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Abstract

We classify in a uni�ed approach the simple restricted modules for the minimalp-envelope
of the non-graded, non-restricted Hamiltonian Lie algebra H.2I .1; 1/Iˆ.1// over an
algebraically closed �eld k of characteristic p � 5. We also give the restrictions of these
modules to a subalgebra isomorphic to the �rst Witt Algebra, a result stated in [S. Herpel
and D. Stewart, Selecta Mathematica 22:2 (2016) 765–799] with an incomplete proof. We
end by completing the classi�cation of the simple restricted modules over �elds of all
characteristics by considering the characteristic 3 case separately.
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Notation and conventions

We let N D f0; 1; 2; : : :g and N>0 D N n f0g and let C be the �eld of complex numbers.
We let p denote an arbitrary prime number and we denote by Fp the �eld of p elements.
We denote the Kronecker delta by ıij . We denote the n � n identity matrix by In. The
transpose of a matrix A will be denoted by AT .

Throughout, k is the ground �eld, g and h Lie algebras over k, andA a (not-necessarily
associative) k-algebra. If g is de�ned over a �eld k of positive characteristic p, then we
say that g is a modular Lie algebra.

We let kv D khvi denote the one-dimensional k-vector space with basis v. More gener-
ally, we let khv1; : : : ; vni denote the n-dimensional k-vector space with basis fv1; : : : ; vng,
or if one is inside a vector space V , we let it denote the span of the n vectors. Furthermore,
if the vectors are inside g, we let ghv1; : : : ; vni denote the Lie subalgebra generated by
fv1; : : : ; vng. We denote the centre of g by C.g/, see De�nition 3.1.18. We adopt the
notation Œx; g� D 0 to mean: for all y 2 g, we have Œx; y� D 0; likewise for Œg; x� D 0.

By analogy with the situation in vector spaces, if M is an A-module, we denote
by A hm1; : : : ; mni the A-submodule of M generated by the mi .1 In an algebra or ring,
we let .a1; a2; : : : ; at/ denote the two-sided ideal generated by the elements a1; : : : ; at ;
ideals are understood to be two-sided unless otherwise stated. If A has an identity or unit
element, we denote it by 1.

Form 2 N>0 and n 2 Nm>0, we denote the algebras of divided powers byO.mIn/ and
O.m/, see De�nition 4.1.2. The symbol Wn denotes the Witt algebra W.nI .1; : : : ; 1// D
W.nI 1/, see De�nition 4.1.4. The symbols H and bH denote the Hamiltonian Lie alge-
bra H.2I .1; 1/Iˆ.1// D H.2I 1Iˆ.1// and its minimal p-envelope, respectively, see
De�nition 5.2.7 and the remark after it and De�nition 3.2.32 and the discussion after
Proposition 3.2.35, respectively. We denote the polynomial ring over k in n indeterminates
by kŒX1; : : : ; Xn�. For a set X , we use idX to denote the identity function on X . The

1Caution: if M is a g-module, the notation g hxi is potentially ambiguous. If x 2 M it means the
g-submodule generated by x, while if x 2 g, it means the Lie subalgebra generated by x.
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restricted universal enveloping algebra of a restricted Lie algebra .g; Œp�/ is denoted by
u.g/, De�nition 3.2.29; more generally for a linear form S 2 g�, the S -reduced universal
enveloping algebra of g is denoted by u.g; S/, see De�nition 3.4.5.

Inclusions are denoted by� and are not assumed to be proper unless stated. Through-
out, subspace means vector subspace. Direct sums are vector space direct sums, unless
it is clear from context or stated otherwise. We use � to denote the suitable notion of
substructure given the context, so that h � g denotes that the Lie algebra h is a Lie
subalgebra of g, while W � V denotes that W is a vector subspace of V , and so on.
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Chapter 1

Introduction and results

In the broad light of day
mathematicians check their equations
and their proofs, leaving no stone
unturned in their search for rigour.
But, at night, under the full moon, they
dream, they �oat among the stars and
wonder at the miracle of the heavens.
They are inspired. Without dreams
there is no art, no mathematics, no life.

Atiyah, NAMS Jan 2010, p. 8

A modular Lie algebra g is simply a Lie algebra de�ned over a �eld k of positive
characteristic p. Much work has gone into classifying the irreducible representations of
modular Lie algebras and working out their dimensions, for example by Chang, Holmes,
Koreshkov, Shen, Feldvoss, Siciliano and Weigel (Feldvoss et al., 2016; Holmes, 2001, 1998;
Koreshkov, 1978; Chang, 1941; Shen, 1988a,b). However, almost all this work has been
concentrated on those of restricted type, i.e., those which admit a mapping Œp� W g �! g

such that ad xŒp� D .ad x/p for all x 2 g. Nonetheless, most Cartan-type modular Lie
algebras are in fact non-restricted. Hence there is much left to do.

In some more detail, consider the Lie algebra W1 D W.1I 1/ D Derk.kŒX�=.Xp//,
called the �rst Witt Algebra. It consists of all derivations (endomorphisms satisfying the
product rule) of the truncated polynomial ring kŒX�=.Xp/. Chang (1941) determined the
irreducible representations with arbitrary characters of W1. After some time of relatively
little research on these algebras and their representations, Strade (1977) gave new life to
their study by giving a new proof of the results of Chang via new methods.
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Chapter 1. Introduction and results

Afterwards Shen, working with graded Lie algebras of Cartan type in particular,
was able to generalise the results of Chang to the nth restricted Jacobson-Witt algebra
Wn D W.nI 1/, the Lie algebra consisting of all derivations of the truncated polynomial
ring

kŒX1; : : : ; Xn�=
�
X
p
1 ; : : : ; X

p
n

�
:

This algebra has basis (in divided power notation)n
x
.a1/
1 x

.a2/
2 � � � x.an/

n @xi
W 0 � ai � p � 1; i D 1; : : : ; n

o
;

where @xi
is the (special) derivation uniquely determined by the property

@xi
x
.a1/
1 x

.a2/
2 � � � x.am/

m D x
.a1/
1 � � � x

.ai�1/
i�1 x

.ai�1/
i x

.aiC1/
iC1 � � � x.am/

m ;

see §4.1 for more details. We have k
˝
xi@xj

W i; j D 1; : : : ; n
˛
Š gln.k/, see Proposi-

tion 4.1.8. For the following theorem, see Shen (1988a):

Theorem 1.0.1 (Simple restricted Wn-modules). Let � 2 Fnp . Let L0.�/ be the
restricted simple gln-module of highest weight �. Then

1. There are pn distinct (up to isomorphism) simple restrictedWn-modules, represented
by
˚
L.�/ W � 2 Fnp

	
2. If � is not exceptional, then L.�/ is the induced module from L0.�/.

3. If � is not exceptional, then dimk L.�/ D pn dimk L0.�/, and if � is exceptional,
it is either the trivial one-dimensional module, or has dimension

�
n�1

j

�
.pn � 1/ for

some 0 � j < n.

Here, a restricted g-module .V; �/ is just a g-module that respects the restricted struc-
ture of g, i.e, �.xŒp�/ D �.x/p for all x 2 g. As we will see, Shen’s theorem classifying
all the simple restricted modules is not too dissimilar from the theorem we will prove
concerning restricted modules for bH D H.2I .1; 1/Iˆ.1//Œp�, the minimal p-envelope of
the Hamiltonian Lie algebra of Cartan type H.2I .1; 1/Iˆ.1//. There, too, the representa-
tion theory of gln will play a foundational role (with n D 2 as we are concerned with a
subalgebra of W2). Also foundational will be to study induced modules and determine
which weights will be exceptional and which will not be. Finally, we will give similar
dimension formulas for all restricted simples over bH .

2



Chapter 1. Introduction and results

Continuing our overview of the situation, Holmes (2001) went on to generalise the
work of Shen and Chang and determined the simple modules of character height at most
one (this includes those of character height �1, which corresponds to the restricted case)
for the restricted Witt algebras Wn using a uniform approach.

Then, Holmes and Zhang (2002) undertook work to generalise the classi�cation of
simple modules with such character heights to the other three families of restricted
Cartan-type Lie algebras, namely the special algebras, the Hamiltonian algebras, and the
contact algebras. This work was completed by Zhang in Zhang (2002), where he dealt
with the simple modules of exceptional weight.

Holmes and Zhang (2006) studied modules for the restricted Witt algebra Wn with
character height greater than one, and also proved several results concerning the simplic-
ity of induced modules of character height greater than one in restricted Cartan-type Lie
algebras.

A great overview of the situation can be found in Benkart and Feldvoss (2015). Also
see the work of Nakano in his monograph Nakano (1992), where he describes a fairly
general setup for studying representations of Cartan-type Lie algebras. Of particular
interest for us is his work on �nding decompositions for Verma modules.

This thesis will focus on calculating dimensions of irreducible representations of
a non-restricted Hamiltonian-type Lie algebra. We classify, then, the simple restricted
modules for the Hamiltonian-type Lie algebra H.2I .1; 1/Iˆ.1//, more precisely for its
minimal p-envelope bH , and give dimension formulas for all of them. Moreover, we
calculate the composition factors of all restricted induced modules. This completes the
rank one and rank two picture1; the other non-restricted Hamiltonian algebra was only
recently dealt with by Feldvoss, Siciliano and Weigel in Feldvoss et al. (2016).

Apart from the intrinsic motivation to expand the understanding of the representation
theory of modular Lie algebras to non-restricted Cartan-type Lie algebras, it turns out that
such an understanding has played an important role in the study of maximal subalgebras of
exceptional classical Lie algebras g over an algebraically closed �eld of good characteristic,
for instance, in Herpel and Stewart (2016a); Premet and Stewart (2019). In Herpel and
Stewart (2016a) the authors show that for such a Lie algebra g, if it is simple, then any
simple subalgebra h of g is either isomorphic to the �rst Witt algebra W1 or of classical
type. This result relied (among many other things) on knowledge of the restrictions of
the simple modules we classify to a subalgebra isomorphic to W1, but the argument was

1In the sense that it completes the description of the restricted modules for Hamiltonian algebras of
absolute toral rank 1 and 2, see §6.1 for more details.
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Chapter 1. Introduction and results

incomplete because the representation theory for H.2I .1; 1/Iˆ.1// turned out to be
more complicated than expected; for more details see Lemma 2.7, Lemma 2.9, and the
proof of Theorem 1.3 at the end of §4 in Herpel and Stewart (2016a).

Our main result is Theorem 6.1.7, which gives a full description of the p2 � p C 1
isomorphism classes of simple restricted bH -modules.

1.1 Outline

The structure of the thesis is as follows: Chapter 2 reviews the notions from the theory of
associative algebras and commutative algebra that will be needed throughout, including
some important results such as the Jordan-Hölder theorem, which tells us important
information concerning composition factors and composition series.

In Chapter 3 we cover the general theory of Lie algebras, de�ning subalgebras, ideals,
quotients, homomorphisms, modules and module operations, and giving important results,
as well as introducing restricted Lie algebras, restricted universal enveloping algebras,
restricted representations, induced representations, �ltrations, and gradations.

In Chapter 4, we look at the algebras of divided powers O.mIn/, for m a positive
integer and n 2 Nm>0. We study their Lie algebras of derivations and certain important
Lie subalgebras of these algebras of derivations, such as the generalised Jacobson-Witt
algebra W.mIn/. These algebras will be important since the Hamiltonian algebras we
look at in later chapters will be de�ned in relation to these algebras.

Chapter 5 continues the study of Lie algebras of derivations and de�nes the general
family of Hamiltonians H.2r/ for r 2 N>0 by considering certain di�erential forms.
We then go on to de�ne the family of graded Hamiltonian Lie algebras of Cartan type.
This allows us to then de�ne certain �ltered deformations of these algebras, such as
H.2InIˆ.l// and H.2InIˆ.�//. We conclude by citing some classi�cation theorems
and isomorphisms between these algebras, as well as giving some explicit descriptions of
them.

Chapter 6 goes on to work out the restricted simple modules in characteristicp � 5 for
the Hamiltonian algebra H.2I .1; 1/Iˆ.1//, as well as determining the module structure
of all the restricted induced modules.

Chapter 7 then looks at the question of restricting the simple modules found in
Chapter 6 to a subalgebra of H.2I .1; 1/Iˆ.1// isomorphic to W1 and decomposing them
in terms of the simple modules for W1. We conclude the chapter by giving an application
of this result.

4



Chapter 1. Introduction and results

In Chapter 8, we extend the work started in Chapter 6 to all characteristics (consid-
ering that the Hamiltonian Lie algebras are not de�ned in characteristic p D 2) and
perform the classi�cation of the restricted simples for bH over algebraically closed �elds
of characteristic p D 3, giving the module structure of all the restricted induced modules
as well.

5



Chapter 2

Preliminaries

In the elder days of art
Builders wrought with greatest care
Each minute and unseen part,
For the Gods are everywhere.

Longfellow, ‘The Builders’

The material in this chapter concerns the basic commutative algebra and the basic
theory of associative algebras and their representations underpinning the theory of
modular Lie algebras. It touches only brie�y at the end on some notions from homological
algebra.

2.1 General algebra and commutative algebra

We refer the reader to (Etingof et al., 2011, §2.1–§2.6) for a quick introduction to the main
ideas and results concerning associative algebras and their representations.

A good source for general representation theory is the classic Fulton and Harris
(1991).

Definition 2.1.1. The �eld k is said to be algebraically closed if every non-constant
polynomial in kŒX� has a root in k.

Definition 2.1.2. An algebra A over a �eld k is a vector space A over k equipped with
a bilinear product � W A � A �! A.

If the product is associative, that is, if

a � .b � c/ D .a � b/ � c

6



Chapter 2. Preliminaries

for all triples a; b; c 2 A, then we say that A is an associative algebra.
An element 1 2 A such that 1 � a D a � 1 D a for all a 2 A is called a unit. Algebras

having a unit element are called algebras with unit or algebras with unity.

From now on, if A is an associative algebra we will write the product a � b multiplica-
tively as ab for all a; b 2 A.

For the rest of this section we assume that A is an associative algebra.

Example 2.1.3. The following are examples of associative algebras over k:

1. the vector space k over itself with multiplication given by the usual �eld multipli-
cation;

2. the polynomial ring kŒX1; : : : ; Xn� in indeterminates X1; X2; : : : ; Xn;

3. the algebra of all k-linear morphisms of any vector space V to itself, denoted
Endk.V /, with multiplication given by fg WD f ı g for all f; g 2 Endk.V /;

4. the algebra of functions from a set X to k, where the multiplication is de�ned
pointwise: .fg/.x/ WD f .x/g.x/ for all x 2 X and f; g W X �! k.

Definition 2.1.4. We say that a subspace B � A is a subalgebra if BB D

fbb0 W b; b0 2 Bg � B .

Definition 2.1.5. A representation of an associative algebra A is a vector space V
equipped with an algebra homomorphism

� W A �! Endk.V /:

The vector space V is said to be an A-module if there is a k-bilinear map:

� W A � V �! V

.a; v/ 7! a � v;

such that
.ab/ � v D a � .b � v/

for all a; b 2 A and all v 2 V .

Remark. IfA is an algebra with unit, then we require � to preserve the unit, i.e., �.1/ D idV
and for modules, we require

1 � v D v

7



Chapter 2. Preliminaries

for all v 2 V .

Remark. An associative representation .V; �/ de�nes an A-module, via x � v WD �.x/.v/.
Similarly, an A-module V de�nes a representation � W A W�! Endk.V / via �.x/.v/ WD
x � v. Thus, the two concepts are equivalent, and we use them interchangeably.

Remark. We will consider, unless stated otherwise, left-modules, i. e., we write a � v D
�.a/.v/ for the action of a 2 A on elements of the A-module V , but clearly one can
de�ne right-modules.

Example 2.1.6. Let V be any vector space. De�ne the representation � by letting A act
trivially:

a � v D 0

for all a 2 A; v 2 V .
If V D k then we say that V is the trivial representation.

Example 2.1.7. Let V D A then A acts on itself via

a � b WD ab;

for all a; b 2 A, i.e. via left-multiplication. This representation is called the regular
representation of A.

Example 2.1.8. Let Sn be the symmetric group on n points. Let V D kn and let
fei W 1 � i � ng be the standard basis. Then V becomes a module for the group algebra
kSn via � � ei WD e�.i/ for all � 2 Sn and all ei . In coordinate form:

� � .´1; : : : ; ´n/ D
�
´��1.1/; : : : ; ´��1.n/

�
:

This is the natural permutation representation of kSn.

Definition 2.1.9. A subspace W � V of a A-module V is said to be a submodule or
sub-representation if A �W WD fx � w W x 2 A;w 2 W g � W . The quotient space V=W
acquires the structure of an A-module via

x � .v CW / WD x � v CW

for all x 2 A; v 2 V .
A module V ¤ f0g is simple or irreducible if its only submodules are f0g and V .

8



Chapter 2. Preliminaries

Remark. The subspace W being a submodule guarantees that the action de�ned above is
well-de�ned.

Definition 2.1.10. Let V;W be A-modules. Then ' W V �! W is a map of A-modules
or an A-homomorphism if it is linear and preserves the action of A, i.e.:

'.x � v/ D x � '.v/;

for all x 2 A and all v 2 V .

Every associative algebra A can be regarded as a (possibly non-commutative) ring. It
turns out, there is a corresponding notion of module for rings. Essentially,M is a module
over the ring R if it can be regarded as a vector space over R, i.e. a vector space where
one allows the scalars to come from R instead from a �eld.

Definition 2.1.11. Let R be a possibly non-commutative ring with unit. An additive
abelian group M is said to be a left R-module if one has a multiplication R �M �!M

denoted by .r;m/ 7! r �m satisfying for all r; s 2 R and all m; n 2M :

1. r � .mC n/ D r �mC r � n;

2. .r C s/ �m D r �mC s �m;

3. r � .s �m/ D .rs/ �m;

4. 1 �m D m.

Remark. Clearly, we can also de�ne right R-modules.

In other words, M is an abelian group equipped with an action of R that is linear in
a suitable sense; in particular, Z-linear.

Definition 2.1.12. Let M be an R-module, for R a possibly non-commutative ring. A
set of elements S �M is said to be a basis for M if R hSi DM , i.e. if S generates M as
an R-module, and if it is linearly independent.

A module M is said to be free if it admits a basis or if it is the zero module.

See (Lang, 2000, §3.4, pp. 135–137) for more details or see (Rotman, 2002, §7.4) for
a di�erent approach. One thing to note is that free modules can be characterised by
a universal property, which allows us to see that every module is a quotient of a free
module. Also see (Rotman, 2002, §7.1) for a general and detailed reference on modules.

9



Chapter 2. Preliminaries

For the notions of generation and linear independence in the context of modules, see
(Lang, 2000, §3.3). It is clear that the notion of free modules only becomes of interest
when dealing with modules not over �elds. This is because all modules over �elds, that is,
all vector spaces, are free modules, given that every vector space admits a basis (assuming
that the Axiom of Choice holds). Conversely, not all modules are free. For example, the
factor ring Z=mZ for m > 1 seen as a Z-module is not free.

As in the case of A-modules, one can de�ne suitable notions of submodules, quotients
and homomorphisms. Having de�ned homomorphism, submodules, and quotients, all
the usual isomorphism theorems apply to R-modules, for more details see, for instance,
(Rotman, 2002, §7.1, pp. 429–431)

Definition 2.1.13. Let S be a k-algebra (ring). Let M be a right S-module and N be
a left S-module. Let T be a non-empty set. A map f W M � N �! T is S -balanced if
f .m � s; n/ D f .m; s � n/ for all s 2 S and .m; n/ 2M �N .

Definition 2.1.14. Let S be a k-algebra (ring). Let M be a right S-module and N
be a left S-module. Suppose that f W M � N �! T is an S-balanced k-bilinear map
(S -bilinear map), for T a k-vector space (S -module). The pair .T; f / is a tensor product of
M and N over S if for all k-vector spaces P (S -modules P ) and all S -balanced k-bilinear
maps (S-bilinear maps) g W M � N �! P there is a unique linear map Qf W T �! P

such that the following diagram

M �N
f //

g
$$

T

9Š Qf
��
P

commutes.

Remark. Thanks to the universal property of the tensor product, any two tensor products
are isomorphic. We writeM ˝S N for T andm˝ n for f .m; n/ for all .m; n/ 2M �N .
Furthermore, M ˝S N has basis fm˝ n W m 2M;n 2 N g.

An important special case of this de�nition arises when S D k and M and N are
simply k-vector spaces. In that case, we see that M ˝k N is a k-vector space with basis
fm˝ n W m 2M;n 2 N g such that �.m˝ n/ D �m˝ n D m˝ �n; .mCm0/˝ n D

m˝ nCm0 ˝ n;m˝ .nC n0/ D m˝ nCm˝ n0 for all � 2 k;m;m0 2M;n; n0 2 N .

Definition 2.1.15. Let S and R be k-algebras (rings). Let M be a left R-module and a
right S-module. We say that M is an .R; S/-bimodule if r � .m � s/ D .r �m/ � s for all
r 2 R;m 2M; s 2 S .

10



Chapter 2. Preliminaries

For a proof of the following see (Strade and Farnsteiner, 1988, §5.6, Lemma 6.1, p.
226).

Lemma 2.1.16. Let S andR be k-algebras (rings). LetM be an .R; S/-bimodule andN be
a left S -module. There is anR-module structure onM˝SN given by r �.m˝n/ D r �m˝n
for all r 2 R and .m; n/ 2M �N .

Definition 2.1.17. Let V be a k-vector space. The tensor algebra of V (seen as a k-
vector space) is

T .V / D

1M
iD0

V ˝i ;

where V ˝0 D k, V ˝1 D V and

V ˝i D V ˝k V ˝k � � � ˝k V„ ƒ‚ …
i times

D

iO
V:

This becomes an algebra by de�ning multiplication on the subspaces V ˝i � V ˝l �!
V ˝iCl thus

.v1 ˝ � � � ˝ vi/ .w1 ˝ � � � ˝ wl/ D v1 ˝ � � � ˝ vi ˝ w1 ˝ � � � ˝ wl ;

and extending linearly. We refer the reader to (Lang, 2000, §16.7) or (Eisenbud, 1995, A2.2
–A2.3) for more details.

Definition 2.1.18. The exterior algebra of V , denoted
V
.V /, is de�ned by^

.V / D T .V /=a;

where a WD .x ˝ x W x 2 V /.

Remark. There are several other ways to de�ne this algebra, see (Lang, 2000, §19.1) for one
such way. Amongst others, one can also de�ne it as a special subspace of T .V / consisting
of what are called antisymmetric tensors. In positive characteristic, however, one must
be careful. If p divides nŠ, then one cannot identify the antisymmetric tensors in V ˝n

with the quotient
Vn
.V /. The exterior algebra is also sometimes called the alternating

algebra, or the Grassmann algebra.

The previous constructions can be also made where one takes V to be an R-module,
where R is some commutative ring. The resulting exterior algebra has the structure of

11
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an R-module:

r � .v1 ^ v2 ^ � � � ^ vn/ D r � v1 ^ v2 ^ � � � ^ vn D v1 ^ r � v2 ^ � � � ^ vn D � � � ;

and so on.

Definition 2.1.19. Let M be an R-module for a possibly non-commutative ring R. A
composition series for M is a sequence of submodules

f0g DM0 �M1 � � � � �Mn DM

where the inclusions are proper, and the MiC1=Mi are all simple.
The length of the composition series is then n. The factor modules MiC1=Mi are

called the composition factors of the series.

Remark. Recall that one can give a module structure to the quotient M=N (seen here as
the set of N -cosets) as long as N is a submodule of M .

The well-known Jordan-Hölder theorem tells us in the case of modules that (see
(Curtis and Reiner, 1981, 3.11)):

Theorem 2.1.20 (Jordan-Hölder). If a module A has a composition series, then any
two composition series are equivalent, that is, the number of occurrences of each isomor-
phism type of simple A-module as a composition factor does not depend on the choice of
composition series.

In particular, since everything we work with in this thesis will be �nite-dimensional,
we have:

Theorem 2.1.21. Over any �eld k, any �nite-dimensional module M for a �nite-
dimensional k-algebra A has a composition series, unique up to equivalence.

We write ŒM1;M2; : : : ;Mn� D ŒV � for the list of composition factors of V a module.

2.2 Homological algebra

Since this thesis does not deal with notions from homological algebra directly, we shall
only recall some of the notions used. For a more detailed exposition, we refer the reader to
Rotman’s book: Rotman (2009); also see (Rotman, 2002, §10) and Hilton and Stammbach
(1997).

12
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Definition 2.2.1. A module P is projective if for every surjective module homomor-
phism f W N �! M and every module homomorphism g W P �! M , there exists a
homomorphism h W P �! N such that f ı h D g, i.e., the following diagram commutes:

P
9h //

g   

N

f
����
M

In other words, every morphism from P toM factors through every epimorphism toM .

Remark. An alternative but equivalent de�nition can be made as follows: A module P is
projective if every short exact sequence of modules of the form

0 // A
g // B

f // P // 0

in fact splits. In other words, every surjective module homomorphism f W B �! P

admits a section map, that is, a module homomorphism h W P �! B such that f ıh D idP .
In this case, we have B Š A˚ P .

Remark. If one dualises the de�nitions, then one obtains the notion of injective modules.

We will brie�y treat the Ext functor, but we will state the de�nitions for the case
we will be concerned with only. Let g be a Lie algebra and let u.g; S/ be its S-reduced
universal enveloping algebra, an associative k-algebra with unit (see De�nition 3.4.5).
Let M be a u.g; S/-module. Then we de�ne i th right-derived functor

Extiu.g;S/.M;�/ D R
i Homu.g;S/.M;�/:

In the case Ext1u.g;S/.M;N / D Ext1.M;N /, we have (see (Hilton and Stammbach,
1997, §3.2, Thm. 2.4)):

Theorem 2.2.2. LetM and N be u.g; S/-modules. Then Ext1.M;N / can be interpreted
as the group of extensions with elements short exact sequences:

0 // N // E //M // 0 :

For the following proposition, see Exercise 2.5.1 and Exercise 2.5.2 in (Weibel, 1994,
§2.5, p. 50):

13
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Proposition 2.2.3.We have that if the u.g; S/-module M is projective, then
Extiu.g;S/.M;N / D 0 for all i > 0. Similarly, if N is injective, then Extiu.g;S/.M;N / D 0

for all i > 0.

14



Chapter 3

General theory

. . . la mathématique est l’art de donner
le même nom à des choses di�érentes.

Henri Poincaré, Science et méthode

In this chapter we recall the basic notions from the classical theory of Lie algebras
and introduce in some detail the rudiments of the modular theory. We cover important
results we will use later, both in terms of the structure theory of modular Lie algebras and
their representations. The crucial notion of a p-mapping is introduced, setting the stage
to study restricted Lie algebras and their restricted representations (those representations
that respect the restricted structure). We include a brief discussion of graded and �ltered
algebras. Finally, the notion of induced representations for Lie algebras is introduced,
together with the principle of Frobenius reciprocity.

3.1 Classical theory and basic operations

We refer the reader to Humphreys (1980) for a good introduction to the classical theory of
Lie algebras as well as to Chapter 1 of Strade and Farnsteiner (1988). Other good references
at a higher level of sophistication are Milne (2013), see in particular §I.1 for most of the
material covered in this section, (Serre, 2006, §I.I, §I.III, §I.V, §I.VII) and (Bourbaki, 1975,
Chap. 1). See (Rotman, 2002, §9.10) for a very quick overview.

Definition 3.1.1. Let k be a �eld. A Lie algebra g is a k-vector space equipped with a
k-bilinear bracket Œ; � W g � g �! g, such that for all x; y; ´ 2 g:
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1. Œx; x� D 0;

2. Œx; Œy; ´�� D ŒŒx; y�; ´�C Œy; Œx; ´�� or, equivalently

Œx; Œy; ´��C Œy; Œ´; x��C Œ´; Œx; y�� D 0:

Remark. Using (1) and expanding ŒxCy; xCy�we obtain that Œx; y� D �Œy; x�. Equation
(2) is called the Jacobi identity. The dimension of a Lie algebra is simply its dimension as
a k-vector space.

Example 3.1.2. On any vector space V over k de�ne all the Lie brackets to be zero:
Œx; x� D 0 for all x 2 V . Then V is a Lie algebra.

Example 3.1.3. On a three-dimensional vector space g WD kx ˚ ky ˚ k´ de�ne the Lie
bracket Œx; y� D ´; Œx; ´� D 0 D Œy; ´�. Then g is a Lie algebra. It is often referred to as
the Heisenberg Lie algebra.

Example 3.1.4. On the k-vector space ke ˚ kh˚ kf de�ne the Lie bracket

Œh; e� D 2e; Œh; f � D �2f; Œe; f � D h:

This is the Lie algebra sl2 D sl2.k/.

Example 3.1.5 (Diamond algebra). Let g D kt ˚ kx ˚ ky ˚ k´. De�ne Œ´; g� D 0 and

Œt; x� D x; Œt; y� D �y; Œx; y� D ´:

Then g is a Lie algebra.

Definition 3.1.6. Let h; g be Lie algebras. A k-linear map f W h �! g is a Lie algebra
homomorphism if

f .Œx; y�/ D Œf .x/; f .y/�

for all x; y 2 h.
If f is invertible, then f is an isomorphism and we say that h and g are isomorphic,

which we denote by h Š g.

Example 3.1.7. On a two-dimensional vector space g WD kx ˚ ky de�ne the Lie bracket
Œx; y� D x. Then g is a Lie algebra, and it is up to isomorphism the only noncommutative
Lie algebra of dimension 2 (see De�nition 3.1.18 for the de�nition of commutative Lie
algebras).

16
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Example 3.1.8. Note that if k is a �eld of characteristic 2, then sl2.k/ is isomorphic to the
Lie algebra in Example 3.1.3.

Definition 3.1.9. Any triple .e; h; f / in g such that khe; h; f i Š sl2.k/ and

Œh; e� D 2e; Œh; f � D �2f; Œe; f � D h

will be called an sl2-triple.

Given an associative k-algebra A, we can de�ne a Lie product or bracket

Œa; b� D ab � ba;

which turns A into a Lie algebra. We denote this Lie algebra by A�.
An important such algebra is the general linear Lie algebra gl.V / WD Endk.V /�, where

Endk.V / is the algebra of all k-linear endomorphisms of V a vector space over k.

Example 3.1.10. If A is the associative matrix algebra Mn.k/ of all n � n matrices over k,
then A� is the Lie algebra gln D gln.k/. It is isomorphic to gl.V / if dimk V D n. It has
dimension n2.

Let Ei;j be the n � n matrix with entries�
Ei;j

�
kl
D ıikıjl ;

where ıij is the Kronecker delta, which is 0 if i ¤ j and 1 if i D j (so Ei;j is the matrix
with a 1 in the .ij /th entry and zeroes everywhere else). The following, then, is a basis
for gln: ˚

Ei;j W i; j 2 f1; : : : ; ng
	
:

It’s easy to check that the basis elements satisfy:

ŒEi;j ; Er;s� D ıjrEi;s � ısiEr;j :

Subalgebras of the Lie algebra A� of an associative algebra A are called commutator
algebras.

Subalgebras of gl.V / are often called linear Lie algebras or Lie algebras of linear
transformations.

We know that every Lie algebra is a commutator algebra, for example it embeds into
its universal enveloping algebra, see Theorem 3.1.58. However, that does not mean that
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every Lie algebra is isomorphic to an associative algebra equipped with the commutator
bracket. The following proposition gives an example of a Lie algebra that fails to have
this property.

Proposition 3.1.11. Let k be a �eld of characteristic 0 or p � 3. There does not exist an
associative algebra A such that A� Š sl2.k/ as Lie algebras.

Proof. Indeed, suppose that sl2 is isomorphic to an associative algebra A equipped with
the commutator bracket. Then we can pick an sl2-triple .E;H;F / in A. The elements
EH;HE;HF;FH;EF;FE of A can all be written as k-linear combinations ˛E C
ˇH C F . Using the associativity of A and the Lie bracket, we can show, with some
work, that in fact EH;HE 2 k hEi, FH;HF 2 k hF i, and EF;FE 2 k hH i. Write
EH D ˛1E;HE D ˛3E;HF D 2F;FH D 4F , and EF D ˇ5H;FE D ˇ6H .
By considering the equation .FE/F D F.EF /, we can show that ˛1 D �2ˇ5. By
considering other such equations, we can show that ˛3 D �2ˇ6 and that ˛1 D 2 and
˛3 D 4.

We have .EF /.HF / D .E.FH//F , so

ˇ5
2
2F D 4ˇ52F:

Hence, ˇ5.22 � 42/ D 0. Since HF � FH D �2F , we have 2 � 4 D �2, and so
ˇ5.

2
2 � .2 C 2/2/ D 0. Thus, ˇ5.�22/ D 0. Therefore ˇ5 D 0 or 2 D 0.

Both possibilities lead to 2 D 0; 4 D 2 and ˇ5 D 0; ˇ6 D �1. Hence, HF D
0; FH D 2F and EF D 0; FE D �H . Thus, 0 D F.HF /E D .FH/.FE/ D

�2FH D �4F . Therefore, 4 D 0, a contradiction. Thus, sl2 is not isomorphic to any
associative algebra equipped with the commutator bracket. �

Definition 3.1.12. The set of all traceless matrices in gln.k/ is closed under the Lie
bracket. This Lie algebra is called sln.k/ D sln. It is of dimension n2 � 1.

De�ne
Hi;iC1 D Ei;i �EiC1;iC1:

Then Lie algebra sln admits the following nice basis:˚
Hi;iC1; Ei;j W i ¤ j

	
:
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Example 3.1.13. The Lie algebra sl2 has basis fH1;2; E1;2; E2;1g, where

H1;2 D

 
1 0

0 �1

!
E1;2 D

 
0 1

0 0

!
; E2;1 D

 
0 0

1 0

!
:

It is easy to check that ŒH1;2; E1;2� D 2E1;2; ŒH1;2; E2;1� D �2E2;1; ŒE1;2; E2;1� D

H1;2. Thus .E1;2;H1;2; E2;1/ is an sl2-triple, and the two de�nitions of sl2 do coincide.

Definition 3.1.14. Consider the 2r � 2r matrix

S WD

 
0 Ir

�Ir 0

!
:

Then
sp2r.k/ WD

˚
A 2 gl2r.k/ W SA D �A

TS
	

is a Lie subalgebra of sl2r.k/. It is called the symplectic Lie algebra.

The following proposition can be found in (Strade and Farnsteiner, 1988, §4.4, Exercise
2, p. 168).

Proposition 3.1.15. The Lie algebra sp2r.k/ has dimension 2r2 C r and it is simple.

Definition 3.1.16. For any Lie algebra g de�ne its derived subalgebra to be

Œg; g� D khfŒx; y� W x; y 2 ggi:

Remark. In general if s; t � g, we denote by

Œs; t�

the subspace of g spanned by the brackets Œx; y� with x 2 s and y 2 t.

Remark. We will often drop the set brackets in notation such as the above and simply
write k hŒx; y� W x; y 2 gi, for instance.

Example 3.1.17. We have Œgln.k/; gln.k/� Š sln.k/.

Definition 3.1.18. We say that a subspace j � g is a subalgebra if Œj; j� � j.
We say a subspace j is an ideal if Œj; g� � j. A simple Lie algebra has no non-trivial

ideals (that is, the only ideals are f0g and g).
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If j G g is an ideal, the vector space g=j has the structure of a Lie algebra with Lie
bracket

Œx C j; y C j� WD Œx; y�C j:

The centre C.g/ of a Lie algebra is the set fx 2 g W Œx; g� D 0g. It is an ideal of g. A
Lie algebra is called abelian or commutative if C.g/ D g. Generalising, we de�ne the
centraliser of a subset s � g to be

Cg.s/ D fx 2 g W Œx; s� D 0g :

Remark. If i; j are ideals of g, then Œi; j� is an ideal of g.

Example 3.1.19. 1. The Lie algebras in Example 3.1.2 are all abelian.

2. The Lie algebra sl2.k/ is simple if k has characteristic p � 3. If p D 2, then one
has Œh; e� D 0 D Œh; f �, so kh is a non-trivial ideal of sl2.k/.

3. In characteristic p � 3, C.sl2.k// D f0g, while if p D 2, C.sl2.k// D kh.

As in the case of modules, having de�ned homomorphisms, ideals, and quotients, we
remark that all the usual isomorphism theorems apply to Lie algebras, for more details
see, for instance, (Milne, 2013, §I.1, p. 15).

Definition 3.1.20. A representation of a Lie algebra g is a Lie algebra homomorphism

� W g �! gl.V /;

where V is a k-vector space.
The vector space V is said to be a g-module if there is a k-bilinear map

� W g � V �! V

.x; v/ 7! x � v;

such that
Œx; y� � v D x � .y � v/ � y � .x � v/

for all x; y 2 g and all v 2 V .

Remark. As in the case of associative algebras, representations and modules are equivalent,
and we use the language of g-modules interchangeably with that of representations
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throughout. Indeed, a representation de�nes a g-module, via x � v WD �.x/.v/. Similarly,
a g-module de�nes a representation � W g W�! gl.V / via �.x/.v/ WD x � v.

Example 3.1.21 (Adjoint Map). For all x 2 g de�ne the map

ad x W g �! g

y 7! Œx; y�:

We call ad x the adjoint map of x. It is straightforward to verify that .g; ad/ is a g-module.
We call this representation the adjoint representation.

Remark. Note that the image ad.g/ is a Lie subalgebra of gl.g/.

Example 3.1.22 (Trivial Representation). On the one-dimensional vector space k de�ne
the action x � v D 0 for all x 2 g; v 2 k. This turns k into a g-module, the trivial module
or trivial representation.

Example 3.1.23. Consider the action of sl2.C/ on CŒx; y� given by:

�.e/ D x
@

@y

�.h/ D x
@

@x
� y

@

@y

�.f / D y
@

@x
:

This turns CŒx; y� into an sl2.C/-module. Similarly, we can make the polynomial algebra
kŒx; y� into an sl2.k/-module.

Example 3.1.24. Recall the Lie algebra g in Example 3.1.3, the Heisenberg Lie algebra. The
map � W g �! gl3.k/ de�ned by

�.x/ D

0B@0 1 0

0 0 0

0 0 0

1CA ;
�.y/ D

0B@0 0 0

0 0 1

0 0 0

1CA ;
�.´/ D

0B@0 0 1

0 0 0

0 0 0

1CA :
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is a representation of g, since one can directly compute that Œ�.x/; �.y/� D �.´/ and
Œ�.x/; �.´/� D Œ�.y/; �.´/� D 0, the zero matrix.

Definition 3.1.25. A subspace W � V of a g-module V is said to be a submodule or
sub-representation if g � W WD fx � w W x 2 g; w 2 W g � W . The quotient space V=W
acquires the structure of a g-module via

x � .v CW / WD x � v CW:

A module V ¤ f0g is simple or irreducible if its only submodules are f0g and V .
A representation is said to be faithful if it is injective.

Example 3.1.26. Consider the span �l of the monomials of degree l in kŒx; y�. Since
the action of sl2 given in Example 3.1.23 preserves �l , we see that the �l are �nite-
dimensional sl2-submodules (of dimension l C 1) of kŒx; y� . When k D C, more is true.
In fact, one can prove that if V is a �nite-dimensional complex simple sl2-module, then
V Š �l , where l D dimk V � 1 (see, for example, (Fulton and Harris, 1991, §11.1, pp.
146–150)).

Example 3.1.27. The adjoint representation is faithful if and only if g is centreless.

Example 3.1.28. The representation in Example 3.1.24 of the Heisenberg Lie algebra is
clearly faithful.

Definition 3.1.29. Let V;W be g-modules. Then ' W V �! W is a map of g-modules
or g-homomorphism if it is linear and preserves the action of g, i.e.:

'.x � v/ D x � '.v/;

for all x 2 g and all v 2 V .

Definition 3.1.30. A derivation of an algebra A over k is a k-linear map D W A �! A

such that
D.ab/ D D.a/b C aD.b/

for all a; b 2 A. The set of all derivations of a algebra, denoted Derk.A/, is a Lie subalgebra
of gl.A/. We call Derk.A/ the algebra of derivations of A.

An ideal i G g stable under all derivations of g is said to be a characteristic ideal.

Remark. It is a direct computation to verify that ŒD;E� D D ıE �E ıD is a derivation
for all D;E 2 Derk.A/.
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Example 3.1.21 together with the Jacobi identity shows that ad g is in fact a Lie
subalgebra of Derk.g/, often called the subalgebra of inner derivations. In fact, the fact
that ad x is a derivation for all x 2 g provides an easy way to memorise the Jacobi
identity:

Œx; Œy; ´�� D ad.x/.Œy; ´�/ D Œad.x/.y/; ´�C Œy; ad.x/.´/� D ŒŒx; y�; ´�C Œy; Œx; ´��:

Example 3.1.31. The algebraA can be seen as a Derk.A/-module, by settingD �a D D.a/
for all D 2 Derk.A/; a 2 A, since Derk.A/ � gl.A/.

Definition 3.1.32. Let V;W be g-modules. Then the tensor product V ˝k W obtains
the structure of a g-module via

x � .v ˝ w/ D x � v ˝ w C v ˝ x � w:

Example 3.1.33. Note that sl2.C/ ,! gl2.C/ ,! gl.V /, with V a two-dimensional com-
plex vector space. The module V is the natural sl2.C/-module. We will now describe
V ˝k V . Take V D C2 and pick the standard basis fv1; v2g, where v1 D

�
1
0

�
and

v1 D
�
0
1

�
, so that sl2.C/ acts on C2 via the matrices E1;2; E2;1;H1;2, representing the

action of e; f , and h, respectively.
Now, V ˝k V has basis fv1 ˝ v1; v1 ˝ v2; v2 ˝ v1; v2 ˝ v2g. We calculate

e � .v1 ˝ v1/ D 0

e � .v1 ˝ v2/ D v1 ˝ v1

e � .v2 ˝ v1/ D v1 ˝ v1

e � .v2 ˝ v2/ D v1 ˝ v2 C v2 ˝ v1:

Likewise,

f � .v1 ˝ v1/ D v1 ˝ v2 C v2 ˝ v1

f � .v1 ˝ v2/ D v2 ˝ v2

f � .v2 ˝ v1/ D v2 ˝ v2

f � .v2 ˝ v2/ D 0:
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Finally,

h � .v1 ˝ v1/ D 2v1 ˝ v1

h � .v1 ˝ v2/ D 0

h � .v2 ˝ v1/ D 0

h � .v2 ˝ v2/ D �2v2 ˝ v2:

Note that v1 ˝ v1 is a weight vector for h of weight 2 and is killed by e. The rep-
resentation theory of sl2.C/ tells us that the vector v1 ˝ v1 is a maximal vector and
thus generates under f a simple submodule of dimension 3 isomorphic to �2. We calcu-
late this submodule to be W WD C hv1 ˝ v1; v1 ˝ v2 C v2 ˝ v1; v2 ˝ v2i. Finally, note
that W 0 WD C hv1 ˝ v2 � v2 ˝ v1i is killed by sl2.C/ and is a vector space comple-
ment to W . It is the one-dimensional trivial sl2.C/-module, isomorphic to �0. Thus
V ˝k V D W ˚W

0 Š �2 ˚ �0.

For the following proposition see (Strade and Farnsteiner, 1988, §1.2, Proposition 2.3,
p. 12):

Proposition 3.1.34. Let V;W be g-modules. Then the vector space Homk.V;W / obtains
the structure of a g-module via

.x � f /.v/ D x � f .v/ � f .x � v/

Remark. We observe that f 2 Homk.V;W / is a homomorphism of g-modules if,
and only if, x � f D 0. So, Homg.V;W /, the space of g-homomorphisms between
V and W , is precisely the space of g-invariants of Homk.V;W /, i.e. Homg.V;W / D

ff 2 Homk.V;W / W g � f D 0g.

Example 3.1.35. If one takes W D k the trivial representation, then Homk.V;W / Š V
�.

Thus, we see that the dual vector space is a g-module with module structure de�ned by
.x � '/ .v/ D �'.x � v/ for all ' 2 V �; x 2 g; v 2 V .

See (Bourbaki, 1975, Chap. I, §3) for a more in-depth treatment on tensor products of
representations and homomorphism modules.

For more details on the material that follows, see, for example, (Erdmann and Wildon,
2006, §4.1–4.2, §6) or (Bourbaki, 1975, Chap. I, §4–5).

Definition 3.1.36. Let g be a Lie algebra. De�ne the sequence of subspaces

g1 D Œg; g�; g2 D Œg1; g�; : : : ; gi D Œgi�1; g�; : : :
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Note that we have the following inclusions:

g � g1 � � � � � gi � � � �

We say that g is nilpotent if there is an i 2 N such that gi D f0g :

Example 3.1.37. Consider g D sl2.k/ in characteristic 2. Then g1 D kh and g2 D f0g, so
sl2 is nilpotent.

Similarly we have:

Definition 3.1.38. Let g be a Lie algebra. De�ne the sequence of subspaces

g.1/ D Œg; g�; g.2/ D Œg.1/; g.1/�; : : : ; g.i/ D Œg.i�1/; g.i�1/�; : : :

Note that we have the following inclusions:

g � g.1/ � � � � � g.i/ � � � �

We say that g is solvable if there is an i 2 N such that g.i/ D f0g :

Remark. Any nilpotent Lie algebra g is solvable, since we have g.i/ � gi .

Remark. The algebras g.i/ and gi are ideals of g. The algebras g.i/ are ideals in g.i�1/.
Also, note that g.i/ is the i-th derived subalgebra of g.

Example 3.1.39. Consider the space of upper triangular matrices in gl2.k/. It has
basis fE1;1; E1;2; E2;2g. The Lie bracket satis�es ŒE1;1; E2;2� D 0; ŒE1;2; E1;1� D

�E1;2; ŒE1;2; E2;2� D E1;2. Thus, g D k hE1;1; E1;2; E2;2i is a Lie algebra. Clearly,
g1 D g.1/ D k hE1;2i. Therefore, g.2/ D f0g, so g is solvable. However, g2 D
Œk hE1;2i ; g� D k hE1;2i. Thus, g is not nilpotent.

Proposition 3.1.40. The ideals g.i/ and gi are in fact characteristic ideals of g.

Proof. We proceed by induction. Clearly g.1/ D g1 is stable under all derivations of g.
Suppose that g.i/ is stable under all derivations for some i > 0. LetD 2 Derk.g/. We have
D.g.iC1// D D.Œg.i/; g.i/�/ D ŒD.g.i//; g.i/�C Œg.i/;D.g.i//� � Œg.i/; g.i/�C Œg.i/; g.i/� D

g.iC1‘/C g.iC1/ � g.iC1/, as required. Similarly, suppose gj is stable under all derivations
for some j > 0. We have D.gjC1/ D D.Œgj ; g�/ D ŒD.gj /; g�C Œgj ;D.g/� � Œgj ; g�C

Œgj ; g� D gjC1 C gjC1 � gjC1, as required. �

For the following theorem see (Bourbaki, 1975, Chap. I, §4.2, p. 39):
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Theorem 3.1.41 (Engel’s Theorem). Let k be an arbitrary �eld. Let g � gl.V / D

Endk.V /� be a �nite-dimensional Lie algebra such that for all X 2 g there is an N 2 N
such that XN D 0. Then there is a non-zero vector v 2 V such that Yv D 0 for all Y 2 g.

For the following theorem see (Humphreys, 1980, §4.1, p. 15):

Theorem 3.1.42 (Lie’s Theorem). Let g � gl.V / be a solvable Lie algebra, where V is
over C. Then there is a vector v 2 V such that v is a common eigenvector for all X 2 g.

Definition 3.1.43. Let � be a representation of a Lie algebra g �! gl.V /. The Killing
form with respect to V is

BV .x; y/ D tr �.x/�.y/:

If gl.V / D gl.g/ and � is the adjoint representation, then we will simply write B.x; y/,
and call it “the Killing form”.

For the following four results, consider k to be a �eld of characteristic 0 and V a
�nite-dimensional vector space.

For the following theorem see (Milne, 2013, §I.3, Theorem 3.17, p. 39):

Theorem 3.1.44 (Cartan’s Criterion). Let g � gl.V / be a Lie algebra such that

BV .X; Y / D 0

for all X; Y 2 g. Then g is solvable.

For the following corollary see (Strade and Farnsteiner, 1988, §1.7, Corollary 7.6, p.
42):

Corollary 3.1.45. A Lie algebra g is solvable if and only if B.g; g1/ D 0.

For the following lemma see (Strade and Farnsteiner, 1988, §1.7, Lemma 7.1, p. 38):

Lemma 3.1.46. Let g be �nite-dimensional. Then g contains a unique maximal solvable
ideal, denoted by rad.g/.

Definition 3.1.47. Let g be �nite-dimensional. The ideal rad.g/ is called the solvable
radical of g. We say that g is semisimple if rad.g/ D 0.

For the following corollary see (Milne, 2013, §I.4, Corollary 4.19, p. 45):

Corollary 3.1.48. If g is a semisimple Lie algebra, then g D Œg; g�.
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For the following theorem see (Erdmann and Wildon, 2006, §9.4, Lemma 9.12, p. 84):

Theorem 3.1.49. If g is semisimple and � W g �! h is a Lie algebra homomorphism, then
�.g/ is also semisimple.

For the following lemma see (Erdmann and Wildon, 2006, §7.7, Lemma 7.13, p. 62):

Lemma 3.1.50 (Schur). Let k be an algebraically closed �eld. Let g be a Lie algebra and
V be an irreducible g-module. Then

dim Homg.V; V / D 1;

where Homg.V; V / is the set of all maps of g-modules from V to itself.

Here are four important and useful commutation formulas, see (Strade and Farnsteiner,
1988, §1.1, Proposition 1.3, p. 9):

Proposition 3.1.51. LetA be an associative k-algebra. Then, for all a; b; c 2 A, we have
in A�:

.ad c/m.a/ D
mX
jD0

.�1/m�j

 
m

j

!
cjacm�j

Œab; c� D Œa; c�b C aŒb; c�

Œam; c� D

m�1X
jD0

aj Œa; c�am�j�1

cam D

mX
jD0

.�1/m�j

 
m

j

!
aj .ad a/m�j c:

Definition 3.1.52. Let V � g be a subspace. The normaliser of V in g is

ng.V / D fx 2 g W Œx; V � � V g :

Definition 3.1.53. A nilpotent subalgebra h of a �nite-dimensional Lie algebra g is a
Cartan subalgebra if it is self-normalising, i.e.

ng.h/ D h:

It is not obvious whether or not Cartan subalgebras exist. In fact, in some cases it is
unknown whether they exist. Theorem 4.7 in (Strade and Farnsteiner, 1988, §1.4, p. 26)
guarantees that they exist provided that the ground �eld k is algebraically closed.
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Example 3.1.54. Let k be a �eld of characteristic p ¤ 2. Let d D˚�
a 0
0 b

�
W a; b 2 k; aC b D 0

	
� sl2.k/. We claim that d is a Cartan subalgebra of sl2.k/.

Indeed, observe that d1 D Œd; d� D f0g, since the Lie bracket of any two diagonal matri-
ces is the zero matrix. Let us now compute the normaliser nsl2.d/. Let x D

�
a b
c d

�
with

a C d D 0, i.e. x 2 sl2. Let d D
�
� 0
0 �

�
2 d. We calculate Œx; d � D

�
0 b.���/

c.���/ 0

�
. If

x lies in the normaliser of d, we must have thus b.� � �/ D 0 D c.� � �/. Therefore,
� D � or b D c D 0. Since this must hold for all choices of � and � with �C � D 0,
we conclude that b D c D 0 and so x D

�
a 0
0 d

�
with a C d D 0. Thus, x 2 d, and so

nsl2.d/ D d. Hence, d is a Cartan subalgebra of sl2.k/.

If g is de�ned over an algebraically closed �eld, we know that it has a Cartan subalgebra
h. Corollary 4.4 in (Strade and Farnsteiner, 1988, §1.4, p. 23) tells us that with respect
to the adjoint representation ad W h �! gl.g/ we have a decomposition g D

L
˛2h� g˛ ,

where
g˛ WD

˚
x 2 g W 8h 2 h 9n 2 N W .ad h � ˛.h/ idg/

n.x/ D 0
	
:

Moreover, g0 D h, so that g D h˚
L

˛2h�nf0g g˛ .

Definition 3.1.55. Let B be the Killing form on g. Then

rad.B/ D fx 2 g W B.x; y/ D 0 8y 2 gg :

The same de�nition applies to any symmetric bilinear form on g.

For the following theorem see (Strade and Farnsteiner, 1988, §1.7, Theorem 7.9, p. 43):

Theorem 3.1.56. Let g be a �nite-dimensional Lie algebra over a �eld of arbitrary char-
acteristic. Suppose that rad.B/ D 0. Then every derivation of g is inner, i.e.

Derk.g/ D ad.g/:

Definition 3.1.57. Let g be a Lie algebra over k. Suppose that i W g �! U.g/� is a
homomorphism of Lie algebras, for U.g/� the associated Lie algebra of some associative
k-algebra U.g/. The pair .U.g/; i/ is a universal enveloping algebra of g if for every
associative k-algebra A and every Lie algebra homomorphism f W g �! A�, there is a

28



Chapter 3. General theory

unique associative homomorphism Qf W U.g/ �! A such that the following diagram

g
i //

f !!

U.g/

9Š Qf
��
A

commutes.

For the following theorem see (Strade and Farnsteiner, 1988, §1.8, Theorem 8.3, p. 49)
and (Strade and Farnsteiner, 1988, §1.8, Corollary 8.5, p. 50):

Theorem 3.1.58. Let g be a Lie algebra. Then g possesses a universal enveloping algebra
U.g/. Furthermore, it embeds into it.

The universal enveloping algebra can be realised as the quotient of the tensor al-
gebra T .g/ of g by an appropriate ideal. More speci�cally, consider the ideal I D
.fa˝ b � b ˝ a � Œa; b� W a; b 2 gg/. Then U.g/ Š T .g/=I .

Thanks to the universal property of the universal enveloping algebra, any two uni-
versal algebras of a given lie algebra, U.g/ and V.g/, say, are isomorphic up to unique
isomorphism, see (Strade and Farnsteiner, 1988, §1.8, Theorem 8.1).

The following famous theorem, found in (Strade and Farnsteiner, 1988, §1.8, Theorem
8.4, p. 50), due to Poincaré, Birkho�, and Witt, the so-called PBW theorem, can be used
to see that the map of Lie algebras i W g �! U.g/ is in fact injective.

Theorem 3.1.59 (P-B-W). Let g be a Lie algebra over k with ordered basis .xj /j2ƒ. Let
.U.g/; i/ be a universal enveloping algebra of g. Then the set˚

i.xj1
/ � � � i.xjn

/ W n 2 N; j1 � j2 � � � � � jn 2 ƒ
	

is a k-basis for U.g/. One can also write the basis as˚
i.xj1

/s1 � � � i.xjn
/sn W n 2 N; j1 < j2 < � � � < jn 2 ƒ; si � 0

	
:

Since i is an embedding, we will often suppress it, and regard g as a subalgebra of
U.g/�.

Example 3.1.60. Let .e; f; h/ be an ordered basis for sl2. Then the basis elements for
U.sl2/ look like ea1f a2ha3 for ai 2 N, so one has elements such as

e; e2; e3; : : : ; ef; ef 2; ef 3; : : : ; ef h; ef h2; : : : ; eh; eh2; : : :
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and so on. Meanwhile, elements such as hf; he; hef; f 2e are not valid basis elements in
the PBW basis.

For the following theorem see (Strade and Farnsteiner, 1988, §1.8, Corollary 8.2, p.
48):

Theorem 3.1.61. Let g be a Lie algebra and let V be a g-module, and .U.g/; i/ a universal
enveloping algebra of g. Then there is a unique U.g/-module structure on V such that

a � v D i.a/ � v;

for all a 2 g; v 2 V .
Furthermore, a subspaceW � V is a g-submodule if and only if it is aU.g/-submodule.

In light of the previous theorem, one might ask: Why study representations of Lie
algebras at all? Why not just study modules of associative algebras? At least one point in
favour of Lie algebras lies in the fact that U.g/ is in�nite-dimensional even if g is not.

The following two results are useful in studying g-modules.
This is Corollary 3.8 from (Strade and Farnsteiner, 1988, p. 19):

Theorem 3.1.62. Let i be a �nite-dimensional ideal of a Lie algebra g (over an arbitrary
�eld), let V be a simple g-module. If x acts nilpotently on V for all x 2 i, then x acts
trivially for all x 2 i, i.e. i � V D 0.

This is Lemma 5.6 from (Strade and Farnsteiner, 1988, p. 31):

Theorem 3.1.63. Let g be an abelian Lie algebra over an algebraically closed �eld of
arbitrary characteristic. Every �nite-dimensional irreducible representation V of g is one-
dimensional.

3.2 Restrictable Lie algebras

For most of the material in this section, we refer the reader to (Strade and Farnsteiner, 1988,
§2). Throughout, we assume that the base �eld k has characteristic p unless otherwise
stated.

Often when calculating, we will appeal to the following without reference, see (Nagell,
1951, §30, p. 99):

Theorem 3.2.1 (Wilson’s Theorem). Let t be an integer greater than one. Then t is
prime if and only if .t � 1/Š D �1 modulo t .
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That is, over k one has .p � 1/Š D �1 D p � 1.
To introduce restricted structures, we make the following de�nition.

Definition 3.2.2. Let g be a Lie algebra over k. A mapping Œp� W g �! g; a 7! aŒp� is
called a p-mapping if

1. ad aŒp� D .ad a/p , for all a 2 g;

2. .�a/Œp� D �paŒp�, for all a 2 g; � 2 k;

3. .aC b/Œp� D aŒp� C bŒp� C
Pp�1
iD1 si.a; b/;

where

.ad.a˝X C b ˝ 1//p�1 .a˝ 1/ D
p�1X
iD1

isi.a; b/˝X
i�1

in g˝k kŒX�, for all a; b 2 g (where g˝k kŒX� obtains the structure of a Lie algebra via
Œl ˝ x; j ˝ y� WD Œl; j �˝ xy for all l; j 2 g; x; y 2 kŒX�).

The pair .g; Œp�/ is referred to as a restricted Lie algebra.

Remark. Calculating the si.a; b/ correction terms can be in general rather cumbersome.
Sometimes it su�ces to compute sp�2.a; b/ and sp�1.a; b/. We refer the reader to (Strade,
2004, p. 18, Eq. (1.1.1)) and (Strade, 2009, p. 18, Rem. 10.2.4) for more details.

Example 3.2.3. The Lie algebra sl2.k/ is restricted with Œp�-mapping given by: hŒp� D
h; eŒp� D f Œp� D 0.

The following example is universal, as we will see later, see De�nition 3.2.29 and
Theorem 3.2.30. Take an associative algebra A. The Lie algebra A� becomes a restricted
Lie algebra if we set xŒp� D xp for all x 2 A. In particular, .gl.V /; p/ is a restricted
Lie algebra. Furthermore, any Lie subalgebra g � A� with the property that xp 2 g

for all x 2 g is a restricted Lie algebra. A particularly important example is the Lie
algebra of derivations Derk.B/ � gl.B/ of any k-algebra B , since Dp 2 Derk.B/ for
all D 2 Derk.B/. Thus Derk.B/ is a restricted Lie algebra with Œp�-mapping given by
p-fold composition of functions. Setting

B D kŒX1; : : : ; Xn�=
�
X
p
1 ; : : : ; X

p
n

�
yields an important family of examples, as we will see later.

The suitable notions of substructures are the following:
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Definition 3.2.4. Let .g; Œp�/ be a restricted Lie algebra over k. A subalgebra h � g

(ideal i G g) is called a p-subalgebra or restricted subalgebra (p-ideal or restricted ideal) if
xŒp� 2 h for all x 2 h (xŒp� 2 i for all x 2 i).

For the following lemma see (Strade and Farnsteiner, 1988, §2.1, Lemma 1.2, p. 64):

Lemma 3.2.5. Let .g; Œp�/ be a restricted Lie algebra over k. Let a; b 2 g and h D gha; bi

be the Lie algebra generated by a and b. Then

si.a; b/ 2 hp�1:

Remark. Here we mean hp�1 in the sense of De�nition 3.1.36.

Let S be a subset of a restricted Lie algebra g. Then put

SŒp� D
\
S�h

h ap-subalgebra

h

Definition 3.2.6. We call SŒp� the p-subalgebra generated by S in g.

Denote by S Œp�i the image of S under i applications of the map Œp�. The next propo-
sition gives an explicit description of the p-subalgebra SŒp� in the special case S � g.

For the following proposition see (Strade and Farnsteiner, 1988, §2.1, Proposition 1.3,
part (1), p. 66):

Proposition 3.2.7. Let .g; Œp�/ be a restricted Lie algebra. If h � g is a subalgebra, then
we have the following characterisation:

hŒp� D
X
i�0

khhŒp�
i

i:

Furthermore, if .ej /j2J is a basis for h, we have

hŒp� D
X
i�0
j2J

ke
Œp�i

j :

Definition 3.2.8. Let .g1; Œp�1/; .g2; Œp�2/ be restricted Lie algebras. A map f W g1 �!
g2 is called restricted or a p-homomorphism if

1. f is a Lie algebra homomorphism;
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2. for all x 2 g1, f .xŒp�1/ D f .x/Œp�2 .

Furthermore a p-representation or a restricted representation is just a restricted homomor-
phism � W g �! gl.V / for some vector space V , where one takes the p-mapping on
gl.V / to be the one coming from the associative operation (composition of functions).

Now, if I is a p-ideal of .g; Œp�/, the quotient g=I does carry a natural p-mapping,
given by (see (Strade and Farnsteiner, 1988, §2.2, Proposition 1.4, p. 67)):

.x C I /Œp�
0

D xŒp� C I:

Having de�ned suitable notions of homomorphism and quotient, the usual isomor-
phism theorems apply.

Given that we can embed g into U.g/, one can ask what the relationship between
xŒp� and xp is. Indeed, we have:

Proposition 3.2.9. Let .g; Œp�/ be a restricted Lie algebra. Then for all x 2 g, the element
xp � xŒp� is central in U.g/.

Proof. Since g is identi�ed with its copy in U.g/ and for any associative algebra A the
map a 7! ap is a p-mapping on A�, we have

ad xp.y/ D .ad x/p.y/ D ad xŒp�.y/

for all y 2 g. Thus, Œxp � xŒp�; g� D 0, i.e., .xp � xŒp�/.y/ D y.xp � xŒp�/. Note that
U.g/ has as k-basis (associative) products of elements of g. So xp � xŒp� commutes
with any product of elements of g and so commutes with any sum of such products by
distributivity. �

Definition 3.2.10 (p-nilpotency). Let .g; Œp�/ be a restricted Lie algebra over k. A
p-ideal I Gp g is p-nilpotent if there is n 2 N such that I Œp�n D 0. An element x is called
p-nilpotent if there is an n 2 N such that xŒp�n D 0. Finally the p-ideal I is called p-nil
if every element x 2 I is p-nilpotent.

For the following theorem see (Strade and Farnsteiner, 1988, §2.1, Corollary 1.6, p.
68):

Theorem 3.2.11. Let .g; Œp�/ be a �nite-dimensional restricted Lie algebra. Then there is
a unique p-ideal

radp.g/
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such that

1. radp.g/ is p-nilpotent;

2. if I Gp g is p-nilpotent, then I � radp.g/.

Definition 3.2.12. The p-ideal radp.g/ is called the p-radical of g.

For the following theorem see (Strade and Farnsteiner, 1988, §2.1, Corollary 1.7, p.
68):

Theorem 3.2.13. Let .g; Œp�/ be a �nite-dimensional restricted Lie algebra. Then

1. radp.g/ � N.g/;

2. radp.g= radp.g// D 0,

where N.g/ is the sum of all nilpotent ideals of g.

Before looking more closely at p-mappings, we make the following de�nition:

Definition 3.2.14. Let f W V �! V be a map. We say that f is p-semilinear if

1. f .x C y/ D f .x/C f .y/ for all x; y 2 V ;

2. f .˛x/ D ˛pf .x/ for all x 2 V; ˛ 2 k.

For the following proposition see (Strade and Farnsteiner, 1988, §2.2, Proposition 2.1,
p. 70):

Proposition 3.2.15. Let g be a subalgebra of a restricted Lie algebra .a; Œp�/ and let
Œp�1 W g �! g be a mapping. The following are equivalent:

1. Œp�1 is a p-mapping on g;

2. there is a p-semilinear mapping f W g �! Ca.g/ such that Œp�1 D Œp�C f .

Remark. Recall that we have Ca.g/ D fx 2 a W Œx; g� D 0g.

Remark. If g D a, then the proposition says that if Œp�1 is ap-mapping, then the di�erence
Œp�1 � Œp� is a p-semilinear mapping a �! C.a/. Conversely, if f is a p-semilinear
mapping a �! C.a/, then Œp�C f is a p-mapping on a.

For the following corollary see (Strade and Farnsteiner, 1988, §2.2, Corollary 2.2, p.
71):
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Corollary 3.2.16. Let g be a Lie algebra. We have the following:

1. if C.g/ D 0, then g admits at most one p-mapping;

2. if two p-mappings coincide on a basis, then they are equal;

3. if .g; Œp�/ is restricted, there is a p-mapping Œp�0 of g such that

xŒp�
0

D 0

for all x 2 C.g/.

The foregoing tells us something about the uniqueness of restricted structures. Now
we turn to the question of existence.

For the following theorem see (Strade and Farnsteiner, 1988, §2.2, Theorem 2.3, p. 71):

Theorem 3.2.17 (N. Jacobson). Let .ej /j2J be a basis of a Lie algebra g such that there
exist yj 2 g with .ad ej /p D adyj . Then there is a unique p-mapping Œp� W g �! g such
that

e
Œp�
j D yj

for all j 2 J .

Definition 3.2.18. A Lie algebra g is called restrictable if ad.g/ is a p-subalgebra of
Derk.g/, that is .ad x/p 2 ad.g/ for all x 2 g. In other words, there is a mapping
Œp� W g �! g such that .ad x/p D ad xŒp� for all x 2 g.

Remark. Thanks to Jacobson’s theorem, we see that a Lie algebra is restrictable if and
only if it admits at least one p-mapping, that is, if and only if there is a mapping that
makes it a restricted Lie algebra.

For the following theorem see (Strade and Farnsteiner, 1988, §2.2, Theorem 2.4, p. 73):

Theorem 3.2.19. Let f W g1 �! g2 be a surjective homomorphism of Lie algebras. If g1
is restrictable, so is g2.

Remark. This theorem has the interesting consequence that the Lie algebra g=I , where
I G g, is restrictable if g is restrictable.

Definition 3.2.20. Let .g; Œp�/ be a restricted Lie algebra. A derivation D 2 Derk.g/ is
called a restricted derivation if

D.aŒp�/ D .ad a/p�1.D.a//
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for all a 2 g. Let DerŒp�.g/ denote the subspace of restricted derivations. Every inner
derivation ad x for all x 2 g is a restricted derivation.

For the following proposition see (Strade and Farnsteiner, 1988, §2.2, Exercise 2, p.
76):

Proposition 3.2.21. Let .g; Œp�/ be a restricted Lie algebra. For every derivation D, we
have

D.xŒp�/ � .ad x/p�1.D.x// 2 C.g/;

for all x 2 g.

Definition 3.2.22. Let A;B be Lie algebras and ' W A �! Derk.B/ be a homomor-
phism. On the vector space A˚ B de�ne a Lie bracket by

Œ.a; b/; .a0; b0/� D .Œa; a0�; '.a/.b0/ � '.a0/.b/C Œb; b0�/:

This algebra, denoted by A˚' B , is called the semidirect product of A and B .

Remark. Note that A ˚' B is a Lie algebra. If ' D 0 it is the usual direct sum of Lie
algebras. If ŒB; B� D 0, then B is simply an A-module and ' its representation.

For the following theorem see (Strade and Farnsteiner, 1988, §2.2, Theorem 2.5, p. 73):

Theorem 3.2.23. Let .A; Œp�/ and .B; Œp�0/ be restricted Lie algebras and let ' W A �!
Derk.B/ be a restricted homomorphism such that '.x/ is restricted for all x 2 A. Then
A˚' B is restrictable.

For the following corollary see (Strade and Farnsteiner, 1988, §2.2, Corollary 2.6, p.
74):

Corollary 3.2.24. Let A;B be ideals of a Lie algebra g such that g D A˚B . Then g is
restrictable if and only if A and B are.

In the following all vector spaces are assumed to be �nite-dimensional.

Definition 3.2.25. Let .g; Œp�/ be a restricted Lie algebra of k. An element x 2 g is
semisimple if x 2 .kxŒp�/Œp� and toral if xŒp� D x.

Remark. A restricted subalgebra that is abelian and admits a basis consisting of toral
elements is called a toral subalgebra or often just a torus. Maximal tori play an important
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role in the classi�cation of restricted modular Lie algebras. Indeed, if M is a �nite-
dimensional u.g; S/-module (see De�nition 3.4.5), then it has a decomposition

M D
M
�2t�

M�

into weight spaces M� WD fm 2M W t �m D �.t/m for all t 2 tg relative to a maximal
torus t.

The signi�cance of semisimple elements rests on the following result, which can be
found in (Strade and Farnsteiner, 1988, §2.3, Theorem 3.4, p. 80):

Theorem 3.2.26. Let .g; Œp�/ be a �nite-dimensional restricted Lie algebra over k. For all
x 2 g there is a j 2 N such that xŒp�

j

is semisimple.

Definition 3.2.27. A p-mapping Œp� on g is called nonsingular if xŒp� ¤ 0 for all
x 2 g n f0g.

For the following theorem see (Strade and Farnsteiner, 1988, §2.3, Theorem 3.10, p.
84):

Theorem 3.2.28. Let k be algebraically closed and let .g; Œp�/ be a �nite-dimensional
restricted Lie algebra with nonsingular p-mapping. Then g is abelian.

Definition 3.2.29. Let .g; Œp�/ be a restricted Lie algebra over k. Suppose that i W g �!
u.g/� is a restricted homomorphism of Lie algebras, for u.g/� the associated Lie algebra
of some associative k-algebra with unity u.g/. The pair .u.g/; i/ is a restricted universal
enveloping algebra of g if for every associative k-algebra with unityA and every restricted
Lie algebra homomorphism f W g �! A�, there is a unique associative homomorphism
Qf W u.g/ �! A such that the following diagram

g
i //

f   

u.g/

9Š Qf
��
A

commutes.

For the following theorem see (Strade and Farnsteiner, 1988, §2.5, Theorem 5.1, p. 90):

37



Chapter 3. General theory

Theorem 3.2.30. Let .g; Œp�/ be restricted and let .xj /j2ƒ be an ordered basis for g over
k. Then the restricted universal enveloping algebra exists and

i W g �! u.g/�

is injective and dimk u.g/ D pn if dimk g D n. Furthermore, u.g/ possesses a PBW-type
k-basis given by˚

i.xj1
/s1 � � � i.xjn

/sn W n 2 N; j1 < j2 < � � � < jn 2 ƒ; 0 � si � p � 1
	
:

Remark. The restricted universal enveloping algebra u.g/ can be obtained as the quotient
of U.g/ by the ideal �

xp � xŒp� W x 2 g
�
:

Remark. As in the case of U.g/, we identify g with its image i.g/ in u.g/.

Example 3.2.31. Let .e; f; h/ be an ordered basis for sl2. Then u.g/ is a p3-dimensional
associative algebra with basis

fea1f a2ha3 W 0 � ai � p � 1g :

As in the case of universal enveloping algebras, the universal property of restricted
universal enveloping algebras guarantees that any two restricted universal enveloping
algebras of g are isomorphic.

It is extremely useful to have the extra tools and structure of restricted Lie algebras.
Indeed, to engage in the Classi�cation Theory one needs to consider the root space
decomposition of a Lie algebra with respect to a maximal toral subalgebra. In this context,
thus, embedding a non-restricted Lie algebra into a restricted Lie algebra is a necessity.

We therefore consider the following ways of embedding an arbitrary Lie algebra into
restricted Lie algebras.

Definition 3.2.32. Let g be a Lie algebra.

1. A triple .a; Œp�; i/ consisting of a restricted Lie algebra .a; Œp�/ and a Lie algebra
homomorphism i W g �! a is a p-envelope of g if i W g �! a is injective and the
p-subalgebra i.g/Œp� D a.

2. A p-envelope is called universal if for every restricted Lie algebra .a0; Œp�0/ and
every homomorphism f W g �! a0, there is a unique restricted homomorphism

38



Chapter 3. General theory

g W a �! a0 such that the diagram

g
i //

f ��

a

9Š g
��
a0

commutes.

Theorem 3.2.33 (Mil’ner (1975)). Every Lie algebra g has a universal p-envelope, de-
noted Og.

Proof. See (Strade and Farnsteiner, 1988, Theorem 2.5.2, p. 92). �

Remark. Firstly, the universal p-envelope is unique in the same fashion as the universal
enveloping algebras. Secondly, as the proof referred above mentions, one may identify Og
with i.g/Œp� � U.g/, where i W g �! U.g/ is the canonical embedding.

Example 3.2.34. Let g D kh ˚ kx. Setting Œh; x� D 0 turns g into a Lie algebra. As
we saw in the previous remark, the universal p-envelope of g can be identi�ed with
i.g/Œp� � U.g/. By Proposition 3.2.7, we have Og D i.g/Œp� D

P
i�0 kh

pi

C
P
i�0 kx

pi .

Exercise 4 in (Strade and Farnsteiner, 1988, §2.5) tells us that:

Proposition 3.2.35. Let .a; Œp�; i/ and .a0; Œp�0; i 0/ be two p-envelopes of g. We have

ad.a/ Š ad.a0/:

There is a notion of a minimal p-envelope, which indeed is minimal in the sense
of inclusion. A p-envelope .a; Œp�; i/ is called minimal if C.a/ � i.g/. For details see
(Strade, 2004, pp. 19–22) or (Strade and Farnsteiner, 1988, §2.5, pp. 94–97). The existence
of minimal p-envelopes is guaranteed by Theorem 1.1.6 (2) in (Strade, 2004, §1.1, p. 20).

Example 3.2.36. Working out minimal p-envelopes of Lie algebras is not trivial. The-
orem 7.2.7 in (Strade, 2004, §7.2 , p. 368–372) determines these for all the simple Lie
algebras. In Chapter 6 we work out explicitly the minimal p-envelope of one of these
algebras.

The minimal p-envelope should not be confused with the universal p-envelope of a
Lie algebra. For one, if g is �nite-dimensional, we know that the minimal p-envelope of
g will be �nite dimensional (see Theorem 1.1.6 (3) in (Strade, 2004, §1.1, p. 20)), while as
we saw in the above remark, universal p-envelopes are in�nite-dimensional.
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3.3 Filtered and graded Lie algebras

Definition 3.3.1. A descending �ltration of a Lie algebra g is a family .g.i//i2Z of sub-
spaces such that

1. g.l/ � g.i/ if i � l ;

2. Œg.i/; g.l/� � g.iCl/ for all i; l 2 Z.

A Lie algebra g admitting a �ltration is said to be a �ltered Lie algebra.
If
S
n2Z g.n/ D g, the �ltration is said to be exhaustive. If\

n2Z

g.n/ D f0g

it is said to be separating.

Example 3.3.2. Here’s a way of building a descending �ltration on g. Let j � g. De�ne
g.�1/ D g and g.0/ D j and de�ne recursively

g.nC1/ D
˚
x 2 g.n/ W Œx; g� � g.n/

	
:

Then it is clear that the descending property holds. The multiplication property can be
checked by induction.

Definition 3.3.3. Let g be a Lie algebra. A family of subspaces .gi/i2Z such that g DL
i2Z gi and Œgi ; gj � � giCj is called a Z-gradation of g. We call the algebra g a graded

algebra or a Z-graded algebra. The elements inside gi are called homogeneous elements of
degree i .

Remark. The notion of a Z-gradation can be naturally generalised to abelian groups. In
this thesis, however, we limit ourselves to the study of Z-gradations. We will often simply
say that a Lie algebra is graded to mean that it has a Z-gradation.

There exist a functor from the category of graded algebras to the category of �ltered
algebras and vice-versa. One way around, a graded Lie algebra .g; .gi/i2Z/ gives rise to a
�ltered Lie algebra .g; .g.i//i2Z/ by de�ning

g.i/ D
M
j�i

gj :
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Indeed, it is clear that g.l/ � g.i/ if i � l . Let ai 2 g.i/; al 2 g.l/. Then the smallest
subspace in the gradation that any element in the Lie bracket of ai with al can be is
when one takes the lowest graded component of ai and the lowest graded component of
al , ai

0

2 gi 0 and al 0 2 gl 0 , say. Their Lie bracket Œai 0; al 0� 2 gi 0Cl 0 . But, i 0 � i; l 0 � l , so
gi 0Cl 0 � g.iCl/.

Going from a �ltration to gradation is not as straightforward, however.

Definition 3.3.4. Let g be Lie algebra and .g.n//n2Z a descending �ltration. De�ne

gi D g.i/=g.iC1/

and endow the vector space gr.g/ D
L

i2Z gi with the structure of a Lie algebra by
setting

Œx C g.iC1/; y C g.jC1/� D Œx; y�C g.iCjC1/

for all x 2 g.i/ and y 2 g.j /. The Z-graded Lie algebra .gr.g/; .gi/i2Z/ is called the graded
Lie algebra associated with .g; .g.i//i2Z/.

Remark. One can carry out the above construction for ascending �ltrations as well.

Analogous de�nitions and constructions work for algebras in general where one
replaces the Lie bracket with the algebra multiplication.

Definition 3.3.5. A �ltration .g.n//n2Z of a restricted Lie algebra .g; Œp�/ is restricted if

gŒp�
.n/
� g.pn/

for all n 2 Z.

Definition 3.3.6. A Z-gradation .gi/i2Z of a restricted Lie algebra .g; Œp�/ is restricted
if

gŒp�i � gpi

for all i 2 Z.

Remark. Note that the zero-graded piece g0 for any Z-graded Lie algebra is a Lie subal-
gebra of g (since Œg0; g0� � g0). Likewise, every subspace gg , for g 2 Z is a g0-module
via the adjoint representation.

Example 3.3.7. Consider the Lie algebra g D Derk.kŒX�/. If D is the derivation given
by D.Xn/ D nXn�1, then g D k

˝
X iD W i 2 N

˛
. Then g can be Z-graded by putting
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gn ´ k
˝
XnC1D

˛
, since ŒXnD;XmD� D .m � n/XnCm�1D 2 gnCm�2, as a direct

computation shows.

Before proceeding to the last section, we give a generalisation of the notion of a
Z-gradation.

Definition 3.3.8. Let g be Z-graded. Let V be a g-module. We say that V is Z-graded
if there are subspaces Vg such that

1. V D
L

g2Z Vg ;

2. gg � Vh � VgCh for all g; h 2 Z.

The elements v 2 Vg are said to be homogeneous of degree g.

One can then show that (see (Strade and Farnsteiner, 1988, §3.4, Prop 4.4) for a proof
of this result):

Proposition 3.3.9. Let V;W be �nite-dimensional Z-graded g-modules. Then
Homk.V;W / is Z-graded via

Homk.V;W /g WD ff 2 Homk.V;W / W f .Vh/ � WhCg for all h 2 Zg :

3.4 Representations of modular Lie algebras

For an excellent exposition of the following, and proofs of the main results, see (Strade
and Farnsteiner, 1988, §5.2–§5.9).

The following is Theorem 2.4 in (Strade and Farnsteiner, 1988, p. 207).

Theorem 3.4.1 (N. Jacobson). Let k be a �eld of positive characteristic and let g be a
�nite-dimensional Lie algebra over k. Then every simple g-module V is �nite-dimensional.

For the following theorem see (Strade and Farnsteiner, 1988, §5.2, Theorem 2.5, p.
207):

Theorem 3.4.2. Let .g; Œp�/ be a �nite-dimensional restricted Lie algebra over an alge-
braically closed �eld and let � W g �! gl.V / be an irreducible representation. Then there
is a linear form S 2 g� such that

�.x/p � �.xŒp�/ D S.x/p idV

for all x 2 g.
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Definition 3.4.3. Let .g; Œp�/ be a restricted Lie algebra over k and let S 2 g� be a
linear form. A representation � W g �! gl.V / is called an S -representation if

�.x/p � �.xŒp�/ D S.x/p idV

for all x 2 g. The form S is called the character of the representation. Putting S D 0

gives us the whole theory of p-representations.

Therefore, every simple module over a �nite-dimensional restricted Lie algebra over
an algebraically closed �eld has a character.

Definition 3.4.4. Let .g; Œp�/ be a restricted Lie algebra and supposed it is graded, so
g D

L
i2Z gi , and let .g; .g.i//i2Z/ be the associated �ltration. For a character �, we

de�ne the useful notion of the height of a character:

ht� D min
˚
i � �1 W �.g.i// D 0

	
:

Remark. Note that simple restricted modules correspond to modules of character height
�1.

Now we introduce a generalisation of the restricted universal enveloping algebra:

Definition 3.4.5. Let .g; Œp�/ be a restricted Lie algebra over k and let S 2 g�. A pair
.u.g; S/; i/ consisting of a homomorphism of Lie algebras � W g �! u.g; S/�, for u.g; S/
some associative k-algebra with unity such that

�.x/p � �.xŒp�/ D S.x/p1

for all x 2 g is an S-reduced universal enveloping algebra of g if for every associative
k-algebra with unity A and every Lie algebra homomorphism f W g �! A� such that
f .x/p � f .xŒp�/ D S.x/p1 for all x 2 g, there is a unique associative homomorphism
Qf W u.g; S/ �! A such that the following diagram

g
� //

f ##

u.g; S/

9Š Qf
��
A

commutes.
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Remark. The S-reduced universal enveloping algebra exists, and any two S-reduced
universal enveloping algebras are isomorphic, by the usual categorical argument. We have
u.g; 0/ D u.g/. Also, u.g; S/ is obtained as the quotient of U.g/ by the ideal generated
by n

xp � xŒp� � S.x/p1 W x 2 g
o
:

If .xi/i2ƒ is an ordered basis for g, u.g; S/ has a PBW-type k-basis given by˚
�.xj1

/s1 � � � �.xjn
/sn W n 2 N; j1 < j2 < � � � < jn 2 ƒ; 0 � si � p � 1

	
:

The map � is then injective and so, as in the case of U.g/, we identify g with its image
�.g/. For more details see Theorem 3.1 and its proof in §5.3 in Strade and Farnsteiner
(1988). As in the restricted case, we have dimk u.g; S/ D p

n if dimk g D n.

Remark. As in the case of modules over the universal enveloping algebra U.g/ and g-
modules, there is a natural equivalence between modules over the S-reduced universal
enveloping algebra u.g; S/ and g-representations with character S .

Remark. If h is a restricted subalgebra of g, then u.h; S/ can be naturally identi�ed with
a subalgebra of u.g; S/.

For the following theorem see (Strade and Farnsteiner, 1988, §5.3, Corollary 3.2, p.
214):

Theorem 3.4.6. Let .g; Œp�/ be a restricted Lie algebra. Then for all S 2 g� there is an
irreducibleS -representation of g, i.e., every linear formS is the character of some irreducible
representation.

For the following theorem see (Strade and Farnsteiner, 1988, §5.2, Theorem 2.7, p.
211):

Theorem 3.4.7. Let Vi be g-modules with characters Si for i D 1; 2. Then

1. Homk.V1; V2/ is a g-module with character S2 � S1;

2. V �1 is a g-module with character �S1;

3. V1 ˝k V2 is a g-module with character S1 C S2.

In particular, we see that the restrictedness of restricted modules (so when S D 0) is
preserved by taking Hom-spaces, tensor products, and duals, i.e. if V1 and V2 are restricted
g-modules, then Homk.V1; V2/ and V1˝k V2 are both restricted g-modules; furthermore
V �1 and V �2 are both restricted g-modules.
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Definition 3.4.8. A representation � W g �! gl.V / is called completely reducible if
there is a family of irreducible submodules .Vi/i2I such that V D

L
i2I Vi . Alternatively,

it is completely reducible if for every submodule W there exists a submodule U such
that V D W ˚ U .

Weyl’s complete reducibility tells us that every �nite-dimensional representation of a
�nite-dimensional simple Lie algebra over an algebraically closed �eld of characteristic 0
is completely reducible. This, however, is not the case in the modular world.

Example 3.4.9. Consider the sl2-submodule �p � kŒx; y� consisting of all the homoge-
neous polynomials of degree p (see Example 3.1.23 and Example 3.1.26). We claim that
�p is not completely reducible. Indeed, consider the subspace k hxp; ypi. It is an sl2-
submodule, since all the elements act trivially on it. Suppose that there exists a submodule
V � �p such that V ˚ k hxp; ypi D �p . Let v 2 V n f0g. We can write

v D

p�1X
iDj

�ix
iyp�i ;

where j > 0 and �j ¤ 0. Now, .�.e//p�j .v/ D c�jxp , where c ¤ 0. Therefore, xp 2 V ,
a contradiction. Thus, �p is not completely reducible.

The following theorem (contrast with Weyl’s theorem) is due to Jacobson (see (Strade
and Farnsteiner, 1988, §5.5, p. 220)):

Theorem 3.4.10. Let g ¤ f0g be a �nite-dimensional Lie algebra over a �eld of positive
characteristic. Then g possesses a �nite-dimensional faithful completely reducible represen-
tation.

Now we de�ne the important notion of an induced representation (see (Strade and
Farnsteiner, 1988, §5.6) for more details):

Definition 3.4.11 (Induced Representation). Let h be a p-subalgebra of a re-
stricted Lie algebra .g; Œp�/. Let S 2 g�. Let M be a left h-module with character S .
Then

Indg
h.M; S/ WD u.g; S/˝u.h;S/M

is a left g-module with character S . It is referred to as the g-module induced by the
h-moduleM .

Remark. The tensor product overu.h; S/ is taken seeingu.g; S/ as a rightu.h; S/-module
and M as a left u.h; S/-module. See De�nition 2.1.14.
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Remark. Lemma 2.1.16 says that the action of g on Indg
h.M; S/ is given by

y � .x ˝m/ D y � x ˝m D yx ˝m;

for all y 2 g, x 2 u.g; S/, m 2M .

Induced modules will be very important in classifying the simple modules for the
Hamiltonian algebra H.2I .1; 1/Iˆ.1//, as we will later see. The following well-known
theorem will be of much import too.

Theorem 3.4.12 (Frobenius Reciprocity). Let .g; Œp�/ be a restricted Lie algebra
over k, and S 2 g�. Let V be a g-module with character S and let h � g be a p-subalgebra.
LetM be an h-module with character Sh 2 h�. Then:

Homh.M; VRes/ Š Homg.Indg
h.M; S/; V /;

where VRes is simply the restriction of the g-module V to h.

For a proof for Frobenius reciprocity, we refer the interested reader to (Strade and
Farnsteiner, 1988, §5.6, Theorem 6.3). From it, we see that if f 2 Homh.M; VRes/, then
the map

x ˝m 7! x � f .m/

is a g-homomorphism Indg
h.M; S/ �! V .

Concerning dimensions, we have (assuming that g and M are �nite-dimensional):

dimk Indg
h.M; S/ D p

dimk g=h dimkM:

A proof of this can be found in (Strade and Farnsteiner, 1988, §5.6, Prop. 6.2).
The restricted representation theory of sl2 will be of importance to us when we

classify the simple restricted modules of H.2I .1; 1/Iˆ.1//. For more details, see, for
example, (Strade and Farnsteiner, 1988, §5.2, pp. 207–209).

Theorem 3.4.13. There are p isomorphism classes of restricted irreducible representations
of sl2. The classes have representatives L.´/ for ´ 2 f0; 1; : : : ; p � 1g, where L.´/ has
dimension ´C 1.

Remark. These representations have already been introduced as �´ D L.´/ in Exam-
ple 3.1.26.
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Remark. Richard E. Block (see Block (1979, 1981)) has classi�ed all the irreducible repre-
sentations of sl2.C/, including all the in�nite-dimensional ones. The simple modules fall
into three types: highest weight modules, Whittaker modules, and those belonging to a
family of pairwise nonisomorphic and mostly new modules that the author constructs in
Block (1981).
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Chapter 4

Derivation algebras and Lie algebras

of Cartan type

In this chapter we will study the Lie algebras of derivations of divided power algebras
as well as certain important Lie subalgebras of these algebras of derivations, such as
the generalised Jacobson-Witt algebra W.mIn/. These algebras turn out to be important
since the Hamiltonian algebras we look at in later chapters will be de�ned in relation to
these algebras.

Recall that a derivation of an algebra A over k is a k-linear map D W A �! A such
that

D.ab/ D D.a/b C aD.b/

for all a; b 2 A. In the context of Lie algebras, a derivation D of a Lie algebra g thus
satis�es D.Œa; b�/ D ŒD.a/; b�C Œa;D.b/� for all a; b 2 g. Recall that Derk.A/ is a Lie
subalgebra of gl.A/.

Any such derivation D satis�es Leibniz’s rule:

Dn.xy/ D

nX
iD0

 
n

i

!
Di.x/Dn�i.y/:

In particular, if k is a �eld of characteristic p > 0, we see that Dp.xy/ D xDp.y/C

Dp.x/y for all x; y 2 A, since the binomial coe�cients
�
p

i

�
for all 1 � i � p � 1

are divisible by p. Therefore, in the modular case, Dp 2 Derk.A/, proving indeed that
Derk.A/ is a restricted Lie algebra.

It turns out that several important families of Cartan-type modular Lie algebras, not
just the Hamiltonian algebras, are closely related to certain types of derivation algebras.
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4.1 Graded Lie algebras of Cartan type

Rather than going into the general theory of graded Lie algebras of Cartan type, in this
section we will study in some detail the simplest family of these, the W , or Witt, family.

Let k be a �eld of characteristic p > 0. Consider the truncated polynomial ring

kŒX�=.Xp/:

We consider the Lie algebra Derk.kŒX�=.Xp//. It turns out that this Lie algebra admits
the following k-basis:

˚
@; x@; : : : ; xp�1@

	
, where x denotes the image ofX in the quotient,

i.e. x D X C .Xp/, and @ is the derivation of kŒX�= .Xp/ de�ned by @.xa/ D axa�1.
It turns out that the Lie bracket on basis elements satis�es:

Œxi@; xj@� D .j � i/xiCj�1@:

This Lie algebra is called the �rst Witt algebra. It is denoted W.1I 1/ D W1. It is
restricted with p-mapping given by p-fold composition: DŒp� D Dp for all D 2 W1. If
p � 3, it is simple. If p D 3, in factW1 Š sl2.k/, but for higher characteristic, it is not of
classical type (i.e. not a Lie algebra that is a modular analogue of a simple Lie algebra in
characteristic 0). It is graded as follows.

Definition 4.1.1. De�ne the r-th graded piece to be:

W.1I 1/r D k
˝
xrC1@

˛
:

Then W.1I 1/ D
Lp�2

rD�1W.1I 1/r .
The �rst Witt algebra is the simplest example of a modular Lie algebra of type W ,

and indeed it is the simplest example of a graded Lie algebra of Cartan type, for whose
de�nition see De�nition 5.1.9 and the second remark following it.

We want to generalise this somewhat. Suppose one was to consider a truncated
polynomial ring

kŒX1; : : : ; Xm�=
�
X
pn1

1 ; : : : ; Xpnm

m

�
:

This would present problems once any of the ni > 1. This is principally because once
one considers elements such as xp1 ¤ 0 they will admit no non-zero derivations, since if
D is a derivation, an inductive argument shows D.xp1 / D px

p�1
1 D.x1/ D 0.

To get around this fact, it is necessary to introduce algebras of divided powers. From
now on, let m be a positive integer and let n 2 Nm>0.
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Definition 4.1.2. The algebra O.m/ is the associative and commutative algebra (with
unit element) with k-basis n

x.a/ W a 2 Nm; 0 � ai
o

satisfying

x.a/x.b/ D

 
aC b

a

!
x.aCb/;

where aC b D .a1 C b1; : : : ; am C bm/ and
�
a

b

�
D
Qm
iD1

�
ai

bi

�
, adopting the convention

that
�
ai

bi

�
D 0 if bi > ai .

The divided power algebra O.mIn/ is the associative and commutative subalgebra
(with unit element) of O.m/ with k-basisn

x.a/ W a 2 Nm; 0 � ai � pni � 1
o
:

Remark. Note that if ai C bi � pni , we have that pni , and therefore p, divides the
binomial coe�cient

�
aiCbi

ai

�
. Thus the binomial coe�cient is zero in k and x.a/x.b/ D 0.

Therefore, O.mIn/ is indeed a subalgebra.

For a more detailed description of this algebra in terms of generators and relations,
see for instance (Strade, 2004, §2.1, pp. 59–60 ) or (Strade, 2004, p. 3) for a quick overview.
For a description in terms of “divided” formal power series, see (Strade and Farnsteiner,
1988, §3.5, p. 132), where the algebra is denoted A.mIn/.

We now give a construction of O.m/. Consider the polynomial ring CŒX1; : : : ; Xm�.
De�ne X .r/

i D
1
rŠ
X r
i for all i 2 f1; : : : ; mg and r � 0. Then

PZ WD
X
a2Nm

 
Z

mY
iD1

X
.ai /
i

!
is a Z-subalgebra of CŒX1; : : : ; Xm�. It turns out that O.m/ Š k ˝Z PZ.

The algebra O.mIn/ is graded via

O.mIn/i WD k
D
x.a/ W jaj D i

E
;

setting jaj WD a1 C a2 C : : :C am. This gradation gives rise to the �ltration (see §3.3 for
more details)

O.mIn/.i/ WD k
D
x.a/ W jaj � i

E
:

To see that divided powers occur naturally, observe that if we apply the partial
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derivative @
@X1

to the polynomial Xa
1X

b
2 2 CŒX1; X2�, say, we obtain aXa�1

1 Xb
2 . This

can grow unwieldy as coe�cients grow in number as one applies partial derivatives
repeatedly. To circumvent this problem, put X .ai /

i D
1
ai Š
X
ai

i for all i . Now applying the
partial derivative to X .a/

1 X
.b/
2 yields

a

aŠ
Xa�1
1 X

.b/
2 D X

.a�1/
1 X

.b/
2 :

More generally, in the commutative polynomial ring in n variables CŒX1; : : : ; Xn�, apply-
ing the i-th partial derivative @xi

D
@
@xi

to a polynomial X .a1/
1 X

.a2/
2 � � �X

.an/
n yields

X
.a1/
1 � � �X

.ai�1/
i�1 X

.ai�1/
i X

.aiC1/
iC1 � � �X .an/

n :

We will sometimes write X .a/ D .X1 � � �Xn/
.a1;:::;an/ for X .a1/

1 X
.a2/
2 � � �X

.an/
n DQn

iD1X
.ai /
i . Here, again, we refer the reader to (Strade, 2004, §2.1, pp. 59–62). In the

quotient, we denote the image of the monomial Xi by xi , for all 1 � i � m. It is easy to
see that

X .r/X .s/
D

 
r C s

r

!
X .rCs/:

Furthermore, they arise in the algebra of distributions for a connected reductive
algebraic group, see (Jantzen, 1987, Part II, §1.12, pp. 184–185) for more details. They also
occur naturally in Kostant Z-form of U.g/ for g a complex semisimple Lie algebra, see
(Kostant, 1966, §2.3–2.5) for more details.

Now, going back to W1 and the truncated polynomial algebra kŒX�= .Xp/, we do
have the following isomorphism more generally:

kŒX1; : : : ; Xm�=
�
X
p
1 ; : : : ; X

p
m

�
Š O.mI 1/

where 1 WD .1; 1; : : : ; 1/ 2 Nm.
Another interesting isomorphism is (see (Strade, 2004, §7.6, p. 423)):

O.mIn/ Š O

 
mX
iD1

ni I 1

!
D O.jnj I 1/:

In particular,
O.mIn/ Š kŒX1; : : : ; Xjnj�=

�
X
p
1 ; : : : ; X

p

jnj

�
:

51



Chapter 4. Derivation algebras and Lie algebras of Cartan type

Definition 4.1.3. A derivation D W O.mIn/ �! O.mIn/ is said to be special if

D.x.a// D

mX
iD1

x.a�"i /D.xi/;

where "i is the m-tuple with j -th entry given by ıij and xi WD x."i /.

Definition 4.1.4. The Lie algebra W.mIn/, where n 2 Nm>0, called the generalised
Jacobson-Witt algebra, is the Lie algebra consisting of the special derivations of O.mIn/.

For the following proposition see (Strade and Farnsteiner, 1988, §4.2, Theorem 2.4, p.
149):

Proposition 4.1.5. The algebra W.mIn/ is simple and has dimension mpjnj.

Remark. Observe that dimk O.mIn/ D p
jnj.

It has (in divided power notation) k-basisn
x
.a1/
1 x

.a2/
2 � � � x.am/

m @xi
W 0 � ai � p

ni � 1; i D 1; : : : ; m
o
;

where @xi
is the (special) derivation uniquely determined by the property

@xi
x
.a1/
1 x

.a2/
2 � � � x.am/

m D x
.a1/
1 � � � x

.ai�1/
i�1 x

.ai�1/
i x

.aiC1/
iC1 � � � x.am/

m ;

that is,
@xi
x.a/ D x.a�"i /;

where we adopt the convention that x.b/ D 0 if any of the bi < 0. The derivation @xi
is

called the i -th partial derivative of O.mIn/.

Definition 4.1.6. We set W.m/ D
Pm
iD1O.m/@xi

.

Clearly, W.m/ has k-basisn
x.a/@xi

W 0 � ai ; i D 1; : : : ; m
o
:

The Lie bracket on the basis elements of W.mIn/ and W.m/ is given by the formula (see
the proof of Proposition 5.9 in Chapter 3 of Strade and Farnsteiner (1988) or (Holmes,
2001, p. 448))

Œx.a/@xi
; x.b/@xj

� D

 
aC b � "i

a

!
x.aCb�"i /@xj

�

 
aC b � "j

b

!
x.aCb�"j /@xi

; (4.1)
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Chapter 4. Derivation algebras and Lie algebras of Cartan type

for a; b 2 Nm; i; j 2 f1; : : : ; mg.
Moreover, W.mIn/ is restricted if and only if n D 1 D .1; 1; : : : ; 1/, and in such

a case, it is isomorphic to the full derivation algebra of the truncated polynomial ring
kŒX1; : : : ; Xm�=

�
X
p
1 ; : : : ; X

p
m

�
:

Derk
�
kŒX1; : : : ; Xm�=

�
X
p
1 ; : : : ; X

p
m

��
Š W.mI 1/:

Additionally, it is the full derivation algebra Derk.O.mI 1//. For a proof that
Derk.O.mI 1// D W.mI 1/, we refer the reader to Proposition 5.9, part (3) in (Strade and
Farnsteiner, 1988, p. 132). In general it is only true that W.mIn/ � Derk.O.mIn//, see
Proposition 5.9, part (2) in the previous reference. Furthermore, Theorem 2.4 in (Strade
and Farnsteiner, 1988, p. 149) tells us that W.mIn/ is restrictable if and only if n D 1,
and in that case DŒp� D Dp for all D 2 W.mIn/.

More generally, W.mIn/ is in fact a free O.mIn/-module with basis
f@xi
W i D 1; : : : ; mg. For a proof of this fact, see Proposition 5.9, part (1) in (Strade and

Farnsteiner, 1988, p. 133). Alternatively, (Strade, 2004, §2.1, p. 60) de�nes W.mIn/ as this
free module: W.mIn/ D

Pm
iD1O.mIn/@xi

.
The algebra W.mIn/ acts naturally on O.mIn/ via D � f D D.f /. This is called the

canonical representation of W.mIn/, see Example 3.1.31 for more details.
The algebra W.mIn/ is graded as follows.

Definition 4.1.7. De�ne r-th graded piece to be

W.mIn/r D k
D
x.a/@xi

W jaj D r C 1; i D 1; : : : ; m
E
;

so that the “degree” function on monomial derivations x.a/@xi
of the Witt algebra is

computed by taking the degree of the monomial x.a/ and subtracting one.

One has

W.mIn/ D

sM
rD�1

W.mIn/r ;

where s D
Pm
iD1.p

ni � 1/ � 1 D
Pm
iD1.p

ni / � m � 1. Furthermore, when n D 1 the
gradation is restricted (that is, W.mI 1/Œp�i � W.mI 1/pi for all i ).

Proposition 4.1.8. One has the isomorphism:

W.mIn/0 D k
˝
xi@xj

W i; j D 1; : : : ; m
˛
Š glm.k/:
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Chapter 4. Derivation algebras and Lie algebras of Cartan type

Furthermore, this is a restricted representation of W.mIn/0.

Proof. We map xi@xj
7! Ei;j 2 Mn.k/, see Example 3.1.10 for more details. Notice

that W.mIn/0 can be seen as endomorphisms of the m-dimensional k-vector space
k hx1; x2; : : : ; xmi. Since xi@xj

.xt/ D ıjtxi for all 1 � t � m, we see that the matrix of
xi@xj

with respect to the basis fx1; : : : ; xmg is just Ei;j .
To see that this is a restricted representation, observe that glm.k/ is a restricted

Lie algebra with p-mapping given by p-fold composition of functions, and that the
p-mapping on W.mIn/0 is also given by p-fold composition of functions. �

An important subalgebra of W.mIn/ is

t WD k
D
x."i /@xi

W i D 1; : : : ; m
E
D k hxi@xi

W i D 1; : : : ; mi

Clearly t is an abelian subalgebra. If n D 1, Theorem 2.5 in (Strade and Farnsteiner,
1988, §4.2, pp. 150–151) tells us that t is a torus. In particular,

�
x."i /@xi

�Œp�
D x."i /@xi

for
all i D 1; : : : ; m.

As we saw in Chapter 1, Shen in Shen (1988a) classi�ed the restricted simple Wn D
W.nI 1/-modules. Holmes in Holmes (2001) expanded this work to all simpleWn-modules
of character height at most one, see Theorem 4.3 and Theorem 4.4 in Holmes (2001) for
more details.
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Chapter 5

Hamiltonian Lie algebras

The family of Hamiltonian Lie algebras is the centre-piece of this thesis. We give an
introduction here to set the stage for the later chapters, focusing on the Hamiltonian
algebras most relevant to our discussion.

Throughout this chapter, let m be a positive integer and let n 2 Nm>0. We take our
base �eld to be an algebraically closed �eld k of characteristic p � 3.

Let O..m// and O..mIn// denote the topological completions of O.m/ and O.mIn/,
respectively, with respect to the topologies induced from the descending chains of ideals
.O.m/.j //j�0 and .O.mIn/.j //j�0, respectively.

One can then go on to de�neW..m// andW..mIn// as well asH..m// andH..mIn//.
It turns out, however, thatH.mIn/ D H..mIn//, see (Strade, 2004, §4.2, p. 186) for more
details. Thus, we restrict in this chapter our attention to H.m/ and H.mIn/.

5.1 Hamiltonian forms and graded Hamiltonians

We shall start by looking at the general family of Hamiltonians.
For a more in-depth treatment of the topics covered in this section, we refer

the interested reader to (Strade, 2004, §4.2). Let the space of O.m/-homomorphisms
HomO.m/.W.m/;O.m// be denoted by �1.m/1. De�ne d W O.m/ �! �1.m/ by

d.f /.D/ D D.f /;

for all f 2 O.m/;D 2 W.m/.
1This becomes anO.m/-module via .f � �/ .D/ WD f �.D/ for all f 2 O.m/; � 2 �1.m/;D 2 W.m/.
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Chapter 5. Hamiltonian Lie algebras

Now, �1.m/ can be given the structure of a W.m/-module. First, we de�ne an action
of W.m/ on Homk.W.m/;O.m//. To do so we apply De�nition 3.1.34, where we take
W.m/ to be a W.m/-module via the adjoint representation, i.e., D �D0 D ŒD;D0� and
the action of W.m/ on O.m/ is simply D � f D D.f /. Thus, we have D.˛/.D0/ D
D.˛.D0// � ˛.ŒD;D0�/ for all D;D0 2 W.m/ and all ˛ 2 �1.m/. It remains to show
that D.˛/ 2 �1.m/ for all D 2 W.m/; ˛ 2 �1.m/. Let D;D0 2 W.m/; f 2 O.m/. We
wish to show

D.˛/.fD0/ D f .D.˛/.D0//:

We haveD.˛/.fD0/ D D.˛.fD0//� ˛.ŒD; fD0�/. Since ˛ is an O.m/-homomorphism,
we have D.˛.fD0// D D.f ˛.D0//. By the product rule, we have D.f ˛.D0// D
D.f /˛.D0/C fD.˛.D0//. One calculates the following identity in W.m/: ŒD; fD� D
f ŒD;D0�CD.f /D0. Therefore, using again the fact that ˛ is an O.m/-homomorphism,

˛.ŒD; fD0�/ D ˛.f ŒD;D0�/C ˛.D.f /D0/ D f ˛.ŒD;D0�/CD.f /˛.D0/:

Hence, D.˛/.fD0/ D D.f /˛.D0/ C fD.˛.D0// � .f ˛.ŒD;D0�/CD.f /˛.D0// D

fD.˛.D0// � f ˛.ŒD;D0�/ D f .D.˛/.D0//, as required.
It turns out that d is aW.m/-homomorphism betweenO.m/ and�1.m/. Indeed, it is

a direct computation to verify that d.D.f // D D � d.f / for all D 2 W.m/; f 2 O.m/.

Proposition 5.1.1. The space�1.m/ is a free O.m/-module with basis fdx1; : : : ; dxmg,
so�1.m/ D

Pm
iD1O.m/dxi , recalling thatO.m/ acts on�1.m/ via .f ��/.D/ D f �.D/

for all f 2 O.m/; � 2 �1.m/;D 2 W.m/.

Proof. Since W.m/ is a free O.m/-module with basis f@x1
; : : : ; @xm

g, if D 2 W.m/, we
can write D D

Pm
iD1 fi@xi

, where fi 2 O.m/ for all i . Hence,

�.D/ D

mX
iD1

fi�.@xi
/:

Therefore, the action of � 2 �1.m/ is determined by how � acts on the partial
derivatives @x1

; : : : ; @xm
.

Consider the map ˛ D
Pm
jD1 �.@xj

/dxj 2 �1.m/. Observe that ˛.@xi
/ D �.@xi

/

for all i . Thus, ˛ acts the same way � acts on the partial derivatives, so ˛ DPm
jD1 �.@xj

/dxj D �. �

Remark. Taking � D d.f / for f 2 O.m/, we see that the action of d.f / is determined
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Chapter 5. Hamiltonian Lie algebras

by d.f /.@xi
/ D @xi

.f /. Again, thanks to the fact we that we have .dxi/.@xj
/ D ıij , we

see that the map
Pm
iD1 @xi

.f /dxi acts the same way as d.f / on the partial derivatives.
Therefore, d.f / D

Pm
iD1 @xi

.f /dxi .

Example 5.1.2. Suppose m � 5. We have d.x1x.2/3 / 2 �1.m/. We calculate that
d.x1x.2/3 /.@x1

/ D x
.2/
3 ; d.x1x.2/3 /.@x3

/ D x1x3, and d.x1x.2/3 /.@xi
/ D 0 otherwise. Thus,

d.x1x.2/3 / D x
.2/
3 dx1 C x1x3dx3:

Similarly,
d.x.p/2 x

.p�1/
5 / D x

.p�1/
2 x

.p�1/
5 dx2 C x.p/2 x

.p�2/
5 dx5:

Definition 5.1.3. The elements of the exterior algebra over O.m/ of �1.m/, denoted
�.m/, are called di�erential forms on O.m/. We sometimes also use the r-fold exterior
power: �r.m/ WD

Vr
�1.m/ (also taken over O.m/).

Remark. We have �0.m/ D O.m/.

Remark. Replace the algebra O.m/ with the algebra O.mIn/ and W.m/ with W.mIn/
in all the previous constructions. This gives us �1.mIn/ and �.mIn/, and so on.

The algebra �.m/ is graded via �.m/ D
L

r2N�
r.m/, since clearly for all r; l 2 N

we have �r.m/�l.m/ � �rCl.m/ .
Similarly, the algebra �.mIn/ is graded via �.mIn/ D

L
r2N�

r.mIn/.
The elements of W.m/ can be extended to be derivations of �.m/ by de�ning:

D.!1 ^ !2/ D D.!1/ ^ !2 C !1 ^D.!2/

for two-fold wedge products, and de�ning higher-order wedge products inductively, i.e.
D.!1 ^ !2 ^ !3/ D D.!1 ^ !2/ ^ !3 C !1 ^ !2 ^D.!3/ and so on.

The map d can be extended to a square-zero (i.e. d2 D 0) linear operator on �.m/.
Indeed, set d .f dg/ D df ^ dg for all f; g 2 O.m/. Extend this inductively to �.m/ by
de�ning

d .!1 ^ !2/ D d.!1/ ^ !2 C .�1/deg.!1/ !1 ^ d.!2/

for all !1; !2 2 �.m/.
The following proposition can be found in (Strade, 2004, §4.2, p. 185).

Proposition 5.1.4. The map d satis�es

d.f!/ D .df / ^ ! C f d!
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for all f 2 O.m/; ! 2 �.m/.

Definition 5.1.5. The following di�erential form will be of particular interest:

!H WD

rX
iD1

dxi ^ dxiCr ;

where m D 2r � 2. The form !H is often called a Hamiltonian form (though not the
only Hamiltonian form, see De�nition 5.2.2).

Indeed, this di�erential form gives rise to the family of Hamiltonian Lie algebras:

H.2r/ WD fD 2 W.2r/ W D.!H / D 0g :

For n 2 N2r>0, de�ne

H.2r In/ D H.2r/ \W.2r In/:

What do the elements looks like? How does one compute with them? Now we will
attempt to gain a more concrete understanding of what these algebras look like. We will
begin by �xing some notation.

Given n 2 Nm>0, we put � D �.n/ D .pn1 � 1; pn2 � 1; : : : ; pnm � 1/. Put also

�.i/ WD

8<:1 if 1 � i � r

�1 if r C 1 � i � 2r

and

i 0 WD

8<:i C r if 1 � i � r

i � r if r C 1 � i � 2r:

Note that .i 0/0 D i and �.i 0/ D ��.i/ for all 1 � i � 2r .

Definition 5.1.6. De�ne a linear operator DH W O.2r In/ �! W.2r In/ by

x.a/ 7!

2rX
iD1

�.i/@xi
.x.a//@xi0

:

So for instance DH .xi/ D �.i/@xi0
;D.x1/ D @x1Cr

and (if r D 2)

DH .x
.2/
2 x

.4/
3 / D x2x

.4/
3 @x4

� x
.2/
2 x

.3/
3 @x1

:
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The Lie bracket in W.2r In/ satis�es

ŒDH .x
.a//;DH .x

.b//� D DH

�
DH .x

.a//.x.b//
�
:2

Then the graded simple Hamiltonian Lie algebra H.2r In/.2/ is the k-span

k
D
DH .x

.a// W 0 � a < �.n/
E
;

recalling from De�nition 3.1.38 that H.2r In/.2/ is the second derived subalgebra of
H.2r In/. For an explicit description of H.2r In/ see (Strade, 2004, §4.2, p. 188). We
also have H.2r In/.1/ D DH .O.2r In//, see (Strade and Farnsteiner, 1988, §4.4, p. 163),
bearing in mind that H.2r In/.1/ is denoted by H.2r In/0.

The grading of H.2r In/.2/ is inherited from that of W.2r In/. That is, we have
H.2r In/

.2/

l
WD H.2r In/.2/ \W.2r In/l and

H.2r In/.2/ D

sM
lD�1

H.2r In/
.2/

l
;

where s D
P2r
iD1.p

ni � 1/� 3 D j�.n/j � 3. We observe that DH is a linear mapping of
degree �2 in the sense of Proposition 3.3.9, i.e.,

DH .O.2r In/i/ � W.2r In/i�2

for all i .
For the following see (Strade and Farnsteiner, 1988, §4.4, Prop. 4.4), bearing in mind

that H.2r In/.2/ is denoted by H.2r In/.

Proposition 5.1.7.We have

H.2r In/
.2/
0 Š sp2r.k/:

In (Strade and Farnsteiner, 1988, Thm. 4.5, p. 166) we �nd the following:

Theorem 5.1.8. Let r � 1 be an integer. The Hamiltonian Lie algebra H.2r In/.2/ is
simple and has dimension p

P2r
iD1 ni �2 D pjnj�2. It is restrictable if and only if ni D 1 for

2This identity allows us to de�ne a Lie multiplication on O.2r In/ via ff; gg WD DH .f /.g/. The Jacobi
identity is satis�ed thanks to this identity and that ff; f g D 0 can be computed explicitly. The mapping
f; g is usually referred to as the Poisson bracket.
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all 1 � i � 2r , and in that caseH.2r In/.2/ is a p-subalgebra of W.2r In/ with restricted
gradation.

By Exercise 9 in (Strade and Farnsteiner, 1988, §4.4, p. 169) we have that

H.2r In/ D H.2r InC 1/.2/ \W.2r In/:

Proof. The inclusion H.2r In C 1/.2/ \ W.2r In/ � H.2r In/ is immediate from the
de�nitions. We will now prove H.2r In/ � H.2r In C 1/.2/ \ W.2r In/. Clearly
H.2r In/ � W.2r In/. We note that the remarks in (Strade and Farnsteiner, 1988, §4.4, p.
163) preceding Lemma 4.1 imply that for all D 2 H.2r In/ there exists an f 2 O.2r/
such that DH .f / D D. Let U D ff 2 O.2r/ W DH .f / 2 H.2r In/g. We seek a basis
for U . Observe that U D ff 2 O.2r/ W DH .f / 2 W.2r In/g. The condition DH .f / DP2r
iD1 �.i/@xi

.f /@xi0
2 W.2r In/ yields that @xi

.f / 2 O.2r In/ for all 1 � i � 2r . Thus,
a basis for all such f is given by

˚
x.a/ W 0 � ai � p

ni � 1
	
[
˚
x.p

ni "i / W 1 � i � 2r
	
. For

all a with 0 � ai � pni � 1;DH .x
.a// 2 H.2r InC 1/.2/, since a < �.nC 1/. Lastly,

DH .x
.pni "i // 2 H.2r InC 1/.2/, since pni"i < �.nC 1/. This concludes the proof. �

The representation theory of these algebras is relatively well understood. See for
examples the papers by Holmes (1998) and Yao and Shu (2011).

Definition 5.1.9. Any graded Lie subalgebra of H.2r In/ containing H.2r In/.1/ is
called a graded Hamiltonian Lie algebra of Cartan type.

Remark. By g.1/ we mean
T

g.i/.

Remark. The general de�nition of graded Lie algebras of Cartan type is made similarly,
where one replaces the type H with all the types that exist (W;S;CS;H;CH , and K).

5.2 Filtered deformations

Starting from graded Cartan-type Lie algebras one goes to general Cartan-type Lie
algebras by considering �ltered deformations of these algebras. Let us understand in
some more detail what this means.

The following de�nition of Cartan type Lie algebras can be found in (Strade, 2004,
§4.2, Def 4.2.4). We only state the case we are concerned with.
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Definition 5.2.1. Let g D g.�s0/ � � � � � g.s/ � f0g be a separating �ltration3 of g. If
there is m D 2r 2 N>0 and n 2 Nm>0 and an embedding  W gr g �! H.mIn/ of graded
Lie algebras such that

H.mIn/.1/ �  .gr g/ � H.mIn/;

then g is called a Hamiltonian Lie algebra of Cartan type.

In other words, we say that g is a Hamiltonian Lie algebra of Cartan type if g admits
a separating �ltration such that the graded of g is isomorphic to a graded Hamiltonian
Lie algebra of Cartan type.

For more structural information concerning Hamiltonian Lie algebras of Cartan type,
we refer the interested reader to Theorem 4.2.6 and Theorem 4.2.7 in (Strade, 2004, §4.2).
We do mention that if g is a Hamiltonian Lie algebra of Cartan type, then g.1/ is a simple
Hamiltonian Lie algebra of Cartan type.

Definition 5.2.2. A Hamiltonian form is a form

! D

2rX
i;jD1

fi;jdxi ^ dxj 2 �2.2r/

such that fi;j D �fj;i , d! D 0, and det.fi;j / 2 O.2r/�, the set of invertible elements of
O.2r/.

Definition 5.2.3. A Hamiltonian form subordinate to O.2r In/ is a Hamiltonian form
! such that ! 2 u�2.2r In/ for some u 2 U .2r In/, where

U .2r In/ WD
˚
u 2 O.2r/� W u�1du 2 �1.mIn/; u.0/ D 1

	
:

Now we subdivide such Hamiltonian forms into those of �rst type, which are those
where one can take u D 1 in the above de�nition, i.e., those Hamiltonian forms ! with
! 2 �2.2r In/, and those of second type, which are simply all others.

Before we de�ne an important family of Hamiltonian forms subordinate to O.2r In/
of second type, we need to make the following de�nitions.

Definition 5.2.4. Let R be a commutative ring with unit element and MR a maximal
ideal of R. A system of divided powers on MR is a sequence of maps r W MR �! R,
where we denote the image r.f / by f .r/, such that for all f; g 2MR:

3So g.s/ D f0g, see De�nition 3.3.1.
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1. f .0/ D 1, f .r/ 2MR for all r > 0;

2. f .1/ D f ;

3. f .r/f .s/ D
�
rCs

r

�
f .rCs/ for all r; s � 0;

4. .f C g/.r/ D
Pr
lD0 f

.l/g.r�l/ for all r � 0;

5. .hf /.r/ D hrf .r/ for all h 2 R and r � 0;

6.
�
f .s/

�.r/
D

.rs/Š

rŠ.sŠ/r
f .rs/ for all r � 0; s > 0.

Remark. This implies that: �
f .p

s/
�.pr /

D f .p
sCr/:

A proposition due to Skryabin, see (Strade, 2004, §2.1, Proposition 2.1.4, p. 63), tells
us that there is a unique system of divided powers on O.m/.1/ such that r.xi/ D x.r/i
for all r � 0 and all 1 � i � m. Note that successive application of (5) and (6) allows us
to compute .x.a//.r/.

Definition 5.2.5. For f 2 O.m/.1/ de�ne:

exp.f / D
1X
iD0

f .i/:

Definition 5.2.6. De�ne for l 2 f1; : : : ; 2rg

!H;l D d

0@exp
�
x
.pnl /

l

� 2rX
jD1

�.j /xjdxj 0

1A :
Definition 5.2.7. Let ! be a Hamiltonian form subordinate to O.2r In/. Then (see
(Strade, 2004, §6.5, p. 337))

H.2r InI!/ WD fD 2 W.2r In/ W D.!/ D 0g :

Remark. In the case of the form ! D !H;l and r D 1, we will adopt the notation
H.2I .n1; n2/Iˆ.l// D H.2I .n1; n2/I!H;l/.

Thus the Hamiltonian algebra H.2I .1; 1/Iˆ.1// is

fD 2 W.2I .1; 1// W D.!H;1/ D 0g :
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In this case, we can calculate !H;1 D 2 exp
�
x
.p/
1

�
dx1 ^ dx2. Note, however, that for

non-zero � 2 k, we have D.!/ D 0 if and only if D.�!/ D 0. Thus, we have

H.2I .1; 1/Iˆ.1// D fD 2 W.2I .1; 1// W D.!H;1/ D 0g

D

n
D 2 W.2I .1; 1// W D

�
exp

�
x
.p/
1

�
dx1 ^ dx2

�
D 0

o
Thanks to Theorem 6.5.8 in (Strade, 2004, §6.5), we have the following description

(from now on we adopt the notation x WD x1 and y WD x2 in O.2I 1/ and W.2I 1/, noting
that this means we write x.a1;a2/ D x.a1/y.a2/).

Theorem 5.2.8.H.2I .1; 1/Iˆ.1// D fDH;1.f / W f 2 O.2I .1; 1//g, where

DH;1.f / D @x.f /@y � @y.f /@x � x
p�1f @y

D @x.f /@y � @y.f /@x C x
.p�1/f @y

D DH .f /C x
.p�1/f @y :

Remark. See De�nition 5.1.6 for the de�nition of DH . Note also that for the second
equality we use Wilson’s Theorem.

Furthermore, the same theorem tells us thatH.2I .1; 1/Iˆ.1// is simple of dimension
p2 (as long as one is in characteristic p � 3).

The Hamiltonian algebra H.2InIˆ.�// is

H.2InI!/ D fD 2 W.2In/ W D.!/ D 0g ;

where ! is the Hamiltonian form:�
1C x.�.n//

�
dx1 ^ dx2 D

�
1C x.p

n1�1/y.p
n2�1/

�
dx ^ dy:

For more details see (Strade, 2004, §6.3, pp. 308–309) and (Strade, 2009, §10.3), noting that
H.2InI �/ D S.2InI �/, since the special form !S WD dx1^ � � � ^ dxm coincides with the
Hamiltonian form !H when m D 2.

An explicit description can be found in Theorem 6.3.7 of (Strade, 2004, §6.3, p. 309):

Theorem 5.2.9. The Lie algebra H.2InIˆ.�//.1/ is a simple Cartan type Lie algebra of
dimension pjnj � 1. More exactly,

H.2InIˆ.�// D k
�
1 � x.�.n//

�
@x C k

�
1 � x.�.n//

�
@y C

X
l�0

H.2In/l ;
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and

H.2InIˆ.�//.1/ D k
�
1 � x.�.n//

�
@x C k

�
1 � x.�.n//

�
@y C

X
l�0

H.2In/.1/l :

We have the following classi�cation (see Theorem 6.3.10, part (3) in Strade (2004)):

Theorem 5.2.10. Every simple Lie algebra of Hamiltonian type (r D 1) is isomorphic to
one of

1. H.2In/.2/;

2. H.2InIˆ.�//.1/;

3. H.2InIˆ.l//,

where l D 1; 2 and n1 � n2, with the condition that either l D 1 or l D 2, n1 < n2.
Furthermore, with these restrictions on n, the exposed algebras are pairwise non-

isomorphic.

Corollary 5.2.11.We haveH.2I .1; 1/Iˆ.1// Š H.2I .1; 1/Iˆ.2//.

For a more general classi�cation theorem that covers r > 1, we refer the reader to
Theorem 6.5.1 in (Strade, 2004, §6.5, p. 329).

Finally, we refer the reader to recently translated work of Skryabin Skryabin (2019),
noting that in it the term “Hamiltonian form” has been replaced by “symplectic form”.
Some of the classi�cation had already been published in English in Skryabin (1991), see
Skryabin (1990) for the original Russian publication.

In Skryabin (2019), we �nd a classi�cation of the Hamiltonian forms of second type, see
Theorem 5.1, and a classi�cation of the Hamiltonian forms of �rst type, see Theorem 7.2
and its new formulation in Theorem 7.3. We note that Skryabin works over perfect �elds,
a more general setting than the one we are concerned with, that of algebraically closed
�elds.
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Simple restricted modules for the

non-graded Hamiltonian

H.2I .1; 1/Iˆ.1//

In this chapter we will be calculating the dimensions of the restricted irreducible rep-
resentations of bH . We shall give dimension formulas for all of them and give a full
classi�cation, giving a list of representatives for the isomorphism classes of restricted
simples. Moreover, we shall calculate the composition factors of all restricted induced
modules.

We begin by �nding a generating set for the important subalgebra consisting of
p-nilpotent elements N ; then we calculate formulae for the action of important elements
of bH . Using this, we then classify the maximal vectors in the induced modules Z.M/,
splitting the classi�cation into (a) modules induced from one-dimensional bH 0-modules,
(b) modules induced from two-dimensional bH 0-modules, and (c) modules induced from
higher-dimensional bH 0-modules. Finally, we use this knowledge of maximal vectors to
determine in full the module structure of the restricted induced modules.

The material in this chapter can be found in an article form in Guerra (2020).

6.1 Preliminaries and notation

Let k be an algebraically closed �eld of positive characteristic p � 5.
Put A D

˚
a 2 Z2 W 0 � ai � p � 1

	
.

See (Strade, 2009, §10.4) and (Strade, 2004, §4.2) for more on the descriptions of the
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Hamiltonian algebras.
Applying Theorem 5.2.8 to basis elements in O.2I .1; 1// Š kŒX; Y �= .Xp; Y p/, we

see that the non-graded Hamiltonian algebra H WD H.2I .1; 1/Iˆ.1//, of dimension p2,
can be realised as the subalgebra of

W.2I .1; 1// D Der .kŒX; Y �= .Xp; Y p//

with basisn
y.j�1/@x � x

.p�1/y.j /@y; x
.i�1/y.j /@y � x

.i/y.j�1/@x W 1 � i � p � 1; 0 � j � p � 1
o
;

where x.�1/ and y.�1/ are understood to be zero, and x and y denote the images of X
and Y in the truncated polynomial ring kŒX; Y �=.Xp; Y p/, respectively, using divided
power notation, see (Strade, 2004, §2). The fact that these elements are not homogeneous
makes calculating with this algebra more subtle, see §6.2.1 for more details.

Given how we obtained this basis for H , we can also describe it as follows. De�ne
for all .a; b/ 2 A an element ea;b WD DH;1.x

.a/y.b// 2 H.2I .1; 1/Iˆ.1//. The set
fea;b W .a; b/ 2 Ag is a basis for H . We extend this notation to all non-negative integers
by setting ea;b D 0 if a; b � p.

For a general formula for commutators in W.nI .1; : : : ; 1//, we refer the reader to
Equation (4.1).

Recall we have a k-basis for W2n
x.a/y.b/@˛ W 0 � a; b � p � 1; ˛ D x; y

o
:

By Equation (4.1), the Lie bracket in W2, and hence H is given by, for instance,

Œx.a/y.b/@x; x
.c/y.d/@y� D

 
c C a � 1

a

! 
d C b

b

!
x.cCa�1/y.dCb/@y

�

 
aC c

c

! 
b C d � 1

d

!
x.aCc/y.bCd�1/@x;

and other commutators are computed similarly. Recall that we adopt the convention that
x.b/ D 0 if any of the bi < 0.

We want to describe the bracket of H in our chosen basis. To this end, we begin by
de�ning a map W Z ! f0; : : : ; p � 1g such that a � a 2 pZ for all a 2 Z. Then a
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straightforward calculation shows that

ea;b D x
.a�1/y.b/@y � x

.a/y.b�1/@x

for all .a; b/ 2 A. In particular, if b > 0, then e0;b D x.p�1/y.b/@y � y
.b�1/@x and

e0;0 D x
.p�1/@y .

Lemma 6.1.1. For any .a; b/; .c; d/ 2 A we have

Œea;b; ec;d � D DH;1.x
.a�1/y.b/x.c/y.d�1/ � x.a/y.b�1/x.c�1/y.d//

D

  
a � 1C c

a � 1

! 
b C d � 1

b

!
�

 
aC c � 1

a

! 
b C d � 1

b � 1

!!
eaCc�1;bCd�1;

with the caveat that when a D c D 0, we take eaCc�1;bCd�1 instead.

Proof. By Equation (10.4.2) of Strade (2009) we have

ŒDH;1.f /;DH;1.g/� D DH;1
�
DH .f /.g/C x

.p�1/f @y.g/ � x
.p�1/g@y.f /

�
for any f; g 2 O.2I .1; 1//.

Taking f D x.a/y.b/ and g D x.c/y.d/ we establish the �rst claimed equality. Note
that we haveDH .f / D x.a�1/y.b/@y �x.a/y.b�1/@x . If a; c > 0, then since x.p�1/x.t/ D
0 if t > 0, the bracket is given by DH;1.DH .f /.g// which gives the formula in this case.
Now suppose a D 0 and c > 0. Then the product above becomes

ŒDH;1.f /;DH;1.g/� D DH;1
�
x.p�1/y.b/x.c/y.d�1/ � x.a/y.b�1/x.c�1/y.d/

�
D DH;1

�
x.a�1/y.b/x.c/y.d�1/ � x.a/y.b�1/x.c�1/y.d/

�
and the formulas agree. The remaining cases are similar.

From the �rst equality we get the bracket is 
a � 1C c

a � 1

! 
b C d � 1

b

!
ea�1Cc;bCd�1 �

 
aC c � 1

a

! 
b C d � 1

b � 1

!
eaCc�1;bCd�1:

If either a D c D 0 or a; c > 0 then ea�1Cc;bCd�1 D eaCc�1;bCd�1 and this common
term can be factored out. In the case where exactly one of a or c is zero we see that only
one term survives and it agrees with the stated formula. �

Remark. Note that if b D d D 0, the unde�ned expression eaCc�1;�1 is involved. Since
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the coe�cients
�
bCd�1

b

�
and

�
bCd�1

b�1

�
are both zero, we take the expression as a whole to

be zero, and indeed Œea;0; ec;0� D 0.

The Lie algebra H is simple and its minimal p-envelope bH WD HŒp� can be obtained
by adding the element K WD x@x C y@y , see (Strade, 2009, §10.4) for more details. As
we noted in Chapter 1, classifying the restricted simple modules for bH completes the
rank one and rank two picture, in the sense that it completes the description of the
restricted simples for Hamiltonian algebras of absolute toral rank 1 and 2. The only
Hamiltonian algebra of absolute toral rank 1, H.2I .1; 1//.2/, was done by Koreshkov
(1978); the absolute toral rank 2 Hamiltonian algebras are H.2I .1; 1/;ˆ.�//.1/, which
was done by Feldvoss et al. (2016)1,H.4I .1; 1; 1; 1//.2/, which was done by Shen (1988a,b),
together with certain corrections made in Holmes (1998),H.2I .1; 2//.2/, which was done
by Yao and Shu (2011), and lastly the algebra we are concerned with, H.2I .1; 1/Iˆ.1//.
For the classi�cation of the absolute toral rank 1 and 2 simple Hamiltonian Lie algebras,
see (Strade, 2009, §10.6, p. 106).

Since K 2 bH and e1;1 D y@y � x@x 2 H � bH we get two elements

T1 WD
1

2
.K � e1;1/ D x@x and T2 WD

1

2
.K C e1;1/ D y@y

of bH . It is straightforward to check from the bracket in W.2I .1; 1// that ŒT1; T2� D 0.
So the subspace T WD khT1; T2i � bH is a 2-dimensional abelian subalgebra which is a
maximal toral subalgebra, as remarked in the proof of Theorem 10.4.6 in Strade (2009).
Hence this is indeed an algebra of absolute toral rank 2.

Note that
˚
x@x; y@y; ea;b W .1; 1/ ¤ .a; b/ 2 A

	
is a basis for bH . We have

Lemma 6.1.2. For any .a; b/ 2 A we have

ŒT1; ea;b� D .a � 1/ea;b

ŒT2; ea;b� D .b � 1/ea;b:

In particular, ŒK; ea;b� D .aC b � 2/ea;b .

Proof. Direct calculation using the bracket inW.2I .1; 1//. Note this is correct even when
a D 0. �

1See the remark after Proposition 6.1.6 for why of the two non-graded Hamiltonians H.2I .1; 1/Iˆ.1//
rather than H.2I .1; 1/Iˆ.�//.1/ turns out to be trickier to handle.
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We will induce representations from a suitable subalgebra to all of bH , which we will
now de�ne.

To this end, we must �rst de�ne a restricted descending �ltration2
�bH .n/

�
n2Z

on bH
from the natural grading, see De�nition 4.1.7,

W.2I .1; 1// D

2p�3M
dD�1

W.2I .1; 1//d ;

namely bH .n/ WD bH \W.2I .1; 1//.n/, where W.2I .1; 1//.n/ WD
L

d�nW.2I .1; 1//d .
Then bH .0/ is a codimension 2 subalgebra of bH having bH .1/ as an ideal. Indeed, we

have a linear map bH ,! W.2I .1; 1// �! W.2I .1; 1//=W.2I .1; 1//.0/ Š W.2I .1; 1//�1

with kernel bH .0/ (by de�nition). Now, W.2I .1; 1//�1 is two-dimensional with basis˚
@x; @y

	
and the linear map surjects onto this, since �e0;1 D @x � x

.p�1/y@y 2 bH is
mapped onto @x and e1;0 D @y 2 bH is mapped onto @y . Hence, bH .0/ has codimension 2.

We lift representations from bH 0 WD bH .0/=bH .1/ to bH .0/ via the canonical map, i.e.,
we take the pullback via the quotient map: if � is a representation and � is the canonical
projection bH .0/

� // bH 0
� // gl.V /

then � ı � is the desired representation.
We have bH .0/=bH .1/ Š gl2

3 because we have the following map of Lie algebras

bH .0/ ,! W.2I .1; 1//.0/ �! W.2I .1; 1//.0/=W.2I .1; 1//.1/ �! W.2I .1; 1//0 �! gl2.k/

with kernel bH .1/ (by de�nition). We know from Proposition 4.1.8 that the last map
is an isomorphism. Thus, the map is surjective, and bH 0 Š gl2. We see that we have
elements x@x C bH .1/; y@y C bH .1/; x@y C bH .1/;

�
y@x � x

.p�1/y.2/@y
�
C bH .1/ in the

quotient, and they go under our �xed isomorphism to the matrices E1;1; E2;2; E1;2, and
E2;1, respectively.

In this thesis we will be considering only restricted representations, also known as
p-representations, i.e., those for which

�.xŒp�/ D �.x/p;

for all x 2 bH , see (Strade and Farnsteiner, 1988, §2.1) for more details.
2See De�nition 3.3.1 and De�nition 3.3.5.
3In Herpel and Stewart (2016a), the authors claim that bH 0 Š sl2.
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Recall that we write u.bH/ for the restricted universal enveloping algebra of bH .
Given a restricted module M for bH .0/ we will study the induced u.bH/-module, i.e.,

the restricted bH -module,

Z.M/ WD IndbHbH .0/

.M; 0/ WD u.bH/˝
u.bH .0//

M;

where bH acts on Z.M/ as usual.
Concerning the restricted structure, according to Strade in (Strade, 2009, §10.4), one

has DŒp� D Dp if D 2 bH .0/. For such D, we have Dp D D when D D x@x or
D D y@y . Otherwise Dp D 0 for single terms x.a/y.b/@x and x.a/y.b/@y . For basis
elements D … bH .0/, we have

@Œp�y D 0�
�@x C x

.p�1/y@y

�Œp�
D y@y :

Let M be a restricted bH 0-module, and hence a restricted bH .0/-module, with bH .1/ �

M D 0.
We seek a way to express elements of Z.M/ uniquely. Observe that

@0x WD @x � x
.p�1/y@y … bH .0/:

Also @y … bH .0/. These are linearly independent and in bH . Hence, kh@0x; @yi is a vector
space complement of bH .0/ in bH , i.e., bH D bH .0/˚ kh@

0
x; @yi. Thus, by the PBW theorem

for u.bH/, any v 2 Z.M/ can be expressed uniquely in the form

v D
X
a2A

�
@0x@y

�a
˝ma; (6.1)

where ma 2M and
�
@0x@y

�a
WD @0a1

x @a2
y .

Set N D bH .1/ ˚ k
˝
x@y

˛
. We call it N because it is a subalgebra of bH consisting of

p-nilpotent elements (recall De�nition 3.2.10). Let f W bH .0/ �! gl2.k/ be the map of
Lie algebras we have �xed above. Consider the usual Borel subalgebra

B D

( 
a b

0 c

!
W a; b; c 2 k

)
� gl2.k/:

De�neB D f �1.B/, which is clearly a subalgebra of bH .0/. It is easy to see thatB D N˚T
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(as vector spaces), where we recall that T D khx@x; y@yi is a 2-dimensional abelian
subalgebra which is a maximal toral subalgebra. Note, furthermore, that B is a split
extension of N by T (in other words, B is a semidirect product of Lie algebras).

Definition 6.1.3. Let M be a B-module. Let � 2 k2. Set

M.�/ D
˚
m 2M W x@x �m D �1m; y@y �m D �2m

	
:

We call elements of M.�/ weight vectors (of weight �). If in addition v 2 M.�/ is
nonzero and N � v D 0, then we say that v is a maximal vector (of weight �), following
Holmes (2001).

Remark. Every bH 0-module M is a B-module, by in�ation to bH .0/ and then restriction
to B. Thus, it makes sense to talk about maximal vectors v for M . In this setting, such
maximal vectors are equivalent to maximal vectors for M in the classical sense, recalling
that bH 0 Š gl2, where v is a maximal vector for gl2 if it is an eigenvector for x@x and y@y
and is annihilated by x@y . This is because the algebra B in the quotient by bH .1/ becomes

B=bH .1/ Š k
˝
x@x; y@y; x@y

˛
:

Remark. Since we are looking at restricted modules, we have that if a restricted B-module
M has a maximal vector of weight �, then necessarily � 2 F2p , where Fp is the prime
sub�eld of our �eld k, see (Holmes, 2001, §2) for details. (Brie�y, this is because in the
restricted case one gets �pi D �i .)

The following results show the importance of maximal vectors and of induced modules.
See (Holmes, 2001, Lem. 2.1), for the proof of Lemma 6.1.4.

Lemma 6.1.4. LetM be a �nite-dimensional restricted bH -module. The following are equiv-
alent:

1. M is non-zero and is generated (as an bH -module) by each of its maximal vectors;

2. M is simple.

Proposition 6.1.5. Let M be a �nite-dimensional restricted bH -module. Then M has a
maximal vector.

Proof. Note thatM is a restricted bH .0/-module. It has a simple restricted bH .0/-submodule
S . Now, since bH .1/ � N , the proof of Lemma 6.1.4 in (Holmes, 2001, Lem. 2.1) shows
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that bH .1/ acts trivially on S . Thus, we see that S is a simple restricted bH 0 D bH .0/=bH .1/-
module. Thus, S has a maximal vector v of weight � as a restricted bH 0 Š gl2-module.
We now claim that v is a maximal vector for bH . Indeed, it is non-zero, and it is a weight
vector. Finally, we see that bH .1/ � v D 0, and that x@y � v D 0, the latter because v is a
maximal vector for bH 0. Thus, N D bH .1/ ˚ k

˝
x@y

˛
annihilates v, as required. �

Proposition 6.1.6. LetM be a simple restricted bH -module. ThenM is a homomorphic
image of Z.S/ for some simple restricted bH 0-module S , i.e., every simple restricted bH -
moduleM is a quotient of some induced module Z.S/.

Proof. Since M is �nite-dimensional, we let v 2 M be a maximal vector of weight �.
Apply Frobenius reciprocity, where one takes S to be a simple restricted gl2-submodule
of weight �, so that

HombH .Z.S/;M/ ¤ 0;

noting that any non-zero map must be surjective due to the simplicity of M . �

Remark. Now we can explain why classifying the restricted simples for bH turns out to be
harder than forL the minimalp-envelope ofH.2I .1; 1/Iˆ.�//.1/. Thanks to Theorem 4.3
in (Feldvoss et al., 2016, p. 387), the authors are able to reduce the problem of classifying
the simples for L into that of classifying the simples for the graded of L, which turns
out to be H.2I .1; 1//, which in turn depends (see the proof of Theorem 5.3 in (Feldvoss
et al., 2016, p. 391) on classifying the simples for H.2I .1; 1//.2/, which is done in Holmes
(1998). The whole procedure works because the space L.0/=L.1/ Š sl2.k/ coincides with
the zero-graded piece H.2I .1; 1//0. In our case, the space bH .0/=bH .1/ Š gl2.k/ does not
coincide with the zero-graded piece of its graded algebra (still H.2I .1; 1//, see (Herpel
and Stewart, 2016a, p. 776)), so this strategy would only allow limited information on
the induced modules Z.M/ based on inducing from simple restricted sl2-modules L0.r/,
but as we just proved, a full classi�cation of the simples of bH requires inducing from
simple restricted bH 0 Š gl2.k/-modules.

Lastly, even if this technique worked, it would not give us all the information we shall
�nd, including a complete description of the module structure of all the induced modules,
their composition series, and a complete description of all the composition factors and
all the isomorphisms between them.

Certain weights will be important for us. They are the following:!0 D .�1;�1/; !1 D
.0;�1/; !2 D .0; 0/, and all � 2 F2p with �1 � �2 D 1. These weights we call the
exceptional weights.
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We will prove:

Theorem 6.1.7. Let p � 5 be a prime, k be an algebraically closed �eld of characteristic
p, � 2 F2p a weight, L0.�/ be the simple restricted gl2.k/-module of highest weight �,
Z.�/ D Z.L0.�// the corresponding induced bH -module, and L.�/ its simple head.

1. The full list of simple pairwise nonisomorphic restricted bH -modules is given by˚
L.�/ W � 2 F2p; �1 � �2 ¤ 1or � D !1

	
. There are p2 � p C 1 of them.

2. If � is not exceptional, then L.�/ D Z.�/, and its dimension is p2 dimk L0.�/ D

p2 .�1 � �2 C 1/.

3. For exceptional �, the modules L.�/ in the list are as follows:

(a) if � D !0 D .�1;�1/, L.�/ Š O.2I .1; 1//= .k � 1/, with dimension p2 � 1;

(b) if � D !1 D .0;�1/, L.�/ Š bH ˝
@y ˝m

˛
� Z.0; 0/, with dimension p2 � 1;

(c) if � D !2 D .0; 0/, L.�/ Š k, with dimension 1 (this is the trivial module).

Remark. The condition �1 � �2 ¤ 1 comes from the fact that all the simple heads L.�/
of modules induced from two-dimensional gl2-modules (with the exception of � D !1)
are isomorphic to some other simple restricted bH -module. See the remark after the proof
of Theorem 6.3.13 for more details.

Definition 6.1.8. Let � 2 F2p , A D
˚
a 2 Z2 W 0 � ai � p � 1

	
, a 2 A. For brevity we

de�ne the following

�.a/i D �i C ai ;

ra D a1.�.a/1 � �.a/2/C a1a2 �

 
a1

2

!
sa D a2.�.a/1 � �.a/2/ � a1a2 C

 
a2

2

!
ta D

 
a1

2

!
.�.a/2 � �.a/1/ �

 
a1

2

!
a2 C

 
a1

3

!
;

Furthermore, x@y will also be referred to as X , especially when it is acting on M .
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6.1.1 Generating the subalgebra N

To facilitate the arguments concerning maximal vectors in what follows, we will �nd a
generating set for our subalgebra N . First, however, we describe N D bH .1/ ˚ k

˝
x@y

˛
in

more detail.

Proposition 6.1.9. The Lie subalgebra N D bH .1/ ˚ k
˝
x@y

˛
has dimension p2 � 4.

Proof. Recall that bH .0/ has codimension 2 in bH . Thus, dimk
bH .0/ D

�
p2 C 1

�
� 2 D

p2 � 1. We also saw that the quotient bH .0/=bH .1/ is 4-dimensional. Thus dimk
bH .1/ D�

p2 � 1
�
� 4 D p2 � 5. Therefore, we have dimk N D p

2 � 4. �

We have the following:

Proposition 6.1.10. Let k be an algebraically closed �eld of characteristic p � 5. We
have

N D bH D
x@y; x

.p�1/@y; e1;2; e0;3

E
(as a Lie subalgebra) if p ¤ 5. If p D 5

N D bH D
x@y; x

.p�1/@y; e1;2; e0;3; e4;4

E
;

where e4;4 D x.3/y.4/@y � x.4/y.3/@x .

Proof. Put S D bH ˝
x@y; x

.p�1/@y; e1;2; e0;3
˛
� N .

First we will obtain all y.j�1/@x � x.p�1/y.j /@y for j D 3; : : : ; p � 1. This will show
that dimk S � p � 3. For j D 3, we observe that this is just the element �e0;3, which is
already in S . We proceed by induction on j . The base case is clear.

Now, we have

Œy.j�1/@x � x
.p�1/y.j /@y; e1;2� D �

 
j C 1

2

!�
y.j /@x � x

.p�1/y.jC1/@y

�
;

which is never zero since j ¤ p � 1. So we obtain all the desired elements by induction.
Now we claim that

˚
x.i/y@y � x

.iC1/@x; x
.i/@y

	
� S for i D 1; : : : ; p � 2. Since

x.p�1/@y is in our set of generators, this will show that dimk S � .p � 3/C .2p � 3/ D

3p � 6.
Proceed by induction on i . For i D 1, we already have x@y 2 S and we have

e2;1 D xy@y � x
.2/@x 2 S , which we obtain from Œx@y; e1;2� D 2e2;1. For the inductive
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step, we have
Œx@y; x

.i/y@y � x
.iC1/@x� D .i C 2/

�
x.iC1/@y

�
;

and
Œx.iC1/@y; e1;2� D .i C 2/

�
x.iC1/y@y � x

.iC2/@x

�
:

Hence, in step-wise fashion we get the terms we want up to the point we obtain the
terms x.p�3/y@y �x.p�2/@x and x.p�3/@y . Taking the Lie bracket of the former with x@y ,
we obtain the term .p � 1/x.p�2/@y . By taking the Lie bracket of this term with e1;2, we
obtain x.p�2/y@y � x.p�1/@x . Thus, we have proved our claim.

We have

Œx.i/@y; y
.j�1/@x � x

.p�1/y.j /@y� D �
�
x.i�1/y.j�1/@y � x

.i/y.j�2/@x

�
;

so x.i�1/y.j�1/@y �x.i/y.j�2/@x 2 S for i D 1; : : : ; p� 1; j D 3; : : : ; p� 1. This shows
that dimk S � .3p � 6/C .p � 1/ .p � 3/ D p

2 � p � 3.
Since dimk N D p

2 � 4, we are only missing p � 1 elements. Note that the following
p � 1 are both in N and have not yet been shown to lie in S :

x.i�1/y.p�1/@y � x
.i/y.p�2/@x;

1 � i � p � 1. We calculate

Œe1;2; x
.i�1/y.j /@y � x

.i/y.j�1/@x� D i;j

�
x.i�1/y.jC1/@y � x

.i/y.j /@x

�
;

where i;j D
�
jC1

2

�
� i.j C 1/. Taking j D p � 2 in the above gives us the elements

we need as i runs from 1 to p � 1, as long as the coe�cient i;p�2 ¤ 0. However,
i;p�2 D 1C i D 0 when i D p � 1. So we still need to �nd the last term

x.p�2/y.p�1/@y � x
.p�1/y.p�2/@x:

We calculate

Œy.p�4/@x � x
.p�1/y.p�5/@y;�e0;3� D 2

�
x.p�2/y.p�1/@y � x

.p�1/y.p�2/@x

�
:

Finally, we note that if p D 5, y.p�4/@x � x.p�1/y.p�5/@y … N , so we add the element
e4;4 D x.p�2/y.p�1/@y � x

.p�1/y.p�2/@x in characteristic 5. By dimensions, we are
done. �
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Remark. Computer veri�cation con�rms thatN is not generated by S alone when p D 5.

From the previous result we see that the Lie algebra bH is in fact generated by

G WD
n
x@y; x

.p�1/@y; e1;2; e0;3; e0;2; @
0
x; @y; x@x � y@y; x@x C y@y

o
;

if p > 5 and by G [ fe4;4g if p D 5, since the set
˚
x@y; x

.p�1/@y; e1;2; e0;3
	

(
˚
x@y; x

.p�1/@y; e1;2; e0;3; e4;4
	

if p D 5) generates N , which is of dimension p2 � 4, so
the Lie subalgebra generated by G (G[fe4;4g if p D 5) has dimension p2�4C5 D p2C1,
and thus must be all of bH . Having this generating set is a good thing because it allows
us to make certain arguments easier.

For instance, it gives us an e�ective way of proving that a particular set of elements
obtained from a maximal vector v in fact forms the whole submodule generated by it.
Assume U � bH hvi is a k-linearly independent set. Then it is easy to prove, using the
properties of bases, linearity, and vector subspaces, that if D � u 2 k hUi for all D 2 G
and u 2 U , then k hUi is an bH -module.

6.2 The action of
cH on induced modules

6.2.1 Calculating the actions

Throughout, let v 2 Z.M/ be a maximal vector of weight �, for M a simple restrictedbH 0-module as above. We are now interested in the action of bH on Z.M/.
A useful lemma used throughout this chapter is the following:

Lemma 6.2.1. Let A be an associative k-algebra. Suppose D;A0; : : : ; AN 2 A and that
for all t 2 f0; : : : ; N � 1g

AtD D DAt C AtC1

Then we have for 0 � n � N

A0D
n
D

nX
tD0

 
n

t

!
Dn�tAt :

For the proof, it is a direct application of (Strade and Farnsteiner, 1988, Chap. 1,
Prop. 1.3 (4)), noting that ad.D/t.A0/ D .�1/tAt .

We can now explain in more detail why calculating in bH is subtler. Since v DP
c2A

�
@0x@y

�c
˝mc , we will want to work in u.bH/with expressions of the form ea;b.@

0
x/
n.
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Note that @0x D �e0;1. It is straightforward to verify using the formula for the bracket inbH that for all .a; b/ 2 A, we have

Œea;b;�e0;1� D

8<:�ea�1;b a > 0;

.b � 1/ep�1;b a D 0:

Hence, the existence of the non-homogeneous (in the W2 grading) elements e0;b D
x.p�1/y.b/@y � y

.b�1/@x complicates calculating ea;b.@0x/n. To commute ea;b past the
@0x terms in the expression ea;b.@

0
x/
n D ea;b.�e0;1/

n, we need to calculate A1 WD
Œea;b;�e0;1�; A2 WD ŒA1;�e0;1�; A3 WD ŒA2;�e0;1�; : : : ; An WD ŒAn�1;�e0;1�.

The bracket behaves di�erently depending on whether a is zero or not, and taking
the bracket with �e0;1 decreases a by one as long as a > 0. Thus, when computing the
At terms we will often need to use the second equation. When and whether this �ip
occurs depends on the value of a and the value of n, and so there will not in general be a
simple formula for the At , such as At D .�1/tea�t;b , for instance. Furthermore, since we
will be seeking a formula for ea;b � v, we will need to consider 0 � n � p � 1. Therefore,
formulas for ea;b � v will often involve multiple cases and will not be easily stated.

Lemma 6.2.2.We have the following identities in u.bH/:
1. x@y@0x D @

0
xx@y � @y

2. �@y@0x D �@
0
x@y C x

.p�1/@y

3. @iy@
0
x D @

0
x@
i
y � i@

i�1
y x.p�1/@y

4. y@y@iy D @
i
yy@y � i@

i
y .

Proof. We use the identity ab � ba D Œa; b� in u.bH/. Since @0x D @x � x.p�1/@y D �e0;1
it is easy to see that Œx@y; @0x� D �@y and Œ�@y; @0x� D x.p�1/@y . Setting a D x@y and
b D @0x , and a D �@y and b D @0x gives the �rst two identities, respectively.

For the third identity, we proceed by induction. The base case i D 1 is given by the
second identity. Assume inductively that the identity holds for some i , we calculate

@iC1y @0x D @y

�
@0x@

i
y � i@

i�1
y x.p�1/@y

�
D @0x@

iC1
y � x.p�1/@y@

i
y � i@

i
yx

.p�1/@y

D @0x@
iC1
y � .i C 1/@iyx

.p�1/@y;
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as required. The last identity holds since Œx.j /@y; @y� D 0 so that x.j /@y@a2
y D @

a2
y x

.j /@y .
Lastly, we proceed by induction again. The base case holds since we calculate that

Œy@y; @y� D �@y , so that y@y@y D @yy@y � @y . Assume inductively that the identity
holds for some i , we calculate

y@y@
iC1
y D

�
@iyy@y � i@

i
y

�
@y

D @iC1y y@y � @
iC1
y � i@iC1y

D @iC1y y@y � .i C 1/@
iC1
y ;

as required. �

We will now give the calculation for the action of one of the elements of bH onZ.M/,
and the rest is done similarly.

Since x@y 2 N , observe x@y � v D 0 because v is a maximal vector. Recall that we
write x@y D X .

Lemma 6.2.3. In fact we have:

0 D x@y � v D
X
a2A

�
x@y@

0a1

x

�
@a2

y ˝ma

D

X
a2A

�
@0x@y

�a
˝X �ma �

X
a2A

a1@
0a1�1
x @a2C1

y ˝ma:

Proof. Apply x@y to Equation (6.1). We proceed by commuting the x@y past the @0x terms.
By Lemma 6.2.2 we have

x@y@
0
x D @

0
xx@y � @y

�@y@
0
x D �@

0
x@y C x

.p�1/@y :

In general for a > 1 we calculate that

x.a/@y@
0
x D @

0
xx

.a/@y � x
.a�1/@y :

Put D D @0x , A0 D x@y; A1 D �@y and

Aj D .�1/
jx.p�jC1/@y

for j � 2.
One can verify that ŒAj ;D� D AjC1, and thus that the above satisfy the conditions
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of Lemma 6.2.1. Consequently, we have :

x@y@
0a1

x D A0D
a1 D

a1X
tD0

 
a1

t

!
@0a1�t
x At :

Recall that x.j /@y@a2
y D @

a2
y x

.j /@y . Hence, we have:

A0@
0a1

x @a2

y D @
0a1

x @a2

y x@y � a1@
0a1�1
x @a2C1

y C

a1X
tD2

 
a1

t

!
@0a1�t
x @a2

y At :

Looking at the At terms above, we see that 2 � t � a1 � p � 1, so they all have
degree greater than or equal to 1. Thus they act trivially on M , as they lie inside our
subalgebra N .

Thus, tensoring with ma, we conclude,

x@y@
0a1

x @a2

y ˝ma D @
0a1

x @a2

y ˝X �ma � a1@
0a1�1
x @a2C1

y ˝ma:

Summing over all indices we obtain the result, as required. �

Now, from this alone we can obtain the following information: if a1 D p � 1, we see
that the term

�
@0x@y

�a
˝X �ma cannot cancel with any other term, so

X �ma D 0

for all a with a1 D p � 1. Likewise, if a2 D 0 we see

X �ma D 0

for all a with a2 D 0.
We continue studying the action of bH on Z.M/. We calculate:

�1v D x@x � v D
X
a2A

�
@0x@y

�a
˝ .x@x �ma � a1ma/

D

X
a2A

�
@0x@y

�a
˝ �1ma:

Since Œy@y; @0x� D 0, we have y@y@0a1
x D @0a1

x y@y , so using the fourth identity in
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Lemma 6.2.2, we calculate:

�2v D y@y � v D
X
a2A

�
@0x@y

�a
˝
�
y@y �ma � a2ma

�
D

X
a2A

�
@0x@y

�a
˝ �2ma:

In light of this, we have for a 2 A:

x@x �ma D �.a/1ma

and
y@y �ma D �.a/2ma;

where �.a/i D �i C ai , see De�nition 6.1.8.
Since T D k

˝
x@x; y@y

˛
is a maximal torus and Z.M/ is a T -module, we have a

decomposition
Z.M/ D

M
˛2T �

Z.M/˛:

For ˛ 2 T � write �1 D ˛.x@x/; �2 D ˛.y@y/ and Z.M/˛ D Z.M/.�1;�2/ as well as
M˛ DM.�1;�2/. The previous two calculations show that for all w D

P
a2A

�
@0x@y

�a
˝

ma 2 Z.M/, we have w 2 Z.M/.�1;�2/ if and only ifma 2M.�1Ca1;�2Ca2/ for all a 2 A.
Therefore,

Z.M/ D
M

.�1;�2/2F2
p

Z.M/.�1;�2/ D

M
.�1;�2/2F2

p

 M
a2A

.@0x@y/
a
˝M.�1Ca1;�2Ca2/

!
:

The element x@x C y@y acts on any simple gl2-module by a constant. Let c 2 k be
the constant for M . We thus have for all w D

P
a2A

�
@0x@y

�a
˝ma 2 Z.M/:

.x@x C y@y/ � w D
X
a2A

�
@0x@y

�a
˝
�
.x@x C y@y/ �ma � .a1 C a2/ma

�
D

X
a2A

�
@0x@y

�a
˝ .c � .a1 C a2//ma:

Now, we have

0 D x.2/@y � v D
X
a2A

 
a1

2

!
@0a1�2
x @a2C1

y ˝ma �
X
a2A

a1@
0a1�1
x @a2

y ˝X �ma:
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We have

0 D e2;1 � v D
X
a2A

ra@
0a1�1
x @a2

y ˝ma �
X
a2A

a2@
0a1

x @a2�1
y ˝X �ma:

From this we can immediately obtain that if a2 D p � 1, then the term

ra@
0a1�1
x @a2

y ˝ma

cannot cancel with any other term, forcing either ma D 0 or ra D 0.
Now we study the action of the element A WD e1;2 D y.2/@y � xy@x , where we set

Y WD �e0;2 D y@x � x
.p�1/y.2/@y . We have

0 D A � v D
X
a2A

a1¤p�1

sa@
0a1

x @a2�1
y ˝ma C

X
a2A

a1¤p�1

a1@
0a1�1
x @a2

y ˝ Y �ma

C

X
0�a2�p�1
a1Dp�1

sa@
0p�1
x @a2�1

y ˝ma

�

X
0�a2�p�1
a1Dp�1

@0p�2x @a2

y ˝ Y �ma �
X

0�a2�p�1
a1Dp�1

 
a2

2

!
@a2�2
y ˝X �ma:

Using that when a1 D p � 1, X �ma D 0, we can simplify the above, since the terms�
a2

2

�
@a2�1
y ˝X �ma D 0 for a1 D p � 1, to simply:

0 D A � v D
X
a2A

sa@
0a1

x @a2�1
y ˝ma

C

X
a2A

a1@
0a1�1
x @a2

y ˝ Y �ma:

From this we can see that if a1 D p � 1, then the term

sa@
0a1

x @a2�1
y ˝ma

cannot cancel so either ma D 0 or sa D 0.
Similarly, if a2 D p � 1, then the term a1@

0a1�1
x @a2

y ˝ Y �ma cannot cancel, forcing
either Y �ma D 0 or a1 D 0.

81



Chapter 6. Simple restricted modules for the non-graded HamiltonianH.2I .1; 1/Iˆ.1//

Now, we study the action of the element C WD �e0;3 D y.2/@x � x.p�1/y.3/@y .

0 D C � v D
X
a2A

a1¤p�1;p�2

 
a2

2

!
@0a1C1
x @a2�2

y ˝ma �
X
a2A

a1¤p�1;p�2

a2@
0a1

x @a2�1
y ˝ Y �ma

X
0�a2�p�1
a1Dp�2

 
a2

2

!
@0p�1x @a2�2

y ˝ma �
X

0�a2�p�1
a1Dp�2

a2@
0p�2
x @a2�1

y ˝ Y �ma

C

X
0�a2�p�1
a1Dp�2

2

 
a2

3

!
@a2�3
y ˝X �ma

�

X
0�a2�p�1
a1Dp�1

a2@
0p�1
x @a2�1

y ˝ Y �ma �
X

0�a2�p�1
a1Dp�1

2

 
a2

3

!
@0x@

a2�3
y ˝X �ma

C

X
0�a2�p�1
a1Dp�1

  
a2

2

!
.�.a/2 � 2�.a/1 C a2 � 2/ � 2

 
a2

3

!!
@a2�2
y ˝ma:

Using again that for a 2 A with a1 D p � 1, X �ma D 0, we can simplify the above
to:

0 D C � v D
X
a2A

a1¤p�1;p�2

 
a2

2

!
@0a1C1
x @a2�2

y ˝ma �
X
a2A

a1¤p�1;p�2

a2@
0a1

x @a2�1
y ˝ Y �ma

C

X
0�a2�p�1
a1Dp�2

 
a2

2

!
@0p�1x @a2�2

y ˝ma �
X

0�a2�p�1
a1Dp�2

a2@
0p�2
x @a2�1

y ˝ Y �ma

C

X
0�a2�p�1
a1Dp�2

2

 
a2

3

!
@a2�3
y ˝X �ma �

X
0�a2�p�1
a1Dp�1

a2@
0p�1
x @a2�1

y ˝ Y �ma

C

X
0�a2�p�1
a1Dp�1

  
a2

2

!
.�.a/2 � 2�.a/1 C a2 � 2/ � 2

 
a2

3

!!
@a2�2
y ˝ma:

Consider the term
�a2@

0p�1
x @a2�1

y ˝ Y �ma

If a2 D p � 1, we see that this cannot cancel with any other term. Thus, we deduce that

Y �m.p�1;p�1/ D 0:

82



Chapter 6. Simple restricted modules for the non-graded HamiltonianH.2I .1; 1/Iˆ.1//

Likewise, consider the term

�a2@
0p�2
x @a2�1

y ˝ Y �ma:

If a2 D p � 1, we see that this cannot cancel with any other term. Thus, we deduce that

Y �m.p�2;p�1/ D 0:

Now, consider the term in the second sum

�a2@
0a1

x @a2�1
y ˝ Y �ma;

where a1 D 0. If a2 D p � 1, then no cancellation can occur with any other term, so we
deduce that

Y �m.0;p�1/ D 0:

We also have

0 D e3;1 � v D
X
a2A

ta@
0a1�2
x @a2

y ˝ma

C

X
a2A

a1a2@
0a1�1
x @a2�1

y ˝X �ma:

Here, we also see that if a2 D p� 1, then no cancellation can occur with any other terms,
so either ma D 0 or ta D 0.

Finally we calculate the action of e2;p�1 D xy.p�1/@y � x.2/y.p�2/@x :

0 D e2;p�1 � v D�
X

0�a1�p�1
a2Dp�3

 
a1

2

!
@0a1�2
x ˝ Y �ma C

X
0�a1�p�1
a2Dp�2

2

 
a1

2

!
@0a1�2
x @y ˝ Y �ma

C

X
0�a1�p�1
a2Dp�2

 
a1 .�.a/2 � �.a/1/C

 
a1

2

!!
@0a1�1
x ˝ma

C

X
0�a1�p�1
a2Dp�1

@0a1

x ˝X �ma �
X

0�a1�p�1
a2Dp�1

 
a1

2

!
@0a1�2
x @2y ˝ Y �ma

C

X
0�a1�p�1
a2Dp�1

 
a1 .�.a/1 � �.a/2 � 1/ �

 
a1

2

!!
@0a1�1
x @y ˝ma
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From this we can see that if m!0
¤ 0, then �.a/1 � �.a/2 D .a1 C 1/=2 D 0.

We also have:

0 D x.p�1/@y � v D�
X

0�a2�p�1
a1Dp�2

@a2

y ˝X �ma

C

X
0�a2�p�1
a1Dp�1

@0x@
a2

y ˝X �ma C
X

0�a2�p�1
a1Dp�1

@a2C1
y ˝ma

From this we can also con�rm that if m!0
¤ 0, then �.a/1 � �.a/2 D 0.

To handle the p D 5 case with more ease, we have computed the action of e4;4 on
vectors in Z.M/.

By applying e4;4 to both sides of the identity (6.1), we have for all v 2 Z.M/ :

e4;4 � v D 1˝X �m.2;4/ C 1˝ .�..3; 3//2 � �..3; 3/1/m.3;3/ � 1˝ Y �m.4;2/

C 3@0x ˝X �m.3;4/ C .4 .�..3; 4//2 � �..3; 4/1/ � 1/ @y ˝m.3;4/

C .4 .�..4; 3//2 � �..4; 3/1/C 1/ @
0
x ˝m.4;3/ � 3@y ˝ Y �m.4;3/

C .�..4; 4//2 � �..4; 4/1/ @
0
x@y ˝m.4;4/ C @

02
x ˝X �m.4;4/ � @

2
y ˝ Y �m.4;4/:

Later on we will need to have a formula for the action of Y D �e0;2 on arbitrary
vectors v 2 Z.M/. We have

Y � v D
X
a2A

a1¤p�1;p�2

@0a1

x @a2

y ˝ Y �ma �
X
a2A

a1¤p�1;p�2

a2@
0a1C1
x @a2�1

y ˝ma

C

X
0�a2�p�1
a1Dp�2

@0a1

x @a2

y ˝ Y �ma �
X

0�a2�p�1
a1Dp�2

a2@
0a1C1
x @a2�1

y ˝ma

�

X
0�a2�p�1
a1Dp�2

 
a2

2

!
@a2�2
y ˝X �ma

C

X
0�a2�p�1
a1Dp�1

@0a1

x @a2

y ˝ Y �ma C
X

0�a2�p�1
a1Dp�1

wa@
a2�1
y ˝ma

C

X
0�a2�p�1
a1Dp�1

 
a2

2

!
@0x@

a2�2
y ˝X �ma;
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where

wa WD a2�.a/1 �

 
a2

2

!
We lastly state the formula for the action of @y on vectors in Z.M/. This will become

useful when checking that a set of k-linearly independent vectors does form an bH -
submodule.

We have for v 2 Z.M/:

@y � v D
X

0�a2�p�1
a1¤p�1

@0a1

x @a2C1
y ˝ma C

X
0�a2�p�1
a1Dp�1

@0a1

x @a2C1
y ˝ma (6.2)

C

X
0�a2�p�1
a1Dp�1

@a2

y ˝X �ma:

Before we move on, we summarise the information we extracted throughout this
section for ease of reference.

We proved the following:

Proposition 6.2.4. LetM be a simple restricted bH 0-module and letZ.M/ be the induced
u.bH/-module. Let v D

P
a2A

�
@0x@y

�a
˝ma 2 Z.M/ be amaximal vector, wherema 2M

for all a 2 A D f0; 1; : : : ; p � 1g2. Let Y D �e0;2. Then we have, recalling the notation
in De�nition 6.1.8,

1. X �ma D 0 for all a with a1 D p � 1 or a2 D 0;

2. ma D 0 or ra D 0 for all a with a2 D p � 1;

3. ma D 0 or sa D 0 for all a with a1 D p � 1;

4. Y �ma D 0 for all a with a2 D p � 1;

5. ma D 0 or ta D 0 for all a with a2 D p � 1.

6.2.2 Using the sl2-module structure

We begin by proving that the extension of bH .1/ by bH .0/=bH .1/ in fact splits. Indeed,
we show there is a subalgebra u � bH .0/ such that u ˚ bH .1/ D bH .0/, i.e. such that
u Š bH 0 Š gl2.k/. Consider the subspace of bH .0/ spanned by the elements x@y; x@x; y@y ,
and �e0;2 D y@x � x.p�1/y.2/@y . It is easy to see using the formula for the bracket in bH
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that this subspace is in fact a subalgebra of bH .0/, call it u. The map f W bH .0/ �! gl2.k/

�xed in §6.1 gives us a bijective map of Lie algebras f ı� W u �! gl2.k/. Thus, u Š gl2.k/.
The elements x@y; x@x; y@y , and �e0;2 are mapped to the matrices E1;2; E1;1; E2;2, and
E2;1, respectively.

It is easy to check that u contains the sl2-triple .X D x@y;H WD x@x � y@y; Y D

�e0;2/ as one can verify that

ŒH;X� D 2X; ŒH; Y � D �2Y; and ŒX; Y � D H:

Under our �xed isomorphism X goes to E1;2, H goes to E1;1 �E2;2 D H1;2 and Y goes
to E2;1.

Recall that M is a simple restricted bH 0 Š gl2-module. Thus, we can view M as
a restricted sl2-module, by restriction. In fact in the quotient bH .0/=bH .1/ we have the
sl2-triple .X C bH .1/;H C bH .1/; Y C bH .1//, where our �xed isomorphism bH 0 Š gl2

tells us that X C bH .1/;H C bH .1/, and Y C bH .1/ are mapped to the matrices E1;2;H1;2,
and E2;1, respectively.

First recall some of the basic results concerning sl2-modules.

Proposition 6.2.5. Let V be an sl2-module and let m 2 V˛ , where

V˛ WD fm 2 V W H �m D ˛mg ;

noting that this is non-zero for some scalar ˛, as k is algebraically closed. Then we have

1. X �m 2 V˛C2;

2. H �m 2 V˛ ;

3. Y �m 2 V˛�2.

Also, using an inductive argument, we obtain the following well-known lemma:

Lemma 6.2.6. For m 2 V˛ such that Y �m D 0, we have

.YX i/ �m D i.�˛ � i C 1/X i�1
�m:

Now, we know that simple restricted gl2-modules are always simple after restriction
to sl2. Thus we have a decomposition of our simple restricted sl2-module M into its
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H -eigenspaces, with each eigenspace one-dimensional:

M DM�n ˚M�nC2 ˚ � � � ˚Mn;

where nC 1 is the dimension of M .
Therefore, pick an eigenbasis fv�n; v�nC2; : : : ; vng for M such that

X � v˛ D v˛C2;

for all eigenvalues ˛ not equal to n.
Using our lemma and this basis we have that

Y � v�nC2i D i.n � i C 1/v�nC2i�2

for all i 2 f0; : : : ; ng.
We restate the information we already had in Proposition 6.2.4 in these new terms:

Proposition 6.2.7. LetM be a simple restricted bH 0-module and letZ.M/ be the induced
u.bH/-module. Let v D

P
a2A

�
@0x@y

�a
˝ma 2 Z.M/ be amaximal vector, wherema 2M

for all a 2 A D f0; 1; : : : ; p � 1g2. Then we have, recalling the notation in De�nition 6.1.8,

1. ma D 0 or ma 2 k hvni for all a with a1 D p � 1 or a2 D 0;

2. ma D 0 or ra D 0 for all a with a2 D p � 1;

3. ma D 0 or sa D 0 for all a with a1 D p � 1;

4. ma D 0 or ma 2 k hv�ni for all a with a2 D p � 1;

5. ma D 0 or ta D 0 for all a with a2 D p � 1.

From this we can see that if m!0
D m.p�1;p�1/ ¤ 0, then it lies in the highest sl2-

weight space and in the lowest sl2-weight space. This tells us that the only case when
m!0
¤ 0 is when we are inducing from a one-dimensional sl2-module L0.a; a/.
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6.3 Finding maximal vectors and determining in-

duced modules and their composition factors

6.3.1 General considerations

Recall that we have the following result:

Theorem 6.3.1. There are p isomorphism classes of irreducible restricted representations
of sl2, with representatives L0.´/ for ´ 2 f0; 1; : : : ; p � 1g, where L0.´/ has dimension
´C 1.

Theorem 6.3.2. There are p2 isomorphism classes of irreducible restricted representations
of gl2, with representatives L0.�/ for � 2 F2p , where L0.�/ has dimension �1 � �2 C 1.

In what follows, let L0.�/ be the gl2 Š bH 0-module of highest weight � D .�1; �2/,
which we often view as the sl2-module L0.�1 � �2/ by restriction.

We adopt the following setup for our restricted bH 0-modules M (see §6.2.2):
We pick an eigenbasis fm1; m2; : : : ; mnC1g. With this eigenbasis we have

X �mi D miC1;

where X �mnC1 D 0.
From this and by using the results in §6.2.2, we get the following formula for the

action of Y WD �e0;2 on our chosen basis:

Y �mi D .i � 1/ .n � i C 2/mi�1;

noting again that Y �m1 D 0.
Consider a maximal vector v D

P
a2A

�
@0x@y

�a
˝ ma 2 Z.L0.a; b//; where ma 2

L0.a; b/ for all a 2 A. If v has weight .�1; �2/, we saw in §6.2.1 that x@x �ma D �.a/1ma
and y@y � ma D �.a/2ma for all a 2 A. Thus, we see that each ma is a weight vector
for x@x � y@y , and thus lies in exactly one weight space for the sl2 action, i.e. in one
H -eigenspace.

Throughout, we write Z.a; b/ for Z.L0.a; b// and L.a; b/ for the unique maximal
simple quotient of Z.a; b/.

Recall that we write ŒM1;M2; : : : ;Mn� D ŒV � for the list of composition factors of V
a module.
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6.3.2 Modules induced from one-dimensional modules

We start by looking at inducing to bH from one-dimensional modules M Š L0.a; a/,
where a 2 Fp . Here we have an eigenbasis fmg for M with X �m D 0 D Y �m.

We have the following:

Proposition 6.3.3. LetM Š L0.a; a/, where k hmi D M . Every maximal vector v for
Z.M/ is contained in the subspace

k h1˝mi ˚ k
˝
@y ˝m

˛
˚ k

˝
@0p�1x @p�1y ˝m

˛
:

Proof. Let v be a maximal vector, so we write v D
P
a2A

�
@0x@y

�a
˝ma, where ma 2M

for all a 2 A. For each ma write in fact ma D kam, where ka 2 k. From x@y � v D 0, we
obtain the following (see Lemma 6.2.3):

0 D �
X
a2A

a1@
0a1�1
x @a2C1

y ˝ kam:

The terms a1@0a1�1
x @a2C1

y ˝ kam are linearly independent. Thus, if ka ¤ 0, then a1 D 0
or a2 D p � 1.

The rest of the following are done similarly, see §6.2.1 for the formulae.
By considering the linearly independent terms in e2;1 �v D 0, we obtain the following:

if ka ¤ 0, then a1 D 0 or ra D a1.�.a/1 � �.a/2/C a1a2 �
�
a1

2

�
D 0.

Likewise, from e1;2 � v D 0, we obtain the following:

if ka ¤ 0, then a2 D 0 or sa D a2.�.a/1 � �.a/2/ � a1a2 C
�
a2

2

�
D 0.

Suppose now that there is a ka ¤ 0, with a D .a1; a2/ 2 A. If a1 ¤ 0, then by the
action of x@y we conclude that a2 D p � 1. From the action of e2;1, we have ra D 0.
Since p � 1 D a2 ¤ 0, from the action of e1;2 we conclude that sa D 0.

The condition sa D 0 D ra yields:

a1a2 �

 
a1

2

!
D �a1a2 C

 
a2

2

!
D 0:

This implies

�a1 �

 
a1

2

!
D a1 C 1 D 0;
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which in turn implies a1 D p � 1. Thus .a1; a2/ D .p � 1; p � 1/.
Summarising, we showed:

if ka ¤ 0 and a1 ¤ 0, then a D .p � 1; p � 1/.

Hence our maximal vector is of the form:

v D @0p�1x @p�1y ˝ k.p�1;p�1/mC
X

0�a2�p�1

@a2

y ˝ k.0;a2/m:

By considering the terms in e1;2 � v D 0, we conclude:

if a D .0; a2/ and ka ¤ 0, then a2 D 0 or sa D 0.

Suppose a2 ¤ 0, then

sa D �a1a2 C

 
a2

2

!
D 0:

Since a1 D 0, we must have
�
a2

2

�
D 0, and so a2 D 0; 1. Summarising, if a D .0; a2/ and

ka ¤ 0, then a2 D 0 or a2 D 1.
Thus our maximal vector must be contained in the subspace

k h1˝mi ˚ k
˝
@y ˝m

˛
˚ k

˝
@0p�1x @p�1y ˝m

˛
;

as claimed. �

We re�ne the previous proposition into:

Proposition 6.3.4. LetM Š L0.a; a/, where k hmi D M . If v is a maximal vector for
Z.M/, then v D �1 .1˝m/ or v D �2

�
@y ˝m

�
or v D �3

�
@
0p�1
x @

p�1
y ˝m

�
, where

�i 2 k for all i .

Proof. Let v be a maximal vector for Z.M/ of weight � D .�1; �2/, so we write

v D �1 .1˝m/C �2
�
@y ˝m

�
C �3

�
@0p�1x @p�1y ˝m

�
:

Now, each of the terms is a weight vector for x@x and y@y . We calculate:

x@x � v D �1a .1˝m/C �2a
�
@y ˝m

�
C �3 .aC 1/

�
@0p�1x @p�1y ˝m

�
D �1v:
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Thus, by comparing coe�cients, we have �1a D �1�1, �2a D �1�2, and �3 .aC 1/ D
�1�3. We conclude that either �1 D a and �3 D 0 or �1 ¤ a and �1 D �2 D 0.
Therefore, either v D �1 .1˝m/C �2

�
@y ˝m

�
or v D �3

�
@
0p�1
x @

p�1
y ˝m

�
.

Suppose the former is the case. We calculate:

y@y � v D �1a .1˝m/C �2 .a � 1/
�
@y ˝m

�
D �2v:

So, by comparing coe�cients, we have �1a D �2�1, �2 .a � 1/ D �2�2. Hence, either
�2 D a and �2 D 0 or �2 ¤ a and �1 D 0, as required. �

Lemma 6.3.5. Let a 2 Fp . Consider bH ˝
@y ˝m

˛
� Z.a; a/.

1. If a ¤ 0, then bH ˝
@y ˝m

˛
D Z.a; a/, with dimension p2.

2. If a D 0, then

bH ˝
@y ˝m

˛
D k

˝
@0ix@

jC1
y ˝m W 0 � i � p � 1; 0 � j � p � 2

˛
˚ k

˝
@0jx ˝m W 1 � j � p � 1

˛
;

as vector spaces, with dimension p2 � 1.

Proof. We must check that the basis elements are stable under the generators of bH .
Consider v WD @y ˝m. Then using @ix@

j
y 2 u.bH/ we see bH hvi contains˚

@0ix@
jC1
y ˝m W 0 � i � p � 1; 0 � j � p � 2

	
:

Now, ŒY; @y� D �@0x , so

Y � v D @y ˝ Y �m � @
0
x ˝m D �@

0
x ˝m:

Hence, bH hvi also contains the elements˚
@0jx ˝m W 1 � j � p � 1

	
:

Now @0x � @
0p�1
x D �y@y ˝m D �a � 1˝m.

If a ¤ 0, then �a � 1˝ m ¤ 0, and bH hvi D Z.a; a/. Thus in this case, Z.a; a/ is
simple.
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If a D 0, then �a � 1˝m D 0, and this is all we get, since we can use our basis forbH to check that the above k-basis is closed under the action of bH . Thus, dimk
bH hvi D

p2 � 1. �

Lemma 6.3.6. In Z.�1;�1/, we have

bH ˝
@0p�1x @p�1y ˝m

˛
D k

˝
@0p�1x @p�1y ˝m

˛
:

Proof. Clearly kh@0p�1x @
p�1
y ˝mi � bH h@0p�1x @

p�1
y ˝mi. We leave it to the reader to use

the basis for bH to check that kh@0p�1x @
p�1
y ˝mi is closed under the action of bH . �

We will need the following lemma to prove the main result of this subsection.

Lemma 6.3.7. The restricted bH -module O.2I .1; 1//=.k � 1/ is simple.

Proof. Recall that bH � W.2I .1; 1// acts on O.2I .1; 1// via D � f D D.f / for all
D 2 bH;f 2 O.2I .1; 1// (see Example 3.1.31). By Lemma 6.1.4 it su�ces to show that
all the maximal vectors generate the whole module.

Let v 2 O.2I .1; 1//=.k � 1/ be a maximal vector. Then we can write

v D
X

0�a;b�p�1

ka;bx
.a/y.b/;

as its representative in O.2I .1; 1//, so that in the quotient, we identify the term k0;01

with 0. We calculate

0 D x@y � v D
X

0�a;b�p�1

.aC 1/ ka;bx
.aC1/y.b�1/:

Therefore,

if ka;b ¤ 0, then a D p � 1 or b D 0.

Hence our maximal vector is of the form:

v D
X

1�b�p�1

kp�1;bx
.p�1/y.b/ C

X
1�a�p�1

ka;0x
.a/:

We calculate

0 D e1;2 � v D
X

1�b�p�1

  
b C 1

2

!
C b C 1

!
kp�1;bx

.p�1/y.bC1/ �
X

1�a�p�1

aka;0x
.a/y:

92



Chapter 6. Simple restricted modules for the non-graded HamiltonianH.2I .1; 1/Iˆ.1//

Hence,

ka;0 D 0 for all 1 � a � p � 1.

We also get that

if kp�1;b ¤ 0, then b D p � 1; p � 2.

We conclude that v must be of the form

v D kp�1;p�2x
.p�1/y.p�2/ C kp�1;p�1x

.p�1/y.p�1/:

Since v is a weight vector, we argue as before to conclude that in fact v D
�1x

.p�1/y.p�1/ or v D �2x
.p�1/y.p�2/, noting that indeed N � v D 0, that is, that

x.p�1/@y and C WD �e0;3 kill v. Note that in characteristic p D 5, one must also check
that e4;4 � v D 0, which is clear.

Suppose now v D �1x
.p�1/y.p�1/ ¤ 0. We calculate

@0x � x
.a/y.b/ D x.a�1/y.b/

@y � x
.a/y.b/ D x.a/y.b�1/;

the �rst identity being valid only for 1 � a � p � 1. Consequently, by applying powers
of @0x and @y consecutively, we see we can obtain all of O.2I .1; 1//=.k � 1/.

Suppose now that v D �2x
.p�1/y.p�2/ ¤ 0. By using the above identities, we see

that v1 WD y.p�3/ 2 bH hvi. Then we calculate

C � v1 D x
.p�1/y.p�1/;

and so bH hvi D O.2I .1; 1//=.k � 1/, and we are done. �

Theorem 6.3.8. The induced module Z.M/ Š Z.a; a/ is simple unless a D 0 or a D
p � 1, in which case it has composition factors of dimension 1 and p2 � 1.

Proof. Consider the vector v D @0p�1x @
p�1
y ˝m, which given Proposition 6.3.4 is a good

candidate for a maximal vector. Because C D �e0;3 must annihilate maximal vectors,
and

C � v D .p � 1 � �.a/2/ @
p�3
y ˝m D .p � 1 � a/ @p�3y ˝m;

we conclude that v is maximal only when a D p � 1.
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Now, bH hvi D k hvi is one-dimensional, so in the a D p � 1 case, we conclude that
Z.a; a/ is not simple. Furthermore, this is the only proper submodule, as bH ˝

@y ˝m
˛

here generates all of Z.�1;�1/.
We calculate that the vector v has weight � D .aC 1; aC 1/ D .0; 0/. It remains to

show that the quotient Z.�1;�1/=bH hvi is simple.
We have by Frobenius reciprocity that, given a simple bH -module M :

HombH .0/
.L0.�1;�1/;M/ Š HombH .Z.�1;�1/;M/:

This tells us that there is a simple bH 0-submodule of M isomorphic to L0.�1;�1/ if and
only if Z.�1;�1/ surjects to M . That is, M has a maximal vector of highest weight
.�1;�1/ if and only if Z.�1;�1/ surjects to M .

But O.2I .1; 1//= .k � 1/ is simple by Lemma 6.3.7 and it has a .�1;�1/ weight maxi-
mal vector. Hence,Z.�1;�1/ surjects to it. Hence,Z.�1;�1/ has a .p2�1/-dimensional
simple quotient. By consideration of dimensions, the quotient Z.�1;�1/=bH hvi is this
simple quotient, so it is L.�1;�1/.

Now, bH hvi is a one-dimensional simple bH -module of highest weight .0; 0/, which
must be trivial and is isomorphic to L.0; 0/. Thus, we have composition factors

ŒL.�1;�1/; L.0; 0/�

of dimension p2 � 1; 1.
Now let a ¤ p � 1. So v above is not maximal. Clearly 1˝m always generates all of

Z.M/, so we now look at v D @y ˝m.
If a ¤ 0, then bH hvi D Z.a; a/ by Lemma 6.3.5, and so Z.a; a/ is simple.
On the other hand, if a D 0, then bH hvi is a non-trivial simple submodule of dimension

p2 � 1, as it is generated by each of its maximal vectors, namely the vectors of the form
@y ˝ �m for non-zero �. We also calculate that the vector v has weight � D .a; a � 1/.
Hence, v here is maximal vector of weight .0;�1/, which means that bH hvi Š L.0;�1/.
The quotient by bH hvi is one-dimensional and hence simple, and therefore is L.0; 0/.
Thus, Z.0; 0/ has composition factors

ŒL.0;�1/; L.0; 0/�

of dimension p2 � 1 and 1. �
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6.3.3 Modules induced from two-dimensional modules

LetM Š L0.a; a�1/, with a 2 Fp . Pick an eigenbasis fm1; m2g forM withX �m1 D m2
and Y �m2 D m1. We refer the reader to §6.2.2 for more details.

Proposition 6.3.9. Let M Š L0.a; a � 1/, with a 2 Fp . Every maximal vector v for
Z.M/ is contained in the subspace

k h1˝m2i ˚ k
˝
@0x ˝m2 C @y ˝m1

˛
˚ k

˝
@0x@y ˝m2 C @

2
y ˝m1

˛
:

Proof. Let v be a maximal vector, so we write v D
P
a2A

�
@0x@y

�a
˝ma, where ma 2M

for all a 2 A (see Equation (6.1)). Since ma can only be in one H -eigenspace (see §6.3.1),
we have for all a 2 A,ma D �am1 orma D �am2, where�a 2 k (we writema D �amj ,
with �a 2 k, generally). As with the one-dimensional case, we refer the reader to §6.2.1
for the formulae for the actions we will consider here. We do the �rst one in detail. The
others are done similarly.

From e2;1 � v D 0, we see

0 D
X
a2A

ra@
0a1�1
x @a2

y ˝ma �
X
a2A

a2@
0a1

x @a2�1
y ˝X �ma:

Let a 2 A. If ma 2 k hm1i and ma ¤ 0, we see that the term ra@
0a1�1
x @a2

y ˝ ma D

ra@
0a1�1
x @a2

y ˝�am1 cannot cancel with any term in the right sum, sinceX �mc 2 k hm2i
for all c 2 A. Due to exponents, it cannot cancel with another term rb@

0b1�1
x @b2

y ˝mb in
the same left sum.

Therefore, we conclude that if ma 2 k hm1i and ma ¤ 0, then ra@0a1�1
x @a2

y ˝ma D 0.
Consequently, either a1 D 0 or ra D 0. Suppose a1 ¤ 0, and so ra D 0. This implies

0 D a1.�.a/1 � �.a/2/C a1a2 �

 
a1

2

!
:

Since ma is in the lowest sl2-weight space, we have �.a/1 � �.a/2 D �1 Thus,

0 D �a1 C a1a2 �

 
a1

2

!
:

Because a1 ¤ 0, we deduce that �1C a2 � .a1 � 1/=2 D 0, i.e., that a2 D .a1 C 1/=2.
Summarising:
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if ma 2 k hm1i ; ma ¤ 0, and a1 ¤ 0, then a2 D .a1 C 1/=2.

By considering the terms in e1;2 � v D 0 we see that:

if ma 2 k hm2i and ma ¤ 0, then either sa D 0 or a2 D 0.

We use this to conclude that:

if ma 2 k hm2i ; ma ¤ 0, and a2 ¤ 0, then a1 D .a2 C 1/=2.

From the action of x@y we derive that:

if ma 2 k hm1i and ma ¤ 0, then either a1 D 0 or a2 D p � 1.

Therefore, if ma 2 k hm1i ; ma ¤ 0 and a1 ¤ 0, we must have a2 D p � 1. Further-
more, the conclusion from e2;1’s action yields a2 D .a1C1/=2. Hence,p�1 D .a1C1/=2,
and so a1 D p � 3.

Summarising:

if ma 2 k hm1i ; ma ¤ 0 and a1 ¤ 0, then a D .p � 3; p � 1/.

From the action of e3;1 we see that:

if ma 2 k hm1i and ma ¤ 0, then a1 D 0; 1 or ta D 0.

Suppose ma 2 k hm1i ; ma ¤ 0, and a1 ¤ 0. From the conclusion from x@y and e2;1
we see that .a1; a2/ D .p � 3; p � 1/. Thus, since a1 ¤ 0; 1, from e3;1’s action we see
that

ta D

 
a1

2

!
.�.a/2 � �.a/1/ �

 
a1

2

!
a2 C

 
a1

3

!
D 0:

This implies that a1 D 0; 1 or a2 D .a1C1/=3. Since a1 D p�3 ¤ 0; 1, we conclude that
a2 D .a1C1/=3. Hence, a2 D .p�2/=3, but we have a2 D p�1. Thus p�1 D .p�2/=3,
which implies p � 2 D 3p � 3 D �3 D p � 3, a contradiction.

Summarising:

for all a 2 A, if ma 2 k hm1i and ma ¤ 0, then a1 D 0.

Therefore, for all a 2 A with a1 ¤ 0 we write ma D �am2.
Recall that if ma 2 k hm2i and ma ¤ 0, then a2 D 0 or a1 D .a2 C 1/=2. Therefore,

if a2 ¤ 0 and a1 D 0, then a2 D p � 1. This implies that when a1 D 0, if a2 ¤ p � 1,
then a2 D 0. Thus, for a 2 A with a D .0; a2/, if ma 2 k hm2i and 1 � a2 � p � 2, it
must be the case that ma D 0.

96



Chapter 6. Simple restricted modules for the non-graded HamiltonianH.2I .1; 1/Iˆ.1//

Thus we write m.0;a2/ D �.0;a2/m1 for all 1 � a2 � p � 2.
Putting all of this together, we have that our maximal vector is of the form:

v D1˝m.0;0/ C @
p�1
y ˝m.0;p�1/

C

X
1�a2�p�2

@a2

y ˝ �.0;a2/m1 C
X
a1¤0

0�a2�p�1

@0a1

x @a2

y ˝ �am2:

Set C D �e0;3. From C � v D 0, we see that if a D .p � 1; a2/ 2 A; ma 2 k hm2i,
and ma ¤ 0, then a2 D 0.

We also deduce from C � v D 0 that m.0;p�1/ D �.0;p�1/m1.
Thus our maximal vector is of the form:

v D1˝m.0;0/ C @
0p�1
x ˝ �.p�1;0/m2

C

X
1�a2�p�1

@a2

y ˝ �.0;a2/m1 C
X

a1¤0;p�1
0�a2�p�1

@0a1

x @a2

y ˝ �am2:

Applying e2;1 to v yields either �.p�1;0/ D 0 or r.p�1;0/ D 0. It’s straightforward to
compute that r.p�1;0/ ¤ 0. Thus, �.p�1;0/ D 0.

Hence, our maximal vector is of the form:

v D1˝m.0;0/

C

X
1�a2�p�1

@a2

y ˝ �.0;a2/m1 C
X

a1¤0;p�1
0�a2�p�1

@0a1

x @a2

y ˝ �am2:

We want to know when the �am2 in the rightmost sum are nonzero, so we are
considering a 2 A such that a1 ¤ 0; p � 1 and 0 � a2 � p � 1.

By considering the terms in e3;1 � v D 0, we see that

if �am2 ¤ 0, then a1 D 0; 1 or a2 D .a1 � 5/=3.

On the other hand, by considering the terms in e2;1 � v D 0, we see that

if �am2 ¤ 0, then a1 D 0; 1; p � 1 or a2 D .a1 � 3/=2.

Hence, assume �am2 ¤ 0 and a1 ¤ 0; 1. Since we have already seen that a1 ¤ p�1,
we have a2 D .a1 � 5/=3 D .a1 � 3/=2. This implies a1 D p � 1, which is not possible.
Thus, we conclude that if �am2 ¤ 0, then a1 D 0; 1. Since a1 ¤ 0, we conclude that if
�am2 ¤ 0, then a1 D 1.
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Therefore, our maximal vector is of the form:

v D1˝m.0;0/

C

X
1�a2�p�1

@a2

y ˝ �.0;a2/m1 C
X

0�a2�p�1

@0x@
a2

y ˝ �.1;a2/m2:

Applying C again, we see that if �.1;a2/ ¤ 0, then a2 D 0; 1. Thus, we have

v D1˝m.0;0/

C

X
1�a2�p�1

@a2

y ˝ �.0;a2/m1 C @
0
x ˝ �.1;0/m2 C @

0
x@y ˝ �.1;1/m2:

We want to know when the �.0;a2/m1 are nonzero. By considering the terms in
e2;1 � v D 0, we get that if a2 � 3, then �.0;a2/ D 0.

Thus, our maximal vector is of the form:

v D1˝m.0;0/

C @y ˝ �.0;1/m1 C @
2
y ˝ �.0;2/m1 C @

0
x ˝ �.1;0/m2 C @

0
x@y ˝ �.1;1/m2:

From X � v D 0 it is easy to see that m.0;0/ D �.0;0/m2.
Finally, we see from e1;2 � v D 0 that

�.1;0/ D �.0;1/

�.1;1/ D �.0;2/:

Thus, we conclude that

v 2 k h1˝m2i ˚ k
˝
@0x ˝m2 C @y ˝m1

˛
˚ k

˝
@0x@y ˝m2 C @

2
y ˝m1

˛
;

which completes the proof. �

We will break up the proof of our determination of the modules induced from two-
dimensional modules and their composition factors into several lemmas, as depending
on the weight one obtains wildly di�erent structures.

In what follows, we adopt the following shorthand:

w WD @0x@y ˝m2 C @
2
y ˝m1
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v WD @0x ˝m2 C @y ˝m1:

We re�ne the previous proposition into the following:

Proposition 6.3.10. LetM Š L0.a; a � 1/, with a 2 Fp . If u is a maximal vector for
Z.M/, then u D �1 .1˝m2/ or u D �2v or u D �3w, where �i 2 k for all i .

Proof. Let u be a maximal vector for Z.M/ of weight � D .�1; �2/, so we write

u D �1 .1˝m/C �2v C �3w

Now, each of the terms is a weight vector for x@x and y@y . We calculate:

x@x � u D �1a .1˝m/C �2 .a � 1/ v C �3 .a � 1/w D �1u:

Thus, by comparing coe�cients, we have �1a D �1�1, �2 .a � 1/ D �1�2, and
�3 .a � 1/ D �1�3. We conclude that either �1 D a and �2 D 0 D �3 or �1 ¤ a

and �1 D 0. Therefore, either u D �1 .1˝m/ or u D �2v C �3w.
Suppose the latter is the case and let b D a � 1. We calculate:

y@y � u D �2bv C �3 .b � 1/w D �2u:

So, by comparing coe�cients, we have �2b D �2�2, �3 .b � 1/ D �2�3. Hence, either
�2 D b and �3 D 0 or �2 ¤ b and �2 D 0, as required. �

Lemma 6.3.11. Let a 2 Fp . In Z.a; a � 1/, if a ¤ 1, then bH hvi D bH hwi. In Z.1; 0/,bH hvi ¤ bH hwi.
Proof. Acting on w by powers of @y and @0x gives that bH hwi contains at least the follow-
ing: ˚

@0ix@
jC2
y ˝m1 C @

0iC1
x @jC1y ˝m2 W 0 � i � p � 1; 0 � j � p � 2

	
;

which gives distinct elements as long as .i; j / ¤ .p�1; p�2/. If .i; j / D .p�1; p�2/,
we obtain the element

@0px @
p�1
y ˝m2 D @

p�1
y ˝�am2;

so if a � 1 ¤ �1, we have dimk
bH hvi � p2 � p.

Now, we calculate:

Y � w D �@0x@y ˝m1 � @
02
x ˝m2:
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Hence, ˚
@0iC1x @y ˝m1 C @

0iC2
x ˝m2 W i 2 f0; 1 : : : ; p � 1g

	
is contained in bH hwi.

More speci�cally, when i D p � 2, this gives the element

@0p�1x @y ˝m1 C .�aC 1/ � 1˝m2

and when i D p � 1 the element

@y ˝ .�aC 1/m1 C @
0
x ˝ .�aC 1/m2;

noting that x@x and y@y have weights of a � 1 and a on the lower sl2-weight space
k hm1i, respectively.

Then if a � 1 ¤ 0, then we see that bH hwi contains v.
Hence, if a � 1 ¤ 0, bH hwi D bH hvi. �

Lemma 6.3.12. Let a 2 Fp . We have in Z.a; a � 1/ that

bH hwi D k ˝@0ix@jC2y ˝m1 C @
0iC1
x @jC1y ˝m2 W 0 � i � p � 1; 0 � j � p � 2

˛
˚ k

˝
@0iC1x @y ˝m1 C @

0iC2
x ˝m2 W i 2 f0; 1 : : : ; p � 1g

˛
and

bH hvi D k ˝@0ix@jC1y ˝m1 C @
0iC1
x @jy ˝m2 W 0 � i � p � 1; 0 � j � p � 1

˛
;

as vector spaces.
Therefore, if a ¤ 0, then dimk

bH hvi D p2. If a D 0, then dimk
bH hvi D p2 � 1.

Concerning the dimension of bH hwi, if a D 1, then dimk
bH hwi D p2� 1. The other cases

are covered by dimk
bH hvi, thanks to Lemma 6.3.11.

Proof. Let b D a � 1. We only study bH hvi and leave the other case to the interested
reader, noting that one must only check bH hwi when b ¤ 0, i.e., in Z.1; 0/. Now, bH hvi
certainly contains ˚

@jC1y ˝m1 C @
0
x@
j
y ˝m2 W 0 � j � p � 1

	
;

using Lemma 6.2.2.
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By letting @0x act on each the elements of the previous set we obtain:˚
@0ix@

jC1
y ˝m1 C @

0iC1
x @jy ˝m2 W 0 � i � p � 1; 0 � j � p � 1

	
;

which gives distinct elements as long as .i; j / ¤ .p�1; p�1/. If .i; j / D .p�1; p�1/,
we obtain again the element

@0px @
p�1
y ˝m2 D @

p�1
y ˝ .�b � 1/m2;

so if b ¤ �1, we have dimk
bH hvi � p2. We leave it to the reader to use the basis for bH

to check that the above k-basis is indeed closed under the action of bH . �

Theorem 6.3.13. The induced moduleZ.M/ Š Z.a; a�1/, with a 2 Fp , is not simple. If
.a; a�1/ D .p�1; p�2/ or .1; 0/, thenZ.a; a�1/ has composition factors of dimension
1; p2 � 1 and p2. If .a; a � 1/ D .0;�1/, then Z.a; a � 1/ has two one-dimensional
composition factors and two composition factors of dimension p2 � 1. In the remaining
cases Z.a; a � 1/ has two composition factors of dimension p2.

Proof. Write b D a � 1. First, we calculate that the vector v has weight � D .a � 1; b/.
The vector w has weight, � D .a � 1; b � 1/.

We start by outlining a basic Frobenius reciprocity argument that takes care of lots of
cases.

We have by Frobenius reciprocity that

HombH .0/
.L0.a; b/; Z.a; a// Š HombH .Z.a; b/;Z.a; a//:

The left side is non-zero asZ.a; a/ has a maximal vector of highest weight .a; a�1/ D
.a; b/, as we saw previously. Thus there is a non-zero bH -homomorphism

f W Z.a; b/ �! Z.a; a/:

Now, if a ¤ 0;�1, we know that Z.a; a/ is simple, of dimension p2, and thus that f
must be surjective.

Hence, Z.a; b/ has a p2-dimensional simple quotient isomorphic to Z.a; a/ D
L.a; a/ if .a; b/ ¤ .0;�1/; .�1;�2/.

We start with the general caseZ.a; b/, where .a; b/ ¤ .1; 0/; .0;�1/; .�1;�2/. Here
we have bH hwi D bH hvi � Z.a; b/ of dimension p2, and simple, as the submodule is
generated by its maximal vectors v and w. It is isomorphic to L.a � 1; b/ D Z.a � 1; b/.
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By the above, and by consideration of dimensions, the quotient Z.a; b/=bH hvi is simple
and we call it L.a; b/. Thus, we have found all the composition factors:

ŒL.a � 1; b/; L.a; b/�;

both of dimension p2.
Note: since w is also a maximal vector of weight .a � 1; b � 1/, bH hvi D bH hwi can

be viewed as a simple p2-dimensional bH -module, and we have thenL.a�1; b/ Š L.a�
1; b � 1/, noting that .a � 1; b � 1/ ¤ .0;�1/; .�1;�2/; .�2;�3/, so this isomorphism
is not a problem as if .a � 1; b � 1/ ¤ .1; 0/, we are guaranteed that L.a � 1; b � 1/ is
the p2-dimensional quotient of Z.a � 1; b � 1/, and if .a � 1; b � 1/ D .1; 0/, we are in
the case .2; 1/, and the statement says, L.1; 1/ Š L.1; 0/, where L.1; 1/ D Z.1; 1/ is a
p2-dimensional simple module, and L.1; 0/ is the p2-dimensional quotient of Z.1; 0/
we �nd below.

Consider now the induced module Z.1; 0/. It has the submodule bH hvi of dimen-
sion p2 inside it. The quotient Z.1; 0/=bH hvi must be simple, by the above argument
and by consideration of dimensions. We call this quotient L.1; 0/. Now, bH hvi has the
.p2 � 1/-dimensional submodule bH hwi, which is simple, and of weight .0;�1/, so by
Frobenius reciprocity, we see that bH hwi Š L.0;�1/. The quotient bH hvi =L.0;�1/
is one-dimensional, and so simple and isomorphic to L.0; 0/. Thus we have all the
composition factors:

ŒL.0; 0/; L.0;�1/; L.1; 0/�;

of dimensions 1; p2 � 1, and p2, respectively. Note that bH hvi has a maximal vector of
highest weight .0; 0/, and from the above, bH hvi Š Z.0; 0/.

Now we study Z.0;�1/. Here we have bH hwi D bH hvi � Z.a; b/ of dimension
p2 � 1, and simple, as the submodule is generated by its maximal vectors v and w, so we
have bH hvi Š L.�1;�1/ Š L.�1;�2/.

Note: The previous is not a problem, as we will see that L.�1;�2/ is the .p2 � 1/-
dimensional simple quotient of Z.�1;�2/, and L.�1;�1/ is the .p2 � 1/-dimensional
simple quotient of Z.�1;�1/.

We turn our attention to the quotient Z.0;�1/=bH hvi. There are two vectors not inbH hvi,
� WD @p�1y ˝m2

' WD @0p�1x ˝m1
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with the following property: bH � � 2 bH hvi (so in particular, x@x and y@y have weight
.0; 0/ on them in the quotient). Note here onemust calculate e4;4�� to handle the character-
istic p D 5 case. Thus there is a two-dimensional submodule k h�; 'i � Z.0;�1/=bH hvi.
The quotient here is .p2�1/-dimensional. By Frobenius reciprocity, we have thatZ.0;�1/
must have a .p2 � 1/-dimensional simple quotient isomorphic to L.0;�1/ � Z.0; 0/,
where L.0;�1/ D bH ˝

@y ˝m
˛
. By consideration of dimensions, the above quotient

has to be this one. It remains to decompose the module k h�; 'i, but this has just a
one-dimensional simple submodule with a one-dimensional simple quotient. Thus the
compositions factors are:

ŒL.�1;�1/; L.0;�1/; L.0; 0/; L.0; 0/�;

the �rst two of dimension p2 � 1 and the last two one-dimensional.
Finally, we have Z.�1;�2/. As above, we have bH hwi D bH hvi � Z.a; b/ of dimen-

sion p2, and simple, as the submodule is generated by its maximal vectors v and w. Here
we have bH hvi Š L.�2;�2/ Š L.�2;�3/.

Note: Again, the above isomorphism is not a problem, asL.�2;�2/ D Z.�2;�2/ is a
p2-dimensional simple bH -module and L.�2;�3/ is the p2-dimensional simple quotient
of Z.�2;�3/.

By Frobenius reciprocity,

HombH .0/
.L0.�1;�2/;M/ Š HombH .Z.�1;�2/;M/:

If we take M to be the .p2 � 1/-dimensional simple submodule of Z.0;�1/, we see that
the left side is non-zero because M has a maximal vector v of weight .�1;�2/. Thus
the right hand is non-zero, and so Z.�1;�2/ surjects onto M , as M is simple. Hence,
we have shown that Z.�1;�2/ has a .p2 � 1/-dimensional simple quotient. Indeed, we
can argue that Z.�1;�2/=bH hvi has a one-dimensional submodule. The vector  WD
@
0p�1
x @

p�2
y ˝m2 … bH hvi is such that bH �  � bH hvi. The quotient of Z.�1;�2/=bH hvi

by this one-dimensional submodule k hi must then be the .p2 � 1/-dimensional simple
quotient above, so it must be L.�1;�2/. Thus, we have the composition factors:

ŒL.�2;�2/; L.0; 0/; L.�1;�2/�;

of dimensions, p2; 1, and p2 � 1, respectively. �

Remark. All the composition factors of modules induced from two-dimensional modules
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are isomorphic to simple quotients of modules induced from one-dimensional induced
modules except forL.0;�1/. More precisely, we have for all pairs .a; a�1/, with a 2 Fp:

L.a; a � 1/ Š L.a; a/;

except when .a; a � 1/ D .0;�1/, in which case L.0;�1/ is still isomorphic to a compo-
sition factor of a module induced from a one-dimensional induced module, more precisely
L.0;�1/ Š bH ˝

@y ˝m
˛
� Z.0; 0/.

We will later see that L.0;�1/ is not isomorphic to L.�1;�1/.
Furthermore, the proof of Theorem 6.3.13 in fact shows that the Alperin diagram (see

Alperin (1980)) of Z.0;�1/ is

L.0;�1/

L.0; 0/ L.0; 0/

L.�1;�1/

Hence, we have

dimk Ext1.k; L.0;�1//; dimk Ext1.k; L.�1;�1// � 2:

Thus, we see that the trivial module is not projective and thatL.0;�1/ andL.�1;�1/
are not injective.

6.3.4 Higher-dimensional induced modules

Proposition 6.3.14. Let M Š L0.a; b/, with p � 1 � a � b D n � 2, where
k hm1; m2; : : : ; mnC1i D M and X � mnC1 D 0. Every maximal vector v for Z.M/ is
contained in the subspace

k h1˝mnC1i :

Proof. We recall here the general setup for restricted bH 0-modules M :
We pick an eigenbasis fm1; m2; : : : ; mnC1g. With this eigenbasis we have

X �mi D miC1;
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where X �mnC1 D 0, and

Y �mi D .i � 1/ .n � i C 2/mi�1;

noting again that Y �m1 D 0.
Let v D

P
a2A

�
@0x@y

�a
˝ma be a maximal vector, where ma 2M for all a 2 A. As

with the lower-dimensional cases, each ma can only be in one H -eigenspace (see §6.3.1),
so one has, for all a 2 A:

ma D �amj ;

with j 2 f1; : : : ; nC 1g and �a 2 k.
Arguing as before, from e1;2 � v D 0 one gets that:

if ma D �amnC1 ¤ 0, then either a2 D 0 or a1 D a2C2n�1
2

.

From e2;1 � v D 0 one gets that:

if ma D �am1 ¤ 0, then either a1 D 0 or a2 D a1C2n�1
2

.

From x@y � v D 0, we see that:

if ma D �am1 ¤ 0, then either a1 D 0 or a2 D p � 1.

Suppose ma D �am1 ¤ 0 and a1 ¤ 0. Then

a2 D p � 1 D
a1 C 2n � 1

2
:

This gives that a1 D �1 � 2n.
From the action of e3;1 together with the previous, we see that:

if ma D �am1 ¤ 0, then a1 D 0; 1.

If a1 ¤ 0, this case also implies that:

if ma D �am1 ¤ 0 then a1 D 1 and a2 D p � 1 and n D p � 1.

We also deduce that:

if ma D �am2 ¤ 0, then a1 D 0; 1 or a2 D a1�2
3
C n � 2,

provided one is not in the n D p�1 case. But, in fact we can improve this by considering
the action of x.2/@y too, which gives:
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if ma D �am2 ¤ 0 we have either a1 D 0; 1 or a2 D p � 1.

So, if one is in the a1 ¤ 0; 1 case we have p � 1 D a1�2
3
C n � 2, which implies

a1 D 5 � 3n, again, provided one is not in the n D p � 1 case. We now consider what
happens in the n D p � 1 in the above when we consider the non-zero ma D �am2. For
that case we see that we are not allowed to conclude what we have if a D .2; a2/.

Summarising:

If ma D �am2 ¤ 0, then a1 D 0; 1 or a1 D 2 or a D .5 � 3n; p � 1/.

Write � D .5 � 3n; p � 1/.
We write our maximal vector

v D
X

0�a2�p�1

@a2

y ˝m.0;a2/ C

X
0�a2�p�2

@0x@
a2

y ˝m.1;a2/„ƒ‚…
��am2

C@0x@
p�1
y ˝m.1;p�1/

C

X
0�a2�p�1

@02x @
a2

y ˝m.2;a2/„ƒ‚…
��am2

C

X
3�a1�p�1
0�a2�p�1

a¤�

@0a1

x @a2

y ˝ ma„ƒ‚…
��am3

C
�
@0x@y

��
˝m� :

By Proposition 6.2.4, we know that Y �ma D 0 if a2 D p � 1. Thus, m� D ��m1 and
m.1;p�1/ D �.1;p�1/m1.

Acting on our maximal vector by x.2/@y again, we see that the @p�1y ˝ �.1;p�1/m2

term can only cancel with the term @
p�1
y ˝m.2;p�1/. But in fact, m.2;p�1/ D �.2;p�1/m1,

and so no cancellation can occur, and we conclude

m.1;p�1/ D 0 D m.2;p�1/:

Now, since m� D ��m1, we see from the previous that we must have � D .0; p � 1/
or � D .1; p � 1/. Thus, we can write

v D
X

0�a2�p�1

@a2

y ˝m.0;a2/ C

X
0�a2�p�2

@0x@
a2

y ˝m.1;a2/„ƒ‚…
��am2

C

X
0�a2�p�2

@02x @
a2

y ˝m.2;a2/„ƒ‚…
��am2

C

X
3�a1�p�1
0�a2�p�2

@0a1

x @a2

y ˝ ma„ƒ‚…
��am3

:

Looking at x.2/@y � v D 0 again, we gather that m.2;a2/ ¤ 0 implies that m.2;a2/ D

�.2;a2/mj for some j � 3. Secondly, we also see that if X �m.1;a2/ and m.2;a2�1/ are in
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the same weight space, then �.1;a2/ D �.2;a2�1/ for 0 � a2 � p�2. Otherwisem.1;a2/ D

�.1;a2/mnC1 and �.2;a2�1/ D 0. In particular, m.1;0/ D �.1;0/mnC1 and m.2;p�2/ D 0.
We also see that ifma D �am3, then the associated terms cannot cancel with anything

and we conclude �am3 D 0. Thus, we have:

v D
X

0�a2�p�1

@a2

y ˝m.0;a2/ C @
0
x ˝ �.1;0/mnC1 C

X
1�a2�p�2

@0x@
a2

y ˝m.1;a2/„ƒ‚…
��am2

C

X
0�a2�p�3

@02x @
a2

y ˝m.2;a2/„ƒ‚…
��am3

C

X
3�a1�p�1
0�a2�p�2

@0a1

x @a2

y ˝ ma„ƒ‚…
��am4

:

By looking at the action of x.p�1/@y on v we see that we have:

ma D �amn or ma D �amnC1 for a1 D p � 2.

Furthermore
�.p�1;a2�1/ D �.p�2;a2/

for 1 � a2 � p�2, whenma D �amn. When suchma D �amnC1, then�.p�1;a2�1/ D 0.
Finally, �.p�1;p�2/ D 0.

We also see that ma D �am4 ¤ 0 implies a1 D 3, again by looking at the action of
x.2/@y .

Let’s study them.p�2;a2/ andm.p�1;a2/. We gather from x@y �v D 0 that ifm.p�2;a2/ D

�.p�2;a2/mnC1, then
�.p�1;a2�1/ D 0

for 1 � a2 � p � 2, as above. On the other hand, if m.p�2;a2/ D �.p�2;a2/mn, then

�.p�1;a2�1/ D ��.p�2;a2/;

again for 1 � a2 � p � 2. Therefore, putting it all together we see that if m.p�2;a2/ D

�.p�2;a2/mn, then
�.p�1;a2�1/ D ��.p�1;a2�1/;

so they are all zero. On the other hand, ifm.p�2;a2/ D �.p�2;a2/mnC1, then the�.p�1;a2�1/

are all zero. Either way
�.p�1;a2/ D 0

for all 0 � a2 � p � 2. And we have m.p�2;a2/ D �.p�2;a2/mnC1.
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We have

v D
X

0�a2�p�1

@a2

y ˝m.0;a2/ C @
0
x ˝ �.1;0/mnC1 C

X
1�a2�p�2

@0x@
a2

y ˝m.1;a2/„ƒ‚…
��am2

C

X
0�a2�p�3

@02x @
a2

y ˝m.2;a2/„ƒ‚…
��am3

C

X
0�a2�p�2

@03x @
a2

y ˝m.3;a2/„ƒ‚…
��am4

C

X
4�a1�p�2
0�a2�p�2

@0a1

x @a2

y ˝ ma„ƒ‚…
��am5

:

By considering the action of C , we see that the terms

�a2@
a2�1
y ˝ Y �m.0;a2/

cannot cancel with anything and thus, either a2 D 0 or m.0;a2/ D �.0;a2/m1.
We write thus,

v D
X

1�a2�p�1

@a2

y ˝ �.0;a2/m1 C @
0
x ˝ �.1;0/mnC1 C

X
1�a2�p�2

@0x@
a2

y ˝m.1;a2/„ƒ‚…
��am2

C

X
0�a2�p�3

@02x @
a2

y ˝m.2;a2/„ƒ‚…
��am3

C

X
0�a2�p�2

@03x @
a2

y ˝m.3;a2/„ƒ‚…
��am4

C

X
4�a1�p�2
0�a2�p�2

@0a1

x @a2

y ˝ ma„ƒ‚…
��am5

C1˝m.0;0/:

Now we let x@y act on our maximal vector. We see that the term 1˝X �m.0;0/ cannot
cancel with anything, so we conclude that m.0;0/ D �.0;0/mnC1.

Furthermore, we see that the @a2
y ˝ �.0;a2/m2 terms can only cancel with the terms

�@a2
y ˝m.1;a2�1/, for 2 � a2 � p � 1. Thus,

�.0;a2/m2 D m.1;a2�1/ D �.1;a2�1/mj ;

and thus either j D 2, and we have �.0;a2/ D �.1;a2�1/, or �.0;a2/ D �.1;a2�1/ D 0.
Consequently, we have

if 0 ¤ m.1;a2/, then m.1;a2/ D �.1;a2/m2, for 1 � a2 � p � 2.

Considering the term m.0;a2/ when a2 D 1, we see that it can only cancel with
�@y ˝ �.1;0/mnC1, which is not possible, thus we deduce that �.0;1/ D 0 D �.1;0/.
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But, in fact, now we can deduce information on all the ma from this. Looking again
at the action of x@y , we see that the @0x@a2

y ˝X �m.1;a2/ D @
0
x@
a2
y ˝ �.1;a2/m3 terms can

only cancel with the terms �2@0x@a2
y ˝m.2;a2�1/, for 1 � a2 � p � 2. So, as above, we

see that either they lie in the same sl2-weight space, and we have

�.1;a2/ D 2�.2;a2�1/;

or they are both zero. Thus, we have 0 ¤ m.2;a2/ D �.2;a2/m3.
Continuing likewise, for higher values of a1 up to and including p � 2, we see that

�.a1;a2/ D .a1 C 1/�.a1C1;a2�1/;

ifm.a1C1;a2�1/ is in the same sl2-weight space asX �m.a1;a2/, and they are zero otherwise,
where 0 � a2 � p � 2 if a1 � 3, meaning in such cases we can immediately see that
m.a1;0/ D 0 D m.a1C1;p�2/. In the a1 D 2 case we can say

m.2;0/ D 0 D m.3;p�2/ D m.3;p�3/:

We summarise what we have:

v D1˝ �.0;0/mnC1 C
X

2�a2�p�1

@a2

y ˝ �.0;a2/m1 C
X

1�a2�p�2

@0x@
a2

y ˝ �.1;a2/„ƒ‚…
D�.0;a2C1/

m2

C

X
1�a2�p�3

@02x @
a2

y ˝ �.2;a2/„ƒ‚…
D�.1;a2C1/=2

m3 C
X

1�a2�p�4

@03x @
a2

y ˝ �.3;a2/„ƒ‚…
D�.2;a2C1/=3

m4

C

X
4�a1�n
1�a2�p�3

@0a1

x @a2

y ˝ �.a1;a2/„ ƒ‚ …
D�.a1�1;a2C1/=a1

ma1C1:

We now apply C to v. Comparing the terms with exponent 1 in the @0x component,
we see that �.0;a2/ ¤ 0 implies that a2 D 1; 2n, for 2 � a2 � p � 1. Also, since

�.0;a2/ D �.1;a2�1/ D 2�.2;a2�2/ D : : : D n�.n;a2�n/;

we see that if �.a1;a2/ ¤ 0, then a2 D 2n � a1.
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We write, then

v D 1˝ �.0;0/mnC1 C
X

0�a1�n

@0a1

x @2n�a1

y ˝ �.a1;2n�a1/„ ƒ‚ …
D�.a1�1;2n�a1C1/=a1

ma1C1:

We apply the action of e2;1 to conclude. From it we see that we get the term

s.0;2n/@
2n�1
y ˝ �.0;2n/m1;

which can only cancel with

@2n�1y ˝ n�.1;2n�1/m1;

noting that Y �m2 D nm1. Now, we compute that s.0;2n/ D 4n2�n. Thus we have either
�.0;2n/ D �.1;2n�1/ D 0 or 4n2 � nC n D 0. The latter cannot happen, as this implies
that 4n2 D pt , for some t 2 N, but since p � 5, p doesn’t not divide 4, so it must divide
n2, and thus must divide n itself, which is not possible.

We conclude, hence,

0 D �.0;2n/ D �.1;2n�1/ D �.2;2n�2/ D : : : D �.n;2n�n/:

Thus, v D 1˝ �.0;0/mnC1, as required. �

From this it follows that

Theorem 6.3.15. The induced module Z.M/ Š Z.a; b/, where p � 1 � a � b � 2, is
simple.

Lastly, we prove the following:

Proposition 6.3.16. There are two isomorphism classes of .p2�1/-dimensional restricted
simple bH -modules, one represented by L.�1;�1/, the other by L.0;�1/.

Proof. The only .p2 � 1/-dimensional restricted simple modules arise as composition
factors of modules induced from one-dimensional or two-dimensional modules. All of
these are isomorphic to either L.0;�1/ or L.�1;�1/, as we have seen. It remains to
show that these two are not isomorphic.
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Now, if they were isomorphic, this would tell us that Z.0;�1/ has a simple quotient
isomorphic to L.�1;�1/, i.e.,

0 ¤ HombH .Z.0;�1/; L.�1;�1// Š HombH .0/
.L0.0;�1/; L.�1;�1//:

Thus, L.�1;�1/ would need to have a maximal vector of weight .0;�1/. Recall that

L.�1;�1/ D Z.�1;�1/=k
D�
@0x@y

�!0
˝m

E
:

If 0 ¤ ı 2 L.�1;�1/ is a vector of weight .0;�1/, then working in the quotient we
deduce that ı D @0p�1x ˝m. This is a problem, as X � ı D @0p�2x @y ˝m ¤ 0, so that ı is
not maximal. Thus no maximal vector of such a weight exists, and we are done. �

Lemma 6.3.17. Let �;� 2 F2p with �1��2 D �1��2 and � ¤ �. IfZ.�/ andZ.�/ are
both simple, then they are not isomorphic as bH -modules.

Proof. If Z.�/ Š Z.�/, then Z.�/ has a maximal vector v of weight �. We consider the
two cases where Z.�/ is simple. The �rst is when �1 � �2 � 2. Then Proposition 6.3.14
tells us that v 2 k h1˝mnC1i. Thus, v i s a maximal vector of weight �, since 1˝mnC1
is a maximal vector of weight �. This is a contradiction. Therefore Z.�/ © Z.�/.
The second case arises when � D .a; a/, with a ¤ 0;�1. Then Proposition 6.3.4 tells
us that v 2 k h1˝mi or v 2 k

˝
@y ˝m

˛
or v 2

D
@
0p�1
x @

p�1
y ˝m

E
. We observe that

C D �e0;3 2 N only kills @0p�1x @
p�1
y ˝ m when a D �1. Thus, v 2 k h1˝mi or

v 2 k
˝
@y ˝m

˛
. If v 2 k h1˝mi, we have a contradiction, since 1 ˝ m is a maximal

vector of weight �. Finally if v 2 k
˝
@y ˝m

˛
, then v has weight .a; a�1/, a contradiction.

Therefore, Z.�/ © Z.�/. �

We can now prove our main result, Theorem 6.1.7, restated here for convenience.

Theorem. Let p � 5 be a prime, k be an algebraically closed �eld of characteristic p,
� 2 F2p a weight,L0.�/ be the simple restricted gl2.k/-module of highest weight �,Z.�/ D
Z.L0.�// the corresponding induced bH -module, and L.�/ its simple head.

1. The full list of simple pairwise nonisomorphic restricted bH -modules is given by˚
L.�/ W � 2 F2p; �1 � �2 ¤ 1or � D !1

	
. There are p2 � p C 1 of them.

2. If � is not exceptional, then L.�/ D Z.�/, and its dimension is p2 dimk L0.�/ D

p2 .�1 � �2 C 1/.
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3. For exceptional �, the modules L.�/ in the list are as follows:

(a) if � D !0 D .�1;�1/, L.�/ Š O.2I .1; 1//= .k � 1/, with dimension p2 � 1;

(b) if � D !1 D .0;�1/, L.�/ Š bH ˝
@y ˝m

˛
� Z.0; 0/, with dimension p2 � 1;

(c) if � D !2 D .0; 0/, L.�/ Š k, with dimension 1 (this is the trivial module).

Proof of Theorem 6.1.7. That Z.�/ has dimension p2 dimk L0.�/ D p2 .�1 � �2 C 1/

follows immediately from the de�nition of Z.�/ and from the fact that dimk L0.�/ D

�1 � �2 C 1, stated in Theorem 6.3.2.
By Proposition 6.1.6, every simple restricted bH -module is a simple quotient of some in-

duced bH -moduleZ.�/. The full list of these simple quotients is given by
˚
L.�/ W � 2 F2p

	
.

These are not all pairwise nonisomorphic, however. If � D .a; a/, the proof of Theo-
rem 6.3.8 tells us that L.0; 0/ is one-dimensional and L.�1;�1/ is .p2 � 1/-dimensional,
so they are not isomorphic, by dimensions. It also tells us that if a ¤ 0;�1, then
L.�/ D Z.�/, and thus has dimension p2. By Lemma 6.3.17, they are all pairwise
nonisomorphic, and by dimensions they are all pairwise nonisomorphic to L.0; 0/ and
L.�1;�1/. Thus, the modules

˚
L.a; a/ W a 2 Fp

	
are all pairwise nonisomorphic.

The remark after Theorem 6.3.13 tells us that for all a 2 Fp W L.a; a � 1/ Š L.a; a/,
except when a D 0. Therefore, the only L.a; a � 1/ possibly not isomorphic to one of
the nonisomorphic simple restricted bH -modules already described is L.0;�1/ D L.!1/.
Proposition 6.3.16 guarantees that it is indeed not isomorphic to any of them. Hence, the
modules

˚
L.a; a/ W a 2 Fp

	
[ fL.0;�1/g are all pairwise nonisomorphic.

It remains to consider the modules L.�/ for all � D .�1; �2/ with �1 � �2 � 2. Theo-
rem 6.3.15 implies that L.�/ D Z.�/ for all such �. By Lemma 6.3.17 and dimensions
they are all pairwise nonisomorphic, and by dimensions they are all pairwise nonisomor-
phic to the other L.�/. Thus, the modules in the list

˚
L.a; a/ W a 2 Fp

	
[ fL.0;�1/g [

fL.�/ W �1 � �2 � 2g are all pairwise nonisomorphic and these exhaust all the possibili-
ties for isomorphism types of simple restricted bH -modules. Thus, the full list of simples
is indeed

˚
L.�/ W � 2 F2p; �1 � �2 ¤ 1or � D !1

	
. Computing how many modules there

are in this list is straightforward. This proves (1).
That L.�/ D Z.�/ for all � not exceptional is immediate from the previous para-

graphs. Thus we have proved (2). Statements 3 (a) and 3 (c) are proved in the proof of
Theorem 6.3.8. Statement 3 (b) is proved in the proof of Theorem 6.3.13. �
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Chapter 7

Restrictions to W1-subalgebras and

balanced toral elements

We will now be giving a characterisation of how the simple restricted bH -modules we
classi�ed in the previous chapter restrict to a subalgebra of H isomorphic to the �rst
Witt algebra.

7.1 Preliminaries

We have from Lemma 2.8 in Herpel and Stewart (2016a):

Lemma 7.1.1. The subalgebra H of W.2I .1; 1// contains a p-subalgebra W WD W.1I 1/

with basis n
@y; y@y � x@x; y

.2/@y � xy@x; : : : ; y
.p�1/@y � xy

.p�2/@x

o
;

with these elements playing the roles of @; x@; x.2/@; : : : ; x.p�1/@, respectively, where x is
the image of X in the truncated polynomial ring kŒX�=.Xp/.

Brie�y, we recall the restricted representation theory for W , see Chang in Chang
(1941).

Consider the standard subalgebras W.1/ and W.0/ of W from the �ltration obtained
from the natural grading on W , see §4.1 for more details. Then W.1/ is an ideal of W.0/.
Consequently, we can de�ne for � 2 k a one-dimensional W.0/-module k�, much as we
did in §6.1, where W.1/ acts trivially and x@ acts via x@ � v D �v. From this we de�ne the
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Verma module
ZC.�/ D u.W /˝u.W.0// k�:

Then we have the following description of all the isomorphism classes of simple
restricted W -modules, see (Chang, 1941, Hauptsatz 2’, p. 176).

Theorem 7.1.2. There are p isomorphism classes of irreducible restricted representations
of W , with representatives LW .r/ for r 2 f0; 1; : : : ; p � 1g. LW .r/ is obtained from the
induced representation ZC.r/, the Verma module, and is equal to it if r ¤ 0;�1, with
dimension p. If r D 0, then ZC.0/ has a trivial simple quotient, which is LW .0/, and
ZC.p � 1/ has a .p � 1/-dimensional simple quotient, denoted LW .p � 1/.

Now, in Herpel and Stewart (Herpel and Stewart, 2016a, Lem. 2.1, Prop. 2.2), the
authors also provide two key results, one an algorithm, to work out the composition
factors of a graded W -module. They are as follows:

Lemma 7.1.3. Suppose V is a W -module admitting a grading V D
L

i2Z V.i/ such that
@ � V.i/ � V.i C 2/ and such that each V.i/ is stable under x@. Then there exists a unique
semisimpleW -module Vs D V1˚V2˚� � �˚Vr with Vs D

L
i2Z Vs.i/ with Vs.i/ D V.i/

as x@-modules and each Vi is a a graded irreducible W -module.
For this module Vs , the set of composition factors ŒV jW � and ŒVsjW � coincide.

Proposition 7.1.4. Let V be as in Lemma 7.1.3. For i 2 Z with V.i/ ¤ 0, let `i be a list
(with multiplicities) of the x@-weights on V.i/. Then the following algorithm determines
the composition factors (with multiplicities) of V as a W -module:

1. Let r 2 Z be maximal such that `r is nonempty. Pick � 2 `r .

2. Record a composition factorU D L.�/ for � D ��1 if� ¤ 0; 1 andU D L.p�1/,
L.0/ if � D 1; 0 respectively. Form a new set of lists f`0rg by removing weights
from f`rg in the following way: If U D L.0/ remove a 0-weight from `r , if U D
L.p � 1/ remove one weight 1; 2; : : : p � 1 from `r ; `r�2; : : : ; `r�2pC4 respectively
and otherwise remove one weight�;�C1; : : : ; �Cp�1 from `r ; `r�2; : : : ; `r�2pC2.

3. If the new lists f`0rg are not all empty, repeat from Step (i).

As an H -subalgebra, W is generated by the elements @y and L WD y.p�1/@y �

xy.p�2/@x .
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We calculate the action of the latter as

0 D L � v D�
X

0�a1�p�1
a2Dp�3

a1@
0a1�1
x ˝ Y �ma C

X
0�a1�p�1
a2Dp�2

2a1@
0a1�1
x @y ˝ Y �ma

C

X
0�a1�p�1
a2Dp�2

.�.a/2 � �.a/1 C a1/ @
0a1

x ˝ma

� 2˝X �m!0
�

X
0�a1�p�1
a2Dp�1

a1@
0a1�1
x @2y ˝ Y �ma

C

X
0�a1�p�1
a2Dp�1

.�.a/1 � �.a/2 � 1 � a1/ @
0a1

x @y ˝ma:

This will be useful as we will often need to check that a given k-span of vectors is indeed
a W -module.

7.2 Restrictions

We are now ready to prove the main theorem of this chapter:

Theorem 7.2.1. The restrictions of simple restricted modules L.�/ to the subalgebra W
provided by Lemma 7.1.1 are as follows. We have

1. ŒL.0; 0/jW � D LW .0/,

2. ŒL.�1;�1/jW � D ŒL.0;�1/jW � D Œ
Lp�2
jD0 LW .j /˚ LW .p � 1/

2�,

3. for � not exceptional

ŒL.�/jW � D

264
0@p�2M
jD1

LW .j /˚ LW .0/
2
˚ LW .p � 1/

2

1A.rC1/
375 ;

where �1 � �2 D r .

In particular every p-representation of bH restricted toW contains the same number of
composition factors of each LW .j /, where 1 � j � p � 2.

Proof. The trivial module’s restriction is clear. First we deal with the case when the simple
restricted bH -module is equal to the associated Verma module, i.e., when L.�/ D Z.�/,
i.e. when � is not exceptional.
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We take a basis forL0.�/ as usual, but we label it so that vi spans the i -th weight space
for h WD y@y � x@x . The strategy will be to perform the algorithm on W -sub-modules of
Z.�/, pass to quotients, and repeat.

De�ne in general

Z.�/i D k
D
@0ax @

b
y ˝ vi W 0 � a � p � 2; 0 � b � p � 1

E
:

Take now i D r , where r D �1 � �2. Then Z.�/r is the �rst W -sub-module of Z.�/
we will consider. We grade it thus

Z.�/r D
M
b2Z

Z.�/r.2b/;

where
Z.�/r.2b/ WD k

D
@0ax @

b
y ˝ vr W 0 � a � p � 2

E
:

This grading satis�es the conditions in Lemma 7.1.3. That Z.�/r is indeed a W -module
can be checked by using the formula for @y found in Equation (6.2) and that for the action
of L found above.

Note that the basis vector @0ax @by ˝ vi is a weight vector for h with weight a � b C i .
As in the algorithm, let `i be the list of weights with multiplicities of h on Z.�/r.i/.

The element h representing x@ has weight r C 1 C a on the highest graded piece
Z.�/r.2p � 2/, for 0 � a � p � 2, so we have weights f0; 1; : : : ; p � 1g n frg, and so
obtain composition factors LW .0/; LW .1/; : : : ; LW .p�1/ excluding LW .r �1/ if r ¤ 0
and LW .0/ if r D 0, remembering here that r ¤ 1. Now remove the relevant h-weights
according to part (ii) of the algorithm.

It is convenient at this point to consider the r D 0 case separately, i.e., we
have Z.�/ of dimension p2. In this case, we have recorded composition factors
LW .1/; LW .2/; : : : ; LW .p� 1/, so we remove weights �;�C 1; : : : ; �Cp� 1 for � D
2; : : : ; p� 1, from `2p�2; `2p�4; : : : ; `0, respectively, and remove weights 1; 2; : : : ; p� 1
from `2p�2; `2p�4; : : : ; `2, respectively. This leaves `2p�2 empty. Each of the non-empty
`i had p � 1 weights to begin with, and we have removed p � 1 distinct weights for all
`i ¤ `0. Thus, only `0 is non-empty, containing just the weight 0. Therefore we �nd a
copy of LW .0/ and the algorithm stops. Looking at the quotient Z.�/=Z.�/r , which is
p-dimensional, we �nd it to be a W -submodule

k
D
@0p�1x @by ˝ vr W 0 � b � p � 1

E
CZ.�/r ;
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which we grade similarly by powers of @y . The grading satis�es the conditions in
Lemma 7.1.3, since @by ˝X � vr D 0 in the quotient. In the highest graded piece, as above,
we have the weight p�1�.p�1/Cr D 0, so we remove this 0-weight from it, and record
a composition factor LW .0/. We see that we have the weight p� 1� .p� 2/C r D 1, so
we remove the weight 1 from `2p�4, and the weights 2; 3; : : : ; p� 1 as we go down to `0,
leaving all the lists of weights empty, and picking up the composition factor LW .p � 1/.
So, indeed,

ŒL.�/jW � D

24p�2M
jD1

LW .j /˚ LW .0/
2
˚ LW .p � 1/

2

35 ;
where �1 � �2 D r D 0, � not exceptional.

We go back to our generic case, r ¤ 0. Recall that we found composition factors
LW .0/; LW .1/; : : : ; LW .p � 1/ excluding LW .r � 1/. So, we remove weights �;� C
1; : : : ; �C p � 1 for � D 2; : : : ; p � 1, � ¤ r , from `2p�2; `2p�4; : : : ; `0, respectively,
and remove weights 1; 2; : : : ; p � 1 from `2p�2; `2p�4; : : : ; `2, respectively, and remove
a 0-weight from `2p�2. This leaves `2p�2 empty.

In the lower graded pieces, each of the non-empty `i had p� 1 weights to begin with,
and we have removed p � 2 distinct weights for all `i ¤ `0, and p � 3 distinct weights
for `0. We see that `2p�4 has only the weight 1 remaining in it.

Thus, we record a composition factor LW .p� 1/, and remove weights 1; 2; : : : ; p� 1
from `2p�4; : : : ; `0. Therefore, we have removed all the weights up to, but not including,
those in `0. The only weight remaining in it is a 0-weight, so we record a composition
factor LW .0/, and the algorithm terminates. So far, we have found composition factors

p�2M
jD1

LW .j /˚ LW .0/
2
˚ LW .p � 1/

2

not including LW .r � 1/.
Before passing to the quotient we deal with the subquotient that will be left at the

end, consisting of the k-span of the vectorsD
@0p�1x @by ˝ vi W 0 � b � p � 1;�r � i � r

E
:

It is a W -module (as the interested reader can verify) and we grade it as usual. It gives us

117



Chapter 7. Restrictions to W1-subalgebras and balanced toral elements

all the following composition factors, each with multiplicity 1:

LW .i � 1/ for i 2 f�r;�r C 2; : : : ; r � 2; rg n f0; 1g

and if r is even, we also pick up a copy ofLW .p�1/ andLW .0/ at the end of the process.
If r is odd, we also obtain a copy of LW .p � 1/ and LW .0/ at the end of the process,

omitting some of the details, which the reader can verify, noting that we obtain r C 2
composition factors in both cases.

Looking at the quotient Z.�/=Z.�/r , we �nd a W -submodule

Z.�/r�2 WD k
D
@0ax @

b
y ˝ vr�2 W 0 � a � p � 2; 0 � b � p � 1

E
CZ.�/r ;

which we grade similarly by powers of @y . The grading satis�es the conditions in
Lemma 7.1.3, so we perform the algorithm on it.

The vectors in the highest graded piece have weights

aC 1C .r � 2/ ;

so aC r � 1 for 0 � a � p � 2. Thus we have all weights in the range f0; 1; : : : ; p � 1g
except for r � 2. So, we obtain composition factors LW .0/; : : : ; LW .p � 1/ excluding
LW .0/ if r D 2,LW .p�1/ if r D 3, andLW .r�3/ otherwise. If we are in the latter case,
then the argument as above runs, and we obtain composition factors

Lp�2
jD1 LW .j /˚

LW .0/
2 ˚ LW .p � 1/

2 excluding LW .r � 3/.
If r D 2, then we argue as in the r D 0 case, and obtain composition factorsLp�2
jD1 LW .j /˚ LW .0/˚ LW .p � 1/.
Now, if r D 3, we have composition factors LW .0/; : : : ; LW .p � 2/. Proceeding as

usual, we see that there is a 1-weight remaining in `2p�4, so we record a LW .p � 1/
composition factor and remove weights according to the algorithm, leaving all the lists of
weights empty. So we obtain composition factors

Lp�2
jD1 LW .j /˚ LW .0/˚ LW .p � 1/

in this case too.
Proceeding to the submodule Z.�/r�4, which is de�ned analogously, it is easy to see

that the vectors in the highest graded piece have weights

aC 1C .r � 4/ ;

so a C r � 3 for 0 � a � p � 2. Thus, again, we have all weights in the range
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f0; 1; : : : ; p � 1g except for r � 4. And again, as above, depending on the value of r ,
one argues three separate cases, obtaining composition factors

p�2M
jD1

LW .j /˚ LW .0/˚ LW .p � 1/

if r D 4; 5, i.e., when one misses out an LW .0/ or and LW .p � 1/ in the �rst step, and

p�2M
jD1

LW .j /˚ LW .0/
2
˚ LW .p � 1/

2

excluding LW .r � 5/ in the other cases.
We perform the same task all the way down toZ.�/�r , i.e., we perform it rC 1 times,

with the composition factors as outlined above.
Now, we can put everything together. As r ¤ 0, we in fact have that r � 2. As we

apply the algorithm repeatedly, we obtain the following composition factors. FromZ.�/r

we get:
p�2M
jD1

LW .j /˚ LW .0/
2
˚ LW .p � 1/

2;

not including LW .r � 1/.
From Z.�/i , for i 2 f�r;�r C 2; : : : ; r � 2g one gets either

p�2M
jD1

LW .j /˚ LW .0/˚ LW .p � 1/;

if either i D 0 or i D 1, or

p�2M
jD1

LW .j /˚ LW .0/
2
˚ LW .p � 1/

2;

excluding LW .i � 1/, otherwise. Thus, we miss out

LW .i � 1/ for i 2 f�r;�r C 2; : : : ; r � 2; rg n f0; 1g;

which we recover as we saw above from the subquotient consisting of the @0p�1x terms.
This subquotient gave us in addition a copy of LW .0/ and a copy of LW .p � 1/. So, we
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have shown, as required, that for � not exceptional

ŒL.�/jW � D

264
0@p�2M
jD1

LW .j /˚ LW .0/
2
˚ LW .p � 1/

2

1A.rC1/
375 ;

where �1 � �2 D r .
Finally, we will deal with the exceptional modules. First we deal with L.�1;�1/ Š

Z.�1;�1/=k
D
@
0p�1
x @

p�1
y ˝m

E
. We de�ne the �rst submodule to study as

M1 D k
D
@0ax @

b
y ˝m W 0 � a � p � 2; 0 � b � p � 1

E
C k

˝
@0p�1x @p�1y ˝m

˛
:

Grade this as usual by powers of @y . This is aW -submodule, as both @y andL preserve
the basis, and the grading is as in the lemma. We note that we have already run the
algorithm for the same set of weights when we dealt with L.a; a/, for a ¤ 0;�1. We
thus get composition factors LW .0/; LW .1/; : : : ; LW .p � 1/.

Now we move on to the quotient M2 WD L.�1;�1/=M1. We �nd a W -submodule
which is in fact the whole quotient, with basis

k
D
@0p�1x @by ˝m W 0 � b � p � 2

E
CM1:

Again, grade this as usual, and everything is as in Lemma 7.1.3. Here, we see that
the highest graded piece M2.2p � 4/ has a single weight �1 � .p � 2/ D 1. Thus, we
record a copy of LW .p � 1/ and remove weights, removing 1 from `2p�4, 2 from `2p�6

and so on down to p � 1 from `0, remarking that `2b D f�1 � bg. Thus all the lists
of weights are now empty, and the algorithm terminates, and we have con�rmed that
ŒL.�1;�1/jW � D Œ

Lp�2
rD0 LW .r/˚ LW .p � 1/

2�, as required.
Lastly, we turn to L.0;�1/ Š bH ˝

@y ˝m
˛
� Z.0; 0/. Recall that we saw that this

has a basis
k
D
@0ax @

b
y ˝m W 0 � a; b � p � 1; .a; b/ ¤ .0; 0/

E
:

We take the following W -submodule

M1 WD k
D
@0ax @

b
y ˝m W 0 � a � p � 2; 0 � b � p � 1; .a; b/ ¤ .0; 0/

E
;

and we grade it as usual. This is indeed a W -submodule, as one can check using our
formulae. Hence, we can run the algorithm on it. The highest graded piece has weights
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faC 1 W 0 � a � p � 2g. We record composition factors LW .1/; : : : ; LW .p � 1/. As in
the r D 0 case we have removed p � 1 weights from `2p�2; : : : ; `2 and p � 2 weights
from `0. In this case, however, as the reader can verify `0 is left empty.

Now, we look at the quotient

L.0;�1/=M1 D k
D
@0p�1x @by ˝m W 0 � b � p � 1

E
CM1;

and we grade it as usual. Perform the algorithm. In general we have `2b D f�1 � bg.
We get a 0-weight from the highest graded piece, so we record a copy of LW .0/. Then
we pick up a 1-weight from `2p�4, record a copy of LW .p � 1/ and remove weights
1; 2; : : : ; p � 1 from `2p�4; : : : ; `0, terminating the algorithm. Thus, we have veri�ed
that ŒL.0;�1/jW � D Œ

Lp�2
jD0 LW .j /˚ LW .p � 1/

2�, as required. �

Remark. The proof of Theorem 1.3 in Herpel and Stewart (2016a) relied on knowledge of
the restrictions of restricted modules for bH to a subalgebra isomorphic toW , in particular
on the multiplicities of the composition factors LW .j / with 1 � j � p � 2, which we
have con�rmed and given a proof for above.

Premet in Premet (2017) introduced the notion of a d -balanced toral1 element. We
have:

Definition 7.2.2. Let g be a restricted Lie algebra. Let d > 0 be an integer. A toral
element h 2 g is d -balanced if

dimk g.h; i/ D dimk g.h; j /

for all i; j 2 F�p and all eigenspaces have d j dimk g.h; i/ for i ¤ 0, where g.h; i/ denotes
the i-th eigenspace of ad h acting on g.

Applying this to our setting, we see that the toral element h WD y@y � x@x has
eigenspaces when it acts on bH by ad h of equal dimension. This is because in the algorithm
we used to work out the composition factors of the restriction of V a restricted bH -module
to W , recording a composition factor LW .�/ corresponded to �nding a non-zero vector
v with h � v D .�C 1/v, if � ¤ 0; p � 1 and h � v D 0 if � D 0, h � v D v if � D p � 1.

1See De�nition 3.2.25
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Chapter 8

Characteristic 3

In this chapter we continue the classi�cation of simple restricted modules for the Hamil-
tonian Lie algebra H to the setting of an algebraically closed �eld k of characteristic
3, which we were not able to treat systematically in Chapter 6, for several reasons. For
one, the crucial element C D �e0;3 D y.2/@x � x

.p�1/y.3/@y in the subalgebra N of
p-nilpotent elements does not exist in characteristic 3. Furthermore, in determining the
maximal vectors that arise, we used the action of the element e3;1 D x.2/y@y � x.3/@x ,
which is not available to us in characteristic 3.

Throughout the chapter, �x k to be an algebraically closed �eld of characteristic 3.
Thus, dimk

bH D 32 C 1 D 10. We adopt the same notation and setup as in the general
case (p � 5) in Chapter 6, for which see §6.1. We thus have

bH D k D@0x; @y; x@x; y@y; e0;2; x@y; x.2/@y; e1;2; e2;1; e2;2E ;
where e2;2 D xy.2/@y � x

.2/y@x and we recall that e1;2 D y.2/@y � xy@x; e2;1 D

xy@y � x
.2/@x , and Y WD �e0;2 D y@x � x

.p�1/y.2/@y D y@x � x
.2/y.2/@y . Here,

N D k
˝
x@y; x

.2/@y; e1;2; e2;1; e2;2
˛
.

We note that the �ltration on bH gives bH .1/ D k
˝
x.2/@y; e1;2; e2;1; e2;2

˛
and bH .0/ D

k
˝
x@x; y@y; Y; x@y; x

.2/@y; e1;2; e2;1; e2;2
˛
, so bH 0 WD bH .0/=bH .1/ Š gl2. Note also that

A D f0; 1; 2g2.
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The action of e2;2 is given by

e2;2 � v D
X
a2A

va@
0a1�1
x @a2�1

y ˝ma

C

X
a2A

 
a2

2

!
@0a1

x @a2�2
y ˝X �ma �

X
a2A

 
a1

2

!
@0a1�2
x @a2

y ˝ Y �ma;

where one sets

va D a1

 
a2 .�.a/2 � �.a/1/ �

 
a2

2

!!
C a2

 
a1

2

!
:

The following propositions will be useful in dealing with maximal vectors and in
verifying that sets of vectors do form bH -submodules (see the discussion at the end of
§6.1 for more details).

Proposition 8.0.1.We haveH D H
˝
@y; Y

˛
.

Proof. We calculate ŒY; @y� D �@0x . Recall that Œ@0x; @y� D x.2/@y (see Lemma 6.2.2, part
(2)). We also have ŒY; @0x� D �e2;2. We calculate Œe2;2; @0x� D e1;2 and Œe2;2; @y� D �e2;1.
We have that Œ�e2;1; @y� D x@y . Finally, Œe1;2; @y� D x@x � y@y . �

Proposition 8.0.2.We have N D H
˝
x@y; x

.2/@y; e1;2; e2;2
˛
.

Proof. We have Œx@y; e1;2� D 2e2;1. �

8.1 Modules induced from one-dimensional modules

We start by looking at inducing to bH from one-dimensional modules M Š L0.a; a/,
where a 2 Fp . Here we have an eigenbasis fmg for M with X �m D 0 D Y �m.

We have the following:

Proposition 8.1.1. Let M Š L0.a; a/, then any maximal vector v for Z.M/ is con-
tained in the subspace

k h1˝mi ˚ k
˝
@y ˝m

˛
˚ k

˝
@02x @

2
y ˝m

˛
;

where k hmi DM .
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Proof. Let v be a maximal vector, so we write v D
P
a2A

�
@0x@y

�a
˝ma, where ma 2M

for all a 2 A. For each ma write in fact ma D kam, where ka 2 k. From x@y � v D 0, we
obtain the following (see Lemma 6.2.3):

0 D �
X
a2A

a1@
0a1�1
x @a2C1

y ˝ kam:

The terms a1@0a1�1
x @a2C1

y ˝ kam are linearly independent. Thus, if ka ¤ 0, then a1 D 0
or a2 D p � 1 D 2. Therefore, we have 0 D k.1;0/ D k.1;1/ D k.2;0/ D k.2;1/.

See §6.2.1 for the formulae for the rest of the following calculations.
From e1;2 � v D 0, we obtain the following:

0 Ds.0;1/1˝ k.0;1/mC s.0;2/@y ˝ k.0;2/m

C s.1;2/@
0
x@y ˝ k.1;2/mC s.2;2/@

02
x @y ˝ k.2;2/m;

see De�nition 6.1.8 for the de�nition of sa. One calculates that s.0;1/ D s.2;2/ D 0 and
s.1;2/ D �1; s.0;2/ D 1. Hence, k.0;2/ D k.1;2/ D 0.

Therefore

v D 1˝ k.0;0/mC @y ˝ k.0;1/mC @
02
x @

2
y ˝ k.2;2/m:

Thus, v is of the claimed form. Furthermore, we have that x.2/@y; e2;1; e2;2 do kill this
vector. �

Arguing as in Proposition 6.3.4, we re�ne the previous proposition into:

Proposition 8.1.2. Let M Š L0.a; a/. If v is a maximal vector for Z.M/, then v D
�1 .1˝m/ or v D �2

�
@y ˝m

�
or v D �3

�
@02x @

2
y ˝m

�
, where k hmi D M and �i 2 k

for all i .

As in the case of characteristic p � 5, we will need the following lemma to prove the
main result of this section.

Lemma 8.1.3. The restricted bH -module O.2I .1; 1//=.k � 1/ is simple.

Proof. By Lemma 6.1.4 it su�ces to show that all the maximal vectors generate the whole
module.

The argument determining the maximal vectors in Lemma 6.3.7 still works in this
setting, since we only use the action of x@y and e1;2, both of which are available to us in
characteristic 3.

124



Chapter 8. Characteristic 3

Thus, v D �1x
.p�1/y.p�1/ or v D �2x

.p�1/y.p�2/, that is v D �1x
.2/y.2/ or v D

�2x
.2/y, noting that x.2/@y , e2;1, and e2;2 kill both vectors.

The following identities still hold:

@0x � x
.a/y.b/ D x.a�1/y.b/

@y � x
.a/y.b/ D x.a/y.b�1/;

the �rst equation being valid only for a D 1; 2.
The argument showing that v D �1x.2/y.2/ generates all of O.2I .1; 1//=.k � 1/ still

holds. However, the argument for w D �2x.2/y is no longer valid, since C … bH . To see
thatw still generates all ofO.2I .1; 1//=.k �1/, note that Y �w D 2xy.2/, so y.2/ 2 bH hwi.
We calculate that

@0x � y
.2/
D x.2/y.2/;

and so bH hwi D O.2I .1; 1//=.k � 1/, and we are done. �

Theorem 8.1.4. The induced module Z.1; 1/ is simple. The modules Z.0; 0/ and
Z.2; 2/ D Z.�1;�1/ are not simple and have composition factors of dimension 1 and
p2 � 1 D 8.

Proof. It is easy to see that the argument in Lemma 6.3.5 still holds, so that bH ˝
@y ˝m

˛
D

Z.a; a/ if a ¤ 0, and in Z.0; 0/

bH ˝
@y ˝m

˛
D k

˝
@0ix@

j
y ˝m W .i; j / ¤ .0; 0/

˛
:

Put w D @02x @
2
y ˝m and v D @y ˝m. We shall not deal with the weights of w and

their relation to Frobenius reciprocity in the cases Z.0; 0/ and Z.1; 1/ until §8.3.
We calculate @0x � w D .2 � a/@2y ˝m. Hence, as long as a ¤ 2, @0x � w ¤ 0. We also

have @y � w D 0 (see @y formula). We have Y � w D w.2;2/@y ˝ m D .2a � 1/@y ˝ m,
which is non-zero as long as a ¤ 2.

Therefore, we see that inZ.2; 2/, bH �w � k hwi, since bH �w D 0, so bH hwi D k hwi.
So, in this case we have a simple one-dimensional submodule, the trivial module, noting
that w has a weight of .aC 1; aC 1/ D .0; 0/, so bH hwi Š L.0; 0/.

We have by Frobenius reciprocity that, given a simple bH -module M :

HombH .0/
.L0.2; 2/;M/ Š HombH .Z.2; 2/;M/:

This tells us that there is a simple bH 0-submodule of M isomorphic to L0.2; 2/ if, and
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only if, Z.2; 2/ surjects to M . That is, M has a maximal vector of highest weight .2; 2/
if, and only if, Z.2; 2/ surjects to M .

But O.2I .1; 1//= .k � 1/ is simple by Lemma 8.1.3 and it has a .2; 2/ weight maximal
vector. Hence,Z.2; 2/ surjects to it. Hence,Z.2; 2/ has an 8-dimensional simple quotient.
By dimensions, the quotient Z.2; 2/=bH hvi is this simple quotient, call it L.2; 2/. Thus,
we have composition factors

ŒL.2; 2/; L.0; 0/�

of dimension 8 and 1.
The previous calculations regarding w show that in Z.0; 0/ and Z.1; 1/, bH hwi

contains the maximal vector v, so bH hvi � bH hwi. Since w 2 bH hvi, we concludebH hwi D bH hvi. But we saw bH hvi D Z.1; 1/. Thus, bH hwi D Z.1; 1/, and hence since
all maximal vectors generate the whole module, Z.1; 1/ is simple.

Finally, in Z.0; 0/ we have that both w and v generate the same 8-dimensional
submodule, which is simple as it is generated by each of its maximal vectors. Since v has
weight .a; a � 1/ D .0; 2/, we have bH hvi Š L.0; 2/. The quotient by this submodule is
one-dimensional, and hence simple. Thus, Z.0; 0/ has composition factors

ŒL.0; 2/; L.0; 0/�

of dimension 8 and 1. �

8.2 Modules induced from two-dimensional modules

LetM Š L0.a; a�1/, with a 2 Fp . Pick an eigenbasis fm1; m2g forM withX �m1 D m2
and Y �m2 D m1. We refer the reader to §6.2.2 for more details.

Proposition 8.2.1. LetM Š L0.a; a � 1/, with a 2 Fp , then any maximal vector v for
Z.M/ has the general form

�1 .1˝m2/C�2
�
@0x ˝m2 C @y ˝m1

�
C�3

�
@0x@y ˝m2 C @

2
y ˝m1

�
C�4

�
@2y ˝m2

�
;

where the �i 2 k and at most one of �3; �4 ¤ 0.

Proof. Let v D
P
a2A

�
@0x@y

�a
˝ma be a maximal vector, where ma 2M for all a 2 A.

Since ma can only be in one H -eigenspace (see §6.3.1) one has, for all a 2 A:

ma D �amj ;
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with j D 1 or j D 2.
As with the one-dimensional case, we refer the reader to Section 6.2.1 for the formulae

for the actions we will consider here. We do the �rst one in detail. The others are done
similarly.

From x@y � v D 0, we see

0 D
X
a2A

�
@0x@y

�a
˝X �ma �

X
a2A

a1@
0a1�1
x @a2C1

y ˝ma:

Thus, if ma D �am1 ¤ 0, then either a1 D 0 or a2 D 2. Also, m.0;0/ D �.0;0/m2.
From x.2/@y � v D 0, we see that �.2;0/ D 0, m.2;2/ D �.2;2/m2, and

�.2;1/m2 D X �m.1;2/:

From the last equation we see that if m.1;2/ 2 k hm2i, then �.2;1/ D 0, while if m.1;2/ 2
k hm1i, then �.1;2/ D �.2;1/.

From e1;2 � v D 0, we see that �.2;2/ D 0. Furthermore, if m.0;1/ 2 k hm2i, then
s.0;1/ D 1 and �.0;1/ D �.1;0/ D 0 (see De�nition 6.1.8 for the de�nition of sa); ifm.0;1/ 2
k hm1i, then s.0;1/ D �1 and �.0;1/ D �.1;0/. Thus, without loss of generality, we write
m.0;1/ D �.0;1/m1 and insist that�.0;1/ D �.1;0/. We also see that ifm.0;2/ 2 k hm2i, then
s.0;2/ D 0 and �.1;1/ D 0, while if m.0;2/ 2 k hm1i, then s.0;2/ D �1 and �.1;1/ D �.0;2/.
Finally, we see that Y �m.1;2/ D 0, som.1;2/ 2 k hm1i and that s.2;1/ D �1, so �.2;1/ D 0.

Thus

v D1˝ �.0;0/m2 C �.0;1/
�
@0x ˝m2 C @y ˝m1

�
C �.1;1/

�
@0x@y ˝m2 C @

2
y ˝m1

�
C @0x@

2
y ˝ �.1;2/m1

or

v D1˝ �.0;0/m2 C �.0;1/
�
@0x ˝m2 C @y ˝m1

�
C �.0;2/

�
@2y ˝m2

�
C @0x@

2
y ˝ �.1;2/m1:

From e2;1 �v D 0, we see that �.1;2/ D 0. Hence, v has the claimed form. Furthermore,
we note that e2;2 � v D 0. �

Again, arguing as in Proposition 6.3.4, we re�ne the previous proposition into:

Proposition 8.2.2. Let M Š L0.a; a � 1/, with a 2 Fp . If v is a maximal vec-
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tor for Z.M/, then v D �1 .1˝m/ or v D �2
�
@0x ˝m2 C @y ˝m1

�
or v D

�3
�
@0x@y ˝m2 C @

2
y ˝m1

�
or v D �4

�
@2y ˝m2

�
, where �i 2 k for all i .

As in the case of characteristic p � 5, we will break up the proof of our determination
of the modules induced from two-dimensional modules and their composition factors.

In what follows, we adopt the following shorthand:

v WD @0x ˝m2 C @y ˝m1

w WD @0x@y ˝m2 C @
2
y ˝m1

´ WD @2y ˝m2:

The weights of the maximal vectors are .a � 1; a � 1/; .a � 1; a � 2/, and .a; a � 3/,
respectively.

Proposition 8.2.3. We have bH h´i D bH hwi inZ.1; 0/ andZ.2; 1/. InZ.0; 2/, we havebH h´i D bH hwi ˚ k h´i.
Proof. We have Y � ´ D �2@0x@y ˝ m2 C @2y ˝ m1 D w. Thus w 2 bH h´i, and sobH hwi � bH h´i. From the k-basis for bH hwi (see Lemma 6.3.12), we see that @0px @p�1y ˝

m2 D �@
2
y ˝ am2 2

bH hwi. Therefore we see that in Z.1; 0/ and Z.2; 1/, ´ 2 bH hwi.
Hence, in Z.1; 0/ and Z.2; 1/, bH h´i D bH hwi, as claimed.

In Z.0; 2/, we have k h´i � bH h´i, so we see that bH hwi ˚ k h´i � bH h´i. To show
the reverse inclusion, we show that bH hwi ˚ k h´i is an bH -submodule containing ´.
Since bH hwi is an bH -submodule, it is only necessary to show that bH �´ � bH hwi˚k h´i.
Indeed, one has N � ´ D 0, x@x and y@y give scalar multiples of ´, Y � ´ D w, @y � ´ D 0
and @0x � ´ 2 bH hwi (see Lemma 6.3.12). �

Corollary 8.2.4. In Z.1; 0/ we have

bH h´i D bH hwi � bH hvi
with dimensions 8 and 9.

In Z.2; 1/ we have bH h´i D bH hwi D bH hvi
of dimension 9.

In Z.0; 2/ we have bH hvi D bH hwi � bH h´i
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with dimensions 8 and 9.

Proof. Apply Lemma 6.3.11 and Lemma 6.3.12 to the previous proposition. �

Theorem 8.2.5. The induced module Z.M/ Š Z.a; a� 1/, where a 2 Fp , is not simple.
If .a; a� 1/ D .2; 1/ or .1; 0/, then we get composition factors of dimension 1; p2� 1 D 8
and p2 D 9. If .a; a � 1/ D .0; 2/, we get composition factors of dimension 1; 1; 8; 8.

Proof. We shall not deal with the weights of ´ and their relation to Frobenius reciprocity
until §8.3.

We deal with Z.1; 0/ �rst. We have by Frobenius reciprocity that

HombH .0/
.L0.1; 0/; Z.1; 1// Š HombH .Z.1; 0/;Z.1; 1//:

The left side is non-zero asZ.1; 1/ has a maximal vector of highest weight .1; 1�1/ D
.1; 0/, as we saw previously. Thus there is a non-zero bH -homomorphism

f W Z.1; 0/ �! Z.1; 1/:

Now, by Theorem 8.1.4 we know that Z.1; 1/ is simple, of dimension 9. Thus f must be
surjective.

Hence, Z.1; 0/ has a 9-dimensional simple quotient isomorphic to Z.1; 1/ D L.1; 1/.
Indeed, the quotient Z.1; 0/=bH hvi is 9-dimensional, so it must be this simple quotient;
we denote it by L.1; 0/. Finally, we have

bH h´i D bH hwi � bH hvi ;
of dimensions 8 and 9. The quotient bH hvi =bH hwi is one-dimensional, and hence simple,
and bH h´i D bH hwi is simple as it is generated by its maximal vectors w and ´. We havebH hwi Š L.0; 2/, by Frobenius reciprocity. Thus, we have found all the compositions
factors:

ŒL.0; 0/; L.0; 2/; L.1; 0/�;

of dimensions 1, 8, 9.
Now we study Z.0; 2/. Here we have bH hvi D bH hwi � bH h´i of dimensions 8 and

9. The module bH hvi D bH hwi is simple as it generated by its maximal vectors, and by
Frobenius reciprocity we have bH hvi Š L.2; 2/ Š L.2; 1/. The quotient bH h´i =bH hvi
is one-dimensional and simple.
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Note: The previous isomorphisms are not a problem, as L.2; 2/ is the 8-dimensional
simple quotient of Z.2; 2/ and we will see that L.2; 1/ is the 8-dimensional simple
quotient of Z.2; 1/.

We turn our attention to the quotient Z.0; 2/=bH h´i. There is a vector not in bH h´i,
' WD @0p�1x ˝m1 D @

02
x ˝m1

with the following property: bH � ' � bH h´i (so in particular, x@x and y@y have
weight .0; 0/ on ' in the quotient). Thus there is a one-dimensional submodule k h'i �
Z.0; 2/=bH h´i. The quotient here is 8-dimensional. By Frobenius reciprocity, we have that
Z.0; 2/must have an 8-dimensional simple quotient isomorphic to bH ˝

@y ˝m
˛
� Z.0; 0/.

By dimensions, the above quotient has to be this one, which we call L.0; 2/. Thus the
compositions factors are:

ŒL.2; 2/; L.0; 2/; L.0; 0/; L.0; 0/�;

of dimensions 8; 8; 1; 1.
Finally, we have Z.2; 1/. Here, we have bH hwi D bH hvi D bH h´i � Z.a; a � 1/ of

dimension 9, and simple, as the submodule is generated by its maximal vectors v, w and
´. Here we have bH hvi Š L.1; 1/ Š L.1; 0/.

Note: Again, the above isomorphism is not a problem, as L.1; 1/ D Z.1; 1/ is a
9-dimensional simple bH -module and L.1; 0/ is the 9-dimensional simple quotient of
Z.1; 0/.

By Frobenius reciprocity,

HombH .0/
.L0.2; 1/;M/ Š HombH .Z.2; 1/;M/:

If we take M to be the 8-dimensional simple submodule bH hwi D bH hvi � Z.0; 2/, we
see that the left side is non-zero because M has a maximal vector w of weight .2; 1/.
Thus the right hand is non-zero, and so Z.2; 1/ surjects onto M , as M Š L.2; 2/ is
simple. We have shown hence that Z.2; 1/ has an 8-dimensional simple quotient. Indeed,
we can argue that Z.2; 1/=bH hvi has a one-dimensional submodule. Indeed, the vector

 WD @0p�1x @p�2y ˝m2 D @
02
x @y ˝m2 …

bH hvi
is such that bH �  � bH hvi. The quotient of Z.2; 1/=bH hvi by this one-dimensional
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submodule k hi must then be the 8-dimensional simple quotient above, which we call
L.2; 1/. Thus, we have the composition factors:

ŒL.1; 1/; L.0; 0/; L.2; 1/�;

of dimensions, 9; 1; 8. �

Remark. All the composition factors of modules induced from two-dimensional mod-
ules are isomorphic to simple quotients of modules induced from one-dimensional
induced modules except for L.0; 2/. More precisely, we have L.1; 0/ Š L.1; 1/ and
L.2; 1/ Š L.2; 2/. The module L.0; 2/ is still isomorphic to a composition factor of
a module induced from a one-dimensional induced module, more precisely L.0; 2/ ŠbH ˝

@y ˝m
˛
� Z.0; 0/.

We will later see that L.0; 2/ is not isomorphic to L.2; 2/.

8.3 Frobenius reciprocity and maximal vectors

Before �nishing the classi�cation, we will address a technicality that arises in characteris-
tic 3with the maximal vectorsw D @02x @2y˝m 2 Z.a; a/ and ´ D @2y˝m2 2 Z.a; a�1/.

Throughout this thesis, both in the general case and in this chapter, we have been
assuming in order to apply Frobenius reciprocity that if M was a restricted bH -module
with maximal vector v of weight � D .�1; �2/, then

HombH .0/
.L0.�1; �2/;M/ ¤ 0:

Note that if this is true, it means that M has a simple bH .0/-submodule isomorphic to
L0.�1; �2/. If M D bH hvi, then this simple bH .0/-submodule has to be bH .0/ hvi.

In characteristic 3, it turns out, however, that bH .0/ hvi is not necessarily
simple for v a maximal vector. Indeed, in Z.0; 0/ and Z.1; 1/, we have thatbH .0/ hwi D k

˝
w; @y ˝m; @

0
x ˝m

˛
(this can be veri�ed using the known formulae)

with k
˝
@y ˝m; @

0
x ˝m

˛
Š L0.1/ a two-dimensional bH .0/-submodule. Likewise, in

Z.a; a � 1/,

bH .0/ h´i D k
˝
´; @0x@y ˝m2 C @

2
y ˝m1; @

02
x ˝m2 C @

0
x@y ˝m1

˛
;

with k
˝
@0x@y ˝m2 C @

2
y ˝m1; @

02
x ˝m2 C @

0
x@y ˝m1

˛
Š L0.1/ a two-dimensional
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bH .0/-submodule (again this can be veri�ed with the known formulae).
To see that this issue does not arise elsewhere, we cite Corollary 8.12 of Herpel and

Stewart (2016b):

Corollary 8.3.1. Let G be a semisimple algebraic group and let V be a g-module with
p > dimk V . Assume that g D Œg; g�. Then V is semisimple.

Thus, if we consider V D bH .0/ hvi for v a maximal vector, we see that V is anbH 0-module, and so an sl2-module. Thus, by the corollary above, if dimk V < p, V is
semisimple, which forces V to be a simple bH 0 Š gl2-module, and so since bH .1/ � V D 0

a simple bH .0/-module. Now, with the exception of the modules described above, all the
modules Vi WD bH .0/ hvii for vi ¤ 1˝m a maximal vector are at most two-dimensional.
Thus, the condition dimk Vi < p is met, and we have

HombH .0/
.L0.�1; �2/; Vi/ ¤ 0;

so we are justi�ed in applying Frobenius reciprocity in all other cases.

8.4 Modules induced from three-dimensional mod-

ules

Proposition 8.4.1. LetM Š L0.a; b/, with a � b D 2, then any maximal vector v for
Z.M/ is contained in the subspace

k h1˝m3i ;

where k hm1; m2; m3i DM and X �m3 D 0.

Proof. We recall here our general setup for our restricted bH 0-modules M :
We pick an eigenbasis fm1; m2; m3g. With this eigenbasis we have

X �mi D miC1;

where X �m3 D 0, and
Y �mi D .i � 1/ .4 � i/mi�1;

noting again that Y �m1 D 0.

132



Chapter 8. Characteristic 3

Let v D
P
a2A

�
@0x@y

�a
˝ma be a maximal vector, where ma 2M for all a 2 A. As

with the lower-dimensional cases, each ma can only be in one H -eigenspace (see §6.3.1),
so one has, for all a 2 A:

ma D �amj ;

with j 2 f1; 2; 3g.
Arguing as before, from x@y � v D 0, we see that m.a1;0/; m.2;a2/ 2 k hm3i. We also

see that

X �m.0;1/ D �.1;0/m3 (8.1)

X �m.0;2/ D m.1;1/ (8.2)

X �m.1;1/ D 2�.2;0/m3 (8.3)

X �m.1;2/ D 2�.2;1/m3: (8.4)

From x.2/@y � v D 0, we have that

X �m.1;1/ D �.2;0/m3 (8.5)

X �m.1;2/ D �.2;1/m3: (8.6)

We conclude from Equation (8.3) and Equation (8.5) that if�.2;0/ ¤ 0, then�.2;0/m3 D
2�.2;0/m3 implies 1 D 2, a contradiction. Therefore, �.2;0/ D 0, and m.1;1/ 2 k hm3i.
Similarly, from Equation (8.4) and Equation (8.6) we conclude that�.2;1/ D 0 andm.1;2/ 2
k hm3i.

Thus, we have

v D1˝ �.0;0/m3 C @y ˝m.0;1/ C @
2
y ˝m.0;2/

C @0x ˝ �.1;0/m3 C @
0
x@y ˝ �.1;1/m3 C @

0
x@
2
y ˝ �.1;2/m3 C @

02
x @

2
y ˝ �.2;2/m3:

From e2;1 � v D 0 one gets that �.2;2/ D 0 D �.1;2/, since r.1;2/ and r.2;2/ are both
non-zero, see De�nition 6.1.8 for the de�nition of ra. Thus, we have, since r.1;0/ D 2

and r.1;1/ D 0, that X �m.0;2/ D 0. Therefore, we have m.0;2/ 2 k hm3i. Finally, we see
that X � m.0;1/ D 2�.1;0/m3. This, together with Equation (8.1), yields �.1;0/ D 0 and
m.0;1/ 2 k hm3i.

Using Equation (8.2), we see that m.1;1/ D 0. Hence, we have

v D 1˝ �.0;0/m3 C @y ˝ �.0;1/m3 C @
2
y ˝ �.0;2/m3:
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We calculate that (see De�nition 6.1.8 for the de�nition of sa)

0 D e1;2 � v D s.0;1/1˝ �.0;1/m3 C s.0;2/@y ˝ �.0;2/m3:

Now, s.0;1/ D 2 D s.0;2/, so �.0;1/ D 0 D �.0;2/. Thus, v D 1 ˝ �.0;0/m3, as
required. �

From this it follows that

Theorem 8.4.2. The induced module Z.M/ Š Z.a; b/, where a � b D 2, is simple.

Proposition 8.4.3. There are two isomorphism classes of 8-dimensional restricted simplebH -modules, one represented by L.2; 2/, the other by L.0; 2/.

Proof. Arguing as in the proof of Proposition 6.3.16, if L.2; 2/ Š L.0; 2/, then L.2; 2/
would need to have a maximal vector of weight .0; 2/. If 0 ¤ ı 2 L.2; 2/ is a vector
of weight .0; 2/, then working in the quotient we deduce that ı D @02x ˝ m. This is a
problem, as X � ı D @0x@y ˝m ¤ 0, so that ı is not maximal. Thus no maximal vector of
such a weight exists, and we are done. �

By arguing in a manner completely analogous to the proof of the main result in
characteristic p � 5, we complete the proof of our main result. To state which, recall
that the exceptional weights for us are the following: !0 D .�1;�1/ D .2; 2/; !1 D

.0;�1/ D .0; 2/; !2 D .0; 0/, and all � 2 F23 with �1 � �2 D 1.

Theorem 8.4.4. Let p D 3, k be an algebraically closed �eld of characteristic p, � 2
F23 a weight, L0.�/ be the simple restricted gl2.k/-module of highest weight �, Z.�/ D
Z.L0.�// the corresponding induced bH -module, and L.�/ its simple head.

1. The full list of simple pairwise nonisomorphic restricted bH -modules is given by˚
L.�/ W � 2 F23; �1 � �2 ¤ 1or � D !1

	
. There are p2 � p C 1 D 7 of them.

2. If � is not exceptional, then L.�/ D Z.�/, and its dimension is 9 dimk L0.�/ D

9 .�1 � �2 C 1/.

3. For exceptional �, the modules L.�/ in the list are as follows:

(a) if � D !0 D .�1;�1/,L.�/ Š O.2I .1; 1//= .k � 1/, with dimension p2�1 D
8;

(b) if � D !1 D .0;�1/, L.�/ Š bH ˝
@y ˝m

˛
� Z.0; 0/, with dimension 8;

(c) if � D !2 D .0; 0/, L.�/ Š k, with dimension 1 (this is the trivial module).
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Appendix A

Extra formulae

We include the formula for the action of an element we calculated in the course of proving
our results, that ended not being needed, in case it might be of use to anyone studying
such things. We have the following general formula:

0 D x.n/@y � v D
X
a2A

 
a1

n

!
.�1/n @0a1�n

x @a2C1
y ˝ma

C

X
a2A

 
a1

n � 1

!
.�1/n�1@0a1�nC1

x @a2

y ˝X �ma:
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