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Abstract 

Graphene’s exceptional physical and mechanical properties make it an excellent 

nanomaterial for MEMS/NEMS devices with wide reaching applications. This 

thesis explores graphene as a nanomaterial, its use in mass sensing applications 

and the suitability of existing theoretical models to describe its behaviour as a 

rectangular resonator. Several local and nonlocal continuum models have been 

proposed in literature for the vibration analysis of graphene resonators. But with 

very little experimental data to validate these theoretical models, most of the 

solutions employed to solve these models compare their results with results from 

other theoretical models, leading to doubts about their validity and accuracy. In 

addition to providing a guide for determining the suitable theoretical model for 

different sized rectangular graphene resonators, this work establishes that a 

small-scale parameter 𝑒0𝑎 of any value between 0 and 2 needs to be 

incorporated in any local continuum modelled applied to micro-sized graphene 

sheets to avoid overestimation of the frequency of the sheets. A fabrication route 

for NEMS and MEMS devices with rectangular graphene resonators up to 32 𝜇𝑚 

by 7 𝜇𝑚 is also developed with the provision for magnetomotive actuation via 

Lorentz force with possible capacitive readout capabilities. This is important as 

the use of graphene in MEMS/NEMS is being hurriedly transitioned from the 

Research space to the marketplace. 
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Chapter 1: Introduction 

 

In recent times, biosensor technologies have become widely applicable in health 

diagnostics, biochemical analyses, environmental monitoring, forensics, and food 

quality control. A boost in the development of a variety of Point of Care (POC) 

diagnostic devices in the past decade is an indication of the increased interest in 

biosensor technologies, especially for clinical analysis and diagnosis of diseases, 

with the integration of molecular diagnostics with POC testing being the fastest 

growing area2. Biosensors, as reported in literature, are classified based on 

either the device’s transduction method, for example as electrochemical, 

mechanical, piezoelectric, optical or calorimetric biosensors3; or the type of bio-

recognition element used, for example as enzyme, immuno-, nucleic acid probe 

sensors, or as cell-, tissue- or organelle-based sensors4. These devices have 

been used for the detection and quantification of various biomolecules of clinical 

interest, including; prostate specific antigen (PSA)5-7, carcinoembryonic antigen 

(CEA)7, 8, glucose9, 10, Hepatitis B surface antigen (HBsAg)11, 12, and Cardiac 

troponin T & I13, 14, among others. Critical to the success of any biosensor are 

issues bordering around the intrinsic device performance as well as the 

performance of the overall system. These issues include; the complexity of their 

fabrication and system integration, ease of biofunctionalization and potential for 

multiplexing, the balance between sensitivity and the frequency of false positives, 

device robustness, shelf life and adaptability for mass production15. 

As biosensor devices scale down in physical size, the prospects of improving the 

intrinsic device performance scale up. Recent advances in micro- and 

nanofabrication technologies have greatly aided the development of micro- and 

nanoelectromechanical biosensors with nano-sized moving parts. The 

exploitation of nanomaterials in the development of these technologies provides a 

path towards achieving rapid and accurate results, higher sensitivities, portability, 

ease of use, and affordability; and the possibility of simultaneous multiplex 

detection of biomolecules/biomarkers. Gold nanoparticles, magnetic 

nanoparticles, carbon nanotubes and graphene lead the chart of nanomaterials 

being used in biosensor technologies today. Graphene’s emergence as a 

nanomaterial16, opened up a whole new world of possibilities in the use of 
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nanomaterials in biosensors, because of its exceptional physical, electrical, 

chemical and mechanical properties. However, these exciting properties are 

greatly inhibited by the presence of strong impurity, and other factors such as, 

interactions with the underlying substrates used to support it, especially SiO2, 

surface charge traps, interfacial phonons, substrate stabilized ripples, and 

fabrication residues on or under the graphene sheet17-19. 

Synthesis of graphene by mechanical exfoliation so far yields the best graphene 

quality there is. This technique, which was first used to isolate graphene in 2004, 

involves peeling off fragments from highly-ordered pyrolytic graphite (HOPG) 

repeatedly until graphene is isolated16. Though simple and straightforward, the 

technique requires utmost care where monolayer graphene is to be produced and 

is unsuitable for high throughput and large volume fabrication of graphene. 

Currently, graphene is mostly produced commercially by Chemical Vapour 

Deposition (CVD), which yields a relatively high quality of graphene, and involves 

growing large scale graphene films by passing a hydrocarbon gas over a metallic 

substrate (usually Ni or Cu) heated to about 1000 0C20, 21. Other methods used in 

the production of graphene include; reduction of graphene oxide22, the epitaxial 

growth of graphene on heated silicon carbide23, and the chemical synthesis from 

reactive precursor compounds24. 

Since its debut as a nanomaterial, graphene and its derivatives have been used 

in the design of a number of micro- and nanoelectromechanical systems 

(MEMS/NEMS) devices, including cantilever beams for nano switches25, FETs 

that detect pH and protein adsorption26, radio frequency switches27, pressure 

sensors28, hall sensors29, gas detectors30-34, DNA sequencers/biosensors35-38, 

and sensors that detect biomarkers employed for various diseases39-43. Owing to 

its exceptional mechanical properties and low mass density, graphene promises 

to be an excellent material for resonance-based NEMS devices used for mass 

and force sensing. In current mass and force sensing technology, the accreted 

mass of the target biomolecule represents only a small portion of the effective 

mass of the system. With graphene’s low mass density, and the possibility of 

nanoscale sizing, the accreted biological mass significantly contributes to the 

effective system mass, and presents the possibility of achieving attogram 

sensitivity. 
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This project will aim to utilise the unique mechanical properties of graphene 

towards the development of ultra-sensitive mass biosensors. 

 

The project is defined by three (3) key objectives; 

• Determine appropriate fabrication routes for the manufacture of 

rectangular graphene resonators. 

• Establish analytical and/or numerical methods for the vibration 

analysis of graphene micro-resonators. 

• Fabricate, characterise and calibrate rectangular graphene micro-

resonators to ensure fitness of use in mass sensing applications. 

 

Chapter 1 provides the background and motivation for the work and outlines the 

objectives the study aims to achieve. Chapter 2 presents a survey of the relevant 

literature related to graphene, graphene-based devices and 

nanoelectromechanical devices. The mathematical and numerical models that 

represent the vibration of rectangular suspended structures are developed and 

presented in Chapter 3, whilst Chapter 4 presents the FEA modal analysis of 

rectangular graphene resonators. Chapter 5 details the work done in the design 

and fabrication of the graphene resonators and the mass sensing platform used 

in this study. Whilst in Chapter 6, the techniques used in characterizing the 

various aspects of the fabricated sensor are presented. Finally, Chapter 7 hosts 

general discussions and overview of the study, along with suggestions for future 

work and the conclusion. 
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Chapter 2: Literature Survey 

 

This section explores relevant literature on graphene as a nanomaterial and its 

modification and/or manipulation for use in biosensor applications. Graphene is 

first presented as a nanomaterial with discussions focusing on its lattice structure 

and phonon dispersion. Then some characterization techniques for graphene 

layers ranging from monolayer graphene up to few-layer graphene are presented. 

A few techniques for achieving free-standing graphene structures are explored 

with emphasis on transfer of CVD grown graphene onto pre-patterned substrates. 

Finally, some actuation and detection methods used in nanoelectromechanical 

(NEMS) systems are discussed. 

 

Thévenot et al.3 adopting the International Union of Pure and Applied Chemistry 

(IUPAC) definition of an electrochemical biosensor, define a biosensor as “an 

integrated  receptor-transducer device, which is capable of providing selective 

quantitative or semi-quantitative analytical information using a biological 

recognition element” retained in direct spatial contact with the transduction 

element. Simply put, biosensors measure the physicochemical changes that 

occur in a biological recognition layer attached to a solid transducer when it 

interacts with the targeted biomolecules called the target analyte. Biosensors 

should be clearly distinguished from bioanalytical systems, which require 

additional processing steps, such as reagent addition, or additional hardware.  

Biosensors are generically divided into 2 parts: a biological recognition system 

and a transduction system (Figure 2-1). The biological recognition system 

interacts directly with the test sample, and its main purpose is to identify or 

interact selectively with the analyte of interest. It converts information from the 

biochemical domain into a chemical or physical output signal by the changes in 

its physicochemical properties. The transduction system converts the output of 

the biological recognition system mostly to the electrical domain. Usually, a read-

out system or user interface is named as a third part of biosensors or as an 

indispensable addendum. This system converts the electrical signal from the 

transducer into analytical data, which is appropriately displayed. 
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Figure 2-1: Schematic representation of a biosensor4 

There are many different criteria used to categorize biosensors, viz. : size, 

transducer type, type of bio-recognition element, possibility of re-use, or the type 

of analytes or reactions they monitor. Most commonly, biosensors are broadly 

categorized based on their transducer type or type of bio-recognition element. 

Based on the transducer type, biosensors can be classified as electrochemical, 

mass sensitive (piezoelectric), optical and calorimetric (thermal) biosensors44. 

Based on the type of bio-recognition element, biosensors can broadly be 

classified as affinity-based or catalytic biosensors. The former includes 

immunosensors (antibody-based sensors), nucleic acid probe sensors, or 

biosensors based on molecularly imprinted polymers; the latter includes enzyme 

sensors, or cell-, tissue- or organelle-based biosensors45. 

 

Electrochemical biosensors are biosensors that employ electrochemical 

transduction methods in the detection or quantification of the analyte of interest. 

Their principle of detection is based on the changes in the electrical properties of 

the transducer element as it interacts with the analyte of interest via the biological 

recognition element. These changes are expected to be proportional to the 

concentration of the analyte and are interpreted by the calibrated read-out system 

to indicate the presence or the amount of the analyte. Based on the electrical 

properties being measured, electrochemical biosensors can be classified into 

amperometric, potentiometric, and impedimetric or conductomeric biosensors. 
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 Amperometric Biosensors 

Amperometric biosensors measure the change in electrical current resulting from 

the oxidation or reduction of an electroactive species. This is achieved by 

maintaining the potential of a working electrode at a fixed value relative to a 

reference electrode and monitoring the current flow as a function of time. The 

applied potential drives the electron transfer reaction of the electroactive species 

with the resulting current indicating the rate of the recognition reaction and is 

therefore proportional to the concentration of the target analyte. The working 

electrode used is critical to the success and sensitivity of the biosensor; working 

electrodes have a variety of shapes, for example, disk, fibre, microband, arrays, 

and interdigitated microbands44,  and some of the materials commonly used 

include, glassy carbon, carbon paste, platinum and gold46. Amperometric 

biosensors have been used to measure glucose, sialic acid; and detect Bacillus 

cereus and Mycobacterium smegmatis47, and hepatitis B surface antibody 

(HBsAb)12, among others. 

 Potentiometric Biosensors 

The principle of detection of potentiometric biosensors is based on the difference 

in potential caused by the accumulation of ions resulting from an enzyme reaction 

between two electrodes of an electrochemical cell, with no significant current 

flowing between them. In most cases, the first electrode is a reference electrode 

whose potential is known and maintained at a constant value and is made 

insensitive to the target analyte. While the second electrode is an indicator 

electrode, whose potential is dependent on the concentration of the target 

analyte, as it rapidly responds to changes in the activity of the target analyte ions. 

The potential difference between these two electrodes is proportional to the 

logarithm of the analyte ion activity44 or gas fugacity3. In other cases, both 

electrodes are reference electrodes separated by an ion-selective membrane, 

and they measure the difference in potential across the membrane. The 

electrodes used in potentiometric biosensors are either ion-selective electrodes 

(ISEs) or field-effect transistors (FETs) modified with layers containing 

ionophores to become ion-selective field-effect transistors (ISFETs). ISFETs 

could have layers modified by enzymes and are called enzyme field-effect 

transistors (ENFETs), or antibodies which would then be called immunological 

field-effect transistors (IMFETs). Examples of potentiometric biosensors include a 
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potentiometric sensor array for investigating the cytotoxicity of hydroquinone to 

cultured mammalian V79 cells48, and a creatinine-sensitive pH-ISFET49. 

 Impedimetric biosensors 

Impedimetric biosensors are based on the change in the resistive/conductive or 

capacitive properties of the sensing element in response to a small amplitude 

sinusoidal excitation signal. They detect the change in impedance or 

conductance of electrodes caused by the adsorption of the target analyte by 

receptors immobilized on the electrode surface. Guan et al.50 in their review of 

impedimetric biosensors, discussed these biosensors in groups categorized by 

the type of bio-recognition element used. Some examples of impedimetric 

biosensors from their review include: an enzyme based impedimetric biosensor 

for the detection of collagenase; an immune-binding based impedimetric 

biosensor for human mammary tumour associated glycoprotein; a nucleic acid-

based impedimetric biosensor for the monitoring of the hybridization reaction of a 

hepatitis B virus DNA; and a cell- and microorganism-based impedimetric 

biosensor for the detection of microorganisms in milk and dairy products. 

 

In optical biosensors, the principle of detection is based on changes in the optical 

characteristics (mostly optical absorption, reflection or luminescence) of the 

sensing element as a result of the presence of the target analyte. There are two 

main categories of optical biosensors: those that exploit the changes in the 

intrinsic optical properties of the bio-recognition element called label-free optical 

biosensors, and those that employ optical labels and probes of various kinds 

whose optical properties change as the bio-recognition element interacts with the 

target analyte. Optical biosensors can be grouped further into surface plasmon 

resonance (SPR), fluorescence, luminescence, absorption and reflection, and 

optical fibre biosensors; with SPR and fluorescence optical sensors being the 

most popular of the cohort. In SPR biosensors, a light wave excites a special 

mode of electromagnetic field or evanescent field and generates a surface 

plasma wave, which propagates along a thin metal film, between the film and a 

semi-infinite dielectric. A change in the refractive index in the vicinity of the metal 

surface due to bio-specific interactions occurring there results in a change in the 

velocity of the surface plasmon51. This change in velocity is detected by an 
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optical reader, usually by the variations in the intensity of a light wave reflected 

from the back of the metal film. The change in intensity of the reflected light 

wave, velocity of the surface plasmon wave or refractive index of the sensing 

surface is proportional to the mass of the target analyte adsorbed by the bio-

recognition element. SPR biosensors for detecting cardiac troponin T13 and β-

galactosidase52, among others have been reported. Fluorescence biosensors 

employ fluorescent labels or probes for signal generation; the parameters that are 

usually measured include the intensity, decay time, anisotropy, quenching 

efficiency, and luminescence energy transfer of the signal. 

 

Calorimetric biosensors are designed to measure the heat of the biochemical 

reaction between the target analyte and the bio-recognition molecules on the 

sensing surface. Many enzyme reactions with oxidases or hydrolytic enzymes 

result in significant enthalpy changes. These enthalpy changes are utilized in the 

detection or quantification of analytes. Calorimetric biosensors consist basically 

of temperature sensors (mostly thermistors) with bio-recognition molecules 

immobilized on them. The heat of the biochemical reaction, which is proportional 

to the molar enthalpy and the total number of molecules in the reaction4, is 

absorbed by the temperature sensor and results in a corresponding change in its 

temperature; and in the case of thermistors, the electrical resistance. The change 

in temperature, and consequently the resistance of the thermistor, is thus 

proportional to the analyte concentration. A major disadvantage with calorimetric 

biosensors is that all enthalpy changes, including those not initiated by the target 

biochemical reaction, contribute to the final output of the measurement process. 

The use of calorimetry in the analysis of food and cosmetics has been 

demonstrated by Antonelli et al.53 in the determination of L-malic acid 

concentration in some foods and cosmetic products. The concentration of 

ascorbic acid (vitamin C) has also been determined using calorimetric 

biosensors54. 

 

Mass sensitive biosensors encompass the family of mechanical systems (macro-, 

micro- and nanomechanical systems) that are capable of detecting the forces, 

motion, mechanical properties and masses that result from the biological 
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interactions between target analytes and bio-recognition systems. Mass sensitive 

biosensors can be broadly grouped into surface-stress biosensors and dynamic-

mode sensors. Surface-stress biosensors are based on the surface stress 

developed when the target biomolecules bind to the biorecognition molecules 

immobilized on the transducer surface, while dynamic-mode biosensors are 

based on the change in resonance frequency of the transducer when the target 

biomolecules bind. 

 Surface-stress Biosensors 

Surface-stress biosensors measure the quasistatic deflection of the transducer, 

usually a cantilever, caused by the binding of the target analyte to the bio-

recognition molecules immobilized on the surface of the transducer. Due to 

electrostatic repulsion or attraction, steric interactions, hydration and entropic 

effects involved in the binding event15, surface stress is developed which induces 

a deflection in the cantilever. The surface stress developed could either be 

positive or negative; when negative, it is referred to as compressive surface 

stress and induces surface expansion; when positive, it is referred to as tensile 

surface stress and induces surface contraction. Only one side of the cantilever 

surface is immobilized with the recognition molecules and is called the active 

side. The opposite side, called the passive side, must be made inert to the target 

biomolecule, and possibly blocked to avoid non-specific binding. The biological 

recognition event generates small amounts of surface stress, usually between 

0.001 – 0.01 Nm-1, which give rise to deflections measuring from a few 

nanometers to tens of nanometers. These deflections can be measured optically 

by reflecting a laser beam off the cantilever or electrically by employing 

piezoresistive detection methods. Optical detection methods are bulky but leave 

room for flexibility in the fabrication of the biosensors. With electrical methods, on 

the other hand, miniaturization of the device becomes achievable, though the 

complexities in fabrication are higher, with the imposition of major restrictions on 

the size, geometry and materials of the sensors. In operational modes, minute 

changes in refractive index, temperature and fluidic disturbances could cause 

false deflections in the cantilevers. These can be circumvented by employing 

differential measurements between cantilevers that have been functionalized and 

those that have been passivated, such that both sets are susceptible to the false 
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deflections, but only the functionalized cantilever deflects due to the binding of 

the target biomolecule. 

 Dynamic-mode Biosensors 

Dynamic-mode biosensors are based on the shift in resonance frequency of a 

resonator when its mass changes. The biosensor transducer or resonator is 

made to oscillate at a resonance frequency, and this frequency changes as the 

target biomolecules bind to the biorecognition molecules. Key to the success of 

dynamic-mode biosensors is the type of resonator used. Janshoff et al.55 

describes four major classes of piezoelectric resonators used in dynamic-mode 

sensors, based on their shapes and the propagation mode of the acoustic wave 

excited in them, viz. Thickness-Shear-Mode (TSM), Flexural-Plate-Wave (FPW), 

Surface-Acoustic-Wave (SAW), and Shear-Horizontal-Acoustic-Plate-Mode (SH-

APM) resonators (Figure 2-2).  

 

Figure 2-2: Schematic sketches of the four types of acoustic resonators (particle 

displacement - black arrow; wave propagation direction - open arrow)55 

Thickness-Shear-Mode (TSM) resonators or Quartz-Crystal Microbalances 

(QCM) are one of the most established techniques used in piezoelectric 

biosensors56. QCM devices consist of a thin disk of single piezoelectric quartz 

crystal, cut at an angle of 35.250 from the mother crystal (AT-cut)55. Metal 

electrodes deposited on each side of the disk, excite it to oscillate in shear mode. 
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Resonance is achieved when a sufficient AC voltage with a frequency close to 

the resonance frequency of the crystal is applied to the electrodes. Adsorption of 

a thin layer of the target analyte onto the crystal surface, changes its mass and 

consequently its resonance frequency. Typical QCMs have resonance 

frequencies in the order of MHz, which vary with the thickness of the crystal; the 

thinner the crystal, the higher the resonance frequency. Crystals with resonance 

frequencies of 5 MHz have corresponding thicknesses of ~330 µm56. QCM 

biosensors have been used to detect Bacillus anthracis57, Pseudomonas 

aeruginosa58, human α-thrombin protein59, and measure Immunoglobulin E (IgE) 

in human serum60, among others.  

SAW devices operate based on the Rayleigh wave propagation principle at solid 

thin-film boundaries. Rayleigh waves are surface-confined acoustic waves, 

resulting from the stress-free boundary of a solid, that propagate as coupled 

longitudinal and transversal waves. SAW devices generate and detect these 

waves using two interdigital transducers (IDTs) deposited on the surface of a 

piezoelectric crystal, one of which functions as the transmitter and the other as 

the receiver. This helps strongly confine the acoustic energy at the surface of the 

crystal in the range of the wavelength, irrespective of the thickness of the 

complete substrate61. Due to the confinement of the wave to the surface of the 

crystal, changes on the crystal surface, such as mass loading, viscosity and 

conductivity changes easily affect the wave. Frequencies of SAW resonators 

usually range from ~50 MHz to a few GHz62. SAW biosensors for detection of 

hepatocyte growth factor/scatter factor in serum63, Escherichia coli64, and for 

detecting antigen-antibody reactions65 have been reported. 

In APM devices, the acoustic wave is confined by multiple reflections between 

the upper and lower surfaces of the crystal, as it propagates between the 

transmitter and the receiver. Shear-Horizontal APM resonators are driven by 

horizontal shear waves to reduce their attenuation in liquid; the particles of the 

plate exhibit displacement components that are parallel to the surfaces and 

direction of propagation of the wave. Particle displacements that are 

perpendicular to the surfaces and direction of propagation interact more with the 

environment, leading to a higher loss of acoustic energy. APM devices for 

detecting antigen-antibody reactions66 have been reported. 
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FPW resonators are thin, rectangular membranes or plates which are only a few 

micrometres thick, most commonly made of silicon nitride embedded in a frame 

of silicon. These resonators can be excited by IDTs, electrostatically or by using 

magnetic transducers. When excited, a series of symmetric and antisymmetric 

plate waves can be generated, called Lamb waves. The velocity of which 

depends on the material of the plate and its thickness. With sufficiently thin 

plates, only the lowest modes of these two plate waves occur, with the phase 

velocity of the antisymmetric wave decreasing as the plate thickness decreases. 

This translates to FPW sensors having comparatively low resonance frequencies, 

in the range of 5 – 20 MHz67, an attractive feature for designing associated 

electronics. FPW biosensors have been used for the detection of human 

Immunoglobulin E antigen68 and Escherichia coli69 have been reported. 

In recent times, microcantilevers, and their slightly less popular doubly-clamped 

beam counterpart, have increasingly become central in dynamic mode 

biosensing. This is due to the high sensitivity, fast response and versatility of 

application they offer. Advancements in micro- and nanofabrication technologies 

have enabled the fabrication of these structures up to nanoscales, giving rise to 

the proliferation of micro- and nanomechanical biosensors with micron- or 

nanoscale cantilevers and doubly-clamped beams as resonators. 

To achieve ultrahigh mass sensitivity, two factors are important: the dimensions 

of the resonator and its quality factor, 𝑄. Resonators with high resonance 

frequencies are highly sought after in the quest to achieve higher sensor 

sensitivities. Achieving these frequencies with micron-scale resonators is only 

possible with foreshortened aspect ratios (𝑙 𝑤⁄  or 𝑙 𝑡⁄ ) of order unity. But with such 

aspect ratios, very high dynamic stiffnesses or spring constants are developed 

which could adversely affect: the attainable dynamic range, the ability to tune the 

devices with applied mechanical forces, the attainment of the highest quality 

factor, and the excitation levels required to induce nonlinear response from the 

resonator70. To optimize these characteristics, large aspect ratio resonators 

(achieved by reducing all dimensions to nanoscale) need to be used. As 

mentioned earlier, advances in micro- and nanofabrication technologies and 

techniques have made the fabrication of nanoscale structures relatively easy. 

Thus, achieving and maintaining a high 𝑄 becomes the major performance 
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limiting factor in many applications. Because biological interactions and 

processes occur in fluids, operating biosensors in situ, within the fluid, is simpler 

and immediate. However, 𝑄 is reduced due to viscous damping and 

consequently, the device sensitivity and mass resolution are adversely affected. 

Other sources of energy dissipation and reduction of 𝑄 include: clamping losses 

at the resonator supports and coupling losses mediated through the 

transducers70. To tackle the 𝑄 reduction problem, some detection techniques 

operate biosensors ex situ; with measurements taken in air or vacuum. In most of 

these methods, the detector is removed from the fluid, desiccated before 

measurements are taken in the desired media. The major limitation with this 

approach is that the sensor is highly susceptible to non-specific binding and 

contamination during and after the desiccation process. However, measurements 

in vacuum have achieved exquisite mass resolutions; attogram, zeptogram and 

yoctogram mass resolutions have been reported71-75. Some novel techniques for 

tackling the 𝑄 reduction problem include suspended microchannel resonators 

(SMRs) and micropillar resonators. In SMRs, the sample aliquot is constrained in 

microchannels embedded in the cantilevers. The inside walls of the 

microchannels are functionalized to specifically interact with the target analyte. 

Antibody-antigen reactions with a sensitivity of 100 ng mL-1 has been reported76. 

 

Graphene is a thermodynamically stable 2D crystal with an exceptionally high 

crystal and electronic quality77. It consists of a hexagonal network of sp2-

hybridized carbon atoms held together by strong covalent bonds in a single layer. 

Each carbon atom forms three strong sigma-(σ) covalent bonds with three 

neighbouring carbon atoms in the basal plane. The covalent bonds are formed 

with the 3 electrons in the sp2 hybrid orbital, the fourth valence electron located in 

the 𝑃𝑧 orbital forms a pi-(𝜋) bond with the neighbouring atoms. This 𝜋 electron is 

delocalized and can move freely between all the bonded atoms. 

Graphene has been called the mother of all graphitic forms78, as it can be 

wrapped up to form 0-dimensional (0D) fullerenes, rolled into one-dimensional 

(1D) nanotubes or stacked up in layers to form three-dimensional (3D) graphite. 

The layers of graphene in graphite are weakly bond to each other by van der 

Waals forces with a lattice spacing of 𝑐 = 6.71Å between the layers79; two layer 
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stacking configurations are possible: ABAB also called Bernal stacking and 

ABCABC stacking. 

 

Figure 2-3: Graphene's honeycomb lattice structure. The building block for 0D 
fullerenes, 1D nanotubes and 3D graphite.78 

 

Graphene’s crystal structure is a spatially periodic repetition of a unit cell that 

contains the lattice points where the atoms sit. Graphene’s unit cell is a 

hexagonal Bravais lattice (Figure 2-4a), with six atoms arranged at the vertices of 

a hexagon and a seventh atom at the centre, and has lattice vectors, 𝒂1 and 𝒂2. 

A repetitive translational operation of the unit cell by the lattice vectors will yield 

all the lattice points in the crystal structure. There are two types of carbon atoms 

in graphene’s lattice, atoms 𝐴 and 𝐵 (Figure 2-4b). Each 𝐴 atom has 3 𝐵 atoms 

surrounding it: one to the right of the atom, one at the upper left and another at 

the lower left. Conversely, each 𝐵 atom has 3 𝐴 atoms surrounding it: one to the 

left of the atom, one at the upper right and one at the lower right. For every atom, 

the three nearest-neighbour vectors are defined as 𝜹𝟏, 𝜹𝟐 and 𝜹𝟑.  

 

Figure 2-4: a) Bravais hexagonal lattice    b) Type A and Type B atoms80 

When the hexagonal network of atoms 𝐴 and 𝐵 in graphene is looked at, the 

hexagonal Bravais unit cell is not immediately seen, however, consideration of 

a

) 

b

) 
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only one type of atom does show the hexagonal Bravais unit cell with six lattice 

points at the corners of the hexagon and one in the middle (Figure 2-5a). A 

parallelogram-shaped primitive unit cell can also be defined with the lattice 

vectors 𝒂1 and 𝒂2 (Figure 2-5b and c) and contains two atoms, one each of atom 

types 𝐴 and 𝐵. This primitive unit cell is commonly used as graphene’s unit cell 

instead of the hexagonal Bravais unit cell. 

 

Figure 2-5: a) Hexagonal Bravais lattice in graphene b) & c) Primitive unit cell in 
graphene (modified from80) 

Graphene’s k-space or reciprocal space is gotten by taking the Fourier transform 

of the real space, which results in a set of periodically arranged points called the 

reciprocal lattice points. The reciprocal lattice is simply a rotation of the Bravais 

lattice by 90 degrees. The primitive unit cell in the k-space is defined by the 

lattice vectors 𝒃1 and 𝒃2. The hexagon in Figure 2-6b defines the Brillouin zone 

and shows some of the high symmetry points: the zone centre, Γ, the 𝑀 point in 

the middle of the hexagonal side, and the 𝐾 and 𝐾′ points at the corners of the 

hexagon. The 𝐾 and 𝐾′ points are inequivalent since they are not connected by 

the lattice vectors of the reciprocal lattice, so a 𝐾 point cannot be translated 

along the lattice vector to a 𝐾′ point. The six corners of the Brillouin zone are 

called the Dirac points, at which points, graphene exhibits an unusual linear 

dispersion of the π–band. Figure 2-6c shows graphene’s electronic band 

structure, with the Dirac points. 

 

𝑎1 𝑎2 

𝑎1 

𝑎2 

a) b) c) 

a) b) 
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Figure 2-6: Graphene's a) real space b) reciprocal or k-space c) electronic band 
structure; insert - Dirac point80 

 

Since graphene’s primitive unit cell contains two atoms, there are six phonon 

dispersion bands that describe its phonon dispersion: iLO, iTO, oTO, iLA, iTA and 

oTA phonon branches (Figure 2-7). Three of these branches are acoustic 

branches (denoted by the letter A) and three are optic branches (denoted by the 

letter O). For two acoustic and two optic phonon branches, the vibrations of the 

atoms are parallel to the graphene plane, so they are the in-plane modes 

(denoted by the letter i). For the remaining one acoustic and one optic phonon 

branch, the atomic vibrations are perpendicular to the graphene plane, and are 

the out-of-plane modes (denoted by the letter o). The phonon branches are also 

classified as longitudinal (denoted by the letter L) or transverse (T) depending on 

whether the direction of the vibrations are parallel with or perpendicular to the A-

B carbon-carbon directions, respectively. The iLO and iTO optic modes are 

degenerate at the zone-center (Γ point) and are Raman active modes81. 

 

Figure 2-7: Phonon dispersion of graphene81 

c) 
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Graphene is probably the highest trending material of the decade with the 

amazing properties it possesses. These properties include extremely high charge 

mobility, excellent electrical and thermal conductivity, exceptional mechanical 

properties such as its very high strength and mechanical compliance. Table 2-1 

gives a summary of the properties of graphene. 

Physical 

 Dimension Appearance 
State @ Room 
Temperature 

Density82 

 2D 
Thickness: 
~0.335 nm83 

Transparent for 
monolayer 
graphene. 

Absorbs 2.3% of 
incident white 

light84. 

Solid 𝜌 ≈ 2200  
𝑘𝑔/𝑚3 

Mechanical 

 
Young’s 
Modulus 

Strength 
Poisson’s 
ratio85, 86 

Specific 
surface area87 

Monolayer 𝐸 = 1 ± 0.1 
𝑇𝑃𝑎86; 

 𝜐 = 0.165 2600 𝑚
2

𝑔⁄  

Bilayer 𝐸 = 1.04 𝐓𝐏𝐚83 𝜎 = 126 𝐺𝑃𝑎83  
Trilayer 𝐸 = 0.98 𝑇𝑃𝑎83 𝜎 = 101 𝐺𝑃𝑎83  

Electrical/Electronic 

 
Charge 

mobilities88 
Dirac Fermions 

Quantum Hall 
Effect 

Minimum Hall 
conductivity87 

 200,000 
𝑐𝑚2 𝑉𝑠⁄  at 

carrier density 
of 2 × 1011 
𝑐𝑚−2 

  
 

~4𝑒2
ℎ⁄  

Thermal 
 Thermal conductivity   

 ~4840 ± 440 to 5300 ± 480 
𝑊 𝑚𝐾⁄ 89 

  

Table 2-1: Summary of graphene's properties 

 

 

Images of monolayer, bilayer, trilayer, and few layer graphene can be obtained 

using a number of techniques/equipment, including optical microscopes, 

scanning electron microscopy (SEM), atomic force microscopy (AFM), 

transmission electron microscopy (TEM), and helium ion microscopy (HIM). The 

resolution of these techniques varies significantly and play a major role in the 

success of the imaging process. Though optical microscopes have the lowest 

resolution, they were widely used after the discovery of graphene to image 

multilayer graphene since they are cheap and readily available in laboratories. 

Monolayer graphene being a transparent material is usually difficult to image, 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwji9KGBm8baAhUHvhQKHWq7AloQjRx6BAgAEAU&url=https://maxrohde.com/2013/02/19/a-beautiful-black-tick/&psig=AOvVaw3TtBJPJrMHnvxjIZ0-vvyy&ust=1524222918135064
https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwji9KGBm8baAhUHvhQKHWq7AloQjRx6BAgAEAU&url=https://maxrohde.com/2013/02/19/a-beautiful-black-tick/&psig=AOvVaw3TtBJPJrMHnvxjIZ0-vvyy&ust=1524222918135064
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even with very good resolution techniques like the SEM. Over the years, 

substrates have been designed to enhance the visibility of thin sheets for good 

contrast imaging. SiO2 is commonly overlaid on silicon to enhance the contrast of 

graphene layers for imaging, alternatively, Si3N4 is used. 

Other factors that influence the contrast of graphene images are the wavelength 

of the incident light and the thickness of the SiO2 layer. It has been shown that on 

300 nm SiO2, thick and thin sheets of graphene are visible under green light 

illumination, and invisible under blue light. On 200 nm SiO2 under blue light 

graphene sheets are visible but are invisible under green light. Under normal 

white light on a 200 nm SiO2, graphene sheets are invisible and are barely visible 

on 300 nm SiO2
90. Figure 2-8 shows a colour plot for the expected contrast of 

graphene on SiO2/Si wafers as a function of SiO2 thickness and the wavelength 

of the incident light. For very high contrast imaging of graphene sheets, SiO2 with 

thicknesses ~90 nm and ~280 nm used under green light are most appropriate. 

Green light is the preferred illumination light since it is the most comfortable for 

the eyes. 

 

Figure 2-8: Colour plot of contrast as function of wavelength and SiO2 thickness. 
Colour scale on right shows the expected contrast90. 

 Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) is a non-destructive characterization 

technique that uses a focused beam of high-energy electrons to generate 

information about the external morphology, chemical composition, and crystalline 

structure of a solid sample. The accelerated electrons upon collision with the 

sample, decelerate and dissipate energy in form of secondary electrons, 

backscattered electrons, diffracted backscattered electrons, photons, visible light 
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and heat91. The secondary electrons and backscattered electrons are used to 

produce high resolution images; the diffracted backscattered electrons are used 

to determine the crystal structure and orientations of minerals; and the photons 

are used for elemental analysis to determine the elements present in the sample. 

Scanning electron microscopes are made up of the following components: an 

electron source or gun, electron lenses, sample stage, detectors for all signals of 

interest, display/data output devices and other infrastructure requirements, such 

as power supply, a vacuum system, cooling system, vibration free floor, and a 

room free of ambient magnetic and electric fields91. 

 Atomic force microscopy (AFM) 

Atomic force microscopy (AFM) is a nanolevel imaging technique that generates 

images almost at an atomic resolution level by measuring the contour of the 

sample. Atomic force microscopes have an ultra-small probe tip (about 100 – 200 

𝜇𝑚 long and 20 – 60 𝑛𝑚 radius of curvature)92 at the end of a cantilever-type 

spring, with which they measure the contour of the sample by measuring the 

forces or the interactions between the probe tip and the sample surface. The 

cantilever deflects in response to the force between the probe tip and the sample 

and thus quantifies the force. Images are created by scanning the sample relative 

to the probing tip, with the force value varying with the difference in surface 

height of the sample. A laser beam reflects off the top of the cantilever towards a 

position sensitive photodetector, which detects the bend and calculates the actual 

position of the cantilever. Typical forces between the probing tip and the sample 

range from 10−11 to 10−6 𝑁, with atomic interactions between two covalently 

bonded atoms at an order of 10−9 𝑁 non-destructive imaging is possible93. 

AFM can be operated in three modes: contact, non-contact and tapping modes. 

The contact mode involves a sideways scanning by the probe tip over the sample 

surface, in such a way that the distance between the tip and the sample surface 

is less than a few angstroms (Å). The tip contacts the sample surface softly and is 

traced across the sample. The non-contact mode is operated with the probe tip 

several tens to hundreds of angstroms away from the sample surface, thereby 

experiencing an attractive van der Waals force. The cantilever oscillates above 

the sample surface at a frequency larger than its resonance frequency and with a 

small amplitude during the scanning process and results in a more sensitive 



Chapter 2: Literature Survey              F.G. Unom 

20 

 

imaging mode. In the tapping or intermittent contact mode, the cantilever 

oscillates vertically at or slightly below its resonance frequency, so that its tip 

alternately contacts and lifts off the sample surface, with an amplitude ranging 

from 20 𝑛𝑚 to 100 𝑛𝑚. This mode is most preferred for high resolution imaging of 

subcellular structures92. 

AFM imaging can be used to determine the layer thickness of graphene, but this 

can be a cumbersome process for imaging large areas of graphene.  

 Transmission electron microscopy (TEM) 

Transmission electron microscopy (TEM) is an atomic scale resolution imaging 

technique that uses high energy electrons, accelerated to nearly the speed of 

light. When the transmitted electron beam is made to pass through an ultra-thin 

sample, electrons get scattered. And are focused via a sophisticated system of 

electromagnetic lenses into an image, a diffraction pattern, or a nano-anlytical 

spectrum, depending on the mode of operation. TEM imaging generates images 

with highly magnified views of the micro and nanostructure of the sample, and 

can provide a direct map of the atomic arrangements in the sample when used in 

the high resolution mode. Figure 2-9 shows TEM images of monolayer and 

bilayer graphene which show the atomic arrangement of the carbon atoms. In the 

diffraction mode, TEM displays accurate information about the local crystal 

structure of the sample. And the nano-analytical mode provides information about 

the elements present in the volume of the sample. 

            

Figure 2-9: TEM images of a) monolayer graphene b) bilayer graphene c) monolayer 
and bilayer graphene with superimposed hexagonal lattice structure 87 

 

Raman spectroscopy is a very powerful non-contact technique for the 

characterization of materials. It provides useful information about the material 
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through the inelastic scattering of monochromatic light, as the light interacts with 

the molecular vibrations or phonons in the material. When monochromatic light is 

incident upon a sample, it may be reflected, absorbed or scattered. The atoms or 

molecules of the sample absorb the energy of the incident photons and get 

excited to virtual energy states. When this happens, the excited molecules can 

relax back to lower energy states and emit photons in three possible ways. First, 

the molecules get excited from the ground state to a virtual state and relax back 

to the ground state in an elastic process, releasing a photon of equal energy and 

wavelength as the incident photon. This is called Rayleigh scattering and 

accounts for majority of the scattered light. Second, the molecules get excited 

from the ground state, but relax back to a real phonon state in an inelastic 

process, emitting a photon with less energy and longer wavelength than the 

incident photon. This is one of the Raman scattering called a Stokes scatter.  The 

third scatter possibility occurs with molecules that are already in an excited real 

phonon state, they get excited to a higher virtual energy state and then relax 

back to the ground state, releasing a photon with more energy and shorter 

wavelength than the incident photon. This is the second type of Raman scattering 

called an Anti-Stokes scatter. Jablonski’s diagram in Figure 2-10 shows these 

scatterings. 

 

Figure 2-10: Jablonski energy diagram showing Rayleigh and Raman scattering 94 

At room temperature, most molecules will be found in the ground state, as a 

result, Stokes scattering has been found to be the stronger of the two Raman 

scattering; with Raman scattering accounting for only a very small fraction, about 

1 × 10−7, of all the scattered light 94. The change in wavelength of the scattered 

light is what provides information on the chemical and structural nature of the 

material. 
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Raman spectroscopy has been shown to be one of the most powerful and most 

important characterization techniques for carbon materials, including graphene. It 

has been used to estimate compressive and tensile strain in graphene95, 

determine its thermal conductivity89, provide detailed information about its band 

structure96, 97, and identify the number of layers it has98. 

 Single layer graphene 

The two most prominent features in the Raman spectra of defect-free graphite 

and monolayer graphene are the G band at ~1580 𝑐𝑚−1 and the G' or 2D band at 

~2700 cm-1. Another feature, the D band at ~1350 𝑐𝑚−1, is also seen in defected 

graphite and graphene. The G band is as a result of the doubly degenerate (iTO 

and iLO) E2g phonon modes at the Brillouin zone center. It is the only band in the 

Raman spectra of graphene that results from a normal first order Raman 

scattering process. The D and 2D bands, on the other hand, are second order 

Raman scattering processes, with two in-elastic scatterings involving two iTO 

phonons near the 𝐾 point for the 2D band, while the D band consists of one 

elastic defect-induced and one in-elastic iTO phonon scattering. These processes 

are double resonance processes as the wave-vectors 𝒒 of the phonons involved 

with the D and 2D bands couple preferentially to electronic states with wave-

vectors 𝒌, in such a way that 𝒒 ≃ 2𝑘. This double resonance process accounts for 

the dispersive behaviour exhibited by the D and 2D bands, where their 

frequencies in the Raman spectra change as the energy of the laser 𝐸𝑙𝑎𝑠𝑒𝑟 

changes. The D band and 2D band frequencies upshift linearly with increasing 

𝐸𝑙𝑎𝑠𝑒𝑟 with dispersions of 53 𝑐𝑚−1𝑒𝑉−1 and 106 𝑐𝑚−1𝑒𝑉−1 respectively99. 

 
Figure 2-11: Comparison of Raman spectra for graphene and graphite @ 514 nm98 
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Figure 2-11 compares the Raman spectra of bulk graphite and graphene. The 

shape and intensity of the 2D band for monolayer graphene is significantly 

different from graphite’s. The 2D band for monolayer graphene exhibits a single 

sharp peak, which can be described as a Lorentzian feature with a full width at 

half maximum (FWHM) of ~24 𝑐𝑚−1 81, while the 2D band for highly oriented 

pyrolitic graphite (HOPG) is made up of two peaks, 2D1 and 2D2, which are ~1/4 

and ~1/2 the intensity of HOPG’s G band98. Graphene’s 2D band position is red 

shifted by ~5 𝑐𝑚−1 and ~35 𝑐𝑚−1 with respect to graphite’s 2D1 and 2D2 positions 

which appear at 2690 𝑐𝑚−1 and 2720 𝑐𝑚−1 respectively100. The G bands for 

graphene and HOPG are very similar in shape, with graphene’s G band position 

blue shifted by 3 – 10 𝑐𝑚−1 from graphite’s G position98, 100. For monolayer 

graphene, the 2D band intensity, I(2D), is larger than the G band intensity, I(G);  

which is the converse case for graphite. The I(G)/I(2D) intensity ratio is ~0.24 for 

monolayer graphene and ~ 3.2 for HOPG100. The large intensity of the 2D band in 

monolayer graphene can be explained by a triple resonance process81. 

Second-order double resonance Raman Scattering 

The defect-induced or two-phonon double resonance process consists of four 

steps (Figure 2-12): (1) a laser-induced excitation of an electron-hole pair, where 

an electron in the valence band around 𝐾 with a wave-vector 𝒌 is excited to the 

conduction band by absorbing a photon of energy 𝐸𝑙𝑎𝑠𝑒𝑟, (2) an electron-phonon 

scattering, where the excited electron is then in-elastically scattered by a phonon 

or elastically scattered by a defect of wave-vector 𝒒 to a point on a contour, with 

wave-vector 𝒌 +  𝒒, in the conduction band around the 𝐾′ point, (3) an electron-

phonon scattering, where the electron is in-elastically scattered by a phonon with 

wave-vector –𝒒 back to a 𝒌 state in the conduction band around K, and (4) an 

electron-hole recombination, where the excited electron is recombined with a 

hole in the valence band and emits a photon. The double resonance condition is 

only achieved when the two electron-phonon scatterings satisfy energy-

momentum conservation for the two intermediate states. Two resonance 

conditions for the three scattering events need to be satisfied: the intermediate 

𝒌 +  𝒒 state is always a real electronic state, and either the initial or the final 𝒌 

state is a real electronic state. 
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Figure 2-12: Double resonance processes a) defect-induced scattering  b) two-phonon 
scattering81 

The electronic structure of graphene is linear in wave vector 𝒌 near the Dirac 

points. When 𝐸𝑙𝑎𝑠𝑒𝑟 increases, the resonance 𝒌 vector for the electron moves 

away from the 𝐾 point, correspondingly, the 𝒒 vector associated with the 

resonance 𝒌 vector in the double resonance process increases with increasing 𝒌, 

measured from the 𝐾 point99. This effect is what gives rise to the dispersive 

behaviour of the D and 2D bands. 

Triple resonance Raman scattering 

The triple resonance process, like the double resonance process, involves four 

steps. However, in the third step, instead of the electron being scattered back by 

a phonon with wave-vector –𝒒, the hole in the valence band near 𝐾 is scattered 

by a phonon with wave vector +𝒒 (Figure 2-13). And the electron recombines 

with the hole in the conduction band near 𝐾′ in the fourth step. In the triple 

resonance process, the electron-hole generation is a resonant process, in which 

both the electron and hole scattering processes are resonant, and the electron-

hole recombination is between an electron and a hole in resonance states. 

Meaning that all steps in the usual double resonance process become resonant 

in the triple resonance process. This triple resonance condition might explain why 

the intensity of the 2D band in monolayer graphene is larger than the G band81. 

 

Figure 2-13: Triple resonance process81 

a) b

) 
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 Bilayer and trilayer graphene 

The electronic band structures for bilayer and trilayer graphene with AB layer 

stacking have the electronic bands near the Fermi level split into two and three 

energy bands respectively. The electronic band structure for bilayer graphene 

has two split parabolic bands in the valence and conduction bands with a 

degeneracy at the 𝐾 and 𝐾′ point, while that for trilayer graphene has two linear 𝑘 

bands between the two convex parabolic conduction bands and the two concave 

parabolic valence bands (Figure 2-14). Generally, for any multi-layer graphene, 

the electronic band structure near the Fermi level depends on the number of 

layers 𝑛: if n is odd, the band structure will have two linear bands between 𝑛 –  1 

convex parabolic conduction bands and 𝑛 –  1 concave parabolic valence bands; 

and if 𝑛 is even, the electronic band structure will have 2𝑛 parabolic bands101. 

Because of the split energy bands, for a given 𝐸𝑙𝑎𝑠𝑒𝑟, there will be different 𝒒 

wave-vectors, since the 𝒌 states for the optical transitions are different for the 

different energy bands. 

             

Figure 2-14: Electronic band structure for a) bilayer graphene  b) trilayer graphene 101 

Due to the split bands, there are two and three energy contours in the conduction 

band near the 𝐾 and 𝐾′ points for bilayer and trilayer graphene respectively. As a 

result, there are four and nine possible electron-phonon scattering processes for 

bilayer and trilayer graphene respectively. For bilayer graphene, these four 

different processes contribute to the 2D band shape and intensity, and are 

represented by four Lorentzian features. Figure 2-15 shows the 2D Raman band 

for bilayer graphene fitted with four Lorentzians. Theoretically, with the valence 

and conductance bands being mirror images of each another, two of the four 

a) b) 
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processes are degenerate and the 2D band would be fitted with three Lorentzian 

features. However, four Lorentzian features give a better fit experimentally, which 

is an indication of the asymmetries between the valence and conductance bands 

in bilayer graphene81. 

 

Figure 2-15: 2D Raman band spectra for bilayer graphene fitted with four 
Lorentzians81 

For trilayer graphene, the nine optical processes contribute to the 2D band 

shape, however, with four of the processes being degenerate, only five 

Lorentzians are fitted to the 2D band shape101. Experimentally, a minimum of six 

Lorentzians with a FWHM of ~24 𝑐𝑚−1 are needed to ensure a good fit for trilayer 

graphene81. Figure 2-16 shows the 2D Raman spectra for trilayer graphene fitted 

with six Lorentzians. 

 

Figure 2-16: 2D Raman spectra for trilayer graphene81 

The 2D band continues to evolve with increasing graphene layers, its band shape 

and position can be used as good fingerprints to identify monolayer and bilayer 

graphene from other multi-layered graphene100. With monolayer graphene having 

a single Lorentzian fit to its 2D band, bilayer graphene having four Lorentzian 

features, up to graphite having two Lorentzian features. 
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Figure 2-17: Evolution of 2D band with number of graphene layers81, 100 

 Raman Spectra of graphene on different substrates 

A huge percentage of the work done with graphene is carried out on SiO2/Si 

substrates. Charge impurities on SiO2/Si substrates with defects influence the 

position of the G band of monolayer graphene. This influence is shown in the 

finite blue shift of the G band by ~5 – 7 𝑐𝑚−1 with respect to bulk graphite. In 

contrast to this blue shift on SiO2/Si substrates, there is a red shift of the G band 

of monolayer and few layer graphene on indium tin oxide (ITO) by ~6 𝑐𝑚−1 with 

respect to bulk graphite. A large softening of about 20 𝑐𝑚−1 in the 2D band of 

monolayer and few layer graphene on ITO as compared to SiO2
 is also reported. 

Even though the origin of the red shift is yet to be fully understood, the lowering 

of the frequencies imply that the unit cell constant of the graphene layer is 

enlarged when deposited on the ITO substrate100. 

 

Apart from the disadvantage that graphene’s interaction with an underlying 

supporting substrate decreases its high mobility due to scattering and negatively 

affects other properties, the principles of operation of micro- and nanomechanical 

graphene-based devices (as surface-stress or resonance devices) require 

graphene to be suspended. A freely suspended graphene layer without contact to 

any supporting substrate remains the ultimate truly two-dimensional system. 
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Suspension of graphene is achieved in two ways: etching away of the underlying 

substrate after graphene transfer or transfer of graphene to pre-patterned 

substrates. The former requires the transfer of graphene to, and in many cases 

the pre-patterning of the graphene on, an unpatterned substrate before etching 

away the underlying substrate. Though very successful, this method exposes 

graphene to harsh etching chemicals, which potentially damage the graphene. 

The methods utilized in transferring graphene to substrates heavily depend on 

how graphene was synthesized. With mechanically exfoliated graphene, 

transferring graphene to the substrate of choice is part of the synthesis process. 

Commercially available graphene are CVD graphene grown on copper (Cu). To 

transfer graphene to the desired substrate, the copper has to be separated from 

it. This is done in a number of ways, including wet etching102, electrochemical 

delamination103, soak and peel104, transfer printing (PDMS stamp)105, thermal 

release tape1 and wet transfer methods1. 

 Wet etching 

To transfer graphene from copper to a desired substrate using the wet etching 

method, a protective polymeric coating of Polydimethylsiloxane (PDMS) or 

Polymethylmethacrylate (PMMA) is first deposited on the graphene/Cu sample. 

Then the underlying copper is etched in an etching bath with iron chloride (FeCl3 

in HCl/H2O (1𝑀 – 5𝑀)) by immersing the PMMA/graphene/Cu or 

PDMS/graphene/Cu in the iron chloride, until a free-standing PMMA/graphene or 

PDMS/graphene membrane is seen floating in the solution. The 

polymer/graphene can then be fished out and placed on the desired substrate, 

with graphene contacting the substrate. After the transfer process is completed, 

the polymer is then removed by etching with acetone.  

Other chemicals that can be used to etch copper include; HCl, HNO3, Fe(NO3)3 in 

H2O and (NH4)2SO8. FeCl3 is the widely preferred option because it slowly and 

effectively etches away the copper without forming gaseous products or 

precipitates. Etching with HCl releases corrosive vapour and the etching rate is 

very slow. HNO3
 forms H2 bubbles which cause cracking in the graphene sheet, 

and the HNO3 itself degrades the carbon sp2 network. 
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 Electrochemical delamination 

The electrochemical delamination transfer process is a non-destructive and 

highly efficient way of transferring graphene from copper to the desired substrate. 

In this method, PMMA is first spin-coated onto the graphene/Cu sample, as is 

done in the wet etching method. Then a direct current voltage is applied to the 

PMMA/graphene/Cu cathode and a glassy carbon anode in an electrolytic cell 

with a solution of K2S2O8 (0.05 𝑚𝑀) as the electrolyte (Figure 2-18). With the 

graphene/Cu electrode polarized, reduction of water begins to take place at the 

graphene/Cu interface, and H2 gas is produced. The force from the H2 bubbles 

gently detaches the graphene film from the Cu foil beginning at its edges. As 

graphene gets detached from the Cu foil, the hydroxyl ions produced from the 

water reduction process precipitate CuO and Cu2O on the Cu foil, thereby 

passivating the Cu from further chemical etching.  

 

Figure 2-18: Electrochemical delamination of graphene from Cu foil103. 

The PMMA/graphene can then be transferred to the desired substrate and the 

PMMA dissolved with acetone. 

 Soak and Peel 

The soak and peel method takes advantage of the capability of deionized water 

to penetrate nanoscale hydrophobic-hydrophilic interfaces and separate them to 

delaminate graphene from metal substrates. With chemical etchants phased out, 

cleaner graphene with improved properties is obtained. In this method also, the 

graphene film is first coated with PMMA, kapton tape is additionally stuck on the 

PMMA to avoid crumpling of the PMMA after delamination. The 

kapton/PMMA/graphene/Cu is then immersed in deionized water maintained at 

900C for 2 hours. The kapton tape (together with the PMMA and graphene) is 
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then peeled off from the Cu foil and transferred to the desired substrate. To aid 

adhesion between graphene and the substrate, the 

kapton/PMMA/graphene/substrate is heated for 40 minutes at 1400C and allowed 

to cool for 20 minutes. The kapton tape is removed and from the stack and 

PMMA dissolved in acetone. 

 

Figure 2-19: Soak and peel delamination method104. 

 Transfer printing 

Transfer printing is a dry graphene transfer technique suitable for transferring 

large areas of graphene to pre-patterned substrates. To avoid wet processing of 

graphene after transfer to the substrate, the graphene is patterned to the desired 

shapes and sizes while still on the Cu. The etched graphene is stripped from the 

Cu with the polymer N-methyl-2-pyrrolidone (NMP), with ammonium persulfate 

(APS) etchant and cellulose nitrate, and transferred to a 3 𝑚𝑚 thick PDMS 

stamp. The cellulose nitrate is then removed by immersing in acetonitrile for 2 

hours and air drying. The stamp with graphene is placed on the desired substrate 

and the stamp peeled off in a controlled low speed peeling process. This leaves 

the graphene suspended over the pre-patterned substrate. 

 Thermal release tape 

In this method, 200 𝑛𝑚 of PMMA is first spin-coated onto graphene/Cu sample, 

and thermal release tape is pressed onto the stack. The Cu is then etched in 

0.25𝑀 solution of sodium persulfate, and the release-tape/PMMA/graphene 

cleaned with HCl solution for 30 minutes and dried in N2 gas. Next the release-

tape/PMMA/graphene stack is pressed onto the pre-patterned substrate with 

graphene contacting it and heated to aid adhesion of the graphene to the 
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substrate. The whole stack is then heated to a temperature above the release 

temperature of the thermal release tape, and the tape is easily peeled off. Finally, 

the PMMA is dissolved in acetone for 2 hours. 

 Wet transfer method 

With the wet transfer method, as with the other methods, PMMA is spin-coated 

on the graphene/Cu as a supporting layer for the graphene. The Cu is etched 

away as in previous methods, and the PMMA/graphene stack is cleaned and left 

floating in deionized water. The desired substrate is then used to fish the 

PMMA/graphene directly out of the water with the graphene side of the stack 

contacting the substrate. The PMMA/graphene/substrate is then heated to dry the 

stack and aid the adhesion of the graphene to the substrate. The PMMA is 

removed using acetone as with previous methods leaving graphene on the 

substrate. 

Three of the six methods described here have been analysed and compared in 

terms of the yield and quality of free-standing graphene produced on a large 

scale1. The thermal release tape, transfer printing and wet transfer methods were 

used to transfer CVD grown graphene unto SiO2/Si substrates. The SiO2/Si 

substrates were pre-patterned with cavity arrays which had holes with diameters 

between 2 𝜇𝑚 and 10 𝜇𝑚. A total of 120 cavities on at least two different SiO2/Si 

wafers were analysed per method, to evaluate if the suspended graphene 

membranes were intact, partly intact, or completely damaged (Figure 2-20). 

For monolayer graphene, only the print transfer method produced intact free-

standing graphene membranes with a 2.7% yield. For bilayer graphene, the 

thermal release tape and wet transfer methods had intact graphene membranes 

with 5% and 16% yields respectively. 
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Figure 2-20: Yield comparison of three transfer methods for monolayer and bilayer 
graphene a) - b) Thermal release tape method   c) - d) Print transfer method   e) - f) 

Wet transfer method1 

 

Different graphene shapes and geometries are required in micro- and nano-

devices. Successful patterning of graphene is therefore key to the success of 

graphene-based micro- and nano-devices. Several patterning and structuring 

methods have been developed for micron- and nanoscale patterning of a wide 

range of materials, which are also applicable to graphene. Ultimately, a minimally 

invasive patterning method that ensures an intact graphene lattice structure after 

patterning needs to be identified or developed. 

Photolithography or UV lithography and focused ion beam (FIB) micromachining 

are among the most used methods for micro-patterning, from patterning of parts 

of a thin film to the bulk of substrates. Photolithography involves the use of a light 

sensitive material called a photoresist to selectively etch out portions of a solid 

sample or substrate. The photoresist covers the entire surface of the sample, and 

is selectively exposed to an intense beam of UV light. Depending on the type of 

resist used, the exposed or unexposed portions get dissolved in a developer, 

exposing portions of the sample that need to be etched away. After etching, the 

resist is removed leaving the patterned sample/substrate. FIB micromachining 

techniques involve the impingement of energized ions on the surface of the 
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sample. The ions lose their energy to the electrons and atoms of the substrate, 

causing sputtering of the neutral and ionized substrate atoms.         

 

Figure 2-21: Focused Ion Beam Milling a) bulk substrate106 b) ultra-thin film107 

 Micro- and nanoscale patterning has been achieved for supported and 

suspended graphene. With nanoscale patterning being the most challenging of 

the two. Electron-beam lithography (EBL) followed by reactive ion etching is the 

most common technique for nanoscale patterning of supported graphene. EBL 

patterned graphene structures like Hall bars108, nanoribbons109 and quantum 

dots110 have been reported. Patterning of suspended graphene, on the other 

hand, requires the use of resistless patterning techniques, such as FIB methods, 

as the resist could damage the suspended graphene structure. FIB provides an 

easy and fast method for patterning suspended graphene, with resolutions 

comparable to EBL. However, due to the very high energies of the ions, structural 

damages are induced in the graphene structures111. Other techniques developed 

for the patterning of graphene are atomic layer etching (ALET)112, Gas-assisted 

Focused electron beam (FEB)113, and scanning tunnel microscope (STM) 

lithography, among others114. 

 

Suspended structures, depending on the ratio of their length, width and 

thickness, could be classified as beams, thick flat plates, thin flat plates or as 

membranes. Assuming the structures are of one material type, their vibrational 

response is greatly influenced by their spatial dimension, and consequently their 

classification. A more acceptable criteria for the classification of suspended 

structures into beams, thick flat plates, thin flat plates and membranes is their 
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response to static compressive stresses – whether they buckle or become 

wrinkled – or whether they possess a transverse compressive degree of freedom. 

Suspended graphene structures being only one atom thick with lengths and 

widths in the micron and nano scales, qualify with respect to spatial dimensions 

as very thin plates or as membranes, with their ratio of thickness to width (aspect 

ratios) being significantly smaller than 1 20⁄ . Due to the cost and level of 

complexity in running micro- and nano-scaled experimental vibrational analyses, 

almost all analyses of the vibrations of graphene sheets (GSs) reported in 

literature are analytical, numerical or semi-analytical; and are mostly based on 

nano-scaled graphene sheets. This is most likely because nano scaled GSs have 

aspect ratios that correspond to plates and beams, thereby justifying the 

application of established plate or beam theories, mostly with the introduction of a 

small-scale parameter to account for the miniscule sizes. No work has so far 

shown clearly what theories/analyses are best suited for the vibration analysis of 

different sized GSs, even though Arash and Wang116 have shown that for GSs 

with lengths less than 8 𝑛𝑚 the small scale effect must be incorporated to 

achieve accurate estimates of the resonant frequency. 

Theoretical studies have gradually become the predominant approach to studying 

the mechanical behaviour of mostly nanostructured GSs. Theoretical modelling 

approaches can be classified into three categories: atomistic modelling, 

continuum mechanics and a combination of atomistic modelling and continuum 

mechanics116, 117. 

 

Atomistic modelling involves the representation and analysis of the behaviour of a 

system based on the interactions between the molecules or atoms of the system. 

Because of the number of atoms involved in the interactions and the resulting 

number of model equations, the help of computing software is needed to carry 

out these analyses. Macroscopic and microscopic quantities of interest can be 

derived from such analyses. Atomistic modelling includes techniques such as 

classical molecular dynamics (MD), Monte Carlo (MC), ab initio, molecular 

mechanics simulations, tight-binding molecular dynamics (TBMD) and density 

functional theory (DFT).  
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The MD technique is one of the most widely used numerical methods for studying 

the interactions between atoms or molecules of a system. It is basically built on 

the Newtonian equations of motion governing the interactions of the atoms or 

molecules in the system. Each atom or molecule in the system is treated as a 

point mass and Newton’s equations are integrated to compute their motion. MD 

uses many-body interatomic potential functions to calculate the total energy of 

the system, from which the individual force equations of each atom is derived. 

The behaviour and properties of the system can be extracted from the computed 

motion of all the atoms/molecules in the system. The accuracy of the results from 

MD simulations largely depends on the choice of potential function for the system 

in question and the computing power used. Several potential functions have been 

developed and improved on to cater to the modelling of various material types 

and conditions, e.g. TIPS118, UNICEPP119, MM1 – MM2 – MM3 – MM4120-123, 

AMBER – AMBER/OPLS124, 125, Cornell126, MMFF94127, 128, CHARMM129, 

COMPASS130, Weiner131, Morse132, Tersoff – REBO – AIREBO133-136, etc. Some 

of the methods employed in MD simulations include the Verlet, velocity Verlet 

and leapfrog methods.  

The MC technique is based on the variation in states of the molecules of a 

system under a certain stochastic law. It does not use the equations of motion 

hence it cannot be used to determine the dynamic properties of the system, but is 

best suited for thermodynamic problems. However, MC techniques are still based 

on the interatomic potential functions. The ab initio techniques are potential-free 

techniques based on accurate solutions of the Schrödinger equation. Here the 

atomic forces are not derived from the potential functions but from the electronic 

structure and state of the atoms as defined by the Schrödinger equation. The 

molecular structural mechanics technique uses computational molecular 

mechanics terms in a structural mechanics framework to study the behaviour of 

the system. Here the covalent bond between two atoms is modelled as a 

structural beam element and the atoms at the ends of the bond modelled as point 

masses which form the joint with other bonds. The whole system is viewed as a 

space frame structure, and hence governed by structural mechanics 

theories/laws. According to structural mechanics theories, only three sectional 

stiffness parameters are needed for the analysis of the mechanical behaviour of a 

frame structure, viz. tensile/stretching, flexural and torsional stiffness parameters. 
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Therefore, the total steric potential energy, which omits interactions resulting from 

electrostatic forces, is used to describe the energy of the system, but with the 

potential energy due to van der Waals forces also neglected so that only the 

potential energy terms from stretching, bending and twisting are reflected. By 

imposing equivalency on the molecular potential energies and the elemental 

strain energy of the frame structure, the sectional stiffness parameters can be 

expressed in terms of the molecular mechanics force field constants. With the 

force field constants known, the sectional stiffness parameters can be obtained, 

and by employing the stiffness matrix solution procedure for frame structures the 

deformation, vibration and other related elastic behaviour of the system can be 

simulated. 

In atomistic-continuum modelling, the molecular potential energies are also 

employed but rather than dealing with individual atoms and tracking the 

interactions between each atom, the interatomic potential is incorporated into the 

continuum model. This is done by equating the collective molecular potential 

energies of the atoms with the mechanical strain energies of the representative 

volume element of the continuum model. 

Simulations based on MD and other atomistic modelling techniques including 

atomistic-continuum techniques have contributed greatly to the understanding of 

the mechanical behaviour of nanostructured materials. MD and continuum 

mechanics models have been used to comparatively study the transverse 

deformation of an SLGS137. The generalized tight-binding molecular dynamics 

(GTBMD) and ab initio techniques were used to investigate the nanoplasticity of 

SWCNT under uniaxial compression138. MD and GTBMD were used together to 

study the buckling behaviour of single and multiwalled carbon nanotubes139. 

Molecular structural mechanics method was implemented to study the vibrational 

behaviour of SLGSs140. TBMD and MD with the AIREBO potentials have been 

used to investigate the dependency of mechanical strength and properties of 

graphene under uniaxial tensile test on size and chirality141. Nonlocal continuum 

theory has also been used with MD simulations to study the free vibration of 

SLGSs and BLGSs116. Several other uses of molecular structural mechanics and 

MD in the study of carbon nanotubes and graphene are reported in literature142-

145. Rafiee and Moghadam146 extensively discussed the use of atomistic, 
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continuum and nano-scale continuum models to study the mechanical, 

vibrational, buckling and thermal properties of isolated carbon nanotubes. 

Although atomistic modelling techniques yield accurate results, the size of the 

atomic systems they can analyse is limited. Because the length scale for 

coordinates in atomic systems is angstroms (Å), systems approaching even the 

sub-micron scale in dimension would be made up of several thousands or 

millions of atoms which must be simulated. Also, to accurately track the 

vibrational motion of the atoms, the timesteps used in the simulation is limited to 

the femtosecond (𝐟𝐬) scale. Which means that to even simulate picoseconds of 

the system’s motion tens or hundreds of thousands of timesteps will be required. 

Therefore, due to the large number of atoms and timesteps needed, the atomistic 

modelling of the behaviour of GSs in the micron scale becomes prohibitively 

computationally expensive. Though several improved algorithms and new 

software have been developed to optimize MD calculations, and with current 

advances in hardware capacities and capabilities, atomistic modelling of 

relatively large systems remains computationally expensive.  Which might explain 

why all atomistic modelling techniques used for GSs or CNTs in literature deal 

with nanostructures with sizes in tens of nanometers. 

 

Continuum mechanics has recently become the predominant tool for modelling 

nanomechanical structures. This explosion in interest and usage of continuum 

mechanics for the vibrational analyses of nano- and micro-mechanical structures 

can be attributed to the very high computational expenses of using atomistic and 

atomistic-continuum modelling and the complexity and cost of experimental 

methods. Several works have been published on the application of continuum 

mechanics theories to the study of the vibrations of GSs. These works can be 

classified based on several possible classification indices, including the method 

of formulation of the governing equations, linearity of the governing equations, 

consideration of the small scale effect in form of nonlocal elasticity theory and/or 

modified strain gradient elasticity, anisotropy of the material properties, number 

of GS layers, the solution method used, etc. 
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 Chronological survey of the use of continuum mechanics for the vibrational 

analysis of graphene-based structures 

In 2003, Peddieson et al.147 first proposed and demonstrated the use of nonlocal 

continuum mechanics in nanomechanical systems. They formulated a nonlocal 

Bernoulli/Euler beam model to study the static response of nanobeams. The 

following year, a large-deflection model to study the static and dynamic 

responses of thin elastically isotropic films with nanoscale thickness based on 

von Karman’s geometrically nonlinear theory for thin elastic plates and Kirchhoff’s 

kinetic hypothesis was proposed148. In 2005, an explicit formula was derived to 

predict the vdW pressures between any two sheets of a MLGS and was used to 

develop the first continuum-plate model for the vibration of MLGSs149, 150. In the 

same year, the nanoscale vibration of MLGSs with anisotropic properties 

embedded in an elastic medium was analysed, in which Hamilton’s principle was 

used to derive the governing equations of motion for the plate. The interactions 

between the graphene layers were modelled as carbon-carbon vdW pressure and 

those between the graphene and surrounding medium as polymer-carbon vdW 

pressure151. By 2006, the number of works on the vibration analyses of graphene 

structures had increased greatly but with a lot of emphasis on CNTs. The 

vibration of a double walled CNT with the interlayer vdW forces expressed as 

nonlinear functions of displacement was studied152. The nonlinear free vibration 

of multi-walled CNTs (MWCNTs) was modelled based on continuum mechanics 

and multiple-elastic beam model, and solved using the incremental harmonic 

balance method153. An elastic, multiple shell model was used to study the 

vibration of MWCNTs, in which vdW forces were modelled as a radius-dependent 

function and the effect of the vdW interaction modelling on the vibration 

characteristics of the tubes was determined154. A continuum-based plate model 

was used to derive the natural frequencies and corresponding modes of MLGSs 

embedded in an elastic matrix155.  

In the years that followed up to 2011, there was an explosion in the number of 

works published on the application of continuum mechanics to study the vibration 

of GSs, with an emphasis on nonlocal models. The nonlocal elasticity theory was 

used to study the vibration response of SLGSs embedded in an elastic 

medium156. Nonlinear free vibrations of embedded double walled CNTs were 

investigated based on Eringen’s nonlocal elasticity theory and the von Karman 
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geometric nonlinearity within the framework of the Timoshenko beam model. The 

governing equations were derived using Hamilton’s principle and solved with the 

differential quadrature (DQ) method157. The CLPT and first-order shear 

deformation theory (FSDT) were used for the vibration analysis of nanoplates, 

with the small-scale effect accounted for using Eringen’s nonlocal theories and 

the model solved using Navier’s solution. The same authors used nonlocal 

continuum mechanics to study the vibration analysis of MLGSs embedded in a 

polymer matrix, and investigated the effects of the nonlocal theories on the 

vibration of the sheets 158, 159. The bending and stretching of a circular graphene 

sheet was characterized using von Karman plate theory160. A finite element 

nonlocal plate model was developed to study the vibrational characteristics of 

MLGSs with different boundary conditions embedded in an elastic medium161. 

The nonlinear free vibration of SWCNTs based on the von Karman geometric 

nonlinearity and Eringen’s nonlocal elasticity theory for different boundary 

conditions was studied. The SWCNTs were modelled as nanobeams within the 

framework of the Timoshenko beam theory162. An investigation of the nonlinear 

vibration behaviour of a simply supported, rectangular SLGS in thermal 

environments modelled as a nonlocal orthotropic plate with von Karman’s 

geometric nonlinearities was carried out. Where the nonlocal parameter value 

was estimated by matching the natural frequencies of the graphene sheets 

obtained from the numerical results with those from MD simulation results163. The 

nonlocal 3-D Navier equations of motion were reformulated and decoupled to 

study the vibration behaviour of nanoplates164. The large amplitude vibration of 

orthotropic MLGSs and the effect of the small-scale parameter on the vibration of 

the MLGSs were investigated using linear vdW interactions between any two 

layers. The vdW interactions were modelled as linear vdW pressures using the L-

J potential with the coupled nonlinear equations of motion formulated using 

Hamilton’s principle based on the von Karman nonlinear geometric model and 

Eringen’s nonlocal theory, and solved with the harmonic balance (HB) method165. 

A nonlinear membrane model for the study of the vibrational properties of SLGSs 

was proposed and the finite difference method (FDM) used to solve the model166. 

The effects of nonlinear van der Waals interaction forces from a surrounding 

medium and adjacent nanotubes on the nonlinear vibration of an embedded 

DWCNT were investigated167. The effect of the small scale parameter on the 

buckling analysis of circular GSs under uniform radial compression was 
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investigated168. The small-scale effect on the vibration analysis of orthotropic 

SLGSs embedded in an elastic medium was investigated. Winkler- and 

Pasternak-type foundation models were used to model the interaction between 

the GS and the surrounding medium169. The nonlocal continuum theory was 

employed to study the free vibration of SLGSs and DLGSs. The dependence of 

the vibrational characteristics on small scale effects, sizes of sheets, boundary 

conditions and number of layers of the GSs was investigated. And MD 

simulations were used to verify the resonant frequencies obtained from the 

model116. The vibrational analysis of MLGSs with different boundary conditions 

amongst the sheets using an elastic multi-plate model with vdW forces modelling 

the interlayer forces was studied. A new GDQ method was used to obtain explicit 

formulas for the frequencies of a DLGS with all edges simply supported170. A 

nonlinear continuum model for studying the nonlinear vibration analysis of  

isotropic MLGSs with vdW interactions between any two layers was developed. 

The small-scale parameter was not incorporated in this model and the model was 

solved using the HB method171. In 2012, the nonlinear free and forced vibration of 

a BLGS embedded in a polymer medium was studied based on the nonlocal 

elasticity theory. With a refined pressure expression for the vdW forces between 

the GSs and the polymer medium, the in-phase and out-of-phase nonlinear and 

linear natural frequencies for both zigzag and armchair configurations were 

obtained172. 

In the last five years, the volume of works published on the vibration analysis of 

GSs have seemed to drop from what it was in the preceding five years. An exact 

solution for the vibration of DLGSs coupled by a viscoelastic medium simulated 

as a Visco-Pasternak layer was presented173. The nonlinear vibration of GSs 

using the CLPT and the nonlocal elasticity theory was modelled and solved 

numerically using the element-free kp-Ritz method174. In a separate paper175, the 

same authors apply the kp-Ritz method to a nonlocal continuum model to obtain 

the solutions to the vibration analysis of quadrilateral-shaped GSs subjected to 

an in-plane magnetic field. The geometrically nonlinear vibration behaviour of 

DLGSs was studied using the von Karman plate model and the nonlocal elasticity 

theory. The element-free kp-Ritz method was used to solve the model176. 
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Mass sensors as electromechanical systems have mechanical elements coupled 

to electronic circuits via electromechanical transducers which convert electrical 

energy into mechanical energy and vice versa in the actuation and sensing 

operations of the sensor. Critical to the success of a mass sensor is the ease of 

actuation of its resonator and sensing of the corresponding response, which 

could be motion or displacement. As the mechanical elements and systems of 

mass sensors shrink in size, the challenges of actuation and sensing increases. 

Thus, the actuation and detection of the displacements of micro- and nano 

resonators in mass sensor devices are among the most challenging aspects of 

the development of such technologies. A few established techniques for the 

actuation of dynamic mode mass sensors and their frequency tracking are 

presented in the ensuing subsections. 

 

Three common techniques for motion actuation in resonant sensors are the 

electrostatic, piezoelectric and magnetomotive techniques. 

 Electrostatic or capacitive actuation technique 

In the electrostatic technique, the attractive force developed between the plates 

of a capacitor when the plates are charged is used to drive the resonator. To 

achieve electrostatic actuation in MEMS/NEMS, a gate electrode is usually 

fabricated in the vicinity of the MEMS/NEMS device as shown in Figure 2-22, or 

the electrostatic potential is applied through the substrate. In electrostatic 

actuation, the capacitance of the actuation gate is usually in parallel with the 

parasitic capacitance, which is larger than the gate capacitance by many orders 

of magnitude. The effect of this is the reduction of the efficiency of actuation at 

high frequencies. A demonstration of electrostatic actuation in NEMS at 

frequencies as high as 700 𝑀𝐻𝑧 has been reported177. 
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Figure 2-22: Electrostatic actuation in NEMS178 

 Piezoelectric actuation technique 

Piezoelectric transducers generate electrical energy when strained and vice 

versa. When an ac voltage is applied across piezo-transducers, they are strained 

alternatingly and consequently actuated into vibration. Piezoelectric transducers 

have been employed as sensing elements in many applications because they are 

rugged, have extremely high natural frequencies and exhibit excellent linearity 

over a wide amplitude range. Ideally, in mass sensing applications, the resonator 

should be fabricated from piezoelectric materials such that the direct application 

of voltage to the resonator actuates it directly. However, in cases where 

fabricating resonators from piezoelectric materials is impracticable, piezoelectric 

shakers can be used to excite the whole unit. 

 Magnetomotive actuation technique 

The magnetomotive technique employs Lorentz force, which is generated when a 

current-carrying conductor is placed in a static magnetic field, for motion 

actuation. In this technique, an ac current at frequency ω is driven through the 

micro- or nanomechanical beam element in the presence of a strong magnetic 

field (Figure 2-23). The force acting on the beam is  

 𝐹(𝜔) = 𝑙𝐵𝐼(𝜔) (2-1) 

expressed in the frequency domain, where 𝐼(𝜔) is the harmonic drive current, 𝑙 is 

the length of the beam and 𝐵 is the magnetic field strength. 

 
Figure 2-23: Magnetomotive actuation scheme (Lorentz force used to drive 

mechanical element)178 
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The actuation force can be applied in the in-plane or out-of-plane direction 

depending on the orientation of the nanomechanical beam element with respect 

to the magnetic field. The harmonic displacement of the centre of the beam is 

expressed as 

 
𝑋(𝜔) =

𝑙𝐵𝐼(𝜔)

𝑚𝑒𝑓𝑓 (𝜔0
2 − 𝜔2 +

𝑖𝜔𝜔0
𝑄 )

 (2-2) 

Magnetomotive actuation of MEMS/NEMS has proven to be an excellent 

actuation technique especially that it is not impeded by parasitic capacitances. 

The major drawback being the very strong magnetic fields needed to generate 

Lorentz force. 

 

Dynamic-mode mass sensors detect the mass of an accreted molecule by 

detecting the change in frequency of the sensing resonator. The mass effect of 

the accreted molecule on the resonance frequency of the sensing resonator 

depends on the accretion position and the vibration mode of the resonator. To be 

able to detect any change in frequency, the frequency of the resonator must be 

tracked. The problem of tracking the resonator’s frequency is the problem of 

continuously detecting its minuscule displacement amplitudes. This is a more 

daunting task than the actuation of the resonators. Some frequency tracking 

techniques are discussed in this subsection. 

 Magnetomotive detection technique 

The magnetomotive detection technique is complimentary to the magnetomotive 

actuation technique. Here, a uniform magnetic field is provided, through which 

the conducting resonator moves. The time-varying flux that results from the 

movement of the resonator through the magnetic field generates an induced 

electromotive force in the electrical loop, which is detected in the detection 

circuit. With the minuscule displacements typical of MEMS/NEMS devices, the 

induced emf is extremely small and will need to be boosted with a low-noise 

amplifier. Figure 2-24 shows a schematic representation of a magnetomotive 

transducer coupled to an amplifier represented by a standard amplifier model 

with uncorrelated voltage and current noise sources. 



Chapter 2: Literature Survey              F.G. Unom 

44 

 

 

Figure 2-24: Magnetomotive displacement detection technique178 

For a doubly clamped beam, the emf generated is given by  

 𝒗𝟎(𝒕) = 𝝃𝒍𝑩𝒙̇(𝒕) (2-3) 

 Where 𝐵 is the magnetic field strength, 𝑙 is the length of the beam 𝑥(𝑡) the 

displacement at the centre of the beam and 𝜉 is a geometric factor whose value 

for a doubly clamped beam is ~0.885. 

The noise power generated in the amplifier determines the displacement 

sensitivity, which is expressed as178 

 

[𝑆𝑋(𝜔)]
1
2⁄ = (

𝑆𝑉(𝜔)

(𝜉𝑙𝐵𝜔)2
+

𝑆𝐼(𝜔)𝑙
2𝐵2

𝑚𝑒𝑓𝑓
2 (𝜔0

2 −𝜔2)2 +
𝜔2𝜔0

2

𝑄2

)

1
2⁄

 (2-4) 

Implementing the magnetomotive detection method with NEMS devices that are 

actuated electrically (magnetomotive or electrostatic) poses major challenges. 

First, the detection bandwidth will most likely be affected by parasitic 

capacitances in the detection circuit. Secondly, the parasitic coupling between 

the input and the output reduces the degree of orthogonality of the actuation and 

detection transducers, which means that the actuation process will generate huge 

noise signals in the detection process. 

 Capacitive detection technique 

The capacitive detection technique is based on the change in capacitance of a 

capacitor as the distance between the plates change. The motion of the 

resonator effectively modulates the capacitance between the element and a fixed 

gate (Figure 2-25). The method of detection uses a bias voltage or current across 

the capacitor that monitors for a change in the current or voltage respectively of 

the capacitor. Consequently, a capacitance change at constant voltage will 
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generate a current flow across the capacitor. This is easily seen from the 

definition of capacitance: 

 𝒅𝑸 = 𝑽𝒅𝑪 + 𝑪𝒅𝑽 (2-5) 

 
Figure 2-25: Capacitive detection technique178 

On a MEMS scale, the dynamic capacitance changes due to the motion of the 

mechanical element are usually in the 10-9 – 10-12 𝐹 range, which can readily be 

detected given the typically low operation frequency range of MEMS devices. In 

contrast, NEMS devices have typical capacitance modulations in the 10 -16 – 10-18 

𝐹 range, while parasitic capacitances of the chip and the circuitry may be many 

orders of magnitude larger178. 

 Optical detection technique 

When a beam of light is incident on a vibrating resonator, the reflected beam is 

modulated by its motion. Optical detection techniques focus a laser beam on a 

resonator in motion and detect the motion by sensing the modulated reflected 

beam using photodetectors. The setup includes a laser source which generates 

the laser beam, a focusing lens to focus the beam on the vibrating resonator, 

prisms and mirrors to reflect the beams, and a photodetector that converts the 

incident beam to voltage or current. A schematic representation of an optical 

detection technique arrangement for a Laser Doppler Vibrometer. 
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Figure 2-26: Schematic representation of an optical detection technique arrangement  

 Frequency tracking using Phase Locked Loops (PLLs) 

Phase locked loops (PLLs) are one of the commonly used frequency tracking 

techniques in mass sensing applications. A schematic representation of a PLL 

setup is shown in Figure 2-27. A basic setup would include a phase detector or 

comparator, a voltage-controlled oscillator (VCO), and a low pass filter hooked up 

with the source of the reference signal. PLLs are designed to generate an output 

signal that matches the reference signal by detecting the phase difference 

between the two signals. The phase detector evaluates the phase difference 

between the reference and VCO signals connected to its input ports, and outputs 

an error voltage corresponding to the phase difference. The low pass filter 

connected between the phase detector and the VCO removes any high frequency 

noise elements from the error voltage and governs the stability and lock speed of 

the PLL. The VCO generates the output signal and the phase detector input 

signal using the error voltage as its tuning voltage. 

   

   

   

 i    ng  o  

 o using   ns

 i  o 

   gg     

P o o      o 

  s  

   su    n      

      n       



Chapter 2: Literature Survey              F.G. Unom 

47 

 

 

Figure 2-27: Phase-locked loop (PLL) diagram with basic components 

At the initial stages of operating the loop, the reference signal and the VCO 

signal are not locked, meaning they are at different frequencies with a phase 

difference. The error voltage tunes the VCO to match or ‘lock’ its signal with the 

reference signal. With a locked reference and VCO signal, if there are changes in 

the reference signal frequency, the error voltage is modified to drive the VCO 

signal frequency to match the new reference signal frequency.  

 

Ultrasensitive sensors are vital in various fields and are thus the focus of recent 

research works in sensing and instrumentation. The definition and meaning of a 

sensor’s responsivity and resolution depends on the type of sensor and the 

transduction method employed in the sensor. The responsivity and resolution for 

mass sensors are briefly discussed in this subsection. 

The responsivity of a mass sensor is the ratio of the shift in the frequency of its 

resonator to the mass accreted on it; this is a measure of how responsive the 

sensor is to mass accretion. On a calibration curve for a mass sensor, where the 

frequency shifts of the sensor are plotted against the accreted masses, the 

responsivity is the slope of the curve – Figure 2-28 illustrates this schematically. 

To calibrate a mass sensor and hence determine its responsivity, the resonance 

frequency 𝜔0 of the functionalized resonator is first determined, then the 

frequency shifts in steady state ∆𝜔0 when masses ∆𝑚 are accreted on the 

resonator are monitored recorded.  
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Figure 2-28: Schematic representation of a calibration curve for a mass sensor  

Assuming ∆𝑚 is much smaller than the effective mass 𝑚𝑒𝑓𝑓 of the resonator, the 

responsivity is given as, 

 ℛ =  
1

2𝜋

𝜕𝜔0
𝜕𝑚𝑒𝑓𝑓

= −
𝜔0

4𝜋 𝑚𝑒𝑓𝑓

 (2-6) 

The resolution or sensitivity of a mass sensor is the smallest mass it can detect. 

As has been assumed for equation (2-6), when ∆𝑚 ≪ 𝑚𝑒𝑓𝑓 the mass resolution is 

given as in equations (2-7) and (2-8)179, 180. This minimum detectable mass 

critically depends on the minimum measurable frequency shift of the resonator 

and the inverse responsivity of the sensor, as is shown in equation (2-7). 

 
∆𝑚 ≈

𝜕𝑚𝑒𝑓𝑓

𝜕𝜔0
 ∆𝜔0 = ℛ−1∆𝜔0  (2-7) 

 ∆𝑚 ≈ −4𝜋
𝑚𝑒𝑓𝑓

𝜔0
∆𝜔0 (2-8) 

The quality factor of a resonator at a resonance frequency is a measure of how 

quickly the oscillations of the resonator will die out. Typically expressed as 𝑄 =

𝜔0 𝛿𝜔⁄ , where 𝛿𝜔 is the full width at half maximum (FWHM) of the resonance. 

The resonance frequency expressed in terms of 𝑄 when substituted in equation 

(2-8) results to 

Dynamic range 
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 ∆𝑚 ≈ −4𝜋
𝑚𝑒𝑓𝑓

𝑄𝛿𝜔
∆𝜔0 (2-9) 

If 𝑄 remains constant, the mass sensitivity of the sensor is directly proportional to 

the effective mass of the resonator and the minimum measurable frequency shift , 

which implies that a bigger 𝑚𝑒𝑓𝑓 and ∆𝜔0 will yield a higher sensitivity. The 

effective mass of the resonator in measurement mode comprises the mass of the 

resonator and the accreted mass. The amount of the accreted mass is however 

the determining factor for the frequency shift, and for the minimum measurable 

frequency shift in a noiseless system. Therefore, the higher the component of the 

accreted mass in 𝑚𝑒𝑓𝑓, the bigger the frequency shift and consequently, the 

higher the sensitivity of the sensor. When graphene is used as the sensor 

resonator, it promises to improve the sensitivity of the sensor because being an 

ultra-low mass material with thickness tending to zero, any accreted mass will 

make up a huge portion of 𝑚𝑒𝑓𝑓 and in turn generate a big ∆𝜔0. In addition, its 

high Elastic modulus makes it possible to carry such disproportionately large 

masses without breaking. 

In a damped and noisy system, the minimum measurable frequency shift ∆𝜔0 

depends on the noise profiles in the system and the readout technique. An 

estimate of ∆𝜔0 is given as179 

 
∆𝜔0 ≈ [∫ 𝑆𝜔(𝜔)

𝜔0+1 2𝜏⁄

𝜔0−1 2𝜏⁄

𝑑𝜔]

1 2⁄

 (2-10) 

𝑆𝜔(𝜔) is the weighted effective spectral density of the frequency fluctuations in 

(𝑟𝑎𝑑 𝑠⁄ )2 (𝑟𝑎𝑑 𝑠⁄ )⁄ . It depends heavily on the physical noise processes operative 

in the sensor system as well as the readout process employed. Noise in the 

sensor system could originate from several sources, the principal sources for 

MEMS resonant structures being: the thermally driven random motion of the 

resonator (thermo-mechanical), large temperature fluctuations, and adsorption-

desorption processes181. Such noises attenuate the sensitivity of the sensor. 

Ultra-high mass sensitivities such as yocto-, and zepto-gram mass sensitivities 

reported in literature are achieved in vacuum and usually under cryogenic 

conditions, in which damping and noise are greatly reduced. However, in several 

real-life situations where mass sensing is applied, measurements are generally 
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made in dissipative media and under room temperature conditions. As such, it is 

critical that considerations of noise and damping for such systems be made in the 

analysis and prediction of their sensitivity and performance.   

 Thermo-mechanical noise 

Thermomechanical noise is a consequence of the interaction of the resonator 

with the surrounding fluid, the resonator is driven into random motion by 

imbalances in the surrounding fluid’s thermal energy. The spectral density of 

these random displacements is given as 

 𝑆𝑥(𝜔) =
1

𝑚𝑒𝑓𝑓

4𝜔0𝑘𝐵𝑇

𝑄 [(𝜔2 − 𝜔0
2)2 +

𝜔2𝜔0
2

𝑄2
⁄ ]

 
(2-11) 

Where 𝑘𝐵 is Boltzmann’s constant, 𝑇 the resonator temperature, and 𝑄 the 

resonator’s quality factor. For a phase locked loop (PLL) readout scheme driven 

by a constant-amplitude voltage-controlled oscillator (VCO) assumed to be 

noiseless, the thermally induced random displacements give rise to frequency 

fluctuations in the sensor output, which have an effective spectral density given 

by179 

 
𝑆𝜔(𝜔) ≈

𝜔0
5

𝑄3
𝑘𝐵𝑇

𝐸𝑐

1

(𝜔2 − 𝜔0
2)2 +

𝜔2𝜔0
2

𝑄2
⁄

 (2-12) 

Here, Ec = 𝑚𝑒𝑓𝑓𝜔0
2〈𝑥𝑐

2〉 is a representation of the maximum drive energy delivered 

by the VCO to the resonator, where 〈𝑥𝑐
2〉 is the mean square amplitude of the 

resonator. The minimum measurable frequency shift ∆𝜔0 for the noisy system is 

obtained by evaluating the integral in equation (2-10) using equation (2-12). 

Subsequently, the mass sensitivity is determined using equation (2-8). For a 

resonator with 𝑄 ≫ 1 and 2𝜋∆𝑓 ≪ 𝜔0 𝑄⁄  (where ∆𝑓 is the measurement 

bandwidth), the minimum measurable frequency shift and mass sensitivity are 

evaluated as179 

 
∆𝜔0 ≈ [

𝑘𝐵𝑇

𝐸𝑐

𝜔0∆𝑓

𝑄
]
1 2⁄

 (2-13) 

and 
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∆𝑚 ≈ 2𝑚𝑒𝑓𝑓 (

𝑘𝐵𝑇

𝐸𝑐
)
1 2⁄

(
∆𝑓

𝑄𝜔0
)
1 2⁄

 (2-14) 

 Large temperature fluctuations 

Large temperature fluctuations can induce frequency fluctuations in a mass 

sensor’s output, due to the size of the resonators. The degree of susceptibility to 

such fluctuations depends on the thermal contact of the resonator to the 

environment. For a materially isotropic doubly-clamped resonator of constant 

cross section with a uniformly distributed thermal transport model, where such 

large temperature fluctuations exist, the spectral density of the induced frequency 

fluctuations can be expressed as179, 182 

 
𝑆𝜔(𝜔) = (−

22.4𝑐𝑠
2

𝜔0
2𝑙2

𝛼𝑇 +
2

𝑐𝑠

𝜕𝑐𝑠
𝜕𝑇
)

2
𝜔0
2𝑘𝐵𝑇

2

𝜋𝑔[1 + (𝜔 − 𝜔0)
2𝜏𝑇

2]
 (2-15) 

Where 𝑐𝑠 = √𝐸 𝜌⁄  is the temperature dependent speed of sound; 𝛼𝑇 = (1 𝑙⁄ ) 𝜕𝑙 𝜕𝑇⁄  

is the linear thermal expansion coefficient, 𝑔 the thermal conductance, and 𝜏𝑇 the 

thermal time constant of the resonator. Evaluating the integral in equation (2-10) 

using equation (2-15), the minimum measurable frequency shift can be 

expressed as 

 
∆𝜔0 = [

1

2𝜋2
(−

22.4𝑐𝑠
2

𝜔0
2𝑙2

𝛼𝑇 +
2

𝑐𝑠

𝜕𝑐𝑠
𝜕𝑇
)

2

×
𝜔0
2𝑘𝐵𝑇

2

𝑔

𝑎𝑟𝑐𝑡𝑎𝑛 (2𝜋∆𝑓𝜏𝑇)

𝜏𝑇
]

1 2⁄

 (2-16) 

and the mass sensitivity as 

 
∆𝑚 = 

2

𝜋1 2⁄
2𝑚𝑒𝑓𝑓 (−

22.4𝑐𝑠
2

𝜔0
2𝑙2

𝛼𝑇 +
2

𝑐𝑠

𝜕𝑐𝑠
𝜕𝑇
) × [

𝑘𝐵𝑇
2 𝑎𝑟𝑐𝑡𝑎𝑛 (2𝜋∆𝑓𝜏𝑇)

𝑔𝜏𝑇
]

1 2⁄

 (2-17) 

 Adsorption-desorption noise 

Gas molecules in the surrounding medium of a resonator can be adsorbed on the 

resonator surface, mass loading it and consequently changing its resonant 

frequency. Thermally induced random adsorption and desorption of molecules 

will therefore cause frequency fluctuations in the sensor output. A cycle of 

adsorption-desorption can be modelled by a flux-dependent adsorption rate and a 

thermally activated desorption rate. The adsorption rate is expressed as 
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 𝑟𝑎 =
2

5

𝑝

√𝑚𝑘𝐵𝑇
𝑠 (2-18) 

and the desorption rate as 

 𝑟𝑑 = 𝑣𝑑 𝑒𝑥𝑝 (−
𝐸𝑏
𝑘𝐵𝑇

) (2-19) 

Where 𝑚 is the mass of one gas molecule, 𝑝 and 𝑇 are the gas pressure and 

temperature respectively, 𝐸𝑏 is the binding energy between the resonator surface 

and the gas molecule. 𝑠 is the sticking coefficient with values 0 < 𝑠 < 1 and 𝑣𝑑 the 

desorption attempt rate, 𝑣𝑑  ~ 10
13𝐻𝑧. The adsorption and desorption rates 

depend on the resonator and surrounding medium temperature, the nature of the 

resonator surface and its treatment, the adsorption gas species, among other 

factors. The spectral density of the frequency fluctuations caused by adsorption 

and desorption is given as179, 182 

 
𝑆𝜔(𝜔) =

2𝜋𝜔0
2𝑁𝑎𝜎𝑜𝑐𝑐

2 𝜏𝑟
(1 + (𝜔 − 𝜔0)

2𝜏𝑟
2)
(
𝑚

𝑚𝑒𝑓𝑓

)

2

 (2-20) 

Where 𝑁𝑎 is the number of compromising sites for adsorption, 𝜎𝑜𝑐𝑐
2  is the variance 

in the probability of occupying a site, estimated as 𝜎𝑜𝑐𝑐
2 = 𝑟𝑎𝑟𝑑/(𝑟𝑎 + 𝑟𝑑)

2, and 𝜏𝑟 is 

the correlation time for an adsorption-desorption cycle, expressed as 𝜏𝑟 = 1/(𝑟𝑎 +

𝑟𝑑). 

The minimum measurable frequency shift upon evaluating equation (2-10) with 

equation (2-20) is given as 

 ∆𝜔0 =
1

2𝜋

𝑚𝜔0𝜎𝑜𝑐𝑐
𝑚𝑒𝑓𝑓

[𝑁𝑎𝑎𝑟𝑐𝑡𝑎𝑛 (2𝜋∆𝑓𝜏𝑟)]
1 2⁄  (2-21) 

and the mass sensitivity as  

 ∆𝑚 ≈
1

2𝜋
 𝑚𝜎𝑜𝑐𝑐[𝑁𝑎𝑎𝑟𝑐𝑡𝑎𝑛 (2𝜋∆𝑓𝜏𝑟)]

1 2⁄  (2-22) 

 

An extensive review of various aspects of graphene as a material has been 

presented and discussed in this chapter. With a strong interest in using graphene 
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for biosensing applications, a general overview of biosensors and biosensing 

applications has been presented. Different types of biosensors have been 

discussed, including mass biosensors for which graphene resonators have a 

huge potential. The world of graphene was briefly explored: its properties, 

production, microfabrication, and characterization. The theory of Raman 

spectroscopy was presented and its use as a powerful tool for identifying 

graphene as a material with its characteristic G and 2D bands. The evolution of 

the bands, especially the 2D band, with increasing layers of graphene was also 

discussed and highlighted as a means of differentiating layered graphene 

membranes. An introduction to the theoretical vibration analysis of graphene was 

made, in-depth discussions are however presented in Chapter 3. A few actuation 

and sensing techniques for resonators in MEMS/NEMS were presented; brief 

discussions were made on the use of PLLs to track the resonator’s frequency. 

Finally, the responsivity and mass sensitivity of mass sensors were discussed for 

both noiseless and noisy systems. Ultra-high mass sensitivities of atto-, zepto-, 

and even yoctograms have been reported in literature – these have mostly been 

achieved with nanosized CNTs or graphene operating at ultra-high resonant 

frequencies. Using equation (2-8), the devices developed from the micro-sized 

resonators studied in this work should have femtogram mass sensitivities or in 

the least should have LODs in the 10−13 − 10−14 range to be considered 

successful. 
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Chapter 3: Vibration analysis of rectangular-shaped 

graphene resonators 

 

In this chapter, the vibration analysis of single layer graphene sheets (SLGSs) 

and multi-layer graphene sheets (MLGSs) with a focus on double layer graphene 

sheets (DLGSs) is explored. The derivation of governing equations and solution 

methods, and their application to SLGSs or DLGSs with various boundary 

conditions are looked at in detail. The limit of the applicability of various 

continuum-based analytical models to different sizes of GSs is determined. And 

numerical solutions are adopted and adapted for the modal analysis of micro-

scaled DLGSs to be compared with experimental solutions. 

 

This work further explores the continuum models used for the vibration analysis 

of graphene sheets. As mentioned in section 2.6, these models can be classified 

based on a number of classification indices, including the approach used to 

formulate the governing equations, linearity of the governing equations, 

consideration of the size effect in form of the nonlocal elastic theory or modified 

strain gradient elasticity, anisotropy of the material properties, and number of 

layers.  

When considering the formulation approach, the governing equations of a 

continuum model can be formulated by following 1) the dynamic equilibrium 

approach, through which the classical plate theory (CLPT) or Kirchhoff plate 

model and the Mindlin plate model which is based on a first order shear 

deformation theory (FSDT) are derived; 2) the variational method; and 3) the 

integral equation formulation method. These approaches are built around the 

maxima or minima or the equilibrium of forces or energy – which yields the 

equations of motion by considering the balance of forces acting on or the energy 

distribution in the model. 

Based on linearity of the governing equations, the governing equations can be 

classified as 1) Linear – where all the basic components of the vibration of the 

sheets (mass, spring and damper components) behave linearly, and 2) Nonlinear 

– where the vibration is not linear. Practically, the vibration of most structures in 
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mechanics are linear up to displacements in the order of their thicknesses. With 

graphene being one atom layer thick and MLGSs a few nanometers thick, the 

vibrations of GSs are generally considered to be nonlinear. To model nonlinearity 

in these sheets, geometric nonlinearity is mostly considered rather than material 

nonlinearity. 

Continuum models when applied to micro/nano-systems have been found to 

overestimate the properties of the systems116. This may be because the 

assumptions made in the formulation of the models only hold true for macro-

systems. To account for this size or small-scale effect several new continuum 

theories have been reported in literature which modify the existing models to 

predict the properties and behaviour of micro/nano-systems more accurately. 

Two of such theories are considered here: 1) nonlocal elasticity theory – which is 

based on the dependence of the stresses in the sheets on nonlocal strain 

components and is the most widely used small scale effect theory for vibration of 

nanostructures. 2) strain gradient elasticity – which accounts for the effects of 

higher order stress gradients and strain gradient nonlocality. 

Based on the directionality of the properties of materials, the GSs can be 

modelled as being 1) Isotropic – with the material properties, e.g. Young’s 

modulus, being same in every direction. And 2) Anisotropic – the material 

properties varying with change in direction. For GSs, because of the hexagonal 

layout of the carbon atoms, material properties like the Young’s modulus are 

orthotropic. 

In modelling the vibration of GSs, the sheets can be 1) Single-layered – referred 

to as SLGSs and is simply one sheet of graphene modelled as a single thin plate, 

beam, or membrane. Or 2) Multi-layered – referred to as MLGSs, which could be 

2 layers (DLGSs) or more modelled as composite plates. For MLGSs, the 

interaction between the layers is widely modelled as van der Waal’s (vdW) 

pressure using the Lennard-Jones (L-J) potential, or less widely as Winkler-type 

strings. It is also possible to estimate the equivalent properties of the MLGSs 

using the standard rule of mixture for unidirectional composite plates. 

The solution methods that have been employed in solving nonlinear systems can 

be broadly classified into analytical and semi-analytical methods. Some of such 
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solution methods that have been used for nonlinear systems include: 1) 

Perturbation methods 2) Harmonic Balance (HB) method 3) Differential 

Quadrature Method (DQM) and its modifications 4) Element-free kp-Ritz method 

5) Finite Difference Methods (FDM). 

 

As the sizes of plates decrease into micro/nano scales, the plate transits from 

being a true continuum to a matrix of atoms acting as discrete mass points 

interconnected by the atomic bonds. This might explain why, as earlier 

mentioned, the direct application of continuum models to nano-systems have 

been found to overestimate the properties of the systems116. Furthermore, 

experiments on metals and polymers have shown that the size-dependency of 

mechanical properties and physical responses of materials on a microscale or 

microsystems are tangible and should not be overlooked183-185. To account for the 

size effect on the properties and responses of micro- and nano- structures, new 

continuum theories have been proposed such as the plastic strain gradient 

theory183, 186, 187, modified couple stress theory188, nonlocal elasticity theory189, 

and strain gradient theory184, among others. 

The scope of this work allows for a focus on the size effects in elasticity, which 

manifest in a stiffness softening or hardening response when the structure is 

loaded. Hence, the most used theories for size effects in elasticity: the nonlocal 

elasticity and strain gradient theory are briefly discussed. 

 Nonlocal Elasticity theory 

To account for the long-range interaction between atoms in a discretized mass 

system, Eringen, “in accordance with atomic theory of lattice dynamics and 

experimental observations on phonon dispersion” proposed the nonlocal elasticity 

theory189. The nonlocal elasticity theory states that the stress at a reference point 

𝑥 in an elastic continuum is not just a function of the strain field at that point but a 

function of the strain field at every point 𝑥′ in the continuum. For homogenous and 

isotropic elastic solids, the nonlocal stress tensor 𝜎 at point 𝑥 is expressed as189  

 𝜎 = ∫𝛼(|𝑥′ − 𝑥|, 𝜏)
 

𝑉

𝜎′(𝑥′)𝑑𝑣(𝑥′) (3-1) 
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𝛼(|𝑥|, 𝜏) = (2𝜋𝑙2𝜏2)−1𝐾0 (

√𝑥. 𝑥

𝑙𝜏
) (3-2) 

 𝜏 =
𝑒0𝑎

𝑙⁄  (3-3) 

Where 𝛼(|𝑥′ − 𝑥|, 𝜏) is the nonlocal modulus, 𝜎′(𝑥′) is the macroscopic stress tensor 

at 𝑥′ which is related to the strain tensor at any point 𝑥′ in the continuum at time 𝑡, 

and ∫  
 

𝑉
is the volume integral over the region 𝑉 occupied by the continuum body. 

𝐾0 is the modified Bessel function, 𝑎 is an internal characteristic length such as 

bond length or granular distance, 𝑙 is an external characteristic length, and 𝑒0 is a 

constant appropriately selected for each material to calibrate the model to match 

experimental results. 

The macroscopic stress tensor is related to strain by the generalized Hooke’s law 

as190 

 𝜎′(𝑥′) = 𝐶𝑘𝑙𝜀𝑘𝑙(𝑥
′) (3-4) 

Where 𝐶𝑘𝑙 is the fourth-order elasticity tensor and 𝜀𝑘𝑙 is the strain tensor. 

The integral constitutive relation in equation (3-1) can be rewritten in a differential 

form as162, 191 

 (1 − 𝜏2𝑙2𝛻2)𝜎 = 𝜎′ (3-5) 

Which reduces to the form most commonly used in literature 

 (1 − 𝜇𝛻2)𝜎 = 𝜎′ (3-6) 

 
Where 𝜇 = (𝑒0𝑎)

2 is the small scale or nonlocal parameter and ∇2 is the Laplacian 

operator (∇2=
∂2

∂x2
+

∂2

∂y2
 for two dimensional models). 

In the limit that the effects of the strain field at the points 𝑥′ are ignored in the 

consideration of the stress at the reference point 𝑥 i. e. 𝜇 = 0 , the classical (local) 

elasticity theory is recovered. Arash and Wang192 provide a good review of the 

nonlocal elasticity theory and its application in the modelling of CNTs and 

graphene. 
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 Nonlocal strain gradient elasticity theory 

It has been argued that Eringen’s nonlocal elasticity theory does not adequately 

capture the size effect in the analysis of nanostructures as its use of only the 

nonlocal parameter only introduces stiffness-softening effects but neglects the 

stiffness-hardening effect reported by the strain gradient theory193. Therefore, 

Eringen’s nonlocal elasticity theory is generalized to include the strain gradient 

effect by considering higher-order stress gradients and strain gradient 

nonlocality194. The stress function is expressed in the nonlocal strain gradient 

elasticity theory as 

 
𝜎𝑖𝑗 = 𝜎𝑖𝑗0 −

𝑑𝜎𝑖𝑗1

𝑑𝑥
 (3-7) 

 where 𝜎𝑖𝑗0 and 𝜎𝑖𝑗1 are the stresses related to the strain 𝜀𝑖𝑗 and strain gradient 

𝑑𝜀𝑖𝑗
𝑑𝑥
⁄  respectively, and are given as 

 
𝜎𝑖𝑗0 = ∫ 𝐶𝑖𝑗𝑘𝑙𝛼0(𝑥, 𝑥

′, 𝑒0𝑎)
𝐿

0

𝜀𝑘𝑙
′ (𝑥′)𝑑𝑥′ 

𝜎𝑖𝑗1 = 𝑙2∫ 𝐶𝑖𝑗𝑘𝑙𝛼1(𝑥, 𝑥
′, 𝑒1𝑎)

𝐿

0

𝑑𝜀𝑘𝑙
′

𝑑𝑥
(𝑥′)𝑑𝑥′ 

(3-8) 

 where 𝐶𝑖𝑗𝑘𝑙 are the elastic constants, 𝑒0𝑎 and 𝑒1𝑎 are the nonlocal parameters 

accounting for the nonlocal stress field, 𝑙 is the length scale parameter and 

𝛼𝑚(𝑥, 𝑥
′, 𝑒0𝑎);𝑚 = 1,2 is the nonlocal modulus given in equation (3-2). Equation (3-7) 

is multiplied by the linear nonlocal differential operator, (1 − 𝜇𝛻2), to derive the 

constitutive relation for the nonlocal strain gradient elasticity theory as193 

 (1 − (𝑒0𝑎)
2𝛻2)(1 − (𝑒0𝑎)

2𝛻2)𝜎𝑖𝑗

= 𝑪𝒊𝒋𝒌𝒍(1 − (𝑒1𝑎)
2𝛻2)𝜀𝑘𝑙 − 𝑪𝒊𝒋𝒌𝒍𝑙

2(1 − (𝑒1𝑎)
2𝛻2)𝛻2𝜀𝑘𝑙 

(3-9) 

Which reduces, with the assumption that 𝑒0 = 𝑒1 = 𝑒 and (𝑒𝑎)2 = 𝜇, to 

 (1 − 𝜇𝛻2)𝜎𝑥𝑥 = 𝐶(1 − 𝑙
2𝛻2)𝜀𝑥𝑥 (3-10) 

 
Equation (3-10) is the generalized constitutive relation for the nonlocal strain 

gradient elasticity theory. 
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The interaction between layers of GSs and other materials deposited on them or 

the surrounding medium in which they vibrate, e.g. in liquids, have an impact on 

the vibrations of the sheets and should be considered in their vibration analysis. 

Two considerations for modelling these interactions will be discussed in this 

subsection: van der Waals interaction model and the Pasternak foundation 

model. 

 Van der Waal’s (vdW) interaction between graphene sheets 

The interaction between any two GS layers is a non-bonded interaction that can 

be an attraction or a repulsion force. This interaction is ubiquitously attributed to 

van der Waal’s (vdW) forces, which are derived from the Lennard-Jones (LJ) pair 

potential.  

The Lennard-Jones potential also called the Lennard-Jones 6-12 model is given 

as 

 
𝑉𝐿𝐽(𝑑̅) = 4𝜀 [(

𝜎

𝑑̅
)
12

− (
𝜎

𝑑̅
)
6

] (3-11) 

Where 𝑑̅ is the distance between the interacting atoms, 𝜀 is the depth of potential, 

and 𝜎 is a parameter that is determined by the equilibrium distance. 

Rappe et al.195 in presenting a universal force field for molecular mechanics and 

molecular dynamics simulations express the Lennard-Jones potential between 

any two atoms of any given element as 

 𝐸𝑣𝑑𝑊 = 𝐷𝐼𝐽 [(
𝑥𝐼𝐽
𝑥
)
12

− 2(
𝑥𝐼𝐽
𝑥
)
6

] (3-12) 

 Where 𝐷𝐼𝐽 is the well depth or the depth of potential in kcal/mol and 𝑥𝐼𝐽 is the van 

der Waals bond length in Å. 𝐷𝐼𝐽 and 𝑥𝐼𝐽 for any pair of atoms 𝐼 and 𝐽 are found by 

using a geometric mean combination rule for distance. 

 𝐷𝐼𝐽 = (𝐷𝐼𝐷𝐽)
1
2⁄  (3-13) 

  𝑥𝐼𝐽 = √𝑥𝐼 × 𝑥𝐽  (3-14) 
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Where 𝑥𝐼 is the van der Waals distances and 𝐷𝐼 the atomic van der Waals 

energy. Values for 𝑥𝐼 and 𝐷𝐼 for atoms of different elements have been 

published195. 

The vdW force, 𝐹, is obtained from the Lennard-Jones pair potential by taking the 

derivative of same with respect to the distance between the interacting atoms. 

For the LJ pair potential in equation (3-11), the vdW force is derived as 

 
𝐹(𝑑̅)  =  −

𝑑𝑉𝐿𝐽

𝑑𝑑̅
 =  

24𝜀

𝜎
[2 (

𝜎

𝑑̅
)
13

− (
𝜎

𝑑̅
)
7

] (3-15) 

The vdW force can be estimated by the Taylor expansion around the equilibrium 

position 𝑑̅ with the odd functions of 𝑑̅ ignored. Since the initial vdW pressure is 

negligible at the equilibrium distance, the first term in the expansion is always set 

to zero. The vdW force can be modelled as a linear function by truncating the 

Taylor expansion to the first order. In that case, the vdW force becomes 

 
𝐹(𝑑̅) =  −

24𝜀

𝜎2
[26 (

𝜎

𝑑̅0
)

14

− 7(
𝜎

𝑑̅0
)

8

] (𝑑̅ − 𝑑̅0) (3-16) 

Where 𝑑̅0 is the initial distance between atoms of the different graphene layers, 

given as171 

 
𝑑̅0 = √(𝑥𝑗 − 𝑥𝑖)

2
+ (𝑦𝑗 − 𝑦𝑖)

2
+ (𝑧𝑗 − 𝑧𝑖)

2
 (3-17) 

When only infinitesimal vibrations are being modelled, it suffices to assume that 

the vdW interaction is linearly proportional to the transverse displacements of the 

GSs150, 155. However, Jomehzadeh et al.172 argues that since the vdW force as 

expressed in equation (3-15) is a highly nonlinear function of distance, it is not 

reasonable to model it as a linear function. In other works171, the vdW force is 

also modelled as a nonlinear function to develop a geometrically nonlinear 

continuum mechanics model. To model a nonlinear vdW force, the Taylor 

expansion is truncated to the third order and the vdW force becomes 

 
𝐹(𝑑̅) =  −

24𝜀

𝜎2
[26 (

𝜎

𝑑̅0
)

14

− 7(
𝜎

𝑑̅0
)

8

] (𝑑̅ − 𝑑̅0)

−
336𝜀

𝜎4
[65 (

𝜎

𝑑̅0
)

16

− 6(
𝜎

𝑑̅0
)

10

] (𝑑̅ − 𝑑̅0)
3

 

(3-18) 
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Any two layers in an MLGS can be AA- or AB- stacked, depending on the 

positions of the atoms in the top layer relative to those in the layer immediately 

beneath it. In an AA-stacking, the carbon atoms in one layer are stacked directly 

on top of those in the layer beneath it, while in an AB-stacking the atoms in one 

layer are located directly above the center of the Brillouin zone of the layer 

beneath it (see Figure 3-1). Since the vdW force acts along the atoms’ direction, 

for AA-stacked layers the force acts in the 𝑧 direction but this is not the case for 

AB-stacked layers. Therefore, to find the vdW interaction pressure between any 

two layers in the 𝑧 direction, the vdW force needs to be projected along the 𝑧 

direction, divided by the area occupied by one atom, and then integrated over the 

entire sheet. 

                   

 
Figure 3-1: Graphene a) AA-stacking  b) AB-stacking 

As shown in Figure 3-2, the projection of 𝐹(𝑑̅) along the 𝑧 direction and the 

relation between the distance difference of the two atoms and the transverse 

displacements of the graphene layers are given as  

 𝐹(𝑑̅)
𝑧
= 𝐹(𝑑̅) 𝑐𝑜𝑠 𝜃 (3-19) 

 𝑐𝑜𝑠 𝜃 =
𝑧

𝑑̅
 (3-20) 

 ∴ 𝐹(𝑑̅)
𝑧
= 𝐹(𝑑̅)

𝑧

𝑑̅
 (3-21) 

 𝐴𝑙𝑠𝑜,
𝑤𝑖 − 𝑤𝑗

𝑑̅ − 𝑑̅0
=
𝑧

𝑑̅
 (3-22) 

 ⇒      𝑤𝑖 − 𝑤𝑗 = (𝑑̅ − 𝑑̅0)
𝑧

𝑑̅
 (3-23) 

a) b) 
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Equations (3-21) and (3-23) hold true for both AA- and AB-stacked layers, with 

𝑧 = 𝑑̅ for the AA-stacked layers. Therefore, for both AA- and AB-stacked layers, 

assuming  that each carbon atom occupies an area of 9𝑎2 4√3⁄  196 and the GSs are 

continuum plates, the linear vdW pressure is derived using equation (3-16) as171 

 
𝑞𝑖𝑗 = −(

4√3

9𝑎2
)

2
24𝜀

𝜎2
∫ ∫ [26(

𝜎

𝑑̅0
)

14

− 7(
𝜎

𝑑̅0
)

8

] × (𝑑̅ − 𝑑̅0)
𝑧

𝑑̅
𝑑𝑥𝑑𝑦

𝑏
2⁄

−𝑏 2⁄

𝑎
2⁄

−𝑎 2⁄

 (3-24) 

 
𝑞𝑖𝑗𝐿 = (

4√3

9𝑎2
)

2
24𝜀

𝜎2
[
13𝜋

3
(
𝜎

𝑎
)
14 1

(𝑧𝑗̅ − 𝑧𝑖̅)
12 −

7𝜋

3
(
𝜎

𝑎
)
8 1

(𝑧𝑗̅ − 𝑧𝑖̅)
6] (𝑤𝑖 − 𝑤𝑗) (3-25) 

    

Figure 3-2: Atoms in any two adjacent GS layers and the vdW force acting between 

them. 

Similarly, the nonlinear vdW pressure is derived for both AA- and AB-stacked 

layers using equation (3-18) as 

 
𝑞𝑖𝑗 = −(

4√3

9𝑎2
)

2
24𝜀

𝜎2
∫ ∫ [26 (

𝜎

𝑑̅
)
14

− 7(
𝜎

𝑑̅
)
8

] × (𝑑̅ − 𝑑̅0)
𝑧

𝑑̅
𝑑𝑥𝑑𝑦

𝑏
2⁄

−𝑏 2⁄

𝑎
2⁄

−𝑎 2⁄

− (
4√3

9𝑎2
)

2
336𝜀

𝜎4
∫ ∫ [65 (

𝜎

𝑑̅
)
16

− 6(
𝜎

𝑑̅
)
10

] × (𝑑̅ − 𝑑̅0)
3 𝑧

𝑑̅3
𝑑𝑥𝑑𝑦

𝑏
2⁄

−𝑏 2⁄

𝑎
2⁄

−𝑎 2⁄

 

(3-26) 

  
𝑞𝑖𝑗𝑁𝐿 = −(

4√3

9𝑎2
)

2
24𝜀

𝜎2
[
13𝜋

3
(
𝜎

𝑎
)
14 1

(𝑧𝑗̅ − 𝑧𝑖̅)
12 −

7𝜋

3
(
𝜎

𝑎
)
8 1

(𝑧𝑗̅ − 𝑧𝑖̅)
6] (𝑤𝑖 − 𝑤𝑗)

− (
4√3

9𝑎2
)

2
168𝜀

𝜎4
[
130𝜋

7
(
𝜎

𝑎
)
16 1

(𝑧𝑗̅ − 𝑧𝑖̅)
14

− 3𝜋 (
𝜎

𝑎
)
10 1

(𝑧𝑗̅ − 𝑧𝑖̅)
8] (𝑤𝑖 − 𝑤𝑗)

3
 

(3-27) 
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The net pressure caused by the vdW interactions on a layer 𝑖 by all the other 

layers 𝑗 =  1,2, … , 𝑁 with 𝑖 ≠  𝑗 when modelled as a linear pressure can be 

expressed as 

 
𝑞𝑖𝐿 =∑𝑐𝑖𝑗

𝑁

𝑗=1

(𝑤𝑖 − 𝑤𝑗) (3-28) 

 
Where 𝑁 is the number of layers in the MLGS, 𝑤𝑖 and 𝑤𝑗 are the transverse 

deflections of the 𝑖th layer and the other layers respectively, with 𝑐𝑖𝑗 given as 

 
𝑐𝑖𝑗 = −(

4√3

9𝑎2
)

2
24𝜀

𝜎2
[
13𝜋

3
(
𝜎

𝑎
)
14 1

(𝑧𝑗̅ − 𝑧𝑖̅)
12 −

7𝜋

3
(
𝜎

𝑎
)
8 1

(𝑧𝑗̅ − 𝑧𝑖̅)
6] (3-29) 

 
When the vdW pressure is modelled as a nonlinear function, the net pressure is 

given as 

 
𝑞𝑖𝑁𝐿 =∑𝑐𝑖𝑗

𝑁

𝑗=1

(𝑤𝑖 −𝑤𝑗) +∑𝑒𝑖𝑗

𝑁

𝑗=1

(𝑤𝑖 −𝑤𝑗)
3

 (3-30) 

 
with  

 
𝑒𝑖𝑗 = −(

4√3

9𝑎2
)

2
168𝜀

𝜎4
[
130𝜋

7
(
𝜎

𝑎
)
16 1

(𝑧𝑗̅ − 𝑧𝑖̅)
14 − 3𝜋 (

𝜎

𝑎
)
10 1

(𝑧𝑗̅ − 𝑧𝑖̅)
8] (3-31) 

 
It is worthy to note that the same procedure followed to derive the vdW pressure 

between GSs can be used to derive the pressure resulting from the non-bonded 

vdW interactions between a GS and any layer/sheet of a different material. One 

example is the interactions between graphene and a polymer matrix, 

polyethylene172. Here, equations (3-28) - (3-31) are thought to suffice for the vdW 

interaction between GSs and any other layer of different material type. For the 

interactions between GSs and other layers of a different material type, 𝜀 in 

equations (3-28) - (3-31) becomes 𝜀𝑔_𝑚, 𝜎 becomes 𝜎𝑔_𝑚, and (4√3 9𝑎2⁄ )
2
 becomes 

𝜌𝑚(4√3 9𝑎2⁄ ), where the subscripts 𝐠 and 𝐦 refer to graphene and the other 
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material type respectively. These new quantities can be obtained using equations 

specified in the universal force field periodic table195. 

 Pasternak foundation model 

Unlike the vdW interaction model, the Pasternak foundation model assumes that 

chemical bonds are formed between the GS and the elastic medium in which it is 

embedded. The Pasternak foundation model190, 197, 198 is improved from the 

Winkler model to include the shear deformation 𝐺𝑏 of the elastic medium. The 

Winkler model approximates the normal pressure from the elastic medium as a 

series of mutually independent, closely spaced, vertical elastic springs whose 

stiffness 𝐾𝑊 represents the medium’s modulus (Figure 3-3). 

 

Figure 3-3: GS embedded in an Pasternak foundation medium with Winkler modulus 𝐾𝑊 

and Pasternak shear modulus 𝐺𝑏 

Where the Winkler model is used, the interactions of surrounding elastic media 

with the GSs are modelled as 

 𝑞𝑊 = 𝐾𝑊𝑤𝑖  (3-32) 

Where 𝑤𝑖 is the transverse deflection of the topmost or bottom-most layers in 

direct contact with the elastic medium. For the Pasternak model, the interactions 

are modelled as 

 𝑞𝑃 = −𝐾𝑊𝑤𝑖 + 𝐺𝑏𝛻
2𝑤𝑖  (3-33) 

 

   s   
   iu   i   
s      o u us

  

 in      o u us   

      n 
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In this sub-section, the formulation of the governing equations for various 

continuum models using variational and equilibrium methods is presented, 

including plate and membrane models. Beam models are not considered in this 

work because even though relatively easy and established solution pathways 

exist for them, they do not adequately represent the vibration problem of GSs 

(except where 𝑎 𝑏 → ∞⁄ ). 

 Classical plate theory (CLPT) 

A plate can be considered as a two-dimensional analogue of a beam – which 

means that both bending moments and transverse shear forces will be active. 

The basic kinematics of the classical theory of thin plates is therefore the same 

as that of the Bernoulli-Euler beam. 

Isotropic graphene sheets 

Consider a graphene sheet modelled as an isotropic thin plate of uniform 

thickness, ℎ, with dimension 𝑎 × 𝑏 and with its undeflected surface in the 𝑥-𝑦 

plane as shown in Figure 3-4.  

 

Figure 3-4: Isometric plate model 

Based on the CLPT, the displacement components of an arbitrary point in the GS 

are expressed as 

 
𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧

𝜕𝑤0(𝑥, 𝑦, 𝑡)

𝜕𝑥
 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0(𝑥, 𝑦, 𝑡)

𝜕𝑦
 

(3-34) 
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𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) 

Where 𝑢0, 𝑣0 and 𝑤0 are the displacement components of the corresponding mid-

plane point (𝑥, 𝑦, 0) along the 𝑥, 𝑦 and 𝑧 directions respectively and 𝑡 is the time. 

For nonlinear vibrations, geometric nonlinearity is modelled by using the 

nonlinear von Karman type strain-displacement relations given as 

 𝜀𝑥𝑥 = (𝜀𝑥𝑥𝐿 + 𝜀𝑥𝑥𝑁𝐿) + 𝑧𝜅𝑥𝑥  

𝜀𝑦𝑦 = (𝜀𝑦𝑦𝐿 + 𝜀𝑦𝑦𝑁𝐿) + 𝑧𝜅𝑦𝑦 

𝛾𝑥𝑦 = (𝛾𝑥𝑦𝐿 + 𝛾𝑥𝑦𝑁𝐿) + 𝑧𝜅𝑥𝑦  

(3-35) 

where the subscripts 𝐿 and 𝑁𝐿 refer to the linear and nonlinear terms 

respectively, and the in-plane strains and curvature parameters are defined as 

 

{
 
 

 
 
𝜀𝑥𝑥𝐿

𝜀𝑦𝑦𝐿

𝛾𝑥𝑦𝐿}
 
 

 
 

=

{
  
 

  
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
  
 

  
 

,         

{
 
 

 
 
𝜀𝑥𝑥𝑁𝐿

𝜀𝑦𝑦𝑁𝐿

𝛾𝑥𝑦𝑁𝐿}
 
 

 
 

=

{
  
 

  
 
1

2
(
𝜕𝑤0
𝜕𝑥

)
2

1

2
(
𝜕𝑤0
𝜕𝑦

)
2

𝜕𝑤0
𝜕𝑥

𝜕𝑤0
𝜕𝑦 }

  
 

  
 

 (3-36) 

  

{
 
 

 
 
𝜅𝑥𝑥

𝜅𝑦𝑦

𝜅𝑥𝑦}
 
 

 
 

=

{
  
 

  
 −

𝜕2𝑤0
𝜕𝑥2

−
𝜕2𝑤0
𝜕𝑦2

−2
𝜕2𝑤0
𝜕𝑥𝜕𝑦}

  
 

  
 

 (3-37) 

Note that when only material rather than geometric nonlinearity is considered the 

nonlinear terms in equation (3-35) are ignored to give the linear kinematic 

relations. 

Based on equation (3-6), the plane stress constitutive relation for the GS when 

considering the small-scale effect is given as 

 

(1 − 𝜇𝛻2)

{
 
 

 
 
𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦}
 
 

 
 

=

[
 
 
 
 
 

𝐸

1 − 𝜐2
𝜐𝐸

1 − 𝜐2
0

𝜐𝐸

1 − 𝜐2
𝐸

1 − 𝜐2
0

0 0 𝐺]
 
 
 
 
 

{
 
 

 
 
𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦}
 
 

 
 

 (3-38) 
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Where 𝐸, 𝐺 and 𝜐 are the elastic modulus, shear modulus and Poisson’s ratio 

respectively, with 𝐺 =
𝐸

2(1+𝜐)
 . The local plane stress constitutive relation is 

recovered when the small-scale parameter, 𝜇, is set to zero. 

The governing equations for the nonlinear vibrations of the GS are derived using 

Hamilton’s principle, which states that172 

 
∫ (𝛿𝑇 − 𝛿𝑈 + 𝛿𝑉)𝑑𝑡
𝑡

0

= 0 (3-39) 

where 𝑇, 𝑈 and 𝑉 are the kinetic energy, strain energy of the GS and potential 

energy of the external loads, respectively. The equilibrium equations are given 

as174  

 𝜕𝑁𝑥𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 𝐼0

𝜕2𝑢0
𝜕𝑡2

− 𝐼1
𝜕2

𝜕𝑡2
(
𝜕𝑤0
𝜕𝑥

) (3-40) 

 𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦𝑦

𝜕𝑦
= 𝐼0

𝜕2𝑣0
𝜕𝑡2

− 𝐼1
𝜕2

𝜕𝑡2
(
𝜕𝑤0
𝜕𝑦

) (3-41) 

  𝜕2𝑀𝑥𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦𝑦

𝜕𝑦2
+ 𝑁𝑁𝐿 + 𝑝

= 𝐼0
𝜕2𝑤0
𝜕𝑡2

+ 𝐼1
𝜕2

𝜕𝑡2
(
𝜕𝑢0
𝜕𝑥

+
𝜕𝑣0
𝜕𝑦
) − 𝐼2 (

𝜕4𝑤0
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤0
𝜕𝑦2𝜕𝑡2

) 

 

(3-42) 

Where 𝑁𝑥𝑥, 𝑁𝑦𝑦, and 𝑁𝑥𝑦 are the in-plane force resultants, 𝑀𝑥𝑥, 𝑀𝑦𝑦, and 𝑀𝑥𝑦 are 

the moment resultants. 𝑝 is the external load due to vdW pressure and the 

applied force in forced vibration analysis. 𝐼0, 𝐼1 and 𝐼2 are the inertia parameters 

expressed in terms of the mass density, 𝜌, of the GSs as 

 
𝐼0 = ∫ 𝜌𝑑𝑧

ℎ
2⁄

−ℎ 2⁄

 

𝐼1 = ∫ 𝜌𝑧𝑑𝑧

ℎ
2⁄

−ℎ 2⁄

 

𝐼2 = ∫ 𝜌𝑧2𝑑𝑧

ℎ
2⁄

−ℎ 2⁄

 

(3-43) 

𝑁𝑁𝐿 is the term arising from the geometrical nonlinearity introduced via the von 

Karman strain-displacement relations and is given as199 
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 𝑁𝑁𝐿 =
𝜕

𝜕𝑥
(𝑁𝑥𝑥

𝜕𝑤0
𝜕𝑥

+ 𝑁𝑥𝑦
𝜕𝑤0
𝜕𝑦

) +
𝜕

𝜕𝑦
(𝑁𝑥𝑦

𝜕𝑤0
𝜕𝑥

+ 𝑁𝑦𝑦
𝜕𝑤0
𝜕𝑦

) (3-44) 

And simplifies to 

 
𝑁𝑁𝐿 = 𝑁𝑥𝑥

𝜕2𝑤0
𝜕𝑥2

+ 2𝑁𝑥𝑦
𝜕2𝑤0
𝜕𝑥𝜕𝑦

+ 𝑁𝑦𝑦
𝜕2𝑤0
𝜕𝑦2

 (3-45) 

In equation  

(3-42), 𝑁𝑁𝐿 is absent when the nonlinearity being considered is not geometric, and 

where the rotary inertia term is ignored the term 𝐼2 (
𝜕4𝑤0

𝜕𝑥2𝜕𝑡2
+

𝜕4𝑤0

𝜕𝑦2𝜕𝑡2
) disappears. 

The force and moment resultants are given as  

 
[𝑁𝑥𝑥

    𝑁𝑦𝑦
    𝑁𝑥𝑦

 ]
𝑇
= ∫ (𝜎𝑥𝑥    𝜎𝑦𝑦   𝜎𝑥𝑦)

𝑇
𝑑𝑧

ℎ
2⁄

−ℎ 2⁄

 (3-46) 

  
[𝑀𝑥𝑥

    𝑀𝑦𝑦
    𝑀𝑥𝑦

 ]
𝑇
= ∫ (𝜎𝑥𝑥    𝜎𝑦𝑦   𝜎𝑥𝑦)

𝑇
𝑧𝑑𝑧

ℎ
2⁄

−ℎ 2⁄

 (3-47) 

According to the stress constitutive relation in equation (3-38), the force and 

moment resultants satisfy the following equations 

 

(1 − 𝜇𝛻2)

[
 
 
 
 
𝑁𝑥𝑥

𝑁𝑦𝑦

𝑁𝑥𝑦]
 
 
 
 

= ℎ

[
 
 
 
 
 

𝐸

1 − 𝜐2
𝜐𝐸

1 − 𝜐2
0

𝜐𝐸

1 − 𝜐2
𝐸

1 − 𝜐2
0

0 0 𝐺]
 
 
 
 
 

{
  
 

  
 

𝜕𝑢0
𝜕𝑥

+
1

2
(
𝜕𝑤0
𝜕𝑥

)
2

𝜕𝑣0
𝜕𝑦

+
1

2
(
𝜕𝑤0
𝜕𝑦

)
2

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥

+
𝜕𝑤0
𝜕𝑥

𝜕𝑤0
𝜕𝑦 }

  
 

  
 

 (3-48) 

  

(1 − 𝜇𝛻2)

[
 
 
 
 
𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦]
 
 
 
 

=
ℎ3

12
 

[
 
 
 
 
 

𝐸

1 − 𝜐2
𝜐𝐸

1 − 𝜐2
0

𝜐𝐸

1 − 𝜐2
𝐸

1 − 𝜐2
0

0 0 𝐺]
 
 
 
 
 

{
  
 

  
 −

𝜕2𝑤0
𝜕𝑥2

−
𝜕2𝑤0
𝜕𝑦2

−2
𝜕2𝑤0
𝜕𝑥𝜕𝑦}

  
 

  
 

 (3-49) 

It has been shown that the effect of in-plane inertia on large amplitude vibration 

of thin-walled structures is neglible200, therefore neglecting the in-plane inertia 

terms in equations (3-40) - (3-42), and multiplying the equations by (1 − 𝜇𝛻2), with 

𝐼1 being zero for sheets that are symmetric with respect to the 𝑧-axis, we have 
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(1 − 𝜇𝛻2) (

𝜕𝑁𝑥𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
) = 0 (3-50) 

  
(1 − 𝜇𝛻2) (

𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦𝑦

𝜕𝑦
) = 0 (3-51) 

 
(1 − 𝜇𝛻2) (

𝜕2𝑀𝑥𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦𝑦

𝜕𝑦2
)

+ (1 − 𝜇𝛻2) (𝑁𝑥𝑥
𝜕2𝑤0
𝜕𝑥2

+ 2𝑁𝑥𝑦
𝜕2𝑤0
𝜕𝑥𝜕𝑦

+ 𝑁𝑦𝑦
𝜕2𝑤0
𝜕𝑦2

+ 𝑝)

= (1 − 𝜇𝛻2)(𝐼0
𝜕2𝑤0
𝜕𝑡2

− 𝐼2 (
𝜕4𝑤0
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤0
𝜕𝑦2𝜕𝑡2

)) 

(3-52) 

To satisfy equations (3-50) - (3-52), the stress function is defined as Airy’s stress 

function, 𝜑 

 
𝑁𝑥𝑥 =

𝜕2𝜑

𝜕𝑦2
 

𝑁𝑦𝑦 =
𝜕2𝜑

𝜕𝑥2
 

𝑁𝑥𝑦 = −
𝜕2𝜑

𝜕𝑥𝜕𝑦
 

(3-53) 

Now substituting equations (3-49) and (3-53) in equation (3-52) and simplifying, 

we have  

 
−𝐷 (

𝜕4𝑤0𝑖
𝜕𝑥4

+ 2
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑦2

+
𝜕4𝑤0𝑖
𝜕𝑦4

)

+ (1 − 𝜇𝛻2) (
𝜕2𝑤0𝑖
𝜕𝑥2

𝜕2𝜑

𝜕𝑦2
− 2

𝜕2𝑤0𝑖
𝜕𝑥𝜕𝑦

𝜕2𝜑

𝜕𝑥𝜕𝑦
+
𝜕2𝑤0𝑖
𝜕𝑦2

𝜕2𝜑

𝜕𝑥2
+ 𝑝𝑖)

= (1 − 𝜇𝛻2) (𝐼0
𝜕2𝑤0𝑖
𝜕𝑡2

− 𝐼2 (
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤0𝑖
𝜕𝑦2𝜕𝑡2

)) 

(3-54) 

 Or 

 
−𝐷𝛻4𝑤0𝑖 + (1 − 𝜇𝛻

2) (
𝜕2𝑤0𝑖
𝜕𝑥2

𝜕2𝜑

𝜕𝑦2
− 2

𝜕2𝑤0𝑖
𝜕𝑥𝜕𝑦

𝜕2𝜑

𝜕𝑥𝜕𝑦
+
𝜕2𝑤0𝑖
𝜕𝑦2

𝜕2𝜑

𝜕𝑥2
+ 𝑝𝑖)

= (1 − 𝜇𝛻2) (𝐼0
𝜕2𝑤0𝑖
𝜕𝑡2

− 𝐼2 (
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤0𝑖
𝜕𝑦2𝜕𝑡2

)) 

(3-55) 

where ∇4=
𝜕4

𝜕𝑥4
+ 2

𝜕4

𝜕𝑥2𝜕𝑦2
+

𝜕4

𝜕𝑦4
 , and 𝐷 is the bending rigidity given as 
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𝐷 =

𝐸ℎ3

12(1 − 𝜐2)
  (3-56) 

Equation (3-54) or (3-55) is the nonlinear, nonlocal fourth order partial differential 

equation of motion for an isotropic GS being analysed as part of a MLGS-

composite in terms of the transverse displacement of the sheet and Airy’s stress 

function. The subscript 𝑖 denotes the layer number. 

Since equation (3-54) or (3-55) are functions of two unknowns, a compatibility 

equation is needed to augment either of them before solutions can be obtained. 

The compatibility equation is obtained by eliminating the in-plane displacement 

functions, 𝑢 and 𝑣, from equations (3-35) - (3-37) and expressing the in-plane 

strain components in terms of the stress function. The compatibility equation 

starts off with the form199 

 𝜕2𝜀0𝑥𝑥
𝜕𝑦2

− 2
𝜕2𝜀0𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝜀0𝑦𝑦

𝜕𝑥2
= (

𝜕2𝑤0𝑖
𝜕𝑥𝜕𝑦

)

2

−
𝜕2𝑤0
𝜕𝑥2

𝜕2𝑤0
𝜕𝑦2

 (3-57) 

The in-plane strain components are obtained from equation (3-48) as 

 

{
 
 

 
 
𝜀0𝑥𝑥

𝜀0𝑦𝑦

𝛾0𝑥𝑦}
 
 

 
 

=

[
 
 
 
 
𝐴11 𝐴12 0

𝐴21 𝐴22 0

0 0 𝐴33]
 
 
 
 

(

 
 

{
 
 

 
 
𝑁𝑥𝑥

𝑁𝑦𝑦

𝑁𝑥𝑦}
 
 

 
 

− 𝜇𝛻2

{
 
 

 
 
𝑁𝑥𝑥

𝑁𝑦𝑦

𝑁𝑥𝑦}
 
 

 
 

)

 
 

 (3-58) 

where 

[
 
 
 
 
𝐴11 𝐴12 0

𝐴21 𝐴22 0

0 0 𝐴33]
 
 
 
 

 is the inverse of the stretching stiffness matrix 

[
 
 
 
 
𝐸ℎ

1−𝜐2

𝜐𝐸ℎ

1−𝜐2
0

𝜐𝐸ℎ

1−𝜐2

𝐸ℎ

1−𝜐2
0

0 0 𝐺ℎ]
 
 
 
 

 

in equation (3-48). Equation (3-57) then becomes 

 
(1 − 𝜇𝛻2) [𝑨𝟏𝟏

𝜕2𝑁𝑥𝑥
𝜕𝑦2

+ 𝑨𝟏𝟐 (
𝜕2𝑁𝑦𝑦

𝜕𝑦2
+
𝜕2𝑁𝑥𝑥
𝜕𝑥2

) + 𝑨𝟐𝟐
𝜕2𝑁𝑦𝑦

𝜕𝑥2
− 𝟐𝑨𝟑𝟑

𝜕2𝑁𝑥𝑦

𝜕𝑥𝜕𝑦
]

= (
𝜕2𝑤0𝑖
𝜕𝑥𝜕𝑦

)

2

−
𝜕2𝑤0
𝜕𝑥2

𝜕2𝑤0
𝜕𝑦2

 

(3-59) 

Substituting equation (3-53) in (3-59) and simplifying, we have 



Chapter 3: Vibration analysis of rectangular-shaped graphene resonators  F.G. Unom 

71 

 

 
(1 − 𝜇𝛻2) [𝑨𝟏𝟏

𝜕4𝜑

𝜕𝑦4
+ (𝑨𝟏𝟐 + 𝟐𝑨𝟑𝟑)

𝜕4𝜑

𝜕𝑥2𝜕𝑦2
+ 𝑨𝟐𝟐

𝜕4𝜑

𝜕𝑥4
] = (

𝜕2𝑤0𝑖
𝜕𝑥𝜕𝑦

)

2

−
𝜕2𝑤0
𝜕𝑥2

𝜕2𝑤0
𝜕𝑦2

 (3-60) 

with the inverse of the stretching stiffness matrix given as 

 

[
 
 
 
 
 
 

𝐴11 𝐴12 0

𝐴21 𝐴22 0

0 0 𝐴33]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

1

𝐸ℎ

−𝜐

𝐸ℎ
0

−𝜐

𝐸ℎ

1

𝐸ℎ
0

0 0
2(1 + 𝜐)

𝐸ℎ ]
 
 
 
 
 
 
 

 (3-61) 

Equation (3-60) is the nonlocal compatibility equation that complements equation 

(3-54). In some works, the nonlocal effects are not included in the compatibility 

equation. Equations (3-54) and (3-60) form the nonlinear, nonlocal equations of 

motion needed for the vibration analysis of an isotropic GS in a MLGS 

composite. Together they are 

 
−𝐷 (

𝜕4𝑤0𝑖
𝜕𝑥4

+ 2
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑦2

+
𝜕4𝑤0𝑖
𝜕𝑦4

)

+ (1 − 𝜇𝛻2) (
𝜕2𝑤0𝑖
𝜕𝑥2

𝜕2𝜑𝑖
𝜕𝑦2

− 2
𝜕2𝑤0𝑖
𝜕𝑥𝜕𝑦

𝜕2𝜑𝑖
𝜕𝑥𝜕𝑦

+
𝜕2𝑤0𝑖
𝜕𝑦2

𝜕2𝜑𝑖
𝜕𝑥2

)

+ (1 − 𝜇𝛻2)𝑝𝑖 = (1 − 𝜇𝛻2) (𝐼0
𝜕2𝑤0𝑖
𝜕𝑡2

− 𝐼2 (
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤0𝑖
𝜕𝑦2𝜕𝑡2

)) 

(1 − 𝜇𝛻2) [𝑨𝟏𝟏
𝜕4𝜑𝑖
𝜕𝑦4

+ (𝑨𝟏𝟐 + 𝟐𝑨𝟑𝟑)
𝜕4𝜑𝑖
𝜕𝑥2𝜕𝑦2

+ 𝑨𝟐𝟐
𝜕4𝜑𝑖
𝜕𝑥4

] = (
𝜕2𝑤0𝑖
𝜕𝑥𝜕𝑦

)

2

−
𝜕2𝑤0𝑖
𝜕𝑥2

𝜕2𝑤0𝑖
𝜕𝑦2

 

(3-62) 

 
Equation (3-62) can be appropriately tailored for a few cases of vibrating isotropic 

GSs. For an isotropic MLGS, the nonlinear equations of motion without 

considering the nonlocal effects are 

 
−𝐷 (

𝜕4𝑤0𝑖
𝜕𝑥4

+ 2
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑦2

+
𝜕4𝑤0𝑖
𝜕𝑦4

) +
𝜕2𝑤0𝑖
𝜕𝑥2

𝜕2𝜑𝑖
𝜕𝑦2

− 2
𝜕2𝑤0𝑖
𝜕𝑥𝜕𝑦

𝜕2𝜑𝑖
𝜕𝑥𝜕𝑦

+
𝜕2𝑤0𝑖
𝜕𝑦2

𝜕2𝜑𝑖
𝜕𝑥2

+ 𝑝𝑖

= 𝐼0
𝜕2𝑤0𝑖
𝜕𝑡2

− 𝐼2 (
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤0𝑖
𝜕𝑦2𝜕𝑡2

) 

𝐴11
𝜕4𝜑𝑖
𝜕𝑦4

+ (𝐴12 + 2𝐴33)
𝜕4𝜑𝑖
𝜕𝑥2𝜕𝑦2

+ 𝐴22
𝜕4𝜑𝑖
𝜕𝑥4

= (
𝜕2𝑤0𝑖
𝜕𝑥𝜕𝑦

)

2

−
𝜕2𝑤0𝑖
𝜕𝑥2

𝜕2𝑤0𝑖
𝜕𝑦2

 

(3-63) 
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For an isotropic MLGS, the linear, nonlocal equation of motion is deduced as 

 
−𝐷 (

𝜕4𝑤0𝑖
𝜕𝑥4

+ 2
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑦2

+
𝜕4𝑤0𝑖
𝜕𝑦4

) + 𝑝𝑖

= (1 − 𝜇𝛻2) (𝐼0
𝜕2𝑤0𝑖
𝜕𝑡2

− 𝐼2 (
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤0𝑖
𝜕𝑦2𝜕𝑡2

)) 

(3-64) 

 
Without considering nonlocal effects, the linear equation of motion for an 

isotropic MLGS becomes 

 
−𝐷 (

𝜕4𝑤0𝑖
𝜕𝑥4

+ 2
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑦2

+
𝜕4𝑤0𝑖
𝜕𝑦4

) + 𝑝𝑖 = 𝐼0
𝜕2𝑤0𝑖
𝜕𝑡2

− 𝐼2 (
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤0𝑖
𝜕𝑦2𝜕𝑡2

) (3-65) 

 
Equations (3-62) - (3-65) are same for an SLGS under the same assumptions for 

which they are given for MLGSs, but with the subscript 𝑖 removed as there is only 

one layer of graphene in an SLGS. In cases where the rotary inertia terms are 

ignored, the term 𝐼2 (
𝜕4𝑤0𝑖

𝜕𝑥2𝜕𝑡2
+

𝜕4𝑤0𝑖

𝜕𝑦2𝜕𝑡2
) vanishes in equations (3-62) - (3-65) for MLGSs 

and their adaptation for SLGSs. 

Orthotropic graphene sheets 

Graphene has its carbon atoms arranged in a hexagonal lattice structure, with the 

structural pattern differing depending on the orientation being considered 

resulting in armchair and zigzag edges in GSs (see Figure 3-5). Because of this 

peculiar structure the elastic properties of GSs are said to differ in the two 

perpendicular orientations, consequently the sheets are expected to behave 

differently depending on the edge the load/boundary condition is applied.  

 

 
a) 
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Figure 3-5: a) Armchair and b) Zigzag graphene edges 

The governing equations for the vibration analysis of orthotropic plates are 

derived in the same way the equations for isotropic plates are derived and are in 

fact same except for the bending stiffnesses and the inverse of the stretching 

stiffnesses. Therefore, for an orthotropic plate of uniform thickness  ℎ, with 

dimension 𝑎 × 𝑏, the equivalent of equations (3-62) - (3-65) with the corresponding 

assumptions are given in the next few paragraphs. 

The nonlinear, nonlocal equations of motion for an orthotropic MLGS are given 

as 

 
𝐷11

𝜕4𝑤0𝑖
𝜕𝑥4

+ 2(𝐷12 + 2𝐷33)
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑦2

+ 𝐷22
𝜕4𝑤0𝑖
𝜕𝑦4

− (1 − 𝜇𝛻2) (
𝜕2𝑤0𝑖
𝜕𝑥2

𝜕2𝜑𝑖
𝜕𝑦2

− 2
𝜕2𝑤0𝑖
𝜕𝑥𝜕𝑦

𝜕2𝜑𝑖
𝜕𝑥𝜕𝑦

+
𝜕2𝑤0𝑖
𝜕𝑦2

𝜕2𝜑𝑖
𝜕𝑥2

) − 𝑝𝑖

= −(1 − 𝜇𝛻2) (𝐼0
𝜕2𝑤0𝑖
𝜕𝑡2

− 𝐼2 (
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤0𝑖
𝜕𝑦2𝜕𝑡2

)) 

(1 − 𝜇𝛻2) [𝐴11
𝜕4𝜑𝑖
𝜕𝑦4

+ (𝐴12 + 2𝐴33)
𝜕4𝜑𝑖
𝜕𝑥2𝜕𝑦2

+ 𝐴22
𝜕4𝜑𝑖
𝜕𝑥4

] = (
𝜕2𝑤0𝑖
𝜕𝑥𝜕𝑦

)

2

−
𝜕2𝑤0𝑖
𝜕𝑥2

𝜕2𝑤0𝑖
𝜕𝑦2

 

(3-66) 

 
The nonlinear equations of motion for an orthotropic MLGS without 

considering the nonlocal effects are 

 
𝐷11

𝜕4𝑤0𝑖
𝜕𝑥4

+ 2(𝐷12 + 2𝐷33)
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑦2

+ 𝐷22
𝜕4𝑤0𝑖
𝜕𝑦4

−
𝜕2𝑤0𝑖
𝜕𝑥2

𝜕2𝜑𝑖
𝜕𝑦2

+ 2
𝜕2𝑤0𝑖
𝜕𝑥𝜕𝑦

𝜕2𝜑𝑖
𝜕𝑥𝜕𝑦

−
𝜕2𝑤0𝑖
𝜕𝑦2

𝜕2𝜑𝑖
𝜕𝑥2

− 𝑝𝑖 = −(𝐼0
𝜕2𝑤0𝑖
𝜕𝑡2

− 𝐼2 (
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤0𝑖
𝜕𝑦2𝜕𝑡2

)) 

𝐴11
𝜕4𝜑𝑖
𝜕𝑦4

+ (𝐴12 + 2𝐴33)
𝜕4𝜑𝑖
𝜕𝑥2𝜕𝑦2

+ 𝐴22
𝜕4𝜑𝑖
𝜕𝑥4

= (
𝜕2𝑤0𝑖
𝜕𝑥𝜕𝑦

)

2

−
𝜕2𝑤0𝑖
𝜕𝑥2

𝜕2𝑤0𝑖
𝜕𝑦2

 

(3-67) 

b) 
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The linear, nonlocal equation of motion for an orthotropic MLGS is 

 
𝐷11

𝜕4𝑤0𝑖
𝜕𝑥4

+ 2(𝐷12 + 2𝐷33)
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑦2

+ 𝐷22
𝜕4𝑤0𝑖
𝜕𝑦4

− 𝑝𝑖

= −(1 − 𝜇𝛻2) (𝐼0
𝜕2𝑤0𝑖
𝜕𝑡2

− 𝐼2 (
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤0𝑖
𝜕𝑦2𝜕𝑡2

)) 

(3-68) 

 
The linear equation of motion for an orthotropic MLGS without considering 

nonlocal effects is 

 
𝐷11

𝜕4𝑤0𝑖
𝜕𝑥4

+ 2(𝐷12 + 2𝐷33)
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑦2

+ 𝐷22
𝜕4𝑤0𝑖
𝜕𝑦4

− 𝑝𝑖

= −(𝐼0
𝜕2𝑤0𝑖
𝜕𝑡2

− 𝐼2 (
𝜕4𝑤0𝑖
𝜕𝑥2𝜕𝑡2

+
𝜕4𝑤0𝑖
𝜕𝑦2𝜕𝑡2

)) 

(3-69) 

 
The stretching and bending stiffness matrices for an armchair configuration are 

given as 

 

[
 
 
 
 
 
 

𝑆11 𝑆12 0

𝑆21 𝑆22 0

0 0 𝑆33]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝐸1ℎ

(1 − 𝜐12𝜐21)

𝐸2ℎ

(1 − 𝜐12𝜐21)
0

𝐸2ℎ

(1 − 𝜐12𝜐21)

𝜐21𝐸1ℎ

(1 − 𝜐12𝜐21)
0

0 0
𝐸1ℎ

2(1 + 𝜐12)]
 
 
 
 
 
 
 

 (3-70) 

 

[
 
 
 
 
 
 

𝐷11 𝐷12 0

𝐷21 𝐷22 0

0 0 𝐷33]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝐸1ℎ
3

12(1 − 𝜐12𝜐21)

𝐸2ℎ
3

12(1 − 𝜐12𝜐21)
0

𝐸2ℎ
3

12(1 − 𝜐12𝜐21)

𝜐21𝐸1ℎ
3

12(1 − 𝜐12𝜐21)
0

0 0
𝐸1ℎ

3

24(1 + 𝜐12)]
 
 
 
 
 
 
 

 (3-71) 

The inverse of the stretching stiffness matrix is deduced from equation (3-70) as 
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[
 
 
 
 
 
 
𝐴11 𝐴12 0

𝐴21 𝐴22 0

0 0 𝐴33]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝜐21𝐸1(1 − 𝜐12𝜐21)

ℎ(𝜐21𝐸1
2 − 𝐸2

2)

−𝐸2(1 − 𝜐12𝜐21)

ℎ(𝜐21𝐸1
2 − 𝐸2

2)
0

−𝐸2(1 − 𝜐12𝜐21)

ℎ(𝜐21𝐸1
2 − 𝐸2

2)

𝐸1(1 − 𝜐12𝜐21)

ℎ(𝜐21𝐸1
2 − 𝐸2

2)
0

0 0
2(1 + 𝜐12)

𝐸1ℎ ]
 
 
 
 
 
 
 

 (3-72) 

For the zigzag configuration, the stretching and bending stiffness matrices are 

given as 

 

[
 
 
 
 
 
 

𝑆11 𝑆12 0

𝑆21 𝑆22 0

0 0 𝑆33]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝜐21𝐸1ℎ

(1 − 𝜐12𝜐21)

𝐸2ℎ

(1 − 𝜐12𝜐21)
0

𝐸2ℎ

(1 − 𝜐12𝜐21)

𝐸1ℎ

(1 − 𝜐12𝜐21)
0

0 0
𝐸1ℎ

2(1 + 𝜐12)]
 
 
 
 
 
 
 

 (3-73) 

 

[
 
 
 
 
 
 

𝐷11 𝐷12 0

𝐷21 𝐷22 0

0 0 𝐷33]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝜐21𝐸1ℎ
3

12(1 − 𝜐12𝜐21)

𝐸2ℎ
3

12(1 − 𝜐12𝜐21)
0

𝐸2ℎ
3

12(1 − 𝜐12𝜐21)

𝐸1ℎ
3

12(1 − 𝜐12𝜐21)
0

0 0
𝐸1ℎ

3

24(1 + 𝜐12)]
 
 
 
 
 
 
 

 (3-74) 

And the inverse of the stretching stiffness matrix for the zigzag configuration is 

 

[
 
 
 
 
 
 
𝐴11 𝐴12 0

𝐴21 𝐴22 0

0 0 𝐴33]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝐸1(1 − 𝜐12𝜐21)

ℎ(𝜐21𝐸1
2 − 𝐸2

2)

−𝐸2(1 − 𝜐12𝜐21)

ℎ(𝜐21𝐸1
2 − 𝐸2

2)
0

−𝐸2(1 − 𝜐12𝜐21)

ℎ(𝜐21𝐸1
2 − 𝐸2

2)

𝜐21𝐸1(1 − 𝜐12𝜐21)

ℎ(𝜐21𝐸1
2 − 𝐸2

2)
0

0 0
2(1 + 𝜐12)

𝐸1ℎ ]
 
 
 
 
 
 
 

 (3-75) 

As with the isotropic equations, equations (3-66) - (3-69) are same for the 

orthotropic SLGS under the same assumptions for which they are given for 

MLGSs, but with the subscript 𝑖 removed. Also, in cases where the rotary inertia 

terms are ignored, the term 𝑰𝟐 (
𝝏𝟒𝒘𝟎𝒊

𝝏𝒙𝟐𝝏𝒕𝟐
+

𝝏𝟒𝒘𝟎𝒊

𝝏𝒚𝟐𝝏𝒕𝟐
) vanishes in equations (3-66) - (3-69) 

for MLGSs and their adaptation for SLGSs. The effect of the anisotropy of 

graphene on the natural frequency of GSs has been found to be negligible at 

higher lengths (𝒂, 𝒃 > 𝟐𝟎 𝒏𝒎)201. So, we conclude that the orthotropic CLPT models 
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should only really be applied to nanoplates, with dimensions in the tens of 

nanometers. 

Although equations (3-62), (3-63), (3-66) and (3-67) include geometric 

nonlinearities, by incorporating small strain and moderate rotation relations and 

thereby including bending-stretching coupling effects, the transverse deflections 

are still limited to the order of the plate’s thickness. This therefore means that if 

the transverse deflections of vibrating GSs are large and not in the order of the 

sheet’s thickness, stress stiffening effects set in and all equations derived in 

accordance with the CLPT including the nonlinear equations may be erroneous 

representations of the behaviour of the vibrating sheets. 

 First-order shear deformation theory (FSDT) 

The first-order shear deformation theory (FSDT) is an extension of the CLPT but 

with transverse shear deformations considered. The FSDT is sometimes 

erroneously called the Reissner-Mindlin plate theory170, which is meant to be an 

amalgamation of Reissner and Mindlin plate theories. However, the Mindlin plate 

theory is slightly different from the Reissner plate theory as is elucidated by 

Wang et al202. They point out that although both theories were proposed for 

analysing thick plates, it is erroneous to associate them as the ‘Reissner-Mindlin’ 

plate theory or to use one of them in an analysis and then compare the results 

with those obtained by using the other. In fact, the assumptions upon which the 

Reissner plate theory was derived do not allow for it to be classified as a FSDT 

which implies a linear displacement variation through the plate thickness.  

Isotropic graphene sheets 

Consider a graphene sheet modelled as the plate shown in Figure 3-4 but with 

thickness in the range of one-tenth to one-fiftieth of the planar dimensions. 

According to FSDT, the displacement components for an arbitrary point in the 

sheet are given as 

 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧𝜓𝑥(𝑥, 𝑦, 𝑡) 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧𝜓𝑦(𝑥, 𝑦, 𝑡) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) 

(3-76) 
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Where 𝑢0, 𝑣0 and 𝑤0 are the displacement components of the corresponding mid-

plane point (𝑥, 𝑦, 0) along the 𝑥, 𝑦 and 𝑧 directions respectively, 𝑡 is the time, and 

𝜓𝑥 and 𝜓𝑦 are the rotations of a normal to the midplane about the 𝑥- and 𝑦-axis 

respectively (Figure 3-6). When the plates being considered are thin, the 

rotations can be approximated as 𝜓𝑥 =
𝜕𝑤0

𝜕𝑥
 and 𝜓𝑦 =

𝜕𝑤0

𝜕𝑦
, which reverts equation 

(3-76) to the CLPT case in equation (3-34). 

The strain-displacement relations are given as 

 

{
  
 

  
 
𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

𝛾𝑦𝑧

𝛾𝑥𝑧}
  
 

  
 

=

{
 
 
 
 
 

 
 
 
 
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
𝜕𝑤

𝜕𝑦
+ 𝜓𝑦

𝜕𝑤

𝜕𝑥
+ 𝜓𝑥}

 
 
 
 
 

 
 
 
 
 

+ 𝑧

{
 
 
 
 

 
 
 
 

𝜕𝜓𝑥
𝜕𝑥
𝜕𝜓𝑦

𝜕𝑦
𝜕𝜓𝑦

𝜕𝑥
+
𝜕𝜓𝑥
𝜕𝑦

0
0 }

 
 
 
 

 
 
 
 

 (3-77) 

where 𝜀𝑥𝑥 and 𝜀𝑦𝑦 are the normal strains, and 𝛾𝑥𝑦, 𝛾𝑦𝑧 and 𝛾𝑥𝑧 are the shear 

strains 

 

 

Figure 3-6: Plate rotational components 
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The stress-strain constitutive relation based on the nonlocal elasticity theory is 

expressed as 

 

{
  
 

  
 
𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

𝜎𝑦𝑧

𝜎𝑥𝑧}
  
 

  
 

− 𝜇𝛻2

{
  
 

  
 
𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

𝜎𝑦𝑧

𝜎𝑥𝑧}
  
 

  
 

=

[
 
 
 
 
 
 
 

𝐸

1 − 𝜐2
𝜐𝐸

1 − 𝜐2
0 0 0

𝜐𝐸

1 − 𝜐2
𝐸

1 − 𝜐2
0 0 0

0 0 2𝐺 0 0

0 0 0 𝐺 0

0 0 0 0 𝐺]
 
 
 
 
 
 
 

{
  
 

  
 
𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

𝛾𝑦𝑧

𝛾𝑥𝑧}
  
 

  
 

 (3-78) 

The force and moment resultants are expressed as has been given for CLPT in 

equations (3-46) and (3-47). Substituting equations (3-77) and (3-78) in those 

equations, the force and moment resultants for FSDT become158, 203 

 

(1 − 𝜇𝛻2)

[
 
 
 
 
𝑁𝑥𝑥

𝑁𝑦𝑦

𝑁𝑥𝑦]
 
 
 
 

= ℎ

[
 
 
 
 
 

𝐸

1 − 𝜐2
𝜐𝐸

1 − 𝜐2
0

𝜐𝐸

1 − 𝜐2
𝐸

1 − 𝜐2
0

0 0 𝐺]
 
 
 
 
 

{
  
 

  
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
  
 

  
 

 (3-79) 

  

(1 − 𝜇𝛻2)

[
 
 
 
 
 
 
 
 
𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

𝑄𝑥𝑥

𝑄𝑦𝑦 ]
 
 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
 
 
𝐷 𝜐𝐷 0 0 0

𝜐𝐷 𝐷 0 0 0

0 0
𝐷(1 − 𝜐)

2
0 0

0 0 0 𝑘2𝐺ℎ 0

0 0 0 0 𝑘2𝐺ℎ]
 
 
 
 
 
 
 
 

{
 
 
 
 
 

 
 
 
 
 

𝜕𝜓𝑥
𝜕𝑥
𝜕𝜓𝑦

𝜕𝑦
𝜕𝜓𝑦

𝜕𝑥
+
𝜕𝜓𝑥
𝜕𝑦

𝜕𝑤0
𝜕𝑥

+ 𝜓𝑥

𝜕𝑤0
𝜕𝑦

+ 𝜓𝑦 }
 
 
 
 
 

 
 
 
 
 

 (3-80) 

where 𝑘2 is the shear correction factor, and 𝐷 and 𝐺 are the bending rigidity and 

shear modulus, respectively, as have already been defined. 

The equilibrium equations for the Mindlin plate theory as restated by Ansari et 

al.170 are 

 𝜕𝑁𝑥𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 𝐼0

𝜕2𝑢0
𝜕𝑡2

+ 𝐼1
𝜕2𝜓𝑥
𝜕𝑡2

 

𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦𝑦

𝜕𝑦
= 𝐼0

𝜕2𝑣0
𝜕𝑡2

+ 𝐼1
𝜕2𝜓𝑦

𝜕𝑡2
 

(3-81) 
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𝜕𝑄𝑥𝑥
𝜕𝑥

+
𝜕𝑄𝑦𝑦

𝜕𝑦
+ 𝑝 = 𝐼0

𝜕2𝑤0
𝜕𝑡2

 

𝜕𝑀𝑥𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑄𝑥𝑥 = 𝐼1

𝜕2𝑢0
𝜕𝑡2

+ 𝐼2
𝜕2𝜓𝑥
𝜕𝑡2

 

𝜕𝑀𝑥𝑦

𝜕𝑥
+
𝜕𝑀𝑦𝑦

𝜕𝑦
− 𝑄𝑦𝑦 = 𝐼1

𝜕2𝑣0
𝜕𝑡2

+ 𝐼2
𝜕2𝜓𝑦

𝜕𝑡2
 

 

where 𝐼0, 𝐼1 and 𝐼2 are mass moments of inertia as given in equation (3-43). 𝐼1 is 

zero for sheets that are symmetric about the 𝑧 axis. 

Equation (3-81) is multiplied by (1 − 𝜇∇2) and equations (3-78) to (3-80) are 

substituted and simplified to yield the governing equations in terms of the five 

unknowns 𝑢0, 𝑣0, 𝑤0, 𝜓𝑥 and 𝜓𝑦. 

 𝐸ℎ

1 − 𝜐2
𝜕2𝑢0𝑖
𝜕𝑥2

+ 𝐺ℎ
𝜕2𝑢0𝑖
𝜕𝑦2

+ (
𝜐𝐸ℎ

1 − 𝜐2
+ 𝐺ℎ)

𝜕2𝑣0𝑖
𝜕𝑥𝜕𝑦

= 𝐼0 (
𝜕2𝑢0𝑖
𝜕𝑡2

− 𝜇𝛻2
𝜕2𝑢0𝑖
𝜕𝑡2

) 

(
𝜐𝐸ℎ

1 − 𝜐2
+ 𝐺ℎ)

𝜕2𝑢0𝑖
𝜕𝑥𝜕𝑦

+ 𝐺ℎ
𝜕2𝑣0𝑖
𝜕𝑥2

+
𝐸ℎ

1 − 𝜐2
𝜕2𝑣0𝑖
𝜕𝑦2

= 𝐼0 (
𝜕2𝑣0𝑖
𝜕𝑡2

− 𝜇𝛻2
𝜕2𝑣0𝑖
𝜕𝑡2

) 

𝑘2𝐺ℎ
𝜕2𝑤0𝑖
𝜕𝑥2

+ 𝑘2𝐺ℎ
𝜕2𝑤0𝑖
𝜕𝑦2

+ 𝑘2𝐺ℎ
𝜕𝜓𝑥𝑖
𝜕𝑥

+ 𝑘2𝐺ℎ
𝜕𝜓𝑦𝑖

𝜕𝑦
+ (1 − 𝜇𝛻2)𝑝𝑖

= 𝐼0 (
𝜕2𝑤0𝑖
𝜕𝑡2

− 𝜇𝛻2
𝜕2𝑤0𝑖
𝜕𝑡2

) 

−𝑘2𝐺ℎ
𝜕𝑤0𝑖
𝜕𝑥

+ 𝐷
𝜕2𝜓𝑥𝑖
𝜕𝑥2

− 𝑘2𝐺ℎ𝜓𝑥𝑖 +
𝐷(1 − 𝜐)

2

𝜕2𝜓𝑥𝑖
𝜕𝑦2

+
𝐷(1 + 𝜐)

2

𝜕2𝜓𝑦𝑖

𝜕𝑥𝜕𝑦

= 𝐼2 (
𝜕2𝜓𝑥𝑖
𝜕𝑡2

− 𝜇𝛻2
𝜕2𝜓𝑥𝑖
𝜕𝑡2

) 

−𝑘2𝐺ℎ
𝜕𝑤0𝑖
𝜕𝑦

+
𝐷(1 + 𝜐)

2

𝜕2𝜓𝑥𝑖
𝜕𝑥𝜕𝑦

+ 𝐷
𝜕2𝜓𝑦𝑖

𝜕𝑦2
+
𝐷(1 − 𝜐)

2

𝜕2𝜓𝑦𝑖

𝜕𝑥2
− 𝑘2𝐺ℎ𝜓𝑦𝑖

= 𝐼2 (
𝜕2𝜓𝑦𝑖

𝜕𝑡2
− 𝜇𝛻2

𝜕2𝜓𝑦𝑖

𝜕𝑡2
) 

(3-82) 

 
Equation (3-82) is the nonlocal FSDT equations of motion for isotropic GSs in an 

MLGS composite in terms of 𝑢0, 𝑣0, 𝑤0, 𝜓𝑥 and 𝜓𝑦. Since 𝐼1 is zero the first two 

equations of equation (3-82) are not coupled to the last three and can be ignored 
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to reduce the number of unknowns to be found and consequently the amount of 

computations to be carried out. Therefore, the nonlocal equations of motion for 

isotropic GSs in an MLGSs composite in terms of the transverse displacements 

and the rotations, 𝑤0, 𝜓𝑥 and 𝜓𝑦 are given as 

 
𝑘2𝐺ℎ

𝜕2𝑤0𝑖
𝜕𝑥2

+ 𝑘2𝐺ℎ
𝜕2𝑤0𝑖
𝜕𝑦2

+ 𝑘2𝐺ℎ
𝜕𝜓𝑥𝑖
𝜕𝑥

+ 𝑘2𝐺ℎ
𝜕𝜓𝑦𝑖

𝜕𝑦
+ (1 − 𝜇𝛻2)𝑝𝑖

= 𝐼0 (
𝜕2𝑤0𝑖
𝜕𝑡2

− 𝜇𝛻2
𝜕2𝑤0𝑖
𝜕𝑡2

) 

−𝑘2𝐺ℎ
𝜕𝑤0𝑖
𝜕𝑥

+ 𝐷
𝜕2𝜓𝑥𝑖
𝜕𝑥2

− 𝑘2𝐺ℎ𝜓𝑥𝑖 +
𝐷(1 − 𝜐)

2

𝜕2𝜓𝑥𝑖
𝜕𝑦2

+
𝐷(1 + 𝜐)

2

𝜕2𝜓𝑦𝑖

𝜕𝑥𝜕𝑦

= 𝐼2 (
𝜕2𝜓𝑥𝑖
𝜕𝑡2

− 𝜇𝛻2
𝜕2𝜓𝑥𝑖
𝜕𝑡2

) 

−𝑘2𝐺ℎ
𝜕𝑤0𝑖
𝜕𝑦

+
𝐷(1 + 𝜐)

2

𝜕2𝜓𝑥𝑖
𝜕𝑥𝜕𝑦

+ 𝐷
𝜕2𝜓𝑦𝑖

𝜕𝑦2
+
𝐷(1 − 𝜐)

2

𝜕2𝜓𝑦𝑖

𝜕𝑥2
− 𝑘2𝐺ℎ𝜓𝑦𝑖

= 𝐼2 (
𝜕2𝜓𝑦𝑖

𝜕𝑡2
− 𝜇𝛻2

𝜕2𝜓𝑦𝑖

𝜕𝑡2
) 

(3-83) 

 
For the local equations of motion, μ is set to zero in equation (3-83). 

Some works204, 205 have proposed a new FSDT that also reduces the five 

unknowns in the classical FSDT to four and eliminates the use of the shear 

correction factor. 

 Membrane theory 

Various continuum models and approaches based on plate models have been 

predominant in the vibrational analysis of GSs and some of them have been 

discussed here. However, very little attention has been given to the use of 

membrane models for such analyses. Membranes are two dimensional structures 

that cannot resist compressive stresses and bending moments, with restoring 

forces arising exclusively from the in-plane tensile forces. An easily observable 

distinction between membranes and thin plates is the length to thickness aspect 

ratio. Generally, based on length to thickness ratio, classification of structures 

could be made as Table 3-1 presents. 
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𝑎
ℎ⁄  2 5 10 − 20 

20 – 100 
(20 − 80) 

≥ 80 

Structural 
classification 

Very thick 
plates 

Thick 
plates 

Moderately 
thick plates 

Thin 
plates 

Membranes? 

 
Table 3-1: Classification of structures based on 𝑎 ℎ⁄  ratio 

The mechanical behaviour of a structure depends on its material type and spatial 

dimension. To classify a structure as a membrane, the question that begs 

therefore is whether with a ratio 𝑎 ℎ⁄ ≥ 80 the structure has negligible resistance to 

compressive stresses and bending moments and as such behaves as a 

membrane. The next section derives the equation of motion for the nonlinear 

vibration of an SLGS modelled as a membrane structure. 

Consider an orthotropic SLGS modelled as a taut membrane under in-plane 

tensile force 𝑇 and consider a rectangular element of the membrane in a 

deflected configuration as shown in Figure 3-7. 

 

Figure 3-7: Tensile forces on a deflected rectangular membrane element  

𝑇𝑥 and 𝑇𝑦 are the intensity per unit length of the tensile forces acting along the 𝑥- 

and 𝑦-axes and 𝑝 is the pressure acting on the membrane element. The resultant 

force acting on the element in the 𝑧-direction is given as 
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 ∑𝐹𝑧 = (𝑇𝑥 +
𝜕𝑇𝑥
𝜕𝑥

𝑑𝑥) 𝑠𝑖𝑛 (𝜃𝑥 +
𝜕𝜃𝑥
𝜕𝑥

𝑑𝑥) 𝑑𝑦 − 𝑇𝑥 𝑠𝑖𝑛 𝜃𝑥 𝑑𝑦

+ (𝑇𝑦 +
𝜕𝑇𝑦

𝜕𝑦
𝑑𝑦) 𝑠𝑖𝑛 (𝜃𝑦 +

𝜕𝜃𝑦

𝜕𝑦
𝑑𝑦) 𝑑𝑥 − 𝑇𝑦 𝑠𝑖𝑛 𝜃𝑦 𝑑𝑥 + 𝑝𝑑𝑥𝑑𝑦 

(3-84) 

Expanding brackets and collecting like terms, equation (3-84) becomes 

 ∑𝐹𝑧 = 𝑇𝑥 [𝑠𝑖𝑛 (𝜃𝑥 +
𝜕𝜃𝑥
𝜕𝑥

𝑑𝑥) − 𝑠𝑖𝑛 𝜃𝑥] 𝑑𝑦 +
𝜕𝑇𝑥
𝜕𝑥

𝑠𝑖𝑛 (𝜃𝑥 +
𝜕𝜃𝑥
𝜕𝑥

𝑑𝑥) 𝑑𝑥𝑑𝑦

+ 𝑇𝑦 [𝑠𝑖𝑛 (𝜃𝑦 +
𝜕𝜃𝑦

𝜕𝑦
𝑑𝑦) − 𝑠𝑖𝑛 𝜃𝑦] 𝑑𝑥 +

𝜕𝑇𝑦

𝜕𝑦
𝑠𝑖𝑛 (𝜃𝑦 +

𝜕𝜃𝑦

𝜕𝑦
𝑑𝑦) 𝑑𝑥𝑑𝑦

+ 𝑝𝑑𝑥𝑑𝑦 

(3-85) 

Replacing the triangular parts with the first two terms of their Taylor’s expansion 

and neglecting higher order terms and terms with trivial parts like 
𝜕𝑇𝑥

𝜕𝑥

𝜕𝜃𝑥

𝜕𝑥
 , we have 

 
∑𝐹𝑧 =

𝜕𝑇𝑥
𝜕𝑥

𝑠𝑖𝑛 𝜃𝑥 𝑑𝑥𝑑𝑦 + 𝑇𝑥 𝑐𝑜𝑠 𝜃𝑥
𝜕𝜃𝑥
𝜕𝑥

𝑑𝑥𝑑𝑦 +
𝜕𝑇𝑦

𝜕𝑦
𝑠𝑖𝑛 𝜃𝑦 𝑑𝑥𝑑𝑦 + 𝑇𝑦 𝑐𝑜𝑠 𝜃𝑦

𝜕𝜃𝑦

𝜕𝑦
𝑑𝑥𝑑𝑦

+ 𝑝𝑑𝑥𝑑𝑦 

(3-86) 

Applying Newton’s second law in the 𝑧-direction, we have 

 
∑𝐹𝑧 = 𝜌ℎ (

𝑑𝑥𝑑𝑦

𝑐𝑜𝑠 𝜃𝑥 𝑐𝑜𝑠 𝜃𝑦
)
𝜕2𝑤

𝜕𝑡2
 (3-87) 

 Where 𝑤 is the deflection of the membrane in the 𝑧 direction, 𝜌 the mass per unit 

area of the membrane and 𝑡 the time. Equating equation (3-86) to (3-87) and 

simplifying, the general form of the equation of motion for the vibrating SLGS 

membrane is given as  

 𝜕2𝑤

𝜕𝑡2
=
1

𝜌ℎ
(
𝜕𝑇𝑥
𝜕𝑥

𝑠𝑖𝑛 𝜃𝑥 𝑐𝑜𝑠 𝜃𝑥 𝑐𝑜𝑠 𝜃𝑦 + 𝑇𝑥 𝑐𝑜𝑠
2 𝜃𝑥 𝑐𝑜𝑠 𝜃𝑦

𝜕𝜃𝑥
𝜕𝑥

+
𝜕𝑇𝑦

𝜕𝑦
𝑠𝑖𝑛 𝜃𝑦 𝑐𝑜𝑠 𝜃𝑥 𝑐𝑜𝑠 𝜃𝑦

+ 𝑇𝑦 𝑐𝑜𝑠 𝜃𝑥 𝑐𝑜𝑠
2 𝜃𝑦

𝜕𝜃𝑦

𝜕𝑦
+ 𝑝) 

(3-88) 

From Figure 3-7 , the following geometric relations can be deduced 

 𝑡𝑎𝑛 𝜃𝑥 =
𝜕𝑤

𝜕𝑥
 (3-89) 

Which means 

 𝜕𝜃𝑥
𝜕𝑥

= 𝑐𝑜𝑠2 𝜃𝑥
𝜕2𝑤

𝜕𝑥2
≅
𝜕2𝑤

𝜕𝑥2
 (3-90) 

Similarly,  
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 𝑡𝑎𝑛 𝜃𝑦 =
𝜕𝑤

𝜕𝑦
 (3-91) 

 and, 

 𝜕𝜃𝑦

𝜕𝑦
= 𝑐𝑜𝑠2 𝜃𝑦

𝜕2𝑤

𝜕𝑦2
≅
𝜕2𝑤

𝜕𝑦2
 (3-92) 

Substituting equations (3-90) and (3-92) in (3-88), the general form of the 

equation of motion for a SLGS membrane with large amplitude and large rotation 

is given by 

 𝜕2𝑤

𝜕𝑡2
=
1

𝜌ℎ
(
𝜕𝑇𝑥
𝜕𝑥

𝑠𝑖𝑛 𝜃𝑥 𝑐𝑜𝑠 𝜃𝑥 𝑐𝑜𝑠 𝜃𝑦 + 𝑇𝑥 𝑐𝑜𝑠
2 𝜃𝑥 𝑐𝑜𝑠 𝜃𝑦

𝜕2𝑤

𝜕𝑥2
+
𝜕𝑇𝑦

𝜕𝑦
𝑠𝑖𝑛 𝜃𝑦 𝑐𝑜𝑠 𝜃𝑥 𝑐𝑜𝑠 𝜃𝑦

+ 𝑇𝑦 𝑐𝑜𝑠 𝜃𝑥 𝑐𝑜𝑠
2 𝜃𝑦

𝜕2𝑤

𝜕𝑦2
+ 𝑝) 

(3-93) 

For very small rotations, 𝑐𝑜𝑠 𝜃𝑥 ≅ 1, 𝑐𝑜𝑠 𝜃𝑦 ≅ 1, 𝑠𝑖𝑛 𝜃𝑥 ≅ 0 and 𝑠𝑖𝑛 𝜃𝑦 ≅ 0, equation 

(3-93) becomes 

 𝜕2𝑤

𝜕𝑡2
=
1

𝜌ℎ
(𝑇𝑥

𝜕2𝑤

𝜕𝑦2
+ 𝑇𝑦

𝜕2𝑤

𝜕𝑦2
+ 𝑝) (3-94) 

The tensile forces per unit length, 𝑇𝑥 and 𝑇𝑦 are given as166 

 

𝑇𝑥 = 𝑇𝑥,0 + ℎ𝐸𝑥

(

 
∫ √1 + (

𝜕𝑤
𝜕𝑥
)
2

𝑑𝑥
𝑎

0
− 𝑎

𝑎

)

  

𝑇𝑦 = 𝑇𝑦,0 + ℎ𝐸𝑦

(

 
 
 ∫ √1 + (

𝜕𝑤
𝜕𝑦
)
2

𝑑𝑦
𝑏

0
− 𝑏

𝑏

)

 
 
 

 

(3-95) 

where 𝑎 and 𝑏 are the length and width of the SLG membrane in the equilibrium 

position, 𝐸𝑥 and 𝐸𝑦 are the Young’s modulus of the membrane in the 𝑥 and 𝑦 

directions, 𝑇𝑥,𝟎 and 𝑇𝑦,𝟎 are the pretensions per unit length in the 𝑥 and 𝑦 

directions, respectively. Equation (3-95) is substituted in (3-94) to give the 

equation of motion for the large amplitude vibration of an SLGS with small 

rotations as 
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𝜕2𝑤

𝜕𝑡2
=
1

𝜌ℎ

[
 
 
 
 
 
 

(

 
 
𝑇𝑥,0 + ℎ𝐸𝑥

(

 
∫ √1 + (

𝜕𝑤
𝜕𝑥
)
2

𝑑𝑥
𝑎

0
− 𝑎

𝑎

)

 

)

 
 𝜕2𝑤

𝜕𝑥2

+

(

 
 
 
 

𝑇𝑦,0 + ℎ𝐸𝑦

(

 
 
 ∫ √1 + (

𝜕𝑤
𝜕𝑦
)
2

𝑑𝑦
𝑏

0
− 𝑏

𝑏

)

 
 
 

)

 
 
 
 
𝜕2𝑤

𝜕𝑦2
+ 𝑝

]
 
 
 
 
 
 

 

(3-96) 

When the amplitude of the vibration is small, ∫ √1 + (
𝜕𝑤

𝜕𝑥
)
2

𝑑𝑥
𝑎

0
≅ 𝑎, and 

∫ √1 + (
𝜕𝑤

𝜕𝑦
)
2

𝑑𝑦
𝑏

0
≅ 𝑏. Equation (3-96) becomes 

 𝜕2𝑤

𝜕𝑡2
=
1

𝜌ℎ
(𝑇𝑥,0

𝜕2𝑤

𝜕𝑥2
+ 𝑇𝑦,0

𝜕2𝑤

𝜕𝑦2
+ 𝑝) (3-97) 

 

Equation (3-97) is the equation of motion for the small amplitude vibration of an 

SLGS with small rotations. In the language of this chapter, equation (3-96) is 

the nonlinear equation of motion for the vibration analysis of orthotropic 

SLGSs, while equation (3-97) is the linear equation of motion for the orthotropic 

SLGS. 

 

The boundary conditions (BCs) of a vibrating structure are pertinent in its 

vibration analysis because they influence the resonant frequencies and mode 

shapes of the vibration. To solve any of the plate models presented in Section 

3.2.3, appropriate boundary conditions must be applied to the model. Boundary 

conditions are conditions/equations that hold true at each point on the periphery 

of the structure. Generally, when solving a mathematical model in a domain, the 

BCs define the constraints existing at the extremes (maximum and minimum 

states) of the domain. When the BCs are the major determining conditions in the 

solution of a problem, such problems are described as Boundary Value Problems 

(BVPs). A similar set of problems called the Initial Value Problems (IVPs) use 

initial conditions (ICs) as the constraints in the solution of the problem. Where the 
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initial conditions are the values of the independent variable at the lowest domain 

point; for time domain, the ICs are usually the values of the independent 

variables when 𝑡𝑖𝑚𝑒  =  𝟎. Because vibrating problems involve both spatial and 

time domains, the ICs also have to be defined. 

The BCs applied to a given problem depend on the physical condition and 

meaning of the problem being modelled. Classically, there are three basic BCs 

that can be applied to a classic vibration problem in any combination that 

represents the physical boundaries of the problem. These are the simply 

supported (SS), clamped (C), and free (F) boundary conditions. 

 Simply Supported 

Physically, when an edge of a structure is prevented from deflecting transversely 

but can rotate freely as though hinged at that edge, the edge is said to be simply 

supported. Consequently, the value of the transverse displacement variable and 

the bending moments along any edge that is simply supported will have a value 

of zero, as shown mathematically in equation (3-98). The specific expression for 

the bending moments will however depend on the plate model being used. 

               𝑤(𝑥, 𝑦, 𝑡)|𝑥,𝑦 = 𝑚𝑖𝑛 𝑎𝑛𝑑 𝑚𝑎𝑥 = 0 

              𝑀𝑥𝑥|𝑥,𝑦 = 𝑚𝑖𝑛 𝑎𝑛𝑑 𝑚𝑎𝑥 = 𝑀𝑦𝑦|𝑥,𝑦 = 𝑚𝑖𝑛 𝑎𝑛𝑑 𝑚𝑎𝑥 =  0 

(3-98) 

 Clamped 

For the clamped case, the edges of the structure are prevented from deflecting 

transversely and from rotating. On such edges, the value of the transverse 

displacement variable and the rotation angles along the edges being clamped are 

zero (equation (3-99)). 

               𝑤(𝑥, 𝑦, 𝑡)|𝑥,𝑦 = 𝑚𝑖𝑛 𝑎𝑛𝑑 𝑚𝑎𝑥 = 0 

              𝜑𝑥(𝑥, 𝑦, 𝑡)|𝑥,𝑦 = 𝑚𝑖𝑛 𝑎𝑛𝑑 𝑚𝑎𝑥 = 𝜑𝑦(𝑥, 𝑦, 𝑡)|𝑥,𝑦 = 𝑚𝑖𝑛 𝑎𝑛𝑑 𝑚𝑎𝑥 = 0 

(3-99) 
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 Free 

When the edges are free, they can deflect transversely and rotate. Consequently, 

the effective transverse shear force and the bending moments along those edges 

must be zero, as shown in equation (3-100). 

               𝑄𝑥𝑥|𝑥,𝑦 = 𝑚𝑖𝑛 𝑎𝑛𝑑 𝑚𝑎𝑥 = 𝑄𝑦𝑦|𝑥,𝑦 = 𝑚𝑖𝑛 𝑎𝑛𝑑 𝑚𝑎𝑥 =  0 

              𝑀𝑥𝑥|𝑥,𝑦 = 𝑚𝑖𝑛 𝑎𝑛𝑑 𝑚𝑎𝑥 = 𝑀𝑦𝑦|𝑥,𝑦 = 𝑚𝑖𝑛 𝑎𝑛𝑑 𝑚𝑎𝑥 =  0 

(3-100) 

 

The derived partial differential equations (PDEs) of motion for the vibration of 

GSs, particularly nonlinear vibrations, are appreciably complex and difficult to 

solve. A few different solution methods have been employed by different 

researchers in the search for accurate solutions to the PDEs derived in the 

preceding subsections. Most of these solutions are numerical solutions that have 

been developed for problems in engineering and physical sciences. Some of 

these solution methods applied to the vibration problem of GSs include the 

Differential Quadrature method (DQM), the Generalized Differential Quadrature 

Rule (GDQR), Navier’s solution method, Harmonic Balance Method (HBM), Finite 

Difference Method (FDM), the Element-free kp-Ritz Method, etc. Of all these 

methods, only the GDQR has been demonstrated to be robust enough to handle 

any combination of the classic simply supported, clamped and free boundary 

conditions. This work therefore used the GDQR methods to solve the derived 

PDEs of motion for the GSs. Since a huge chunk of the literature on vibration of 

GSs deal with the fully simply supported (SSSS) or fully clamped GS, the focus in 

this work and the presentation here is for a simply supported-free-simply 

supported-free (SSFSSF) and a clamped-free-clamped-free resonator (CFCF). 

To validate the GDQR, the basic CLPT model (linear local Kirchhoff plate model 

for a SLGS) was solved and compared with results from exact solutions.   

A few works206-210 have outlined the DQM and GDQR in detail, but a few 

loopholes still exist that make their application a bit difficult to understand. 

Therefore, step by step processes in using the DQM and GDQR are outlined in 

this work.  
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 Differential Quadrature Method (DQM) 

The DQM is a numerical method for solving initial- and/or boundary-value 

problems, initially proposed as a general numerical method for solving nonlinear 

PDEs211. After it was first applied in structural mechanics212, 213, it became one of 

the widely used numerical methods in solving structural mechanics problems. 

Detailed reviews on its chronological development have been published207, 214, as 

such this work will not delve into that. However, a generalised form of the 

classical DQM that has been proposed to particularly ease handling problems 

with multiple initial or boundary conditions will be reviewed in detail. 

The Differential Quadrature Rule (DQR) 

The basic idea of the DQM is that the partial derivative of a function with respect 

to a spatial variable at a discrete sample point can be approximated as a 

weighted linear sum of the values of the function at all sample points in a certain 

spatial direction in the domain. Because this work focuses on two dimensional 

structural problems, the DQM rule for two dimensional problems is presented. 

Consider a function 𝑓 = 𝑓(𝑥, 𝑦) with its field in a rectangular domain 0 ≤ 𝑥 ≤ 𝑎, 0 ≤

𝑦 ≤ 𝑏. Let the grid of discrete sampling points with 𝑛𝑥 and 𝑛𝑦 points in the 𝑥- and 

𝑦-directions, respectively, be as shown in Figure 3-8. An 𝑟th-order partial 

derivative with respect to 𝑥 at a discrete point 𝑥 = 𝑥𝑝 along any line 𝑦 = 𝑦𝑞 parallel 

to the 𝑥-axis can be approximated as207 

 𝜕𝑟𝑓(𝑥, 𝑦)

𝜕𝑥𝑟
|
𝑥=𝑥𝑝

=∑𝐴𝑝𝑘
(𝑟)

𝒏𝒙

𝑘=1

𝑓𝑘𝑞;     𝑝 = 1, 2, 3, … , 𝒏𝒙 (3-101) 

where 𝑛𝑥 is the total number of grid points in the 𝑥-direction, 𝐴𝑝𝑘
(𝑟)

 are the 

weighting coefficients, and 𝑓𝑘𝑞 are the function values at the point (𝑘, 𝑞) i.e. 𝑓𝑘𝑞 =

𝑓(𝑘, 𝑞). Similarly, an 𝑠th-order partial derivative with respect to 𝑦 at a discrete 

point 𝑦 = 𝑦𝑞 along any line 𝑥 = 𝑥𝑝 parallel to the 𝑦-axis can be approximated as207 

 𝜕𝑠𝑓(𝑥, 𝑦)

𝜕𝑦𝑠
|
𝑦=𝑦𝑞

= ∑ 𝐵𝑞𝑚
(𝑠)

𝒏𝒚

𝑚=1

𝑓𝑞𝑚;     𝑞 = 1, 2, 3, … , 𝑛𝑦 (3-102) 
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here, 𝑛𝑦 is the total number of grid points in the 𝑦-direction, 𝐵𝑞𝑚
(𝑠)

 are the 

corresponding weighting coefficients. For a mixed derivative, the quadrature rule 

is 

 𝜕(𝑟+𝑠)𝑓(𝑥, 𝑦)

𝜕𝑥𝑟𝜕𝑦𝑠
|
𝑥𝑝,𝑦𝑞

=∑∑ 𝐴𝑝𝑘
(𝑟)𝐵𝑞𝑚

(𝑠)

𝒏𝒚

𝑚=1

𝒏𝒙

𝑘=1

𝑓𝑘𝑚;     𝑝 = 1, 2, … , 𝑛𝑥;  𝑞 = 1, 2, … , 𝑛𝑦 (3-103) 

 

 

Figure 3-8: DQM grid distribution of solution domain 

With the quadrature rules in equations (3-101) - (3-103), the quadrature analogue 

for a given differential equation can be written for every point in its solution 

domain. Thereby, reducing the differential equation to a set of algebraic 

equations, the number of which depends on the number of sample points 

selected. The accuracy of the solution depends heavily on the accuracy of the 

weighting coefficients and the choice of sampling points207.  

Weighting coefficients 

The weighting coefficients of the DQR can be determined by some appropriate 

functional approximations, with the approximate functions called test functions.  

Using the Langrangian interpolation shape functions as the test functions, the 

weighting coefficients for the first derivative when 𝑝 ≠ 𝑘 and 𝑞 ≠ 𝑚 are given as  
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𝐴𝑝𝑘
(1) =

𝑀(𝑥𝑝)

(𝑥𝑝 − 𝑥𝑘)𝑀(𝑥𝑘)
;          𝑝, 𝑘 = 1, 2, … , 𝑛𝑥; 𝑝 ≠ 𝑘 

𝐵𝑞𝑚
(1) =

𝑀(𝑦𝑞)

(𝑦𝑞 − 𝑦𝑚)𝑀(𝑦𝑚)
;          𝑞,𝑚 = 1, 2, … , 𝑛𝑦; 𝑞 ≠ 𝑚 

(3-104) 

where 𝑀(𝛽𝑖) is defined as 

 
𝑀(𝛽𝑖) = ∏ (𝛽𝑖 − 𝛽𝑗)

𝑛

𝑗=1;  𝑗≠𝑖

 (3-105) 

When 𝑝 = 𝑘 and 𝑞 = 𝑚, the weighting coefficients for the first derivative are given 

as198 

 
𝐴𝑝𝑝
(1) = − ∑ 𝐴𝑝𝑖

(1)

𝑛𝑥

𝑖=1;  𝑖≠𝑝

;      𝑝 = 1, 2, … , 𝑛𝑥 

𝐵𝑞𝑞
(1) = − ∑ 𝐵𝑞𝑗

(1)

𝑛𝑦

𝑗=1;  𝑗≠𝑝

;      𝑞 = 1, 2, … , 𝑛𝑦 

(3-106) 

And the weighting coefficients for the second and higher order derivatives are 

given as207 

 

𝐴𝑝𝑘
(𝑟) =

{
  
 

  
 𝑟 (𝐴𝑝𝑝

(𝑟−1)𝐴𝑝𝑘
(1) −

𝐴𝑝𝑘
(𝑟−1)

𝑥𝑝 − 𝑥𝑘
) ,   𝑝 ≠ 𝑘

−∑𝐴𝑝𝑖
(𝑟)

𝑛𝑥

𝑖=1;

,                                   𝑝 = 𝑘   

        𝑝, 𝑘 = 1, 2, … , 𝑛𝑥; 2 ≤ 𝑟 ≤ (𝑛𝑥 − 1) 

𝐵𝑞𝑚
(𝑟) =

{
  
 

  
 𝑟 (𝐵𝑞𝑞

(𝑟−1)𝐵𝑞𝑚
(1) −

𝐵𝑞𝑚
(𝑟−1)

𝑦𝑞 − 𝑦𝑚
) ,   𝑞 ≠ 𝑚

−∑𝐵𝑞𝑗
(𝑟)

𝑛𝑦

𝑗=1;

,                                  𝑞 = 𝑚   

        𝑞,𝑚 = 1, 2, … , 𝑛𝑦; 2 ≤ 𝑟

≤ (𝑛𝑦 − 1) 

(3-107) 

Distribution of sampling points 

The choice of grid distribution for a solution domain, as earlier mentioned, 

impacts the accuracy of DQM solutions. Six typical grid distributions commonly 

used in literature are209, 215 
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1. Equally spaced grid points 

 𝑋𝑖 =
𝑖 − 1

𝑁 − 1
,       𝑖 = 1, 2, … ,𝑁 (3-108) 

2. Roots of Chebyshev polynomials of the first kind 

 𝑋𝑖 =
𝑟𝑖 − 𝑟1
𝑟𝑁 − 𝑟1

,       𝑖 = 1, 2, … , 𝑁 

𝑟𝑖 = 𝑐𝑜𝑠 (
(2𝑖 − 1)𝜋

2𝑁
) 

(3-109) 

3. Roots of Chebyshev polynomials of the second kind 

 𝑋𝑖 =
𝑟𝑖 − 𝑟1
𝑟𝑁 − 𝑟1

,       𝑖 = 1, 2, … , 𝑁 

𝑟𝑖 = 𝑐𝑜𝑠 (
𝑖𝜋

𝑁 − 1
) 

(3-110) 

4. Roots of Legendre polynomials 

 𝑋𝑖 =
𝑟𝑖 − 𝑟1
𝑟𝑁 − 𝑟1

,       𝑖 = 1, 2, … , 𝑁 

𝑟𝑖 = (1 −
1

8𝑁2
+

1

8𝑁3
) 𝑐𝑜𝑠 (

(4𝑖 − 1)𝜋

4𝑁 + 2
) 

(3-111) 

5. Quadratic grid points 

 

𝑋𝑖 =

{
 
 

 
 2 (

𝑖 − 1

𝑁 − 1
)
2

,                                                𝑖 = 1, 2, … ,
𝑁 + 1

2
 

−2 (
𝑖 − 1

𝑁 − 1
)
2

+ 4 (
𝑖 − 1

𝑁 − 1
) − 1,           𝑖 = (

𝑁 + 1

2
) + 1,… , 𝑁

 (3-112) 

6. Chebyshev-Gauss-Lobatto grid points 

 𝑋𝑖 =
1

2
[1 − 𝑐𝑜𝑠 (

𝑖 − 1

𝑁 − 1
𝜋)] ,          𝑖 = 1, 2, … , 𝑁 (3-113) 

Where 𝑋𝑖 =
𝑥𝑖
𝑎⁄   is the normalized sample point (𝑌𝑖 =

𝑦𝑖
𝑏⁄  for sampling points in the 

𝑦-direction) and 𝑁 is the number of grid points in the specified direction (𝑛𝑥 and 
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𝑛𝑦 in the 𝑥- and 𝑦-directions respectively). The number of grid points and choice 

of grid point distribution for the 𝑥- and 𝑦-directions do not have to be the same. 

Ultimately, the choice of grid point distribution will depend on the problem to be 

solved, however, the Chebyshev-Gauss-Lobatto grid points are recommended for 

structural mechanics problems207. With the DQM, when solving two-dimensional 

vibration problems in which two boundary equations exist for each boundary, the 

first boundary equations are applied to the sampling points on the boundary lines 

and the second boundary equations are applied to sampling points adjacent and 

very close to the points on the boundary lines. These points adjacent and close to 

the boundary points are called 𝛿-points and the method called the 𝛿-technique. 

 Generalized Differential Quadrature (GDQ) Method  

One major challenge with the DQR presented in equation (3-101) is the difficulty 

in handling multiple BCs, even with the 𝛿-technique. The 𝛿-points used in the 𝛿-

technique no matter how close they are to the BPs are still inner domain points 

and as such are mathematically unsound and are bound to cause ill-conditioned 

problems in the DQM solution206. Consequently, a new DQR called the 

generalized differential quadrature rule (GDQR) was developed that accurately 

and efficiently handles multiple BCs206. 

Consider a one-dimensional field variable 𝑓(𝑥) prescribed by a differential 

equation in a field domain 𝑥1 ≤ 𝑥 ≤ 𝑥𝑁 which may also be constrained by a set of 

given conditions at any point(s) in the domain. The solution domain is divided into 

𝑁 parts by points 𝑥𝑖  (𝑖 = 1, 2, … ,𝑁) that include all points in the domain whether 

they are constrained by conditions or not. Let 𝑓𝑖
(𝑟) = 𝑓(𝑟)(𝑥𝑖) (𝑟 = 0, 1, 2,… ) be the 

𝑟th-order derivative of the field variable 𝑓(𝑥), with 𝑓𝑖
(0)
= 𝑓𝑖 being the function 

value at point 𝑥𝑖. If the number of equations applicable at point 𝑥𝑖 is denoted by 

𝑛𝑖, the highest value of 𝑟 is (𝑛𝑖 − 1) and the independent variables at that point 

which are chosen as the function value and its derivatives of possible lowest 

order wherever necessary, are 𝑓𝑖
(𝑟) (𝑟 = 0, 1, 2, … , 𝑛𝑖 − 1). 

The test function used here is the Hermite interpolation shape function, the field 

function’s interpolation expression is therefore given as 
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𝑓(𝑥) =∑(ℎ𝑗0(𝑥)𝑓𝑗

(0) + ℎ𝑗1(𝑥)𝑓𝑗
(1) +⋯+ ℎ𝑗(𝑛𝑗−1)(𝑥)𝑓𝑗

(𝑛𝑗−1)
)

𝑁

𝑗=1

 

                 = {ℎ10(𝑥), ℎ11(𝑥), … , ℎ1(𝑛1−1)(𝑥), … , ℎ𝑁0(𝑥), ℎ𝑁1(𝑥), … , ℎ𝑁(𝑛𝑁−1)(𝑥)}
𝑇

× {𝑓1
(0), 𝑓1

(1), … , 𝑓1
(𝑛1−1), … , 𝑓𝑁

(0), 𝑓𝑁
(1), … , 𝑓𝑁

(𝑛𝑁−1)} 

𝑓(𝑥) = ∑ℎ𝑘(𝑥)

𝑀

𝑘=1

𝑈𝑘  

(3-114) 

where 𝑀 is the total number of independent variables in the domain, 𝑈𝑘 the 

independent variable at 𝑥𝑘, and ℎ𝑘 the Hermite interpolation shape function which 

are given as 

 
𝑀 =∑𝑛𝑗

𝑁

𝑗=1

 

{𝑈𝑘} = {𝑈1, 𝑈2, … , 𝑈𝑀} 

         = {𝑓1
(0), 𝑓1

(1), … , 𝑓1
(𝑛1−1), … , 𝑓𝑁

(0), 𝑓𝑁
(1), … , 𝑓𝑁

(𝑛𝑁−1)} 

{ℎ𝑘} = {ℎ1, ℎ2, … , ℎ𝑀}
𝑇 

         = {ℎ10(𝑥), ℎ11(𝑥), … , ℎ1(𝑛1−1)(𝑥), … , ℎ𝑁0(𝑥), ℎ𝑁1(𝑥), … , ℎ𝑁(𝑛𝑁−1)(𝑥)}
𝑇
  

(3-115) 

The Hermite interpolation shape functions have the following properties210 

 
ℎ𝑗𝑙
(𝑟) = { 

1      𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 𝑙 = 𝑟

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              
 (3-116) 

Taking the 𝑟th derivative of equation (3-114), we have 

 𝑑𝑟𝑓(𝑥𝑖)

𝑑𝑥𝑟
=∑(ℎ𝑗0

(𝑟)(𝑥𝑖)𝑓𝑗
(0) + ℎ𝑗1

(𝑟)(𝑥𝑖)𝑓𝑗
(1) +⋯+ ℎ

𝑗(𝑛𝑗−1)

(𝑟) (𝑥𝑖)𝑓𝑗
(𝑛𝑗−1)

)

𝑁

𝑗=1

 

= {ℎ10
(𝑟)(𝑥𝑖), ℎ11

(𝑟)(𝑥𝑖), … , ℎ1(𝑛1−1)
(𝑟) (𝑥𝑖), … , ℎ𝑁0

(𝑟)(𝑥𝑖), ℎ𝑁1
(𝑟)(𝑥𝑖), … , ℎ𝑁(𝑛𝑁−1)

(𝑟) (𝑥𝑖)}
𝑇

× {𝑓1
(0), 𝑓1

(1), … , 𝑓1
(𝑛1−1), … , 𝑓𝑁

(0), 𝑓𝑁
(1), … , 𝑓𝑁

(𝑛𝑁−1)} 

𝑑𝑟𝑓(𝑥𝑖)

𝑑𝑥𝑟
=∑𝐸𝑖𝑘

(𝑟)

𝑀

𝑘=1

𝑈𝑘  

(3-117) 
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where 𝐸𝑖𝑘
(𝑟)

 are the weighting coefficients of the 𝑟th-order derivative of the function 

at point 𝑥𝑖. Therefore, the GDQR is 

 𝑑𝑟𝑓(𝑥𝑖)

𝑑𝑥𝑟
=∑𝐸𝑖𝑘

(𝑟)

𝑀

𝑘=1

𝑈𝑘  (3-118) 

And the weighting coefficients 

 
𝐸𝑖𝑘
(𝑟) =

𝑑𝑟ℎ𝑘(𝑥𝑖)

𝑑𝑥𝑟
 (3-119) 

 
By rule, the number of independent variables at a sampling point in the solution 

domain must equal the number of equations that point must satisfy. 

GDQR and explicit weighting coefficients for rectangular plates 

For vibrating rectangular plates, the GDQR for 𝑥-, 𝑦- and 𝑥𝑦-partial derivatives is  

 𝜕𝑟𝑓(𝑥𝑖 , 𝑦𝑗  )

𝜕𝑥𝑟
=∑𝐸𝑖𝑘

(𝑟)

𝑀𝑥

𝑘=1

𝑈𝑘𝑗 

𝜕𝑠𝑓(𝑥𝑖 , 𝑦𝑗  )

𝜕𝑦𝑠
= ∑ 𝐸𝑗𝑚

(𝑠)

𝑀𝑦

𝑚=1

𝑈𝑖𝑚 

𝜕(𝑟+𝑠)𝑓(𝑥𝑖 , 𝑦𝑗  )

𝜕𝑥𝑟𝜕𝑦𝑠
= ∑ ∑ 𝐸𝑖𝑘

(𝑟)

𝑀𝑦−1

𝑚=2

𝐸𝑗𝑚
(𝑠)

𝑀𝑥−1

𝑘=2

𝑈𝑘𝑚 + ∑ 𝐵𝑗𝑚
(𝑠)(𝐸𝑖1

(𝑟)𝑈1(𝑚+1) + 𝐸𝑖𝑛𝑥
(𝑟)𝑈𝑛𝑥(𝑚+1))

𝑛𝑦

𝑚=1

+∑𝐴𝑖𝑘
(𝑟) (𝐸𝑗1

(𝑠)𝑈(𝑘+1)1 + 𝐸𝑗𝑛𝑦
(𝑠)𝑈(𝑘+1)𝑛𝑦)

𝑛𝑥

𝑘=1

 

(3-120) 

where 𝑖 = 1, 2, … , 𝑛𝑥; 𝑗 = 1, 2, … , 𝑛𝑦;  𝑀𝑥 = 𝑛𝑥 + 2; 𝑀𝑦 = 𝑛𝑦 + 2; and 𝐴𝑖𝑘
(𝑟)

 and 𝐵𝑗𝑚
(𝑠)

 are 

the Langrangian interpolation shape functions given in equations (3-104), (3-106) 

and (3-107). For convenience in the application of the Hermite interpolation 

functions as derived by Wu and Liu210, equation (3-120) is rewritten in the form 

 𝜕𝑟𝑓(𝑥𝑖 , 𝑦𝑗  )

𝜕𝑥𝑟
=∑𝐸𝑖𝑘0

(𝑟)

𝑛𝑥

𝑘=1

ℎ𝑗(𝑦𝑗)𝑓𝑘𝑗 + 𝑙𝑗(𝑦𝑗)(𝐸𝑖11
(𝑟)𝑓1𝑗

(1) + 𝐸𝑖𝑛𝑥1
(𝑟) 𝑓𝑛𝑥𝑗

(1)) 

𝜕𝑠𝑓(𝑥𝑖 , 𝑦𝑗  )

𝜕𝑦𝑠
= ∑ ℎ𝑖(𝑥𝑖)𝐸𝑗𝑚0

(𝑠)

𝑛𝑦

𝑚=1

𝑓𝑖𝑚  + 𝑙𝑖(𝑥𝑖) (𝐸𝑗11
(𝑠)𝑓𝑖1

(1) + 𝐸𝑗𝑛𝑦1
(𝑠) 𝑓𝑖𝑛𝑦

(1)) 

(3-121) 
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𝜕(𝑟+𝑠)𝑓(𝑥𝑖 , 𝑦𝑗  )

𝜕𝑥𝑟𝜕𝑦𝑠
=∑∑ 𝐸𝑖𝑘0

(𝑟)

𝑛𝑦

𝑚=1

𝐸𝑗𝑚0
(𝑠)

𝑛𝑥

𝑘=1

𝑓𝑘𝑚 + ∑ 𝐵𝑗𝑚
(𝑠)(𝐸𝑖11

(𝑟)𝑓1𝑚
(1) + 𝐸𝑖𝑛𝑥1

(𝑟) 𝑓𝑛𝑥𝑚
(1) )

𝑛𝑦

𝑚=1

+∑𝐴𝑖𝑘
(𝑟) (𝐸𝑗11

(𝑠)𝑓𝑘1
(1) + 𝐸𝑗𝑛𝑦1

(𝑠) 𝑓𝑘𝑛𝑦
(1))

𝑛𝑥

𝑘=1

 

Where 𝑙𝑖(𝑥𝑖) and 𝑙𝑗(𝑦𝑗) are the Lagrange functions at points 𝑥 and 𝑦 respectively, 

and 

 
𝐸𝑖𝑘𝑝
(𝑟) =

𝜕𝑟ℎ𝑘𝑝(𝑥𝑖)

𝜕𝑥𝑟
 

𝐸𝑗𝑚𝑞
(𝑠) =

𝜕𝑠ℎ𝑚𝑞(𝑦𝑗)

𝜕𝑦𝑠
 

(3-122) 

and the derived Hermite interpolation shape functions210 ℎ𝑘𝑝(𝑥𝑖) are given in 

Table 3-2. 

ℎ10(𝑥𝑖) = (𝑎10𝑥𝑖
2 + 𝑏10𝑥𝑖 + 𝑐10)𝑙1(𝑥𝑖) 

 

𝑎10 =
−1

(𝑥1 − 𝑥𝑁)
2
+
𝑙1
(1)(𝑥1)

𝑥1 − 𝑥𝑁
 

 

𝑏10 =
1

𝑥1 − 𝑥𝑁
− 𝑎10(𝑥1 + 𝑥𝑁) 

 

𝑐10 = 1 − 𝑎10𝑥1
2 − 𝑏10𝑥1 

 

ℎ11(𝑥𝑖) = (𝑎11𝑥𝑖
2 + 𝑏11𝑥𝑖 + 𝑐11)𝑙1(𝑥𝑖) 

 

𝑎11 =
1

𝑥1 − 𝑥𝑁
 

 

𝑏11 =
−(𝑥1 + 𝑥𝑁)

𝑥1 − 𝑥𝑁
 

 

𝑐11 =
𝑥1𝑥𝑁
𝑥1 − 𝑥𝑁

 

ℎ𝑁𝑗(𝑥𝑖) = (𝑎𝑁𝑗𝑥𝑖
2 + 𝑏𝑁𝑗𝑥𝑖 + 𝑐𝑁𝑗)𝑙𝑁(𝑥𝑖) 

 
𝑗 = 0, 1 

 

𝑎𝑁0 =
−1

(𝑥1 − 𝑥𝑁)
2
+
𝑙𝑁
(1)(𝑥𝑁)

𝑥1 − 𝑥𝑁
 

 

𝑏𝑁0 =
−1

𝑥1 − 𝑥𝑁
− 𝑎𝑁0(𝑥1 + 𝑥𝑁) 

 
𝑐𝑁0 = 1 − 𝑎𝑁0𝑥𝑁

2 − 𝑏𝑁0𝑥𝑁  
 

𝑎𝑁1 =
−1

𝑥1 − 𝑥𝑁
 

 

𝑏𝑁1 =
(𝑥1 + 𝑥𝑁)

𝑥1 − 𝑥𝑁
 

 

𝑐𝑁1 =
−𝑥1𝑥𝑁
𝑥1 − 𝑥𝑁

 

 

ℎ𝑗0(𝑥𝑖) =
(𝑥𝑖 − 𝑥1)(𝑥𝑖 − 𝑥𝑁)

(𝑥𝑗 − 𝑥1)(𝑥𝑗 − 𝑥𝑁)
𝑙𝑗(𝑥𝑖) 

 

𝑗 = 2, 3,… , 𝑁 − 1 

 

Table 3-2: Hermite interpolation shape functions for rectangular plate vibration problem 

given for the 𝑥-direction (𝑁 = 𝑛𝑥) but also applicable in the 𝑦-direction 
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GDQR application to rectangular plate vibration problems 

As with the DQM, the GDQR is applied to discretize the governing equation and 

BCs and the resulting set of linear equations are solved. 

Step one 

The governing equation(s) of motion are expressed as a function of the 

transverse deflection (𝑤) and vibration frequency (𝜔) and the BC equations for 

the boundary conditions are specified according to the desired continuum model. 

Step two 

The number of grid points 𝑛𝑥 and 𝑛𝑦 in the 𝑥- and 𝑦-directions, respectively, and 

the grid point distribution to be used are specified. Although the authors of the 

GDQR claim it does not require solution domain decomposition, the deduction of 

the eigenvalue form of the model (described in step five) requires the solution 

domain to be decomposed. Figure 3-9 shows the grid points and the solution 

domain decomposition for the GDQR. The solution domain decomposition is 

different to that of the DQM in that the boundary domain does not include 𝛿-

points but only the points on the boundary lines 𝑋 =  0, 𝑎 and 𝑌 =  0, 𝑏. The 

number of sampling points in the inner domain is (𝑛𝑥 − 2)(𝑛𝑦 − 2) and in the 

boundary domain is 2(𝑛𝑥 + 𝑛𝑦) − 4. At each of these sampling points the 

independent variable(s) is/are defined. If 𝑛𝑖 is the number of equations satisfied 

in the inner domain, then the total number of independent variables in the inner 

domain is 𝑛𝑖(𝑛𝑥 − 2)(𝑛𝑦 − 2); similarly, if 𝑛𝑏 is the number of equations satisfied 

on each point in the boundary domain, the total number of independent variables 

in the boundary domain is 2𝑛𝑏(𝑛𝑥 + 𝑛𝑦 − 2). 
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Figure 3-9: GDQR grid distribution of solution domain 

Step three 

The quadrature analogues of the equation(s) of motion and BCs are written using 

the GDQR with respect to the domains in which they are satisfied. Since the 

number of independent variables in a system of linear equations must equal the 

number of equations in the system to be solvable, the total number of equations 

in the inner domain must equal the total number of independent variables, 

therefore the number of equations required for the inner domain is 𝑛𝑖(𝑛𝑥 −

2)(𝑛𝑦 − 2). Similarly, the number of equations required for the boundary domain 

is 2𝑛𝑏(𝑛𝑥 + 𝑛𝑦 − 2). 

Step four 

Assemble, rearrange and express in matrix format the quadrature analogues of 

the equation(s) of motion and BC equations within the framework of a 

generalized eigenvalue problem. The assembled matrix equation is of the form  

 
[
[𝐾𝑖𝑖] [𝐾𝑖𝑏]

[𝐾𝑏𝑖] [𝐾𝑏𝑏]
] {
{ℊ𝑖}

{ℊ𝑏}
} = 𝜔2 {

{[𝑀]{ℊ𝑖}}

{0}
} (3-123) 

where [𝐾] is the stiffness matrix with its elements being functions of the elastic 

and geometric properties of the GS. The subscripts 𝑏 and 𝑖 denote the boundary 

and inner domains, respectively. Therefore, [𝐾𝑖𝑖] is an 𝑛𝑖(𝑛𝑥 − 2)(𝑛𝑦 − 2) × 𝑛𝑖(𝑛𝑥 −

2)(𝑛𝑦 − 2) matrix, [𝐾𝑏𝑏] is a 2𝑛𝑏(𝑛𝑥 + 𝑛𝑦 − 2) × 2𝑛𝑏(𝑛𝑥 + 𝑛𝑦 − 2) matrix, [𝐾𝑖𝑏] is an 

(𝑛𝑥 − 2𝑛𝐵𝐶)(𝑛𝑦 − 2𝑛𝐵𝐶) × (2𝑛𝐵𝐶(𝑛𝑥 + 𝑛𝑦) − 4𝑛𝐵𝐶
2 ) matrix, and [𝐾𝑏𝑖] is a 
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(2𝑛𝐵𝐶(𝑛𝑥 + 𝑛𝑦) − 4𝑛𝐵𝐶
2 ) × (𝑛𝑥 − 2𝑛𝐵𝐶)(𝑛𝑦 − 2𝑛𝐵𝐶) matrix. [𝑀] is the equivalent 

mass matrix whose elements are functions of the mass moments of inertia. And 

{ℊi} and {ℊb} are the displacement vectors of the points in the inner and boundary 

domains, respectively. 

Step five 

Equation (3-123) from step four is re-written into the standard form of the 

eigenvalue equation using the condensation technique as 

 ([𝐾𝒊𝒊] − [𝐾𝒊𝒃][𝐾𝑏𝑏
−1][𝐾𝒃𝒊]){ℊ𝑖} − 𝜔

2[𝑀]{ℊ𝑖} = 0 (3-124) 

Equation (3-124) is solved to obtain the eigenvalues and eigenvectors of the 

vibrating plate. 

 

 

To validate the GDQR method, the classical Kirchhoff plate model was solved for 

an SSFSSF plate using the GDQR method and compared with results obtained 

from exact solutions.  

The governing equation for the classical Kirchhoff plate model deduced from 

equation (3-65) by neglecting the rotary inertia terms and the vdW pressure, 𝑝𝑖, 

from adjacent layers is given as 

 
−𝐷 (

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤

𝜕𝑦4
) = 𝐼0

𝜕2𝑤

𝜕𝑡2
 (3-125) 

The boundary conditions are given as 

 
𝑤 =

𝜕2𝑤

𝜕𝑥2
= 0                         𝑥 = 0, 𝑎; 0 ≤ 𝑦 ≤  𝑏 (3-126) 

for the simply supported edges, and 

 𝜕2𝑤

𝜕𝑥2
+ 𝜐

𝜕2𝑤

𝜕𝑦2
=
𝜕3𝑤

𝜕𝑥3
+ (1 − 𝜐)

𝜕3𝑤

𝜕𝑥𝜕𝑦2
= 0              1 < 𝑥 < 𝑎; 𝑦 = 0, 𝑏 (3-127) 

for the free edges. 

Assuming a sinusoidal time response solution to equation (3-125) of 
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 𝑤(𝑥, 𝑦, 𝑡) = 𝑊(𝑥, 𝑦)𝑒𝑖𝜔𝑡 (3-128) 

the corresponding mode shape function 𝑊(𝑥, 𝑦) is the classical Voigt function 

 𝑊𝑚 = 𝑠𝑖𝑛 𝛼𝑥 [𝐴𝑚 𝑠𝑖𝑛 (√𝑘
2 − 𝛼2𝑦) + 𝐵𝑚 𝑐𝑜𝑠 (√𝑘

2 − 𝛼2𝑦)

+ 𝐶𝑚 𝑠𝑖𝑛ℎ (√𝑘
2 + 𝛼2𝑦) + 𝐷𝑚 𝑐𝑜𝑠ℎ (√𝑘

2 + 𝛼2𝑦)] 
(3-129) 

where 𝑘2 = √𝜌𝜔2 𝐷⁄ , 𝛼2 = (𝑚𝜋 𝑎⁄ )2, 𝜔 is the frequency of vibration, and 𝑚 is the 

number of half waves in the 𝑥-direction.  

For an SSFSSF plate the frequency equation is given as216 

 2𝜙1𝜙2[𝜆
2 −𝑚4𝜋4(1 − 𝜐)2]2(𝑐𝑜𝑠 𝜙1 𝑐𝑜𝑠ℎ 𝜙2 − 1)

+ {𝜙1
2[𝜆 + 𝑚2𝜋2(1 − 𝜐)]4

− 𝜙2
2[𝜆 − 𝑚2𝜋2(1 − 𝜐)]4} 𝑠𝑖𝑛 𝜙1 𝑠𝑖𝑛ℎ 𝜙2 = 0 

(3-130) 

where 𝜆 = 𝜔𝑎2√𝜌 𝐷⁄  is the non-dimensional frequency parameter, and  

 𝜙1 =
𝑏

𝑎
√𝜆 − 𝑚2𝜋2 

𝜙2 =
𝑏

𝑎
√𝜆 + 𝑚2𝜋2 

(3-131) 

Equation (3-130) assumes that 𝑘2 > 𝛼2, however if 𝑘2 < 𝛼2 equation (3-130) 

becomes 

 2𝜂1𝜂2[𝜆
2 −𝑚4𝜋4(1 − 𝜐)2]2(𝑐𝑜𝑠ℎ 𝜂1 𝑐𝑜𝑠ℎ 𝜂2 − 1)

+ {𝜂1
2[𝜆 + 𝑚2𝜋2(1 − 𝜐)]4

− 𝜂2
2[𝜆 − 𝑚2𝜋2(1 − 𝜐)]4} 𝑠𝑖𝑛ℎ 𝜂1 𝑠𝑖𝑛ℎ 𝜂2 = 0 

(3-132) 

Where 

 𝜂1 =
𝑏

𝑎
√𝑚2𝜋2 − 𝜆 

𝜂2 =
𝑏

𝑎
√𝑚2𝜋2 + 𝜆 

(3-133) 

The 𝑓𝑧𝑒𝑟𝑜 command was utilized in a MATLAB programme to solve the frequency 

equation (equation (3-130)). The 𝑓𝑧𝑒𝑟𝑜 command finds the roots of a nonlinear 

function by identifying the points at which the sign of the function changes. Table 
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3-3 gives the normalized natural frequencies of the first few modes for the free 

vibration of a classical Kirchhoff plate, using a Poisson’s ratio 𝜐 = 0.3 with spatial 

aspect ratios (𝑎 𝑏⁄ ) of 0.4, 1.0 and 2.5. The fundamental frequencies as shown in 

the first row of Table 3-3 occur at the points where the value of the frequency 

function switches from zero to a positive or negative real number. All the values 

of the frequency function before zero are complex numbers, as such the MATLAB 

programme was unable to find that first switching point since the 𝑓𝑧𝑒𝑟𝑜 command 

will only accept real and finite inputs. Hence, 𝜆 for all 𝑚 = 𝟏, 𝟐, 𝟑, … and 𝑛 = 1 could 

not be extracted and have been taken from the literature216. It should be noted 

that in at least one other place217, the fundamental frequencies are reported as 

those in the second row of Table 3-3, for example, 𝜆11 = 16.1348 for a square 

plate and not 𝜆11 = 9.6314. By comparing the mode shapes of 𝜆 = 9.6314 and 

𝜆 = 16.1348 (Figure 3-10), both shapes satisfy 𝑚 = 1 and 𝑛 = 1 the difference 

being the position of the nodal lines, therefore a labelling of 𝜆11 for both 

frequencies will not be totally wrong. However, since 9.6314 is the lower of the 

two frequencies, it should be considered as the fundamental frequency.  

Mode 
sequence 

𝑎 𝑏⁄  
0.4 1.0 2.5 

1 11 
9.7600* 

11 
9.6314* 

11 
9.4841* 

2 12 
11.0368 

12 
16.1348 

12 
33.6228 

3 13 
15.0626 

13 
36.7256 

21 
38.3629* 

4 14 
 

21 
38.9450* 

22 
75.2037 

5 15 
 

22 
46.7381 

31 
86.9684* 

6 21 
39.2387* 

23 
70.7401 

32 
130.3576 

7 22 
40.5035 

14 41 
155.3211* 

8 16 
 

31 
87.9867* 

13 
156.1248 

9 23 
44.9416 

32 
96.0405 

23 
199.8452 

* Values taken from literature216 

Table 3-3: Non-dimensional frequency parameters 𝜆 = 𝜔𝑎2√𝐼0 𝐷⁄  for SSFSSF plates 

deduced from the frequency equation 
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a)                                                                     b)  

Figure 3-10: Mode shapes for a) 𝜆 = 9.6314 b) 𝜆 =16.1348 

The GDQR was applied to equation (3-125) and boundary equations (3-126) and 

(3-127) following the steps outlined in section 3.3. The Chebyshev-Gauss-

Lobatto grid distribution was used for the solution domain. Table 3-4 shows the 

convergence rate of the method for the free vibration of an SSFSSF plate. Unlike 

the rates in literature156, 210, the rates achieved here are not fast and even at high 

sampling points of 39 × 39 the frequencies do not properly converge. 

Grid SSFSSF (𝜆12?) 

11 × 11 30.7674 
15 × 15 -  
21 × 21 33.4836 
24 × 24 34.1197 
27 × 27 32.8243 
35 × 35 32.3349 
39 × 39 32.1514 
50 × 50 33.2412 

Table 3-4: Convergence of the GDQR applied to vibration problem of an SSFSSF plate.  

As a result of poor convergence rates a grid with a large number of sampling 

points (50 × 50) was used as the solution domain for the validation of the GDQR 

method. This was necessary as very accurate mode shapes were required to 

ensure that the frequencies being compared with those from the exact solution 

method were for the same resonant mode. Table 3-5 shows the comparison of 

the frequencies obtained from the GDQR with those from exact solution methods 

for a SSFSSF square plate. The percentage error is calculated as 

 % 𝑒𝑟𝑟𝑜𝑟 =  
𝐺𝐷𝑄𝑅 𝑚𝑒𝑡ℎ𝑜𝑑 − 𝐸𝑥𝑎𝑐𝑡 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝐸𝑥𝑎𝑐𝑡 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× 100 (3-134) 
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Mode 
label 

Exact 
Solution 

GDQR 
(This 
work) 

% 
error 

14 75.2834 71.3934 -5.167 
44 236.2620 223.8526 -5.252 

    

Table 3-5: Comparison of the GDQR frequencies with those from exact solution methods.                  

𝑎 𝑏⁄ = 1,𝜐 = 0.3 

The percentage errors of the GDQ are not too large as to discard the method, 

however, the ultra-low error percentages of the method as shown in literature for 

plates with opposite sides simply supported210, have not been repeated here. It is 

also noted that the GDQR as used in this work by comparison with exact solution 

methods did not yield the first few occurring frequencies. 

 

Although the GDQR did not show very low percentage errors, which might mean 

it may not be a suitable method for determining the natural frequencies of 

graphene resonators, it was used to study the effect of the small-scale parameter 

on the vibration of micro and nanosized rectangular resonators. It is assumed 

that the error margins for one solution will be roughly the same as another, 

allowing for both solutions to be reasonably compared. 

The value of the small-scale parameter used in literature varies from work to 

work. Several earlier works used Eringen’s value of 0.39 for 𝑒0 in the small-scale 

parameter relation 𝜇 =  (𝑒0𝑎)
2. However, it has been demonstrated that suitable 

values of 𝑒0𝑎 can be chosen to constrain the analytical solution to match MD 

simulations163, with values in the range 0 – 2.0 𝑛𝑚. A few other works have used 

this range as values of (𝑒0𝑎)
2 and not 𝑒0𝑎. The effect of the small-scale 

parameter has been shown for the vibration of different sized nanoplates156, while 

a no-effect verdict has been implied for micro-sized plates116. The plot in Figure 

3-11 shows the change in the first non-dimensional frequency for different 𝑒0𝑎 

selected between 0 and 2.0 𝑛𝑚 for a linear, nonlocal model. When 𝑒0𝑎 is 0, the 

local plate model is achieved. It is evident from Figure 3-11 that the frequency 

parameter when 𝑒0𝑎 = 0 is several orders larger than the frequency parameters 

for all the other values of 𝑒0𝑎, which seemingly agrees with literature that 

classical plate models overestimate the frequencies of nanoplates. The effect the 

inclusion of the small-scale parameter has on the frequencies can also be seen; 
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the pertinent question then becomes, what value of 𝑒0𝑎 should be used for 

different sized plates? With experimental or MD simulation data, an appropriate 

value of 𝑒0𝑎 can be selected for a given resonator size range. 

 

Figure 3-11: The effect of the small scale parameter on the non-dimensional frequency.   

𝑎 𝑏⁄ = 1, 𝜐 = 0.3, 𝑎 = 16 𝜇𝑚 

Figure 3-12 shows the change in the effect 𝑒0𝑎 has on the first frequency of 

various micro-scaled SSFSSF graphene resonators. It should be noted that 

frequencies in these plots are referred to as the first non-dimensional frequency 

or first frequency and not the fundamental frequency of the plate in line with 

previous discussions on the inability of the GDQR as used in this work to produce 

the fundamental frequency for the model being solved. Notwithstanding, all 

values of the small-scale parameter rescale the overestimated frequency of 𝑒0𝑎 = 

0. Most importantly, it can be deduced that for micro-scaled GSs, the choice of 

𝑒0𝑎 is unimportant as all 0 ≤ 𝑒0𝑎 ≤ 2 scales the overestimated frequency to the 

same value for a given resonator length. Figure 3-13 shows the effect of 𝑒0𝑎 on 

the first frequency of nano-scaled SSFSSF graphene resonators which is very 

much in agreement with literature158, 161.  The small-scale parameter scales the 

overestimated frequency, but with nanoplates the choice of 𝑒0𝑎 matters as 

different values scale the overestimated frequency to different frequencies. 
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Figure 3-12: The effect of small scale parameter on the frequency of micro-scaled GSs 

 

    a) 
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  b) 
Figure 3-13: The effect of on the first frequency of nanosized GSs 

To validate the effect the small-scale parameter has on micro-scaled GSs, 

comparison is made with experimental results reported in literature. Figure 3-14 

shows the plot of the first frequency derived from the nonlocal linear equation of 

motion for a 1 𝜇𝑚 by 2 𝜇𝑚 SSFSSF SLGS with fundamental frequency, 𝑓0 = 70.5 

𝑀𝐻𝑧82 for different small-scale parameter values. 

 

Figure 3-14: Nonlocal linear equation solution compared with experimental results               

for a 1 𝜇𝑚 by 2 𝜇𝑚 SLGS resonator. 
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The local linear plate equations (when 𝑒0𝑎 = 0) are clearly not suitable for the 

vibration analysis of micro-sized GSs because they overestimate in no small way 

the natural frequencies of the sheets. Therefore, the small-scale parameter must 

be incorporated in the governing equations in the modelling of the vibration of the 

sheets. Even though the small-scale parameter rescales the overestimated 

frequency in Figure 3-14, the rescaled frequencies are still about 168% higher 

than the measured fundamental frequency. This is not completely out of place, as 

the first frequencies from the GDQR as used in this work are not the fundamental 

frequencies of the vibration being modelled. The comparison is made to validate 

the theory that the small-scale parameter is important for the vibration analysis of 

micro-sized GS. 

 

This chapter has looked at the theoretical analyses of the vibration of rectangular 

GSs. The transition from the use of MD simulations to continuum mechanics 

models in the analyses of the mechanical behaviour of nano-sized structures is 

discussed. A few different continuum models are looked at in detail and their 

respective governing equations derived. The theories developed to account for 

the size effect of the structures, models for the interlayer pressures, 

consideration of nonlinearities in the models are also discussed. The GDQR 

method is used to deduce the applicability of some of the discussed continuum 

models in the vibration analysis of nano- and micro-sized GSs. As has been 

presented in the literature, the small-scale parameter 𝑒0𝑎 was found to resolve 

the overestimation problem encountered when classical plate models are applied 

to nano-scaled sheets. This work extends the necessity of a small-scale 

parameter to micro-sized GSs. It shows that when 𝑒0𝑎 = 0, the frequencies of 

micro-sized GSs are overestimated, but at any value of 𝑒0𝑎 other than zero, the 

frequencies are scaled closer to the expected values. Hence, we establish that 

the choice of value for 𝑒0𝑎 is insignificant compared to its incorporation in the 

governing equations applied to micro-sized GSs. 
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Chapter 4: Computer Aided FE Analysis of graphene 

resonators 

 

This chapter presents the modelling and vibration analysis of rectangular 

graphene resonators using ANSYS Mechanical APDL. Section 4.2 presents the 

specification and derivation of some parameters used in the FEA simulations and 

subsequently in the mass sensor design in Chapter 5 - including resonator sizes, 

actuation forces from piezoelectric shakers and Lorentz force. ANSYS Electronics 

Desktop is used to model the magnetic fields used in deriving Lorentz force. 

Section 4.3 presents the modelling of the graphene resonators. The resonators 

are modelled as thin plates by selecting appropriate element types. A mesh 

sensitivity analysis is carried out to determine the optimum mesh size for the 

models. Modal analysis and subsequently harmonic analysis are carried out for 

the graphene bridges. Monolayer and bilayer GSs are modelled. The accuracy of 

the models depends on using appropriate element types and mesh size, inputting 

correct material properties, defining appropriate boundary conditions and loads, 

and running the appropriate analysis types in the correct order where applicable. 

Section 4.4 presents a structure-field interaction model for the graphene 

resonator-air interaction. The damping coefficient and spring force constants are 

extracted from the analysis and compared with estimated analytical values.  An 

estimate of the mass sensitivity of a mass sensor based on the simulated 

performance of the resonators is given. 

 

The graphene resonators of interest in this study are GSs with lengths less than 

50 𝜇𝑚. Due to characterization and measurement resolution limits, the lengths of 

the GSs are however kept above 10 𝜇𝑚, with widths varying from 2 𝜇𝑚 to 7 𝜇𝑚. 

The modal frequency characteristics of resonators are a function of their spatial 

dimensions, material properties, and boundary conditions. The specification of 

these therefore suffices to run a modal analysis for the resonators. To derive the 

frequency response of the resonators, the forcing function acting on the resonator 

needs to be specified. And damping can be estimated and included for more 

accurate results. 
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The use of Lorentz or magnetomotive force for the actuation of mass sensor 

resonators was briefly discussed in Section 2.7.1. Equation (2-1) describes the 

relation for Lorentz force. To correctly estimate its magnitude, the magnetic flux 

density 𝐵 at the resonator position must be specified. It is good practice to ensure 

that the current density limits of the resonator are not exceeded, to avoid 

electrically damaging it, and that the currents flow through the current signal track 

and resonator and not through the sensor substrate. 

 Magnetic flux density at resonator surface 

Two permanent magnets with strengths 0.5635𝑇 supply the magnetic field. A 

magnetic flux keeper is created with Swedish iron as shown schematically in 

Figure 4-1. The magnetic flux and flux density in the keeper and the surrounding 

medium are derived using an FEA model in ANSYS Electronics Desktop. The 

magnetic properties of the magnet and keeper are given in Table 4-1.  

 

Figure 4-1: Schematic representation of magnets and Swedish iron magnetic flux path  

 

 Material Relative 
Permeability 

Coercive 
force 

Flux Density at 
  gn  ’s su      

Magnets 
 

Neodymium 1 836,000 𝐴/𝑚 0.5635𝑇 

Flux keeper 
 

Swedish Iron 1000   

Surrounding 
Medium 

Air 1   

Table 4-1: Magnetic properties of magnets, flux keeper and surrounding medium 

25 𝑚𝑚 
15 𝑚𝑚 

57 𝑚𝑚 

4
0

 𝑚
𝑚

 

9
4

 𝑚
𝑚

 

∅ 25 𝑚𝑚 
27 𝑚𝑚 

179 𝑚𝑚 

magnets 

Swedish 
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To model the magnetic field, the geometries of the magnets, iron keeper, and air 

are first defined as shown in Figure 4-2 Their material properties and the 

boundary conditions are defined next. The model is then meshed with a level 7 

mesh resolution on a resolution scale of 1 to 10 in increasing order of fineness 

(Figure 4-3), before solving. The magnetic flux vector plot is shown in Figure 4-4 

The keeper conserves the magnetic flux and forms a path for it from one magnet 

to the other. The colour plot of the magnetic flux magnitude in Figure 4-5 

indicates that the flux density is approximately zero everywhere except in the 

keeper and the medium between both magnets. Figure 4-6 shows how the 

magnetic flux density varies along the line 𝑥 =  0 between both magnets, where 

the resonator will be located. 

  

Figure 4-2: Model of magnets and Swedish iron keeper 

 

Figure 4-3: Magnet and iron model mesh 
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Figure 4-4: Magnetic flux vector plot 

 

Figure 4-5: Magnetic flux magnitude plot 

 

Figure 4-6: Variation of flux density along line 𝑥 =  0 
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 Current density in graphene 

The current density of a current carrying conductor is the ratio of the current 

flowing through it to its cross-sectional area, as is expressed in equation (4-1). 

 𝐼𝑑 =
𝐼

𝐴
 (4-1) 

The graphene resonators used in this work were designed to have a minimum 

width of 4 𝜇𝑚. Assuming inaccuracies in the microfabrication process resulted in 

the resonator widths of 3 𝜇𝑚, with an ideal thickness of 0.34 𝑛𝑚 the cross 

sectional area of a monolayer graphene resonator will be 1.02 × 10−11𝑐𝑚2. 

Breakdown current densities in graphene have been reported in orders of 

107 𝐴 𝑐𝑚2⁄  and 108 𝐴 𝑐𝑚2⁄ , e.g. 1.2 × 107 𝐴 𝑐𝑚2⁄  and 1.18 × 108 𝐴 𝑐𝑚2⁄  among 

others218, 219. Assuming a maximum current density of an order lesser than 

reported, the maximum working current in this work will be 10.2 𝜇𝐴. 

 Impedance of signal tracks and substrates 

Standard equations have been developed for determining the impedances of a 

wide range of signal-carrying (transmission) line circuits. These can be found in 

transmission line design handbooks and guides, one of such resources is 

recommended and used in this work. The transmission line designs used in this 

work are best described as nonhomogeneous dielectric embedded coplanar 

waveguides, for which there are no direct standard equations for the impedance. 

As such this works merges the equations and principles used for normal coplanar 

waveguides and nonhomogeneous dielectric embedded microstrip line. 

Consider a standard coplanar waveguide as shown in Figure 4-7. For the 

proposed equations to be applicable, the ground plane must extend greater than 

5𝑏 on each side of the gap. And are recommended to be periodically connected 

depending on the frequency being used. 

Figure 4-7: Coplanar waveguide 
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The characteristic impedance of the conducting track, 𝑍0, is given as 

 
𝑍0 =

30 𝜋

√𝜀𝑒𝑓𝑓,𝑡

𝐾(𝑘𝑡
′)

𝐾(𝑘𝑡)
 (4-2) 

where 𝜀𝑒𝑓𝑓 is the effective dielectric constant, 𝐾 is the complete elliptic function 

given in equation (4-13).  

 
𝐾(𝑘) = ∫

𝑑𝜃

√1 − 𝑘2 𝑠𝑖𝑛2 𝜃

𝜋
2⁄

0

 (4-3) 

 𝜀𝑒𝑓𝑓,𝑡 = 𝜀𝑒𝑓𝑓 −
𝜀𝑒𝑓𝑓 − 1

(𝑏 − 𝑎) 2⁄
0.7𝑡

𝐾(𝑘)
𝐾(𝑘′)

+ 1
 

(4-4) 

 
𝜀𝑒𝑓𝑓 = 1 +

𝜀𝑟 − 1

2

𝐾(𝑘′)𝐾(𝑘1)

𝐾(𝑘)𝐾(𝑘1
′ )
  (4-5) 

 𝑘𝑡 =
𝑎𝑡
𝑏𝑡
        𝑘 =

𝑎

𝑏
 

𝑘𝑡
′ = √1 − 𝑘2           𝑘′ = √1 − 𝑘2 

𝑘1 =
𝑠𝑖𝑛ℎ (

𝜋𝑎𝑡
4ℎ
)

𝑠𝑖𝑛ℎ (
𝜋𝑏𝑡
4ℎ
)
       𝑘1

′ = √1 − 𝑘1
2 

(4-6) 

 𝑎𝑡 = 𝑎 +
1.25𝑡

𝜋
[1 + 𝑙𝑛 (

4𝜋𝑎

𝑡
)] 

𝑏𝑡 = 𝑏 − 
1.25𝑡

𝜋
[1 + 𝑙𝑛 (

4𝜋𝑎

𝑡
)] 

 

(4-7) 

where 𝜀𝑟 is the relative dielectric constant.  

The characteristic impedance for an embedded or buried microstrip line is given 

as 

 
𝑍0 =

𝑍0,𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑟𝑖𝑝√𝜀𝑒𝑓𝑓,𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑟𝑖𝑝

√𝜀𝑒𝑓𝑓,𝑏𝑢𝑟𝑖𝑒𝑑
 (4-8) 
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 𝜀𝑒𝑓𝑓,𝑏𝑢𝑟𝑖𝑒𝑑 = 𝜀𝑒𝑓𝑓 𝑒
−
2𝑏
ℎ + 𝜀𝑟 [1 − 𝑒

−
2𝑏
ℎ ] (4-9) 

For the nonhomogeneous dielectric embedded microstrip line illustrated in Figure 

4-8, the equation for its characteristic impedance is same as that of the 

embedded microstrip line in equation (4-8) but with εeff,𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 bound by the 

relation εeff,𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑟𝑖𝑝 < εeff,embedded < εeff,2. And 𝜀𝑒𝑓𝑓,2 evaluated using the standard 

𝜀𝑒𝑓𝑓 equations but with 𝜀𝑟 replaced with 𝜀𝑟1 𝜀𝑟2⁄ . 

Figure 4-8: Nonhomogeneous dielectric embedded microstrip line 

The transmission line designs used for this study are illustrated in Figure 4-9. 

Using equation (4-8), the characteristic impedance for an embedded coplanar 

waveguide is expressed as 

 
𝑍0 =

𝑍0,𝑐𝑜𝑝𝑙𝑎𝑛𝑎𝑟√𝜀𝑒𝑓𝑓,𝑐𝑜𝑝𝑙𝑎𝑛𝑎𝑟

√𝜀𝑒𝑓𝑓,𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑
 (4-10) 

 𝜀𝑒𝑓𝑓,𝑐𝑜𝑝𝑙𝑎𝑛𝑎𝑟 < 𝜀𝑒𝑓𝑓,𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 < 𝜀𝑒𝑓𝑓,2 (4-11) 

 

Figure 4-9: Nonhomogeneous dielectric embedded coplaner waveguide 

εeff,𝑐𝑜𝑝𝑙𝑎𝑛𝑎𝑟 is equation (4-5), εeff,2 is also equation (4-5) but with 𝜀𝑟 replaced by 

𝜀𝑟1 𝜀𝑟2⁄ . Z0,coplanar is equation (4-2). The parameter values for the 

nonhomogeneous dielectric embedded waveguide as indicated in Figure 4-9 are: 
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ℎ1 = 300 𝜇𝑚, ℎ2𝑎 = 2 𝜇𝑚, ℎ2𝑏 = 200 𝑛𝑚, 𝑡 = 250 𝑛𝑚, 𝑎 = 30 𝜇𝑚, 𝑏 = 50 𝜇𝑚, 𝜀𝑟,𝑆𝑖 =

11.7, and 𝜀𝑟,𝑆𝑖𝑂2 = 3.9. Evaluating equation (4-10) for the conducting track in 

Figure 4-9 gives an impedance of 112.878 Ω. The silicon substrate (dielectric 1 in 

Figure 4-9) is insulated from the track by a 2 𝜇𝑚 SiO2 layer (dielectric 2). SiO2 

has resistivity values between 1 × 1015 and 1 × 1019 Ω𝑚, considering current flow 

through the thickness of the layer and using an upper limit of cross-sectional area 

(area of the whole die), the smallest resistance of the insulating layer will be 

𝑐𝑎. 3.2 × 1014 Ω. CVD grown graphene sheets have been shown to have 

resistances of 770 −  1000 Ω/𝑠𝑞. For a 16 𝜇𝑚 by 4 𝜇𝑚 graphene resonator, using 

the upper limit of 1000 Ω/𝑠𝑞, its resistance will be in 𝑐𝑎. 64 𝑘Ω. With the resistance 

of the SiO2 layer being about 11 and 14 orders of magnitude higher than those of 

the graphene resonators and conducting tracks respectively, the flow of current 

will be through the tracks and resonator and not through the substrate.  Because 

the conducting tracks are designed as coplanar waveguides, the frequency 

components of the drive signal have a minimal impact on their impedance.  

 Lorentz force acting on the graphene resonators 

The mass sensor resonator was designed to be located at any point along line 

𝑥 =  0 in Figure 4-6. Assuming a 16 𝜇𝑚 resonator is located at one of the points 

with lowest magnetic flux densities, for a current of 10 𝜇𝐴 flowing through the 

resonator, using equation (2-1), the maximum force acting on the resonator will 

be 37.456 𝑝𝑁. Figure 4-10 to Figure 4-12 present plots of the forces acting on 

resonators of different lengths for different current values and magnetic flux 

densities. 
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Figure 4-10: Lorentz force for selected resonator lengths in a magnetic field of strength 0.2341 T 

 

Figure 4-11: Lorentz force for selected resonator lengths in a magnetic field of strength 0.3579 T 
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Figure 4-12: Lorentz force for selected resonator lengths in a magnetic field of strength 0.3948 T 

 

Piezoelectric actuators are used in several sensor experimental setups, mostly as 

actuators. For resonator-based mass sensors, they can be used to shake the 

whole sensor device and consequently actuate the sensor resonator. A PIC181 

piezoelectric actuator is selected for use in this work. It is made from modified 

lead zirconate titanate (material properties are given in Table 4-2) and boasts a 

very high mechanical quality factor with good temperature and time stability of its 

dielectric and elasticity constants.  

 

 

Figure 4-13: Piezoelectric actuator with orthogonal coordinate system (P = poling 
direction, u = applied drive voltage, TH = thickness, OD = outside diameter)  

 
 

0.0 2.0µ 4.0µ 6.0µ 8.0µ 10.0µ

0

20

40

60

80

100

120

140

L
o
re

n
tz

 F
o
rc

e
 (

p
N

)

Current (A)

 16mm resonators

 22mm resonators

 27mm resonators

 32mm resonators

𝒚 (𝟐) 

𝒛 (𝟑) 

𝒙 (𝟏) 

𝑢 (𝑉) 𝑃 𝑇𝐻 

OD 



Chapter 4: Computer Aided FE Analysis of graphene resonators                                         F.G. Unom 

116 

 

Physical and 
dielectric properties 

Symbol Value Electromechanical 
properties 

Symbol Value 

Density 𝜌 7.80 𝑔 𝑐𝑚3⁄  Coupling factor 𝑘𝑝 0.56 

Poisson’s    io 𝜈 0.34 𝑘𝑡 
 

0.46 
 

Specific heat 
capacity 

 

 ~350 𝐽𝑘𝑔−1𝐾−1 𝑘31 0.32 
 

Specific thermal 
conductivity 

 

   
~1.1 𝑊𝑚−1𝐾−1 

𝑘33 0.66 
 

Coefficient of 
thermal expansion 

𝛼3 
 

𝑐𝑎.−4 𝑏𝑖𝑠 
− 6 × 10−5𝐾−1 

𝑘15 0.63 

𝛼1 𝑐𝑎. 4 𝑏𝑖𝑠 8
× 10−5𝐾−1 

Piezoelectric charge 
coefficient 

𝑑31 −120
× 10−12𝐶𝑁−1 

Curie temperature 𝑇𝑐 330 ℃ 𝑑33 265
× 10−12𝐶𝑁−1 

Relative 
permittivity in the 

polarisation 
direction 

 

𝜀33
𝑇

𝜀0
⁄  

1200 𝑑15 475
× 10−12𝐶𝑁−1 

Relative 
permittivity 

perpendicular to 
polarity 

 

𝜀11
𝑇

𝜀0
⁄  

1500 Piezoelectric voltage 
coefficient 

𝑔31 −11.2
× 10−3𝑉𝑚𝑁−1 

Dielectric loss 
factor 

𝑡𝑎𝑛𝛿 3 × 10−3 𝑔33 25
× 10−3𝑉𝑚𝑁−1 

Acousto-mechanical properties 

Frequency 
coefficients 

𝑁𝑝 2200 𝐻𝑧.𝑚 Elastic compliance 
coefficient 

𝑆11
𝐸  11.8

× 10−12𝑚2𝑁−1 
𝑁1 1640 𝐻𝑧.𝑚  𝑆33

𝐸  14.2
× 10−12𝑚2𝑁−1 

𝑁3 2010 𝐻𝑧.𝑚 Elastic stiffness 
coefficient 

𝐶33
𝐷  16.6

× 10−10𝑁𝑚−2 
𝑁𝑡 2110 𝐻𝑧.𝑚 Mechanical quality 

factor 
𝑄𝑚 2000 

 
Table 4-2: Material properties of a PIC181 piezoelectric actuator 

An estimate of the pressure generated in a piezo-transducer when a voltage is 

applied across it is given as 

 𝑃 =
𝜀𝑅𝜀0𝑉

𝑘𝑡𝑑33𝑡
 (4-12) 

Where 𝜀𝑅 is the relative dielectric constant, 𝜀0 is permittivity of free space, 𝑉 is 

the applied voltage, 𝑡 is the thickness, 𝑘𝑡 and 𝑑33 are as given in Table 4-2. A plot 

of the estimated pressure against the applied voltage for a PIC 181 piezo-

actuator using equation (4-12) is presented in Figure 4-14. 
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Figure 4-14: Plot of Piezoelectric actuator pressure to applied voltage 

Assuming a voltage of 10 V is supplied to the piezo-actuator, for a 16 𝜇𝑚 by 4 𝜇𝑚 

resonator the force acting on it will be 27.89 𝜇𝑁. Which is several orders bigger 

than the estimated Lorentz forces in Section 4.2.1. 

 

The energy dissipation in a resonator could be intrinsic but is majorly a result of 

the ‘fluid-structure’ interaction between the resonator and the surrounding 

medium. Consider a microcantilever or bridge with length 𝑙, width 𝑏 and thickness 

𝑑, assuming a free-molecular-flow regime around the resonator, if the structures 

vibrate transversely, the drag force per unit length on them is given as 

 𝑓𝑑 = 𝑓1𝑢(𝑥) = 𝑐. 𝑤. 𝑃𝑖 . 𝑢(𝑥) (4-13) 

Where 𝑓1 is the damping parameter, 𝑢 the velocity, 𝑐 is the damping coefficient, 

and 𝑃𝑖 the ambient pressure. The fluid-structure interaction quality factor, 𝑄𝑓 is 

then estimated as 
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𝑄𝑓 =

𝑘𝑛
2

𝑐𝑃𝑖
(
𝑑

𝑙
)
2

(
𝜌𝑠𝐸

12
)

1
2⁄

 (4-14) 

Here, 𝐸 is the elastic modulus, 𝜌𝑠 the density of the structure, and 𝑘𝑛 the constant 

for the 𝑛th-order resonance mode, with a first mode value of 1.875 for cantilevers 

and 4.694 for bridges. 

The net drag force on the structure, assuming the structure’s velocity is smaller 

than the thermal velocity 𝑐𝑇, is given as  

 
𝐹𝐷 =

𝑏𝑃𝑖
𝑐𝑇
𝑢 [(2 − 𝜎𝑛) (

2

√𝜋
+ 1) + 𝜎𝑛𝜋

1
2⁄ √
𝑇𝑤
𝑇𝑖
+ 2

𝑑

𝑏

𝜎𝑡

𝜋
1
2⁄
] (4-15) 

Therefore, the damping coefficient is expressed as 

 
𝑐 = (

𝑚

2𝑘𝑇𝑖
)

1
2⁄

[(2 − 𝜎𝑛) (
2

√𝜋
+ 1) + 𝜎𝑛𝜋

1
2⁄ √
𝑇𝑤
𝑇𝑖
+ 2

𝑑

𝑏

𝜎𝑡

𝜋
1
2⁄
] (4-16) 

where 𝑚 is the mass of the gas molecules (48.1 × 10−27𝑘𝑔 for air), 𝑘 is the 

Boltzmann constant (1.38064852 × 10−23 𝐽/𝐾), 𝜎𝑛 is the normal accommodation 

coefficient, 𝜎𝑡 the tangential accommodation coefficient, 𝑇𝑤 is the wall 

temperature and 𝑇𝑖 the ambient temperature. 

For an isothermal system with a low aspect ratio and full momentum 

accommodation, 𝑐 becomes 

 
𝑐 = (

𝑚

2𝑘𝑇𝑖
)

1
2⁄

(
2

√𝜋
+ 1 + 𝜋

1
2⁄ ) (4-17) 

For a room temperature of 18 ℃ (291.15 𝐾), the damping coefficient for the 

resonators used in this study when operated in air are estimated to be 

9.54 × 10−3. 

 

 

Graphene resonators are generally considered to be 2 dimensional; here they are 

modelled as very thin plates. First, they are built geometrically as rectangles. 
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Then the element type used to discretize the geometric model is specified – 

shell181, a structural shell element type having six degrees of freedom at each of 

its four nodes, suitable for modelling thin to moderately thick shells with capability 

for large strains and nonlinear behaviour, is selected for the models. Next the 

material properties for the model are defined. Then the model is meshed, 

boundary conditions are applied, and the appropriate solution type is run.  

Before the model is meshed, a mesh sensitivity analysis is carried out to 

determine the optimum mesh fineness for accurate results. Figure 4-15 

represents the mesh sensitivity analysis for a 16 𝜇𝑚 by 4 𝜇𝑚 resonator. As the 

element size decreases (the mesh fineness increases), the value of the 

fundamental resonant frequency converges to about 29.3 𝑘𝐻𝑧. From the plot, a 

mesh fineness of 2.0 𝜇𝑚−1 would suffice in meshing the models. The meshed 

model is shown in Figure 4-16. The resonators are clamped at opposite ends as 

shown in Figure 4-17; all values of the six degrees of freedom (displacements in 

𝑥, 𝑦, and 𝑧, and rotations about 𝑥, 𝑦, and 𝑧) at those nodes are set to zero. 

 

Figure 4-15: Mesh sensitivity analysis for graphene resonator models. Insert 1: Mesh 
fineness for element size 4 𝜇𝑚. Insert 2: Mesh fineness for element size 0.27 𝜇𝑚 
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Figure 4-16: Meshed rectangular graphene resonator model with element size 0.5  𝜇𝑚 

 

Figure 4-17: Boundary conditions on rectangular graphene model 

 

Four sensing platform types were designed with four different cavity sizes over 

which graphene was suspended and microfabricated into doubly clamped 

bridges. The modal analyses for all four resonator sizes were carried out and 
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their fundamental frequencies are presented in Table 4-3 for monolayer and 

bilayer graphene. The mode shape for the fundamental resonant frequency of a 

16 𝜇𝑚 × 4 𝜇𝑚 graphene resonator is given in Figure 4-18. 

Resonator size 
Monolayer graphene Bilayer graphene 

f0  
(MHz) 

Participation 
factor 

f0 
(MHz) 

Participation  
factor 

16 𝜇𝑚 × 4 𝜇𝑚 0.029404 0.35757E-33 0.060539 -0.11702E-32 

22 𝜇𝑚 × 5 𝜇𝑚 0.015537 0.79404E-33 0.031989 0.14277E-32 

27 𝜇𝑚 × 7 𝜇𝑚 0.010329 -0.12147E-33 0.021266 0.23772E-32 

32 𝜇𝑚 × 7 𝜇𝑚 0.0073417 -0.47513E-34 0.015115 -0.85316E-33 

Table 4-3: FEA predicted fundamental frequencies for graphene resonators 

 

Figure 4-18: Mode shape for fundamental resonant frequency for 16 𝜇𝑚 by 4 𝜇𝑚 resonator 

 

 Lorentz force excitation 

Harmonic analysis of the graphene resonators is carried out with Lorentz force 

excitation for a 16 𝜇𝑚 × 4 𝜇𝑚 bilayer graphene resonator. Lorentz force and 

damping coefficient as estimated in sections 4.2.1 and 4.2.3 respectively are 

used for the analysis. The frequency response plot is presented in Figure 4-19. 
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The response plot does not show the expected peaks at the resonance 

frequencies predicted by the modal analysis. This could be as a result of the 

magnitude of the Lorentz force or it could be that the resonance modes for the 

selected frequencies cannot be excited, given their negligible participation 

factors. 

 Piezoelectric shaker excitation 

The harmonic analysis for a 16 𝜇𝑚 × 4 𝜇𝑚 bilayer graphene resonator is run for 

a piezo excitation with the estimated pressure at 10 𝑉 of 0.436 𝑀𝑃𝑎 from section 

4.2.2. The frequency response plot is presented in Figure 4-20. As with the 

Lorentz force excitation, the expected peaks are not seen in the frequency 

response when using a piezoelectric shaker. The values of the displacement are 

several orders higher than the Lorentz force values, however, the lack of peaks is 

same. This could also be a non-excitable frequency mode problem. 

 

Figure 4-19: Frequency response plot for 16 𝜇𝑚 by 4 𝜇𝑚 bilayer graphene resonator 
excited via Lorentz force 
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Figure 4-20: Frequency response plot for 16 𝜇𝑚 by 4 𝜇𝑚 bilayer graphene resonator 
excited with a piezoelectric shaker 

 

In this chapter, FEA models of graphene resonators were used to predict their 

resonant frequencies and frequency response to excitations by Lorentz force and 

a piezoelectric actuator. The magnetic flux density at the device surface was 

estimated to be 0.2341 T. With a maximum current of 10.2 𝜇𝐴 estimated for the 

resonators to avoid electrical breakdown, the maximum Lorentz force that would 

act on the resonators was estimated to be 𝑐𝑎. 37.456 𝑝𝑁. The impedances of the 

conducting tracks and parasitic paths were checked to ensure the current flows 

through the resonator and not the substrate. The pressures generated in the 

piezoelectric actuator were estimated for various applied voltages. Viscous 

damping was assumed to be majorly responsible for energy dissipation in the 

resonators, and the damping coefficient was estimated to be about 9.54 × 10−3. 

The frequency response of the resonators could not be obtained from the FEA 

harmonic analysis carried out. This could probably be because the modes excited 

were not active modes – this is supported by the very low participation factors the 

activated modes had. 
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Chapter 5: Design of a graphene-based mass sensor 

 

Chapter 2 highlighted several graphene sensor designs reported in literature and 

reviews the various techniques used in driving and sensing them. This work has 

focused on the use of graphene as the resonator in a mass sensor design type. 

Though graphene is one of the strongest contenders for micro- and nano-

resonators in mass sensing applications, it does present peculiar challenges in 

production in research labs, handling and manipulation, and microfabrication. In 

this chapter, the design of a graphene-based mass sensor and the fabrication 

routes taken to achieve the design are presented. Subsections include: the 

sensor design, sensor fabrication, experimental test rig design and setup. 

 

Mass sensitive sensors, as described in Chapter 2, are a family of mechanical 

systems that sense the presence of the target analyte by detecting the forces, 

motion, change in mechanical properties or mass that result from the interaction 

of the target analyte with the recognition system in place. They can be surface-

stress or dynamic-mode sensors; where the dynamic-mode sensors output a 

change in resonance frequency when the target analyte binds to the resonator. 

The sensors designed in this study are dynamic-mode mass sensors that utilise 

doubly clamped rectangular graphene resonators. The resonator is driven at one 

of its resonance frequencies during operation. The resonance frequency is then 

tracked to note any shift in frequency which would be an indication of an accreted 

mass to the resonator, hence detecting the presence of the target molecules.                                                  

Various techniques for driving and sensing NEMS and MEMS devices have been 

discussed in Chapter 2. Due to potential challenges with parasitic capacitances 

or coupling between the drive and sense capacitances, the magnetomotive 

driving technique which employs the use of Lorentz force was chosen for this 

study. Graphene is assumed to behave as any current carrying conductor in the 

presence of a magnetic field, however, in very strong magnetic fields changes in 

its electronic configuration, e.g. splitting of its Landau levels, have been shown to 

occur225-227. To actuate the resonator harmonically, a periodic Lorentz force can 

be generated either by driving an alternating current (ac) through the resonator 

whilst the magnetic field is static or driving a direct current (dc) through the 
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resonator in the presence of an alternating magnetic field. As it is easier to 

achieve a static magnetic field than an alternating one, the former method is 

preferred. For sensing, a capacitive sensing technique was chosen. This 

technique monitors the change in capacitance between the resonator and a 

parallel electrode plate. As the resonator vibrates, its distance to the electrode 

plate and consequently the capacitance, changes continuously and can be 

detected as an induced alternating current with a frequency associated with the 

vibrating frequency of the resonator. A change in the frequency of the induced 

current would indicate a change in the vibrating frequency of the resonator.  

Although lateral comb capacitive structures have been shown to offer better 

sensing performance in terms of generating a change in capacitance that varies 

linearly with the motional amplitude of the resonator228, 229, achieving such 

structures with the graphene resonators were deemed impracticable for this 

study. 

 

Free-standing graphene structures can be achieved via a few routes (see 

Chapter 2). To avoid exposing graphene to the harsh chemicals used in etching 

away the underlying substrate after graphene transfer, transfer to prepatterned 

substrates by the wet transfer method was preferred. 

 Transfer trials were carried out on SiO2/Si wafers prepatterned with trenches of 

widths ranging from 5 𝜇m to ~35 𝜇m and 10 𝜇m depths. To transfer graphene to 

the wafers, commercially grown CVD graphene sandwiched between a 

supporting PMMA layer and hydrophobic polymer layer was gently introduced to 

deionized water. The PMMA/graphene detached from the hydrophobic polymer 

film and was left floating in the deionized water. The polymer film was removed 

and the prepatterned substrate used to fish out the PMMA/graphene at an angle 

of approximately 450. The PMMA/graphene/substrate was dried in air overnight. 

To remove the PMMA supporting layer, the PMMA/graphene/substrate was left to 

sit in acetone for 1 hour and subsequently in IPA for another hour and then left to 

dry in air.  

Figure 5-1a shows HIM images of the suspended graphene over 5 𝜇𝑚 trenches. 

Raman spectroscopy of the suspended membrane showed the characteristic G 

and 2D Raman peaks found in graphene (Figure 5-1b), which was a confirmation 



Chapter 5: Design of a graphene-based mass sensor                                          F.G. Unom 

126 

 

that graphene was suspended. However, by optical imaging, the quality of the 

suspended membrane was deemed very poor, moreso, the suspension was 

achieved only on one of several prepatterned substrates used. The collapse or 

rupture of the graphene membranes across the trenches might have been due to 

the  

    

 

Figure 5-1: a) HIM images of graphene transferred to a 5 µm-trenched SiO2/Si wafer.                      

b) Raman spectra of graphene/PMMA/substrate  

size of the width of the trenches, thereby allowing water’s surface tension during 

the drying process or acetone’s action during the removal of the PMMA to rupture 

the membrane. Other factors that could have hampered successful transfers 

include the environment where the transfer process was carried out (not in a 

clean room), availability of a vacuum chamber to store the wafers immediately 

after transfer to avoid detachment of the graphene from the substrate, and 

availability of a controlled atmosphere oven for a thermal release of the PMMA to 

avoid using acetone. 

 

  

 

a 

b 
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After further trials and transfer attempts failed to achieve suspended graphene, 

the suspension of graphene was outsourced to Graphenea, a world-leading 

graphene firm in Spain. Monolayer graphene was transferred to SiO2/Si wafers 

with arrays of 3 𝜇𝑚 elliptical cavities; SEM images are shown in Figure 5-2a&b 

(30 𝑛𝑚 of gold was evaporated onto the graphene to aid its visibility in the SEM).  

A relatively high percentage yield in terms of intact suspended membranes was 

achieved as compared to the results of monolayer graphene wet transfer by 

Wagner et al.1 (Figure 5-2c&d). 

    

 

 

 
Figure 5-2: a) & b) SEM images of graphene suspended on SiO2/Si with arrays of 𝟑 𝜇𝒎 

elliptical cavities c) & d) Yield comparison for transfer of monolayer graphene using the 

wet transfer method. 

The graphene structures suspended over 𝟑 𝜇𝑚 elliptical cavities were 

microfabricated into doubly-clamped bridges and trampolines using focused ion 

beam (FIB) at the Research Centre for MicroEngineering and Nanotechnology, 

University of Birmingham. Images of the structures are shown in Figure 5-3. 

        

Wagner et. 
al.1 

Graphenea (This 
work)  

a b 

c d 
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Modal testing of the resonators to find their natural frequencies was done using a 

Polytec UHF-120 vibrometer (a similar optical measurement equipment is 

discussed in subsection 6.4). No frequency peaks for the resonators were found 

except background noise peaks from the piezoelectric actuator. Because the 

sizes of the resonators were smaller than the focused measurement beam, the 

reflected beam from which the natural frequencies are extracted could only pick 

up the vibration properties of the silicon die/piezo actuator and not the resonator 

itself. Bigger resonators were therefore needed. 

    

Figure 5-3: Images of FIB microfabrication of a) doubly-clamped bridges b) trampolines. 

 

 

Most biological and non-biological target molecules exist in liquids, requiring at 

the least that the sensing element operate in liquid. For resonators vibrating out 

of plane, this will result in low quality factors due to damping. To offer a better 

quality factor, the resonators were designed with the option of being driven in-

plane in addition to the out-of-plane mode, by changing the position of the 

external magnetic field such that mutual orthogonality is achieved between the 

field direction, current flow direction and the desired drive direction. The preferred 

method for producing suspended graphene structures for this study required that 

prepatterned substrates with cavities over which graphene would be suspended, 

electric current paths (tracks) and bond/contact pads be first fabricated before 

graphene is transferred to them. To have full control of the sizes of substrates to 

work with in the graphene transfer phase, snap guides were designed along the 

a b 



Chapter 5: Design of a graphene-based mass sensor                                          F.G. Unom 

129 

 

edges of the individual sensor substrates to allow any size of the substrate down 

to one sensing platform to be easily obtained by snapping along the desired 

edges. With the possibility of in-plane and out-of-plane actuation, provision for 

sensing in both cases was considered. To achieve in-plane capacitive sensing, 

two electrodes in form of gold tracks terminating at the edge of the resonator 

cavity were used with an intended differential current measurement across the 

resonator. MEMS sensor platforms with multiple signal tracks easily generate 

crosstalk between the tracks. To avoid this, all tracks were sandwiched by 

earthed regions which act as shields to the tracks.  

2.5 𝑚𝑚 by 2.5 𝑚𝑚 sensor platforms were designed to be fabricated on 6-inch 

silicon wafers, each with provisions for 3 resonators to be driven 

magnetomotively and 96 others that can be driven with piezoelectric drivers. Only 

one resonator on each die was designed with capacitive sensing, however, all 

resonators were designed to be sensed optically with a vibrometer. Four cavity 

sizing options were designed and labelled as A1, A2, A3 and A4; A1 had 

rectangular cavities with sizes 16 𝜇𝑚 by 6 𝜇𝑚, A2 cavities were 22 𝜇𝑚 by 7 𝜇𝑚, A3s 

were 27 𝜇𝑚 by 9 𝜇𝑚 and A4s were 32 𝜇𝑚 by 9 𝜇𝑚. In Table 5-1 the achievable 

sizes of bridges for each cavity are given. Figure 5-4 shows an A1 type sensor 

platform design made in Tanner’s L-Edit software (v13.1). These were the 

substrates onto which graphene was transferred and microfabricated into 

bridges. The sensor platform size (2.5 𝑚𝑚 by 2.5 𝑚𝑚) was chosen so the dies 

were just big enough to handle manually and small enough to produce a high 

throughput per wafer processed. 

Table 5-1: Achievable graphene bridge sizes with sensor platform cavities  

Sensor Platform 
Label 

Cavity size Length of Bridge Width of Bridge 

A1 16 𝜇𝑚 × 6 𝜇𝑚 16 𝜇𝑚 ≤ 4 𝜇𝑚 
A2 22 𝜇𝑚 × 7 𝜇𝑚 22 𝜇𝑚 ≤ 5 𝜇𝑚 
A3 27 𝜇𝑚 × 9 𝜇𝑚 27 𝜇𝑚 ≤ 7 𝜇𝑚 
A4 32 𝜇𝑚 × 9 𝜇𝑚 32 𝜇𝑚 ≤ 7 𝜇𝑚 
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Figure 5-4: Design of sensor with drive and sense contact points. In the right exploded 
view, the gold under the cavity mask was etched away in the making of the cavity.                               

(Designed with Tanners L-Edit) 

 

 

The sensor platform dies were made from silicon (Si), with layers of silicon oxide 

(SiO2), chrome and gold added on and selectively etched by lithographic 

processes carried out at INEXMicro Newcastle University. These processes are 

discussed in the paragraphs that follow. 

Fabrication process 

The process flow for the fabrication of the sensor platforms is given in Table 5-2.  

Step 
No 

Fabrication Process Illustration 

1 Issue 300 µ𝑚 6” silicon wafer 
 

 

 
2 PECVD 2 µ𝑚 silicon oxide 

 
 

 
3 Spin coat photoresist (LOR 5.0A + 

S1813 coats) and softbake 
 

 
4 Place and align mask 1 (metal 

mask), expose, develop and 
descum  
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5 Deposit 20/250/20 𝑛𝑚 of 
chrome/gold/ chrome 

 

 
6 Lift-off photoresist/chrome/gold/ 

chrome and clean 
 

 
7 PECVD 200 𝑛𝑚 silicon oxide  

 
8 Spin coat photoresist (S1813 coat 

+ wax bond + resist strip + SPR 
coat) and softbake 

 

 
9 Place mask 2 (oxide mask), 

expose and develop 
 

 
10 Etch through the silicon oxide 

and chrome to reveal the gold for 
the contacts 

 

 
11 Remove photoresist (wax de-

bond) and clean 
 

 
12 Spin coat photoresist (S1813 coat 

+ wax bond + resist strip + 
AZ9260 coat) and softbake 

 

 
13 Place mask 3 (recess mask), 

expose and develop 
 

 
14 Etch the oxide, (chrome, gold, 

chrome – on some cavities), 
oxide and silicon by 10 µ𝑚 

 

 
15 Remove photoresist (wax de-

bond) and clean 
 

 
16 Spin coat photoresist (S1813 coat 

+ wax bond + resist strip + 
AZ9260 coat) and softbake 
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17 Place mask 4 (snap guides), 
expose and develop 

 

 
18 Etch the oxide, chrome, gold, 

chrome, oxide and silicon by 300 
µ𝑚 

 

 
19 Remove photoresist and clean to 

have the final die. 
 

 
Table 5-2: Process flow diagram for fabrication of devices 

 

A 300 𝜇𝑚 thick 6-inch wafer was first cleaned, then 2 𝜇𝑚 of silicon oxide (SO2) 

was deposited on the wafer using an Oxford PECVD, and the thickness verified 

with a Filmetrics F20 instrument. The wafer was then prebaked and coated with 

hexamethyldisilazane (HMDS) in a Labline oven to improve the adhesion of the 

photoresist to the SO2 surface. Two layers of photoresist, LOR 5.0A and S1813 

were coated and soft baked on the pre-processed wafers one after the other with 

an EVG 101 spin coater and EMS hotplate. Next, the first mask (metal mask) was 

set, aligned to the photoresist coated wafer, and exposed to UV light in an EVG 

620 contact aligner. After exposure, the wafer was developed in an EVG 102 spin 

developer and descumed in a Tegal etcher. 20 𝑛𝑚 of chromium, 200 nm of gold 

and 20 nm of chromium respectively (Cr/Au/Cr) were deposited on the wafers in a 

Balzers BAK 550 evaporator. A lift-off process was then carried out to remove the 

unwanted regions and leave the electric current paths, earthing-shield regions, 

and bonding/contact pads. 

The next steps in the fabrication process were to provide an insulating layer 

between the gold tracks and the graphene to be transferred to the sensor 

platform, with exposed regions as contact points. With the metal layer patterned 

on the wafer, the wafer was cleaned to remove any leftover particles in a 

Semitool SRD spin rinse dryer. A 200 nm layer of SiO2 was deposited directly on 

the metal and exposed SiO2 layers (this formed the insulation layer). The 

remaining steps at this point were etch-back processes for which thin wafer 

handling was not possible, therefore for each etch phase the wafer was bonded 

to a 6-inch 575 μm wafer carrier before carrying out the lithography processes. To 

bond the wafer to the carrier, a protective S1813 resist coat was first applied to 
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the wafer side to be bonded before the wax bonding was done using a wax bond 

tool. The S1813 resist was used to protect the wafer and aid removal of the wax 

used for bonding and other residues. After wax bonding, a resist strip step was 

done in an EVG 102 Spin Developer to remove any resist residue and other 

surface contaminants on the surface to be processed. Next, an SPR resist coat 

was applied and soft baked, the second mask (Oxide + chrome mask) was then 

set and aligned using an Ultratech Stepper, after which exposure and 

development were done in the EVG 102 Spin Developer. The exposed SiO2 and 

immediate underlying chromium layers (200 nm and 20 nm) were etched in an 

STS AOE (Advanced Oxide Etcher) and STS Cluster respectively. After the etch 

processes, the wafer was de-bonded from the carrier on an EMS hotplate. The 

SPR resist was removed in a Felcon Solvent Bench and the resulting wafer 

cleaned with the Semitool SRD spin rinse dryer. 

With the contact points and bond pads created, the cavities over which the 

graphene was to be suspended were etched next. As in the previous step, the 

wafer was bonded to a carrier wafer before being coated with a thick photoresist 

AZ9260 resist and soft baked. The third mask (Recess mask) was then set and 

aligned using the Ultratech Stepper, exposure and development was done before 

the resist was hard baked (post exposure bake - PEB) with a Labline oven. 

Several layers of material had to be removed to have a 10 𝜇𝑚 cavity; the first 

200 𝑛𝑚 of SiO2 was etched in an STS AOE, then metal etch in the STS cluster to 

remove the 20/200/20 𝑛𝑚 Cr/Au/Cr, next was 2 𝜇𝑚 oxide deep reactive-ion etch 

(DRIE) using the STS AOE, and finally 2 steps of silicon DRIE to an overall depth 

of 10 𝜇𝑚 from the surface of the first SiO2 layer in an STS ASE (Advanced Silicon 

Etcher). The wafer was then de-bonded from the carrier wafer and cleaned to 

remove all resist and surface residue. 

The final batch of processes was to produce the snap guides. As with the 

previous batch of steps, the processed wafer was wax bonded to a carrier wafer, 

then coated with AZ9260 resist and soft baked, the fourth mask (Snap guides 

mask) was set and aligned, the setup was exposed and developed before hard 

baking the resist. Next at the exposed regions, every layer of material was 

removed: 200 𝑛𝑚 of SiO2, 20 𝑛𝑚 of chromium, 200 𝑛𝑚 of gold, 20 𝑛𝑚 of 

chromium, 2 𝜇𝑚 of SiO2 and 300 𝜇𝑚 of Silicon. The final processed wafer was de-
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bonded from carrier wafer and cleaned with oxygen ash using a Tepla 300 

Plasma Asher to remove all resist and residue. 

 

Graphene was transferred to a 1.5 𝑐𝑚 by 1.5 𝑐𝑚 substrate comprising 36 pieces 

of 2.5 𝑚𝑚 by 2.5 𝑚𝑚 snap-able sensor platforms by Graphenea. This was 

advantageous because it allowed for cost management and a high through-put. 

Due to the relatively large cavity sizes (>16 𝜇𝑚 by 6 𝜇𝑚), monolayer graphene 

transfer was not successful. Bilayer graphene (BLG) was therefore transferred to 

the substrates. Transfers to the bigger sized cavities (sensor platform types A3 

and A4) mostly failed even for BLG. Figure 5-5 shows SEM images of fully intact 

suspended structures and ruptured structures. 

 

The FIB microfabrication proved to be an excellent method in achieving the 

desired microstructures, however, the Research Centre for MicroEngineering and 

Nanotechnology was temporarily unavailable at the time the next microfabrication 

had to be done. Hence, electron-beam lithography (EBL) was attempted for the 

microfabrication of the suspended BLG at INEXMicro Lab, Newcastle University. 

Clearing doses of 10 𝑘 𝜇𝐶 𝑐𝑚2⁄ , 50 𝑘 𝜇𝐶 𝑐𝑚2⁄  and 150 𝑘 𝜇𝐶 𝑐𝑚2⁄  were used, but the 

beam could not cut through the BLGS. Regions of exposure can be clearly seen 

in Figure 5-6 with the regions being clearer the higher the e-beam dosage used. 

Although, doses greater than 4500 𝜇𝐶 𝑐𝑚2⁄  have been said to amorphize 



Chapter 5: Design of a graphene-based mass sensor                                          F.G. Unom 

135 

 

 

    

    

 
Figure 5-5: SEM images of a) sensor platform showing all cavities and status of 

suspended graphene with 10 nm deposited gold (10nm-Au)  b) intact suspended 

graphene structure (A1 & A2) – no Au c) ruptured graphene structure – no Au. 

a 

b 

c 
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graphene230, much higher doses were used in this case firstly because the beam 

had to cut through not just one but two layers of graphene, and secondly because 

it was assumed that the amorphization, if it occurred, would not extend much 

beyond the area of exposure. In any case, the beam was unable to cut through 

the suspended BLGS, even though it could be assumed by inspection that the 

properties of the exposed areas were modified. 

                      

   

   

Figure 5-6: E-beam writing a) & b) E-beam masks as drawn in L-Edit software                          

c) @ 10k 𝜇𝐶 𝑐𝑚2⁄  d) @ 50k 𝜇𝐶 𝑐𝑚2⁄  e) 150k 𝜇𝐶 𝑐𝑚2⁄  f) close up of 50k 𝜇𝐶 𝑐𝑚2⁄ dosage. 

Following the inability of the e-beam to microfabricate the BLGS, 

photolithography was resorted to. To protect the graphene layer from being 

damaged by the resist, a 50 𝑛𝑚/10 𝑛𝑚 layer of titanium/gold (Ti/Au) was 

deposited on the graphene/sensor-platform. Next resist was spin-coated on the 

a b 

c d 

e f 
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die, exposed and developed. Then 20 𝑛𝑚 of Ti was deposited before lift-off to act 

as a hard mask for the exposed Ti/Au/Ti/G during the lift-off process and the 

plasma sputtering to follow. The resist was removed in a lift-off process and the 

resulting substrate cleaned and descummed using ultrasonics and oxygen 

ashing. Argon sputtering for about 3 minutes was then done to remove sections 

not masked by Ti/Au/Ti. The lithography steps are illustrated in Table 5-3. After 

deposition of Ti/Au on graphene, the suspended BLG appeared to have 

undulating features on its surface as shown in Figure 5-7(a), possibly induced by 

thermal stresses. Figure 5-7(b) shows the achieved Ti/Au/Ti/G bridges before 

removal of the Ti/Au/Ti layers. A yellow tint on the Ti/Au/Ti/G bridge was an 

indication that the top Ti layer had been considerably removed by the sputtering 

process leaving a residual Ti layer. This was taken into consideration for the FE 

model and the top Ti layer was decreasingly varied from 20 𝑛𝑚. 

Step 
No 

Fabrication Process Illustration 

1 Start with suspended graphene as 
transferred to the sensor platform 

(SP) 

 

 
2 Deposit 50/10 𝑛𝑚 of Ti/Au on entire 

surface of graphene/SP 
 

 
3 Spin coat photoresist and softbake  

 
4 Place and align mask, expose, develop 

and descum 
 

 
5 Deposit 20 𝑛𝑚 of Ti on entire surface  

 
6 Lift-off photoresist/Ti/Au/Ti and clean 

 
 

 
7 Carry out argon sputtering in 

increasing times of 1 minute to cut 
through Ti/Au/Ti 
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8 Etch or use controlled argon 
sputtering to remove Ti/Au/Ti to 
leave suspended graphene bridge 

 

 
 

Table 5-3: Lithography for microfabrication of graphene bridges 

Step 8 in the flow process though planned was not carried out. The Ti/Au/Ti 

bridges were sought to be characterized modally before step 8 was attempted. 

   

   

Figure 5-7: a) & b) Images of warped Au/Ti/graphene membrane                                       

b) & c) Images of microfabricated bridges of Ti/Au/Ti/Graphene 

 

The resonators fabricated as described in the preceding subsections were 

designed to be driven magnetomotively or using piezoelectric actuators and be 

sensed optically or electronically (capacitive sensing). Specific setups are 

needed for any combination of the driving and sensing methods for the sensors. 

In this section, the setup for optical sensing using laser vibrometry is presented. 

a b 

c 
d 
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Optical sensing was first chosen to characterize the bridges and ensure their 

mechanical vibrancy before electronics were designed for capacitive sensing. 

 

A bespoke vibrometer setup assembled from component parts of a Polytec MSV 

400 vibrometer or similar parts is shown schematically in Figure 5-8. The setup 

works with a DMS, OFV-073 scanner unit, OFV-072 microscope adapter fitted 

with a VCT-101 camera, MSA-E-400 junction box, OFV-5000 controller and an 

OFV-552 interferometer. The system’s operation is based on the principle of 

Doppler vibrometry which is an application of Doppler velocimetry in the 

measurement of vibrations. This principle is discussed in detail in Chapter 6:.  

 

Figure 5-8: Laser Doppler Vibrometer (LDV) setup similar to Polytec MSV-400 vibrometer 

The LDV setup included a Zurich HF Lock-In amplifier used to analyse the signal 

from the vibrometer. The Lock-in amplifier is particularly designed to deal with 

noisy signals by employing a heterodyne/homodyne mixing technique, in which 

the input signal is down-mixed with a reference signal generated in the Lock-in or 

supplied externally before being demodulated to extract the desired signal. The 

measurement signal from the OFV-5000 controller is fed into the Lock-in and 

analysed in the Zi-control software. The drive signal and measurement settings, 

including the data collection were all done in the software. The drive signal from 

the Lock-in drives a piezoelectric disc upon which the resonator sensing platform 

was affixed. The piezoelectric disc was affixed to a piezo stand designed and 

fabricated as part of a vacuum chamber setup for measurements in air and 
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vacuum. The vacuum chamber was fastened to an 𝑥𝑦 stage used to accurately 

position the test structure under the objective lens for measurement. 

 

To allow for out-of-plane and in-plane driving modes using the magnetomotive 

method, a holder was designed to hold an iron core which provided a closed path 

for the magnetic flux and allowed for the sensing platform to be rotated through 

900 to achieve orthogonality between the magnetic flux, the current flow and the 

desired drive direction. The holder was made from plywood by laser cutting the 

various parts and gluing them together. The magnetic field source was a pair of 

axially magnetised cylindrical rare earth Neodymium permanent magnets each of 

strength 0.5 𝑇 at the magnet’s pole. A simple connection of an AC voltage source 

(Rohde & Schwarz SMBV100A vector signal generator) in series with a resistor 

supplies alternating current to the resonator. The sensing platform is fixed to a 

dual in-line package (DIP) and the bond pads connected to the DIP with 50 𝜇𝑚 

diameter wires using a wire bonder. 

 

The design and fabrication of a graphene-based mass sensing platform has been 

presented in this chapter. A 2.5 𝑚𝑚 by 2.5 𝑚𝑚 silicon/silicon-oxide prepatterned 

substrate was designed and fabricated with appropriate cavities, bond pads and 

current tracks onto which CVD grown graphene was transferred and 

microfabricated into doubly clamped resonators. Over 2000 sensor platforms 

were fabricated, graphene transfer was made to single units each comprising 36 

sensor platforms. Each sensor platform had 3 cavities plus 96 extra cavities from 

which magnetomotively driven and piezoelectrically driven resonators 

respectively could be achieved. Several hundreds of suspended graphene 

structures were achieved during this study; about twenty 3 𝜇𝑚 doubly clamped 

resonators were achieved by FIB microfabrication and three 16 𝜇𝑚 by 3.5 𝜇𝑚 

achieved by lithography. The major challenges faced in this study had to do with 

achieving suspended graphene and then microfabricating them into bridges. 

However, the achievement of released graphene resonators establishes a proven 

fabrication route for the resonators from which future works can start in the 

pursuit of a compact single unit sensor. 
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Chapter 6: Sensor resonator characterization 

 

The graphene resonators designed and fabricated in Chapter 5: are 

characterized in this chapter. Characterization techniques when employed are 

aimed at determining or verifying the material and structural properties of a 

structure. Improved designs and usage of products and devices are impossible 

without proper characterization. Raman spectra as has been extensively 

discussed in Sub-section 2.4.2 was used to characterize the resonator’s 

materials and verify the number of layers of graphene suspended – this is 

discussed in Subsection 6.2. Surface profile and modal tests were also carried 

out and are presented in Subsections 6.3 and 6.4 respectively. 

 

The Raman spectra of the suspended graphene structures were taken using a 

Horiba Scientific LabRam HR Raman spectrometer. The Horiba had two beam 

options, an Argon (Ar) laser beam with wavelength 514 𝑛𝑚 and a Helium-Neon 

(HeNe) beam of wavelength 633 𝑛𝑚. The Ar laser beam was used for all the 

Raman spectra presented in this work. 

 

Point scans were taken at the centre of the suspended drumheads and the 

Raman data was fitted to a Voight profile (convolution of a Gaussian and 

Lorentzian profile) where best suited or to Gaussian or Lorentzian profiles using 

OriginLab statistical application. Figure 6-1 shows the Raman spectroscopy plot 

for the SLG structure. The G and 2D bands characteristic of graphene materials 

can be clearly seen, but so is the defect-induced D band. The G band peak 

appears at 1587.53 𝑐𝑚−1, the 2D band peak at 2680.25 𝑐𝑚−1, and the D band 

peak at 1349.77 𝑐𝑚−1. The 2D band is the major fingerprint for identifying the 

number of layers in graphene. A single Lorentz fit for the 2D band (Figure 6-1c) 

agrees with 2D band fits for single layer graphene in literature (Figure 6-1b), 

however a much broader width is observed with the suspended SLG in this work. 

It is worth noting that the spectra for graphene in literature are mostly for 

graphene on substrates, so comparisons with such data is made with care, even 

though it has been shown that there is no significant difference in the spectra for 
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suspended and non-suspended graphene98, 231. However, a narrowing of the 

width of the 2D band is reported for suspended graphene231, which is very 

different from the broadening of the 2D band observed with the 3 𝜇𝑚 suspended 

SLG. 

 

 
 

Figure 6-1: a) Raman spectra of suspended monolayer graphene structures                          
b) Single Lorentz fit for 2D band of SLG81                                                                                         

c) Single Lorentz fit for 2D band of SLG over 3 𝜇𝑚 cavities 

b 

c 

a 
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The presence of the D band indicates that there are defects in the crystal 

structure of the suspended graphene. Another plausible indication of the 

presence of defects in the graphene material is the ratio of the 2D band intensity 

to the G band intensity (I(G)/I(2D)), which should be ~0.24 for monolayer 

graphene on SiO2
100 and a value lesser than that for suspended graphene231; but 

I(G)/I(2D) for the suspended single layer graphene in this work was 1.3, 

indicating strongly that the graphene was doped or there were large amounts of 

charge impurities in the structure. Albeit it is no doubt that the suspended 

graphene structures were single layer graphene structures. 

 

Raman scans for the bilayer graphene were made on the free-standing graphene 

structures and on the graphene portions in contact with silicon. The electronic 

band structures for bilayer graphene as discussed in Chapter 2 are modified from 

those of SLG, this is the primary cause of the evolution of the 2D band. The 

interactions of the two graphene planes cause the 𝜋 and 𝜋* bands to split into 

four bands, which create the possibility of four optical transitions. Only two of 

these transitions couple strongly with the incident light from the Raman beam and 

are shown in Figure 6-298. With these two transitions, there are four processes 

involving phonons with momenta 𝑞1𝐵, 𝑞1𝐴, 𝑞2𝐴, and 𝑞2𝐵, which are directly 

responsible for the four peaks that fit the 2D band of BLG Raman spectra. For a 

514 𝑛𝑚 beam, the shifts of the four peaks with respect to the average of the two 

main peaks are approximately98 -44 𝑐𝑚−1, -10 𝑐𝑚−1, 10 𝑐𝑚−1, and 25 𝑐𝑚−1. 

 

Figure 6-2: Double resonance for 2D peak in bilayer graphene 
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Figure 6-3 shows the Raman spectra for the suspended BLG. At first glance no 

difference is seen when compared to the Raman spectra for SLG, its 2D band 

could get away with a single Lorentzian fit (Figure 6-3-Insert 3), however, the 

best fit convolutes two Lorentz profiles (Figure 6-3-Insert 2) and not four as is 

reported in literature81, 98, 100(Figure 6-3-Insert 1). This might mean that the 

electronic structure of the BLGs were not changed significantly from that of SLG 

when produced; that the graphene plane interactions did not split the 𝜋 and 𝜋* 

bands into four with the resulting four optical transition possibilities. This could be 

possible due to the stacking achieved. Turbostratic graphite, which has no AB 

stacking, has been shown  to exhibit a single 2D Raman peak232, but with a width 

that is twice that of SLG 2D Raman band. Which suggests that it is indeed 

possible to have a BLG with a single Lorentz fit 2D Raman band, possessing the 

rigidity of BLG but with electronic properties very close to SLG’s.  

The G band occurs at 1580.91 𝑐𝑚−1 and is red shifted from the G peak position in 

SLG. The D and 2D bands occur at 1354.08 𝑐𝑚−1 and 2691.79 𝑐𝑚−1 respectively 

and are both blue shifted from the corresponding band peak positions in SLG. 

I(G)/I(2D) for the suspended BLG is unusually high at 4.94 compared to an 

estimated range of ~0.24 ≤ I(G)/I(2D) ≤ ~3.2 when going from SLG to highly 

ordered pyrolytic graphite (HOPG)100. The four Lorentz fits in Figure 6-3-Insert 1 

occur at 2658 𝑐𝑚−1, 2688 𝑐𝑚−1, 2706 𝑐𝑚−1, and 2721 𝑐𝑚−1, respectively. The 

two fits in Insert 2 have their peaks at 2686.94 𝑐𝑚−1 and 2694.12 𝑐𝑚−1. For BLG 

on silicon oxide/silicon, the G, 2D and D peaks occur at about the same 

wavenumbers, and I(G)/I(2D) is 1.16 which falls within the reported range. In 

addition, a slight broadening of the 2D band is observed for graphene on SiO2/Si 

(Figure 6-4) with a FWHM value of 41.32 𝑐𝑚−1, but like the suspended BLG only 

2 Lorentz profiles are sufficient to fit the band. The G and D bands however are 

fit with 3 profiles and have shapes that are evidently different from the suspended 

graphene bands, contrary to the findings in literature. 
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Figure 6-3: Suspended BLG Raman spectrum with fit Lorentz peaks. Inserts: 1. 2D band of BLG from literature81 2. 2D band with two Lorentz 

fits 3. 2D band with one Lorentz fit  
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Figure 6-4: Raman spectra of graphene on silicon oxide/silicon.  Inserts: 1. D band fit profiles 2. G band fit profiles 3. 2D band fit profiles 
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The surface profile of graphene at three different stages in the microfabrication 

process were characterized using a Zygo NewView 5000 surface profiler. The 

Zygo operates based on the principle of white light interferometry, which involves 

the analysis of the diffraction pattern of a wavelength of white light generated by 

the interaction of the light with the surface to be characterized. Because of the 

various wavelengths in white light, the Zygo can achieve very high measurement 

resolutions, down to 1 𝑛𝑚, and provide accurate data on the surface topography 

of the test samples. One major drawback of the Zygo, and other optical non-

contact equipment is the requirement of reflectivity of the test sample. Graphene 

being transparent made it impossible to take direct measurements of its surface 

topography, consequently thin layers of gold were required to be deposited on it 

to impart reflectivity to it and ensure measurements with the Zygo were possible. 

Also, only the flatness of the graphene structures was sought to be determined. 

Deposition of hot metal on suspended graphene resulted in the rupturing and 

wrinkling/warping of the suspended structures (See Figure 6-5). Wrinkling and 

rippling of graphene structures suspended over prepatterned SiO2/Si surfaces 

have been observed during annealing processes233. This is mainly due to the 

difference in the thermal expansivities of graphene and SiO2. When heated this 

way, graphene experiences biaxial compression which together with the 

boundary conditions at the graphene/SiO2 interface results in wrinkling, rippling, 

buckling or failure of the structures.  

 

Figure 6-5: Ruptured BLG sheet after deposition of 10 nm gold

To reduce the probability of wrinkling and structure failure, the metal deposition 

rate was reduced and together with the cooling provided during deposition via a 

Peltier stage, flat, unwrinkled gold/graphene structures were achieved.  
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Figure 6-6 shows the profile of a fully clamped (drumhead) graphene structure 

with 5 𝑛𝑚 of gold deposited. The red box in subfigure a) indicates the position of 

the cavity, which can pretty much be made out in the 3D model and surface map. 

Subfigure d) plots the surface profile along the line drawn in the surface map. 

The surface profile shows a fairly flat structure; zooming in on the profile 

(subfigure e) an average upward deflection is observed with the maximum 

deflection being ~26 𝑛𝑚 in an upward-positive direction. The structure was 

considered fairly flat despite the deflection because over a 16 𝜇𝑚 length with the 

shape of the profile, the structure will not be wrinkled or rippled, but bulged. This 

could very much be due to the pressure imbalance across the membrane since 

the cavity is completely sealed. The spikes in the 3D model around the contact 

pad and the 3D model itself are measurement noises and can be removed with 

further data processing to have a more accurate representation of the surface. 

They however do not impede accurate interpretation of the surface profile and 

structure. Therefore, by surface profiling and optical imaging,  

Figure 6-6 and Figure 5-5 show that the suspended BLG were considered flat 

and without wrinkles or ripples. 

Lithographic processes were used to microfabricate the suspended graphene 

structures into doubly clamped rectangular bridges as discussed in Chapter 5:. 

As mentioned in subsection 5.4.4, the deposition of Ti/Au on graphene as a mask 

for graphene during the microfabrication of the bridges caused graphene to warp 

(Figure 6-7a). The Ti/Au/Ti/Gr bridges in Figure 6-7b were microfabricated from 

the warped suspended graphene. Figure 6-8 shows the surface profile of one of 

the bridges. Subfigure d) shows that the bridge was deformed in the upwards-

positive direction with an approximate curvature radius of 1.85 𝜇𝑚. Because the 

deformation of the bridge resulted from an already warped structure, the 

curvature is seen to be irregular, and might be responsible for the missing data 

points on the surface profile plot since the Zygo will only measure surfaces tilted 

up to 40. The missing data points may also be due to the Ti/Au/Ti being removed 

in some regions of the bridge leaving only graphene which is transparent, 

however, with the SEM images of the bridge in Figure 6-7b the cause for the 

missing data is strongly believed to be due to the tilt of the deformed structure.  
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Figure 6-6: Fully clamped rectangular graphene structure a) Intensity map with 

measurement fringes  b) 3D plot  c) Surface map d) Surface profile plot e) Zoomed in 

surface profile plot 
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Given that the total thickness of the composite bridge is ~75 𝑛𝑚, with a deflection 

of ~1.85 𝜇𝑚 which is about 2400% of the bridge’s thickness, it will be expected 

that stress stiffening effects will be induced in the structure because of the very 

large deflection. Stress stiffening is advantageous in several engineering designs 

and scenarios for example where vibration damping and resistance to buckling 

are needed, but where vibrations are integral to the working success of the 

design or system, as is the case with this work, stress stiffening becomes a 

disadvantage. It was assumed that the graphene bridges were stiffened as a 

result of the very large deflection and the presumed effect of this is discussed in 

the next subsection. 

    

 

Figure 6-7: a) Image of warped Au/Ti/Gr membranes b) Image of microfabricated bridge 

a 

b 
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Figure 6-8: Microfabricated Ti/Au/Ti/Gr Bridge a) Intensity map b) 3D model c) Surface 

map d) Surface profile along line drawn in surface map 

 

To characterize the vibrational properties of the suspended graphene structures, 

the Laser Doppler Vibrometer (LDV) setup described in Chapter 5: was used. 

Figure 5-8 is repeated in Figure 6-9a for easy reference, the setup details can be 

found in subsection 5.5.1. The LDV operates by generating a polarized laser 

beam using a HeNe laser source in the sensor head which is split into a 

measurement beam and a reference beam by a polarizing beam splitter, labelled 

BS1 in Figure 6-9 The reference beam is made to pass through a Bragg cell that 
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shifts its frequency by 𝛚𝐁𝐫𝐚𝐠𝐠, while the measurement beam travels through a 

polarizing beam splitter, BS2, and an objective lens and reflects off the vibrating 

structure to be analysed. The reflected beam with its frequency modulated by the 

Doppler effect due to the vibrating structure travels back through the objective 

lens and is deflected at BS2 to the polarizing beam splitter BS3, where it is 

recombined with the reference beam to form a superposed Doppler wave. This 

modulated heterodyne signal is detected by a photodetector and subsequently 

analysed to yield the vibrational properties of the vibrating structure. Vibrometry 

measurements provide real time data and frequency spectra from which the 

resonance frequencies and mode shapes of the vibrating structure can be 

obtained. 

 

 
Figure 6-9: a) LDV custom setup b) LDV’s measurement principle. 
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The LDV setup was validated by modal testing a resonator with a known 

fundamental frequency. A silicon cantilever with a rectangular mass at its end 

and dimensions as shown in Figure 6-10 was used. It was first modelled in 

ANSYS Mechanical APDL to find its modal frequencies. The first five frequencies 

for the cantilever are given in the second column of Table 6-1.  

Mode Number Frequency 
(𝑘𝐻𝑧) 

Frequency 2 
(𝑘𝐻𝑧) 

1 18.770 18.469 
2 24.655 24.253 
3 95.650 93.677 
4 226.63 222.84 
5 233.02 228.77 

Table 6-1: Natural frequencies for silicon cantilever structure 

To get the frequency response plot, a harmonic analysis was additionally run, an 

arbitrary force of 100 𝑁 was used for the analysis. The material properties of silicon 

were taken as follows, density 2329 𝑘𝑔 𝑚3⁄ , Young’s modulus 169 𝑀𝑃𝑎, Poisson’s 

ratio 0.29. The variational frequency sweep harmonic analysis option in ANSYS was 

used for the frequency range 18 𝑘𝐻𝑧 to 19 𝑘𝐻𝑧. The frequency response plot from 

the analysis is presented in Figure 6-10c. 

  

Figure 6-10: a) Silicon cantilever with end rectangular mass b) Mode shape for f0 = 18.77 

kHz c) Frequency response plot from FEA harmonic analysis 
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The die with the silicon resonator was glued to the piezoelectric disc and 

connected with the setup for the low frequency LDV as described in Chapter 5:. 

The Zurich Lock-in amplifier receives the signal from the vibrometer controller 

and processes it to provide frequency plots of the signal. A frequency sweep from 

10 𝑘𝐻𝑧 to 100 𝑘𝐻𝑧 was done. Figure 6-11 shows the frequency plot for the 

sweep, showing the fundamental frequency of the silicon cantilever at 18.47 𝑘𝐻𝑧 

and the third mode frequency at 85.04 𝑘𝐻𝑧. The second resonant mode is an in-

plane mode, therefore it does not feature in the frequency plot since the 

vibrometer only measures out-of-plane vibration. The experimental frequencies 

are slightly lower than those from the ANSYS FEA results. This could be due to 

added mass on the cantilever; some residue can be seen on the cantilever in the 

scan image (Figure 6-11a) and could be source of the added mass on the 

cantilever. To model this, minute increments were made to the dimensions of the 

rectangular mass at the end of the cantilever model and the modal analysis 

rerun; the new results are presented in the third column of Table 6-1. With the 

new values, the experimental fundamental frequency is in agreement with the 

FEA results; since the other resonance modes are harmonics of the fundamental 

frequency, their frequencies do not quickly converge to the experimental values. 

However, validation of the vibrometer setup was still considered successful and 

validated for measurements on the graphene devices.  

 

a 
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Figure 6-11: a) Scan point on cantilever b) Frequency plot of cantilever response to 10 to 

100 kHz sweep drive voltage. 

 

The sensor platforms with the graphene composite bridges were glued to the 

piezoelectric disc as was done with the silicon resonator. Frequency sweeps 

were made from 100 𝑘𝐻𝑧 to 1 𝑀𝐻𝑧 to determine the fundamental frequency of the 

bridges in line with the estimated fundamental frequency determined numerically. 

The response plots are shown in Figure 6-12. It was not possible to measure the 

frequency parameters for the bridges, as can be seen in the frequency plots, the 

measurements made on the composite bridges had a lot of background 

interference from the resonances of the piezo support structure and showed the 

same form as measurements made directly on the support structure. The 

unsuccessful attempt to measure the vibrational response of the bridges is 

suspected to be due to the stress stiffening of the bridges induced by the very 

large deflection of the structure during the microfabrication process. Additionally, 

the problems with reflection of the structures as demonstrated during the surface 

profile measurements were same with the vibrometry measurements and resulted 

in very low signal strength and signal to noise ratios. The small target area was 

another causal factor in the unsuccessful measurement process. Having 

designed bigger sized resonators after the unsuccessful modal testing with the 3 

𝜇𝑚 structures, hardware problems with the LDV, specifically the laser focusing 

unit, did not allow for the measurement laser beam to be focused on the 

b 
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resonators. Resonators with large target areas, e.g. the silicon cantilever, easily 

deal with this problem. Low drive voltage may have also been an issue in the 

measurement due to the impedance properties of the piezoelectric actuator. A 

high-frequency, high-voltage amplifier will be needed to achieve amplification at 

the frequencies required for the modal analysis. 

 

Figure 6-12: Frequency plots for Ti/Au/Ti/Gr a) bridge on main cavity b) bridge on 

alternate cavity c) completely of the bridge 

a 

b 

c 
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The graphene bridges microfabricated in Chapter 5 were characterized in this 

chapter. First, the Raman spectra for suspended SLG and BLG were presented. 

The spectra did verify the material to be graphene, with the characteristic G and 

2D bands. The G band peak for SLG was at 1587.53 𝑐𝑚−1 and the peak for 2D 

was at 2680.25 𝑐𝑚−1. Even though the 2D band was fit with a single Lorentzian, 

its FWHM was almost twice that reported in the literature. The presence of 

defects in the crystal structure of the graphene was noted with the presence of 

the D band. In addition, an unusually large I(G)/I(2D) ratio of 1.3 may also be an 

indication of the presence of charged impurities in the graphene structures. The 

spectra for BLG were deviant from what has been reported in literature, with the 

spectra looking more like the spectra for SLG than for BLG. The 2D band which 

famously fits four Lorentzians due to the evolution of its electronic band and is 

the major fingerprint for identifying BLG sheets, fitted only two Lorentzians. This 

was thought to be due to the stacking achieved during the production and 

transfer of the sheets to the substrates. Next, surface profiling of the graphene 

structures was presented and discussed. With graphene being transparent, 

surface profiling with a Zygo surface profiler using white light interferometry was 

not possible. Thin layers of gold were deposited on the graphene to enable them 

to be profiled. High metal deposition rates resulted in rupturing of the suspended 

structures, hence the use of low metal deposition rates. The surface profiling of 

bridges microfabricated using lithographic processes revealed very large 

deformations, up to 1.85 𝜇𝑚 for a composite bridge of thickness ~75 𝑛𝑚. These 

large deformations were suspected to be one of the reasons the vibrational 

response of the bridges could not be measured in a modal test. Frequency peaks 

were expected at about 0.79 𝑀𝐻𝑧 and 0.43 𝑀𝐻𝑧, but were not seen. 
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Chapter 7: Conclusion and future work 

 

This work set out to develop graphene resonators capable of ultra-sensitive mass 

detection. This chapter summarizes the work done as presented in this thesis.  

 

Graphene sheets have been shown to offer great advantages as mechanical 

resonators. However, production of high quality sheets, handling, achieving 

suspended structures, microfabrication, etc. have remained challenging. Several 

advancements have been made in many of these areas, one of which is the 

commercial production of high quality graphene. The design, fabrication and 

analysis of graphene resonators was carried out over the course of this study. 

Several works have been done on the vibration analysis of graphene sheets. This 

was explored extensively in Chapter 3. The vibration of graphene sheets has 

been modelled using atomistic modelling and continuum mechanics techniques. 

Atomistic modelling techniques yield very accurate results but are limited to 

nanosized graphene sheets because they are computationally expensive. 

Emphasis is therefore laid on the use of continuum mechanics. However, when 

established local continuum models are applied to nano- and micro-sized sheets, 

they yield inaccurate results. To deal with this, a small-scale parameter, 𝑒0𝑎, is 

incorporated in the local equations to account for the size of the sheets. The 

importance of 𝑒0𝑎 in the modelling of nanosheets is well documented and 

published, and only implied for micro-sized sheets. Typical values of 𝑒0𝑎 range 

between 0 and 2. This work establishes the importance of 𝑒0𝑎 for micro-sized 

sheets. But unique to micro-sized sheets is the fact that the specific value of 𝑒0𝑎 

has no effect on the model but must be included to scale down the overestimated 

frequencies. 

Chapters 5 and 6 present the design, fabrication and characterization of bilayer 

graphene resonators. Sensor platforms which act as substrates for the transfer of 

graphene were designed and fabricated using photolithography. Four types of 

platforms were made based on cavity sizes. The choice of cavity sizes was made 

based on the intended optical calibration of the resonators. Previous smaller 

sized resonators could not be calibrated due to the limit in focusing the laser 

measurement beam of the equipment. Graphene transfer to the substrates were 
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done commercially by Graphenea, Spain. Bilayer suspended graphene sheets 

were mostly achieved on 16 𝜇𝑚 by 6 𝜇𝑚 cavities but could not be achieved on 

the bigger 32 𝜇𝑚 by 9 𝜇𝑚 cavities. Focused ion beam microfabrication was found 

to be the best option for microfabricating the suspended structures. 3 𝜇𝑚 by 0.5 

𝜇𝑚 bridges and similar sized trampolines were microfabricated with FIB. Due to 

inaccessibility to FIB facilities, ebeam and UV lithography were resorted to. 16 

𝜇𝑚 by 3.5 𝜇𝑚 composite bridges (with Ti/Au) were achieved with UV lithography. 

The lithography process involved masking graphene with Ti/Au; the deposition of 

hot metal caused the graphene membrane to warp with deflections that were > 

2000% of its thickness.  

The Raman spectra of the suspended structures featured the characteristic G 

and 2D peaks of graphene. However, the presence of crystal defects was noted 

(by the occurrence of D peak), the BLG were turbostratic in nature meaning they 

were not AB stacked as graphite, thereby having a single Lorentzian 2D peak fit. 

Also, the unusually high I(G)/I(2D) ratio was an indication of the presence of 

charge impurities in both SLG and BLG. The effects of these impurities on the 

quality and integrity on graphene as an ultra-sensitive mass resonator will need 

to be investigated. 

It must be mentioned in concluding this writing, that several challenges were 

faced during the course of this work which severely hampered progress and 

resulted in the little that has been achieved and reported in this work. From the 

mighty COVID-19 which was bigger than anyone could mitigate against when it 

first happened, to technical difficulties in achieving suspended graphene, 

problems with equipment, availability of equipment, etc. As is highlighted in the 

recommendations for future work, a lot is still left to be done in this area. 

 

The design, fabrication, calibration, and analysis of rectangular graphene 

resonators were attempted in this work. A laid down process for achieving 

rectangular graphene resonators up to 22 𝜇𝑚 was established. In addition, this 

work has shown that for analytical vibration analysis of micro-sized graphene 

resonators, the small-scale parameter 𝑒0𝑎 must be incorporated into the local 

equations to achieve more accurate results. The value of 𝑒0𝑎 chosen is not 

significant for micro-sized sheets but should be 0 < 𝑒0𝑎 ≤ 2. 
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The achievement of an ultra-sensitive mass sensor requires several stages of 

multi-field research, design, analysis, and development. Extensive work still 

needs to be done in addition to what has been done here. These are outlined as 

follows 

1. Extensive modal testing of different sized rectangular graphene structures 

needs to be carried out to provide adequate experimental data for the 

validation of analytical and FEA models. 

2. The effects of metal deposition at various rates and temperatures on the 

mechanical and physical properties of graphene membranes need to be 

explored and documented. With the market share value of graphene 

growing exponentially as well as its popularity among product designers 

and manufacturers, processes that affect the material properties and 

behaviour of graphene need to be well understood. 

3. Smart device designs need to be developed to allow for graphene 

resonators to be driven in micro fluids, since most biological testing is done 

liquid. 

4. Magnetomotive and capacitive driving is recommended and improved 

designs of both setups are needed. 

5. Design of circuitry to process the electrical signals from the resonators and 

provide user ready results via portable displays. 

6. Biofunctionalization protocols for the resonators will need to be established 

for various biological target molecules and the measurement performance 

and sensitivity of the mass sensor evaluated. 
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