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Abstract

Ultraviolet light is known to cause skin damage and photoaging, and chronic exposure can
lead to skin cancer. The effects of visible light and infrared light on the skin are less well
understood, though some believe they contribute to oxidative stress and photoaging.
Understanding the mechanisms of photodamage is important for the development of
sunscreens to effectively prevent photodamage and maintain skin health. The objective of
this study was to optimise experimental conditions for assaying the irradiation of visible and
infrared light on human skin cells in vitro, and determining the effects of these wavelengths

on reactive oxygen species (ROS) production and gene expression.

Temperature control during infrared irradiations is critical to understanding the effect of
light on chromophores rather than through heating. Without adequate temperature control,
tissue culture plates could exceed 60°C, resulting in greater than 90% cell death. Careful
consideration of medium conditions is crucial for ensuring results are not due to unexpected
interactions of light with medium components. The presence of riboflavin, a component of
almost all commercially available cell culture medium, reduced viability in cells irradiated

with blue light by 45%.

When adequately controlled, it was found that 2 hours of infrared at solar intensity or a 10-
hour equivalent dose at 9 x peak solar intensity did not affect ROS as measured with flow
cytometry, and RNA sequencing showed few changes to gene expression with less than 10
differentially expressed genes. A dose of visible light equivalent to one hour of peak solar
visible light did not induce a ROS signal measurable after irradiation. However, it was found
to affect extracellular matrix genes MMP1 and MMP3 to similar extents to a 2.16 standard
erythemal dose of UV and induce ferritin expression where the UV dose did not, indicating a

possible effect on photoaging and oxidative stress.

In summary, this thesis demonstrates that infrared light has little effect through absorption
of chromophores, but visible light may affect fibroblast extracellular matrix regulation and

iron homeostasis.
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Chapter 1 Introduction

1.1 Skin

1.1.1 Dermis and epidermis

The skin is the largest organ in the human body. It is made up of layers, starting with the
outermost stratum corneum, underneath which lies the epidermis, dermis then hypodermis
(Figure 1-1). Our skin protects us from external insults such as sunlight, pollution, toxic
chemicals, mechanical damage and infectious microbes. However, it can itself be damaged
by such insults. DNA strand breaks, oxidative stress and the secretion of pro-inflammatory
signals are some of the effects that can be caused by external factors (Birch - Machin and
Bowman, 2016). The resulting damage is not always totally repaired. The accumulation of
damage from these insults results in a loss of structure and function, leading to the
pronounced wrinkles and pigmentation characteristic of extrinsic skin ageing. This “extrinsic
ageing” is different to intrinsic skin ageing which is inevitable and largely a result of genetics
(Blume-Peytavi et al., 2016a). Extrinsic skin ageing leads to prematurely aged skin with
increased susceptibility to diseases such as cancer (Hudson et al., 2016). As much as 80% of
visible ageing in facial skin has been attributed to extrinsic factors, primarily sunlight

(Kammeyer and Luiten, 2015).

Beneath the epidermis lies the dermis. These are attached by the dermal-epidermal junction
which is important for signalling and cohesion between the two layers (Langton et al., 2016).
There are two layers of the dermis. Directly underneath the epidermis lies the papillary
dermis, which is more densely populated with cells and blood vessels than the underlying
reticular dermis, which is more dense with connective tissue. The dermis also contains hair
follicles and sensory neurons. A healthy dermis is comprised of fibroblast cells which
produce an extracellular matrix (ECM) made up of collagen, elastic fibres, proteoglycans and
glycosaminoglycans (GAGs) (Haydont et al., 2019). Its role is to provide a strong and flexible
layer of protection for the underlying structures. Collagen accounts for approximately 70% of
the adult dermis dry weight, and the collagens found are primarily collagen type | (85%)
followed by type Il and type V, and small amounts of other types (Oikarinen, 1994, Waller

and Maibach, 2006). The collagen fibres form a large network, which provides structure to
1



the skin. Alongside this is the elastic network, which allows the skin to return to its original
place after being stretched. GAGs are large molecules of polysaccharide chains which bind to
water and provide plumpness in the skin. Hyaluronic acid is the most abundant GAG in the

dermis (Juhlin, 1997).

Fibroblast cells in the dermis are responsible for the generation and maintenance of the
ECM, and also have roles in hair development, wound healing, fibrosis, psoriasis and skin
cancer (Sorrell and Caplan, 2004). They interact with endothelial cells, epithelial cells,
adipocytes, neurons, inflammatory cells and stem cells through cell-cell communications and
through cytokines and grown factor secretion (Sriram et al., 2015). Fibroblasts within the
dermis are not heterogeneous, as demonstrated by the fibroblasts of the papillary dermis
creating a thinner, looser ECM compared to the denser reticular ECM. In vitro, papillary
fibroblasts proliferate at a higher rate than reticular fibroblasts, and in collagen matrices

reticular fibroblasts are faster to cause contraction (Sorrell et al., 2004, Sorrell et al., 1996).

With intrinsic ageing, the collagen and elastic networks of the dermal extracellular matrix
become more fragmented (Blume-Peytavi et al., 2016b). Hyaluronic acid becomes less
abundant, and the thickness of the dermal layer is decreased. This results in wrinkles, loss of
elasticity and reduced wound healing capacity. The turnover of ECM components is slow
compared to molecules within cells, with an approximate collagen half-life of 15 years,
allowing for the accumulation of damage over time (Verzijl et al., 2000). Extrinsic ageing
results in enhanced deposition of elastic fibres, leading to skin becoming yellowed,
thickened and coarsely wrinkled (Heng et al., 2014). The severity of elastosis is correlated

with exposure to sunlight (Kligman, 1969).
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Figure 1-1 Schematic of skin structure.
Created with BioRender.com.

1.1.2 Mitochondria

Mitochondria are organelles of 0.5 — 1 um that can be found as individual structures within
cellular cytoplasm or connected in a mitochondrial network. They have an inner and outer
membrane which separates the matrix inside the inner membrane from the intermembrane
space. This allows the maintenance of an electrochemical gradient across the inner
mitochondrial matrix, which is established by the electron transport chain (ETC) complexes
located there and drives the formation of adenosine triphosphate (ATP) by ATP synthase
(Figure 1-2). The ETC is a system that allows electrons to be transported from the protonated
nicotinamide adenine dinucleotide (NADH) or protonated flavin adenine dinucleotide
(FADH3) donors, along the chain of complexes. The energy released by this electron transfer
is to be used to pump protons into the matrix, setting up the electrochemical gradient. ATP
synthase harnesses this potential energy to form ATP by allowing protons through its pore,
which releases the energy required for its conversion from adenosine diphosphate (ADP).
The mitochondrial matrix contains NADH and FADH,, the electron donors for the ETC,

themselves products of the citric acid cycle that takes place within the matrix.

Though the electron transport chain is efficient, with 98% of the oxygen used leading to ATP
production, there is some electron “leak” in the form of ROS rather than ATP from the

remaining 1 — 2%, which forms 90% of the ROS produced by the cell under normal
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circumstances (Chance et al., 1979). These electrons react with molecular oxygen at complex
| or lll, leading to the formation of superoxide radicals (O2) (Miwa et al., 2003, Han et al.,
2001, Muller et al., 2004, Quinlan et al., 2012, Held, 2012, Murphy, 2009). These radicals are
poorly reactive themselves, but can lead to the formation of reactive oxygen species.
Superoxide dismutase in the intermembrane space or matrix converts superoxide radicals
into hydrogen peroxide (H202) which can then be converted into water by glutathione
peroxidase or catalase, cross the mitochondrial membranes and enter the cytoplasm of the
cell. If unbound ions of iron or copper are available however, H,0, will react to generate the
hydroxyl radical (OH") which is highly reactive with many biological molecules. It will cause
damage to lipids, proteins, carbohydrates, amino acids and DNA, but unlike superoxide it
cannot be enzymatically neutralised (Reiter et al., 1995). When radicals react, they create
new radicals which can themselves be damaging. Such is the case with lipid peroxidation,
which can lead to a chain reaction by which the oxidised fatty acid can remove an electron
from a neighbouring unsaturated fatty acid, causing this to now be oxidised. Other radicals
that can be produced from H,0; include singlet oxygen (*0;) and reactive nitrogen species

(RNS) nitric oxide (NOe®) and peroxynitrite (ONOO").
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Figure 1-2 Diagram showing origin of ROS from mitochondrial electron transport chain.
Image credits: Improta and Douki 2021, (Improta and Douki, 2021)

When the production of ROS overwhelms the cell’s antioxidant capability this results in a
redox imbalance which leads to damage to many biological molecules, and the cell is said to
be in a state of oxidative stress. The cell may recover, though some damage may remain, or
it may lead to apoptosis or necrosis. UV damage is due mainly to ROS initially after
irradiation, though reactive nitrogen species such as nitrogen dioxide radicals may

contribute to UV damage (Terra et al., 2012, Opldnder et al., 2007).

While ROS can be damaging, they also act as essential signalling molecules in cells. Processes
such as the inflammatory response, cell differentiation, mitogen-activated protein kinase
(MAPK) signalling and pro-apoptotic signalling involved ROS, and elevated ROS activates the
nuclear factor erythroid 2-related factor 2 (Nrf2) which regulates the expression of
antioxidant genes (Yanes et al., 2010, Finkel, 2011, Fang et al., 2016, Ray et al., 2012, Imhoff
and Hansen, 2009, Formentini et al., 2017). In skin, ROS is necessary for normal epidermal
function, without which keratinocyte differentiation abnormalities lead to skin barrier
defects, improved by the addition of H,O, (Hamanaka et al., 2013). The positive effects of

low concentrations of ROS in cells, while high concentrations lead to damage, is termed



mitohormesis (Yun and Finkel, 2014, Ristow and Schmeisser, 2014). A negative feedback
loop in the mitochondrial inner membrane allowing proton leak diminishes the
electrochemical gradient and thus ETC activity and ROS production (Brand, 2000, Mailloux
and Harper, 2011).

1.1.3 Mitochondrial DNA

While the majority of cellular DNA is stored in the nucleus of the cell, the mitochondria have
their own DNA (mtDNA) stored in nucleoids tethered to the inner mitochondrial membrane.
Each nucleoid consists of 2 —8 mtDNA molecules, and each mitochondrion may have 1 -11
nucleoids. A cell may have one or thousands of copies of mtDNA depending on the tissue
(Garrido et al., 2003, Veltri et al., 1990, Shadel and Clayton, 1997). mtDNA codes for 13
proteins, 22 tRNAs and 2 rRNAs, all synthesised within the mitochondria (Figure 1-3).
Additional mitochondrial genes are coded in the genomic DNA in the cell nucleus. Given its
proximity to the source of mitochondrial ROS, the ETC, mtDNA is particularly at risk of
oxidative damage compared to nuclear DNA. Furthermore, it lacks protective histones, and
its repair machinery is more limited, leading to a greater burden of mutation. The higher
burden of damage and limited repair mechanisms lead mtDNA to have an approximately 10-
fold higher rate of mutagenesis (Brown et al., 1979). This can itself lead to ETC components
being incorrectly produced, and result in greater ROS production by reducing the efficiency
of the ETC. This can further damage both ETC components and mtDNA, which can lead to a
cycle of damage. A single mutation of mtDNA does not necessarily have disastrous
consequences. The number of mtDNA copies in a cell would mean that undamaged DNA
would still be present for the transcription of mitochondrial genes. This allows mitochondria
to continue to function with higher levels of mutation than nuclear DNA can (Khrapko et al.,

1997).

While some damage can be repaired, high levels of mutation lead to mitochondrial
dysfunction. This can be managed through mitophagy, a process by which dysfunctional
mitochondria are removed from the cell, allowing only properly functioning mitochondria to
remain and thus reducing the mtDNA damage of the cell (Gebhard et al., 2014). Oxidative

stress can also lead to apoptosis, so if the mitochondria are that badly damaged then the



affected cells would undergo apoptosis, so on a tissue scale the mtDNA damage burden

would be reduced (Bess et al., 2012).

Mutations in mtDNA are more frequent than those in nuclear DNA, and some patterns of
mutation are common. The 4977 base pair “common deletion” deletes polypeptides from
complexes |, IV and V and 5 mitochondrial tRNAs. This has been shown to increase ROS
release and oxidative stress (Birch-machin et al., 1998, Indo et al., 2007). The 3895 deletion
is associated with UV damage in skin cells, and has been found to be more frequent in the
dermis than epidermis (Powers et al., 2016, Krishnan et al., 2004, Harbottle et al., 2010,
Harbottle and Birch-Machin, 2006). It has also been linked to macular degeneration in retinal
cells (Gendron et al., 2013). The T414G transversion point mutation can also be used as a
biomarker of sun exposure in skin, though it is not thought to affect ROS (Chinnery et al.,
2001, Michikawa et al., 1999, Birket and Birch-Machin, 2007, Birket et al., 2009). Other
deletions include the 3715 base pair deletion and 6247 base pair deletion (Eshaghian et al.,
2006). Though the specific effects are unknown, the deletions overlap with the 3895 and
4977 base pair deletions respectively, so it is possible that they have similar effects on ROS
production. Tandem duplications in the D-loop of the mtDNA molecule have also been
found, and are thought to be associated with ageing (Krishnan and Birch-Machin, 2006, Wei
et al., 1996). Other mutations, which are not location-specific, include 8-oxoG mutations
which can lead to mitochondrial dysfunction, senescence and apoptosis (Oka et al., 2008,

Chen et al., 1995, Dobson et al., 2000).

One type of mtDNA damage that can lead to mutations is strand breaks. These can be single
strand breaks, where only one of the DNA strands is broken, or double strand breaks, where
both strands are broken. These can be repaired, though this can result in mutations where
the repair was incorrect (Krishnan et al., 2008, Nissanka et al., 2019). Alongside mtDNA
mutation assays, it is also possible to assay strand breaks, which can be useful for
unders