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Abstract 

In this thesis Northumbrian Water Limited’s (NWL) Advanced Anaerobic Digester (AAD) 

plant at Howdon was used to investigate modelling and optimisation opportunities based on 

energy prices, demands and their new greenhouse gas emissions pledge. It is believed this site 

is the first in the UK with a mixed operational strategy for biogas and biomethane produced 

on site: to burn in Combined Heat and Power (CHP) engines to create electricity, burn in 

Steam Boilers for onsite steam use or inject the biomethane into the national grid - Natural 

Gas can be imported to make up shortfalls in biomethane if required. 

Initially, a realistic model for the gas distribution on site was developed using a novel mixed 

integer linear programming (MILP) approach. Retrospective Optimisation (RO) using 

historical plant data was performed, with results indicating the plant operated optimally 

within accepted tolerance 98% of the time. However, improving plant robustness (such as 

reducing unexpected breakdown incidents) could yield a significant increase in gas revenue 

of 7.8%. 

Next, the gas distribution model is developed further as a realistic MILP model for energy 

and carbon management where operators are provided with a visual daily operational 

schedule based on varying tariffs. The results indicate that biomethane injection should be 

maximised for the highest financial gain, with the driving force for optimising the remaining 

operations being the site electricity demand and whether the electricity purchased from the 

grid generates carbon emissions, based on the new carbon performance commitment.  

Using the developed energy and carbon model a sensitivity analysis was performed on 

electricity tariffs, natural gas prices, the volume of biogas production and the Biomethane 

Upgrade Plant (BUP) processing limits. The results reinforce the understanding that 

maximising biomethane injection into the national grid is the most cost-effective operational 

strategy. Second to this, the optimal operation of the CHP engines is subject to the available 

excess biogas available after BUP processing and the current daily energy prices. To ensure 

the site always maintains a positive revenue, operators should ensure that at least 20,000 

Nm3/day of raw biogas can be processed and injected into the national grid.  

Finally, an investigation into the unique modelling problem regarding the three on site 

Anaerobic Digesters (ADs) was performed. A key parameter used in the current optimisation 

model is the amount of biogas that is produced on site each day, however currently an 

average daily value is used based on historical data. To improve the optimisation, it would be 

better to provide a more accurate prediction based on current state of the ADs and the 

expected sludge processing volumes into the ADs. The lack of individual gas flow data for 

each AD posed an interesting challenge in predicting the total biogas flow produced on site. 

Multiple linear models of the onsite AD’s were investigated but were not accurate enough to 

be used on site. A NARX (Nonlinear autoregressive with external input) Neural Network was 

developed to model all three anaerobic digesters as a single process for the day ahead 

prediction of biogas production. The resulting optimal NARX model can accurately predict 

the biogas production on a day-ahead basis over 95% of the time.  
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𝑩𝒇,𝒕 Biogas Flow to Flare Stack at time ‘t’ Nm3 

𝑩𝑻𝒐𝒕𝒂𝒍 Total Biogas Produced from Digesters Nm3 

𝑪𝑩  Biogas Cost to burn on site £/Nm3 

𝑪𝑪𝑶𝟐
  Cost of each Carbon Credit £/ kg.CO2e 

𝑪𝑬  Electricity Import Cost £/kWh 

𝑪𝑵  Natural Gas Cost to burn on site £/Nm3 

𝑪𝑰 Biogas Injection Cost/Revenue £/Nm3 

𝑪𝒇 Flare ‘Costs’ for Biogas on site £/Nm3 

𝑪𝑷 Purchase cost of Propane £/L 

𝑬𝑮𝑬𝑵,𝒊,𝒕 Electricity generated by CHP engine ‘i’ at time ‘t’ kWh 

𝑬𝑮𝑬𝑵,𝒎𝒂𝒙 Maximum Electricity that could be generated by a CHP 

engine operating at full gas flow 

kWh 

𝑬𝑰𝑴𝑷,𝒊,𝒕 Electricity Imported as a result of CHP Engine ‘i’ on reduced 

capacity at time ‘t’ 

kWh 

𝑮𝑪𝑶𝟐
 Total Carbon Credits Generated on site kgCO

2
e 

𝑲𝑰𝑴𝑷 Carbon Credits generated from Importing Electricity kgCO
2
e 

/kWh 

𝑲𝑬𝑿𝑷 Carbon Credits generated from Exporting Electricity kgCO
2
e/kWh 

𝑲𝑵 Carbon Credits generated from Importing Natural Gas kgCO
2
e/m3 

𝑲𝑬𝑩 Carbon Credits generated from Exporting Enriched 

Biomethane 

kgCO
2
e/m

3
 

𝑲𝑷 Carbon Credits generated from Using Propane kgCO
2
e/L 

𝑲𝑪𝑯𝑷 Carbon Credits generated from using Biogas in the CHP 

Engines 

kgCO
2
e/m

3
 

𝑲𝑹 Carbon Credits generated from using Biogas anywhere else on 

site (Boilers, Flare) 

kgCO
2
e/m

3
 

𝑵𝑪𝑯𝑷,𝒊,𝒕  Natural Gas flow to CHP Engines at time ‘t’ Nm3 
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𝑵𝑺,𝒊,𝒕 Natural Gas flow to Steam Boilers at time ‘t’ Nm3 

𝑷 Volume of Propane used to enrich Biogas L 

𝑺𝒎𝒊𝒏/𝒎𝒂𝒙  Gas flow constraint for Boilers to ensure steam production Nm3 

𝑻𝒄 Total Operational Cost £ 

𝑻𝑪𝑶𝟐
 Total Cost of Carbon Credits £ 

𝑻𝑩 Total cost of Biogas Usage £ 

𝑻𝑵 Total cost of Natural Gas Usage £ 

𝑻𝑷 Total cost of Penalty Terms £ 

   

 MILP Binary Variables  

(All variables are 1 or 0) 

 

𝒚𝒊 Used to ensure fuel selected with 𝒛𝒊,𝒕 (for CHP Engine ‘i’) 

remains the same throughout the day 

 

𝒘𝑩𝒊,𝒕 

or 

𝒘𝑵𝒊,𝒕 

Used in conjunction with the binary variable 𝑹𝒊,𝒕 for the Dual 

Fuel CHP engines. When an engine is online (𝑹𝒊,𝒕= 1), both 

𝒘𝑩𝒊,𝒕 and 𝒘𝑵𝒊,𝒕 will be 0, otherwise one of them will be 1 

(depending on the value of 𝒛𝒊,𝒕). 

Subscript ‘B’ denotes Biogas flow and subscript ‘N’ denotes 

Natural Gas flow. 

 

𝒛𝒊,𝒕 Used to determine fuel used in CHP Engine ‘i’ at time ‘t’. 

𝒛𝒊,𝒕 = 1 indicates running Biogas, and 0 indicates natural gas 

 

𝒛𝒋,𝒕 Used to determine fuel used in Steam Boiler ‘i’ at time ‘t’ 

𝒛𝒋,𝒕 = 1 indicates running Biogas, and 0 indicates natural gas 

 

𝑹𝒊,𝒕 Used to track whether an engine ‘i’ (1-4) is operational 

(‘Running’ or ‘Online’) at time point ‘t’.  

𝑹𝒊,𝒕 = 1 indicates an engine is operational. 

 

𝒔𝒖𝒊,𝒕 Used to track whether engine ‘i’ (1-4) is in start-up phase  

𝒔𝒖𝒊,𝒕 = 1 indicates an engine is in start-up mode 

 

𝒔𝒖_𝑩𝒊,𝒕 Used in parallel with 𝑠𝑢𝒊,𝑡 for dual fuel engines only, to track 

whether engine ‘i’ (1-3) is in start up phase and using biogas 

as a fuel 

𝑠𝑢_𝐵𝒊,𝒕 = 1 indicates an engine is in start-up on Biogas 
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𝒔𝒖_𝑵𝒊,𝒕 Used in parallel with 𝑠𝑢𝒊,𝑡 for dual fuel engines only, to track 

whether engine ‘i’ (1-3) is in start up phase and using natural 

gas as a fuel 

𝒔𝒖_𝑵𝒊,𝒕 = 1 indicates an engine is in start-up on natural gas 

 

𝒔𝒅𝒊,𝒕 Used to track whether engine ‘i’ (1-4) is in shut-down phase  

𝒔𝒅𝒊,𝒕 = 1 indicates an engine is in shutdown  

 

𝒔𝒅_𝑩𝒊,𝒕 Used in parallel with 𝒔𝒅𝒊,𝒕 for dual fuel engines only, to track 

whether engine ‘i’ (1-3) is in shut-down phase and using 

biogas as a fuel 

𝒔𝒅_𝑩𝒊,𝒕 = 1 indicates an engine is in shutdown and was 

running Biogas 

 

𝒔𝒅_𝑵𝒊,𝒕 Used in parallel with 𝒔𝒅𝒊,𝒕 for dual fuel engines only, to track 

whether engine ‘i’ (1-3) is in shut-down phase and using 

natural gas as a fuel 

𝒔𝒅_𝑵𝒊,𝒕 indicates an engine is in shutdown and was running 

natural gas 

 

   

 Conversion Constants  

𝜶 Convert daily process limits to half hourly (each time period 

in model) 

 

𝜷 To convert kg to Nm3 for Natural Gas  

𝑪𝑽𝑩 ‘Calorific Value’ of gas, to convert biogas flow volume to 

MWh 

MWh/m3 

𝑪𝑽𝑵 ‘Calorific Value’ of gas, to convert natural gas flow volume to 

MWh 

MWh/m3 

𝜺𝑪𝑯𝑷 Heat recovery efficiency of CHP engines based on total 

energy input of fuel 

 

𝜺𝑺 Heat recovery efficiency of steam boilers based on total 

energy input of fuel 

 

𝝆𝑮𝑬𝑵,𝒊,𝑩 Power Conversion Factor for engine ‘i’ – biogas volume to 

electricity 

kWh/m3 
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𝝆𝑮𝑬𝑵,𝒊,𝑵 Power Conversion Factor for engine ‘i’ – natural gas volume 

to electricity 

kWh/m3 

𝝁𝒔𝒖 Adjustment constant to adjust the maximum and minimum 

gas flow when the engine enters start-up 

𝝁𝒔𝒅 Adjustment constant to adjust the maximum and minimum 

gas flow when the engine enters start-up 

   

 General MILP Parameters  

𝑨 Matrix containing parameters for inequality statements  

𝑨𝒆𝒒 Matrix containing parameters for equality statements  

𝒃 Vector containing limits for inequality statements  

𝒃𝒆𝒒 Vector containing target for equality statements  

𝒇 Vector of cost functions for each variable   

𝒊𝒏𝒕𝒄𝒐𝒏 Vector stating which variables in 𝒙 are integers  

𝒍𝒃 Vector containing lower bounds of all variables  

𝒖𝒃 Vector containing upper bounds of all variables  

𝒙 Vector of Variables  
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Chapter 1 General Introduction 

This Chapter provides an introduction to generic wastewater treatment and the scale of 

operations for the Northeast of England. The fundamental background knowledge of the 

Howdon treatment site that was used as a focus for this PhD is provided, and the complexity 

of sludge processing operations and the overall aims and objectives of the thesis are 

presented. A brief outline of how each chapter meets these aims is also given here. 

 

1.1 Introduction to NWL 

Northumbrian Water Limited (NWL) provides approximately 4.4 million people with water 

services and 2.7 million people with wastewater services [1] – they provide both clean and 

wastewater services in the north east of England, but only clean water services in the south 

east. Figure 1-1 shows the operating area for NWL in the Northeast.  

 

Figure 1-1 - NWL Northeast England operating area [1] 
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Their primary objective is the provision of clean drinking water and the treatment of 

wastewater. NWL has a duty to provide these services at a reasonable cost whilst also 

providing value for shareholders. Price reviews and regulations with the sector’s regulator 

(Ofwat) ensure NWL maintains a commitment to customers, improving current operations 

and reducing their environmental impacts. It should be noted that, in the UK, the water sector 

is a heavily regulated, where water companies operate under monopolistic conditions and 

thus, benchmarking their performance using robust methods is fundamental for regulation 

[2]. As an example, unlike other sectors (such as energy), a resident in the Northeast can only 

purchase water and wastewater from NWL, or a resident of London must pay Thames Water, 

hence the need for regulations across the sector.  

As part of the sector’s Public Interest Commitment (PIC), the UK water industry has made an 

ambitious pledge to achieve net zero carbon emissions by 2030 [3]. NWL has reduced 

operational emissions by 46% since 2009, are the only UK water company to use 100% of 

the remaining sludge after sewage treatment to produce renewable power and have taken the 

decision to beat the PIC target by aiming for net zero carbon emissions by 2027 [4]. NWL 

has voluntarily agreed with the regulator a performance commitment on the company’s 

carbon emissions, this commitment is linked to a financial penalty/reward. The performance 

of NWL based on this criteria may form part of Ofwat’s future benchmarking for regulation, 

and with the link to financial penalty/rewards, meeting this pledge is no longer just an ethical 

commitment. This agreement was finalised during the PhD, and therefore is considered from 

Chapter 3 onwards.  

The work presented in this thesis seeks to aid NWL in their operational decision making at 

the site level, using one of their larger WWTPs as a case study example for the 

methodologies explored, with a focus on improved site revenues or validating them (based on 

a validation of existing operational strategy decisions).  

 

1.2 Introduction to Wastewater Treatment 

NWL has over 400 sewage treatment works in the Northeast of England which treat around 

800 million litres of wastewater every day [5]. However, not every site is equipped to process 

the solids (sludges) that are separated during the wastewater treatment process. Typically, the 

solids are separated from the bulk liquids in settlement tanks, and the remaining water is 
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treated and cleaned before being released back into the environment (such as in a local river). 

All of the solids that are generated will ultimately be transported and processed at one of two 

processing plants: the Howdon plant in Tyneside (Newcastle) and the Bran Sands plant in 

Teesside (Middlesbrough). These plants are large, to meet processing demands, and therefore 

have high energy demands which results (or can result) in large CO2 emissions.  

 

1.2.1 Howdon WWTP - Introduction to site 

NWL is the only wastewater company in the UK to use all sludge after wastewater treatment 

to produce renewable electricity [6]. NWL anaerobically digests (typically) up to 40,000 

tonnes of sewage sludge (dry solids) annually across the business, and processes up to 12,000 

L/s of raw sewage at its Howdon WWTP. An overview of the treatment process of the site is 

shown in Figure 1-2. The site is typical of a modern large scale WWTP, in that the raw 

sewage pumped into the site is screened and then the solids are separated from liquid in the 

clarifiers. Bulk water treatment comes in the form of aeration lanes and UV treatment before 

the clean water flows into the local river.  

The solids removed during clarification are thickened (water is removed) to allow for 

increased storage capacity in the ‘strategic storage tanks’. This sludge storage also receives 

sludge through lorries on site - all sludge or dry solids arising from NWLs over 400 

wastewater treatment works are either processed at the Advanced Anaerobic Digestion 

(AAD) facility at Howdon or at the similar plant on Teesside. These plants are known as 

‘Advanced’ Anaerobic Digestion due to the thermal hydrolysis stage during sludge treatment.  

Howdon is critical to the company’s (and the North East’s) wastewater operations. 

The AAD facility at Howdon was designed to achieve higher biogas (a combination of 

methane and CO2) volumes and lower retention times by pre-treating the sludge in a thermal 

hydrolysis plant (designed and installed by a company called CAMBI). This pre-treated 

sludge feed is fed into three large Anaerobic Digesters (ADs) on site, where a mesophilic 

reaction breaks down the solids into biogas.  

Typical anaerobic digestion does not involve the use of thermal hydrolysis but uses a simpler 

pasteurisation technique for sludge pre-treatment. Studies have shown that typical anaerobic 

digestion requires retention times of 20-30 days, whereas AAD (with a thermal hydrolysis 

pre-treatment stage) can reduce retention time to 10-18 days [7,8]. Hydrolysis is known to be 

one of the key rate limiting steps in anaerobic digestion in the production of methane and 
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breaking down of organic compounds [9,10], with studies showing the benefits and 

optimisation of thermal hydrolysis parameters for improved methane production [11]. 

 

 

Figure 1-2 - Overview of the wastewater treatment processes at Howdon 

 

The CAMBI plant consumes energy in the form of steam in order to further break down the 

composition of feedstock available to the anaerobic digestion process, but in doing so 

producing more net energy (i.e. producing more biogas than is needed to produce the steam 

required) and vastly reducing retention times of the ADs.  

 

1.2.2 The AAD plant at Howdon 

Typically, Biogas produced on a wastewater Anaerobic Digestion (AD) plant in the UK is 

used to generate electricity only. The AAD plant at Howdon is rare in that it has three 

possible uses for Biogas produced on site, shown in Figure 1-3: upgrade for injection into the 
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national gas grid; burning it in Combined Heat and Power (CHP) Engines; or burning it in 

Steam Boilers for the thermal hydrolysis plant. There are currently four1 CHP Engines, three 

Steam Boilers and one Gas Upgrade/Injection plant on site. If required, the plant may flare 

excess Biogas under emergency circumstances to safeguard the plant or for short periods 

during routine maintenance (under Environment Agency regulations), though operators must 

minimise this as much as possible. To ensure overall sludge processing remains unimpeded 

the plant may draw Natural Gas from the national gas grid to be used in the CHP Engines or 

Steam boilers. Nationally, many similar sites are looking to upgrade to produce Biomethane 

for injection into the National Gas grid to take advantage of the government’s Renewable 

Heat Incentive [12]. The CHP engines and Steam Boilers can only utilise one fuel type at a 

time: Biogas or Natural Gas. 

 

 

Figure 1-3 - Possible gas distribution across AAD plant 

 

CHP electricity generation is an effective way to reduce energy costs and carbon emissions 

[13,14]; these systems typically take a fuel source and efficiently convert it into usable heat 

and energy [15] and in the case of the Howdon WWTP the CHP units are ‘Gas Engines’ 

provided by MWM [16] that burn the non-purified Biogas from the digesters to generate heat 

and electricity.  

A later addition to the site added a Biomethane Upgrade Plant (BUP) where CO2 is removed 

from the biogas via a stripping column and its quality (calorific value) is raised such that it is 

suitable for injection into the national gas grid [16]. The relatively new processing techniques 

(CAMBI and BUP) involved in the AAD plant results in significant operational challenges to 

maximise the economic performance.  

 
1 At the time of developing the Gas Distribution model in Chapter 2, the site only had three dual fuel CHP 

engines, but had finished installing a fourth Natural Gas engine by the time the model in Chapter 3 was 

developed.  
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WWTPs are continuously being driven towards increased efficiency of plant operation due to 

regulatory pressures [17,18], and it is widely thought that there is considerable room for 

improving the efficiency of WWTPs [19]. If companies are able to schedule their operations 

successfully around supply and demand of energy, there are opportunities for annual OPEX 

savings of 2-5% [20], and the use of energy recovery techniques and Biogas can reduce a 

WWTP carbon footprint by 10% [21]. WWTPs have an abundance of low-grade thermal 

energy and organic substances in sludge [22], which if harnessed can reduce carbon 

emissions and energy cost/consumption. In addition, low-carbon energy targets and policies 

are helping drive industries away from fossil fuels and more towards renewable energy 

sources for electricity generation [23].  

Previous studies have investigated the flexible generation of electricity of a WWTP using 

controlled gas production and storage [24,25] however the WWTPs studied do not have the 

capability of Gas to Grid injection of renewable biomethane, nor considered the economic 

impact of varying electrical (or gas) tariffs. It is believed that the Howdon site is unique 

amongst most worldwide WWTPs due to the flexibility for gas processing. 

 

1.3 Operational strategy and legal requirements 

NWL must manage this plant so that it meets its two primary objectives: that of processing all 

necessary sludges so that they are capable of being re-cycled to land, and to optimise the 

revenues accruing to the plant whilst minimising the operating costs. In achieving this NWL 

must be able to schedule planned maintenance, accommodate unforeseen breakdown, work 

with the constraints of the capacity of the local gas grid, decide whether to buy gas back in 

order to generate electricity for the site and generate and make appropriate use of the waste-

heat coming from its combined heat and power plant. 

The plants inputs are variable, energy required on site is variable, and the subsidies available 

for gas injection high. Day to day operation of the plant is fully monitored, but its control 

relies on the experience, availability and knowledge of the operators. A supervisory control 

system taking current data input and validating operations choices would help in securing 

sludge processes, optimising net revenues, allowing greater use of the operators time and 

provide assurance to the leadership regarding plant operation. Such a system could also be 

deployed at the company’s other facilities, such as the Bran Sands WWTP in Teesside. 
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1.4 Aims and Objectives of each chapter 

At the beginning, the PhD had a generic aim of investigating control and optimisation 

opportunities of the Howdon WWTP, with scope to take a more focussed direction after 

preliminary investigations and spending time on site. It was decided that the direction the 

PhD would take would be towards Energy and Gas management for the AAD plant, rather 

than on optimisation and control of wastewater operations – as the AAD plant is relatively 

new, and the technologies involved (such as the BUP grid injection) are also relatively new to 

the sector there was a clear gap in knowledge to be exploited. The overall aim of the PhD 

would be to model, validate and optimise process operations and operational strategies 

focused around the AAD plant on site.  

The first objective was to develop a methodology to model and optimise the gas of the AAD 

plant. In Chapter 2, the gas use and distribution on site was modelled using Mixed Integer 

Linear Programming (MILP) techniques within MATLAB’s optimisation toolbox, such that 

operators’ decisions could be validated. This model was then used to perform Retrospective 

analysis (RO), to provide operators with said validation.  

Whilst the model in Chapter 2 is useful for operators, there are limitations that required 

addressing. In addition, during this time a new carbon performance commitment was agreed 

between NWL and Ofwat, which was believed could be included with amendments to the gas 

distribution model. Thus, the second objective was to further develop and refine the Gas 

Distribution model outlined in Chapter 2.  

In Chapter 3, the limitations of the gas distribution model were addressed, and the new 

carbon performance commitment was also included to provide operators with understanding 

of how the new agreement might affect site operations in the future, resulting in the 

development of the Energy and Carbon model.  

The Energy and Carbon model can provide operators with fast solutions to a difficult 

optimisation. However, to receive appropriate feedback on the requirements of the model 

there was a need to provide operators with a more visual form of the model. Hence the fourth 

objective of the project, the need to create a visual user interface which operators can use. 

Chapter 3 also presents the app that was developed within the MATLAB environment.  

The fifth objective was to use the developed Energy and Carbon model to investigate the 

impact of site operational strategies based on energy pricing. In Chapter 4, the model was 

used to perform a more in depth analysis of how fluctuating energy prices (using a range of 
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historical UK natural gas prices and variations on the electricity tariff) and biogas production 

levels affects the optimal revenue achievable and also the optimum operational strategy that 

should be employed on site to achieve said revenue.  

It is addressed in Chapter 2 and 3 that the developed models rely on at least a day-ahead 

prediction of how much biogas the on-site ADs will produce – something which is currently 

unavailable to NWL. The fourth objective was to address this lack of information through 

either the improved use of site data for data driven modelling, developing a mechanistic 

model of the AAD’s or a combination of the two.  

Chapter 5 begins investigations to remedy this, with the development of data driven 

prediction models for biogas production. This posed an interesting challenge, as typical data 

that would be used to create a mechanistic model of an AD is not readily available due to 

process equipment and monitoring limitations on site.  

The final chapter of this thesis summarises the findings of the PhD, discusses limitations of 

the developed models and proposes the next steps that could be taken beyond that of the PhD. 

Additionally, the major academic contributions and key outcomes (statement of innovation) 

of this PhD are presented.  
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Chapter 2 Gas Distribution Model 

In this Chapter, a Gas Distribution model was developed using novel Mixed Integer Linear 

Programming (MILP) techniques. The model parameters and equations are presented and is 

used to perform Retrospective Optimisation (RO) of historic plant operations to validate 

operators’ previous operational strategies. Limitations of the developed model are also 

discussed and addressed in later chapters.  

 

2.1 Introduction 

At the time of developing the gas distribution model, the Howdon site had three dual fuel 

CHP engines, in addition to the BUP. A diagram of the AAD plant is shown in Figure 2-1. 

The three CHP engines are ‘dual fuel’ as they can use either biogas or natural gas, but not a 

blend. Similarly, the steam boilers may also use either fuel, one at a time. The Biogas 

produced from the on-site ADs may be sent to the BUP for processing and injection into the 

National Grid as a renewable energy source. The emergency flare stack is shown also. The 

process variables (gas flows) that are used throughout this chapter are also shown on the 

process diagram for reference. 

The aim of this Chapter is to explore and address a key need within the AAD plant of NWL: 

improved control schemes and validation of operational strategies. Typically, in the water 

industry, advanced process control and data driven modelling is uncommon; standard control 

schemes use on-off control via PLC (Programmable Logic Controller) and SCADA 

(Supervisory Control and Data Acquisition) systems to control localised processes to within 

specified limits, without consideration of upstream plant behaviour [17]. Widespread use of 

SCADA-type system technology permits the exploitation of more advanced supervisory 

concepts and system control [26]. However, although SCADA based systems can store vast 

amounts of historical data regarding plant operations, they are typically underutilised 

(especially with the water sector), leaving companies in a ‘data rich, information poor’ state. 

Such large amounts of data can be used for Retrospective Analysis (RA) and learning to 

make improvements to future operations. An example of the application of Retrospective 

Learning is in the aviation industry [27], where analysis and learning after incidents creates 

improved safety procedures. Typically, retrospective learning techniques are not used in 

regard of operational aspects of a process [28]. However, in work conducted by T. Cummings 
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et al in 2017, Retrospective Optimisation (RO) and learning was used to develop improved 

scheduling procedures for multiple nitrogen liquefier units and the development of electricity 

spot pricing for a pricing predictor [28]. In the case of Howdon WWTP, site systems store 

several years of operational data which is not currently being used for any RO or analysis. To 

the author’s knowledge, there has been no development of models of WWTPs based on RO 

in literature, though it should be noted that previous work has been done developing 

predictors or forecasts of energy pricing using grey prediction models [29].  

 

 

Figure 2-1 - Process diagram for gas distribution on site. Biomethane (aka Biogas) source is from Anaerobic Digestion on 

site, Natural Gas is from the National Grid. 
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To perform RO for this site, a model of the process was developed using Mixed Integer 

Linear Programming (MILP) to determine optimal historic performance that can be compared 

to actual historic operations. MILP takes a series of linear relationships made up of equalities, 

inequalities, integer defined parameters and upper and lower bound constraints to minimise a 

linear objective function.  MILP is a fast and accurate way of achieving optimisation 

requirements, and “because of its rigorousness, flexibility and extensive modelling capability, 

has become one of the most widely explored methods for process scheduling problems” [30]. 

Some examples of various MILP applications include: scheduling of a polymerisation reactor 

where reductions in CPU processing time of over 98% were achieved using MILP scheduling 

techniques [31], multiproduct milk processing where complex plant scheduling with over 400 

variables was achieved in just over 2 minutes [32], scheduling for an ice cream processing 

facility where multi-week ahead schedules were determined [33] and scheduling of a multiple 

cryogenic air separation unit and compressor plant where site operating costs could be 

improved by an average of 5% and reducing power consumption by up to 5% [34,35], where 

the latter was performed within a Microsoft Excel Spreadsheet. This highlights the 

effectiveness and ease of application of being able to model a process in a MILP form, if the 

problem can be posed in such a way to take advantage of MILP software. 

There is a clear gap in literature of designing control schemes, optimisation techniques and 

models for gas distribution of AAD sections of WWTP, as literature-discussed here focuses 

on developing control strategies or models of the effluent treatment side of a WWTP. It 

should be noted that whilst there are many studies on improving the yield of biomethane 

produced from anaerobic digesters, such as using calcium or enzymatic pre-treatment of 

sewage [36,37], this chapter focuses on the optimal way to use the biomethane produced as 

an input variable to a MILP optimisation, not improving yield or developing a model of the 

anaerobic digesters.  

Currently, there is no model on site to advise the optimal distribution of Biogas produced or 

how much Natural Gas must be used to ensure optimal cost and sludge processing 

performance, nor is there evidence of such a model in use at a WWTP internationally. Here, 

for the first time, the development and application of a realistic model and its solution using 

MILP is reported, which is used to advise the optimal daily operational strategy that will 

minimise of gas distribution costs. RO is performed using the model (and using historic data) 

to determine how optimal previous operational strategies were, on a cost minimisation basis.  
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The remainder of this chapter is structured as follows. Initially, a ‘proof of concept’ 

investigation into the use of MILP techniques on site is presented for a high-powered 

centrifuge on site in section 2.2. Next, in the Methods section (2.3) the site constraints, 

formulation of the gas distribution MILP model and development of the objective function 

for optimisation are presented. The results section (2.4) shows example optimisations from 

the optimiser model and shows the results of the RO performed, which also considers the 

importance of maintenance and improved breakdown robustness and discusses current model 

limitations. Finally, conclusions (section 2.5) are presented alongside proposals for further 

work and improvements to this model (section 2.4.6), which are explored in future chapters 

of this thesis.  

 

2.2 Initial MILP Investigation – ‘proof of concept’ example 

To ensure MILP techniques were applicable and used in the correct way, an initial ‘proof of 

concept’ investigation was performed as to the operating times of a centrifuge on site, based 

on electricity tariffs.  

After sludge has been fed into the Anaerobic Digesters, the ‘post digested sludge’ waste is 

processed during the ‘Dewatering’ stage (see Figure 1-2). This waste has a high volume of 

water and would be costly to transport off site. Therefore, this sludge is thickened in the Final 

Cake Centrifuge to form a ‘Cake’, which is much more cost effective to transport off site. 

The cake is stored in the Cake Silo, which is emptied onto lorries for removal off site.  

The only constraints that affect the operation of this centrifuge are as follows: 

• If the Post Digested sludge storage tank is too full or empty; 

• If the cake silo is full; or 

• If the cake silo is empty, and there is a removal lorry inbound to remove cake. 

With these constraints in mind, there are very few operation limitations to altering the 

operational schedule of this centrifuge, making it an ideal area to investigate first. 

The centrifuge in question operates with a 160 kW motor, with two smaller assist drive 

motors. Figure 2-2 provides a visual representation of the system, with the electrical ratings 

and typical loads shown in Table 2-1. As such, during operation the machine consumes a 

high amount of electricity. 
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Table 2-1 - Electrical Units, Power Rating and Loads of Post Digested Sludge Processing (VSD = Variable Speed Drive) 

Unit Power Rating 

(kW) 

Estimated Load 

Centrifuge: Main drive (VSD) 160 80% 

Centrifuge: Back drive 37 100% 

Centrifuge: Oil drive 0.55 100% 

Sludge pump (VSD) 22 70% 

Screw from Centrifuge 7.5 100% 

Conveyor belt to silo 5.5 100% 

Poly Dosing pump (VSD) 4 50% 

 

 

Figure 2-2 - Diagram of Area of Investigation (Post Digested Sludge Thickening) 

To find out the best possible schedule of operation for the centrifuge, it was decided that 

Retrospective Optimisation (RO) through MILP would be the best course of action. Adapting 

previous work carried out by Cummings et al. [38], the operation time of the centrifuge was 

assigned to a binary variable wt associated with a cost function of the tariff price ct and the 

power usage Pt, such that Mixed Integer Linear Programming (MILP) could be used to 

minimise the Total Cost Tc subject to: 

𝑇𝑐 =  ∑ 𝑐𝑡 .  𝑃𝑡

𝑁𝑡

𝑡=1

 .  𝑤𝑡 (2-1) 



Chapter 2 - Gas Distribution Model 

 

14 

 

𝑤𝑡 ∈ {0,1},  (∀ 𝑡 = 1 … 𝑁𝑡) 

 

Where Nt is the operation horizon, April 2016-April 2017, in 15-minute intervals. When the 

binary variable wt is set to 1, it simulates the centrifuge running for 15 minutes at time 

interval t, and when 0 it simulates the centrifuge not in operation. The cost function Tc is 

calculated by summating each 15-minute interval cost of operating the centrifuge where wt is 

1.  

However, to better represent historical operations the MILP model was also constrained such 

that the centrifuge operates for the same amount of time over the annual period, which was 

4563.5 hours. As wt represents a 15-minute operational time period, the total number of 

operational time periods must be 18,254. This constraint is given by Equation (2-2): 

 ∑ 𝑤𝑡

𝑁𝑡

𝑡=1

  = 18,254  

 

(2-2) 

The MILP optimisation tool used was MATLAB’s ‘intlinprog’ function, where the binary 

variables were optimised to produce the optimal operational schedule. 

 

Figure 2-3 –Actual historical operation of Centrifuge, where 1 means ‘On’ and 0 means ‘Off’. The electricity tariff for the 

site at the time is plotted for reference. 
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The actual operation for a ten-day period in October 2016 is shown in Figure 2-3, with the 

cost optimised schedule shown in Figure 2-4. During this time, the historical electricity tariff 

was a fixed variable tariff, whereby the price was fixed but varied throughout the day. In both 

figures, the historical site electricity tariff is shown alongside the operation of the centrifuge.  

It should be noted here that, for this example 10-day period shown the historical operation of 

the centrifuge was approximately 140 hours, whilst the optimised schedule operates for just 

under 100 hours; the optimiser was constrained such that the total annual operational duration 

of the optimised schedule matched that of the historical annual operational duration, which 

was a total of 4563.5 hours, as shown by Equation (). Therefore, on a week-by-week 

comparison the operational hours may differ. 

 

 

Figure 2-4 -Optimised operation of Centrifuge, where 1 means ‘On’ and 0 means ‘Off’. The electricity tariff for the site at 

the time is plotted for reference. 

 

The total cost of operating this optimal schedule is shown in Figure 2-5, and the total 

potential saving was £18,239.15 per annum. This initial investigation shows that MILP can 

be used on site to optimise process scheduling operations with differing tariffs and production 

values, with tangible benefits. The MILP techniques applied here were used to model the Gas 

Distribution on site in the reminder of this chapter.  
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Figure 2-5 - Comparison of Actual Operation Cost and Optimal Schedule Cost 

 

2.3 Methods – Gas Distribution Model development 

In Section 2.2, an example ‘proof of concept’ MILP model is given for a centrifuge on site 

where the optimisation uses 15-minute time period intervals. The development of a Gas 

Distribution model for the AAD plant is outlined and used for analysis in the reminder of this 

Chapter. The notation used in Section 2.2 is separate to the reminder of this Chapter, and it 

should be noted that the optimisation for the Gas Distribution model takes place over a single 

24-hour time period, rather than multiple time periods.   

 

2.3.1 Unit processing limits 

To model the site and perform RO, processing limitations of gas flow for each unit must be 

known. The daily processing limits [Table 2-2] were determined thorough retrospective 

analysis of historical plant operational data and through discussions with operational 

managers on site. Flow limits are different for Biogas and Natural Gas volumes. The 

minimum gas flow for an engine to operate is 50% the maximum flow. Currently, should 

there not be enough Biogas produced to satisfy operation of a CHP Engine, operators require 

that an engine run on Natural Gas and have the gas flow rate to that engine set to the 

maximum.  
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Table 2-2 - Operational constraints for units on site 

Limiting Parameters Operational Constraints 

𝑩𝑰,𝒎𝒂𝒙 

𝑩𝑰,𝒎𝒊𝒏 

Max flow: 40,000 Nm3 / day  

Min flow: 0 Nm3/ day 

𝑩𝑪𝑯𝑷,𝒎𝒂𝒙 

𝑩𝑪𝑯𝑷,𝒎𝒊𝒏 

Max Flow: 16,000 Nm3 / day  

Min flow: 50% of max flow  

𝑩𝑺,𝒎𝒂𝒙 

𝑩𝑺,𝒎𝒊𝒏 

Max flow: 4000 Nm3 / day 

Min: 200 Nm3 / day 

𝑩𝒇,𝒎𝒂𝒙 

𝑩𝒇,𝒎𝒊𝒏 

No Max  

Min: 0 Nm3 / day 

𝑵𝑪𝑯𝑷,𝒎𝒂𝒙 

𝑵𝑪𝑯𝑷,𝒎𝒊𝒏 

Max flow: 9000 Nm3 / day  

Min flow: 9000 Nm3 / day 

𝑵𝑺,𝒎𝒂𝒙 

𝑵𝑺,𝒎𝒊𝒏 

Max flow: 2500 Nm3 / day  

Min flow: 200 Nm3 / day 

𝑺 𝒎𝒂𝒙 

𝑺 𝒎𝒊𝒏 

Upper Limit: 5700 Nm3/ day 

Lower Limit: 3300 Nm3/ day 

 

The gas holders on site that capture and intermediately store the Biogas produced are 

typically able to store up to an hour’s production of biogas, should the Biogas flow 

downstream be interrupted. Therefore, for the purpose of this model the daily volume of 

biogas produced must all be utilised in the available units on site.  

The cost parameters for each gas flow were taken from the OPEX (Operating Expenses) 

reporting features available on the onsite SCADA system. Costs tend to be in units of p/kWh 

or equivalent, so the cost parameters in the model are combined with standardised conversion 

factors to enable a simple cost in £/Nm3 (GBP per Normalised cubic metre) of gas; gas flows 

on site are reported in Nm3. For the purposes of confidentiality, the cost function parameters 

cannot be reported here. 
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2.3.2 MILP Equations/Parameters 

2.3.2.1 Objective function 

The simplified objective function is shown by Equation (2-3). The aim is the minimisation of 

the total costs of gas distribution use on site, subject to plant constraints: 

𝑇𝑐 = 𝑇𝐵 + 𝑇𝑁 + 𝑇𝑃 (2-3) 

  

The total cost for Biogas and Natural Gas use on site, 𝑇𝐵 and 𝑇𝑁 respectively, are defined by 

summating the gas flows to each CHP Engine or Steam Boiler and the Biogas flow to the 

Biogas Upgrade Plant (BUP). Here, 𝐵 represents a Biogas flow (Nm3, variable), 𝑁 represents 

a Natural Gas flow (Nm3, variable) and 𝐶 represents the cost of using the associated gas 

(£/Nm3, constant): 

 

𝑇𝐵 =  ∑{𝐵𝐶𝐻𝑃,𝑖 ∙ 𝐶𝐵}

3

𝑖=1

+ ∑{𝐵𝑆,𝑗 ∙ 𝐶𝐵}

3

𝑗=1

 +  𝐵𝐼 ∙ 𝐶𝐼  (2-4) 

𝑇𝑁 =  ∑{𝑁𝐶𝐻𝑃,𝑖 ∙ 𝐶𝑁}

3

𝑖=1

+  ∑{𝑁𝑆,𝑗 ∙ 𝐶𝑁}

3

𝑗=1

 (2-5) 

For a realistic optimisation, both costs and revenues of gas streams on site are considered; 

injecting Biomethane into the National Grid through the BUP creates a revenue as the gas is 

sold (𝐶𝐼), burning Biogas in the boilers and CHP engines has no associated cost (𝐶𝐵) whilst 

purchasing Natural Gas for use anywhere has a cost associated (𝐶𝑁).  

Whilst there is no cost associated with burning Biogas on the flare under occasional 

emergency use, overuse is discouraged by regulatory bodies and is considered a waste. To 

prevent the optimiser from sending gas to the flare stack a penalty term, 𝑇𝑃, on flaring Biogas 

was applied to the objective function. By setting the cost function for flaring, 𝐶𝑓, high the 

optimiser would allow flaring only as a last resort. The site requires minimising flaring in 

order to satisfy its environmental and regulatory commitments.  

 

𝑇𝑃 =  𝐵𝑓 ∙ 𝐶𝑓  (2-6) 
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Therefore, the objective function is: 

𝑇𝑐 =  ∑{𝐶𝑏  𝐵𝐶𝐻𝑃,𝑖  + 𝐶𝑛𝑁𝐶𝐻𝑃,𝑖}

3

𝑖=1

+ ∑{𝐶𝑏 𝐵𝑆,𝑖  + 𝐶𝑛𝑁𝑆,𝑖}

3

𝑖=1

+ 𝐶𝐼𝐵𝐼  + 𝐶𝑓𝐵𝑓 

 

(2-7) 

 

Should the optimiser advise that flaring gas should be done, it will affect the actual 

minimised cost; after optimisation when calculating the total daily operational cost on site, if 

required the penalty term is subtracted from the minimised cost to reflect actual operational 

costs, and for more accurate RO. 

 

2.3.2.2 Mass Balance constraint – Model Input 

Whilst individual process units have their own sets of constraints for gas usage, the 

overriding site constraint is given by the overall mass balance of Biogas distributed across the 

site: the volume of Biogas produced from the anaerobic digesters must equal that of Biogas 

distributed across site. There is no constraint of Natural Gas of this form, as Natural Gas is 

readily available if required. The total volume of Biogas produced, 𝐵𝑇𝑜𝑡𝑎𝑙, is the only 

variable that is input into the model.  

𝐵𝑇𝑜𝑡𝑎𝑙 =  ∑{𝐵𝐶𝐻𝑃,𝑖 + 𝐵𝑆,𝑖}

3

𝑖=1

+ 𝐵𝐼  + 𝐵𝑓 (2-8) 

  

2.3.2.3 CHP Engines constraints 

The CHP engines can only utilise one fuel type at a time: Biogas or Natural Gas. Therefore, 

the binary variable 𝑧𝑖 ∈ {0,1} is introduced to ensure only one of each gas type is used by 

each unit. The total gas flows to any engine, 𝐵𝐶𝐻𝑃,𝑖  and 𝑁𝐶𝐻𝑃,𝑖, is between the maximum and 

minimum flows:  

𝐵𝐶𝐻𝑃,𝑚𝑖𝑛 ∙  𝑧𝑖  ≤ 𝐵𝐶𝐻𝑃,𝑖 ≤ 𝐵𝐶𝐻𝑃,𝑚𝑎𝑥 ∙ 𝑧𝑖 (2-9) 

𝑁𝐶𝐻𝑃,𝑚𝑖𝑛 ∙ (1 − 𝑧𝑖) ≤ 𝑁𝐶𝐻𝑃,𝑖 ≤ 𝑁𝐶𝐻𝑃,𝑚𝑎𝑥 ∙ (1 − 𝑧𝑖) (2-10) 

  

Under these conditions, when 𝑧𝑖 takes the value of 1 then only Biogas may flow to engine ‘i’, 

whereas a value of 0 denotes a Natural Gas flow. 𝑧𝑖 is a variable determined by the model to 

optimise gas distribution. The binary variable 𝑧𝑖 provides the gas selection functionality by 

allowing 𝑧𝑖 to alter the upper and lower constraints of the inequalities. 
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2.3.2.4 Steam Boilers constraints 

The steam boilers can also only have one fuel source at a time. Similarly to the CHP 

inequalities in the ‘CHP Engines constraints’ section above, the steam boiler parameters 

make use of a binary variable, 𝑧𝑗 ∈ {0,1} subject to: 

𝐵𝑆,𝑚𝑖𝑛 ∙  𝑧𝑗  ≤ 𝐵𝑆,𝑗 ≤ 𝐵𝑆,𝑚𝑎𝑥 ∙ 𝑧𝑗 (2-11) 

𝑁𝑆,𝑚𝑖𝑛 ∙ (1 − 𝑧𝑗) ≤ 𝑁𝑆,𝑗 ≤ 𝑁𝑆,𝑚𝑎𝑥 ∙ (1 − 𝑧𝑗) (2-12) 

  

There are additional constraints for the steam boilers that differ from the CHP engines. 

Unlike the CHP engines, the steam boilers must always be producing enough steam to satisfy 

site process requirements and therefore do not all have high gas flow or low gas flow at the 

same time. After retrospective analysis of historic data, for any given day the three boilers 

operate on a total daily flow where one operates near maximum, one near minimum and one 

in between. This is in order to supply enough steam for use on site. As such, the additional 

constraint on the boilers is: 

𝑆𝑚𝑖𝑛  ≤  ∑{𝐵𝑆,𝑗 + 𝑁𝑆,𝑗}

3

𝑗=1

 ≤ 𝑆𝑚𝑎𝑥 (2-13) 

  

Retrospective analysis of the different fuel flows to the boilers also revealed no 

distinguishable difference in processed volume of Biogas or Natural Gas flows, hence each 

gas type has equal weighting in this constraint. 

 

2.3.2.5 Gas to Grid injection (Biogas Upgrade Plant) constraint 

The BUP takes the raw Biogas and enriches it such that the resulting biomethane can be 

injected into the national grid as a renewable energy source. As there is only one fuel source, 

the constraints of sending Biogas to the BUP are: 

𝐵𝐼,𝑚𝑖𝑛 ≤ 𝐵𝐼 ≤ 𝐵𝐼,𝑚𝑎𝑥 (2-14) 

  

In an ideal setting there would be no limit to the volume of biomethane that can be injected 

into the national grid. However, the total volume that can be injected is subject to local 

demand and gas network pressures; if too much biomethane is injected too quickly the 

pressure in the grid could rise too high for continued injection, whereby Northern Gas 
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Networks (the local gas network operator) would shut off grid injection from the site; this is 

known as going into a ‘reject’ state. Operators have discovered that maximum daily volume 

of Biogas that can be processed through the BUP is currently around 40,000 Nm3, which was 

validated through retrospective analysis of BUP processing volumes, grid injection volumes 

and ‘reject’ state instances.  

 

2.3.2.6 Flare Stack constraint 

Due to the volumes of biomethane produced on site and the safety considerations from site 

design, there is considered to be no upper limit for the total volume of Biogas the flare stack 

can take: 

0 ≤ 𝐵𝑓 (2-15) 

  

2.3.3 Solver 

The optimiser model was developed in MATLAB using the in-built function intlinprog, 

which is a MILP algorithm solver in the Optimisation Toolbox package. It is a standalone 

optimiser similar to other known optimisation packages such as CPLEX or Gurobi. The 

intlinprog package uses the following steps to perform optimisation, as outlined in the 

Mathworks documentation (intlinprog can solve the problem in any of the stages. If it solves 

the problem in a stage, intlinprog does not execute the later stages.) [39]:  

1. Reduce the problem size using Linear Program Preprocessing. 

2. Solve an initial relaxed (noninteger) problem using Linear Programming. 

3. Perform Mixed-Integer Program Preprocessing to tighten the LP relaxation of the 

mixed-integer problem. 

4. Try Cut Generation to further tighten the LP relaxation of the mixed-integer problem. 

5. Try to find integer-feasible solutions using heuristics. 

6. Use a Branch and Bound algorithm to search systematically for the optimal solution. 

This algorithm solves LP relaxations with restricted ranges of possible values of the 

integer variables. It attempts to generate a sequence of updated bounds on the optimal 

objective function value. 
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The optimiser model was implemented using this function and contains 24 constraints, 14 

possible gas flows with 6 binary variables. The optimal gas flows and binary variable values 

are obtained through minimisation of the cost function to give optimal gas distribution on an 

economic basis, whilst maintaining site operability.  

The total historic daily Biogas volume produced on site is the only historic value passed to 

the optimiser. The model then calculates the volumes of Biogas and Natural Gas that are 

required to be distributed to each unit to satisfy daily operation at the minimum cost, subject 

to the constraints outlined.  

 

2.3.4 Displaying Optimisation Results 

The function intlinprog will always aim to minimise the objective function. As such all 

revenue parameters are negative and cost parameters are positive inside the optimiser; a 

negative optimal value provided by the optimiser indicates a potential revenue, whilst a 

positive value a cost. After optimisation, the resulting ‘optimal value’ is multiplied by -1 so 

that a positive value represents revenue and negative a cost, as one would expect. When 

displaying results of optimisations visually, total daily revenue is used for a direct 

comparison to site operations. 

 

2.3.5 Performing Retrospective Optimisation 

To perform RO, historic plant operational data was used for the 12-month period. For a given 

date, the historic total daily production of Biogas on site is passed to the optimiser which then 

provides operators with an optimised minimum cost and the optimal daily strategy for 

operating the plant for that date. The optimal strategy provided can then be compared to 

actual gas distribution on site, using historic data. For each day in the 12-month data set, the 

optimised minimum cost for RO was compared to historical site operation (and the 

subsequent cost of operating using that strategy) to compare how the site has performed in 

the past.  

During RO, the model constraints are adjusted to reflect planned site maintenance; for 

example, if a CHP Engine was offline on a specific date for annual safety inspections, then 

the upper and lower gas flow constraints for Biogas and Natural Gas for that engine would be 
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set to 0 Nm3. This allows the model to perform optimisation with the correctly available units 

on site.  

 

2.4 Results and Discussion 

2.4.1 Optimiser Visual Results 

For a given daily volume of Biogas produced on site, the optimiser provides the operator with 

a visual operation strategy for the optimised minimum cost; Figure 2-6a shows the results to 

maximize cost reductions for a daily Biogas production of 40,000Nm3 (a typical production 

level for the site).  Figure 2-6b displays a version, provided by the optimiser, showing the 

percentage daily utilisation of each unit.  

For a daily Biogas production of 40,000 Nm3, the site should be operated according to the 

strategy in Figure 2-6 for optimal cost efficiency: to inject all biomethane into the national 

grid, use Natural Gas in the CHP engines at 100% load to generate electricity on site and use 

Natural Gas in the steam boilers to create steam as required. For a given daily volume of 

Biogas, the optimiser provides a fast and reliable result in a matter of seconds.  

 

 

 Figure 2-6 – Example Optimised Gas Distribution for daily total Biogas production of 40,000Nm3.  

a) Optimised Daily gas distribution (actual flow volumes),  

b) Optimised Daily gas distribution Normalised (by percentage daily utilisation) 
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2.4.2 Retrospective Optimisation (RO) 

Performing RO of the plant over multiple days is difficult to achieve if the operators must sift 

through multiple graphs for each day that is analysed. For an easier visual indication of how 

the optimiser suggests the plant should be operated with regards to fuel types for each unit, a 

Gantt chart showing the gas type selected for is presented – Figure 2-7 shows an example 

date range from the full RO and compares this to historical operation.  

The colour of each block represents a particular fuel type for each unit, typically Biomethane 

or Natural Gas. However, in reality there may be times where both fuels were recorded 

historically, as shown in yellow. When switching an engine from Biomethane to Natural Gas, 

historical operations will show both fuel types were used but for clarity each fuel would have 

been combusted separately, not as a blend. For example, Figure 2-7 suggests both fuel types 

were used historically in the CHP Engines on some days, but for CHP Engines this actually 

show days where a gas type switchover took place.  

 

Figure 2-7 - Gantt Chart for an example period showing the type of gas used on site for each unit that can use either Biogas 

or Natural Gas.  Results from Retrospective Optimisation (a) are presented alongside Historical Operation (b). 
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The historical fuel type shown in the boilers is inferred from historical gas flow data, and on 

occasion the flow meters indicate that two fuel types were used when this may not have been 

the case, hence the multiple “yellow” days for boilers. Specifically, in the case of Boiler 1 it 

may be an indication of an issue with the gas flow meters on site. It may also be an indication 

that fuel switchovers in the boilers happen more often. 

In this figure, it may be seen that the optimiser advised that, between day 6-11, the plant 

should have swapped some CHP Engines and boilers to run on Biomethane, which the plant 

mostly managed to achieve with the exception of the boilers.  

Each daily optimisation has an associated minimised operational cost, which is used to 

evaluate RO of plant operations. The minimum cost found by the optimiser is compared to 

the cost associated with actual historical distribution on site by plotting one against the other. 

The daily optimal operational cost was compared to the actual historical cost over the 12-

month period Nov 2017 to Oct 2018, the historical plant data available, and is shown in 

Figure 2-8. 

In order that RO is representative of site operations, planned site maintenance is included in 

the RO. Using site maintenance logs, if a unit was taken offline for a full day for scheduled 

repairs or safety inspections then the optimiser will not have that unit available for the given 

day of RO.  
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Figure 2-8 2* - Actual Historic Gas Revenue vs Optimiser Gas Revenue, normalised. Solid line represents shows y=x, and 

the dashed lines represent the tolerance band (±10% of the max revenue) 

Whilst the parameters of the model are static, for each 3-month moving period, the average 

maximum gas flows to each unit (Biogas and Natural Gas) are recorded and compared to the 

gas flow parameters of the model. If the model parameters are more than 10% away from the 

3-month average, a warning is displayed during RO such that the user can determine and 

select an improved parameter. As of yet, the warning parameters have not been triggered, 

indicating that the initial parameters are valid across the whole RO horizon. It is also why 

there is a 10% band on the RO graphs.  

A band of 10% of the maximum revenue achieved was chosen as the tolerance for optimality 

as the model parameters do not deviate more than 10% from the historic use of the units on 

site. Of the 366 days analysed, based on a tolerance of ±10% of the highest revenue, RO 

indicates the plant operated to within tolerance 98% of the time (332 days). This provides 

some validation to operators that their historic operational strategy was optimal. However, the 

2% non-optimal operational days have a potential lost revenue of almost £350,000 

 
2 Note: Wherever noted with ‘*’ in this chapter, the figures presented use the actual revenue in £/day for 

plotting but for confidentiality (at time of publication) the axis have been normalised based on the highest 

revenue and do not represent the actual financial figure. 
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(£349,291); if the site was optimally operated 100% of the time, there is the potential for an 

increase in revenue of 7.8%. The non-optimal operational days are likely due to unplanned 

breakdowns and maintenance on site, which can be investigated by comparison with site 

maintenance logs.  

It should be noted that the Gas Distribution model described within this Chapter performs 

optimisation using daily processing values and does not consider the impacts of electricity 

demand on site – the potential increase in revenue described here may not be as high (or 

could possibly be higher) if the model were to consider these changes, or the granularity of 

optimisation were improved (such as the multi-time period optimisation performed in 

Chapter 3). The limitations of this model are described further in Section 2.4.6. 

 

2.4.3 Importance of Maintenance Logs 

It is paramount that planned shutdowns are logged and programmed into the optimiser to 

allow for the best comparison of RO and historic operation. However, unplanned shutdowns 

cannot be pre-configured in the model. RO will highlight non-optimal days and, typically, 

will highlight the severity (if any) of unplanned shutdowns across the site and will produce a 

monetary value attributed to each shutdown. However, should an operator wish to change the 

number of available units (e.g. CHP Engines) on site for scenario modelling, they are able to 

do so. 

Figure 2-9 compares the historic gas distribution (Figure 2-9a) to the optimised distribution if 

planned shutdowns are ignored (Figure 2-9b), whereas Figure 2-10 compares the historic gas 

distribution (Figure 2-10a) with the optimised distribution if maintenance in included within 

the RO (Figure 2-10b). For the example date selected, the BUP was offline for planned 

maintenance. This demonstrates the importance of including planned shutdowns in the 

model; by not including them, the model would assume all units were available and thus it 

would appear the plant operated sub-optimally, yet this was not the case historically.  

It should also be noted here that the model has no preference of which engine should be in 

operation. On the example shown on Figure 2-10b the optimiser selects CHP2 to be used for 

Biogas by coincidence – the actual engine used is not important to the model, and is an 

operator decision to maintain the health of the engines.  
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Figure 2-9 – Example comparison between: (a) historic site operations, and (b) Optimised gas distribution on site, for an 

example date. The optimised distribution assumes all units were available, but RA showed the BUP unit was actually offline 

for planned maintenance. 

[Daily Biogas Production: 23,927 Nm3] 

 

 

Figure 2-10 - Example comparison between: (a) historic site operations, and (b) Optimised gas distribution on site, for the 

same example date as Figure 2-9, but Optimiser model now accounts for the planned offline BUP unit. 

[Daily Biogas Production: 23,927 Nm3] 

 

2.4.4 Investigating Unplanned Outages 

Using the site maintenance log, planned and unplanned downtime of units on site can be 

shown on the Annual RO graph in Figure 2-8. The Boiler, CHP Engine and the BUP 
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unplanned outages are plotted on Figure 2-11. Based on the distribution of outages on Figure 

2-11, boiler downtime has no major impact on the historic operability of the site. The CHP 

Engines would appear to have more of an impact on site operations as more of the outliers are 

associated with unplanned outages.  

However, almost every non-optimal outlier on Figure 2-8 is associated with an unplanned 

outage (full or part day) with the BUP shown on Figure 2-11. Gas injection into the grid is 

where the plant makes the majority of gas revenue, and the fluctuations of daily gas injection 

volumes account for most of the variation in the plant operation; whilst a maximum Biogas 

processing volume of 40,000 Nm3 is typical, this limit is influenced by external factors and 

on occasion the site may be able to inject more Biomethane (and subsequently process more 

Biogas) than the model accounts. It also stands to reason that unplanned outages with this 

unit will likely cause the plant to operate sub-optimally. 

Crucially, full day planned maintenance outages do not cause the site to operate sub-

optimally – the plant operates within optimal tolerance on each of the Full Day planned 

maintenance plots on Figure 2-12. Currently, the model can only handle planned maintenance 

where a unit is due to be offline for the full day – planned maintenance taking less than a full 

day cannot accounted for in the current model. The potential shortfall in revenue of ~£350k is 

mostly due to unplanned breakdowns and planned maintenance that does not take a full day.  
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Figure 2-11A* - Annual RO but days with Unplanned Downtime of units are highlighted.  

‘Part Day’ refers to a unit being available for less than the 24-hour optimisation period, and typically ranges from 1-6 

hours. ‘Full Day’ refers to a unit being offline for use for the entire 24-hour period. 

Solid line represents shows y=x, and the dashed lines represent the tolerance band (±10% of the max revenue) 
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Figure 2-12A* - Annual RO but days with Planned Maintenance of units are highlighted.  

‘Part Day’ refers to a unit being available for less than the 24-hour optimisation period, and typically ranges from 1-6 

hours. ‘Full Day’ refers to a unit being offline for use for the entire 24-hour period. 

Solid line represents shows y=x, and the dashed lines represent the tolerance band (±10% of the max revenue) 
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2.4.5 Achievable Increase in Revenue 

A perfect process plant would always run optimally without any unexpected breakdowns or 

unforeseen circumstances preventing optimal operation. However, this is not the case and 

should be mentioned when considering the potential 7.8% increase in revenue available. If 

the plant operated to within optimal tolerance 98% of the time, then to what extent could this 

be practically increased further? Whilst undesirable it is expected that process plants will 

ultimately have unexpected downtimes, especially with new technologies and installations. 

Acceptable levels of lost revenue due to unexpected maintenance is a decision for site 

managers, the RO presented here is supporting investment decision making – allowing 

operational managers to quantify the benefit of maintenance expenditure 

After investigating the possible cause of outliers from RO (Figure 2-8), it is clear the main 

focus for improvement should be the BUP. Each of these outliers corresponds to a day where 

the BUP failed (full day or part day, Figure 2-11) or whether the BUP was planned to be 

offline for maintenance for part of the day (Figure 2-12). Failures in the BUP could be 

mechanical (such as a component breaking) or ‘gas-spec’ failures; if the gas composition 

does not meet the correct standard for injection it will enter a ‘failed’ state and reject gas until 

the specification target is met.  

It is worth noting that the BUP part of the AAD plant is a recent addition to the site, with 

installation completing late 2015. It is a new operation for operators and for the local gas 

network to manage correctly; the data used for RO is still within the BUP’s early years on 

site, so a higher number of unexpected downtime would be anticipated due to the complexity 

and age of the technology. It is believed by operators that the BUP has operated more 

robustly in recent years, but RO has not been performed over a later date yet so this cannot be 

confirmed in this chapter.  

The highlighted data on Figure 2-11 is also a good indicator of the number of unexpected 

instances on site, their origin and how impactful breakdowns of individual units are with 

regards to economic operations. As the number of planned part-day maintenance instances is 

low, RO of the plant using this model is a good indication of the potential improvement for 

plant robustness and could help provide justification for future investments.  
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2.4.6 Model Limitations  

Currently, the Biogas Distribution Model is a retrospective optimiser only, as a future 

prediction of Biogas production is currently unavailable. In Chapter 5, initial investigations 

are carried out modelling the digesters to predict this Biogas production, to provide operators 

with a full sludge processing optimisation model to allow for improved operational 

forecasting.  

In addition, the model does not consider electrical costs associated with the CHP Engines, 

electrical import tariffs or site load with regards to electricity and heat and assumes that CHP 

engines must be in operation provided they are not offline for maintenance. Electricity 

generated through the CHP Engines is used on site to reduce electrical consumption from the 

national grid and heat produced from them is reused to reduce gas requirements for the steam 

boilers on site (the steam is used as part of the Thermal Hydrolysis process). Clearly, shutting 

down a CHP Engine will increase the electrical demand on the National Grid, with site 

electrical costs increasing due to reduced CHP electrical output, as well as increasing the heat 

load on the Steam Boilers.  

To incorporate electricity generation, it will require splitting the model into smaller 

optimisation steps. The model currently uses daily values for processing limits, however 

Electrical Import/Export costs on site are ‘fixed-variable’ (vary half hourly but are fixed and 

known) meaning that each half hour the CHP electricity generated on site will offset a 

different Import cost, thus will require its own optimisation step. This would present unique 

and interesting challenges, as each optimisation step would require linking together, to 

prevent excessive ramping (turning on and off) of CHP Engines, or fuel type switching every 

half hour – fuel types for CHP Engines cannot be switched over throughout the day. 

 

2.5 Conclusions  

This chapter proposes a MILP model for Gas Distribution and Optimisation of an AAD Plant 

with multiple options available for Biogas use on site. The optimisation model takes a single 

input of Daily Biogas volume produced, in m3, by the Anaerobic Digesters to provide 

operators with an optimal daily operational strategy; the strategy is provided to the operators 

in visual form for each day, though weekly strategies are also possible if required. The model 

also includes a penalty term on the flare stack for preventing unnecessary use of the 

emergency flare.  
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RO techniques were performed with historical operational data to determine the economic 

effectiveness of previous operational strategies. The model proposed uses MILP optimisation 

techniques to perform RO across the historical data horizon (one year) in a matter of seconds, 

with individual daily optimisations taking far less computational time.  

Comparing the summated daily gas revenues used for RO of the plant indicates a potential 

increase in revenue of 7.8% (~£0.35m) for the period optimised if the plant was run optimally 

all of the time. Upon discussion with operators and analysis of the Maintenance and 

Breakdown logs, the ‘lost revenue’ and non-optimal performing days (points on Figure 2-8 

not within tolerance band) are mostly due to unit malfunctions, indicated on Figure 2-11, and 

are mostly due to the loss in revenue from lower  Biomethane Injection due to BUP 

unplanned outages (Figure 2-11, graphs ‘e’ and ‘f’).  

The potential increase in annual revenue from gas distribution could be achieved through 

improved operational strategies or (more importantly) improved plant robustness, such as 

reducing the number of incidents of unplanned outages, with a specific focus on the 

Biomethane Injection Plant. The potential increase in revenue could be used to justify future 

plant improvements: historically, the plant operates optimally most of the time with non-

optimal performing days occurring mostly when unplanned downtime of process units 

occurs. Operators could categorise these outages as ‘avoidable’ or ‘unavoidable’, and then 

use the ‘avoidable’ outages and the expected increases in revenue as leverage to request plant 

improvements.  

Finally, improving the proposed model to include electrical costs and heat loads, as discussed 

previously, would transform the model into a full Energy Management model for the AAD 

plant: a possible Decision Support System (DSS), that could be used for RO and to validate 

future operational strategies. In the current state the proposed Gas Distribution model is not 

detailed enough for implementation on site. In Chapter 3, the proposed model here was 

developed further to include these limitations for a more complex optimisation.  



Chapter 3 - Energy and Carbon Model 

 

35 

 

Chapter 3 Energy and Carbon Model 

This chapter proposes an Energy Management Model for the AAD plant at Howdon, using 

MILP to perform day-ahead optimisation based on live day-ahead pricing and estimated 

future biomethane production levels. The previous gas distribution model created for the site 

was effective but too simple to meet the complex demands of the full site, performing the 

optimisation over multi-time period steps rather than over a single time step optimisation, and 

with the new Net Zero Carbon emissions pledge an improved approach was required.   

 

3.1 Introduction 

In the previous chapter, a realistic model for gas distribution of an advanced municipal 

wastewater treatment works was proposed, where Retrospective Optimisation (RO) is 

performed [40]. Whilst a good representation and optimisation tool for gas distribution, the 

proposed model had limitations regarding electricity use on site: the CHP engines produce 

electricity for consumption on site or for export to the electricity distribution network, which 

was not included in the previous model, nor was the new carbon performance commitment 

included. 

Whilst RO is a useful tool for retrospective analysis to improve future operations such as 

optimal scheduling [38], it would be beneficial for the site to have an optimisation tool to aid 

in operational decision making. Although different wastewater processing techniques will 

have different degrees of carbon emissions (usually based on their various energy demands) 

[21], optimisation of current procedures is always useful to reduce emissions as far as 

possible. With the new challenge of net zero carbon emissions, it was decided to improve the 

previous model to address the limitations and, to aid in achieving the net zero emissions 

target, develop the model further to include new optimisation constraints regarding carbon 

emissions, heat and electricity generation and varying electrical import tariffs.  

The model implemented in this chapter is formulated through MILP and is developed on the 

founding model described in the previous chapter. As has been previously stated (see Chapter 

2.1) MILP has widely applicable industrial applications for optimisation. However, more 

specifically and more relevantly, MILP techniques have been used successfully in the 

optimisation of  micro-grids [41–43]. 
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Micro-grids are small power systems which utilise various energy generation units of 

different types (typically renewable sources) such as biomethane, solar, wind, and storage 

devices like batteries or thermal energy storage [44] sometimes in connection with the main 

power utility grid. Micro-grids tend to cater to the combined heat and power needs of the 

system, utilising waste heat to improve system efficiency [44,45]. The AAD plant at Howdon 

could be considered a localised microgrid on site, but without either heat or electricity storage 

capabilities [Figure 3-1], using the renewable energy biomethane produced on site or Natural 

Gas as an energy source (at the time of developing this mode, NWL has installed a new 

fourth gas engine on site, hance the different site layout compared to Figure 2-1). 

The model formulated in this chapter requires 48 discrete time periods for the day-ahead 

optimisation, due to the half-hourly electricity tariffs the site is subject to (see Section 3.2.2). 

Discrete-time MILP formulations have been developed when considering renewable 

generation with an established demand [46] as well as using CHP systems in residential 

microgrids [47]; both MILP models implemented cover micro-grids comparable to the case 

of Howdon. 

Whilst more complex solutions have been applied to the optimisation of micro-grids, such as 

Model Predictive Control (MPC) techniques [48] or combined MPC and MILP models [49], 

one of the major benefits of the application of MILP techniques to the process scheduling 

problems lies in the computational efficiency for the solution of the resulting MILP problem 

[30].  

The updated version of the model in this chapter considers electricity import tariffs to 

determine whether a CHP Engine should be operating or not, using Biomethane processing 

demands and the new Carbon Emissions pledge to optimise operations. The model can be 

used to help managers see the impact the new Carbon Emissions performance criteria will 

have on revenues, as well as aid in managerial decision making in whether to change energy 

supplier for electricity.  

The novelty of this work lies in the application of MILP optimisation techniques to a 

renewable biomethane energy plant at a wastewater treatment works, alongside the inclusion 

of a new Carbon Performance Commitment with associated Outcome delivery Incentive for 

the NWL. MILP techniques have been applied to the optimisation of clean water networks 

(see [50–52]) but the application has focused on clean water distribution, such as urban water 

supply chain optimisation. Currently there is no reported research on the application of MILP 
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techniques to energy management of a wastewater AAD plant, and whilst the Howdon AAD 

plant is akin to a Micro-Grid as previously mentioned, it is believed there is a substantive gap 

in the reported literature in the application of MILP in this area.  

 

Figure 3-1 – Updated Process Diagram for Gas Distribution on site (originally presented in [40]). Biomethane source is 

from Anaerobic Digestion on site, Natural Gas is from the gas distribution network. Diagram also shows heat production 

and electricity generation from CHP engines. At the time of developing the energy model, NWL had installed a fourth 

engine, hence why it is not present on Figure 2-1.  

An updated process diagram for the AAD plant (and the variables used in this chapter) are 

presented in Figure 3-1. Most notably, the difference between this updated process diagram 
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and the one shown previously in Figure 2-1 is the inclusion of a fourth gas engine, heat 

recovery and generated by CHP engine and the boilers and the electricity generated by the 

gas engines. The improved processing constraints and limitations are explained throughout 

this chapter.  

The remainder of this chapter is structured as follows. The site constraints, formulation of the 

MILP model and development the objective function for optimisation are outlined in the 

Methods section. The Results section shows example optimisation results from the Optimiser 

based on an example variable electricity tariff, investigates the managemental decision 

around Carbon Emissions and Electricity Imports and compares the advised optimal 

operational schedules with the current operational strategy. Finally, conclusions are presented 

alongside limitations and potential improvements to this model.  

 

3.2 Methods 

3.2.1 Unit Processing Limits 

The gas processing limits for each unit in this model are shown in Table 3-1, with changes 

made from Chapter 2 to include updates to operational constraints and the new fourth engine.  

Table 3-1 - Operational gas flow constraints for units on site [40].  

Limiting Parameters Operational Constraints 

𝑩𝑰,𝒎𝒂𝒙 

𝑩𝑰,𝒎𝒊𝒏 

Max flow: 40,000 Nm3 / day  

Min flow: 0 Nm3/ day 

𝑩𝑪𝑯𝑷,𝒎𝒂𝒙 

𝑩𝑪𝑯𝑷,𝒎𝒊𝒏 

Max Flow: 16,000 Nm3 / day  

Min flow: 50% of max flow  

𝑩𝑺,𝒎𝒂𝒙 

𝑩𝑺,𝒎𝒊𝒏 

Max flow: 4000 Nm3 / day 

Min: 200 Nm3 / day 

𝑩𝒇,𝒎𝒂𝒙 

𝑩𝒇,𝒎𝒊𝒏 

No Max  

Min: 0 Nm3 / day 

𝑵𝑪𝑯𝑷,𝟏−𝟑,𝒎𝒂𝒙 

𝑵𝑪𝑯𝑷,   𝟒,𝒎𝒂𝒙 

𝑵𝑪𝑯𝑷,𝒎𝒊𝒏 

Max flow: 9000 Nm3 / day  

Max flow: 10000 Nm3 / day 

Min flow: 50% of max flow 

𝑵𝑺,𝒎𝒂𝒙 

𝑵𝑺,𝒎𝒊𝒏 

Max flow: 2500 Nm3 / day  

Min flow: 200 Nm3 / day 

𝑯 𝑹𝒆𝒒 

𝑺 𝒎𝒊𝒏 

70 MJ / day 

Lower Limit: 3300 Nm3/ day 
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A site diagram showing the gas distribution, electrical production and heat generation on site 

is shown earlier in Figure 3-1. For clarity, throughout the chapter the fourth engine is referred 

to with the subscript 𝑪𝑯𝑷, 𝟒 but this engine is not CHP as it does not make use of the waste 

heat on site – it is a Natural Gas Engine for generating electricity only. 

3.2.2 Electricity Import Tariffs 

Understandably, switching a CHP engine off results in a lack of generation of electricity thus, 

assuming all electricity generated is also consumed on site, this lack of generated power is 

required to be imported from the electricity distribution network. It is therefore imperative 

that the electrical import tariff of the site is considered. 

Unlike most modern home consumer energy tariffs, large businesses (such as NWL) tend to 

be subject to varying electricity tariffs depending on market conditions and regulatory 

charges. Howdon’s electricity tariff is known for the following day. The price changes for 

each half hour period. This presents an opportunity to optimise the gas usage around the 

peaks and troughs in electricity prices (as biogas produced could be used for electricity 

generation rather than grid injection), provided this does not impact on site operation. 

Although it has been noted in previous studies that day-ahead markets may be of limited 

value to a power system that relies highly on renewable energy [53] the renewable biogas 

produced is a consistent available resource in this case, thus day-ahead pricing can be taken 

advantage of to produce an optimal daily operational schedule.  

Whilst tariffs like these can change annually, subject to contract agreements and regulatory 

changes, it is anticipated than in the near to mid-term UK industrial prices will continue to be 

delineated in 30-minute time bands known as settlement periods. The example fixed import 

tariff shown in Figure 3-2 (from April 2019 – April 2020) is a valid approximation for the 

typical tariff the site is subject to today and was the most up to date information at the time of 

the study performed within this Chapter.  

Currently, site operators do not consider the varying cost of electricity imports during day-to-

day operations – the focus is on the sludge processing requirements to satisfy the sites 

regulatory consents. By considering this price variance the optimal economic operational 

strategy may differ than the current strategy whilst still being able to meet the operational 

requirements. 



Chapter 3 - Energy and Carbon Model 

 

40 

 

 

Figure 3-2 - Example daily electricity import tariff for Howdon STW in pence per kWh; 24 hour period (00:00-24:00) with 

changes to price every half hour. This is an actual historical price applied to the site during the Apr2019 – Apr 2020 period, 

and is a valid aproximation for todays tariffs.  

 

3.2.3 Natural Gas Prices 

Whilst it is recognised that Natural Gas prices do vary, analysis has shown a gradual increase 

in price from 18.5 pence/therm to 42.4 pence/therm over a 10 year period [54]. The price of 

Natural Gas in the UK tends to remain at a fixed cost throughout the day, thus for the purpose 

of this model can be assumed constant over the 24-hour operational horizon.  

 

3.2.4 Electricity Generation 

The three CHP engines are on site are each rated at 1750 kW and the Natural Gas Engine 

rated 2000 kW, producing this electrical power at full gas flows. Retrospective analysis of 

historical operations validates the ratings, however as Biogas and Natural Gas have different 

Calorific Values (CVs) the total volume of gas required is different to produce the same 

power. A Biogas fuel source will require a higher flow of gas to the engine than Natural Gas, 

reflected in the operational constraints (Table 3-1). 
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Figure 3-3 - Example Power Curve of CHP Engine 1 operating on Natural Gas for the month of October 2020 

Further analysis of historic gas flow rates to power output shows the power curve of the gas 

engines can be reasonably assumed to be linear in the operating region (where the chosen fuel 

gas flow rate is between max flow and 50% max flow). As an example, Figure 3-3 shows the 

power curve for CHP Engine 1 operating on Natural Gas. Where the engine is fully 

operational (200-400 m3/hr) the power curve can be seen to be linear. Where the engine is 

starting up (0-200 m3/hr) the power curve is non-linear, however the model only considers 

the region when the engine is fully operational. As start-up times take approximately 15 

minutes, for each time period within the model when the engine is switched on the engine is 

considered to be non-operational for 15 minutes, then fully operational thereafter. This is 

explained further under section 3.2.6.4 below.  

 

3.2.5 Cost of Carbon Dioxide – ‘Carbon Credits’ 

To aid in achieving the net zero carbon emissions target, NWL has agreed with the UK water 

industry regulator cost parameters for CO2 emissions. Additionally, the emissions parameters 

are defined by an industry-standard accounting process managed by UK Water Industry 
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Research. These parameters include various company-wide variables, such as natural gas 

purchased, or electricity generated. The variables that impact the Howdon AAD plant are 

recorded in Table 3-2 with their associated carbon emission factors. The amount of CO2 

emitted is noted as kg.CO2e (kilograms of CO2 equivalent emitted). 

 

Table 3-2 - Carbon Emission Factors for the variables at Howdon AAD plant. [55] – correct at time of writing but are 

subject to annual reviews. 

(All m3 noted here refer to normalised cubic metres.) 

Variable Symbol Factor Units 
Import Electricity 3 𝑲𝑰𝑴𝑷 0 or 0.31  kgCO

2
e /kWh 

Export Electricity 4 𝑲𝑬𝑿𝑷 -0.28307 kgCO
2
e/kWh 

Import Natural Gas 𝑲𝑵 2.03053 kgCO
2
e/m3 

Export Biomethane 𝑲𝑬𝑩 -2.04652 kgCO
2
e/m

3 

Propane 𝑲𝑷 1.51906 kgCO
2
e/L 

Biogas CHP 𝑲𝑪𝑯𝑷 0.0175 kgCO
2
e/m

3 

Biogas residual 𝑲𝑹 0.16 kgCO
2
e/m

3 

 

The value of CO2 emissions (kg.CO2e) generated using these factors will be referred to as 

‘carbon credits’ throughout this chapter. It should be noted that some factors are negative 

(they are seen as ‘offsetting’ other carbon emissions by the regulator Ofwat), therefore there 

is the theoretical possibility to generate an overall negative value of carbon credits given the 

right site operation, which NWL may claim against other areas of the business.  

These carbon credits are new and applied across the entire business and will be applied in 

arrears of two years. Thus, when displaying optimisation results, the optimal daily revenue is 

shown both including and excluding carbon: the ‘Excluding’ carbon value is representative of 

the revenue the site will likely see in their books immediately, whilst the ‘Including’ carbon 

 
3 This factor was dependant on the original source of electricity (renewable or not) subject to contractual 

agreements between NWL and their energy provider and was not yet finalised at point of writing. 
4 Export Electricity factor only applies to electricity made using Biogas in the engines. There is no factor for 

Natural Gas electricity exports. 
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is the revenue the site will make in two years’ time, once the performance commitment is 

applied.  

The electricity factors surrounding CO2 emissions shown in Table 3-2 are static parameters, 

however it should be noted that the CO2 emissions resulting from electricity generation are 

not usually static. The National Grid ESO have developed a state of the art machine learning 

and power system modelling to forecast the carbon intensity and generation mix for 

electricity on a regional basis within the UK [56]. Whilst such a tool and model is relevant 

and would be useful for actual emissions monitoring, it is not applicable to this model due to 

current legislative agreements.  

 

3.2.6 MILP Equations and Constraints 

3.2.6.1 Objective Function 

The simplified objective function is given by Equation (3-1). The aim is the minimisation of 

the total cost of site operations (including gas distribution, electricity import costs, and 

penalty terms as well as the ‘cost of carbon’), subject to site constraints: 

𝑇𝑐 = ∑(𝑇𝐵,𝑡 + 𝑇𝑁,𝑡 + 𝑇𝑃,𝑡 + 𝑇𝐸,𝑡 + 𝑇𝐶𝑂2,𝑡)

48

𝑡=1

 (3-1) 

  

The total cost for Biogas and Natural Gas use on site, 𝑇𝐵,𝑡 and 𝑇𝑁,𝑡 respectively, are defined 

by summating the gas flows to each CHP Engine or Steam Boiler and the Biogas flow to the 

Biogas Upgrade Plant (BUP) during each time period. Small amounts of propane, 𝑃, are used 

in the enrichment process for upgrading Biogas into renewable Biomethane that can be 

injected into the gas distribution network and are included under the Biogas costs. Here, 𝐵 

represents a Biogas flow (Nm3, variable), 𝑁 represents a Natural Gas flow (Nm3, variable) 

and 𝐶 represents the cost of using the associated gas (£/Nm3 for all except propane which is 

£/L, constant): 

𝑇𝐵,𝑡 =  ∑{𝐵𝐶𝐻𝑃,𝑖,𝑡 ∙ 𝐶𝐵}

4

𝑖=1

+  ∑{𝐵𝑆,𝑗,𝑡 ∙ 𝐶𝐵}

3

𝑗=1

 +  𝐵𝐼,𝑡 ∙ 𝐶𝐼 +  𝑃𝑡𝐶𝑃  (3-2) 

𝑇𝑁,𝑡 =  ∑{𝑁𝐶𝐻𝑃,𝑖,𝑡 ∙ 𝐶𝑁}

4

𝑖=1

+  ∑{𝑁𝑆,𝑗,𝑡 ∙ 𝐶𝑁}

3

𝑗=1

 (3-3) 
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Both costs and revenues of gas streams on site are considered; injecting Biomethane into the 

gas distribution network through the BUP creates a revenue as the gas is sold (𝐶𝐼), burning 

Biogas in the boilers and CHP engines has ‘usage’ cost (𝐶𝐵) whilst purchasing Natural Gas 

for use anywhere has a cost associated (𝐶𝑁).  

To prevent the optimiser from sending gas to the flare stack a penalty term, 𝑇𝑃,𝑡, on flaring 

Biogas was applied to the objective function. The cost function for flaring, 𝐶𝑓, was manually 

set high previously such that the optimiser would allow flaring only as a last resort. In this 

version, there is no direct cost of burning Biogas on the flare stack (𝐶𝑓=0), however burning 

Biogas on site anywhere other than in the CHP Engines is subject to the carbon performance 

criteria (see Table 3-2 – Biogas Residual). Should operators require a direct penalty term be 

applied, 𝐶𝑓 can be easily adjusted accordingly. The site is required to minimise flaring to 

satisfy its environmental and regulatory commitments.  

𝑇𝑃,𝑡 =  𝐵𝑓,𝑡 ∙ 𝐶𝑓  (3-4) 

  

The total cost of electricity imported is given by summing each half hour operation and has 

its own associated variable cost (Figure 3-2) such that the total cost of electricity imports, 𝑇𝐸, 

is given by:  

𝑇𝐸,𝑡 =  𝐶𝐸,𝑡 ∙ 𝐸𝐼𝑀𝑃,𝑡  
 

(3-5) 
 

  

Using Biogas and/or Natural Gas on site will affect the carbon credits accrued, as well as the 

use of Propane and Electricity. The total cost of Carbon Credits, 𝑇𝐶𝑂2
, is found by summating 

the total credits generated from all sources, 𝐺𝐶𝑂2
, and multiplying by the cost of each credit, 

𝐶𝐶𝑂2
. Using Natural Gas across the site has the same credit generating parameter, 𝐷𝑁, 

whereas using Biogas has a different parameter for use in BUP, CHP Engines and the Boilers 

/ Flare.  

𝑇𝐶𝑂2,𝑡
= 𝐶𝐶𝑂2

∙ 𝐺𝐶𝑂2,𝑡 (3-6) 

𝐺𝐶𝑂2,𝑡
= ∑{𝐾𝐶𝐻𝑃 𝐵𝐶𝐻𝑃,𝑖,𝑡  + 𝐾𝑁𝑁𝐶𝐻𝑃,𝑖,𝑡}

4

𝑖=1

+ ∑{𝐾𝑅 𝐵𝑆,𝑖,𝑡  + 𝐾𝑁𝑁𝑆,𝑖,𝑡}

3

𝑖=1

+ 𝐾𝐸𝐵𝐵𝐼,𝑡  

+ 𝐾𝑅𝐵𝑓,𝑡 + 𝐾𝑃𝑃𝑡  

(3-7) 
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Therefore, the objective function for a 24 hour horizon is given by: 

𝑇𝑐 =  ∑ (∑{𝐶𝑏  𝐵𝐶𝐻𝑃,𝑖,𝑡  + 𝐶𝑛𝑁𝐶𝐻𝑃,𝑖,𝑡}

4

𝑖=1

+ ∑{𝐶𝑏 𝐵𝑆,𝑖,𝑡  + 𝐶𝑛𝑁𝑆,𝑖,𝑡}

3

𝑖=1

+ 𝐶𝐼𝐵𝐼,𝑡  

48

𝑡=1

+ 𝐶𝑓𝐵𝑓,𝑡 + 𝐶𝑃𝑃𝑡

+ 𝐶𝐶𝑂2
[∑{𝐾𝐶𝐻𝑃 𝐵𝐶𝐻𝑃,𝑖,𝑡  + 𝐾𝑁𝑁𝐶𝐻𝑃,𝑖,𝑡}

4

𝑖=1

+ ∑{𝐾𝑅  𝐵𝑆,𝑖,𝑡  + 𝐾𝑁𝑁𝑆,𝑖,𝑡}

3

𝑖=1

+ 𝐾𝐸𝐵𝐵𝐼,𝑡  + 𝐾𝑅𝐵𝑓,𝑡 + 𝐾𝑃𝑃𝑡] +  ∑ {𝐶𝐸,𝑗 ∙ ∑ 𝐸𝐺𝐸𝑁,𝑖

4

𝑖=1

}

48

𝑗=1

 ) 

(3-8) 

  

3.2.6.2 Adjusting Process Limits 

The proposed model requires the optimisation horizon of one day to be broken up into 48 half 

hourly intervals (time points) such that the half hourly electrical tariff, Figure 3-2, can be 

incorporated. The process limits outlined in Table 3-1 are adjusted from daily values to half-

hourly using the constant α. The default model state assumes that all units are available for 

use, however should operators be aware of planned maintenance for a particular day then the 

process limits can be adjusted to accommodate planned offline units.  

 

3.2.6.3 Mass Balance Constraint – Model Input 

The overriding site constraint is given by the overall mass balance of Biogas distributed 

across the site: the volume of Biogas produced from the anaerobic digesters, 𝐵𝑇𝑜𝑡𝑎𝑙, must 

equal that of Biogas distributed across site. There is no constraint of Natural Gas of this form, 

as Natural Gas is readily available if required. Other than up to date tariff information, the 

total volume of Biogas produced, 𝐵𝑇𝑜𝑡𝑎𝑙, is the only variable that is input into the model on a 

daily basis.  

𝐵𝑇𝑜𝑡𝑎𝑙 =  ∑ {∑{𝐵𝐶𝐻𝑃,𝑖,𝑡 + 𝐵𝑆,𝑖,𝑡}

3

𝑖=1

+ 𝐵𝐼,𝑡  + 𝐵𝑓,𝑡}

48

𝑡=1

 (3-9) 

 

3.2.6.4 Gas Engines Constraints – Gas Flows and Operation Time Limits 

The Engines have a minimum gas flow throughput to allow operation (50% of the maximum 

flow), and in addition each gas engine may either be in an ‘On’ of ‘Off’ state. To allow for a 
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unit to be On or Off, 𝑅𝑖,𝑡 ∈ {0,1} is introduced to allow the model do determine the overall 

state of each engine at each time point ‘t’. In addition, there is another binary variable 

implemented for biogas or natural gas flow to an engine, 𝑤𝐵,𝑖,𝑡 , 𝑤𝑁,𝑖,𝑡 ∈ {0,1}, used to aid in 

this endeavour due to the two possible fuels for the CHP engines. Essentially, 𝑅𝑖,𝑡 determines 

whether an engine is online or offline, and 𝑤𝐵,𝑖,𝑡 𝑜𝑟 𝑤𝑁,𝑖,𝑡 help maintain linear consistency to 

ensure only one fuel type is used. 

There is significant inertia associated with the operation of the gas engines, meaning that 

once switched ‘On’ each engine has a minimum operating time, 𝜏𝑚𝑖𝑛 , and once switched ‘Off’ 

there is a shut down time. Once an engine has been switched off the engine must enter a rest 

state for a minimum time, 𝜏𝑅, before it can be re-initialised. In the model, 𝜏𝑚𝑖𝑛 and 𝜏𝑅  are the 

number of time-periods an engine must remain operational or rest for.  

Operators require engines to remain operational for at least 4 hours once switched on and 

must rest for at least 1 hour after shutting down, therefore in the model 𝜏𝑚𝑖𝑛 = 8 and 𝜏𝑅 = 2. 

The time-periods when an engine is switched on and off are tracked using the ‘start-up’ and 

‘shut-down’ binary variables, 𝑠𝑢𝑖,𝑡 , 𝑠𝑑𝑖,𝑡  ∈ {0,1} respectively. 

In their paper, Kelly and Zyngier [57] present new and improved methods for using MILP 

binary variables in sequence-dependant switchovers for discrete-time scheduling problems, 

using and tracking start-up, shut-down and operating time variables to ensure minimum 

operating times or rest times. Here, their proposed techniques are adapted for this model to 

the constraints on 𝜏𝑚𝑖𝑛 and 𝜏𝑅 , such that for each gas engine the minimum operating time and 

rest constraints are tracked and implemented. 

In our model, when an engine is switched on 𝑠𝑢𝑖,𝑡 and 𝑅𝑖,𝑡 both take the value 1 at the same 

time, but an engine cannot be in start-up and shut-down simultaneously, and thus only one of 

𝑠𝑢𝑖,𝑡 and 𝑠𝑑𝑖,𝑡 may be active at a time, but they may both be 0.  The model tracks previous 

time periods to determine whether an engine can be switched on, or is already operational and 

can be switched off by: 

𝑅𝑖,𝑡 −  𝑅𝑖,𝑡−1 − 𝑠𝑢𝑖,𝑡 + 𝑠𝑑𝑖,𝑡 = 0 , 𝑡 ≥ 2 (3-10) 

𝑠𝑢𝑖,𝑡 + 𝑠𝑑𝑖,𝑡 ≤ 1  (3-11) 
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To ensure an engine remains operational for the minimum operating time, at a given time-

period ‘t’, the model tracks the previous 𝜏𝑚𝑖𝑛 time-periods (from the current time point 𝑡 to 

𝑡 − 𝜏𝑚𝑖𝑛) to look for previous values of 𝑠𝑢𝑖 that took the value 1, and if any of them did then 

it is forced that the current operational state is ‘On’, 𝑅𝑖,𝑡 = 1, given by: 

∑ (𝑠𝑢𝑖,𝑡−𝑡𝑡)

𝜏min−1 

𝑡𝑡=1,   𝑡−𝑡𝑡>0

−  𝑅𝑖,𝑡 ≤  0  (3-12) 

If the minimum operating time has been achieved, the value of 𝑅𝑖,𝑡 is not forced, and the 

model may use Equation (3-10) to determine whether the engine may still remain operational 

or can now be switched off.  

Similarly to start-up and minimum operating time the model also forces the engine to remain 

offline by looking at previous time periods (𝑡 to 𝑡 − 𝜏𝑅) of the shut-down variable, 𝑠𝑑𝑖,𝑡, and 

preventing the start-up variable from taking the value 1: 

∑ (𝑠𝑑𝑖,𝑡−𝑡𝑡)

𝜏𝑅−1 

𝑡𝑡=1,   𝑡−𝑡𝑡>0

+  𝑠𝑢𝑖,𝑡 ≤  1  (3-13) 

 

Due to the CHP engines having two options for fuels, the introduction of four more binary 

variables are necessary, 𝑠𝑢_𝐵𝑖,𝑡, 𝑠𝑢_𝑁𝑖,𝑡, 𝑠𝑑_𝐵𝑖,𝑡 and 𝑠𝑑_𝑁𝑖,𝑡, for the dual fuel engines. These 

are effectively the same as 𝑠𝑢𝑖,𝑡 and 𝑠𝑑𝑖,𝑡 the start-up and shut-down variables, however a 

separate start-up and shut-down variable must be specified for both the Biogas flow (denoted 

by subscript ‘B’) and the Natural Gas flow (denoted by subscript ‘N’). To ensure no conflicts, 

a constraint is placed to ensure only one of the extra start-up or shut-down variables is active, 

depending on the fuel selected and whether 𝑠𝑢𝑖,𝑡 or 𝑠𝑑𝑖,𝑡 is required: 

 

𝑠𝑢𝑖,𝑡 −  𝑠𝑢_𝐵𝑖,𝑡 −  𝑠𝑢_𝑁𝑖,𝑡 = 0  (3-14) 

𝑠𝑑𝑖,𝑡 −  𝑠𝑑_𝐵𝑖,𝑡 − 𝑠𝑑_𝑁𝑖,𝑡 = 0  (3-15) 
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The introduction of another linear constraint is required to ensure that a dual fuel CHP engine 

cannot be both operational (𝑅𝑖,𝑡 = 1) and in shut-down (𝑠𝑑𝑖,𝑡 = 1), as well as to ensure linear 

consistency with the 𝑤𝐵,𝑖,𝑡 and 𝑤𝑁,𝑖,𝑡 variables when an engine is offline: 

 

𝑠𝑑𝑖,𝑡 + 𝑅𝑖,𝑡 + 𝑤𝐵,𝑖,𝑡 + 𝑤𝑁,𝑖,𝑡 = 1  (3-16) 

 

With regards to the natural gas engine, Equation (3-16) is not applicable because there is no 

𝑧𝑖,𝑡 term and only one 𝑤𝑖,𝑡 term, therefore it requires two separate constraints of its own to 

perform the same function as Equation (3-16): 

 

𝑅𝑖,𝑡 −  𝑤𝑁,𝑖,𝑡 = 0  (3-17) 

𝑠𝑑𝑖,𝑡 +  𝑅𝑖,𝑡 ≤ 0  (3-18) 

 

When an engine is switched on at a given time point ‘t’, it enters the start-up phase, where 

each gas engine is assumed to be offline for the first 15 minutes of that time-period, and then 

fully operational thereafter. In actuality, engines are typically operational within 10-20 

minutes. In the case of the current model, given the 30-minute time periods, a CHP engine in 

a start-up time-period would only generate electricity at full operation for 15 minutes. The 

model also assumes no heat is recovered in the first 15 minutes, and any gas used to start up 

the engine is ignored – the volume of gas used to ramp up to operational time is negligible 

over the course of a day, especially given the slight variation in start-up times. When 

switching off an engine, gas flows are ramped down slowly. To account for this, the model 

assumes, similar to start-up times, that during a shut-down time-period an engine is 

operational for 15 minutes then instantly offline. To account for this, 𝜇𝑠𝑢 and 𝜇𝑠𝑑 are 

introduced, adjustment constants to adjust the maximum and minimum gas flow when the 

engine enters start-up or shut-down respectively. 
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The three CHP engines can only utilise one fuel type at a time: Biogas or Natural Gas. 

Therefore, the binary variable 𝑧𝑖,𝑡 ∈ {0,1} is introduced to ensure only one of each gas type is 

used by each unit at each time point ‘t’. The total gas flows to any dual fuel CHP engine at 

time ‘t’, 𝐵𝐶𝐻𝑃,𝑖,𝑡 and 𝑁𝐶𝐻𝑃,𝑖,𝑡, is between the maximum and minimum flows subject to:  

𝐵𝐶𝐻𝑃,𝑚𝑖𝑛 ∙  𝑧𝑖,𝑡 −  𝐵𝐶𝐻𝑃,𝑚𝑖𝑛 ∙  𝑤𝐵,𝑖,𝑡 − 𝐵𝐶𝐻𝑃,𝑚𝑖𝑛 ∙ 𝜇𝑠𝑢 ∙ 𝑠𝑢_𝐵𝑖,𝑡 −  𝐵𝐶𝐻𝑃,𝑚𝑖𝑛 ∙ 𝜇𝑠𝑑

∙ 𝑠𝑑_𝐵𝑖,𝑡  ≤ 𝑩𝑪𝑯𝑷,𝒊,𝒕 

𝑩𝑪𝑯𝑷,𝒊,𝒕 ≤ 𝐵𝐶𝐻𝑃,𝑚𝑎𝑥 ∙ 𝑧𝑖,𝑡 − 𝐵𝐶𝐻𝑃,𝑚𝑎𝑥 ∙ 𝑤𝐵,𝑖,𝑡 −  𝐵𝐶𝐻𝑃,𝑚𝑎𝑥 ∙ 𝜇𝑠𝑢 ∙ 𝑠𝑢_𝐵𝑖,𝑡

−  𝐵𝐶𝐻𝑃,𝑚𝑎𝑥 ∙ 𝜇𝑠𝑑 ∙ 𝑠𝑑_𝐵𝑖,𝑡 

(3-19) 

  

𝑁𝐶𝐻𝑃,𝑚𝑖𝑛 ∙ (1 − 𝑧𝑖,𝑡) − 𝑁𝐶𝐻𝑃,𝑚𝑖𝑛 ∙  𝑤𝑁,𝑖,𝑡 −  𝑁𝐶𝐻𝑃,𝑚𝑖𝑛 ∙ 𝜇𝑠𝑢 ∙ 𝑠𝑢_𝑁𝑖,𝑡 −  𝑁𝐶𝐻𝑃,𝑚𝑖𝑛

∙ 𝜇𝑠𝑑 ∙ 𝑠_𝑑𝑁𝑖,𝑡 ≤ 𝑵𝑪𝑯𝑷,𝒊,𝒕 

𝑵𝑪𝑯𝑷,𝒊,𝒕 ≤ 𝑁𝐶𝐻𝑃,𝑚𝑎𝑥 ∙ (1 − 𝑧𝑖,𝑡) − 𝑁𝐶𝐻𝑃,𝑚𝑎𝑥 ∙ 𝜇𝑠𝑢 ∙ 𝑤𝑁,𝑖,𝑡 − 𝑁𝐶𝐻𝑃,𝑚𝑎𝑥 ∙ 𝜇𝑠𝑑

∙ 𝑠𝑢_𝑁𝑖,𝑡 −  𝑁𝐶𝐻𝑃,𝑚𝑎𝑥 ∙ 𝑠𝑑_𝑁𝑖,𝑡 

(3-20) 

 

Note that 𝑧𝑖,𝑡 is shared across Equations (3-19) and (3-20), whereas 𝑤𝐵,𝑖,𝑡 and 𝑤𝑁,𝑖,𝑡 are 

separate for each fuel. Under these conditions, for any given time, when 𝑧𝑖 takes the value of 

1 then only Biogas may flow to engine ‘i’, whereas a value of 0 denotes a Natural Gas flow. 

𝑧𝑖 is a variable determined by the model to optimise gas distribution. The binary variable 𝑧𝑖 

provides the gas selection functionality by allowing 𝑧𝑖 to alter the upper and lower constraints 

of the inequalities.  

Similarly, once the model has determined the value of 𝑧𝑖,𝑡, the corresponding value of 𝑅𝑖,𝑡 is 

determined to ascertain whether a CHP Engine should be on or off. Depending on the value 

of 𝑅𝑖,𝑡 and the value of 𝑧𝑖,𝑡, the values of 𝑤𝐵,𝑖,𝑡 and 𝑤𝑁,𝑖,𝑡 are determined.  

For example, assuming an engine was deemed to operate on biogas over a 24-hour period 

(when 𝑧𝑖 = 1) but was scheduled to be offline during part of the day then 𝑅𝑖,𝑡 = 0 and 𝑤𝐵,𝑖,𝑡 

and 𝑤𝑁,𝑖,𝑡 both equal 0. However, when the engine is switched back on (operational), 𝑅𝑖,𝑡 = 1 

and 𝑤𝐵,𝑖,𝑡 = 1 but 𝑤𝑁,𝑖,𝑡 = 0.  Figure 3-4a is a visual example of this binary variable 

interaction during start-up, shutdown, operational and offline time periods for a CHP Engine, 

where a single engine starts up and shuts down twice over a single 24-hour time period. An 

example for Natural Gas operation (when 𝑧𝑖 = 1) is also shown on Figure 3-4b. 
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Figure 3-4 Visual representation of how the binary variables 𝑅𝑖,𝑡, 𝑧𝑖,𝑡, 𝑤𝐵,𝑖,𝑡, 𝑤𝑁,𝑖,𝑡 , 𝑠𝑢_𝐵𝑖,𝑡, 𝑠𝑢_𝑁𝑖,𝑡, 𝑠𝑑_𝐵𝑖,𝑡 and 𝑠𝑑_𝑁𝑖,𝑡 interact to simulate operational behaviour of a 

CHP Engine. Two scenarios are given, for any dual fuel CHP engine over a 24-hour (48 half hourly) time-period, with two instances of the engine starting up and shutting 

down: 

a) CHP Engine operating on Biogas  

b) CHP Engine operating on Natural Gas  
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When an engine enters start-up or shutdown (𝑠𝑢𝑖,𝑡 or 𝑠𝑑𝑖,𝑡 = 1) the limits on the chosen fuel 

are adjusted (through 𝑠𝑢_𝐵𝑖,𝑡, 𝑠𝑢_𝑁𝑖,𝑡, 𝑠𝑑_𝐵𝑖,𝑡 and 𝑠𝑑_𝑁𝑖,𝑡) to reflect the limited availability 

or operational time of the engine. 

The fourth Natural Gas engine can only have one fuel type, so the binary variable 𝑧𝑖,𝑡 is not 

required and the flow to this engine is given by: 

𝑁𝐶𝐻𝑃,𝑚𝑖𝑛 ∙ 𝑤𝑁,𝑖,𝑡 −  𝑁𝐶𝐻𝑃,𝑚𝑖𝑛 ∙ 𝜇𝑠𝑢 ∙ 𝑠𝑢𝑖,𝑡 +  𝑁𝐶𝐻𝑃,𝑚𝑖𝑛 ∙ 𝜇𝑠𝑑 ∙ 𝑠𝑑𝑖,𝑡 ≤ 𝑵𝑪𝑯𝑷,𝒊,𝒕 

𝑵𝑪𝑯𝑷,𝒊,𝒕 ≤ 𝑁𝐶𝐻𝑃,𝑚𝑎𝑥 ∙ 𝑤𝑁,𝑖,𝑡 − 𝑁𝐶𝐻𝑃,𝑚𝑎𝑥 ∙ 𝜇𝑠𝑢 ∙ 𝑠𝑢𝑖,𝑡 +  𝑁𝐶𝐻𝑃,𝑚𝑎𝑥 ∙ 𝜇𝑠𝑑 ∙ 𝑠𝑑𝑖,𝑡 
(3-21) 

  

3.2.6.5 Gas Engines Constraints – Electricity Generation 

The CHP Engines burn Biogas or Natural Gas to generate electricity primarily for use on site. 

As would be expected, the power rating of the engines remains the same regardless of fuel 

type, but a higher biogas flow is required to obtain the same power output (due to the lower 

CV of Biogas compared to Natural Gas). Retrospective analysis of historical operations 

confirmed the power output of each CHP engine to be 1750 kW at maximum flow. The 

Natural Gas engine is rated higher at 2000kW, and the power output of the engines is 

assumed to be linear with the associated gas flow (Figure 3-3).  

The electrical tariff is in kWh, thus for each half hour interval the total kWh of electricity that 

could be generated by any CHP Engine on Natural Gas or Biogas is 𝐸𝐺𝐸𝑁,1−3,𝑚𝑎𝑥 =

875𝑘𝑊ℎ, and Engine 4 𝐸𝐺𝐸𝑁,4,𝑚𝑎𝑥 = 1000𝑘𝑊ℎ. The power conversion factor for Biogas 

and Natural Gas, 𝑃𝐺𝐸𝑁,𝑖,𝐵 and 𝑃𝐺𝐸𝑁,𝑖,𝑁, was determined from the maximum gas flows and 

maximum power output of each engine and used to convert gas flow in m3 to kWh.  

 

Therefore, the Electricity Generated in an engine, 𝐸𝐺𝐸𝑁,𝑖, is given by: 

𝑬𝑮𝑬𝑵,𝒊,𝒕 = 𝐵𝐶𝐻𝑃,𝑖,𝑡 ∙ 𝜌𝐺𝐸𝑁,𝑖,𝐵 + 𝑁𝐶𝐻𝑃,𝑖,𝑡 ∙ 𝜌𝐺𝐸𝑁,𝑖,𝑁 (3-22) 

  

3.2.6.6 Electricity Import and Export Constraint  

Currently when all four engines are operated at full power, the electricity generated can meet 

site parity and even overproduce at times. Any electricity generated is currently consumed on 

site by other wastewater treatment processes first before exporting any excess to the national 

grid. In this model, should an engine be operated at reduced gas flow, it is assumed that the 
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reduction in power follows a linear relationship, as given by Equation 12 and shown in Figure 

3-3.  

The Electricity Imported or Exported for each time period is given by summating the 

generated kWh from all engines and then making up the difference to meet demand with 

electricity imports, 𝐸𝐼𝑀𝑃,𝑡, or excess generation becomes exports, 𝐸𝐸𝑋𝑃,𝑡,: 

 ∑(𝐸𝐺𝐸𝑁,𝑖

4

𝑖=1

)  −  𝐸𝐸𝑋𝑃,𝑖,𝑡 +  𝐸𝐼𝑀𝑃,𝑖,𝑡 =  𝐸𝐷𝐸𝑀,𝑡 

(3-23) 

An estimate for the electricity demand, 𝐸𝐷𝐸𝑀,𝑡, is required in Equation (3-23) and is provided 

through retrospective analysis of typical total site power demands, shown in Figure 3-5. 

At no point can the site simultaneously import and export electricity, as would be the case 

with Equation 13; the model requires an additional binary constraint on the variables for 

electricity imports, 𝐸𝐼𝑀𝑃,𝑡, and exports, 𝐸𝐸𝑋𝑃,𝑡, so at least one of these variables is always 0. 

The introduction of 𝑥𝑖,𝑡 ∈ {0,1} ensures that the model only allows electricity imports or 

exports, subject to the constraints: 

 

 

These two constraints limit the model to allow only one of the terms 𝐸𝐼𝑀𝑃,𝑖,𝑡 or 𝐸𝐸𝑋𝑃,𝑖,𝑡to be 

non-zero based on the value of 𝑥𝑖,𝑡. When 𝑥𝑖,𝑡 takes the value 1, Equation (3-25) forces the 

model to have no electrical imports (𝐸𝐼𝑀𝑃,𝑡 = 0) and Equation (3-24) would limit the value of 

electrical exports to be the difference between maximum generation possible and site 

demand. Conversely 𝑥𝑖,𝑡 = 0 ensures Equation (3-24) forces the model to have no electrical 

exports (𝐸𝐸𝑋𝑃,𝑡 = 0) and limits the maximum electrical import to be that of total site demand. 

The value of 𝑥𝑖,𝑡 is forced based on Equation (3-23), where the electrical generation of the 

engines determines whether electrical imports or exports are required to validate the 

expression. 

 

𝑬𝑬𝑿𝑷,𝒊,𝒕 ≤ 𝑥𝑖,𝑡 (∑(𝐸𝐺𝐸𝑁,𝑚𝑎𝑥) − 𝐸𝐷𝐸𝑀,𝑡 

4

𝑖=1

) (3-24) 

𝑬𝑰𝑴𝑷,𝒊,𝒕 ≤ (1 − 𝑥𝑖,𝑡) ∙ 𝐸𝐷𝐸𝑀,𝑡 (3-25) 
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Figure 3-5 - Average Power Demand of the Howdon treatment site. The power demand is for the entire site, not just the 

AAD plant, and thus is seen to follow the typical diurnal flow pattern asociated with wastewater treatment sites, as expected. 

 

3.2.6.7  Steam Boilers constraints 

The steam boilers can also only have one fuel source at a time. Similarly to the CHP 

inequalities in the “Gas Engines Constraints – Gas Flows” section above, the steam boiler 

parameters make use of a binary variable, 𝑧𝑗 ∈ {0,1} to determine the fuel type, however as 

steam boilers must always be operational to provide steam there is no 𝑤𝑖,𝑗 term: 

 

𝐵𝑆,𝑚𝑖𝑛 ∙  𝑧𝑗,𝑡  ≤ 𝑩𝑺,𝒋,𝒕 ≤ 𝐵𝑆,𝑚𝑎𝑥 ∙ 𝑧𝑗,𝑡 (3-26) 

𝑁𝑆,𝑚𝑖𝑛 ∙ (1 − 𝑧𝑗,𝑡) ≤ 𝑵𝑺,𝒋,𝒕 ≤ 𝑁𝑆,𝑚𝑎𝑥 ∙ (1 − 𝑧𝑗,𝑡) (3-27) 

 

Unlike the CHP Engines, there is no 𝑤𝑖,1 or 𝑤𝑖,2 term as the Steam Boilers should always be 

in operation to allow for enough steam to be generated as part of the sludge treatment 

process.  
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There are additional constraints for the steam boilers that differ from the CHP engines. 

Unlike the CHP engines, the steam boilers must always be producing enough steam to satisfy 

site process requirements and therefore may not all have high gas flow or low gas flow at the 

same time. The three boilers operate in tandem the CHP engines such that the heat recovered 

from CHP is used with the boilers to provide steam on site. After retrospective analysis of 

historic data, for a typical day the total energy required for steam generation on site is 𝐻 𝑅𝑒𝑞 =

70 𝑀𝑊ℎ.  

The steam boilers operate at 90% efficiency to obtain useful heat from a fuel source, with a 

further 10% of said useful heat used during the blowdown process, resulting in an 81% 

efficiency, 𝜀𝑆 = 0.81, in raw fuel energy to useful steam heat. The CHP engines recover 10% 

of the raw energy input from fuel as useful heat in the boilers, 𝜀𝐶𝐻𝑃 = 0.1. 

The useful heat recovered from CHP (𝐻𝐶𝐻𝑃,𝑖,𝑡) or generated by steam boilers (𝐻𝑆,𝑖,𝑡) is given 

by: 

𝑯𝑪𝑯𝑷,𝒊,𝒕 = (𝐵𝐶𝐻𝑃,𝑗,𝑡 ∙ 𝐶𝑉𝐵 + 𝑁𝐶𝐻𝑃,𝑖,𝑡 ∙ 𝐶𝑉𝑁) ∙  𝜀𝐶𝐻𝑃 (3-28) 

𝑯𝑺,𝒊,𝒕 = (𝐵𝑆,𝑗,𝑡 ∙ 𝐶𝑉𝐵 + 𝑁𝑆,𝑖,𝑡 ∙ 𝐶𝑉𝑁) ∙ 𝜀𝑆 (3-29) 

where 𝐶𝑉𝐵 and 𝐶𝑉𝑁is the calorific value of biogas and natural gas respectively, converting 

gas flows into MWh.  

To ensure enough heat is produced for steam generation, the total sources of heat on site must 

match or be greater than the minimum required energy demand, 𝐻𝑅𝑒𝑞: 

𝑯𝑹𝒆𝒒  ≤  ∑{𝐻𝐶𝐻𝑃,𝑖,𝑡}

3

𝑖=1

+  ∑{𝐻𝑆,𝑗,𝑡}

3

𝑗=1

  (3-30) 

Retrospective analysis of the different fuel flows to the boilers also revealed no 

distinguishable difference in processed volume of Biogas or Natural Gas flows, hence each 

gas type has equal weighting in this constraint. 

 

3.2.6.8 Gas to Grid injection (Biogas Upgrade Plant) constraint 

The BUP takes the raw Biogas and enriches it such that the resulting biomethane can be 

injected into the gas distribution network as a renewable energy source. As there is only one 

fuel source, the constraints of sending Biogas to the BUP are: 



Chapter 3 - Energy and Carbon Model 

 

55 

 

𝐵𝐼,𝑚𝑖𝑛 ≤ 𝐵𝐼,𝑡 ≤ 𝐵𝐼,𝑚𝑎𝑥 (3-31) 

In an ideal setting there would be no limit to the volume of biomethane that can be injected 

into the gas distribution network. However, the total volume that can be injected is subject to 

local demand and gas network pressures; if too much biomethane is injected too quickly the 

pressure in the grid could rise too high for continued injection, whereby the distribution gas 

network operator may shut off grid injection from the site; this is known as going into a 

‘reject’ state. Operators have discovered that maximum daily volume of Biogas that can be 

processed through the BUP is currently around 40,000 Nm3, which was validated through 

retrospective analysis of BUP processing volumes, grid injection volumes and ‘reject’ state 

instances.  

 

3.2.6.9 Flare Stack constraint 

Due to the volumes of biomethane produced on site and the safety considerations from site 

design, there is considered to be no upper limit for the total volume of Biogas the flare stack 

can take: 

0 ≤ 𝐵𝑓,𝑡 (3-32) 

  

3.2.6.10 Preventing CHP Fuel Switching 

There is the additional daily constraint that the fuel used in each CHP Engine must remain the 

same throughout the entire day. It is not currently possible to automate the switching of fuels. 

Therefore, as the model is broken up into 48 optimisation periods, the binary variable 𝑧𝑖,𝑡 

(used by the model to determine the fuel for engine ‘i’) must be the same at each time ‘t’; the 

binary variable 𝑦𝑖 is used for each of the 48 time points to accommodate this. 

𝑧𝑖,𝑡 + 𝑦𝑖 = 1, ∀, 𝑡 = 𝑡1, … . , 𝑡48 (3-33) 

With the addition of 𝑦𝑖, whether the model determines a CHP fuel of Biogas (𝑧𝑖,𝑡 = 1) or 

Natural Gas (𝑧𝑖,𝑡 = 0), the chosen value of 𝑧𝑖,𝑡 will remain the same for each time point. For 

example, if the model decided that CHP Engine 1 should operate on Biogas, i.e. 𝑧1,𝑡1
= 1, 

this would force 𝑦 = 0 to satisfy Equation (3-33), which in turn would force 𝑧1,𝑡2
= 1 to also 

satisfy Equation (3-33). 
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3.2.7 Constraints Matrix and Solver 

The optimiser model was developed using MATLAB using function intlinprog, which is a 

MILP algorithm in the Optimisation Toolbox package. Further information on intlinprog can 

be found in Section 2.3.3. The optimal gas flows and binary variable values are obtained 

through minimisation of the cost function to give optimal gas distribution on an economic 

basis, whilst maintaining site operability.  

The electrical import tariff changes every half hour, thus for a daily optimisation (24 hour 

horizon) the model requires breaking down into 48 ‘mini-optimisations’ that are still linked 

into a single optimisation step. Each 48 half hourly optimisation consists of 2355 variables of 

which 1491 are integers, 1972 inequalities and 768 equalities. 

 

3.3 Results/Discussion 

For a given daily volume of Biogas produced on site, the optimiser provides the operator with 

a visual operation strategy for the optimised minimum cost; Figure 2-6 shows the results to 

maximise cost reductions for a daily Biogas production of 38,000Nm3 (a typical approximate 

average production level for the site).  The gas flow rates have been normalised, showing the 

percentage daily utilisation of each unit based on total daily maximum flow that could be 

processed. In this scenario 𝑲𝑰𝑴𝑷 = 0. The total daily revenue is shown both with and without 

consideration of the Carbon performance commitment. This is because the performance 

commitment will be applied after a two-year delay, hence the immediate revenue the site will 

see may not be the most optimal.  

For a daily Biogas production of 38,000 Nm3, the site should be operated according to the 

strategy in Figure 2-6 for optimal cost efficiency: to enrich all biogas and inject all 

biomethane into the gas distribution network, use Natural Gas in the CHP engines at reduced 

load to generate electricity on site and use Natural Gas in the steam boilers to create steam as 

required. For a given daily volume of Biogas, the optimiser provides a fast and reliable result 

in a matter of seconds.  
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 Figure 3-6 – Example Optimised Gas Distribution for daily total Biogas production of 38,000Nm3, 𝑲𝑰𝑴𝑷 = 0.  

Left: Optimised Daily Gas Flow Volumes, Right: Normalised Optimised Daily Utilisation of Each Unit 

[Inc = Including, Ex = Excluding.] 

 

 

Figure 3-7 - Gas Flow to CHP Engines 1-4 (a, b, c, d) every half hour over the 24 hour operational horizon. 

[𝑲𝑰𝑴𝑷 = 0,  𝑩𝑻𝑶𝑻𝑨𝑳 = 38,000 𝑁𝑚3] 
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At first glance, it would appear the model has inaccuracies as the optimiser advises the use of 

CHP Engines at lower utilisation than actual operation would allow. However, the graph in 

Figure 2-6 shows the total daily utilisation, not the utilisation throughout the day. To better 

understand the advised operational behaviour, the gas flows to the CHP Engines are shown 

on Figure 3-7, where Figure 3-8 shows the total electricity Imported and Generated. 

When the electricity import carbon parameter, 𝑲𝑰𝑴𝑷, is set to 0 it is more cost effective to 

have the engines offline and import all electricity required from the electricity distribution 

network, except when the electricity tariff becomes high at 7-10am and 4.30-7.30pm. During 

7-10am, electricity prices are high enough to be more cost effective to switch on two CHP 

engines, however (based on the site demand) it is not worth it to switch all engines on. 

During the 4.30-7.30pm peak it is more cost effective to switch all engines on to meet site 

parity rather than import electricity.  

 

 

Figure 3-8 - Total Electricity generated or imported every half hour over a 24 hour operational horizon. Electrical Import 

Tariff is also shown for convenience. 

[𝑲𝑰𝑴𝑷 = 0,  𝑩𝑻𝑶𝑻𝑨𝑳 = 38,000 𝑁𝑚3] 
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As can be seen from Figure 2-6, the immediate revenue the site will see (excluding Carbon, 

£6742) is lower than the actual revenue once Carbon is included (£9355). It is important to 

note the site revenue both including and excluding Carbon costs as the carbon costs will be 

applied with a two-year delay, therefore there will be an immediate site revenue and delayed 

site revenue. As the injection of Biomethane has a negative cost (Table 3-2), this operational 

strategy creates an overall negative number of Carbon Credits generated (Figure 3-9), which 

also demonstrated by the increase in revenue when considering carbon (Figure 2-6).  

Whilst the cost of the Carbon Credits, 𝐶𝐶𝑂2
, will remain constant over the coming years, 

NWL has the operational decision about their source of electricity for the Howdon site, which 

will impact 𝑲𝑰𝑴𝑷. Figure 2-6 through Figure 3-9 show the optimal operational schedule for a 

typical daily biogas production when 𝑲𝑰𝑴𝑷 = 0 (renewable electricity imported only). 

However, should the decision be made such that electricity imports continue to be from non-

renewable sources, the value of 𝑲𝑰𝑴𝑷 = 0.31 and the optimal operational schedule (for the 

same daily biogas production volume of 38,000 Nm3) changes, as does the optimal revenue 

achievable.  

 

Figure 3-9 - Carbon Credits generated each half hour over the optimised 24 hour operational horizon.  

[𝑫𝑰𝑴𝑷 = 0,  𝑩𝑻𝑶𝑻𝑨𝑳 = 38,000 𝑁𝑚3] 

 

Figure 3-10 shows that, with 𝑲𝑰𝑴𝑷 = 0.31 and no other factors changed, the total revenue 

achievable for 𝑩𝑻𝑶𝑻𝑨𝑳 = 38,000 𝑁𝑚3 including carbon costs is over £1000 per day lower 

than with 𝑲𝑰𝑴𝑷 = 0, however the revenue excluding carbon is higher. This means that, in the 
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short term, the site would see an initial revenue of around £12,000 per day, but in two years’ 

time would receive a £4000 financial penalty as a result of the carbon performance 

commitment. 

 

Figure 3-10 - Example Normalised Optimised Gas Distribution for daily total Biogas production of 38,000Nm3, 𝑲𝑰𝑴𝑷 =
0.31. 

[Inc = Including, Ex = Excluding.] 

 

The optimal operational schedule when 𝑲𝑰𝑴𝑷 = 0.31 is to almost generate electricity entirely 

on site by using Natural Gas in the CHP Engines, shown in Figure 3-11. Interestingly, the 

optimal strategy proposed when 𝑲𝑰𝑴𝑷 = 0.31 is almost identical the current operational 

strategy for the site. Currently, the operational strategy is to generate electricity on Natural 

Gas all day to meet site parity [Figure 3-13] and inject as much biogas produced into the gas 

distribution network. The current strategy would also see almost identical revenues on site 

[Figure 3-14], which are within the 10% error margin, thus implying that altering the current 

strategy would make negligible difference to site revenues. It should be noted that, as the 

current strategy does not rely on any electricity imports, the revenues shown in Figure 3-14 

are identical for 𝑲𝑰𝑴𝑷 = 0.31 𝑜𝑟 0. 
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Figure 3-11 - Gas Flow to CHP Engines every half hour over the 24 hour operational horizon.  

[𝑫𝑰𝑴𝑷 = 0.31,  𝑩𝑻𝑶𝑻𝑨𝑳 = 38,000 𝑁𝑚3] 

 

 

Figure 3-12 - Total Electricity generated or imported every half hour over a 24 hour operational horizon. Electrical Import 

Tariff is also shown for convenience. 

[𝑫𝑰𝑴𝑷 = 0.31,  𝑩𝑻𝑶𝑻𝑨𝑳 = 38,000 𝑁𝑚3] 



Chapter 3 - Energy and Carbon Model 

 

62 

 

It is therefore evident that the main factor in the deciding the site operational strategy will be 

the decision regarding 𝑲𝑰𝑴𝑷. A value of 𝑲𝑰𝑴𝑷 = 0.31 would suggest that the current 

operational strategy could remain employed without significant impact, given that electricity 

and gas prices remain similar to that of the current model. However, should 𝑲𝑰𝑴𝑷 = 0 

operators could adjust the operational strategy and see revenues increase in the future; the 

immediate site revenue seen (excluding carbon) would drop almost 50% from ~£12,000/day 

to ~£7,000/day (comparing Figure 2-6 and Figure 3-14), however the total revenue in 

including carbon could increase by over 10% (from ~£8,000/day to ~£9,000/day, again 

comparing Figure 2-6 and Figure 3-14).  

With both scenarios, operators would need to also consider any increased revenues with the 

potential of maintenance or wear and tear on equipment as a result of being switched on and 

off throughout the day, as well as any environmental obligations and benefits.  

 

 

Figure 3-13 – Electricity generated and imported under the current operational strategy, for an example biogas production 

of 38,000 Nm3. Here there are no electricity imports 
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Figure 3-14 - Normalised daily utilisation of units under the current operational strategy (aiming for complete electricity 

generation to meet site demand), based on a daily biogas production of 38,000 Nm3 

 

3.3.1 Biomethane Injection 

It is worth noting that for the two scenarios tested on electricity imports (𝑲𝑰𝑴𝑷 = 0 𝑜𝑟 0.31), 

the model suggests that all biogas produced should be upgraded and injected into the national 

gas grid. This is to be expected, as the high revenues from biomethane injection and the 

‘negative’ carbon emissions associated with the carbon performance criteria are the most 

beneficial (and the only source) in generating significant site revenues. One could argue that 

the model should be simplified such that biomethane injection is always maxed out first. 

Whilst this would simplify the model, there may be occasions where operators are not able to 

inject the full (or any) biomethane, and as such keeping the model in this form allows 

operators to investigate these scenarios.  
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Figure 3-15 - Example Normalised Optimised Gas Distribution for daily total Biogas production of 38,000Nm3, 𝑲𝑰𝑴𝑷 = 0, 

but the Biomethane Upgrade Plant may only operate half capacity (max throughput of 20,000 Nm3). 

[Inc = Including, Ex = Excluding.] 

 

As a hypothetical scenario, the same parameters as shown in Figure 2-6 are used but only 

allowing the Biomethane Upgrade Plant to operate at half capacity, with the results of 

optimisation shown in Figure 3-15. Under this scenario, the site would see a significant 

reduction in revenue, however operators are able to understand how much biomethane they 

should and could process elsewhere on site, such as in the steam boilers (Figure 3-15) or CHP 

engines (Figure 3-16). It is therefore important to keep all parameters in the model, so 

operators may test and validate future operational scenarios.  
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Figure 3-16 - Gas Flow to CHP Engines 1-4 (a, b, c, d) every half hour over the 24 hour operational horizon, biogas 

production of 38,000Nm3, 𝑲𝑰𝑴𝑷 = 0, but the Biomethane Upgrade Plant may only operate half capacity (max throughput of 

20,000 Nm3). 

 

3.3.2 Model Tolerance / Error 

Each piece of equipment on site has a typical maximum daily processing limit. However, the 

maximum limit does vary slightly from day to day. For example, whilst the CHP Engines 

may be rated to process a maximum daily biogas flow of 16,000 Nm3, the actual recorded 

processed volume of gas will vary slightly. This variance may be due to a several of reasons, 

such as: instrumentation errors, variances in temperature or in gas compositions. Based on 

RO, when operating a unit at maximum capacity the recorded processed value does not 

deviate more than ±10% of the limit stated in Table 3-1. Therefore, the gas flows and optimal 

revenues stated in this model are all subject to a ±10% error.  

 

3.4 Graphical User Interface for operators 

To ensure the model developed throughout this chapter reflects actual plant behaviour and 

can provide meaningful and feasible solutions (such as making sure the engines are not 
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switched on then off every half hour), it was imperative that site operators and managers be a 

part of the development process to provide feedback. 

However, to achieve this the model must be presented in such a way that it is useable for 

operators to test. The Energy Management model was built into a GUI (Graphical User 

Interface) within the MATLAB app creation tool - when first loading the GUI the user is 

presented with the screen shown by Figure 3-17, which provides operators with an overview 

of the day ahead optimisation once one is performed.  

 

 

Figure 3-17 - Energy Management Model GUI homepage, where operators can see an overview of optimisation results once 

an optimisation is performed 

 

However, operators may wish to investigate scenarios on site whereby the site is not 

operating based on typical operation (default parameters), for example if a CHP Engine is 

expected to be offline due to scheduled maintenance. The GUI allows operators to alter the 

process or cost parameters of the model on the appropriate page, such as the CHP Engine, 

Boiler and BUP parameters screen shown on Figure 3-18. Additionally, the GUI has separate 

screens for each process unit on site such that individual unit operations can be investigated, 

such as the CHP Engines shown on Figure 3-19. 
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Figure 3-18 - Energy Management model GUI parameter selection and editing page 

 

Whilst developing a GUI within the MATLAB app designer might not provide a long-term 

solution for implementation on site (due to licencing restrictions, for example), operators are 

able to easily investigate scenarios themselves and provide feedback on any extra features the 

model required to be more useful. One such example during development was the need to 

allow the CHP engines to be switched on and off during the day, but to incorporate a 

minimum operating time once switched on.  

The GUI also highlights the importance of the new carbon legislation, whereby operators are 

shown the impacts it has on operations and are also shown the changes needed to operational 

strategy to both ensure the site maintains acceptable revenues and meets the carbon neutrality 

pledge. Operators are also able to validate their operational strategies themselves.  

 



Chapter 3 - Energy and Carbon Model 

 

68 

 

 

Figure 3-19 - Energy Management model GUI CHP Engine operational schedule screen 

 

3.5 Limitations of Model 

The proposed model in this chapter provides operators with a visual optimal operational 

schedule for a day-ahead electricity tariff. However, this is on the assumption that a day-

ahead prediction of Biogas production is available. Currently, operators roughly estimate 

biogas prediction based on estimated sludge processing levels. As an improvement to this 

model, as previously mentioned in Chapter 2.3.6, investigations and development of a 

prediction model for Biogas production that could be fed into the optimisation is performed 

later in Chapter 5.  

 

3.6 Conclusions 

This chapter proposes a MILP Energy Management model for Optimisation of Gas 

Distribution and Electricity Imports/Generation of an AAD Plant with multiple options 

available for Biogas use on site whilst considering the environmental impacts regarding the 

new Carbon Emissions pledge. The optimisation model takes a single input of Daily Biogas 

volume produced, in m3, by the Anaerobic Digesters to provide operators with an optimal 
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daily operational strategy; the strategy is provided to the operators in visual form for each 

day, though weekly strategies are also possible if required. 

The revenues achievable under the current operational strategy are within tolerance to those 

with the advised optimised strategy under the condition 𝑲𝑰𝑴𝑷 = 0.31, leading to the 

suggestion that keeping the current operational strategy in place would still be advisable if the 

business decides to not source renewable electricity. However, under the condition 𝑲𝑰𝑴𝑷 =

0, a change in operational strategy from the current strategy could yield an increase in site 

revenue of over £1000/day (12%).  

Ultimately, based on initial investigations, the optimal operational strategy is mostly driven 

by the electricity imports and whether they are subject to the carbon performance emissions 

agreement; this is a decision for NWL energy managers based on the source of their 

electricity. However, any decision that might suggest the site should deviate from the 

currently operational strategy must also consider the potential increase in maintenance and 

costs from any new operational strategies.  

In addition, operators and managers can use the developed model and tool to validate their 

operating strategies and test future scenarios, which will in turn ensure the plant is operated 

more effectively more often. The tool can also be used to aid in achieving the Carbon 

Neutrality pledge by monitoring and advising on expected carbon emissions based on 

operational strategies.  

In the next Chapter, the Energy model developed here is used to perform a more in-depth 

analysis of the effect of changes to certain parameters (electricity prices, natural gas prices, 

biogas production volumes and BUP processing capabilities) will have on site revenues and 

operating strategies. 
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Chapter 4 Scenario and Sensitivity Analysis using the Energy 

Management Model 

This chapter uses the model outlined in Chapter 3 to investigate how changes to energy 

prices, biomethane production and biogas processing limits effects the site revenues 

achievable and the operational strategies required. The optimum operating strategy for the 

CHP engines is also presented, which indicates that the biogas produced should be sent to the 

BUP for grid injection as much as possible. 

 

4.1 Introduction 

The electricity supply industry within the UK has undergone multiple reforms since the late 

80’s that have transformed the way energy is priced and traded within the energy market [58]. 

Similarly, the UK natural gas market has undergone dramatic changes over the past 30 years, 

starting with the 1982 Oil and Gas Act [59]. Both markets have seen an increase in the 

number of companies participating in the trading and sale of energy, including strategic 

entities such as investment banks, resulting in increased exposure to price volatility [54].  

With many market players and constant changing prices, understanding the impact of energy 

prices on site operations is likely to become more prevalent in the coming years. Models have 

been developed that indicate that aiming for net zero carbon emissions, and investing in 

alternative energy sources, can cause volatile responses in oil prices [60], or that general 

energy price changes could be affected by carbon emissions targets [61]. It is understood that 

there is a relationship between the market price for electricity and gas prices. Natural gas and 

greenhouse gas allowance prices have an increasing effect on electricity prices, whereas 

renewable sources (such as solar and wind) have a decreasing effect on electricity prices [62], 

with energy prices much more sensitive to changes in gas prices when demand is high [63].   

In recent times, the world has been challenged with the impact of the global pandemic. 

Countries responses to the pandemic, such as nationwide lockdowns, have seen nationwide 

energy demand fall to unprecedented levels historically across multiple countries, including 

the UK [64], which has also seen the markets fluctuate abnormally, with no historic 

reference.  

As demonstrated in Chapter 3, the optimal operational strategy for the AAD plant is complex 

to identify without the aid of modelling and optimisation tools, especially with the 
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introduction of the new Carbon Emissions performance criteria that can have significant 

impacts on the optimal operational strategy.  

In the previous chapter, a brief investigation was performed into site operations, using fixed 

energy tariffs and fixed biogas production levels. One of the main drivers that affects plant 

performance is the decision around the source of electricity imports on site and how they 

affect the carbon emissions performance criteria, 𝑲𝑰𝑴𝑷, as discussed in Chapter 3.3. 

However, it is understood that NWL is to move towards using renewable electricity on site 

(i.e., 𝑲𝑰𝑴𝑷 = 𝟎), to aid in meeting their carbon neutrality pledge. Additionally, the results 

shown in Chapter 3 assume a constant daily production of biogas (a typical site average of 

38,000 Nm3), which is not always the case for the site historically. Therefore, a more detailed 

analysis into site operability can be performed to understand the effects of energy prices and 

biogas production has on site operations and revenues.  

In Chapters 2 and 4, it has been shown that MILP has a wide variety of applications and has 

been used extensively to model process operations. Such models have also been used to aid in 

the analysis and understanding of how specific process or cost variables can affect operations 

and revenues. In their paper, Zhang et al. design a MILP model to optimise the scheduling of 

a fuel gas system at a refinery. They use their model to investigate how changes to various 

process streams affects plant performance, optimisation results and therefore revenues, with 

results indicating one unit (the compressor) is the process bottleneck [65]. In this chapter, the 

aim is to perform a similar investigation on key process variables and the cost of energy for 

the Howdon AAD plant, to determine how the site could and should be operated under 

different criteria. The Energy Model developed in Chapter 3 was used to better understand 

plant management strategies by performing a sensitivity analysis on the highest impact 

variable external factors: biogas production, electricity tariffs, natural gas prices and 

biomethane injection throughput (BUP limits).  

The remainder of this chapter is structured as follows: in the methods section, the various 

scenarios to be tested in the model are noted regarding electricity prices, natural gas prices, 

biogas production volumes and BUP processing volumes. Next, the results of varying both 

energy prices are displayed under two scenarios: with varying biogas production levels and 

varying BUP processing limits (with all other variables constant under both scenarios). 

Finally, the limitations and conclusions of the analysis are presented, with an introduction to 

the next phase of work in Chapter 5.  
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4.2 Methods 

The effect of varying four key parameters was investigated as part of this chapter: the 

electricity tariff (import and export), natural gas price, biogas production volume and BUP 

processing limits.  

Initially, varying energy prices were investigated whilst keeping the biogas production and 

BUP limits constant to determine how much these impact site revenues assuming typical 

production levels. This sensitivity analysis is then built upon with two further investigations: 

varying the Biogas production level (BUP limits constant) and then varying the BUP limits 

(biogas production constant). In each of the two further investigations, the varying energy 

tariffs outlined in Section 4.2.1 were used.  

In addition, all revenue values shown here (as a result of testing each scenario in the model) 

are inclusive of the two-year delayed carbon tax. As previously mentioned in Chapter 3, the 

carbon performance criteria tax is payable for NWL after two years, so the immediate site 

revenue will be different to what is shown here, but it is important to include carbon in the 

revenue for future operations and analysis.  

 

4.2.1 Varying energy prices only 

The main parameters that NWL are unable to influence is the energy prices for electricity and 

natural gas. Therefore, the first investigation was to determine the impact these factors have 

on typical gas processing volumes. For this analysis, there were 17 different electricity tariffs 

and 12 different natural gas prices explored – an explanation as to what these are and how 

these are determined are explained in sections 4.2.1.1 and 4.2.1.2 below. These tariffs were 

input to the Energy Model, with a constant biogas production of 38,000 Nm3 and constant 

BUP limits of 40,000 Nm3, such that a direct comparison with the results from Chapter 3 

could be drawn. This resulted in 204 simulations based on changing energy prices only.  

 

4.2.1.1 Electricity Tariff 

The electricity tariff shown in Figure 3-2 was used as a basis for the varying electrical tariff. 

The electrical import and export cost shown was varied between -3p/kWh and +5p/kWh, in 

steps of 0.5 p/kWh. Using the previous electrical tariff as a reference ensured the overall half 

hourly trend (shape) and the price difference between import and export remained consistent. 
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The main tariff and the upper and lower bounds used are shown in Figure 4-1 with the 17 

tariffs used all within the shaded area. Additionally, the tariff was varied by -3p/kWh to 

ensure that at no point the electricity export tariff went negative, and was varied by up to 

+5p/kWh such that the highest peak of the tariff was comparable to historic prices the site has 

seen, as previously demonstrated on the example tariff shown on the centrifuge example in 

Chapter 2 (Figures 2-3 and 2-4). 

 

Figure 4-1 Electricity Import Tariff used for sensitivity analysis. Dashed lines show upper and lower tariffs, solid line shows 

the electrical import tariff from Chapter 3. All tariffs used follow the same shape and are within the shaded area. 

 

4.2.1.2 Natural Gas Tariff 

Typically in the UK, the price of gas has historically fluctuated between 20 p/therm and 80 

p/therm [66]. However, the last time the price of gas went above 75p/therm was in 2013, with 

the most recent spike of 73p/therm in 2018. Therefore, the price of natural gas in this study 

was varied between 20-75 p/therm, in steps of 5p, resulting in the 12 different energy prices 

to be run. Per optimisation, the price of natural gas remains constant throughout the day. 
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4.2.2 Varying Biogas production 

Based on historical site data, the AAD plant at Howdon has produced between 10,000 and 

60,000 Nm3 of raw biogas per day from the three anaerobic digesters. However, as shown in 

Figure 4-2 most of the time the digesters produce between 30,000 and 45,000 Nm3 of biogas 

per day. It is for this reason that the volume of biogas produced that is passed to the model 

was ranged from 30,000 to 45,000 Nm3, in steps of 500 Nm3, resulting in 31 different 

production levels. This combined with the two varying energy tariffs resulted in a total of 

6,324 simulations to be passed to the model. During this analysis, the limits on the BUP were 

kept constant, at the typically expected value of 40,000 Nm3. 

 

Figure 4-2 - Boxplot of annual historical daily biogas production volume from all three anaerobic digesters (Apr 2017 - Apr 

2018). 

 

4.2.3 Varying BUP limits 

In Chapter 3.3.1 a brief investigation on how the processing limits of the BUP affect site 

revenue the most was performed. Currently, the BUP grid injection point is tightly controlled 

by the gas quality being injected and the local gas network, which is outside of NWL’s 

control – should the pressure in the grid become too high then NWL may no longer be able to 

inject biomethane, hence the daily limit of injection. Should this daily limit be reduced in 
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future, due to reduced gas demand or other external factors, operators would wish to know 

how this may affect site operations and revenues.  

In general, it is accepted (on site) that the processing limit of the BUP is around 40,000 Nm3 

of raw biogas per day, however this does fluctuate slightly and is not always guaranteed. As 

this unit is key to overall site revenue streams, it was decided to investigate the limits of this 

particular unit and how changing the energy tariffs might affect site revenues depending on 

the availability of the BUP.  

The maximum processing limit of the BUP was varied between 0 and 40,000 Nm3 raw biogas 

per day in steps of 5000 Nm3, resulting in 9 different processing levels (scenarios). This 

combined with the two varying energy tariffs resulted in a total of 1,836 simulations to be 

passed to the model. During this analysis, the daily biogas production level was kept constant 

at the typical value of 38,000 Nm3.   

Due to the system of linear equations set up within the model, MATLAB is always able to 

find a solution to the MILP problem. However, when the volume of biogas produced exceeds 

the volume that can be processed by the BUP, occasionally the solver finds multiple solutions 

and can take a while to converge on a single optimum. It is for this reason that a limit of up to 

5 minutes per optimisation was employed for the analysis with the BUP limits (Section 

4.2.3), although no single optimisation took the full 5 minutes to converge.  

 

4.3 Results and Discussion 

The results shown by varying the energy prices (section 4.3.1) took around an hour to 

achieve, with the 204 optimisations of the model using different energy prices. These 204 

scenarios were then used with varying biogas production levels (section 4.3.2) where the 

6,342 scenarios took ~18 hours to complete. The 204 energy scenarios were also used with 

varying BUP limits (section 4.3.3) where there were 1,836 scenarios in total to optimise, 

which took ~12 hours to complete. As stated in section 3.2.7, each daily scenario (48 half 

hourly) optimisation consists of 2355 variables of which 1491 are integers, 1972 inequalities 

and 768 equalities.  

When plotting the results of the analysis, the trend of each varied electricity tariff remained 

the same, thus the daily average electricity price was calculated for each scenario and used 

for plotting.   
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4.3.1 Varying energy prices only 

First, using the same model parameters outlined in Chapter 3 the electricity tariff was 

adjusted only, to determine the effect on revenues. The results of this analysis are shown in 

Figure 4-3.  

As would be expected, as the price of electricity rises the overall site revenues would fall. 

However, once the average price reaches around 12 p/kWh the optimum achievable revenue 

stabilises. This is due to the price of natural gas which, at this point, becomes cheap enough 

to be useful to run in the CHP engines, either for all or part of the day. One must remember 

that the CHP engines have a minimum operating time once switched on, therefore the price of 

electricity must become expensive enough compared to that of natural gas to ensure a switch-

on is cost effective.  

 

 

Figure 4-3 – Optimal Daily Revenues acheivabnle using model parameters from Chapter 3, but the electricity tariff was 

altered. Gas prices remains fixed at 65 p/therm, daily biogas production at 38,000 Nm3.  

 

Similarly, the price of natural gas was investigated by keeping the electricity tariff constant 

(the same as in Chapter 3.2.2, Figure 3-2) and changing the price of gas only. Unlike the 

electricity tariff, rising gas prices always results in a lower optimum achievable revenue. This 



Chapter 4 - Scenario and Sensitivity Analysis using the Energy Management Model 

 

77 

 

is because natural gas is likely to be always required on site when the BUP is fully 

operational – energy is required on site in the form of steam, and due to the high revenues 

from the RHI scheme the raw biogas will almost always be used for grid injection before use 

in the boilers. In addition, it has already been demonstrated (Figure 3-6) when the gas price is 

65 p/therm, based on the tariff in Figure 3-2, the CHP Engines should operate on natural gas 

during peak electricity price periods – thus it stands to reason that, when keeping this tariff 

the same, reducing the natural gas price would see an increase in potential revenue. 

 

Figure 4-4 - Optimal Revenues achievable using model parameters from Chapter 3, but the natural gas price was altered. 

Electricity prices remained fixed as shown in Fig.3-2, daily biogas production at 38,000 Nm3 

 

While Figure 4-3 and Figure 4-4 show interesting results, it is also true that the price of 

electricity and the price of natural gas could both change and affect revenues – the limited 

data shown does not give a full enough picture on how natural gas prices and electricity 

prices affect site revenues and operations.  

Figure 4-5 demonstrates the impact changing both energy prices has on site revenues, 

assuming a constant typical biogas production of 38,000 Nm3. As the price of natural gas 

decreases the impact electricity prices has on suite revenues becomes less and less, shown by 

the flattening of the plane along the electricity price axis. In addition, as the price of 



Chapter 4 - Scenario and Sensitivity Analysis using the Energy Management Model 

 

78 

 

electricity increases above a daily average of roughly 12 p/kWh the daily site revenue is 

primarily dictated by the price of natural gas, shown by the straight plane when electricity 

price is greater than 12 p/kWh.   

 

 

Figure 4-5 - Sensitivity Analysis of optimal daily site revenue by varying both Natural Gas and Electricity prices, assuming 

a constant biogas production of 38,000 Nm3 and a constant BUP limit of 40,000Nm3.  

Note: the colour of the plane shown matches the biogas production colour scale shown on Figure 4-7 for consistency and 

comparison.  

 

Under a worst-case scenario when natural gas and electricity prices are both highest, the site 

is still able to maintain a net positive revenue above £7000 per day, assuming that all biogas 

can be upgraded and injected into the national grid and the volume of biogas is around 38,000 

Nm3. When electricity is most expensive, for every 15p/therm the price of natural gas 

increases by, the optimum revenue the site can achieve reduces by ~£2,000 /day. When 

natural gas is most expensive, as the average price of electricity becomes less than 12p/kWh, 

for every 1p/kWh is lowers the optimum revenue increases by ~£1,100 per day.  

Understandably, while site revenues are of interest to managers, operators will be more 

concerned with the actual operational strategy of the site – namely, how the CHP engines 
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should be operated. The simulation results have been re-plotted on Figure 4-6, however the 

electricity generation of the CHP engines is shown instead of site revenues, and the colour of 

each simulation result shows which fuel type is used in the engines. Should operators wish 

they can view the specific individual daily strategies in the form of previous figures (such as 

Figure 3-15) but Figure 4-6 shows a more generic operational strategy such that multiple 

simulations can be compared.  

 

Figure 4-6 Sensitivity Analysis of CHP Engine operations by varying both Natural Gas and Electricity prices, assuming a 

constant biogas production of 38,000 Nm3. The red and blue dashed lines indicate energy price boundaries where the 

operation of CHP engines changes significantly.  
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The results shown in Figure 4-6 are extremely useful for operators which suggests that, under 

the current biogas production and BUP assumptions, when electricity is cheap it is optimal to 

not use the CHP engines much for electricity generation, as shown by the area of the surface 

plot beneath the red dashed line (where the CHP engines are generally not used). Here, the 

engines should be switched on rarely during peaks in electricity price periods during the day 

(a strategy similar to that which was suggested in Chapter 3.3, Figure 3-6). 

In the region between the red and blue dashed lines the CHP engines are not fully operational 

to meet site power demand but are used more in this region; the engines are operated for 

longer periods throughout the day, not just during peak electricity price spikes. The price of 

electricity is more expensive for longer periods, resulting in a more cost-effective strategy to 

rely more on natural gas to generate electricity, however there are times during the day when 

electricity remains cheap enough to warrant a switch off of the engines (subject to the 

minimum operating time constraints).  

Above the blue dashed line energy prices are high enough for the engines to be operated all 

the time to meet site power demand, preventing any electrical import costs, shown by the 

flattening of the surface plot in this region. It should be noted here that under the current 

assumptions around biogas production and BUP processing limits, overall, the engines should 

not operate on biogas.  

Whilst it is reassuring for operators and managers that the site can maintain net positive 

revenues even when energy prices become high (Figure 4-5), the underlying assumption 

made that biogas production or BUP processing capabilities are constant and high is not 

always going to be true. Thus, the generic operational strategy of the CHP engines suggested 

in Figure 4-6 may not hold true, specifically when limiting the BUP processing limits, which 

would require Biogas to be utilised elsewhere. In the following sections (4.2.2 and 4.2.3) the 

Biogas production volume and BUP limit variables were tested. 

 

4.3.2 Varying energy prices and biogas production 

The same energy price variations as 4.3.1 were used, however instead of assuming a constant 

biogas production level of 38,000 Nm3, the production volume was adjusted (as stated in 

4.2.2), with the results shown in Figure 4-7.  
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By increasing or decreasing the overall production level of biogas, the operational strategy 

regarding CHP engines remains unchanged within the bounds of the biogas productions used, 

only the revenue achievable is different – i.e., for each production level of biogas the optimal 

revenue surface plot shown in Figure 4-5 is shifted up or down in the z-axis. As has been 

previously stated (in Chapter 3.3.1) the gas to grid injection is the main revenue driving 

factor for site operations, which is reinformed with the simulation results shown in Figure 4-7 

as the only change to site operations is revenue based. The operational strategy of the CHP 

engines remains unchanged from Figure 4-6 for each biogas production level, which is to be 

expected.  

 

 

Figure 4-7 Sensitivity Analysis of optimal site revenue by varying biogas production level in addition to Natural Gas and 

Electricity prices.  

 

If the BUP can process up to 40,000 Nm3 (which is assumed under this scenario) then when 

biogas production levels exceed this capacity the biogas will be required to be used elsewhere 

on site, however one CHP engine requires a minimum of 8,000 Nm3 of biogas per day to 



Chapter 4 - Scenario and Sensitivity Analysis using the Energy Management Model 

 

82 

 

operate at only half capacity – therefore any excess biogas that is produced is consumed by 

the on-site steam boilers for heat purposes.  

Given the current revenue levels of biomethane injection into the national gas grid, operators 

should therefore recognise that the level of biogas that is produced by the digesters has no 

impact on CHP operations, but any excess biogas produced that cannot be injected should 

have priority for steam production on site. 

 

4.3.3 Varying energy prices and BUP processing limits 

The same energy price variations as 4.3.1 were used, however instead of assuming a constant 

BUP processing limit of 40,000 Nm3, the processing volume was adjusted (as stated in 4.2.3), 

with the results shown in Figure 4-8.  

The simulations performed reinforce how important the gas to grid injection is for site 

revenues. Regardless of energy prices, for the site to maintain a positive revenue stream at all 

times the BUP must be able to process at least 20,000 Nm3 of raw biogas for grid injection 

per day. If the BUP processing limit falls between 10,000 and 20,000 Nm3 then the site can 

still break even or even make a profit, if energy costs are low – if energy costs are too high 

then the site will no longer become profitable and becomes a cost to operate.  

Figure 4-9 shows the CHP engine operational strategy for each BUP processing limit 

simulated. As previously stated, the dual fuel CHP engines require a minimum volume of 

biogas per day for operations, and when the BUP is limited to 25,000 Nm3 or less the dual 

fuel CHP engines can operate on biogas, shown on graphs ‘a’ though ‘f’. When one or more 

engines are required to be operated on biogas, the reliance on electricity imports becomes less 

and less, shown by the general increased generation of electricity on graph ‘a’ compared to 

‘f’.  
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Figure 4-8 Sensitivity Analysis of optimal site revenue by varying BUP processing limits in addition to Natural Gas and 

Electricity prices 

 

Interestingly, the ramping boundaries (based on energy prices) that were shown previously on 

Figure 4-6 still hold true for all graphs on Figure 4-9, and are most likely due to the fourth 

natural gas engine that is still affected by natural gas prices. Additionally, the lower the BUP 

processing value (and the more reliant on biogas the CHP engines are) the lower the impact 

the price of electricity has on site revenues, as shown by the flattening of the plot along the 

electricity axis on Figure 4-8. The data down on Figure 4-10 is the same as shown on Figure 

4-9, however the fuel selection for each CHP Engine is not highlighted – the colour scheme 

for Figure 4-10 is used to help emphasise and show the steepness and gradients of the surface 

plots on Figure 4-9. 
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Figure 4-9 Sensitivity Analysis showing CHP Engine operational strategy by varying Natural Gas and Electricity prices for different processing levels of the BUP (a-i shows a different daily 

BUP processing volume), assuming a constant biogas production of 38,000 Nm3. The reader is reminded that gas engine 4 is natural gas only, and that only CHP engines 1-3 are dual fuel. 

Graph ‘i’ is the same plot as Figure 4-6. 
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Figure 4-10 Sensitivity Analysis of CHP Engine operations by varying Natural Gas and Electricity prices for different processing levels of the BUP (a-i shows a different daily BUP processing 

volume), assuming a constant biogas production of 38,000 Nm3. The reader is reminded that gas engine 4 is natural gas only, and that only CHP engines 1-3 are dual fuel. Graph ‘i’ is the 

same plot as Figure 4-6. The data shown is the same as Figure 4-9,  but the CHP operational strategy is not shown to highlight the gradients.



Chapter 4 - Scenario and Sensitivity Analysis using the Energy Management Model 

 

86 

 

4.3.4 Validation of tariffs used 

After the sensitivity analysis was performed using the hypothetical price variations stated 

above, the actual historic tariff information for gas and electricity prices for Howdon became 

available for the period of April 2020 – August 2021. Figure 4-11 shows this most recent 

historic electricity Import (Figure 4-11a) and Export (Figure 4-11b) tariff, whilst Figure 4-12 

shows the historic gas prices over the period January 2020 to August 2021 – unlike the 

electricity data, there are periods where no data was available for the gas prices, however the 

general trend and variation in prices can still be observed. 

In the study above, the price of gas was varied between 25 and 75 p/therm based on historic 

UK market prices. As can be seen on Figure 4-12,  the price of natural gas has exceeded 

80p/therm in July 2021, with prices reaching over £1.10 per therm at the time of submission 

(August/September 2021).  

Based on the historical gas prices the site has seen over the past year, it is the authors belief 

that the gas prices used during this study remain valid for the expected prices the site will see 

in the near future as prices appear to be falling back into the expected region.  However, 

managers could re-perform further sensitivity analysis on even higher prices, as the August 

2021 peaks in gas price are unprecedented and were not predictable at the time of the study. 

Additionally, the peaks seen this August could become the new normal, where prices may 

remain exceptionally high for longer, thus performing further analysis at these higher prices 

would be advantageous. 

Howdon STW is usually subject to two tariffs, one for ‘Summer’ months (April to 

November) and one for ‘Winter’ months (November to April), where winter tariffs are 

usually subject to additional levies and therefore increases in price. This general increase in 

tariff can be observed on Figure 4-11 during the ‘winter’ months. To validate the electricity 

tariff used as part of this study, the average site tariff was determined for three different date 

ranges:  

• The entire data range shown on Figure 4-11,  

• April 2020 (inclusive) to November 2020 (exclusive) and,  

• November 2020 (inclusive) to April 2021 (exclusive).  
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Figure 4-11 Historic Electricity Import and Export prices (half hourly) for Howdon STW during the period April 2020 to August 2021. 
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Figure 4-12 Historic Gas Import Tariff for Howdon over the April 2020 to August 2021 period. The Export tariff was always 

0.56p/therm lower than the import, but is not shown to maintain clarity of the trend. 

 

The mean for each half hourly tariff price was calculated, and the resulting 24-hour mean 

tariffs are plotted on Figure 4-13. It should ne noted that there are clear outliers from the 

mean tariffs (on Figure 4-11), which of course will be of interest for managers and operators 

to investigate. Now the historical tariff information is available, the Energy Management 

model could be used to perform RO (similar to that performed within Chapter 2.4.2), such 

that historical operations can be validated, such that operational strategies required for future 

spikes in price can be explored.  

The overall mean tariff (Figure 4-13a) still shows the typical diurnal price trend across the 

24-hour time period, however it is much closer to the higher bound of the hypothetical tariff 

used in the study (Figure 4-1), but still within the bounds itself. The ‘Summer’ tariff shown 

(Figure 4-13b) follows the diurnal trend and lies well within the bounds of the hypothetical 

tariff used, however the ‘Winter’ tariff shown (Figure 4-13c) shows much higher spikes in 
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electricity prices during the 16:00-19:00 region, which are outside the bounds of the 

sensitivity analysis.  

In general, the hypothetical electricity tariff used for this study is a valid approximation for 

the tariffs the site will experience today. The analysis is likely better suited to be an 

approximation of the ‘Summer’ tariffs the site will see, however should managers require 

they could re-perform the analysis using the higher tariffs that have been seen more recently. 

 

 

Figure 4-13 Average electricity import and export tariff costs, based on the date ranges selected from the dataset shown on 

Figure 4-11 

 

There have been unprecedented prices that have never been seen on-site before, with spikes 

in electricity prices, both high and low. Some examples of erratic and unique electricity price 

behaviours are shown on Figure 4-14, where the daily tariffs with the highest and lowest peak 

or trough for electricity export and import are shown. Here, the search for the highest and 

lowest tariff prices was performed independently for Import and Export prices, therefore the 
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fact that the dates shown for Import and Export costs are the same is coincidental (but 

somewhat expected as they are intrinsically linked).  

First, exceptionally high spikes in electricity price have been observed, with import costs 

exceeding £1.75 per kWh (Figure 4-14a), an almost eightfold increase in the average tariff 

price for the same time of day shown on Figure 4-13a. Second, the export costs shown on 

Figure 4-14d suggests that there was an exceptionally unusual low demand for electricity (or 

vastly increased generation) across the sector as export costs were seen to be negative – a 

negative export cost infers that NWL would have to pay the National Grid if they were to 

generate and sell/export electricity during this time. As NWL do not currently use electricity 

exports as a main driver of revenues, such a rare occurrence may not be of high importance to 

managers, however should future operational priorities change it may become an important 

factor – if such events occur more frequently in the future, then self-generated electricity 

storage could be a potential solution and consideration.  

 

Figure 4-14 Selected historic electricity import and export tariff information, based on the singular highest and lowest price 

observed over the Apr2020-Aug2021 period. It is completley conicidental that the the dates on graphs ‘a’ and ‘c’ are the 

same, as well as the dates shown on graphs ‘b’ and ‘d’, as the search for highest and lowest prices were performed 

seperately for import and export prices.  

Note: A positive Export price means revenue/sale price. 
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The general trends shown on Figure 4-14 also show increased volatility (more variance with 

peaks and troughs) during the 24-hour period. Such unusual behaviour with electricity prices 

and high spikes in gas prices could not have been anticipated at the start of this sensitivity 

analysis, therefore could not have been accounted for. However, managers could use the 

Energy Management model presented to investigate the opportunities and affects instances 

like this might have on site revenues and operations under future investigations.   

The global pandemic (COVID-19) has caused a drastic shift in social and economic 

behaviours, which has led to increased volatility in energy prices due to unpredictable and 

varying demands. Historically, the price of electricity has remained consistent with small 

variations and occasional spikes, as is shown during the April 2020 to October 2020 period 

on Figure 4-11, and the price of gas (in the wholesale market) has historically not risen above 

90 p/therm. However, since the easing of lockdown restrictions in the UK from around April 

2021, the day-to-day variation in electricity prices has increased (less consistency and more 

volatility) with a general slow increase in daily price also observable from this date, and the 

price of natural gas rising unprecedently high – the reader is encouraged to visit the Ofgem 

website ‘Wholesale Market Indicators’ for historical data on UK energy prices (gas and 

electricity) [66]. These rises could be attributable to UK businesses starting back up after the 

easing of pandemic restrictions, or on wider socioeconomic impacts on energy markets. 

 

4.3.5 Limitations 

The sensitivity analysis shown here has focussed on key areas of the site as well as energy 

prices under the assumption that other price factors, such as biomethane injection revenues, 

remains constant. In the future, the current agreement NWL has regarding biomethane 

injection into the gas grid will need renewing, in which case the model used here would need 

updating to allow for any new agreements. Additionally, the model and analysis here does not 

include any other annual based agreements that could affect site revenues or operational 

strategies, such as the CHPQA (CHP Quality Assurance) programme.  

In terms of unit operations on site, the analysis performed here has only considered the BUP 

and how limiting this affects site operations. This is because it is the most valuable asset on 

site regarding revenues. In the future, the model could be used to perform a similar analysis 

around the CHP engines and even the boilers (although when one boiler becomes unavailable 
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the others are able to compensate). Operators would be able to see how site revenues could be 

affected by unit maintenance and downtime.  

Furthermore, the model currently assumes CHP engines produce a set amount of electrical 

power when in operation, however it is not unreasonable to assume that the power produced 

by these engines may reduce over time due to wear and tear, albeit slightly (reduced power 

efficiency). The model could be used to analyse the impact of degradation in CHP 

performance, and possibly indicate to mangers increases or decreases in expected revenues 

based on this degradation.  

 

4.4 Conclusions 

In this study, the model derived in Chapter 3 was used for further analysis of the impact 

energy prices has on site revenues. The price of electricity imports and exports was varied 

using the example tariff (shown in Figure 3-2) as a reference, and the price of natural gas was 

used using historical UK gas prices as a reference. Since performing the analysis, the most 

recent historic energy prices were used to validate the hypothetical tariffs used as part of the 

study.  

The analysis reinforces the understanding that maximising biogas injection into the national 

grid is the most cost-effective operational strategy. Second to this, the optimal operation of 

the CHP engines is subject to the available excess biogas available after BUP processing and 

the current daily energy prices.  

As the natural gas price becomes more expensive the price of electricity has a higher impact 

on site revenues that are achievable. It is around the average price point of 12 p/kWh that 

operators and managers should be considerate of - when electricity prices go above this point 

the optimum revenue on site is dictated by natural gas prices.  

The BUP limits were tested as a demonstrative example of variable process limits, which 

highlights the importance on maintaining this process as it is the main driver of revenues for 

the site. To ensure the site always maintains a positive revenue, regardless of how high 

energy costs may become, operators should ensure that at least 20,000 Nm3 of raw biogas can 

be processed and injected into the national grid.  

This study also demonstrates how operators and managers can use the model for scenario 

testing and operational strategy validation. The use of the Energy Management model 
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presented here (analysing various scenarios) is a useful tool for managers as it can help 

provide evidence to aid in contractual agreements with regulatory bodies – the Energy 

Management model could also be used by the regulators themselves as a financial and site 

monitoring aid to ensure water companies are held to account for their agreements.  

The main driver that can be controlled somewhat by NWL (that affects the operational 

strategy and revenue of the site) is the daily biogas produced by the anaerobic digesters. For 

NWL to make the most of the analysis performed in this section, better predictions and 

forecasts of biogas production levels based on current sludge processing levels would be 

advantageous. This would allow manager sand operators to truly see how the site should be 

operated, based on current prices and factors they are unable to control. In the next Chapter, 

an initial investigation into predicting this daily volume is presented, along with the site-

specific complexities surrounding the anaerobic digesters and data recording capabilities.  



Chapter 5 - Biogas Prediction through Digester Modelling 

 

94 

 

Chapter 5 Biogas Prediction through Digester Modelling 

To make better use of the already developed models, an accurate prediction of Biogas 

production volumes would be beneficial for operators and managers on site. However, 

modelling each individual digester is difficult as the gas flow sensor data for each digester is 

not usable. This chapter investigates data driven modelling approaches to predict the total 

biogas production of all three ADs based on the status and feed data for each individual AD.  

 

5.1 Introduction 

A model or tool for the prediction of Biogas production levels on site is something NWL 

currently does not have. For the Energy Management model to truly become a predictive 

optimisation tool, a prediction of biogas production is necessary, otherwise the Energy 

Management model can only reasonably remain useful for retrospective optimisation rather 

than prediction or advice.   

The aim is to be able to predict the volume of biogas that will be produced by the Anaerobic 

Digesters (AD’s) based on the sludge feed volume (and potentially use other parameters such 

as pH or temperature). The ability to predict biogas production will aid in future operational 

decisions to advise whether a change in plant state is required. There is plenty research 

focusing on optimisation of digester parameters or sludge feed for increased biogas 

production or on the accurate modelling of ADs [67–69], however for this to occur the data 

recorded by the plant must be high quality.  

There are two possible methods of modelling and predicting the biogas production on site 

using historical data: 

1. Create three individual models, one of each AD, and summate their predictions to 

calculate the overall biogas produced 

 

2. Model the three ADs as a single ‘entity’ or digester, and aim to predict the volume of 

biogas produced in a single model 

 

The most widely used mechanistic model for ADs is the Anaerobic Detester Model No. 1 

(ADM1), presented by Batstone et al [70]. Many models that exist for ADs, including 

ADM1, are based on Chemical Oxygen Demand (COD) as a base reference unit [71]. 

Because of this, ADM1 is seldom applied directly in plant operation, with some making 
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efforts to transform ADM1 into a mass-balance based model instead of COD [72]. Based on 

the non-linear fundamental differential equations required to model an AD, each AD would 

require a separate model that will require extensive testing and validation to determine 

digester-specific parameters for operation, including around 60+ parameters [73].  

Furthermore, the microbial and physiochemical processes of AD are highly complicated; 

current understanding of these processes is not comprehensive and continuously being 

updated as new microbial processes are discovered [74]. Mechanistic models (such as 

ADM1) can face challenges due to the limited understanding of AD, thus digestion prediction 

is mostly inaccurate [75]. It is for this reason that novel methods, such as using machine 

learning algorithms, are being sought to accurately predict digestion performance without the 

need for a mechanistic model [76].  

One of the difficulties of modelling the Digesters is that the relationship between sludge feed 

(TDS) and biogas produced is not linear, as previously mentioned. The relationship exhibits 

linear properties but if it is assumed only linear there is too much noise in the data to be able 

to draw accurate enough predictions. Figure 5-1 shows a simple scatter plot of daily TDS fed 

into the digester vs biogas production.  

 

Figure 5-1 - Totalised Dry Solids fed into the ADs vs Totalised Biogas Produced (Daily totals over a 15-month period) 

[With two Lines of Best Fit] 
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Whilst there does exhibit a somewhat linear relationship between TDS and biogas 

production, using a simple linear relationship with these two values only would result in 

inaccurate biogas predictions and a very noisy fit. There are multiple studies of modelling 

anaerobic digesters using different feed stocks, many describe and model the system as non-

linear [70,74,75,77–79]. Typically, this is due to the behaviour of the microorganisms 

changing depending on their environment, i.e. changes in temperature, pH, feed rate etc that 

affect growth rates.  

Figure 5-1 exhibits a large amount of noise – i.e. the same mass of dry solids yields different 

biogas production volumes. This could be due to noisy data but is more likely to stem from 

the non-linear mechanistic relationship that also includes variables such as Temperature, pH 

and Volatile Fatty Acids (VFA’s).  

Each digester has separate data for sludge feed (in m3) but sludge feed volume into the 

digesters is not a very useful variable to use on its own, as the mass of dry solids in the feed 

varies almost daily – during part of the separation process the sludge is dried, and these solids 

are then watered down slightly during the thermal hydrolysis stage before being fed into the 

digester. It would be advantageous to use TDS fed into the digesters in tandem with sludge 

feed volume. There is also data readily available for digester temperature, which is known to 

play a key role in the efficiency of sludge-to-biogas conversion.  

Other variables such as COD and VFA’s are known to affect biogas production within an 

anaerobic digester, but data for these are not recorded digitally (like sludge feeds or 

temperatures) and subsequently portions of this data is missing and unavailable to use for 

historical modelling. In addition, the historical data for AD pH has large sections of missing 

data.  An attempt was made to include these terms within models, but attempts were also 

made to model the digesters without it, to determine whether the lack of data is substantial 

enough to be detrimental to any models created.  

One could argue that developing a Grey Box model would be the optimal approach, whereby 

a data driven model can be aide with a mechanistic model. A grey prediction model is 

typically categorised by incompleteness of information for a model; grey models can be 

‘whitened’ by inserting more messages effectively around the forecast origin [80]. Typically, 

models of actual plants or operations are known as Grey Box models where the model 

combines a hybrid of theoretical and ‘prior knowledge’ to form a more accurate model than 

theory or data driven models alone [81]. Lack of plant information has delayed the 
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introduction of more complex control strategies and models in the water industry, however 

recent advances in technology have seen significant progress with respect to instrumentation 

for wastewater processes [17].  

Fundamental knowledge of the system is required to create a model from first principles, 

often in the form of differential equations derived from mass and energy balances, whereas 

data-driven modelling uses process data to produce a model through an assortment of 

potential techniques [82]. 

If an accurate model for each digester could be made, it would be beneficial for the operators 

on site to understand and visualise the operational state of each digester. However, to create 

such a model accurate historical data on the biogas output for each individual AD is required, 

in addition to other parameters. Unfortunately, the biogas output data is not available for 

individual digesters, as the flow meters atop the AD’s repeatedly provide inaccurate an 

unusable data, as agreed by operators on site and demonstrated by Figure 5-2. When the 

biogas volume produced by each individual AD is summated it provides a total biogas 

volume that is vastly inaccurate compared to the totalised flow at the pre-treatment plant 

(‘SCADA total’) or even the summated usage of biogas across all unit operations on site.  

 

Figure 5-2 - Comparison of Total Biogas Produced from two sources: SCADA total value (summated flow recorded at the 

biogas pre-treatment plant taken from on site SCADA system) and summating the total volumes recorded out of each 

individual anaerobic digester. The summation demonstrates how innacurate the individual digester flow meters are. 
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It is an added difficulty that the totalised volume of biogas produced across all three AD’s 

must be used to create a prediction tool for the summated flow. In addition, it would likely be 

problematic to create a mechanistic model for each digester without the gas production level 

for each digester. To model the anaerobic digesters and predict biogas production, historical 

data for each digester must be available for use, preferably in digital form so as not to rely on 

manual data gathering. It has already been established that biogas production levels are not 

available, however other input data is available such as individual Digester Feed volumes, 

Total Dry Solids (TDS), digester temperatures and digester pH. Some variables such as 

digester Volatile Fatty Acids (VFA’s), Percentage Dry Solids (PDS) and Percentage Volatile 

Solids (PVS) are available but are not digitally collected, with large gaps in data sets. Hence 

the data required to successfully develop a mechanistic model of each AD was not available 

at the time of writing; developing a grey box model was not possible and an alternative data-

driven approach was required using the data that was available.  

It was decided to first attempt to predict the totalised biogas production levels based on input 

data for each digester in the form of a linear based relationship and determine whether it 

would be a useful or ‘good enough’ approach. Whilst it would be preferable to create a 

unique model for each digester (so the behaviour of each digester could be monitored and 

predicted better), it is believed that developing an individual model for each digester will not 

produce as accurate a tool for biogas production as the individual biogas production data is 

unusable to create a such a tool. 

Non-linear processes exist frequently in industry, thus not all optimisation and modelling 

problems can be modelled as simple binary linear relationships like the previous models 

developed within this project. Within linear models, non-linearity is usually handled with 

techniques of piecewise linearization or transforming into polynomials then linearizing those 

polynomials [83]. Standard procedures for "linearizing" nonlinear integer problems 

(including those of piecewise approximation) typically involve a radical increase in the 

number of problem variables and constraints [83]. Hence, benefits through linear 

programming can be lost due to excessive increase in computational requirements and 

constraints compared to taking a non-linear approach initially.  

If a linear model can be found to provide reasonable enough predications for total biogas 

production, then this could easily be applied to alternative sites within the business and not 

just the Tyneside WWTP that is the focus of this stud. It was not missed that a more complex 
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data model may be required, using machine learning techniques for example, of which 

preliminary work designing a Neural Network was performed at the end of the study.  

 

5.2 Linear Modelling  

5.2.1 Methods 

Linear Modelling is the fitting of observed data to fit a straight line on a curve, such that 

predictions on future values can be made assuming they follow the same trend. A linear 

regression model describes the relationship between a dependent variable, y, and one or more 

independent variables, X.  

A multiple linear regression model is typically of the form: 

𝑦 =  𝑏 +  𝑏1. 𝑥1 +  𝑏2. 𝑥2 +  𝑏3. 𝑥3 …  (5-1) 

  

Essentially, each variable input into the model (‘x’ terms) is multiplied by a ‘b’ coefficient, 

and each coefficient-variable pair is added together. Variables may be interactions or powers 

of previous variables, such as: 

𝑦 =  𝑏 +  𝑏1. 𝑥1  +  𝑏2. 𝑥2  +  𝑏3. 𝑥1
2  +  𝑏4. 𝑥1. 𝑥2  +  𝑏5. 𝑥2

2 … (5-2) 

  

MATLAB’s regress function allows for a linear equation of any form to be generated from 

any sized data sets. The regress function essentially determines the ‘b’ coefficients for any 

given linear equation of the form of Equation (5-2). 

An attempt to use data from all three digesters to model a totalised biogas flow was 

performed, as individual gas flows from each digester are not available. Linear and Squared 

terms for each variable were used, and an interaction term between each of the 3 components 

within the digester was also used. 

The first MLR model [Equation (5-3)] included many interaction and power terms, with the 

intention of removing them one or two at a time to find the best model: 

𝑦 =  𝑏0  +  𝑏1. 𝑇1  +  𝑏2. 𝑇2  +   𝑏3. 𝑇3   +  𝑏4. 𝑇1
2   +  𝑏5. 𝑇2

2  +  𝑏6. 𝑇3
2 . . . 

     𝑏7. 𝐹1   +  𝑏8. 𝐹2   + 𝑏9. 𝐹3   +  𝑏10. 𝐹1
2  +  𝑏11. 𝐹2

2  +  𝑏12. 𝐹3
2 . . . 

     𝑏13. 𝑃1  +  𝑏14. 𝑃2  +  𝑏15. 𝑃3  +  𝑏16. 𝑃1
2  +  𝑏17. 𝑃2

2  +  𝑏18. 𝑃3
2 . . . 

     𝑏19. 𝑇𝐷𝑆 +  𝑏20. 𝑇𝐷𝑆2 . . . 

(5-3) 
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     𝑏21. 𝑇1. 𝐹1  + 𝑏22. 𝑇2. 𝐹2  +  𝑏23. 𝑇3. 𝐹3 . . . 

     𝑏24. 𝑇1. 𝑃1  +  𝑏25. 𝑇2. 𝑃2  +  𝑏26. 𝑇3. 𝑃3 . . . 

     𝑏27. 𝐹1. 𝑃1  +  𝑏28. 𝐹2. 𝑃2  +  𝑏29. 𝐹3. 𝑃3 . . . 

     𝑏30. 𝑇1. 𝐹1. 𝑃1  +  𝑏31. 𝑇2. 𝐹2. 𝑃2  +  𝑏32. 𝑇3. 𝐹3. 𝑃3  

Where, in daily totals/averages: 

 

y = Total Biogas Produced 

Ti = Temperature (of digester 1,2,3) 

Fi = Feed (of digester 1,2,3) 

Pi = pH (of digester 1,2,3) 

TDS = Total Dry Solids fed across all three digesters 
 

However, it is often difficult and time consuming to identify which parameters and 

interaction terms should eliminated or kept to ensure a robust model is identified. After 

manually identifying multiple MLR models to attempt to predict biogas production of the 

ADs, to improve the performance and identification of key variables a LASSO regression 

approach was used (using the lasso function within MALTAB). 

LASSO (Least Absolute Shrinkage and Selection Operator), proposed by R. Tibshirani, 

minimises the residual sum of squares subject to the absolute value of the coefficients being 

less than a constant [84]. The LASSO approach takes the same parameters used during the 

MLR modelling phase but can identify and remove any redundant predictor variables.  It 

shrinks some coefficients and sets others to zero, hence attempting to retain the good features 

of both subset regression and ridge regression [84]. The general formula used by the LASSO 

approach is given by Equation (5-4).  

 

min
𝛽0.𝛽

(
1

2𝑁
∑(𝑦𝑖 − 𝛽0 − 𝑥𝑖

𝑇𝛽)2  +  𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑁

𝑖=1

) 

 

(5-4) 

  

N = the number of observations. 

yi = the response at observation i. 

xi = data, a vector of length p at observation i. 

λ = a nonnegative regularization parameter corresponding to one value of Lambda. 

The parameters β0 and β are a scalar and a vector of length p, respectively. 
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There were four linear regression models used to attempt to identify a suitable prediction 

model for biogas production; Table 5-1 outlines the predictor variables used in each of the 

modelling scenarios. Models 1, 2 and 4 use data that is automatically available due to the 

available sensors on site, however the data for pH has large gaps of missing data, hence why 

model 4 attempts to predict biogas production without this data. Model 3 also uses data that is 

generated manually in the onsite labs – as this data is not always available, model 3 was only 

performed to determine whether including this data would have substantial improvements to 

any predictions.   

Table 5-1 Linear Regression models tested 

Model No. Predictor Variables Used 

𝟏 T1, T2, T3, F1, F2, F3, P1, P2, P3, TDS,  

T1
2, T2

2, T3
2, F1

2, F2
2, F3

2, P1
2, P2

2, P3
2, TDS2,  

T1×F1, T2×F2, T3×F3,  

T1×P1, T2×P2, T3×P3,  

P1×F1, P2×F2, P3×F3,  

T1×F1×P1, T2×F2×P3, T3×F3×P3 

𝟐 T1, T2, T3, F1, F2, F3, P1, P2, P3, TDS 

𝟑 T1, T2, T3, F1, F2, F3, P1, P2, P3, TDS, 

VFA1, VFA2, VFA3, 

PVS1, PVS2, PVS3,  

PDS1, PDS2, PDS3 

𝟒 T1, T2, T3, F1, F2, F3, TDS 

 

 

VFAi = Volatile Fatty Acids (of Digester 1,2,3) 

PVSi = Percent Volatile Solids (of Digester 1,2,3) 

PDSi = Percent Dry Solids (of digester 1,2,3) 

 

Each model shown in Table 5-1 was developed using both the regress or lasso functions 

within MATLAB, but the historical data used was separated into two parts: training data and 

validation (unseen) data. The testing data was passed to the functions to determine an 

appropriate linear fit – the resulting fit was then plotted against the historical biogas 

production, and the validation dataset was then used to also test the model. The Testing data 

was from the period January 2018 – April 2019, and the validation dataset is from April 2019 

– August 2019.  
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5.2.2 Results 

5.2.2.1 MLR 

The modelling results are shown in Figure 5-3, where the fitted data (circles) does follow a 

linear pattern but with noisy results; a linear fit of training data is expected as the regress 

function (used to determine MLR models in MATLAB) forces a linear relationship as best as 

possible according to the provided variables. However, the fitted data remains too noisy to be 

used - this may be due to overfitting or again, just due to a noisy data set. 

The model was then used to predict biogas production using unseen data (crosses on Figure 

5-3) – this historical data set was not shown to the regress function when developing the 

models. This allows for testing of the robustness of the model.  

Figure 5-3a shows that the predicted unseen data (crosses) is vastly inaccurate compared to 

the fitted data used for training. Using so many interaction terms early has likely led to 

overfitting within the model; overfitting a model is when a model has become too reliant on 

the original data set, that is it unable to adapt or allow for deviations in unseen data sets. 

 

Figure 5-3 - MLR model results for biogas production. Graphs ‘a’ through ‘d’ use the predictor variables outlined in models 

1-4 in Table 5-1. The dashed line is y=x, shown to aid in comparisons and demonstrate the accuracy of the regression fits. 
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Figure 5-3b uses the same initial dataset as Figure 5-3a, but all the additional interaction 

terms have been removed (see Table 5-1). The results of this reduced interaction fitting 

demonstrates that the linear fit is still noisy, thus is it expected that linear models are unlikely 

to be able to improve or reduce this level of noise. However, the unseen data fits are much 

more reasonable and do follow the general linear fit. It is believed that the data here is longer 

overfitted. The resulting model is still unusable onsite though; the predicted biogas volume 

varies too much from the actual production value, thus the prediction side of the optimiser 

will not be of use to operators.  

An attempt to model the digester was made with extra data sets that are manually calculated 

by the lab technicians on site – the hypothesis was that better data (that is usually used to 

develop mechanistic models) might improve the noise of the resulting models. This data 

includes Percent Volatile Solids (PVS), Volatile Fatty Acids (VFA) and Percent Dry Solids 

(PDS) of each digester feed volume. The results from this modelling attempt, Figure 5-3c, 

also show the biogas predictions to be of linear form, however the predications appear 

equally as noisy as that of the previous modelling attempt. It is believed that the new data 

does not provide as much substantial influence on biogas production as initially thought. In 

addition, similar modelling results can be achieved with less data that is more readily 

available in the previous models (as the data is captured digitally).  

As previously mentioned, some data sets are not complete, particularly the data that is 

manually generated and input into the database (PVS, VFA, PDS), however some of the 

automatically captured information has large gaps and missing information. The pH sensor 

data has many gaps; if a model relies on values of pH to predict biogas production, any gaps 

in data would likely mean the model is unusable and unable to predict productions (without 

estimating the pH of the AD). To this end, a model was created using only Feed Volumes, 

Temperatures and TDS, and included an interaction term between TDS and Feed Volume. 

The results of the mode with this interaction term are shown in Figure 5-3d. 

The increase in the number of data points compared to Figure 5-3b is reflective on the 

increased data set that can be used for modelling and testing (i.e. as pH is no longer used, the 

dates where this data was missing can now be used for modelling). The test on unseen data 

also forms a tighter linear relationship. The fitted model shows a tighter prediction response 

for both the fitted and unseen data sets. However, there are still too many outlier cases where 

the model does not perform well.  
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In general, it is unreasonable to expect a model to predict more accurately (with less noise) 

on unseen data than with the initial training data. The current aim is to have predictions 

within 10% of the observed value, within tolerance acceptable by operators and managers. 

The trained models do not achieve this, so a more accurate model must be sought out.  

5.2.2.2 LASSO 

Using the same modelling scenarios for the MLR modelling approach, a LASSO regression 

was performed, such that (if required) any redundant terms provided for modelling could be 

automatically identified and removed during the modelling and training process. The 

resulting models are shown on Figure 5-4(a-d). 

 

 

Figure 5-4 LASSO regression results for biogas production. Graphs ‘a’ through ‘d’ use the predictor variables outlined in 

models 1-4 in Table 5-1. The dashed line is y=x, shown to aid in comparisons and demonstrate the accuracy of the 

regression fits. 

 

The resulting LASSO regression models presented do provide a tighter linear fit, but they 

also are slightly skewed away from the y=x line. The resulting fit for Model 1 and 2 (Graph 



Chapter 5 - Biogas Prediction through Digester Modelling 

 

105 

 

‘a’ and ‘b’) show almost identical results, which is expected due to the LASSO technique 

removing redundant predictor variables (and model 2 is a simpler version of model 1). 

Additionally, Model 4 (Graph ‘c’) also shows very similar results to model 1 and 2, again as 

it is a simpler version of Model 1, but there are more data points available due to the removal 

of pH (so there more dates will full datasets available for regression). Introducing the 

manually generated data (PVS, VFA, PDS) results in the worst fitting model (Figure 5-4c) – 

whilst this model shows the tightest response (least noise), the response of the fitted model is 

much more skewed away from y=x than the other fits. 

When using cross-validation techniques within LASSO regression, the resulting models can 

identify key predictor variables, with redundant ones removed. Table 5-2 shows which 

predictor variables correspond with minimum cross-validated mean squared error (MSE) and 

which variables form the sparsest model within one standard error of the minimum MSE. For 

each model in Table 5-2, and missing predictor variables or interaction terms (from Table 

5-1) can be assumed to be redundant and therefore removed from that model.  

 

Table 5-2 LASSO Regression results, showing the predictor variables used to generate the predictions and graphs shown on 

Figure 5-4 

Model No. Model Variables with 

minimum cross-validated 

mean squared error (MSE) 

Model Variables of 

sparsest model within one 

standard error of the 

minimum MSE 

𝟏 

 

T1, T3, F1, F1
2, P1

2, P22, TDS, 

TDS2, F1×TDS, F3×TDS, 

T1×F1, T2×F2, T3×F3, T1×P1, 

T1×F1×P1 

TDS, T1×F1 

𝟐 T1, T2, T3, T1
2, T2

2, T3
2, F1, F2, 

F1
2 

F1, TDS 

𝟑 T1
2, F1

2 F1, TDS 

𝟒 T1, T2, T1
2, T2

2, T3
2, F1 T1, F1, TDS 

 

Interestingly, of all four models developed through the LASSO approach, each model 

suggests that pH is not a particularly important predictor in biogas production, with the most 
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emphasis placed on Temperature and TDS, with some placed on the Feed volumes also. Also, 

the reduced parameter model (Model 4) is still able to predict biogas production as well as the 

other Models with more variables, albeit still not effectively enough to be used onsite.  

It should be noted that, for each prediction to be made, a full set of variables is required to be 

input into the model. I.e., if there is a data point missing for one variable for a particular day, 

that data cannot be used for fitting or testing the model on predicting biogas volumes. It is for 

this reason that there is a different number of data points in graphs on the models.  

The MLR and LASSO models are still too noisy with their fitted response and unseen data 

prediction responses for practical applications, hence a more advanced prediction and 

modelling approach was required.  

 

5.3 Artificial Neural Network (ANN) Model 

5.3.1 Introduction 

As the previously calculated linear regression models are not accurate enough to be used on 

site, a preliminary investigation into the use of an Artificial Neural Network (ANN) weas 

performed to determine whether the approach could be used for the prediction of biogas with 

this unique challenge. An ANN is an advanced machine learning technique that can be used 

for modelling processes or phenomena where the relationships between the input variables 

and output variable(s) are difficult to identify. The training techniques provide a 

mathematical weighting to each input variable and to each node in each layer thereafter, 

which ultimately cause the output(s) to be calculated (Figure 5-5).  

ANNs are able to approximate functions using universal approximation theorem, and the 

backpropagation algorithm enhances the efficiency in updating undetermined parameters 

[85]. Neural Networks are very much in the spotlight currently, however training a neural 

network is unique to each induvial problem and can be very time consuming and 

computationally expensive. The training time of an ANN can be sped up, however, through 

use of a sufficiently powerful CUDA enabled GPU [86].  
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Figure 5-5 - Typical Neural Network layout. A Neural Network may have any number of hidden nodes layers, and any 

number of nodes. [This Photo by Unknown Author is licensed under CC BY-SA] 

 

There are multiple forms of ANN, with different approaches possible to model time-series 

data (the historic biogas production data is a time-series dataset, as previous temperatures and 

pH values can influence future values). One of the more commonly used ANNs for time-

series data is the Non-linear Autoregressive Network with Exogenous inputs (NARX), with 

feedback connections enclosing several layers of the network [39]. NARX models can be 

used as a predictor in time-series modelling, where it has been demonstrated that NARX 

recurrent networks have the ability to replicate the dynamics of complex non-linear systems 

[87].  

 

5.3.2 Methods 

One of the difficulties in designing an ANN is the selection of the number of layers and 

hidden neurons [88]. Neural Networks may have any number of neurons in each layer, and 

any number of hidden layers, although increasing the number of hidden layers and neurons 

can lead to increased computational time and overfitting problems [89]. In general, most 

systems can be sufficiently modelled with one hidden layer, and almost all problems should 

have less than five [90]. ANNs have been used to model ADs for non-municipal waste 

(typically cattle and agricultural) [91–94], with NARX models also used [95].  
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The defining equation for the NARX model is given by Equation (5-5): 

𝑦(𝑡) = 𝑓 (𝑦(𝑡 − 1), (𝑦𝑡 − 2), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2), … , 𝑢(𝑡 − 𝑛𝑢))  (5-5) 

  

where the next value of the dependent output signal y(t) is regressed on previous values of the 

output signal and previous values of an independent (exogenous) input signal. Figure 5-6 

shows the diagram of the resulting network, as shown on Mathworks.com [39]. 

 

 

Figure 5-6 Diagram of NARX network, where a two layer feedforward network is used for approximation.[39] 

 

When training a neural network within the MATLAB machine learning toolbox, users must 

decide the shape and size of the ANN, i.e. how many hidden layers and hidden neurons there 

are per hidden layer. The optimal shape and size are unique to each process and dataset. 

Figure 5-7 shows the NARX Net structure as depicted by the MATLAB environment, which 

is a simpler form of Figure 5-6. 

 

Figure 5-7 - A typical NARX Neural Network layout, as depicted within the MATLAB environment. 
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During training, MATLAB will randomly select which data within the dataset is to be used 

for training, validation, and testing. Therefore, each time a new ANN is trained the actual 

training dataset may vary, which in turn could lead to a sub-optimal trained network – re-

training the same sized network on different randomisations of the same data can lead to 

different results. As such, during the training phase each neural network is trained using the 

same data 100 times, resulting in 100 random permutations of the entire dataset per training 

session. The resulting network that has the highest R2 value was then chosen as the ‘best’ 

network out of the 100 trained networks and saved for comparison against other sized ANNs.  

Using the previous data in the linear model fitting (AD Temperature and Feed Volume for 

each AD, and the TDS) several NARX ANNs are trained and the performance of them is 

investigated through R2 values and by determining how well the ANN can fit data and trends 

to within 10% tolerance.  

For a NARX Net, the number of feedback delays must also be decided, i.e. the number of 

previous data points used during the input layer, in this case the number of previous days’ 

worth of data. For example, a feedback delay of 2 would mean that, to predict biogas 

production tomorrow, the previous two days’ worth of data must be input into the ANN. In 

this study, multiple NARX ANNs are trained with one hidden layer containing 1-20 hidden 

neurons, and also between 1-5 feedback delays, resulting in the need to train 10,000 NARX 

ANNs (repeating each neuron:feedback pair 100 times, as stated).  

 

5.3.3 Results 

The overall optimum NARX Net was chosen based on the R2 value (Figure 5-8) and also on 

how many predictions the network made that were within 10% of the historic biogas 

production (Figure 5-9), and is denoted with a red X on these figures. 

Interestingly, increasing the number of neurons generally has a negative impact on the 

resulting R2 value in most cases, as shown on Figure 5-8, particularly when the number of 

feedbacks is between 2 and 4 days. Between 1-10 neurons increasing the number of feedback 

increases the R2 observed, however increasing the number of neurons beyond this region 

generally has a negative effect, suggesting that this creates some overfitting of the data. 

It may be that, regarding R2, certain combinations of neurons:feedbacks can encapsulate 

trends of data that otherwise cannot be done with less neurons or feedbacks,  but cannot 



Chapter 5 - Biogas Prediction through Digester Modelling 

 

110 

 

achieve accuracy. However, increasing the number of feedback delays has a clear benefit to 

the resulting predictions of the model, shown in Figure 5-9.  

 

Figure 5-8 - R2 of time-series response of trained neural networks, comparing neural network prediction to actual 

production of biogas. Optimum chosen model highlighted with a red cross (×). 

 

 

Figure 5-9 - Percentage of time-series predictions given by the trained neural network that were within 10% of the historic 

biogas production. Optimum chosen model highlighted with a red cross (×). 
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Figure 5-10 - Best performing NARX Neural Network trained, with 13 neurons in the hidden layer and 5 days feedback 

delay.  

a) Time series day-ahead prediction response compared to historic production of biogas,  

b) actual vs predicted biogas (a perfect fit would be y=x (solid grey line), and the dashed lines show a 10% tolerance).  

 

The optimum neural network consisted of 13 neurons in the hidden layer, with a feedback 

delay of 5 days, with an R2 of 0.96157 and percentage of predicting meeting tolerance of 

95.3%. Whilst this combination does not have the highest R2 or the highest tolerance 

achieved, it does have the highest pairing of the two. In their paper, Dhussa et al found an 

optimal NARX ANN consisting of two hidden layers with 10 neurons each and 18 days 
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feedback [95], but the AD was for cattle waste not municipal waste. Our trained network 

could potentially be improved with the addition of another hidden layer, or even an increase 

in the number of feedback delays. With over 95% of biogas predictions within 10% of 

historic production, it is believed that this neural network is sufficient for use on site, 

although further validation against historic data should be performed before actual 

implementation. 

Additionally, the data used for training was selected due to the high volume of available data. 

Should future improvements be made to digital monitoring and recording of data, sufficient 

data could be available for each AD such that more parameters could be used for modelling 

(such as pH, VFA or COD).  

 

5.4 Conclusions 

The AAD plant at Howdon poses a unique optimisation and modelling problem regarding the 

three on site ADs. The lack of individual gas flow data poses an interesting challenge in 

predicting the total biogas flow produced on site.  

Multiple linear models of the onsite AD’s were investigated. It has been shown that taking a 

linear approach to predicting biogas production of the anaerobic digesters is possible, but the 

resulting predictions are too noisy for implementation and not useful on site. Whilst quick to 

determine and easily transferable to alternative sites, the resulting models are just not 

accurate enough to be used.  

A NARX Neural Network was also developed for the production of biogas. The resulting 

optimal NARX model consisted of one hidden layer with 13 neurons, and 5 days feedback 

delay. The model is able to accurately predict the biogas production on a day-ahead basis 

over 95% of the time (to within 10% of the actual biogas production), using the limited 

dataset of Temperature, Feed Volume and TDS. The resulting model could potentially be 

improved further with the training of additional ANNs, or by improved data recording on site, 

leading to a richer and better dataset to create models with.  
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Chapter 6 Summary and Future Work 

This final chapter summarises the work presented and discusses the potential uses and 

adaptations that could be performed using the presented methodology. Potential 

improvements to the developed models are also presented, along with some suggestions for 

further investigations.  

 

6.1 General Summary 

The preliminary focus of this thesis was to investigate optimisation opportunities at the 

Howdon WWTP (owned and operated by NWL) with a broad investigation. The initial 

review concluded there was a significant opportunity to aid in managing the gas distribution 

at the AAD plant, as managers did not have a tool to aid in validating their operational 

strategies. A realistic and novel solution was initially developed, using MILP techniques, 

which was used to perform RO of historic operations. This initial investigation found that the 

plant operated optimally within accepted tolerance 98% of the time, and even considers 

planned maintenance.  

At this point, the developed gas distribution model did not consider electricity demand on site 

or carbon emissions – it was intended to develop the model further to include electricity in 

later revisions, however the inclusion of carbon emissions came about due to the very new 

legislation (that was introduced in April 2020). Even though it does not consider carbon, the 

initial RO analysis results using the gas distribution model suggests that the total amount of 

annual biogas that is flared could be reduced by up to 2.4% through improved management, 

resulting in a reduction of approximately 24,000 kg.CO2 emissions per annum. 

The UK Water sector has pledged to become carbon neutral by 2030, with NWL aiming to 

beat the pledge by 2027. To achieve this, NWL has agreed with the regulatory bodies a 

‘Carbon Performance Criteria’, whereby the overall carbon emissions of the business will be 

charged at £187 per tonne CO2 emitted, but renewable generation (such as biomethane) will 

be seen as carbon reducing under this agreement. As the legislation introduced to aid in 

meeting the pledge is very new, including it within the optimisation framework has produced 

a truly novel technology – it is believed to be the first technology in the sector that deals with 

the combined optimisation of plant requirements and business legislation impacts. 
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The Energy Management model (an improved version of the Gas Distribution model that also 

considers electricity demand, electricity generated and carbon emissions) can be used to help 

managers see the impact the new Carbon Emissions performance criteria will have on 

revenues, as well as aid in managerial decision making, such as whether to change energy 

supplier for energy (i.e., price changes).  

The studies shown in chapters 3 and 4 indicate that, to operate in the most cost optimal way, 

large changes to site operational strategy should be made (for example, relying more on 

electrical imports rather than generation through CHP Engines) under certain criteria. Not 

only will this have large impacts on site revenues, but the change to operations may also 

result in other legislative criteria being adversely affected, such as CHPQA (see Chapter 

6.2.4). The main outcome of the analysis performed shows that, for the plant to maintain a 

positive revenue stream, operators should ensure that at least 20,000 Nm3/day of raw biogas 

can be processed through the BUP and injected into the national grid – this is regardless of 

the price of energy that was simulated.  

The Energy Management model developed requires a prediction of how much raw biogas the 

ADs will produce the next day. As such, it would be beneficial for operators to have a tool to 

provide this information, rather than rely on experience alone or historical data. However, 

developing a model of the individual ADs to provide a prediction of biogas production is 

challenging with the current equipment configuration, as the gas flow sensors do not provide 

accurate data that can be used. The initial study demonstrates how data-driven modelling 

techniques can be applied to create a model that is able to predict the combined biogas 

production volumes based on the individual feed and status data of the ADs. Using historic 

data for testing and development, the optimum NARX Neural Network model was able to 

predict the biogas production on a day-ahead basis over 95% of the time (to within 10% of 

the historical value).  

It is hoped that the work presented here in this thesis will have tangible benefits for NWL, 

with the innovative approaches able to provide information that would otherwise be 

unavailable (such as the validation of operational strategies). However, the models presented 

provide solutions to just a few of the areas for optimisation that were identified during the 

initial review stages of this PhD and throughout the development phase of the models. To 

allow the research presented here to achieve its maximum impact, developments and 
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additions to the presented models and other aeras for future investigations are discussed in the 

remainder of this chapter.  

 

6.2 Future Investigations and Improvements 

Though the proposed models in this thesis are highly valuable to NWL managers and 

operators, they are not in an easily usable form for implementation on site, nor do they 

currently cover all current legislative requirements. In addition to improving the proposed 

models to address the limitations discussed in this thesis, there are other avenues of research 

and improvement that have been identified for the AAD plant and the wider WWTP at 

Howdon, which are discussed in the sections below.   

 

6.2.1 Embedding the Energy Management model into NWL systems 

The models presented as part of this thesis are a proof of concept, thus direct implementation 

within NWL systems would be beneficial to enable them to be used appropriately by 

managers and operators alike. As such, the current optimisation models should be transferred 

over to NWL, with training provided to staff on how they can be used. To allow for 

continuous development and improvement, a specialist within the business should also be 

trained on the principles driving the model and its derivation, including understanding the 

source code, the fundamental equations of the models and how they are determined and how 

to apply/build new models for other sites using the existing models. Any deployment of a tool 

using the models developed here would also need to be able to handle changes to existing 

legislation or processes and incorporation of new ones – the development of the current 

Energy Management model has been a dynamic process, with many fundamental design 

changes made to include new regulations (such as the Carbon emissions pledge), thus the 

proposed model will likely not be effective for use if it remains static in the current form. .  

Currently the optimisation framework is implemented in MATLAB as a standalone 

optimisation tool, thus further coding, collaboration, and adjustments are required to provide 

robust implementation of the model (potentially in a different coding language) that can draw 

upon data directly from within NWL’s database. Should a change in coding language be 

required, open-source optimisation packages could prove beneficial, such as using the 

CPLEX or Gurobi optimisation packages in Python. There is also the potential to improve the 

Energy Management model further, with the addition or change to a multi-objective 
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optimisation (instead of a single financial optimisation objective). Whilst a proof-of-concept 

model exists in MATLAB, there are significant challenges that must be addressed to ensure a 

robust implementation on site.  

It is anticipated the methodologies that have been developed throughout this thesis are not 

just applicable across the entire wastewater treatment sector, but anywhere where biomethane 

is produced – it will be necessary to demonstrate the applicability of the model to different 

sites to Howdon if it is to be implemented to areas outside of NWL. Whilst all sites are 

different, there are generic features and similar processes such that the optimisation 

framework could be tailored to new sites. Any future projects should first aim to apply the 

transferred knowledge to other sites within the business at NWL, possibly producing a tool 

that can be used to roll out the developed models to other sites with ease, and once validated 

it could even be rolled out to sites external to NWL.  

 

6.2.1.1 Application to the Brans Sands plant 

NWL has a very similar plant to the Howdon WWTP in Teesside, known as Bran Sands. In 

terms of validating the approaches contained within this thesis to new sites, the Bran Sands 

site would be the best place to start; both sites provide wastewater treatment services, use 

AAD for sludge processing and are able to either generate electricity or inject renewable gas 

into the national grid with the biomethane they produce. Fundamentally the underlying 

equations for the optimisation framework should remain largely unchanged, save for 

changing the process limits specific to the new site. However, the challenge would be to 

design a tool whereby it is easy for non-experts in the optimisation framework to make said 

changes for applicability to new sites. This would require building a system that can 

automatically build the optimisation framework after being given the appropriate units and 

unit constraints. Identifying new model parameters requires data analysis of the site, and 

adding site-specific legislative requirements is also difficult – to be able to add these in an 

easy way for operators would be beneficial but non-trivial. 

 

6.2.2 Improved Biogas Predictions 

The advanced machine learning technique (Neural Network) applied as part of this study is 

an initial investigation into data-driven models that can be applied to the onsite ADs. As the 

initial modelling study shows promising results for the prediction of biogas production, 
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further investigations (beyond that of this project) should be carried out modelling the 

digesters. This future work would likely see a deeper investigation into the shape and size of 

ANNs, as well as investigating using more AD parameters to improve biogas predictions. 

Depending on future data recording capabilities of the ADs gas production volumes (whether 

the placement and configuration of gas flow sensor issue is addressed), any future work could 

also include developing a grey-box model, taking advantage of a combined mechanistic and 

data-driven model to improve biogas predictions.  

 

6.2.3 Energy Market Forecasting 

Currently the agreement between NWL and its energy provider is to receive a ‘fixed-

variable’ electricity tariff for each site, whereby their provider will let them know their 

electricity tariff (that varies over a 24-hour period) one day ahead. Whilst this allows for the 

current model to optimise on a day-ahead basis, predictions over a greater horizon are not 

possible due to lack of information regarding energy prices. It would be beneficial for NWL 

to be able to accurately forecast and optimise future plant operations further than a day-ahead 

basis. 

The main drivers for energy market price fluctuations are demand on the grid (consumer and 

industry) and renewable energy penetration.  The increasing penetration of unpredictable and 

intermittent renewables, such as wind and solar PV, has led to renewable generation recently 

becoming the main cause of variation in power prices [20]. 

A future investigation could utilise historical information for NWL’s site-specific energy 

tariffs alongside historical weather patterns, seasonal and daily grid demand, and renewable 

energy generation to predict the electricity market and ultimately provide NWL with a 

prediction of future site energy tariffs. This work would likely build upon existing research 

into energy pricing forecasts based on renewable penetrations, such as Cummings et al [28].  

 

6.2.4 Introducing new legislation – e.g. CHPQA 

Investigations into legislation and environmental policies surrounding the site, and how they 

may influence site operations, has been ongoing throughout the development of the energy 

management model, with a view to implementing such policies into the optimisation 

framework. The framework requires specific enhancements to be made, such that the 
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consideration of carbon emissions, environmental issues, new legislation, and year-long 

forecasting for biomethane processing can be included.  

It was decided, at the time of development, not to include one particular piece of legislation, 

CHPQA (Combined Heat and Power Quality Assurance). CHPQA can be considered a ‘tax 

relief’ that is achieved assuming the CHP engines provide a certain amount of electrical 

power each year – NWL could potentially fail to meet the legislative requirements should the 

model (and suggested optimised strategy) work independently and without consideration of 

the cumulative running time of the engines.. The current model exists as a day-ahead 

optimisation only, which could have drastic impacts on non-process related criteria, such as 

the CHPQA legislation, if not also considered within the model. To effectively consider this, 

the model would have to be extended to be a year ahead optimisation framework. Adapting 

the energy management model to include these types of legislation will come with new 

academic challenges, such as interpreting the legislation criterion within the optimisation 

framework boundaries – for example, the CHPQA legislation is calculated using non-linear 

expressions, but the MILP framework is entirely linear. 

 

6.2.5 Sludge Network Model 

The current energy model optimises daily operations based on biomethane production levels, 

which is governed by sludge processing at the individual site level. The sludge processing 

levels of individual sites is often affected by factors external to the site’s sludge processing 

demands – for example, unit maintenance at one site could see the processing requirements of 

another increase. NWL must, as a primary focus above all other ventures, meet it’s legislative 

requirement to process the waste it receives within acceptable tolerances.  

New investigations could take place to develop a model to analyse and predict companywide 

sludge processing requirements that could be used in tandem with the site-specific models. 

To develop such an oversight model, data gathering of historical production levels would be 

required to identify base sludge influent levels and potential relationships with weather or 

seasonality. Once any relationships are identified or ruled out, a prediction model for influent 

sludge levels across the business could be developed; this again may include advanced 

machine learning techniques to incorporate possible variations due to weather or seasonality. 

Such a model would aid in the logistics of sludge transport within the business.  



Chapter 6 - Summary and Future Work 

 

119 

 

In addition, understanding and predicting the business wide sludge levels will make the 

sludge processing requirements of each site more transparent, resulting in making prediction 

models for expected daily biomethane production more accurate, in turn making the energy 

management model even more useful.  

 

6.2.6 Possible site adaptations – Smart Grid 

Renewable electricity sources, such as solar, wind and ocean, are often inconsistent and 

fluctuate and therefore meeting the challenge of coordinating fluctuating and intermittent 

renewable energy production with energy system demand is essential as electricity systems 

depend on an exact balance between demand and supply at any time [96]. Often it is 

highlighted that the transition towards renewable energy sources requires large amounts of 

energy storage [97], in order to maintain a constant power supply during peak demand and 

production times. However, the AAD plant at Howdon is generally able to produce a 

consistent renewable energy resource (biogas).  

One of the key assumptions about the AAD plant at Howdon is that any electricity generated 

on site must be either consumed immediately or excess generation is exported to the national 

grid – there is no storage capability for excess generation. Any excess generation would 

likely result in spikes in power production into the national electricity grid, which will in turn 

require extra management from the grid but also could be unbeneficial for site revenues. One 

could argue that adding electricity storage capabilities to the plant could aid in maintaining 

stability in the national grid, as well as power spikes on site, in turn preventing excessive 

ramping of CHP engines – the site could be turned into a localised Smart Grid. The site could 

also introduce more renewable sources of electricity, such as solar or wind turbines. For 

smaller household consumers, this type of hybrid energy storage technology has been widely 

investigated, but profitability remains questionable [98], but for larger sites where energy 

contacts are vastly different from household consumers such a solution could be an attractive 

option.  

Whilst such improvements to the site could increase the complexity of managing site 

operations, the model developed as part of this thesis could be adapted to investigate such an 

opportunity, providing managers and operators with valuable information for potential future 

revenue streams, operating procedures, and scenario analysis.  
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6.2.7 Wider energy market considerations 

The scenario analysis results shown in Chapter 4 suggest that, as a general theme, increasing 

gas prices leads to the reduction of use of natural gas to generate energy on site, subject to the 

electricity prices. This is an interesting (yet somewhat expected) observation, as it 

compliments existing research into energy price volatility the impact on consumption across 

the UK. N. Aminu discusses this trend and the impacts on the wider economic market 

implications in their paper, where modelling increasing gas prices in the UK by one standard 

deviation was found to cause up to “15 quarters [3 month periods] worth of economic decline 

due to reduced demand in the market” [99]. As a main consumer of gas in the Northeast, is it 

in the interest of NWL to monitor their gas usage in comparison with the wider sector? Could 

they be a driver for wider economic change with the decisions on plant operability? Whilst 

the answers to these questions are outside the scope of this thesis, they are interesting and 

noteworthy for senior management to consider when reviewing operating strategies. The 

modelling tools generated as part of this thesis could be used within possible future 

investigations to aid in answering some of these questions.   

 

6.2.8 General Improved Process Control – A short review 

Throughout the completion of this PhD, it was observed that the water industry lacks 

somewhat in the application of Advanced Process Control – investigations into improvements 

and opportunities in this field was originally a potential avenue the PhD could take.  

Typically, in the water industry, Advanced Process Control is uncommon and standard 

control schemes use on-off control via PLC and SCADA systems to control localised 

processes to within specified limits, without consideration of upstream plant behaviour [17], 

which has been identified as directly applicable to the Howdon WWTP site. Widespread use 

of SCADA-type system technology permits the exploitation of total for more advanced 

supervisory concepts system control [26]. Advanced process control techniques could be 

implemented to take advantage of the varying loads and plant conditions, whilst still 

achieving high safety margins. According to M. Katebi et al, “The barrier to the successful 

implementation of the control system is not the control software or hardware, but rather the 

problem of designing control systems that are integrated with the plant operation and 

management and have a high degree of local autonomy, flexibility and reliability” [100].  
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A review by C. Martin et al questioned whether there is enough data available about the 

influent into WWTPs to develop accurate enough models of said influent. It was argued that 

the ability to generate hypothetical influent profiles will increase awareness and improve 

modelling robustness during future designs or improvements to WWTPs [101]. Regarding the 

operation of WWTPs, it is a valid point in that future models and improvements should be 

able to handle abnormal operating behaviours of the plant. An accurate model or simulator 

can be helpful for additional operator training [102], especially in the event of hazardous 

materials in the influent. The MILP model presented in this thesis could be used to aid in 

such an endeavour.  

One of the most common operations for biological secondary treatment on modern WWTP is 

the Activated Sludge Process (ASP) (shown on Figure 1-1 as the Aeration Lanes), used to 

remove organic and nutrient pollutants [103,104]. The ASP requires a high amount of energy 

through the aeration of high volumes of liquid, to ensure high Dissolved Oxygen (DO) 

concentrations. Due to high energy reduction potentials, ASP has been the focus area of 

several researchers to develop accurate and reliable control schemes. O’Brien et al use Model 

Predictive Control (MPC)  for aeration control on a WWTP in [17]. In their work, energy 

savings in excess of 25% were achieved. 

C. Foscoliano et al. developed a recurrent neural network model for problem identification 

where a dynamic matrix control (DMC) was used as a predictive control algorithm; control 

strategies were applied to the BSM1 model, but the coefficients of the dynamic matrix used 

in the model predictive control were kept constant [105]. 

Improving on earlier work applying MPC control to a WWTP [106], W. Shen et al. proposed 

that feedforward control modifications to a feedback DMC scheme perform better at 

controlling the ASP than more complex Quadratic DMC or non-linear MPC [107], giving rise 

to the idea that MPC may not be the optimal or only control strategy that could be applied to 

Howdon STW. 

Work has also been done to develop a smart buffer real time control (RTC) strategy to 

improve Storm Tank control and Primary Clarifier operations [108]. Primary clarifiers were 

optimised such that a reduced number of clarifiers were used for 94% of the time, storm 

discharges were reduced by 44% and discharge volume estimated at 33% lower [108]. 

Similarly, S. Kroll et al. looked at applying an RTC scheme to the pumping network for the 

WWTP influent, where limiting flows to the WWTP did not have an negative impact on the 
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overall sewage network and helped reduce spills [109]. This could be directly applicable to 

the optimisation of Howdon STW, although the Howdon STW is considerably larger in scale 

and likely subject to different legal consents. 

The control schemes discussed so far have mostly been applied to the BSM1 WWTP model 

as a simulation only, with few practical applications. The BSM1 model has become the 

standard simulation tool for performance assessment of control techniques applied to 

wastewater treatment plants (WWTP) [110], meaning different control strategies can be 

compared effectively. Upon review, BSM1 is a reasonable model to apply developed MPC 

for ASP, but it only projects the operation of a WWTP over one week and does not include 

any sludge processing; BSM2 was developed by K. Gernaey in [111], which includes sludge 

treatment and projects operation of a WWTP over a year’s period [112].  

 

Figure 6-1 Overview of BSM2 plant, by I. Santin et al. [112] 

An overview of BSM2 can be seen in Figure 6-1. BSM2 is a clear improvement over BSM1 

with regards to controlling sludge treatment, yet by comparison Howdon STW is a much 

more complicated WWTP (please refer back to Figure 1-1); the inclusion of the AAD 

processing plant makes Howdon STW more advanced than the sludge processing model used 

in BSM2.  

MPC has developed considerably over the past few decades [113], both in industry and 

within research, and appears to be rising in popularity in line with other more complex 

control algorithms. This is likely due to the ability of MPC to handle complex non-linearities 
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that are common in industry [113]. However, complex non-linear optimisers can have high 

computational requirements. 

Advanced Control schemes should be able to take advantage of new monitoring technologies 

for instantaneous information regarding plant status, removing the need for regular operator 

measuring and intervention.  

The WWTP at Howdon treats both liquid effluent and ‘sludge’ solids (that make up Raw 

Sewage that flows into the site), therefore MPC or Neural Network models and controllers 

that have previously been developed could potentially be applied to the wider operation of the 

Howdon WWTP. However, there is a clear gap in literature of designing control schemes and 

optimisation techniques for AAD sections of WWTP, as literature discussed focuses on 

developing control strategies of the effluent treatment side of a WWTP. The MILP 

optimisation model developed in this thesis for the optimisation of energy and gas 

distribution on site could be used in tandem with a wider supervisory advanced control 

scheme for the entire WWTP, which could be developed as part of future endeavours by 

NWL for continuous improvement. 

 

6.3 Major Contributions to Date 

Presented here is a list of the major contributions to the scientific and academic community 

as a result of this PhD: 

• Article Published in the 200th Edition of the Institute of Water’s magazine 

[https://issuu.com/instituteofwater/docs/1118_iow_magazine_q4_interactive_v2] 

• Wastewater Network Conference Winner of Best Poster (Nov 2018) 

[https://www.ncl.ac.uk/media/wwwnclacuk/engineering/files/stream/wastewater-

network-conference-2018-harry-laing-poster-competion-winner.pdf] 

• ECCE12 conference in Florence Poster (Sept 2019) 

• IChemE Advances in Process Automation and Control Conference in Manchester 

Poster (Nov 2019) 

• STREAM Annual Conference Poster (Jul 2019) 

• Process Intensification Network (PIN) Conference Poster (Jun 2019) 

• Research Paper (Published): “Development of a Biogas Distribution Model for a 

Wastewater Treatment Plant: A Mixed Integer Linear Programming Approach” 

https://issuu.com/instituteofwater/docs/1118_iow_magazine_q4_interactive_v2
https://www.ncl.ac.uk/media/wwwnclacuk/engineering/files/stream/wastewater-network-conference-2018-harry-laing-poster-competion-winner.pdf
https://www.ncl.ac.uk/media/wwwnclacuk/engineering/files/stream/wastewater-network-conference-2018-harry-laing-poster-competion-winner.pdf
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published with Institute of Water’s ‘Water Science and Technology’ research journal. 

(Jun 2020) [https://doi.org/10.2166/wst.2020.363] 

• Research Paper (Under Review): “An energy and carbon management model for an 

Advanced Anaerobic Digestion plant”, currently under review with the research 

journal “Energy” (Jun 2021).  

• IChemE Advances in Process Automation and Control Conference (Virtual) 

Presentation - "Optimising Energy and Carbon management for an AAD plant at 

Northumbrian Water using Mixed Integer Linear Programming ".  (Oct 2021) 

 

The majority of Chapter 2 of this thesis has been adapted from the research paper published 

with ‘Water Science and Technology’, whilst the content of Chapter 3 is currently under 

review with ‘Energy’ for potential publication. 

 

6.4 Statement of Innovation 

The outcomes of this thesis can be summarised in the following four main topics: 

1. Development of an Energy Management model for operations optimisation: 

The model optimises gas distribution on site to maximise revenues, ensures electricity 

and heat demands for the site are met and integrates new legislation around carbon 

emissions. Use of the model allows for improved forecasting of operational strategies 

required to maximise revenues, and also validates operators’ decision making.  

2. Scenario analysis of site operations using the developed models: 

The Gas Distribution model was used to perform retrospective analysis of historical 

site operations, validating site performance and operational decision making. With the 

introduction of the new carbon emissions legislation, the improved Energy 

Management model was used to investigate potential future scenarios around energy 

pricing, biogas production and biomethane injection limits.  

3. A methodology to predict biomethane production using data driven modelling 

Development of a mechanistic model for each of the on-site AAD’s is difficult due to 

the data that is available for them (as discussed in Chapter 5). It was shown that a 

purely data driven model could be developed to reasonably predict biogas production 

https://doi.org/10.2166/wst.2020.363
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volumes on a day ahead basis, which could be used in tandem with the Energy 

Management model to improve forecasting of operational strategies on site.  

4. The GUI (app) for operators to use:  

The GUI developed demonstrates how the models presented in this thesis can be 

integrated into a visual format for site operators and managers to be able to make use 

of. Day ahead optimisations are presented in graphical form such that operators can 

see the impact new legislations and energy prices can have on optimal operational 

strategies, as well as. Operators were also able to provide valuable feedback 

throughout the development of the methodology of the presented models. 

 

6.5 Final Notes 

The main aim of the work presented in this thesis was to explore new control and/or 

optimisation opportunities at the Howdon WWTP. Through the application and development 

of novel MILP techniques, an optimisation tool (Energy Management Model) was created for 

the AAD plant at Howdon. This tool can be used by operators and managers to validate 

current or historic operating strategies and investigate future scenarios, such as maintenance 

schedules or future energy pricing, and once implemented on site could be used daily. The 

Energy Management Model also considers the new carbon emissions performance criteria, 

which will provide valuable outcomes to aid in NWL’s carbon neutrality pledge.  

Additionally, initial investigations have demonstrated that reasonably accurate predictions of 

biomethane production can be modelled though data driven techniques only, without the need 

for a mechanistic model of the ADs on site. This section of research should be continued 

further, exploring other modelling approaches over a prolonged period.  

Finally, the future direction of the research presented within this thesis has been discussed. 

The main focus should be to embed the models presented directly within NWLs systems such 

that they can begin to be used on site by managers and operators, with continuous 

developments to the existing models in mind (such as the ability to include of CHPQA and 

future legislation that do not exist yet).  

There are multiple avenues of future investigation that could be pursued that would be 

beneficial to the models presented or that could make use of said models (such as a sitewide 

Advanced Process Control supervisory scheme, or energy market forecasts) that have been 
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identified. Process modelling and advanced control of WWTPs presents a real opportunity for 

improvement of the sector operates, and it is believed the work presented in this thesis helps 

to advance the water sector in this area.  
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