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ABSTRACT 
 

The measurement and quantification of defects is a challenge for Non-Destructive-

Testing and Evaluation (NDT&E). Such challenges include the precise localisation and 

detection of surface and sub-surface defects, as well as the quantification of such defects. This 

work first reports a three-dimensional (3D) Eddy Current Pulsed Thermography (ECPT) 

system via integration with an RGB-D camera. Then, various quantitative measurements and 

analyses of defects are carried out based  on the 3D ECPT system. 

The ECPT system at Newcastle University has been prooven to be an effective non-

destructive testing (NDT) method in surface and sub-surface detection over the past few years. 

Based on the different numerical or analytical models, it has achieved precise defect detection 

on the rail tracks, wind turbines, carbon fibre reinforced plastic (CFRP) and so on. The ECPT 

system has the advantage of fast inspection and a large lift-off range.  However, it involves a 

trade-off between detectable defect size and inspection area compared with other NDT 

methods. In addition, there are challenges of defect detection in a complex structure. Thus, the 

quantification of defects gives a higher requirement of the measurement the object geometry 

information. Furthermore, the analysis of thermal diffusion requires a precise 3D model. For 

this reason, a 3D ECPT system is proposed that adds each heat pixel with an exact X-Y-Z 

coordinate. 

In this work, first, the 3D ECPT system is built. A feature-based automatic calibration 

of the infrared camera and the RGB-D camera is proposed. Second, the software platform is 

built. A fast 3D visualization is completed with multi-threading technology and the Point 

Cloud Library. Lastly, various studies of defect localization, quantification and thermal 

tomography reconstruction are carried out   
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1 INTRODUCTION 

 

This chapter gives a general introduction to the background of eddy current pulsed 

thermography (ECPT) and an updated three-dimensional (3D) reconstruction technique. Then, 

the aims and objectives are described, and four sub themes are presented. 

 

1.1 Background 
 

Non-destructive testing and evaluation (NDT&E) is a set of technologies that can 

provide qualitative and quantitative analysis for defect detection and identification. The ECPT 

is an emerging NDT&E technique that combines thermography and eddy current induction 

heating [1-3]. The ECPT system has already shown great potential, especially in sub-surface 

crack detection, such as in rolling contact fatigue (RCF) in railway tracks [4, 5]. Now, the main 

interest and challenges lie in the quantification of defects. According to Robert J. Langs (1987), 

‘Any reasonable comparison between Aristotle and Galileo shows clearly that there can be no 

unique lawfulness discovered without detailed quantification’. Although the quantitative 

evaluation of the defects has improved dramatically in non-destructive testing (NDT) areas 

over the past years, the ECPT system is still associated with large uncertainties, such as how 

thermal emissivity occur and reflectivity occur and how the thermal diffusion progression in a 

complex structure. 

With the rapid development of 3D scanning technology, the 3D profile can be acquired 

at a high refresh speed even with a low cost 3D scanner, such as the ‘Kinect’ manufactured by 

Microsoft (under 200 pounds with 30 frames per second). Knowledge of precision and 

quantification of object geometry brings the possibility of solving many uncertainty issues, 



2 
 

such as heat diffusion in complex surface conditions and further analysis of the diffusion into 

depth. Therefore, it is essential to transform the 2D ECPT into a 3D ECPT.  

 

1.2 Motivations 
 

  The NDT&E sprouts and begins during World War II, when there was demand that all 

war products and goods be defect-free and of high quality. By the 1950s, the strategy in NDT 

was the ‘zero’ defect strategy. This strategy states that products have to be removed from 

service if any possible flaw or defect is found. However, in the 1960s, with the emergence of 

fracture mechanics, people realized that flaws below a critical size are not important in terms 

of instrument safety issues. The criteria permit the existence of defects in the object if the 

damage is below a critical level. In the 1970s, when more and more disasters occur, people 

began to focus on the detectability of the defects because detection was often missed. For 

example, the report of the F111 aircraft disaster showed that inspection was conducted 11 times 

and the defect was  not found. In the 1980s, the focus was on the requirement of continuing 

upgrading the inspections in all ageing systems. The requirement of continuous inspection of 

ageing systems emerged as structure health monitoring in the 1990s.  

  Nowadays, different NDT technologies can provide high-quality inspection results for 

defects. The NDT community now focusses on quantitative non-destructive evaluation 

(QNDE), including the possibility of detection, quantified measurement of defect size and 

shape reconstruction. In addition, the research of modelled-based analysis and fracture 

mechanical analysis has boosted NDT from qualitative evaluation to quantified evaluation. 

The transient thermal responses in ECPT provide rich information about the defect 

characteristics because of the complex physical interaction between magnetic fields, eddy 

currents and joule heating. However, the complex physical interactions also present challenges 

in the quantification analysis. The 2D ECPT system has many uncertainty factors, including 

the 3D shape of the testing sample, the measurement of the thermal gradient, the lift-off 

distance from the excitation coil to the specimen and the directional emissivity issue. With the 

rapid development of 3D scanning technology, knowledge of precision and quantification of 
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object geometry brings the possibility to solve these uncertainty issues, such as heat diffusion 

in complex surface conditions and further analysis of the diffusion in depth. Therefore, it is 

essential to bring the 2D ECPT into a 3D ECPT framework. 

 

1.3 Aim and objectives 

 

  Driven by the motivations outlined above,  this thesis aims to design and develop a 3D 

ECPT systems for NDT&E.  The thesis has four main themes and objectives. The four themes 

are outlined individually in the following sub-sections. 

 

1.3.1 First theme: building the 3D ECPT system 

 

    This part of the thesis concerns the set-up of the 3D ECPT system, as well as a literature 

review of previous ECPT systems. Figure 1-1 gives the outline of the proposed system. The 

descriptions use this figure as a basis. 
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Figure 1-1 Procedure of registering the 3D scanner for the ECPT system and 3D thermal 

point cloud mapping 

The camera system consists of an RGB-D camera and an infrared camera. Two sources 

of the information are recorded by the RGB-D camera which consists of the visible color 

information of the object in R, G, B and the geometry information as x, y, z. The coordinate 

system of the depth camera is referenced as the depth camera itself.  

Most works use a calibration board for the registration of the two camera systems. In 

this work, instead of using a calibration board, a feature-based self-calibration method is 

proposed in which the common features in the RGB image and the thermal image are found. 

However, because of the different modalities of the two images, the information they contain 

is highly different from one to the other; the thermal image contains thermal radiation, whereas 

the visible image is the light reflection in the visible band. Hence, the challenges lie in 

extracting and matching the common features of these two modalities of the images. The 

feature matching basically consists of three steps—feature extraction, feature description and 

feature matching based on the feature descriptor. The commonly used feature descriptor cannot 

provide enough information for correct feature matching. A new descriptor for infrared image 

and color image registration is proposed in chapter 3. 

After feature matching, the thermal image is registered to the point cloud via a 

projection matrix. The projection matrix was calculated by the matched features using the least 

square method. The more correct the matching features, the more accurate the projection 

matrix is. Generally the projection matrix gives the correspondence of color image pixel 

location and the real geometry location 𝑥𝑥,𝑦𝑦, 𝑧𝑧: 

𝑧𝑧 �
𝑢𝑢
𝑑𝑑
1
� = �

𝑚𝑚11 𝑚𝑚12 𝑚𝑚13 𝑚𝑚14
𝑚𝑚21 𝑚𝑚22 𝑚𝑚23 𝑚𝑚24
𝑚𝑚31 𝑚𝑚32 𝑚𝑚33 𝑚𝑚34

� �

𝑥𝑥𝑤𝑤
𝑦𝑦𝑤𝑤
𝑧𝑧𝑤𝑤
1
� = 𝐌𝐌𝐗𝐗𝑤𝑤                                      (1-1) 

where (𝑢𝑢, 𝑑𝑑) is the pixel location of the color image and (𝑥𝑥𝑤𝑤,𝑦𝑦𝑤𝑤, 𝑧𝑧𝑤𝑤) is the geometry location 

in the 3D world space. The subscript ‘w’ denotes the 3D point in the world coordinate system. 

𝐌𝐌  is the projection matrix and the vector 𝐗𝐗𝑤𝑤  is the 3D point in the world coordinate. 

Mathematically the projection matrix is determined by the camera’s intrinsic parameter matrix 

and extrinsic parameter matrix:  
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Here, 𝑀𝑀1 is the intrinsic parameter matrix, 𝑀𝑀2 is the extrinsic parameter matrix and 𝑴𝑴 is the 

projection matrix. In the intrinsic matrix, all the parameters are related to the camera intrinsic 

property. Here, 𝑠𝑠𝑥𝑥,𝑠𝑠𝑦𝑦 are the camera focus length, whereas 𝑢𝑢0, 𝑑𝑑0 are the optic centre of the 

camera. The extrinsic matrix 𝑀𝑀2  denotes the translation from the object camera to be 

transferred (thermal camera) to the reference camera (3D RGB-D camera). The matrix 𝐑𝐑 is a 

3 × 3 rotation matrix and 𝐓𝐓 is the translation matrix where 

R = �
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𝑠𝑠𝑑𝑑𝑠𝑠𝑐𝑐𝑐𝑐𝑑𝑑𝑠𝑠𝑐𝑐 𝑠𝑠𝑑𝑑𝑠𝑠𝑐𝑐𝑠𝑠𝑑𝑑𝑠𝑠𝑐𝑐𝑠𝑠𝑑𝑑𝑠𝑠𝑐𝑐 + 𝑐𝑐𝑑𝑑𝑠𝑠𝑐𝑐𝑐𝑐𝑑𝑑𝑠𝑠𝑐𝑐 𝑠𝑠𝑑𝑑𝑠𝑠𝑐𝑐𝑠𝑠𝑑𝑑𝑠𝑠𝑐𝑐𝑐𝑐𝑑𝑑𝑠𝑠𝑐𝑐 − 𝑐𝑐𝑑𝑑𝑠𝑠𝑐𝑐𝑠𝑠𝑑𝑑𝑠𝑠𝑐𝑐
−𝑠𝑠𝑑𝑑𝑠𝑠𝑐𝑐 𝑐𝑐𝑑𝑑𝑠𝑠𝑐𝑐𝑠𝑠𝑑𝑑𝑠𝑠𝑐𝑐 𝑐𝑐𝑑𝑑𝑠𝑠𝑐𝑐𝑐𝑐𝑑𝑑𝑠𝑠𝑐𝑐

�              (1-3) 

T = �
𝑇𝑇𝑥𝑥
𝑇𝑇𝑦𝑦
𝑇𝑇𝑧𝑧
�                                                           (1-4) 

Equation (1-3) gives the mathematical representation of a 3D rotation where α, β and γ 

are the yaw, pitch and roll. Equation. (1-4) is the translation matrix. The projection matrix 

gives the mapping relationship from the RGB-D image to the thermal image. Section 3.1 will 

give the method for solving the projection matrix in detail. After registration, the thermal point 

cloud set (x, y, z, temperature) is visualized as illustrated in section 3.3. 

 

1.3.2 Three dimensional visualization, multi-modality imaging fusion and defect detection 

  

This part of the thesis concerns the description of the 3D visualization system and the 

multi-modality imaging fusion, as well as the case studies of defect detection and localization 

with the 3D ECPT system. 
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Multi-modality imaging is becoming a standard practice not only in illness detection in 

the clinical area, but also in the NDT&E area. The multi-modality imaging normally consists 

of two or more imaging sources, such as visible imaging; far-field infrared (IR; thermal) 

imaging; near-field IR (reflected IR) imaging; and ultrasonic, magnetic and other 

electromagnetic field imaging. The functions and benefits of multi-modality imaging for 

NDT&E should basically provide a more accurate location of defects and clearer resolution of 

the damage around the defect area and eventually, it should help damage assessment.  

Multi-modality imaging is usually set within one experimental examination study. Here, 

two imaging devices are placed at different viewing angles. The image registration must be 

processed before fusion of the two or more modality images. Because of projection distortion, 

there will always be errors when aligning images at different viewing angles. The 3D profile 

provided by a 3D scanner can be set as a standard world coordinate system. Thus the 

registration of multi-modality imaging can be treated as an error-free fusion with the 3D profile.  

The fusion of RGB-D and thermal image is illustrated in chapter 4. The comparison of 

2D fusion and 3D fusion is discussed. In addition, the defect detection using skewness feature 

and visualization in 3D is presented, where it can be found that the 3D visualization gives a 

more accurate location and resolution of the damaged area.     

 

1.3.3 Three dimensional thermal imaging and analysis: 3D defect localization and 

quantification and thermal point cloud defect enhancement. 

 

In this part of the thesis, thermal imaging with 3D information is addressed because 

single infrared imaging is usually insufficient for inspecting objects of complex shape. 

Additional information like the viewing angle, and geometry can help to enhance these 

uncertainty factors. For example, the visible image can bring information of about the object 

contour, whereas thermal imaging is quite blurred when it comes to the object contour.  

The previous chapter has already achieved the fusion of thermal imaging with spatial 

information. Chapter 4 accounts for the spatial information for the analysis of heat spreading 

in the 3D dimension, which helps in the diagnosis of defect damage through the heat spreading 
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effect. Furthermore, a study of enhancing the defect area by the fusion of the calculated 

magnetic field induced by the coils is presented.  

 

1.3.4 Tomographic reconstruction of the 3D ECPT.  

 

Tomography analysis is a non-destructive method that analyses  the object layer by 

layer (in slices). The research on tomographic reconstruction mostly lies in X-ray imaging, 

ultrasonic imaging or magnetic resonance imaging (MRI). Researches on thermal tomographic 

reconstruction is hard to conduct because thermal energy penetrates not only vertically, but 

also horizontally. Thermal tomography provides advantages in NDT such as  in its non-

radiative, fast inspection, one-sided and low-cost properties.  In this part of the thesis, we 

investigate the use of the 3D ECPT system for tomographic reconstruction. 

RCF in rail tracks is considered one of the main causes for train derailment. In addition, 

the RCF is a governing reason for rail maintenance and replacement. Thus, it has become a 

research subject in most countries with railroad systems including the United Kingdom, the 

United States, China, Canada, Japan, Russia and Brazil. Research has shown that surface-

initiated RCF cracks are more common, but sub-surface-initiated RCF cracks are more severe. 

The requirement of accurate surface and sub-surface RCF cracks inspection, evaluation and 

quantification is  a challenge for rail safety. This work investigates the use of 3D ECPT for 

RCF tomographic reconstruction.  

With the recent advancement of NDT in 3D reconstruction-based tomographic 

approaches for internal and sub-surface defects, the qualitative and quantitative analysis of 

RCF types and shapes becomes a crucial and urgent task. The X-ray based computed 

tomography (CT) has good results for depth estimation in NDT problems. However, the 

equipment is expensive and bulky, and it poses the risk of radiation effects if continuously 

used. In addition, the X-ray is unable to penetrate the entire rail, which makes it hard to use X-

ray CT for online inspection of RCF cracks. The high-energy industrial CT (above 4 Mev) 

could penetrate the entire rail track head. However, the higher the energy of the X-ray, the 

lower the resolution (for 4 Mev, the resolution is 1mm), which makes it impossible to identify 
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RCF cracks in the rails. The ultrasonic approach has relatively good reconstruction of inner 

defects. However, it has very low resolution on surface crack reconstruction, which makes it 

inappropriate for RCF inspection. This thesis first proposed a thermal tomographic approach 

for the RCF reconstruction. Chapter 5 illustrates the methodology in detail. 

 

1.4 Novelties and contributions of the work 
 

The PhD project aims to establish a 3D ECPT system for QNDE. The major novelties 

and contributions of the work include the following: 

• Establishing the first 3D thermography system for ECPT. 

• Proposing and building a feature-based thermal-3D registration algorithm. A 

shape constrained Scale Invariant Feature Transform (SCSIFT) feature descriptor 

is designed to find and match the common features from the thermal image 

obtained from the infrared camera and the RGB-D image from the 3D scanner. 

• Quantifying defects based on the ECPT system. A skewness feature is proposed 

and developed for the quantification of the defect depth. 

• Proposing the thermal tomographic reconstruction of the 3D ECPT system. 
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2 LITERATURE REVIEW 

 

This chapter provides review of the ECPT system and its application in the past few 

years to address the aim and objectives of the study. In recent years, 3D technology has 

developed rapidly. Numerous 3D scanning and relevant reconstruction algorithms have 

emerged. This thesis concentrates on reconstructing 3D thermography with an RGB-D camera 

and thermal IR camera. The literature review of the recent 3D reconstruction, 3D thermography 

and image registration are investigated. Finally, to realize the quantitative analysis of the defect 

and compare it with other NDT&E technologies, the progress of quantitative NDT&E in recent 

years is presented. 

 

2.1 Thermography and application of NDE 
 

2.1.1 State of the art of thermography 

 

Thermography is the recording of the temperature distribution of an object’s surface 

and formation into an image (thermogram). The term thermography includes ‘contact 

thermography’ and ‘microwave thermography’[6]. Among the thermography types, IR is the 

most common method to detect radiation in the long IR range of the electromagnetic spectrum 

(9~14μm). 

The history of thermography begins with Sir William Herschel (1738-1822) who first 

discovered the IR spectrum. In the 1880s and 1990s, Lord Rayleigh and Wilhelm Wien both 

solved part of the blackbody equation. In the 1950s–1960s, IR thermography underwent a big 

jump. Before 1955, Honeywell and Texas Instrument had generated IR images. In 1965, 

Barnes and Agema published the first IR handbook. Then, in 1978 FLIR was founded as a 

leader of thermal IR camera providers. Figure 2-1 shows the milestones of thermography. 
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Figure 2-1 Timeline and breakthroughs of the infrared thermography technique 

 

2.1.2 Heat transfer 

 

There are three principal ways of bringing about heat transfer—conduction, convection 

and heat radiation. Conduction dominates the heat transfer in solids. It is the heat propagation 

of two solid bodies when there exists a heat difference. Convection is the major factor in the 

propagation of heat energy in gas and liquids. It involves the mass movement of molecules in 

gas or liquids over a large distance. Convection also lies in the boundary of solids and fluids. 

Finally, Heat radiation is internal energy transfer via electromagnetic waves. It present in all 

matter with a temperature above absolute zero. 

Conduction in solid matter is governed by Flic’s second  law of diffusion (in one 

dimension[1D]), where  

𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

= 𝑐𝑐 𝜕𝜕𝑇𝑇2

𝜕𝜕𝑥𝑥2
                                                (2-1) 

Here, α is the thermal diffusivity.  
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The heat radiation emitted by the black body is governed by Plank’s law  

𝐾𝐾𝐵𝐵�λ，T� = 2ℎ𝑐𝑐2

λ5
1

𝑒𝑒
ℎ𝑐𝑐
𝑘𝑘𝑘𝑘λ−1

                                  (2-2) 

where h is the Plank constant; k is the Boltzmann constant, c is the speed of light and λ is the 

wavelength. 

The Stefan-Boltzmann law describes the total energy emitted by a black body. 

Specifically, it states that the energy emitted by unit time is proportional to the forth power of 

the black body’s absolute temperature: 

𝐾𝐾𝐵𝐵(T) = σ𝑇𝑇4                                          (2-3) 

 

2.1.3 Thermography of NDE 

 

IR thermography has wide applications in the NDE area because of its non-contact 

(large lift-off), rapidity and wide area inspection properties. This approach is used not only to 

evaluate the material’s thermal properties, but also to find flaw discontinuities caused by 

corrosion, delamination or cracks. IR thermography can be applied to a wide range of materials 

from fibres, and metals to composite material. To meet the requirements of different 

applications and materials inspection, a number of NDT thermography techniques have been 

developed such as flash thermography, ultrasonic thermography, laser thermography and 

ECPT. 

 

2.1.3.1 Flash thermography 

 

Flash thermography uses a set of flashing lamps and applies the thermal heating pulse 

to the testing sample. During the experiment, the cooling process of the specimen is recorded 

by the IR camera. Flaws in the specimen will cause a discontinuity of heat flow, which will be 

observed and analyzed. 
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Many methods have been developed using flash thermography to estimate defect depth 

and size. Researchers have already proved that instead of analysing the single best contrast 

frame, analysing the whole thermal sequence can give better defect detection and 

quantification result. The most popular thermal video sequence analysing methods are 

thermographic signal reconstruction (TSR) and pulse phase IR thermography (PPT).  

TSR uses time information whereas PPT analyses the frequency domain. In 1996, 

Maldague X [7] first proposed a TSR algorithm. TSR fits the temperature curve to a polynomial 

in the logarithmic domain. In addition, [8] used TSR to analyse the cracks in turbine blades. In 

contrast, PPT transforms a temperature-time video into the frequency domain and performs 

analyses via amplitude and phase image. A PhD thesis [9] gave a detailed explanation of PPT 

with applications. Moreover, [10] and [11] compared TSR and PPT.  

 

2.1.3.2 Ultrasonic thermography 

 

     Ultrasonic thermography is also termed sonic IR, vibro IR or acoustic thermography 

[12-15]. In the 1970s. Henneke et al. [12] first proposed the ultrasonic thermography with a 

transducer and IR camera for thermal video capture. The authors claimed that this method can 

detect most cracks in a variety of materials. Since its initial description,  ultrasonic 

thermography has been applied to a wide field of applications. 

     The ultrasonic thermography system consists of a vibration source, IR camera, 

computer and sometimes a laser vibrometer for the measurement of the amplitudes and 

frequencies of the mechanical wave. Compared with other NDT thermography techniques, it 

has the advantage of detecting micro-cracks and cracks under the surface [16]. Han et al. [17] 

applied this technique in the aerospace industry. They successfully and efficiently detected tiny 

cracks (20 𝜇𝜇𝑚𝑚 ) in the aircraft engine disc. Ultrasonic thermography also works well in 

composite material. Reference [18] introduced ultrasonic IR thermography in the inspection of 

cracks in carbon fibre reinforced plastic (CFRP). However, it has also been proven that 

ultrasonic thermography does not work well in certain materials, such as austenitic steel.  
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2.1.3.3 Laser thermography 

 

Laser thermography uses a laser beam with several watts and heats the sample in a spot 

heating manner. Many applications of crack detection in metals and composite material have 

been developed. Reference [19] established a numerical model for studying heat diffusion 

phenomena via laser thermography. The finite element method (FEM) was used for surface 

crack detection and simulation. Reference  [20] delivered a fibre-guided laser array spot 

thermography (LAST) system, and this proved to have good performance and robustness on 

metallic structure crack detection. Reference [21] gave a quantitative evaluation of defect depth 

using the neural network and validated it via experimental study and simulation. Moreover, 

[22] compared thermosonics and laser thermography, and the author claimed that both 

techniques are useful in finding delamination. Compared with laser thermography, sonic 

thermography can find deeper defects with more precision. Meanwhile, laser thermography 

has a wider inspection range and quicker inspection time. (It only needs one measurement, 

whereas sonic thermography needs multiple measurements). 

 

2.1.3.4 ECPT 

 

    ECPT is a multi-physics system that contains interaction between the eddy current, 

joule heating effect and heat conduction. Figure 2-2 shows the overall 3D ECPT system. The 

signal generator sends a pulse signal and triggers the induction heater. A period of high power 

and high-frequency alternating current is generated by the induction heater and goes through 

the inductive coil. The eddy current is then induced on the surface of the testing sample. When 

the eddy current encounters defects, there is a discontinuity of both electrical conductivity and 

magnetic permeability, and the eddy current leads to diversion.  
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Figure 2-2  Schematic diagram of ECPT 

    In contrast to laser thermography or flash theromgraphy, which only uses the cooling stage 

for defect detection, ECPT utilises the heating stage for defect detection while in the cooling 

stage, and it gives more information for quantitative evaluation. 

     The ECPT system has been used in a wide range of material inspection including 

metallic material and composite material. Reference [23] investigated using inductive heating 

thermography on different steels. In addition [24] successfully used the ECPT system to detect 

the impact damage of carbon fibre reinforced polymer. Most of the ECPT experiments were 

carried out on reflection modes. Reference [25] proposed a combination of the ECPT reflection 

model and transmission model. In addition, Li, K [26] applied an ECPT system to the 

investigate bond wire conditions in IGBT modules. 

Overall, the ECPT is a non-destructive and multi-physical method that can detect not 

only surface defects, but also sub-surface defects. The hybrid and multi-physical properties of 

the ECPT system provide rich information on decision making. However, they also presents a 

higher challenge in terms of quantitative analysis.  

 

2.1.3.5 Summary of IR thermography NDT techniques 

 

In this section, different active IR thermography methods are discussed and compared. 

Active thermography can be categorised according to its active excitation sources and its 

modulation type. For different excitation sources, there are radiation type, convection, thermal 

conduction and internal sources. The radiation type and internal sources are most frequently 
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used. They have unique advantages and limitations; for example, induction heating–based 

thermography can only be applied on conductive material. Ultrasonic thermography is hard to 

apply to material with complex shape, such as for defects in gears, and it has a relatively low 

resolution of surface defects. Radiation thermography, including laser and flash thermography, 

is strongly influenced by the material’s reflectivity and emissivity. The thermal conduction 

needs direct contact with the object’s surface. The advantages and disadvantages found in the 

references are shown in Table 1. 

Table 2 gives a comparison of different active IR thermography types categorised by 

their modulation. Pulsed thermography, step-in thermography, long-pulse thermography and 

lock-in thermography are listed and compared. Their excitation heating time is gradually 

increased, where pulsed thermography has the lowest excitation heating time and lock-in 

thermography usually has the longest heating time duration. The first three—which are pulsed, 

step-in and long pulse types—only consist of one heating period, whereas lock-in 

thermography consists of multiple heating periods. This modulated thermography is widely 

used in radiation thermography, such as flash and laser thermography and internal source 

thermography, including induction thermography and ultrasonic (mechanical wave–based) 

thermography. 

External sources 

Category Heating sources Advantage Disadvantage 

Radiation Flash [27-29], 

halogen lamp [30] 

Non-contact, 

quick inspection; 

large area inspection; 

quantified thermal 

excitation 

Low thermal contrast, 

very sensitive to the 

surface condition of the 

material 

 Laser [31-33] Non-contact, high 

contrast, quick 

excitation and good 

quantification 

Potential of eye hazard, 

sensitive to surface 

condition of the material, 

small area inspection. 
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Convection Hot/cold air blower 

[34] 

Robust to surface 

condition; 

reduces the 

contaminant 

influence with air 

blowers 

High power consumption,  

sensitive to geometry 

shape and air flow 

direction; potential 

environmental disturbance 

Thermal 

conduction 

Cold/hot compress 

[35] 

 

Robust to 

geometrical shape; 

widely used in 

medical applications 

because of the lowest 

influence on the 

human body 

Needs direct contact of 

specimen surface. 

very long excitation time; 

normally, 10-20 minutes 

of cold compress on the 

human body is required 

Internal sources 

Sources Advantages Disadvantages 

Sonic [36, 37] 

or ultrasonic 

[38-41] 

Internal volume heating; good 

ability of internal and deep 

defect detection 

Weak in surface defect detection; 

significant noise; contact excitation 

on surface or acoustic couplant is 

needed 

Induction 

heating [42, 43, 

60] 

Internal volume heating. High 

detection resolution in surface 

and sub-surface range. Quick 

inspection and non-contact  

Uneven heating. Only effective for 

conductive material. 

Table 1 Active infrared thermography categorized by excitation sources 

Modulation types Advantage Disadvantage 

Pulsed thermography  

[44-47] 

Short excitation time and 

better resolution of shallow 

cracks; all frequencies’ 

information of the excitation 

signal 

Image becomes blurred with 

time; suffers from 

reflectivity and emissivity 

issue 
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Step-heating thermography 

[48,49] 

Stabilise the image with 

time; possible to find deeper 

cracks 

Longer inspection time; not 

full frequency information 

Long pulse thermography 

[50,51] 

Suitable for low thermal 

conducting material 

Very long inspection time 

Lock-in thermography [52-

54] 

More robust for the 

reflectivity and emissivity 

issue of material surface 

Suffers from blind 

frequency where the defects 

in some phase images 

disappear 

Table 2 Active infrared thermography categorised by modulation type 

 

2.2 3D reconstruction and image registration 
 

Owing to the high speed and relative cheapness of computers, 3D imaging devices have 

won more and more applications. Compared with two-dimensional (2D) imaging, the 3D 

imaging gives the real geometry of the world. Particularly, many studies have been conducted 

such as life science [55-56], civil engineering [57] and information science [58].  

The highly developed computer devices industry has also boosted the 3D imaging 

devices. The recently developed 3D imaging devices, such as Kinect, can achieve high speed 

scans up to 30 frames per second. The 3D imaging technology can be generally categorised as 

laser based or camera based. Laser scanning is well-known in Lidar devices. Camera-based 

method includes stereo vision, structure light projection and structure from motion. 

 

2.2.1 Review of 3D scanning techniques 

 

There are many methods for acquiring an object’s 3D profile. The popular 3D scanning 

technologies include passive stereo vision (two or more camera systems) [59-62], active stereo 

vision (structure light projection) [63-66] and time of fight (TOF; Lidar, Kinect system) [67-
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70]. In addition, it is worth noting that these 3D scanning technologies complement each other 

[71]. C. Netramai, et al. [72] proposed a 3D scanning method by combining TOF camera and 

stereo camera. The results prove that the combination of ToF camera and stereo vision camera 

improves the range data significantly.  

The stereo vision system uses triangulation to calculate depth information. Passive 

stereo vision uses matched features, whereas the active stereo vision uses projected lighting 

patterns to obtain depth. The structure light projection projects pre-defined pattern sequences 

to the object. The patterns are captured by a paired camera, where the image is filled with 

deformed patterns caused by the object shape. The depth information is calculated by analysing 

the distortion of the patterns. There are different ways of defining the structure light patterns. 

The simplest method is the stripe pattern with binary coding [73]. Fechteler et al. [74] used  

color stripe patterns to reconstruct the high-resolution 3D images.  

Passive stereo vision is the most economical and convenient way of 3D capture. The 

system requires only a stereo vision camera rig [62, 75] or even a monocular camera with 

structure from a motion algorithm [75-78]. The stereo vision system reconstructs the 3D 

environment via matched features. Thus, its performance suffers if the scenery has insufficient 

features. Compared with passive stereo vision, the active stereo vision system (structure light 

projection) projects lighting patterns on the object. As a result, it can deal with scenes that do 

not have enough texture information. However, the structure light projection is highly sensitive 

to environmental lighting conditions. Thus, the structure light projection method can only be 

applied in the indoor environment.  The TOF camera, which is different from the stereo vision 

camera—that calculates triangulation—emits a reflective light and measures the depth 

information by calculating the travelling time of the light reflecting back to the camera.  

 

2.2.2 Kinect and David 3D scanners 

 

To meet the different applications of the 3D ECPT system, two 3D scanning systems 

are chosen for the 3D profile rendering—the Kinect structure light camera and David 3D 

scanner. 
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In November 2010, Microsoft released the first version of the Kinect system for Xbox. 

Since then, two different Kinect systems have been offered： Kinect structure light (SL) and 

Kinect ToF. As mentioned above, as different range sensing techniques, SL and ToF have 

different advantages and disadvantages, and they may also complement each other with error 

fixings. Reference [79] gave a detailed comparison of the Kinect SL and ToF systems. For the 

ECPT system, the selection of 3D scanners is mainly based on two key factors—the influence 

on ambient light and the influence on shiny surface objects. 

First, the Kinect SL camera and the Kinect ToF camera use different depth sensing 

techniques. The Kinect SL camera is based on near-IR structure light projection. The system 

is composed of an 850 nm near-IR projector, a near-IR camera and a visible camera. The near-

IR projector projects dot patterns on the object, which are captured by the near-IR camera. The 

depth information is estimated using these dot patterns by calculating their triangulation 

relationships. To achieve high-speed 3D scanning (30 frames per second), the Kinect SL only 

uses a low number of patterns. 

With the breakthrough of microelectronic devices, a new range sensing device—the 

ToF camera emerged. Unlike Lidar devices, which directly measure the travelling time of light, 

the Kinect ToF camera utilises continuous wave (CW) intensity modulation. The key idea of 

CW technology is to modulate the infrared emitter wave and calculate the phase shift of the IR 

wave captured by the receiver [80]. 

The IR emitter sends an IR wave signal as follows: 

𝑆𝑆𝐸𝐸(𝑠𝑠) = 𝐴𝐴𝐸𝐸[1 + sin(2𝜋𝜋𝜋𝜋𝑠𝑠)]                             (2-4) 

where 𝑆𝑆(𝑠𝑠) is the IR wave signal with an amplitude of 𝐴𝐴𝐸𝐸  and frequency of 𝜋𝜋. Then, the signal 

𝑆𝑆𝐸𝐸 is reflected back and reaches the receiver as 

𝑆𝑆𝑅𝑅(𝑠𝑠) = 𝐴𝐴𝑅𝑅[1 + sin(2𝜋𝜋𝜋𝜋𝑠𝑠) + 𝜑𝜑] + 𝐵𝐵𝑅𝑅                              (2-5) 

where 𝑆𝑆𝑅𝑅(𝑠𝑠) is the received signal with the amplitude of 𝐴𝐴𝐸𝐸  and a phase delay of 𝜑𝜑. 𝐵𝐵𝑅𝑅 is the 

energy loss when the signal reaches the receiver. The coefficients of 𝐴𝐴𝑅𝑅 and 𝐵𝐵𝑅𝑅 are measured 

as volts. In addition, 𝜑𝜑 is the most important parameter, indicating the distance as 
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𝜑𝜑 = 2𝜋𝜋𝜋𝜋𝑠𝑠 = 2𝜋𝜋𝜋𝜋 2𝐷𝐷
𝑐𝑐

                                             (2-6) 

𝐷𝐷 = 𝑐𝑐
4𝜋𝜋𝜋𝜋

𝜑𝜑                                                  (2-7) 

To obtain the phase shift 𝜑𝜑, the 𝐴𝐴𝑅𝑅 and 𝐵𝐵𝑅𝑅 are estimated via measuring the signal of 

𝑆𝑆𝑅𝑅(𝑠𝑠) four times per period. Thus, four sample signals of 𝑆𝑆𝑅𝑅0(𝑠𝑠 = 0), 𝑆𝑆𝑅𝑅1 �𝑠𝑠 = 1
4𝜋𝜋
�, 𝑆𝑆𝑅𝑅2 �𝑠𝑠 = 1

2𝜋𝜋
�, 

and 𝑆𝑆𝑅𝑅3 �𝑠𝑠 = 3
4𝜋𝜋
� are obtained. 

After some simple algebraic manipulation, the following expressions  are obtained: 

�̂�𝐴 =
�(𝑆𝑆𝑅𝑅

0−𝑆𝑆𝑅𝑅
2)2+(𝑆𝑆𝑅𝑅

1−𝑆𝑆𝑅𝑅
3)2

2
    (2-8) 

𝐵𝐵� = 𝑆𝑆𝑅𝑅
0+𝑆𝑆𝑅𝑅

1+𝑆𝑆𝑅𝑅
2+𝑆𝑆𝑅𝑅

3

4
                (2-9) 

𝜑𝜑� = 𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑅𝑅0 − 𝑆𝑆𝑅𝑅2, 𝑆𝑆𝑅𝑅1 − 𝑆𝑆𝑅𝑅3)   (2-10) 

Finally, the distance is calculated as: 

𝐷𝐷� = 𝑐𝑐
4𝜋𝜋𝜋𝜋

 𝜑𝜑�      (2-11) 

The David 3D scanner shares the same working principle as the Kinect SL camera, 

which uses structure light projection for 3D reconstruction. The David 3D uses a high-

resolution visible camera (Kinect SL near-IR) and multiple stripe patterns (Kinect SL uses few 

patterns or even a single pattern) to reconstruct the 3D profile; thus, it has a much higher 

resolution compared with Kinect SL (up to 0.5 mm). In compensating for the high resolution, 

it also takes a much longer time of 2 minutes per scan. 

Reference [79] made an elaborative comparison between the Kinect SL camera and the 

Kinect ToF camera. The researchers claimed that for the ambient background light, the Kinect 

SL camera is unable to handle strong light over 1𝜇𝜇𝜇𝜇. However, compared with the Kinect ToF 

camera, it has a more robust depth measurement in the working ambient background light 

range. In the 3D capture of the shiny surface, the Kinect SL camera also performs better and 

causes fewer problems compared with the Kinect ToF camera. Because the Kinect SL camera 
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is more robust to the contexts of both shiny surfaces and ambient background light, here, the 

Kinect SL camera is used together with David 3D for range image capturing. 

 

2.3 Feature extraction and quantification of ECPT 
 

Non-destructive evaluation aims to acquire knowledge of a material structure’s health 

and reliability. The high demand and importance of high-cost structure inspection resulted in 

the evolution of NDT from a qualitative to a quantitative manner. The high-cost structures 

considered bridges, aerospace and new energy devices. The primary interest of QNDE lies in 

assessing the state of the material, including the defect size and how it results in failure. 

A quantitative evaluation must stand in terms of the quantitative model and quantitative 

measured data. A good numerical model is of vital importance in comprehending the 

experimental process using measured data. The characteristics of defect features can be further 

analysed with the numerical model, which facilitates the process from qualitative analysis to 

quantitative analysis. IR non-destructive techniques are now widely applied in defect detection 

because of their wide inspection range and high-speed inspection. The ECPT system is an 

active thermal IR non-destructive evaluation method that is used for conductive defect 

detection. The ECPT system uses the eddy current as an external heating source for active 

heating. Therefore, it gives a higher contrast between the defective area and the non-defective 

area. However, in some cases, the defective area and non-defective area have the same 

temperature which cannot reveal the hidden flaws [82]. Thus, it is desired to establish the prior 

knowledge of the following: 

a) The geometric shape of the testing sample.  

b) The position of the heat source and heating model. 

c) The type of thermal heating experiment and parameters (power, heating time). 

Based on the ECPT system, different applications and methodologies of defect 

detection emger.  Oswald and Tian used ECPT to investigate penetration depth of temperature 

and analyse the defect via experimental studies and simulations [82]. Chen, L. investigated a 
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pattern-level feature of thermal transient response using integration of principal component 

analysis (PCA) and independent component analysis (ICA) [83]. This work used PCA for 

dimension reduction, orthogonal transformation and defect area separation. The work 

successfully extracted thermal patterns according to the thermal transient response. Libing Bai 

also presented a pattern level feature of transient thermal response using blind source 

separation [84]. This method has been validated through the artificial slot and thermal fatigue 

of natural cracks. However, it is hard to use the pattern-level features (high-level features) for 

the quantitative analysis of defect characteristics, including precise localisation, sizing and 

depth estimation.  

Instead of using time domain features, He, Y. et al. investigated the angle in the 

frequency domain of the transient thermal response [85]. Different phase features were 

extracted and analysed. The results showed that the phase features from the frequency domain 

successfully eliminated the non-uniform heating effect from ECPT, and the phase features 

were validated to have a linear relationship to the defect depth. However, the work done was 

on a planner surface sample; moreover, the frequency features suffered from the problem of 

lack of spatial and geometry information, making it difficult to work on the 3D object with a 

complex structure. In the phase image, some edges of the testing object disappear while some 

addition phase edges appear, bringing ambiguity for the defect identification in the complex 

structure object. Jia Liu et al. analysed the early contact fatigue of the gear using ECPT in an 

optical flow analysis manor [86].  

Above all, the qualitative analysis of defects in ECPT has been studied using IR image 

processing. The quantitative analysis of defect size and depth has not been studied well. Shi, 

Z [87] conducted a quantitative study on defect sizing on steel using ECPT. The 2D imaging 

edge detection approach was used to classify and identify cracks. However, for complex 

objects, this method cannot give accurate sizing of defects because of the distortion of 

projection. 

To boost ECPT technology from a qualitative manner to a quantitative manner, both 

the analytical model and numerical model have been studied by researchers in recent years. 
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2.3.1 Analytical study and physical comprehension for ECPT 

 

The physical model for the ECPT system is based on Maxwell’s equation and heat 

conduction. Compared with numerical simulation, the analytical model shows advantages in 

physical comprehension and physical phenomenon characterisation, which is vital for inverse 

engineering. 

For homogeneous field excitation which is parallel to the specimen surface, the depth 

is given by 

.)( 2/1−= fπµσδ                  (2-12) 

 

where  δ  is the current penetration depth,  σµ, are the magnetic permeability and electrical 

conductivity, and f is the frequency of the excitation signal. When the electrical magnetic 

field reaches the conductive material, the joule heating effect is induced as:  

Q = 𝐼𝐼2𝑅𝑅 = 1
𝜎𝜎

|𝜎𝜎𝐸𝐸|2                             (2-13) 

It is worth noting that electrical conductivity also has a relationship with temperature 

rising, expressed as 

𝜎𝜎 = 𝜎𝜎0
1+𝛼𝛼(𝑇𝑇−𝑇𝑇0)

        (2-14) 

where 𝜎𝜎0 is the material conductivity at the reference temperature 𝑇𝑇0 and 𝑐𝑐 is the coefficient 

of temperature resistivity. Finally, the heat diffusion process is governed by 
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where ρ , ρC  and λ  are the material density, heat capacity and thermal conductivity, 

respectively; ),,,( tzyxq  is the unit internal heat generation caused by the eddy current; T is 

the heat diffusion; and (𝑥𝑥,𝑦𝑦, 𝑧𝑧) are the Euclidean coordinates.  
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  References [88] gave a physical explanation of ECPT. Blind source separation was 

proposed for transient pattern extraction. A physical explanation was also given in the article. 

Reference [89] performed an analytical study on ECPT at different excitation studies for 

metallic material study [90] analysed the patterns of defects in the ECPT experiment and 

proposed the pattern separation model. 

  Until now, the analytical model of the ECPT system has not been completed, especially 

for a complex defect structure. The complex multi-physical interaction in the ECPT experiment 

requires a more quantified study in physical parameter quantification, pattern (feature) level 

and numerical simulation study. 

 

2.3.2 Numerical study of ECPT 

 

Numerical models are mathematical tools based on pre-set physical rules; they follow 

a procedure of time-stepping iterations. They are also a valuable tool that can validate the 

results of the experimental study. [91] Compared with the analytical model, the numerical 

model is more flexible and able to handle models with complex physical interactions and 

complex structures.  

The WPUT group has conducted numerous numerical simulations of heat transfer in 

different materials induced using various energy sources.  The FEM was utilised with both 

stationary and time-dependent solvers. Using this method, it is possible to solve so-called 

multi-physics problems, where the set of differential equations related to different physical 

phenomena are to be solved. This is especially important in microwave heating simulations, 

where electromagnetic wave propagation has to be considered. These research results were 

published in peer-reviewed journals and presented during important conferences dedicated to 

thermography. Numerical simulations were conducted, including the following: 

(a) Microwave heating used in underground object detections. In this task, various 

problems were analysed—that is, influence of chosen external conditions on microwave 

heating efficiency, optimisation of the heating device, and detected objects parameters 

reconstruction 
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(b) Microwave heating of composite structures used in wind turbine blades 

(c) Optical heating of various composite structures. This includes the aspect of detected 

defects parameters’ reconstruction. 

In addition, researchers in Poland conducted a series of experiments based on multi-mode 

stimulation to detect defects in the GFRP samples with artificial defects. The WPUT group 

developed thermography techniques based on halogen-lamp-microwave and cool-down 

excitation to enhance the detection capacity with multi-mode thermography, especially when 

detecting internal defects [92]. 

 

2.3.3 Relevant work on IR thermography-based NDT and challenges  

 

     According to the radiative thermal simulation by Thomas [93], the radiation captured 

by sensors is determined by the target’s temperature, the sensor area, the distance between the 

power source and the sensor, and the angle concerning incident rays. This brings difficulties 

for such applications as wind turbines. The surface of a wind turbine blade is large and complex, 

and the curvature will affect the radiation we obtain from the IR thermal images. Xavier [94] 

suggested that the best solution is using a 3D camera to obtain both orientation and distance 

from the surface. With the development of 3D techniques, the price of the 3D camera goes 

down and the quality of 3D images goes up. In addition, new method and algorithm emerge to 

process the 3D images. 

     Passive 3D thermography is effective in qualitative diagnosis. Hellstein [95] applied 

3D passive thermography in the non-destructive testing of composite structures like boats, 

planes and wind turbines. In medical monitoring, Barone [96] and Grubisic [97] realised the 

preventive detection of  diabetic foot disease and breast cancer. To quantitatively analyse the 

depth of defects, 3D active thermography is necessary. Akhloufi [98-100] developed an 

integrated algorithm to detect the sub-surface defects and display the defects on the 3D model. 

Feature extraction, image registration, depth estimate, defect segment and 3D visualisation are 

used to determine the defect depth and location. The algorithm was tested on metals and 

composites with flash-tube excitation. However, the emissivity is still unresolved. Besides, 
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Lagüela [101] and Tang, C. [102] attempt the building and rail inspection with registration and 

fusion of IR and visible images. 

Model-based defect characterisation works successfully in the lab environment but fails 

when the 1D assumption is broken [103]. Using the back- propagation [104] algorithm, deep 

learning modifies the parameters of the network and discovers features in a lar ge amount of 

data. Deep learning has made great progress in computer vision, natural language processing, 

and other fields. Deep convolutional neural networks (CNNs) [105, 106] have made 

remarkable progress in image recognition, with the help of the availability of large-scale 

annotated datasets (i.e., ImageNet [107, 108]). CNNs enable learning data-driven, highly 

representative, layered hierarchical image features from sufficient training data [109]. 

Although CNNs perform well in the recognition and classification of visible images, the use 

of CNNs to classify IR thermal images is still a challenging task because of the lack of IR 

thermal datasets similar to ImageNet [107, 108], which has a large amount of labelled data. 

Some researchers apply CNNs to the identification and classification of IR targets [110, 111], 

but the application of CNNs in the field of NDT is still challenging to evaluate materials and 

monitor machines [112-113].  

The active thermography-based NDT is an important branch in the NDT area. It has 

the unique advantage of large area inspection, non-contact, quick inspection and non-radiative 

testing [114-116]. Previous studies have validated the ability of active thermography in the 

detection of cracks, delamination and corrosion [40,117,118]. Many materials are inspected 

using active thermography techniques including metal material [120], fibre [119] and 

composite material [115, 119]. Section 2.1.3.5 listed the different methodologies of active 

thermography. Among these active thermography techniques, ECPT is widely used in 

conductive material testing; it has the advantage of volume heating and rich information of the 

multi-physics interaction. ECPT is validated to be an effective testing method of surface and 

sub-surface defect detection in the CFRP [115], wind turbine [24] and railway applications 

[121].  

Active thermography detects defects by recording the thermal image sequences. The 

defect qualification and quantification are based on the temperature-time response from the 

thermal image sequences. One thermal image alone is usually  insufficient for the decision 

making of defects. Thus signal processing need to be used before decision making and 
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quantitative evaluation of the defects. Chen, L. et al. [83] proposed using PCA and ICA for the 

decision making of defects in CFRP. This work proposed using PCA for dimensional reduction. 

The orthogonal transform was then used for the pattern-level defect separation.  

Bai, L. et al. [84] gave another pattern level feature that used the blind source separation 

from the transient thermal response. This work was validated using both artificial and natural 

cracks. The pattern-level features were suitable for qualitative evaluation. However, it is hard 

to provide a quantitative evaluation of crack characteristics. The pulse excitation in ECPT 

contains rich frequency information. He, Y. et al. investigated the frequency domain from the 

transient thermal response [85]. In this approach, the phase and magnitude in the frequency 

domain are analysed as features for defect characterisation.  However, some edges disappear 

in the phase image, whereas some additional edges appear. In addition, in [85], the testing 

specimen was in a planar geometry. For a non-planar body, the phase image lacks the 

information of geometry which brings difficulty in the measurement of defects in a complex 

geometry body. Jia Liu. et al. [86] gave an optical flow analysis of thermal responses in ECPT 

and early fatigue contact in gear. A pulse compressed method for ECPT was proposed in [115], 

which gives the detection of delamination in CFRP. Other features used, including the true 

positive rate (TPR), false positive rate (FPR), time-phased and thermal gradient, have also been 

investigated [122]. However, these methods are based on qualitative data where the 3D 

geometry and real physical thermal gradients are unknown. In addition to these signal 

processing methods  other approaches include the model-based method [123], and artificial 

intelligence (AI) learning approach [122].  

Over all, previous study conducts the experiment using the a 2D IR camera. However, it 

is hard to achieve quantitative defect evaluation based on 2D thermal data without spatial 

information about the specimen. Thus, this thesis developed 3D ECPT for the quantitative 

measurement of the 3D heat flux. The quantitative analysis based on the 3D ECPT is given. 

The skewness feature and thermal tomographic reconstruction based on the differential time 

square root of the temperature drop (DTSTD) and TSR are presented in the thesis. 

 

2.4 Three dimensional  capture and 3D temperature mapping 
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    Currently, most of the researches and studies on thermography are based on raw images 

from 2D IR cameras. Because the thermal images are blurred and lack information about 

geometry, there is a requirement that the thermal image not only be properly captured, but also 

be ordered, well-calibrated and geo-tagged. In recent years, researchers have explored 3D 

thermography for different applications both on macro scene and micro scene [124-126]. For 

3D thermography on the macro scene, one of the most popular areas is the monitoring of energy 

distribution on buildings for the detection of thermal leakage. The energy lost in buildings 

consumes 41% of all the energy production in developed countries [127]. The 3D 

thermography shows potential for heat insulation inspection with the advantage of quick and 

large area inspection [128-129]. For applications in micro scene, quantitative NDT shows a 

high requirement of quantified data. A previous published paper [130] showed the usage of 3D 

ECPT for the detection of RCF. 

2.5 Summary and problems identified 
 

In this chapter, a literature review of thermal IR technology in the NDE area and the 3D 

reconstruction techniques were reported. Section 2.1 gave a summary of different  thermal IR 

techniques, including flash thermography, ultrasonic thermography, laser thermography and 

ECPT. To combine thermography with the 3D scanner, up-to-date 3D scanning techniques 

were reported in section 2.2. Following this, section 2.3 described a quantitative analysis of 

the ECPT system. 

It is apparent from the literature review that the quantitative study of ECPT should stand 

on a quantified data. Previous research on ECPT gave little or no consideration to the measured 

data characteristics, for example, the measured temperature data from specific parts of the 

specimen or the distance between the excitation coils and the measured point. Previous 

research mainly focussed on defects on planar surfaces [2, 3]. The authors use the set-up of 

planar specimen defect detection and limited the region of interest (ROI), but the problem of 

direction emissivity (in which direction the camera receives thermal IR) is still evident because 

the material has different emissivities at different emitting angles. This results in a temperature 

measuring error. For an object with a complex geometry, the situation becomes worse because 

of the following points:  
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• A more complex heat diffusion in 3D.  

• The varying distances from the excitation coil to the different parts of the specimen. 

• Projection distortion in 2D imaging.  

To overcome the lack of data characteristics, the real physical location is of vital 

importance for quantitative study. In this thesis, we propose a 3D ECPT system. The next 

chapter gives a system diagram of the proposed 3D ECPT system with the newly developed 

registration algorithm. 
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3 DESIGN AND DEVELOPMENT OF 3D ECPT 

 

This chapter focusses on the first two themes of the aims and objectives—the design of 

the 3D ECPT system and 3D visualisation, multi-modality imaging fusion and defect detection. 

The chapter begins with the introduction of the 3D ECPT system set up and camera registration. 

The IR camera and RGB-D camera are positioned in different coordinate systems. To achieve 

accurate 3D temperature mapping, the relative position of the cameras (rotation angle and 

distance from each other) and the camera parameters need to be estimated. This thesis proposes 

a new camera registration algorithm based on the matched features from the thermal image 

captured by an IR camera and visible image from an RGB-D camera. Section 3.1.1 gives the 

hardware structure of the proposed 3D ECPT system. In section 3.1.2, an introduction of 

current camera registration methods is presented. The proposed feature-based registration 

algorithm is given in section 3.3. 

In section 3.2, two 3D scanners used for 3D capturing are introduced individually. Kinect 

3D scanning is introduced in section 3.2.1. To achieve a denser point cloud, multiple scans 

from Kinect are used and stitched. Section 3.2.2 shows the David structure light 3D scanning 

system including its set-up and 3D rendering. 

Multiple spectrum image fusion is widely used in remote sensing and medical applications 

because it contains complementary information in different spectrum bands. In the ECPT 

experiment, multiple spectrum cameras are placed at different viewing angles. The image 

alignment with proper affine transformation is used to align the images to the same coordinate 

system. The 3D profiles provided by the 3D rangers enable an accurate image alignment of the 

images taken from different angles. Section 3.3.1 present the developed visualisation software. 

Section 3.3.2 shows the thermal-visible image 3D fusion and the COMSOL simulation results. 
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3.1 Design and development of 3D ECPT system and camera registration 
 

This section gives the system set up of the 3D ECPT with camera registration. Figure 3-

1 shows the 3D ECPT set-up. The signal generator sends the signal to both the IR camera and 

the induction heater. The induction heater generates a high-frequency pulsed current to the coil. 

The eddy current is induced at the conductive material (In Figure 3-1 the testing sample is a 

rail track head). The heating effect is captured by an IR camera. At the same time, the 3D 

geometry is captured by the David 3D system. 

 

 

 
 

Figure 3-1 Three-dimensional eddy current pulsed thermography system 
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Figure 3-2 Three-dimensional scanners Kinect and David 3D 

Since the 3D ranger and IR camera stand on different viewing angles as shown in 

Figure 3-2, it is necessary to unify the coordinate system of the 3D camera and the IR camera. 

This process is termed as camera calibration. The calibration of the two camera systems aims 

to find the intrinsic and extrinsic parameters in order to align the two coordinate systems. 

The camera calibration process models the camera system with intrinsic and extrinsic 

parameters. The cameras were modelled as pin-hole cameras in this research. Using the 

mathematical model of the camera systems, the objective of camera calibration is to find the 

camera system’s extrinsic and intrinsic parameters. 

One of the most popular calibration methods is Tasi’s camera calibration method [131-

133] because this can deal with planar and non-planar points.  First, the Kinect point cloud in 

the Kinect viewpoint is transferred to the IR camera viewpoint: 

𝑋𝑋𝐼𝐼𝐼𝐼𝜋𝜋𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼 = 𝑅𝑅𝐼𝐼𝐼𝐼𝜋𝜋𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼𝑋𝑋𝐼𝐼𝐼𝐼𝜋𝜋𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼 + 𝑇𝑇𝐼𝐼𝐼𝐼𝜋𝜋𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼 (3-1) 

𝑋𝑋𝐾𝐾𝐾𝐾𝐼𝐼𝑒𝑒𝑐𝑐𝜕𝜕 = 𝑅𝑅𝐾𝐾𝐾𝐾𝐼𝐼𝑒𝑒𝑐𝑐𝜕𝜕𝑋𝑋𝐾𝐾𝐾𝐾𝐼𝐼𝑒𝑒𝑐𝑐𝜕𝜕 + 𝑇𝑇𝐾𝐾𝐾𝐾𝐼𝐼𝑒𝑒𝑐𝑐𝜕𝜕  (3-2) 

Here, 𝑋𝑋𝐼𝐼𝐼𝐼𝜋𝜋𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼 , and  𝑋𝑋𝐾𝐾𝐾𝐾𝐼𝐼𝑒𝑒𝑐𝑐𝜕𝜕  are the physical coordinates from the IR camera and Kinect 

coordinate systems. Moreover, 𝑅𝑅𝐼𝐼𝐼𝐼𝜋𝜋𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼 , and 𝑅𝑅𝐾𝐾𝐾𝐾𝐼𝐼𝑒𝑒𝑐𝑐𝜕𝜕  are the rotation matrices, whereas 

𝑇𝑇𝐼𝐼𝐼𝐼𝜋𝜋𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼, and 𝑇𝑇𝐾𝐾𝐾𝐾𝐼𝐼𝑒𝑒𝑐𝑐𝜕𝜕 are the displacement matrices. 

𝑋𝑋𝐼𝐼𝐼𝐼𝜋𝜋𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼 = 𝑅𝑅𝐼𝐼𝐼𝐼𝜋𝜋𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼−1 𝑋𝑋𝐾𝐾𝐾𝐾𝐼𝐼𝑒𝑒𝑐𝑐𝜕𝜕 + 𝑇𝑇𝐼𝐼𝐼𝐼𝜋𝜋𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼 − 𝑅𝑅𝐾𝐾𝐾𝐾𝐼𝐼𝑒𝑒𝑐𝑐𝜕𝜕−1 𝑇𝑇𝐾𝐾𝐾𝐾𝐼𝐼𝑒𝑒𝑐𝑐𝜕𝜕 (3-3) 

The transformation between the 3D point cloud and thermal image point is given as 
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where (𝑢𝑢, 𝑑𝑑, 1)  is the homogeneous coordinate of the image coordinate system in pixels; 

(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 1) is the homogeneous coordinate of the image coordinate system in centimetres; 

𝑠𝑠𝑥𝑥,𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑦𝑦  are the physical lengths for each pixel in the 𝑥𝑥  and 𝑦𝑦  directions respectively; 

(𝑢𝑢0, 𝑑𝑑0) is the centre point of the camera. 

From the the above formulas, we can see that if we obtain 𝑅𝑅𝐼𝐼𝐼𝐼𝜋𝜋𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼, 𝑇𝑇𝐼𝐼𝐼𝐼𝜋𝜋𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼, 𝑅𝑅𝐾𝐾𝐾𝐾𝐼𝐼𝑒𝑒𝑐𝑐𝜕𝜕, 

𝑇𝑇𝐾𝐾𝐾𝐾𝐼𝐼𝑒𝑒𝑐𝑐𝜕𝜕 , 𝑠𝑠𝑥𝑥𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑐𝑐𝐾𝐾 , 𝑠𝑠𝑦𝑦𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑐𝑐𝐾𝐾 , 𝑠𝑠𝑥𝑥𝐼𝐼𝐾𝐾𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐾𝐾𝐼𝐼 , 𝑠𝑠𝑦𝑦𝐼𝐼𝐾𝐾𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐾𝐾𝐼𝐼 , 𝑢𝑢𝐼𝐼𝐼𝐼𝜋𝜋𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼 , 𝑑𝑑𝐼𝐼𝐼𝐼𝜋𝜋𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝐼𝐼 , 𝑢𝑢𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼 , and 𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼 , we 

can map each thermal point (𝑢𝑢𝜕𝜕ℎ𝑒𝑒𝐼𝐼𝑒𝑒𝐼𝐼𝐶𝐶,𝑑𝑑𝜕𝜕ℎ𝑒𝑒𝐼𝐼𝑒𝑒𝐼𝐼𝐶𝐶) to the point cloud (𝑋𝑋𝐾𝐾𝐾𝐾𝐼𝐼𝑒𝑒𝑐𝑐𝜕𝜕,𝑌𝑌𝐾𝐾𝐾𝐾𝐼𝐼𝑒𝑒𝑐𝑐𝜕𝜕,𝑍𝑍𝐾𝐾𝐾𝐾𝐼𝐼𝑒𝑒𝑐𝑐𝜕𝜕) 

To find the parameters, the mapping from pixel values to the 3D point cloud can be 

formulated as follows: 
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�   (3-6) 

The aim is to find the m matrix that maps the 3D point cloud 𝑋𝑋𝑤𝑤𝐾𝐾,𝑌𝑌𝑤𝑤𝐾𝐾,𝑍𝑍𝑤𝑤𝐾𝐾 to IR pixel 

𝑢𝑢𝐾𝐾, 𝑑𝑑𝐾𝐾.  

Expressed a different way, Eq. (3-6) comprises the three following equations: 

𝑍𝑍𝑐𝑐𝑢𝑢𝐾𝐾 = 𝑚𝑚11𝑋𝑋𝑤𝑤𝐾𝐾 + 𝑚𝑚12𝑌𝑌𝑤𝑤𝐾𝐾 + 𝑚𝑚13𝑍𝑍𝑤𝑤𝐾𝐾 + 𝑚𝑚14 

           𝑍𝑍𝑐𝑐𝑑𝑑𝐾𝐾 = 𝑚𝑚21𝑋𝑋𝑤𝑤𝐾𝐾+𝑚𝑚22𝑌𝑌𝑤𝑤𝐾𝐾 + 𝑚𝑚23𝑍𝑍𝑤𝑤𝐾𝐾 + 𝑚𝑚24   (3-7) 

𝑍𝑍𝑐𝑐 = 𝑚𝑚31𝑋𝑋𝑤𝑤𝐾𝐾 + 𝑚𝑚32𝑌𝑌𝑤𝑤𝐾𝐾 + 𝑚𝑚33𝑍𝑍𝑤𝑤𝐾𝐾 + 𝑚𝑚34 

Solving Eq. (3-7) we obtain 

𝑚𝑚11𝑋𝑋𝑤𝑤𝐾𝐾 + 𝑚𝑚12𝑌𝑌𝑤𝑤𝐾𝐾 + 𝑚𝑚13𝑍𝑍𝑤𝑤𝐾𝐾 + 𝑚𝑚14 − 𝑢𝑢𝐾𝐾𝑚𝑚31𝑋𝑋𝑤𝑤𝐾𝐾 − 𝑢𝑢𝐾𝐾𝑚𝑚32𝑌𝑌𝑤𝑤𝐾𝐾 − 𝑢𝑢𝐾𝐾𝑚𝑚33𝑍𝑍𝑤𝑤𝐾𝐾 = 𝑢𝑢𝐾𝐾𝑚𝑚34 

𝑚𝑚21𝑋𝑋𝑤𝑤𝐾𝐾+𝑚𝑚22𝑌𝑌𝑤𝑤𝐾𝐾 + 𝑚𝑚23𝑍𝑍𝑤𝑤𝐾𝐾 + 𝑚𝑚24 − 𝑑𝑑𝐾𝐾𝑚𝑚31𝑋𝑋𝑤𝑤𝐾𝐾 − 𝑑𝑑𝐾𝐾𝑚𝑚32𝑌𝑌𝑤𝑤𝐾𝐾 − 𝑑𝑑𝐾𝐾𝑚𝑚33𝑍𝑍𝑤𝑤𝐾𝐾 = 𝑑𝑑𝐾𝐾𝑚𝑚34 

           (3-8) 
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From this equation, we know that if we have n points’ locations, we can solve a 2n 

linear equation. We can writing the 12 equations in the following matrix: 

⎣
⎢
⎢
⎢
⎢
⎡
𝑋𝑋𝑤𝑤1 𝑌𝑌𝑤𝑤1 𝑍𝑍𝑤𝑤1 1 0 0

0 0 0 0 𝑋𝑋𝑤𝑤1 𝑌𝑌𝑤𝑤1
… … …

0 0 −𝑢𝑢1𝑋𝑋𝑤𝑤1 −𝑢𝑢1𝑌𝑌𝑤𝑤1 −𝑢𝑢1𝑍𝑍𝑤𝑤1
𝑍𝑍𝑤𝑤1 1 −𝑑𝑑1𝑋𝑋𝑤𝑤1 −𝑑𝑑1𝑌𝑌𝑤𝑤1 −𝑑𝑑1𝑍𝑍𝑤𝑤1

… … …… … …
𝑋𝑋𝑤𝑤𝐼𝐼 𝑌𝑌𝑤𝑤𝐼𝐼 𝑍𝑍𝑤𝑤𝐼𝐼 10 0 0

0 0 0 0 𝑋𝑋𝑤𝑤𝐼𝐼 𝑌𝑌𝑤𝑤𝐼𝐼

… … …
0 0 −𝑢𝑢𝐼𝐼𝑋𝑋𝑤𝑤𝐼𝐼 −𝑢𝑢𝐼𝐼𝑌𝑌𝑤𝑤𝐼𝐼 −𝑢𝑢𝐼𝐼𝑍𝑍𝑤𝑤𝐼𝐼
𝑍𝑍𝑤𝑤𝐼𝐼 0 −𝑑𝑑𝐼𝐼𝑋𝑋𝑤𝑤𝐼𝐼 −𝑑𝑑𝐾𝐾𝑌𝑌𝑤𝑤𝐼𝐼 −𝑑𝑑𝐾𝐾𝑍𝑍𝑤𝑤𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

 

 

∗

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑚𝑚11
𝑚𝑚12
𝑚𝑚13
𝑚𝑚14
𝑚𝑚21
𝑚𝑚22
𝑚𝑚23
𝑚𝑚24
𝑚𝑚31
𝑚𝑚32
𝑚𝑚33⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑢𝑢1𝑚𝑚34
𝑑𝑑1𝑚𝑚34

…
……
……
………

𝑢𝑢𝐼𝐼𝑚𝑚34.
𝑑𝑑𝐼𝐼𝑚𝑚34 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

        (3-9) 

Equation. (3-9) can be written as 

𝐾𝐾𝑚𝑚 = 𝑈𝑈     (3-10) 

𝑚𝑚 = (𝐾𝐾𝑇𝑇𝐾𝐾)−1𝐾𝐾𝑇𝑇𝑈𝑈     (3-11) 

Equation. (3-11) solves the m matrix and the pixels from the 2D IR image correspond 

to the solved projection matrix m. 

 

3.1.1 State-of-the-art of camera registration algorithms 

 

     Instead of using a 3D calibration board, Zhang [134-136] presented a more convenient 

method using a planner checkerboard. Compared with Tsai’s algorithm, Zhang’s method only 

requires a planner calibration board. However, it also requires several shots from different 

positions. 
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MATLAB provides a toolbox for Zhang’s algorithm. With previous knowledge of 

checkerboard block size, this method detects the intersection of checkerboard blocks and 

calculates intrinsic and extrinsic parameters. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
(e) 

 

(f) 
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(g) 

Figure 3-3 Camera calibration using checker board 

Figures. 3-3 (a-f) show the result of color camera calibration from multiple views. The 

features are first extracted. Then, the extrinsic parameters (rotation and translation) are 

visualised in Figure. 3-3(g). 

However, the standard method cannot be applied to a thermal camera because the 

thermal camera cannot detect checkerboard patterns from a standard checkerboard. 

  Until now, checkerboard detection has always been a popular topic in computer vision. 

The most popular one is Zhang Zhengyou’s method [134]. This method has the advantage that 

it only needs a planner calibration board. The intrinsic parameters and extrinsic parameters are 

estimated with high precision by moving the camera in a different poses towards the planner 

checker board. Reference [137] proposed a subpixel checkerboard detection algorithm by 

using a pre-defined corner prototype. This work can detect checkerboard patterns at the 

subpixel level. Other methods [138] uses Hough transform and Harris corners to locate and 

detect checkerboard patterns. 

From the algorithms listed above, none so far can be implemented on thermal images.  

This work uses a new registration algorithm based on the proposed shape-constrained Scale 

Invariant Feature Transform (SIFT) feature detector and descriptor. 

 

3.1.2 Proposed feature-based IR-RGB-D camera registration algorithm 

 

3.1.2.1 Background of feature based registration  

 

In this work, an image feature based calibration method is used. The visible camera 

registration technology is supported by robust feature extraction and description techniques 

such as SIFT [139, 140]. H. Bay improved the SIFT algorithm and speed up feature detection 

and description with the Speed Up Robust Feature (SURF) [141]. Later,  A. Alahi proposed 

the Fast Retina Keypoint (FREAK) algorithm [1]. However, whereas all these descriptors work 
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well for visible spectrum images, they fail for multi-spectrum images because the descriptors 

use local information around extracted features and the multi-spectrum images are quite 

different in terms of their local information. Recently, researchers have begun to solve this 

issue by using global information. Shan-e-Ahmed Raza et al. [142] proposed using contour of 

multi-spectrum images extracted with wavelet transform. Y Gu et al [143] proposed using a 

shape matching algorithm with polynomial fitting. However, these algorithms still do not have 

enough robustness if only contour information is used. The performance of the matching 

becomes bad when they have too much difference in their edges.  

In real practice, visible images have more contour information compared with thermal 

images because the thermal images are usually blurred. Yong Li et al. [144] proposed 

establishing key-point matches on multispectral images utilising descriptors with global 

information over entire image. The work has achieved good and robust matching results. 

However, this approach still needs prior knowledge, including the field of view constraint and 

the spatial constraint. C. Aguilera et al [145] proposed a SIFT-Like-Based approach for the Far 

Infrared-visual (FIR-VS) registration. The work modified the SIFT descriptor by  histograms 

of the contours in the neighborhood of the given key-points instead of using neighborhood 

gradient information. However, this approach still depends on the performance of edge 

extraction. Over all, the feature matching from multi-spectrum images remain a challenge. 
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Figure 3-4 The system diagram of 3D ECPT 
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Figure 3-5 Overview of the proposed feature matching algorithm 

To give reliable feature matching for the registration of the 3D ECPT system, a robust 

descriptor for the thermal image and the visible image feature is desired. This section gives a 

newly developed descriptor for the thermal-visible image feature matching. The SCSIFT is 

proposed. The descriptor combines both local information and global information with a proper 

weighting. The combined descriptor automatically gives global information with the extracted 

contour information, whereas the dependency of the edge extraction result is reduced with the 

local descriptor. 

 

3.1.2.2 Methodology of the proposed features and image registration 

 

     The registration from the thermal image to the RGB-D image is achieved by a 

projection matrix. The projection matrix is calculated by finding the matched features from the 

thermal image and the RGB-D image. According to the least square principle, it requires at 

least six matched feature points to solve the 12 unknown elements of the projection matrix 

[131]. The sketch diagram is shown in Figure 3-4, where 𝑂𝑂1is the optical centre of the RGB-

D camera and 𝑂𝑂2 is the optical centre of the IR camera. The point cloud obtained from the 

RGB-D camera P1(x, y, z) is projected to the infrared camera plane with the pixel noted as 

𝑃𝑃′1(𝑢𝑢1, 𝑑𝑑1) . 𝑂𝑂1  and 𝑂𝑂2  are the optical centres of the RGB-D camera and IR camera 

respectively. Each point from point cloud P1(x, y, z) is projected to the IR plane as 𝑃𝑃′1(𝑢𝑢1, 𝑑𝑑1). 

The pixel 𝑃𝑃′1(𝑢𝑢1, 𝑑𝑑1).is the crossing point of the line 𝑂𝑂2𝑃𝑃1 with the IR camera plane. The 

mathematical camera model above is called a pin-hole camera model [134]. The corresponding 

and transformation of a point cloud 𝑃𝑃1(x, y, z) to the pixel location 𝑃𝑃′1(𝑢𝑢1, 𝑑𝑑1) is obtained 

from the projection matrix [135].  

In conclusion, to give the correspondence relationship from the point cloud to IR pixels, the 

projection matrix needs to be found, which requires at least six matched features from the 

RGB-D image and the thermal IR image. Thus, the reliable matched features are desired. The 
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next section gives the proposed SCSIFT descriptor used for the feature matching between IR 

camera and RGB-D camera. The diagram of the proposed SCSIFT is sketched in Figure 3-5. 

 

 

(a) Circular template histogram                      (b) Vector decomposition. 

Figure 3-7 Construction of the shape descriptor 

This section gives the details of the proposed SCSIFT descriptor. The proposed 

descriptor can generally be  divided into three steps: feature extraction, feature descriptor 

construction and feature matching. 

1) Step one: feature extraction 

 

(a)  Contour of the thermal image            (b) Contour of the visible image. 

Figure 3-6 Edge extraction of thermal image and visible image. 
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The work uses the SIFT detector [139] for feature extraction. The SIFT operator is used 

in both the visible image from the RGB-D camera and the thermal image from the thermal 

camera. The SIFT feature contains not only the location but also the scales and directions 

information.  

2) Step two: feature descriptor construction 

This step gives the procedures for constructing the SCSIFT descriptor. The proposed 

SCSIFT descriptor contains both local and global information. For the local information, the 

SIFT descriptor is used and applied in both the thermal image and the visible image. For the 

global constraint, the thermal image is de-noised first with anisotropic diffusion [148], after 

which the Canny operator [149] is used for the edge extraction in both the visible image and 

the de-noised thermal image. The shape descriptor is constructed with both the local descriptor 

and the thermal descriptor.  

3) Step three: feature matching 

Feature matching is based on the description of the features. Each feature descriptor is 

a vector consisting of a local feature descriptor and a global feature descriptor. The matched 

features are those with the minimum distance of their feature descriptor vectors. However, 

considering that the shape descriptor and the local SIFT descriptor are the different descriptions 

of information, they are different in both scales and data structures. Before combining the local 

descriptor and the global shape descriptor, the two descriptor vectors need to be normalized 

before being grouped into one descriptor vector. Finally, the grouped descriptors with 

minimum vector distance suggest a possible match. In the end, to remove wrong matches, the 

random sample consensus (RANSAC) was used [150]. 

The detailed steps and explanations are given in the next part. Table 3 shows the 

notations used in the algorithm. Step one completes SIFT feature extraction from the thermal 

image and the visible image. Step two completes the construction of the SCSIFT descriptor. 

In the end, the feature matching, including the normalization and combination of the global 

shape descriptor and local SIFT descriptor, are given. 
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Table 3  Symbol of notations for the proposed feature matching algorithm 

a) Global shape constraints and feature descriptions 

Since SIFT feature descriptors are not sufficient for the registration of the different 

modality images, global features for capturing image contexts are required in addition to local 

SIFT features. Before the edge extraction, de-noising of the thermal image should be 

performed. In practice, the thermal image is blurred and lacks edge information. In this work, 

anisotropic diffusion [123] is used, which shows a good balance between noise reduction and 

edge preservation for the thermal image. After filtering, the Canny edge operator [124] is 

selected for the edge extraction of both the smoothed thermal image and the visible image. The 

extracted edge images are shown in Figure 3-6. From the two images, it can be found that there 

also exist much difference in the thermal image contour and the visible image contour. The 

result also indicates that it is not practical only to use contours for registering of the thermal 

image and the RGB-D image.  

As mentioned previously, the shape descriptors are based on the contours of the images. After 

thermal image smoothing and edge extraction, the next step is to construct the shape feature 

descriptors. The sketch of the construction of the shape descriptor is shown in Figure 3-7. In 

the figure, the symbol P denotes the feature point. During the procedure of the SIFT feature 

 

  
  

Symbol Description 

𝑃𝑃𝑑𝑑  current feature point 
𝐸𝐸𝑗𝑗  current edge point 
𝑊𝑊 weighting of feature 𝑃𝑃𝑑𝑑  
𝑏𝑏 number of bins in the circular template 
𝐵𝐵𝑘𝑘  value of features (with weighting function) for the kthbin. 
𝑐𝑐 angle between line 𝑃𝑃𝑑𝑑𝐸𝐸𝑗𝑗  and upper line of bin𝐵𝐵𝑘𝑘  
𝑐𝑐 angle between line 𝑃𝑃𝑑𝑑𝐸𝐸𝑗𝑗  and lower line of bin𝐵𝐵𝑘𝑘  
𝜑𝜑 angle of each bins interval 
 𝑠𝑠𝑆𝑆(𝐿𝐿)
𝑑𝑑  local descriptor for feature i in source image 

 𝑠𝑠𝑆𝑆(𝐺𝐺)
𝑑𝑑  global descriptor for feature i in source image 

𝑫𝑫𝒓𝒓𝒓𝒓𝒓𝒓(𝑳𝑳)
𝒂𝒂𝒂𝒂𝒂𝒂

 local descriptor set for all features in reference image 
𝑫𝑫𝒓𝒓𝒓𝒓𝒓𝒓(𝑮𝑮)
𝒂𝒂𝒂𝒂𝒂𝒂  global descriptor set for all features in reference image 

 𝑬𝑬𝑮𝑮𝒊𝒊  
 𝑬𝑬𝑳𝑳𝒊𝒊  
 𝑆𝑆𝑑𝑑  

The distance set for  𝑠𝑠𝑆𝑆(𝐺𝐺)
𝑑𝑑  to 𝑫𝑫𝒓𝒓𝒓𝒓𝒓𝒓(𝑳𝑳)

𝒂𝒂𝒂𝒂𝒂𝒂  
The distance set for 𝐷𝐷𝑆𝑆(𝐿𝐿)

𝑑𝑑  to 𝑫𝑫𝒓𝒓𝒓𝒓𝒓𝒓(𝑳𝑳)
𝒂𝒂𝒂𝒂𝒂𝒂  

Scaling factorof 𝑬𝑬𝑳𝑳𝒊𝒊 and 𝑬𝑬𝑮𝑮𝒊𝒊  
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extraction, the rotation angle of γ is also calculated which is the dominant gradient direction 

for each feature point 𝑃𝑃𝐾𝐾  (𝑑𝑑 ∈ ℕ+ ). To make the feature description and feature matching 

invariant to the camera rotation. The local area is rotated with γ angle. 

The shape descriptor was constructed via the edge image and the circular template for counting 

the surrounding edge pixels. The sketch of the circular template is given in Figure. 3-7 (a). For 

each feature point, a circular template is generated that separates the surrounding area into 16 

bins (16 directions). Each other edge pixel is decomposed to the surrounding bins (directions). 

The decomposed weighting value W is given in Eq. (3-12) and Eq. (3-13) and shown in Figure 

3-7 (b): 

∆𝐵𝐵𝑘𝑘+1 = 𝑊𝑊sin (𝛼𝛼)
sin (𝜑𝜑)

                   (3-12) 

∆𝐵𝐵𝑘𝑘 = 𝑊𝑊sin (𝛽𝛽)
sin (𝜑𝜑)

                      (3-13) 

In the equation, 𝜑𝜑 = 2𝜋𝜋 16,⁄  which is the angle of each bins; 𝑊𝑊 denotes the direction 

decomposition weighting; and 𝑐𝑐 and 𝑐𝑐 are the upper angle and lower angle which are the angle 

between line 𝑃𝑃𝐾𝐾𝐸𝐸𝑗𝑗 and upper line of bin 𝐵𝐵𝑘𝑘, and the angle between line 𝑃𝑃𝐾𝐾𝐸𝐸𝑗𝑗  and the lower line 

of bin 𝐵𝐵𝑘𝑘.  

For the counting of the edge pixels surrounding the extracted feature, a proper 

weighting should be given where the far region edge pixels are suppressed or even ignored and 

the near region edge pixels have a larger weighting which means that the close region pixel 

has a larger impact on the global descriptors. In this work, the relationship between weighting 

and distance is decided by the spiral of Theodorus [146,147]. The mathematical expression is 

given in Eq. (3-14): 

𝑊𝑊 = 𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑑𝑑𝑠𝑠( 1
√𝐼𝐼

)     (3-14) 

In the forumla above, W is the calculated weighting of each pixels, and d is the distance from 

the extracted feature point to the edge pixel. Figure 3-8 shows the spiral and the relationship 

between the weighting and the distance. In the figure, the distance d is the 𝑠𝑠𝜕𝜕ℎ point in the 

curve. The angle between the 𝑠𝑠𝜕𝜕ℎ  point and (𝑠𝑠 − 1)𝜕𝜕ℎ point forms the weighting function. 
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Mathematically, the angle of two successive square number points, for  example, the 16th point 

and 25th point is striving to reach 360°/π.  

 

Figure 3-8 Weight for different distance 

The new global descriptor describes the surrounding edges of the feature point. From 

humans’ perception, humans can easily identify and match the feature points of two modalities 

of images (e.g. thermal and visible). Humans identify the object mainly based on the shape and 

global information, rather than the detailed local pixels. By combining the global descriptor 

with the SIFT descriptor, it is possible for the machine to match the two images with different 

image formations.  

b) Global and local feature descriptor normalization and feature matching  

The previous part discussed the procedure of constructing the shape descriptor. In this 

section, feature matching and descriptor normalization are presented. The global descriptor 

describes the counting of edge pixels surrounding the feature point, whereas the local features 

are the magnitude and gradient. Since they are two different mathematical descriptions, they 

need to be normalized before being combined as the SCSIFT descriptor vector. For the global 

and local descriptor vector normalization, the normalization weighting value is calculated 

using the minimum vector distance, which is obtained during the process of calculating the 

distance of descriptors. In this work, the reference image is the RGB image obtained from the 

RGB-D camera and the source image is the thermal image. During the process of normalization, 
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the feature point 𝑑𝑑 in the source image is denoted as 𝜋𝜋𝑆𝑆𝐾𝐾 with the descriptor denoted as 𝑠𝑠𝑆𝑆𝐾𝐾 , the 

distance of global descriptor  𝑠𝑠𝑆𝑆(𝐺𝐺)
𝐾𝐾  and local descriptor  𝑠𝑠𝑆𝑆(𝐿𝐿)

𝐾𝐾  to all global and local features 

descriptors 𝑫𝑫𝒓𝒓𝒓𝒓𝒓𝒓(𝑮𝑮)
𝒂𝒂𝒂𝒂𝒂𝒂  and  𝑫𝑫𝒓𝒓𝒓𝒓𝒓𝒓(𝑳𝑳)

𝒂𝒂𝒂𝒂𝒂𝒂  in reference image are calculated respectively, denoted as set 

𝑬𝑬𝑮𝑮𝒊𝒊  and set 𝑬𝑬𝑳𝑳𝒊𝒊  shown in Eqs.(3-15) and (3-16): 

𝑬𝑬𝑮𝑮𝒊𝒊 =�(𝑫𝑫𝒓𝒓𝒓𝒓𝒓𝒓(𝑮𝑮)
𝒂𝒂𝒂𝒂𝒂𝒂 −  𝑠𝑠𝑆𝑆(𝐺𝐺)

𝐾𝐾 )2              (3-15) 

𝑬𝑬𝑳𝑳𝒊𝒊 =�( 𝑫𝑫𝒓𝒓𝒓𝒓𝒓𝒓(𝑳𝑳)
𝒂𝒂𝒂𝒂𝒂𝒂 −  𝑠𝑠𝑆𝑆(𝐶𝐶)

𝐾𝐾 )2                                                 (3-16) 

The scaling factor 𝑆𝑆𝐾𝐾 is the ratio of maximum value of sets 𝑬𝑬𝑮𝑮𝒊𝒊  and𝑬𝑬𝑳𝑳𝒊𝒊 shown in Eq.(3-

17). Since the Euclidean distance calculations for descriptors are inherently in the process of 

feature matching, it will not increase the computing complexity. 

Si = max (EL
i )

max (EG
i )

                                                        (3-17) 

Finally, the unification process is expressed as follows: 

𝑬𝑬𝐾𝐾 = 𝑬𝑬𝑮𝑮𝒊𝒊 ∪
𝑬𝑬𝑳𝑳
𝒊𝒊

𝑺𝑺𝒊𝒊
                                                      (3-18) 

where 𝑬𝑬𝐾𝐾 is the unified distance set for 𝜋𝜋𝑆𝑆𝐾𝐾 to all features in the reference image. The minimum 

value in set 𝑬𝑬𝐾𝐾 indicates the best possible match. In this way, for each feature, an appropriate 

scaling value can be dynamically calculated according to the maximum global distance and 

maximum local distance.  

After the descriptor normalization, the global descriptor and local descriptor are 

combined into one descriptor. Finally, RANSAC is used to remove possible wrong matches 

[150]. 

3.1.2.3 Experimental study of the proposed registration method 

In this part, an experimental study is conducted using one rail track sample with natural 

cracks caused by the RCF. A sample with artificial cracks was also investigated for comparison 

study.  
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For the RCF cracks, a Helmholtz coil is used as an excitation coil since it can generate 

a nearly uniform magnetic field in the rail track sample. The excitation coil is cooled by water. 

The heating time is 200ms. The excitation current is 260kHz and 300A. The work follows the 

procedures introduced in the previous part. First, this part compares and analyses the 

differences and features extracted from the visible and thermal image. Then, a comparison is 

made between the proposed SCSIFT feature matching and the original SIFT feature matching. 

Finally, the 3D fusion result is presented. 

Process Description Output 

SIFT 

feature 

detector 

 
 

(a) Visible image SIFT 

features 

 

(b)Thermal image SIFT 

features 

Feature 

descript

or  

 

 

(c) Original SIFT-based matching 
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(d) Proposed SCSIFT-based matching 

Random 

Sample 

Consens

us 

[150] 

 

(e) Image registration after RANSAC 

2D & 

3D 

fusion 

Ref. Eq. (3-9) 

 

(f) 2D thermal image 

 

(g) 3D fusion image 

Figure 3-9  Rail track feature matching and fusion 
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(a)Visible image 

SIFT features 

(b) Thermal image 

SIFT features 

(c) Proposed matching 

 

(d) Thermal image 
 

(e) Thermal image 

 

(f) Image registration after RANSAC 

Figure 3-10 Feature matching and fusion of man-made sample 

The raw data are shown in Figure 3-9 (a) as the visible image of the natural crack 

sample and Figure 3-9 (b) as the thermal image. The SIFT features and thermal image SIFT 

features for the rail track are also marked in the image. From the two images, the thermal image 

clearly shows RCF. However, the thermal image lacks the texture information. In addition, the 

edge area is blurred in the thermal image. In contrast, the visible image complements the 

drawback of the thermal image. The visible image does not have enough crack information, 

but provides a clear view of edges and texture information. Thus, it is desired to combine 

thermal images and visible images or RGB-D images together. From Figures. 3-9 (a) and (b), 

the red lines are features on the edges. The box features are the features that are not in the edge. 

The colour of the box indicates the quality of the extracted features. The blue boxes indicate 

possible good features, while the green boxes are the features with low quality. The feature 

scale is also marked as the scale of the boxes. In the ECPT system, the coils used for eddy 

current excitation are apparent features, that can be used as markers for image registration. 

From Figures 3-9 (a) and (b), it can be seen that most of the features lie on the two coil sides. 

Furthermore, the coils lie in the same plane as the rail track surface, which helps to point out 

the major ground truth plane. This will contribute to pointing out the ROI and decreasing the 

2D fusion error. 

The feature descriptor is built based on the discussion in the previous part. Comparing 

the thermal image with the visible image, the local area information has extensive difference, 

leading to a failure in SIFT feature matching (see Figure 3-9 (c)). However, by adding global 
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5
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shape information, the features are correctly matched, as shown in Figure 3-9 (d) with the 

proposed SCSIFT descriptor. Finally, Figure 3-9 (e) is the registration of the two modality 

images after RANSAC and 3D temperature mapping is accomplished using detected matched 

features shown in Figures 3-9 (g).  

For a comparison study and a better evaluation of the fusion between crack and 3D heat 

flow, a man-made sample with angular slots is tested. Figures 3-10 (a) and (b) show man-made 

crack samples in visible images and thermal images with SIFT features. Figure 3-10 (c) shows 

the proposed feature matching. Figure 3-10 (f) shows the feature matching after RANSAC. 

Figure 3-10 (d) shows the original thermal image. Finally, the 3D fusion of a man-made crack 

is shown in Figure 3-10 (e). The man-made slot is 2mm deep with a slant angle of 45°. The 

thermal image used was taken at 200ms after the signal generator sends signal. The heating 

time is 200ms, and the excitation current is 300A and 260 kHz. In a comparison of the proposed 

registration and fusion for man-made and natural samples as illustrated in the Figures 3-9 and 

3-10, natural samples have more robust matched feature points, which is important for real-

world applications. 

 

3.2 Kinect fusion and David 3D scanning 
 

In this work, two 3D rangers of the Kinect SL camera and David 3D camera were chosen. 

This section presents the investigation on 3D scanning including their working principles, 

limitations through comparison and 3D fusion technologies for 3D ECPT systems. 

 

3.2.1 Kinect SL ranger and its features for fusion 

 

The Kinect SL sensor is a low-cost 3D ranger that has a wide-ranging field of view of 

43° (vertical) × 57° (horizontal). The sensor captures 30 frames per second. The component 

structure of Kinect is shown in Figure 3-11. It consists of a near-IR emitter, near-IR camera 

and RGB camera. The near IR emitter and near-IR camera are used for depth measurement. 
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The Kinect one uses structure light projection which is an active stereo vision technique for 

depth estimation. The IR emitter projects random IR patterns, as shown in Figure 3-12 (a-d). 

These images were taken with the near-IR camera. Figure 3-12(a) shows the near-IR patterns. 

Figure 3-12 (b-d) shows the near-IR patterns in medium distance, close distance and far 

distance. The images were captured in the near mode. 

There are several issues that can be raised from Figures 3-12 (a-d). First, there appear 

many holes among the IR patterns. This is either caused by the IR emitter, which cannot light 

that area at some specific angle, or the infrared beans that cannot reflect back at the shiny 

surface area or edged area. Second, the Kinect has a limited sensor range. There are two modes 

for Kinect sensors—near mode and normal mode. The normal mode has a range of 0.8 meters 

to 4 m and the near mode are in the range of 0.4 m to 3 m. The near mode is used in this study. 

Because the Kinect scanner has a very low spatial resolution for 3D scanning, it can 

hardly meet the requirements for quantitative NDT. To increase the spatial resolution, Kinect 

fusion technology is used which merges several scans into one scan. The Kinect fusion process 

data via Direct X 11 is compatible with GPU and C++ AMP. The modern GPU makes it 

fluently processed in real-time 3D reconstruction and point cloud stitching. 

The Kinect fusion technology generally consists of the steps outlined below. 

 

Figure 3-11  Structure of Kinect 3D scanner 
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(a) Kinect infrared pattern (structure light) 

 

(b) Infrared patterns on mid-distance 

 

(c) Infrared patterns on close distance 

 

(d) Infrared patterns on far distance 

Figure 3-12 Kinect infrared patterns 

The first stage is the conversion from raw depth data acquired from the Kinect sensor 

to the floating point depth in meters. After the data conversion, the surface normal vectors are 

calculated as the pre-processing of the next step. In addition, the de-noising process is 

conducted with a proper filter.  

The second stage uses the iterative closest point to track the camera movement and 

align the neighbourhood frames of the point clouds. The general idea of Iterative closest point 

(ICP) is to iteratively merge two point clouds in a greedy algorithm manor. The essential steps 

of ICP are as follows: 

1) For each point in the source point cloud (the previous frame point cloud), match the closest 

point in the reference point cloud (the current frame point cloud). 
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2) Estimate the rotation and translation matrix using a root mean square point to point distance 

metric minimization technique. 

3) Using the estimated transfer matrix, rotate and translate the source point cloud 

4) Iterate the above steps 

Figure 3-13 shows the merging of two surfaces using the ICP algorithm. 

The red surface is the original point cloud generated by: 

𝑧𝑧 = sin(𝑥𝑥 ∗ 𝑦𝑦) ,−2 < x < 2; −2 < y < 2                     (3-19) 

The blue surface is the transformed point cloud with a translation of: 

T = [0.5, −0.3, 0.2] 

and rotation of: 

R = [0.3, −0.2, 0.05]   (rad.) 

From the ICP result of Figure 3-13 it can be seen that the red surface is successfully 

registered to the blue surface. Kinect fusion uses the ICP when each new frame is captured and 

calculates the translation and rotation. The third stage is merging several point clouds into one 

point cloud. This procedure is repeated for each new frame captured by the depth ranger. The 

holes are filled in when moving the 3D rangers to different positions and viewing angles. 

Figure 3-14 shows Kinect scan and fusion with a thermal IR camera. 

 

Figure 3-13 Iterative closest points algorithm 
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Figure 3-14 Kinect visible-thermal fusion 

 

3.2.2 David 3D systems and their features for fusion 

 

The David 3D scanning system consists of a visible projector and a high resolution 

visible camera. Unlike the Kinect system which has a fixed projector-camera distance, the 

David 3D has an adjustable camera-to-projector distance and adjustable camera rotation angle 

𝑐𝑐. Thus, before each 3D scanning, a calibration process must be taken with a calibration board. 
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Figure 3-15 David 3D scanning system 

 

3.2.3 Experimental set-up and samples 

 

The David 3D scanner system uses a visible projector for pattern rendering and a high-

resolution RGB camera for depth estimation of the captured patterns. The projector and RGB 

camera were mounted on a rail. The projector position and camera position on the rail are 

adjustable. In addition, the camera angle is adjustable in the range of 0° − 30°. To acquire the 

best quality of 3D scanning, the ROI is optimized by properly adjusting the angle of the camera 

and projector–camera distance.  

To obtain the best ROI, the focus of the projector and camera needs to be adjusted. 

Furthermore, the system has to be recalibrated each time the camera (projector) position or 

rotation angle is changed. To achieve the best scan, the white balance also needs to be properly 

adjusted. The white balance is affected by the testing object reflectivity (shiny or rough surface) 
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and the background light. The white balance can be adjusted by controlling either the projector 

brightness or the aperture of the RGB camera. 

The first step is to obtain the best ROI. This is done by putting the testing sample in 

front of the 3D scanner and adjusting the projector and the RGB camera until it reaches the 

maximum overlapped area. To obtain a good quality 3D scanning, it is suggested that the 

camera rotation angle should be not less than 22° because of triangulation principles. 

The second step is to use the calibration board for calibration and adjust the white 

balance. The software automatically calibrates the system with an accurate estimation of its 

intrinsic and extrinsic parameters. The white balance is adjusted manually by either controlling 

the projector or the RGB camera.  

The final step of 3D scanning is merging scans of the point clouds. The system 

enables multiple scans and uses the iterative closest point for point cloud merging. The 

testing sample is rotated either manually or using a turning table. To obtain the best quality 

of 3D reconstruction, it is suggested to have at least 16 scans for 360° scanning. 

 

3.3 3D Visualization of thermal point cloud flow and fusion 
 

This section gives visualization of the 3D thermal flow. First, the 3D heat flow software 

platform is shown in section 3.3.1. Second, the post-processing procedure, including thermal-

visible 3D fusion and COMSOL simulation, is described in section 3.3.2. 

 

3.3.1 The three-dimensional visualization software platform 

 

The obtained 3D thermal flow with time is a four-dimensional (4D) matrix that contains 

the 3D heat flow in different time slots. Thus, the software should provide 3D visualization in 

not only space but also the temperature response over time. Figure 3-16 shows the 3D 

visualization software platform. 
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Figure 3-16 3D visualization platform 

The platform is written in a C++ environment with the support of the Point Cloud 

Library. The platform is built to show the 3D geometry with temperature information, and the 

temperature goes in time sequence. The top window shows the 3D heat flow under the 

maximum temperature. The temperature is converted to colour texture via a jet map, and the 

point cloud can be rotated with the mouse in 3D. To show the temperature in time sequence, 

the temperature curve is plotted by shift+left clicking the heat point at top window. The bottom 

right window shows the temperature curve in a defective area. The bottom left window is the 

command window and shows the selected heat point characteristics including the maximum 

temperature, point location and other features such as skewness, and the thermal gradient.  
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Figure 3-17 Program structure of 3D visualization platform 

The program structure of the visualization platform is shown in Figure 3-17. There are 

two inputs to the visualization platform–the point cloud file and the data file. The platform 

currently only supports .ply file format for the input of the 3D point cloud. The point cloud 

acquired from the Kinect 3D ranger or David 3D ranger must be formatted to .ply first. Other 

information such as the temperature-time sequence, and features are saved in the binary data 

file. The binary file format is defined by the thesis author and given in the Appendix. 

There are several command and functions of the visualization platform. The command 

is simply keying the following keywords: 

• Keywords: J/j. This command takes a snapshot of the cloudviewer window. The 

snapshot is saved as .png image file.  

• Keywords: C/c. This command displays the camera parameter. The command is used 

to see the rotation and displacement of the operation to the point cloud. 

• Keywords: F/f. This command is used to move the camera forward (zooming in) to the 

position of the mouse.  

• Keywords: +/-. This command is used to increase (+) or decrease (-) the size of the 

point cloud.  
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• Keywords: G. This command enables or disables the grid information. The grid is used 

to display the ruler of sizing with units of length (cm, mm, etc.). 

• Keywords: R. This command resets the camera to the original status. 

• Keywords: ALT+s. This command switches between normal mode and stereo vision 

mode. The stereo vision mode is the anaglyph 3D, which shows the 3D effect to your 

eye by adding a pair of red blue glasses.  

 

3.3.2 Crack localization, sizing and thermal visible fusion 

 

In this section, one railway sample with an RCF is used for the case study. The rolling 

contact fatigue is the most common defect for rail track inspection. The RCF is a multiple-

crack defect with a direction of 30°–45° towards the rail track radial direction (the direction in 

which the train moves). Eddy current testing is an efficient method for RCF inspection [121]; 

RCF is clearly shown in the active thermal image using ECPT in Figure 3-18 (a), whereas it 

cannot be seen in the visible image as Figure 3-18 (b).  
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Figure 3-18 Three-dimensional reconstruction, visible and thermal fusion and simulation 

Figures. 3-18 (c) and 3-18 (d). 7 show the 3D reconstruction results. The procedure 

follows the steps illustrated in section 3.1.2. The feature points are extracted in both Figure. 3-

18 (a) and (b) and are matched with SCSIFT. The projection matrix is obtained by using the 

matched feature points. After this, the texture image sequences (thermal heat flow and optical 

flow) are mapped onto the point cloud. Figure 3-18 (a) is the thermal image taken at 30ms after 

the pulse generator sends the start signal to the induction heater. Comparing Figure. 3-18 (a) 

and Figure 3-18 (c), it can also be seen that the 2D thermal IR image is blurred and lack 
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geometric nformation. The boundary area is not clear which is a common problem for 

thermography. When the 3D physical coordinate is added, it can be seen that the edges are now 

clearly shown. Furthermore, not only can the defect be detected, but it can also be quantified. 

The heat flow mapped to the point cloud enables the tracking of heat flows in a quantitative 

manner, where the heat distribution and spreading speed can be calculated with geometry 

information provided by the point cloud. This enables a better analysis and understanding of 

the multi-physical phenomenon of the ECPT system. 

Another advantage of 3D over 2D is the accurate multi-sensor fusion. Generally, 2D 

images’ alignment and fusion is based on assuming the objects are lying on a plane. Thus, the 

2D affine transform results in rough image alignment. Using the depth information provided 

by the point cloud, the images from different sensors can be accurately aligned to the same 

coordinate system with the projection matrix as shown in Figure 3-18 (f).  Finally, the 3D FEM 

simulation of ECPT in COMSOL is conducted to validate our 3D ECPT system. The 

simulation environment setting is the same as the experimental study environment set up. The 

eddy current pulse is 200A with 200Hz. The heating time is 200A. Figure 3-19 (e) shows the 

simulation results of the RCF on the railhead. The 3D FEM model provides both 3D physical 

coordinates and temperature responses, which is valuable for the quantified evaluation of 

defect characterization. Accordingly, the proposed 3D ECPT in this paper matches the 3D 

FEM model, and therefore, the 3D ECPT has great potential for quantified NDT&E. 

                    

(a)                                                                 (b) 

Figure 3-19 Defect sizing and localization 
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In this section, the defect area is enhanced by thresholding the temperature value. The 

defect size and angle are measured manually. Figure 3-19 (a) shows the thresholded thermal 

point cloud and Fig ure 3-19(b) shows the measured crack size and angle. The 3D ECPT not 

only gives a better measurement of defect geometry and visualization but also for analysing 

the defect thermal transient response and furthe analysis of the defect characteristics, such as 

size, depth and crack angle. This part is introduced in chapter 4. 

  

3.4 Summary 
 

In this chapter, a new 3D ECPT system was proposed. The primary task is unifying the 

coordinate system from different imaging sensors. The unification process was done by finding 

the matched features from the multi-spectrum images, and the 3D scanning and rendering 

process from the Kinect system and David 3D system were presented individually. Fusion of 

the point cloud with thermal IR images enables the ability not only to detect the defect but also 

quantify it. The points cloud brings the information of geometry to the thermal IR image, which 

solves the blurred problem of the thermal IR image to some extent. Finally, an accurate colour 

image-thermal image alignment and fusion was performed. The multi-spectrum image also 

brings complementary information, which helps in further analysis and detection of the defect. 
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4 DEFECT DETECTION AND VALIDATION USING THE 3D 

ECPT SYSTEM AND VALIDATION 

 

This chapter describes the studies on defect defection and quantification using the  3D 

ECPT system. PCA is a statistical tool for high dimensional data feature extraction, so it is 

applied to the point cloud. Section 4.1 is a case study of rail track defect localization using 

PCA. Section 4.2 proposes a new transient feature of skewness for defect detection and 

quantitative analysis. The thermal gradient is a physical parameter in heat transfer. In section 

4.3, the quantification of the thermal gradient is given and visualized in 3D through validation 

with man-made and natural RCF crack samples. 

 

4.1 Segmentation of thermal point cloud data of rail track using PCA 
 

The point cloud segmentation is a process that divides the point cloud into multiple 

regions. The point cloud has the same properties in a single region [151].  This study aims to 

automatically localize the ROI of RCF on a rail track head and enhance the visualization of 

cracks in depth.  

Point cloud segmentation is a widely discussed topic in computer vision in both 2D and 

3D contexts. Besl [152] first proposed the seeded-region method which clusters the points with 

seeds and grows by adding nearby points. Biosca [153] introduced an unsupervised clustering 

algorithm with fuzzy logic.  

The normal vector of the point cloud surface represents the curvature information of the 

3D object.    In this specific study, the normal vector is used for the localization of the RCF 

since the RCF only appears on the shoulder of the rail track head. The curvature information 

of the rail track shoulder is detected and gives the interest of region (IOS) of the defect area. 
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The PCA [154, 155] is used as a tool to assess the planarity of point vectors. For each 

point 𝑝𝑝𝑞𝑞����⃗  in the 3D point cloud sets, the first step is finding the nearest point set of the query 

point. Then, the covariance matrix is calculated as: 

C = 1
𝑘𝑘
∑ (𝑝𝑝𝚤𝚤���⃗ − 𝑝𝑝𝑞𝑞����⃗𝑘𝑘
𝐾𝐾=1 )(𝑝𝑝𝚤𝚤���⃗ − 𝑝𝑝𝑞𝑞����⃗ )𝑇𝑇                               (4-1) 

where 𝑝𝑝𝑞𝑞����⃗ = (𝑥𝑥𝑞𝑞 ,𝑦𝑦𝑞𝑞 , 𝑧𝑧𝑞𝑞) denotes the coordinate of the query point, 𝑝𝑝𝚤𝚤���⃗ = (𝑥𝑥𝐾𝐾, 𝑦𝑦𝐾𝐾, 𝑧𝑧𝐾𝐾) denotes the 

coordinate of the surrounding point cloud sets, and 𝑘𝑘 is the number of the surrounding point 

cloud sets.  

Since the covariance matrix denotes the dispersion of the data, it estimates the direction 

in which the data mainly lies. [156]. Using PCA on the 3D point clouds yields the principle 

orthonormal planes 𝑝𝑝 = [𝑝𝑝1���⃗ ,𝑝𝑝2����⃗ ,𝑝𝑝3����⃗ ] of the point cloud set. Thus PCA is one solution to extract 

normal vectors of a point cloud surface.  The third principal component vector 𝑝𝑝3����⃗  is the normal 

vector of the point cloud plane. 

  

Figure 4-1 Point cloud command window 
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Figure. 4-1 shows the procedure carried out for defect localization and visualization. 

First, the curvature information which comprises normal vectors of the point cloud is extracted 

using PCA [157].

 

Figure 4-2 The normal vector of rail track head 

Since that the RCF appears in the shoulder of the rail track head, the shoulder position is 

localized with the normal vectors information. In this case study, the rail track head is a cubic 

object. By the same principle, using PCA to the normal vectors， the point cloud of the rail 

track head can be projected into the orthogonal way (front, and back sides on the x-axis; left 
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and right sides on y-axis; top and bottom sides on z-axis). 

 

(a)                                                                      (b) 

 
(c)                                                                      (d) 

Figure 4-3 Defect enhancement, localization and visualization 

The ROI lies on the left, right and top sides of the railway head as shown in Figure 4-

3 (a). The rail track is separated into six parts: 2 rail track shoulders, and the rail track front, 

back, top and bottom. For the thermal texture colour. Finally, the thresholding image is shown 

in Figure 4-3(b). 

After crack localization, the crack area is enhanced and visualized as a sink under the 

surface. Since the 3D scanner can only capture surface information, the original data cannot 

show the depth of the RCF. However, previous studies [2-3] have shown that the thermal 
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information captured by the IR camera carries information about defect depth. Reference [4] 

showed that the maximum temperature gradient is a quantification of the defect depth and 

defect angle. In this work, we visualized the depth of the crack and sunk the defective point 

cloud under the surface according to the maximum temperature gradient. Figure. 4-3 (c) shows 

the enhanced point cloud, and Figure 4-3 (d) is the zoomed area visualization.  

 

4.2 Skewness features   
 

During the ECPT experiment, the transient temperature response of the specimen was 

captured by the IR camera and recorded as a thermal image sequence. In each frame, the 

thermal image is recorded in a two-dimensional matrix I(x, y) that gives the temperature at 

each pixel location. The 3D matrix Y(x, y, n)  is used to record the whole thermal image 

sequences, where n  is the frame number. The frame number can be later transferred to 

represent time as t = 𝑠𝑠
𝜋𝜋𝑠𝑠� , where 𝜋𝜋𝑠𝑠 is the recording frame rate.  

Many studies have been carried out for the study of transient temperature response on active 

thermography. Reference [61] used the maximum thermal rise as a feature of defect depth. 

Reference [83] used PCA and ICA as distinguishing features for defect detection. Other 

methods, such as blind source separation [62], also show that the transient temperature 

response provides information not only on defect size but also defect depth. In this study, the 

new skewness feature of the transient temperature response is used. This result is validated for 

man-made cracks with different defect depths.  

 

4.2.1 Thermal transient response in ECPT  

 

In the ECPT experiment, the transient thermal responses in both the heating stage and 

the cooling stage contain rich information. The defect can be identified and localized from the 

heat flow discontinuity (geometry side) and heat transfer curve. Figure 4-4 shows the 3D heat 

point cloud at the end of the heating stage. As can be seen from Figure 4-4, the defect further 
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from the excitation coil shows low contrast between the defective and defect-free area. For 

comparison study, five typical points are selected and investigated as follows: 

 

Figure 4-4  Selected points locations 

• Point A: defect point near the excitation coil; 

• Point B: point near defect point proximal to the excitation coil; 

• Point C: non-defect point near to the excitation coil; 

• Point D: non-defect point far from the excitation coil; 

• Point E: defect point far from the excitation coil; 

The temperature curvature is shown in Figure 4-5. Comparing points A and E, both of 

which are defect points, we find that they share the same curvature shape, with a rapid 

temperature rising and cooling. Comparing point A with B and point E with D, we find that 

they are close to each other in geometry. The heat is propagated from point A to B; and point 

E to D. Thus, point B has a slow temperature rise and very slow temperature decay. The same 

situation happens with points E to D; however, for point E, the point is too far from the 

excitation coil to be heated in the non-defect area. The temperature response of point D appears 

as a slow, rising line-shape curve. As a result, there appears to be a strong difference in 

curvature between the defective area and the defect-free point near the defect. 
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Figure 4-5 Thermal transient response on selected points 

According to Newton’s cooling law, the heat transfer in the cooling stage is given as 

follows: 

𝐼𝐼𝑑𝑑
𝐼𝐼𝜕𝜕

= ℎ ∗ 𝐴𝐴 ∗ (𝑇𝑇(𝑠𝑠) − 𝑇𝑇𝑒𝑒𝐼𝐼𝑒𝑒) = ℎ ∗ 𝐴𝐴∆𝑇𝑇(𝑠𝑠)                        (4-2) 

where Q is the thermal heat in joules, ℎ is the heat transfer coefficient, 𝐴𝐴 is the heat transfer 

surface area, 𝑇𝑇  is the surface temperature and 𝑇𝑇𝑒𝑒𝐼𝐼𝑒𝑒  is environment temperature:  ∆𝑇𝑇(𝑠𝑠) =

𝑇𝑇(𝑠𝑠) − 𝑇𝑇𝑒𝑒𝐼𝐼𝑒𝑒. 

The solution to Newton’s equation is written as 

𝑇𝑇(𝑠𝑠) = 𝑇𝑇𝑒𝑒𝐼𝐼𝑒𝑒 + (𝑇𝑇(0) − 𝑇𝑇𝑒𝑒𝐼𝐼𝑒𝑒)𝑑𝑑−
𝐾𝐾
𝐾𝐾0                          (4-3) 

Thus, 

∆(𝑇𝑇)1 = 𝑇𝑇(𝑠𝑠) − 𝑇𝑇𝑒𝑒𝐼𝐼𝑒𝑒 = 𝑠𝑠1 ∗ 𝑑𝑑𝑘𝑘1𝜕𝜕         𝑠𝑠1, 𝑠𝑠,𝑘𝑘1 > 0               (4-4) 

The heating stage of the ECPT system accounts for both heat diffusion and joule heating, as 

given in Eq. (4-5): 
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The total power P given by the inductor heater is constant.  

Because of the heat dissipation, which is )( 2
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λ  (4-6), the curve in 

the heating stage is non-linear, as shown in Figure 4-5. In the rest of this section, all image 

sequences are pre-processed with the subtraction of the first frame: 

𝐼𝐼′(𝑥𝑥,𝑦𝑦,𝑠𝑠) = 𝐼𝐼(𝑥𝑥,𝑦𝑦,𝑠𝑠) − 𝐼𝐼(𝑥𝑥, 𝑦𝑦, 1)                            (4-7) 

As a result, the time–temperature curve for each pixel 𝐼𝐼(𝑥𝑥,𝑦𝑦) starts from zero. 

A single thermal image is insufficient for the decision making of the defects. There are 

three reasons for this. First, it is hard to select which frame to analyse to locate the defect. 

Second in the specific frames, the sub-surface cracks have the same temperature as they are in 

the non-defective area, which results in difficulties and inaccurate judgement in determining 

the crack area. Finally, it is almost impossible to quantify defect size and depth based on the 

single frame. For these reasons, the transient thermal response is used, which is captured by a 

high-speed IR camera and recorded as optical flow. The optical flow can be used to target the 

displacement of images at different time slot. The displacement of the thermal flow (heat flow) 

reflects the heat propagation direction and magnitude. Quantified heat flow can help the 

quantification study of the factors related to the defect size, depth and direction. 

Based on the optical flow, different features are extracted with advanced signal 

processing methods, such as PCA， ICA and blind source separation. This section gives the 

analysis of the transient thermal responses in the statistical histogram manner, and different 

defect depths are compared and with skewness feature. 

Skewness is the measurement of data to determine its asymmetry around its mean. It is 

a statistical tool that has the advantage that it is independent of the mean of the distribution.  

Skewed distribution is compared to the normal distribution, where a normal distribution 

is symmetrical, with a skewness of zero. A negative skewness reveals that more data spreads 
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on the left of the mean, where a positive skewness reveals that more data spreads on the right 

of the mean. 

The systematic study of skewness began with Karl Pearson [158], who first investigated 

the property of skewness for different types of statistics. This was followed by the works in 

[159-162], which gave a summary of skewness properties of different distributions including 

Gamma distribution, log-logistic distribution, lognormal distribution and Weibull distribution. 

More recently, [162] assessed different ways of measuring skewness and how to decide which 

way fits best. The ways of measuring skewness include the following: 

 𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼
𝑒𝑒𝑒𝑒𝐼𝐼𝐾𝐾𝐼𝐼𝐼𝐼

                                                            (4-8) 

 𝑒𝑒𝐼𝐼𝑥𝑥−𝑒𝑒𝑒𝑒𝐼𝐼𝐾𝐾𝐼𝐼𝐼𝐼
𝑒𝑒𝑒𝑒𝐼𝐼𝐾𝐾𝐼𝐼𝐼𝐼−𝑒𝑒𝐾𝐾𝐼𝐼

                                                       (4-9)     

 
1
2� (𝑒𝑒𝐾𝐾𝐼𝐼+𝑒𝑒𝐼𝐼𝑥𝑥)
𝑒𝑒𝐼𝐼𝑒𝑒𝐾𝐾𝐼𝐼𝐼𝐼

                                                    (4-10) 

 
1
𝐾𝐾
∑ (𝑥𝑥𝐾𝐾−�̅�𝑥)3𝐾𝐾
𝐾𝐾=1

��1𝐾𝐾(∑ (𝑥𝑥𝐾𝐾−�̅�𝑥)2𝐾𝐾
𝐾𝐾=1 �

3                                                  (4-11) 

 3(𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼−𝑒𝑒𝑒𝑒𝐼𝐼𝐾𝐾𝐼𝐼𝐼𝐼)
𝑠𝑠𝜕𝜕𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝑒𝑒𝑒𝑒𝐾𝐾𝐼𝐼𝜕𝜕𝐾𝐾𝐶𝐶𝐼𝐼

                                                (4-12) 

Equations. (4-11) and (4-12) are the standard measurement of skewness. Equation (4-10) is the 

formal definition of skewness, and Eq. (4-12) is Pearson’s skewness coefficient. 

In this study, Eq. (4-11) is used for the measurement of the skewness of the transient thermal 

response.  

 

4.2.2 Skewness features for the characterization of defect depths and validation 

 

This study investigates the following points: 
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• How does the defect depth affect the the histogram of the temperature curve (the histogram 

mean, standard deviation and skewness)? 

• Is the skewness feature related to the defect depth? If so, why? 

• What is the skewness feature in the heating stage, cooling stage and all stages in the ECPT 

experiment? 

• Can the skewness feature detect sub-surface defect? 

• Is the skewness robust to other factors, such as heating time, cooling time and sampling 

frequency? 

In this study, one man-made steel sample with cracks of different depths  was used and 

tested with an ECPT system at Newcastle University. The ECPT experimental set-up used a 

heating time of 200ms and cooling time of 800ms. A helomots coil was used for induction 

heating. The capturing frame rate of the IR camera was 50 frames per second. The excitation 

frequency was 260kHz with a current magnitude of 300A. 

 
(a) Photo of the artificial sample 

 
(b) Sketch diagram of the artificial sample 

Figure 4-6 Photo and sketch diagram of artificial angular crack sample 

Figure 4-6 gives the photo and sketch diagram of the artificial angular crack sample. 

The sample is (300 × 30 × 63) 𝑚𝑚3 in dimension. The defect comprises open-angler slots with 

different depths of 0.5mm, 1.0mm, 1.5mm, 2mm, 2.5mm, 3.0mm  and 3.5mm . The 

inclination angle of the angular slots are 45°. The material of the sample is AISI 1045 carbon 

steel. The material density is 7.80 × 103𝑘𝑘𝑘𝑘/𝑚𝑚3, the heat capacity is 4.86 × 102𝐽𝐽/𝑘𝑘𝑘𝑘 ∙ 𝐾𝐾, the 

thermal conductivity is 49.8W/m ∙ k and the electrical conductivity is 6.17 × 106𝑆𝑆/𝑚𝑚. 
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Figure 4-7 Measured parameters on skewness distributions 
Figure 4-7 shows one skewness mesh image. The measured parameters included: the 

mean skewness in the y dimension, the mean peak to valley value 𝑠𝑠𝐾𝐾 in the y dimension, the 

standard deviation, the mean of the temperature histogram and the skewness distribution in 3D 

space. 

4.2.3 Statistical analysis of the transient thermal response  

 

This part uses the data from the entire ECPT experiment, includes the heating and 

cooling stages. The heating time is 200 ms (50 frames) where as the cooling time is 800 ms 

(200 frames).  

The image sequence can be treated as a 3D matrix. The pixel at location (𝑥𝑥,𝑦𝑦) in the 

specific frame 𝑠𝑠 is denoted as 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑠𝑠). This part begins with the analysis of the maximum 

temperature matrix 𝐼𝐼𝑀𝑀𝐼𝐼𝑥𝑥(𝑥𝑥,𝑦𝑦,𝑠𝑠 = 50), mean temperature  matrix  𝐼𝐼(̅𝑥𝑥,𝑦𝑦) = ∑ 𝐼𝐼(𝑥𝑥,𝑦𝑦,𝐼𝐼)𝑁𝑁
𝐾𝐾=1

𝑁𝑁
 and 
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standard deviation matrix in time space 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥,𝑦𝑦) = �∑ (𝐼𝐼(𝑥𝑥,𝑦𝑦,𝐼𝐼)−𝐼𝐼(̅𝑥𝑥,𝑦𝑦)𝑁𝑁
𝐾𝐾=1

𝑁𝑁−1
, where N is the total 

number of frames. 

The description that follows focusses on comparison study of 𝐼𝐼𝑀𝑀𝐼𝐼𝑥𝑥 , E(x− mean)3, 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥,𝑦𝑦)3 and skewness. Only a crack of 3mm in depth crack is included here because of 

space limitation of the thesis.  

Mesh image Mean plot 

 

(a)  
(b)  

 

(c) 

 

(d) 
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(e) 

 

(f) 

 

(g)  

(h) 

 Figure 4-8 Maximum temperature, 𝐸𝐸(𝑥𝑥 − mean)3, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠3 and 
skewness 

First, consider the maximum temperature frame. The maximum temperature frame was 

captured on the last frame in the heating stage. This is usually considered the best quality frame 

for active thermography because it gives the highest thermal contrast between the defective 

area and the defect-free area. Reference [121] used the maximum temperature frame for the 

RCF detection and localization on a rail track head.  

The calculation of skewness is given in Eq. (4-13) 
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1
𝐾𝐾
∑ (𝑥𝑥𝐾𝐾−�̅�𝑥)3𝐾𝐾
𝐾𝐾=1

��1𝐾𝐾(∑ (𝑥𝑥𝐾𝐾−�̅�𝑥)2𝐾𝐾
𝐾𝐾=1 �

3 = 𝐸𝐸(𝑥𝑥−mean)3

𝑠𝑠𝜕𝜕𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝑒𝑒𝑒𝑒𝐾𝐾𝐼𝐼𝜕𝜕𝐾𝐾𝐶𝐶𝐼𝐼3
                      (4-13) 

In Eq. (4-13), the skewness is the ratio of two parts, 𝐴𝐴 𝐵𝐵� , where A = E(x− mean)3. 

Part A is the re-location of the data, and it is zero centred. Afterwards, it is  powered to the 

order of  three. B is the standard deviation to the power of three.  Thus, the study investigates 

the relationship between A and B. Figures 4-8 (a), (c), (e) and (g)  show the mesh images of A 

and B and their skewness ratios.   

For the four images on the left column above, we denote the pixel at location (x, y) in 

image q as 𝐼𝐼𝑞𝑞(𝑥𝑥,𝑦𝑦). For example, the peak point in image a is denoted as 𝐼𝐼𝐼𝐼(4,31).  The same 

rule applies to the four curves on the right column, where 𝑦𝑦𝐼𝐼(𝑥𝑥) donotes the value of the point 

at location x in image n. 

The images on the left column plot the mean values over the y dimension of the left 

images. The curves 𝑃𝑃(𝑥𝑥) on the right column are calculated as 

𝑃𝑃(𝑥𝑥) = 1
𝑘𝑘
∑ 𝐼𝐼(𝑥𝑥,𝑦𝑦)𝑘𝑘
𝑦𝑦=1                                          (4-14) 

From the figures, we can see that the attenuation in y dimension of E(x− mean)3 , 

(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠)3  from peak to valley keeps consistency with the maximum 

temperature frame. The following can been seen from single pixels: 𝐼𝐼𝐼𝐼(4,22) to 𝐼𝐼𝐼𝐼(4,31) and 

𝐼𝐼𝐼𝐼(4,16); 𝐼𝐼𝑐𝑐(4,22) to 𝐼𝐼𝑐𝑐(4,31) and 𝐼𝐼𝑐𝑐(4,16); 𝐼𝐼𝑒𝑒(4,22) to 𝐼𝐼𝑒𝑒(4,31) and 𝐼𝐼𝑒𝑒(4,16) and 𝐼𝐼𝑔𝑔(4,22) to 

𝐼𝐼𝑔𝑔(4,31) and 𝐼𝐼𝑔𝑔(4,31). The spatial distances from peak to valley are 9 pixels (left side) and 5 

pixels (right side). The mean values over the y dimension share the same law as the single 

pixels. 

For the attenuation in the z dimension from peak to valley, the 

(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠)3 and maximum temperature frame are almost symmetrical regardless 

of the crack angle.  In contrast, E(x − mean)3 is more relative to the crack angle (45° from 

the suface to the bottom left), where it can be seen in the left column of the mean value curves 

and described as outlined below. 
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The maximum temperature frame (mean value) remains the same, as can be seen from 

y𝑏𝑏(31) = 2.729 ; 𝑦𝑦𝑏𝑏(16) = 2.715 . For the standard deviation (mean value), y𝜋𝜋(31) =

0.2729; 𝑦𝑦𝜋𝜋(16) = 0.278; which remains almost the same. 

However, the exception of (x − mean)3 is influenced by the crack angle and results in 

the skewness affected by the crack angle. Here, y𝐼𝐼(31) = −0.05022 is a negtive number and 

𝑦𝑦𝐼𝐼(16) = 0.1779 is positive. The negative value of y𝐼𝐼(31) reveals the temperature curves on 

column 𝑦𝑦 = 31 are left skewed, and the positive value of y𝐼𝐼(16) reveals that the curves on 

column 𝑦𝑦 = 16 are right skewed. 

Figures 4-8 (c), (e) show that the amplitude of standard deviation and 𝐸𝐸(𝑥𝑥 − 𝑚𝑚𝑑𝑑𝑠𝑠𝑠𝑠)3 

have a strong dependence on the distance to the excitation coil. However, their ratio (skewness) 

is irrelevant in terms of the distance to the excitation coil. This can be obtained as in non-

defective area, where𝐸𝐸(𝑥𝑥 − 𝑚𝑚𝑑𝑑𝑠𝑠𝑠𝑠) 3is proportional to  (𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠)3 regardless of 

its distance from the excitation coil. In the defective area, besides when the effect from distance 

to the excitation coil  is removed, the skewness points to the crack direction in the skewness 

goes deeper (smaller) in the crack direction. 

There are two factors that results in a higher temperature at the left and right sides of 

the man-made slot. First, this area is closer to the excitation coil. Second, the skin effect of the 

eddy current leads to a higher eddy current density in the edge region. From Figure 4-8 (h), it 

can be seen that the skewness is a feature independent of crack position and excitation position 

because the figure shows an almost line shape in the y dimension. The skewness feature is not 

only independent of the effect of uneven heating with the distance to the excitation coil, but it 

is also independent of the skin effect of the eddy current. (In the different positions of the 

cracks, the eddy current has different distributions where the edge area has a higher current 

density than the middle area).  

The next section investigates the relationship between skewness and defect depth. 

 

4.2.4 Skewness feature versus depth 
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This section considers the skewness relative to the defect depth. As in the previous 

sections, the mean operator is applied to the y dimension of the mesh image, and the curve is 

plotted in the bottom left in each row of the table.  

  

 

 
(a) 

 

 

 
(b) 
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(c) 

 

 

 
(d) 
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(e) 

 

 

 
(f) 

Figure 4-9 Skewness feature on different depth 
The first thing to note is that the surface crack has the highest skewness. This conclusion 

is identical to that in previous section 4.2.4 and prooves that the skewness feature can locate 

the surface crack location with the highest skewness value. This phenomenon is caused by the 

skin effect and heat dissipation. The eddy current tends to gather at the edge or the surface area. 

Thus, it produces more heat in the crack area and then causes larger heat dissipation from the 

crack point to the nearby region.  
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(a) Skewness(3mm) peak = 1.0554 

 

(b) Skewness(3mm) valley= -0.2435 

 

(c) Skewness(0.5mm) peak = 1.2354 

 

(d) Temperature curves 

 

Figure 4-10 Histogram of 3mm crack and 0.5mm crack at peak (valley point) and 

temperature curve 

Figure 4-10 (a) shows the histogram of the peak pixel (𝐼𝐼𝐼𝐼(4,22) in Figure 4-8) for a 3mm 

crack, and Figure 4-10 (b) is the histogram of the corresponding valley pixel (𝐼𝐼𝐼𝐼(4,31) in 

Figure 4-8). From the histogram and the skewness value, we find that the peak point (a) is 

positively skewed, whereas the valley (b) is slightly negtively skewed.  

The histogram of peak pixel is shown in Figure 4-10 (c) for 0.5 mm crack. The 

corresponding valley pixel is not shown here because there is no valley pixel for 0.5 mm crack 

as can be noted in Figure 4-9 (f) 
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Sampe Peak value Valley value Peak-valley Peak_valley
∆𝑥𝑥�  

3mm 1.099 -0.2284 1.3274 0.1207 

2.5mm 1.255 0.04639 1.2086 0.1209 

2mm 1.357 0.2036 1.1534 0.1282 

1.5mm 1.581 0.524 1.0570 0.1174 

1mm 1.6 0.8101  0.7899 0.1128 

0.5mm 1.3 0.9065 0.3935 0.0492 

Table 4 Skewness peak and valley values 

 

Figure 4-11 Mean skewness plot of different crack depth 

 From Table 4 and Figure 4-11 we can conclude that the skewness of the single pixel 

transient thermal response (pixel-level feature) cannot clearly show the defect depth. Table 4 
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reveals the relationship between defect depth d and skewness peak value 𝑆𝑆𝑝𝑝 and valley value 

𝑆𝑆𝑒𝑒. The peak skewness gives the location of the surface crack; however, the peak skewness is 

not directly related to the depth of the crack. The crack depth is more related to the nearby 

valley skewness. Thus, the skewness is not a pixel-level feature but a local area feature. The 

skewness distribution in 3D is important for the analysis of the crack depth and angle. For the 

purpose of the quantification, 3D ECPT is needed in order to measure the skewness gradient 

in 3D space. This is because the skewness is a local area feature. Compared with the non-

defective area, there is an abnormal transient thermal response in the crack area and its 

surrounding region, which causes changes in the skewness value.  The skin effect causes the 

eddy current to gather in the crack area and induces a higher temperature rise in the heating 

stage and a very fast heat dissipation in the cooling stage. Thus there will be a peak skewness 

value in the crack position. In contrast, the surrounding area has a smooth temperature rise in 

the heating stage but a very slow temperature drop because of the heat transfer from the crack 

region. Thus, a valley skewenss value will appear in the area sorrounding the crack. In addition, 

the deeper the crack is, the smaller the skewness it has. For this reason, the skewness not only 

reveals the crack position and depth, but also the crack direction under the surface. 

 

4.2.5 Skewness feature with different stages of ECPT (heating and cooling stage) 

 

    In the previous sections, data from all stages were used in the ECPT experiment. This 

section gives the study on the skewness feature over different stages in the experiment. The 

skewness of different responses from the periods of induced eddy current heating, thermal 

propagation, and cooling and the whole period are computed and shown in the individual tables. 

The skewness results at different locations are compared and discussed. 
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(a)                                                                         (b) 

Figure 4-12 Skewness in different stages of the ECPT experiment 

 

Stage: Heating 

Sample Peak value Valley value Peak-valley Peak_valley
∆𝑥𝑥�  

3mm -0.1744 -0.5848 0.4104 0.0684 

2.5mm -0.2058 -0.5989 0.3931 0.0655 

2mm -0.3034 -0.6655 0.3621 0.0603 

1.5mm -0.3677 -0.7763 0.4086 0.0817 

1mm -0.4616 -0.8418 0.3804 0.0634 

0.5mm -0.5588 -0.7722 0.2134 0.0427 

Table 5 Skewness peak value and valley value in the heating stage 

Stage: Cooling 

Sample Peak value Valley value Peak-valley Peak_valley
∆𝑥𝑥�  

3mm 1.594 0.6466 0.9474 0.1184 

2.5mm 1.714 0.8073 0.9067 0.1133 
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2mm 1.744 0.9706 0.7734 0.1105 

1.5mm 1.976 1.165 0.8110 0.1352 

1mm 2.093 1.407 0.6860 0.1143 

0.5mm 1.906 1.595 0.3110 0.0622 

Table 6 Skewness peak value and valley value in the cooling stage 

In the above tables, the skewness in the heating stage (Figure 4-12 a), cooling stage 

(Figure 4-12 b) and all stages are compared and discussed. The relationship of their peak value 

𝑆𝑆𝑝𝑝 , valley value 𝑆𝑆𝑒𝑒 , peak-valley 𝑆𝑆𝑝𝑝−𝑒𝑒 , depth d, and surface crack location 𝑃𝑃𝑠𝑠𝑠𝑠𝐼𝐼𝜋𝜋 are listed 

shown in Tables 4-6. 

For the heating stage,  the crack position appears at valley value 𝑆𝑆𝑒𝑒, whereas the peak 

value 𝑆𝑆𝑝𝑝 has a monotonic relationship to the defect depth. The opposite is the case in the 

cooling stage. The crack position appears at peak value 𝑆𝑆𝑝𝑝, whereas valley value 𝑆𝑆𝑒𝑒  has a 

monotonic relationship to the defect depth. This is because the heating stage and valley have 

opposite heat attenuations. In the cooling stage, the temperature curve is significant at the 

beginning and becomes smaller as it goes further towards the peak point. In contrast to the 

cooling stage, the temperature attenuation in the heating stage is small when it nears the peak 

point and becomes larger as it goes further from peak point. The inverse attenuation 

relationship in the heating and cooling stages make it unreasonable to conduct asymmetric 

measurement using skewness. Thus, the invertible transformations in Eqs. (4-15) and (4-16) 

are used; these can make the curve ‘looks symmetric’ in shape: 

𝜏𝜏(𝑠𝑠) = 𝐼𝐼(𝑇𝑇(𝜕𝜕1−𝜕𝜕))
𝐼𝐼𝜕𝜕

                                      (4-15) 

𝑇𝑇𝑒𝑒(𝑠𝑠) = ∫ 𝜏𝜏(𝑠𝑠) ∗ 𝑠𝑠𝜕𝜕1
0 𝑠𝑠                                          (4-16) 

 

It is worth noting that the above transformations are invertible, which means that the 

information of the data is not lost with the transformations. The original temperature response 

and the modified temperature response are plotted in Figures 4-13 (a), and (b), respectively. 
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                                               (a)                                                                      (b) 

Figure 4-13 Design and computation of skewness features 

For a deeper crack, the heat generation is quicker because the current tends to gather at 

the edges of the crack. At the beginning of the heating stage, joule heating of the eddy current 

is the main affecting factor for the heat generation. The temperature rise is almost a straight 

line of time. However, when approaching the end of the heating stage, with the increasing 

temeprature divergence, non-linear heat dissipation takes effect. In addition, the larger 

temperature gradient between the crack point and surrounding point causes a larger heat 

propagation in this area, which leads to the temperature rise at the crack point becoming slower. 

(Joule heating and heat dissipation conflict with each other). For this reason, it appears as a 

peak skewness value, which means that the data lie in the high temperature area. In the cooling 

stage, only heat propagation exists, which leads to a rapid temperature drop at the maximum 

temperature point. Thus, the minimum skewness appears at the surface crack point, which 

means that the data mainly lie in the low temperature area.  

For the skewness of the entire stage, the temperature curves are first pre-processed 

using Eqs. 4-16, and 4-17, which give make the temperature curve in the heating stage the 

same distribution as in the cooling stage. As a result, the relationships between crack location, 

depth, skewness peak value, 𝑆𝑆𝑝𝑝, and valley value 𝑆𝑆𝑒𝑒 are the same as in the cooling stage: The 

location of 𝑆𝑆𝑝𝑝 indicates the surface crack location 𝑃𝑃𝑠𝑠𝑠𝑠𝐼𝐼𝜋𝜋. and 𝑆𝑆𝑒𝑒 has a monotonic relationship 

to the defect depth, as shown in Figure 4-13. 
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(a) 

 
(b) 

Figure 4-14 Skewness and crack depth; (a) original temperature response, (b) transformed 

temperature response with inversion of the heating stage. 

 

Figure 4-14 shows the skewness values of the original thermal responses and the 

modified thermal responses. In summary, it can be found that there are two opposite properties 

of the skewness feature in the thermal responses at the heating and cooling stages as shown in 

the the Figures 4-12, and 4-14.   

Opposite behavior 1: the first opposite behavior is in the valley and peak point of the 

skewness feature. In Figure 4-12 (a) which is the skewness value plot of the heating stage, the 

valley skewness position indicates the surface crack position. The peak skewness gives the 

linear relationship of defect depth where the larger the skewness, the deeper the defect depth. 

In the cooling stage shown in 4-12 (b), the peak skewness position gives the surface  crack 

position. The valley skewness gives the linear relationship of defect depth where the smaller 

the skewness, the deeper the defect depth. 

Opposite behavior 2: The second opposite behavior can be found in Figure 4-14 (a). 

The skewness value in the heating stage is a negative correlation of defect depth: The deeper 

the defect, the smaller the skewness value. The skewness value in the cooling stage has a 

positive correlation where the deeper the defect, the larger the skewness value. 
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Mathematically, these opposite behaviours are caused by the concavity and convexity 

of the curve data. The heating stage is a convex curve, where the temperature rise becomes 

slower with proximity to the peak temperature. Thus, most data lie in the lower temperature 

region and the skewness is right biased. In the cooling stage, the curve is a concave curve. The 

temperature drops slowly in the low temperature region; thus, most of the data is in the low 

temperature region, and the skewness value is left biased. Because of the opposite behaviors 

of the thermal responses in the heating and cooling stages, the temperature curve needs to be 

modified using Eq. (4-15) and Eq. (4-16) before the calculation of the skewness value in the 

whole stage. The modified skewness plots of different depths at different stages are shown in 

Figure 4-14 (b). The skewness values in both the heating and cooling stages have a positive 

correlation with  defect depth, and the skewness value in the whole stage shows a linear 

relationship with the defect depth [173]. 

 

4.2.6 Skewness feature on nature cracks 

 

The previous section clarified the relationships between crack location, depth and 

skewness distribution (skewness peak value 𝑆𝑆𝑝𝑝, valley value 𝑆𝑆𝑒𝑒). This section considers a 

natrual crack which is an RCF on a rail track head.  

 
(a) Maximum temperature frame 

 
(b) Skewness of all stages  
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(c) Skewness of heating stage  

 
(d) Skewness of cooling stage  

 
(e) Maximum temperature frame 

 
(f) All stages skewness on 

poitn cloud 

 
(g) Heating stage skewness on 

poing cloud 

 
(h) Cooling stage skewness on 

point cloud 

 
Figure 4-15 Skewness feature on rolling contact fatigue 
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Figure 4-16 Snare, B. (1970), “How Reliable Are Bearings?” The Ball Bearing 

Journal, 162, pp 3–7. 

Figure 4-16 shows a typical RCF, where the greatest depth is in the centre of the crack, 

and the crack narrows on the left and right sides. However, because of the skin effect, the eddy 

current tends to gather at the edges. The left and right sides have a higher temperature 

compared to the centre area. Considering this issue, the feature should be more robust to the 

effect of eddy current density.  

    Skewness is a ‘shape feature’ that analyses the data distribution. As discussed in Section 

4.4, the skewness feature is independent of the skin effect and positions to the excitation which 

is of significant importance to the RCF crack defection and quantification. Figure 4-15 (a) 

shows the maximum temperature frame in the crack area. The maximum temperature strong 

depends on the spatial position (crack position and distance to the coil). Figure4-15 (b) is the 

skewness distribution in all stages in ECPT experiment. When this was analysed together with 

Figure 4-15 (a), it was found that the skewness feature shows little dependence on the crack 

spatial position and the maximum temperature. The valley area shows the crack position. 

Figure 4-15 (c), and (d) show the skewness values in the heating stage, and cooling stage 

respectively. In the heating stage, the peak skewness shows the crack location, whereas in the 

cooling stage, the valley skewness shows the crack location. From the three skewness images 

it can be found that in each stage (heating and cooling), the skewness feature distributions are 

identical to each other in terms of the crack position. 
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(a) Maximum temperature feature visualization (b) Skew feature visualization differential 

to enhance the contract and mind the color bar for features 

 

(c) X-ray 3D tomography 

Figure 4-17 Skewness of RCF slides and X-ray 3D  tomography 

Finally, the skewness sample is validated through a nature RCF sample and compared 

with X-ray tomography. The induction heater used was the EASYHEAT 224 from Cheltenham 

Induction Heating. A planner rectangle coil was used. The thermal IR camera used was the 

FLIR A655sc. A maximum frame rate of 200 Hz was used for thermal image capturing. The 

recording time was 1000 ms with a heating pulse of 200ms. To obtain the appropriate ROI of 

the RCF sample, a 2.9 × close-up lens was mounted on the standard lens. The root mean square 

(RMS) current density used in the induction heater was 300A, and the current frequency is 262 
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kHz. The sample used was a rail track with an RCF. This specimen was removed from a PD3 

(60km/m) rail track. The sample had the same material property, with its carbon level slightly 

different but within the range of 0.7%  to 0.8%.  Figure 4-17 (a) shows the maximum 

temperature frame; Figure 4-17 (b) illustrates the skewness feature of all stages. Finally, Figure 

4-17 (c) is the X-ray 3D tomography on the RCF cut-off sample. The X-ray 3D tomography 

depth and position are consistent with the skewness mesh plot, which validates that skewness 

can be well used in natural cracks. 

 

4.3 Thermal 3D gradient features and augmented reality for 3D visualization 
 

4.3.1 The 3D thermal gradient feature 

 

After 3D thermal mapping, quantitative defect evaluation and localization can be 

conducted based on the 3D heat flow. Time and the spatial thermal gradient in 3D are- used 

for defect detection and localization. Local gradient features are used for localization of defects 

on a 3D geometry. The thermal gradient is a physical quantification that describes in which 

direction and rate of heat propagate. The heat gradient in the space domain indicates the heat 

discontinuity, which suggests a crack or defect presents. It gives a more accurate measurement 

gradient both in time and space in compared with a 2D gradient. 

To validate the point made above, a man-made sample with an angular crack is 

investigated. Figures 4-18 (a) and (g) show the thermal image of the crack at the heating and 

cooling stages, respectively. As can be seen, both in the heat pattern and cooling stage, the 

thermal pattern is blurred, and the line slot shape is barely visible. The time differential of heat 

is governed by  

 

∆𝑇𝑇 = 𝜆𝜆
𝜌𝜌𝐶𝐶𝜌𝜌

�𝜕𝜕
2𝑇𝑇

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2𝑇𝑇

𝜕𝜕𝑦𝑦2
+ 𝜕𝜕2𝑇𝑇

𝜕𝜕𝑧𝑧2
� + 1

𝜌𝜌𝐶𝐶𝜌𝜌
(𝑞𝑞(𝑥𝑥,𝑦𝑦, 𝑧𝑧)                            4-17 
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where  ∆𝑇𝑇  is the temperature change. ρ , ρC and λ  are the material density, heat 

capacity and thermal conductivity, respectively; ),,,( tzyxq is the unit internal heat generation 

caused by the eddy current; T is the heat diffusion; and (𝑥𝑥,𝑦𝑦, 𝑧𝑧) are the Euclidean coordinates. 

During the cooling stage, the term ),,,( tzyxq  does not exist. Figures 4-18 (b) and (h) show 

the first time-differential image of a man-made crack, where the line slot shape is still not 

preserved. However, the experimental study reveals that only using 𝜕𝜕
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Artificial slot sample (cooling stage) Rail track rolling contact fatigue (cooling stage) 
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Figure 4-18 Three-dimensional gradient and defects 

 

4.3.2 Magnetic field and thermal point cloud fusion. 

 

In the ECPT experiment, the uneven magnetic excitation causes an uneven heating effect 

on the sample, which brings difficulties in localization and quantification of defects. With 3D 

thermography, the distance to the excitation coil can be calculated from the point cloud, which 

brings the possibility of calculating the magnetic field. 

In this case study, the magnetic field was roughly estimated via the Biot–Savart Law 

with a Helmholtz coil: 

𝐵𝐵(𝑧𝑧) = 𝜇𝜇0𝐼𝐼𝑅𝑅2𝑁𝑁
2(𝑅𝑅2+𝑍𝑍2)2

                                     (4-18) 

Here, 𝐵𝐵 is the induced magnetic field, 𝑅𝑅 is the radius of the coil, 𝑁𝑁 is the number of coils and 

𝑍𝑍 is the distance to the coil. 
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(a) Original thermal point cloud on 

maximum temperature frame 

(David) 

 
(b) Magnetic field mask (David) 

 
(c) Fusion image (David) 

 
(d)Separated defects (David) 
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(i) Original thermal point cloud on 

maximum temperature frame 

(Kinect) 

(j) Magnetic field mask (Kinect) 

 
(k) Fusion image (Kinect) 

   
(h) Separated defects (Kinect) 

Figure 4-19  Defect location and enhancement using fusion with magnetic field 

Two 3D scanners, the Kinect system and David system, were used. Figures 4-19 (a-d) 

dipicts the thermal point clouds acquired by David 3D system, whereas Figures 4-19 (e-h) 

illustrates the thermal point clouds acquired by the Kinect system.  

Comparing Figure 4-19 (b) with (a) and (f) with (h), it is found that the general heat 

distribution is identical to the estimated magnetic field. Thus, the estimated magnetic field can 

be used as background removal coefficients as follows: 

𝑀𝑀𝑠𝑠𝑘𝑘𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑐𝑐 𝜋𝜋𝑑𝑑𝑑𝑑𝑓𝑓𝑠𝑠 𝑚𝑚𝑠𝑠𝑠𝑠𝑘𝑘 = 𝑒𝑒𝐼𝐼𝑔𝑔𝐼𝐼𝑒𝑒𝜕𝜕𝐾𝐾𝑐𝑐 𝜋𝜋𝐾𝐾𝑒𝑒𝐶𝐶𝐼𝐼−min (𝑒𝑒𝐼𝐼𝑔𝑔𝐼𝐼𝑒𝑒𝜕𝜕𝐾𝐾𝑐𝑐 𝜋𝜋𝐾𝐾𝑒𝑒𝐶𝐶𝐼𝐼)
max(𝑒𝑒𝐼𝐼𝑔𝑔𝐼𝐼𝑒𝑒𝜕𝜕𝐾𝐾𝑐𝑐 𝜋𝜋𝐾𝐾𝑒𝑒𝐶𝐶𝐼𝐼)−min (𝑒𝑒𝐼𝐼𝑔𝑔𝐼𝐼𝑒𝑒𝜕𝜕𝐾𝐾𝑐𝑐 𝜋𝜋𝐾𝐾𝑒𝑒𝐶𝐶𝐼𝐼)

      (4-19) 

𝐹𝐹𝑢𝑢𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠 𝑑𝑑𝑚𝑚𝑠𝑠𝑘𝑘𝑑𝑑 = 𝑇𝑇ℎ𝑒𝑒𝐼𝐼𝑒𝑒𝐼𝐼𝐶𝐶 𝜕𝜕𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝐼𝐼𝐼𝐼𝜕𝜕𝑠𝑠𝐼𝐼𝑒𝑒
1+𝑀𝑀𝐼𝐼𝑔𝑔𝐼𝐼𝑒𝑒𝜕𝜕𝐾𝐾𝑐𝑐 𝜋𝜋𝐾𝐾𝑒𝑒𝐶𝐶𝐼𝐼 𝑒𝑒𝐼𝐼𝑠𝑠𝑘𝑘

                 (4-20) 

The fusion images are shown in Figure 4-19 (c) and (g). Comparing Figure 4-19 (c) with 

(a) and Figure 4-19 (g) with (e), the fusion image has a much more uniform heat distribution. 

The defect is also enhanced. Figures 4-19 (d) and 4-19 (h) show the localized defects by using 

edge extraction from Figure 4-19 (c) and (g). 

4.4 Summary 
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In this chapter, case studies on 3D ECPT were presented based on the three following aspects: 

• Geometry level: This included the curvature information, whereby the normal vectors 

were extracted. The normal vectors were then used for the point cloud segmentation. 

The RCF only appeared at the shoulder of the testing sample, and the ROI was 

automatically located using normal vectors. 

• Local area feature: The 3D thermal gradient was calculated. One man-made sample 

and one natural crack were tested. The experimental results revealed that the magnitude 

of the second-order contains the depth information and can localize defects. Thus, the 

3D thermal gradient is a significant parameter for analyzing the defect characteristics 

in the thermal transient response and evaluating the defect depth. 

• Pattern area feature: This presented skewness feature. In this study, the skewness 

feature was proposed to measure the asymmetry of the thermal temperature response 

data in the cooling and heating stages. The key idea was that the defect area causes an 

abnormal thermal transient response in the defect and surrounding area. The aim was 

to find a feature that could describe and quantify the abnormal transient thermal 

response caused by the crack. Thus, the skewness feature was proposed in this study to 

measure the transient thermal response data’s asymmetry. The skewness feature on the 

man-made sample was first investigated to assess the relationship between the 

skewness feature and the depth of the crack. The artificial cracks of 3 mm, 2.5 mm, 2 

mm, 1.5 mm, 1 mm, and 0.5 mm were tested. The experimental results showed that the 

skewness feature has a monotonic relationship with defect depth. In addition, the 

skewness was discussed and compared in terms of three stages—heating, cooling and 

all stages. Finally, a natural crack experiment is conducted and validated via the X-ray 

scaning.  
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5 THERMAL TOMOGRAPHIC RECONSTRUCTION FOR 

3D EDDY CURRENT PULSED THERMOGRAPHY 
 

 

In the previous chapter, the skewness feature of the ECPT thermal response is proofed 

as a linear feature related to the crack depth. The depth estimation and visualization based 

on the skewness feature are studied in Chapter 4. This chapter firstly proposes the thermal 

tomographic reconstruction using the 3D ECPT system. The tomographic reconstruction  

gives a much higher standard of defect characterization in allowing slicing the material in 

several layers where the skewness depth visualization can be treated as the deepest defect 

layer (or main defect layer) to some extent. Defects in different layers are estimated and 

visualized in 3D point cloud. Section 5.1 gives an introduction of thermal tomography as 

well as other tomography research such as X-ray tomography; 5.2 gives the concept of time-

spatial images which is firstly proposed in the work. The time-spatial image is the basis of 

the tomographic reconstruction. In addition, a tomographic reconstruction based on the 

differential time square root of temperature drop (DTSTD) signal is presented in 5.2; 

Section 5.3 applies the thermographic signal reconstruction (TSR) technique for our 

ECPT’s tomography. The time-of-flight model is added to the original log-log polynomial 

equation in order to form the slices of the tomographic image; Section 5.4 gives a 

comparison of the DTSTD based thermal tomography, the TSR based thermal tomography 

and the skewness feature for QNDE with summary. 

 

5.1   Introduction 
 

The eddy current pulsed thermography (ECPT) is well used for defects detection, 

especially surface crack or corrosion detection and evaluation in conductive material. The 

infrared image sequence indicates the thermal distribution and heat diffusion process [84]. 

In the ECPT experiment, the transient thermal response of ECPT contains rich information 

on the crack characteristics. Previous work has well studied the features for cracks detection 
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and characterization from the pixel level features [86], local area features [85] to the pattern 

level features such as Principal Component Analysis (PCA) and Independent Component 

Analysis (ICA) [83]. These works provide qualitative evaluation of the characteristics of 

the defect. Based on these works, a recent study [164] discussed feature-based quantitative 

relationships of defect size (depth and length) and their thermal responses. 

Alternative to feature-based QNDE for ECPT images, in Ref. [165] electrical and 

thermal conductivities are estimated by the early experimental transient response of the first 

layer having a visible fibre orientation. Then, an iterative inverse procedure minimizes the 

discrepancy between measured and simulated data to reconstruct orientations of each layer 

using the estimated conductivity.  However, no work up until now has discussed geometry 

of under surface cracks. This work proposes a novel approach to reconstruct 3D images and 

to evaluate the morphological localization of subsurface cracks based on 2D thermal slices. 

The differential time square root (sqrt) of the temperature drop (DTSTD) is extracted to 

characterize the shape of the subsurface crack along with the crack sizing and depths, and 

validated. 

With the recent advancement of NDT in 3D reconstruction based tomographic 

approaches for internal and sub-surface defects, the qualitative and quantitative analysis of 

RCF types and shapes becomes a crucial and urgent task. In contrast to conventional 

approaches, the X-ray based CT shows better resolution results and defect depth estimations. 

The different case studies of the use of X-ray CT for NDT have been proposed in [166]. 

The X-ray based CT has good results for depth estimation in NDT problems. However, the 

equipment is expensive and bulky along with the risk of radiation effects if continuously 

used. Also, the x-ray is hard to penetrate the entire rail, which makes it hard to use X-ray 

CT for online inspection of RCF cracks. The high-energy industrial CT (above 4 MeV) 

could penetrate the entire rail track head. However, the higher the energy of the X-ray, the 

lower the resolution (for 4MeV, the resolution is 1 mm), which makes it impossible to 

identify the RCF cracks in the rails. For the ultrasonic approach, Daigle et al. [167] use an 

ultrasound-based 3D tomography approach for NDE of concrete structures. 

Computed tomography is a well-established approach used to reconstruct cross-

sectional slices through an object from the transmitted projection images taken as a function 

of angle around a single axis of rotation. In [168], the authors carry out different experiments 



99 
 

using single view cone beam x-ray computed tomography to generate different datasets that 

can be used for supervised learning. A complete data reconstruction model is also presented. 

In [169], the single view based computed tomography has been proposed. This approach 

has high-speed inspection but a limited data acquisition time. Also, the generated 

tomographic sequences suffer from poor image quality and noise. So, to improve the 

reconstruction quality, different types of reconstruction algorithms are proposed such as AI-

based algorithms [170], total variation decomposition algorithm [169], truncated singular 

value decomposition algorithm [171], and wavelet-based algorithm [168]. The single-side 

view tomography is a recent and newly developed technique with the help of computing 

models and AI [170]. These slices can be stacked to produce a 3D image of the object, 

which can then be visualized by one of several methods, including volume rendering or 

digital slicing through the sample along any arbitrary plane [168,169]. These tomography 

techniques also boosted the development of the thermal tomographic reconstruction and 

motivated the tomographic reconstruction of the 3D ECPT system. 

 

5.2  Thermal behaviours of 3D ECPT, time-spatial image and DTSTD signal 
 

The tomographic reconstruction is based on emitting signals that can penetrate the 

material and go through or fold back to the receiver. These signals include X-ray, ultrasonic, 

magnetic field and thermal wave, which are called X-ray computed tomography (XCT), 

ultrasonic tomography, magnetic resonance imaging (MRI) or nuclear magnetic resonance 

(NMI) and thermal tomography respectively. The research and applications on X-ray 

tomography are diverse and extensive. However, there are few applications on thermal 

tomography because the heat propagates not only vertically, but also horizontally. This 

thermal property not only gives harsh challenges in backward reconstructing tomography 

layers, but also make the thermal images blurred in nature. For this reason, a proper exciting 

heat source has to be selected that can maximize the thermal image contrast between 

defective region and non-defective region, while minimize the thermal flux propagation in 

the vertical direction. The ECPT has the advantage that the most thermal energy gathers in 

the crack region, which maximizes the thermal contrast. In this work, the Helmholtz coil is 

used because of its relative uniform magnetic field and relative uniform thermal wave in the 
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horizontal direction. Thus, the ECPT system with Helmholtz coil is selected for the thermal 

tomography study.  

 
Figure 5-1 Procedures for the reconstruction and validation of the DTSTD based thermal 

tomography for artificial and natural defects 
 

Figure 5-1 shows the visualization pipeline. The 3D thermal fusion has already been 

provided in section 3.1. The normal vector needs to be extracted from the surface in order 

to show the temperature response in different time slots and reconstruct the time-spatial 

image. The normal vector extraction is provided in section 4.1.  

After the pulsed induction heating, only the heat conduction in steel is considered for 

heat flux propogation in the cooling stage because the thermal conductivity in air gap (0.023 

𝑊𝑊 𝑚𝑚 ∙ 𝐾𝐾⁄ ) is far less than it is in the steal (~47𝑊𝑊 𝑚𝑚 ∙ 𝐾𝐾⁄ ). The speed of heat penetration is 

given as 

𝑠𝑠ℎ𝑒𝑒𝐼𝐼𝜕𝜕 = 2√𝑘𝑘𝑠𝑠                                                 (5-1) 
 

 

where k is the thermal diffusivity and t is the elapsed time. For the steel material, the 

heat penetrates up to 5~7 mm in one second.  

The normal vector of the 3D surface at (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) is denoted as 𝑁𝑁𝑃𝑃�����⃗ = (𝑠𝑠𝑥𝑥0 , 𝑠𝑠𝑦𝑦0 ,𝑠𝑠𝑧𝑧0).  

The 3D thermal image sequences provide both time information and temperature 

information as (x, y, z, temperature, time). The time-spatial image is reconstructed with 

the normal vectors adding the the 3D thermal image sequences where 

𝑃𝑃𝑇𝑇=𝐼𝐼℃ = �
𝑥𝑥(𝑥𝑥0,𝜕𝜕)
𝑦𝑦(𝑦𝑦0,𝜕𝜕)
𝑧𝑧(𝑧𝑧0,𝜕𝜕)

� = �
𝑥𝑥0
𝑦𝑦0
𝑧𝑧0
� + 2�𝑘𝑘𝑠𝑠(𝑥𝑥0,𝑦𝑦0,𝑧𝑧0,𝑇𝑇=𝐼𝐼℃) �

𝑠𝑠𝑥𝑥0
𝑠𝑠𝑦𝑦0
𝑠𝑠𝑧𝑧0

�                 (5-2) 
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In Eq. (5-1), (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) is the 3D thermal points location in the surface layer. The 

surface layer cloud is denoted in vector form 𝑇𝑇�⃗ 0 = (𝑥𝑥0, 𝑦𝑦0, 𝑧𝑧0, 𝑠𝑠0) where 𝑠𝑠0 is the strat time 

of the heat flux propogation.  𝑠𝑠(𝑥𝑥0,𝑦𝑦0,𝑧𝑧0,𝑇𝑇=𝐼𝐼℃)  is the elapsed time reaching to cut-off 

temeprature level 𝑠𝑠 ℃ at the location (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0).  𝑠𝑠𝑥𝑥0 ,𝑠𝑠𝑦𝑦0 ,𝑠𝑠𝑧𝑧0 is the surface normal vector 

position at surface point (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0). (𝑥𝑥(𝑥𝑥0,𝜕𝜕),𝑦𝑦(𝑦𝑦0,𝜕𝜕), 𝑧𝑧(𝑧𝑧0,𝜕𝜕)) is the new point location at time 

t shifted on the surface location (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0). k is the thermal diffusivity.   

 
Figure 5-2 Sketch diagram of tomography study on 3D ECPT 

Figure 5-2 shows the sketch diagram of the tomography study. In this study, both the 

artificial sample and natrual crack sample (rail track head with rolling contact fatigue) are used. 

The natrual RCF sample are tested and compared using X-ray computed tomography. 

In the heating stage. The induced eddy current decays exponentially and penetrates to 

a certain depth. The penetration depth is given as 

𝛿𝛿 = � 1
𝜋𝜋𝜎𝜎𝜇𝜇𝜇𝜇0𝑒𝑒

                                                      (5-3) 
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where 𝑑𝑑 is the frequency of the eddy current, 𝜇𝜇 and 𝜇𝜇0 are the relative permeability and 

the permeability of vacuum respectively, 𝜎𝜎 is the material conductivity. In the heating stage, 

the current penetration depth is very small. In our experiment, the steel material with an 

excitation frequency of 200 kHz has a skin depth of only 0.03 mm. Thus the heat energy is 

only distributed at the surface region. Figure 5-3 (a) is the image taken at the end of the heating 

stage. The surface cracks are the major factors that cause the thermal discontinuities in this 

stage.  

Figure 5-3 (a) shows the 3D heat distribution at the beginning of the cooling stage. Eq. 

(5-2) builds the relationship of time and heat penetration depth and shows that the heat 

penetration depth is proportional to the root square of time and the material thermal diffusivity. 

For a specimen like a rail track which is constructed of steel, the thermal diffusivity can be 

treated as constant. Similar to the x-ray computed tomography, Eq. (5-2) shows that the 

penetration depth is proportional to the square root (sqrt) of elapsed cooling time. Thus this 

work examines using the sqrt time of temperature drop for depth estimation.  

Figures 5-3 (c) and (d) show the visualization of sqrt time drop to the a ℃, a=60% 

temperature drop (mean temperature of the heat flow). In Figures 5-3 (c) and (d), the height of 

the point cloud leaves the surface is proportional to the square root time of temperature drop, 

which is also the position where the heat penetrates. Figure 5-3 (c) shows the top view of the 

3D sqrt time of the temperature drop image while Figure. 5-3 (d) gives the bottom view. 

Considering these time images together with Figure 5-3 (a), the 3D thermal distribution in 

Figure 5-3 (a) shows the thermal patterns of the surface defect distribution since the heat has 

not penetrated into depth at the beginning of the cooling stage. The major cause of the thermal 

discontinuity in Figure 5-3 (a) is the high current density in the crack area during the heating 

stage. Figure 5-3 (b) shows the temperature layers in different colors and the time arrival to 

this layer is the height to the surface. Figure 5-3 (c) and (d) are the 3D visualization of the time 

images in a later frame with a cut-off temperature of 70% maximum temperature drop. The 

cut-off temperature stand for all pixels are in the same temperature level which is 70% of 

maximum temperature drop. These images use the information in later image sequences where 

the heat has penetrated into the material at a certain depth. The discontinuity (different time 

arrival to this temperature level) is mostly caused by the subsurface cracks. The heat 

penetration depth is calculated using Eq. (5-1).  
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Figure 5-3 (a) shows the 3D heat flow at the maximum temperature frame (time slot 

right after the heating stage). The experiment setup is the same illustrated in section 3-1. The 

Easyheat 224 from Cheltenham Induction Heating is implemented for the coil excitation. The 

Helmholtz coil with water cooling is selected. The water is pumped through the coil copper 

tube during the experiment. The excitation frequency is 200 kHz in 300 A. The heat flow is 

recorded by the FLIR SC7500 which has an In Sb detector of infrared range between 1.5~5 

μm. The camera has a pixel resolution of 320 × 256 and a maximum speed of 383 Hz. The 

thermal camera utilizes a maximum speed rate of 383Hz. The heating time is 200 ms and the 

cooling time is 800 ms. The testing sample is a rail track sample with rolling contact fatigues 

on one side of the rail track shoulder.  

 
(a) Single 3D thermal image 



104 
 

 
(b) 3D Heat flow 

 
(c) 3D sqrt time of temperature drop image (top view) 
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(d) 3D sqrt time of temperature drop image (bottom view) 

 

Figure 5-3 Visualization of the 3D heat flow. (a) Single 3D thermal image; (b) 3D Heat 
flow; (c) 3D sqrt time of temperature drop image (top view); (d) 3D sqrt time of temperature 

drop image (bottom view) 
 

To enhance the contrast between the defective region and the non-defective region, the 

point cloud is down-sampled. Using the 3D thermal fusion provided in Figure. 5-1, the fused 

3D heat flow is generated and shown in Figure 5-3 (b). This figure merges the 3D heat flow 

into one single image frame. The fused 3D heat flow in Figure 5-3 (b) presents the following 

information: (1) The surface temperature distribution at the maximum temperature frame is 

given at the surface of the rail track; (2) the thermal images in later time slots are placed as 

plane layers overlay the previous time slots; (3) the images taken at different time slots is 

visualized in one single 3D image. In this figure, different temperature layers from 10% 

maximum temperature drop to 80% are marked with a different color, while the height of the 

layer indicates the time arrival to this temperature (top 10% temperature range and bottom 20% 

temperature range are ignored due to  too much noise information). It could be seen that the 

defect-free area has a very uniform time arrival shape while the defect area is clustered into 

several scattered regions.  

In addition, the time cost from each layer to the next layer is visualized as the width of 
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the temperature zoom. A higher time cost of the temperature layer indicates a defect exists in 

this layer. Using such a system as a base, a thermal tomography system is proposed using the 

differential square root of temperature drop as pictured in Figure 5-4 

 

 
Figure 5-4 Proposed DTSTD algorithm 

 

As for the penetration depth, we found the time relationship and the penetration depth. 

Theoretically, the more time it cost to reach the temperature level, the higher thermal 

diffusivity, which reveals one or several cracks exists under the surface. For different 

temperature layers, a higher time cost to the next temperature level indicates that there exists 

a discontinuity which blocks the heat transfer. The elapsed time in each temperature layer is 

used as the response signal for the reconstruction of the sectional images. Figure. 5-5 shows 

the differential sqrt time of temperature drop images, where 

R(u, v)𝐼𝐼 = �𝑇𝑇𝐼𝐼%℃ − �𝑇𝑇𝑏𝑏%℃                                     (5-4) 

In Eq. (5-4), the R(u,v) is the response signal at a pixel location (u,v). The subscript 𝑠𝑠 

denotes the penetration depth where the heat penetrates to the cut-off temperature 

a % ℃ temperature drop . The term 𝑇𝑇𝐼𝐼%℃  is the sqrt temperature drop reaching cut-off 

temperature 𝑠𝑠℃ and 𝑇𝑇𝑏𝑏%℃  is the sqrt temperature drop reaching cut-off temperature 𝑏𝑏%℃. 

Figures 5-5 a~g shows the differential sqrt time of temperature drop from the range of 10% 
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temperature drop to 80%. These time images contain both depth and intensity information of 

the cracks. For Figure5-5 (a), firstly, the sqrt of time cost to reach 80% temperature drop is 

calculated to estimate the heat penetration depth. Secondly, a strong pixel in Figure 5-5 (a) 

indicates a high time cost from heat level 70% to 80%, which indicates a crack under the 

current penetration depth.  
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(a) 80%~70% 

drop 

 
(b) 70%~60% drop 

 
(c) 60%~50% drop 

 
(d) 50%~40% drop 

 
(e) 40%~30% 

drop 

 
(f) 30%~20% drop 

 
(g) 20%~10% drop 

 
(h)Reconstructed 

3D thermal 

tomography (color 

map in gray) 

Figure 5-5       Sectional images and the reconstructed 3D thermal tomographic 

image (top view). 

 

 
Figure 5-6     Reconstructed 3D thermal tomographic image (color map in jet) 
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Figure 5-7       Reconstructed artificial angular crack slots under different methods   

Same principles as Figure. 5-5 (a) Figures 5-5 (b) to (g) are the differential square root time 

images at different temperature layers from 80% temperature drop to 10%. Figure 5-5 (a) has the 

deepest thermal penetration depth since the time to reach the 80% temperature drop is the longest 

in all image sequences, whereas Figure 5.5 (g) has the least penetration depth for the same reason. 

From the time-image sequences, it can be seen that the deeper the penetration depth, the more 

detail and contrast the image has. This observation is opposite to the obtained ECPT thermal image 

sequences as these thermal images have the highest contrast in early cooling time and become 

blurred in the later cooling stage. The reason is due to the fact that at the beginning of the cooling 

stage, the thermal image has the maximum temperature divergence caused by the uneven heating 

and the higher current density in the defective area. However, the large temperature divergence 

also results in a quick temperature drop which eventually leads to a small-time interval between 

each temperature layer. The small-time interval will result in a low resolution of the differential 

square root time images in Figure 5-5. Thus, the DTSTD sectional images have higher contrast in 

the later cooling stage and ECPT thermal image sequences have higher contrast at the early cooling 

stage. Given the intensity images with different time slots (Figures 5.5 (a~g)), the 3D positions 

with intensities (x, y, z, i) are calculated using Eq. (5-4), where  i is the intensity of images Figures 

5-5 (a~g) and t is the elapsed time to each temperature level from 10% temperature drop to 70% 

temperature drop. The reconstructed 3D tomography image is shown in Figure. 5-6. 
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The dynamic thermal tomography (DDT) technique is the most widespread method for 

flash thermal tomography in the reconstruction of the defect structure [173]. The DDT 

reconstruction is also presented for comparison study. In the evident form the thermal effusivity 

given by 𝑑𝑑 = �𝜆𝜆𝜌𝜌𝐶𝐶𝜌𝜌 where 𝜆𝜆 is the thermal conductivity, 𝜌𝜌 is the material density and 𝐶𝐶𝜌𝜌 is the 

material thermal conductivity. The thermal effusivity is to measure the ability of the heat 

propagation with its surroundings. For a semi-infinite body, the solution of thermal effusivity is 

given by: 

𝑑𝑑 = 𝑊𝑊
𝑇𝑇√𝜋𝜋𝜋𝜋

                                                                   (5-5) 

where 𝑊𝑊  is the absorbed power, 𝑇𝑇  is the surface temperature, 𝜏𝜏  is the elapsed time. 

Obviously, the crack region has a much lower thermal effusivity compared with defect-free region. 

Thus the thermal effusivity is used for the reconstruction of the slice images. Since the absorbed 

energy is hard to measure in the experiment accurately, the normalized effusivity is used given as: 
𝑒𝑒
𝑊𝑊

= 1
𝑇𝑇√𝜋𝜋𝜋𝜋

                                                                (5-6) 

In this work, the artificial angular crack slot is used with angular cracks from 1mm to 3mm 

and angle of 45°. The reconstructed tomography image is shown in Figure 5-7. Images A to E are 

cracks of 1mm to 3mm reconstructed by the proposed DTSTD method. The high intensity voxels 

(shown as red color) indicate a high DTSTD value. Image F is the 3mm crack reconstructed with 

reciprocal of the normalized thermal effusivity 𝑊𝑊
𝑒𝑒

. The stronger the intensity, the lower the 

effusivity where indicates the defect region. From images A to E, they show a 1.7% measurement 

error of defect depth and angle  where error = mean(measured depth – real depth) / 

mean(measured depth).  The arched structure of the reconstructed image is caused by the even 

heating and not enough time response in these temperature regions. Comparing with images A and 

F. The image reconstructed with normalized thermal effusivity also shows the depth and position 

of the defect. However, the boundary effect is particularly critical as ECPT system is unevenly 

heated and most energy gathers in the defect region and the area near the excitation coil. The result 

obtained from artificial cracks shows the proposed method shows better performance in ECPT 

thermal tomography. 

This section validates and reports the comparison of the result from x-ray CT and the 

proposed thermal tomography approach. As is illustrated previously, the x-ray is hard to penetrate 

the entire rail track head. In this experiment, the rail track head with RCF is cut with a depth of  
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9mm. Figure 5-8 (a) is the tomography image of an RCF cut-off sample reconstructed from X-ray 

CT. Figure 5-8 (b) is the proposed thermal tomography image. From the two images, D5 has the 

longest length and depth. The defects of D2 to D6 are well-matched with each other. However, 

For Figure. 5-8 (b), the D1 and D7 are not well reconstructed and show large noise around due to 

the boundary effect of heat conduction, which shows that the edge effect and thermal propagation 

at borders should be reconsidered.  

 
(a) X-ray CT image 

 
(b) Reconstructed thermal tomography 

image 

 

Figure 5-8 X-ray CT image and the proposed thermal tomography image (160 kV 
microfocus ) 

 
(a) DTSTD Thermal tomography image 

(front view) 

 
(b) DTSTD Thermal tomography image 

(back view) 

 
(c) Thermal image 
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(d) X-ray tomography image 

Figure 5-9 X-ray CT image and the proposed thermal tomography image (160 kV microfocus 
industrial CT) 

Figure 5-9 shows another rail track sample with tiny RCF cracks. The Proposed DTSTD 

thermal tomography image is given in Figures 5-9 (a) and (b). Figure 5-9 (c) is the thermal image 

and the corresponding X-ray tomography image is shown in Figure 5-9 (d). The excitation coil 

used is the Helmholtz coil located on the top and bottom side of the sample. The heating time is 

200ms with current density of 230A. From the thermal image, uneven heating happens where the 

bottom side near the coil has larger mean temperature. The effect is also shown in the thermal 

tomography image as the bottom side has more defect points. Limited by the resolution of the 

thermal camera, the point cloud of the RCF defect is not very clear. The defect shape and the 

position from the X-ray tomography have well-matched with the DTSTD thermal tomography, 

which proves that the DTSTD feature could be used as a domination factor for the thermal 

tomography reconstruction. 

 

5.3  Thermographic signal reconstruction on ECPT’s thermal tomography 

 
The thermographic signal reconstruction (TSR) is considered as one of the most practical 

and useful technique in active thermography in recent few years. Several studies [175~177] raises 

the TSR algorithm as a milestone that put the infrared thermography to the level as the most 
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established NDE technique among other techniques including ultrasonic, magnetic particles, eddy 

current and X-rays. TSR is originally designed for pulsed thermography. Recent studies [178] also 

investigated using TSR in long pulsed thermography.  

The TSR technique emerges in the early 2000s which is designed to reduce the noise for the 

detection of smaller and deeper defects. The TSR belongs the category of the curve-fit based 

analysis. It transforms the thermal response from original time-temperature space to the log-log 

space. The curve fitting of the log-log curve is than applied and the coefficients of the curve is 

used as the TSR signal to reconstruct the defect. 

The TSR algorithm starts from form of heat conduction as: 
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

= 𝑐𝑐𝑥𝑥(𝑥𝑥) 𝜕𝜕
2𝑇𝑇

𝜕𝜕𝑥𝑥2
+ 𝑐𝑐𝑦𝑦(𝑦𝑦) 𝜕𝜕

2𝑇𝑇
𝜕𝜕𝑦𝑦2

+ 𝑐𝑐𝑧𝑧(𝑧𝑧) 𝜕𝜕
2𝑇𝑇
𝜕𝜕𝑧𝑧2

                                (5-7) 

The thermal distribution in any position of a body can be calculated if given the structure 

of the body, its boundary condition and its initial states. The boundary condition in thermal 

conduction is a differential equation that describes the thermal conduction between the body with 

other materials. The initial states describe the temperature distribution at the time t = 0. The 

𝑐𝑐𝑥𝑥,𝑐𝑐𝑦𝑦,𝑐𝑐𝑧𝑧 are the thermal diffusivity at the x, y, z direction and the thermal diffusivity describes 

the ability to pass the temperature to its surroundings. The thermal diffusivity α(𝑚𝑚2/𝑠𝑠) is already 

stated in previous section 3.1. which is 

α = 𝑘𝑘
𝜌𝜌𝑐𝑐

                                                               (5-8) 

where k(W/m ∙ k)  is the thermal conductivity that describes the ability of heat energy 

transportation. The thermal conductivity k is also used to evaluate the depth of heat propagation 

in Eq 5-1 𝑠𝑠ℎ𝑒𝑒𝐼𝐼𝜕𝜕 = 2√𝑘𝑘𝑠𝑠. The ρ(kg/𝑚𝑚3) is the material density and c( J
kg
∙ k) is the material’s heat 

capacity which describes the amount of heat absorbed with a unit of temperature change. Currently 

only the numerical solution of Eq. (5-7) are provided using the finite element method (FEM). The 

analytical solution only exists in few ideal cases. The TSR is based on one of the ideal cases where 

an ideal heat pulse is evenly spread on the structure surface. The structure of the body is a semi-

infinite solid plate. The analytical solution of this ideal situation is given as: 

𝑇𝑇(𝑧𝑧, 𝑠𝑠) = 𝑑𝑑0
√𝜕𝜕𝜋𝜋𝜁𝜁

𝑑𝑑�−
𝑧𝑧2

4𝛼𝛼𝑧𝑧𝐾𝐾
� + 𝑇𝑇𝐼𝐼                                              (5-9) 

where 𝜁𝜁 is the thermal effusivity stated in chapter 5.2 which is the measurement of its 

ability to change the thermal energy with its surroundings. 𝑄𝑄0 is the total energy of the pulsed 
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excitation. 𝑇𝑇𝐼𝐼 is the ambient temperature. As stated in the previously, the ambient temperature is 

eliminated by the background subtraction. The active thermal image sequences is subtracted with 

‘inactive states’ which is the state without heating. Since the thermal camera only captures the 

thermal responses in the surface layer, The recorded thermal depth z = 0 . Substituting these 

parameters into Eq. (5-9) gives: 

∆T(t) = 𝑑𝑑0
√𝜕𝜕𝜋𝜋𝜁𝜁

                                                           (5-10) 

Take the log in both left and right side gives 

log�∆T(t)� = log � 𝑑𝑑0
√𝜕𝜕𝜋𝜋𝜁𝜁

�                                                          (5-11) 

log�∆T(t)� = log(𝑄𝑄0) + 1
2

log(t) − log�√𝜋𝜋. 𝜁𝜁�     (5-12), (TSR thermal response) 

 log(𝑠𝑠) = 2�log(𝑄𝑄0) − log�√𝜋𝜋. 𝜁𝜁� − log�∆T(t)��          (5-13), (TSR time response) 

 

The thermal effusivity 𝜁𝜁 is directly related to the crack characteristic. The Eq. (5-12) shows 

that the log time response is related to the input energy 𝑄𝑄0， thermal effusivity 𝜁𝜁  and the 

differential thermal response ln�∆T(t)�). Eq. (5-12) is the TSR thermal response. Classical TSR 

uses Eq. (5-12). In this work, the time images are used, and the TSR time response form in Eq. 

(5.13) is selected. In the Eq. (5-12) and Eq. (5-13), the TSR thermal-time response in the log-log 

space is a direct line in ideal situation with no defect. The slope of the line is ½ as the output 

log�∆T(t)� is the function of  1
2

log(t). 

In the classical TSR, the TSR response is modelled as: 

log(∆T) ≈ 𝑐𝑐0 + 𝑐𝑐1 log(𝑠𝑠) + 𝑐𝑐2 log(𝑠𝑠)2 + ⋯+ 𝑐𝑐𝐼𝐼 log(𝑠𝑠)𝐼𝐼          (5-14) 

where the ∆T = T − 𝑇𝑇𝐼𝐼 is the differential temperature with the subtraction of the thermal 

frame without excitation. 𝑐𝑐0 to 𝑐𝑐𝐼𝐼 are the coefficients of the polynomial calculated with the curve 

fitting in the log-log space. In some situation only part of the thermal curve is used for the 

polynomial fitting. The selected time is called the time window and a good time window can 

significantly improve the signal to noise ratio (SNR) and the defect contract.  
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In this work, defects in different depth layers and the time delays are added to the classical 

TSR and only the first differential 𝑐𝑐1 and constant 𝑐𝑐0 are taken into consideration and gives the 

following equation: 

log(∆T) ≈ 𝑐𝑐0 + 𝑐𝑐11 log(𝑠𝑠 − 𝑠𝑠𝐶𝐶1) + 

𝑐𝑐12 log(𝑠𝑠 − 𝑠𝑠𝐶𝐶2) + ⋯+ 𝑐𝑐1𝐼𝐼 log(𝑠𝑠 − 𝑠𝑠𝐶𝐶𝐼𝐼)                                            (5-15) 

The first differential coefficients with time delays 1 − 𝑐𝑐11  to 1 − 𝑐𝑐1n  are used for the 

reconstruction of different layer images with the layer depth of 2�𝑘𝑘𝑓𝑓1 to 2�𝑘𝑘𝑓𝑓𝐼𝐼 respectively, 𝑘𝑘 is 

the thermal diffusivity. 

 
Figure 5-10 TSR based thermal tomographic reconstruction on artificial angular crack 

 

The TSR based thermal tomographic reconstruction is shown in Figure 5-10. The angular 

crack is 3.5mm with inclination angle of 45°. The Helmholtz coil is used and placed at the top and 

bottom side of the specimen where the crack locates in the middle of the two coils. The excitation 

current is 300A with frequency of 260 kHz. For the purpose of comparison study, the experimental 

data is totally the same as it is in section 4.2 and section 5.2. The image above shows two active 

zone which is the coil 1 active region and coil 2 active region. The pixel intensity in these two area 

are generally uniform. The surface crack has an apparent higher intensity value than other area. 

The zoom in image in the right part of Figure 5-10 further shows the layer discontinuity caused by 

the surface and sub-surface crack. The reconstructed the angle direction from the surface towards 

material depth is also well shown.  
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(a) 3.5mm 

 
(b) 3mm 

 
(c) 2.5mm 

 
(d) 2mm 

 
(e) 1.5mm 

 
(f) 1mm 

 

Figure 5-11 TSR based thermal tomography of angular cracks with different depths. 
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/  

Figure 5-12 TSR based thermal tomography of rail track head with RCF crack (defect in left 
side) 

 

Figure 5-11 shows the angular cracks of 45° with different depths from 3.5mm to 1mm 

reconstructed using TSR based thermal tomography. The crack position can be easily found either 

from the  intensity or from the layers discontinuity. However, they have different physical meaning 

and principles. The intensity is related to the first differential TSR 𝑐𝑐1k signal in the polynomial 

fitting where 𝑘𝑘 is the 𝑘𝑘𝜕𝜕ℎ time layer which is related the depth in the tomography image. The strong 

intensity region is the position with low 𝑐𝑐 values as p(x, y, z) = 1 − 𝑐𝑐1𝑘𝑘 . In the TSR thermal 

response  

log�∆T(t)� = log(𝑄𝑄0) + 1
2

log(t) − log�√𝜋𝜋. 𝜁𝜁� ≈ 𝑐𝑐0 + 𝑐𝑐1 log(𝑠𝑠) + 𝑑𝑑𝑠𝑠𝑠𝑠             (5-16) 

The evaluated 1 − 𝑐𝑐1k  is directive related to the thermal effusivity. A strong intensity 

region indicates a low thermal effusivity in the current time-spatial zone which may be caused by 

the cracks. 

The layers continuity is linked to the TSR time response form in Equation. (5-13). The 

process of the slice layer reconstruction is the same as the DTSTD slice layer reconstruction 

illustrated in section 5.2. The DTSTD slice uses the time reaching each temperature layers to form 

the slice images. TSR layer uses the same principle as the DTSTD slice reconstruction. Recall 
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Equation. (5-13) which is log(𝑠𝑠) = 2�log(𝑄𝑄0) − log�√𝜋𝜋. 𝜁𝜁� − log�∆T(t)��. In each temperature 

layer, the total energy log(𝑄𝑄0) is a constant. The temperature log�∆T(t)� is the same in each 

temperature layer. The thermal diffusivity has the linear relationship towards the time arrival 

which is visualized as the layer abruption if the defect exists. From the Figures 5-11. Image a 

shows the highest abruption in surface crack region with a 45° inclination slope from top left to 

bottom right. In Image f the layers are almost in the plane and the crack region has a slight hump 

which shows the heat flux is slightly blocked in this region. 

Lastly, the Figure 5-12 shows the TSR reconstruction of the rail track with rolling contact 

fatigue (RCF). The RCF crack exists in the left part and right part is the non-crack part. The color 

intensity and layers continuity in the right part are uniform while the RCF cracks are clearly seen 

both via the color intensity and the layers abruption. 

 

5.4  Comparison and summary 
 

The classical heat conduction theory gives several analytical solution in simple geometry 

bodies with ideal cracks. Real case infrared thermography problems are usually solved with the 

finite element method with simulation software such as COMSOL. Currently there is no accurate 

analytical solution for the real infrared thermography problem. Either the DTSTD tomographic 

reconstruction or TSR based tomographic reconstruction are the estimation of the crack geometry. 

Thus multiple features character should be taken into consideration for the evaluation of the crack 

characteristics. In this chapter, the skewness feature, DTSTD tomographic reconstruction and the 

TSR tomographic reconstruction on a 3.5mm angular man-made crack are compared with a 

conclusion of the above three features. 

 
(a)  

 
(b) 

 
(c) 
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Figure 5-13 TSR based thermal tomography of rail track head with RCF crack (defect 

in left side) (a) DTSTD thermal tomographic reconstruction on 3.5 mm angular crack; (b) TSR 

thermal tomographic reconstruction on 3.5 mm angular crack; (c) Mesh plot of the skewness 

feature on 3.5 mm angular crack 

Figure 5-13 shows the 3.5mm angular crack using thermal tomography reconstruction 

method of DTSTD, TSR based and the mesh plot of skewness feature respectively. It is clear that 

the DTSTD image and TSR image do not have a linear relationship in the reconstructed volume 

intensity. The DTSTD is more sensitive to the thermal discontinuity (context value) while TSR is 

more sensitive in the layer discontinuity and the excitation lift-off.  

The TSR reconstruction is originated from an ideal solution of heat conduction. The un-

even heating and the structure geometry needs to be seriously considered as the uneven heating 

causes the horizontal thermal propagation while the analytical model is based on the heat flux 

evenly spread on the sample surface. Also, the TSR time-delay format only uses the first 

differential coefficient for tomography extraction. The second and third differential is neglected in 

this study. It could also be seen that the time-delay is well visualized as the layer discontinuity of 

the crack region. The DTSTD is extracted from the original thermal response compared to the TSR 

signal which is constructed from log-log space. Thus the DTSTD signal has higher context contrast. 

The time layers is not obvious compared the TSR time-delay formatted reconstruction. Skewness 

feature can be treated as the deepest layer (or main defect layer) of the tomography image. The 

skewness uses the curvature information of entire thermal response. It is proofed as the statistical 

quantification of the defect severity and directive related to the depth of the defect. The skewness 

feature has very low computation cost with a relative robust depth estimation. Thus it can be used 

for quick and rough defect characterization and inspection. 

 

 TSR thermal 

tomography 

DTSTD thermal 

tomography 

Skewness feature 

Physical principle Estimation of thermal 

effusivity using TSR 

first polynomial 

coefficient  

Time delay caused 

by crack in 

different time slots 

Statistical analysis of 

thermal response 

curvature information 



120 
 

Physical feature First differential of the 

TSR polynomial in 

time delay format  

Differential time 

sqrt of temperature 

drop 

Skewness of modified 

thermal response 

Mathematical 

model 
log�∆T(t)�

= log(𝑄𝑄0) +
1
2

log(t)

− log�√𝜋𝜋. 𝜁𝜁�

≈ 𝑐𝑐0 + 𝑐𝑐1 log(𝑠𝑠)

+ 𝑑𝑑𝑠𝑠𝑠𝑠 

R(u, v)𝐼𝐼

= �𝑇𝑇𝐼𝐼%℃

− �𝑇𝑇𝑏𝑏%℃ 

𝑆𝑆(𝑥𝑥,𝑦𝑦)

=
1
𝑠𝑠∑ (𝑥𝑥𝐾𝐾 − �̅�𝑥)3𝐼𝐼

𝐾𝐾=1

��1
𝑠𝑠 (∑ (𝑥𝑥𝐾𝐾 − �̅�𝑥)2𝐼𝐼

𝐾𝐾=1 �
3 

Volume intensity 

contrast 

Low High N/A 

Layers information High Low One layer 

Error and 

influence factor 

Very sensitive to 

excitation power; 

sensitive to excitation 

lift off; very sensitive 

to testing object 

structure geometry 

Sensitive to 

excitation power 

and excitation lift 

off; sensitive to 

object structure 

geometry 

Very Robust to excitation 

power and lift off; less 

sensitive to object 

structure geometry 

Robustness to 

excitation 

Low Medium High 

Computational 

complexity 

Higher High Low 

Table 7 Comparison table of TSR thermal tomography, DTSTD thermal tomography and 

the proposed skewness feature 

 

Since these features are analysis from different physical angles, it is possible to merge these 

features in order to increase the signal to noise ratio (SNR) and decrease the errors and the 

influence factors such as the excitation lift-off and geometry of the structure.  

However, there are two challenges in the feature fusion of these two tomography features. 

Firstly, they have different feature coordinates. Unlike the 2D features, the tomography feature 

have different depths. Merging the nearest points from DTSTD and TSR is a possible solution. 
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However, it lowers the resolution because of the merging of the nearest points. For example, 

it is likely that the TSR layer contrast is decreased if the DTSTD signal is merged in. Also, 

there is a higher computation complexity in finding the nearest neighbourhood. The second 

challenge lies in these two features have different characteristics. The DTSTD has higher 

volume contrast while the TSR has higher layer contrast. A proper balance needs to be found. 

Overall, a good 3D feature fusion algorithm should be studied that can increase the robustness 

and SNR.  
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6 CONCLUSION AND FUTURE WORK 
 

This work established the first 3D ECPT system for the purpose of quantitative 

measurement and evaluation of the defect characteristics. The uncertainties in previous ECPT 

systems, such as the distance to the excitation, sample geometry shape and relative defect position 

in 3D space were solved with the temperature mapped to the 3D point cloud. To realize quick and 

reliable 3D temperature mapping, a feature based multi-spectrum image registration algorithm was 

introduced in section 3.1. For the quantitative evaluation of defect depth, in section 4.2, the 

skewness feature extraction was presented. To proceed with the study on depth evaluation, the 

thermal tomography work was presented in chapter 5. In this chapter, the conclusion and 

contribution are summarized in section 6.1, and the future works and potential research proposals 

are listed in section 6.2. 

 

6.1   Conclusion and major contributions 
 

In this thesis, a 3D ECPT system was built with a multi-spectrum registration algorithm. A 

fast 3D visualization platform was generated to support point cloud processing and defect 

quantification research. Various studies have been carried out on the 3D defect localization and 

quantification, including such approaches as PCA, point cloud segmentation and 3D defect 

enhancement. The conclusions and outcomes are listed in detail below. 

 

6.1.1 Three-dimensional ECPT system set-up and camera registration. 

 

In the first part, the thesis presented the procedure for building up the 3D ECPT system. 

The major issue involved projecting the thermal information to the point cloud or mapping each 

point cloud in the cloud to corresponding temperature information. Three dimensional 

thermography consists of a thermal camera and a 3D ranger. Two cameras record the two sources 

of information at the same time in different locations. To project the thermal temperature to the 
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point cloud, a projection matrix needs to be estimated. Currently, most works are based on 

checkerboard calibration. However, working conditions require an auto-registration method using 

common features without a checkerboard. Therefore, the projection matrix was estimated via the 

matched common features.  

The procedure of matching features from the two modalities of the images consists of 

feature extraction, feature description and feature matching. Feature extraction extracts interest 

points from the two images. Feature description generates the feature descriptor vector that 

describes the features. Finally, feature matching is based on the feature descriptor vector that has 

the minimum vector distance. However, because of the two different modalities of the image, the 

existing feature descriptor cannot correctly describe the feature to be used for feature matching. 

This thesis proposed a new feature descriptor that would successfully match the features from a 

thermal image and visible image.  

 

6.1.2 Three-dimensional scanning and visualization 

 

Two 3D rangers were selected for the 3D profile rendering—the David 3D ranger and the 

Kinect structure light (SL) camera. The two 3D scanners have advantages and disadvantages, and 

they are used for different purposes. The Kinect camera has a very fast scanning speed of 30 frames 

per second. Thus, it is used for real-time 3D-thermal reconstruction and 3D profile rendering in 

motion. However the scanning quality is low in terms of both resolution and precision. Moreover, 

there are many holes within one scan. The low quality not only brings limited quantified 

information but also brings difficulties in the fusion of point cloud and thermal IR image. To 

address this issue, the Kinect fusion algorithm can be used, which uses the iterative closest point 

to merge several scans into one scan. In contrast, the David 3D ranger has a very precise scanning 

with a quality with the resolution up to 0.05 mm. However, in this study, it took around 2 minutes 

to complete one scan. The David 3D ranger is used for precise point cloud capturing, and it was 

the primary 3D scanner used in our lab for the experimental study. 

Finally, a 3D visualization platform was built written in C++. The visualization platform 

can rotate the point cloud in three dimensions, and the temperature curve is auto-generated by 



124 
 

shift+left clicking the mouse. The 3D ECPT also enables  precise thermal texture and visible 

texture alignment and fusion. The result was presented in chapter 3 with a comparison of the 

COMSOL simulation. 

 

6.1.3 Defect detection and validation using 3D ECPT system 

 

This section describes the studies on defect detection using the 3D ECPT system. The 3D 

ECPT system enables the quantified measurement and analysis of defect properties. Previous 

studies have used three levels of features for defect detection—the pixel level, local area level and 

pattern feature level. For pixel level features, the features are based on the single pixel transient 

thermal response, which does not show an advantage in 3D ECPT. This thesis proposed two new 

features—the 3D thermal gradient as a local area feature and skewness as a pattern-level feature. 

The two features were validated on artificial and natural cracks. The experimental study not only 

validated the two features for defect detection but also revealed that the two features are related to 

defect depth. 

 

6.1.4 Thermal tomography reconstruction of natural and artificial cracks using 3D ECPT 

 

This work proposed and investigated the first thermal tomographic approach using the 3D 

ECPT system. The thermal tomographic approach realizes a much higher standard in that it ‘slices’ 

the testing object into layers. Two thermal tomographic approaches,  DTSTD thermal tomographic 

construction and TSR-based thermal tomographic reconstruction, were presented and compared in 

the thesis. These thermal tomographic approaches were also compared with X-ray tomography. 

The result showed the outlook of replacing X-ray tomography with thermal tomography, which is 

a totally non-invasive and much more convenient approach for obtaining object tomography 

structures. Furthermore, the result showed that thermal tomography has a unique advantage over 

X-ray tomography in terms of the potential for recognizing tiny cracks like RCF cracks, which are 

hardly to identify in X-ray tomography. 
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6.2   Future work 
 

Based on the 3D ECPT system, several directions can be suggested in terms of the 

quantification of nondestructive testing. 

6.2.1 Directional emissivity correction 

 

Previously most research on the ECPT system was based on a flat testing sample. However, 

in recent years, research has increasingly focused on more general cases with non-flat structures 

such as wind turbines and railway tracks. The emissivity of an object is influenced by multiple 

parameters, such as the roughness of the material surface, the material type, the spectrum wave 

range of the camera and the angle between the camera and the testing object (directional 

emissivity). For a sample with a complex structure, directional emissivity has a strong influence 

on the measured radiation, and thus, it influences the measured temperature. With 3D 

thermography, the angles from the camera to each heat point on the testing sample can be 

calculated. The directional emissivity thus should be calculated and corrected. 

 

6.2.2 Defect depth estimation based on the analysis of 3D heat flow  

 

Previous studies have already shown that the transient thermal response of an ECPT system 

contains depth information of the defect. However, for the quantification of defects, many 

parameters need to be quantified during the experiment. The newly developed 3D ECPT system 

enables the quantification of the following components: 

a) The lift-off distance from the excitation coil and the testing sample. In the ECPT 

experiment, the different lift-offs to the excitation coil lead to an uneven-excited magnetic 

field and causes the uneven-heating.  

b)  The geometry relationship of the cracks (the crack distance to other cracks and where in 

the testing sample the crack is located). The crack locations on the testing sample 
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sometimes give the different influences of the transient thermal responses. For example, a 

crack lying on the edge or corner of a testing sample has different thermal response 

characteristics compared with a crack lying on a flat area. In addition, multiple cracks 

behave differently compared with a single crack. The cracks influence each other in terms 

of transient thermal response when multiple cracks stand close to each other. 

c)  Heat transfer in the cooling stage. In the cooling stage of the ECPT system, the thermal 

response is only related to the heat propagation, and the defect and non-defect areas will 

cause different thermal responses. In this study, with the quantified 3D heat flow, the 3D 

thermal gradient was calculated for defect pattern characterization.  

 

6.2.3 Thermal tomographic reconstruction 

 

This thesis represents the first attempt at thermal tomographic reconstruction using a 3D 

ECPT system. Two thermal tomographic reconstruction, the DTSTD and TSR-based tomography, 

were proposed and compared. These approaches involve estimations of defects’ 3D shape based 

on different physical parameters and principles. More investigation should be conducted via a 

comparison study on X-ray CT and artificial cracks with different shapes and depths. In addition, 

more quantitative analysis, such as analysis of coil types, the influence of different lift-offs and 

other physical factors, should be conducted.  

Based on the newly developed 3D ECPT system, future research work on the quantitative 

analysis of cracks characteristics is suggested that focuses on the three points mentioned above. In 

addition to feature-based 3D QNDE from transient responses, complementary approaches to 

tomography can be developed for further comparison and evaluation. 
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Appendix 

A1. The binary file format of temperature profile. 
This program saves the data analysis from Matlab and visualized via the visualization software 

developed by sensor group, Newcastle University. 

The full Matlab coding is shown below: 

 

fileID = fopen(Data.bin','w'); 

% first number: number of Frames of temperature curve 

fwrite(fileID,num1,'double'); 

% second number: number of Frames of RotatedCurve curve 

fwrite(fileID,num,'double'); 

% thrid number: number of Point cloud points 

fwrite(fileID,601601,'double');  

%****************************end of parameters***************** 

%first data block: Full Temperature Curve 

fwrite(fileID,MappedTemperatureFlow','double'); 

%second data block: RotatedCurve Curveture 

fwrite(fileID,Rotated_PointCloud','double'); 

%thrid data block: Skewness value 

fwrite(fileID,Skewness,'double'); 
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%forth data block: Maximum temperature value 

fwrite(fileID,MappedTemperatureFlow(:,Maximum_Frame_Num),'double'); 

fclose(fileID); 

 

The binary data format is shown below: 

 

The binary data format consists of two parts: data block parameters and data block 

contents. The data block parameters states the data size of each data block (data 

block contents) which help the pointer to locate the data position required for reading. 
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