, using inputs from the observed data, should not

be used to make judgements on whether there is support for the null hypothesis. The

22



Chapter 2. Sample Size Calculations

0.0

0.1

0.2

0.3

0.4

-2.5 0.0 2.5 5.0

D
en
si
ty

Figure 2.4: The dashed distribution is the null hypothesis, the solid distribution is the test statistic
under the alternative hypothesis, the vertical lines are the critical values. The red areas represent
the probability of committing a Type I error, the dark blue area the probability of committing a
Type II error, and the light blue area is the power.

estimate of the effect has uncertainty around it, which means the point estimate might

not give an accurate depiction of the power (Gelman, 2019). A confidence interval gives a

range of values for the effect size supported by the data, and the post hoc power calculated

will vary across this interval.

Overestimating the effect size in a power calculation can lead to missed opportunities in

the analysis stage. For example, consider a trial which will conduct a two-sided hypothesis

test on a mean, with a null hypothesis that the population mean is equal to zero, and using

a significance level of α = 0.05 and a power of 1 − β = 0.8. Assuming that the standard

deviation is σ = 1, a simple alternative hypothesis would be that the mean is equal to

approximately 2.8, ie H0 = 2.8. Figure 2.4 provides an example of this case.

If the population mean is much closer to zero than anticipated, a number of problems

can occur (Gelman and Carlin, 2014). For example, if the true mean was actually 0.28,

one tenth of the mean previously used to determine the sample size, then the final results

can be misleading. As the critical values for determining a significant result are calculated

using the null hypothesis, these values will not change. Figure 2.5 shows the distribution

of the test statistic under the true mean, and critical values for the null hypothesis that

µ = 0. The area in red is the probability that a significant result will occur with the

correct sign, in this case a positive mean, and the yellow area represents the probability

that a significant result will occur with the incorrect sign, in this case a negative mean

when the true mean was positive.

Gelman and Carlin (2014) labels these errors as Type M, for magnitude (coloured in

red), and Type S, for sign (coloured in yellow). They argue that as a significant result in

a trial is much more likely to be published, then those results which are published could
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Figure 2.5: The solid distribution represents the test statistic under the alternative hypothesis.
The thin vertical line represents the true mean, the thicker vertical lines represent the test statistic
critical values for significance from Figure 2.4, the red area is the probability of a significant result
with the correct sign, and the yellow area is the probability of a significant result with an incorrect
sign.

contain these two other errors.

In our example, the Type M error indicates that for a positive mean to be detected,

it must be seven times larger than the true mean. This is due to the critical value of 1.96

being seven times larger than the true mean, 0.28. For the given sample size, the true

effect will not be accurately determined if a significant result is found.

The Type S error has a probability of 0.013, compared to the Type M error probability

of 0.046. This means that conditional on a significant result being found, there is approx-

imately a 20% chance of the mean having an incorrect sign. In practical terms, this could

likely correspond to a negative estimate being found when there was actually a positive

effect, or vice versa.

If the estimate used in the power calculations corresponded with the true mean, then

the test would be underpowered. As such, the sample size would need to be increased in

order to reduce the standard deviation until an appropriate level of power was reached.

This would help reduce the Type M error, and almost certainly remove any chances of

Type S error occurring.

By specifying inaccurate inputs to the power calculation, we have been left with a case

where the test would be severely underpowered to detect the true effect size. Furthermore,

if we did find a significant result, it would either overestimate the mean, or provide an

estimate with an incorrect sign. Vasishth and Gelman (2017) showed that the focus on

publishing statistically significant results filters the body of published work in a way that

leads to over-optimistic results. While there is a large probability that such an experiment

would lead to a non-significant result, the fact that significant results are over-represented
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in published literature (Leggett et al., 2013; Cristea and Ioannidis, 2018) means these

errors are more likely to appear in scientific literature.

These problems can occur when powering a test using inputs based on a best estimate,

and when using an MCID or similar figure to ensure the test can detect a particular

difference. It does seem, however, that when using MCIDs that deliberately do not reflect

the likely effect size, but rather a larger desired effect, that this issue may become more

prevalent. If the MCID used as an input is greater than the true effect, then calculating

a sample size with the MCID will lead to a trial that is likely to overestimate the effect.

We will discuss in Section 2.5 some ways this can be accounted for.

2.4 Assurance

Though Bayesian approaches have a long history in statistics, their uptake in clinical trials

has been much slower.

Bayesian methods allow for the inclusion of information from other sources. Areas

such as early phase clinical trials, especially Phases 1 and 2, are more popular for the

inclusion of Bayesian techniques (Rosner, 2020). van Rosmalen et al. (2018) demonstrate

that including historical data can improve the power and precision of analysis. They also

suggest this may be particularly useful in early stage trials, in order to reduce the number

of control patients required.

While there is a vast array of literature on Bayesian methods for clinical trials, it

appears that their use is not necessarily put into practice at a similar rate. Campbell

(2020) suggests that there are many cases where Bayesian clinical trials are not reported

as such. They also suggest that there is a perceived resistance to Bayesian methods in

reviews by organisations such as the Center for Drug Evaluation and Research (CDER)

and the Food and Drug Administration (FDA). While this resistance does have some

historical basis, many organisations now have guidance for the use of Bayesian methods.

The level of guidance for clinical trial development with respect to Bayesian methods

has increased over recent years. Earlier guidance provided in Europe in 1998 mentioned

Bayesian statistics as an option, but provided no further details (ICH, 1998; Lewis, 1999).

The FDA has more recently provided guidance specifically for the use of Bayesian methods

(FDA, 2010). While the statistical basis for Bayesian methods and their use in clinical tri-

als has seen much academic progress, its application has relied on approval from regulatory

bodies.

In a review of survival analyses in clinical trials, Brard et al. (2017) found that Bayesian

approaches were used in the final analysis of four out of twenty-eight trials. While Bayesian

approaches were also used in a number of secondary analyses or re-analyses, information

about the use of the prior was scarce. There was only one case where expert knowledge
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was used to form a prior, and another three where an informative prior was used.

One common argument against the use of Bayesian methods in clinical trials is their

lack of objectivity. The inclusion of an informative prior, and the name assigned to

subjective Bayesian analyses, lends itself to a view that these approaches do not have

the same level of rigour or impartiality as frequentist methods. Berger and Berry (1988)

demonstrates that the choice of how a frequentist test is run can influence the outcome.

They provide the following example.

Consider an experiment into whether vitamin C provides better relief from cold symp-

toms than a placebo. Collected data show that in 17 pairs of patients vitamin C provided

more relief, and in four pairs of patients, the placebo did. If this sample is treated as

a collection of patients with a sample size of 21 pairs, then the p-value testing the null

hypothesis of vitamin C having no effect is 0.049. If the trial was conducted by the re-

searcher collecting data until they had received four pairs where the placebo was better,

then the corresponding p-value of the test would be 0.021. Furthermore, with just the

data available, a third party would not be able to differentiate between these cases.

They argue that this demonstrates a subjectivity inherent in frequentist statistics.

The way the researcher chooses to collect their data can influence the results. In addition,

the specific null hypothesis and test statistic to determine significance are choices for

the researcher to make, even though they have standard approaches. By defining priors,

Bayesian methods encode the subjective decisions more directly and, hopefully, with more

explanation and justification.

Bayesian methods have been used, especially in the design stage, both in sample size

calculations and other areas of experimental design. Assurance is a Bayesian alternative to

power in sample size calculations (Spiegelhalter and Freedman, 1986). The assurance is the

unconditional probability that the results of a trial will provide a statistically significant

result. Spiegelhalter et al. (2004) define assurance mathematically as follows, where D1 is

the outcome where the null hypothesis is rejected.

p(D1) =

∫
p(D1 | θ)p(θ)dθ (2.8)

where p(D1 | θ) is the power function, p(θ) a prior distribution on the unknown param-

eter (for example the treatment effect) and p(D1) is the probability of rejecting the null

hypothesis, or in other terms, returning a statistically significant result. This idea of as-

surance can be extended to the situation where the analysis to be conducted following the

trial is Bayesian, in which case p(D1) is the prior probability of declaring that the new

treatment is superior to the old treatment. The value of p(D1 | θ) is then the probability

that the Bayesian analysis will result in a successful outcome.

Assurance calculations vary from the power calculation approach. In a Bayesian assur-
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ance calculation, the treatment effect is represented as a probability distribution, rather

than a single point estimate (M’lan et al., 2008). This allows for the uncertainty in the

treatment effect to be accounted for in the calculations. In addition, the probability that

a trial will lead to a statistically significant outcome is potentially more easily interpreted

than the power of the test.

In order to calculate assurance, a prior distribution must be specified for the model

parameter(s). This prior should be elicited from experts, based upon their knowledge

(Chaloner et al., 1993). Ren and Oakley (2014) consider assurance in survival analysis

using an Exponential or Weibull distribution.

O’Hagan and Stevens (2001) define both a design and an analysis prior for assurance

calculations when the final analysis to be conducted will be Bayesian. This specifies

separate priors for use in the design of the experiment and the analysis following the

experiment. By doing this, the analysis can be conducted with a weak prior while the

design can be obtained with a much stronger prior. Additionally, these two priors will

represent the beliefs of different individuals or groups. The results of the analysis are more

strongly influenced by the data, while the design, when the data are not yet available, can

still be obtained to provide an indication of the likely success of a trial given current

knowledge. This is discussed further in Section 2.4.2.

Assurance has been used in applications in the clinical trial literature. It is sometimes

referred to as the Probability of Success (Bertsche et al., 2019; Takazawa and Morita,

2020) or the average power (Kowalski, 2019). Kunzmann et al. (2021) discuss that while

these terms are often used interchangeably, the probability of success refers to the case

where the probability of rejecting the null hypothesis is integrated over the entire range of

the prior density, while the average power is a weighted average specifically in the region

where θ > MCID.

Carroll (2013) suggests assurance is useful in moving from Phase 2 to Phase 3 trials,

though notes the difficulties with using and interpreting assurance may require a statisti-

cian to assist researchers with its use.

2.4.1 Assurance Calculations

Like power, assurance requires the analysis to be undertaken once the data have been

observed to be determined before calculation. This choice is dependent on the research

question, and the data that will be collected.

As opposed to more standard power calculations, assurance often involves some level of

simulation in its calculation. For cases where the assurance cannot be found analytically,

a straightforward procedure can be followed. The procedure to calculate assurance is as

follows, for a sample size n and over I iterations.
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1. Simulate a sample of the model parameters from the design prior distribution.

2. Find the power of the hypothesis test for sample size n and set of parameter values.

In the case of a Bayesian analysis of the trial, find the probability of meeting the

criterion for the trial to be a success, which will depend on the posterior distribution

based on the analysis prior.

3. Repeat the process I times.

4. Calculate the assurance by averaging over I.

It may not always be possible, or easy, to calculate the power analytically in Step 2.

If a closed-form power function cannot be used, the minimum required test statistic for a

significant result may be determined. Then, the probability of observing at least that test

statistic under the design prior can be used as an estimate of the power. Alternatively,

power can be approximated by simulation.

The value of I should be chosen to be large. As is common for Monte Carlo methods,

larger values of I will provide more accurate results at the cost of an increased computation

time. Steps 1-3 of the algorithm here are parallelisable, and so can be run in parallel if a

faster computation time is required.

If a Bayesian analysis is to be conducted in Step 2, it is beneficial to do so if a conjugate

prior can be used. If not, the posterior probability of success will need to be inferred

for each parameter sample, involving MCMC runs on each of a set of simulated data

realisations. This could result in large calculation times and a build-up of Monte Carlo

error. Section 2.4.2 discusses the use of Bayesian priors in Step 1 and Step 2 in further

detail.

In the following sections, we will consider continuous observations and discrete obser-

vations in the form of counts.

Continuous data

O’Hagan et al. (2005) considers a one-sided hypothesis test. Considering two samples of

size n, x1 = (x1,1, . . . , xn,1) and x2 = (x1,2, . . . , xn,2), where xij ∼ N(µj , σ
2
j ), the difference

x̄1 − x̄2 is of interest. This difference has a sampling distribution of N(δ, τ2), where

δ = µ2 − µ1 and τ =

√
σ21
n1

+
σ22
n2

(2.9)

For a one sided hypothesis test, this corresponds to a power equal to

Power = Φ

(
δ

τ
− z1−α

)
(2.10)
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A prior distribution can be placed on δ, either directly or from priors for µ1 and µ2.

Setting δ ∼ N(m, s2), the unconditional distribution of the differences in sample means is

x̄2 − x̄1 ∼ N(m, τ2 + s2).

In a one sided hypothesis test, this value will be compared to a Z-score, with a critical

value of Zα, above which a significant difference would be found. The assurance is then

given by

P (x̄2 − x̄1 > τZα) = Φ

(
−τZα +m√
τ2 + s2

)
(2.11)

Chapters 5 and 6 contain further assurance calculations.

When it is necessary to use simulation to evaluate the power, the required critical value

of the test statistic for a frequentist test to provide a significant result can often be easily

calculated. For example, µ+1.96σ/
√
n gives the upper bound of a 95% confidence interval

for a given variance. Values for µ and σ can be determined from the null hypothesis for

the test. The probability the test statistic gives a value of greater than µ + 1.96σ/
√
n is

then the assurance, and so the algorithm will estimate this using a large number of draws

from the design prior.

The case of a Bayesian analysis may be more difficult, as the analysis may involve

a non-conjugate prior. In this situation, the data is simulated and a model fit using an

MCMC method of choice. The posterior can then be used to form a conclusion. Repeating

this process over a large number of data simulations will give a probability of meeting the

criterion for a successful trial.

Binomial data

We consider assurance for trials with binomial observations. In general, the assurance in

this case can be stated as the probability of observing at least s successes out of a number

n of Bernoulli trials, where s is the minimum number of successes in order for a successful

outcome for the trial.

O’Hagan et al. (2005) provides an example where the outcome variable is binary, such

as when a clinical test provides a positive or negative result. We assume that inconclusive

results would not occur, or may be treated as a negative result. The example considers

a two-sided test of proportions in which the null hypothesis is that the probabilities of

success in the two treatments, θ1 and θ2, are equal. Using a Z-test approximation, this

hypothesis would be rejected if | Z |> Zα/2, where Zα/2 is the critical value of a standard

normal distribution at a significance level α. The test statistic Z is given by

Z =
θ̂2 − θ̂1√

θ̂1(1− θ̂1)/n1 + θ̂2(1− θ̂2)/n2
(2.12)
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where n1 and n2 are the numbers of trials in the two groups, and θ̂1 and θ̂2 the estimates

of θ1 and θ2 respectively.

The power function, P (R1 | θ1, θ2) is then given by

P (R1 | θ1, θ2) ≈ Φ

(
−Zα/2 +

θ2 − θ1√
θ1(1− θ1)/n1 + θ2(1− θ2)/n2

)
(2.13)

where R1 is the event: Reject the null hypothesis.

To obtain the assurance, this is multiplied by a prior distribution for θ1 and θ2 and

integrated over θ1 and θ2, as per Equation 2.8. Thus, the assessment of a suitable prior

distribution for θ1, θ2 is a crucial step in the assurance calculation.

As in the continuous case, it may not always be possible to assess the assurance based

on the analytic form of a power function, as above. The assurance calculation can also be

performed using simulation.

To do so we need to find the critical number of successes, s. We generate a dataset with

k successes and n − k failures, firstly setting k = 0 and applying the relevant hypothesis

test. If the test result is not significant, we increase k by one and rerun the test, repeating

this procedure until the minimum number of required successes are found, k = s.

Once the value of s is determined, we can calculate the probability that the number of

successes, x, is greater than or equal to s. This probability, P (x ≥ s | θ), can be calculated

using the binomial distribution.

If a Bayesian analysis is used, then this step will include an analysis prior.

The assurance can then be calculated as∫ 1

θ=0

n∑
i=s

(
n

i

)
θi(1− θ)n−if(θ)dθ (2.14)

where f(θ) is the design prior distribution. If f(θ) is a beta distribution, then the assurance

can be found analytically.

2.4.2 Design and Analysis Priors

When conducting a Bayesian analysis and design of a trial, prior distributions are used at

both stages.

The design prior, or sampling prior, is used in the design of the trial, where an MCID

or anticipated effect size would be used in a corresponding frequentist calculation. This

prior is used alongside the model which will be used for the analysis (Psioda and Ibrahim,

2019). Once collected, the data will be analysed based on a separate prior, referred to as

the analysis prior.

While these two priors are on the same parameters, they do not need to be the same
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(Wang and Gelfand, 2002). O’Hagan and Stevens (2001) suggests that while the design

stage should reflect the researchers’ beliefs, the analysis needs to be presented to and

convince other parties, such as regulatory bodies or pharmaceutical companies. If the

prior beliefs used in the analysis stage do not represent the beliefs of these parties, then

they may not accept the results as convincing or sound. By using a different prior for the

analysis, the researchers can present a convincing analysis while still accounting for their

own beliefs when designing the trial.

Similarly, in cases where a frequentist trial is designed using Bayesian methods, the

design prior distribution is unrelated to the null hypothesis which is to be tested. In

this case, only a design prior is required to determine the sample size. Care should be

taken, however, as a design prior inconsistent with the null hypothesis could result in a

calculation where the prior provide no probability of the treatment being successful. In

such a case, no sample size will fulfil the requirements of the sample size calculation.

As discussed in Section 2.2, there is an ethical argument that equipoise is an important

consideration in trial design. As such, the researchers designing the trial should only be

doing so if they believe that the new treatment will have a similar effect for patients. The

design prior, therefore, will typically reflect the researchers’ view that the treatment will

have a positive effect for patients.

Chapter 3 reviews elicitation techniques and the aggregation of multiple expert opin-

ions. These methods are suitable for the construction of design priors, as they incorporate

the beliefs of the researchers organising the trial.

For analysis priors, Spiegelhalter et al. (1994) identify multiple types of potentially

suitable priors to be considered in clinical trial settings.

The first type is a reference prior, designed to provide a minimal level of prior informa-

tion. The simplest option here would be a uniform prior over the range of the parameter,

which provides an equal probability for each possible value.

A clinical prior is another option which may be considered. These priors represent the

opinions of informed experts, and usually would be elicited using techniques such as those

mentioned in Chapter 3.

Using such a prior, however, may give the appearance of bias or partiality to any

analysis. In such cases, it may be sensible to use a sceptical prior, which assigns a low

probability to larger effect sizes.

It is important to consider how to represent a sceptical prior. While a natural assump-

tion might be to use a flat prior so as to remain uninformative, this is not always sceptical.

For example, given a binomial likelihood, a prior in the form of a Beta(1, 1) distribution

may be selected, which is uniform over the range (0, 1). If a parameter is given this as a

prior distribution then the implied beliefs are that each value in the range is equally likely.

If the current standard treatment had a known effect size of 0.2, then this prior states
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there is an 80% probability the new treatment will outperform the current standard. Such

a prior is, in this case, very enthusiastic and more informative than the researcher may

intend.

Another common reference prior is Jeffery’s prior, which likewise may be selected with

the intention of using an uninformative prior or a sceptical prior. Jeffery’s prior, fJ(θ) is

defined as

fJ(θ) =

√
−
[
d2

dθ2
log(f(x | θ))

]
(2.15)

where f(x | θ) is the likelihood function.

For a binomial likelihood, with observation y, sample size n, and parameter θ,

p(y | θ) =

(
n

y

)
θy(1− θ)n−y (2.16)

log(p(| y, θ) ∝ y log(θ) + (n− y) log(1− θ) (2.17)

d2

dθ2
log(p(| y, θ) ∝ − y

θ2
− n− y

(1− θ2)
(2.18)

As the expected value of y is nθ, for a sample size of n, the expected value is

E

[
d2

dθ2
log(f(x | θ))

]
∝ n

θ(1− θ)
(2.19)

The Jeffery’s prior then takes the form

fJ(θ) ∝ θ−1/2(1− θ)−1/2 (2.20)

which is equivalent to a Beta(12 ,
1
2) distribution.

Similarly to the uniform case, this prior places a large amount of probability on the

values of θ > 0.2, approximately 70%.

While commonly used as non-informative priors, these priors both provide some in-

formativeness in this setting. If they are used in an assurance calculation, they do not

behave as sceptical priors. This is further discussed in Chapter 5.

Sceptical beliefs should be represented as an informative prior, but one with the ma-

jority of the probability density on little or no effect being present. There are a number of

approaches that could be used to define such a prior. A simple option would be to use a

positively skewed distribution, where the majority of the weight is concentrated on lower

values.

For example, a Beta(1, 10) prior has approximately 90% of its density below the value

of 0.2. This represents much more sceptical beliefs than either reference prior above.

Another option would be to use combinations of uniform priors. A uniform distribution
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could be fit to either side of a chosen effect size. For example

f(θ) =

 1
ES−a , for θ < ES

1
b−ES , for θ ≥ ES

(2.21)

for a distribution with a minimum value of a, a maximum value of b, and a chosen or

assumed effect size ES. This prior would represent beliefs where it is equally likely for

the parameter to have a value less than or greater than the effect size.

This prior has a level of artificiality to it, as the non-continuous jump in the value of

f(θ) at θ = ES does not necessarily represent beliefs that may belong to an expert. The

difference in a person’s beliefs between f(ES − 0.0001) and f(ES + 0.0001), for example,

might not sensibly contain such a jump. While perhaps not realistic, this prior does still

allow for a level of informativeness over the remaining values. This may be desirable in

cases where impartiality is important to display.

Furthermore, it will typically place more weight on extreme values than other distri-

butions.

Another option is to use a spike and slab prior. Such a prior places a probability

mass on a single value, and the remaining probability over the remaining range of values

encapsulated by the prior.

A sceptical spike and slab prior may place a large proportion of the prior weight on

the effect size being zero. For example, we could choose a prior distribution to represent

the belief that there was a 90% probability that the treatment had no effect, and then

place a uniform distribution on the remaining range of possible values.

f(θ) =

0, with probability 0.9

0.1, for 0 < θ ≤ 1
(2.22)

As the prior has only 10% of its density in the range 0 < θ ≤ 1, the parameter

has a smaller probability of taking any value greater than zero compared to a standard

uniform prior on [0,1]. In the previous example, where a current standard treatment had

a known effect size of 0.2, this spike and slab prior would give a probability of 8% that

the parameter is greater than 0.2, rather than a probability of 80% as was the case for a

uniform distribution over [0.1].

This spike and slab prior has some similarities to a hypothesis test setting. In both,

most of the prior weight is placed on no effect either via the null hypothesis or the spike,

and only if the data gives a strong signal that this is not true will a significant result be

found. This may be a more natural choice for those familiar with hypothesis testing, or

settings in which hypothesis tests are the norm.

Ultimately, if a sceptic, whose beliefs form a sceptical prior, can be convinced that the
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new treatment is effective by the results in the trial, then this is strong evidence there is

an effect present.

Similarly, an enthusiastic prior may be used in determining when to stop a trial. If

the lack of evidence in the data for a positive effect from the treatment can outweigh this

enthusiastic prior, then there is strong evidence there is no effect and the trial can be

stopped.

An enthusiastic prior could be constructed as the reverse of a sceptical one, where only

a small amount of probability is assigned to parameter values suggesting the treatment

will not work.

The enthusiastic and sceptical priors can be used together to answer different questions

prior to a final analysis. For example, Ye et al. (2020) utilises sceptical and enthusiastic

priors for analysis, and compares them over a range of possible true effect sizes for a

given sample size. For cases when the true effect is smaller, the enthusiastic prior is still

not strong enough to overcome the lack of data supporting the new treatment, and the

recommendation would be to stop the trial due to futility. When the true effect size is large,

the sceptical prior is convinced by the data that there is an effect, and the recommendation

would be to stop the trial as efficacy has been found.

This use of a sceptical prior appears in the clinical trial literature, for example in Tan

et al. (2003), Goligher et al. (2018), Pedroza et al. (2018), and Charkos et al. (2020). It

is used as an analysis prior, rather than a design prior, as it represents the view that the

treatment is most likely not effective. If it were used as a design prior, it would result in

very small assurance values, even for large sample sizes. As such, the final sample sizes

would be very large, as the researchers would be attempting to detect an effect which they

are stating is very unlikely to exist.

Separate analysis and design priors have seen some use in practice. Walley et al.

(2015) use informative design and analysis priors in a demonstration of Bayesian-only

trial design and analysis, and Psioda and Ibrahim (2019) investigate using historic data

to specify analysis priors.

2.4.3 Standardised Assurance

As a sample size increases, the power or assurance also increases. However, while power

tends towards one as n gets large, the value the assurance will converge towards can vary

(O’Hagan et al., 2005). This has implications for selecting a target assurance, as will

be discussed in Section 2.5. It also means that assurance calculations and curves cannot

always be easily compared.

One Bayesian method which provides an assurance-like value is often referred to as

expected power (Kunzmann et al., 2021). The expected power uses a prior distribution

which is conditional on the parameter being above the target value. While this method
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returns a consistent scale, it no longer incorporates information in the prior about the

probability of a parameter being non-significant, or below the target value. We use an

alternative method for rescaling the assurance as follows.

If we consider a sample of independent binary random variables, which could be mod-

elled using a binomial distribution, a reasonable choice of prior is a beta distribution due

to conjugacy. For a random sample X = (X1, . . . , Xn) of binary variables, we have n trials

and s =
∑n

i=1Xi successes. Suppose we have an analysis prior of θ ∼ Beta(α, β), then

the posterior distribution will be

P (θ | X) =
Γ (α+ β + n)

Γ (α+ x)Γ (β + n− s)
θα+s−1(1− θ)β+n−s−1 (2.23)

which follows a Beta(α+s, β+n−s) distribution. The analysis will then make inferences

using P (θ | X), such as calculating P (θ > θ0 | X), where θ0 is an MCID or some other

quantity of interest.

As n gets large, the effects of α and β on the posterior distribution become increasingly

small in comparison to the values of s and n. The distribution will eventually become

predominantly defined by the ratio of s to n.

At the design stage, there is not yet any data to determine the value of s. Instead, s

can be simulated from the design prior. For a given draw of θ, which we will label θi, from

its design prior distribution PD(θ), s can then be simulated as

si ∼ Binomial(θi, n) (2.24)

The expected value of s under the design prior is given by

E[s] = θn (2.25)

This means that, based on samples from the design prior, the Beta(α + s, β + n − s)
posterior distribution tends towards a posterior distribution of Beta(θn, (1 − θ)n) as n

gets large.

The maximum assurance is then the probability of a successful result under this pos-

terior distribution. This could represent the prior probability a drug will be successful in

treating a patient, or a diagnostic test correctly identifies a patient. This can be estimated

using a Monte Carlo approach.

Consider an analysis where a significant result is defined as P (θ > θ0 | X) > 0.95, for

example. For j = 1 . . . J draws from the distribution of θ, PD(θ), which we will label θj ,

then

PD(θ | X, θ) =
1

J

J∑
j=1

Ij (2.26)
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where Ij is an indicator variable which is equal to one when
∫ 1
θ0

Γ (n)
Γ (si)Γ (n−si)x

si−1(1 −
x)n−si−1dx > 0.95, and is otherwise zero.

This value then represents the maximum possible assurance that can be achieved for

the given design prior and analysis method. This value can also be used to demonstrate the

prior probability assigned to the treatment actually being effective. As such, it could be

used to check design or analysis priors to ensure they are reflecting appropriate information

about the treatment of interest.

In order to place assurances on a consistent scale, we use a standardised version of

assurance, referred to as scaled assurance in Alhussain and Oakley (2020). For a sample

size n, we will define this standardised assurance, SAn, as the calculated assurance for n,

An, divided by the maximum possible assurance under the chosen design prior Amax.

SAn =
An
Amax

(2.27)

The standardised assurance represents the proportion of the possible assurance given

n. For example, SA45 = 0.5 would mean that for a sample size of 45, 50% of the maximum

assurance for the chosen design has been achieved.

If there are different design priors or analysis methods to be considered, the standard-

ised assurance allows for comparisons to be made. This may allow for a more nuanced

comparison between different choices available to researchers when designing a trial.

It also places the assurance on the same scale as statistical power. Care should be taken

if a comparison is made between the two. It is also important to take care when using

standardised assurance to select a sample size. The standardised assurance can inform

on the potential improvement to the total assurance possible by increasing sample size.

It does not, however, provide the probability the trial will be successful. For example, a

trial could have a standardised assurance of 90%, but if the maximum assurance possible

was only 0.1, then there would be a small probability of the trial concluding successfully.

As such, standardised assurance should be considered alongside he usual un-standardised

assurance.

Section 2.5 outlines how standardised assurance could be used in determining a sample

size.

2.5 Determining Sample Size

Power and assurance can both be used to select a sample size for a trial. The general

process is the same for both methods.

The power or assurance is calculated for a chosen sample size. If the value is smaller

than the required power or assurance, the sample size is increased and the values recalcu-

lated. This process can be repeated until the power or assurance has reached its required
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Figure 2.6: An example power curve, showing the power values over a range of sample sizes.

0.00

0.25

0.50

0.75

1.00

-1 0 1

Cohen's d

P
ow

er

Figure 2.7: Power values of a two sided hypothesis test over a range of effect sizes.

level if possible. Alternatively, when an analytic solution is available, the sample size may

be calculated directly for a chosen power or assurance.

Other than the parameter inputs for the power or assurance calculation, this method

also needs the required level of power or assurance to be chosen. For power calculations,

this is usually taken to be 0.8 or 0.9. A plot of the power for a given effect size, standard

deviation and significance level can be plotted, such as that in Figure 2.6. This plot

demonstrates the required sample size to achieve any level of power. Power curves tend

towards one as the sample size increases.

Often, a power analysis will include different effect sizes, in case the true effect is larger

or smaller than expected. Figure 2.7 provides a plot showing the relationship between the

power and a change in effect size for a two sided hypothesis test. Often, only the region

greater (or less) than zero would be considered. This example shows the power of a one

sample t-test, with α = 0.05.
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Table 2.1: Clinical Trial Success Rates (Wong et al., 2019)

Trial Phase Probability to reach next phase Probability to be approved

Phase 1 38.8% 6.9%
Phase 2 38.2% 28.8%
Phase 3 59.0% 59.0%

Plots such as Figure 2.7 allow for differences required to achieve specific powers to be

compared. For example, the effect size for a power of 0.8 and 0.9 can be seen. Plots such

as these have a lower bound of α, and an upper bound of one.

Ultimately, a number of power calculations can be conducted, varying the effect size

and power levels. In practice, the researchers should at least consider an optimistic, most

likely and pessimistic view of possible effect size outcomes, as well as varying levels of

power. This can provide a range of sample sizes.

Unlike power, assurance does not have a common value for comparison against. When

interpreting the assurance, it is also important to consider what a reasonable probability

for a successful clinical trial is. Wong et al. (2019) reviewed success rates of clinical trials,

finding around 6.9% of Phase 1 trials pass future phases and are successfully approved.

Further success rates are given in Table 2.1.

The success rates of clinical trials vary across different areas of medicine. For example,

Hay et al. (2014) found that 64.5% of Phase 1 trials progressed to Phase 2, and 10.4%

of them were approved after Phase 3, with values ranging from 58.3% to 72.2%, and

6.7% to 18.2% respectively, for trials in different disease areas. Mullard (2016) gives a

9.6% probability of approval for a Phase 1 treatment, with a range of 5.1% to 26.1% for

different types of disease. Travessa et al. (2017) found a total success rate of 3.5% for

trials looking at treatments for Huntington’s disease, with a success rate of Phase 1 trials

at 25%.

Consider an assurance calculation for a Phase 1 trial which gives the maximum proba-

bility of success as being 30%. This might suggest the trial is unlikely to succeed compared

to average Phase 1 trials. However, if the trial was looking into a treatment for a disease

such as Huntington’s disease, which historically has a low trial success rate, then this

result may be relatively promising. This is noticeably different from power, which always

takes a value between zero and one and for which the bounds, accordingly, do not influence

interpretation.

It is important to recognise that these average success rates should be used to put

assurance values in perspective, rather than used as strict guidelines. These rates of

success do not consider every trial planned, as many potential treatments do not even

reach Phase 1. Furthermore, the rate of success will vary depending on the disease being

studied. Rare diseases and diseases with short survival times are naturally harder to study,

and are more likely to have a lower probability of success.
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This difference in success probabilities means that a single assurance cut off value that

can be used in the majority of trials is not likely appropriate. Instead, consideration should

be taken on a case by case basis.

One way of quantifying this would be to use statistical decision theory. An example

of this approach can be found in health economic modelling. The Quality Adjusted Life

Year (QALY) is a measure of the relative quality of a person’s life with respect to health,

and can be used to measure the benefit a new treatment may provide (Ogden, 2017). It

can be calculated using the following equation

QALY = Expected number of years of life×Quality of Life utility value (2.28)

The Quality of Life (QoL) utility value is set to one when the person would have perfect

health, and at lower values for less than perfect health. The difference between the QALY

without treatment and the QALY with a treatment gives a value for the benefit provided

by the treatment.

The National Institute for Health and Care Excellence states that an improvement of

1 QALY is cost-effective if it can be achieved for less than £20,000, while those costing

between £20,000 and £30,000 can be cost-effective in some cases (NICE, 2012, 2013). It

is acknowledged that this method does not capture all information, and is not the only

part of the decision making process.

The estimated QALY can be used along with the assurance, and other relevant values

such as the costs involved with designing, testing, and providing the treatment to patients,

as a basis for a decision-theoretic approach to sample size calculation. Such an approach

focuses on the cost-benefits of the trial, and would select a sample size which optimises the

outcomes based on these quantified costs and benefits. However, this approach may require

further information about the wider pathway to fully capture the effects implementing a

new treatment or diagnostic test may have. This may include considering post-treatment

or test outcomes, follow-ups, or further treatments or tests which may result from the

proposed change to the current standard methods.

Further attributes could be considered within a full decision analysis, choosing the

decision which maximises the expected utility of a multi-attribute utility function, for

example. Figure 2.8 shows a typical assurance curve. As the sample size increases, the

assurance increases. The assurance will asymptote to its maximum value as n increases.

The assurance curve’s second derivative is negative, which is to say the rate of change

is decreasing across the curve. As such, each additional unit increase in the sample size

provides a decreasing amount of additional assurance.

Instead of selecting an assurance as a cutoff, a researcher could instead determine how

much additional assurance an extra unit of sample size is worth. For example, if increasing
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Figure 2.8: An example assurance curve, showing the assurance values over a range of sample sizes.

the sample size by one is not deemed worthwhile if the associated assurance increase was

0.01, then this value could be used to determine the corresponding sample size.

Alternatively, a specific value of the slope could be chosen. A gradient of ∆A, or the

change in assurance per increase in sample size, can easily be determined for all points

on the curve, and so if a specific gradient is selected, the corresponding sample size can

be found. For example, a gradient of one in a curve similar to Figure 2.8 represents the

point where the sample size begins increasing faster than the assurance. This might be

an appropriate cutoff for some assurance curves, but due to the different scales of the two

axes, for many it will provide a very low assurance.

2.5.1 Patient Dropouts

When conducting a clinical trial, it is likely that not all patients will remain in the trial for

the entire time period. Patients may leave the trial due to worsening condition, personal

circumstances or other reasons.

This may mean that the initial sample size provided the correct power or assurance,

but the final sample does not. To ensure this is not the case, initial sample sizes are often

inflated to account for potential dropouts.

Dropout rates vary from trial to trial. For example, Cooper and Conklin (2015) found

a dropout rate of 20%, and Dixon and Linardon (2020) a 28% dropout rate, for trials

concerning mental health issues. For anti-psychotic drug trials, Wahlbeck et al. (2001)

found a dropout rate of a third, which was similar to the rate found in Santarlasci et al.

(2003), which reviewed schizophrenia treatment trials. If such a dropout was unaccounted

for, then the sample size required for a certain power or assurance will not be achieved.

The potential for patients to drop out of a trial can be accounted for by inflating the

sample size. In order to account for a 10% dropout rate, the sample size would need to be
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divided by 0.9. Adjustments could also be made to the power or assurance requirements

in a post hoc manner. For example, if a trial was designed to achieve a power of 0.9, but

received higher dropout rates than expected, the sample size may be re-calculated using

a lower power of 0.8.

Dropouts can also be managed over the course of the trial. Little et al. (2012) provides

a summary of how dropouts can be limited through trial design and planning, and analysis

methods of adjusting for missing data. These methods involve targeting patients less likely

to leave the study, and ensuring it is as easy as possible for patients to remain in the study

for as long as required.

In terms of analysis, methods such as imputation can be used when there is missing

data. Simple imputation methods often assume that patients drop out at random, which

is not always a valid assumption. For example, patients who are clearly responding pos-

itively to a treatment may be more likely to continue than patients who do not see an

improvement, or who have negative side effects. As such, it may be required to consider

more comprehensive methods.

By managing patient dropouts well, the sample size can be achieved without having

to recruit too many additional patients.

2.5.2 Other issues

It may not always be the case that a sample size is achievable or reasonable.

It could be determined that there is not a large enough cohort available and that it

is not feasible to conduct a study, such as in Breckenkamp et al. (2009). In these cases,

the trial may not be conducted until a feasible way of doing so is found. However, it is

not always the case that trials can be put off until they become feasible. Rare diseases,

or diseases with short survival times, may not provide access to large enough cohorts to

satisfy standard sample size calculations.

Miller et al. (2018) suggests that assurance or a decision-theoretic approach may be

useful in sample size calculations for rare diseases. They point out that it may be use-

ful to calculate values based on a number of these methods, and advise taking multiple

calculations into account when determining sample size.

Other options allow for trials to be designed to account for small possible sample

sizes (van der Lee et al., 2008). For example, sequential designs can allow for changes to

the design to be made during the trial. If early results show one treatment is performing

better than others, it might be sensible to adjust the proportion of patients assigned to each

treatment. This could potentially reduce the total number of patients needed compared

to initial calculations before any data was collected. Likewise, a boundaries design can

allow a conclusion to be reached early if results cross a particular preset boundary. For

example, if an early test statistic is particularly large, or a test statistic half way through
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the trial is particularly small, then the trial could conclude a significant or non-significant

result early.

Power and assurance calculations can also be used to back fit an effect size based on a

pre-chosen sample size. This may be useful if a trial has a limit to the number of patients

that can be recruited, and the researcher wishes to know what size effect could feasibly be

detected.

Another issue which may need to be considered in the case of diagnostic test studies is

disease prevalence. Depending on how a trial is designed, the total sample size may need

to account for the prevalence of the disease. For example, if a disease is relatively rare,

a larger sample may be required to allow the diagnostic test to be tested on a sufficient

number of positive cases. In such cases, the sample size may determine the number of

positive or negative patients required using power or assurance, and then the total sample

scaled according to the prevalence of the disease. Alternatively, a prior distribution can

be placed on the prevalence, such as in Wilson et al. (2021).

2.6 Conclusion

In this chapter we have considered approaches to sample size determination. We have

reviewed statistical power and Bayesian assurance as two methods of selecting a sample

size.

The methods outlined in this chapter will be compared, through simulations in Chap-

ter 5 and in an application involving a clinical trial in Chapter 6.
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Elicitation for Assurance
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Chapter 3

Elicitation for Assurance

3.1 Introduction

In this chapter, we review elicitation protocols and detail their application to a case study.

We begin by outlining the elicitation process in general. We then review common

cognitive biases which can influence how experts provide their judgments, and the elicita-

tion techniques that can be used to address them. We then review elicitation aggregation

techniques for combining the judgments from groups of experts. These are categorised as

mathematical aggregation methods, which use a predefined mathematical rule to aggre-

gate distributions, and behavioural aggregation methods, which provide a framework to

allow the group of experts to form a consensus view among themselves.

In the context of a case study into a novel diagnostic test for Motor Neurone Disease,

we discuss the implementation of the above techniques to two elicitations, each of which

aims to compare popular mathematical aggregation methods to a popular behavioural

aggregation method. The first included in-person meetings and discussions, while the

second was conducted entirely online.

3.2 Elicitation

Informative prior distributions can be created using information from a variety of sources.

For example, information from previous studies can be codified into a probability distri-

bution for use as a prior. However, it is often the case that the information required is not

easily accessible in a quantified form. This is especially the case when investigating novel

methods for the first time, or in early stage research. In these cases, it is possible to utilize

expert knowledge to form prior distributions. The elicitation process also has the ben-

efit of gathering additional information and added transparency through the formalised

process (Dallow et al., 2018).
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The process of converting expert knowledge into subjective probability distributions

is commonly referred to as Expert Elicitation (Mikkola et al., 2021) . Throughout this

thesis, the people providing their knowledge for use in specifying prior distributions will

be referred to as experts, and the person running the elicitation as the elicitor.

As experts do not often think directly in terms of parametrised probability distribu-

tions, these need to be elicited from them. Transforming the valuable expert knowledge

and experience into distributions allows the knowledge to be incorporated into a model.

This process is not always simple, as the experts may have little mathematical training or

experience, and can be influenced by a number of psychological biases.

French (2011) identifies three contexts under which elicitations might be carried out:

the case where the decision maker (DM) and experts are separate groups of people, known

the expert problem; the case where the DMs and experts are the same people, known as

the group decision problem; and the case where there is no DM and the experts are giving

judgments for yet undefined circumstances, known as the textbook problem. Under the

context of assurance, the DM is the person for whom the sample sizes are calculated, and

so we will focus on the expert problem.

Elicitation has previously been used as a basis for sample size calculations, especially

in medical settings (Lenth, 2001; Cook et al., 2014, 2018). Alhussain and Oakley (2020)

provides an example of elicitation for assurance calculations, as discussed in Chapter 2,

which demonstrates that elicited priors can play a large role in the calculated sample size.

Many guidelines exist on how to elicit the values, though in general, these guidelines are

common with those eliciting values in other fields or for other reasons. The elicited priors

can be used alongside, or be updated with, previously collected data (Mayo and Gajewski,

2004).

3.2.1 The Elicitation Process

While the process of elicitation varies given the specific scenario in which it is conducted,

there are a common set of steps that tend to be employed.

Bojke et al. (2019) present an elicitation protocol for healthcare settings. First, the

relevant variables are identified. These variables could be probabilities, counts, times-to-

event, diagnostic accuracies, minimum clinically important differences or effectivenesses.

The variables chosen should be fit for purpose, so they can be used to properly inform the

DM (Choy et al., 2009). They should also reflect the experts’ knowledge and how they

are familiar with thinking about the problem.

Elicitation questions can be direct or indirect. Direct questions address things the

experts can comment on specifically, such as the number of patients they may treat in

a year. Some information is not as easily gathered, especially that which is more com-

plicated, entwined with other information, or is of a sensitive nature. Indirect elicitation
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questions attempt to elicit this more difficult to reach information (Hudlicka, 1996). In-

stead of directly asking about the quantity of interest, it is inferred based on responses to

other questions. For example, Browne et al. (2020) indirectly elicits information on the

effects of gambling that participants may not recognise themselves or accurately divulge.

In terms of the quantities which should be asked about, Speirs-Bridge et al. (2010)

suggest a four step elicitation process. The first and second steps are to ask for the lowest

and highest realistic values. Thirdly, a best estimate or median is requested, and then

finally a probability level that the true value will fall within the stated interval.

It was found in Teigen and JØrgensen (2005) that allowing experts to define their own

probability to intervals led to much better calibrated intervals than asking for an interval

with a set probability. They also suggest that the probability assigned for an interval has

little impact on the width, highlighting the difficulty experts can have with the elicitation

process and why it needs to be carefully managed. Soll and Klayman (2004) also found

respondents who were asked to specify a minimum and maximum in two separate questions

tended to give better calibrated intervals than those asked to specify an interval in a single

question. Furthermore, a three point estimate (minimum, maximum and median) led to

better calibration than a two point estimate (minimum and maximum).

Experts then need to be selected. The provided judgements will vary by expert, and

so it is best to have a heterogeneous group of experts to properly gather the full range of

views (Verdolini et al., 2015). Differences can, for example, be due to physical location

or employment background (Nemet et al., 2017). Australian Government: Department of

Health (2016) states that a random or comprehensive group of experts is preferred over

an alternative such as an advisory board, which may not have as general or wide-reaching

range of knowledge.

The number of experts is also a consideration. Bolger (2018) finds that many sugges-

tions published on this issue are based more on opinion rather than theory or evidence,

however some literature (such as Budescu and Chen (2015)) does show that a greater

number of experts improves performance as long as the additional experts bring a posi-

tive contribution. Alternatively, Mannes et al. (2014) showed that when there is a range

of expertise in a group, a subset of the best performing experts (or even the single best

performing expert) can give a better outcome than the entire group together. While there

is room for further research in this area, it seems clear that the ideal group of expertise

is well calibrated and is heterogeneous. It should also be noted that constraints on which

experts are available to participate can often be a deciding factor.

Experts should receive some training before the elicitation begins. Experts cannot

be assumed to be familiar with concepts such as quantiles, probability distributions, or

specifying their beliefs numerically, and so the training should be aimed to address these

areas of unfamiliarity. Furthermore, as the statistical accuracy of expert judgements is
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related to their informativeness and calibration, helping the experts improve on how well

they can quantify their beliefs will improve the quantities provided (Aspinall et al., 2016).

The elicitation session can then be held. It is important the elicitor is aware of the

cognitive biases outlined in Section 3.2.2, in order to actively ensure they are minimised.

The elicitor should assist the experts with the elicitation questions, by clarifying any issues

they have and helping to draw out the best quantifications of the experts’ knowledge. In

order to not influence the experts themselves, this usually involves asking guiding questions

to encourage the experts to further explore the issue. For use in Bayesian statistics,

probability distributions are often fit to the expert judgements. While these will often be

parametric distributions, the elicitation can also be designed to elicit for non-parametric

distributions (Oakley and O’Hagan, 2007).

After the elicitation is complete, there are a number of activities that can be completed.

Elicited responses may be fit to distributions or aggregated together. The experts may

also be provided feedback, to help them improve for future elicitations.

3.2.2 Cognitive Biases

In elicitations, experts are often already operating outside of their usual framework. Ex-

perts, and people in general, rarely think directly in the terms of parametrised probability

judgments. They may also be unfamiliar with probability intervals, especially when it

comes to assigning numbers based on their own knowledge and experiences. It is impor-

tant that an elicitation makes this process straightforward for the experts, and allows them

the best opportunity to translate their knowledge to numbers.

The content of the questions asked of the experts is determined by the statistical

models which will be applied. There are, however, a vast number of options as to how

these questions can be constructed. This is a very important consideration, as the way in

which an expert is asked a question can have a large impact on their response.

The specific wording and design of a question have been shown to influence the re-

sponses provided. A common example is that from Tversky and Kahneman (1981), which

offered participants a scenario in which 600 people had been infected with a dangerous

disease. Two options were presented, one in which 200 people could be saved for sure, and

another in which there was a 1
3 chance everyone would be saved, otherwise they would die.

The majority of participants chose the first option. For a second group, the options were

presented in a different way. The two options became one in which 400 people would die,

and another in which there was a 2
3 chance everyone would die, otherwise they would all

be saved. In this case, the majority of people selected the second option.

Despite the two sets of options being the same, the change of framing from lives saved

to deaths occurring changed how the participants responded. It was suggested that people

tend to be more risk-averse when talking about gains, and more risk-taking when talking
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about losses, and that changing how the question was asked changed how the participants

considered and answered it.

If the framing of a question can completely alter the responses to it, then the way

elicitation questions are asked should be carefully considered.

One of the main causes attributed to these influences are cognitive biases. Cognitive

biases, or cognitive heuristics, are often attributed to the brain avoiding long information

processing times by making shortcuts or using rules of thumb (Haselton et al., 2015). Un-

fortunately, these heuristics often break down when trying to quantify judgements, and can

lead to inconsistencies or errors. Well-designed elicitation questions take cognitive biases

into account in their construction, and minimise the effects they may have (Montibeller

and von Winterfeldt, 2018).

Some of the more common cognitive biases are explained below, along with their

implications for elicitation question construction.

Anchoring

Anchoring occurs when an expert estimates a value based upon an initial value, or anchor

(Tversky and Kahneman, 1974). If a question asks an expert to start with a specific

value, or consider the probability of being below or above a specific value, then their

future estimates will be affected by the previous value.

O’Hagan (2019) provides an example, in which participants in a study were asked to

estimate probabilities concerning the number of Muslims in the 2011 United Kingdom

Census. Participants were either asked to estimate the probability the total number was

over 8 million, or asked if it was over 2 million and then asked if it were over 8 million.

Those in the first group gave a higher probability to the value being greater than 8 million.

This was because the second group had been anchored on the 2 million value, thus making

8 million seem larger and less likely by comparison. Likewise, those anchored on the 8

million value first gave a higher probability to the total being over 2 million, as it seemed

more likely compared to 8 million.

The more significant figures an anchoring value has, the stronger the effect tends to

be (Loschelder et al., 2014). This has been shown to affect experts as well as amateurs

(Loschelder et al., 2016), suggesting that it is an important consideration when construct-

ing elicitation questions.

Anchoring can also occur in groups (de Wilde et al., 2018). Groups that were coop-

erating were shown to be more susceptible to anchoring than competitive groups, which

further outlines the potential for this bias in an elicitation setting.

To avoid anchoring, elicitation questions should be written to avoid providing any

values the experts could use as an anchor. Unless there is a strong reason to do so, asking

experts to give estimates of probabilities that a quantity will be above or below a specific
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value can be avoided. By asking the expert to specify the values themselves, the elicitor

avoids ‘leading the witness’ and influencing the expert.

Availability

The availability bias occurs when people judge probabilities based on the ease of remem-

bering specific examples. For example, Tversky and Kahneman (1973) asked people to

judge how often a letter would occur as the first letter of a word compared to the third.

For all letters included in the study, participants said they were far more likely to occur

at the start of the word. As it is much easier to recall words that start with a particular

letter, rather than recall words where a particular letter comes third, the participants were

overestimating the ratio of occurrences between the two groups.

Availability bias can be more pronounced when considering rare events, or rates of

occurrence (Meyer and Booker, 2001). Rare events are generally more memorable, while

all of the occasions in which they didn’t occur are less so. By focusing solely on what

is more memorable, the experts can miss less memorable events and occasions where the

event did not happen at all.

To assist the experts in avoiding availability bias, they can be asked to consider their

full range of experience (Morgan, 2014). By reflecting on not just recent or memorable

events, experts can take more information into consideration when making their judge-

ments. When considering rare events, experts can also be reminded to consider the total

possible time frames in which the event could have occurred but didn’t.

Representativeness

Representativeness can be an issue when judging the probability that something belongs to

a particular class or category. Tversky and Kahneman (1974) give the following example,

where participants were provided with the following description of a person.

“Steve is very shy and withdrawn, invariably helpful, but with little interest

in people, or in the world of reality. A meek and tidy soul, he has a need for

order and structure, and a passion for detail.”

If asked about his occupation (for example, from a list of farmer, salesman, airline

pilot, librarian, or physician), people tend to focus on which he is most representative of.

This ignores the base rate at which the occupations occur. In the given example, they

suggest that because this character fulfils more stereotypes of a librarian than the other

occupations, people tend to assign a higher probability to that choice.

They continue with an experiment in which people are asked to estimate whether a

personality description belonged to an engineer or lawyer. The participants were either
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told these belonged to a group of 70 engineers and 30 lawyers, or 30 engineers and 70

lawyers. Despite the change in base rates, the two groups assigned extremely similar

judgements, basing their decisions on which stereotype the profiles fell into.

This bias can also apply when an option is representative of neither class. From the

same study, the following profile was provided.

“Dick is a 30 year old man. He is married with no children. A man of high

ability and high motivation, he promises to be quite successful in his field. He

is well liked by his colleagues.”

This description was created to provide a case where the profile was not representative

of either group. Regardless of which base rate the participants were provided, they tended

to provide a probability of 0.5 of Dick being an engineer or lawyer. It is suggested that

as he was representative of both groups equally, then the representativeness probability of

0.5 overrode the base rates between the groups of 0.3 and 0.7.

To avoid the representativeness bias from impacting expert judgements, it is important

to have the experts consider the underlying base rates closely. The elicitor can achieve this

through the elicitation questions, or could discuss them before the questions are asked.

Range-Frequency

When presented with a number of categories to assign probabilities to, it is often the case

that experts will try to spread the probability equally between them. This can result

in the final judgments being a compromise between the experts’ actual beliefs about the

probabilities of each event, and an even split between them (O’Hagan, 2019).

In an experiment in Fischhoff et al. (1978), participants were asked to consider the

reasons why a car wouldn’t start, and assign probabilities between possible causes. In

the first round, participants could assign probabilities to six named causes or ‘Other’. In

the second round, the number of named causes was reduced. While the total probability

across the named causes common in both rounds was expected to be constant, and the

probabilities from the removed causes to be included in ‘Other’, this was not the case.

Instead, it was found that participants would increase the probabilities assigned to the

named causes, resulting in the probabilities assigned being more equally split between the

offered groups.

Fox and Clemen (2005) conducted a similar experiment, asking participants to assign

probabilities to which MBA program they thought would be ranked highest. They assigned

probabilities to six categories, and then a collapsed version with just two. The median

probability assigned to the university with its own category both times changed from 0.3

to 0.6. They also showed that listing alternative options within the ‘Other’ category does

not change the results. This suggests the difference is not due to the availability bias,
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where the participants may not have considered the same range of possibilities contained

within ‘Other’.

To avoid this bias, elicitation questions can be constructed to avoid asking experts for

a number of categories at once. By asking for each value one at a time, the experts can

consider each individually.

Probability Laws

Kynn (2008) summarises a further issue, which is internal coherence. This refers to whether

the answers given by the expert follow an internal consistency, such that the probabilities

provided are valid under the laws of probability. If experts are providing a number of

probabilities that are related, perhaps as a joint or conditional probability, it is important

that they follow the laws of probability.

The most straightforward case is when probabilities should sum to one. This could

be the case when asking about a probability and its complement, or when asking about

mutually exclusive events. By definition, P (A) = 1 − P (AC) for an event A. While the

case of the complement of a probability is well known and able to be avoided by the

experts, in cases where there are a large number of possible events, it may become harder

to ensure the probabilities remain consistent.

In these cases, the elicitors could choose to infer one set of probabilities from the others.

For example, if there are three mutually exclusive events that represent the only possible

cases, eliciting the probability of two of them allows the elicitor to infer the probability

of the third occurring. It may also be advisable to feed any inferred probabilities back to

the experts as a check.

Another case which may occur is when considering joint probabilities. By basic prob-

ability laws, P (A ∩ B) ≤ P (A) for events A and B. However, there is evidence that this

is not always intuitive. A common example from Tversky and Kahneman (1974) provided

participants with the following passage about a woman called Linda.

“Linda is 31 years old, single, outspoken and very bright. She majored in phi-

losophy. As a student, she was deeply concerned with issues of discrimination

and social justice, and also participated in anti-nuclear demonstrations.”

They were then asked if it was more probable that Linda worked as a bank teller, or

that she worked as a bank teller and was involved in the feminist movement. The majority

of participants stated the second was more likely, despite the laws of probability stating

it can at most be equally likely as the first option.

This effect disappears, however, if the question is rewritten in a different way (Fiedler,

1988; Gigerenzer, 1991). If instead of asking participants which is more likely, they are
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asked to consider 100 people similar to Linda and consider how many they believed be-

longed to the two groups, the proportion of inconsistencies drops from over 80% to around

20%.

As such, this issue can be accounted for by the elicitor carefully considering the ques-

tions they are asking. Asking about the number of occurrences out of 100, for example,

may help experts to stay consistent as the consider different proportions. Alternatively,

in cases where events are conditionally independent, joint probabilities can be calculated

using just the individual probabilities. In cases where the events are dependent, a joint

probability could be calculated by asking the expert about the conditional probability

instead.

One final case to consider is Bayes rule, which given events A and B states

P (A | B) =
P (B | A)P (A)

P (B)
(3.1)

Also considering that P (A | B) = P (A∩B)
P (B) , an expert who is asked about a number of

related probabilities can easily end up contradicting themselves. For example, if an expert

provides values for P (A), P (B) and one joint or conditional probability relating A and B,

then the remaining joint and conditional probabilities can be calculated. This means that

if the expert provides any of the remaining probabilities, there is a high chance they may

contradict themselves.

Many probabilities can be calculated using the full range of probability laws once a

few have been elicited. It is important to note that any probabilities calculated should be

checked with the expert before they are used, to ensure they agree. While an extrapolated

value may be mathematically correct, experts cannot be assumed to consistently align

with them. It may be useful to show extrapolated values and allow the experts to modify

their initial values to ensure they agree with the full set of probabilities.

Overconfidence

Overconfidence occurs when experts specify probability intervals that do not correspond

with the observed occurrences of true values. For example, if an expert provides a series

of 50% probability intervals, we would expect the true value to lie within them 50% of the

time. An overconfident expert would have less than 50% of the true values within their 50%

probability intervals. Overconfidence has been shown to be advantageous in many settings,

and so it would not be unexpected for it to present in elicitations of judgment (Johnson

and Fowler, 2011). It has also been shown to be present cross-culturally, demonstrating it

is a widespread bias (Acker and Duck, 2008).

Lichtenstein and Fischhoff (1977) found participants’ 100% intervals had an actual

probability of between 55% and 95%. They also found overconfidence somewhat negatively
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correlated with expertise, with those who answered the most questions wrong tending to be

the most overconfident. Additionally, participants who correctly answered over 80% of the

questions started showing signs of underconfidence. Soll and Klayman (2004) suggest that

overconfidence is higher in this style of interval estimates than with assigning probabilities

to point estimates.

Plous (1995) asked participants to specify 75% or 90% intervals, and found both groups

had similar overall accuracy. This suggested that the participants were not aiming to be

75% or 90% accurate, but perhaps aiming for 100% accuracy. When questioned, many par-

ticipants felt that giving a wider interval would be uninformative, useless, cheating, make

them look ignorant, or just ‘a cop out’. This suggests that some elements of overconfidence

can be due to deliberate decisions, and not just inaccuracies in judgments.

Overconfidence can affect groups as well as individuals. Schuldt et al. (2017) showed

a case where pairs of experts gave more confident judgements together than they did

individually, despite no increase in accuracy.

Overconfidence can also be found in estimates of prediction of an individual’s own

future performance, and not just abstract judgments (West and Stanovich, 1997). This

suggests overconfidence can be a problem regardless of the content of the questions, and

may be better to be addressed through the terms in which the question is asked. For

example, it may be possible to reduce overconfidence by framing questions in frequencies

rather than probabilities (Cesarini et al., 2006).

Group Biases

During group meetings and discussions, all of the previous cognitive biases can affect

experts, as well as some specific to group dynamics.

Groupthink is when a group’s thinking is dominated by concurrence seeking rather

than a more realistic perspective of alternative options (Janis, 1972). While in the context

of elicitation it may sound beneficial to have a group of experts with strong consensus-

finding behaviour, groupthink tends to narrow the group’s range of views. For example,

if an expert is influenced heavily by groupthink they may state their agreement with the

group, regardless of any other opinions or disagreements, in order to conform.

Symptoms of groupthink include collective rationalisations, pressure to conform, self-

censorship, and an illusion of unanimity (Janis and Mann, 1977). Experts can feel pressure

to conform to the group’s opinion, either by adjusting their views to match or avoiding

contradicting views. Experts can also self-censor to avoid going against the group. Another

case is that of collective rationalisation, when the group accepts reasoning without proper

consideration, leading to a common misconception. Finally, the illusion of unanimity can

lead the members of the group to think that the group’s opinion is held by everyone,

overlooking any disagreements or the potential self-censorship.
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There are a wide variety of case studies showing the effects of groupthink, many of

which are compiled in Esser (1998) and Janis (1991). These examples often include groups

of experts with extensive expertise or in positions of power, demonstrating this effect is

widespread.

Another issue to consider is group tenure. The longer a group works together, the

less pronounced their differences tend to become. The effects of demographic diversity

have been shown to weaken the more a group works together (Chatman and Flynn, 2001;

Harrison et al., 2002). Group tenure also leads to an increase in confidence, potentially

leading to overconfidence in their judgements (Meissner et al., 2018).

Methods involving elicitation from groups of experts are designed with these group

biases in mind. Often, they have experts work individually on the elicitation questions

before bringing them together in a group. The individual stage will ensure the experts

avoid the group biases with their first judgements, and help to narrow the influence of this

bias in the group stage. By showing the group of experts what they thought individually,

then it encourages them to consider all group members’ uncensored views and the full

range of opinions.

3.3 Elicitation Aggregation

When we elicit a prior distribution from an expert, it is representative of that expert’s

knowledge, experiences and beliefs. By eliciting a probability interval, we can account for

the uncertainty present within the expert’s views and understanding of previous data. This

uncertainty surrounding a future study can be epistemic or aleatory in nature (O’Hagan

and Oakley, 2004).

Epistemic uncertainty refers to the expert’s lack of complete knowledge. Each indi-

vidual will have a unique set of knowledge, experiences and beliefs, and the difference in

these between individuals is the cause of their differences in epistemic uncertainty. The

epistemic uncertainty is aimed to be captured by eliciting a probability distribution rather

than a single point estimate.

Aleatory uncertainty refers to the uncertainty which is due to statistical variation. If

we are eliciting the likely outcome of a future trial, for example, there is uncertainty about

what will occur simply from the fact that the sample of patients will be random. An expert

may believe a treatment has a certain level of effectiveness in the population of patients,

but as the trial only takes a sample from the population then there is uncertainty as to

the outcome of the trial.

While aleatory uncertainty will always be present, epistemic uncertainty can be reduced

by using multiple experts. By combining the views of multiple experts, the uncertainty

due to a specific expert’s knowledge, experiences and beliefs can potentially be reduced.
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The resulting distribution can provide a better overview of the current, wider state of

knowledge within the field, which in turn provides a more nuanced prior distribution.

The problem of how to represent the views of multiple experts in a single analysis has

many possible solutions. Each expert’s beliefs could be represented by their own individual

prior, and the analysis completed as many times as there are experts. Alternatively, the

experts’ beliefs could be aggregated to form a group prior, allowing for a single analysis

(West, 1984). Group priors have been shown to be more informative and have better

probabilistic calibration than priors of individual experts (Clemen, 2008; Lin and Cheng,

2009).

There are many methods of aggregating a number of expert prior distributions into

a single group prior. Broadly speaking, the two widely used approaches for aggregation

are either mathematical rule based, where individual priors are combined according to a

predetermined mathematical rule, or behavioural, where experts work together to form

a group prior. Some methods do combine these two approaches, using both behavioural

and mathematical rules during the aggregation process. Common methods are discussed

in detail in EFSA (2014).

While each category has methodological differences that provide benefits in different

circumstances, their statistical performance relative to each other has not previously been

directly compared. In this thesis, an elicitation for a clinical trial into diagnostic tests for

Motor Neurone Disease (MND) has been used to form a range of priors and used as a

basis for comparing the following aggregation methods in Chapter 4.

3.4 Mathematical Aggregation Methods

Mathematical aggregation methods combine experts’ distributions using a predefined,

mathematical rule.

There are a number of benefits that come from using mathematical aggregation meth-

ods. Firstly, each distribution can be elicited separately. The experts do not need to

meet, or even know each other, for these methods to be used. Mathematical aggregation

methods can easily include elicitations from different times and locations, allowing experts

more flexibility to complete the elicitation.

Additionally, the predefined rule ensures that there is an impartial method of assigning

weights to the experts. This ensures that the final distribution will not be swayed by

individual experts’ personal interests, and that the final group prior will not have been

deliberately chosen to favour a particular individual or viewpoint. Groups of experts can

also have imbalances in occupational position or power, or experts who push their opinions

more forcibly than others. The predefined rule can assist in these cases to ensure no expert

has an unreasonable or unjustified sway over the final decision.
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Most mathematical aggregation rules combine probability distributions by assigning

each expert a weight, and then calculating a weighted combination of the distributions. For

n experts, each expert i = 1, . . . , n has prior probability distribution fi(θ) for a parameter

of interest, θ.

Each expert is assigned a weight wi by the selected aggregation rule, such that all of

the weights sum to one and are non-negative ie.
∑n

i=1wi = 1 and wi ≥ 0.

Once the weights have been obtained, they can be used to calculate aggregate priors.

There are two common ways of doing this.

This first method is simple linear pooling. In this case, the individual priors are

multiplied by the experts’ weights, and summed (O’Hagan, 2006). This results in a prior

where f(θ) is the weighted arithmetic mean of each expert’s prior distribution, fi(θ) at all

values of θ.

f(θ) =
n∑
i=1

wifi(θ) (3.2)

Alternatively, a log linear pooling method can be used instead. This results in a prior

where the value of f(θ) is the weighted geometric mean of each expert’s prior distribution,

fi(θ) at all values of θ.

f(θ) = k
n∏
i=1

fi(θ)
wi (3.3)

where k is a rescaling factor that ensures f(θ) integrates to 1.

In comparison to a linear pool, a log linear pool emphasises the sections where the ex-

perts have the most agreement. Figure 3.1 shows an example of two experts’ distributions

being aggregated with linear and log linear pooling. The linear pooling method, in purple,

forms a bi-modal distribution, where the modes match the locations of the experts’ modes.

The log-linear pooling method, in orange, places the mode at the point with the highest

agreement between experts.

In cases with more than two experts, such as the four experts in Figure 3.2, both

pooling methods result in similar styles of distributions. The linear pooling method, in

purple, creates a multi-modal distribution, with high density around the modes of each

expert’s distribution. In this case, the modes of the three distributions with higher means

are close, and so the aggregated prior has not formed distinct modes for each. Likewise,

the log linear pooling method, in orange, has created a unimodal distribution with a mode

representing expert agreement.

While the log linear pooling method creates a simpler distribution, it does have a

number of issues.

For any value of θ for the pooled distribution f(θ) where one expert has provided a

probability of zero, i.e. fi(θ
∗) = 0, then the aggregated distribution will have a value of
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Figure 3.1: Linear (purple) and Log linear (orange) pooling for two experts (black) with equal
weights.
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Figure 3.2: Linear (purple) and Log linear (orange) pooling for four experts (black) with equal
weights.

zero at that location, f(θ∗) = 0. This can cause issues when an expert provides a minimum

and maximum value of θ, where they assign a probability of zero to everything outside

the interval. In this case, the bounds provided by any expert become hard cutoffs, so that

the final aggregated distribution can only have a range between the largest minimum and

smallest maximum. Furthermore, if two experts’ distributions do not overlap at all, the

aggregated prior will have a density of zero for all values of θ.

A second issue that can arise with log linear pooling is when there is little overlap

between the densities of experts’ distributions. In these cases, the aggregated distribution

will place high density on the small overlap, and comparatively little on the remaining

values. This results in a distribution with high probabilities in areas no individual expert

has deemed likely, and low probabilities in areas the experts do deem likely.
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Figure 3.3: Linear (purple) and Log linear (orange) pooling for two experts (black) with equal
weights.

Figure 3.3 shows an example of this. While the linear pooling method, in purple, splits

the aggregated prior between the two experts’ distributions, the log linear pooling method,

in orange, places the aggregated distribution between them. This area is that with the

most expert overlap, however neither expert has deemed it likely for the parameter to

lie in this region. The aggregated prior has formed a compromise which then represents

neither of the experts’ views, and its practical interpretation may not be realistic.

While the above issues can be identified before the aggregation is run, and addressed

by using a linear pooling method instead, the log linear pooling method is much less

commonly used. We therefore focus on approaches that use the linear pooling method to

determine how to assign weights to each expert.

3.4.1 Equal Weights

The Equal Weights (EW) aggregation method assigns the same weight to each expert.

For each of the n experts, they are assigned a weight of

wi =
1

n
. (3.4)

This method treats all experts equally. By doing so EW ensures impartiality between

experts, which may be advantageous in some circumstances. EW is also the easiest weight-

ing system to use. As it does not require any additional information about or from the

experts, it does not add any additional questions or work during the elicitation process.

This ensures the elicitation is as short as possible. Additionally, EW also allows for easier

aggregations across multiple sources. By not requiring specific information, any elicita-

tion with multiple experts can be aggregated using it. As such, it is a relatively standard

comparison to compare against more complex aggregation techniques.
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3.4.2 Classical Method

The Classical Method (CM), or Cooke’s Method, assigns experts weights based on cali-

bration and informativeness scores (Cooke et al., 1988). These scores are calculated using

a number of seed questions, for which the elicitor knows the answers but the experts do

not.

The weight of expert i, i = 1 . . . n, is given by

wi =
w∗i∑n
i=1w

∗
i

(3.5)

where the w∗i terms are given by

w∗i = Ci × Ii × αCi (3.6)

and Ci is the calibration score, Ii is the informativeness score, and αCi = 1 if the calibration

score is above a cutoff, or otherwise αCi = 0.

The calibration and informativeness scores reflect the performance of the experts in

the two different ways, comparing their seed question intervals against the ideal case (e.g.

perfect calibration and highly informative).

The calibration score is a measure of how well an expert specifies a probability interval.

For example, an expert’s 25% probability intervals would be well calibrated if 25% of the

repeated intervals contained the true value. Likewise, a well calibrated expert’s estimates

of the median would be above the true value 50% of the time, and below the true value

50% of the time. A poorly calibrated expert may still give responses that are close to, or

include, the true value, but their probability intervals would not represent where the true

value falls upon repeated measurements. The calibration score is given by

Ci = P (2qIi ≤ x) (3.7)

where q is the number of seed questions (Cooke, 1991). The value of P (2qIi ≤ x) is

approximated using the χ2 distribution, with q − 1 degrees of freedom. The value of

χ2
q−1(2qIi) is bounded between zero and one.

The informativeness score is a measure of how much information the expert has pro-

vided. An informative expert provides narrow probability intervals, which provide more

information than wider intervals. For example, for a parameter with a range between zero

and one, an expert who provides a 90% probability interval of (0.4,0.5) has provided a

more informative interval than one who provides an interval of (0.1,0.8). A less infor-

mative expert may still provide responses that are well calibrated, or centred around the

true value, but their priors would have more uncertainty than an informative expert. The
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information score is calculated by

Ii =
r∑
j=1

sj ln
sj
pj

(3.8)

where sj is the expected proportion of seed questions values that fall within a probabil-

ity interval, pj is the observed proportion of seed questions values that fall within the

probability interval and r is the number of probability intervals elicited for each variable.

The αCi term provides a mechanism for ensuring only well calibrated experts are

included in the final aggregated prior. Experts with a calibration score less than the

cutoff are given a weight of zero, excluding them from the aggregated prior.

Seed Questions

The Classical Method requires the experts to complete a number of seed questions along-

side the elicitation. The seed questions should be questions the experts have uncertainty

about the answers to, while the elicitor has, or will have, access to the answer. For clarity,

the questions in an elicitation that are used to create the individual experts’ prior distri-

butions will be referred to as the elicitation questions to distinguish them from the seed

questions. It is important to carefully construct the seed questions to ensure they reflect

the performance of the experts in the elicitation questions.

Quigley et al. (2018) classifies seed questions as either predictions or retrodictions, and

either domain or adjacent to the field of expertise.

A prediction type question asks the experts about an event which has not yet occurred,

been recorded, or been released. Prediction questions are preferable over retrodiction

questions as they remove the possibility that the expert knows the answer. They are also

more similar in nature to the elicitation questions, which tend to also be predictions about

a value not yet measured. In order to use prediction questions, the elicitor will have to

wait until the value is available in order to use it in CM calculations. There is also a risk

that the values are not released on time, or at all. While this narrows the available time

frame for which the questions can reasonably come from, it does allow the experts to make

prediction style judgments as they do for the elicitation questions.

A retrodiction type question asks the experts about an event or value which has hap-

pened in the past. These questions need to be carefully selected so that the experts will

not know the exact answer already, which may be a risk as the question should come

from their field of expertise. There are a number of advantages to retrodiction questions.

Firstly, they allow the CM calculations to be carried out immediately following the elici-

tation. They also tend to be easier for the elicitor to write as there tends to be a wider

range of previous datasets than there are upcoming values.
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Domain questions directly reflect the topic of the elicitation questions and may ask

the same, or a very similar, type of question as to the elicitation questions. They are

preferable over adjacent questions as they are closer in style and topic to the elicitation

questions, and the the experts would be expected to perform similarly. A domain question

should ideally match the elicitation in both the field of question and in the dimension of

the question. For example, if the experts are to be asked to give percentage values for the

elicitation, a domain question would ideally ask about percentages as well.

Adjacent questions are less related to the field of expertise than domain questions and

can be less similar to the elicitation questions. Adjacent questions tend to be easier to

develop, as there is a wider range of possible sources of data to base the questions on.

In cases where the elicitation is being completed due to a lack of relevant information

available to form an informative prior, there are clearly already limits to the construction

of domain seed questions. While they provide less of a reflection of the experts’ knowledge

of the field, they are still valuable in examining their ability to specify probabilities.

While the difference between prediction and retrodiction is more distinct, the difference

between adjacent and domain questions is less binary. A question which is not directly in

the field of expertise can still be valuable if it is of a similar dimension to the elicitation

questions, and vice versa. Ultimately, the more similar the seed questions are to the

elicitation questions, the more similar we would expect the experts to perform in both sets

of questions. As we only measure the performance of the experts in the seed questions,

we want them to be as close to elicitation questions as they can be.

Other than the content of the seed questions, the number of seed questions provided

to the experts also needs to be considered. A greater number of seed questions will allow

for experts’ informativeness and calibration scores to be better estimates (Eggstaff et al.,

2013). The addition of each extra seed question provides diminishing returns to the final

aggregated prior, and it is suggested that there may be an upper bound to the number of

useful seed questions.

Clemen (2008) finds that the required number of seed questions to ensure the CM

performs well is likely greater than 10. Bolger and Rowe (2015) show that to statistically

identify a difference of 0.1 between the calibrations of two experts requires 1546 judgments,

and thus suggest that 10 seed questions are insufficient. A greater number of seed questions

is clearly ideal, but is not always a reasonable choice to make.

The cost of adding seed questions must be considered when developing the elicitation.

Each seed question increases the amount of time an expert spends on making judgments.

A longer time required to complete the elicitation then limits the number of experts who

may be able or willing to commit such time, and may lead to a deterioration in judgments

due to tiredness. The trade off between time and the accuracy of the informativeness and

calibration scores needs to be considered, and will vary by the circumstances of a specific
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elicitation.

3.4.3 Other Mathematical Aggregation Methods

While we focus primarily on the mathematical aggregation methods, there are many other

methods above. We briefly review some of the published material on alternative methods

below.

Self and Peer Ratings

Self rating methods ask experts to rate their own abilities on a scale, and form weights

based on the responses. While originally developed for use with the Delphi Method (Dalkey

et al., 1970), they have since fallen out of favour due to issues such as inconsistency between

experts, and overconfidence (Brockhoff et al., 1970; Aspinall and Cooke, 2011).

When the experts involved know each other, an alternative could be to request anonymised

ratings of each other. This peer rating system hopes to remove personal bias, reduce the

inconsistency between how experts rate and their overconfidence (Degroot, 1974; Bordley

et al., 1986). However, there is still strong evidence that these ratings do not accurately

represent the performance of experts. Burgman et al. (2011) found that when experts were

asked how well they and their peers will perform, their responses correlated with years of

experience and publication record, but not performance. Brockhoff et al. (1970) found the

number of years of experience in a field also does not correspond with performance.

Rating the experts could also be achieved by directly measuring their years of expe-

rience or publication record, given that those factors have been shown to heavily impact

the experts’ own ratings. Cooke (2008) investigated a weighting scheme using the number

of papers an expert has published which had been cited by other experts involved in the

elicitation. This was shown to be outperformed by the Classical Method.

While perhaps easier to implement than the Classical Method, the poor performance

of expert determined ratings means they are not worth implementing. A mathematical

weighting method that includes a measure of the experts’ performance through measure-

ment rather than personal factors is preferable.

Moment Methods

Instead of combining probability distributions, a Bayes linear approach can be taken to

combine moments. These moments can be difficult to elicit directly, so may need to be

calculated based on expert judgments. Instead of using the conditional probability rule

defined by Bayes theorem, Bayes linear analysis instead conditions on the observations

using linear fitting (Bedford et al., 2010). For a vector of quantities of interest ~X and

observed data ~D,
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ED( ~X) = E( ~X) + cov( ~X, ~D)(var−1( ~D))( ~D − E( ~D)) (3.9)

varD( ~X) = var( ~X)− cov( ~X, ~D)(var−1( ~D))cov( ~D, ~X) (3.10)

The elicited values can then be combined, with Wisse et al. (2008) suggesting an

analogous approach to the linear pooling method. For each expert i and variable v,

derived estimates of the mean, µi,v, and variance, σ2i,v, can be used to calculate a penalty

function using the following equation.

ψi =
V∑
v=1

c1(θv − µi,v)2 +
V∑
v=1

c2(θ
2
v − σ2i,v)2 (3.11)

where θv is the realisation of the variable of interest and V is the total number of variables.

It is suggested to set c1 = 1 and c2 such that

0.5 =

∑V
v=1 c2(θ

2
v − σ2i,v)2

ψi
(3.12)

They also show the method outperforms an EW linear pool, and can perform simi-

larly to the Classical Method when using the same seed questions to form weights, while

assigning weights to a greater range of experts.

Supra-Bayesian Method

Another approach is to consider the prior from the decision maker’s points of view, with

it being informed by the experts’ elicited judgements (French, 1981). This supra-Bayesian

approach can start with an uninformative prior, learn about the parameter of interest

through Bayesian updating using expert priors as data, and then use the resulting poste-

rior as the prior in future analyses. In order to achieve this aggregation of prior distribu-

tions under a Bayesian framework, the experts’ judgments can be treated as data and an

appropriate likelihood formed to represent them (Hartley and French, 2018).

For a quantity of interest θ, and a series of expert statements Q,

P (θ | Q) ∝ P (Q | θ)P (θ) (3.13)

where P (θ) is the decision maker’s prior distribution and P (θ | Q) is a posterior

distribution representing the updated beliefs of the decision maker.

The difficulty of this approach comes from specifying a likelihood P (Q | θ). We will

look at two examples, a Multivariate Normal approach and a Copula method.
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Multivariate Normal Bayesian Method

Roback and Givens (2001) provide an example of how a multivariate normal distribution

can be used to aggregate priors for two experts. Consider a quantity of interest, θ, with

judgments made about it by two experts, who provide a value µi for the mean and σi

for the standard deviation. The posterior distribution of the decision maker’s beliefs,

incorporating the beliefs stated by the experts, is

P (θ | ~µ, ~σ) ∝ P (~µ | ~σ, θ)P (~σ | θ)P (θ) (3.14)

It is assumed that ~σ does not depend on θ, so P (~σ | θ) = P (~σ).

We then let P (~µ | ~σ, θ) ∼ N2(~µ,Σ) where

N2(~µ,Σ) = N

([
α1 + β1θ

α2 + β2θ

]
,

[
γ21s

2
1 ρ12γ1s1γ2s2

ρ12γ1s1γ2s2 γ22s
2
2

])
(3.15)

The α, β, and γ terms reflect biases in the means and standard deviations, which

would be inferred based on the expert’s judgments rather than elicited directly.

If we place an improper flat prior on θ, then the posterior distribution can be calculated

as

P (θ | ~µ, ~σ) ∝ N
(
βTΣ−1

βTΣ−1β
(µ− α), (βTΣ−1β)−1

)
(3.16)

where α =

(
α1

α2

)
and β =

(
β1

β2

)
.

Winkler (1981) outlines a more general method that uses a multivariate normal distri-

bution to aggregate multiple normally distributed expert priors.

As each expert’s prior is a normal distribution, it will have a parameter for the mean µ

and variance σ2. The mean from each individual normal distribution forms the elements,

µi, of a vector of means for the multivariate normal distribution. The covariance matrix

Σ is constructed using the experts’ variances on the diagonal, and covariances σi,j , i, j =

1, . . . , n and i 6= j, for the other elements.

The multivariate normal distribution can then be simplified down to a univariate nor-

mal distribution for a known covariance matrix. An improper diffuse prior density is

placed on the parameter of interest θ, and µ is normally distributed with a mean of zero

for all elements. Note, the means modelled are the difference between the experts’ best

estimates and the parameter of interest.

The posterior density of θ is then:

p(θ | µ) ∝ φ((θ − µ∗)/σ∗) (3.17)

64



Chapter 3. Elicitation for Assurance

where φ is the standard normal density function. The mean and standard deviation of the

combined distribution are then,

µ∗ =
1nΣ−1µ

1nΣ−1e
(3.18)

σ∗ =
1

1nΣ−1e
(3.19)

where 1n = (1, . . . , 1)n.

The mean of the combined distribution, µ∗, can be expressed as a linear weighting of

each experts’ mean. The weights in this case are:

wi =
Σn
j=1αij

Σn
m=1Σ

n
j=1αmj

(3.20)

where αij = Σ−1ij .

This method requires values for the covariances σi,j . A simplifying assumption could

be made that the experts are uncorrelated, and so set the non-diagonal elements of Σ to

zero. Alternatively, the covariances could be obtained using seed questions, such as those

in the Classical Method. For a vector of point estimates for the seed questions from expert

i, X, and the values from expert j, Y, along with the vector of true values, T ,

σi,j = cov(X − T, Y − T ) (3.21)

It may not always be possible to calculate the covariance between experts, and in these

cases a prior can be placed on σ. An inverse Wishart distribution provides conjugacy in

the above Normal distribution.

Copula

While the Multivariate Normal method above is simplified for non-correlated experts, cop-

ula methods offer an alternative when dealing with correlation between expert judgements

(Jouini and Clemen, 1996). Wilson (2017) found there was evidence of between-expert

dependence, and that fitting a copula for aggregation provided a more appropriate distri-

bution than an equal weight pooling.

A copula is a joint cumulative distribution, which we can define for multiple experts

as

C(u1, . . . , un) = P (F1(θ) ≤ u1, . . . , Fn(θ) ≤ un) (3.22)

where Fi(θ) is the cumulative probability distribution corresponding to the elicited prior

fi(θ), and u1, . . . , un ∼ Uniform(0, 1).

Once the copula is defined, it can be used to aggregate the experts’ distributions using
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the following equation (Wilson and Farrow, 2018).

f(θ | D) ∝ c(F1(θ), . . . , Fn(θ))
n∏
i=1

fi(θ) (3.23)

where D is the set of elicited distributions, and c is the probability density function

corresponding to C, i.e.

c(u1, . . . , un) =
d

duI . . . dun
C(u1, . . . , un) (3.24)

The copula induces dependence between the expert priors, while maintaining the cor-

rect marginal distributions for each expert.

IDEA

The IDEA protocol aims to bridge the gap between mathematical and behavioural aggre-

gation methods (Hanea et al., 2017). The acronym IDEA stands for Investigate, Discuss,

Estimate and Aggregate, the four steps of the method.

Experts begin by providing estimates for each question anonymously. By having ex-

perts estimate the quantities prior to their first meeting, it helps to avoid groupthink

and invites a wider range of assumptions, reasoning and possible interpretations to the

question.

The estimates are shared between the experts, before they meet to discuss the ques-

tions. Any assumptions or questions can be discussed and clarified at this meeting, which

is led by a facilitator who can direct the conversation if need be. While the estimates can

be discussed at this stage, it is aimed to keep anonymity as to who provided which values.

This is to avoid any expert having an unintended influence over others due to the experts’

perceptions of each other.

The experts then provide another round of estimates. Hemming et al. (2018) found

that experts updated their probability intervals for a median of 7 questions out of 9, and

their best estimates for a median of three questions out of nine. They also found the

majority of those who updated their values improved their accuracy (in the form of an

average log-ratio error, or ALRE, score), and updating the best estimate improved the

score by around twice as much as updating the probability interval.

The second round of estimates are then aggregated together using a mathematical

aggregation method. This avoids the experts having to formulate a consensus themselves.

After applying the IDEA protocol, Hanea et al. (2018) found only a marginal improvement

by using Classical Method weights over equal weights. The group of experts used, however,

had been selected as they had previously been shown to perform well, and so these results

may not replicate on less well calibrated experts.
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For eliciting probability distributions, the IDEA protocol suggests a set of four ques-

tions. First, the experts are asked to provide the lowest and highest plausible values.

Then, they make their best estimate in between these bounds. Finally, they are asked

how confident they are that the interval has captured the true value. The best estimate

is taken as the median, while the lower and upper interval bounds are taken as quantiles

corresponding to the experts’ confidence in their interval.

3.5 Behavioural Aggregation Methods

Behavioural aggregation methods provide a framework for the group of experts to form an

aggregated prior through agreement, rather than a formalised rule. The aim is to create a

consensus among the experts about a sensible prior distribution that represents the view

of the group.

One benefit of a behavioural aggregation method is it makes clear whose beliefs the

prior represents. For the situations elicitation is used in, provided in French (2011) and

mentioned in Section 3.2, the experts and decision maker may not be the same individuals.

In the case where the decision maker is a separate person, a mathematically aggregated

prior could be argued to be the decision maker’s prior, based upon the evidence or data

which are the expert priors. In the other cases, however, it becomes less clear.

A mathematically weighted average of a group of experts’ priors carries no guarantee

that any of the experts will agree with the final outcome. The aggregated prior represents

a mathematical weighting of the group’s views, rather than the group’s views themselves.

Furthermore, if some or all of the experts disagree with the final aggregated prior, it is

hard to argue that it represents all members of the group’s beliefs.

Behavioural aggregation methods, however, rely on experts forming their own consen-

sus. The resulting prior is one they all agree to, as best representing the views of the

group. There is, then, a clear group who this prior represents, which brings with it a level

of transparency and accountability that may otherwise be missing.

It is important to be aware that behavioural aggregation methods do not guarantee

that the experts will agree upon a single consensus prior distribution. In some cases, the

elicitor may be able to assist in the discussion and move them towards a distribution that

includes all perspectives. This could involve suggestions which the experts may not have

thought of themselves, such as creating a multi-modal distribution rather than a uni-modal

one. Alternatively, the elicitor could encourage the experts to consider the other points of

view further, and try to create a balanced prior which includes all viewpoints.

It may be the case, however, that the experts are unable to come to a single consensus

among themselves. In this case, multiple aggregated distributions can be formed to rep-

resent the views of the different subgroups of experts. For example, in a case where there

67



Chapter 3. Elicitation for Assurance

are two prevalent hypotheses among the experts, they may wish to split up and form two

separate aggregated priors.

When multiple priors are formed, there are a number of options as to how they can

be used in a model. One option is to use them separately, and run the model multiple

times. If the outcome of the model is very similar each time, then the difference between

the priors clearly does not have a major practical difference to the final outcome. If there

is a difference, then either multiple outcomes will be reached, or the prior may need to be

aggregated beforehand to ensure there is a single outcome.

The way such a decision is made would be very circumstance specific. The specific

details of the study and the stakeholders involved may influence what type of outcome is

appropriate, and what methodologies can be used.

3.5.1 Delphi

The Delphi method was one of the earliest behavioural aggregation methods developed

(Dalkey and Helmer, 1963). There are many variations to the Delphi method and its

application, but implementations fit a similar pattern. Experts are first asked for their

judgments on a number of questions individually. These judgements are then shared

anonymously between the group of experts, along with other comments they may have.

The experts then make a new set of judgments taking the other experts’ views into account.

This process of sharing results and updating judgements is repeated a number of times.

The Delphi method is often anonymised between experts, and is usually conducted

without experts discussing their views in person (EFSA, 2014).

The Delphi method provides a framework for assisting in the flow of information be-

tween experts. The original method does not prescribe a particular set of numbers to be

elicited, which has led to variation in what is asked of the experts. Most elicitations will

ask for a best estimate, interval and an associated probability, such as in Filyushkina et al.

(2018).

It would seem advisable, then, to follow general elicitation advice, such as that outlined

in Section 3.2.1.

Unlike other elicitation methods, which focus on extracting quantitative information,

the Delphi Method has seen use in qualitative decision making as well (Brady (2015);

Meijering and Tobi (2016), for example). These methods can ask the experts different

questions in different rounds, such as focusing more on brainstorming possible ideas in

early rounds, and analysing and reviewing the ideas in later rounds. Okoli and Pawlowski

(2004) provides an example where experts first brainstorm ideas over two rounds by listing

all relevant factors. They then narrow down the list by each selecting the most important

factors, of which the commonly chosen ones were retained. Finally, the experts rank the

factors. These rankings are then shared and the experts are asked to adjust their rankings,
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with this final step being repeated until a consensus is reached or no further changes are

made.

One issue with the Delphi method is the formation of a consensus. Humphrey-Murto

and De Wit (2019) identifies both defining a consensus, and building a consensus as under-

researched areas surrounding this methodology. In three studies, Landeta (2006) found

that 55-65% of experts updated their judgments based on feedback, updating an average

of 25% of their values. They also found convergence of opinion between the first and

second rounds of elicitations in each case. While this shows it is likely the majority of

experts will update their views, it does show that many will not. Unless their judgments

overlap already, if the experts do not change them they cannot reach a consensus. In such

cases, a mathematical aggregation such as an equal weight linear pool could be used to

aggregate between the different responses. More recent behavioural aggregation methods

allow the elicitor more opportunities to help the experts’ judgements converge and to reach

a consensus.

3.5.2 SHELF

The Sheffield Elicitation Framework (SHELF) is a structured method of eliciting prob-

ability distributions from a group of experts (Oakley and O’Hagan, 2016). Similarly to

the Delphi method, SHELF aims to help experts form a consensus between themselves.

Unlike the Delphi method, this is done in an in-person meeting, where the experts try

to provide a distribution that incorporates all of their views. The SHELF group meeting

contains a number of steps, outlined in Gosling (2018).

To begin, the experts are trained in the elicitation process. This training includes

ensuring they have an understanding of probability and statistics, in which they may have

little previous training. It is also recommended that elicitors run the experts through a

toy problem, in which they can practice the elicitation and specification of probabilities.

This training is aimed at combatting the various cognitive biases, and ensuring the experts

have a common understanding of the terminology and area of discussion.

The next stage of the elicitation is for the experts to share information about them-

selves. The experts are asked about potential vested interests, their expertise, and the

sources of evidence they are using to base their judgments on. The information here helps

alert the facilitator to potential biases, and strengths and weaknesses of the group, while

also reminding the experts of their full range of knowledge.

The experts are then asked to provide their individual judgments on each of the quanti-

ties of interest. It is recommended that the facilitator ask the experts to provide minimum

and maximum values, median, and lower and upper quartiles. The order of these values

aims to address potential anchoring bias and overconfidence. Other methods, such as the

roulette method, can be used instead (Gore, 1987; Johnson et al., 2010). Though the ex-
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perts will be in the same meeting, these values are elicited individually and, at this stage,

privately.

After each expert has specified their individual judgments, distributions are fit using

their values. This is usually done using a least squares algorithm, though the exact

distribution types to be considered will depend on the parameter of interest. If experts

have provided their opinions in the form of a roulette method histogram, this may just be

carried on to the next step.

The individual distributions are then shared with the group, and the experts are en-

couraged to use them as a basis for creating a group aggregation. The elicitor can use the

similarities and differences of the individual distributions to start a conversation, or probe

at the experts’ judgments. It is noted that there may be difficulties in having experts

come to an agreement on a single prior distribution given the potential for a large range in

different views and experiences. SHELF recommends experts are instead asked to provide

a prior for a rational impartial observer (RIO), an imaginary person who has observed

their discussion and all of their evidence. This neutral viewpoint aims to help experts to

avoid bias, personal investment and interpersonal difficulties.

Once the experts have formed a consensus, they are then given feedback on the dis-

tribution. This can include probabilistic statements from the distribution, or practical

interpretations of the parameter. They are given an opportunity to change their distribu-

tion if they do not agree with each statement, and the final aggregated prior is the one

resulting from the feedback loop.

Oakley and O’Hagan (2016) provides guidance, templates and an R package to assist

with the application of SHELF. These documents and templates assist with the man-

agement of evidence and definitions for the experts, and the collection of additional in-

formation. The R package contains an interactive Shiny application that provides real

time feedback of fitted distributions given elicited values. Further applications have been

developed for specific studies, for example Truong et al. (2013).

3.6 Implementation of First Elicitation

An elicitation was developed to assist in the design of a trial, the Case Study, which

is described in Chapter 1. The case study made a comparison between a reference test

(RT), namely the Awaji criteria, currently used in the diagnosis of Motor Neurone Disease

(MND) with a novel experimental test (ET), the BIMC test as an addition to the Awaji

Criteria. The elicitation aimed to gather information about the effectiveness of both tests

in order to perform appropriate sample size calculations. Secondly, it was also designed

to allow a comparison between mathematical and behavioural aggregation methods.

The three experts who agreed to take part had been involved in the development and
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design of the new medical diagnostic test and the clinical trial. As this new test had

limited previous data, an elicitation was the best way to gather the necessary information

to design the trial. As the experts had experience in developing the new diagnostic test,

they were suitable choices to elicit from.

Due to the availability of the three experts to meet at the same time for a meeting

of the required length, parts of the elicitation were conducted individually through a pre-

elicitation survey. The second part of the elicitation was held in person, in a meeting with

all three experts and an elicitation team.

The following sections will outline the development of the elicitation protocols used in

the two rounds of elicitations.

3.6.1 Expert Profiles

The three experts had between eight and twenty-five years of experience of research in

MND. Table 3.1 outlines the experts’ self assessed knowledge and expertise. All of the

experts believed they were at least as knowledgeable about BIMC as they were about the

Awaji Criteria.

The experts were also asked to consider their strengths and weaknesses in terms of

MND and providing information during the elicitation. The experts listed research exper-

tise, background knowledge of the disease and Awaji Criteria, a good understanding of

electrophysiology, and clinical experience as their strengths. Their self assessed weaknesses

included distance from front-line neurology care, a relative lack of on-going lab based re-

search and a shorter amount of practice as a neurologist and clinical neurophysiologist.

In general, the weaknesses of each expert tended to be covered by the strengths of the

other experts. This suggested that although the experts had a similar level of experience

with the new diagnostic test, they had more varied backgrounds in the broader research

area.

Table 3.1: Experts’ Self Assessed Knowledge and Experience

Expert 1 Expert 2 Expert 3

Please rate your knowledge on the disease from
1 (least) to 5 (most) 4 3.5 4.5

Please rate your knowledge on the Awaji Criteria
from 1 (least) to 5 (most). 5 3.5 3

Please rate your knowledge on BIMC
from 1 (least) to 5 (most). 5 4 3

Years of experience studying MND 8-10 10 25
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3.6.2 Classical Method Seed Questions

The first half of the pre-elicitation tasks sent to the experts contained a number of questions

designed to facilitate the use of the Classical Method. Alongside this and the elicitation

questions, a document of supplementary material was also provided to the experts.

The questions were provided to the experts in a text document, which they filled in

and returned via email.

Table 3.2 outlines the seed questions included in the survey.

Seed
Question
Number

Seed Question Answer Citation

1 For the years 2006 to 2009, what was the incidence
rate per 100,000 people of ALS in the Netherlands?

2.77 Huisman et al.
(2011)

2 For the years 2006 to 2009, what was the prevalence
rate per 100,000 people of ALS in the Netherlands?

10.32 Huisman et al.
(2011)

3 For the years 1995 to 1997, what percentage of people
with ALS in Ireland were male?

67.5 Traynor et al.
(1999)

4 For the years 2002 to 2003, what percentage of people
with ALS in Uruguay were male?

60.5 Vázquez et al.
(2008)

5 For the years 1995 to 1997, what percentage of new
ALS diagnoses in Ireland were male?

57.6 Traynor et al.
(1999)

6 For the years 2002 to 2003, what percentage of new
ALS diagnoses in Uruguay were male?

66.6 Vázquez et al.
(2008)

7 For the years 1985 to 2006, what percentage of ALS
diagnoses in New Zealand were familial?

4.1 Byrne et al.
(2011)

8 For the years 1989 to 1992, what percentage of ALS
diagnoses in Hong Kong were familial?

1.2 Byrne et al.
(2011)

9 For the years 1987 to 2009, what was the incidence
rate per 100,000 people of ALS in the Faroe Islands?

2.6 Joensen (2012)

10 For the years 1987 to 2009, what was the prevalence
rate per 100,000 people of ALS in the Faroe Islands?

8.2 Joensen (2012)

Table 3.2: The full list of seed questions.

The seed questions contain a mix of questions. As the case study involves the diagnosis

of MND, of which Amyotrophic Lateral Sclerosis (ALS) is the most common type, the seed

questions are all of a similar topic. While domain related questions are preferable, the

new diagnostic method did not have enough previous data to use as a basis for the seed

questions. The data available was also predominantly gathered by the experts involved

in the elicitation, meaning they would likely know the correct answers to many of the

questions. Additionally, there were no topics that could be used for prediction by the

experts on the new diagnostic method, as they were the group developing and researching

it.
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Another factor that was considered when developing the seed questions was the avail-

ability bias. In order to assist the experts in considering the breadth of their knowledge,

and the variability within the trial’s patients, the questions were chosen to span a number

of different populations. This was achieved by asking about populations from a range of

different time periods and locations. Additionally, the questions also ask the experts to

consider how differences in sex and family history can affect diagnoses, with the intention

that it encourages them to consider demographic factors within the patient group.

Questions 3-8 ask the experts to make judgments in percentages, while questions 1-2

and 9-10 ask about rates per 100,000. The elicitation questions asked about proportions,

and so bounded questions involving percentages and rates give the experts a similar style

of questions.

The analysis of the responses to these questions is located in Chapter 4.

A number of additional background questions were included, as shown in Table 3.3.

Question
Number

Questions

1 What is your background in researching MND?
2 How long have you been involved in MND research?
3 What sources of information is your knowledge of MND based

on?
4 What are your strengths and weaknesses regarding this topic?
5 Please list any sources of quantitative information about BIMC

tests you are aware of. This information will be shared with
other participants

6 Please rate your knowledge on Motor Neurone Disease from 1
(least) to 5 (most).

7 Please rate your knowledge on the Awaji Criteria from 1 (least)
to 5 (most).

8 Please rate your knowledge on the Beta-band intermuscular
coherence tests from 1 (least) to 5 (most).

9 What is the smallest percentage increase in correct positive
diagnoses from using BIMC you would need to see to implement
it in diagnoses?

Table 3.3: The full list of background questions.

The additional questions 1-5 were included to encourage the experts to further consider

their total range of knowledge, in order to help combat the availability bias. By directly

asking about the experts’ backgrounds, it encourages them to consider their past history

in MND research and practice.

Questions 6-8 ask the experts to rate their own knowledge of the topics surrounding

the trial. The responses to these questions can be used as a basis for creating weights using

a self-rating method, as outlined in Section 3.4.3. It was also intended that this question
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might help the experts reflect further on their own expertise, and help them adjust any

overconfidence.

The results for these questions are presented in Section 3.6.1.

Question 9 was used to determine values suitable for the Minimal Clinically Important

Difference, which is discussed further in Chapter 2.

Additional and Supplementary Materials

The supplementary material document provided definitions of all statistical and medical

terminology, to ensure the experts would have the same interpretation of the questions.

The full document is provided in Appendix A.1, and a summary is presented here. Ta-

ble 3.4 provided initial definitions and acronyms which were used later in the document.

Definitions

MND Motor Neurone Disease, which involves the progressive degeneration
of motor neurones in the cerebral cortex, brainstem and spinal cord.

AC Awaji Criteria

Positive Awaji
Diagnosis

A diagnosis using the Awaji Criteria leading to a patient being
assigned treatment for MND.

BIMC Beta-band intermuscular coherence test

Positive BIMC
Diagnosis

A diagnosis using the BIMC test and Awaji Criteria leading to a
patient being assigned treatment for MND.

Median The value where an outcome is equally likely to occur above or
below.

Best Estimate The median.

Lower 25%
Quartile

Assuming the outcome will occur below the median, this quartile
is the value where an outcome is equally likely to occur above or
below.

Upper 25%
Quartile

Assuming the outcome will occur above the median, this quartile
is the value where an outcome is equally likely to occur above or
below.

Table 3.4: Supplementary Material Definitions

Following this, the documents provided a brief reminder of the design of the trial.

Then, the Awaji criteria were provided, alongside further information about BIMC from

the trial designers’ previous works. This information would have been seen before by the

experts in this elicitation, but it was included as a reference and to remind them of the

previous results they had gathered.

The experts had also provided the data from their previous work, which included

measurements from two pairs of muscles in each of the legs and arms of patients known

to either have, or not have, MND. From this, a number of plots were created to provide

further information. The data was first plotted as histograms and boxplots, an example
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Figure 3.4: Example Supplementary Material Boxplot

of which is provided in Figure 3.4.

While the experts had likely seen the data plotted this way before, it may have been

some time since they had seen it. The boxplots and histograms were included to allow

the experts to refamiliarise themselves with the data. As the measurements collected had

a strong positive skew, each plot was provided on both an untransformed and logarithmic

scaled axis.

The readings in each limb were also plotted against each other, such as in Figure 3.5.

This was done to help prompt the experts to further consider the diagnostic abilities of

their new method. While the histograms and boxplots showed that the mean recorded

measurements from the two groups of patients were different, the scatter plots gave a more

nuanced view of how patients could be categorised using the measurements. These plots

were only presented with logarithmic transformed axes to ensure all points were readable.

The final set of plots created for the experts were receiver operating characteristic

curve, or ROC curve, plots. Figure 3.6 provides one example. ROC curves plot the

relationship between the sensitivity and specificity of a classifying test as the cutoff for

classification changes. A diagnostic test can have a sensitivity of one if it gives a positive

result for all measurements, but will have a specificity of zero as it will fail to identify

anyone who does not have the disease. As the cutoff is changed, the test decreases its

sensitivity as it begins to misclassify positive patients, but improves its specificity by

correctly identifying negative patients.

A final summary table was also presented alongside the ROC curves, Table 3.5. The

area under the ROC curve is commonly used as a measure of how well a test performs.

A perfect test will have an area of 1, and a completely uninformative test (which appears
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Figure 3.6: Example Supplementary Material ROC curve

as a diagonal line from (0,0) to (1,1)), will have an area of 0.5. The table also provides

estimates for the PPV, the positive predictive value, and NPV, the negative predictive

value. The PPV and NPV values are calculated as follows.

PPV =
TP

TP + FP
(3.25)

NPV =
TN

TN + FP
(3.26)
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where TP refers to the number of true positive results, FP refers to the number of

false positive results, TN refers to the number of true negative results, and FN refers to

the number of false negative results.

BIMC Comparison Area under curve PPV NPV

Leg 1 0.782 0.931 0.315
Leg 2 0.759 0.931 0.239
Arm 1 0.820 0.902 0.391
Arm 2 0.775 0.967 0.250

Table 3.5: Supplementary Material Summary Table

The experts were all familiar with ROC curves and the quantities in the summary

tables, and had experience using them. As the ROC curves were their natural way of

investigating and analysing a diagnostic method, this provided them with a summary of

their previous work in a way they would be comfortable using. It also meant that they were

thinking of the new diagnostic test in terms they may be familiar with when considering

other tests in.

3.6.3 SHELF Shiny Application

SHELF typically conducts the individual and group components of the elicitation in per-

son. However, due to time constraints and expert availability, the SHELF protocols needed

to be modified to fit a shorter meeting. The individual component of the elicitation was

instead held prior to the group elicitation, in an online setting. After the experts com-

pleted the initial seed questions, they then proceeded to an interactive online application

for the elicitation questions.

The online application was developed using the R Shiny package Chang et al. (2015).

The initial page required the expert to enter a name, so that if they did not complete

the full elicitation they could return at a later time and retrieve their previous answers.

The following pages asked about the parameters of the model. For each, the experts were

asked to enter upper and lower limits, quartiles and a median. Figure 3.7 shows how the

experts inputted these values.

The experts could input values using the sliders. The range available for the quartiles

was constrained by the inputted minimum and maximum, and the range for the median

was constrained by the quartile values. In order to ensure a distribution could be fit, the

available ranges were slightly narrower than the answers inputted in the preceding row.

This was done to ensure that experts could only enter mathematically consistent values,

for example such that the quartiles and median were within the interval bounded by the

minimum and maximum. These values were used to fit a distribution that approximated

the expert’s views.
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Figure 3.7: R Shiny application input box.

Once the values were inputted, clicking on the ‘Calculate’ button would fit a distribu-

tion to the values. A number of different distributions were considered, as outlined later

in this section, and each were fit using a least squares method. The parameters of the

distributions, φ1 and φ2, were estimated by calculating S, using

S =
4∑
i=0

(qi − θi)2 (3.27)

where qi refers to the ith quartile provided by the expert, and θi is the ith quartile

from a distribution with parameters φ1 and φ2. An optimisation algorithm minimised the

value of S by searching over the possible values of φ1 and φ2. The use of minimum and

maximum values are discussed later in this section.

The fitted distribution with the lowest S was then displayed to the expert as the best

fit for their answers. Additionally, the values of the provided quantiles and those from the

fitted model were overlaid on a plot of the distribution to give the expert a guide as to how

well the distribution was fitting to their beliefs, as demonstrated in Figure 3.8. A table

was provided beneath the plot, outlining the summary statistics of the fitted distribution

as further feedback.

If the expert felt this distribution corresponded with their beliefs, they could save it

and continue to the next page. Otherwise, they could either select a specific distribution
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from the dropdown list available, shown below, or change their answers to the questions

and refit new a distribution.

The distributions available for the experts to fit included the following.

Optimal The distribution with the minimal S value, so the experts could easily return

to it. This option gave the same results as manually selecting the best fitting distribution

below.

For the following Beta distributions, the values of φ1 and φ2 are denoted as α and β

respectively.

Beta The Beta distribution, with the inputted minimum and maximum taken to be

the 1% and 99% quantiles. The beta distribution has a probability density function

f(x) =
(α− 1)!(β − 1)!

(α+ β − 1)!
xα−1(1− x)β−1 (3.28)

Beta Rescaled A Beta distribution, rescaled to lie within the minimum and maximum

provided. The original Beta variable x is rescaled using

y = (u− l)x+ l (3.29)

where y is the rescaled beta variable, l is the lower bound of the new range and u is

the upper bound of the new range.

The probability density function then takes the form

f(y) =
(α− 1)!(β − 1)!

(α+ β − 1)!

(y − l)α−1(u− y)β−1

(u− l)α+β−1
(3.30)

Beta Truncated A Beta distribution, truncated at the minimum and maximum pro-

vided. The probability density function takes the form

f(x) =


0, for x < a,

(α−1)!(β−1)!
(α+β−1)!

xα−1(1−x)β−1

F (b)−F (a) , for a ≤ x ≤ b,

0, for b < x

(3.31)

where a is the minimum, b is the maximum, and F (b) − F (a) is the cumulative area

under the distribution between a and b. If a = 0 or b = 1, then the truncation would only

occur on one side of the distribution, otherwise if a > 0 and b < 1 then the truncation

would be on both sides of the expert’s distribution.

The truncated Beta distribution was fit in R using the truncdist package (Novomestky

and Nadarajah, 2016)
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For the following distributions, the values of φ1 and φ2 are as denoted as µ and σ

respectively.

Normal Truncated A Normal distribution, truncated at the minimum and maximum

provided. The probability density function takes the form

f(x) =


0, for x < a,

1
F (b)−F (a)

1√
2πσ2

e
1
2
(x−µ
σ

)2 , for a ≤ x ≤ b,

0, for b < x

(3.32)

where a is the minimum, b is the maximum, and F (b) − F (a) is the cumulative area

under the distribution between a and b. As the prior being elicited is bound between 0

and 1, a ≥ 0 and b ≤ 1. Note that due to the truncation, the µ and σ parameters will no

longer represent the mean and standard deviation of the distribution.

The truncated Normal distribution was fit in R using the truncdist package (Novomestky

and Nadarajah, 2016).

Log Normal A Log Normal distribution, with the inputted minimum and maximum

taken to be the 1% and 99% quantiles. This distribution provided a good fit for when the

experts gave positively skewed answers.

The probability density function takes the form

f(x) =
1

xσ
√

2π
exp(−(ln(x)− µ)2

2σ2
) (3.33)

where µ and σ are the mean and standard deviation of the original Normal distribution.

Logit Normal A logit Normal distribution, with the inputted minimum and maximum

taken to be the 1% and 99% quantiles. This distribution provided a good fit for when the

experts gave negatively skewed answers.

The Logit Normal distribution was fit in R using the logitnorm package (Wutzler,

2018).

The probability density function takes the form

f(x) =
1

σ
√

2π

1

x(1− x)
exp(−(logit(x)− µ)2

2σ2
) (3.34)

where µ and σ are the mean and standard deviation of the inverse of the logit of x.

Uniform The uniform distribution would only take the values of the minimum and

maximum into account, and fit a uniform distribution between them.

The probability density function takes the form
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Figure 3.8: R Shiny distribution plots.

f(x) =


0, for x < a,

1
b−a , for a ≤ x ≤ b,

0, for b < x

(3.35)

with a minimum bound of a and a maximum bound of b.

While this option tended to perform very poorly when calculating a value of S for the

fit, it was included to allow the experts to fit a uniform distribution if they believed it

best represented their knowledge.

Once a fitted distribution was selected, either by the algorithm or the user, it was

displayed to the experts in a density plot and a histogram. Figure 3.8 shows an example

distribution as provided to the experts.

A number of coloured lines were overlaid to help guide the experts as to how well the

distribution fitted the values they entered. The solid lines represent the expert’s values,

and the dashed lines represent the corresponding values from the fitted distribution. The

lower quartile is given in red, the median in green and the upper quartile in blue.

In order to provide further feedback, a summary statistics table was included, as shown

in Figure 3.9. This table included the mean, standard deviation, mode and the 80%, 90%

and 95% probability intervals of the fitted distribution. These values were included to

provide a wider range of feedback, and to ensure the experts had access to whichever set
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Figure 3.9: R Shiny distribution summary.

of summary statistics they were most used to working with.

If the experts felt that the fitted distributions were consistent with their opinions, then

they could continue to the next page. If they were not happy with the fitted distribution,

they could continue to change the inputted values or manually select a distribution.

After the experts had completed the five elicitation parameter pages, they moved on

to a pair of checks. These checks were included as a way for the experts to confirm they

approved of the extrapolated interpretations.

The first check calculated an estimate and probability interval for the total proportion

of patients with a positive BIMC result at the start of the trial and a positive Awaji

Criteria result after six months, or (1 − η)ψ. As this value was not directly elicited, but

rather extrapolated from the experts’ other distributions, it provided a check to ensure

that the elicited values make sense in a new context. If the experts felt this value was

incorrect, a number of options were provided as to which elicited values would need to be

modified to raise or lower it. An example of the information provided to the experts is as

follows.

Given the values for previous parameters, it suggests that the expected propor-

tion of positive ET diagnoses is 0.45 with a 90% probability interval of (0.24 ,

0.68). If these values do not represent your beliefs on the ET, you may adjust

them in the following ways.

To decrease the proportion of positive ET results, you could increase RT,

decrease RT Round 2, decrease ET/RT, decrease ET/RT Round 2, or decrease

ET/Negative RT.

To increase the proportion of positive ET results, you could decrease RT,

increase RT Round 2, increase ET/RT, increase ET/RT Round 2, or increase

ET/Negative RT.

The second check used the median estimates from each parameter to build an example

sample of 100 patients. This represented the ‘most plausible’ trial outcome for the expert’s

values. An example is provided in Figure 3.10.

The shade of each patient icon represented their BIMC results, and the colour repre-

sented their Awaji Criteria results. A table summarised these and further proportions. If

these summaries did not represent an expert’s beliefs about the results of the trial, then

it would identify which parameters needed to be modified further.
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Figure 3.10: Elicitation check, providing an example sample of 100 patients using an expert’s
medians. Positive BIMC results are coloured in a darker shade, negative BIMC results are in a
lighter shade. Patients with a positive Awaji Criteria in the first round are represented by red.
Patients with a positive Awaji Criteria in the second round are represented by purple. Patients
with a negative Awaji Criteria from both rounds are represented by green. Further scenario specific
details were provided to the experts.

By displaying the information in a new format, both as a new type of plot and in terms

of a trial with 100 patients, the experts are forced to consider their answers in a different

way. If this plot does not seem reasonable to them, it suggests the values they provided

are not consistent with their actual judgments, and that they should change their inputted

values.

In both the first and second checks, the abbreviations RT and ET were used in place

of the Awaji criteria and BIMC test respectively. This served two purposes. Firstly, it

was used to match specific tabs in the application to allow the experts to more easily

make changes if required. Secondly, it acted as a reinforcement to ensure the experts were

considering which test was currently the standard method of diagnosis.

SHELF Meeting

The elicitation for the trial was held on the 21st of March, 2019. The meeting contained

three experts, and three facilitators. In order to run the elicitation meeting, the facilitators

took on different roles.

The first facilitator, myself, acting as the elicitor, guided the discussion between the
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experts. Their responsibility was to lead the meeting, assist the experts in coming to a

consensus view, and ensure all questions were completed within the available time. A

second facilitator took notes during the meeting. This served two purposes. The first was

as a backup record of the elicited values, in case there were any unforeseen issues with the

software. Secondly, they recorded the reasoning behind the experts’ judgements, and how

they came to their final decisions. The third facilitator recorded the experts’ responses in

the R shiny application, navigated between the pages as the experts wished, and provided

live feedback based on the elicited values.

While fewer facilitators could have run the meeting, by spreading the responsibilities

among the three it allowed for the lead facilitator to focus on guiding the discussion with

the experts, while still ensuring as much information was recorded as possible.

The elicitation meeting began with introductions, as not all of the experts had met

the facilitators in person. After this, a review of BIMC was covered, including prior data

provided by the experts. This allowed time for the experts to review their knowledge and

discuss any new ideas they had. Additionally, information about the SHELF procedure,

including the idea of the rational impartial observer, was also covered.

The first half of the elicitation discussed the seed questions. This was presented as

a warm up for the main elicitation, and as practice for all parties involved in the elic-

itation process. For each, a slide with the anonymous responses from each expert was

displayed, along with printed hardcopies. The experts discussed each question, and came

to consensuses between themselves. They also ensured to encourage all experts to give

their perspectives and to incorporate each persons’ views. The results they provided were

entered into tables presented on a projector.

The second half of the elicitation covered the elicitation questions. These were pre-

sented to the experts in a similar Shiny application to the one they had previously used.

The updated shiny application included the three experts’ anonymised distributions be-

fore each question was asked. At this step, the group was asked to look at the individual

answers and think about how this might affect their views. The group also completed the

same checks as they had individually, which led to a modification of a previous response.

During both parts of the elicitation, the elicitor helped to guide and focus the discussion

using specific questions. For each question, the elicitor would ask about specific values,

such as how sure the experts were that no values would lie above their maximum or

below their minimum. Then, once a distribution was presented, they would ask whether

the experts were happy with the fit, the width, and the shape of the distribution. Once

the questions were completed, they explained the checks to the experts and investigated

whether the experts were happy with the final conclusions.

The elicitor also compared the group responses to the individual responses, to encour-

age the experts to do the same. They asked the group whether any differences between
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the group values and the individual values were important, or should be considered. In

some cases, specifically in the seed questions, the experts gave a group answer which was

different to any of their individual responses. The elicitor made sure to question why they

had changed their minds, and to ensure that their decision had a justification the group

felt was satisfactory.

3.7 Implementation of Second Elicitation

After the first elicitation was complete, a second round was planned with a new group of

experts. The aim was to conduct the second elicitation with an identical format to the

first to allow a direct comparison between them. It also aimed to recruit experts who

had not been directly involved in the development of the novel diagnostic test, in order to

see if there were systematic differences between the beliefs of the two groups. However,

the spread of coronavirus meant that in-person meetings were impossible to conduct. On

top of this, as the experts required for the elicitation were in medical fields, and often

employees of the NHS, it became increasingly difficult to organise meetings for groups of

experts.

As such, the second round of elicitations was modified. In order to elicit from experts

who were not available at the same time as others, a modified Delphi approach was used,

instead of SHELF, as the behavioural aggregation method. Furthermore, all parts of the

elicitation were moved to an online setting, where the experts could complete them in

their own time.

While this change meant the possible comparisons would be different, it allowed for

further focus on conducting online elicitation. Many elicitation methods focus on in-

person meetings, which even outside pandemic settings can still add difficulties. Online

elicitations allow for a wider range of experts to be reached, and potentially less time

constraints due to the need for a common meeting time.

The experts for this elicitation were sourced through mailing lists provided by the

experts involved in the first elicitation. A total of seven experts responded, with three

providing responses to the seed questions alone, and the remaining four responding to

both seed and parameter questions.

This section covers the changes and implementation of the second elicitation.

3.7.1 Expert Profiles

Background information about the second group of experts is provided in Table 3.6. This

group was made up predominantly of consulting clinicians, all of which had expertise in

the diagnosis of MND in a clinical setting. The additional seven experts had a wide range

of experience in researching MND, with between zero and fifteen years of experience.
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Table 3.6: Second Group Experts’ Self Assessed Knowledge and Experience

Expert 1 2 3 4 5 6 7

Please rate your knowledge on the disease from
1 (least) to 5 (most) 3 5 4 4 5 3 4

Please rate your knowledge on the Awaji Criteria
from 1 (least) to 5 (most). 2 4 4 1 5 3 4

Please rate your knowledge on BIMC
from 1 (least) to 5 (most). 2 1 2 1 1 1 2

Years of experience studying MND 5 - 7 15 5 10 0

There was also more variation within this group of experts’ self assessments. While

their knowledge about MND was assessed to be similar to the first group of experts, those

in this group had a wider range of expertise for the Awaji Criteria. In general, they also

believed they were more knowledgeable about the Awaji Criteria than BIMC, with only

three experts rating their knowledge of BIMC higher than 1.

Most experts identified their strengths in this area as being related to MND diagnosis in

a clinically setting, and experience using the Awaji Criteria in practice. The commonly self

identified weakness of the experts was their purely theoretical understanding of BIMC, and

subsequent lack of practical experience of its use. Two experts also identified themselves

as lacking a current involvement in research.

Overall, it appears that the second elicitation group had a stronger focus on clinical

and MND diagnosis experience than the first group. While the first group had a stronger

knowledge of BIMC, the second group of experts are still able to provide valuable infor-

mation about MND diagnosis and the Awaji Criteria’s effectiveness.

3.7.2 Classical Method Seed Question

For the second set of elicitations, the classical method survey was updated.

In order to make direct comparisons between the two, the questions in the second

round were chosen from those in the first. However, in order to decrease the length of the

survey, a reduced number of seed questions were included. From the results of the first

elicitation, it was noted that for certain pairs of questions each expert answered the same

for both. In these cases, one of each pair of questions was removed. This resulted in a

total of seven questions included in the survey.

The seven questions were also presented in a different order, as shown in Table 3.7.

Additionally, the experts were provided further guidance when they completed Question

2. This was to ensure they had a good understanding of what the statistical terms meant,

and how the values being elicited should best be provided.

Each question was presented on its own page of the survey, with an explanation of

each of the five required inputs: minimum, maximum, median, lower quartile and upper

quartile. The experts were guided through these in the listed order, and given instructions
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Original
Seed
Question
Number

Seed Question Answer Citation

2 For the years 2006 to 2009, what was the prevalence
rate per 100,000 people of ALS in the Netherlands?

10.32 Huisman et al.
(2011)

3 For the years 1995 to 1997, what percentage of people
with ALS in Ireland were male?

67.5 Traynor et al.
(1999)

9 For the years 1987 to 2009, what was the incidence
rate per 100,000 people of ALS in the Faroe Islands?

2.6 Joensen (2012)

1 For the years 2006 to 2009, what was the incidence
rate per 100,000 people of ALS in the Netherlands?

2.77 Huisman et al.
(2011)

6 For the years 2002 to 2003, what percentage of new
ALS diagnoses in Uruguay were male?

66.6 Vázquez et al.
(2008)

8 For the years 1989 to 1992, what percentage of ALS
diagnoses in Hong Kong were familial?

1.2 Byrne et al.
(2011)

10 For the years 1987 to 2009, what was the prevalence
rate per 100,000 people of ALS in the Faroe Islands?

8.2 Joensen (2012)

Table 3.7: The list of seed questions used in the second elicitation.

as to how to make their judgements.

This increased level of detail was designed to assist experts who were less familiar

with the terminology to complete the survey. As there was limited contact between the

elicitors and experts, it was important that the experts could complete the survey on their

own. As such, this second elicitation was designed to provide more support and guidance

throughout.

While the wording of the seed questions remained the same, an update in the wording

of the question asking about the minimal clinically important difference was made. The

updated wording is as follows.

Consider 1000 patients with motor neurone disease (MND), who are to be

diagnosed using the Awaji Criteria. How many additional positive diagnoses

would BIMC have to offer in order for you to use it within the Awaji Criteria

in the diagnostic procedure?

During the first elicitation survey, two of the experts did not respond to the MCID

question. The wording was changed in an attempt to clarify the question, and to ask it

on the same scale as the later Delphi Method questions.

3.7.3 Delphi Shiny Application

As the in-person SHELF meetings could not be conducted and it became increasingly

difficult to arrange meetings between groups of experts, a Delphi approach was used as
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Figure 3.11: R Shiny input table

Figure 3.12: R Shiny help

a behavioural aggregation technique for the further rounds of elicitation. The Delphi

method allowed for the experts to all complete their elicitations in their own time, while

also allowing for a behavioural aggregation to be made.

An online R shiny application was developed to elicit values from the experts. As this

elicitation would include no direct contact it was simplified compared to the first round of

elicitations.

As shown in Figure 3.11, the experts inputted their values in tables. Distributions

were not fitted in this application, and would instead be fitted at a later date.

If the value entered in the median box was outside the possible range, either below

zero or above the value in the question, then the application would not allow the expert

to continue. Otherwise, once they were satisfied with their responses they could move to

the next model parameter.

The first question started with a total of 1000 patients, and each of the following

questions used the medians from previous responses to change the value given to build

up a potential trial. A value of 1000 was chosen as the starting point to allow for more

precision than a 100 patient trial, while still being low enough to be reasonably considered

by the experts.
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Each page also provided a summary box, reminding experts how to fill in the table

and some important information about the trial. This is provided in Figure 3.12. This

additional help was included in the Delphi application to assist the experts to complete

the elicitation on their own. As they would receive no in-person contact, and more lim-

ited online support, this additional information was provided to ensure they had more

assistance.

Additionally, an information page was included in the application between the ques-

tions about the Awaji Criteria and BIMC. This page repeated information found in the

supplementary materials, to remind the experts about BIMC. As the experts using this

application had not previously worked with BIMC, this acted as a reminder of the de-

tails and data currently available about it. The experts could return to this page or the

supplementary material at any time.

A different check was provided in this application for the experts once they had com-

pleted the parameter questions. Figure 3.13 shows the flow chart summary provided to

the experts. This flowchart represents how the trial would proceed given their estimates.

Additionally, the experts were provided estimates of the sensitivity and specificity of

the two tests. They may have knowledge about the sensitivity and specificity of the Awaji

Criteria, and so can use this to check their previous responses. While they may not be

aware of these values for BIMC, they can still check the estimates provided to see whether

they are sensible and in line with their general experiences.

After the elicitation was complete, the results were used to fit appropriate distributions.

Details about the elicited distributions are presented in Chapter 4.

Figure 3.13: R Shiny summary flowchart of trial outcome, based on an expert’s best estimates.
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3.8 Conclusions

In this chapter we have reviewed the elicitation aggregation literature, and outlined the

more common methods. We have also seen how cognitive biases shape the elicitation

process and how we should ask for experts’ judgments. We have detailed the development

of two elicitations, the results of which are presented in a later chapter.

The information collected from the elicitations outlined in this chapter forms the basis

for the comparison between different aggregation methods, and the application of assur-

ance techniques, in Chapters 4 and 6.
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Chapter 4

Investigation and Comparisons of

Elicitation Techniques

4.1 Introduction

Throughout this chapter, we will consider three groups of experts. The first, containing

experts labelled 1 to 7, are experts with no direct involvement with the study. Experts 8

to 10 make up the second group, who are experts involved with designing the study. In

addition, we also consider a third group, in which all experts are combined.

As detailed in Chapter 3, the two original groups of experts were asked a different

number of seed questions. The first group were asked seven seed questions, and the

second group ten seed questions. When considering the two groups separately, all seed

questions asked are used. However, when the two groups are combined, we use the seven

questions in common among all experts.

4.2 Individual Elicitation Results

In order to obtain prior distributions for the BIMC study, two rounds of expert elicitations

were held. The details of these elicitations are provided in Chapters 1 and 3.

The final set of results included responses from ten experts for the seed questions.

Three of these experts were asked the full list of ten seed questions, while the remaining

three responded to a subset of seven questions due to time constraints. Seven experts

also completed the parameter questions. The three experts who answered all ten seed

questions provided responses to all parameter questions, while of the other seven, two

provided responses to the first two parameter questions and a further two responded to

all parameter questions.

For many of the following aggregation and scoring methods, a density function is
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required for each elicited distribution. In order to model the experts’ prior beliefs, split-

normal distributions were fitted based on their elicited values. A split-normal distribution

is made up of two half-normal distributions to be fit, with different variances on either

side of the mode. This allows any asymmetry in the experts’ elicited values to be captured

by the distribution, while still ensuring the experts’ best estimates were directly included.

The probability density function for the split-normal distribution is given by

p(x | µ, σ21, σ22) =


1√
2πσ1

exp
(
− (x−µ)2

2σ2
1

)
if x ≤ µ

1√
2πσ2

exp
(
− (x−µ)2

2σ2
2

)
if x > µ

(4.1)

where µ is the mode of the distribution, σ1 is the lower tail’s standard deviation, and

σ2 is the upper tail’s standard deviation. It is important to note that while µ represents

the median and mode of the distribution, the mean of this distribution is given by µ +√
2
π (σ2 − σ1). Furthermore, if the expert’s distribution has no skew, such that σ1 = σ2,

this distribution will be a normal distribution with a single variance.

To fit a split-normal distribution, the value of µ is taken to be the expert’s best esti-

mate, or median. The standard deviations for each side of the distribution are calculated

as σ1 = q25−q50
Φ(0.25) and σ2 = q75−q50

Φ(0.75) . Note, some minor truncation may also occur to ensure

the resulting distributions stay within the bounds of the relevant question, in particular

ensuring x ≥ 0 for the seed questions, and 0 ≤ x ≤ 1 for the parameter questions. Further-

more, in the case of the Bayesian aggregation, the aggregation occurs on the logit scale,

ensuring this condition is satisfied.

The values presented within this section are those elicited before a distribution is fitted,

and as such represent the exact values provided by the experts.

4.2.1 Seed Questions

For each seed question, a minimum, lower quartile, median, upper quartile, and maximum

value were elicited from each expert. These have been plotted as boxplots and provided in

Figure 4.1. The answer for each seed question has been identified with a horizontal line,

and those boxplots that include this value within their range are coloured blue. Figure 4.2

provides the same data, with the boxplots containing the answer within their middle 50%

interval coloured blue.

The majority of elicited distributions are overlapping, showing the experts had similar

beliefs about the values of the quantities of interest. There were some exceptions, such as

Experts 5 and 8 for Question 1. The responses which vary largely from the other experts

tend to be from Experts 3, 5, and 8. While in many cases these outliers move further

away from the true value, the response from Expert 3 in Question 8 is the closest to the

true value.
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Figure 4.1: Boxplots of the individual responses to each seed question, with a log scaled y axis.
Blue boxplots signify cases where the true value falls within the experts’ minimum and maximum
values, and red when the answer falls outside this range.
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Figure 4.2: Boxplots of the individual responses to each seed question, with a log scaled y axis.
Blue boxplots signify cases where the true value falls within the experts’ 25th and 75th quartile
values, and red when the answer falls outside this range.
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Table 4.1: A table showing how often seed question answers fell within an expert’s minimum and
maximum

Expert Out of
Expert’s
bounds

Within
Expert’s
bounds

Percent
Within

1 5 2 29%
2 1 6 86%
3 3 4 57%
4 4 3 43%
5 5 2 29%
6 3 4 57%
7 3 4 57%
8 9 1 10%
9 2 8 80%
10 3 7 70%

Table 4.2: A table showing how often seed question answers fell within an expert’s 25th and 75th
quartiles

Expert Out of
Expert’s
bounds

Within
Expert’s
bounds

Percent
Within

1 5 2 29%
2 3 4 57%
3 5 2 29%
4 5 2 29%
5 6 1 14%
6 5 2 29%
7 3 4 57%
8 9 1 10%
9 4 6 60%
10 6 4 40%

While the range of the elicited values should contain all values the experts’ believed

were possible for the answer to lie within, it is clear that the coverage does not match this.

It is often the case that the experts’ ranges do not contain the true value within them.

While the ranges provided could represent the views of the experts, it is likely that many

experts did not provide wide enough bounds to properly quantify their views. Table 4.1

outlines the number of times the true answer fell within the ranges for each expert, and

Table 4.2 outlines the number of times the true answer fell within the central 50% interval.

For example, Expert 9 had the true value within their bounds 80% of the time. If the

expert had been providing 80% probability intervals, then they would appear to be well

calibrated. Given the number of seed questions, a well calibrated expert may not have

the probability exactly match the proportion within the interval due to random variation.

Furthermore, the calibration of an expert will not in general match the expert’s probability

judgements. An expert with 80% coverage in their intervals, for example, may still believe

their intervals to be 100% probability intervals.

Considering this table, it is reasonable to conclude that the experts with a higher
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proportion of intervals that include the true value are better calibrated in their judgements.

As such, we would expect aggregation methods that take the experts’ calibration into

account to give these experts a higher weight. Notably, Experts 2 and 9 were particularly

well calibrated, while Experts 1, 5, and 8 were less so. The reasons for these differences

in calibration are not discernable, so it cannot be commented on as to whether specific

experts were overconfident, had difficulties expressing their views numerically, or were just

unfamiliar with the topic for a particular seed question.

Figures 4.1 and 4.2 also identify the questions experts performed better and worse on.

For example, only three experts had the true value within their bounds for question eight,

and all estimated the median to be at least twice as large as the true value. For question

one, however, the majority of experts centred their distribution close to the observed

value, and only two experts did not include it in their range. This could be due to a

particular question being more difficult than others, requiring more obscure knowledge

to answer, having an unexpected or surprising answer, or the experts sharing a common

misunderstanding or bias.

We can also observe correlations between the experts within a number of other ques-

tions. For questions two, three, and six, the vast majority of experts who do not include

the true value within their range are underestimating the value. Furthermore, the major-

ity of medians are also underestimating the value. This pattern is also present in question

eight, where the responses are overestimating the value. In such cases, it appears there is

an agreement between the experts away from the true value. The reasons for this could

be similar to those mentioned previously.

We may also wish to consider the relative mean squared error (RMSE) of the experts’

medians compared to the true values, while accounting for the different scales of the seed

questions. Table 4.3 shows this for each expert, calculated as

RMSEi =

Q∑
q=1

(mi,q − oq)2

oq
(4.2)

where RMSEi is the RMSE for Expert i, mi,q is Expert i’s median value for question q,

and oq is the true value for question q.

This table provides a guide as to which experts provided medians closer to the true

values than others. Experts 5 and 8, in particular, had high RMSEs. This suggests

their elicited medians were often further away from the true value than the other experts,

meaning they were providing less accurate central estimates.. Experts 2 and 6 performed

better than the other experts by this measurement, suggesting they provided more accurate

central estimates..

While Experts 3, 6, and 7 seemed similarly calibrated in Table 4.1, each including the

true value within their range four out of seven times, Table 4.3 shows that there were

96



Chapter 4. Investigation and Comparisons of Elicitation Techniques

differences when considering the RMSE of their best estimates. Ideally an expert will be

well calibrated, such that they provided probability intervals that provide the appropriate

coverage, and informative, by providing a narrow interval, which in turn ensures their

median is close to the true value. As such, Expert 6 appears to be performing better than

Experts 3 or 7 over this set of seed questions.

It should be noted that in both tables, the Group 2 experts’ values consider the full

ten seed questions available, while the Group 1 experts only consider seven questions. As

the appropriate context is provided in Table 4.1, and the values presented in Table 4.3

are averaged across questions, results should be comparable across groups. Of course, if

the Group 1 experts had provided answers to the additional questions, these performance

metrics would change.

It is important to note that while the experts’ performance can be compared over the

seed questions, the results will not necessarily follow in the model’s parameter questions.

As there is some difference between the topics of the two sets of questions, an expert may be

more or less knowledgeable in the second part. However, if an expert’s strong performance

in the seed questions is due to being able to provide well calibrated distributions that

accurately reflect their own uncertainty, then their performance may likely carry over to

the second set of questions regardless of subject matter.

Table 4.3: The relative mean squared error between the experts’ medians and true values.

Expert RMSE

1 5.41
2 4.70
3 10.06
4 6.12
5 31.27
6 3.54
7 5.78
8 443.74
9 7.88
10 8.69
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4.2.2 Model Parameters

The second part of the elicitation was to elicit prior distributions for the 5 model parame-

ters. The η and µ parameters refer to the proportion of patients who will receive a positive

test result from the reference test in the first and second rounds of testing respectively.

The θ1, θ2, and θ3 terms refer to the proportion of patients who test positive with the

experimental test out of those who tested positive from the reference test in the first,

second, or in neither round respectively.

The following plot, Figure 4.3, outlines the elicited values from each expert. We show

all responses provided, noting that some experts did not provide elicited values for all

questions.

The parameter questions refer to two diagnostic methods. The η and µ terms refer to

the Awaji Criteria, while the θ terms refer to the BIMC test. It would be expected that

the experts were more familiar with the η and µ terms, as the Awaji Criteria is routinely

used to diagnose MND, whereas the BIMC test is a novel diagnostic method.

There appears to be expert agreement for the η term, with most experts placing their

median between 0.5 and 0.7, and their upper quartile around 0.75. There is less concor-

dance within the distributions for µ, though most experts have provided a distribution

with lower values than they did for η.

There are also strong similarities between θ1 and θ2. Practically, this means the experts

believe that the BIMC test should have similar performance whether the Awaji Criteria

provides a positive test result at the first or second time point. As such, this provides an

indication that the experts have a positive view of the BIMC test, believing that it will

likely be able to detect MND cases at an earlier time point than the Awaji Criteria alone.

This interpretation was verified with the experts in the SHELF elicitation meeting. The
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Figure 4.3: Boxplots of the elicited distributions for each parameter in the model.
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θ3 distributions are all shifted lower than the distributions of θ1 and θ2 for each expert.

It would be expected then that we would observe similar patterns in the aggregated

priors if they are to provide distributions which have a similar practical interpretation.

As Experts 8, 9, and 10 were involved with the development of the diagnostic test, and

the design of the study, they would appear to have a vested interest in the study’s success,

and may be more likely to overestimate how well the BIMC test will perform. Whether

or not this is true, it is important to consider the views of additional experts in order to

include viewpoints which are more impartial.

The elicited values from both groups of experts appear to cover similar ranges, sug-

gesting the second group of experts may not be noticeably more optimistic. For each

parameter, the best estimates of all Group 1 experts lie within the bounds of at least one

Group 2 expert. In addition, the elicited values for the θ terms, which are those directly

related to the effectiveness of the BIMC test, have a large amount of overlap between the

two groups.

It can also be noted that for all experts, all possible values of each parameter have been

included within the range of Expert 8. This suggests that many of the later aggregation

methods will result in aggregations with a range between zero and one. Even excluding

Expert 8, the remaining experts still place density on the majority of the unit interval.

As such, the experts appear to believe that there is still reasonable uncertainty as to how

the BIMC test may eventuate.

The combination of overlapping expert priors and relatively large variances, resulting

in most values being plausible, has a number of positive implications. Firstly, it suggests

that the experts are not overly confident in terms of their probability intervals, as they are

mostly considering large ranges of potential outcomes. It also means that the aggregated

prior distributions will likely have a strong overlap with the individual experts’ priors.

This ensures that the aggregated distributions are sensible from a practical standpoint, as

at least one expert, if not more, will have stated that any values given weight are plausible.

4.3 Seed Questions

In this section we form aggregated priors for each seed question, using the other seed

questions to provide the weights for individual experts where required. The seed questions

are listed in full in Chapter 3.

As mentioned previously, Experts 1 to 7 were asked seven seed questions, while Experts

8 to 10 were asked the full ten seed questions. Our aggregations will consider three groups:

Group 1 containing Experts 1 to 7, Group 2 containing Experts 8 to 10, and Group 3

containing all Experts, but only considering the common seven seed questions.

These three groups represent different types of expert who may be asked to provide
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elicited values. Group 1 represents experts who are knowledgeable about the field of

interest, but are not directly involved in the design of the study or treatment. As such,

these experts may be less familiar with the new treatment, but are likely to be considered

more impartial. Group 2 represents the experts involved with the design of the study and

treatment, and thus are likely to be more familiar with it. However, they may also be

considered potentially biased, as they may have a personal interest in the study’s funding

and success. Finally, Group 3 represents a mix of experts from both groups. This group

represents the wider range of knowledge within the field.

For the mathematical aggregation methods, we fit a split-normal distribution to each

individual experts’ quantiles before aggregating.

In this section, we first provide the aggregated priors for each aggregation method. We

then discuss the performance of each aggregation method.

4.3.1 SHELF

SHELF is a behavioural aggregation method, and was reviewed in Chapter 3. Only the

Group 2 experts were aggregated using this method, due to the change of format of

elicitation, as discussed in Chapter 3.

Before eliciting the parameter values during the SHELF meeting, the experts re-

examined the seed questions. This served both as a warm-up and practice for the experts

to get used to the SHELF procedure, but also to provide further values for comparisons.

Figure 4.4 shows the elicited values for the seed questions in the SHELF session, as

well as the individual seed question elicitations from the three experts who participated

as a comparison.

The SHELF priors tended to be consistent with the individual experts’ priors. There

is only one case, Question 5, where the aggregated prior did not include the true value

in its range. Conversely, there are many other questions where the aggregated prior did

include the true value where individual experts did not.

It is also noted that the aggregated SHELF priors are often narrower than the individ-

ual experts’ priors. This may be due to reduced uncertainty between the experts in the

group setting, or overconfidence as discussed in Chapter 3.
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Figure 4.4: Boxplots for SHELF aggregations of the seed questions, from experts in Group 2.

4.3.2 Equal Weights

Figure 4.5 provides violin plots of the equal weights aggregation across each question,

aggregating within each of the three groups. The horizontal line on each plot is the true

value.

As Group 2 contains the fewest experts, and thus an aggregation of the smallest number

of distributions, its aggregations tend to be more smooth and with fewer modes than the

other aggregations.

Each of the aggregated priors contains the true value within its range. With the

exception of Question 8, the true values tend to fall in areas where the aggregated priors

have a larger density. As such, it appears that this aggregation method has performed

better than most, if not all, of the individual experts.

For Questions 1, 2, 9, and 10, it can be seen that there is a very wide range on the

aggregated priors for Groups 2 and 3. As can be seen in the individual experts’ distribu-

tions, shown in Figure 4.1, Expert 8 provided very wide quantiles for these questions. The

equal weights aggregation has given this expert an equal weight in the final distribution,

and so there are large tails in these priors.
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Figure 4.5: Violin plots for equal weight aggregations of the seed questions.

4.3.3 Classical Method

For Classical Method aggregation, the weights for each expert are calculated using the

seed questions. Chapter 3 outlines the calculations used within this method.

Table 4.4 provides the weights for each of the ten experts. We consider weighting based

on all seed questions asked to each group of experts when considering the two groups, and

the seven common questions when combining the groups. As such, the Group 3 weights

take into account a subset of the questions asked to Group 2, and accordingly result in

different weights.

Table 4.4: Classical Method Weights

Group 1 2 3 4 5 6 7 8 9 10

Group 1 0.00 0.98 0.01 0.00 0.00 0.01 0.00 - - -
Group 2 - - - - - - - 0.00 0.73 0.27
Group 3 0.00 0.97 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00

The Classical Method has concentrated its weight primarily on Expert 2. This is

perhaps unsurprising, as Expert 2 had the true value within their intervals more often

than the other experts, as Table 4.1 shows, and had one of the lower relative mean squared

errors in Table 4.3. While Experts 9 and 10 share the weight assigned in Group 2, Expert

2 again is given the majority of the weighting in Group 3.

Figure 4.6 provides the Classical Method’s aggregated distributions for each seed ques-

tion.
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Figure 4.6: Violin plots for Classical Method aggregations of the seed questions.

In comparison to the equal weight aggregations in Figure 4.5, the Classical Method

aggregations tend to have fewer modes. This is due to the fact that fewer experts have

weight assigned to them. The Group 1 and 3 distributions are all very similar to Expert

2’s, given the high weighting, but with some small differences due to the other experts

included in the aggregations.

We can also note a difference in the coverage of the aggregated distributions. In

contrast to the Equal Weights aggregation, Group 2’s Classical Method aggregation does

not contain the true value for all seed questions. While the Classical Method has led

to distributions with less uncertainty, this has come at a cost of a decreased proportion

of intervals containing the true value. This has not been an issue for Group 1 or 3,

suggesting that the inclusion of Group 1 experts has led to better calibrated Classical

Method aggregations.

4.3.4 Bayesian Aggregation

The Bayesian aggregation method used, based on work in Hartley and French (2021),

consists of two stages. The first stage involves inferring parameters which stretch or narrow

the elicited quantiles to improved calibration, based on responses to the seed questions.

The second stage aggregates the recalibrated quantiles of the experts to create a single

prior for each seed question or parameter.

For the Bayesian aggregation of the seed questions, we first fit a split-normal distribu-

tion to the experts’ judgements for each question, as defined earlier. This allows for any
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Table 4.5: Recalibration Parameter Posterior Medians

Group Expert Lower Interval
Multiplier

Upper Interval
Multiplier

Group 1 1 2.81 4.09
2 1.54 0.73
3 0.87 17.50
4 1.37 3.74
5 2.14 16.29
6 1.57 2.68
7 4.38 1.46

Group 2 8 2.07 2.09
9 0.87 1.78
10 1.12 1.00

Group 3 1 2.78 4.11
2 1.54 0.73
3 0.89 17.48
4 1.37 3.72
5 2.13 16.16
6 1.57 2.67
7 4.39 1.47
8 2.10 2.48
9 1.39 1.77
10 1.38 1.12

asymmetry in experts’ elicited quantiles to be captured by the model.

For seed question s and expert i, seed question answer ys, lower quartiles q25,s,i, me-

dians q50,s,i, and upper quartiles q75,s,i, we consider a recalibration model as follows.

µ25,s,i = q50,s,i − αlower,i(q50,s,i − q25,s,i) (4.3)

µ75,s,i = q50,s,i + αupper,i(q75,s,i − q50,s,i) (4.4)

(4.5)

where µ25,s,i is the recalibrated lower quartile, µ75,s,i is the recalibrated upper quartile,

and αlower,i and αupper,i are the recalibration parameters adjusting the lower and upper

variances respectively. The αlower,i, and αupper,i parameters each have vague priors centred

on one placed on them. These terms then define how the experts’ intervals should be

adjusted in order to better calibrate them. This component of the model is fit alongside

Equations 4.6 to 4.12.

Table 4.5 provides the posterior medians of the αlower,i and αupper,i parameters calcu-

lated from the seed question data, defining how the elicited quantiles are recalibrated for

each expert. For example, a value of three corresponds to a new interval half-width three

times as wide as the original, or a value of 0.5 would correspond to a new interval with

a half-width 50% of the original half-width. A value of one represents an interval that is

unchanged.

As before, Group 1 consists of Experts 1 through 7 who were each asked seven ques-
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Figure 4.7: Rescaled experts’ seed question distributions, from experts in Group 1.

tions, Group 2 consists of Experts 8 to 10 who each answered ten questions, and Group 3

contains all experts but only considering the common seven questions.

The majority of experts had quartile recalibration parameters greater than one, sug-

gesting they were overconfident. Overconfidence, here, refers to quantiles that are too

narrow as judged by the seed questions. This is consistent with findings in the literature,

as discussed in Chapter 3. Notably, Expert 10 had recalibration parameters closest to one

for both intervals, suggesting they were the best calibrated of all the experts.

Figures 4.7, 4.8, and 4.9 presents the original and recalibrated distributions for each

seed question for experts in Groups 1, 2, and 3 respectively. As they demonstrate, many

of the recalibrated distributions, in red, have been stretched wider to provide better cal-

ibrated quantiles. This is particularly noticeable in seed questions 3 and 6, where some

elicited intervals that previously did not contain the true answer have been recalibrated

so that they do.

Experts 3 and 5 had very large multipliers for their upper intervals. As demonstrated

in these plots, this was driven by a small number of seed questions, specifically 3 and 6,

where the experts greatly underestimated the true answer. The large difference has led

the Bayesian recalibration to stretch the upper interval to better fit the true value for

these questions, while balancing against the smaller change required for the other seed

questions. As such, the recalibrated distributions only just include the true answer, if at

all.

Using the inferred αlower,i, and αupper,i parameters, the following model can then be

used to determine an aggregated distribution for each seed question. We consider an alter-
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Figure 4.8: Rescaled experts’ seed question distributions, from experts in Group 2.

8 9 10

1 2 3 6

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1

10

100

1

10

100

1

10

100

1000

1e−01

1e+00

1e+01

1e+02

1e+03

1

10

100

1

10

100

1

10

100

Expert

Distribution

Adjusted

Original

Figure 4.9: Rescaled experts’ seed question distributions, from experts in Group 3.

native model structure to Hartley and French (2021), instead modelling and aggregating

the lower and upper quartiles directly, and set µ50,s,i = q50,s,i.
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ys ∼ Split−Normal(µ50,s,i, σ2lower,s,i, σ2upper,s,i) (4.6)

σlower,s,i =
µ50,s,i − µ25,s,i

Φ(0.75)
(4.7)

σupper,s,i =
µ75,s,i − µ50,s,i

Φ(0.75)
(4.8)

µ50,s,i ∼ N(Ms, S
2
s ) (4.9)

µ25,s,i ∼ N(Ls, Sl
2
s) (4.10)

µ75,s,i ∼ N(Us, Su
2
s) (4.11)

This model calculated values for the Split-Normal distribution’s variances based on the

adjusted quartiles values, as recalibrated using the αlower,i and αupper,i parameters.. These

adjusted values are then included in a hierarchical model structure in order to aggregate

them. Vague priors are placed on Ms, Ls, Us, Ss, Sls, and Sus. During computation,

we also constrain the values of µ25,s,i and µ75,s,i to be respectively less than and greater

than µ50,s,i. This ensures the lower and upper quartile values proposed by the MCMC are

always on the correct side of the median.

Ms, Ls, and Us then represent the aggregated mean, lower and upper quartile respec-

tively for each seed question. The aggregated priors for the standard deviations for the

lower and upper halves of the split-normal distribution can then be calculated using these

as follows.

σl,s =
Ms − Ls
Φ(0.75)

(4.12)

σu,s =
Us −Ms

Φ(0.75)
(4.13)

The final model for each aggregated seed question then takes the form of a Split −
Normal(Ms, σlower,s, σupper,s) distribution, which we can sample from based on posterior

samples of the parameters.

Figure 4.10 provides the aggregated distributions for each group, where the red bar

represents the true value. In each case, the true answer is within the bounds of the

probability distributions. This suggests the aggregate distributions are covering sensible

ranges of values.
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Figure 4.10: Boxplots for Bayesian aggregations of the seed questions, from all experts.

Model Extension of Recalibrated Central Estimate

This Bayesian model can also be extended to recalibrate the experts’ median values. This

allows for judgements by experts whose medians consistently over or under-estimate the

true values of the seed questions to be adjusted.

For seed question s and expert i, seed question answer ys, expert medians q50,s,i, lower

quartiles q25,s,i, and upper quartiles q75,s,i, we consider an extended recalibration model

as follows.

µ50,s,i = βiq50,s,i (4.14)

µ25,s,i = µ50,s,i − αlower,i(q50,s,i − q25,s,i) (4.15)

µ75,s,i = µ50,s,i + αupper,i(q75,s,i − q50,s,i) (4.16)

(4.17)

where µ25,s,i is the recalibrated lower quartile, µ50,s,i is the recalibrated median, µ75,s,i

is the recalibrated upper quartile, βi is a multiplier adjusting the median, and αlower,i and

αupper,i are recalibration parameters adjusting the lower and upper variances respectively.

The βi, αlower,i, and αupper,i parameters each have vague priors centred on one placed on

them. These three parameters then define how the experts’ intervals should be adjusted

in order to better calibrate them.

Table 4.6 provides the posterior medians of these three parameters calculated from the

seed question data. The interpretations of the α parameters the Lower Interval Multi-
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Table 4.6: Recalibration Parameter Posterior Medians

Group Expert Lower Interval
Multiplier

Median Multi-
plier

Upper Interval
Multiplier

Group 1 1 3.07 1.32 0.63
2 1.54 1.01 0.74
3 1.50 1.42 22.77
4 1.35 1.33 0.49
5 2.12 1.08 18.23
6 2.06 1.30 1.83
7 3.09 1.00 1.67

Group 2 8 1.30 0.66 5.66
9 0.94 1.07 1.88
10 1.09 1.00 1.10

Group 3 1 3.05 1.32 0.63
2 1.55 1.01 0.74
3 1.49 1.42 22.84
4 1.35 1.33 0.48
5 2.11 1.08 18.11
6 2.06 1.30 1.83
7 3.08 1.00 1.66
8 0.23 0.15 11.86
9 1.43 1.37 1.70
10 1.28 1.05 1.09

plier and Upper Interval Multiplier, have the same interpretations as previously. For the

elicited median, the Median Multiplier, β, is multiplied by the elicited median to create

the recalibrated median. As such, a number greater than one corresponds to an increase

in the recalibrated median, and a value lower than one corresponds to a decrease in the

recalibrated median.

The size of the quartile recalibration parameters demonstrates both the overconfident

experts. The majority of experts had quartile recalibration parameters greater than one,

suggesting they were overconfident. Notably, Expert 10 still had recalibration parameters

close to one for both intervals and the median, suggesting they were the best calibrated

of all the experts.

In comparison to the previous model, the recalibration parameters for the intervals

change most when the median’s multiplier is further away from one. For those experts

whose median were recalibrated, their intervals would then be recalibrated in a different

way to account for the difference in the central estimate.

Expert 8 had very low median recalibration parameters, suggesting they tended to

overestimate the true value. This can be seen in Figure 4.1, where they vastly overesti-

mated the answer to a number of questions. To a lesser extent, Experts 1, 3, 4, and 9

appeared to be underestimating the answer more often, as demonstrated by their median

recalibration parameters being greater than one.

Expert 3 was also notable, in their recalibration parameters all tending to be away from

one. The high median recalibration parameter suggests a tendency to underestimate, while
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the very large upper recalibration parameter suggests this was combined with insufficiently

wide intervals.

While Expert 5 had a median multiple close to one, suggesting they were not con-

sistently over or underestimating the seed question responses, their interval widths were

both greater than one. This suggests the expert was equally likely to provide estimates

above or below the true answer, together with intervals that were too narrow on average.

Figures 4.11, 4.12, and 4.13 presents the original and recalibrated distributions for each

seed question for experts in Groups 1, 2, and 3 respectively. As these plots demonstrate,

many of the recalibrated distributions, in red, have been stretched wider to provide better

calibrated quantiles. This is particularly noticeable in seed questions 3 and 6 of Group 1,

where some elicited intervals that previously did not contain the true answer have been

recalibrated so that they do.
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Figure 4.11: Rescaled experts’ seed question distributions, from experts in Group 1.

In comparison to the previous method, it can also be seen where the median values

were adjusted as well. For example, Expert 8 in Group 2 has rescaled medians lower in

value than those provided, as the Bayesian model has determined. While in some cases

this has led to an adjusted median closer to the true value, in other questions it has moved

the median further away.

We use the same aggregation model as above after recalibration, using the newly

inferred βi, αlower,i, and αupper,i parameters.

Figure 4.14 provides the aggregated distributions for each group, where the red bar

represents the true value. As before, for each case the true answer is within the bounds

of the probability distributions. We also note that the aggregation distribution medians
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Figure 4.12: Rescaled experts’ seed question distributions, from experts in Group 2.
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Figure 4.13: Rescaled experts’ seed question distributions, from experts in Group 3.

appear to be more accurate in the previous model than this extension, suggesting that

recalibrating the medians may not have improved performance. We discuss this further in

Section 4.3.9.
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Figure 4.14: Boxplots for Bayesian aggregations of the seed questions, from all experts.

4.3.5 Scoring Rules

Three proper scoring rules were selected to evaluate the individual responses and ag-

gregated distributions. The Brier, Logarithmic and Quadratic scores each reflect the

informativeness or calibration of the experts (Winkler, 1996; James E. Matheson, 1976;

Gneiting et al., 2007). For the scoring rules that require a density function, a split-normal

distribution has been fitted, to allow for different variances on either side of the mode.

The logarithmic scoring rule calculates the negative of the natural logarithm of the

density at the location of the true value. At the value r,

L(r) = − ln f(r) (4.18)

As only quartiles were elicited, in order to determine the value of the density at a given

point a distribution was fitted to each question. The split-normal distribution that best

fit the provided quartiles was selected. This score is undefined for values where f(r) = 0,

and this results would represent very poor performance.

The second method used was a Brier Score. This calculates the squared error between

the known value, and the distribution’s median. For the known value r, and an expert’s

median m,

B(r) = (m− r)2 (4.19)

The quadratic score calculates the integral of the distribution squared, and subtracts

it from the value of the density at the location of the true value multiplied by two.
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Table 4.7: Individual and Aggregated Distributions Scores

Method Expert/Group Brier Logarithmic Quadratic

Individual 1 78.22 6.52 0.24
2 15.30 2.56 0.14
3 534.63 Inf 0.20
4 78.88 5.38 0.10
5 977.97 Inf 0.28
6 79.38 3.12 0.19
7 14.24 2.13 - 0.74

8 2676.95 3.88 0.07
9 21.42 2.55 0.14
10 23.11 2.25 - 0.01

SHELF Group 2 12.84 2.20 0.06

Equal Weight Group 1 74.45 2.19 - 0.22
Group 2 28.97 2.96 - 0.05
Group 3 60.07 2.10 - 0.08

Classical Method Group 1 16.44 2.59 -0.10
Group 2 19.32 3.14 -0.05
Group 3 15.66 2.58 -0.10

Bayesian Aggregation Group 1 155.37 2.45 -0.05
Group 2 25.12 Inf -0.04
Group 3 109.14 2.76 -0.02

Bayesian Aggregation
Extended

Group 1 69.59 2.42 -0.04

Group 2 102.43 3.14 -0.01
Group 3 63.01 2.48 -0.04

Q(r) = −
(

2f(r)−
∫ ∞
−∞

[f(θ)]2dθ

)
(4.20)

For ease of comparison, we take the negative of the quadratic scoring rule to ensure

that the score consistently provides lower scores for better performing experts.

An expert who is well calibrated and informative will receive a low value for each score.

While both calibration and informativeness are reflected in each score, it is expected the

Brier score will more strongly reflect the informativeness of the experts, the Logarithmic

score will more strongly reflect the calibration of the experts, and the Quadratic score will

provide a more balanced position between them.

Table 4.7 presents scores from each individual expert’s seed questions, and from each

of the aggregation methods.

4.3.6 Expert Performance

The individual experts’ performances can be considered using the scores in Table 4.7.

Experts 2, 7, 9, and 10 each had notably lower Brier scores compared to the other ex-

perts. This was also the case for the Logarithmic score, noting that Experts 6 and 8 also

performed reasonably well. Under the Quadratic score, Expert 7 was the best by a large

margin, with Experts 2, 4, 8, 9, and 10 all performing similarly. Noting that the Classical
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Method gave high weight to Expert 2, and preferred Experts 9 and 10 over 8, it appears

these three experts performed particularly well.

Experts 3, 5, and 8 performed the worst in terms of the Brier score, had the largest

RMSE, from Table 4.3, and also received the largest recalibration parameters in Table 4.8,

as part of the Bayesian aggregation method. It appears then that these experts were

poorly calibrated. This does not mean they did not have the necessary understanding

or knowledge, but rather did not provide probability intervals with the expected level of

coverage.

Another consideration is the performance of each group. Across the seed questions,

we would expect both groups of experts to perform similarly, as the difference between

the groups is related to their work on the novel diagnostic method, and thus the model

parameters, rather than their wider knowledge of MND. Group 1 had a mean Brier score

of 254.09, and median score of 78.88, while Group 2 had a mean Brier score of 907.16,

and median score of 23.11. In terms of the Logarithmic score, Group 1 had an infinitely

large mean score, and median score of 5.38, while Group 2 had a mean score of 2.89 and

median score of 2.55. In terms of the Quadratic score, Group 1 had a mean score of 0.06,

and median score of 0.19, while Group 2 had a mean score of 0.07 and median score of

0.07.

The mean scores are easily influenced by large individual scores, such as Expert 8’s

Brier score. As such, the median scores provide a more sensible measurement of perfor-

mance. Group 2’s median Brier and Logarithmic scores were much lower than Group 1’s,

while both median Quadratic scores were similar. Comparing the range of values across

all three scores, there does not appear to be strong evidence that either group strongly

outperformed the other.

4.3.7 Aggregation and Individual Expert Distributions

Table 4.7 also outlines the benefit of using an aggregated prior distribution over a single

expert’s prior.

The mean Brier score of the individual experts was 450.01, and the median was 78.55.

As such, randomly selecting an expert would give an expected Brier score greater than any

aggregated prior distribution. While some experts had better scores than some aggregation

methods, as those experts would not be identifiable prior to the elicitation there is no

guarantee they would be selected.

The median Logarithmic score for the individual experts’ prior distributions was 3.5.

The calculation for the mean for this score includes two infinite values, and so is not suit-

able for comparison. However, the median score is still higher than any of the aggregated

distributions for any group.

The individual experts’ Quadratic scores had a mean of 0.06 and median of 0.14. While
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the SHELF method’s Quadratic score was the worst of the aggregated methods, it was

still competitive in comparison to the individual experts’, and an improvement over the

median score. Given the improvement SHELF provided under the other scoring rules,

this provides further evidence that aggregation of individual experts’ prior distributions

results in better calibrated and more informative distributions.

This result is also seen in the aggregated distribution plots. In each case, the true value

tends to lie within the aggregated distributions, whereas the individual experts provide a

much lower success rate.

As reviewed in Chapter 3, the benefit of aggregated prior distributions over individual

experts’ prior distributions has been previously demonstrated in the literature. These

results are consistent with previous findings. Should a single expert be elicited from, the

suitability of their prior distribution relies on both their knowledge of the field and their

ability to specify probabilities. An expert who does not perform well in the elicitation may

provide distributions that do not reflect the final outcome particularly well, yet that same

expert can be included within a group that performs better than any individual expert.

It is demonstrated in Marti et al. (2021) that experts’ performance in seed questions

is representative of future performance, and not due to random chance. As such, the

inclusion of multiple experts with different levels of weights can improve the performance

of the aggregated distribution.

Furthermore, during a single elicitation with a single expert it is hard to judge their

ability, as there are no other experts to compare their scores against. This makes it difficult

to determine whether a well calibrated expert has been selected or not. Should a single

expert be elicited from, the decision maker would have little knowledge of whether the

resulting priors are accurate. While a score could be calculated for an individual expert,

as was done in Table 4.7, the resulting score is only contextualised by the scores of the

other experts.

4.3.8 Comparison of Aggregation Methods

We can also compare the performance of aggregation methods using the scores in Table 4.7.

Note that scores should be compared within expert groups when making comparisons of

aggregation methods. As such, the SHELF method, in which Group 2 were the only

experts who undertook the required meeting, should be compared to scores from other

aggregations of Group 2’s priors. Comparing across both expert group and aggregation

method simultaneously fails to account for the differences in performance between experts.

The Classical Method and SHELF are both widely used aggregation techniques, and

the comparison of seed questions shows they both perform well. Both methods consistently

outperformed any individual expert, suggesting the use of either would result in a more

informative and better calibrated prior distribution. Equal Weights aggregation offers a
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quicker and simpler method of aggregation, though there is less of an improvement over

individual experts. Still, without seed questions with which to judge experts to select

those that performed best, using an Equal Weights aggregated prior often performs better

than randomly selecting an expert.

No aggregation method uniformly outperforms the others across all scores. The SHELF

method has the best Brier score and Logarithmic score, performing better than nearly

any individual expert or Group 2 aggregation method. This suggests the SHELF method

results in a relatively well calibrated and informative distribution. However, its Quadratic

score was worse than many of the other aggregation methods’.

Previous studies comparing mathematical aggregations and individual experts tended

to find similar results as found here. Cooke (2008) found the Classical Method outper-

formed Equal Weights and the best expert. Ganguly et al. (2014) showed that over a

group of 48 datasets, Equal Weights’ error was 3% higher than the Classical Method,

while the majority of the time the Classical Method was better calibrated than Equal

Weights. Flandoli et al. (2011) suggested that any of the aggregation methods would

perform better than selecting a single expert at random, and that none of the aggrega-

tion methods tested ever performed worse than the single best expert. Likewise, Lin and

Cheng (2009) found aggregation performs better than a single expert, and that the Clas-

sical Method and Equal Weights perform similarly. The effectiveness of the best expert

appears to depend on how well the best expert has performed, as Hammitt and Zhang

(2013) found the best expert performed better than either aggregation method. In this

case, the Classical Method still outperformed Equal Weights. While these comparisons

looked at various aggregation methods, the comparison of SHELF to the Classical Method

has not been previously assessed.

The resulting distributions also show some differences. The Equal Weights aggrega-

tions tend to be multi-modal, with long tails when individual experts have provided larger

ranges of values. The Classical Method, however, tends to provide distributions with fewer

modes due to the inclusion of fewer experts, and those experts providing particularly large

ranges being assigned no weight. Across both methods the true value always falls within

the ranges, with the exception of Group 2’s answer to seed questions 2 and 3. The plots

for SHELF and the Bayesian aggregation method are all uni-modal, though this is a direct

result of the methods themselves.

In terms of mathematical aggregation methods, the Classical method has performed

better than Equal Weights and the Bayesian Aggregation Methods for each group in terms

of Brier score, however the Equal Weights aggregation performed better under the Loga-

rithmic score. Both the Bayesian and Classical Method aggregations performed similarly

using the Logarithmic score. There does not seem to be a consistently better aggregation

method using the Quadratic score. Overall, it appears that the Classical Method results
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in the best calibrated distributions of the mathematical aggregation methods. This is

expected, as it assigns higher weights to better calibrated experts.

The distributions also show how the differences between Group 1 and 2 affect the final

aggregations for these methods. For example, the Bayesian aggregation results in similar

distributions for both Group 1 and Group 2. The Equal Weights method on the other

hand, results in distributions with large differences in their ranges, and with peaks in the

density around different locations. The Classical Method falls between the two, tending to

have fewer distribution modes than the Equal Weights distributions. As such, it appears

that the Bayesian method is less sensitive to differences between experts, while the Equal

Weights method is most sensitive.

In behavioural aggregations, the discussions involving a range of experts have the

potential to reduce the variability in their individual abilities to specify probabilities, and

knowledge of the domain of interest. Ideally, the discussion can take advantage of the most

knowledgeable experts’ for each question, and best calibrated experts’ ability to specify

probabilities, to form informative and well calibrated distributions. Ideally the range of

experts would also account for implicit biases, such as those relating to personal interests

in the outcome of a study, but these cannot always be avoided. The group setting used

in SHELF facilitates this type of discussion, though does have some potential downsides.

As seen in the seed question example, SHELF resulted in narrower distributions than the

other aggregation methods. While this could simply reflect a decrease in uncertainty, it

could also represent overconfidence in the quantities provided by the group.

In terms of the practicalities of implementing each of the aggregation methods, each

has a different level of effort and complexity involved for both the experts and elicitor.

From the elicitor’s perspective, the Equal Weights method is the simplest, as it only

involves eliciting distributions individually from each expert. The SHELF method, al-

though requiring more time with the experts and some facilitation skill, does not require

additional questions. The Classical Method presents a further level of work, in developing

appropriate seed questions. The Bayesian Aggregation method also involves a more com-

plex algorithm than the Classical Method, and an understanding of how to implement an

MCMC method.

From the expert’s perspective, the Equal Weights method is the simplest, requiring just

elicitation of prior distributions. Both the Classical Method and Bayesian aggregations

will mostly appear the same to the experts, as they require both elicitation questions

on parameters of interest and seed questions. Finally, the SHELF method can present a

larger challenge, as it requires all experts to meet at the same time, and multiple rounds

of elicitation.

Given the performance of each method, it is then advisable to at least consider an

Equal Weights aggregation when multiple experts can be elicited from. Though results
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are limited to a single expert group, it appears that the SHELF elicitation is the preferable

aggregation method. The Classical Method is clearly preferable to Equal Weights, and

presents a good alternative to SHELF when external factors may prevent, or make difficult,

the required meetings.

4.3.9 Bayesian Recalibration

The Bayesian aggregation method, while similar to the Classical Method in terms of

implementation difficulty, has performed worse across the three scores. There is a slight

difference between the initial Bayesian aggregation and the extended model. For the Brier

score, the extended model offered an improvement for Groups 1 and 3, but a worse score for

Group 2. The Logarithmic and Quadratic scores were very similar between both methods.

As such, for the two Bayesian aggregation methods presented, there does not appear to

be a clear improvement across all scores when extending the recalibration to include an

adjusted median.

One advantage the Bayesian aggregation method presents, however, is through the

recalibration of the individual experts’ priors. Table 4.8 presents the scores from the

recalibrated experts as individuals. In comparison to Table 4.7, the individual experts’

recalibrated distributions tend to have improved scores. For example, Expert 1 originally

had a Brier score of 78.22, Logarithmic score of 0.652, and Quadratic score of 0.24. Each

of these scores reduced dramatically once the recalibration was completed. By accounting

for an expert’s tendency to under or over-predict, and be under or over-confident in their

interval estimates, the Bayesian aggregation method can improve their performance.

Furthermore, there does seem to be an advantage to the extended recalibration when

considering individual experts. With the exception of Expert 9, all experts have seen a

noticeable improvement in their Brier score in the extended model over the original one.

There are also improvements in the other two scores, though these do not occur in all

cases.

For Expert 2, who the Classical Method identified as the best performing in the seed

questions, there was still an improvement in all scores. While the improvement was not

as large as it was for other experts, this suggests that this method can still improve

individual experts who do well in the seed questions. It is, however, important to note

that this method is altering the prior distributions in ways the experts who provided them

may not agree with.

We can also compare the recalibrated individual expert scores in Table 4.8 with the

aggregated prior distributions in Table 4.7. While the original expert scores were predom-

inately worse than the aggregated priors, the recalibrated distributions are more likely to

perform as well as the aggregated distributions.

This suggests that in cases where aggregation is not possible, an individual expert’s
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Table 4.8: Recalibrated Distribution Scores

Group Expert Recalibration Extended
Recalibra-
tion

Brier Logarithmic Quadratic Brier Logarithmic Quadratic

1 1 78.22 1.95 -0.02 8.66 1.49 -0.11
1 2 15.30 2.13 0.02 13.56 2.12 0.01
1 3 534.63 Inf 0.29 552.70 Inf 0.05
1 4 78.88 3.51 0.05 13.03 1.30 -0.15
1 5 977.97 49.22 0.06 971.90 49.33 0.06
1 6 79.38 2.22 0.08 7.42 1.90 0.00
1 7 14.24 1.48 -0.18 13.52 1.27 -0.22

2 8 2676.95 3.57 0.00 1334.10 3.81 0.03
2 9 21.42 2.75 0.22 36.24 2.52 0.12
2 10 23.11 2.29 -0.01 22.91 2.28 - 0.01

3 1 78.22 1.95 -0.02 8.66 1.49 -0.11
3 2 15.30 2.13 0.02 13.56 2.12 0.01
3 3 534.63 Inf 0.29 552.70 Inf 0.05
3 4 78.88 3.51 0.05 13.03 1.30 -0.15
3 5 977.97 49.22 0.06 971.90 49.33 0.06
3 6 79.38 2.22 0.08 7.42 1.90 0.00
3 7 14.24 1.48 -0.18 13.52 1.27 -0.22
3 8 3671.83 3.77 0.01 890.32 77.01 -0.18
3 9 15.72 2.10 0.06 141.57 1.87 - 0.07
3 10 26.67 2.14 -0.02 20.13 2.12 - 0.02

prior distributions may be improved through a Bayesian recalibration. We also suggest

that the poorer performance of the Bayesian aggregation in comparison to other methods

is due more to the aggregation step, rather than the recalibration.

4.4 Parameter Aggregations

In this section, we will form aggregated priors for each parameter in the model, for use in

assurance calculations. As previously discussed, the model contains five parameters.

The θ2 term is of particular importance, as it represents the improvement provided by

the experimental test. In practical terms, 100θ2% of patients who would not otherwise

be diagnosed until the second round would instead be diagnosed in the first round by the

experimental test.

The η and µ terms are also important in terms of assurance calculations, as they will

help determine the proportion of total patients who receive a second round test. Of all

patients, 100(1 − η)µ% will receive a positive test in round two. It follows then that

100(1− η)µθ2% of the total patients will see an improvement in diagnosis from the use of

the experimental test.

Note that while all experts completed the seed questions, only a subset provided values

for the parameter elicitations as well. This was a clear disadvantage of methods that

require higher levels of input from experts. Those who are busy, and unable to commit
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larger time periods, may not be able to complete the full elicitation. In total, Experts

3, 6, 8, 9, and 10 completed all questions from both the seed and parameter elicitations.

Experts 1 and 7 completed all seed questions, and the η and µ parameter questions, while

the remaining experts were only able to complete the seed questions.

4.4.1 SHELF Elicitation

During the SHELF elicitation meeting, Experts 8, 9, and 10 worked together to determine

appropriate quartile values for the five parameters. Figure 4.15 provides density plots of

the elicited values from the SHELF meeting. Only the experts from Group 2 took part in

the SHELF aggregation, as detailed in Chapter 3.

The density plots show that the experts felt that η and µ had a similar range of values,

with µ likely being slightly lower. Both θ1 and θ2 also strongly overlap, suggesting the

experts thought the two parameters would have very similar values. The θ3 distribution

gives weight to lower values than either θ1 or θ2.

In terms of the experts’ confidence, the η, µ, and θ3 distributions have similar ranges,

while the experts were more confident about the range of values for θ1 and θ2.
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Figure 4.15: Density plots for SHELF aggregation of the parameters.

For comparison with further aggregation methods, we also provide a violin plot for the

SHELF elicitation in Figure 4.16. The violin plot presents the density for each parameter

in a format similar to a boxplot. It is clear that the SHELF method has provided uni-modal

distributions for each parameter, which is to be expected as a uni-modal distribution was
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fitted in each case to the elicited values. This is in contrast to many of the aggregation

methods.
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Figure 4.16: Violin plots for SHELF aggregation of the parameters.

4.4.2 Equal Weights

We next consider an Equal Weights aggregation. In this case, equal weight is provided to

each expert who provided responses for a parameter.

Figure 4.17 provides the Equal Weights aggregated distributions for the parameters.

Each of the aggregated distributions is multi-modal, though each tends to have one

main peak. For θ1 and θ2, there seems to be agreement across all experts that the values

should be in a higher range. The Group 2 experts have presented more confidence in this,

with higher peaks, reflected in both the Group 2 and Group 3 distributions.

There appears to be less cohesive agreement across the other parameters. As such, the

combined Group 3 distributions tend to have a peak matching one of the other groups,

and then a considerable amount of density spread across a wider range.

Figure 4.18 provides a further comparison of all Equal Weights aggregations in a violin

plot.

The η parameter presents a clear example of how the three groups are related. The

Group 1 and Group 2 priors have distinct areas of high probability density, around 0.8

and 0.6 respectively. The Group 3 prior, which incorporates all experts across the groups,

then gives reasonable probability to both of these possibilities.
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Figure 4.17: Density plots for equal weight aggregations of the parameters.
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Figure 4.18: Violin plots for equal weight aggregations of the parameters, from all groups.

4.4.3 Classical Method

The Classical Method calculates weights for each expert based on their seed question

performance. While the previous analysis of the seed questions took into account all

experts, we have recalculated Classical Method weights for the experts who responded to
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Table 4.9: Classical Method Weights for Parameter Aggregation

Group 1 3 6 7 8 9 10

1 0.00 0.61 0.24 0.15 - - -
2 - - - - 0.00 0.73 0.27
3 0.00 0.22 0.18 0.05 0.00 0.40 0.16

the parameter questions.

Table 4.9 provides the new weights for this subset of experts. As previously organised,

Group 1 contains Experts 1, 3, 6, and 7, Group 2 contains Experts 8, 9, and 10, and

Group 3 contains all experts.

In the previous Classical Method aggregation, Experts 2, 3, and 6 were assigned the

non-zero weights for Group 1. It can be seen here that without Expert 2’s presence, Expert

3 has been assigned a higher weight compared to Expert 6.

The weights for Group 2 are the same as in Table 4.4, as the same experts and seed

questions are used in each.

For the Group 3 aggregation, the weight is split quite evenly between Group 1 and

Group 2 experts. This suggests that both groups had members who performed well in the

seed questions. Furthermore, and unlike the previous Classical Method aggregation, there

is no one expert who dominates the aggregation with the majority of the weight. As such,

this aggregation will take into account the views of a wider range of experts.

The Classical Method’s aggregated distributions are presented in Figure 4.19. As

shown, many of the distributions are multi-modal, as they are incorporating multiple

experts’ prior distributions. Those distributions with fewer modes form when the experts’

individual distributions were largely overlapping.

There is a strong level of agreement between the θ1 and θ2 parameters. This was

common in many of the experts’ individual distributions, and so it would seem desirable

for an aggregation method to reflect this too.

The distributions are also presented in a violin plot, shown in Figure 4.20. This plot

tends to show a stronger similarity between Group 2 and Group 3 prior distributions.

While there is a slight bias towards Group 2 in the weights, this is also likely in part due

to Expert 9 having a larger weight than the other experts. As such, there are similar

peaks in Group 3 as in Group 2, while the Group 1 experts have tended to increase the

density in the tails of the Group 3 prior.
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Figure 4.19: Density plots for Classical Method aggregations of the parameters, from experts in
Group 1.
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Figure 4.20: Violin plots for classical method aggregations of the parameters, from all groups.

4.4.4 Bayesian Aggregation

Aggregated distributions, representing the opinions of a decision maker, have also been

found using the Bayesian aggregation method. As the parameters are all bounded between
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zero and one, it was important to take this into account in the hierarchical model. A logit

transform was used to convert the experts’ elicited values, p, to a scale between negative

and positive infinity, X, as follows

X = log

(
p

1− p

)
(4.21)

The Bayesian aggregation was then performed on the rescaled values X, and then

converted back to the original scale using the reverse transformation

p =
eX

1 + eX
(4.22)

This ensured that the final aggregation would be bounded between zero and one.

Figure 4.21 provides the density plots of the aggregated distributions for each group.

There was agreement between each group for η, θ1, and θ2. All groups provided reasonably

wide distributions for θ3, with Group 1 providing a more positively skewed distribution

;than Group 2. Group 1’s aggregated distribution for µ was also much more positively

skewed than Group 2’s. Overall the resulting distributions were consistent with patterns

in the individual expert distributions, and other aggregations.
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Figure 4.21: Density plots for Bayesian aggregations of the parameters, from all experts.

The distributions are also presented as violin plots in Figure 4.22. This plot highlights

the similarities in the θ1, θ2, and θ3 parameters across groups. It also shows that, in

comparison to the other aggregation methods, the Bayesian aggregation has resulted in

more dispersed distributions, without a sharp peak.
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Figure 4.22: Violin plots for Bayesian aggregations of the parameters, from all experts.

Figure 4.23 provides the density plots of the extended Bayesian aggregated distribu-

tions for each group. There appears to be strong agreement between groups for the η, θ1,

and θ2 parameters in this case. The µ and θ3 parameters have opposite skews for Group 1

and Group 2. This has resulted in a more uniform distribution for θ3. It appears that the

mode in the aggregated distribution of µ from Group 1 was high enough that it carried

over to Group 3, resulting in a similar skew, but with more uncertainty.

While the µ distribution for Group 1 has a higher density for lower values, overall the

aggregated distributions appear similar to those from the original Bayesian aggregation

model. Each distribution takes a similar shape, suggesting the extended model has not

resulted in a large change in the final aggregations.

In comparison to previous parameter aggregations, these tend to present vaguer priors,

with lower peaks. Each distribution is also uni-modal, which is to be expected as each is

being modelled by a split-normal distribution which has a single mode.

The distributions are also presented as violin plots in Figure 4.24. This plot, especially

in comparison to previous aggregations, again shows smooth uni-modal distributions for

each parameter.
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Figure 4.23: Density plots for Extended Bayesian aggregations of the parameters, from all experts.
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Figure 4.24: Violin plots for Extended Bayesian aggregations of the parameters, from all experts.

4.4.5 Aggregated Prior Distribution Comparisons

For ease of comparison, Figure 4.25 provides density plots of each of the above aggregation

methods, separated by parameter and expert group. As discussed in Section 4.2.2, certain

patterns were present between the individual experts’ distributions for each parameter.

127



Chapter 4. Investigation and Comparisons of Elicitation Techniques

The η distributions tended to agree that the median lay between 0.5 and 0.7, and had an

upper quartile around 0.75. The µ parameter tended to have medians and quartiles lower

than the η parameter for most experts. For the θ parameters, θ1 and θ2 had very similar

distributions for each expert, and θ3 consistently took lower values than θ1 and θ2.

This was echoed in the SHELF aggregation, where the experts providing the elicited

values were able to ensure the practical interpretations for each parameter made sense.

As shown in Figure 4.16, the η distribution placed density on higher values than the µ

distribution, and the θ1 and θ2 distributions were very similar, and both placed density

on higher values than the θ3 distribution.

These patterns between parameters at the individual level suggest the experts consis-

tently felt there were certain relationships between the parameters. As such, if a mathe-

matically aggregated parameter distribution did not match this pattern, it suggests there

may be an issue with its practical interpretation.

Violin plots for the Equal Weights aggregation, Figure 4.18, Classical Method, Fig-

ure 4.20, and Bayesian aggregation, Figure 4.22, all strongly show this pattern for each

parameter in Group 3. There are some minor differences, however, between Group 1 and

2.

Especially notable in Group 2 when aggregating via the Classical Method, µ has more

density placed higher than η. This is reflective of Expert 9, who provided a prior for µ

with density at higher values than their prior for ηas, having a greater influence on this

aggregation.

As there are not currently results from the study, the distributions cannot be assessed

against any results. However, it appears that from the practical interpretation of the

aggregated distributions compared to the individual expert distributions, the aggregated

distributions provide sensible and consistent prior distributions.

These aggregated prior distributions will be used in Chapter 6 to calculate assurance

in order to determine appropriate sample sizes for the study.
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Figure 4.25: Density plots of all aggregations for each parameter, by each expert group.
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4.5 Conclusion

In this chapter, we have presented the results of elicitations for the design of a clinical

study into a novel diagnostic test for Motor Neurone Disease. As part of the elicitation, we

elicited prior distributions on a number of seed questions and model parameters. We pre-

sented these results, and found that the experts involved in designing the novel diagnostic

test and study appeared no more confident than the experts without involvement.

Using the seed question results, commonly used behavioural and mathematical aggre-

gation methods were compared. It was demonstrated that any method of aggregation was

preferable to eliciting from a single expert, and that the SHELF and Classical Method

both performed better than other aggregation methods.

We also presented aggregated distributions for the model parameters, which will be

used in Chapter 6 as the basis for assurance sample size calculations.
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Chapter 5

Comparison of Assurance and

Power through Simulation

5.1 Introduction

In this chapter, we explore assurance through simulation and make comparisons to power.

We begin by defining the normal and binomial models to be used throughout this

chapter. We then present some simulations of power and assurance, showing how they

change as the sample size or other values change.

The following sections then further investigate the behaviour of assurance and power

under different circumstances. We consider the following:

� How assurance and power are related for similar calculation inputs

� How the limits of assurance change for different inputs

� Assurance calculations with different analysis prior distributions

� The sensitivity of power and assurance to overestimated effect sizes

� Extending the normal model to consider unknown population variance

We conclude by considering the implications of these simulations for the use of assur-

ance in practice.

5.2 Assurance and Power Simulations

Both assurance and power are used in a similar way when determining a sample size.

There are, however, a number of differences in how the two methods perform in different

situations.
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Previous studies have compared assurance and power. Chen and Fraser (2018), for

example, note that assurance is typically lower than power for similar cases, as it con-

siders a wider range of effect sizes including those which represent a prior probability of

the treatment being ineffective. Additionally, Ring et al. (2019) compare sample sizes

determined by assurance and power, suggesting that sample sizes in the usual range for

Phase 3 trials tend to have an assurance of around 70 to 80%.

In this section, we provide some initial examples of power and assurance curves, and

how they relate to each other.

5.2.1 Terminology and notation

Throughout the simulations in this chapter, we will use certain values as standard. For

frequentist tests and power, we focus on a significance level of α = 0.05, and a power of

0.9 unless otherwise stated.

We also focus on cases where data comes from either a normal or binomial distribution,

to correspond with standard simple scenarios in medical studies and the case study.

In the case of a random sample X1, . . . , Xn from a Normal distribution, we consider a

one sample Z-test.

For a two sided Z test, the null and alternative hypotheses are

H0 : µ = µ0 (5.1)

H1 : µ 6= µ0 (5.2)

where mu is the population mean and µ0 is the value of µ to be tested against in the null

hypothesis, most commonly zero. The Z score is calculated as

Z =
X̄ − µ0

s
(5.3)

where X̄ is the sample mean, and s is the standard error of the mean. The value of s can

be calculated given the population standard deviation σ, and the sample size n, using

s =
σ√
n

(5.4)

The p-value of the test is then found by comparing the Z-score to a N(0, 1) distribution.

If we consider the same random sample from a normal distribution, a suitable Bayesian

model is as follows. We assume that the observations, Xi, i = 1, . . . , n, are normally

distributed and give the mean a hyper-prior which is also normal.
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Xi ∼ N(θ, σ2) (5.5)

θ ∼ N(µ, γ2) (5.6)

We can calculate the posterior probability that the mean is greater than a value µ0,

P (θ > µ0 | X), and consider it a significant result when P (θ > µ0 | X) < 0.025 or

1− P (θ > µ0 | X) > 0.975.

We first assume the population standard deviation is known and equal to one, σ2 = 1.

We relax this assumption in Section 5.7 to explore the effect of an unknown population

variance. It is important to note that there are two different standard deviations used

in these calculations. The population standard deviation, which has been set to equal

one, represents the aleatory variability in the observations, which we simulate as Xi ∼
N(θ, 1). The standard deviation in the prior for θ, labelled γ, is our epistemic uncertainty,

representing our lack of knowledge on the mean.

For power calculations, the effect size is chosen to be equal to µ when comparing

against assurance.

For binomial observations, we consider an exact binomial test. Suppose we will make

an observation X ∼ Bin(n, θ), and have a null hypothesis that the binomial probability

is equal to or less than a particular value, H0 : θ ≤ θ0, and an alternative hypothesis

H1 : θ ≥ θ0, we can directly calculate the probability of observing k successes, or a more

extreme result, assuming this null hypothesis is true. That is,

P (X ≥ k) =
i=n∑
i=k

(
n

i

)
θi0(1− θ0)n−1 (5.7)

While this test can be approximated using a normal approximation for larger sample

sizes, as we wish to also consider smaller sample sizes, we will use this test throughout.

For a Bayesian analysis, we consider the following model setup. An observation, X,

comes from a binomial distribution with parameter θ, on which we place a Beta analysis

prior with parameters α and β.

X ∼ Binomial(n, θ) (5.8)

θ ∼ Beta(α, β) (5.9)

We then consider the posterior probability that the parameter θ is greater than a chosen

value θ0, ie P (θ > θ0 | X), and consider the result significant when Pr(θ > θ0 | X) ≥ 0.95.
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Additionally, unless otherwise stated, we are considering a two sided Z-test and a one

sided binomial test.

We refer to the input to power calculations as an effect size. This refers to the value

used for X̄ for the Z-test, and the estimate of θ for the binomial test. As noted in

Chapter 2, there are a number of ways this value can be determined, such as the MCID.

We also refer to the design prior’s mean as a best estimate. In cases where power and

assurance are compared for a frequentist analysis, the same value is used for the effect size

in the power calculation and the best estimate in the assurance calculation.

When simulations are used for assurance calculations, unless specified elsewhere, 100,000

replications were used to estimate the value.

5.2.2 Normal observations

For an initial comparison between power and assurance, we take the case of a Z-test.

Figure 5.1 provides example power and assurance curves for five different values of the

effect size and best estimate as the sample size n increases.

For the following simulations, we set a prior distribution for θ as θ ∼ N(µ, 0.52).

These plots show an example of the common shapes of assurance and power curves.

For set population and prior standard deviations, a higher effect size or best estimate

corresponds to higher power and assurance values regardless of n. Additionally, in both

cases, as n increases, so too do the power and assurance.

While the power curves vary largely between the different effect sizes in terms of slope,

the assurance curves follow a much more similar shape, albeit shifted up or down. This

is likely due to the additional variability which is accounted for within the assurance

calculation.

A case of interest is that where the effect size is equal to the value assumed under the
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Figure 5.1: Example power (left) and assurance (right) curves for a Z-test.
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Figure 5.2: Example assurance and standardised assurance for a Z-test, with varying design prior
means.

null hypothesis, in this case zero. Regardless of the sample size, the power of such a trial

will always be equal to α, in this case 0.05. The assurance for such a case does change as

n changes, as it also considers values other than zero as a result of the uncertainty from

the prior distribution placed on the best estimate.

As mentioned in Chapter 2, we can also consider the assurance in terms of its maximum

possible value. This standardised assurance is calculated by dividing the assurance by the

maximum possible assurance, as defined by the design prior. Figure 5.2 shows the effects

of standardising the assurance compared to the original unstandardised assurance.

These new curves represent how quickly the assurance is approaching its maximum.

Each curve on the plot has its own maximum assurance, which is defined by the design

prior it represents. As such, each curve is scaled by a different amount.

When a design prior leads to a maximum assurance of closer to one, such as the effect

size of one in this plot, this transformation will have less of an effect. Those curves which

tend towards values that are lower than one, such as the effect size of zero, will have a

greater transformation effect.

The benefit of this type of plot is that it allows comparisons of assurances that were

previously on different scales. While the initial plot showed the assurances were all con-

verging to different values, it is difficult to tell which values they are converging to, and

how quickly. The standardised assurance, however, shows that the higher the best es-

timate, the more quickly the convergence at lower values of n. However, for the larger

values of n, the slopes for the higher best estimates become more flat more quickly than

those of the lower best estimates.

We can also consider the effect of the prior standard deviation on assurance calcula-

tions. Figure 5.3 shows the assurance and standardised assurance curves for a range of
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Figure 5.3: Example assurance and standardised assurance for a Z-test, with varying design prior
standard deviations.

different prior standard deviations, with a prior mean of 0.5.

In this case, it can be seen that varying the standard deviation while holding the effect

size constant changes the slope of the assurance curve.

The curve where the prior standard deviation is equal to zero will match the power

curve, when the best estimate is equal to the effect size.

Of note is the point where the lines converge, at an assurance of 50%. This behaviour

is consistent for different best estimates, though the associated sample size n varies. The

reason this point exists is because it is the point where the critical value for the test is

equal to the effect size.

For a two sided Z-test, the critical value is defined as 1.96 σ√
n

for α = 0.05. When the

value of n is approximately 16, this critical value is equal to 0.5. As the effect size is equal

to this value, and the design prior is symmetrical, then half of the prior’s weight will be

above and below the critical value regardless of the prior’s standard deviation.

These plots could be used to determine an appropriate sample size for a trial. For

example, if a power of 0.8 was desired, then a sample size of 25 would be required for a

corresponding effect size of 0.5. Likewise, the assurance gives a 60% chance of a trial of

this size providing a significant result.

5.2.3 Binomial observations

We next consider binomial observations. The mean and variance of a binomial random

variable are determined by the sample size, n, and probability of success, θ.
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Figure 5.4: Example power and assurance curves for a binomial test.

µ = nθ (5.10)

σ2 = nθ(1− θ) (5.11)

Figure 5.4 provides some example power and assurance curves for an exact binomial

test. The exact binomial test has a null hypothesis of H0 : θ = 0.2, and a one-sided

alternative hypothesis. The design prior takes the form of a Beta(α, β) distribution, where

α and β are chosen to ensure the distribution has a mean given by the best estimate, and a

standard deviation of 0.2. For a Beta distribution, this can be achieved using the following

equations.

α =

(
1− µ
σ2

− 1

µ

)
µ2 (5.12)

β = α

(
1

µ
− 1

)
(5.13)

In both cases, a pattern of steps appears. In order for a significant result to be found

for a binomial test, a certain number of positive observations must be observed. In some

cases, increasing the sample size by one requires an extra ‘success’ to be observed, leading

to a decrease in the probability of observing the required number of positive observations

in comparison to the lower sample size. However, in other cases the required number of

positive observations remains constant for an increase in total sample size by one, which

then has a higher probability of being achieved with the larger sample size. Each step in

the plot represents the point where an additional positive observation is required.

As the sample size increases, so too does the power. However, as demonstrated by the

138



Chapter 5. Comparison of Assurance and Power through Simulation

0.00

0.25

0.50

0.75

1.00

10 20 30 40 50

n

A
ss

ur
an

ce

Standard Deviation

0.1

0.2

0.3

0.4

Figure 5.5: Example assurance curves for a binomial test.

red power curve, the convergence of power towards one varies with the effect size, and is

not always quick.

Both power and assurance start at a value of zero for a small sample size. For the

lowest effect size, assurance increases more rapidly than power. This is likely due to the

incorporation of higher effect sizes in the prior distribution, which are not included in the

power calculations.

The assurance plot shows the assurance curves converging to different locations, de-

pending on the best estimate. Best estimates further away from the null hypothesis value

lead to a trial having a greater chance of success. This is logical, as larger effect sizes

should tend to be more easily detected than smaller ones.

We can also consider the effects of a change in the variance of the design prior. Fig-

ure 5.5 plots assurance curves where the design prior has a mean of 0.5, and standard

deviations ranging from 0.1 to 0.4.

As seen in the Z-test case, the higher standard deviations correspond to lower assurance

levels for larger values of n. Also similar is the overlap in assurance curves when assurance

is equal to 0.5.

The size of the changes in the step pattern become smaller for the larger standard

deviation. These priors are taking into account a wider range of values, and appear less

sensitive to the requirement of an additional success.

A common pattern in all of these plots is that the jumps in assurance or power occur

at the same sample sizes. This is because the required number of successes for a significant

result is not dependent on the design prior. Instead, the design prior affects how likely it

is to observe the required number of successes for each possible sample size.

139



Chapter 5. Comparison of Assurance and Power through Simulation

5.3 How Power and Assurance are related

The assurance based on a hypothesis test is the average power over a prior distribution for

the effect. As such, the selected prior distribution will influence how similar the assurance

and power are to each other. In this subsection, we explore the relationship between power

and assurance for different combinations of parameter values.

5.3.1 Normal observations

In order to examine this, we first consider a Z-test with varying sample sizes values,

n = 1, . . . , 100, and varying effect sizes and best estimates, between 0 and 1. The standard

deviation of the design prior is set to 0.5, half of the population standard deviation. The

results from these simulations are plotted in Figure 5.6.

As the plot shows, larger prior means relative to the standard deviation correspond

with a more linear relationship between power and assurance. The beginnings of the lines

in the lower-left corner of the plot correspond to the lowest sample size values. The sample

size values then increase as the curves move up and towards the right. The diagonal black

line represents the points where assurance and power are equal. In this case, it is clear

that for low sample sizes, the assurance is greater than the power. The power is equal to

assurance at 0.5, after which the power is greater than assurance.

While these curves demonstrate how a different effect size or best estimate can change

the relationship between assurance and power for a set standard deviation, it is also

important to consider the effect of varying the standard deviation. For an effect size set

at 0.5 for the power calculation, and a design prior centred on 0.5 for the assurance, we

again consider sample sizes between 1 and 100. We calculate the power and assurance for

each, varying the design prior’s standard deviation. This is provided in Figure 5.7.
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Figure 5.6: Power and assurance for a range of different effect sizes, over sample sizes 1 to 100.
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Figure 5.7: Power and assurance for a range of different design prior standard deviations, over
sample sizes 1 to 100.

As this shows, when the design prior has a very low standard deviation, or the prior

is very informative, the relationship between power and assurance is almost linear with

a slope close to one. In the case where the design prior’s standard deviation is equal to

zero, then the assurance and power are equivalent.

The more uncertainty on the parameter of interest, the further the assurance changes

from the power. This is because the prior is taking into account a wider range of values

as possible effect sizes.

Common to both plots is that the power and assurance coincide at the value 0.5. As

mentioned in Section 5.2.2, the assurance will have a sample size for which it has a value

of 0.5, regardless of design prior standard deviation. As the power is equivalent to an

assurance with a design prior standard deviation of zero, then it will be the case that the

assurance and power will be equal at this point.

It is also noted that for values below this point, the value of the assurance will be

greater than or equal to the power, and for values greater than 0.5, the power will be

greater than or equal to the assurance.

By comparing the previous two plots, it can be seen that the difference between the

power and assurance for a particular sample size varies based on the design prior used.

While there is a similar shape in the curves when fixing either the design prior mean or

standard deviation, the difference comes from the probability assigned to values above or

below the null hypothesis.

Figure 5.8 shows a plot where the design prior mean is equal to the design prior

standard deviation. In each case, the null hypothesis value of zero is one standard deviation

away from the design prior mean and so, there is a consistent probability of the mean being

greater than the null hypothesis value in the design prior. In this case, the relationship
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Figure 5.8: Power and assurance for a range of different design prior means and standard deviations,
over sample sizes 1 to 100.
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Figure 5.9: Power and assurance for a range of different design prior means and probabilities below
µ0, over sample sizes 1 to 100.

between power and assurance is the same for all design prior parameter combinations.

We can also consider the cases where the mean and standard deviation combinations

are chosen to give a certain probability below the value in the null hypothesis, µ0. Fig-

ure 5.9 demonstrates the relationship between power and assurance for design priors with

different probabilities assigned to values less than µ0.

This plot demonstrates that the more probability the design prior provides to values

above µ0, the more linear the relationship between assurance and power will be. It also

further demonstrates the relationship between the design prior and the assurance. Design

priors placing higher probabilities on a positive trial result in turn lead to higher assurance.

Overall, the more uncertainty within the design prior, the lower the assurance values

will tend to be. If the design prior is very certain that there will be a successful result,
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Figure 5.10: Power and assurance for a range of different design prior means, and a standard
deviation of 0.2, over sample sizes 1 to 200.

then unsurprisingly, this will be reflected in higher assurance values.

5.3.2 Binomial observations

Similar results are obtained when using an exact binomial test. Figure 5.10 provides a

plot of assurance and power for effect sizes with varying sample sizes.

Unlike the Z-test curves, in this case the relationship is less smooth. This is due to

the binomial data being discrete, and the corresponding cutoff for a successful trial also

being a discrete value.

As before, however, a pattern emerges of higher effect sizes or best estimates for a

given sample size and power corresponding to a higher level of assurance.

When varying the standard deviation, Figure 5.11 presents relationships between power

and assurance. For the right hand plot, the case where a mean of 0.5 is present, a similar

relationship to the Z-test case is found, where assurance and power are equal at a value of

0.5. However, for a mean of 0.25, and other means not equal to 0.5, a different pattern is

found. This is due to a symmetrical distribution present in the first design prior, similar

to the normal distributions used for the Z-test. When the mean of a beta distribution

prior is not equal to 0.5, the beta distribution is not symmetrical as it is bounded between

zero and one.
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Figure 5.11: Power and assurance for a range of different design standard deviations, with means
of 0.25 (left) and 0.5 (right), over sample sizes 1 to 200.

5.4 Assurance for Bayesian Analyses

When calculating assurance when a Bayesian analysis will be conducted, there are two

steps in which a prior distribution is required. The design prior refers to the prior used

in the assurance calculation, and the analysis prior refers to the prior used in the analysis

stage.

As reviewed in Chapter 2, these two priors do not have to be identical. In many cases

it will make sense to use different priors to represent the views of different individuals or

groups.

5.4.1 Conjugate Analysis Priors

While the design prior can be chosen to represent the beliefs of the researchers about a

future trial, the analysis prior is used to analyse the data. In order to ensure this analysis is

acceptable to third parties such as funding or regulatory bodies, the analysis prior needs to

be justifiable. If an informative analysis prior which is optimistic about the trial outcomes

is used, it could be argued that any positive results from the trial are due to this prior

rather than the data.

One option would be to use a sceptical prior. Such a prior represents the view of

someone who is sceptical about the trial being a success, and thus places a low probability

on such an event occurring.

Normal observations

To investigate the effects of the analysis prior on assurance calculations, we consider a

Z-test.
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Figure 5.12: Assurance curves with analysis priors with various means.

First, we simulate the case where we vary the analysis prior mean. The design prior is

set as a N(0.5, 0.2) distribution, and the analysis prior as a N(µ, 0.1) distribution, where

µ is varied. A successful result will be determined when 95% of the posterior distribution

is above zero. While a larger analysis prior variance may be less likely to be used in

practice than a larger design prior, it has been chosen here to better distinguish the effects

of varying the analysis prior mean. Figure 5.12 shows the resulting assurance curves.

As the plot demonstrates, the analysis prior mean affects the rate at which the assur-

ance approaches its maximum. In this case, as we are testing to see if the mean is greater

than zero, analysis priors which place a larger amount of weight above this value provide

higher assurance values. However, as the sample size increases and more data is available,

the analysis priors which are more sceptical begin to catch up with those providing larger

assurance values.

The analysis prior is also the determining factor as to whether the assurance starts at

a value of zero or one when n = 0. In the case of no observations, the analysis is solely

dependent upon the analysis prior, which will either give a significant result, and thus an

assurance of one, or a non-significant result, and accordingly an assurance of zero.

Another consideration is the ratio between analysis prior mean and standard deviation.

We calculate assurance for a number of simulated trials, with the same design prior and

varying best estimates. For each best estimate, the corresponding standard deviation also

varies, to ensure that 10% of the prior is below 0. Figure 5.13 shows the assurance curves

from these simulations.

As the plot shows, the assurance curve varies for each best estimate and standard

deviation combination. This means the effect of the analysis prior on the assurance is not

simply determined by how much weight it places above and below the cutoff. Furthermore,

the larger the mean and variance of the analysis prior, the faster the assurance curve tends
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Figure 5.13: Assurance curves with analysis priors that have 10% weight below zero.

to grow.

Should a sceptical prior be chosen for the analysis prior, it is important to consider

the probability the sceptical prior assigns to be greater than the cutoff, as well as the

mean and variance of the chosen distribution. An obvious choice may be to place prior

with 5% of the weight above the cutoff, in order to provide some level of consistency with

Frequentist methods which most are more familiar with. However, it may still be useful

to consider an appropriate mean for the distribution.

This can be compared to Figure 5.20, which selects standard deviations based on the

mean for the design prior. In this second case, the assurance curves differ in slope for design

priors with different standard deviations. This behaviour suggests that the assurance is

more sensitive to changes in the design prior than in the analysis prior.

Binomial observations

We also look at the case of binomially distributed data. We use a Beta(10, 20) distribution

as the design prior, and consider the case where the critical value for a successful trial is

0.2. The analysis priors are Beta distributions, chosen to have a standard deviation of 0.2

and varying means. Figure 5.14 shows the resulting assurance curves.

As seen for the Z-test, the assurance curves all tend towards the same value. The

differences in analysis prior means had led to different starting points when n is low, and

different rates of convergence towards the maximum. The larger n is, the smaller the effect

of the analysis prior becomes. This is to be expected, as the effects of a prior diminish as

more data is observed.

Unlike changes in the design prior, changing an analysis prior for binomial observations

does affect where the zig-zagging pattern appears. A common analysis prior will ensure

these patterns occur at the same value of n, but when the priors vary so does the pattern.
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Figure 5.14: Assurance curves with analysis priors with various means.
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Figure 5.15: Assurance curves with analysis priors that have 20% weight below 0.2.

Figure 5.15 shows a second case with binomial observations and beta prior distribu-

tions, but where each curve places the same probability below the critical value for the

posterior. The mean of the distributions varies, with the associated standard deviations

chosen to ensure 20% of each analysis prior is below 0.2.

Similarly to the case with normally distributed observations, the assurance curves for

analysis priors with a common probability of being below the value under the null hy-

pothesis are similar. Due to the different analysis priors, the required number of observed

successes change at different sample sizes, as evidenced by the different locations for the

peaks. Once a curve drops from a peak, however, it then follows a common shape with

the other assurance curves. This is because the design prior leads to the same probability

of observing a certain number of successes out of n samples regardless of analysis prior.
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5.4.2 Non-conjugate Analysis Priors

While mathematically and computationally more complex, it is also possible to use non-

conjugate priors for the analysis prior.

This may be necessary when an aggregation of priors is required for the analysis prior,

as these can often lead to mixtures of distributions which may not take the form of a

conjugate prior. More generally, this gives additional flexibility in the specification of the

analysis prior.

In order to include a non-conjugate prior in the analysis, the assurance calculations

will involve an MCMC step, or equivalent method, in order to simulate from a posterior

density. When searching for a sample size, this can involve rerunning the MCMC for each

value of n to be considered, increasing the computational time considerably.

While the design prior needs to be selected carefully to represent the beliefs of the

individuals deciding the trial design, there is more freedom of choice when selecting an

analysis prior. As such, it would seem sensible that, unless we have a compelling reason

otherwise, a conjugate prior be chosen. Such a conjugate prior can still be easily modi-

fied to allow for varying levels of scepticism and uncertainty, and so should allow for an

appropriate analysis prior choice.

We consider a non-conjugate analysis prior in Section 5.4.3, in the form of a Spike and

Slab prior.

5.4.3 Types of Analysis prior

While the choice of design prior for assurance calculations is an important choice, when

conducting a Bayesian analysis it is also important to consider the prior which will be

used in the analysis stage.

We consider four different categories of prior distribution. Firstly, the prior distribu-

tions can be designed to be informative or non-informative.

An non-informative, or reference, prior aims to provide minimal information about the

parameter. In the case of a Beta distribution, this is often taken as a Beta(1, 1) distribution

which is uniform over the range of possible values. For a Normally distributed prior, a

prior with a large variance is a common choice. While, as discussed previously, these priors

are in fact informative, we will demonstrate the outcome of using them in this scenario.

An informative prior represents some level of prior information about the parameter.

In the following simulations, we will use an analysis prior the same as the design prior to

represent an informative prior centred on the same effect size.

We can also categorise priors based on how enthusiastic they are about a significant

result being found.

A sceptical prior represents the views of a researcher who is sceptical of the effect size
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Figure 5.16: Example analysis prior distributions when considering a Bayesian analysis in which
success is measured by the analysis posterior distribution having high probability above zero.. An
optimistic prior is presented in blue, a sceptical prior in orange and an uninformative prior in
green.

required for a successful trial. Such a prior is chosen by ensuring the probability assigned

for significant parameter values is low.

An optimistic prior represents the views of a researcher who gives high probability to

an effect size required for a successful trial. Such a prior will place the majority of its

probability in the range of significant parameter values.

Both of these priors tend to be informative.

Figure 5.16 presents example distributions that could be used as analysis priors. The

optimistic and sceptical priors, in green and orange respectively, are more informative

than the vague, uninformative prior shown in blue. The example optimistic prior takes

the form of a N(0.75, 0.2) distribution, the sceptical prior a N(−0.75, 0.2) distribution and

the uninformative prior a N(0, 2) distribution.

The corresponding assurance calculations will, assuming the same design prior is used

in each, result in curves tending towards the same maximum value. The differences in

the analysis prior will affect the rate at which they approach that maximum. Figure 5.17

presents the assurance curves for the three analysis priors shown in the previous plot.

As this demonstrates, the sceptical prior provides much lower assurance values for low

sample sizes than the optimistic prior.

Additionally, the uninformative prior provides assurance values between the sceptical

and optimistic analysis priors. In this case, this was due to the mean of the uninformative

prior lying between the means of the two other distributions, and its probability of the

parameter being above zero being in between the equivalent probabilities of the other

distributions.
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Figure 5.17: Assurance curves for the example analysis priors given in Figure 5.16.

Sceptical Priors

From a conceptual standpoint, it makes sense to select a sceptical analysis prior. This

allows for a convincing argument to be made should a statistically significant result be

found: that the results in the data are strong enough that they can convince a sceptic.

The question that follows this, is how sceptical should a sceptical prior be? Should

the sceptical prior be chosen to be too sceptical then it may be near impossible to find a

significant result. Likewise, should the prior not be sceptical enough, then the results may

not be convincing enough to sceptical third parties.

As demonstrated in Section 5.4.1, one method of determining sceptical priors is based

on the probability assigned to the parameter values which lead to a successful trial. As a

sensible starting point, somewhat equivalent to Frequentist standards, we will first consider

an analysis prior with a probability of 5% that the mean is above zero.

However, with such a constraint there is an infinite number of combinations of mean

and standard deviation which will fulfil this for the normal distribution. Table 5.1 provides

example values that could be used in such a case.

These combinations all provide different levels of assurance for each sample size, and

each has a different impact on the posterior distributions. The following equations show the

posterior parameters for a normal likelihood and prior distribution, for a known population

standard deviation, here set to one.

µposterior = γ2posterior

(
µprior
γ2prior

+

∑n
i=1 xi
12

)
(5.14)

γ2posterior =

(
1

γ2prior
+
n

12

)−1
(5.15)
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Table 5.1: Normal distribution parameters that give P (x > 0) = 0.05.

Prior Mean Prior Standard Devi-
ation

Posterior Mean Posterior Standard
Deviation

-0.1 0.0608 0.0120 0.0597
-0.5 0.3040 0.1611 0.2191
-1 0.6080 0.2641 0.2805
-10 6.0796 0.3346 0.3158

For a given sample,
∑n

i=1 xi = x̄n, where n is the sample size, the posterior can easily

be calculated based on the prior distribution parameters. If we consider a sample size of

n = 10, and imagine a dataset with sample mean x̄ = 0.5, we can calculate the following

posterior parameter values given in Table 5.1.

As the table demonstrates, a researcher needs to select more than just the prior prob-

ability of success when choosing a sceptical prior. Each combination of prior mean and

standard deviation leads to a different posterior mean and standard deviation combina-

tion. While the ratio between the prior parameters remains constant due to the condition

placed upon it, this is not the case for the posterior parameters. The greater the prior

standard deviation, the greater the posterior probability above the cutoff value will be.

If the views of a sceptical third party are to be represented, then a prior mean closer

to the cutoff may be more appropriate. A party such as a funding body would likely argue

that for the trial to be approved, the treatments should be in equipoise, as mentioned

in Chapter 2. A prior representing this would suggest there is no difference between

the treatments. If a normal distribution was to represent the difference between two

treatments, a value of zero would represent no difference.

As such, an analysis prior which includes a sceptical view, but also one which does not

place strong probabilities on a difference in treatments may be appropriate. Such a prior

would have a mean close to the cutoff, zero, and a relatively low standard deviation, such

as that in the first row in Table 5.1.

Spike and Slab Prior

Another form of analysis prior which may be of use is a spike and slab prior. This type of

prior places a large probability on a single value, the spike, and the remaining probability

over a range of other values, the slab.

Such a prior may not always be an appropriate representation of an individual’s beliefs.

If a person believes there is a high probability that a parameter takes one particular value,

it is likely their beliefs on the values surrounding that value will increase or decrease

smoothly, rather than with a hard drop. For example, if an individual’s beliefs form a

density where f(θ = 0) = 0.4, then the density at f(θ = 0.00001) would be expected to

be close to 0.4, which will typically not be the case with this form of prior. However, for
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a more artificial prior which is not aiming to represent an individual’s beliefs, but rather

a generic sceptical viewpoint, this type of prior may be useful. In a sense this is closer

than the sceptical prior to the situation in a hypothesis test, where the spike represents

the value under the null hypothesis.

For a normal distribution representing the differences between two treatments, where

a value greater than zero for the mean is considered a success, a sceptical prior could

place a large probability on the mean being equal to zero, and a small probability spread

across a range of positive values. This would again represent an equipoise between two

treatments.

In this case, a spike and slab prior could be developed as follows. For a random sample

on a random variable X, which is normally distributed with population parameters θ

and σ, a spike and slab prior can be placed on θ. This prior has a normally distributed

slab component, labelled below as θslab, centred on zero with a standard deviation of γ.

The spike, θspike, is obtained by multiplying the slab component by a Bernoulli random

variable, which is equal to one with probability 1− pspike and is equal to zero, the spike,

with probability pspike.

X ∼ Normal(θ, σ) (5.16)

θslab ∼ Normal(0, γ) (5.17)

θspike ∼ Bernoulli((1− pspike)) (5.18)

θ = θslab × θspike (5.19)

This means that pspike proportion of the distribution has a value of zero, forming a

spike at that location. An example of this is provided in Figure 5.18, where pspike = 0.5,

and γ = 0.5.

The size of the spike at θ = 0 is determined by how sceptical an analysis prior is

required to be.

We run simulations to demonstrate the use of a spike and slab analysis prior. Fig-

ure 5.19 shows assurance curves from 5 different spike and slab priors, each with a

N(0.5, 0.2) design prior, varying levels of probability assigned to the spike, and the slab

component formed by a N(0, 0.5) distribution. In this case, we consider a one sided test,

where the slab component is truncated to only include positive values. These curves are

not completely smooth due to sampling variability.

As this demonstrates, the more probability assigned to the spike, or the more sceptical

the analysis prior is, the lower the assurance will be for a given n. Note that the case

where pspike = 0 is where only the slab component’s normal distribution is used, as there

is no spike. Additionally, each of these assurance curves tend towards the same maximum
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Figure 5.18: An example spike and slab prior distribution.
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Figure 5.19: Assurance curves for spike and slab analysis priors.

value as n increases, the analysis prior is only affecting the slopes of the curves.

The difference between these analysis priors can be quite large, for example the sample

size required for an assurance of 0.5 is 20 when pspike = 0, but as high as 70 when

pspike = 0.95. As such, the level of scepticism needs to be carefully decided prior to the

analysis.

One benefit of the spike and slab prior is that it can be interpreted in terminology

which avoids statistical knowledge. By framing the value of pspike as a question along the

lines of “What is the probability the effect of the new treatment is equal to the current

treatment?” or “What is the probability that both treatments are equally effective?”, the

prior can be easily explained or elicited in a practical manner. This may be beneficial

when communicating to non-statistically trained audiences, and can present a convincing

argument that the prior has not influenced the results in a way which favours the treatment

being studied.
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For example, if the analysis prior states there is only a 5% chance the new treatment

will outperform the current treatment, and a significant result is found, it is clear that the

data gathered has provided strong evidence in order to overcome this prior.

5.5 Assurance Limits

As discussed in Chapter 2, the maximum assurance is defined by the design prior. As

assurance is a probability, it cannot go outside of the values of zero and one.

The minimum possible assurance is zero. This could be the case when the design prior

assigns no probability to the probability of a successful trial, or when the analysis requires

a reasonably large number of observations to produce a significant result. Additionally,

a very small sample size may not be sufficient to provide a significant result even for

optimistic design priors.

The maximum possible assurance is one. This can occur when a strongly optimistic

analysis prior is used, or more usually when the design prior places no probability on a

non-significant result being found. Such a design prior may lead to the requirement of a

larger sample size to reach the assurance value of one if a more sceptical analysis prior is

used.

While these values are hard limits for assurance, further constraints can exist depending

on the design prior.

5.5.1 Normal observations

A change in the standard deviation of a design prior distribution can be related to the

change in the mean.

If we consider the value under a null hypothesis for the effect, say µ0, we have shown

in Chapter 2 that the assurance will tend towards P (|θ| > µ0) as n increases.

The maximum assurance, Amax, can then be defined as

Amax = Φ(
µ− µ0
γ

) (5.20)

where Φ is the cumulative distribution function for the standard normal distribution, and

µ and γ the parameters of a normally distributed design prior for θ.

Rearranging this equation shows that the value of γ can be related to the value of

µ − µ0. To keep an equivalent maximum assurance, if the design prior mean is changed

then the design prior standard deviation needs to change inversely proportional to the

maximum assurance. Likewise, if the design standard deviation is changed, the value of

µ− µ0 will need to change proportionally to the maximum assurance.
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Figure 5.20: Assurance curves for design priors, each giving a 90% probability that the effect size
is greater than zero.

µ− µ0 = Φ−1(Amax)γ (5.21)

γ =
µ− µ0

Φ−1(Amax)
(5.22)

We consider this in terms of µ − µ0 to represent the difference between the value

under the null hypothesis of the population mean and the mean of the design prior. For

simplicity, we proceed using µ0 = 0, though the following results will generalise to other

valid values of µ0.

We consider a number of design priors, each with 90% of their probability above

zero. Figure 5.20 provides the assurance curves. The design prior means are displayed

as separate lines, and each has a standard deviation defined as µ
Φ−1(Amax)

. In this case,

Φ−1(0.9) ≈ 1.28.

While each of the curves is converging to a probability of 0.9, they all converge at

different rates. While each design prior has 10% of its area below zero, those with higher

standard deviations spread that area over a wider range. While there is the same proba-

bility the design prior mean is below zero, those with larger mean and standard deviation

combinations give a higher weight to larger effect sizes.

For example, a N(0.5, 0.39) distribution provides less than 1% probability of an effect

size being greater than 1.5, while a N(2, 1.56) distribution gives a 62.6% probability,

despite both distributions providing a 10% probability of an effect size less than zero.

This demonstrates that while two prior distributions can provide the same maximum

assurance, they may still have different behaviour as n increases. It also has relevance when

choosing design priors. As shown, a design prior should not simply be selected based on
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the probability a distribution assigns to be above or below a single value. Careful choice

of a second parameter input is required to select the distribution which will provide the

appropriate assurance curve.

5.5.2 Binomial observations

For a binomially distributed observation, the conjugate prior takes the form of a Beta

distribution. While normally parametrised in terms of α and β, these parameters can be

related to the mean, µ, and standard deviation, σ, using the following transformations.

µ =
α

α+ β
(5.23)

σ2 =
αβ

(α+ β)2(α+ β + 1)
(5.24)

For a set mean and standard deviation, the corresponding α and β terms can be

calculated using Equations 5.12 and 5.13.

We can find combinations of the mean and standard deviation, or α and β, which

provide a given probability above a set value.

For example, we assign a 75% probability above the value 0.2, an analysis prior in the

form of a Beta(2, 8) distribution, and find α and β values of approximately (3.26, 7.62),

(1.26, 1.89), and (0.70, 0.70) to correspond with means of 0.3, 0.4 and 0.5 respectively.

Figure 5.21 shows the resulting assurance curves.

These assurance curves all tend towards the same value of 0.75. However, due to the

different design priors, the rate at which they converge towards this value varies. As seen

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200

n

A
ss

ur
an

ce

Design Prior Means

0.3

0.4

0.5

Figure 5.21: Assurance curves for design priors, each giving a 75% chance that the effect size is
greater than 0.2.
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Figure 5.22: Assurance curves for two different analysis priors, with the same design prior.

in the normal example, those with higher means, and consequentially higher variances,

are converging at a faster rate.

In cases where the analysis prior is more optimistic than the design prior, the assurance

curve may decrease as n increases. While this behaviour is the opposite of what is typically

seen with power and assurance curves, it would represent a case where an optimistic analyst

is gathering data which does not support their conclusions. Figure 5.22 provides such an

example, where the analysis prior with the larger mean is providing a higher probability

of success compared to the design prior. This assurance curve then converges from above,

rather than below. In the case of continuous data, this curve would be monotonically

decreasing towards the maximum assurance.

This further supports the case for comparatively more sceptical analysis priors and

more optimistic design priors, and is discussed further in Section 5.4.3.

Ultimately, the design prior informs the value to which assurance will tend as n in-

creases, and the rate it approaches it. The analysis prior influences the rate of convergence,

and also informs which direction the curve is converging from.

From a practical standpoint, an assurance curve that decreases as n increases due to

an optimistic analysis prior is not appropriate for sample size calculations. Such a curve

states that gathering more data makes it more likely a trial will not come to a successful

conclusion. We interpret this as a sign that the analysis and design priors have not been

chosen to provide sensible results.

5.6 Overestimated Effect Size

One benefit often associated with assurance is that it is more robust when the initial

parameter inputs do not match the observed data. For example, Chen and Fraser (2018)
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perform a number of simulations, and demonstrate the sensitivity of statistical power to

a difference in effect size used in power calculations compared to that estimated from the

observations. They recommend assurance as an alternative.

In this section, we calculate sample sizes for given parameter specifications using both

assurance and power. We then consider hypothetical outcomes in potential trials of the

given sample sizes, both when the effect size and design priors accurately represent the

population parameters, and also when they do not.

5.6.1 Normal observations

To demonstrate the potential issue, we first consider a simple case where a Frequentist

two sided Z-test will be used. For an effect size of 0.5, a population standard deviation of

1, and a power of 0.9, the required sample size using a power calculation is 42.

However, while an effect size of 0.5 may have been used in the power calculation, it

may not necessarily correspond with the true effect size. Figure 5.23 shows the power

provided by a sample of 42, with differing effect sizes.

As this plot shows, if the true effect size is lower than the value used in the power

calculations, the power will also be lower.

One way this can be accounted for is by using a power of 0.9, when a power of 0.8

may still be acceptable. In this case, an effect size of 0.44 will still provide a power greater

than 0.8. This provides some flexibility as to the accuracy of the effect size. However, if

the true effect size was only half that which was estimated, the power would then only be

around 0.36.
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Figure 5.23: The actual power provided for different effect sizes, when the trial was powered on an
effect size of 0.5.

This behaviour is consistent for different effect sizes. Figure 5.24 shows simulations

using different effect sizes to determine the sample size, displayed in different colours.
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Figure 5.24: The actual power provided for different effect sizes, where the colour represents the
effect size used in the calculation to determine sample size, and the x axis the true effect size as a
percentage of the effect size used in the calculation.

Table 5.2: Assurance values by prior standard deviations

Prior Standard
Deviation

Assurance

0 0.90
0.1 0.85
0.2 0.78
0.3 0.72
0.4 0.68
0.5 0.65
1 0.58

For true effect sizes, treated as percentages of the effect size used to power the trial, the

relationship with power remains consistent. For example, when the true effect size is half

of the estimated effect size, the power is approximately 0.36, and when it is a quarter of

the estimated effect size, the power is approximately 0.13.

This issue may be predominant for lower specified effect sizes. A difference in effect

size of 0.1, for example, is proportionally much larger for a smaller effect size than a larger

one. For smaller values it may be more likely that effect sizes are rounded, leading to such

errors.

We consider a similar case, and calculate the assurance. This will depend on the prior

distribution placed on the effect size, θ. For consistency, we will use normal distributions

with means equal to one, with varying design prior standard deviations. Table 5.2 shows

the associated assurances for a sample size of 42.

As the table demonstrates, the equivalent assurance depends strongly on the chosen

prior. The higher the effect’s prior standard deviation is, the lower the calculated assurance

is. While the power associated with this trial was set at 0.9, the assurance could have a

wide range of values. Note that when the prior standard deviation is equal to zero, the
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Figure 5.25: Assurance and power for different effect sizes, when the trial was powered on an effect
size of 0.5. The assurance’s prior on the effect size is a N(Effect size, 0.2) distribution for the curve
on the left, and a N(Effect size, 0.5) distribution for the curve on the right.

assurance and power are the same. As this standard deviation increases, the assurance

decreases.

As the population mean is equal to one, it would be reasonable for the prior distribution

on the mean to have a prior standard deviation less than one. As an initial example, we

take a prior standard deviation equal to 0.2. Figure 5.25 shows the change in assurance

as the effect size changes, compared to the previous curve for power.

As the plot shows, the power curve is often steeper than the assurance curve, demon-

strating a larger change to power for a change in effect size. This should be expected, as

the prior distribution for assurance takes a range of values into account.

For a larger standard deviation in the prior, such as 0.5, the slope of the assurance curve

becomes flatter. While larger standard deviations in the prior decrease the assurance’s

sensitivity to the mean, they also decrease the maximum assurance possible.

Type M and Type S Errors

We consider a more extreme case of prior misspecification. We start with a Z-test with the

previous setup, with an effect size of 0.5 and population standard deviation of 1, leading

to a sample size of 42.

We calculate the power, type M, and type S errors based on different true effect sizes

(Timm et al., 2019). As covered in Chapter 2, the type M error represents the amount by

which an estimate will overestimate the true effect if a significant result is found, and a

type S error is the probability a significant result has the incorrect sign.

As Table 5.3 shows, if the true effect size is quite small in comparison to the effect

size used in power calculations, there can be large errors associated with any significant
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Table 5.3: The power, type M, and type S errors for Z-tests with different true effect sizes

True Effect Actual
Power

Type M
Error

Type S
Error

0.5 0.90 1.06 0.00
0.25 0.37 1.63 0.00
0.1 0.10 3.74 0.05
0.05 0.06 7.30 0.18
0 0.05 Inf 0.50

results. For example, for a true effect size of 0.05, one tenth of that used to determine the

sample size, would correspond to a power of only 0.06. If a significant result was found,

then the effect estimated would be larger than the true effect by a factor of 7.3 on average,

and would have the incorrect sign 18% of the time.

While the errors which could be made in such a case are large, even if the true effect

size was half that used in the sample size calculations, they can still occur. In such a case,

for a true effect of 0.25, the power has dropped from 0.9 to 0.37, and the type M error is

1.63. This means a significant effect will, on average, overestimate the true effect size by

approximately 63%.

Such an underpowered trial is more likely to provide a false negative than anticipated.

Where an MCID is used as the effect size for a power calculation, it could be argued that

this is not an issue. If the test has failed to detect an effect that is present, but lower than

the MCID, then the effect was too small to be relevant anyway. The false negative here

could be argued to be false in the sense that there is an effect, but true in the sense that

there was not a large enough effect size to be determined.

The type M error, however, may still be an issue. Should a significant result be

found, the effect size found would on average be around 60% larger than the true effect.

This overestimation can lead to misleading results being published, and may have further

implications for future studies. If a later trial was powered using the effect size found in

this case, the overestimation would lead to an underpowered trial.

It is also important to note that underestimating the effect size will affect the power

of a test as well. However, in these cases the power will be higher than expected, and thus

the test’s validity is not reduced. An underestimation of effect size, and the corresponding

increase in power, means a lower sample size could have been used. Such an error may

lead to increased costs for a trial, and it is unethical to recruit more patients to a trial

than is required.

5.6.2 Binomial observations

We can also consider the case of binomial observations.

An exact binomial test, with a null hypothesis of θ0 = 0.1, and an effect size used for

the power calculation of θa = 0.3, requires a sample size of 32 to achieve a power of 0.9.
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Figure 5.26: The actual power provided for different effect sizes, when the trial was powered on an
effect size of 0.3.

Figure 5.26 shows the actual power for a trial with a sample size of 32, if the true effect

size is less than the value used in this calculation.

If a power of 0.8 is deemed acceptable, then the corresponding effect size of 0.27 offers

a lower limit on possible effect sizes for which this sample size is adequate. If the true

effect size was below 0.27, then this trial would be underpowered.

If we consider this case, with a sample size of 32, we can also calculate the assurance.

Figure 5.27 provides plots of the actual assurance a trial would have if the effect size was

less than the one used to power it. We also present two different assurance curves with

different standard deviations for the design prior.

As these plots show, the assurance decreases less than the power for a decrease in effect
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Figure 5.27: Assurance and power for different effect sizes, when the trial was powered on an effect
size of 0.3. The assurance’s prior on the effect size has a standard deviation of 0.1 for the plot on
the left, and 0.2 for the plot on the right.
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size. This demonstrates again that assurance is more robust to misspecified inputs than

power.

This behaviour continues as the standard deviation increases. At higher standard de-

viations, the maximum assurance may decrease but the slope of the curve is still less steep

then the slope of the power. As the standard deviation approaches zero, the assurance

curve approaches the power curve.

5.7 Unknown Population Variance

In previous sections, we have considered normally distributed observations where the pop-

ulation variance is known. We chose the variance to be one for convenience, although the

general results found hold more widely.

If our random sample comes from a Normal population with a population variance

not equal to one, say v, we can transform the data by dividing by
√
v, which results in a

variance equal to one, as per

V ar(vX) = v2V ar(X) (5.25)

However, it will not typically be the case that the population variance is known,

regardless of its value. Firstly, we can consider the case where the population variance is

misspecified.

We consider a similar case to Section 5.6.1, where, for a power of 0.9, a sample size

of 42 is required to find an effect of 0.5. An assurance calculation, under similar inputs,

suggests a sample size of 46.

As Figure 5.28 demonstrates, if the population variance is different to the assumed

value of 1, the actual assurance or power will also be different. Underestimating the pop-

ulation variance leads to smaller assurance or power than expected, which is detrimental

to the validity of a trial. As such, it seems better to have overestimated the population

variance than underestimated it.

One option for dealing with uncertainty around the true population variance could be

to place a prior distribution on it. In this case, it would take the form of a design prior,

similar to the prior on the mean.

Defining σ to be the population variance, the assurance is then given by

Assurance =

∫ ∫
P (Success | µ, σ)P (µ)P (σ)dµdσ (5.26)

assuming that µ and σ are independent.

To explore the effect of a prior distribution placed on σ, we will hold µ constant. This

prior can be elicited from an expert, by asking them about probabilities across a range of
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Figure 5.28: True assurance (red) and power (blue) levels for varying population standard devia-
tions, given sample sizes calculated assuming a population standard deviation of one.

possible values and using these judgements to in turn fit parameter values (Alhussain and

Oakley, 2017).

As σ must be greater than zero, we consider a gamma prior. The gamma distribution

can be parametrised in terms of a shape, α, and rate, β, parameter, for which the mean

is defined as α
β and the variance α

β2 . Thus, α = E[X]2

V ar[X] and β = E[X]
V ar[X] . Using this, we can

choose parameters to have the same variance, and varying means, or vice versa.

Figure 5.29 demonstrates assurance curves for different priors on the population stan-

dard deviation, each with a standard deviation of 0.1. The higher the population standard

deviation’s mean, the lower the assurance for a given sample size. For a Z-test, a higher

population standard deviation will increase the denominator of the test statistic, corre-

sponding to a decrease in the test statistic itself. As such, it then becomes less likely that

a statistically significant result will be found.

We can also consider the case where the population standard deviation prior’s variance

is changed. As Figure 5.30 demonstrates, increasing the uncertainty of the prior on the

population standard deviation has an effect on the assurance for a set design prior. For

lower values of n, a higher level of uncertainty corresponds to higher assurance values, but

as n increases the assurance curves with lower levels of uncertainty provide higher values.

This behaviour is similar to that when the design prior mean’s standard deviation is

varied, and the reasoning is likely similar. At low n, a higher standard deviation allows

for more cases which will lead to a significant result to be included. For larger n, however,

the higher standard deviation then includes more cases which will lead to a non-significant

result.

It is important to note that the variance of a binomial distribution is not defined as a

separate parameter. Instead, it relies only on the probability of success and sample size
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Figure 5.29: Assurance curves varying the mean for priors on the population standard deviation
priors, with a design prior of N(0.5, 0.2) on the mean.
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Figure 5.30: Assurance curves varying the standard deviation of population standard deviation
priors, with a design prior of N(0.5, 0.2) on the mean of the data.

nθ(1− θ).
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5.7.1 Bayesian Analysis Priors

Uncertainty about the population standard deviation can also be addressed in analysis

priors for Bayesian analyses. In this case, there is a choice of prior on the mean and

variance which leads to conjugacy. This can be achieved using a normal-inverse gamma

distribution.

However, for ease of computation, this can be calculated using the precision, τ , instead

of the standard deviation. The precision is defined as τ = 1
σ2 . In such a case, a normal-

gamma distribution will be conjugate.

The normal-gamma distribution is a multivariate distribution with four input param-

eters. For a normally distributed random variable, X, with a mean of µ and precision of

τ , then

X ∼ N(µ, τ) (5.27)

τ ∼ Gamma(α, β) (5.28)

(µ, τ) ∼ NormalGamma(µp, λ, α, β) (5.29)

As demonstrated in Murphy (2007), the posterior then takes the form

P (µ, τ | X) ∼ NormalGamma

(
µpλ+ nx̄

λ+ n
, λ+ n, α+

n

2
, β +

1

2

n∑
i=1

(xi − x̄)2 +
nλ(x̄− µp)2

2(λ+ n)

)
(5.30)

As this form can be evaluated analytically, the calculations for assurance can be made

quickly. Figure 5.31 provides an example assurance curve. The blue curve presents a case

where there is no uncertainty on the population variance, and it is known to be equal to

one. The red curve is when a prior is placed on the population variance. This prior has a

mean of one.

As the plots demonstrate, including a prior distribution on the population variance

decreases the assurance slightly. The plot on the right has a higher variance in the prior

distribution on the population variance. Accordingly, the more uncertainty there is about

the population variance, the smaller the assurance is for a given n.
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Figure 5.31: Assurance curves for known population variances (blue) and unknown population
variances (red). The plot on the right has a higher level of uncertainty in the prior for the population
variance.

5.8 Implications for Practice

While power and assurance can both be used in a similar way, there are a number of

differences between them that have implications for their use in sample size calculations.

It is important from an ethical perspective that sample sizes for clinical trials are chosen

carefully. Too low a sample size can lead to insufficient data to observe a true effect,

while too high a sample size can waste limited resources and expose additional patients to

unnecessary risk. In order to best select a sample size, it is important to understand and

correctly utilise the chosen method of sample size selection.

We have demonstrated how assurance can be more robust than power when the under-

lying true parameters in a trial vary from the values used in the sample size calculations.

This is due to the incorporation of uncertainty through prior distributions, which better

captures the uncertainty surrounding the future study. An overestimation of effect size,

for example, can lead to a lower level of statistical power for a trial than that is intended.

This means that the probability of making a Type 2 error, or failing to reject the null

hypothesis when it should be rejected, is higher than anticipated. Assurance better ac-

counts for this discrepancy between the anticipated effect size and observed effect, in turn

reducing the probability of making an incorrect inference.

These simulations also outline additional potential difficulties in using assurance over

power. The additional parameters required to specify prior distributions may be more

difficult to obtain than a single point for the effect size in a power calculation. An as-

surance calculation with prior distributions centred on a certain effect size can result in

different outcomes depending on the variance of the prior distributions, in comparison to

a power calculation for which the same effect size will lead to a single output. As such,

differences in both the prior distributions mean and variance can in turn lead to differences
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in assurance, and the subsequent sample size calculations. The specification of a suitable

prior distribution is an important step.

Another issue demonstrated was the maximum possible assurance when conducting this

type of Bayesian analysis. As there is not a consistent range of values for the assurance

given varying design prior distributions, it is difficult to define a standardised rule to

choose a sample size. As the simulations demonstrated, the maximum assurance value

is set by the design prior distribution, while the assurance curve is determined by both

analysis and design prior. As the design prior distribution will vary from study to study,

so too will the maximum assurance.

One possible method for creating a target assurance across trials could be to utilise

standardised assurance, which we previously defined as the assurance for a particular

sample size divided by the maximum assurance for the chosen design prior distributions.

However, this value no longer makes a direct statement about the overall probability the

trial will successfully conclude with a significant result. As such, high standardised assur-

ance values could still correspond with low assurance values given particularly pessimistic

design prior distributions. In many cases, it may be more appropriate to select a target

assurance based on the specific requirements of the trial, rather than a general rule.

While this is the case for a Bayesian analysis focusing on the posterior probability of

exceeding a certain critical value, this issue may not be present for other types of analysis.

For example, if the aim for the analysis is to achieve a credible interval width below a

target width, then the assurance will have the same maximum value regardless of prior

inputs. However, such methods may have further difficulties associated with them, as

specifying a posterior credible interval target width alone does not assure the posterior of

placing probability in any particular ranges of values.

These issues outline some of the difficulties with implementing assurance in practice.

As the majority of sample size calculations currently conducted are based on power, with

simple targets of 0.8 or 0.9, the more complex method of assurance, which requires fur-

ther consideration of target values and specification of prior distributions, will likely be

more difficult to implement in practice. To better allow non-specialist audiences to use

assurance in their own sample size calculations, further development of assurance-based

algorithms for commonly used statistical packages, including assistance for specification

of prior distributions, would be beneficial.

However, another consideration is the requirements provided by organisations such

as funding bodies and scientific journals. In many cases, trial designs are required to

be accompanied by sample size calculations using statistical power. If these types of

organisations do not have the necessary experience in assessing and judging Bayesian

methods such as assurance calculations, it can be difficult for them to determine whether

a Bayesian alternative is appropriate. Further development of guidelines which support
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and advise on the use of Bayesian sample size methods may also help facilitate a more

widespread use of assurance in sample size calculations. Some examples, however, do

demonstrate use of Bayesian assurance in industry usage (Crisp et al., 2018).

Further simulations have been provided in Appendix A.2.

5.9 Conclusions

In this chapter we have explored power and assurance, and how they behave in various

circumstances. The behaviour of assurance we explored under different scenarios, and

it was demonstrated that priors with the same maximum assurance could have differing

assurance curves. We have demonstrated how the design prior incorporates additional

uncertainty into an assurance calculation which is not taken into account in power calcu-

lations. We have also shown how this increased uncertainty can make the results more

robust if the assumed effect size does not correspond to the true underlying value.
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Chapter 6

Developing Assurance for a Motor

Neurone Disease Diagnostic Study

6.1 Introduction

In order to select a sample size when designing a clinical study, a consideration is made

of the likelihood of success of the study given a particular sample size. In this chapter,

we calculate power and assurance for use in sample size determination to compare their

consequences for our case study into a diagnostic test for MND.

We first consider power calculations, providing details on the hypothesis test detailed

in the study statistical analysis plan. We provide the sample sizes required to achieve a

power of 0.8 and 0.9.

We then consider the calculation of assurance, for both the hypothesis test and the

Bayesian analysis which we have developed to be used within the study. When a Bayesian

prior distribution is required, we utilise the aggregated prior distributions from Chapter 4.

We also consider a further sceptical prior distribution, which someone who is sceptical

about the outcome of the study may hold. We note some additional considerations to be

made when using assurance to determine sample sizes, including the use of distinct design

and analysis priors, selecting a target assurance, and the maximum possible assurance.

We present assurance sample size requirements for both frequentist and Bayesian anal-

yses. These results include a reasonable selection of inputs, and a secondary set of sample

size calculations considering a wider range of possible inputs.

As the study designers believed the maximum number of patients who could be feasibly

recruited was 120, we also calculate power and assurance for this sample size. This presents

an idea of the achievable assurance or power for the study.

Finally, we discuss further considerations and results from the power and assurance

calculations.

171



Chapter 6. Developing Assurance for a Motor Neurone Disease Diagnostic Study

6.2 Assurance and Power Calculation Inputs

There are various sets of inputs that could be used for assurance and power calculations

to determine sample sizes for the study following the elicitations, which are presented in

Chapter 4. In this section, we briefly review those which will be used throughout this

chapter.

Prior distributions elicited from experts were aggregated using a number of methods

in Chapter 4. We now focus on these aggregated distributions, to consider how they

affect assurance calculations. These prior distributions come from three groups of experts.

Group 1 contains experts who were not involved in the design of the novel diagnostic test,

and have expertise in MND. Group 2 contains the three experts involved with the design

of the novel diagnostic test and the case study. Group 3 contains all experts from Groups

1 and 2. In power calculations where a single point-estimate is required, the median of

the relevant prior distribution will be used as a best estimate.

During the elicitations, the experts were each asked to provide a Minimal Clinically

Important Difference (MCID) for the proportion of patients with MND the new experi-

mental test could identify six months earlier than the current reference test. The experts

who provided a response to this question, provided values of 0.001, 0.05, 0.1, 0.15, 0.2,

and 0.5.

The researchers designing the BIMC study also suggested that a sample size of 120

was deemed the maximum feasible number of patients who could be recruited to such a

study. While this figure may not be a hard bound, we will use it in the following sections

as a guide to which sample sizes may be appropriate.

6.3 Power Calculations

In this section, we calculate sample sizes for the BIMC study using statistical power. We

consider three different ways of incorporating the MCID and elicited values into power

calculations. For each case, we find the minimum sample size required to achieve a set

power based on an analysis using McNemar’s test.

The data can be structured as proportions in the form of Table 6.1, where the values

of p are the proportion of patients who received each combination of positive or negative

test results from both the BIMC test and the Awaji criteria. The sample size required for

Table 6.1: McNemar’s Test

BIMC Positive BIMC Negative

Awaji Positive p1,1 p1,0
Awaji Negative p0,1 p0,0

172



Chapter 6. Developing Assurance for a Motor Neurone Disease Diagnostic Study

McNemar’s test with a significance level of α and power of 1− β can be calculated using

n =
(z1−α/2

√
ξ + z1−β

√
ξ −∆2)2

∆2
(6.1)

where z1−α/2 and z1−β are Z scores determined by the significance level and power respec-

tively, ξ = p1,0 + p0,1 and ∆ = p1,0 − p0,1 (Connor, 1987). As such, only the values of p1,0

and p0,1 are required from Table 6.1 in order to calculate sample sizes.

We consider three ways in which the values of p1,0 and p0,1 could be specified, each

incorporating estimates of the effect size or MCID in different ways.

As discussed in Section A.2.2, it is possible for the MCID to be incorporated into the

analysis or design stages, or both. In practice, the MCID is incorporated into power in

the design step, as the size of the effect of interest. As such, for the following power

calculations, we consider using MCID in this way.

6.3.1 Power Method One

We first consider the case where p0,1 is set to be equal to the MCID, and p1,0 is set

to be equal to zero. In early, pre-elicitation meetings with the study designers, it was

suggested that the reference test may provide no positive results when the experimental

test was negative. As such, the assumption that the reference test is only positive when

the experimental test is positive appears reasonable to consider.

p1,0 =0 (6.2)

p0,1 =MCID (6.3)

Table 6.2 presents sample sizes for this case.

As expected, the lower the MCID, or higher the power, the higher the required sample

size would be. Given that the maximum feasible number of patients who could be recruited

was 120, this suggests that an MCID of 0.1 would be a sufficiently large value to power

the study.

For a power of 0.9, a sample size of 120 will be able to detect a difference of 0.09 in this

case. This difference would be small enough that two-thirds of the experts would consider

it clinically important.

Table 6.2: Power Calculation Sample Sizes

MCID
Power 0.001 0.05 0.1 0.15 0.2 0.5

0.8 7847 155 76 50 37 13
0.9 10503 206 101 66 48 16
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6.3.2 Power Method Two

We consider estimates for p1,0 and p0,1 based on the elicited values from the experts. For

each aggregated distribution, the median values have been used as point estimates, to

calculate the proportions as

p1,0 =η(1− θ1) (6.4)

p0,1 =(1− η)µθ2 + (1− η)(1− µ)θ3 (6.5)

As such, p1,0 represents a best estimate of the proportion of positive RT and negative

ET results at the first time point, and p0,1 a best estimate of the proportion of negative

RT and positive ET results at the first time point.

Table 6.3 presents the sample sizes based on these inputs.

Given the estimates from the elicitations, it does not appear likely that the study can

achieve a power of 0.8 with a sample size equal to the maximum feasible number of patients

who could be recruited, with the exception of those elicited via SHELF from the Group

2 experts. It is notable that the estimates based on SHELF suggest the smallest sample

sizes, followed by the Equal Weight’s Aggregation. The Classical Method and Bayesian

aggregations provide the highest sample sizes.

Furthermore, in comparison to Table 6.2, the sample sizes for both values of power

tend to be higher. The sample sizes based on elicited values appear comparable to an

MCID of below 0.05 using Method 1.

Table 6.4 provides the absolute values of ∆ calculated from the aggregations. As it

demonstrates, many of the implied differences between p1,0 and p0,1 are small, with only

Equal Weights and SHELF aggregations providing values of ∆ above 0.1.

As Method 1 suggested a difference of 0.09 as the minimum that could be detected

with a sample size of 120, it is unsurprising that the sample sizes calculated here are much

larger than 120. While the MCIDs provided by the experts tended to be higher, in this

Table 6.3: Power Calculation Sample Sizes with Aggregated Best Estimates

Aggregation Group n (Power = 0.8) n (Power = 0.9)

EW 1 200 266
2 159 212
3 1534 2052

CM 1 340 454
2 5567 7452
3 215745 288820

BA 1 1103 419
2 1949 1034
3 8748 4299

SHELF 2 25 33
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Table 6.4: Power Calculation Sample Sizes with Aggregated Best Estimates, | ∆ | values

Aggregation Group | ∆ |
EW 1 0.11

2 0.14
3 0.04

CM 1 0.08
2 0.03
3 0.01

BA 1 0.05
2 0.04
3 0.02

SHELF 2 0.34

case we can see that there is a discrepancy between the individual MCIDs and values of

∆ based on the aggregations.

6.3.3 Power Method Three

We also consider a combination of Methods 1 and 2. Given that the RT is a standard

method of diagnosis, we suppose that the experts’ knowledge of this is more likely to be

accurate than their knowledge of the ET. As such, we use the median values from the

aggregated prior distribution to inform us of the value of p1,0. We then calculate the

sample size required to observe an improvement of the MCID in addition to the value of

p1,0 to obtain p0,1.

p1,0 =η(1− θ1) (6.6)

p0,1 =η(1− θ1) +MCID (6.7)

Table 6.3 presents the sample sizes calculated based on these inputs, for a power of

0.9.

These results provide a more informed calculation than Method One, while still utilising

Table 6.5: Power Calculation Sample Sizes

Aggregation Group 0.001 0.05 0.1 0.15 0.2 0.5

EW 1 4409707 1966 541 261 158 34
2 2749249 1301 375 188 117 28
3 3217878 1489 422 208 129 29

CM 1 3715551 1688 471 231 141 31
2 4664427 2068 566 273 165 35
3 4305579 1924 530 257 156 34

BA 1 4294721 1920 529 256 155 34
2 3455153 1584 445 219 134 30
3 3863175 1747 486 237 145 32

SHELF 2 783837 515 178 100 68 20
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the MCID. It can be seen that for most aggregation results, an MCID of 0.2 provides a

sample size closest to the maximum feasible recruitment sample size, though the SHELF

estimate suggests a difference between 0.1 and 0.15 could be detected with the appropriate

power.

Unlike Method Two, there is less consistency between aggregation methods as to which

provides a larger or smaller sample size. For example the Bayesian aggregation method

has led to smaller sample sizes for Group 1, but larger sample sizes for Groups 2 and 3, in

comparison to Equal Weight. The difference between the two methods comes from their

differences in estimates for p0,1. Those that previously were lower, but are now greater,

likely had a more optimistic view on the benefits of the ET.

Overall, Method One suggests that a difference of 0.09 may be an appropriate target

for a study with a sample size of around 120, while Method Three suggests a difference of

0.2, or higher, may be all that could be detected. However, Method Two suggests that,

solely based on the experts’ best estimates, a higher sample size would be required to

detect the difference they expect. Given the aggregated distributions, the expected values

of ∆ were predominately less than 0.09, which suggests the experts may not expect the

study to have a good chance of successfully observing the required difference.

This demonstrates how the sample size resulting from a power calculation can vary

widely, depending on the inputs and method for determining the MCID. As different

experts provided different MCIDs, as well as different implied estimates for ∆, there is

large variability between the required sample sizes.

6.4 Assurance Calculations

In this section we outline how assurance is used to calculate sample sizes, and the methods

and priors which will be used for comparison.

To calculate assurance, a measure of success must be defined for the study. As opposed

to statistical power, assurance can be used regardless of whether a frequentist or Bayesian

analysis will be conducted. We will consider both of these cases.

Firstly, we consider a study with a frequentist analysis, namely McNemar’s test, at

the end. The assurance calculation uses a statistically significant result from McNemar’s

test as the definition of a successful study.

Secondly, we consider the case where a Bayesian analysis will be performed. We

present two possible methods of constructing a Bayesian model, and provide each of their

definitions of a successful study below.

We present the methodology for the assurance calculations in this section, followed by

the resulting sample size calculations and comparisons.
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6.4.1 Assurance for Frequentist Analyses

We calculate the assurance by simulation using the following steps, where R is a large

number of total replications, and PD(θ) represents the design prior distribution on the

parameter, or parameters, of interest. For a sample size n,

1. Draw R samples θ(1), . . . , θ(R) from PD(θ).

2. Calculate the power β(j) for θ(j), j = 1, . . . , R.

3. The assurance is then the average power 1
R

∑R
j=1 β

(j).

We focus on Methods 2 and 3 from the power calculations, as they include estimates

of the effect size. These estimates will be replaced by draws from the design prior in the

assurance calculations. As Method 1 incorporated only an MCID, it does not have an

assurance equivalent.

6.4.2 Assurance for Bayesian Analyses: Method One

The first Bayesian method considers a model where we focus on the proportion of patients

who receive positive experimental test results, and who would not receive a positive ref-

erence test for an additional six months. This proportion represents those patients who

could then be diagnosed six months earlier. Of a total n patients in a study, n× (1−η)µθ2

of them will belong to the group with early-diagnoses. We then define a successful study

as one where the posterior probability, following the study, that this proportion is greater

than a certain value is larger than 0.95. In this case, we will use the MCID as the value

chosen. Letting λ = (1− η)µθ2, this can be mathematically stated as

P (Successful Trial) = PD [PA(λ > MCID) > 0.95] (6.8)

where PD denotes the design prior distribution and PA denotes the analysis posterior

distribution.

The value of 0.95 has been selected to correspond with a significance of α = 0.05.

The aggregated prior distributions in Chapter 4 do not take the form of Beta distri-

butions, and thus, are not conjugate to the binomial distribution. As such, the assurance

will be calculated by simulation, rather than analytically.

For a given value of n, and an MCID, we can calculate the assurance as follows.

1. Sample R sets of parameters θ(1), . . . , θ(R) from PD(θ).

2. Simulate R sets of study results of size n, using the parameters θ(1), . . . , θ(R).
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3. Calculate posterior distributions using the likelihood from 2. and the analysis priors

PA(θ). If the analysis prior is conjugate to the likelihood this can be achieved

analytically. In our case, we will use MCMC.

4. The assurance is then the proportion of posterior distributions from 3. where a

successful result is found, i.e., the proportion where PrA(λ > MCID) > 0 : 95.

The sample size which achieves a desired assurance is then found by searching for the

lowest value of n which provides the required assurance.

This method incorporates the MCID into the analysis step. As mentioned in Sec-

tion A.2.2, this means that as the MCID increases the assurance will tend to decrease.

This pattern is the opposite of that in the power calculations due to the different method

of incorporating the MCID.

We refer to this method in the following sections as Bayesian Method One.

6.4.3 Assurance for Bayesian Analyses: Method Two

We also consider an alternative framing of the model. The number of positive RT results

at the first time point is given by nη, while the number of positive ET results at the first

time point is given by n(ηθ1 + (1− η)µθ2 + (1− η)(1− µ)θ3). We then compare the ratio

of these two values, such that a ratio greater than one represents a higher diagnosis rate

from the ET, a ratio lower than one represents a higher diagnosis rate from the RT, and

a ratio of one represents an equal number of patients diagnosed under both methods.

Katz et al. (1978) demonstrates that the log-ratio between two binomial distributions,

X1 ∼ Binomial(n1, p1) and X2 ∼ Binomial(n2, p2), can be approximated by a normal

distribution of the form

log

(
X1

X2

)
∼̇Normal

(
p1
p2
,
1− p1
n1

+
1− p2
n2

)
(6.9)

By setting X1 to be the number of positive RT results at the first time point, X2 to

be the number of positive ET results at the first time point, p1 = η, and p2 = ηθ1 + (1−
η)µθ2 + (1− η)(1− µ)θ3, we can then use this ratio to make inferences about whether the

two proportions differ.

The ratio X1
X2

is constrained to be greater than zero, and thus, the log ratio is then

unbounded. As such, a significant result is found when P (log

(
X1

X2

)
< 0) < 0.05. The

values of n1 and n2 will be equal in this case, as both are the total sample size.

To calculate the assurance under this case for a given sample size n, we simulate using

the following algorithm.

1. Generate R samples from the design prior distributions for η, µ, θ1, θ2, and θ3.
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2. Calculate R sets of values for p1 and p2 using the draws.

3. Simulate R datasets of size n from the Normal distribution in Equation 6.9 using the

samples of p1 and p2 in 2. to determine the parameters for the normal approximation.

4. Calculate posterior distributions using the analysis prior distributions and the simu-

lated datasets. If the analysis prior is conjugate to the likelihood this can be achieved

analytically. In our case, an MCMC method is required.

5. Calculate the assurance by determining the proportion of datasets that would result

in a positive study result, i.e., the proportion for which Pr(log
(
X1
X2

)
< 0) < 0.05.

We refer to this method in the following sections as Bayesian Method Two.

6.4.4 Design and Analysis Priors

When conducting a Bayesian analysis, the assurance calculation can take into account

separate design and analysis priors.

For this case study, we consider different combinations of the two. Firstly, we consider

the case where the design and analysis priors are the same. This scenario is one in

which all relevant prior information is included into the design and analysis. This may

be particularly useful in cases where there is limited opportunity to gather data, such as

studies involving rare diseases.

Next, we consider the case where the Group 2 experts form the design prior, and the

Group 1 experts form the analysis prior. This represents one scenario where the experts

designing the study may not be felt to be suitable to provide the prior for the analysis, for

example, or where the appearance of personal bias in the prior distributions needs to be

avoided. A group of experts without any conflict of interest or personal stake in the study

may provide a seemingly more impartial prior, allowing an informative prior distribution

to be used in the analysis stage without the appearance of undue influence.

We also calculate assurance with an expert elicited design prior, and sceptical analysis

prior. This scenario represents a case where the final analysis cannot incorporate an

informative prior. If the information contained in the observations is strong enough to

overcome the sceptical prior, thus being strong enough to convince a sceptic that an effect

is present, then strong evidence will have been found in favour of the effect. Such a setup

may be suitable in cases where Bayesian methods are less common, and the inclusion of

an informative prior distribution may not be accepted.

The use of a sceptical analysis prior may better suit those more familiar with frequen-

tist methods. In a hypothesis test, an assumption of no effect is made under the null

hypothesis, and a significant result is found if the resulting test statistic is very unlikely

to occur under this hypothesis. Likewise, a sceptical prior assumes that the effect is not
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present with high probability and only if there is strong evidence in the observations to

support an effect will the posterior converge on their being an effect.

For the assurance calculations presented in this chapter, the sceptical priors are chosen

such that there is a 90% probability that the parameter is below the relevant value. Specif-

ically, for Bayesian Method One, this is a Beta(1, β) distribution, where β is minimised

under the condition that the probability of the parameter being less than the MCID is at

least 90%. For Bayesian Method two, the sceptical prior takes the form of a Gamma(α, 1)

distribution, where α is maximised under the condition that the probability of the param-

eter being less than the MCID is at least 90%.

6.4.5 Maximum Assurance

As discussed in Chapter 3, the maximum possible assurance value can be calculated.

Table 6.6 provides the maximum assurances for each design prior and MCID used

with Bayesian Method One. In this case, the maximum value is the probability, under the

design prior, of observing an effect larger than the MCID.

As the values demonstrate, the maximum possible assurance is dependent on both the

design prior and MCID. However, it appears that the MCID has a greater impact than

the design prior. This is because the MCID defines the critical value for the design prior.

For an MCID of 0.1, for example, the maximum assurance ranges from 0.1 to 0.89.

This demonstrates the large range across design priors, and the effect selecting such a prior

can have. If a sample size was required to reach a certain level of assurance, say 80%,

this may be outright impossible for the majority of design priors provided. To achieve an

assurance of 0.9, which could be selected to match a power of 0.9 as used in frequentist

calculations, the MCID could only be 0.001, or 0.05 for some design priors.

Table 6.7 provides the maximum assurances for each design prior used with Bayesian

Method Two.

This method provides a range of maximum assurances ranging from 0.36 to 1.00. The

Table 6.6: Maximum Assurances for Bayesian Method One

MCID 0.001 0.05 0.1 0.15 0.2 0.5
Aggregation Group

EW 1 0.99 0.33 0.11 0.03 0.01 0.00
2 1.00 0.90 0.70 0.42 0.21 0.00
3 0.99 0.55 0.35 0.22 0.14 0.01

CM 1 0.99 0.45 0.24 0.12 0.06 0.00
2 1.00 0.93 0.77 0.51 0.27 0.00
3 0.99 0.65 0.48 0.32 0.21 0.01

BA 1 0.90 0.27 0.14 0.08 0.05 0.00
2 1.00 0.78 0.56 0.38 0.26 0.01
3 0.96 0.43 0.26 0.17 0.11 0.01

SHELF 2 1.00 1.00 0.89 0.63 0.10 0.00
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Table 6.7: Maximum Assurances for Bayesian Method Two

Aggregation Group Maximum
Assurance

EW 1 0.36
2 0.71
3 0.54

CM 1 0.39
2 0.52
3 0.47

BA 1 0.39
2 0.58
3 0.47

SHELF 2 1.00

range of maximum values represent the prior probability that each aggregation method

is assigning to a successful outcome. Of note, the maximum assurance of 1.00 associated

with the SHELF aggregation is because it is extremely optimistic about a positive outcome

being achieved, and has assigned practically all of the probability to the associated values.

6.5 Assurance Sample Size Results

In this section, we present the resulting sample sizes using assurance.

Firstly, we present an example case, using the ‘most plausible’ set of input values.

We then present an extended set of sample size calculation results, incorporating a wider

range of possible inputs.

6.5.1 Example Case

We first consider the case where the Group 2 experts, those involved in the design of the

novel diagnostic test and study, are used to construct the design prior. This group is

representative of the types of experts who would likely be involved in an expert elicitation

for a study, and specifically, those whose views are best represented through a design prior.

For assurance calculations in which a Bayesian analysis is used, we then present sample

size calculations with the Group 1 experts’ prior distribution, or a sceptical prior distri-

bution. These priors represent two possible cases. The first, Group 1’s prior, represents

a case where an informative prior is used. While the experts involved in designing the

study may provide a prior for use in the design, such a prior may appear to have bias in

favour of the new test. As such, it could be perceived that an elicited analysis prior may

unduly bias the statistical analysis in favour of the experts’ personal interests. As such,

an informative prior elicited from a secondary group may avoid this appearance.

The second analysis prior which will be used is a sceptical prior. This prior represents

a sceptical viewpoint, that the new test or treatment will provide no additional benefit
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over the current one. Thus, if the evidence presented by the collected dataset is strong

enough to overcome this sceptical prior, then the data has provided a strong level of proof

in favour of the new test or treatment. For Bayesian Method One, the sceptical prior used

is a Beta(1, β) distribution, where β is minimised under the condition that the probability

that the parameter is less than the MCID is at least 90%. For Bayesian Method two, the

sceptical prior takes the form of a Gamma(α, 1) distribution, where α is maximised under

the condition that the probability that the parameter is less than the one is at least 90%.

For the following calculations, the target assurance has been set to 50%. This means

the sample sizes reflect a better than even chance of a successful study. Group 2’s design

priors lead to maximum assurances greater than 50%, allowing this target to be achieved

under all aggregation methods.

Frequentist Analyses

We consider assurance calculations using two frequentist analyses. Table 6.8 presents these

sample sizes calculated using assurance.

The sample sizes for Frequentist Method Two demonstrate the differences between the

aggregation methods. Considering the maximum feasible sample size of 120, the Bayesian

aggregation and SHELF priors both present sample sizes lower than this to achieve a

50% assurance. Both Equal Weights and the Classical Method priors, on the other hand,

suggest a higher sample size is required.

Under the Frequentist Method Three of analysis, the sample sizes vary mainly under

the change in MCID. The table suggests an MCID of 0.15 could be detected with sample

sizes of less than 120, although differences closer to 0.1 may be detected based on some

of the aggregations. The Group 2 experts indicate an MCID of 0.15 would be a desirable

target for the study, which suggests that there is a better than even chance that the study

will successfully find a clinically significant difference.

In comparison to Table 6.3 and Table 6.5, the sample sizes provided by the assurance

calculations tend to be lower than those provided by power. While it is important to

note that the selection of the target assurance has influenced this, and that selecting a

different target would result in different sample sizes, this does provide an example of

when assurance can provide a lower sample size.

Table 6.8: Sample Sizes using Assurance with a Frequentist Analysis

Method Two Method Three, MCID =
Aggregation Method Sample Size 0.001 0.05 0.1 0.15 0.2 0.5
EW 197 >5000 499 144 73 46 12
CM 229 >5000 546 156 78 49 13
BA 68 >5000 430 127 65 42 12
SHELF 48 >5000 575 163 81 51 13
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Bayesian Analyses

We also compare our two Bayesian models within our assurance calculations.

For this section, analysis priors are used in addition to the design prior. In both cases,

the design prior is taken from Group 2, and the analysis prior is either taken from Group

1 or a sceptical prior is used. The aggregation method used is common across both priors.

It should also be noted that the SHELF aggregation was only conducted with Group 2,

and as such is only used alongside a sceptical analysis prior as there is no equivalent Group

1 prior.

The resulting sample sizes for Bayesian Method One are provided in Table 6.9.

For a sample size to be equal to or less than the 120 maximum patients, an MCID of

0.05 or less would be required. Under this model, the sample sizes required for a posterior

distribution to have a 95% probability of being above an MCID of 0.15 or higher are not

feasible.

The difference between the analysis priors is demonstrated. The Group 1 analysis

priors in this model are much more optimistic than the sceptical prior, and thus places

more probability in the region required to conclude a successful study. As such, they

require lower sample sizes to achieve a 50% assurance. If an informative prior of this type

was used, less evidence would be required from the study itself in order to result in success.

The sceptical prior requires higher sample sizes in order to find a positive result. This

would be expected, as additional evidence would be required to overcome the scepticism

present in the analysis prior. Accordingly, a positive result under a sceptical prior may

be viewed as more convincing than one under a more optimistic prior, such as that from

Group 1.

The Classical Method and SHELF aggregations both resulted in assurance calculations

that required lower sample sizes. This suggests that these methods were more optimistic

about the novel diagnostic test’s performance than the other methods.

Table 6.9: Sample Sizes using Assurance and Bayesian Method One

MCID =
Aggregation
Method

Analysis
Prior

0.001 0.05 0.1 0.15 0.2 0.5

EW Group 1 1 13 265 >5000 >5000 >5000
EW Sceptical 50 86 298 >5000 >5000 >5000
CM Group 1 1 2 63 >5000 >5000 >5000
CM Sceptical 44 64 175 >5000 >5000 >5000
BA Group 1 1 2 1033 >5000 >5000 >5000
BA Sceptical 58 110 1375 >5000 >5000 >5000
SHELF Sceptical 43 73 156 2854 >5000 >5000

Table 6.10 presents the sample sizes resulting from assurance calculations using Bayesian

Method Two. In the majority of cases, the sample sizes required to achieve the 50% level

of assurance are below 120. Only the Classical Method aggregation has led to a higher

sample size requirement, and even so, it is still quite close to the 120 value.

The difference between the two analysis priors should also be noted. In this case, the
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Table 6.10: Sample Sizes using Assurance and Bayesian Method Two

Aggregation
Method

Analysis
Prior

Sample Size

EW Group 1 14
CM Group 1 130
BA Group 1 39

EW Sceptical 14
CM Sceptical 130
BA Sceptical 38
SHELF Sceptical 5

sample sizes resulting from both priors are very similar. This is due to the Group 1 prior

distributions being implicitly sceptical about the difference between the two tests, when

calculated using Bayesian Method Two.

6.5.2 Further Sample Size Calculations

While the previous section presents what we believe to be the most appropriate assurance

calculations, we also consider further combinations of inputs into assurance calculations.

We also consider a full range of design and analysis priors, with each expert group con-

sidered as both a design and an analysis prior.

6.5.3 Target Assurance

While sample size calculations using power typically aim to achieve a power of 0.8 or 0.9,

there is no common target for assurance. As the results in the section have a wider range

of inputs than the previous case, we consider two methods of setting a target assurance

for the following calculations.

To begin, we consider a target assurance of 90% of the maximum assurance possible

under the design prior. This method is similar to power, as it can be used without the

need for additional information and can be implemented across different scenarios or prior

distributions. It will also be consistent with power in cases where the maximum assurance

is equal to one.

An alternative is to select a context specific target assurance, for example to set the

target assurance based on the usual success rates for similar studies. If the study being

designed has an equal or better chance to succeed than other similar studies, then the

sample size may be appropriate. This option, however, does require additional effort, as

success rates of similar studies need to be found.

Thomas et al. (2016) find Phase I clinical studies have a 9.6% chance of being approved.

For Neurology in particular, this changes to an 8.4% chance to be approved. Success rates

for studies involving neurology diagnostic tests do not appear to be as widely available,

and so for the purposes of this study, we will use a target of 10%. This target assurance
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means the sample size selected will provide a better than average chance of the study

being a success.

We also acknowledge that the target assurance can be selected to achieve a required

probability of success. In such a case, a design prior which does not allow for this required

target to be achieved would suggest the study should not proceed. A target assurance may

be selected in this way to maximise a utility function. As demonstrated in Kunzmann

et al. (2021), given an expected return for a successful study, and the associated costs

for completing it with the relevant sample sizes, then the sample size can be chosen to

maximise the expected utility.

Frequentist Analyses

We first consider assurance based on performing McNemar’s test in the analysis. The

calculated values are provided in Table 6.11.

For Method Two, sample sizes vary according to both the design prior and the target

assurance. Group 2’s prior distributions tend to lead to the largest sample sizes for each

method, suggesting a less positive view on the new diagnostic test than that of Group 1.

There were also large differences based on the target assurance. In this case, the target

assurance of 10% provides very low sample sizes, suggesting it is not necessarily a suitable

target. The target of 90% of the maximum possible assurance provides more realistic

sample sizes.

For Method Three, we note there is a large variation in sample sizes due to the MCID.

In all cases, the sample size required to detect a difference of 0.001 is greater than 10,000.

The exact values have not been calculated. Higher MCIDs in turn provide lower required

samples sizes.

Table 6.11: Maximum Assurances for McNemar’s test analysis

Method
Two

Method Three, MCID =

Aggregation
Method

Design Prior
Group

Target As-
surance

Sample
Size

0.001 0.05 0.1 0.15 0.2 0.5

EW 1 90% max 125 >10000 413 153 89 62 19
1 10% 7 >10000 18 8 5 4 3
2 90% max 533 >10000 1359 390 194 121 29
2 10% 23 >10000 57 18 10 7 3
3 90% max 145 >10000 716 229 123 81 22
3 10% 8 >10000 31 11 7 5 3

CM 1 90% max 138 >10000 540 185 103 70 20
1 10% 7 >10000 24 9 6 5 3
2 90% max 622 >10000 1489 422 209 129 30
2 10% 27 >10000 62 19 10 7 3
3 90% max 137 >10000 990 297 153 98 25
3 10% 7 >10000 42 14 8 6 3

BA 1 90% max 105 >10000 335 133 81 57 18
1 10% 6 >10000 15 7 5 4 3
2 90% max 167 >10000 1155 338 172 108 27
2 10% 8 >10000 48 15 9 6 3
3 90% max 133 >10000 651 213 116 77 21
3 10% 7 >10000 28 10 6 5 3

SHELF 2 90% max 127 >10000 1567 442 218 134 31
2 10% 7 >10000 65 20 11 7 3
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Bayesian Analyses

We also consider sample sizes required for a Bayesian analysis, as provided in Table 6.12.

Sample sizes above 1,000 are not calculated exactly.

This table demonstrates the difference between the sceptical analysis prior, and those

informed by the experts. In many cases, an expert analysis prior is already optimistic

enough that further data does not need to be gathered in order for the assurance target

to be reached. The sceptical prior, alternatively, always requires further data before the

target assurance can be achieved.

The change in sample size as the MCID changes is much greater in this case, compared

to the frequentist analysis. In many cases, the sample sizes change from 1 to >1,000 with

a modest change in MCID. This is likely due to the design priors, as many assign the

lowest 5% of their probability within the regions of the differences being compared. When

the difference is lower than this 5% boundary, the required sample size is often very small.

However, when it is closer to the boundary, the sample size requirement increases rapidly.

It is also noted that only the more optimistic combination of priors, alongside the more

lenient 10% assurance target, allow for evidence to be found for the difference between

diagnostic tests to be greater than 0.2. It is further noted that while many sample sizes in

the table are reported as >1000, many may not actually be possible. For example, consider

a design prior which places all of its weight below 0.5. No matter how large a sample is

taken from this design prior, it is extremely unlikely that the posterior distribution will

place a high enough probability above an MCID of 0.5 for the study to be considered

successful.

While the 10% assurance target is unrealistic for many expert informed analysis prior

distributions, it often presents more reasonable sample sizes when using a sceptical analysis

prior. This is an important point to consider, as the sceptical prior with the 90% maximum

assurance target rarely gives a sample size within a reasonable range. The choice of both

target assurance and analysis prior clearly play an important role in determining the

sample size. For example, if a target assurance is chosen to be 0.8 or 0.9, perhaps to

align with power, then an overly sceptical prior may lead to an unreasonable sample size

requirement.
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Table 6.12: Maximum Assurances for Bayesian Method One

MCID =
Aggregation
Method

Design Prior
Group

Analysis
Prior Group

Target
Assur-
ance

0.001 0.05 0.1 0.15 0.2 0.5

EW 1 1 90% max 1 >1000 >1000 >1000 >1000 >1000
1 1 10% 1 9 >1000 >1000 >1000 >1000
1 2 90% max 1 >1000 >1000 >1000 >1000 >1000
1 2 10% 1 1 >1000 >1000 >1000 >1000
1 3 90% max 1 >1000 >1000 >1000 >1000 >1000
1 3 10% 1 1 >1000 >1000 >1000 >1000
1 Sceptical 90% max >1000 >1000 >1000 >1000 >1000 >1000
1 Sceptical 10% 62 164 >1000 >1000 >1000 >1000
2 1 90% max 1 109 >1000 >1000 >1000 >1000
2 1 10% 1 3 36 136 715 >1000
2 2 90% max 1 1 >1000 >1000 >1000 >1000
2 2 10% 1 1 3 23 253 >1000
2 3 90% max 1 1 1000 >1000 >1000 >1000
2 3 10% 1 1 3 20 198 >1000
2 Sceptical 90% max 161 434 >1000 >1000 >1000 >1000
2 Sceptical 10% 27 29 40 74 343 >1000
3 1 90% max 1 497 >1000 >1000 >1000 >1000
3 1 10% 1 3 37 151 720 >1000
3 2 90% max 1 294 >1000 >1000 >1000 >1000
3 2 10% 1 1 2 25 272 >1000
3 3 90% max 1 448 >1000 >1000 >1000 >1000
3 3 10% 1 1 3 19 224 >1000
3 Sceptical 90% max 829 >1000 >1000 >1000 >1000 >1000
3 Sceptical 10% 27 34 46 88 363 >1000

CM 1 1 90% max 1 999 >1000 >1000 >1000 >1000
1 1 10% 1 2 25 1517 >1000 >1000
1 2 90% max 1 173 >1000 >1000 >1000 >1000
1 2 10% 1 1 2 999 >1000 >1000
1 3 90% max 1 750 >1000 >1000 >1000 >1000
1 3 10% 1 1 3 >1000 >1000 >1000
1 Sceptical 90% max >1000 >1000 >1000 >1000 >1000 >1000
1 Sceptical 10% 37 55 117 >1000 >1000 >1000
2 1 90% max 1 61 747 >1000 >1000 >1000
2 1 10% 1 2 7 42 293 >1000
2 2 90% max 1 1 482 >1000 >1000 >1000
2 2 10% 1 1 2 10 139 >1000
2 3 90% max 1 1 644 >1000 >1000 >1000
2 3 10% 1 1 3 5 141 >1000
2 Sceptical 90% max 119 296 >1000 >1000 >1000 >1000
2 Sceptical 10% 24 26 34 58 188 >1000
3 1 90% max 1 174 889 >1000 >1000 >1000
3 1 10% 1 2 8 39 137 >1000
3 2 90% max 1 1 493 >1000 >1000 >1000
3 2 10% 1 1 2 11 83 >1000
3 3 90% max 1 1 >1000 >1000 >1000 >1000
3 3 10% 1 1 2 8 43 >1000
3 Sceptical 90% max 847 539 >1000 >1000 >1000 >1000
3 Sceptical 10% 21 25 33 43 125 >1000

BA 1 1 90% max 1 >1000 >1000 >1000 >1000 >1000
1 1 10% 1 2 190 >1000 >1000 >1000
1 2 90% max 1 >1000 >1000 >1000 >1000 >1000
1 2 10% 1 1 >1000 >1000 >1000 >1000
1 3 90% max 1 >1000 >1000 >1000 >1000 >1000
1 3 10% 1 1 79 >1000 >1000 >1000
1 Sceptical 90% max >1000 >1000 >1000 >1000 >1000 >1000
1 Sceptical 10% 48 80 388 >1000 >1000 >1000
2 1 90% max 1 420 774 >1000 >1000 >1000
2 1 10% 1 2 7 26 85 >1000
2 2 90% max 1 1 763 >1000 >1000 >1000
2 2 10% 1 1 2 4 20 >1000
2 3 90% max 1 240 861 >1000 >1000 >1000
2 3 10% 1 1 3 1 46 >1000
2 Sceptical 90% max 228 664 >1000 >1000 >1000 >1000
2 Sceptical 10% 20 23 26 46 80 >1000
3 1 90% max 1 952 1552 >1000 >1000 >1000
3 1 10% 1 2 24 120 507 >1000
3 2 90% max 1 844 >1000 >1000 >1000 >1000
3 2 10% 1 1 2 28 149 >1000
3 3 90% max 1 747 >1000 >1000 >1000 >1000
3 3 10% 1 1 3 58 203 >1000
3 Sceptical 90% max >1000 >1000 >1000 >1000 >1000 >1000
3 Sceptical 10% 29 39 58 79 311 >1000

SHELF 2 2 90% max 1 1 93 >1000 >1000 >1000
2 2 10% 1 1 1 58 >1000 >1000
2 Sceptical 90% max 77 171 619 >1000 >1000 >1000
2 Sceptical 10% 21 31 61 164 >1000 >1000
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6.5.4 Bayesian Method Two

We provide sample sizes for the assurance calculations using Bayesian Method Two in

Table 6.13.

Unlike the previous methods, there is not a large difference between the use of a

sceptical analysis prior and an expert aggregated analysis prior. Under this formulation,

many of the expert priors are quite sceptical. In many cases, the Group 2 design or

analysis prior tends to lead to smaller sample size requirements, again suggesting a more

Table 6.13: Maximum Assurances for Bayesian Method Two

Aggregation
Method

Design
Prior
Group

Analysis
Prior
Group

Sample Size
(Target As-
surance of
10%)

Sample Size
(90% Max
Target Assur-
ance)

EW 1 1 7 74
1 2 8 61
1 3 9 76
1 Sceptical 9 79
2 1 4 34
2 2 3 30
2 3 3 31
2 Sceptical 4 32
3 1 4 44
3 2 4 38
3 3 3 40
3 Sceptical 4 43

CM 1 1 5 68
1 2 7 70
1 3 7 72
1 Sceptical 7 73
2 1 6 55
2 2 4 51
2 3 6 53
2 Sceptical 6 53
3 1 5 50
3 2 5 48
3 3 3 47
3 Sceptical 5 50

BA 1 1 3 39
1 2 5 40
1 3 5 44
1 Sceptical 5 44
2 1 4 35
2 2 3 31
2 3 4 34
2 Sceptical 4 34
3 1 4 36
3 2 4 33
3 3 3 32
3 Sceptical 3 32

SHELF 2 2 2 6
2 Sceptical 2 8
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optimistic view from the experts in this group.

As with the assurance calculations using Bayesian Method One, the 10% assurance

level provides very small sample sizes. It is also the case for the sceptical priors in this

case, as there is little difference between analysis priors. The 90% maximum assurance

target, or the 50% target as used in the initial scenario, seem more appropriate choices.

The differences between the two sets of assurance calculations for a Bayesian analysis

of the study demonstrates the further impact which the choice of model can have on

assurance calculations.

6.6 Assurance and Power at the Maximum Feasible Sample

Size

During the initial design and application for funding of the study, the designers stated that

the maximum feasible number of patients who could be recruited was 120. In practice,

it may not be possible to recruit more than this maximum feasible sample size. In cases

such as these, it may be important to determine which effect sizes can be detected, or

what assurance or power can be achieved for a set sample size.

In this section, we first investigate which effect sizes could be detected using power

for a sample size of 120. We also investigate the corresponding assurance which could

be achieved. Such a value may be useful to determine whether the feasible recruitment

options for a study will impede its ability to be successful, and what the probability of a

successful study will be in the best-case scenario.

6.6.1 Detectable Effect Sizes

For a given sample size, in this case 120, it is possible to calculate the minimum effect size

to be detected which will still provide a certain level of power, here 0.9.

Under the Method One power calculations, which only uses an MCID as an input,

an effect size of 0.09 or larger could be detected. Smaller effect sizes would have a lower

probability of being detected given the required power. Four of the six experts suggested

MCIDs larger than this value. These experts’ MCIDs would be able to be detected at

this sample size. The remaining two experts would consider an effect size of 0.09 to be

clinically important, but would also consider smaller effects, which would not be able to

be detected, to be clinically important.

Under the Method Three power calculations, which use both an MCID and expert

estimates as inputs, the following effect sizes could be determined for each aggregation

method, as displayed in Table 6.14.

This table demonstrates that only relatively large effect sizes could be detected when

using expert estimates for the reference diagnostic test.
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Table 6.14: Effect Sizes detectable for n = 120

Aggregation Group Detectable Effect

EW 1 0.24
2 0.20
3 0.21

CM 1 0.23
2 0.25
3 0.24

BA 1 0.24
2 0.22
3 0.23s

SHELF 2 0.14

Under each aggregation method, with the exception of SHELF, an effect size of 0.2

would not be able to be detected with the required power. Only one of the MCIDs elicited

from the experts is above these effect sizes. Therefore the MCIDs of five of the six experts

could not be detected with the appropriate power using this sample size.

6.6.2 Assurance and Power when n = 120

We consider assurance calculations when the sample size is set at 120. These assurance

values represent the highest assurance that will be possible to achieve with the constraint

on the number of participants.

Power

We first consider the three methods of calculating power.

The actual power provided by a sample size of 120 under Method One depends on the

MCID used. As Table 6.15 demonstrates, an MCID of 0.1 is likely to provide sufficient

power, while an MCID of 0.05 will not. This corresponds to the finding that an MCID of

0.09 would be appropriate given a maximum sample size of 120.

Table 6.15: Power for n = 120 for Method One

MCID 0.001 0.05 0.1 0.15 0.2 0.5

Power 0.06 0.69 0.94 0.99 1.00 1.00

Table 6.16 provides the power for Method Two when the sample size is 120. The power

varies widely, depending on the aggregation method chosen.

Only the SHELF aggregation with Group 2 experts provides a power that would be

considered sufficient by most study designs. The large discrepancy in Group 2’s power

estimate across different aggregation methods is due to the way individual experts are

treated. The Classical Method has removed one of the experts, and it is apparent from

the large drop in power that the removed expert was much more optimistic about the
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Table 6.16: Power for n = 120 for Method Two

Aggregation Group Power

EW 1 0.58
2 0.68
3 0.13

CM 1 0.38
2 0.07
3 0.05

BA 1 0.41
2 0.19
3 0.08

SHELF 2 1.00

Table 6.17: Power for n = 120 for Method Three

Aggregation Group 0.001 0.05 0.1 0.15 0.2 0.5

EW 1 0.05 0.13 0.33 0.59 0.80 1.00
2 0.05 0.16 0.45 0.73 0.91 1.00
3 0.05 0.15 0.40 0.69 0.88 1.00

CM 1 0.05 0.14 0.37 0.64 0.85 1.00
2 0.05 0.12 0.32 0.57 0.79 1.00
3 0.05 0.13 0.33 0.59 0.81 1.00

BA 1 0.05 0.13 0.33 0.60 0.81 1.00
2 0.05 0.14 0.39 0.67 0.86 1.00
3 0.05 0.13 0.36 0.63 0.84 1.00

SHELF 2 0.05 0.34 0.75 0.94 0.99 1.00

study than the other two experts. As such, when they received a third of the weight in the

Equal Weights method, the resulting power calculation resulted in much higher power.

In this case, the Equal Weights aggregation tends to provide higher power, suggesting

its inputs were more optimistic. The Classical Method resulted in the lowest power, with

the Bayesian aggregation leading to power values lying between the other two mathemat-

ical aggregation methods.

We also calculate power for the Method Three power calculation, when the sample size

is 120. Table 6.17 provides the resulting values.

This table demonstrates, an MCID of around 0.2 is typically required to reach an

appropriate power for this method. It appears that the MCID presents a greater influence

on power than the aggregation method chosen. This is expected, as the MCID represents

the difference between the effectiveness of the two diagnostic tests, while the aggregation is

only supplying the values for the reference test. As such, a larger difference will correspond

to a larger difference between the two tests in the calculation, which in turn is easier to

detect using McNemar’s test.

In comparison to Table 6.16, there does not seem to be a single MCID for which the

two methods are comparable. For example, the values for power using the Equal Weights

aggregation in Table 6.16 are around equivalent to an MCID of 0.15, while the Bayesian

aggregations’ power is roughly equivalent to an MCID of between 0.1 and 0.15.
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Table 6.18: Assurances for n = 120 for McNemar’s test analysis

Method Two Method
Three,
MCID =

Aggregation
Method

Design Prior
Group

Assurance 0.001 0.05 0.1 0.15 0.2 0.5

EW 1 0.89 0.05 0.41 0.82 0.97 1.00 1
EW 2 0.33 0.05 0.16 0.43 0.72 0.90 1
EW 3 0.84 0.05 0.26 0.65 0.89 0.98 1
CM 1 0.86 0.05 0.33 0.74 0.94 0.99 1
CM 2 0.29 0.05 0.15 0.40 0.69 0.90 1
CM 3 0.86 0.05 0.20 0.54 0.82 0.95 1
BA 1 0.93 0.05 0.49 0.87 0.98 1.00 1
BA 2 0.78 0.05 0.18 0.48 0.77 0.93 1
BA 3 0.87 0.05 0.28 0.68 0.91 0.98 1
SHELF 2 0.88 0.05 0.14 0.39 0.67 0.87 1.00

Assurance with Frequentist Analysis

For McNamar’s test, the assurance values when n = 120 are provided in Table 6.18.

The majority of assurance values for Frequentist Method Two are greater than 0.8.

Under this method, it would seem the study has a high probability of resulting in a

statistically significant result. This is a positive sign for the researchers, as it demonstrates

that their feasible sample size is a realistic and appropriate choice. Had the assurance

values been low, it may have suggested that it was not appropriate to conduct the study.

In order for the Frequentist Method Three to achieve similar levels of assurance as

Frequentist Method Two, an MCID of around 0.1 or 0.15 would be required.

A comparison between the power and assurance calculations can be made by comparing

the power values in Tables 6.16 and 6.17 with the assurance values in Table 6.18. It appears

that in the vast majority of cases, the assurance values are equal to or higher than the

power for equivalent elicitation groups.

This means that the assurance calculations suggest a lower effect size could be detected

with a high probability of success. For example, the power calculation suggested an effect

size of around 0.2 would be the smallest which could be detected to achieve an appropriate

power. The assurance calculations, however, suggest that an effect size of around 0.1 to

0.15 could be detected to achieve a 0.8 or 0.9 assurance. The additional information

incorporated within the assurance calculation suggests the study may be more feasible

than the power calculations suggest.

Assurance with Bayesian Analysis

We consider assurance calculations when a Bayesian analysis will be used.

Table 6.19 presents assurance values for Bayesian Method One when the sample size

is 120.

Under this method, the assurance tends to drop quickly as the MCID increases. If

evidence is required that the difference between tests is at least 0.1, most aggregation

method design priors lead to a low assurance. The assurance using a Group 1 design prior
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Table 6.19: Assurances for n = 120 for Bayesian Method One

MCID =
Aggregation
Method

Design Prior
Group

Analysis
Prior Group

0.001 0.05 0.1 0.15 0.2 0.5

EW 1 1 1.00 0.23 0.03 0.00 0.00 0
EW 1 2 1.00 0.26 0.07 0.01 0.00 0.00
EW 1 3 1.00 0.23 0.06 0.01 0.00 0.00
EW 1 Sceptical 0.26 0.09 0.03 0.00 0.00 0.00
EW 2 1 1.00 0.80 0.41 0.08 0.01 0
EW 2 2 1.00 0.86 0.57 0.24 0.08 0.00
EW 2 3 1.00 0.80 0.53 0.24 0.08 0.00
EW 2 Sceptical 0.86 0.61 0.37 0.16 0.07 0.00
EW 3 1 1.00 0.45 0.20 0.09 0.04 0
EW 3 2 1.00 0.49 0.27 0.15 0.09 0.00
EW 3 3 1.00 0.49 0.29 0.15 0.09 0.00
EW 3 Sceptical 0.53 0.29 0.22 0.12 0.07 0.00
CM 1 1 1.00 0.38 0.15 0.06 0.02 0.00
CM 1 2 1.00 0.42 0.19 0.07 0.03 0.00
CM 1 3 1.00 0.38 0.17 0.08 0.03 0.00
CM 1 Sceptical 0.46 0.21 0.11 0.05 0.03 0.00
CM 2 1 1.00 0.88 0.57 0.26 0.05 0.00
CM 2 2 1.00 0.90 0.65 0.29 0.09 0.00
CM 2 3 1.00 0.88 0.61 0.29 0.11 0.00
CM 2 Sceptical 0.90 0.69 0.41 0.20 0.08 0.00
CM 3 1 1.00 0.60 0.36 0.19 0.10 0.00
CM 3 2 1.00 0.63 0.43 0.22 0.12 0.00
CM 3 3 1.00 0.60 0.40 0.24 0.13 0.00
CM 3 Sceptical 0.63 0.43 0.29 0.18 0.10 0.01
BA 1 1 1.00 0.21 0.09 0.04 0.02 0.00
BA 1 2 1.00 0.23 0.10 0.06 0.03 0.00
BA 1 3 1.00 0.23 0.10 0.05 0.02 0.00
BA 1 Sceptical 0.30 0.14 0.07 0.04 0.02 0.00
BA 2 1 1.00 0.71 0.42 0.24 0.12 0.00
BA 2 2 1.00 0.71 0.45 0.29 0.17 0.00
BA 2 3 1.00 0.71 0.42 0.25 0.16 0.00
BA 2 Sceptical 0.75 0.51 0.33 0.21 0.14 0.00
BA 3 1 1.00 0.34 0.10 0.10 0.06 0.00
BA 3 2 1.00 0.37 0.20 0.13 0.08 0.00
BA 3 3 1.00 0.37 0.20 0.11 0.07 0.00
BA 3 Sceptical 0.41 0.22 0.15 0.10 0.06 0.00
SHELF 2 2 1.00 0.99 0.84 0.17 0.00 0
SHELF 2 Sceptical 0.98 0.84 0.39 0.13 0.01 0.00

is lower than equivalent calculations for other design priors, and the sceptical analysis

priors tend to lead to a lower assurance than an informative prior from any expert group.

These assurance values are quite pessimistic about the chances of a successful study

overall. To find evidence in favour of at least a 10% difference between tests appears

unlikely, and a lower difference is not considered clinically significant by the majority of

experts.

We also consider assurance for Bayesian Method Two, when the sample size is 120.

These values are provided in Table 6.20.

Under this method, the majority of variation in assurance values appears to be driven

by changes in the design prior. Each analysis prior for a set design prior only differs by

around 0.01. This could suggest that the analysis priors are all quite similar here, or that

the sample size is large enough that the analysis prior is dominated by the observations.

Many of the resulting assurance values suggest there is a better than even chance of

the study successfully finding a statistical difference between the two diagnostic tests. As

seen previously, the Group 1 aggregated priors have resulted in more sceptical assurance

values than the Group 2 experts.

In comparison to Table 6.19, this method provides assurance values similar to those

which considered an MCID of 0.001 and 0.05. This region is not considered clinically
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Table 6.20: Assurances for n = 120 for Bayesian Method Two

Aggregation
Method

Design
Prior
Group

Analysis
Prior
Group

Assurance

EW 1 1 0.3404
EW 1 2 0.3446
EW 1 3 0.3402
EW 1 Sceptical 0.3391
EW 2 1 0.6886
EW 2 2 0.6902
EW 2 3 0.6903
EW 2 Sceptical 0.6897
EW 3 1 0.5226
EW 3 2 0.5251
EW 3 3 0.5242
EW 3 Sceptical 0.5235

CM 1 1 0.3682
CM 1 2 0.3684
CM 1 3 0.3675
CM 1 Sceptical 0.3678
CM 2 1 0.4983
CM 2 2 0.4993
CM 2 3 0.4990
CM 2 Sceptical 0.4989
CM 3 1 0.4488
CM 3 2 0.4504
CM 3 3 0.4499
CM 3 Sceptical 0.4499

BA 1 1 0.3819
BA 1 2 0.3817
BA 1 3 0.3807
BA 1 Sceptical 0.3807
BA 2 1 0.5643
BA 2 2 0.5656
BA 2 3 0.5645
BA 2 Sceptical 0.5647
BA 3 1 0.4521
BA 3 2 0.4534
BA 3 3 0.4533
BA 3 Sceptical 0.4533

SHELF 2 2 1.0000
SHELF 2 Sceptical 1.0000

important by many of the experts. This analysis, however, does not consider an MCID,

instead aiming to simply compare whether a difference exists between the diagnostic tests.

Should a statistically significant result be found in such an analysis, it would then be a

further question as to whether the results are clinically significant.

194



Chapter 6. Developing Assurance for a Motor Neurone Disease Diagnostic Study

6.7 Further Discussion

One point demonstrated throughout this chapter is the importance of the model specifi-

cation. The different methods of incorporating values into the frequentist test, and the

two different ways of specifying the Bayesian model, can all lead to quite different sample

sizes being required. This variation demonstrates that if an inappropriate choice is made

when specifying a model or statistical test, then the resulting sample size requirements

can also be inappropriate.

In the case of the frequentist tests, we considered three ways of determining input

values. The first simply took into account an MCID, and no additional prior information

about the reference test. We suggest that for the case study considered in this thesis, the

first method is the least appropriate. As the later methods demonstrate, the experts’ prior

distributions all suggested the reference test’s effect was greater than zero, implying that

this case was not realistic as to the outcome of the trial.

The second and third methods both incorporated some expert elicited information.

Both seem reasonable methods to use, and so the choice between them would depend

on the exact research question of interest. If a researcher is interested in detecting a

statistically significant difference between the two diagnostic tests, regardless of what the

difference is, then the second method would appear an appropriate choice. Alternatively,

if a researcher is only interested in detecting a statistically significant MCID, then the

third method may be a more appropriate choice.

Likewise in the Bayesian analysis case, the choice of model should be led by the research

question. The first method looks at the improvement of the novel diagnostic test over the

current test, while the second method investigates the difference between the two tests.

While this distinction is subtle, the change in required sample sizes demonstrates that the

choice of model clearly affects assurance calculations.

The method of incorporating an MCID into the calculations was also demonstrated

to play a large effect. As shown in Section A.2.2, there is a large difference between

a null hypothesis test for a difference of at least the MCID, and a null hypothesis test

which tests for any difference, but is powered on an effect size of the MCID. Given there

is not necessarily a standard way for assurance calculations to incorporate an MCID

when conducting a Bayesian analysis, it is clearly an important consideration when using

assurance.

Another consideration to be made when calculating assurance is the ownership of the

beliefs represented by the prior distributions. For example, the SHELF method provides a

distribution which is representative of a Rational Impartial Observer, who has considered

the group’s evidence. Further ownership may be assigned to the group as a whole, as

they ideally would have achieved a consensus between themselves. Alternatively, the
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Bayesian aggregation presented represents a decision maker’s beliefs, after they have been

updated to account for the elicited values from the experts. Both Equal Weight and the

Classical Method, however, do not lend themselves to a single owner for the aggregated

prior distribution as the individual experts will not see, or necessarily agree with, the

final aggregated distribution. Instead, they are mathematical combinations of the group

of experts’ individual beliefs.

As the assurance calculations are dependent on the prior distributions, it follows then

that prior distributions should be justifiable in order for the resulting sample sizes to be

reasonable. Consideration of the ownership of the prior distributions is one way this could

be considered. Given that the experts involved are experts in the relevant field, and the

values they provided are their honest attempts at specifying their prior probabilities, then

their individual prior distributions appear valid and justifiable to use. As the aggregated

distributions are formed from these, it suggests that the information contained within

them is likewise justifiable.

Whether the priors are aiming to represent the beliefs of a group of experts, or the

wider view of the current knowledge within the field, is another consideration. Given a

number of experts who have a current and comprehensive knowledge of the current state

of their field of expertise, their prior distributions may likely take into account a wide

range of expertise.

We recommend considering, and where relevant, reporting, the ownership of both

design and analysis priors. Especially when these priors differ, it is important for repro-

ducibility and clarity that the details of any informative priors used are provided. This

ensures that the proper context for the design and analysis can be understood. For ex-

ample, there may be different interpretations made when different prior distributions are

used.

Our results tended to demonstrate that the use of sceptical analysis priors required

higher sample sizes than if expert elicited priors were used. While a lower sample size is

often preferable, a sceptical analysis prior does, however, ensure that there is no perception

of undue influence or bias in the analysis of the study, and the results may be considered

stronger or more convincing. An informative analysis prior could be viewed as influencing

the final results and requiring weaker information in the observations to still be considered

a significant result.

While a sceptical analysis prior may require stronger evidence and thus lead to more

convincing conclusions, the informative prior still has uses. As it tended to lead to smaller

requirements for sample size, in cases such as rare diseases where a large sample size may

not be possible, an informative analysis prior may allow a study to be run feasibly.

We also note that the elicited prior distributions often appeared reasonably similar

between Group 1 and Group 2. The small differences, however, had a noticeable impact
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when carried forward to assurance calculations. In many of the calculations in this chapter,

the required sample sizes under Group 1 or Group 2 prior distributions varied widely.

This suggests that assurance calculations can be quite sensitive to the prior distributions,

which in turn outlines the importance of following proper expert elicitation guidelines.

The higher the quality of the expert elicitations, the higher the quality of the assurance

sample sizes.

6.8 Conclusions

In this chapter, we have demonstrated how power and assurance based sample size calcula-

tions can be used in the design of an example clinical study. We have compared assurance

calculations for both a frequentist and Bayesian analysis, considering multiple different

model choices. Across these, we showed that assurance calculations suggested that either

smaller differences between the two diagnostic tests could be detected, or a smaller sample

size could be required.

We also considered cases where different prior distributions were used for the design

and analysis stages of a study, and demonstrated how this can affect the sample size

requirements. We also provided example assurance and power values for a sample size of

120, which the experts designing the study felt was the maximum number of patients that

could feasibly be recruited.
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Chapter 7

Conclusions

7.1 Summary

Throughout this thesis, we have explored the use of subjective Bayesian methods for the

design and analysis of a study investigating a novel diagnostic test. We have presented

original work in the areas of elicitation and aggregation of expert judgements, and Bayesian

sample size calculations.

In the context of the case study, we investigated the performance of multiple prior

distribution aggregation methods. This allowed for a comparison between methods that

had not previously been compared. We conducted two rounds of elicitations, involving

ten experts, to cover both those directly involved in the trial and those who were not.

We suggest that assurance may be a more robust method for sample size calculation,

especially when the observed results do not correspond to those used in the calculations.

We have provided additional evidence about the behaviour of Bayesian assurance, often

in comparison to statistical power, through simulations. We have also provided examples

of how statistical power and Bayesian assurance can be used in practice through a case

study.

Chapter 2 reviewed approaches to sample size calculation. We reviewed both statistical

power and Bayesian assurance, and discussed issues such as effect size estimation. In the

case of Bayesian assurance, we considered the use of different prior distributions in the

design and analysis stages of the trial, and how this can be accounted for in the assurance

calculation.

Chapter 3 reviewed elicitation of expert judgments, for use in Bayesian assurance cal-

culations. We reviewed issues such as cognitive biases, and how they may affect the values

provided by experts, as a foundation for how expert judgments should be elicited. We

also considered the problem of elicitation from a group of experts, and how multiple views

can be combined. We reviewed common elicitation aggregation methods, and detailed the
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development of two elicitations which would put these methods into practice.

Chapter 4 presented the results of the two elicitations, completed as part of the design

of a study into a novel diagnostic test for Motor Neuron Disease. Results from these

elicitations included judgements from experts directly involved in the development of the

trial, and experts who were not involved in the development of either the diagnostic test

or trial. Parameters required for both the case study sample size calculations and seed

questions, to which the elicitors knew the answers, were elicited from the experts. These

elicited judgments were aggregated using different aggregation methods, and the resulting

aggregations used to compare common aggregation methods.

Assessing the aggregated distributions for the seed questions suggested that any method

of aggregation offered an improvement over eliciting from a single expert. Across the ag-

gregation methods, the SHELF and Classical Method both tended to perform better than

other methods considered.

Chapter 5 explored statistical power and Bayesian assurance through simulation. We

investigated the difference in performance between these two methods given similar inputs,

and when the effect size or prior distribution mean is different to that observed when the

trial is run. We also provided simulations investigating assurance, such as how the max-

imum assurance value can vary given the chosen design prior distribution. Additionally,

we also presented simulations demonstrating how assurance varies given changes to the

prior distribution to be used in the analysis, and suggested some options which may be

suitable for use as analysis prior distributions.

Chapter 6 presented the sample size calculations for the case study. Using the elicited

parameters and aggregated distributions, statistical power and Bayesian assurance were

both used to calculate the required sample size for this study. We considered a range of

different methods for specifying the inputs to the statistical power calculation, incorpo-

rating both elicited values and elicited Minimal Clinically Important Differences. We also

considered two Bayesian models for the analysis of the data, with a number of different

prior distributions for use in the analysis, and incorporated these into the Bayesian assur-

ance calculations. Finally, we considered the plausible maximum number of patients who

could be expected to be recruited to the study, and determined what effect size could be

detected.

7.2 Future Work

While this thesis has addressed many questions, many more remain to be investigated.

While the results presented provide a comparison of popular elicitation methods, fur-

ther work could seek to expand on this in a number of ways. Firstly, repeating the

comparison with additional experts would provide additional evidence in comparing ag-
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gregation methods. As the SHELF method was only conducted with a single group of

experts, it would be particularly useful to again conduct the SHELF method alongside

the other methods to further compare between the methods with a larger group of experts.

Another area which may be of particular interest is a comparison between online and

in-person elicitations. Due to the COVID-19 pandemic, in-person meetings were not an

option when conducting the second round of elicitations. However, with the increase in

remote working and widespread adoption of video-conference style meetings, there is an

opportunity for elicitations to more easily take place without all experts and elicitors

being physically present in the same location. Work comparing online survey elicitations,

to online video elicitations, to in-person elicitations, could help determine the validity of

each option and present recommendations for future elicitations.

The trial used for the case study presented has not, at the time of writing, resulted in

the collection of any data. Should data be collected, a comparison of the trial results to the

elicited prior distributions and sample size calculations would provide further insight into

the methods. For example, investigating prior-data conflict would allow further compar-

isons between individual experts and aggregated distributions. Additionally, the sample

size results could be investigated by bootstrapping the data and comparing datasets of

the suggested sample sizes to determine if the assurance or power used in the sample size

calculations would be replicated in practice.

There are also further assurance calculations which could be considered. Further work

could consider other methods of analysis, and comment on their impact on assurance

calculations. More widely, there are many other statistical tests and models for which

assurance could be used to determine a sample size.
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Appendix A

Appendix

A.1 Elicitation Supplementary Materials

The following pages contain the information provided to the experts alongside both elici-

tations. This supplementary material included both further background about the novel

diagnostic test, questions about the experts’ background, and the seed questions, followed

by further guidance for using the elicitation application.

225



Elicitation Evidence 
The following document will provide some background information and definitions. 

Definitions 
MND Motor Neurone Disease, which involves the progressive degeneration of 

motor neurones in the cerebral cortex, brainstem and spinal cord. 
RT Reference Test 
Positive RT Diagnosis A diagnosis using the Reference Test leading to a patient being assigned 

treatment for MND 
ET Experimental Test 
Positive ET Diagnosis A diagnosis using the Experimental Test and Reference Test leading to a 

patient being assigned treatment for MND 
Median The value where an outcome is equally likely to occur above or below. 
Best Estimate The median. 
Lower 25% Quartile Assuming the outcome will occur below the median, this quartile is the 

value where an outcome is equally likely to occur above or below. 
Upper 25% Quartile Assuming the outcome will occur above the median, this quartile is the 

value where an outcome is equally likely to occur above or below. 
 

Trial Summary 
The participants in this trial are patients suspected of having MND. They will be tested using both the RT 
and ET at an initial time point, and after a further 6 months. Patients that receive a positive diagnosis 
from the RT at the first time point will leave the trial to begin treatment. ET results will not affect a 
patient’s position in the trial. 

 

The anticipated improvement from ET will be an earlier diagnosis than that from using the RT alone. 

 

Additional information was provided to the experts. Results from previous trials using the ET were given 
to assist the experts. The full version also contained additional definitions for the specific experimental 
and reference tests. 

Trial Start 
First round of RT and 

ET 

6 Months later 
Second round of RT 

and ET 

Treatment Treatment 



Elicitation Records 
Clinical Trial Name 
 

Name:  
Date:  
Job:  
Declaration of 
interest: 

 

 

Experience and prior knowledge 
Please provide some details into your background. 

What is your background in 
researching MND? 

 

How long have you been 
involved in MND research? 

 

What sources of information 
is your knowledge of MND 
based on?  

 

What are your strengths and 
weaknesses regarding this 
topic? 

 

Please rate your knowledge 
on Motor Neuron Disease 
from 1 (least) to 5 (most). 

 

Please rate your knowledge 
on the reference test from 1 
(least) to 5 (most). 

 

Please rate your knowledge 
on the experimental test 
from 1 (least) to 5 (most). 

 

Please list any sources of 
quantitative information 
about experimental test you 
are aware of. This 
information will be shared 
with other participants  

 

 

  



Practice Questions 
These questions are designed to provide practice for specifying uncertainty around estimates. 
Information from these questions will be analysed as part of the PhD project. 

For each question, please provide your best estimate, as well as a range of possible values in which you 
believe there is a 50% probability that the true value would fall. 

For example, consider the incidence rate for MND in the UK. Out of 100,000 people, a researcher may 
consider the absolute minimum number of new cases of MND in the UK to be 500, and the absolute 
maximum to be 3000. From here, they may believe the true rate is equally likely to lie between 500 and 
600, 600 and 700, 700 and 1000 and 1000 and 3000. 

Their best estimate (median) would be 700, as they believe there is an equal chance that the incidence 
rate will be above or below this value.  

 Minimum Lower 25%  Best Estimate Upper 75%  Maximum 
For the years 2006 
to 2009, what was 
the incidence rate 
per 100,000 people 
of ALS in the 
Netherlands?  

     

For the years 2006 
to 2009, what was 
the prevalence rate 
per 100,000 people 
of ALS in the 
Netherlands?  

     

For the years 1995 
to 1997, what 
percentage of 
people with ALS in 
Ireland were male?  

     

For the years 2002 
to 2003, what 
percentage of 
people with ALS in 
Uruguay were male?  

     

For the years 1995 
to 1997, what 
percentage of new 
ALS diagnoses in 
Ireland were male?  

     

For the years 2002 
to 2003, what 
percentage of new 
ALS diagnoses in 
Uruguay were male?  

     

For the years 1985 
to 2006, what 
percentage of ALS 
diagnoses in New 

     



Zealand were 
familial? 
For the years 1989 
to 1992, what 
percentage of ALS 
diagnoses in Hong 
Kong were familial? 

     

For the years 1987 
to 2009, what was 
the incidence rate 
per 100,000 people 
of ALS in the Faroe 
Islands? 

     

For the years 1987 
to 2009, what was 
the prevalence rate 
per 100,000 people 
of ALS in the Faroe 
Islands?  

     

 

 



Minimal Clinically Important Difference 
 

What is the smallest percentage increase in 
correct positive diagnoses from using 
experimental test you would need to see to 
implement it in diagnoses? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Elicitation 
We wish to elicit from you a number of probability distributions. These distributions will represent your 
uncertainty about what will happen during the trial. Constructing these will involve specifying minimum 
and maximum values, median (or best estimate) values and upper and lower quartiles. 

You will need access to the internet to complete this elicitation stage. The application can be accessed 
here: https://cwilliams.shinyapps.io/shinyelicitation/ 

The following example will provide a walkthrough of how to use the application, and what different 
options mean. 

We are interested in determining your knowledge and uncertainty about the trial, so please refrain from 
using external sources when completing the elicitation.  

Example 
Introduction 
On the Introduction page, you will need to enter your name. If you do not finish the elicitation in a single 
session, or need to reload the application, you will need to enter the same name as you did previously. 
This will include the same spaces and capital letters.  

 

After clicking Next or Resume, the application may take a few seconds to load. 

  



Inputting Values 
On the Elicitation pages, there is a panel on the left where you can enter your values. To begin, select the 
lowest and highest possible values you think this parameter could feasibly take.  

 

 

Next, input the upper and lower quantiles, represented here as the ends of a Middle 50% Probability 
Interval. Finally, input your best estimate of the parameter of interest.  

Below is an option to change the distribution fitted to your values. It is recommended to start with the 
Optimal option, to allow the application to select the distribution that provides the best fit. If you are not 
happy with the suggested fit, you can adjust the distribution fit to a number of set options. 

 

 

 

 

 

 

 

 

 

 



 

 

Density Plot 
The application will return a density plot and histogram of the fitted distribution. Overlaid are two sets of 
lines. The solid lines represent the values you have inputted as your median and lower and upper 
quartiles. The dashed lines represent the equivalent median and lower and upper quartiles of the fitted 
distribution. These two sets of lines will likely not be exactly the same, as it is unlikely your values will 
perfectly match a distribution. If only one line for a colour is showing, it suggests the distribution value 
and your own were the same.  

Summary statistics are provided at the bottom of the page. 

Consider the shape of the distribution and the location of the dashed lines. If you think these represent 
your beliefs about the parameter, clicking Save will move you on to the next parameter. If not, try 
changing your inputted values to adjust the distribution. 

 

 

 

 

 



Distributions 
If adjusting the inputted values does not provide an appropriate distribution, you can manually set the 
type of distribution that will be fit to ensure a particular shape. 

Beta 
The Beta distribution allows for many different shapes of distribution. It can provide distributions that are 
flat, skewed or symmetrical. 

 

Beta Truncated 
This is a variant of the Beta distribution in which the minimum and maximum values are strictly enforced.  

 

Beta Rescaled 
This is a variant of the Beta distribution which has been rescaled to ensure the distribution lies between 
the minimum and maximum values.  



 

Log Norm 
The Log Normal distribution is heavily skewed, allowing for cases where the parameter is most likely to 
have values close to zero. 

 

Logit Norm 
The Logit Normal distribution allows for skew, and will work well for cases where the parameter is most 
likely to have values close to one. 

 

Polygon 
The polygon distribution will provide a distribution when the quantiles do not naturally fit any of the 
other available distributions. It is likely to present sharp points, which may not be reflective of beliefs. 



 

Normal Truncated  
The Normal truncated distribution will fit a symmetrical distribution, with cut-offs determined by the 
minimum and maximum values. 

 

  



Checks 
In order to ensure the values you have provided make sense, there are two checks you can use to verify 
your results. 

The first calculates an estimate of the probability of a positive experimental test diagnosis for a randomly 
selected patient from the trial, regardless of their reference test results. A 90% probability interval has 
been included for this value. 

 

If you are satisfied with these values, continue on. If not, you can return to previous pages to modify your 
previous results.  Possible options to modify the experimental test rate are listed in the application. 

The final image displays the suggested results for 100 simulated patients who would be similar to those in 
the trial. Dark colours represent patients with positive experimental test results, and lighter colours 
represent negative experimental test results. The red people received a positive reference test result at 
the first time point, purple a positive reference test at the second time point and green a negative 
reference test at both time points. The proportions of each are provided in a table. 

 

 

In some rare cases, inputted values may return the following warning. 

 

This should only occur when inputted values are very close together, and means the algorithm is unable 
to fit a distribution for the provided values. If this error occurs, try leaving more space between values. 
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A.2 Further simulations

The following sections provide results from further simulations not included in Chapter 5.

A.2.1 Assurance for ANOVA

Assurance and power can both be calculated for more complex methods, such as ANOVA.

We consider a one factor ANVOA, with three factor levels. Four combinations of

factor levels have been chosen, to represent potential relationships between factor levels.

Figure A.1 provides the four cases, labelled A, B, C, and D. For each, the design prior

distributions have a standard deviation of 0.1, and the 95% probability interval for each

has been plotted. The first, combination A, is where the prior beliefs are that two factor

levels are equal, and the third is different. In this case, we would expect to find Factor

Level 3 statistically significantly different from the other two levels, which themselves

would not be different from each other.

The second, combination B, is where the prior beliefs are that all three factor levels

are different, and there is no overlap in the 95% interval ranges in the design priors. In

this case, we would expect to find all three factor levels statistically significantly different

from each other.

The third case, combination C, is where the prior beliefs are that the three distinct

factor levels do have overlap in their interval ranges, but the mean of each design prior is

not with the 95% interval of another factor level. In this case, we would expect a result

showing each factor level to be statistically significantly different from each other, though

such an effect would be harder to detect than combination B due to the increase in overlap

between the design priors.

The final case, combination D, is one where the prior beliefs are that the three factor

levels have overlap in their 95% interval range, and the mean of one prior lies within

the intervals of both other factor levels. In this case, we would expect to find Factor

Level 1 statistically significantly different from Factor Level 3, while Factor Level 2 is not

statistically significantly different from either other level.

Figure A.1 then provides assurance curves for the four combinations of factor levels.

The more overlap present between design prior distributions of the different factor

levels, the lower the assurance is for a given n. This is a reasonable finding, as more

distinct groups will be easier to identity in smaller datasets. Those combinations with

overlapping design priors mean it is harder to determine which are statistically different

from each other, if any are at all.
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Figure A.1: Four different level combinations for a one factor ANOVA, and the corresponding
assurance curves.

A.2.2 Minimal Clinically Important Differences

An MCID can be incorporated into the design and analysis of a trial in a number of

different ways.

Firstly, it could be incorporated in the design stage. In this case, it would be used as

an effect size in a power calculation, to ensure that the trial could detect an effect size of

at least the MCID with a certain level of power. In a Bayesian setting, the MCID could

be used as a best estimate for the design prior. However, this use is less natural, as the

MCID does not represent the most plausible value for a parameter, but rather one the

researchers feel is necessary for the treatment to have a positive impact. Additionally,

the design prior places probabilities on either side of the best estimate. In the case of a

distribution which is symmetrical such as a normal distribution, this prior would suggest

that there is a reasonable probability that the true effect size is being less than the MCID.

The other stage in which a MCID could be incorporated is in the analysis. A Fre-

quentist Z-test, for example, will often have a null hypothesis that the mean effect size

is equal to zero, θ0 = 0. Likewise, a Bayesian analysis can use the posterior probability

P (θ > 0 | X) in order to make a judgement. However, if only values equal to or greater

than the MCID are of interest, then the posterior probability P (θ ≥ MCID | X) may be

more appropriate.

The effect of a change in MCID varies depending on whether it is incorporated with

the design or analysis. Figure A.2 demonstrates an example of this, where the assurance

curves have opposite slopes as the MCID increases.

This example has a set sample size of 50 for an exact binomial test, with a null

hypothesis of θ0 = 0.01 for the case where the MCID is incorporated into the design,

and a null hypothesis of θ0 = MCID for the case where the MCID is incorporated into
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Figure A.2: Example assurance curves for a varying MCID. The blue curve incorporates the MCID
into the design prior, and the red line incorporates the MCID into the analysis through the null
hypothesis.

the analysis. When the MCID is accounted for in the design, the design prior was given

as θ ∼ Beta(γMCID, γ(1 − MCID)) such that the mean of the distribution is given

to be MCID, and the γ term chosen to affect the variance of the distribution. In the

alternative case, where the MCID is accounted for in the design, the design prior was given

as θ ∼ Beta(10, 40).

As the MCID increases, the two assurance curves change in opposite directions.

When the MCID is used in the design, the assurance increases as MCID increases.

As the sample size and standard deviation are constants, the increasingly larger effect

expected to be present is then expected to be easier to detect. This means it is increasingly

likely that a significant result will be found, and as such the assurance increases.

For the assurance curve incorporating the MCID into the analysis, an increase in

the MCID results in a decrease in assurance. Increasing the MCID, in this case, means

increasing the required test statistic for a significant results to be found. As the design prior

is constant, this means the probability of observing the required test statistic decreases as

the MCID increases.

For cases such as with binomial data, which has discrete steps, this may not be true

locally as there may still be a step pattern which changes the underlying distribution as

additional observations of successes are required. Overall, however, the assurance in this

case will still decrease as the MCID increases.

Ultimately, the reason for these differences is in the way the MCID has been incorpo-

rated into the calculations. It is not unexpected that incorporating the value in a different

way will change how the power or assurance is affected. When the MCID is included into

the analysis, to be used as a value against which to compare such as in a null hypothesis,

it will effect the calculations differently to when it is used as the estimate of the effect,
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such as that used as an alternative hypothesis.

A.2.3 Replication using previous effect sizes

As mentioned in the previous section, and in Chapter 2, using previous estimates as an

input to power calculations can lead to underpowered trials. This is due to the fact

that an estimated effect is unlikely to be exactly the same as the population-level effect.

Vasishth et al. (2018) demonstrates how for low powered studies leads to overestimates

for statistically significant effects, and that relying on statistical significance can result in

non-reproducible study results.

We will demonstrate how using assurance instead of power helps to account for this

disparity between estimated and population effects.

A.2.4 Normal observations

For a Z-test, with an effect size of 0.5, a power calculation reveals we require a sample size

of 42. We then simulate 100,000 datasets of size 42, from a N(0.5, 1) distribution. Fig-

ure A.3 shows a histogram of the estimated effect sizes from each of the 100,000 datasets,

coloured by statistical significance. As would be expected, these estimates form a normal

distribution with a mean centred on 0.5, and a standard deviation of 1√
42

.

We then use these estimated effect sizes as the inputs for a second round of power

calculations. Figure A.4 shows a histogram of the required sample sizes based on the

previous estimates.

Including all results, significant or not, 50% of the sample sizes are below the required

42. When we only consider the statistically significant results, 55% of the sample sizes are

0
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Figure A.3: Estimates of the effect size using a Z-test on datasets simulated from a N(0.5, 1)
distribution.
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Figure A.4: Estimates of the sample size calculated using the effect sizes from a Z-test on datasets
simulated from a N(0.5, 1) distribution.
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Figure A.5: Estimates of the effect size using a Z-test on datasets simulated from a N(0.3, 1)
distribution.

below 42. As a sample size of 42 is required for the trial to be properly powered at the

90% level, any sample size less than this value will lead to an underpowered trial.

While these results show that there is a slight increase in underpowered trials when

only considering significant results, there is an assumption that the initial trials were

correctly powered.

We consider the case where a true effect size of 0.25 is present, but the trial is powered

on an effect size of 0.5. As before, the required sample size from the power calculation

would be 42 with this incorrect estimate. If the correct effect size had been used, the

required sample size would be 169.

Figure A.5 shows the estimated effect sizes from such a trial. Due to the smaller than

required sample size, the majority of the results found are not statistically significant.
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Figure A.6: Estimates of the sample size calculated using the effect sizes from a mis-powered Z-test
on datasets simulated from a N(0.5, 1) distribution.

We then use these estimated effect sizes as the inputs for a second round of power

calculations. Figure A.6 shows a histogram of the required sample sizes based on the

previous estimates.

As the plot shows, the sample sizes required in future trials are typically very large.

In this case, only 2% of all sample sizes, or 10% of the sample sizes from the hypothetical

significant trials, would lead to future trials being under powered. However, if these

estimates were used to power future trials, the vast majority of the trials will instead be

over-powered. Of the total estimates, 84% would lead to sample size calculations requiring

twice as many samples as actually needed.

This demonstrates the issue with using previous trial’s estimates. Even if the previous

trial had not misspecified the inputs to its power calculation, there is still a reasonable

probability of future sample size calculations under-powering a trial. If the original trial

was itself underpowered, then the new trial is also likely to be mis-powered and will

often produce a higher sample size than necessary. This can lead to increased costs and

difficulties in running the trial.

Although attention has been drawn to the problems associated with only publishing

significant results, the over-respresenation of significant results still remains (Head et al.,

2015).

As such, the instances where a significant result has been used limits the effect sizes to

those that happen to be larger, and in turn limit the potential sample sizes to those that

are smaller.
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Figure A.7: Estimates of the effect size using an exact binomial test on datasets simulated from a
Binomial(32, 0.3) distribution.
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Figure A.8: Estimates of sample sizes using effect sizes from an exact binomial test.

A.2.5 Binomial observations

We can consider a similar case for binomial data as well. As in the previous section, we

first simulate trial estimates and then power a future trial based on the initial results.

First, we simulate trials of size 32, with a probability of success of 0.3. Figure A.7 shows

the resulting estimates of the probability of success. Estimates ranging from 0.22 and 0.69

were found to be significantly different than the null hypothesis θa = 0.1.

We then use these estimated effect sizes as the inputs for a second round of power

calculations. Figure A.8 shows a histogram of the required sample sizes based on the

previous estimates.

In this case, 51% of the sample sizes for replications would have less than the required

32 samples in order to achieve a power of 0.9. If only significant results were used to power

future tests, then 57% of the trials would have insufficient sample sizes.
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This demonstrates the importance of selecting an accurate effect size, and that such a

selection may not be an easy task. Incorporating multiple studies through meta-analysis

or eliciting expert opinions may allow for a wider range of knowledge from the field of

study to be included in calculations.

A.2.6 Aggregating Priors, Assurances, Powers, and Sample Sizes

In order to gain a broader and more nuanced view of the field, it may make sense to

elicit priors from multiple experts. In Chapter 3, we review aggregation methods for prior

distributions in this context.

A potential question of interest is at which stage the aggregation should take place.

While we have reviewed the aggregation of priors into a single group prior, it is also

possible to aggregate assurances or sample sizes instead.

We consider three cases. Firstly, where expert priors are aggregated first, and then an

assurance calculation and sample size decision. Secondly, we consider calculating assurance

values for each of the expert priors, and then aggregating the assurance values in order to

determine a sample size. Finally, we calculate individual assurance curves for each expert

prior, and aggregate the selected sample size from each.

We consider a trial in which we will make a binomial observation, where a probability

of greater than 0.1 is considered clinically significant. We will run a Bayesian analysis

on the data, with an analysis prior of a Beta(1, 19) distribution. Such a prior places

approximately 13.5% of its probability above the clinically significant value.

We consider three fictional experts, with varying opinions on the parameter of inter-

est. We give them prior distributions Beta(1, 1), Beta(2, 1) and Beta(3, 1), to represent

increasing levels of optimism about the trial. These correspond to prior means for the

probability of 0.5, 0.67 and 0.75.

Figure A.9 provides assurance curves based on the three individual experts. As would

be expected, the expert with the most optimistic design prior had the highest assurance

values. The maximum assurance for each expert is, respectively, 97.20%, 99.95% and

99.99%.

In a trial design utilising the knowledge of these three experts, there are a number of

different ways in which their priors could be aggregated. We will use an equal weighting

method as outlined in Chapter 3. While we only consider the case of an equal weighting

scheme, alternative weights such as those from the Classical Method, could also be used

in a similar manner.

Under this method, the aggregated prior is the average of the densities for each prior.

Figure A.10 shows the design priors of the three experts, and the aggregated prior in bold.

All prior distributions are optimisitic about the results, as the majority of their area is

above the clinically significant value.
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Figure A.9: Assurance curves for three experts, with design priors Beta(1, 1), Beta(2, 1) and
Beta(3, 1).
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Figure A.10: Design priors of the three experts, and the equal weights aggregation prior, in bold.

We investigate whether aggregating the results before or after calculating the assurance

changes the outcome. Figure A.11 provides an assurance curve for the aggregated design

prior distribution in black, and compares it to the average of the three experts’ individual

assurance curves, plotted in red.

As this demonstrates, the aggregation of individual assurance values is not the same

as the assurance for the aggregate prior.

Another approach would be to determine sample sizes before aggregating. Table A.1

provides the required sample size in order to reach certain levels of assurance, based on

the aggregated prior, individual priors and the average sample size from the three experts.

As this table shows, aggregating the priors first leads to a required sample size of 19

and 37 respectively, for assurances of 50% and 80%. If we averaged the experts’ assurance

curves, the required sample sizes would be 22 and 50, and if we averaged the experts’
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Figure A.11: Assurance curves for an equal weighted design for the three experts (black) and the
average assurance value for each of their assurance curves (red).

Table A.1: Approximate sample sizes required to reach levels of assurance

Required
Assurance

Aggregated
Prior Sample
Size

Average
Assurance

Expert 1
Sample
Size

Expert 2
Sample
Size

Expert 3
Sample
Size

Average Sample
Size for Experts

0.8 37 50 90 29 27 49
0.5 19 22 30 17 14 21

required sample sizes, we would require sample sizes of 21 and 49.

There are clear differences between the results for the three methods. As such, they

can not be used interchangeably.

We suggest that aggregation at the prior level is the more sensible option. Such an

aggregation leads to a single prior distribution, taking into account each of the group

members’ views. This allows the interpretation of the assurance to be simpler, and in-

corporates the multiple sources of prior information at a stage where it is natural to do

so. Aggregating at the sample size stage instead, for example, ignores the underlying

mechanisms involved in the prior distribution and assurance calculation.

Notably, by aggregating the priors together. smaller sample sizes are required. This

may suggest a better incorporation of the prior information.

One further aspect that can be considered is that aggregating at the prior level allows

for a behavioural aggregation method to be used. In these cases, there are no mathematical

weighting equivalents and so there is not an option to aggregate the assurance curves or

final sample sizes. The benefits of a behavioural aggregation are only possible when

aggregating the priors.

The behaviour of these aggregations for a normal model is similar.

We consider a trial in which interest lies in the difference between two treatments which

we assume follows a a N(µ, 1) distribution, where the priors for µ are provided by three
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Figure A.12: Assurance curves for three experts, with design priors N(0.2, 0.1), N(0.5, 0.1) and
N(1, 0.1).
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Figure A.13: Assurance curves for an equal weighted design for the three experts (black) and the
average assurance value for each of their assurance curves (red).

fictional experts. Their individual priors have been chosen to be N(0.2, 0.1), N(0.5, 0.1)

and N(1, 0.1), to represent a group which agrees there is a positive effect, but has differing

opinions as to how large it is.

We take a difference of 0.1 to be required for a clinically significant difference, and

so the posterior distributions will be compared to this value. This will be done using a

Bayesian analysis, in which a sceptical analysis prior of N(0, 0.2) is used. Figure A.12

provides the three assurance curves.

In this case, the three curves provide more varying differences in the probability of

success.

Figure A.13 provides the aggregate prior’s assurance and the averaged assurance curve.

As the plot demonstrates, in this scenario it does not matter whether the priors are
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aggregated before calculating assurance, or whether the assurances are aggregated at each

value of n.

While it is possible to average over assurances in this case, it is not always possible to

average over the sample sizes. The curve with a best estimate of 0.2 in Figure A.13 has a

maximum assurance lower than the other curves. If the chosen assurance cutoff is above

this maximum, for example at a value of 0.8, then the average cannot be calculated as

there will not be a sample size to be calculated for this curve.

This chosen set of prior distributions further demonstrates how aggregating the prior

distributions in the calculation is a more sensible option. Furthermore, it can be the case

that some assurance curves will not reach the required assurance to calculate a sample

size at all, and thus individual sample sizes could not be aggregated.

While we have shown the benefit of aggregating the prior, rather than the assurance

value, it is also important to consider the use of an individual expert’s assurance curve.

The individual assurance curves should contain the aggregated assurance curve between

them, and so they could be used as a boundaries. As the curve represent what different

expert’s believe, and assurance value within their range for a given value of n could be

considered more reasonable than those values outside it.
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