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Abstract 

Early diagnosis and treatment of neurodegenerative diseases has gained attention, given their 

increasing prevalence. Multiple proteins are currently being investigated as novel targets for 

drug development, including α7 nicotinic receptors and mitochondrial translocator protein 

TSPO. These proteins play an important role in neuroinflammation, which makes them 

attractive for development of drugs and diagnostics. However, small molecule development has 

been hampered by existence of a human-specific dupa7 isoform, and an A147T-TSPO 

polymorph, which present a challenge for development of potent and selective ligands.  

In this work, I characterised the structure and dynamics of the most plausible functional a7 

pentamers bearing dupα7 subunits. The receptors have been modelled and assessed using 

multiscale molecular dynamics (MD) simulations and enhanced sampling techniques. The 

energy landscapes of the pentamers with different stoichiometries showed that receptors with a 

low ratio of dupα7/α7 remained functional. Sensitivity of dupa7 receptors to an antagonist (α-

BTX) and amyloid Aβ42 has also been assessed.  

Further, putative “druggable” binding sites at dupα7 receptors were mapped, and interactions 

between dupα7 and small molecules were explored using a combination of solvent mapping, 

MD simulations, and molecular docking. Results indicated that neither established orthosteric 

agonist nor allosteric ligands can bind to dupα7/dupα7 interfaces, however, α7/dupα7 interfaces 

remain “druggable”. In addition, several novel allosteric sites were detected on α7/dupα7 

receptors. The final part of this work focused on development of novel tracers for A147T-TSPO 

variant. Using a combination of molecular modelling, MD simulations, and structure-guided 

drug design, I have evaluated plausible binding modes of established TSPO ligands to A147T-

TSPO. Results explain the origins of diminished affinity of some established TSPO ligands to 

A147T-TSPO. Moreover, I have identified the position of fluorine atom, which is a derivative 

of DPA-714 compound to bind to A147T-TSPO with sub-nanomolar affinity. The compound, 

denoted as MKD, is feasible for the radiosynthesis.  
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Thesis structure 

The first two chapters describe the pathogenic mechanisms of neuroinflammation, 

neurodegeneration and inflammation generation related to two different transmembrane 

receptors, the nicotinic acetylcholine receptor (nAChR) and the translocator protein (TSPO), 

which involve interactions between the immune system and the neural and non-neural systems. 

The subsequent chapter provides a detailed theoretical background to the computational 

methods used in this research. Finally, the results obtained for this research are then discussed 

in depth in the following three chapters 

Chapter 1: Introduction to neuro-immune interactions 

This chapter focuses on explaining and exemplifying the biological links between 

neuroinflammation, neurodegeneration and inflammatory diseases and the immune system, the 

cholinergic system, and their physiologies and pathologies are discussed in depth. Moreover, it 

describes the critical role of cholinergic receptors and transporter proteins play within a cellular 

system. This description is used to show how nAChR and TSPO are essential targets for clinical 

treatment. 

Chapter 2: Structural biology and pharmacology of nicotinic receptors 

This chapter provides a comprehensive overview of the biological properties of the nAChR 

receptor family and TSPO, such as structure, function, and expression profiles. Their 

corresponding agonists and antagonists are also analysed. Finally, we discussed therapeutical 

procedures which use these receptors as targets and the stages of their development.  

Chapter 3: Theoretical background 

Chapter 3 describes the theory behind the computational methods used for this work: homology 

modelling, molecular dynamics simulations, umbrella sampling, molecular docking, and data 

analysis.  

Chapter 4: Structure and dynamics of human-specific CHRFAM7A (dupα7) nicotinic receptor 

linked to neuropsychiatric disorder 
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The focus of this chapter is describing the most likely α7/dupα7 arrangements and 

stoichiometry at the atomistic level of detail. The eight homology models were tested by 

molecular dynamics simulations (all-atom and coarse-grained) and umbrella sampling 

simulation. The results provide the link between the structure, dynamics, and function of 

human-specific dupα7 receptors. 

Chapter 5: Mapping of putative allosteric binding sites of and α7 and dupα7 nicotinic receptors 

This chapter focuses on three aspects: 1) How such dupα7/α7 interfaces or dupα7/dupα7 

interfaces would interact with α-bungarotoxin (a-BTX) and amyloid Aβ42.; 2) Identification of 

orthosteric and the druggable allosteric binding sites; 3) The effect of dupα7 on binding affinity 

and binding sites generation detected by molecular docking calculations with several known 

agonists used (acetylcholine (Ach), nicotine (Nic), lobeline (Lob) and ligand library). 

Chapter 6: Addressing “druggability” of different polymorphs of 18-kDa translocator protein 

(TSPO) 

Chapter 6 focuses on assessing the druggability and affinity of small ligands developed in 

Newcastle University (MKL, MKD) to TSPO compared to two established TSPO radioligands 

(PK11195, DPA714). Their difference was studied and rationalised to develop future tracers for 

neurological and immune disorders. 

Chapter 7: Conclusion and future directions 

This chapter concludes the projects, describes how this work addressed the aims, discusses the 

limitations and implications and significance of this work findings, and the plan for further 

research. 
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Chapter 1  Introduction to neuro-immune interactions 

The nervous system plays a crucial role in the maintenance of immune homeostasis. Both 

systems interact with each other and modulate one another. These interactions are established 

and maintained primarily by the acetylcholine receptor-mediated activation of intracellular 

signalling pathways and by the expression of the nonneuronal cholinergic system by immune 

cells1-13. The cholinergic system mainly regulates adaptive and innate immune cells through α7 

nicotinic acetylcholine receptors (α7nAChRs)3-9, 14. In addition, the 18 kDa mitochondrial 

translocator protein (TSPO), which is involved in the synthesis and transport of cholesterol, 

modulates neuroinflammation. This chapter summarises several important roles exerted by α7 

receptors and TSPO in neuroinflammation, neurodegeneration, and inflammageing.   

1.1 Inflammageing, neuroinflammation and neurodegeneration  

With the extension of life, the incidence rate of many age-associated chronic diseases increases 

in current society. Understanding the pathogenesis of these disorders and providing effective 

treatment has become a public health priority.  

Inflammageing is a classical chronic inflammation related to advanced age. It is described as a 

low grade, chronic, controlled, asymptomatic and systemic inflammatory state15. 

Inflammageing is a complex issue involving the nervous system, the local vascular system, the 

immune system, and molecular mediators1,2. It is characterised by a complicated balance 

between pro-inflammatory and anti-inflammatory responses16. Although the underlying causes 

of inflammageing are unknown, dysregulation and impairment of the immune system are 

certainly involved (Figure 1). As ageing persists, the effectiveness of the individual's adaptive 

immune system declines, while the activity of the innate immune system increases, which 

affects the growth of the number of immune cells (such as natural killer cells, macrophages, 

lymphocytes), and the production of pro-inflammatory cytokines, especially interleukin 6 (IL-

6), tumour necrosis factor a (TNF-α), and C-reactive protein (CRP)16-18. These molecules are 

likely to damage cells, eventually leading to the development of chronic inflammation16-18.  
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Figure 1: The immune factors contributing to ageing. Ageing impedes both innate and 
adaptive immune systems, dysregulating the release of inflammatory cytokines and 
chemokines, leading to changes in proteostasis, mitochondrial and autophagic dysregulation, 
and cellular senescence. Extracted from 19. 

An increasing number of studies show that inflammageing accelerates the biological ageing 

process and worsens many age-related diseases such as Alzheimer's disease (AD)20, 

atherosclerosis21 and heart disease22. Inflammageing is coupled to two related 

pathophysiological inflammatory processes relevant to the scope of this thesis: 

neuroinflammation and neurodegeneration.  

When inflammation occurs in the central nervous system (CNS), it is also known as 

neuroinflammation. Chronic inflammation occurs due to the continued activation of glial cells 

and the recruitment of other immune cells to the brain (Figure 2). Apart from ageing12, many 

other factors contribute to chronic neuroinflammation, involving autoimmunity23 and physical 

injuries: traumatic brain injury24 and spinal cord injury25. 
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From the findings of Gehrmann’s group, microglia are the primary innate immune cells of CNS. 

Microglia migrate to the site of infection/injury and participate in the immune response by 

altering morphology and secreting cytokines, chemokines, prostaglandins and reactive oxygen 

species, which destroy pathogens and remove damaged cells26. In addition, they contribute to 

the resolution of the inflammatory response by producing anti-inflammatory cytokines26. 

However, with the continued neuroglial cell activation and the production of inflammatory 

cytokines increase, the blood-brain barrier (BBB) as a protector of the CNS is likely to be 

damaged, resulting in peripheral immune cells (such as macrophages and lymphocytes) being 

available to migrate to the brain, thereby perpetuating the immune response. This perpetuation 

exacerbates the inflammatory environment in the brain, ultimately leading to chronic 

neuroinflammation and neurodegeneration23, 27. Hence, many studies show that 

neuroinflammation is closely linked to neurodegenerative disorders. 

 

Figure 2: Role of nonneuronal cells in inflammation. (A) Astrocytes are the most abundant 
cells in the central nervous system. They receive signals from the periphery and within the 
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central nervous system and provide metabolic support to neurons. (B) Mast cells can induce 
changes in microglia through the delivery of pro-inflammatory effectors. (C) Microglia are 
usually activated in two classical phenotypes, M1 and M2. (D) LPS and IFNγ can polarize 
microglia to the M1 phenotype to secrete pro-inflammatory cytokines, which accelerates 
neurodegeneration. In addition, neuronal failure can release molecules such as α-Syn, ATP 
and MMP-3, which cross-signal with astrocytes and microglia, resulting in increased toxicity 
of neuroinflammation. (E) IL 4 and IL 13 induce microglia activation to the M2 phenotype, 
which contributes to anti-inflammation in the central nervous system by releasing IL 10 
cytokines and downregulating M1 function. Extracted from 28. 

Neurodegeneration is the progressive degeneration of neuronal structure and function. It causes 

a significant decline in a wide range of cognitive performance, including memory and 

information processing speed. Many neurodegenerative diseases occur as a result of 

neurodegenerative processes, and the most specific diseases are Alzheimer's disease (AD), 

Parkinson's disease (PD) and multiple sclerosis (MS)29. 

1.2 Biomarkers of neuroinflammation  

Since there is an established link between neuroinflammation and neurodegenerative diseases, 

it is essential to investigate the mechanisms of neuroinflammation to identify effective 

treatments for such diseases. However, the capability to probe the inflammatory biochemical 

processes directly in the brain is a severe limitation. Therefore, the study of neuroinflammatory 

biomarkers is an essential aim of brain pathology research. 

As is known from many studies, neuroinflammatory diseases involve glial cells and immune 

cells and other inflammatory mediators, such as pro-inflammatory cytokines or reactive oxygen 

species. Some researchers suggest that these molecules released into the blood and 

cerebrospinal fluid in response to brain inflammation can be used as neuroinflammatory 

markers to help elucidate mechanisms, diagnose disease, monitor treatment and demonstrate 

target engagement in clinical trials30. Janelidze’s and Piero’s studies measured cerebrospinal 

fluid (CSF) biomarkers such as YKL-40, ICAM-1, CHIT1 and Flt-1 to establish the relationship 

between those biomarkers and the levels of Aβ and tau aggregated in AD patient brain31, 32. The 

reason to select these specific biomarkers was their association with the activation of microglia 

and astrocytes and neuroinflammation. These studies indicated that higher levels of those 



 

 
7 

specific biomarkers were associated with an increased risk of developing AD31, 32. This result 

may be helpful to predict and monitor AD.  

In addition, some studies have shown that low levels of Aβ4233, 34 or high levels of 

phosphorylated tau proteins35 or alterations of neuronal nAChR36 are present in the brains of 

patients with neuroinflammatory diseases, these of which could also be selected as essential 

biomarkers of neuroinflammation. Furthermore, many studies and clinical data have identified 

other proteins such as TSPO as being involved in several physiological processes and closely 

related to neuroinflammation. As TSPO expression is upregulated in response to injury or 

degenerative disease, its expression can be used as a sensitive biomarkers to study the 

mechanisms of neurodegenerative diseases37,38. Moreover, most TSPO ligands were developed 

as neuroimaging agents and diagnostic tools for brain inflammation.39 

1.3 Cholinergic receptors in neuroinflammation and neurodegeneration 

In recent years, an increasingly strong connection has been found between chronic 

neuroinflammation and impaired memory, especially in AD. Neuronal cholinergic receptors 

maintain normal cognitive function and regulate cellular signalling, and central cholinergic 

neuronal degeneration is implicated in impaired learning, memory, sleep regulation, and 

attention12, 40, 41. Gamage has described how stimulation of α7nACh receptors is 

neuroprotective by decreasing neuroinflammation via decreasing the release of pro-

inflammatory cytokines42. There is also evidence for astroglial α7nACh receptor stimulation 

mediating anti-inflammatory and antioxidant effects 6, 40, 43. This evidence shows that targeting 

α7nACh receptors could diminish neuroinflammation, which is relevant to treating several 

neurodegenerative diseases mentioned before. 

1.4 TSPO in neuroinflammation 

Apart from cholinergic receptors, the translocator proteins (TSPOs) are another transmembrane 

protein indicated to be associated with neuroinflammation. TSPOs have been found on the outer 

mitochondrial membrane and expressed in the microglia cells in the brain 39. In normal 

conditions, the levels of TSPO are low in the nervous system but are significantly raised in 
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microglia and astrocytes in response to neurodegenerative diseases, such as AD44, multiple 

sclerosis45 and PD46. In addition, Ji and Maeda indicated that the expression of TSPO in 

microglia is associated with substantial neuronal loss, whereas its expression in astrocytes is 

associated with reduced neuronal damage.47 This will be discussed with more focus in TSPO 

in Chapter 2.5. 

1.5 Cholinergic transmission and acetylcholine receptors in neuroinflammation  

The cholinergic system has been implicated in emotion, memory, cognition, attention control, 

movement, immune function, and anti-inflammatory and neuroinflammation11-13. All 

cholinergic neurons involved in many brain functions and neurodegenerative disorders utilise 

acetylcholine (Ach) as the principal neurotransmitter48. The mechanism of cholinergic 

transmission is shown in Figure 3. Ach is synthesised from choline and acetyl coenzyme A (Ac-

CoA) by the cytosolic enzyme choline acetyltransferase (ChAT) and transported to storage 

vesicles via the vesicular acetylcholine transporter (VAChT). As the cholinergic neuron gets 

stimulated by action potentials and the intracellular concentration of free calcium ions rises, the 

stored Ach is released from the nerve terminals into the synaptic gap via exocytosis. Released 

Ach subsequently binds to pre and post-synaptic acetylcholine receptors (AChRs), which 

triggers various biological effects. The ending of the Ach function is via the hydrolysis by 

acetylcholinesterase (AChE) or butyrylcholinesterase (BuChE) to generate free choline. Some 

of this choline is transported back to the cholinergic nerve terminals via the choline transporter 

1 (CHT1) as a substrate for synthesising new Ach 41, 48, 49.  
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Figure 3: Physiology of the cholinergic synapse. Choline and Ac CoA are the critical 
substrates for the synthesis of Ach catalysed by ChAT. After Ach is released into the synapse 
and binds to presynaptic AChR receptors (muscarinic – M and nicotinic – N), the activated 
postsynaptic receptor (M1) achieves transmitting a signal from one neuron to the other. Then 
Ach is hydrolysed to choline and acetate by AChE in the synaptic cleft. Some of the choline 
is returned by the uptake mechanism and recycled by the neuron. Extracted from 40. 

Numerous studies have demonstrated that there is a strong link between neuroinflammation and 

abnormalities in the cholinergic system. In the brain of AD and PD patients, some groups found 

the loss of ChAT activity and decreased cholinergic neurons50. These phenomena are thought 

to be associated with cognitive impairment. In addition, the activity of AChE in typical neurons 

has also been found to decrease, whereas the activity of AChE is displaced from neurons within 

the senile plaques (SP) and neurofibrillary tangles (NFT) increase, which promote to hydrolyse 

Ach and cause the activity of Ach decrease. The degree of reduction in Ach is positively 

correlated with the severity of dementia50. In MS brain, ChAT activity is decreased whereas 
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both AChE and BuChE activity increase, and lower Ach levels 51, 52. The cholinergic agonists, 

antagonists, allosteric modulators and other cholinergic drugs (such as AChE inhibitor) have 

been shown to alter memory and cognitive abilities in humans to provide treatment therapies 

for neurodegenerative diseases53. 

Acetylcholine receptors also play an essential role to achieve rapid transmission in the 

cholinergic system12. There are two types of acetylcholine receptors. One is muscarinic 

acetylcholine receptors (mAChRs, M-type) involved in the metabotropic cholinergic system 

via activation of metabotropic cholinergic system54. The other one is nicotine acetylcholine 

receptors (nAChRs, N-type), which is involved in the ionotropic cholinergic system (ligand-

gated ion channels)55. 

Muscarinic receptors belong to a class of G protein-coupled receptors (GPCRs) that have seven 

transmembrane regions54. There are five distinct subtypes, denoted as M1-5, respectively. 

Different types of mAChR are coupled to different G proteins. For example, the M1, M3 and 

M5 receptors are coupled to Gαq protein, while M2 and M4 are coupled with Gαi/o protein56. 

As Figure 4 shows, mAChRs have been located both pre and postsynaptically throughout the 

brain. M1 subtypes have been found the most abundantly expressed in CNS, followed by M2 

and M4 subtypes. M3 and M5 are the least expressed48. Different mAChRs can modulate the 

activity of a range of phospholipases, ion channels, protein kinases and other signalling 

molecules. The function of the muscarinic receptors is shown in Figure 4, wherein it may 

activate ion channels and the secondary messengers via intracellular G protein and other 

enzymes, respectively, leading to a series of intracellular events1, 2.  
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Figure 4: The signalling pathway of mAChRs. Each mAChRs subtype is a seven-
transmembrane receptor. The M1, M3, and M5 mAChRs preferentially couple to the 
Gq/G11-type G-proteins to stimulate the phospholipase C (PLCβ), which results in the 
release of inositide phosphate (IP3) and diacylglycerol (DAG), leading to increased 
intracellular Ca2+ concentration. The M2 and M4 mAChRs selectively activate Gi/Go-type 
G-proteins, thereby negatively modulating adenylyl cyclase (AC), reducing intracellular 
concentration of cyclic AMP (cAMP), and prolonging K+ channel opening. Extracted from 
2. 

It is well documented that mAChRs also activate diverse signal transduction pathways2, 5, 57 and 

mediate the production and synthesis of proinflammatory cytokines50, 58, 59 (Figure 5). 

Historically, since the discovery of T-lymphocyte cytotoxicity via the muscarinic cholinergic 

system and a cholinergic anti-inflammatory pathway emerged60, many researchers suspected 
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the relationship between mAChR and neuroinflammation. In the brain of AD patients, the lower 

expression of M2 subtypes of mAChR and dysfunctional M1 mAChR have been found40. It has 

been shown that M1 mAChR knockout mice are severely impaired in working memory and 

memory61. These experiments confirm that mAChR abnormalities may contribute to 

neuroinflammation. M1-specific agonists were administered to several animal models of 

amnesia. This result showed that they promoted the induction of LTP and improved cognitive 

function62. Therefore, mAChR could be considered as a target for therapies of diseases with 

underlying neuroinflammation. 

 

Figure 5: The structure and signalling pathway of mAChRs and nAChRs. The function of 
mAChRs is in the left and nAChRs in the right. The most abundant neuronal nAChRs types 
are the heteromeric α4β2 receptor and homomeric α7 receptor. The action of both these two 
types of nAChRs can increase the release of Ca2+, provide a broader control of synaptic 
plasticity and neurotransmitter release, as well as gene transcription. PLCβ, phospholipase 
Cβ; DAG, 1,2-diacylglycerol; IP3, inositol-1,4,5-trisphosphate; AC, adenylate cyclase; 
GIRK, G-protein-activated inwardly rectifying potassium channel; MAPK, mitogen-
activated protein kinase; cAMP, cyclic adenosine monophosphate; ATP, adenosine 
triphosphate; VDCC, voltage-gated calcium channels; PKC, protein kinase C. Extracted 
from 1. 



 

 
13 

Nicotinic acetylcholine receptors are pentameric ion channels embedded in the cell membrane, 

relying on a ligand-gated ion channel (LGICs) mechanism for signalling. As shown in Figure 

5, when binding with a chemical messenger (such as Ach), the conformation of the receptor 

changes and causes the central channel pore to open. The pore allows positively charged ions 

(Ca2+, K+, Na+) to move across it. In particular, Na+ enters and K+ exits, following the 

electrochemical gradient1, 9. 

Similarly, activation of α7 nAChR can also mediate the release of neurotransmitters such as 

glutamic acid (Glu), dopamine. Published data point towards nicotinic receptors, especially 

α7nAChR, mediating cholinergic regulation of inflammation in the brain. For example, this 

regulation goes through the Janus kinase (JAK) / signal transduction and activator of 

transcription (STAT), phosphatidylinositol-3-kinase (PI3K) / protein kinase B (PKB) and 

nuclear factor NF-κB signalling pathways. Furthermore, α7 nAChRs also could promote a 

microglial transition to M2 type, inhibit the pro-inflammatory factors (such as IL-1, IL-1β, IL-

6) and tumour necrosis factor (TNF-α), promote the expression of the anti-inflammatory factors 

IL-4 and IL-10, reduce the inflammatory response induced by LPS and produce a 

cerebroprotective effect 3-9.  

Lower expression of nAChR in the brain affects normal function, ultimately leading to 

neurodegenerative diseases, which has been confirmed by several studies that showed the 

expression of α4β2 and α7nAChR decreased in the brains of AD, PD and MS patients5, 63, 64. 

The interaction of α7nAChR and beta-amyloid (Aβ) has also been demonstrated involving the 

generation of AD3. This interaction will be described in Chapter 2. Notably, some studies 

suggested that α7nAChRs regulate the calcium transmission and release of the Ach, which plays 

a vital role in cognition and memory. Besides, α7nAChRs and α4nAChRs expression has been 

found markedly decreased in the AD brain65. 

Furthermore, α7nAChR was also found to have the ability to control the number of dendritic 

cells and T-cell accumulation in the immune system in MS patients. This claim was further 

confirmed in experiments where T cell differentiation and responses were suppressed through 

exposure to the nAChR agonist nicotine66. As a result, nAChR has become an essential target 
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for investigating the treatments of neuroinflammatory and neurodegenerative diseases. Many 

nAChR agonists and antagonists have successfully relieved and treated AD and PD in 

preclinical models and patients. For example, one of the most famous drugs to treat mild to 

moderate AD is Galantamine. It is used to increase the utilization of acetylcholine by inhibiting 

acetylcholinesterase hydrolysis and active nAChR from releasing acetylcholine when 

Galantamine binds to the allosteric binding sites nAChR67. 

1.6 Nicotinic receptors and inflammageing 

The previous sections discussed how nicotinic receptors could regulate the immune system, 

which causes the generation of inflammation in the nervous system or the cardiovascular system. 

It can be found expressed in both the nervous and non-nervous systems in vivo, where it 

interacts with various proteins, affecting a wide range of physiological activities55.  

Mounting evidence suggests that α7 receptor signalling can indirectly inhibit NLRP3 

inflammatory activity by preventing mitochondrial DNA (which is NLRP3 ligand) release and 

reducing mitochondrial damage68. By the studies in vitro and in vivo, several groups indicated 

that Ach and nicotinic receptor agonists (PNU282987) showed significant inhibition for the 

NLRP3 inflammasome activation68, 69. (Figure 6) Ke and Shao’s69 study indicated that the 

activating α7 receptor by PNU282987 can block the NLRP3 interacted with β-arrestin-1 and 

thus reduced the production of inflammatory cytokines (IL-1β and IL-18), whereas deletion of 

α7 receptors enhances NLRP3 inflammasome activation via α7 knockout mice studies. 
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Figure 6: Proposed mechanism of α7-mediated inhibition of NLRP3 inflammasome. 
Activation of α7 receptors (represented as a red bolt), either by neurotransmitter (Ach), 
agonist, or positive allosteric modulator, inhibits the formation of NLRP3 inflammasome. 
The inset shows the molecular structure of human α7; the pentamer is rendered as the 
molecular surface and coloured ochre. The lipid bilayer is coloured blue (fatty acid tails), 
purple and fuchsia (lipid headgroups). The flux of ions occurring upon the activation is 
represented as blue spheres (the central pore). Made by author70.  

Nicotinic receptors also interact with G protein and amyloids, particularly b-amyloid. More 

details on these interactions are covered in Chapter 2. 

1.7 Inflammation-driven cardiovascular dysregulation and cardiovascular cholinergic 

system in the regulation of immune function 

From the introduction in the previous section, it is clear that chronic inflammation is coupled 

with the ageing process. Chronic inflammation occurs in the CNS, leading to neurodegenerative 

disease and coronary artery disease, affecting the heart's function and causes cardiovascular 

disease (CVD), such as artery disease, aortic aneurysm, and cerebrovascular events. The main 

events in CVD are atherosclerosis and heart failure (HF)70, which are specific diseases 

associated with ageing. As the heart ages, it undergoes myocardial remodelling as expressed by 
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endothelial stenosis, vasomotor dysfunction and stiffness, cardiomyocyte hypertrophy and 

myocardial fibrosis, which leads to increased ventricular stiffness, impairment of cardiac 

function and ultimately, a variety of cardiac diseases71, 72. With the analysis of anti-

inflammation drugs, it is indicated that inflammation can be a causal factor in the development 

of the atherosclerotic process and the deterioration of HF (Figure 7).  

 

Figure 7: Many different factors are associated with cardiovascular disease. The local 
production of IL-1β is triggered by the inflammatory stimulus (red bolt), which subsequently 
activates the NLRP3 inflammasome. The NLRP3 inflammasome consists of three major 
components: the sensor NLRP3 protein (blue), the adaptor-apoptosis-associated speck-like 
protein (ASC) (light grey), and the effector pro-caspase-1 (bottle green). The activated 
NLRP3 interacts with ASC, and pro-caspase-1 binds to ASC to assemble into a large 
cytosolic complex, which triggers the activation of caspase-1. Active caspase-1 (light green) 
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cleaves the pro-inflammatory IL-1β (yellow) from its precursor to their biologically active 
forms, which triggers or enhances pathological events such as atherosclerosis and adverse 
cardiac remodelling, and – in consequence – HF. In parallel, IL-1β induces IL-6 that 
stimulates C-reactive protein synthesis in the liver. IL-6 does not cause IL-1-related 
cardiovascular pathology but serves CRP serum levels as a surrogate marker for 
inflammation. Made by author70. 

Available literature data suggest that the cholinergic anti-inflammatory pathway (CAP) can 

moderate the inflammatory response in ischaemic cardiomyopathy (ICM)73. Following 

excitation of CAP by injection of α7 nicotinic acetylcholine receptors agonists into rats, 

adenosine monophosphate-activated protein kinase (AMPK) signalling, widely thought to play 

a cardioprotective role in various cardiomyopathies, was activated, thereby activating 

ventricular remodelling, reducing inflammatory cytokines and maintaining the integrity of 

ischaemic cardiac ultrastructure73.  

Furthermore, the nonneuronal nicotinic α7 receptor, which plays an essential role in the 

cholinergic anti-inflammatory pathway, also has a cardioprotective effect70. It can be achieved 

by α7 receptor-mediated immune cells via decrease the production of pro-inflammatory 

cytokine (IL-1β, IL-6 and TNF-α). The experiments of Baez-Pagan’s group showed that 

nicotinic α7 agonists (e.g. Ach, nicotine) revealed a reduction in the formation of pro-

inflammatory cytokines74. Moreover, the results from the studies by Xing and colleagues 

showed low-dose nicotine (nicotinic receptor agonist) promotes autophagy and accelerates 

autophagic flux in neonatal mouse cardiomyocytes (NMCM) through upregulation of heme 

oxygenase-1 (HO-1) while inhibiting NMCM apoptosis. These results provide the nicotinic α7 

receptor as a new target for developing the treatment of cardiovascular disease. 

The study by Ke and co-workers showed that activating α7nAChR receptor leads to the NLRP3 

inflammasome inhibition via regulation of β-arrestin-1 in the monocyte/microglia system70. 

Another study showed that activation of α7nAChR receptor inhibited NLRP3 inflammasome 

activation by preventing mitochondrial DNA release70. These findings collectively reveal a 

cholinergic receptor-mediated anti-inflammatory pathway, and wherein α7nAChR receptors 

have blocked NLRP3 activation. Hence, this data highlights the importance of α7nAChR 

receptors as cardiovascular biomarkers and indicates these receptors as potential drug targets 
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for treating cardiovascular disorders.  

The cardiovascular cholinergic system includes neuronal and nonneuronal types75 (Figure 8). 

The neuronal cholinergic system releases neuronal Ach in the heart, consisting of preganglionic 

parasympathetic pathways, intracardiac parasympathetic ganglia and postganglionic 

parasympathetic neurons75. Cardiomyocytes contribute to the nonneuronal cholinergic system 

(NNCS) and immune cells, which poses the machinery (ChAT, VAChT, AChE, nAChR, 

mAChR and CHT1) that can perform the entire process of synthesis, storage, reuptake and 

degradation of non-neuronal Ach independently75, 76. As described in the previous sections, Ach 

signalling, controlled by the neuronal cholinergic system, can regulate systemic inflammatory 

responses. Results of several recent studies supported that non-neuronal Ach released from 

immune cells in the myocardium participate in local cardiac immune responses by binding with 

the nAChR via autocrine/paracrine action77. 

 
Figure 8: The comparison between the neuronal cholinergic system and the cardiac 
nonneuronal cholinergic system. This schematic illustrates the synthesis, storage, 
transmission, reuptake and degradation of Ach in cardiac myocytes and cholinergic neurons. 
In contrast to the neuronal cholinergic system, nonneuronal Ach released from cardiac 
myocytes binds to mAChRs in an autocrine/paracrine manner to mediate signalling. 
Extracted from 76. 

The Ach released by the cholinergic system plays a crucial role in modulating the immune 

function by activating the inflammatory reflex, also known as the cholinergic anti-inflammatory 
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pathway78. This pathway has been shown to regulate the innate immune response to protect the 

heart against the localized inflammatory response via the α7nAChR mediated10. The activation 

of CAP depends on the vagus nerve and the release of nonneuronal Ach10. Many studies 

suggested that the NNCS can regulate the function of immune cells in myocardial inflammation 

through this pathway (Figure 9). In the NNCS, the T cell-derived Ach activate α7nAChR on 

macrophages by acting in an autocrine/paracrine manner and then inhibit the secretion of pro-

inflammatory cytokine (TNF-α, IL-1α and IL-6)14. Moreover, in rat models, injection with 

AChE inhibitors and α7nAChR agonist PNU-282987 affect the mobilization of cardiac immune 

cells and downregulate the expression of the proinflammatory mediators77. These pieces of 

evidence indicated the relationship between the cholinergic system and immune function. 

 

Figure 9: The relationship between immune cells and the myocardial cholinergic system. The 
function of immune cells in myocardial inflammation is regulated by the cholinergic system 
and is associated with many cardiovascular diseases. Acetylcholine, derived from the vagal 
secretory and nonneuronal cholinergic systems, acts on acetylcholine receptors on 
macrophages to reduce the chemokine CCL-2/7, thereby reducing the recruitment of 
inflammatory macrophages. In addition, the functional state of macrophages is changed from 
M1 to M2. Employing electrical activation of the vagus nerve, acetylcholinesterase inhibitors, 
and acetylcholine receptor agonists, the level of acetylcholine in the microenvironment can 
be increased, and acetylcholine receptors activated, which in turn modulates the immune 
system by affecting immune cells and reducing inflammatory factors, thus serving as a 
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therapeutic strategy for myocardial inflammation. Extracted from 77. 

More detail on this topic has been provided in the review paper entitled “Inflammageing in the 

cardiovascular system: mechanism, emerging targets, and novel therapeutic strategies”70 that I 

have co-authored.  
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Chapter 2  Structural biology and pharmacology of nicotinic receptors 

As outlined in Chapter 1, neurodegenerative diseases, such as AD and PD, are neurological 

disorders characterized by the progressive degeneration of the structure and function of neurons 

in the brain and spinal cord29. Considering their crucial role in CNS and involvement in those 

diseases, nAChRs can be a valuable target for drug development. This chapter will focus on the 

specificity of nicotinic receptors, their structural and pharmacological diversity, and their 

interactors, which modulate their functional responses.    

2.1 Nicotinic acetylcholine receptors: subunit structure, diversity, and receptor 

specialisation 

Nicotinic acetylcholine receptors79-84 are ligand-gated ion channels, specifically sensitive to 

nicotine: these channels control Na+, K+, Ca2+ transport. They belong to the members of the 

‘cysteine-loop’ family of ligand-gated ion channels (LGICs). This family also includes 5-

hydroxytryptamine (5-HT3), γ-aminobutyric acid (GABAA) and glycine (GlyR) receptors79, 83. 

In the extracellular domain of these family members, there is a disulfide bond build by two 

cysteines separated by 13 intervening amino acids85-88 (Figure 10). These receptors play an 

essential role in regulating rapid synaptic neurotransmission in the nervous and non-neuronal 

systems. In my study, the research is focused on the specific sub-family of nicotinic 

acetylcholine receptors denoted as subunit alpha-7 (a7). 
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Figure 10: The topology and a structure example of nAChR. A) The topology of nAChRs. 
Cys-loop is one of the motifs of nAChRs, composed of two disulfide-linked cysteines 
separated by 13 amino acids. Subunits that have the Cys-Cys pair are α subunits. Residues 
in green are the part of the α subunit agonist-binding pocket, and orange residues are the part 
of the agonist-binding site in the β or negative face subunit. Orange residues with black dots 
relate to the gating channel. Extracted from 55; B) The structure of the a7 nAChR, made by 
the author. 

In vertebrates, nicotinic receptors are distributed in many tissues, including muscle, CNS, and 

peripheral nervous system55, 89-91. Based on their primary sites of expression, they are divided 

into two subtypes: one is muscle-type nicotinic receptors, and the other is neuronal-type 

nicotinic receptors55, 92, 93. Muscle-type receptors (nAChRms) are located at the neuromuscular 

junction and mediate the transfer of transmitters between the nerves and muscle93. Neuronal 

nicotinic receptors (nAChRns) are located in the postsynaptic membrane of the autonomic 

ganglion and the central nervous system, where they are responsible for transmitting outgoing 

signals from the presynaptic to the postsynaptic neurons and releasing neurotransmitters to 

regulate excitability55, 92. Both nAChRms and nAChRns have some common characteristics in 

the amino acid composition and the structure of the receptor. As shown in Figure 11, a7 

receptors show the structure composed of five identical subunits symmetrically arranged 



 

 
23 

around the axis of the channel. Each subunit comprises the structure as follows:  

• 1) a long hydrophilic extracellular (EC) NH2-terminal domain of ~200 amino acids;  

• 2) three α-helical hydrophobic transmembrane (TM) domains (M1-M3);  

• 3) a cytoplasmic loop of variable size and amino acid sequence between M3 and M4 in 

intracellular (IC) domain;  

• 4) a fourth transmembrane region (M4) with a short extracellular COOH-terminal of ~ 

20 amino acids. 55, 84, 94, 95 

 
Figure 11: The topology of a neuronal nAChR subunit and a structure example of nAChR. 
A) Membrane topology of a neuronal nAChR subunit. Each subunit contains an N/C-
terminal extracellular domain, four transmembrane domains (M1-4) and an intracellular loop. 
Extract from 95. B) The way that Ca2+ passes the a7 nAChR when embedded into the 
membrane. Made by the author.  

Besides the canonical a7, there is a human-specific dupa7 as one of the primary nicotinic 

receptors in the brain involved in several neuropsychiatric disorders96, 97, and many studies have 

found the reason that may cause diseases is that it can be duplicated and form a hybrid gene 

with exons A-E of FAR7a, known as CHRFAM7A, which is unique to humans98-100. It is 

valuable to analyse its physiological and pharmacological properties. More information will be 

expanded in detail in section 2.2. 

2.1.1 Subunits 

To date, seventeen distinct nAChR subunits (α1-10, β1-4, g, d, e) have been identified86, 101. 

Those seventeen subunits are divided into four subfamilies (I - IV)102. The four subunit types 
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(α9, α10 and α7, α8) in subfamilies I and Ⅱ can form not only homopentameric receptors but 

also heteropentamers91, 103. The α8 subunit only appears in avian species, and it is not present 

in humans and other mammals90, 91, 103, 104. A variety of heteropentamers exist in subfamily Ⅲ 

(α2-6, β2-4). Those three subfamilies (I - Ⅲ) are widely expressed in neurons, whereas the 

subfamily IV receptors (α1, β1, g, d and e) are expressed in muscle55, 103. The classification of 

nAChR subunits characterised to date is showed in Table 1. 

Table 1: The classification of nAChR subunits. a7, which is a subject of this study, is highlighted in 

bold. 

Neuronal type Muscle type 

I II III IV 

α9, α10 α7, α8 
1 2 3 

α1, β1, g, d, e 
α2, α3, α4, α6 β2, β4 β3, α5 

When compared to multiple neuronal nAChRs structures, the muscle-type receptors are much 

less diverse, and only two subunits form mAChRs receptors: (α1)2β1dg and (α1)2β1de. In 

neurons, the nicotinic receptors form mostly homopentamers or heteropentamers consisting of 

two different subunits. For instance, the α7 receptors are composed of five identical α7 subunits, 

and another common neuronal type, α4β2 that also abundant in CNS, is made up of two α4 and 

three β2 subunits105, 106. The structure of typical homopentameric and heteropentameric 

receptors are shown in Figure 12.  
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Figure 12: Different types of AChRs pentamers. Upper panel: homomeric nAChRs of α7 and 
α9; both receptors consist of five identical subunits. Lower panel: heteromeric nAChRs of 
(α1)2β1de, α4β2, α7β2, α3β4, α4α6β2β3, α9α10, which are composed of different subunits. 
Extracted from 107. 

2.1.2 Structural biology of nicotinic receptors 

The detailed knowledge of the structural biology of nicotinic receptors is critical for the 

structure-guided development of novel drugs. However, the information on the atomistic 

resolution structure of nAChRs is limited due to the size and transmembrane character of 

nicotinic receptors, low expression yield in a heterologous system, poor biochemical stability 

when extracted from the plasma membrane, and post-translational modification, since some 

nAChRs are heavily glycosylated. These technical hurdles impeded the collection of high-

resolution structures of nAChRs. Until recently, most mechanistic insights on nAChRs were 

based on homology modelling techniques, utilising the following experimental homologous 

structures108, 109: 1) The X-ray crystallographic structures of the pentameric acetylcholine 

binding protein (AChBP) at 3.3 Å resolution (PDB code: 1I9B)110, 111; 2) The electron 

microscopy (EM) models of Torpedo acetylcholine receptor at 4.0 Å resolution (PDB code: 
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2BG9)112-114; 3) The X-ray crystallographic structures of PH-gated prokaryotic homologues of 

nAChRs at 3.1 Å resolution115, 116. However, the shortcomings of these structural models cannot 

be ignored, such as the (1) structure includes only extracellular domains, and the (3) one is 

unstable once the agonist ivermectin is removed117. 

Fortunately, the high-resolution structural information embedded in the membrane became 

available with the technical development obtained in the last few years. Recently, near-atomic 

resolution cryogenic Electron Microscopy (cryo-EM) and X-ray structures of several nAChRs 

have been published, such as the human α3β4 ganglionic nAChR118 (PDB code: 6PV7, Figure 

13), the extracellular domain of α9 with ligands119 (PDB code: 4D01), and the human α4β281, 

120 (PDB code: 5KXI). Besides this, there are also recent X-ray works on ELIC channels such 

as 6HJX121, 6SSP122, and cryoEM 5-HT3 receptor123 (PDB code: 6HIO) produced. 
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Figure 13:Architecture of the α3β4 receptor. (A) Side views of the cryo-EM map and atomic 
model of the α3β4-nicotine complex. (B) Top views of the cryo-EM map and atomic model 
of the α3β4-nicotine complex. α3 subunits are coloured in green, β4 subunits in blue, fabs in 
grey, nicotine in salmon, cholesteryl hemisuccinate (CHS) in yellow, water in red, and 
sodium in purple. Extract from 118. 

However, there is still no experimental structure of a mammalian a7 receptor, and especially, 

information on partially duplicated human-specific dupα7 is missing. Therefore, the first 

challenge in studies on human a7 receptors and structure-based drugs specific to a7 and dupa7 

receptors is building reliable models.  

2.1.3 Agonist (orthosteric) binding sites 

A positionally-conserved agonist (orthosteric) binding site is located at the interface of two EC 
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domains of two adjacent receptor subunits (Figure 14). This site is comprised of residues within 

the C-loop (α1, α2, α3, α4, α6, α7 and α9 receptors). Many studies indicated that C-loop is a 

crucial binding part for ligand binding, and its dynamics influences the activity of AChRs. In 

addition to C-loop residues, many hydrophobic aromatic amino acids are required for the 

binding site formation, such as W53, Y91, W145, Y184, Y191124-127 in a7 receptors (Figure 

14).  

 

Figure 14: Structure of α7AChBP and location of the agonist binding site. (A) Side view of 
the α7 nAChR structure with the agonist lobeline; the binding site is localized at the subunit 
interface of the (+) and (-) adjacent subunits. Lobeline is shown in yellow sphere 
representation. (B) The residues of the agonist binding site. The blue circles indicate the 
corresponding residue of the binding site, termed A, B, and C on the (+) subunit and D on 
the (-) subunit. Extracted from 127. 

Most α type subunits (e.g., a7 in a7 nAChR) provide the agonist binding sites, whereas β type 

subunits act as structural scaffold subunits contributing to the stability of the receptor 

conformation. For example, β1 and β3 subunits do not directly participate in the binding site 

formation55. The location and number of binding sites in different types of AChRs are shown 

in Figure 15. As for the neuronal-type homogeneous model, the pentamer consist of α7, α8, α9 

subunits have five identical same agonist binding sites. In general, the ligand affinity associates 

with the identity of the α subunit hydrophobic residue, whereas the ligand selectivity depends 

on the adjacent subunit residues. 55 
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Figure 15: The location of binding sites in different AChRs agonist binding sites is depicted 
as red triangles. Extract from 95. 

2.1.4 Allosteric binding sites and allostery of nicotinic receptors 

Most agonists, including neurotransmitters and drugs, bind at the orthosteric sites to activate 

nAChRs, leading the channel opening and synaptic neurotransmission. Therefore, the 

prolonged activation at the orthosteric site of nAChRs usually not only leads to tolerance 

development or desensitization to the drug128. Recently, binding studies of the nAChRs focused 

on allosteric sites that may benefit new drug discovery due to fewer side effects. The location 

of putative allosteric binding sites of α7nAChR is shown in Figure 16.   
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Figure 16: Orthosteric and allosteric binding sites mapped at α7-AChBP. The orthosteric 
agonist and several different allosteric binders are depicted as spheres. Two different subunits 
are rendered as ribbons and coloured yellow and blue, respectively. Extracted from 127. 

Numerous studies on allosteric sites reported that many allosteric sites and their structural 

diversity depend on the type of subunit51. This results in a large number of allosteric sites 

producing greater specificity compared to orthosteric sites129. By not binding to the orthosteric 

site, allosteric binders can enhance or inhibit agonist activation (positive or negative allosteric 

modulators). Allosteric ligands activate nAChRs only in the presence of an endogenous ligand 

such as Ach130, modifying agonist efficacy by reducing or increasing the energy barrier between 

the closed and open states. Studies have shown that allosteric ligands are associated with better 

selectivity, lower tolerance, fewer side effects and lower toxicity80. Thus, the discovery of 

allosteric binding sites and the design of allosteric ligands offer new directions for drug 

development. 

The discovery of allosteric binding sites of nAChR is still a challenge due to the experimental 

difficulties in detecting and verifying allosteric effects and binding sites., These difficulties 

come from the complexity of protein systems and the limitation of experimental techniques. 
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For example, X-ray crystallography requires well-diffracting crystals; solution NMR is limited 

to small proteins (less than 35kDa), cryo-EM may have resolution and size limitations. There 

are shortcomings for biophysical assays, i.e., isothermal titration calorimetry (ITC) and circular 

dichroism (CD) require a significant amount of recombinant protein available. Therefore, 

computational methods have provided accurate models for identifying allosteric binding sites 

and their possible ligands, such as FTMap. I will discuss this method specified in the following 

Chapter 3. 

2.1.5 Ligands of nicotinic receptors 

The ligands of nAChR are highly structurally diverse, including many high-affinity small 

molecule natural ligands (e.g., neurotransmitter acetylcholine, nicotine, cytisine, and 

epibatidine) (Figure 17)131, and small synthetic ligands (e.g., varenicline, morantel), most of 

these small ligands are as agonists. Also, large natural products (e.g., methyllycaconitine132, 

tubocurarine133) and peptide toxins (α-bungarotoxin) used to be antagonists or allosteric 

modulations.  

 

Figure 17: Agonists of nicotinic receptors. 

Despite a large number of known nAChR ligands, there is a continuing demand for new nAChR 

ligands, especially those with new subunit selectivity and activity profiles, for example, dupα7, 

which has no small molecule or peptide ligand that is known to interfere with it.  

2.1.6 Channel gating 

The structure of nAChR, shown in Figure 18, has five subunits arranged in a ring to form a 

pentamer, and the middle part is hollow and works as an ion channel. Ligands regulate Channel-

gating (agonists, allosteric modulators) binding to the EC part and causing conformational 

changes propagating to the receptor's transmembrane (TM) domain. Figure 18A shows the 
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cross-section of the TM domain: it consists of a total of 20 α-helices of five subunits. The five 

TM helices2 are arranged radially on the inner side to form the pore, and the other helices (M1, 

M2, M3) are arranged on the outside to protect the inner loop134. When the receptor is in the 

static state, ions (e.g. K+ and Ca2+) cannot pass through the channel due to the channel closed 

and the only barrier blockage135. (Figure 18) 

 

Figure 18: A) Cross-section of the acetylcholine receptor TM domain (PDB code: 2BG9). 
Inner helix 2 in blue colour and helix 1, 3, 4 are signed by M1, M3, M4 with red colour. A 
dashed line separates the subunit. Extracted from 136. B) The closed-to-open transition for 
the Torpedo nicotinic receptor. Ach binding causes the inner β EC sheets (blue arrow) to 
rotate clockwise. This motion is transmitted to the inner M2 helix (blue), which breaks the 
channel gate (pink) made by leucine (αL251) and valine (αL255) side chains, and opens the 
channel. The membrane bilayer is showed as broken grey lines corresponding to lipid head 
groups. Extracted from 137. 

As shown in Figure 18B, when the EC domain is exposed to the agonist (such as Ach), the 

binding of the agonist to the interface of the adjacent subunits triggers conformational changes, 

opening the channel. During this process, the inner EC β-sheets turn around, the channel axis 

rotates 15 degrees and drives the rotation of TM helix 2, leading to the pore opening137, 138. 

These conformational changes propagate from the binding site toward the interface between 

the extracellular and transmembrane domains, called the coupling region. These conformational 

changes contribute to the molecular mechanism of the receptor activation.  

2.1.7 Diversity 

There are multiple types of nAChRs characterized to date; those receptors share overall 
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architecture and have similar orthosteric sites, but they also show functional diversity and 

specialisation. For example, α3 is a basic element in all nAChRs of autonomic ganglion cells, 

which plays an essential role in the fast conduction of neurotransmitters in the autonomic 

nervous system139. β3 lacks the necessary residue for agonist binding140. The pentamer 

assembled by α4 and β2 subunits or α7 subunits have attracted the attention of researchers and 

have the highest value for studying because they are involved in different central nervous 

system functions (such as human cognition, pain, learning, memory) and implicated in several 

neurological and autoimmune diseases. These two α4β2-containing nAChRs and α7 nAChRs 

are the mainly nAChRs type in the central nervous system141, where they are responsible for 

transmitting outgoing signals from the presynaptic to the postsynaptic neurons. α4β2-nAChRs 

have high affinity to nicotine (Ki = 1.05 nM) and acetylcholine (Ach) and slow 

desensitization142. On the contrary, α7 receptors show low affinity to nicotine (Ki = 4000 nM) 

and Ach and very rapid desensitization but have high affinity to α-bungarotoxin (α-BTX) (Ki = 

0.6 nM) and high Ca2+ permeability142, 143.  

2.2 α7 & dupα7 

Nicotinic α7 receptors are the only homopentameric AChRs widely expressed in the central 

nervous system96. The function of α7 nAChRs has been found involved in cognition, memory, 

and immunomodulation, which have emerged as attractive targets for neuropsychiatric 

disorders, neuroinflammation, neuropathic pain, and autoimmune diseases97. 

The human α7 subunit is encoded by CHRNA7 gene98, 144, located at human chromosome 

15q13-14 and contains ten exons and nine introns. Among them, exon 4, 6 and 7 express the α7 

agonist binding site. The gene information is showed in Figure 19. However, the changes in 

some residues of the CHRNA7 gene produce duplication α7 when undergoing recombination 

events98-100. Exons 5-10 in CHRNA7 are duplicated and fused to exons A-E of FAM7A (family 

with sequence similarity 7A), resulting in the hybrid gene denoted as CHRFAM7A98-100. This 

product, dupα7, is a truncated subunit, where the N-terminal 146 residues of the ligand binding 

domain of the α7 receptor have been replaced by 27 residues from FAM7A98-100. This 

duplication is evolutionary new and unique to humans: the genetic sequence exons 5-10 shared 
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by CHRFAM7A and CHRNA7 shows more than 99% sequence identity98, 144, 145. The N-

terminal part of the canonical α7 subunit representing N-terminal in the EC domain has been 

replaced by a 27 amino acid long N-terminal domain in dupa7; the remaining sequences of both 

protein products are identical. More information about sequence alignment and structure of α7 

and dupα7 subunits is provided in Chapters 4 and 5. 

 

Figure 19: The human α7 nAChR, FAM7A & dupα7 nAChR. A) Formation of the chimeric 
gene of dupα7 CHRFAM7A; B) The gene product of α7 subunit; C) The gene product of 
dupα7 subunit; D) The structure of the canonical α7 pentamer (left) and possible structure of 
dupα7 pentamer (right), dupα7 subunit is signed by orange colour. Extracted from98. 

It has been reported that a small amount of CHRFAM7A represents 10–20% of the α7 sequence 

in the mRNA of the human brain146. The dupα7 subunit exists in the form of co-assembles with 

native α7 subunits to form functional nAChRs. Due to the loss of exons 1-4, the dupα7 subunit 

losses one glycosylation site but still retain the cysteine bridge and vicinal cysteines of the 

agonist binding site98. The number and position of dupα7 subunits assembled in nAChR reduce 

the number of agonist binding sites, resulting in adverse effects on the function of nAChR. 

Dupα7 nAChR not only affects the overall structure but Costantini and co-workers showed that 

dupα7 interferes with the binding of α-bungarotoxin (α-BTX) at the receptors147. 

It has been postulated that dupα7 acts as a dominant-negative inhibitor of α7 function, 

suggesting its role in human cognition and immune responses by perturbing normal (canonical) 
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α7 activities. This perturbation is likely to impact neurological disorders, including Alzheimer's 

disease97, 148 and schizophrenia149, and affect the cholinergic immunomodulation150, 151. Kunii 

and coworkers observed that CHRFAM7A was upregulated in the brains of patients with 

schizophrenia and bipolar disorder, with an increased ratio of CHRFAM7A/CHRNA7 152. On 

the other hand, this interaction can also be used to treat neurological disorders, most likely via 

regulating the functions of the α7 receptor by direct interactions to mitigate Aβ uptake148. More 

recently, Szigeti and coworkers reported functional readouts for the CHRFAM7A alleles for two 

phenotypic readouts in mild-to-moderate Alzheimer’s disease cohort and showed a 3:1 split in 

the population for CHRFAM7A carriers to non-carriers of the functional direct allele14. To 

demonstrate the translational gap, the group performed two double-blind pharmacogenetic 

studies for both first exposure and disease-modifying effect. It concluded that dupα7 accounts 

for the translational gap in the development of new drugs tackling Alzheimer’s disease and that 

design of future trials need to incorporate CHRFAM7A pharmacogenetics14.  

2.3 Nicotinic receptors in neurodegenerative disease: interactions with amyloid-β 

Recently, many researchers investigated the biochemical relationship between α7 receptors and 

amyloid β peptide 1-42 (Aβ1-42). In AD patient brains, both α7nAChR and Aβ1-42 were found 

located in neurons and neuritic plaques, and Aβ1-42 coimmunoprecipitated with α7153-158. 

Importantly, these two proteins have a high affinity to interact with each other and form a stable 

complex, which may inhibit Ach release from the cholinergic neurons and changes in calcium 

homeostasis, leading to the physiology of neurons influenced caused neurodegeneration154, 159. 

Studies show that α7 may mediate the cytotoxicity induced by Aβ1-42 and promote deposition 

of Aβ1-42 in neurons154, 159. Meanwhile, Aβ1-42 can downregulate the expression of α7, which 

contributes to the cholinergic signalling deficits153, 160. However, the activation of α7 could be 

beneficial in the low concentration of Aβ1-42153. All these indicate that α7 and amyloid-β have 

a close relationship, which is vital to the pathophysiology of AD.  

In addition, studies also found that α7 agonists and antagonists such as nicotine and α-BTX can 

inhibit the formation of Aβ1-42-α7 complex, which protects against Aβ1-42 induced cytotoxicity 

and tau phosphorylation in vitro and prevents Aβ1-42-related apoptosis154, 161. 
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2.4 TSPO as inflammation biomarker to validate α7 results 

As showed in previous sections, the link between the activity of nAChRs, especially α7, and 

positive outcomes in neuroinflammation and neurodegenerative conditions has been 

established. This renders α7 receptors attractive targets for new therapeutics and diagnostics. 

However, to exploit α7 receptors in PET in vivo studies, it is required to validate the results 

against other, more established targets involved in neuroinflammation and neurodegeneration. 

This section will introduce the TSPO: 18 kDa translocator protein, which is recognised as an 

essential biomarker for neuroinflammation due to its increased expression in microglia upon 

inflammation. TSPO is located at the outer mitochondrial membrane39, 162-164, belonging to the 

tryptophan-rich sensory protein family. It was previously known as peripheral type 

benzodiazepine receptor (PBR), but this protein has been found to bind to diazepam and 

expressed throughout the body and brain164, 165. The name was changed to translocator protein 

due to its capability to transport small molecules into the mitochondria and after discovering 

chemically diverse molecules bound by TSPO with high affinity. 

2.4.1 Structure   

The human TSPO is an 18kDa protein located at the outer mitochondrial membrane39, 162-164. 

Its structure consists of five transmembrane α-helical bundles (TM1-5), forming dimers and 

higher-order oligomers (Figure 20). Human TSPO contains 169 residues, which include two 

cysteines of an uncertain regulatory role. Its gene is localized to the 22q13.31 chromosome in 

the human genome. The transmembrane topology of TSPO shows C-terminus outside the 

mitochondria (cytosol) and a short N-terminus inside the mitochondria.166 
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Figure 20: The structure of TSPO. A) The 3D structure of apo TSPO. B) Electrostatic 
potential at the surface of the TSPO structure. C) Top view of TSPO structure. D) The 
structure of dimer TSPO. Extracted from 167. 

Several studies have shown that TSPO is associated with cytosolic and other mitochondrial 

proteins. (Figure 21). This protein is highly expressed in body organs involved in steroid 

synthesis, including the brain. It forms a heteromeric complex with the 32 kDa voltage-

dependent anion channel (VDAC) at sites of contact between the inner and outer mitochondrial 

membranes and the 30 kDa adenine nucleotide translocation (ANT) on the inner membrane, 

which functions as a mitochondrial permeability transition pore (MPTP) for the transport of 

small molecules into the mitochondria168. By the interaction with VDAC and adenine 

nucleotide carrier (ANC), the TSPO is able to regulate the mitochondrial function, leading to 

the regulation of the heart, steroidogenesis, apoptosis and immunomodulation168. Numerous 

studies indicate that TSPO is involved in a variety of human diseases, particularly in 

neurodegeneration, and it plays a crucial role in responses to stress. 
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Figure 21: The mechanism of complex-forming by TSPO and other proteins on the 
mitochondrial membrane. Extracted from 169. 

2.4.2 Function   

TSPO has been found in various tissues in humans, such as the adrenal, kidney, heart, testis, 

ovary, liver, brain, hematopoietic cell and lymphocytes163, 170. TSPO has been involved in 

cholesterol transport in mitochondrial, steroidogenesis, regulation in the heart, modulation of 

voltage-dependent calcium channels, apoptosis, microglial activation related to brain damage, 

regulation of the mitochondrial membrane potential, inflammation, cell growth and 

differentiation, stress adaptation, cancer cell proliferation and immunomodulation39, 163-165, 171-

175. One of the well-known functions of TSPO is intramitochondrial cholesterol transport176. 

The inner surface of the channel inside the TSPO helical bundle is hydrophilic and uncharged, 

which provides a pathway allowing cholesterol molecules to move into the mitochondria164, 165. 

Besides this, TSPO is also involved in steroid hormone synthesis, mitochondrial respiration, 

mitochondrial permeability transition (MPT) pore opening and heme transport. The role of 
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TSPO in those functions have been demonstrated in knockout177 and antisense experiments178, 

whereby the downregulation of TSPO leads to a reduction in steroid synthesis, including 

endogenous steroid synthesis in CNS. Additionally, the mouse studies have also demonstrated 

that the up-regulation of TSPO in microglia and astrocytes in CNS is closely associated with 

microglia activation and directly affects the extent of neuronal damage and inflammation. 

Moreover, TSPO has been found widely expressed in the microglia, which play an essential 

role in neuroinflammation168. With microglia proliferation, the amount of biogenesis in 

mitochondrial membranes such as TSPO also increase179. TSPO contributes to producing the 

reactive oxygen species (ROS) in the mitochondria, leading to neuroinflammation and 

contributing to neurodegenerative diseases such as AD. Thereby, TSPO has been used as a 

biomarker for neurodegenerative diseases such as Alzheimer's disease44, 180, multiple 

sclerosis181 and Parkinson's disease 46. For this reason, a broad panel of TSPO ligands have been 

developed as neuroimaging agents; for example, for positron emission tomography (PET) 

studies, where they are used as diagnostic tools for neurodegenerative disorders.  

2.5 TSPO and nicotinic receptors as targets for drugs and imaging agents 

Both nAChRs and TSPO can be targeted therapeutically to treat various disorders with 

inflammation as the underlying cause. As described in the previous section, they have a great 

potential to serve as diagnostic biomarkers and are targeted by small radiolabelled molecules 

in PET studies. This section will outline some clinically approved drugs and imaging agents 

targeting those proteins.  

2.5.1 Nicotinic receptors as targets 

Varenicline182 was the first clinically approved drug targeting nicotinic receptors. It is an 

orthosteric agonist used to treat smoking addiction, acting on α4/β2, α3, α6 and α7. As it is an 

orthosteric and competitive ligand, it reduces the binding of nicotine. The other type of nicotinic 

agonist used in the clinic is a non-depolarizing neuromuscular blocking agent, tubocurarine133 

can be an example. A nicotinic antagonist used in the clinic is mecamylamine183, a non-selective 

and non-competitive nicotinic antagonist. It can cross the blood-brain barrier, and it works as a 
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treatment for hypertension.  

There are also drugs for specific nAChR subtypes. For instance, GTS-21129, 184 is α7 nicotinic 

agonist, under tests for treatment in Alzheimer's disease and schizophrenia and schizoaffective 

disorders. As for α4/β2 nicotinic agonist, ABT-418185 has also been found to be active in a 

limited human trial in attention deficit hyperactivity disorder (ADHD). All the ligands 

mentioned in this chapter are list in Table 2.  

Table 2: Selected small molecule ligands of nAChR 

LIGAND PHARMACODYNAMIC 

PROPERTIES 

THERAPEUTIC USE STRUCTURE 

VARENICLINE Partial agonist of nAChRs, 

such as: α4/β2, α3, α6 and 

α7 

Treatment of tobacco 

dependence 

 

TUBOCURARINE antagonist of nAChRms The non-depolarizing 

neuromuscular blocking 

agent 

 

MECAMYLAMINE Partial antagonist of 

nAChRs, such as: α2, α4, 

α7 and β2 

Treatment of moderate to 

severe essential 

hypertension and simple 

malignant hypertension. 
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GTS-21 α7 nicotinic agonists Treatment in AD and 

schizophrenia and 

schizoaffective 

disorders. 

 

ABT-418 α4/β2 nicotinic agonist Treatment in 

hyperactivity disorder 

 

2.5.2 TSPO as a target 

The PK11195 was the first nonbenzodiazepine ligand for TSPO, and (R)-[11C]PK11195 have 

been used in positron emission tomography (PET) to visualise brain inflammation in patients 

with neuronal damage186. Nevertheless, other agents were subsequently developed because of 

the drawbacks of [11C]PK11195, such as poor bioavailability to brain tissue and a high degree 

of non-specific (off-target) binding. Among them was [11C]DPA-713, which shows a good 

blood-brain barrier permeability and a high affinity for human TSPO in the brain (dissociation 

constant, 7.0 nM)186. Conversely to the shorter half-life of 11C (20.4 min), the longer half-life 

of 18F (109.8 min) was suggested to be incorporated into ligands, and this produced [18F]DPA-

714186. In addition, carbon-fluorine bonds have comparable stability, and many drugs are 

fluorinated to prolong metabolism187. At the same time, the higher hydrophobicity of the 

carbon-fluorine bond increases the compound's lipophilicity, which typically increases the 

permeability of the cell membrane and thus improves the bioavailability of the drug187. These 

benefits make the labelling of F the first choice PET isotope for radiopharmaceutical chemistry. 

Many studies compared the above ligands, and they indicated that DPA-714 show the highest 

bioavailability in brain tissue with very low non-specific binding186. However, it is still needed 

to develop novel TSPO ligands with high affinity, good selectivity profile, and facile 

radiosynthesis for PET studies for chemical synthesis optimisation.  
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2.6 Challenges in the development of ligands targeting nicotinic receptors and TSPO 

Although the distribution, subtype and function of nicotinic receptors, including human-

specific dupα7, are known, some knowledge gaps remain to be addressed. The exact mechanism 

and specific contribution of dupα7 to the biology of α7 receptors remain highly elusive. The 

structural information on this human-specific receptor is missing, which hampers the efforts to 

elucidate its effect on α7 pentamers. This knowledge gap motivated the research presented in 

this dissertation. 

Moreover, the TSPO PET signal decreased in successful studies of novel therapeutics in AD 

preclinical models, suggesting that TSPO could be used to monitor treatment progress in 

clinical trials188. Despite these encouraging preclinical results, earlier clinical studies focusing 

on TSPO produced mixed results. Several imaging studies using the [11C]PK11195 reported 

higher TSPO brain signal in amyotrophic lateral sclerosis (ALS), AD, PD, and in brains of 

people identified as at risk of Huntington's disease (HD) compared to controls188, other studies 

using second-generation TSPO ligands reported no difference in TSPO PET signal in AD and 

MS188. The primary source of failure in these clinical trials was sizeable inter-individual 

variability in PET signal, caused by rs6971 single-nucleotide polymorphism (SNP) in the 

human TSPO gene, which causes a substitution of alanine for threonine at the 147th amino acid 

(A147T) of TSPO. This polymorphism is present in 30% of Caucasians, 25% of Africans, 4% 

of Japanese, and 2% of Han Chinese (http://hapmap.ncbi.nlm.nih.gov). Patients who are 

homozygous for wild type TSPO show good response to several 2nd generation PET tracers, 

heterozygous show moderate response, and patients homozygous for the A147T TSPO variant 

show poor response.  

While DPA-714 represents an improvement in relatively many of the second-generation ligands 

regarding its binding to the A147T TSPO variant, it still shows reduced binding affinity to that 

variant. It is crucial to gain a greater understanding of how the binding requirements of A147T 

TSPO differ from wtTSPO to overcome this problem and its limitations in the synthetic 

feasibility. One approach to deconvolute factors responsible for the loss of affinity of TSPO 

ligands to A147T TSPO variant is evaluating the differences in structure and dynamics of DPA-
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713, DPA-714 and their analogues bound to wtTSPO and A147T TSPO variant, using structure-

based molecular modelling approaches.  
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Chapter 3  Theoretical background 

Drug development can be described as the process of bringing a lead compound (traditionally, 

a small molecule) into clinical practice. It includes preclinical laboratory research, four clinical 

phases in humans, and authority approval. The workflow governing the drug discovery pipeline 

is shown in Figure 22. 

 

Figure 22: Drug development pipeline. Made by author. 

The whole drug design goal is to find new drugs based on existing knowledge of the biological 

target. Three steps need to be done relating to target at first: target identification, target selection 

and target validation. Target identification is the step to identify biomolecular targets (most 

common protein) involved in the disease progression. Target selection is the decision to find a 

drug with a specific biological effect that is expected to have a therapeutic effect while acting 

on a specific target, and it is influenced by a complex mixture of scientific, medical, and 

strategic factors189. Target validation is the process of proving that manipulating (e.g. enhancing 

or inhibiting) the selected target can provide therapeutic benefits to patients190.  

Traditionally, G protein-coupled receptors (GPCRs), enzymes, transcription factors and ion 

channels were popular protein targets for small molecule drugs. For example, the α7nAChR 

receptor has been selected and validated as a target for drugs targeting CNS disorders, and 

approved drugs targeting this receptor include an agonist tropisetron (brand name Navoban) 

and positive allosteric modulator galantamine. 

Following target identification and validation, subsequent steps in drug discovery programs are 

hit identification and lead discovery. A hit is a compound with a desired activity, and its activity 
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is confirmed upon testing. A lead series is a cluster of compounds sharing some typical section 

or chemical moiety, and it has a different potency than the initial hit due to having a different 

chemical moiety other than this core structure.  

After lead discovery, the next step is lead optimisation. The aim of optimisation is to improve 

the potency and selectivity of ligand, making it capable of enhancing or inhibiting the target 

function in order to become an effective and safe drug. The ligand needs to be designed to 

complement the binding site to achieve tight binding to the target. Whether the optimisation is 

effective can be assessed based on several properties such as bioavailability, metabolic half-life 

and side effects.  

Furthermore, the preclinical test would be done in vitro/vivo to select favourable compounds 

with beneficial ADME (absorption, distribution, metabolism, and excretion) property and low 

toxicity. Four phases of clinical trials follow the pre-clinical studies in the laboratory.  

3.1 Computational methods for a drug discovery pipeline 

The pipeline (Figure 22) shows that a drug from discovery takes more than a decade to become 

a product approved and marketed by the authorities. The total development is a lengthy and 

costly process, requiring time, money, and technical expertise such as human resources, 

experimental materials and research skills. Generally, classical drug development costs millions 

of pounds, and it takes 10 to 15 years to develop191. Usually, only 1 out of 40,000 tested 

compounds is approved as a safe drug that produces the efficacy response with minimal side 

effects. However, with the rapid development of computational technology, the computer-aided 

drug design (CADD) techniques developed since helped to save time and cost, and at the same 

time, increased the success rate to develop a drug. 
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Figure 23: Computer-aided drug design used in drug discovery. Extracted from 192. 

CADD uses computational approaches to discover, identify, optimise and analyse targets and 

possible drugs. It is an integral component of drug development nowadays, which help to 

increase the success rate and decrease the consumption of time and cost192, 193. (Figure 23) 

Generally, the structure of the therapeutic target could be solved through experimental methods, 

such as X-ray crystallography, cryo-electron microscopy (cryoEM) and NMR194. However, 

there are limitations for said methods, such as sample preparation and resolution, which can 

hamper drug development. 

To increase the number of structures, computational molecular modelling uses sequence data 

(1D), transforming it into structural data (3D), allowing 3D structures of the target. In addition, 

identification of novel “druggable” binding sites also can be achieved by using computational 

tools. Moreover, these techniques can be used to predict the interaction between target and 

compounds. Furthermore, computational methods can help increase hit discovery rate via 

virtual screening, lead optimisation and predict the binding modes of known inhibitors. Hence, 

CADD technology has accelerated the development of drugs. 

CADD techniques such as homology modelling, atomistic and coarse-grained molecular 

dynamics (MD) simulations and docking were used in this PhD project. These methods have 

helped develop proteins with unknown experimental structures, study the intrinsic dynamics of 

proteins and interactions between receptors and their ligands, identify new binding sites and 

assess the 'druggability' of ligands. All these methods are described below. 
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3.2 Homology modelling 

Homology modelling195 is a method for constructing an atomic-resolution model of a target 

protein based on its amino acid sequence alignment and an experimental three-dimensional 

structure template of a related homologous protein. This method can efficiently provide an 

atomic-resolution structural model of a protein of interest when its experimental structure is not 

solved. This approach avoids the long time and costly experiments to obtain protein structure 

from methods such as X-ray crystallography, cryo-EM and protein nuclear magnetic resonance 

(NMR)194. However, it needs to be emphasized that obtaining the homology model does not 

replace the experimental structure. It gives an insight more quickly but is not as reliable as an 

experimental structure and needs validation194. 

Homologous proteins have related primary sequences; therefore, it can be assumed that their 

tertiary structures should be related, given the associated sequence-structure relationship. To 

generate reliable, high-quality structural models, the target proteins and template must be 

closely related, typically, 30% or higher primary sequence identity196. 

The homology modelling workflow is shown in Figure 24, which can be divided into four steps: 

template selection and identification, target-template alignment, model construction, and model 

assessment197.  
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Figure 24: The process of homology modelling. Made by author. 

The structural biology information on homologous proteins related to the target can be retrieved 

from web databases, which the most known one is the RSCB Protein Data Bank (PDB) 

(https://www.rcsb.org)198. For primary sequences, UniProt (https://www.uniprot.org)199 is one 

of the most used databases. This database provides protein information, such as sequence and 

function, and helps select the correct template. The template selection can determine the quality 

of the model. It needs to consider factors such as overall sequence similarity, percentage of 

identity in the structurally-conserved regions, resolution of the template, and environmental 

factors (e.g. crystallization conditions, the presence of small molecules co-crystallized, 

oligomeric state). To assess the similarity between primary sequences of our target and our 
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query, Basic Local Alignment Search Tool (BLAST)200 is commonly used. This method 

performs protein sequence alignment using evolutive similarity matrices, such as BLOSSUM201 

and PAM202. Hence, with a similar structure to our target, we can build a model. There are 

several published methods to use: among the most popular, there are fully automated web 

server-based tools such as SWISS-MODEL. SWISS-MODEL203 is accessible via Expasy web 

server (https://swissmodel.expasy.org)204. It builds the model and performs the molecular 

mechanical energy minimization with a fragment assembly approach. It breaks down a protein 

structure into multiple conserved structural fragments, then picks up these fragments from a 

template structure and assembles them to build the target structure.194 Then, the most 

appropriate target structure can be selected using the QMEAN205 scoring function for the 

quality estimation. QMEAN206, 207 is a composite score that uses the statistical potential of mean 

force and the agreement of the model with the structural features predicted from the sequence. 

MODELLER208 is another popular tool widely used for the homology modelling community. 

It builds target structure by satisfying spatial restraints and can perform other tasks such as 

multiple alignments of sequence/structure and protein structure optimisation. MODELLER is 

often combined with other modelling tools, e.g., to model the missing loops that could not be 

calculated using automated workflows such as SWISS-MODEL. Such a procedure is 

commonly used: in this project, SWISS-MODEL and MODELLER were used to calculate 

nicotinic receptors' models and model the missing loops, respectively. In addition, the ISOLDE 

software209 for structure refinement and Alpha-fold210 for AI-driven structure prediction were 

employed in building the models. 

3.3 Molecular mechanics  

Molecular mechanics (MM) methods are used to compute the system energy for molecular 

structural assessment. By large, the physics used in MM is based on classical mechanics. This 

method is the cornerstone of several methods crucial in modern modelling of biological systems 

and molecular simulations methods such as molecular dynamics211, umbrella sampling211, 

molecular docking211 and many others211. The advantage of MM methods is their speed, 

applicability to extensive systems containing up to millions of atoms, and accuracy suitable for 
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those workflows. The key disadvantages are that classical molecular mechanics cannot permit 

any covalent bond breaking or making – it is not suitable for modelling chemical reactions. 

Classical molecular mechanics use the Born-Oppenheimer approximation to calculate the 

structural descriptors of the systems, such as partial charges and atomic sizes. Because electrons 

are far lighter than the nucleus, the dynamics of electrons is so fast that they can be considered 

to react instantaneously to the motion of the nuclei. Based on this, the Born-Oppenheimer 

approximation considers that the motion of atomic nuclei and electrons in a molecule can be 

separated. It calculates the potential energy as solely a function of positions of atomic nuclei.  

The all-atom classical molecular mechanics method relies on the following principle:  

1) Nuclei and electrons are simulated as one sphere-like particle 

2) Each particle is spherical and is assigned a van der Waals radius and a partial charge 

3) Bonded interactions are modelled using classical potentials, often described as harmonic 

oscillators or harmonic Fourier series. 

The molecular mechanical calculation determines molecular structure and energy using a series 

of molecular descriptors and functions called a force field.  

3.4 Force field 

The force field (FF) is a series of descriptors used to model atomic interactions. The basic 

functional form of potential energy in molecular mechanics contain two terms (Equation 1). 

One describes bond interactions, including bond lengths, angles and torsions (proper and 

improper dihedrals). The non-bonded term, on the other hand, describes non-covalent bound 

atoms. These interactions are often modelled as van der Waals and electrostatic (Coulombic) 

interactions between atoms (Figure 25).  

																																																	𝐸!"!#$ = 𝐸%"&'(' + 𝐸&"&)%"&'('                                                            (1) 
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Figure 25: Four critical contributions to a molecular mechanics force field: bond stretching, 
angle bending, torsional terms, and non-bonded interactions. Extracted from 212. 

A set of harmonics oscillators models energy in the bonded term of the system of interest as a 

function of the bond lengths, valence angles and dihedral vibrations213 (Equation 2 and 3): 

                                																𝐸*"&'(' = 𝐸%"&'+ + 𝐸#&,$( + 𝐸'-.('/#$+                         (2) 

  	𝐸*"&'(' = ∑ 𝑘/(𝑟- − 𝑟0)1 + ∑ 𝑘2(𝜃- − 𝜃0)1 +#&,$(+%"&'+

																																																				∑ 𝑘3'-.([1 + cos(𝑛-𝜙- − 𝛿-)]'-.('/#$+                                (3) 

The first term models all covalent bonds between two bonded atoms. It estimates the bond 

stretching energy associated with the bond length 𝑟- deviated from the reference value 𝑟0. The 

second term is a summation over all bending angles formed by two covalent bonds. Two 

covalently bound atoms are considered in the bond stretching term, whereas three are in the 

angle bending term. The contributions of both bond stretching and angle bending are 

characterized by two parameters: a reference or equilibrium value (𝑟0  and 𝜃0) and a force 

constant (𝑘- ). 𝑘/  and 𝑘2  parameters control the stiffness of the bond and angle spring, 

respectively. These two force constants are proportionality constants, as defined by Hooke’s 
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law. Unique 𝑘/ and 𝑟0 parameters are dependent on the particular atom-type pair (e.g., C-O, C-

C, C=C.). Often these parameters are obtained from either higher-resolution methods (such as 

quantum mechanical simulations) or experimental validation (i.e., NMR). The dihedral or 

torsional energy is also modelled by different means213. Commonly, the used function is a 

Fourier series, given that the torsional energy landscape is often more complex for modelling 

than the previous two potentials described. Hence, alongside the equilibrium value and a force 

constant parameter per term of the series, a phase (𝛿-) and a periodicity (𝑛-) need to be added, 

to properly model the periodic conditions associated to the torsional landscape.  

      𝐸4"&)%"&'(' = 𝐸5#&	'(/	7##$+ + 𝐸($(8!/"+!#!-8                         (4) 
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The non-bonded interactions are calculated for all particles/atoms not bound, albeit in physical 

proximity. The non-bonded energy calculates the pairwise sum of the energies of all possible 

interacting atoms, which account for van der Waals interactions and electrostatic interactions. 

(Equation 4 and 5) 

When the distance becomes slightly less than the sum of contact radii of two atoms, the 

repulsion term occurs due to overlapping electronic orbitals of different atoms. On the contrary, 

the attractive term happens due to the attractive dispersion force with the longer distance211. 

Once these independent two atoms move apart by a few angstroms, the interactions are 

weakened. These effects are modelled by the classical Lennard-Jones (LJ) 12-6 potential, as 

shown in Equation 5214. The LJ potential is characterized by a repulsive part that models as 

𝑟-:)<1 and an attractive part that models as 𝑟-:)=. Regarding other parameters: q is the partial 

charge of the atom i and j, 𝜖-,:  is the potential well depth, 𝑟-:  is the distance between two 

interacting particles, 𝜎-: is the distance at which the inter-particle potential energy is zero. 

The final term in Equation 5 represents the long-range electrostatic interactions. This term 

model the energy function as the sum of interactions between two partial atomic charges 𝑞- and 

𝑞:  using Coulomb’s law. These charges are described as partial atomic charges to model 
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quantum level electronic effects into a classical mechanics framework. 

Since molecular mechanics-based methods gained popularity over the last 20-30 years, many 

molecular modelling force fields are in use nowadays. The most popular biomolecular force 

field for proteins and nucleic acids is AMBER force field215, but other force fields are available, 

such as GROMOS216, CHARMM215, and OPLS217. In this project, AMBER FF99SB-ILDN 

force field218 has been used for the following steps of molecular dynamics (MD) simulations of 

macromolecules, energy minimisation, conformational analysis, and molecular docking. 

3.5 Molecular dynamics 

Classical molecular dynamics (MD)219, 220 is a particle-based simulation method to study the 

interaction and time-dependent physical motions and conformational change of atoms and 

molecules in a system according to Newton’s equations of motion. The atoms are treated as 

hard spheres in atomistic MD simulation, just like in all MM-based methods. The result of the 

MD simulation is a trajectory that specifies the positions and velocities of the particles in the 

system over a period of time. The trajectories are determined by solving Newton's equations to 

calculate the forces acting on each atom, where the potential energy of the system and the force 

between the interacting particles are calculated using molecular mechanical force field (Chapter 

3.4).221 Analysis of these MD trajectories provides a set of various properties of a system of 

interest, including potential and kinetic energies, conformational ensembles, changes in 

secondary structure and solvation, radius of gyration and other macroscopic quantities. 

3.5.1 Theory behind molecular dynamics  

The main idea behind the classical MD is Newton’s second law of motion (Equation 6) used to 

study the dynamics of the system that is obtained via molecular modelling techniques or 

experimental structure determination.221 

                                         		𝐹D>>⃗ = 𝑚- 𝑎D>>>⃗ = 𝑚- ∙
'5E⃗
'!
= 𝑚- ∙

'#G$EEE⃗
'!#

                                                (6) 

Where 𝐹- is the force acting on the atom i of the system, 𝑎- is the corresponding acceleration, 

𝑚- is the mass. 𝑣!!⃗  and 𝑥𝑖!!!⃗  are the velocity and position of atom i. As described in this Equation 
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6, once the forces are acting on each atom in the system, the atoms are translated in space over 

a period of time. The rate and direction of motion (velocity) are controlled by the forces exerted 

by the interactions with surrounding particles of the system. Thus, to obtain the information 

about the dynamics of the system (i.e. the position of each atom in the system in a specified 

time), the calculation of the forces acting on each atom needs to be performed via calculating 

the gradient on the potential energy. The forces are calculated via Equation 7: 

 𝐹D>>⃗ = − ∇D>>>⃗ 𝑈(𝑡, 𝑟<>>>⃗ , 𝑟1>>>⃗ , 𝑟I>>>⃗ , … , 𝑟4>>>>⃗ )                                       (7) 

Where 𝐹- is the resulting force acting on the atom i of the system, N is the number of atoms in 

the system, 𝑡 is a given period time, 𝑟 is a set of separate pairwise atom distance vectors, 𝑈	is 

the total potential energy. 

The acceleration of each particle is computed from the known force and mass by the following 

Equation 8:  

				�⃗� = J⃗
C!

                                                       (8) 

With the acceleration given by Equation 8, the velocities are calculated based on the following 

relationship, showed in Equation 9: 

                                                              𝑣D>>>⃗ (𝑟D>>⃗ 𝑡 +∆𝑡) = ∫ 𝑎D>>>⃗ 𝑑𝑡
!K∆!
!                                                 (9) 

Lastly, the positions are calculated from the velocities (Equation 10): 

 𝑟D>>⃗ (𝑟D>>⃗ 𝑡 +∆𝑡) = ∫ 𝑣D>>>⃗ 𝑑𝑡
!K∆!
!                                          (10) 

The MD simulation is performed as shown in Figure 26 by solving the integral in equation 10. 

Repeating the steps shown there, a set of coordinates will be generated at each small time step, 

advancing the MD through time. 
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Figure 26: The integration cycles of a molecular dynamics simulation. Extracted from 222. 

The trajectories can be produced by integrating a series of subdivided sub-states of small 

timesteps using an integration algorithm such as the Velocity Verlet algorithm211. Velocity Verlet 

algorithm223 is a numerical method that is most commonly used to integrate Newton’s equations 

of motion and calculate the trajectories of a system in atomistic MD simulation. It generates a 

series of the coordinates and the velocity for intermediate times ∆𝑡 via (Equation 11 and 12): 

 �⃗�(𝑡 + ∆𝑡) =�⃗�(𝑡) +�⃗�(𝑡)∆𝑡 + <
1
�⃗�(𝑡)∆𝑡1                               (11) 

                                  𝑣(𝑡 + ∆𝑡) =�⃗�(𝑡) + <
1
(�⃗�(𝑡) +�⃗�(𝑡 + ∆𝑡))∆𝑡                               (12) 

The process for Velocity Verlet algorithm integration is shown in Figure 27. It is accurate, fast 

and stable, and easy to implement. It requires only one force evaluation for each time step. 
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Figure 27: Molecular dynamics Velocity Verlet algorithm. t, simulation time; dt iteration time; 
For each spatial coordinate of the N simulated atoms (i): x, atom coordinate; F, forces 
component; a acceleration; m, atom mass; v, velocity. 

3.5.2 Conditions in molecular dynamics simulation 

Besides the force field described in Chapter 3.4, several other conditions need to be considered 

in MD simulation. Suitable conditions should allow the calculation to be completed in a 

reasonable timescale, obtaining the results compared with experimental data. Here are the 

conditions that should be taken into account in the standard simulations of biomolecular 

systems: 

1. Simulation time scales  

The number of particles in the simulation system should be between 103 - 108; the range of time 

step ∆𝒕	= 1 - 4 fs, mostly is 2 fs, and the range of time scales ns to μs (typically 100ns - 1μs), 
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but a much longer time step can be used in coarse-grained simulations. In all-atom MD, because 

it used higher frequency transformations, the time step (the rate of calculations - 2fs) is small 

to be able to obtain a continues distribution of sampled states through time. Given the fact that 

CG deals with larger fluctuations, related to a collective motion of atoms represented by the 

beads, the signal reception frequency can be larger. 

2. Solvation effects  

MD simulations of biomolecular systems are typically performed in an aqueous solvent. Water 

molecules fill the entire simulation box, where the protein of interest is often placed in its centre 

(Figure 28). This organization can mimic the interaction between the molecule of interest and 

the solvated environment – either aqueous or not. An example of an apolar environment is 

membrane-bound systems, such as the one depicted in Figure 28. This model is a nicotinic 

receptor 3D model embedded into the membrane model surround by water molecules. There 

are two ways to model the solute-solvent interaction; one relies on the implicit solvent that can 

be calculated using a mean-field approach, while another relies on the explicit solvent (TIP3P). 

Nowadays, the latter is far more used in MD simulation (and is used in this work). Water 

molecules are described similarly to other molecules for the explicit solvent: as spheres 

connected by unbreakable bonds. The water molecular interactions with other particles are 

calculated via the non-bonded term of the force field. 
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Figure 28: The system model for MD simulation. The α7 nicotinic receptor embedded into 
the membrane with water fill into the box. Pink dots represented the water atoms; blue dots 
represented the membrane; the surface of α7 nicotinic receptor was yellow; the Ca2+ was 
represented by blue ball. 

3. Periodic boundary conditions 

Periodic boundary conditions (PBCs) are a set of boundary conditions that allow the system to 

loop one side of the simulation back to the other side (Figure 29). They are used to avoid the 

effects of finite size effect and keep the number of molecules constant in the box. In all kinds 

of molecular dynamics simulations, the size of the simulation box must be large enough to 

avoid the interference of boundary conditions. 
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Figure 29: 3D representation of periodic boundary conditions. The central cell represents the 
simulation box. Blue and red balls represent solvent particles. The blue arrows show the 
movements of particles. As a particle leaves the simulation box, it goes back to the box from 
the opposite end. Extracted from http://isaacs.sourceforge.net/phys/pbc.html#fpbc. 

4. Ensembles 

Certain thermodynamics variables need to be set to consider the simulation to be in a statistical 

mechanical ensemble. Often, the system is isolated, and in adiabatic conditions, i.e., it cannot 

exchange particles and energy with the environment so that the system has a constant number 

of particles (N), constant volume (V) and constant energy (E). This is called a microcanonical 

ensemble (NVE). Also, another set of variables that can be set constant for our systems are the 

number of particles (N), pressure (P) and temperature (T), which forms an isobaric-isothermal 

ensemble. These two ensembles are often in biomolecular simulations since it mimics 

configurations which are used in laboratory conditions.  

NVT ensembles are used to alter the temperature of the system by modifying the velocities of 

particles in the system and maintains the temperature by a thermostat added to exchange the 

energy of the endothermic and exothermic process. Besides a thermostat added to maintain the 

temperature, Isothermal-isobaric ensembles (NPT) has a barostat to maintain the pressure by 

changing the volume of the simulation box. The Berendsen thermostat224 and the Parrinello-
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Rahman barostat225 are commonly used in NVT and NPT and the ones used in this work. 

3.5.3 Stages of molecular dynamic simulation 

A typical atomistic MD simulation involves several stages, which are shown in Table 3. Before 

running the MD simulation, the initial conformation of a system of interest (a protein or a 

complex) is generated as described in Chapter 3.2.  

Table 3: Stages of a typical MD simulation 

Stage Details 

Construction of a molecular model assembly of the molecular scaffold of the protein 

structure  

Determination of partial atomic charges and 

assigning of the force-field 

Calculation of the partial atomic charges if needed 

(e.g., for non-standard residues), and choosing a 

suitable FF to calculate bonded and non-bonded 

interactions 

Simulation system setup 1. Building the simulation box (shape, size)  

2. Specification of the boundary conditions 

3. Solvating the system (adding water and counter-

ions) 

Energy minimisation Adjust the structure to the best starting 

configuration for simulation (e.g., removing steric 

clashes and torsional strains) 
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Heating and NVT equilibration Linear heating of the system from an initial T (0 K) 

to the target temperature (typically 300 K), 

followed by a short equilibration at a constant 

temperature. In this stage, atomic position 

restraints are often used to ensure that the heating 

process does not disrupt protein structural integrity.  

Equilibration (NPT) Equilibration to a target pressure is followed by 

equilibration at constant pressure. Similar to the 

heating stage, position restraints are added. 

Production Sample structural configurations. Several replicas 

of MD trajectory would be run for statistically 

significance.   

Analysis Determination of properties of interest from the 

production trajectory 

 

3.6 Coarse grain simulations 

Some molecular systems may contain many particles, often within the scale of tens of millions 

of atoms. This can be challenging for studies using all-atom MD methods due to the large 

number of computer resources required and the long times needed for equilibration and 

meaningful observables (e.g., significant conformational changes) to occur. Hence, it is 

necessary to use alternative reliable methods to provide insights into the ‘slow’ (micro-to-

millisecond time scale) functional dynamic behaviour of large macromolecules and their 

complexes. One of such methods is coarse-grain protein modelling. 
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3.6.1 Coarse-grain modelling 

Coarse-grained (CG) modelling226 uses a simplified representation to represent and simulate 

the behaviour of complex systems. It is widely used for modelling large biomolecules, such as 

large proteins, nucleic acids, lipid membranes and certain post-translational modifications (e.g., 

long carbohydrate chains) in large multimeric complexes. In the coarse-grained framework, 

functional groups such as aromatic rings or even the whole amino acids are represented as 

‘pseudo-atoms’ instead of individual atoms being considered. For example, the protein 

polypeptide chain is replaced by one or two pseudo atoms (so-called united atoms or molecular 

beads) per residue. By decreasing the number of degrees of freedom, the coarse-grained model 

allows the system's dynamics to be quickly calculated and accelerate simulation compared to 

the all-atom framework. This change of model resolution results in longer simulation times than 

atomistic models and allows larger models to be effectively simulated. The comparison between 

coarse-grained framework and other modelling methods, focusing on their spatiotemporal 

scales, is showed in Figure 30. 

 

Figure 30: Application range for different molecular modelling. This plot shows the 
approximate range of time scales correspond to the system size. Extracted from 226. 
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3.6.2 Martini force field 

Comparing to the all-atom FF counterpart, the coarse-grained force field smoothens out the 

energy landscape, which is more efficient to sample over multiple minima and avoid traps in 

the local minima226 (Figure 31). 

 

Figure 31: The potential energy landscape of all-atom and coarse-grain simulations. The Z-
axis represent free energy, the X-axis and Y-axis represent degrees of freedom, the yellow 
peak represents the local maximum energy, while the hole represents the local and global 
minimum energy. The free energy would be calculated for the left figure based on all-atom 
and the right for the coarse-grained system. This difference enables the energy landscape of 
global minima to be found efficiently while avoiding the local minima pitfalls, although 
losing resolution on the landscape. Extracted from 226.  

The Martini force field227 is one of the most popular coarse-grained force fields chosen for 

molecular dynamics (MD) simulations of biological systems, well suited for proteins-

membrane systems. It was parametrized in a systematic way to reproduce free energy and 

thermodynamic properties227. This FF is based on a four-to-one mapping, which means that, on 

average, four heavy atoms and their respective hydrogens are represented by a single bead 

(Figure 32). For example, four water molecules correspond to one coarse-grained water bead. 

To keep the accurate representation of the underlying atomistic structure, four bead categories 

have been defined to correspond to four main types of interaction, which are polar (P), non-

polar (N), apolar (C) and charged (Q).226-228 Each bead type is divided into hydrogen-bonding 

capabilities (donor, acceptor, both or none) and five degrees of polarity, given 18 bead types in 

total.226-228 In addition, besides normal size four-to-one mapping, it has a small size (S-size) 
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three-to-one mapping and tiny size (T-size) two-to-one mapping used in the ring structure and 

nucleic acids, respectively. These mapping schemes provide an accurate and effective way to 

switch atomistic to coarse-grained systems. 

 

Figure 32: Coarse-grained representation of all-atom structure (lipid, protein, water) and all 
standard proteins residues. All-atom models are represented in balls and sticks, while coarse-
grained models are shown in a large sphere. Different colours of the sphere represent 
different particle types. Extracted from226, 228.  

As for the interaction between coarse-grained beads will be described by a force field 

containing terms typical of other classical force fields. Bonded interactions are modelled by 

potential energy functions derived from either higher resolution models (QM/MM) or 

experimental data.226 Nonbonded interactions include van der Waals interactions and 

electrostatic interactions controlled by a Lennard-Jones 12-6 potential and Coulombic potential 

function, respectively, but the parameters are adjusted depending on the types of interacting 

beads.226 

3.6.3 Elastic network modelling 

The standard coarse-graining generally describes the interactions per-residue (bonded bead), 

generating a simplified backbone. The fine details of a side chain and protein secondary 

structures controlled and maintained by H-bonds are lost in the coarse-graining process. 

Therefore, it may be required to add extra harmonic bonds between non-bonded beads to 

constrain secondary structure elements (alpha-helices and beta-sheets). The elastic network 
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modelling226, 229, 230 is a minimalist approach that takes the form of an elastic spring network as 

an internal interaction in biological macromolecules, which help to increase the structural 

stabilization of the overall shape coarse-grained models, as shown in Figure 33. The elastic 

network helps to tune the elastic bonds by set the elastic bond force constant and adjust the 

lower and upper elastic bond cut-off to reduce the flexibility of coarse-graining over the entire 

protein structure, and describe protein collective motions adequately.229, 230 Sen and 

colleagues229 used various cut-off radii for multiple scales (e.g., residue, atomic, proton and 

explicit solvent levels) of the high-resolution protein dataset to define parameters that should 

obtain the most realistic outcomes, which defined the parameters used in this work. This study 

indicated that the atomic level elastic network model provides an improved dynamic for a 

variety of proteins than the coarse-grained model.229  

 
Figure 33: The elastic network model. Orange lines represent the elastic network, while the 
grey tube is an example protein backbone. Extracted from230. 

Elastic networks are usually applied to coarse-grained models. They are mainly using Cα atoms 

and relying on Cα-Cα proximity to place the springs. Two parameters are needed to describe 

the reaction correctly with a proper network: the cut-off distance and the spring constant. The 

former determines whether two residues are in contact by a spring. The latter defines the 

strength of interactions229. 

Coarse-grained models with elastic network approximations can describe both inter-and 

intramolecular interactions in the system, which provide helpful simplified structural models 

for stabilizing inter-and intramolecular interactions. Since the nicotinic receptor is a substantial 
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transmembrane protein composed of a series of α-bundles, it required a very long time in all-

atom MD simulations, coarse-grained framework with Martini force field has been chosen for 

my studies reported in this work. 

3.6.4 Coarse-grained protein simulation running steps 

The setup and running of a coarse-grained protein simulation are similar to an all-atom MD 

simulation. The main difference comes from how the topology and the molecular parameters 

are set for the protein. Often, Martini FF used a script developed by the creators of Martini FF 

that translates the protein from all-atom and parametrizes it in CG. Concerning the steps for 

equilibration, two additional are required at the beginning. First, the atomistic protein structure 

needs to convert into the coarse-grained model before the simulation starts. Apart from this, the 

other steps are the same as for the all-atom MD simulation but using the files associated with 

the coarse-grained FF. The all-atom information can be recovered at the end of the coarse-

grained simulation using Reconstruction Algorithm for Coarse-Grain Structures (RACOGS)231. 

The process is shown in Figure 34. 

 

Figure 34: The steps of coarse-grained simulation and the follow-up by the all-atom MD 
simulation. Extracted from 226. 
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3.7 Umbrella sampling 

Due to the limitation of MD simulations in the timescale, it is hard to evaluate some significant 

conformational changes, which requires energy barriers to be crossed. To help with this 

shortcoming, a series of methods were developed through the years to drive a simulation 

towards interesting rare states. One of such methods is Umbrella sampling.  

Umbrella sampling (US)232, 233 is one of the techniques known as biased molecular dynamic by 

providing an additional free energy term to the system, which ensures sampling along the 

chosen (one or more dimensional) pre-selected degree of freedom (DOF) of the system. These 

DOFs, also called reaction coordinates, are a series of conjoined variables that define a motion 

within the system we want to investigate. Commonly, a continuous parameter describes the 

different states as it changes from one thermodynamic state to another, defined according to 

geometric principles, such as distance and torsion.  

The intermediate steps of a conformational transition are split into a series of windows, shown 

in Figure 35. To overcome free energy barriers and accelerate the dynamics, the bias potentials 

are added in each window to move a system from one thermodynamic state to another by 

exerting an external, non-equilibrium force on the defined reaction coordinate. Performing MD 

simulations for each window allows the free energy change to be calculated as (Equation 13): 

                                                             𝐸%(𝑟) = 𝐸M(𝑟) + 𝜔-(𝜉)                                            (13) 

Where b indicates a biased quantity, whilst u indicates an unbiased quantity. 𝜔-  is the bias 

potential of the window i, which is an additional free energy term, depending on the reaction 

coordinate 𝜉, and its strength is defined by the constant force k. This harmonic potential can be 

calculated via Equation 14: 

                                                                  𝜔-(𝜉) =
N
1
(𝜉 − 𝜉-)1                                             (14) 

Where 𝜉- is a reference coordinate point. A bias potential is applied in each window to keep the 

system close to the reference point of window 𝑖. This results in the system in each window 

would be restricted to sampling a narrow phase space along with the reaction coordinates to 
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allow an overlap of the potential energy distribution between adjacent windows, forming a 

continuous distribution of states along the sampled coordinate. 

To obtain the unbiased free energy 𝐴-(𝜉), the unbiased distribution of the reaction coordinate 

is calculated via Equation 15: 

                                                𝑃-M(𝜉) =
∫PQR[)TU(/)]YZ[%(/))[\'&/

∫ PQR	[)TU(/)]'&/
                                    (15) 

Then the unbiased probability 𝑃-M(𝜉) could be determined by Equation 16: 

𝑃-M(𝜉) = 𝑃-%(𝜉) exp[𝛽𝜔-(𝜉)] < 𝑒𝑥𝑝[−𝛽𝜔-(𝜉)] >                 (16) 

The biased probability 𝑃-%(𝜉) can be known from the simulation in each window. Then the free 

energy of each window can be computed using Equation 17: 

𝐴-(𝜉) = −[<
T
\ ln 𝑃-%(𝜉) −𝜔-(𝜉) + 𝐹-                                (17) 

Where 𝐹- is a constant that can be calculated using the weighted histogram analysis method 

(WHAM)234.  

Finally, the free energy changes between the two states along with the reaction coordinates, 

known as the potential of mean force (PMF), can be calculated by combining the unbiased free 

energies extracted from a series of windows. An example of the final PMF curve and its related 

sampled windows are showed in Figure 35. This method was used in this work to study the 

nAChR ion channel function. 
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Figure 35: The representation of the PMF curve and its related sampled window. The free 
energy landscape is represented in black, and the sampled population of each window are 
represented by thick solid curves and thin dashed curves, respectively. The biased 
distributions 𝑃'(  obtained from the simulation of each window are shown at the bottom, 
represented by thin solid curves. Extracted from 232. 

3.8 Druggability assessment: FTMap solvent mapping 

FTMap235, 236 is a mapping web server used to search and predict binding hotspots for proteins 

based on ‘static’ structure (e.g., PDB format) (Figure 36). After providing a docking pre-

processed protein structure in PDB format (all bound ligands and solvent molecules are 

removed), FTMap uses 16 simple organic molecules (Figure 36b) as probes of diverse sizes, 

shapes and polarities. They interact at suitable spots on the protein surface and then cluster and 

sequentially ranks based on their final conformation average interaction score. The algorithm 

of FTMap is based on the Fast Fourier Transformation (FFT) correlation method235, which 

facilitates efficient sampling of billions of small molecule probe positions on translational and 

rotational grids, and uses rigid-body docking to generate binding positions (Figure 36a).235 

Probe positions are scored according to energy expressions, including van der Waals (VDW) 

terms, electrostatic interaction terms, cavity terms and structure-based pairwise interaction 
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potentials.235 The position containing the most significant number of different probe clusters 

are the main hotspots, which would be the most likely binding sites of the protein, as shown in 

Figure 36a as an example. Compared to the same system sampled in real space, the FTMap 

calculation for an average size protein takes at least 1000 times less time than even on large 

computing systems.235 Due to its excellent speed and robustness, FTMap has become one of 

the most popular methods for detecting allosteric binding sites, playing an essential role in 

fragment-based drug design. 

 

Figure 36: Principles of FTMap. (a) The process of FTMap docking. The small molecule 
ligands find the favourable binding site by energy-minimisation, and then difference ligands 
are clustered to generate the ligand clusters, the sites with the most significant number of 
ligands clusters are the main hot spots. (b) Sixteen simple organic molecules are used as a 
probe in FTMap. (c) An example of probe clusters in a target pocket. Extract from 235. 

3.9 Molecular docking 

Molecular docking237, 238 is used to predict the interaction between ligands and proteins at the 

atomic level, which is the technique widely used in structure-based drug design. The docking 

process involves two steps: identifying the conformation of the ligand and assessing the affinity 
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between ligand and target.  

Before molecular docking, a selection of binding sites is first required, and then molecular 

docking generates several different conformations and allows the adoption of the appropriate 

configuration to fit the predefined region in the receptor.  

To score the poses to select the most realistic one, we often use a scoring function. Commonly, 

this score relies on the binding energies between the receptor and the ligand pose: docking 

energy scores between the ligand molecule and the target receptor, electrostatic energies, 

Lennard-Jones potentials and H-bonds. Also, the pose generation can be done via several 

algorithms, either treating the ligand as a rigid body without torsions or as a fully flexible 

body211. 

Several software packages are available for docking, and each one has a different scoring 

function, such as force-field-based scoring function (AutoDock and DOCK) and knowledge-

based scoring functions (SeeSAR).  

The force field-based scoring function obtains the binding energy by accounting for the sum of 

the non-bonding interactions, including receptor-ligand interaction energy and internal 

ligand/protein energy. The former includes the intermolecular electrostatic and Lennard-Jones 

components (van der Waals interaction), while the latter includes the bond 

stretching/bending/torsional. To accelerate the pose formation and scoring, often, the receptor 

is described as a potential grid, reducing it to precalculated potential points in a 3D box (Figure 

37). The box size is often defined by the distance from the ligand centre-of-mass (COM) to the 

edge of the box. The grid can identify whether the ligand atoms overlap significantly in space 

with the receptor atoms. The grid generation involves calculating Coulomb (electrostatic) and 

Lennard-Jones (VDW) energies for each point on the grid around the target. 
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Figure 37: Visualisation of the DOCK6 box in UCSF Chimera239.The pink beads represent 
selected spheres; the grey surface represents the receptor. The blue cubic box represents the 
grid box. The green surface represents the ligand binding site. Extracted from 
http://ringo.ams.stonybrook.edu/index.php/2019_DOCK_tutorial_3_with_PDBID_3JQZ 

Knowledge-based scoring functions obtain interatomic contact and/or distances between 

ligands and proteins by statistically analysing ligand-protein complexes known structures and 

binding data. It can be used to screen large complex databases and simulate uncommon 

interactions such as sulphur-aromatic or cation-π237, but has the problem of interactions being 

underrepresented in a limited training set of structures. One type of knowledge-based scoring 

function is HYDE; it is used within SeeSAR, based on reproducing experimental structures 

rather than binding energy. This method will be described in Chapter 3.10. 

In this work, UCSF DOCK6 has been selected to be used due to a reliable and reliable pose 

prediction240. DOCK6 starts by filling the solvent-accessible receptor surface with overlapping 

spheres to drive the docking localization. From all generated spheres clusters, a subset is 

selected to represent the binding site. This subset is then assigned to the ligand atoms. (Figure 

38) Once matched, energy minimisation is used to optimise the interaction between the ligand 

and the receptor. During this time, the ligand is considered flexible whilst the receptor is 

considered rigid. The quality of binding geometries (poses and modes) is often determined 
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using an AMBER scoring function.  

 

Figure 38: Docking the ligands to the receptor. A) The most extensive rigid substructure of 
the ligand is paired at the binding site by the alignment of the heavy atom to the receptor 
sphere. B) The different conformations of ligands bind to the receptor. Extracted from 
http://dock.compbio.ucsf.edu/DOCK_6/dock6_manual.htm. 

3.10 Scoring function for SeeSAR - HYDE 

HYDE (HYdrogen bonding and DEhydratation algorithm) is the scoring function to evaluate 

the approximate affinity of a ligand in a binding pocket through calculating the free energies of 

ligand binding241, 242. The visual output score can help to predict ligand-protein. HYDE binding 

assessment bases on two factors: desolvation and interaction.  

HYDE estimates and sums hydrogen bonding energy and dehydration energy for each atom in 

protein-ligand complexes (Equation 18)241, 242. The primary feature of this scoring function is 

the use of logP-derived atomic increments for calculating the change in hydrogen bonding 

∆𝐺])%"&'+- and dehydration energy ∆𝐺'(.^'/#!-"&-  between unbound state and bound state.241 

The negative value is favourable, whilst the positive value is unfavourable. 

                                        ∆𝐺]_`U = ∑ (∆𝐺'(.^'/#!-"&-
#!"C+	- + ∆𝐺])%"&'+- )                  (18) 

The logP (logarithm of the octanol/water partition coefficient) plays an essential role in this 

estimation. A more positive logP value indicates higher lipophilicity and affinity for the organic 

phase, whereas a more negative logP means a more hydrophilic substance with a higher affinity 

for the aqueous phase. The dehydration energy calculation relates to whether the atom is 
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hydrophobic or hydrophilic, the former atom contributes favourably to the overall binding 

energy, whilst the hydrophilic dehydration is unfavorable241. The calculation about hydrophobic 

atom (Equation 19) includes the change in solvent accessible surface ∆𝑎𝑐𝑐- of an atom i, its 

logP increment 𝑝 log 𝑃- .  

                           ∆𝐺'(.^'/#!-"&
-,.^'/"a."%-8 =	−2.3𝑅𝑇 ∙ 𝑝 log 𝑃- ∙ (𝑎𝑐𝑐M&%"&'- − 𝑎𝑐𝑐%"M&'- 	)                (19)	

For hydrophilic atoms, it changes to the molecular surface area to consider and is assessed by 

whether there is space for a water molecule in the preferred direction of a hydrogen bond. This 

is shown in Equation 20: 

																	∆𝐺'(.^'/#!-"&
-,.^'/"a.-$-8 =	−2.3𝑅𝑇 ∙ 𝑝 log 𝑃- ∙ 𝑓%M/- ∙ 𝑓b#!(/- ∙ ∑ 𝑤: ∙ 𝑝])%"&'	cM&8!-"&+	:     (20) 

The weights 𝑤: is for multiple hydrogen bonds, which can be formed by a single hydrophilic 

atom, and the factor 𝑓%M/-  is a scaling factor related to how buried the atoms of a hydrophilic 

group is in the unbound state. In addition, the other factor 𝑓b#!(/-  is a correction factor that 

accounts for the local arrangement of water around the hydrogen bond. This factor is due to the 

ligand with many adjacent polar groups restricted the arrangement of water, which reduces the 

loss of hydrogen bonding function for dehydration. 

The hydrogen bond energy calculation is similar to the dehydration term, shown in Equation 

21: 

																		∆𝐺])%"&'- = 1.Ief
J)*+(f)

∙ 𝑝 log 𝑃- ∙ 𝑓%M/- ∑ 𝑤:
])%"&'+	: ∙ 𝑓'(5

:      (21) 

One of the differences in the factors between equations 20 and 21 is the saturation factor 

𝐹+#!(𝑇)  . This parameter indicates the incomplete saturation of the water hydrogen bond 

network at a specific temperature. Another different is 𝑓'(5
:  which determines the geometrical 

quality of a hydrogen bond j. The reason for considering this is that the energy of a hydrogen 

bond decreasing with the deviation of hydrogen bonding geometry between donor and acceptor.  

SeeSAR243 is a software developed by BioSolvelT which estimates the binding affinities 

between protein and ligands using the HYDE score. SeeSAR can visualise and quantify the 
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HYDE score of each atom in the ligand, as well as the respective contributions from desolvation 

and protein-ligand interactions (Figure 39). In addition, SeeSAR gives a logarithmic estimate 

of the binding affinity to reflect the binding situation. According to these visualised data, 

SeeSAR is a method that greatly facilitates the analysis of the binding affinity of ligand-protein. 

 

Figure 39: The example of SeeSAR analysis. The protein is represented in blue ribbon. The 
protein side-chain is signed by a grey bond, with an H atom in blue and an O atom in red. 
The green circle signs the atom of the ligand with favourable HYDE, whereas with 
unfavourable is signed by the red circle. The atom with no colour circle means no 
contribution to ∆𝐺,-./. H-bonds are signed by the dashed line. The data about estimated 
affinity, lipophilic ligand efficiency (LEE), molecular weight (MW), logP of ligand are 
shown in the down figure. 

3.11 Protein-protein docking  

Since here, the descriptions of methods were focused on small molecules- protein interactions, 

although protein-protein interactions (PPI) are essential for biological functions in the cell. 

Different in the process from small molecule ligand-protein docking, protein-protein docking 

methods predict the protein-protein complex structure, outputting a molecular protein complex. 

For simplicity and speed, protein-protein docking is often done using both partners as rigid, and 

the obtained cluster is evaluated by scoring functions developed for this cause.  

The ClusPro server244, 245 (https://cluspro.org) is a popular tool to perform protein-protein 

docking. After PDB coordinates of two proteins to be docked (denoted as “receptor” and 

“ligand”) are submitted, the ClusPro would perform the following steps: 1) Sampling millions 
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of conformations of the two interacting proteins to perform the rigid-body docking, and the 

ligand would be rotated 70,000 rotations. 2) The most significant cluster corresponding to the 

most likely complex models can be selected from 1,000 lowest-energy structures generated 

using RMSD-based clustering244, 245. 3) Optimise the selected structures using energy 

minimization, and the interaction energy can be calculated via the Fast Fourier Transform (FFT) 

correlation technique235. Finally, the highest populated low-energy clusters can be listed as 

possible protein-protein complexes.  

3.12 Methods for analysis of molecule dynamics 

3.12.1 Root-mean-square fluctuation 

Root-mean-square fluctuation (RMSF) measures the average squared difference between the 

position of each specific atom i and the reference position. Defined as (Equation 22): 

                                                      𝑅𝑀𝑆𝐹- = k<
f
∑ [𝑟-l𝑡:m − 𝑟-

/(c]1f
!"g<                                  (22) 

Where T is the time over which the average is taken, 𝑟-
/(c is the reference position for the atom 

i. Atoms with higher spatial fluctuation or residues with large conformational changes are often 

analysed by plotting their RMSF values versus some index identifier, such as atomic or residue 

numbers. (exemplified in Figure 40). Obtaining this information is essential to assess the local 

flexibility of the systems, especially under different circumstances, such as apo and holo 

configurations. 
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Figure 40: The example of a7 nAChR RMSF results. The top figure is the RMSF result about 
a total of 2300 residues of a7 nAChR. The bottom figure is the RMSF result about a total of 
36400 atoms of a7 nAChR. Made by author. 

3.12.2 Root-mean-square deviation 

Root-mean-square deviation (RMSD) calculates the average of a combination of atoms to a 

system from a reference structure through time in an MD generated ensemble (Figure 41). The 

calculation is as Equation 23 

            𝑅𝑀𝑆𝐷(𝑡) = k<
h
∑ 𝑚-[𝑟-(𝑡) − 𝑟-

/(c]14
-g<                                (23) 

Where 𝑀 = ∑ 𝑚- , N is the number of atoms, 𝑟-(𝑡) is the position of atom i at time t, 𝑟-
/(c is the 

reference position for atom i, and mi is the mass of atom i. RMSD is used to quantify the 

dynamic stability of the system via analysis of the conformation changes of the system over the 
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simulation time. Smooth RMSD plots with small standard deviations indicate the stable system, 

whilst large fluctuations may suggest either a flexible protein or problems with equilibration, 

which means that the system has not yet reached the energy convergence and requires more 

extended simulations.  

 

Figure 41: The example of two systems RMSD results. The top figure shows a non-
equilibrated RMSD result, while the bottom one shows a flat RMSD result, indicating that 
the top system shows more fluctuation than another during a 100ns MD simulation. Made 
by author. 

3.12.3 Cluster analysis 

Molecular simulations can generate a large amount of conformational data in snapshots to be 

processed and analysed, which requires a data reduction approach to make it more reasonable. 

This data reduction can be achieved by cluster analysis, which groups similar conformations, 

and extracts a representative conformation from each set. In this case, conformations with high 

similarity form a subset, and representative conformations can be selected from each subset, 

reducing the data volume for subsequent analysis. The cluster analysis is frequently used to 
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identify significant protein conformers after MD simulation (Figure 42) and use these 

conformers to, e.g., hotspot mapping, umbrella sampling simulations, or molecular docking.  

In this work, the approach developed by Daura and coworkers246 has been used to generate and 

sample clusters based on the mutual RMSD. The algorithm of this clustering method calculates 

a root-mean-square distance between the conformations. The configuration with the highest 

number of neighbours is identified as a cluster centroid. In sequence, this cluster will be 

removed from the pool, repeating the cycle for the remaining structures in the pool246. 

Following these steps, a series of non-overlapping clusters can be generated, each with a single 

representative state.  

 

Figure 42: Two clustered structures for 5-dup a7 nAChR 100ns MD trajectory. Made by author. 

3.12.4 Principal component analysis 

The overarching goal of the principal component analysis (PCA) is to reduce the for more 

straightforward and more concise analysis. PCA quantifies the system's motion after simulation, 

identifying low-frequency collective motions, which are functionally relevant, and separating 

them from fast, functionally irrelevant motions (e.g., side chain methyl group rotations). PCA 

enables visualization of those selected high-amplitude modes, and thus it makes it easier to 

assess the primary driving force in the dynamics of the simulated system (Figure 43).  

PCA is obtained from the diagonalization of the covariance matrix (σ) of atomic fluctuations 
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constructed from the MD trajectory. The matrix σ can be calculated in Equation 24: 

					𝛔𝒊𝒋 =< (𝑞-−< 𝑞- >)(𝑞-−< 𝑞- >) >                                 (24) 

where 𝑞- , 𝑞:  are the mass-weighted Cartesian coordinates. By diagonalizing σ, the 3N 

eigenvalues and eigenvectors can be calculated. These eigenvectors are referred to as the 

principal components (PCs) of the trajectory. Each references a macro motion filtered from the 

selected trajectory. The eigenvalues are the magnitude of each eigenvector, representing the 

sum of the translation per atom for that specific PC. Usually, the eigenvectors are ranked via 

the magnitude that each one has. Hence, the first principal component corresponds to the largest 

eigenvalue, and it represents the direction in which the molecule has the most significant 

relevant motion, and so on for all subsequent PCs. Each PC corresponds to an axis in the n-

dimensional space and is orthogonal to all other PCs. 

One usual way to analyse and compare macrodynamics using PCA is to observe the 2D 

projection graphs for PC pairs. The denser region of dots within this 2D scatterplot indicates 

that this conformation is more likely to be sampled, whereas the sparse regions correspond to a 

more unstable conformation. Cluster analysis can be performed on the PCA dataset, where a 

dense region of dots can be grouped into a cluster of similar conformations.  
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Figure 43: 2D Projection of PCA. A different colour separates each experiment result. Each 
dot represents a mode of motion of the protein. Made by the author. 

3.12.5 Hydrogen bonds analysis 

Hydrogen bonds are involved with most interaction modes related to protein structure, protein 

folding and molecular recognition. Hydrogen bonds provide a significant contribution to 

establishing the rigid structure of proteins and making intermolecular interactions specific. To 

determine whether an H-bond can be found between a donor atom/residue and an acceptor 

atom/residue, a common geometric criterion used is 1) 𝑟 ≤ 𝑟]* = 0.35𝑛𝑚; 2) 𝛼 ≤ 𝛼]* = 30° 

(Figure 44).  

 

Figure 44: The conditions for H-bond existing between two atoms. The white circle 
represents the donor atom; the red circle represents the acceptor atom. The dashed line signs 
H-bond. 
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As shown in Figure 45, some software such as Chimera239 and SeeSAR can provide H-bond 

results visually on screen, making it simple to observe the interactions between two molecules. 

Also, from MD, the H-bonds are calculated via the autocorrelation function C(𝜏). This value is 

used to calculate the lifetime of the H-bond and is calculated via Equation 25: 

																																																																			C(𝜏) =< 𝑆-(𝑡)𝑆-(𝑡 + 𝜏) > 																																														 (25) 

where Si(t) = {1,0) is the existing function of the H-bond i at time t. The average H-bond lifetime 

is estimated from the integral of C(τ), shown as following Equation 26: 

																																																																								𝜏]* = ∫ C(𝜏)𝑑𝜏k
0                                                     (26) 

 

Figure 45: The example of H-bond results. A) The H-bond results are shown via FTMap; B) 
The H-bond results are shown via Chimera; C) The H-bond results are shown via MD 
simulation. Made by author. 

  



 

 
83 

Chapter 4  Structure and dynamics of human-specific CHRFAM7A 

(Dupα7) nicotinic receptor linked to neuropsychiatric disorders 

As outlined in Chapter 2, dupα7 negatively affects the functioning of α7 receptors associated 

with neurological disorders, including Alzheimer’s diseases and schizophrenia. However, the 

stoichiometry for the α7 nicotinic receptor containing dupα7 monomers and their functional 

status remain poorly understood. To solve it, my part of the work focused on developing 

computational models of all possible combinations of wild-type α7 and dupα7 pentamers and 

evaluating their stability via atomistic molecular dynamics and coarse-grain simulations. In this 

work, I assessed the effect of dupα7 subunits on the Ca2+ conductance using umbrella sampling. 

The result indicated that receptors comprising of four or more dupα7 subunits had been found 

not stable enough to constitute a functional ion channel. The results also showed that models with 

dupα7/α7 interfaces are more stable and are less detrimental for the ion conductance in comparison 

to dupα7/dupα7 interfaces. My findings show that the optimal stoichiometry of dupα7/α7 functional 

pentamers should be no more than three dupα7 monomers, in favour of a dupα7/α7 interface in 

comparison to a homodimer dupα7/dupα7 interface.  

4.1 Results 

4.1.1 Human-specific dupα7 nicotinic receptor 

In humans, exons 5–10 in the CHRNA7 gene, which encodes for nicotinic α7 receptor, may be 

duplicated and fused to exons A–E of FAM7A (family with sequence similarity 7A), resulting 

in the hybrid gene denoted as CHRFAM7A 98-100. Its product, dupα7 (duplicated a7), is a 

truncated variant, where the N-terminal 146 residues of the ligand binding domain of the α7 

receptor have been replaced by 27 residues from FAM7 protein98-100, and the remaining 

sequences of α7 and dupα7 are identical247, 248 (Figure 46A).  

It is postulated that dupα7 acts as a dominant-negative inhibitor of α7 function, suggesting its 

role in human cognition and immune responses by perturbing normal α7 activities249. However, 

the exact mechanism and specific contribution of dupα7 to the biology of α7 receptors remain 
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highly elusive. Even though the quaternary arrangements of both nicotinic receptors are 

known95, and reports on overall stoichiometries of heteromeric α7 and dupα7 receptors have 

been published recently248, atomistic details controlling those assemblies are still missing. 

Unravelling the molecular mechanisms governing the formation of the most probable dupα7/α7 

pentamers is of high clinical interest, crucial for structure-guided approaches to target those 

heteromeric receptors, which account for the translational gap research focusing on nicotinic 

receptors as therapeutic targets for neurodegenerative diseases148. 
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Figure 46: Sequence alignment of α7/dupα7 EC domains and its eight possible models. (A) 
Sequence alignment of α7/dupα7 extracellular (EC) domains (residues 1–180), performed 
by ClustalW, green are the residues with high similarity and in red the conserved residues. 
(B) Schematic representation of all eight different model arrangements dupα7-α7 pentamer, 
considered in this study: the canonical (WT) α7 subunits are coloured blue; dupα7 subunits 
are coloured red. 

To describe the most likely α7/dupα7 stoichiometry at an atomistic level of detail and to 

elucidate the structural, energetic and functional effects of incorporation of dupα7 monomers 



 

 
86 

into the α7 channels, I combined molecular modelling, multiscale molecular dynamics (MD) 

simulations (all-atom and coarse-grain), and umbrella sampling (US) simulations of the whole 

receptors embedded in a DPPC membrane. I have also studied extracellular domains separately 

using all-atom MD simulations, focusing on their structure and intrinsic dynamics alongside the 

binding side dynamical behaviour.  

4.1.2 Stoichiometry studies for different combinations of dupα7/α7 

The three-dimensional molecular models of extracellular domains of the canonical α7 and 

dupα7 are shown in Figure 47. In dupα7, the N-terminal segment (blue region in Figure 47 of 

α7 has been replaced a shorter α-helix (Figure 47B). Three β-sheet segments (β1–β3 in Figure 

47) are missing, yet the following segment (β-sheets 4 to 10) resembles the canonical structure. 

 

Figure 47: The extracellular EC domain conformation of α7 subunit (residues 1–180). (A) and dupα7 subunit (B). The 
structures are coloured by gradient, from blue (N-terminus) to red (C-terminus). 

Given that the ‘pentamer’s overall structure containing dupα7 subunits has not been 

experimentally solved, I have built and investigated all possible models. These different 

combined pentamers produced eight models containing seven combinations of dupα7 nicotinic 

receptors (Figure 46B). The dimerisation assembles the functional pentamer through only two 
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interfaces. Given this, four possible dimer combinations can be formed: WT-WT, dupα7-WT, 

WT-dupα7, dupα7-dupα7. Those combinations are functionally relevant because the orthosteric 

binding site is located at the interface between two monomers. Thus, each particular dimer 

combination will affect the receptor’s function. 

The eight models were first simulated using a coarse-grain approach by translating the atomistic 

model to MARTINI beads (Supplementary Figure S1). The RMSD and the total potential 

energy in the function of time are shown in Figure 48. All eight pentamers showed a similar 

magnitude of deviation from their starting structures (Figure 48A), with the average values 

fluctuating between 1 to 1.4 nm, which was achieved by most of the models after 50 ns of 

unrestrained coarse-grain MD simulation. 

The RMSD plots did not show any statistical difference regarding relative motions regarding 

their starting configuration when a single WT α7 is swapped for a dupα7. However, there is a 

significant difference in total internal potential energy between the different stoichiometries. As 

expected, the WT α7 has the lowest internal energy average value, closely followed by A-

Dupα7. Interestingly, both models with two dupα7 (AB-Dupα7 and AC-Dupα7) have 

undistinguishable average values, which is also the case for both models with three dupα7 

(ABC- and ACD-Dupα7). These characteristics show that CG models could discern the 

different ‘stoichiometries’ internal energy, but it does not have the resolution to discern which 

internal configuration is more stable. Therefore, I decided to simulate all eight models with an 

atomistic resolution. 
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Figure 48: (A) RMSD results of eight complete transmembrane models during 1 μs CG MD 
simulation. (B) Total potential energy vs. time results of eight complete transmembrane 
models during 1 μs MD simulation. The black line shows the data for α7 WT model, red-A-
Dup, green-AB-Dup, blue-AC-Dup, yellow-ABC-Dup, brown-ACD-Dup, grey-4-Dup, and 
purple-5-Dup. The schematic arrangements of all models are shown in the methods section. 

To unravel the most probable stoichiometry and the effect the interfacial interactions have on 

the system stability, all eight models of different combinations of dupα7/α7 were simulated for 

100 ns (each replica, all simulations performed in triplicates) in an atomistic resolution. This 

step was made for the whole model embedded in a DPPC membrane and its EC domain 

separately. The protein RMSD for the trajectories shows that for a higher ratio of dupα7/α7, the 

overall average RMSD is higher compared to the starting structure. This characteristic is more 

pronounced for the EC domain simulations, as shown in Figure 49A and 49B, respectively. 

The pentamer simulations embedded in the membrane show RMSDs quickly plateauing for most 

of the models containing less than three dupα7 subunits. Nonetheless, the ACD-Dupα7 model 

shows a higher average RMSD than its ABC-Dupα7 counterpart, which may indicate that 

interfacial dupα7-dupα7 interactions may be favourable for the molecular assemble. 

The pentamers’ internal potential energy (Figure 49C–D) shows that the average energy 

increases as the dupα7/α7 ratio increases. For the extracellular (EC) domain, the combination 

containing a single dupα7 subunit has significantly lower energy than all the other models. 

However, the full-length receptor model simulations show that the A model’s internal energy 

(Figure 49D) fluctuates between similar values to the WT and AB model. The difference in 

energy between the EC domain and its counterpart containing all three domains may indicate 

that the transmembrane and intracellular (IC) domains may significantly stabilise the pentamers 

containing dupα7 subunits. However, it is not accuracy to compare this quantity between 

different simulations with different numbers of atoms (in general, more atoms will lead to more 

negative total energies due to attractive long-ranged van der Waals). Ideally, the free energy 

change associated with sub-unit binding should be calculated, although this is not possible due 

to computational limitations associated with the system’s size. The number of hydrogen bonds 

formed is a reasonable metric to estimate the stability in the absence of the rigorous free energy 
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calculations. 

 

Figure 49: (A) RMSD results of eight EC domain models during 100 ns MD simulation. (B) 
RMSD of eight full-length receptor models during 100 ns MD simulation. (C) Total potential 
energy vs. time of eight EC domains during 100 ns MD simulation. (D) Total potential energy 
vs. time of eight complete transmembrane structures during 100 ns MD simulation. The 
canonical a7 (WT) model is shown in black, A-Dupα7-red, AB-Dupα7-green, AC-Dupα7-
green, ABC-Dupα7-yellow, ACD-Dupα7-brown, 4-Dupα7-grey, and 5-Dupα7-purple. The 
schematic arrangements of all models are shown in the methods section. 

As expected, the total number of hydrogen bonds formed shows similar behaviour to the 

calculated potential energy. Specifically, the EC domain trajectories (Figure 50A) show more 

H-bonds for WT and A-Dup than their counterparts. The pentamers containing a higher number 

of dupα7 subunits show higher average internal energy and a lower average number of 

hydrogen bonds. Therefore, a clear correlation was observed between a higher dupα7/α7 ratio, 

lower structural energy, and fewer total hydrogen bonds (Figure 50B). 

When observing the hydrogen bond formation between interfaces, several keys residues were 

identified. All these sets of residues are listed in Supplementary Tables S1–S16. Investigating WT-

WT dimer, we identified six residues often present in the interaction between two adjacent subunits 
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(N69, N75, R101, P110, D111 and W172). In contrast, the number of interfacial hydrogen bond 

pairs for WT-dupα7 interfaces varied between three to four. One of the main differences between 

the WT-WT interfaces and dupα7 containing interfaces is that the latter does not have the hydrogen 

bond between R101 and the P110 of the sequential subunit residues are not present in the sequence 

of the dupα7. 

 

Figure 50: H-bond results of EC domain models and complete models. (A) The total number of hydrogen bonds 
vs. time of the eight EC domain combinations. (B) The total number of hydrogen bonds vs. time of eight fully 
models during 100 ns MD simulation. The black line shows α7 WT model; red-A-Dupα7, green-AB-Dupα7, blue-
AC-Dupα7, yellow-ABC-Dupα7, brown-ACD-Dupα7, grey-4-Dupα7, and purple-5-Dupα7. The schematic 
arrangements of all models are shown in the methods section. 

A higher number of dupα7 subunits directly changes the molecular dynamics. Figure 51 shows 

that the trajectory projection on the two most significant principal components is affected by 

the dupα7/α7 ratio. WT, A-Dupα7 and the complexes with two dupα7 (AB and AC) subunits 

have similar distributions (Figure 51A), especially for the transmembrane complexes (Figure 

51B). The most significant difference comes from models with three or higher dupα7 subunits. 

Given their higher energy, pentamers with four or five subunits resulted in higher magnitudes 

on their projection values, achieving a sparser distribution on the two-dimensional principal 

component space. These complexes show the same behaviour for their extracellular (EC) 

domain simulations, albeit less pronounced than the complexes containing a lower dupα7/α7 

ratio when the EC domain is simulated by itself. 
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Figure 51: PCA results for the EC domain / fully modelled of eight dupα7 models. (A) 
Principal component analysis, showing the 2D projection of eight different models of the 
extracellular (EC) domain. (B) Principal component 2D projection of eight different fully 
models during 100 ns of the atomistic MD simulation. The data for α7 WT model is coloured 
black; A-Dupα7-red, AB-Dupα7-green, AC-Dupα-blue, ABC-Dupα7-yellow, ACD-Dupα7-
brown, 4-Dupα7-grey, 5-Dupα7-purple. The schematic arrangements of all models are 
shown in the methods section. 

These differences in the transmembrane model dynamics are directly related to the motions on its 

EC domain, mainly of loop C and the loops connecting the central β sheets (Figure 52). The motion 

of Loop C changes depending on its neighbouring subunit for both simulated models, as shown in 

Figure 52 and Supplementary Figure S2. For WT-WT interfaces (Figure 52A), the loop fluctuates 

between an open and closed conformation and the entire α7 model remains stable overall 

(Supplementary Figure S3). WT-dupα7 and dupα7-dupα7 interfaces (Figure 52B) show a more 

open conformation and higher local flexibility. 
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Figure 52: Conformational changes in the EC domain of the α7 / AB-Dup model during the 
100ns MD simulation. (A) Left panel: The extracellular view of the three conformations of 
the α7 model EC domain. Right panel: the Loop C motion. The representative configurations 
sampled around 15 ns, 50 ns and 85 ns are coloured yellow, orange and red, respectively. (B) 
The extracellular view of the three conformations of the AB-Dupα7 model EC domain. The 
representative configurations for the starting conformation’s state (around 15 ns) are 
coloured yellow and cyan; the representative configurations for the state sampled around 50 
ns are coloured orange and cornflower blue; the representative configurations for state 
sampled around 85 ns are coloured red and blue. The dashed lines represent the interfacial 
loops, which are the areas with the highest fluctuation; the arrows within the dashed circles 
represent the macro motions within loop C for both WT and dupα7. 

4.1.3 The effect of dupα7 subunits on Ca2+ conductance 

Umbrella sampling simulations were carried out to investigate the effect of different 

combinations of dupα7/α7 subunits on the Ca2+ intake. As shown in Figure 53, all eight potential 

mean force (PMF) curves show similar profiles. The energetic differences between the eight 

combinations started to arise around −5 nm, near the TM region’s start. At −8 nm, the ion is at 
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the tunnel entrance in the EC domain, transitioning to the transmembrane region (TM) around 

−1.5 nm. At this region, α7 and A-Dupα7 have the lowest energy (−37.5 kcal.mol−1). However, 

an energetic barrier emerges after the TM entrance, higher for AB, ABC, 4-Dupα7 and 5-Dupα7. 

This energetic difference emerges from how the ions interact with the model, specifically with 

glutamate E254. The canonical α7 (WT) structure can maintain the beginning of the α-helix 

located in the TM entrance, where the E254 residue is located (Sequence: 250-LVAEIM-257). 

This behaviour allows a more favourable interaction with the E254, resulting in more contact 

points with Ca2+ (Supplementary Figure S4 and Supplementary Tables S17 and S18). 

 

Figure 53: The umbrella sampling result of eight models. Potential of mean force (PMF) 
calculated for the position of the Ca2+ moving through the pentamer axis. The black line 
shows the PMF obtained for the canonical α7 (WT) receptor, A-Dupα7-red, AB-Dupα7-
green, AC-Dupα7-blue, ABC-Dupα7-yellow, ACD-Dupα7-brown, 4-Dupα7-grey, and 5-
Dupα7-purple. The schematic arrangements of all models are shown in the method section. 
the average associated error for the runs is 5kcal/mol obtained via averaging all errors using 
bootstrap method in gmx wham. The error bars were omitted for clarity. 

The final 2–6 nm section represents the IC domain, which shows that the energy becomes 

significantly higher when the ion is far away from the TM domain. The AB-Dupα7 shows the 
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highest energy (81.2 kcal.mol−1) at the bottom of the IC domain, with the lowest 5-Dupα7 model 

results (28.3 kcal.mol−1) as shown in Table 4. 

Table 4: Sampling results Ca2+ permeability energetics. 

Energy/Model 

(kcal. Mol−1) 
α7 A-Dup AB-

Dup 
AC-
Dup 

ABC-
Dup 

ACD-
Dup 4-Dup 5-Dup 

EC -> TM (around-
1.5 nm) −37.5 −37.5 −15.7 −23.6 −16.4 −21.6 −15.9 −13.9 

Transmembrane 
domain   (around 0 

nm) 
0.2 1.8 14.6 7.7 4.1 2.3 4.8 9.84 

TM –> IC (around 
2 nm) −0.1 −12.5 −0.1 −10.4 1.1 −7.6 −6.6 −12.6 

Exiting IC (around 
6 nm) 51.1 37.6 81.2 52.3 63.1 43.7 52.8 37.3 

4.2 Discussion 

This work aimed to understand the assembly and stability of different combinations of 

functional α7 nicotinic acetylcholine receptors (nAChR), bearing a partial duplicate α7nAChR. 

Lasala and coworkers reported that WT α7 nicotinic receptors could form functional pentamers 

incorporating dupα7 subunits. However, the minimum number of WT α7 had to be two248. 

Nonetheless, neither the effect of different stoichiometry on α7 nAChR receptor function nor 

the structural stability of pentamers containing dupα7 subunits is known. 

These results showed that the arrangement of the extracellular domain for both α7 and dupα7 

subunits is similar, and the exception is the N-terminal portion of the EC domain. This 

characteristic agrees with the models published shown by Lasala and coworkers 248. Their 

models showed that changes in the α1 loop and differences in the configuration of the β-sheets 

in the EC domain core could be observed between the canonical and receptors with dupα7 

subunits. My data confirmed that these modifications affected the ‘heteropentamers’ stability 

and showed how the interfaces interact. 

I showed how structural equilibration of the receptors with different stoichiometries occurs 
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through time. For the pentamers with higher dupα7 content, the RMSD curves take longer to 

plateau, and they reach higher average values than their starting structure, reflecting their 

decreased stability and weaker cohesion. These characteristics are found in both resolutions 

used: coarse-grain and atomistic MD as well. Additionally, similar behaviour when comparing 

the internal structural energy can be found: the ‘pentamers’ average structural energy steadily 

increases with the dupα7/α7 ratio. This increase comes from several hydrogen ‘bonds’ 

dissemble and favourable interactions, both at the interfaces and hydrophobic core. One of the 

critical differences comes from the absence of the interaction with the R101 in the receptors 

containing dupα7 subunits. This residue interacts with several other residues located in the 

subsequential subunit, and the lack of these interactions directly affects the structural cohesion 

of the interface. 

The truncation directly affects the orthosteric binding site configuration. As we showed, the loop 

dynamics that works as a gatekeeper entirely depends on the dupα7/α7 interactions. 

The canonical a7 (WT) pentamer simulations showed that loop C moves from an open 

conformation to a closed conformation. At the WT-dupα7 interfaces, very different dynamic 

signatures are found. As discussed in previous works 143, 250, a functional α7 pentamer requires 

a single functional orthosteric binding site, albeit this is less sensitive than a fully functional 

pentamer with up to five orthosteric sites. Given the destabilisation effect that dupα7 subunit 

causes on its dimerisation interface and in the orthosteric binding site, the dupα7 interface 

should be less sensitive to the orthosteric ligand binding. This effect is evidenced by how the 

loop C on the dupα7 subunit moves away from the pentamer. This movement shows that the 

dupα7 binding site might remain open, not stabilising the orthosteric ligand in the binding cavity. 

The partial duplication and truncation that leads to the dupα7 protein are located in the 

extracellular domain (Figure 46A). Hence, this is the region that shows the highest difference 

between WT and dupα7 dynamics. However, the transmembrane domain reduces the system’s 

overall energy by creating a higher number of hydrogen bonds, resulting in a lower average 

RMSD and RMSD standard deviation compared to the EC domain by itself. Nonetheless, 

pentamers containing dupα7 subunits undergo structural changes within the TM domain, 
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mainly on the entrance region (residues 250–257). The energetic landscape referring to the 

extracellular to intracellular calcium intake showed that this region plays a vital role in this 

process. 

Residues 250–257 go from an α-helical conformation in the WT pentamer to a short π-helix in 

most dupα7 models. This conformation transition destabilises the favourable interactions 

between the calcium and the residue E254 and its neighbouring residues sampled in the WT 

simulation. This transition also is an effect that is directly related by the dupα7/α7 ratio: Both 

WT and A-Dupα7 models show similar profiles, indicating that a single dupα7 subunit does not 

affect the calcium intake substantially. Nonetheless, another dupα7 subunit increases the system 

energy substantially for the TM domain entrance region. This energy difference suggests that 

pentamers bearing two consecutive dupα7 subunits are unlikely to occur. 

These effects are also position-dependent: AB-Dupα7 model and ACD-Dupα7 model showed 

similar energetic profiles within the calcium intake TM. These profiles had lower free energy 

values than the AC-Dup α7 model in the TM region. Hence, it indicates that dupα7 interfaces 

have a less pronounced effect on the function of the dupα7-α7 interface for models with more 

than one dupα7 subunit. The 250–257 loop interactions and the calcium are significantly 

reduced for models with four or five subunits. A higher barrier is found in comparison to the 

other models. 

Hence, this shows that pentamers with four or five dupα7 subunits are not functionally viable. 

In addition to the previously published works, the results shown in this work shed light on the 

plausible stoichiometry of dupα7/α7 subunits. We evaluated stability and functional differences 

emerging from the positioning of the dupα7 subunits within the pentamer. Albeit with a weaker 

interface interaction, the AC-Dupα7 model showed a lower effect on the calcium transition than 

the AB-Dupα7 model. A similar effect was observed when the pentamer had three dupα7 

subunits. The simulations of models with four or five dupα7 are both too unstable, with an 

unfavourable effect on the Ach binding site organisation compared to the crystal structure. 

Additionally, it disrupts the calcium transmission by the pentamer. 
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In summary, a number higher than three dupα7 subunits is unlikely to be naturally occurring 

and functional. The most stable stoichiometry is the 1: dupα7-4:WT α7, which is also one of 

the combinations with the least negative effect on calcium transmission. With two subunits, we 

expect to see dupα7 interacting with WT subunits, given that it has a lower effect on its function. 

Naturally occurring pentamers with three subunits should be less likely than with two, but 

should also be more favourable the interaction between dupα7/α7 interfaces, which we would 

expect the predominance of an ACD-Dupα7 organisation. 

4.3 Materials and methods 

4.3.1 Molecular modelling of α7 and dupα7 receptors 

The initial models of pentameric α7 homopentamers and partially duplicated dupα7 subunits 

were created using SWISS-MODEL, a fully automated protein structure homology-modelling 

server, accessible via the ExPASy web server203, 204. The primary sequences of the human 

canonical α7 and dupα7 were obtained from the UniProt repository (entries P36544 and 

Q494W8, respectively). Fifty models were generated and ranked according to their sequence 

similarity and QMEAN 203 quality scores combined. After a visual inspection procedure for the 

top 10 ranked molecules, the model based on the crystal structure of α7-AChBP in complex 

with lobeline (PDB code: 5AFH) combined with high-resolution (4.3 Å) cryo-EM structure of 

mouse 5-HT3 serotonin receptor (PDB code: 6BE1) was chosen for both receptors as the 

difference comes mainly from the N-terminal region (Figure 46A). Different stoichiometries 

were generated in the UCSF Chimera molecular modelling and visualisation toolkit 251 by 

overlaying the α7 WT subunit with dupα7 in eight receptor models in total (Figure 46). A 

disulfide bridge at the conserved Cys-loop was ensured for each model. All models, arising 

from different stoichiometries of dupα7 and α7 subunits, were quality checked by UCSF 

Chimera, having any missing loops modelled by MODELLER interface 252, 253 within UCSF 

Chimera, and conformations of interfacial side chains checked for steric clashes. 

4.3.2 Coarse-grain molecular dynamics simulations 

Coarse-grain simulations of all eight models were done to equilibrate the modelled pentamers 
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and understand the intrinsic dynamics in a time scale relevant to the ion channel conductance. 

The atomistic models were translated to MARTINI beads254 and parametrised with the 

MARTINI 2.2 force field255. The principal protein axis was aligned to the Cartesian Z-axis. The 

membrane was built using the insane.py script. The membrane model was built using 

dipalmitoylphosphatidylcholine (DPPC), with 15 nm in the X and Y axis and 25 nm in the Z-

axis, resulting in a box of 15 × 15 × 25 nm in dimensions. The system was then solvated, using 

90% MARTINI water beads and 10% anti-freeze MARTINI water beads, the anti-freeze beads 

added avoids the tendency of the water model used in the CG model of the membrane to freeze 

too easily 255. The solvated receptor-membrane systems were energy minimised using the 

steepest descent algorithm and equilibrated. In the minimisation, the energy step size was set 

to 0.001 nm, and the maximum number of steps was set to 50,000. The minimisation was 

stopped when the maximum force fell below 1000 kJ/mol/nm using the Verlet cutoff scheme. 

Treatment of long-range electrostatic interactions and Van der Waals interactions were set to be 

shifted to 0 and 0.9 nm, respectively, beyond the cutoff of 1.5 nm. After the energy minimisation, 

heating to 300 K was performed for 10 ns with a time step of 20 fs. The temperature coupling 

was set between the protein and the non-protein entities using a Berendsen thermostat, with a 

time constant of 1 ps and the temperature set to reach 300 K with the pressure coupling. Pressure 

equilibration was run at 300 K with a semi-isotropic Berendsen barostat and set to 1 bar in an 

NPT ensemble. Both NVT and NPT had harmonic position restraints were applied to the 

backbone. The constraint algorithm used was LINCS. The production run was made using the 

same parameters as NPT, except the backbone position restraints were removed. The production 

run was made in triplicates of 1 μs each for each of the eight combinations of α7/dupα7. 

4.3.3 Atomistic molecular dynamics (MD) simulations 

Atomistic MD simulations have been carried out to generate ensembles to get a detailed insight 

into the stoichiometry of nicotinic α7/dupα7 receptors in atomistic resolution. The simulations 

were performed for α7/dupα7 pentamers with different stoichiometries for the models 

containing all three domains (EC-TM-IC) and only the EC domain to evaluate the effect of the 

TM-IC domain on the dynamics. 
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All simulations were performed using Gromacs 2016.3256. The protein was parametrised using 

the AMBER99SB-ILDN force field, with the DPPC lipid bilayer and TIP3P water model218. 

The α7 and dupα7 models were embedded in a DPPC bilayer lipid molecule, using the 

computational membrane builder tool in the CHARMM-GUI server (www.charmm-gui.org)257-

259. Box distance was set to 1 nm, and periodic boundary conditions were applied. The box was 

solvated and Na+ and Cl− ions were added to achieve a 0.1 M concentration and maintain charge 

neutrality of the unit. The solvated receptor-membrane systems were energy minimised and 

equilibrated. The minimisation ran using steepest descent for 1000 cycles followed by the 

conjugate gradient. Energy step size was set to 0.001 nm, and the maximum number of steps 

was set to 50,000. The minimisation was stopped when the maximum force fell below 1000 

kJ/mol/nm using the Verlet cutoff scheme. Treatment of long-range electrostatic interactions 

was set to Particle Mesh-Ewald (PME)260, and the short-range electrostatic and van der Waals 

cutoff was set to 1.0 nm. After the energy minimisation, heating to 300 K was performed for 20 

ps with a time step of 2 fs and position restraints applied to the backbone in an NVT ensemble. 

The constraint algorithm used was LINCS, which was applied to all bonds and angles in the 

protein261. The cutoff for non-bonded short-range interaction was set to 1.0 nm with the Verlet 

cutoff scheme, and long-range electrostatics were set to PME. The temperature coupling was 

set between the protein and the non-protein entities using a Berendsen thermostat, with a time 

constant of 0.1 ps and the temperature set to reach 300 K with the pressure coupling off. 

Pressure equilibration was run at 300 K with a Parrinello–Rahman barostat and set to 1 bar225 

in an NPT ensemble. The equilibration trajectories were set to 5 ns (discarded from the analysis), 

and the production MD simulations were performed for 100 ns. Each trajectory was run in 

triplicates. 

Analysis of the trajectories was performed using GROMACS tools, including RMSD to assess 

overall stability, per-residue RMSF to assess the local flexibility, and calculating SASA for solvent-

mapping. 

For all-atom molecular dynamics simulations, standard workstations and a GPU in-house server 

were used. These included workstations with Intel i7 7th generation processor, with 16 GB of RAM 
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with a NVIDIA GTX1080, and a dedicated server with 32 GB OS-RAM, a Xeon 44 core processor 

with multithreading, and 2x NVIDIA GTX1080Ti GPUs. 

4.3.4 Umbrella sampling (US) simulations 

Umbrella sampling (steered molecular dynamics)232 simulations were used to assess the 

influence of different stoichiometry of receptors on the ‘pentamer’s ion conductance. The 

energies of the Ca2+ ion pulled through the axis of the channel pore (Z-axis) were calculated 

using the Weighted Histogram Analysis Method (WHAM) method234 to extract the potential of 

mean force (PMF). To prevent the channel from moving out of the membrane, the receptor 

subunits were position-restrained during the pulling simulations, using 1000 kJ mol−1nm−2. The 

ion has been placed above the top of the EC domain and pulled downwards along the Z-axis 

towards the TM and IC domains over 5 ns at a rate of 0.01 Å/ps. A series of umbrella sampling 

windows were generated from the pulling trajectory to proceed with the umbrella sampling. 

The entire pathway covering the range of [−10, 10] Å was divided into 0.7 Å, totalizing 40 

windows. 
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Chapter 5  Mapping of putative allosteric binding sites of and α7 and dupα7 

nicotinic receptors  

The analysis of stoichiometry, molecular dynamics, conformational changes, and energetics of 

a7 receptors, described in Chapter 4, indicated that the two most unlikely assemblies of dupα7 

receptors contain four and five dupα7 subunits, respectively. Among the rest of the pentamers, 

the most stable and thus plausible assemblies were A-Dup, containing only one dupα7 subunit, 

and AC-Dup containing two non-consecutive dupα7 subunits.  

Based on these models, protein-protein docking studies were made to evaluate how such dupα7/α7 

interfaces or dupα7/dupα7 interfaces would interact with α-bungarotoxin (a-BTX), which is an 

antagonist to α7, and amyloid Aβ42. The result showed that receptors bearing dupα7 subunits are 

less sensitive to Aβ42 effects, which may shed light on the translational gap reported for strategies 

focused on nicotinic receptors in ‘Alzheimer’s disease research. Following on those results, how 

the formation of α7/dupα7 heteromeric receptors affected the binding of two known ligands of α7 

nicotinic receptors was investigated: the Aβ42 and α-BTX using molecular docking methods.  

Another aim of the work described in this chapter was to identify putative allosteric binding 

sites, which are “druggable” by small molecule ligands on those receptors. Identifying those 

sites is crucial for developing selective dupα7 ligands, as the orthosteric binding site is assumed 

to be abrogated in dupα7 subunits. 

To map any plausible allosteric binding sites and the extent of changes within the orthosteric 

binding site, the molecular representations obtained from molecular dynamics of the 

extracellular (EC) domain of the functional pentamers of the canonical α7 receptor were 

selected for the solvent mapping via FTMap webserver. The same procedure subjected A-Dup, 

AB-Dup, AC-Dup and ACD-Dup models to identify specific binding sites.  

To study conformational changes within orthosteric sites in pentamers containing dupα7 

subunits, several known agonists were used: acetylcholine (Ach), nicotine (Nic), lobeline (Lob). 

Alongside these known agonists, a target-focused nAChR orthosteric ligand library (1790 small 



 

 
102 

molecules) was docked and subjected receptors to molecular docking procedure using UCSF 

DOCK6 software262. Four novel allosteric binding sites have been discovered in this process. 

One of those sites is located inside the single subunit, and it is formed by β2, β4, β5 and β6 

loops (Figure 61). The second one is formed between two adjacent subunits, involving residues 

from the α1 loop and β4 loop of one subunit and residues in α1, β2 and β3 loop of the adjacent 

subunit. The last two allosteric binding sites were found in the middle of the adjacent subunits: 

one in the upper pocket above the orthosteric binding site, involving loops B and C in one 

subunit and loops β1, β2 in the adjacent subunit. Another allosteric site was found below the 

orthosteric site, and it involved residues in loops A, β6 and β7 in one subunit and residues in 

loops β1, β8 in the adjacent subunit. As shown in Figure 61, these binding sites may provide a 

starting point for future drug development to target human-specific dupα7 isoform of nicotinic 

receptors. 

5.1 Results 

5.1.1 The effect of dupα7 subunits on macromolecular ligand binding 

Alongside the effect of the dupα7/α7 ratio on the pentameric receptor dynamics, we also 

assessed the effects of dupα7/α7 ratio on the binding of two macromolecular ligands: α-

bungarotoxin (α-BTX) and the amyloid β (Aβ42) (Figure 54). α-BTX is a well-established, 74 

residues (8 kDa) neurotoxin that binds nicotinic acetylcholine receptors, including a7 subtypes, 

and acts as a competitive antagonist upon them142. While the experimental structure of α-BTX-

α7 is known (PDB code: 4HQP), the structural information on interactions between receptors 

containing dupα7 subunits and α-BTX is missing. Aβ42 and α7 interact with high affinity 263, 264. 

However, the details of those interactions remain elusive. 
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Figure 54: 3D structure of α-BTX and Aβ42 

To gain insight into those interactions, molecular docking calculations were performed. 

Molecular models of the α-BTX binding sites were built on the dimerisation interface 

(orthosteric binding sites, inferred from the reported α-BTX-α7 interactions). Hence, evaluation 

of the binding poses of α-BTX and their binding affinities to all four combinations of receptors: 

α7/α7 (canonical), α7-dupα7, dupα7-α7, and dupα7-dupα7. 

To identify the binding site for Aβ42,  an exhaustive scan of the whole extracellular receptor domain 

using ClusPro244 was performed. The best-scoring poses (8/10 hits) converged to the site, which 

partially overlaps with the reported α-BTX binding sites, consistent with the reports on α7 receptor 

activation via orthosteric modality reversing the Aβ42 binding 264. Therefore, it was concluded that 

the Aβ42 binding site overlaps with that for α-BTX. 

The results are shown in Table 5. α-BTX showed very low predicted binding affinity to all the 

receptors containing dupα7 subunits (Table 5), suggesting that those receptors will be resistant 

to α-BTX. This observation agrees with the published experimental data showing that 

CHRFAM7A decreased α-BTX binding as detected by immunohistochemistry and flow 

cytometry and markedly decreased α-BTX staining neuromuscular junction of CHRFAM7A 

transgenic mice 265. 

For Aβ42 interactions, the ligand residues that interacted with the receptor binding sites were 

located in the C-terminal regions of the Aβ42 monomer (Table 5). The predicted binding affinity 

of the Aβ42 to the binding site comprising two α7 subunits (the canonical receptor) was in the 

low nM range, consistent with available experimental data 264. As a comparison, α-BTX was 
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predicted to bind to the canonical a7 binding sites with one order of magnitude lower (high pM 

range) than Aβ. This difference, too, is consistent with the experimental data available. 

The α7 receptor residues crucial for maintaining the binding pose include R208, F209, and 

E211. All those residues are conserved in both α7 and dupα7 isoforms, albeit their dynamics 

are different in dupα7. In particular, R208 and E211 were involved in favourable, stabilising 

electrostatic interactions with the ligand. F209 is involved in the network of aromatic residues, 

including two tryptophan residues: W171 and W77. The latter is located at the different subunits, 

as showed in Figure 46. Despite variation in the N-terminal region of the receptor, this residue 

is conserved in primary sequence alignment between α7 and dupα7 (Figure 46A). 

Analysing the effects of dupα7 on the binding affinities, it was observed that more favourable 

predicted binding affinities for Aβ by both α7-dupα7 and dupα7-dupα7 (predicted to be within 

low-mM range), compared to the canonical α7-α7 binding site (affinities in low-nM range, 

Table 5). However, the calculated binding affinity for Aβ to dupα7-α7 improved (high nM to 

low μM range). This difference indicates that the residues involved in the interactions with Aβ 

and are not conserved between dupα7 and α7 (S56, S58, L60, and Q61) may be necessary for 

complex stabilisation. Additionally, it indicates that the α7 secondary structure architecture in 

this region is critical for the binding of Aβ42. This characteristic suggests that receptors 

containing dupα7 subunits will be more resistant to Aβ42-related toxicity, supported by recent 

experimental data 148. 

Table 5: Binding affinity ranges of Aβ42 or α-BTX to orthosteric binding sites. All affinity ranges were calculated 
in SeeSAR using HYDE. 

Binding Site Interface Ab42 Affinity (Ki calc) α-BTX Affinity (Ki calc) 

α7-α7 Low nM High pM 

α7-dupα7 mM >mM 

dupα7-α7 High nM to Low μM >mM 

dupα7-dupα7 mM >mM 
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5.1.2 Conformational changes in orthosteric (agonist) binding sites 

The structures of the receptor subjected to the analysis were obtained by averaging the two 

highest-populated clusters of α7 pentamers obtained from 100 ns all-atom MD simulations, 

which were described in detail in Chapter 5 of this dissertation. As the extracellular location of 

the orthosteric site is known for nicotinic receptors, high-resolution structures have been 

resolved by X-ray crystallography (PDB:5AFH)127, and the EC domain was the analysis focus.  

First, the orthosteric binding sites of the canonical α7 nAChR was mapped using acetylcholine 

(Ach), nicotine (Nic), and lobeline (Lob) as agonists. Molecular docking reproduced 

experimentally determined binding modes of Nic and Lob correctly. The predicted binding 

mode of Ach was validated by comparing the molecular docking results with the crystal 

structure of related ligand carbamylcholine to acetylcholine binding protein (AChBP) of L. 

stagnalis (PDB code: 1UV6). The results are shown in Figure 55. They show that the molecular 

docking protocol chosen in this study can reliably reproduce the experimental binding modes 

for orthosteric ligands inferred from homologous proteins. 
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Figure 55: Structure of α7 nAChR and the position of the orthosteric binding site. A) Side 
view of the whole structure of α7 nAChR pentamer including extracellular domain (ECD, 
yellow), transmembrane domain (TMD, red) and intercellular domain (ICD, green); B) Side 
view of the agonist binding site position of α7 nAChR which is located between the adjacent 
subunits. The blue and pink spheres represented acetylcholine and lobeline, respectively. C) 
The side view of the complex of single α7 subunit with Ach and Lob ligands. α7 subunit and 
two ligands are shown in solid surface and cartoon representation. D) Top-down view of α7 
nAChR EC domain and the position of agonist binding sites of Ach and Lob. The black 
dashed lines delineate the subunits; E&F) Detail view of Ach and Lob agonist binding sites. 
The blue compound is Ach, while the pink compound is Lob. The specific surrounding 
residues of α7 subunit are represented in yellow colour, and the type of these residues was 
signed in red and black, different colours separate the residues belong to different α7 subunit, 
red residues belong to the left-side subunit, while black belong to the right-side subunit; 
G&H) Side view and top-down view of α7 nAChR overlay with experimental structures 
(PDB code: 1UV6) showing that the binding mode is reproduced well, the experimental 
structures are signed in blue colour with carbamylcholine ligand surface (green). 

Although the Ach molecule bound to the receptor is positioned closer to the receptor channel, 

the Lob or Nic occupy the same space and interact with several key residues (Figure 55B-D). 

The slight difference in the binding mode most likely results from Ach being smaller than other 

agonists. Figure 55E shows that the “core” of the orthosteric binding site of α7 subunit is 

formed by residues 113-126 from loop A, W171 from loop B, and W77, T128 and L141 from 

the β2, β5 and β6 loops of the adjoining α7 subunit. As for the region of the binding site 

involved in interactions with larger agonists, such as Lob (Figure 55F), it is formed by residues 

115-119, residues 167-171 and residues 210-220 belonging to loops A, B and C. Loops A and 

B create the left, bottom and posterior sides of the binding pocket, while the loop C of this 

subunit covers the front of the pocket. Residues 56-60, W77 and residues 183-189 from the β1, 

β2 and β8 loops of the adjacent α7 subunit additionally contribute to that binding region, 

interacting with the ligand.  

This architecture indicates an essential role of residues in the loops A-C and β2-loop in agonist 

binding, especially the residues 116-119, W77, and W171. This data is consistent with the 

published experimental data on α7 nAChR and homologous proteins, showing the binding 

modes of Nic, Lob, and Ach analogue (carbamylcholine) binding modes 127. These results also 

indicate that molecular docking utilising DOCK6 is reliable and, as such, may be used for the 
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analysis of “druggable” binding sites of dupα7 nAChRs. 

In dupα7 subunit, loop A and three β-sheet segments (β1, β2 and β3) are missing compared to 

the canonical α7 subunit. This difference is due to the N-terminal 146 residues of CHRNA7 

being replaced by 27 residues from FAM7 protein, which dramatically changes the orthosteric 

binding site architecture. Therefore, it can be expected that one of the orthosteric binding sites 

in the dupα7 receptor will be abrogated, but the effect exerted by the dupα7 subunit on the distal 

orthosteric site is challenging to assess. To qualitatively estimate this effect, four types of dimers 

of dupα7 nAChR EC domain (WT-WT dimer, WT-dup dimer, dup-WT dimer and dup-dup 

dimer) were extracted from the MD simulation trajectories and subjected to the analysis. The 

RMSD results are shown in Figure 56A. As expected, the RMSD results of the WT-WT dimer 

and dup-WT dimer were similar to one another, and the complexes (including the binding sites) 

were stable.  

WT-dup dimer showed slight fluctuations compared to the canonical (WT-WT) dimer and 

moved less than the canonical dimer, whilst trajectories obtained for the dup-dup dimer were 

the least stable. This result is consistent with the results described in Chapter 4, showing that 

the pentamers with two adjacent dupα7 subunits are less stable and thus less likely to occur 

than “mixed” pentamers, wherein the canonical (WT) subunits surround dupα7 subunits. The 

PCA results in Figure 56B showed that the distribution of points in the WT-WT dimer and dup-

WT dimer map was more concentrated than the relatively widely dispersed points in the WT-

dup dimer and dup-dup dimer map. A more intense spread of points corresponds to a more 

stable structure; in other words, the WT-WT dimer and dup-WT dimer trajectories were more 

stable than the other two dimers. 
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Figure 56: A) RMSD and B) PCA results of four EC domain dimers during 100 ns MD 
simulation. The canonical α7 WT-WT dimer is shown in black, WT-dup dimer - red, dup-
WT dimer - green, dup-dup dimer – blue. 
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According to the PCA results of the four dimers in Figure 56B, the dots are all densely 

distributed in two regions which suggests that their structures can be grouped into two clusters 

of similar conformations. The average of these two clusters could be the most suitable structure 

of dimer to do the following tests.  

Moving to the next docking step, the dimers utilized in molecular docking calculations were 

built by averaging the two highest-populated clusters from each 100 ns MD trajectory. The 

results of unbiased molecular docking results are shown in Figure 57. As expected, the 

orthosteric binding sites in WT-dup dimer and dup-WT dimer are similar to the canonical WT-

WT dimer, whereas the dup-dup binding site is strikingly different. The binding mode 

calculated for Ach bound to the dup-dup dimer showed Ach molecule binding inside each of 

the dupα7 subunits and the conformation of the interface of two adjacent dupα7 subunits 

abrogated the binding of small molecules. This binding mode indicates that the “druggable” 

interfacial binding site may still exist in WT-dup and dup-WT dimer but disappears in the dup-

dup dimer.  

 

Figure 57: Molecular docking results of Ach binding to four distinct EC dimers. A) WT-WT; 
B) WT-dup; C) dup-WT; D) dup-dup. Protein is represented as ribbons, while ligand (Ach) 
is rendered as red spheres. The canonical (WT) α7 subunit is coloured yellow, whereas the 
dupα7 subunit is coloured blue.  

In receptor pentamers containing dupα7 subunits, A-Dup, AB-Dup, AC-Dup, and ACD-Dup 

represented the plausible arrangements of functional receptors, as described in Chapter 4. 

Building on these data and the results obtained for dimers, the extracellular domains of 

pentamers studied were used to identify the number of possible functional orthosteric binding 

sites existing in each pentameric receptor. UCSF DOCK6 was used to focus on those binding 
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modes calculated for Ach and Lob binding to dimers. For each receptor, the highest-populated 

cluster has been selected from the MD trajectory of the full-length receptor. Ach and Lob were 

docked using the same procedure as described for docking to dimers. The results are shown in 

Figure 58 and Table 6, and Table 7. 

Comparing to the canonical (WT) α7 receptor, the number of mapped interdomain binding sites 

decreased in receptors bearing dupα7 subunits. The models containing one or two dupα7 

subunits (A-Dup, AB-Dup, and AC-Dup) had one fewer interdomain interface than the WT α7 

pentamer (Figure 58). ACD-Dup, which contains three dupα7 subunits, had only two interfaces 

mapped (Figure 58D).  

 

Figure 58: Molecular docking results of Ach and Lob agonists and four arrangements of 
dupα7 nicotinic receptor. Protein is represented as backbone, while ligands are rendered as 
red (Ach) and green (Lob) spheres. The canonical (WT) α7 subunit is coloured yellow, 
whereas the dupα7 subunit is coloured blue. A1&A2) Side view and top-down view of the 
A-Dup containing a single dupα7 subunit and four docked ligands; B1&B2) Side view and 
top-down view of the conformation of AB-Dup (two dupα7 subunits), four Ach and five Lob 
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ligands; C1&C2) Side view and top-down view of the conformation of AC-Dup (two dupα7 
subunits) and four Ach Lob ligands; D1&D2) Side view and top-down view of the 
conformation of ACD-Dup (three dupα7 subunits) and one Ach and Lob bound.  

Calculated binding scores and cluster sizes from DOCK6 are shown in Table 6 and Table 7. 

Both Ach and Lob showed moderate affinity, with a substantially more favourable binding for 

Ach (−190 KJ/mol for Ach; −50 kJ/mol for Lob) in all four dupα7 models. Even though the 

calculated scores were less favourable than those calculated for the canonical α7 receptors 

(scores: −153 KJ/mol for Ach; −50 KJ/mol for Lob), this may indicate that receptors containing 

dupα7 subunits may retain functional orthosteric sites, and the presence of dupα7 in the 

pentamer does not preclude the agonist binding. Lob showed a less favourable binding energy 

score and lower cluster size than Ach for its top hit, and this is due to Lob being considerably 

larger than Ach and the limited binding size volume.  

Table 6: Ach ligand focus on docking with α7 and four dupα models 

Model Dimer Cluster size Grid Score 

(kJ/mol) 

Electrostatic 

energy (kJ/mol) 

VdW Energy 

(kJ/mol) 

α7+Ach WT-WT 20 -152.16 -152.15 -27.28 

A+Ach AB(Dup-WT) 12 -190.38 -166.37 -24.00 

 BC (WT-WT) 33 -182.44 -161.41 -21.03 

 CD (WT-WT) 48 -193.31 -166.41 -26.90 

 DE (WT-WT) 25 -184.16 -167.00 -17.16 

AB+Ach AB(Dup-Dup) 13 -174.69 -151.85 -22.84 

 CD (WT-WT) 16 -187.47 -166.78 -20.69 

 DE (WT-WT) 36 -171.82 -150.84 -20.98 

 EA (WT-Dup) 28 -186.79 -158.09 -28.71 
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AC+Ach BC (WT-Dup) 15 -180.12 -155.85 -24.27 

 CD(Dup-WT) 26 -173.63 -149.78 -23.85 

 DE (WT-WT) 18 -174.65 -155.68 -18.98 

 EA (WT-Dup) 36 -188.67 -162.99 -25.68 

ACD+Ach DE (Dup-WT) 54 -193.33 -165.89 -27.44 

Table 7: Lob ligand focus on docking with α7 and four dupα models 

Model Dimer Cluster size Grid Score 

(kJ/mol) 

Electrostatic 

energy (kJ/mol) 

VdW Energy 

(kJ/mol) 

α7+lob WT-WT 13 -50.21 -10.18 -40.03 

A+lob AB (Dup-nor) 20 -53.80 -7.33 -46.47 

 BC (WT-WT) 23 -50.67 -8.89 -41.79 

 CD (WT-WT) 6 -48.37 -10.00 -38.37 

 DE (WT-WT) 10 -45.08 -11.91 -33.17 

AB+lob AB (Dup-Dup) 8 -46.73 -7.52 -39.21 

 BC (Dup-WT) 5 -45.88 -5.66 -40.22 

 CD (WT-WT) 9 -45.04 -5.02 -40.00 

 DE (WT-WT) 11 -40.03 -8.57 -31.46 

 EA (WT-Dup) 6 -47.74 -9.59 -38.14 

AC+Lob BC (WT-Dup) 10 -50.16 -7.38 -42.77 

 CD (Dup-WT) 7 -45.51 -8.51 -37.01 

 DE (Dup-Dup) 4 -51.71 -7.16 -44.55 
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ACD+Lob DE (Dup-WT) 5 -45.86 -4.09 -41.77 

5.1.3 Prediction of allosteric binding sites using FTMap 

To find the potential allosteric binding sites at α7 and dupα7 nicotinic receptors, solvent 

mapping using the FTMap webserver235, 236 has been used on outputs from all-atom MD 

simulations. FTMap is a fast method routinely used to detect new potential “druggable” sites 

on proteins235, 236. In works presented in this chapter, EC domains of receptor pentamer were 

used in the FTMap calculations, extracted from 100 ns of all-atom MD simulations using cluster 

analysis. For each receptor, the centroid of the highest-populated cluster was selected.   

The mapping result for the canonical α7 pentamer is shown in Figure 59. FTMap retrieved the 

orthosteric binding site, which is highlighted as red spheres, between two subunits. FTMap also 

detected two allosteric binding sites. One of them, rendered as a magenta sphere, is in the top 

part of the α7 subunit, surrounded by α1 and β4 loops, close to the receptor channel (Figure 

59), which consists of 39PLER42, 107IWK109 and Y173 residues. Another one is positioned 

in the centre of α7 subunit, surrounded by four β-sheet loops (β2, β4, β5 and β6), and it is 

highlighted by green spheres closed to L78, M80, 109KPDILL114, F126, 140YLPPGIF146 

and F168 residues. To distinguish the pockets, one (magenta) is called the top pocket, while 

another one (green) is called the vestibule pocket. 
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Figure 59: Mapping of α7 nAChR binding sites via FTMap. The left-hand figure is the front 
view of three binding pockets in the EC domain of the α7 subunit. A new cartoon yellow 
ribbon represented the α7 subunit. The right-hand figure is the back view. α7 subunit was 
shown in surface representation. The red spheres circled by black circles correspond to the 
ligand and occupies the agonist binding site. The magenta and green spheres circled by red 
circles corresponds to ligands and occupies the top, binding site and vestibule binding site, 
respectively. The main residues which formed the pockets are signed with red colour. 

To map any putative allosteric sites of dupα7 nAChRs, the same workflow has been used. 

Figure 60 shows the results obtained for A-Dup, AB-Dup, AC-Dup and ACD-Dup receptors. 

The canonical (WT) α7 subunit is coloured yellow, whereas the dupα7 subunit is coloured blue. 

The locations of the small molecular FTMap probes are shown as different colour spheres. As 

for the canonical α7 receptor, the agonist binding site is highlighted by the red sphere. The top 

and vestibule pockets are shown as pink and green spheres, respectively, consistently with the 

representation in Figure 60. The blue sphere, representing the top pocket, has been detected for 

AB-Dup ad AC-Dup only (Figure 60B and C). For AB-Dup, this site has been mapped on a 

WT-WT interface, while for AC-Dup, it has been mapped on a WT-dupα7 interface. 
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Figure 60: The binding site's results of four types of dupα7 nAChR using FTMap. Red sphere 
represented agonist binding sites, pink sphere – top pocket, green sphere – vestibule pocket, 
blue sphere - top, binding pocket. A) Top-down view of A-Dup FTMap results contains 3 
agonist binding sites, 4 top pockets, and 2 vestibule pockets. B) Top-down view of AB-Dup 
FTMap results contains 3 agonist binding sites, 3 top pockets, and 2 vestibule pockets. C) 
Top-down view of AC-Dup FTMap results contains 4 agonist binding sites, 3 top pockets, 
and 2 vestibule pockets. D) Top-down view of ACD-Dup FTMap results, it contains 2 agonist 
binding sites, 1 top pocket and 3 vestibule pockets. 

In the A-Dup model, three agonist binding sites (red), four top pockets and two vestibule 
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pockets have been identified, with two binding sites associated with the dupα7 subunit: one of 

them being an orthosteric binding site located at the dup-WT dimer interface, and another one 

being an internal pocket situated within the dupα7 subunit. As for the two dupα7 models, there 

are three agonist binding sites in AB-Dup and four in AC-Dup. Considering the potential 

allosteric binding sites, AB-Dup and AC-Dup contain the same number and type of pockets: 

two top pockets, two vestibule pockets, and one new pocket. The positions of all these allosteric 

binding sites are similar to canonical α7 subunits, and there are no internal sites identified in 

dupα7 subunits. The ACD-Dup model without a WT-WT interface displayed one agonist 

binding site at the interface of each of the two dup-WT dimers, one top pocket within one WT 

subunit, and three vestibule pockets located at the inside of both standard and dup chain. dup-

dup dimer had no orthosteric binding site detected by FTMap. 

For canonical a7 receptors, the positions of the orthosteric binding sites were successfully 

retrieved by both methods: blind docking using UCSF DOCK6 and FTmap. For the A-Dup 

model, UCSF DOCK missed one site in the interfaces of BC chain dimer (WT-WT dimer), and 

for AB-Dup, it missed the binding site in dup-dup dimer. The orthosteric binding sites appeared 

more often at the dup-WT interface than at the WT-dup interface in UCSF DOCK6 results. No 

orthosteric binding sites were detected at the dup-dup interface by FTMap. This indicates that 

both methods have different limitations, and two complementary methods should be used in 

“druggability” studies of large, flexible, and thus challenging protein complexes such as 

nicotinic receptors.  

Regarding the putative allosteric binding sites, the highest number of top pockets have been 

found in A-dup, followed by AB-Dup and AC-Dup containing two top pockets, while only one 

has been retrieved in the ACD-Dup model. This trend has been reversed for the vestibule 

pockets: three vestibule pockets were detected in the ACD-Dup model, which is the highest 

number in four dup models; all other models contained two mapped pockets. The top pockets 

are preferred in the canonical α7 subunit, smaller numbers in the receptors with more dupα7 

subunits. Conversely, the vestibule pockets can exist in both canonical α7 subunit and dupα7 

subunit.  
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5.1.4 “Druggability” of the allosteric binding sites probed by UCSF DOCK6 

Building on the results retrieved by FTMap, detected binding sites were used in docking the 

focused library of 1790 nAChR allosteric. All averaged clusters of EC domain (pentamer) 

structures obtained from 100 ns MD simulations in DPPC membrane were used as targets. After 

blind docking, the results were ranked according to the number of clusters (from highest to 

lowest) and scores (from lowest to highest), respectively, and the top 200 docking poses from 

each group were selected to analyse ligand binding positions. Hence, potential binding sites 

were inferred from the results obtained by FTMap and blind docking of agonists Ach and Lob.  

As expected, docking results of the focused ligand library to the canonical α7 nAChR retrieved 

results highly similar to those obtained by FTMap. In addition to retrieving all binding sites 

detected by FTMap, two new binding sites were discovered using the blind docking approach. 

These new sites are shown in Figure 61 as purple and orange spheres. Both pockets are close 

to the orthosteric binding site, one above and another below, and hence they were denoted as 

upper and down pockets, respectively.  

 

Figure 61: An overview of the orthosteric pocket and four allosteric binding sites discovered 
for the canonical α7 nAChR. A) α7 nAChR is shown in cartoon representation. Lob and Ach 
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are rendered as red spheres, occupying the orthosteric site. The pink sphere links to the 
allosteric top pocket, the green sphere links to the vestibule allosteric pocket. The purple 
sphere represents the upper pocket, and the orange sphere represents the allosteric down 
pocket. B) The front view of the three binding sites in α7 WT-WT interface, the model of α7 
nAChR is rendered as solid surface and coloured yellow. Only the upper pocket, orthosteric 
pocket and down pocket can be seen from the front view. C) The back view of the three 
binding sites at the α7 WT-WT interface. Top (pink), orthosteric (red), and vestibule (green) 
pockets can be seen from the back view. 

In dupα7 receptors, specifically in the A-Dup, AB-Dup and AC-Dup models, the DOCK6 blind 

docking results (Figure 62) replicated very well the FTMap results, but the results obtained for 

the ACD-Dup model showed a different number and location of binding sites than the FTMap 

results. The total number of retrieved orthosteric binding sites were highest in A-Dup and AC-

Dup models, followed by AB-Dup. However, the blind docking detected no orthosteric site on 

the ACD-Dup receptor. Two additional vestibule sites were detected in the A-Dup model, and 

one additional top pocket and one additional vestibule pocket were identified in the AC-Dup 

model. These binding sites are shown in Figure 62. 
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Figure 62: The binding sites reported by the blind docking for four dupα7 nAChRs. Red 
spheres represent the orthosteric agonist binding site, pink spheres – top pocket, green – 
vestibule pocket, orange - down pocket, purple – the upper pocket. A) Top-down view of A-
Dup DOCK6 results, it contains 3 agonist binding sites, 4 top pockets, 4 vestibule pockets 
and 1 down pocket. B) Top-down view of AB-Dup DOCK6 results, it contains 2 agonist 
binding sites, 2 top pockets, 2 vestibule pockets and 2 upper pockets. C) Top-down view of 
AC-Dup DOCK6 results, it contains 3 agonist binding sites, 3 top pockets, 3 vestibule 
pockets. D) Top-down view of ACD-Dup DOCK6 results, it contains 2 top pockets, 2 
vestibule pockets and 1 down pocket. 
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5.2 Discussion 

5.2.1 Dupα7/α7 ratio affects the ligand binding and may be linked to the nicotinic 

translational gap 

The α7 receptor has been a promising target for diseases affecting cognition. However, the 

results gathered in animal studies failed to translate into human clinical trials identifying a 

translational gap. As CHRFAM7A is human-specific, it was not included in those preclinical 

studies, and effects arising from its distinct structural and dynamic features were not considered. 

As the CHRFAM7A gene is present in different copy number variations in the human genome 

with high frequency 263, understanding distinct features of dupα7 may offer novel insights when 

exploring the human α7 receptor as a drug target. 

Recent reports have shown the direct interactions between α7 receptors and Aβ42 156, 158, 266. 

These studies strongly suggest that the α7 receptor can contribute to synaptic dysfunction in 

Alzheimer’s disease as Aβ oligomers can alter neuronal signalling through interactions with 

nicotinic receptors, particularly with α7. However, how exactly Aβ interacts with the α7 

receptor and whether human-specific dupα7 increases or decreases those interactions have not 

been fully understood. 

Regarding interactions with disease-linked macromolecular ligands, our results indicate that in 

mixed functional receptors (i.e., comprising of both a7 and dupα7 subunits), dupα7/α7 

interfaces can bind Aβ42 with a higher affinity than α7/dupα7 and dupα7/dupα7, albeit impaired 

compared to canonical α7/α7 sites. Receptors bearing dupα7 subunits are shown to be 

insensitive to α-BTX. These results collectively suggest that the receptors bearing dupα7 

subunits may be less sensitive to effects exerted by neurotoxin or Aβ42. This data is in agreement 

with the recent study, which focused on the function of CHRFAM7A alleles in vitro in two 

disease-relevant phenotypic readouts: electrophysiology and Aβ uptake, and in the double-blind 

pharmacogenetic analysis on the effect of therapy using acetylcholine esterase inhibitors 

(AChEIs), based on CHRFAM7A carrier status 148. 

Mechanistic insights arising from our work suggest competitive binding between α-BTX (an 

Table 10: Lob docking result with different position in each model 
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orthosteric ligand) and Aβ42 to the α7 receptors. The earlier studies support this characteristic, 

showing that both orthosteric agonists and antagonists mitigate Aβ uptake 148. Uptake of Aβ42 

via α7 receptors binding induces apoptosis, and orthosteric α7 agonists mitigate the Aβ-induced 

apoptosis in animal models as reported by Szigeti et al. and references therein 148. The results 

of our study highlight the mechanistic link between receptor structure and Aβ binding, 

indicating key differences between α7 receptors and receptors bearing dupα7 subunits, which 

may be translated to the clinic. Moreover, our results suggest that in receptors containing dupα7 

subunits, Aβ42 might be competitive to α-BTX, albeit its binding affinity is low, hence the 

significance of this potential competing is challenging to estimate. Further follow-up studies 

are needed to validate these findings. 

At the time of translation to the clinical trials, virtually all drugs effective in animals have 

demonstrated a lack of efficacy in humans, showing a robust translational gap. Dupα7 

functional studies are sparse and are lacking in the clinical context. Clinical efforts need to be 

continued with a trial design incorporating dupα7 distinct structural biology, pharmacology and 

pharmacogenetics. Dupα7 non-carriers account for 25% of the Alzheimer’s disease population, 

which is significant considering an increasing number of AD patients. Our results, which match 

neuronal toxicity data published 148, suggest that dupα7 carriers should be protected against Aβ 

effects to some extent, and dupα7 non-carriers should be more acutely affected by Aβ effects. 

Therefore, therapeutics that reduce amyloid burden could be effective in non-carriers. 

Considering the number of AD patients worldwide and AD being essentially an unmet clinical 

need, these findings pave the way to bring new AD therapeutics into the clinic. 

5.2.2 The effect of dupα7 subunits on orthosteric binding sites  

In this work, one of the main focuses was identifying new allosteric binding sites in the 

canonical α7 nAChR and dupα7 nAChR. While experimental studies reported the specific 

location of the orthosteric binding sites shared by several nicotinic receptors, allosteric binding 

sites are generally more unique to different receptor types 79, 127. Therefore, it was likely that 

some of those sites may be unique for receptors containing human-specific dupα7 subunits and 

thus serve as targets in structure-based ligand design efforts to develop new small molecule 
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diagnostics and therapeutics in the future.  

Two complementary methods were used in binding site mapping: solvent-mapping by FTMap 

webserver and blind docking (wherein no specific location of the binding site is given) using 

UCSF DOCK6. Both methods successfully retrieved the location of the orthosteric binding site, 

known from experimental studies published to date79, 127. In addition, the data indicates that 

orthosteric binding sites can exist not only at the interface between two canonical a7 subunits 

(WT-WT) but also at interfaces between dup-WT and WT-dup subunits. Dup-dup interface is 

highly flexible and unstable, so its orthosteric site is unlikely to hold. The total number of 

functional orthosteric binding sites mapped for the receptor pentamers decreased when the 

number of dupα7 subunits in the pentamer increased. This profile is consistent with the 

published report98 suggesting that the dupα7 subunits affect the formation of agonist binding 

sites due to the absence of specific binding site-forming loops, leading to a dramatic change in 

the configuration of the interface between two subunits forming the orthosteric site. However, 

the results show that interfaces containing dupα7 subunits may still retain the functional 

orthosteric site, as long as the interface remains in the dup-WT, rather than the WT-dup 

configuration.  

5.2.3 The effects of dupα7 subunits on allosteric binding sites  

In this work, several putative allosteric sites were identified. Several of those sites are located 

at the single subunit rather than at the interface between two subunits. There is a precedence of 

such allosteric binding sites, reported for humanised acetylcholine binding protein (PDB codes: 

5OUG and 5OUI), which raises the confidence in those results, yet experimental validation, e.g. 

by mutagenesis or structural biology studies are needed.  

The names and relative positions of four allosteric binding sites identified in this work at the 

canonical a7 receptor are: 1) The so-called top pocket, which is formed by α1 loop and β4 loop 

and may involve α1, β2 and β3 loops of the adjacent subunit; 2) The vestibule pocket inside of 

the subunit, which is formed by four β-sheet loops (β2, β4, β5 and β6 loops); 3) The upper 

pocket, which is interfacial and located above the orthosteric binding site, and it is formed by 
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loops B and C in one subunit and loops β1, β2 in the adjacent subunit; 4) The down pocket, 

which is lower than the orthosteric site, is formed by loops A, β6 and β7 in one subunit, and 

loops β1, β8 in the adjacent subunit. These allosteric binding sites have also been found in the 

dupα7 receptors, although no allosteric binding sites were found at the dup-dup interface, which 

is apparent in the ACD-Dup receptor. Results obtained by both FTMap and DOCK6 were 

consistent and indicated that the “druggable” binding sites appeared in fewer positions in the 

dup model, especially in receptors containing three duplicated subunits (ACD-Dup). The 

interface between dup-dup subunits does not seem to form functional binding sites, whether 

orthosteric or allosteric. This formation is consistent with the data obtained from the all-atom 

MD simulation, which shows dup subunits' high flexibility. This flexibility can explain the 

differences between results reported by FTMap and DOCK6 for the ACD-dup receptor model.  

The results obtained in this study offer for the first time an insight into the distinct “druggability” 

of human-specific receptors containing dupα7 subunits. They can assist in interpreting 

published clinical data, showing different responses of patients bearing dupa7 receptors to 

nicotinic agents. Although qualitative rather than quantitative, these results may – after the 

validation (e.g., by site-directed mutagenesis studies) – be utilised in structure-guided 

development of subunit-selective ligands, which can be rendered as future diagnostics and 

therapeutics. 

5.3 Materials and Methods 

5.3.1 Protein preparation 

The models of EC domain and whole pentamer of α7 model, dupα7 models (A-Dup, AB-Dup, 

AC-Dup and ACD-Dup) and dimers (WT-WT, WT-dup, dup-WT, dup-dup) to be used for 

docking were created via the Gromacs tool ‘Cluster’ from the trajectory from 100 ns MD 

simulation (Chapter 4). Two most-populated clusters were selected for each trajectory.  
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5.3.2. Small molecule preparation and the construction of the target-focused small 

molecular library 

Ach and Lob structures were built in UCSF Chimera, and their SMILES strings were obtained 

from ChEMBL. Missing hydrogen atoms were added, and partial atomic charges were 

calculated using the AM1-BCC267. The nAChR library of 1793 fragments is built from the 

ChEMBL website when searching ‘neuronal acetylcholine receptor protein alpha-7 subunit and 

selecting Homo sapiens as a target. The downloaded ‘all bioactivity data’ and picked allosteric 

ligands from it. Openbabel (http://openbabel.sf.net/) was used to prepare the ligands using 

MM94 with AM1-BCC charges267. The receptor was prepared using the Dockprep tool in the 

UCSF Chimera, with charges obtained from AMBER14SB. The docking procedures were as 

follows: sphgen was used to map binding areas, with selected all spheres generated. The box 

for docking was generated with a distance from the edge of the spheres of 0.6 nm. The grid for 

docking was generated using the dock6 grid tool, with a 0.3 spacing distance between points. 

100 poses were generated per ligands, each with 100 orientations each. The clustering RMSD 

was 0.25 nm, with the molecules being ranked via their total AMBER grid score. 

5.3.3 Atomistic molecular dynamics (MD) simulations 

Atomistic MD simulations have been carried out to generate ensembles to get the average 

structure of four types of dimers to evaluate the effect of the dup subunit on the dynamics. All 

simulations were performed using Gromacs 2016.3 256. The protein was parametrised using the 

AMBER99SB-ILDN force field and TIP3P water model 218. Box distance was set to 1 nm, and 

periodic boundary conditions were applied. The box was solvated and Na+ and Cl- ions were 

added to achieve a 0.1 M concentration and maintain the charge neutrality of the unit. The 

solvated receptor-membrane systems were energy minimised and equilibrated. The 

minimisation ran using the steepest descent. The energy step size was set to 0.2 nm, and the 

maximum number of steps was set to 50,000. The minimisation was stopped when the 

maximum force fell below 800 kJ/mol/nm using the Verlet cutoff scheme. Treatment of long-

range electrostatic interactions was set to Particle Mesh-Ewald (PME)260, and the short-range 

electrostatic and van der Waals cutoff was set to 1.0 nm. After the energy minimisation, heating 
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to 300 K was performed for 5 ps with a time step of 1 fs and position restraints applied to the 

backbone in an NVT ensemble. The constraint algorithm used was LINCS, which was applied 

to all bonds and angles in protein 261. The cutoff for non-bonded short-range interaction was set 

to 2.0 nm with the Verlet cutoff scheme. Long-range electrostatics were set to PME. The 

temperature coupling was set between the protein and the non-protein entities using a 

Berendsen thermostat, with a time constant of 0.1 ps and the temperature set to reach 300 K 

with the pressure coupling off. Pressure equilibration was run at 300 K with a Parrinello-

Rahman barostat and set to 1 bar 225 in an NPT ensemble. The equilibration trajectories were 

set to 10 ps (discarded from the analysis), and the production MD simulations were performed 

for 100 ns.  

The trajectories were analysed using GROMACS tools, including RMSD to assess overall 

stability, per-residue RMSF to assess the local flexibility. 

For all-atom molecular dynamics simulations, standard workstations and a GPU in-house server 

were used. These included workstations with Intel i7 7th generation processor, with 16 GB of RAM 

with a NVIDIA GTX1080, and a dedicated server with 32 GB OS-RAM, a Xeon 44 core processor 

with multithreading, and 2x NVIDIA GTX1080Ti GPUs. 

5.3.4 Binding site mapping by FTMap 

Two highest-populated clusters of both EC domain and whole pentamer of each α7 and dupα7 

(A-Dup, AB-Dup, AC-Dup, ACD-Dup) protein structure after 100 ns all-atom MD simulations 

were prepared for FTMap analysis (PDB format with all bound ligands and solvent molecules 

removed).  

FTMap235, 236 is a solvent mapping server used to search and predict binding hotspots for 

proteins. FTMap uses 16 simple organic molecules (e.g. benzene, acetic acid) as probes to dock 

them, detect all putative binding sites (hotspots), and rank those hotspots by the interaction 

energy term235. The top hotspots would be the most likely binding sites for any given protein.  
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5.3.5 Molecular docking of Aβ42 and α-Bungarotoxin (α-BTX)  

The analysis of interactions between different α7/dupα7 receptors and two established 

macromolecular ligands: Aβ and α-BTX were performed by molecular docking. Aβ (PDB code: 

6RHY) and α-BTX (PDB code:4HQP) were docked to all four possible combinations of α7 and 

dupα7 interfaces using ClusPro web server 244, 268. The top 10 lowest-energy complexes were 

selected to further analysis, and the binding affinities were calculated by SeeSAR 

(www.biosolveit.de)269, using the HYDE scoring function242. 

5.3.6 Molecular docking of small molecules 

The results of FTMap analysis (A-Dup, AB-Dup, AC-Dup, and ACD-Dup extracellular 

portions) were subjected to molecular docking of small molecules using UCSF DOCK6240 

software. Binding sites selected by FTmap were validated using the DOCK6 accessory 'sphgen' 

to produce ‘negative images’ of all binding sites. Subsets of sphgen spheres corresponding 

to the hotspots identified by FTMap were assigned as binding sites and used for docking. A box 

of the length of 6 Å from the edge of the identified spheres was created, which was centered 

around said spheres. A grid spacing of 0.25 Å was using with a bump overlap of 0.5. Flexible 

docking was performed with an internal energy cut-off of 1000 kcal mol -1. The ligands were 

oriented to the spheres with a maximum of 1,000 orientations per ligand tested. Initially, 

validated ligands with known binding modes and potencies, acetylcholine (Ach) and lobeline 

(Lob), were positive controls. After successful validation, a focused library of 1,793 molecules 

was docked and virtually screened. 

Molecular docking calculations were ran using Newcastle University’s Tier 3 HPC facility, 

HPC Rocket, with an average of 2 nodes per docking run. Each node utilised had 2 Intel Xeon 

E5-2699 v4 processors and 128 GB of memory. 
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Chapter 6  Addressing “druggability” of different polymorphs of 18-kDa 

translocator protein (TSPO)  

Neuroinflammation is a pivotal contributor to the pathophysiology of neurodegenerative 

disorders. The link between stimulation of nicotinic receptors, particularly α7nAChRs, and 

reducing the inflammation has been established, validating those receptors as attractive targets 

for therapeutics and diagnostics, e.g., for positron emission tomography (PET) imaging. 

However, the existence of human-specific isoforms of α7 receptor, described in previous 

chapters, and its prevalence in the general population, hampered the development of PET 

tracers specific to α7, and several complementary targets have been proposed over the last years. 

The mitochondrial translocator protein (18 kDa) (TSPO) has been the most extensively studied 

target in the context of PET imaging 270. This highly conserved transmembrane protein is highly 

upregulated in microglia and astrocytes in response to inflammatory stimulation, and its 

involvement in neuroinflammation has been validated over past years271. TSPO contains five 

transmembrane α-helices spanning the outer mitochondrial membrane, and its function has been 

linked to the transport of highly lipophilic small molecules such as cholesterol from the cytosol 

into the mitochondria272. TSPO forms oligomers, and it also interacts with voltage-dependent 

anion channel (VDAC) and the adenine nucleotide carrier (ANC) to form a complex involved 

in regulating mitochondrial homeostasis.  

TSPO has been initially identified as a peripheral-type benzodiazepine receptor, but it can bind 

a broad range of chemically diverse small molecules other than benzodiazepines, including 

endogenous (e.g., porphyrins and heme, cholesterol) and exogenous (e.g., isoquinoline 

carboxamides, imidazopyridines) compounds39, 273, 274. Because of its up-regulation in 

neuroinflammation and a vast range of its ligands suitable as tracers for PET, it can be used as 

a target for diagnostics in animal models of neurodegenerative diseases and human patients. 

PET studies with radioligands targeting TSPO have been pivotal in understanding the complex 

role neuroinflammation plays in disorders affecting the brain.  

In clinical practice, the application of radiolabelled TSPO ligands allows for detecting and 
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tracking neuroinflammatory lesions in patients affected by diseases such as Alzheimer’s and 

Parkinson’s. PK11195 and DPA-714 are two established TSPO radioligands186. Unfortunately, 

[11C]PK11195, the first and most widely used TSPO radioligand, has severe limitations, while 

the next-generation TSPO radioligands have suffered from high interindividual variability in 

binding due to a genetic polymorphism in the TSPO gene (rs6971, corresponding to A147T 

mutation)275.  Radiosynthesis of [18F]DPA714 has specific synthetic challenges associated, but 

its scaffold could serve as a parent compound in developing next-generation TSPO tracers276.  

In the work presented in this chapter, the scaffold of [18F]DPA714 was redesigned, changing 

the location of the fluorine atom from C28 to different positions within the molecule (Figure 

64). This change has been done with two aims in mind: (i) facilitate radiosynthesis and (ii) 

simultaneously improve pharmacodynamics, particularly interactions with the A147T TSPO 

variant. In the structure-guided procedure, properties such as synthesis facilitation have been 

prioritized. However, this generated two distinct enantiomers, denoted as MKL and MKD, 

which required to have their properties (i.e., interactions with TSPO, binding affinity, and 

pharmacokinetics) evaluated separately. A molecular model of the A147T variant of human 

TSPO was developed to investigate the difference between the enantiomers. This investigation 

was made alongside mapping the binding site and predicting the binding mode of DPA714 and 

its derivatives. Moreover, the binding affinity and conformational changes resulting from the 

binding were calculated, rationalising their difference.  

6.1 Results 

6.1.1 Molecular modelling of human TSPO variants and binding site mapping 

The A147T TSPO variant (shown in Figure 63A). While the interfacial binding sites are likely 

important for cholesterol transport, this work focused on the central pocket (yellow). This 

selection was made in order to be consistent with experimental structures of PK11195 bound to 

TSPO. The docking reproduced near-native PK11195 binding mode, as well as its affinity range. 

This pocket comprises residues CYS19, SER23, HIS43, HIS46, LEU49, GLY50, TRP107, 

VAL110, LEU114, TRP143, LEU150. DPA-714 has been docked to the same pocket, with 
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reasonably exhaustive docking sampling, and form the 500 poses generated for each of the ten 

receptor representants (obtained via MD clustering). Five poses were selected, matching the 

experimental affinity range have been selected for further inspection and were found to form 

one distinct cluster of poses (Figure 63B). A representative complex from this cluster has been 

selected for MD simulation to evaluate the stability of the predicted binding mode. The binding 

affinity has been recalculated after the MD simulation and was found in agreement with the 

experimentally determined Ki value (DPA-714 with nanomolar affinity for TSPO).272   

 

Figure 63: The detected binding sites of A147T TSPO. (A) Five binding sites were detected 
in the A147T TSPO variant via SeeSAR, shown in the red, pink, green, yellow, and blue 
region. The yellow region was covered with a grey surface, and the pink residue was selected 
docking with four ligands. The blue ribbon represented the conformation of A147T TSPO 
variant. (B) The dock results of the DPA-714 on A147T TSPO variants. The grey side chains 
belong to the A147T TSPO variant from the TSPO binding pocket. 

6.1.1 Compound prioritisation 

Since adding fluorine to the structure would facilitate the radiosynthesis of fluorinated DPA-

714 derivatives, the position of the fluorine atom was investigated. We prioritised the 

compounds with the best-predicted affinity and a more straightforward synthetic route for 18F 
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radioligands. Changing the fluorine (F) position from C28 to C10 atom resulted in two 

enantiomers, denoted as MKL and MKD (Figure 64), with the best-predicted affinity to both 

variants of TSPO and favourable synthetic route. The compounds were synthesized by Dr Mike 

Carroll`s group, Newcastle University. In parallel, investigations of their proposed binding 

modes, particularly for the A147T variant, were carried out in our group. 

  

 

Figure 64: The structure of PK11195, DPA714, MKL and MKD compounds. The necessary 
atoms are signed in Figure, MKL and MKD share the same atom name and number. 

Binding affinities were calculated for all ligands using the predicted pose of DPA-714 as a 

starting point. Lead optimisation (i.e. transformation from DPA-714 to MKL and MKD) and 

binding affinity calculations were performed using SeeSAR243. MKL was ranked as the best 

compound in terms of affinity (affinity (Ki calc) <pM), outperforming 2 orders of magnitude its 

stereoisomer, MKD (affinity (Ki calc) = nM). The driving forces behind the increased affinity 

(such as ligand conformation, fundamental interactions and desolvation energy) were 
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investigated to understand the plausible reasons for this predicted stereoselectivity. The 

predicted binding modes, critical interactions, and predicted binding affinities are shown in 

Figure 65.  

 

Figure 65: Diagram of TSPO in complex with MKL (A) or MKD (B). The interaction pattern 
comprises one hydrogen bond (signed as black dashed lines) and hydrophobic contacts 
(represented by the green labelled residues and green curve along with the contacting 
hydrophobic ligand parts). 

Some differences in the obtained binding mode can be attributed to the torsional space of the 

parent compound and derivatives. The value of the C3-C10-C14-O22 (following the naming 

shown in figure 65) torsional angle of DPA-714 “parent” compound” was 8.5º. The torsional 

angles F-C10-C14-O22 and C3-C10-C14-O22 were 105.6º and 134.1º in MKL and 68.8º and 

92.9º in MKD, respectively. This difference in torsions allowed a change of interactions contact 

points. For instance, as shown in Figure 65, hydrophobic contacts for MKL were different from 

that of MKD, increasing the stability of binding. Although the interactions with HIS43 were 

the same for both MDL and MKD, the latter buried itself, hence increasing its contact with G50, 

H27, F146, L49 and H46.  

In terms of hydrogen bonds and desolvation energy (calculated via HYDE score and 
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represented by coloured “coronas” surrounding each heavy atom of the ligand, as shown in 

Figure 66, MKL showed the best binding properties of all ligands investigated. The only moiety 

of MKL with a small unfavourable contribution to the binding affinity was the ether oxygen 

O20 (Figure 66), whereas DPA714 and MKD showed several moieties with unfavourable 

contributions calculated. The ether oxygen (O22) and two nitrogens (N9 and N23) contributed 

unfavourably in DPA714, while in MKD, unfavourable contributions arose from O20, N9 

nitrogen, and C12 carbon (Figure 66). The contribution from fluorine was more favourable in 

MKD (-6.6 kJ/mol) than in MKL (-0.4 kJ/mol). Nevertheless, this difference has been offset by 

the unfavourable contributions of several moieties in MKL described above.  

The O22 in MKD yielded the most favourable desolvation contribution of –1.4 kJ/mol, with –

0.6 kJ/mol desolvation contribution for O22 in MKL and unfavourable 2.3 kJ/mol contribution 

in DPA714. This indicates that the change of fluorine position can affect ‘intrinsic’ factors for 

the atoms nearby and the desolvation of the region, and it explains why no H-bond has been 

found in the DPA-714 complex in this region. This explains the lower calculated affinity of 

DPA714 compared to MKL and MKD. Collectively, this suggests that L-enantiomer (MKL) 

with a high binding affinity (low pM) would be optimal for the next-generation tracer for TSPO.  
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Figure 66: The predicted binding modes of four ligands described in this study in the A147T 
TSPO binding pocket. TSPO binding site is represented as a grey-coloured residue network. 
The ligands (PK11195, DPA714, MKL and MKD) are represented by balls and sticks, 
coloured by a heteroatom, with green (favourable) or red (unfavourable) “coronas” 
surrounding them. The size of the “corona” reflects the relative contribution to the binding. 
The dotted lines represent H-bonds (green – favourable). 

6.1.2 The drug-like possibility of compounds 

To evaluate the drug-likeness of the stereoisomers MKL and MKD, the more physiochemical, 

pharmacological and ADME properties (absorption, distribution, metabolism, and excretion) 

such as size, lipophilicity (logP), water solubility (logS), BBB permeant were evaluated using 

the webserver SwissADME. The results are shown in Table 8. PK11195 and DPA714 were 

reference substances. PK11195 show all the number about rotatable bonds (5) and h-bond 

acceptors (2) less than the detection of other three ligands (DPA714, MKL and MKD). As 

sharing the same central structure, the results of MKL and MKD are the same and almost the 

same with DPA714, for example, 5 H-bond acceptor, no H-bond donor, poorly water solubility 
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and all were predicted to cross the BBB, which is a suitable drug-like property required for 

central nervous system drugs. One slightly difference concerns the rotatable bonds. MKL and 

MKD contain 8, while DPA714 contains 9, suggesting that the position of fluorine affects the 

rotation of a bond. This result corresponds to the H-bond results from the UCSF Chimera, 

whereby all the H accepters in the established hydrogen bonds are ligands, and the H donors 

are protein receptors. Investigating the data for the newly designed ligands MKL and MKD, 

both were predicted with high drug-likeness and satisfied Lipinski's 5 rules: molecular weight 

no more than 500, hydrogen bond and hydrogen bond acceptor less than 5 and 10, respectively, 

and logP no more than 5. Therefore, MKL and MKD are suitable compounds to replace DPA714, 

in particular MKL.  

Table 8: Properties of ligands detected using SwissADME. 

 PK11195 DPA714 MKL MKD 

Rotatable bonds 5 9 8 8 

H-bond acceptors 2 5 5 5 

H-bond donors 0 0 0 0 

Lipophilicity (Log Po/w) 4.63 3.66 3.8 3.8 

BBB permeant Yes Yes yes Yes 

Drug-likeness Yes Yes yes Yes 

Bioavailability score 0.55 0.55 0.55 0.55 

In addition to the SwissADME parameters, the drug-likeness parameters from SeeSAR were 

evaluated for a consensus. In terms of important drug-like properties such as molecular weight 

(MW), logP, and total polar surface area (TPSA), the compounds are very similar to the “parent” 
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compound, which can be expected. MKL and MKD are slightly more lipophilic due to a change 

of the fluorine position (calculated LogP = 4.29, instead of LogP of 3.77 calculated for DPA-

714). TPSA and MW are virtually identical for all three compounds: MW=398.47 and TPSA = 

60.25 Å2 for DPA-714; MW=398.48 and TPSA = 60.25 Å2 for MKL and MKD, respectively. 

Collectively, these indicate that both MKL and MKD should be suitable for PET tracers, 

considering their predicted bioavailability (MW, logP) and BBB penetration (TPSA).  

6.1.3 Molecular dynamics studies of ligand-TSPO complexes 

To evaluate the structural and dynamic properties of A147T TSPO variant complexes with 

ligands investigated in this chapter and compare the conformational changes exerted by 

different ligands, all-atom MD simulations of all ligand-protein complexes were carried out. 

The RMSDs calculated on heavy atoms of ligands bound to the A147T TSPO variant reach a 

converged state prior 50 ns for all complexes except MKL, which showed an increase in RMSD 

during 56-67 ns simulation time. The geometry of this MKL changes to upright after 60 ns can 

be seen in Figure 67B. PK11195 and MKD had the lowest average RMSDs, which may reflect 

differences in the biological activities exerted by those ligands: PK11195 is an antagonist, DPA-

714 is an agonist, the pharmacological activity of MKL and MKD is yet to be determined. 

Nevertheless, the differences in ligand RMSDs were small (less than 2Å for ‘extremes’, MKL 

and MKD), and all complexes were stable, with only minor conformational changes in ligands 

observed during the simulation and overall binding modes preserved (Figure 67B). 

However, the binding of ligands induced conformational changes to the A147T TSPO variant. 

Figure 67C shows the RMSDs calculated on the A147T TSPO variant backbone over the 

simulation time, with the results calculated for the reference structure (apoTSPO) included. Of 

all structures, the lowest average RMSD has been obtained for the complex with PKA1195, a 

TSPO antagonist. The average RMSD values can be ranked as follows: PKA11195 < apoTSPO 

< DPA-714 = MKD = MKL. This ranking of average values may represent the effect of the 

ligands on the phenotypical effect of the A147T TSPO variant. The results suggest that MKL 

and MKD should form a high-affinity complex and exert a strong dynamic effect on the A147T 
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TSPO variant. 

 

Figure 67: A) RMSD calculation of ligands fit A147T TSPO variant backbone in complexes 
during 100 ns MD simulation; the black represents PK11195, red – DPA714, green – MKL, 
and blue – MKD; B) Two complexes of A147T TSPO variant and MKL ligand, the 
configuration of blue complex sampled around 1 ns and the configuration of blue complex 
sampled around 60 ns. C) RMSD calculation of A147T TSPO variant backbones in 
complexes during 100 ns MD simulation. The black represents the A147T TSPO variant 
backbone in the PKA11195 complex, red – the A147T TSPO variant backbone in the DPA-
714 complex, green – the A147T TSPO variant backbone in the MKL complex, blue – the 
TSPO backbone in the MKD complex. The apo A147T TSPO variant (APO) is shown in 
yellow as a reference. 

The global, correlated motions of the A147T TSPO variant in complexes with ligands and 

apoTSPO have been assessed by the principal component analysis (PCA, Figure 68). Although 

all five models showed a slightly similar distribution, MKL has a weaker effect on the dynamics, 

being the most similar to the apoTSPO distribution.  
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Figure 68: Principal component 2D projection calculation of four ligands fit A147T TSPO 
variant backbone in the last 50ns during 100 ns of the atomistic MD simulation. The apo 
A147T TSPO variant (APO) is shown in blue as a reference. The black represents the A147T 
TSPO variant backbone in the PKA11195 complex, red – the A147T TSPO variant backbone 
in the DPA-714 complex, green – the A147T TSPO variant backbone in the MKL complex, 
purple – the TSPO backbone in the MKD complex. 

The fluctuations per residue in TSPO during the simulation were assessed by calculating their 

root-mean-square deviation. As shown in Figure 69, the results for all ligands-TSPO complexes 

show a local increase in flexibility in the region spanning residues 92-108, which is close to the 

binding pocket. PK11195 shows enhanced flexibility in the residues 72-80, forming a short loop 

at the mitochondrial site. This trend is also visible for apoTSPO, albeit to a lower extent, but 

not in DPA-714 and its derivatives. The binding of MKD, MKL and DPA-714 increased the 

flexibility in the cytosolic loop 28-45, although this effect was more negligible for the latter 

two ligands. MKL and DPA-714 showed increased flexibility in the residues 60-67, which are 

part of the transmembrane helix at the mitochondrial site. This shows that each of the ligands 

has a different modulation effect on the variant TSPO. 
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Figure 69: Analysis of the residual flexibility of A147T TSPO. The regions of protein 
structure in the five circles correspond to the five residue peaks shown in the RMSF plot. In 
the centre, six representative conformations of the apo A147T TSPO trajectory were sampled 
every 20ns in a 100ns simulation.  

Analysis of H-bonding networks in the complexes and contact points between ligands and 

TSPO identified key residues in Figure 70 and listed in Table 9. These residues are in agreement 

with the initial docking results and with available experimental data. MKL complex contains 

the highest amount of intermolecular H-bonds (2) and hydrophobic contacts (93) between 

ligand and receptor after MD simulation. These may explain the predicted binding affinity of 

the ligand. PK11195 and DPA714 scored the same number of H-bonds (1) with A147T TSPO, 

and the former had 65 contact points, while the latter had 95 contact points. MKD complex 

appears to form no ligand-protein H-bonds, but it showed the largest number of ligand-protein 

contact points (107) after MD simulation. The amide oxygen atoms of PK11195, DPA714 and 

MKL and the N1 atom of MKL are H-bond acceptors. Three residues (LEU49, ASN151 and 

TRP53) of TSPO were H-bond donors, as showed in Figure 70. Combined with the data shown 
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in Table 9, all four ligand-TSPO complexes have established more H-bonds and contacts than 

the primary complexes after MD simulation. Furthermore, all four ligands changed the structure 

and shifted position compared to the initial ligand binding modes, although all remained in the 

binding pocket. Hence, MD simulations adjusted the ligand positions and structures to make 

tighter connections to the proteins. 

 

Figure 70: H-bond formation and contacts between ligands and A147T TSPO detected after 
MD simulations. The four ligands are coloured orange. The initial binding ligands are 
coloured purple. The blue line represents the H-bond, and the yellow line represents the 
contacts between ligands and TSPO. 

Table 9: H-bond and contacts between ligands and A147T TSPO 

 H-bond H-bond donor (TSPO) Contact with TSPO 

Initial PK11195 0  72 

(MD) PK11195 1 LEU49 - O8 65 
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Initial DPA714 0  84 

(MD) DPA714 1 ASN151-O22 95 

Initial MKL 0  91 

(MD) MKL 2 TRP53-N1, ASN151-O22 93 

Initial MKD 0  84 

(MD) MKD 0  107 

To validate the protein-ligand binding modes after MD simulation, the ligands binding affinity 

with A147T TSPO was re-calculated binding scores via SeeSAR, and the results are shown in 

Table 10. MKL (affinity < pM) had the strongest binding affinity to the A147T TSPO receptor 

at an initial state, followed by DPA714 and MKD ligands, and finally PK11195 (affinity: high 

μM to low mM).  

After MD simulation, the binding of the ligands to TSPO was recalculated. DPA still showed a 

high affinity and became the ligand with the strongest affinity (affinity: high pM to low nM), 

followed by MKL and MKD, which both showed a weakened affinity with similar results 

(affinity: high nM to low μM), the last still being PKA, but with a stronger affinity than its 

initial state (affinity: low μM). All these four ligands still showed a high binding affinity with 

A147 TSPO.  

Table 10: Binding affinity of A147T TSPO and ligand calculated via SeeSAR 

Ligands 
Initial TSPO Affinity  

(Ki calc) 

MD TSPO Affinity 

 (Ki calc) 

PK11195 High μM to low mM Low μM 
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DPA714 High pM to low nM High pM to low nM 

MKL < pM  High nM to low μM 

MKD Middle nM High nM to low μM 

6.2 Discussion 

The clinical applicability of current TSPO PET radioligands has been hampered by the lack of 

druglike binding affinity of many second-generation compounds, including PBR-28, DPA-714, 

and DAA1106, to a prevalent form of polymorphic TSPO (A147T) compared to wild type 

human TSPO. The affinity decrease for some ligands can be dramatic (e.g., drop of Ki from 3 

nM to 237 nM for PBR-28). For DPA-714, Ki drops from 15 nM for wtTSPO to 66 nM for 

A147T variant. This makes the scaffold preferred for further development. However, the exact 

binding mode for this scaffold remains unknown, which disables structure-guided optimisation.  

To understand the interactions between PK11195 and A147T TSPO polymorph, and to predict 

the binding mode of chemically distinct DPA-714, a homology model of human TSPO was 

built, based on murine TSPO bound to PK11195, and subsequently ran all-atom MD 

simulations of the apo and holo TSPO embedded in a model membrane. All configurations 

sampled equilibrated ensembles in a short period.  
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Figure 71: The conformation of 2MGY (blue) and 2N02 (purple). The green PK11195 ligand 
belongs to 2MGY, and another red PK11195 ligand belongs to 2N02 

Through extensive molecular docking calculations performed on the ensemble calculated from 

the MD simulations, it was found that the binding pocket for DPA-714 and its derivatives is 

formed by residues CYS19, SER23, HIS43, HIS46, LEU49, GLY50, TRP107, VAL110, 

LEU114, TRP143, LEU150, ASN151, and that binding site is distinct from the binding site for 

PK11195 inferred from experimental studies on mouse TSPO. All four compounds investigated 

in this study showed favourable binding affinity to TSPO (nM range), and experimental binding 

affinity known for PK11195 and DPA-714 were reproduced well, increasing confidence in 

calculated binding modes. One enantiomer of designed molecules, denoted as MKL, had better 

affinity than another enantiomer (MKD), and the difference span two orders of magnitude. 

Introducing the F atom in the C10 position of MKL affected the binding site's conformation 

and the ligand's orientation in the TSPO binding pocket and caused the formation of an 

intermolecular H-bond, leading to an increase in the calculated binding affinity. By performing 

equilibrium MD simulations of complexes embedded in the explicit membrane, it was shown 

that two enantiomers bound to TSPO caused different conformational changes at the putative 
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cholesterol binding site. The region about residues 60-67 is implicated in cholesterol binding. 

Termini are the most flexible regions in all simulations, which is expected, considering they are 

unconstrained and solvent-exposed. Overall, ligand-induced changes in flexibility occur at sites 

distal from the ligand binding site, and those changes, different for agonists and antagonists 

(PK11195), might contribute to the specific biological activity of ligands evaluated in this work. 

MKL also showed stabilizing effect on TSPO structural core. This region is implicated in ligand 

efflux, so an increase in flexibility in this region of TSPO by PK11195 might contribute to the 

antagonistic activity of this ligand.  

While DPA-714 represents an improvement in relatively many of the second-generation ligands 

regarding its binding to the A147T TSPO variant, it still shows reduced binding affinity to that 

variant. To overcome this problem and limitations in the synthetic feasibility, it is crucial to 

understand how the binding requirements of A147T TSPO differ from wtTSPO. One approach 

to deconvolute factors responsible for the loss of affinity of TSPO ligands to A147T TSPO 

variant is evaluating the differences in structure and dynamics, DPA-714 and their analogues 

bound to wtTSPO and A147T TSPO variant, using structure-based molecular modelling 

approaches.  

The solution NMR structures of the murine TSPO (mTSPO), which has 82% sequence identity 

to human TSPO, do not show any dramatic structural differences between wild type mTSPO 

and the A147T variant for the structures bound to PK11195 (PDB codes 2MGY and 2N02, 

respectively). The backbone RMSD is 1.14 Å, and the binding poses of the ligand in both 

structures are virtually identical (Figure 71). Therefore, it is unlikely that different protein 

conformations can explain the reduced affinity of 2nd generation TSPO ligands to the A147T 

variant. Thus, different binding modes and this explanation may require a detailed examination 

of subtle structural changes at the binding site and changes in intrinsic protein dynamics caused 

by the binding event. Analysis of those factors is hampered by the absence of the experimental 

structure of any 2nd generation ligand bound to TSPO published to date.   
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6.3 Materials and Methods 

6.3.1 Homology modelling of human TSPO  

Homology models of human TSPO have been created using SWISS-MODEL, a fully 

automated protein structure homology-modelling webserver203, 204. The primary sequences of 

the human wild-type (WT) TSPO have been obtained from the UniProt repository (entry 

P30536). Fifteen models were calculated and ranked according to their sequence similarity and 

QMEAN 203 quality scores combined. After the visual inspection, the model of WT TSPO based 

on the solution NMR structure of murine TSPO (UniProt entry P50637) in complex with its 

high-affinity antagonist PK11195 (PDB code: 2MGY). For the A147T model, the solution 

NMR structure of murine TSPO bearing A147T mutation and bound to PK11195 (PDB code: 

2N02) was chosen as a template. These have been done for several reasons. First, overall 

sequence conservation between human and mouse TSPO is very high (81% of identical 

residues), which gives high confidence in the model quality. The template 2N02 represents the 

experimental structure of the A147T TSPO variant, which reduces uncertainty in the modelling 

workflow. Finally, both templates contain a high-affinity ligand-bound. Therefore, predicting a 

putative binding site, a source of yet another uncertainty, is not required. Both models were 

quality checked by UCSF Chimera251, for any missing loops and steric clashes, the PK11195 

molecule has been fitted back in, and the resulting complexes have been subjected to 2,500 

cycles steepest-descent molecular-mechanical energy minimisations within UCSF Chimera, 

using Amber99SB force field. Partial atomic charges on PK11195 were calculated using the 

AM1-BCC quantum mechanical method267. 

6.3.2 Molecular docking and structure-guided ligand design 

The model of each PK11195-TSPO complex (wtTSPO and A147T) have been imported into 

SeeSAR (version 10.3), a structure-guided drug design platform, which facilitates the 

optimisation of molecules from virtual screening to lead-optimisation and scaffold-hopping 

(www.biosolveit.de). The binding site has been defined using (1) the existing ligand (PK11195) 

and (2) unoccupied spaces. To assess the suitability of the workflow, PK11195 has been re-
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docked and its poses and predicted binding affinity has been calculated and compared with 

experimental data. In molecular docking, 300 poses have been selected with a high clash 

tolerance filter.  

3D coordinates of the DPA-714 have been constructed in UCSF Chimera, imported to SeeSAR, 

and both molecules have been subjected to molecular docking (300 poses with high clash 

tolerance filter) using the binding site defined for PK11195 and HYDE scoring function. The 

best pose, with the calculated binding affinity matching the experimental value, has been 

selected in lead optimisation, wherein different parts of the scaffold have been fluorinated, with 

the input and guidance from the synthetic chemistry team. In total, 50 analogues were inspected. 

Two compounds denoted as MKL and MKD (Figure 64), with the best-predicted affinity and 

favourable pharmacokinetic parameters (logP, MW, TPSA), were selected for further studies. 

The ADME properties of ligands were predicted using the SwissADME (www.swissadme.ch) 
277. 

6.3.3 Atomistic molecular dynamics (MD) simulations 

All simulations were performed using Gromacs 2016.3256. The A147T TSPO variant was 

parametrised using the AMBER99SB-ILDN force field, with the DPPC lipid bilayer and TIP3P 

water model 218. The apoTSPO model and four ligand-TSPO complexes were embedded in a 

DPPC bilayer lipid molecule, using the computational membrane builder tool in the 

CHARMM-GUI server (www.charmm-gui.org) 257-259. Box distance was set to 1 nm, and 

periodic boundary conditions were applied. The box was solvated and Na+, and Cl- ions were 

added to achieve a 0.1 M concentration and maintain the charge neutrality of the unit. The 

solvated receptor-membrane systems were energy minimised and equilibrated. The 

minimisation ran using the steepest descent followed by the conjugate gradient. The energy step 

size was set to 0.01 nm, and the maximum number of steps was set to 50,000. The minimisation 

was stopped when the maximum force fell below 1000 kJ/mol/nm using the Verlet cutoff 

scheme. Treatment of long-range electrostatic interactions was set to Particle Mesh-Ewald 

(PME) 260, and the short-range electrostatic and van der Waals cutoff was set to 1.0 nm. After 

the energy minimisation, heating to 300 K was performed for 5 ps with a time step of 1 fs and 
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position restraints applied to the backbone in an NVT ensemble. The constraint algorithm used 

was LINCS 261, which was applied to all bonds and angles in the protein. The cutoff for non-

bonded short-range interaction was set to 2.0 nm with the Verlet cutoff scheme. Long-range 

electrostatics were set to PME 260. The temperature coupling was set between the protein and 

the non-protein entities using a Berendsen thermostat, with a time constant of 0.1 ps and the 

temperature set to reach 300 K with the pressure coupling off. Pressure equilibration was run 

at 300 K with a Parrinello-Rahman barostat and set to 1 bar 225 in an NPT ensemble. The 

equilibration trajectories were set to 10 ns, and the production MD simulations were performed 

for 100 ns.  

The trajectories were analysed using GROMACS tools, including root-mean-square deviation 

(RMSD) to assess overall stability, per-residue root-mean-square fluctuation (RMSF) to assess 

the local flexibility H-bonding network analysis and contact points to assess the interaction 

between protein and ligand were done via UCSF Chimera. 
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Conclusions and future directions 

The number of people suffering from neuroinflammation and neurodegenerative diseases has 

increased significantly in current society. Understanding the pathogenesis of these diseases and 

providing effective treatments and defences has become a crucial task for medical research for 

clinical treatment. As discussed in this work and the literature, duplicated α7 nAChR and A147T 

TSPO variants have been confirmed to negatively affecting cellular receptors' function. These 

reports correlate to the increased expression in microglia upon inflammation, respectively, 

associated with neurological disorders such as AD, PD, and schizophrenia. Hence, this makes 

these two proteins important targets and biomarkers for new therapies and diagnostics.  

The research shown in this work aimed to identify the conformation, estimate protein-ligand or 

protein-protein interactions, and detect the potential binding sites of dupα7 nAChR. This work 

performed a systematic study on all possible combinations of dupα7/α7 nicotinic receptors, 

focusing on their structural stability and stoichiometry, to find the most probable functional 

pentamers bearing dupα7 subunits. Understanding this was essential to understand the effect of 

dupα7 since it has been regarded as a dominant-negative regulator of α7 receptors. However, 

reports of functional pentamers bearing dupα7 subunits have been published. All possible 

combinations were modelled and evaluated using structure-based multiscale computational 

methods to address the conflicting evidence from published studies. We showed that higher 

content of dupα7 subunits resulted in less cohesive pentamers, and dupα7/dupα7 interfaces, 

corresponding to the orthosteric binding sites, were markedly less stable than dupα7/α7 

interfaces. These indicate that the most likely combinations were pentamers bearing one dupα7 

subunit (A-Dupα7 model) or pentamers containing two non-consecutive subunits (AC-Dupα7 

model). Pentamers bearing three subunits with the lowest dupα7/dupα7 interfaces (ACD-

Dupα7 model) were also suggested to be functional via analysis of the ion transmission 

energetic landscape carried out via umbrella sampling simulations. The comparative studies of 

the energetic landscapes for the pentamers with different stoichiometries showed that receptors 

with a low ratio of dupα7/α7 are still functional, even though higher energy barriers are 

observed for these pentamers. On the other hand, the increase of the number of dupα7 subunits 
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negatively affected the Ca2+ uptake via the receptor.  

Our work has also shown that dupα7 interfaces are insensitive to α-bungarotoxin (α-BTX), but 

not to Aβ42, even though their Aβ42 binding is impaired compared to the canonical α7 receptors. 

This impairment indicates that receptors containing dupα7 subunits are less sensitive to Aβ42 

effects and that dupα7 subunits, despite their impaired agonist binding, may offer protection 

against detrimental Aβ42 effects.  

After analysing stoichiometry, molecular dynamics, conformational changes, and binding 

affinity, the focus was on finding the 'druggable' allosteric binding sites and evaluating the effect 

of dupα7 subunit on both agonists allosteric binding sites. Two agonists, Ach and Lob, were 

selected to dock with these five pentamers using DOCK6. The results showed that agonist 

binding sites mapped in silico were located at the interface between two adjacent α7 subunits, 

behind the loop C and surrounding by loop A, Loop B of left-hand subunit and β1, β2, β5 and 

β8 of the right-hand subunit. The dupα7 subunit has not affected the agonist binding sites in 

dup-WT dimer interfaces but influences the agonist binding site generation in WT-dup and dup-

dup interfaces. The same agonist binding site results were also detected via FTMap. 

In addition, the allosteric binding sites were predicted using FTMap and identified by docking 

with an α7 nAChR allosteric ligand library using DOCK6. Four binding sites have been found 

in α7 nAChR. The vestibule pocket was inside a single chain, while the top pocket, the upper 

pocket and the down pocket were in the middle of the dimer. The top pocket involved residues 

from the α1 loop and β4 loop of one subunit. The vestibule pocket is formed by β2, β4, β5 and 

β6 loops from the same subunit. The top pocket involved residues from the α1 loop and β4 loop 

of one subunit and may residues in α1, β2 and β3 loop of the adjacent subunit. The last two 

allosteric binding sites were found in the middle of the adjacent subunits: one in the upper 

pocket above the orthosteric binding site, involving loops B and C in one subunit and loops β1, 

β2 in the adjacent subunit; the other one below the orthosteric site, and it involved residues in 

loops A, β6 and β7 in one subunit and residues in loops β1, β8 in the adjacent subunit. These 

four allosteric binding sites have also been found in dupα7 models, but the dup-dup subunit 

does not exit either agonist or allosteric binding sites, which have been proved by the FTMap 



 

 
150 

and DOCK6 results of AB-Dup and ACD-dup. 

I hope that this work will contribute to the elucidation of the biological roles of dupα7 subunits, 

generating models that can be used for a rational drug design. Future research aiming to 

characterise the function of dupα7 in the clinical context may result in novel pathways for AD 

treatment based on early-stage preclinical data. As α7 receptors are implicated in a broad range 

of diseases, including cognition, memory, schizophrenia, chronic pain and inflammageing, 

mechanistic insights into receptors containing dupα7 subunits will impact these therapeutic 

areas, including those conditions which currently represent an unmet clinical need. 

In sequence, the focus was on shedding light on interactions between ligands and A147T TSPO 

polymorphs to predict the binding mode of chemically distinct DPA-714. For this, it was first 

built a homology model of the human A147T TSPO variant, based on murine TSPO bound to 

PK11195, and subsequently ran all-atom molecular dynamics (MD) simulations of the TSPO 

embedded in a model membrane. I found that the presence of PK11195 stabilised TSPO overall 

structure, even in the absence of any dramatic conformational changes. Interestingly, I also 

found that PK11195 binding reduced the intrinsic dynamics of the N-terminal segment of TSPO. 

These regions are implicated in cholesterol binding in the inner membrane leaflet. The impact 

of PK11195 on intrinsic dynamics of TSPO was less pronounced for the C-terminal segment 

located in the outer membrane leaflet, wherein the ligand binding site is located, compared to 

other regions and systems. 

In this work, two different enantiomers (MKL, MKD) based on the scaffold of DPA-714 were 

designed and synthesised with the fluorine (F) position changed from C29 to C10 atom. These 

two compounds have better synthetic feasibility than their parent compound (DPA-714). The 

target A147T TSPO variant was mapped for binding sites (the predicted pose of DPA-714) and 

used to investigate the difference between enantiomers and two established TSPO radioligand 

(PA11195 and DPA-714) via SeeSAR. The MKL ligand was showed as the best compound in 

terms of affinity (affinity (Ki calc) < pM), had better affinity than another enantiomer (MKD) 

with calculated affinity (Ki calc) of mid-nM range. Introducing the fluorine atom in the C10 

position of MKL affected the binding site's conformation and the ligand's orientation in the 
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TSPO binding pocket and caused the formation of an intermolecular H-bond, leading to an 

increase in the calculated binding affinity. 

By performing equilibrium MD simulations of complexes embedded in an explicit membrane, 

it was found that two enantiomers bound to TSPO caused different conformational changes at 

the putative cholesterol binding site. MKL also showed a more stabilising effect on TSPO 

structural core. Most pharmacokinetic properties of both enantiomers were otherwise the same 

and highly similar to properties of the parent compound, DPA-714. These results strongly 

suggest that residues TRP53 and ASN151 of TSPO play an essential role in stabilising the 

complex via forming H-bonds with the ligands. Besides these, residues VAL26, LEU49, 

TRP107, VAL110, LEU150 also as necessary part involved the binding pocket-forming and 

hydrophobic contacts with ligands. Hence, the drug-likeness of MKL and MKD was predicted: 

both have suitable lipophilicity and can cross the blood-brain barrier (BBB), which is crucial 

for central nervous system drugs and radioligands.  

As the synthesis of both isomers (bearing non-radioactive fluorine) has now been completed in 

the group of Dr Mike Carroll and testing in cellular assays are currently in progress (group of 

Dr Kate Madden), future works should evaluate the binding affinity of MKL and MKD in cell-

free assays (e.g., MST or ITC) to validate molecular modelling results. Should those studies 

confirm MKL (and possibly also MKD) as a potent ligand of A147T TSPO, the following steps 

should focus on improved radiosynthesis and proof-of-concept tests in human brain tissue. 
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Appendix 

Supporting Information 

 

Figure S. 1: The atomistic α7 model translation to MARTINI coarse-grain framework. 
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Table S. 1: Full list of interfacial hydrogen bond contacts for the canonical α7 receptor (WT) before MD 
simulations. 

Donor 

 

Acceptor 

 

Donor-
Acceptor 
distance (Å) 

Donor 
hydrogen-
Acceptor 
distance (Å) 

Total number 
of contacts 

AB (WT-WT) 10 H-bonds 

    

171  

GLN 61.A NE2 SER 149.B OG 2.868 1.887 

 

ASN 75.A ND2 ARG 121.B O 2.983 2.166 

 

ARG 101.A NE TYR 173.B OH 2.837 1.823 

 

ARG 101.A NH1 TYR 173.B OH 3.388 2.633 

 

ARG 101.A NH2 PRO 39.B O 3.345 2.583 

 

ARG 101.A NH2 LEU 40.B O 3.013 2.183 

 

ASN 69.B ND2 MET 63.A O 2.815 1.808 

 

ASN 69.B ND2 ASP 64.A OD1 2.834 1.909 

 

GLN 70.B NE2 PRO 192.A O 3.623 2.651 

 

TRP 171.B NE1 LEU 141.A O 2.842 1.936 

 

BC (WT-WT) 5 H-bonds 

    

219  

ASN 75.B ND2 GLU 120.C OE1 2.685 1.809 

 

ARG 101.B NH1 SER 172.C O 3.267 2.429 

 

ASN 133.B ND2 TYR 173.C OH 3.189 2.322 

 

TRP 171.C NE1 LEU 141.B O 2.777 1.77 

 

SER 172.C OG ASN 133.B O 2.843 1.908 

 

CD (WT-WT) 5 H-bonds 

    

164  

LYS 28.C N GLU 41.D OE2 3.458 2.628 

 

TRP 77.C NE1 ASP 119.D O 2.975 2.063 

 

GLN 70.D NE2 PRO 192.C O 3.183 2.218 

 

SER 149.D OG GLN 61.C OE1 2.823 1.911 
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TRP 171.D NE1 LEU 141.C O 2.797 1.795 

 

DE (WT -WT) 10 H-bonds 

    

123  

GLN 61.D NE2 SER 149.E OG 2.955 2.019 

 

TRP 77.D NE1 GLU 120.E OE1 2.748 1.864 

 

TRP 77.D NE1 GLU 120.E OE2 2.887 1.964 

 

ARG 101.D NH1 LYS 109.E O 3.12 2.329 

 

ARG 101.D NH2 ASP 111.E OD1 2.66 1.749 

 

ASN 129.D ND2 SER 172.E OG 2.876 1.855 

 

GLN 70.E NE2 PRO 192.D O 2.982 1.977 

 

SER 117.E OG GLY 189.D O 2.819 2.229 

 

ARG 121.E NH1 PRO 143.D O 2.818 1.995 

 

TRP 171.E NE1 LEU 141.D O 2.808 1.806 

 

EA (WT-WT) 13 H-bonds 

    

185  

ASN 69.A ND2 MET 63.E O 2.867 1.858 

 

GLN 70.A NE2 PRO 192.E O 3.007 2.022 

 

ARG 121.A NE ASN 75.E OD1 2.826 2.012 

 

ARG 121.A NH1 ASN 75.E OD1 2.855 2.005 

 

TRP 171.A NE1 LEU 141.E O 2.78 1.844 

 

SER 172.A OG ASN 129.E OD1 2.833 1.943 

 

GLN 61.E NE2 SER 149.A OG 2.974 2.171 

 

TRP 77.E NE1 ASP 119.A O 2.684 1.953 

 

ARG 101.E NE TYR 173.A OH 2.872 1.87 

 

ARG 101.E NH1 TYR 173.A OH 3.428 2.629 

 

ARG 101.E NH2 PRO 39.A O 3.361 2.439 

 

ARG 101.E NH2 LEU 40.A O 2.843 2.132 
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ASN 129.E ND2 ASP 111.A OD2 2.675 1.806 
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Table S. 2: Full list of interfacial hydrogen bond contacts in A-dupa7 receptor before MD simulations. 

Donor 

 

Acceptor 

 

Donor-
Acceptor 
distance (Å) 

Donor 
hydrogen-
Acceptor 
distance (Å) 

Total number 
of contacts 

AB (dup- WT) 3 H-bonds 

    

132  

GLN 70.B NE2 PRO 102.A O 3.452 2.486 

 

ARG 121.B NH1 PHE 32.A O 3.467 2.54 

 

TRP 171.B NE1 LEU 51.A O 2.964 2.141 

 

BC (WT-WT) 4 H-bonds 

    

214  

ASN 75.B ND2 GLU 120.C OE1 2.714 1.989 

 

ARG 101.B NH1 SER 172.C O 3.492 2.74 

 

ASN 133.B ND2 TYR 173.C OH 3.115 2.243 

 

TRP 171.C NE1 LEU 141.B O 2.71 1.699 

 

CD (WT-WT) 3 H-bonds 

    

158  

TRP 77.C NE1 ASP 119.D O 2.909 2.017 

 

GLN 70.D NE2 PRO 192.C O 3.233 2.255 

 

TRP 171.D NE1 LEU 141.C O 2.787 1.78 

 

DE (WT-WT) 8 H-bonds 

    

131  

GLN 61.D NE2 SER 149.E OG 2.97 2.111 

 

TRP 77.D NE1 GLU 120.E OE1 2.675 1.821 

 

TRP 77.D NE1 GLU 120.E OE2 3.006 2.199 

 

ARG 101.D NH1 LYS 109.E O 3.184 2.453 

 

ARG 101.D NH2 ASP 111.E OD1 2.62 1.879 

 

ASN 129.D ND2 SER 172.E OG 2.9 1.886 

 

GLN 70.E NE2 PRO 192.D O 2.984 1.974 

 

TRP 171.E NE1 LEU 141.D O 2.757 1.751 
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EA (WT -dup) 3 H-bonds 

    

73  

SER 82.A OG ASN 129.E OD1 3.027 2.276 

 

GLN 61.E NE2 SER 59.A OG 2.857 2.155 

 

ARG 101.E NE TYR 83.A OH 2.509 1.595 
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Table S. 3: Full list of interfacial hydrogen bond contacts in AB-dupa7 receptor before MD simulations. 

Donor 

 

Acceptor 

 

Donor-
Acceptor 
distance (Å) 

Donor 
hydrogen-
Acceptor 
distance (Å) 

Total number 
of contacts 

AB (dup-dup) 3 H-bonds 

    

78  

ARG 31.A NH1 ASP 29.B OD1 3.079 2.374 

 

TRP 81.B NE1 LEU 51.A O 2.806 1.972 

 

TYR 83.B OH ASN 39.A OD1 2.717 1.816 

 

BC (dup- WT) 3 H-bonds 

    

134  

TRP 108.C NE1 GLN 13.B OE1 2.979 2.092 

 

SER 117.C OG GLY 99.B O 2.766 2.064 

 

TRP 171.C NE1 LEU 51.B O 2.77 1.797 

 

CD (WT-WT) 5 H-bonds 

    

166  

LYS 28.C N GLU 41.D OE2 3.474 2.652 

 

TRP 77.C NE1 ASP 119.D O 2.976 2.066 

 

GLN 70.D NE2 PRO 192.C O 3.166 2.201 

 

SER 149.D OG GLN 61.C OE1 2.818 1.893 

 

TRP 171.D NE1 LEU 141.C O 2.794 1.792 

 

DE (WT-WT) 10 H-bonds 

    

122  

GLN 61.D NE2 SER 149.E OG 2.95 2.013 

 

TRP 77.D NE1 GLU 120.E OE1 2.756 1.878 

 

TRP 77.D NE1 GLU 120.E OE2 2.872 1.946 

 

ARG 101.D NH1 LYS 109.E O 3.126 2.336 

 

ARG 101.D NH2 ASP 111.E OD1 2.665 1.754 

 

ASN 129.D ND2 SER 172.E OG 2.882 1.861 

 

GLN 70.E NE2 PRO 192.D O 2.981 1.977 
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SER 117.E OG GLY 189.D O 2.813 2.213 

 

ARG 121.E NH1 PRO 143.D O 2.808 1.97 

 

TRP 171.E NE1 LEU 141.D O 2.803 1.801 

 

EA (WT -WT) 3 H-bonds 

    

68  

TRP 81.A NE1 LEU 141.E O 3.308 2.435 

 

SER 82.A OG ASN 129.E OD1 3.017 2.103 

 

ARG 101.E NE TYR 83.A OH 2.798 1.852 
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Table S. 4: Full list of interfacial hydrogen bond contacts in AC-dupa7 receptor before MD simulations. 

Donor 

 

Acceptor 

 

Donor-
Acceptor 
distance (Å) 

Donor 
hydrogen-
Acceptor 
distance (Å) 

Total number 
of contacts 

AB (dup- WT) 3 H-bonds 

    

123  

GLN 70.B NE2 PRO 102.A O 3.454 2.485 

 

ARG 121.B NH1 PHE 32.A O 3.199 2.306 

 

TRP 171.B NE1 LEU 51.A O 2.786 1.897 

 

BC (WT -dup) 6 H-bonds 

    

219  

ASN 75.B ND2 GLU 120.C OE1 2.686 1.819 

 

ARG 101.B NH1 SER 172.C O 3.267 2.418 

 

ASN 133.B ND2 TYR 173.C OH 3.196 2.335 

 

TRP 171.C NE1 LEU 141.B O 2.77 1.764 

 

SER 172.C OG LEU 131.B O 3.516 3.001 

 

SER 172.C OG ASN 133.B O 2.884 2.01 

 

CD (dup- WT) 3 H-bonds 

    

70  

ARG 101.C NH1 SER 82.D O 2.862 2.092 

 

SER 59.D OG GLN 61.C OE1 3.189 2.417 

 

TRP 81.D NE1 LEU 141.C O 2.683 1.698 

 

DE (WT-WT) 4 H-bonds 

    

177  

GLN 70.E NE2 PRO 102.D O 2.883 1.878 

 

TRP 108.E NE1 GLN 13.D OE1 3.107 2.124 

 

SER 117.E OG GLY 99.D O 2.858 2.303 

 

TRP 171.E NE1 LEU 51.D O 2.815 1.807 

 

EA (WT -dup) 3 H-bonds 

    

62  

TRP 81.A NE1 LEU 141.E O 3.267 2.39 

 



 

 
161 

SER 82.A OG ASN 129.E OD1 3.007 2.087 

 

ARG 101.E NE TYR 83.A OH 2.802 1.854 
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Table S. 5: Full list of interfacial hydrogen bond contacts in ABC-dupa7 receptor before MD simulations. 

Donor 

 

Acceptor 

 

Donor-
Acceptor 
distance (Å) 

Donor 
hydrogen-
Acceptor 
distance (Å) 

Total number 
of contacts 

AB (dup-dup) 3 H-bonds 

    

78  

ARG 31.A NH1 ASP 29.B OD1 3.021 2.264 

 

TRP 81.B NE1 LEU 51.A O 2.802 1.969 

 

TYR 83.B OH ASN 39.A OD1 2.711 1.803 

 

BC (dup-dup) 1 H-bonds 

    

86  

TRP 81.C NE1 LEU 51.B O 2.808 2.019 

 

CD (dup- WT) 4 H-bonds 

    

158  

GLN 70.D NE2 PRO 102.C O 3.244 2.276 

 

TRP 108.D NE1 GLN 13.C OE1 2.886 2.019 

 

TRP 171.D NE1 LEU 51.C O 2.83 1.819 

 

TYR 173.D OH GLN 13.C OE1 2.956 2.251 

 

DE (WT-WT) 10 H-bonds 

    

120  

GLN 61.D NE2 SER 149.E OG 2.949 2.012 

 

TRP 77.D NE1 GLU 120.E OE1 2.763 1.887 

 

TRP 77.D NE1 GLU 120.E OE2 2.862 1.935 

 

ARG 101.D NH1 LYS 109.E O 3.13 2.34 

 

ARG 101.D NH2 ASP 111.E OD1 2.667 1.756 

 

ASN 129.D ND2 SER 172.E OG 2.887 1.866 

 

GLN 70.E NE2 PRO 192.D O 2.979 1.974 

 

SER 117.E OG GLY 189.D O 2.81 2.207 

 

ARG 121.E NH1 PRO 143.D O 2.789 1.934 

 

TRP 171.E NE1 LEU 141.D O 2.796 1.794 
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EA (WT -dup) 3 H-bonds 

    

68  

TRP 81.A NE1 LEU 141.E O 3.289 2.415 

 

SER 82.A OG ASN 129.E OD1 3.014 2.1 

 

ARG 101.E NE TYR 83.A OH 2.799 1.852 

 

 

  



 

 
164 

Table S. 6: Full list of interfacial hydrogen bond contacts in ACD-dupa7 receptor before MD simulations. 

Donor 

 

Acceptor 

 

Donor-
Acceptor 
distance (Å) 

Donor 
hydrogen-
Acceptor 
distance (Å) 

Total number 
of contacts 

AB (dup- WT) 4 H-bonds 

    

178  

GLN 70.E NE2 PRO 102.D O 2.882 1.876 

 

TRP 108.E NE1 GLN 13.D OE1 3.111 2.128 

 

SER 117.E OG GLY 99.D O 2.854 2.295 

 

TRP 171.E NE1 LEU 51.D O 2.814 1.804 

 

BC (WT -dup) 3 H-bonds 

    

67  

TRP 81.A NE1 LEU 141.E O 3.252 2.375 

 

SER 82.A OG ASN 129.E OD1 3.007 2.089 

 

ARG 101.E NE TYR 83.A OH 2.801 1.853 

 

CD (dup-dup) 3 H-bonds 

    

78  

ARG 31.A NH1 ASP 29.B OD1 3.03 2.279 

 

TRP 81.B NE1 LEU 51.A O 2.801 1.967 

 

TYR 83.B OH ASN 39.A OD1 2.709 1.799 

 

DE (dup- WT) 3 H-bonds 

    

121  

TRP 108.C NE1 GLN 13.B OE1 2.971 2.082 

 

SER 117.C OG GLY 99.B O 2.766 2.059 

 

TRP 171.C NE1 LEU 51.B O 2.77 1.797 

 

EA (WT -dup) 3 H-bonds 

    

70  

ARG 101.C NH1 SER 82.D O 2.861 2.088 

 

SER 59.D OG GLN 61.C OE1 3.19 2.424 

 

TRP 81.D NE1 LEU 141.C O 2.686 1.705 
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Table S. 7: Full list of interfacial hydrogen bond contacts in α7 4-dupa7 receptor before MD simulations. 

Donor 

 

Acceptor 

 

Donor-
Acceptor 
distance (Å) 

Donor 
hydrogen-
Acceptor 
distance (Å) 

Total number 
of contacts 

AB (dup -dup) 3 H-bonds 

    

133  

GLN 70.B NE2 PRO 102.A O 3.448 2.479 

 

ARG 121.B NH1 PHE 32.A O 3.217 2.315 

 

TRP 171.B NE1 LEU 51.A O 2.779 1.889 

 

BC (dup-dup) 5 H-bonds 

    

149  

ARG 101.B NH1 SER 82.C O 3.401 2.468 

 

ARG 101.B NH1 SER 87.C OG 3.029 2.241 

 

THR 128.B OG1 ILE 27.C O 3.459 2.578 

 

TRP 81.C NE1 LEU 141.B O 2.742 1.846 

 

TYR 83.C OH ASN 133.B OD1 3.135 2.166 

 

CD (dup-dup) 3 H-bonds 

    

76  

TRP 20.D NE1 GLN 13.C OE1 2.82 1.912 

 

TRP 81.D NE1 LEU 51.C O 2.734 1.743 

 

SER 82.D OG HIS 37.C ND1 3.087 2.181 

 

DE (dup- WT) 3 H-bonds 

    

98  

ARG 31.D NH1 ASP 29.E OD1 3.129 2.355 

 

TRP 20.E NE1 GLN 13.D OE1 3.037 2.076 

 

TRP 81.E NE1 LEU 51.D O 2.776 1.766 

 

EA (WT -dup) 4 H-bonds 

    

89  

TRP 81.A NE1 LEU 51.E O 2.789 1.925 

 

SER 82.A OG ASN 39.E OD1 2.9 1.999 

 

THR 35.E OG1 ASP 29.A OD1 3.324 2.437 
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PHE 36.E N ASP 29.A OD1 3.274 2.411 
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Table S. 8: Full list of interfacial hydrogen bond contacts in 5-dupa7 receptor before MD simulations. 

Donor 

 

Acceptor 

 

Donor-
Acceptor 
distance (Å) 

Donor 
hydrogen-
Acceptor 
distance (Å) 

Total number 
of contacts 

AB (dup-dup) 3 H-bonds 

    

77  

ARG 31.A NH1 ASP 29.B OD1 2.972 2.159 

 

TRP 81.B NE1 LEU 51.A O 2.793 1.956 

 

TYR 83.B OH ASN 39.A OD1 2.699 1.779 

 

BC (dup-dup) 1 H-bonds 

    

86  

TRP 81.C NE1 LEU 51.B O 2.801 2.01 

 

CD (dup-dup) 3 H-bonds 

    

74  

TRP 20.D NE1 GLN 13.C OE1 2.816 1.908 

 

TRP 81.D NE1 LEU 51.C O 2.731 1.739 

 

SER 82.D OG HIS 37.C ND1 3.079 2.173 

 

DE (dup-dup) 3 H-bonds 

    

99  

ARG 31.D NH1 ASP 29.E OD1 3.108 2.328 

 

TRP 20.E NE1 GLN 13.D OE1 3.035 2.075 

 

TRP 81.E NE1 LEU 51.D O 2.774 1.764 

 

EA (dup-dup) 4 H-bonds 

    

88  

TRP 81.A NE1 LEU 51.E O 2.786 1.92 

 

SER 82.A OG ASN 39.E OD1 2.894 1.981 

 

THR 35.E OG1 ASP 29.A OD1 3.324 2.403 

 

PHE 36.E N ASP 29.A OD1 3.205 2.314 
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Table S. 9: Full list of interfacial hydrogen bond contacts in the canonical a7 (WT) receptor after MD 
simulations. 

Donor 

 

Acceptor 

 

Donor-
Acceptor 
distance (Å) 

Donor 
hydrogen-
Acceptor 
distance (Å) 

Total number 
of contacts 

AB (WT-WT) 8 H-bonds 

    

75  

ASN 75.A ND2 PHE 122.B O 2.862 1.948 

 

ARG 101.A NE ASP 111.B OD1 2.821 1.85 

 

ARG 101.A NE ASP 111.B OD2 2.844 1.85 

 

ARG 101.A NH1 LYS 109.B O 2.966 2.229 

 

ARG 101.A NH1 ASP 111.B OD1 2.944 2.008 

 

ARG 101.A NH1 ASP 111.B OD2 3.1 2.191 

 

ASN 133.A ND2 TYR 173.B OH 3.329 2.587 

 

ARG 155.B NH2 LEU 231.A O 3.322 2.344 

 

BC (WT-WT) 2 H-bonds 

    

17  

ARG 101.B NH2 TRP 171.C O 2.617 1.85 

 

THR 128.B OG1 GLU 120.C OE2 3.355 2.531 

 

CD (WT-WT) 1 H-bonds 

    

105  

ARG 121.D NH2 GLN 61.C OE1 3.069 2.119 

 

DE (WT-WT) 7 H-bonds 

    

79  

GLN 61.D NE2 ASN 69.E O 2.728 2.042 

 

GLN 61.D NE2 GLN 70.E O 3.536 2.589 

 

ASN 75.D ND2 GLU 120.E O 2.54 1.548 

 

ARG 101.D NH1 ASP 111.E OD1 3.162 2.199 

 

ARG 101.D NH1 ASP 111.E OD2 3.311 2.404 

 

GLN 70.E NE2 ASN 193.D O 3.56 2.883 

 

SER 149.E OG GLN 61.D OE1 2.83 1.92 
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EA (WT-WT) 3 H-bonds 

    

22  

ASN 46.A ND2 PRO 95.E O 3.212 2.35 

 

ARG 121.A NE ASN 75.E OD1 2.833 1.884 

 

ARG 121.A NH1 ASN 75.E OD1 2.998 2.162 
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Table S. 10: Full list of interfacial hydrogen bond contacts in A-dupa7 receptor after MD simulations. 

Donor 

 

Acceptor 

 

Donor-
Acceptor 
distance (Å) 

Donor 
hydrogen-
Acceptor 
distance (Å) 

Total number 
of contacts 

AB (dup- WT) 7 H-bonds 

    

83  

GLU 105.A N ASN 69.B OD1 3.534 2.613 

 

TRP 108.B NE1 GLN 13.A OE1 2.994 2.136 

 

ARG 121.B NH1 PHE 32.A O 3.17 2.472 

 

ARG 121.B NH1 ASP 33.A OD1 2.901 2.009 

 

ARG 121.B NH2 ASP 33.A OD1 2.742 1.768 

 

ALA 124.B N PHE 32.A O 2.877 1.908 

 

SER 177.B OG GLN 11.A OE1 3.562 2.817 

 

BC (WT-WT) 5 H-bonds 

    

98  

LEU 29.B N GLU 41.C OE1 3.177 2.334 

 

LEU 29.B N GLU 41.C OE2 3.461 2.52 

 

TYR 30.B N GLU 41.C OE1 3.523 2.519 

 

ARG 101.B NH1 TRP 171.C O 3.519 2.664 

 

SER 117.C OG GLY 189.B O 3.519 2.807 

 

CD (WT-WT) 9 H-bonds 

    

136  

LYS 28.C N GLU 41.D OE1 2.748 1.742 

 

LYS 28.C N GLU 41.D OE2 3.358 2.561 

 

LEU 29.C N GLU 41.D OE1 2.884 1.893 

 

LEU 29.C N GLU 41.D OE2 3.23 2.475 

 

TYR 30.C N GLU 41.D OE2 3.221 2.229 

 

ASN 75.C ND2 ASP 119.D O 3.246 2.304 

 

TRP 77.C NE1 ASP 119.D O 2.874 1.874 
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ARG 101.C NE SER 172.D O 2.826 2.165 

 

ARG 101.C NH1 SER 172.D O 2.274 1.465 

 

DE (WT-WT) 5 H-bonds 

    

65  

LYS 28.D N GLU 41.E OE1 3.065 2.218 

 

LYS 28.D N GLU 41.E OE2 2.995 2.078 

 

LEU 29.D N GLU 41.E OE1 3.038 2.273 

 

ARG 101.D NH1 ASP 111.E OD2 3.359 2.536 

 

SER 117.E OG SER 188.D O 3.547 2.753 

 

EA (WT-WT) 6 H-bonds 

    

76  

ARG 65.A NH1 ASN 193.E O 2.482 1.589 

 

ARG 65.A NH2 ASN 193.E O 3.193 2.52 

 

LYS 31.E NZ GLN 17.A O 3.539 2.709 

 

ARG 101.E NE SER 82.A OG 2.963 2.057 

 

ARG 101.E NH1 ASP 26.A OD1 2.642 1.92 

 

ARG 101.E NH1 SER 82.A OG 2.997 2.123 
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Table S. 11: Full list of interfacial hydrogen bond contacts in AB-dupa7 receptor after MD simulations. 

Donor 

 

Acceptor 

 

Donor-
Acceptor 
distance (Å) 

Donor 
hydrogen-
Acceptor 
distance (Å) 

Total number 
of contacts 

AB (dup-dup) 2 H-bonds 

    

25  

GLN 13.A NE2 ILE 21.B O 3.305 2.382 

 

ALA 23.B N GLN 13.A OE1 3.211 2.437 

 

BC (dup- WT) 3 H-bonds 

    

29  

GLN 13.B NE2 TYR 173.C OH 3.062 2.378 

 

ARG 42.C N GLN 13.B OE1 2.966 2.087 

 

TRP 171.C NE1 PRO 52.B O 2.979 2.171 

 

CD (WT-WT) 6 H-bonds 

    

52  

LEU 29.C N GLU 41.D OE1 3.102 2.404 

 

LEU 29.C N GLU 41.D OE2 2.689 1.978 

 

TYR 30.C N GLU 41.D OE2 3.091 2.213 

 

GLN 106.C NE2 LEU 40.D O 3.423 2.645 

 

TYR 115.D OH HIS 127.C O 2.845 2.229 

 

ARG 121.D NH1 GLN 61.C OE1 2.897 2.716 

 

DE (WT-WT) 5 H-bonds 

    

51  

LEU 29.D N GLU 41.E OE1 2.858 1.948 

 

TYR 30.D N GLU 41.E OE1 3.129 2.142 

 

ARG 101.D NH1 ASP 111.E OD1 2.811 1.856 

 

ARG 101.D NH2 ASP 111.E OD1 3.468 2.721 

 

ARG 101.D NH2 SER 172.E OG 3.025 2.177 

 

EA (WT-dup) 5 H-bonds 

    

84  

ARG 65.A NH1 GLU 195.E OE1 2.918 2.007 
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ARG 65.A NH1 GLU 195.E OE2 2.894 2.02 

 

ARG 65.A NH2 GLU 195.E OE1 3.05 2.199 

 

ARG 65.A NH2 GLU 195.E OE2 2.944 2.092 

 

GLN 139.E NE2 SER 82.A O 3.428 2.605 
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Table S. 12: Full list of interfacial hydrogen bond contacts in AC-dupa7 receptor after MD simulations. 

Donor 

 

Acceptor 

 

Donor-
Acceptor 
distance (Å) 

Donor 
hydrogen-
Acceptor 
distance (Å) 

Total number 
of contacts 

AB (dup- WT) 6 H-bonds 

    

39  

GLN 11.A N SER 172.B O 3.205 2.205 

 

ARG 31.A NE PHE 122.B O 3.052 2.131 

 

ARG 31.A NH1 PHE 122.B O 2.893 1.961 

 

PHE 32.A N ASP 123.B OD1 3.532 2.527 

 

GLN 49.A NE2 GLU 211.B OE2 3.546 2.627 

 

ALA 124.B N PHE 32.A O 2.953 2.011 

 

BC (WT-dup) 1 H-bonds 

    

117  

ASN 193.B ND2 GLN 70.C OE1 3.278 2.618 

 

CD (dup- WT) 6 H-bonds 

    

34  

ARG 101.C NE SER 82.D O 3.051 2.288 

 

ARG 101.C NH1 SER 82.D O 2.859 2.058 

 

ARG 121.C NH1 ASP 29.D OD2 3.104 2.106 

 

ARG 121.C NH2 ASP 29.D OD1 3.33 2.322 

 

THR 128.C OG1 ILE 21.D O 3.521 2.642 

 

TYR 83.D OH ASN 129.C OD1 3.126 2.314 

 

DE (WT-WT) 1 H-bonds 

    

52  

ARG 42.E NE GLN 11.D OE1 3.691 2.721 

 

EA (WT -dup) 1 H-bonds 

    

58  

ASN 75.E ND2 ASP 26.A O 3.475 2.476 
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Table S. 13: Full list of interfacial hydrogen bond contacts in ABC-dupa7 receptor after MD simulations. 

Donor 

 

Acceptor 

 

Donor-
Acceptor 
distance (Å) 

Donor 
hydrogen-
Acceptor 
distance (Å) 

Total number 
of contacts 

AB (dup-dup) 4 H-bonds 

    

61  

GLN 11.A N SER 82.B O 3.241 2.296 

 

TYR 100.A N TYR 61.B O 3.137 2.169 

 

TYR 61.B N SER 98.A O 3.108 2.114 

 

ARG 65.B NH2 LEU 141.A O 3.354 2.411 

 

BC (dup-dup) 10 H-bonds 

    

130  

GLN 13.B NE2 SER 82.C O 2.8 1.83 

 

THR 35.B N ASP 29.C O 2.865 1.875 

 

ASN 39.B ND2 ILE 21.C O 3.699 2.919 

 

ARG 139.B NH1 ASP 63.C OD1 2.855 1.857 

 

ARG 139.B NH1 ASP 63.C OD2 2.94 1.95 

 

ARG 139.B NH2 ASP 63.C OD1 2.568 1.752 

 

ARG 139.B NH2 ASP 63.C OD2 2.662 1.844 

 

ALA 23.C N ASN 39.B OD1 2.95 1.968 

 

ASP 29.C N THR 35.B OG1 2.892 1.907 

 

TYR 83.C OH ASN 39.B OD1 2.847 1.892 

 

CD (dup- WT) 1 H-bonds 

    

49  

TYR 115.D OH ASP 33.C O 2.686 1.793 

 

DE (WT-WT) 3 H-bonds 

    

59  

ARG 101.D NH2 ASP 111.E OD1 3.568 2.581 

 

ARG 101.D NH2 ASP 111.E OD2 3.544 2.569 

 

ARG 101.D NH2 SER 172.E OG 2.872 1.941 
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EA (WT -dup) 3 H-bonds 

    

33  

TYR 83.A OH ARG 101.E O 3.274 2.322 

 

LYS 28.E N HIS 18.A O 3.528 2.843 

 

LYS 31.E NZ ILE 16.A O 3.286 2.304 
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Table S. 14: Full list of interfacial hydrogen bond contacts in ACD-dupa7 receptor after MD simulations. 

Donor 

 

Acceptor 

 

Donor-
Acceptor 
distance (Å) 

Donor 
hydrogen-
Acceptor 
distance (Å) 

Total number 
of contacts 

AB (WT-WT) 5 H-bonds 

    

48  

GLN 13.D N LEU 40.E O 2.97 2.016 

 

ARG 42.E N GLN 11.D O 3.518 2.521 

 

LYS 109.E N GLN 13.D OE1 3.223 2.261 

 

ARG 121.E NH1 PHE 32.D O 2.707 2.026 

 

ARG 121.E NH2 PHE 32.D O 3.225 2.245 

 

BC (WT-dup) 1 H-bonds 

    

64  

ARG 101.E NH2 SER 87.A O 2.884 2.013 

 

CD (dup-dup) 1 H-bonds 

    

26  

TYR 61.B OH GLY 99.A O 3.411 2.649 

 

DE (dup- WT) 8 H-bonds 

    

59  

ARG 31.B NH1 GLU 120.C OE1 2.612 1.642 

 

ARG 31.B NH1 GLU 120.C OE2 2.662 1.658 

 

ARG 31.B NH2 GLU 120.C OE1 2.966 1.993 

 

ARG 31.B NH2 GLU 120.C OE2 2.657 1.649 

 

ASN 39.B ND2 TRP 171.C O 3.123 2.491 

 

ASN 103.B ND2 LYS 68.C O 3.102 2.536 

 

TRP 171.C NE1 ASN 39.B O 3.011 2.169 

 

LYS 214.C NZ GLN 11.B OE1 3.012 2.202 

 

EA (WT -dup) 2 H-bonds 

    

49  

ASN 129.C ND2 TYR 83.D OH 2.788 1.992 

 

CYS 122.D SG GLN 139.C OE1 3.595 2.308 
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Table S. 15: Full list of interfacial hydrogen bond contacts in 4-dupa7 receptor after MD simulations. 

Donor 

 

Acceptor 

 

Donor-
Acceptor 
distance (Å) 

Donor 
hydrogen-
Acceptor 
distance (Å) 

Total number 
of contacts 

AB (dup-dup) 4 H-bonds 

    

39  

GLN 11.A N GLU 215.B OE1 2.86 1.995 

 

GLN 11.A N GLU 215.B OE2 2.817 1.922 

 

GLN 11.A N TYR 217.B OH 3.318 2.494 

 

GLY 174.B N GLN 13.A OE1 3.039 2.23 

 

BC (dup-dup) 5 H-bonds 

    

62  

THR 128.B OG1 ASP 29.C OD1 2.992 2.13 

 

THR 128.B OG1 ASP 29.C OD2 2.829 2.018 

 

ASN 129.B N ASP 29.C OD1 3.312 2.351 

 

ASN 129.B N ASP 29.C OD2 2.991 2.005 

 

VAL 130.B N ASP 29.C OD2 3.362 2.355 

 

CD (dup-dup) 6 H-bonds 

    

69  

ARG 31.C NE GLU 30.D OE1 2.677 1.808 

 

ARG 31.C NE GLU 30.D OE2 2.689 1.822 

 

ARG 31.C NH1 GLU 30.D OE1 2.506 1.687 

 

ARG 31.C NH1 GLU 30.D OE2 2.531 1.726 

 

ASN 103.C N CYS 60.D O 2.919 1.961 

 

SER 59.D OG TYR 100.C O 3.182 2.29 

 

DE (dup-WT) 3 H-bonds 

    

167  

HIS 37.D NE2 SER 82.E OG 2.943 2.033 

 

ASN 39.D ND2 ILE 21.E O 3.314 2.418 

 

TRP 81.E NE1 LEU 51.D O 3.396 2.389 
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EA (WT-dup) 3 H-bonds 

    

138  

GLY 84.A N GLN 13.E OE1 2.992 1.992 

 

ALA 34.E N ILE 27.A O 2.876 1.991 

 

ASN 39.E ND2 SER 82.A O 2.884 2.01 
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Table S. 16: Full list of interfacial hydrogen bond contacts in 5-dupa7 receptor after MD simulations. 

Donor 

 

Acceptor 

 

Donor-
Acceptor 
distance (Å) 

Donor 
hydrogen-
Acceptor 
distance (Å) 

Total number 
of contacts 

AB (dup-dup) 2 H-bonds 

    

88  

GLN 13.A NE2 TRP 81.B O 3.568 2.56 

 

ALA 34.A N ILE 27.B O 3.24 2.258 

 

BC (dup-dup) 0 H-bonds 

    

103  

CD (dup-dup) 1 H-bonds 

    

44  

TRP 81.D NE1 HIS 37.C O 2.981 2.005 

 

DE (dup-dup) 1 H-bonds 

    

106  

GLU 30.E N PHE 32.D O 2.933 1.939 

 

EA (dup-dup) 0 H-bonds 

    

39  
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Figure S. 2: RMSF (averaged per-residue) obtained for extracellular (EC) domains of all 
receptor stoichiometries investigated in this study during 100 ns of all-atom MD simulation. 
Each simulation has been performed in triplicate. The data for all replicas are denoted as 
Experiment 1 - Experiment 3. 
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Figure S. 3: Left panel: The side view of the three conformations of the full-length α7 
receptor. Middle panel: The top view of the three conformations of the full-length α7 receptor. 
Yellow, orange and red signify representative configurations around 15 ns, 50 ns and 85 ns 
of the all-atom simulation, respectively. Right panel: root-mean-square deviation (RMSD) 
calculated for α7 WT receptor during 100 ns of all-atom MD simulation. The black line 
shows data obtained for all atoms in the full-length receptor. The red line shows data for the 
protein backbone. The green line shows data for the side chain of the α7 WT receptor. 

 

Table S. 17: Interaction between the ‘gatekeeping’ glutamate E254 (GLU) residue within 
WT-α7 and dupα7 subunits in different pentamer stoichiometries and passing Ca2+ cation 
(Ca), calculated from umbrella sampling simulations. The orange diamond represents the 
interaction between E254 and Ca2+. 

 WT A AB AD ABC ACD 4 5 

Subunit WT WT Dup Dup WT Dup Dup Dup WT Dup Dup Dup 

Ca-GLU (O) 🔸            

Ca-GLU (OE1) 🔸 🔸 🔸 🔸 🔸 🔸  🔸 🔸 🔸 🔸 🔸 

Ca-GLU (OE2) 🔸 🔸 🔸 🔸 🔸 🔸 🔸 🔸 🔸 🔸 🔸 🔸 

Ca-GLU (CD) 🔸 🔸 🔸 🔸 🔸 🔸 🔸 🔸 🔸 🔸 🔸 🔸 

Ca-GLU (C) 🔸            
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Table S. 18: Hydrogen bonds and electrostatic interactions between WT α7/dupα7 subunits 
in different receptor stoichiometries obtained from the umbrella sampling simulations. Red 
triangles represent the interactions between the canonical α7 (WT) subunit protein residues 
and Ca2+ cation. Blue diamonds represent the interactions between the protein residues in 
the dupα7 subunit and Ca2+ cation. 

H-bonds WT A AB AD ABC ACD 4 5 

Subunit WT WT Dup TW Dup Dup Dup WT Dup Dup Dup Dup 

Number 6 5 5 6 5 3 5 9 8 6 6 4 

LEU-PHE 🔺 🔺  🔺 🔹   🔺 🔹 🔹  🔹 

VAL-PHE 🔺 🔺 🔹 🔺 🔹  🔹  🔹  🔹  

ALA-MET 🔺 🔺     🔹  🔹  🔹  

GLU-LEU 🔺   🔺   🔹 🔺 🔹 🔹 🔹 🔹 

ILE-LEU 🔺 🔺  🔺  🔹  🔺  🔹 🔹 🔹 

MET-VAL 🔺  🔹 🔺       🔹  

VAL-MET   🔹   🔹  🔺  🔹   

TYR-ALA  🔺      🔺  🔹   

LEU-VAL   🔹 🔺 🔹  🔹  🔹  🔹  

ILE-VAL   🔹  🔹  🔹      

ALA-LEU     🔹 🔹  🔺  🔹  🔹 

LYS-GLU        🔺     

ASN-ALA        🔺     

ALA-VAL        🔺     

TYR-ILE         🔹    
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Figure S. 4: The Ca2+ interaction scheme within the WT receptor, at the entrance to the 
transmembrane (TM) region. Glutamate E254 (red) ‘gatekeeper’ residue interacts with the 
Ca2+ cation (yellow lines). The blue line represents the favourable electrostatic interaction 
between Ca2+ and the receptor TM region. The receptor backbone is rendered as secondary 
structure elements (all but E254 side chains are omitted for clarity) and coloured golden 
brown. 
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