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Abstract 

 

Process models are critical for process monitoring, control, and optimisation. With the 

increasing amount of process data and advancements in computational hardware, data-driven 

models are a good alternative to mechanistic models, which often have inaccuracies or are too 

costly to develop. One problem with data-driven models is the difficulty in ensuring that the 

models perform well on new data and produce accurate predictions in complex situations, which 

are frequently encountered in the process industry.  

Within this context, part of this thesis explores developing better data-driven models through 

using a latent variable technique, known as slow feature analysis, as a pre-processing step to 

regression. Slow feature analysis extracts slow varying features that contain underlying trends 

in the data, which can improve model performance through providing more meaningful 

information to regression, reducing noise, and reducing dimensionality. Firstly, the 

effectiveness of combining linear slow feature analysis with a neural network is demonstrated 

on two industrial case studies of soft sensor development and is compared with conventional 

techniques, such as neural networks and integration of principal component analysis with a 

neural network. It is shown that integration of slow feature analysis with neural networks can 

significantly improve model performance. However, linear slow feature analysis can fail to 

extract the driving forces behind data in nonlinear situations such as batch processes. Therefore, 

using kernel slow feature analysis with a neural network is proposed to further enhance process 

model performance. A numerical example was used to demonstrate the effective extraction of 

driving forces in a nonlinear case where linear slow feature analysis cannot. Model 

generalisation performance was improved using the proposed method on both this numerical 

example, and an industrial penicillin process case study.  

Dealing with radioactive nuclear waste is an important obstacle in nuclear energy. Sellafield 

Ltd have a nuclear waste vitrification plant which converts high-level nuclear waste into a more 

stable, lower volume glass form, which is more appropriate for long term storage in sealed 

containers. This thesis presents three applications of data-driven modelling to this nuclear waste 

vitrification process. A predictive model of the pour rate of processed nuclear waste into 

containers, an early detection system for blockages in the dust scrubber, and a model of the 

long-term chemical durability of the stored glass waste. These applications use the previously 

developed slow feature analysis methods, as well as other data-driven techniques such as 

extreme learning machine and bootstrap aggregation, for enhancing the model performance.  
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Chapter 1. Introduction 

1.1 Background 

In industrial process plants, sensors provide measurements of key process variables that are 

used for process control and monitoring, and the ability to enhance these aspects can lead to 

improved product quality, reduced costs, and safer processes. For many companies, falling 

outside of certain process limits can not only lead to financial losses, but also breaching rules 

and regulations. In particular, the emphasis on the reduction of environmental pollution in more 

recent years has led to stricter laws that companies must adhere to. These goals highlight the 

need for frequent and reliable measurements of certain process variables, and optimised process 

monitoring and control. 

In many processes, monitoring a wide range of process variables using hardware sensors can 

be of great expense and in some cases, on-line measurements may not be feasible. Furthermore, 

some hardware may not provide measurements at a high enough frequency or sufficient 

reliability, leading to sub-optimal control and monitoring. Off-line sampling is an alternative; 

however, this typically produces a lower rate of samples and significant delays. In addition, 

faults can arise in hardware sensors and planned maintenance leaves sensors out of order for a 

time. 

The alternative arises in using a model in the form of a “soft sensor” (software-based sensor). 

A soft sensor (software based sensor) is a form of process modelling where a model is used to 

predict measurements of difficult to measure key product quality variables from other easily 

measured process variables (Tham et al., 1991). A process model forms the basis of a soft 

sensor. Often measurements of certain product quality variables are infrequent or have long 

time delay, typically due to offline laboratory analysis. These infrequent and delayed 

measurements can affect process control performance, even with advanced control algorithms, 

because they lead to delayed disturbance detection which can result in large drifts from 

setpoints. One solution is to create soft sensors for these product quality variables so that 

predictions can be made with a more frequent sampling rate and minimal or no time delay. This 

will lead to improved process control and monitoring performance.  

Generally speaking, process models are created through two primary methods, mechanistic 

and data-driven modelling. Mechanistic models are commonly based on first principle models, 

which mathematically describe the physical and chemical nature of the process using 

fundamental knowledge, but other techniques such as Kalman Filtering (Kalman, 1960) have 
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been used (de Assis and Maciel, 2000; Guo et al., 2014). However, these models commonly 

focus on ideal steady states and so can make a poor soft sensor in real process conditions, which 

can be different from the ideal conditions due to process disturbances and degradation of 

process equipment, such as fouling in heat exchangers and reactors (Kadlec et al., 2009). 

Mechanistic models do have the advantage of being able to exactly describe the process over a 

full range, however, many modern industrial processes are highly complex, and the production 

of a mechanistic model can be very time consuming and expensive, and any inaccuracies or 

assumptions of first principle knowledge can lead to a reduction in model accuracy. 

The other type of modelling is data-driven, which, as the name suggests, use the process data 

to produce a model through an assortment of potential techniques. If sufficient process data is 

available, then data-driven modelling can overcome some, if not all, of these issues associated 

with some mechanistic models. Since data-driven models are based on the on-line 

measurements of the process, they can better describe the real conditions of the process, 

compared with some mechanistic models that have inaccuracies. Data-driven models do not 

require extensive process knowledge in their production and can create more accurate models 

where mechanistic models fail to adequately describe the process because the data can capture 

the real relationships between variables. These main advantages of data-driven over 

mechanistic modelling are summarised in Figure 1.1. 

The main issue with data-driven models is in the quality and quantity of the data used for 

building the model. Data needs to cover the full range of operating conditions that the soft 

sensor is intended to be applied to because these models should only be able to interpolate and 

not extrapolate. Additionally, data quality issues, such as missing data and noise, are very 

common. Therefore, the correct selection and pre-processing of process data is critical to the 

success of a soft sensor.  

Another key issue of data-driven models is in the deterioration of their performance due to 

process changes, often known as drifting data. If process conditions change, whether it be 

suddenly or gradually over time, then the model may not be within the conditions in was 

initially built upon. Gonzalez (1999) calls this the region of validity of the model and also 

discusses this issue of drifting process data in detail. In cases of process drift, the model will 

often need to be retrained so it is valid within the limits of the new process conditions. However, 

updating the data-driven model is not necessarily an easy task because the generation of new 

process data that covers an acceptable range (to give the sensor an acceptable region of validity) 

would require variation of process conditions. Having the inputs of the process varying in such 

a manner will disturb normal process operations, therefore being a costly procedure that should 
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not be done very often. Adaptive models are one method of dealing with this, as discussed in 

Kadlec et al. (2011), where the authors review the types of adaptive soft sensors. Another way 

to overcome the costly manner of process data generation is what is known as smart data 

generation, which is to optimise the process changes necessary to generate sufficient and rich 

enough data for model training.  

 

 

 

Figure 1.1 – Key advantages of data-driven models over mechanistic models 

Aside from data selection and pre-processing, the next crucial stage in ensuring good data-

driven model performance is through the techniques used.  

1.2 Aims and Objectives 

The first main aim, described in the first half of this work, focuses on enhancing the 

performance of nonlinear, data-driven modelling techniques. This is done by developing novel, 

nonlinear techniques and then demonstrating their improved performance over other similar 

techniques on some benchmark process case studies. Ensuring that data-driven models have 

strong generalisation performance (perform well on new data) is critical if they are to be 

successfully implemented on real processes. 

The second main aim is concerned with using these developed techniques for modelling and 

monitoring applications for multiple problems that have arisen from the nuclear waste 
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vitrification process at Sellafield Ltd. Dealing with nuclear waste is critical to ensuring that 

radioactive elements do not leach into the environment. Therefore, optimising this process is 

critical for public safety, as well as improving efficiency and reducing costs. 

1.3 Scope of the Research 

The scope of this research is to overcome disadvantages associated with hardware sensors 

through utilising soft sensors. The disadvantages of mechanistic soft sensors are overcome 

through data-driven models. Additionally, data-driven modelling is used to tackle issues 

associated with Sellafield Ltd’s nuclear waste vitrification process.  

This work was done by utilising latent variable techniques, in combination with neural 

networks, to optimise data-driven modelling performance. The primary focus of the latent 

variable techniques is slow feature analysis, but other similar techniques (principal component 

analysis) were used for comparison. Furthermore, only neural networks were used as a machine 

learning technique. This was to highlight the effectiveness of incorporating a nonlinear 

technique over a linear technique, as well as having a constant nonlinear technique to properly 

highlight the differences in incorporating slow feature analysis (and other latent variable 

techniques) into the method. There are many other data-driven modelling techniques that could 

be used for comparison; however, this is beyond the scope of this work, which was to highlight 

the effectiveness of slow feature analysis over principal component analysis, and neural 

networks over linear regression.  

Furthermore, the focus of comparison between techniques was the goodness of fit, using 

metrics (R2/root mean squared error) and visual inspection. Computational time was not 

considered for comparison in the scope of this work. However, for no techniques were the 

differences in computational times detrimental to soft sensor application. This is because 

training is performed offline, where slightly longer computational times are not very important. 

When processing new samples online, all techniques have fast computational times, and any 

differences are insignificant. 

1.4 Thesis Layout 

The following summarises the main content and contributions of each chapter in this thesis. 

Chapter 2 provides background to process modelling and monitoring, including literature 

review of data pre-processing, data-driven modelling applications and data-driven modelling 

techniques. 
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Chapter 3 presents the development of a novel, data-driven process modelling technique 

using slow feature analysis (SFA) and neural networks. This work proposes integrating SFA 

with neural networks (SFA-NN) for soft sensor development. Dynamic linear SFA is applied 

to the easy-to-measure process variable data. Then the dominant slow features are selected as 

the inputs of a neural network to predict the difficult-to-measure product quality variables. SFA 

can capture the underlying dynamics of industrial processes through the extraction of slowly 

varying latent variables, known as slow features. The extracted underlying trends provide more 

meaningful information to the neural network and reduce noise in the data through retaining 

only the slower features, which also reduces model complexity through dimensionality 

reduction. These aspects all lead to improved model generalisation performance. Selection of 

dominant slow features using a scree plot is proposed. Neural networks are utilised to cope with 

nonlinearities present in many real industrial processes. The effectiveness of the proposed 

method is evaluated on two real industrial processes and is compared with slow feature 

regression, partial least square regression, traditional feedforward neural networks, and using 

principal component analysis (PCA) prior to a neural network (NN), PCA-NN. The proposed 

SFA-NN method gives the best generalisation performance among these techniques in both 

case studies. 

Chapter 4 further develops the work in Chapter 3 by creating a nonlinear version of slow 

feature analysis using kernels. The work proposes another novel technique and application, 

developing a data-driven soft sensor modelling approach based on dynamic kernel slow feature 

analysis (KSFA) and a neural network. Slow feature analysis is a feature extraction method that 

aims to extract slowly varying features that can capture the driving forces behind data. 

However, there are situations where linear SFA (LSFA) cannot capture the driving forces due 

to nonlinear relationships between the driving forces and input signals. KSFA is a nonlinear 

extension of LSFA that utilises the kernel trick to map the inputs into a higher-dimensional 

feature space. Extracting the nonlinear driving forces can improve soft sensor performance by 

utilising the nonlinear slow features as inputs to a neural network, which provides information 

on the key underlying trends, with the added benefit of noise reduction. Combining KSFA with 

a neural network further improves soft sensor performance for cases where nonlinear 

relationships between the driving forces and soft sensor outputs are present. The effectiveness 

of the proposed method is first demonstrated on a numerical example, where the theoretical 

advantages of KSFA can be easily observed. It is then applied to a benchmark simulated 

industrial fed-batch penicillin process, where the improvement over other similar techniques is 

demonstrated further. 
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Chapter 5 presents a data-driven predictive model for the pour rate of high-level waste from 

the melter to container in the nuclear waste vitrification process at Sellafield Ltd. While the 

previous two chapters focused on optimising data-driven modelling techniques to improve 

model performance, this chapter focuses on producing the best model for a real industrial 

problem. Predicting the pour rate prior to a pour has not been done previously. The main 

challenges presented in this chapter involve concept development, data selection and pre-

processing, and selecting the right technique to optimise model generalisation performance. 

Bootstrap aggregation (bagging) was used to create more reliable and robust models. 

Additionally, slow feature analysis was integrated into some of the tested models, and it further 

demonstrated its strength over similar techniques such as principal component analysis (PCA). 

Chapter 6 deals with another process challenge for Sellafield Ltd’s nuclear waste 

vitrification process. The dust scrubber is a key part of the process because it helps recycle 

particles in off-gas back to the calciner to improve efficiency and prevent radioactive particles 

going into the environment. Narrow pipe work means that particles can accumulate and form a 

blockage. When the pipework becomes fully blocked, it requires down time and maintenance 

that is very costly. The work in this chapter looks at using a multivariate statistical process 

control approach to aid in early blockage detection to save on these costs. Several techniques 

are used to optimise the early blockage detection, including PCA and SFA. Additionally, 

residual contribution plots were utilised to assess the impact of each process variable on the 

blockage. As with Chapter 6, data pre-processing and selection present the main challenges 

when dealing with real process data such as this. 

The final application of data-driven modelling for the nuclear waste vitrification process is 

presented in Chapter 7. The vitrified nuclear waste stored in stainless steel containers is likely 

to remain radioactive for a very long time and when stored in deep geological repositories, 

they may encounter groundwater when the containers eventually erode. Understanding the 

leach rate of radioactive elements into the groundwater for different types of glass could lead 

to optimising the glass compositions to minimise leaching into the environment. Data-driven 

models of the leach rate of 8 elements were developed based on accelerated static leach rate 

experimental data. Bootstrap aggregated extreme learning machine with principal component 

analysis as a pre-processing step was used to improve model generalisation performance over 

single extreme learning machines models and neural network-based models. A sensitivity 

analysis was carried out to optimise the composition of main glass forming additives to 

minimise the total leach rate. 
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Chapter 2. Data-Driven Modelling and Monitoring of Industrial 

Processes 

2.1 Process Data 

In its most basic form, an industrial process creates a desired product from raw materials, 

typically on a large scale. These industries cover a wide range of sectors, not limited to but 

including chemical, oil and gas, pharmaceutical, consumer goods and food production. These 

processes typically fall into two main categories: continuous processes and batch processes. 

Continuous processes, as the name suggests, run in a constant way so that product is always 

produced between plant start up and shut down.  

Batch, or semi-batch, processes produce product in a distinct time period. Batch processes 

are commonly used in food, biochemical and speciality chemicals industries. For example, a 

fermentation process operates at non steady state until the desired product quality is attained.   

From temperatures in reactors, to stirring speed of an impeller, process data has been 

collected more frequently in the last few decades as both hardware and software technology 

rapidly develops.  

As the quality and quantity of this process data increases, ways to utilise this data to optimise 

processes is of great value from many aspects. Garcia-Munoz and Macgregor (2016) 

commented:  

“Not only do we want to find and interpret patterns in the data and use 

them for predictive purposes, but we also want to extract meaningful 

relationships that can be used to improve and optimize a process”.  

 

This statement highlights the true potential of utilising process data for not just process 

optimisation but also for understanding processes on a deeper, fundamental level. 

Although one of the advantages of data-driven modelling seems to be that process 

knowledge is not required for model development, the reality is slightly different, with process 

knowledge often needed throughout the different stages of model development. It is often said 

that an empirical model is only as effective as the data it is built on. The importance of correctly 

selecting model training data and the necessary pre-processing steps is typically a largely 

manual task, often requiring expert process knowledge. Data pre-processing involves dealing 

with missing data, outlier detection and replacement, feature selection, data scaling and noise 

reduction; all with the aim of improving data quality to improve model performance. 
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2.1.1 Outliers 

A data outlier is typically a measurement from a sensor that deviates from an expected or 

meaningful range. Pearson (2002) informally defined outliers as data points within a dataset 

that are inconsistent with expectations, based on the majority of available data. There is a 

classification of outliers that can split them into two categories: obvious and non-obvious 

outliers (Kadlec et al., 2009). Obvious outliers violate some clear bounds, often fundamental 

or technical, such as negative concentrations. Non-obvious outliers are within these 

fundamental limits but are still outside of meaningful or expected ranges. These non-obvious 

outliers are the most difficult to detect and deal with. Figure 2.1 shows a non-obvious outlier in 

a process variable that is easily detected by visual inspection. This variable operates within a 

defined pattern and so this single point so far from the trend must be an error.

 

Figure 2.1 – Example of a non-obvious outlier in process data 

Outliers can have serious consequences, especially when the data has an important role on 

the plant, such as for modelling and monitoring. Therefore, it is critical to pre-process data to 

detect these outliers. Often visual inspection with some process knowledge is sufficient to detect 

outliers, however, when the required level of process knowledge is not available, automatic 

methods of outlier detection can be employed. However, the results of automatic outlier 

detection can typically require manual validation to prevent any false positive and false negative 

detections (Kadlec et al., 2009). One of the most commonly used outlier detection methods is 

the “3σ edit rule”, which detects an outlier as a sample that is three or more standard deviations 
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from the mean (Barnett, 1994). This rule fails in many circumstances because it detects too few 

outliers, since outliers typically increase the estimated variance, as discussed in detail by 

Pearson (2002). Pearson (2002) also discussed many other issues in dealing with outliers in 

process data, especially when considering process modelling applications. Primarily, that 

outliers cannot simply be ignored, and must either be detected and replaced, or alternative 

methods be used that are less sensitive to outliers.  

In the study by Wang et al. (2019), the authors presented a more up to date review of current 

outlier detection techniques, including, but not limited to, statistical-based methods (such as 

principal component analysis), ensemble-based methods, and learning-based methods.  

When an outlier is detected, what to do with that sample is another issue. Outliers can have 

negative effects on data-driven model performance, however, removing too much information 

can also have a detrimental impact on generalisation performance, that is, the performance on 

the model on new, unseen data. An important variation in the data that needs to be included in 

the model training could be mistaken for an outlier, especially if manual validation with process 

knowledge is not performed. One method for dealing with an outlier is removing the sample or 

the variable entirely. If there is no clear and sensible way to replace the sample, then it can be 

removed if it does not remove too much important information for the model creation. If a large 

amount of outliers is present in a single variable, then removing the variable may be the best 

option. Replacing an outlier can be done using the mean, however, process data often comes in 

a range of conditions and so using the total mean of all process conditions may be a poor choice. 

More often than not, using a local mean/median (from a window of data of similar operating 

conditions) or interpolation is more appropriate. 

Without some level of process knowledge, deciding on what method to use, for both outlier 

detection and replacement/removal, can be difficult. 

2.1.2 Missing data 

Missing data can be defined as measurement samples which have values that do “not reflect 

the real state of the physical measured quantity” (as quoted by Kadlec et al. (2009)). Typically, 

these samples come in the form of a 0 value, NaN (not a number), or another constant value 

that does not make sense from a operational standpoint. Missing process data can be caused by 

hardware (sensor) malfunctions or technical issues, such as the measurement not being recorded 

on the database (Kadlec et al., 2009). Figure 2.2 provides an example of missing process data, 

illustrating both NaN values and 0 values to indicate two periods missing data. 



11 

 

 

Figure 2.2 – Example of missing data in a process variable 

Most data-driven techniques cannot deal with missing data and so proper handling of missing 

data is important. Replacement methods are usually similar to the outlier replacement methods 

discussed in Section 2.1.1. Baraldi and Enders (2010) discussed both traditional and modern 

missing data techniques, particularly focusing on maximum likelihood and multiple imputation. 

Multiple imputation is a relatively new method and involves replacing the missing data multiple 

times to create several different data sets and then using statistical analysis. Although multiple 

imputation often achieves better results than single imputation, it requires creating multiple data 

sets and so requires more computational effort (Zhu et al., 2018). 

A review of missing data strategies, as a part of a review of data pre-processing methods for 

process modelling, is discussed by Zhu et al. (2018). The authors considered three main issues 

of missing data (proportion, patterns and mechanisms), as well as some replacement methods 

such as hot-deck substitution, conditional distribution-based substitution, and multiple 

imputation. 

Walczak and Massart (2001a; 2001b) produced a two-part publication of methods to deal 

with missing data. The first part focuses on an iterative algorithm applied to classic 

chemometrical methods such as PCA and partial least squares (PLS). The second part presents 

an expectation-maximisation algorithm based on a maximum likelihood approach. 
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2.1.3 Noise 

Sensor and measurement noise is common in process data and can lead to model 

performance issues if not properly dealt with. As demonstrated by the example in Figure 2.3, 

high levels of noise are often found in process measurements, and it can make extracting 

meaningful information from the raw data very difficult.  

 

 

Figure 2.3 – Real example of noise in process data 

Pre-processing noisy data can be done using statistical latent variable methods such as 

principal component analysis (Jolliffe, 2002), partial least squares (Wold et al., 1984) and slow 

feature analysis (Wiskott and Sejnowski, 2002). These methods map the original data into a 

new feature space in the form of latent variables, which are ordered in terms of variation (PCA, 

PLS) or slowness (SFA). By only retaining a certain amount of these latent variables, that is 

fewer than the total number of variables, the effect of noise can be reduced as the noise is 

typically represented in the latter, higher-order latent variables because they contain the least 

variance or slowness, which is typical of noise (Zamprogna et al., 2004). 

Kaneko and Funatsu (2015) proposed different smoothing methods, such as moving average-

based methods and Savitzky-Golay filtering, that could be superior to the statistical projection 

methods (PCA, PLS) for dealing with noise for process modelling. This is due to applying the 

smoothing methods of each process variable, not each sample, such that the temporal variations 
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in time series data are better captured. Methods such as Savitzky-Golay filtering can reduce the 

effect of noise while also retaining the time-varying nature of time series data.  

Slow feature analysis (SFA) can capture underlying time-varying trends in time series data, 

whilst also reducing the effect of noise. SFA reduces the effect of noise by retaining only the 

slowest features as the fastest features typically only represent noise. The ability of SFA to 

extract underlying trends provides a significant advantage to process modelling over the 

smoothing methods. These properties of SFA have been shown to improve process modelling 

generalisation performance when compared with the statistical projection methods, PCA/PLS 

(Shang et al., 2015a; Fan et al., 2018; Qin et al., 2019; Corrigan and Zhang, 2020; Jia et al., 

2020; Yuan et al., 2020b). 

2.1.4 Data co-linearity 

Data co-linearity presents another issue for process modelling because often process data 

can be very co-linear, that is, different process variables can be highly correlated with each 

other. For example, two pressure sensors on an industrial plant may be in similar locations and 

therefore may provide very similar present measurements. This is very typical on plants where 

detailed information is required for process control and in case of sensor malfunction, backups 

sensors are in place. However, this excess of similar information can be detrimental to process 

modelling as it increases the complexity without additional meaningful information. Therefore, 

dealing with co-linearity in the data leads to improvements in model performance. An example 

of real co-linear process data is shown in Figure 2.4, which demonstrates 3 process variables 

providing very similar information (data rich but information poor).  
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Figure 2.4 – Example of co-linear process data 

One of the most common ways to reduce co-linearity is to select a reduced set of input 

variables that is less co-linear. This can be simply done by removing the variables that provide 

similar measurements, which often requires process knowledge. Without the process 

knowledge, this can be done by cross-correlation methods to spot the co-linearity amongst input 

variables. However, removing variables is prone to sensor faults and noise. The other common 

methods are to use statistical projection methods, such as PCA and PLS. This works by 

converting the inputs to a reduced feature space that is less co-linear (Kadlec et al., 2009). PCA 

has been widely used in soft-sensing applications to deal with data co-linearity (Ge et al., 2011; 

Xibilia et al., 2020; Zhang et al., 2020b; Li et al., 2021a). 

2.2 Introduction to Data-Driven Modelling in the Process Industry 

With an abundance of process data available, which is pre-processed to tackle the issues 

mentioned in Section 2.1, the question becomes: how can we use this data to optimise a process? 

The answer comes in the form of a predictive model, which estimates a measurement (output) 

from other correlated measurements (input). As stated by Hangos (2001):  

 

“A model is an imitation of reality and a mathematical model is a 

particular form of representation. We should never forget this and get 

so distracted by the model that we forget the real application which is 

driving the modelling. In the process of model building we are 

translating our real world problem into an equivalent mathematical 



15 

 

problem which we solve and then attempt to interpret. We do this to 

gain insight into the original real world situation or to use the model 

for control, optimization or possibly safety studies.”  

 

2.3 Data-driven Modelling Applications 

2.3.1 On-line prediction – soft sensors 

One main use of data-driven models if for soft sensors used for on-line prediction, often as 

a backup for hardware sensors or where no sensor is available – either because the technology 

is not available, or it is too expensive to do so. Typically, these predictions are required for 

product quality measurements.  

One of the first published uses of the term “soft sensor” dates back to 1991 where Tham et 

al. (1991) used state-space estimation and applied it to an adaptive inferential control scheme 

for several industrial case studies. It was found that earlier detection of the effects of load 

disturbances, due to increase output measurements from the soft sensor, can lead to faster 

disturbance rejection in the closed loop control scheme. Since that time, the research into soft 

sensors has grown and more industries, particularly the chemical, oil and gas industries, have 

made use of soft sensors on plant. Kadlec et al. (2009) provided a significant list of research 

applications for soft sensing in the process industry, particular for data-driven soft sensors.  

The application of soft sensors has been vast, ranging from wastewater treatment (Chang 

and Li, 2021; Fernandez de Canete et al., 2021; Foschi et al., 2021; Wang et al., 2021a) to 

bioprocesses (de Assis and Maciel, 2000; Gopakumar et al., 2018; Wang et al., 2020a; Zhang 

et al., 2020a; Li et al., 2021b), for example. 

2.3.2 Process monitoring and fault detection 

The application of data-driven models to process monitoring is often known as statistical 

process monitoring (SPM) or statistical process control (SPC). Traditionally, control charts 

such as Shewhart, CUSUM and EWMA charts were used to monitor key process variables to 

detect any abnormal variations that could point to a process fault or a decline in product quality. 

However, this method of SPC assumes that process variables are independent and so does not 

consider the correlation of variables.  

Some of the first work in applying multivariate statistical methods to process monitoring, 

named multivariate statistical process control (MSPC), was carried out by Kresta et al. (1991) 

and Macgregor and Kourti (1995). Typically, methods such as PCA and PLS are the choice for 
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MSPC due to their ability to capture the correlations between variables. Non-linear extensions 

of these methods have also been investigated (Dong and Mcavoy, 1994). Hotelling’s T2 statistic 

and the Q statistic, also known as the squared prediction error (SPE), are classically used to 

detect an abnormal situation in MSPC. Not only can these methods be used for fault detection, 

but also for fault diagnosis and reconstruction. For fault diagnosis, contribution plots can easily 

be used with a PCA or PLS based method and no prior knowledge is required in their creation, 

however, this knowledge is often used for their interpretation (Qin, 2003).  

Qin (2012) provided a detailed survey on data-driven process monitoring and diagnosis, 

highlighting some of the issues associated with some of these methods, particularly in the area 

of fault detection and diagnosis. In fault diagnosis, the contribution plots can be used to assess 

which variables have the largest contributions to a fault, however, they are prone to 

misdiagnosis and so should only really be used for initial testing in fault diagnosis. This 

misdiagnosis occurs due to an effect known as “smearing”, which is where the contribution of 

one variable spreads to other variables (Qin, 2012). An improved method for analysing variable 

contributions is using reconstruction-based contributions of a variable (Alcala and Qin, 2009), 

with extensions of this method to kernel PCA having been used (Alcala and Qin, 2010). These 

reconstruction-based contributions provided an increased rate of correct fault diagnosis when 

compared to traditional contribution plot methods. Venkatasubramanian et al. (2003) provided 

a comprehensive review of the methods used in process detection and diagnosis based on 

process history methods, focusing on data-driven methods. 

The need to detect faulty sensors is important because most data-driven modelling methods 

are not able to distinguish between data from a working sensor and a faulty sensor. Typically, 

sensor fault detection and reconstruction methods are based on PCA, similar to process fault 

detection. Dunia et al. (1996) presented a method of sensor fault detection via reconstruction 

using PCA. A sensor validity index was proposed for detecting faulty sensors in that work. 

Extensions of this method to dynamic process has also been investigated (Lee et al., 2004a). 

More advanced methods for sensor fault detection have been applied, such as the use of multi-

stage Bayesian belief networks (Mehranbod et al., 2005). 

Not only can soft sensors be used for sensor fault detection, but a soft sensor can be used as 

a back-up for the hardware, taking over as the primary sensor if the hardware is removed for 

maintenance (Fortuna, 2007). 



17 

 

2.4 Data-Driven Modelling Techniques 

The area of data-driven models is constantly evolving due to the development of new 

techniques and advances in computational hardware that enable more complex models to be 

built without excessive computational effort. The need to create more robust (i.e. accurate 

predictions when slightly different conditions occur) and reliable (i.e. consistently accurate 

predictions under normal conditions) models is of great importance for process modelling 

applications. Techniques that extract more information, and more meaningful information, are 

crucial to improving generalisation performance of a process model.  

2.4.1 Principal component regression 

Principal component regression (PCR) uses PCA as a pre-processing step to a linear 

regression (LR) model. PCA aims to reduce the number of variables into a set of new variables, 

known as principal components (PCs), which are orthogonal to each other and retain the most 

variance possible. Jolliffe (2002) provided a detailed description of PCA, along with 

applications and adaptations of the method. A brief description of PCR is given below. 

The general form of linear regression is 

 

 �̂� = 𝑋𝛽, (2.1) 

 

where X is the input matrix, �̂� is the prediction of the output and β is the weighting matrix, 

which is calculated as 

 

 𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌. (2.2) 

 

Here Y is the output vector. 

To combine PCA with LR, the PCA scores are used as the new input matrix to LR. Given 

that the scores are calculated as  

 

 𝑇 = 𝑋𝑃𝑃𝐶𝐴, (2.3) 

 

then the LR equation is transformed to the following: 
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 �̂� = 𝑇𝛽𝑃𝐶𝐴 (2.4) 

   

 𝛽𝑃𝐶𝐴 = (𝑇𝑇𝑇)−1𝑇𝑇𝑌, (2.5) 

where T is the scores matrix, and PPCA is the eigenvector matrix that is derived from carrying 

out singular value decomposition (SVD) on the covariance matrix of the input data X. 

PCA is used for process modelling because it reduces the co-linearity in the data, helps deal 

with noise by retaining features with the most variance, and reduces the model complexity by 

retaining fewer PCs. One of the common uses for PCA is for process monitoring using 

multivariate statistical process control (MSPC) (Macgregor and Kourti, 1995; Bersimis et al., 

2007). PCR has been used for inferential estimation (soft sensing) by many researchers 

(Hartnett et al., 1998; Zhang, 2006; Ge et al., 2011). 

One issue with PCA is that it cannot deal with nonlinearity, as only linear combinations of 

the original variables are used to create the PCs. However, non-linear adaptations of PCA meant 

that it became more useful for building process models of complex processes. Dong and 

Mcavoy (1994) proposed a non-linear PCA method that integrated the principal curve algorithm 

with neural networks. Other extensions of PCA include fast moving window PCA (Wang et al., 

2005), dynamic PCA (Lee et al., 2004a), nonlinear semi supervised PCR (Ge et al., 2014) and 

locally weighted kernel PCR (Yuan et al., 2014).  

In another example, Xibilia et al. (2020) used PCA prior to a deep neural network due to the 

high linear correlations amongst the inputs in a hazardous gas detection system. In this way, 

PCA decorrelated the input data to improve the soft sensor performance. Another application 

of PCA within soft sensor design is for outlier detection (Bella et al., 2007). 

PCA does not just have to be combined with LR, it has also been combined with other 

regression techniques for process modelling applications, such as with support vector machines 

(Li et al., 2021a). 

One of the main advantages of PCA is that it can compress high dimensional correlated 

variables into a much smaller number of uncorrelated PCs with minimum information loss. 

Therefore, a key question for utilising PCA effectively is: how to select the optimal number of 

retained PCs? Since the aim of PCA is retain the most amount of variance possible in the fewest 

components, the number of PCs that cumulatively explain a set variance target can be retained. 

For example, Figure 2.5 shows the cumulative explained variance for the PCs from PCA when 

it was applied to a case study used later in this thesis. We can choose some minimum limit of 

the variance we want to ensure we retain, let’s say 90%. In this case, over 90% of the variance 
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is explained within the first 5 PCs. For 99% variance, this is achieved in the first 10 PCs. These 

numbers of PCs are independent to his example. In both cases, this is a significant reduction in 

the dimensionality from the 27 original variables. The issue with this method is in selecting the 

limit of variance explained and this is often problem dependant and can be subjective. One 

reason to not retain all of the variance possible, or even a very high amount such as 99%, is to 

avoid overfitting when incorporating PCA into a process model. Overfitting involves good 

performance on training data but poor performance on testing or validation data. 

 

 

Figure 2.5 – Example of cumulative explained variance of each principal component from 

PCA 

When PCA is incorporated into regression for process modelling, cross validation can be 

used to select the number of retained PCs; that is, models can be built using each number of 

PCs individually and the best performing model on a testing data set will give the number of 

retained PCs. This can help to avoid overfitting.  

2.4.2 Partial least squares regression 

Partial least squares regression (PLSR) takes PLS and combines it with LR in the same way 

as PCA does in PCR. In PCA, the scores are calculated such that they explain the most variance 

possible from the input data. In PLS, scores are calculated on both the input matrix X and the 

output matrix Y to maximise the explained variance in each. There is an additional objective of 
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achieving maximal covariance between the scores from X and the scores from Y. PLS is 

described in detail in work by Hastie (2009). 

PLS can be incorporated into the model building process in many ways. Zhang et al. (2018b) 

proposed incorporating PLSR into an extreme learning machine (see Section 2.4.4) ensemble 

(see Section 2.5) to create more reliable soft sensor models. In this case, PLSR was not used as 

the model prediction technique. PLSR was used to optimise the weights when aggregating the 

multiple ELM models into the final ensemble. Doing so improved model testing performance 

when compared with simply averaging the multiple ELM models. This work shows that 

PLS/PLSR has other applications within the model building process other than a pre-processing 

stage before the prediction model itself. 

PLS has also been used as a pre-processing step to other techniques for process modelling 

applications, such as bagged neural networks (Zhou et al., 2012) and least squares support 

vector machine (Li et al., 2017b). 

2.4.3 Artificial neural networks 

When using data-driven techniques, the process complexity can govern the technique that is 

required. Linear regression, and extensions such as PCR/PLSR, are the most basic form of data-

driven techniques, although using them in many real problems will often lead to inadequate 

fitting performance. This is particularly true for complex processes that show nonlinearities and 

cannot be modelled adequately using linear techniques. Therefore, there is a need for more 

complex algorithms that can create good models in difficult situations where nonlinear 

relationships exist between the input and output variables. 

Artificial neural networks (NN) are among the well-known nonlinear machine learning 

techniques that have been applied to process modelling and control (Bhat and McAvoy, 1990; 

Chen et al., 1990; Willis et al., 1991), and soft sensing (Fernandez de Canete et al., 2021). A 

detailed overview of neural networks is provided by Bishop (1995), covering a variety of topics 

including the different types of networks, algorithms and generalisation performance (the 

performance of a model on new data that was not used in model building). A single hidden 

layer feed forward network (SLFNN) is one of the most used neural networks in machine 

learning, and although more hidden layers can be used, a single hidden layer with sufficient 

hidden neurons can approximate any nonlinear, continuous function (Cybenko, 1989). The 

form of a SLFNN is illustrated in Figure 2.6. 

The SLFNN contains three layers: an input, a hidden and an output layer. Each layer consists 

of nodes (often known as neurons or units) that are connected to every node in the other layers, 
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with each connection having a weight associated to it. In the input layer, the number of input 

neurons is equal to the number of inputs, and in the output layer, it is equal to the number of 

outputs. The number of hidden neurons can be any number and it is a hyperparameter that 

requires optimising, which is typically done by cross validation. Additionally, each node has an 

activation function that is the same for nodes in each layer but can differ from layer to layer. 

These are usually linear functions for input and output layers, and a sigmoidal function for the 

hidden layer, however, other functions are often used, such as tanh (Bishop, 1995). 

As shown in Figure 2.6, at each neuron (besides the input neurons), the outputs of the 

previous layer are multiplied by the connection weights, then summed and passed through the 

nonlinear activation function 𝑓
ℎ𝑖𝑑𝑑𝑒𝑛

. In the case of the common sigmoidal function, 

 

 
𝑓ℎ𝑖𝑑𝑑𝑒𝑛(𝑥) =

1

1 + 𝑒−𝑥
 . (2.6) 

 

For the ith hidden neuron with J input variables, the output of a hidden neuron can be 

mathematically described as  

 

 

𝑦𝑖
ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑓ℎ𝑖𝑑𝑑𝑒𝑛 (∑𝑤𝑗

ℎ𝑖𝑑𝑑𝑒𝑛

𝐽

𝑗=1

𝑥𝑗 + 𝑏ℎ𝑖𝑑𝑑𝑒𝑛), 
(2.7) 

 

where 𝑦𝑖
ℎ𝑖𝑑𝑑𝑒𝑛 is the output of the ith hidden layer, 𝑤𝑗 is the connection weight for the jth 

input, and 𝑥𝑗 is the jth input and 𝑏ℎ𝑖𝑑𝑑𝑒𝑛 is a bias for the hidden layer. 

The outputs of each hidden neuron are then connected to the output layer in the same way. 

In most process modelling cases, there is one output and so the output of the neural network, 

𝑦𝑜𝑢𝑡𝑝𝑢𝑡, can be described as  

 

 

𝑦𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓𝑜𝑢𝑡𝑝𝑢𝑡 (∑𝑤𝑖
𝑜𝑢𝑡𝑝𝑢𝑡

𝐼

𝑖=1

𝑦𝑖
ℎ𝑖𝑑𝑑𝑒𝑛 + 𝑏𝑜𝑢𝑡𝑝𝑢𝑡), 

(2.8) 

 

where 𝑓𝑜𝑢𝑡𝑝𝑢𝑡 is the activation function of the output layer (most often linear), 𝑤𝑖
𝑜𝑢𝑡𝑝𝑢𝑡

 is 

the connection weight to the output neuron from the ith hidden neuron, and 𝑏𝑜𝑢𝑡𝑝𝑢𝑡 is a bias for 

the output layer. 
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Neural network modelling involves the training of the network weights (𝑤𝑗
ℎ𝑖𝑑𝑑𝑒𝑛 & 𝑤𝑖

𝑜𝑢𝑡𝑝𝑢𝑡) 

and bias using a learning algorithm. The first, and a still widely used learning algorithm, is the 

back-propagation algorithm that was proposed in 1986 by Rumelhart et al. (1986). The 

Levenberg-Marquardt algorithm (Marquardt, 1963) is one of the most popular and is a hybrid 

between a Gauss-Newton method and the gradient descent algorithm. The Levenberg-

Marquardt algorithm has been shown to have improved performance over back-propagation 

(Kermani et al., 2005). The Levenberg-Marquardt algorithm is described in detail by Bishop 

(1995). 

Although neural networks possess universal approximation capability (Cybenko, 1989), 

poor performance can still be observed in many applications, due to a variety of issues, as 

discussed by Qin (1997). One of these main issues associated with neural network learning, and 

data-driven modelling in general, is overfitting. Overfitting is when the model performs well 

on the data it was trained on but displays poor performance on new, unseen data. The ability to 

perform well on unseen data is known as the generalisation capability/performance. A variety 

of techniques have been used to improve generalisation in neural network modelling, such as 

regularisation and early stopping (Bishop, 1995), and ensemble methods (Breiman, 1996; 

Zhang, 1999; Yang et al., 2013). 

In more recent times, neural networks have evolved and extensions such as deep learning 

(Shang et al., 2014; Yuan et al., 2020b), ensembles (Li et al., 2015; Yi et al., 2020) and echo 

state networks (Bo et al., 2020; He et al., 2020) have been widely used for process modelling 

applications. 
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Figure 2.6 – Overview of a single hidden layer feedforward neural network  

2.4.4 Extreme learning machine 

Extreme Learning machine (ELM) is a modification of a single hidden layer feedforward 

neural network, as proposed by Huang et al. (2006), where the input weights and bias to the 

hidden layer are randomised, instead of being optimised via training. Traditional neural network 

training involves the use of backpropagation algorithms that are slow and can fall into local 

minima. ELM has been shown to overcome both of these issues through the input weight 

randomisation, resulting in significantly faster training and improved generalisation 

performance, while still possessing the universal approximation capability (Huang et al., 2006). 

These advantages make ELM ideal for soft sensing purposes where on-line training or model 

maintenance is necessary. ELM has been used by many researchers for process modelling 

(Zhang and Zhang, 2011; Li et al., 2013; He et al., 2015; Li et al., 2017a). 

There have been many adaptation to ELM, such as on-line sequential ELM (Liang et al., 

2006), kernel ELM (Huang et al., 2012) and unsupervised ELM (Huang et al., 2014). Huang et 

al. (2015) presented a review of recent adaptations and applications of extreme learning 

machine, which discussed these in more detail. 

2.5 Ensembles 

One of the most widely used methods for improving reliability and robustness of data-driven 

models is to create an ensemble. This involves training multiple models and then combining 

their predictions in some way. The simplest form of an ensemble is to average the predictions 
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of the multiple models. Valentini and Masulli (2002) explained the reasoning behind the 

advantages of ensembles, as well as the types of ensembles and methods used to create them. 

Two of the first, and still widely used, ensemble methods are bagging and boosting. Bagging 

(bootstrap aggregating) (Breiman, 1996) involves producing multiple, independent training 

data sets through random bootstrap sampling with replacement, with a model then trained using 

each data set. The predictions of each model are then aggregated through (weighted) averaging. 

The bootstrap resampling is a method of creating a diverse ensemble, a key factor in improving 

the generalisation performance of a model (Brown et al., 2005). Bagging has been successfully 

applied to neural network ensembles to improve model robustness for nonlinear process 

modelling (Zhang, 1999; Niu et al., 2011; Yang et al., 2013; Li et al., 2015). Zhang et al. (1997) 

demonstrated that bagged neural networks can be used to calculate confidence bounds for the 

model predictions, providing a measure of the model reliability. Bagging has also been used 

with other machine learning techniques for process modelling, such as extreme learning 

machine (Zhang et al., 2018b) and support vector regression (Hu et al., 2011). 

Boosting involves iteratively training each model such that subsequent models are trained in 

areas where previous models were weak. The notion of boosting was introduced by Schapire 

(1990), with Freund and Schapire (1997) proposing the AdaBoost boosting algorithm, which 

still remains popular to this day. Bauer and Kohavi (1999) investigated the performance of 

boosting for voting classification and found that AdaBoost was not very robust to noise, which 

may be an issue for process modelling because process data often contains significant noise.  

Other ensemble methods applied to data-driven modelling include sequential orthogonal 

training (Zhang and Morris, 1998), data fusion techniques (Ahmad and Zhang, 2005b), negative 

correlation learning (Liu and Yao, 1999; Zhang et al., 2006), and forward selection/backward 

elimination combined with Bayesian methods for the model combination (Ahmad and Zhang, 

2005a). Zhou et al. (2002) demonstrated a mathematical proof that, in many cases, it may be 

better to combine some of the total models, but not all of them. The authors stated that certain 

“bad” models may need a constraint that means they should be excluded from the ensemble. 

This shows that selective ensemble algorithms are better than the other commonly used 

approaches. Finally, Ahmad et al. (2009) presented a review on neural network ensemble 

techniques for process modelling and control, which covered a large amount of ensemble 

techniques and there applications. 
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2.6 Dynamic Modelling 

To capture the dynamic nature of industrial processes, dynamic models can be created by 

incorporating past time samples into the model, which can account for time-lagged correlations 

between inputs and hence improve model performance. The two main methods to create data-

driven dynamic models are based on internal or external dynamics. External dynamics-based 

methods involve augmenting the input data with time lagged samples of the inputs. Often the 

selected time lags are determined by correlation analysis, process knowledge or simply trial and 

error (Fortuna, 2007). Internal dynamics-based methods are typically in the form of a recurrent 

neural network (RNN), where the outputs of network layers are connected to the inputs of the 

layers. In particular, locally recurrent neural networks can be used for accurate long range 

predictions for nonlinear processes, as shown by Zhang et al. (1998) and Zhang and Morris 

(1999). 

RNNs can be further extended to deep neural networks (DRNN), as shown by Chang and Li 

(2021), where the authors integrated DRNN into soft sensor development for a wastewater 

treatment process in order to better capture the temporal correlations in the data when compared 

with standard RNNs. 

RNNs suffer from gradient vanishing and exploding problems (for descriptions of these 

issues, see work by Pascanu et al. (2013)), however, the long short-term memory (LSTM) 

network was developed to overcome these problems (Hochreiter & Schmidhuber, 1997). 

Several approaches have been developed to improve RNNs and LSTM networks for soft sensor 

modelling (Curreri et al., 2021; Moreira de Lima & Ugulino de Araújo, 2021). Yuan et al. 

(2020) proposed a supervised LSTM network to focus on learning the quality-relevant 

dynamics as opposed to just capturing the dynamics of the input variables. Addtionally, deep 

learning, particular convolutional neural networks, can enhance dyanmic soft sensor 

performance (Wang et al., 2019). 
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Chapter 3. Integrating Dynamic Slow Feature Analysis with Neural 

Networks for Enhancing Soft Sensor Performance 

3.1 Introduction 

Many industrial processes are extremely complicated and so developing mechanistic models 

can be extremely time consuming and expensive. Additionally, sufficient knowledge may not 

be available to produce a truly accurate mechanistic model. If sufficient process data is 

available, then data-driven modelling can overcome some, if not all, of these issues. The main 

advantages of data-driven over mechanistic modelling has been discussed in Section 2.2.  

However, there are issues with data-driven soft sensors, such as lack of data covering the 

full process conditions, model drift, and the difficulty in creating a sufficiently robust model. 

One significant way to improve the accuracy and robustness of a soft sensor is in 

developing/selecting the right technique. Due to the complexity of industrial processes, many 

of the inherent relationships between process variables are nonlinear and so nonlinear models 

should be the main choice, although it is always problem dependent and if a less complex linear 

model is sufficient, then it should be employed. 

The selection of nonlinear modelling techniques is vast and, with the era of machine learning 

and artificial intelligence rapidly growing alongside hardware improvements, the selection 

keeps increasing. Neural networks (NN) have always been one of the most used techniques for 

soft-sensing ever since they were first used for inferential estimation by Willis et al. (1991). 

Other machine learning algorithms that are commonly used include support vector machine 

(Wang et al., 2020a) and extreme learning machine (Huang et al., 2006; Xie et al., 2020). 

Selection of the right technique goes a long way to improving model robustness and 

accuracy. Choosing the correct technique, such as from those listed above, is one step. 

However, these techniques can be extended to further enhance the model performance. One 

way to do this is to combine the regression techniques with other statistical methods, often for 

dimensionality reduction, noise reduction or feature extraction. For example, applying principal 

component analysis (PCA) (Jolliffe, 2002) before a regression technique can remove 

collinearity in the data and improve model robustness, particularly when applied prior to a 

neural network due to their sensitivity to collinearity (Qin, 1997). 

Another latent variable method that has gained attraction in the process systems engineering 

field in recent years is slow feature analysis (SFA). While PCA transforms the inputs into a 

new feature space with reduced collinearity, SFA transforms the input variables into a set of 
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latent variables that are as slowly varying as possible (Wiskott and Sejnowski, 2002). These 

latent variables are known as slow features (SFs) and they can capture important underlying 

trends in the data, which is particularly useful for time series data where time varying trends 

and dynamics can be observed. The slowest SFs capture the most important trends, while the 

fastest ones mostly represent noise. This can be beneficial to process modelling because 

underlying dynamics of the process can be extracted with a de-noising effect when a reduced 

number of SFs is selected. Additionally, by retaining a reduced number of SFs to be used for 

modelling, the dimensionality can be reduced, leading to a reduction in model complexity. By 

using a reduced number of inputs that express inherent dynamics, combining SFA with a data-

driven modelling technique can improve model generalisation performance. 

SFA has been previously integrated within soft sensor design (Qin et al., 2019; Yuan et al., 

2020b), as well as for process monitoring (Zhao and Huang, 2018; Qin and Zhao, 2019; Yu and 

Zhao, 2019; Zhang et al., 2019; Zhang and Zhao, 2019; Zheng and Zhao, 2019; Xu and Ding, 

2021), and process control performance monitoring (Shang et al., 2016a). Other extensions of 

SFA have been applied in process system engineering, such as kernel slow feature discriminant 

analysis for nonlinear process fault diagnosis (Zhang et al., 2015a), and a robust probabilistic 

SFA based regression model applied to process data contaminated with outliers (Fan et al., 

2018). Shang et al. (2015a) proposed a probabilistic SFA that used the SFs as inputs to a linear 

regression model, demonstrating improved soft sensor performance in two case studies when 

compared with other methods, such as PLS.  

Other closely-related SFA applications include integrating SFA into an automatic detection 

and isolation of multiple oscillations algorithm (Wang and Zhao, 2020), combining canonical 

variate analysis with SFA to monitor process dynamics resulting from closed-loop process 

control (Zhang et al., 2019), combining SFA with independent component analysis for time 

series feature extraction (Feng et al., 2019), and creating a transition identification and 

trajectory-based monitoring scheme based on SFA (Wang et al., 2020b). 

SFA has also been used for dynamic feature extraction in other process monitoring 

applications. Zhao and Huang (2018) proposed a method combining SFA with cointegration 

analysis to produce a full-condition monitoring method that both the dynamic variations and 

the long term equilibrium relations. Recursive exponential SFA has been proposed to better 

extract nonlinear SFs when compared with standard SFA (Yu and Zhao, 2019). Other process 

monitoring based applications utilising SFA have been investigated in the areas of fault 

classification (Chai and Zhao, 2020) and batch process monitoring (Zhang and Zhao, 2019). 
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Since many processes display nonlinear characteristics, using LR with SFA will often lead 

to poor model performance. For example, Qin et al. (2019) developed a quality-relevant slow 

feature regression algorithm that aimed to improve soft sensor predictions when compared with 

traditional slow feature regression (SFR). However, an application on a complex process 

demonstrated that the prediction error was quite high even when the proposed method was 

better than the other methods that were used for comparison. One reason is that nonlinearities 

were not accounted for, as the authors themselves discussed in this work. This demonstrates the 

need to capture the nonlinearities in such processes, as well making use of the slow varying 

trends. 

The method proposed in this chapter utilises dynamic linear SFA as a step prior to a neural 

network for dynamic soft sensing applications, with the aim of improving generalisation over 

traditional methods. Dynamic SFA is first applied to the process data and the number of retained 

SFs is selected using the scree plot, which is still widely used as a method for selecting retained 

principal components in PCA. The retained SFs are then used as inputs for a SLFNN. The 

efficacy of the proposed method is demonstrated by its application on two real industrial 

processes. 

The rest of this chapter is organised as follows: Section 3.2 describes slow feature analysis 

with a numerical example illustration. Section 3.3 details the proposed method. Section 3.4 

presents the application of the proposed method for soft sensor modelling in an industrial 

debutaniser column and Section 3.5 demonstrates a second application for a polymer melt index 

soft sensor in an industrial polymerisation process. Finally, the conclusions of this work are 

presented in Section 3.6. The work in this chapter is based on Corrigan and Zhang (2020). 

3.2 Overview of Slow Feature Analysis 

Slow feature analysis is an algorithm developed by Wiskott and Sejnowski (2002) that 

extracts a set of latent variables from input data that are as slowly varying as possible, without 

being constant. For example, if a signal that is a combination of sine signals of different 

frequencies is input to slow feature analysis, the slow varying variables to be extracted would 

be those original sine functions (see example in Section 3.2.1). 

The main benefits of slow feature analysis are twofold. Firstly, these slow varying latent 

variables, known as SFs, can represent low dimensional driving forces within a data set. Here, 

the terms “driving force” and “underlying trend” are synonymous. They are low dimensional, 

uncorrelated, time series features that cause the variations shown in the original high 

dimensional input signals (e.g. the sine example described above and in Section 3.2.1). 
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Secondly, extracting SF scan reduce the amount of noise within the input data because slower 

features are inherently less noisy. 

The algorithm takes an n-dimensional input signal x(t)=[x1(t) x2(t) … xn(t)] and aims to find 

a function s(t) = g(x) where the output s(t) varies as slowly as possible, without being constant. 

This is because SFs that are constant provide little information about the driving forces behind 

data. The dimension of s(t) is up to n, i.e. sj(t)=gj(x) with j=1, 2, …, n. 

The optimisation problem for determining the jth slow feature is described in the following: 

 

 min
𝑔𝑗(.)

〈�̇�𝑗
2〉 = 𝑣𝑎𝑟(�̇�𝑗)  , (3.1) 

 

subject to the following three constraints, i.e. s has a zero mean, unit variance, and is 

decorrelated (identity covariance matrix): 

 

 〈𝑠〉 = 𝐸(𝑠) = 0 ,  (3.2) 

 

 〈𝑠𝑗
2〉 = 𝑣𝑎𝑟(𝑠𝑗) = 1 ,  (3.3) 

 

 〈𝑠𝑗 , 𝑠𝑖〉 = 𝑐𝑜𝑣(𝑠𝑗 , 𝑠𝑖) = 0, 𝑖 ≠ 𝑗  (3.4) 

 

where �̇� represents the first order derivative of the SFs with respect to time and 〈𝑠〉 signifies 

temporal averaging given as, 

 

 
〈𝑠〉 =

1

𝑡1 − 𝑡0
∫ 𝑠(𝑡) 𝑑𝑡

𝑡1

𝑡0

 . (3.5) 

 

The aim of (3.1) is to minimise the temporal variation of the extracted SFs, that is, they vary 

as slowly as possible. Constraints (3.2) and (3.3) are there to ensure that a solution for 𝑠𝑗 being 

constant is avoided, while additionally allowing a fair comparison of the slowness of each 

feature due to all features being scaled to unit variance. Constraint (3.4) ensures that the SFs 

are decorrelated and hence are independent, meaning that certain features are not simply 

repeated. This leads to a descending order of 𝑠𝑗 where the slowest varying features have the 

lowest index, i.e. 𝑠1 is the slowest feature. The problem is complicated because it is a variational 

calculus optimisation problem. 
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3.2.1 Linear SFA 

In order to solve the difficult optimisation problem, Wiskott and Sejnowski (2002) proposed 

an algorithm that simplifies the problem greatly. 

For the linear case of SFA, the function g(x) is simply a vector of weights W, such that the 

output s(t) is a linear combination of all the input variables: 

 

 𝑠(𝑡) = 𝑊𝑥(𝑡) . (3.6) 

 

The optimisation problem can be reduced to the following generalised eigenvalue problem 

(Shang et al., 2016b) 

 

 〈�̇��̇�𝑇〉𝑊 = 〈𝑥𝑥𝑇〉𝑊Ω , (3.7) 

 

where 〈�̇��̇�𝑇〉 is the covariance matrix of the first order derivative of x(t), 〈𝑥𝑥𝑇〉 is the 

covariance matrix of x, and Ω is a diagonal matrix of the generalised eigenvalues, which are 

the optimal objectives of the objective function. For discrete data of sampling interval h, such 

as process data, a first order difference approximation can be used to approximate the first order 

derivative, that is: 

 

              �̇�(𝑡) ≈
𝑥(𝑡) − 𝑥(𝑡 − ℎ)

ℎ
 . 

(3.8) 

 

The first step in solving the problem involves normalising the input signal to zero mean and 

unit variance. The normalised input, x(t), is then whitened to remove underlying correlations, 

giving the whitened matrix z(t). The next step is to carry out singular value decomposition 

(SVD) on the matrix 〈�̇��̇�𝐓〉, the covariance matrix of the first order derivate of z(t), giving 

 

 〈�̇��̇�𝑇〉 = 𝑃𝑆𝐹𝐴Ω𝑃𝑆𝐹𝐴
𝑇 , (3.9) 

 

where 𝑃𝑆𝐹𝐴 is the eigenvector and Ω is a diagonal matrix of the eigenvalues. 

 

From the SVD, the SFs can be determined by the following: 
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 𝑠(𝑡) = 𝑃𝑆𝐹𝐴𝑧(𝑡) . (3.10) 

 

The working of linear SFA can be nicely illustrated through a simple numerical example. 

Four inputs are defined by Equations (3.11) to (3.14) with t = 0 to 2π. Noises (v1 to v4) with 

distribution N(0,0.2) are added to these inputs. These noisy inputs are displayed in Figure 3.1. 

 

 𝑥1(𝑡) =  −5sin(𝑡) − 2cos(5𝑡) + 𝑣1 , (3.11) 

 

 𝑥2(𝑡) =  3sin(t) + 0.75cos(5𝑡) + 𝑣2 , (3.12) 

 

 𝑥3(𝑡) =  − 4sin(𝑡) + cos(5𝑡) + 𝑣3 , (3.13) 

 

 𝑥4(𝑡) =  6 sin(𝑡) − cos(5𝑡) + 𝑣4 . (3.14) 

 

By performing linear SFA with these four input signals, the underlying driving forces behind 

the inputs can be extracted as SFs, which in this case are sin(t) and cos(5t). The SFs were 

derived by collecting the four inputs, as described by Equations (3.11) to (3.14), into a single 

matrix x(t) and applying the SFA method as detailed in Section 3.2.1. The derived SFs were 

therefore calculated by multiplying the derived 𝑃𝑆𝐹𝐴 matrix by the whitened inputs 𝑧𝑖(𝑡), as 

shown in Equation (3.15): 

 

 

[
 
 
 
 
 
𝑠1(𝑡)

𝑠2(𝑡)

𝑠3(𝑡)

𝑠4(𝑡)]
 
 
 
 
 

 =  

[
 
 
 
 
−0.47 −0.65 0.58 −0.10

0.48 0.36 0.80 −0.01

−0.49 0.51 0.06 −0.70

0.55 −0.42 −0.14 −0.70]
 
 
 
 

  

[
 
 
 
 
 
𝑧1(𝑡)

𝑧2(𝑡)

𝑧3(𝑡)

𝑧4(𝑡)]
 
 
 
 
 

 (3.15) 

 

where 𝑧𝑖(𝑡) is the whitened signal of the input 𝑥𝑖(𝑡), 𝑠𝑗(𝑡) is the jth derived slow feature and 

𝑃𝑆𝐹𝐴 is the eigenvector matrix derived from the SFA algorithm. These four SFs are displayed 

in Figure 3.2. 
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Figure 3.1 – Inputs for the numerical example  

 

 

Figure 3.2 – Extracted slow features for numerical example 

Figure 3.2 shows that the first two SFs are approximately sin(t) and cos(5t) respectively, 

however, there are some oscillations which appears to be the way that the algorithm has 

interpreted the noise in the inputs. When this example is repeated without any noise, the first 
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two SFs are exactly sin(t) and cos(5t), demonstrating that linear SFA can indeed extract the 

underlying driving forces behind a set of inputs. The reason that the last two SFs are purely 

noisy is because linear SFA has already extracted the two driving forces in the first two SFs, 

leaving the remaining SFs as noise since no driving forces remain to be extracted.  

Without knowing the exact equations for the inputs, it may not be obvious that there are only 

two driving forces, and so looking at the determining the number of dominant SFs can help this. 

The dominant SFs are simply the number of SFs that best capture underlying trends, with the 

remaining SFs being mostly noise. To determine the number of dominant SFs, inspection of a 

plot of the eigenvalues, found from the Ω matrix in Equations (3.7) or (3.9), can be carried out. 

The number of dominant SFs can be determined by the SFs up until an “elbow” in this plot. 

The selection of dominant SFs is discussed in more detail in Section 3.3.  

For the example described in this section, Figure 3.3 shows a clear elbow in the eigenvalues 

after two SFs and therefore there are only two dominant SFs, representing the two driving forces 

of sin(t) and cos(5t).  

 

 

Figure 3.3 – Eigenvalue plot for the sine example 

3.2.2 Dynamic SFA 

The relationship between the inputs and outputs can involve significant time delay for many 

industrial processes and so time lagged process variables can be included to improve the 

extraction of SFs. 
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Dynamic SFA is simply the inclusion of time lagged process inputs into the data matrix for 

SFA. For a selected time lag, d, the input matrix for SFA is given by the following: 

 

 

𝑋(𝑡) =  [
𝑥(𝑡) ⋯ 𝑥(𝑡 − 𝑑)

⋮ ⋱ ⋮
𝑥(𝑡 + 𝑁 − 1) ⋯ 𝑥(𝑡 + 𝑁 − 𝑑 − 1)

] (3.16) 

 

where 𝑥(𝑡) is a vector of inputs at time t and N is the number of samples. The selection of time 

lag, d, can be carried out through correlation analysis, cross validation, or utilising process 

knowledge (Zhang et al., 2015b; Zhao and Huang., 2018). In this study, cross validation is used 

to determine the time lag. A range of time lags are considered and the one giving the least model 

error on the testing data is selected as the appropriate time lag. This approach is taken to avoid 

overfitting. 

3.3 Proposed Methodology: Combining Slow Feature Analysis with a Neural Network 

(SFA-NN) 

In this section, the proposed SFA-NN method is detailed. A simplified block diagram 

showing the transformation of data in the method of SFA-NN is illustrated in Figure 3.4. The 

proposed methodology contains the following steps. 

 

 

Figure 3.4 – Simplified block diagram of SFA-NN 

 

Step 1 – Dynamic Data Preparation: 

 

Matrices of the process input variables X and output variables Y are collected. Time lagged 

inputs up to the selected time lag d are added to the input data matrix for dynamic modelling, 

as detailed in Section 3.2.2.  
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Step 2 – Data Partitioning and Scaling: 

 

The data matrices X and Y are partitioned into a training and testing (TT) set (XTT, YTT) and 

an unseen validation set (XV, YV). The TT data set is then normalised to have zero mean and 

unit variance. The means and standard deviations from the TT data set are used to normalise 

the unseen validation data set. 

 

Step 3 – Applying Linear SFA: 

 

The linear SFA algorithm, as described in Section 3.2.1, is applied to the normalised XTT 

matrix to derive the 𝑃𝑆𝐹𝐴 matrix and extract the SFs sTT.  

 

Step 4 – Selection of Dominant Slow Features:  

 

Given a set of m extracted SFs, it is important to select the number of dominant SFs, M, that 

best capture the dynamics of the process since many of the faster features represent mostly 

noise. Including the faster features can decrease generalisation performance because the model 

is fitting the noise as opposed to the underlying trends. Additionally, decreasing the number of 

SFs reduces the model complexity as the neural network model will have a smaller number of 

inputs. 

There are few standard procedures for the selection of the dominant SFs but there are some 

ways this can be accomplished that have been attempted in previous work. One standard method 

for selecting latent variables in general is using cross validation. This method has been applied 

to slow feature regression in previous work (Shang et al., 2015a; Qin et al., 2019). Cross 

validation can be effective when the number of latent variables is the only parameter to be 

determined. However, when using neural networks for regression, cross validation is typically 

used for selecting the optimal number of hidden neurons. Therefore, additionally using cross 

validation for slow feature selection can lead to poor generalisation, especially for complex 

processes where it can be difficult to obtain the optimal values for such hyper parameters.  

A slowness criterion was developed by Shang et al. (2015c) that was based on a de-noised 

reconstruction of the inputs. This method suggested discarding SFs that are faster than all the 

input variables.  

Looking towards PCA can provide inspiration for selecting dominant SFs due to the 

similarities between SFA and PCA. These similarities arise from the fact that eigenvalues are 
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extracted in both algorithms, albeit via different pathways, and that they provide key 

information about the latent variables. In PCA, the eigenvalues detail the variance explained by 

each PC, whereas in SFA, the eigenvalues relate to the slowness of each SF. Jolliffe (2002) 

described some of the commonly used methods of PC selection, such as a cumulative 

percentage of total variation cut off, Kaiser’s rule (Kaiser, 1960), the scree plot and cross 

validation. Of these methods that could be translated over to SFA, the scree plot, as first 

proposed by Cattell (1966), shows promise. A scree plot involves a plot of the eigenvalues and 

visually inspecting the plot to see if there are any significant changes in direction, often referred 

to as “elbows”, or significant changes in magnitude, referred to as “gaps”. The number of 

retained latent variables is then selected by the features up until the first elbow. 

In this work, using the scree plot for dominant slow feature selection is proposed. After an 

elbow/gap in the scree plot for the SFA eigenvalues, it can be said that any SFs after this point 

contain too much noise and do not contain enough relevant information. To obtain the 

eigenvalues for the scree plot, the Ω matrix from Equation (3.9) can be extracted and this matrix 

contains these eigenvalues. Figure 3.5 illustrates an example of the scree plot for SFA. In this 

example, the first elbow occurs at 6 SFs and therefore 6 dominant SFs would be selected.  

Utilising the scree plot is not without its downfalls however. By nature, it is a subjective 

method and so there can be issues in reliability due to individual opinions in what consitutes 

the first elbow. Despite this issue, the scree plot is still widely used for PC selection because it 

gives a good solution more often than not. In Figure 3.5, the elbow point is very clear and so 

there is little issue in this case, however, it is not always so clear cut and so in such cases it may 

be necessary to use this method to obtain an approximate solution that can be verified or refined 

with other methods, such as cross validation. The application examples in the next section show 

that selecting the number of domainant SFs using the scree plot gives good modelling 

performance. 
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Figure 3.5 – Eigenvalue trend for slow features used for dominant slow features selection 

 

Step 5 - Neural Network Training: 

 

Following the application of SFA, the M retained SFs together with the corresponding target 

values are then further partitioned into training and testing data sets. The training data is used 

to train a neural network model for each number of hidden neurons in a given range, e.g. from 

1 to 30. The optimal number of hidden neurons is then selected using cross validation on the 

testing data set. The neural network used here is a SLFNN that is trained using the Levenberg-

Marquardt algorithm with regularisation and early stopping, to aid in preventing overfitting. 

During network training, the neural network model errors on the testing data are monitored and 

training is terminated when the testing errors stop decreasing.  

 

 

Step 6 – Model Evaluation: 

 

The normalised validation data set XV is sphered (synonymous to whitening) to give ZV. 

Sphering removes correlations between signals and can be done via algorithms such as PCA. 

Normalised refers to the scaling of the original data to zero mean and unit variance. Slow 

features for this data set are calculated based on the previously derived 𝑃𝑆𝐹𝐴 matrix: 𝑠𝑉 =

𝑃𝑆𝐹𝐴𝑍𝑉. These validation SFs are applied to the trained neural network model to assess the 

model’s performance on unseen validation data to assess its generalisation capability. The root 

mean squared error (RMSE) can then be calculated to measure the model accuracy. RMSE is 
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chosen as the metric for comparison due to it being in the units of the original measurement and 

so its magnitude is easily interpretable. Furthermore, due to the squaring of the errors, RMSE 

gives a higher weight to larger errors, which is desirable because large errors are unwanted in 

soft sensor predictions. 

Figure 3.6 provides a summary of the key steps in the SFA-NN model development 

methodology. 

 

 

Figure 3.6 – Simplified methodology of the development of SFA-NN models 

3.4 Case Study 1: An Industrial Debutaniser Column 

3.4.1 Process description 

The process used for this first case study is a debutaniser column that is a part of an industrial 

desulfuring and naphtha splitting plant, as shown in Figure 3.7. Propane (C3) and butane (C4) 

are removed as overheads from the debutaniser column. This process has been used previously 

for soft sensor development by Fortuna (2007). One of the key requirements of the column is 

to minimise the butane concentration in the Naphtha splitter feed coming from the bottom of 
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the column. Therefore, measurements of this butane concentration are required as this stream 

leaves the bottom of the column, as indicated by location N2 in Figure 3.7. However, this butane 

concentration is measured by a gas chromatograph on the deisopentaniser column overheads, 

as shown by location A2 in Figure 3.7, which is significantly later in the process. This 

substantial downstream location and the inherent delay of gas chromatograph led to 

measurements with a large time delay, typically around 45 minutes, which is suboptimal for 

control purposes. A soft sensor using inputs to the debutaniser column is of interest so that 

measurements with a significantly reduced time delay can be produced to improve process 

monitoring and control. 

 

Figure 3.7 – Schematic of the debutaniser column and associated plants (Fortuna, 2007) 

The process inputs used for the soft sensor design are measurements of various variables 

around the debutaniser column as described in Table 3.1 and illustrated in Figure 3.8, to provide 

background understanding of the process. 
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Table 3.1 – Variables used for the soft sensor design (Fortuna, 2007) 

Soft Sensor Inputs Variable Description 

u1 Column top temperature 

u2 Column top pressure 

u3 Reflux flow rate 

u4 Flow rate to the next unit 

u5 6th tray temperature 

u6 Column bottom temperature 1 

u7 Column bottom temperature 2 

 

 

 

Figure 3.8 – Simplified process and instrumentation diagram of the debutaniser column 

with the soft sensor inputs highlighted (Fortuna, 2007) 

3.4.2 Modelling of Butane Concentration 

The process data used for soft sensor development contain 2394 samples with a sampling 

time of 6 minutes (Fortuna, 2007). The data is split into 60% for training, 20% for testing and 

20% for unseen validation. The validation data was taken from samples 1650 to 2122. The 

process inputs data and normalised butane concentration data are displayed in Figures 3.9 and 

3.10 respectively to highlight the amount of variation and noise in the data, which leads to poor 

soft sensor performance with many classical data-driven modelling methods. 
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Figure 3.9 – All seven process variables for the full data set showing large variations 

 

 
Figure 3.10 – Normalised butane concentration data 

In complex chemical processes such as this, there can be time delays between inputs and 

outputs and so it is necessary to consider time lagged inputs. In this process, time-lagged inputs 

up to a discrete time lag of d were included into the model input. The proposed dynamic model 

structure is shown in Equation (3.17). 
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 �̂�(𝑡) = 𝑓( 𝑢1(𝑡) …  𝑢7(𝑡), … , 𝑢1(𝑡 − 𝑑)… 𝑢7(𝑡 − 𝑑) ) (3.17) 

 

where ui is the ith process output, t is the discrete time, d is the time lag, and �̂� is the soft sensor 

prediction. 

 

 

Figure 3.11 – The first 6 extracted slow features on the training and testing data sets for the 

debutaniser case study 

Based on the proposed SFA-NN method, a soft sensor model is developed for butane 

concentration for each time lag d from 0 to 10. The model with the lowest RMSE on the testing 

data is considered as having the best value of time lag. To illustrate how SFA captures slow 

varying trends in the data, the first 6 extracted SFs for the training and testing data, when d = 

0, are presented in Figure 3.11. It can be clearly seen that the first slow feature varies the least 

compared with the other five, with the amount of variation increasing with each slow feature, 

demonstrating that SFA does indeed extract slow varying trends with reduced noise. Several 

other similar algorithms are employed for comparison with the proposed method: the popular 

latent variable method PCA (Jolliffe, 2002) combined with neural networks (PCA-NN), the 

standard slow feature regression (SFR) algorithm (Shang et al., 2015b), partial least squares 

regression (PLSR) (Wold et al., 1984), and a single neural network (single NN). For PCA-NN, 

PCA is first applied to the TT data and the first k principal components (PCs) are retained using 

the scree plot method (Cattell, 1966). These retained PCs are then used as the inputs to a neural 
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network. The neural networks used for single NN and PCA-NN are SLFNNs trained using the 

Levenberg-Marquardt algorithm with regularisation and early stopping. Regularisation and 

early stopping are necessary for this case study due to the complexity of the system and 

measurement noises in the data. Especially in this case study, significant regularisation was 

required (regularisation parameter of 0.5) to achieve good generalisation. Sigmoidal and linear 

activation functions are applied to the hidden and output layers respectively. Cross validation 

with the RMSE on testing data is used to select the number of hidden neurons. In the SFR 

algorithm, the method is the same as SFA-NN except that linear regression is used instead of a 

neural network. The soft sensor prediction results on unseen validation data, for each of the 

applied methods, are shown in Table 3.2 with the best results highlighted in bold. The proposed 

method shows significant improvement in generalisation performance over the other methods.  

Table 3.2 – Soft sensor prediction performance for butane concentration on unseen 

validation data  

Methods RMSE R2 Hyper-parameters 

Single NN 0.0896 0.7249 d = 10, #Inputs = 77 

PCA-NN 0.0831 0.7634 d = 10, k = 7   

SFR 0.0855 0.7493 d = 10, M = 18  

PLSR 0.0863 0.7448 d = 10, k = 36  

SFA-NN 0.0802 0.7795 d = 10, M = 18  

 

Comparing SFR with SFA-NN demonstrates the needs for nonlinear regression methods for 

more complex processes as linear regression becomes insufficient for accurate predictions. 

Another interesting result to point out is that the performance of PCA-NN is second to the 

proposed method, showing the merit of employing latent variable methods as a precursor to a 

neural network. However, SFA-NN has better performance than PCA-NN, highlighting the 

advantages of using SFA over PCA. The R2 on training and testing data for PCA-NN is 0.6950 

and 0.6811 respectively, showing that, despite the good generalisation for this method, the 

selected number of PCs do not retain enough information for good predictions. For comparison, 

the training and testing R2 for SFA-NN is 0.9289 and 0.9224 respectively, demonstrating that 

even better model performance can be achieved across different data sets, ensuring better 

generalisation performance. This issue arises from the use of the scree plot since it appears that 

the scree plot underestimates the number of PCs when the number of inputs is large (e.g. in the 

d = 10 case) leading to insufficient relevant information to produce good predictions. Whereas 
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in SFA, although the scree plot also gives a relatively small number of SFs, this seems beneficial 

for SFA because too many inputs contain more noise and less relevant information. While in 

PCA, retaining more PCs means retaining more variance and so more relevant information. 

This highlights that SFA can capture more relevant information, and so produce better 

predictions, with fewer latent variables.  

As an additional way to verify the soft sensor performance, visual inspection of these 

predictions on the unseen validation data can be performed through Figures 3.12 to 3.14. These 

figures demonstrate that the proposed method is better than other methods shown in Table 3.2.  

 

 

Figure 3.12 – Normalised butane concentration predictions on unseen validation data for 

the proposed SFA-NN method 

 



45 

 

 

Figure 3.13 – Normalised butane concentration predictions on unseen validation data for 

PCA-NN 

 

 

Figure 3.14 – Normalised butane concentration predictions on unseen validation for SFR  

When comparing PCA and SFA in this case study, time lagged inputs are included to bring 

in the dynamics and improve model performance, however, this could blur the differences 

between PCA and SFA as one of the key benefits of SFA is to capture slowly varying dynamics. 

Therefore, SFA-NN was compared with PCA-NN with no time lagged inputs included (i.e. d = 

0). These results are displayed in Table 3.3. The RMSE using SFA-NN is 6.15% better than 
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PCA-NN when d = 0, showing that including time lagged inputs into the model does not blur 

the differences between the two methods and that SFA-NN is the better method in both cases. 

Table 3.3 – Comparison of SFA-NN with PCA-NN for d = 0 on the unseen validation data  

Methods RMSE R2 Hyper-parameters 

PCA-NN 0.1190 0.5142 d = 0, k = 6 

SFA-NN 0.1119 0.5707 d = 0, M = 6 

 

To assess the merit of the scree plot for dominant slow feature selection, the generalisation 

performance for SFA-NN and SFR using the scree plot was compared with another slow feature 

selection method, the slowness of input reconstructions criterion proposed by Shang et al. 

(2015c). The results of this comparison are displayed in Table 3.4. For SFA-NN, the proposed 

scree plot gave an improvement in RMSE on validation data of 2.58% and for SFR, a small 

improvement of 0.23%. This shows that the scree plot method produces better generalisation 

for the proposed SFA-NN method and SFR. A key point to note here is that in both cases, the 

difference in RMSE is very small, highlighting that the selection of dominant SFs is not too 

crucial. The benefit of the scree plot is that it gives a lower number of dominant SFs, 18 versus 

61, especially for problems like this where many time lagged inputs are considered and so the 

input matrix for the neural network is large. Retaining a lower number of dominant SFs further 

reduces model complexity as well as reducing noise. Additionally, the scree plot is simple and 

does not require further calculations as is the case with the slowness of input reconstructions 

method. The subjective nature of the scree plot remains its biggest potential downfall, however, 

with the small differences in RMSE shown in Table 3.4, this does not prove a significant issue.  

Table 3.4 – Comparison of RMSE on unseen validation data using different dominant slow 

feature selection methods  

SF Selection Method RMSE for SFA-NN RMSE for SFR M 

Scree Plot 0.0802 0.0855 18 

Slowness of Input 

Reconstruction Criterion 
0.0823 0.0857 61 
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3.5 Case Study 2: An Industrial Polymerisation Process 

In this section, a second real industrial process is used to further demonstrate the 

performance of the proposed method and show that model robustness can be improved in a 

variety of problems. The following polymerisation process poses different challenges when 

compared with the first process, in particular the very large number of process inputs and the 

relatively small amount of data available.  

3.5.1 Process Description 

The process used in this section is based on an industrial propylene polymerisation process 

based in China, which has been used in previous work using bootstrap aggregated neural 

networks (Zhang et al., 2006). Figure 3.15 shows a simplified diagram of the region of interest 

in the process consisting of two continuously stirred tank reactors (CSTR) and two fluidised 

bed reactors (FBR). The feed to the first CSTR’s feed contains a mixture of propylene, 

hydrogen, and a catalyst. An important quality variable is the melt index (MI) of polypropylene 

in the reactor, which is affected by variables such as the composition of reactant, catalyst 

properties and reactor temperature. The hydrogen in the feed can regulate the molecular weight 

of propylene and adjusting the hydrogen in the feed rate can be used to control the MI of 

polypropylene. The MI is difficult to measure because it requires offline analysis that leads to 

measurements being recorded every two hours. This infrequent sampling and time delay in 

measurement leads to suboptimal control of the MI. Being able to produce a soft sensor from 

process variables that are frequently measured with minimal delay will yield improvements in 

product quality through better control of the MI. 
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Hydrogen
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Catalyst Hydrogen
Hydrogen Hydrogen

PP

D202
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FBR

D204

Gas phase

FBR  

Figure 3.15 – A simplified diagram of the industrial polymerisation process (Zhang et al., 

2006). 
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3.5.2 Modelling of MI 

The data provided covered 31 days with MI measurements in reactors 1 and 4 for every 2 

hours, and measurements of 30 process variables for every half an hour. For this case study, a 

soft sensor is built for the MI in reactor 1. The data is split into 50% for training, 30% for testing 

and 20% for unseen validation.  

Once again, a dynamic model was used for the modelling to capture time delayed 

correlations to improve predictions. The dynamic model form is shown in Equation (3.18). 

 

 �̂�(𝑡) = 𝑓( 𝑢1(𝑡), … , 𝑢30(𝑡), 𝑢1(𝑡 − 1), … , 𝑢30(𝑡 − 1), … , 𝑢1(𝑡

− 𝑑),… , 𝑢30(𝑡 − 𝑑))  

(3.18) 

where ui is the ith process output, t is the discrete time, and �̂� is the predicted output. 

The large number of process inputs, with the addition of time lagged inputs for the dynamic 

model, leads to poor model performance. So, utilising the dimensionality reduction capability 

of latent variable methods can improve model prediction performance. 

As with the first case study, soft sensor models were created for values of d, from 0 to 5 in 

this case, for the proposed method and the three other methods that were used for comparison. 

The first 6 extracted SFs for the training and testing data set with d = 3 are presented in Figure 

3.16. As with the debutaniser case study, this shows how the variation and levels of noise 

increase as the slow feature number increases. 
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Figure 3.16 – The first 6 extracted slow features on the training and testing data set for the 

polymerisation case study 

 

Table 3.5 – Soft sensor prediction results of melt index on the unseen validation data set 

Methods RMSE R2 Hyper-parameters 

Single NN 16.7372 0.9489 d = 0, #Inputs = 30 

PCA-NN 20.4307 0.9239 d = 4, k = 31 

PLSR 18.2818 0.9390 d = 3, k = 11 

SFR 16.2411 0.9519 d = 4, M = 17  

SFA-NN 15.5195 0.9561 d = 3, M = 15 

 

Table 3.5 shows the prediction results on the unseen validation data set for each of the five 

methods. The proposed method produces the best generalisation performance (highlighted in 

bold) and with the fewest number of latent variables, leading to a reduction in model 

complexity. SFR is the second-best method for this case study, likely due to the fact that the 

process does not have much of a nonlinear relationship between the quality variable and process 

variables, especially when compared with the first case study. However, the difference of 4.54% 

is still significant enough to justify the use of a neural network. Figures 3.17 to 3.20 illustrate 

the predictions on the unseen validation data against the actual melt index data, for four of the 

best methods, to further verify the results in Table 3.5. 
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Figure 3.17 – Melt index soft sensor predictions on the unseen validation data set for the 

proposed SFA-NN (units omitted for confidentiality) 

 

 

Figure 3.18 – Melt index soft sensor predictions on the unseen validation data set for PCA-

NN (units omitted for confidentiality) 
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Figure 3.19 – Melt index soft sensor predictions on the unseen validation data set for SFR 

(units omitted for confidentiality) 

 

 

Figure 3.20 – Melt index soft sensor predictions on the unseen validation data set for single 

NN (units omitted for confidentiality) 

As with the first case study, the scree plot for dominant SF selection is compared with the 

slowness of input reconstructions criterion, with these results presented in Table 3.6. 
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Table 3.6 – RMSE on the unseen validation data set with two dominant slow feature 

selection methods  

SF Selection Method RMSE for SFA-NN RMSE for SFR M 

Scree Plot 15.5195 16.2411 17 

Slowness of Input 

Reconstructions Criterion 
18.8657 16.6463 59 

 

In this case, the scree plot selection method gives better generalisation for both SFA-NN and 

SFR, with improvements in RMSE of 17.7% and 2.43% respectively, when compared with the 

selection method using slowness of input reconstructions. The reduction in RMSE is much 

larger for SFA-NN in this case study compared with the previous one. When comparing the 

number of dominant SFs of both selection methods, it seems that slowness criterion retains too 

many SFs, especially for processes such as this with many inputs and time lags included.  

3.6 Conclusions 

A novel method for enhancing soft sensor performance through integrating slow feature 

analysis and neural networks is proposed in this paper. Unlike other applications of SFA for 

soft sensor development, the use of neural networks with SFs as inputs can improve 

generalisation performance of soft sensors for complex processes where nonlinear relationships 

between input and output variables are present. The proposed method achieves this through 

utilising dynamic linear SFA to capture underlying dynamic trends in the data and then using a 

neural network as a more powerful machine learning technique to model the nonlinear 

relationships between the dominant SFs and product quality variables. This overcomes the 

pitfalls of other methods that make use of linear regression with SFA (SFR), where the 

prediction results are often insufficient for complex nonlinear processes.  

The proposed SFA-NN method is applied to soft sensor development for two industrial 

processes: inferential estimation of butane concentration in a debutaniser column, and 

inferential estimation of polymer melt index in an industrial polymerisation process. In both 

case studies, SFA-NN is compared with PCA-NN, a single NN, traditional SFR and PLSR. The 

results on these case studies demonstrate the superior generalisation performance of the 

proposed method. Comparing with SFR, the proposed SFA-NN method produced a reduction 

in RMSE on the unseen validation data of 6.40% and 4.45% for case studies 1 and 2 

respectively. This demonstrates the need for a nonlinear technique such as neural networks to 

deal with the nonlinearity in complex industrial processes. Comparing with single NN, SFA-
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NN led to a reduction in RMSE on the unseen validation data of 11.1% and 7.28% for the first 

and second case studies respectively. This result shows the improvement in generalisation 

performance produced when dynamic SFA is used prior to neural network training. This 

improvement occurs due to SFA capturing slow varying trends in the data that express integral 

process dynamics and only retaining a reduced number of SFs that contain relevant information 

without much noise.  

Linear SFA has limitations in situations where the underlying driving forces are nonlinear 

and so extensions of the proposed method can be explored, such as utilising more complex 

versions of SFA instead of linear SFA, to further improve generalisation capability for chemical 

process applications. This leads into the next chapter which expands linear SFA to a nonlinear 

form: kernel SFA. 
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Chapter 4. Using Dynamic Kernel Slow Feature with a Neural Network 

to Further Improve Soft Sensor Performance 

4.1 Introduction 

A limitation of SFA applications is in the use of linear SFA with its inability to truly extract 

driving forces behind data in nonlinear situations. A solution to this problem is to extend SFA 

to a nonlinear version using kernels. One of the main benefits of incorporating kernels is that a 

nonlinear mapping can be carried out without the mapping being explicitly calculated, saving 

computational effort (Schölkopf et al., 1998). Using kernels to improve multivariate statistical 

methods is nothing new and kernel PCA (Schölkopf et al., 1998) has been widely and 

effectively applied to soft-sensing (Li et al., 2012; Yuan et al., 2014; Chen et al., 2018; Tang 

et al., 2018). Incorporating a kernel into SFA has been applied for process monitoring (Zhang 

et al., 2017) and fault detection (Zhang et al., 2015b), but it is untested for soft-

sensing/predictive modelling. 

In addition to pre-processing techniques, including external dynamics into the model can 

account for time-lagged correlations between inputs and output, leading to improved model 

performance. 

In this work, a novel process modelling method for soft sensor development is proposed by 

incorporating dynamic kernel SFA (KSFA) with a neural network, with the aim of improving 

soft sensor robustness and accuracy. First, dynamic KSFA is applied to the process inputs to 

extract nonlinear SFs. Then, a reduced number of SFs are used as the inputs to a neural network. 

The proposed method is applied to a numerical example and a benchmark fed-batch penicillin 

process to demonstrate its effectiveness when compared with other similar techniques, 

including KSFA with linear regression. 

The chapter is organised into the following sections: the dynamic KSFA algorithm is 

described in Section 4.2, the proposed soft sensor design method, named DKSFANN, is 

presented in Section 4.3. Section 4.4 contains the two case studies: a nonlinear numerical 

example and a benchmark fed-batch penicillin process simulation. The conclusions of the work 

are presented in Section 4.6. 
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4.2 Dynamic Kernel Slow Feature Analysis 

4.2.1 Kernel Slow Feature Analysis 

As described in Chapter 3, the solution to linear SFA (LSFA) defines the function g(x) as 

simply a linear function with weights W: 

 

 𝑠(𝑡) = 𝑾𝒙(𝑡) . (4.1) 

 

LSFA fails to extract the underlying trends of a data set when the relationship between the 

data and the underlying trends is nonlinear. An extension of the linear algorithm is to have g(x) 

be a nonlinear function f, so that nonlinear SFs can be extracted: 

 

  𝐬(𝑡) = 𝒇(𝐱(𝑡)) . (4.2) 

 

One way to determine the nonlinear mapping f is to employ a nonlinear expansion, such as 

a quadratic expansion. However, such a polynomial expansion will only be effective in certain 

situations. Therefore, a more effective approach is to employ the kernel trick by introducing 

kernel principal component analysis (KPCA) into the SFA algorithm to map the inputs into a 

high-dimensional feature space (Zhang et al., 2015b), thus creating a KSFA algorithm. The key 

benefit of the kernel trick is that it is not necessary to determine the nonlinear mapping f 

explicitly, the only required calculations come from the dot products in the use of the kernel 

function on the input space (Schölkopf et al., 1998). 

KPCA is applied to the inputs x(t), using a kernel function k, to extract a higher dimension 

of kernel principal components K(t)’, which are then sphered to meet the SFA constraints (3.2)-

(3.4), giving K(t). This then transforms Equation (4.2) to a linear combination of a weights 

vector W and the normalised kernel principal components: 

 

 𝒔(𝑡) = 𝑾𝑲(𝑡) . (4.3) 

 

The problem has now been reformulated to a linear one, just like Equation (4.1), except that 

now the nonlinearity is captured through the kernel. The optimisation problem (3.1) is therefore 

to optimise the weights such that 
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〈�̇�𝑗
2〉 = 𝑾𝑻〈�̇��̇�𝑇〉𝑾 (4.4) 

 

is minimal, where 〈�̇��̇�𝑻〉 is the covariance matrix of �̇�, calculated as follows: 

 

〈�̇��̇�𝑻〉 =
∑ (𝑃

𝑖=1 �̇�𝑖 − 𝜇�̇�)(�̇�𝑖 − 𝜇�̇�)

𝑁 − 1
 , 

(4.5) 

 

where N is the number of data points, 𝜇�̇� is the mean of �̇�, and �̇� is the first order derivative 

of K, which is calculated using a first order difference approximation due to the discrete 

sampling interval h used in the sampled process data, that is: 

 

 

�̇�(𝑡) ≈
𝐊(𝑡) − 𝐊(𝑡 − ℎ)

ℎ
 . 

(4.6) 

 

This temporal derivative approximate follows the use of it in other works on SFA (Shang et 

al., 2015c; Huang et al., 2020; Jia et al., 2020; Wang et al., 2021b; Xu and Ding, 2021). 

This optimisation problem can be reduced to the following eigenvalue problem, which is 

easily solved by performing singular value decomposition (SVD) on 〈�̇��̇�𝑇〉: 

 

〈�̇��̇�𝑇〉 = 𝑾𝑻𝜴𝑾  , (4.7) 

 

where 𝛺 is a diagonal matrix of the eigenvalues, which are the optimal values of the objective 

function, corresponding to the eigenvectors which equate to the weight vectors W. 

Therefore, the slow feature outputs can be calculated using the kernel principal components 

and the derived weights vector via Equation (4.3). There is a question of the choice of kernel 

function k, as certain functions lead to better extraction of the driving forces than others. 

Schölkopf et al. (1998) discussed how Mercer’s theorem states that k must be a continuous 

kernel of a positive integral operator for there to be a situation where the kernel function acts 

as a dot product. To satisfy Mercer’s theorem, three main kernel functions are typically used: 
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Polynomial:  𝒌(𝑎, b) = 〈𝑎, b〉𝛿   , (4.8) 

  

Sigmoidal:  𝒌(𝑎, b) = tanh(𝛽0〈𝑎, b〉 + 𝛽1)  , (4.9) 

  

Gaussian:  𝒌(𝑎, b) = exp (−
‖𝑎−𝑏‖2

2𝜎2 )  , (4.10) 

 

where δ is the degree of the polynomial, 𝛽0 and 𝛽1are the slope and intercept for the 

sigmoidal function respectively, and 𝜎 is the standard deviation that determines the width of 

the Gaussian kernel. These parameters are user specified prior to using the function. The 

polynomial and Gaussian kernels always satisfy Mercer’s theorem, while the sigmoidal kernel 

only does so for certain values of 𝛽0 and 𝛽1 (Lee et al., 2004b). There appears to be no certain 

method for selecting the appropriate kernel function and it can be difficult to choose, however, 

prior knowledge of the process can help the decision. Sprekeler et al. (2014) used high order 

polynomials for the kernel, but they do state that radial basis functions (Gaussian) can be more 

robust, depending on the input data. The downfall of the Gaussian kernel is that it is often more 

computationally expensive than polynomials, but this also depends on the input data. The 

Gaussian kernel is the most widely used in the process systems engineering field (Yuan et al., 

2014; Zhang et al., 2015b; Zhang et al., 2018a) and so it is also the choice for the proposed 

method in this paper. However, the optimal choice of kernel function remains an open problem. 

4.2.2 Dynamic Kernel Slow Feature Analysis 

Often it is assumed that the current sample of a process variable is independent from previous 

samples, however, industrial processes commonly have dynamic characteristics where the 

correlations between process inputs and outputs have time lags. Therefore, these dynamic 

correlations should be considered by including time lagged samples into the input data matrix, 

up to a chosen time lag, d. So, the augmented input vector at time t is: 

 

 𝐱𝑑(𝑡) = [𝐱(𝑡)  𝐱(𝑡 − 1) ⋯ 𝐱(𝑡 − 𝑑)] ,  

 

(4.11) 

where 𝐱(𝑡) is a vector of inputs at time t.  

Suppose X = [x(1)T x(2)T … x(N)T]T is a matrix of process variables with N samples, then 

the augmented matrix Xd is obtained by adding the past d values of the process variables: 
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𝐗𝑑 = [

𝐱𝑑(𝑑 + 1)
𝐱𝑑(𝑑 + 2)

⋮
𝐱𝑑(𝑁)

] = [

𝐱(𝑑 + 1) 𝐱(𝑑)
𝐱(𝑑 + 2) 𝐱(𝑑 + 1)

⋯ 𝐱(1)
⋯ 𝐱(2)

⋮ ⋮
𝐱(𝑁) 𝐱(𝑁 − 1)

⋮ ⋮
⋯ 𝐱(𝑁 − 𝑑)

]  
(4.12) 

 

KSFA is extended to dynamic KSFA (DKSFA) by using the matrix Xd to perform KSFA 

(Zhang et al., 2015b). The selection of d can be carried out through correlation analysis, cross 

validation, or utilising process knowledge. 

4.3 Soft-sensing Using Kernel Slow Feature Analysis and Neural Network 

Although KSFA has been incorporated into several recent works on process monitoring 

(Zhang et al., 2017) and process fault detection (Zhang et al., 2015b; Zhang et al., 2018a; Zhang 

et al., 2021), the effect of the nonlinear SFs from KSFA as inputs to a nonlinear regression 

model has not yet been investigated. Soft sensor design differs from process monitoring and 

other process applications by using regression/machine learning-type methods to create 

predictions of difficult to measure key product quality variables through other easy to measure 

process variables. KSFA improves soft sensor performance in complex cases where other 

techniques are poor by extracting nonlinear driving forces in the data, which provides important 

process information to the regression model that is not present from the original input data. By 

extracting slow varying features, the effect of noise is also reduced. By extracting nonlinear 

driving forces in the data, with lower levels of noise than the process inputs, and using them as 

the model inputs as opposed to just the original noisy process variables, better soft sensor 

predictions are expected. One potential drawback of using kernel slow feature analysis is that 

the driving forces are not extracted effectively, and so misleading information is input to the 

model. Furthermore, selecting the correct hyper-parameters to successfully extract the driving 

forces is difficult, especially with the multiple hyper-parameters involved in KSFA. 

 Soft sensors and other types of data-driven models can be created by using DKSFA as a 

precursor to a regression technique. Typical choices of a regression technique are linear 

regression, for situations where the relationship is linear, and neural networks (Bishop, 1995), 

for when the relationship is nonlinear. The approach in this paper uses a neural network so that 

it can produce more accurate models in complex nonlinear industrial processes. The soft sensor 

design method based on DKSFA with neural network (DKSFANN) is described in the 

following sequence: 
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Model Training: 

1. Normalise a training data matrix of n inputs to zero mean and unit variance and then 

obtain the dynamic matrix in Equation (4.12) for a given d. 

2. Using a Gaussian kernel function with a kernel width σ, apply KPCA to this 

normalised input matrix to extract L kernel principal components in the matrix K(t)’, 

where L ≥ n. The application of KPCA, unlike linear PCA, allows for the extraction 

of a higher number of principal components (PCs) than the input dimensionality, 

which is necessary to effectively extract nonlinear driving forces from SFA. The 

parameters σ and L are both determined by cross validation on testing data. 

3. Sphere K(t)’ to give K(t), and then calculate the covariance matrix 〈�̇��̇�𝑇〉. 

4. Solve the eigenvalue problem in Equation (4.7) by performing SVD on 〈�̇��̇�𝑇〉 to 

calculate the weights vector W. 

5. Calculate the SFs s(t) from Equation (4.3). 

6. Determine the number of dominant SFs M by cross validation. The use of other 

methods to determine the dominant SFs is discussed in Section 3.3. 

7. Use the M dominant SFs as the inputs to a single hidden layer feed-forward neural 

network (SLFNN). A SLFNN is used because Cybenko (1989) proved that a SLFNN 

using a sigmoidal activation function can approximate any nonlinear function, with 

a sufficient number of hidden neurons.  

8. The neural network is trained using the Levenberg-Marquardt algorithm with 

regularisation and a sigmoidal activation function is used in the hidden layer. The 

optimal number of hidden neurons NH is found by cross validation. 

9. The output of the neural network is the soft sensor prediction (�̂�). 

Model Testing: 

i. Collect new input data and normalise it using the same mean and variance as used 

for the training data in model training step 1. Then augment the matrix with time lag 

d. 

ii. Compute the kernel principal components of dimension L on the new data using the 

eigenvectors determined from KPCA in training step 2, with the same Gaussian 

kernel of width σ. 
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iii. Sphere the kernel principal components using the same sphering matrix as in training 

step 3. 

iv. Calculate the new SFs from Equation (4.3), using the same weights W, as computed 

in model training step 4. 

v. Apply the new M SFs to the previously trained neural network with NH hidden 

neurons to produce a soft sensor prediction on the new data. 

The above steps describe the creation of a soft sensor using DKSFANN. A basic summary 

of the key steps is illustrated in Figure 4.1. 

 

 

Figure 4.1 – Simple diagram of the DKSFANN soft sensor modelling data flow 

4.4 Case Study 1 – Numerical Example 

In the following two sections, two case studies are used to demonstrate the performance of 

the proposed method in comparison with several other similar methods. One case study is a 

numerical example based on sine functions so that it can best demonstrate the theoretical 

advantages of KSFA, as well as evaluate the regression performance. The other case study is a 

benchmark simulated industrial fed-batch penicillin process which is used to evaluate the 

proposed method for industrial applications.  

For this first case study, a numerical example with 3 inputs signals and 1 output signal is 

considered. The inputs were created by making nonlinear functions of 2 driving forces: 

sin(πt/250) and sin(πt/50). The aim is for KSFA to extract the driving forces as the SFs for a 

nonlinear situation where LSFA cannot. The inputs signals are described by the following: 

 

 
𝑥1(𝑡) = 1.5𝑒sin (

𝜋
250

𝑡) − 𝑒sin(
𝜋
50

𝑡) + 𝑣1 , (4.13) 

 

 𝑥2(𝑡) = 𝑒−sin (
𝜋

250
𝑡) + 1.5𝑒−sin (

𝜋
50

𝑡) + 𝑣2 , 
(4.14) 

 

 
𝑥3(𝑡) = 3𝑒−sin(

𝜋
50

𝑡) + 𝑒−sin (
𝜋

250
𝑡) + 𝑣3 , (4.15) 
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where 𝑥1, 𝑥2 and 𝑥3 are the input functions, t is the discrete time, and 𝑣1, 𝑣2 and 𝑣3 are 

random Gaussian noise. 

 

 

Figure 4.2 – Input signals for the numerical example 

The output signal is a nonlinear dynamic function of the driving forces, with added random 

noise 𝑣4: 

 

 𝑦1(𝑡) = 3 sin (
𝜋

50
𝑡) + 2sin (

𝜋

250
(𝑡 − 2))2sin (

𝜋

50
(𝑡 − 2))2

+ 1.5sin (
𝜋

250
(𝑡 − 1))2 + 𝑣4  . 

(4.16) 

 

500 samples were created with the discrete time t in the range [0, 500]. The random noises 

added are as follows: 𝑣1= N(0,0.035), 𝑣2=N(0,0.035), 𝑣3=N(0,0.075), 𝑣4=N(0,0.01). Figure 4.2 

illustrates the input signals from Equations (4.13) to (4.15), whilst Figure 4.3 shows the output 

from Equation (4.16). 
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Figure 4.3 – Output signal for the numerical example 

4.4.1 Extraction of Driving Forces 

The main reason for using KSFA is for the extraction of the driving forces behind a set of 

input signals in nonlinear cases where LSFA fails to do so effectively. To evaluate whether the 

extracted SFs are equivalent to the driving forces, Pearson correlation coefficients (R) are 

calculated, where a coefficient of 1 indicates a perfect match between the slow feature and 

driving force. For both KSFA and LSFA, the correlation coefficients were calculated for this 

numerical example with noise to assess whether the driving forces behind the input signals, 

sin(πt/250) and sin(πt/50), were successfully extracted in the SFs. The correlation coefficients 

for KSFA and LSFA are presented in Table 4.1. These results show that the correlation 

coefficients are higher for KSFA, for both sin(πt/250) and sin(πt/50), when compared with 

LSFA. 

The significance of the improvements in correlation coefficient is demonstrated through 

Figure 4.4, which provides an illustration of the comparison between the extracted driving 

forces for KSFA and LSFA. This confirms the results exhibited through the correlation 

coefficients and shows much better extracted driving forces from KSFA than LSFA. The lack 

of exact driving force extraction (correlation coefficient equal to 1) when using KSFA is down 

to the noise in the input signals. If noise was not present, perfect extraction of the driving forces 

is achieved, as illustrated in Figure 4.5. 
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Figure 4.4 – Comparison of the driving forces extracted in the first two slow features for 

KSFA and LSFA 

 

 

Figure 4.5 – Comparison of the driving forces extracted in the first two slow features for 

KSFA and LSFA, if no noise is present in the input signals 

 

 

Table 4.1 – Correlation coefficients (R) between the extracted and true driving forces  

Driving force KSFA LSFA 

sin(πt/250) 0.9965 0.9721 

sin(πt/50) 0.9961 0.9706 

 

4.4.2 Regression Results 

With KSFA demonstrating effective extraction of the underlying driving forces in nonlinear 

cases where LSFA cannot, the attention now turns to how this can be used to improve regression 

performance. By extracting nonlinear driving forces/trends behind the data with reduced noise, 

KSFA can input this key information to the regression technique, leading to improved 

prediction performance. Without the SF extraction, the inputs to regression do not contain as 



64 

 

much useful information that is also potentially distorted by noise. To demonstrate this 

regression performance, dynamic KSFA was paired with both a SLFNN (DKSFANN), as 

described in Section 4.3, and linear regression (DKSFR). In these models, the extracted driving 

forces from KSFA are used as the inputs to the regression technique. Note that lagged input 

variables are used in the SF extraction step, so the models can be considered as dynamic models. 

The reason for using both linear regression and a neural network after KSFA is to show that a 

nonlinear based regression method, such as a neural network, is often necessary in nonlinear 

cases. For example, in this numerical case study, the output signal is a nonlinear dynamic 

function of the two driving forces. Therefore, even when KSFA extracts the driving forces in 

the SFs, linear regression will not be able to capture the relationship between these SFs and the 

output signal, whereas the neural network will typically be able to. Other similar techniques 

were included for comparison: dynamic partial least squares regression (DPLSR), dynamic 

principal component regression (DPCR), dynamic linear slow feature regression (DLSFR), 

dynamic kernel PCR (DKPCR), dynamic kernel SFR (DKSFR), dynamic single hidden layer 

feedforward neural network (DNN), dynamic principal component analysis with NN 

(DPCANN), dynamic linear slow feature analysis with NN (DLSFANN), and dynamic kernel 

principal component analysis with a neural network (DKPCANN). All these methods involved 

applying the pre-treatment technique (SFA, PCA etc.), when applicable, to the normalised input 

signals and then using the outputs of the pre-treatment technique as the inputs to the regression 

method, either linear regression or a neural network. For example, for DPCANN, the input 

matrix is augmented to include external dynamics in the form of previous time samples for the 

inputs. Then PCA is applied to this augmented matrix and the first k principal components are 

used as the inputs to a neural network. Selection of k PCs is done by cross validation to match 

the method used for the selection of M for KSFA-based methods. The scree plot was not 

employed in this chapter because there were multiple hyperparameters for KSFA that are 

dependent and so the scree plot changes as the other parameters, such as σ, changes. 

Additionally, all the above techniques utilise external dynamics in their inputs, in the same 

method as for dynamic KSFA, as described in Section 4.2.2. 

The neural networks are trained using the Levenberg-Marquart algorithm with a 

regularisation parameter of 0.1 to help in preventing overfitting. The PCA based techniques 

provide a good comparison with the SFA based techniques because the KPCA/PCA layer 

performs feature extraction, as does the KSFA/SFA layer.  

To test the effect of the different dynamic approaches, a second order NARX neural network 

was developed. This NARX network uses lagged inputs and output and the network inputs and 
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is trained to create one-step ahead predictions. One-step ahead predictions are given in the 

following form: 

 

 �̂�(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2) , 𝑥1(𝑡 − 1), 𝑥2(𝑡 − 1), 𝑥3(𝑡 − 1), 𝑥1(𝑡

− 2), 𝑥2(𝑡 − 2), 𝑥3(𝑡 − 2)) , 

 

(4.17) 

where �̂�(t) is the prediction of the output y at time t, and x1 to x3 are the three inputs. 

For model validation, the NARX network is assessed in simulation mode to create multi-

step ahead predictions to form a long-range predictive model. One step ahead predictions are 

not a fair comparison to the other techniques because lagged outputs are not included in those 

models, only lagged inputs are used. Therefore, when comparing any techniques with the 

NARX neural network, only the multi-step ahead predictions on the validation data provide a 

fair comparison because they are long-range predictions (i.e., no output values included as 

model inputs). The multi-step ahead predictions, or long-range predictions, of the NARX neural 

network are calculated as follows: 

 

 �̂�(𝑡) = 𝑓(�̂�(𝑡 − 1), �̂�(𝑡 − 2) , 𝑥1(𝑡 − 1), 𝑥2(𝑡 − 1), 𝑥3(𝑡 − 1),  𝑥1(𝑡

− 2), 𝑥2(𝑡 − 2), 𝑥3(𝑡 − 2)) . 

 

(4.18) 

The 500 samples created for the input and output signals were split into subsets. The first 

60% for training, the next 20% for testing and the final 20% for unseen validation data. Training 

data is used to create the models (e.g. calculate the eigenvectors in PCA and SFA or train the 

weights of neural network). Testing data is used to determine the optimal hyper-parameters, 

such as the number of hidden neurons (NH), via cross validation on the root mean squared error 

(RMSE) of the testing data. The unseen validation data take no part in the creation of the model 

and are only used as a data set to properly test the model’s generalisation performance. To 

assess how including the dynamics affect the model performance for each technique, models 

were created for time lags, d, of 0 to 2, with the optimal d selected by cross validation on the 

testing data as well. 

The results of the model performance for each technique are presented in Table 4.2. The R2 

and RMSE values for training, testing and unseen validation data sets are presented, although 

only the RMSE values on the unseen validation data are used to assess which technique 

produces the best model. The R2 is included as it provides a performance metric that can be 

more easily interpreted as to how good the model performance actually is. The results show 
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that DKSFANN produces the best model for this case study, with a validation RMSE that is 

31.7% lower than the second-best technique, DKPCANN. The significance of this difference 

can be shown by visually comparing the predictions on the validation data, as illustrated in 

Figure 4.7 for DKSFANN and Figure 4.8 for DKPCANN. Often when using only the validation 

RMSE as the model performance metric, poor performance on the testing or training data would 

not be factored into selecting the best model and so it is important to check the RMSE on 

training and testing to check that the performance on validation data was not in fact by a model 

with poor generalisation. Looking at the performance on training and testing data for 

DKSFANN shows that this model gives good performance across all data sets. In comparison 

with DKPCANN, the training and testing RMSE values for DKSFANN are 13.6% and 42.1% 

lower respectively. This further adds to the conclusion that the DKSFANN model is 

significantly better than the compared models. Theoretically, DKPCANN and DKSFANN are 

very similar; they both incorporate external dynamics using the same method, both use a kernel-

based feature extraction algorithm based on eigenvalues, and both have single hidden layer 

neural networks as the regression technique. However, KSFA can almost perfectly extract the 

driving forces behind the input signals (Figure 4.4), in the presence of noise, leading to more 

important information being supplied to the neural network since the output is derived from 

these driving forces. This leads to improved model generalisation. In comparison, the PCs 

extracted from KPCA contain some kind of sine-based function (Figure 4.6), however, it is not 

a good representation of the driving forces as extracted by KSFA, accounting for the lower 

generalisation performance. 
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Figure 4.6 – First 4 extracted features from KPCA for the DKPCANN model 
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Table 4.2 – Regression results for the numerical case study 

 Training Testing Validation  

Method R2 RMSE R2 RMSE R2 RMSE 
Hyper 

parameters 

DLR 0.8452 0.3928 0.0015 2.2973 0.0202 1.5001 d = 2 

DPLSR 0.7611 0.4880 0.0317 1.1566 0.6418 0.7508 d = 2, k = 1 

DPCR 0.7073 0.5401 0.1257 0.8890 0.7266 0.6559 d = 2, k = 1 

DLSFR 0.0580 0.9983 0.1056 0.8985 0.0223 1.2525 d = 1, M = 1  

DKPCR 0.9925 0.0867 0.9276 0.2135 0.9804 0.1527 
d = 2, k =15, σ = 

4.5, L = 15 

DKSFR 0.9917 0.0910 0.9424 0.1906 0.9907 0.1158 
d = 2, M = 10, σ 

= 4.5, L = 15 

DNN 0.9616 0.1957 0.4031 0.6133 0.9481 0.2859 d = 2, NH = 35 

NARX NN* 0.9626 0.1227 0.9707 0.1382 0.4890 0.9063 d = 2, NH = 5 

DPCANN 0.7713 0.4774 0.7387 0.4058 0.8456 0.4929 
d =1, k = 3, NH 

= 26 

DLSFANN 0.9031 0.3107 0.7046 0.4315 0.8375 0.5057 
d = 1, M =2, NH 

= 32 

DKCPANN 0.9969 0.0557 0.9318 0.2073 0.9919 0.1132 

d = 2, k = 8, σ 

=6.5, NH = 7, L 

= 12 

DKSFANN 0.9977 0.0481 0.9771 0.1200 0.9962 0.0773 

d = 2, M = 5, σ 

=5, NH = 35, L 

= 15 

*NARX NN uses 1 step ahead predictions for training and testing (incorporates output 

signal, which the other methods do not), therefore the metrics for training and testing are not 

fair to compare to other methods. Only comparing the multistep ahead predictions on validation 

data using the NARX NN is fair. 
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Figure 4.7 – Predictions on unseen validation data using DKSFANN for the numerical case 

study 

 

Figure 4.8 – Predictions on unseen validation data using DKPCANN for the numerical 

case study 

Another result worth noting is that DKSFR is the best of the linear regression-based models, 

particularly when compared with the non-kernel techniques. Even comparing between the two 

kernel techniques, the validation RMSE of DKSFR is 24.2% lower than that of DKPCR. As 

with the corresponding comparison of the NN-based techniques, the improvement of DKSFR 
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over DKPCR (and the other LR-based techniques) can be accounted for by the extraction of the 

underlying driving forces by KSFA, which provide more meaningful, less noisy information to 

regression than the original input signals. 

One more important comparison is between the KSFA-based and the SFA-based models, as 

this comparison shows the importance of correctly extracting underlying driving forces behind 

data and the impact this can have on model performance. DKSFR outperforms DLSFR with a 

validation RMSE that is 90.8% lower, while DKSFANN has a validation RMSE 84.7% lower 

than DLSFANN. Therefore, on average, KSFA-based methods improve model accuracy by 

87.8% compared with LSFA-based methods, demonstrating the significant benefits of properly 

extracting the driving forces on modelling performance and the massive impact it can have on 

modelling performance. 

Very low R2 values are seen for DLSFR (and a few other instances). Additionally, the 

RMSEs in these cases are also a lot larger than other techniques, showing that it is just poor 

fitting in this case. This is likely due to the low number of retained slow features (M=1), which 

lead to optimal testing performance but was in fact poor on training.  

The effect of incorporating external dynamics, and the number of time lagged samples d, on 

the model generalisation performance is clear in this example. Out of the 11 methods in Table 

4.2, the optimal value of d was 2 for all but 3 techniques, where it was 1. This shows that, for 

this example, incorporating the dynamics had a significant impact across the different 

techniques. This is to be expected as the output signal contains time lagged relationships 

between the inputs, or the driving forces, and the output, meaning that incorporating time lagged 

inputs can uncover these time lagged correlations. Comparing different forms of dynamic 

models, the NARX NN with long-range predictions performed poorly compared with DNN. 

This is likely due to the propagation of errors associated with using the NARX model trained 

for one step ahead predictions (see Equations (4.17) and (4.18)). Model complexity can be 

another factor in determining the optimal model, especially when the number of inputs is large 

and so dimensionality reduction can be an important tool for the feature extraction techniques. 

DKSFANN retained only 5 SFs to be the inputs to the neural network, compared with 8 PCs 

for the DKPCANN model. This demonstrates that DKSFANN reduced dimensionality more 

then DKPCANN while still producing better model performance.  

These results demonstrate that the more accurate extraction of the underlying driving forces 

behind the input signals, using KSFA-based methods, leads to significantly improved model 

generalisation performance when compared with poorly extracting the driving forces, using 

LSFA-based models, and other similar techniques. This improved performance from 



71 

 

DKSFANN is due to these nonlinear underlying driving forces/trends, with less noise, 

providing more useful information for the neural network to create more accurate predictions. 

4.5 Case Study 2 - Industrial Penicillin Production 

The proposed method was next applied to an industrial case study based on a fed-batch 

penicillin production process that was created using a simulator known as PenSim 2.0 (Birol et 

al., 2002), which is a commonly used benchmark process for soft-sensing (Zhang et al., 2017; 

Gopakumar et al., 2018; Yuan et al., 2020a) and process monitoring (Sun et al., 2011; Hong et 

al., 2014). A detailed description of the process and the mechanistic model behind it is described 

by Birol et al. (2002). Figure 4.9 shows a process diagram of the penicillin production process. 

Production of penicillin is an important process for the pharmaceutical industry and 

establishing effective process control and optimisation is critical. Creating a soft sensor to 

predict key quality variables, such as the concentration of penicillin, is therefore highly 

valuable. However, the process is extremely complex and so it provides a good case study for 

nonlinear methods. 

To effectively evaluate the proposed method, 9 variables of those measured were selected 

for use as the model inputs, as illustrated in Figure 4.10, with the penicillin concentration as the 

output, displayed in Figure 4.11. The CO2 concentration was omitted from the model inputs 

because it was extremely noisy and so provided unreliable measurements which could lead to 

poor model performance. Additionally, the biomass concentration was omitted to create a more 

realistic case study because typically biomass concentration requires offline measurements and 

so the frequent measurements, without time delay, that the simulation produced, would not be 

realistically available in an industrial process of this kind.  
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Figure 4.9 – Process diagram of the fed-batch penicillin process 

 

 

 

Figure 4.10 – Full input data across 10 batches for the industrial penicillin process case 

study 
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Figure 4.11 – Output data (penicillin concentration) for all 10 batches 

In this study, 10 batches of data were created with a sampling time of 0.5 hr and a batch time 

of 400 hr, creating a total of 8000 samples with 800 samples per batch. To create a varied set 

of conditions across the batches, a range of acceptable values for each initial condition and 

setpoint was used, as provided by PenSim 2.0 (Birol et al., 2002). These ranges are displayed 

in Table 4.3, and 10 random values within each condition’s range were selected to create the 

10 diverse batches. The 10 batches were randomly split into 6 for training, 2 for testing and 2 

for validation. Just as with the first case study, models were created for d of 0 to 2, with the best 

model selected by the lowest RMSE on the testing data. All methods were trained in the same 

manner as in Section 4.4. 
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Table 4.3 – The ranges of values used for each initial condition and setpoint to generate the 

batch data 

Initial conditions Range of values 

Substrate concentration (g/L) 12-18 

Dissolved oxygen concentration (mmol/L) 1.16 

Biomass concentration (g/L) 0.05-0.15 

Penicillin concentration (g/L) 0 

Culture volume (L) 95-105 

Carbon dioxide concentration (mmol/L) 0.5-1 

pH 4-6 

Fermenter temperature (K) 298-300 

Generated heat (kcal) 0 
 

Setpoints  

Aeration rate (L/hr) 6-10 

Agitator power (W) 25-35 

Substrate feed flowrate (L/hr) 0.035-0.045 

Substrate feed temperature (K) 296-298 

Temperature setpoint (K) 298-300 

pH setpoint 5-6 

 

Table 4.4 provides the prediction results for each method. The most accurate soft sensor 

model was created by DKSFANN, with a validation RMSE 32.3% lower than the next best 

method, DKPCANN. These results can be confirmed by visual inspection, as demonstrated in 

Figures 4.14 and 4.15, where the predictions of DKSFANN clearly follow the trend of penicillin 

concentration better, albeit with an offset throughout. Additionally, the testing RMSE of 

DKSFANN is 30.9% lower than that of DKPCANN, confirming that the improved 

generalisation is not just a one off on one data subset. DKSFANN outperforms the other 

techniques due to extracting nonlinear underlying trends in the data through DKSFA, and 

inputting this crucial information into the neural network, leading to more accurate predictions. 

The significant improvements in model performance of the neural network-based methods, 

when compared with the linear regression-based methods, highlights the complexity of the 

penicillin process and the need for the nonlinear regression method. Just as with the numerical 

case study, the KSFA-based methods produce more robust models than the LSFA-based 

methods, with a 34.6% improvement from DLSFANN to DKSFANN and 44.3% from DLSFR 
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to DKSFR. Figures 4.12 and 4.13 show the first 6 extracted SFs on training data for both LSFA 

and KSFA respectively. These figures demonstrate that the SFs from KSFA contain different 

and more complex trends that do not simply correlate to the input variables. As shown in Figure 

4.10, this process runs in batch mode initially until the amount of biomass reaches a certain 

level and it then changes to fed-batch mode by having the main reaction with continuous 

feeding of substrate into the reactor. It is interesting to note from Figure 4.13 that all the 6 

nonlinear SFs have captured the switching between the batch and fed-batch modes. In contrast, 

the 2nd and the 4th linear SFs fail to capture this, as shown in Figure 4.12. Thus, the nonlinear 

SFs can be considered as being more representative than the linear ones in this penicillin 

production process. These underlying trends from KSFA are what help improve the soft sensor 

generalisation performance.  

Certain data quality issues, particularly noise, are present in the input data. The key 

advantages of KSFA/SFA are the ability to extract slow varying features, meaning that noise is 

filtered out and is only present in the latter, faster SFs - which are omitted when the dominant 

(M) SFs are selected. By reducing the impact of noise, while also capturing key underlying 

trends, the SFA-based models improve performance over the other models. This can be 

visualised by comparing the neural network inputs for DNN vs DKSFANN: Figure 4.10 is the 

inputs that go into the neural network for DNN, lots of data quality issues are present. 

Comparing this with Figure 4.13, which shows some of the inputs to the neural network in 

DKSFANN, illustrates that the extracted SFs reduce the data quality issues over the original 

inputs. 
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Table 4.4 – Regression results for the penicillin process case study 

 Training Testing Validation  

Method R2 RMSE R2 RMSE R2 RMSE 
Hyper 

parameters 

DLR 0.8707 0.1574 0.1198 0.6853 0.2932 0.5097 d = 2 

DPLSR 0.5386 0.3018 0.5550 0.3053 0.4250 0.3426 d = 2, k = 1 

DPCR 0.4685 0.3208 0.4515 0.3280 0.4632 0.3284 d = 2, k = 4 

DLSFR 0.1882 0.3919 0.2063 0.4479 0.3619 0.3969 d = 2, M = 2 

DKPCR 0.7348 0.2041 0.4812 0.3177 0.4682 0.3281 
d = 1, k = 10, σ 

= 5.5, L = 9 

DKSFR 0.7956 0.1983 0.6352 0.2760 0.6491 0.2933 
d = 1, M = 10, 

σ = 5, L = 9 

DNN 0.7225 0.2185 0.1569 0.5038 0.7479 0.2221 d = 0, NH = 4 

NARX NN* 0.9392 0.0937 0.8983 0.1321 0.6697 0.2883 d = 2, NH = 12 

DPCANN 0.8793 0.1519 0.8725 0.1493 0.7124 0.2352 
d = 0, k = 5, 

NH = 29 

DLSFANN 0.9581 0.0850 0.7311 0.2301 0.6764 0.2637 
d = 2, M =22, 

NH = 25 

DKCPANN 0.9859 0.0490 0.7671 0.2001 0.7682 0.2190 

d = 1, k = 9, σ 

= 6.25, NH = 

28, L = 9 

DKSFANN 0.9817 0.0544 0.8870 0.1382 0.9005 0.1482 

d = 2, M = 13, 

σ =6.5, NH = 

39, L = 9 

 

As with the first case study, the effect of d on the generalisation performance is investigated. 

This time, the optimal d was 0 for 18% of the methods, 1 for 27% and 2 for 55%. Therefore, 

introducing the time lagged samples improved generalisation performance for 82% of the 

methods. This shows that incorporating the time lagged values is significant for enhancing 

model performance, which is likely due to correlations between the time delayed process 

variables. It is also worth noting that this increase in model robustness due to increasing d is 

not negligible. For example, for DKSFANN the validation RMSE for a d of 2 was 0.1482 when 

compared with 0.1959 for d of 0, a 24.3% improvement. Comparing the NARX NN to DNN, 

the multi-step ahead predictions were worse than the DNN validation predictions. As with the 

first case study, this confirms that the external dynamic method used for DNN is better than a 

NARX model. As with Table 4.1, low R2 are observed due to poor fitting when the number of 

retained features is too low, additionally for linear techniques which are not suitable for a 

nonlinear case such as this. 
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Figure 4.12 – First 6 extracted slow features on training data using LSFA 

 

 

Figure 4.13 – First 6 extracted slow features on training data using KSFA 
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Figure 4.14 – Predictions on unseen validation data using DKPCANN for the penicillin 

case study 

 

 

 

Figure 4.15 – Predictions on unseen validation data using DKSFANN for the penicillin 

case study 

4.6 Conclusions 

In this work, a data-driven modelling approach using kernel slow feature analysis and a 

neural network, referred to as DKSFANN, has been presented for improving soft sensor 

performance. The DKSFANN based method is used to extract driving forces and underlying 
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trends in nonlinear situations where linear SFA fails to do so. It does this through the use of 

KSFA, which employs a kernel function to map the input signals into a higher dimensional 

feature space, so that SFA can extract the nonlinear SFs from the features in this new space. 

Then the nonlinear SFs are used as inputs to a neural network to create model predictions. The 

nonlinear SFs contain crucial underlying trends, with reduced noise, from the process and so, 

when input to the neural network, produce a more robust soft sensor. A neural network is 

utilised over linear regression for more complex situations where the relationships between the 

underlying trends/driving forces and the outputs are nonlinear.  

The efficacy of this proposed method is evaluated on two case studies. Firstly, a nonlinear 

numerical example demonstrates the effectiveness of KSFA in extracting the driving forces 

behind a set of inputs, for both noisy and non-noisy signals, when compared with LSFA. 

Correlation coefficients are used to determine how effectively the driving forces were extracted 

in the SFs. The results clearly show that KSFA extracts the driving forces very well, where 

LSFA fails to do so because the inputs are nonlinear functions of the driving forces. 

Furthermore, DKSFANN outperforms all other methods for model robustness, with a RMSE 

on unseen validation data that is 31.7% lower than the next best method. The second case study 

is an industrial fed-batch penicillin simulation, which provides a complex process where 

creating a robust soft sensor is difficult. The PenSim 2.0 (Birol et al., 2002) simulator was 

utilized to produce the data for this case study, where 9 input variables were used to predict 

penicillin concentration. As with the first case study, the DKSFANN model produced the most 

robust soft sensor by 32.3% when compared with the next best method. Both case studies 

demonstrate the efficacy of the proposed DKSFANN method for improving soft sensor 

robustness through the extraction of nonlinear driving forces. 

Having developed effective nonlinear techniques for process modelling, the direction of this 

thesis now moves to using these techniques for applications on Sellafield Ltd’s nuclear waste 

vitrification process. 
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Chapter 5. Data-Driven Predictive Model for Average Pour Rate of the 

High-Level Waste from the Melter 

5.1 Introduction 

5.1.1 Nuclear waste vitrification 

With the diminishing use of fossil fuels as a part of the attempts to reduce the global warming 

effect, nuclear energy is important as a viable alternative to fossil fuels, especially with 

electricity demand ever rising. When compared to renewable energy sources, such as wind and 

solar, nuclear energy has the advantage of continuous energy production. The major issues with 

nuclear energy come from the potential for major catastrophes (Chernobyl and Fukushima 

incidents), large construction and decommissioning costs, and the difficulty of nuclear waste 

management. In dealing with the highly radioactive waste arising from nuclear fuel 

reprocessing, vitrification is one of the advanced options that is utilised. Vitrification involves 

producing a glass product from the nuclear waste, which is of a lower volume and more 

radioactively stable (Taylor, 1985).  

Spent fuel from nuclear reactors is reprocessed to maximise process efficiency and reduce 

waste. Around 3% of the fuel cannot be reprocessed, leading to a highly radioactive waste that 

needs to be properly dealt with. The nuclear waste vitrification process at Sellafield Ltd takes 

the Highly Active Liquor (HAL) waste arising from nuclear fuel reprocessing and converts it 

to a High-Level Waste (HLW) glass product. The HAL contains a mixture of fission products, 

additives, and impurities. 



81 

 

 

Figure 5.1 – Nuclear waste vitrification process 

As illustrated in Figure 5.1, the HAL is combined with additives and fed into the calciner. 

The main calcination additives are lithium nitrate and sugar, which inhibit the formation of 

refractory oxides and reduce ruthenium volatility respectively. The calciner is a rotating, 

electrically heated furnace that is inclined by a few degrees. The calcination converts the HAL 

into a calcine powder by evaporation, drying and de-nitration. An off-gas system comprises of 

dust scrubbers, condensers, and NOx absorbers. Liquid effluents from the off-gas system are 

recycled to HAL storage.  

The calcine is mixed with glass forming additives and melted at temperatures of at least 1000 

°C to produce a homogenous mixture with the aid of air sparging. The glass mixture is then 

poured into stainless steel containers that are allowed to cool, welded shut and then 

decontaminated. The containers are then sent to the interim Vitrified Product Store (VPS).  

Donald et al. (1997) provided a comprehensive review of the immobilisation of high-level 

nuclear waste, including the background of nuclear waste vitrification, types of HLW glass, and 

the processing stages. Additionally, previous work on determining the chemical durability of 

glass was discussed in this paper. Emphasis was placed on the importance of having adequate 

experimental designs for producing data for chemical durability.  

Goel et al. (2019) presented an overview of the challenges, both short and long term, of 

HLW glass. In particular, selecting the correct composition of glass to ensure good durability 

and its effect on the alteration rate is discussed. The authors highlighted that theoretical 
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understanding of the effect of glass composition on the mechanism and kinetics of corrosion is 

critical. 

Chemical durability of the vitrified waste is a key variable because it determines how much 

radioactivity will leach into the environment when the containers eventually erode and 

encounter ground water. One of the main reasons for using vitrification for immobilisation of 

the HLW is because of the high chemical durability of the glass (Ojovan and Lee, 2011). The 

choice of glass is for many reasons, not just chemical durability, such as cost and ease of 

processing. Borosilicate glass is usually chosen because it reduces the melting point and 

improves the elemental oxides incorporation, while still having good chemical durability 

(Ferguson, 2013). A pure silica glass would give the best chemical durability; however, the 

required melting temperatures are much higher and so the operating costs make the process 

unfeasible (Backhouse, 2017). Understanding how the composition of the HLW and the types 

of glass affect the durability is critical to reducing process costs and improving the 

environmental safety. The effect of the composition of the borosilicate glass on the durability 

has been previously investigated. Harrison (2014) looked at the main compositional variations 

used in the UK and found that, in general, certain elements such as aluminium and silicon 

improve the durability.  

Utton et al. (2012) explored the effect of the composition and pH of simulated groundwater 

solutions on the chemical durability of the waste glass. However, the authors found that the 

durability was similar for simulated groundwater of different compositions and pH when tested 

on Magnox HLW glass. 

Work has also been done on chemical durability modelling using mechanistic models 

(Frugier et al., 2009), however, mechanistic models are generally time and effort demanding. 

Kaunga et al. (2013) used bootstrap aggregated neural networks to model the chemical 

durability of HLW glass and demonstrated the reliability of this method over other common 

data-driven modelling techniques. 

5.1.2 Melter pouring 

Knowledge of the average pour rate of glass from the melter to the container is critical for 

process operations to be able to control glass behaviour. The pour rate should not be too low so 

that pouring takes too long and to prevent the glass not even pouring properly due to the high 

viscosity. Additionally, accumulation in the melter heel can occur. Knowing the pour rate 

before the pour can help avoid these issues, as well as preventing overfilling/underfilling of 

containers, which is very costly. 
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The pour rate is directly related to the viscosity of the glass, a higher viscosity leads to a 

lower pour rate, and vice versa. Previous attempts to predict pour rate were by modelling the 

viscosity of the glass, and then inferring pour rate from this. This is done because viscosity 

cannot be measured on the vitrification plant. Mechanistic models for viscosity of the glass are 

very complex and time consuming in development, with many assumptions often required to 

create the model. Data-driven efforts have been previously utilised to overcome these issues. 

Hrma (2008) used viscosity data for nuclear waste glasses to fit a simplified form of the 

Arrhenius equation to model the viscosity, with good results observed, however, the model is 

only valid for certain temperature and composition ranges. Ferguson et al. (2011) used 

bootstrap aggregated neural networks to model the viscosity of vitrified highly active waste for 

a range of compositions and temperatures to understand how these variables will affect a new 

feed. The model produced promising results; however, it was developed on a small number of 

experiments of simulated waste for a limited range of compositions. These experiments are 

costly and so creating a model with sufficient data to cover a wide range of conditions is 

difficult. 

Determining viscosity also does not directly produce a specific value of pour rate, it only 

gives an idea of the pour rate due to the correlation between pour rate and viscosity. Creating a 

model to predict the pour rate directly will be more useful. Utilising large amounts of process 

data available (compared with limited experimental data) to create a robust model of the pour 

rate may be a better approach than predicting viscosity, with the limitations of previous 

attempts. 

5.2 Data Collection and Pre-Treatment 

Process data from Sellafield Ltd’s waste vitrification plant was collected in the form of once-

per-pour (batch) measurements, including the variable of interest: average pour rate, that 

covered 162 batches over a period of 7 months.  

Additionally, time series data for this entire plant operation period was provided to 

investigate whether any additional information could be extracted that would improve 

modelling performance over just using the once-per-batch data. This time series data is 

extensive and contains measurements such as temperature, which is known to affect the 

viscosity and hence the pour rate. 
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5.2.1 Variable selection - once-per-batch variables 

Variables from the once-per-batch (OPB) measurements were selected as model inputs based 

on process knowledge of when measurements were available and their potential impact on the 

pour rate. OPB measurements are defined as single measurements made for one batch. Since 

the pour rate prediction is required at the start of a batch, only variables which have 

measurements available at or before this time can be incorporated into the model. The selected 

OPB variables are displayed in Table 5.1. 

Table 5.1 – OPB variables selected as model inputs 

OPB variables included in the model 

Soak Time 

Initiation Time 

Target Weight 

Melter Level when Target Weight Achieved 

Nozzle Temperature when Pour Starts 

I6 Power when Pour Starts 

WO Incorporation Weight 

Fuel Type Variable S 

Fuel Type Variable L 

Fuel Type Variable D 

 

5.2.2 Variable selection - time series variables  

Additionally, time series (TS) data was provided, which contained 23 different process 

variables that covered the time span of the 162 batches. Two variables (variables 8 & 9) were 

immediately removed due to containing mostly values of zero. Variables 21 and 22 were also 

omitted due to producing the same value before every batch. This left 19 TS variables that could 

be incorporated into the model. 

Plots of the TS variables, with the batch start and end times superimposed, highlighted how 

these variables changed prior to, and at the start of, a batch. Based on this visual inspection, 

various trends pre-batch were found for certain groups of variables. Some variables displayed 

a more complex, nonlinear trend pre-batch and therefore a pre-determined number of samples 

pre-batch was included into the model to capture as much information on the state of these 
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variables as possible. These variables are henceforth known as full trend variables, an example 

of which is shown in Figure 5.2 (scales removed for confidentiality). The pre-batch sample 

window for the full trend variables was set to 200 samples. This was determined from visual 

inspection of the data to include the meaningful information whilst also keeping model 

complexity down. Furthermore, the sampling rate was reduced by 10 times for this sample 

window to reduce the effect of noise and reduce model complexity. Since the TS data needs to 

be unfolded to be used as inputs to the model for predicting the OPB pour rate measurement, 

reducing the number of these samples to be included has a large impact on computational 

demand, since variable size affects computational effort much more then sample size. 

There were three other types of trends in the TS data from pre-batch: a roughly linear trend 

(Figure 5.3), a step trend (Figure 5.4), and a roughly constant trend (Figure 5.5). To capture 

these trends in the fewest samples possible (to reduce computational effort), 1 to 2 samples 

were used from pre-batch. For the variables with a linear pre-batch trend, a sample window was 

defined by visual inspection such that the linear trend would be mostly contained within this 

window for all batches. The sample window was defined for each linear trend variable 

individually. To capture these linear trends, an average of a certain number of samples at the 

start of the window, and at the end of the window, was taken to produce 2 data points per batch, 

for each linear trend variable. 2 data points is sufficient to capture information for a linear trend. 

Several samples were averaged to account for the noise in the data, and this number of samples 

was defined by visual inspection and was individual to each variable as well. The step trends 

were handled similarly to the linear trends except that an average of samples was taken before 

the step and then after the step. For the constant trend variables, an average of several samples 

pre-batch was taken to capture the operating point of that variable just before the start of the 

batch. The averaging of samples in these cases was to reduce the impact of noise. 

The classification of TS variables according to the type of trend is listed below: 

• Full trend variables = 1,2,3,4. 

• Roughly linear trend variables = 5, 15, 16, 17, 18, 19. 

• Step Trend Variables = 10, 14, 23. 

• Roughly constant trend variables = 6, 7, 11, 12, 13, 20.  
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Figure 5.2 – TS variable 1 prior to a batch - example of full trend pre-batch 

 

Figure 5.3 – TS variable 5 prior to a batch – example of linear trend pre-batch 
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Figure 5.4 – TS variable 8 prior to a batch – example of step trend pre-batch 

 

 

Figure 5.5 – TS variable 7 prior to a batch – example of a roughly constant trend pre-batch 

5.2.3 Outlier detection and missing data 

Outlier detection was carried out using two methods. Firstly, visual inspection of the data 

was carried out to remove any obvious outliers. This led to the removal of batches 4,5,6 from 

the OPB data due to having a significant number of outliers in sequence for TS variable 2. Batch 

29 was removed due to having a clear outlier in the average pour rate. Since this is a OPB 
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measurement and so is the process output, it would not be feasible to replace this measurement 

in any way. 

Secondly, PCA was performed on the normalised OPB input data, with the outliers from 

visual inspection removed. Hotelling’s T-squared statistic was calculated and plotted to attempt 

to detect any remaining outliers. As displayed in Figure 5.6, outliers were detected based on a 

99.9% confidence limit to ensure that as much data was retained as possible due to the limited 

number of batches available. From this T2 chart, 3 more batches were removed, corresponding 

to batches 1, 19, 46 from the original OPB data. Batches 79, 80 (relating to campaign E) and 

53 were removed due to missing data. 

 

 

Figure 5.6 – Hotelling T2 on the OPB Input Data, with a 99.9% confidence limit 

 

5.2.4 Creating the input matrix for modelling 

Before regression can be performed, the different inputs must be brought together into one 

matrix. Since many of the TS inputs contain more than one sample, batch wise unfolding was 

necessary so that the time-based samples could be included because the output (average pour 

rate) is only a OPB measurement. 
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Batch-Wise Unfolding of TS Data 

 

Several approaches have been used previously to rearrange batch data so it can be used for 

regression techniques or other statistical pre-processing techniques. Nomikos and MacGregor 

(1995) originally proposed batch-wise unfolding as the most suitable method and it has 

remained the preferred choice up to recent process modelling/monitoring work (Zhang et al., 

2021).  

Batch-wise unfolding involves converting 3D batch data into a 2D matrix so that it can then 

be used for regression techniques or other statistical pre-processing techniques. Consider a 

batch process with measurement data of I batches, J process variables, and K samples. Batch-

wise unfolding converts the batch data matrix (I x J x K) into 2D matrix (I x JK), as 

demonstrated in Figure 5.7. In this way, each batch constitutes one row containing all the 

variables at all time points. This means that the time-varying behaviour of the process variables 

is captured.  

Alternatively, time-wise unfolding creates a K x IJ matrix, such that each time point contains 

batches x variables. Variable-wise unfolding is the third option, which creates a matrix of 

batches x times for each variable (J x IK). Time-wise unfolding can be used to analyse sample 

variability, while variable-wise unfolding highlights the variability amongst variables. Both of 

these methods ignore the dynamics of the batch process and so can miss out on key temporal 

variations, hence batch-wise unfolding is the best option to capture the most information for 

process modelling (Yoo et al., 2004). 

 

 

Figure 5.7 – Batch-wise unfolding of 3D batch data into 2D matrix (adapted from 

(Nomikos and MacGregor, 1995)) 
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Batch-wise unfolding was carried out on each TS variable, whether it was a designated as a 

full, linear or step trend variable. The constant trend TS variables have one sample per batch 

(i.e., K = 1) and so batch-wise unfolding is not required. 

 

Incorporation of the OPB with TS data 

 

The batch-wise unfolded TS data was then combined with the OPB variables to create the 

total set of inputs for the model. 

5.3 Linear Regression-based Modelling 

A variety of regression techniques were applied to produce the model with the best 

generalisation performance. This involved starting with basic linear regression techniques, and 

then increasing the model complexity if the model performance was not satisfactory. 

Before creating a model, the data must first be split into training, testing and validation data 

sets. Training data is used to train the model, testing data is used to determine hyper-parameters, 

and validation data is unseen throughout the model training process and so it is used to properly 

validate the model performance. The data was randomly split into 70% training, 15% testing 

and 15% validation in this case. A relatively large proportion of the data was used for training 

due to the small amount of batch samples available (154 batches after data pre-treatment). After 

splitting, the data was normalised to zero mean and unit variance.  

The training data consisted of 108 samples with 118 inputs. Due to the number of inputs 

being higher than the number of samples, conventional linear regression (LR) would not work 

in this case due to an ill-conditioned 𝑋′𝑋 matrix, where X is the input matrix. Therefore, 

attempting to reduce the dimensionality is important for this reason, as well as for reducing 

computational effort. Principal component regression (PCR) was employed to reduce the 

dimensionality, which involves applying principal component analysis (PCA) to X and then 

reducing the number of inputs in the form of retained principal components k, that are then used 

as the inputs to linear regression. The number of retained principal components k was 

determined by the lowest RMSE on the testing data. 

5.3.1 Linear slow feature regression integrated with PCA 

To attempt to improve model performance further, linear slow feature analysis (LSFA) was 

utilised. Applying LSFA is only meaningful for TS data and so the only logical place to use 

LSFA in this problem was with the full trend TS variables, because there are no underlying 
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trends behind linear/step trends. LSFA can extract underlying driving forces behind data in the 

form of slowly varying latent variables, known as SFs. By capturing the underlying driving 

forces and slowly varying trends, with reduced noise, more meaningful information can be 

passed to the regression technique, leading to increased model accuracy. LSFA also reduces 

dimensionality (similar to PCA) through retained a reduced number of SFs (M), however, due 

to there only being 4 full trend variables, any dimensionality reduction would be insignificant 

compared to the total number of inputs. To prevent the ill-conditioned 𝑋′𝑋 matrix when using 

LSFA with LR (LSFR), PCA was applied after LSFA (in the same way as in PCR) had been 

employed for the full trend TS variables.  

 

 

Figure 5.8 – Simple block diagram of the LSFA-PCR method 

 

The results of the PCA and LSFA-PCR models are shown in Table 5.2. LSFA-PCR 

outperforms PCR across all data sets, with a 19.7% decrease in RMSE on unseen validation 

data predictions. The increase in generalisation for LSFA-PCR can be seen visually in Figure 

5.9. The improvements through incorporating LSFA are due to extracting more meaningful 

information in the full trends, with less noise also. 

Table 5.2 – Results of pour rate modelling using linear regression-based techniques  

Technique 
Training Testing Validation 

Hyperparameters 
R2 RMSE R2 RMSE R2 RMSE 

PCR 0.8410 0.3969 0.8260 0.4690 0.7207 0.5821 k = 55 

LSFA-PCR 0.8508 0.3845 0.8653 0.4126 0.8199 0.4675 M = 3, k = 57 
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Figure 5.9 – Pour rate predictions on validation data for PCR and LSFA-PCR 

5.3.2 Bootstrap aggregated linear models 

From the results based on PCR and LSFA-PCR, further improvements could be made and 

so to improve model reliability and generalisation, bootstrap aggregation (bagging) was 

utilised. This involves creating multiple diverse models through random bootstrap resamples of 

the training plus testing input data combined, so that each model is trained on a slightly different 

subset of data. Then the prediction of each of these O models is averaged to create the final 

prediction. The top plot of Figure 5.10 illustrates how the prediction errors vary greatly between 

the individual bootstrapped models, indicating that a single model can be unreliable. Whereas 

the bottom plot of the figure shows the bagged model when the predictions are aggregated; the 

error levels off, indicating a more reliable prediction. The number of models O is selected when 

the testing RMSE begins to level off. 

The impact of bagging on reliability is particularly evident for LSFA-PCR, where the 

validation RMSE was the lowest for all the techniques for the single model, but for BA-LSFA-

PCR, the validation RMSE increased by 43.1%, despite an improvement in performance on 

testing data for the bagged model. In this case there was a reduction of generalisation when 

bagging, however it led to a more reliable model and gave a truer display of the model’s 

generalisation performance. 
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Table 5.3 – Results of pour rate modelling using bagged linear regression-based techniques 

Technique 
Training Testing Validation 

Hyperparameters 
R2 RMSE R2 RMSE R2 RMSE 

BA-PCR 0.7153 0.5310 0.8344 0.4574 0.7019 0.6014 k = 28, O = 10 

BA-LSFA-

PCR 
0.6588 0.5813 0.8993 0.3567 0.6311 0.6690 

M = 3, k = 40,  

O = 10 

 

 

 

Figure 5.10 – RMSE on the testing data for each individual model (top) and for a bagged 

network for the number of models aggregated (bottom) 
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Figure 5.11 – RMSE on the validation data for each individual model (top) and for a 

bagged network for the number of models aggregated (bottom) 

5.4 Neural Network-based Modelling 

From the initial bagged LR-based results, there was still scope for improvement in model 

accuracy, potentially due to nonlinear relationships being present. Therefore, a single hidden 

layer feedforward neural network replaced LR as the regression technique, to capture any 

nonlinear relationships between the inputs and output to improve generalisation performance. 

The Levenberg-Marquart training algorithm was employed with a regularisation parameter of 

0.5 to aid in improving generalisation performance. The number of hidden neurons NH was 

determined by the lowest RMSE on testing data for a range of 3 to 40. Bagging was used again 

for these neural network-based models. The same pre-processing techniques of LSFA and PCR 

were used in the same way as in Section 5.3, with LR being replaced with the neural network 

(NN).  

The results of all neural network-based techniques are shown in Table 5.4. The bagged NN-

based models showed improvements in generalisation performance over the bagged LR-based 

methods, with BA-LSFA-NN having a 1.97% decrease in validation RMSE compared with 

BA-NN. This small improvement in generalisation performance can be attributed to extra 

driving force information extracted by LSFA for the full trend TS variables. However, due to 

the full trend variables making up a relatively small part of the total inputs, only this 1.97% 

improvement was observed. If the full trend variables were the only inputs, the improvement 
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would likely be much larger. This is addressed in Section 5.5. Due to the large number of inputs 

not being an issue for NN as it does with LR (with the ill-conditioned matrix as described in 

Section 5.3), PCA following LSFA is not necessary and in fact produces worse model as BA-

SFA-NN has a validation RMSE 8.0% better. 

Table 5.4 – Results of pour rate modelling using bagged neural network-based techniques 

Technique 
Training Testing Validation 

Hyperparameters 
R2 RMSE R2 RMSE R2 RMSE 

BA-NN 0.8897 0.3306 0.9054 0.3457 0.7327 0.5695 O = 20 

BA-PCA-

NN 
0.8782 0.3473 0.8823 0.3857 0.6844 0.6188 k = 28, O = 20 

BA-LSFA-

NN 
0.8805 0.3440 0.9266 0.3045 0.7431 0.5583 M = 3, O=20 

BA-LSFA-

PCA-NN 
0.8919 0.3271 0.9227 0.3126 0.7007 0.6027 M=3, k=40, O=20 

 

5.5 Optimising Modelling Results Using Different Input Selection Methods 

To assess whether the variable selection method in Section 5.2.1 is optimal, models were 

created using the same techniques as in Section 5.4, but with different variable selection. The 

main alterations would be whether the TS variables or OPB variables are more important to the 

model, or whether the extraction of the different trends in the TS data is necessary. Table 5.5 

shows the results for different input selections for the three best techniques. “Different TS 

Trends + OPB” represents the variable selection described in Section 5.2.1. “Full Trend TS 

Variables Only” uses all the TS variables as full trends, with a 200-sample window pre-batch 

and a 10 down sampling rate, as was done for the full trend variables in Section 5.2.1. “Full 

Trend TS Variables + OPB” is the same as “Full Trend TS Variables Only” but with the addition 

of the OPB inputs. “OPB Only” uses the OPB inputs only. The BA-LSFA-NN results for “OPB 

Only” are not included because LSFA extracts time varying trends and the OPB inputs are not 

time series data so there is no theoretical justification for the use of LSFA in this case. Figure 

5.12 illustrates the validation RMSE results from Table 5.5 to help show the magnitude of the 

differences in the RMSE.  

These results demonstrate that the best model comes from using all the raw TS variables 

from pre-batch, where LSFA can extract underlying trends that improve model performance, 

when these SFs are used as the inputs to a bagged neural network model. The addition of the 
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OPB inputs decreases the model performance for all 3 techniques, showing that these variables 

have a detrimental impact on pour rate predictions. This is confirmed by the “OPB Only” 

RMSEs being the largest for all the input selection methods. This is likely due to the selected 

OPB variables not having a correlation to the pour rate. 

If only BA-NN was considered, the TS input selection from Section 5.2.1 would produce 

the best model due to reducing the effects of noise, reducing model complexity, and capturing 

only the necessary information through the partial trends. However, for both BA-LSFA-NN 

and BA-PCA-NN, using the full trend for all TS variables produced the best model. For BA-

PCA-NN, this is likely due to PCA providing dimensionality reduction and reducing 

multicollinearity more so when exposed to the large amount of full TS data. BA-LSFA-NN 

improves model generalisation performance by 9.89% for “Full Trend TS Variables Only” 

when compared with BA-PCA-NN. This improvement is due to LSFA extracting the 

underlying trends from each of the TS variables, providing more meaningful information (with 

less noise) to the bagged neural network, thus improving prediction accuracy. Additionally, the 

BA-LSFA-NN model had the best RMSE on testing data, which is how the optimal model is 

selected as the validation data must remain unseen. 

When looking at the “Various TS Trends Only”, BA-LSFA-NN has a validation RMSE of 

3.03% lower than the next best technique, BA-NN. This smaller improvement in performance 

than for “Full Trend TS Variables Only” is because there are only 4 TS variables with the full 

trend for “Various TS Trends Only”, and so the improvements provided by LSFA were only 

applied a small number of the total inputs (4 versus 21 full trend inputs). 
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Table 5.5 – Comparison of input selection methods on model performance for the top 3 

techniques 

 Training RMSE Testing RMSE Validation RMSE 

Input 

Selection 

BA-

LSFA-

NN 

BA-

PCA-

NN 

BA-

NN 

BA-

LSFA-

NN 

BA-

PCA-

NN 

BA-

NN 

BA-

LSFA-

NN 

BA-

PCA-

NN 

BA-

NN 

Different TS 

Trends + OPB 
0.3440 0.3473 0.3306 0.3822 0.3857 0.3457 0.5583 0.6188 0.5695 

Different TS 

Trends Only 
0.3636 0.3690 0.3597 0.3448 0.4243 0.3456 0.5092 0.5672 0.5251 

Full Trend TS 

Variables 

Only 

0.3188 0.3689 0.3875 0.3045 0.4427 0.4481 0.4892 0.5429 0.5826 

Full Trend TS 

Variables + 

OPB 

0.3475 0.3873 0.4219 0.3634 0.4719 0.4748 0.5432 0.5761 0.6729 

OPB Only N/A 0.5685 0.5466 N/A 0.7180 0.7148 N/A 0.7372 0.7342 

 

The validation data predictions for the BA-LSFA-NN model using Full Trend TS Only input 

selection (best model) are presented in Figure 5.13. For a complex, real case such as this, these 

predictions appear to be good. Despite some clear errors, in general, the higher pour rates are 

predicted as higher, and vice versa for lower pour rates. Since the aim of the model is to give 

an indication of whether the pour rate is in certain ranges (i.e. relatively high or low), so that 

operators can get an early indication of the pour rate to prevent container 

overfilling/underfilling, this model largely works well for this. 
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Figure 5.12 –Validation RMSE for the different input selection methods, for the top 3 

modelling techniques 

 

 

Figure 5.13 – Predictions of pour rate at the start of the pour on unseen validation data 

compared with actual values, for the best model using BA-LSFA-NN 
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5.6 Conclusions 

Data from a section of the Sellafield Waste Vitrification Plant, that consists of the pouring 

of high-level waste from the melter to container, was gathered. This data consisted of process 

variables (in a time series form) and other measurements that were made once-per-pour. The 

aim is to create a predictive model of the average pour rate, a key quality variable, for the start 

of the pour because it is only known after the pour and this knowledge at the start of the pour 

can improve container filling efficiency. 

The data was pre-processed to deal with outliers and missing data, using both visual 

inspection and Hotelling T2. To make best use of the data and incorporate the most information 

into the model, input selection methods were developed to incorporate the time series data with 

the oncer-per-batch measurements by identifying trends in the pre-batch time series data, and 

then combining them with the once-per-batch data through batch-wise unfolding. 

To create the most accurate data-driven model, techniques such as bagging, neural networks, 

LSFA and PCA were utilised to create a model with the best possible generalisation capability. 

The use of neural network-based techniques improved the model over less complex, linear 

regression-based models. Using LSFA as a precursor to a bagged neural network model (BA-

LSFA-NN) improved prediction accuracy on unseen validation data by 9.9% over the next best 

technique, BA-PCA-NN, for the optimal input selection technique. Using different 

combinations of the time series trends and once-per-batch inputs was investigated to assess 

which input selection produced the model with the best generalisation. This optimal input 

selection, from the ones evaluated, was full trend time series variables only – that is, using the 

full trend of all the time series variables from a 200-sample window pre-batch, without any 

once-per-batch variables. This was only the best input selection method when using BA-LSFA-

NN, which is due to LSFA being able to extract underlying trends from all the time series 

variables (not limited to 4 variables as in “different time series trends only”) that provided more 

meaningful information (with reduced noise and dimensionality) to the bagged neural network 

model; leading to improved generalisation performance.  

To further improve model performance, additional techniques such as kernel SFA can be 

employed next, although it is likely more data is required to improve the model significantly 

from the current results.   
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Chapter 6. Early Detection of Dust Scrubber Blockages in the Nuclear 

Waste Vitrification Process Using Multivariate Statistical Process 

Control 

6.1 Introduction 

The dust scrubber (DS) is a vital section of the vitrification process because it recovers solids 

that have been carried in gas from the calciner to the primary off-gas system. It recycles these 

particles back into the calciner, increasing efficiency and preventing radioactive elements from 

getting into the environment. The DS involves a nitric acid flow down a column, with the off-

gas flow from the calciner rising to the top through an input at the middle of the column. Plates 

in the middle of the column slow the flows to increase the exchange of particles from the gas 

to the nitric acid. The gas from the top of the column is then fed to a condenser.  

Ustinov et al. (2019) discussed the types of off-gas clean-up systems and proposed an 

efficient and compact approach based on the characteristics of the off-gas. Morris et al. (1983) 

summarised the off-gas behaviour through experiments on 3 different types of waste using a 

full-scale pilot plant. The need for a filter with high efficiency and a Ru vapour absorber were 

emphasised from the results. 

Due to narrow pipes in the DS, accumulation of particles often leads to blockages. Currently, 

the blockages are not detected as early as the plant would like, and they can lead to lengthy and, 

therefore, costly plant outages to clear. Blockages are typically detected by an increase in the 

differential pressure in the section of the DS where blockages occur. Using data from other 

process variables to develop a process monitoring approach to detect blockages early means 

that preventive measures could be taken and so costs associated with plant downtime and 

maintenance could be reduced. Additionally, an investigation into which variables could be 

causing these blockages would be very beneficial as these variables could be more closely 

monitored and controlled better to reduce the frequency of potential blockages. 

Statistical process control (SPC) uses statistical techniques and process data to monitor 

process operation in order to detect process issues, such as process malfunctions and significant 

disturbances. SPC aims to provide feedback to plant operators as to whether the process is 

within its standard operating limits, it does not control process variables to optimise the process 

like standard process control does. 

Univariate SPC looks at deviations in individual variables independently, typically through 

Shewart, CUSUM and EWMA control charts (Macgregor and Kourti, 1995). Examining each 
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variable like this assumes all variables are independent of each other, when this is typically not 

the case in real, complex processes. This means that univariate SPC can miss many important 

events by not considering how all the variables effect one another. 

Multivariate statistical process control (MSPC) can more effectively detect these process 

abnormalities by considering the co-variance of all process variables. It does this through 

statistical projection techniques, such as PCA, PLS and SFA. 

This chapter looks at using an MSPC approach for early detection of the DS blockages, as 

well as investigating which process variables could be leading to the blockages via residual 

contribution plots. 

6.2 Variable Selection and Data Inspection 

To create a process monitoring model, process data from past periods of both normal 

operation and operation leading up to, and including, blockages was collected. The data 

provided by Sellafield Ltd contained measurements of 23 process variables for the waste 

vitrification process, such as temperatures, levels, flow rates and pressures. The measurements 

provided were for every minute for a period of 15 days, producing a total of 21600 data points 

for each variable. During this period 7 blockages in the DS pipe work were detected by 

operators and then resolved. The timings that each of the blockages occurred at and were 

resolved at were provided. 

After initial discussion with a process expert, two of the variables corresponding to 

temperature measurements in the melter were removed because they were back up sensors and 

so provided no real measurements. Initially, all the other process variables were included 

because it was desirable to see if any of these variables could give early warning or be the 

possible cause of the blockages.  

Figure 6.1 shows the time series plot of the 21 process variables (variable names omitted for 

confidentiality) with the red regions indicating DS blockages. Due to industrial confidentiality, 

the units and descriptions of the variables are omitted. Initial inspection shows that the variables 

18 and 20 vary significantly when a blockage occurs (red regions), which is one of the main 

factors in detecting a blockage by plant operators currently. The data also shows two potential 

blockages occurring at around points 17004 and 20160, which may not have been recorded, or 

that resolved themselves. 
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Figure 6.1 – Full data for all the selected 21 process variables, red data highlights when a 

recorded blockages occurred 
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Periods where variable 5 remained at a constant value indicated a disruption to the normal 

operation period, such as when a DS blockage was being cleared, as well as in some other 

periods of the data, likely due to other faults or maintenance.  

6.3 Data Pre-Processing  

6.3.1 Missing data 

Missing data was occasionally present for the DS pressures after a blockage had occurred, 

while the process was offline for maintenance. These values were replaced with zeros to 

indicate the offline sensor. 

6.3.2 Outlier detection and replacement 

It is very difficult to apply fully automated outlier detection and removal strategies because 

there may be the removal of key process data and therefore, there should always be manual 

inspection, to either validate the results of automated procedures or to assist in outlier detection 

itself. 

For this process data, outliers were initially detected by manual inspection because there 

were a few data points that were clearly outliers, possibly due to sensor malfunction. 

Due to the batch-to-batch variation from the calciner section of the process, and the non-

linear nature of some of the data, it would not be appropriate to replace the outliers with the 

mean of the data for some of the variables, particularly in the density data. Additionally, simply 

removing the sample would lead to problems with reducing the amount of samples. 

Replacement by interpolation of the nearest non-outlier samples was used for these outliers. 

For example, there was a significant outlier in variable 10 (density), as shown in Figure 6.2, 

which was replaced with interpolation of nearest non-outlier samples. 
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Figure 6.2 – Normal operation data for density, before and after outlier replacement 

6.3.3 Data selection 

Since expert process knowledge revealed that disruptions to the typical pattern of variable 5 

indicated disruptions to process operation, normal operation data was taken as areas when the 

variable 5 pattern was consistent. This pattern is a linear increase followed by a sharp decrease, 

as displayed in the variable 5 time series plot in Figure 6.1. The selected normal operation data, 

with outliers removed, is shown in Figure 6.3, which produced a total of 5122 samples.  
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Figure 6.3 – Time series plot of the normal operation data for all the selected variables 

The blockage data was taken as the period between blockage detection and resolution plus 

the prior 30 minutes of process operation so that any potential early detection can be discovered. 

Figure 6.4 illustrates the blockage data for each process variable, with each line, separated by 

a gap, representing one of the 7 blockages. The variation in this blockage data, compared with 

the consistency of normal operation data in Figure 6.3, shows that the blockages significantly 

disrupt normal plant operation. 



106 

 

 

Figure 6.4 – Process variables when blockage occurred, with each subsequent line in each 

subplot representing the next blockage 

6.3.4 Data normalisation 

The data was scaled to zero mean and unit variance to avoid issues with the different 

magnitudes of the different process variables, as well as being a requirement for pre-processing 

and statistical process control techniques like PCA and SFA. 
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6.4 Principal Component Analysis 

To attempt to provide early detection of the blockages and discover any variables that 

contribute to the blockages, PCA was applied to the data. PCA was used to reduce the number 

of variables to a smaller number of less-correlated principal components (PCs). PCA 

decomposes the data matrix X into a score matrix T and a loading matrix 𝑃𝑃𝐶𝐴, as shown below. 

This decomposition is typically carried out by singular value decomposition (SVD) (Qin, 2003). 

PCA is described in more depth in Section 2.4.1. 

 

 𝑋 = 𝑇𝑃𝑃𝐶𝐴
𝑇 + 𝐸 , (6.1) 

 

where E is the residual matrix. 

From PCA, the cumulative explained variance for the first 15 principal components is 

displayed in Figure 6.5. 

 

 

Figure 6.5 – Cumulative explained variance for the first 15 principal components 

The number of principal components that were used for analysis was taken as over 90% of 

explained variance, which was 10 PCs. 
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6.4.1 Principal component analysis-based multivariate statistical process control 

MSPC is a method of process monitoring that monitors process variables to ensure they 

remain within certain control limits. MSPC allows the information from many process variables 

to be included in a single chart, as opposed to monitoring deviations in individual process 

variables. Two monitoring charts based on Hotelling’s T2 statistic and the squared prediction 

error (SPE) are typically used, based on the PCA model (Qin, 2003). 

Hotelling’s T2 statistic indicates variations in the principal components and is calculated 

from the following: 

 

 𝑇2 = 𝑥𝑇𝑃𝑃𝐶𝐴𝛬−1𝑃𝑃𝐶𝐴
𝑇𝑥 = 𝑇𝛬−1𝑇𝑇 , (6.2) 

 

where Λ is a diagonal matrix of the eigenvalues of the covariance matrix of x, where x is 

input matrix. 

The control limits for the T2 statistic can be related to the F distribution, given the conditions 

that the process is normal and the data follows a multivariate normal distribution (Qin, 2003). 

Therefore, the process is considered normal if the T2 is less than or equal to the following 

control limit of a significance level α: 

 

 
𝑇𝛼

2 =
𝑘(𝑁2 − 1)

𝑁(𝑁 − 𝑘)
𝐹𝑘,𝑁−𝑘;𝛼 , 

(6.3) 

 

where k is the number of retained principal components, N is the number of samples and 

𝐹𝑘,𝑁−𝑘;𝛼 is an F distribution with k and N-k degrees of freedom. 

SPE provides a measure of the residuals between the data and the PCA model, as follows: 

 

 𝑆𝑃𝐸 = 𝐸𝐸𝑇 = 𝑥(𝐼 − 𝑃𝑃𝐶𝐴𝑃𝑃𝐶𝐴
𝑇)𝑥𝑇 . (6.4) 

 

Jackson and Mudholkar (1979) originally provided an expression for the control limit for 

SPE, Qα: 

 

 

𝑄𝛼 = 𝜃1 (
𝐶𝛼√2𝜃2ℎ0

2

𝜃1
+ 1 +

𝜃2ℎ0(ℎ0 − 1)

𝜃1
2 )

1/ℎ0

 , 

(6.5) 
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where m is the number of variables, and 

 

 
𝜃𝑖 = ∑ 𝜆𝑗

𝑖

𝑚

𝑗=𝑘+1

           𝑖 = 1,2,3 
(6.6) 

 

and 

 
ℎ0 = 1 −

2𝜃1𝜃3

3𝜃2
2  . 

(6.7) 

 

The T2 statistic measures variation in the scores and a breach in the control limit typically 

indicates a process change with a large variance that does not necessarily violate the model. 

The SPE statistic measures variation that breaks the normal variable correlation, indicating an 

abnormal event; in this case a blockage (Qin, 2003). Therefore, if the T2 breaches the control 

limits but the SPE does not, then it may not be a fault but a shift in process operation, which 

can still be a useful indicator to alert operators to a potential issue. 

6.4.2 Blockage detection using MSPC control charts 

To assess the detection of the blockages with the T2 and SPE, the blockage data had to be 

projected onto the principal component (PC) space so that the T2 and SPE could be calculated 

and directly compared with the normal operation data.  

Firstly, the blockage data had to be normalised with the same mean and variance that the 

normal operation data was normalised with. This normalised data was then projected to the PC 

space by creating scores through multiplying the blockage data (xblockage) by the loading matrix: 

 

 𝑻𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒 = 𝑥𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒𝑃𝑃𝐶𝐴 . (6.8) 

 

The T2 statistic and SPE were calculated for the blockage operation data in the same way as 

the normal operation data, with the blockage scores replacing the normal scores. 

The control charts for the normal operation data and the first blockage, with 90% and 99% 

control limits, are displayed in Figure 6.6. 
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Figure 6.6 – T2 and SPE control charts with 95% and 99% control limits for normal 

operation and blockage 1 operation 

For both the T2 and SPE charts in Figure 6.6, many sections of the normal data breach the 

99% control limits, demonstrating that the PCA model or control limits are not adequate. As 

previously mentioned, breaching the T2 may just indicate a process change that is still within 

acceptable conditions, and so breaches in the T2 could be used a warning of changes in 

conditions but not outright detection of a blockage, therefore, some breaches during normal 

operation on the T2 chart is acceptable if not associated with false alarms on the SPE chart. The 

SPE chart should be used to detect a blockage when accompanied with a breach in the T2. There 

are some false alarms with the 99% control limit for the SPE chart, however, the blockage 

operating data is above the control limit for many samples and with a much higher magnitude. 

A higher SPE control limit, to the point where normal operation does not exceed the limit, 

would work for blockage detection due to the magnitude the blockage data reaches on the SPE 

chart. Figure 6.7 shows the control charts with a 99.99% control limit. In this case, there are no 

breaches of the SPE control limit during normal operation data and hence no false alarms. 

Therefore, the 99.99% was used. A blockage was defined as when the SPE and T2 charts have 

a breach of the control limit with two consecutive samples.  
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Figure 6.7 – T2 (top) and SPE (bottom) control charts for the PCA model for blockage 1 

The number of PCs were varied to assess the impact on the control charts but there was no 

significant difference in the charts, therefore retaining PCs above 99% variance is acceptable.  

6.4.3 Early blockage detection 

Proper detection of blockages without false alarms is important, however, the main aim is to 

detect the blockages earlier than previously detected on plant so that the impact of the blockages 

can be minimised, saving costs due to less plant down time for maintenance. For each of the 7 

blockages, the time when the SPE control chart signalled the blockage was calculated and 

compared with the actual, on site detection time for the blockages. Table 6.1 shows the relative 

detection time (defined by Equation (6.9)) for each blockage and the average of all blockages. 

A negative relative detection time indicates that the control chart detected the blockage earlier 

than it was detected by on site. These results show that, on average, a blockage was detected 

4.43 minutes earlier with the control chart when compared with on site. Two blockages were 

detected later than on site, but only by 1 and 2 minutes.  

 

 Relative Detection Time = Control Chart Detection Time − On Site Detection Time (6.9) 
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Table 6.1 – Relative detection times for each blockage using a PCA-based control chart. 

 Relative detection time (min) 

Blockage 1 -7 

Blockage 2 -3 

Blockage 3 1 

Blockage 4 -7 

Blockage 5 -13 

Blockage 6 2 

Blockage 7 -4 

Mean -4.43 

 

6.5 Dynamic Principal Component Analysis-based MSPC 

To try and better capture the variation in the data to improve early blockage detection, time 

lagged correlations were incorporated into the model. Dynamic PCA (DPCA) includes time 

lagged variables, up to a time lag d, into the data matrix to create an input matrix X(t), as 

described in Section 4.2.2.  

The value of d was tested from 1 to 4 to assess its impact on the results of the T2 and SPE 

control charts. For all the number of time lags, the effect on the control charts was minimal for 

normal operation data when compared to regular PCA. However, for early detection of the 

blockages, there is an improvement over PCA, as shown in Table 6.2. The optimal d was 

selected based on the best mean relative detection time for the first 3 blockages. Only the first 

3 blockages were used so that the last 4 blockages were a true validation test. Increasing d led 

to an increase in the magnitude of average relative detection time up to a d of 4, where the 

improvements plateaued. Therefore, the optimal d for DPCA of 3 was selected. This was also 

the optimal d across all 7 blockages, so the selection was correct. 

These DPCA results show an improvement of 59.7% in average relative detection time, as 

well as an improvement in all blockages except blockage 4, where the relative detection times 

for PCA and DPCA are the same. This improvement in DPCA can be attributed to the dynamics 

being included, providing information on temporal variations and time lagged relationships. 
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Table 6.2 – Relative detection times for each blockage using a DPCA-based control chart 

(d = 3) 

 Relative detection time (min) 

Blockage 1 -9 

Blockage 2 -7 

Blockage 3 -23 

Blockage 4 -7 

Blockage 5 -16 

Blockage 6 -6 

Blockage 7 -9 

Mean -11.00 

 

Figure 6.8 shows the control chart for the DPCA model for blockage 1. Several points 

breached the control limit for SPE, however, these were only single points and also not 

accompanied by a breach in the T2 chart. Therefore, there were no false alarms for this DPCA 

model. 

 

Figure 6.8 – T2 (top) and SPE (bottom) control charts for the DPCA model (d = 3) for 

blockage 1 

6.6 Slow Feature Analysis-based MSPC 

Due to the large variation over time for many of the process variables, as well as the noise 

in some of the variables, it will be beneficial to extract slow varying features to better capture 
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these temporal variations, which can further aid in early blockage detection. SFA extracts slow 

varying, underlying trends from the data, with noise reduction via retaining only the slower 

features. A description of linear SFA is presented in Section 3.2. 

Relating the SFA theory to MSPC, T2 and SPE statistics related to the SFs can be developed 

similarly to as in PCA. These statistics have been described and applied for SFA-based process 

monitoring in previous works (Shang et al., 2016a; Gao and Shardt, 2021; Xu and Ding, 2021). 

Both statistics are described below: 

 

 T2 = 𝑠𝑀𝑠𝑀
T  , (6.10) 

 

 𝑆𝑃𝐸 = 𝐸𝐸𝑇 = 𝑧(𝐼 − 𝑃𝑆𝐹𝐴𝑃𝑆𝐹𝐴
𝑇)𝑧𝑇 , (6.11) 

 

where M represents dominant SFs, analogous to the retained number of principal 

components in PCA, 𝑃𝑆𝐹𝐴 is the derived eigenvector from SFA, z is the sphered input signal, 

and s is the extracted SFs (See Section 3.2 for more detail on the derivations 𝑃𝑆𝐹𝐴, z and s). 

The dominant SFs represent the slow varying trends, with the residual SFs mostly containing 

noise. As discussed in Section 3.3, the selection of M can be easily carried out using the scree 

plot, which is simply a plot of the eigenvalues from the derivation of the SFs. Figure 6.9 shows 

a clear elbow in the scree plot at 15 SFs and so this was selected as the value of M. 

 

Figure 6.9 – Scree plot for SFA on normal operation data, used for dominant slow feature 

selection.  
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Figure 6.10 shows the T2 and SPE charts for linear SFA applied to the normal operating data 

and blockage 1 data. There are a few periods of normal operation where the SPE breaches the 

control limit, albeit for only single data points and not accompanied by a T2 either, and so it 

would not class as a blockage detected. 

 

 

Figure 6.10 – T2 (top) and SPE (bottom) control charts for the SFA model for blockage 1 

Looking at the relative detection times, as displayed in Table 6.3, every blockage was 

detected earlier on the SPE chart than on site. Additionally, the average relative time was 58.1% 

better than PCA, and slightly better (2.6%) than DPCA. This improvement in detection time is 

due to the underlying trends extracted in the dominant SFs and the lower amounts of noise 

associated with them. Deviations from the slow, time-varying trends in typical, normal 

operation are more apparent than the deviations from the static variance captured in the 

principal components, which also contain more noise than the SFs. Reducing the effect of noise 

makes the control chart more sensitive to blockages, improving the relative detection time.  



116 

 

Table 6.3 – Relative detection times for each blockage using an SFA-based control chart 

 Relative detection time (min) 

Blockage 1 -13 

Blockage 2 -5 

Blockage 3 -18 

Blockage 4 -11 

Blockage 5 -20 

Blockage 6 -4 

Blockage 7 -8 

Mean -11.29 

 

6.7 Dynamic Slow Feature Analysis-based MSPC 

As with DPCA, dynamic SFA (DSFA) can capture temporal correlations and provide further 

information in addition to extracting the underlying trends and reducing noise. DSFA creates 

the input matrix with time lagged inputs in the same way as Equation (4.12). This input matrix 

is then input into SFA, and the monitoring statistics are calculated as in Section 6.7. The value 

of d was selected in the same way as DPCA, which was found to be 3. 

The control chart for the first blockage using DSFA is displayed in Figure 6.11. A few 2+ 

sample breaches of the control limits occurred across both charts, however, no breaches 

occurred on both charts simultaneously and so there was no false alarms for DSFA.  
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Figure 6.11 – T2 (top) and SPE (bottom) control charts for the DSFA model (d = 3) for 

blockage 1 

The average relative detection time was 29.1% better than SFA, demonstrating that the extra 

dynamic information further improved early blockage detection. The average relative detection 

time for each method is summarised in Table 6.5. 

Table 6.4 – Relative detection times for each blockage using an DSFA-based control chart 

(d = 3) 

 Relative detection time (min) 

Blockage 1 -21 

Blockage 2 -13 

Blockage 3 -27 

Blockage 4 -4 

Blockage 5 -12 

Blockage 6 -20 

Blockage 7 -13 

Mean -14.57 
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Table 6.5 – Mean relative detection times for each method 

Method Mean Relative Detection Time (minutes) 

PCA -4.43 

Dynamic PCA -11 

Linear SFA -11.29 

Dynamic SFA -14.57 

 

6.8 Contribution Plots 

The contributions of variables to the blockages can indicate whether there are any variables 

which could be causing the blockages. This could give important insight for process operations 

to help reduce the chances of blockages in the future.  

A residual contribution plot, based on the PCA model, showing 3 samples in a short time 

leading up to the blockage and 1 sample after the blockage was produced to assess whether any 

early warning from a contributing process variable could be found. The residual contribution 

plot assesses the contribution of the process variables to the SPE statistic. This is done by 

plotting the residual of each variable, for each of the 4 samples described above. The residual 

E is calculated as part of the SPE, as described in Equation (6.4). Figure 6.12 illustrates these 

residual contributions and shows that variables 18 and 20 contribute the most. This is expected 

because these variables directly correlate to blockages in the DS and are used as an indicator of 

a blockage already.  
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Figure 6.12 – Residual Contribution plot, using PCA, for blockage 1 for blockage 1 at 

certain time points leading up to blockage detection 

 

Inspecting the DPCA, SFA and DSFA residual contribution plots (Figures 6.13 to 6.15) may 

reveal more information since these models provided better early blockage detection. The 

DPCA contribution plot shows a slightly bigger contribution from variable 7 prior to, and at 

detection of, the blockage. Since the blockage occurs in the DS, the DS temperature may have 

an impact on the blockage build up. The SFA and DSFA contribution plots confirm the 

contributions from variables 18 and 20.   

The high residuals in DSFA demonstrate that this model is perhaps too sensitive to small 

deviations in the process, as also shown by the breaches in the T2 and SPE charts on normal 

operation data.  
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Figure 6.13 – Residual Contribution plot, using DPCA, for blockage 1 at certain time 

points leading up to blockage detection 

 

 

 

Figure 6.14 – Residual Contribution plot, using SFA, for blockage 1 at certain time points 

leading up to blockage detection 
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Figure 6.15 – Residual Contribution plot, using DSFA, for blockage 1 at certain time 

points leading up to blockage detection 

Appendix A shows the residual contribution plots for the other blockages using the DSFA 

model (since it was selected as the best model). The contributions are similar for the other 

blockages, except for blockages 3 and 6, where there are no clear, large contributions for any 

variable that are maintained for all 4 time points. Variables 15 and 17 also show some higher 

contributions across most of the blockages and across all 4 time points. Through discussions 

with Sellafield Ltd, these variables are understood to affect a blockage but are not indicative of 

one. 

6.9 Conclusions 

Principal component analysis (PCA) and slow feature analysis (SFA) were used on the 

process data from Sellafield Ltd to investigate if their implementation within a multivariate 

statistical process control approach could lead to early warning of the blockages in the dust 

scrubber system, as well as detecting changes in process variables that are causing these 

blockages.  

PCA yielded a small amount of early warning of the blockages. Dynamic PCA was tested to 

assess if any variables were correlated by a time lag and that if including these time lagged 

variables would improve the model. In terms of early detection, dynamic PCA with a time lag 

of 3 for all the variables improved the average detection time of the blockages by 59.7% 
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compared with PCA. Additionally, there were no false alarms with this dynamic PCA control 

chart.  

Slow feature analysis was utilised because it can capture the slow varying features in the 

data, which are advantageous for process monitoring over PCA due to the noise and variation 

in many of the process variables, since SFA reduces the impact of noise through retaining the 

slowest of the total SFs. SFA and DSFA significantly improve the early detection of blockages 

over PCA and DPCA, with DSFA improving average detection time by 29.1% when compared 

with the next best, SFA. With no false alarms and the best average detection times, DSFA was 

the best technique.   

Residual contribution plots were created to determine whether any process variables are the 

causes of the blockages, however, the main contributions came from the dust scrubber 

pressures, which is already known to be the main indicator of a blockage, but not a cause. Other 

significant contributions were likely to be consequences of the blockages and not causes. 
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Chapter 7. Nonlinear Data-Driven Modelling of Chemical Durability of 

High-Level Nuclear Waste Glass 

7.1 Introduction 

The latter stages of the nuclear waste vitrification process at Sellafield Ltd relate to high-

level glass waste (HLW) being poured into containers that are sealed, decontaminated, and then 

eventually stored in a deep geological repository.  

One of the key properties of the HLW glass is the chemical durability. Chemical durability 

is defined as the resistance of the waste to release elements into aqueous solutions, such as 

groundwater. Understanding this durability behaviour is important because it determines the 

necessary engineered barriers to prevent radionuclide release into the environment when storing 

the HLW in a deep geological repository. The glass is expected to remain radioactive for many 

thousands of years and so the radioactive containers may eventually erode, and the glass come 

into contact with groundwater. The chemical durability is quantified by the leach rate, typically 

in the form of normalised mass loss, of specific elements. The modelling of chemical durability 

can lead to optimal compositions of glass that can minimise the normalised mass loss of the 

radioactive elements. 

Modelling of the chemical durability of the glass is therefore significant for nuclear waste 

management. Attempts have been made to model the chemical durability from first principles 

(Frugier et al., 2009), however, inaccuracies have been shown when applied to experimental 

data. 

Data-driven modelling can provide improvements over mechanistic modelling without the 

need for extensive knowledge and potentially in a less time and effort demanding way. 

Nonlinear data-driven techniques, such as neural networks (Bishop, 1995) and extreme learning 

machine (Huang et al., 2006), can model complex nonlinear relationships that linear techniques 

may be inadequate for. Using machine learning to predict static and dynamic glass leaching 

behaviour has been done previously (Lillington et al., 2020). 

Experiments to understand the durability of HLW have been carried out to assess the effect 

of waste loading (Brookes et al., 2010) and composition of glass (Harrison and Scales, 2008; 

Harrison, 2014; Harrison and Brown, 2018) on the chemical durability. 

This chapter uses bootstrap aggregated extreme learning machine to model the chemical 

durability of glass waste based on experimental data of accelerated static leach rate. A 
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sensitivity analysis is then carried out to determine if the chemical durability can be optimised 

by varying the 4 main glass forming additives.  

7.2 Overview of Extreme Learning Machine 

Extreme learning machine (ELM) is essentially a single hidden-layer feedforward neural 

network, as illustrated in Figure 7.1. The difference from a traditional neural network arises 

from the determination of the connection weights. In a neural network, the input and output 

weights are typically optimised by a backpropagation algorithm, however, for ELM the input 

weights are randomised and so the output weights can be computed more simply. 

 

 

Figure 7.1 – A diagram of extreme learning machine 

Given a training set of N different samples, where the inputs are defined by Equation (7.1) 

and the target outputs by Equation (7.2): 

 

 𝑋 = [𝑥1, 𝑥2, … 𝑥𝑛]𝑇 , (7.1) 

   

 𝑌 = [𝑦1, 𝑦2, … 𝑦𝑚]𝑇 , (7.2) 

the output of a SLFFN, y, can be defined as: 
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𝑦𝑗 = ∑𝛽𝑖𝑔(𝑤𝑖𝑥𝑗 + 𝑏𝑖)

𝑁𝐻

𝑖=1

        𝑗 = 1 𝑡𝑜 𝑁 , (7.3) 

  
 

where NH is the number of hidden neurons, wi is the weight vector connecting the input 

neurons to the ith hidden neuron, bi is the bias of the ith hidden neuron, g is the hidden layer 

activation function, and 𝛽𝑖 is the output weight vector connecting the ith hidden neuron to the 

output neurons.  

In standard SLFFN, the error function is defined, and gradient descent methods are used to 

iteratively determine the optimal input and output weights to minimise the error function. This 

error function, e, is typically the mean squared error (MSE), 

 

 

𝑒 =
1

𝑁
∑(𝑦𝑗 − 𝑡𝑗)

2
𝑁

𝑗=1

 . (7.4) 

 

In ELM, the input weights and bias are randomised and so, for compactness, the output of 

the hidden neurons can be written as a matrix H, such that �̂� = 𝐻𝛽 (Huang et al., 2006), where  

 

 

𝐻 = [
𝑔(𝑤1𝑥1 + 𝑏1) ⋯ 𝑔(𝑤𝐿𝑥1 + 𝑏𝐿)

⋮ ⋱ ⋮
𝑔(𝑤1𝑥𝑁 + 𝑏1) ⋯ 𝑔(𝑤𝐿𝑥𝑁 + 𝑏𝐿)

]  , (7.5) 

   

 

𝛽 = ቎
𝛽1

𝑇

⋮
𝛽𝐿

𝑇
቏ . (7.6) 

 

In order to find the optimal 𝛽 matrix that minimises the error function, the error function is 

differentiated with respect 𝛽 and set equal to zero. Firstly, the error function is written in matrix 

form as:  

 
𝑒 =

1

2
‖𝑌 − 𝑇‖2 . (7.7) 

 

Using the result 𝑌 = 𝐻𝛽, Equation (7.7) can be re-written as 
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𝑒 =

1

2
‖𝐻𝛽 − 𝑇‖2 =

1

2
(𝐻𝛽 − 𝑇)𝑇(𝐻𝛽 − 𝑇) (7.8) 

 

and then differentiated with respect to 𝛽 to give 

 

 𝜕𝑒

𝜕𝛽
= 𝐻𝑇𝐻𝛽 − 𝐻𝑇𝑇 . (7.9) 

 

Setting Equation (7.9)  equal to zero and solving for 𝛽 gives the solution: 

 

 𝛽 = 𝐻†𝑇 , (7.10) 

 

where 𝐻† is the Moore-Penrose generalised inverse of matrix H. This gives the minimum 

norm least squares solution of the linear system 𝐻𝛽 = 𝑇 (Huang et al., 2006). 

7.3 Bootstrap Aggregated Extreme Learning Machine 

Bootstrap aggregating, also known as bagging, is an ensemble method that was first 

proposed by Breiman (1996) as a way to improve generalisation performance through the 

combination of multiple predictors. Bootstrap aggregated neural networks have been 

investigated previously for process modelling and have been shown to improve model 

robustness and reliability (Zhang, 1999; Zhang et al., 2006; Murkherjee and Zhang, 2008). 

Bootstrap aggregated models have also been described in Chapters 2 and 5. 

In this work, bootstrapped aggregated extreme learning machine (BA-ELM) is used to 

increase model generalisation performance and reliability over single ELM models. 

The idea behind BA-ELM is to create multiple models which then have their individual 

predictions combined to produce the final model output, as illustrated in Figure 7.2. 
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Figure 7.2 – A simple diagram of a bootstrap aggregated extreme learning machine 

(Zhang, 1999). 

To improve accuracy through model combination, the individual models must be diverse. 

This diversity is achieved through bootstrap resampling of the training data, which is essentially 

sampling with replacement (Bland and Altman, 2015). The simplest way to combine the 

predictions from the individual models is through averaging, which was the method adopted in 

this work. Methods using weighted averaged, such as PCR, have also been investigated (Zhang, 

1999). 

7.4 Modelling of Chemical Durability 

Static leach rate accelerated experiments have been carried out by the National Nuclear 

Laboratory (NNL) to produce data of the normalised mass loss against time of 8 key elements 

for different feed compositions (Harrison, 2014). The experiments involve a powdered glass 

submerged in a test solution, typically deionised water or test groundwater, at a fixed 

temperature to investigate glass dissolution up to saturation. The powdered glass provides a 

high surface area to volume ratio so that saturation conditions can be reached quicker. 

Investigating normalised mass loss to saturation provides information on the long term 

corrosion behaviour of the glass. Since experiments measuring the leach rate for hundreds or 
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thousands of years are not possible, these accelerated experiments, and creating models with 

them, are the best way to understand the long-term leach rate currently. 

This experimental data from the static leach rate experiments covered 26 different glass 

compositions that varied based on the type of waste, blend ratio of waste, and amount of glass 

forming additives. The glass compositions comprised of 23 different oxides, including the 4 

main glass forming additives of boron oxide, lithium oxide, sodium oxide and silicon dioxide. 

For each composition, the data included the normalised mass loss of 8 key elements for 9 time 

points between 7 and 182 days. An example of the raw data is displayed in Figure 7.3. Although 

the chemical durability can be affected by other factors, the focus of this data and this work is 

on the effect of different glass compositions on the chemical durability.  

 

 

Figure 7.3 – Example of the data obtained from one static leach rate experiment given a 

certain glass composition. 

7.4.1 Data pre-processing 

Outliers were detected by visual inspection and also with the “3σ” rule (as described in 

Section 2.1.1). For example, the normalised mass loss for Chromium with 3σ limits is displayed 

in Figure 7.4, showing that one outlier is detected with this method. For this data, the outliers 

were removed due to the batch nature of the data meaning that replacement is difficult. 

Additionally, the outliers were few and so did not impact the amount of data very much. 

Replacement is a higher priority if a higher proportion of the data is outliers and so removal 

would lead to a reduction in data for model building.  
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Figure 7.4 – Outlier detection using the 3σ rule for the normalised mass loss of Chromium 

Although the end time points are of most importance, because this is the region of saturation, 

all the data is utilised in the model building because the amount of data points is so small to 

begin with. This also allows for predictions to be made for different stages of leaching over 

time. This means that there is a mixture of time varying data and once-per-experiment data. To 

include each time point into the model, the time was used as a model input along with the 23 

glass compositions. This means that the composition of each glass was repeated for all the time 

points associated with the normalised mass losses.  

This gave an input matrix of the following structure: 

 

 

[
 
 
 
 
 
𝑡𝑖𝑚𝑒1,1 𝐺𝑙𝑎𝑠𝑠 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛1

⋮ ⋮
𝑡𝑖𝑚𝑒1,𝑇 𝐺𝑙𝑎𝑠𝑠 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛1

𝑡𝑖𝑚𝑒2,1 𝐺𝑙𝑎𝑠𝑠 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛2

⋮ ⋮
𝑡𝑖𝑚𝑒𝑗,𝑇 𝐺𝑙𝑎𝑠𝑠 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗]

 
 
 
 
 

 (7.11) 
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where T is the number of time samples from an experiment, j is the number of glass 

compositions, and “𝐺𝑙𝑎𝑠𝑠 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗” represents a horizontal vector of the 23 different 

oxide compositions for the jth glass composition. 

The elements making up the compositions of each glass type are listed in Table 7.1. 

Table 7.1 – List of the 23 elements present in each glass 

Elements in Glass 

Al2O3 

B2O3 

BaO 

CeO2 

Cr2O3 

Cs2O 

Fe2O3 

Gd2O3 

La2O3 

Li2O 

MgO 

MoO3 

Na2O 

Nd2O3 

NiO 

Pr2O3 

RuO2 

SiO2 

Sm2O3 

SrO 

TeO2 

Y2O3 

ZrO2 

 

The output matrix is simply the normalised mass loss (NML) of the 8 target elements, for 

each timepoint, for each glass type, as described below: 
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[
 
 
 
 
 
 
𝑁𝑀𝐿1

1

⋮
𝑁𝑀𝐿𝑇

1

⋮
𝑁𝑀𝐿1

𝐽

⋮
𝑁𝑀𝐿𝑇

𝐽]
 
 
 
 
 
 

 (7.12) 

 

7.4.2 Modelling using bootstrap aggregated extreme learning machine 

A separate model was built for each of the 8 elements, using BA-ELM, so that the highest 

prediction accuracy can be obtained for each individual model. This is because creating a single 

multiple-output model leads to a compromise in the performance of each output. Creating 

individual models allows each model to maximise performance for that specific element.  

The data was split into training (60%), testing (20%) and unseen validation (20%) data sets 

overall. However, initially the data was split in a training plus testing set (TT) and a validation 

set so that bootstrapping could be performed on the whole TT data set to increase diversity in 

the individual models. Then the TT is split into training and testing following the bootstrapping. 

The number of hidden neurons was determined by cross validation with the testing data 

RMSE for each model in the ensemble individually. To determine the number of ELM 

networks, a plot of root mean squared error (RMSE) on testing data against the cumulative 

number of networks in the model was plotted. An example of this plot is illustrated in Figure 

7.5. The error levels off as more networks are included into the BA-ELM model and the number 

of networks was selected by when the variation in testing RMSE from adding in additional 

networks becomes insignificant (Zhang, 2004; Murkherjee and Zhang, 2008; Mohammed and 

Zhang, 2013). 
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Figure 7.5 – Testing RMSE for each individual ELM network for the boron model (top). 

Testing RMSE for BA-ELM models for different numbers of aggregated networks for the 

boron model (bottom). 

 

 

Figure 7.6 – Training RMSE for each individual ELM network for the boron model (top). 

Training RMSE for BA-ELM models for different numbers of aggregated networks, for the 

boron model (bottom). 
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Figure 7.7 – Validation RMSE for each individual ELM network for the boron model 

(top). Validation RMSE for BA-ELM models for different numbers of aggregated networks, 

for the boron model (bottom). 

Comparing the training RMSE and testing RMSE for the individual networks highlights the 

inconsistency in single ELM models due to some networks performing well on training data 

but poorly on testing data. This is also confirmed with the validation data, as shown in Figure 

7.7. On the other hand, the consistency in RMSE for BA-ELM models shows improved 

reliability when compared to single ELM. 

Table 7.2 – Single ELM performance for each data set for each element’s model. 

 Training Testing Validation 

Element R2 RMSE R2 RMSE R2 RMSE 

Aluminium 0.9495 0.2247 0.9459 0.2321 0.9587 0.2129 

Boron 0.9439 0.2334 0.9132 0.2980 0.8872 0.3314 

Chromium 0.9737 0.1640 0.9458 0.2297 0.9540 0.2133 

Lithium 0.9485 0.2284 0.9268 0.2683 0.9028 0.3133 

Magnesium 0.7004 0.4385 0.6817 0.6547 0.5976 0.6490 

Molybdenum  0.9696 0.1555 0.9613 0.2154 0.9251 0.2111 

Sodium 0.9416 0.2378 0.9188 0.2886 0.8907 0.3262 

Silicon 0.8320 0.4046 0.7493 0.5060 0.7028 0.5461 
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Table 7.2 and Table 7.3 show the performance of single ELM and BA-ELM models 

respectively, showing both R2 and RMSE performance metrics. The elements with validation 

RMSE values highlighted in bold indicate where the generalisation performance was best for 

that element model when comparing the two methods. It can be seen that all eight difference 

models had better validation performance for BA-ELM than single ELM. The magnesium 

model performance is poor due to quality of data not being as good and so more data, and 

potentially better pre-processing, would be required to improve this model.  

Table 7.4 provides further detail on this comparison by showing the percentage difference 

for each model for both testing RMSE and validation RMSE, including the average for each 

element model. A negative percentage indicates the RMSE is lower for BA-ELM, i.e. BA-ELM 

is better by that negative percentage. The averages for both testing and validation RMSE 

demonstrate that the improvement in generalisation performance for BA-ELM, compared with 

Single ELM, is significant. There is also then the added benefit of the reliability improvements 

provided by creating a diverse ensemble, as described earlier. 

Table 7.3 – BA-ELM performance for each data set for each element’s model. 

 Training Testing Validation  

Element R2 RMSE R2 RMSE R2 RMSE #Nets 

Aluminium 0.9473 0.2295 0.9591 0.2019 0.9596 0.2103 40 

Boron 0.9500 0.2205 0.9449 0.2374 0.9055 0.3038 50 

Chromium 0.9663 0.1857 0.9797 0.1405 0.9627 0.1919 45 

Lithium 0.9532 0.2176 0.9567 0.2062 0.9198 0.2845 46 

Magnesium 0.6432 0.4785 0.7750 0.5504 0.6707 0.5870 50 

Molybdenum  0.9617 0.1745 0.9802 0.1542 0.9332 0.1994 40 

Sodium 0.9512 0.2948 0.9470 0.2333 0.9108 0.2948 45 

Silicon 0.8388 0.3963 0.8101 0.4404 0.7365 0.5142 46 
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Table 7.4 – Percentage difference between BA-ELM and Single ELM models 

 Percentage Difference (%) 

Element Testing RMSE Validation RMSE 

Aluminium -13.0 -1.2 

Boron -20.3 -8.3 

Chromium -38.8 -10.0 

Lithium -23.1 -9.2 

Magnesium -15.9 -9.6 

Molybdenum  -28.4 -5.5 

Sodium -19.2 -9.6 

Silicon -13.0 -5.8 

Average -21.5 -7.4 

 

7.4.3 Principal component analysis-based method results 

To further improve on the BA-ELM results, PCA was added as a pre-processing step to 

reduce collinearity and dimensionality. The use of PCA in data-driven modelling has been 

detailed in Sections 2.4.1, 5.3.1 and 6.4. 

The retained principal components k was determined by the principal components that 

captured at least 99% of the variance of the data. The k principal components were used as the 

inputs to the BA-ELM models. As shown by Figure 7.8, 7 principal components captured over 

99% of the variance in the data and so this was the value of k. Since the input data is the same 

for each element model, k was 7 for all models. 
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Figure 7.8 – Cumulative explained variance for PCA applied to the input data 

The results of incorporating PCA into BA-ELM (PCA-BA-ELM) are shown in Table 7.5. 

Table 7.6 shows the percentage difference between PCA-BA-ELM and BA-ELM for each 

element. These results show a significant performance increase of 10.4% on average across all 

element models when comparing PCA-BA-ELM with BA-ELM. This improvement can be 

attributed to the ability of PCA to capture most of the variance in less features (leading to fewer 

inputs that have little meaningful information or even misleading information) and to reduce 

co-linearity, to ensure the data is information rich.  
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Table 7.5 – PCA-BA-ELM performance for each data set for each element’s model 

 Training Testing Validation  

Element R2 RMSE R2 RMSE R2 RMSE #Nets 

Aluminium 0.9540 0.2143 0.9665 0.1827 0.9648 0.1965 50 

Boron 0.9566 0.2053 0.9554 0.2134 0.9181 0.2824 50 

Chromium 0.9685 0.1795 0.9825 0.1306 0.9646 0.1872 40 

Lithium 0.9576 0.2073 0.9635 0.1894 0.9282 0.2692 45 

Magnesium 0.7251 0.4200 0.7146 0.5046 0.7146 0.5466 40 

Molybdenum  0.9627 0.1722 0.9769 0.1664 0.9364 0.1945 40 

Sodium 0.9590 0.1991 0.9593 0.2044 0.9262 0.2681 35 

Silicon 0.9388 0.2557 0.9250 0.2636 0.8434 0.3668 40 

 

Table 7.6 – Percentage difference between PCA-BA-ELM and BA-ELM models 

 Percentage Difference (%) 

Element Testing RMSE Validation RMSE 

Aluminium -10.5 -7.0 

Boron -11.2 -7.6 

Chromium -7.6 -2.5 

Lithium -8.9 -5.7 

Magnesium -9.1 -7.4 

Molybdenum  7.3 -2.5 

Sodium -14.1 -10.0 

Silicon -67.1 -40.2 

Average -15.1 -10.4 

 

To assess the impact of using ELM over the very similar SLFNN, models were created using 

PCA as the precursor to a bagged neural network model (PCA-BA-NN). The neural networks 

were trained using the Levenberg-Marquart algorithm and 0.001 regularisation (same 

regularisation as for ELM for a better comparison). The results using PCA-BA-NN are 

displayed in Table 7.7 and, again, the percentage difference between PCA-BA-NN and PCA-

BA-ELM is shown in Table 7.8. For every element on both testing and validation data, the 

PCA-BA-ELM model was best, as shown by the positive percentages in Table 7.8. On average, 
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PCA-BA-ELM had a generalisation performance 11.6% better than PCA-BA-NN, which is 

significant. These results demonstrate that ELM improves generalisation performance over a 

neural network while also reducing computational effort by simply computing the output 

weights through the input weights being randomised. 

Table 7.7 – PCA-BA-NN performance for each data set for each element’s model 

 Training Testing Validation  

Element R2 RMSE R2 RMSE R2 RMSE #Nets 

Aluminium 0.9459 0.2325 0.9584 0.2036 0.9593 0.2111 45 

Boron 0.9480 0.2247 0.9438 0.2396 0.9026 0.3080 50 

Chromium 0.9627 0.1952 0.9782 0.1456 0.9610 0.1964 35 

Lithium 0.9518 0.2208 0.9548 0.2108 0.9197 0.2848 40 

Magnesium 0.6425 0.4790 0.7757 0.5496 0.6554 0.6006 40 

Molybdenum  0.9588 0.1809 0.9743 0.1754 0.9298 0.2043 40 

Sodium 0.9490 0.2222 0.9455 0.2364 0.9111 0.2943 35 

Silicon 0.8368 0.3988 0.8112 0.4391 0.7352 0.5155 50 

 

Table 7.8 – Percentage difference between PCA-BA-NN and PCA-BA-ELM models 

 Percentage Difference (%) 

Element Testing RMSE Validation RMSE 

Aluminium 11.4 7.4 

Boron 12.3 9.1 

Chromium 11.5 4.9 

Lithium 11.3 5.8 

Magnesium 8.9 9.9 

Molybdenum  5.4 5.0 

Sodium 15.7 9.8 

Silicon 66.6 40.5 

Average 17.9 11.6 
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Figures 8 to 7 show the predictions of each element for the PCA-BA-ELM models. These 

figures confirm the good performance on unseen data demonstrated through the performance 

metrics. The magnesium model is much worse than the others, however, as seen by the plot of 

magnesium predictions (Figure 7.13), the scale of the magnesium NML is much lower than the 

other elements. This means that the contribution of magnesium is very low compared to the 

total and so the poor model performance does not have a significant impact on the total 

normalised mass loss, which is typically of the most interest because this determines how much 

radioactivity is leaching into the environment overall. 
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Figure 7.9 – Normalised mass loss predictions for aluminium on validation data, using the 

PCA-BA-ELM model 

 

Figure 7.10 – Normalised mass loss predictions for boron on validation data, using the 

PCA-BA-ELM model 
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Figure 7.11 – Normalised mass loss predictions for chromium on validation data, using the 

PCA-BA-ELM model 

 

Figure 7.12 – Normalised mass loss predictions for lithium on validation data, using the 

PCA-BA-ELM model 
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Figure 7.13 – Normalised mass loss predictions for magnesium on validation data, using 

the PCA-BA-ELM model 

 

Figure 7.14 – Normalised mass loss predictions for molybdenum on validation data, using 

the PCA-BA-ELM model 
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Figure 7.15 – Normalised mass loss predictions for silicon on validation data, using the 

PCA-BA-ELM model 

 

Figure 7.16 – Normalised mass loss predictions for sodium on validation data, using the 

PCA-BA-ELM model 
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7.5 Sensitivity Analysis 

A model-based sensitivity analysis was carried out to assess how the four main glass forming 

additives affect the normalised mass loss of each element. The profile method (Gevrey et al., 

2003) was used for this sensitivity analysis. The inputs of interest were the four glass forming 

additives as these can be most easily manipulated in the feed. For the profile method, the input 

of interest is varied over its full range and each point over the range is used as an input to the 

model to create a prediction. 12 points within the range of each input was used. All other inputs 

are held at a constant level. Typically, this constant level is a quartile and then the process is 

repeated for all quartiles. However, for this data, some combinations of inputs created from 

these constant levels were outside the scope of the model because they were too different from 

anything seen in the data due to such a small amount of data available. These combinations lead 

to infeasible predictions. Therefore, it was decided to make the constant levels equivalent to the 

glass compositions from the experimental data. The predictions for each constant level were 

then averaged to give the final sensitivity output.  

For example, for the sensitivity analysis for the boron oxide additive: 

• Boron oxide is varied 12 times between the minimum and maximum values that are 

observed for it over all 26 glass compositions provided in the data (26 “constant 

levels”). 

• For all 12 boron oxide values, the other inputs are kept constant at their values 

corresponding to glass composition 1. 

• These 12 input vectors are used to create 12 model predictions of normalised mass 

loss based on the PCA-BA-ELM model for a chosen element. 

• This process is then repeated for the other 25 glass compositions, where the same 

12 boron oxide values are used, and the other inputs are kept at the value 

corresponding to the glass compositions. 

• This leads to a 12x26 matrix of normalised mass loss predictions. The 26 predictions 

for each boron oxide value (relating to each “constant level”) are then averaged, 

giving 12 predictions of normalised mass loss for range of boron oxide values. 

Figure 7.17 shows the sensitivity analysis for the boron PCA-BA-ELM model at the end 

time of 182 days, because it is one of the elements that contributes to the total normalised mass 

loss the most. The final time point of 182 days is focused on because this is when the glass 

dissolution is at saturation and then normalised mass loss is at its greatest. If the saturation 
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normalised mass loss can be reduced then the prior time points should also be reduced. Figure 

7.17 shows that there is a potential optimum amount of boron oxide, while the other three 

additives all show an almost linear relationship between the boron normalised mass loss and 

the composition of the additive. Although this suggests that these inputs should be minimised, 

some of the additives are important for thermal and chemical stability of the product. However, 

within the ranges used in the model, these should be minimised.  

 

 

 
Figure 7.17 – Sensitivity analysis of boron normalised mass loss for a time of 182 days. 

Looking at a sensitivity analysis of the total normalised mass loss is of most interest because 

it is the total that matters the most when it comes to total radioactivity leaching into the 

environment. The same sensitivity analysis method was applied except the normalised mass 

loss from each of the eight individual models was summed to give a total.  
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Figure 7.18 – Sensitivity analysis of the total normalised mass loss for a time of 182 days 

Figure 7.18 shows the sensitivity analysis for the total normalised mass loss at 182 days. The 

trends for lithium oxide, sodium oxide and silicon oxide are very similar, however, the boron 

oxide trend is different. As the composition of boron oxide increases the total normalised mass 

loss decreases linearly. This shows that using less lithium, sodium and silicon oxides, but more 

boron oxides (within the ranges specified by the experimental data) maximise the chemical 

durability of the glass waste (within the glass types provided by in the experimental data).  

7.6 Conclusions 

Nuclear energy is still an important fuel source and dealing with nuclear waste is one of the 

key issues associated with it. High-level nuclear waste can be converted to a more stable, glass 

form through a process known as vitrification. If the vitrified waste is to be stored in deep 

geological repositories, then eventually the engineered barriers will corrode, and the radioactive 

waste may come into contact with groundwater. The chemical durability of the waste is the 

amount of elements that leach into the ground water and so being able to model this for different 

glass compositions can lead to minimising the leach rate. Bootstrap aggregated extreme 

learning machine integrated with principal component analysis was used to model the 

normalised mass loss of eight elements using experimental data. It was shown that robust and 

reliable models of the normalised mass losses were produced using this technique when 

compared with similar techniques, such as single ELM, and bagged neural network. Combining 

multiple models increased the generalisation performance compared to single ELM models and 
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also improved the model reliability. Including principal component analysis further improve 

model generalisation performance by reducing collinearity and dimensionality. The developed 

models were used as a part of a sensitivity analysis to assess how the four main glass forming 

additives affect the normalised mass loss, which could be used to adjust the feed composition 

to minimise the normalised mass loss. Future work could look at a model-based optimisation 

to determine the best feed composition of glass additives to minimise the normalised mass loss, 

hence maximising the chemical durability. Additionally, more data is required to further 

improve generalisation performance and to validate the model further, because carrying out the 

sensitivity analysis highlighted   that the model cannot handle any combination of glass 

compositions due to the small amount of data the models were built on. 
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Chapter 8. Conclusions and Recommendations for Further Works 

8.1 Summary of Thesis and Main Contributions 

Data-driven process modelling has vastly improved in recent years due to the ever-increasing 

amount of process data being stored and hardware advances meaning more complex techniques 

can be used, and with less computational time and effort. However, issues with data pre-

processing and selection, and developing techniques to enhance model reliability and 

robustness still exist. 

Nuclear energy is key to tackling the withdrawal of fossil fuels as the main source of 

electricity in the world. One of the key issues with nuclear energy is dealing with the radioactive 

waste that cannot be recycled. The nuclear waste vitrification plant at Sellafield Ltd gives one 

option for dealing with high-level waste from nuclear fuel reprocessing. The high-level waste 

is converted into a glass form, which is more stable and gives a lower volume than the original 

waste. This is critical as the waste remains radioactive for hundreds or thousands of years and 

so a stable form of the waste is important. Utilising data-driven modelling and monitoring to 

optimise parts of the process will lead to a reduction in costs and environmental impact. 

This thesis firstly focuses on developing novel, data-driven modelling techniques to enhance 

model performance for industrial process applications. Secondly, utilising data-driven 

modelling and monitoring to optimise the nuclear waste vitrification process at Sellafield Ltd. 

Chapter 2 provides an overview of data-driven process modelling and monitoring. Process 

data pre-processing issues are highlighted and previous literature on these is reviewed. Typical 

data-driven techniques and their associated applications in the process industry are also 

described. 

Slow feature analysis is a statistical technique that can extract underlying trends in process 

data, while also reducing the effects of noise and dimensionality. Utilising slow feature analysis 

as a pre-processing technique to data-driven modelling has been previously done for linear 

applications. However, combining slow feature analysis with a neural network was a novel 

contribution, as laid out in Chapter 3. Two industrial process case studies were used as 

benchmarks to assess the proposed methodology compared with other similar, standard data-

driven modelling techniques. The results showed the improvements to model generalisation 

performance that slow feature analysis provided by extracting underlying trends (providing 

more meaningful information to the regression technique), reducing noise, and reducing 
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dimensionality. All these attributes lead to an information rich scenario that is beneficial to 

model performance. 

Expanding on linear slow feature analysis to extract nonlinear underlying trends in process 

data led to the development of kernel slow feature analysis as a precursor to a neural network, 

another novel contribution, described in Chapter 4. A nonlinear numerical example was 

developed to demonstrate that kernel slow feature analysis can extract driving forces behind the 

data where linear slow feature analysis cannot do so fully. An industrial batch process case 

study demonstrated that better nonlinear slow feature extraction leads to significant 

improvements in model generalisation when combined with a neural network, compared with 

a variety of techniques, including linear slow feature analysis and kernel principal component 

analysis.  

The rest of the thesis involved taking the data-driven modelling techniques developed and 

applying them to real, novel industrial applications for Sellafield Ltd’s nuclear waste 

vitrification process. A key stage in the vitrification process is the pouring of the waste glass 

into containers. Overfilling and underfilling of the containers can be very costly and so 

understanding the pour rate is critical. There is currently no way to measure the pour rate in real 

time and only the average pour rate can be calculated. Having a prediction of the pour rate just 

before the pour starts can optimise the pouring. Using process data to create a predictive model 

of the pour rate is described in Chapter 5, which has not been attempted in previous works. 

Slow feature analysis was incorporated into a bootstrap aggregated neural network 

methodology to improve model predictions when compared with principal component analysis-

based bootstrap aggregated methods. Additionally, the results demonstrate that bootstrap 

aggregation improves the model robustness and reliability over single models. 

Another challenge in the waste vitrification process is blockages developing in pipe work in 

the dust scrubber section of the process. These blockages accumulate quickly and can lead to 

very expensive maintenance to clear them. Multivariate statistical process control approaches 

using slow feature analysis and principal component analysis were developed to try and detect 

these blockages earlier than they typically are on site, as presented in Chapter 6. Earlier 

detection of the blockages leads to more preventive measures being applied to ensure a full 

blockage does not occur. The results demonstrated that early detection was improved using 

slow feature analysis over principal component analysis. Additionally, including external 

dynamics into the model improved the early detection times further. It is also of interest to 

understand if there are any specific process variables driving the blockages and so residual 

contribution plots were created. However, these plots did not provide any conclusive insight 
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into the direct causes of the blockages besides the contributions of dust scrubber differential 

pressure, which was already known. 

The final piece of work for the waste vitrification process involved data-driven modelling of 

the chemical durability of the waste glass product. The containers of glass are likely to remain 

radioactive for a very long time and can be stored in deep geological repositories. Eventually 

the containers may erode, and the glass comes into contact with groundwater, causing the 

leaching of radionuclides into the environment. The rate of this leaching of radionuclides 

(known as the chemical durability) needs to be minimised to avoid long term environmental 

issues. Using accelerated static leach rate experiments, the long-term chemical durability of 

several key radioactive elements can be measured. Data-driven modelling of these leach rates 

using this experimental data were created using bootstrap aggregated extreme learning machine 

for glasses of different compositions. Good generalisation was performed for 7 out of the 8 

element models, with PCA as a pre cursor to BA- ELM giving the best generalisation when 

compared with just BA-ELM and with BA-NN and PCA-BA-NN. A sensitivity analysis was 

carried out to assess whether the glass composition could be optimised to minimise the overall 

leach rate. The results suggested that increasing the composition of boron oxide glass additive, 

while decreasing the other three additives, within the range of compositions assessed, could 

minimise the total leach rate. 

8.2 Recommendations for Future Research 

The work into linear and kernel slow feature analysis in Chapters 3 and 4 could be further 

expanded. Selection of optimal hyperparameters is difficult, particularly for kernel slow feature 

analysis with the amount of hyperparameters involved, and so further research into this could 

improve model performance. Further assessing the effectiveness of kernel slow feature analysis 

with a neural network on more case studies and against more techniques should also be done. 

The pour rate models in Chapter 5 could be improved by incorporating more complex 

techniques such as kernel slow feature analysis. Furthermore, analysis to investigate which 

process variables impact the pour rate the most could lead to control of the pour rate being 

possible, something that would significantly improve process operations because currently the 

pour rate is not controlled in such a way. 

The results on early detection of blockages could be further improved by incorporating 

kernel slow feature analysis or kernel principal component analysis, to capture nonlinear 

underlying trends in the data to improve the false alarm rate and relative detection time. 

Additionally, the residual contribution plots did not yield impactful results and so using other 
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type of contribution plots, and other methods to try to find what variables cause the blockages, 

is of great importance to process operations.  

In addition to the sensitivity analysis for the chemical durability modelling, model-based 

optimisation could be performed to find an optimal glass composition to maximise chemical 

durability. Furthermore, the chemical durability models can be retrained if more experimental 

data is available to improve the range of compositions the model performs well on.  
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Appendix A 

Introduction 

 

This appendix provides additional results relating to the dust scrubber blockage detection from 

Chapter 6. 

 

PCA control charts for blockages 2-7 with 99.99% control limit 

 

Figure A.1 – T2
 and SPE control chart for blockage 2, using a PCA model  

 

Figure A.2 – T2
 and SPE control chart for blockage 3, using a PCA model 

 



153 

 

 

Figure A.3 – T2
 and SPE control chart for blockage 4, using a PCA model 

 

Figure A.4 – T2
 and SPE control chart for blockage 5, using a PCA model 
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Figure A.5 – T2
 and SPE control chart for blockage 6, using a PCA model 

 

 

Figure A.6 – T2
 and SPE control chart for blockage 7, using a PCA model 
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DPCA relative detection times for d values of 1, 2 and 4. 

 

Table A.1 – Relative detection times for each blockage using a DPCA-based control chart, 

for d = 1 

 Relative detection time (min) 

Blockage 1 -5 

Blockage 2 -3 

Blockage 3 -19 

Blockage 4 -3 

Blockage 5 -12 

Blockage 6 -3 

Blockage 7 -5 

Mean -7.14 

 

 

 

Table A.2 – Relative detection times for each blockage using a DPCA-based control chart, 

for d = 2 

 Relative detection time (min) 

Blockage 1 -7 

Blockage 2 -5 

Blockage 3 -21 

Blockage 4 -5 

Blockage 5 -15 

Blockage 6 -4 

Blockage 7 -7 

Mean -9.14 

 

 



156 

 

Table A.3 – Relative detection times for each blockage using a DPCA-based control chart, 

for d = 4 

 Relative detection time (min) 

Blockage 1 -8 

Blockage 2 -6 

Blockage 3 -23 

Blockage 4 -8 

Blockage 5 -18 

Blockage 6 -4 

Blockage 7 -11 

Mean -11.14 
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Contribution plots for blockages 2-7 using the DSFA model (best model) 

 

 

Figure A.7 – Residual contribution plot for DSFA model for blockage 2 

 

 

Figure A.8 – Residual contribution plot for DSFA model for blockage 3 
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Figure A.9 – Residual contribution plot for DSFA model for blockage 4 

 

 

Figure A.10 – Residual contribution plot for DSFA model for blockage 5 
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Figure A.11 – Residual contribution plot for DSFA model for blockage 6 

 

Figure A.12 – Residual contribution plot for DSFA model for blockage 7 
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